Appunti di Algebra 1 Del Corso - Patimo

Ludovico Sergiacomi a.a. 2025/2026

Indice

1	Gru	іррі	3
	1.1	Gruppi ciclici	3
	1.2	Teoremi di Omomorfismo	3
	1.3	Prodotto diretto di gruppi	5
		1.3.1 Sottogruppi di ordine p^r di \mathbb{Z}_p^n	5
	1.4	Teorema di Corrispondenza	
	1.5	Teorema di Cauchy	7
	1.6	Automorfismi	8
	1.7	Azioni di gruppo	8
		1.7.1 Classi di equivalenza, orbite e stabilizzatori	8

1 Gruppi

1.1 Gruppi ciclici

Def. Un gruppo G si dice ciclico se $\exists g \in G$ tale che $G = \langle g \rangle$, dove

$$\langle g \rangle = \{ g^n \mid n \in \mathbb{C} \}$$

Dunque si avrà

$$|G| = \operatorname{ord}_{G}(g) = \begin{cases} \min\{ n > 0 \mid g^{n} = e \} \\ \infty \text{ se } g^{n} \neq e \quad \forall n > 0 \end{cases}$$

Prop. Ogni sottogruppo di un gruppo ciclico è ciclico.

Dimostrazione. Nel caso in cui $H = \{e\}$, è banale. Invece, nel caso in cui, $H \neq \{e\} \Rightarrow \exists x \in H \setminus \{e\}$ scegliamo $n_0 = \min\{n > 0 \mid g^n \in H\}$ e dimostriamo che $H = \langle g^{n_0} \rangle$ con il doppio contenimento.

- $H \supseteq \langle g^{n_0} \rangle$ ovvio, perché $g^{n_0} \in H$ e quindi anche tutte le sue potenze.
- $H \subseteq \langle g^{n_0} \rangle$

 $x\in H\Rightarrow x=g^n$ con $n\in\mathbb{Z}$ poiché $x\in H\subseteq G$. Ora scriviamo, con la divisione euclidea, $n=qn_0+r$, con $0\le r\le n_0$

 $\Rightarrow g^n = {g^{n_0}}^q g^r \Rightarrow g^r \in H$ perché $g^n \in H$ e $g^{n_0} \in H.$ Ma n_0 era il minimo, per cui r=0.

 $\Rightarrow g^n = g^{n_0} \in \langle g^{n_0} \rangle.$

Prop. I sottogruppi di \mathbb{Z} , diversi dal sottogruppo banale sono gli $n\mathbb{Z}$ con $n \in \mathbb{N}$.

Osservazione. $n\mathbb{Z} \supseteq m\mathbb{Z} \Leftrightarrow n \mid m$.

1.2 Teoremi di Omomorfismo

Teorema 1.1 (I Teorema di Omomorfismo). Siano G, G' gruppi $e f : G \to G$ omomorfismo. Sia inoltre $N \triangleleft G$ con $N \subseteq \operatorname{Ker} f$. Allora $\exists \varphi : G/N \to G'$ t.c. il diagramma commuta

ovvero $f = \varphi \circ \pi_N$, $\operatorname{Im} f = \operatorname{Im} \varphi$, $\operatorname{Ker} f/N = \operatorname{Ker} \varphi$.

Dimostrazione. Dobbiamo costruire $\varphi: G/N \to G'$ e verificare le sue proprietà. Sappiamo che la proiezione π_N è già definita e surgettiva, quindi poniamo $\varphi(xN) = f(x)$, in questo modo il percorso è $x \mapsto xN \mapsto f(x)$ e possono commutare.

Verifichiamo che sia ben definito:

$$\begin{split} xN &= yN \Rightarrow \varphi(xN) = \varphi(yN) \Leftrightarrow f(x) = f(y) \\ \Rightarrow x &= yn \Rightarrow f(x) = f(yn) = f(y)f(n) = f(y)e = f(y) \end{split}$$

Mi sto chiedendo: se scelgo due rappresentanti per la stessa classe, φ li manda nello stesso elemento? La prima equazione ci dice che succede sse f(x) = f(y) e la seconda ci conferma che, date le condizioni, è proprio così. Dunque vale $\varphi(xN) = \varphi(yN)$ come si voleva.

