MATH 517 PARTIAL DIFFERENTIAL EQUATIONS HOMEWORK 4

Due date: NOON on Tuesday, Dec. 24, 2018.

TeX-typed Homework is accepted only.(No hand-written Homework accepted)

- 1. Let X be a real Banach space, and let $A: X \to X$ be a bounded linear map. For $\eta \in \rho(A)$, prove that $(A \eta \operatorname{Id})^{-1}$ is linear and bounded.
- 2. For a Hilbert space H, let $\mathcal{L}: \mathcal{H} \to \mathcal{H}$ be a bounded linear map. A linear map $\mathcal{L}^*: \mathcal{H} \to \mathcal{H}$ is called the *adjoint of* \mathcal{L} if

$$(\mathcal{L}x, y)_{\mathcal{H}} = (x, \mathcal{L}^*y)_{\mathcal{H}} \text{ for } \forall x, y \in \mathcal{H}.$$

Here, $(\cdot, \cdot)_{\mathcal{H}}$ is the inner product in \mathcal{H} . If $\mathcal{L} = \mathcal{L}^*$, then \mathcal{L} is called *self-adjoint*. Now, let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected. For a complex valued function $u: \Omega \to \mathbb{C}$, we define

$$\mathcal{H} := \{ u : \Omega \to \mathbb{C} \mid \operatorname{Re} u, \operatorname{Im} u \in H_0^1(\Omega) \}.$$

(a) For each $u \in \mathcal{H}$, set v := Re u and w := Im. Show that the bilinear operator $(\cdot, \cdot)_{\mathcal{H}}$ given by

$$(u, u_*)_{\mathcal{H}} := \int_{\Omega} (v + iw)(v_* - iw_*) + (Dv + iDw)(Dv_* - iDw_*) dx$$

yields an inner product in \mathcal{H} .

(b) For each $i, j = 1, \dots, n$, assume that $a_{ij} \in L^{\infty}(\Omega)$, and $a_{ij} = a_{ji}$ in Ω . Also, assume that there exists a constant $\mu \in (0, 1)$ satisfying

$$\mu |\boldsymbol{\xi}|^2 \le a_{ij} \xi_i \xi_j \le \frac{1}{\mu} |\boldsymbol{\xi}|^2$$
 a.e. in $\Omega, \, \forall \boldsymbol{\xi} \in \mathbb{R}^n$.

Here, each a_{ij} is a real-valued function. Define

$$Lu := -\partial_i(a_{ij}\partial_i u),$$

and define a bilinear operator $B: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ by

$$B[u,v] = \int_{\Omega} a_{ij} \partial_i u \partial_j \bar{v} \, d\mathbf{x}.$$

Prove that there exists a bounded linear map $\mathcal{L}: \mathcal{H} \to \mathcal{H}$ satisfying

$$(\mathcal{L}u, v)_{\mathcal{H}} = B[u, v]$$
 for all $u, v \in \mathcal{H}$.

- (c) Prove that the \mathcal{L} found in (b) is self-adjoint.
- (d) By using the result obtained from (c), prove that the eigenvalue problem

$$\begin{cases} Lu = \lambda u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has only real eigenvalues.

3. Let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected with $\partial \Omega \in C^1$. For each $i, j = 1, \dots, n$, assume that $a_{ij}, b_i, c \in L^{\infty}(\Omega)$, and assume that there exists a constant $\mu \in (0, 1)$ satisfying

$$\mu |\boldsymbol{\xi}|^2 \le a_{ij} \xi_i \xi_j \le \frac{1}{\mu} |\boldsymbol{\xi}|^2$$
 a.e. in $\Omega, \, \forall \boldsymbol{\xi} \in \mathbb{R}^n$.

Here, each of a_{ij}, b_i, c is a real-valued function. Define

$$Lu := -\partial_j(a_{ij}\partial_i u) + b_i\partial_i u + cu$$

For given functions $f \in L^2(\Omega)$ and $g \in H^1(\Omega)$, suppose that $u \in H^1(\Omega)$ is a weak solution to the following boundary value problem

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = g & \text{on } \partial\Omega \end{cases}.$$

If the homogeneous boundary value problem

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}.$$

has ONLY trivial weak solution, then prove that there exists a constant C > 0 (independent of u, f and g) so that

$$||u||_{H^1(\Omega)} \le C(||f||_{L^2(\Omega)} + ||g||_{H^1(\Omega)}).$$

4. Let Ω be an open, bounded and connected subset of \mathbb{R}^n with $\partial \Omega \in C^1$. Given functions $f \in L^2(\Omega)$, $g \in L^2(\partial \Omega)$, consider a boundary value problem

$$\begin{cases}
-\Delta u + cu = f & \text{in } \Omega, \\
\nabla u \cdot \mathbf{n}_{in} = g & \text{on } \partial\Omega
\end{cases}$$

where \mathbf{n}_{in} is the inward unit normal on $\partial\Omega$. $u \in H^1(\Omega)$ is called a weak solution to this boundary value problem if u satisfies

$$\int_{\Omega} \nabla u \cdot \nabla v + cuv \ d\mathbf{x} = \int_{\Omega} fv \ d\mathbf{x} - \int_{\partial \Omega} gv \ dS_{\mathbf{x}} \quad \text{for all} \quad v \in H^1(\Omega).$$

Suppose that $c \in C^0(\overline{\Omega})$ satisfies

$$c \ge \mu_0$$
 in Ω

for some constant $\mu_0 > 0$.

