## Recall:



**Note.** Any two vectors in  $\mathbb{R}^2$  define a parallelogram:



Notation 
$$\text{area}(v_1,v_2) = \begin{pmatrix} \text{area of the parallelogram} \\ \text{defined by } v_1 \text{ and } v_2 \end{pmatrix}$$

### Theorem

If 
$$\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$$
 then

$$area(\textbf{v}_1,\textbf{v}_2) = \begin{vmatrix} det \left[ \begin{array}{cc} \textbf{v}_1 & \textbf{v}_2 \end{array} \right] \end{vmatrix}$$

Idea of the proof.

$$\mathbf{v}_1 = \left[ \begin{array}{c} a \\ b \end{array} \right], \quad \mathbf{v}_2 = \left[ \begin{array}{c} c \\ d \end{array} \right]$$



Example.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$



#### **Determinants and linear transformations**

**<u>Recall:</u>** If A is a  $2 \times 2$  matrix then it defines a linear transformation

$$T_A \colon \mathbb{R}^2 \to \mathbb{R}^2 \qquad T_A(\mathbf{v}) = A\mathbf{v}$$

Note.  $T_A$  maps parallelograms to parallelograms:





#### **Theorem**

If A is a  $2 \times 2$  matrix and  $\mathbf{v}_1, \mathbf{v}_1 \in \mathbb{R}^2$  then

$$\operatorname{area}(T_A(\mathbf{v}_1), T_A(\mathbf{v}_2)) = |\det A| \cdot \operatorname{area}(\mathbf{v}_1, \mathbf{v}_2)$$

## **Generalization:**

# Theorem

If A is a  $2 \times 2$  matrix then for any region S of  $\mathbb{R}^2$  we have:

$$area(T_A(S)) = |det A| \cdot area(S)$$





Idea of the proof.

The area of S can be approximated by the sum of small squares covering S.



# Sign of the determinant

Example.

$$A = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right]$$





Example.

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$$





**Theorem** 

If A is a  $2 \times 2$  matrix then the linear transformation  $T_A \colon \mathbb{R}^2 \to \mathbb{R}^2$  preserves orientation if  $\det A > 0$  and reverses orientation if  $\det A < 0$ .