Decentralized Algorithms for Generalized Nash Equilibrium Seeking in Peer-to-peer Electricity Markets

Giuseppe Belgioioso

December 2, 2019

1 Problem statement

Consider the same setup of the ECC 2020 paper.

2 Algorithms

2.1 Semi-decentralized

The algorithm presented in this section corresponds to [1, Alg. 1] applied on the setup of the ECC 2020 paper.

Consider the following choices for the step-sizes in Algorithm 1.

Assumption 1 (Step size selection) For all $i \in \mathcal{N}$, set $A_i = \text{blkdiag}(A_{i,1}, \ldots, A_{i,H})$, where $A_{i,h} = \text{diag}\left(\alpha_{i,h}^{\text{dg}}, \alpha_{i,h}^{\text{st}}, \alpha_{i,h}^{\text{mg}}, \{\alpha_{(i,j),h}^{\text{tr}}\}_{j \in \mathcal{N}_i}\right)$, for all $h \in \mathcal{H}$, with $\alpha_{i,h}^{\text{dg}}, \alpha_{i,h}^{\text{st}} > 0$ and $\alpha_{(i,j),h}^{\text{tr}} > |\mathcal{N}_i|$, for all $j \in \mathcal{N}_i$; $\beta_{(i,j)} = \beta < \frac{1}{2}$ for all $j \in \mathcal{N}_i$; $\gamma < N$

Algorithm 1 Semi-decentralized GWE seeking for P2P Energy Markets

Initialization: For all $i \in \mathcal{N}$, set locally:

- (a) Initial conditions: $u_i(0) \in \mathcal{U}_i$, $\mu_{(i,j)}(0) = \mathbf{0}$ for all $j \in \mathcal{N}_i$, and $\lambda(0) \in \mathbb{R}^{2H}_{\geq 0}$.
- (b) Step-sizes: A_i , $\{\beta_{ij}\}_{j\in\mathcal{N}_i}$, γ as in Assumption 1.

Iterate until convergence:

Local. For each agent $i \in \mathcal{N}$:

(1) Strategy update:

$$a_{i}(k) = A_{i}^{-1} \left(\left(\begin{bmatrix} 1\\-1 \end{bmatrix} \otimes S_{i}^{\text{mg}} \right)^{\top} \lambda(k) + \sum_{j \in \mathcal{N}_{i}} \left(S_{(i,j)}^{\text{tr}} \right)^{\top} \mu_{(i,j)}(k) \right)$$

$$u_{i}(k+1) = \begin{cases} \underset{\xi \in \mathbb{R}^{n_{i}}}{\text{argmin}} & J_{i}(\xi, \sigma(k)) + \frac{1}{2} \left\| \xi - u_{i}(k) + a_{i}(k) \right\|_{A_{i}}^{2}$$

$$\text{s.t.} & \xi \in \mathcal{U}_{i}$$

(2) Communication with Neighboring Agents and Central Coordinator (CC):

(a)
$$S^{\text{reg}}u_i(k+1) \longrightarrow \text{CC},$$

(b) $S^{\text{tr}}_{(i,j)}u_i(k+1) \longrightarrow j,$ for all $j \in \mathcal{N}_i$.

(3) Dual variables (reciprocity constraints) update, $\forall j \in \mathcal{N}_i$:

$$b_{(i,j)}(k+1) = S_{(i,j)}^{\text{tr}} u_i(k+1) + S_{(j,i)}^{\text{tr}} u_j(k+1),$$

$$\mu_{(i,j)}(k+1) = \mu_{(i,j)}(k) + \beta_{ij} \left(2b_{(i,j)}(k+1) - b_{(i,j)}(k) \right).$$

Central.

(1) Average strategy update

$$\sigma(k+1) = \frac{1}{N} \sum_{i=1}^{N} S_i^{\text{mg}} u_i(k+1)$$

(2) Dual variable (grid constraints) update:

$$\lambda(k+1) = \operatorname{proj}_{\mathbb{R}^{2H}_{\geq 0}} \left(\lambda(k) + \gamma \left(\left[\begin{smallmatrix} 1 \\ -1 \end{smallmatrix} \right] \otimes \left(2\sigma(k+1) - \sigma(k) \right) - \left[\begin{smallmatrix} \overline{p}^{\operatorname{mg}} \mathbf{1}_H \\ -\underline{p}^{\operatorname{mg}} N \mathbf{1}_H \end{smallmatrix} \right] \right) \right).$$

(3) Broadcast to all the prosumers

$$\sigma(k+1), \lambda(k+1) \longrightarrow \text{Prosumers}$$

2

2.2 Fully-distributed

The algorithm presented in this section is a variation of [2, Alg. 3] for the setup considered in the ECC 2020 paper.

