Organization + Introduction

Maschinelles Lernen - Grundverfahren WS20/21

Prof. Gerhard Neumann Autonome Lernende Roboter (ALR) KIT, Institut für Anthrophomatik und Robotik

About me and ALR...

Prof. Gerhard Neumann:

- Institut f
 ür Anthrophomatik und Robotik
- Lehrstuhl: Autonome Lernende Roboter (ALR)
- Email: Gerhard.Neumann@kit.edu

Research Topics: Machine Learning for Robotics

- Reinforcement Learning
- Probabilistic Machine Learning
- Deep Learning
- Interactive Learning

About me...

Timeline:

- Dissertation 2012 at the TU Graz
- 2014-2016: Junior Professor, TU Darmstadt
- 2016-2019: Professor, University of Lincoln
- 2019: Bosch Group Leader,
 "Information-theoretic Reinforcement Learning"

From 1. January 2020:

Professorship "Autonome Lernende Roboter", KIT

Introducing the TAs

Onur Celik

celik@kit.edu

Research on:

Hierarchical RL

Philipp Becker

philipp.becker@kit.edu

Research on:

- Time Series Modelling
- Multi-modal Modelling

- Both PhD Students at ALR
- Both started together with Geri in the beginning of 2020
- Feel free to contact us over the forum or mail

A bit of self-advertisment

What else do we offer?

- Interested in a Master-Thesis or Bachelor Thesis?
 - Have a look at https://alr.anthropomatik.kit.edu/
 - We always take motivated students
 - Interesting research topics: Robot Reinforcement Learning,
 Deep Learning, Imitation Learning, Robotics, Human-Robot
 Collaboration, Variational Inference
 - Use real robots (Franka Panda arms)
 - Joint supervision of PhD students and me
 - High success-rate of turning your thesis into a paper!

Summer Semester:

New Lecture: Deep Reinforcement Learning

Organization

Start of the lecture: 06.11.2020

- Friday: 14:00 16:30 (including 2x5 minutes break)
- Location: Zoom due to Corona
- All lectures will be recorded and put on Illias

Language:

- (Austrian) English
- Why? All the terminology / research papers are in English
- Getting used to English for these technical terms is crucial!

Exam:

- Written
- Date to be announced

Material

Lecture Material:

- Mostly slide-based
- English
- Sometimes additional lecture notes will be available (not part of exam)

Machine Learning is very math heavy!

- Understand, not just apply!
- Math basics: We will recap the required math before it is used to derive the algorithms
- Math is directly applied... actually quite fun ©

Exercises - General Info

There will be 6 Exercises

- 1 Exercise every 2 weeks
- Starting 20.11
- Hand in Thursday before next exercise is presented
- Solutions will be presented
- Work in groups of 3

There is a Bonus!!

- You get 0.3 bonus in the exam if you pass and have > 60% of exercise points
- There is only a joint grade of lecture and excercise

Exercises - Format

Mixture of pen and paper as well as coding

- We will use python for coding
- We will use Jupyter notebooks
- Might be a bit challenging, but you work in groups and it's a good preparation for exam

ML @ KIT

Confusion:

- Maschinelles Lernen 1 Grundverfahren from Prof. Zöllner,
- Based on the old Machine Learning Lecture with Prof. Dillmann
- Fakultät für Wirtschaftwissenschaften, AIFB Institute
- Not applicable for Computer Science students

This lecture: Maschinelles Lernen – Grundverfahren

- New content
- Wahlfach for computer science
- More math, more theory, more programming!

ML @ KIT

Other ML lectures:

- SS: Deep Learning and Neural Networks: Prof. Waibel
- SS: Deep Learning for Computer Vision: Prof. Stiefelhagen
- WS: Optimization Methods for Machine Learning and Engineering
- SS: Cognitive Systems, Prof. Waibel and Me
- SS: Pattern Recognition, Prof. Beyerer

New Lecture:

SS: Deep Reinforcement Learning, Me

Ask questions!!!

Even though I am Austrian, I am actually a nice guy...

- If it is not clear... tell me!!
- If it is too fast... tell me!!
- If you can not understand "austrian english" ... tell me!

Additional Reading

Pattern Recognition and Machine Learning

- Christopher Bishop, Springer, 2006
- Very nicely explained fundamentals in classification and regression
- PDF online

Additional Reading

Mathematics for Machine Learning

- Marc Deisenroth, Aldo Faisal and Cheng Ong
- Cambridge Press 2020
- Available as PDF online

A new friend...

The matrix cookbook

- Great collection of matrix identities
- We will use a few of them

www2.imm.dtu.dk

The Matrix Cookbook

Agenda for today

Lets take it easy...

