

Mecânica dos Fluidos I MEAer

Escoamento compressível unidimensional estacionário - 2013/12/06

João Henriques // joaochenriques@tecnico.ulisboa.pt

990

 $\mathsf{MFI} \; / \; \mathsf{MEAer} \; / \; \mathsf{Escoamento} \; \mathsf{compressível} \; \mathsf{unidimensional} \; \mathsf{estacion\acute{a}rio} \; \mathsf{-} \; \mathsf{2013}/\mathsf{12}/\mathsf{06}$

1/95

Programa 2013/2014

- 1. Introdução
- 2. Equações para escoamento compressível unidimensional estacionário
- 3. Velocidade do som
- 4. Escoamento adiabático e escoamento isentrópico
- 5. Escoamento isentrópico com variação de área
- 6. Ondas de choque normais
- 7. Tubeiras convergentes e divergentes

Bibliografia

- Bibliografia consultada nesta apresentação
 - [1] Shapiro, A.H., *The Dynamics and Thermodynamics of Compressible Fluid Flow*, Volume 1, The Ronald Press Company, 1953
 - [2] André, J.M., Mecânica dos Fluidos I Apontamentos de Escoamentos Compressíveis, 2013.
 - [3] Fox, R.W., McDonald, A.T., *Introduction to Fluid Mechanics*, 8th Edition, John Wiley & Sons, 2011.
 - [4] White, F.M., Fluid Mechanics, 4th Edition, McGraw-Hill, 1998.

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

3/95

Modelo de gás perfeito

Equação de estado

$$p = \rho RT = \frac{1}{V}RT \tag{1}$$

com

$$\rho = \frac{1}{v}$$

Tomando logaritmos

$$\ln p = -\ln v + \ln R + \ln T = \ln \rho + \ln R + \ln T$$

obtemos

$$\frac{dp}{p} = -\frac{dv}{v} + \frac{dT}{T} = \frac{d\rho}{\rho} + \frac{dT}{T} \tag{2}$$

Modelo de gás perfeito

• Energia interna

$$e = e(v, T)$$

para um gás perfeito a energia interna, e, depende apenas da temperatura

$$\left(\frac{\partial e}{\partial v}\right)_T = 0$$

$$de = \left(\frac{\partial e}{\partial v}\right)_T dv + \underbrace{\left(\frac{\partial e}{\partial T}\right)_v}_{c_v} dT = c_v dT$$

$$e_2 - e_1 = \int_1^2 c_v dT = c_v (T_2 - T_1)$$
 (3)

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

5/95

Modelo de gás perfeito

Entalpia

$$h = h(v,T) = e + pv = e + RT$$

⇒ depende apenas da temperatura

$$\left(\frac{\partial h}{\partial p}\right)_T = 0$$

$$dh = \left(\frac{\partial h}{\partial p}\right)_T dv + \underbrace{\left(\frac{\partial h}{\partial T}\right)_p}_{c_p} dT = c_p dT$$

$$h_2 - h_1 = \int_1^2 c_p dT = c_p (T_2 - T_1) \tag{4}$$

Modelo de gás perfeito

Constantes do gás

$$c_{p} \equiv \left(\frac{\partial h}{\partial T}\right)_{p} = \frac{dh}{dT} = \frac{d}{dT} \left(e + pv\right) = \frac{de}{dT} + \frac{d}{dT} \left(RT\right) = c_{v} + R$$

Usando a definição

$$\gamma = \frac{c_p}{c_v} \tag{5}$$

obtemos

$$c_{\nu} = \frac{R}{\gamma - 1} \tag{6}$$

$$c_p = \frac{\gamma R}{\gamma - 1} \tag{7}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

7/95

Modelo de gás perfeito

Da teoria cinética dos gases

$$\gamma = \frac{n+2}{n} \tag{8}$$

- gases monoatómicos $n=3 \ o \ \gamma = 5/3$
- gases diatomicos $n=5 \ o \ \gamma = 7/5$
- Para o ar (21% O₂ mais 78% N₂)

$$\gamma = 1.4$$

$$R = 287 \frac{\mathsf{m}^2}{\mathsf{s}^2 \mathsf{K}}$$

$$c_{v} = \frac{R}{\gamma - 1} = 718 \, \frac{\mathsf{m}^{2}}{\mathsf{s}^{2} \mathsf{K}}$$

$$c_p = \frac{\gamma R}{\gamma - 1} = 1005 \, \frac{\mathsf{m}^2}{\mathsf{s}^2 \mathsf{K}}$$

Modelo de gás perfeito

• Variações de entropia

$$Tds = dh - \frac{dp}{\rho} \tag{9}$$

$$ds = c_p \frac{dT}{T} - R \frac{dp}{p} \tag{10}$$

integrando e usando as Eqs. (5), (7) e (1)

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = c_v \ln \left[\left(\frac{T_2}{T_1} \right)^{\gamma} \left(\frac{p_2}{p_1} \right)^{1-\gamma} \right]$$
 (11)

$$s_2 - s_1 = c_v \ln \left[\left(\frac{T_2}{T_1} \right) \left(\frac{\rho_1}{\rho_2} \right)^{\gamma - 1} \right] \tag{12}$$

$$s_2 - s_1 = c_v \ln \left[\left(\frac{p_2}{p_1} \right) \left(\frac{\rho_1}{\rho_2} \right)^{\gamma} \right] \tag{13}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

9/95

Modelo de gás perfeito

- **Processo isentrópico** $ds = s_2 s_1 = 0 \rightarrow$ limite de um processo real adiabático
 - Da Eq. (11)

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}} \tag{14}$$

• Da Eq. (12)

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma - 1} \tag{15}$$

• Da Eq. (13)

$$\left(\frac{\rho_2}{\rho_1}\right) = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} \tag{16}$$

Relações integrais para um volume controlo

• Balanço de massa - equação da continuidade

$$\underbrace{\int_{\Omega} \frac{\partial \rho}{\partial t} \, d\Omega}_{\text{permanente}=0} + \int_{\Gamma} \rho \left(\mathbf{u} \cdot \mathbf{n} \right) \, d\Gamma = 0$$

$$\int_{\Gamma} \rho \left(\mathbf{u} \cdot \mathbf{n} \right) \ d\Gamma = \underbrace{-\rho_1 u_1 A_1}_{\Gamma_1} + \underbrace{\rho_2 u_2 A_2}_{\Gamma_2} + \underbrace{0}_{\Gamma_3}$$

$$\rho_2 u_2 A_2 - \rho_1 u_1 A_1 = 0 \tag{17}$$

$$\dot{m}_2 = \dot{m}_1 \tag{18}$$

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

Relações integrais para um volume controlo

Balanço de quantidade de movimento

$$\underbrace{\int_{\Omega} \frac{\partial \rho \mathbf{u}}{\partial t} \, d\Omega}_{\text{permanente}=0} + \int_{\Gamma} \rho \mathbf{u} \left(\mathbf{u} \cdot \mathbf{n} \right) \, d\Gamma = - \underbrace{\int_{\Gamma} \rho \, \mathbf{n} \, d\Gamma}_{\text{(A)}} + \int_{\Gamma} \mathbf{T} \mathbf{n} \, d\Gamma + \underbrace{\int_{\Omega} \rho \mathbf{g} \, d\Omega}_{\text{(B)}}$$

$$\int_{\Gamma} \rho \mathbf{u} \left(\mathbf{u} \cdot \mathbf{n} \right) \ d\Gamma = \underbrace{-\rho_1 u_1^2 A_1}_{\Gamma_1} + \underbrace{\rho_2 u_2^2 A_2}_{\Gamma_2} + \underbrace{0}_{\Gamma_3}$$

• Em escoamento de alta velocidade usualmente

$$(A) \gg (B) \Rightarrow desprezamos \ (B)$$

Relações integrais para um volume controlo

• Perfis uniformes T=0 em Γ_1 e Γ_2

$$\int_{\Gamma} \mathbf{Tn} \, d\Gamma = \int_{\Gamma_3} \mathbf{Tn} \, d\Gamma \approx -\int_{\Gamma_3} \frac{f}{D} \left(\frac{1}{2} \rho u^2 \right) A(x) \, dx$$

onde f é coeficiente de fricção (ver diagrama de Moody)

• Equação de conservação de quantidade de movimento unidimensional

$$-\rho_1 u_1^2 A_1 + \rho_2 u_2^2 A_2 = -\int_{\Gamma} p \, \mathbf{n} \, d\Gamma - \int_{\Gamma_3} \frac{f}{D} \left(\frac{1}{2} \rho u^2 \right) A(x) \, dx$$

