ARTOO: Adaptive Random Testing for Object-Oriented Software

Ana Jin 99176 | Juliana Marcelino 99261 | Madalena Cunha 99267

Software Testing and Validation

Introduction

- Evaluation criteria for testing strategies:
 - effectiveness in finding faults
 - efficiency in speed
- Automated solutions can't test every scenario in complex programs

Random Testing

Easy to implement

No input selection overhead

Avoids human bias

High applicability

Fast execution.

Adaptive
Random
Testing (ART)

Enhances efficiency while maintaining benefits of random testing

Guides testing for non-random selection, improving fault discovery

Prioritizes even distribution of test cases for fewer tests needed

Results: Up to 50% reduction in tests needed to reveal first fault

Extension to object-oriented software: ARTOO introduced for adaptive testing with "object distance" calculation.

03

Object Distance

```
p \leftrightarrow q = combination (
elementary\_distance\ (p,q),
type\_distance\ (type\ (p), type\ (q)),
field\_distance\ (\{[p.a \leftrightarrow q.a] | a \in Attributes\ (type\ (p), type\ (q))\}))
```

Elementary Distance fixed functions for each value type (e.g., numbers, characters)

Type Distance

summing path lengths to closest common ancestor and non-shared features* count

*Non-shared features are features not inherited from a common ancestor

Field Distance

recursively applying distance calculation to matching fields of compared objects

ARTOO

Objective: Select input objects with the highest average distance to those already used as test inputs.

Distance Calculation: Uses the combination function of elementary, type, and field distances.

Algorithm Overview:

- Calculates the sum of distances between each candidate object and all used test objects.
- Selects the candidate with the highest sum of distances (equivalent to the highest average distance since the divisor is constant).

```
used_objects: SET [ANY]
candidate_objects: SET [ANY]
current_best_distance: DOUBLE
current_best_object: ANY
vO, v1: ANY
current_accumulation: DOUBLE
current_best_distance := 0.0
foreach v0 in candidate_objects
   current_accumulation := 0.0
   foreach v1 in used_objects
   do
      current_accumulation :=
         current_accumulation + distance(v0, v1)
   end
   if (current_accumulation > current_best_distance)
      current_best_distance := current_accumulation
      current_best_object := v0
   end
end
candidate_objects.remove(current_best_object)
used_objects.add(current_best_object)
run_test(current_best_object)
```

Example: r (ol: A; o2: B)

Implementation

AutoTest

- Automatically tests Eiffel software
- Uses contracts (rules) in the code to verify behavior
- Process:
 - Input Generation
 - Execution
 - Monitoring
- Two-Process Model:
 - Master Process
 - Slave Process

AutoTest

Random Input Generation (RAND)

- AutoTest stores test input objects, creating new instances or using existing ones.
- Input generation algorithm:
 - For target object & arguments, call a random constructor of the class.
 - For primitive types, choose values from all possible values or predefined special values.
- Diversification operations performed on objects in the pool for more variety.
- Generating objects by calling constructors & routines ensures class invariant satisfaction.

AutoTest

ARTOO

Integration with AutoTest:

- Implemented as a plugin for input generation.
- Other parts of the testing process remain unchanged.
- Allows for objective performance comparison between strategies.

Key Features:

- Object Creation and Diversification
- Infinite Recursion Handling
- Distance Calculation

Example

```
class BANK_ACCOUNT
                                                   end
create
                                                ature -- Operation
 make
                                                withdraw (sum: INTEGER) is ...
feature -- Bank account data
                                                 deposit (sum: INTEGER) is ...
  owner: STRING
  balance: INTEGER
                                                 transfer (other_account: BANK_ACCOUNT; sum: INT)
feature -- Initialization
                                                    -- Transfer 'sum' to 'other_account'.
 make (s: STRING; init_bal: INTEGER) is
                                                   require
                                                    can_withdraw: sum <= balance
      -- Create a new bank account.
                                                  do
    require
                                                    balance := balance - sum
       positive_initial_balance : init_bal >
                                                    other_account . deposit (sum)
      owner_not_void: s /= Void
                                                   ensure
    do
                                                    balance_decreased: balance < old balance
                                                     sum_deposited_to_other_account: other_account.bu
      owner := s
                                                          > old other_account.balance
      balance := init_bal
                                                   end
    ensure
                                                variant
      owner\_set: owner = s
                                                owner_not_void: owner /= Void
      balance_set: balance = init_bal
                                                 positive\_balance : balance >= 0
```

