Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 10./11. November 2009

5. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Aufgabe G1 (Folgen)

Welche der folgenden Aussagen sind wahr?

- (a) Jede konvergente Folge ist beschränkt.
- (b) Jede beschränkte Folge ist konvergent.
- (c) Es gibt Folgen, die gleichzeitig konvergieren und divergieren.
- (d) Jede divergente Folge ist unbeschränkt.
- (e) Jede konvergente Folge hat ein größtes Element.
- (f) Jede von oben beschränkte Folge hat ein größtes Element.
- (g) Wenn $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergent sind, dann ist auch $(a_n\cdot b_n)_{n\in\mathbb{N}}$ konvergent.
- (h) Wenn $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergent sind mit $b_n\neq 0$ für alle $n\in\mathbb{N}$, dann ist auch $(\frac{a_n}{b_n})_{n\in\mathbb{N}}$ konvergent.

Lösungshinweise:

- (a) wahr, siehe Satz II.1.5 (2) im Skript.
- (b) falsch: Die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n:=(-1)^n$ ist beschränkt da $|a_n|\leq 1$ für alle n, aber nicht konvergent.
- (c) falsch: Vergleiche die entsprechenden Definitionen.
- (d) falsch: Die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n:=(-1)^n$ ist divergent und beschränkt.
- (e) falsch: Die Folge $\left(-\frac{1}{n}\right)_{n\in\mathbb{N}}$ ist konvergent, hat aber kein maximales Element.
- (f) falsch: Die Folge $(-\frac{1}{n})_{n\in\mathbb{N}}$ ist von oben beschränkt, hat aber kein maximales Element.
- (g) wahr, siehe Satz II.1.9 (2) im Skript.
- (h) falsch: Betrachte die Folgen mit $a_n := 1$ und $b_n := \frac{1}{n}$ und $n \in \mathbb{N}$.

Aufgabe G2 (Doppelfolgen)

Zu $n, m \in \mathbb{N}$ sei $a_{n,m} := (1 - \frac{1}{m+1})^{n+1}$. Bestimmen Sie

$$a = \lim_{n \to \infty} (\lim_{m \to \infty} a_{n,m})$$
 und $\tilde{a} = \lim_{m \to \infty} (\lim_{n \to \infty} a_{n,m})$

Hinweis: Um a zu berechnen, berechnen Sie den Grenzwert $a_n := \lim_{m \to \infty} a_{n,m}$ und dann den Grenzwert $a = \lim_{m \to \infty} a_n$)

Lösungshinweise: Wie im Hinweis berechnen wir (für festes $n \in \mathbb{N}$)

$$a_n := \lim_{m \to \infty} a_{n,m} = \lim_{m \to \infty} \underbrace{\left(1 - \frac{1}{m+1}\right) \cdot \ldots \cdot \left(1 - \frac{1}{m+1}\right)}_{n+1 \text{ mal}} = 1^{n+1} = 1$$

und $\lim_{n\to\infty} a_n = 1$. Andererseits ist für festes $m \in \mathbb{N}$

$$\tilde{a}_m := \lim_{n \to \infty} a_{n,m} = \lim_{n \to \infty} \left(\underbrace{1 - \frac{1}{m+1}} \right)^n = 0$$

und $\lim_{m\to\infty} \tilde{a}_n = 0$.

Fazit: Grenzwertprozesse lassen sich nicht einfach vertauschen.

Aufgabe G3 (Cauchyfolgen)

- (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine Cauchyfolge. Zeigen Sie, dass die Menge $A:=\{a_n\,|\,n\in\mathbb{N}\}$ beschränkt ist. (Vergleiche Beweis von Satz II.1.18 im Skript.)
- (b) Sei $(a_n)_{n\in\mathbb{N}}$ wieder eine Cauchyfolge und s_n definiert als das Supremum der Menge $A_n := \{a_m \mid m \geq n\}$. Zeigen Sie,

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall n \ge N \,|a_n - s_n| \le \epsilon \,.$$

(Vergleiche Beweis von Satz II.1.18 im Skript.)

(c) Sei $b_n = \sum_{k=1}^n (-1)^k \frac{1}{k}$ und $m \ge n$ mit $n, m \in \mathbb{N}$. Zeigen Sie, dass $|b_m - b_n| \le \frac{1}{n-1}$ falls n - m gerade ist. (Vergleiche Beispiel II.1.19 im Skript).

