Algebre Lineaire II

David Wiedemann

Table des matières

1	Pol	ynomes	3
	1.1	Division avec reste	5
	1.2	Factorisation des polynomes sur un corps	6
	1.3	Factorisation des polynomes sur un corps	7
	1.4	Diviseurs Communs le plus grand	7
	1.5	Factorisation en elements irreductibles	9
2	Val	eurs et Vecteurs Propres	10
3	Le	polynome caracteristique	12
	3.1	Theoreme de Cayley-Hamilton	14
\mathbf{L}	ist	of Theorems	
	1	Definition (Centre d'un anneau)	3
	2	Definition (Diviseurs de 0)	3
	3	Definition (Anneau integre)	3
	1	Theorème	3
	4	Definition (Polynome)	3
	2	Theorème	3
	5	Definition (Degre d'un polynome)	4
	3	Theorème	4
	4	Theorème	4
	5	Theorème	5
	6	Corollaire	5
	7	Theorème	5
	6	Definition (Diviseurs de polynomes)	6
	7	Definition (Racine)	6
	8	Theorème	6
	8	Definition (Multiplicite d'une racine)	7
	9	Theorème (Theoreme fondamental de l'algebre)	7

9	Definition (Polynome irreductible)	7
10	Theorème	7
11	Theorème	7
10	Definition (Polynome Unitraire)	7
11	Definition (Diviseur Commun)	8
12	Theorème	8
12	Definition (PGCD)	8
13	Theorème (Algorithme d'Euclide)	8
14	Theorème	Ć
15	Theorème (La factorisation est unique)	Ć
16	Corollaire	10
13	Definition (Vecteur propre)	10
17	Lemme	10
14	Definition	10
18	Corollaire	11
15	Definition (Matrices semblables)	11
16	Definition (Sous-espace propre)	11
19	Lemme	11
20	Corollaire	12
17	Definition (Multiplicite algebrique)	13
21	Proposition	13
22	Theorème (Theoreme de diagonalisation)	13
23	Theorème (Evaluation d'une matrice dans un polynome)	14
24	Theorème (Cayley-Hamilton)	14
18	Definition (Polynome minimal)	14
25	Corollaire	1.5

Lecture 1: Introduction

Tue 23 Feb

1 Polynomes

Definition 1 (Centre d'un anneau)

Le centre Z(R) est l'ensemble des elements x satisfaisant

$$\{x \in R | ra = ar \forall a \in R\}$$

Definition 2 (Diviseurs de 0)

a est un element non nul d'un anneau R satisfaisant qu'il existe $b \in R$ tel que ab = 0 ou ba = 0.

Definition 3 (Anneau integre)

Si un anneau est commutatif et n'a pas de diviseurs de 0, alors l'anneau est integre.

Theorème 1

Soit R un anneau, alors il existe un anneau $S \supseteq R$ (R est un sous-anneau) et $\exists x \in S \setminus R$ tel que

$$-ax = xa, \forall a \in R$$

—
$$Si \ a_0 + \ldots + a_n x^n = 0 \ et \ a_i \in R \forall i \ alors \ a_i = 0 \forall i$$

 $Cet\ x\ est\ appele\ indeterminee\ ou\ variable.$

Definition 4 (Polynome)

Un polynomer sur R est une expression de la forme

$$p(x) = a_0 + \ldots + a_n x^n$$

ou a_i est le i-eme coefficient de p(x).

R[x] est l'ensemble des polynomes sur R.

Theorème 2

R[X] est un sous-anneau. R est sans diviseurs de $0 \Rightarrow R[X]$ est sans diviseurs de 0.

De meme, si R est commutatif, R[x] aussi.

Preuve

Soit $f(x) = \sum a_i x_i, g(x) = \sum b_i x^i$ de degre n resp. m.

$$f(x) + g(x) = \sum_{i=1}^{\max(m,n)} (a_i + b_i)x^i$$

De meme, on a

$$f(x) \cdot g(x) = a_0 b_0 + \dots = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j \right) x^k$$

Donc R[X] est stable pour +, \cdot et donc immediatement pour -, donc R[X] est un sous-anneau de S.

