Linear Programming for Data Science

Lê Tiến Hợp, Trần Bảo Minh Nguyễn Mai Anh Thư, Nguyễn Thị Bảo Tiên

PiMA 2024

Trình bày: Nhóm 2

Ngày 29 tháng 6 năm 2025

Contents

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tống quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Động lực
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Data Science

Contents

L-Dông lưc

- 1 Data science
- 2 Linear Regression
 - Dông lực
 - Tổng quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Dông lưc
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

└-Động lực

Bài toán ví dụ

Xét bài toán ước lượng giá nhà của một căn nhà có diện tích x m 2 .

└-Động lực

Bài toán ví dụ:

Giả sử ta đã thu thập được số liệu từ 100 căn nhà trong một thành phố.

Đặt vấn đề

L-Đông lực

Liệu rằng khi có một căn nhà mới xây có dữ liệu về thông tin như trên thì ta có thể dự đoán giá y của căn nhà đó không? Nếu có thì kết quả dự đoán giá nhà $\hat{y} = f(x)$ sẽ được biểu diễn như thế nào?

Nhận xét

└-Động lực

Nhận xét

- Ta dự đoán đường thẳng biểu diễn mối quan hệ giữa giá nhà và diện tích là $y = w_1x + w_0$.
- Từ đó, ta tìm cách tìm w_1 và w_0 để sai số so với các điểm dữ liệu là thấp nhất có thể.

└─Tổng quát hóa bài toán

Contents

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tổng quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Động lực
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Ta tổng quát Linear Regression với d biến đầu vào và có biến tự do:

$$y = w_0 + w_1 x_n + ... + w_d x_d = x^T w,$$

trong đó:
$$w = [w_0, w_1, ..., w_d]^T$$
 và $x = [1, x_1, x_2, ..., x_d]^T$.

Contents

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tổng quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Đông lưc
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Nhắc lại

Ta nhắc lại bài toán Linear Programming như sau: Với

$$A_{ub} \in \mathbb{R}^{m_{ub} \times n}, b_{ub} \in \mathbb{R}_{m_{ub}}, A_{eq} \in \mathbb{R}^{m_{eq} \times n}, b_{eq} \in \mathbb{R}^{m_{eq}}, c, l, u \in \mathbb{R}^{n}$$

L¹ Regression

Xét các bài toán với các cặp điểm (x_i, y_i) , $i=1,2,\cdots,n$. Ta xây dựng bài toán mất mát cho L^1 -regression:

$$\mathcal{L}_1(w) = \frac{1}{n} \sum_{i=1}^n \left| y_i - x_i^T w \right|,$$

trong đó: n là số điểm dữ liệu ta thu thập được, y_i là giá trị đầu ra của mỗi điểm, $x_i = [1, x_{i1}, x_{i2}, \cdots, x_{id}]^T$ với x_{ij} là đặc tính thứ j của dữ liệu thứ i.

L^1 Regression

Xét bài toán sau:

minimize:
$$\sum_{j} t_{i}$$
 subject to: $t_{i} - \left| y_{i} - \sum_{j} w_{j} x_{ij} \right| = 0, i = 1, 2, ..., n$

L¹ Regression

Ta làm lỏng các ràng buộc của bài toán gốc ta được bài toán sau:

minimize:
$$\sum_{i} t_{i}$$
 subject to:
$$\left| y_{i} - \sum_{j} w_{j} x_{ij} \right| \leq t_{i}, i = 1, 2, ..., n$$

Linear Regression

Các hướng xử lí bài toán Linear Regression

Nhận xét: Khử giá trị tuyệt đối

Tại sao có thể chuyển từ bài toán gốc qua bài toán Linear Programming?

Nhận xét: Khử giá trị tuyệt đối

Tại sao có thể chuyển từ bài toán gốc qua bài toán Linear Programming?

- (1) Nghiệm tối ưu của bài toán Linear Programming là một nghiệm chấp nhận được của bài toán gốc.
- (2) Miền nghiệm của bài toán gốc là con của miền nghiệm của bài toán Linear Programming.

