When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations

Aleksandar Petrov, Philip Torr, Adel Bibi

Department of Engineering Science, University of Oxford, United Kingdom

24.2.29 Minkyu Kim EffL@POSTECH

Index

- Introduction
- Background
- Analyze & Delineate
 - Soft prompting has more capacity than prompting
 - Prefix-tuning can only bias the output of an attention head
 - The bias can elicit skills from the pretrained model
 - Effects of prefix-tuning beyond the single attention layer
- Limitation
- Conclusion

Training the cutting-edge language model. needs huge cost

- GPT4. more than \$100M
- LLaMA-2-7b. \$85K

Note. Without cost to buy hardware (~ \$30M)

Out of reach for most academic researchers (even fine-tuning)

Alternative. 'Efficient' fine-tuning

- Sparsely modifying the parameters of the model
 - Adapter modules, Low-rank updates
- Modifying its input context (Context-based fine-tuning)
 - In-context learning (GPT3)
 - Prompt tuning(Hard prompt tuning, Soft prompt tuning, Prefix-tuning)

Modifying its input context (Context-based fine-tuning).

- The most popular approach: prompting
 - Generation is conditioned on either human-crafted or automatically optimized tokens
 - Have witnessed impressive empirical successes and widespread adoption
- Type

 - - greater expressiveness due to the expansive nature of continuous space

However. we have little theoretical understanding of how they work

- In this work, we...
 - Analyse the influence of prompts and prefixes on the computations of a pretrained model
 - Delineate their limitations
- Specifically, we address the following questions:
 - Can a transformer utilize the soft prompt or prefix vector?
 - Since prefix-tuning is more expressive than prompting, is it as expressive as full fine-tuning?
 - If context-based fine-tuning methods suffer from such structural limitations, how come they have high empirical performance?

(Authors answered these in next sections)

Input data.

- Input sequences. $(x_1,...,x_p), x_i \in \{1,...,V\}$
 - V: size of vocabulary
- Embedding matrix (token → vector). E ∈ R^{d_e*v}
 - o d_e: dimension of embedding
- One-hot i-th position encoding. e_N(i)
- Embedding for i-th position. $x_i = [E_{:,x_i}^T, e_N^T(i)]^T$

Transformer architecture. Consists of alternating attention blocks

- Attention block, consists of H heads
 - Attention matrix for head 'h': $A^h \in R^{p \times p}$
- Linear. applied to all positions of the sequence
 - followed by ReLU activation layer

$$m{A}_{ij}^h = rac{\exp\left(T/\sqrt{k}(m{W}_Q^hm{x}_i)^ op(m{W}_K^hm{x}_j)
ight)}{\sum_{r=1}^p \exp\left(T/\sqrt{k}(m{W}_Q^hm{x}_i)^ op(m{W}_K^hm{x}_r)
ight)}$$
[Attention matrix]

$$\begin{split} \mathcal{A}[(\boldsymbol{W}_Q^1,\ldots,\boldsymbol{W}_Q^H),(\boldsymbol{W}_K^1,\ldots,\boldsymbol{W}_K^H),(\boldsymbol{W}_V^1,\ldots,\boldsymbol{W}_V^H)](\boldsymbol{x}_1,\ldots,\boldsymbol{x}_p) &= (\boldsymbol{t}_1,\ldots,\boldsymbol{t}_p) \\ \boldsymbol{t}_i &= \sum_{h=1}^H \sum_{j=1}^p \boldsymbol{A}_{ij}^h \boldsymbol{W}_V^h \boldsymbol{x}_j. \\ & [\text{Attention block}] \end{split}$$

$$\mathcal{L}[m{M}, m{b}](m{x}) = m{M}m{x} + m{b}$$

 $\hat{\mathcal{L}}[m{M}, m{b}](m{x}) = \mathrm{ReLU}(m{M}m{x} + m{b})$
[Linear layer]

