計量経済 1: 宿題 8

村澤 康友

提出期限:2025年7月8日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例の結果を正確に再現すること (乱数は除く). グループで取り組んでよいが,個別に提出すること.解答例をコピペした場合は提出点を 0 点とし,再提出も認めない.すべての結果を Word に貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・写真 不可・文字化け不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること.

- 1. (教科書 p. 209, 実証分析問題 8-A) データセット「8_income.dta」を gretl に読み込み, 以下の分析 を行いなさい.
 - (a) 教科書 p. 198 の「年収(対数値)」を「修学年数」で説明する単回帰モデルの推定結果を再現しなさい.
 - (b) 教科書 p. 198 の「本人の修学年数」を「父親の修学年数」で説明する単回帰モデルの推定結果を再現しなさい.
 - (c) gretlで 2SLS を実行する手順は以下の通り.
 - i. メニューから「モデル」 \rightarrow 「操作変数法」 \rightarrow 「2 段階最小二乗法」を選択.
 - ii.「従属変数」を選択.
 - iii.「説明変数(回帰変数)」を選択.
 - iv.「操作変数」を選択.
 - v.「OK」をクリック.

「父親の修学年数」を IV として,教科書 p. 199 の IV 法(2SLS)による「教育の収益率」の推定 結果を再現しなさい.

- (d)「生まれ月」を IV として, 教科書 p. 204 の IV 法 (2SLS) による「教育の収益率」の推定結果を再現しなさい.
- 2. (教科書 p. 209, 実証分析問題 8-B) 前問と同じデータを用いて, 以下の分析を行いなさい.
 - (a) 教科書 p. 207 の 2SLS によるミンサー方程式の推定結果を再現しなさい.
 - (b) 前問の分析に「母親の修学年数」を IV に加えて 2SLS でミンサー方程式を推定しなさい.
 - (c) さらに「生まれ月」を IV に加えて 2SLS でミンサー方程式を推定しなさい.

※ただ実行して終わるのでなく、データ分析の際は、以下の点に常に注意すること:

分析前 データの数値を確認し、表・グラフ・統計量でデータの特徴を把握する.

分析後 推定値の統計的有意性・符号・大きさを確認し、分析結果を解釈する.

解答例

1. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–734 従属変数: lincome

係数 Std. Error t-ratio p値 const 5.38769 0.0870176 61.91 0.0000 yeduc 0.0553906 0.00609099 9.094 0.0000

Mean dependent var	6.170857	S.D. dependent var	0.356020
Sum squared resid	83.47680	S.E. of regression	0.337697
R^2	0.101508	Adjusted \mathbb{R}^2	0.100280
F(1,732)	82.69835	P-value (F)	$8.86e{-}19$
Log-likelihood	-243.6648	Akaike criterion	491.3296
Schwarz criterion	500.5267	Hannan-Quinn	494.8770

(b) 2SLS の第1段階

モデル 2: 最小二乗法 (OLS), 観測: 1–734 従属変数: yeduc

係数 Std. Error t-ratio p 値 const10.5220 0.35015430.050.00000.2955400.028025610.55 0.0000payeduc Mean dependent var S.D. dependent var 14.138962.047800S.E. of regression Sum squared resid 2668.439 1.909295 \mathbb{R}^2 Adjusted R^2 0.1306970.131883F(1,732)P-value(F)2.66e-24111.2046Log-likelihood -1515.202Akaike criterion 3034.405 Schwarz criterion 3043.602Hannan–Quinn 3037.952

(c) IV:父親の修学年数

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const payeduc

	係数	標準誤差	$t ext{-ratio}$	p 値	
const	5.75290	0.240370	23.93	0.0000	
yeduc	0.0295608	0.0169771	1.741	0.0821	

Mean dependent var	6.170857	S.D. dependent var	0.356020
Sum squared resid	85.52760	回帰の標準誤差	0.341820
R^2	0.101508	Adjusted \mathbb{R}^2	0.100280
F(1,732)	3.031835	P-value (F)	0.082066
Log-likelihood	-5192.300	Akaike criterion	10388.60
Schwarz criterion	10397.80	Hannan-Quinn	10392.15

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=2.74972$

なお、p値 (p-value) = 0.0972716

弱操作変数 (weak instrument) の検定 –

First-stage F(1,732) = 111.205

(d) IV: 生まれ月

モデル 2: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const mbirth

	係数	標準誤差	t-ratio	p 値
const	1.95875	4.27795	0.4579	0.6472
yeduc	0.297908	0.302560	0.9846	0.3251

