ECE2050 Digital Logic and Systems Tutorial 6

Wangqian Chen

Contact: wangqianchen@link.cuhk.edu.cn

Office Hour: 16:00-17:00 Wed., ZX305

Half Adders

Basic rules of binary addition are performed by a half adder, which has two binary inputs (A and B) and two binary outputs (Carry out and Sum).

Full Adders

By contrast, a full adder has three binary inputs (A, B, and Carry in) and two binary outputs (Carry out and Sum). The truth table summarizes the operation.

A B C _{in} C _{out} 0 0 0 0 0 0 1 0 0 1 0 0	Σ 0 1
0 0 0 0 0 0 1 0 0 1 0 0	0 1 1
0 1 0 0	1
	1
0 1 1 1	0
1 0 0 0	1
1 0 1 1	0
1 1 0 1	0
1 1 1 1 1	1

Parallel Adders

Full adders are combined into parallel adders that can add binary numbers with multiple bits.

TABLE 6-3

Truth table for each stage of a 4-bit parallel adder.

C_{n-1}	A_n	B_n	Σ_n	C_n
0	0	0	0	0
0	O	1	1	0
0	1	0	1	0
0	1	1	O	1
1	O	0	1	O
1	O	1	O	1
1	1	0	O	1
1	1	1	1	1

Q1. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel adder. Determine the resulting sequence of bits on each sum output.

A_1	1010
A_2	1100
A_3	0101
A_4	1101
B_1	1001
B_2	1011
B_3	0000
B_4	0001

A4	A3	Az	Aı	B4	By	B2	B.	Zs	24	E3	22	Z.
1	0	1	1	0	0	1	1	0	1	1	1	0
T	1	1	0	0	0	0	0	0	i	1	1	0
0	0	0	1	0	0	1	0	ь	0	D	ı	1
1	1	0	0	ļ	0	1	1	1	0	1	l	1

• 74LS283

Q2. How to combine 74LS283 into a 8-bit parallel adder?

Comparator

- Comparators provide outputs to indicate which of the numbers is larger or if they are equal.
- > Cascading inputs are provided to expand the comparator to larger numbers.

Q3. How to combine 74LS85 into a 16-bit comparators?

Q3. How to combine 74LS85 into a 16-bit comparators?

TRUTH TABLE

(COMPARI	NG INPUT	s	1711111	SCADII INPUTS		OUTPUTS			
A ₃ ,B ₃	A ₂ ,B ₂	A ₁ ,B ₁	A ₀ ,B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	O _{A>B}	O _{A<b< sub=""></b<>}	O _{A=B}	
A ₃ >B ₃	X	X	X	X	X	X	Н	L	L	
A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b3<>	X	X	X	X	X	X	L	H	L	
A3=B3	A2>B2	X	X	X	X	X	H	L	L	
A3=B3	A2 <b2< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b2<>	X	X	X	X	X	L	H	L	
A3=B3	A2=B2	A1>B1	X	X	X	X	H	L	L	
A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b1<>	X	X	X	X	L	H	L	
A3=B3	A2=B2	A ₁ =B1	A ₀ >B ₀	X	X	X	Н	L	L	
A3=B3	A2=B2	A1=B1	A ₀ <b<sub>0</b<sub>	X	X	X	L	H	L	
A3=B3	A2=B2	A1=B1	$A_0 = B_0$	H	L	L	Н	L	L	
A3=B3	A2=B2	A1=B1	A ₀ =B ₀	L	H	L	L	H	L	
A3=B3	A2=B2	A1=B1	$A_0 = B_0$	X	×	Н	L	L	H	
A3=B3	$A_2 = B_2$	A ₁ =B ₁	A0=B0	Н	H	L	L	L	L	
A3=B3	A2=B2	A1=B1	A ₀ =B ₀	L	L	L	Н	Н	L	

Encoder & Decoder

- An encoder accepts an active logic level on one of its inputs and converts it to a coded output, such as BCD or binary.
- An decoder has multiple outputs to decode any combination of inputs. For example, the binary-to-decimal decoder shown here has 16 outputs one for each combination of binary inputs.

- Q4. How to combine 74HC154 into a 5-bit decoders?
 - > It includes two active LOW chip select lines which must be at the active level to enable the outputs.
 - > These lines can be used to expand the decoder to larger inputs.

			٠.	_																	
		Inp	out										(Outpu	t						
EO	E1	A0	A1	A2	А3	YO	Y1	<u>Y2</u>	Y3	<u>Y4</u>	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
Н	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	Х	X	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	Н	L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
		L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
		Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
		L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
		Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
		L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
		Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
		L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Q5: Implement 4 to 1 Multiplexer using a Decoder.

