

CCSDS Telemetry and Telecommand CCSDS TM / TC FPGA Data Sheet and User's Manual

Features

- CCSDS/ECSS compatible Telemetry Encoder and Telecommand Decoder
- Telemetry encoder implements in hardware protocol sub-layer, synchronization & channel coding sub-layer, and part of physical layer
- Telemetry input via two bit synchronous PacketWire interfaces
- · Command link control word input via UART
- Reed-Solomon and Convolutional encoding
- Telecommand decoder implements in hardware synchronization & channel coding sub-layer, and part of physical layer
- Software telecommand output via UART
- Hardware telecommand output via 8-bit port
- 4 Mbit/s downlink, 4 kbit/s uplink

Description

The telemetry encoder and telecommand decoder are implemented in an Actel IGLOO FPGA. The encoder is implemented in hardware, whereas the lower layers of the decoder are implemented in hardware with the higher layers externally in software. Support is provided for additional hardware decoded command outputs and pulses.

Specification

- 484 FBGA package
- Total Ionizing Dose Up to 10 krad (Si)
- Single-Event Latch-Up Immunity (SEL) to LET_{TH} > 0 MeV-cm2/mg
- Immune to Single-Event Upsets (SEU) to LET_{TH} > 0 MeV-cm2/mg

Applications

The telemetry encoder and telecommand decoder can be used in systems where CCSDS/ECSS compatible communication services are required. The software implementation of the higher layers of the telecommand decoder allows for implementation flexibility and accommodation of future standard enhancements. The hardware decoded command outputs and pulses do not require software and can therefore be used for critical operations. The telemetry encoder does not require any software.

Table of contents

1	Intro	duction	5			
	1.1	Overview	5			
	1.2	Telemetry encoder	5			
	1.3	Telecommand decoder				
	1.4	Realization				
	1.5	Signal overview				
2		itecture				
_						
	2.1	Specification				
	2.2	IP cores				
	2.3	Configuration				
	2.4	Clock and reset				
	2.5	Signals				
	2.6	Abbreviations and acronyms	11			
3	Conv	ventions	12			
	3.1	Consultative Committee for Space Data Systems	12			
	3.2	Galois Field	12			
	3.3	Telemetry Transfer Frame format	13			
	3.4	Reed-Solomon encoder data format				
	3.5	Attached Synchronization Marker				
	3.6	Telecommand Transfer Frame format				
	3.7	Command Link Control Word				
	3.8	Space Packet				
	3.9	Asynchronous bit serial data format				
		·				
	3.10 3.11	Waveform formats				
4		metry Encoder				
	4.1	Overview				
	4.2	Layers				
		4.2.1 Introduction				
		4.2.2 Data Link Protocol Sub-layer				
		4.2.3 Synchronization and Channel Coding Sub-Layer				
	4.3	Data Link Protocol Sub-Layer				
	4.3	4.3.1 Physical Channel				
		4.3.2 Virtual Channel Frame Service				
		4.3.3 Virtual Channel Generation - Virtual Channels 0 and 1				
		4.3.4 Virtual Channel Generation - Idle Frames				
		4.3.5 Virtual Channel Multiplexing	20			
		4.3.6 Master Channel Generation				
		4.3.7 Master Channel Frame Service				
		4.3.8 Master Channel Multiplexing				
		4.3.9 All Frame Generation				
	4.4	Synchronization and Channel Coding Sub-Layer				
		4.4.1 Attached Synchronization Marker				
		4.4.2 Reed-Solomon Encoder				
		T.T.J 1 SCUUD-KAHUUHIISCI				

		4.4.4 Convolutional Encoder	24		
	4.5	Physical Layer	24		
		4.5.1 Non-Return-to-Zero Level encoder	24		
		4.5.2 Clock Divider	25		
	4.6	Connectivity	26		
	4.7	Signal definitions and reset values	27		
	4.8	Timing			
5	Tala	metry Encoder - PacketWire Interface	28		
5	5.1	Operation			
		1			
	5.2	Signal definitions and reset values			
	5.3	Timing			
6	Tele	command Decoder - Software Commands	30		
	6.1	Overview	30		
		6.1.1 Concept			
		6.1.2 Functions and options	30		
	6.2	Coding Layer (CL)	31		
		6.2.1 Synchronisation and selection of input channel	31		
		6.2.2 Codeblock decoding	31		
		6.2.3 De-Randomiser			
		6.2.4 Design specifics			
		6.2.5 Data formatting			
		6.2.6 CLTU Decoder State Diagram			
		6.2.7 Nominal			
		6.2.8 CASE 2			
	6.3	6.2.9 Abandoned			
		•			
	6.4	Signal definitions and reset values			
	6.5	Timing			
7	Tele	command Decoder - Hardware Commands			
	7.1	Overview			
		7.1.1 Concept	35		
	7.2	Operation	35		
		7.2.1 All Frames Reception			
		7.2.2 Master Channel Demultiplexing			
		7.2.3 Virtual Channel Demultiplexing			
		7.2.4 Virtual Channel Reception			
		7.2.5 Application Layer			
	7.3	Telecommand Transfer Frame format - Hardware Commands	38		
	7.4	Signal definitions and reset values			
	7.5	Timing	39		
8	Cloc	ek generation	40		
	8.1	Overview			
	8.2				
	8.3	Signal definitions and reset values			
		-			
9	Rese	et generation	41		
	9.1	Overview	41		
	9.2	Signal definitions and reset values	41		

	9.3	Timing	41
10	Elect	rical description	42
	10.1	Absolute maximum ratings	
	10.2	Operating conditions	
	10.3	Input voltages, leakage currents and capacitances	42
	10.4	Output voltages, leakage currents and capacitances	
	10.5	Clock Input voltages, leakage currents and capacitances	42
	10.6	Power supplies	
	10.7	Radiation	42
11	Mechanical description		
	11.1	Package	
	11.2	Pin assignment	
	11.3	IGLOO specific pins	
	11.4	Package figure	
	11.5	Mechanical drawing	
	11.6	Weight	
	11.7	Package materials	50
	11.8	Thermal characteristics	
12	Refe	rence documents	51

1 Introduction

1.1 Overview

The CCSDS/ECSS Telemetry Encoder and Telecommand Decoder can be used in systems where CCSDS/ECSS compatible communication services are required.

1.2 Telemetry encoder

Telemetry encoder implements in hardware protocol sub-layer, synchronization & channel coding sub-layer, and part of physical layer.

Telemetry data is input via two bit synchronous PacketWire interfaces with handshake. The Command Link Control Word (CLCW) is input via a UART interface and also generated internally from the hardware telecommands as explained below.

The encoder implements CCSDS/ECSS Packet Telemetry Transfer Frame generation, with a fixed 1115 octet length transfer frame and Operational Control Field (OCF/CLCW). The encoder supports pin configurable Frame Error Control Field (FECF/CRC) generation, Reed-Solomon and Convolutional encoding, and Pseudo Randomization. The spacecraft identifier is pin configurable.

The telemetry bit rate is derived from the system clock, and the output bit rate is configurable via external pins. The output bit rate can be lowered to an emergency rate, and back again, by means of a hardware telecommand as explained below.

The telemetry encoder does not require any software for its operation.

1.3 Telecommand decoder

Telecommand decoder implements in hardware synchronization & channel coding sub-layer, and part of physical layer. The decoder supports pin configurable Pseudo Derandomisation.

The higher protocol levels are implemented in software. These software telecommands are output via a UART interfaces. The software implementation of the higher layers of the telecommand decoder allows for implementation flexibility and accommodation of future standard enhancements.

In addition, hardware telecommands are implemented entirely in hardware and are output via an 8-bit port. Incoming telecommand frames are decoded and commands are output as static signal levels or pulses on the output port. Output pulses can be generated on any of the bits on the 8-bit output port. The pulse duration is controlled by the telecommand and is in the millisecond range. An internal 1-bit port is used for controlling the telemetry emergency bit rate. The spacecraft and virtual channel identifiers are pin configurable. The Command Link Control Word (CLCW) for the virtual channel used by the hardware telecommands is generated automatically and transferred to the telemetry encoder.

The hardware commands do not require any software and can therefore be used for critical operations.

1.4 Realization

The telemetry encoder and telecommand decoder are implemented in an Actel IGLOO FPGA AGL1000V5-FG484I.

Due to the FPGA device's sensitivity to radiation effects, all inputs and outputs to the FPGA are triplicated. All inputs are voted before used and all outputs are copied three times.

The telemetry encoder and telecommand decoder FPGA does not require any other external components other than line drivers and receivers, for example RS422 or RS485 transceivers.

December 2009, Version 1.0.2-1

1.5 Signal overview

The signal overview of the telemetry encoder and telecommand decoder is shown in figure 1. Note that the figure only shows the functional signals, not the triplicated inputs and outputs of the FPGA device.

Figure 1. Signal overview

2 Architecture

2.1 Specification

The Telemetry and Telecommand FPGA specification comprises the following elements.

- CCSDS compliant Telemetry encoder:
- Input:
 - 2 Virtual Channels
 - Synchronous input (bit serial clock, strobe and data, and handshake)
 - Single CLCW input via UART, single CLCW internally
 - 9-bit parallel input for project specific OCF
- Output:
 - NRZ-L encoding
 - Reed-Solomon and Convolutional encoding (optional)
 - Pin programmable bit rate up to 4 MBPS (after encoding)
 - Bit synchronous output: clock and data

CCSDS compliant Telecommand decoder (software commands):

- Layers in hardware:
 - Coding layer
- Input:
 - Auto adaptable bit rate up to 4 kBPS
 - Bit synchronous input: clock, qualifier and data
- Output:
 - Bit serial output, CADU

CCSDS compliant Telecommand decoder (hardware commands):

- Layers in hardware:
 - Coding layer
 - Transfer layer (BD frames only)
 - CLCW internally connected to Telemetry encoder
- Input:
 - Auto adaptable bit rate up to 4 kBPS
 - Bit synchronous input: clock, qualifier and data
 - Telecommand Frame with custom cargo, plus CRC
- Output:
 - 8-bit parallel output (timed)

2.2 IP cores

The Telemetry Encoder and Telecommand Decoder is based on the following IP cores:

- PacketWire Receiver Interface acts as a slave on the AMBA bus
- CCSDS/ECSS Telemetry Encoder GRTM
- CCSDS/ECSS Telecommand Decoder Coding Layer GRTC
- AMBA AHB bus controller with plug&play AHBCTRL
- On-chip RAM with AHB interface and EDAC protection FTAHBRAM

Additional functionality is implemented:

- Telemetry Virtual Channel Generation Function (Virtual Channels 0 and 1)
- Telemetry CLCW multiplexer
- UART receiver (CLCW input)
- UART transmitter (software telecommands output)
- Hardware telecommand decoder and output pulse generator

2.3 Configuration

The telemetry encoder fixed configuration is as follows:

- fixed transfer frame format, version 00_b, Packet Telemetry
- fixed telemetry transfer frame length of 1115 octets
- fixed usage of OCF/CLCW, always enabled for all Virtual Channels (Master Channel association, MC_OCF)
- fixed usage of overwriting No RF Available and No Bit Lock bits in OCF
- idle telemetry transfer frame generation (Virtual Channel 7)
- common Master Channel Frame Counter for all Virtual Channels
- fixed 2 kByte telemetry transmit FIFO
- 4 kByte on-chip EDAC protected RAM per Virtual Channel
- fixed nominal Attached Synchronization Marker usage
- fixed NRZ-L telemetry modulation

The telecommand decoder fixed configuration is as follows:

- fixed NRZ-L telecommand de-modulation
- fixed telecommand decoder support for CCSDS/ECSS functionality, not ESA PSS
- telecommand bit serial input data sampled on rising bit clock edge
- telecommand active signal (bit lock) asserted corresponds to logical one

The telemetry encoder does not implement the following:

- no Advanced Orbiting Systems (AOS) support
- no Insert Zone (AOS)
- no Frame Header Error Control (FHEC)
- no Transfer Frame Secondary Header
- no Extended Virtual Channel Frame Counter (ECSS)
- no Punctured Convolutional Encoding
- no Turbo Encoding
- no Non-Return-to-Zero Mark (NRZ-M) modulation
- no Split-Phase Level modulation
- no Sub-carrier modulation

The telemetry encoder and telecommand decoder provide the following pin programmability:

- telemetry and telecommand (hardware commands) Spacecraft Identifier (10 pins)
- telemetry Frame Error Control Field (FECF/CRC) enable
- telemetry Reed-Solomon enable (E=16 coding, interleave depth 5, 160 check symbols)
- telemetry Pseudo Randomization enable
- telemetry Convolutional Encoder enable (unpunctured rate 1/2 code)
- telemetry output bit rate configuration (16 pins)
- telecommand (hardware commands) Virtual Channel Identifier (6 pins)
- telecommand Pseudo De-randomization enable

2.4 Clock and reset

The system clock and the telemetry transmitter clock are derived from an external input.