Soient $f(x), g(x) \neq 0$ et $n = \max\{i : a_i = 0\}$, le m + n-ieme coefficient de f(x)g(x) est a_nb_m et donc si R est integre, R[x] l'est aussi.

Definition 5 (Degre d'un polynome)

Soit $f(x) = a_0 + \ldots \in R[X]$, $f(x) \neq 0$. On definit

$$\deg(f) = \max\{i : a_i = 0\}$$

Ce dernier terme s'appelle le coefficient dominant de f, de plus on definit

$$f(x) = 0 : \deg(f) = -\infty$$

 $Si \deg(f) = 0$, alors f est une constante.

Theorème 3

Soit R un anneau, $f, g \in R[X] \neq 0$ tel que au moins un de leur coefficients dominants de f ou de g ne sont pas des diviseurs de 0. Alors $\deg(f \cdot g) = \deg(f) + \deg(g)$

Preuve

Soit $f(x)=a_0+\ldots,g(x)=b_0+\ldots,\deg f=n,\deg g=m.$ Le n+m ieme coefficient de $f\cdot g=a_n\cdot b_m\neq 0$

Soit $p(x) \in R[x]$, ce polynome induit une application $f_p : R \to R$, on ecrit aussi p(r)

Theorème 4

Soit K un corps et $r_0, r_1, \ldots, r_n \in K$ des elements distincts et soient $g_0, \ldots, g_n \in K$.

Il existe un seul polynome $f \in K[x]$ tel que

- 1. $\deg f \leq n$
- 2. $f(r_i) = g_i$

Preuve

On cherche $a_0, \ldots a_n$ tel que

$$a_0 + a_1 r_i + \dots a_n r_i^n = g_i$$

Donc, on cherche

$$\begin{pmatrix} 1 & r_0 & \dots & r_0^n \\ \vdots & \dots & \dots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \dots \end{pmatrix} = \begin{pmatrix} g_1 \\ \dots \\ \dots \end{pmatrix}$$

 ${\it Il faut \ donc \ montrer \ que \ la \ matrice \ ci-dessus \ a \ un \ determinant \ non \ nul.}$

On le montre par induction sur n.

Dans le cas n = 0, le determinant vaut trivialement 1. Dans le cas n > 0, on a

$$\det\begin{pmatrix} 1 & 0 \dots \\ 1(r_1 - r_0) & \dots \\ \dots & \ddots \\ 1(r_n - r_0) & \dots \end{pmatrix} = (r_1 - r_0)(r_2 - r_0) \dots \det(V(r_1, \dots, r_n)) \neq 0 \quad \Box$$

Lecture 2: Polynomes

Wed 24 Feb

Theorème 5

Soit K un corps fini de characteristique q, alors $K \supseteq \mathbb{Z}_q$.

De plus K est un espace vectoriel de \mathbb{Z}_q de dimension finie.

Corollaire 6

 $Soit\ K\ un\ corps\ infini.\ Deux\ polynomes\ sont\ egaux\ si\ et\ seulement\ si\ leurs\ evaluations\ sont\ les\ memes.$

Preuve

Une direction est triviale.

L'autre suit immediatement du theoreme 1.6

1.1 Division avec reste

Theorème 7

Soit R un anneau, $f,g\in R[x], g\neq 0$ et soit le coefficient de $g\in R^*$ Il existe $q,r\in R[x]$ uniques tel que

1.
$$f(x) = q(x)g(x) + r(x)$$

2.
$$\deg r < \deg g$$

Preuve

 $Si \deg f < \deg g$, on a fini.

Soit donc deg $f \geq g$, donc

$$f(x) = a_0 + \ldots + a_n x^n$$

et

$$g(x) = b_0 + \dots b_m x^m$$

 $et \ b_m^{-1} \ existe.$

On procede par induction sur n.

