Solving the Longest Common Subsequence Problem Concerning Non-uniform Distributions of Letters in Input Strings – Supplementary material –

Bojan Nikolic, Aleksandar Kartelj, Marko Djukanovic, Milana Grbic, Christian Blum, Guenther Raidl

May 15, 2021

1 Remarks and Abbreviations

This is a full report on the computational results of the paper entitled as above. It consists of the full short and long-run result of our algorithm compared to the results of all other competitive literature approaches. The result are given in Tables 1–10. This report follows the notation introduced in the original paper. The most important algorithms are abbreviated as

- BS: Beam search;
- Bs-Ex: a BS configuration which utilizes the expected length calculation heuristic (Ex) [2] to guide search;
- Bs-Pow: a BS configuration which utilizes Pow heuristic [4] from the original paper to guide the search;
- Bs-Gmpsum: a BS configuration which utilizes Gmpsum heuristic to guide search;
- Bs-Blum: a beam search configuration which utilizes rank-sum heuristic [1] to guide the search;
- Bs-HP: BS configuration which utilizes probability based heuristic [4] to guide the search;
- APS: Anytime pack search algorithm [5];
- A*+ACS: anytime hybrid developed in [3];
- A*+ACS-dist: a configuration of the above A*+ACS framework where Ex is replaced by dist heuristic from [6];
- TRBS-GMPSUM: the time-restricted BS guided by GMPSUM.

2 Complete Results per the Benchmark Sets from the Literature

This section presents full short and long-run results per each benchmark set that are presented in the LCSC literature. The tables reporting detailed short-run results are organized as follows. The first block displays the properties of instances (or instance group). The second block consists of three columns: the first column shows the best (or best average) solution among the compared approaches (including also the new BS guided by novel GMPSUM heuristic) and the second column represents the best (or average best) short-run results from the literature, while the third shows the name of the algorithm which obtains this solution. The third block reports average solutions and average

running times of four BS configurations (BS guided by Ex, Pow, HP, GMPSUM, respectively) for each considered instance (or group of instances). Note that we use the labeling **best** in the case when the best solution from literature is achieved, while in the case that it is outperformed with the proposed algorithm (a new state-of-the-art), the labeling **new** is placed. Otherwise, if certain approach did not achieve either of these two, numerical solution value is shown. Using both **best** and **new** labels in the same table row is therefore impossible.

The tables that report the detailed results of the long-run executions over the considered benchmark sets are organized as follows. The table is split into four blocks. The first block displays the characteristics of the considered instance (or instance group). The second block consists of three columns: the first reports new best (or best average solutions) among all the approaches from literature (including also this new one), the second column report the best (or best average) solution known from the literature so-far, and the third column reports the name of the algorithm from literature that obtains the best (or average best) solution. The third block reports the average solution of the A*+ACS as the best approach from the literature. The fourth block reports average solution and average running time of the TRBS-GMPSUM on the respective instance (or instance group) of the considered benchmark set. Usage of **best** and **new** labeling is same as in the short-run scenario. In the following text, we go set-by-set explaining the obtained results in details.

2.1 Benchmark set Random

Concerning short-run executions, it is quite obvious that BS guided by Ex and GMPSUM achieve together all the best (state-of-the-art) solutions, and performing perform on pair. Other heuristic guidances are much worse. Concerning long-run executions, the TRBS-GMPSUM performs slightly worse in just three out of 20 cases, where it delivers a solution which is just by one letter shorter than the best known solution from the literature. Therefore, we conclude that the best performing algorithms on RANDOM are both, A*+ACS and the TRBS-GMPSUM.

