

Задачи множественного локального выравнивания и построения синтенных блоков

Илья Минкин

28 июля 2014 г.

Что я хочу донести

- Какие модели выравнивания существуют и в чем разница между ними
- Что такое синтенные блоки и чем они отличается от выравниваний
- Что могут и что не могут современные алгоритмы

Что такое выравнивание?

Геномы разделяются и мутируют:

Вопрос: какие нуклеотиды потомкам A и B достались от общего предка?

Как отобразить выравнивание?

Чаще всего выравнивание записывается в виде таблицы:

ACTG-TGA ACTACTGA

Выравнивание показывает не только *общие*, но и *различные* части геномов

Как отобразить выравнивание?

Чаще всего выравнивание записывается в виде таблицы:

ACTG-TGA ACTACTGA

Выравнивание показывает не только *общие*, но и *различные* части геномов

Зачем это нужно?

Зачем нужно выравнивание?

ACTG-TGA ACTACTGA

- Позволяет понять функциональное назначение частей геномов
- ▶ Различия в *генотипах* могут объяснять различия в фенотипах
- Можно оценить эволюционное расстояние между геномами

>

Как получить выравнивание?

Глобальное выравнивание

ACTG-TGA ACTACTGA

Для двух строк A и B:

- Расположить их в таблице одна под другой
- ▶ Вставить в А и В пробелы так, чтобы у них была одинаковая длина
- ▶ Штрафуются пробелы и несовпадение символов в столбце
- Какое выравнивание дает меньше всего штрафа?
- ▶ Время работы точного алгоритма O(|A||B|)

Глобальное выравнивание

ACTG-TGA ACTACTGA

Оно же и расстояние Левинштейна (1966)

Даны две строки A и B и три возможных операции:

- ightharpoonup Вставить один символ в A
- lacktriangle Удалить один символ из A
- Заменить один символ в A на другой

Какое минимальное количество операций требуется, чтобы превратить A в B?

Множественное выравнивание

А что, если строки три?

Множественное выравнивание

А что, если строки три? Все почти тоже самое: вставляем пробелы и считаем несовпадения в столбцах

> ACTG-TGA ACTACTGA A-TGCTCA

Несовпадения можно считать так: брать все пары символов из столбца:

G-A, G-G, A-G

Точный алгоритм работает за O(|A||B||C|)

Локальное выравнивание

Для полных геномов глобальное выравнивание не работает!

GAACTGTGATTAGGACGT ATTTGGGACTACTGAGTA

Локальное выравнивание

Для полных геномов глобальное выравнивание не работает!

GAACTGTGATTAGGACGT ATTTGGGACTACTGAGTA

- ▶ Помимо вставок, удалений и замен бывают нелинейные перестройки
- ▶ Перестройки меняют порядок и ориентацию целых геномных блоков
- Похожие части геномов могут перемежаться чем-то еще

Локальное выравнивание

GAACTGTGATTAGGACGT ATTTGGGACTACTGAGTA

Задача: для двух строк A и B найти две самые похожие *подстроки* и их выравнивание:

ACTG-TGA ACTACTGA

- Алгоритм работает за O(|A||B|)
- ▶ Другая формулировка: найти все существенно похожие пары подстрок в А и В

Множественное локальное выравнивание

Логично обобщить на много геномов Но начинаются трудности:

- ▶ Какие-то подстроки могут быть не во всех геномах
- Геномы могут содержать дуплицированные участки

Пример

GAACTGTGATTATGCTCA ATTTGGGACTACTGAGTA ATCTTGAGATAGCTGAAA

Пример

GAACTGTGATTATGCTCA ATTTGGGACTACTGAGTA ATCTTGAGATAGCTGAAA

Ответ:

ACTG-TGA ACTACTGA A-TGCTCA

Figure 1: Блоки между X хромосомами мыши и человека [Pevzner, 2003]

Figure 2: Пример синтенного блока [Pham, 2010]

- Блоки кластеры маркеров
- ▶ Маркеры: гены, выравнивания, ...
- Критерий кластеризации до конца не определен
- Конкретное определение зависит от применения
- Одно из определений включает в себя понятие «микроперестроек»
- «Микроперестройки» запрятаны внутри блоков
- «Макроперестройки» оперируют целыми блоками

Синтенные блоки: применения

- Анализ крупных геномных перестроек
- Реконструкция геномов предков
- Анализ «геномных перестроек»
- Поиск повторов
- Сборка по референсу
- **.**..

Синтенные блоки: проблемы

- Как определить «микроперестройки» и «макроперестройки»?
- Как определить масштаб блоков или «гранулярность»?