The device is reset with a single external reset input that need not be synchronous with the system clock input.

The design has been fixed for the system frequency of 8 000 000 Hz.

The design has been fixed for UART baud rates of 115 200 baud.

2.5 Signals

I

I

The functional signals are shown in table 1. Note that each external signal is triplicated, with the suffixes _a, _b and _c, as shown in detail in section 36. Note that index 0 is MSB.

Table 1. External signals

clk	System and telemetry transmitter clock			
	System and telemeny transmitted clock	In	-	-
reset_n	System reset	In	-	-
scid[0:9]	Telemetry and hardware telecommand Spacecraft identifier setting	In	-	-
fecf	Telemetry Frame Error Control Field (FECF/CRC) enable	In	High	-
reedsolomon	Telemetry Reed-Solomon encoder enable	In	High	-
pseudo	Telemetry Pseudo-Randomiser encoder enable	In	High	-
convolute	Telemetry Convolutional encoder enable	In	High	-
bitrate[0:15]	Telemetry CADU output bit rate setting	In	-	-
cadufall	Telemetry CADU output clock edge setting	In	High	-
pw0valid_n	Telemetry PacketWire Virtual Channel 0 - packet delimiter	In	Low	-
pw0clk	Telemetry PacketWire Virtual Channel 0 - serial bit clock	In	Rising	-
pw0data	Telemetry PacketWire Virtual Channel 0 - serial bit data	In	-	-
pw0busy	Telemetry PacketWire Virtual Channel 0 - not ready for octet	Out	High	Low
pw1valid_n	Telemetry PacketWire Virtual Channel 1 - packet delimiter	In	Low	-
pw1clk	Telemetry PacketWire Virtual Channel 1 - serial bit clock	In	Rising	-
pw1data	Telemetry PacketWire Virtual Channel 1 - serial bit data	In	-	-
pw1busy	Telemetry PacketWire Virtual Channel 1 - not ready for octet	Out	High	Low
caduclk	Telemetry CADU serial bit clock output	Out	-	Low
caduout	Telemetry CADU serial bit data output	Out	-	Low
clcwuart	Telemetry CLCW asynchronous bit serial UART input	In	Low	-
clcwrfavail[0:1]	Telemetry CLCW RF available indicator input	In	High	-
ocfstatus[0:8]	Telemetry project spectific OCF status data	In	-	-
tcpseudo	Telecommand Pseudo-Derandomiser decoder enable	In	High	-
tcvcid[0:5]	Telecommand (hardware command) Virtual Channel identifier setting	In	-	-
tcactive[0:1]	Telecommand CLTU input active indicator (bit lock)	In	High	-
tcclk[0:1]	Telecommand CLTU serial bit clock input		Rising	-
tcdata[0:1]	Telecommand CLTU serial bit data input	In	-	-
tcuart	Telecommand (software command) asynchronous bit serial UART output	Out	-	High
tcgpio[0:3]	Telecommand (hardware command) parallel output	Out	High	Low
tcgpio[4:7]	Telecommand (hardware command) parallel output (tri-stated)	Out	Low	Tri-state

2.6 Abbreviations and acronyms

AOS Advanced Orbiting Systems

ASM Attached Synchronization Marker

BCH Bose-Chadhuri-Hacqueghem

CADU Channel Access Data Unit

CCSDS Consultative Committee for Space Data Systems

CLCW Command Link Control Word

CLTU Command Link Transmission Unit

CRC Cyclic Redundancy Code

ECSS European Cooperation on Space Standardization

EDAC Error Detection and Correction

ESA European Space Agency

FECF Frame Error Control Field

FHP First Header Pointer

FIFO First In First Out

GF Galois Field

GPIO General Purpose Input Output

I/O Input Output

ID Identifier

LET Linear Energy Transfer

LFSR Linear Feedback Shift Register

LSB Least Significant Bit/Byte

MC Master Channel

MSB Most Significant Bit/Byte

NRZ Non Return to Zero

OCF Operational Control Field

PROM Programmable Read Only Memory

PSR Pseudo Randomiser

PSS Procedures, Standards and Specifications

RS Reed-Solomon

SEL Single Event Latch-up SEU Single Event Upset

SRAM Static Random Access Memory,

UART Universal Asynchronous Receiver Transmitter

VC Virtual Channel

3 Conventions

3.1 Consultative Committee for Space Data Systems

Convention according to the Consultative Committee for Space Data Systems (CCSDS) recommendations, applying to all relevant structures:

- The most significant bit of an array is located to the left, carrying index number zero, and is transmitted first.
- An octet comprises eight bits.

General convention, applying to signals and interfaces:

- Signal names are in mixed case.
- An upper case '_N' suffix in the name indicates that the signal is active low.

CCSDS n-bit field					
most significant		least significant			
0	1 to n-2	n-1			

Table 2. CCSDS n-bit field definition

3.2 Galois Field

Convention according to the Consultative Committee for Space Data Systems (CCSDS) recommendations, applying to all Galois Field GF(28) symbols:

- A Galois Field GF(28) symbol comprises eight bits.
- The least significant bit of a symbol is located to the left, carrying index number zero, and is transmitted first.

Galois Field GF(2 ⁸) symbol					
least significant		most significant			
0	1 to 6	7			

Table 3. Galois Field GF(2⁸) symbol definition

3.3 Telemetry Transfer Frame format

The Telemetry Transfer Frame specified in [CCSDS-132.0] and [ECSS-50-03A] is composed of a Primary Header, a Secondary Header, a Data Field and a Trailer with the following structures.

Transfer Frame						
Transfer Fr	ame Header	Transfer Frame Data Field	Transfer Frame Trailer			
Primary Secondary (optional)		ket Packet Pa	OCF / FECF (optional)			
6 octets	variable	variable	0 / 2 /4 / 6 octets			
up to 2048 octets						

Table 4. Telemetry Transfer Frame format

Transfer Frame Primary Header						
	Frame Identification			Master Channel	Virtual Channel	Frame
Version	S/C	VC	OCF	Frame	Frame Count	Data
	Id	Id	Flag	Count		Field
						Status
2 bits	10 bits	3 bits	1 bit	8 bits	8 bits	16 bits
0:1	2:11	12:14	15			
	2 octets				1 octet	2 octets

Table 5. Telemetry Transfer Frame Primary Header format

Frame Data Field Status					
Secondary Header Flag Sync Flag Packet Order Flag Segment Length Id First Header Pointer					
1 bit	1 bit	1 bit	2 bits	11 bits	
0 1 2 3:4 5:15					
2 octets					

Table 6. Part of Telemetry Transfer Frame Primary Header format

Transfer Frame Secondary Header (optional)				
Secondary Head	Secondary Header Data Field			
Secondary Header Version Secondary Header Length		Custom data		
2 bits	6 bits			
0:1				
1 o	up to 63 octets			

Table 7. Telemetry Transfer Frame Secondary Header format

Transfer Frame Trailer (optional)				
Operational Control Field (optional) Frame Error Control Field (optional)				
0 / 4 octets	0 / 2 octets			

Table 8. Telemetry Transfer Frame Trailer format

3.4 Reed-Solomon encoder data format

The applicable standards [CCSDS-131.0] and [ECSS-50-01A] specify a Reed-Solomon E=16 (255, 223) code resulting in the frame lengths and codeblock sizes listed in table 9.

Interleave depth	Attached Synchronization Marker	Transfer Frame	Reed-Solomon Check Symbols
1	4 octets	223 octets	32 octets
2		446 octets	64 octets
3		669 octets	96 octets
4		892 octets	128 octets
5		1115 octets	160 octets
8		1784 octets	256 octets

Table 9. Reed-Solomon E=16 codeblocks with Attached Synchronisation Marker

The applicable standards [CCSDS-131.0] also specifies a Reed-Solomon E=8 (255, 239) code resulting in the frame lengths and codeblock sizes listed in table 10.

Interleave depth	Attached Synchronization Marker	Transfer Frame	Reed-Solomon Check Symbols
1	4 octets	239 octets	16 octets
2		478 octets	32 octets
3		717 octets	48 octets
4		956 octets	64 octets
5		1195 octets	80 octets
8		1912 octets	128 octets

Table 10. Reed-Solomon E=8 codeblocks with Attached Synchronisation Marker

3.5 Attached Synchronization Marker

The Attached Synchronization Marker pattern depends on the encoding scheme in use, as specified in [CCSDS-131.0] and [ECSS-50-01A] as shown in table 11.

Mode	Hexadecimal stream (left to right)
Nominal	1ACFFC1D _h

Table 11. Attached Synchronization Marker hexadecimal pattern

3.6 Telecommand Transfer Frame format

The Telecommand Transfer Frame specified in [CCSDS-232.0] and [ECSS-50-04A] is composed of a Primary Header, a Data Field and a trailer with the following structures.

Transfer Frame							
Transfer Frame Primary	Transfer Fran	Frame Error Control Field					
Header	Segment Header (optional)	Segment Header (optional) ket Packet Pa					
5 octets	5 octets variable variable						
up to 1024 octets							

Table 12. Telecommand Transfer Frame format

	Transfer Frame Primary Header								
Version	Version Bypass Control Reserved S/C Virtual Frame Frame								
	Flag	Command	Spare	Id	Channel	Length	Sequence		
		Flag			Id		Number		
2 bits	1 bit	1 bit	2 bits	10 bits	6 bits	10 bits	8 bits		
0:1	3	4	5	6:15	16:21	22:31	32:39		
	2 octets					ctets	1 octet1		

Table 13. Telecommand Transfer Frame Primary Header format

Segment Header (optional)						
Sequence Flags	Multiplexer Access Point (MAP) Id					
2 bits	6 bits					
40:41	42:47					
	1 octet					

Table 14. Transfer Frame Secondary Header format

3.7 Command Link Control Word

The Command Link Control Word (CLCW) can be transmitted as part of the Operation Control Field (OCF) in a Transfer Frame Trailer. The CLCW is specified in [CCSDS-232.0] and [ECSS-50-04A] and is listed in table 15.

Command Link Control Word									
Control Word Type	Version Number	Status Field	COP in Effect	Virtual (Channel Ide	entifier	Reserved Spare		
0	1:2	3:5	6:7		8:13		14:15		
1 bit	2 bits	3 bits	2 bits		6 bits		2 bits		
No RF Available	No Bit Lock	Lock Out	Wait	Retransmit	Retransmit FARM B Reserved Counter Spare				
16	17	18	19	20 21:22 23			24:31		
1 bit	1 bit	1 bit	1 bit	1 bit	2 bits	1 bit			

Table 15. Command Link Control Word

3.8 Space Packet

The Source Packet defined in the CCSDS [CCSDS-133.0] recommendation and is listed in table 16.