 $Si \ n = m :$

On note que

$$f(x) - \frac{a_n}{b_m}g(x)$$

 $est \ un \ polynome \ de \ degre < n \ Si \ n > m \ :$

 $On\ note\ que$

$$f(x) - \frac{a_n}{b_m} x^{n-m} g(x)$$

 $est \ un \ polynome \ de \ degre < n.$

Par hypothese d'induction il existe q(x), r(x) tel que

$$- f(x) - \frac{a_n}{b_m} x^{n-m} g(x) + r(x)$$

$$- \deg r < \deg g$$

et donc on a fini de montrer l'existence.

Supposons maintenant qu'il existe r' et q' satisfaisant les memes proprietes que q et g, alors on a

$$q(x)g(x) + r(x) = q'(x)g(x) + r'(x)$$

Donc

$$r' \neq r \ et \ q' \neq q$$

en comparant les degre, on a une contradiction.

1.2 Factorisation des polynomes sur un corps

Definition 6 (Diviseurs de polynomes)

Soit $q(x) \in K[x]$.

q divise f si il existe g(x) tel que

$$q(x)g(x) = f(x)$$

On dit que q est un diviseur de f, on ecrit q(x)|f(x)

Definition 7 (Racine)

Soit $p(x) \in K[x]$, et soit $\alpha \in K$ tel que $p(\alpha) = 0$

Theorème 8

Soit $f(x) \in K[x] \setminus \{0\}$, alors $\alpha \in K$ est une racine de f si et seulement si (x-a)|f(x)

Preuve

 $Si(x-\alpha)q(x)=f(x)$, alors on a fini.

sinon, la division de f(x) par $x - \alpha$ avec reste donne

$$f(x) = q(x)(x - \alpha) + r \text{ ou } r \in K$$

Si
$$r \neq 0$$
, alors $f(\alpha) = q(\alpha)(\alpha - \alpha) + r = r = 0$ et donc $(x - a)|f(x)$

Definition 8 (Multiplicite d'une racine)

La multiplicite d'une racine α de $p(x) \in K[x]$ est le plus grand $i \geq 1$ tel que

$$(x-\alpha)^i|p(x)$$

Theorème 9 (Theoreme fondamental de l'algebre)

Tout polynome $p(x) \in \mathbb{C}[x] \setminus \{0\}$ de degre ≥ 1 possede une racine complexe.

Lecture 3: Factorisation des polynomes sur un corps

Tue 02 Mar

1.3 Factorisation des polynomes sur un corps

Soit K un corps.

Definition 9 (Polynome irreductible)

Un polynome $p(x) \in K[x] \setminus \{0\}$ est irreductible si

$$--\deg p\geq 1$$

-
$$si\ p(x) = f(x) \cdot g(x)$$
, alors $deg\ f = 0$ ou $deg\ g = 0$.

Theorème 10

Un polynome de degre 2 sur K[x] est irreductible si et seulement si le polynome ne possede pas de racines.

1.4 Diviseurs Communs le plus grand

Theorème 11

Soient $f(x), g(x) \in K[x]$ pas tous les deux nuls.

On considere l'ensemble $I = \{u \cdot f + v \cdot g : u, v \in K[x]\}.$

Il existe un polynome $d(x) \in K[x]$ satisfaisant

$$I = \{h \cdot d : h \in K[x]\}$$

Preuve

Soit $a \in I \setminus \{0\}$ de degre minimal.

L'ensemble $\{h \cdot d : h \in K[x]\}$ est clairement un sous-ensemble de I.

Il reste a montre l'inclusion inverse.

 $Si\ d\ ne\ divise\ pas\ uf+vg,\ la\ division\ avec\ reste\ donne$

$$uf + vg = qd + r \iff r = uf + vg - qd = (u - qu')f + (v - qv')g$$

Or le reste est non nul, mais le reste est de degre inferieur a $\deg d$. \nleq

Definition 10 (Polynome Unitraire)

Un polynome $f(x) \in K[x]$ dont le coeff. dominant = 1 est un polynome unitaire.

Definition 11 (Diviseur Commun)

Soient $f, g \in K[x]$ non-nuls.

Un diviseur commun de f et g est un polynome qui divise f et g.

