

SiFive FE310-G000 Manual 1.0.3

© SiFive, Inc.

SiFive FE310-G000 Manual

Proprietary Notice

Copyright © 2016-2017, SiFive Inc. All rights reserved.

Information in this document is provided "as is", with all faults.

SiFive expressly disclaims all warranties, representations and conditions of any kind, whether express or implied, including, but not limited to, the implied warranties or conditions of merchantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation indirect, incidental, special, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version	Date	Changes	
1.0.3	July 24, 2017	Correct DWAKEUP_N and	
		AON_PMU_OUT_0 pin as-	
		signments	
1.0.2	June 12, 2017	Clarify that QFN48 is the 6x6	
		Standard format.	
1.0.1	December 20, 2016	Add QFN48 Package Pinout,	
		add Configuration String, re-	
		name chip to FE310-G000	
1.0	November 29, 2016	HiFive1 release	

Contents

Sil	Five F	E310-G(000 Manual		i
1	Intro	duction	า		1
	1.1	Block D	Diagram	 	. 1
	1.2	E31 Co	oreplex Configuration	 	. 1
	1.3	CLINT		 	. 2
	1.4	PLIC .		 	. 2
	1.5	JTAG C	Connections	 	. 2
	1.6	Debug	Module	 	. 2
	1.7	Quad-S	SPI Flash	 	. 3
	1.8	GPIO C	Complex	 	. 3
	1.9	Always-	s-On (AON) Block	 	. 3
	1.10	Power S	Supply	 	. 3
2	FE31	10-G000) Pins		5
	2.1	FE310-	-G000 Pinmux	 	. 5
3	FE31	10-G000	Memory Map		7
4	FE31	10-G000) Interrupts		9
5	FE31	10-G000) Boot		11
	5.1	Non-vo	olatile Code Options	 	. 11
		5.1.1	Gate ROM (GROM)	 	. 11
		5.1.2	Mask ROM (MROM)	 	. 11
		5.1.3	One-Time Programmable (OTP) Memory	 	. 11
		5.1.4	Quad SPI Flash Controller (QSPI)	 	. 12
	5.2	Boot So	cenarios	 	. 12

iv		SiFive FE310-G000 Manual 1.	0.3
	5.3	Reset and Trap Vectors	12
6	FE31	0-G000 Package Options	15
	6.1	48-Pin QFN Package	15
7	FE31	0-G000 Configuration String	19

Introduction

The FE310-G000 is the first Freedom E300 SoC, and forms the basis of the HiFive1 development board for the Freedom E300 family. The FE310-G000 is built around the E31 Coreplex instantiated in the Freedom E300 platform, and the E3 Coreplex Series and Freedom E300 Platform manuals should be read together with this manual. This manual only describes the specifics of the FE310-G000.

FE310-G000 is fabricated in the TSMC CL018G 180nm process.

1.1 Block Diagram

Figure 1.1 shows the overall block diagram of FE310-G000. FE310-G000 contains an E31-based Coreplex, a selection of flexible I/O peripherals, a dedicated off-chip Quad-SPI flash controller for execute-in-place, 8 KiB of in-circuit programmable OTP memory, 8 KiB of mask ROM, clock generation, and an always-on (AON) block including a programmable power-management unit (PMU).

1.2 E31 Coreplex Configuration

The core is configured to support the RV32IMAC ISA options.

The branch predictor configuration has 40 branch-target buffer (BTB) entries, 128 branch-history (BHT) entries, and a two-entry return-address stack (RAS).

The integer multiplier completes 8 bits per cycle, so takes up to four clock cycles for a single 32×32 multiply operation.

The integer divider completes one bit per clock cycle, with an early out.

The instruction cache is a 16 KiB two-way set associative with 32-byte lines.

The data SRAM is 16 KiB.

The system mask ROM is 8 KiB in size and contains simple boot code. The system ROM also holds the platform configuration string and debug ROM routines.

Figure 1.1: FE310-G000 top-level block diagram.

1.3 CLINT

The Coreplex-Local Interrupt Controller (CLINT) supports the standard timer and software interrupts.

