COMP 2611, DATA STRUCTURES LECTURE 18

GRAPHS

- Weighted Graphs
- Searching a Graph: Depth-first search
- Searching a Graph: Breadth-first search
- Dijkstra's Shortest Path Algorithm

Graphs: Representation

	1	2	3	4	5	6 0 0 1 0 0
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1
				c)		

Adjacency List

Adjacency Matrix

Weighted Graphs

Weighted Graphs: Adjacency Matrix Representation

	Α	В	С	D	Е	F	G
Α	0	∞	∞	20	∞	∞	75
В	∞	0	∞	∞	∞	∞	∞
С	∞	∞	0	∞	5	∞	25
D	∞	40	∞	0	35	10	45
Ε	∞	0	∞	∞	0	∞	10
F	∞	5	15	∞	40	0	∞
G	∞	∞	∞	∞	∞	∞	0

Graphs: Where Have I Seen This Before?

Graph

Adjacency List

Traversing a Graph: Breadth-First Search

Breadth-first traversal: A D F G B E C

Algorithm for Breadth-First Search

```
breadthFirstTraversal (G, source):
       for each vertex u \in \text{set} of vertices in G
               u.colour = WHITE
       G.vertices[source].colour = GREY
       Q = initQueue()
       enqueue(q, source)
       while Q is not empty
               u = dequeue (q)
               for each v \in adjacency list of u
                       loc = findVertex (G, v)
                       if G.vertices[loc].colour == WHITE
                              G.vertices[loc].colour = GREY
                              enqueue(loc)
               u.colour = BLACK
```

IMPORTANT

are locations in the array of vertices in *G*.

Breadth-First Search Example

Breadth-first traversal: A B C D E F G

Traversing a Graph: Depth-First Search

Depth-first traversal: A D B E F G C

Algorithm for Depth-First Search

```
depthFirstTraversal (G):
        for each vertex u \in \text{set} of vertices in G(V)
                u.colour = WHITE
        for each vertex u \in \text{set of vertices in } G(V)
                if u.colour == WHITE
                        dfTraverse(G, u)
dfTraverse (G, u):
        u.colour = GREY
        for each v \in adjacency \ list \ of \ u
                if v.colour == WHITE
                        dfTraverse (G, v)
        u.colour = BLACK
```

Depth-First Search Example

Find the depth-first traversal of this graph.

Dijkstra's Shortest Path Algorithm

- Dijkstra's algorithm can be used to find the shortest path from a source vertex (e.g., A) to every other vertex in the graph.
- The algorithm assumes that the edge weights are non-negative.

vertex	
parent	
cost	

Α	В	С	D	Е	F	G
nil						
0	∞	∞	∞	∞	∞	∞

- V.cost holds the current cost of a path from A to a vertex V
- ➤ V.parent holds the parent of V on the current shortest path from A to V.
- A min-priority queue, Q, will hold vertices based on their current cost. Initially, all the verticles will be placed on Q. Vertex A, with a cost of 0, will be at the top.

vertex
parent
cost

А	В	С	D	Е	F	G
nil						
0	∞	∞	∞	∞	∞	∞

> Take A off the queue.

А

- Consider all the edges leaving A. We will process them in alphabetical order. The edge (A, D) gives us a path to D at a cost of 20. This is lower than the current cost to D (∞) so we update the cost to 20, set the parent of D to A.
- The edge (A, G) gives us a path to G at a cost of 75.
 This is lower than the current cost to G (∞) so we update the cost to 75, set the parent of G to A.

vertex	Α	В	С	D	E	F	G
parent	nil	nil	nil	nil	nil	nil	nil
cost	0	∞	∞	∞	∞	∞	∞
vortov	A	В	C		_	-	<u> </u>
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B nil	C nil	D A	E nil	F nil	G A

- > Take D off the queue.
- Consider all the edges leaving D. The edge (D, B) gives us a path to B at a cost of 20 + 40 = 60 (cost to D + weight of (D, B)). This is lower than the current cost to B (∞) so we update the cost to 60, set the parent of B to D.
- The edge (D, E) gives us a path to E at a cost of 20 + 35 = 55 (cost to D + weight of (D, E)). This is lower than the current cost to E (∞) so we update the cost to 55, set the parent of E to D.

vertex	Α	В	С	D	Е	F	G
parent	nil	nil	nil	А	nil	nil	А
cost	0	∞	∞	20	∞	∞	75
vertex	Α	В	C	D	Е	F	G
parent	nil	D	nil	А	D	nil	А
cost							

Min-Priority Queue

D

- (Still processing D)
- The edge (D, F) gives us a path to F at a cost of 20 + 10 = 30 (cost to D + weight of (D, F)). This is lower than the current cost to F (∞) so we update the cost to 30, set the parent of F to D.
- ➤ The edge (D, G) gives us a path to G at a cost of 20 + 45 = 65 (cost to D + weight of (D, G)). This is lower than the current cost to G (75) so we update the cost to 65, set the parent of G to D.

