Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

a) Buffer

Vi har en løsning med 1,0 mol/L Na_2HPO_4 . Hvilket stoff må vi tilsette for å få en løsning med pH om lag lik 7?

- A. HCI
- B. K₂O
- C. NaNO₃
- D. Na₃PO₄

b) Buffer

En liter 0,5 mol/L etansyre ble tilsatt 0,25 mol fast NaOH. Hvilket utsagn er *ikke* korrekt?

- A. Det er 0,25 mol OH i løsningen.
- B. Det ble dannet 0,25 mol vann.
- C. pH i løsningen er lik pKa til etansyre.
- D. Løsningen inneholder 0,25 mol etansyre og 0,25 mol etanationer.

c) Buffer

Vi skal lage en buffer med pH = 2,0 og bruker bare 1,0 mol/L løsninger. Hvilke to løsninger gir høyest bufferkapasitet mot både syre og base?

- A. H_2SO_3 og NaHSO₃
- B. H_3PO_4 og NaH_2PO_4
- C. NaHSO₄ og Na₂SO₄
- D. CH₃COOH og NaCH₃COO

d) Uorganisk analyse

En bit av en mynt ble fullstendig løst opp i konsentrert salpetersyre. Det ble dannet en grønn løsning. Løsningen ble delt i tre, og det ble utført tre separate tester med følgende resultater:

- Etter tilsetting av NH₃ ble det observert en sterk blåfarge.
- Det ble observert en brunaktig felling med dimetylglyoksim.
- Det ble observert en svart utfelling med Na₂S-løsning.

Hvilken konklusjon kan du trekke ut fra disse testene?

- A. Mynten består av bare Cu.
- B. Mynten består av bare Cu og Ni.
- C. Mynten består av bare Cu og Zn.
- D. Resultatet av testene gir ikke nok informasjon til å avgjøre hvilket metall / hvilke metaller mynten består av.

e) Organisk analyse, ¹H-NMR

Figur 1 viser ¹H-NMR-spekteret til en ukjent organisk forbindelse.

Figur 1

Hva er den ukjente forbindelsen?

- A. etanal
- B. etansyre
- C. propanal
- D. propanon

f) Organisk syntese

En ukjent forbindelse reagerer med Br_2 til et stoff med molekylformel $C_6H_{12}Br_2$. Hva kan den ukjente forbindelsen være?

- A. benzen
- B. heks-1-en
- C. sykloheksen
- D. sykloheksan

g) Organisk syntese

Reaksjonsligningen for oksidasjon av metanol til metanal kan skrives slik:

$$2CH_3OH + O_2 \rightarrow 2HCHO + 2H_2O$$

I en reaksjon gir 32 g metanol et utbytte på 15 g metanal. Hva er utbytteprosenten i denne reaksjonen?

- A. 40 %
- B. 45 %
- C. 50 %
- D. 55 %

h) Organiske molekyler

Hvor mange kirale C-atomer har forbindelsen som er vist i figur 2?

- HO NH₃+
 - Figur 2

- A. 0
- B. 1
- C. 2
- D. 3

Redoksreaksjoner

Hvilket av disse reagensene er det beste reduksjonsmiddelet?

- A. I⁻
- B. I_2
- C. CI-
- D. Cl₂

j) Oksidasjonstall

I hvilket tilfelle er alle oksidasjonstallene til klor korrekte?

	Oksidasjonstall til CI i:					
	HCI HCIO KCIO ₃					
A.	-1	+1	+3			
В.	+1 -1 -5					
C.	-1	+1	+5			
D.	+1 -1 +5					

k) Redoksreaksjoner

Vi har to begerglass. Det ene inneholder $6.0 \text{ mol/L H}_2SO_4$ og det andre $6.0 \text{ mol/L H}_3SO_4$. Til hvert av de to begerglassene tilsetter vi litt kobbermetall.

Vil det skje en reaksjon i noen av glassene?

- A. Ja, kobber blir oksidert av både svovelsyre og salpetersyre.
- B. Ja, kobber blir oksidert av salpetersyre.
- C. Ja, kobber blir oksidert av svovelsyre.
- D. Nei, kobber reagerer ikke med noen av disse syrene.

Redokstitrering

Askorbinsyre er en antioksidant og en svak syre. For å finne konsentrasjonen av askorbinsyre i en løsning kan man titrere med elementært jod, I₂. Se figur 3. Da skjer denne reaksjonen:

$$C_6H_8O_6 + I_2 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$$

Hvordan kan man se endepunktet for titreringen?

- A. Prøveløsningen får en rosa farge som varer i minst 30 sekunder.
- B. Prøveløsningen skifter fra fargeløs til mørk blå.
- C. Prøveløsningen skifter fra mørk blå til fargeløs.
- D. Prøveløsningen skifter fra blå til gul.

Figur 3

m) Redoksreaksjoner

Vi har tre begerglass med ulike løsninger. Volumet til hver av løsningene er 50 mL, og konsentrasjonen er 1,0 mol/L. Løsningene er:

- kaliumnitrat, KNO₃
- saltsyre, HCl
- kaliumjodid, KI

Vi blander sammen de tre begerglassene, og det skjer en reaksjon.

Hva er produktene etter endt reaksjon?

- A. $H_2(g)$, $Cl_2(g)$ og $H_2O(I)$
- B. K(s) og $Cl_2(g)$
- C. $I_2(aq)$ og $H_2(g)$
- D. $I_2(aq)$, NO(g) og $H_2O(I)$

n) Elektrokjemi

Halvreaksjonene i et Edisonbatteri er:

Fe(s) +
$$20H^{-}(aq) \rightarrow Fe(OH)_{2}(s) + 2e^{-}$$

NiO(OH)(s) + $H_{2}O(I) + e^{-} \rightarrow Ni(OH)_{2}(s) + OH^{-}(aq)$

Figur 4 viser en skisse av batteriet når det leverer strøm. Pilen viser i hvilken retning elektronene forflytter seg.

