13. PLC 제조사별 특징 및 개발환경

13.1 Siemens S7 (TIA Portal, S7-300/1200/1500)

(PLC 분야에서 가장 널리 쓰이는 Siemens S7 시리즈의 구조, 특징, 실전 적용법 완전 정리)

☑ 개요

Siemens S7 시리즈는 세계적으로 가장 폭넓게 사용되는 PLC 시스템 중 하나다. 기본 하드웨어는 다음 3가지 시리즈로 나뉜다:

시리즈	특징
S7-300	전통적인 중형 시스템 (단종 진행 중)
S7-1200	소형 시스템, 중소형 기계제어
S7-1500	최신 중대형 시스템, 고속·고신뢰 제어

이 모든 제품군은 통합 엔지니어링 플랫폼인 **TIA Portal (Totally Integrated Automation Portal)** 상에서 개발·디버깅· 유지보수가 이루어진다.

☑ 1. 하드웨어 개념

시리즈	주요 특징
S7-300	모듈형 랙구조, 단종 진행 (하지만 현장 많이 사용중)
S7-1200	컴팩트 일체형, 표준 Ethernet 기본 탑재
S7-1500	고속 CPU, 통합 Safety, 보안, Web 서버 내장

★ 전체 시스템 구성 예시

• 하드웨어 구성, 프로그램 작성, 네트워크 설정 모두 TIA Portal 단일 플랫폼에서 수행

☑ 2. TIA Portal 개요

TIA Portal = Siemens 통합 개발 환경

기능	설명
하드웨어 구성	슬롯 배치, 전원/CPU/I/O 구성
프로그램 작성	LD, FBD, STL, SCL (Structured Text)
통신 설정	Profinet, Ethernet/IP, OPC UA 통합 지원
HMI 연동	WinCC 통합 설계
온라인 모니터링	실시간 프로그램 흐름 점등
시뮬레이션	가상 PLC 실행 가능 (PLCSIM Advanced)

☑ 3. S7-1200 특징 (소형 시스템)

특징	설명
대상	중소형 설비, 단일 기계 장비
기본 통신	Profinet 내장 (Ethernet)
IO 모듈	일체형 + 확장 가능
가격	저렴한 엔트리 모델
프로그래밍	완전 TIA Portal 기반
지원 언어	LD, FBD, SCL, Graph

✓ 4. S7-1500 특징 (중대형 시스템)

특징	설명
대상	중대형 생산라인, 고속 제어
CPU 성능	고속 사이클, 다중 Core
고급 기능	통합 Safety, Security, 웹서버 내장
통신	Profinet, OPC UA 기본지원
진단 기능	시스템 자체 에러 로그, 웹기반 유지보수
Time Sync	IEEE1588 기반 고정밀 동기화 가능

☑ 5. 대표 CPU 모델 비교

항목	S7-1200	S7-1500
CPU 종류	1212C, 1214C 등	1511, 1515, 1518 등
메모리	수십 KB ~ MB	수 MB ~ 수십 MB
사이클 타임	ms 단위	µs 단위
Safety 지원	일부 옵션	기본 내장 가능
통신 확장성	제한적	광범위 (IIoT, OPC UA, MQTT 등)

✓ 6. 프로그램 구조 (TIA 표준 구조)

구성	설명
OB (Organization Block)	전체 제어 흐름 (OB1=메인 루프)
FB (Function Block)	재사용 모듈화 기능 블록
FC (Function)	단일 함수
DB (Data Block)	변수 메모리 저장
UDT (User Defined Type)	사용자 정의 구조체

📌 예시 OB 흐름

• 명확한 모듈화 / 계층화 기반 구조가 유지보수 핵심

🔽 7. 통신 구조

통신 프로토콜	지원 여부
Profinet	기본 (S7-1200/1500 모두)
Profibus	확장 모듈 지원
OPC UA	1500 기본 내장
Modbus TCP	라이브러리 지원
МQТТ	lloT 연계 지원 가능

통신 프로토콜	지원 여부
Web Server	1500은 웹 서버 자체 내장 (모니터링 가능)

☑ 8. 온라인 유지보수 기능

기능	설명
온라인 모니터링	LD/FBD 실시간 흐름 표시
강제 설정 (Force)	변수 임의 강제
변수 추적 (Watch Table)	실시간 변수 리스트 모니터링
시뮬레이션	프로그램 시험운전 (PLCSIM Advanced)
Trace 기록	고속 변수 변화 이력 수집 가능

☑ 9. Safety 통합 제어

S7-1500은 **Safety PLC 기능을 표준 CPU에 내장**할 수 있다.

