Section 1.5 Problems Solution

Pierre Parisé

M444

Problem 1

We have
$$|a_n| = \sqrt{0^2 + \frac{\sin^2(n \pi / 2)}{n^2}}$$

$$= \frac{|\sin(n \pi / 2)|}{n} \leq \frac{1}{n}$$
because $|\sin \theta| \leq 1$ for any angle θ .

Since $\frac{1}{n} \rightarrow 0$, so do $|a_n|$. Since $|a_n| \rightarrow 0$, so does an Hence $|a_n| \rightarrow 0$.

Problem 3

We have
$$|n+i| = \sqrt{n^2 + 1}$$

 $\Rightarrow |an| = \frac{1}{|n+i|} = \sqrt{n^2 + 1}$
Since $|n^2 + 1| \ge |n^2| \Rightarrow \sqrt{n^2 + 1} \le \frac{1}{|n^2|}$
 $\Rightarrow \sqrt{n^2 + 1} \le \frac{1}{|n^2|}$

Thun,
$$|a_n| = \frac{1}{\sqrt{n^2 + 1}} \le \frac{1}{n}$$
.

$$a_n = \frac{(1+3i)_{n^2} + 2_{n-1}}{3i_{n^2} + i}$$

$$= \frac{n^2 + 2in^2 + 2n - 1}{(3n^2 + 1)i} \cdot \frac{i}{i}$$

$$= -i \left(n^2 + 2n - 1 + 2n^2 i \right)$$

$$\frac{3n^2 + 1}{3n^2 + 1}$$

$$=\frac{2n^2+(1-2n-n^2)i}{3n^2+1}$$

Thus, Re
$$a_n = \alpha_n = \frac{2n^2}{3n^2+1}$$
 and

Im
$$a_n = y_n = \frac{1-2n-n^2}{3n^2+1}$$
.

Limit Rean

$$\lim_{n\to\infty} 2n = \lim_{n\to\infty} \frac{2n^2}{3n^2+1}$$

$$= \lim_{n\to\infty} \frac{2}{3+\frac{1}{n^2}}$$

$$= \frac{2}{3+0} \left(\lim_{n\to\infty} \frac{1}{n^2} = 0 \right)$$

$$\Rightarrow \lim_{n\to\infty} x_n = \frac{3}{2}.$$

Limit Iman

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} \frac{1 - 2n - n^2}{3n^2 + 1}$$

$$= \lim_{n\to\infty} \frac{1/n^2 - 3/n - 1}{3 + 1/n^2}$$

$$= \frac{0 - 0 - 1}{3} = \lim_{n\to\infty} y_n = \frac{-1}{3}$$

Hence, by Thm 1.5.8,

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} x_n + i \lim_{n\to\infty} y_n$$

$$= \frac{3}{2} - \frac{i}{3}$$

Here
$$a_n = cos(\frac{n\pi}{2}) + i sin(\frac{n\pi}{2})$$
.

We have
$$|a_{n}| = \sqrt{\cos^{2}(\frac{n\pi}{2}) + \sin^{2}(\frac{n\pi}{2})} = \frac{1}{3^{n}}$$

The series
$$\sum_{n=0}^{\infty} \frac{1}{3^n}$$
 converges. So, by

the companison test for senses,
$$\frac{20}{2} \cos(\frac{n\pi}{z}) + i \sin(\frac{n\pi}{z})$$

$$\cos\left(\frac{n\pi}{z}\right) + i\sin\left(\frac{n\pi}{z}\right) = i^{n}, \quad \forall n \geq 0$$

Thuo,

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{i^n}{3^n} = \sum_{n=0}^{\infty} \left(\frac{i}{3}\right)^n.$$

Since
$$\left|\frac{i}{3}\right| = \frac{1}{3} 21$$
, the sum is

$$\frac{1}{1-i/2}=\frac{3}{3-i}$$

Herre

$$\frac{\infty}{\sum_{n=0}^{\infty}} (\cos \frac{n\pi}{2} + i \sin \frac{n\pi}{2}) = \frac{3}{3-i}$$

