

Componente formativo

Ejecución del mantenimiento de productos electrónicos

Breve descripción:

En este componente formativo se abordan los aspectos relativos a la ejecución del mantenimiento de productos electrónicos, donde se expondrán desde los tipos de fallas típicas en un circuito electrónico hasta las generalidades del mantenimiento preventivo de un equipo nuevo que se pone en funcionamiento.

Área ocupacional:

Procesamiento, fabricación y ensamble

Junio 2023

Tabla de contenido

Introducción	3
Análisis de pruebas del circuito electrónico	4
2. Mantenimiento preventivo	6
2.1 Rutinas de limpieza	8
2.2 Aplicación	11
2.3 Recomendaciones de cuidado	12
Síntesis	14
Glosario	15
Material complementario	16
Referencias bibliográficas	18
Créditos	19

Introducción

El mantenimiento es uno de los procesos fundamentales que se debe realizar en un equipo, cualquiera que sea, pues permite prolongar la vida útil del mismo y su correcto funcionamiento. En el siguiente video se expone cómo dicho ejercicio surge desde que se diseña un producto.

Video 1. Ejecución del mantenimiento de productos electrónicos

https://www.youtube.com/watch?v=0PwWUVAVtjA&t=4s&ab_channel=Ecosiste madeRecursosEducativosDigitalesSENA

Viero 1. Síntesis del video: Ejecución del mantenimiento de productos electrónicos

El mantenimiento es un proceso que surge desde el momento que se elabora un producto, siendo requerido para alargar su vida útil, aplicado por tiempo de uso o por las condiciones ambientales en donde se encuentra hasta producir fallas en su funcionamiento o la pérdida total del producto o artefacto electrónico.

1. Análisis de pruebas del circuito electrónico

Cuando se practica una prueba a cualquier tipo de sistema, el objetivo de esta es determinar el estado o el correcto funcionamiento del mismo. Para ello, es necesario analizar los datos obtenidos en la prueba ejecutada y contar con toda la documentación correspondiente del diseño del producto para poder determinar los parámetros normales de funcionamiento y las posibles anomalías en cada caso.

El análisis de pruebas también puede arrojar indicadores de proceso los cuales brindan información de errores o anomalías presentadas dentro de la producción que no pertenecen al diseño como tal.

Los tipos de fallas presentados en un equipo electrónico pueden clasificarse de la siguiente forma.

Figura 1. Tipos de fallas

"A" falla en general del circuito provocadas por errores de ensamble o errores como tal de diseño.

"B" fallas presentadas dentro de cada componente ya sea pasivo o activo.

A nivel eléctrico podemos encontrar tres tipos de fallas que se pueden observar dependiendo de la característica presentada dentro de la media.

- a) Cortocircuitos entre dos puntos de un circuito o dos pines de un componente. circuito o dos pines de un componente.
- b) Fallas del tipo circuito abierto, donde en un circuito no presenta conexión eléctrica entre dos puntos en donde debería haber continuidad eléctrica.
- c) Fugas de corriente o de voltaje por anomalías dentro de los componentes como tal o la presencia de resistencias eléctricas debido a residuos contaminantes producto del ensamble.

A la hora de determinar el funcionamiento de un sistema o componente, básicamente se pueden practicar dos pruebas una de encendido sin carga y otra de encendido con carga, esto si el sistema alimenta algún tipo de carga; sin embargo, se puede considerar un tercer tipo de prueba que se ejecuta sin energizar la tarjeta como tal, a este tipo de pruebas se le conoce como prueba VI.

Estas pruebas se ejecutan en sistemas extremadamente sensibles a las descargas electrostáticas o donde no se tiene la fuente adecuada para su energización, a veces se les llama pruebas aisladas.

Documentación técnica

Tener la documentación técnica referente al diseño y el manual de operación y mantenimiento del mismo, debido a que estos documentos brindan los parámetros de funcionamiento normal y una guía para poder tomar las medidas correspondientes.

Puntos de prueba

Es necesario que el diseño cuente con un mínimo de puntos de prueba, los cuales son dispuestos por el diseñador de acuerdo a la naturaleza de su diseño. Se debe seguir rigurosamente los pasos sugeridos en cada prueba para poder ejecutarla correctamente y determinar el funcionamiento de la tarjeta sin averiarla.

