ECE 230 : Probability and Random Processes

Assignment 6

Deadline: November 24, 2011

- 1. If a process X(t) is stationary and differentiable with derivative X'(t), show that for a given t, the random variables X(t) and X'(t) are orthogonal and uncorrelated.
- 2. X(t) is a WSS process with E[X(t)] = 1, $R_x(\tau) = 1 + e^{-2|\tau|}$. Find the mean (ensemble average) and variance for random variable $Y, Y \triangleq \int_0^1 X(t) dt$
- 3. A Gaussian random process X(t) has mean E[X(t)] = m and auto-covariance $e^{-\alpha|\tau|}$, $\alpha > 0$ Let $M_T \triangleq \frac{1}{2} \int_{-T}^{T} X(t) dt$
 - a. Is X(t) ergodic in the mean.
 - b. Find the probability $P[|M_T m| \le \varepsilon]$
 - c. How large should T be chosen so that $P[|M_T m| \le 0.1]$ is not less than 0.95?
- 4. If the ACF $R_x(\tau)$ of a stochastic process is given by

a.
$$R_x(\tau) = e^{-2\lambda|\tau|}$$
, $\forall \tau$

b.
$$R_x(\tau) = \begin{cases} 1 - \frac{|\tau|}{T}, & |\tau| < T \\ 0, & else where \end{cases}$$

Find $S_x(f)$ in each case.

5. A zero mean Gaussian process X(t) with ACF $R_x(\tau)$ is applied as the input to a square law detector, $Y(t) = X^2(t)$. Find $f_{Y(t)}(y,t)$, E[Y(t)], $R_y(t+\tau,t)$. Is Y(t) WSS? If so, find $S_y(f)$.

6. The p.s.d $S_W(f)$ of a zero mean stochastic process $W(t) = X(t) \cos 2\pi f_0 t + Y(t) \sin 2\pi f_0 t$ is shown below (only positive frequency part is shown). Find $S_X(f)$, $S_Y(f)$, $S_{YX}(f)$ and sketch them.

7. The output X(t) of a bi-stable multi-vibrator switches randomly between ± 1 volts every T seconds and is fed to a delay line with a random delay T_d that is uniformly distributed over $[0\ T]$ and is independent of X(t). The output Y(t) of the delay line is applied to a low pass RC filter to yield the output Z(t). Let W(t) = Z(t) - Y(t). Find the power spectrum $S_W(f)$ of W(t) and the variance of W(t)