Infine verifichiamo la condizione sui nuclei:

$$\operatorname{Ker} \varphi = \{xN \subseteq G/N \mid \varphi(xN) = e\} = \{xN \mid f(x) = e\} = \{xN \mid x \in \operatorname{Ker} f\} = \operatorname{Ker} f/N$$

Teorema 1.2. Sia G un gruppo ciclico, allora

 $G \cong \mathbb{Z}$ (e quindi $|G| = \infty$) oppure $G \cong \mathbb{Z}/n\mathbb{Z}$ (e quindi |G| = n)

Dimostrazione. Costruisco $\varphi: \mathbb{Z} \to G = \langle x \rangle$ di modo che:

 $1 \mapsto x$ e verifico che ord $(x) \mid \operatorname{ord}(1) = \infty$

 $n \mapsto x^n$ e ottengo φ omomorfismo surgettivo.

Quindi, per il I Teorema di Omomorfismo, $G \cong \mathbb{Z}/Ker\varphi$.

Osservando che $Ker\varphi \subseteq \mathbb{Z} \Rightarrow Ker\varphi = n\mathbb{Z}$ per la proposizione precedente, concludiamo $G \cong \mathbb{Z}/n\mathbb{Z}$. Nel caso in cui φ sia anche iniettivo, $Ker\varphi = \{e\} \Rightarrow G \cong \mathbb{Z}$.

Teorema 1.3 (II Teorema di Omomorfismo). Sia G gruppo, e siano $H, K \triangleleft G$, con $K \subseteq H$. Allora

$$G/H \cong (G/K)/(H/K)$$
.

Dimostrazione. Vogliamo utilizzare il I Teorema in questo modo:

L'idea è partire da $\pi_H: G \to G/H$ che sappiamo essere un omomorfismo, per poi quozientare per K. In questo modo avremo un omomorfismo $\pi': G/K \to G/H$ tale che $\operatorname{Ker} \pi' = \operatorname{Ker} \pi_H/K$.

Spieghiamo meglio questo passaggio. Abbiamo $\pi_H: G \to G/H$ tale che $\pi_H(g) = gH$. Nel momento in cui quozientiamo per K, otteniamo un diverso omomorfismo $\pi': G/K \to G/H$ (notiamo che la differenza è sul dominio), tale che $\pi'(gK) = \pi_H(g) = gH$; il nucleo allora diventa

$$\operatorname{Ker} \pi' = \{ gK \in G/K \mid \pi'(gK) = e_{G/H} \} = \{ gK \in G/K \mid \pi_H(g) = H \} = \operatorname{Ker} \pi_H/K \}$$

Osserviamo che $\operatorname{Ker} \pi_H = H$ e di conseguenza $\operatorname{Ker} \pi' = H/K$. Abbiamo finito, perché la situazione attuale è proprio quella descritta dal diagramma. Per concludere, il *I Teorema* ci garantisce l'esistenza dell'isomorfismo cercato.

Teorema 1.4 (III Teorema di Omomorfismo). Sia G gruppo e H, K sottogruppi normali in G. Allora vale

$$HK/K \cong H/(H \cap K)$$

Dimostrazione. Definiamo un'applicazione

$$\varphi: H \longrightarrow HK/K$$
$$h \longmapsto hK$$

Vogliamo dimostrare che 1) φ è omomorfismo, 2) φ è surgettivo, 3) $\operatorname{Ker}\varphi = H \cap K$.

1.
$$\varphi(hh') = hh'K = hKh'K = \varphi(h)\varphi(h')$$
.

- 2. $\forall h \in H, \forall k \in K, \exists x \in H \text{ t.c. } \varphi(x) = hkK = hK \text{ e basta scegliere } x = h.$
- 3. $\operatorname{Ker}\varphi = \{h \in H \mid \varphi(h)hK = e_{HK/K} = K\} \Leftrightarrow h \in K$. Dunque $h \in H \cap K$.