Consider the following mixing matrix.

Assumption 2 For all $k \in \mathbb{N}$, the matrix $W = [w_{i,j}]$ satisfies the following conditions:

- (i) (Edge utilization) Let $i, j \in \mathcal{I}$, $i \neq j$. If $(i, j) \in \mathcal{E}_k$, $w_{i,j} \geq \epsilon$, for some $\epsilon > 0$; $w_{i,j} = 0$ otherwise;
- (ii) (Positive diagonal) For all $i \in \mathcal{I}$, $w_{i,i} > \epsilon$;

(iii) (Double-stochasticity)
$$W\mathbf{1} = \mathbf{1}, \ \mathbf{1}^{\top}W = \mathbf{1}^{\top}.$$

Assumption 2 is strong but typical for multiagent coordination and optimization [3]. For an undirected graph it can be fulfilled, for example, by using Metropolis weights:

$$w_{i,j} = \begin{cases} (\max\{|\mathcal{N}_i|, |\mathcal{N}_j|\})^{-1} & \text{if } (i,j) \in \mathcal{E}, \\ 0 & \text{if } (i,j) \notin \mathcal{E}, \\ 1 - \sum_{\ell \in \mathcal{N}_i} w_{i,\ell} & \text{if } i = j. \end{cases}$$
 (1)

Consider the following choices for the step-sizes in Algorithm 2.

Assumption 3 (Step size selection) For all $i \in \mathcal{N}$, set $A_i = \text{blkdiag}(A_{i,1}, \ldots, A_{i,H})$, where $A_{i,h} = \text{diag}\left(\alpha_{i,h}^{\text{dg}}, \alpha_{i,h}^{\text{st}}, \alpha_{i,h}^{\text{mg}}, \{\alpha_{(i,j),h}^{\text{tr}}\}_{j \in \mathcal{N}_i}\right)$, for all $h \in \mathcal{H}$, with $\alpha_{i,h}^{\text{dg}}, \alpha_{i,h}^{\text{st}} > 0$, $\alpha_{i,h}^{mg} > q_h^{mg} + 1$ and $\alpha_{(i,j),h}^{\text{tr}} > |\mathcal{N}_i|$, for all $j \in \mathcal{N}_i$; $\beta_{(i,j)} = \beta < \frac{1}{2}$ for all $j \in \mathcal{N}_i$; $\gamma < 1$.

Assumption 4 (Kransol'skii–Mann step) The sequence $(\delta(k))_{k\in\mathbb{N}}$ satisfies the following conditions:

- (i) (non-increasing) $0 \le \delta(k)^{k+1} \le \delta(k) \le 1$, for all $k \ge 0$;
- (ii) (non-summable) $\sum_{k=0}^{\infty} \delta(k) = \infty$;

(iii) (square-summable)
$$\sum_{k=0}^{\infty} \delta(k)^2 < \infty$$
.

Remark 1 (Vanishing KM steps seem not necessary in practice) For the numerical studies, we can use $\delta(k) = 1$, for all $k \in \mathbb{N}$.

Algorithm 2 Fully-Distributed GWE seeking for P2P Energy Markets

Initialization: For all $i \in \mathcal{N}$, set locally:

- (a) Initial conditions: $u_i(-1), u_i(0), \tilde{u}_i(-1) \in \mathcal{U}_i, \mu_{(i,j)}(0) = \mathbf{0}$ for all $j \in \mathcal{N}_i, \lambda_i(0) \in \mathbb{R}^{2H}_{\geq 0}, \sigma_i(0) = x_i(0), z_i(0) = \lambda_i(0), y_i(0) = 2\tilde{u}_i(-1) u_i(-1) \frac{1}{N} \begin{bmatrix} \overline{p}^{\text{mg}} \mathbf{1}_H \\ -\overline{p}^{\text{mg}} \mathbf{N} \mathbf{1}_H \end{bmatrix}.$
- (b) Step-sizes: A_i , $\{\beta_{ij}\}_{j\in\mathcal{N}_i}$ and γ_i as in Assumption 3; $\{\delta_i(k)\}_{k\in\mathbb{N}}$ as in Assumption 4.

