1 Electronic Band Structure of Solids

1.1 Free electron model

1.1.1 Drude model

- Electrons are free: no electron-electron and no electon-phonon interactions.
- \bullet Electrons collide with ionic cores with probability per unit time τ ; such collisions are instantaneous and inelastic (all of electron's momentum is transfered to the lattice).

In this approximation, the change in the momentum \mathbf{p} within $\mathrm{d}t$ is

Hence, the equation of motion is $d\mathbf{p}/dt = -\mathbf{p}/\tau + \mathbf{F}$.

Suppose now that our wire (aligned along x-axis) is placed in a magnetic field **H** oriented along the z-axis. An electron is then subject to the sum of Coulomb and Lorentz forces ${\bf F}=-e{\bf E}-e/c\,{\bf v}\times{\bf H}$. Hall voltage is developed in the y-direction and Hall coefficient $R_H \equiv E_y \, / \, j_x H = -1 \, / \, ne$.

The Drude model achieved complete success in the derivation of the Wiedermann-Franz law, according to which the ratio of thermal and electrical conductivities is a universal linear function of temperature for many metals: $\kappa/\sigma = LT$ (L here is called Lorentz number). Say, T depends on x only. Then the heat transfer $W=\kappa\partial T/\partial x$. The number of electrons passing through unit cross section S_A per unit time is $n|v_x|/2$. S_B and S_C are cross sections on which the electrons, on average, have suffered the last collisions. $l=2 au ar{v}/3$ is the mean-free path¹. From the equipartition of energy, we get $1/2m\bar{v}^2=3/2k_BT(x)$. Hence,

$$W = \frac{1}{2}n|v_x|\left(\frac{mv^2}{2}\Big|_{x-l} - \frac{mv^2}{2}\Big|_{x+l}\right) \approx \frac{1}{2}nk_B\bar{v}^2\tau\frac{\partial T}{\partial x}$$

and we get that $\kappa = 3k_B^2 n \tau T / 2m$. Finally, $\kappa/\sigma = 3(k_B/e)^2 T$.

¹This is known from the kinetic theory of gases.

 $^{^2}ar{v}$ is the average velocity and we assume that $|v_x|^2 pprox ar{v}^2/3$

- 1.1.2 Sommerfeld model
- 1.2 Nearly-Free electron model
- 1.3 Tight-binding model
- 2 References