Il punto 1. è possibile grazie alla normalità di H e K, infatti, sfruttando il fatto che h'K = Kh', cioè la normalità di K, abbiamo

$$hKh'K = hK(h'K) = hK(Kh') = hKKh' = hKh' = h(Kh') = h(h'K) = hh'K$$

1.3 Prodotto diretto di gruppi

Def. Siano $G \in G'$ gruppi, allora si definisce il prodotto diretto come

$$G \times G' = \{ (g, g') \mid g \in G, g' \in G' \}.$$

Proprietà

- $(a, b) \in G \times G' \Rightarrow \operatorname{ord}(a, b) = \operatorname{mcm}(\operatorname{ord}(a), \operatorname{ord}(b))$
- L'operazione è definita componente per componente:

$$(g_1, g_2) \cdot (g'_1, g'_2) = (g_1 \cdot g'_1, g_2 \cdot g'_2)$$

Esempio. $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$ È ciclico? No, per il TCR che ci dice $\mathbb{Z}_m \times \mathbb{Z}_n$ ciclico $\Leftrightarrow \operatorname{mcd}(m,n) = 1$. Infatti i suoi elementi – escluso e = (0,0) – sono di ordine 2.

Esempio. $\mathbb{Z}_p \times \mathbb{Z}_p$ non è ciclico, ma ha $p^2 - 1$ elementi di ordine p. Ognuno genera un sottogruppo di ordine p. Quanti sono?

sottogruppi di ord
$$n$$
ciclici =
$$\frac{\text{# el. di ord }n}{\varphi(n)}$$

1.3.1 Sottogruppi di ordine p^r di \mathbb{Z}_p^n

 $(\mathbb{Z}/p\mathbb{Z})^n = \mathbb{Z}_p \times \ldots \times \mathbb{Z}_p$ è anche spazio vettoriale su \mathbb{F}_p – ovvero il campo con p elementi –, con il prodotto esterno definito "gratis" in questo modo: $k \in \mathbb{Z}_p \to kx \in \mathbb{Z}_p^n = \underbrace{x + \ldots + x}_{p}$.

Quindi il problema di cercare i sottogruppi si traduce nella ricerca di sottospazi di ordine p^r . L'idea è considerare tutte le r-uple di elementi linearmente indipendenti, così da avere tutti i sottospazi possibili (con molti duplicati) e poi dividere per il numero di basi di ordine r. Cioè sto dicendo: prendiamo tutte le basi possibili di sottospazi e poi dividiamo per le possibili basi di ogni sottospazio, così da ottenere solo i sottospazi.

1. r-uple in \mathbb{Z}_p^n

per il primo elemento vanno bene tutti, tranne $0 \longrightarrow p^n - 1$ possibilità; per il secondo bisogna escludere la retta di p punti generata dal primo, per avere la linerare indipendenza $\longrightarrow p^n - p$ possibilità; si continua in questo modo, escludendo un $p^2, p^3 \dots p^{r-1}$ elementi.

2. basi di ordine r

si applica la stessa idea, ma questa volta partendo da p^r invece di p^n : stiamo considerando, come il nostro spazio ambiente, un generico sottospazio di dimensione p^r .

Dunque ecco la formula cercata:

$$\frac{p^n-1\cdot p^n-p\cdot p^n-p^2\cdot\ldots\cdot p^n-p^{r-1}}{p^r-1\cdot p^r-p\cdot p^r-p^2\cdot\ldots\cdot p^r-p^{r-1}}$$

Def. Dati due elementi $a, b \in G$ gruppo, si dice commutatore l'elemento $[ab] = aba^{-1}b^{-1}$.

Osservazione. Se il commutatore di due elementi è banale, gli elementi commutano.

Teorema 1.5. Sia G gruppo e H, $K \triangleleft G$ t.c.

