MathCity.org

Merging man and maths

MGQs-Skort Question: Matks-II CALCULUS AND ANALYTIC GEOMETRY, MATHEMATICS 12

Available online at http://www.mathcity.org, Version: 1.0.0

UNIT NO 1 (FUNCTIONS AND LIMITS)

I.	СНО	OSE T	гне (CORR	ECT A	ANSW	ERS.			
1.		ain of 1				(c)	R - {	0}	(d)	N
2.							$1/x^2$		(d)	None
3.	•	\sqrt{x} – Even							(d)	Implicit
4.		$c h x = \frac{e^x - e}{2}$				2	(c)	$\frac{e^{x}+e}{2}$	<u>-x</u>	(d) $\frac{2}{e^{x} + e^{-x}}$
5.	Cos x	x is an Expli		functi	on.					
6.	If f(x)=1/x	2 g(x)	$=\sqrt{x}$	then	fog = .	••••	·		
	(a)	\sqrt{x}		(b)	$1/\sqrt{x}$	_ {	(c)	X	(d)	1/x
7.	Lim x (a)			where (b)			(c)	∞	(d)	0
8.	Lim	(1	$+2h)^{1}$	^{∕ h} =		••••				
9.		1 (1+	$m)^{1/}$	(b) _m =	0		(c)	e	(d)	e^2
	$m \rightarrow 0$ (a)			(b)	0		(c)	∞	(d)	e^{m}

10.
$$\lim_{\theta \to 0} \frac{\sin 7\theta}{\theta} = \dots$$

$$(a)$$
 7

$$d) \propto$$

11.
$$\lim_{\theta \to 0} \frac{\cos \theta}{\theta} = \dots$$

$$(c)$$
 ∞

12.
$$\lim_{x \to 0} \frac{\sin x}{7x} = \dots$$

$$(d) \quad 0$$

13. If
$$x = 10^y$$
 then $y = \dots$

14. If
$$4^x = 1$$
 then $x = \dots$

15. If
$$2^x + 3^y = 13$$
 then $x + y = \dots$

16.
$$|x-5| = x-5$$
 If.....

(a)
$$x = 5$$
 (b) $x > 5$

$$(b) \quad x > 5$$

(c)
$$x < 5$$
 (d) $x \ge -5$

$$x \ge -5$$

17. Lim
$$\frac{\sin \theta^0}{\theta} = \dots$$

$$\theta \longrightarrow 0$$

(d)
$$180/\pi$$

18.
$$\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = \dots$$

19. If $3^x + 3^y = 3$ then $x + y = \dots$

- (a)
- (b) 1
- (c) -1
- (d) 2

- (a) Even

- (b) Odd (c) Explicit (d) Implicit

- (a) $\frac{e^{x} + e^{-x}}{2i}$ (b) $\frac{e^{x} + e^{-x}}{2}$ (c) $\frac{e^{x} e^{-x}}{2i}$ (d) $\frac{e^{x} e^{-x}}{2}$

22.
$$\lim_{x \to -\infty} \left[\frac{1}{e^{-x}} \right]$$

- (a) 0
- (b) 1 (c) $-\infty$
- (d) ∞

23.
$$\lim_{n \to \infty} (1 + 3/n)^{2n} = \dots$$

- (a) e
- (b) e^2 (c) e^4
- e^6 (d)

24.
$$\ln x$$
 is not defined at $x = \dots$

- (a) 0
- (b) 1
- (c) e
- (d) None

25. If
$$f(x, y) = 0$$
 then f is called an.....function.

- Even (a)
- (b)
 - Odd (c) Explicit
- **Implicit** (d)

Composed by : Momin Ali

- 1. Show that the parametric equation $x = a \cos t$ and $y = a \sin t$ represent the Circle $x^2 + y^2 + a^2$.
- 2. Prove that $Cos h^2x Sin h^2x = 1$
- 3. Determine whether $f(x) = x^{2/3} + 6$ is even or odd.
- 4. If $f(x) = (-x + 9)^3$; verify $f[f^{-1}(x)] = f^{-1}[f(x)] = x$
- 5. Show that Limit $\underline{x}^n \underline{a}^n = n \ a \ n^{-1}$ $x \rightarrow a \ x - a$
- 6. Show that Limit $\frac{\sqrt{x+a} \sqrt{a}}{x} = 1/2 \sqrt{a}$
- 7. Evaluate Limit $x 3 / (\sqrt{x} \sqrt{3})$ $x \rightarrow 3$
- 8. Show that Limit (1 + 1/n) e where 2 < e < 3 $x \rightarrow \infty$
- 9. Show that Limit $\underline{a}^x \underline{1} = \ln a$ $x \rightarrow 0$ x
- 10. Evaluate Limit $(1 + 3 / n)^{2n}$ $x \rightarrow \infty$
- 11. Evaluate Limit $\frac{x^n a^n}{x^m a^m}$
- 12. Evaluate Limit $\frac{\sin x^0}{x + 0}$