Multiplexer

Data selection for a 1-of-4-multiplexer.

Data-Se	lect Inputs	
S_1	S_0	Input Selected
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Q6: Using the truth table, write the SOP expressions for the Σ and Cout of a full-adder. Use a Karnaugh map to minimize the expressions and then implement them with inverters and AND $\times 0.002$ OR logic. Show how you can replace the AND-OR logic with 74HC151 data selectors.

Full-adder truth table.

\boldsymbol{A}	В	$C_{\rm in}$	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in}$ = input carry, sometimes designated as CI $C_{\text{out}} = \text{output carry, sometimes designated as } CO$ $\Sigma = \text{sum}$

A and B = input variables (operands)

$$C_{\text{out}} = ABC_{\text{in}} + \overline{A}BC_{\text{in}} + A\overline{B}C_{\text{in}} + AB\overline{C}_{\text{in}}$$

Input												Outpu	Output	
E	S2	S1	S0	10	11	12	13	14	15	16	17	Y	Y	
Н	X	Х	Х	Х	Х	X	Х	Х	Х	X	Х	Н	L	
L	L	L	L	L	X	X	Х	X	X	X	X	Н	L	
L	L	L	L	Н	Х	X	Х	Х	Х	Х	Х	L	Н	
L	L	L	Н	Х	L	X	Х	Х	Х	X	X	Н	L	
L	L	L	Н	X	Н	X	Х	Х	X	Х	X	L	Н	
L	L	Н	L	X	X	L	Х	X	X	Х	X	Н	L	
L	L	Н	L	X	Х	Н	Х	Х	Х	Х	Х	L	Н	
L	L	Н	Н	Х	Х	X	L	Х	Х	Х	Х	Н	L	
L	L	Н	Н	X	Х	X	Н	Х	Х	X	X	L	Н	
L	Н	L	L	X	X	X	Х	L	X	Х	X	Н	L	
L	Н	L	L	X	Х	X	X	Н	Х	Х	Х	L	Н	
L	Н	L	Н	X	Х	X	Х	Х	L	Х	Х	Н	L	
L	Н	L	Н	Х	Х	X	Х	Х	Н	X	X	L	Н	
L	Н	Н	L	X	X	X	Х	X	X	L	X	Н	L	
L	Н	Н	L	X	Х	X	Х	Х	Х	Н	Х	L	Н	
L	Н	Н	Н	X	X	X	Х	Х	X	X	L	Н	L	
L	Н	Н	Н	X	Х	X	Х	Х	Х	X	Н	L	Н	

Full-adder truth table.

\boldsymbol{A}	В	$C_{\rm in}$	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in} = {\rm input} \ {\rm carry}, \ {\rm sometimes} \ {\rm designated} \ {\rm as} \ {\it CI}$

 $C_{\text{out}} = \text{output carry}$, sometimes designated as CO

 $\Sigma = \text{sum}$

A and B = input variables (operands)

Full-adder truth table.

\boldsymbol{A}	В	$C_{\rm in}$	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in} = {\rm input} \ {\rm carry}, \ {\rm sometimes} \ {\rm designated} \ {\rm as} \ CI$ $C_{\rm out} = {\rm output} \ {\rm carry}, \ {\rm sometimes} \ {\rm designated} \ {\rm as} \ CO$ $\Sigma = {\rm sum}$

A and B = input variables (operands)

$$\Sigma$$
 = No simplification

$$\Sigma = \overline{A} \, \overline{B} C_{\rm in} + \overline{A} \overline{B} \, \overline{C}_{\rm in} + A \overline{B} \, \overline{C}_{\rm in} + A \overline{B} \, \overline{C}_{\rm in}$$

Q7: Consider the boolean expressions as follows,

$$D_0 = X\bar{S}_1\bar{S}_0 + YS_1\bar{S}_0$$

$$D_1 = X\bar{S}_1S_0 + YS_1S_0$$

$$D_2 = XS_1\bar{S}_0 + Y\bar{S}_1\bar{S}_0$$

$$D_3 = XS_1S_0 + Y\bar{S}_1S_0$$

EN	A_1	A_0	OUT_0	OUT_1	OUT_2	OUT_3
0	X	X	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Q7:

Consider the boolean expressions as follows,

$$D_{0} = X\bar{S}_{1}\bar{S}_{0} + YS_{1}\bar{S}_{0}$$

$$D_{1} = X\bar{S}_{1}S_{0} + YS_{1}S_{0}$$

$$D_{2} = XS_{1}\bar{S}_{0} + Y\bar{S}_{1}\bar{S}_{0}$$

$$D_{3} = XS_{1}S_{0} + Y\bar{S}_{1}S_{0}$$

Thank Voll