Network Effects: Models and Analysis

Q2: Why are Meta/Alphabet/ Apple valued so high?

1/9/2024

HOME > GOOGL · NASDAQ

Alphabet Inc Class A

Stock Climate lea	ader
US listed security US	S headquartered
PREVIOUS CLOSE	\$135.73
DAY RANGE	\$136.26 - \$139.01
YEAR RANGE	\$85.83 - \$142.68
MARKET CAP	1.75T USD
AVG VOLUME	25.18M
P/E RATIO	26.61
DIVIDEND YIELD	-

2

TEN 1/9/2024

Financials

TEN 3

HOME > ABNB · NASDAQ

Airbnb Inc

Stock US listed security	
US headquartered	
PREVIOUS CLOSE	\$135.98
DAY RANGE	\$136.61 - \$140.25
YEAR RANGE	\$86.75 - \$154.95
MARKET CAP	89.66B USD
AVG VOLUME	4.32M
P/E RATIO	16.94
DIVIDEND YIELD	L
	1140040

TEN 1/9/2024

Financials

TEN

HOME > INFY · NSE

Infosys Ltd

IN listed security	IN headquartered
PREVIOUS CLOSE	₹1,522.80
DAY RANGE	₹1,536.95 - ₹1,553.00
YEAR RANGE	₹1,185.30 - ₹1,619.75
MARKET CAP	6.41T INF
P/E RATIO	25.90
DIVIDEND YIELD	2.29%
PRIMARY EXCHANGE	NSE

1/9/2024

Financials

HOME > JUSTDIAL . NSE

Just Dial Ltd

Financials

X

Q NYSE: UBER

Snare

X

US listed security

Stock

Apple Inc

\$185.56 ↑42.57% +55.41 1Y

After Hours: \$185.22 (↓0.18%) -0.34

Closed: Jan 8, 7:59:49 PM UTC-5 · USD · NASDAQ · Disclaimer

US headquartered	
PREVIOUS CLOSE	\$181.18
DAY RANGE	\$181.50 - \$185.60
YEAR RANGE	\$128.12 - \$199.62
MARKET CAP	2.89T USD
AVG VOLUME	43.25M
P/E RATIO	30.25
DIVIDEND YIELD	0.52%
PRIMARY EXCHANGE	NASDAQ

TEN 1/9/2024

14

Financials

Network Effects

- Direct: Direct effects of agents consuming the same product
 - Value increases as the consumers or product/ service increase
 - O Telephone was of little value to the first individual to have one
 - However with each additional telephone adopter, this innovation became more valuable to all of its users
- Indirect: value of products increases as the number of, or a variety of,
 the complementary goods or services increases
 - Computers as standalone machines are of little use unless installed with appropriate software
 - Computers and software complement each other and thus create network externality effects
 - Same holds good for Smartphones and Tablets

16

Where does the value come from?

- Exchange
 - Every product or service subject to network effects fosters some kind of exchange
- Staying power
 - O Networks with greater number of users suggest Staying Power
 - Related to switching cost and lock-in
 - Switching costs strengthen the value of network effects as a strategic asset
- Complementary benefits are those products or services that add additional value to the network
 - Products and services that encourage others to offer complementary goods are sometimes referred to as platforms

Complementary and Compatibility

- Some network goods are immediately combinable because of their inherent properties
 - However for many complex products, actual complementarity can be achieved only through the adherence to specific technical compatibility standards
- Providers have the options of making their products fully or partially compatible with components produced by other firms
 - Proprietary designs; refusal to interconnect

188

One-Sided or Two-Sided Markets

- One-Sided Market
 - O Networks derive most of their value from a single class of users
 - Same-Side Exchange Benefits
- Two-Sided Market
 - Markets comprises of two distinct categories of network participants
 - When an increase in the number of users on one side of the market creates a rise in the other-side of the market, then it is referred to as Cross-Side Exchange Benefits

199

Models for Network Externalities

Sarnoff's Law: $V \propto N$ Metcalf's Law: $V \propto N^2$ Reed's Law: $V \propto 2^N$ Widely used: $V \propto N$ Log N