기능	설명
이중논리 체크	Safe Block 기반 이중 판단
Fail-Safe I/O	안전용 모듈 직결 가능
프로그램 보호	안전 블록 비인가 변경 불가
인증	SIL3, PL e 지원 가능

☑ 10. 실전 현장 적용 예시

산업	적용 사례
반도체	초정밀 제조라인 전체 PLC 통합 (S7-1500 기반)
자동차	용접라인 전체 Safety + Motion 통합
물류	컨베이어 + 분류기 통신 일원화
식음료	충진기/포장기 개별장비 중심 소형 S7-1200
발전소	설비 안정성 핵심 안전시스템 (Safety PLC 통합)

✓ 11. TIA Portal 실전 운영 팁

관리항목	실전 기술
하드웨어 템플릿화	장비 표준 모델링 저장
라이브러리 관리	FB/FC 모듈화 라이브러리화
통신 태그 표준화	SCADA ↔ PLC 태그 일원화
이중화 적용	CPU, I/O 이중화 옵션 준비 가능
소스 버전 관리	TIA Portal Project Archive 활용 필수

☑ 정리

- Siemens S7 + TIA Portal = 산업 자동화 표준 플랫폼
- S7-1200 → 소형, S7-1500 → 대형, 완전 통합 확장 가능
- 프로젝트 표준화, 모듈화, 통신통합, 이력관리 체계화가 Siemens 플랫폼을 실전에서 강력하게 만드는 핵심

13.2 Mitsubishi FX/Q/ iQ-R 시리즈 (GX Works3 등)

(Mitsubishi PLC 계열의 하드웨어, 개발환경, 특징, 실전 적용법 전체 정리)

☑ 개요

Mitsubishi Electric PLC 시스템은 일본을 비롯한 아시아권 산업 현장에서 특히 높은 점유율을 가진다. 다음 3개 시리즈로 발전해왔다:

시리즈	특징
FX 시리즈	소형 컴팩트 일체형 (소규모 장비 중심)
Q 시리즈	중대형 확장형 (모듈 랙 구조, 수많은 산업라인 운영 중)
iQ-R 시리즈	최신 하이엔드 시스템 (고속 CPU, 안전기능, 이중화 내장 가능)

이 모든 제품군의 통합 개발 환경이 GX Works3 이다.

☑ 1. 하드웨어 구성 체계

시리즈	주요 특징
FX5 (FX5U, FX5UC)	All-in-One 컴팩트 시스템, 고성능 중소형 장비용
Q 시리즈	확장 모듈형, 복잡한 프로세스/제조라인용

시리즈	주요 특징
iQ-R (R CPU)	초고속, 안전기능 내장, 이중화 지원, MES/IT 연계

★ 전체 시스템 구성 예시

- 확장성과 안정성이 매우 높은 모듈형 아키텍처
- iQ-R은 MES, ERP, 클라우드 연동을 포함한 완전 통합 지향

☑ 2. GX Works3 개요 (통합 개발 환경)

기능	설명
하드웨어 구성	모듈 설정, 슬롯 정의, 통신매핑
프로그램 작성	LD, FBD, ST, SFC, IL 지원
네트워크 설정	CC-Link IE, Ethernet, OPC UA, SLMP 통합
온라인 모니터링	실시간 접점 흐름, 변수 추적
시뮬레이션	소프트 PLC 기능 제공
라이브러리 관리	FB 라이브러리 재사용성 강화

☑ 3. FX5 시리즈 (소형 컴팩트 All-in-One)

특징	설명
CPU 성능	고속 연산, 연산속도 34ns/step
확장성	최대 256 I/O, 네트워크 확장 가능
통신지원	기본 Ethernet 내장
고급제어	Motion, Safety 일부 내장 가능
프로그래밍	GX Works3 전용 개발환경 완전 대응

★ FX5U = 소형 장비의 "실전 최적" 시스템으로 널리 활용됨

✓ 4. Q 시리즈 (중형 확장형)

특징	설명
슬롯 확장성	최대 수천 I/O 지원
통신 확장	CC-Link, Ethernet/IP, Profibus 연동
다양한 특수모듈	온도제어, 고속카운터, 로봇 연동 등
Motion 제어 연동	다축 서보 제어 통합 가능
Safety 통합	QnUDEH Safety CPU 지원 가능

☑ 5. iQ-R 시리즈 (최상위 하이엔드 시스템)

특징	설명
CPU 성능	초고속 0.14ns/step
실시간 이중화	CPU, 전원, 네트워크 이중화 지원
통신플랫폼	CC-Link IE TSN, OPC UA, MQTT 내장
Safety	ISO13849, SIL3 수준 완전 대응
IT 통합	MES Interface 내장, SQL DB 직접 접근 가능
보안	인증서 기반 암호화, 사용자 권한 관리 내장

☑ 6. 통신 구조

통신 프로토콜	지원
Ethernet/IP	지원
CC-Link IE Field	Mitsubishi 독자적 고속 네트워크
OPC UA	iQ-R 기본 내장
SLMP	표준 오픈 인터페이스
Modbus TCP	확장 라이브러리 지원

☑ 7. 프로그램 구조 (GX Works3 표준 아키텍처)

구성	설명
Main Program	시퀀스 전체 흐름 주제어
Task (Scan 프로그램)	다중 Task 구분 가능
FB (Function Block)	고급 모듈화 재사용 블록
Label	심볼기반 변수 (기호주소 기반)
멀티 CPU	다중 CPU 병렬 실행 가능 (iQ-R)

★ 예시 FB 구조 활용

- 1 Main Task → 공정 FB → 하위 FB(이송 FB, 포장 FB, 충진 FB)
- 2 L, PID FB, Motion FB, Safety FB 모듈 통합
- 모듈화 수준이 매우 정교 \rightarrow 유지보수성 극대화

☑ 8. 온라인 유지보수 기능

기능	설명
온라인 모니터링	논리 흐름 실시간 점등
강제 설정 (Force)	변수 임의 강제 가능
Watch Table	실시간 변수 리스트 감시
Trace 기능	고속 변수 이력 추적 가능
에러로그	CPU별 진단 이력 자체 저장 가능