Hvilken påstand om batteriet er riktig?

- A. Elektrode A er positiv pol.
- B. Elektrode B er anode.
- C. Det blir dannet Ni(OH)₂(s) ved elektrode B.
- D. Fe blir redusert ved elektrode A.

Figur 4

o) Elektrokjemi

Ved elektrolyse av en løsning blir det dannet oksygen ved anoden og hydrogen ved katoden.

Hvilket av disse stoffene er det i løsningen?

- A. KI(aq)
- B. CuSO₄(aq)
- C. NiSO₄(aq)
- D. $H_2SO_4(aq)$

p) Elektrokjemi

Skissen til en galvanisk celle er vist i Figur 5. I begerglass A står en elektrode av grafitt i en løsning av kobber(II)sulfat.

Hvilken av disse påstandene om elektroden og løsningen i begerglass B vil være riktig for at dette skal være en galvanisk celle?

- A. Elektroden består av kobber, og løsningen er sinksulfat.
- B. Elektroden består av grafitt, og løsningen er sinksulfat.
- C. Elektroden består av sink, og løsningen er natriumsulfat.
- D. Elektroden består av kobber, og løsningen er sølv(I)nitrat.

Figur 5

q) Elektrokjemi

Et batteri inneholder 6,54 g sink. Sink blir oksidert når cellen leverer strøm.

Hvor mange mol elektroner kan batteriet maksimalt levere?

- A. 0,05 mol
- B. 0,10 mol
- C. 0,20 mol
- D. Det er umulig å si, for vi vet ikke hva som blir redusert.

r) Organisk analyse, massespekter

En ukjent organisk forbindelse tester positivt med kromsyrereagens og har massespekter som vist i figur 6.

Hva kan den ukjente forbindelsen være?

- A. etansyre
- B. propanal
- C. propanon
- D. propan-2-ol

s) Polymerer

Under følger noen påstander om plast.

- i) All plast er laget av polyeten eller polypropen.
- ii) Ingen typer plast er biologisk nedbrytbare.
- iii) All plast kan omformes ved smelting.

Er noen av påstandene riktige?

- A. Ja, alle sammen.
- B. Ja, men bare i) og iii).
- C. Ja, men bare ii).
- D. Nei, alle sammen er gale.

t) Biokjemi

Reaksjonen som er vist i figur 7, er en vanlig biokjemisk reaksjon i cellene våre.

Hvilket utsagn i forbindelse med denne reaksjonen er ikke korrekt?

- A. Forbindelse X er NAD+.
- B. Forbindelse X blir oksidert til forbindelse Y.
- C. Eplesyre har et kiralt C-atom.
- D. Oksaleddiksyre tester positivt med 2,4-dinitrofenylhydrazin.

Oppgave 2

- a) Propen er utgangsstoff for mange kjemiske produkter.
- 1) Polymeren polypropen er laget av propen.
 - Tegn et utsnitt av polymeren, og marker den repeterende enheten.
- 2) I en syntese ble vann addert til propen. Det ble dannet to produkter, A og B.
 - Tegn strukturformelen til forbindelsene A og B.
- 3) Forbindelsene A og B fra oppgave 2a) 2) ble skilt fra hverandre. En av disse ble oksidert med et kraftig oksidasjonsmiddel til forbindelse C. Figur 8 viser ¹H-NMR-spekteret til forbindelse C:

Figur 8

Bruk spekteret til å forklare hvilken av forbindelsene A og B som var utgangspunkt for syntesen av forbindelse C.

b)

1) Du har to reagensglass. Du vet at det ene reagensglasset inneholder propan-2-ol og det andre 2-metylpropan-2-ol, men du vet ikke hvilket som inneholder hva.

Forklar hvordan du på skolelaboratoriet kan avgjøre hvilket reagensglass som inneholder propan-2-ol.

2) Du har to reagensglass. Du vet at det ene reagensglasset inneholder en løsning av sølvnitrat, AgNO₃(aq) og det andre en løsning av kaliumnitrat, KNO₃(aq), men du vet ikke hvilket som inneholder hva.

Forklar hvordan du på skolelaboratoriet kan avgjøre hvilket reagensglass som inneholder sølvnitrat. Bruk reaksjonsligning(er) i forklaringen.

- 3) Du har tre ulike løsninger. Løsningene er:
 - kalsiumklorid, CaCl₂(aq)
 - bariumklorid, BaCl₂(aq)
 - bariumnitrat, Ba(NO₃)₂(aq)

Forklar hvordan du på skolelaboratoriet kan identifisere de tre løsningene.

c) Figur 9 viser en enkel skisse av et elektrolysekar. Løsningen i elektrolysekaret er 1,0 mol/L saltsyre, HCl. Produktene i denne elektrolysen er hydrogengass og klorgass.

De to halvreaksjonene kan skrives slik:

$$2H^+ + 2e^- \rightarrow H_2$$

$$2CI^- \rightarrow CI_2 + 2e^-$$

- 1) Tegn av skissen i figur 9 i besvarelsen din.
 - Marker hva som er anode, og hva som er katode.
 - Skriv halvreaksjonen ved hver av elektrodene.
 - Beregn den minste spenningen som må til for at reaksjonen skal finne sted.
- 2) Ved denne elektrolysen ble det dannet 2 g hydrogengass.

Hvor mange gram klorgass ble det dannet?

Figur 9

- 3) Ved elektrolyse av en løsning kobberklorid blir det dannet kobber ved den negative elektroden. Ved elektrolyse av en løsning natriumklorid blir det dannet hydrogengass ved den negative elektroden.
 - Forklar hvorfor det er mulig å framstille kobbermetall fra en vannløsning med kobberioner, mens det ikke er mulig å framstille natriummetall fra en vannløsning med natriumioner.