L¹ Regression

Từ **nhận xét (1) và (2)** ta nới lỏng và khử điều kiện giá trị tuyệt đối để chuyển về bài toán sau:

$$\begin{array}{ll} \text{minimize:} & \sum_i t_i \\ \text{subject to:} & -t_i \leq y_i - \sum_j w_j x_{ij} \leq t_i, i = 1, 2, ..., n \end{array}$$

Các hướng xử lí bài toán Linear Regression

L¹ Regression

Cụ thể, ta có thể biến đổi bài toán về dạng sau:

minimize:
$$0w_0 + 0w_1 + \dots + 0w_d + t_1 + \dots + t_n$$

subject to: $w_0 + w_1x_1 + \dots + w_dx_{nd} - t_1 \le y_1$
 \vdots
 $w_0 + w_1x_1 + \dots + w_dx_{nd} - t_n \le y_n$
 $-w_0 - w_1x_1 - \dots - w_dx_{nd} - t_1 \le -y_1$
 \vdots
 $-w_0 - w_1x_1 - \dots - w_dx_{nd} - t_n \le -y_n$

Đến đây ta có thể bắt đầu giải bài toán L^1 Regression bằng Linear Programming thông qua thư viện scipy.

From scipy to linprog

```
\label{eq:linprog} \begin{array}{ll} \mbox{linprog (c, A\_ub=None, b\_ub=None, A\_eq=None,} \\ \mbox{b\_eq=None, bounds=(0, None), methods='highs',} \\ \mbox{callback=None, options=None, } \mbox{x}_0 = \mbox{None, integrality} = \mbox{None)} \end{array}
```

Linear Regression

Các hướng xử lí bài toán Linear Regression

From scipy to linprog

$$\mathbf{c} = [(0)_{1 \times m} \mid (1)_{1 \times n}] = [0 \quad 0 \quad \cdots \quad 0 \quad 1 \quad 1 \quad \cdots \quad 1]$$

$$\mathbf{b}_{\mathbf{u}}\mathbf{b} = [(y)_{1 \times n} \mid -(y)_{1 \times n}] = [y_{1} \cdots y_{n} - y_{1} \cdots - y_{n}]$$

$$\mathbf{A}_{\mathbf{u}}\mathbf{b} = \begin{bmatrix} \frac{(1)_{n \times 1} \mid X_{n \times d} \mid I_{n \times n}}{-(1)_{n \times 1} \mid -X_{n \times d} \mid -I_{n \times n}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} & 0 & 0 & \cdots & 1 \\ -1 & -x_{11} & \cdots & -x_{1d} & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -x_{n1} & \cdots & -x_{nd} & 0 & 0 & \cdots & -1 \end{bmatrix}$$

$$\mathbf{bounds} = (\mathsf{None}, \mathsf{None})$$

L²Regression

Tương tự với L^1 -regression, ta xây dựng hàm mất mát với L^2 -regression như sau:

$$\mathcal{L}_2(w) = \frac{1}{n} \sum_{i=1}^n \left(y_i - x_i^T w \right)^2$$

Cách xử lí bài toán:

Trước khi giải bài toán trên, ta viết gọn hàm số dưới dạng ma trận, vector và norm:

$$\mathcal{L}_{2}(w) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - x_{i}^{T} w)^{2} = \frac{1}{n} \left\| \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} - \begin{bmatrix} x_{1}^{T} \\ x_{2}^{T} \\ \vdots \\ x_{n}^{T} \end{bmatrix} w \right\|^{2} = \frac{1}{n} \|y - Xw\|^{2}$$

với
$$y = [y_1, y_2, \dots, y_n]^T, X = [x_1, x_2, \dots, x_n]^T.$$

Cách xử lí bài toán:

$$f(w) = \|y - Xw\|^2 = \langle Xw - y, Xw - y \rangle = (Xw - y)^T(Xw - y) = (X^Tw^T - y^T)(Xw - y) = X^Tw^TXw - y^TXw - w^TX^Ty + y^Ty = w^T(X^TX)xw - (2y^TX)w + y^Ty.$$
 Do $y^TXw = X^Tw^Ty$ nên $\nabla f(w) = 2(X^TX)w - 2X^Ty$ và $\nabla^2 f(w) = 2(X^TX)$. Hơn nữa, $h^T\nabla^2 f(w)h = 2[h^T(X^TX)h] = 2[(h^TX^T)(h)] = 2||Xh||^2 \ge 0$ $\forall h \in \mathbb{R}^N$ hay ma trận $\nabla^2 f(w)$ xác định dương. Hơn nữa, rank $(X) = n$ nên rank $(X^TX) = n$, hay X^TX khả nghịch. Vậy nghiệm $w^* = (X^TX)^{-1}X^Ty$ của $\nabla f(x) = 0$ là cực tiểu toàn cục của hàm f . Đến đây ta tìm được giá trị tối ưu.

