Contents

Preface			page 1
1	Prob	pability basics	4
	1.1	The three doors problem	4
		1.1.1 Earthquake variation	5
	1.2	Probability	6
		1.2.1 Fundamental properties	6
		1.2.2 Some problems	7
		1.2.3 Frequency	8
		1.2.4 Bayes' theorem and the principle of inference	8
		1.2.5 Discrete and continuous probability distributions	9
		1.2.6 Normalization	10
	1.3	Expectation, variance, and moments	10
	1.4	Univariate probability distributions	13
		1.4.1 Binomial	13
		1.4.2 Poisson	16
		1.4.3 Beta	19
		1.4.4 Uniform	20
		1.4.5 Gaussian	20
		1.4.6 Gamma	21
		1.4.7 Cauchy	22
	1.5	Cumulative distribution function and quantile function	23
	1.6	Multiple variables	24
		1.6.1 Covariance	24
		1.6.2 Multivariate probability distributions	25
	1.7	Combinations and permutations	28
		1.7.1 Using R	30
	1.8	Random number generation	31
	1.9	Change of variables	33
		1.9.1 One-dimensional	33
		1.9.2 Multi-dimensional	33
	1.10	The three doors problem revisited	35
2	Estir	mation and uncertainty	36
	2.1	Estimators	36
	2.2	Noise, measurement errors, and measurement models	37

vi Contents

	2.2	The	entral limit theorem and \sqrt{N} reduction from repeated measurements	39	
	2.3	2.3.1	-	40	
		2.3.1		40	
	2.4		ation properties vs sample estimates	44	
	2.4	-	• •	45	
		·			
	2.6 Outliers and robust statistics			47 49	
	2.7 2.8		, accuracy, and precision		
	2.0		gation and combination of uncertainties Linear function of one variable	50	
			Arbitrary function of one variable	50	
			•	50	
		2.8.3		51	
		2.8.4	Arbitrary function of two variables	52 52	
		2.8.5	Arbitrary function of many variables	52	
		2.8.6		53	
		2.8.7	Weighted mean	53	
3	Stati	stical	models and inference	55	
	3.1	Introd	uction to data modelling	55	
	3.2		ian model comparison	56	
		3.2.1	Theory	56	
		3.2.2	Does a positive test result mean you have a disease?	58	
		3.2.3	Thinking in terms of frequencies may help	61	
	3.3	Data r	nodelling with parametric models	61	
		3.3.1	The likelihood	62	
		3.3.2	The prior	63	
			The posterior	63	
		3.3.4	The evidence	65	
	3.4			66	
	3.5 Estimating one parameter from one data point			67	
		3.5.1	Misleading intuition	69	
		3.5.2		70	
		3.5.3	An improper uniform prior	71	
		3.5.4	A proper uniform prior	72	
		3.5.5	What is a good prior?	73	
	3.6	An inf	Ference story	74	
,	Lina			7.0	
4			dels, least squares, and maximum likelihood	76	
	4.1		Inverteinty estimates on the model parameters	76	
		4.1.1	Uncertainty estimates on the model parameters	77	
		4.1.2	1	79 70	
		4.1.3	Measures for goodness of fit	79	
			Linear model fitting with measurement errors	80	
	4.2	4.1.5		81 83	
	4.2 Linear models				

vii Contents

	4.3	Degrees of freedom			
	4.4	Maximum likelihood and maximum posterior probability	84		
		4.4.1 Maximum likelihood estimate of the weighted mean of Gaussian			
		variables	86		
		4.4.2 Least squares and χ^2 as a case of maximum likelihood	86		
		4.4.3 Minimizing L^1 and L^2 losses	87		
		4.4.4 Maximum posterior	87		
		4.4.5 Maximum posterior estimate for Poisson data	88		
	4.5	Multi-dimensional linear regression	89		
		4.5.1 Generalized least squares	90		
	4.6	One-dimensional regression with nonlinear functions	91		
	4.7	Least squares with errors on both axes	94		
	4.8	Bias-variance decomposition	95		
5	Parameter estimation: single parameter				
	5.1	Bayesian analysis of coin tossing	98		
		5.1.1 Uniform prior	99		
		5.1.2 Beta prior	101		
	5.2	Likelihoods can be arbitrarily small and their absolute values are irrelevant	109		
	5.3	Assigning priors	112		
		5.3.1 Location and scale parameters	115		
		5.3.2 Jeffreys prior	116		
		5.3.3 Are priors subjective?	119		
	5.4	Some other conjugate priors	120		
	5.5	Summarizing distributions	121		
6	Para	meter estimation: multiple parameters	125		
	6.1	Conditional and marginal distributions	125		
	6.2	Inferring the parameters of a Gaussian	126		
		6.2.1 Standard deviation known	127		
		6.2.2 Mean known	127		
		6.2.3 Neither standard deviation nor mean known	128		
	6.3	A two-parameter problem: estimating amplitude and background	133		
		6.3.1 R code for fitting the amplitude and background	137		
		6.3.2 Suggested experiments	139		
		6.3.3 A note on computation with finite precision	140		
7	Approximating distributions				
	7.1	The quadratic approximation	142		
		7.1.1 One dimension	142		
		7.1.2 Two dimensions	144		
		7.1.3 Higher dimensions	144		
	7.2	Density estimation	145		
		7.2.1 Histograms	145		

