微积分 A (1)

姚家燕

第6讲

在听课过程中,

严禁使用任何电子产品!

第 5 讲回顾: 单调有界定理

- 单调有界定理:单调递增有上界的数列必收敛; 单调递减有下界的数列必收敛.
- 应用单调有界定理的典型例子:

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1},$$

• 重要的不等式:

$$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1},$$

 $\frac{1}{n+1} < \log(1+\frac{1}{n}) < \frac{1}{n}.$

回顾: 应用单调有界定理的基本思想

- 单调有界定理时常应用于由递归关系定义的数列. 此时先假设极限存在,由此计算极限,然后再比较该极限与数列最初的值的大小.若极限大,则该数列理应递增,否则递减.
- •利用各种手段 (通常是数学归纳法) 来证明数列的单调性和有界性.

回顾: 应用单调有界定理的典型例题

- •数列 $\{\sum_{k=1}^{n} \frac{1}{k^2}\}$ 收敛.
- 设 c > 0, $a_1 = \sqrt{c}$, 且 $\forall n \ge 1$, $a_{n+1} = \sqrt{c + a_n}$. 则 $\lim_{n \to \infty} a_n = \frac{1}{2}(1 + \sqrt{1 + 4c})$.
- 设 $b_1 \geqslant a_1 \geqslant 0$. $\forall n \geqslant 1$, 归纳定义

$$a_{n+1} = \sqrt{a_n b_n}, \ b_{n+1} = \frac{1}{2}(a_n + b_n).$$

求证: 数列 $\{a_n\}$ 和 $\{b_n\}$ 收敛到同一个极限.

回顾: 无穷极限

设 $\{a_n\}$ 为数列.

- (1) 称该数列趋向于 $+\infty$, 记作 $\lim_{n\to\infty} a_n = +\infty$, 若 $\forall M > 0$, $\exists N > 0$ 使得 $\forall n > N$, $a_n > M$.
- (2) 称该数列趋向于 $-\infty$, 记作 $\lim_{n\to\infty} a_n = -\infty$, 若 $\forall M>0$, $\exists N>0$ 使得 $\forall n>N$, $a_n<-M$.
- (3) 称该数列趋向于 ∞ , 记作 $\lim_{n\to\infty} a_n = \infty$, 如果 $\forall M > 0$, $\exists N > 0$ 使得 $\forall n > N$, $|a_n| > M$.

回顾: "有极限"与"收敛"的差别

假设 $\lim_{n\to\infty} x_n = A$.

- 若 $A \in \mathbb{R} \cup \{\pm \infty, \infty\}$, 则称 $\{x_n\}$ 有极限 A, 也称数列 $\{x_n\}$ 趋向于 A 或趋近于 A.
- 若 $A \in \mathbb{R}$, 则称数列 $\{x_n\}$ 收敛到 A.
- 关于数列极限的许多结论仅对收敛数列成立.比如说唯一性、四则运算等等对无穷极限不成立,但保序性、夹逼原理等依然成立.

回顾: Stolz 定理及其应用

• Stolz 定理: 设数列 $\{b_n\}$ 严格递增趋于 $+\infty$.

若
$$\lim_{n\to\infty} \frac{a_n-a_{n-1}}{b_n-b_{n-1}} = A \in \mathbb{R} \cup \{\pm\infty\}$$
, 则 $\lim_{n\to\infty} \frac{a_n}{b_n} = A$.

• 典型例题:

- (2) $\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = 1.$
- (3) $\lim_{n \to \infty} \frac{1+2^k+3^k+\dots+n^k}{n^{k+1}} = \frac{1}{k+1} \ (k \in \mathbb{N}).$

回顾: 关于实数系的基本定理

- 区间套定理: 区间长度趋于 0 的闭区间套的 交为单点集, 该点是区间两端点列的极限. 该定理建立了实轴与实数集之间的对应.
- 列紧性定理: 有界数列必有收敛子列.
- Cauchy 数列: $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall m, n > N$, 均有 $|x_m x_n| < \varepsilon$.
- Cauchy 判别准则: 数列 $\{x_n\}$ 收敛当且仅当它为 Cauchy 数列.