Medidas a tomar

Tomando en cuenta la naturaleza del diseño como tal, será necesario, en cada caso, tomar medidas de voltaje y de corriente, de acuerdo con las especificaciones dadas dentro de la documentación técnica; sin embargo, no son las únicas variables eléctricas para medir en casos especiales, se pueden llegar a tomar medidas de frecuencia, potencia y temperatura.

2. Mantenimiento preventivo

A lo largo de la evolución de los procesos industriales, el mantenimiento ha tenido avances significativos reduciendo cada vez más la necesidad de hacer mantenimientos correctivos, y haciendo más uso frecuente de mantenimientos preventivos, los cuales en costes de materiales de repuestos mano de obra y tiempo de parada de las plantas son sustancialmente menores, tal como se aprecia en la siguiente figura.

Figura 6. Tipos de mantenimiento

En la industria actual, la mayoría de los fabricantes de aparatos eléctricos y electrónicos, brindan a los usuarios y técnicos de mantenimiento, la información necesaria para que estos mantenimientos sean realizados a tiempo, garantizando la vida útil de los equipos y su funcionamiento adecuado.

Existen diversos factores que determinan la frecuencia con la que debe realizarse un mantenimiento preventivo. Dos de ellos son los siguientes (ver siguiente figura).

Figura 7. Factores

Los fabricantes al desarrollar un nuevo equipo electrónico, generalmente realizan una serie de pruebas, teniendo en cuenta los factores anteriormente mencionados, entre otros, para determinar la vida útil de ciertas piezas mecánicas y/o electrónicas. Estas pruebas son ampliamente documentadas para generar los manuales de servicio y mantenimiento, donde se indica claramente la frecuencia, con las que deben hacerse.

En ámbitos industriales la documentación y seguimiento a los mantenimientos correctivos proveen la información necesaria para que el departamento de mantenimiento pueda establecer un cronograma de mantenimiento con las frecuencias a ejecutar. A nivel industrial, generalmente, los mantenimientos pueden ser semanales, mensuales, trimestrales o anuales.

2.1 Rutinas de limpieza

La contaminación en diferentes ámbitos y ambientes puede generar en los contactos eléctricos de un circuito procesos de sulfatación que afectan eléctricamente, modificando así el correcto funcionamiento de un equipo electrónico; en casos más extremos, esta sulfatación y contaminación de los contactos puede llegar a generar fallas más graves las cuales puedan ocasionar otras dentro del equipo. La limpieza, entonces, debe garantizar que sus contactos estén libres de todos estos contaminantes, además de ser lo suficientemente cuidadosa para no modificar ni la estructura y la química de los componentes de un equipo electrónico.

La limpieza también es importante no solamente al iniciar el proceso de mantenimiento si no después de realizar las respectivas reparaciones, ya que procesos como la soldadura generan contaminantes sobre los packs de los componentes provenientes de las resinas fundentes que pueden generar contactos indeseados, capacitancia, entre otros problemas muy comunes, los cuales pueden llegar a modificar el buen funcionamiento de un equipo.

A continuación, se presentan algunos productos de limpieza.

Alcohol isopropílico

El producto por excelencia a utilizar generalmente es alcohol isopropílico, el cual es un tipo de alcohol muy particular, que tiene la capacidad de remover grasas provenientes de los fundentes de la soldadura, pero sin ser lo suficientemente abrasivo como para dañar la estructura de la tarjeta o el cuerpo plástico de un componente; también posee una característica de operación en menor tiempo que otros tipos de alcoholes.

En el mercado podemos encontrar envasados algunos tipos de limpiadores, que poseen componentes desengrasantes para la limpieza de tarjetas y componentes, pero el observar en detalle el componente principal de estos limpiadores casi siempre es el alcohol isopropílico.

Aire comprimido

En la industria del mantenimiento de computadores es común encontrar envasado aire comprimido que se utiliza para la limpieza de polvos sobre las tarjetas de los servidores y computadores.

Este aire comprimido debe ser aplicado con precaución y las recomendaciones del fabricante, para evitar generar daños estructurales en la tarjeta o desprender componentes accidentalmente. Un pequeño inconveniente con este elemento, es que genera grandes cantidades de energía estática; hoy en día se consiguen productos comerciales que corrigen ese problema, y vienen indicados como antiestáticas.

Limpiadores de contacto

Comercialmente también se consiguen limpiadores de contactos, que básicamente son productos petroquímicos con cierto grado de corrosión para limpiar los contactos tanto de equipos eléctricos como electrónicos.