viii Contents

		7.2.2	Kernel density estimation	147	
8	Mon	te Carl	o methods for inference	154	
	8.1	Why w	ve need efficient sampling	154	
	8.2	•	f integration in Bayesian inference	156	
		8.2.1	Marginal parameter distributions	156	
		8.2.2	Expectation values (parameter estimation)	156	
		8.2.3	Model comparison (marginal likelihood)	156	
		8.2.4	Prediction	156	
	8.3	Monte Carlo integration			
	8.4	Monte	Carlo sampling	159	
		8.4.1	Rejection sampling	160	
		8.4.2	Importance sampling	161	
	8.5	Marko	v Chain Monte Carlo	161	
		8.5.1	Metropolis-Hastings algorithm	162	
		8.5.2	Analysing the chains	163	
		8.5.3	Summarizing the distribution from the sample	165	
		8.5.4	Parameter transformations	167	
	8.6	R code		167	
		8.6.1	Demonstration of the Metropolis algorithm in one dimension	167	
		8.6.2	Implementation of the Metropolis algorithm	170	
9	Parameter estimation: Markov Chain Monte Carlo				
	9.1	Fitting	a straight line with unknown noise	173	
		9.1.1	Priors	175	
		9.1.2	Sampling the posterior	175	
		9.1.3	Posterior predictive distribution	178	
			R code for fitting a straight line	181	
		9.1.5	Discussion	186	
			Centring the data	188	
	9.2	_	a quadratic curve with unknown noise	190	
	9.3	A mix	ture model: fitting a straight line with an outlier model	193	
		9.3.1	Application and results	195	
			Discussion	197	
	9.4	Fitting	curves with arbitrary error bars on both axes	199	
1() Freq	uentis	t hypothesis testing	204	
	10.1	The pr	inciples of frequentist statistics and hypothesis testing	204	
	10.2	One-sa	ample hypothesis tests	206	
		10.2.1	Gaussian z test	206	
		10.2.2	Student's t test	210	
			General t testing in R and frequentist confidence intervals	212	
			Summary: z test vs t test	215	
	10.3	Two-sa	ample hypothesis tests	215	

ix Contents

	10.3.1 Gaussian z test	215	
	10.3.2 Student's t test	216	
10.4	Hypothesis testing in linear modelling	217	
10.5	Goodness of fit and the χ^2 distribution	218	
	10.5.1 The χ^2 distribution	219	
	10.5.2 Using χ^2 as a measure of goodness of fit	220	
	10.5.3 Derivation of the χ^2 distribution	221	
10.6	Issues with frequentist hypothesis testing	222	
11 Mod	lel comparison	225	
	Bayesian model comparison	225	
	11.1.1 The evidence as a marginal likelihood	227	
11.2	Example of an analytic evidence calculation: is a coin fair?	227	
	Example of a numerical evidence calculation: is there evidence for a		
	non-zero gradient?	231	
	11.3.1 R code	235	
	11.3.2 A frequentist hypothesis testing approach	237	
11.4	Comparing Gaussians (or other distributions)	238	
	How the evidence accounts for model complexity	239	
	Other ways of computing the evidence	242	
	11.6.1 The cross-validation likelihood	243	
11.7	Other measures for model comparison: AIC and BIC	245	
	The stopping problem	248	
	11.8.1 The frequentist approach(es)	249	
	11.8.2 The Bayesian resolution	250	
11.9	Issues with Bayesian model comparison	252	
12 Deal	ling with more complicated problems	255	
	Cross-validation	255	
12.2	Regularization in regression	260	
	12.2.1 Regularization	260	
	12.2.2 Ridge regression	261	
	12.2.3 Probabilistic interpretation of regularization	265	
12.3	Regression with basis functions	266	
	12.3.1 Splines	266	
	12.3.2 Smoothing splines	269	
	12.3.3 R code	270	
12.4	Regression kernels	273	
	A non-parametric smoothing problem	277	
	Numerical optimization (mode finding)	280	
	Bootstrap resampling	282	
Referenc		289	
Index	·		