Problem

Let S_1 and S_2 be subsets of a k-vector space V such that $S_1 \subseteq S_2$. If S_1 is linearly independent and S_2 generates V, then there exists a basis β for V such that $S_1 \subseteq \beta \subseteq S_2$.

Solution

Given $S_1 \subseteq S_2 \subseteq V$ where V is a k-vector space. S_1 is linearly independent. S_2 generates V. Define

$$X := \{ T \mid S_1 \subseteq T \subseteq S_2, T \text{ is linearly independent } \}$$

Define the relation \leq for G, $\mathcal{H} \subseteq V$ as: $G \leq \mathcal{H} \iff G \subseteq \mathcal{H}$ Verify that $\langle X, \leq \rangle$ is a *poset*:

- $A \subseteq A \ \forall A \in X$
- For $A, B \in X$, if $A \subseteq B$ and $B \subseteq A$, then A = B
- For A, B, $C \in X$, if $A \subseteq B$, $B \subseteq C$, then $A \subseteq C$

Let $C \subseteq X$ be an arbitrary chain. Define

$$M := \bigcup_{T \in C} T$$

By definition, $\forall G, \mathcal{H} \in C$, either $G \subseteq \mathcal{H}$ or $\mathcal{H} \subseteq G$. $\forall T \in C$ we must have that $T \subseteq M$ by definition of M. But $S_1 \subseteq T \ \forall T \in X \implies S_1 \subseteq T \ \forall T \in C \implies S_1 \subseteq \bigcup_{T \in C} T = M$ Also, $T \subseteq S_2 \ \forall T \in X \implies T \subseteq S_2 \ \forall T \in C \implies M = \bigcup_{T \in C} T \subseteq S_2$

Therefore, $S_1 \subseteq M \subseteq S_2$

Claim

M is linearly independent.

Proof. Suppose $A = \{x_1, x_2, \dots, x_n\}$ be an arbitrary finite subset of M for some $n \in \mathbb{N}$. Since $M = \bigcup_{n \in \mathbb{N}} T_n$ for $\exists T_n T_n \in C$ (not necessarily distinct) such that

Since $M = \bigcup_{T \in C} T$, so $\exists T_1, T_2, ..., T_n \in C$ (not necessarily distinct) such that

 $x_1 \in T_1, x_2 \in T_2, \dots, x_n \in T_n$. Since $T_i \in C \ \forall i$, so T_i 's are totally ordered, as C is totally ordered.

$$\therefore T_1 \cup T_2 \cup \cdots \cup T_n = T_j \text{ for some } j \in \{1, 2, \dots, n\} \implies x_1, x_2, \dots, x_n \in T_j$$

 $\implies A \subseteq T_j \implies A$ is linearly independent.

Therefore, we have that any finite subset of *M* is linearly independent.

By definition of linear independence, we conclude that M is linearly independent.

Hence, $M \in X$. Also, by construction of M, $T \leq M \ \forall \ T \in C$. Thus any chain in X is bounded above. So, by Zorn's lemma, X has a maximal element, say \mathcal{B} .

We now have to show that \mathcal{B} spans V.

For this it is enough to show that $S_2 \subseteq \langle \mathcal{B} \rangle$.

This is because of the following reason: If $S_2 \subseteq \langle \mathcal{B} \rangle$ then every element of S_2 can be written as a linear combination of some elements of S_2 . But since all elements of S_2 can be expressed as a linear combination of some elements of S_2 can be expressed as a linear combination of some elements of S_3 . But since all elements of S_4 can be expressed as a linear combination of some elements of S_3 .

On the contrary, suppose that $\exists v \in S_2 \setminus \langle \mathcal{B} \rangle$. Now we let $B' = \mathcal{B} \cup \{v\}$. By construction, $S_1 \subseteq B' \subseteq S_2$.

Claim

B' is linearly independent.

Proof. Say, B' is linearly dependent. By definition, $\exists v_1, v_2, \ldots, v_n \in B' = \mathcal{B} \cup \{v\}$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in k$ (not all o) for some $n \in \mathbb{N}$, such that $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0$.

If $v_i \neq v$ for any i then $v_1, v_2, \ldots, v_n \in \mathcal{B}$ which is linearly independent $\implies \lambda_i = 0 \ \forall i$, which contradicts our assumption that λ_i 's are not all o. So, without loss of generality, we let $v_1 = v$.

Then $\lambda_1 \neq 0$. If $\lambda_1 = 0$, then $\lambda_2 v_2 + \cdots + \lambda_n v_n = 0$. But $v_2, \ldots, v_n \in \mathcal{B} \implies \lambda_2 = \cdots = \lambda_n = 0 = \lambda_1$, which contradicts our assumption that λ_1 's are not all 0.

$$\therefore \lambda_1 v + \lambda_2 v_2 + \dots + \lambda_n v_n = 0 \implies v = \frac{-\lambda_2}{\lambda_1} v_2 + \dots + \frac{-\lambda_n}{\lambda_1} v_n.$$

But this is impossible as $v \notin \langle \mathcal{B} \rangle$. So, our assumption that \mathcal{B}' is linearly dependent is incorrect.

Hence, B' must be linearly independent.

So we have that $S_1 \subseteq B' \subseteq S_2$ and B' is linearly independent. So, $B' \in X$. But this contradicts the maximality of \mathcal{B} in X, because by construction $\mathcal{B} \subseteq B'$. This suggests that $S_2 \setminus \langle \mathcal{B} \rangle = \phi \implies S_2 \subseteq \mathcal{B}$. But we have already argued that $S_2 \subseteq \mathcal{B} \implies V = \langle \mathcal{B} \rangle$. So, \mathcal{B} is linearly independent and $V = \langle \mathcal{B} \rangle$.

By definition \mathcal{B} is a basis of V, and by construction, $S_1 \subseteq \mathcal{B} \subseteq S_2$.