Московский государственный технический университет имени Н.Э. Баумана

Факультет «Биомедицинская техника» Кафедра «Биомедицинские технические системы»

А. А. Румянцева, Г.А. Колокольников

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК РЕЗКОСТИ МИКРОСКОПИЧЕСКИХ ИЗОБРАЖЕНИЙ МЕДИКО-БИОЛОГИЧЕСКИХ ПРЕПАРАТОВ

Методические указания к выполнению лабораторной работы по дисциплине «Методы и техника цифрового микроскопического анализа медико-биологических объектов»

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. Краткие теоретические сведения	
2. Минимальные требования к лабораторному оборудованию	10
3. Порядок выполнения работы	11
4. Требования к отчету	13
5. Контрольные вопросы	14
6. Требования к домашней подготовке	15
СПИСОК ЛИТЕРАТУРЫ	16

ВВЕДЕНИЕ

Автоматизированная микроскопия широко применяется в анализе медикобиологических препаратов (МБП). Автофокусировка является ключевой функцией любого аппаратно-программного комплекса микроскопии. Для автофокусировки требуется выполнение следующих задач:

- управление перемещением предметного столика по оси Z с помощью шагового двигателя;
- захват изображения с помощью цифровой камеры;
- расчет характеристики резкости изображения;
- нахождение экстремума фокусировочной кривой.

Существует две основных группы методов автофокусировки:

- активные;
- пассивные методы.

В активных методах автофокусировки проводится измерение расстояния до исследуемого объекта, по результатам которого выполняется подстройка оптической системы. Данные методы обладают высокой скоростью и могут использоваться для проведения анализа изображений МБП в реальном времени. Однако применение активных методов требует выполнения калибровки положения предметного стола микроскопа, соответствующего наиболее резкому изображению. Это требование неприменимо на практике, так как они обычно имеют различную толщину и множество отражающих поверхностей [1].

Пассивные методы автофокусировки основаны на анализе зарегистрированных изображений. Для серии изображений, зарегистрированных при перемещении предметного стола микроскопа в вертикальной плоскости, рассчитываются характеристики резкости и строится фокусировочная кривая, представляющая собой зависимость характеристики резкости изображения от положения предметного стола микроскопа вдоль оси z. Наиболее резкому изображению со-

ответствует максимальное значение характеристики резкости. При сканировании препарата вдоль вертикальной оси и сравнении рассчитанных значений характеристики резкости можно найти положение предметного стола микроскопа, соответствующее наиболее резкому изображению.

Методы пассивной автофокусировки являются более медленными из-за необходимости регистрация серии изображений, однако на них не оказывают влияния отражающие поверхности и толщина препарата и, таким образом, они более применимы в приложениях автоматизированной микроскопии МБП [1].

Процесс автофокусировки микроскопа на основе пассивных методов включает расчет характеристики резкости изображения и нахождение наиболее резкого изображения с использованием выбранной стратегии оценивания фокусировочной кривой и поиска ее максимума. При этом качество работы системы автофокусировки во многом определяется выбором алгоритма расчета характеристики резкости.

В зарубежной и отечественной научно-технической литературе опубликовано множество алгоритмов расчета различных характеристик резкости, которые могут быть применены для задач автофокусировки.

<u>Цель работы</u>: исследовать характеристики резкости микроскопических изображений медико-биологических препаратов.

Задачи работы:

- 1) Изучить теоретический материал;
- 2) получить z-стэк препарата набор изображений препарата, расположенных вдоль оси Z;
- 3) построить фокусировочную кривую с использованием заданной характеристики резкости;
- 4) оценить полученную фокусировочную кривую в соответствии с критериями качества;
- 5) проанализировать полученные в ходе работы результаты и сделать выводы.

1. Краткие теоретические сведения

1.1 Характеристики резкости

В работе рассматриваются характеристики резкости, которые были признаны наиболее подходящими для использования в системах автоматизированной микроскопии при анализе медико-биологических препаратов. Согласно источникам [2-5] эффективными являются:

- сумма квадратов гауссовых производных (№1);
- градиент Тененбаума (№2);
- сумма модифицированных лапласианов (№3);
- дисперсия (№4);
- алгоритм на основе автокорреляции (№5);
- байесовская энтропия спектра (№6);
- дискретное вейвлет преобразование (№7);
- выделение границ (№8);
- комбинированный алгоритм (№9) на основе (№7) и (№8).

