Higher Hochschild homology and representation homology

Guanyu Li

Yuri Berest, chair Daniel Halpern-Leistner, minor member Michael Stillman, minor member

August 11, 2021

Outline

Classical Hochschild homology

Higher Hochschild homology

Construction

Example

Representation homology

Definition

Relation with higher Hochschild homology

What's more

Another definition*

Example

Classical Hochschild homology

Definition

Given a k-algebra, define

$$C_n(A) := A^{\otimes n+1},$$

where $A^{\otimes n+1} := A \otimes_k \cdots \otimes_k A$ with the boundary maps

$$\partial_n: C_n(A) \to C_{n-1}(A)$$

$$a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto \sum_{i=0}^{n-1} (-1)^i a_0 \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n + (-1)^n a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1},$$

then $(C_{\bullet}(A), \partial_{\bullet})$ is called the Hochschild complex, whose homology group is called the Hochschild homology group of A, denoted by $HH_{\bullet}(A)$.

Construction of higher Hochschild homology

Let **FinSet** be the category of finite sets $[n] := \{0, 1, \dots, n\}$. Let A be a commutative k-algebra with unit. Following Loday, we define a functor $\mathcal{L}(A) : \mathbf{FinSet} \to k - \mathbf{Mod}$ by

$$[n]\mapsto A^{\otimes n+1}.$$

For a pointed map f:[n] o [m], the action of f_* on $\mathcal{L}(A)$ is

$$f_*(a_0\otimes\cdots\otimes a_n):=b_0\otimes\cdots\otimes b_m \tag{1}$$

where

$$b_j := \prod_{f(i)=j} a_i$$

for $j = 0, \dots, m$.

Furthermore one has the canonical embedding $\mathbf{FinSet} \hookrightarrow \mathbf{Set}$, so one can prolong the functor $\mathcal{L}(A)$ via the Kan extension

FinSet
$$\xrightarrow{\mathcal{L}(A)} k$$
 – Vect Set,

more precisely,

$$\widetilde{\mathcal{L}(A)}(X) := \mathrm{colim} \ \mathcal{L}(A)([n])$$

where the colimit is taken over all pointed sets inclusions $[n] \hookrightarrow X$.

Definition

In general, for any simplicial set $X: \Delta^{\circ} \to \mathbf{Set}$, one can define a simplicial k-vector space extending $\mathcal{L}(A)$ level-wisely

$$\Delta^{\circ} \xrightarrow{X} \mathbf{Set} \xrightarrow{\widetilde{\mathcal{L}(A)}} s(k - \mathbf{Vect}).$$

Then one can define X-homology of A by

$$HH_*(X,A) := \pi_*(\mathcal{L}(A))(X).$$

Example

Proposition

For the simplicial set S^1 , $HH_*(S^1, A)$ is exactly the Hochschild homology.

Proof

Let's take the simplicial model S^1 to be

$$\mathbf{\Delta}[1]/d^0(\mathbf{\Delta}[0]) \cup d^1(\mathbf{\Delta}[0]).$$
 Then

$$(S^1)_k = \{(0, \cdots, 0, 1, \cdots, 1)\}/(0, \cdots, 0) \sim (1, \cdots, 1)$$

with face maps $d_i^{[k]}:(S^1)_k \to (S^1)_{k-1}$ given by

$$(c_0,\cdots,c_k)\mapsto (c_0,\cdots,\hat{c}_i,\cdots,c_k).$$

Apply the functor $\mathcal{L}(A)$, we find exactly $\mathcal{L}(A)(d_i)$ gives

$$a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto a_0 \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n$$

and the last term is guaranteed by the quotient.

Remark

The homology depends only on the homotopy type of X.

Example*

We take the standard simplicial model for

$$S^n = \Delta[n]/d^0(\Delta[n-1]) \cup \cdots \cup d^n(\Delta[n-1])$$
, where in dimension $0 < i < n$, there is no non-degenerate simplices, so

$$HH_0(S^n,A)\cong A$$

and

$$HH_i(S^n, A) = 0$$

for all 0 < i < n.