13. Evaluate Limit
$$\underline{Sin x}$$

 $x \rightarrow \pi \pi - x$

14. Evaluate Limit
$$\tan \theta - \sin \theta$$

 $\theta \rightarrow 0$ $\sin^3 \theta$

15. Evaluate Limit
$$(1-1/n)^n$$

 $n \rightarrow \infty$

16. Evaluate Limit
$$(1 + 3x)^{2/3}$$

 $x \rightarrow 0$

17. Evaluate Limit
$$[x/(1+x)]^x$$

 $x \rightarrow \infty$

18. Evaluate Limit
$$\frac{e^{-1/x}-1}{x \rightarrow 0}$$
; $x < 0$

19. Evaluate Limit
$$\frac{e^{1/x} - 1}{x + 0}$$
; $x > 0$

20. Evaluate Limit
$$\sqrt{x+h} - \sqrt{x}$$

 $h \rightarrow 0$

Composed by : Momin Ali

UNIT # 2 DERIVETIVES

1.	$\frac{d}{dx}$	color col	• • • • • • •	• • • • • • • • • • • • • • • • • • • •				
	(a)	Zero	(b)	X	(c)	\mathbf{x}^0	(d)	One
2.	The	notation dy/d	lx used	l by Mathema	atician			
	(a)	Newton	(b)	Leibnitz	(c)	Lagrange	(d)	Cauchy
3.	Deri	vative of x ² v	v.r .t x	at $x = 1$ is				
	(a)	1	(b)	2	(c)	2x	(d)	None
4.	Deri	vative of 7 ^x v	v.r.t x	is				
	(a)	7 ^x	(b)	7 ^x lnx	(c)	7 ^x ln7	(d)	7 ^x / ln7
5.	Deri	vation of x ^a v	v.r.t x	is				
	(a)	x ^a lna	(b)	x ^a lnx	(c)	x ^a /lna	(d)	ax ^{a-1}
6.	$\frac{d}{dx}$ Si	$inx^2 = \dots$						
	(a)	2 Sinx Cos	X	(b) Cosx	χ^2	(c) 2xCo	osx ²	(d) 2Sinx
7.	<u>d</u> C	$\cos^2 x = \dots$	•••••		••			
	(a)	- Sin2x	(b)	2Cosx	(c)	Sin^2x	(d)	None
8.	f is i	ncreasing on	(a, b)	if f /(x)		0		
	(a)	<	(b)	>	(c)	=	(d)	<

9. $d_{-}(lne^{x}) = \dots$

- (a) I/e^x (b) e^x lne (c) 1 (d) lne^x

 $\underline{\mathbf{d}}$ $(\ln \mathbf{x}^2) = \dots$ 10.

(a) $1/x^2$ (b) $2/x^2$ (c) 1/x (d)

- 2/x

 $d/dx \sin \sqrt{x} = \dots$ 11.

(a) $\cos \sqrt{x}$ (b) $(1/2\sqrt{x} / \cos \sqrt{x})$

- (c) $1/2x \cos \sqrt{x}$ (d) $\cos \sqrt{x}/\sqrt{x}$
- $d/dx (Sin^{-1}x) =$ 12.

(a) -Sin⁻²x Cosx (b) - Sinx Cosx

(c) $1/\sqrt{x^2-1}$ (d) $1/\sqrt{1-x^2}$

- $d/dx (tan^{-1}x) =$ 13.

(a) $1/(x^2+1)$ (b) $1/\sqrt{x^2+1}$

(c) $1/\sqrt{x^2-1}$ (d) $1/(x^2-1)$

- $d/dx x^e = \dots$ 14.

(a) e^{x} (b) $\ln x^{e}$ (c) $e^{x^{e-1}}$

- (d)
- A function of has Max value if $^{\prime\prime}$ (c) 0 at x = c 15.

(a)

(b) < (c) =

(d) \leq

16. $d/dx \cos hx = \dots$

(a)