	Space Packet								
				Pa	cket Data	Field			
Packet	Packet	t Identification		Packet Sequen	ce Control	Packet	Secondary	User	Packet Error
Version Number	Туре	Secondary Header Flag	Application Process Id	Sequence Flags	Sequence Count	Data Length	Header (optional)	Data Field	Control (optional)
0:2	3	4	5:15	16:17	18:31	32:47			
3 bits	1 bit	1 bit	11 bits	2 bits	14 bits	16 bits	variable	variable	variable

Table 16. Source Packet and Telemetry Packet format

3.9 Asynchronous bit serial data format

The asynchronous bit serial interface complies to the data format defined in [EIA232]. It also complies to the data format and waveform shown in table 17 and figure 3. The interface is independent of the transmitted data contents. Positive logic is considered for the data bits. The number of stop bits can optionally be either one or two. The parity bit can be optionally included.

Asynchronous	start	D0	D1	D2	D3	D4	D5	D6	D7	parity	stop	stop
bit serial format	first	lsb							msb			last
General data format		8* <i>i</i> +7	8* <i>i</i> +6	8* <i>i</i> +5	8* <i>i</i> +4	8* <i>i</i> +3	8* <i>i</i> +2	8* <i>i</i> +1	8* <i>i</i>			
$i = \{0, n\}$		last							first			

Table 17. Asynchronous bit serial data format

3.10 Project specific Operation Control Field

The project specific Operation Control Field is according to [CCSDS-132.0] and is listed in table 18.

	Operation Control Field							
Type Flag	Project/Reserved	N/A	No RF Available	No Bit Lock	N/A	Discrete inputs		
0	1	2:15	16	17	18:22	23:31		
1 bit	1 bit	14 bits	1 bit	1 bit	5 bits	9 bits		
'1'	'0'	zero	Same as for CLC	W (Type-1 Report)	zero	ocfstatus[0:8]		
Type-2 Report	Project Specific	-	From input pins	From input pins	-	From input pins		

Table 18. Project specific Operation Control Field

December 2009, Version 1.0.2-1

3.11 Waveform formats

The design and generates the waveform formats shown in the following figures.

Figure 2. Synchronous bit serial protocol / waveform

Figure 3. Asynchronous bit serial protocol / waveform

Figure 4. Telecommand input protocol / waveform

4 Telemetry Encoder

4.1 Overview

The CCSDS/ECSS/PSS Telemetry Encoder implements part of the Data Link Layer, covering the Protocol Sub-layer and the Frame Synchronization and Coding Sub-layer and part of the Physical Layer of the packet telemetry encoder protocol. The Telemetry Encoder comprises several encoders and modulators implementing the Consultative Committee for Space Data Systems (CCSDS) recommendations, European Cooperation on Space Standardization (ECSS) and the European Space Agency (ESA) Procedures, Standards and Specifications (PSS) for telemetry and channel coding.

The encoder comprises the following:

- Packet Telemetry Encoder (TM)
- Reed-Solomon Encoder
- Pseudo-Randomiser (PSR)
- Non-Return-to-Zero Level encoder (NRZ-L)
- Convolutional Encoder (CE)
- Clock Divider (CD)

Note that the PacketWire input interface is described separately. Note that the PacketWire interfaces and corresponding Virtual Channel Generation function and buffer memories are not shown in the block diagram below, as is the case for the CLCW input UART, project specific OCF status inputs and the CLCW multiplexing function.

Figure 5. Block diagram

4.2 Lavers

4.2.1 Introduction

The relationship between Packet Telemetry standard and the Open Systems Interconnection (OSI) reference model is such that the OSI Data Link Layer corresponds to two separate layer, namely the Data Link Protocol Sub-layer and Synchronization and Channel Coding Sub-Layer.

4.2.2 Data Link Protocol Sub-layer

The following functionality is not implemented in the core:

- Packet Processing
- Virtual Channel Frame Service
- Master Channel Frame Service

The following functionality is implemented in the core:

- Virtual Channel Generation (for Idle Frame generation only)
- Virtual Channel Multiplexing (for all frames)
- Master Channel Generation (for all frames)
- Master Channel Multiplexing (not implemented, only single Spacecraft Identifier supported)
- All Frame Generation (for all frames)

4.2.3 Synchronization and Channel Coding Sub-Layer

The following functionality is implemented in the core:

- Attached Synchronization Marker
- Reed-Solomon coding
- Pseudo-Randomiser
- Convolutional coding

4.2.4 Physical Layer

The following functionality is implemented in the core:

• Non-Return-to-Zero modulation

4.3 Data Link Protocol Sub-Layer

4.3.1 Physical Channel

The configuration of a Physical Channel covers the following parameters:

- Transfer Frame Length is fixed to 1115 octets
- Transfer Frame Version Number is fixed to 0

4.3.2 Virtual Channel Frame Service

The Virtual Channel Frame Service is implemented via Direct Memory Accesses to on-chip memory. The Virtual Channel Generation functions for Virtual Channel 0 and 1 create such Transfer Frames that are transferred via DMA as part of the Virtual Channel Frame Service.

4.3.3 Virtual Channel Generation - Virtual Channels 0 and 1

There is a Virtual Channel Generation function for each of Virtual Channels 0 and 1. The channels have each an on-chip memory buffer to store two complete Transfer Frames.

Each Virtual Channel Generation function receives data from the PacketWire interface that are stored in the on-chip buffer memory that is EDAC protected.

The function supports:

- Transfer Frame Primary Header insertion
- Transfer Frame Data Field insertion (with support for different lengths due to OCF and FECF)
- First Header Pointer (FHP) handling and insertion

The function keeps track of the number of octets received and the packet boundaries in order to calculated the First Header Pointer (FHP). The data are stored in pre-allocated slots in the buffer memory comprising complete Transfer Frames. The module fully supports the FHP generation and does not require any alignment of the packets with the Transfer Frame Data Field boundary. The buffer memory space allocated to each Virtual Channel is treated as a circular buffer.

When a complete Transfer Frame Data Field has been inserted, the function will generate a busy signal on the PacketWire interface, but accepts and handles an overrun up to two octets.

The function communicates with the Virtual Channel Frame Service by means of the on-chip buffer memory.

4.3.4 Virtual Channel Generation - Idle Frames

The Virtual Channel Generation function is used to generate the Virtual Channel Counter for Idle Frames as described here below.

4.3.5 Virtual Channel Multiplexing

The Virtual Channel Multiplexing Function is used to multiplex Transfer Frames of different Virtual Channels of a Master Channel. Virtual Channel Multiplexing in the core is performed between two sources: Transfer Frames provided through the Virtual Channel Frame Service and Idle Frames. Note that multiplexing between different Virtual Channels is implicitly implemented, Virtual Channel 0 and 1 are each allocated 50% of the bandwidth.

The Virtual Channel Frame Service user interface is described above. The Idle Frame generation is described hereafter.

The Spacecraft ID to be used for Idle Frames is pin configurable. The Virtual Channel ID to be used for Idle Frames is fixed to 7.

Master Channel Counter generation for Idle Frames is done as part of the Master Channel Generation function described in the next section.

The Virtual Channel Counter generation for Idle Frames is always enabled and generated in the Virtual Channel Generation function described above.

4.3.6 Master Channel Generation

The Master Channel Counter is generated for all frames on the master channel.

The Operational Control Field (OCF) is generated from a 32-bit input, via the Command Link Control Word (CLCW) UART input, internal from the Telecommand Decoder - Hardware Commands, or from the ocfstatus[0:8] input pins for the project specific OCF. This is done for all frames on the master channel (MC OCF).

The transmit order repeats every four Transfer Frames and is as follows:

- CLCW from the CLCLW UART input is transmitted in Transfer Frames with an odd Transfer Frame Master Channel Counter value, i.e. ends with the least-significant-bits "00" or "10"
- CLCW from the internal hardware commands is transmitted in Transfer Frames with a Transfer Frame Master Channel Counter value that ends with the least-significant-bits "01"
- the project specific OCF is transmitted in Transfer Frames with a Transfer Frame Master Channel Counter value that ends with the least-significant-bits "11".

Note that bit 16 (No RF Available) and 17 (No Bit Lock) of the CLCW and project specific OCF are taken from information carried on discrete inputs clewavail[1:0] and tcactive[1:0].

An asynchronous bit serial input UART is used for receiving the CLCW from the user. The protocol is fixed to 115200 baud, 1 start bit, 8 data bits, 1 stop bit, with a BREAK command for message delimiting (sending 13 bits of logical zero).

Table 19.CLCW transmission protocol

Byte Number	CLCW bits	CLCW contents						
First	[0:7]	Control Word Type	CLCW Version Number	Status Field	COP In	Effect		
Second	[8:15]	Virtual Channel Identifier	Reserved Fie	eld				
Third	[16:23]	No RF Available	No Bit Lock	Lock Out	Wait	Retransmit	Farm B Counter	Report Type
Fourth	[24:31]	Report Value						
Fifth	N/A	[RS232 Break Command]						

4.3.7 Master Channel Frame Service

The Master Channel Frame Service is not implemented.

4.3.8 Master Channel Multiplexing

The Master Channel Multiplexing Function is not implemented.

4.3.9 All Frame Generation

The All Frame Generation functionality operates on all transfer frames of a Physical Channel.

Frame Error Control Field (FECF) generation can be enabled and disabled by means of external pin.

4.4 Synchronization and Channel Coding Sub-Layer

4.4.1 Attached Synchronization Marker

The 32-bit Attached Synchronization Marker is placed in front of each Transfer Frame as per [CCSDS-131.0] and [ECSS-50-03A].

4.4.2 Reed-Solomon Encoder

The CCSDS recommendation [CCSDS-131.0] and ECSS standard [ECSS-50-03A] specify Reed-Solomon codes, one (255, 223) code. The ESA PSS standard [PSS-04-103] only specifies the former code. Although the definition style differs between the documents, the (255, 223) code is the same in all three documents. The definition used in this document is based on the PSS standard [PSS-04-103].

The Reed-Solomon encoder is compliant with the coding algorithms in [CCSDS-131.0] and [ECSS-50-03A]:

- there are 8 bits per symbol;
- there are 255 symbols per codeword;
- the encoding is systematic:
- for E=16 or (255, 223), the first 223 symbols transmitted are information symbols, and the last 32 symbols transmitted are check symbols;
- the E=16 code can correct up to 16 symbol errors per codeword;
- the field polynomial is

$$f_{esa}(x) = x^8 + x^6 + x^4 + x^3 + x^2 + x + 1$$

• the code generator polynomial for E=8 is

$$g_{esa}(x) = \prod_{i=120}^{135} (x + \alpha^i) = \sum_{j=0}^{16} g_j \cdot x^j$$

for which the highest power of x is transmitted first;

• the code generator polynomial for E=16 is

$$g_{esa}(x) = \prod_{i=112}^{143} (x + \alpha^i) = \sum_{j=0}^{32} g_j \cdot x^j$$

for which the highest power of x is transmitted first;

- interleaving is supported for depth $I = \{1 \text{ to } 8\}$, where information symbols are encoded as I codewords with symbol numbers i + j*I belonging to codeword i {where $0 \le i < I$ and $0 \le j < 255$ };
- shortened codeword lengths are supported;

• the input and output data from the encoder are in the representation specified by the following transformation matrix T_{esa} , where i_0 is transferred first

• the following matrix T¹_{esa} specifying the reverse transformation

$$\left[\alpha_{7} \; \alpha_{6} \; \alpha_{5} \; \alpha_{4} \; \alpha_{3} \; \alpha_{2} \; \alpha_{1} \; \alpha_{0}\right] = \left[\iota_{0} \; \iota_{1} \; \iota_{2} \; \iota_{3} \; \iota_{4} \; \iota_{5} \; \iota_{6} \; \iota_{7}\right] \times \left[\begin{array}{c} 1 \; 1 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \\ 0 \; 1 \; 0 \; 1 \; 1 \; 1 \; 1 \\ 0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1 \; 1 \\ 0 \; 1 \; 0 \; 1 \; 1 \; 0 \; 1 \\ 1 \; 0 \; 0 \; 0 \; 1 \; 0 \; 0 \\ 0 \; 1 \; 0 \; 1 \; 1 \; 0 \\ 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 1 \; 1 \\ 1 \; 0 \; 0 \; 1 \; 1 \; 0 \; 0 \end{array}\right]$$

• the Reed-Solomon output is non-return-to-zero level encoded.

