1. Write a computer function that will perform the close-the-loop analysis. Your program should solve the standard case as well as the two special cases, that is, when S_7 and S_1 are parallel and when S_7 and S_1 are collinear. The C language prototype for your subroutine may be written as

*gam1).

Test your subroutine by passing in the values for ${}^{6}\mathbf{P}_{tool}$, ${}^{F}\mathbf{P}_{tool}$, ${}^{F}\mathbf{S}_{6}$, ${}^{F}\mathbf{a}_{67}$ listed in Section 5.7.

void close_loop (double P_tool_6[3], double P_tool_f[3], double S6_f[3], double

a67_f[3], double *a71, double *S7, double *S1, double *a171, double *th7, double