Some topological background

There is a pair of adjunction

$$\mathbb{G}: s\mathbf{Set}_0 \leftrightarrows s\mathbf{Gr}: \overline{W}$$

where $\mathbb G$ is called the Kan loop group construction and $\overline WG$ is the classfying simplicial complex.

Actually the functor $\mathbb G$ preserves weak equivalences and cofibrations, and the functor $\overline W$ preserves weak equivalences and fibrations. Thus this is a pair of Quillen equivalence, which gives an equivalence of homotopy categories

Ho
$$s\mathbf{Set}_0 \simeq \mathbf{Ho} \ s\mathbf{Gr}$$
.

We will need that the set of *n*-simplicies is

$$\mathbb{G}X_n := \langle X_{n+1} \rangle / \langle s_0(x) = 1, \forall x \in X_n \rangle \cong \langle B_n \rangle,$$

where $B_n := X_{n+1} - s_0(X_n)$ and the isomorphism is induced by the inclusion $B_n \hookrightarrow X_n$.

Definition of representation homology

Let $\mathfrak G$ be the full subcategory of \mathbf{Gr} whose objects are the (finitely generated) free groups $\langle n \rangle = \langle x_1, \cdots, x_n \rangle$ for $n \geq 0$. Then any commutative Hopf algebra H gives a $\mathfrak G$ -module

$$\mathfrak{G} \to k - \mathbf{Vect}$$
$$\langle n \rangle \mapsto H^{\otimes n},$$

which will be denoted by \underline{H} . Actually, the functor \underline{H} takes values in the category of commutative algebras. Then consider the inclusion of categories $\mathfrak{G} \hookrightarrow \mathbf{FreeGr}$ where \mathbf{FreeGr} is the full subcategory of all free groups, there is a Kan extension of \underline{H} along the inclusion

$$\mathfrak{G} \xrightarrow{\underline{H}} k - \text{Vect}$$

$$\downarrow^{i} \qquad \stackrel{\underline{H}}{\underline{H}}$$
FreeGr

also denoted by \underline{H} .

The composition of functors

$$\Delta^{\circ} \xrightarrow{\mathbb{G}X} \mathbf{FreeGr} \xrightarrow{\underline{H}} \mathbf{k} - \mathbf{CommAlg}$$

defines a simplicial commutative algebra $\underline{H}(\mathbb{G}X)$ for any reduced simplicial set X.

Definition

The representation homology of X in H is defined by

$$\mathrm{HR}_*(X,H) := \pi_*(\underline{H}(\mathbb{G}X)).$$

How are they related

Theorem

For any commutative Hopf algebra H and any simplicial set X, there is a natural isomorphism of graded commutative algebras

$$HR_*(\Sigma(X_+), H) \cong HH_*(X, H).$$

Another definition*

Given a (discrete) group Γ , the functor

$$\operatorname{Rep}_{\mathcal{G}}(\Gamma): k-\operatorname{\mathbf{CommAlg}} o \operatorname{\mathbf{Set}} \ A \mapsto \operatorname{Hom}_{\mathbf{Gr}}(\Gamma, \mathcal{G}(A))$$

is representable. The representative is denoted by $(\Gamma)_G$. This gives a functor

$$(-)_G: \mathbf{Gr} \to k - \mathbf{CommAlg},$$

which is the left adjunction of $G: k - \mathbf{CommAlg} \to \mathbf{Gr}$.

Another definition*

Extend the functor to be a functor

$$sGr \rightarrow s(k - CommAlg)$$
 (2)

level-wisely, still denoted by $(-)_G$.

Proposition

The functor $(-)_G$ maps weak equivalences between cofibrant objects in sGr to weak equivalences in s(k - CommAlg), and hence has a total left derived functor.

For a fixed simplicial group $\Gamma \in s\mathbf{Gr}$, one can formally define the representation homology of Γ in G

$$HR_*(\Gamma, G) := \pi_* \mathbb{L}(\Gamma)_G,$$

where $\mathrm{DRep}_G(\Gamma) := \mathrm{Spec} \ \mathbb{L}(\Gamma)_G$ is called the representation scheme.