Theorème 12

Soient $f, g \in K[x]$ non-nuls.

Soit $d \in K[x]$ comme dans le theoreme precedent.

- d est un diviseur commun de f et g.
- Chaque diviseur commun de f et g est un diviseur de d.
- Si d est unitaire, alors d est unique.

Preuve

- $f \in I \Rightarrow \exists h \ tel \ que \ hd = f \iff d|f \ et \ g \in I \Rightarrow d|g$
- Soit $d' \in K[x]$ tq d'|f, d'|g, on veut montrer que d'|d.

$$f = f'd', q = q'd'$$

des que $d \in I$, il existe $u, v \in K[x]$ tel que

$$d = uf + vg = uf'd' + vg'd' = (uf' + vg')d' \Rightarrow d'|d \qquad \Box$$

— Soit $d' \in I$ tel que $I = \{hd' | h \in K[x]\}.$

Soient d, d' unitaires.

d|d'| et d'|d, donc ils sont les memes a un facteur pres.

Definition 12 (PGCD)

L'unique polynome unitaire $d \in K[x]$ qui satisfait les conditions ci-dessus est appele le plus grand commun diviseur de f et g.

Theorème 13 (Algorithme d'Euclide)

Soient f_0, f_1 non nuls et

$$\deg f_0 \ge \deg f_1$$

On cherche $gcd(f_0, f_1)$ Si $f_1 = 0$, alors $gcd = f_0$.

 $Si f_1 \neq 0 \ On \ pose$

$$f_0 = q_1 f_1 + f_2$$

Soit $h \in K[x]$: $h|f_0$ et $h|f_1 \Rightarrow h|f_2$ Et donc on pose $gcd(f_0, f_1) = gcd(f_1, f_2)$ On repete jusqu'a trouver un f_k nul.

Grace a l'algorithme d'Euclide, on peut aussi trouver $u, v \in K[x]$ tel que $uf_0 + vf_1 = \gcd(f_0, f_1)$.

En effet, on a

$$\begin{pmatrix} f_i \\ f_{i+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_i \end{pmatrix} \begin{pmatrix} f_{i-1} \\ f_i \end{pmatrix}$$

et donc en appliquant cette matrice plusieurs fois, on trouve une dependance lineaire entre f_{k-1} et f_k

Et donc le $gcd(f_0, f_1) = \frac{1}{\text{coeff dominant de } f_{k-1}} (uf_0 + vf_1)$

Lecture 4: Polynomes 2

Wed 03 Mar

1.5 Factorisation en elements irreductibles

Un polynome p(x) est irreductible si le degre de p est ≥ 1 , $p(x) \neq 0$.

Si h|p, alors h = a ou $h = a \cdot p$.

Tout $f(x) \in K[x]$ se laisse factoriser

$$f(x) = a \prod_{i} p_i(x), p_i(x)$$
 irreductibles, unitaires

Est-ce que cette factorisation est unique?

Theorème 14

Soit $p(x) \in K[x] \setminus \{0\}$ irreductible et supposons que $p|f_1(x) \dots f_k(x)$, alors il existe i tel que $p(x)|f_i(x)$

Preuve

Par recurrence, il suffit de demontrer l'assertion pour k=2.

Supposons que $p|f \cdot g, f, g \in K[x] \setminus \{0\}.$

Si $p \nmid f$, alors gcd(p, f) = 1. Donc, il existe $u, v \in K[x]$ tel que up + vf = 1, donc on a

$$upg + vfg = g \Rightarrow p|upg + vfg \Rightarrow p|g \qquad \qquad \Box$$

Theorème 15 (La factorisation est unique)

La factorisation est unique a l'ordre pres des p_i .

Preuve

Soit $f(x) = a \prod p_i(x)$ et $f(x) = a \prod q_j(x)$ une autre factorisation en elements irreductible.

Par recurrence sur k.