• Desprezando o atrito nas paredes e usando o balanço de massa

$$\dot{m}(u_2 - u_1) = -\int_{\Gamma} \rho \,\mathbf{n} \,d\Gamma \tag{19}$$

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/00

13/95

Relações integrais para um volume controlo

Balanço de energia

$$\underbrace{\int_{\Omega} \frac{\partial \rho e}{\partial t} \, d\Omega}_{\text{permanente}=0} + \int_{\Gamma} \rho e \left(\mathbf{u} \cdot \mathbf{n} \right) \, d\Gamma = \underbrace{\int_{\Omega} \dot{q}_{\Omega} \, d\Omega - \int_{\Gamma} \dot{\mathbf{q}}_{\Gamma} \cdot \mathbf{n} d\Gamma}_{Q+W} - \underbrace{\int_{\Gamma} \rho \left(\mathbf{u} \cdot \mathbf{n} \right) \, d\Gamma}_{\text{(A)}} + \underbrace{\int_{\Gamma} \mathbf{T} \mathbf{n} \cdot \mathbf{u} \, d\Gamma}_{\text{(B)}} + \underbrace{\int_{\Omega} \rho \mathbf{g} \cdot \mathbf{u} \, d\Omega}_{\text{(B)}}$$

Em escoamento de alta velocidade usualmente
 (A) ≫ (B) ⇒ desprezamos (B)

Relações integrais para um volume controlo

• uma vez que ${\boldsymbol u}\cdot{\boldsymbol n}=0$ em Γ_3

$$-\int_{\Gamma} p \left(\mathbf{u} \cdot \mathbf{n}\right) d\Gamma = \underbrace{p_1 u_1 A_1}_{\Gamma_1} - \underbrace{p_2 u_2 A_2}_{\Gamma_1} + \underbrace{0}_{\Gamma_3}$$

• pela mesma razão e por termos perfis uniformes T=0 em Γ_1 e em Γ_2

$$\int_{\Gamma} \mathbf{T} \mathbf{n} \cdot \mathbf{u} \, d\Gamma = 0$$

90 Q

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

15/95

Relações integrais para um volume controlo

• Equação de conservação de energia unidimensional

$$\rho_2 e_2 u_2 A_2 - \rho_1 e_1 u_1 A_1 = Q + W + \rho_1 u_1 A_1 - \rho_2 u_2 A_2$$

Usando o balanço de massa

$$\dot{m}(e_2 - e_1) = Q + W + \dot{m}\left(\frac{p_1}{\rho_1} - \frac{p_2}{\rho_2}\right)$$

$$\left(e_2 + \frac{p_2}{\rho_2}\right) - \left(e_1 + \frac{p_1}{\rho_1}\right) = q + w$$

onde

$$\frac{Q+W}{\dot{m}}=q+w$$

• usando as definições de energia interna e entalpia

$$\left(h_2 + \frac{1}{2}u_2^2\right) - \left(h_1 + \frac{1}{2}u_1^2\right) = q + w \tag{20}$$

Velocidade de propagação de onda, velocidade do som e número de Mach

Balanço de massa

$$-(\rho + d\rho)(-c - du)A - \rho cA = 0$$

$$\frac{d\rho}{\rho} = -\frac{du}{c + du} \approx -\frac{du}{c}$$
(21)

Balanço de quantidade de movimento (19)

$$\rho cA \left[-c - (-c - du) \right] = pA - (p + dp) A$$

resolvendo em ordem a dp

$$dp = -\rho c \, du \tag{22}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

17/95

Velocidade de propagação de onda, velocidade do som e número de Mach

• Substituindo (21) em (22)

$$c^2 = \left(\frac{\partial p}{\partial \rho}\right)_s$$

- A razão dp/dρ é definida a entropia constante porque as variações de pressão e densidade são pequenas e, consequentemente, o processo é reversível.
- Da equação (16)

$$\frac{dp}{p} = \gamma \frac{d\rho}{\rho} \tag{23}$$

$$c^{2} = \left(\frac{\partial p}{\partial \rho}\right)_{s} = \frac{\gamma p}{\rho} = \gamma RT \tag{24}$$

• Para escoamento incompressível $d\rho = 0$

$$c^2 = \frac{dp}{do} = \infty$$

Velocidade de propagação de onda, velocidade do som e número de Mach

- Significado físico do número de Mach
 - Razão de velocidades medida da assimetria do escoamento

$$\mathsf{Ma} = \frac{u}{c} \tag{25}$$

• Relação entre as forças de inércia e as forças elásticas

$$\begin{split} \frac{F_{\text{inercia}}}{F_{\text{elastica}}} &= \frac{\text{massa} \times \text{aceleração}}{\text{forças de pressão}} = \frac{\left(\rho L^3\right) \left(u^2/L\right)}{\rho L^2} = \frac{u^2}{\rho/\rho} \\ &\propto \frac{u^2}{\partial \rho/\partial \rho} = \frac{u^2}{c^2} = \text{Ma}^2 \end{split}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

19/95

Regimes do escoamento (é uma definição local)

Critério de escoamento incompressível

$$Ma = \frac{u}{c} \ll 1$$

- Escoamentos externos
 - incompressível 0.0 < Ma < 0.3
 - subsónico 0.3 < Ma < 0.8
 - transónico 0.8 < Ma < 1.2
 - supersónico 1.2 < Ma < 3.0
 - hipersónico 3.0 < Ma
- Escoamentos internos
 - subsónicoMa < 1
 - supersónico Ma > 1

Velocidade de propagação de onda, velocidade do som e número de Mach

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

21/95

Exemplo

A figura mostra a posição de duas ondas sonoras geradas por uma partícula que se desloca a uma velocidade constante no ar em repouso, à temperatura de 20° C. Determine a velocidade da partícula.

$$\begin{split} c &= \sqrt{\gamma RT} = \sqrt{1.4 \times 287 \times 293} = 343.1 \, \text{m/s} \\ \Delta x_{\text{onda}} &= 1.5 - 0.6 = 0.9 \, \text{m} \\ c &= \frac{\Delta x_{\text{onda}}}{\Delta t} \\ u &= \frac{\Delta x_{\text{fonte}}}{\Delta t} = \Delta x_{\text{fonte}} \, \frac{c}{\Delta x_{\text{onda}}} = 0.6 \, \frac{343.1}{0.9} = 228.7 \, \text{m/s} \end{split}$$

Exemplo

Um avião supersónico deslocando-se em linha recta a velocidade constante e a uma altitude de $h=1.5\,\mathrm{km}$, passa por cima de um observador que só o ouve quando este se encontra já numa posição $L=3\,\mathrm{km}$ à sua frente.

Para simplificar, admita que o movimento do avião produz uma peturbação de pressão pontual, de pequena amplitude, e ignore a variação da velocidade do som com a altitude.

- a) Determine o número de Mach a que se desloca o avião e o ângulo de Mach da respectiva onda de pressão;
- b) A posição do avião quando este produziu o som ouvido em primeiro lugar pelo observador.

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

23/95

Exemplo

$$\mu=\text{atan}\frac{1.5}{3.0}=26.5^\circ$$

$$\mathsf{Ma} = \frac{1.0}{\sin\mu} = 2.24$$

$$x = h \tan \mu = 0.748 \, \mathrm{km}$$

Propriedades em condições de estagnação

- Propriedades que podem ser obtidas se o escoamento for desacelerado até à condição de velocidade zero num processo irreversível e adiabático
- Entalpia de estagnação

$$h_0 = \left(h + \frac{1}{2}u^2\right)$$

da Eq. (20)

$$\left(h_2 + \frac{1}{2}u_2^2\right) - \left(h_1 + \frac{1}{2}u_1^2\right) = q + w$$

$$h_{02} - h_{01} = q + w$$

• Para escoamento adiabático q = w = 0

$$T_1 + \frac{u_1^2}{2c_p} = T_2 + \frac{u_2^2}{2c_p} \tag{26}$$

$$h_0 = h_{02} = h_{01} (27)$$

990

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

25/95

Propriedades em condições de estagnação

Considerando 0 K como a temperatura de referência

$$h = c_n T$$

• Definindo a **temperatura de estagnação** T_0 como a temperatura que o escoamento atingiria se fosse desacelerado **adiabaticamente** até u=0

$$h_0 = c_p T_0 = h + \frac{1}{2} u^2 \tag{28}$$

$$T_0 = T + \frac{1}{2c_p}u^2 \tag{29}$$

usando a definição de c_p , Eq. (7),

$$\frac{T_0}{T} = 1 + \frac{1}{2c_pT}u^2 = T + \frac{\gamma - 1}{2}\frac{1}{\gamma RT}u^2$$

 Com a definição de velocidade do som, Eq. (24), podemos escrever a temperatura de estagnação como

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} Ma^2 \tag{30}$$

Propriedades em condições de estagnação isentrópicas

 Pressão de estagnação isentrópica - se a desaceleração até condições de estagnação for adiabática e isentrópica, podemos usar a Eq. (14) para obter

$$\frac{p_0}{p} = \left(\frac{T_0}{T}\right)^{\frac{\gamma}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2} Ma^2\right)^{\frac{\gamma}{\gamma - 1}} \tag{31}$$

Massa volúmica de estagnação isentrópica - usando a Eq. (16) obtemos

$$\frac{\rho_0}{\rho} = \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2\right)^{\frac{1}{\gamma - 1}} \tag{32}$$

• Usando (30)

$$\left(\frac{c_0}{c}\right)^2 = 1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2 \tag{33}$$

990

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

27/95

Escoamento isentrópico

Exemplo

Considere um tubo de Pitot utilizado para a medição da velocidade de um avião subsónico. No caso da pressão total registada pelo tubo de Pitot ser 84 kPa e as condições de pressão e temperatura num ponto infinitamente a monstante do avião serem respectivamente de 70 kPa e -50°, qual é a velocidade do avião.

