

Modeling: ODEs and Hill Functions

Section 1: ODEs, Law of mass action and the central dogma

by Alejandro Vignoni (alvig2@upv.es)

An iGEM Measurement Committee Webinar Week 2, June 23rd, 2020

Today Webinar's Topics

- Section 1: ODEs, the law of mass action, and the central dogma (15 min)
- A Section 2: Derivation of a Hill function from the law of mass action (15 min)
- A Section 3: Hill function examples and intuitions: effects of parameters on activators, repressors, hybrid promoters, using a Matlab exploration package. (15min)
- △ Q&A (at the end of each 15 minutes block, total 15 min)

Types of models

Part I

Reduced Mathematical Model

Part II

$$\begin{array}{c} \overset{C_R}{\overset{C_R}{\longrightarrow}} mR \\ gPI \xrightarrow{k_{E_I}} gPI + mPI \\ mR \xrightarrow{p_R} mR + R \\ mPI \xrightarrow{p_I} mPI + PI \\ I \xrightarrow{k_A} A + I \\ R + A \xrightarrow{k_{-1}/k_{d1}} (R \cdot A) \\ \underset{2}{\overset{k_{-2}/k_{d2}}{\longleftarrow}} (R \cdot A)_2 \\ \end{array}$$

$$gPI + (R \cdot A)_2 \xrightarrow{\overset{k_{1ux}/k_{dlux}}{\longleftarrow}} gPI \cdot (R \cdot A)_2 + mPI \\ A \xrightarrow{\overset{D}{\overset{D}{\longrightarrow}}} A_{ext} \\ \end{array}$$

$$\begin{split} &\dot{n}_{1}^{i} = \mathbf{k}_{\mathrm{el}} n_{1}^{i} + \alpha \mathbf{k}_{\mathrm{el}} n_{8}^{i} - \mathbf{d}_{\mathrm{m_{l}}} n_{1}^{i} \\ &\dot{n}_{2}^{i} = \mathbf{C}_{\mathrm{R}} - \mathbf{d}_{\mathrm{m_{R}}} n_{2}^{i} \\ &\dot{n}_{3}^{i} = \mathbf{p}_{\mathrm{I}} n_{1}^{i} - \mathbf{d}_{\mathrm{I}} n_{3}^{i} \\ &\dot{n}_{4}^{i} = \mathbf{p}_{\mathrm{R}} n_{2}^{i} + \mathbf{k}_{-1} n_{5}^{i} - \mathbf{d}_{\mathrm{R}} n_{4}^{i} - \frac{\mathbf{k}_{-1}}{\mathbf{k}_{41}} n_{9}^{i} n_{4}^{i} \\ &\dot{n}_{5}^{i} = 2 \mathbf{k}_{-2} n_{6}^{i} + \frac{\mathbf{k}_{-1}}{\mathbf{k}_{41}} n_{9}^{i} n_{4}^{i} + \left(-\mathbf{k}_{-1} - \mathbf{d}_{\mathrm{RA}} - 2 \frac{\mathbf{k}_{-2}}{\mathbf{k}_{42}} n_{5}^{i} \right) n_{5}^{i} \\ &\dot{n}_{6}^{i} = \mathbf{k}_{\mathrm{lux}} n_{8}^{i} + \frac{\mathbf{k}_{-2}}{\mathbf{k}_{42}} n_{5}^{i^{2}} + \left(-\mathbf{k}_{-2} - \mathbf{d}_{\mathrm{RA}_{2}} - \frac{\mathbf{k}_{\mathrm{lux}}}{\mathbf{k}_{\mathrm{dlux}}} n_{7}^{i} \right) n_{6}^{i} \\ &\dot{n}_{7}^{i} = \mathbf{k}_{\mathrm{lux}} n_{8}^{i} + \frac{\mathbf{k}_{\mathrm{lux}}}{\mathbf{k}_{2}} n_{6}^{i} n_{7}^{i} \\ &\dot{n}_{8}^{i} = -\mathbf{k}_{\mathrm{lux}} n_{8}^{i} + \frac{\mathbf{k}_{\mathrm{lux}}}{\mathbf{k}_{\mathrm{dlux}}} n_{6}^{i} n_{7}^{i} \\ &\dot{n}_{9}^{i} = \mathbf{D} \left(\mathbf{V}_{c} n_{10} - n_{9}^{i} \right) - \left(\frac{\mathbf{k}_{-1}}{\mathbf{k}_{\mathrm{dl}}} n_{4}^{i} + \mathbf{d}_{\mathrm{A}} \right) n_{9}^{i} + \mathbf{k}_{-1} n_{5}^{i} + \mathbf{k}_{\mathrm{A}} n_{3}^{i} \\ &\dot{n}_{10} = \mathbf{D} \left(-N \mathbf{V}_{c} n_{10} + \sum_{i=1}^{N} n_{9}^{i} \right) - \mathbf{d}_{\mathrm{A}_{9}} n_{10} \end{split}$$

