Chapter 2 (Instruction Set)

Operands

Low level language (Assembly Language):

• An operand is a value (an argument) on which the instruction operates.

The operand may be a processor register, a memory address, or a literal constant.

ADD XO, XI, X2 // XO = XI + X2

Operator operands

High level language (C/C++/Java):

• Operands are the constants or variables which the operators operate upon.

C = a + b; L Addition operator X0 X1 X2

64 bit ARMV8 ->

Architecture.

- LEGv8 Registers

	Name	Register number	Usage
13	X0-X7 _.	0-7	Arguments/Results
	Х8	8	Indirect result location register
*	X9-X15	9–15	Temporaries
	X16 (IPO)	16	May be used by linker as a scratch register; other times used as temporary register
\nearrow	X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register
\times	X18	18	Platform register for platform independent code; otherwise a temporary register
	X19-X27	19–27	Saved
7	X28 (SP)	28	Stack Pointer
7	X29 (FP)	29	Frame Pointer
7	X30 (LR)	30	Link Register (return address)
	XZR	31	The constant value 0

Register 64 bit

Arithmetic Instructions

ADD-

• The ADD instruction adds two operands and place the result on destination register. Both operands are register.

ADD XO, XI, X2 // XO = XI + X2

Destination open and 1

registen

ADDI –

• The ADDInstruction adds two operands and place the result on destination register. Operand 1 is a register, operand 2 is an immediate value.

ADDI \times 0, \times 1, \mp 4 // \times 6 = \times 1+4

SUB-

• The SUB instruction subtracts operand 2 from operand 1 and place the result on destination register. Both operands are register.

SUBI-

• The SUBI instruction subtracts operand 2 from operand 1 and place the result on destination register. Operand 1 is a register, operand 2 is an immediate value.

SUBI X0, X1, #4 //
$$x_0 = x_1 - 4$$
.

$$C = \alpha$$

MOV-

• This instruction loads a 64-bit value into the destination register from another register.

MOV

$$//XI = X2$$

MOVI

• This instruction loads a 64-bit value into the destination register from an immediate value.

MOVI X1, #8

LSL - Logical shift left

- LSL instruction effectively multiply the contents of a register by 2ⁱ.
- Each bit of the register is shifted left, the MSB is removed and empty bits are filled with zeros.

LSL
$$\times 0$$
, $\times 2$, ± 2 // $\times 0 = \times 2 \times 2$
Destination
Register.

LSR X0, X1, #4 \rightarrow X6 = $\frac{X1}{24}$ LSR

· LSR instruction divide the contents of a Register by 2'.

. Each bit of the register is shifted right, LSB is removed and empty bits are filled with Zeros. LSR X0, X2, #3, 11 X0 = $x^{2}/3 = \frac{x^{2}}{0}$

Problem ASIUME that X2= 24. What will be the value of XO after to running the following instruction: 29/8. 29/8.

> LSR XO, X2,#3 000

24 = 0× 0000 0000 0018

8

24 = b

(3)