### **Probabilistic Graphical Models\***

### **Bayesian Networks**





\*Thanks to Carlos Guestrin, Pedro Domingos and many others for making their slides publically available





## What you need to know thus far

- Independence and conditional independence
- Definition of a Bayesian network
- Local Markov assumption
- The representation theorem
  - G is I-map for P iff P factorizes according to G
  - Interpretation





## Independencies encoded in BN

- We said: all you need is the local Markov assumption (Xi ⊥ NonDescendants<sub>xi</sub> | Pa<sub>xi</sub>)
- But then we talked about other (in)dependencies such as explaining away





- So, what are the independencies encoded by a BN?
  - Only assumption is local Markov but many other independencies can be derived using the algebra of conditional independencies!

# Understanding independencies in BNs ption: A variable X is (with 3 nodes)

Local Markov Assumption: A variable X is independent of ist non-descendants given its parents and only ist parents:

(Xi ⊥ NonDescendants<sub>Xi</sub> | Pa<sub>Xi</sub>)

#### Indirect causal effect:



$$X \perp Y \mid Z$$

$$\neg X \perp Y$$

### Indirect evidential effect:



$$X \perp Y \mid Z$$

$$\neg X \perp Y$$

#### Common cause:



$$X \perp Y \mid Z$$

same distribution Represent all (v-structure)
Common effect:



# This can be generlized using the notion of active trails





A trail is an undirected path that never visits a node twice



# This can be generlized using the notion of active trails



- A trail  $X'_1 X'_2 \cdots X'_k$  is **active** (when some variables  $O \subseteq \{X_1, ..., X_m\}$  are observed) **if** for each consecutive triplet in the trail it holds:
  - $-X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$ , and  $X_i$  is **not observed**  $(X_i \notin \mathbf{O})$
  - $-X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$ , and  $X_i$  is **not observed**  $(X_i \notin O)$
  - $-X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$ , and  $X_i$  is **not observed**  $(X_i \notin \mathbf{O})$
  - $-X_{i-1}$  →  $X_i$  ←  $X_{i+1}$ , and  $X_i$  is observed ( $X_i$  O), or one of its descendents (v-structure)

Intuitively, information flows a long active trials!



# Active and Blocked Trails in BNs Some Examples –





# Active and Blocked Trails in BNs Some Examples –





Information can flow if there is a trail x...y that is not blocked by z (active trail)



## Active trail and independence?

• Theorem: Sets of variables  $X_i$  and  $X_j$  are independent given  $Z \{X_1,...,X_n\}$  if there is no active trail between  $X_i$  and  $X_j$  when variables  $Z \{X_1,...,X_n\}$  are observed

We say that X<sub>i</sub> and X<sub>j</sub> are d-separated given Z
 (dependence separation)























## More generally: Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:  $I(G) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : d\text{-sep}_G(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$
- Theorem: Soundness of d-separation
  - If P factorizes over G then  $I(G) \subseteq I(P)$  and not only  $I_1(G) \subseteq I(P)$
- That means d-separation only captures true independencies

## Existence of dependency when not d-separated

Theorem: If X and Y are not dseparated given Z, then X and Y are dependent given Z under some P that factorizes over G

#### Proof sketch:

- Choose an active trail between X and Y given Z
- Make this trail dependent
- Make all else uniform (independent) to avoid "canceling" out influence





### **Excursion: Faithful Distribution**

 P is said to be faithful if it does not declare extra independence assumption that cannot be read from G

| False | True |
|-------|------|
| 0.8   | 0.2  |

| False | True |
|-------|------|
| 0.8   | 0.2  |



| AB\C | False | True |
|------|-------|------|
| FF   | 0.9   | 0.1  |
| FT   | 0.9   | 0.1  |
| TF   | 0.9   | 0.1  |
| TT   | 0.9   | 0.1  |

P entails  $C \perp A,B$ !!