]	Instanc	e		Best	s	BS-	Ex	BS-P	ow	BS-l	НР	BS-GM	MPSUM
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.	s	t	s	t		t	s	\overline{t}
4	10	600	221	221	BS-Ex	best	2.8	220	1.3	220	0.8	best	2
4	15	600	206	204	BS-Ex	204	2	203	1.3	203	0.8	best	2.3
4	20	600	193	193	BS-Ex	best	3	191	1.2	192	0.7	best	2.8
4	25	600	188	187	BS-Ex	187	3	187	0.9	187	0.6	best	3
4	40	600	175	175	BS-Ex	best	2.5	173	1.2	173	0.8	best	3.8
4	60	600	168	168	BS-Ex	best	2.3	166	1.2	166	0.8	167	5.4
4	80	600	163	163	BS-Ex	best	2.3	161	1.2	161	0.8	162	6.7
4	100	600	159	159	BS-Ex	best	2.2	158	1.3	158	0.7	\mathbf{best}	7.5
4	150	600	154	153	BS-Ex	153	3	152	1.4	152	1.1	best	10.1
4	200	600	151	151	BS-Ex	best	3.1	150	1	best	1.2	best	13.6
20	10	600	63	63	BS-Ex	best	4.1	62	2.3	62	2	62	3.3
20	15	600	53	53	BS-Ex	best	3.7	best	$^{2.3}$	52	1.3	\mathbf{best}	3.4
20	20	600	48	48	BS-Ex	best	2.6	47	1.7	best	1.5	best	3.7
20	25	600	45	44	BS-Ex	44	$^{2.5}$	44	1.8	44	1.4	best	4.1
20	40	600	39	39	BS-Ex	best	2.6	38	1.6	38	1.2	38	5.1
20	60	600	35	35	BS-Ex	best	2.5	best	1.2	best	1.3	best	6.6
20	80	600	33	33	BS-Ex	best	2.3	best	1.5	best	1.2	best	8.3
20	100	600	32	32	BS-Ex	best	2	best	1.1	31	1.2	best	10
20	150	600	29	29	BS-Ex	best	3	best	1.7	best	1.3	best	14.2
20	200	600	28	28	BS-Ex	best	3.3	best	1.6	best	1.4	\mathbf{best}	18.8

Table 1: Short-run results for benchmark set RANDOM.

2.2 Benchmark set Rat

Concerning short-run execution, we emphasize five new state-of-the-art short-run results (out of 20) achieved by BS-GMPSUM. In nine cases, BS-Ex and BS-GMPSUM achieve the same solution. In four cases, the BS-Ex achieves better solution than BS-GMPSUM. The difference is minimal in all cases – a single character. Concerning long-run executions, three new state-of-the-art results were obtained by the TRBS-GMPSUM. Note the instance $|\Sigma| = 4$, m = 40, and n = 600 where new state-of-the-art is achieved (156), while the previous best result was 154. In two cases, A*+ACS delivers slightly better solution (by one character), whereas in the remaining cases, the solutions are tied.

Table 2: Long-run results for benchmark set Random.

	Instanc	e		Best	s	A*+ACS	TRBS-G	MPSUM 600s
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.		s	t
4	10	600	223	223	A*+ACS	best	222	597.9
4	15	600	206	206	A^*+ACS	best	best	598.5
4	20	600	195	195	A^*+ACS	best	best	595.6
4	25	600	189	189	A^*+ACS	best	\mathbf{best}	596.8
4	40	600	177	177	A^*+ACS	best	\mathbf{best}	596.5
4	60	600	169	169	A^*+ACS	best	168	594.7
4	80	600	164	164	A^*+ACS	best	best	593.6
4	100	600	161	161	A^*+ACS	best	160	592.5
4	150	600	155	155	A^*+ACS	best	\mathbf{best}	593
4	200	600	152	152	A^*+ACS	best	best	592.9
20	10	600	63	63	A^*+ACS	best	best	595
20	15	600	53	53	A^*+ACS	best	best	589.3
20	20	600	48	48	A^*+ACS	best	best	583.5
20	25	600	45	45	A^*+ACS	best	best	576.2
20	40	600	39	39	A^*+ACS	best	best	560.7
20	60	600	36	36	A^*+ACS	best	best	561.3
20	80	600	33	33	A^*+ACS	best	best	546.9
20	100	600	32	32	A^*+ACS	best	best	550.4
20	150	600	30	30	A^*+ACS	best	29	546.7
20	200	600	28	28	A*+ACS	best	best	545.2

Table 3: Short-run results for benchmark set RAT.

