Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Замкнутые сети массового обслуживания» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 10 мая 2018 г.

Содержание

1	Техническое задание
2	Исходные данные
3	Замкнутая сеть массового обслуживания
3.1	Граф сети
3.2	Расчет узлов
3.3	Возможные состояния сети
3.4	Расчет характеристик узлов
Спис	ок таблиц
3.1	Результаты
Спис	ок иллюстраций
3.1	Граф сети

1. Техническое задание

Задана замкнутая сеть массового обслуживания, включающая M=4 узла. В сети циркулирует N заявок в соответствии с матрицей передач, также заданы описания узлов как систем массового обслуживания (число каналов, интенсивность обслуживания). Необходимо:

- 1. Построить граф сети;
- 2. Определить среднее число требований, среднее число ожидающих требований, среднее время пребывания и среднее время ожидания для каждого узла;
- 3. Результаты оформить в итоговой таблице.

2. Исходные данные

Вариант 32

- \bullet N=4
- Матрица передач:

$$\Pi = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & \frac{9}{17} & \frac{8}{17} & 0 & 0 \\ 0 & \frac{9}{14} & 0 & \frac{5}{14} & 0 \end{pmatrix}$$

- 1 узел: система M/M/2, $\mu=10$
- ullet 2 узел: система $M/M/1,\,\mu=3$
- 3 узел: система $M/M/2, \, \mu = 7$
- 4 узел: система $M/M/2, \, \mu = 7$

3. Замкнутая сеть массового обслуживания

3.1. Граф сети

На рис. 3.1 изображен граф сети массового обслуживания, составленный по матрице передач Π .

Рис. 3.1: Граф сети

3.2. Расчет узлов

Найдем коэффициенты передачи $\alpha_i = {}^{\lambda_i}\!/_{\lambda_0}$:

$$\begin{cases} \lambda_0 = \sqrt[3]{4}\lambda_1 \\ \lambda_1 = \lambda_0 + \sqrt[9]{17}\lambda_3 + \sqrt[9]{14}\lambda_4 \\ \lambda_2 = \sqrt[8]{17}\lambda_3 \\ \lambda_3 = \sqrt[1]{4}\lambda_1 + \sqrt[5]{14}\lambda_4 \\ \lambda_4 = \lambda_2 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 = \sqrt[4]{3}\lambda_0 \\ \lambda_2 = \sqrt[56]{297}\lambda_0 \\ \lambda_3 = \sqrt[19]{297}\lambda_0 \\ \lambda_4 = \sqrt[56]{297}\lambda_0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \sqrt[4]{3} \approx 1.33 \\ \alpha_2 = \sqrt[56]{297} \approx 0.19 \\ \alpha_3 = \sqrt[19]{297} \approx 0.40 \\ \alpha_4 = \sqrt[56]{297} \approx 0.19 \end{cases}$$

Сумма $\sum_{i=1}^{4} \alpha_i \approx 2.11$. Обозначим ω_j , $j = \overline{1,M}$ как вероятность поступления в j-й узел некоторого помеченного требования при его очередном переходе из узла в узел замкнутой сети, тогда:

$$\omega_{j} = \frac{\alpha_{j}}{\sum_{i=1}^{M} \alpha_{i}} \Rightarrow \begin{cases} \alpha_{j} = \sum_{i=1}^{M} \alpha_{i} \cdot P_{ij}, \ j = \overline{1, M} \\ \alpha_{1} = 1 \end{cases} \Leftrightarrow \begin{cases} \omega_{j} = \sum_{i=1}^{M} \omega_{i} \cdot P_{ij}, \ j = \overline{1, M} \\ \sum_{i=1}^{M} \omega_{j} = 1 \end{cases}$$
$$\begin{cases} \alpha_{1} \approx 1.33 \\ \alpha_{2} \approx 0.19 \\ \alpha_{3} \approx 0.40 \end{cases} \Leftrightarrow \begin{cases} \omega_{1} \approx 0.63 \\ \omega_{2} \approx 0.09 \\ \omega_{3} \approx 0.19 \end{cases}$$
$$\omega_{1} \approx 0.00$$

