

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

MAT 140 - CÁLCULO I - PER

Lista 13 - Derivada da Função Logarítmica e das Funções Trigonométricas Inversas:

1. Determine a derivada de cada função a seguir:

(a)
$$f(x) = x \ln x$$

(b)
$$f(x) = \frac{1}{x \ln x}$$

(c) $f(x) = \frac{x \operatorname{tg} x}{\ln x}$

(c)
$$f(x) = \frac{x tg x}{\ln x}$$

(d)
$$f(x) = e^x \arcsin x$$

(e)
$$f(x) = x \arccos x$$

(f)
$$f(x) = \frac{x^3 + 1}{arcsen x}$$

(g)
$$f(x) = arcsen(e^x)$$

(h)
$$f(x) = ln\left(\frac{x+1}{x^2+4x}\right)$$

(i)
$$f(x) = \ln(\sin x + \cos x)$$

(j)
$$f(x) = \sqrt{\ln(x^2 + 1)}$$

(k)
$$f(x) = e^{2x} \arctan(3x)$$

(1)
$$f(x) = arctg(\sqrt{x^2 + 2})$$

(m)
$$f(x) = sen x arcsec(3x)$$

(n)
$$f(x) = ln(2x) \arcsin(x^2)$$

2. Utilizando derivação implícita, determine $\frac{dy}{dx}$:

(a)
$$x \ln y + y^3 = \ln x$$

(b)
$$e^{\cos y} = x^3 \operatorname{arctg} y$$

(c)
$$e^{x^2} + \ln y = 0$$

3. Determine a equação da reta tangente à curva ln(xy) = 2x no ponto $(1, e^2)$.