- 1. HK = G
- 2. $H \cap K = \{e\}$

Allora $G \cong H \times K$.

Lemma 1.5.1. *Nelle ipotesi del teorema,* $\forall h \in H, \forall k \in K \text{ vale } hk = kh.$

Dimostrazione. Lavoriamo sul commutatore [hk]. Siccome $K \triangleleft G$ abbiamo

$$hkh^{-1}k^{-1} = \underbrace{(hkh^{-1})}_{\in K}k^{-1} \in K$$

Similmente, sfruttando $H \triangleleft G$:

$$hkh^{-1}k^{-1} = h\underbrace{(kh^{-1}k^{-1})}_{\in H} \in H$$

Dunque $[hk] \in H \cap K \Rightarrow hkh^{-1}k^{-1} = e \Rightarrow hk = kh$ perché l'intersezione è banale per ipotesi.

Dimostrazione. Definiamo

$$f: H \times K \longrightarrow G$$

 $(h, k) \longmapsto hk$

e verifichiamo che è un isomorfismo.

• f omomorfismo segue dal Lemma

$$f((h,k),(h',k')) = hh'kk' = hkh'k' = f((h,k))f((h',k'))$$

• f surgettiva per l'ipotesi 1.

$$f(H,K) = HK = G$$

• f iniettiva per l'ipotesi 2.

$$f((h,k)) = e \Leftrightarrow hk = e \Leftrightarrow h = k^{-1} \Leftrightarrow h, k \in H \cap K = \{e\} \Leftrightarrow (h,k) = (e,e) = e_{H \times K}$$

1.4 Teorema di Corrispondenza

Teorema 1.6 (Teorema di corrispondenza per i gruppi). Sia $f: G \to G'$ omomorfismo surgettivo. Allora f induce una corrispondenza biunivoca tra i sottogruppi di G' e i sottogruppi di G che contengono $\operatorname{Ker} f$.

 $La\ corrispondenza\ si\ restringe\ ai\ sottogruppi\ normali\ e\ l'indice\ di\ sottogruppo\ (numero\ di\ classi\ laterali).$

Lemma 1.6.1. $f: G \rightarrow G'$ omomorfismo, allora

1.
$$\forall H \leq G'$$
 $f^{-1}(H) \leq G$. Inoltre, $H \triangleleft G' \Rightarrow f^{-1}(H) \triangleleft G$.

2.
$$\forall H \leq G \quad f(H) \leq G'$$
. Inoltre, $H \triangleleft G \Rightarrow f(H) \triangleleft f(G)$.

Dimostrazione. Dimostrazione in corso...

Dimostrazione. Basta dimostrare il teorema per $f = \pi_N$, infatti possiamo usare il I Teorema di Omomorfismo per ottenere $G/N \cong G'$.

Abbiamo due insiemi che vogliamo mettere in corrispondenza biunivoca:

$${H \mid H \leq G, N \subseteq H} \leftrightarrow {H \mid \mathcal{H} \leq G/N}.$$

Consideriamo due applicazioni

$$\alpha: G \to G/N$$
$$\beta: G/N \to G$$

Vogliamo dimostrare che α e β sono una l'inversa dell'altra, ovvero

$$(\alpha \circ \beta)(\mathcal{H}) = \mathcal{H}$$
$$(\beta \circ \alpha)(H) = H$$

Definiamo $\alpha(H) := \pi_N(H) = \{\pi_N(h) \mid h \in H\} = \{hN \mid h \in H\} = \{xN \mid x \in HN\} = HN/N = H/N$ (poiché $H \supseteq N$) e osserviamo che α è ben definita per il punto 2. del Lemma.

Similmente, $\beta(\mathcal{H}) = \pi_n^{-1}(\mathcal{H})$ è ben definita per il punto 1. del *Lemma*.

