QUÍMICA

Profs.: Aleksándros Souza, Diego J. Raposo, Elaine C. Vaz	Profs.:	Aleksándros	Souza,	Diego	J.	Raposo,	Elaine	С.	Vaz
--	---------	-------------	--------	-------	----	---------	--------	----	-----

Lêda C. Silva, Michelle F. Andrade

Nome:		
CPF:	Turma:	

Primeiro Exercício Escolar de 2024.1

Orientações:

- Leia atentamente todas as questões antes de começar a prova
- Responder tudo de caneta azul ou preta, e na ordem
- Assinar também na folha do papel pautado
- Todas as respostas e cálculos devem ser realizados APENAS na folha do papel pautado
- É permitido o uso de qualquer tipo de calculadora, com excessão da do celular

Questão 01. (2,0 pontos) Liste o número de prótons, nêutrons e elétrons dos átomos a seguir (explique seus cálculos): ¹⁶**O**, ²³⁶**U**, ⁶⁹**Ga**³⁺, ¹⁰**B** e ⁷⁹**Br**⁻.

Questão 02. (2,0 pontos) A determinação da carga nuclear efetiva de um átomo pode ser realizada considerando os elétrons abaixo da camada de valência, denominado de caroço ou cerne. Desse modo, o elétron mais externo é blindado pelos demais elétrons presentes no caroço, provocando alterações em algumas características dos átomos, sendo assim, utilizando como base a tabela periódica, indique:

- a) (1,0 ponto) Duas propriedades periódicas que são influenciadas diretamente pela carga nuclear efetiva.
- b) (1,0 ponto) Como variam, dentro da Tabela Periódica, cada uma dessas propriedades. Descreva a variação dessas propriedades dentro de cada período e também dentro de cada grupo ou família.

Questão 03. (2,0 pontos) Um átomo de Selênio no seu estado fundamental apresenta número atômico igual a 34. Faça a distribuição eletrônica e indique o número quântico principal, secundário, número quântico magnético, número quântico magnético de spin do último elétron preenchido e apresente a distribuição dos elétrons nos orbitais do último subnível preenchido.

Questão 04. (2,0 pontos) Considere as transições eletrônicas x e y que o ocorrem no átomo de hidrogênio, representadas no diagrama ao lado e indique:

- a) (0,5 ponto) Qual processo é uma absorção e qual processo é uma emissão.
- b) (1,0 ponto) Quais são os comprimentos de onda associados aos fótons absorvidos ou emitidos nesses processos.
- c) (0,5 ponto) Esses fótons se enquadram na região visível do espectro eletromagnético? Por quê?

n = 5
x y n = 4
n = 3

Energia

Questão 05 (2,0 pontos) Na prática de laboratório "Teste da Chama", foram utilizados alguns sais que contêm metais. Quanto a isso, responda:

- a) (0,6 ponto) Como se chama a vidraria em que foram colocados os sais para que fossem submetidos à chama (queima)?
- b) (0,7 ponto) Por que a chama resultante da queima de cada sal apresenta cor diferente?
- c) (0,7 ponto) Cite, pelo menos, dois metais usados (em forma de sais) e suas colorações observadas.

Formulário (equações):

$$E = hf \text{ ou } E = hv$$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\lambda = \frac{h}{mv}$$

Em que:

h = constante de Planck = 6,626 · 10⁻³⁴ m²·kg/s R_H = constante de Rydberg = 1,097 · 10⁷ m⁻¹ c = velocidade da luz no vácuo = 3 · 10⁸ m/s λ = comprimento de onda f ou ν = frequência n_1 = nível atômico inferior n_2 = nível atômico superior m = massa ν = velocidade do corpo

Tabela Periódica:

H																	He
Li	Be											B	Ĝ	N 7	Ő	F	Ne
Na	Mg											AI	Si	P 15	S 16	ČI	År
K	Ca	Sc	Ti	V 23	Ĉr	Mn	Fe	Co	Ni	Cu	Žn	Ğa	Ğe	Ås	Se	Br	Kr 36
Rb	Šr	Y	Žr	Nb	Mo	Tc	Ru	Rh	Pd	Åg	Cd Cd	ln	Sn	Sb	Te Te	53	Xe
Cs S	Ba		Hf	Ta	W 74	Re	Os	lr	Pt	Au	⊮g	**************************************	Pb	Bi	Po	Åt	₽®
Fr	ква		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	114 FI	Mc	LV	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd Gd	T _b	Dy	Ho	Er	Tm	Yb	Lu
Åc	Th	Pa	⁹²	Np	Pu	Åm	Ĉm	Bk	°sf	es Es	Fm	Md	No	Lr