1.4 PLIC

The platform-level interrupt controller (PLIC) receives interrupt signals from the peripheral devices and prioritizes these for service by the core. The PLIC has 52 inputs, each supporting 7 programmable priority levels.

1.5 JTAG Connections

A four-wire 1149.1 JTAG connection is used to connect the external debugger to the internal debug module.

1.6 Debug Module

The debug module is accessed over JTAG, and has support for two programmable hardware breakpoints. The debug RAM has 28 bytes of storage.

1.7 Quad-SPI Flash

A dedicated quad-SPI (QSPI) flash interface is provided to hold code and data for the system. The QSPI interface supports burst reads of 32 bytes over TileLink to accelerate instruction cache refills. The QSPI can be programmed to support eXecute-In-Place modes to reduce SPI command overhead on instruction cache refills. The QSPI interface also supports single-word data reads over the primary TileLink interface, as well as programming operations using memory-mapped control registers.

1.8 GPIO Complex

The GPIO complex manages the connection of digital I/O pads to digital peripherals, including SPI, UART, and PWM controllers, as well as for regular programmed I/O operations. FE310-G000 has two additional QSPI controllers in the GPIO block, one with four chip selects and one with one. FE310-G000 also has two UARTs. FE310-G000 has three PWM controllers, two with 16-bit precision and one with 8-bit precision.

1.9 Always-On (AON) Block

The AON block contains the reset logic for the chip, an on-chip low-frequency oscillator, a watch-dog timer, connections for an off-chip low-frequency crystal oscillator, the real-time clock, a programmable power-management unit, and 16×32 -bit backup registers that retain state while the rest of the chip is powered down.

The AON can be instructed to put the system to sleep. The AON can be programmed to exit sleep mode on a real-time clock interrupt or when the external digital wakeup pin, dwakeup_n, is pulled low. The dwakeup_n input supports wired-OR connections of multiple wakeup sources.

1.10 Power Supply

FE310-G000 requires two dedicated power rails providing 1.8 V power to the always-on block and core logic, and 3.3 V to the I/O pads.

FE310-G000 Pins

2.1 FE310-G000 Pinmux

The GPIO pins on FE310-G000 support pin muxing functionality as described in the Freedom E300 Platform Reference Manual. Table 2.1 shows the multiple functions supported by each pin. Each pin is also an interrupt source.

Table 2.1: FE310-G000 Pin Hardware I/O Functions

Pin Number	IOF0	IOF1
0	10.0	PWM0_0
1		PWM0_1
2	QSPI1:SS0	PWM0_2
3	QSPI1:SD0/MOSI	PWM0_3
4	QSPI1:SD1-MISO	
5	QSPI1:SCK	
6	QSPI1:SD2	
7	QSPI1:SD3	
8	QSPI1:SS1	
9	QSPI1:SS2	
10	QSPI1:SS3	PWM2_0
11		PWM2_1
12 13		PWM2_2 PWM2_3
13		PVVIVIZ_3
15		
16	UART0:RX	
17	UART0:TX	
18	5 7 1. 5 117.1	
19		PWM1 ₋ 1
20		PWM1_0
21		PWM1 ₋ 2
22		PWM1_3
23		
24	UART1:RX	
25	UART1:TX	
26	QSPI2:SS	
27	QSPI2:SD0/MOSI	
28	QSPI2:SD1/MISO	
29 30	QSPI2:SCK	
30	QSPI2:SD2 QSPI2:SD3	
31	Q3F12.3D3	

FE310-G000 Memory Map

Table 3.1 enumerates the peripherals included in FE310-G000 and where they are located in the memory map.