Các hướng xử lí bài toán Linear Regression

Linear Regression

Các hướng xử lí bài toán Linear Regression

Contents

└ Mở rông

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tổng quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Động lực
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Polynomial Regression

Mô hình hồi quy đa thức có dạng:

$$\hat{y} = w_0 + w_1 x_i + w_2 x_i^2 + \dots + w_m x_i^m, (i = 1, 2, \dots, n)$$

= $w^T x$
 $x = \begin{bmatrix} 1 & x_1 & \dots & x_n \end{bmatrix}$

Dễ nhận thấy, (x_i, y_i) là dữ liệu đầu vào. Do đó, ta chỉ đang tìm w bằng việc tối ưu $|\hat{y} - w^T x|$.

Polynomial Regression

$$\mathbf{A_ub} = \begin{bmatrix} \frac{(1)_{n \times 1} & X_{n \times m} & I_{n \times n}}{-(1)_{n \times 1} & -X_{n \times m} & -I_{n \times n}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x_{11} & \cdots & (x_{1m})^m & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & (x_{nm})^m & 0 & 0 & \cdots & 1 \\ -1 & -x_{11} & \cdots & -(x_{1m})^m & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -1 & -x_{n1} & \cdots & -(x_{nm})^m & 0 & 0 & \cdots & -1 \end{bmatrix}$$

∟_{Mở rông}

∟Mở rông

Contents

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tổng quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Đông lưc
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Động lực thực tế

Phân lớp dữ liệu

Một số ứng dụng thực tế:

L-Dông lưc

Động lực thực tế

Phân lớp dữ liệu

Một số ứng dụng thực tế:

- Nhận diện khuôn mặt
- Phân loai hình ảnh
- Tin sinh hoc
- Nhận diện kí tự viết tay
- ...

∟Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine

Contents

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tổng quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Động lực
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Linear Programming for Data Science

- Support Vector Machine
 - LXây dựng bài toán tối ưu cho thuật toán Support Vector Machine

Ví dụ

Hình: Có nhiều đường phân chia 2 lớp X_0 và X_1

Đường phân chia nào thực sự tốt hơn?

Khoảng cách từ các điểm gần nhất của một tập hợp tới mặt phân chia được gọi là **margin**. Để mô hình học cách nhận diện tốt nhất, ta cần tìm mặt phân chia 2 tập hợp dữ liệu tốt nhất, tức để 2 tập hợp dữ liệu cách xa nhau nhất.

Support Vector Machine

Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine

Đường phân chia nào thực sự tốt hơn?

Bài toán Support Vector Machine

Bài toán tối ưu trong SVM là bài toán đi tìm **mặt phân chia tốt nhất** (sao cho margin giữa hai lớp bằng nhau và lớn nhất).

Kiến thức cũ

Cho các cặp dữ liệu $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ với vector $x_i \in \mathbb{R}^d$ thể hiện đầu vào của một điểm dữ liệu và y_i là nhãn của dữ liệu đó.

Khoảng cách từ điểm đó tới mặt phân chia

$$\frac{|w^T x_i + b|}{\|w\|} = \frac{y_i(w^T x_i + b)}{\|w\|} \quad \forall i = 1, 2, ..., n$$

Mô hình hoá bài toán gốc

Bài toán Support Vector Machine: tìm w và b sao cho margin đạt max

$$(w, b) = \arg \max_{w, b} \left\{ \min_{i} \frac{y_i(w^T x_i + b)}{\|w\|} \right\}$$
$$= \arg \max_{w, b} \left\{ \frac{1}{\|w\|} \min_{i} y_i(w^T x_i + b) \right\}$$

Hướng tiếp cận trong Linear Programing

Contents

- 1 Data science
- 2 Linear Regression
 - Động lực
 - Tống quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression
- 3 Support Vector Machine
 - Động lực
 - Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
 - Hướng tiếp cận trong Linear Programing
 - Lập trình trong Python

