Initiation à la topologie dans $\mathbb R$ et $\mathbb C$

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Voisinages													2				
	1.1	Définitions	Péfinitions									2						
		1.1.1 Notations													 			2
		1.1.2 Définition													 			2
		1.1.3 Exemples													 			2
1.2 Propriétés															 			2
		1.2.1 Réunions,	intersection .												 			2
		1.2.2 Formulatio	n topologique	de la co	onvergen	ce des	suite	s							 			3
2	Par	ties ouvertes et f	ermées															3
	2.1 Définitions, exemples													 			3	
		2.1.1 Définitions													 			3
		2.1.2 Exemples													 			3
	2.2	Propriétés, exemp										 			4			
																		4
		2.2.2 Exemple.													 			4
3	Adhérence, intérieur														4			
	3.1	Définitions, remar	finitions, remarques									4						
		3.1.1 Définitions	·												 			4
		3.1.2 Remarques													 			5
		3.1.3 Exemples													 			5
	3.2	Théorèmes															5	
		3.2.1 Caractérisa	tion séquentie	elle de l'a	adhéren	се									 			5
			tion de l'intér															5
		3.2.3 Fermeture	et convergenc	e											 			6
	3.3	Parties compactes	_															6
		•																6
		3 3 2 Théorème																7

1 Voisinages

cns la suite, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1.1 Définitions

1.1.1 Notations

Si $x \in \mathbb{K}$ et $\varepsilon \in \mathbb{R}_+^*$, alors on note

$$\overline{V_{\mathbb{K}}}\left(x,\varepsilon\right)=\left\{ y\in\mathbb{K}|\left|y-x\right|\leqslant\varepsilon\right\}$$

- Si
$$\mathbb{K} = \mathbb{R}$$
, $x \in \mathbb{R}$ et $\varepsilon > 0$, alors $\overline{V_{\mathbb{K}}}(x, \varepsilon) = [x - \varepsilon, x + \varepsilon]$.

- Si
$$\mathbb{K} = \mathbb{C}$$
, $z \in \mathbb{C}$ et $\epsilon > 0$, alors $\overline{V_{\mathbb{K}}}(z, \varepsilon) = \overline{\mathcal{D}}(z, \varepsilon)^a$.

1.1.2 Définition

Soit $x \in \mathbb{K}$, $A \subset \mathbb{K}$. On dit que A est un voisinage de x dans \mathbb{K} s'il existe $\varepsilon > 0$ tel que

$$\overline{V_{\mathbb{K}}}(x,\varepsilon) \subset A$$

1.1.3 Exemples

- [0,1[est un voisinage de $\frac{1}{2}$ dans \mathbb{R} car $\left[\frac{1}{2} \frac{1}{4}, \frac{1}{2} + \frac{1}{4}\right]$ ⊂ [0,1[. Par contre, [0,1[n'est pas un voisinage de 0 dans \mathbb{R} car $\forall \varepsilon > 0$, [$-\varepsilon, \varepsilon$] contient des réels strictement négatifs donc n'est pas inclus dans [0,1[.
- [-1,1] n'est pas un voisinage de 0 dans \mathbb{C} car $\forall \varepsilon > 0$, $i\varepsilon \in \overline{\mathcal{D}}(0,\varepsilon)$ mais $i\varepsilon \notin [-1,1]$.
- Un intervalle ouvert est un voisinage de chacun de ses points. En effet, soient $a,b \in \mathbb{R}$ tels que a < b et $c \in]a,b[$. Posons $\alpha = \min(c-a,b-c)$, alors $\left[c-\frac{\alpha}{2},c+\frac{\alpha}{2}\right]$ est inclus dans]a,b[.

1.2 Propriétés

1.2.1 Réunions, intersection

On notera $\mathcal{V}_{\mathbb{K}}(x)$ l'ensemble des voisinages de x dans \mathbb{K} .