Verifichiamo ora che siano effettivamente inverse:

- 1. $(\alpha \circ \beta)(\mathcal{H}) = \pi_N(\pi_N^{-1}(\mathcal{H})) = \mathcal{H}$ visto che la mappa è surgettiva: sto andando da \mathcal{H} a $x \in G$ t.c. $\pi_N(x) = \mathcal{H}$ e poi, viceversa, da x in \mathcal{H} .
- 2. $(\beta \circ \alpha)(H) = \pi_N^{-1}(H/N) = \{x \in G \mid \pi_N(x) = hN \mid h \in H\} = \{x \in G \mid xN = hN\} = \{x \in NH = H\} = H.$

La seconda parte del teorema ci sta dicendo che i sottogruppi normali in G sono in corrispondenza con i sottogruppi normali in G' e che gli indici di sottogruppi in corrispondenza sono, a loro volta, corrispondenti.

1.5 Teorema di Cauchy

Teorema 1.7 (Cauchy per gli abeliani). Sia G gruppo finito e abeliano, p primo t.c. $p \mid |G|$. Allora $\exists x \in G \ t.c.$ ord(x) = p.

Dimostrazione. Scriviamo $|G| = pm, m \ge 1$ e dimostriamo per induzione su m.

Caso
$$m = 1$$
 $|G| = p \Rightarrow G = \langle x \rangle$ ord $(x) = p$

Caso m > 1 supponiamo la tesi vera per pt con t < m. Preso $x \in G, x \neq e$, considero il gruppo ciclico < x >. A questo punto abbiamo due possibilità:

- 1. $p \mid | \langle x \rangle | = \operatorname{ord}(x)$
- 2. $p \nmid | \langle x \rangle | = \operatorname{ord}(x)$

Che risolviamo in questo modo:

- 1. Ho un gruppo ciclico, di ordine ordx=n, allora mi basta considerare $x^{\frac{n}{p}}$ e ho ottenuto un elemento di ordine p.
- 2. Considero il gruppo quoziente (G è abeliano, quindi tutti i sottogruppi sono normali e posso stare tranquillo) G/< x>. Ora, siccome $p\mid |G|$ ma $p\nmid |< x>|$, si deve avere $p\mid |G/< x>|$. Quindi, sfruttando l'induzione forte, ci sarà un elemento $y\in |G/< x>|$ tale che ord[y]=p. Da cui $p\mid$ ordy e, con una divisione simile a quella di prima, ottengo un elemento di ordine esattamente p.

1.6 Automorfismi

Def. $H \leq G$ si dice caratteristico se è invariante per l'azione del gruppo degli automorfismi. Ovvero

$$\forall f \in Aut(G), \quad f(H) = H$$

Osservazione. Generalizza il concetto di normalità (invarianza per coniugio) in una invarianza generica. Infatti possiamo considerare l'automorfismo φ_q , ovvero il coniugio per g, come un caso particolare di f.

Prop. Gli automorfismi di $\mathbb{Z}/n\mathbb{Z}$ sono isomorfi a \mathbb{Z}_n^* .

$$\square$$
 Dimostrazione.

Prop. Dati H, K gruppi, c'è l'immersione naturale

$$\operatorname{Aut}(H) \times \operatorname{Aut}(K) \hookrightarrow \operatorname{Aut}(H \times K).$$

Inoltre, se H e K sono caratteristici in $H \times K$, allora ho un isomorfismo.

 \square

1.7 Azioni di gruppo

Def. Siano G un gruppo e X un insieme, allora si definisce azione di G su X un omomorfismo

$$\varphi: G \longrightarrow S(X)$$
 permutazioni di X
$$g \longmapsto \varphi_g: X \to X$$

dove φ_g , anche scritta $g \cdot (x)$, è una mappa bigettiva.

Esempio. Dati $G \in X = G$, abbiamo il coniugio

$$\varphi: G \longrightarrow S(G)$$
$$g \longmapsto \varphi_q.$$

Osservazione.

- $\varphi(g) \circ \varphi(h) = \varphi(gh) \Rightarrow \varphi_g(x) \circ \varphi_h(x) = \varphi_{gh}(x);$
- $\varphi_{g^{-1}} = \varphi_g^{-1}$ infatti $\varphi_g \circ \varphi_{g^{-1}} = \varphi_{gg^{-1}} = \varphi_e = \mathrm{Id}_{S(X)}$.

