표준강의계획서

* 강의계획서 입력이 되지 않은 경우 공란으로 표시될 수 있습니다.

과목정보					
연도 및 학기	2018학년도 1학기		교과목명	임베디드소프트웨어 I	
교과목코드	EA0028 분반		1	학점	3
수강대상학년(학과)		4(컴퓨터과학과)		팀티칭여부	N
강의시간		화7,8,9(G209)		이수구분	1전선

과목개요			
*주강의언어	KR		
*교과목개요	본 과목에서는 IoT(사물인터넷) 및 임베디드 소프트웨어 개발자가 필요로하는 기초 기술을 공부한다. (참고: 본 과목은 컴퓨터과학의 기초가 부족한 학생들도 쉽게 배울 수 있도록 강의 내용이 이해하기 쉽게 준비되어 있음. 아래 교강사 전달 사항 참조)		
	본 과목에서 다루는 기술적인 사항은 펌웨어 프로그래밍 기술과 실시간 커널 기술로 구성되며 이들 각각은 다음과 같다. (1) 펌웨어 프로그래밍 기술: ARMv6-A 구조, 펌웨어 프로그래밍 기초, UART 프로그래밍, 예외(exception) 프로그래밍, timer interrupt 프로그래밍. (2) 실시간 커널 기술: 실시간 시스템(real-time system)의 개념, 실시간 커널 구조(kernel structure), 태스크(task) 관리, 시간(time) 관리, 이벤트 제어 블록(event control block), 메모리(memory) 관리 등이다. 본 과목에서다루는 기술은 TI사의 BeagleBone 개발 보드에서 실습한다.		
*교과목 목표	1. 임베디드 소프트웨어의 특징 및 구조를 이해하고 실제 구현할 수 있는 능력을 기른다. 2. 펌웨어(UART, 예외 처리. Timer 등) 및 실시간 커널(uC/OS-II) 프로그래밍 기술을 익힌다.		
*주교재	ARM Limited, ARM® Architecture Reference Manual, ARM DDI 0100I, July 2005. (공개 문서로 무료 제공)		
부교재	Jean J. Labrosse, MicroC/OS-II The Real-Time Kernel Second Edition, CMP Books, 2002. (영문 교재) 성원호, MicroC/OS-II 실시간 커널, 에이콘 출판사, 2005. (영문 교재의 국어 번역 교재)		
참고자료	Texas Instruments, AM335x ARM® Cortex™-A8 Microprocessors (MPUs) Technical Reference Manual, December 2013. (공개 PDF 파일로 제공)		
선수과목명	선수과목 필수여부		
장애학생 수업 안내	개인별 수업참여가 힘든 경우 장애학생지원센터에 요청하여 지정 좌석에서 도우미 학생과 합께 수업을 들을 수 있습니다.		
교강사전달사항	본 강의는 최근 산업체에서 수요가 많은 IoT(사물인터넷) 및 임베디드 소프트웨어 개발자가 필요로하는 기초 기술을 다루기 때문에 졸업 후 취업의 기회도 많아지고 취업 후 학생의 기술 수명도 길어집니다. 본 강의에서는 학생들이 1 - 3학년 때 배운 프로그래밍 기술, 운영체제 기술, 컴퓨터구조 기술 등을 다시 복습하기 때문에 학생들의 컴퓨터과학 기 초 실력도 자연스럽게 향상되는 효과를 얻을 수 있습니다. 컴퓨터과학의 기초가 부족한 학생들도 쉽게 배울 수 있도록 강 의 내용이 이해하기 쉽게 준비되어 있습니다.		
기타연락처	상담요일 및 시간 강의 후 30분간 혹은 학생 신청 시		
강의 소개 동영상			

