

Understanding shapes-III special types of quadrilaterals Ex 17.2 Q11 **Answer:**

(i) Yes

In △BCO and △DCO:

OC = OC (common)

BC = DC (all sides of a rhombus are equal)

BO = OD (diagonal s of a rhomus bisect each other)

By SSS congruence:

 $\triangle BCO \cong \triangle DCO$

(ii) Yes

By c.p.c.t:

 $\angle BCO = \angle DCO$

Understanding shapes-III special types of quadrilaterals Ex 17.2 Q12 **Answer:**

In \triangle AED and \triangle DEC:

AE = EC (diagonals bisect each other)

AD = DC (sides are equal)

DE = DE (common)

By SSS congruence:

 $\triangle AED \cong \triangle CED$

 $\angle ADE = \angle CDE (c.p.c.t)$

Similarly, we can prove \triangle AEB and \triangle BEC, \triangle BEC and \triangle DEC, \triangle AED and \triangle AEB are congruent to each other.

Hence, diagonal of a rhombus bisects the angle through which it passes.

Understanding shapes-III special types of quadrilaterals Ex 17.2 Q13 **Answer:**

We know that the diagonals of a rhombus bisect each other at right angles.

$$\therefore BO = \frac{1}{2}BD = \left(\frac{1}{2} \times 16\right) cm$$

 $=8 \, \mathrm{cm}$

AB = 10 cm and $\angle AOB = 90^{\circ}$

From right $\triangle OAB$:

******* END *******