Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_pedagogic* Barem de evaluare și de notare

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{1}{3}\right)^2 + 2 = \frac{1}{9} + \frac{18}{9} = \frac{19}{9}$	3p
	$\frac{19}{9}:\frac{19}{9}=1$	2p
2.	$f(x) = g(x) \Leftrightarrow 2014 - x = x - 2014$	3р
	Coordonatele punctului de intersecție sunt $x = 2014$ și $y = 0$	2p
3.	$x^2 + 3x = x - 1 \Leftrightarrow x^2 + 2x + 1 = 0$	3р
	x = -1	2p
4.	$\frac{25}{100} \cdot 360 = 90$	3р
		- 1
	După reducere prețul aparatului de fotografiat este 360 – 90 = 270 de lei	2p
5.	M mijlocul segmentului $AB \Rightarrow x_M = \frac{-2+2}{2} = 0$	3р
	$y_M = 3$	2p
6.	$\frac{3}{5} = \frac{6}{BC}$	3р
	$\int_{0}^{\infty} BC$	J.P
	BC = 10	2p

SUBIECTUL al II-lea (30 de puncte)

1.	8*(-3) = 8-3+11=	3 p
	=16	2 p
2.	(x*y)*z = (x+y+11)*z = x+y+z+22	2 p
	x*(y*z) = x*(y+z+11) = x+y+z+22 = (x*y)*z pentru orice numere reale x, y şi z	3 p
3.	x*(-11) = x + (-11) + 11 = x	3 p
	(-11)*x = -11 + x + 11 = x pentru orice număr real x	2 p
4.	$(x^2)*x = 121 \Leftrightarrow x^2 + x - 110 = 0$	3p
	$x_1 = 10$ și $x_2 = -11$	2p
5.	x*(x+23) = x+(x+23)+11 = 2x+34	2 p
	(x*x)*12 = (x+x+11)+12+11 = 2x+34 = x*(x+23) pentru orice număr real x	3 p
6.	$\lg x + \lg x + 11 = 13$	2p
	$\lg x = 1 \Rightarrow x = 10$ care verifică ecuația	3 p

SUBIECTUL al III-lea (30 de puncte)

	` 1	
1.	$\det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 0 =$	3p
	=1	2 p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

2.	$2 \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & a-3 \\ 0 & 1 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & 3a-3 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	3p
	$3a-3=0 \Leftrightarrow a=1$	2p
3.	$A(1) + A(2) + + A(9) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + + \begin{pmatrix} 1 & 9 \\ 0 & 1 \end{pmatrix} =$	2 p
	$= \begin{pmatrix} 9 & 1+2++9 \\ 0 & 9 \end{pmatrix} = \begin{pmatrix} 9 & 45 \\ 0 & 9 \end{pmatrix} = 9 \cdot \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} = 9A(5)$	3 p
4.	$A(a) + A(b) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & a+b \\ 0 & 2 \end{pmatrix} \Rightarrow \det(A(a) + A(b)) = 4$	2 p
	$A(a) \cdot A(b) = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(a) \cdot A(b)) = 1 \Rightarrow \det(A(a) + A(b)) = 4\det(A(a) \cdot A(b))$	3 p
5.	$A(a) \cdot A(-a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3 p
	$A(-a) \cdot A(a) = \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \text{ pentru orice număr real } a$	2 p
6.	$ \begin{pmatrix} p & 2 \\ q & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} p & 2 \\ q & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} p & pa+2 \\ q & qa+1 \end{pmatrix} = \begin{pmatrix} p+qa & 2+a \\ q & 1 \end{pmatrix} $ pentru orice număr real a	3 p
	$p = 1 \text{ si } q = 0 \Rightarrow X = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	2 p