heemod TB population Markov model

N Green

17/01/2020

```
# see: https://cran.r-project.org/web/packages/heemod/vignettes/d non homogeneous.html
# NOTE:
# transitions happen at the beginning of each year (equivalent to transition happening at
# the end + ignoring the first year) with method = "beginning".
# Since with this method the first year is actually the second,
# costs should be discounted from the start with the argument first = TRUE in discount().
library(heemod)
library(purrr)
library(dplyr)
# age-dependent probability of death, TB and QoL weighting
pdeath_QoL <-
 read.csv(here::here("raw data", "pdeath_QoL.csv"))
# probabilistic realisations of starting state probabilities
# generated from decision tree
load(file = here::here("data", "init_states.RData"))
head(init_states)
    noLTBI completeTx incompleteTx
                                         noTx activeTB dead
## 1 0.643 0.04429927 0.068075534 0.2446252
## 2 0.683 0.02576789 0.019090692 0.2721414
## 3 0.672 0.04943117 0.030844729 0.2477241
                                                          0
## 4 0.742 0.05223975 0.001835084 0.2039252
## 5 0.726 0.02743526 0.010678055 0.2358867
                                                          0
## 6 0.650 0.05570397 0.024181029 0.2701150
# define the model heemod parameters
param <- define_parameters(</pre>
  age_init = 34,
                                   # starting age
  age = age_init + markov_cycle, # increment age annually
  # transition probabilities
  pReact_comp = 0.0006779,
                                  # TB after completed LTBI treatment
                                # TB after LTBI treatment dropout
  pReact_incomp = 0.0015301,
  pReact = 0.0019369,
                                  # TB after no treatment
 TB_{cost} = 4925.76,
                                  # cost of TB treatment (£)
  d = 0.035,
                                   # annual discount factor
  # match prob death to age
```

```
pdeath = look_up(data = pdeath_QoL,
                    value = "pDeath",
                    age = age),
  pdeathTB = look_up(data = pdeath_QoL,
                      value = "pDeath_TB",
                      age = age),
  # match QoL weight to age
  QoL = look_up(data = pdeath_QoL,
                value = "QOL_weight",
                 age = age)
)
# create transition matrix
mat_trans <- define_transition(</pre>
  state_names = c(
    "noLTBI",
    "completeTx",
    "incompleteTx",
    "noTx",
    "activeTB",
    "dead"
  ),
  # from-to probability matrix
  # C represent complements
  C, 0, 0, 0, 0,
                              pdeath,
  0, C, 0, 0, pReact_comp,
                              pdeath,
  0, 0, C, 0, pReact_incomp, pdeath,
  0, 0, 0, C, pReact,
                             pdeath,
                              pdeathTB,
 C, 0, 0, 0, 0,
  0, 0, 0, 0, 0,
# define starting state populations
init_states <- select(.data = init_states,</pre>
                       noLTBI,
                       completeTx,
                       incompleteTx,
                       noTx)
init_states <- data.frame(init_states,</pre>
                           activeTB = 0,
                           dead = 0)
# define cost and utility values associated with each state
noLTBI <- define_state(</pre>
 cost = 0,
 utility = discount(QoL, d, first = TRUE)
completeTx <- define_state(</pre>
```

```
cost = 0,
 utility = discount(QoL, d, first = TRUE)
incompleteTx <- define_state(</pre>
  cost = 0,
  utility = discount(QoL, d, first = TRUE)
noTx <- define_state(</pre>
  cost = 0,
  utility = discount(QoL, d, first = TRUE)
activeTB <- define_state(</pre>
 cost = discount(TB_cost, d, first = TRUE),
  utility = discount(QoL - 0.15, d, first = TRUE)
dead <- define_state(</pre>
  cost = 0,
  utility = 0
# combine all of the model elements to form
# a 'stratgey' consisting of a transition
# matrix and states states with properties attached
strat <- define_strategy(</pre>
  transition = mat_trans,
  noLTBI = noLTBI,
  completeTx = completeTx,
  incompleteTx = incompleteTx,
  noTx = noTx,
  activeTB = activeTB,
  dead = dead
# run a single simulation
res_mod <-
  run_model(
    init = 1000 * init_states[1, ], # initial population sizes
    method = "end",
    strat,
    parameters = param,
    cycles = 66,
                                     # number of time steps
    cost = cost,
    effect = utility
```

No named model -> generating names.