☑ 9. Safety PLC 통합 구조

• Mitsubishi는 표준 CPU에 Safety 기능을 통합 (Safety CPU) 하는 구조를 지원

Safety 기능	특징
이중 진단 로직	독립 Safety Task 영역 존재
국제 인증	SIL3, PLe 지원
통합 유지보수	GX Works3 상에서 일반 프로그램과 통합 관리 가능

☑ 10. 실전 적용 현장 사례

산업	적용 예시
반도체	iQ-R 기반 극초정밀 물류시스템 (이중화 포함)
자동차	Q 시리즈 기반 차체 용접라인 통합제어
물류센터	FX5 기반 분류기 시스템 다수 구축
식음료	충진/포장/검사 복합제어에 널리 활용
제약	MES 연동 제조이력관리 통합 시스템

✓ 11. GX Works3 실전 운영 포인트

포인트	설명
라벨 심볼 적극 활용	주소없는 기호 기반 개발 → 가독성 극대화
FB 라이브러리화	재사용성 확보 → 유지보수 효율 상승
네트워크 일원화	CC-Link IE 기반 고속 통신 통합
이중화 설계 습관화	전원, CPU, 네트워크 이중화 기본 설계 적용
MES 직접연동	SQL/OPC UA 내장 기능 적극 활용

☑ Mitsubishi PLC의 가장 큰 실전 강점

- 장비 중심 \rightarrow 공정 중심 확장 용이
- Motion, Safety, SCADA, MES까지 완전 일체형 플랫폼 제공
- 아시아권 제조라인에서 극도로 검증된 현장 안정성
- GX Works3 통합 플랫폼이 **프로젝트 표준화, 라이브러리화, 이중화 설계**에 최적화

13.3 LS산전 XGT 시리즈 (XG5000 등)

(국내 제조설비에서 매우 널리 쓰이는 LS산전 PLC의 구조, 특징, 개발환경, 실전 적용법 정리)

☑ 개요

LS산전 (현 LS ELECTRIC) 의 XGT 시리즈는

대한민국 제조·물류·자동화 현장에서 매우 널리 쓰이는 PLC 시스템이다.

다음 3대 주력 시리즈로 구성된다:

시리즈	특징
XGB 시리즈	소형 시스템 (컴팩트 타입, 저가형 소규모 설비)

시리즈	특징
XGK 시리즈	중형 시스템 (랙 타입, 확장 가능)
XGR 시리즈	고신뢰성 이중화 지원 시스템

이 모든 하드웨어는 **XG5000** 엔지니어링 소프트웨어에서 통합 개발된다.

☑ 1. 하드웨어 구성 개념

시리즈	용도	특징
XGB (B/U)	소형 장비, 단일 기계	모듈형 컴팩트 구조
XGK (K)	중대형 생산라인	랙 구조 확장형, 실전 가장 많이 사용
XGR (R)	고신뢰성 이중화 시스템	CPU, 전원, 네트워크 이중화 가능

★ 전체 시스템 구성 예시

☑ 2. XG5000 개발환경 개요

XG5000 = LS산전 통합 PLC 개발 툴

기능	설명
하드웨어 설정	모듈 구성 및 슬롯 배치
프로그램 작성	LD (래더), IL (명령어 리스트), SFC, ST 지원
통신설정	XGT Protocol, Modbus, Ethernet, OPC 연동
온라인 모니터링	실시간 흐름 확인, 디버깅
시뮬레이션	가상 실행 가능 (Offline Debugging)
라이브러리 관리	FB 모듈화 지원

☑ 3. XGB 시리즈 특징 (소형 시스템)

특징	설명
구성	일체형+소형 모듈형 선택 가능
확장성	최대 384 I/O 확장 가능
기본 통신	RS-232, RS-485, Ethernet 확장 가능
사용처	소형 기계, 장비제어, 공장내 보조설비

☑ 4. XGK 시리즈 특징 (중형 시스템)

특징	설명
구성	랙 타입 모듈형 (최대 1,000+ I/O)
CPU 확장	속도별 CPU 종류 다양
특수모듈	고속카운터, Motion, 온도제어, PID 모듈 지원
통신	Ethernet/IP, Modbus TCP, OPC 연동 가능
실전 활용	대부분 국내 제조 공장 표준 PLC로 활용됨

☑ 5. XGR 시리즈 특징 (고신뢰성 이중화 시스템)

특징	설명
이중화 지원	CPU, 전원, 통신 모두 이중화 가능
네트워크	이중화 전용 링구조 지원 (XGT-Link)
산업군	전력, 플랜트, 화학, 반도체 등 고신뢰성 요구 현장

🔽 6. 통신 지원 구조

통신 프로토콜	설명
XGT Protocol	LS 고유 표준 통신
XGT OPC Server	OPC 통신 연동 (SCADA 연계 최적화)
Modbus RTU/TCP	타사 장비 호환성 확보
Ethernet/IP	표준 네트워크 통합
CC-Link	일부 모듈 지원

통신 프로토콜	설명
OPC UA	(최근 고급 시스템에서 일부 확장 가능)

☑ 7. 프로그램 구조 (XG5000 아키텍처)

구성	설명
Task	스캔 프로그램 분할 가능
Program	메인 및 서브 프로그램 블록
FB (Function Block)	재사용 가능한 기능 모듈화
UDT (User Defined Type)	구조체 기반 변수 생성
심볼태그 (Label)	주소 없는 변수 기반 설계 (유지보수 우수)