P is **not** faithful



### More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
  - For "almost all" distributions where P factorizes over G, we have that I(G) = I(P)
    - "almost all" distributions: except for a set of measure zero parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
    - Means that if X and Y are **not** d-separated given Z, then  $\neg (X \perp Y \mid Z)$
- Proof sketch for very simple case:



Polynomials are either identical zero or they are non-zero almost everywhere. Thus, the equality happens with probability 0

d-sep says  $\neg A \perp B$  but it holds  $A \perp B$ 

i.e., P(B|A) = P(B), which is a polynomial equality over the space of CPDs

$$\theta_{B} = \theta_{B|A=t} = \theta_{A=t} \cdot \theta_{B|A=t} + (1 - \theta_{A=t}) \cdot \theta_{B|A=f}$$



# Algorithm for d-separation: The Bayes' Ball

- Correct algorithm:
  - Shade in evidence
  - Start at source node
  - Try to reach target by search
  - States: pair of (node X, previous state S)
  - Successor function:
    - X unobserved:
      - To any child
      - To any parent if coming from a child
    - X observed:
      - From parent to parent
  - If you can't reach a node, it's conditionally independent of the start node given evidence









# Interpretation of completeness



- Theorem: Completeness of d-separation
  - For "almost all" distributions that P factorize over G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
  - P says  $(X=x\perp Y=y \mid Z=z)$ ,  $\forall x \in Val(X)$ ,  $y \in Val(Y)$ ,  $z \in Val(Z)$
- Often we have context-specific independence (CSI)
  - $\exists x \in Val(X), y \in Val(Y), z \in Val(Z): P \text{ says } (X=x \perp Y=y \mid Z=z)$
  - Many factors may affect your grade



### **Excursion: Context specific indepencence**







### **Excursion: Context specific indepencence**





### **Excursion: Context specific independence**

#### After observing a variable, some vars become independent





## **CSI Representation: Tree CPD**

- Represent  $P(X_i | Pa_{X_i})$  using a decision tree
  - Path to leaf is an assignment to (a subset of) Paxi
  - Leaves are distributions over  $X_i$  given assignment of  $Pa_{Xi}$  on path to leaf
- Interpretation of leaf:
  - For specific assignment of Pa<sub>Xi</sub> on path to this leaf –
     X<sub>i</sub> is independent of other parents
- Representation can be exponentially smaller than equivalent table



**Assuming binary RVs** 

Table: O(2<sup>k</sup>)
In the strutcure: O(k)

ents  $f = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all to this real } A = \frac{1}{2} \text{ for all t$ 





### **Determinism and inference**

- Determinism gives a little sparsity in table, but much bigger impact on inference
- Multiplying deterministic factor with other factor often introduces many new zeros
  - Operations related to theorem proving, e.g., unit resolution

|         | Lights |     |     |
|---------|--------|-----|-----|
| _       |        | ON  | OFF |
| ery     | ОК     | .99 | .01 |
| Battery | WEAK   | .20 | .80 |
|         | DEAD   | 0   | 1   |

$$g(Y) = \prod f_j$$
 and  $f_i(x_i) = 0$  then  
all values of the  $g(Y)$  table where  
 $X_i = x_i$  will be zero



### State-of-the-art Models ...

### Often characterized by:

- Richness in local structure (determinism, CSI)
- Massiveness in size (10,000's variables)
- High connectivity (treewidth, explained later in class)

### Enabled by:

- High level modeling tools:
  - relational, first order (more about this maybe later in class!!!!)
- Advances in machine learning
- New application areas (synthesis):
  - Bioinformatics (e.g. linkage analysis)
  - Sensor networks
- Exploiting local and relational structure a must!