Base	Тор	Description		
0x0000_0000	0x0FFF_FFFF	(see E3 Coreplex Manual)		
0x0002_0000	0x0002_1FFF	On-chip OTP read (≤ 8 KiB)		
0x1000_0000	0x1000_7FFF	Always-On (AON)		
0x1000_8000	0x1000_FFFF	Power, Reset, Clock, Interrupts (PRCI)		
0x1001_0000	0x1001_0FFF	On-chip OTP control		
0x1001_1000	0x1001_1FFF	Reserved		
0x1001_2000	0x1001_2FFF	GPIO0 with 32 GPIO		
0x1001_3000	0x1001_3FFF	UART0		
0x1001_4000	0x1001_4FFF	Off-Chip QSPI0 Control		
0x1001_5000	0x1001_5FFF	PWM0 (8 bit timer with 4 cmp)		
0x1001_6000	0x1002_2FFF	Reserved		
0x1002_3000	0x1002_3FFF	UART1		
0x1002_4000	0x1002_4FFF	Off-Chip QSPI1 Control (4CS)		
0x1002_5000	0x1002_5FFF	PWM1 (16bit timer with 4 cmp)		
0x1002_6000	0x1003_3FFF	Reserved		
0x1003_4000	0x1003_4FFF	Off-Chip QSPI2 Control (1CS)		
0x1003_5000	0x1003_5FFF	PWM2 (16bit timer with 4 cmp)		
0x1003_6000	0x1FFF_FFFF	Reserved		
0x2000_0000	0x3FFF_FFFF	Off-chip QSPI0 flash read (1CS)		
		(512 MiB)		
0x4000_0000	0x7FFF_FFFF	Reserved		
0x8000_0000	0x8000_3FFF	Instruction and Data SRAM (16 KiB)		
0x8000_4000	OxFFFF_FFFF	Reserved		

Table 3.1: FE310-G000 Peripherals Map

FE310-G000 Interrupts

Table 4.1 lists the PLIC interrupt sources in FE310-G000. The PLIC on FE310-G000 has a 3-bit programmable interrupt priority field on each interrupt source.

Interrupt Number	Source
0	No Interrupt
1	wdogcmp
2	rtccmp
3	uart0
4	uart1
5	qspi0
6	qspi1
7	qspi2
8	gpio0
39	gpio31
40	pwm0cmp0
44	pwm0cmp3
45	pwm1cmp0
48	pwm1cmp3
49	pwm2cmp0
52	pwm2cmp3

Table 4.1: FE310-G000 Interrupt Sources

FE310-G000 Boot

This chapter describes the operation of FE310-G000 during the boot process.

5.1 Non-volatile Code Options

There are four possible sources of non-volatile memory from which code can be initially fetched on a FE310-G000 system: Gate ROM, Mask ROM, OTP, and off-chip SPI flash.

5.1.1 Gate ROM (GROM)

The debug ROM is built from gate ROM and contains code for the debug interrupt handler that jumps to debug RAM, as well as code to wait for a debug interrupt.

The default value of mtvec, the trap vector base address, is set to 0x0. Fetches from address 0x0 are hardwired to return 0, which is an illegal instruction, causing another trap, hence causing the processor to spin in a trap loop on any fetch to address 0.

The trap loop is used to hold the processor when waiting for the debugger to download code to be executed. The debugger can issue a debug interrupt, which causes the processor to jump to the debug interrupt handler in debug ROM, which in turn jumps to the code written to the debug RAM. The debug RAM code can be used to bootstrap download of further code.

5.1.2 Mask ROM (MROM)

MROM is fixed at design time, and is located on the peripheral bus on FE310-G000 but instructions fetched from MROM are cached by the E31 core's I-cache. The MROM contains an instruction at address 0x1000 which jumps to the OTP start address at 0x2_0000.

5.1.3 One-Time Programmable (OTP) Memory

The OTP is located on the peripheral bus, with both a control register interface to program the OTP, and a memory read port interface to fetch words from the OTP. Instruction fetches from the OTP memory read port are cached in the E31 core's instruction cache.

The OTP needs to be programmed before use and can only be programmed by code running on the E31 core. The OTP bits contain all 0s prior to programming.

5.1.4 Quad SPI Flash Controller (QSPI)

The dedicated QSPI flash controller connects to external SPI flash parts that are used for execute-in-place code. SPI flash is not available in certain scenarios such as package testing or board designs not using SPI flash (e.g., just using on-chip OTP).