📌 래더 흐름 예시 구조

- 1 | Main Program → 공정 제어 FB → 서브 FB (이송, 충진, 포장 등)
- 4 Motion FB, PID FB, Safety FB

☑ 8. 온라인 유지보수 기능

기능	설명
실시간 모니터링	접점 흐름 점등
Force 기능	입력/출력 강제 설정 가능
Watch 기능	변수 리스트 실시간 감시
Trace 기능	고속 데이터 이력 추적 가능
에러로그	CPU 자체 에러 기록 지원

☑ 9. 고급 제어 확장성

제어기능	설명
Motion 제어	위치제어 모듈 (XMC 시리즈 별도) 연동 가능
Safety 제어	Safety PLC 독립적 병렬 운용 가능
HMI 연동	XGT Panel 시리즈 직접 연동 최적화
SCADA 연동	XGT InfoU, WinCC, iFix 등 연계 유리

☑ 10. 실전 적용 현장 예시

산업 분야	적용 사례
전자	SMT 라인, PCB 공정라인 다수 구축
물류	컨베이어 및 분류기 PLC 대부분 LS산전 표준
자동차	프레스, 용접, 조립 공정
식음료	충진·혼합·포장 자동화
공공 플랜트	수처리, 발전설비, 폐수처리 등 이중화 XGR 적용

☑ 11. LS산전 XGT 시스템의 실전 강점

- **국내 제조현장 특화** → 장비/공정 완전 표준화
- HMI, SCADA, PLC 간 **완전 자체 통합 플랫폼** → 호환성 우수
- **고장 대응성 강력** → 이중화 설계 용이
- 시스템 확장 \rightarrow MES, ERP, 클라우드 연동까지 자연스러운 확장성 확보

☑ 12. 실전 운영 최적화 포인트

실전 노하우	설명
Label기반 심볼주소 사용	유지보수 시 주소추적 오류 최소화
FB 라이브러리화	공통 모듈화 표준 개발 적용
통신 일원화	XGT OPC Server로 SCADA 연계 통합
이중화 기반	CPU/전원 이중화 적극 활용
표준화 문서화	Task/Program/Block 문서 체계화 유지

✓ 정리

- LS XGT 시스템은 대한민국 자동화 현장의 표준 PLC 플랫폼
- XG5000 통합 환경 \rightarrow 개발, 유지보수, 네트워크 통합 최적화
- 확장성, 이중화성, 유지보수성 모두 강력 특히 현장 장기운용 경험이 매우 풍부한 검증된 플랫폼

13.4 Omron CJ/NX 시리즈 (CX-Programmer, Sysmac)

(Omron PLC 시스템의 하드웨어, 소프트웨어, 실전 적용법 상세 정리)

✓ 개요

Omron PLC는 일본, 동남아, 유럽 일부 제조라인에서 강력한 입지를 가지고 있으며, 정밀한 제어, 높은 모듈화, 통합 시스템 설계에 특화되어 있다. Omron의 주요 시리즈 흐름은 다음과 같다:

시리즈	특징
CJ 시리즈	전통적인 중형 확장 시스템 (많이 구축됨)
NX 시리즈	최신 통합 플랫폼 (Sysmac 기반 고성능 시스템)
CP 시리즈	소형·중소형 일체형 장비용

두 개발환경이 혼재되지만, 최근은 Sysmac Studio 중심의 NX 플랫폼으로 통합 확장 중이다.

☑ 1. 하드웨어 계열 구분

시리즈	용도	특징
CJ2	중형 모듈형 시스템	일반 공장제어 실전 다수 운영
NX/NJ	최신 하이엔드	통합 Motion, Safety, Vision, Al 가능
CP1	소형 시스템	소규모 장비 및 저가형 시스템에 특화

★ 전체 구성 예시

☑ 2. CX-Programmer 개요 (CJ 시리즈용 개발환경)

기능	설명
전통적인 Omron PLC 개발도구	CJ, CP 시리즈 전용
프로그램 작성	LD, IL, ST 일부 지원
하드웨어 설정	슬롯 구성, I/O 설정
통신	Ethernet/IP, Controller Link, RS-232 지원
온라인 디버깅	실시간 모니터링, 강제 제어 지원
이력	20년 이상 검증된 안정적 환경

☑ 3. Sysmac Studio 개요 (NX/NJ 전용 통합 개발환경)

기능	설명
최신 통합 개발 플랫폼	NX/NJ 시리즈 전용
통합 제어	PLC, Motion, Safety, Vision 일체화
프로그래밍 언어	LD, FBD, ST, SFC, IL 모두 지원
네트워크 설정	EtherCAT, EtherNet/IP, OPC UA 통합 지원
시뮬레이션	완전한 소프트PLC 테스트 가능
고급 진단	Trace, Waveform 분석, 고속 데이터 수집 내장

☑ 4. CJ2 시리즈 (중형 표준 시스템)

특징	설명
하드웨어 구성	모듈형 확장 슬롯
CPU 성능	실시간 스캔, 빠른 I/O 응답
통신	Ethernet/IP 내장, RS-232 표준
특수모듈	Motion, 위치제어, 온도제어 모듈 풍부
SCADA 연계	CX-Server OPC 서버 활용

☑ 5. NX/NJ 시리즈 (최신 통합 시스템)