Value of a Network: Broadcasting Networks

- ullet Sarnoff's Law: Value of a network ∞ N
- Value just depends on connecting to receive broadcasts

Value of a Network: Connecting Peers

- Fully Connected Network: No of links: N×(N-1)/2
- If A->B is not the same as B->A♠ then number of potential connections: N×(N-1)=N²-1
- Metcalf's Law: Value ∞ N²
- Holds good for Telecommunication Networks, Email, Unicasting

Value of Networks: Group Forming Networks (GFN)

- Groups in which peers interact
 - O Collaboration value is more important than connectivity value
- In a network of n nodes, the number of subgroups (1,2,3,... member groups) that can be formed (an individual is in the group or not) is in the order of: Reed's Law: Value ∞ 2ⁿ
 - O Subtract the singletons and the empty set $\rightarrow 2^n n 1$
- Examples: Peer-to-peer networks such as Facebook, Group based auction site eBay, Chats, On-line groups, Multicasting

Internet: Network of Networks; value of the Internet much higher compared to broadcast or telephone

networks

233

Harmonic Value of Connections

Strategies for Competing in Markets with Network Effects

- Move Early
- Seed the Market
- Subsidize Adoption
- Expand by refining the Market
- Alliances and Partnerships
- Encourage development of complimentary goods
- Rivals: Be compatible with leading network
- Incumbents: Close off rival access and constantly innovate

Too much Network Effect

- Creates congestion effect
 - Affects Qos -> customers drop out
 - o Free Internet Service, IPO of FaceBook!

Network Effect Promotes Standards

- Sony's Betamax vs. JVC's VHS video format
 - VHS introduced one year later and is technologically inferior
 - Reason for Betamax failure: Less adoption due to stringent licensing rules of Sony
- Sony's Blue Ray vs Toshiba's HD-DVD
 - BlueRay won due to better adoption by product manufacturers
- ITU's H.323 and IETF's Session Initiation Protocol (SIP)
 - SIP easy to implement; lesser code base; better integrated with variants of H.323
 - ITU banded as a controller of technology and an operator and equipment maker lobbyist
- WiMax vs Long Term Evolution (LTE)
 - WiMax is incompatible with other networks though technically superior and had a 4 years early mover advantage
- Open XML of Micrsosoft vs. Open Document Format of IBM/Sun

TEN 1/9/2024

Diffusion Theory: Bass Model

Segmentation of Adopters

Different categories of adopters differ by, for example, social, economic status -- particularly resources, affinity for risk, knowledge, Collateral assets, interest in the product

TEN 1/9/2024

Diffusion Effects

- How do users adopt a product/ service?
- Something intrinsic about the product itself attracts them to use it
 - O Called as the intrinsic factor (p).
 - which is independent of how many other people have adopted it.
- The network effect: either because more adopters change the value of the product itself, or because of the *information-cascade effect*
 - O Referred to this as the *imitation* factor (q)
- Bass model of diffusion
 - \circ The number of adopters at any time t: (n(t))
 - O Depends on p (the intrinsic factor), q (the imitating factor), M (the finite population): and N(t): Cumulative number of adopters until t
 - Ratio of Imitator component and network component

TEN 1/9/2024 30g

Bass Diffusion Model

Bass, F. M. (1969). A new product growth for model consumer durables. *Management science*, 15(5), 215-227.

$$n(t) = \frac{dN(t)}{dt} = \left[p + q\frac{N(t)}{M}\right](M - N(t)),$$

$$n(t) = M \frac{p(p+q)^2 \exp(-(p+q)t)}{(p+q \exp(-(p+q)t))^2}$$

$$N(t) = M \frac{1 - \exp(-(p+q)t)}{1 + \frac{q}{p} \exp(-(p+q)t)}$$

N(t): Cumulative no of users at time t

n(t): no of users at time t

M: Maximum potential number of users

p: Intrinsic factor

q: imitation factor

TEN

Source: Chiang, M. (2012). Networked Life: 20 Questions and Answers. Cambridge University Press.