Off-chip SPI parts can vary in number of supported I/O bits (1, 2, or 4). SPI flash bits contain all 1s prior to programming.

5.2 Boot Scenarios

Table 5.1 outlines the possible scenarios under which the system will be booted.

MROM	OTP	QSPI	Boot strategy	
N	N	N	Spin and wait for debugger to download code into SRAM. Can only	
			execute code from SRAM.	
N	N	U	Spin and wait for debugger to download SPI flash programming code	
			into SRAM, and program flash from SRAM-based code.	
N	N	Р	Jump to SPI code and execute-in-place through I-cache.	
N	U	Х	Spin and wait for debugger to download OTP programming code into	
			SRAM, and program OTP from SRAM-based code.	
N	Р	Χ	Jump to OTP code and execute using I-cache.	
Р	N	N	Spin and wait for debugger to download application code into SRAM.	
			Can use ROM library routines.	
Р	N	U	Spin and wait for debugger to download SPI flash programming code	
			into SRAM, but can use ROM library routines.	
Р	N	Р	Jump to SPI code and execute-in-place through I-cache. Code can use	
			ROM library routines.	
Р	U	Х	Spin and wait for debugger to download OTP flash programming code	
			into SRAM, but can use ROM library routines.	
Р	Р	Х	Jump to OTP code and execute using I-cache.	

Table 5.1: Boot process for various non-volatile code storage scenarios. The letter N indicates not available (either not present or not functioning), U indicates present but unprogrammed, P indicates present and programmed, X indicates don't care.

The three distinct possible boot actions are "spin and wait", "jump to OTP", and "jump to SPI". The logic to select one of these actions depends on both the supported/working hardware on the chip and the dynamic state of the system.

5.3 Reset and Trap Vectors

The reset PC value is affected by the IP enable pads, as shown below:

When reset is directed to start fetching from $0x0000_0000$, the core will enter a trap loop, repeatedly fetching 0 (illegal instruction) from address 0x0.

When reset is directed to start fetching from the QSPI, if the first word in the external QSPI flash has not been programmed it will contain all 1s, which is an illegal instruction. The core will then

psdmaskromen	psdotpen	psdqspien	Reset PC	Description
X	0	0	0x0000_0000	Cause trap loop.
X	0	1	0x2000_0000	Jump to QSPI.
0	1	X	0x0002_0000	Jump directly to OTP.
1	1	X	0x0000_1000	Correct operation, jump to ROM.

trap to the initial 0x0 vector and enter a trap loop as before. If the QSPI has been programmed, the system will continue to execute boot code from the flash.

When reset is directed to start fetching from OTP, if the first word in the OTP has not been programmed, it will contain all 0s, which is an illegal instruction, again causing the core to spin and wait for the debugger at the initial trap vector. If the OTP has been programmed, the core will begin executing core out of the OTP.

If all components are working correctly, FE310-G000 will perform like a production E300 chip by fetching the first instruction from 0x1000. For FE310-G000 the instruction stored there jumps straight to OTP at $0x2_0000$, and will either enter trap loop if the OTP is not programmed, or start running the OTP code.

FE310-G000 Package Options

FE310-G000 is currently offered in a single package option, a convenient, industry standard 6x6mm 48-lead QFN package (0.4mm pad pitch).

6.1 48-Pin QFN Package

The pinout of the package is given in the following tables.

Table 6.1: Power and Ground Connections for 48-pin QFN Package

Pin Number	Name	Туре	Description
49	GND	Power	0V Ground input.
6,30,46	VDD	Power	+1.8V Core voltage supply in-
			put
11,32,47	IVDD	Power	+3.3V I/O voltage supply in-
			put
23	AON_VDD	Power	+1.8V Always-On core volt-
			age supply input
19	AON_IVDD	Power	+1.8V Always-On I/O voltage
			supply input
7	PLL_AVDD	Power	+1.8V PLL Supply input.
8	PLL_AVSS	Power	PLL VSS input. Connect
			through a capacitor to
			PLL_AVDD, not to GND.
12	OTP_AIVDD	Power	+3.3V OTP Supply Input