Oppgave 3

Figur 10 viser den organiske forbindelsen isopren. Isopren blir dannet i planter. Planter bruker isopren som utgangsstoff for syntese av større molekyler og som monomer i makromolekyler.

a) Figur 11 under viser massespekteret til isopren.

Figur 11: Massespekteret til isopren

Hvilke fragmenter av isopren gir de markerte toppene i spekteret? Bruk strukturformler i forklaringen din.

b) Forbindelser som er laget av to isoprenmolekyler, blir kalt monoterpener og monoterpenoider. Mange av disse forbindelsene lukter godt, og kalles eteriske oljer.

Tabell 1 viser noen slike forbindelser i eterisk olje av planten grønnmynte.

Tabell 1		
Navn	Strukturformel	Kokepunkt, °C
Karvon	H_3 C CH_3 CH_2	230
Limonen	H_3C CH_3 CH_2	178
Eucalyptol	H ₃ C CH ₃	176
Karveol	H ₃ C CH ₃	226

Forklar hvordan en enkel påvisningsreaksjon kan avgjøre om en ren stoffprøve er eucalyptol og ikke en av de andre forbindelsene i tabellen.

c) For å framstille den eteriske oljen fra grønnmynte kan en bruke enkel destillasjon. Til destillasjonskolben tilsetter en knuste blader og vann. Kondensatet består av to separate faser. Se figur 12.

 Bruk blant annet tabell 1 og forklar hvorfor det er vanskelig å separere den eteriske oljen i de enkelte forbindelsene ved enkel destillasjon.

Figur 12

d) Karvon kan bli syntetisert fra karveol i planter ved hjelp av NAD+ og karveol dehydrogenase.

Skriv en balansert reaksjonsligning for denne reaksjonen.

- e) Forbindelsen karveyletanat, figur 13, lukter peppermynte. Karveyletanat kan framstilles på laboratoriet i to trinn med karvon som utgangsstoff. Karveol er mellomproduktet.
 - Forklar hva slags reaksjonstyper dette er.
 - Skriv en balansert reaksjonsligning for reaksjonen i det siste trinnet.

Figur 13

Oppgave 4

Brusmaskiner ble oppfunnet av farmasøyter i USA rundt 1840, fordi de ønsket å gjøre det lettere for pasienter å få i seg medisin. Medisinen smakte gjerne vondt, derfor ble den blandet ut med søte safter og kullsyreholdig vann.

Rørene i disse tidlige brusmaskinene var laget av blymetall. Blyioner virker som inhibitor for noen viktige enzymer.

En av de tidlige typene medisin var Coca-Cola, som hjalp mot trøtthet.

Figur 14: Gammel brusmaskin

a) Dagens Coca-Cola har pH omtrent 2,5 og er en bufferløsning.

Bruk tabell 2, og forklar hva som er sur og hva som er basisk komponent i bufferen.

b) Regn ut forholdet mellom sur og basisk komponent i Coca-Cola når pH er 2,5.

Tabell 2: Oversikt over et utvalg av forbindelser i Coca-Cola			
Na ⁺ H ₂ CO ₃ HCO ₃ ⁻ CO ₃ ²⁻ CO ₂ H ₃ PO ₄	H ₂ PO ₄ ⁻ HPO ₄ ²⁻ PO ₄ ³⁻ C ₆ H ₁₂ O ₆ H ₂ O		

c) Vannet som tidligere ble brukt til å lage Coca-Cola kunne inneholde store mengder jernioner, Fe²⁺ og Fe³⁺. pH i ferdig Coca-Cola var rundt 2,5.

Vurder Coca-Cola, som er laget i en slik tidlig brusmaskin som er beskrevet i innledningen til oppgaven, med hensyn på helse, miljø og sikkerhet (HMS).

d) Rike mennesker kunne få pillene sine overtrukket med gull eller sølv i stedet for det vanlige hvite overtrekket. Slike piller så ut som små, runde gull- eller sølvkuler, slik figur 15 viser.

I dag er mange piller dekket med magnesiumkarbonat, og noen typer medisin blir gitt i form av kapsler av gelatin, en form for protein.

Medisin som blir tilført kroppen via munnen, blir tatt opp i blodet i fordøyelsessystemet.

Figur 15: Piller med overtrekk av gull og sølv

Diskuter om det var en helsemessig fordel med «gullpiller» og «sølvpiller» sammenlignet med dagens piller/kapsler som er nevnt i teksten.

- e) Det ble gjort en analyse av en slik sølvpille.
 - Sølvpillen veide 0,486 g.
 - Sølvpillen ble løst i ca. 20 mL konsentrert salpetersyre. Denne løsningen ble overført til en 100,0 mL målekolbe. Målekolben ble fylt opp med destillert vann til merket.
 - 25,00 mL av denne løsningen ble overført til en ny 100,0 mL målekolbe. Det ble tilsatt ca. 10 mL 5 mol/L NaOH, og til slutt ble kolben fylt opp med destillert vann til merket.
 - Denne løsningen er prøveløsningen.
 - Prøveløsningen ble overført til en byrette og titrert ned i 20,0 mL 0,0100 mol/L NaCl-løsning. Forbruket av prøveløsningen var 27.2 mL.

Beregn masseprosenten sølv i denne sølvpillen.

Oppgave 5

«Grønn kjemi» innebærer blant annet å bruke bærekraftige ressurser som utgangspunkt for å produsere andre stoffer eller som energikilde. Aktuelle utgangsstoffer kan være glukose og triglyserider.

a) Biodiesel kan framstilles fra triglyserider. Første trinn i en slik syntese er framstilling av frie fettsyrer.

