```
In [2]: import pandas as pd
    import warnings
    warnings.filterwarnings("ignore")
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt

In [3]: datal=pd.read_csv("/home/placement/Downloads/TelecomCustomerChurn.csv")
#reading the values
```

```
In [5]: data1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 7043 entries, 0 to 7042
        Data columns (total 21 columns):
             Column
                                Non-Null Count Dtype
             _ _ _ _ _
         0
                                7043 non-null
                                                object
             customerTD
             gender
                                7043 non-null
                                                object
         1
         2
             SeniorCitizen
                                7043 non-null
                                                int64
         3
                                7043 non-null
                                                object
             Partner
         4
             Dependents
                                7043 non-null
                                                object
         5
             tenure
                                7043 non-null
                                                int64
                                7043 non-null
         6
                                                object
             PhoneService
         7
             MultipleLines
                                7043 non-null
                                                object
             InternetService
                                7043 non-null
                                                object
         9
             OnlineSecurity
                                7043 non-null
                                                object
             OnlineBackup
                                7043 non-null
                                                object
         10
             DeviceProtection
                               7043 non-null
                                                object
         11
                                7043 non-null
         12
             TechSupport
                                                object
             StreamingTV
                                7043 non-null
         13
                                                object
             StreamingMovies
                                7043 non-null
                                                object
         14
                                7043 non-null
         15
             Contract
                                                object
             PaperlessBilling
                               7043 non-null
                                                object
             PaymentMethod
                                7043 non-null
                                                object
         17
             MonthlyCharges
                                7043 non-null
                                                float64
             TotalCharges
                                7043 non-null
                                                object
         19
         20 Churn
                                7043 non-null
                                                object
        dtypes: float64(1), int64(2), object(18)
        memory usage: 1.1+ MB
In [6]: data1['TotalCharges']=pd.to numeric(data1['TotalCharges'],errors='coerce')
        # change the dtype from object to integer
```

In [7]: data1.isna().sum() Out[7]: customerID 0 gender 0 SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies Contract PaperlessBilling 0 PaymentMethod MonthlyCharges 0 TotalCharges 11 Churn 0 dtype: int64

Out[105]:

:	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DevicePro
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	
7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes	
7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No	
7040	4801-JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes	
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No	
7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes	

7043 rows × 21 columns

```
In [5]: y=data1['Churn']
x=data1.drop(['customerID','Churn'],axis=1)
```

```
In [6]: x=pd.get_dummies(x)
        x.isna().sum()
Out[6]: SeniorCitizen
                               0
        tenure
                               0
        MonthlyCharges
                               0
        gender_Female
                               0
        gender_Male
                               0
        TotalCharges_997.75
                               0
        TotalCharges_998.1
                               0
        TotalCharges_999.45
                               0
        TotalCharges_999.8
                               0
        TotalCharges_999.9
                               0
        Length: 6575, dtype: int64
```

In [7]: x

Out[7]:

	SeniorCitizen	tenure	MonthlyCharges	gender_Female	gender_Male	Partner_No	Partner_Yes	Dependents_No	Dependents_Yes	PhoneServ
0	0	1	29.85	1	0	0	1	1	0	
1	0	34	56.95	0	1	1	0	1	0	
2	0	2	53.85	0	1	1	0	1	0	
3	0	45	42.30	0	1	1	0	1	0	
4	0	2	70.70	1	0	1	0	1	0	
7038	0	24	84.80	0	1	0	1	0	1	
7039	0	72	103.20	1	0	0	1	0	1	
7040	0	11	29.60	1	0	0	1	0	1	
7041	1	4	74.40	0	1	0	1	1	0	
7042	0	66	105.65	0	1	1	0	1	0	

7043 rows × 6575 columns

In []:

In [110]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

```
In [111]: from sklearn.model selection import GridSearchCV #GridSearchCV is for parameter tuning
          from sklearn.ensemble import RandomForestClassifier
          cls=RandomForestClassifier()
          n estimators=[25,50,75,100,125,150,175,200] #number of decision trees in the forest, default = 100
          criterion=['gini','entropy'] #criteria for choosing nodes default = 'gini'
          max depth=[3,5,10] #maximum number of nodes in a tree default = None (it will go till all possible nodes)
          parameters={'n estimators': n estimators, 'criterion':criterion, 'max depth':max depth} #this will undergo 8*2
          RFC cls = GridSearchCV(cls, parameters)
          RFC cls.fit(x train,y train)
Out[111]: GridSearchCV(estimator=RandomForestClassifier(),
                        param grid={'criterion': ['gini', 'entropy'],
                                     'max depth': [3, 5, 10],
                                     'n estimators': [25, 50, 75, 100, 125, 150, 175, 200]})
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [112]: RFC cls.best params
Out[112]: {'criterion': 'entropy', 'max depth': 10, 'n estimators': 150}
In [113]: cls=RandomForestClassifier(n estimators=200,criterion='entropy',max depth=10)
In [114]: cls.fit(x train,y train)
Out[114]: RandomForestClassifier(criterion='entropy', max_depth=10, n_estimators=200)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [116]: p=cls.predict(x test)
In [117]: p
Out[117]: array(['Yes', 'No', 'No', 'Yes', 'No', 'No'], dtype=object)
```

```
In [118]: from sklearn.metrics import confusion matrix
          confusion matrix(y test,p)
Out[118]: array([[1548, 149],
                  [ 299, 32911)
In [119]: from sklearn.metrics import accuracy score
          accuracy score(y test,p)
Out[119]: 0.8073118279569892
In [120]: from sklearn.linear model import LogisticRegression
          clas=LogisticRegression()
          clas.fit(x train,y train)
Out[120]: LogisticRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [121]: y pred=clas.predict(x test)
In [124]: y pred
Out[124]: array(['Yes', 'No', 'No', 'Yes', 'No', 'No'], dtype=object)
In [125]: from sklearn.metrics import confusion matrix
          confusion matrix(y test,y pred)
Out[125]: array([[1526, 171],
                  [ 266, 36211)
In [123]: from sklearn.metrics import accuracy score
          accuracy score(y test,y pred)
Out[123]: 0.8120430107526881
```

In []:	
In []:	
In []:	