

Reinforcement Learning PPO GRPO DAPO

Name: Hongbo Wang

25-04-14

Contents

- Basic Concepts
- PPO
- GRPO
- DAPO

Agent
Observation
State
Reward

Environment

Agent: Agent, adopts a policy

State: Current state

Action: Action

Policy: Policy Π , the probability

of taking each action

Reward: Reward

Trajectory: Multi-step trajectory

Return: Cumulative reward of

the trajectory

The goal of reinforcement learning is to train a policy that maximizes the expected return over all possible trajectories, i.e., to maximize the average return across the entire path.

Agent: LLM

State: Current output token

state

Action: Output token

Policy: Policy Π , how to select the output token

Reward: reward model **Trajectory**: Complete

output sentence

The goal of reinforcement learning is to train a policy that maximizes the expected return over all possible trajectories, i.e., to maximize the average return across the entire path.

Expected Value Calculation Formula

$$E(x)_{x \sim p(x)} = \sum_{x} x * p(x) \approx \frac{1}{n} \sum_{i=1}^{n} x \quad x \sim p(x)$$

Expectation Maximization Derivation

$$E(R(\tau))_{\tau \sim P_{\theta}(\tau)} = \sum_{\tau} R(\tau)P_{\theta}(\tau) \qquad \nabla E(R(\tau))_{\tau \sim P_{\theta}(\tau)} = \nabla \sum_{\tau} R(\tau)P_{\theta}(\tau) \qquad \mathbf{1}$$

$$= \sum_{\tau} R(\tau)\nabla P_{\theta}(\tau) \frac{P_{\theta}(\tau)}{P_{\theta}(\tau)} \qquad \mathbf{2}$$

$$= \sum_{\tau} P_{\theta}(\tau)R(\tau)\frac{\nabla P_{\theta}(\tau)}{P_{\theta}(\tau)} \qquad \mathbf{2}$$

$$= \sum_{\tau} P_{\theta}(\tau)R(\tau)\frac{\nabla P_{\theta}(\tau)}{P_{\theta}(\tau)}$$

$$= \sum_{\tau} P_{\theta}(\tau)R(\tau)\frac{\nabla P_{\theta}(\tau)}{P_{\theta}(\tau)}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n})\frac{\nabla P_{\theta}(\tau^{n})}{P_{\theta}(\tau^{n})} \qquad \mathbf{3} \qquad \nabla \log f(x) = \frac{\nabla f(x)}{f(x)}$$

$$= \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P_{\theta}(\tau^{n}) \int_{\mathbb{R}} \mathbf{5} \qquad \tau \sim P_{\theta}(\tau)$$

Expectation Maximization Derivation

$$= \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P_{\theta}(\tau^n)$$

$$= \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log \prod_{t=1}^{T_n} P_{\theta}(a_n^t | s_n^t)$$

$$= \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla \log P_{\theta}(a_n^t | s_n^t)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log P_{\theta}(a_n^t | s_n^t)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log P_{\theta}(a_n^t | s_n^t)$$

Common Forms of Loss Functions

$$Loss = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \log \frac{P_{\theta}(a_n^t | s_n^t)}{N}$$

Replace with Advantage Function

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log P_{\theta}(a_n^t | s_n^t)$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} A_{\theta}^{GAE}(s_n^t, a_n^t) \nabla \log P_{\theta}(a_n^t | s_n^t)$$

 $A_{\theta}(s,a) = Q_{\theta}(s,a) - V_{\theta}(s)$ 在state s下,做出Action a,比其他动作能带来多少优势。

$$A_{\theta}(s_t, a) = r_t + \gamma * V_{\theta}(s_{t+1}) - V_{\theta}(s_t)$$

$$A_{\theta}^{GAE}(s_t, a) = (1 - \lambda)(A_{\theta}^1 + \lambda * A_{\theta}^2 + \lambda^2 A_{\theta}^3 + \cdots)$$

PPO

Add Reference Policy
$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} A_{\theta}^{GAE}(s_n^t, a_n^t) \overline{V \log P_{\theta}(a_n^t | s_n^t)}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} A_{\theta'}^{GAE}(s_n^t, a_n^t) \frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)} \nabla \log P_{\theta}(a_n^t | s_n^t)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{I_n} A_{\theta'}^{GAE}(s_n^t, a_n^t) \frac{\nabla P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)}$$

$$Loss_{ppo} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} A_{\theta'}^{GAE}(s_n^t, a_n^t) \frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)} + \beta K L(P_{\theta}, P_{\theta'})$$

$$E(R(\tau))_{\tau \sim P_{\theta}(\tau)} = \sum_{\tau} R(\tau) P_{\theta}(\tau)$$

$$Loss_{ppo} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} A_{\theta'}^{GAE}(s_n^t, a_n^t) \frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)} + \beta K L(P_{\theta}, P_{\theta'})$$

