Non-Parametric Tests and Interpretation

Isaac Griffith

CS 6620 Department of Informatics and Computer Science Idaho State University

Non-parametric Tests

Non-Parametric Tests

• Mann-Whitney: non-parametric alternative to t-test

• Wilcoxon: non-parametric alternative to the paired t-test

- **Sign test**: non-parametric alternative to the paired t-test (simpler than Wilcoxon)
- Kruskal-Wallis: non-parametric alternative to ANOVA for one factor with more than two treatments
- Chi-2: family of non-parametric tests used when data are in the form of frequencies

Mann-Whitney Overview

- Input: samples x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m
- Hypotheses:
 - H_0 : samples are from same distribution
 - H_A : they are not
- Calculations: rank all samples and calculate the following

$$-U = N_A N_B + \frac{N_A (N_A + 1)}{2} - T$$

$$- U' = N_A N_B - U$$

-
$$N_A = \min(n, m)$$

-
$$N_B = \max(n, m)$$

- *T* is the sum of the ranks of the smallest sample
- Criterion:
 - Reject H_0 if $\min(U, U')$ is less than or equal to the Mann-Whitley critical value at N_A, N_B

Mann-Whitney Example

Defect density in different programs have been compared in two projects

- Hypotheses
 - H_0 : defect density distribution is the same in both projects
 - H_A : defect density distribution is not the same
- ullet Data: Defect density results for project x and project y
 - -x = 3.42, 2.71, 2.84, 1.85, 3.22, 3.48, 3.68, 4.30, 2.49, 1.54
 - y = 3.44, 4.97, 4.76, 4.96, 4.10, 3.05, 4.09, 3.69, 4.21, 4.40, 3.49
- Data Sizes
 - $-N_A = \min(10, 11) = 10$
 - $N_B = \max(10, 11) = 11$

Mann-Whitney Example

- Ranks of samples:
 - Smallest sample (x): 9, 5, 6, 2, 8, 11, 4, 17, 3, 1
 - Largest sample (y): 10, 21, 19, 20, 15, 7, 14, 13, 16, 18, 12
- Calculated Values:
 - -T = 66
 - -U = 99
 - -U'=11
 - $\min(U, U') = 11$
- Results
 - Critical value for (10,11) is 26
 - Since 11 < 26, we reject H_0 with two-tailed test at 0.05 level

Wilcoxon Overview

• **Input**: Paired samples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

• Hypotheses:

- H_0 : If all differences, d_i , regardless or sign are ranked, then the sum of the positive differences equals the sum of the negative differences
- H_A : they are not the same

• Calculations:

- $d_i = x_i y_i$
- All differences, d_i are ranked regardless of sign
- T^+ is the sum of the positive d_i 's
- T^- is the sum of the negative d_i 's

• Criterion:

- T_n critical value for n pairs
- reject H_0 if $min(T^+, T^-) \leq T_n$

Wilcoxon Example

Ten programs independently developed two different programs. They measured the effort required, as shown in the table

Hypotheses

- H_0 : If all differences effort, d_i , regardless or sign are ranked, then the sum of the positive differences equals the sum of the negative differences
- H_A : they are not

Programmer	1	2	3	4	5	6	7	8	9	10
Program 1	105	137	124	111	151	150	168	159	104	102
Program 2	86.1	115	175	94.9	174	120	153	178	71.3	110

Wilcoxon Example

- Calculation:
 - $-T^{+} = 32$ $-T^{-} = 23$

Pair	1	2	3	4	5	6	7	8	9	10
Difference	18.9	22	-51	16.1	23	30	15	19	32.7	9
Rank	4	6	10	3	7	8	2	5	9	1

- Statistics $-T_n = 8$
- Result:
 - Since $min(T^+, T^-) = min(32, 23) = 23 > 8$ we cannot reject H_0 with a two-tailed test at the 0.05 level

Sign Test Overview

- **Input**: Paired samples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Hypotheses:
 - H_0 : P(+) = P(-), where + and are the two events that $x_i > y_i$ and $x_i < y_i$
 - Two-Sided H_A : $P(+) \neq P(-)$
 - One-Sided H_A : P(+) < P(-)
- Calculations:
 - $d_i = x_i = y_i$
 - positive differences are represented by a +
 - negative differences are represented by a –
 - $p = \frac{1}{2^N} \sum_{i=0}^n \binom{N}{i}$
- Criterion:
 - Two-Sided: reject H_0 : if $p < \alpha/2$
 - One-Sided: reject H_0 : if p < lpha and the + event is the most rare event

Sign Test Example

Ten programs independently developed two different programs. They measured the effort required, as shown in the table

Hypotheses

- H_0 : required effort to develop program 1 is the same as for program 2
- H_A : it is not

Programmer	1	2	3	4	5	6	7	8	9	10
Program 1	105	137	124	111	151	150	168	159	104	102
Program 2	86.1	115	175	94.9	174	120	153	178	71.3	110

Sign Test Example

• Calculation:

$$- \ d = 18.9, 22, -51, 16.1, 23, 30, 15, 19, 32.7, 9$$

$$-S_d = 27.358$$

$$-t_0 = 0.39$$

$$-df = n - 1 = 10 - 1 = 9$$

Statistics

$$-t_{0.025,9} = 2.262$$

• Result:

- Since $t_0 < t_{0.025,9}$ we cannot reject H_0 at the 0.05 level

Kruskal-Wallis Overview

- Can always be used when the assumptions ANOVA cannot be met
- **Input**: a samples: $x_{11}, x_{12}, \ldots, x_{1n_1}; x_{21}, x_{22}, \ldots, x_{2n_2}; \ldots; x_{a1}, x_{a2}, \ldots, x_{an_a}$
- Hypotheses:
 - H_0 : the population medians of the a samples are equal
 - H_A : they are not
- Calculations:
 - All measures are ranked in one series $(1,2,...,n_1+n_2+...+n_a)$
 - The calculations are based on these ranks

Multiple Comparison

- All Pairs
 - Sigel-Tukey Test
 - Ansari-Bradley Test
 - Permutation Test on Deviants
 - Friedman MCP
 - Dwass MCP
 - Critchlow-Fligner MCP
- Control Level?
 - Steele's Comparison to Control

Model Adequacy Checking

- Homogeneity of Variance
 - Levene's Test
 - Bartlett's Test
 - Brown-Forsythe's Test
 - Residuals vs. Fitted Plot
- Normality of Residuals or Data
 - Kolmorgorov-Smirnov Test
 - Anderson-Darling Test
 - Cramer-von Mises Test
 - Chi2 Goodness of Fit Test
 - Normal Q-Q plot

Visual Checks

Experiment 1

Fitted values

Experiment 2

Factor Level Combinations

Drawing Conclusions

Drawing Conclusions

- Once data analysis is complete it must be interpreted in order to draw conclusions regarding experimental outcome
- Hypothesis testing
 - If we reject H_0 , we can conclude that the independent variables affect the dependent variables
 - But it still may be of little importance
 - Otherwise, no conclusion of statistical significance can be drawn
 - But lessons learned may be important
- If statistical significant differences are found
 - we may be able to make general conclusions about the relationship between independent and dependent variables
 - we can only generalize to an environment similar to the experiment
- To draw **causal inferences** we must have randomly assigned experimental units to treatments
- Care must be taken when drawing conclusions from experiments

Are there any questions?

