Time-Series Forecasting

using Machine Learning to predict grocery store sales

Project Work on Data Mining M

Pasit Khantigul

Contents

- Goal of the project
- Dataset
- Time-Series components
 - Time Dependence
 - Serial Dependence
- Hybrid Model
- Forecasting results
- Conclusion

Goal of the project

Problem: time-series prediction problem presented as a Kaggle competition.

Time-series: a set of observations recorded over time.

Goal: use machine learning to forecast store sales on data from Corporación Favorita:

- → forecast for the **next 15 days** (from the last day of the training data)
- → get lowest score from submissions

by **modelling** both:

- time dependence features
- serial dependence features

hybrid model

 $\text{RMSLE}: [\sqrt{\tfrac{1}{n}\sum_{i=1}^n \left(\log(1+\hat{y}_i) - \log(1+y_i)\right)^2}]$

- 1. training.csv
- 2. transaction.csv
- 3. stores.csv
- 4. holiday_events.csv
- 5. oil.csv
- 6. test.csv
- 7. sample_submission.csv

	.to_period('D')				
			id	onpromotion	
store_nbr	family	date			
7	AUTOMOTIVE	2017-08-16	3000888	0	
		2017-08-17	3002670	0	
		2017-08-18	3004452	0	
		2017-08-19	3006234	0	
		2017-08-20	3008016	0	

transferred	description	locale_name	locale	type	
					date
False	Fundacion de Manta	Manta	Local	Holiday	2012-03-02
False	Provincializacion de Cotopaxi	Cotopaxi	Regional	Holiday	2012-04-01
False	Fundacion de Cuenca	Cuenca	Local	Holiday	2012-04-12
False	Cantonizacion de Libertad	Libertad	Local	Holiday	2012-04-14
False	Cantonizacion de Riobamba	Riobamba	Local	Holiday	2012-04-21

EDA results

Total duration of data:

- Total number of families (of products): 33
 - o some family does not have any sales for some stores -> forecast easily to 0 sales.
- Total number of stores: 54
- The top 5 most sold are Grocery, beverages, cleaning, dairy, and produce. Grocery and beverage account for more than 50% of total sales.
- Correlation between oil prices and (avg) sales and (avg) transaction suggests that the country's economic status and everyday grocery consumption do not have a particular relationship.

	dcoilwtico	sales	transactions
dcoilwtico	1.000000	-0.500805	0.04319
sales	-0.500805	1.000000	0.37651
transactions	0.043190	0.376510	1.00000

Modelling time dependence

A series is *time dependent* if its values can be predicted from the time they occured - from **time-step features**, which can be modelled from:

→ **Trend**: a persistent, long-term change in the mean of the series, estimated from the Moving Average Plot.

```
trend = avg_sales.rolling(
    window=365, #smooth over
    center=True.
    min_periods=183,
).mean()
v = avg_sales.copv()
dp = DeterministicProcess(
    index=v.index.
    constant=True.
    order 1,
    drop=True,
X = dp.in_sample()
X.head()
```

```
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=15, shuffle=False)
model = LinearRegression(fit_intercept=False).fit(X_train, y_train)
v_fit = pd.DataFrame(model.predict(X_train), index=X_train.index, columns=v_train.columns).clip(0.0)
v_pred = pd.DataFrame(model.predict(X_valid), index=X_valid.index, columns=y_valid.columns).clip(0.0)
rmsle_train = mean_squared_log_error(y_train, y_fit) ** 0.5
rmsle_valid = mean_squared_log_error(y_valid, y_pred) ** 0.5
            const (trend) trend squared trend cubed
      date
 2013-01-01
              1.0
                   1.0
                                 1.0
                                             1.0
 2013-01-02
              1.0
                    2.0
                                 4.0
                                             8.0
 2013-01-03
                                 9.0
             1.0
                                            27.0
                                           64.0
 2013-01-04
              1.0
                   4.0
                                16.0
 2013-01-05
              1.0
                   5.0
                                25.0
                                           125.0
```


Seasonality

= regular, periodic changes in the mean of the series caused by weekly, monthly, seasonal or yearly patterns.