Nhân xét bài toán SVM

Gọi $(x_k, y_k) \in \mathbb{R}^d \times \mathbb{R}$ là điểm gần nhất của một lớp tới mặt phân chia. Giả sử $y_k(w^Tx_k+b)=a$. Khi ta chia w và b cho a:

- Tử số $y_k(w^Tx_k + b) = 1$
- Minimize ||w|| tương tự với việc minimize $\frac{1}{a} ||w||$
- Siêu phẳng phân chia không thay đổi

Nhận xét bài toán SVM

Vậy nên, không mất tính tổng quát:

$$y_k(w^Tx_k+b)=1$$

với những điểm nằm gần mặt phân chia nhất.

Như vậy, với mọi i ta luôn có:

$$y_i(w^Tx_i+b)\geq 1$$

Mô hình hoá bài toán SVM

Bài toán tối ưu có thể viết lại dưới dạng:

$$\begin{array}{ll} \underset{w,b}{\text{maximize}} & \frac{1}{\|w\|} \\ \text{subject to:} & y_i(w^Tx_i+b) \geq 1 \quad \forall i=1,2,...,n \end{array}$$

Nói cách khác, ta phải chứng minh:

minimize
$$||w||$$

subject to: $y_i(w^Tx_i + b) \ge 1 \quad \forall i = 1, 2, ..., n$

Mô hình hoá bài toán SVM

Để đưa bài toán về dạng Linear Programming, ta có thể sử dụng L_1-norm để đưa vector $\|w\|$ về dạng tổng của các phần tử $|w_1|+|w_2|+...+|w_n|$.

Đặt $t_i = \|w_i\| \quad \forall n = 1, 2, ..., d$, bài toán được viết lại dưới dạng:

minimize
$$\sum_{j=1}^{a} t_j$$
 subject to: $y_n(w^Tx_i + b) \ge 1 \quad \forall i = 1, 2, ..., n$
$$t_j = |w_j| \qquad \forall j = 1, 2, ..., d$$

Mô hình hoá bài toán gốc

Có vẻ như ràng buộc $t_j = |w_j|$ sẽ gây không ít khó khăn trong quá trình giải. May mắn thay, **nhận xét (1)** đã giúp chúng ta chứng minh được rằng nghiệm tối ưu của bài toán trên cũng là nghiệm tối ưu của bài toán dưới đây:

minimize
$$\sum_{j=1}^{a} t_{j}$$
 subject to: $y_{i}(w^{T}x_{i}+b) \geq 1 \quad \forall i=1,2,...,n$
$$-t_{i} \leq w_{j} \leq t_{j} \quad \forall j=1,2,...,d$$

└-Lập trình trong Python

Contents

- 1 Data Science
- 2 Linear Regression
 - Động lực
 - Tống quát hóa bài toán
 - Các hướng xử lí bài toán Linear Regression
 - L¹ regression
 - L² regression
 - Mở rộng
 - Polynomial Regression

3 Support Vector Machine

- Dông lưc
- Xây dựng bài toán tối ưu cho thuật toán Support Vector Machine
- Hướng tiếp cận trong Linear Programing
- Lập trình trong Python

• d: số pixel trong 1 tấm ảnh (d = 28x28 = 784)

- d: số pixel trong 1 tấm ảnh (d = 28x28 = 784)
- n : số tấm ảnh trong dataset

- d: số pixel trong 1 tấm ảnh (d = 28x28 = 784)
- n : số tấm ảnh trong dataset
- x : vector chứa

- d: số pixel trong 1 tấm ảnh (d = 28x28 = 784)
- n : số tấm ảnh trong dataset
- x : vector chứa
 - $t = [t_1, t_2, ..., t_d]$

- d : số pixel trong 1 tấm ảnh (d = 28x28 = 784)
- n : số tấm ảnh trong dataset
- x : vector chứa
 - $t = [t_1, t_2, ..., t_d]$
 - $\mathbf{w} = [w_1, w_2, ..., w_d]$