 $Si \ k = 1, \ alors$

$$ap_1(x) = aq_1(x) \dots q_l(x)$$

Et donc $q_1(x) = p_1(x)$, car p_1 est irreductible. Si k > 1,

$$ap_1(x) \dots p_k(x) = aq_1(x) \dots q_l(x)$$

Grace au theoreme ci-dessus, $p_1|q_j$ pour un certain $j \iff p_1 = q_j$. Et donc on obtient

$$p_2(x) \dots = q_1(x) \dots q_l(x)$$

Par recurrence, cette factorisation existe et est la meme a ordre pres.

Corollaire 16

Soit $f(x) \in K[x] \setminus \{0\}$ et $\alpha_1 \dots$ des racines de f de multiplicite k_1, \dots, k_l respectivement.

Alors il existe $g(x) \in K[x]$ tel que

$$f(x) = g(x) \prod (x - \alpha_i)^{k_i}$$

Preuve

Exercice

2 Valeurs et Vecteurs Propres

Definition 13 (Vecteur propre)

Soit V un espace vectoriel sur K et f un endomorphisme sur V.

Un vecteur propre de f associe a la valeur propre $\lambda \in K$ est un vecteur $v \neq 0$ satisfaisant

$$f(v) = \lambda v$$

Lemme 17

Soit $B = \{v_1, \ldots, v_n\}$ une base de V et $A \in K^{n \times n}$ la matrice de l'endomorphisme f relatif a B.

La matrice A est une matrice diagonale

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$

 $\iff v_i \text{ est un vecteur propre associe a la valeur propre } \lambda_i.$

Preuve

On a

$$[f(v_i)]_B = Ae_i = \lambda_i e_i$$

Donc v_i est un vecteur propre associe a λ_i .

Dans l'autre sens, les arguments sont similaires.

Definition 14

Un endomorphisme f sur un espace vectoriel de dimension finie est appele diagonalisable s'il existe une base tel que $\{v_1, \ldots\}$ de V composee de vecteurs propres.

Lecture 5: Vecteurs/Valeurs Propres

Tue 09 Mar

Corollaire 18

Soit $f: V \to V$ un endomorphisme et $\{v_1, \ldots, v_n\}$ une base de V. Alors f est diagonalisable si et seulement si il existe une matrice inversible $P \in K^{n \times n}$ tel que $P^{-1}A_BP$ est diagonale.

Preuve

f est diagonalisable $\iff \exists B' = \{w_1, \ldots\}$ tel que $A_{B'}$ est diagonale. Mais $A_{B'} = P^{-1}A_BP$

Definition 15 (Matrices semblables)

 $A, B \in K^{n \times n}$ sont semblables s'il existe $P \in K^{n \times n}$ inversible tel que

$$P^{-1}AP = B$$

Donc si f est diagonalisable, la matrice de f est semblable a une matrice diagonale.

Definition 16 (Sous-espace propre)

Soit $f: V \to V$ un endomorphisme et λ une valeur propre de f, alors

$$E_{\lambda} = \ker(f - \lambda \cdot \mathrm{Id})$$

est l'espace propre de f associe a λ . dim E_{λ} est la multiplicite geometrique de λ .

Lemme 19

Soit $f: V \to V$ un endomorphisme et v_1, \ldots, v_r des vecteurs propres associes aux valeurs propres $\lambda_1, \ldots, \lambda_r$ distinctes.

Alors $\{v_1, \ldots, v_r\}$ est un ensemble libre.

Preuve

r = 1 est evident.

Pour r=2:

Supposons que v_1, v_2 sont lineairement dependants, alors il existe $\exists \alpha_1, \alpha_2 \in K \setminus \{0\}$ tel que

$$\alpha_1 v_1 + \alpha_2 v_2 = 0$$

 $Spg \ \lambda_2 \neq 0$, en appliquant f, on trouve

$$0 = \alpha_1 f(v_1) + \alpha_2 f(v_2)$$
$$0 = \alpha_1 \frac{\lambda_1}{\lambda_2} v_1 + \alpha_2 v_2$$
$$0 = \alpha_1 (1 - \frac{\lambda_1}{\lambda_2}) v_2$$

 $Pour \ r > 2$

Supposons l'assertion est fausse et soit r > 2 minimal tel que v_1, \ldots, v_r sont

lin. dependants.. Soit

$$\alpha_1 v_1 + \ldots = 0$$

avec $\alpha_i \neq 0 \ \forall i, \ alors$

$$0 = \alpha_1 \frac{\lambda_1}{\lambda_r} v_1 + \ldots + \alpha_r v_r$$

En soustrayant les deux egalites, on trouve

$$0 = \alpha_1 (1 - \frac{\lambda_1}{\lambda_r}) v_1 + \dots$$

Ce qui contredit la minimalite.

