Sequences

3) Problems:

1) Let $\{a_n\}_{n\geq 1}$ be an arithmetic sequence and $\{g_n\}_{n\geq 1}$ be a geometric sequence such that the first four terms of $\{a_n+g_n\}$ are 0,0,1, and 0, in that order. What is the 10th term of $\{a_n+g_n\}$.

2) A sequence of numbers $a_1, a_2, a_3, ...$ satisfies $a_1 = \frac{1}{2}$ and $a_1 + a_2 + ... + a_n = n^2 a_n$ for all $n \ge 1$. Determine the value of a_n for $n \ge 1$.

3) Let a_n be a sequence such that $a_0=0,$ $a_1=1$ and for all $n\geq 2,$ $a_n=2a_{n-1}-a_{n-2}+2^n.$ Find $a_{2013}.$

3) Harder Problems:

1) A Fibonacci-like sequence of numbers is defined by $a_1=1,\ a_2=3$ and for $n\geq 3,\ a_n=a_{n-1}+a_{n-2}$. One can compute that $a_{29}=1149851$ and $a_{30}=1860498$. What is the value of $\sum_{n=1}^{28}a_n$.

2) A sequence of integers a_i is defined as follows $a_i=i$ for all $1\leq i\leq 5$, and $a_i=a_1a_2...a_{i-1}-1$ for all i>5. Evaluate $a_1a_2...a_{2011}-\sum_{i=1}^{2011}a_i^2$

3) The terms of sequence a_i are defined by $a_{n+2} = \frac{a_n + 2009}{1 + a_{n+1}}$ for $n \ge 1$ are positive integers. Find the minimum possible value of $a_1 + a_2$.

4) Let $a_0 = -2$, $b_0 = 1$, and for $n \ge 0$, let

$$a_{n+1} = a_n + b_n + \sqrt{a_n^2 + b_n^2}$$
$$b_{n+1} = a_n + b_n - \sqrt{a_n^2 + b_n^2}$$

Find a_{2012}

3) Harderer Problems:

1) The sequence (a_n) satisfies $a_0 = 0$ and $a_{n+1} = \frac{8}{5}a_n + \frac{6}{5}\sqrt{4^n - a_n^2}$ for $n \ge 0$. Find the greatest integer less than or equal to a_{10} .

2) A sequence is defined over non-negative integral indexes in the following way: $a_0=a_1=3$, $a_{n+1}a_{n-1}=a_n^2+2007$. Find the greatest integer that does not exceed $\frac{a_{2006}^2+a_{2007}^2}{a_{2006}a_{2007}}$

3) Let $a_1 = 3$, and for n > 1, let a_n be the largest real number such that

$$4(a_{n-1}^2 + a_n^2) = 10a_{n-1}a_n - 9$$

1

What is the largest positive integer less than a_8 .