Run multiple simulations

Using the sample of starting state probabilities

```
res_mod <- list()
for (i in 1:nrow(init_states)) {
  res_mod[[i]] <-
    suppressMessages(
      run_model(
        # init = c(674.0588764, # hard-code values)
                  168.0253748,
        #
                   42.42724895,
        #
                   115.4884998,
                   0,
                   0),
        init = 1000 * init_states[i, ], # population sizes
        method = "end",
        strat,
        parameters = param,
        cycles = 66,
        cost = cost,
        effect = utility
      ))
```

Results

##

<chr>

```
res_mod[[1]]
## 1 strategy run for 66 cycles.
## Initial state counts:
## noLTBI = 643
## completeTx = 44.2992721299233
## incompleteTx = 68.0755335064717
## noTx = 244.625194363605
## activeTB = 0
## dead = 0
##
## Counting method: 'end'.
##
## Values:
##
##
        cost utility
## I 62739.3 18900.67
# extract the cost and utility values
c1 <- map_df(res_mod, "run_model")$cost</pre>
h1 <- map_df(res_mod, "run_model")$utility</pre>
get_counts(res_mod[[1]])
## # A tibble: 396 x 4
##
      .strategy_names markov_cycle state_names count
```

<dbl>

<int> <chr>

```
## 1 I
                                  1 noLTBI
                                                 643
## 2 I
                                  2 noLTBI
                                                 642.
## 3 I
                                  3 noLTBI
                                                 643.
## 4 I
                                  4 \text{ noLTBI}
                                                 643.
## 5 I
                                  5 noLTBI
                                                 642.
## 6 I
                                  6 noLTBI
                                                 642.
## 7 I
                                  7 noLTBI
                                                 642.
                                  8 noLTBI
## 8 I
                                                 642.
## 9 I
                                  9 noLTBI
                                                 642.
## 10 I
                                 10 noLTBI
                                                 641.
## # ... with 386 more rows
```

get_values(res_mod[[1]])

##		markov_cycle	.strategy_names	value_names	value
##	1	1	I	cost	0.000000
##	2	2	I	cost	2795.769776
##	3	3	I	cost	2694.172518
##	4	4	I	cost	2596.099603
##	5	5	I	cost	2501.453976
##	6	6	I	cost	2409.954523
##	7	7	I	cost	2321.657828
##	8	8	I	cost	2236.336172
##	9	9	I	cost	2153.994737
##	10	10	I	cost	2074.430343
##	11	11	I	cost	1997.642736
##	12	12	I	cost	1923.381158
##	13	13	I		1851.604428
##	14	14	I	cost	1782.312318
##	15	15	I	cost	1715.343104
##	16	16	I	cost	1650.671596
##	17	17	I	cost	1588.062876
##	18	18	I	cost	1527.462285
##	19	19	I	cost	1468.888781
##	20	20	I	cost	1412.237940
##	21	21	I	cost	1357.362057
##	22	22	I		1304.188468
	23	23	I		1252.628015
##	24	24	I		1202.657685
##	25	25	I	cost	1154.094094
##	26	26	I	cost	1107.023286
##	27	27	I	cost	1061.252042
##	28	28	I	cost	1016.691493
##	29	29	I	cost	973.447557
##	30	30	I	cost	931.402075
##	31	31	I	cost	890.504538
##	32	32	I	cost	850.762316
##	33	33	I	cost	812.160065
##	34	34	I	cost	774.833496
##	35	35	I	cost	738.342870
##	36	36	I	cost	702.646295
##	37	37	I	cost	667.662025
##	38	38	I	cost	633.435905
##	39	39	I	cost	599.927304
##	40	40	I	cost	566.751238