- $\text{ Si } A \in \mathcal{V}_{\mathbb{K}}(x) \text{ et } A \subset B, \text{ alors } B \in \mathcal{V}_{\mathbb{K}}(x).$
- Une réunion quelconque de voisinages de \boldsymbol{x} est également voisinage de $\boldsymbol{x}.$
- Une intersection finie de voisinages de x reste un voisinage de x.
 - En effet, soit $n \in \mathbb{N}^*$, $A_1, A_2, \ldots, A_n \in \mathcal{V}_{\mathbb{K}}$. Alors pour tout $i \in [1, n]$, il existe un $\varepsilon_i > 0$ tel que $\overline{V_{\mathbb{K}}}(x, \varepsilon_i) \subset A_i$. Soit $\varepsilon = \min\{\varepsilon_i | i \in [1, n]\}$. Alors $\forall i \in [1, n]$, $\varepsilon \leqslant \varepsilon_i$ donc $\overline{V_k}(x, \varepsilon) \subset \overline{V_k}(x, \varepsilon_i) \subset A_i$ donc

$$\overline{V_{\mathbb{K}}}(x,\varepsilon) \subset \bigcap_{i=1}^{n} A_{i}$$

Piège! Une intersection infinie de voisinages peut ne pas être un voisinage.

En effet,
$$\bigcap_{n>1} \left[-\frac{1}{n}, \frac{1}{n} \right] = \{0\} \notin \mathcal{V}_{\mathbb{K}}(0).$$

a. C'est le disque fermé (bord compris) de centre z et de rayon ε , en assimilant les nombres complexes à des affixes de points dans le plan complexe.

1.2.2 Formulation topologique de la convergence des suites

Soit $u \in \mathbb{K}^{\mathbb{N}}$, $l \in \mathbb{K}$. u converge vers l si et seulement si :

$$\forall V \in \mathcal{V}_{\mathbb{K}}(l), \exists n_0 \in \mathbb{N}/\forall n \geqslant n_0, u_n \in V$$

Démonstration

- \Rightarrow Soit $V \in \mathcal{V}_{\mathbb{K}}(l)$, alors $\exists \varepsilon > 0, \overline{V_{\mathbb{K}}}(l, \varepsilon) \subset V$. De plus u converge vers l donc $\exists n_0 \in \mathbb{N}/\forall n \geqslant n_0, |u_n l| \leqslant \varepsilon$ donc $u_n \in \overline{V_{\mathbb{K}}}(l, \varepsilon) \subset V$.
- $\Leftarrow \text{ Soit } \varepsilon > 0 \text{ et } V = \overline{V_{\mathbb{K}}} \left(l, \varepsilon \right). \ V \text{ est un voisinage de } l \text{ dans } \mathbb{K} \text{ donc } \exists n_0 \in \mathbb{N} / \forall n \geqslant n_0, \ u_n \in V \Leftrightarrow |u_n l| \leqslant \varepsilon$

2 Parties ouvertes et fermées

2.1 Définitions, exemples

2.1.1 Définitions

Soit $A \subset \mathbb{K}$.

- (1) A est un ouvert de \mathbb{K} si A est voisinage de chacun de ses points.
- (2) A est fermé si $\mathbb{K}\backslash A$ est ouvert.

2.1.2 Exemples

- $-\varnothing$ est toujours ouvert et fermé dans \mathbb{K} .
- $-\mathbb{K}$ est toujours ouvert et fermé dans \mathbb{K} .
- $-\mathbb{K} = \mathbb{R}$, [0,1[n'est ni ouvert ni fermé car [0,1[n'est pas voisinage de 0 et $\mathbb{R}\setminus[0,1[$ = $]-\infty,0[$ \cup $[1,+\infty[$ n'est pas voisinage de 1 donc pas ouvert.
- Tout intervalle ouvert de $\mathbb R$ est un ouvert.
- $-\forall x \in \mathbb{C}, \ \forall \varepsilon > 0, \ V_{\mathbb{C}}(x,\varepsilon)^a \text{ est un ouvert de } \mathbb{C}.$ En effet soit $u \in \mathcal{D}(x,\varepsilon)$ alors $|x-u| < \varepsilon$. Posons $x-\varepsilon |x-u| > 0$. Soit

