MCE/EEC 647/747: Robot Dynamics and Control

Lecture 3.5: Sumary of Inverse Kinematics Solutions

Reading: SHV Sect.2.5.1, 3.3

Mechanical Engineering Hanz Richter, PhD

Inverse Orientation: Euler Parameterization

- Suppose a desired orientation is specified between any two frames (numerically, through a 3x3 rotation matrix R)
- A good approach is to select a particular decomposition (parameterization) and try to solve for its independent parameters.
- With the Euler parameterization, we saw that

$$R_{ZYZ} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\phi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

■ SHV develops a well-reasoned, step-by-step solution of $R_{ZYZ} = R$ to find θ , ϕ and ψ . (See Sect. 2.5.1)

Inverse Orientation by Euler: Solutions

- Let r_{ij} be the numerical entries of R, for i, j = 1, 2, 3.
- If at least one of r_{31} and r_{32} is not zero, there will be two solutions for θ :

$$\theta^+ = \text{atan2}(r_{33}, \sqrt{1 - r_{33}^2})$$

$$\theta^- = \text{atan2}(r_{33}, -\sqrt{1 - r_{33}^2})$$

- Atan2 is the two-argument arctangent function defined in Appendix A. Warning: Not exactly the same as Matlab's atan2
- With θ^+ , the remaining solutions are

$$\phi^+ = \text{atan2}(r_{13}, r_{23})$$

$$\psi^+ = \text{atan2}(-r_{31}, r_{32})$$

Inverse Orientation by Euler: Solutions...

■ With θ^- , the remaining solutions are

$$\phi^-= ext{atan2}(-r_{13},-r_{23})$$
 $\psi^-= ext{atan2}(r_{31},-r_{32})$

- If r_{31} and r_{32} are zero, θ can be either 0 or π .
- In this case, the system is underdetermined (infinite number of solutions for ϕ and ψ).
- lacksquare Only the sum $\phi + \psi$ is determined by problem information.

Example

- 1. Find a way to use Matlab's atan2 so that the results match SHV's Atan2.
- 2. Write code to assist you in finding solutions to the inverse orientation problem by the Euler parameterization

Decompose

$$\mathsf{Rot}_{x,\pi/4} \mathsf{Rot}_{y,\pi/3} \mathsf{Rot}_{y,-\pi} \mathsf{Rot}_{z,\pi}$$

into Euler angles and verify both solutions.

The solution for the pitch, roll and yaw parameterization is closely-related to the Euler solution (just a permutation of angles).

Inverse Position: 2-Link Planar Arm

See Figure 1.22 in SHV.

- Any desired endpoint position can be projected onto the world frame as x and y.
- Let $D = \frac{x^2 + y^2 a_1^2 a_2^2}{a_1 a_2}$. Then two solutions exist for q_2 :
- Elbow up

$$q_2 = \tan^{-1}(-\sqrt{1-D^2}/D)$$

■ Elbow down

$$q_2 = \tan^{-1}(\sqrt{1 - D^2}/D)$$

■ Once q_2 is determined:

$$q_1 = \tan^{-1}(y/x) - \tan^{-1}\left(\frac{a_2\sin(q_2)}{a_1 + a_2\cos(q_2)}\right)$$

Inverse Position and Orientation

- 1. To meet a simultaneous end frame position and orientation requirement, we must match H_n^o to a given numerical 4x4 matrix H.
- 2. There will always be 12 equations, since the last row of H and H_n^0 is always 0 0 0 1.
- 3. The number of unknowns depends on the robot (n unknowns for n joints).
- 4. The problem is in general difficult to solve. There could be no solutions, or one or more solutions.
- 5. Some configurations have relatively simple geometries leading to known solutions.

Inverse Position and Orientation by Decoupling

Special case: 6 DOF (very useful)

- 1. The last 3 joints have actuation axes intersect at a single point o_c (the wrist center).
- 2. The point of interest (whose world position is being requested) is o. We assume that o is obtained by translation by d_6 units starting from o_c , along the z_6 axis.
- 3. The frame of interest (whose world orientation is being requested) is centered at o_c . The desired orientation relative to the world is R.
- 4. Under these assumptions we have $o^0 = H_6^0[0\ 0\ d_6|1]^T$, where the structure of H_6^0 is:

$$\begin{bmatrix} R & o_c^0 \\ 0 & 1 \end{bmatrix}$$

Inverse Position and Orientation by Decoupling

■ Therefore $o = o_c^0 + R[0 \ 0 \ d_6]^T$. If the data for o is $[o_x, o_y, o_z]$ and the world components of o_c are $[x_c, y_c, z_c]$:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

- The above will give us the required o_c . Decoupling: o_c depends only on the first three joint variables!
- We can then find q_1 , q_2 and q_3 to obtain o_c independently (an inverse position sub-problem).

Inverse Position and Orientation by Decoupling...

- Decoupling: R_3^0 depends only on the first three joints. Assume inverse position has been solved.
- Then R_3^0 is known and

$$R = R_3^0 R_6^3, \ R_6^3 = (R_3^0)^{-1} R$$

- Once R_6^3 is obtained, we solve an inverse orientation sub-problem (using Euler) for q_4 , q_5 and q_6 .
- SHV provides details for the inverse position sub-problem for various common configurations.
- Multiple solutions may exist (up to 4 for the PUMA robot, 8 total in combination with 2 inverse orientation solutions).
- Understanding and applying these solutions is left as a homework problem.

Kinematics with Corke's Robotics Toolbox

Some functions

- Forward Euler calculation eul2r
- Inverse orientation by Euler (try our example with the toolbox) tr2eul. Use the flip option for the negative solution.
- Create a robot link using DH parameters:

```
L=Link([theta,d,a,alpha,jtype]) Use jtype=0 for revolute, 1 for prismatic.
```

- Use theta=0 to leave the joint coordinate unspecified.
- Link defines the frame attached to the link per DH. Recover the corresponding *H* with L.A (thetavalue)
- Similarly, use R.a, R.offset to recover or redefine length and offset.

Kinematics with Corke's Robotics Toolbox

Some functions...

- Building a robot: use L(1) = Link(...), L(2) = Link(...)
- Then myrobot=SerialLink(L,'name','chosenname')
- Find the value of $H_n^0(q)$: myrobot.fkine(q)
- Plot the robot pose at q: myrobot.plot(q) (list q as a row vector!)
- Built-in robot: mdl_puma560 (creates p560 serial link object
- Inverse kinematics by decoupling (PUMA 560 satisfies all assumptions): p560.ikine6s(H,'opt')
- H is the desired position+orientation. Options to choose among various solutions.

Kinematics with Corke's Robotics Toolbox

Some functions...

General inverse kinematics (numerical search):

```
myrobot.ikine(H, quess)
```

■ Example: For the 2-link planar manipulator with unit link lengths, we compute the required q(t) so the endpoint describes a circle of radius 0.5 centered at (1,1). We verify using forward kinematics.