14 Varietats amb vora. Integració de formes.

Exercici 142: Sigui $f: \mathbb{R}^n \to \mathbb{R}$ una funció diferenciable tal que $df \neq 0$ sobre $f^{-1}(0)$. Demostreu que $M = \{x \in \mathbb{R}^n \mid f(x) \leq 0\}$ és una n-subvarietat amb vora de \mathbb{R}^n . (Com és ∂M ?)

Feu un dibuix de la regió de \mathbb{R}^2 donada pels punts (x,y) tals que $x^3 - y^3 - 3xy \le 0$ per tal de comprovar que la condició sobre df és necessària.

Solució: Notem en primer lloc que ∂M estarà formada pel punts x tals que f(x) = 0. Suposem ara que p és un d'aquest punts (f(p) = 0) i, sense perdre generalitat, que $\frac{\partial f}{\partial x_n}(p) \neq 0$ (no es pot saber, a priori, quin dels coeficients de df és diferent de 0 en p però sempre n'hi ha algun i, canviant d'ordre les coordenades es pot pensar que és l'últim). Aleshores l'aplicació $\Psi: \mathbb{R}^n \to \mathbb{R}^n$ donada per $\Psi(x_1, \dots, x_n) = (x_1, \dots, x_{n-1}, f(x_1, \dots, x_n))$ serà un difeomorfisme (en algun entorn de p) i la seva inversa $\Phi = \Psi^{-1}$ parametritzarà M, que es veurà com la imatge del semiespai $y_n \leq 0$ (i, en particular, parametritzarà ∂M com una subvarietat de dimensió n-1 considerant $(y_1, \dots, y_{n-1}) \mapsto \Phi(y_1, \dots, y_{n-1}, 0)$).

Més precisament, com

$$\Psi\Phi(y_1,\ldots,y_n) = (y_1,\ldots,y_n) = (*,\ldots,*,f(\Phi(y_1,\ldots,y_n)))$$

on els asteriscs representen les n-1 primeres coordenades de $\Phi(y_1,\ldots,y_n)$, tenim

$$y_n = f(\Phi(y_1, \dots, y_n)). \tag{36}$$

Com $\Psi(p) = (p_1, \dots, p_{n-1}, 0)$ l'obert on Φ és difeomorfisme té punts amb última coordenada positiva i negativa.

Llavors $\Phi(y_1, \ldots, y_n) \in M$ si i només si $y_n \leq 0$ (per (36)). Així ϕ és una carta de la varietat amb vora M.

Primer exemple. $f: \mathbb{R}^2 \to \mathbb{R}$ donada per $f(x,y) = x^2 + y^2 - 1$. El conjunt $f^{-1}(0)$ és el cercle de radi 1, centrat a l'origen. df = (2x, 2y) és diferent de zero a $f^{-1}(0)$ (només s'anul·la al (0,0) que no pertany a $f^{-1}(0)$). Per tant el disc tancat és una varietat amb vora.

Segon exemple. $f(x,y) = x^3 - y^3 - 3xy$. En aquest cas $df = (3x^2 - 3y, -3y^2 - 3x)$ que s'anul·la en els punts (0,0) i (-1,1). El punt $(0,0) \in f^{-1}(0)$ i, per tant, no estem en les hipòtesis anteriors. De fet, en aquest punt el conjunt $f(x,y) \leq 0$ no és localment com el semiplà tancat.

Remark. Observem que si canviem f per f^3 el conjunt M no canvia (és doncs una subvarietat amb vora) però $df^3 = 3f^2df$ és zero sobre $f^{-1}(0)$. És a dir, les condicions d'aquest exercici son suficients però no necessàries.

Exercici 143: Siguin f i g funcions de \mathbb{R}^n amb valors reals i diferenciables. Quines condicions s'haurien d'imposar per tal de poder assegurar que el conjunt

$$N = \{ p \in \mathbb{R}^n; f(p) = 0 \text{ i } g(p) \le 0 \}$$

és una varietat amb vora (de dimensió n-1, és clar)?

Doneu un mètode equivalent a l'anterior per tal d'obtenir varietats amb vora de dimensió arbitrària. (Quines condicions s'han d'imposar a f, g per tal de poder dir que els punts p que compleixen f(p) = 0 i $g(p) \le 0$ donen una varietat amb vora de dimensió k).