Corollaire 20

Soit $f: V \to V$ un endomorphisme de V sur K et dim V = n.

Soient λ_1, \ldots , les valeurs propres differentes de f.

Soit $n_1 \dots$ les multiplicites geometriques respectives.

Soient $B_i = \left\{ v_1^{(i)}, \dots, v_{n_i}^{(i)} \right\}$ des bases de E_{λ_i} , alors

$$\bigcup_{i} B_{i}$$

est un ensemble libre.

f est diagonalisable $\iff n_1 + \ldots + n_r = n$

Preuve

Soit

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} \alpha_{ij} v_j^{(i)} = 0$$

Montrons que $\alpha_{ij} = 0 \forall i, j$ "Immediat" par lemme d'avant.

On remarque immediatement que si $\sum n_i = n$, les vecteurs propres forment une base.

A l'inverse, soit f diagonalisable, cad il existe une base B de V composee de vecteurs propres. Soit $m_i = |B \cap E_{\lambda_i}|$, donc m_i est le nombre de vecteurs dans B associe a λ_i .

Clairement $\sum m_i = n$, mais $m_i \le n_i \le \dim E_{\lambda_i}$, donc $\sum n_i = n$.

Lecture 7: Polynome caracteristique

Wed 10 Mar

3 Le polynome caracteristique

Soit A une matrice $n \times n$, $\lambda \in K$ est une valeur propre de l'endomorphisme defini par A si et seulement si $\ker(A - \lambda \operatorname{Id}) \supsetneq \{0\}$. On note

$$\det(A - \lambda I) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n (A - \lambda \operatorname{Id})_{i\pi(i)}$$

On observe que λ est une valeur propre de f si et seulement si λ est une racine de p_A .

Soit $f: V \to V$ un endomorphisme, $B = \{v_1, \ldots\}$ une base de V. Le polynome caracteristique de f est donne par

$$\det(A_B - \lambda \operatorname{Id})$$

Cette definition fait du sens, car le changement de base n'influence pas la valeur du determinant.

Definition 17 (Multiplicite algebrique)

La multiplicite algebrique d'une valeur propre est la multiplicite comme racine du polynome caracteristique.

Proposition 21

Soit f un endomorphisme de $V \to V$.

Soit $\lambda \in K$ une valeur propre.

La multiplicite geometrique de λ est au plus la multiplicite algebrique.

Preuve

Soit $\{v_1, \ldots, v_r\}$ une base de E_{λ} , on complete cette base en une base de V avec $\{w_1, \ldots, w_{n-r}\}$. Dans cette base, la representation de la matrice de $A - \lambda \operatorname{Id}$ implique que

$$\det(A - x \operatorname{Id}) = (\lambda - x)^r \det C$$

 $et\ donc\ r\ est\ au\ plus\ la\ multiplicite\ algebrique.$

Theorème 22 (Theoreme de diagonalisation)

Soit V un espace vectoriel sur K de dimension $n, f: V \to V$ un endomorphisme $\lambda_1, \ldots \in K$ les valeurs propres distinctes, alors f est diagonalisable si et seulement si

- $-p_f(x) = (-1)^n \prod_{i=1}^r (x \lambda_i)^{g_i}$
- $-\dim E_{\lambda_i} = g_i \ pour \ tout \ i$

