

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

استخراج شکل

Shape Extraction

مشتق افقى

-1 +1

• مشتق یک طرفه

-1 0 +1

• مشتق دو طرفه

مشتق افقى

• عملگر Prewitt

مشتق عمودي

• عملگر Prewitt

لبه ياب Sobel

• فیلترهای Sobel برای یافتن لبههای افقی و عمودی مناسب هستند

$G_{\mathcal{Y}}$		
-1	-2	-1
0	0	0
+1	+2	+1

G_{χ}		
-1	0	+1
-2	0	+2
-1	0	+1

$$\text{mag} = \sqrt{g_x^2 + g_y^2}$$

$$dir = atan2(g_y, g_x)$$

$$\nabla f(x,y) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

گرادیان تصویر

• گرادیان تابع دوبعدی f به صورت زیر تعریف میشود:

 $M(x,y) = \|\nabla f\| = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$

• اندازه گرادیان

 $\alpha(x, y) = \operatorname{dir}(\nabla f) = \operatorname{atan2}(g_y, g_x)$

• جهت گرادیان

گرادیان تصویر

گرادیان تصویر

لبه ياب Sobel

- آستانه گذاری اندازه گرادیان حاصل از عملگر Sobel
- مقادیر بیش از ۳۳.۰ از بزرگترین مقدار با به عنوان لبه در نظر می گیریم

لبه ياب Canny

- یکی از پرکاربردترین و موفق ترین روشهای لبهیابی است که از ۴ گام اساسی تشکیل میشود:
 - هموار کردن تصویر با استفاده از فیلتر گاوسی
 - محاسبه گرادیان
 - حذف مقادير غيربيشينه
 - آستانه گذاری دو مرحلهای

حذف مقادير غيربيشينه

- هر پیکسل که در راستای گرادیان خود دارای مقدار غیربیشینه باشد حذف میشود
 - جهت گرادیان به ۴ گروه تقسیم میشود و همسایگی ۳×۳ است

حذف مقادير غيربيشينه

- هر پیکسل که در راستای گرادیان خود دارای مقدار غیربیشینه باشد حذف میشود
 - جهت گرادیان به ۴ گروه تقسیم میشود و همسایگی ۳×۳ است

آستانه گذاری دوسطحی

- هر پیکسلی که اندازه گرادیان آن کوچکتر از T_1 باشد به عنوان غیرلبه معرفی می شود
 - هر پیکسلی که اندازه گرادیان آن بزرگتر از T_2 باشد به عنوان لبه معرفی میشود
- پیکسلهایی که اندازه گرادیان آنها بین T_1 و T_2 باشد تنها در صورتی به عنوان لبه معرفی میشوند که به یک پیکسل لبه به صورت مستقیم یا از طریق پیکسلهایی که اندازه گرادیان آنها بین T_1 و T_2 است متصل باشند

لبه ياب Canny

edges = cv2.Canny(img, 800, 800)

لبهياب Canny

edges = cv2.Canny(img, 100, 800)

لبه ياب Canny

edges = cv2.Canny(img, 100, 200)

تشخيص خط

• معادله خط

• در حالت ساده فرض می کنیم در تصویر تنها ۱ خط وجود داشته باشد

$$y = mx + c$$

ورد؟ c و m و c و ابدست آورد؟ \bullet

$$m, x = \arg\min \sum_{i} (mx_i + c - y_i)^2$$

$$m = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - \bar{x}^2}$$

$$c = \bar{y} - m\bar{x}$$

تشخيص خط

$$y = mx + c$$

• معمولا از نمایش قطبی استفاده میشود

$$x\cos(\theta) + y\sin(\theta) = \rho$$

$$\theta = \frac{1}{2} \operatorname{atan} \left(2 \frac{\overline{xy} - \overline{x}\overline{y}}{\overline{x^2} - \overline{y^2} - \overline{x}^2 + \overline{y}^2} \right)$$

$$\rho = \bar{x}\cos(\theta) + \bar{y}\sin(\theta)$$

تشخیص خط

• لبههای دیگر چه اثری می گذارند؟

