<u>Zahlentheoné</u> ist die Mathematik der ganzen Zahlen. $Z = \{..., -2, -1, 0, 1, 2, ...\}$ $N = \{1, 2, 3,\}$

Diophantisae Gladungen

Gegeben a, b, $c \in \mathbb{N}$, gesnelt x, $y \in \mathbb{Z}$ suit: ax + by = cUse schriben Lössengen als Zahlenpaer (x/y).

Beispiele :

$$x + 3y = 10$$
 $(x|y) = (7/1), (4/2), (1/3)$
 $3x + 7y = 1$ $(x|y) = (-2/1), (5/-2)$
 $5x + 5y = 1$ Kenie Lösmig, de linke Seite durch 5 teilbar, rechte nicht.

Teiler und Primzahlen

Defunton:

- 1) Seien X e Z, n e IN. k heißt Teiler von x, geschneten k|x, falls es em q e Z gilt, so doss giet: X = q k
- 2) Seien a, b & IN. Dann ist der größte gemensame Teiler von a und b definiert durch:

 97 (a,b) = max { k & IN | k | a x k | b }

Beispiele:

$$3|12$$
, denn $13 = 3 \cdot 4$
 $2|-8$, denn $-8 = 2 \cdot (-4)$
 $a = 70$, $b = 98$
Teiler von $a = \{1,2,5,7,10,14,35,70\}$
Teiler von $b = \{1,2,7,14,49,98\}$
geneuisame Teiler von a med $b = \{1,2,7,14\}$
 $25T(a,b) = 14$

Definition:

Enie matürliche Zahl p>1 haipt Primzahl oder prim, wenn sie genan zwa. Teiler hat: die 1 mud sich sellet.

Baspiele:

2,3,5,7,41,43,47,44,23,...

Hauptsalz der elementaren Zallentheorie

Jede nahürliche Zahl n>1 lesst sich, bis auf die Keihenfolge der Faktoren, enidentig als Produkt von Primzahlen darstellen. Buspiele.

$$\begin{array}{l}
70 = 2.5.7 \\
98 = 2.7.7
\end{array}$$

$$360 = 2.2.2.3.3.5$$

$$756 = 2.2.3.3.3.7$$

$$357 (360,756) = 2.2.3.3 = 36$$

Der ggT(a, b) besteht aus allen gemeinsamen Primfaktoren von a und b. Also: Jeder gemenisame Teiler von a und 6 ist auch Teiler von 95T(6,6).

Definition: Evia Audruck der Form ax + by mit a, b & N und x, y & Z nennen wir Vieyachsumme von a mud b.

Salz

Ist k ein gemeinisamer Teiler von a und b, dann teilt k auch jede Vielfachsumme von a und b, also: kla n klb => klax+by) für a,b,ke IN, x,y eZ

Bevers:

$$k|a = 3k_1 \in \mathcal{U}$$
: $a = q_1 \cdot k$

$$k|b = 3k_2 \in \mathcal{U}$$
: $b = q_2 \cdot k$

$$\Rightarrow k \mid (ax + by) \qquad q.e.d.$$

Besitet die Flaichung ax + by = c enie Lösung (x1y), so folyt: 95T (a,b) | c Bever:

Giet ax + by = c, dann ist c eine Vielgachsumme von a mud b. Nach dam letzten Satz forget also: ggT (a, b) | c 9.c.d.

Salz (Teiler mit Rest)

Sein a, be N. Dann gibt es endentz bestimmte Zahlen q, r e IN. , so dass zill: a = q.b+r mit 0 < r < b.