			_		
##		41	I	cost	534.205724
	42	42	I	cost	502.145143
##		43	I	cost	470.828332
##		44	I	cost	440.103590
	45	45	I	cost	410.024029
	46	46	I	cost	380.448985
	47	47	I	cost	351.321854
	48	48	I	cost	322.365674
	49	49	I	cost	294.060165
##	50	50	I	cost	266.105785
##	51	51	I	cost	238.872856
##	52	52	I	cost	212.372972
##	53	53	I	cost	186.726035
##	54	54	I	cost	162.356251
##	55	55	I	cost	139.261868
##	56	56	I	cost	117.704591
##	57	57	I	cost	97.860681
##	58	58	I	cost	79.882174
##	59	59	I	cost	64.069459
##	60	60	I	cost	50.160404
##	61	61	I	cost	38.227267
##	62	62	I	cost	28.538763
##	63	63	I	cost	20.760109
##	64	64	I	cost	14.777203
##	65	65	I	cost	10.152295
##	66	66	I	cost	6.720050
##	67	1	I	utility	879.227053
##	68	2	I	utility	848.724483
##	69	3	I	utility	819.304004
##	70	4	I	utility	790.858282
##	71	5	I	utility	763.303962
##	72	6	I	utility	736.663978
##	73	7	I	utility	710.871244
##	74	8	I	utility	685.932177
##	75	9	I	utility	661.786899
##	76	10	I	utility	638.439800
##	77	11	I	utility	575.208045
##	78	12	I	utility	554.729804
	79	13	I	utility	534.922528
##	80	14	I	utility	515.741419
##	81	15	I	utility	497.182389
##	82	16	I	utility	479.178165
	83	17	I	utility	461.715353
	84	18	I	utility	444.802694
	85	19	I	utility	428.411635
	86	20	I	utility	412.500293
	87	21	I	utility	373.691000
	88	22	I	utility	359.559078
	89	23	I	utility	345.832962
	90	24	I	utility	332.462205
	91	25	I	utility	319.473575
	92	26	I	utility	306.813466
	93	27	I	utility	294.458043
	94	28	I	utility	282.439678
ππ	0 1	20	_	aurricy	202.400010

```
## 95
                 29
                                         utility 270.725985
                                   Ι
## 96
                 30
                                   Τ
                                         utility 259.303999
## 97
                                         utility 241.972384
                 31
                                   Ι
## 98
                 32
                                   Ι
                                         utility 231.391989
                                         utility 221.138738
## 99
                 33
                                   Ι
## 100
                 34
                                   Ι
                                         utility 211.088924
## 101
                 35
                                   Ι
                                         utility 201.231673
                                         utility 191.544620
## 102
                 36
                                   Ι
## 103
                 37
                                   Ι
                                         utility 182.041830
## 104
                 38
                                   Ι
                                         utility 172.712621
## 105
                 39
                                   Ι
                                         utility 163.447144
## 106
                                   Ι
                 40
                                         utility 154.331660
## 107
                                   Ι
                 41
                                         utility 136.008177
## 108
                 42
                                   Ι
                                         utility 127.751249
## 109
                 43
                                   Ι
                                         utility 119.626485
## 110
                 44
                                   Ι
                                         utility 111.649013
## 111
                 45
                                   Ι
                                         utility 103.781322
## 112
                 46
                                   Ι
                                         utility
                                                    96.008548
## 113
                 47
                                   Ι
                                         utility
                                                    88.255520
## 114
                                   Ι
                 48
                                         utility
                                                    80.653575
## 115
                 49
                                   Ι
                                         utility
                                                    73.121352
## 116
                 50
                                   Ι
                                         utility
                                                    65.760865
## 117
                                   Ι
                 51
                                         utility
                                                    58.576148
## 118
                 52
                                   Ι
                                         utility
                                                    51.601109
## 119
                 53
                                   Ι
                                         utility
                                                    44.953942
## 120
                 54
                                   Ι
                                         utility
                                                    38.635842
## 121
                 55
                                   Ι
                                         utility
                                                    32.721061
## 122
                 56
                                   Ι
                                         utility
                                                    27.260682
## 123
                 57
                                   Ι
                                         utility
                                                    22.299453
## 124
                                   Ι
                                                    17.923894
                 58
                                         utility
## 125
                                   Ι
                 59
                                         utility
                                                    14.063995
## 126
                 60
                                   Ι
                                         utility
                                                    10.742899
## 127
                                   Ι
                 61
                                         utility
                                                     8.039178
## 128
                 62
                                   Ι
                                                     5.862318
                                         utility
## 129
                                   Ι
                 63
                                         utility
                                                     4.183370
## 130
                 64
                                   Ι
                                         utility
                                                     2.881664
## 131
                 65
                                   Ι
                                         utility
                                                     1.912731
## 132
                 66
                                   Ι
                                         utility
                                                     1.230143
```

summary(res_mod[[4]])

```
## 1 strategy run for 66 cycles.
##
## Initial state counts:
##
## noLTBI = 742
## completeTx = 52.2397525531171
## incompleteTx = 1.83508364108649
## noTx = 203.925163805796
## activeTB = 0
## dead = 0
##
## Counting method: 'end'.
##
## Values:
```

```
##
## cost utility
## I 44682 18903.23
# plots
hist(c1, breaks = 30, xlab = "cost")
```

Histogram of c1

hist(h1, breaks = 30, xlab = "health")

Histogram of h1

plot(res_mod[[4]])

Loading required namespace: diagram