第6讲

例 2. 求证: 数列 $\left\{\sum_{k=1}^{n} \frac{(-1)^k}{k^2}\right\}$ 收敛.

证明:
$$\forall n \geqslant 1$$
, $\diamondsuit x_n = \sum_{k=1}^n \frac{(-1)^k}{k^2}$. 则 $\forall \varepsilon > 0$, 如果

取 $N = \left[\frac{1}{\varepsilon}\right] + 1$,则 $\forall n > N$ 以及 $\forall p > 0$,我们有

$$|x_{n+p} - x_n| = \Big| \sum_{k=n+1}^{n+p} \frac{(-1)^k}{k^2} \Big| \leqslant \sum_{k=n+1}^{n+p} \frac{1}{k^2} \leqslant \sum_{k=n+1}^{n+p} \frac{1}{k(k-1)}$$

$$= \sum_{k=n+1}^{n+p} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n} < \varepsilon.$$

故原数列为 Cauchy 数列, 从而收敛.

例 3. $\forall n \ge 1$, $\diamondsuit x_n = \prod_{k=1}^n (1 + \frac{1}{2^k})$. 求证 $\{x_n\}$ 收敛.

证明: $\forall k \geqslant 1$, $1 + \frac{1}{k} \leqslant e^{\frac{1}{k}}$, 于是 $\forall n \geqslant 1$, 我们有

$$|x_{n+1} - x_n| = \frac{x_n}{2^{n+1}} \leqslant \frac{1}{2^{n+1}} \prod_{k=1}^n e^{2^{-k}} = \frac{1}{2^{n+1}} e^{1-2^{-n}} < \frac{e}{2^{n+1}}.$$

$$\forall \varepsilon > 0$$
, $\Leftrightarrow N = \left| \left[\frac{\log \frac{e}{\varepsilon}}{\log 2} \right] \right| + 1$. $\forall n > N \not \mathbb{Z} \ \forall p > 0$,

$$|x_{n+p} - x_n| \le \sum_{k=n}^{n+p-1} |x_{k+1} - x_k| \le \sum_{k=n}^{n+p-1} \frac{e}{2^{k+1}} < \frac{e}{2^n} < \varepsilon.$$

故 $\{x_n\}$ 为 Cauchy 数列, 从而收敛.

例 4. 如果 $\exists C > 0$ 使得数列 $\{x_n\}$ 满足 $\forall n \geq 1$,

$$y_n := |x_2 - x_1| + \dots + |x_{n+1} - x_n| < C.$$

求证: 数列 $\{x_n\}$ 收敛.

证明:由于 $\{y_n\}$ 递增并且有上界 C,则由单调有界定理可知该数列收敛,从而为 Cauchy 数列.

则 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall p > 0$,

$$y_{n+p-1} - y_{n-1} = \sum_{k=n}^{n+p-1} |x_{k+1} - x_k| < \varepsilon.$$

由此我们立刻可得

$$|x_{n+p} - x_n| = \left| \sum_{k=n}^{n+p-1} (x_{k+1} - x_k) \right|$$

 $\leq \sum_{k=n}^{n+p-1} |x_{k+1} - x_k| < \varepsilon.$

故 $\{x_n\}$ 为 Cauchy 数列, 因此收敛.

注: 例 1, 例 2, 例 3 均为 例 4 的特殊情形.

作业题: 第 1.5 节第 23 页第 2 题第 (2), (4) 题.

Cauchy 数列的否定表述

(1) 数列 $\{x_n\}$ 不是Cauchy数列当且仅当 $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists m, n > N$ 满足 $|x_m - x_n| \geqslant \varepsilon_0.$

(2) 数列
$$\{x_n\}$$
不是Cauchy数列当且仅当 $\exists \varepsilon_0 > 0$ 使得 $\forall N > 0$, $\exists n > N$ 且 $\exists p > 0$ 满足

$$|x_{n+p} - x_n| \geqslant \varepsilon_0.$$

例 5. 设 $0 \le \alpha \le 1$, 而数列 $\{x_n\}$ 使得 $\forall n \ge 1$, $x_{n+1} \ge x_n + \frac{1}{n^{\alpha}}$. 求证: 数列 $\{x_n\}$ 发散.

