INVERS MATRIKS DAN SIFAT-SIFAT INVERS MATRIKS

OBJEKTIF:

- 1. Mahasiswa Mampu Mendefinisikan Matriks Invers
- 2. Mahasiswa Mampu Menghitung Matriks Ordo 2 x 2
- 3. Mahasiswa Mampu Menghitung Matriks Ordo 3 x 3
- 4. Mahasiswa Mampu Mengetahui Sifat-Sifat Matriks Invers

1. Menentukan Invers Matriks

Invers matriks A berukuran n x n adalah matriks B berukuran n x n sedemikian hingga,

$$AB = BA = I$$

Pada persamaan diatas, B adalah invers dari A dan dituliskan A^{-1} . Jika matriks persegi A mempunyai invers, maka A dikatakan matriks invertible atau nonsingular. Jika A tidak mempunyai invers, maka A dikatakan matriks singular. Untuk matriks identitas I, matriks I dikatakan invertible karena,

$$|| = |$$

Contoh:

Periksa apakah kedua matriks B =
$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{4} \end{bmatrix}$$
 dan C = $\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$ merupakan invers untuk matriks A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Jawab:

B invers dari A jika hanya jika AB = BA = I; C invers dari A jika hanya jika AC = CA = I. Sehingga,

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{5}{3} & 1 \\ \frac{13}{3} & \frac{5}{2} \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sedangkan,

$$\mathsf{AC} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \mathsf{CA}.$$

Jadi, B bukan merupakan invers dari A, sedangkan C merupakan invers dari A. Sedemikian hingga A^{-1} .= C.

A. Invers Matriks Pada Ordo 2 x 2

suatu matriks diketahui A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Maka rumus invers

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Contoh:

Tentukan invers dari matriks A tersebut, A = $\begin{bmatrix} 6 & 2 \\ 1 & 3 \end{bmatrix}$!

Jawab :

$$A^{-1} = \frac{1}{6.3 - 2.1} \begin{bmatrix} 3 & -2 \\ -1 & 6 \end{bmatrix}$$

$$A^{-1} = \frac{1}{18-2} \begin{bmatrix} 3 & -2 \\ -1 & 6 \end{bmatrix}$$

$$A^{-1} = \frac{1}{16} \begin{bmatrix} 3 & -2 \\ -1 & 6 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{3}{16} & -\frac{2}{16} \\ -\frac{1}{16} & \frac{6}{16} \end{bmatrix}$$
$$\begin{bmatrix} \frac{3}{16} & -\frac{1}{16} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{3}{16} & -\frac{1}{8} \\ -\frac{1}{16} & \frac{3}{8} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0.1875 & -0.125 \\ -0.0625 & 0.375 \end{bmatrix}$$

Contoh Penulisan Pada Scilab

```
Startup execution:
    loading initial environment

--> A = [ 6 2; 1 3]
A =

    6. 2.
    1. 3.

--> inv(A)
    ans =

    0.1875 -0.125
    -0.0625 0.375
```

Gambar 6.1 Contoh Invers Matriks Ordo 2 x 2

B. Invers Matriks Pada Ordo 3 x 3

Cara untuk menentukan nilai invers matriks A dengan ordo 3×3 tidak sama dengan cara menentukan invers matriks dengan ordo 2×2 . Cara menentukan invers matriks ordo 3×3 lebih rumit dari cara

menentukan invers matriks 2×2 . Sebelum menentukan invers matriks ordo 3×3 , perlu dipahami terlebih dahulu mengenai matriks minor, kofaktor, dan adjoin.

a. Matriks Minor

Diketahui sebuah matriks A berordo 3 x 3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Matriks minor M_{ij} adalah matriks yang diperoleh dengan cara menghilangkan baris ke-i dan kolom ke-j dari matriks A sehingga diperoleh matriks minor berordo 2 seperti persamaan di bawah

Matriks M_{ij} dari matriks A

$$\begin{aligned} M_{11} &= \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & M_{21} &= \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & M_{31} &= \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \\ M_{12} &= \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} & M_{22} &= \begin{vmatrix} a_{11} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & M_{32} &= \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} \\ M_{13} &= \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} & M_{23} &= \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} & M_{33} &= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \end{aligned}$$

b. Kofaktor

Kofaktor baris ke-i dan kolom ke-j disimbolkan dengan C_{ij} dapat ditentukan dengan rumus seperti terlihat di bawah.

