Examen del bloque 2 de SIN: Test (1,75 puntos)

ETSINF, Universitat Politècnica de València, 13 de enero de 2022

Grupo, apellidos y nombre: 2,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1,75/9)$.

1 C Dados los siguientes 3 nodos de un árbol de clasificación con muestras pertenecientes a 3 clases:

c	n_1	n_2	n_3
1	2	3	4
2	1	5	5
3	1	1	4

donde cada fila indica el número de muestras de cada clase en el nodo. ¿Cuál de las siguientes desigualdades es cierta?

- A) $\mathcal{I}(n_1) < \mathcal{I}(n_3) < \mathcal{I}(n_2)$
- B) $\mathcal{I}(n_2) < \mathcal{I}(n_3) < \mathcal{I}(n_1)$
- C) $\mathcal{I}(n_2) < \mathcal{I}(n_1) < \mathcal{I}(n_3)$
- D) $\mathcal{I}(n_1) < \mathcal{I}(n_2) < \mathcal{I}(n_3)$

2 C Dado el clasificador en 2 clases definido por sus vectores de pesos $\mathbf{w}_1 = (0, -3, 1, 1)^t$, $\mathbf{w}_2 = (0, 1, 0, 2)^t$ en notación homogénea, ¿cuál de los siguientes conjuntos de vectores **no** define un clasificador equivalente al dado?

- A) $\mathbf{w}_1 = (1, -3, 1, 1)^t, \mathbf{w}_2 = (1, 1, 0, 2)^t$
- B) $\mathbf{w}_1 = (0, -9, 3, 3)^t, \mathbf{w}_2 = (0, 3, 0, 6)^t$
- C) $\mathbf{w}_1 = (0, 6, -2, -2)^t, \mathbf{w}_2 = (0, -2, 0, -4)^t$
- D) $\mathbf{w}_1 = (1, -9, 3, 3)^t, \mathbf{w}_2 = (1, 3, 0, 6)^t$

3 B En un problema de razonamiento probabilístico correspondiente a desplazamientos por carretera, con las variables aleatorias de interés: Climatología (C):{despejado (DES), nublado (NUB), lluvioso (LLU)}; Luminosidad (L):{dia (DIA), noche (NOC)}; Seguridad (S):{seguro (SEG), accidente (ACC)}. La probabilidad conjunta de las tres variables viene dada en la tabla:

		DIA			NOC	
P(s,l,c)	DES	NUB	LLU	DES	NUB	LLU
SEG	0.32	0.23	0.05	0.11	0.07	0.08
ACC	0.03	0.01	0.03	0.01	0.03	0.03

La probabilidad condicional $P(S = ACC \mid L = NOC, C = NUB)$ es:

- A) 0.140
- B) 0.300
- C) 0.030
- D) 0.100

- 4 A Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha = 1$ y margen b = 0.1, a un conjunto de 3 muestras bidimensionales de aprendizaje para un problema de 2 clases. Tras procesar las primeras 2 muestras se han obtenido los vectores de pesos $\mathbf{w}_1 = (0, -1, -1)^t$, $\mathbf{w}_2 = (0, 1, 1)^t$. A continuación, se procesa la última muestra (\mathbf{x}_3, c_3) y se obtienen los vectores de pesos $\mathbf{w}_1 = (1, 0, 3)^t$, $\mathbf{w}_2 = (-1, 0, -3)^t$, ¿cuál de las siguientes es esa última muestra?
 - A) $((1,4)^t,1)$
 - B) $((5,4)^t,1)$
 - C) $((3,2)^t,1)$
 - D) $((4,5)^t,2)$
- $5 \,|\, \mathrm{C}\,|\,$ Sea M el modelo de Markov representado a la derecha, donde t, $0 < t < \frac{1}{4}$, denota la probabilidad de transición del estado 1 al 2. Dada la cadena x = abb, la probabilidad de generar x mediante el camino 122F, P(abb, 122F), depende de t. Análogamente, la probabilidad de generar x mediante el camino 111F, P(abb, 111F), también depende de t (a través de la probabilidad de transición del estado 1 al F). Indica en qué caso P(abb, 111F) > P(abb, 122F):

