What is claimed is:

- 1. A method for evaluating a plurality of options comprising the steps of:
- a) selecting and accessing type 1 databases, DB_i^1 , each of said selected databases DB_i^1 including at least one option rating, $OR_i(x,n)$, for one of said options, x, with respect to a dimension n, where said option x can differ among said selected databases;
- b) selecting and accessing type 2 databases DB^2_j , each of said type 2 databases DB^2_i including at least one database rating $DR_i(i)$ for at least one of said databases DB^1_i ;
- c) associating weights, W_i with said databases DB¹_i, said weights W_i being calculated as a function of said database ratings DR_i(i); and
- d) calculating an overall rating R(m,n) for an option m with respect to said dimension n as a function of said weights W_i and option ratings $OR_i(m,n)$;
- e) repeating step d for each remaining one of said options for which there exists at least one option rating with respect to said dimension n; and
- f) generating a list of said options and associated overall ratings with respect to dimension n.
- 2. A method as described in claim 1 where said function of said weights W_i and said option ratings $OR_i(m,n)$ is:

$$R(m,n) = \sum_{i} (W_i \cdot Norm(OR_i(m,n)) / \sum_{i} W_i;$$

- a) where Norm(OR_i(m,n) is a normalization of said option ratings OR_i(m,n), and
- b) summation \sum_i ranges over all of said type 1 databases DB^1_i for which said option ratings $OR_i(m,n)$ are defined.
- 3. A method as described in claim 2 where said option ratings $OR_i(m,n)$ are normalized with respect to a maximum rating $OR_i(max)$ and a minimum satisfactory rating $OR_i(sat)$ for each of said selected type 1 databases DB^1_i .
- 4. A method as described in claim 2 where, if said option rating $OR_i(m,n)$ is less than said minimum satisfactory $OR_i(sat)$, said normalization, $Norm(OR_i(m,n))$ is set equal to a

predetermined value; said predetermined value being less than a normalized minimum satisfactory rating Norm(OR_i(sat)).

5. A method as described in claim 2 where said function of said database ratings $DR_{j}(i)$ is:

$$W_i = \sum_i (MW_i \cdot Norm(DR_i(i)) / \sum_i MW_i;$$

- a) where Norm(DR_j(i)) is a normalization of said database ratings DR_j(i), and
- b) summation \sum_j ranges over all of said type 2 databases DB^2_j for which said option ratings $DR_j(i)$ are defined; and
 - c) MW_j are master weights associated with said type 2 databases DB²_j.
- 6. A method as described in claim 5 where said database ratings DR_j^2 are normalized with respect to a maximum rating $DR_j(max)$ and a minimum satisfactory rating $DR_j(sat)$ for each of said selected type 2 databases DB_j^2 .
- 7. A method as described in claim 6 where, if one of said weights W_i is less than 0, said one weight is set equal to 0.
- 8. A method as described in claim 5 further comprising the step of adjusting said master weights MW_j based on a user's evaluation of said list.
- 9. A method as described in claim 8 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the mean rating, $\Sigma_m R(m,n) / M$ as a function of master weights MW_j , where M is the total number of options for which R(m,n') is defined;
 - c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating steps b and c for all remaining master weights MW_j.
- 10. A method as described in claim 8 where said adjusting step comprises the steps of:

- a) said user identifying a selected choice m';
- b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j)/\partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the maximum rating, max(R(m,n)) as a function of master weights MW_j ;
- c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
- d) repeating steps b and c for all remaining master weights MWi.
- 11. A method as described in claim 1 where said options are rated with respect to a plurality of dimensions, comprising the further step of repeating steps d and e for each remaining one of said dimensions.
- 12. A method as described in claim 11 further comprising the step of adjusting said master weights MW_i based on a user's evaluation of said list.
- 13. A method as described in claim 12 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m' and a critical dimension n';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j)/\partial MW_j'$; where $Fm', n'(MW_j)$ is the deviation of option rating R(m', n') from the mean rating, $\Sigma_m R(m, n')/M$, along said critical dimension n', as a function of master weights MW_j , where M is the total number of options for which R(m, n') is defined;
 - c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating steps b and c for all remaining master weights MW_j.
- 14. A method as described in claim 12 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the maximum rating, max(R(m,n)) as a function of master weights MW_j ;
 - c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating steps b and c for all remaining master weights MW_j.

(10018324.1)

- 15. A data processing system, said data processing system being programmed to:
 - a) select and access type 1 databases, DB_i^1 , each of said selected databases DB_i^1 including at least one option rating, $OR_i(x,n)$, for one of said options, x, with respect to a dimension n, where said option x can differ among said selected databases;
 - b) select and access type 2 databases DB_{j}^{2} , each of said type 2 databases DB_{j}^{2} including at least one database rating $DR_{j}(i)$ for at least one of said databases DB_{i}^{1} ;
 - c) associate weights, W_i with said databases DB¹_i, said weights W_i being calculated as a function of said database ratings DR_i(i); and
 - d) calculate an overall rating R(m,n) for an option m with respect to said dimension n as a function of said weights W_i and option ratings $OR_i(m,n)$;
 - e) repeat d for each remaining one of said options for which there exists at least one option rating with respect to said dimension n; and
 - f) generate a list of said options and associated overall ratings with respect to dimension n.
- 16. A system as described in claim 15 where said system is programmed to calculate said function of said weights W_i and said option ratings $OR_i(m,n)$ as:

$$R(m,n) = \sum_{i} (W_i \cdot Norm(OR_i(m,n)) / \sum_{i} W_i;$$

- a) where Norm(ORi(m,n) is a normalization of said option ratings ORi(m,n), and
- b) summation \sum_i ranges over all of said type 1 databases DB^1_i for which said option ratings $OR_i(m,n)$ are defined.
- 17. A system as described in claim 16 where said system is programmed to normalize said option ratings $OR_i(m,n)$ with respect to a maximum rating $OR_i(max)$ and a minimum satisfactory rating $OR_i(sat)$ for each of said selected type 1 databases DB^1_i .
- 18. A system as described in claim 16 where said system is further programmed to, if said option rating $OR_i(m,n)$ is less than said minimum satisfactory $OR_i(sat)$, set said

(10018324.1)

normalization, $Norm(OR_i(m,n))$ equal to a predetermined value; said predetermined value being less than a normalized minimum satisfactory rating $Norm(OR_i(sat))$.

19. A system as described in claim 16 where said system is programmed to calculate said function of said database ratings $DR_j(i)$ as:

$$W_i = \sum_j (MW_j \cdot Norm(DR_j(i)) / \sum_j MW_j;$$

- a) where Norm(DR_i(i)) is a normalization of said database ratings DR_i(i), and
- b) summation \sum_{j} ranges over all of said type 2 databases DB^{2}_{j} for which said option ratings $DR_{j}(i)$ are defined; and
- c) MW_j are master weights associated with said type 2 databases DB_j^2 .
- 20. A system as described in claim 19 where said system is programmed to normalize said database ratings DR_j^2 with respect to a maximum rating $DR_j(max)$ and a minimum satisfactory rating $DR_j(sat)$ for each of said selected type 2 databases DB_j^2 .
- 21. A system as described in claim 20 where said system is further programmed to, if one of said weights W_i is less than 0, set said one weight equal to 0.
- 22. A system as described in claim 19 where said system is further programmed to adjust said master weights MW_i based on a user's evaluation of said list.
- 23. A system as described in claim 22 where said system is programmed to adjust said master weights MW_i by:
 - a) identifying said user's selected choice m';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j)/\partial MW_j'$; where $Fm', n'(MW_j)$ is the deviation of option rating R(m', n) from the mean rating, $\Sigma_m R(m, n)/M$ as a function of master weights MW_j , where M is the total number of options for which R(m, n') is defined;
 - c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating b and c for all remaining master weights MW_j.

(10018324.1)

- 24. A system as described in claim 22 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the maximum rating, max(R(m,n)) as a function of master weights MW_j ;
 - c) setting $MW_i' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating steps b and c for all remaining master weights MW_j.
- 25. A system as described in claim 23 where said system is programmed to rate said options with respect to a plurality of dimensions and to repeat d and e for each remaining one of said dimensions.
- 26. A system as described in claim 25 where said system is further programmed to adjust said master weights MW_i based on a user's evaluation of said list.
- 27. A system as described in claim 26 where said system is programmed to adjust said master weights MW_j by:
 - a) said user identifying said user selected choice m' and a critical dimension n';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j)/\partial MW_j'$; where $Fm', n'(MW_j)$ is the deviation of option rating R(m', n') from the mean rating, $\Sigma_m R(m, n')/M$, along said critical dimension n', as a function of master weights MW_j , where M is the total number of options for which R(m, n') is defined;
 - c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating b and c for all remaining master weights MW_{j} .
- 28. A system as described in claim 26 where said system is programmed to adjust said master weights MW_j by::
 - a) said user identifying a selected choice m';

{10018324.1}

- b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the maximum rating, max(R(m,n)) as a function of master weights MW_j ;
- c) setting MW_j ' = MW_j '(1 + $\alpha P(MW_j$ ')), where α is a small positive number; and
- d) repeating steps b and c for all remaining master weights MW_j.
- 29. A computer readable medium for providing instructions to a data processing system, said instructions controlling said data processing system to:
 - a) select and access type 1 databases, DB_i^1 , each of said selected databases DB_i^1 including at least one option rating, $OR_i(x,n)$, for one of said options, x, with respect to a dimension n, where said option x can differ among said selected databases;
 - b) select and access type 2 databases DB_{j}^{2} , each of said type 2 databases DB_{j}^{2} including at least one database rating $DR_{j}(i)$ for at least one of said databases DB_{i}^{1} ;
 - c) associate weights, W_i with said databases DB¹_i, said weights W_i being calculated as a function of said database ratings DR_i(i); and
 - d) calculate an overall rating R(m,n) for an option m with respect to said dimension n as a function of said weights W_i and option ratings $OR_i(m,n)$;
 - e) repeat d for each remaining one of said options for which there exists at least one option rating with respect to said dimension n; and
 - f) generate a list of said options and associated overall ratings with respect to dimension n.

{10018324.1}