

SYMBIOSIS INSTITUTE OF TECHNOLOGY, PUNE

Pune – 412115, Maharashtra State, India https://www.sitpune.edu.in/

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING A PROJECT REPORT

ON

"Web-Video Summarization using Titles"

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology in Artificial Intelligence & Machine Learning

BACHELOR OF TECHNOLOGY IN ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

Submitted By VAISHNAVI PATIL-21070126108 VIHAN CHORADA-21070126112 UTSAV KARLA-21070126105 SOHOM JANA-21070126092

UNDER THE GUIDANCE OF

Prof. Nivedita Mishra Prof. Gargi Joshi

Designation

SYMBIOSIS INSTITUTE OF TECHNOLOGY, PUNE

Pune – 412115, Maharashtra State, India https://www.sitpune.edu.in/

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

CERTIFICATE

This is to certify that the Project work entitled "Title of the Project" is carried out by the Name of the Student, in partial fulfillment for the award of the degree of Bachelor of Technology in Artificial Intelligence & Machine Learning, Symbiosis International (Deemed University), Pune during the academic year 2024-2025.

Name and Signature of the Guide

Name and Signature of the Co-Guide

Dr. Shruti Patil

Head, Department of AI&ML

DECLARATION

I hereby declare that the project titled "Web-Video Summarization using Titles"

submitted to Symbiosis Institute of Technology, Constituent of Symbiosis International

(Deemed University) Pune for the award of the degree of Bachelor of Technology in

Artificial Intelligence & Machine Learning is a result of original research carried out by

me. I understand that my report may be made electronically available to the public. It is

further declared that the project report or any part thereof has not been previously

submitted to any University or Institute for the award of any degree or diploma.

Name(s) of Student(s): Vihan Chorada, Vaishnavi Patil, Utsav Karla, Sohom Jana

PRN: 21070126112,21070126108,21070126105,21070126092

Degree:

Bachelor of Technology in AI&ML

Department:

Artificial Intelligence & Machine Learning

Title of the project

: Web-Video Summarization using Titles

(Signatures of the Students)

Date: 11/11/2024

3

ACKNOWLEDGEMENT

I want to express my sincere gratitude to everyone who supported me throughout this project. First and foremost, I would like to thank my project guide, **Dr.Nivedita Mishra** and **Dr.Gargi Joshi**, for her valuable guidance, encouragement, and feedback. She has been a constant source of inspiration and motivation for me.

I would also like to thank the head of the department, **Dr. Shruti Patil**, for providing me with the necessary facilities and resources for conducting this project. I am grateful to her for providing constant support and advice.

I want to acknowledge the contribution of my project team members, **Vihan Chorada**, **Utsav Karla**, **Sohom Jana**, **Vaishnavi Patil**, who have worked hard and cooperated with me in every project stage. They have been accommodating and supportive throughout this journey.

I would also like to thank my family and friends for their love, care, and support. They have always been there for me in times of need and stress. They have encouraged me to pursue my passion and achieve my goals.

Lastly, I thank **Symbiosis Institute of Technology Pune** for allowing me to work on this project and enhance my skills and knowledge. I am proud to be a part of this prestigious institution.

TABLE OF CONTENTS

		Page
Declar	ation	ii
Ackno	wledgment	iii
Abstra	nct	iv
Table	of Contents	V
List of	Tables	vii
List of	Figures	viii
List of	Abbreviations	ix
СНАРТ	TER 1: INTRODUCTION	
1	Introduction	6
2	Literature Review	7
3	Problem statement goal motivation	11
4	Objectives	12
5	Dataset details	13
6	Modalities chosen for the task	14
7	Processing of individual modalities	15
8	Multimodal Data Fusion (Early, Late, Hybrid)	16
9	Comparison of different fusion techniques with individual modalities	17
10	Fusion Evaluation Results comparing with individual modalities	18
11	Analysis of observed results	19
12	Conclusion	20

Introduction

With the exponential growth in web video content, managing and understanding this information efficiently has become essential. Video summarization aims to create concise yet meaningful summaries, making it easier to grasp content quickly. By using a multimodal approach—incorporating video frames, titles, annotations, and thumbnails—this project explores enhanced techniques for video summarization to capture diverse video attributes for better summarization. Video summarization is a challenging problem in part because knowing which part of a video is important requires prior knowledge about its main topic. We present TVSum, an unsupervised video summarization framework that uses title-based image search results to find visually important shots. The sheer amount of video available online has increased the demand for efficient ways to search and retrieve desired content. Currently, users choose to watch a video based on various metadata, e.g., thumbnail, title, description, video length, etc. This does not, however, provide a concrete sense of the actual video content, making it difficult to find desired content quickly. Video summarization aims to provide this information by generating the gist of a video, benefiting both the users and companies that provide video streaming and search.