Partindo da Eq. (29)

$$T_0 = T_1 + \frac{1}{2c_p}u_1^2 \Rightarrow u_1 = \sqrt{2c_p(T_0 - T_1)}$$
 (34)

Da Eq. (31) temos

$$T_0 = T_1 \left(\frac{p_0}{p_1}\right)^{\frac{\gamma-1}{\gamma}} = 223 \left(\frac{84}{70}\right)^{\frac{\gamma-1}{\gamma}} = 234.9 \,\mathrm{K}$$

logo

$$u_1 = \sqrt{2 \times 1005 \times (234.9 - 223)} = 154.7 \,\mathrm{m/s}$$
 (35)

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

29/95

Escoamento isentrópico com variação de área

• Por definição de escoamento isentrópico $\Rightarrow ds = 0$

$$Tds = dh - \frac{dp}{\rho} = 0$$

$$dh = \frac{dp}{\rho} \tag{36}$$

• Para escoamento adiabático $\Rightarrow h_0 = \text{const}$

$$dh_0 = d\left(h + \frac{1}{2}u^2\right) = dh + udu = 0$$

$$dh = -udu \tag{37}$$

substituindo (37) em (36) e dividindo por u

$$\frac{dp}{\sigma u^2} = -\frac{du}{u} \tag{38}$$

Escoamento isentrópico com variação de área

da equação da continuidade

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

usando (38) e (23)

$$\frac{dA}{A} = -\frac{d\rho}{\rho} + \frac{dp}{\rho u^2} = -\frac{1}{\rho} \frac{d\rho}{dp} dp + \frac{dp}{\rho u^2} = -\frac{1}{\rho c^2} dp + \frac{dp}{\rho u^2}$$

$$dA = A \left(1 - \mathsf{Ma}^2\right) \frac{dp}{\rho u^2}$$

usando outra vez (38)

$$dA = -A\left(1 - \mathsf{Ma}^2\right) \frac{du}{u}$$

200

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

31/95

Escoamento isentrópico com variação de área

• Relações área-velocidade e área-pressão

$$\frac{dA}{du} = \left(\mathsf{Ma}^2 - 1\right) \frac{A}{u} \tag{39}$$

$$\frac{dA}{dp} = -\left(\mathsf{Ma}^2 - 1\right)\frac{A}{\rho u^2} \tag{40}$$

- Das Eqs. (39) e (40) podemos concluir que
 - Para Ma < 1 dA dA

$$\frac{dA}{dp} > 0$$
 e $\frac{dA}{du} < 0$

• Para Ma = 1 (condições sónicas \Rightarrow na área mínima)

$$\frac{dA}{dp} = 0$$
 e $\frac{dA}{du} = 0$

ullet Para Ma > 1

$$\frac{dA}{dp} < 0$$
 e $\frac{dA}{du} > 0$

Escoamento isentrópico com variação de área

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

33/95

Escoamento isentrópico com variação de área

• Caudal mássico por unidade de área

$$\begin{split} \frac{\dot{m}}{A} &= \rho u = \frac{p}{RT} u \\ &= \frac{u}{\sqrt{\gamma RT}} \sqrt{\frac{\gamma}{R}} \sqrt{\frac{T_0}{T}} \frac{p_0}{\sqrt{T_0}} \frac{p}{p_0} \\ &= \sqrt{\frac{\gamma}{R}} \frac{p_0}{\sqrt{T_0}} \mathsf{Ma} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2 \right)^{-\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \end{split}$$

resultando

$$\frac{\dot{m}}{A} \frac{\sqrt{T_0}}{p_0} = \sqrt{\frac{\gamma}{R}} \operatorname{Ma} \left(1 + \frac{\gamma - 1}{2} \operatorname{Ma}^2 \right)^{-\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$
(41)

Escoamento isentrópico com variação de área

- Da Eq. (41) verifica-se
 - Para um dado número Mach o caudal é propocional a $p_0/\sqrt{T_0}$
 - Dadas as condições de estagnação T_0 e p_0 , o caudal mássico por unidade de área, \dot{m}/A , é máximo para ${\sf Ma}=1$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

35/95

Escoamento isentrópico com variação de área

NOTA: Em escoamento isentrópico a pressão de estagnação é constante.

Seja p_{01} e p_{02} a pressão de estagnação nas secções 1 e 2

$$\frac{p_{02}}{p_{01}} = \frac{p_{02}}{p_2} \frac{p_2}{p_1} \frac{p_1}{p_{01}} = \left(\frac{T_{02}}{T_2}\right)^{\frac{\gamma}{\gamma-1}} \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} \left(\frac{T_1}{T_{01}}\right)^{\frac{\gamma}{\gamma-1}} = 1$$

porque $T_0 = T_{01} = T_{02}$ (ver Eq. da energia (27))

Valores críticos

• Fazendo Ma = 1 e usando γ = 1.4, obtemos para as Eqs. (30), (33), (31) e (32)

$$\frac{T^*}{T_0} = \frac{c^{*^2}}{c_0^2} = \frac{2}{\gamma + 1} = 0.8333 \tag{42}$$

$$\frac{p^*}{p_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} = 0.5283 \tag{43}$$

$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} = 0.6339\tag{44}$$

• NOTA: O asterisco como índice superior, * , indica que a propriedade é definida para condições sónicas \Rightarrow Ma = 1

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

37/95

Valores críticos

Máximo caudal mássico por unidade de área

$$\frac{\dot{m}}{A^*} \frac{\sqrt{T_0}}{p_0} = \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}} \tag{45}$$

para ar $\gamma=1.4$ e $R=287\,\mathrm{m^2/(s^2K)}$

$$\frac{\dot{m}}{A^*} \frac{\sqrt{T_0}}{p_0} = 0.0404 \tag{46}$$

• É conveniente introduzir a definição de razão de áreas

$$\frac{A}{A^*} = \frac{\left(\frac{\dot{m}}{A^*}\right)}{\left(\frac{\dot{m}}{A}\right)} = \frac{1}{\mathsf{Ma}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2 \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \tag{47}$$

Valores críticos

Podemos aproximar a Eq. (47) por (ver [4])

$$\mathsf{Ma} \approx \left\{ \begin{array}{l} 1 - 0.88 \left(\mathsf{ln} \, \frac{A}{A^*} \right)^{0.45}, \quad \mathsf{Ma} < 1 \;\; \mathsf{e} \;\; 1.0 < \frac{A}{A^*} < 1.34 \\ \\ 1 + 1.2 \left(\frac{A}{A^*} - 1 \right)^{0.5}, \quad \mathsf{Ma} > 1 \;\; \mathsf{e} \;\; 1.0 < \frac{A}{A^*} < 2.9 \end{array} \right. \tag{48}$$

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013/12/06}$

39/95

Velocidades de referência

• Velocidade máxima - partindo de (29), T=0

$$u_{\text{max}} = \sqrt{2c_p T_0} \tag{49}$$

Velocidade do som à temperatura de estagnação

$$c_0 = \sqrt{\gamma R T_0} \tag{50}$$

• velocidade crítica $u^* = c^*$ - velocidade a número de Mach 1

$$u^* = c^* = \sqrt{\gamma R T^*} \tag{51}$$

onde a temperatura crítica é definida a Ma = 1 usando (30)

$$T^* = \frac{2T_0}{\gamma + 1} \tag{52}$$

Velocidades de referência

ullet Fazendo os rácios entre as três velocidades, para $\gamma=1.4$, obtemos

$$\frac{c^*}{c_0} = \sqrt{\frac{2}{\nu + 1}} = 0.913 \tag{53}$$

$$\frac{u_{\text{max}}}{c_0} = \sqrt{\frac{2}{\gamma - 1}} = 2.24 \tag{54}$$

$$\frac{u_{\text{max}}}{c^*} = \sqrt{\frac{\gamma + 1}{\gamma - 1}} = 2.45 \tag{55}$$