$$(oldsymbol{y}_1,\ldots,oldsymbol{y}_p) = \left(\mathcal{A}_1\, \r, \hat{\mathcal{L}}_{1,1}\, \r, \mathcal{L}_{1,2}\, \r, \mathcal{A}_2\, \r, \hat{\mathcal{L}}_{2,1}\, \r, \mathcal{L}_{2,2}\, \r, ext{softmax}
ight) \left(egin{bmatrix} oldsymbol{E}_{:,\mathrm{x}_1} \ oldsymbol{e}_N(1) \end{bmatrix}, \ldots, egin{bmatrix} oldsymbol{E}_{:,\mathrm{x}_p} \ oldsymbol{e}_N(p) \end{bmatrix}
ight)$$

[Output of the transformer]

Context-based fine-tuning of a pretrained model.

- Hard Prompting. prefixing the input with a token sequence
 - Guide the model response
- **Soft prompting.** learnable input embeddings

Context-based fine-tuning of a pretrained model.

- Prefix tuning. applied soft prompt across the depth of the model
 - \circ The first n_c positions for all attention blocks are learnable parameters
 - Optimize the inputs of every attention layer
 - Successful at fine-tuning models

Case: Unconditional generation with a single system token

- Vocabulary size: V
- Deterministic autoregressive function
- If we use hard prompt. Enable to get number of V outputs
 - $[f(s_1), f(s_2),..., f(s_V)]$ (Finite number ('V') of case)
- If we use soft prompt.
 - Real-value → Infinite number of cases

Guessing the successful result of soft prompt (comparing with hard prompt)

- Unconditional generation with a single system token
 - o If we use soft prompt.
 - Note: it does not mean that the transformer architecture can represent a function that achieves any type of output in practice
 - it is not obvious if there is a surjective map from soft prompt to word in vocab.
 - Theorem 1. Condition that enable to create 'soft prompt + transformer'
 , which generates infinite unique outputs

Theorem 1 (Exponential unconditional generation capacity of a single virtual token). For any V, N>0, there exists a transformer with vocabulary size V, context size N, embedding size $d_e=N$, one attention layer with two heads and a three-layer MLP such that it generates any token sequence $(Y_1, ..., Y_N) \in \{1, ..., V\}^N$ when conditioned on the single virtual token $s_1 = ((Y_1-1)/V, ..., (Y_N-1)/V)$.

Guessing the successful result of soft prompt (comparing with hard prompt)

- Conditional generation with a single system token
 - \circ Prompt + User input $(X_1, ..., X_{n,x})$, Output $(Y_1, ..., Y_{n,y})$
 - If we use hard prompt.
 - $X_1 \rightarrow Y_1$: V^V cases $(1 \rightarrow [1,...,V], 2 \rightarrow [1,...,V],...,V \rightarrow [1,...,V] \leftarrow [1,...,V] \rightarrow [1,...,V]$
 - $S_1 \in \{1, ..., V\}$: V cases = less than V^V
 - Can't control the output by modifying system token
 (S₁ cannot be used to specify an arbitrary map from input to output)
 - o If we use soft prompt.
 - S₁ is 'real value' = infinite cases
 - Can control the all cases of output(VV)

$$(Y_1 = f(S_1, X_1) = f_{S_1}(X_1))$$

Guessing the successful result of soft prompt (comparing with hard prompt)

- Conditional generation with a single system token
 - Theorem 2. Soft prompting is also more expressive for the conditional behavior of a transformer model

Theorem 2 (Conditional generation capacity for a single virtual token $(n_X = n_Y = 1)$). For any V > 0, there exists a transformer with vocabulary size V, context size N = 2, embedding size $d_e = V$, one attention layer with two heads and a three-layer MLP that reproduces any map $m:[1, ..., V] \rightarrow [1, ..., V]$ from a user input token to a model response token when conditioned on a single virtual token $s_1 = (m(1)/V, ..., m(V)/V)$. That is, by selecting s_1 we control the model response to any user input.

Conclusion.

