Exercice 1:

1. Préciser les trois champs \bigstar (différents) de la proposition ci-dessous :

Si
$$x \in \bigstar$$
, $\theta = \arctan(x) \Leftrightarrow \begin{cases} \theta \in \bigstar \\ \text{et} \\ \tan \theta = \bigstar \end{cases}$

et donner le tableau de variation de arctan sur son domaine de définition (en précisant les limites aux bords et la valeur de arctan en 0).

- 2. Soit $(a,b) \in \mathbb{R}^2$ tel que a > 0 et soit θ l'argument principal du nombre complexe a + ib. Montrer que $\theta = \arctan\left(\frac{b}{a}\right)$. (On déduit de ce résultat que $\arg(a+ib) \equiv \arctan\left(\frac{b}{a}\right)$ [2 π]).
- 3. Soit $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$.
 - (a) Écrire $\frac{x+i}{y+i}$ sous forme algébrique.
 - (b) En déduire

$$\arctan\left(\frac{1}{x}\right) - \arctan\left(\frac{1}{y}\right) \equiv \arctan\left(\frac{y-x}{1+xy}\right) [2\pi]$$

puis

$$\arctan\left(\frac{1}{x}\right) - \arctan\left(\frac{1}{y}\right) = \arctan\left(\frac{y-x}{1+xy}\right).$$

(c) En déduire

$$\forall u \in \mathbb{R}_+^*, \ \frac{\pi}{4} = \arctan(u) + \arctan\left(\frac{1-u}{1+u}\right).$$

Exercice 2 : Les questions 1) et 2) ci-dessous sont indépendantes.

1. On considère l'équation

$$(E): \quad x^{\sqrt{x}} = \frac{1}{2}$$

d'inconnue $x \in \mathbb{R}_+^*$.

- (a) Vérifier que $\frac{1}{4}$ et $\frac{1}{16}$ sont solutions de (E).
- (b) En considérant les variations de la fonction $f: x \mapsto x^{\sqrt{x}} \frac{1}{2}$ sur \mathbb{R}_+^* , montrer que (E) admet exactement deux solutions, puis conclure.
- 2. Soit $a \in [0, 1]$.
 - (a) Montrer que, pour tout $x \in \mathbb{R}_+$,

$$(1+x)^a \leqslant 1 + ax.$$

(b) Pour tout $n \in \mathbb{N}^*$, on pose $P_n = \prod_{k=1}^n \left(1 + \frac{a}{k}\right)$. Déduire de la question précédente

$$P_n \geqslant (n+1)^a$$
.

Qu'en déduit-on sur $\lim_{n\to+\infty} P_n$ si $a\in]0,1]$? Que dire de la suite (P_n) si a=0?

Exercice 3:

On considère, pour tout entier naturel n, l'application φ_n définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \, \varphi_n(x) = (1-x)^n e^{-2x}$$

ainsi que l'intégrale :

$$I_n = \int_0^1 \varphi_n(x) dx$$

On désire étudier le comportement asymptotique de la suite (I_n) .

- 1. Calculer I_0 et I_1 .
- 2. (a) Montrer que : $\forall n \in \mathbb{N}^*, \ 0 \leqslant I_n \leqslant \frac{1}{n+1}$.
 - (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 3. A l'aide d'une intégration par partie, montrer que : $\forall n \in \mathbb{N}, \, 2I_{n+1} = 1 (n+1)I_n$.
- 4. En déduire la limite de la suite nI_n quand n tend vers $+\infty$.