1.7.1 Classi di equivalenza, orbite e stabilizzatori

Prop. $\varphi: G \to S(X)$ induce una relazione di equivalenza su X, definita in questo modo:

$$x_1, x_2 \in X$$
 $x_1 \sim x_2$ se $\exists g \in G$ t.c. $\varphi_g(x_1) = x_2$.

Dimostrazione.

- 1. $x \sim x$ infatti $\varphi_e(x) = x$;
- 2. $x \sim y \Rightarrow \varphi_g(x) = y \Rightarrow \varphi_{g^{-1}}(y) = x \Rightarrow y \sim x;$
- 3. $x \sim y$, $y \sim z \Rightarrow \varphi_a(x) = y$, $\varphi_{a'}(y) = z \Rightarrow z = \varphi_{a'}(\varphi_a(x)) = \varphi_{aa'}(x) \Rightarrow x \sim z$.

Def. Le classi di equivalenza si chiamano orbite e si indicano con Orb(x).

$$Orb(x) = \{ y \in X \mid \varphi_g(x) = y, \ g \in G \}$$
$$= \{ \varphi_g(x) \mid g \in G \}.$$

Osservazione. Le classi di equivalenza costituiscono una partizione (due classi o sono disgiunte oppure coincidono), ovvero

$$X = \bigcup \{ \operatorname{Orb}(x) \mid x \in \mathcal{R} \subset G \}$$

dove \mathcal{R} è un insieme di rappresentanti per le orbite.

Def. Dato un elemento $x \in X$, si dice stabilizzatore di x l'insieme

$$\operatorname{St}(x) = \{ g \in G \mid \varphi_q(x) = x \} \le G.$$

Prop. St(x) è un sottogruppo di G.

Dimostrazione.

- 1. $e \in St(x)$, infatti $\varphi_e(x) = x \quad \forall x \in X$;
- 2. $g, h \in St(x) \Rightarrow \varphi_g(x) = x, \ \varphi_h(x) = x \Rightarrow (\varphi_g \circ \varphi_h)(x) = x \Rightarrow \varphi_{gh}(x) = x \Rightarrow gh \in St(x);$
- 3. $g \in \operatorname{St}(x) \Rightarrow \varphi_g(x) = x \Rightarrow \varphi_g^{-1}(x) = x = \varphi_{g^{-1}}(x) \Rightarrow g^{-1} \in \operatorname{St}(x)$.

Formula delle classi

C'è una stretta relazione tra orbite e stabilizzatori, infatti

$$\varphi_{g}(x) = \varphi_{h}(x) \Leftrightarrow \varphi_{h^{-1}}(\varphi_{g}(x)) = x \Leftrightarrow \varphi_{h^{-1}g}(x) = x \Leftrightarrow h^{-1}g \in \operatorname{St}(x) \Leftrightarrow g \in h\operatorname{St}(x)$$

ovvero g è incluso in uno dei laterali dello stabilizzatore. La relazione sarà più chiara grazie alla seguente proposizione.

Prop. Gli insiemi dei laterali, di fatti, sono in corrispondenza biunivoca con le orbite:

$$Orb(x) \longleftrightarrow HSt(x)$$

Dimostrazione. Definisco una mappa

$$\varphi : \operatorname{Orb}(x) \longrightarrow G\operatorname{St}(x)$$

$$\varphi_g(x) \longmapsto g\operatorname{St}(x)$$

e verifico che φ è bi
iettiva. Per l'iniettività seguo le frecce \Leftarrow della catena scritta sopra: infatti, presi
 $g\mathrm{St}(x)=h\mathrm{St}(x)$, ciò può anche essere scritto come $g\in h\mathrm{St}(x)$; quindi, partendo dalla fine e risalendo

i sse, otteniamo $\varphi_g(x)=\varphi_h(x)$ ciò
è: presi due elementi uguali nel codominio, sono necessariamente

immagini di elementi uguali nel dominio, ovvero φ è iniettiva.