Iterate until convergence:

Local. For each agent $i \in \mathcal{N}$:

(1) Communication with neighboring agents

$$\{S^{\text{mg}}u_i(k+1), \, \sigma_i(k), \, y_i(k), \, z_i(k)\} \longrightarrow j, \text{ for all } j \in \mathcal{N}_i,$$

(2) Distributed averaging

$$\hat{\sigma}_i(k) = \sum_{j=1}^N w_{i,j} \sigma_j(k), \quad \hat{y}_i(k) = \sum_{j=1}^N w_{i,j} y_j(k), \quad \hat{z}_i(k) = \sum_{j=1}^N w_{i,j} z_j(k),$$

(3) Strategy update

$$d_{i}(k) = A_{i}^{-1} \left(\left(\begin{bmatrix} 1\\-1 \end{bmatrix} \otimes S_{i}^{\text{mg}} \right)^{\top} \hat{z}_{i}(k) + \sum_{j \in \mathcal{N}_{i}} \left(S_{(i,j)}^{\text{tr}} \right)^{\top} \mu_{(i,j)}(k) \right)$$

$$\tilde{u}_{i}(k) = \begin{cases} \underset{\xi \in \mathbb{R}^{n_{i}}}{\text{argmin}} & J_{i}(\xi, \hat{\sigma}_{i}(k)) + \frac{1}{2} \left\| \xi - u_{i}(k) + d_{i}(k) \right\|_{A_{i}}^{2} \\ \text{s.t.} & \xi \in \mathcal{U}_{i} \end{cases}$$

(4) Dual variables (reciprocity constraints) update, $\forall j \in \mathcal{N}_i$:

$$\tilde{\mu}_{(i,j)}(k) = \mu_{(i,j)}(k) + \beta_{ij} \left(2S_{(i,j)}^{\text{tr}} \tilde{u}_i(k) - S_{(i,j)}^{\text{tr}} u_i(k) + 2S_{(j,i)}^{\text{tr}} \tilde{u}_j(k) - S_{(j,i)}^{\text{tr}} u_j(k) \right).$$

(5) Dynamic tracking of the estimate y_i :

$$y_i(k+1) = \hat{y}_i(k) + (2\tilde{u}_i(k) - u_i(k)) - (2\tilde{u}_i(k-1) - u_i(k-1)),$$

(6) Dual variable (grid constraints) update:

$$\tilde{\lambda}_i(k) = \operatorname{proj}_{\mathbb{R}^{2H}_{>0}} \left(\lambda_i(k) + \gamma_i \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \otimes y_i(k+1) - \lambda_i(k) + \hat{z}_i(k) \right) \right),$$

(7) Krasnosel'skii-Mann process

$$u_{i}(k+1) = u_{i}(k) + \delta_{i}(k) (\tilde{u}_{i}(k) - u_{i}(k)),$$

$$\mu_{(i,j)}(k+1) = \mu_{(i,j)}(k) + \delta_{i}(k) (\tilde{\mu}_{(i,j)}(k) - \mu_{(i,j)}(k)), \quad \forall j \in \mathcal{N}_{i},$$

$$\lambda_{i}(k+1) = \lambda_{i}(k) + \delta_{i}(k) (\tilde{\lambda}(k) - \lambda_{i}(k)),$$

(8) Dynamic tracking of the estimates σ_i and z_i :

$$\sigma_i(k+1) = \hat{\sigma}(k) + u_i(k+1) - u_i(k),$$

 $z_i(k+1) = \hat{z}_i(k) + \lambda_i(k+1) - \lambda_i(k)$

References

- [1] G. Belgioioso and S. Grammatico, "Projected-gradient algorithms for generalized equilibrium seeking in aggregative games are preconditioned forward-backward methods," in 2018 European Control Conference (ECC). IEEE, 2018, pp. 2188–2193.
- [2] G. Belgioioso, A. Nedić, and S. Grammatico, "Distributed generalized Nash equilibrium seeking in aggregative games on time-varying networks, *Available at:* https://arxiv.org/abs/1907.00191," 2019.
- [3] K. Margellos, A. Falsone, S. Garatti, and M. Prandini, "Distributed constrained optimization and consensus in uncertain networks via proximal minimization," *IEEE Transactions on Automatic Control*, vol. 63, no. 5, pp. 1372–1387, 2018.