Con estos productos se recomienda tener especial cuidado ya que algunos pueden llegar a afectar las capas de antisolder de una tarjeta impresa.

Ambientes con una elevada humedad relativa, o cercanos al nivel del mar, tienden generar cúmulo de extrema oxidación que deteriora las partes móviles de un equipo. Una adecuada lubricación previene estos problemas.

De igual forma, la ubicación también es fundamental a nivel eléctrico, ya que máquinas eléctricas móviles tales como motores solenoides y generadores, con una pobre o inexistente ubicación, requerirá de un esfuerzo mecánico mayor, lo cual eléctricamente se traduce en un requerimiento de corriente y un consumo de potencia mayor al nominal.

En términos generales los lubricantes utilizados son hechos todos a base de aceites minerales, ya que no son buenos conductores, lo que los hace ideales para no producir falsos contactos o cortocircuitos, resistencias o capacitancias parasitas dentro de los equipos electrónicos.

En algunos casos estos aceites minerales cumplen una doble función, además de lubricar son buenos conductores térmicos dando lugar a que se utilicen como disipadores de calor, este fenómeno puede observarse ampliamente en sistemas de refrigeración complejos para servidores industriales.

2.2 Aplicación

La aplicación de diferentes productos ya sea para limpieza o lubricación dentro de equipos electrónicos tiene ciertas restricciones y prevenciones que no pueden ser pasadas por alto, ya que evitan daños inesperados dentro del equipo o accidentes indeseables.

Los productos de limpieza, desde el alcohol isopropílico hasta los limpia contactos, deben ser aplicados teniendo en cuenta las precauciones del fabricante y su ficha técnica. Estas no solamente buscan prevenir daños en el equipo sino accidentes que puedan afectar al personal técnico, pues estos productos químicos son nocivos para la salud y pueden llegar a ser extremadamente peligrosos si no se usan adecuadamente.

Cada producto cumple una función específica dentro de la limpieza, tal como se explica a continuación.

El alcohol isopropílico debe aplicarse con precaución, asegurando su correcta evaporación, ya que si queda acumulado dentro de los contactos y no se evapora por completo, se pueden llegar a generar situaciones de riesgo de cortocircuito al energizar el equipo nuevamente.

Los limpia contactos cuenta con un grado de corrosión tal que puede llegar a afectar las capas de antisolder y el marcado de los componentes sobre el impreso.

Se debe tener particular precaución con la aplicación del aire comprimido para la limpieza de polvo en equipos electrónicos. Comercialmente el bote de aire comprimido cuenta con un pequeño tubo en forma de pitillo, que ayuda a dirigir el aire hacia los puntos específicos donde requiere ser aplicado. Si este proceso se hiciera sin este elemento, podría ser riesgoso y llegar a remover componentes que no estén están adheridos a la superficie del impreso o generar contactos indeseables dentro de los circuitos.

Por otra parte, los lubricantes al tener una base grasa deben ser aplicados con las precauciones correspondientes, cubriendo o aislando cualquier contacto eléctrico de la tarjeta o los cables circundantes. A pesar de que el lubricante utilizado no es conductor por su base grasa puede llegar a atraer partículas que contaminen de manera no deseada los contactos del circuito electrónico.

2.3 Recomendaciones de cuidado

La garantía que los fabricantes pueden brindar a los consumidores acerca de los componentes, aparatos y sistemas electrónicos, no sólo depende de la calidad del ensamble y los insumos utilizados, en gran medida depende también del buen uso y adecuado manejo por parte del usuario.

Cualquier aparato o sistema electrónico cuenta generalmente con un manual de usuario, que advierte de las precauciones, modo de uso y las recomendaciones en su manipulación y operación.

Las garantías brindadas por las compañías productoras se encuentran blindadas por esta documentación que especifica esta correcta manipulación y cuidado de los equipos; en

caso de no cumplirse, la garantía es inoperable debido a una mala manipulación por parte del usuario

Es obligación, entonces, por parte de las compañías, generar una documentación tan clara, específica y completa que le permita al usuario un uso adecuado de su equipo electrónico, así como de su cuidado y mantenimiento mínimo preventivo; además de brindar al usuario información de las capacidades y límites del equipo que está operando, y de los riesgos y prevenciones que debe tener en cuenta.