- -If G is an I-map of P then  $I_I(G) \subseteq I(P)$
- Also, it is always true that  $I(G) \subseteq I(P)$  means d-separation is **sound**
- And for almost all Ps that factor over G, I(G) = I(P), P is faithful to G

### What you need to know



- d-separation and independence
  - sound procedure for finding independencies

- existence of distributions with these independencies
- Context-specific indpendence (CSI)
- Bayes' Ball

### What's next



Inference



### Is Inference in BNs hopeless?

- In general, yes!
  - Even approximate!
- In practice
  - Exploit structure
  - Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference
  - Approximate inference later this semester

#### Theorem:

Inference in Bayesian networks (even approximate, without proof) is NP-hard





### **General probabilistic inference**

• Query:  $P(X \mid e)$ 

Using def. of cond. prob.:

$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$
Headache

Normalization: (we stopped here)  $P(X \mid e) \propto P(X, e)$ 



## Probabilistic inference example





Inference seems exponential in number of variables!



## **Inference in Simple Chains**



How do we compute

$$P(x_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2) = \sum_{x_1} P(x_1) P(x_2 \mid x_1)$$
CPDs



## Inference in Simple Chains (cont.)



How do we compute  $P(x_3)$ ?

• We already know how to compute  $P(x_2)$  ...

$$P(x_2) = \sum_{x_1} P(x_1, x_2) = \sum_{x_1} P(x_1) P(x_2 \mid x_1)$$



## Inference in Simple Chains (cont.)



How do we compute

$$P(x_n)$$

• Iteratively compute 
$$P(x_1), P(x_2), P(x_3), \dots$$
 using

$$P(x_{i+1}) = \sum_{x_i \text{ computed}} P(x_i) P(x_{i+1} \mid x_i)$$

## **Complexity of inference: Simple Chains**





 $O(n \cdot k^2)$  v.s. exponentially in n



#### **Variable Elimination**

#### General idea:

Write query in the form

$$P(x_n, \boldsymbol{e}) = \sum_{x_k} \cdots \sum_{x_3} \sum_{x_2} \prod_{i} P(x_i \mid pa_i)$$

- Iteratively
  - Move all irrelevant terms outside of innermost sum
  - Perform innermost sum, getting a new term
  - Insert the new term into the product



# **A More Complex Example**

"Asia" network:



- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b



$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$$

Eliminate:  $\nu$ 

Compute:  $f_v(t) = \sum_{v} P(v)P(t \mid v)$ 

 $\Rightarrow \underline{f_v(t)}P(s)P(l\mid s)P(b\mid s)P(a\mid t,l)P(x\mid a)P(d\mid a,b)$ 

Note:  $f_{\nu}(t) = P(t)$ 

In general, result of elimination is not necessarily a probability term

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b



$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$$

$$\Rightarrow f_{v}(t)P(s)P(l\mid s)P(b\mid s)P(a\mid t,l)P(x\mid a)P(d\mid a,b)$$

Eliminate: 5

Compute: 
$$f_s(b,l) = \sum P(s)P(b|s)P(l|s)$$

$$\Rightarrow f_v(t)f_s(b,l)P(a|t,l)P(x|a)P(d|a,b)$$

Summing on s results in a factor with two arguments  $f_s(b,l)$  In general, result of elimination may be a function of several variables

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b



$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$$

$$\Rightarrow f_{v}(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$$

Eliminate: x

Compute: 
$$f_x(a) = \sum_{x} P(x \mid a)$$

$$\Rightarrow f_v(t)f_s(b,l)\underline{f_x(a)}P(a|t,l)P(d|a,b)$$

Note:  $f_{x}(a) = 1$  for all values of a!!

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b



$$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_v(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_v(t)f_s(b,l)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_v(t)f_s(b,l)f_x(a)P(a|t,l)P(d|a,b)$$

Eliminate: †

Compute: 
$$f_t(a,l) = \sum_t f_v(t) P(a \mid t, l)$$
  
 $\Rightarrow f_s(b,l) f_x(a) f_t(a,l) P(d \mid a,b)$ 

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b



```
P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)
   \Rightarrow f_{v}(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)
   \Rightarrow f_{v}(t)f_{s}(b,l)P(a|t,l)P(x|a)P(d|a,b)
   \Rightarrow f_{v}(t)f_{s}(b,l)f_{x}(a)P(a|t,l)P(d|a,b)
   \Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d \mid a,b)
Eliminate: /
Compute: f_l(a,b) = \sum f_s(b,l) f_t(a,l)
    \Rightarrow f_l(a,b)f_r(a)P(d \mid a,b)
```

