MA 413 - Statistics for Data Science

Solutions to Exercise 2

1. The CDF of Y is

$$F_Y(y) = \begin{cases} 0 & -\infty < y \le 0 \\ y & 0 < y < 1 \\ 1 & 1 \le y < \infty, \end{cases}$$

and the CDF of X is given by $\int_{-\infty}^{x} f_X(u) du$, i.e.,

$$F_X(x) = \begin{cases} 0 & -\infty < x \le 0\\ 1 - e^{-\lambda x} & x > 0. \end{cases}$$

We would like $F_X(x) = F_Y(y)$ for some function $r: X \to Y$, or X = r(Y). Particularly, when 0 < y < 1 and x > 0, we let $y = 1 - e^{-\lambda x}$, solving for x leading to

$$X = -\frac{1}{\lambda}\ln(1 - Y). \tag{1}$$

Eq. (1) is used to generate X from Y, and the resulting X satisfies the given distribution of $f_X(x)$.

Remark. As $1-Y \sim U(0,1)$, we can replace (1-Y) with Y for simplicity, and X can be alternatively generated with $X = -\ln(Y)/\lambda$.

2. (a) The second axiom of probability in the continuous case needs $\int \int f_{X,Y}(x,y) dx dy = 1$, which is equivalent to

$$C \int_0^1 \left(\int_0^y x \ y \ dx \right) dy = \frac{C}{8} = 1,$$

so we have C = 8.

(b) We calculate $f_X(x)$ and $f_Y(y)$.

$$f_X(x) = \int f_{X,Y}(x,y) \ dy = 8x \int_x^1 y \ dy = 4x(1-x^2),$$

$$f_Y(y) = \int f_{X,Y}(x,y) \ dx = 8y \int_0^y y \ dx = 4y^3,$$

so $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$ and X, Y are not independent.

3. (a) In the discrete case, the second axiom states $\sum_{x=0}^{\infty} f_X(x) = 1$, so we have

$$\sum_{x=0}^{\infty} f_X(x) = C \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = Ce^{\lambda} = 1,$$

yielding $C = e^{-\lambda}$. Note that the Taylor series for the exponential function e^{λ} is used. As a result, $f_X(x)$ is PMF of the Poisson distribution.

(b) We compute the probability as follows

$$\Pr(X \le 5) = e^{-\lambda} \sum_{x=0}^{5} \frac{\lambda^x}{x!}.$$

When $\lambda = 2$, we compute

$$\Pr(X \le 5) = e^{-2} \left(\frac{2^0}{0!} + \frac{2^1}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} \right)$$
$$= e^{-2} \left(1 + 2 + \frac{4}{2} + \frac{8}{6} + \frac{16}{24} + \frac{32}{120} \right)$$
$$= \frac{109}{15e^2} \approx 0.9834.$$

1

(c) We compute the mean as follows.

$$\mathrm{E}(X) = e^{-\lambda} \sum_{x=0}^{\infty} x \frac{\lambda^x}{x!} = e^{-\lambda} \sum_{x=1}^{\infty} x \frac{\lambda^x}{x!} = = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} = \lambda e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = \lambda e^{-\lambda} e^{\lambda} = \lambda.$$

For Var(X), we use formula $Var(X) = E(X^2) - (E(X))^2$. Note that $E(X^2) = E(X(X-1) + X) = E(X(X-1)) + E(X)$. We compute E(X(X-1)) as follows,

$$E(X(X-1)) = e^{-\lambda} \sum_{x=0}^{\infty} x(x-1) \frac{\lambda^x}{x!} = \lambda^2 e^{-\lambda} \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} = \lambda^2 e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = \lambda^2.$$

To sum up, we obtain the variance,

$$Var(X) = E(X(X - 1)) + E(X) - (E(X))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

The dispersion of X is Var(X)/E(X) = 1.

4. We compute its mean as

$$\begin{split} \mathbf{E}(X) &= \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \\ &= np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} \\ &= np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!((n-1)-(x-1))!} p^{x-1} (1-p)^{(n-1)-(x-1)} \\ &= np \sum_{x=0}^{n-1} \frac{(n-1)!}{x!(n-1-x)!} p^{x} (1-p)^{n-1-x} \\ &= np(p+(1-p))^{n-1} = np. \end{split}$$

Remark. Alternatively, as X is a Binomial random variable, it represents the number of heads in n tosses of a coin, so it can be written as $X = \sum_{x=0}^{n} X_i$, where $X_i = 1$ if the ith toss is heads and $X_i = 0$ otherwise. Then $E(X_i) = p \times 1 + (1-p) \times 0 = p$, and $E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = np$.

The following is the Matlab code to compare the mean and variance between Binomial and Poisson.

```
lambda = 1/50;
n_trial = 100;
p_success = lambda / n_trial;
pmf_B = makedist('Binomial','N',n_trial,'p',p_success);
E_B = mean(pmf_B)
Var_B = var(pmf_B)

pmf_P = makedist('Poisson','lambda',lambda);
E_P = mean(pmf_P)
Var_P = var(pmf_P)
```

5. Let $X \sim \text{Poisson}(\lambda)$. We would like the CDF of X matches that of Y, i.e., $F_X(x) = F_Y(y)$, but we notice that X is discrete whereas Y is continuous, so given a particular $y \in (0,1)$, we choose a corresponding x ($x \ge 1$) such that $F_X(x-1) < F_Y(y) \le F_X(x)$, or equivalently,

$$e^{-\lambda} \sum_{n=0}^{x-1} \frac{\lambda^n}{n!} < y \le e^{-\lambda} \sum_{n=0}^{x} \frac{\lambda^n}{n!}.$$
 (2)

In other words, X is given by Eq. (2) when the uniform random variable $Y > F_X(0) = e^{-\lambda}$, and X = 0 otherwise.

