heat-diffusion

https://github.com/acciptris/heat-diffusion

1 Equations

1.1 Real cell governing equation

Diffusion equation is given as,

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

Governing equation can be found by,

$$\iiint_{\Omega} \frac{\partial T}{\partial t} d\Omega = \iiint_{\Omega} \alpha \nabla^2 T d\Omega$$

which when discretized using an explicit scheme comes out to be,

$$\frac{T^{n+1} - T^n}{\Delta t} = \alpha \left(\frac{T^n_{i+1,j} + T^n_{i-1,j} - 2T^n_{i,j}}{(\Delta x)^2} + \frac{T^n_{i,j+1} + T^n_{i,j-1} - 2T^n_{i,j}}{(\Delta y)^2} \right)
T^{n+1} = T^n + \alpha \Delta t \left(\frac{T^n_{i+1,j} + T^n_{i-1,j} - 2T^n_{i,j}}{(\Delta x)^2} + \frac{T^n_{i,j+1} + T^n_{i,j-1} - 2T^n_{i,j}}{(\Delta y)^2} \right)$$
(1)

Equation 1 is applicable in all the real cells in the domain.

1.2 Fictitious cell governing equation

 T_R and T_F are the average value of temperature in a real cell and an adjoining fictitious cell respectively. T_b is the temperature at the common face of the real and fictitious cell which is defined by the boundary condition. T_R , T_F and T_b can be approximated as,

$$\frac{T_F + T_R}{2} = T_b$$

$$T_F = 2T_b - T_R \tag{2}$$

Equation 2 can be used to update the temperature in the fictitious cells.

1.3 Steady State Convergence Residual

 T_{rms} is calculated after every time step to find the change in solutions. A very low value of T_{rms} suggests that steady state has been achieved. T_{rms} is defined as,

$$T_{rms} = \sqrt{\frac{\sum_{i,j} \left(T_{i,j}^{n+1} - T_{i,j}^{n}\right)^{2}}{N^{2}}}$$
 (3)

2 Numerical Algorithm

Algorithm 1 Numerical Algorithm

- 1: Choose the number of divisions of each side of the domain (N).
- 2: Choose $\Delta x = 1/N$, $\Delta y = 1/N$ and Δt .
- 3: Create arrays of size $(N+2) \mathbf{x} (N+2)$ to store the following values.
 - Temperature at n^{th} time level (T^n)
 - Temperature at $(n+1)^{th}$ time level (T^{n+1})
- 4: Initialize the values in real cells with some initial value $(T_{initial})$, i.e. for all $2 \le i \le N+1$ and $2 \le j \le N+1$, $T_{i,j}^n = T_{initial}$.
- 5: Initialize the values in fictitious cells using equation 2.
- 6: Initialize T_{rms} with a value greater than convergence criteria (C).
- 7: while $T_{rms} > C$ do
- 8: Find T^{n+1} for all real cells using equation 1.
- 9: Find T^{n+1} for all fictitious cells using equation 2 and T^{n+1} at real cells.
- 10: Calculate T_{rms} using values of all the cells and equation 3.
- 11: Replace T^n with T^{n+1} .
- 12: end while
- 13: **return** T^{n+1}