

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Deep Direct Reinforcement Learning for Financial Signal Representation and Trading

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai, Senior Member, IEEE

Schema

- > Introduction
- Direct Reinforcement Trading
- Deep Recurrent Neural Network
- > Fuzzy DRNNs
- ➤ Task-Aware BPTT
- > Summary

Introduction

- > Fuzzy Reinforcement Deep Neural Network
- > 嘗試運用深度學習擊敗富有經驗的交易操作員
- ➤ 基於2001的Learning to Trade via Direct Reinforcement
 - ➤ 加入Deep network來提取市場狀態的特徵
 - ➤ 加入Fuzzy representation降低市場不確定性

1 Introduction

- ➤ RL在交易市場的兩個挑戰:
 - > 對市場環境狀態的特徵表達
 - ▶ 金融市場不穩定,充滿噪音、波動,導致價格曲線的不穩定性。
 - ▶ 目前許多人工提取的特徵,如移動平均線以減少噪音,但依賴專家技術分析。
 - ➤ 本文使用Autoencoder和Fuzzy representation
 - ▶ 根據當前狀態及先前動作等做出決策
 - ▶ 使用RNN形式,從當前狀態和上一個動作到當前動作的直接映射。

2

Direct Reinforcement Trading (DRL)

▶ 基於DRL設計

累積收益
$$U_{\mathrm{T}}\{R_1, ..., R_T | \theta\}$$

利潤
$$R_t = \delta_{t-1} z_t - c |\delta_t - \delta_{t-1}|$$

波動
$$z_t = p_t - p_{t-1}$$

決策
$$\delta_t \in \{\text{long, neutral, short}\}=\{1, 0, -1\}$$

Direct Reinforcement Trading (DRL)

Deep Recurrent Neural Network(DRNN)

Deep Trans.

Fuzzy DRNNs

4

Fuzzy DRNNs

> The whole optimization framework

最大化目標
$$\max_{\{\theta,g_d(\cdot),v(\cdot)\}} U_T\{R_1,...,R_T|\theta\}$$
 利潤 $R_t = \delta_{t-1}z_t - c|\delta_t - \delta_{t-1}|$ 波動 $z_t = p_t - p_{t-1}$ 決策 $\delta_t = \tanh[\langle w, F_t \rangle + b + u\delta_{t-1}]$ 模糊化+DL $F_t = g_d(v(f_t))$

Task-Aware BPTT

6 Summary

- ➤ 在DRL的基礎上增加了Fuzzy和多層神經網路來提取特徵
- ➤ 用RNN的方式接收先前動作訊息和現在狀態
- ▶ 在金融方面實作上做出貢獻
- ▶ 股指、白銀期貨、白糖期貨
- ➤ 可融合於MADDPG其中部分agent

Actor的作用

12 **FDRNN**