Forklar hva slags organisk reaksjon dette er.

b) De frie fettsyrene reagerer med metanol og gir metylester av fettsyrene.

Beregn hvor mange gram av metylesteren som maksimalt kan bli dannet av 100 g stearinsyre, $CH_3(CH_2)_{16}COOH$.

c) Prosessen vist på figur 16 viser første trinn i en reaksjon med glyserol og NAD+ i kroppen. Forklar hvilke atomer som blir oksidert eller redusert i en slik koblet reaksjon.

Figur 16

- d) Bruk figur 16 til å forklare hvilken rolle Zn²⁺ har i denne reaksjonen.
- e) Glyserol, C₃H₈O₃, er et biprodukt fra produksjonen av biodiesel og forbrenner dårlig i luft. Men glyserol reagerer kraftig med KMnO₄ i et svakt surt miljø. Bruk oksidasjonstall, og balanser reaksjonsligningen nedenfor:

$$C_3H_8O_3 + MnO_4^- + H^+ \rightarrow CO_2 + H_2O + MnO_2$$

Tabeller og formler i REA3012 Kjemi 2 (versjon 30.09.2016)

Dette vedlegget kan brukes under både Del 1 og Del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C

Halvreaksjon	Halvreaksjon					
oksidert form	+ ne ⁻	→	redusert form	<i>E</i> ⁰ mål i V		
F ₂	+ 2e ⁻	→	2F ⁻	2,87		
O ₃ + 2H ⁺	+ 2e ⁻	→	O ₂ +H ₂ O	2,08		
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H ₂ O	1,78		
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72		
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69		
MnO ₄ -+4H+	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68		
2HCIO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,61		
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51		
BrO ₃ - + 6H+	+ 6e ⁻	→	Br ⁻ + 3H ₂ O	1,42		
Au ³⁺	+ 3e ⁻	→	Au	1,40		
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36		
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36		
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23		
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22		
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20		
Pt ²⁺	+ 2e ⁻	→	Pt	1,18		
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09		
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96		
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92		
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86		
Hg ²⁺	+ 2e ⁻	→	Hg	0,85		
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84		
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80		
Ag ⁺	+ e ⁻	→	Ag	0,80		
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77		
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70		
I ₂	+ 2e ⁻	→	21-	0,54		
Cu⁺	+ e ⁻	→	Cu	0,52		
H ₂ SO ₃ + 4H ⁺	+ 4e ⁻	→	S + 3H ₂ O	0,45		
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40		
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34		
Cu ²⁺	+ 2e ⁻	→	Cu	0,34		

Vedlegg 1

oksidert form	+ ne-	→	redusert form	Eo mål i V
SO ₄ ²⁻ + 10H ⁺	+ 8e ⁻	→	$H_2S(aq) + 4H_2O$	0,30
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu⁺	0,16
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15
S + 2H ⁺	+ 2e ⁻	→	H₂S(aq)	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H ₂ O	+ 2e ⁻	→	H ₂ + 20H ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	K	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

NOEN KONSTANTER

Avogadros tall: $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

Molvolumet av en gass: $V_m = 22,4 \text{ L/mol ved } 0 \text{ °C og } 1 \text{ atm,}$

24,5 L/mol ved 25 °C og 1 atm

Faradays konstant: F = 96485 C/mol

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	K _a	p <i>K</i> _a
Acetylsalisylsyre	C ₈ H ₇ O ₂ COOH	3,3 · 10 ⁻⁴	3,48
Ammoniumion	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	C ₆ H ₈ O ₆	9,1 · 10 ⁻⁵	4,04
Hydrogenaskorbation	C ₆ H ₇ O ₆ ⁻	2,0 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,3 · 10 ⁻⁵	4,20
Benzylsyre (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	4,9 · 10 ⁻⁵	4,31
Borsyre	B(OH) ₃	5,4 · 10 ⁻¹⁰	9,27
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,83
Eplesyre (malinsyre)	HOOCCH ₂ CH(OH)COOH	4,0 · 10 ⁻⁴	3,40
Hydrogenmalation	HOOCCH ₂ CH(OH)COO ⁻	7,8 · 10 ⁻⁶	5,11
Etansyre (eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,76
Fenol	C ₆ H₅OH	1,0 · 10 ⁻¹⁰	9,99
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfation	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,21
Hydrogenfosfation	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,32
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfittion	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,70
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,1 · 10 ⁻³	2,94
Hydrogenftalation	C ₆ H ₄ (COOH)COO ⁻	3,7 · 10 ⁻⁶	5,43
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,21
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,20
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,62
Hydrogensulfation	HSO ₄ ⁻	1,0 · 10 ⁻²	1,99
Hydrogensulfid	H ₂ S	8,9 · 10 ⁻⁸	7,05
Hypoklorsyre (underklorsyrling)	HCIO	4,0 · 10 ⁻⁸	7,40
Karbonsyre	H ₂ CO ₃	4,5 · 10 ⁻⁷	6,35
Hydrogenkarbonation	HCO ₃ ⁻	4,7 · 10 ⁻¹¹	10,33
Klorsyrling	HCIO ₂	1,1 · 10 ⁻²	1,94
Kromsyre	H ₂ CrO ₄	1,8 · 10 ⁻¹	0,74
Hydrogenkromation	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,49
Maleinsyre (cis-butendisyre)	HOOCCH=CHCOOH	1,2 · 10 ⁻²	1,92
Hydrogenmaleation	HOOCCH=CHCOO ⁻	5,9 · 10 ⁻⁷	6,23
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,86
Metansyre (mausyre)	нсоон	1,8 · 10 ⁻⁴	3,75
Oksalsyre	(COOH) ₂	5,6 · 10 ⁻²	1,25
Hydrogenoksalation	(COOH)COO ⁻	1,5 · 10 ⁻⁴	3,81
Propansyre	CH ₃ CH ₂ COOH	1,3 · 10 ⁻⁵	4,87
Salisylsyre (2-hydroksybenzosyre)	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	2,98
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,25
Sitronsyre	C ₃ H ₄ (OH)(COOH) ₃	7,4 · 10 ⁻⁴	3,13
Dihydrogensitration	C ₃ H ₄ (OH)(COOH) ₂ COO ⁻	1,7 · 10 ⁻⁵	4,76
Hydrogensitration	C ₃ H ₄ (OH)(COOH)(COO ⁻) ₂	4,0 · 10 ⁻⁷	6,40
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,85
Hydrogensulfittion	HSO ₃ ⁻	6,3 · 10 ⁻⁸	7,2
Vinsyre (2,3-dihydroksybutandisyre, <i>L</i> -tartarsyre)	(CH(OH)COOH) ₂	1,0 · 10 ⁻³	2,98
Hydrogentartration	HOOC(CH(OH)) ₂ COO ⁻	4,6 · 10 ⁻⁵	4,34