The following is the Matlab code to generate a Poisson random variable from a uniform one.

```
lambda = 2; % Poisson parameter, can be other value
Y = rand % uniform random variable in (0,1)
x = 0; % initialization of the target Poisson random variable
pmf = exp(-lambda);
FX = pmf;
while FX < Y
    x = x + 1;
    pmf = pmf * lambda / x;
    FX = FX + pmf;
end
x</pre>
```

6. We first compute $\Gamma(2)$ as follows,

$$\Gamma(2) = \int_0^\infty y e^{-y} \ dy = -y e^{-y} \Big|_0^\infty + \int_0^\infty e^{-y} \ dy = 0 - e^{-y} \Big|_0^\infty = 1.$$

To find the distribution of Z = X/Y, we need a joint density function, so we assume X and Y are independent. As a result, we have

$$f_{X,Y}(x,y) = \begin{cases} f_X(x)f_Y(y) = \frac{y}{8}e^{-(x+y)/2} & x > 0, \ y > 0\\ 0 & \text{otherwise.} \end{cases}$$

Given z > 0, we get the CDF of Z as follows,

$$\begin{split} F_Z(z) &= \Pr(Z \leq z) = \Pr(X/Y \leq z) \\ &= \int \int_{\{(x,y): x \leq zy\}} f_{X,Y}(x,y) \ dx \ dy = \int_0^\infty \left(\int_0^{zy} \frac{y}{8} e^{-(x+y)/2} \ dx \right) \ dy \\ &= \frac{1}{8} \int_0^\infty y e^{-y/2} \left(\int_0^{zy} e^{-x/2} \ dx \right) dy = \frac{1}{8} \int_0^\infty y e^{-y/2} \left(-2e^{-x/2} \Big|_0^{zy} \right) dy \\ &= \frac{1}{4} \int_0^\infty y e^{-y/2} \left(-e^{-zy/2} + 1 \right) dy = \frac{1}{4} \int_0^\infty y \left(-e^{-(z+1)y/2} + e^{-y/2} \right) dy \\ &= \frac{y}{4} \left(\frac{2}{z+1} e^{-(z+1)y/2} - 2e^{-y/2} \right) \Big|_0^\infty - \frac{1}{4} \int_0^\infty \frac{2}{z+1} e^{-(z+1)y/2} - 2e^{-y/2} \ dy \\ &= -\frac{1}{4} \int_0^\infty \frac{2}{z+1} e^{-(z+1)y/2} - 2e^{-y/2} \ dy = -\frac{1}{4} \left(-\frac{4}{(z+1)^2} e^{-(z+1)y/2} + 4e^{-y/2} \right) \Big|_0^\infty \\ &= 1 - \frac{1}{(z+1)^2}, \end{split}$$

and $F_Z(z) = 0$ when $z \leq 0$.

We compute the mean of X as

$$E(X) = \int_0^\infty x \frac{1}{2} e^{-x/2} \ dx = -x e^{-x/2} \Big|_0^\infty + \int_0^\infty e^{-x/2} \ dx = \int_0^\infty e^{-x/2} \ dx = -2 e^{-x/2} \Big|_0^\infty = 2,$$

from which we notice $\int_0^\infty ue^{-u/2} du = 4$. We will use it in the following computations. To compute the variance of X, we first compute $\mathrm{E}(X^2)$,

$$E(X^{2}) = \int_{0}^{\infty} x^{2} \frac{1}{2} e^{-x/2} dx = -x^{2} e^{-x/2} \Big|_{0}^{\infty} + \int_{0}^{\infty} 2x e^{-x/2} dx = 2 \int_{0}^{\infty} x e^{-x/2} dx = 2 \times 4 = 8,$$

and thus

$$Var(X) = E(X^2) - (E(X))^2 = 8 - 2^2 = 4.$$

In addition, we have $\int_0^\infty u^2 e^{-u/2} \ du = 16$. We use it to compute the mean and variance of Y,

$$\begin{split} \mathrm{E}(Y) &= \int_0^\infty y \frac{y}{4} e^{-y/2} \ dy = \frac{1}{4} \int_0^\infty y^2 e^{-y/2} \ dy = \frac{1}{4} \times 16 = 4, \\ \mathrm{E}(Y^2) &= \frac{1}{4} \int_0^\infty y^3 e^{-y/2} \ dy = -\frac{1}{2} y^3 e^{-y/2} \Big|_0^\infty + \frac{1}{2} \int_0^\infty 3 y^2 e^{-y/2} \ dy = \frac{3}{2} \int_0^\infty y^2 e^{-y/2} \ dy = \frac{3}{2} \times 16 = 24, \end{split}$$

and

$$Var(Y) = E(Y^2) - (E(Y))^2 = 24 - 4^2 = 8.$$