Question number	Scheme	Marks
7 (a)	Throughout this question condone missing degree signs	
	$\cos \theta^{\circ} = \frac{6^2 + 8^2 - k^2}{2 \times 6 \times 8} = \frac{100 - k^2}{96} *$	M1A1cso [2]
(b)	$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$	M1
	$\Rightarrow \sin \theta^{\circ} = \frac{\sqrt{455}}{24} \Rightarrow \left(\sin^2 \theta^{\circ} = \frac{455}{576}\right)$	A1
	$\cos^2 \theta^{\circ} = 1 - \sin^2 \theta^{\circ} \Rightarrow \cos^2 \theta^{\circ} = 1 - \frac{455}{576} = \frac{121}{576}$	M1
	$\Rightarrow \cos \theta^{\circ} = \pm \frac{11}{24}$ both values required	A1
	$\cos \theta^{\circ} = \frac{11}{24} = \frac{100 - k^{2}}{96} \Rightarrow k^{2} = 56 \Rightarrow k = \sqrt{56} = (2\sqrt{14})$	M1A1
	$\cos \theta^{\circ} = -\frac{11}{24} = \frac{100 - k^2}{96} \Rightarrow k^2 = 144 \Rightarrow k = 12$	A1
	ALT	[7]
	$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$	[M1
	$\Rightarrow \sin \theta^{\circ} = \frac{\sqrt{455}}{24}$	A1
	$\theta^{\circ} = \sin^{-1}\left(\frac{\sqrt{455}}{24}\right) \ (= 62.72 \dots^{\circ})$	M1
	$\theta^{\circ} = 62.72 \dots, 117.27 \dots$ both values required	A1
	$\cos \theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96 \cos \theta^{\circ}$	M1A1
	$\Rightarrow k^2 = 100 - 96\cos 62.72 \dots \Rightarrow k^2 = 56 \Rightarrow k = \sqrt{56}$	
	$\cos \theta^{\circ} = \frac{100 - k^{2}}{96} \Rightarrow k^{2} = 100 - 96 \cos \theta^{\circ}$ $\Rightarrow k^{2} = 100 - 96 \cos 117.27 \dots \Rightarrow k^{2} = 144 \Rightarrow k = 12$	A1]
		otal 9 marks

Part	Mark	Notes
(a)	M1	For correct substitution into the cosine rule and attempt to rearrange to find an
		expression for $\cos \theta^{\circ}$
	A1	For obtaining the given expression for $\cos \theta$
	cso	$\cos\theta^{\circ} = \frac{100 - k^2}{96}$
		Note: This is a show question. There must be no errors seen.

(b)	M1	For using the correct formula for area of a triangle and substitution of the
		given values to obtain
		$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$
		and attempt to rearrange to obtain $\sin \theta^{\circ} = \cdots$
	A1	$\sin \theta^{\circ} = \frac{\sqrt{455}}{24}$ Allow for $\sin \theta = \frac{\sqrt{455}}{0.5 \times 8 \times 6}$ For use of $\sin^2 \theta + \cos^2 \theta = 1$ to obtain a value for $\cos \theta^{\circ}$.
	M1	For use of $\sin^2 \theta + \cos^2 \theta = 1$ to obtain a value for $\cos \theta^{\circ}$.
		′455′
		$\cos^2 \theta^\circ = 1 - \frac{'455'}{576} \Rightarrow \cos \theta^\circ = \pm \sqrt{1 - \frac{'455'}{576}}$
		Allow use of their $\sin \theta^{\circ}$ provided $-1 \leq \sin \theta^{\circ} \leq 1$
	A 1	Allow if only one value of $\cos \theta^{\circ}$ obtained.
	A1	$\cos\theta^{\circ} = \pm \frac{11}{24}$
	M1	For forming an equation for k using their $\cos \theta^{\circ}$ and attempt to solve for k .
		$\cos \theta^{\circ} = \frac{'11'}{24} = \frac{100 - k^2}{96} \Rightarrow k^2 = 56 \Rightarrow k = \sqrt{56}$
		$\cos \theta^{\circ} = ' - \frac{11'}{24} = \frac{100 - k^2}{96} \Rightarrow k^2 = 144 \Rightarrow k = 12$
	A1	For one correct value of <i>k</i>
		$\sqrt{56}$ or awrt 7.48 or awrt 12
	A1	For both correct values of k
		$\sqrt{56}$ or awrt 7.48 and awrt 12
ALT – w		ith angles
	M1	For using the correct formula for area of a triangle and substitution of the
		given values to obtain
		$\sqrt{455} = \frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ}$
	A 1	and attempt to rearrange to obtain $\sin \theta^{\circ} = \cdots$
	A1	$\sin \theta^{\circ} = \frac{\sqrt{455}}{24} \qquad \text{Allow for } \sin \theta = \frac{\sqrt{455}}{0.5 \times 8 \times 6}$
	M1	For use of the inverse trigonometric function to obtain a value for θ°
		$\theta^{\circ} = 62.72 \dots, 117.27 \dots$
		If working not shown then award for angle correct to a minimum of 1 d.p. Allow if only one value of θ° found.
		Condone working in radians awrt 1.09, awrt 2.05
	A1	$\theta^{\circ} = 62.72 \dots, 117.27 \dots$ Allow awrt $62.7^{\circ}, 117.3^{\circ}$
		Both angles found.
		Condone working in radians awrt 1.09, awrt 2.05
	M1	For forming an equation in k using their θ and an attempt to solve for k .
		$\cos \theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96 \cos \theta^{\circ}$
		$\Rightarrow k^2 = 100 - 96\cos 62.72 \dots \Rightarrow k^2 = 56 \Rightarrow k = \sqrt{56}$
		$\cos \theta^{\circ} = \frac{100 - k^2}{96} \Rightarrow k^2 = 100 - 96 \cos \theta^{\circ}$
		$\Rightarrow k^2 = 100 - 96 \cos 117.27 \dots \Rightarrow k^2 = 144 \Rightarrow k = 12$
	A1	For one correct value of <i>k</i>
		$\sqrt{56}$ or awrt 7.48 or awrt 12
	A1	For both correct values of <i>k</i> and no others.
		$\sqrt{56}$ or awrt 7.48 and awrt 12
_		