Algoritmos para Análise de Sequências Biológicas

Análise Filogenética

Sumário

- Análise filogenética
- Algoritmo UPGMA

Análise Filogenética AASE 2/27

Definição

- Análise filogenética de um conjunto de sequências (DNA, RNA, proteínas) é a determinação de como cada sequência pode ter sido derivada ao longo do processo de evolução natural.
- Relações evolutivas são visualizadas colocando as sequências como folhas de uma árvore evolucionária, onde os nós de ramificação representam eventos de mutação (substituição, inserção, remoção).

Análise Filogenética AASB 3 / 27

Análise Filogenética

Uma árvore filogenética sugere as relações de proximidade entre sequências; Proximidade na árvore sugere proximidade evolutiva

Análise Filogenética AASB 4/27

Análise Filogenética

Os nós da árvore indicam ancestrais comuns

Análise Filogenética AASB 5 / 27

Aplicações

- Determinar a árvore da vida evolução das diferentes espécies complementando os métodos tradicionais baseados na morfologia; permitem estabelecer relações taxonómicas entre espécies ou ancestralidade entre indivíduos ou populações;
- Ajuda na determinação da função de sequências de DNA/ proteínas determinação de ramos com domínios específicos que podem ter consequências funcionais;
- Análise de espécies com mutações rápidas (e.g. virus) pode ajudar na epidemiologia; permite hierarquizar mutações numa árvore - antigas vs. recentes;
- Primeiro passo para alguns algoritmos de Alinhamento Múltiplo (progressivos).

Análise Filogenética AASB 6 / 27

Árvore de gene/sequência vs. espécie

- A evolução de um gene na maioria dos casos segue a evolução observada da espécie
- A reconstrução filogenética de um gene humano terá preponderância a agrupar o gene humano com o chimpanzé, e ambos com o gorila

Exceções

- Nem sempre a filogenia pode estar correcta; n\u00e3o se pode fazer infer\u00e9ncia a partir de um s\u00f3 gene.
- A relação entre espécies (taxonomia) pode estar incorrecta
- Transferência horizontal
 - Típica das bactérias
 - ► Gene é incorporado no genoma de uma fonte exterior
 - Não seguiu a história evolutiva da espécie onde se inseriu

Análise Filogenética AASB 7 / 27

Árvores Evolucionárias

- Indicam o sentido da passagem do tempo
- Pode assumir-se a hipótese do relógio molecular taxas de mutação uniformes
- Árvores podem ser representadas pelos clusters que se obtêm juntando taxa (folhas) presentes abaixo de cada nó interno (sub-árvores)
- ullet N $^{\circ}$ de árvores aumenta muito rapidamente com o aumento do n $^{\circ}$ de sequências.

8 / 27

Algoritmos de Análise Filogenética

- Objectivo: a partir de um conjunto de sequências (DNA ou proteínas), determinar a árvore evolucionária que melhor explique a sua evolução.
- Problema de **otimização**: de entre todas as árvores possíveis, escolher a que maximiza uma dada função objetivo.
- Espaço de procura tipicamente bastante grande problema muito complexo.

Análise Filogenética AASB 9 / 27

Complexidade do problema

# seqs	# pares de seqs	# arvores	# ramos/árvore
3	3	3	4
4	6	15	6
5	10	105	8
6	15	945	10
10	45	34459425	18
30	435	4.95×10^{38}	58
N	$\frac{N(N-1)}{2}$	$\frac{(2N-3)!}{2^{N-2}(N-2)!}$	2N - 2

Análise Filogenética 10 / 27

Algoritmos de previsão filogenética

Baseados na distância Baseia-se na distância (alterações) entre pares de sequências: Neighbor Joining, UPGMA

Máxima parcimónia (ou mínima evolução) Retornam a árvore que minimiza nº de mutações necessárias para explicar a variação das sequências

Máxima verosimilhança Emprega modelos probabilísticos

Análise Filogenética AASB 11 / 27

Métodos baseados na distância

Baseiam-se na distância (inverso da similaridade) entre os diversos pares de sequências considerados.

Objectivo: tentar identificar sequências a colocar como vizinhas e determinar comprimentos dos ramos da árvore filogenética que representem, o mais fielmente possível, as distâncias entre os pares de sequências.

São usados como primeiro passo dos métodos progressivos de AM (e.g. ClustalW).

12 / 27

Métodos baseados na distância

Pretende-se encontrar a árvore T que minimiza

SQE
$$\sum_{ij} (d_{ij}(T) - D_{ij})^2$$

Esta é a soma do quadrado dos erros entre a distância na árvore e a distância nas sequências dos vários taxa

O problema de estimar a árvore que minimiza SQE é um problema NP-difícil

Análise Filogenética AASB 13 / 27

Cálculo da distância

- Tipicamente, distância medida pelo nº de carateres distintos entre as duas sequências (edit distance)
- Métodos mais complexos podem fazer uso de matrizes de substituição (e.g. PAM, BLOSUM).
- Pode usar-se a função de mérito dos alinhamentos normalizada entre 0 e 1 (distância será 1 – mérito normalizado).