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b



$$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_v(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_{v}(t)f_{s}(b,l)f_{x}(a)P(a|t,l)P(d|a,b)$$

$$\Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d \mid a,b)$$

$$\Rightarrow \underline{f_l(a,b)}\underline{f_x(a)}P(d\mid a,b) \Rightarrow \underline{f_a(b,d)} \Rightarrow \underline{f_b(d)}$$

Eliminate: a,b

Compute: 
$$f_a(b,d) = \sum_a f_l(a,b) f_x(a) p(d | a,b)$$
  $f_b(d) = \sum_b f_a(b,d)$ 



#### **Variable Elimination**

- We now understand variable elimination as a sequence of rewriting operations
- Computation depends on order of elimination



How do we deal with evidence?

Suppose get evidence

We want to compute

$$P(L, V = t, S = f, D = t)$$

We start by writing the factors:



## $P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$

- Since we know that V = t, we don't need to eliminate V
- Instead, we can replace the factors P(V) and P(T/V) with

$$f_{P(V)} = P(V = t)$$
  $f_{p(T|V)}(T) = P(T | V = t)$ 

- This "selects" the appropriate parts of the original factors given the evidence
- Note that  $f_{p(V)}$  is a constant, and thus does not appear in elimination of other variables

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)



$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)P(x \mid a)f_{P(d|a,b)}(a,b)$$



- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)



$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)P(x \mid a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)



• Initial factors, after setting evidence:

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)P(x \mid a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

Eliminating t, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_t(a,l)f_x(a)f_{P(d|a,b)}(a,b)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)



Initial factors, after setting evidence:

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

Eliminating t, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_t(a,l)f_x(a)f_{P(d|a,b)}(a,b)$$

• Eliminating  $a_{r}$  we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_a(b,l)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = t, S = f, D = t)



$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(l|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$$

Eliminating X, we get

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

Eliminating t, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

• Eliminating  $a_{r}$  we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_a(b,l)$$

Eliminating b, we get

$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_b(l)$$



# Summary: Variable elimination algorithm



- Given a BN and a query P(X|e) / P(X,e)
- Instantiate evidence e

**IMPORTANT!!!** 

- Prune non-active vars for {X,e}
- Choose an ordering on variables, e.g., X<sub>1</sub>, ..., X<sub>n</sub>
- Initial factors  $\{f_1,...,f_n\}$ :  $f_i = P(X_i | Pa_{X_i})$  (CPT for  $X_i$ )
- For i = 1 to n, If  $X_i \notin \{X, E\}$  t must be eliminated
  - Collect factors f<sub>1</sub>,...,f<sub>k</sub> that include X<sub>i</sub>
  - Generate a new factor by eliminating X<sub>i</sub> from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- Variable X<sub>i</sub> has been eliminated! Add g to the set of factors
- Normalize P(X,e) to obtain P(X|e)

# **Complexity of VE: (Poly)-tree graphs**





Variable elimination order:

Start from "leaves" inwards:

- Start from skeleton!
- Choose a "root", any node
- Find topological order for root
- Eliminate variables in reverse order

Does not creat factors any bigger than original CPTs

Linear in CPT sizes!!! (versus exponential)



Distributor

SparkPlugs



## **Complexity of VE: General Case**

During VE, we multiply and marginalize factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- Mult.: exponential in the number of involved vars
- Marg. : linear in the size of the product factor
- Exponential in the # of vars in intermediate factors, i.e., dominated by the largest intermediate factor



#### What's next

- Thus far: Variable elimination
  - (Often) Efficient algorithm for inference in graphical models
- Next: Understanding complexity of variable elimination in more detail
  - Will lead to cool junction tree algorithm later