LITERATURE REVIEW

SUMMARY	AUTHOR	YEAR	KEY FINDINGS	METHEDOLOGY	LIMITATION
We present TVSum, an unsupervised video summarization framework that uses title-based image search results to find visually important shots.	Yale Song, Jordi Vallmitjana, Amanda Stent, A. Jaimes	2015	we developed a novel co- archetypal analysis technique that learns canonical visual concepts shared between video and images, but not in either alone, by finding a joint-factorial representation of two data sets.	Unsupervised video summarization framework called TVSum - Leveraging title-based image search results to identify visually important video shots - Developing a novel co-archetypal analysis technique to address noise and variance in the title-based image search results	he co- archetypal analysis technique was developed to address the challenge of noise and variance in the title-based image search results, suggesting this may be a limitation of the approach - The small size of the TVSum50 dataset (50 videos) may be a limitation, as the authors do not mention whether the approach has been tested on a larger dataset
The paper presents a framework for summarizing web videos based on key shots to provide an	Jinhui Tang,	2009	his paper presents a novel solution by mining and threading "key" shots, which can provide an overview of	Identify "key shots" by detecting near-duplicate keyframes, ranking them based on informativeness,	The framework only provides a static summary, and dynamic video skimming may be a limitation that

overview of the main contents.			main contents of videos at a glance, by summarizing a large set of diverse videos.	and arranging them in chronological order. 3. Formulate the summarization as an optimization problem that balances the relevance of the key shots and a user-defined skimming ratio.	could be improved upon.
A multimodal approach using closed captions and speech signals to summarize and index news video.	Shin, Kwangjae	2002	The proposed method exploits the closed caption data to locate semantically meaningful highlights in a news video and speech signals in an audio stream to align the closed caption data with the video in a time-line.	Aligning the closed captions with the video timeline - Describing the highlights using the MPEG-7 Summarization	the availability of accurate
Multi-modal summarization of key events and top players in sports tournament videos	D. Tjondronegoro, Xiaohui Tao, Johannes Sasongko, C. H. Lau	2011	This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment	Sentiment analysis and player popularity analysis to automatically annotate and visualize the key events and key	Previous work has only used time-stamped web match reports synchronized with video, but web and social media articles

			analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage	players in the sports tournament coverage	without timestamps have not been fully leveraged
MMSS provides a domain-independent, graph-based framework for multi-modal story-oriented video summarization.	Jia-Yu Pan, Hyung-Jeong Yang, C. Faloutsos	2004	We propose multi-modal story-oriented video summarization (MMSS) which, unlike previous works that use fine-tuned, domain-specific heuristics, provides a domain-independent, graph-based framework	Multimodal data integration to uncover correlations between different information modalities - Domain-independent approach, not relying on fine-tuned, domain-specific heuristics	Graph-based modeling and multi-modal data correlation require extensive resources, affecting scalability.
Read, Watch, Listen, and Summarize: Multi-Modal	Haoran Li, Junnan Zhu, Cong Ma, Jiajun Zhang,	2019	The key idea is to bridge the semantic gaps between multi-	Learning joint representations of text and images using	The system was primarily trained on English and

		<u> </u>		I .	
Summarization	Chengqing		modal content.		Chinese news
for	Zong		Audio and	networks, and	datasets,
Asynchronous			visual are main	then using text-	limiting its
Text, Image,			modalities in	image matching	adaptability to
Audio and			the video.	or multi-modal	other languages
Video				topic modeling	or content
				to ensure the	domains
				generated	without further
				summary covers	training.
				important visual	
				information	
A multimodal	Shruti Palaskar,	2019	nlike the	Experiments on	he study
abstractive	Jindřich	2013	traditional text	=	presents a new
summarization	Libovický,		news	corpus of	
model	Spandana		summarization,	'	conducts pilot
integrates	Gella, Florian		the goal is less		
information	Metze		to "compress"		·
from video and			text	new evaluation	further
audio			information	metric called	research and
transcripts to			but rather to		validation is
generate			provide a	that measures	needed
coherent			fluent textual	semantic	
textual			summary of		
summaries for			information	summaries	
open-domain			that has been		
videos.			collected and		
			fused from		
			different		
			source		
			modalities, in		
			our case video		
			and audio		
			transcripts (or		
			text).		
			icalj.		

Problem Statement, Goal & Motivation

☐ Problem Statement: In the current digital landscape, video content is vast and
growing, which makes it challenging for users to consume it efficiently. There is a
need for summarization techniques that can condense video content into key
moments, enhancing viewer accessibility without sacrificing the essence of the
content.
$\hfill \Box$ Goal: The goal is to develop a system that can generate concise and accurate
video summaries by leveraging various input modalities such as video frames,
textual information, and user-generated annotations.
$\hfill \square$ Motivation: This approach addresses the limitations of unimodal summarization
techniques by adopting a multimodal strategy, which combines diverse data
sources. Multimodal methods are motivated by the potential to capture a richer
understanding of video content, thereby improving summarization quality and
ensuring better user engagement. By bridging information from textual, visual, and
annotated data, the project aims to set new standards for creating reliable, context-
aware summaries.

