EECS40300 Computer Architecture Spring, 2022 Homework 1

(1)

(a)

	ADD_recursive	ADD_iterative
InsC	276	66
CycC	375	105

Recursive way needs to store additional registers value into stack (more instructions), thus introducing additional time to access memory. The execute time will raise in this example.

(b)

Q1: The RISC architecture will need **more register than CISC to hold values as it loads each instruction**, acts upon it, then loads the next one. The CISC architecture can execute one, albeit more complex instruction, that does the same operations, all at once, directly upon memory. Q2: a0

(c)

For ADD recursive:

$$CPI = \frac{375}{276} = 1.36$$
 (四捨五入至小數點後第二位)

For ADD_iterative:

$$CPI = \frac{105}{66} = 1.5$$
 (四捨五入至小數點後第二位)

(d)

For add recur:

CPU execution time =
$$\frac{375}{1\times10^9}$$
 = 375 ns

For add iter:

CPU execution time =
$$\frac{105}{1\times10^9}$$
 = 105 ns

(e)

Total Cycle: 105/4+900-105+50 = 871.25

Program execution time =
$$\frac{871.25}{1 \times 10^9}$$
 = 871.25 ns

(f)

,				
	optimization levels, -O0		optimization levels, -O1	
	For add_iter	For add_recur	For add_iter	For add recur
	InsC: 259	InsC: 492	InsC: 65	InsC: 295
	CycC: 576	CycC: 763	CycC: 98	CycC: 394
	CPI: 2.22	CPI: 1.55	CPI: 1.51	CPI: 1.34

-O0: Do not optimize; -O1: Optimize for speed. -Og: Optimize for speed with better debuggability than -O1

-O1 比起 -O0 InsC、CycC、CPI 都有減少。

• 補充: optimization levels 執行截圖

1. ADD iteration

2. Add recursive

(2)

(a) (5 points)

Hardware

CPU Name: Intel Core i3-4340

CPU Characteristics:

CPU MHz: 3600 FPU: Integrated

CPU(s) enabled: 2 cores, 1 chip, 2 cores/chip, 2 threads/core

CPU(s) orderable: 1 chip

Primary Cache: 32 KB I + 32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core

L3 Cache: 4 MB I+D on chip per chip

Other Cache: None

Memory: 8 GB (2 x 4 GB 2Rx4 PC3-12800U-11) Disk Subsystem: 1 TB Seagate SATA HDD, 7200 RPM

Other Hardware: None

Hardware

CPU Name: Intel Core i5-4430

CPU Characteristics: Intel Turbo Boost Technology up to 3.20 GHz

CPU MHz: 3000 FPU: Integrated

CPU(s) enabled: 4 cores, 1 chip, 4 cores/chip

CPU(s) orderable: 1 chip

Primary Cache: 32 KB I + 32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core
L3 Cache: 6 MB I+D on chip per chip

Other Cache: None

Memory: 8 GB (2 x 4 GB 2Rx4 PC3-12800U-11)
Disk Subsystem: 1 TB Seagate SATA HDD, 7200 RPM

Other Hardware: None

Hardware

CPU Name: Intel Core i7-4770

CPU Characteristics: Intel Turbo Boost Technology up to 3.90 GHz

CPU MHz: 3400 FPU: Integrated

CPU(s) enabled: 4 cores, 1 chip, 4 cores/chip, 2 threads/core

CPU(s) orderable: 1 chip

Primary Cache: 32 KB I + 32 KB D on chip per core Secondary Cache: 256 KB I+D on chip per core L3 Cache: 8 MB I+D on chip per chip

Other Cache: None

Memory: 8 GB (2 x 4 GB 2Rx4 PC3-12800U-11) Disk Subsystem: 1 TB Seagate SATA HDD, 7200 RPM

Other Hardware: None

i3-4340 是 2 cores 的 CPU, L3 Cache 是 4MB, CPU MHz 為 3600 i5-4430 是 4 cores 的 CPU, L3 Cache 是 6MB, CPU MHz 為 3000 i7-4770 是 4 cores 的 CPU, L3 Cache 是 8MB, CPU MHz 為 3400

三者的 software specifications 都一樣

(b) (Performance ratio 3 points, Arithmetic mean 2 points)

執行秒數表

	i3-4340	i5-4430	i7-4770
h264ref	323	373	323
omnetpp	257	251	223
astar	233	247	200

1. h264ref:

D . C	Performance ratio		
Reference	Intel Core i3-4340	Intel Core i5-4430	Intel Core i7-4770
Intel Core i3-4340	1	0.86595	1
Intel Core i5-4430	1.15480	1	1.15480
Intel Core i7-4770	1	0.86595	1

2. omnetpp

Deference	Performance ratio		
Reference	Intel Core i3-4340	Intel Core i5-4430	Intel Core i7-4770
Intel Core i3-4340	1	1.02390	1.15247
Intel Core i5-4430	0.97665	1	1.12556
Intel Core i7-4770	0.86770	0.88845	1

3. astar

Reference	Performance ratio		
Reference	Intel Core i3-4340	Intel Core i5-4430	Intel Core i7-4770
Intel Core i3-4340	1	0.94332	1.165
Intel Core i5-4430	1.06009	1	1.235
Intel Core i7-4770	0.85837	0.80972	1

