

SCC.121 ALGORITHMS AND COMPLEXITY Operation Counting

Emma Wilson e.d.wilson1@lancaster.ac.uk

Aim: Introduce some important cases for time complexity, considering operation counts.

Learning objectives:

- To be able to use logarithmic functions for algorithms with logarithmic time complexity
- To be able to perform operation counting for a given algorithm
- To know what the key different types of time complexity based on operation counting are

- Examples of operation counting and T(N)
 - Case 1: Constant T(N) = Constant
 - Case 2: Linear $T(N) = C_1 \times N + C_2$
 - Case 3: Logarithmic C₁ x log₂ N + C₂
 - Case 4: Quadratic $T(N) = C_1 \times N^2 + C_2 \times N + C_3$

- Examples of operation counting and T(N)
 - Case 1: Constant T(N) = Constant
 - Case 2: Linear T(N) = C₁ x N + C₂
 - Case 3: Logarithmic C₁ x log₂ N + C₂
 - Case 4: Quadratic $T(N) = C_1 \times N^2 + C_2 \times N + C_3$

Case 1: Averaging Function


```
double avg5(int theArray[])
      int total = 0;
      for (int i=0; i<5; i++)
            total += theArray[i];
      double avg = ((double) total) / 5.0;
      return avg;
```

How many operations does this piece of code execute (assume theArray has at least 5 values)?


```
double avg5(int theArray[])
     int total = 0; 01
            02 03 04
     for (int i=0; i<5; i++)
           total += theArray[i]; o5
     double avg = ((double) total) / 5.0; o6
     return avg; o7
```

Operations o3, o4, o5 executed every time around for loop

How many times each operation is executed?

	03	o5	04
all cases	6	5	5

Which are the best and worst cases?

• **Best case:** 6+5+5

• **Worst case:** 6+5+5

Which will be the average case?

• Average Case: 6+5+5

Case1: Working out T(N)


```
double avg5(int theArray[])
        int total = 0; 01 \rightarrow 1
                 o2 \rightarrow 1 \quad o3 \rightarrow 6 \quad o4 \rightarrow 5
        for (int i=0; i<5; i++)
                 total += theArray[i]; o5 \rightarrow 5
         double avg = ((double) total) / 5.0; o6 \rightarrow 1
         return avg; o7 \rightarrow 1
```

What is the overall program time?

• T(N) = 1+1+6+5+5+1+1 = 20

Case1: T(N) is Constant

- What is the overall program time?
 - **Best Case:** T(N) = 20
 - T(N) = Constant
 - **Worst Case:** T(N) = 20
 - T(N) = Constant
- The time taken by this program is independent of the size of the input:
 - N is the size of array which can be more than 5, but since we only care about the first 5 values, increasing N does not change the time taken
- Case 1 is a bit contrived (and we assumed that 'theArray'
 has at least 5 values)!

- Examples of operation counting and T(N)
 - Case 1: Constant T(N) = Constant
 - Case 2: Linear T(N) = C₁ x N + C₂
 - Case 3: Logarithmic C₁ x log₂ N + C₂
 - Case 4: Quadratic $T(N) = C_1 \times N^2 + C_2 \times N + C_3$

Case 2: Minimum Function


```
int findMin(int theArray[], int N)
      int smallest_i = 0; //Assume smallest value at index 0
      for (int i=1; i<N; i++)
             if (theArray[i] < theArray[smallest_i])</pre>
                    smallest i = i;
      return smallest i;
```

How many operations does this piece of code execute?


```
int findMin(int theArray[], int N)
      int smallest_i = 0; //Assume smallest value at index 0 o1
                  02 03 04
      for (int i=1; i<N; i++)
             if (theArray[i] < theArray[smallest i]) 05</pre>
                   smallest i = i; 06
      return smallest i; o7
```

- Operations o3, o4, o5 executed every time around for loop
- Operation o6 executed if o5 is true

How many times is each operation executed?