Seasonal Plot (week/day) **Seasonal indicators:** 600 For a season with 500 few observations represented 200 through one-hot-100 encoded categorical features. Seasonal Plot (year/dayofyear) 2016 600 2015 2014 400 2013 weekly seasonality = > added 6 features 250 350 davofvear

Period restriction of 2017

Training RMSLE: 1.16594 Validation RMSLE: 0.58326 -> Since the previous model does much better in the validation set than in the training set.

... but for long seasons (with frequent observations)?

Fourier Feature: a pair of sine and cosine curves for each potential frequency in the season starting with the longest, to capture the overall shape of the seasonal curve.

How many pairs?

Residual Analysis

A residual of a model are differences between **target** the model was trained on and the **predictions** the model makes, representing what the model failed to learn about the target from the features.

- Deseasonalising: to check the effectiveness of seasonality modelling:
 - plot the residuals against a feature to get the deseasonalised and detrended plot.

- Hybrid forecasting
 - o by considering the additive model:
 - o series = trend + seasons + cycles +
 error

Holiday Feature

Selecting only national and regional, from 2017, created as seasonal indicator: X_holidays = pd.get_dummies(holidays)

Modelling serial dependence

A time series has serial dependence when an observation can be predicted from previous observations, what happened in the **recent past** is relevant. Can be linear or non-linear.

→ Cyclic behaviour: pattern of changes associated with how the value at one time depends on values at previous time and not necessarily on time-steps.

Deseasonalised Sales of "School and Office Supplies"

Lagged Series and Plots

Lag features are values at prior timesteps obtained by shifting the observations of the target series .

Choosing lags through **Partial Autocorrelation**: shows the amount of new correlation that the lag contributes (Only

for linear serial dependency).

Add Lag 1 feature of Supply Sales

Training and Forecasting on residual:

Training RMSLE: 0.43198 Validation RMSLE: 0.24564

Hybrid Model: forecaster that combine complementary learning algorithms.

```
Additive model: series = trend + seasons + cycles + error

Motivation: Target-transforming algorithm cannot extrapolate trends.
```

Phases:

- 1. Train and predict with first model
- 2. Train and predict with second model on residuals
- 3. Add to get overall predictions

```
mod_1 = LinearRegression(fit_intercept=False) # for time
mod_2 = KNeighborsRegressor() # for serial-dependence

model = BoostedHybrid(model_1=mod_1, model_2=mod_2)

model.fit(X_1_train, X_2_train, y_train)
y_fit = model.predict(X_1_train, X_2_train).clip(0.0)
y_pred = model.predict(X_1_valid, X_2_valid).clip(0.0)
```

```
def fit(self, X_1, X_2, y):
          # Train model 1
          self.model_1.fit(X_1, y)
          # Make predictions
          v_fit = pd.DataFrame(
              self.model_1.predict(X_1),
              index=X_1.index, columns=y.columns.
          # Compute residuals
          y_resid = y - y_fit
          # Train model_2 on residuals
          self.model_2.fit(X_2, y_resid)
def predict(self, X_1, X_2):
   # Predict with model 1
   y_pred = pd.DataFrame(
        self.model_1.predict(X_1),
       index=X_1.index, columns=self.y_columns,
    # Add model_2 predictions to model_1 predictions
   y_pred += self.model_2.predict(X_2)
   return y_pred
```


Conclusions

• The forecasting results are good, but not for every families.

• The most accurate predictions are for top-sales families of product (e.g. Beverages, Grocery, Cleaning, etc...).

- There are several possible variation of hybrid model design:
 - One model for each family (33 models): to identify different features for each family.
 - One model for each store (54 models): identify feature such as local holidays, analysing 'store.csv' dataset.

• The use of different kind of plots are essential to the workflow of Time-Series Forecasting.