Redes de Computadores

Camada Física Prof. Renê Pomilio de Oliveira

Slides baseados nas aulas da Profa. Dra. Kalinka Castelo Branco (ICMC/USP) Prof. Dr. Anderson Chaves Carniel (UTFPR)

Entidades da Camada

Camada Física - 1

- É a camada onde existe a Transmissão e Recepção do Sinal através dos diversos meios Físicos;
- Nesta camada é estabelecida a conexão física entre 02 máquinas ligadas em rede;
- Existem diversos padrões de camada física componentes e protocolos associados, ex.:
 - Placas de Rede;
 - Modens;
 - Protocolos RS 232 C, Ethernet, Token Ring, FDDI, entre outros

Em diagramas, sinais nos meios físicos são ilustrados por este símbolo de linha.

O termo largura de banda é definido na comunicação de dados como sendo a quantidade máxima de transmissão de diferentes sinais em um meio físico (como um cabo ótico/coaxial).

- Qual a diferença entre:
 - Largura de banda e taxa de transmissão?

- Qual a diferença entre:
 - Largura de banda e taxa de transmissão?

A largura de banda é medida em MHz e a taxa de transmissão em MBPS

- A largura de banda de um cabo pode ser dividida em canais. As duas formas de utilizar a capacidade de um meio físico são:
 - Banda base e Banda Larga

- Banda Base: neste tipo de transmissão toda a largura de banda é usada por um único canal.
- Esta tecnologia é frequentemente usada para transmissão digital, por esta razão, a maioria das redes de computadores adotam essa técnica.

- Banda Larga: Este modelo de transmissão é caracterizado pela divisão da largura de banda em múltiplos canais.
- Podendo cada canal transmitir diferentes sinais analógicos. Por essa razão, redes de banda larga podem transmitir múltiplos sinais simultaneamente.

Padrões de sinais permitem que uma variedade de dispositivos operem em

Transmissão Analógica

- O desafio aqui é transformar os dados digitais em analógicos para prover a comunicação.
- A técnica de converter <u>sinais analógicos</u> em <u>digitais</u> em um sinal analógico com uma faixa de <u>frequência</u> escolhida é chamado de <u>modulação</u>.

OMG, mas o que é modulação?

Transmissão com Modulação

- A modulação é a variação das características de uma onda (denominada portadora) de acordo com outra onda ou sinal (denominado sinal modulador).
- O objetivo do processo de modulação é <u>imprimir uma informação em uma onda</u> <u>portadora</u>, para permitir que esta informação seja transmitida no meio de comunicação.

Transmissão com Modulação

Na tecnologia atual existem <u>dois tipos de portadoras</u>: portadora analógica (<u>senóide</u>) e a portadora digital (<u>trem de pulso</u>). O sinal modulador pode ser analógico (**voz**) ou digital (**dados**).

Transmissão Analógica – Dados Analógicos

 Aqui é transformar os <u>sinais</u> analógicos em um <u>sinal</u> analógicos com uma faixa de frequência escolhida para prover a comunicação.

Modulação Analógica

- AM (Amplitude Modulation) ou modulação em amplitude;
- FM (Frequency Modulation) ou modulação em frequência; e
- PM (Phase Modulation) ou Modulação em fase.

Modulação Analógica

- AM Os sinais modulados em AM são muito sensíveis ao ruído e interferência aditivos, uma vez que a informação é transportada pela amplitude da portadora.
- FM Os sinais modulados em FM são mais imunes ao ruído e à interferência aditivos que os sinais AM, uma vez que a informação é transportada pela frequência instantânea do sinal modulado e não pela amplitude da portadora. Assim, os sistemas de transmissão em que é necessária uma maior qualidade do sinal (relação sinal -ruído) é utilizada normalmente a modulação em frequência.

Transmissão Digital

- Exemplo de como é feita uma transmissão digital para enviar dados digitais....
 - Arquivos, músicas, fotos e vídeos são armazenados apenas como uma sequência de bits...

- Canais com ou sem fio transportam sinais analógicos;
- Como utilizar estes meios para enviar informações digitais?