$$\begin{split} \dot{n}_{1}^{i} &= \frac{C_{1}p_{I}}{d_{m_{I}}} \left(\frac{k_{dlux} + \alpha n_{3}^{i}}{k_{dlux} + n_{3}^{i}} \right) - d_{I}n_{1}^{i} \\ \dot{n}_{2}^{i} &= \frac{C_{R}p_{R}}{d_{m_{R}}} + k_{-1}n_{6}^{i} - \left(\frac{k_{-1}}{k_{d1}}n_{4}^{i} + d_{R} \right)n_{2}^{i} \\ \dot{n}_{3}^{i} &= \frac{k_{-2}}{k_{d2}} (n_{6}^{i})^{2} - (k_{-2} + d_{R}A_{2})n_{3}^{i} \\ \dot{n}_{4}^{i} &= k_{-1}n_{6}^{i} + k_{A}n_{1}^{i} + D\left(\frac{n_{5}}{V_{c}} - n_{4}^{i} \right) - \left(\frac{k_{-1}}{k_{d1}}n_{2}^{i} + d_{A} \right) \end{split}$$

Easier to use and to relate with experimental data

But what is an Ordinary Differential Equation (ODE)?

These are equations with variables and their derivatives

If we have any function (the typical one):

$$y = f(t)$$
 (y only depends on the variable t, but we could have $y = f(t, x_1, x_2, ... x_n)$)

Do you remember the definition of the derivative of a function?

$$\dot{y} = \frac{df(t)}{dt} = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$
 (we can have higher order derivatives $y'', y''', y^{(n)}$)

But they can be very challenging and difficult to solve!!

But if they're so complicated... how do we solve them?

We can solve differential equations in two ways:

A Analytically: solving for the unknown...

A Numerically: in an approximate way.

$$\dot{y} \simeq \frac{f(h+h) - f(x)}{h}$$

(with an h very small)

Why do we use them?

Differential equations describe biological behaviour, physical laws, human activities, and much more....

And the set of equations that describe a system, a phenomenon... is known as <u>ODE model</u>

Software for Ordinary Differential Equations (ODEs) solving

•MATLAB, a technical computing application (MATrix LABoratory)

FREE LICENSE WITH iGEM and the Measurement Committee has some software programed in MATLAB for flow cytometry and plate reader data analysis and calibration.

- •<u>Maxima</u>, an open-source <u>computer algebra system</u>.
- •COPASI, a free software package for the integration and analysis of ODEs.
- •GNU Octave, a high-level language, basically a open-source version of MATLAB.
- •Scilab, an open source application for numerical computation.
- •Maple, a proprietary application for symbolic calculations.
- •Mathematica, a proprietary application primarily intended for symbolic calculations.
- •Julia (programming language), a high-level language primarily intended for numerical computations.
- •<u>SageMath</u>, an open-source application that uses a Python-like syntax with a wide range of capabilities spanning several branches of mathematics.
- •SciPy, a Python package that includes an ODE integration module.
- •GNU R, an open source computational environment primarily intended for statistics, which includes packages for ODE solving.

Let us begin this journey Part I from:

Biochemical Reactions Mathematical Model (ODEs)

Reminder: Law of mass action and kinetic equations

Example: Reaction of Water

Stoichiometric coefficients

Reaction of Water – Kinetics of H_2

$$2 H_2 + O_2 \xrightarrow{k} 2 H_2 O$$

Rate of change of $[H_2]$

 $[\dot{H_2}] = -2k[H_2]^2[O_2]$

Decreases or it is consumed

Stoichiometric coefficient of $[H_2]$ times the reaction rate k

product of the concentrations of the reactants ($[H_2] \times [H_2] \times [O_2] = [H_2]^2 [O_2]$)

Reaction of Water – Kinetics of O₂

$$2 H_2 + O_2 \xrightarrow{k} 2 H_2 O$$

Rate of change

 $[\dot{O}_2] = -k[H_2]^2[O_2]$

Decreases or it is consumed

Stoichiometric coefficient of $[0_2]$ times the reaction rate k product of the concentrations of the reactants ($[H_2] \times [H_2] \times [O_2] = [H_2]^2 [O_2]$)

