CH402 Chemical Engineering Process Design

Class Notes L7

Heat Exchanger Theory

Agenda for Today's Class

design and cost factors

log mean temperature difference

resistance to heat transfer

pressure drop (combines L1-6 with CH485)

Simple Tubular Design – CH459, CH485

HT36 EXTENDED TUBULAR HEAT EXCHANGER

Basic "shell-and-tube" design

notice the triangular pattern or "pitch" of the tubes

4 tube-side "passes" shell-side baffle plates

notice the square pattern or "pitch" of the tubes

Heat exchangers can be quite large...

Cost goes up exponentially with size.

What cost factors are most important?

Heat transfer area and material

p. 682

Figure 14-18

Purchased cost of fixed-tube-sheet heat exchangers with 0.019-m ($\frac{3}{4}$ -in.) OD \times 0.025-m (1-in.) square pitch and 4.88- or 6.10-m (16- or 20-ft) bundles and carbon-steel shell operating at 1035 kPa (150 psia)

carbon steel, 100 m²: \$10,200

3/4-in tubes, 1-inch square-pitch fixed tube sheet, 4.88 m or 6.10 m in length at 150 psia

What if we change design to 1.5-inch tubes, 4 m in length, 500 psia, stainless 316L, in Jan 2024?

1.5-in tubes, multiply by 1.37, figure 14-21: \$13,974

4-m length, multiply by 1.07, figure 14-22: \$14,952

500 psia, multiply by 1.39, figure 14-23: \$20,784

Stainless 316L, multiply by 2.2, table 14-8: \$45,724

Jan 2024, multiply by 786.6/356.9, CEPCI: \$100,774 // ANS

Summary of cost factors and Adjustments

All cost charts located on pages 680 – 692 Very Important!

Basic shell-and-tube heat exchangers, Figures 14-18 and 14-19, page 682

0.019-m x 4.88-m, fixed-tube-sheet, Figure 14-18, p. 682

0.019-m x 4.88-m, floating-head, Figure 14-19, p. 682

Adjustments

Tube diameter, Figure 14-21, p. 683

Tube length, Figure 14-22, p. 684

Pressure, Figure 14-23, p. 684

Material, Table 14-8 and Figure 14-24, p. 685

Today's Class

design and cost factors

log mean temperature difference

resistance to heat transfer

pressure drop

Basic Heat Exchanger Design - Textbook 11

Linear temperature profiles inside heat exchanger (constant Cp)

$$\dot{q} = U \cdot A \cdot \Delta T_{o,m}$$
 Eq. 14-5

 $\dot{q} = U \cdot A \cdot F \cdot \Delta T_{o,log\ mean}$

Combine w/ Eq. 14-8

 \dot{q} = rate of heat transfer, kJ/s or kW

U = overall heat transfer coefficient, W/m²K

A = area of heat transfer, m²

 ΔT = mean temperature-difference driving force, K

$$\dot{q} = -(\dot{m}C_p \Delta T)_{hot} = (\dot{m}C_p \Delta T)_{cold}$$

heat leaving hot side = heat entering cold side

ideal = no heat lost (LHS=RHS)

Mean overall temperature difference between the fluids.

Eq. 14-8

$$\Delta T_{\text{o,m}} = F \cdot \Delta T_{\text{o, log mean}}$$

F accounts for arrangement of exchanger

U is calculated from the resistance model

A is calculated from the geometry

$$A = \pi \cdot D \cdot L \cdot N_{t}$$

Conservation of enthalpy Equation 14-6 Page 645

FE Reference Manual

FE Reference Manual, page 215 (221/500)

Heat Exchangers

The rate of heat transfer in a heat exchanger is

 $\dot{Q} = UAF\Delta T_{lm}$, where

(Manual does not say how to determine F)

A = any convenient reference area (m^2)

F = correction factor for log mean temperature difference for more complex heat exchangers (shell and tube arrangements with several tube or shell passes or cross-flow exchangers with mixed and unmixed flow); otherwise F = 1.