The Reed-Solomon Encoder encodes a bit stream from preceding encoders and the resulting symbol stream is output to subsequent encoder and modulators. The encoder generates codeblocks by receiving information symbols from the preceding encoders which are transmitted unmodified while calculating the corresponding check symbols which in turn are transmitted after the information symbols. The check symbol calculation is disabled during reception and transmission of unmodified data not related to the encoding. The calculation is independent of any previous codeblock and is perform correctly on the reception of the first information symbol after a reset.

Each information symbol corresponds to an 8 bit symbol. The symbol is fed to a binary network in which parallel multiplication with the coefficients of a generator polynomial is performed. The products are added to the values contained in the check symbol memory and the sum is then fed back to the check symbol memory while shifted one step. This addition is performed octet wise per symbol. This cycle is repeated until all information symbols have been received. The contents of the check symbol memory are then output from the encoder. The encoder is based on a parallel architecture, including parallel multiplier and adder.

4.4.3 Pseudo-Randomiser

The Pseudo-Randomiser (PSR) generates a bit sequence according to [CCSDS-131.0] and [ECSS-50-03A] which is xor-ed with the data output of preceding encoders. This function allows the required bit transition density to be obtained on a channel in order to permit the receiver on ground to maintain bit synchronization.

The polynomial for the Pseudo-Randomiser is $h(x) = x^8 + x^7 + x^5 + x^3 + 1$ and is implemented as a Fibonacci version (many-to-one implementation) of a Linear Feedback Shift Register (LFSR). The registers of the LFSR are initialized to all ones between Transfer Frames. The Attached Synchronization Marker (ASM) is not effected by the encoding.

Figure 6. Pseudo-randomiser

4.4.4 Convolutional Encoder

The Convolutional Encoder (CE) implements the basic convolutional encoding scheme. The ESA PSS standard [PSS-04-103] specifies a basic convolutional code without puncturing. This basic convolutional code is also specified in the CCSDS recommendation [CCSDS-131.0] and ECSS standard [ECSS-50-03A], which in addition specifies a punctured convolutional code.

The basic convolutional code has a code rate of 1/2, a constraint length of 7, and the connection vectors $G1 = 1111001_b$ (171 octal) and $G2 = 1011011_b$ (133 octal) with symbol inversion on output path, where G1 is associated with the first symbol output.

Figure 7. Unpuctured convolutional encoder

4.5 Physical Layer

4.5.1 Non-Return-to-Zero Level encoder

The Non-Return-to-Zero Mark encoder (NRZ-L) encodes differentially a bit stream from preceding encoders according to [ECSS-50-05A]. The waveform is shown in figure 8. Both data and the Attached Synchronization Marker (ASM) are affected by the coding. When the encoder is not enabled, the bit stream is by default non-return-to-zero level encoded.

4.5.2 Clock Divider

The clock divider provides clock enable signals for the telemetry and channel encoding chain. The clock enable signals are used for controlling the bit rates of the different encoder and modulators.

The source for the bit rate frequency is the system clock input. The system clock input can be divided to a degree 2^{16} . The divider can be configured during operation to divide the bit rate clock frequency from 1/2 to $1/2^{16}$.

The bit rate frequency is based on the output frequency of the last encoder in a coding chain. No actual clock division is performed, since clock enable signals are used. No clock multiplexing is performed in the core. The clock divider supports clock rate increases for the following encoder and rate: Convolutional Encoder, rate 1/2. The polarity of the output clock is pin programmable.

The resulting nominal symbol rate and telemetry rate are depended on what encoders and modulators are enabled. The following variables are used in the tables hereafter: f = input system clock frequency, n = bitrate[0:15] input field +1.

Table 20. Data rates

I

Coding & Modulation	Telemetry rate	Convolutional rate	Output symbol rate	Output clock frequency
-	f/n	-	f/n	f/n
Convolutional	f / (n * 2)	f/n	f/n	f/n

n = 1 is not supported, i.e. bitrate[0:15] input equals 0

n = 65536 is the larget value supported without emergency rate usage, i.e. bitrate[0:15] input equals 0xFFFF

n = 8192 is the largest value supported with emergency rate usage, i.e. bitrate[0:15] input equals 0x1FFF

n should be an even number, i.e. bitrate[0:15] input should be uneven to generate output symbol clock with 50% duty cycle

The clock divider also supports an emergency rate, controlled via Hardware Command, i.e. OUT-PUT(8). The value of the bitrate[0:15] input is multiplied by 8 and 1 is added. The resulting output symbol rate generation is shown in the following examples.

Nominal mode, OUTPUT(8)=0:

- bitrate[0:15] = 0x0000 => n=1 => illegal
- bitrate[0:15] = $0 \times 0001 => n=2 => f/2$
- bitrate[0:15] = 0x0002 => n=3 => f/3
- bitrate[0:15] = $0 \times 0003 = n=4 = f/4$
- bitrate[0:15] = 0x0004 => n=5 => f/5

Emergency mode, OUTPUT(8)=1:

- bitrate[0:15] = 0x0000 => illegal
- bitrate[0:15] = $0x0001 \Rightarrow 0x0009 \Rightarrow n=10 \Rightarrow f/10$
- bitrate[0:15] = $0x0002 \Rightarrow 0x0011 \Rightarrow n=18 \Rightarrow f/18$
- bitrate[0:15] = $0 \times 0003 = 0 \times 0019 = n = 26 = f/26$
- bitrate[0:15] = $0 \times 0004 \Rightarrow 0 \times 0021 \Rightarrow n=34 \Rightarrow f/34$

4.6 Connectivity

The output from the Packet Telemetry encoder can be connected to:

- Reed-Solomon encoder
- Pseudo-Randomiser
- Non-Return-to-Zero Level encoder
- Convolutional encoder

The input to the Reed-Solomon encoder can be connected to:

Packet Telemetry encoder

The output from the Reed-Solomon encoder can be connected to:

- Pseudo-Randomiser
- Non-Return-to-Zero Level encoder
- Convolutional encoder

The input to the Pseudo-Randomiser (PSR) can be connected to:

- Packet Telemetry encoder
- Reed-Solomon encoder

The output from the Pseudo-Randomiser (PSR) can be connected to:

- Non-Return-to-Zero Level encoder
- Convolutional encoder

The input to the Non-Return-to-Zero Level encoder (NRZ-L) can be connected to:

- Packet Telemetry encoder
- Reed-Solomon encoder
- Pseudo-Randomiser

The output from the Non-Return-to-Zero Level encoder (NRZ-L) can be connected to:

Convolutional encoder

The input to the Convolutional Encoder (CE) can be connected to:

- Packet Telemetry encoder
- Reed-Solomon encoder
- Pseudo-Randomiser
- Non-Return-to-Zero Level encoder

4.7 Signal definitions and reset values

The signals and their reset values are described in table 21.

Table 21. Signal definitions and reset values

Signal name	Туре	Function	Active	Reset value
clcwrfavail[0:1]	Input, async	RF Available	High	-
clcwuart	Input, async	CLCW UART input	-	-
ocfstatus[0:8]	Input, async	Project specific OCF status data input	-	-
caduout	Output	Serial bit data, output at caduclk edge (selectable)	-	-
caduclk	Output	Serial bit data clock	Rising	Logical 0
cadufall	Input, static	Serial bit data clock edge selection: 0 = rising caduclk edge at caduout change 1 = falling caduclk edge at caduout change	High	-
fecf	Input, static	Enable Frame Error Control Field (FECF/CRC)	High	-
reedsolomon	Input, static	Enable Reed-Solomon encoder	High	-
pseudo	Input, static	Enable Pseudo Randomizer encoder	High	-
convolute	Input, static	Enable Convolutional encoder	High	-
bitrate[0:15]	Input, static	Telemetry bit rate selection	-	-
scid[0:9]	Input, static	Telemetry Spacecraft Identifier	-	-

4.8 Timing

The timing waveforms and timing parameters are shown in figure 9 and are defined in table 22.

Figure 9. Timing waveforms

Table 22. Timing parameters

Name	Parameter	Reference edge	Min	Max	Unit
t _{GRTM0}	clock to output delay	rising clk edge	0	30	ns
t _{GRTM1}	input to clock hold	rising clk edge	-	-	ns
t _{GRTM2}	input to clock setup	rising clk edge	-	-	ns

Note: The inputs are re-synchronized inside the core. The signals do not have to meet any setup or hold requirements. Static signals should not change between resets.

5 Telemetry Encoder - PacketWire Interface

The PacketWire (PW) interface to a telemetry encoder is a simple bit synchronous protocol. There is one PacketWire interface for each telemetry Virtual Channel.

The data can be any CCSDS supported packets. The interface comprises three input signals; bit data, bit clock and packet delimiter. There is an additional discrete signal provided for busy signalling.

Data should consist of multiples of eight bits otherwise the last bits will be lost. The input packet delimiter signal is used to delimit packets. It should be asserted while a packet is being input, and deasserted in between. In addition, the input packet delimiter signal should define the octet boundaries in the input data stream, the first octet explicitly and the following octets each subsequent eight bit clock cycles.

The interface is based on the de facto standard PacketWire interface used by the *European Space Agency* (ESA). At the time of writing there were no relevant documents available from the *European Cooperation for Space Standardization* (ECSS).

5.1 Operation

The PacketWire interface accepts and generates the waveform format shown in figure 10.

Figure 10. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being sent first. Transmitted data should consist of multiples of eight bits otherwise the last bits will be lost. The input message delimiter port is used to delimit messages (packets). It should be asserted while a message is being input, and deasserted in between. In addition, the message delimiter port should define the octet boundaries in the data stream, the first octet explicitly and the following octets each subsequent eight bit clock cycles.

The maximum receiving input baud rate is defined as half the frequency of the system clock input. There is no lower limit for the input bit rate in the receiver.

The handshaking between the PacketWire links and the interface is implemented with a busy port. When a message is sent, the busy signal on the PacketWire input link will be asserted as soon as the input interface is not ready to receive more data, it will then be deasserted as soon as the interface is ready to receive the next octet. This gives the transmitter ample time to stop transmitting after the completion of an octet and wait for the busy signal deassertion before starting the transmission of the next octet. The handshaking is continued through out the message.

5.2 Signal definitions and reset values

The signals and their reset values are described in table 23.

Table 23. Signal definitions and reset values

Signal name	Туре	Function	Active	Reset value
pw*valid_n	Input	Delimiter: This input port is the message delimiter for the input interface. It should be deasserted between messages.	Low	-
pw*clk	Input	Bit clock: This input port is the PacketWire bit clock. The receiver registers are clocked on the rising edge.	Rising	-
pw*data	Input	Data: This input port is the serial data input for the interface. Data are sampled on the rising $pw*clk$ edge when $pw*valid_n$ is asserted.	-	-
pw*busy	Output	Not ready for octet: This port indicates whether the receiver is ready to receive one octet.	High	Logical 0

5.3 Timing

The timing waveforms and timing parameters are shown in figure 11 and are defined in table 24.

