

Övningar, derivata för vanligt förekommande funktioner

- 1. Derivera följande uttryck
 - a. $f(x) = 3\sin(x)$
 - b. $f(x) = 0.1e^x$
 - c. $f(x) = e \cdot e^x$
 - $d. \quad f(x) = \ln(x) + e^x$
 - e. $f(x) = \frac{1}{x} \frac{1}{x^2}$
 - f. $f(x) = \sqrt{x}$
 - g. $f(x) = \ln(x) 0.5\ln(x)$
 - h. $f(x) = \ln(x^{0.5})$
 - i. $f(x) = 4\sin(x) + 3\arccos(x)$
 - j. $f(x) = \tan(x)$
- 2. Beräkna andraderivatan av uttrycken i 1.a, b, c, d, e, f och g.
- 3. Derivera $y(t) = \cos(t)$ och beräkna y'(0) och $y'(\pi)$. Plotta upp y(t) i ett diagram och tolka vad y'(0) och $y'(\pi)$ innebär!
- 4. Derivera $y(x) = e^x$. Plotta även funktionen y(x) i ett diagram. Finns det en maxpunkt eller minpunkt i diagrammet? Försök även lösa ekvationen y'(x) = 0 och tolka resultatet.
- 5. Derivera $y(x) = x^4 + x^3 11x^2 9x + 18$ och rita upp både funktionen och dess derivata i ett diagram. Tolka resultatet i de punkter där y'(x) = 0.

YRGO

Svar:

- 1. Derivatan av uttrycken är:
 - a. $f'(x) = 3\cos(x)$
 - b. $f'(x) = 0.1e^x$
 - c. $f'(x) = e \cdot e^x$
 - $d. \quad f'(x) = \frac{1}{x} + e^x$
 - e. $f'(x) = -\frac{1}{x^2} + \frac{2}{x^3}$ f. $f'(x) = \frac{1}{2\sqrt{x}}$ g. $f'(x) = \frac{1}{2x}$ h. $f'(x) = \frac{1}{2x}$

 - i. $f'(x) = 4\cos(x) \frac{3}{\sqrt{1-x^2}}$
 - i. $f'(x) = 1 + \tan^2(x)$
- 2. 1.a-g har andraderivatorna
 - a. $f''(x) = -3\sin(x)$
 - b. $f''(x) = 0.1e^x$
 - c. $f''(x) = e \cdot e^x$

 - d. $f''(x) = -\frac{1}{x^2} + e^x$ e. $f''(x) = \frac{2}{x^3} \frac{6}{x^4}$ f. $f''(x) = -\frac{1}{4x\sqrt{x}}$
 - g. $f''(x) = -\frac{1}{2x^2}$
- 3. $y'(t) = -\sin(t)$
 - y'(0) = 0 och $y'(\pi) = 0$. Att y' = 0 betyder att tangenten är 0 i dessa punkter. I dessa punkter visar diagrammet också att y(t) har (lokal) maxpunkt respektive minpunkt.
- 4. $y'(x) = e^x$

Funktionen har inget nollställe eftersom den växer kontinuerligt då x ökar. $e^x = 0$ saknar också en lösning.

5. $y'(x) = 4x^3 + 3x^2 - 22x - 9$

Derivatan har sina nollställen där y(x) har (lokala) max/min.