200

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

41/95

Velocidades de referência

Para um gás perfeito

$$c_p T = \frac{c_p}{\gamma R} \gamma R T = \frac{1}{\gamma - 1} c^2$$

• Equação da energia na forma cinética

$$h_0=c_pT+\frac{1}{2}u^2$$

$$h_0 = \frac{1}{\gamma - 1}c^2 + \frac{1}{2}u^2 \tag{56}$$

$$h_0 = rac{1}{2} u_{\mathsf{max}}^2 = rac{1}{\gamma - 1} c_0^2 = rac{\gamma + 1}{\gamma - 1} {c^*}^2$$

Exemplo

Considere um escoamento de ar num Venturi com uma área da garganta de $A_2 = 0.6 \times 10^{-3} \, \text{m}^2$, e uma área da entrada de $A_1 = 2.4 \times 10^{-3} \, \text{m}^2$. Sabendo que a pressão e a temperatura na entrada são $p_1 = 2.1 \times 10^6 \, \text{Pa}$ e $T_1 = 590 \, \text{K}$, e que a pressão na garganta é $p_2 = 1.68 \times 10^6 \, \text{Pa}$, determine o caudal mássico escoado. Considere o escoamento isentrópico.

Resolução

• Podemos calcular imediatamente T_1 via a Eq. de estado (1)

$$\rho_1 = \frac{p_1}{RT_1} = 12.4 \, \text{kg/s}$$

Sendo um processo isentrópico

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{\rho_2}{\rho_1}\right)^{\frac{\gamma-1}{\gamma}} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma-1}$$

 Como temos as áreas, usando a Eq. da continuidade (17) e as relações isentrópicas obtemos

$$\frac{u_2^2}{u_1^2} = \left(\frac{\rho_1}{\rho_2}\right)^2 \left(\frac{A_1}{A_2}\right)^2 = \left(\frac{p_1}{p_2}\right)^{\frac{2}{\gamma}} \left(\frac{A_1}{A_2}\right)^2$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

43/95

Exemplo

• Podemos agora calcular u_1 através do energia (26)

$$\frac{u_1^2}{2c_p} - \frac{u_2^2}{2c_p} = T_2 - T_1$$

$$\frac{u_2^1}{2c_p}\left(1-\frac{u_2^2}{u_1^2}\right) = T_1\left(\frac{T_2}{T_1}-1\right)$$

Consequentemente

$$\frac{u_1^2}{2c_p}\left[1-\left(\frac{p_1}{p_2}\right)^{\frac{2}{\gamma}}\left(\frac{A_1}{A_2}\right)^2\right]=T_1\left[\left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}-1\right]$$

$$u_1^2 = 2c_p T_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] / \left[1 - \left(\frac{p_1}{p_2} \right)^{\frac{2}{\gamma}} \left(\frac{A_1}{A_2} \right)^2 \right] = 3481 \text{ (m/s)}^2$$

logo

$$u_1=59\,\mathrm{m/s}$$

$$\dot{m} = \rho_1 A_1 u_1 = 1.75 \,\mathrm{kg/s}^{-1}$$

Consideremos as linhas de caudal mássico por unidade de área, $\dot{m}/A=\rho u$, representadas na figura para várias condições de estagnação isentrópicas $p_0/\sqrt{T_0}$

- Cada linha representa uma evolução isentrópica
- Fig. (b), a evolução 0-1-2 é uma aceleração isentrópica seguida de uma desaceleração 2-3-4 por aumento de área
- Sendo o processo isentrópico e $A_1 = A_4 \Rightarrow \Rightarrow \mathsf{Ma}_1 = \mathsf{Ma}_4$

900

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

45/95

Controlo de caudal

- Se a contração de área diminui ainda mais, atingimos Ma = 1 e, com aquelas condições $p_0/\sqrt{T_0}$, já não é possível aumentar mais \dot{m}/A
- O caudal mássico fica **controlado na secção 2**, $Ma_2 = 1$, por causa da área A_2 e pela impossibilidade de ultrapassar $\dot{m} = (\dot{m}/A)^*A_2$

- Depois de uma secção sónica 2, o alargamento pode seguir uma evolução subsónica, Fig. (b), ou supersónica, Fig. (c)
- De acordo com o slide 32, o efeito na velocidade é oposto em subsónico e supersónico

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

47/95

Controlo de caudal

- Depois de uma secção sónica 2, se o alargamento seguir uma evolução supersónica pode ocorrer uma onda de choque, secção 3
- $A_{3A}=A_{3B}$ mas o escoamento passa de supersónico a subsónico com diminuição da condição de estagnação isentrópica $(p_0/\sqrt{T_0})_{3A}>(p_0/\sqrt{T_0})_{3B}$
- A condição de estagnação isentrópica só se altera na onda de choque
- O escoamento é isentrópico entre 1-3A e entre 3B-4
- Este assunto será tratado na secção de "onda de choque normal"

Podemos ainda definir

$$\frac{A_{2}}{A_{1}} = \frac{\left(\frac{\dot{m}}{A_{1}}\right)}{\left(\frac{\dot{m}}{A_{2}}\right)} = \frac{Ma_{1}}{Ma_{2}} \left[\frac{2 + (\gamma - 1)Ma_{2}^{2}}{2 + (\gamma - 1)Ma_{1}^{2}}\right]^{\frac{1}{2}\frac{\gamma + 1}{\gamma - 1}}$$
(57)

• A função (57) está representada na figura acima

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

49/95

Controlo de caudal

- Para um dado Ma_1 e A_2/A_1 temos dois valores possíveis para Ma_2 , um subsónico e outro supersónico
- A ocurrencia de um caso ou de outro depende da existência ou não de uma garganta entre as secções 1 e 2
- Se não há garganta entre 1 e 2 \Rightarrow solução subsónica em 2 (ver slide 33)
- Se há garganta entre 1 e 2 ⇒ solução é subsónica ou supersónica dependendo da razão de pressões entre a entrada e a saída

- Se não existe solução $Ma_2 \Rightarrow$ a área A_2 é menor que A_1 e o escoamento está bloqueado
- ullet Se especificamos as condições na secção 1 então existe uma secção A_2 mínima para escoar este caudal

990

 $\mathsf{MFI} \; / \; \mathsf{MEAer} \; / \; \mathsf{Escoamento} \; \mathsf{compressível} \; \mathsf{unidimensional} \; \mathsf{estacion\acute{a}rio} \; \mathsf{-} \; 2013/12/06$

51/95

Escoamento isentrópico numa tubeira convergente

Escoamento isentrópico

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressivel} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

53/95

Exemplo

Consideremos o túnel supersónico representado na figura.

A pressão e a temperatura de estagnação do ar no reservatório são $p_0=4 imes10^5\,\mathrm{Pa}$ e $T_0=293\,\mathrm{K}$.

Determine a área da secção de ensaios bem como as propriedades do escoamento p, ρ , T e \dot{m} que ai se verificam.

Considere que o número de Mach nessa secção é Ma=2.4 e a área da garganta a montante é de $A^*=0.12\,\mathrm{m}^2$.

Usando a Eq. (47) obtemos

$$A = A^* \frac{1}{\mathsf{Ma}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}^2 \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} = 0.2884 \, \mathsf{m}^2$$

Exemplo

Assumindo escoamento isentrópico de (30)

$$rac{T_0}{T} = 1 + rac{\gamma - 1}{2} \mathsf{Ma}^2 = 2.152 \Rightarrow T = 136.15 \, \mathsf{K}$$

Usando (31)

$$rac{p_0}{p}=\left(rac{T_0}{T}
ight)^{rac{\gamma}{\gamma-1}}=14.62\Rightarrow p=27360\, ext{Pa}$$

Da equação de estado dos gases perfeitos (1)

$$\rho = \frac{p}{RT} = 0.7 \, kg/m^3$$

Da definição de número de Mach

$$u = c \text{ Ma} = \sqrt{\gamma RT} \text{ Ma} = 561.34 \text{ m/s}$$

logo

$$\dot{m} = \rho u A = 113.34 \,\mathrm{kg/s}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

55/95

Exemplo

Considere um escoamento de ar numa tubeira convergente. As condições de estgnação à entrada são de $p_0=1.0\,\mathrm{MPa}$ e $T_0=333\,\mathrm{K}$ e à saída a pressão estática é de $p_2=591\,\mathrm{kPa}$. A área de saída é de $A_2=0.001\,\mathrm{m}^2$. Calcule o número de Mach à saída e o caudal mássico. Considere o escoamento isentrópico.