Figure 11. Timing waveforms

Table 24. Timing parameters

Name	Parameter	Reference edge	Min	Max	Unit
t _{GRPW0}	clock to output delay	rising clk edge	0	30	ns
t _{GRPW1}	input to clock hold	rising pw*clk edge	20	-	ns
t _{GRPW2}	input to clock setup	rising pw*clk edge	20	-	ns
t _{GRPW3}	pw*valid_n to pw*clk edge	rising pw*clk edge	20	-	ns
t _{GRPW3}	pw*valid_n de-asserted period	-	4		system clock periods

6 Telecommand Decoder - Software Commands

6.1 Overview

The Telecommand Decoder is compliant with the Packet Telecommand protocol and specification defined by the CCSDS recommendations stated in [CCSDS-231.0]. The Telecommand Decoder implements the Coding Layer (CL).

In the Coding Layer (CL), the telecommand decoder receives bit streams on multiple channel inputs. The streams are assumed to have been generated in accordance with the Physical Layer specifications. The decoder searches all input streams simultaneously until a start sequence is detected. Only one of the channel inputs is selected for further reception. The selected stream is bit-error corrected and the resulting corrected information is passed to the user. The corrected information received in the CL is transfer by means of a UART to the on-board processor.

Figure 12. Block diagram

6.1.1 Concept

A telecommand decoder in this concept is mainly implemented by software in the on-board processor. The supporting hardware in the GRTC core implements the Coding Layer, which includes synchronisation pattern detection, channel selection, codeblock decoding, and output of corrected codeblocks.

The telemetry encoder hardware provides a UART via which the Command Link Control Word (CLCW) is made available. The CLCW is to be generated by the software.

A complete CCSDS packet telecommand decoder can be realized at software level according to the latest available standards, staring from the Transfer Layer.

6.1.2 Functions and options

The telecommand decoder only implements the Coding Layer (CL). All other layers are to be implemented in software. A Command Pulse Distribution Unit (CPDU) is not implemented.

The following function is programmable by means of a configuration pin:

Pseudo-De-Randomisation

The following functions are fixed:

- Polarity of RF Available and Bit Lock inputs (active high)
- Edge selection for input channel clock (rising edge)
- NRZ-L decoding

6.2 Coding Layer (CL)

The Coding Layer synchronises the incoming bit stream and provides an error correction capability for the Command Link Transmission Unit (CLTU). The Coding Layer receives a dirty bit stream together with control information on whether the physical channel is active or inactive for the multiple input channels.

The bit stream is assumed to be NRZ-L encoded, as the standards specify for the Physical Layer. There are no assumptions made regarding the periodicity or continuity of the input clock signal while an input channel is inactive. The most significant bit (bit 0) is received first.

Searching for the Start Sequence, the Coding Layer finds the beginning of a CLTU and decodes the subsequent codeblocks. As long as no errors are detected, or errors are detected and corrected, the Coding Layer passes clean blocks of data to the Transfer Layer which is implemented in software. When a codeblock with an uncorrectable error is encountered, it is considered as the Tail Sequence, its contents are discarded and the Coding Layer returns to the Start Sequence search mode.

The Coding Layer supports to enable an optional de-randomiser according to [CCSDS-231.0].

6.2.1 Synchronisation and selection of input channel

Synchronisation is performed by means of bit-by-bit search for a Start Sequence on the channel inputs. The detection of the Start Sequence is tolerant to a single bit error anywhere in the Start Sequence pattern. The Coding Layer searches both for the specified pattern as well as the inverted pattern. When an inverted Start Sequence pattern is detected, the subsequent bit-stream is inverted till the detection of the Tail Sequence.

The detection is accomplished by a simultaneous search on all active channels. The first input channel where the Start Sequence is found is selected for the CLTU decoding. The selection mechanism is restarted on any of the following events:

- The input channel active signal is de-asserted, or
- a Tail Sequence is detected, or
- a Codeblock rejection is detected, or
- an abandoned CLTU is detected, or the clock time-out expires.

As a protection mechanism in case of input failure, a clock time-out is provided for all selection modes. The clock time-out expires when no edge on the bit clock input of the selected input channel in decode mode has been detected for a period of 2**24 system clock cycles.

6.2.2 Codeblock decoding

The received Codeblocks are decoded using the standard (63,56) modified BCH code. Any single bit error in a received Codeblock is corrected. A Codeblock is rejected as a Tail Sequence if more than one bit error is detected.

6.2.3 De-Randomiser

In order to maintain bit synchronisation with the received telecommand signal, the incoming signal must have a minimum bit transition density. If a sufficient bit transition density is not ensured for the channel by other methods, the randomiser is required. Its use is optional otherwise. The presence or absence of randomisation is fixed for a physical channel and is managed (i.e., its presence or absence is not signalled but must be known a priori by the spacecraft and ground system). A random sequence is exclusively OR-ed with the input data to increase the frequency of bit transitions. On the receiving

end, the same random sequence is exclusively OR-ed with the decoded data, restoring the original data form. At the receiving end, the de-randomisation is applied to the successfully decoded data. The de-randomiser remains in the "all-ones" state until the Start Sequence has been detected. The pattern is exclusively OR-ed, bit by bit, to the successfully decoded data (after the Error Control Bits have been removed). The de-randomiser is reset to the "all-ones" state following a failure of the decoder to successfully decode a codeblock or other loss of input channel.

6.2.4 Design specifics

The coding layer is supporting 2 channel inputs. The CCSDS/ECSS (1024 octets) standard maximum frame length is supported. The former allows more than 37 codeblocks to be received. A codeblock is fixed to 56 information bits (as per CCSDS/ECSS).

The Pseudo-Randomiser decoder is included (as per CCSDS/ECSS), its usage being input signal programmable. The Physical Layer input can be NRZ-L modulated, allowing for polarity ambiguity.

Note: If input clock disappears, it will also affect the codeblock acquired immediately before the codeblock just being decoded (accepted by [PSS-04-151]).

In state S1, all active inputs are searched for start sequence, there is no priority search, only round robin search. The search for the start sequence is sequential over all inputs: maximum input frequency = system frequency / 4.

The [PSS-04-151] specified CASE-1 and CASE-2 actions are implemented according to aforementioned specification, not leading to aborted frames.

Extended E2 handling is implemented:

- E2b Channel Deactivation selected input becomes inactive in S3
- E2c Channel Deactivation too many codeblocks received in S3
- E2d Channel Deactivation selected input is timed-out in S3 (design choice being: S3 => S1, abandoned frame)

6.2.5 Data formatting

When in the decode state, each candidate codeblock is decoded in single error correction mode as described hereafter.

6.2.6 CLTU Decoder State Diagram

Note that the diagram has been improved with explicit handling of different E2 possibilities listed below.

State Definition:

- S1 Inactive
- S2 Search
- S3 Decode

Event Definition:

- E1 Channel Activation
- E2a Channel Deactivation all inputs are inactive
- E2b Channel Deactivation selected becomes inactive (CB=0 -> frame abandoned)
- E2c Channel Deactivation too many codeblocks received (all -> frame abandoned)
- E2d Channel Deactivation selected is timed-out (all -> frame abandoned)
- E3 Start Sequence Found
- E4 Codeblock Rejection (CB=0 -> frame abandoned)

6.2.7 Nominal

A: When the first "Candidate Codeblock" (i.e. "Candidate Codeblock" 0, which follows Event 3 (E3):START SEQUENCE FOUND) is found to be error free, or if it contained an error which has been corrected, its information octets are transferred to the remote ring buffer as shown in Table 3.1. At the same time, a "Start of Candidate Frame" flag is written to bit 0 or 16, indicating the beginning of a transfer of a block of octets that make up a "Candidate Frame". There are two cases that are handled differently as described in the next sections.CASE 1

When an Event 4 - (E4): CODEBLOCK REJECTION – occurs for any of the 37 possible "Candidate Codeblocks" that can follow Codeblock 0 (possibly the tail sequence), the decoder returns to the SEARCH state (S2), with the following actions:

- The codeblock is abandoned (erased)
- No information octets are transferred to the remote ring buffer
- An "End of Candidate Frame" flag is written, indicating the end of the transfer of a block of octets that make up a "Candidate Frame".

6.2.8 CASE 2

When an Event 2 - (E2): CHANNEL DEACTIVATION – occurs which affects any of the 37 possible "Candidate Codeblocks" that can follow Codeblock 0, the decoder returns to the INACTIVE state (S1), with the following actions:

- The codeblock is abandoned (erased)
- No information octets are transferred to the remote ring buffer
- An "End of Candidate Frame" flag is written, indicating the end of the transfer of a block of octets that make up a "Candidate Frame"

6.2.9 Abandoned

• B: When an Event 4 (E4), or an Event 2 (E2), occurs which affects the first candidate codeblock 0, the CLTU shall be abandoned. No candidate frame octets have been transferred.

• C: If and when more than 37 Codeblocks have been accepted in one CLTU, the decoder returns to the SEARCH state (S2). The CLTU is effectively aborted and this is will be reported to the software by writing the "Candidate Frame Abandoned flag" to bit 1 or 17, indicating to the software to erase the "Candidate frame".

6.3 Output interface

A UART is used for the transmission of the CLTU from the telecommand decoder to the suer. The protocol is fixed to 115200 baud, 1 start bit, 8 data bits, 1 stop bit, with a BREAK command for message delimiting (sending 13 bits of logical zero).

The output contains the corrected information octets, which comprises the Telecommand Transfer Frame and any filler data octets. This is followed by the transmission of a BREAK command.

Note: The Telecommand Decoder Coding Layer does not inspect the contents of the corrected information octets. All corrected information octets are output on the UART interface.

6.4 Signal definitions and reset values

The signals and their reset values are described in table 25.

Table 25. Signal definitions and reset values

Signal name	Type	Function	Active	Reset value
tcpseudo	Input, static	Pseudo-Derandomiser	-	-
tcactive[0:1]	Input, async	Active	Logical 1	-
tcclk[0:1]	Input, async	Bit clock	Rising	-
tcdata[0:1]	Input, async	Data	-	-
tcuart	Output	CLTU UART output	-	Logical 1

6.5 Timing

The timing waveforms and timing parameters are shown in figure 13 and are defined in table 26.

Figure 13. Timing waveforms

Table 26. Timing parameters

Name	Parameter	Reference edge	Min	Max	Unit
t _{GRTC0}	clock to output delay	rising clk edge	0	30	ns

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold requirements. Static signals should not change between resets.

7 Telecommand Decoder - Hardware Commands

7.1 Overview

7.1.1 Concept

The Telecommand Decoder - Hardware Commands provides access to an output port via telecommands.

The decoder implements the following layers:

- Application Layer:
 - Hardware command decoding and execution
- Data Link Protocol Sub-Layer:
 - Virtual Channel Reception:
 - Support for Command Link Control Word (CLCW)
 - Virtual Channel Demultiplexing
 - Master Channel Demultiplexing
 - All Frames Reception
- Data Link Synchronization and Channel Coding Sub-Layer:
 - Pseudo-Derandomization
 - BCH codeblock decoding
 - Start Sequence Search
- Physical Layer:
 - Non-Return-to-Zero Level de-modulation (NRZ-L)

The Channel Coding Sub-Layer and the Physical Layer are shared with the Telecommand Decoder - Software Commands, and are therefore not repeated here.

7.2 Operation

In the Application Layer and the Data Link - Protocol Sub-Layer, the information octets from the Channel Coding Sub-Layer are decoded as follows.

7.2.1 All Frames Reception

The All Frames Reception function performs two procedures:

- Frame Delimiting and Fill Removal Procedure; and
- Frame Validation Check Procedure, in this order.

The Frame Delimiting and Fill Removal Procedure is used to reconstitute Transfer Frames from the data stream provided by the Channel Coding Sub-Layer and to remove any Fill Data transferred from the Channel Coding Sub-Layer. The Frame Length field is checked to correspond to a fixed value of 10 octets. The number of information octets is checked to be a fixed number 14. The Fill Data is checked to match the 0x55 pattern, or the corresponding pseudo-randomized pattern when pseudo-

-(()

derandomization is enabled (pin configurable). Note that it is assumed that the Fill Data is <u>not</u> pseudorandomized at the transmitting end.