Рассматриваемые характеристики можно распределить в группы по принципам, лежащим в основе их работы.

Первая группа – характеристики, основанные на вычислении производной. К ней относятся (№1), (№2) и (№3) [4].

Сумма квадратов гауссовых производных (№1). Алгоритм основывается на использовании производных Гауссова фильтра в горизонтальном и вертикальном направлениях:

$$F_{SMD} = \frac{1}{H \cdot W} \sum_{\substack{\text{Height} \\ \text{Width}}} [f(x, y) \otimes G_x(x, y, \sigma)]^2 + [f(x, y) \otimes G_y(x, y, \sigma)]^2, \quad (1)$$

где H, W – высота и ширина изображения;

 $G_x(x, y, \sigma)$ и $G_y(x, y, \sigma)$ — производные Гауссова фильтра в горизонтальном и вертикальном направлениях;

 σ – среднеквадратичное отклонение распределения, равное

$$\sigma = \frac{1}{2\sqrt{3}}.\tag{2}$$

Градиент Тененбаума (№2). В данном методе расчета изображение подвергается свертке с операторами Собеля $S_x(x, y)$ и $S_y(x, y)$, а затем проводится суммирование квадратов вектора градиента:

$$F_{Tenengrad} = \sum_{\substack{Height \\ Wi \ dth}} [f(x,y) \otimes S_x(x,y)]^2 + [f(x,y) \otimes S_y(x,y)]^2. \tag{3}$$

Сумма модифицированных лапласианов (№3). В данном алгоритме суммируются абсолютные значения свертки изображения с операторами Лапласа $L_x(x, y)$ и $L_y(x, y)$:

$$F_{SML} = \sum_{\substack{\text{Height } \\ \text{Width}}} |f(x,y) \otimes L_x(x,y)| + |f(x,y) \otimes L_y(x,y)|. \tag{4}$$

Вторая группа — статистические характеристики, к которым относятся $(N_{2}4)$ и $(N_{2}9)$ [4].

Дисперсия (\mathbb{N} ₂4). Алгоритм вычисляет отклонение уровня интенсивности пикселей серошкального изображения от среднего значения интенсивности μ .

$$F_{variance} = \frac{1}{H \cdot W} \sum_{\substack{\text{Width} \\ \text{Width}}} (f(x, y) - \mu)^2.$$
 (5)

Автокорреляция (№5). Алгоритм вычисляет корреляционную функцию для данного изображения:

$$F_{auto_corr} = \sum_{\substack{Height \\ Wi \ dth}} f(x, y) \cdot f(x + 1, y) - \sum_{\substack{Height \\ Wi \ dth}} f(x, y) \cdot f(x + 2, y). \tag{6}$$

Третья группа — характеристики, основанные на преобразовании изображений. К группе относятся (№6), (№7) и (№8) [3].

Байесовская энтропия спектра ($N_{2}6$). Характеристика использует дискретное косинусное преобразование:

$$F_{Be}(f) = 1 - \frac{\sum_{u}^{v} |F_{C}(u,v)|^{2}}{\left(\sum_{u}^{v} |F_{C}(u,v)|\right)^{2}},$$
(7)

где F_C – дискретное косинусное преобразование изображения;

(u, v) – координаты в пространственно-частотной области.

Дискретное вейвлет преобразование (№7). Вычисление ДВП позволяет отделить сигналы высокочастотного диапазона от исходного изображения, после чего эти составляющие используются для оценки значения резкости [5]. Изображение разделяется на четыре полосы $\{LL, LH, HL, HH\}$, где L и H обозначают низкочастотную и высокочастотную полосы соответственно. Для оценки резкости изображения используется полоса HH. Таким образом, для изображения X и его ДВП X^* размером (n, m) функция резкости вычисляется как:

$$F_{DWT}(X^*) = \sum_{i=n/2} x_{i,j}^{*2}.$$
 (8)