 $A_{\theta}(s,a) = Q_{\theta}(s,a) - V_{\theta}(s)$ 在state s下,做出Action a,比其他动作能带来多少优势。

$$A_{\theta}(s_t, a) = r_t + \gamma * V_{\theta}(s_{t+1}) - V_{\theta}(s_t)$$

$$A_{\theta}^{GAE}(s_t, a) = (1 - \lambda)(A_{\theta}^1 + \lambda * A_{\theta}^2 + \lambda^2 A_{\theta}^3 + \cdots)$$

Limitation of PPO

Q 用户问题: 什么是数据库?

A1 **大模型回答1:** 数据库是一个有组织的数据集合, 允许高效的数据存储、检索和管理。

A2 **大模型回答2:** 数据库用于存储数据。

Reward Score1

9.7

Reward Score2

Reward 模型

In the reward model, a sentence outputs a reward value, and the previous values are **all 0**. Using 0 to calculate the advantage function does not make much sense.

GRPO Group-relative Policy Optimization

GRPC	什么	是	数据库	?	数据库	用于	存储	数据	۰			
GIVE	什么	是	数据库	?	数据库	是	一个	有	组织	的	数据	集合
	什么	是	数据库	?	数据库	是	用来	高效	存取	数据	的	软件

3.8

5.2

6.1

Score

数据库	用于	存储	数据	0			
-1.06	-1.06	-1.06	-1.06	-1.06			
数据库	是	一个	有	组织	的	数据	集合
0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
数据库	是	一个	有	组织	的	数据	集合
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92

$$r_1 = 3.8$$
 $r_2 = 5.2$ $r_1 = 6.1$

$$\widetilde{r}_i = \frac{r_i - mean(\mathbf{r})}{std(\mathbf{r})}$$

$$\widetilde{r_1} = -1.06$$
 $\widetilde{r_2} = 0.14$ $\widetilde{r_3} = 0.92$

Compared to PPO, GRPO no longer requires using the entire action; it only uses the reward to calculate the advantage function, and no longer needs a value model.

GRPO Group-relative Policy Optimization

GRPO can calculate the advantage function without the need for a value model.

GRPO Group-relative Policy Optimization

$$Loss_{ppo2} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} min \left[A_{\theta'}^{GAE}(s_n^t, a_n^t) \frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)}, clip(\frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)}, 1 - \varepsilon, 1 + \varepsilon) A_{\theta'}^{GAE}(s_n^t, a_n^t) \right)$$

$$J_{GRPO} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} min \underbrace{A_{\theta'}^{GRPO}(s_n^t, a_n^t) \frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)}}_{P_{\theta'}(a_n^t | s_n^t)}, clip(\underbrace{\frac{P_{\theta}(a_n^t | s_n^t)}{P_{\theta'}(a_n^t | s_n^t)}}_{P_{\theta'}(a_n^t | s_n^t)}, 1 - \varepsilon, 1 + \varepsilon)A_{\theta'}^{GRPO}(s_n^t, a_n^t)) - \beta KL(P_{\theta}, P_{\theta'})$$

 $\mathcal{J}_{\mathrm{GRPO}}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\mathrm{old}}}(\cdot | q)}$

Standard Formula in Papers

$$\left[\frac{1}{G}\sum_{i=1}^{G}\frac{1}{|o_i|}\sum_{t=1}^{|o_i|}\left(\min\left(r_{i,t}(\theta)\hat{A}_{i,t}, \operatorname{clip}\left(r_{i,t}(\theta), 1-\varepsilon, 1+\varepsilon\right)\hat{A}_{i,t}\right) - \beta D_{\mathrm{KL}}(\pi_{\theta}||\pi_{\mathrm{ref}})\right)\right],$$

where

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,< t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,< t})}.$$

Limitation of GRPO Introdution to DAPO

1.The entropy decreases too quickly, leading to rapid convergence and entropy collapse, which causes many parameters to remain suboptimal —

set a higher Clip ε_{high}

2.Dynamic Sampling -- In the group response for reward sampling, all correct = all incorrect

$$\text{s.t.} \quad 0 < \left| \{o_i \mid \texttt{is_equivalent}(a, o_i)\} \right| < G. \qquad R(\hat{y}, y) = \begin{cases} 1, & \texttt{is_equivalent}(\hat{y}, y) \\ -1, & \texttt{otherwise} \end{cases}$$

