Билет 6 Теорема о полноте системы полиномов в P_k

Теорема 1 Система полиномов по mod k $(k \ge 2)$ полна в $P_k \Leftrightarrow k = p$, где р – простое число .

Доказательство:

$$j_i(x) = \begin{cases} 1, & x = i \\ 0, & x \neq i \end{cases}$$

Пусть $f(x_1, x_2, ..., x_n) \in P_k$.

Для любой функции $f(x_1, x_2, ..., x_n)$ из P_k имеет место представление

$$f(x_1, x_2, ..., x_n) = \sum_{(\sigma_1, ..., \sigma_n)} j_{\sigma_1}(x_1) ... j_{\sigma_n}(x_n) * f(\sigma_1, \sigma_2, ..., \sigma_n) \pmod{k}$$

Вопрос о представимости функции f полиномами по mod k сводится к вопросу о представимости в виде полиномов функций $j_0(x), ..., j_{k-1}(x)$.

Заметим, что:

$$j_{\sigma}(x) = j_0(x - \sigma).$$

Тогда:

$$f(x_1, x_2, ..., x_n) = \sum_{(\sigma_1, ..., \sigma_n)} j_0(x_1 - \sigma_1) ... j_0(x_n - \sigma_n) * f(\sigma_1, \sigma_2, ..., \sigma_n) \pmod{k}$$

Т.е. система полиномов по mod k полна тогда и только тогда , когда представима в виде полинома функции $j_0(x)$. Рассмотрим два возможных случая , когда k — простое число и когда k — составное число .

1.Пусть k=p, где p – простое число, то по малой теореме Ферма:

$$a^{k-1} \equiv 1 \pmod{k} \ (1 \le a \le k-1)$$

получаем:

$$j_0(x) = 1 - x^{k-1} \pmod{k}$$

$$f(x_1, x_2, ..., x_n) = \sum_{(\sigma_1, ..., \sigma_n)} (1 - (x_1 - \sigma_1)^{k-1}) ... (1 - (x_n - \sigma_n)^{k-1}) *$$
$$*f(\sigma_1, \sigma_2, ..., \sigma_n) (mod k)$$

Затем перемножаем скобки по свойствам дистрибутивности, коммутативности и ассоциативности; приводим подобные слагаемые. Получим полином по модулю k для функции $f(x_1, x_2, ..., x_n)$.

Существование полинома по модулю k для каждой k – значной функции при простых k доказано.

$$2.\Pi$$
усть $k\neq p.$ Тогда $k=k_1*k_2$, где $k_1\geq k_2>1.$

Докажем от противного , что в этом случае $j_0(x)$ не задается полиномом по модулю ${\bf k}.$

Пусть функция $j_0(x)$ задается полиномом по модулю k:

$$j_0(x) = c_s x^s + c_{s-1} x^{s-1} + \dots + c_1 x + c_0 \pmod{k}$$

При x = 0 получим :

$$j_0(0) = c_0 = 1$$

При $x = k_2$ получим :

$$j_0(k_2) = c_s k_2^s + c_{s-1} k_2^{s-1} + \dots + c_1 k_2 + c_0 = 0 \pmod{k}$$

Откуда:

$$k_2 * (c_s k_2^{s-1} + c_{s-1} k_2^{s-2} + \dots + c_1) = k - 1 \pmod{k}$$

Таким образом k и k-1 делятся на k_2 .

Это возможно только, если $k_2=1$ – противоречие . Следовательно , при составных k никакой полином по модулю k не задает функцию $j_0(x)$. Теорема доказана .

Вспомогательные данные

Рассмотрим \mathbb{Z}_p - поле вычетов по mod p .

Теорема 2 (малая теорема Ферма). Если а не делится на простое число p, то $a^{p-1} \equiv 1 \pmod{p}$

Теорема 3 (теорема Эйлера). Если а и m взаимны просты, то $a^{\phi(m)} \equiv 1 \, (mod \, m)$, где $\phi(m)$ - функция Эйлера

Теорема 4 (теорема Лагранжа). Пусть группа G конечна, и H-ее подгруппа. Тогда порядок G равен порядку H, умноженному на количество её левых или правых классов смежности (индекс)

Следствие из теоремы 4. Порядок конечной группы делится на порядок любой ее подгруппы

Малая теорема Ферма является следствием теоремы Эйлера. В свою очередь, теорема Эйлера является следствием теоремы Лагранжа, примененной к приведенной системе вычетов по модулю m.

Доказательство теоремы Эйлера:

Рассмотрим мультипликативную группу Z_n^* обратимых элементов кольца вычетов Z_n . Ее порядок равен $\phi(n)$ согласно определению функции Эйлера. Поскольку число а взаимно просто с n, соответствующий ему элемент \bar{a} в Z_n является обратимым и принадлежит Z_n^* . Элемент $\bar{a} \in Z_n^*$ порождает циклическую подгруппу, порядок которой, согласно теореме Лагранжа, делит $\phi(n)$, отсюда $\bar{a}^{\phi(n)} = \bar{1}$.