The Frame Validation Checks procedure performs the following checks:

- Version Number is checked to be 0
- Bypass Flag is checked to be 1
- Control Command Flag is checked to be 0
- Reserved Spare bits are checked to be 0
- Spacecraft Identifier is compared with a pin configurable input value
- Virtual Channel identifier is compared with a pin configurable input value
- Frame Length field is checked to be a fixed value of 10
- Frame Sequence Number is checked to be a fixed value of 0
- The Frame Error Control Field is checked to match the recomputed CRC value

7.2.2 Master Channel Demultiplexing

The Master Channel Demultiplexing is performed implicitly during the All Frames Reception procedure described above.

7.2.3 Virtual Channel Demultiplexing

The Virtual Channel Demultiplexing is performed implicitly during the All Frames Reception procedure described above.

7.2.4 Virtual Channel Reception

The Virtual Channel Reception supports Command Link Control Word (CLCW) generation and transfer to the Telemetry Encoder, according to the following field description.

- Control Word Type field is 0
- CLCW Version Number field is 0
- Status Field is 0
- COP in Effect field is 1
- Virtual Channel Identification is taken from pin configurable input value
- Reserved Spare field is 0
- No RF Available Flag is 0, but is overwritten by the Telemetry Encoder
- No Bit Lock Flag is 0, but is overwritten by the Telemetry Encoder
- Lockout Flag is 1
- Wait Flag is 0
- Retransmit Flag is 0
- FARM-B Counter is taken from the to least significant bits of a reception counter
- Reserved Spare field is 0
- Report Value field is 0

7.2.5 Application Layer

The Application Layer interprets any Transfer Frame that has successfully passed the Data Link Layer checks as described above. The Application Layer only interprets the Transfer Frame Data Field, excluding the Frame Error Control Field.

The Transfer Frame Data Field consists of 4 octets comprising the hardware command, as defined in the bit order hereafter (MSB of first octet corresponds to OUTPUT(0), LSB of last octet corresponds to INVERTED_PULSE(6):

- OUTPUT(0 to 8) (9 bits in total)
- PULSE(0 to 6) (7 bits in total)
- INVERTED OUTPUT(0 to 8) (9 bits in total)
- INVERTED_PULSE(0 to 6) (7 bits in total)

Before a hardware command is executed, the following is checked that:

- INVERTED_OUTPUT has the inverted value of OUTPUT
- INVERTED PULSE has the inverted value of PULSE
- no hardware command is ongoing

The OUTPUT bits 0 to 7 correspond to the tegpio bits 0 to 7. The OUTPUT bit 8 is used to control the bit rate of the Telemetry Encoder.

The PULSE field has three interpretation: 0 to clear bits, 127 to set bits, 1 to 126 to generate pulses on bits.

When PULSE field is 0, the corresponding bits that are <u>not</u> set in the OUTPUT field are cleared on the tcgpio outputs (AND function).

When PULSE field is 127, the corresponding bits that are set in the OUTPUT field are set on the tcg-pio outputs (OR function).

When PULSE field is in the range 1 to 126, the corresponding bits that are set in the OUTPUT field are set on the tcgpio outputs for a duration of PULSE * 8192 system clock cycles, after which they are cleared again.

The above also applies to the bit used by the Telemetry Encoder, OUTPUT(8).

The tcgpio[0:3] outputs are cleared to logical 0 and set to logical 1, logical 0 at reset.

The tcgpio[4:7] outputs are cleared to tri-state and set to logical 0, tri-state at reset.

Setting OUTPUT(8) forces the telemetry rate to reduced or emergency mode, clearing OUTPUT(8) forces the telemetry rate back to normal, normal at reset.

7.3 Telecommand Transfer Frame format - Hardware Commands

The telecommand Transfer Frame for Hardaware Commands has the following structures.

Transfer Frame								
Transfer Frame Primary	Transfer Frame Data Field	Frame Error Control Field						
Header	Hardware Command	(FECF)						
5 octets	4 octets	2 octets						
0:39	40:71	72:87						
	11 octets							

Table 27. Telecommand Transfer Frame format

	Transfer Frame Primary Header										
Version	ersion Bypass Control Reserved S/C Virtual Frame										
	Flag	Command	Spare	Id	Channel	Length	Sequence				
		Flag			Id		Number				
00 _b	1	0	00b	PIN	PIN	0000001010 _b	00000000 _b				
0:1	3	4	5	6:15	16:21 22:31		32:39				
		2 octets			2 0	ctets	1 octet1				

Table 28. Telecommand Transfer Frame Primary Header format

Hardware Command									
OUTPUT (0:8) PULSE (0:6) INVERTED_OUTPUT (0:8) INVERTED_PULSE									
9 bits	7 bits	9 bits	7 bits						
40:48	49:55	56:64	65:71						
2 octets		2 octe	ts						

Table 29. Hardware Command format

7.4 Signal definitions and reset values

The signals and their reset values are described in table 30.

Table 30. Signal definitions and reset values

Signal name	Туре	Function	Active	Reset value
tcgpio[0:3]	Output	Hardware command output	Logical 1	Logical 0
tcgpio[4:7]	Output	Hardware command output	Logical 0	Tri-state
scid[0:9]	Input, static	Telecommand Spacecraft Identifier	-	-
teveid[0:5]	Input, static	Telecommand Virtual Channel Identifier		

7.5 Timing

The timing waveforms and timing parameters are shown in figure 14 and are defined in table 31.

Figure 14. Timing waveforms

Table 31. Timing parameters

Name	Parameter	Reference edge	Min	Max	Unit
t _{GRTCHW0}	clock to output delay	rising clk edge	0	30	ns

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold requirements. Static signals should not change between resets.

8 Clock generation

8.1 Overview

The clock generator implements internal clock generation and buffering.

The design has been fixed for the system frequency of 8 000 000 Hz.

The design has been fixed for UART baud rates of 115 200 baud.

8.2 Signal definitions and reset values

The signals and their reset values are described in table 32.

Table 32. Signal definitions and reset values

Signal name	Туре	Function	Active	Reset value
clk	Input	System clock	Rising edge	-

8.3 Timing

The timing waveforms and timing parameters are shown in figure 15 and are defined in table 33.

clk

Figure 15. Timing waveforms

Table 33. Timing parameters

Name	Parameter	Reference edge	Min	Max	Unit
t _{CLKGEN0}	clock period	-	100	-	ns 1)

Note 1: The minimum clock period, and the resulting maximum clock frequency, is dependent on the manufacturing lot for the Actel parts and expected radiation levels. The functional behavior of the part is not guaranteed under radiation.

9 Reset generation

9.1 Overview

The reset generator implements input reset signal synchronization with glitch filtering and generates the internal reset signal. The input reset signal can be asynchronous.

9.2 Signal definitions and reset values

The signals and their reset values are described in table 34.

Table 34. Signal definitions and reset values

Signal name	Туре	Function	Active	Reset value
reset_n	Input	Reset	Low	

9.3 Timing

The timing waveforms and timing parameters are shown in figure 16 and are defined in table 35.

Figure 16. Timing waveforms

Table 35. Timing parameters

Name	Parameter	Reference edge	Min	Max	Unit
t _{RSTGEN0}	asserted period	-	1000	-	ns

Note: The *reset_n* input is re-synchronized internally. The signals does not have to meet any setup or hold requirements.

10 Electrical description

10.1 Absolute maximum ratings

According to Actel data sheet [IGLOO].

10.2 Operating conditions

According to Actel data sheet [IGLOO].

10.3 Input voltages, leakage currents and capacitances

According to Actel data sheet [IGLOO].

10.4 Output voltages, leakage currents and capacitances

According to Actel data sheet [IGLOO].

10.5 Clock Input voltages, leakage currents and capacitances

According to Actel data sheet [IGLOO].

10.6 Power supplies

According to Actel data sheet [IGLOO].

10.7 Radiation

The following radiation issues have been identified by Actel for their ProASIC3/IGLOO technology:

- PLL can be upset by SEU
- on-chip RAM is very sensitive to SEU
- flip-flops are sensitive to SEU
- I/O bank configuration is sensitive to SEU
- combinatorial logic is sensitive to SEU, leading to SET in flip-flops
- SEU on clock line (due to SEU on I/O banks)
- TID is about 15 krad

The following has been implemented to mitigated some of these effects (best effort, no guarantee):

- PLL is not used
- EDAC or similar is used to correct errors in on-chip RAM
- TMR on flip-flops used (Synplicity tool)
- signal are triplicate on I/O banks and I/O bank chain detection is implemented
- System clock is about 8 MHz to avoid SET issue as far as possible
- SEU on clock line is mitigated by I/O bank triplication
- TID is not mitigated (Actel states that re-programming in orbit might help)

11 Mechanical description

11.1 Package

The Actel IGLOO AGL1000V5-FG484I device has a FBGA 484 package, see data sheet [IGLOO].

11.2 Pin assignment

The pin assignment in table 36 shows the implementation characteristics of each signal according to the Actel data sheet [IGLOO], indicating how each pin has been configured in terms of electrical levels, voltage, slew rate, drive capability and internal pull-up or pull-down in the FPGA device.

Table 36. Pin assignment

									Pol-	
Name	I/O	Pin	Level	Volt.	Drive	Slew	Pull	Power up	arity	Note
BitRate_a(0)	In	A4	LVTTL	3.3	-	-	None	Tristate	-	Bit rate selection (MSB)
BitRate_a(1)	In	A5	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(2)	In	A6	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(3)	In	A7	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(4)	In	A8	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(5)	In	A9	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(6)	In	A10	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(7)	In	A11	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(8)	In	A12	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(9)	In	A13	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(10)	In	A14	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(11)	In	A15	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(12)	In	A16	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(13)	In	A17	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(14)	In	A18	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_a(15)	In	B4	LVTTL	3.3	-	-	None	Tristate	-	Bit rate selection (LSB)
BitRate_b(0)	In	F18	LVTTL	3.3	-	-	None	Tristate	-	Bit rate selection (MSB)
BitRate_b(1)	In	F19	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(2)	In	F20	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(3)	In	F22	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(4)	In	G16	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(5)	In	G18	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(6)	In	G19	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(7)	In	G20	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(8)	In	G21	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(9)	In	H17	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(10)	In	H18	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(11)	In	H19	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(12)	In	J16	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(13)	In	J17	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(14)	In	J18	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_b(15)	In	J19	LVTTL	3.3	-	-	None	Tristate	-	Bit rate selection (LSB)