특징	설명
플랫폼 통합	PLC + Motion + Safety + Vision + AI 통합
CPU 성능	500 µs 단위 고속 제어
네트워크	EtherCAT 기반 초고속 분산 I/O
안전제어	SIL3 / PLe 대응 통합 Safety 내장 가능
통신확장	OPC UA, SQL DB 다이렉트 접근 가능
AI/머신러닝	AI 컨트롤러 연계 확장 가능

☑ 6. 통신 구조

프로토콜	특징
EtherNet/IP	표준 Ethernet 기반 실시간 제어
EtherCAT	초고속 분산 제어 (NX/NJ 핵심)
OPC UA	MES/IT 연계 확장성 확보
Modbus TCP	기본 호환성 확보
FINS	Omron 고유 내부 통신프로토콜

🔽 7. 프로그램 구조 설계

구조	설명
Task	주기제어 Task, 이벤트제어 Task
프로그램	Main Program, Sub Program
FB (Function Block)	고급 모듈화 재사용
UDT (User Defined Type)	구조체화 데이터 타입
Label 기반 변수	심볼 중심 변수 설계 (주소독립)

📌 고급 Sysmac Studio 예시

• 완전 통합형 제어 구조 설계 가능

☑ 8. 온라인 유지보수 기능

기능	설명
온라인 모니터링	접점 점등 흐름, 타이밍 표시
Watch Table	변수 실시간 리스트 추적
Force 기능	임의 변수 값 강제 적용
Trace 기능	고속 파형 추적 (Sysmac Studio 특화)

기능	설명
Alarm & Error Log	CPU 자체 에러코드 기록, 이력 유지

☑ 9. Safety 통합 (NX Safety)

기능	특징
이중 안전제어	Safety CPU와 표준 CPU 연동
국제인증	SIL3, PLe 대응
Safety Task 분리	일반제어와 물리적 논리 분리 운영
유지보수	Sysmac Studio 단일 환경에서 전체 관리 가능

☑ 10. 실전 적용 사례

산업분야	적용 예시
전자	고속 검사기, 소형 로봇 비전 검사라인
식음료	충진-포장-검사 통합 제어
의료	정밀 소형 생산장비 다수 적용
물류	이송라인, 스태커 크레인 정밀제어
반도체	포토공정 서브장비 제어 (정밀 Positioning 연계)

✓ 11. Omron 시스템 실전 강점

- 하드+소프트+네트워크+AI 통합 플랫폼
- 소형부터 대형까지 점진적 확장성 매우 유리
- EtherCAT 기반 초고속 실시간 동기화 강점
- 통합 Vision + Motion + Safety \rightarrow 장비제조사 입장에서 개발환경 통합 최적

☑ 12. 실전 프로젝트 최적화 포인트

포인트	설명
Sysmac Studio 적극 활용	프로그램, 모션, 안전, 비전 완전 통합
Label/UDT 중심 설계	심볼 기반 완전 표준화 습관화
FB 라이브러리화	모든 공정 모듈화 재사용

포인트	설명
이중화 대비 설계	EtherCAT 듀얼 링 지원 준비
SQL 연계	제조데이터 직접 DB 저장 가능 활용

✓ 정리

- Omron은 복합 자동화 시스템 통합 플랫폼으로 매우 강력한 구조
- CJ2 \rightarrow NX/NJ로의 진화 = 전통제어 \rightarrow 완전 통합 지능형 제어로 발전 중
- 특히 장비제조·모듈형 장비통합·Al·Vision제어 통합에 특화되어 있으며,
- Sysmac Studio 기반 통합설계가 핵심 경쟁력

13.5 Allen-Bradley (RSLogix, Studio 5000)

(Rockwell Automation의 ControlLogix, CompactLogix 시스템 완전 정리)

☑ 개요

Allen-Bradley (Rockwell Automation) 은 미국·북미·글로벌 플랜트 자동화 분야에서 가장 강력한 PLC 시스템이다. 전 세계 대형 제조공장, 프로세스 플랜트, 석유화학, 제약, 발전소 등에서 **표준급으로 활용된다.**

주요 시리즈 흐름:

시리즈	특징
SLC / PLC-5	구형 시스템 (현재 대부분 ControlLogix로 업그레이드 진행)
CompactLogix (1769/5380 시리즈)	소형~중형 스케일 확장 가능
ControlLogix (1756 시리즈)	대형 플랜트급 최고급 시스템

이 모든 시스템은 최신 Studio 5000 (구 RSLogix 5000) 에서 통합 관리된다.

☑ 1. 하드웨어 구성 개념

제품군	용도	특징
CompactLogix	장비·라인 단위 제어	컴팩트 일체형, 확장 가능
ControlLogix	플랜트 전체 통합제어	랙형 완전 확장형
GuardLogix	통합 Safety PLC	SIL3 / PLe 통합 안전제어 가능

📌 ControlLogix 시스템 구성 예시

☑ 2. Studio 5000 (통합 개발환경)

기능	설명
하드웨어 구성	랙/슬롯 구성 시각적 설정
프로그램 작성	LD, FBD, ST, SFC, IL 지원
통신설정	EtherNet/IP, ControlNet, DeviceNet 통합
온라인 모니터링	실시간 흐름 확인, 변수 추적
시뮬레이션	Logix Emulate 지원
버전 관리	프로젝트 버전 스냅샷 관리 지원