- Sin hx (b) Sin hx (c) h Sinhx (d) -h Sin hn

17.	1/1	C:	11				
17.	d/dx	Sin	h ¹	$\mathbf{x} =$	 	 	

(a)
$$1/(x^2+1)$$
 (b) $1/\sqrt{x^2+1}$ (c) $-1/(x^2+1)$ (d) $1/(x^2-1)$

18.
$$1 + ax + a^2 x^2/2! + a^3 x^3/3! + \dots$$
 is the expansion of

(a)
$$e^{ax}$$
 (b) $e^{a/x}$ (c) $e^{x/a}$ (d) ae^{x}

19.
$$-x - x^2 / 2 - x^3 / 3$$
 -..... is the..... of

(a)
$$\log (-x-1)$$
 (b) $\log (x-1)$ (c) $\log (1-x)$ (d) $\log (x+1)$

(a)
$$1/100 e^{-x}$$
 (b) $100 e^{-x}$ (c) e^{-x} (d) e^{-100x}

21.
$$d / dx \cot^{-1} x is.....$$

(a)
$$(1/(x^2+1)$$
 (b) $-1/(x^2+1)$ (c) $1/(x^2-1)$ (d) $1/(1-x^2)$

22.
$$d / dx Sin hx =$$

(a)
$$(e^x + e^{-x})/2$$
 (b) $(e^x - e^{-x})/2$ (c) $(e^{-x} - e^x/2)$ (d) None

23.
$$d / dx (x^{x}) = \dots$$

(a)
$$x \ln x$$
 (b) $x^x \ln x$ (c) x^x (d) None

24.
$$d/dx (\sqrt{x + \sqrt{x}}) = \dots$$

(a)
$$(1/2)\sqrt{x+\sqrt{x}}$$
 (b) $(1/2)(x+\sqrt{x})$

(c)
$$1/2(\sqrt{x+x})$$
 (d) None

25.
$$d / dt (1 / t) = \dots$$

(a)
$$-1/t$$
 (b) $1/t^2$ (c) 1 (d) $-1/t^2$

- 1. Find the derivative of xn by ab initial method
- 2. Find dy / dx from first Principle's if $y = 1 / (\sqrt{x + a})$
- 3. If $y = x^4 + 2x^2 + 2$, Prove that dy / dx = $4x \sqrt{y-1}$
- 4. Differentiate $\frac{x^2 + 1}{x^2 1}$ w.r.t $\frac{x 1}{x + 1}$
- 6. Show that d / dx (Cosec⁻¹ x) = 1/(x $\sqrt{x^2-1}$)
- 7. If $x = a \cos^3 \theta$; $y = b \sin^3 \theta$, show that a .dy / dx + b tan $\theta = 0$
- 8. Find dy / dx if $y = x \cos y$.
- 9. Find the derivative of $a^{\sqrt{x}}$ w. r. t x
- 10. Show that Sin h-1 x = ln ($x + \sqrt{x^2 + 1}$)
- 11. Prove that $e^{x+h} = e \times \{1 + h + \frac{h^2}{2!} + \frac{h^3}{3!} + \dots \}$
- 12. Show that $2^{x+h} = 2^x \{1 + (\ln 2) h + (\ln 2)^2 h^2 + \dots \}$
- 13. Show that $y = \ln x / x$ has maximum value at x = 1/e
- 14. Show that $y = x^x$ has minimum value at x = 1/e.
- 15. Divide 20 into two parts so that the sum of their squares will be minimum.
- 16. Use differentials to approximate the value of Sin 61⁰. X.

UNIT # 3 INTEGRATION

1.
$$\int$$
 lnx dx =.....

(a)
$$1/x$$
 (b)

(b)
$$1/x \ln x$$

(a)
$$1/x$$
 (b) (b) $1/x \ln x$ (c) $1/x \log_{10} x$ (d) None

2.
$$\int_{0}^{1} e^{ax+b} dx = \dots$$

(a)
$$(1/a) e^{ax+b}$$

$$(1/b) e^{ax + b}$$

(c)
$$ae^{ax+b}+c$$

$$a = ax + b$$

3.
$$\int_{0}^{1} 3^{dx + \mu} dx = \dots$$

(a)
$$3^{dx + \mu}$$

(b)
$$1/d 3^{dx + \mu}$$

$$) \quad \frac{3 \, \mathrm{dx} + \mu}{1112} + c$$

(d)
$$3^{dx + \mu} \ln 3$$

(a)
$$1/x$$
 (b) (b) $1/x \ln x$ (c) $1/x \log_{10} x$ (d) None

2. $\int e^{ax+b} dx = \dots$

(a) $(1/a) e^{ax+b}$ (b) $(1/b) e^{ax+b}$ (c) $ae^{ax+b} + c$ (d) e^{ax+b}

3. $\int 3^{dx+\mu} dx = \dots$

(a) $3^{dx+\mu}$ (b) $1/d 3^{dx+\mu}$ (c) $3^{dx+\mu} + c$ (d) $3^{dx+\mu} + dx = 0$

4. $\int \tan x dx = 0$

(a) $\ln \sin x$ (d) $\ln \cos x$ (c) $\sec^2 x$ (d) $\ln \sec x + c$

5. $\int \cot x dx = 0$

(c)
$$\operatorname{Sec}^2 x$$

(d)
$$\ln \operatorname{Secx} + \operatorname{c}$$

5. Cot
$$x dx = \dots$$

(a)
$$\ln \operatorname{Cosx} + c$$
 (b) $\ln \operatorname{Sinx} + c$ (c) $\operatorname{CoSec}^{i} x + c$ (d) None

$$\ln \text{Sinx} + c$$
 (c

$$CoSec^{i}x + c$$
 (d)

6.
$$\sin^{-1} x \, dx = \dots$$

(a)
$$\cos^{-1}x + \cos^{-1}x +$$

(a)
$$\cos^{-1}x + c$$
 (b) $1/\sqrt{1-x^2} + c$

(a)
$$\cos x + c$$
 (b) $1/\sqrt{1-x^2} + c$ (c) $-1/\sqrt{1-x^2} + c$ (d) $1/\sqrt{x^2-1} + c$