En effet, soit $y \in \mathcal{D}(x, \varepsilon)$, alors $|x - y| < \varepsilon$. Posons $r = \varepsilon - |x - y| > 0$. Soit $z \in \mathcal{D}(y, r)$, alors |y - z| < r d'où :

$$|x-z| = |x-y+y-z|$$

$$\leq |x-y|+|y-z|$$

$$\leq |x-y|+r=\varepsilon$$

Ainsi $\mathcal{D}(y,r) \subset \mathcal{D}(x,\varepsilon)$ d'où $\overline{\mathcal{D}}\left(y,\frac{r}{2}\right) \subset \mathcal{D}(x,\varepsilon)$ donc $\mathcal{D}(x,\varepsilon)$ est un voisinage de y. $\mathcal{D}(x,\varepsilon)$ est un voisinage de chacun de ses points donc c'est un ouvert.

- Soit $x \in \mathbb{K}$ et $A \subset \mathbb{K}$. Alors A est voisinage de x dans \mathbb{K} si et seulement si

$$\exists \varepsilon > 0/V_{\mathbb{K}}\left(x,\varepsilon\right) \subset A$$

En effet:

$$\boldsymbol{\Leftarrow} \ \overline{V_{\mathbb{K}}}\left(x,\frac{\varepsilon}{2}\right) \subset V_{\mathbb{K}}\left(x,\varepsilon\right) \subset A.$$

$$\Rightarrow \ \exists \varepsilon > 0 \ \text{tel que} \ \overline{V_{\mathbb{K}}} \left(x, \varepsilon \right) \subset A \ \text{d'où} \ V_{\mathbb{K}} \left(x, \varepsilon \right) \subset A.$$

 $-\overline{\mathcal{D}}(x,\varepsilon)$ est un fermé dans \mathbb{C} .

a. $V_{\mathbb{C}}(x,\varepsilon)$ est le disque ouvert $\mathcal{D}(x,\varepsilon) = \{z \in \mathbb{C} | |z-x| < \varepsilon\}$.

En effet, soit $\varepsilon > 0$, $x \in \mathbb{C}$, $y \in \mathbb{C} \setminus \overline{\mathcal{D}}(x,\varepsilon)$ et r = |y-x| > 0. Soit $z \in \mathcal{D}(y,r)$. Montrons que $z \in \mathbb{C} \setminus \overline{\mathcal{D}}(x,\varepsilon) \Leftrightarrow |x-y| \geqslant \varepsilon$.

$$\begin{array}{rcl} |x-z| & = & |x-y+y-z| \\ & \geqslant & ||x-y|-|y-z|| \\ & \geqslant & |y-x|-|y-z| \\ & > & |x-y|-r = \varepsilon \end{array}$$

Donc $\mathcal{D}(y,r) \subset \mathbb{C} \setminus \overline{\mathcal{D}}(x,r)$.

 $-\mathbb{Q}$ n'est ni ouvert ni fermé dans \mathbb{R} , de même que $\mathbb{R}\backslash\mathbb{Q}$. En effet, \mathbb{Q} n'est voisinage d'aucun de ses points dans \mathbb{R} car \mathbb{Q} ne peut contenir aucun intervalle non-trivial

2.2 Propriétés, exemple

2.2.1 Propriétés

(1) Une réunion quelconque d'ensembles ouverts est un ouvert.

de \mathbb{R} . De même, $\mathbb{R}\backslash\mathbb{Q}$ n'est voisinage d'aucun de ses points.

- (2) Une intersection quelconque de fermés est un fermé.
- (3) Une intersection finie d'ouverts est un ouvert.
- (4) Une réunion finie de fermés est un fermé.

Démonstrations

- (1) Soit $(O_i)_{i\in I}$ une famille d'ouverts de \mathbb{K} et $O=\bigcup_{j\in I}O_j$. Soit $x\in O$, alors $\exists i\in I$ tel que $x\in O_i$. O_i est ouvert donc est voisinage de x. De plus $O_i\subset O$ donc O est voisinage de x. O est voisinage de chacun de ses points donc O est ouvert.
- (2) S $(F_i)_{i\in I}$ est une famille de fermés dans \mathbb{K} . Alors $O_i = \mathbb{K}\backslash F_i$ est ouvert pour $i\in I$, et $\mathbb{K}\backslash \left(\bigcap_{i\in I}F_i\right) = \bigcup_{i\in I}O_i$ est ouvert.