☑ 3. CompactLogix 특징 (중소형 통합 시스템)

특징	설명
컴팩트 구조	IO 확장성 유지하면서 일체형 구성 가능
EtherNet/IP 기본 내장	표준 통신 통합 설계
적절한 사이클 성능	빠른 주기 (µs 단위)
통신 모듈 확장	DeviceNet, ControlNet 추가 가능
장비제조사 기반 설비 최적화	개별 장비에 많이 사용됨

☑ 4. ControlLogix 특징 (대형 시스템)

특징	설명
모듈형 확장	최대 수천 I/O 장치 확장 가능
다중 프로세서 병렬 실행	32 Task 지원, 주기/비주기 Task 관리
통신성능	고속 EtherNet/IP 백플레인 통합
이중화 지원	CPU, 전원, 네트워크 이중화 가능

특징	설명
타임싱크	CIP Sync (IEEE1588 PTP 지원)

☑ 5. GuardLogix (Safety 통합 PLC)

특징	설명
일반제어 + 안전제어 완전 통합	동일 Studio 5000 환경에서 통합 관리
이중검증 로직 내장	Safety Task 별도 관리
인증	SIL3 / PLe 국제표준 인증
Fail-Safe 연산	이중 CPU, CRC 연산 기반 안정성 확보

☑ 6. 통신 구조

통신 프로토콜	설명
EtherNet/IP	Rockwell의 핵심 표준 실시간 통신
ControlNet	실시간 공정제어 버스 (전통적 플랜트 기반)
DeviceNet	센서·액추에이터 필드버스
OPC UA	MES/ERP 연동, lloT 연계 확장
MQTT	고급 클라우드 연동 확장 가능

☑ 7. 프로그램 구조 설계

구성	설명
Tasks	주기/이벤트 기반 멀티태스킹
Programs	독립 프로그램 분리 가능
Routines	각 프로그램 내부의 래더/블록
Add-On Instruction (AOI)	사용자 정의 고급 FB 기능
UDT (User Defined Data Type)	구조체 데이터 설계 강화
Alias Tags	IO 직접주소 대신 논리변수 활용

📌 ControlLogix 내부 프로그램 구조 예시

☑ 8. 온라인 유지보수 기능

기능	설명
Live Editing	프로그램 온라인 수정 가능
Forcing	입력/출력 강제 설정
Watch List	실시간 변수 리스트 감시
Trend Graph	실시간 파형 추적 가능
Alarm & Log	CPU 자체 에러 이력 유지, 이중화 상태 기록

☑ 9. 고급 통합 제어 기능

영역	특징
Motion 통합	Kinetix Servo → PLC+Motion 완전 통합
Safety 통합	GuardLogix 병렬 안전 논리 통합
MES 통합	FactoryTalk, SQL DB 연계 최적화
Virtualization	가상화 컨트롤러 (Emulate / Cloud 기반 제어)

☑ 10. 실전 적용 현장 예시

산업 분야	적용 사례
석유화학	플랜트 전체 ControlLogix 이중화 기반
자동차	차체조립, 도장라인 통합제어
식음료	대형 충진·포장 라인 통합 Motion+Safety
제약	GMP 제조공정 MES 통합
발전소	터빈제어, 발전기 Load 제어 통합 구축

☑ 11. Allen-Bradley 시스템 실전 강점

- 대형 산업 자동화 통합 설계의 글로벌 표준 플랫폼
- PLC+Motion+Safety+MES+SCADA → 완전 일체형 통합
- 프로젝트 표준화, 유지보수, 이중화 신뢰성 세계 최고 수준
- CIP (Common Industrial Protocol) 기반으로 통신 표준 일관성 유지

☑ 12. 실전 프로젝트 운영 최적화 포인트

포인트	설명
UDT 기반 설계	대형 시스템일수록 구조체화 필수
Add-On Instruction 적극 활용	모듈화 표준화 강화
이중화 습관화	CPU/전원/네트워크 항상 이중화 설계
FactoryTalk 통합	SCADA+MES 일체화 중앙관리 플랫폼 적용
Virtual Controller 적용	최신 가상화 기반 PLC 테스트 확장

☑ 정리

- Allen-Bradley Logix 플랫폼은 산업자동화에서 가장 구조화된 글로벌 표준 시스템
- Studio 5000 통합 환경 → 전세계 모든 대형 공정플랜트에서 검증된 안정성
- **통합 안전제어 (GuardLogix)** 와 **통합 Motion 제어 (Kinetix)** 까지 포함한 "진정한 일체형 통합 자동제어 아키텍처"

13.6 Delta, Keyence, Panasonic 등 중소형 PLC

(중소형 PLC 시장에서 널리 사용되는 브랜드별 특징, 적용 사례, 실전 운영법 총정리)

☑ 개요

Delta / Keyence / Panasonic 계열은

대형 생산라인보다는 **소형 장비제어, 스탠드얼론 시스템, 라인 서브장비, 시험·검사 시스템**에서 폭넓게 사용된다.