U = overall heat-transfer coefficient based on area A and the log mean temperature difference [W/(m²•K)]

 ΔT_{lm} = log mean temperature difference (K)

Log Mean Temperature Difference (LMTD)

For counterflow in tubular heat exchangers

$$\Delta T_{lm} = \frac{(T_{Ho} - T_{Ci}) - (T_{Hi} - T_{Co})}{\ln\left(\frac{T_{Ho} - T_{Ci}}{T_{Hi} - T_{Co}}\right)}$$

For parallel flow in tubular heat exchangers

$$\Delta T_{lm} = \frac{(T_{Ho} - T_{Co}) - (T_{Hi} - T_{Ci})}{\ln(\frac{T_{Ho} - T_{Co}}{T_{Hi} - T_{Ci}})}$$
, where

 ΔT_{lm} = log mean temperature difference (K)

 T_{Hi} = inlet temperature of the hot fluid (K)

 T_{Ho} = outlet temperature of the hot fluid (K)

 T_{Ci} = inlet temperature of the cold fluid (K)

 T_{Co} = outlet temperature of the cold fluid (K)

U is calculated from the resistance model FE Reference Manual, page 216 (222/500)

A is calculated from the geometry

$$A = \pi \cdot D \cdot L \cdot N_{t}$$

Overall Heat-Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers

$$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{R_{fi}}{A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi k L} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}, \text{ where}$$

 A_i = inside area of tubes (m²)

 A_a = outside area of tubes (m²)

 D_i = inside diameter of tubes (m)

 D_o = outside diameter of tubes (m)

h_i = convection heat-transfer coefficient for inside of tubes [W/(m²•K)]

 $h_o = \text{convection heat-transfer coefficient for outside of tubes}$ $[W/(m^2 \cdot K)]$

k = thermal conductivity of tube material [W/(m•K)]

 R_{fi} = fouling factor for inside of tube [(m²•K)/W]

 R_{fo} = fouling factor for outside of tube [(m²•K)/W]

Recommend review of heat transfer section, pp. 204-219; very well written.

Log-mean temperature difference

(mean temperature difference)

Equation 14-7 Page 645

FE Reference Manual, page 215 (221/502)

Parallel (cocurrent) flow

$$\Delta T_{lm} = \frac{\left(T_{Ho} - T_{Co}\right) - \left(T_{Hi} - T_{Ci}\right)}{Ln\left(\left(T_{Ho} - T_{Co}\right) / \left(T_{Hi} - T_{Ci}\right)\right)}$$

Counterflow (countercurrent) flow

$$\Delta T_{lm} = \frac{\left(T_{Ho} - T_{Co}\right) - \left(T_{Hi} - T_{Ci}\right)}{Ln\left(\left(T_{Ho} - T_{Co}\right) / \left(T_{Hi} - T_{Ci}\right)\right)} \qquad \Delta T_{lm} = \frac{\left(T_{Ho} - T_{Ci}\right) - \left(T_{Hi} - T_{Co}\right)}{Ln\left(\left(T_{Ho} - T_{Ci}\right) / \left(T_{Hi} - T_{Co}\right)\right)}$$

Log mean temperature example 1

Calculate the log mean temperature difference for countercurrent flow.

Temperatures in deg C

$$\Delta T_{lm} = \frac{\left(T_{Ho} - T_{Ci}\right) - \left(T_{Hi} - T_{Co}\right)}{Ln\left(\left(T_{Ho} - T_{Ci}\right) / \left(T_{Hi} - T_{Co}\right)\right)}$$

$$\Delta T_{\text{o,log mean}} = \frac{\Delta T_1 - \Delta T_2}{\ln[\Delta T_1 / \Delta T_2]}$$

$$\Delta T_{o,log\,mean} = \frac{70 - 50}{ln[70 / 50]}$$
 $\Delta T_{LM} = 59.44$

CHEMCAD LMTD is 59.44 ✓

A good check on your answer is the arithmetic mean:

$$\Delta T_{mean} = \frac{\Delta T_1 + \Delta T_2}{2} = \frac{70 + 50}{2} = 60$$
 about equal if $\frac{\Delta T_1}{\Delta T_2} \le 2$

Log mean temperature is more complicated in multi-pass heat exchangers '
That's why we use "F"

$$\Delta T_{\text{o,log mean}} = \frac{\Delta T_1 - \Delta T_2}{\text{Ln}(\Delta T_1 / \Delta T_2)}$$

T_{shell, out}

"approach temp."