	Instanc	e		Best	s	BS-	Ex	BS-F	ow	BS-	НР	BS-GN	IPSUM
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.		t	s	t	s	t	s	\overline{t}
4	10	600	205	205	BS-Ex	best	3.1	204	1.2	200	0.6	best	1.9
4	15	600	185	185	BS-Ex	best	2.7	183	1.1	184	0.6	\mathbf{best}	2.3
4	20	600	173	172	BS-Ex	172	2.3	170	0.9	168	0.5	new	$^{2.5}$
4	25	600	170	170	BS-Ex	best	2.7	168	1	166	0.6	169	2.9
4	40	600	154	152	BS-Ex	152	1.8	150	1	145	0.5	new	3.4
4	60	600	152	152	BS-Ex	best	2.3	151	1.2	150	0.7	\mathbf{best}	4.7
4	80	600	142	142	BS-Ex	best	$^{2.5}$	139	1.1	139	0.7	141	5.7
4	100	600	137	137	BS-Ex	best	$^{2.5}$	131	1	135	0.5	\mathbf{best}	6.5
4	150	600	129	129	BS-Ex	best	2	126	0.9	125	0.6	128	7.8
4	200	600	124	123	BS-Ex	123	2.7	123	0.7	122	0.8	new	9.9
20	10	600	71	71	BS-Ex	best	3.4	best	$^{2.5}$	best	1.9	\mathbf{best}	3.6
20	15	600	63	63	BS-Ex	best	2.6	62	1.6	62	1.4	62	3.5
20	20	600	55	54	BS-Ex	54	$^{2.5}$	54	1.7	54	1.2	new	3.5
20	25	600	52	52	BS-Ex	best	2.9	51	1.4	51	1.1	\mathbf{best}	3.8
20	40	600	50	49	BS-Ex	49	3	49	1.1	49	1.2	new	4.6
20	60	600	47	47	BS-Pow	46	$^{2.4}$	best	1.5	46	1.2	best	7.1
20	80	600	44	44	BS-HP	43	2.6	43	1.5	best	1.1	43	7.7
20	100	600	40	40	BS-Ex	best	2.5	39	1.2	39	1	\mathbf{best}	8.5
20	150	600	37	37	BS-Ex	best	2	best	0.9	36	0.6	best	8.7
20	200	600	34	34	BS-Ex	\mathbf{best}	2.7	best	1.4	33	1	33	11.1

Table 4: Long-run results for benchmark set RAT.

	Instanc	e		Best	s	A*+ACS	TRBS-G	MPSUM 600s
$ \Sigma $	m	\overline{n}	New	Lit.	s	s	t	
4	10	600	206	206	A*+ACS	best	best	599.2
4	15	600	189	189	A^*+ACS	best	188	597.3
4	20	600	175	174	A^*+ACS	174	new	597.3
4	25	600	173	173	A^*+ACS	\mathbf{best}	best	595.4
4	40	600	156	154	A^*+ACS	154	new	592.1
4	60	600	154	154	A^*+ACS	best	best	593.8
4	80	600	144	144	A^*+ACS	\mathbf{best}	best	596.2
4	100	600	139	139	A^*+ACS	\mathbf{best}	best	594
4	150	600	131	131	A^*+ACS	best	best	595
4	200	600	126	126	A^*+ACS	best	best	593.4
20	10	600	72	72	A^*+ACS	\mathbf{best}	71	586.3
20	15	600	63	63	A^*+ACS	\mathbf{best}	best	574.8
20	20	600	55	55	A^*+ACS	best	best	575.7
20	25	600	53	52	A^*+ACS	52	new	575.9
20	40	600	50	50	A^*+ACS	best	best	558.8
20	60	600	47	47	A^*+ACS	best	best	542.6
20	80	600	44	44	A*+ACS	best	best	524.2
20	100	600	40	40	A*+ACS	$_{ m best}$	best	531.2
20	150	600	38	38	A*+ACS	$_{ m best}$	best	547.1
20	200	600	35	35	A^*+ACS	\mathbf{best}	best	545.2