(d)
$$1/\sqrt{x^2-1}+c$$

a
$$\cap$$
 (a) $\ln a - \ln b$ (b) $\ln b - \ln a$ (c) $\ln a + \ln b$ (d) None

8.
$$\int_{0}^{1} e^{x} (\sin x + \cos x) dx = \dots$$

(a)
$$e^{x} \sin x + c$$
 (b) $e^{x} \cos x + c$ (c) $e^{x} \ln \sin x + c$ (d)

$$e^{x} \cos x + c$$
 (c)

$$e^{x} \ln Sinx + c$$

(a)
$$\tan^{-1}(x/4) + c$$

(b)
$$\tan^{-1}(x/2) + c$$

(c)
$$\frac{1}{4} \tan^{-1}(x/4)$$

(a)
$$\tan^{-1}(x/4) + c$$
 (b) $\tan^{-1}(x/2) + c$ (c) $\frac{1}{4} \tan^{-1}(x/4)$ (d) $\frac{1}{2} \tan^{-1}(x/2) + c$

10.
$$\int (ax + b) / \sqrt{ax^2 + 2b x + c} dx = \dots$$
(a) $\frac{1}{2} \sqrt{ax^2 + 2bx + c}$ (b) $\sqrt{ax^2 + 2bx + c + d}$

(a)
$$\sqrt[1/2]{ax^2 + 2bx + c}$$

(b)
$$\sqrt{ax^2 + 2bx + c + d}$$

(c)
$$\ln \sqrt{ax^2 + 2bx + c}$$

(c)
$$\ln \sqrt{ax^2 + 2bx + c}$$
 (d) $\frac{1}{2} \ln \sqrt{ax^2 + 2bx + c} + d$

11.
$$\int \cos hkx \, dx = \dots$$
(a)
$$\sin hkx + c$$
 (b)
$$- \sin hkx + c$$

(a)
$$\sin hkx + c$$

(b)
$$-\sin hkx + c$$

$$\begin{array}{ccc} \text{(c)} & \underline{Sin\ hkx} \\ & hk \end{array} \qquad \begin{array}{ccc} \text{(d)} & \underline{Sin\ hkx} \\ & k \end{array} + c$$

12.
$$\int \sin hkx \, dx = \dots$$
(a) $\cos hkx + c$ (b) $-\cos hkx + c$

(a)
$$Cos hkx + c$$

(b)
$$-\cos hkx + \cos hkx$$

$$\frac{Cos \ hkx}{hk} \qquad \qquad (d) \qquad \frac{Cos \ hkx}{k} + c$$

hk k

13.
$$\int 1/x \, dx = \dots$$

(a) $\ln x + c$ (b) $-1/x + c$ (c) $-1/x^2 + c$ (d) None

14. $\int k.dx = \dots$

(a) $k + c$ (b) $kx + c$ (c) Zero (d) k

(a)
$$lnx + c$$

(b)
$$-1/x + c$$

(c)
$$-1/x^2 + c$$

14.
$$\int_{1}^{1} k.dx = \dots$$

(a)
$$k + c$$

(b)
$$kx + c$$

15.
$$\int_{1}^{3} dx /(x \ln x) = \dots$$

(a)
$$1/x + c$$

$$1/x + c$$
 (b) $1/\ln x + c$ (c) $\ln(\ln x) + c$ (d) $\ln x + c$

$$ln(lnx) + c$$

$$lnx + c$$

23.
$$\int dx / \sqrt{a^2 - x^2} = \dots$$

- (a) $1/a \sin^{-1} x + c$ (b) $1/a \sin^{-1} (x/a)$
- (c) $1/a \sin^{-1}(a/x)$ (d) $\sin^{-1}(x/a) + c$

(c)
$$(\ln ax)^2/2 + c$$
 (d) $(\ln ax)^2 + c$

b

25. $\int_{a}^{b} 1/x \, dx = \dots$

(a) $\ln a - \ln b$ (b) $\ln b - \ln a$

- (c) 1/b 1/a (d) 1/a 1/b
- 26. Solution of diff: equation. dy/dx = 1 is:
 - (a) x y = c (b) y / x = c

 - (c) x/y = c (d) x + y = c

Composed by : Momin Ali

1. Use differential to approximate the value of Sin 61⁰

2. Evaluate
$$\int dx / \sqrt{3} (\sqrt{x+1})$$
.

3. Evaluate
$$\int \frac{ax + b}{ax^2 + 2bx + c}$$

5. Evaluate
$$\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$$

6. Find
$$\int ax2. x dx$$
.

7. Evaluate
$$\int \frac{x+b}{\sqrt{x^2+2bx+c}} dx$$

8. Evaluate
$$\int_{0}^{\infty} \cos x \cdot \ln \frac{\sin x}{\sin x} \cdot dx$$
.

9. Evaluate
$$\int_{0}^{\infty} \frac{2 a}{x^2 - a^2} dx$$
.

10. Evaluate
$$\int_{0}^{\infty} \frac{2 a}{a^2 - x^2} dx$$
.

11. Evaluate
$$(x + |x|) dx.$$

5
12.
$$|x-3| dx$$
.
13. Evaluate $(x^{1/3} + 2) dx$

- 14. Find the area bounded by Cos function form $x = -\pi / 2$ to $x = \pi / 2$
- 15. Solve the differential equation $\frac{dy}{dx} + \frac{2 xy}{2 y+1}$
- 16. Solve the differential equation Sec $x + \tan y \frac{dy}{dx}$

