WRITTEN ASSIGNMENT 08

Let G(V,E) be a directed graph. Let $w:E\to \mathbf{Z}$ be a function assigning integer weights to all the graphs edges and let $s\in V$ be the source vertex. Every vertex $v\in V$ stores v.d – the current estimate of the distance from the source. A vertex also stores v.p – its parent (the last vertex on the shortest path before reaching v). Bellman-Ford algorithm to find the minimum distance from s to all the other vertices is given by the following pseudocode:

```
\begin{aligned} \mathbf{BELLMANFORD}(G,w,s) \colon & & \quad \mathbf{for\ each\ vertex}\ v \in V \colon & \quad \textit{(initialize\ vertices\ to\ run\ shortest\ paths)} \\ & v.d = \infty \\ & v.p = \mathbf{NULL} \\ & s.d = 0 \quad \textit{(the\ distance\ from\ source\ vertex\ to\ itself\ is\ 0)} \\ & \quad \mathbf{for\ } i = 1\ \mathbf{to}\ |V| - 1 \quad \textit{(repeat\ } |V| - 1\ \textit{times}) \\ & \quad \mathbf{for\ each\ edge}\ (u,v) \in E \\ & \quad \mathbf{if\ } v.d > u.d + w(u,v) \colon \quad \textit{(relax\ an\ edge,\ if\ necessary)} \\ & \quad v.d = u.d + w(u,v) \\ & \quad v.p = u \end{aligned}
```


Fig. 1: A directed graph for Bellman-Ford Algorithm

In this task the input graph is shown in Fig.1.

(A) In your graph use the vertex $s=v_0$ as the *source vertex* for Bellman-Ford algorithm. Create a table showing the changes to all the distances to the vertices of the given graph every time a successful edge relaxing happens and some distance is reduced. You should run n-1 phases of the Bellman-Ford algorithm (where n is the number of vertices). You can also stop earlier, if no further edge relaxations can happen.

Note: Please make sure to release the edges in the lexicographical order. For example, in a single phase the edge (v_1, v_4) is relaxed before the edge (v_2, v_1) , since v_1 precedes v_2 .

- **(B)** Summarize the result: For each vertex tell what is its minimum distance from the source. Also tell what is the shortest path how to get there.
- (C) Does the input graph contain negative cycles? Justify your answer.

Answer:

(**A**) Phase 1:

Vertices	v_0	v_1	v_2	v_3	v_4	v_5
Initial distances	0	∞	∞	∞	∞	∞
Relax (v_0, v_1)	0	0	∞	∞	∞	∞
Relax (v_0, v_2)	0	0	0	∞	∞	∞
Relax (v_0, v_3)	0	0	0	0	∞	∞
Relax (v_0, v_4)	0	0	0	0	0	∞
Relax (v_0, v_5)	0	0	0	0	0	0
Relax (v_3, v_5)	0	0	0	0	0	-4
Relax (v_4, v_2)	0	0	-5	0	0	-4
Relax (v_4, v_5)	0	0	-5	0	0	-8
Relax (v_5, v_1)	0	-3	-5	0	0	-8

Phase 2:

Vertices	v_0	v_1	v_2	v_3	v_4	v_5
Relax (v_2, v_3)	0	-3	-5	-4	0	-8

Further phases cannot relax any new edges, so these distances are considered final.

- **(B)** We list the shortest paths from v_0 to all the vertices.
 - Distance $d(v_0, v_0) = 0$, path (v_0) has 0 edges and weight 0.
 - Distance $d(v_0, v_1) = -3$, path $(v_0 \to v_4 \to v_5 \to v_1)$ has 3 edges and weight 0 + (-8) + 5 = -3.
 - Distance $d(v_0, v_2) = -5$, path $(v_0 \rightarrow v_4 \rightarrow v_2)$ has 2 edges and weight 0 + (-5) = 5.
 - Distance $d(v_0, v_3) = -4$, path $(v_0 \to v_4 \to v_2 \to v_3)$ has 3 edges and weight 0 + (-5) + 1 = -4.
 - Distance $d(v_0, v_4) = 0$, path $(v_0 \rightarrow v_4)$ has 1 edge and weight 0.
 - Distance $d(v_0, v_5) = -8$, path $(v_0 \rightarrow v_4 \rightarrow v_5)$ has 2 edges and weight 0 + (-8) = -8.
- (C) Graph G does not contain negative cycles otherwise the edge relaxation would continue in Phases 2, 3, and so on.

Note: Just a little modification: $w(v_4,v_2)=-6$ (instead of -5) yields a negative loop: $v_4 \rightarrow v_2 \rightarrow v_3 \rightarrow v_5 \rightarrow v_1 \rightarrow v_4$ or (-6)+(1)+(-4)+(5)+(3). If we run Bellman-Ford algorithm on such a graph, then relaxing edges does not end after |V|-1 iterations, the minimum distances decrease further and can become negative numbers with arbitrarily large absolute values.