Per la surgettività osservo che, preso un generico $g\mathrm{St}(x)$, basta prendere l'elemento $\varphi_g(x)$ nell'orbita, affinché φ funzioni.

Corollario 1.7.1. Sia G finito, allora vale

$$|G| = |\operatorname{Orb}(x)| \cdot |\operatorname{St}(x)| \quad \forall x \in X$$

Dimostrazione. Infatti

$$|G| = |G : \operatorname{St}(x)| \cdot |\operatorname{St}(x)|$$

e, per quanto appena visto, l'indice di $\mathrm{St}(x)$ in G (ovvero il numero di laterali) è uguale alla cardinalità dell'orbita.

Osservazione. In particolare, il fatto che |Orb(x)| divida |G| ci interessa molto.

Tutto ciò risulta molto utile, applicato nel caso del coniugio, da cui possiamo sviluppare quella che viene chiamata **formula delle classi**:

$$|G| = |Z(G)| + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z_G(x)|}.$$

Dimostrazione. Osserviamo preliminarmente che

- $\operatorname{Orb}(x) = \operatorname{Cl}(x)$, cioè le orbite sono le classi di coniugio;
- $\operatorname{St}(x) = \{g \in G \mid \varphi_g(x) = gxg^{-1} = x\} = Z_G(x)$, cioè gli stabilizzatori sono i centralizzatori in G.

Poiché le orbite costituiscono una partizione del gruppo, possiamo scrivere

$$|G| = \sum_{x \in \mathcal{R}} \frac{|G|}{|Z_G(x)|}$$

dove, al solito, \mathcal{R} è un insieme di rappresentanti per le classi di coniugio.

Osserviamo che un elemento x appartiene al centro Z(G) sse la sua orbita è banale, ovvero $Orb(x) = \{x\}$. Di conseguenza, il suo centralizzatore è tutto il gruppo e ha cardinalità |G|.

Quindi possiamo spezzare la sommatoria di prima in questo modo:

$$|G| = \sum_{x \in Z(G)} \frac{|G|}{|Z_G(x)|} + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}$$

$$= \sum_{x \in Z(G)} 1 + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}$$

$$= |Z(G)| + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}$$

La formula si estende anche ai sottogruppi normali: iniziamo dimostrando la seguente

Prop. Dato G gruppo, \mathcal{R} insieme di rappresentanti delle classi di coniugio, vale

$$H \triangleleft G \Leftrightarrow H = \bigcup_{x \in \mathcal{R}_H} \operatorname{Orb}(x),$$

dove $\mathcal{R}_H = \mathcal{R} \cap H$.

Dimostrazione.

 \implies Dobbiamo dimostrare che ogni elemento di H appartiene ad almeno un'orbita e, se un elemento appartiene a due orbite, allora esse sono uguali.

- Osserviamo che di sicuro $h \in Orb(h)$, infatti $h = ehe^{-1}$.
- Supponiamo ora che $h \in Orb(h)$ e $h \in Orb(h')$. Allora abbiamo

$$h \in \operatorname{Orb}(h') \Rightarrow \bar{g}h'\bar{g}^{-1} = h$$
 per un qualche \bar{g} .

Sfruttando l'appartenenza anche all'altra orbita:

$$Orb(h) = \{ghg^{-1} \mid g \in G\} = \{g\bar{g}h'\bar{g}^{-1}g^{-1} \mid g \in G\} = \{\tilde{g}h'\tilde{g}^{-1} \mid \tilde{g} \in G\} = Orb(h').$$

 \leftarrow Viceversa, se ogni $h \in H$ appartiene ad una e una sola classe di coniugio, allora

$$\forall h \in H \quad h = gh'g^{-1}$$
 per qualche $h' \in H$ e qualche $g \in G$.