Composed by : Momin Ali

UNIT # 4 ANALYTIC GEOMETRY

1.	Slope	e of vei	rtical li	ine is	• • • • • • •					
	(a)	Zero	(b)	Undefined	(c)	One	(d)	None		
2.	Grad	ient of	horizo	ontal line is						
	(a)	Zero	(b)	Undefined	(c)	One	(d)	None		
3.	Slope	of the	line 2	y + x + 3 = 0) is	••••				
	(a)	2	(b)	- 2	(c)	1/2	(d)	- 1/2		
4.	Y- in	tercept	of the	line $5x + \sqrt{3}$	5y +	$\sqrt{5}=0$	is	· • • •		
	(a)	$\sqrt{5}$	(b)	- √ 5	(c)	5	(d)	- 1		
5.	L, is	horizoı	ntal iff	m =						
	(a)	0	(b)	1	(c)	-1	(d)	∞		
6.	L, is	vertica	l iff m	=						
	(a)	0	(b)	1	(c)	-1	(d)	∞		
7.	If slo	pe of A	AB = S	lope o BC th	en A,	B and	C are.			
	(a)	Conc	urrent	(b) Colli	near	(c)	Copla	anar	(d)	None
8.	Two	lines l ₁	and l ₂	with slopes	m ₁ and	l m ₂ ar	e paral	lel if m	$n_1 - m_2$	2=
	(a)	0	(b)	1	(c)	-1	(d)	∞		
9.	Two	lines a	re perp	endicular If	1 + m	m2 =		• • • • • • • • • • • • • • • • • • • •	••••	
	(a)	-1	(b)	+ 1	(c)	0	(d)	∞		

10.	Equa	ition of	x - ax	X1S 1S	• • • • • • •	• •					
	(a)	x = 0	(b)	y = 0		(c)	x - y	=0	(d)	x + y	= 0
11.	Equa	ition of	$\hat{y} - ax$	xis is		• • • • • • • •					
	(a)	x = 0	(b)	y = 0		(c)	x + y	r=0	(d)	x - y	= 0
12.	If a l	ine inte	ersects	x – ax	is at (a	a, 0) the	en a is	called			
		a - in y - in	_				_	ot			
13.	P lies	s above	e the li	ne if a	$x_1 + by$	$v_1 + c$	• • • • • • •		.0		
	(a)	>	(b)	<	(c)	=	(d)	<u>≤</u>			
14.	P lies	s below	v the li	ne if a	$x_1 + by$	$y_1 + c$.		0			
	(a)	=	(b)	>	(c)	<	(d)	<u>></u>			
15.	P (2,	- 1) lir	ne	the	line 3x	x + 7y -	+ 15 =	0			
	(a)	Abov	ve	(b)	Belo	W	(c)	On	(d)	None	:
16.	Thre	e lines	l ₁ , l ₂ a	nd l ₃ a	re	if	$\begin{bmatrix} x_1 & y \\ x_2 & y \\ x_3 & y \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	= 0		
										(d)	None
17.	The	lines ar	re real	and dis	stinct i	f h ²	ab				
	(a)	>	(b)	<	(c)	=	(d)	\leq			
18.	Thre	e point	s P, Q	, R are	collin	ear if ∆	٠	0			
	(a)	=	(b)	>	(c)	<	(d)	None	:		

19. The angle between two lines $ax^2 + 2hxy - by^2 = 0$ is

(a) $\pi/3$ (b) $\pi/2$ (c) $\pi/4$ (d) $\pi/6$

20. Slope of the line bisecting I and III. A quadrant is

(a) 0 (b) 1 (c) ∞ (d) None of these

Written by : Mr. Parvez Khan

Composed by : Momin Ali

- 1. Find the point three fifth of the way along the line segment from A(-5, 8) to B(5, 3)?
- 2. Find K so that the line joining A (7, 3); B (k, -6) and the line joining C (-4, 5), D (-6, 4) are Perpendicular?
- 3. Find an equation of the vertical line through (-5, 3)?
- 4. Find an equation of the horizontal line through (7, -9)?
- 5. Find an equation of the line through (-4, 7) and parallel to the line 2x-7y+4+0?
- 6. Find the area o the triangular region whose vertices are A (5, 3), B (-=2, 2), C (4, 2)?
- 7. Find the equation of the line through (5, -8) and perpendicular to the join of A (-15, -8), B (10, 7)?
- 8. Find an equation of the line through (-8, 5) having slope undefined?
- 9. By means of slopes show that the points (-1, -3), (1, 5) and (2, 9) are Collinear.
- 10. Transform the equation 5x 12y + 39 = 0 in to Symmetric form.