2.2.2 Exemple

Tout ensemble fini de K est un fermé.

En effet, soit A un sous-ensemble fini de \mathbb{K} . Si $x \in \mathbb{K}$, alors $\{x\}$ est fermé car $\mathbb{K} \setminus \{x\}$ est ouvert. $A = \bigcup_{x \in A} \{x\}$ est une réunion finie de fermés donc A est fermé.

3 Adhérence, intérieur

3.1 Définitions, remarques

3.1.1 Définitions

- (1) Soit $A \subset \mathbb{K}$ et $x \in \mathbb{K}$. x est intérieur à A si A est voisinage de x.
- (2) L'ensemble des points intérieurs à A s'appelle l'intérieur de A et se note Int (A) ou $\stackrel{\circ}{A}$.
- (3) x est un point adhérent à A si $\forall V \in \mathcal{V}_{\mathbb{K}}(x), V \cap A \neq \emptyset$.
- (4) L'ensemble des points adhérents à A est l'adhérence de A et se note Adh(A) ou \overline{A} .

3.1.2 Remarques

 $- \operatorname{Int}(A) \subset A \subset \operatorname{Adh}(A)$

x est adhérent à $A \Leftrightarrow \forall \varepsilon > 0, \overline{V_{\mathbb{K}}}(x, \varepsilon) \cap A \neq \emptyset$ $\Leftrightarrow \forall \varepsilon > 0, \exists a \in A/|x-a| \leqslant \varepsilon$

En effet:

- \Rightarrow Soit $\varepsilon > 0$. $\overline{V_{\mathbb{K}}}(x,\varepsilon)$ est un voisinage de x donc $\overline{V_{\mathbb{K}}}(x,\varepsilon) \cap A \neq \emptyset$ si $x \in Adh(x)$.
- $\Leftarrow \text{ Soit } V \in \mathcal{V}_{\mathbb{K}}(x), \ \exists \varepsilon > 0 \text{ tel que } \overline{V_{\mathbb{K}}}(x,\varepsilon) \subset V \text{ et } A \cap V \supset \underbrace{V_{\mathbb{K}}(x,\varepsilon) \cap A}_{\neq \varnothing}$

3.1.3 Exemples

- $-\mathbb{K} = \mathbb{R}$, A = [0, 1[. Alors Int (A) =]0, 1[car A n'est pas voisinage de 0, mais est voisinage de chacun de ses autres points. Adh (A) = [0, 1].
- $-\mathbb{K}=\mathbb{R}, A\subset\mathbb{R}.$
 - ∘ Si A est majorée, alors sup A ∈ Adh (A).
 - o Si A est minorée, alors inf $A \in Adh(A)$.

3.2 Théorèmes

3.2.1 Caractérisation séquentielle de l'adhérence

Soit $A \subset \mathbb{K}$, $x \in \mathbb{K}$. Alors :

$$x \in Adh(A) \Leftrightarrow \exists (a_n) \in A^{\mathbb{N}}$$
 qui converge vers x

Démonstration

- \Rightarrow Supposons que $x \in Adh(A)$. $\forall \varepsilon > 0$, $\exists a_{\varepsilon} \in A$ tel que $|x a_{\varepsilon}| \leq \varepsilon$. En particulier, $\forall n \in \mathbb{N}$, $\exists a_n \in A$ tel que $|x a_n| \leq 2^{-n}$. Ainsi a est une suite de points de A qui converge vers x.
- \Leftarrow Soit $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ qui converge vers x et $V\in\mathcal{V}_{\mathbb{K}}(x)$. Alors $\exists n_0\in\mathbb{N}/\forall n\geqslant n_0,\ a_n\in V$. Pour $n\geqslant n_0\mathrm{De}a_n\in V\cap A\neq\varnothing$.

3.2.2 Caractérisation de l'intérieur et l'adhérence

Soit $A \subset \mathbb{K}$.

