SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

No.	SOLUTION
A1	Answer: (d)
	The order of $A_{m \times n} A_{n \times m}^T$ is $m \times m$
A2	Answer: (c)
	$A \cap B = B \text{ and } A - B = 1 \rightarrow B = \{3, 6\}, \{3, 9\}, \{6, 9\}$
	$B \subset C \text{ and } C \cup A = A \rightarrow C = \{3,6\}, \{3,9\}, \{6,9\}, \{3,6,9\}$
A3	Answer: (c)
A4	Answer: (b)
	Assume moving rightwards = 1 & downwards = 0, we will need 3 '1's and 3 '0's. With 2 missing lines, all possible ways are:
	111000, 110100, 110010, 110001, 011100, 011010, 011001, 010110, 010101, 001110, 001101, 000111
	Therefore, there are 12 paths.
A5	Answer: (c)
	$P(biased \mid heads) = \frac{P(biased) \times P(heads \mid biased)}{P(biased) \times P(heads \mid biased) + P(fair) \times P(heads \mid fair)}$
	$= \frac{\frac{1}{3} \times 0.7}{\frac{1}{3} \times 0.7 + \frac{2}{3} \times 0.5} = \frac{7}{17} \approx 0.41$
B1a (i)	$3 \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} -2 & 3 \\ 5 & -6 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ 17 & -3 \end{bmatrix}$
B1a (ii)	$\mathbf{B}\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} -2 & 3 \\ 5 & -6 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -12 & -5 \\ 27 & 14 \end{bmatrix}$

SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

B1b
$$\mathbf{CD} = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & \frac{3}{2} & 5 \\ 1 & -\frac{3}{2} & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Since CD = 5I:

$$\mathbf{C}^{-1}\mathbf{C}\mathbf{D} = 5\mathbf{C}^{-1}\mathbf{I}$$

$$\Rightarrow$$
 D = 5**C**⁻¹

$$\therefore \mathbf{C}^{-1} = \frac{1}{5}\mathbf{D} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 0 \\ -1 & \frac{3}{2} & 5 \\ 1 & -\frac{3}{2} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{T}_2 \mathbf{T}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

B2b
$$\mathbf{P'} = \mathbf{CP} = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 2 & -3 & -2 \\ 1 & 1 & 1 \end{bmatrix}$$

B2c
$$\mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; $\mathbf{T}_{2}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \mathbf{T}_{2}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ -2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

B3a Convert to HEX

 $1100101001.101_2 = 329.A_{16}$

Convert to DEC

 $1100101001.101_2 = 329.A_{16} = 3 \times 16^2 + 2 \times 16^1 + 9 \times 16^0 + 10 \times 16^{-1} = 809.625_{10}$

SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

B3b	Integral part:				
	2	264			
	2	132	0		
	2	66	0		
	2	33	0		
	2	16	1		
	2	8	0		
	2	4	0		
	2	2	0		
	2	1	0		
		0	1		

Fractional part:				
2	0.425			
2	0.85	0		
2	0.7	1		
2	0.4	1		
2	0.8 (rep)	0		
2	0.6	1		
2	0.2	1		
2	0.4	0		
2	0.8 (rep)	0		
2	0.6	1		
2	0.2	1		
2	0.4	0		

 $\therefore 264.425_{10} = 100001000.011\overline{0110}_2$

B4a
$$U = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$$

$$A = \{-2, -1, 1, 2, 3\}$$

$$B = \{0, 2\}$$

B4b

$$A \cap \overline{B} = \{-2, -1, 1, 3\}$$

$$\overline{A \cup B} = \{-4, -3, 4, 5\}$$

B4c

B5a	$(p \land \neg q) \Rightarrow r \Rightarrow (\mathbf{F} \land \neg \mathbf{T}) \Rightarrow \mathbf{F} = (\mathbf{F} \land \mathbf{F}) \Rightarrow \mathbf{F} = \mathbf{F} \Rightarrow \mathbf{F} = \mathbf{T}$
(i)	

B5a
$$(p \lor r) \Leftrightarrow q \rightarrow (\mathbf{F} \lor \mathbf{F}) \Leftrightarrow \mathbf{T} = \mathbf{F} \Leftrightarrow \mathbf{T} = \mathbf{F}$$

SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

B5b									
	p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$(\neg(p \land q)) \Leftrightarrow (\neg p \lor \neg q)$	
	T	T	T	F	F	F	F	T	
	T	F	F	T	<u>F</u>	T	T	T	
	F	Т	F	T		F	T	T	
	F F F T T T T								
	$(\neg(p \land q)) \Leftrightarrow (\neg p \lor \neg q)$ is a tautology.								
B6a	(i)	16!=	2.09×1	0^{13}					
	(ii)	8!×2!	! = 8064	0					
B6b	(i)	800	$\left - \right \frac{150}{2}$	$\frac{0}{ +1 } = 266$	5-50+	1 = 21	7		
				_					
	(ii) $\left \frac{800}{6} \right - \left \frac{150}{6} \right + 1 = 133 - 25 + 1 = 109$								
	(iii) $ A_3 \cup A_6 = A_3 = 217$								
B7a	$\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} = \frac{1}{55} \approx 0.0182$								
B7b	$1 - \frac{1}{55} = \frac{54}{55} \approx 0.982$								
В7с	Only 1 combination to give sum of 10: 3, 3, 4.								
	$P(3,3,4) = \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} = \frac{28}{165} \approx 0.170$								
B7d	$P(sum = 10 \cap \ge 1 \ black) = P(sum = 10) - P(sum = 10 \cap all \ white)$								
	$= \frac{28}{165} - \frac{2}{12} \times \frac{1}{11} \times \frac{2}{10}$								
	$\begin{bmatrix} -165 & 12 & 11 & 10 \end{bmatrix}$								
	$=\frac{1}{6}\approx 0.167$								

SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

\boldsymbol{C}	1	ล
$\mathbf{\mathcal{L}}$	1	а

х	y	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$f(x, y, z) = (x + y + z)(x + y + \overline{z})(x + \overline{y} + z)$$

C₁b

p	q	pq	$\frac{-}{p}$	\overline{q}	$\frac{-}{pq}$	$p \odot q$
0	0	0	1	1	1	1
0	1	0	1	0	0	0
1	0	0	0	1	0	0
1	1	1	0	0	0	1

C1c

$$p \odot (p \odot q) \odot q$$

$$= p \odot (pq + \overline{pq}) \odot q$$
 Substitution

$$=(p \cdot (pq + \overline{pq}) + \overline{p} \cdot \overline{pq + \overline{pq}}) \odot q$$
 Substitution

$$=(pq+\overline{p}\bullet(\overline{pq}\bullet\overline{pq}))\odot q$$
 De Morgan's Laws

$$=(pq+\overline{p}\cdot(\overline{p}+\overline{q})\cdot(p+q))\odot q$$
 De Morgan's Laws

$$=(pq+pq)\odot q$$
 Associative+Idempotent Laws

$$= q \odot q$$
 Distributive Laws

$$=q \cdot q + \overline{q \cdot q}$$
 Substitution

SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

C2a

Let
$$\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix}$$
 (since \mathbf{Q} is a symmetric matrix, we have $q_{ij} = q_{ji}$)
$$\mathbf{PQP}^{T} = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{aligned} \mathbf{PQP}^T &= \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \\ &= \begin{bmatrix} q_{11}x + q_{12}y + q_{13}z & q_{12}x + q_{22}y + q_{23}z & q_{13}x + q_{23}y + q_{33}z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \\ &= q_{11}x^2 + q_{12}xy + q_{13}xz + q_{12}xy + q_{22}y^2 + q_{23}yz + q_{13}xz + q_{23}yz + q_{33}z^2 \\ &= q_{11}x^2 + q_{22}y^2 + q_{33}z^2 + 2q_{12}xy + 2q_{13}xz + 2q_{23}yz \end{aligned}$$

Comparing coefficients with the expression $2x^2 + 5y^2 + 3z^2 + 2xy - 2xz + 8yz$, we have $q_{11} = 2$, $q_{22} = 5$, $q_{33} = 3$, $q_{12} = 1$, $q_{13} = -1$ and $q_{23} = 4$.

$$\therefore \mathbf{Q} = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 5 & 4 \\ -1 & 4 & 3 \end{bmatrix}$$

From Clue No. 1 & 2, Jack must be in the 4th place with 2B1G before him and 1B1G after him. From Clue No. 3, Zack must be in the 6th place (3B2G before him). From Clue No. 4 & 5, Amanda must be in the 1st place and Emma in the 5th place. From Clue No. 7, Victor must be in the 3rd place. As such, from Clue No. 6, Nick must be in the 2nd place. Therefore, the sequence of escape is

Sequence	Name
1	Amanda
2	Nick
3	Victor
4	Jack
5	Emma
6	Zack

SINGAPORE POLYTECHNIC 2023/2024 Semester 2 Examination

C3a Let A_i be the event that a green ball appears for the first time at ith picking. Yasir can only win if i is an even number.

$$i = 2 \rightarrow P(A_2) = \frac{7}{12} \times \frac{5}{11} = \frac{35}{132}$$

$$i = 4 \rightarrow P(A_4) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} \times \frac{5}{9} = \frac{35}{396}$$

$$i = 6 \rightarrow P(A_6) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \times \frac{5}{7} = \frac{5}{264}$$

$$i = 8 \rightarrow P(A_8) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} = \frac{1}{792}$$

Hence, $P(Yasir\ wins) = \frac{35}{132} + \frac{35}{396} + \frac{5}{264} + \frac{1}{792} = \frac{37}{99}$.

- C3b Define the following possible paths from n_1 to n_4 :
- (i) $A = (l_1, l_4)$ $B = (l_2, l_5)$ $C = (l_1, l_3, l_5)$

Inclusion-exclusion formula for 3-event scenario:

$$P(A \cup B \cup C)$$

$$=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)$$

$$=p_{1}p_{4}+p_{2}p_{5}+p_{1}p_{3}p_{5}-p_{1}p_{2}p_{4}p_{5}-p_{1}p_{3}p_{4}p_{5}-p_{1}p_{2}p_{3}p_{5}+p_{1}p_{2}p_{3}p_{4}p_{5}$$

- C3b $P(A \cup B \cup C)$
- (ii) $= P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C)$ $= p_1 p_4 + p_2 p_5 + p_1 p_3 p_5 p_1 p_2 p_4 p_5 p_1 p_3 p_4 p_5 p_1 p_2 p_3 p_5 + p_1 p_2 p_3 p_4 p_5$ $= 0.65^2 \times 2 + 0.65^3 0.65^4 \times 3 + 0.65^5$
 - =0.700