Objectives

$\hfill \square$ To identify and extract significant features from each modality—visual content,
textual titles, and user annotations—that contribute to meaningful summarization.
☐ To apply and test various data fusion techniques, including early, late, and hybrid
fusion, to determine which method provides the most coherent summaries.
$\ \square$ To evaluate the effectiveness of multimodal fusion techniques against unimodal
approaches in terms of relevance, accuracy, and user satisfaction.
☐ To optimize processing to ensure the approach is computationally efficient and can
scale across various video types and genres.
$\hfill\Box$ To examine how multimodality aids in refining and enhancing the summarization
process for applications in fields like content recommendation, media editing, and
content management.

Dataset Details

$\hfill \square$ Dataset Overview: The dataset used in this project is the TVSum dataset, which
consists of 50 videos across diverse categories like news, sports, and vlogs, each paired
with user-generated titles and relevance annotations.
$\hfill \Box$ Annotations: Each video is annotated with user importance scores for different
segments, which serve as a basis for training and evaluating the summarization
model.
$\ \square$ Additional Modalities: The dataset includes accompanying thumbnails that
visually represent key scenes. Titles are stored in ydata-tvsum50-info.tsv, while
annotations are in ydata-tvsum50-anno.tsv, providing user preferences and insights
on video relevance.
$\hfill \Box$ Preprocessing Requirements: Preprocessing involves reading titles, relevance
annotations, and extracting or resizing thumbnails. Video frame extraction and
feature encoding are additional steps necessary for effective multimodal fusion.

Modalities Chosen for the Task

\square Textual Information: The titles provide an overarching context, capturing user
intent and summarizing the central theme of each video.
☐ Visual Information: Thumbnail images encapsulate important visual cues from
the video and are essential in reinforcing the visual appeal and relevance of
summaries.
☐ Annotation Data: User relevance scores for each segment help gauge important
moments, allowing for user-focused summarization that aligns with viewer
expectations.
☐ Multimodal Fusion Advantage: Using all three modalities enables the
summarization system to capture nuances and synthesize information more
effectively than unimodal approaches.

Processing of Individual Modalities

\square Text Processing: Titles are preprocessed using tokenization and transformed into
numerical vectors using techniques such as TF-IDF for meaningful representation.
\square Visual Processing: Thumbnail images are resized and feature extraction is
performed to reduce dimensionality while retaining significant visual patterns, using
models like ResNet or EfficientNet.
$\hfill \Box$ Annotation Processing: The relevance scores are normalized, categorized, and
aligned with the video segments, making them compatible with other modalities
during fusion.
□ Challenges and Preprocessing Requirements: Each modality has distinct
processing needs; balancing these is crucial for the smooth integration of modalities
in fusion processes.

Multimodal Data Fusion

Early Fusion: Combines features from text, visual, and annotation modalities at the initial stages. By merging raw or early-processed features, early fusion allows the system to analyze content holistically but may become computationally intensive.

Layer (type)	Output Shape	Param #	Connected to			
input_layer_12 (InputLayer)	(None, 100)	0	-			
input_layer_13 (InputLayer)	(None, 224, 224, 3)	0	-			
embedding_4 (Embedding)	(None, 100, 128)	1,280,000	input_layer_12[0][0]			
resnet50 (Functional)	(None, 7, 7, 2048)	23,587,712	input_layer_13[0][0]			
lstm_4 (LSTM)	(None, 64)	49,408	embedding_4[0][0]			
global_average_pooling2d (GlobalAveragePooling2D)	(None, 2048)	0	resnet50[0][0]			
concatenate_4 (Concatenate)	(None, 2112)	0	lstm_4[0][0], global_average_poolin			
dense_11 (Dense)	(None, 128)	270,464	concatenate_4[0][0]			
dense_12 (Dense)	(None, 1)	129	dense_11[0][0]			
Total params: 25,187,713 (96.08 MB)						
Trainable params: 25,134,593 (95.88 MB)						
Non-trainable params: 53,120 (207.50 KB)						

• Late Fusion: Involves processing each modality separately to create individual summaries, then merging them at the end. This approach is computationally simpler and allows flexibility in assigning importance to each modality based on its contribution.