Reaction of Water – Kinetics of H_2O

$$2 H_2 + O_2 \xrightarrow{k} 2 H_2 O$$

Rate of change of $[H_2O]$

$$[\dot{H_2}O] = +2k[H_2]^2[O_2]$$

Increases or it is produced

Stoichiometric coefficient of $[H_20]$ times the reaction rate k

product of the concentrations of the reactants ($[H_2] \times [H_2] \times [O_2] = [H_2]^2 [O_2]$)

Reaction of Water - Kinetics

$$2 H_{2} + O_{2} \xrightarrow{k} 2 H_{2}O$$

$$[\dot{H}_{2}] = -2k[H_{2}]^{2}[O_{2}]$$

$$[\dot{O}_{2}] = -k[H_{2}]^{2}[O_{2}]$$

$$[\dot{H}_{2}O] = 2k[H_{2}]^{2}[O_{2}]$$

Summary

- A One equation for each one of the species
- A Rate of change of [A] (concentration of species A) is proportional to:
 - ▲ Stoichiometric coefficient of *A* time reaction rate *k*
 - ▲ The product of the concentrations of the reactants

The central dogma of molecular biology

From

Transcription of DNA by RNA polymerase

Translation of mRNA by Ribosomes

$$[m\dot{R}NA] = k_1[Gene]$$

$$[m\dot{R}NA] = k_1[Gene] - d_1[mRNA]$$

$$[m\dot{R}NA] = k_1[Gene] - d_1[mRNA]$$
$$[Protein] = k_2[mRNA]$$

$$[mRNA] = k_1[Gene] - d_1[mRNA]$$

 $[Protein] = k_2[mRNA] - d_2[Protein]$

Transcription Translation

Gene
$$\xrightarrow{k_1}$$
 mRNA $\xrightarrow{k_2}$ Protein

Degradation $d_1 \downarrow$ $d_2 \downarrow$ \emptyset

$$\frac{d[\text{mRNA}]}{dt} = [\text{mRNA}] = k_1[\text{Gene}] - d_1[\text{mRNA}]$$

$$\frac{d[\text{Protein}]}{dt} = [\text{Protein}] = k_2[\text{mRNA}] - d_2[\text{Protein}]$$

Constitutive gene expression - Simulation

ODE model

```
[mRNA] = k_1[Gene] - d_1[mRNA]

[Protein] = k_2[mRNA] - d_2[Protein]
```

Function defines the ODE model

```
% Constitutive gene expression model.
% Updated 17/06/2020 Alejandro Vignoni
function [dxdt] = model_const(t,x,p)
%x1 = mRNA
dxdt(1,1) =p.CN*p.k1-p.d1*x(1);
%x2 = Protein
dxdt(2,1)=p.k2*x(1)-p.d2*x(2);
end
```


Constitutive gene expression - Simulation

Parameters definition

Simulation configuration and execution

```
tfin = 60*3; %simulation final time
step = 0.1; %simulation step
tspan = 0:step:tfin-step;
% options for ode function
opti = odeset('AbsTol',1e-8,'RelTol',1e-6);
Init = [0 0]; %initial conditions
```



```
[t0,x0] = ode23t(@(t,x) model_const(t,x,p),tspan, Init, opti);
```

Constitutive gene expression - Simulation

Parameters definition

Simulation configuration and execution

```
tfin = 60*3; %simulation final time
step = 0.1: %simulation step
```


Sponsor Webinar - MathWorks: Modeling and Analysis of Synthetic Biology Systems with SimBiology and MATLAB

July

- **† Team:** MathWorks
- **ODATE:** July 23, 10:00AM EDT
- Location: Online

Constitutive gene expression - Remarks

$$\begin{split} [\text{mRNA}] &= k_1 [\text{Gene}] - d_1 [\text{mRNA}] \\ [\text{Protein}] &= k_2 [\text{mRNA}] - d_2 [\text{Protein}] \end{split}$$

[Gene] is considered a constant value and depends on: the Origin of Replication and the Plasmid Copy Number where the Gene is cloned.

We are considering:

- RNA polymerase and Ribosomes are sufficient enough so that they are not limiting the kinetics.
- Binding/Unbinding processes are much faster than transcription and translation.
- Protein degradation includes growth asociated dilution.

Questions? Ask writing in the chat or contact me by email (alvig2 [at] upv [dot] es)

Stay tuned, next Section 2:

Derivation of a Hill function from

the law of mass action (15 min)