Resolução

• Vamos verificar se o escomento está bloqueado na garganta ($Ma_2 = 1$). Para isso basta garantir que a razão entre p_1 e p_0 é maior que a razão entre a pressão crítica p^* e p_0 (ver slide 49 e Eq. (43))

$$\frac{p_2}{p_0} = 0.591 > \frac{p^*}{p_0} = 0.5283$$

Exemplo

• Usando a relação isentrópica (31), podemos obter explicitamente Ma₁

$$1+rac{\gamma-1}{2}\mathsf{Ma}_2^2=\left(rac{ extstyle{p}_0}{ extstyle{p}_2}
ight)^{rac{\gamma-1}{\gamma}}$$

$$\mathsf{Ma}_2 = \sqrt{rac{2}{\gamma - 1} \left[\left(rac{p_0}{p_2}
ight)^{rac{\gamma - 1}{\gamma}} - 1
ight]} = 0.9$$

• Para calcular o caudal basta aplicar a Eq. (41)

$$\dot{m} = A_2 \; rac{p_0}{\sqrt{T_0}} \; \sqrt{rac{\gamma}{R}} {\sf Ma}_2 \left(1 + rac{\gamma - 1}{2} {\sf Ma}_2^2
ight)^{-rac{1}{2} rac{\gamma + 1}{\gamma - 1}} = 2.195 \, {\sf kg/s}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

57/95

Exemplo

• Resolução alternativa. O caudal mássico é dado por

$$\dot{m} =
ho_2 \ u_2 \ A_2 =
ho_2 \ c_2 \ \mathsf{Ma}_2 \ A_2 = rac{p_2}{RT_2} \ \sqrt{\gamma RT_2} \ \mathsf{Ma}_2 \ A_2$$

• Como sabemos p_2 e Ma $_2$ basta calcular a temperatura T_2 usando a relação adiabática (30)

$$T_2 = \frac{T_0}{1 + \frac{\gamma - 1}{2} Ma_2^2} = 286.5 \,\mathrm{K}$$

logo

$$\dot{m}=2.195\,\mathrm{kg/s}$$

Exemplo (ver [2])

Um depósito pressurizado descarrega ar para a atmosfera através de uma tubeira convergente-divergente, representada na figura.

O escoamento é crítico na garganta (secção 1) e supersónico à saída (secção 2). Pretende-se:

- a) a pressão do depósito
- b) a temperatura do ar à saída

Dados:

$$\begin{array}{l} A_1 = 5 \times 10^{-3} \ m^2 \\ A_2 = 10 \times 10^{-3} \ m^2 \end{array}$$

temperatura no depósito: 293 K

$$p_2 = p_{\rm atm} = 10^5 \ {\rm Pa}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

59/95

Exemplo (ver [2])

 Como referido no enunciado, o escoamento é crítico em 1. Com a razão de áreas

$$\frac{A_2}{A^*} = \frac{A_2}{A_1} = 2$$

podemos calcular Ma₂ usando a aproximação (48)

$$\mathsf{Ma}_2 = 1 + 1.2 \left(rac{A_2}{A^*} - 1
ight)^{0.5} = 2.2$$

Notar que existe também um escoamento subsónico para a mesma razão de áreas.

Exemplo (ver [2])

• Como sabemos Ma_2 e p_2 podemos usar (31) para calcular

$$p_0=p\left(1+rac{\gamma-1}{2}\mathsf{Ma}^2
ight)^{rac{\gamma}{\gamma-1}}=1.065 imes10^6\,\mathsf{Pa}$$

• Sabendo a temperatura de estagnação T_0 e Ma_2 podemos calcular com $\binom{30}{}$

$$T = rac{T_0}{1 + rac{\gamma - 1}{2} \mathsf{Ma}^2} = 149.1 \, \mathsf{K} = -124^\circ \, \mathsf{C}!$$

200

 $\mathsf{MFI} \; / \; \mathsf{MEAer} \; / \; \mathsf{Escoamento} \; \mathsf{compressível} \; \mathsf{unidimensional} \; \mathsf{estacion\acute{a}rio} \; \mathsf{-} \; 2013/12/06$

61/95

Onda de choque normal num gás perfeito

- $\Delta x \simeq 0.2 \times 10^{-6}$ m $\simeq 0.2\,\mu m$ (3 a 4 vezes o percurso livre médio das moléculas do fluido)
- Como $\Delta x \rightarrow 0 \Rightarrow A_1 = A_2$

Conservação da energia

$$h_0 = h_1 + \frac{1}{2}u_2^2 = h_2 + \frac{1}{2}u_2^2$$

ou

$$T_0 = T_{02} = T_{01}$$

- Todas as expressões para escoamento adiabático se aplicam na onda de choque normal
- Os estados 1 e 2 tem a mesma T^* , c^* e c_0
- ullet Usando as relações adiabáticas entre ${\cal T}$ e ${\cal T}_0$

$$\frac{T_2}{T_1} = \frac{T_0/T_1}{T_0/T_2} = \frac{2 + (\gamma - 1)Ma_1^2}{2 + (\gamma - 1)Ma_2^2}$$
 (57)

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

63/95

Onda de choque normal num gás perfeito

• Combinando a Eq. de estado e a equação da Eq. da continuidade com $A_1=A_2$

$$\frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{\rho_1}{\rho_2} = \frac{p_2}{p_1} \frac{u_2}{u_1}$$

Usando a definição de Ma

$$\frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{Ma_2}{Ma_1} \frac{c_2}{c_1} = \frac{p_2}{p_1} \frac{Ma_2}{Ma_1} \sqrt{\frac{T_2}{T_1}}$$

Simplificando

$$\frac{p_2}{p_1} = \frac{\mathsf{Ma}_1}{\mathsf{Ma}_2} \sqrt{\frac{T_1}{T_2}}$$

• Utilizando a Eq. (57) resulta

$$\frac{p_2}{p_1} = \frac{Ma_1}{Ma_2} \sqrt{\frac{2 + (\gamma - 1)Ma_1^2}{2 + (\gamma - 1)Ma_2^2}}$$
 (58)

• Conservação da quantidade de movimento

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \tag{59}$$

sabendo que

$$\rho u^2 = \rho \frac{u^2}{a^2} \gamma RT = \gamma \rho \mathsf{Ma}^2$$

logo

$$p_1 + \gamma p_1 \mathsf{Ma}_1^2 = p_2 + \gamma p_2 \mathsf{Ma}_2^2$$

ou

$$\frac{p_2}{p_1} = \frac{1 + \gamma M a_1^2}{1 + \gamma M a_2^2} \tag{60}$$

200

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

65/95

Onda de choque normal num gás perfeito

Combinando a Eq. (58) com a Eq. (60)

$$\frac{\mathsf{Ma}_1\sqrt{2+(\gamma-1)\mathsf{Ma}_1^2}}{1+\gamma\mathsf{Ma}_1^2} = \frac{\mathsf{Ma}_2\sqrt{2+(\gamma-1)\mathsf{Ma}_2^2}}{1+\gamma\mathsf{Ma}_2^2} \tag{61}$$

Resolvendo a Eq. (61) em ordem a Ma₂ obtemos duas soluções

$$Ma_2 = Ma_1$$

$$Ma_2^2 = \frac{(\gamma - 1)Ma_1^2 + 2}{2\gamma Ma_1^2 - (\gamma - 1)}$$
(62)

- A primeira solução expressa que não houve onda de choque (estado 1 = estado 2)
- A segunda mostra que numa onda de choque existe uma relação discontinua entre o estado 1 e o estado 2

• Substituindo a Eq. (62) na Eq. (60)

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} Ma_1^2 - \frac{\gamma - 1}{\gamma + 1}$$
 (63)

Substituindo a Eq. (62) na Eq. (57)

$$\frac{T_2}{T_1} = \left[2 + (\gamma - 1)\mathsf{Ma}_1^2\right] \frac{2\gamma \mathsf{Ma}_1^2 - (\gamma - 1)}{(\gamma + 1)^2 \mathsf{Ma}_1^2} \tag{64}$$

• Usando (1), em termos de massas volúmicas temos

$$\frac{\rho_2}{\rho_1} = \frac{p_2}{p_1} \frac{T_1}{T_2} = \frac{(\gamma + 1) Ma_1^2}{(\gamma - 1) Ma_1^2 + 2}$$
(65)

90 Q

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

67/95

Onda de choque normal num gás perfeito

• Conservação da quantidade de movimento

$$p_1 - p_2 = \rho_2 u_2^2 - \rho_1 u_1^2 = \rho_1 u_1 (u_2 - u_1)$$
(66)

Conservação da energia

$$h_0 = h_1 + \frac{1}{2}u_2^2 = h_2 + \frac{1}{2}u_2^2$$

logo

$$h_2 - h_1 = \frac{1}{2} (u_2 - u_1) (u_1 + u_2)$$

• Eliminando u_1 e u_2 (conhecida como Eq. de Rankine-Hugoniot)

$$h_2 - h_1 = \frac{1}{2} \left(\rho_1 - \rho_2 \right) \left(\frac{V_1}{\rho_1 V_1} + \frac{V_2}{\rho_2 V_2} \right) = \frac{1}{2} \left(\rho_1 - \rho_2 \right) \left(\frac{1}{\rho_1} + \frac{1}{\rho_2} \right)$$

 Esta eq. relaciona o estado termodinâmico 1 com o 2 sem utilizar a eq. de estado.