- (a) Derive the definition of weak solution stated above by integration by parts.
- (b) Prove that there exists a unique weak solution $u \in H^1(\Omega)$ of this boundary value problem.
- (c) Show that if $u \in H^1(\Omega)$ is a weak solution to the boundary value problem, then it satisfies the estimate

$$||u||_{H^1(\Omega)} \le C(||f||_{L^2(\Omega)} + ||g||_{L^2(\partial\Omega)})$$

for some constant C > 0 depending only on c, Ω .

5. Let Ω be an open, bounded and connected subset of \mathbb{R}^n . Suppose that $\partial\Omega$ is C^{∞} . Consider an eigenvalue problem

$$(EVP) \begin{cases} -\Delta u = \lambda u & \text{in } \Omega \\ \nabla u \cdot \mathbf{n}_{in} - u = 0 & \text{on } \partial \Omega \end{cases}$$

where \mathbf{n}_{in} is the inward unit normal on $\partial\Omega$. Define a set

$$\Sigma := \{\lambda : \lambda \text{ is an eigenvalue of (EVP)}\}.$$

(a) Define a bilinear operator $(\cdot,\cdot)_{H^1}: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ by

$$(u,v)_{H^1} := \int_{\Omega} \nabla u \cdot \nabla v \ d\mathbf{x} + \int_{\partial \Omega} uv \ dS_{\mathbf{x}}.$$

Show that $(\cdot, \cdot)_{H^1}$ is an inner product in $H^1(\Omega)$. Equivalently, prove that the operator $(\cdot, \cdot)_{H^1}$ satisfies the following properties:

- (i) $(u, v)_{H^1} = (v, u)_{H^1}$ for all $u, v \in H^1(\Omega)$.
- (ii) There exists a constant C > 0 independent of u, v such that

$$|(u,v)_{H^1}| \le C||u||_{H^1(\Omega)}||v||_{H^1(\Omega)}$$

for all $u, v \in H^1(\Omega)$.

(iii) There exists a constant $\theta > 0$ independent of u, v such that

$$(u,u)_{H^1} \ge \theta \|u\|_{H^1(\Omega)}^2$$

for all $u \in H^1(\Omega)$.

- (b) Show that every eigenvalue of (EVP) is a positive real number.
- (c) Show that $\Sigma = \{0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_k \to \infty\}$ is a monotonically increasing sequence which diverges to ∞ .
- (d) For each eigenvalue $\lambda_k \in \Sigma$ (repeating each eigenvalue according to its multiplicity), let $w_k \in H^1(\Omega) \cap C^{\infty}(\overline{\Omega})$ be an eigenfunction corresponding to λ_k . Prove that one can choose $\{w_k\}_{k=1}^{\infty}$ such that
 - (i) $\{w_k\}_{k=1}^{\infty}$ forms an orthornormal basis of $L^2(\Omega)$, and
 - (ii) $\{w_k\}_{k=1}^{\infty}$ forms an orthogonal basis of $H^1(\Omega)$ with respect to the inner product $(\cdot, \cdot)_{H^1}$.
- 6. Let $H^1_*(\Omega)$ denote the dual space of $H^1(\Omega)$.(Of course, $H^1_*(\Omega)$ is isomorphic to $H^1(\Omega)$ by Riesz representation theorem. But we do not need to care about this fact for this problem.) For each $\mathcal{L} \in H^1_*(\Omega)$, the norm $\|\mathcal{L}\|_{H^1_*(\Omega)}$ in $H^1_*(\Omega)$ is defined by

$$\|\mathcal{L}\|_{H^1_*(\Omega)} := \sup_{v \in H^1(\Omega), \|v\|_{H^1(\Omega)} = 1} |\mathcal{L}(v)|$$

Suppose that $\Omega \subset \mathbb{R}^n$ is open, bounded and connected with $\partial \Omega \in C^{\infty}$. Fix a positive constant T > 0, and set

$$\Omega_T := \Omega \times (0,T]$$

Consider the following initial boundary value problem of linear parabolic equation: Given smooth functions $f \in C^{\infty}(\overline{\Omega_T})$, $g \in C^{\infty}(\overline{\Omega})$,

$$\begin{cases} u_t - \Delta u = f & \text{in } \Omega_T \\ \nabla u \cdot \mathbf{n}_{in} - u = 0 & \text{on } \partial\Omega \times [0, T] \\ u = g & \text{on } \Omega \times \{t = 0\}. \end{cases}$$

Prove that there exists a weak solution u to this initial boundary value problem. In other words, show that there exists a function $u:\overline{\Omega_T}\to\mathbb{R}$ such that

- (i) $u \in L^2(0,T; H^1(\Omega)), u' \in L^2(0,T; H^1_*(\Omega)),$
- (ii) u = g on $\Omega \times \{t = 0\}$,

(iii) For each $v \in H^1(\Omega)$, and a.e. $0 \le t \le T$, u satisfies

$$(u'(t), v)_{L^2(\Omega)} + B[(u(t)), v] = (f(t), v)_{L^2(\Omega)}$$

for $B:H^1(\Omega)\times H^1(\Omega)\to \mathbb{R}$ defined by

$$(v, w)_{L^{2}(\Omega)} := \int_{\Omega} vw \, d\mathbf{x},$$

$$B[v, w] := \int_{\Omega} \nabla v \cdot \nabla w \, d\mathbf{x} + \int_{\partial \Omega} vw \, dS_{\mathbf{x}}.$$