Abaixo	ರಕ	frequ e r	ncia	de	ressor	nāncia	ŲM	circuito
1955008	nte	s série	comp	ort	8-56	como:		

a)	uma indutancia	L
b)	uma capacidade	8
c)	uma resistência	
d)	um curto-circuito	Г

NOTA: Absixo da frequência da ressonância um circuito ressonante série comporta-se como uma capacidade; acima da frequência de ressonância comporta-se como como uma indutância (coeficiente de auto-indução).

Como o comportamento do circuito ressonante série (_-355___|____) dependo da elemento (bobina ou condensador) que apresente maior reactância às frequências baixas (menores que fr), verifica-se que, sendo

$$X_{L}^{2} = 2 \pi f L$$
 a $X_{C} = \frac{1}{2 \pi f C}$

para a frequência zero (corrente continua) que é a frequência mais baixa possivel $X_{\rm L} = 0$ e $X_{\rm C} = {\rm Infinito}$. Portanto, o circuito ficaria apenas com capacidade. Para outras frequências diferentes de zero mas inferiores a fuerificar-se-ia que $X_{\rm C} = {\rm que}$, portanto, a maior influência a essar frequências é a do condensador.

3.2.6.2

Acima da sua frequência de responância, um circuito ressonante série c**ompor^{ta -}** -se como

a)	uma	indutância	X
ь)	uma	capacidade	
c)	uma	resistência	
ďΣ	പത (orto-circuito	