Алгоритм выделения границ (N28). Данный алгоритм основывается на методах морфологической обработки изображения [5] и используется для оценки резкости из-за вычислительной эффективности. На первом этапе проводится операция дилатации (расширения) границы объекта на изображении. После получения нового изображения X*, проводится суммирование для оценки резкости:

$$F_{Edge}(X^*) = \sum_{\substack{Height \\ Width}} x_{i,j}^*.$$
 (9)

В [5] применяется функция измерения резкости (№9), объединяющая характеристики (№7) и (№8):

$$F_{Edge\&DWT}(X^*) = k_1 F_{Edge}(X^*) + k_2 F_{DWT}(X^*), \tag{10}$$

где k1 и k2 — нормирующие коэффициенты.

Фокусировочные кривые, соответствующие характеристикам резкости №№ 1-9, представлены на рисунке 1.

····· Сумма квадратов Гауссовых производных

– – Градиент Таненбаум

Сумма модифицированных лапласианов

а) характеристики (1) - (3);

б) характеристики (4) - (6);

· · · · Дискретное вейвлет преобразование

Выделение границ

····· Комбинация ДВП и выделения границ

в) Характеристики (7) - (8);

г) Характеристика (9)

Рисунок 1 – Фокусировочные кривые

1.2 Критерии качества резкости

Критерии выбора и оценки характеристик резкости необходимы при сравнении методов расчета. Для корректного сопоставления характеристик резкости выполняется нормировка фокусировочных кривых, а кривые, имеющие глобальный минимум для резкого изображения, инвертируются [6, 7]. Выделяют следующие статические критерии качества фокусировочных кривых:

Критерий точности основан на расстоянии между положением максимума фокусировочной кривой и установленным вручную положением предметного стола микроскопа, соответствующим наиболее резкому изображению. Чем меньше значение данного расстояния, тем более качественной является характеристика резкости.

Критерий локальных максимумов учитывает их количество на фокусировочной кривой. Наличие нескольких локальных максимумов может зациклить алгоритм автофокусировки и увеличить его вычислительную сложность. Чем меньше локальных максимумов имеет кривая, тем проще и быстрее можно найти ее глобальный максимум.

Критерий области значений учитывает расстояние между двумя соседними локальными минимумами, примыкающими к глобальному максимуму фокусировочной кривой. Наличие более широкой области между локальными минимумами облегчает нахождение максимума кривой и позволяет избежать ошибочного нахождения локального максимума.

Критерий ширины оценивает ширину фокусировочной кривой на уровне 50% от максимума. Чем меньше это значение, тем более острой является вершина кривой и тем точнее осуществляется обнаружение положения максимума.

Критерий уровня шума основан на суммировании квадратов вторых производных, вычисляемых в результате свертки фокусировочной кривой с оператором Лапласа. При этом значение кривой в вершине исключается для предотвращения занижения оценки качества характеристик резкости, дающих фокусировочные кривые с узким пиком.

2. Минимальные требования к лабораторному оборудованию

Требование к оборудованию (рисунок 2):

- персональный компьютер (рис. 2.1);
- лабораторный микроскоп (рис. 2.2);
- камера для захвата изображений PixeLink (рис. 2.3);
- набор препаратов.

Требования к компьютеру:

- 32- или 64-разрядный процессор;
- операционная система Windows, macOS или Linux.

Требования к программному обеспечению:

- программа управления камеры Pixelink.
- интерпретатор Python 2.7, 3.4, 3.5 или 3.6;
- дистрибутив Anaconda или Miniconda.

Рисунок 2 – Оборудование: 1) Персональный компьютер; 2) Лабораторный микроскоп; 3) Камера PixeLink.

3. Порядок выполнения работы

- 1. Включить компьютер и камеру микроскопа, подключить камеру к компьютеру с помощью USB-кабеля.
 - 2. Запустить программу управления камеры PixeLink.
 - 3. Установить препарат на предметный столик микроскопа.
- 4. Установить объектив в соответствии с типом препарата: для цитологических препаратов молочной железы следует выбрать х40 объектив, для
- 5. Вручную определить сфокусированное изображение препарата, захватить изображения и сохранить как «нулевое».
- 6. Перемещая платформу по оси Z с фиксированным шагом, сохранить изображения (с отклонением в +20 шагов). Названия сохраняемых файлов должны включать шаг, например, «10.jpg». Шаг следует выбрать равным 1 мкм, перемещение осуществляется с помощью проградуированной ручки регулировки (рисунок 3).