- Soft prompting, Prefix-tuning posses greater expressiveness than prompting
- We can fully determine the map from user input to output using virtual tokens
 - Soft prompting is as powerful as full fine-tuning

Strength of soft prompting & prefix-tuning.

Needs specific network's parameters (Theorem 1, 2)

So, we can ask question,

- Given a fixed pre-trained model, Can prefix-tuning be considered equally powerful to full fine-tuning?
 - Answer. prefix can't change the relative attention over the content X, Y
 - Can only bias the attention block outputs in a subspace of rank n_s
 Making it strictly less powerful than full fine-tuning

Prefix-tuning can't alter the attention pattern of an attention head

• A_{ii}: Attention that i-th position token gives to j-th position token

$$oldsymbol{A}_{ij} = rac{\exp\left(T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{W}_Q^ op oldsymbol{W}_K oldsymbol{x}_j
ight)}{\sum_{r=1}^p \exp\left(T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{W}_Q^ op oldsymbol{W}_K oldsymbol{x}_r
ight)} = rac{\exp\left(T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{H} oldsymbol{x}_j
ight)}{\sum_{r=1}^p \exp\left(T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{H} oldsymbol{x}_r
ight)}$$

- ullet Full fine-tuning. Can enact arbitrary changes to W_Q and W_K
 - Change the attention patterns arbitrarily

$$oldsymbol{A}_{ij}^{ ext{ft}} = rac{\exp\left(T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{H} oldsymbol{x}_j + T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{\Delta} oldsymbol{H} oldsymbol{x}_j
ight)}{\sum_{r=1}^p \exp\left(T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{H} oldsymbol{x}_r + T/\sqrt{k} \; oldsymbol{x}_i^ op oldsymbol{\Delta} oldsymbol{H} oldsymbol{x}_r
ight)}$$

Prefix-tuning can't alter the attention pattern of an attention head

- **Prefix-tuning**. If we have a prefix of length one at position 0,
 - Only increase denominator of attention where to get attention not at 0
 - prefix can't change the attention pattern (can't modify what an attention head attends to)
 - Re-writing the A_{ii} makes this more evident

$$m{A}_{ij}^{ ext{pt}} = m{A}_{ij} {\sum_{r=1}^p} m{A}_{ir}^{ ext{pt}} = m{A}_{ij} (1 - m{A}_{i0}^{ ext{pt}})$$
 just scaling

$$\boldsymbol{A}_{i0}^{\text{pt}} = \frac{\exp\left({^{T}/\sqrt{k}} \ \boldsymbol{x}_{i}^{\top} \boldsymbol{H} \boldsymbol{s}_{1}\right)}{\exp\left({^{T}/\sqrt{k}} \ \boldsymbol{x}_{i}^{\top} \boldsymbol{H} \boldsymbol{s}_{1}\right) + \sum\limits_{r=1}^{p} \exp\left({^{T}/\sqrt{k}} \ \boldsymbol{x}_{i}^{\top} \boldsymbol{H} \boldsymbol{x}_{r}\right)}, \ \boldsymbol{A}_{ij}^{\text{pt}} = \frac{\exp\left({^{T}/\sqrt{k}} \ \boldsymbol{x}_{i}^{\top} \boldsymbol{H} \boldsymbol{x}_{j}\right)}{\exp\left({^{T}/\sqrt{k}} \ \boldsymbol{x}_{i}^{\top} \boldsymbol{H} \boldsymbol{x}_{r}\right)} + \sum\limits_{r=1}^{p} \exp\left({^{T}/\sqrt{k}} \ \boldsymbol{x}_{i}^{\top} \boldsymbol{H} \boldsymbol{x}_{r}\right)} \text{ for } j \ge 1.$$
Attention to prefix

Attention to other tokens

(Added value to denominator)

Prefix-tuning only adds a bias to the attention block output

- **Term containing prefix.** Independent of the content $(x_1, ..., x_p)$
 - Act as bias
- In contrast with full fine-tuning
 - Allow for content-dependent change of attention and value computation.

