Electric Circuits

Richard Robinson, B.Eng. Cand.

September 20, 2018

Contents

	roduction
1.1	Definitions
1.2	Kirchoff's Laws
1.3	Simple Analysis Methods
1.4	Nodal Analysis
1.5	Mesh Analysis
1.6	Source Transformations
1.7	Thevenin's Theorem
1.8	Superposition

Chapter 1

Introduction

1.1 Definitions

The basic definitions of circuit analysis must first be thoroughly understood. The main units of electrodynamics are voltage and current, defined as

$$v = \frac{dw}{dq}$$
 and $i = \frac{dq}{dt}$ (1.1)

respectively. The voltage is precisely the potential difference across an element, and the current is the flow of charge across a branch. Additionally, the power of an element is

$$p = \frac{dw}{dt} = vi \text{ W} \tag{1.2}$$

The passive sign convention (PSC) states an element's voltage is positive if its reference current is in the direction of the voltage drop; that is, from positive to negative. By convention, currents entering a node are negative, and positive if leaving.

1.2 Kirchoff's Laws

The current i in any branch of a circuit can be arbitrarily chosen unless there is a current source i_s . In this case, the branch current is in the direction of i_s . Kirchoff's current and voltage laws state for any planar circuit, then

$$\sum_{\text{junc.}} i = 0 \quad \text{and} \quad \sum_{\text{loop}} v = 0 \tag{1.3}$$

Conventionally, the direction of each voltage loop is clockwise. Typically, Kirchoff's law equations have the form

$$\sum_{\text{loop}} v_s = \sum_{\text{loop}} i_i R_i \quad \text{and} \quad \sum_{\text{to}} i = \sum_{\text{from}} i$$
 (1.4)

1.3 Simple Analysis Methods

The voltage across branches in parallel are equal, as is the current across a branch in series. Otherwise, the voltage-series and current-parallel division equations may be used,

$$v_j = iR_j = \frac{R_j}{R_{eq}}v_s$$
 and $i_j = v/R_j = \frac{R_{eq}}{R_j}i_s$ (1.5)

where v_s is the total voltage drop of the series connection and i_s is the current entering the parallel connection. Furthermore, the Δ -Y transformation transforms an interconnection

Figure 1.1: A simple voltage and current division circuits.

of 3 elements between the two types of junction, via

$$R_{i} = \begin{cases} (R'_{j}R'_{k}) / (R'_{i} + R'_{b} + R'_{c}) & \Delta \to Y \\ (R'_{i}R'_{j} + R'_{j}R'_{k} + R'_{k}R'_{i}) / R'_{i} & Y \to \Delta \end{cases}$$
(1.6)

respectively.

1.4 Nodal Analysis

The method of nodal analysis is most commonly used when no node in the circuit connects more than three branches. It is done procedurally as follows:

- 1. Select the node with the most branches as the reference node, typically the bottommost node.
- 2. Define the node voltages v_i , which are the voltage rises across a branch from the reference node to another node i.
- 3. For each non-reference node, generate a KCL equation

$$i_a: \sum i_a = \sum (v_a - v_s)/R_i = 0$$
 (1.7)

to solve for v_a .

4. If a voltage source is between two nodes, a supernode can be formed in which the nodes are related by $v_i = v_j + v_s$.

1.5 Mesh Analysis

Consequently, the mesh analysis method is used for nodes with > 3 branches. It is done as follows:

- 1. Assign mesh current i directions around each loop, conventionally clockwise.
- 2. For all nodes, develop individual KCL equations.
- 3. For each mesh, generate a KVL equation

$$v_a: \sum v_a = \sum (i_a - i_i)R_i = 0 (1.8)$$

where i_i is any other mesh current passing through R_i if applicable.

4. Solve for the branch currents, letting $i_a = i_\alpha$. If a branch is shared between mesh currents, $i_\alpha = i_a - i_b$.

1.6 Source Transformations

The source transformation technique allows for a voltage source $v_s = i_s Z$ in series with an impedance Z to be transformed into an equivalent current source i_s in parallel with Z, and vice versa. These transformations are known as a Thevenin and Norton equivalent circuit, respectively.

A result of this theorem is that an impedance that is in parallel with v_s or in series with i_s has no effect at the terminals and thus can be removed from the circuit.

Figure 1.2: Thevenin and Norton equivalent circuits

1.7 Thevenin's Theorem

Therein's theorem is useful in finding the current or voltage of the terminals of a load Z_L . It defines the method to calculate V_T , by first replacing Z_L with an open circuit and finding the voltage drop V_T across the open circuit, typically via voltage division.

Method 1 (Mixed Sources): The current i_s is found by replacing Z_L with a short circuit and calculating the resulting current. This leads to the Thevenin impedance being

$$Z_T = V_T / i_s \tag{1.9}$$

Method 2 (Ind. Sources): Deactivate all independent sources, then calculate the impedance $Z_{eq} = Z_T$ of the resulting network.

Method 3 (Dep. Sources): Deactivate all independent sources, then apply a test source between the terminals. This gives $V_s = V_T$.

Figure 1.3: A typical circuit converted to a Thevenin circuit

1.8 Superposition

The principle of superposition states suppressing all but one source sequentially and summing the values is allowed. To suppress a voltage source is to replace it with a short circuit and a current source an open circuit.

Specifically, for a circuit with n independent sources, a maximum of n superposition circuits may be created with one source per circuit. The total current or voltage of the original circuit is thus $x = \sum x_i$.