• Usando (1) e (7)

$$h_2 - h_1 = c_p(T_2 - T_1) = \frac{\gamma R}{\gamma - 1} \left(\frac{p_2}{R \rho_2} - \frac{p_1}{R \rho_1} \right)$$

logo

$$\frac{\gamma}{\gamma-1}\left(\frac{p_2}{\rho_2}-\frac{p_1}{\rho_1}\right)=\frac{1}{2}\left(p_1-p_2\right)\left(\frac{1}{\rho_1}+\frac{1}{\rho_2}\right)$$

donde

$$\frac{\rho_2}{\rho_1} = \frac{1 + \beta \frac{p_2}{p_1}}{\beta + \frac{p_2}{p_1}} \tag{67}$$

com

$$\beta = \frac{\gamma + 1}{\gamma - 1}$$

• Comparação com a equação de uma evolução isentrópica

$$\frac{\rho_2}{\rho_1} = \left(\frac{p_2}{p_1}\right)^{\frac{1}{\gamma}} \tag{68}$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

69/95

Onda de choque normal num gás perfeito

Escrevendo a Eq. (13) em termos de massas volúmicas

$$\frac{s_2 - s_1}{c_v} = \ln\left[\left(\frac{p_2}{p_1}\right) \left(\frac{\rho_1}{\rho_2}\right)^{\gamma}\right] \tag{69}$$

• Para $\gamma = 1.4$

$\underline{p_2}$		ρ_2/ρ_1	$\frac{s_2 - s_1}{s_1}$
p_1	Eq. (67)	Isentrópico, Eq. (68)	c_{v}
0,5	0,61540	0,60950	-0,01340
0,9	0,92750	0,92750	-0,00005
1,0	1,00000	1,00000	0,00000
1,1	1,00704	1,00705	0,00004
1,5	1,33333	1,33590	0,00270
2,0	1.62500	1,64070	0,01340

- As ondas de choque para $p_2/p_1 < 2$ são quase isentrópicas
- $p_2/p_1 < 1 \Rightarrow s_2 < s_1 \Rightarrow$ não respeita ${f 2}^a$ Lei da Termodinâmica!
- Numa onda de choque temos sempre $p_2 > p_1$

Relações em termos do número de Mach

• Combinando a Eq. (11) com as Eqs. (63) e (65) resulta

$$\frac{s_{2} - s_{1}}{R} = \frac{\gamma}{\gamma - 1} \ln \left[\frac{2}{(\gamma + 1) \operatorname{Ma}_{1}^{2}} + \frac{\gamma - 1}{\gamma + 1} \right] + \frac{1}{\gamma - 1} \ln \left[\frac{2\gamma}{\gamma + 1} \operatorname{Ma}_{1}^{2} - \frac{\gamma - 1}{\gamma + 1} \right]$$
(70)

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

71/95

Onda de choque normal num gás perfeito

Relações em termos do número de Mach

• Usando a Eq. (56)

$$\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2}$$

Rearranjando, vem

$$\frac{a_1^2}{u_2^2} + \frac{u_1^2}{u_2^2} \frac{\gamma - 1}{2} = \frac{a_2^2}{u_2^2} + \frac{\gamma - 1}{2}$$

$$\frac{u_1^2}{u_2^2} \left(\frac{1}{M_1^2} + \frac{\gamma - 1}{2} \right) = \frac{1}{M_2^2} + \frac{\gamma - 1}{2}$$

• Usando (62) resulta

$$\frac{u_2}{u_1} = \frac{(\gamma - 1)\mathsf{Ma}_1^2 + 2}{(\gamma + 1)\mathsf{Ma}_1^2} = \frac{2}{\gamma + 1} \frac{1}{\mathsf{Ma}_1^2} + \frac{\gamma - 1}{\gamma + 1} \tag{71}$$

Onda de choque normal num gás perfeito

Relação entre as velocidades numa onda de choque

Gráfico da função (71)

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

73/95

Onda de choque normal num gás perfeito

Resumo da variação das propriedades numa onda de choque normal

$$T_{02} = T_{01}$$

$$\frac{T_2}{T_1} = \left[2 + (\gamma - 1) \,\mathsf{Ma}_1^2\right] \, \frac{2\gamma \mathsf{Ma}_1^2 - (\gamma - 1)}{\left(\gamma + 1\right)^2 \,\mathsf{Ma}_1^2} \tag{da Eq. 64}$$

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} Ma_1^2 - \frac{\gamma - 1}{\gamma + 1}$$
 (da Eq. 63)

$$\frac{u_1}{u_2} = \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) \operatorname{Ma}_1^2}{2 + (\gamma - 1) \operatorname{Ma}_1^2}$$
 (das Eqs. 65 e 71)

$$\frac{p_{02}}{p_{01}} = \left[\frac{(\gamma + 1) \operatorname{Ma}_{1}^{2}}{2 + (\gamma - 1) \operatorname{Ma}_{1}^{2}} \right]^{\frac{\gamma}{\gamma - 1}} \left(\frac{\gamma + 1}{2\gamma \operatorname{Ma}_{1}^{2} - (\gamma - 1)} \right)^{\frac{1}{\gamma - 1}}$$
(72)

$$\mathsf{Ma}_2^2 = \frac{(\gamma - 1)\mathsf{Ma}_1^2 + 2}{2\gamma\mathsf{Ma}_1^2 - (\gamma - 1)} \tag{da Eq. 62}$$

$$\frac{A_2^*}{A_1^*} = \frac{Ma_2}{Ma_1} \left[\frac{2 + (\gamma - 1) Ma_1^2}{2 + (\gamma - 1) Ma_2^2} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$
(73)

Onda de choque normal num gás perfeito

990

 $\mathsf{MFI} \; / \; \mathsf{MEAer} \; / \; \mathsf{Escoamento} \; \mathsf{compressível} \; \mathsf{unidimensional} \; \mathsf{estacion\acute{a}rio} \; \mathsf{-} \; 2013/12/06$

75/95

Tabelas de escoamento compressível

Relações isentrópicas com $\gamma=1.4$ (ver, por exemplo, White [4])

Appendix BCompressible-Flow Tables

Table B.1 Isentropic Flow of a Perfect Gas, $\gamma = 1.4$

Ma	p/p_0	$ ho/ ho_0$	T/T_0	A/A*
0.0	1.0	1.0	1.0	∞
0.02	0.9997	0.9998	0.9999	28.9421
0.04	0.9989	0.9992	0.9997	14.4815
.06	0.9975	0.9982	0.9993	9.6659
0.08	0.9955	0.9968	0.9987	7.2616
0.1	0.9930	0.9950	0.9980	5.8218
0.12	0.9900	0.9928	0.9971	4.8643
0.14	0.9864	0.9903	0.9961	4.1824
0.16	0.9823	0.9873	0.9949	3.6727
0.18	0.9776	0.9840	0.9936	3.2779
0.2	0.9725	0.9803	0.9921	2.9635
0.22	0.9668	0.9762	0.9904	2.7076
0.24	0.9607	0.9718	0.9886	2.4956
0.26	0.9541	0.9670	0.9867	2.3173
0.28	0.9470	0.9619	0.9846	2.1656
0.3	0.9395	0.9564	0.9823	2.0351

Tabelas de escoamento compressível

Relações para onda de choque normal com $\gamma=1.4$ (ver, por exemplo, White [4])

