Trig Final (SLTN v639)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 3.1 radians. The arc length is 300 meters. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 96.77 meters.

Question 2

Consider angles $\frac{10\pi}{3}$ and $\frac{-15\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{10\pi}{3}\right)$ and $\cos\left(\frac{-15\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(10\pi/3)$

$$\sin(10\pi/3) = \frac{-\sqrt{3}}{2}$$

Find $cos(-15\pi/4)$

$$\cos(-15\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $tan(\theta) = \frac{55}{48}$, and θ is in quadrant III, determine an exact value for $sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$48^{2} + 55^{2} = C^{2}$$

$$C = \sqrt{48^{2} + 55^{2}}$$

$$C = 73$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\sin(\theta) = \frac{-55}{73}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 2.95 Hz, an amplitude of 5.43 meters, and a midline at y = -7.87 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 5.43\cos(2\pi 2.95t) - 7.87$$

or

$$y = 5.43\cos(5.9\pi t) - 7.87$$

or

$$y = 5.43\cos(18.54t) - 7.87$$