$$egin{aligned} oldsymbol{t}_i &= \sum_{j=1}^p oldsymbol{A}_{ij}^{ ext{ft}} oldsymbol{W}_V oldsymbol{x}_j, \ oldsymbol{t}_i^{ ext{pt}} &= oldsymbol{A}_{i0}^{ ext{pt}} oldsymbol{W}_V oldsymbol{s}_1 + \sum_{j=1}^p oldsymbol{A}_{i0}^{ ext{pt}} oldsymbol{W}_V oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{A}_{i0}^{ ext{pt}} oldsymbol{W}_V oldsymbol{s}_1 + \sum_{j=1}^p oldsymbol{A}_{i0}^{ ext{pt}} oldsymbol{W}_V oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{A}_{i0}^{ ext{pt}} oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{s}_1 oldsymbol{w}_V oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{A}_{i0}^{ ext{pt}} oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{s}_1 oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{s}_2 oldsymbol{s}_2 + \sum_{j=1}^p oldsymbol{s}$$

Conclusion,

- In real-world scenario, prefix-tuning has some limitations,
 - It can be competitive with full fine-tuning only in very limited circumstances
 - Transformers do not behave like we want
 - Models are typically trained with token inputs rather than soft prompts

Target. Explain when and why prefix-tuning can work in practice.

- Hypothesis. prefix-tuning cannot be used to gain new knowledge
 but can bring to the surface latent knowledge present in the pretrained model
- Test. Constructing small transformers trained on one or few tasks
 - Task: Sort numbers into ascending/descending order
 - Training strategy 1: Pre-training task = Fine-tuning task
 - Training strategy 2: Pre-training task != Fine-tuning task

Test results. Prefix-tuning can't learn a new task requiring a different attention pattern

1-layer, 1-head transformer

	Ascending D	escending
Pretrain on asc.	91±5%	0±0%
Full fine-tune on desc.	0±0%	85±5%
Prefix-tune on desc.	$0\pm0\%$	$0\pm0\%$

Accuracy (10 random seeds)

: the attention when the first response \boldsymbol{Y}_1 is being generated

Test results. Prefix-tuning can elicit a skill from the pre-trained model

- Pretrain a 1-layer, 4-head model with solutions...
 - Sorted in ascending (↗) order (1st task)
 - Sorted in descending (∑) order (2nd task)
 - Adding one (+1) to each element (3th task)
 - Adding two (+2) to each element (4th task)
 - (Each head learns a different task)

Test results. Prefix-tuning can elicit a skill from the pre-trained model

Compared to the previous case, prefix-tuning is more successful

Accuracy on:

because the pretrained model contains the attention mechanisms for solving the four tasks

Conclusion. Prefix-tuning can combine knowledge from pre-training tasks to solve new tasks

- "Skill" required to solve the new task = "Skills" the pre-trained model has seen
- **Test again.** 40-layer 4-head model with the same four tasks
 - \circ length of prefixes: 10 (n_s =10)
 - New task H: mapping each element to the number of elements in the sequence with the same value

Accuracy on:	7	\searrow	+1	+2	> +1 ■
Pretrained	17%	23%	34%	25%	0% 0%
Prefix-tune on /	100%	0%	0%	0%	0% 0%
Prefix-tune on \	0%	100%	0%	0%	0% 0%
Prefix-tune on +1	0%	0%	100%	0%	0% 0%
Prefix-tune on +2	0%	0%	0%	100%	0% 09
Prefix-tune on $\nearrow +1$	0%	0%	0%	0%	93%
Prefix-tune on \mathbb{H}	0%	0%	0%	0%	0% 19

Effects of prefix-tuning beyond the single attention layer

Multi layer case. Bias made by prefix can exhibit increasingly complex behaviors

- Strength.
 - Prefix-tuning can change the attention pattern
- Weakness.
 - The representational capacity of the prefix-tuning is severely limited

Prefix-tuning appears to be less expressive than full fine-tuning even when both methods are given the same number of learnable parameters