Lösungshinweise:

- (a) Da (a_n) eine Cauchyfolge ist, existiert ein $N \in \mathbb{N}$, sodass für alle $n, m \geq N \ |a_n a_m| \leq 1$. Die Menge $B := \{a_n \ | \ n \leq N\}$ ist endlich und somit beschränkt, das heißt, es existiert ein $M \in \mathbb{R}$, sodass $|a_n| \leq M$ für alle $n \leq N$. Sei nun $n, m \geq N$. Dann gilt $|a_m| = |a_m a_N + a_N| \leq |a_m a_N| + |a_N| \leq 1 + M$, da $a_N \in B$. Somit ist $|a| \leq M + 1$ für alle $a \in A$, also ist A beschränkt.
- (b) Sei $\epsilon > 0$. Da a_n eine Cauchyfolge ist, existiert ein $N \in \mathbb{N}$, sodass für alle $n, m \geq N$ gilt $|a_n a_m| \leq \epsilon$. Somit gilt für jedes $m \geq n \geq N$, dass

$$a_m = a_m - a_n + a_n \le |a_m - a_n| + a_n \le \epsilon + a_n$$
;

das heißt, $a_n + \epsilon$ ist ein obere Schranke von A_n . Da s_n die kleinste obere Schranke von A_n ist, gilt also $s_n \leq a_n + \epsilon$, also $s_n - a_n = |a_n - s_n| \leq \epsilon$.

(c) Wie in Beispiel II.1.19 im Skript gilt $|b_m - b_n| = \sum_{k=1}^{m-n} \frac{(-1)^{k+1}}{n+k}$. Daraus folgt, dass

$$|b_m - b_n| = \frac{1}{n+1} - \left(\frac{1}{n+2} - \frac{1}{n+3}\right) + \dots + \left(\frac{1}{m-2} - \frac{1}{m-1}\right) - \frac{1}{m} \le \frac{1}{n+1},$$

da die Ausdrücke in den Klammern jeweils positiv sind.

Aufgabe G4 (Konvergenz von Folgen)

Sei $k \in \mathbb{N}$. Beweisen Sie die Konvergenz der Folge $(a_n)_{n \in \mathbb{N}}$ mit $a_n = \frac{n^k}{2^n}$.

Hinweis: Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ ab einem $n_0\in\mathbb{N}$ streng monoton fallend ist.

Lösungshinweise: Es gilt für alle $k \in \mathbb{N}$:

$$a_n \ge a_{n+1} \Longleftrightarrow \frac{n^k}{2^n} \ge \frac{(n+1)^k}{2^{n+1}} \Longleftrightarrow 1 \ge \frac{1}{2} \cdot (1+\frac{1}{n})^k \Longleftrightarrow 2 \ge (1+\frac{1}{n})^k.$$

Wegen $\lim_{n\to\infty} (1+\frac{1}{n})^k = 1$ gibt es ein $n_0 \in \mathbb{N}$, ab dem die Folge $(a_n)_{n\in\mathbb{N}}$ streng monoton fällt. Da die Folge durch 0 nach unten beschränkt ist, gibt es nach dem Monotoniekriterium (Satz II.1.16) einen Grenzwert.

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Fibonacci-Folge)

(2 Punkte)

Sei $(f_n)_{n\in\mathbb{N}}$ die Fibonacci Folge. Entscheiden Sie, ob die Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n = \frac{n}{f_n}$$

konvergiert. (Zu so einer Entscheidung gehört immer ein Beweis!)

Lösungshinweise: Wir wollen zuerst zeigen, dass die Folge b_n für $n \ge 2$ monoton fallend ist. Z.z: $\frac{n}{f_n} \ge \frac{n+1}{f_{n+1}}$

$$\frac{n}{f_n} \ge \frac{n+1}{f_{n+1}}$$

$$\Leftrightarrow \qquad n \cdot f_{n+1} \ge f_n \cdot n + f_n$$

$$\Leftrightarrow \qquad n \cdot \underbrace{(f_{n+1} - f_n)}_{f_{n-1}} \ge f_n$$

$$\Leftrightarrow \qquad n \cdot f_{n-1} \ge f_n$$

Dies ist wahr, da

$$n \cdot f_{n-1} \ge 2 \cdot f_{n-1} \ge f_{n-1} + f_{n-2} = f_n$$
.

Somit ist die Folge monoton fallend. Sie ist auch durch 0 nach unten beschränkt. Somit ist sie nach dem Monotoniekriterium (Satz II.1.6) konvergent.

Aufgabe H2 (Wahr oder falsch?)

(2+2+1 Punkte)

Beweisen oder widerlegen Sie die folgenden Behauptungen für reelle Folgen:

- (a) Summe, Differenz, Produkt und Quotient zweier divergenter Folgen ist ebenfalls divergent (getrennt für die vier Operationen).
- (b) Die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergieren genau dann, wenn $(a_n+b_n)_{n\in\mathbb{N}}$ und $(a_n-b_n)_{n\in\mathbb{N}}$ konvergieren.
- (c) Existiert zu jedem $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$, so dass für alle $n > N_{\varepsilon}$ gilt: $|a_{n+1} a_n| < \varepsilon$, so ist $(a_n)_{n \in \mathbb{N}}$ eine Cauchyfolge.

Hinweis: Betrachten Sie $a_n = \sqrt{n}$.