Table 6.2: Clock Connections for 48-pin QFN Package

Pin Number	Name	Type	Description
9	XTAL_XI	Input	16MHz Crystal Oscillator In-
			put
10	XTAL_XO	Output	16MHz Crystal Oscillator
			Output

Table 6.3: Digital I/O Connections for 48-pin QFN Package

Pin Number 13 14 15	Name JTAG_TCK JTAG_TDO JTAG_TMS	Type Input Output	Description JTAG Clock line for debug interface JTAG Data Out for debug in-
14	JTAG_TDO	•	terface
		Output	
		Output	JTAG Data Out for debug in-
15	JTAG_TMS		•
15	JTAG_TMS		terface
		Input	JTAG Test Mode Select for
			debug interface
16	JTAG_TDI	Input	JTAG Data In for debug inter-
			face
1	QSPI_DQ_3	Bidir	Quad SPI Data Line
	QSPI_DQ_2	Bidir	Quad SPI Data Line
	QSPI_DQ_1	Bidir	Quad SPI Data Line.
4	QSPI_DQ_0	Bidir	Quad SPI Data Line.
5	QSPI_CS	Output	Quad SPI Chip Select. Active
			Low.
48	QSPI₋SCK	Output	Quad SPI Clock Signal.
25	GPIO_0	Bidir	GPIO_0/ PWM0_0/
26	GPIO₋1	Bidir	GPIO ₋ 1/ PWM0 ₋ 1/
27	GPIO_2	Bidir	GPIO_2/ SPI1_SS0/
			PWM0_2/
28	GPIO_3	Bidir	GPIO_3/ SPI1_MOSI/
			PWM0_3/
29	GPIO_4	Bidir	GPIO_4/ SPI1_MISO
31	GPIO ₋ 5	Bidir	GPIO_5/ SPI1_SCK
33	GPIO_9	Bidir	GPIO_9/ SPI1_SS2
34	GPIO ₋ 10	Bidir	GPIO ₋ 10/ SPI1 ₋ SS3/
			PWM2_0
35	GPIO ₋ 11	Bidir	GPIO ₋ 11/ PWM2 ₋ 1
36	GPIO ₋ 12	Bidir	GPIO_12/ PWM2_2
37	GPIO ₋ 13	Bidir	GPIO ₋ 13/ PWM2 ₋ 3
38	GPIO ₋ 16	Bidir	GPIO_16/ UARTO_RX
39	GPIO ₋ 17	Bidir	GPIO_17/ UART0_TX
40	GPIO ₋ 18	Bidir	GPIO ₋ 18
41	GPIO ₋ 19	Bidir	GPIO_19/ PWM1_1
42	GPIO₋20	Bidir	GPIO_20/ PWM1_0
43	GPIO_21	Bidir	GPIO_21/ PWM1_2
44	GPIO_22	Bidir	GPIO_22/ PWM1_3
45	GPIO ₋ 23	Bidir	GPIO_23

Table 6.4: Always-On 1.8V I/O Connections for 48-pin QFN Package

17	AON_PMU_OUT_1	Output 1.8V	Programmable SLEEP control.
22	AON_PMU_OUT_0	Output 1.8V	Programmable SLEEP control.
18	AON_PMU_DWAKEUP_N	Input 1.8V	Digital Wake-from-sleep. Active low.
24	AON_ERST_N	Input 1.8V	External System Reset. Active low.
20	AON_PSD_LFALTCLK	Input 1.8V	Optional 32 kHz Clock input.
21	AON_PSD_LFCLKSEL	Input 1.8V	32 kHZ clock source selector. When driven low, AON_PSD_LFALTCLK input is used as the 32 kHz low-frequency clock source. When left unconnected or driven high, the internal LFROSC source is used.

FE310-G000 Configuration String

The initial version of the FE310-G000 has a configuration string of:

```
/cs-v1/;
/{
  model = \"SiFive,FE310G-0000-Z0\";
  compatible = \"sifive,fe300\";
  /include/ 0x20004;
};
```