Layer (type)	Output Shape	Param #	Connected to				
input_layer_3 (InputLayer)	(None, 100)	0	-				
input_layer_4 (InputLayer)	(None, 224, 224, 3)	Ø	-				
embedding_1 (Embedding)	(None, 100, 128)	1,280,000	input_layer_3[0][0]				
resnet50 (Functional)	(None, 7, 7, 2048)	23,587,712	input_layer_4[0][0]				
lstm_1 (LSTM)	(None, 64)	49,408	embedding_1[0][0]				
global_average_pooling2d (GlobalAveragePooling2D)	(None, 2048)	0	resnet50[0][0]				
dense_2 (Dense)	(None, 1)	65	lstm_1[0][0]				
dense_3 (Dense)	(None, 1)	2,049	global_average_poolin				
average (Average)	(None, 1)	0	dense_2[0][0], dense_3[0][0]				
Total params: 24,919,234 (95.06 MB)							
Trainable params: 24,866,114 (94.86 MB)							
Non-trainable params: 53,120 (207.50 KB)							

Hybrid Fusion: Combines the benefits of both early and late fusion by merging
modalities at both initial and final stages, creating a balance between efficiency
and comprehensiveness.

Layer (type)	Output Shape	Param #	Connected to
input_layer_6 (InputLayer)	(None, 100)	0	-
input_layer_7 (InputLayer)	(None, 224, 224, 3)	0	-
embedding_2 (Embedding)	(None, 100, 128)	1,280,000	input_layer_6[0][0]
resnet50 (Functional)	(None, 7, 7, 2048)	23,587,712	input_layer_7[0][0]
lstm_2 (LSTM)	(None, 64)	49,408	embedding_2[0][0]
global_average_pooling2d (GlobalAveragePooling2D)	(None, 2048)	0	resnet50[0][0]
concatenate_1 (Concatenate)	(None, 2112)	0	lstm_2[0][0], global_average_poolin
dense_4 (Dense)	(None, 128)	270,464	concatenate_1[0][0]
dense_5 (Dense)	(None, 64)	4,160	lstm_2[0][0]
dense_6 (Dense)	(None, 64)	131,136	global_average_poolin
concatenate_2 (Concatenate)	(None, 256)	0	dense_4[0][0], dense_5[0][0], dense_6[0][0]
dense_7 (Dense)	(None, 128)	32,896	concatenate_2[0][0]
dense_8 (Dense)	(None, 1)	129	dense_7[0][0]
Total params: 25,355,905 (90	5.73 MB)		

Application and Evaluation: Each fusion type is tested to determine how well it
performs with the multimodal data and to assess the quality of summaries
generated.

Comparison of Different Fusion Techniques with

Individual Modalities

☐ Unimodal Baseline: Individual modality performance is assessed to serve as a baseline.
Text-only, visual-only, and annotation-only summarizations are created and evaluated on
coherence and relevance.
☐ Fusion Comparison: Early, late, and hybrid fusion results are compared against
unimodal summaries, with metrics including summary relevance, viewer satisfaction, and
alignment with annotated scores.
\square Findings: The fusion techniques are more effective than individual modalities in
capturing diverse aspects of video content. This comparison highlights that while each
modality provides unique information, fusing them leads to a more comprehensive and
meaningful summary.

Fusion Evaluation Results Comparing with Individual

Modalities

- Evaluation Metrics: Metrics like precision, recall, F1-score, and user satisfaction ratings are used to assess summary quality.
- **Results Summary**: Results indicate that hybrid fusion provides the best balance between computational efficiency and summary relevance. Late fusion also performs well but sometimes lacks the detail captured by early fusion.
- Insights on Performance: The multimodal fusion approach captures a broader range of information, making the summaries more robust, contextually accurate, and reflective of user preferences.

Analysis of Observed Results

□ **Best Fusion Technique**: Hybrid fusion is identified as the most effective technique for this task, as it combines the early-stage comprehensiveness with the flexibility of late fusion.

☐ **Multimodality Benefits**: Integrating multiple modalities leads to significant improvements in summary quality, making it more aligned with user interests. The combination of modalities enhances the depth and context of summaries, which is not achievable through individual modalities.

□ **Challenges Addressed**: The results confirm that multimodal fusion addresses common challenges in summarization, such as balancing content brevity with detail and aligning with diverse user expectations.

Comparison of Early Fusion, Late Fusion, Hybrid Fusion Accuracy

Conclusion

Summary: This project successfully demonstrates the effectiveness of multimodal fusion techniques for video summarization. By integrating textual, visual, and annotation data, the project achieves higher-quality summaries that meet user preferences and provide a coherent overview of content.

Future Directions: Future research may explore additional modalities, such as audio or emotion detection, to further refine video summarization. Additionally, the use of real-time processing models could enhance scalability and applicability across larger datasets.

Broader Implications: The findings suggest that multimodal approaches could greatly benefit fields requiring video summarization, from media production to educational platforms, making content more accessible and engaging for users.