I	

Table 36. Pir									Pol-	
Name	I/O	Pin	Level	Volt.	Drive	Slew	Pull	Power up	arity	Note
BitRate_c(0)	In	AA4	LVTTL	3.3	-	-	None	Tristate	-	Bit rate selection (MSB)
BitRate_c(1)	In	AA5	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(2)	In	AA6	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(3)	In	AA7	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(4)	In	AA8	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(5)	In	AA9	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(6)	In	AA10	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(7)	In	AA11	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(8)	In	AA12	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(9)	In	AA13	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(10)	In	AA16	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(11)	In	AA17	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(12)	In	AA18	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(13)	In	AB4	LVTTL	3.3	-	-	None	Tristate	-	
BitRate_c(14)	In	AB5	LVTTL	3.3	-	-	None	Tristate	-	_
BitRate_c(15)	In	AB6	LVTTL	3.3	-	-	None	Tristate	-	Bit rate selection (LSB)
CADUClk_a	Out	B5	LVTTL	3.3	12	Rise	None	Low	-	Telemetry CADU output
CADUClk_b	Out	J21	LVTTL	3.3	12	Rise	None	Low	-	serial bit clock
CADUClk_c	Out	AB7	LVTTL	3.3	12	Rise	None	Low	-	
CADUOut_a	Out	B6	LVTTL	3.3	12	High	None	Low	-	Telemetry CADU output
CADUOut_b	Out	J22	LVTTL	3.3	12	High	None	Low	-	serial bit data
CADUOut_c	Out	AB8	LVTTL	3.3	12	High	None	Low	-	
CADUFall_a	In	F7	LVTTL	3.3	-	-	None	Tristate	-	Telemetry CADU serial bit
CADUFall_b	In	J4	LVTTL	3.3	-	-	None	Tristate	-	clock edge selection
CADUFall_c	In	V12	LVTTL	3.3	-	-	None	Tristate	-	
CheckIn(0)	In	F8	LVTTL	3.3	-	-	None	Tristate	-	Bank check inputs
CheckIn(1)	In	E22	LVTTL	3.3	-	-	None	Tristate	-	
CheckIn(2)	In	V16	LVTTL	3.3	-	-	None	Tristate	-	
CheckIn(3)	In	V5	LVTTL	3.3	-	-	None	Tristate	-	
CheckOut(0)	Out	F15	LVTTL	3.3	12	High	None	Tristate	-	Bank check outputs
CheckOut(1)	Out	L17	LVTTL	3.3	12	High	None	Tristate	-	
CheckOut(2)	Out	V13	LVTTL	3.3	12	High	None	Tristate	-	
CheckOut(3)	Out	W2	LVTTL	3.3	12	High	None	Tristate	-	
CLCWRFAvail_a(0)	In	В7	LVTTL	3.3	-	-	None	Tristate	High	Telemetry CLCW
CLCWRFAvail_b(0)	In	K17	LVTTL	3.3	-	-	None	Tristate	High	RF Available indicator
CLCWRFAvail_c(0)	In	AB9	LVTTL	3.3	-	-	None	Tristate	High	1
CLCWRFAvail_a(1)	In	B8	LVTTL	3.3	-	-	None	Tristate	High	Telemetry CLCW
CLCWRFAvail_b(1)	In	K18	LVTTL	3.3	-	-	None	Tristate	High	RF Available indicator
CLCWRFAvail_c(1)	In	AB10	LVTTL	3.3	-	-	None	Tristate	High	
CLCWUART_a	In	B9	LVTTL	3.3	-	-	None	Tristate	Low	Telemetry CLCW
CLCWUART_b	In	K19	LVTTL	3.3	-	-	None	Tristate	Low	UART input
CLCWUART_c	In	V9	LVTTL	3.3	-	-	None	Tristate	Low	<u> </u>

Table 36. Pin assignment

									Pol-	
Name	I/O	Pin	Level	Volt.	Drive	Slew	Pull	Power up	arity	Note
Clk_a	In	D5	LVTTL	3.3	-	-	None	Tristate	Rise	System clock
Clk_b	In	G17	LVTTL	3.3	-	-	None	Tristate	Rise	
Clk_c	In	L8	LVTTL	3.3	-	-	None	Tristate	Rise	
Convolute_a	In	B10	LVTTL	3.3	-	-	None	Tristate	High	Convolutional encoder
Convolute_b	In	K20	LVTTL	3.3	-	-	None	Tristate	High	enable
Convolute_c	In	AB11	LVTTL	3.3	-	-	None	Tristate	High	
FECF_a	In	B11	LVTTL	3.3	-	-	None	Tristate	High	FECF / CRC encoder enable
FECF_b	In	K21	LVTTL	3.3	-	-	None	Tristate	High	
FECF_c	In	AB12	LVTTL	3.3	-	-	None	Tristate	High	
Pseudo_a	In	B12	LVTTL	3.3	-	-	None	Tristate	High	Pseudo Randomizer enable
Pseudo_b	In	K22	LVTTL	3.3	-	-	None	Tristate	High	
Pseudo_c	In	AB13	LVTTL	3.3	-	-	None	Tristate	High	
PW0Busy_a	Out	B13	LVTTL	3.3	12	High	None	Low	High	PacketWire busy
PW0Busy_b	Out	L18	LVTTL	3.3	12	High	None	Low	High	
PW0Busy_c	Out	AB14	LVTTL	3.3	12	High	None	Low	High	
PW0Clk_a	In	B14	LVTTL	3.3	-	-	None	Tristate	Rise	PacketWire bit serial clock
PW0Clk_b	In	L20	LVTTL	3.3	-	-	None	Tristate	Rise	
PW0Clk_c	In	AB15	LVTTL	3.3	-	-	None	Tristate	Rise	
PW0Data_a	In	B15	LVTTL	3.3	-	-	None	Tristate	-	PacketWire bit serial data
PW0Data_b	In	L21	LVTTL	3.3	-	-	None	Tristate	-	
PW0Data_c	In	AB16	LVTTL	3.3	-	-	None	Tristate	-	
PW0Valid_N_a	In	B16	LVTTL	3.3	-	-	None	Tristate	Low	PacketWire packet delimiter
PW0Valid_N_b	In	L22	LVTTL	3.3	-	-	None	Tristate	Low	
PW0Valid_N_c	In	AB17	LVTTL	3.3	-	-	None	Tristate	Low	
PW1Busy_a	Out	B17	LVTTL	3.3	12	High	None	Low	High	PacketWire busy
PW1Busy_b	Out	M18	LVTTL	3.3	12	High	None	Low	High	1
PW1Busy_c	Out	AB18	LVTTL	3.3	12	High	None	Low	High	
PW1Clk_a	In	B18	LVTTL	3.3	-	-	None	Tristate	Rise	PacketWire bit serial clock
PW1Clk_b	In	M20	LVTTL	3.3	-	-	None	Tristate	Rise	
PW1Clk_c	In	R11	LVTTL	3.3	-	-	None	Tristate	Rise	_
PW1Data_a	In	C6	LVTTL	3.3	-	-	None	Tristate	-	PacketWire bit serial data
PW1Data_b	In	M21	LVTTL	3.3	-	-	None	Tristate	-	_
PW1Data_c	In	R12	LVTTL	3.3	-	-	None	Tristate	_	-
PW1Valid_N_a	In	C7	LVTTL	3.3	-	-	None	Tristate	Low	PacketWire packet delimiter
PW1Valid_N_b	In	N16	LVTTL	3.3	_	-	None	Tristate	Low	
PW1Valid_N_c	In	T10	LVTTL	3.3	_	-	None	Tristate	Low	1
ReedSolomon_a	In	C10	LVTTL	3.3	-	-	None	Tristate	High	Reed-Solomon encoder
ReedSolomon_b	In	N17	LVTTL	3.3	-	-	None	Tristate	High	enable
ReedSolomon_c	In	T11	LVTTL	3.3	-	-	None	Tristate	High	-
Reset_N_a	In	C11	LVTTL	3.3	-	-	None	Tristate	Low	System reset
Reset_N_b	In	N18	LVTTL	3.3	-	-	None	Tristate	Low	1
Reset_N_c	In	T12	LVTTL	3.3	_	-	None	Tristate	Low	-
	1	1	1		1	i	1 . 0.10		1	1

Table 36. Pin assignment

									Pol-	
Name	I/O	Pin	Level	Volt.	Drive	Slew	Pull	Power up	arity	Note
SCId_a(0)	In	D8	LVTTL	3.3	-	-	None	Tristate	-	Spacecraft ID (MSB)
SCId_a(1)	In	D9	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(2)	In	D10	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(3)	In	D11	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(4)	In	D12	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(5)	In	D13	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(6)	In	D14	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(7)	In	D15	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(8)	In	E8	LVTTL	3.3	-	-	None	Tristate	-	
SCId_a(9)	In	E9	LVTTL	3.3	-	-	None	Tristate	-	Spacecraft ID (MSB)
SCId_b(0)	In	N19	LVTTL	3.3	-	-	None	Tristate	-	Spacecraft ID (LSB)
SCId_b(1)	In	N21	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(2)	In	N22	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(3)	In	P17	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(4)	In	P18	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(5)	In	P19	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(6)	In	P21	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(7)	In	P22	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(8)	In	R16	LVTTL	3.3	-	-	None	Tristate	-	
SCId_b(9)	In	R19	LVTTL	3.3	-	-	None	Tristate	-	Spacecraft ID (LSB)
SCId_c(0)	In	T13	LVTTL	3.3	-	-	None	Tristate	-	Spacecraft ID (MSB)
SCId_c(1)	In	T14	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(2)	In	U7	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(3)	In	U8	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(4)	In	U9	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(5)	In	U10	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(6)	In	U11	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(7)	In	U12	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(8)	In	U13	LVTTL	3.3	-	-	None	Tristate	-	
SCId_c(9)	In	U14	LVTTL	3.3	-	-	None	Tristate	-	Spacecraft ID (LSB)
TCActive_a(0)	In	F11	LVTTL	3.3	-	-	None	Tristate	High	TC CLTU input
TCActive_b(0)	In	H16	LVTTL	3.3	-	-	None	Tristate	High	active indicator
TCActive_c(0)	In	V14	LVTTL	3.3	-	-	None	Tristate	High	
TCClk_a(0)	In	F13	LVTTL	3.3	-	-	None	Tristate	Rise	TC CLTU input
TCClk_b(0)	In	L15	LVTTL	3.3	-	-	None	Tristate	Rise	bit serial clock
TCClk_c(0)	In	W5	LVTTL	3.3	-	-	None	Tristate	Rise	
TCData_a(0)	In	E13	LVTTL	3.3	-	-	None	Tristate	-	TC CLTU input
TCData_b(0)	In	L19	LVTTL	3.3	-	-	None	Tristate	-	bit serial data
TCData_c(0)	In	W11	LVTTL	3.3	-	-	None	Tristate	-	
TCActive_a(1)	In	F12	LVTTL	3.3	-	-	None	Tristate	High	TC CLTU input
TCActive_b(1)	In	K16	LVTTL	3.3	-	-	None	Tristate	High	active indicator
TCActive_c(1)	In	V15	LVTTL	3.3	-	-	None	Tristate	High	1