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	K _b	р <i>К</i> _ь
Acetation	CH ₃ COO ⁻	5,8 · 10 ⁻¹⁰	9,24
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,75
Metylamin	CH ₃ NH ₂	4,6 · 10 ⁻⁴	3,34
Dimetylamin	(CH ₃) ₂ NH	5,4 · 10 ⁻⁴	3,27
Trimetylamin	(CH ₃) ₃ N	6,3 · 10 ⁻⁵	4,20
Etylamin	CH ₃ CH ₂ NH ₂	4,5 · 10 ⁻⁴	3,35
Dietylamin	$(C_2H_5)_2NH$	6,9 · 10 ⁻⁴	3,16
Trietylamin	$(C_2H_5)_3N$	5,6 · 10 ⁻⁴	3,25
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,4 · 10 ⁻¹⁰	9,13
Pyridin	C ₅ H ₅ N	1,7 · 10 ⁻⁹	8,77
Hydrogenkarbonation	HCO ₃ ⁻	2,0 · 10 ⁻⁸	7,65
Karbonation	CO ₃ ²⁻	2,1 · 10 ⁻⁴	3,67

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH- omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel	
acetat, etanat	CH ₃ COO⁻	jodat	10 ₃ -	
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻	
arsenat	AsO ₄ ³⁻	klorat	ClO ₃ -	
arsenitt	AsO ₃ ³⁻	kloritt	ClO ₂ -	
borat	BO ₃ ³⁻	nitrat	NO ₃ -	
bromat	BrO ₃ -	nitritt	NO ₂ -	
fosfat	PO ₄ 3-	perklorat	ClO ₄ -	
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻	
hypokloritt	CIO ⁻	sulfitt	SO ₃ ²⁻	

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $(\frac{g}{mL})$	Konsentrasjon $(\frac{\text{mol}}{\text{L}})$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H₂O	100	1,00	55,56

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	35Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	Cl ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	I ⁻	O ²⁻	OH⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	U	U	U	U	U	-	U	T
Al ³⁺	R	R	-	-	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	Т	U
Ca ²⁺	L	L	U	Т	L	Т	U	Т	T
Cu ²⁺	L	L	-	U	-	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	-	U	-	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	-	U	-	U
Hg ²⁺	T	L	-	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	T	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	-	R	U	U	U	R
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

^{- =} Ukjent forbindelse, eller forbindelse dannes ikke ved utfelling, R = reagerer med vann.

LØSELIGHETSPRODUKT (Ksp) FOR SALT I VANN VED 25 °C

Navn	Kjemisk formel	K _{sp}	Navn	Kjemisk formel	K _{sp}	
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kvikksølv(I)bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³	
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv(I)jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹	
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹	Kvikksølv(I)karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷	
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv(I)klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸	
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv(II)bromid	HgBr ₂	6,2 · 10 ⁻²⁰	
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv(II)jodid	Hgl ₂	2,9 · 10 ⁻²⁹	
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴	
Bly(II)bromid	PbBr ₂	6,60 · 10 ⁻⁶	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10-24	
Bly(II)hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²	
Bly(II)jodid	PbI ₂	9,80 · 10 ⁻⁹	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶	
Bly(II)karbonat	PbCO ₃	7,40 · 10 ⁻¹⁴	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶	
Bly(II)klorid	PbCl ₂	1,70 · 10 ⁻⁵	Mangan(II)karbonat	MnCO ₃	2,24 · 10 ⁻¹¹	
Bly(II)oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II)oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷	
Bly(II)sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Nikkel(II)fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²	
Bly(II)sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II)hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶	
Jern(II)fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II)karbonat	NiCO ₃	1,42 · 10 ⁻⁷	
Jern(II)hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II)sulfid	NiS	2 · 10 ⁻¹⁹	
Jern(II)karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷	
Jern(II)sulfid	FeS	8 · 10 ⁻¹⁹	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰	
Jern(III)fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinksulfid	ZnS	2 · 10-24	
Jern(III)hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹	Sølv(I)acetat	AgCH ₃ COO	1,94 · 10 ⁻³	
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv(I)bromid	AgBr	5,35 · 10 ⁻¹³	
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv(I)cyanid	AgCN	5,97 · 10 ⁻¹⁷	
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶	Sølv(I)jodid	AgI	8,52 · 10 ⁻¹⁷	
Kalsiumkarbonat	CaCO ₃	3,36 · 10 ⁻⁹	Sølv(I)karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²	
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv(I)klorid	AgCl	1,77 · 10 ⁻¹⁰	
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv(I)kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²	
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv(I)oksalat	Ag ₂ C ₂ O ₄	5,40 · 10 ⁻¹²	
Kobolt(II)hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Sølv(I)sulfat	Ag ₂ SO ₄	1,20 · 10-5	
Kopper(I)bromid	CuBr	6,27 · 10 ⁻⁹	Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹	
Kopper(I)klorid	CuCl	1,72 · 10 ⁻⁷	Tinn(II)hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷	
Kopper(I)oksid	Cu ₂ O	2 · 10 ⁻¹⁵			1	
Kopper(I)jodid	Cul	1,27 · 10 ⁻¹²				
Kopper(II)fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷				
Kopper(II)oksalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰				

