ANALYSIS QUALIFYING EXAMINATION August 1995

General Instruction:

- (1) PLEASE WRITE ON ONLY ONE SIDE OF YOUR PAPER.
- (2) Write your solution to each problem on a separate sheet.
- (3) Markings: 1-8 \sim 11 pt each; 9 \sim 12 pt.

General Notation/Conventions:

- (1) Let $R = (-\infty, \infty)$ and \mathbb{C} be the complex plane.
- (2) All measure spaces are assumed to be complete.
- [1] Let (X_i, ρ_i) be metric spaces and $f: X_1 \to X_2$ be a continuous map. Let $Y_1 \subset X_1$ and $Y_2 = f(Y_1)$.
 - (1a) Show that a continuous image of a compact set is compact. Namely, show that if Y_1 is compact, then Y_2 is compact.
 - (1b) Prove or give a counterexample to the following converse: If Y_2 is compact, the Y_1 is compact.
- [2] Let (X, ρ) be a metric space. Let X be sequentially compact and $Y \subset X$. Let $f: X \to Y$ be an isometry between X and Y. Recall that this means that f is a distance-preserving homeomorphism from X onto Y. Thus for each $x, \tilde{x} \in X$,

$$\rho(x, \tilde{x}) = \rho(f(x), f(\tilde{x})) .$$

Show that Y = X.

- [3] Let (X, Σ, μ) be a finite measure space and L_0 be the collection of all μ -measurable functions from X into R.
 - (3a) Prove Egoroff's Theorem, namely: Let $\{f_n\}$ be a sequence of functions from L_0 that converge almost everywhere to $f_0 \in L_0$. Show that $f_n \to f_0$ in measure also.
 - (3b) Does the statement of (3a) remain true if (X, Σ, μ) is an arbitrary (ie., not necessarily finite) measure space? Prove or give a counterexample.
- [4] Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that f^{-1} of a Borel set is again a Borel set. That is, let \mathcal{B} be the Borel subsets of \mathbb{R} and show that $f^{-1}[\mathcal{B}] \subset \mathcal{B}$.
- [5] Let E be a subset of R that is the union of a family of quite arbitrary intervals, each being open, closed, or half open and half closed. Prove that E is Lebesgue measurable.

[6] Fix $1 \le p < \infty$. Let ([0, 1], \mathcal{M}, m) is the Lebesgue measure space on [0, 1] and

$$L_p = \left\{ f \colon [0,1] \to \mathbf{R} \, : f \ \text{is m-measurable \& } \parallel f \parallel_p \equiv \left[\int \mid f \mid^p \, d\mu \right]^{\frac{1}{p}} < \infty \right\} \ .$$

Consider a sequence $\{f_n\}$ of L_p functions such that $||f_n||_p \le 1$ for each n.

(6a) Let $1 . Show that <math>\{f_n\}$ is uniformly integrable. That is, show that for each $\epsilon > 0$ there exists $\delta > 0$ such that if $E \in \mathcal{M}$ and $m(E) < \delta$ then

$$\int_{E} |f_{n}| dm < \epsilon$$

for each $n \in \mathbb{N}$.

- (6b) Does the statement of (6a) hold for p = 1? Prove or give a counterexample.
- [7] State and prove the Fundamental Theorem of Algebra.

[8] Compute

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2(x^2+2x+2)} \ dx \ .$$

[9] Let

- (1) $z_0 \in \mathbb{C}$
- (2) 0 < r < R
- (3) f and g be analytic functions on $D(z_0, R) \equiv \{z \in \mathbb{C} : |z z_0| < R\}$
- (4) $\gamma(t) = z_0 + re^{it}$ for $0 \le t \le 2\pi$
- (5) |g(z)| < |f(z)| for all $z \in \gamma^* \equiv \{\gamma(t) \in \mathbb{C} : 0 \le t \le 2\pi\}$.

Show that the number of zeros of f inside of γ is equal to the number of zeros of f+g inside of γ (counting multiplicity of course).