Mean dependent var	6.170857	S.D. dependent var	0.356020
Sum squared resid	264.2623	回帰の標準誤差	0.600844
R^2	0.101508	Adjusted \mathbb{R}^2	0.100280
F(1,732)	0.969481	P-value (F)	0.325135
Log-likelihood	-5244.083	Akaike criterion	10492.17
Schwarz criterion	10501.36	Hannan-Quinn	10495.71

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=2.04778$ なお、p 値 (p-value) = 0.152429

弱操作変数 (weak instrument) の検定 – First-stage F(1,732) = 0.940351

2. (a) IV: 就業可能年数, 就業可能年数の2乗, 父親の修学年数, 兄弟姉妹数

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs

	係数	Ž	標	準誤差	t-ratio	p 値	
const	4.5241	.4	0.32	28680	13.76	0.0000	
yeduc	0.0699	0093	0.02	217875	3.209	0.0014	
exper	0.0609	592	0.01	60773	3.792	0.0002	
exper2	-0.0010)4174	0.00	00610360	-1.707	0.0883	
Mean depend	dent var	6.170	857	S.D. dep	endent va	r 0.3560	20
Sum squared	resid	70.30	899	回帰の標	準誤差	0.3103	44
\mathbb{R}^2		0.246	920	Adjusted	R^2	0.2438	25
F(3,730)		23.08	824	P-value(F)	2.75e-	14

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: $\chi^2(1) = 0.477582$

なお、p値 (p-value) = 0.48952

Sargan の過剰識別検定 –

帰無仮説: 全ての操作変数は有効 (valid) である

検定統計量: LM = 0.403198

なお、p値 (p-value) = $P(\chi^2(1) > 0.403198) = 0.525442$

弱操作変数 (weak instrument) の検定 –

First-stage F(2,729) = 32.8310

(b) IV: 就業可能年数, 就業可能年数の2乗, 父親の修学年数, 兄弟姉妹数, 母親の修学年数 モデル 2: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs moyeduc

	係数	ζ	標	準誤差	$t ext{-ratio}$	p 値
const	4.5434	5	0.32	0583	14.17	0.0000
yeduc	0.0685	564	0.02	11846	3.236	0.0013
exper	0.0612	705	0.01	60450	3.819	0.0001
exper2	-0.0010	6162	0.00	0606077	-1.752	0.0803
Mean depend	dent var	6.170	857	S.D. dep	endent va	r 0.356020
Sum squared	resid	70.40	867	回帰の標	準誤差	0.310564
\mathbb{R}^2		0.246	519	Adjuste	$d R^2$	0.243423
F(3,730)		23.11	941	P-value((F)	$2.64e{-14}$

ハウスマン (Hausman) 検定 -

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1) = 0.609293$ なお、p値 (p-value) = 0.435054

Sargan の過剰識別検定 –

帰無仮説: 全ての操作変数は有効 (valid) である

検定統計量: LM = 0.471859

なお、p値 (p-value) = $P(\chi^2(2) > 0.471859) = 0.789836$

弱操作変数 (weak instrument) の検定 –

First-stage F(3,728) = 23.2762

(c) IV: 就業可能年数,就業可能年数の2乗,父親の修学年数,兄弟姉妹数,母親の修学年数,生まれ月

モデル 3: 二段階最小二乗法 (2SLS), 観測: 1–734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs moyeduc mbirth

	係数	標準	隼誤差	t-ratio	p 値
const	4.51230	0.319	9307	14.13	0.0000
yeduc	0.070739	4 0.02	10926	3.354	0.0008
exper	0.060768	3 0.010	60224	3.793	0.0002
exper2 -	-0.001029	55 0.000	0604888	-1.702	0.0892
Mean depender	nt var 6.	170857	S.D. depe	endent var	0.356020
Sum squared re	esid 70	0.25229	回帰の標準	 	0.310219
R^2	0.	.247140	Adjusted	\mathbb{R}^2	0.244046
F(3,730)	23	3.42145	P-value(I	7)	1.76e-14

ハウスマン (Hausman) 検定 –

帰無仮説: OLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=0.454561$ なお、p 値 (p-value) = 0.500177

Sargan の過剰識別検定 –

帰無仮説: 全ての操作変数は有効 (valid) である

検定統計量: LM = 2.12962

なお、p値 (p-value) = $P(\chi^2(3) > 2.12962) = 0.545943$

弱操作変数 (weak instrument) の検定 –

First-stage F(4,727) = 17.5575