Vanlig navn		Vanlig navn					
Forkortelse	Strukturformel	Forkortelse	Strukturformel				
pH ved isoelektrisk punkt		pH ved isoelektrisk punkt					
Alanin Ala 6,0	H ₃ C CH O	Arginin Arg 10,8	NH3 O O O O O O O O O O O O O O O O O O O				
Asparagin Asn 5,4	H ₂ N CH ₂ CH O O O O O O O O O O O O O O O O O O	Aspartat (Asparagin- syre) Asp 2,8	O				
Cystein Cys 5,1	O — C O O O O O O O O O O O O O O O O O	Fenylalanin Phe 5,5	HC CH CH2 CH O CH NH3				
Glutamin Gln 5,7	O CH ₂ CH ₂ CH NH ₃	Glutamat (Glutamin- syre) Glu 3,2	CH ₂ CH ₂ CH NH ₂				
Glysin Gly 6,0	H CH + 3	Histidin His 7,6	HC CH CH O				

Vedlegg 1

Vanlig navn Forkortelse pH ved isoelektrisk punkt	Strukturformel	Vanlig navn Forkortelse pH ved isoelektrisk punkt	Strukturformel
Isoleucin Ile 6,0	H ₃ C CH C O	Leucin Leu 6,0	H ₃ C CH ₂ CH CH CH CH CH ₃ NH ₃
Lysin Lys 9,7	H ₃ N ⁺ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ NH ₃ CH ₃	Metionin Met 5,7	O CH ₂ CH O NH ₃
Prolin Pro 6,3	H ₂ C CH ₂ CH CH C	Serin Ser 5,7	HO CH ₂ CH NH ₃
Treonin Thr 5,6	O = C O O O O O O O O O O O O O O O O O	Tryptofan Trp 5,9	O = C
Tyrosin Tyr 5,7	HC CH CH CH O O O O O O O O O O O O O O	Valin Val 6,0	CH ₃ O CH CH NH ₃ C

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, HAL= halogen (CI, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Hydrogenatomene som er opphavet til signalet er uthevet.

Type proton	Kjemisk skift, ppm	Type proton	Kjemisk skift, ppm
−СН ₃	0,9 - 1,0	O R^C O- H	10 - 13
−CH ₂ −R	1,3 - 1,4	O = R C H	9,4 - 10
-CHR ₂	1,4 - 1,6	O H /C O-R	Ca. 8
—C≡C— H	1,8 - 3,1	−CH=CH ₂	4,5 - 6,0
-CH ₂ -HAL	3,5 - 4,4	R/C O-CH ₂ -	3,8 - 4,1
R-O-CH ₂ -	3,3 - 3,7	R—O—H	0,5 - 6
R C C H ₂ —	2,2 - 2,7	RO CH ₂	2,0 - 2,5
———	6,9 - 9,0	——ОН	4,0 - 12,0
─ C H ₃	2,5 - 3,5	—С Н ₂— ОН	3,4 - 4

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

HYD	ROKARBONE	R, METTEDE	(alkaner)	
Navn	Formel	Smp	Кр	Diverse
Metan	CH ₄	-182	-161	
Etan	C ₂ H ₆	-183	-89	
Propan	C ₃ H ₈	-188	-42	
Butan	C ₄ H ₁₀	-138	-0,5	
Pentan	C ₅ H ₁₂	-130	36	
Heksan	C ₆ H ₁₄	-95	69	
Heptan	C ₇ H ₁₆	-91	98	
Oktan	C ₈ H ₁₈	-57	126	
Nonan	C ₉ H ₂₀	-53	151	
Dekan	C ₁₀ H ₂₂	-30	174	
Syklopropan	C ₃ H ₆	-128	-33	
Syklobutan	C ₄ H ₈	-91	13	
Syklopentan	C ₅ H ₁₀	-93	49	
Sykloheksan	C ₆ H ₁₂	7	81	
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan
3-Metylpentan	C ₆ H ₁₄	-163	63	
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58	
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110	
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115	
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114	
HYD	ROKARBONEI	R, UMETTED	E, alkener	
Navn	Formel	Smp	Кр	Diverse
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C ₃ H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
cis-But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
cis-Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
cis-Heks-3-en	C ₆ H ₁₂	-138	66	

Navn	Formel	Smp	Кр	Diverse
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C ₇ H ₁₄	-119	94	
<i>cis</i> -Hept-2-en	C ₇ H ₁₄		98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
cis-Hept-3-en	C ₇ H ₁₄	-137	96	
trans-Hept-3-en	C ₇ H ₁₄	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
2-metyl-1,3-butadien	C ₅ H ₈	-146	34	Isopren
Penta-1,2-dien	C ₅ H ₈	-137	45	
trans-Penta-1,3-dien	C ₅ H ₈	-87	42	
cis-Penta-1,3-dien	C ₅ H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀		76	
cis-Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
HYDR	OKARBONEI	R, UMETTED	E, alkyner	
Navn	Formel	Smp	Кр	Diverse
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C ₅ H ₈	-90	40	
Pent-2-yn	C ₅ H ₈	-109	56	
Heks-1-yn	C ₆ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
AF	ROMATISKE	HYDROKARE	BONER	
Navn	Formel	Smp	Кр	Diverse
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₃ H ₁₂	25	265	
Trifenylmetan	C ₁₉ H ₁₆	94	360	Tritan
1,2-Difenyletan	C ₁₄ H ₁₄	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₄ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	PAH