2.3 Benchmark set Virus

Concerning the short-run execution, in seven (out of 20) cases, new-state-of-the-art solutions are obtained by BS-GMPSUM. In just two cases, BS-Ex outperforms BS-GMPSUM. In all other cases, the results of BS guided by the aforementioned two heuristic are tied. Other two guiding heuristics perform significantly worse. Concerning long-run executions, in six out of 20 cases new state-of-theart results are obtained by the TRBS-GMPSUM. In just one case, A*+ACS delivers a better solution. In other cases, the results of the two algorithms are tied.

BS-Ex BS-Pow Instance BS-Gmpsum $|\Sigma|$ mNew Lit. Alg. |s||s|10 600 227 227 BS-Ex 2.9 225 226 0.7 2.2 $\overline{\text{best}}$ best 600 BS-Ex 203 2.4 15 205 205 best 2.21.2 204 0.7best 600 192 192 BS-Ex 190 190 0.7 2.8 20 best 1.1 best 25 600 195 194 BS-Ex 192 194 3.1 new 40 172 170 BS-Ex 170 169 new 600 168 BS-Ex 166 165 166 5.1 60 166 80 600 163 163 BS-Ex \mathbf{best} 2.7 157 159 161 6.6 100 BS-Ex 600 160 158 2.3 155 1.2 0.9 158 158 new 7.8 150 600 157 156 BS-Ex 156 2.4 147 1.2 156 0.7new 11 200 600 156 155 BS-HP 154 148 155 14.8 new 20 BS-Pow best 20 20 20 20 600 64 64 BS-Ex \mathbf{best} 2.9 2.1 \mathbf{best} 1.6 63 3.6 best BS-Ex $\frac{2.7}{2.7}$ 20 600 60 60 \mathbf{best} 2.1 1.6best best best 4.225 600 55 55 BS-Ex best best 1.8 best best 20 51 BS-Ex 2.9 40 50 1.9 0.9 600 50 49 50 new 20 600 48 BS-Ex \mathbf{best} 3.3 47 1.2 47 best 1.1 BS-Ex 600 46 \mathbf{best} 2.6 best 1.5best 1.4 \mathbf{best} 20 100 600 45BS-Ex 2.3 10.8 $\frac{20}{20}$ 150 600 45 45 BS-Ex best 2.8 best 2.1 best 1.3 best 17.4

Table 5: Short-run results for benchmark set Virus.

Table 6: Long-run results for benchmark set Virus.

43

3.2

43

2.1

best

best

23.3

BS-HP

	Instanc	e		Best	s	A*+ACS	TRBS-G	MPSUM 600s
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.			t
4	10	600	229	228	A*+ACS	228	new	598.3
4	15	600	207	206	A^*+ACS	206	new	598.6
4	20	600	194	194	A^*+ACS	best	193	595
4	25	600	196	196	A^*+ACS	best	best	597
4	40	600	174	174	A^*+ACS	best	best	597.1
4	60	600	169	168	A^*+ACS	168	new	596.5
4	80	600	164	163	A^*+ACS	163	new	595.8
4	100	600	162	160	A^*+ACS	160	new	596
4	150	600	158	157	A^*+ACS	157	new	596
4	200	600	156	156	A^*+ACS	best	best	594.7
20	10	600	77	77	A^*+ACS	best	best	590.4
20	15	600	64	64	A^*+ACS	best	best	573
20	20	600	61	61	A^*+ACS	best	best	570.4
20	25	600	56	56	A^*+ACS	best	best	569
20	40	600	51	51	A^*+ACS	best	best	554.2
20	60	600	48	48	A^*+ACS	best	best	541.6
20	80	600	46	46	A*+ACS	best	best	543.2
20	100	600	45	45	A*+ACS	best	best	534.9
20	150	600	46	46	A*+ACS	best	best	549.9
20	200	600	44	44	A^*+ACS	best	best	538.5