Solució: Fem el cas particular en que n=3 i f(x,y,z)=z. La n no juga un paper rellevant i veurem de fet que la situació general es pot reduir a aquest exemple.

En aquest cas

$$N = \{ p \in \mathbb{R}^3; p = (p_1, p_2, 0), g(p) \le 0 \}.$$

Sigui $\tilde{g}(x,y) = g(x,y,0)$. Llavors el cojunt

$$\tilde{N} = \{ p \in \mathbb{R}^2; \tilde{g}(p) \le 0 \}.$$

és tal que $i(\tilde{N})=N$ on $i:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ és la injecció canònica i(x,y)=(x,y,0)

Anem a veure si $d\tilde{g} \neq 0$ sobre $\tilde{g}^{-1}(0)$ ja que llavors sabríem, pel problema anterior⁵⁴, que \tilde{N} és una 2-varietat amb vora.

Ara

$$d\tilde{g} = d(g \circ i) = dg \cdot di = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}.$$

⁵⁴Recordem que són només condicions suficients.

Per tant, una de les dues derivades parcials ha de ser diferent de zero sobre $\tilde{g}^{-1}(0)$ (que és la vora de \tilde{N}). Aquesta és la condició que hem d'imposar però la reescrivim en termes de g (no de \tilde{g}).

Només hem d'observar que l'anterior condició es pot enunciar dient que les diferencials 55 df i dg són linealment independents sobre la vora de N, ja que la matriu

$$\left(\begin{array}{ccc}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z} \\
0 & 0 & 1
\end{array}\right)$$

té rang dos si una de les dues derivades parcials no s'anul·la.

Cas general.

Sigui $p \in N$. Sabem (Proposició 15.1.5 apunts Reventós) que existeix un difeomorfisme local h definit en un entorn obert W de p a \mathbb{R}^n tal que

$$h(W \cap f^{-1}(0)) = h(W) \cap (\mathbb{R}^{n-1} \times \{0\}).$$

Considerem $G = g \circ h^{-1} \circ i : \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$ on i és la injecció canònica de \mathbb{R}^{n-1} a \mathbb{R}^n , i(x) = (x, 0), entenent que està definida només a $i^{-1}(h(W))$.

Apliquem l'exercici anterior a G tot observant que en aquest exercici no cal que f estigui definida a tot \mathbb{R}^n , només cal que estigui definida sobre un obert. Si es compleixen les hipòtesis $dG \neq 0$ sobre $G^{-1}(0)$ sabrem que $M = \{x \in \mathbb{R}^{n-1}; G(x) \leq 0\}$ és una (n-1)-subvarietat amb vora de \mathbb{R}^{n-1} . I per tant i(M) és una (n-1)-subvarietat amb vora de \mathbb{R}^n . Se sobreentén que x pertany al domini de definició de G.

I com $N = h^{-1}i(M)$, i h és difeomorfisme, N serà també varietat amb vora. El punt clau és que donat un punt q de \mathbb{R}^{n-1} on està definida G llavors

$$T_{h^{-1}i(q)}(f^{-1}(0)) = dh_{|i(q)}^{-1}(i(\mathbb{R}^{n-1}))$$
(37)

així la condició $dG \neq 0$ implica que existeix un vector $u \in \mathbb{R}^{n-1}$ tal que

$$0 \neq dG(u) = dg(d(h^{-1} \circ i))(u)$$

⁵⁵Les podem pensar com matrius o com els vectors gradients

i per tant, el vector $v=d(h^{-1}\circ i))(u)$ compleix (per (37)) que $v\in T_{h^{-1}i(q)}(f^{-1}(0))$ i $0\neq dg(v)=\langle grad\, g,v\rangle.$

Com l'espai tangent a $f^{-1}(0)$ és l'ortogonal al gradient, tenim que $df(v) = \langle \operatorname{grad} f, v \rangle = 0$ resulta que $v \in \langle \operatorname{grad} f \rangle^{\perp}$ i $v \notin \langle \operatorname{grad} g \rangle^{\perp}$ per tant aquests gradients són linealment independents.