Table 36. Pin assignment

Name	I/O	Pin	Level	Volt.	Drive	Slew	Pull	Power up	Pol- arity	Note
TCClk_a(1)	In	F14	LVTTL	3.3	-	_	None	Tristate	Rise	TC CLTU input
TCClk_b(1)	In	L16	LVTTL	3.3	-	-	None	Tristate	Rise	bit serial clock
TCClk_c(1)	In	W7	LVTTL	3.3	-	-	None	Tristate	Rise	
TCData_a(1)	In	C12	LVTTL	3.3	-	-	None	Tristate	-	TC CLTU input
TCData_b(1)	In	T21	LVTTL	3.3	-	-	None	Tristate	-	bit serial data
TCData_c(1)	In	W12	LVTTL	3.3	-	-	None	Tristate	-	
TCGPIO_a(0)	Out	G10	LVTTL	3.3	12	High	None	Low	High	TC hardware output (MSB
TCGPIO_a(1)	Out	G11	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_a(2)	Out	G12	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_a(3)	Out	G13	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_a(4)	Out	G14	LVTTL	3.3	12	High	None	Tristate	Low	
TCGPIO_a(5)	Out	H11	LVTTL	3.3	12	High	None	Tristate	Low	
TCGPIO_a(6)	Out	H12	LVTTL	3.3	12	High	None	Tristate	Low	
TCGPIO_a(7)	Out	D6	LVTTL	3.3	12	High	None	Tristate	Low	TC hardware output (LSB)
TCGPIO_b(0)	Out	M15	LVTTL	3.3	12	High	None	Low	High	TC hardware output (MSB
TCGPIO_b(1)	Out	M16	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_b(2)	Out	M17	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_b(3)	Out	P16	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_b(4)	Out	R17	LVTTL	3.3	12	High	None	Tristate	Low	
TCGPIO_b(5)	Out	R18	LVTTL	3.3	12	High	None	Tristate	Low	
TCGPIO_b(6)	Out	T18	LVTTL	3.3	12	High	None	Tristate	Low	1
TCGPIO_b(7)	Out	T19	LVTTL	3.3	12	High	None	Tristate	Low	TC hardware output (LSB)
TCGPIO_c(0)	Out	W13	LVTTL	3.3	12	High	None	Low	High	TC hardware output (MSB
TCGPIO_c(1)	Out	W14	LVTTL	3.3	12	High	None	Low	High	1
TCGPIO_c(2)	Out	W16	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_c(3)	Out	Y4	LVTTL	3.3	12	High	None	Low	High	
TCGPIO_c(4)	Out	Y6	LVTTL	3.3	12	High	None	Tristate	Low	1
TCGPIO_c(5)	Out	Y7	LVTTL	3.3	12	High	None	Tristate	Low	
TCGPIO_c(6)	Out	Y10	LVTTL	3.3	12	High	None	Tristate	Low	1
TCGPIO_c(7)	Out	Y11	LVTTL	3.3	12	High	None	Tristate	Low	TC hardware output (LSB)
TCPseudo_a	In	D7	LVTTL	3.3	-	-	None	Tristate	High	TC Pseudo De-randomizer
TCPseudo_b	In	U19	LVTTL	3.3	-	-	None	Tristate	High	enable
TCPseudo_c	In	Y12	LVTTL	3.3	-	-	None	Tristate	High	1
TCUART_a	Out	D16	LVTTL	3.3	12	High	None	High	Low	TC software UART output
TCUART_b	Out	V22	LVTTL	3.3	12	High	None	High	Low	1
TCUART_c	Out	Т9	LVTTL	3.3	12	High	None	High	Low	

Table 36. Pin assignment

Name	I/O	Pin	Level	Volt.	Drive	Slew	Pull	Power up	Pol- arity	Note
TCVcId_a(0)	In	D17	LVTTL	3.3	-	-	None	Tristate	-	TC VC ID (MSB)
TCVcId_a(1)	In	D17	LVTTL	3.3	1_	- -	None	Tristate	1_	Te ve ib (MSb)
TCVcId_a(2)	In	E7	LVTTL	3.3	1_	 -	None	Tristate	1_	
TCVcId_a(3)	In	E15	LVTTL	3.3		l_	None	Tristate		
TCVcId_a(4)	In	E16	LVTTL	3.3			None	Tristate	_	
TCVcId_a(5)	In	F10	LVTTL	3.3	_	 -	None	Tristate	_	TC VC ID (LSB)
TCVcId_b(0)	In	M19	LVTTL	3.3		- -	None	Tristate		TC VC ID (MSB)
TCVcId_b(1)	In	E18	LVTTL	3.3			None	Tristate	1_	Te ve ib (MSb)
TCVcId_b(2)	In	U21	LVTTL	3.3			None	Tristate		_
TCVcId_b(3)	In	U22	LVTTL	3.3			None	Tristate	1	_
TCVcId_b(4)	In	T22	LVTTL	3.3	1	1	None	Tristate	1	-
TCVcId_b(5)	In	T16	LVTTL	3.3			None	Tristate	1	TC VC ID (LSB)
TCVcId_c(0)	In	W8	LVTTL	3.3	-	-	None	Tristate	-	TC VC ID (LSB)
TCVcId_c(1)	In	W10	LVTTL	3.3	-	-	None	Tristate	-	TC VC ID (WISB)
TCVcId_c(2)	In	W10 W9	LVTTL	3.3	1_	-	None	Tristate	-	_
` '	In	W6	LVTTL	3.3	- _	-	None	Tristate	-	_
TCVcId_c(3) TCVcId_c(4)	In	W15	LVTTL	3.3	-	-	None	Tristate	-	_
TCVcId_c(4)	In	W17	LVTTL	3.3	-	-	None	Tristate	-	TC VC ID (LSB)
* 1	In	E10		3.3	-	-		Tristate	- 	` ,
OCFStatus(0)			LVTTL		-	-	None		-	OCF Status Data (MSB)
OCFStatus(1)	In	E11	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(2)	In	E12	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(3)	In	R21	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(4)	In	R22	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(5)	In	E19	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(6)	In	V6	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(7)	In	V7	LVTTL	3.3	-	-	None	Tristate	-	
OCFStatus(8)	In	V8	LVTTL	3.3	-	-	None	Tristate	-	OCF Status Data (LSB)
SPARECONF_a(0)	In	E14	LVTTL	3.3	-	-	None	Tristate	-	Spare inputs
SPARECONF_a(1)	In	E17	LVTTL	3.3	-	-	None	Tristate	-	
SPARECONF_b(0)	In	J1	LVTTL	3.3	-	-	None	Tristate	-	
SPARECONF_b(1)	In	J2	LVTTL	3.3	-	-	None	Tristate	-	
SPARECONF_c(0)	In	V10	LVTTL	3.3	-	-	None	Tristate	-	
SPARECONF_c(1)	In	V11	LVTTL	3.3	-	-	None	Tristate	-	

Warning: For the usage of all other pins, please refer to the specific pins of the selected package, as described in the next sections and the Actel data sheet [IGLOO].

11.3 IGLOO specific pins

The Actel IGLOO FPGA device has special pins that need to be correctly connected on the printed circuit board, as shown in table 37. Please refer to the Actel data sheet [IGLOO] for details.

Table 37. IGLOO special pins -FGBA484 package

Name	Pin FBGA484	Note
GND	K11, AA1, J14, N13, AA22, A21, E20, C18, Y18, L11, V3, C5, N11, A1, D19, AB2, P9, L13, V20, M10, W4, M11, Y5, K10, L12, N10, L10, J9, M12, M13, E3, W19, K13, AB22, K12, A2, AB21, AB1, B1, B22, A22, P14, D4, N12	Low supply voltage, ground
VCC	C15, H20, J11, K14, J13, M9, J12, J10, C14, N14, M14, L9, Y15, P13, L14, C9, H3, Y9, K9, P11, N9, Y14, R20, P10, P12, C8, R3, Y8	Supply voltage for core
GNDQ	E6, G15, V18, T8, T15, G8	Low supply voltage for I/O, ground
VCCIB0	H14, A20, A3, H10, H9, H13	Supply voltage for I/O
VCCIB1	J15, P15, AA21, K15, B21, C22, Y22, N15	Supply voltage for I/O
VCCIB2	R14, R13, AB20, R10, AB3, R9	Supply voltage for I/O
VCCIB3	K8, J8, N8, C1, AA2, Y1, B2, P8	Supply voltage for I/O
VCCPLF	M6	Supply voltage for PLL
VCOMPLF	L7	Low supply voltage for PLL, ground
VJTAG	T17	Supply voltage for JTAG
VPUMP	U17	Supply voltage for programming
TRST	U18	JTAG Test Clock. In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Actel recommends tying off TRST to GND through a resistor placed close to the FPGA pin.
TCK	U16	JTAG Test Clock. If JTAG is not used, Actel recommends tying off TCK to GND through a resistor placed close to the FPGA pin.
TDI	V17	JTAG Test Data Input
TDO	V19	JTAG Test Data Output
TMS	W18	JTAG Test Mode Select
VMV0	F17, H8	Supply voltage for I/O
VMV1	H15, U15	Supply voltage for I/O
VMV2	R15, U6	Supply voltage for I/O
VMV3	R8, F6	Supply voltage for I/O
Unas- signed clocks	E5, E4, F9, G6, V4, U5, U4, R7, T6, L5, M5, M4, L4, L6, M8, K7, N4	Unused clock pins are configured as inputs with pull-up resistors.
Unassigned	Y2, T7, T5, R6, P7, U3, T4, U2, U1, R5, P6, R4, R2, T2, T1, P3, P2, M2, L2, N1, N2, P4, P5, N6, N7, N5, M7, M3, L3, K4, K2, K1, K5, K6, G1, G2, F3, F2, J7, J6, H4, J5, H5, E1, D1, D2, C2, H6, H7, G4, G5, G7, F4, F5, G9, F16	Unused I/Os are configured as follows: Output buffer is disabled (with tristate value of high impedance), Input buffer is disabled (with tristate value of high impedance), Weak pullup is programmed
Not Bonded	Y17, Y20, P1, N20, AA14, C16, H1, D21, B20, Y13, V2, K3, F21, M1, L1, C17, A19, W21, C19, W20, R1, N3, Y16, G3, C3, H22, P20, V21, Y21, V1, T20, D22, B3, Y3, M22, C4, D3, T3, C21, W3, E21, AB19, D20, W1, C13, J3, E2, AA19, B19, H2, W22, AA15, Y19, AA3, G22, AA20, J20, F1, H21, U20, C20	This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

11.4 Package figure

According to Actel data sheet [IGLOO].

11.5 Mechanical drawing

According to Actel data sheet [IGLOO].

11.6 Weight

According to Actel data sheet [IGLOO].

11.7 Package materials

According to Actel data sheet [IGLOO].

11.8 Thermal characteristics

According to Actel data sheet [IGLOO].

12 Reference documents

[GRLIB]	GRLIB IP Library User's Manual, Aeroflex Gaisler
[GRIP]	GRLIB IP Core User's Manual, Aeroflex Gaisler
[TMTC]	Spacecraft Data Handling IP Core User's Manual, Aeroflex Gaisler
[CCSDS-131.0]	CCSDS 131.0-B-1 TM Synchronization and Channel Coding
[CCSDS-132.0]	CCSDS 132.0-B-1 TM Space Data Link Protocol
[CCSDS-133.0]	CCSDS 133.0-B-1 Space Packet Protocol
[CCSDS-732.0]	CCSDS 732.0-B-2 AOS Space Data Link Protocol
[ECSS-50-01A]	$ECSS-E-50-01A\ Space\ engineering\ -\ Space\ data\ links\ -\ Telemetry\ synchronization\ and\ channel\ coding$
[ECSS-50-03A]	ECSS-E-50-03A Space engineering - Space data links - Telemetry transfer frame protocol
[ECSS-50-05A]	ECSS-E-50-05A Space engineering - Radio frequency and modulation
[PSS-04-103]	ESA PSS-04-103 Telemetry channel coding standard
[PSS-04-105]	ESA PSS-04-105 Radio frequency and modulation standard
[PSS-04-106]	ESA PSS-04-106 Packet telemetry standard
[CCSDS-231.0]	CCSDS 231.0-B-1 TC Synchronization and Channel Coding
[CCSDS-232.0]	CCSDS 232.0-B-1 TC Space Data Link Protocol
[CCSDS-232.1]	CCSDS 232.1-B-1 Communications Operation Procedure-1
[ECSS-50-04A]	$ECSS\text{-}E\text{-}50\text{-}04A \ Space \ data \ links-Telecommand protocols, synchronization \ and \ channel \ coding$
[PSS-04-151]	ESA PSS-04-151 Telecommand Decoder Standard
[IGLOO]	IGLOO Low-Power Flash FPGAs with Flash*Freeze Technology, v1.1, July 2008, Actel Corporation, 51700095-005-10/8.08
[IGLOOHB]	IGLOO Handbook, August 2008, Actel Corporation
[EIA232]	RS-232 EIA/TIA Standard

Information furnished by Aeroflex Gaisler is believed to be accurate and reliable.

However, no responsibility is assumed by Aeroflex Gaisler for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

No license is granted by implication or otherwise under any patent or patent rights of Aeroflex Gaisler.

Aeroflex Gaisler AB tel +46 31 7758650 Kungsgatan 12 fax +46 31 421407 411 19 Göteborg sales@gaisler.com Sweden www.gaisler.com

Copyright © 2009 Aeroflex Gaisler AB.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

-(0)