이들은 다음과 같은 특징을 가진다:

- 컴팩트 저가형 → 신속한 적용 가능성
- 모듈 확장성 → 소형이지만 고기능화
- 비전·Motion·센서 통합에 특화
- GUI HMI 내장까지 통합 패키지 제공

☑ 1. Delta PLC (DVP 시리즈)

항목	특징
DVP-SS2 / SA2 시리즈	소형 컴팩트형 기본모델
DVP-ES2 / EH3	확장형, 네트워크 통합 기능 강화
DVP-SE	Ethernet 내장 기본 사양
개발환경	WPLSoft (래더 기반 전용 툴)
통신지원	Modbus RTU/TCP 기본지원
Motion 제어	별도 모듈 기반 2~4축 지원
SCADA 연동	OPC UA, MQTT 확장 가능

★ 실전 활용

- 중소형 충진기, 조립장비, 검사라인, 포장장비 등에 폭넓게 적용
- 저비용 고효율에 강함

☑ 2. Keyence PLC (KV 시리즈)

항목	특징
KV-5000 / 7000 / 8000 시리즈	고속·고성능 소형 PLC
KV-Nano / Micro 시리즈	초소형 스탠드얼론
개발환경	KV Studio, Ladder Builder
속도	초고속 20ns/step (타사 대비 빠름)
비전 통합	Keyence 고유의 Vision·센서·PLC 통합강점
모션 제어	고속 위치결정 컨트롤러 내장
네트워크	Ethernet/IP, Modbus TCP, OPC UA

★ 실전 활용

- 비전검사, 레이저측정, 정밀포지셔닝 검사장비에 최적
- 장비제조업체에서 "비전 + 센서 + PLC 원패키지"로 많이 활용

☑ 3. Panasonic PLC (FP 시리즈)

항목	특징
FP0H	초소형, 소형 장비 전용
FP-XH	중소형 고기능 제어
FP7	Ethernet 네트워크 통합, 다기능 확장
개발환경	Control FPWIN Pro (IEC61131-3 표준 완전 지원)
통신	Modbus TCP/RTU, Ethernet/IP, OPC UA
모션	RTEX, MINAS 서보통합 모션 컨트롤 지원
Safety	별도 Safety 컨트롤러 통합 가능

★ 실전 활용

- 소형 로봇, 반도체 이송장치, 소형 충진기, 테스트장비
- Panasonic 자체 서보·모터·센서 통합 솔루션과 연결성 최강

☑ 4. 중소형 PLC 공통 장점

특징	설명
가격	대형 PLC 대비 저렴 (초기 도입 용이성)
소형화	공간제약 환경에 최적
빠른 설치	설정 복잡도 낮고 초기구축속도 빠름
센서·비전 통합	동일 제조사 내 센서·비전 통합 호환성 우수
독립운전	SCADA 미연동 단독장비로 안정적 사용 가능
유지보수	단순 구조 → 현장 유지보수 속도 빠름

☑ 5. 중소형 PLC 실전 적용 영역

분야	적용 예시
검사장비	비전검사기, PCB 검사기
포장기	봉함기, 스티커 라벨러
조립장비	서보기반 소형 로봇 팔
충진기	식음료, 제약 충진·혼합 소형기

분야	적용 예시
계측시험기	정밀 측정, 유량/압력제어

☑ 6. 중소형 PLC 통신 확장성

프로토콜	지원여부
Modbus RTU/TCP	기본지원 (Delta, Keyence, Panasonic 모두)
Ethernet/IP	Keyence, Panasonic 확장 지원
OPC UA	최신 고급 시스템에서 확장 지원
MQTT	일부 lloT 확장 가능 (Delta, Keyence 최신모델 중심)
Web Server	일부 모델 내장 Web 인터페이스 지원

☑ 7. 고급 통합 응용 구조

★ 센서·비전·PLC 통합 예시

- 1 센서 → 비전검사 → PLC 시퀀스제어 → Motion 제어 → 최종 포장처리 → 라벨부착 → 완료보고
- 단일 제조사 플랫폼으로 통합 구성 가능
- Keyence, Panasonic이 이 통합구조에 특히 강하다

☑ 8. 실전 운영 최적화 포인트

전략	실전 팁
소형 표준화	장비단위 소형화 설계에 최적
통신연동 최소화	독립동작 유지 → 설치 간소화
비전·센서 통합	Keyence/Panasonic 강점 적극 활용
라이브러리화	장비제조사 내부 공통 FB 축적
빠른 시운전	단기 납기 요구 프로젝트에 적합

☑ 9. 대형 PLC 대비 한계점

항목	한계
대형 확장성	수천 I/O 확장 불리

항목	한계
고신뢰성 이중화	이중화 CPU/네트워크 설계 제한적
공장전체 통합제어	MES, SCADA 대형 통합에는 상대적 약점

• 그러나 "장비단위 독립운전" 중심 자동화에는 매우 효율적

✓ 정리

- Delta, Keyence, Panasonic 중소형 PLC는 장비제조·검사장비·포장기·조립기 시장에서 압도적 실전 경쟁력
- 소형·고속·센서/비전 통합 + 저비용 + 빠른 개발이라는 특징
- MES·SCADA 대형 통합이 필요 없는 독립형 시스템에서는 가성비·유지보수성 모두 최적

13.7 각 제조사 비교 및 선택 전략

(PLC 시스템 설계시 제조사별 특성, 장단점, 선정기준을 종합적으로 정리)

☑ 개요

PLC 선택은 단순히 사양 스펙 비교만으로 끝나지 않는다. 현장 환경, 공정 특성, 운영 유지보수, 공급망, 개발생태계까지 "장기적인 시스템 운영 효율성"을 기준으로 판단해야 한다.