	о3	04	o5	06
Best case	N	N-1	N-1	0
Worst case	N	N-1	N-1	N-1

```
o2 o3 o4
for (int i=1; i<N; i++)

if (theArray[i] < theArray[smallest_i]) o5

smallest_i = i; o6
```

Case 2: Working out T(N) Best Case

- What is the overall program time (Best case)?
 - T(N) = 1+1+N+(N-1)+(N-1)+0+1=3N+1

```
int findMin(int theArray[], int N)
        int smallest_i = 0; //Assume smallest value at index 0 01 \rightarrow 1
     o2 \rightarrow 1 o3 \rightarrow N o4 \rightarrow N-1
        for (int i=1; i<N; i++)
                  if (theArray[i] < theArray[smallest_i]) o5 → N-1
                           smallest i = i; 06 \rightarrow 0
        return smallest i; 07 \rightarrow 1
```

Case 2: Working out T(N) Worst Case

- What is the overall program time (Worst case)?
 - T(N) = 1+1+N+(N-1)+(N-1)+(N-1)+1=4N

```
int findMin(int theArray[], int N)
        int smallest_i = 0; //Assume smallest value at index 0 01 \rightarrow 1
        o2 \rightarrow 1o3 \rightarrow N \quad o4 \rightarrow N-1
         for (int i=1; i<N; i++)
                  if (theArray[i] < theArray[smallest_i]) o5 → N-1
                           smallest i = i; 06 \rightarrow N-1
         return smallest i; 07 \rightarrow 1
```

Case 2: T(N) is Linear

- What is the overall program time?
 - Best Case: T(N) = 3N+1
 - $T(N) = C_1 \times N + C_2$
 - $C_1 = 3$ and $C_2 = 1$ are constant
 - Worst Case: T(N) = 4N
 - $T(N) = C_1 \times N + C_2$
 - $C_1 = 4$ and $C_2 = 0$ are constant
- If we plot this, we get a line with slope C₁
- The time taken by this program is directly proportional to the size of the input 'N'
 - doubling N (approximately) doubles the time taken
 - tripling N (approximately) triples the time taken

- Examples of operation counting and T(N)
 - Case 1: Constant T(N) = Constant
 - Case 2: Linear $T(N) = C_1 \times N + C_2$
 - Case 3: Logarithmic $C_1 \times log_2 N + C_2$
 - Case 4: Quadratic $T(N) = C_1 \times N^2 + C_2 \times N + C_3$

Logarithmic Functions

- Logarithmic Functions are the inverse of Exponential Functions
- We know $2^3 = 2 \times 2 \times 2 = 8$
- What power do we have to raise 2 by to get 8? $2^x = 8$
- Can express by using logarithms! $x = log_2(8) = 3$
- $2^3 = 8$ is equivalent to $\log_2(8) = 3$

Exponential Form	Logarithmic Form		
$2^4 = 16$	\Leftrightarrow	$\log_2(16) = 4$	
$10^2 = 100$	\Leftrightarrow	$\log_{10}(100) = 2$	
$4^3 = 64$	\Leftrightarrow	$\log_4(64) = 3$	

Logarithmic Functions

In general

- $b^c = a$ is equivalent to $\log_b(a) = c$ for a > 0 and b > 0 and $b \ne 1$
- Both equations describe the same relationship between a, b, and c
 - **b** is the base
 - *c* is the exponent
 - *a* is the argument

Case 3: Function


```
int logBaseTwoN(int N)
{
      int count = 0;
      while (N > 1) {
             count++;
             N = N/2;
      return count;
```

How many operations does this piece of code execute?


```
int logBaseTwoN(int N)
{
      int count = 0; o1
      while (N > 1) \{ 02 \}
              count++; o3
             N = N/2; 04
      return count; o5
```

 Operations o2, o3, o4 executed every time around while loop

- How many times each operation is executed?
 - Try different N
 - $N=2^1=2$
 - $N=2^2=4$
 - $N=2^3=8$
 - $N=2^4=16$
 - $N=2^5=32$