Another definition*

Definition

For a space $X \in \mathbf{Top}_{0,*}$, the derived representation scheme $\mathrm{DRep}_G(X)$ is $\mathrm{Spec}\ \mathrm{DRep}_G(\Gamma X)$, where ΓX is a(ny) simplicial group model of X. The representation homology of X in G is then

$$HR_*(X,G) := \pi_* \mathbb{L}(\Gamma X)_G.$$
 (3)

Proposition

Let G be an affine group scheme over k with coordinate ring $H = \mathcal{O}(G)$. Then for any $X \in \operatorname{Set}_0$, there is a natural isomorphism of graded commutative algebras

$$\mathrm{HR}_*(X,H)\cong \mathrm{HR}_*(X,G).$$

Example*

Let $G = \mathbb{G}_a$ be the additive group. Then for any group $\Gamma \in \mathbf{Gr}$, one has

$$\operatorname{Hom}_{\mathbf{Gr}}(\Gamma, \mathbb{G}_{a}(A)) = \operatorname{Hom}_{k-\mathbf{CommAlg}}(\operatorname{Sym}(\Gamma_{ab} \otimes_{\mathbb{Z}} k), A).$$

Also, $\mathbb{G}X$ is a canonical simplicial model for |X|, so

$$HR_*(X,G) \cong \pi_*(\mathbb{G}X_G).$$

Applying this we have

$$\begin{split} HR_*(X,\mathbb{G}_a) &\cong \pi_* \mathrm{Sym}((\mathbb{G}X)_{\mathrm{ab}} \otimes_{\mathbb{Z}} k) \\ &\cong \mathrm{Sym}(\pi_*(\mathbb{G}X)_{\mathrm{ab}} \otimes_{\mathbb{Z}} k) \\ &\cong \mathrm{Sym}(\pi_*(\mathbb{G}X)_{\mathrm{ab}} \cong H_{*+1}(X,\mathbb{Z}) \otimes_{\mathbb{Z}} k) \\ &\cong \mathrm{Sym}(\pi_*(\mathbb{G}X)_{\mathrm{ab}} \cong H_{*+1}(X,k)) \end{split}$$

where Sym is the graded symmetric product and $\pi_*(\mathbb{G}X)_{\operatorname{ab}} \cong H_{*+1}(X,\mathbb{Z})$.

Example

Let's consider when $X=T^2$ be the 2-torus. Notice that $T^2=\operatorname{hocolim}(\{*\}\leftarrow S^1_c\xrightarrow{\alpha} S^1_a\vee S^1_b)$, then by applying the Kan loop group construction we have a simplicial group model for T^2

$$\mathbb{G}(T^2) = \operatorname{hocolim}(\{*\} \leftarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} * \mathbb{Z}).$$

Take the functor $(-)_G$ and by a fact that the derived representation functor commutes with (small) colimits,

$$\mathcal{O}(\mathrm{DRep}_G(T^2)) = \mathrm{hocolim}(k \leftarrow \mathcal{O}(G) \xrightarrow{\alpha_*} \mathcal{O}(G \times G))$$
$$\cong \mathcal{O}(G \times G) \otimes_{\mathcal{O}(G)}^{\mathbf{L}} k.$$

Therefore

$$\mathrm{HR}_*(T^2,G)\cong\mathrm{Tor}_*^{\mathscr{O}(G)}(\mathscr{O}(G\times G),k).$$

We consider the case where $G = \mathbb{G}_m = \operatorname{Spec} k[x, x^{-1}]$, then the map

$$lpha_*: \mathscr{O}(\mathsf{G}) o \mathscr{O}(\mathsf{G} imes \mathsf{G}) \ f(\mathsf{x}) \mapsto f([\mathsf{y},\mathsf{z}]) = f(1).$$

The resolution P_{\bullet} of k over $k[x,x^{-1}]$ satisfies $P_0=k[x,x^{-1}]$, then the kernel of

$$k[x,x^{-1}] \rightarrow P_0 \twoheadrightarrow k$$

is $k[x, x^{-1}] \cdot (x - 1)$, therefore $P_1 = k[x, x^{-1}] \cdot w$ where the differential $d: w \mapsto x - 1$. This is exactly the Kozsul complex.

Conclusion

Thank you for listening!