$$\Delta T_1$$
 or ΔT_2

which?
$$\Delta T_1 > \Delta T_2$$

$$\Delta T_{o,m} = F \cdot \Delta T_{o,log\ mean}$$

F is a correction factor for the number of passes

Determining F

2 or more evennumbered tube passes Figure 14-4, page 648

Figure 14-5, page 649 other contact patterns

$$F = (R^2 + 1)^{1/2} \cdot ln \left(\frac{1 - P}{1 - R \cdot P}\right) / (R - 1) \cdot ln \left(\frac{2 - P \cdot \left[(R + 1) - (R^2 + 1)^{1/2}\right]}{2 - P \cdot \left[(R + 1) + (R^2 + 1)^{1/2}\right]}\right)$$

$$P = \frac{T_{c,out} - T_{c,in}}{T_{h,in} - T_{c,in}} \qquad R = \frac{T_{h,in} - T_{h,out}}{T_{c,out} - T_{c,in}} = \frac{\left(\dot{m} \cdot C_{p}\right)_{c}}{\left(\dot{m} \cdot C_{p}\right)_{h}}$$

Good Rule of Thumb:

F > 0.85 desirable

0.7 < F < 0.85 marginal

F < 0.7 impractical

Log mean temperature

Example 2

$$T_{h, in} = 158 \, ^{\circ}C$$

$$T_{h. out} = 68 \, {}^{\circ}C$$

$$T_{c, in} = 68$$
 °C

$$T_{c. out} = 108 \, {}^{\circ}C$$

2 tube passes,1 shell pass

$$\Delta T_1 = 158 - 68 = 90$$
 °C

$$\Delta T_2 = 138 - 108 = 30$$
 °C

$$\Delta T_{\text{o, log mean}} = \frac{\Delta T_{\text{1}} - \Delta T_{\text{2}}}{\ln \left(\Delta T_{\text{1}} \, / \, \Delta T_{\text{2}} \right)} = \frac{90 - 30}{\ln \left(90 \, / \, 30 \right)} = 54.61$$

Log mean temperature

$$T_{h, in} = 158 \, {}^{\circ}C$$

$$T_{h. out} = 68 \, ^{\circ}C$$

$$T_{c,in} = 68$$
 °C

$$T_{c,out} = 108 \, {}^{\circ}C$$

2 tube passes,1 shell pass

$$R = \frac{T_{h,in} - T_{h,out}}{T_{c,out} - T_{c,in}} = \frac{158 - 138}{108 - 68} = 0.5$$

$$P = \frac{108 - 68}{158 - 68} = 0.44$$

$$F = \frac{(R^2 + 1)^{1/2} \cdot ln\left(\frac{1 - P}{1 - R \cdot P}\right)}{(R - 1) \cdot ln\left(\frac{2 - P \cdot \left[(R + 1) - (R^2 + 1)^{1/2}\right]}{2 - P \cdot \left[(R + 1) + (R^2 + 1)^{1/2}\right]}\right)} = 0.961$$

$$\Delta T_{o,m} = F \cdot \Delta T_{o,log\ mean} = .961 \cdot 54.61 = 52.41\ ^{\circ}C$$

$$P = .44 \qquad R = .5$$

$$\Delta T_{o,m} = F \cdot \Delta T_{o,log\ mean} = .96 \cdot 54.61 = 5\underline{2}.42\ ^{\circ}C$$

CHEMCAD calculates the correction factors for us Does not appear in FE manual (F=1)

Today's Class

design and cost factors

log mean temperature difference

resistance to heat transfer

pressure drop

Thermal Resistances in Series Model

Total resistance = sum of resistances of individual layers

$$R_{\text{tot}} = \frac{1}{U} = \left(\frac{1}{h_{\text{warm}}}\right) + \left(\frac{1}{k_{\text{w}}}\right) + \left(\frac{x_{\text{wall}}}{k_{\text{w}}}\right) + \left(\frac{1}{h_{\text{cold}}}\right)$$

Different forms for total resistance

$$R_{tot} = \frac{1}{U} = \frac{1}{h_h} + R_{h,f} + \frac{x}{k_w} + R_{c,f} + \frac{1}{h_c}$$

$$\frac{1}{U_o} = \frac{A_o}{h_i \cdot A_i} + \frac{A_o}{h_{i,d} \cdot A_i} + \frac{A_o \cdot x_w}{k_w \cdot A_{m,w}} + \frac{1}{h_o} + \frac{1}{h_{o,d}}$$
 Eq. 14-4, p. 645

$$\frac{1}{U_{i}} = \frac{1}{h_{i}} + \frac{1}{h_{i,d}} + \frac{A_{i} \cdot x_{w}}{k_{w} \cdot A_{m,w}} + \frac{A_{i}}{h_{o} \cdot A_{o}} + \frac{A_{i}}{h_{o,d} \cdot A_{o}}$$
 Eq. 14-4a, p. 645