Example

```
ba1: BANK_ACCOUNT, ba1.owner="A", ba1.balance=675234
```

ba2: BANK_ACCOUNT, ba2.owner="B", ba2.balance=10

ba3: BANK_ACCOUNT, ba3.owner="O", ba3.balance=99

ba4 = Void

i1: INTEGER, i1 = 100

i2: INTEGER, i2 = 284749

i3: INTEGER, i3 = 0

i4: INTEGER, i4 = -36452

i5: INTEGER, i5 = 1

ba1. transfer (ba4, i2)

ba2. transfer (ba2, i4)

ba3. transfer (ba1, i5)

```
ba1: BANK_ACCOUNT, ba1.owner="A", ba1.balance=675235
```

ba2: BANK_ACCOUNT, ba2.owner="B", ba2.balance=10

ba3: BANK_ACCOUNT, ba3.owner="O", ba3.balance=98

ba4 = Void

i1: INTEGER, i1 = 100

i2: INTEGER, i2 = 284749

i3: INTEGER, i3 = 0

i4: INTEGER, i4 = -36452

i5: INTEGER, i5 = 1

Experimental Results

Experimental Setup

Use real-world code for evaluating testing tools

Testing on unchanged classes from EiffelBase library

All faults mentioned are real faults present in this library

These classes are publicly available

Class	Total lines of code	Lines of contract code	#Routines	#Attributes	#Parent classes
ACTION_SEQUENCE	2477	164	156	16	24
ARRAY	1208	98	86	4	11
ARRAYED_LIST	2164	146	39	6	23
BOUNDED_STACK	779	56	62	4	10
FIXED_TREE	1623	82	125	6	4
HASH_TABLE	1791	178	122	13	9
LINKED_LIST	1893	92	106	6	19
STRING	2980	296	171	4	16

Experimental Setup

Testing Methodology & Results Evaluation

- Test one class at a time using both RAND and ARTOO
- Average Results out over 5, 10-minute tests of each class using different seeds
- **03** Results evaluated according to two factors:

Number of tests to Time to first fault first fault

Most crucial attribute: Prioritize the fault-detecting ability of a testing strategy

		/							
	Class	Routine	Tests to first fault			Time to first fault (seconds)			
			ARTOO	RAND	ARTOO RAND	ARTOO	RAND	$\frac{ARTOO}{RAND}$	
	ARRAYED_LIST	append	432	5517	0.08	311	191	1.62	
		do_all	296	737	0.40	137	18	7.48	
		do_if	16	1258	0.01	2	39	0.05	
		fill	159	7130	0.02	40	256	0.16	
		for_all	303	517	0.59	138	17	7.93	
		is_inserted	31	126	0.25	3	7	0.43	
		make	23	3	7.44	2	1	2.80	
		make_filled	13	117	0.11	2	4	0.50	
parties of the same of the sam		prune_all	51	10798	0.00	3	367	0.01	
		put	96	89	1.08	11	4	2.67	
		put_left	146	9739	0.01	32	331	0.10	
		put_right	278	8222	0.03	132	291	0.45	
		resize	355	1143	0.31	320	30	10.40	
		there_exists	307	518	0.59	151	17	8.78	
		wipe_out	594	3848	0.15	546	123	4.41	

Results Routine-by-Routine Comparison

Better performance by ARTOO are highlighted in bold

Class	Routine	Test	s to first fa	ult	Time to fin	rst fault (se	econds)
		ARTOO	RAND	$\frac{ARTOO}{RAND}$	ARTOO	RAND	$\frac{ARTOO}{RAND}$
ACTION_SEQUENCE	arrayed_list_make	748	6800	0.11	564	174	3.24
	call	109	2382	0.05	10	67	0.15
	duplicate	378	410	0.92	196	13	14.46
	for_all	286	623	0.46	64	21	3.00
	is_inserted	115	95	1.21	5	2	2.36
	make_filled	183	449	0.41	49	13	3.65
	put	81	67	1.21	4	4	1.15
	remove_right	448	17892	0.03	201	475	0.42
	resize	399	5351	0.07	187	160	1.17
	set_source_connection_agent	265	3771	0.07	96	112	0.86
	there_exists	215	104	2.07	67	2	33.83

Table 2: Results for two of the tested classes, showing the time and number of tests required by ARTOO and RAND to uncover the first fault in each routine in which they both found at least one fault, and their relative performance. In most cases ARTOO requires significantly less tests to find a fault, but entails a time overhead.