Síntesis

A continuación, se describe el tema principal del Componente Formativo CF17 Ejecución del mantenimiento de productos electrónicos, con los aspectos relativos a la ejecución del mantenimiento de productos electrónicos, donde se exponen desde los tipos de fallas típicas en un circuito electrónico hasta las generalidades del mantenimiento preventivo de un equipo nuevo que se pone en funcionamiento y la utilización de las pruebas y su análisis para lograr determinar el estado real de los componentes. Además de establecer el mantenimiento preventivo como plan de contingencia para evitar problemas a corto, mediano y largo plazo.

Glosario

Capacitancias parásitas: son capacitancias que se forman entre dos elementos que no hacen parte del circuito electrónico, por ejemplo, entre una capa de material contaminante y una parte del cobre las pistas de la tarjeta.

Fuga: pequeña cantidad de corriente que recorre un semiconductor en estado no polarizado o en polarización inversa.

Impedancia: es la oposición que presenta un componente o un circuito al paso de la corriente alterna. Esta puede presentar componentes resistivas, capacitivas o inductivas, o las tres.

Prueba aislada: pruebas aplicadas a circuitos electrónicos sin que sean energizadas.

Material complementario

Tema	Referencia APA del material	Tipo	Enlace
Relación causa - efecto	OIT. (s.f.) Análisis de causa raíz: el diagrama de espina de pescado.	Sitio WEB	
Relación causa - efecto	GEO Tutoriales. (2017). Qué es el Diagrama de Ishikawa o Diagrama de Causa Efecto. Gestión de operaciones.	Sitio WEB	
Localización de fallas y diagnóstico	Fidestec. (2018). 5 formas de detectar cortocircuitos en placas electrónicas.	Sitio WEB	

Tema	Referencia APA del material	Tipo	Enlace
Localización de fallas y diagnóstico	Soriano, S. (2016). La Técnica de diagnóstico V-I. Actualizado en 2020.	Sitio WEB	

Referencias bibliográficas

FORUM. (2017). DIY circuit test points, what do people use?.https://forum.arduino.cc/t/diy-circuit-test-points-what-do-people-use/470436/2

NS Market (s.f). ABI

Elentronics.https://www.nsmarket.gr/en/index/manufacturers?row=190

Créditos

ECOSISTEMA DE RECURSOS EDUCATIVOS DIGITALES

Claudia Patricia Aristizabal	Responsable Equipo	del	Dirección General
Norma Constanza Morales Cruz	Responsable Línea de Producción	de	Regional Tolima - Centro de Comercio y Servicios

CONTENIDO INSTRUCCIONAL

Ángela Rocío Sánchez Ruíz	Experto Temático	Regional Distrito Capital - Centro de Electricidad, Electrónica y Telecomunicaciones
Miroslava González Hernández	Diseñador y Evaluador Instruccional	Regional Distrito Capital - Centro de Gestión Industrial

Sergio Augusto Ardila Cortes	Diseñador Instruccional	Regional Tolima - Centro de Comercio y Servicios
Rafael Neftalí Lizcano Reyes	Responsable equipo de Desarrollo Curricular Ecosistema de Recursos Educativos Digitales	Regional Santander - Centro Industrial del Diseño y la Manufactura
Jhon Jairo Rodríguez Pérez	Corrector de Estilo	Regional Distrito Capital - Centro de Diseño y Metrología
Viviana Esperanza Herrera Qiñonez	Asesora Metodológica	Regional Tolima - Centro de Comercio y Servicios

DISEÑO Y DESARROLLO DE RECURSOS EDUCATIVOS DIGITALES

José Jaime Luis Tang Pinzón	Diseñador Web	Regional Tolima - Centro de Comercio y Servicios
--------------------------------	---------------	--

Francisco Javier Vásquez Suárez	Desarrollador Fullstack	Regional Tolima - Centro de Comercio y Servicios
Gilberto Junior Rodríguez Rodríguez	Storyboard e Ilustración	Regional Tolima - Centro de Comercio y Servicios
Nelson Iván Vera Briceño	Producción Audiovisual	Regional Tolima - Centro de Comercio y Servicios
Oleg Litvin	Animador	Regional Tolima - Centro de Comercio y Servicios
Cristian Mauricio Otálora Clavijo	Actividad Didáctica	Regional Tolima - Centro de Comercio y Servicios

VALIDACIÓN RECURSO EDUCATIVO DIGITAL

Javier Mauricio Oviedo	Validación y Vinculación en Plataforma LMS	Regional Tolima - Centro de Comercio y Servicios
Gilberto Naranjo Farfán	Validación de Contenidos Accesibles	Regional Tolima - Centro de Comercio y Servicios