mio-sprawozdanie-lab7

April 21, 2024

1 Sprawozdanie z Metod Inteligencji Obliczeniowej

2 Laboratorium 7

- 2.1 Małgorzata Makieła
- 2.1.1 21.04.2024
- 2.2 Zadanie 1.

Dane z pliku 'customers_mall.csv', zawierające dane o rocznym przychodzie oraz punktowej ocenie wydatków klientów, przedstawiłam na dwóch wykresach - na pierwszym z nich został dokonany podział na 4 klastry, a na drugim na 5 klastrów. W obu przypadkach użyłam algorytmu k-means.

```
[]: from sklearn.cluster import KMeans
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     df = pd.read_csv("customers_mall.csv")
     data = df.values
     model = KMeans(n_clusters=4)
     model.fit(data)
     f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,5))
     ax1.scatter(data[:, 0], data[:, 1], c=model.labels_, cmap='plasma')
     ax1.scatter(model.cluster_centers_[:, 0], model.cluster_centers_[:, 1],__
      →marker='x', s=100, c='red')
     ax1.set_xlabel('Annual Income (thousands)')
     ax1.set_ylabel('Spending Score')
     ax1.set_title('4 clusters')
     model = KMeans(n_clusters=5)
     model.fit(data)
     ax2.scatter(data[:, 0], data[:, 1], c=model.labels_, cmap='plasma')
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

[]: Text(0.5, 1.0, '5 clusters')

2.2.1 Wnioski

Algorytm k-means dobrze poradził sobie z podziałem zbioru na klastry. Wydaje mi się, że najsensowniejszy podział wyszedł przy 5 klastrach - ewidentnie widać podział na 5 oddzielnych zbiorów. Przy podziałe na 4 klastry zbiór środkowy i lewy górny łączą się w jedno. Jest to również akceptowalne rozwiązanie, jednak podział na 5 podzbiorów ma zauważalnie lepiej wydzielone granice między zbiorami.

2.3 Zadanie 2.

W zadaniu drugim wczytałam dane z pliku 'planets.csv' i usunęłam pierwszą kolumnę zawierającą nazwę planety, bo nie jest to wartość numeryczna i nie przyda nam się do analizy. Następnie użyłam trzech metod klasteryzacji aby podzielić zbiór planet:

- Algorytm k-means
- Agglomerative clustering klasteryzacja hierarchiczna
- Algorytm DBSCAN

```
[7]: from sklearn.cluster import KMeans
     from sklearn.cluster import AgglomerativeClustering
     from sklearn.cluster import DBSCAN
     from sklearn.preprocessing import StandardScaler
     from sklearn.metrics import silhouette score, davies bouldin score,
      →adjusted_rand_score
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     df = pd.read_csv('planets.csv')
     df.drop('pl_name', axis=1, inplace=True)
     scaler = StandardScaler()
     data = scaler.fit_transform(df)
     # k-means
     kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
     kmeans_labels = kmeans.fit_predict(data)
     print("K-means, 2 klastry:")
     print(np.unique(kmeans_labels, return_counts=True))
     silhouette = silhouette score(data, kmeans labels)
     print("Silhouette Score dla K-means:", round(silhouette,2))
     davies_bouldin = davies_bouldin_score(data, kmeans_labels)
     print("Davies-Bouldin Index dla K-means:", round(davies_bouldin,2), "\n")
     # Klasteryzacja hierarchiczna (Agglomerative Clustering)
     agg_cluster = AgglomerativeClustering(n_clusters=2)
     agg_labels = agg_cluster.fit_predict(data)
     # DBSCAN
     dbscan = DBSCAN(eps=2, min_samples=10)
     dbscan_labels = dbscan.fit_predict(data)
     print("Agglomerative Clustering:")
     print(np.unique(agg_labels, return_counts=True))
     silhouette = silhouette_score(data, agg_labels)
     print("Silhouette Score dla Agglomerative Clustering:", round(silhouette,2))
     davies_bouldin = davies_bouldin_score(data, agg_labels)
     print("Davies-Bouldin Index dla Agglomerative Clustering:", u
      →round(davies_bouldin,2), "\n")
     print("DBSCAN:")
```