3.3. Возможные состояния сети

Количество возможных состояний равно $C_{N+M-1}^N=C_7^4=35$. Перечислим все возможные состояния сети:

$$S(4,4) = \{4000, 3100, 3010, 3001, 2200, 2110, 2101, 2020, 2011, 2002 \\ 1300, 1210, 1201, 1120, 1111, 1102, 1030, 1021, 1012, 1003, \\ 0400, 0310, 0301, 0220, 0211, 0202, 0130, 0121, 0112, 0103, \\ 0040, 0031, 0022, 0013, 0004\}$$

Найдем вероятность нахождения сети в каждом из состояний по формуле:

$$P(n_1,\ldots,n_M) = \frac{1}{G_M(N)} \cdot \prod_{i=1}^M Z_i(n_i),$$

где $G_M(N)$ – нормирующая константа замкнутой сети с M узлами и N заявками, а Z_i и $\mu_i(j)$ определяются следующими формулами:

$$G_M(N) = \sum_{n \in S(N,M)} \prod_{i=1}^{M} Z_i(n_i); \quad Z_i(n_i) = \frac{\omega_i^{n_i}}{\prod_{j=1}^{n_j} \mu_i(j)}; \quad \mu_j(k) = \begin{cases} k \cdot \mu_j, & k < m_j \\ m_j \cdot \mu_j, & k \geqslant m_j \end{cases}$$

Для указанной последовательности состояний S(4,4) найденные вероятности оказались равны:

 $P = \{0.0931, 0.0878, 0.0799, 0.0376, 0.0828, 0.0754, 0.0355, 0.0343, 0.0323, 0.0076, \\0.0780, 0.0710, 0.0334, 0.0324, 0.0304, 0.0072, 0.0147, 0.0139, 0.0065, 0.0015, \\0.0368, 0.0335, 0.0158, 0.0153, 0.0144, 0.0034, 0.0069, 0.0065, 0.0031, 0.0007, \\0.0032, 0.0030, 0.0014, 0.0007, 0.0002\}$

3.4. Расчет характеристик узлов

По известным вероятностям найдем среднее число заявок в сети $\overline{n_j}(N)$, среднее число заявок в очереди на обслуживание $\overline{n_j^{\text{ож}}}(N)$ и среднее число занятых приборов $\overline{n_j^{\text{обсл}}}(N)$:

$$\overline{n_j}(N) = \sum_{\substack{n \in S(N,M) \\ n_j < m_j}} n_j \cdot P(n_1, \dots, n_M)$$

$$\overline{n_j^{\text{ODK}}}(N) = \sum_{\substack{n \in S(N,M) \\ n_j < m_j}} (n_j - m_j) \cdot P(n_1, \dots, n_M)$$

$$\overline{n_j^{\text{OGCJI}}}(N) = \overline{n_j}(N) - \overline{n_j^{\text{ODK}}}(N)$$

По числовым показателям узлов найдем среднее время пребывания заявки в узле и среднее время ожидания заявкой обслуживания

$$\overline{t_j}(N) = \frac{\overline{n_j}(N)}{\overline{n_j^{\text{obc.}}}(N)} \cdot \frac{1}{\mu_j}$$

$$\overline{t_{\text{ow}}} = \frac{\overline{n_j^{\text{ow}}}(N)}{\overline{n_j^{\text{obc.}}}(N)} \cdot \frac{1}{\mu_j}$$

В таблице 3.1 приведены рассчитанные показатели для каждого узла сети.

Таблица 3.1: Результаты

	1 узел	2 узел	3 узел	4 узел
Ср. число требований \overline{n}	1.8131	1.2552	0.6413	0.2904
Ср. число ожидающих требований $\overline{n_{ m ox}}$	0.3915	0.5851	0.0310	0.0032
Ср. время пребывания \bar{t}	0.1275	0.6244	0.1501	0.1445
Ср. время ожидания $\overline{t_{\text{ож}}}$	0.0275	0.2910	0.0073	0.0016