ALKOHOLER										
Navn	Formel	Smp	Кр	Diverse						
Metanol	CH₃OH	-98	65	Tresprit						
Etanol	C ₂ H ₆ O	-114	78							
Propan-1-ol	C ₃ H ₈ O	-124	97	<i>n</i> -propanol						
Propan-2-ol	C ₃ H ₈ O	-88	82	Isopropanol						
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol						
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol						
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol						
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol						
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	<i>n</i> -Pentanol, amylalkohol						
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol						
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol						
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol						
Heksan-2-ol	C ₆ H ₁₄ O		140							
Heksan-3-ol	C ₆ H ₁₄ O		135							
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, <i>n</i> -heptanol						
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, <i>n</i> -oktanol						
Sykloheksanol	C ₆ H ₁₂ O	26	161							
Etan-1,2-diol	$C_2H_6O_2$	-13	197	Etylenglykol						
Propan-1,2,3-triol	C ₃ H ₈ O ₃	₃ O ₃ 18 290		Glyserol, inngår i fettarten triglyserid						
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol						
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol						
	KARBONYL	FORBINDEL	SER							
Navn	Formel	Smp	Кр	Diverse						
Metanal	CH ₂ O	-92	-19	Formaldehyd						
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd						
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd						
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd						
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd						
2-Metylpropanal	C ₄ H ₈ O	-65	65							
Butanal	C ₄ H ₈ O	-97	75							
3-Hydroksybutanal	$C_4H_8O_2$		83							
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd						
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd						
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd						
Heptanal	C ₇ H ₁₄ O	-43	153							
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd						
Propanon	C ₃ H ₆ O	-95	56	Aceton						
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon						
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon						
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon						
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon						
4-Metylpentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon						

Navn	Formel	Smp	Кр	Diverse			
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon			
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon			
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon			
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon			
trans-Fenylpropenal	C ₉ H ₈ O	-8	246	trans-Kanelaldehyd			
	ORGAN	IISKE SYRER		<u> </u>			
Navn	Formel	Smp	Кр	Diverse			
Metansyre	CH ₂ O ₂	8	101	Maursyre, $pK_a = 3,75$			
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, $pK_a = 4,76$			
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, p $K_a = 4,87$			
2-Metylpropansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84			
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, p K_a = 3,86			
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved oppvarming, $pK_a = 4,51$			
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p K_a = 4,83			
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre , $pK_a = 4,77$			
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, $pK_a = 4,83$			
Heksansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, $pK_a = 4,88$			
Propensyre	C ₃ H ₄ O ₂	12	141	pK _a = 4,25			
<i>cis</i> -But-2-ensyre	C ₄ H ₆ O ₂	15	169	<i>cis</i> -Krotonsyre, pK _a = 4,69			
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	<i>trans</i> -Krotonsyre, p K_a = 4,69			
But-3-ensyre	C ₄ H ₆ O ₂	-35	169	pK _a = 4,34			
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, $pK_{a1} = 1,25$, $pK_{a2} = 3,81$			
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70			
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$			
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, p K_{a1} = 4,32, p K_{a2} = 5,42			
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, p K_{a1} = 4,41, p K_{a2} = 5,41			
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$			
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, $pK_a = 4,44$			
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		pK _a = 3,88			
Benzosyre	C ₇ H ₆ O ₂	122	250				
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31			
	E:	STERE					
Navn	Formel	Smp	Кр	Diverse			
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær			
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas			
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær			

Vedlegg 1

Navn	Formel	Smp	Кр	Diverse
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl-trans-cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og ananas
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og eple
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
ORGAN	IISKE FORBIN	DELSER MEI	NITROGEN	
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH ₅ N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27
Trimetylamin	C ₃ H ₉ N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	C ₄ H ₁₁ N	-28	312	$pK_b = 3,16$
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid
Fenylamin	C ₆ H ₇ N	-6	184	Anilin
1,4-Diaminbutan	C ₄ H ₁₂ N ₂	27	158-160	Engelsk navn: putrescine
1,6-Diaminheksan	C ₆ H ₁₆ N ₂	9	178-180	Engelsk navn: cadaverine
ORGAN	NISKE FORBIN	IDELSER ME	D HALOGEN	
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH ₃ Cl	-98	-24	Metylklorid
		00	40	NA atriba add a si al NA ca la scolat
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel
Diklormetan Triklormetan	CH ₂ Cl ₂	-98 -63	61	1
				som løsemiddel
Triklormetan	CHCl ₃	-63	61	som løsemiddel Kloroform
Triklormetan Tetraklormetan	CHCl ₃	-63 -23	61 77	som løsemiddel Kloroform Karbontetraklorid
Triklormetan Tetraklormetan Kloretansyre	CHCl ₃ CCl ₄ C ₂ H ₃ ClO ₂	-63 -23 63	61 77 189	som løsemiddel Kloroform Karbontetraklorid Kloreddiksyre, pK _a = 2,87

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	HCI	H ₂ SO ₄	NH ₃	KI	KSCN	K₃Fe(CN) ₆	K₄Fe(CN) ₆	K₂CrO₄	Na ₂ S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Rødrosa
Fe²+			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe³+			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Hvitt/Gråhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gråhvitt	Hvitt	Hvitt	
Ca ²⁺									Gulhvitt	Hvitt	Hvitt	