(1) Int (A) est ouvert dans \mathbb{K} , c'est même le plus grand ouvert contenu dans A.

$$A \text{ est ouvert } \Leftrightarrow A = \text{Int}(A)$$

(2) Adh (A) est fermé dans \mathbb{K} . C'est le plus petit fermé de \mathbb{K} qui contient A.

$$A$$
 est fermé $\Leftrightarrow A = Adh(A)$

Démonstration

- (1) Si Int $(A) = \emptyset$, il est ouvert.
 - Supposons que Int $(A) \neq \emptyset$. Soit $x \in \text{Int } (A)$, montrons que $x \in \mathcal{V}_{\mathbb{K}}(x)$. A est voisinage de x donc $\exists \varepsilon > 0$ tel que $\underbrace{V_{\mathbb{K}}(x,\varepsilon)}_{\text{ouvert}} \subset A$. Si $y \in V_{\mathbb{K}}(x,\varepsilon)$, $V_{\mathbb{K}}(x,\varepsilon)$ est un voisinage de y donc A aussi a. Ainsi, $y \in \text{Int } (A)$ donc $V_{\mathbb{K}}(x,\varepsilon) \subset A$ et Int (A) est au voisinage de x.

a. « Comme Félicie ». Ce trait d'esprit de la part de M. Sellès se passe de commentaire.

- Soit O^a un ouvert de \mathbb{K} tel que $O \subset A$. Si $x \in O$, O est un voisinage de x donc A aussi et $x \in \operatorname{Int}(A)$ donc $O \subset \operatorname{Int}(A)$.
- $-\Rightarrow$ Si A est ouvert, A est un ouvert contenu dans A donc il est contenu dans son intérieur. De plus, $\operatorname{Int}(A)$ est toujours inclus dans A.
 - \Leftarrow Int (A) est ouvert...
- (2) Si Adh (A) = \mathbb{K} , Adh (A) est fermé.
 - Supposons que Adh $(A) \subseteq \mathbb{K}$ et montrons que $\mathbb{K}\backslash Adh(A)$ est ouvert. Soit $x \notin Adh(A)$, alors il existe $V \in \mathcal{V}_{\mathbb{K}}(x)$ tel que $V \cap A = \emptyset$. Soit $\varepsilon > 0$, $\underbrace{V_{\mathbb{K}}(x,\varepsilon)}_{\text{ouvert}} \subset V$. Si $y \in V_{\mathbb{K}}(x,\varepsilon)$, $V_{\mathbb{K}}(x,\varepsilon)$ est un voisinage de y tel que $(V_{\mathbb{K}}(x,\varepsilon) \cap A) \subset (V \cap A) = \emptyset$ donc y n'est pas adhérent à A donc

$$V_{\mathbb{K}}(x,\varepsilon) \subset \mathbb{K}\backslash \mathrm{Adh}(A)$$

Donc $\mathbb{K}\backslash Adh(A)$ est voisinage de x, donc $\mathbb{K}\backslash Adh(A)$ est ouvert.

- Soit F un fermé qui contient A. $O = \mathbb{K} \setminus F$ est un ouvert de \mathbb{K} . Si $x \in O$, O est voisinage de x donc $O \cap F = \emptyset$ donc $O \cap A = \emptyset : x$ n'est pas adhérent à A donc $O \subset \mathbb{K} \setminus Adh(A)$ donc $Adh(A) \subset F$.
- $-\Rightarrow$ Si A est fermé, A est un fermé de K qui contient A donc il contient son adhérence. L'inclusion inverse est toujours vraie.
 - \Leftarrow Si A = Adh(A), A est toujours fermé car Adh(A) est fermé.

Remarques

- $\operatorname{Adh} (\operatorname{Adh} (A)) = \operatorname{Adh} (A) \text{ et Int} (\operatorname{Int} (A)) = \operatorname{Int} (A).$
- $-\operatorname{Int}(\mathbb{Q})=\varnothing,\operatorname{Adh}(\mathbb{Q})=\mathbb{R}.$
- Pour $a, b \in \mathbb{R}$ tels que a < b alors

$$]a,b[= \begin{cases} \operatorname{Int}(]a,b[) \\ \operatorname{Int}([a,b[) \\ \operatorname{Int}(]a,b]) \\ \operatorname{Int}([a,b]) \end{cases} \text{ et } [a,b] = \begin{cases} \operatorname{Adh}(]a,b[) \\ \operatorname{Adh}([a,b[) \\ \operatorname{Adh}(]a,b]) \\ \operatorname{Adh}([a,b]) \end{cases}$$