UNIT # 5 LINEAR INEQUALITIES

1.	An excalled		ne of th	ne four symbols $>$, $<$, \ge , \le is
	(a) (c)	An equation An inequality	(b) (d)	An identity A linear equality
2.	ax + b	by > 2 is an:		
	` '	Equation Identity	(b) (d)	In-equation A linear equality
3.	The in	nequality $x > 0$ shows:		
	` ,	Right half-plane Upper half-plane	(b) (d)	Left half-plane lower half-plane
4.	ax + b	by > c is a linear inequalit	y in:	
	(a) (c)	One variable Three variables	(b) (d)	Two variables Four variables
5.	Assoc	ciated equation of ax + by	> c is:	
	(a) (c)	ax + by = 0 $ax + by = c$	(b) (d)	ax + by < c $ax + by > c$
6.	The s	olution of $ax + by < c$ is:		
	(a) (c)	Closed half-plane Circle	(b) (d)	Open half –plane Parabola

7.		line segment obtained by ely with in the region then	•	g any two points of a region lies gion is called:					
	(a) (c)	Feasible Non-convex	(b) (d)	Convex Optimal					
8.	A fun	action which is to be maxi	mized	or minimized is called:					
	(a) (c)	Subjective function Qualitative function	(b) (d)	Objective function Quantitative function					
9.		easible solution which maion is called:	ximiz	es or minimizes the objective					
	(a) (c)	Exact solution Objective solution	(b) (d)	Optimal solution Final solution					
10.	The point where two boundary lies of a shaded region intersect is called:								
	(a) (c)	Boundary point Stationary point	(b) (d)	Corner point Feasible point					
11.	If $x >$	b, then							
	` /	-x > -b $x < b$	(b) (d)	- x < b - x < - b					
12.	A line	ear inequality contains at l	least	variable:					
	(a) (c)	One Three	(b) (d)	Two More then three					
13.	_	graph of a linear equation of the whole plane into		form $ax + by = c$ is line which oint part.					
	(a) (c)	Two More then four	(b) (d)	Four Infinitely line					

14.	_	graph of corresponding ling called	ear eq	uation of the linear inequality is
	(a) (c)	Boundary line Vertical line	(b) (d)	Horizontal line Inclined line
15.	The g	graph of the inequality $x \le$	b is:	
	(a) (c)	Upper half plane Left half plane	(b) (d)	Lower half plane Right half plane
16.	The g	graph of the inequality $y \le$	b is:	
	(a) (c)	Upper half plane Left half plane	(b) (d)	Lower half plane Right half plane
17.	Asso	ciated equation of $x + 2y =$	≤ 6 or :	$x + 2y \ge 6$ is the:
	(a) (c)	Same Sometimes same	(b) (d)	Not same None of these
18.	The r	non-negative constraints;	$x \ge 0$, y	$y \ge 0$ indicate the:
	(a) (c)	Quadrant I Quadrant III	(b) (d)	Quadrant II Quadrant IV
19.	x = 0	is the solution of the ineq	uality:	
	(a) (c)	$ 2x + 1 > 0 \\ 2x + 1 \le 0 $	(b) (d)	2x + 1 < 0 None of these

- 1. Graph the solution of each of the following linear in equality in xy-plane.
 - (i) $2x + y \le 6$
 - (ii) $2x + 1 \ge 0$
 - (iii) $3y 4 \le 0$
- 2. Indicate the solution set of the following system of linear inequality by shading.
- (i) $2x 3y \le 6$
- (ii) $x y \le 1$
- (iii) $4x 3y \le 12$, $x \ge 3/2$.
- 3. Graph the solution region of the following system of linear inequalities by shading.
 - (i) $3x 4y \le 12$ and $3x + 2y \ge 3$
 - (ii) $2x + y \le 4 \text{ and } 2x 3y \ge 12$

Written by : Mr. Parvez Khan

Composed by : Momin Ali

UNIT # 6 Conic section

1.	If radius of the Circle is Zero, then the Circle is called									
	(a)	Zero circle	(b)	Point c	ircle					
	(c)	Concentric	circle	(d) I	n cir	cle				
2.	A lin	e may be a t	angent	to the pa	rabo	la if C	=			
	(a)	am (b)	a/m	(c) r	n/a	(d)	Zero			
3.	The p	point (2, 2) 1	ies	. the circ	cle x ²	$x^2 + y^2 =$	= 1			
	(a)	Outside	(b)	inside		(c)	On	(d)	None	
4.	An aı	ngle in a Ser	ni circl	e is a/an	••••	. angle	e			
	(a)	Right	(b)	A cute		(c)	Obtu	se	(d)	None
5.	The parab	point where toola.	the axe	s meet, tl	he pa	rabola	, is ca	lled	of	the
	(a) (c)	Focus Directrix	(b) (d)	Vertex Centre						
6.	Latus	s rectum of the	he para	bola x ² =	y is					
	(a)	1 (b)	2	(c) 3	3	(d)	4			
7.		etrix of the p $y + 1 = 0$ (1)					0 (d) y+	4 = 0	
8.	The C	Conic is a pa	rabola	if e						
	(a)	= (b)	>	(c) <	<	(d)	>			