- Introduction in Machine Learning
- Basics: Linear Algebra (essential for next lecture)
- Zeroth Excercise (Philipp)

Introduction in Machine Learning

What is learning?

- "Learning denotes changes in a system that ... enable a system to do the same task ... more efficiently the next time." - Herbert Simon (Nobel Prize in Economics)
- "Learning is constructing or modifying representations of what is being experienced." - Ryszard Michalski (ML pioneer)
- "Learning is making useful changes in our minds." Marvin Minsky (MIT)

What is Machine Learning?

Algorithms that can improve their performance using training data

- Typically we have a large number of parameters
- Learned from data

Useful if:

- No expert knowledge available: industrial/manufacturing control, mass spectrometer analysis, drug design, astronomic discovery
- Black-box expert knowledge: face/handwriting/speech recognition, driving a car, flying a plane
- Fast changing phenomena: credit scoring, financial modeling, diagnosis, fraud detection
- Customization/personalization: personalized news reader, movie/book recommendation

Machine Learning is a hot topic

Do we see a new era of machine learning?

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates, Chairman, Microsoft)
- "Machine learning is the next Internet" (Tony Tether, Director, DARPA)
- Machine learning is the hot new thing" (John Hennessy, President, Stanford)
- "Machine learning is going to result in a real revolution" (Greg Papadopoulos, CTO, Sun)

Commercial Importance

Al startup funding

Predicted Revenue of Al

Why do we see this "explosion" now?

- More training data
- More computation power
- New algorithms (Deep Learning)...
 - But: same principles as from 40 years ago are still in use
- "when you go from 10,000 training examples to 10 billion training examples, it all starts to work. Data trumps everything." Google translate engineer

Machine Learning is interdisciplinary

ML: uses these disciplines to create more accurate and efficient computer systems.

Different Types of Learning

1. Supervised Learning

Training data includes target values

2. Unsupervised Learning

Training data does not include target values

3. Reinforcement Learning

No target values, but evaluation (reward) of the output

Supervised Learning

Training data includes targets

– Regression:

- Learn continuous function
- Example: line

– Classification:

- Learn class labels
- Example: Digit recognition

Unsupervised Learning

Training data does not include target values

Model the data

· Clustering:

Dimensionality reduction:

Reinforcement Learning

- No supervisor, but reward signal
- Selected actions also influence future states

Not part of this lecture!

... but stay tuned: New lecture in next semester!

Example 1: hand-written digit recognition

Images are 28 x 28 pixels

- Represent image as vector
- Learn Classifier

$$\mathbf{x} \in \mathbb{R}^{784}$$
 $f: \mathbf{x} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Example 1: hand-written digit recognition

- Supervised Classification Problem
- Training-Set: 6000 examples per class
- Error on a test-set: 0.4%
- One of the first applications used in a commercial product (ZIP-Codes, cheques,...)

Example 2: Face Detection

- Classification Problem
- Classify image windows in 3 classes
 - Non-face
 - Frontal-face
 - Profile-face

Example 2: Face Detection

Training data for frontal phases

- 5000 faces
 - All near frontal
 - All ages, races, gender, lighting
- 10⁸ non-faces
- Normalization (scale, translation)

Example 3: Stock-price prediction

- Prediction of the stock prices
- Regression problem continuous outputs)

Example 4: Spam Detection

- Classify emails in spam / non-spam
- Data x represented by word count, z.B.: "Viagra", "outperform", "you may be surprised to be contacted"...
- Spam strategies change -> we need learning

Beispiel 5: Computational Biology

AVITGACERDLQCG
KGTCCAVSLWIKSV
RVCTPVGTSGEDCH
PASHKIPFSGQRMH
HTCPCAPNLACVQT
SPKKFKCLSK

 Given the protein sequence, predict 3D structure

Example 6: Language Translation

Learn from aligned text translations

Example 6: Language Translation

Example 7: Recommender Systems

Frequently Bought Together

Customers buy this book with <u>Pattern Recognition and Machine Learning (Information Science and Statistics) (Information Science and Statistics)</u> by Christopher M. Bishop

Price For Both: £104.95

Add both to Basket

Customers Who Bought This Item Also Bought

Pattern Recognition and Machine Learning (Infor... by Christopher M. Bishop

★ Show related items

MACHINE LEARNING (Mcqraw-Hill International Edit) by Thom M. Mitchell 会会会会 (3) £42.74

◆ Show related items

Pattern Classification, Second Edition: 1 (A Wi... by Richard O. Duda

常常常常 (1) £78.38

Show related items

Data Mining: Practical
Machine Learning Tools a...
by Ian H. Witten

ARRAY (1) £37.04

Show related items

Example 8: Robot Manipulation

Reinforcement Learning: Learning to grasp unknown objects (Google)

Example 9: Tossing objects

Reinforcement Learning: Learning to throw objects into bins

Example 10: Semantic Segmentation

Example 11: Creating Image Captions

Description:

A falcon is eating during sunset. The falcon is standing on earth.