- $\operatorname{Adh} (V_{\mathbb{K}}(x,\varepsilon)) = \overline{V_{\mathbb{K}}}(x,\varepsilon) \text{ et Int } (\overline{V_{\mathbb{K}}}(x,\varepsilon)) = V_{\mathbb{K}}(x,\varepsilon)$
- Si $A \subset B$, alors Adh $(A) \subset$ Adh (B) et Int $(A) \subset$ Int (B).

3.2.3 Fermeture et convergence

Soit $A \subset \mathbb{K}$, A est fermé si et seulement si pour toute suite $(a_n) \in A^{\mathbb{N}}$ qui converge vers $l \in \mathbb{K}$, on a $\lim_{n \to +\infty} a_n \in A$.

Démonstration

- \Rightarrow Soit $a \in A^{\mathbb{N}}$ une suite convergente, et posons $x = \lim a_n$. Alors x est limite d'une suite de points de A donc x adhère à A donc $x \in A$ car Adh(A) = A (A est fermé).
- \Leftarrow Soit $x \in Adh(A)$, x est limite d'une suite de points de A donc $x \in A$ donc $Adh(A) \subset A$. L'inclusion inverse étant toujours vraie, Adh(A) = A donc A est fermé.

Parties compactes de \mathbb{K} 3.3

Définition

Soit $\Lambda \subset \mathbb{K}$. Λ est compacte si pour toute suite $(x_n) \in \Lambda^{\mathbb{N}}$, il existe une sous-suite de (x_n) qui converge vers un élément de Λ .

a. « O comme Olivier. Merveilleux prénom, n'est-ce pas ? ». Il est inutile de préciser que M. Sellès allie l'humilité à l'humour.

3.3.2 Théorème

Soit $\Lambda \subset \mathbb{K}$. Λ est compacte si et seulement si Λ est fermée et bornée.

Démonstration

- \Rightarrow Montrons que Λ est bornée. Supposons qu'elle ne l'est pas. Alors $\forall n \in \mathbb{N}, \exists (x_n) \in \Lambda^{\mathbb{N}}$ telle que $|x_n| > n$. (x_n) est une suite d'éléments de Λ . Si $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ est une application strictement croissante, $\forall n \in \mathbb{N}, |x_{\varphi(n)}| \geqslant |x_n| > n$ eronc $(x_{\varphi(n)})$ n'est pas bornée donc par convergente. Ce qui voudrai dire qu'aucune sous-suite de x n'est convergente, ce qui est impossible.
 - Montrons que Λ est fermé. Soit a une suite convergente d'éléments de Λ . Montrons que $\lim a_n \in \Lambda$. Soit $x = \lim a_n \in \mathbb{K}$, Λ est compacte donc il existe une sous-suite de a qui converge vers vers un élément $y \in \Lambda$. Mais comme a converge, cette sous-suite converge aussi vers x donc $x = y \in \Lambda$ par unicité de la limite d'une suite convergente.
- \Leftarrow Soit $x \in \Lambda^{\mathbb{N}}$, Λ est bornée donc $\exists M \in \mathbb{R}/\forall n \in \Lambda$, $|n| \leqslant M$. Ainsi, $\forall n \in \mathbb{N}$, $x_n \in \Lambda$ donc $|x_n| \leqslant M$. D'après le théorème de Bolzano-Weierstrass, il existe $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $(x_{\varphi(n)})_{n \in \mathbb{N}}$ converge vers $l \in \mathbb{K}$. l est limite d'une suite d'éléments de Λ donc $l \in Adh$ (Λ)or Λ est fermé donc $l \in \Lambda$.

Exemples

- Pour $a, b \in \mathbb{R}$, a < b, [a, b] est une partie compacte de \mathbb{R} et de \mathbb{C} .
- Pour $z \in \mathbb{C}$, r > 0, $\overline{\mathcal{D}}(z, r)$ est une partie compacte de \mathbb{C} .
- Une réunion finie de parties compactes est une partie compacte.