Az optikai szálak

FV szálak mérései, gyártásuk

A módusok sorsa

Ha a fényforrás átmérője és NA-ja nagyobb, mint a szálé,

akkor a fény a szálban háromféle módussal terjed:

- lesugárzó,
- szivárgó
- . vezetett

Méréshez az első kettőtől meg kell szabadulni.

Lesugárzó & szivárgó módusok

Lesugárzó:

1 méternél rövidebb távolságon kilépnek a magból és kilépnek a héjon át.

Szivárgó:

1000m után "fogynak el", szivárognak elnyelődnek

Vezetett módusok

Alapvetően ez a lényeg, ez a hasznos rész.

De:

A vezetett módusok között véletlenszerű csatolások jönnek létre a szálban lévő törésmutató egyenetlenségek és mikrogörbületek miatt.

Egyensúlyi móduseloszlás

Amikor a lesugárzó és szivárgó módusok lecsengtek, a különféle reakciók eredményeképpen beáll az ún. **egyensúlyi móduseloszlás**, vagy **módusegyensúly**. (kb. 1000m után)

Ez a mérések előfeltétele, elvileg hiteles mérés rövidebb szálon nem végezhető.

Mivan, ha rövidebb, mint 1km?

Megoldások:

- 1km hosszú mérőelőtét
- "móduskeverő": a szálat két feldurvított felület közé szorítjuk, mesterségesen felgyorsítva a keveredési folyamatot
- "módusirtó": el kell távolítani a védelmet a szálról és ún. immerziós folyadékba kell mártani a szálat. Az ún. héjmódusok hamarabb távoznak.

Immerziós folyadék

A teljes visszaverődés megakadályozása a rendszer elemei közötti légrés kitöltésével.

Tehát a mérés hitelessége érdekében kifejezetten elő kell segíteni a lesugárzást a folyadékon át.

A mérések reprodukálhatósága

- homlokfelület minősége:
- a Z tengelyre merőlegesnek kell lennie
- kilépésnél nincs gond, mert a vevő diódák fényérzékelő felülete jóval nagyobb szokott lenni, mint a szál keresztmetszete
- a káros réseket immerziós folyadékkal lehet kiküszöbölni

Csillapítás mérése

- szintmérés(csak ellenőrzéshez)
- visszavágásos mérés

visszaszórásos mérés
 (kalibrációhoz és pontosabb mérésekhez)

Csillapítás mérése 2.

A vevőn közvetlenül leolvasható a csillapítási szint.

- Mindkét irányban el kell végezni a mérést és átlagolni kell
- 800/1300/1500nm hullámhosszokon szokásos mérni
- biztonsági okokból a jel/szünet arány 1:1000 minimálisan (kitöltési tényező)
- védőtávolság minimum 10cm a szem és a szál kozött.

Visszaszórásos mérés

Visszaszórásos mérés 2.

- a Rayleigh szóráson alapszik
- a fényforrás és a detektor is azonos oldalon van.
- A betáplált fényimpulzus végighalad a vezetőn, és a hibákon visszaverődik
- A műszer ábrán jelzi ki a fény útját, a kiugró pontok hibákat jeleznek a vezetőben
- Ha homogén a vezető, akkor a jel szintje a vezető hosszában egyenletesen csökken(ne)

Visszaszórás => OTDR

Typical OTDR trace

Visszavágásos mérés

A visszavágásos módszernél először a szál távolvégén mérjük a P₁ teljesítményt, majd a mérendő szálat a becsatolási körülmények megváltoztatása nélkül L hosszúságra visszavágjuk (L jellemzően 1 m), és így is mérünk a szálvégen egy P₂ teljesítményt.

$$\alpha_{(\lambda)} = \frac{10}{L} * 1g \frac{P_2}{P_1} \left[\frac{dB}{km} \right]$$

Visszavágásos mérés 2.

Közeltéri fényeloszlás mérése

- a fényintenzitás keresztmetszetbeli eloszlását értik alatta
- halogén fényforrás, héjmódusokat kiszűrik, túlsó végén mikroszkóp, vagy videoanalizátor esetleg fényképezőgép
- az aszimmetria mindig hibára utal (átmérőhiba, excentritás, ovalitáshiba).
- Kiszámíthatóak ismeretlen szál adatai is belőle (geometriai méretek,esetleg törésmutató)

Közeltéri mérés eredménye

FV szál és kábel gyártása

FV gyártási lépései:

- 1. előforma (preform) gyártása
- 2. szálhúzás
- 3. védelem készítése
- 4. szálak egyesítése kábellé
- 5. külső védelem és teherviselő szerkezet kialakítása

Szálhúzás - régen

Mára már meghaladott eljárások:

- szálhúzás tömbből
- kettős tengelyes / tégelyes eljárás

Szálhúzás tömbből

A "csőben rúd" technológia során a nagyobb törésmutatójú mag részt üvegcsőbe helyezik (tehát két szilárd előforma a kiindulási anyag), melegítés ill. húzás hatására alakul ki a köpennyel körülvett üvegszál.

A "csőben rúd", hátránya, hogy a kétféle üveg határfelületén szennyeződések lehetnek.

Kettős tégelyes / tengelyes

- nincs szilárd előforma
- kétféle olvad üveg koncentrikusan összevezetve
- lehetséges Gl szál készítése is
- lassú => tömeggyártásban nem elég termelékeny (gazdaságosság)
- 5 50dB/km
- lehet műanyag is: 100-400dB/km @1550nm!

Modern eljárások

Chemical Vapour Deposition Kémiai gőzfázisú anyagleválasztás

<u>Fajtái:</u>

- MCVD (modified)
- PCVD (plasma activated)
- OVD (Outside Vapour Deposition)
- VAD (Vapour Axial Deposition)

MCVD preform gyártás

- 1. karcüveg cső (ez lesz a héj)
- 2. forgatják és hevítik
- belül gázkeveréket áramoltatnak + külső hevítés => fehér korom rakódik ki
- odébb gázláng hevít izzásig, kvarcszemcsék ráolvadnak a belső falra
- a gázösszetétel rétegenként változik
 => MM/GI
- 6. ha kész, 2000 fokig hevítik, a cső összeroskad 1cm átm. rúddá (preform)

PCVD preform gyártás

- 1 Mikrohullámú kemence
- 2 Stabil kemence
- 3 Kvarc csõ
- 4 Kvarc réteg
- 5 Plazma

- Philips találmány
- 1. kvarccső 1000°C
- 2. 8-10cm/s haladó kisnyomású plazmagömb
- Vékony SiO2
 rétegek => több
 száz réteg =>
 MM/GI

OVD preform gyártás

- 1. 1m hosszú kerámiarúd, gázégővel vízszintes tengelyű forgatás közben melegítik
- 2. Adalékok a gázlángon keresztül
- 3. Fehér korom a külső felületen
- 4. Ha a rétegek kész vannak, kiveszik a kerámia rudat
- 5. újramelegítés => 1400 1600°C => összeroskad üvegrúddá
- 6. 1000°C-on tárolják a szálhúzásig

VAD preform gyártás

- a tüske függőleges tengelyű és akörül forog
- a preform tengelyirányban növekszik
- itt is gázégőn át adalékolnak
- nagy előnye, hogy nem keletkezhet lyuk a tüske közepében

Szálhúzás

- kiindulás: előforma
- a húzótorony tetején "kályha" (2000°C)
- steril környezet kell!
- a szálhúzása után azonnal viszik fel a védelmet
- megszilárdulás után húzóproba
- pontosan előfeszített tárcsákon átvezetve csévélik fel dobra