Poem:

Like a falcon by the night Hunting as the black knight Waiting to take over the fight With all of it's mind and might

Example 12: Image generation

Figure: synthetic images generated by <u>pg-GAN</u> from Nvidia. None of these images are real!

More success stories in the last 3 years

- Al beats human in lip reading
- Improved translation with Google Neural Machine Translation System
- OpenAl Bot dominates DOTA 2 Champions
- CMU AI beats top poker players
- Google Deepmind beats world champion in "Go"

More success stories

- Deepmind reduces Google's Data Center cooling costs by 40%
- Google Duplex: Al System performing every-days phone calls
- Tacotron 2: Generating human speech from text
- State-of-the-art speech recognition via Sequence to Sequence models

Conceptual view on ML

- Thousands of learning algorithms
- Hundreds of new algorithms every year
- We will only look at the fundamental algorithms and discuss the principles that connect them

Every ML algorithm consists of 3 parts:

- Representation
- Evaluation
- Optimization

Representation

How does our model look like?

- Decision trees
- Instances
- Mixture Models
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

What are we optimizing for ?

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- KL divergence
- Etc.

Optimization

How do we optimize?

- Least squares solution
- Gradient descent
- 2nd order methods
- Constraint optimization
- Random search

What will we cover?

We will cover the fundamentals for

- Representation
- Evaluation
- Optimization

With a strong mathematical focus on understanding and deriving the algorithms

More explicitly

- Lecture 1: Introduction
- Lecture 2: Linear Regression
- Lecture 3: Linear Classification
- Lecture 4: Model Selection
- Lecture 5: Nearest Neighbor & Trees
- Lecture 6: Dimensionality Reduction
- Lecture 7: Density Estimation + Clustering
- Lecture 8: Support Vector Machines
- Lecture 9: Kernel Methods
- Lecture 10: Bayesian Learning
- Lecture 11: Neural Nets 1 + (2)
- Lecture 12: Hyperparameter Optimization

What will we not cover?

- Most of Deep Learning
- Reinforcement Learning
- Genetic Algorithms
- Natural Language Processing (NLP)
- Generative Adversarial Networks
- Graphical Models
- Sampling methods
- Recommender Systems
- Topic Models
- •

Please visit the advanced courses

Basics: Linear Algebra

Vectors

A vector is a multi-dimensional quantity

Each dimension contains different information (Age, Height, Weight...)

Some notation

Vectors will always be represented as bold symbols

$$x = 1,$$
 $x = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ vector

- A vector $m{x}$ is always a **column vector** $m{x} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$

What can we do with vectors?

Multiplication by scalars

$$2\begin{bmatrix} 1\\2\\4\end{bmatrix} = \begin{bmatrix} 2\\4\\8\end{bmatrix}$$

Addition of vectors

$$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 8 \end{bmatrix}$$

Scalar products and length of vectors

- Scalar (Inner) products:
 - Sum the element-wise products

$$oldsymbol{v} = \left[egin{array}{c} 1 \ 2 \ 4 \end{array}
ight], \quad oldsymbol{w} = \left[egin{array}{c} 2 \ 4 \ 8 \end{array}
ight]$$

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 1 \cdot 2 + 2 \cdot 4 + 4 \cdot 8 = 42$$

- Length of a vector
 - Square root of the inner product with itself

$$||\boldsymbol{v}|| = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{\frac{1}{2}} = (1^2 + 2^2 + 4^2)^{\frac{1}{2}} = \sqrt{21}$$

Matrices

A matrix is a rectangular array of numbers arranged in rows and columns.

$$m{X} = \left[egin{array}{cccc} 1 & 3 \ 2 & 3 \ 4 & 7 \end{array}
ight] \qquad \qquad m{A} = \left[egin{array}{ccccc} 1 & 3 & 5 & 4 \ 2 & 3 & 7 & 2 \end{array}
ight]$$

- X is a 3 x 2 matrix and A a 2 x 4 matrix
- Dimension of a matrix is always num rows times num columns
- Matrices will be denoted with bold upper-case letters (A,B,W)
- Vectors are special cases of matrices