FE Reference Manual. page 205 (211/502)

"Overall Heat Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers"

$$\frac{1}{UA} = \frac{1}{h_i \cdot A_i} + \frac{R_{fi}}{A_i} + \frac{In\left(\frac{D_o}{D_i}\right)}{2\pi kL} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}$$

$$A_i = \pi \cdot D_i \cdot L \text{ (inside area)}$$

$$A_o = \pi \cdot D_o \cdot L \text{ (outside area)}$$

$$A_o = \pi \cdot D_o \cdot L \text{ (outside area)}$$

$$A_i = \pi \cdot D_i \cdot L$$
 (inside area)
 $A_o = \pi \cdot D_o \cdot L$ (outside area)
 $L = length$

Local Heat Transfer Coefficients

FE Prep: Heat Transfer Section, FE Manual, pp. 204-219, comprehensive

Laminar (viscous) fluid flow inside tubes, Re<2100:

$$\frac{h_{i} \cdot D_{i}}{k} = 1.86 \cdot \left(\frac{D_{i} \cdot G_{i}}{\mu}\right)^{1/3} \cdot \left(\frac{C_{p} \cdot \mu}{k}\right)^{1/3} \cdot \left(\frac{D_{i}}{L}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{1/3} \cdot 14 - 17, \text{ p. 657}$$

page 210 (216/502)

$$\mathbf{h_{i}} = 1.86 \cdot \left(\frac{4 \cdot \dot{\mathbf{m}_{i}} \cdot \mathbf{C_{p}}}{\pi \cdot \mathbf{k} \cdot \mathbf{L}}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{.14}$$

G = mass velocity in
$$\frac{kg}{m^2 sec}$$
 = velocity × density = v × ρ

number

Turbulent, fully developed fluid flow inside tubes, Re>10000, 0.7<Pr<160, and L/D_i>10

$$\frac{h_{i} \cdot D_{i}}{k} = .023 \cdot \left(\frac{D_{i} \cdot G_{i}}{\mu}\right)^{4/5} \cdot \left(\frac{C_{p} \cdot \mu}{k}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{.14}$$
Dittus-Boelter Equation FE Reference Manual, page 211 (217/502)

number

number

14-18, p. 657

Local Heat Transfer Coefficients

Guielinski-Hewitt Correlation 2300<Re<100,000 and 0.6<Pr<6000

Equations 14-19 and 14-19a, page 658

$$\frac{h_{i} \cdot D_{i}}{k} = \frac{(f_{D} / 8) \cdot (Re-1000) \cdot Pr}{\left[1 + 12.7 \cdot (f_{D} / 8)^{1/2}\right] \cdot (Pr^{2/3} - 1)} \cdot \left[1 - \left(\frac{D_{i}}{L}\right)^{2/3}\right]$$
Apparent typo since Pr must be > 1
(If Pr<1 then Nu<0)
$$f_{D} = \frac{1}{(1.82 \cdot log(Re) - 1.64)^{2}}$$

More accurate and more widely applicable

Local Heat Transfer Coefficients

Outside tubes (Churchill-Bernstein Correlation)

$$\frac{h_o \cdot D_o}{k} = 0.3 + \frac{0.62 \cdot Re^{1/2} \cdot Pr^{1/3}}{\left[1 + (0.4 / Pr)^{2/3}\right]^{1/4}} \cdot \left[1 + \left(\frac{Re}{28,200}\right)^{5/8}\right]^{4/5}$$
14-21, p. 659

Multiple tubes in parallel:

$$\frac{h_{o} \cdot D_{o}}{k} = a \cdot Re^{m} \cdot Pr^{0.34} \cdot F_{1} \cdot F_{2}$$

$$F_{1} = \left(\frac{Pr_{b}}{Pr_{w}}\right)^{0.26}$$
14-22, p. 660

a and m are found in Table 14-1 F_2 is found in Table 14-2

(Not found in FE Manual – inside tubes only)