교강사정보				
교수명	소속	연구실(전화)	연구실(위치)	이메일
신동하	전자공학과	0222875314	G510	dshin@smu.ac.kr

교과유형	
항목	내용
*수업유형	 ♂ 강의형 ✓ 실험/실습/실기 ○ 발표형 ○ 토론형 ○ 프로젝트형 ○ 세미나형 ○ 사이버(e/b-learning) ○ S-learning ○ PBL ○ 산학협력 ○ 전문가 특강 ○ 멀티미디어 활용 ○ 신문읽기 ○ 기타
수업유형(기타)	
*과목유형	□ 융복합 □ 전공기초 ☞ 전공핵심 ☞ 전공심화 □ 현장실습 □ 캡스톤디자인 □ 계량연계 □ 학부(과)공통
과목유형(기타)	

성적평가				
평가문항	반영비율(%)	평가문항	반영비율(%)	평가유형
*중간고사	25	*발표	0	
*기말고사	25	*참여도	0	
*과제물	20	*퀴즈	5	상대평가I
*출석	25	*프로젝트	0	
*기타평가			0	

상명인이 갖추어야 할 5大 핵심역량별 비율 체계				
핵심역량	핵심역량 개요	핵심역량 반영비율(%)		
① 전문지식 탐구 역 량	한 분야의 전문가가 되기 위해 전문적인 지식을 탐구하고 연마할 수 있는 역량	0		
② 윤리실천 역량	다양한 사회와 영역에 관심을 가지며, 윤리의식과 정의감을 실행할 수 있는 역량	0		
③ 다양성 존중 역량	다양성의 가치를 존중하며 자신과 다른 모든 사람을 배려 및 존중하는 역량	0		
④ 융복합 역량	자원/정보를 창의적, 효율적인 방법으로 융합하여 새로운 시너지를 창출할 수 있는 역량	0		
⑤ 창의적 문제해결 역량	지식과 정보 기술이 중요한 사회에서 자원을 활용하여 창의적으로 문제를 해결하는 역량	0		

기타정보

Career Development Roadmap(전문직군명)

네트워크 보안개발자,임베디드소프트웨어개발자

career Bevelo	pment readmap(EE 7E 0)	"-! "E 1,6 " ! II 1 "E 1			
주차별 수업:	주차별 수업계획				
주차	항목	내용			
1	*학습목표	이론: BeagleBone, AM335x			
	*주요학습내용 및 방법	실습: Running BeagleBone			
2	*학습목표	이론: ARMv6-A Architecture			
	*주요학습내용 및 방법	분석: 임베디드 시스템 기술 동향 분석			
3	*학습목표	이론: ARMv6-A Architecture			
	*주요학습내용 및 방법	실습: ARM Assembly Programming			
4	*학습목표	이론: Compilation with GNU Tools			
	*주요학습내용 및 방법	이론: Compilation with GNU Tools			
5	*학습목표	이론: UART Programming			
	*주요학습내용 및 방법	실습: ELF Sections			
6	*학습목표	이론: Exception Programming			
	*주요학습내용 및 방법	실습: UART Programming			
7	*학습목표	실습: Exception Programming			
	*주요학습내용 및 방법	실습: Exception Programming			
8	*학습목표	중간고사			
	*주요학습내용 및 방법	중간고사			
9	*학습목표	이론: Timer Interrupt Programming			
	*주요학습내용 및 방법	실습: SWI Programming			
10	*학습목표	이론: Real-Time System Concepts			
	*주요학습내용 및 방법	이론: Real-Time System Concepts			
11	*학습목표	이론: Kernel Structure			
	*주요학습내용 및 방법	실습: Timer Interrupt Programming			
12	*학습목표	이론: Task Management			
	*주요학습내용 및 방법	이론: Task Management			
13	*학습목표	이론: Time Management			
	*주요학습내용 및 방법	실습: uCOS-II Task Programming			
14	*학습목표	이론: Semaphore Management, Memory Management			
	*주요학습내용 및 방법	실습: uCOS-II Synchronization			
15	*학습목표	기말고사			
	*주요학습내용 및 방법	기말고사			