Effects of prefix-tuning beyond the single attention layer

Prefix-tuning can change the attention

- Output of first attention(including bias): affect the attention with content
- Limitation. Each depends on one input position(i or j) only
- \circ Full fine-tuning can achieve $ilde{m{A}}_{ii}^{ ext{ft}(2)} = T/\sqrt{k} \ m{t}_i^{ ext{ft}(1) op} (m{H}^{(2)} + \Delta m{H}^{(2)}) m{t}_i^{ ext{ft}(1)}$

$$\begin{split} \boldsymbol{t}_{i}^{\text{pt}(1)} &= \boldsymbol{A}_{i0}^{\text{pt}(1)} \boldsymbol{W}_{V} \boldsymbol{s}_{1}^{(1)} + \sum_{j=1}^{p} \boldsymbol{A}_{ij}^{\text{pt}(1)} \boldsymbol{W}_{V}^{(1)} \boldsymbol{x}_{j}^{(1)} \stackrel{(7)}{=} \underbrace{\boldsymbol{A}_{i0}^{\text{pt}(1)}}_{\alpha_{i}} \underbrace{\boldsymbol{W}_{V} \boldsymbol{s}_{1}^{(1)}}_{\boldsymbol{\mu}} + (1 - \boldsymbol{A}_{i0}^{\text{pt}(1)}) \boldsymbol{t}_{i}^{(1)}, \\ \tilde{\boldsymbol{A}}_{ij}^{\text{pt}(2)} &= \frac{T}{\sqrt{k}} \boldsymbol{t}_{i}^{\text{pt}(1)\top} \boldsymbol{H}^{(2)} \boldsymbol{t}_{j}^{\text{pt}(1)}, \\ &= \frac{T}{\sqrt{k}} (\alpha_{i} \alpha_{j} \underbrace{\boldsymbol{\mu}^{\top} \boldsymbol{H}^{(2)} \boldsymbol{\mu}}_{\text{constant}} + \alpha_{j} (1 - \alpha_{i}) \underbrace{\boldsymbol{t}_{i}^{(1)\top} \boldsymbol{H}^{(2)} \boldsymbol{\mu}}_{\text{depends only on } \boldsymbol{t}_{i}^{(1)}}_{\text{depends only on } \boldsymbol{t}_{i}^{(1)}} + (1 - \alpha_{i}) (1 - \alpha_{j}) \underbrace{\boldsymbol{t}_{i}^{(1)\top} \boldsymbol{H}^{(2)} \boldsymbol{t}_{j}^{(1)}}_{\text{pretrained attention } \tilde{\boldsymbol{A}}_{ij}^{(2)}}_{\text{pretrained attention } \tilde{\boldsymbol{A}}_{ij}^{(2)}}. \end{split}$$

Effects of prefix-tuning beyond the single attention layer

The representational capacity of the prefix-tuning is severely limited

- Consider two inputs x_1 , x_2 and a single prefix s (learnable parameters)
 - o H, W: pre-trained parameters
 - prefix interacts with only one of the inputs at a time and only by computing a single scalar value
- Computational graph.
 - Only learnable interaction between the inputs is indirect
 - Interaction between the inputs happens via non-learnable residual connections

Limitation

Not analyze about Suffix-tuning.

- Representations for prompt and soft prompt suffixes would depend on the previous positions
 - Whether suffixing is more expressive than prefixing remains an open question

Open question.

Formal analysis of the conditions under which they may be universal approximators

Training scale. only conducting toy experiments

- In practice, language models are pre-trained with very large datasets
 - can pick up very complex behaviors
 - the limitations when using large-scale pretrained transformers with soft prompt = future work

Conclusion.

- Soft prompting are strictly more expressive than hard prompting
- Despite this expressivity, prompt tuning suffers from structural limitations
 - Have difficult learning new attention patterns
 - Only bias the output of the attention layer
- Prefix-tuning can easily elicit a skill the pretrained model already seen
 - o can even learn a new task
- The effect of the prefix-induced bias is more complicated and powerful
 - still strictly less expressive than full fine-tuning