Introduction to Machine Learning

ML-Basics Losses & Risk Minimization

Learning goals

- Know concept of loss function
- Understand concept of theoretical and empirical risk
- Understand relationship between risk minimization and finding best model

HOW TO EVALUATE MODELS

- Training a learner = optimize over hypothesis space
- Find function that matches training data best
- We compare point-wise predicted outputs to observed labels

Features x		
People in Office (Feature 1) x_1	Salary (Feature 2) x_2	
4	4300€	
12	2700€	
5	3100 €	

Target y		
Worked Minutes Week (Target Variable)		
2220		
1800		
1920		

Prediction \hat{y}		
Worked Minutes Week (Target Variable)		
2588		
1644		
1870		

 $\mathcal{D}_{\mathsf{train}}$

LOSS

Loss function $L(y, f(\mathbf{x}))$ quantifies point-wise how we measure errors in predictions for a single \mathbf{x} :

$$L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$$
.

Regression: Could use absolute L1 loss $L(y, f(\mathbf{x})) = |y - f(\mathbf{x})|$

or L2-loss $L(y, f(x)) = (y - f(x))^2$

RISK OF A MODEL

• Theoretical **risk** of a candidate model *f* is the **expected loss**

$$\mathcal{R}(f) := \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}$$

- ullet Average error we incur when we use f on data from \mathbb{P}_{xy}
- Goal in ML: Find a hypothesis $f \in \mathcal{H}$ that **minimizes** this

Problems:

- \mathbb{P}_{xy} is unknown
- Could estimate \mathbb{P}_{xy} non-parametrically, e.g., by kernel density estimation, doesn't scale to higher dimensions
- Could efficiently estimate \mathbb{P}_{xy} , if we place assumptions on its form, e.g. cf. discriminant analysis

EMPIRICAL RISK

- Have *n* i.i.d. data from \mathbb{P}_{xy} , approximate expected risk empirically
- Just sum up all losses over training data

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

- Associates one quality score with each $f \in \mathcal{H}$
- Encodes: How well does *f* fits training data
- Now we get very close to solve this by optimization

$$\mathcal{R}_{\mathsf{emp}}:\mathcal{H} o \mathbb{R}$$

EMPIRICAL RISK

Can also define as average loss

$$\bar{\mathcal{R}}_{\mathsf{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

- Constant factor $\frac{1}{n}$ doesn't make a difference in optimization
- We usually use $\mathcal{R}_{emp}(f)$
- Since f is usually defined by **parameters** θ , this becomes:

$$\mathcal{R}_{\mathsf{emp}}: \mathbb{R}^d o \mathbb{R}$$

$$\mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

EMPIRICAL RISK MINIMIZATION

- Best model = smallest risk
- ullet For finite \mathcal{H} : we could tabulate exhaustively

0	0	×
X)	0
	X	X

Model	$ heta_{ extit{intercept}}$	$ heta_{ extit{slope}}$	$\mathcal{R}_{emp}(heta)$
<i>f</i> ₁	2	3	194.62
f_2	3	2	127.12
f_3	6	-1	95.81
f_4	1	1.5	57.96

EMPIRICAL RISK MINIMIZATION

- ullet But usually ${\cal H}$ is infinitely large
- ullet Instead: Simply consider risk surface w.r.t. the parameters heta

$$\mathcal{R}_{\mathsf{emp}}: \mathbb{R}^d o \mathbb{R}$$

Model	$ heta_{ ext{intercept}}$	$ heta_{ extit{slope}}$	$\mathcal{R}_{emp}(oldsymbol{ heta})$
f_1	2	3	194.62
f_2	3	2	127.12
f_3	6	-1	95.81
f ₄	1	1.5	57.96

EMPRICAL RISK MINIMIZATION

Minimizing this surface is called **empirical risk minimization** (ERM)

$$\hat{oldsymbol{ heta}} = rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$$

Usually we do this by numerical optimization

$$\mathcal{R}_{\mathsf{emp}}: \mathbb{R}^d o \mathbb{R}$$

N	/lodel	$oldsymbol{ heta}_{ extit{intercept}}$	$ heta_{ extit{slope}}$	$\mathcal{R}_{emp}(oldsymbol{ heta})$
	f ₁	2	3	194.62
	f_2	3	2	127.12
	f_3	6	-1	95.81
	f_4	1	1.5	57.96
	f_5	1.25	0.90	23.40

Kind of: Reduced "learning" to **numerical parameter optimization** (Later we will learn that this is only part of the complete picture!)