- d: số pixel trong 1 tấm ảnh (d = 28x28 = 784)
- n : số tấm ảnh trong dataset
- x : vector chứa
 - $t = [t_1, t_2, ..., t_d]$
 - $\mathbf{w} = [w_1, w_2, ..., w_d]$
 - $\mathbf{w}_0 = \text{scalar}$

- d : số pixel trong 1 tấm ảnh $(d = 28 \times 28 = 784)$
- n : số tấm ảnh trong dataset
- x : vector chứa
 - $t = [t_1, t_2, ..., t_d]$
 - $\mathbf{w} = [w_1, w_2, ..., w_d]$
 - $\mathbf{w}_0 = \mathrm{scalar}$

$$x = [t_1, t_2, ..., t_d, w_1, w_2, ..., w_d, w_0]$$
 (vector x có $2d + 1$ phần tử)

Linear Programming for Data Science
Support Vector Machine
Lâp trình trong Python

Đặt vấn đề

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Linear Programming for Data Science
Support Vector Machine
Lâp trình trong Python

Đặt vấn đề

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Bài toán hiện có:

Lập trình trong Python

Đặt vấn đề

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Bài toán hiện có:

Minimize:
$$t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... + 0w_d + 0w_0$$

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Bài toán hiện có:

Minimize:
$$t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... + 0w_d + 0w_0$$

Subject to:

$$-t_j \le w_j \le t_j, j = 1, 2, ..., d$$

 $-y_i(w^Tx_i + w_0) \le -1,$
 $i = 1, 2, ..., n$

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Bài toán hiện có:

Bài toán gốc:

Minimize:
$$t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... + 0w_d + 0w_0$$

Subject to:

$$-t_j \le w_j \le t_j, j = 1, 2, ..., d$$

 $-y_i(w^Tx_i + w_0) \le -1,$

$$i = 1, 2, ..., n$$

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Bài toán hiện có:

Minimize:
$$t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... + 0w_d + 0w_0$$

Subject to:

$$-t_j \le w_j \le t_j, j = 1, 2, ..., d$$

 $-y_i(w^T x_i + w_0) \le -1,$
 $i = 1, 2, ..., n$

Bài toán gốc:

Minimize: $C^{T}x$

Làm sao để đưa về bài toán gốc và sử dụng hàm linprog?

Bài toán hiên có:

Minimize:
$$t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... + 0w_d + 0w_0$$

Subject to:

$$-t_j \le w_j \le t_j, j = 1, 2, ..., d$$

 $-y_i(w^T x_i + w_0) \le -1,$
 $i = 1, 2, ..., n$

Bài toán gốc:

Minimize.

$$c^T x$$

Subject to:

$$Ax \leq b$$

bounds[i][0] $< x_i <$ bounds[i][1]

Mô hình hoá c^T , A và b

Hàm mục tiêu:

$$c^T x = t_1 + t_2 + \dots + t_d + 0w_1 + 0w_2 + \dots + 0w_d + 0w_0$$

Mô hình hoá c^T , A và b

Hàm muc tiêu:

$$c^T x = t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... 0w_d + 0w_0$$

 $\longrightarrow c^T = [1, ..., 1, 0, ..., 0, 0] (d số 1 và $d + 1$ số 0)$

∟Lập trình trong Python

Mô hình hoá c^T , A và b

Hàm muc tiêu:

$$c^T x = t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ...0w_d + 0w_0$$

 $\longrightarrow c^T = [1, ..., 1, 0, ..., 0, 0] (d số 1 và $d + 1$ số 0)$

Code: c = np.concatenate((np.ones(d), np.zeros(d+1)))

Mô hình hoá c^T , A và b

Hàm mục tiêu:

$$c^T x = t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... 0w_d + 0w_0$$

 $\longrightarrow c^T = [1, ..., 1, 0, ..., 0, 0] (d số 1 và $d + 1$ số 0)$

 $A = \text{tham s\^o c\^ua 3 bi\^en } t_j, w_j, w_0 \text{ trong constraints}$

Mô hình hoá c^T . A và b

Hàm muc tiêu:

$$c^T x = t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... 0w_d + 0w_0$$

 $\longrightarrow c^T = [1, ..., 1, 0, ..., 0, 0] (d số 1 và $d + 1$ số 0)$

Code: c = np.concatenate((np.ones(d), np.zeros(d+1)))