Lösungshinweise:

- (a) Alle Aussagen sind falsch. Gegenbeispiele:
 - Summe: $a_n = n$ und $b_n = -n$ für alle $n \in \mathbb{N}$.
 - Differenz: $a_n = n$ und $b_n = n$ für alle $n \in \mathbb{N}$.
 - Produkt: $a_n = (-1)^n$ und $b_n = (-1)^n$ für alle $n \in \mathbb{N}$.
 - Quotient: $a_n = (-1)^n$ und $b_n = (-1)^n$ für alle $n \in \mathbb{N}$.
- (b) Aussage ist wahr. Aus der Konvergenz der Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ folgt nach den Grenzwertsätzen (Satz II.1.9) die Konvergenz der Folgen $(a_n+b_n)_{n\in\mathbb{N}}$ und $(a_n-b_n)_{n\in\mathbb{N}}$. Sei umgekehrt $\lim_{n\to\infty}(a_n+b_n)=c$ und $\lim_{n\to\infty}(a_n-b_n)=d$, dann ist

$$2 \cdot \lim_{n \to \infty} a_n = \lim_{n \to \infty} 2a_n = \lim_{n \to \infty} ((a_n + b_n) + (a_n - b_n))$$
$$= \lim_{n \to \infty} (a_n + b_n) + \lim_{n \to \infty} (a_n - b_n) = c + d.$$

Also: $\lim_{n \to \infty} a_n = \frac{c+d}{2}$.

Entsprechend:

$$2 \cdot \lim_{n \to \infty} b_n = \lim_{n \to \infty} 2b_n = \lim_{n \to \infty} ((a_n + b_n) - (a_n - b_n))$$
$$= \lim_{n \to \infty} (a_n + b_n) - \lim_{n \to \infty} (a_n - b_n) = c - d.$$

Also: $\lim_{n \to \infty} b_n = \frac{c-d}{2}$.

(c) Aussage ist falsch. Gegenbeispiel: $a_n = \sqrt{n}$. Offensichtlich divergiert die Folge, denn für jedes M > 0 ist $a_n > M$ für $n > M^2$. Daher ist (a_n) keine Cauchyfolge. Aber:

$$\lim_{n \to \infty} |a_{n+1} - a_n| = \lim_{n \to \infty} |\sqrt{n+1} - \sqrt{n}| = \lim_{n \to \infty} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

Aufgabe H3 (Konvergenz)

(1+2 Punkte)

Untersuchen Sie die beiden nachstehenden Folgen auf Konvergenz, und bestimmen Sie gegebenenfalls den Grenzwert.

(a) Die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n := \left(\sqrt{\frac{n^2 + 1}{(10n - 5)^2}}\right)^3.$$

(b) Die Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n := \frac{\left(1 + \frac{1}{\frac{2}{5}n}\right)^n n^7 + 2n^5 + 3n^2}{3n^7 + 5n^2 + 2n^3}.$$

Lösungshinweise:

(a) Es gilt

$$a_n := \left(\sqrt{\frac{n^2 + 1}{(10n - 5)^2}}\right)^3 = \left(\sqrt{\frac{n^2 + 1}{100n^2 - 100n + 25}}\right)^3 = \left(\frac{1}{10}\sqrt{\frac{n^2 + 1}{n^2(1 - \frac{1}{n} + \frac{1}{4n^2})}}\right)^3$$
$$= \frac{1}{1000} \left(\sqrt{\frac{1 + \frac{1}{n^2}}{1 - \frac{1}{n} + \frac{1}{4n^2}}}\right)^3$$

Mit dem Satz über Summen, Produkte, Quotienten und Wurzeln von konvergenten Folgen folgt,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{1000} \left(\sqrt{\frac{1 + \frac{1}{n^2}}{1 - \frac{1}{n} + \frac{1}{4n^2}}} \right)^3 = \frac{1}{1000} \left(\sqrt{\frac{1 + \lim_{n \to \infty} \frac{1}{n^2}}{1 - \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{4n^2}}} \right)^3 = \frac{1}{1000}.$$

(b) Es gilt zunächst

$$b_n := \frac{\left(1 + \frac{1}{\frac{2}{5}n}\right)^n n^7 + 2n^5 + 3n^2}{3n^7 + 5n^2 + 2n^3} = \frac{\left(1 + \frac{\frac{5}{2}}{n}\right)^n + \frac{2}{n^2} + \frac{3}{n^5}}{3 + \frac{5}{n^5} + \frac{2}{n^4}}.$$

Da nach Definition (vgl. Satz II.1.17) $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = \exp x$, folgt durch Anwendung der Grenzwertsï $\frac{1}{2}$ tze

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{\left(1 + \frac{\frac{5}{2}}{n}\right)^n + \frac{2}{n^2} + \frac{3}{n^5}}{3 + \frac{5}{n^5} + \frac{2}{n^4}} = \frac{\lim_{n \to \infty} \left(1 + \frac{\frac{5}{2}}{n}\right)^n + \lim_{n \to \infty} \frac{2}{n^2} + \lim_{n \to \infty} \frac{3}{n^5}}{3 + \lim_{n \to \infty} \frac{5}{n^5} + \lim_{n \to \infty} \frac{2}{n^4}} = \frac{\exp \frac{5}{2}}{3}.$$