

West Nile Virus Prevention

Andre Tan Nah Wei Jie

Agenda

01 Introduction

02 Problem Statement

O3 Data Science Process

04 Cost Benefit Analysis

O5 Conclusion & Recommendation

Introduction (West Nile Virus)

Why?

- 4 of 5 have no symptoms
- 1 of 5 chance of non-fatal symptoms
- No known vaccine / treatment
- 1 in 150 chance of severe
 neuroinvasive symptoms / fatality

When?

Summer through autumn

How?

Problem Statement

Generate a model to predict where and when different traps will test WNV+ to predict outbreaks.

This will help the City of Chicago to better allocate resources towards preventing outbreaks.

Evaluation Metrics:

- ROC-AUC

- Recall

Datasets used:

- Weather

- Spray

- Train

- Test

Exploratory Data Analysis

Trap Locations

Legend

2007

0 2009

0 2011

2013

Spray/Positive Traps (2011, 2013)

1.3km Radius

Spray/Positive Traps (2011, 2013)

Legend

Spray Areas

WNV+ Traps

1.3km Radius

Weather variable groups

*: Engineered features

Baseline Model

*

- Inherent imbalanced class distribution
- Confusion Matrix (LogisticRegression)
- Use SMOTE to overcome class imbalance

Pipeline steps

Standard Scaler

SMOTE

Classifiers

Logistic Regression

K Nearest Neighbours

Decision tree

Random Forest

AdaBoost

GSCV Model Scores

	Classifier	Train ROC- AUC Score	Val ROC- AUC Score	Best Parameters	F1	Precision	Recall Accuracy
0	AdaBoostClassifier()	0.769356	0.77956	{'clf_learning_rate': 0.1, 'clfn_estimators': 100,	0.222826	0.12 0.9	901099
1	RandomForestClassifier()	0.791749	0.768264	{'clf_max_depth': 8, 'clf_n_estimators': 30, 'clf_n_jobs': -1, 'clf_random_state': 42}	0.228826	0.132302 0	.846154 0.698606
2	LogisticRegression()	0.756251	0.749917	{'clf_C': 0.5005, 'clf_l1_ratio': 0, 'clf_max_iter': 750, 'clf_n_jobs': -1, 'clf_penalty': 'l1', 'clf_random_state': 42, 'clf_solver': 'liblinear'}	0.215827	0.124172 0	.824176 0.683508
3	DecisionTreeClassifier()	0.755334	0.749776 {'0	clfcriterion': 'gini', 'clfmax_depth': 5, 'clfmin_samples_leaf': 8, 'clfrandom_state': 42}	0.200247	0.112813 0	0.890110 0.624274
4	KNeighborsClassifier()	0.886681	0.707777	{'clf_n_neighbors': 7, 'clf_p': 2}	0.242291	0.151515 0	0.604396 0.800232

Feature Importance

Limitations of modelling process

Look ahead bias and CV's role

 $\textbf{2007} \rightarrow \textbf{2013}$

Walk forward validation

Expanding Window

Sliding Window

Cost Benefit Analysis

Cost Benefit Analysis

	Item	Result	t		Remarks
	emergency spray cost	\$899,048	3		excluding overtime
	sprayed area	477km^2	2		
	spray cost per km^2	\$1,884.70)		
	spray area per trap (1.3km radius)	5.31km^2	2		
	spray cost per trap	\$10,007.76	6		excluding overtime
al medica	al costs accrued by all WNV patients		\$ 2	2,140,409.00	culated using spray area per trap * population density
imber of patients				46 pax	1 in 150 cases are severe
edical cost per patient			\$	46,530.63	\$63,383 per pax (emergency spray cost / 46 cases)
	number of traps to spray	4051	tota	al predicted posi	tive, averaged accross 4 years 2008, 2010, 2012, 2014
	total spray cost incurred \$	40,541,423.60)		

Cost Benefit Analysis

Item	Result	Remarks
emergency spray cost	\$899,048	excluding overtime
sprayed area	477km^2	
spray cost per km^2	\$1,884.70	
spray area per trap (1.3km radius)	5.31km^2	
spray cost per trap	\$10,007.76	excluding overtime
number of people covered within spray area	77,993	calculated using spray area per trap * population density
likelihood of severe infection	522	1 in 150 cases are severe
cost for medical treatment	\$33,085,926	\$63,383 per pax (emergency spray cost / 46 cases)
		
number of traps to spray	4051	total predicted positive, averaged accross 4 years 2008, 2010, 2012, 2014
total spray cost incurred	\$40,541,423.60	

ROI for every \$1 spent on spray: \$~3306.03

Conclusion

Where

• Targeted spraying using median flight radius of 1.3km, hotspots can be identified using count of overlapping radii of WNV+ traps

<1:Low (0.2km) < 3:Moderate (1.3km) < 5:High (2km)

When

 Spraying can be done in advance to curb mozzie population before it spirals out of control:

Optimal window to spray in advance : 2-4 weeks before peak season (Summer)

Continue sprays at intervals of every two weeks till mid-summer

Recommendations

- Monitor other known vectors (Avians, Equine Species) for WNV+
- Include breakdown of male-female species (males don't bite/lay eggs)
- Explore feasibility of Sterile Insect techniques before peak season
- Public outreach / education programs to reduce breeding spots (Can affect trap accuracy)

References

Sacramento Country Medical Costs

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2600250/table/T1/?report=objectonly https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622011/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600250/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600250/ <a href="http

Chicago Population

https://www.macrotrends.net/cities/22956/chicago/population

Mosquito Flight range

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278816/

Inflation Calculator:

https://smartasset.com/investing/inflation-calculator#hdQLsKK2RU

Slides by *Slidesgo* Icons by *Flaticon* Infographics & images by *Freepik*

ABQ

Problems Implementing Walk forward validation

So can we use it in this project?

- Cold start problem
- Ground truths for test years not available to use for training in subsequent periods
- Merged test data will be incorporating results from 4 different models

So can we use it in this project?

Train-test Split

- **Yields**
- Model 1 (2005, 2006, 2007)

- Train 1 (2005, 2006, 2007)Test 1 (2008)
- Train 2 (2007, 2008, 2009)
 Test 2 (2010)
- Train 3 (2009, 2010, 2011)
 Test 3 (2012)
- Train 4 (2011, 2012, 2013)
 Test 4 (2014)

- Model 2 (2007, **2008**, 2009)
- Model 3 (2009, 2010, 2011)
- Model 4 (2011, <u>2012</u>, 2013)

No ground truth available, cannot use prior predictions