Equivalentment. La diferencial de G, dG, es pot calcular també així. Pensem $G = g \circ H$ on $H: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ està donada per $H = h^{-1} \circ i$, és a dir, $H(x,y) = h^{-1}(x,y,0)$. En particular, f(H(x,y)) = 0 i per tant (posem $H = (H^1, H^2, H^3)$) per la regla de la cadena $\langle \operatorname{grad} f, \frac{\partial H}{\partial x} \rangle = \langle \operatorname{grad} f, \frac{\partial H}{\partial y} \rangle = 0$. Per altra banda diferenciant la igualtat $G = g \circ H$ tenim

$$\left(\begin{array}{ccc}
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y}
\end{array}\right) = \left(\begin{array}{ccc}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z}
\end{array}\right) \left(\begin{array}{ccc}
\frac{\partial H^1}{\partial x} & \frac{\partial H^1}{\partial y} \\
\frac{\partial H^2}{\partial x} & \frac{\partial H^2}{\partial y} \\
\frac{\partial H^3}{\partial x} & \frac{\partial H^3}{\partial y}
\end{array}\right)$$

La condició $dG \neq 0$ ens diu que grad g no és ortogonal a almenys una de les columnes de la darrera matriu, i per tant, grad f i grad g no poden ser linealment dependents.

Exercici 144: Sigui γ la corba de \mathbb{R}^3 parametritzada per $\gamma(s)=(s,s^2,s^3)$ amb $s\in[0,1]$. Calculeu

$$\int_{\gamma} (dx + dz)$$

Solució: Per definició,

$$\int_{\gamma} dx + dz = \int_{[0,1]} \gamma^*(dx + dz) = \int_0^1 d(x \circ \gamma) + d(z \circ \gamma) = \int_0^1 ds + ds^3 = \int_0^1 (1 + 3s^2) ds = 2.$$

Exercici 145: Considereu $S = \{(x, y, z) \in \mathbb{R}^3 \mid x+3\,y-z=2, 0 < x < 1, 0 < y < 1\}.$ Determineu

$$\int_{S} dx \wedge dz$$

si l'orientació en S és la que correspon al vector normal (-1, -3, 1). (Noteu que si s'escriu $dx \wedge dz$ s'està pensant que s'integra una forma de \mathbb{R}^3 sobre la subvarietat S).

Solució: La parametrització $\varphi(x,y)=(x,y,x+3y-2)$ conserva l'orientació ja que $\varphi_x \wedge \varphi_y=(-1,-3,1)$. Per definició

$$\int_{S} dx \wedge dz = \int_{[0,1]^2} \varphi^*(dx \wedge dz) = \int_{0}^{1} \int_{0}^{1} dx \wedge d(x+3y-2) = 3 \int_{0}^{1} \int_{0}^{1} dx \wedge dy = 3.$$

Exercici 146: Sigui \mathbb{S}^2 l'esfera unitària de \mathbb{R}^3 (on es pren l'orientació determinada pel normal exterior).

Quin valor té la integral $\int_{\mathbb{S}^2} dx \wedge dy$?

Es pot relacionar aquest càlcul amb el T. de Stokes?

Solució: Sense Stokes. Sigui $\psi: U \longrightarrow S^2$, amb $U = (0, 2\pi) \times (0, \pi)$, donada per

$$\psi(\theta, \varphi) = (\sin(\varphi) \cos(\theta), \sin(\varphi) \sin(\theta), \cos(\varphi))$$

una parametrització (positiva) de l'esfera. Llavors

$$\int_{S^2} dx \wedge dy = \int_U \psi^*(dx \wedge dy) = \int_U (d(x \circ \psi) \wedge d(y \circ \psi)) = \int_U d(\sin(\varphi) \, \cos(\theta)) \wedge d(\sin(\varphi) \, \sin(\theta)).$$

Com que

$$d(\sin(\varphi)\cos(\theta)) = \cos(\varphi)\cos(\theta) d\varphi - \sin(\varphi)\sin(\theta) d\theta,$$

$$d(\sin(\varphi)\sin(\theta)) = \cos(\varphi)\sin(\theta) d\varphi + \sin(\varphi)\cos(\theta) d\theta,$$

substituint tenim

$$\int_{S^2} dx \wedge dy = \int_U \cos(\varphi) \sin(\varphi) d\varphi \wedge d\theta = 2\pi \left[\frac{1}{2} \sin^2(\varphi) \right]_0^{\pi} = 0.$$

 $Amb\ Stokes$. Com que S^2 no té vora i $dx \wedge dy$ és exacta la integral és zero:

$$\int_{S^2} dx \wedge dy = \int_{S^2} d(x \, dy) = \int_{\partial S^2} x \, dy = 0,$$

ja que $\partial S^2 = \emptyset$.