Introduction au calcul stochastique. Modèles stochastiques en finance. PC 2 - 26 septembre 2018

Aurélien Alfonsi—Thibaut Mastrolia

Mouvement brownien

Dans toute la feuille, W est un mouvement brownien standard.

EXERCICE 1 - Encore une définition du mouvement Brownien

1. Soit W un mouvement brownien standard. Montrer que pour tout $\alpha \in \mathbb{R}$, le processus

$$M_t^{\alpha} = \exp\left(\alpha W_t - \frac{\alpha^2}{2}t\right)$$

est une \mathbb{F}^W -martingale, où \mathbb{F}^W est la filtration naturelle engendrée par le processus W.

2. Soit X un processus continu avec $X_0 = 0$ et tel que pour tout $\alpha \in \mathbb{R}$, le processus

$$M_t^{\alpha} = \exp\left(\alpha X_t - \frac{\alpha^2}{2}t\right)$$

est une \mathbb{F}^X -martingale (où \mathbb{F}^X est la filtration naturelle engendrée par le processus X). Montrer que X est un mouvement brownien standard.

EXERCICE 2 - Trajectoires du mouvement brownien

- 1. On cherche à démontrer que le mouvement brownien est récurrent à l'infini avec des excursions de plus en plus grandes : $\limsup_{t\to\infty} W_t = +\infty$ et $\liminf_{t\to\infty} W_t = -\infty$.
 - (a) On pose $S_t := \sup_{u \ge t} W_u$, montrer que $S_t W_t$ a même loi que S_0 et est indépendante de W_t .
 - (b) Montrer que pour tout $x \in \mathbb{R} \mathbb{P}(S_0 \ge x) = 1$.
 - (c) Conclure que $\limsup_{t\to\infty} W_t = +\infty$ puis que $\liminf_{t\to\infty} W_t = -\infty$.
- 2. En utilisant l'inversion du temps vu en PC1, déduire que pour presque toutes les trajectoires, l'équation $W_t = 0$ a une infinité de solutions dans tout voisinage de t = 0.
- 3. Soit W un mouvement Brownien, A > 0 et $\tau := \inf\{t : W_t \ge A\}$. En utilisant la propriété de Markov forte et le résultat précédent, décrire le comportement de W immédiatement après τ . En déduire que le dernier temps d'atteinte de A sur l'intervalle [0,1] ne peut pas être un temps d'arrêt.

EXERCICE 3 - L'objectif de cet exercice est de montrer que $\frac{W_t}{t}$ converge presque sûrement vers 0 lorsque t tend vers l'infini.

- 1. Pourquoi la suite $\left(\frac{W_n}{n}\right)_{n\in\mathbb{N}^*}$ converge-t-elle presque sûrement vers 0 lorsque n tend vers l'infini?
- 2. Vérifier que pour $t \in [n, n+1]$,

$$\left| \frac{W_t}{t} \right| \le \left| \frac{W_n}{n} \right| + \frac{\sup_{t \in [n, n+1]} |W_t - W_n|}{n}.$$

- 3. Pourquoi les variables aléatoires $\left(X_n = \sup_{t \in [n,n+1]} (W_t W_n)^2\right)_{n \in \mathbb{N}}$ sont-elles identiquement distribuées? Vérifier que $X_0 \leq (\sup_{t \in [0,1]} W_t)^2 + (\sup_{t \in [0,1]} -W_t)^2$ et en déduire que $\mathbb{E}(X_0) \leq 2$.
- 4. Montrer que $\mathbb{E}\left(\sum_{n\in\mathbb{N}^*} \frac{X_n}{n^2}\right) < +\infty$. En déduire que la suite $\left(\frac{X_n}{n^2}\right)_{n\in\mathbb{N}^*}$ converge presque sûrement

EXERCICE 4 - Les trajectoires browniennes sont höldériennes d'exposant $\frac{1}{2}^-$. Nous allons justifier que pour tout $\alpha < \frac{1}{2}$, il existe une variable aléatoire C_{α} (positive et finie), telle

$$|W_t - W_s| \le C_\alpha |t - s|^\alpha, \quad \forall (s, t) \in [0, 1]. \tag{1}$$

Pour cela, nous rappelons le lemme (de nature déterministe) de Garsia-Rodemich-Rumsey (Indiana University Mathematics Journal, 20(6):565–578, 1970). Pour une fonction continue f, posons $A_f =$ $\int_0^1 \int_0^1 \frac{|f(s)-f(u)|^\gamma}{|s-u|^{m+2}} \ ds \ du$ avec m>0 et $\gamma>0.$ Alors

$$|f(t) - f(s)| \le 8A_f^{1/\gamma} \frac{m+2}{m} |t - s|^{m/\gamma}, \quad \forall (s, t) \in [0, 1].$$

- 1. Donner une condition suffisante sur m et γ pour que la variable aléatoire A_W prenne presque sûrement des valeurs finies.
- 2. En déduire le résultat (1) cherché.

EXERCICE 5 - Soit $t_i^{(n)}=\{\frac{it}{2^n}, 0\leq i\leq 2^n\}$ la subdivision dyadique de [0,t] d'ordre n. Les deux limites suivantes S_1 et S_2 sont des candidats naturels pour définir $\int_0^t W_s dW_s$.

1. Calculer

$$S_1 = \lim_{n \to +\infty} \sum_{i=0}^{2^n - 1} W_{t_i^{(n)}} (W_{t_{i+1}^{(n)}} - W_{t_i^{(n)}}).$$

2. Calculer

$$S_2 = \lim_{n \to +\infty} \sum_{i=0}^{2^n - 1} W_{t_{i+1}^{(n)}} (W_{t_{i+1}^{(n)}} - W_{t_i^{(n)}}).$$

3. En considérant les espérances, montrer que l'on pouvait s'attendre à ces résultats différents.