Лабораторная работа № 1

ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Цель работы: получить навык проведения вычислительного эксперимента, направленного на решение задач интерполирования и аппроксимации функций.

Задания на лабораторную работу

Для всех задач задана одна и та же функция f(x), аналитическая на отрезке [a,b].

Построение интерполяционных многочленов

Задача 1. (1 балл)

1) Написать вычислительную программу на языке программирования C++ для построения интерполяционного многочлена Лагранжа $L_n(x)$ произвольной степени n по известным значениям функции $y_i=f(x_i)$, заданным на сетке узлов

$$a=x_0< x_1<...< x_{n-1}< x_n=b$$
.

2) Для каждого n=1,...15 построить интерполяционный многочлен Лагранжа $L_n(x)$ по значениям функции на равномерной сетке узлов

$$x_{i+1} = x_i + h$$
, $x_0 = a$, $h = (b-a)/n$

и найти оценку погрешности приближения функции

$$\Delta_n \!\!=\!\! sup|f(x)\!\!-\!\!L_n(x)|, \quad x\!\in\![a,\!b].$$

Оценку Δ_n провести численно посредством вычисления модуля ошибки приближений $|f(x)-L_n(x)|$ в узлах мелкой равномерной сетки, состоящей из $\sim 10^5$ узлов, с выбором максимального значения в качестве искомой оценки.

- 3) Построить график зависимости Δ_n от n определить оптимальную степень n_0 , при которой погрешность минимальна.
- 4) Построить график ошибки приближения f(x)- $L_{n0}(x)$.

Задача 2. (1 балл)

1) Построить сетку узлов, составленных из нулей многочлена Чебышева степени n₀, найденной при решении предыдущей задачи:

$$x_i = \frac{b+a}{2} + \frac{b-a}{2} \cos\left(\frac{\pi(2i+1)}{2n_0}\right), i = 0,1,...,n_0 - 1.$$

Найти численные значения заданной функции f(x) в этих узлах: $y_i = f(x_i)$.

- 2) С использованием написанной при решении Задачи 1 программы построить по этим данным многочлен Лагранжа $L_{n0}(x)$ степени n_0 .
- 3) Найти оценку погрешности приближения функции Δ_{n0} и сравнить ее с известной теоретической минимальной оценкой погрешности интерполяции многочленом Лагранжа.

4) Выполнить сравнение двух многочленов Лагранжа $L_{n0}(x)$ на равномерной и неравномерной сетках, построенных в этой и предыдущей задачах.

Задача 3. (1 балл)

- 1) Написать вычислительную программу на языке программирования C++ для построения интерполяционного многочлена Ньютона порядка n₀ (найдено при решении Задачи 1) на равномерной сетке через вычисление разделенных разностей.
- 2) Выполнить сравнение построенного многочлена Ньютона с аналогичным многочленом Лагранжа, построенного при решении задачи 1.

Тригонометрическая интерполяция

Задача 4. (1 балл)

1) Написать вычислительную программу на языке программирования C++, осуществляющую интерполяцию функции g(t), $t \in [0,2\pi]$, заданной своими значениями $g(t_i)$ ($i=1,\ldots,2n+1$) в узлах $t_i = \frac{2\pi(i-1)}{2n+1}$ равномерной сетки, тригонометрическим многочленом $F_n(x)$ степени n:

$$F_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kt) + b_k \sin(kt).$$

- 2) Построить линейную замену переменных $x=\alpha t+\beta$, переводящую заданный отрезок [a,b] в отрезок [0,2 π]. Выполнить эту замену переменных в аргументе функции f(x): $f(\alpha t+\beta)=g(t)$.
- 3) С использованием написанной программы провести вычислительный эксперимент по нахождению минимальной степени тригонометрического многочлена, обеспечивающего приближение функции с указанным в задании предельным уровнем погрешности Δ :

$$\sup |g(t) - F_m(t)| \leq \Delta.$$

Оценку погрешности производить по способу, описанному в Задаче 1.

4) Построить график ошибки приближения функции многочленом.

Наилучшее равномерное приближение

Задача 5. (2 балла)

- 1) Написать вычислительную программу на языке C++, позволяющую построить многочлен наилучшего равномерного приближения Q_n степени n для произвольного многочлена P_{n+1} степени n+1.
- 2) С использованием математического пакета (Maple или MATLAB) выполнить разложение заданной функции f(x) в ряд Тейлора в окрестности точки (a+b)/2 и определить степень n, при которой соответствующий

многочлен $P_n(x)$, представляющий собой отрезок ряда Тейлора, приближает функцию f(x) с указанным в задании предельным уровнем погрешности Δ :

$$f(x) \approx P_n(x) = \sum_{k=0}^n b_k x^k$$
, $\sup |f(x) - P_n(x)| \le \Delta$.

3) С использованием написанной программы телескопическим методом построить многочлен Q_m наилучшего равномерного приближения наименьшей степени m, обеспечивающий приближении исходной функции f(x) с той же точностью:

$$\sup |f(x) - Q_m(x)| \le \Delta.$$

4) Построить график ошибки приближения функции многочленом Q_m.

Интерполяция сплайнами

Задача 6. (4 балла)

- 1) Написать вычислительную программу на языке программирования C++ для построения интерполирующего кубического сплайна по значениям функции, известным в узлах равномерной сетки.
- 2) С использованием написанной программы провести вычислительный эксперимент по определению минимального количества узлов равномерной сетки, обеспечивающих построение интерполирующего сплайна для заданной функции с указанным в задании предельным уровнем погрешности. Погрешность интерполяции оценивать способом, описанным в Задаче 1.
- 3) Построить график ошибки приближения заданной функции интерполирующим сплайном.

Теоретическая часть

Номер задачи	Литература		
1	[1] (Глава 2, §2, §3)		
2	[1] (Глава 2, §8, §9)		
3	[1] (Глава 2, §4, §5), [2] (Глава ІІ, §1, п.3)		
4	[1] (Глава 4, §3)		
5	[1] (Глава 4, §5, §6)		
6	[2] (Глава II, §1, п.9), [1] (Глава 4, §8)		

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.
- 2. Калиткин Н.Н. Численные метолы.

Индивидуальные задания для выполнения лабораторной работы №1

No॒			
варианта	f(x)	[a,b]	Δ
1	$\frac{e^x}{1+x^2}$	[0,2]	5.10-4
2	$\sin(4x^2)$	[0,1]	10 ⁻⁵
3	$x^3\sqrt{1-x^2}$	[-1/2,1/2]	10-6
4	$x^2\cos(\pi x)$	[0,3/2]	10 ⁻⁶
5	$e^{-x}\sin(x)$	$[0,2\pi]$	2.10-5
6	x^2 arccos (0.9 x)	[0,1]	2.10-4
7	e^{-x^2}	[0,3]	10 ⁻⁴
8	$\sin(x) + x\cos(x)$	$[0,2\pi]$	10 ⁻⁵
9	$\ln(x+1)\sin\left(x\right)$	[0,3π]	2.10-3
10	$\frac{\arctan(x)}{1+x^2}$	[0,2]	10-3
11	$x \sin(x) \cos(2x)$	[0,2]	10 ⁻⁷
12	$\frac{\sin(x)}{x}$	$[0,3\pi]$	5.10-5
13	x^2e^{-2x}	[0,5]	2·10 ⁻⁵
14	$(3x-2)\tan(x^2)$	[0,1]	5.10-4
15	$x + \cos(x)$	$[0,4\pi]$	10 ⁻⁵

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.