Preuve

Soit f diagonalisable et soit $B = \{v_1, \ldots\}$ une base composee de vecteurs propres. A_B est une matrice diagonale, alors $p_f(x) = \det(A_B - x \operatorname{Id}) = (-1)^n \prod (\lambda_i - x)^{g_i}$. De plus $\dim(\ker(A_B - \lambda_i \operatorname{Id})) = g_i$

Soient m_i les multiplicites geometriques des valeurs propres. car

$$deg(p_f) = n$$

on a fini. \Box

Lecture 7: Cayley-Hamilton

Tue 16 Mar

3.1 Theoreme de Cayley-Hamilton

Theorème 23 (Evaluation d'une matrice dans un polynome)

Soit $p(x) = a_0 + \ldots + a_n x^n \in K[x]$ Pour $A \in K^{n \times n}$, on definit

$$p(A) = a_0 \operatorname{Id} + \ldots + a_n A^n$$

Theorème 24 (Cayley-Hamilton)

Soit $A \in K^{n \times n}$ et $p(\lambda) \in K[\lambda]$ le polynome caracteristique de A, alors $p(A) = 0 \in K^{n \times n}$

Preuve

Supposons d'abord que $A \in K^{n \times n}$ est diagonalisable.

Alors $\exists \{v_1, \ldots\}$ une base composee de vecteurs propres de A.

Considerons

$$p(A) \cdot v_i = a_0 v_i + a_1 A v_i + \dots$$
$$= a_0 v_i + a_1 \lambda_i v_i + \dots$$
$$= p(\lambda_i) v_i = 0$$

Supposons donc que A n'est pas diagonalisable.

Notons que

$$\mathrm{Id} = \frac{cof(A - \lambda \mathrm{Id})^T}{\det(A - \lambda \mathrm{Id})} \cdot (A - \lambda \mathrm{Id})$$

Alors

$$a_0 + a_1 \lambda \operatorname{Id} + \ldots = \operatorname{cof}(A - \lambda \operatorname{Id})^T \cdot (A - \lambda \operatorname{Id})$$

$$cof(A - \lambda \operatorname{Id})^{T} \cdot (A - \lambda \operatorname{Id}) = B_{0}A + \sum_{i=1}^{n-1} \lambda^{i} (B_{i}A - B_{i-1}) - \lambda_{n}B_{n-1}$$

 $Ce\ qui\ implique$

$$a_0 \operatorname{Id} = B_0 A$$

$$a_i \operatorname{Id} = B_i A - B_{i-1} \text{ pour } i \in \{1, \dots, n-1\}$$

$$a_n \operatorname{Id} = -B_{n-1}$$

On multiplie chacune de ces equations par A^i et on les additionne. On trouve alors

$$p(A) = 0 \qquad \Box$$

Definition 18 (Polynome minimal)

Le polynome unitaire de degre minimal parmi ceux, qui annullent la matrice $A \in K^{n \times n}$ est appele le polynome minimal de A.

Preuve

 $Ce\ polynome\ est\ unique.$

 $Supposons \ qu'il \ existe \ q,p \ des \ polynomes \ qui \ annullent \ A. \ Alors$

$$p \not | q et q \not | p$$

Donc

$$p = qq' + r$$

 $ou\ r \neq 0, \deg r < \deg p,\ donc$

$$0 = p(A) = r(A) + q'(A)q(A) = r(A)$$

Donc p n'est pas de degre minimal $\frac{1}{2}$.

Corollaire 25

Soit $A \in K^{n \times n}$

- A^k est combinaison lineaire de $\mathrm{Id}, A, \ldots, A^{n-1}$ pour tout $k \in \mathbb{N}$
- A inversible, alors A^{-1} s'ecrit comme combinaison lineaire de $\operatorname{Id},A,\ldots,A^{n-1}$

Preuve

— Pour $k \in 0, \ldots, n-1$ clair.

Soit $k \ge n : x^k = q(x)p_A(x) + r(x)$, on evalue

$$A^k = q(A)p_A(A) + r(A) = r(A)$$

 $et \ r \ est \ de \ degre \ n-1.$

 $\det A \neq 0 \qquad \qquad \Box$

Donc il suffit de reformuler p(A) = 0.