证明: 对于
$$\varepsilon_0 = \frac{1}{2^{\alpha}}$$
 及 $\forall N > 0$, 令 $m = 2N + 2$, $n = N + 1$, 则我们有

$$|x_{2N+2} - x_{N+1}| = \sum_{k=N+1}^{2N+1} (x_{k+1} - x_k) \geqslant \sum_{k=N+1}^{2N+1} \frac{1}{k^{\alpha}}$$

$$\geqslant \frac{N+1}{(2N+1)^{\alpha}} \geqslant \frac{N+1}{(2N+2)^{\alpha}} = \frac{(N+1)^{1-\alpha}}{2^{\alpha}} \geqslant \frac{1}{2^{\alpha}} = \varepsilon_0.$$

故所证结论成立.

作为特例, 考虑 $\{x_n\}$, 其中 $x_1 = 0$, 并且 $\forall n > 1$, $x_n = \sum_{k=1}^{n-1} \frac{1}{k}$. 则 $x_{n+1} - x_n = \frac{1}{n}$, 从而 $\{x_n\}$ 发散,

故极限 $\sum_{k=1}^{\infty} \frac{1}{k} := \lim_{n \to \infty} x_{n+1} = +\infty$. 这就是著名的

调和级数,在素数研究中起着重要作用.

作业题: $\forall n \geq 1$, 设

$$v_n = (1 + \frac{\sin 1}{2}) + \dots + (\frac{1}{n} + \frac{\sin n}{2^n}).$$

求证: 数列 $\{v_n\}$ 发散.

Cauchy 准则蕴含确界定理

定理 4. 假设 A 为非空的数集. 如果 A 有上界,则它有上确界;如果 A 下界,则它有下确界.

证明: 这里只需考虑 A 的上确界. 对于下确界, 可通过讨论 -A 将问题转化成上确界的情形.

设 $a_1 \in A$, 而 b_1 为 A 的一个上界. 则我们有 $A \cap [a_1, b_1] \neq \emptyset$. 令 c_1 为 $[a_1, b_1]$ 的中点. 如果 c_1 为 A 的上界, 则将 $[a_1, c_1]$ 记为 $[a_2, b_2]$, 否则则将 $[c_1, b_1]$ 记为 $[a_2, b_2]$. 此时有 $A \cap [a_2, b_2] \neq \emptyset$.

如此下去可得满足如下性质的区间套 $\{[a_n,b_n]\}$:

(1)
$$b_n - a_n = \frac{1}{2^{n-1}}(b_1 - a_1)$$
,

- (2) $A \cap [a_n, b_n] \neq \emptyset$,
- (3) b_n 是 A 的一个上界.

于是
$$\forall \varepsilon > 0$$
, 若我们选取 $N = |[\log_2 \frac{b_1 - a_1}{\varepsilon}]| + 1$, 则 $\forall n > N$ 以及 $\forall p > 0$, 我们均有

$$0 \leqslant b_n - b_{n+p} \leqslant b_n - a_n = \frac{1}{2^{n-1}}(b_1 - a_1) < \varepsilon.$$

故 $\{b_n\}$ 为 Cauchy 数列, 因此收敛到某极限 c.

又 $\lim_{n\to\infty} (b_n - a_n) = \lim_{n\to\infty} \frac{1}{2^{n-1}} (b_1 - a_1) = 0$,因此数列 $\{a_n\}$ 也收敛到 c. 下面来证明 $c = \sup A$. $\forall n \geqslant 1$ 以及 $\forall x \in A$,我们有 $x \leqslant b_n$. 由保序性

可知 $x \leq c$. 则 $c \neq A$ 的一个上界. 又 $\forall \varepsilon > 0$,

 $\exists N > 0$ 使得 $\forall n > N$, $0 \leqslant c - a_n < \varepsilon$. 特别地,

 $c-\varepsilon < a_{N+1}$. 但 $A \cap [a_{N+1}, b_{N+1}] \neq \emptyset$, 由此知

 $\exists x \in A$ 使得 $x \geqslant a_{N+1} > c - \varepsilon$. 故 $c = \sup A$.

下述结论等价!

