

Budovanie mostov

Časový limit: 3 s Pamäťový limit: 128 MB

V širokej rieke Oravici sa nachádza n pilierov, ktoré vyčnievajú z vody a môžu mať rôzne výšky. Sú usporiadané v jednej línii z jedného brehu na druhý. Chceme vybudovať most (pomocou traktorov), v ktorom budú použité niektoré z týchto pilierov. Aby sme to dosiahli, vyberieme nejakú podmnožinu pilierov. Spojením vrcholov pilierov v podmnožine vybudujeme jednotlivé časti mosta. Podmnožina musí obsahovať prvý a posledný pilier.

Cena stavby mostovej časti medzi piliermi i a j je $(h_i - h_j)^2$, kde h_i je výška i-teho piliera¹. Navyše, musíme tiež odstrániť všetky piliere, ktoré nie sú súčasťou mosta, pretože by bránili doprave. Cena odstránenia i-teho piliera je rovná w_i . Táto cena môže byť aj negatívna — niektoré firmy sú ochotné zaplatiť odstránenie určitých pilierov. Všetky výšky h_i a ceny w_i sú celočíselné.

Aká je minimálna cena vybudovania mosta, ktorý spája prvý a posledný pilier?

Vstup

Prvý riadok obsahuje počet pilierov, n. Druhý riadok obsahuje výšky pilierov h_i oddelené medzerou, v poradí ich umiestnenia v rieke. Tretí riadok obsahuje ceny odstránenia pilierov w_i v tom istom poradí.

Výstup

Výstupom je minimálna cena na vybudovanie mosta. Poznamenajme, že môže byť záporná.

Ohraničenia

- $2 < n < 10^5$
- $0 \le h_i \le 10^6$
- $0 < |w_i| < 10^6$

Podúloha 1 (30 bodov)

• $n \le 1000$

Podúloha 2 (30 bodov)

- optimálne riešenie obsahuje okrem prvého a posledného najviac 2 dodatočné piliere
- $|w_i| \le 20$

Podúloha 3 (40 bodov)

• žiadne ďalšie ohraničenia

¹Čím väčšie prevýšenie, tým drahší most.

Príklad

Vstup	Výstup
6 3 8 7 1 6 6	17
0 -1 9 1 2 0	