vertex	Α	В	С	D	E	F	G
parent	nil	D	nil	А	D	nil	А
cost	0	60	∞	20	55	∞	75
vertex	Α	В	С	D	E	F	G
vertex parent	A nil	B D	C nil	D A	E D	F D	G D

Min-Priority Queue

F

- ➤ Take F off the queue. Consider all the edges leaving F.
- ➤ The edge (F, B) gives us a path to B at a cost of 30 + 5 = 35 (cost to F + weight of (F, B)). This is lower than the current cost to B (60) so we update the cost to 35, set the parent of B to F.
- The edge (F, C) gives us a path to C at a cost of 30 + 15 = 45 (cost to F + weight of (F, C)). This is lower than the current cost to C (∞) so we update the cost to 45, set the parent of C to F.

vertex	Α	В	С	D	E	F	G
parent	nil	D	nil	А	D	D	D
cost	0	60	∞	20	55	30	65
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B F	C F	D	E D	F	G D

(Still processing F)

F

The edge (F, E) gives us a path to E at a cost of 30 + 40 = 70 (cost to F + weight of (F, E)). This is higher than the current cost to E (55) so we leave E as it is.

vertex	Α	В	С	D	E	F	G
parent	nil	F	F	Α	D	D	D
cost	0	35	45	20	55	30	65
vertex	Α	В	С	D	E	F	G
vertex parent	A nil	B F	C F	D	E D	F	G D

> Take B off the queue. Consider all the edges leaving B.

В

There are no edges leaving B. So, we take the next element off the queue.

vertex	Α	В	С	D	Е	F	G
parent	nil	F	F	Α	D	D	D
cost	0	35	45	20	55	30	65
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B F	C F	D A	E D	F D	G D

> Take C off the queue. Consider all the edges leaving C.

С

- ➤ The edge (C, E) gives us a path to E at a cost of 45 + 5 = 50 (cost to C + weight of (C, E). This is lower than the current cost to E (55) so we update the cost to 50, set the parent of E to C.
- The edge (C, G) gives us a path to G at a cost of 45 + 25 = 70 (cost to C + weight of (C, G). This is higher than the current cost to G (65) so we leave G as it is.

vertex	Α	В	С	D	Е	F	G
parent	nil	F	F	А	D	D	D
cost	0	35	45	20	55	30	65
vertex	Α	В	С	D	Е	F	G
vertex parent	A nil	B F	C F	D	E C	F	G D

> Take E off the queue. Consider all the edges leaving E.

E

The edge (E, G) gives us a path to G at a cost of 50 + 10 = 60 (cost to E + weight of (E, G). This is lower than the current cost to G (65) so we update the cost to 60, set the parent of G to E.

vertex	Α	В	С	D	E	F	G
parent	nil	F	F	А	С	D	D
cost	0	35	45	20	50	30	65
vertex	Α	В	С	D	E	F	G
vertex parent	A nil	B F	C F	D	E C	F	G E

- Take G off the queue. Consider all the edges leaving G.
- There are no edges leaving G.
- The queue is now empty, so the algorithm terminates. The results are:

```
Cost to B: 35, Path: A \rightarrow D \rightarrow F \rightarrow B

Cost to C: 45, Path: A \rightarrow D \rightarrow F \rightarrow C

Cost to D: 20, Path: A \rightarrow D

Cost to E: 50, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E

Cost to F: 30, Path: A \rightarrow D \rightarrow F

Cost to G: 60, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E \rightarrow G
```

40	20 A 75 D 45 G
B 5	35 10 E 10 40 5
	F C

parent	
cost	
vertex	
parent	
cost	

vertex

nil	F	F	Α	С	D	E
0	35	45	20	50	30	60
Α	В	С	D	Е	F	G
nil	F	F	А	С	D	E
0	35	45	20	50	30	60

Given table, how to get paths?

```
Cost to B: 35, Path: A \rightarrow D \rightarrow F \rightarrow B

Cost to C: 45, Path: A \rightarrow D \rightarrow F \rightarrow C

Cost to D: 20, Path: A \rightarrow D

Cost to E: 50, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E

Cost to F: 30, Path: A \rightarrow D \rightarrow F

Cost to G: 60, Path: A \rightarrow D \rightarrow F \rightarrow C \rightarrow E \rightarrow G
```


vertex	
parent	
cost	

Α	В	С	D	E	F	G
nil	F	F	А	С	D	E
0	35	45	20	50	30	60

Dijkstra's Shortest Path Algorithm

Dijkstra's Algorithm is an example of a *single-source shortest path algorithm* which finds the shortest path from a source node to a destination node.

There are others such as the Bellman-Ford Algorithm.