$$\begin{split} C_{ij} &= (-1)^{i+j} \big| M_{ij} \big| \\ C_{11} &= (-1)^{1+1} |M_{11}| = |M_{11}| \\ C_{23} &= (-1)^{2+3} |M_{23}| = -|M_{23}| \\ C_{12} &= (-1)^{1+2} |M_{12}| = -|M_{12}| \\ C_{13} &= (-1)^{3+1} |M_{31}| = |M_{31}| \\ C_{13} &= (-1)^{1+3} |M_{13}| = |M_{13}| \\ C_{21} &= (-1)^{2+1} |M_{21}| = -|M_{21}| \\ C_{22} &= (-1)^{2+2} |M_{22}| = |M_{22}| \end{split}$$

Kofaktor di atas akan digunakan untuk menentukan adjoin matriks yang akan dicari nilai inversnya.

c. Adjoin

Secara umum, sebuah matriks memiliki matriks adjoin seperti ditunjukkan seperti pada matriks di bawah.

Adj (A) =
$$\begin{pmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nm} \end{pmatrix}$$

Keterangan: C_{ij} adalah **kofaktor** baris ke-i dan kolom ke-j. Sehingga, adjoin dari matriks A dinyatakan seperti terlihat pada persamaan di bawah.

Adj (A) =
$$\begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

d. Invers matriks ordo 3 x 3

Matriks minor, kofaktor, dan adjoin yang telah kita bahas di atas berguna untuk menentukan nilai invers dari suatu matriks dengan ordo matriks di atas 3 atau lebih.

Rumus invers Matriks

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{Adj}(A)$$

Contoh:

Tentukan invers matriks A dibawah ini!

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{bmatrix}$$

Jawab:

1. Langkah pertama mencari determinan

$$|A| = \begin{bmatrix} 3 & -2 & 1 & 3 & 2 \\ 5 & 6 & 2 & 5 & 6 \\ 1 & 0 & -3 & 1 & 0 \end{bmatrix}$$

$$|A| = (3 \times 6 \times (-3)) + (-2 \times 2 \times 1) + (1 \times 5 \times 0) - (-2 \times 5 \times (-3) - (3 \times 2 \times 0) - (1 \times 6 \times 1)$$

$$|A| = (-54) + (-4) + (0) - (30) - (0) - (6)$$

$$|A| = -94$$

2. Langkah kedua menentukan kofaktor

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{bmatrix}$$

$$A_{11} = |M_{11}| = \begin{vmatrix} 6 & 2 \\ 0 & -3 \end{vmatrix} = (-18 - 0) = -18$$

$$A_{12} = -|M_{12}| = -\begin{vmatrix} 5 & 2 \\ 1 & -3 \end{vmatrix} = -(-15 - 2) = -(-17) = 17$$

$$A_{13} = |M_{13}| = \begin{vmatrix} 5 & 6 \\ 1 & 0 \end{vmatrix} = (0 - 6) = -6$$

$$A_{21} = -|M_{21}| = -\begin{vmatrix} -2 & 1 \\ 0 & -3 \end{vmatrix} = -(6-0) = -(6) = -6$$

$$A_{22} = |M_{22}| = \begin{vmatrix} 3 & 1 \\ 1 & -3 \end{vmatrix} = (-9 - 1) = -10$$

$$A_{23} = -|M_{23}| = -\begin{vmatrix} 3 & -2 \\ 1 & 0 \end{vmatrix} = -(0-(-2) = -(0+2) = -(2) = -2$$

$$A_{31} = |M_{31}| = \begin{vmatrix} -2 & 1 \\ 6 & 2 \end{vmatrix} = (-4 - 6) = -10$$

$$A_{32} = -|M_{32}| = -\begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} = -(6-5) = -(1) = -1$$

$$A_{33} = |M_{33}| = \begin{vmatrix} 3 & -2 \\ 5 & 6 \end{vmatrix} = (18 - (-10)) = (18 + 10) = 28$$

$$A = \begin{bmatrix} -18 & 17 & -6 \\ -6 & -10 & -2 \\ -10 & -1 & 28 \end{bmatrix}$$

