Artificial Neural Networks

John Stachurski

2025

Topics

- Foo
- Bar

Aim: approximate an unknown functional relationship

$$y = f(x)$$
 $(x \in \mathbb{R}^k, \ y \in \mathbb{R})$

Examples.

- x = cross section of returns, y = return on oil futures tomorrow
- x = weather sensor data, y = max temp tomorrow

Problem:

 \bullet observe $(x_i,y_i)_{i=1}^n$ and seek f such that $y_{n+1}\approx f(x_{n+1})$

Nonlinear regression: choose model $\{f_\theta\}_{\theta\in\Theta}$ and minimize the empirical loss

$$\ell(\theta) := \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 \quad \text{ s.t. } \quad \theta \in \Theta$$

In the case of ANNs, we consider all f_{θ} having the form

$$f_\theta = \sigma \circ A_m \circ \cdots \circ \sigma \circ A_2 \circ \sigma \circ A_1$$

where

- $A_j x = W_j x + b_j$ is an affine map
 - ullet $W_j=$ "weights" and $b_j=$ "bias"
- σ is a nonlinear "activation" function

Nonlinear regression: choose model $\{f_\theta\}_{\theta\in\Theta}$ and minimize the empirical loss

$$\ell(\theta) := \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 \quad \text{ s.t. } \quad \theta \in \Theta$$

In the case of ANNs, we consider all f_{θ} having the form

$$f_\theta = \sigma \circ A_m \circ \cdots \circ \sigma \circ A_2 \circ \sigma \circ A_1$$

where

- $A_j x = W_j x + b_j$ is an affine map
 - ullet $W_j=$ "weights" and $b_j=$ "bias"
- σ is a nonlinear "activation" function