```
print(np.unique(dbscan_labels, return_counts=True))
silhouette = silhouette score(data, dbscan labels)
print("Silhouette Score dla DBSCAN:", round(silhouette,2))
davies_bouldin = davies_bouldin_score(data, dbscan_labels)
print("Davies-Bouldin Index dla DBSCAN:", round(davies_bouldin,2), "\n")
K-means, 2 klastry:
(array([0, 1], dtype=int32), array([424, 354]))
Silhouette Score dla K-means: 0.31
Davies-Bouldin Index dla K-means: 1.29
Agglomerative Clustering:
(array([0, 1]), array([424, 354]))
Silhouette Score dla Agglomerative Clustering: 0.28
Davies-Bouldin Index dla Agglomerative Clustering: 1.35
DBSCAN:
(array([-1, 0]), array([ 35, 743]))
Silhouette Score dla DBSCAN: 0.57
Davies-Bouldin Index dla DBSCAN: 1.92
```

Wnioski Nie jestem pewna, jaki podział tego zbioru jest poprawny. Algorytm DBSCAN, który sam przypisuje dane do zbiorów, wyznaczył tylko jeden klaster (oraz punkty szumu). Algorytmy k-means oraz Agglomerative Clustering dla 2 klastrów dzielą zbiór mniej więcej na pół. Przy większej ilości zadanych klastrów (np 3, 4) algorytmy te do jednego z klastrów dodają bardzo mało punktów (1-5), więc taki klaster uważam za pomijalny, jedynie dla 2 klastrów te podziały są mniej więcej tak samo znaczące. Obie metryki - współczynnik sylwetkowy i Daviesa-Bouldina są dla tych dwóch algorytmów prawie takie same, więc można ich używać zamiennie. Natomiast dla algorytmu DBSCAN współczynnik sylwetkowy jest wyższy co znaczy pewniejsze zakwalifikowanie planet do konkretnych klastrów.

2.4 Zadanie 3.

```
[]: [pip install scikit-fuzzy
```

Współczynnik FPC (Fuzzy Partition Coefficient): 0.8237691315712022

Klasteryzacja przy użyciu algorytmu Fuzzy C-means

2.5 Wnioski

Wybrałam model z 2 klastrami, ponieważ w poprzednim zadaniu na takich bazowałam. Na wykresie pokazałam mniej więcej jak to wygląda w zależności od dwóch cech planety, dla których cokolwiek na tym wykresie było widać.

2.6 Zadanie 4.

Do analizy danych z pliku 'circle.csv' użyłam ponownie 3 metod:

- Algorytm k-means
- Agglomerative clustering klasteryzacja hierarchiczna
- Algorytm DBSCAN

Zakładam, że poprawny podział tego zbioru to taki, który podzieli zbiór na dwa oddzielne okręgi widoczne na wykresach.

2.6.1 Metoda 1 - algorytm k-means

dla podziału na 2 oraz 4 klastry.

```
[3]: from sklearn.cluster import KMeans
     from sklearn.cluster import AgglomerativeClustering
     from sklearn.cluster import DBSCAN
     from sklearn.preprocessing import StandardScaler
     from sklearn.metrics import silhouette_score, davies_bouldin_score,_
      ⇒adjusted rand score
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     df = pd.read_csv('circle.csv')
     data = df.values
     # k-means
     kmeans = KMeans(n_clusters=2)
     kmeans.fit(data)
     f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,5))
     ax1.scatter(data[:, 0], data[:, 1], c=kmeans.labels_)
     ax1.set xlabel('x')
     ax1.set_ylabel('y')
     ax1.set_title('Algorytm k-means, 2 klastry')
     print("2 klastry")
     silhouette = silhouette_score(data, kmeans.labels_)
     print("Silhouette Score:", round(silhouette, 2))
     davies_bouldin = davies_bouldin_score(data, kmeans.labels_)
     print("Davies-Bouldin:", round(davies_bouldin,2))
```

```
print("")

kmeans = KMeans(n_clusters=4)
kmeans.fit(data)

ax2.scatter(data[:, 0], data[:, 1], c=kmeans.labels_)
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_title('Algorytm k-means, 4 klastry')

print("4 klastry")
silhouette = silhouette_score(data, kmeans.labels_)
print("Silhouette Score:", round(silhouette, 2))
davies_bouldin = davies_bouldin_score(data, kmeans.labels_)
print("Davies-Bouldin:", round(davies_bouldin,2))
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto' in
1.4. Set the value of `n_init` explicitly to suppress the warning
warnings.warn(

2 klastry

Silhouette Score: 0.35 Davies-Bouldin: 1.19

4 klastry

Silhouette Score: 0.38 Davies-Bouldin: 0.82

2.7 Wnioski dla algorytmu k-means

Algorytm widocznie dzieli zbiór na klastry, jednak nie na oddzielne okręgi. Podział nie jest zły, ale nie o taki nam chodziło. Współczynnik sylwetkowy wynosi dla obu przypadków około 0.35, jest to wartość bliższa 0 niż 1, więc znaczy że punkty mogłyby zostać zakwalifikowane do drugiego klastra, a granice między nimi nie są dalekie od siebie (co widać na wykresach - klastry kończą się tuż obok siebie). Współczynnik Daviesa-Bouldina wynosi dla 2 klastrów około 1.2, natomiast dla 4 klastrów 0.8, bliżej zera jest 0.8, i faktycznie dla 4 klastrów zbiory są mniej rozproszone, z racji że jest ich więcej.