Baspiele:

$$a = 13, b = 4 : 13 = 3.4 + 1$$

Satz

Sain a, b \in IN und a = q b+r (Tailm unit Rest). Dam set: qqT(a,b) = qqT(b,r)

Beneis:

Wir zeigen zunächst: $99T(a,b) \leq 99T(b,r)$

dann: ggT (b,r) ≤ ggT (a,b)

Ans (I) and (II) folgt dam die Behanptung

(I):

$$GST(a,b) | a$$
 $GST(a,b) | a$
 $GST(a,b) | a - q \cdot b = r$
 $GST(a,b) | r$
 $GST(a,b) |$

Der Euklidsche Algorithmus zur Bestimmung des 99T

$$a = 126$$
, $b = 98$
 98
 28
 28
 126
 98
 28
 14
 28
 14
 28
 14
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38
 38

$$a = 28, b = 52$$
 52
 28
 28
 28
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29
 29

Satz

En beliebig gewählten natürlichen Zahlen a, lo gibt es ganze Zahlen x, y, so dass gill! ax + loy = ggT(a, b)

Bena's:

Beschrebung enies Verfahrens, wie x und y gefunden weden (an oniem Beispiel).

Erweiterter Enklidscher Algorithmus

$$A = M0$$
, $b = 32$
 $M0 = 3 \cdot 32 + M4$
 $32 = 2 \cdot M4 + 4$
 $M4 = 3 \cdot 4 + 2$
 $M4 = 3 \cdot 4 + 2$
 $M4 = 3 \cdot 4 + 2$
 $M5 = 2 \cdot 2 + 0$
 $M5 = 32 \cdot 3 + 7 \cdot (100 - 3 \cdot 32) = 7 \cdot 100 - 24 \cdot 32$
 $M6 = 3 \cdot 32 + 7 \cdot 100 - 24 \cdot 32$
 $M6 = 3 \cdot 32 + 7 \cdot 100 - 24 \cdot 32$
 $M6 = 3 \cdot 32 + 7 \cdot 100 - 24 \cdot 32$
 $M6 = 3 \cdot 32 + 7 \cdot 100 - 24 \cdot 32$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$
 $M6 = 3 \cdot 4 + 2 \cdot 100$

Ergebnis:
$$M0.7 + 32(-24) = 2$$

 $a \cdot x + b \cdot y = 95^{T(a,b)}$

Tabelleuschreibweise:

Wateres Baspiel:

$$a = 99$$
, $b = 78$
 $a \quad b \quad 9 \quad v \quad \times \quad 7$
 $99 \quad 78 \quad 1 \quad 21 \quad -11 \quad \underline{14}$
 $78 \quad 21 \quad 3 \quad 15 \quad 3 \quad -11$
 $21 \quad 15 \quad 1 \quad 6 \quad -2 \quad 3$
 $15 \quad 6 \quad 2 \quad 3 \quad 1 \quad -2$
 $15 \quad 6 \quad 2 \quad 3 \quad 1 \quad -2$
 $15 \quad 6 \quad 2 \quad 3 \quad 1 \quad -2$
 $15 \quad 6 \quad 3 \quad 2 \quad 0 \quad 0 \quad 1$
 $15 \quad 6 \quad 3 \quad 2 \quad 0 \quad 0 \quad 1$

Satz

Seien a, b, c & N, x, y & Z. Dam filt: ax+by = c hat lösung => 93T(0,b) | c Bueis:

, =): früher Satz

gat(a,b) | c => Blcek: gat(a,b)·k=c => axok + byok= gat(a,b)·k=c => (kx. 1 ky.) ist Lösung. q.e.d.

Salz

- (i) Ist (xolyo) Lösung von ax+by=c, dann sind alle Zahlupaere (xly) = (xo+kb) yo-ka) mit ke Z Lösunga.
- (ii) Gilt gst (a, b) = 1, dann sind dadurch alle Lösungen gezeben.

Barcis:

(ii): Sa (x/y) irgendence Lösung und 99T(a,b) =1.

$$0 = C - C = (ax + by) - (ax_0 + by_0) = a(x - x_0) + b(y - y_0)$$

 $\Rightarrow \alpha(x-x_0) = -b(y-y_0). \quad (A)$

Da qqT(a,b)=1, sind alle Primfaktoren von a in $(y-y_0)$ enthalten.

(2) emisetzen m (1):
$$a(x-x_0) = -b(y_0 + ak - y_0) = -bak$$
 |: q

q.e.d.