 $A = \text{tham số của 3 biến } t_j, w_j, w_0 \text{ trong constraints}$ Chia A ra A_1, A_2, A_3 tương ứng với 3 loại điều kiện:

Mô hình hoá c^T , A và b

Hàm muc tiêu:

$$c^T x = t_1 + t_2 + ... + t_d + 0w_1 + 0w_2 + ... 0w_d + 0w_0$$

 $\longrightarrow c^T = [1, ..., 1, 0, ..., 0, 0] (d số 1 và $d + 1$ số 0)$

Code: c = np.concatenate((np.ones(d), np.zeros(d+1)))

A= tham số của 3 biến t_j,w_j,w_0 trong constraints Chia A ra A_1,A_2,A_3 tương ứng với 3 loại điều kiện:

- $A_1: -t_i w_i \leq 0$
- $A_2: -t_j + w_j \leq 0$

$$A_3: \left(-\sum_{j=1}^d y_i x_{i,j} w_j\right) - y_i w_0 \le -1$$

Lập trình trong Python

[$\stackrel{ }{\overset{ }{}} t_1$	t_2		t_d	$d+1$ w_1	w_2		u_d	$\stackrel{ }{_{_{1}}} ^{2d+1} w_{0}$]	
1	$\begin{bmatrix} & & -1 \\ & & 0 \end{bmatrix}$	$0 \\ -1$		0	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$0 \\ -1$		0	0 0		$\begin{bmatrix} & 0 \\ & 0 \end{bmatrix}$
d	: 0	: _ 0_	·	: 1	: :	: 0	·	: -1_	: : 0		: 0
d+1	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$0 \\ -1$		0	1 0	0 1		0 0	0 0		0 0
2d	: 0	: 0_	· _: <u>::</u> _	: 1	. 0	: 0	··.	: 1	: : : 0		: 0
$_{2d+1}$	0 0	0		0 0	$-y_1x_{1,1}$ $-y_2x_{2,1}$	$-y_1x_{1,2} - y_2x_{2,2}$		$-y_1 x_{1,d} - y_2 x_{2,d}$	$-y_1$ $-y_2$		$\begin{bmatrix} -y_1 \\ -y_2 \end{bmatrix}$
2d+n		; 0	··.	: 0	$\vdots \\ -y_n x_{n,1}$	$\vdots \\ -y_n x_{n,2}$	·	$\vdots \\ -y_n x_{n,d}$	\vdots \vdots $-y_n$		$\begin{bmatrix} \vdots \\ -y_n \end{bmatrix}$

$$A_1:-t_j-w_j\leq 0$$

$$A_1:-t_j-w_j\leq 0$$

Lập trình trong Python

$$A_2:-t_j+w_j\leq 0$$

$$A_2:-t_j+w_j\leq 0$$

$$A_3: \left(-\sum_{j=1}^d y_i x_{i,j} w_j\right) - y_i w_0 \le -1$$

	1			d	d+1			2d	2d+1			
[t_1	t_2		t_d	w_1	w_2		w_d	w_0]		
	- +									¦		
1	-1	0		0	-1	0		0	0	.]	0]
	¦ 0	-1		0	0	-1		0	0		0	
	<u> </u>	:	٠	:	: :	:	٠	:	: !		:	
d	0	0		-1	. 0	0		-1	0		0	
	- +				-				⊢ – ̈– ⊣	! - 	-	- 1
d+1	-1	0		0	1	0		0	0		0	
	0	-1		0	0	1		0	0		0	
	¦ :	:	٠.,	:	:	:	٠	:	: :		:	
	. 0	0		. 1	. 0	0		1	0			
^{2d}				-1	0			1	0	-		- 1
2d+1	0	0		0	$-y_1x_{1,1}$	$-y_1x_{1,2}$		$-y_1x_{1,d}$	$-y_1$		$-y_1$	
	0	0		0	$-y_2x_{2,1}$	$-y_2x_{2,2}$		$-y_2x_{2,d}$	$-y_2$		$-y_2$	
	:	:	٠.	:	:			:	: 1		:	
			•			•		•				
2d+n	0	0		0	$-y_n x_{n,1}$	$-y_n x_{n,2}$		$-y_n x_{n,d}$	$-y_n$		$-y_n$	

