INTRODUCTION TO SAMPLING

Sampling

- In signal processing sampling is the reduction of a continuous time signal to a discrete time signal
- A sample refers to a value or set of values at a point in time and/or space

— sampling, taking snap shots of x(t) every T seconds.

T - sampling period

 $x[n] \equiv x(nT), n = ..., -1, 0, 1, 2, ...$ regularly spaced samples

Adequate set of samples

Observation: Lots of signals have the same set of samples

Three continuous-time signals with identical values at integer multiples of *T*.

- By sampling we throw out lots of information
 - all values of x(t) between sampling points are lost.
- Key Question for Sampling:

Under what conditions can we reconstruct the original CT signal x(t) from its samples?

Sampling of Signals

Key Question for Sampling:

Under what conditions can we reconstruct the original CT signal x(t) from its samples?

If a signal is band limited, i.e., if its Fourier transform is zero outside a finite band of frequencies, and if the samples are taken sufficiently close together in relation to the highest frequency present in the signal, then the samples *uniquely* specify the signal, and we can reconstruct it perfectly!!

This result is known as the sampling theorem and is of profound importance for signal and system analysis.

Impulse Train Sampling

Impulse Train Sampling — Multiplying x(t) by a periodic train of impulses – called the sampling function

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$x_p(t) = x(t)p(t) = \sum_{n = -\infty}^{\infty} x(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$

Impulse Train Sampling

Analysis of Sampling in Frequency Domain

$$x_p(t)=x(t)\cdot p(t)$$
 Multiplication Property $\Rightarrow X_p(j\omega)=\frac{1}{2\pi}X(j\omega)*P(j\omega)$

$$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$

$$\omega_s = \frac{2\pi}{T} = \text{Sampling Frequency}$$
 Important to note: $\omega_s \propto 1/T$

Analysis of Sampling in Frequency Domain

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j\omega) * \delta(\omega - k\omega_s)$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Analysis of Sampling in Frequency Domain

Illustration of sampling in the frequency-domain for a band-limited $(X(j\omega)=0 \text{ for } |\omega| > \omega_{\text{M}})$ signal

 $i.e. \qquad \omega_s - \omega_M > \omega_M \qquad \qquad \chi_{p(j\omega)} = \chi_{(j\omega)*P(j\omega)/2\pi}$ $i.e. \qquad \omega_s > 2\omega_M \qquad \qquad \frac{1}{T} \qquad \qquad \qquad \\ No \text{ overlap between shifted spectra} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \omega_s \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \omega_s \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \qquad \qquad \\ \omega_{s-\omega_M} \qquad \qquad \qquad \\ \omega_$

Under-sampling

(a) Spectrum of original signal;

(c) Spectrum of sampled signal with $\omega_s > 2\omega_M$ (shown on previous slide)

(d) Spectrum of sampled signal with ω_s <2 ω_M

 $X_p(j\omega)$ is a periodic function of ω consisting of a superposition of shifted replicas of $X(j\omega)$, scaled by 1/T.

Sampling Theorem

Suppose x(t) is bandlimited, so that

$$X(j\omega) = 0$$
 for $|\omega| > \omega_M$

Then x(t) is uniquely determined by its samples $\{x(nT)\}$ if

$$\omega_s > 2\omega_M =$$
 The Nyquist rate

where
$$\omega_s = 2\pi/T$$

Signal Reconstruction

Reconstruction of x(t) from sampled signals

If there is no overlap between shifted spectra, a LPF can reproduce x(t) from $x_p(t)$

Sampling with Zero-Order Hold

- Impulses (even narrow, large-amplitude pulses which approximate impulses) are hard to generate and transmit
- It is more convenient to generate the sampled signal as a zero-order hold as shown below.
- The zero-order hold samples x(t) at a given instant, and holds that value until the next instant at which a sample is taken.
- Signal reconstruction can again be carried out by lowpass filtering.

Zero-Order Hold Filtering

 \triangleright The output from the zero-order hold, $x_o(t)$ can be generated by impulse-train sampling followed by an LTI system having a rectangular impulse response

Zero-Order Hold Filtering

Need to create a reconstruction filter that compensates for the zero-order hold frequency response and gives a flat combined response

Signal Reconstruction from Zero-Order Hold

• To reconstruct x(t) from $x_0(t)$, consider processing by LTI system with impulse response $h_r(t)$ and frequency response $H_r(j\omega)$

Signal Reconstruction from Zero-Order Hold

We want to choose

 $H_r(j\omega)$ such that $r(t) = x(t) \Rightarrow H_r(j\omega) = H(j\omega) \big[H_0(j\omega) \big]^{-1}$ where $H(j\omega)$ is the ideal LPF used in the reconstruction process

$$H_0(j\omega) = e^{-j\omega T/2} \left[\frac{2\sin(\omega T/2)}{\omega} \right]$$

$$H_r(j\omega) = \frac{e^{j\omega T/2}H(j\omega)}{2\sin(\omega T/2)}$$

Reconstruction from Zero-Order Hold

Magnitude and phase for the reconstruction filter for a zero-order hold.

END