14 / 27

Algoritmo Unweighted Pair Group Method Using Arithmetic Averages (UPGMA)

- Algoritmo heurístico (não dá garantias de soluções óptimas mas é eficiente)
- Começa pelo par de sequências mais próximo e vai agrupando as sequências usando sempre a distância menor como critério
- Usa um algoritmo clássico de clustering: clustering hierárquico

Análise Filogenética AASB 15 / 27

Algoritmo UPGMA

 Assume taxas de mutação uniformes em todos os ramos, logo árvores criadas são ultramétricas

Análise Filogenética AASB 16 / 27

Algoritmo UPGMA

Cada sequência é agrupada num cluster

Análise Filogenética AASB 17/27

Algoritmo UPGMA

- **①** Criar um cluster para cada sequência: $L = \{\{s_i\} : s_i \in S\}$
- Matriz de distâncias entre os clusters é inicializada com a matriz de distâncias entre as sequências
- Enquanto existir mais do que um cluster
 - **1** Descobrir os clusters C_i e C_i com distância mínima entre eles
 - 2 Criar o cluster $C_k = C_i \cup C_i$
 - Adicionar o novo cluster a L e remover os anteriores: $L = \{C_k\} \cup L \setminus \{C_i, C_i\}$
 - Remover linhas e colunas i e j da tabela de distâncias
 - **1** Introduzir linha e coluna para k com as distâncias para o novo cluster na árvore, adicionar vértice ligando os nós referentes a C_i e C_i com valor de altura igual a d_{ij} / 2

18 / 27

	$\{s_1\}$	{ <i>s</i> ₂ }	{ <i>s</i> ₃ }	{ <i>s</i> ₄ }	{ <i>s</i> ₅ }
$\{s_1\}$	0				
$\{s_2\}$	2	0			
$\{s_3\}$	5	4	0		
$\{s_4\}$	7	6	4	0	
$\{s_5\}$	9	7	6	3	0

Análise Filogenética AASB 19 / 27

	$\{s_1,s_2\}$	$\{s_3\}$	$\{s_4\}$	$\{s_5\}$
$\overline{\{s_1,s_2\}}$	0			
{ <i>s</i> ₃ }	4.5	0		
$\{s_4\}$	6,5	4	0	
$\{s_5\}$	8	6	3	0

Análise Filogenética AASIS 20 / 27

	$\{s_1,s_2\}$	{ <i>s</i> ₃ }	$\{s_4,s_5\}$
$\{s_1, s_2\}$	0		
$\{s_3\}$	4.5	0	
$\{s_4,s_5\}$	7,25	5	0

Análise Filogenética AASB 21/27

	$\{s_1, s_2, s_3\}$	$\{s_4, s_5\}$
$\overline{\{s_1,s_2,s_3\}}$	0	
$\{s_4,s_5\}$	6.125	0

Análise Filogenética AASB 22 / 27

Análise Filogenética AASB 23 / 27

Neighbor Joining

- Funciona de forma semelhante ao UPGMA
- Muda a forma de escolher os clusters que se juntam em cada passo: usa-se a regra de juntar sub-árvores que estejam próximas, mas afastadas das restantes
- Muda o valor colocado como altura da árvore

Análise Filogenética AASB 24 / 27

Máxima parcimónia (mínima evolução)

- Objectivo: minimizar nº de passos evolutivos (mutações) que explicam a variação das sequências
- Baseia-se num Alinhamento Múltiplo; análise de cada posição (coluna do alinhamento)
- São identificadas as árvores que requerem o menor nº de mutações, para todas as posições (informativas)
- Vantagem de ser fácil estabelecer relação entre ramos da árvores e as mutações que ocorrem
- Método exato pesado computacionalmente -- ideal para filogenias menos profundas mas não ideal para espécies distantes

Análise Filogenética AASB 25 / 27

Aferir significância

Bootstrap

- Selecionar colunas do AM aleatoriamente, com substituição;
- Repetir construção da árvore com diferentes seleções;
- Frequência com que dada característica ocorre é indicador da sua confiança.

Se possível usar dois tipos de métodos para construir a árvore e comparar resultados

Análise Filogenética AASB 26 / 27

Programas de análise filogenetica

MEGA - http://www.megasoftware.net/ Inclui métodos de máxima parcimónia, distância, máxima verosimilhança

Mr Bayes - https://nbisweden.github.io/MrBayes/index.html Implementa essencialmente métodos de máxima verosimilhança

Análise Filogenética AASB 27 / 27