Results Class-Level Comparison

ARTOO:

- Fewer Tests
- Faster Fault Detection
- Slower for Simple Tests
- Ideal for Complex Software

Class	Tests to first fault			Time to first fault (seconds)			
	ARTOO	RAND	ARTOO/RAND	ARTOO	RAND	ARTOO/RAND	
ACTION_SEQUENCE	293.72	3449.76	0.09	131.53	95.11	1.38	
ARRAY	437.19	856.39	0.51	133.21	21.23	6.27	
ARRAYED_LIST	206.80	3317.80	0.06	122.16	113.42	1.07	
BOUNDED_STACK	282.50	357.17	0.79	128.00	11.45	11.18	
FIXED_TREE	333.99	463.91	0.71	127.73	136.64	0.93	
HASH_TABLE	581.21	2734.42	0.21	164.41	65.85	2.49	
LINKED_LIST	238.20	616.71	0.38	98.39	18.14	5.42	
STRING	279.64	1561.60	0.17	85.03	144.28	0.58	
Overall averages	331.66	1669.72	0.19	123.81	75.77	1.63	

Table 3: Averaged results per class. ARTOO constantly requires fewer tests to find the first fault: on average 5 times less tests than RAND. The overhead that the distance calculations introduce in the testing process causes ARTOO to require on average 1.6 times more time than RAND to find the first fault.

Figure 3: Comparison of the average time to first fault required by the two strategies for every class. RAND is generally better than ARTOO.

Figure 2: Comparison of the average number of tests cases to first fault required by the two strategies for every class. ARTOO constantly outperforms RAND.

Class	Routine	Tests to first fault	Time to first fault (seconds)	#faults
ARRAYED_LIST	remove	167	46	1
FIXED_TREE	child_is_last	717	283	1
FIXED_TREE	duplicate	422	134	1
STRING	grow	492	163	2
STRING	multiply	76	17	2

Table 4: Faults which only ARTOO finds

Class	Timeout	StDev(NumberF	oundFaults)
	(minutes)	ARTOO	RAND
ACTION_SEQUENCE	1	1.87	2.92
	2	1.14	2.59
	5	0.89	1.22
	10	1.64	0.71
ARRAY	1	2.30	13.22
	2	2.45	16.81
	5	2.77	17.04
	10	5.27	17.04
ARRAYED_LIST	1	2.95	1.52
	2	3.08	3.51
	5	3.81	8.37
	10	4.93	12.60
BOUNDED_STACK	1	2.35	1.10
	2	3.56	0.84
	5	3.11	1.22
	10	2.17	1.48
FIXED_TREE	1	2.30	3.91
	2	1.30	2.70
	5	1.64	2.70
	10	2.59	2.17
HASH_TABLE	1	0.89	2.12
	2	1.64	2.05
	5	2.05	5.15
	10	3.11	7.91
LINKED_LIST	1	0.55	1.48
	2	0.45	1.79
	5	1.34	2.17
	10	1.14	4.22
STRING	1	2.07	1.14
	2	3.13	0.44
	5	3.7	1
	10	3.91	0.83
Average		2.37	4.49
Standard deviation		1.19	5.14

Table 5: Standard deviations of numbers of found faults for each strategy due to the influence of the seed for the pseudorandom number generator, and the average and standard deviation of the standard deviations for each strategy. ARTOO is generally less sensitive to the choice of seed.

Results

ARTOO

- Finds faults RAND misses within the same test duration
- Valuable for detecting overlooked faults by RAND
- Intelligent test case selection with fewer, targeted tests
- Less sensitive to seed variations, ensuring consistent performance

RAND

- Exhaustive search finds faults ARTOO might miss
- Complements ARTOO by addressing detection gaps
- Using both ARTOO and RAND enhances fault detection and reliability

Optimizations

Cluster Center Distance Calculation

Improves time to first fault by 25%

Manual Test Guidance

Reduces tests to first fault by 2x

Based on closeness to manual inputs and distance from automatic inputs

Explore less intensive distance calculations

Incorporate semantics for better accuracy

Future Enhancements

Thank You