$$A_3: \left(-\sum_{j=1}^d y_i x_{i,j} w_j\right) - y_i w_0 \le -1$$

]	$\stackrel{ }{t}_1$	t_2		t_d	$d+1$ w_1	w_2		$\frac{2d}{w_d}$	$ _{1}^{2d+1}$]	
1	$\begin{bmatrix} & -1 \\ & 0 \end{bmatrix}$	$0 \\ -1$		0	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$0 \\ -1$		0	0 0		$\begin{bmatrix} & 0 \\ & 0 \end{bmatrix}$
d	: :	: _ 0_	·	: -1	: :	: 	·	: 1_	: : 0		: 0
d+1	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$0 \\ -1$		0	1 0	0 1		0	0		0 0
2d	: 0	: 0_	·	: 1	: : 0	: 	··.	: 1			: 0
$^{2d+1}$	0	0		$0 \\ 0$	$-y_1x_{1,1}$ $-y_2x_{2,1}$	$-y_1x_{1,2} - y_2x_{2,2}$		$-y_1 x_{1,d} - y_2 x_{2,d}$			$-y_1 \\ -y_2$
2d+n	: 0	; 0	·	; 0	$\vdots \\ -y_n x_{n,1}$	$\vdots \\ -y_n x_{n,2}$	·	$\vdots \\ -y_n x_{n,d}$	\vdots \vdots $-y_n$		\vdots $-y_n$

56/61

Lập trình trong Python

```
A1 = np.concatenate(
(-np.identity(d), -np.identity(d), np.zeros((d, 1))),
axis=1)
```

```
A1 = np.concatenate(
(-np.identity(d), -np.identity(d), np.zeros((d, 1))),
axis=1)
A2 = np.concatenate(
(-np.identity(d),np.identity(d),np.zeros((d, 1))),
axis=1)
```

```
Lâp trình trong Python
```

```
A1 = np.concatenate(
(-np.identity(d), -np.identity(d), np.zeros((d, 1))),
axis=1)
A2 = np.concatenate(
(-np.identity(d),np.identity(d),np.zeros((d, 1))),
axis=1)
A3 = np.concatenate((
    np.zeros((n, d)),
    -label * data,
    -label
), axis=1)
```



```
A1 = np.concatenate(
(-np.identity(d), -np.identity(d), np.zeros((d, 1))),
axis=1)
A2 = np.concatenate(
(-np.identity(d),np.identity(d),np.zeros((d, 1))),
axis=1)
A3 = np.concatenate((
    np.zeros((n, d)),
    -label * data,
    -label
), axis=1)
A = np.concatenate((A1, A2, A3), axis=0)
```

∟Lập trình trong Python

$$b = [0, ..., 0, -1, ..., -1]$$
 (2d số 0 và n số -1)

```
b = [0,...,0,-1,...,-1] (2d \text{ số 0 và } n \text{ số -1})
b = \text{np.concatenate((} \\ \text{np.zeros((2*d,1)),} \\ \text{-np.ones((n,1))}
), axis=0)
```

Linear Programming for Data Science
Support Vector Machine

Lập trình trong Python

In kết quả

result

```
Linear Programming for Data Science
Support Vector Machine
Lâp trình trong Python
```

```
result = linprog(
```

Lập trình trong Python

```
result = linprog(
    c=c,
    A_ub=A,
    b_ub=b,
    bounds=(None, None)
)
```

```
result = linprog(
    c=c,
    A_ub=A,
    b_ub=b,
    bounds=(None, None)
)
print(f"Result = {result.x}")
```

```
result = linprog(
    c=c,
    A_ub=A,
    b_ub=b,
    bounds=(None, None)
)
print(f"Result = {result.x}")
Diễn giải kết quả (interpretation):
```

```
Support Vector Machine
Lâp trình trong Python
```

```
result = linprog(
    c=c,
    A_ub=A,
    b_ub=b,
    bounds=(None, None)
print(f"Result = {result.x}")
Diễn giải kết quả (interpretation):
  t = result.x[0:d]
  \mathbf{w} = \text{result.x[d:2*d]}
  \mathbf{w}_0 = \text{result.x}[2*d]
```

Linear Programming for Data Science
Support Vector Machine
Lâp trình trong Python

Kết thúc

Xin cảm ơn vì đã lắng nghe!