Tube Bank Patterns in Shell-and-Tube Heat Exchangers

Film Coefficients for Banks of Tubes

Shell-side Nusselt number:

$$Nu = \frac{h_o \cdot D_o}{k} = a \cdot Re^m \cdot Pr^{0.34} \cdot F_1 \cdot F_2$$
Eq. 14-22
p. 660

$$F_1 = \left(\frac{Pr_{bulk}}{Pr_{wall}}\right)^{.26}$$
 for $Pr < 600$ Eq. 14-22b p. 660

Shell-side Reynolds number:

$$Re = \frac{D_o \cdot v_{max} \cdot \rho}{\mu}$$
Eq. 14-22a
p. 660

$$v_{\text{max}} = \frac{\dot{m}_{\text{T}}}{\rho \cdot N_{\text{T}} \cdot (P_{\text{T}} - D_{\text{O}}) \cdot L}$$
 Eq. 14-22c p. 661

Table 14-2. Correction factor F₂ for eq 14-22

Number of tube rows	F ₂ , inline banks (Re>2100)	F ₂ , staggered banks (Re>100)
3	0.86	0.85
4	0.90	0.90
6	0.94	0.95
8	0.98	0.985
10+	0.99	0.99

Table 14-1. Values of a and m for eq. 14-22

Re	Inline banks 1.2 < P _T /D _o < 4		Staggered banks (Re>100)	
	а	m	а	m
10-300	0.742	0.431	1.309	0.360
300-2×10 ⁵	0.211	0.651	0.273	0.635
2×10 ⁵ -2×10 ⁶	0.116	0.700	0.124	0.700

Condensers

Horizontal tube, outside laminar condensation, coolant inside tubes:

$$h_{o} = 0.725 \cdot \left[\frac{k_{L}^{3} \cdot \rho_{L} \cdot \left(\rho_{L} - \rho_{V}\right) \cdot g \cdot \lambda_{C}}{\mu_{L} \cdot D_{o} \cdot \left(T_{sat} - T_{wall}\right)} \right]$$

$$h_o = \frac{3100}{D_o^{1/4} \cdot (T_{sat} - T_{wall})^{1/3}}$$
 (steam)

 $k_L,~\rho_L,~\text{and}~\mu_L~\text{refer}~\text{to}~\text{liquid}~\text{condensate}~\rho_V~\text{refers}~\text{to}~\text{vapor}~\text{g}~\text{is}~\text{gravitational}~\text{acceleration}~\lambda_C~\text{is}~\text{the}~\text{heat}~\text{of}~\text{condensation}~T_{\text{sat}}~\text{is}~\text{the}~\text{temperature}~\text{of}~\text{the}~\text{condensate}~T_{\text{wall}}~\text{is}~\text{the}~\text{wall}~\text{temperature}$

Tube bundles:

$$h_N = h_o \cdot N_V^{-1/4}$$

accounts for liquid dripping from tubes to lower tubes

from Perry's Handbook

TABLE 11-3 Typical Overall Heat-Transfer Coefficients in Tubular Heat Exchangers

 $U = \mathrm{Btu}/({}^{\circ}\mathrm{F}\,\cdot\,\mathrm{ft^2}\cdot\mathrm{h})$

New York Shell side Tube side Design of the total				o beat	1 10 11/			
Liquid-liquid media	cl. II : 1	m 1 - 1		total	cl. II : I	m 1 - 1		
Arcolor 1248	Shell side	Tube side	U	dirt	Shell side	Tube side	U	dirt
Aroctor 1248	Li	quid-liquid media						
Naphtha Oil 11-20 .006 Naphtha Water 50-70 .005 Naphtha Oil 25-35 .005 Organic solvents Brine 35-90 .003 Oil, etc. Water Oil 10-250 .003 Water Water 10-250 .005 Water Oil 13-23 .005 Oil 13-23 .005 Oil 13-23 .005 Oil 13-23 .005 Oil Oil Oil 13-23 .005 Oil Oil	Aroclor 1248 Cutback asphalt Demineralized water Ethanol amine (MEA or DEA) 10–25% solutions Fuel oil Fuel oil Gasoline Heavy oils Heavy oils Hydrogen-rich reformer stream Kerosene or gas oil Kerosene or gas oil Kerosene or jet fuels Jacket water Lube oil (low viscosity)	Jet fuels Water Water Water or DEA, or MEA solutions Water Oil Water Heavy oils Water Hydrogen-rich reformer stream Water Oil Trichlorethylene Water Water Water	10-20 300-500 140-200 15-25 10-15 60-100 10-40 15-50 90-120 25-50 20-35 40-50 230-300 25-50	.01 .001 .003 .007 .008 .003 .004 .005 .002 .005 .005 .005 .005	Gas-plant tar High-boiling hydrocarbons V Low-boiling hydrocarbons A Hydrocarbon vapors (partial condenser) Organic solvents A Organic solvents high NC, A Organic solvents low NC, V Kerosene Kerosene Naphtha Naphtha Stabilizer reflux vapors Steam Steam Steam Sulfur dioxide	Steam Water Water Oil Water Water or brine Water or brine Water Oil Water Oil Water Feed water No. 6 fuel oil No. 2 fuel oil Water	40-50 20-50 80-200 25-40 100-200 20-60 50-120 30-65 20-30 50-75 20-30 80-120 400-1000 15-25 60-90 150-200	.0055 .003 .003 .004 .003 .003 .003 .004 .005 .005 .005 .003 .0005 .0055 .0055
Organic solvents Water 50–150 .003 Organic solvents Brine 35–90 .003 Organic solvents Organic solvents 20–60 .002 Tall oil derivatives, vegetable oil, etc. Water 20–50 .004 Water Caustic soda solutions (10–30%) 100–250 .003 Water Water 200–250 .003 Wax distillate Water 200–250 .005 Wax distillate Water 15–25 .005 Wax distillate Water 15–25 .005 Water Vaporizers Alcohol vapor Water 100–200 .002 Asphalt (450°F.) Dowtherm vapor 40–60 .006 Dowtherm vapor Tall oil and 60–80 .004 Gas-liquid media Air, N ₂ , etc., A Water or brine Water	Lube oil Naphtha	Oil Water	11–20 50–70	.006 .005	oils (vapor)	Aromatic vapor-stream		
Organic solvents Brine 35–90 .003 Organic solvents Organic solvents 20–60 .002 Tall oil derivatives, vegetable oil, etc. Water 20–50 .004 Water Caustic soda solutions (10–30%) 100–250 .003 Water 200–250 .003 Wax distillate Water 200–250 .005 Wax distillate Water 15–25 .005 Wax distillate Oil 13–23 .005 Alcohol vapor Asphalt (450°F.) Water 100–200 .002 Asphalt (450°F.) Dowtherm vapor 40–60 .006 Dowtherm vapor Tall oil and 60–80 .004 Air, N ₂ , etc. (compressed) Water or brine Water or brine Air, N ₂ , etc., A Water or brine Water or	Organic solvents	Water	50-150	.003		Gas-liquid media		
Wax distillate Water Oil 15-25 13-23 15-25 15	Organic solvents Tall oil derivatives, vegetable oil, etc. Water	Organic solvents Water Caustic soda solutions (10–30%)	20–60 20–50 100–250	.002 .004 .003	Air, N ₂ , etc., A Water or brine Water or brine	Water or brine Water or brine Air, N ₂ (compressed) Air, N ₂ , etc., A Hydrogen containing	10–50 20–40 5–20	.005 .005 .005
Wax distillate Oil 13-23 .005 Condensing vapor-liquid media Alcohol vapor Asphalt (450°F.) Water Dowtherm vapor Tall oil and 100-200 0.002 0.002 0.006					·	_		
Chlorine Chlorine Steam condensing 150–300 .0015					<u> </u>	Vaporizers		
Dowtherm vapor Tall oil and 60-80 .004 Propane, butane, etc. Steam condensing 200-300 .0015	Conden Alcohol vapor	sing vapor-liquid media Water	100-200	.002	Chlorine	Steam condensing Light heat-transfer	150-300	.0015
		Tall oil and				Steam condensing		

NC = noncondensable gas present.

See Tables 14-3 to 14.5, pages 661-663 in PTW

V = vacuum.

A = atmospheric pressure.

Dirt (or fouling factor) units are (h · ft² · °F)/Btu.

