

SEM-6-PRACTICALS-DIGITAL IMAGE PROCESSING

Binary Image Processing and Color Image processing.

For this practical, we need Scilab Computer Vision Module to follow the below step and install the module and restart the scilab.

Binary Image Processing.

A. Image Dilation

Code:

```
clc;
scicv_Init();
img = imread(getSampleImage("letter.tif"), CV_LOAD_IMAGE_GRAYSCALE);
subplot(1,2,1);
matplot(img);
```

```
// convert to black/white and reverse, image information is white pixel
[res, img_bw] = threshold(img, 127, 255, THRESH_BINARY_INV);

element = getStructuringElement(MORPH_RECT, [5 5]);
img_dilate = dilate(img_bw, element);

// we need to reverse again before display
img_dilate_reverse = bitwise_not(img_dilate);

subplot(1,2,2);
matplot(img_dilate_reverse);
```

Output:-

B.Image Erosion

Code:

```
clear;
scicv_Init();
img = imread(getSampleImage("letter.tif"), CV_LOAD_IMAGE_GRAYSCALE);
subplot(1,2,1);
matplot(img);
```

```
// convert to black/white and reverse, image information is white pixel
[res, img_bw] = threshold(img, 127, 255, THRESH_BINARY_INV);

element = getStructuringElement(MORPH_RECT, [5 5]);
img_erode = erode(img_bw, element);

// we need to reverse again before display
img_erode_reverse = bitwise_not(img_erode);

subplot(1,2,2);
matplot(img_erode_reverse);

delete_Mat(img_bw);
delete_Mat(img_bw);
delete_Mat(element);
delete_Mat(img_erode);
delete_Mat(img_erode_reverse);
```

Output:-

C. Image Opening

Code:-

```
clc;
scicv_Init();
// Remove noise with an opening filter
img = imread(getSampleImage("noise.png"), CV_LOAD_IMAGE_GRAYSCALE);
subplot(1,2,1);
matplot(img);
// convert to black/white and reverse, image information is white pixel
[res, img_bw] = threshold(img, 128, 255, THRESH_BINARY_INV);
element = getStructuringElement(MORPH_RECT, [5 5]);
img_open = morphologyEx(img_bw, MORPH_OPEN, element);
// we need to reverse again before display
img open reverse = bitwise not(img open);
subplot(1,2,2);
matplot(img_open_reverse);
delete_Mat(img);
delete Mat(img bw);
delete_Mat(element);
delete_Mat(img_open);
delete Mat(img open reverse);
```

Output:-

```
//-Remove-noise-with-an-opening-filter
4 img = imread(getSampleImage("noise.png"), CV_LOAD_IMAGE_GRAYSCALE);
6 subplot(1,2,1)
7 matplot(img);
   //.convert.to.black/white.and.reverse,.image.information.is.white.pixels.(value-1).but.we.want.to.filter.black.pixels.(value-0)
10 [res, img_bw] = threshold(img, 128, 255, THRESH_BINARY_INV);
                                                           Graphic window number 0
12 element = getStructuringElement(MORPH_RECT, [5.5]);
13 img_open = morphologyEx(img_bw, MORPH_OPEN, element);
                                                          File Tools Edit ?
                                                          $ | @ Q Q | D V + | 0
   //-we-need-to-reverse-again-before-display
16 img_open_reverse = bitwise_not(img_open);
                                                          Graphic window number 0
   <u>subplot</u>(1,2,2);
19 matplot(img_open_reverse);
21 delete_Mat(img);
   delete Mat(img bw);
   delete_Mat(img_open);
   delete_Mat(img_open_reverse);
                                                                                                                 Abc
```

D. Image Closing.

Code:-

```
clc;
scicv_Init();
// Remove noise with an opening filter
img = imread(getSampleImage("noise.png"), CV_LOAD_IMAGE_GRAYSCALE);
subplot(1,2,1);
matplot(img);
// convert to black/white and reverse, image information is white pixel
[res, img_bw] = threshold(img, 128, 255, THRESH_BINARY_INV);
element = getStructuringElement(MORPH_RECT, [5 5]);
img_close = morphologyEx(img_bw, MORPH_CLOSE, element);
// we need to reverse again before display
img_close_reverse = bitwise_not(img_close);
subplot(1,2,2);
matplot(img_close_reverse);
delete_Mat(img);
delete_Mat(img_bw);
delete_Mat(element);
```

```
delete_Mat(img_open);
    delete_Mat(img_open_reverse);
Output:-
     scicv_Init();
 3 //-Remove.noise.with.an.opening.filter
4 img = imread(getSampleImage("noise.png"), CV_LOAD_IMAGE_GRAYSCALE);
 6 subplot(1,2,1)
7 matplot(img);
    subplot (1,2,1);
 9 //-convert-to-black/white-and-reverse, image information is-white-pixels (value 1) but-we-want-to-filter-black-pixels (value 0) 10 [res, img_bw] = threshold(img, 128, 255, IHRESH_BINARY_INV);
                                                                         Graphic window number 0
 12 element == getStructuringElement(MORPH_RECT, - [5-5]);
 13 img_close = morphologyEx(img_bw, MORPH_CLOSE, element);
                                                                        File Tools Edit ?
                                                                        |$\| @ @ Q | \( \bar{\omega} \cdot \P \disp | \textit{ 0}
     //.we.need.to.reverse.again.before.display
                                                                       Graphic window number 0
 16 img_close_reverse = bitwise_not(img_close);
17
18 <u>subplot(1,2,2);</u>
 19 matplot(img_close_reverse);
 21 delete_Mat(img);
22 delete_Mat(img_bw);
23 delete_Mat(element);
24 delete_Mat(img_open);
25 delete_Mat(img_open_reverse);
                                                                                    Abc
```

← PREVIOUS NEXT →

Practical 9

Project in Python - Colour Detection using Pandas & OpenCV

Practical 1

Practical 2

Practical 3

Practical 4

Practical 5

Practical 6

Practical 7

Practical 8

Practical 9

Practical 10

1/20	0/21, 10:51 AM also	Practical 10 - PyHill
	provide	
	Mumbai	
	university	
	computer	
	science	
	BSc-Cs	
	and MSc-	
	Cs Notes	
	and	
	Practicals.	
	Pyhill	
	Education.	

© 2021 PyHill Developed by Swas Development--swas.co.in