Appendix B Compressible-Flow Tables

Table B.2 Normal-Shock Relations for a Perfect Gas, $\gamma = 1.4$

Ma _{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{02}/p_{01}	A_{2}^{*}/A_{1}^{*}
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.02	0.9805	1.0471	1.0334	1.0132	1.0000	1.0000
1.04	0.9620	1.0952	1.0671	1.0263	0.9999	1.0001
1.06	0.9444	1.1442	1.1009	1.0393	0.9998	1.0002
1.08	0.9277	1.1941	1.1349	1.0522	0.9994	1.0006
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	1.0011
1.12	0.8966	1.2968	1.2034	1.0776	0.9982	1.0018
1.14	0.8820	1.3495	1.2378	1.0903	0.9973	1.0027
1.16	0.8682	1.4032	1.2723	1.1029	0.9961	1.0040
1.18	0.8549	1.4578	1.3069	1.1154	0.9946	1.0055
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	1.0073
1.22	0.8300	1.5698	1.3764	1.1405	0.9907	1.0094
1.24	0.8183	1.6272	1.4112	1.1531	0.9884	1.0118

9 Q Q

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

77/95

Exemplo

Ar entra numa tubeira convergente-divergente com uma pressão de estagnação de 1200 kPa. Observa-se que existe uma onda de choque na zona divergente onde o número de Mach é de $\mathrm{Ma}_1=2$.

- 1. Determine a razão de áreas entre a secção 1 e a secção da garganta.
- 2. Se a razão de áreas entre a secção 3 e a garganta for 4, calcule o número de Mach e a pressão estática à saída.

Resolução

- Omo ${\sf Ma}_2>1$ sabemos que na garganta temos escoamento bloqueado, donde ${\sf A}_g={\sf A}_1^*$
- Da Eq. (47)

$$\frac{\textit{A}_{1}}{\textit{A}_{1}^{*}} = \frac{1}{\mathsf{Ma}_{1}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \mathsf{Ma}_{1}^{2} \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} = 1.6875$$

Usando a tabela de escoamento isentrópico

Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *
1.98	0.1318	0.2352	0.5605	1.6597
2.0	0.1278	0.2300	0.5556	1.6875
2.02	0.1239	0.2250	0.5506	1 7160

990

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

79/95

Exemplo

Usando a tabela das ondas de choque normais

Ma_{n1}	Ma _{n2}	p_2/p_1	$V_1/V_2= ho_2/ ho_1$	T_2/T_1	p_{02}/p_{01}	A*/A*
1.98	0.5808	4.4071	2.6369	1.6713	0.7302	1.3695
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	1.3872
2.02	0.5740	4.5938	2.6962	1.7038	0.7115	1.4054

ficamos a saber Ma $_2=0.5774$, $p_{02}/p_{01}=0.7209$ e $A_2^*/A_1^*=1.3872$

• Pressão de saída $(p_{03}=p_{02})$

$$p_3 = \frac{p_3}{p_{02}} \frac{p_{02}}{p_{01}} p_{01} \tag{74}$$

precisamos de saber p_3/p_{03}

Da razão de áreas

$$\frac{A_3}{A_2^*} = \frac{A_3}{A_1^*} \frac{A_1^*}{A_2^*} = 4 \times \frac{1}{1.3872} = 2.8835$$

• Com a razão de área A_3/A_2^* podemos determinar Ma $_3$ e p_{02}/p_3 das tabelas isentrópicas

Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *
0.18	0.9776	0.9840	0.9936	3.2779
0.2	0.9725	0.9803	0.9921	2.9635
0.22	0.9668	0.9762	0.9904	2.7076
0.24	0.9607	0.9718	0.9886	2.4956

Obviamente depois de uma onda de choque escolhemos a solução subsónica (ver slide 39)

• Interpolando o número de Mach, seja

$$\alpha = \frac{2.8835 - 2.9635}{2.7076 - 2.9635} = 0.313$$

logo

$$Ma_3 = 0.2 (1 - \alpha) + 0.22 \alpha = 0.206$$

990

 $\mathsf{MFI} \; / \; \mathsf{MEAer} \; / \; \mathsf{Escoamento} \; \mathsf{compressível} \; \mathsf{unidimensional} \; \mathsf{estacion\acute{a}rio} \; \mathsf{-} \; 2013/12/06$

81/95

Exemplo

• Do mesmo modo, interpolando a razão de pressões

$$\frac{p_3}{p_{02}} = 0.9725 (1 - \alpha) + 0.9668 \alpha = 0.9707$$

• Substituindo em (74)

$$p_3 = 0.9707 \times 0.7209 \times 1200 = 839.7 \, \mathrm{kPa}$$

Considere um tubo de Pitot num escoamento supersónico. Métodos ópticos de observação do escoamento mostram que se forma uma onda de choque à frente da tomada de pressão total de tubo.

Mostre que, nestas circunstâncias, o número de Mach, Ma_1 , do escoamento está relacionado com a pressão estática do escoamento, antes da onda de choque, p_1 , e com a pressão total registada pelo tubo de Pitot, p_{02} , através da seguinte expressão (Eq. de Rayleigh do tubo de Pitot)

$$\frac{p_{02}}{p_1} = \frac{\left(\frac{\gamma+1}{2}\mathsf{Ma}_1^2\right)^{\frac{\gamma}{\gamma-1}}}{\left[\frac{2\gamma\,\mathsf{Ma}_1^2-(\gamma-1)}{\gamma+1}\right]^{\frac{1}{\gamma-1}}}$$

NOTA: Esta expressão mostra que para calcular a velocidade do avião, em escoamento supersónico, é necessário determinar Ma_1 iterativamente e, para além disso, também é preciso medir a temperatura T_1 para calcular a velocidade.

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

83/95

Exemplo

Resolução

- Sabemos que $p_3 = p_{02}$
- $\frac{p_{01}}{p_1} = \left(1 + \frac{\gamma 1}{2} \mathsf{Ma}_1^2\right)^{\frac{\gamma}{\gamma 1}}$ Isentrópico entre 1-2
- $\bullet \ \, \frac{p_{02}}{p_{01}} = \left[\frac{\left(\gamma+1\right)\mathsf{Ma}_1^2}{2+\left(\gamma-1\right)\mathsf{Ma}_1^2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma\mathsf{Ma}_1^2-\left(\gamma-1\right)}\right]^{\frac{1}{\gamma-1}} \quad \, \mathsf{Onda\ de\ choque}$
- $\bullet \ \, \frac{p_{02}}{p_1} = \left[\frac{(\gamma+1) \, \mathsf{Ma}_1^2}{2 + (\gamma-1) \, \mathsf{Ma}_1^2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma \, \mathsf{Ma}_1^2 (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \left[\frac{2 + (\gamma-1) \, \mathsf{Ma}_1^2}{2} \right]^{\frac{\gamma}{\gamma-1}}$
- Após manipulação algébrica obtem-se o resultado pretendido.

Posição da onda de choque num tubeira convergente/divergente

 $\mathsf{MFI} \ / \ \mathsf{MEAer} \ / \ \mathsf{Escoamento} \ \mathsf{compressível} \ \mathsf{unidimensional} \ \mathsf{estacion\acute{a}rio} \ \mathsf{-} \ \mathsf{2013}/\mathsf{12}/\mathsf{06}$

✓) Q (~85/95

Posição da onda de choque num tubeira convergente/divergente

- ullet A posição da onda de choque é aquele que garanta que a pressão de saída resultante é a imposta $p_{\rm e}$
- ullet O método de cálculo consiste em iterar a área $A_s=A_d$ tal que à saída resulte p_e

Posição da onda de choque num tubeira convergente/divergente

Algoritmo de cálculo da posição da onda de choque num tubeira convergente/divergente

- 1. Com os dados do problema calcular $r_{0s}^e=rac{p_e}{p_{0s}}$
- 2. **Estimar** A_s , por tentativa e erro, e calcular $\frac{A_s}{A_s^*}$ **NOTA**: $\operatorname{Ma}_t = 1 \Rightarrow A_s^* = A_t$
- 3. $\operatorname{Ma}_s = \operatorname{Ma}_s \left(\frac{A_s}{A_s^*} \right)$ sendo $\frac{A_s}{A_s^*} = \frac{1}{\operatorname{Ma}_s} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma + 1}{2} \operatorname{Ma}_s^2 \right) \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma 1}}$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