- 确界定理: 有上(下)界集有上(下)确界.
- 单调有界定理: 单调有界数列收敛.
- 区间套定理: 长度趋于 0 的闭区间套的交集 为单点集, 该点是区间两端点列的极限.
- 列紧性定理: 有界数列必有收敛子列.
- Cauchy 准则: 收敛数列 = Cauchy 数列.

第1章总复习

- 上界, 上确界 (及其刻画), 最大值及其关系.
- 下界, 下确界 (及其刻画), 最小值及其关系.
- 有界集的刻画, 上、下确界之间的关系.
- 证明关于上、下确界的关系式的标准方法.
- 极限的定义及其否定表述.
- 数列极限性质: 唯一性, 有限韧性, 均匀性, 有界性, 局部保序性, 局部保号性.

- 计算极限的方法: 四则运算法则, 夹逼原理, Stolz 定理, 单调有界定理, Cauchy 准则.
- 不知道极限但可判断数列是否收敛的方法: 夹逼原理, 单调有界定理, Cauchy 准则.
- 应用单调有界定理的步骤.
- 应用 Cauchy 准则及其否定形式的步骤.
- 典型的极限及其计算方法.

综合练习

例 1.
$$\forall n \ge 1$$
, $\diamondsuit x_n = \prod_{k=1}^n (1 + \frac{1}{2^k})$. 求证 $\{x_n\}$ 收敛.

证明: 由于
$$\forall k \geqslant 1$$
, 均有 $1 + \frac{1}{k} \leqslant e^{\frac{1}{k}}$. 则 $\forall n \geqslant 1$,

$$x_n \leqslant \prod_{k=1}^n e^{2^{-k}} = e^{\sum_{k=1}^n 2^{-k}} = e^{1-2^{-n}} < e.$$

又因
$$x_{n+1} = x_n(1 + \frac{1}{2^{n+1}}) \ge x_n$$
, 于是数列 $\{x_n\}$

单调递增有上界, 故收敛.

例 2. 单调递增并且没有上界的数列趋于 $+\infty$; 单调递减并且没有下界的数列趋于 $-\infty$.

证明: 若 $\{a_n\}$ 递增且没有上界, 那么 $\forall M > 0$, $\exists N > 0$ 使得 $a_N > M$, 于是 $\forall n > N$, 我们均有 $a_n \geq a_N > M$. 因此数列 $\{a_n\}$ 趋于 $+\infty$. 若 $\{a_n\}$ 递减无下界, 那么 $\{-a_n\}$ 递增无上界,

于是 $\{-a_n\}$ 趋于 $+\infty$, 从而 $\{a_n\}$ 趋于 $-\infty$.

注: 单调数列总有 (有限或无限的) 极限.

作业题: 第1章总复习题第24页第6题.

例 3. 若 $\{a_n\}$ 恒不为零且 $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = X < 1$, 求证: $\lim_{n\to\infty} a_n = 0$.

证明: 方法 1. 选取 $q = \frac{1}{2}(1+X) > X$. $\forall n \ge 1$, 定义 $x_n = \frac{|a_{n+1}|}{|a_n|}$. 于是由保序性可得知, $\exists N > 0$ 使得 $\forall n > N$, 我们均有 $x_n < q$, 由此可得

$$0 \leqslant |a_n| = |a_1| \prod_{k=1}^{n-1} \frac{|a_{k+1}|}{|a_k|} \leqslant (|a_1| (\prod_{k=1}^N x_k)) q^{n-1-N}.$$

但 0 < q < 1,则由夹逼原理可知 $\lim_{n \to \infty} |a_n| = 0$,

进而可知所证结论成立.

方法 2. 由保序性可知, $\exists N > 0$ 使得 $\forall n > N$,

均有 $\frac{|a_{n+1}|}{|a_n|}$ < 1. 于是数列 $\{|a_n|\}$ 从第 N+1 项 开始递减且以 0 为下界, 于是由单调有界定理

可知 $\{|a_n|\}$ 收敛, 设其极限为 A, 那么

$$A = \lim_{n \to \infty} |a_{n+1}| = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \cdot |a_n| = XA.$$

但 X < 1, 故 A = 0, 进而可得 $\lim_{n \to \infty} a_n = 0$.

谢谢大家!