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2				Forklarir		ariiiste	nienes	perio	acsyst	CIII	Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,008		Atomnummer Atommasse				35 Fargekoder Ikke-metall 79,90										2 4,003	
2,1 Hydrogen		Symbol Elektronegativitetsverdi Navn		Br 2,8 Brom			metall etall							He - Helium			
3 6,941	4 9,012				() betyr ma			Aggregat- tilstand	Fast	stoff B		5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
Li 1,0 Lithium	Be 1,5 Beryl-				isotopen * Lantanoi ** Aktinoid	der		ved 25 °C og 1 atm		е Нд		B 2,0 Bor	C 2,5 Karbon	N 3,0 Nitrogen	O 3,5 Oksygen	F 4,0 Fluor	Ne - Neon
11 22,99	12 24,31								Gas	ss N		13 26,98	14 28,09	15 30,97	16 32,07	17 35,45	18 39,95
Na 0,9 Natrium	Mg 1,2 Magne-	3	4	5	6	7	8	9	10	11	12	Al 1,5 Alumini-	Si 1,8 Silisium	P 2,1 Fosfor	S 2,5 Svovel	CI 3,0 Klor	Ar - Argon
19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38	31 69,72	32 72,63	33 74,92	34 78,97	35 79,90	36 83,80
0,8 Kalium	Ca 1,0 Kalsium	Sc 1,3 Scan- dium	Ti 1,5 Titan	V 1,6 Vana- dium	Cr 1,6 Krom	Mn 1,5 Mangan	Fe 1,8 Jern	Co 1,9 Kobolt	Ni 1,9 Nikkel	Cu 1,9 Kobber	Zn 1,6 Sink	Ga 1,6 Gallium	Ge 1,8 Germa- nium	As 2,0 Arsen	Se 2,4 Selen	Br 2,8 Brom	Kr - Krypton
37 85,47 Rb	38 87,62 Sr	39 88,91 Y	40 91,22 Zr	41 92,91 Nb	42 95,95 Mo	43 (98) Tc	44 101,07 Ru	45 102,91 Rh	46 106,42 Pd	47 107,87 Ag	48 112,41 Cd	49 114,82 In	50 118,71 Sn	51 121,76 Sb	52 127,60 Te	53 126,90	54 131,29 Xe
0,8 Rubidium	1,0 Stron- tium	1,2 Yttrium	1,4 Zirko- nium	1,6 Niob	1,8 Molyb- den	1,9 Techne- tium	2,2 Ruthe- nium	2,2 Rhodium	2,2 Palla- dium	1,9 Sølv	1,7 Kad- mium	1,7 Indium	1,7 Tinn	1,8 Antimon	2,1 Tellur	2,4 Jod	- Xenon
55 132,91 Cs	56 137,33 Ba	57 138,91 La	72 178,49 Hf	73 180,95 Ta	74 183,84 W	75 186,21 Re	76 190,23 Os	77 192,22 I r	78 195,08 Pt	79 196,97 Au	80 200,59 Hg	81 204,38 TI	82 207,2 Pb	83 208,98 Bi	84 (209) Po	85 (210) At	86 (222) Rn
0,7 Cesium	0,9 Barium	1,1 Lantan*	1,3 Hafnium	1,5 Tantal	1,7 Wolfram	1,9 Rhenium	2,2 Osmium	2,2 Iridium	2,2 Platina	2,4 Gull	1,9 Kvikk- sølv	1,8 Thallium	1,8 Bly	1,9 Vismut	2,0 Poloni- um	2,3 Astat	- Radon
87 (223) Fr	88 (226) Ra	89 (227) Ac	104 (267) Rf	105 (268) Db	106 (271) Sg	107 (270) Bh	108 (269) Hs	109 (278) Mt	110 (281) Ds	111 (280) Rg	112 (285) Cn	113 (286) Uut	114 (289) F I	115 (289) Uup	116 (293) LV	117 (294) Uus	118 (294) Uuo
0,7 Francium	0,9 Radium	1,1 Actinium **	Ruther- fordium	Dub- nium	Sea- borgium	- Bohrium	- Hassium	- Meit- nerium	- Darm- stadtiu m	- Rønt- genium	Coper- nicium	- Unun- trium	- Flero- vium	- Unun- pentium	- Liver- morium	- Unun- septium	- Unun- oktium
		*	57 138,91	58 140,12	59 140,91	60 144,24	61 (145)	62 150,36	63 151,96	64 157,25	65 158,93	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05	71 174,97
			La 1,1 Lantan	Ce 1,1 Cerium	Pr 1,1 Praseo-	Nd 1,1 Neodym	Pm 1,1 Prome-	Sm 1,2 Sama-	Eu 1,2 Euro-	Gd 1,2 Gado-	Tb 1,1 Terbium	Dy 1,2 Dyspro-	Ho 1,2 Hol-	Er 1,2 Erbium	Tm 1,3 Thulium	Yb 1,1 Ytter-	Lu 1,3 Lute-
		**	89 (227)	90 232,04	91 231,04	92 238,03	93 (237)	rium 94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	bium 102 (259)	tium 103 (266)
			Ac 1,1 Actinium	Th 1,3 Thorium	Pa 1,4 Protacti- nium	U 1,4 Uran	Np 1,4 Neptu- nium	Pu 1,3 Pluto- nium	Am 1,1 Ame- ricium	Cm 1,3 Curium	Bk 1,3 Berke- lium	Cf 1,3 Califor- nium	Es 1,3 Einstein- ium	Fm 1,3 Fer- mium	Md 1,3 Mende- levium	No 1,3 Nobel- ium	Lr 1,3 Lawren- cium
								mann	Holdin			aiii			.o.laili		o.um

Kjelder/Kilder

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGAVE (2008–2009), ISBN 9781420066791
- Oppdateringer er gjort ut fra *CRC HANDBOOK OF CHEMISTRY and PHYSICS*, 96. UTGAVE (2015-2016): http://www.hbcpnetbase.com/ (sist besøkt 16.11.15)
- For ustabile radioaktive grunnstoffer ble periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er hentet fra *Kjemi 3KJ*, *Studiehefte* (Brandt mfl), Aschehough (2003), side 203