2.4 Benchmark set BB

200

600

44

In the short-run scenario, BS-Pow heuristic and BS-GMPSUM are performing well, since they are able to deliver best average solution in six versus five (out of eight) instance groups. However, slightly better performing approach in terms of solution quality is BS-Pow. BS-GMPSUM is able to deliver a new state-of-the-art short-run solution for one instance group. In the remaining group, other BS configuration from the literature (BS-Blum, see [1]) delivers the best known solution. Concerning the long-run executions, in six out of eight cases, the best average solutions is obtained by the TRBS-GMPSUM, from which tow new state-of-the-art results are achieved. In three cases the best average solution produced by A*+ACS is also matched by TRBS-GMPSUM. In the remaining two cases, the best performing algorithms are those from the literature: APS [3, 5] and BS-Pow.

Table 7: Short-run results for BB instances.

	Instan	ce	Best $ s $			BS-Ex		BS-Pow		BS-HP		BS-Gmpsum	
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.		t	s	t	s	t	s	t
2	10	1000	676.5	676.5	BS-HP	673.5	5.5	best	4	best	1.2	best	6.2
2	100	1000	560.8	560.7	BS-Pow	536.6	6.1	560.7	5.7	558.9	1.9	new	23.7
4	10	1000	545.4	545.4	BS-HP	545.2	6.2	best	9.5	best	1.7	\mathbf{best}	7.1
4	100	1000	388.8	388.8	BS-Pow	329.5	5.9	best	2.9	368	$^{2.6}$	379.4	22.3
8	10	1000	462.7	462.7	BS-Ex	best	7.9	best	12.5	best	$^{2.6}$	\mathbf{best}	9.9
8	100	1000	272.1	272.1	BS-Blum	210.6	8	271.8	5.3	247.7	3.5	253	26.4
24	10	1000	385.6	385.6	BS-Ex	best	16.2	best	7	best	8.2	\mathbf{best}	31.1
24	100	1000	149.5	149.5	BS-Pow	113.3	12.5	best	3.6	138.7	7.2	135.5	88.6

Table 8: Long-run results for BB instances.

	Instan	ce		Best	s	A*+ACS	TRBS-G	MPSUM 600s
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.			t
2	10	1000	676.7	676.7	A*+ACS	676.6	best	598.1
2	100	1000	571.1	563.6	APS	547.1	new	598
4	10	1000	545.5	545.5	A^*+ACS	best	best	599.7
4	100	1000	391.8	390.2	APS	344.3	new	598.8
8	10	1000	462.7	462.7	A^*+ACS	best	best	599.9
8	100	1000	273.4	273.4	APS	223.7	265.6	598.9
24	10	1000	385.6	385.6	A^*+ACS	best	best	600.5
24	100	1000	149.5	149.5	BS-Pow	117	143.2	598.9

2.5 Benchmark set ES

These uniform-at-random instances perfectly fit the Ex guidance, as is already shown in the literature. So, it is not surprising that for eight out of twelve groups BS-Ex reaches the best average solution. In four out of twelve groups, BS-GMPSUM is able to reach the best average solution, all representing the new state-of-the-art results. Concerning long-run executions, in eight out of twelve groups, A^*+ACS beats the result of the TRBS-GMPSUM. In three out of twelve groups, new state-of-the-art results are obtained by the TRBS-GMPSUM, and for one group, the result was tied.

Table 9: Short-run results for ES instances.