Possiamo scrivere,

$$H = \{ghg^{-1} \mid g \in G, \ h \in H\}$$

e quindi,

$$H = qHq^{-1}$$
 al variare di q in $G \implies Hq = qH$ ovvero $H \triangleleft G$.

A questo punto vale la formula delle classi come segue:

$$|H| = |Z(G) \cap H| + \sum_{x \in \mathcal{R}_H \backslash Z(G)} \frac{|G|}{|Z_G(x)|}$$

cioè includiamo solo gli addendi relativi alle classi di coniugio in H.

Caso dei p-gruppi Gruppi finiti di ordine p^n con p primo e $n \in \mathbb{N}$. Applichiamo la formula delle classi e osserviamo che:

- $p \mid |G|$ ovviamente;
- dato $x \in G \setminus Z(G)$, allora vale $p \mid |Z_G(x)|$, poiché $|Z_G(x)|$ divide la cardinalità del gruppo e dunque non può che essere, a sua volta, del tipo p^k , k < n. L'ultima condizione vale perché, altrimenti, il centralizzatore di x sarebbe tutto il gruppo, ma questo succede solo per $x \in Z(G)$.

Dunque

$$p^{n} = \underbrace{|G|}_{\text{divisa da p}} = |Z(G)| + \sum_{x \in \mathcal{R} \setminus Z(G)} \underbrace{\frac{|G|}{|Z_{G}(x)|}}_{\text{divisi da p}} \Rightarrow p \mid |Z(G)|.$$

Osservazione. Ci sta dicendo che il centro di un p-gruppo è non banale.

Siamo quasi pronti per dimostrare il Teorema di Cauchy nel caso generale. Dimostriamo il seguente

Lemma 1.7.1. G non abeliano $\Rightarrow G/Z(G)$ non è ciclico.

Dimostrazione. Supponiamo che G/Z(G) sia ciclico, ovvero $G/Z(G) = \langle gZ \rangle$. Allora, presi $x, y \in G$, scriviamo

$$x \in g^k Z(G) \Rightarrow x = g^k z_1$$

 $y \in g^h Z(G) \Rightarrow y = g^h z_2$

per qualche $h, k \in \mathbb{Z}$. Questo perché i laterali di Z(G) partizionano G, quindi ogni elemento dell'ultimo appartiene ad uno dei laterali del primo.

Lavoriamo sul prodotto:

$$xy = g^k z_1 g^h z_2 = g^k g^h z_1 z_2 = g^{kh} z_1 z_2 = g^{hk} z_1 z_2 = g^h g^k z_1 z_2 = g^h g^k z_2 z_1 = g^h z_2 g^k z_1 = yx.$$

Ovvero tutti gli elementi commutano, quindi G è abeliano, contro l'ipotesi.

Teorema 1.8 (Teorema di Cauchy). Sia G gruppo e p primo tale che $p \mid |G|$. Allora $\exists g \in G \ t.c. \ o(g) = p$.

Dimostrazione. Nel caso in cui G sia abeliano, già sappiamo che il teorema è verificato (si veda nelle pagine precedenti). Supponiamo quindi G non abeliano.

Dato H < G, lavoriamo per induzione forte sulla sua cardinalità. Ci sono due possibilità:

- 1. $p \mid |H| \Rightarrow \exists h \in H \subset G$ t.c. o(h) = p e dunque h è l'elemento cercato;
- 2. $\forall H < G \quad p \nmid |H|$; allora sfruttiamo la formula delle classi

$$pn = |G| = \underbrace{|Z(G)|}_{\text{non divisa da } p} + \underbrace{\sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}}_{\text{divisa da } p}.$$

Letta modulo p, l'equazione diventa

$$0 = |G| = |Z(G)| + 0 \Rightarrow p \mid Z(G),$$

ma si era detto che p non dividesse la cardinalità di nessun sottogruppo proprio, quindi Z(G) non è proprio, ovvero Z(G) = G, cioè G abeliano, contro la nostra ipotesi (avevamo supposto G non abeliano, perché il caso abeliano è già stato dimostrato).