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$\boldsymbol{x}^T = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$$
1×3 matrix

Matrices in Machine Learning

 In many cases, our data set can be represented as matrix, where single samples are vectors

Joe:
$$\boldsymbol{x}_1 = \begin{bmatrix} 37 \\ 72 \\ 175 \end{bmatrix}$$
 Mary: $\boldsymbol{x}_2 = \begin{bmatrix} 10 \\ 30 \\ 61 \end{bmatrix}$ Carol: $\boldsymbol{x}_3 = \begin{bmatrix} 25 \\ 65 \\ 121 \end{bmatrix}$ Brad: $\boldsymbol{x}_4 = \begin{bmatrix} 66 \\ 67 \\ 175 \end{bmatrix}$

Most typical representation:

- Each row represent a data sample (e.g. Joe)
- Each column represents a data entry (e.g. age)

$$\longrightarrow$$
 X is a *num samples x num entries* matrix

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \boldsymbol{x}_2^T \\ \boldsymbol{x}_3^T \\ \boldsymbol{x}_3^T \end{bmatrix} = \begin{bmatrix} 37 & 72 & 175 \\ 10 & 30 & 61 \\ 25 & 65 & 121 \\ 66 & 67 & 175 \\ 2019/2020 \end{bmatrix}$$
 Gerhard Neumann Machine Learning 1 KIT WS 2019/2020

What can you do with matrices?

Multiplication with scalar

$$3\mathbf{M} = 3 \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 12 & 15 \\ 3 & 0 & 3 \end{bmatrix}$$

Addition of matrices

$$m{M} + m{N} = \left[egin{array}{ccc} 3 & 4 & 5 \ 1 & 0 & 1 \end{array}
ight] + \left[egin{array}{ccc} 1 & 2 & 1 \ 3 & 1 & 1 \end{array}
ight] = \left[egin{array}{ccc} 4 & 6 & 6 \ 4 & 1 & 2 \end{array}
ight]$$

Matrices can also be transposed

$$m{M} = \left[egin{array}{cccc} 3 & 4 & 5 \ 1 & 0 & 1 \end{array}
ight], \ m{M}^T = \left[egin{array}{cccc} 3 & 1 \ 4 & 0 \ 5 & 1 \end{array}
ight]$$

Multiplication of a vector with a matrix

• Matrix-Vector Product:
$$\mathbf{u} = \mathbf{W}\mathbf{v} = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 \\ 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} 13 \\ 3 \end{bmatrix}$$

• Think of it as:
$$\underbrace{ \left[\begin{array}{c} \boldsymbol{w}_1, \dots, \boldsymbol{w}_n \\ \boldsymbol{w} \end{array} \right] \underbrace{ \left[\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right] }_{\boldsymbol{w}} = \underbrace{ \left[\begin{array}{c} v_1 \boldsymbol{w}_1 + \dots + v_n \boldsymbol{w}_n \\ \boldsymbol{w} \end{array} \right] }_{\boldsymbol{w}}$$

- Hence:
$$\boldsymbol{u} = v_1 \boldsymbol{w}_1 + \dots + v_n \boldsymbol{w}_n = 1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 4 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 13 \\ 3 \end{bmatrix}$$

- We sum over the columns $~oldsymbol{w}_i$ of $oldsymbol{W}$ weighted by $~v_i$
- Vesterancedshop have same dimensionality as number of columns!

Multiplication of a matrix with a matrix

Matrix-Matrix Product:

$$U = WV = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 & 3 \cdot 0 + 4 \cdot 3 + 5 \cdot 4 \\ 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 2 & 1 \cdot 0 + 0 \cdot 3 + 1 \cdot 4 \end{bmatrix} = \begin{bmatrix} 13 & 32 \\ 3 & 4 \end{bmatrix}$$

• Think of it as:
$$egin{aligned} oldsymbol{w} \left[oldsymbol{v}_1, \dots, oldsymbol{v}_n
ight] = \left[oldsymbol{w} oldsymbol{v}_1, \dots, oldsymbol{w} oldsymbol{v}_n
ight] = oldsymbol{U} \end{aligned}$$

- Hence: Each column $oldsymbol{u}_i = oldsymbol{W} oldsymbol{v}_i$ in $oldsymbol{U}$ can be computed by a matrix-vector product

Multiplication of a matrix with a matrix

• Dimensions:
$$\underbrace{m \times n}_{W} \cdot \underbrace{n \times j}_{V} = \underbrace{m \times j}_{U}$$