3. Menentukan Adjoin A

$$A = \begin{bmatrix} -18 & 17 & -6 \\ -6 & -10 & -2 \\ -10 & -1 & 28 \end{bmatrix}$$

Adj A =
$$\begin{bmatrix} -18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28 \end{bmatrix}$$

4. Menentukan Invers matriks A

$$A^{-1} = -\frac{1}{94} \begin{bmatrix} -18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{18}{94} & \frac{6}{94} & \frac{10}{94} \\ -\frac{17}{94} & \frac{10}{94} & \frac{1}{94} \\ \frac{6}{94} & \frac{2}{94} & -\frac{28}{94} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{9}{47} & \frac{3}{47} & \frac{5}{47} \\ -\frac{17}{94} & \frac{5}{47} & \frac{1}{94} \\ \frac{3}{47} & \frac{1}{47} & -\frac{14}{47} \end{bmatrix}$$

Contoh Penulisan Pada Scilab

```
Startup execution:
  loading initial environment
--> A = [3 -2 1;5 6 2; 1 0 -3]
      -2.
   3.
           1.
       6.
   5.
            2.
   1.
       0. -3.
--> inv (A)
 ans =
   0.1914894 0.0638298 0.106383
  -0.1808511 0.106383
                        0.0106383
   0.0638298 0.0212766 -0.2978723
```

Gambar 6.2 Contoh Invers Matriks Ordo 3 x 3

2. Sifat - Sifat Invers Matriks

Jika A, B dan C matriks persegi dengan orde yang sama dimana A x B = I dan C x A = I, maka B = C.

Bukti

$$C = C.I = C.(A.B) = (C.A).B = I.B = B$$

Invers suatu matriks bersifat unik

Bukti

Misal A dan B invers dari A. maka,

$$A.B = I, B.A = I, A.C = I, dan C.A = I.$$

Sehingga B = C. Jika kedua matriks B dan C merupakan Invers A, maka kedua matriks tersebut haruslah sama. Sedemikian hingga, Invers matriks bersifat unik.

Jika A matriks 2 x 2 dengan A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. A dikatakan nonsingular jika hanya jika ad – bc ≠ 0. Sedemikian hingga, invers dari A adalah $A^{-1} = \frac{1}{ad-bc}$ $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$

Sifat - sifat invers matriks

Misal, A dan B matriks persegi dengan A dan B matriks nonsingular, maka

1.
$$(A^{-1})^{-1} = A$$

2.
$$(AB)^{-1} = B^{-1}A^{-1}$$

3.
$$(A_1 A_2 \dots A_n)^{-1} = A_n^{-1} A_{n-1}^{-1} \dots A_2^{-1} A_1$$

4. $(A^T)^{-1} = (A^{-1})^T$

4.
$$(A^T)^{-1} = (A^{-1})^T$$

5.
$$(kA)^{-1} = \left[\frac{1}{k}\right](A^{-1})$$
 Jika skalar $k \neq 0$

6.
$$A^{-n} = (A^{-1})^n$$
.

- 7. Invers dari matriks simetri nonsingular adalah simetri
- 8. Invers dari matriks segitiga atas atau bawah nonsingular juga merupakan matriks segitiga atas atau bawah

Contoh:

Tentukan
$$A^{-2}$$
 jika $A = \begin{bmatrix} 3 & -1 \\ 4 & 2 \end{bmatrix}$

Jawab:

$$A^{-2} = (A^{-1})^2 = \begin{bmatrix} \frac{1}{5} & \frac{1}{10} \\ -\frac{2}{5} & \frac{3}{10} \end{bmatrix}^2 = \begin{bmatrix} \frac{1}{5} & \frac{1}{10} \\ -\frac{2}{5} & \frac{3}{10} \end{bmatrix} \begin{bmatrix} \frac{1}{5} & \frac{1}{10} \\ -\frac{2}{5} & \frac{3}{10} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{20} \\ \frac{1}{5} & \frac{1}{20} \end{bmatrix}$$