- Modulação digital:
 - É o processo de converter bits em sinais que os representam;

- Esquemas de transmissão em banda base:
 - NRZ (Non-Return-to-Zero)
 - NRZI (Non-Return-to-Zero Inverted)
 - Manchester
 - Codificação 4B/5B

- Esquemas de transmissão em banda passante (conjunto de frequência):
 - ASK (Amplitude Shift Keying)
 - FSK (Frequency Shift Keying)
 - PSK (Phase Shift Keying)
 - QAM (Quandrature Phase Shift Keying)

Modulação Digital – NRZ/NRZI

- NRZ (Non-Return-to-Zero):
 - Codificação depende apenas do estado do bit;
 - Tensão positiva representa "1", tensão negativa representa "0";
 - Presença de luz representa "1", ausência de luz representa "0";
- NRZI (Non-Return-to-Zero Inverted):
 - Codificação depende do estado anterior;
 - Quando ocorre bit "1" o sinal é invertido e quando ocorre bit "0" nada acontece (ou vice-versa).

Modulação Digital - NRZ/NRZI

Transmissão Digital – Dados Digitais

- Codificação por bloco foi concebida para melhorar o desempenho da codificação em linha; inclui redundância e possibilidade de verificação de erros.
 - 1º A cadeia de bits é dividida em grupos de m bits de tamanho.
 - 2º Os grupos de m bits são substituídos por grupos de n bits
 - 3º Escolhe-se um esquema de codificação de linha para enviar o sinal.

Transmissão Digital – Codificação 4B/5B

A lógica é bem simples: A cada 4 bits são mapeados para um sequência de 5

bits	Dados (4B)	Código (5B)	Dados (4B)	Código (5B)	
	0000	11110	1000	10010	
	0001	01001	1001	10011	
	0010	10100	1010	10110	
	0011	10101	1011	10111	
	0100	01010	1100	11010	
	0101	01011	1101	11011	
	0110	01110	1110	11100	9
Câmpus	0111	01111	1111	11101	N

Transmissão Digital – Codificação 4B/5B

- A modulação 4B/5B
 - É utilizado no padrão Ethernet 100Mbps
 - Com a substituição de blocos de bits, ficarão blocos não alocados que podem ser alocados para controle de transmissão.

Exemplo da modulação digital

Na prática, as duas estratégias são utilizadas conjuntamente.

Exemplo da transmissão Analógica – Dados digitais

- Dados digitais:
 - O sinal analógico deve ser alterado de acordo com a variação dos bits

ASK (Amplitude Shift Key)

FSK (Frequency Shift Key)

PSK (Phase Shift Key)

Fase	Bits
0	0
180	1

- QAM (Quadrature Amplitude Modulation)
 - Ideia é combinar ASK-PSK
 - Mais utilizada
 - Utilizada em TV digital e outros sistemas que necessitam de alta taxa de transmissão de informação.

QAM

Represente 101100001000010011110111

- Canais são normalmente compartilhados por vários sinais;
- Vários sinais em um fio é melhor do que um fio para cada sinal;
- Objetivo de maximizar o número de conexões
- Métodos de multiplexação:
 - Por divisão de frequência (FDM)
 - Por divisão de tempo (TDM)
 - Por divisão de comprimento de onda (WDM)

 Por divisão de frequência (FDM)

Câmpus Dois Vizinhos

Por divisão de tempo (TDM)

Por divisão de onda (WDM)

Portadora

- Portadora ou onda portadora senoidal introduzida na faixa 1000 a 2000 Hz pelo modem
 - Pode ser modulada em amplitude, frequência ou fase para transmitir informações.

Modens

 Modulador – Demodulador – qualquer dispositivo que aceite um fluxo serial de bits com entrada e produza uma portadora modulada com saída e vice-versa. (fica entre o computadore e o sistema telefônico)

Transmissão - Dispositivos

← Modem - Modulador/Demodulador

Transmissão - Dispositivos - (Placas)

Modos de Transmissão

- Por condução:
 - par trançado;
 Sinal elétrico
 - cabo coaxial;
 - fibra óptica. ———— Sinal óptico
- Por irradiação:
 - Radiodifusão;
 - infravermelho;
 - enlaces de satélite.