이 장에서는 **주요 PLC 제조사별 비교와 선택전략**을 종합적으로 정리한다.

☑ 1. 제조사별 전반적 포지셔닝

제조사	국가	포지션	대표 플랫폼
Siemens	독일	글로벌 1위 (유럽 중심)	S7-1200/1500 (TIA Portal)
Rockwell (Allen-Bradley)	미국	북미·글로벌 대형 플랜트	ControlLogix / Studio 5000
Mitsubishi	일본	아시아 제조라인 표준	iQ-R / GX Works3
LS산전 (LS ELECTRIC)	한국	국내 제조산업 표준	XGK/XGR / XG5000
Omron	일본	정밀·복합 제어 강점	NX/NJ / Sysmac Studio
Keyence	일본	소형 고속 검사장비	KV 시리즈 / KV Studio
Delta	대만	저가 소형장비 강자	DVP 시리즈 / WPLSoft
Panasonic	일본	소형장비, 모션/비전 연계	FP 시리즈 / FPWIN Pro

🔽 2. 주요 평가 기준 비교

항목	Siemens	Rockwell	Mitsubishi	LS	Omron	Keyence	Delta	Panasonic
통합성	매우 우수	최고	우수	강함	매우 우수	중	중	중
확장성	매우강	매우강	강	강	강	중	중	중
이중화	지원	최상	지원	지원	지원	제한	제한	제한
Motion	강	최강	강	강	최강	강	중	강
Safety	내장	내장	내장	가능	내장	가능	제한	일부
HMI 연동	TIA WinCC	FactoryTalk	GOT	XGT Panel	Sysmac HMI	KV HMI	DOP	FP HMI
비전 통합	가능	가능	가능	가능	통합	최강	제한	강
국제 적용성	최고	최고	아시아강	국내강	아시아강	아시아강	저비용	아시아강

☑ 3. 가격대별 일반 구분

수준	대표 제품군
초저가 소형	Delta DVP, Panasonic FP0H
중저가 소형	Keyence KV, Mitsubishi FX5, Omron CP1
중형 확장	LS XGK, Mitsubishi Q, Omron CJ2
대형 통합	Siemens S7-1500, Rockwell ControlLogix, Mitsubishi iQ-R, Omron NX/NJ

☑ 4. 대표 적용 산업군

산업	추천 브랜드
자동차 제조	Siemens, Rockwell, Mitsubishi
반도체·전자조립	Mitsubishi, Omron, Keyence
식음료·포장	LS, Mitsubishi, Omron, Delta
물류·창고	LS, Siemens, Keyence
제약·바이오	Rockwell, Omron, Siemens
발전·플랜트	Siemens, Rockwell, LS (이중화 핵심)
소형 장비제작사	Keyence, Delta, Panasonic, Mitsubishi FX

☑ 5. 제조사별 핵심 강점 정리

제조사	핵심 강점
Siemens	글로벌 표준, TIA Portal 통합, 대형 시스템 최강
Rockwell	공정플랜트, MES 연계, 이중화, 통신 통합 최강
Mitsubishi	장비단위, Motion+Safety+MES 통합 우수
LS산전	국내 제조라인, 빠른 대응, 유지보수성 최강
Omron	Motion+Safety+Vision 완전통합, 정밀 소형 장비 강자
Keyence	센서+비전+PLC 원패키지, 초소형 고속 검사 최강
Delta	저비용 신속 구축, 중소형 스탠드얼론 최적
Panasonic	소형 정밀 모션, RTEX 기반 서보/비전 강자

☑ 6. 실전 선택전략 정리

📌 (1) 프로젝트 성격 기준

성격	추천 방향
단독 소형장비	Keyence, Delta, Panasonic
생산라인 서브장비	Mitsubishi FX, Omron CP, LS XGB
통합제어 대형라인	Siemens, Rockwell, Mitsubishi iQ-R
MES/SCADA 연동	Siemens, Rockwell, Omron NX, Mitsubishi iQ-R
이중화 필요 공정	Siemens, Rockwell, LS XGR, Omron NX Safety

📌 (2) 조직 유지보수 역량 기준

유지보수 인력 수준	추천 방향
숙련 전문인력 보유	Siemens, Rockwell, Mitsubishi iQ-R
일반 유지보수팀	Mitsubishi Q, LS XGK, Omron CJ2
초단기 납기 장비제작사	Keyence, Delta, Panasonic, Mitsubishi FX

★ (3) 시스템 확장 가능성 기준

확장성 요구	선택 전략
향후 확장 가능성 낮음	중소형 저가형
단계적 기능 추가 예정	모듈형 확장 시스템
MES/ERP 통합 목표	대형 통합 플랫폼 (Siemens, Rockwell, Mitsubishi iQ-R, Omron NX)

☑ 정리 핵심

- 대형 플랜트 → Siemens ↔ Rockwell
- 아시아 제조라인 표준 → Mitsubishi ↔ LS ↔ Omron
- **비전·검사장비** → Keyence
- $\mathbf{M}\mathbf{L}\cdot\mathbf{L}\mathbf{L}$ \mathbf{L} \mathbf{L} \mathbf{L} Panasonic
- **소형 스탠드얼론** → Delta
- 장비제조사 관점 \rightarrow 개발기간, 유지보수, 부품수급, 고객사의 기존 표준까지 고려해야 최적선택이 가능