Рисунок 3 – Ручка регулировка фокуса

- 7. Вернуться в исходное положение по оси Z, соответствующее фокусу.
- 8. Перемещая платформу по оси Z с фиксированным шагом вниз, сохранить изображения (с отклонением в -20 шагов). Названия сохраняемых файлов должны включать шаг и обозначение "-", например, «-10.jpg».
- 9. Сохранить изображения в папку «Images» и перенести с помощью флэшнакопителя на второй компьютер. В качестве второго компьютера может выступать лабораторный компьютер, или ноутбук студента с установленным дистрибутивом Anaconda и выданными скриптами Python (указания по установке дистрибутива представлены в разделе «Требования к домашней подготовке»).

10. На втором компьютере открыть Python-скрипт с расчетом резкости в соответствии с вариантом студента. Скрипты расположены в папках, обозначенных от «1» до «15», где номер обозначает вариант студент.

Рекомендуется внимательно ознакомиться с кодом программ, в особенности, с расчетом резкости.

- 11. С помощью скрипта построить фокусировочную кривую.
- 12. По критерию точности и количеству локальных максимумов оценить полученную фокусировочную кривую.
- 13. Сравнить фокусировочные кривые, полученные с помощью расчета различных характеристик резкости в группе студентов.
 - 14. Написать отчет о проделанной работе.

4. Требования к отчету

Раздел на усмотрение Румянцевой А. А.

5. Контрольные вопросы

- 1. В чём достоинства и недостатки активных методов автофокусировки?
- 2. В чем достоинства и недостатки пассивных методов автофокусировки?
- 3. На какие группы можно распределить характеристики резкости?
- 4. Каков принцип работы алгоритма расчета резкости на основе выделения границ?
- 5. По рисунку 1 опишите сходства и различия фокусировочных кривых, полученных с помощью расчета различных характеристик резкости.
- 6. Какие характеристики (в соответствии с рисунком 1) могут вызвать затруднения при использовании в алгоритме автофокусировки? Почему?

6. Требования к домашней подготовке

К моменту выполнения лабораторной работы необходимо ознакомиться с данными методическими рекомендациями, а также ответить на контрольные вопросы.

На лабораторной рекомендуется иметь флэш-накопитель. Также, при желании, можно использовать собственный ноутбук для построения фокусировочной кривой. При этом необходимо заранее установить дистрибутив Anaconda. Инструкции по установке представлены по ссылке:

https://www.anaconda.com/download/

СПИСОК ЛИТЕРАТУРЫ

- 1. Wu Q., Merchant F. A., Castleman K. R. 1. Microscope Image Processing // Oxford: Academic Press, 2008. 548 pp..
- 2. Артюхова О.А., Самородов А.В. Сравнительное исследование характеристик резкости микроскопических изображений медико-биологических препаратов // Медицинская техника. 2011. №1. С. 15-22.
- 3. Liu X.Y., Wang W.H., Sun Y. Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear // Journal of Microscopy 2007. Vol. 227. P. 15-23.
- 4. Sun Y., Duthaler S., Nelson B.J. Autofocusing in computer microscopy: Selecting the optimal focus algorithm // Microscopy Research and Technique. 2004. Vol. 65. P. 139-149.
- 5. Chen C.Y., Hwang R.C, Chen Y.J. A passive auto-focus camera control system // Applied Soft Computing. 2010. Vol. 10. P. 296-303.
- 6. 1. Santos A., Solorzano C.O., Vaquero J.J., Pena J.M., Malpica N., Pozo, F. Evaluation of autofocus functions in molecular cytogenetic analysis // J. Microsc. 188, P. 264–272.
- 7. Firestone L, Cook K, Culp K, Talsania N, Preston K. Comparison of autofocus methods for automated microscopy // Cytometry 12: P. 195–206.