Predicting Faulty Water Pumps in Tanzania

by Kaitlyn Zeichick

Outline

Tanzania Water Crisis

Context

• 24 million people without basic access to safe water

Tanzania Water Crisis

Context

Consequences

Malaria

Context

Cholera

Solution: Water Pumps!

- Pros:
 - Clean
 - Cheap
- Cons:
 - Easily broken

Data

Context

Water Management

Location

Water Usage

Functional

Non-Functional

Water Related

Pump Features

Two Problem Statements

Context

- 1) WHERE? Locate already existing faulty water pumps.
- 2) WHY? Identify features that are highly correlated with faulty pumps.

Random Forest: Choosing a Metric

Consequence of many False Negatives:

Data

Context

Consequence of many False Positives:

Random Forest: Results

Accuracy

Recall

Logistic Regression

Why and how to water pumps break?

Logistic Regression

Accuracy

70%

Recall

68%

Logistic Regression: Top 15 Features

Logistic Regression: Top 15 Features

Logistic Regression: Top Feature

- Increases odds of pump being non-functional by 159%
- Explanation:

Context

- Dry running
- Defined as non-functional

Conclusions and Next Steps

Conclusions

- Identify broken water pumps:
 - Random Forest 79% accuracy
- Identify important features:
 - Logistic Regression 70% accuracy
 - Quantity: Dry

Future work

Context

- Improve logistic regression model
 - More feature engineering
- Improve random forest model
 - Ensemble methods
- Interpretation

Thank you! Questions?