•

- How many times each operation is executed?
 - Try $N=2^1=2$

```
int logBaseTwoN(int N)
                                           o2 \rightarrow 2
         int count = 0;
                                           o3 \rightarrow 1
         while (N > 1) {02
                                           04 \rightarrow 1
                  count++; o3
                  N = N/2; 04
         return count;
```


- How many times each operation is executed?
 - Try $N=2^2=4$

```
int logBaseTwoN(int N)
                                           o2 \rightarrow 3
         int count = 0;
                                           o3 \rightarrow 2
         while (N > 1) { 02
                                           04 \rightarrow 2
                  count++; o3
                  N = N/2; 04
         return count;
```


- How many times each operation is executed?
 - Try $N=2^3=8$

```
int logBaseTwoN(int N)
       int count = 0;
       while (N > 1) { 02
              count++; o3
              N = N/2; 04
       return count;
```

```
o2 \rightarrow 4
```

$$o3 \rightarrow 3$$

$$04 \rightarrow 3$$

- How many times each operation is executed?
 - Try $N=2^4=16$

```
int logBaseTwoN(int N)
                                           o2 \rightarrow 5
         int count = 0;
                                           o3 \rightarrow 4
         while (N > 1) { 02
                                           04 \rightarrow 4
                  count++; o3
                  N = N/2; 04
         return count;
```


How many times each operation is executed?

 $\mathbf{b^c} = \mathbf{a}$ is equivalent to $\log_{\mathbf{b}} \mathbf{a} = \mathbf{c}$ for $\mathbf{a} > 0$ and $\mathbf{b} > 0$ and $\mathbf{b} = 1$

	Instruction	o2	о3	04
x=1	$N=2^1=2$	2	1	1
x=2	$N=2^2=4$	3	2	2
x=3	$N=2^3=8$	4	3	3
x=4	$N=2^4=16$	5	4	4
x=5	$N=2^5=32$	6	5	5
<i>x</i> =6	$N=2^6=64$	7	6	6
	$N=2^x$	x + 1	х	х

Instruction	o2	03	04
$N=2^1=2$	$\log_2 2^1 + 1$	$\log_2 2^1$	$\log_2 2^1$
$N=2^2=4$	$\log_2 2^2 + 1$	$\log_2 2^2$	$\log_2 2^2$
$N=2^3=8$	$\log_2 2^3 + 1$	$\log_2 2^3$	$\log_2 2^3$
$N=2^4=16$	$\log_2 2^4 + 1$	$\log_2 2^4$	$\log_2 2^4$
$N=2^5=32$	$\log_2 2^5 + 1$	$\log_2 2^5$	$\log_2 2^5$
$N=2^6=64$	$\log_2 2^6 + 1$	$\log_2 2^6$	$\log_2 2^6$

$$\log_2 N + 1 \quad \log_2 N \quad \log_2 N$$

$$\log_2(N) = x$$

How many times each operation is executed?

- Which are the best and worst cases (for o2,o3, o4)?
 - Best case: $(\log_2 N + 1) + \log_2 N + \log_2 N = 3 \log_2 N + 1$
 - Worst case: $3 \log_2 N + 1$
 - Average case: $3 \log_2 N + 1$

Case 3: Working out T(N)

- What is the overall program time?
 - $T(N) = 1 + (3 \log_2 N + 1) + 1 = 3 \log_2 N + 3$

```
int logBaseTwoN(int N)
          int count = 0; 01 \rightarrow 1
         while (N > 1) { o2 \rightarrow log_2 N + 1
                    count++; o3 \rightarrow \log_2 N
                   N = N/2; o4 \rightarrow log_2 N
          return count; 05 \rightarrow 1
```

Case 3: T(N) is Logarithmic

- What is the overall program time?
 - **Best Case:** $T(N) = 3 \log_2 N + 3$
 - $T(N) = C_1 \times \log_2 N + C_2$
 - $C_1 = 3$ and $C_2 = 3$ are constant
 - Worst Case: $T(N) = 3 \log_2 N + 3$
 - $T(N) = C_1 \times \log_2 N + C_2$
 - $C_1 = 3$ and $C_2 = 3$ are constant
- The time taken by this program is logarithmically proportional to the size of the input
 - Our code/function 'logBaseTwoN()' is accurate for N that is 2^x such that x is a natural number. It is for demonstration purposes only.