Number of columns of left matrix must match number of rows of right matri

- Non-commutative (in general): $VW \neq WV$
- Associative: V(WX) = (VW)X
- Transpose Product: $(VW)^T = W^TV^T$

Important special cases

Scalar (Inner) product:
$$m{w}^T m{v} = [w_1, \dots, w_n] \left[egin{array}{c} v_1 \ dots \ v_n \end{array} \right] = w_1 v_1 + \dots + w_n v_n = \langle m{w}, m{v}
angle$$

The scalar product can be written as vector-vector product

Important special cases

Compute row/column averages of matrix

$$oldsymbol{X} = egin{bmatrix} X_{1,1} & \dots & X_{1,m} \\ \vdots & & \vdots \\ X_{n,1} & \dots & X_{n,m} \end{bmatrix}$$
 $n \text{ (samples) } imes m \text{ (entries)}$

Vector of row averages (average over all entries per sample)

$$\begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} X_{1,i} \\ \vdots \\ \frac{1}{m} \sum_{i=1}^{m} X_{n,i} \end{bmatrix} = \boldsymbol{X} \begin{bmatrix} \frac{1}{m} \\ \vdots \\ \frac{1}{m} \end{bmatrix} = \boldsymbol{X}\boldsymbol{a}, \text{ with } \boldsymbol{a} = \begin{bmatrix} \frac{1}{m} \\ \vdots \\ \frac{1}{m} \end{bmatrix}$$

Vector of column averages (average over all samles per entry)

$$\left[\frac{1}{n}\sum_{i=1}^{n}X_{i,1},\ldots,\frac{1}{n}\sum_{i=1}^{n}X_{i,m}\right] = \left[\frac{1}{n},\ldots,\frac{1}{n}\right]\boldsymbol{X} = \boldsymbol{b}^{T}\boldsymbol{X}, \text{ with } \boldsymbol{b} = \begin{bmatrix} \frac{1}{n}\\ \vdots\\ \frac{1}{n} \end{bmatrix}$$

Matrix Inverse

scalar

matrices

Definition:

$$w \cdot w^{-1} = 1$$

$$w \cdot w^{-1} = 1$$
 $WW^{-1} = I$, $W^{-1}W = I$

$$oldsymbol{W}^{-1}oldsymbol{W}=oldsymbol{I}$$

Unit Element: Identity matrix, e.g., 3 x 3: lacksquare

$$m{I} = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

Verify it!

$$\boldsymbol{W} = \begin{bmatrix} 1 & \frac{1}{2} \\ -1 & 1 \end{bmatrix} \qquad \boldsymbol{W}^{-1} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

$$\boldsymbol{W}\boldsymbol{W}^{-1} = \begin{bmatrix} 1 & \frac{1}{2} \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Note: We can only invert quadratic matrices (num rows = num cols)

Calculus

We also need to talk about derivatives...

"The derivative of a function of a real variable measures the sensitivity to change of a quantity (a function value or dependent variable) which is determined by another quantity (the independent variable)" (Wikipedia)

Function: f(x)

Derivative: $\frac{\partial f(x)}{\partial x}$

Minimum/Maximum: $\frac{\partial f(x)}{\partial x} = 0$

Derivatives and Gradients

scalar

$$\frac{\partial f(x)}{\partial x} = g$$

Min/Max:

$$f(\boldsymbol{x})$$

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \dots, \frac{\partial f(\boldsymbol{x})}{\partial x_d}\right]^T$$

•
$$\frac{\partial f(x)}{\partial x} = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_d}\right]^T$$
 is called the gradient of function f at point x

We will use the "nabla" operator as shorthand notation $\nabla f(x) = \frac{\partial f(x)}{\partial x}$

$$abla f(oldsymbol{x}) = rac{\partial f(oldsymbol{x})}{\partial oldsymbol{x}}$$

Function:

Derivative:

Matrix Calculus

• We need to know some rules from Matrix Calculus (see wikipedia)

scalar

– Linear:

$$\frac{\partial ax}{\partial x} = a$$

- Quadratic: $\frac{\partial x^2}{\partial x} = 2$

vector

$$abla_{m{x}}m{A}m{x}=m{A}^T$$

$$\nabla_{\boldsymbol{x}} \boldsymbol{x}^T \boldsymbol{x} = 2\boldsymbol{x}$$

$$\nabla_{\boldsymbol{x}} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = 2 \boldsymbol{A} \boldsymbol{x}$$

The end...

Any further questions?

Zeroth Exercise

Starting Today:

- Not Graded
- Register as Team, we created a forum to find teammates
- Familiarize yourself with python, Jupyther notebooks and the hand in process

Presented now