87/95

Posição da onda de choque num tubeira convergente/divergente

4.
$$Ma_d = \sqrt{\frac{(\gamma - 1)Ma_s^2 + 2}{2\gamma Ma_s^2 - (\gamma - 1)}}$$

$$\frac{p_{0d}}{p_{0s}} = \left[\frac{\left(\gamma+1\right) \mathsf{Ma}_s^2}{2+\left(\gamma-1\right) \mathsf{Ma}_s^2}\right]^{\frac{\gamma}{\gamma-1}} \left(\frac{2\gamma}{\gamma+1} \mathsf{Ma}_s^2 - \frac{\gamma-1}{\gamma+1}\right)^{-\frac{1}{\gamma-1}}$$

$$\frac{\textit{A}_{\textit{d}}^*}{\textit{A}_{\textit{s}}^*} = \frac{\textit{Ma}_{\textit{d}}}{\textit{Ma}_{\textit{s}}} \left[\frac{2 + (\gamma - 1) \, \textit{Ma}_{\textit{s}}^2}{2 + (\gamma - 1) \, \textit{Ma}_{\textit{d}}^2} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$

5.
$$\frac{A_e}{A_d^*} = \frac{A_e}{A_s} \frac{A_s}{A_s^*} \left(\frac{A_d^*}{A_s^*}\right)^{-1}$$
 NOTA: $A_s = A_d$

Posição da onda de choque num tubeira convergente/divergente

$$\text{6. } \mathsf{Ma_e} = \mathsf{Ma_e} \bigg(\frac{A_e}{A_d^*} \bigg) \quad \mathsf{sendo} \quad \frac{A_e}{A_d^*} = \frac{1}{\mathsf{Ma_e}} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma+1}{2} \mathsf{Ma_e}^2 \right) \right]^{\frac{1}{2} \frac{\gamma+1}{\gamma-1}}$$

$$rac{p_{0d}}{p_e} = \left(1 + rac{\gamma - 1}{2} \mathsf{Ma}_e^2
ight)^{rac{\gamma}{\gamma - 1}}$$

7.
$$\frac{p_e}{p_{0s}} = \left(\frac{p_{0d}}{p_e}\right)^{-1} \frac{p_{0d}}{p_{0s}}$$

8. Se $\frac{p_e}{p_{0s}} \approx r_{0s}^e$ parar, de outro modo, ir para 2.

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

89/95

Exemplo

Considere um escoamento de ar numa tubeira convergente/divergente. Na secção de entrada da tubeira, i, temos $\mathrm{Ma}_i=0.50$, $p_i=280\,\mathrm{kPa}$ e $T_i=10^\circ$ C. A área da garganta é de $A_t=6.5\times10^{-4}\,\mathrm{m^2}$ a área na secção de saída, e, é de $A_e=4A_t$. Se a pressão de saída é de $p_e=170\,\mathrm{kPa}$, determine Ma_e , T_e e a área no ponto onde ocorre a onda de choque normal.

Resolução

Usando o algoritmo apresentado no slide 83 passo a passo resulta:

1. Com os dados do problema calcular $r_{0s}^e=rac{p_e}{p_{0s}}$

Seja s e d as secções imediatamente a montante e jusante da onda de choque, ver Fig. do slide 81. As condições isentrópicas a montante da onda de choque são

$$rac{T_{0s}}{T_i}=1+rac{\gamma-1}{2}\mathsf{Ma}_i^2=1.050$$

$$\frac{p_{0s}}{p_i} = \left(\frac{T_{0s}}{T_i}\right)^{\frac{\gamma}{\gamma-1}} = 1.186$$

logo

$$T_{0s} = \left(\frac{T_{0s}}{T_i}\right) T_i = 297.2 \,\mathrm{K}$$

$$p_{0s} = \left(\frac{p_{0s}}{p_i}\right)p_i = 332.1\,\mathrm{kPa}$$

vindo

$$r_{0s}^e = \frac{p_e}{p_{0s}} = 0.512$$

2. Estimar A_s , por tentativa e erro, e calcular $\frac{A_s}{A_s^*}$

Vamos considerar como primeira aproximação

$$A_s = 0.00159 \, \mathrm{m}^2 \Rightarrow A_s/A_s^* = A_s/A_t = 2.45$$

990

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

91/95

Exemplo

$$\mathbf{3.} \ \mathsf{Ma}_s = \mathsf{Ma}_s \left(\frac{A_s}{A_s^*} \right) \ \ \mathsf{sendo} \ \ \frac{A_s}{A_s^*} = \frac{1}{\mathsf{Ma}_s} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma+1}{2} \mathsf{Ma}_s^2 \right) \right]^{\frac{1}{2} \frac{\gamma+1}{\gamma-1}}$$

Usando a tabela de relações isentrópicas

Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *
2.42	0.0663	0.1439	0.4606	2.4479
2 44	0.0643	0.1408	0.4565	2 4936

considerando que 2.45 ≈ 2.4479 obtemos $\text{Ma}_{\text{s}} = 2.42$

4.
$$Ma_d = \sqrt{\frac{(\gamma - 1)Ma_s^2 + 2}{2\gamma Ma_s^2 - (\gamma - 1)}}$$

$$\frac{p_{0d}}{p_{0s}} = \left[\frac{\left(\gamma+1\right) \mathsf{Ma}_s^2}{2+\left(\gamma-1\right) \mathsf{Ma}_s^2}\right]^{\frac{\gamma}{\gamma-1}} \left(\frac{2\gamma}{\gamma+1} \mathsf{Ma}_s^2 - \frac{\gamma-1}{\gamma+1}\right)^{-\frac{1}{\gamma-1}}$$

$$\frac{A_s^*}{A_d^*} = \frac{\mathsf{Ma}_s}{\mathsf{Ma}_d} \left[\frac{2 + (\gamma - 1) \, \mathsf{Ma}_d^2}{2 + (\gamma - 1) \, \mathsf{Ma}_s^2} \right]^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}$$

Usando a tabela de relações de onda de choque normal

Ma_{n1}	Ma_{n2}	p_2/p_1	$V_1/V_2= ho_2/ ho_1$	T_2/T_1	p_{02}/p_{01}	A_{2}^{*}/A_{1}^{*}
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	1.8514
2.42	0.5210	6.6658	3.2367	2.0595	0.5317	1.8806
2.44	0.5189	6.7792	3.2612	2.0788	0.5234	1.9105

donde Ma $_d=0.5210$, $p_{0d}/p_{0s}=0.5317$ e $A_d^*/A_s^*=1.8806$

200

MFI / MEAer / Escoamento compressível unidimensional estacionário - 2013/12/06

93/95

Exemplo

5.
$$\frac{A_e}{A_d^*} = \frac{A_e}{A_s} \frac{A_s}{A_s^*} \left(\frac{A_d^*}{A_s^*}\right)^{-1} = \frac{4 \times 6.5 \times 10^{-4}}{0.00159} \times 2.45 \times (1.8806)^{-1} = 2.13$$

$$\mathsf{6.} \ \mathsf{Ma}_e = \mathsf{Ma}_e \bigg(\frac{A_e}{A_d^*} \bigg) \ \ \mathsf{sendo} \ \ \frac{A_e}{A_d^*} = \frac{1}{\mathsf{Ma}_e} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma+1}{2} \mathsf{Ma}_e^2 \right) \right]^{\frac{1}{2} \frac{\gamma+1}{\gamma-1}}$$

$$rac{ extstyle p_{0d}}{ extstyle p_e} = \left(1 + rac{\gamma - 1}{2} extstyle \mathsf{Ma}_e^2
ight)^{rac{\gamma}{\gamma - 1}}$$

Usando a tabela de relações isentrópicas, lembrando que estamos a jusante da onda de choque \Rightarrow Ma $_e < 1$,

Ma	p/p_0	$ ho/ ho_0$	T/T_0	<i>A</i> / <i>A</i> *
0.26	0.9541	0.9670	0.9867	2.3173
0.28	0.9470	0.9619	0.9846	2.1656
0.3	0.9395	0.9564	0.9823	2.0351
0.32	0.9315	0.9506	0.9799	1.9219

donde, por interpolação linear da tabela $\mathrm{Ma}_e=0.285$ e $p_e/p_{0d}=0.945$.

7.
$$\frac{p_e}{p_{0s}} = \left(\frac{p_{0d}}{p_e}\right)^{-1} \frac{p_{0d}}{p_{0s}} = 0.945 \times 0.5317 = 0.502$$

- 8. Como $\frac{p_e}{p_{0s}} < r_{0s}^e = 0.512$ poderiamos fazer outra iteração, indo para 2., com uma área A_s menor para chegarmos à saída da tubeira com uma pressão p_e maior.
- 9. Com mais duas iterações chegamos ao resultado final de $A_s=0.00156\,{\rm m}^2$, Ma $_e=0.279$ e $T_e=292.5\,{\rm K}.$