Синтенные блоки: проблемы

- Как определить «микроперестройки» и «макроперестройки»?
- Как определить масштаб блоков или «гранулярность»?

- Использование маркеров создаит свои проблемы:
 - Накопление ошибок при аннотации
 - «Гранулярность» ограничена маркером

Проект Sibelia

Решается часть проблем:

- Входные данные: нуклеотидные последовательности
- ► Блоки строятся итеративно и организуются в иерархию
- Каждый уровень соответствует некоторому «разрешению» или «гранулярности»

Общая идея

- lacktriangle Склеить входные геномы в супергеном S^+
- Блоки = повторы в супергеноме
- lacktriangle Построить граф де Брюина из S^+
- lacktriangle Точные повторы ightarrow параллельные пути
- lacktriangle Вариации внутри блоков ightarrow особые циклы
- Циклы разрывают параллельные пути
- Удлиннить параллельные пути сглаживая циклы
- Спроецировать полученные длинные пути на последовательность \to блоки

Γ раф де Брюина k=2

ATGT ... ATGT

 Γ раф де Брюина k=2

ATGT ... ATGT

AT TG GT ... AT TG GT

 Γ раф де Брюина k = 2

ATGT ... ATGT

AT TG GT ... AT TG GT

Γ раф де Брюина k = 2

ATGT ... ATGT

AT TG GT ... AT TG GT

Пример для k=3

Figure 3: Точные повторы дают параллельные пути

Еще один пример для k=3

Figure 4: Неточные повторы генерируют «пузыри»

Пузыри

Пара путей (W_1, W_2) – это пузырь iff:

- 1. У W_1 и W_2 общие конечные вершины
- 2. У W_1 и W_2 нет общих промежуточных вершин
- 3. $|W_1| \le c$ и $|W_2| \le c$

Figure 5: Пузырь

Алгоритм

- Избавляем граф де Брюина от пузырей
- Поддерживаем проекцию графа в последовательность
- При упрощении пузыря заменяем одну ветвь на другую
- Параллельные блоки = синтенные блоки

Figure 6: Упрощение пузырей

- ▶ Упрощение склеивает параллельные пути
- ▶ Как выбирать k и c?
- Имеют ли смысл k = 10, c = 10000?

- ▶ Упрощение склеивает параллельные пути
- ▶ Как выбирать k и c?
- Имеют ли смысл k = 10, c = 10000?

Figure 7: Диспропорция между k и c ведет к склеиванию случайно похожих регионов

- ▶ Значения k ис должны быть пропорциональны
- Длинные точные совпадения обычно редки
- Решение: итеративное упрощение
- ▶ Начинаем с маленьких k и c
- ightharpoonup Упрощая граф мы генерируем более длинные k-mers
- Увеличиваем значения параметров
- ightharpoonup Перестраиваем граф для большего k
- Снова упрощаем граф
- Увеличиваем значения параметров . . .

Figure 8: Итеративное упрощение

Бонус: иерархическая структура блоков

- ▶ Блоки укрупняются от стадии к стадии
- ▶ Получаем иерархическую структуру

Figure 9: Иерархическая структура блоков двух штаммов Helicobacter Pylori

Что могут современные алгоритмы

Парные локальные выравнивания:

- Хорошо изученная проблема
- ► LASTZ и последние варианты BLAST успешно справляются с задачей
- ▶ Могут находить повторы

Что могут современные алгоритмы

Парные локальные выравнивания:

- Хорошо изученная проблема
- ► LASTZ и последние варианты BLAST успешно справляются с задачей
- ▶ Могут находить повторы

Множественные локальные выравнивания

- Мало изученная проблема
- ► Самые популярные инструменты: Mauve, ТВА, Mugsy, ...
- ▶ До недавнего времени игнорировали повторы
- Появился Cactus, работающий с повторами
- Требуют выравниваний между всеми парами геномов

Что могут современные алгоритмы

- ▶ Нет общего определения что такое блок
- ▶ Почти все работают только с маркерами
- ► Мало кто может работать с > 25 геномами за раз
- Sibelia работает с нуклеотидами, но ограничена бактериальными геномами

Синтетический пример

- Два генома, шесть синтенных блоков
- ▶ Каждый блок длиной 20К с 3% SNVs

Перестановки:

$$1. +4 +2 +3 +1 +3 -4$$

$$2. +5 +2 -3 +1 +3 +5$$

Синтетический пример

Синтетический пример

Заключение

- Выравнивание точно определенная задача
- ► Глобальное выравнивание сравнение строк целиком
- Локальное выравнивание поиск похожих подстрок
- ► Синтенные блоки кластеры похожих сегментов
- Определение блока часто зависит от последующего применения