To convert British thermal units per hour-square foot-degrees Fahrenheit to joules per square meter-second-kelvins, multiply by 5.6783; to convert hours per square foot-degree Fahrenheit-British thermal units to square meters per second-kelvin-joules, multiply by 0.1761.

Today's Class

design and cost factors

log mean temperature difference

resistance to heat transfer

pressure drop

Pressure Drop – Tube-side

pages 664-665 and footnote on page 665

$$\Delta p_{i} = \frac{2 \cdot \beta_{i} \cdot f_{i} \cdot G_{i}^{2} \cdot L \cdot n_{p}}{\rho_{i} \cdot D_{i} \cdot \Phi_{i}}$$
Eq 14-23

$$f_{_{i}} = \begin{cases} 0.079 \, Re^{-0.25} & \text{for } Re \leq 2100 \\ 0.046 \, Re^{-0.20} & \text{for } Re > 2100 \end{cases}$$

Eq 14-23a,b

$$\Phi_{i} = \begin{cases} 1.10 (\mu_{i} / \mu_{w})^{0.25} & \text{for Re} \le 2100 \\ 1.02 (\mu_{i} / \mu_{w})^{0.14} & \text{for Re} > 2100 \end{cases}$$

$$\beta_{i} = \begin{cases} 1 + \frac{F_{e} + F_{c} + F_{R}}{2 \cdot f_{i} \cdot G_{i}^{2} \cdot L / (\rho_{i}^{2} \cdot D_{i} \cdot \Phi_{i})} \\ 1 + \frac{0.51 \cdot K_{1} \cdot n_{p} \cdot \Delta T_{f,i} \cdot (\mu_{i} / \mu_{w})^{0.28}}{(T_{i, in} - T_{i, out}) \cdot Pr^{2/3}} \end{cases}$$

Eq 14-23c,d, p. 665

$$F_e = \frac{(V_1 - V_2)^2}{2}$$
 expansion see T12.1, pp. 490-491 for V_1 , V_2 , and K_c

$$F_c = \frac{K_c V_2^2}{2}$$
 contraction

$$F_{r} = \frac{0.5V_{2}^{2} \cdot (n_{p} - 1)}{2 \cdot n_{p}}$$
 flow reversal

$$K_1 = (1 - S_i / S_H)^2 + K_c + 0.5 \cdot (n_p - 1) / n_p$$

 $S_i / S_H =$ area ratio (cr-sect, tubes to header)

f_i = fanning friction factor based on average T

 Φ_i = correction factor for nonisothermal flow

 $\mu_{\rm i} = {\rm viscosity}$ at average T

 $\mu_{\rm w}$ = viscosity at wall T

 $n_p = number of tubes$

G_i = mass velocity, kg/s¹m²

L = length

 β_i = correction factor for sudden expansion and contraction

Pressure Drop – Shell-side

$$\Delta p_o = \frac{2 \cdot B_o \cdot f' \cdot N_{tr} \cdot G_s^2}{\rho_o}$$

 $B_o = num.$ of tube crossings

 N_{tr} = num. of tube rows

$$f' = b_o \left(\frac{D_o \cdot G_s}{\mu_o} \right)^{-0.15}$$
 for 2000 < Re < 40000

$$b_{o} = \begin{cases} 0.44 + \frac{0.08 \cdot x_{L}}{(x_{T} - 1)^{(0.43 - 1.13)/x_{L}}} & \text{for inline tubes} \\ \\ 0.23 + \frac{0.11}{(x_{T} - 1)^{1.08}} & \text{for staggered tubes} \end{cases}$$

x_T is "pitch" or center to center distance

x_L is ratio of pitch to outside tube diameter

Homework

Problem Set 4

Problems 14-2 and 14-9, Due Thursday 2 Feb

Problem 14-2

At an average film temperature of 350 K, what are the individual heat transfer coefficients when the fluid flowing in a 0.0254-m inside diameter tube is air, water or oil? Each fluid in this comparison exhibits a Reynolds number of 5×10⁴. How would the pressure drop vary for each fluid? The relevant properties of the three fluids at 350 K are listed in the table below.

	Air	Water	Oil
Density, kg/m ³	.955	973	854
Viscosity, Pa0087⋅s	2×10 ⁻⁵	3.72×10 ⁻⁴	3.56×10 ⁻²
Thermal Conductivity, W/m·K	0.030	0.668	0.138
Heat Capacity, J/kg·K	1050	4190	2116