2.7.1 Metoda 2 - klasteryzacja hierachiczna

również dla 2 i 4 klastrów

```
[5]: # Klasteryzacja hierarchiczna (Agglomerative Clustering)
     agg = AgglomerativeClustering(n_clusters=2)
     agg.fit(data)
     f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,5))
     ax1.scatter(data[:, 0], data[:, 1], c=agg.labels_)
     ax1.set xlabel('x')
     ax1.set_ylabel('y')
     ax1.set_title('Klasteryzacja hierarchiczna, 2 klastry')
     print("2 klastry:")
     silhouette = silhouette_score(data, agg.labels_)
     print("Silhouette Score:", round(silhouette,2))
     davies_bouldin = davies_bouldin_score(data, agg.labels_)
     print("Davies-Bouldin:", round(davies_bouldin,2))
     agg = AgglomerativeClustering(n_clusters=4)
     agg.fit(data)
     ax2.scatter(data[:, 0], data[:, 1], c=agg.labels_)
     ax2.set_xlabel('x')
     ax2.set ylabel('v')
     ax2.set_title('Klasteryzacja hierarchiczna, 4 klastry')
     print("\n4 klastry")
     silhouette = silhouette_score(data, agg.labels_)
     print("Silhouette Score:", round(silhouette,2))
     davies bouldin = davies bouldin score(data, agg.labels )
     print("Davies-Bouldin:", round(davies_bouldin,2))
```

2 klastry:

Silhouette Score: 0.34 Davies-Bouldin: 1.21

4 klastry

Silhouette Score: 0.35 Davies-Bouldin: 0.84

2.8 Wnioski dla klasteryzacji hierarchicznej

Metoda ta zadziałała bardzo podobnie do metody k-means, dzieliąc okręgi przez pół (lub przez 4, na ćwiartki), zamiast na 2 oddzielne okręgi. Współczynnik sylwetkowy wyniósł dla obu przypadków około 0.35, a współczynnik Daviesa-Bouldina wyniósł kolejno 1.2 i 0.8. Wnioski są dokładnie takie same jak dla algorytmu k-means powyżej.

2.8.1 Metoda 3 - algorytm DBSCAN

Algorytmu użyłam dla kilku wartości epsilon, aby pokazać, dla którego działa najlepiej.

```
[18]: # DBSCAN
eps_values = [0.04, 0.08, 0.2, 0.3]
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

for eps, ax in zip(eps_values, axes.ravel()):
    dbscan = DBSCAN(eps=eps, min_samples=10)
    dbscan.fit(data)

ax.scatter(data[:, 0], data[:, 1], c=dbscan.labels_)
ax.set_xlabel('x')
ax.set_ylabel('y')
```

```
ax.set_title(f'Algorytm DBSCAN - eps = {eps}')

if eps != 0.3:
    print("\neps = ", eps)
    silhouette = silhouette_score(data, dbscan.labels_)
    print("Silhouette Score:", round(silhouette,2))
    davies_bouldin = davies_bouldin_score(data, dbscan.labels_)
    print("Davies-Bouldin:", round(davies_bouldin,2))

plt.tight_layout()
plt.show()
```

eps = 0.04
Silhouette Score: -0.47
Davies-Bouldin: 1.64

eps = 0.08
Silhouette Score: 0.01
Davies-Bouldin: 1.61

eps = 0.2
Silhouette Score: 0.11
Davies-Bouldin: 170.44

2.8.2 Wnioski dla algorytmu DBSCAN

Powyższe wykresy pokazują podział na klastry dla różnych wartości epsilon. Dla wartości za małych, eps < 1.1, klastrów tworzyło się dużo, zawierających tylko kilka punktów, dlatego zwiększyłam epsilon. Natomiast dla epsilon za dużego, eps > 2.2, tworzył się tylko 1 klaster zawierający wszystkie punkty. Dla wartości epsilon między 1.1 a 2.2, algorytm dzielił zbiór na dwa oddzielne okręgi i był to najlepszy podział. Współczynnik sylwetkowy dla eps = 0.2, wyniósł około 0.1 - znaczy to, że było blisko granicy decyzyjnej między dwoma sąsiednimi skupieniami. Jednak przypisanie ostatecznie było poprawne. Współczynnik Daviesa-Bouldina wyniósł bardzo dużo - aż 170 - może być to skutek tego, że klastry znajdują się jeden w drugim, są zagnieżdżone.

2.9 Wnioski ogólne dla zadania 4.

Patrząc na wyniki graficzne, najlepszego podziału dokonał algorytm DBSCAN dla wartości epsilon równej 0.2 - oddzielił od siebie dwa okręgi. Jednak patrząc tylko na wartości metryk - współczynnika sylwetkowego oraz Daviesa-Bouldina - najlepsze wartości wyszły dla k-means oraz klasteryzacji hierarchicznej dla 4 klastrów.