4. Arithmetic mean

Reference	Performance ratio		
Reference	Intel Core i3-4340	Intel Core i5-4430	Intel Core i7-4770
Intel Core i3-4340	1	0.94439	1.10582
Intel Core i5-4430	1.06385	1	1.17179
Intel Core i7-4770	0.90869	0.85471	1

(c) (5 points)

Geometric mean

Defenses	Performance ratio		
Reference	Intel Core i3-4340	Intel Core i5-4430	Intel Core i7-4770
Intel Core i3-4340	1	0.94219	1.10319
Intel Core i5-4430	1.06136	1	1.17088
Intel Core i7-4770	0.90646	0.85406	1

(d) (5 points)

- 從 Geometric mean 來比較 Performance 是 i7-4770>i3-4340>i5-4430
- 從 Arithmetic mean 來比較 Performance 也是 i7-4770>i3-4340> i5-4430
- 從 SPECint base2006 ratio 來比較 Performance 也是 i7-4770>i3-4340> i5-4430

(3) \

(a)

Clock cycles =
$$CPI_{fp} \times \# \ of \ FP \ instr. + CPI_{int} \times \# \ of \ INT \ instr. + CPI_{l/s} \times \# \ of \ L/S \ instr. + CPI_{branch} \times \# \ of \ BRANCH \ instr.$$

$$T_{CPU} = clock \ cycles \ / \ clock \ rates$$

Clock cycles =
$$(2 \times 90 + 1 \times 110 + 5 \times 100 + 2 \times 25) \times 10^6 = 840 \times 10^6$$

$$\frac{T_{CPU \ new}}{T_{CPU \ old}} = \frac{clock \ cycles_{new}}{clock \ cycles_{old}} = \frac{1}{2}$$

To have the number of clock cycles by improving the CPI of FP instructions: $CPI_{fp\ improved} \times \#\ of\ FP\ instr. + CPI_{int} \times \#\ of\ INT\ instr. + CPI_{l/s} \times \#\ of\ L$

/S $instr. + CPI_{branch} \times \# of BRANCH instr. = clock cycles / 2$ $CPI_{fp\ improved} = (clock\ cycles\ /\ 2 - (CPI_{int} \times \# of\ INT\ instr.$

+ $CPI_{l/s}$ × # of L/S instr. + CPI_{branch} × # of BRANCH instr.)) / # of FP instr.

$$CPI_{fp\ improved} = \frac{420 - 660}{90} < 0$$

□ impossible

(b)
$$\frac{T_{CPU \ new}}{T_{CPU \ old}} = \frac{clock \ cycles_{new}}{clock \ cycles_{old}} = \frac{2 \times 90 \times 0.69 + 1 \times 110 \times 0.69 + 5 \times 100 \times 0.23 + 2 \times 25 \times 0.23}{2 \times 90 + 1 \times 110 + 5 \times 100 + 2 \times 25} = 0.39$$
 reduced by 0.61%

(4) (a) $90 = \frac{1}{2} \times capacitive \ load \times (1.25)^2 \times 5 \times 10^9$ $capacitive \ load = 2 \times 90 \times \frac{1}{1.25^2} \times \frac{1}{5} \times 10^{-9} = 23.04 \ nF$

(b) total dissipated power comprised by dynamic power = $\frac{90}{60 + 90} = 0.6$ ratio of static power to dynamic power = $\frac{60}{90} = 0.67$

(c)
$$\frac{S_{new} + D_{new}}{S_{old} + D_{old}} = 0.65$$

$$V_{new} = (2 \times D_{new} / (C \times F))^{1/2}$$

$$D_{new} = 0.65 \times (S_{old} + D_{old}) - S_{new}$$

$$S_{new} = V_{new} \times (S_{old} / V_{old}) = V_{new} \times (60 / 1.25) = 48 \times V_{new}$$

$$D_{new} = 0.65 \times (60 + 90) - 48 \times V_{new} = 97.5 - 48 \times V_{new}$$

$$V_{new} = \left(\frac{2 \times (97.5 - 48 \times V_{new})}{2 \times 90 \div 1.25^2}\right)^{\frac{1}{2}} = \left(\frac{2 \times (97.5 - 48 \times V_{new})}{115.2}\right)^{\frac{1}{2}}$$

$$115.2 V_{new}^2 + 96 V_{new} - 195 = 0$$

$$V_{new} = 0.95 V$$

(5) (a)
$$die\ area = \frac{wafer\ area}{dies\ per\ wafer} = \frac{12.5^2 \times \pi}{120} = 4.09$$

$$yield = \frac{1}{(1 + (0.02 \times 4.09/2))^2} = 0.92296$$

(b)
$$cost\ per\ die = \frac{cost}{die} = \frac{15}{120 \times 0.92296} = 0.1354$$

(c)
$$die\ area = \frac{wafer\ area}{dies\ per\ wafer} = \frac{12.5^2 \times \pi}{120 \times 1.2} = 3.41$$
$$yield = \frac{1}{(1 + (0.02 \times 1.35 \times 3.41/2))^2} = 0.9139$$