9.	The C	Conic i	s an el	lipse if	e						
	(a)	=	(b)	>	(c)	<	(d)	\geq			
10.		nid poi triang		he hyp	otenus	e of a	right tı	riangle	is the		Centre
		_		Circu	m		(c)	e	(d)	None	
11.	Direc	trices	of the e	ellipse	x^2/b^2	$+y^2/$	$a^2 = 1$	are			
	(a)	x = a	/e	(b)	x = -3	a/e	(c)	$y = \pm$	e/a	(d)	±a/e
12.	The C	Conic i	s a hyp	erbola	if e						
	(a)	=	(b)	>	(c)	<	(d)	2			
13.	The f	ocal ch	ord pe	erpendi	icular t	to the a	axis of	the pa	rabola	is X =	
	(a)	b	(b)	a	(c)	a	(d)	None			
14.	Axis	of the	parabo	$la y^2 =$	-x is.	••••					
	(a)	x = 0	(b)	y = 0	(c)	x = 1	(d)	$\mathbf{x} = -1$	1		
15.	Verte	x of th	e paral	bola x²	$x^2 = 2y i$	is					
	(a)	(0, 0)		(b)	(0, 2)		(c)	(2, 0)		(d)	(1.2)
16.	Eccei	ntricity	of the	ellipse	e is	• • • • • • • • • • • • • • • • • • • •					
	(a)	a/c	(b)	c/a	(c)	ac	(d)	None			
17.	Centr	e of th	e ellips	se: <u>(x+</u>	1)2+($(y+1)^2$	$2^2 = 1$ is	·			
	(a)	(1, 1)	(b)	(-1, 1))	(c)	(-1, -1	1)	(d)	(1, -1))

- 18. With usual notation: the points A and A' are called..... of the ellipse $x^2/a^2 + y^2/b^2 = 1$
 - (a) Vertices (b) Co-vertices (c) Transverse (d) Conjugate
- 19. Length of Latus rectum of the ellipse is
 - (a) $2a^2/b$ (b) $2a/b^2(c)$ $2b^2/a$ (d) $2b/a^2$
- 20. In hyperbola $x^2 / a^2 y^2 / b^2 = 1$; $c^2 = \dots$
 - (a) $a^2 b^2$ (b) $a^2 + b^2$ (c) $b^2 a^2$ (d) $\sqrt{a^2 b^2}$
- 21. A conic is hyperbola if $h^2 ab \dots 0$
 - (a) = (b) > (c) < (d) \geq
- 22. The mid point C of the foci F and F' is called the of the ellipse
 - (a) Vertex (b) Centre (c) Focus (d) Directrix

Composed by : Momin Ali

- 1. Find the centre and radius of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$.
- 2. Find the length of the tangent drawn from the point (-5, 4) to the Circle $5x^2 + 5y^2 10x + 15y 131 = 0$
- 3. Find an equation of the parabola having its focus at the origin and Directrix Parallel to y axis.
- 4. Find an equation of the ellipse with foci (\pm 3, 0) and minor axis of length 10.
- 5. Prove that lactus rectum of the ellipse is $2b^2/a$
- 6. Find an equation of the ellipse with vertices $(0, \pm 6)$ and e = 2 and e = 3 / 5
- 7. Find an equation of the hyperbola with foci $(0, \pm 6)$ and e = 2.
- 8. Find an equation of the hyperbola with foci (± 5 , 0); vertex (3, 0).

CHATER # 7 VECTORS

1.	A uni	t vecto	or is a v	ector	whose	magni	itude 18	S	• • • • •
	(a)	Zero	(b)	unity	(c)	-1	(d)	None	
2.	If P is	s the m	id poir	nt of A	B then	1 k ₁ : k ₂	=		
	(a)	1:2	(b)	2:1	(c)	1:1	(d)	1/2:2	
3.	Cos ² c	a + Cos	$s^2\beta + C$	$\cos^2 r =$					
		0	(b)	1	(c)	- 1	(d)	± 1	
4.	$\hat{j} \cdot \hat{i} =$		• • • • • • • •						
		0	(b)	1	(c)	, k	(d)	- k	
5.	$\hat{i}_{x}\hat{j} =$								
		0	(b)	1	(c)	, k	(d)	^ -k	
6.	$\hat{i}_{x}\hat{j} =$	•••••	• • • • • • • • •	••••					
	(a)	ĵ	(b)	- j	(c)	1	(d)	0	
7.	U and	l V are	orthog	gonal i	$f \theta =$	• • • • • • •	• • • • • • • •	•	
	(a)	Л/6	(b)	Л/4	(c)	Л/3	(d)	Л/2	
8.	U and	l V are	parall	el if U	x V =		• • • • • • • •	••	
	(a)	0	(b)	- V x	U	(c)	1	(d)	- 1
9.	Two	vectors	s U An	d V ar	e Colli	near if	$\theta = \dots$	• • • • • • •	