Problem 12

Notree that $\left|\frac{|\pm i|}{z}\right| = \frac{\sqrt{2}}{2} < 1$. By the comparison test with the Geometric series $\sum_{r=0}^{\infty} \left(\frac{\sqrt{2}}{z}\right)^r$, the suis $\sum_{r=0}^{\infty} \left(\frac{|\pm i|}{z}\right)^r$ is

convergent. Now, its sum in

$$\frac{1}{1-i+1} = \frac{2}{1-i}$$

We hove

$$a_n = \frac{n^2}{(n+i)(n+200+2i)} = \frac{n^2}{n^2+200n-2+(3n+200)i}$$

and so

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{1 + \frac{200}{n^2} - \frac{2}{n^2} + \left(\frac{3}{n} + \frac{200}{n^2}\right)i}$$

$$\Rightarrow \lim_{n \to \infty} a_n = 1 + 0.$$

Hence, by Thm. 1.5.17,
$$\sum_{r=0}^{\infty}$$
 an devenges.

n.th term is:

$$(-1)^{n} \frac{2^{n}+4^{n}}{(1+3i)^{n}} = \left(\frac{-2}{1+3i}\right)^{n} + \left(\frac{-4}{1+3i}\right)^{n}$$

If we show that
$$\frac{20}{1+3i} \left(\frac{-2}{1+3i} \right)^n \text{ and } \sum_{n=1}^{\infty} \left(\frac{-4}{1+3i} \right)^n$$

converge, then we would be done.

We have:

$$\left|\frac{-2}{1+3i}\right| = \frac{2}{\sqrt{10}} = \frac{2}{\sqrt{9}} = \frac{2}{3} < 1.$$

This is a convergent geometric servis. We also have

$$\left|\frac{-4}{143i}\right| = \frac{4}{\sqrt{10}} > \frac{4}{\sqrt{16}} = 1$$

This is a divergent germe hic series. We can't conclude anything. But,

if
$$an = (-1)^n \frac{2^n + 4^n}{(1+3i)^n}$$
 and $bn = \left(\frac{-2}{1+3i}\right)^n$ and $cn = \left(\frac{-4}{1+3i}\right)^n$, and we assume that Σan converges, then $\Sigma an - \Sigma bn = \Sigma (an - bn)$ converges because $\Sigma an \ d \Sigma bn$ do converge. But $an - bn = cn = \left(\frac{-4}{1+3i}\right)^n$ and we sow that Σcn diverges. A contradiction and thus $\sum_{n=1}^{\infty} (-1)^n \frac{2^n + 4^n}{(1+3i)^n}$

rs divergent surs.

Let
$$a_n = \frac{1}{3+i^n}$$
, $n \ge 1$.

$$\Rightarrow \frac{1}{4} \leq \frac{1}{|3+i|} = |a_n|.$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{3+i^n} \quad \text{diverges}.$$

Problem 42
Assume $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Then $\sum_{n=1}^{\infty}$ is convergent. Let S_N

be the N-th pontial sum of Zan

fr N21. Then

(x) $|SN| = |a_1 + a_2 + ... + a_N| \leq |a_1| + |a_2| + ... + |a_N|$ by the triangle imquality.

Since $\lim_{N\to\infty} SN = \sum_{n=1}^{\infty} a_n$, then $\lim_{N\to\infty} |DN| = |\sum_{n=1}^{\infty} a_n|.$ Take $\lim_{N\to\infty} on both pides of (*)$ $\Rightarrow \lim_{N\to\infty} |SN| \leq \lim_{N\to\infty} (|a_1| + \dots + |a_N|)$ $\Rightarrow |\sum_{n=1}^{\infty} a_n| \leq \sum_{n=1}^{\infty} |a_n|$