	Instan	ce		Best $ s $		BS-	Ex	BS-P	OW	BS-1	НР	BS-GM	IPSUM
$ \Sigma $	m	\overline{n}	New	Lit.	Alg.		t		t		t	s	t
2	10	1000	615.1	615.06	BS-Ex	615.06	4.4	614.2	1.4	612.5	0.9	new	5.1
2	50	1000	538.24	538.24	BS-Ex	best	4.4	535.56	1.6	536.46	1.1	536.28	12.3
2	100	1000	519.84	519.84	BS-Ex	best	4.8	516.24	1.9	518.56	1.3	516.42	22
10	10	1000	203.1	203.1	BS-Ex	best	5.6	202.72	2.5	201.42	1.6	203.08	4.9
10	50	1000	136.34	136.32	BS-Ex	136.32	3.9	135.52	2.1	135.22	1.4	new	9.9
10	100	1000	123.32	123.32	BS-Ex	best	4.3	122.18	$^{2.2}$	122.4	1.5	122.96	17.1
25	10	2500	235.58	235.22	BS-Pow	231.12	19.1	235.22	10.5	233.34	8	new	29
25	50	2500	139.5	139.5	BS-Ex	best	14.5	138.56	7.2	137.76	5.5	139.44	53.7
25	100	2500	122.88	122.88	BS-Ex	best	16	121.62	7.3	121.6	5.9	122.7	96.7
100	10	5000	145.1	144.9	BS-Pow	144.18	91.9	144.9	75.9	143.62	71.6	new	185.4
100	50	5000	71.94	71.94	BS-Ex	best	53.5	71.32	39.1	70.86	35	71.8	365.4
100	100	5000	60.66	60.66	BS-Ex	$_{ m best}$	53.7	60.06	36	59.96	32.4	60.6	624.3

Table 10: Long-run results for ES instances.

-	Instand	e		Best	t s	A*+ACS	TRBS-G	MPSUM 600s
$ \Sigma $	m	n	New	Lit.	Alg.		s	t
2	10	1000	619.1	618.9	A*+ACS	618.9	new	599
2	50	1000	540.9	540.9	A^*+ACS	best	540.3	598.1
2	100	1000	522.1	522.1	A^*+ACS	best	520.4	597.1
10	10	1000	205	205	A^*+ACS	best	204.9	599.3
10	50	1000	137.6	137.5	A^*+ACS	137.5	new	594.5
10	100	1000	124.1	124.1	A^*+ACS	best	best	591.7
25	10	2500	238	236.6	A*+ACS-dist	235	new	599.2
25	50	2500	140.4	140.4	A^*+ACS	best	140.1	593.3
25	100	2500	123.4	123.4	A^*+ACS	best	123.2	588.5
100	10	5000	145.7	145.7	A^*+ACS	best	145.1	597.8
100	50	5000	72	72	A^*+ACS	best	71.8	580.5
100	100	5000	60.8	60.8	A*+ACS	best	60.1	619.3

References

- [1] C. Blum, M. J. Blesa, and M. López-Ibáñez. Beam search for the longest common subsequence problem. *Computers & Operations Research*, 36(12):3178–3186, 2009.
- [2] M. Djukanovic, G. Raidl, and C. Blum. A beam search for the longest common subsequence problem guided by a novel approximate expected length calculation. In *Proceedings of LOD 2019 The 5th International Conference on Machine Learning, Optimization, and Data Science*, LNCS. Springer, 2019. to appear.
- [3] M. Djukanovic, G. R. Raidl, and C. Blum. Finding longest common subsequences: New anytime a search results. *Applied Soft Computing*, 95:106499, 2020.
- [4] F. S. Tabataba and S. R. Mousavi. A hyper-heuristic for the longest common subsequence problem. Computational Biology and Chemistry, 36:42–54, 2012.
- [5] S. G. Vadlamudi, S. Aine, and P. P. Chakrabarti. Anytime pack search. *Natural Computing*, 15(3):395–414, 2016.
- [6] J. Yang, Y. Xu, G. Sun, and Y. Shang. A new progressive algorithm for a multiple longest common subsequences problem and its efficient parallelization. *IEEE Transactions on Parallel* and Distributed Systems, 24(5):862–870, 2012.