10	` '	0 = ai + 1	` '		` ,			` ,			
10.									• • • • • • •	••	
	(a)	b	(b)	a	(c)	j	(d)	k			
11.	If <u>V</u>	= ai + 1	bj + ck	then p	oroject	cion of	V alor	ng k = 0	•••••	• • • • • • • •	
	(a)	<u>c</u>	(b)	<u>a</u>	(c)	<u>b</u>	(d)	<u>k</u>			
12.	In ar	ny trian	gle Al	3C a =	b Cos	C +	• • • • • • • •	· ·			
	(a)	c Cos	s B	(b)	a Co	s B	(c)	b Cos	s A	(d)	b Cos B
13.	Ux	V =	• • • • • • • •	••••							
	(a)	VxV	W	(b)	- V x	. U	(c)	Wxl	J	(d)	- W x V
14.	Proje	ection o	of U al	ong V	=		••••				
	(a)	<u>U.V</u> V	<u>7</u>	(b)	<u>U . V</u> U	<u>/</u>	(c)	<u>U.V</u>	<u>/ </u>	(d)	<u>U.V</u>
15.	Wor	k Done	e=	• • • • • • • •	••••						
	(a)	F.d	(b)	F.r	(c)	r.d	(d)	None	of the	ese	
16.	U, V	and W	are C	Coplana	ır if (U	J x V) .	$\mathbf{w} = .$				
	(a)	0	(b)	Л/3		(c)	Л/2	,	(d)	Л / 4	
17.	Volu	ime of	tetrahe	edron =	=						
	(a)	½ (u	x v).w	,	(b)	½ (u	x v).w	7			
	(c)	1/3	(u x v)) .w	(d)	1/6	(u x v)). w			
18.	If K	is +ve,	then \	V and k	xv are	in the	.]	Directi	on		
	(a)	Oppo	osite	(b)	Same	e (c)	Unw	ard	(d)	dow	nward.

19. The vector whose initial point is the origin 0 and terminal point is the vector.							al point is P is called		
	(a)	Unit	(b)	Position	(c)	Zero	vector	(d)	None
20.	U x	U =	• • • • • • •						
	(a)	- U	(b)	U	(c)	0	(d)	1	

- 1. Find a unit vector in the direction of the vector $\gamma = -\sqrt{3/2}$ $\mathbf{i} \frac{1}{2}\mathbf{j}$
- 2. Find the direaction cosines for the vector \overrightarrow{PQ} where P = (2, 1, 5) and Q = (1, 3, 1).
- 3. By means of vector prove that $a^2 = b^2 + c^2 2bc \cos A$.
- 4. By means of vector prove that $a = b \cos C + c \cos B$.
- 5. Prove that $Cos (\alpha \beta) = Cos \alpha Cos \beta + Sin \alpha Sin \beta$ (by use of vectors)
- 6. Prove that $Cos (\alpha + \beta) = Cos \alpha Cos \beta Sin \alpha Sin \beta$ (by use of vectors)
- 7. Prove that Sin ($\alpha + \beta$) = Sin α Cos β + Cos α Sin β (//
- 8. Prove that $Sin (\alpha \beta) = Sin \alpha Cos \beta Cos \alpha Sin \beta ($ //
- 9. Prove that in any triangle.
 - (i) b = c Cos A + a Cos C (ii) C = a Cos B + b Cos A.
- 10. Find the volume of the tetrahedron whose vertices are A (2, 1, 8), B (3, 2, 9), C (2, 1, 4), D (3, 3, 10).
- 11. Prove that the vertices $\underline{i} 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} 4\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are Coplanar.
- 12. If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{b} \times \underline{c} = \underline{c} \times \underline{a}$.

ANSWERS

UNIT # 1

22.

23.

24. a25. d

a

d

1.	c	8.	d	15.	a
2.	b	9.	a	16.	b
3.	b	10.	a	17.	c
4.	b	11.	c	18.	c
5.	d	12.	c	19.	b
6.	d	13.	b	20.	b
7.	d	14.	a	21.	d

UNIT # 2

1.	а	8.	h	15.	h	22.	a
2.		9.		16.		23.	
3.		10.		17.		24.	
4.	c	11.	b	18.	a	25.	d
5.	d	12.	d	19.	c		
6.	c	13.	a	20.	c		
7.	a	14.	c	21.	b		

UNIT # 3

1.	d	8.	a	15.	c	22.	b
2.	a	9.	d	16.	b	23.	d
3.	c	10.	b	17.	d	24.	c
4.	d	11.	d	18.	c	25.	b
5.	b	12.	d	19.	b	26.	a
6.	b	13.	a	20.	c		
7.	c	14.	b	21.	c		

UNIT #4

1.	b	6.	d	11.	a	16.	a
2.	a	7.	b	12.	b	17.	c
3.	d	8.	a	13.	a	18.	a
4.	d	9.	a	14.	c	19.	b
5.	a	10.	b	15.	a	20.	b

UNIT # 5

1.	c	6.	b	11.	d	16.	b
2.	b	7.	b	12.	a	17.	a
3.	a	8.	b	13.	a	18.	a
4.	b	9.	b	14.	a	19.	a
5.	а	10.	b	15.	c		

UNIT # 6

1.	b	7.	a	13.	b	19.	c
2.	b	8.	a	14.	b	20.	b
3.	a	9.	a	15.	a	21.	b
4.	a	10.	b	16.	b	22.	b
5.	b	11.	d	17.	c		
6.	a	12.	b	18.	a		

UNIT #7

1.	b	6.	b	11.	a	16.	a
2.	c	7.	d	12.	a	17.	d
3.	b	8.	a	13.	b	18.	b
4.	a	9.	d	14.	a	19.	b
5.	c	10.	a	15.	a	20.	С

Notes, MCQs, model papers, old papers are available at http://www.MathCity.org/FSc