- Examples of operation counting and T(N)
 - Case 1: Constant T(N) = Constant
 - Case 2: Linear $T(N) = C_1 \times N + C_2$
 - Case 3: Logarithmic C₁ x log₂ N + C₂
 - Case 4: Quadratic $T(N) = C_1 \times N^2 + C_2 \times N + C_3$

Case 4: Function

 How many operations does this piece of code execute?

Let's start with the inner for loop


```
void quadratic(int N)
{
    int count = 0; o1
        o2        o3        o4
        for (int i=0; i<N; i++)

        for (int j=0; j<N; j++)
             count++; o8
}</pre>
```

• Operations o6, o7, o8 executed every time around the **innermost** *for* loop

Case 4: Operation Counting the inner *for* loop

How many times each operation is executed?

	o5	06	08	07
All cases	1	N+1	N	Ν

Which are the best and worst cases?

• Best case: 3N+2

• Worst case: 3N+2

• Let's continue with the outer for loop

 Operations o3, o4, o' executed every time around the outer for loop

Case 4: Operation Counting the outer *for* loop

How many times each operation is executed?

Which are the best and worst cases?

• Best case: $(N+1)+N\times(3N+2)+N=3N^2+4N+1$

• Worst case: $3N^2+4N+1$

Case 4: Working out T(N)

- What is the overall program time?
 - T(N) = 1+1+(N+1)+N+N(3N+2) = ...
 - $T(N) = 3N^2 + 4N + 3$

```
o3 o' o4
N+1 N N
```

```
void quadratic(int N)
{
  int count = 0; o1 → 1
    o2 → 1 o3 → N+1o4 → N
  for (int i=0; i<N; i++)

  o' which has
  3N+2 instructions
}</pre>
```

Case 4: T(N) is Quadratic

- What is the overall program time?
 - **Best Case:** $T(N) = 3N^2 + 4N + 3$
 - $T(N) = C_1 \times N^2 + C_2 \times N + C_3$
 - $C_1 = 3$ and $C_2 = 4$ and $C_3 = 3$ are constant
 - Worst Case: $T(N) = 3N^2 + 4N + 3$
 - $T(N) = C_1 \times N^2 + C_2 \times N + C_3$
 - $C_1 = 3$ and $C_2 = 4$ and $C_3 = 3$ are constant
- The time taken by this program is quadratic with respect to input size N
 - because the highest order term is N²

Question

How many operations does this piece of code execute?

slido

Please download and install the Slido app on all computers you use

How many operations does this piece of code execute?

Solution

How many operations does this piece of code execute?

Start with the inner loop

```
for (int k=0; k<N; k++) count++g11
```

$$o' = 3N + 2$$

Solution

How many operations does this piece of code execute?

Now consider the middle loop

- o5=1, o6=N+1, o7=N
- o' has 3N+2 operations and is executed N times
- o12=N(2+3N)
- $o'' = 1 + N + 1 + N + 2N + 3N^2$
- $o''=3N^2+4N+2$

Solution

How many operations does this piece of code execute?

Finally consider the outer loop

- o2=1, o3=N+1, o4=N
- o" has 3N² + 4N + 2
 operations and is executed N
 times
- $o13=N(3N^2+4N+2)$
- $o'''=1+N+1+N+3N^3+4N^2+2N$
- $o''' = 3N^3 + 4N^2 + 4N + 2$
- Overall: add o1 to o''' giving

$$3N^3+4N^2+4N+3$$

slido

Please download and install the Slido app on all computers you use

Audience Q&A

Summary

Today's lecture: Introduce some important cases for time complexity, considering operation counts.

Next Lecture: Linear search: Best, worst and average case