什么	是	数据库	?	数据库	用于	存储	数据	0				(1)	
什么	是	数据库	?	数据库	是	一个	有	组织	的	数据	集合	1	Delete
什么	是	数据库	?	数据库	是	用来	高效	存取	数据	的	软件	1	Sample

3.Imbalanced reward for long and short sentences -- Token-level optimization

DAPO

(Decoupled Clip and Dynamic Sampling Policy **Optimization**)

- 1. The entropy decreases too quickly, leading to rapid convergence and entropy collapse, which causes many parameters to remain suboptimal — set a higher Clip ε_{high}
- > 2.Dynamic Sampling -- In the group response for reward sampling, all correct = all incorrect
- 3.Imbalanced reward for long and short sentences -- Token-level optimization

$$\begin{split} \mathcal{J}_{\text{GRPO}}(\theta) &= \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ & \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left(\min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{ clip} \Big(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon \Big) \hat{A}_{i,t} \right) - \beta D_{\text{KL}}(\pi_{\theta}||\pi_{\text{ref}}) \right) \right], \\ \mathcal{J}_{\text{DAPO}}(\theta) &= \quad \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ & \left[\quad \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \quad \min _{\bullet} \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{ clip} \Big(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \Big) \hat{A}_{i,t} \right) \right] \\ & \text{s.t.} \quad 0 < \left| \left\{ o_i \mid \text{is_equivalent}(a, o_i) \right\} \right| < G. \quad \blacktriangleright \quad \mathbf{2} \\ & R(\hat{y}, y) = \begin{cases} 1, & \text{is_equivalent}(\hat{y}, y) \\ -1, & \text{otherwise} \end{cases} \end{split}$$

信息检索研究室

Information Retrieval Laboratory of DVI

(Decoupled Clip and Dynamic Sampling Policy Optimization)

```
\min \left( r_{i,t}(\theta) \hat{A}_{i,t}, \ \mathrm{clip} \Big( r_{i,t}(\theta), 1 - \varepsilon_{\mathsf{low}}, 1 + \varepsilon_{\mathsf{high}} \Big) \hat{A}_{i,t} \right)
```

```
actor_rollout_ref:
   actor:
    clip_ratio_low: 0.2
   clip_ratio_high: 0.28
```

```
pg_losses1 = -advantages * ratio
pg_losses2 = -advantages * torch.clamp(ratio, 1 - cliprange_low, 1 + cliprange_high)
pg_losses = torch.maximum(pg_losses1, pg_losses2)
```

```
\text{s.t.} \quad 0 < \Big| \{o_i \mid \texttt{is\_equivalent}(a, o_i)\} \Big| < G.
```

```
data:
    gen_batch_size: 1536
    train_batch_size: 512
algorithm:
    filter_groups:
        enable: True
        metric: acc # score / seq_reward / seq_final_reward / ...
        max_num_gen_batches: 10 # Non-positive values mean no upper limit
```

DAPO(Decoupled Clip and Dynamic Sampling Policy Optimization)

In terms of inference performance, DAPO outperforms the GRPO framework's Deepseek-R1-Qwen-32B, with a **50% reduction in resources**.

Reference

æ

RethinkFun ■ 发消息 原IBM人工智能产品Tech Lead,Data Scientist

₹ 充电

三 已关注 2.6万

零基础学习强化学习算法: ppo

https://www.bilibili.com/video/BV1iz421h7gb/?spm_id_from=333.13 91.0.0&vd_source=6374cb49b8a20f29e86ab9de12471afa

代码实现大模型强化学习(PPO),看这个视频就够了 https://www.bilibili.com/video/BV1rixye7ET6?spm_id_from=333.788. videopod.sections&vd_source=6374cb49b8a20f29e86ab9de12471afa

DeepSeek-GRPO

hhttps://www.bilibili.com/video/BV1enQLYKEA5/?spm_id_from=333. 1391.0.0&vd_source=6374cb49b8a20f29e86ab9de12471afa

[文章解读]字节跳动与清华发布强化学习新算法DAPO,性能超越 DeepSeek-R1(GRPO)

https://www.bilibili.com/video/BV1gmXFYxEKT/?spm_id_from=333.1 391.0.0&vd_source=6374cb49b8a20f29e86ab9de12471afa

Thanks!

http://ir.dlut.edu.cn