- A) Nunca.
- B) Si y solo si $0 < t < \frac{1}{20}$.
- C) Si y solo si $0 < t < \frac{1}{10}$.
- D) Siempre, es decir, $0 < t < \frac{1}{4}$.

$$\begin{split} P(\text{abb}, 122F) &= 1\frac{3}{4}t\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2} \\ P(\text{abb}, 111F) &> P(\text{abb}, 122F) \rightarrow t < \frac{1}{10} \end{split}$$

- 6 A La probabilidad de error de un clasificador se estima que es del 3%. Determina cuál es el número mínimo de muestras de test necesario, M, para conseguir que el intervalo de confianza al 95% de dicho error no supere el $\pm 1\%$; esto es, I = [2%, 4%]: M = 1118
 - A) M < 2000.
 - B) $2000 \le M < 3500$.
 - C) $3500 \le M < 5000$.
 - D) $M \ge 5000$.

7 C Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$ y alfabeto $\Sigma = \{a, b\}$. Durante la aplicación de una iteración del algoritmo de reestimación por Viterbi, se ha obtenido un par "(cadena, camino más probable)" por cada cadena de entrenamiento. Seguidamente, a partir de todos los pares obtenidos, se han obtenido las cuentas (frecuencias absolutas) de transición entre estados mostradas en la tabla a la derecha. La normalización correcta de estas cuentas resultará en la tabla de probabilidades de transición entre estados:

A	1	2	F
1	2	1	2
2	2	1	4

- A) $\begin{array}{|c|c|c|c|c|c|}
 \hline
 A & 1 & 2 & F \\
 \hline
 1 & \frac{2}{4} & \frac{1}{2} & \frac{2}{6} \\
 2 & \frac{2}{4} & \frac{1}{2} & \frac{4}{6}
 \end{array}$

- 8 B Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \geq 2$. Considérese la transferencia del dato $\mathbf{x} = (4,5,2)^t$ de un clúster i a otro $j, j \neq i$. Se sabe que el clúster i contiene 3 datos (contando \mathbf{x}) y el j 2. Asimismo, se sabe que la media del clúster i es $\mathbf{m}_i = (10,8,4)^t$ y la del j $\mathbf{m}_j = (7,7,1)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = -64.2$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$
- 9 A Dado el siguiente conjunto de datos utilizado para entrenar un árbol de clasificación con 5 muestras bidimensionales que pertenecen a 2 clases:

n	1	2	3	4	5
x_{n1}	5	4	5	4	3
x_{n2}	1	2	2	3	1
c_n	1	2	1	1	2

- \mathcal{E} Cuántas particiones diferentes se podrían generar en el nodo raíz? No consideres aquellas particiones en que todos los datos se asignan al mismo nodo hijo.
- A) 4
- B) 2
- C) 3
- D) 5

Examen del bloque 2 de SIN: Problemas (2 puntos)

ETSINF, Universitat Politècnica de València, 13 de enero de 2022

Grupo, apellidos y nombre: 2,

Problema sobre Forward y Viterbi

Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; y probabilidades de transición entre estados y de emisión de símbolos:

A	1	2	F
1	<u>2</u> 6	<u>2</u>	<u>2</u> 6
2	$\frac{1}{7}$	$\frac{3}{7}$	$\frac{3}{7}$

B	a	b
1	3 6	3 6
2	$\frac{1}{4}$	$\frac{3}{4}$

Sea x=ab. Se pide:

- 1. (0,75 puntos) Realiza una traza del algoritmo Forward para obtener la probabilidad con la que M genera la cadena x, $P_M(x)$.
- 2. (0,75 puntos) Realiza una traza del algoritmo de Viterbi para obtener la aproximación de Viterbi a la probabilidad con la que M genera la cadena x, $\tilde{P}_M(x)$.
- 3. (0, 25 puntos) A partir de la traza realizada en el apartado anterior, determina un camino más probable con el que M genera x.
- 4. (0,25 puntos) Determina la probabilidad con la que M genera x siguiendo un camino distinto al más probable determinado en el apartado anterior.

Solución:

1. Forward: $P_M(x) = 859/14112 = 0.06087$

2. Viterbi: $\tilde{P}_M(x) = 3/112 = 0.02679$

- 3. Camino más probable: 12F
- 4. $P_M(x) \tilde{P}_M(x) = 180/5281 = 0.03408.$