

Mécanique Générale - Interrogation n°2 Lundi 7 janvier 2019 - 1h (10h15 -11h15)

Sont autorisés : Formulaire (1 page environ + 1 feuille des liaisons) Calculatrice non programmable

COMMANDE DE LAME DE FAUCHEUSE

Figure 1 – Véhicule équipé d'une lame de faucheuse

La lame de faucheuse sur la Figure 1 est commandée par le mécanisme schématisé Figure 2 ci-dessous. Il est constitué :

- d'un arbre coudé S₁, lié au bâti S₀ par une liaison pivot d'axe $(O_{0^*}, \vec{y}_{0,1})$ $Paramètre \ de \ mouvement \ 1/0 : \quad \psi = (\vec{x}_0, \vec{x}_1)$ $L'angle \ \alpha = \left(\vec{x}_1, \vec{x}_1^*\right) = \left(\vec{y}_1, \vec{y}_1^*\right) \ définissant \ le \ coude \ est \ constant \ (cf. Figure 3)$
- d'une fourche oscillante S_2 en liaison pivot d'axe $(O_{0,2}, \vec{z}_{0,2})$ avec le bâti S_0 La distance O_2A_2 est notée R.

Paramètre de mouvement 2/0 : $\theta = (\vec{x}_0, \vec{x}_2)$

- d'une lame S₃ en liaison prismatique (ou glissière) d'axe $(O_0, \vec{x}_{0,3})$ avec le bâti S₀

Paramètre de mouvement 3/0 : $X = \overrightarrow{O_0O_3} \cdot \overrightarrow{x}_{0.3}$

- d'un cadre carré S₄ simultanément
 - en liaison pivot d'axe (O_{0*}, \vec{y}_1^*) avec l'arbre coudé S_1 selon une des diagonales du carré et,
 - en liaison pivot d'axe (O_{0*}, \vec{x}_2) avec la fourche oscillante S₂ selon l'autre diagonale du carré

Les deux liaisons 4/1 et 4/2 ne sont pas paramétrées

d'une bielle S_5 de longueur L en liaison pivot d'axe $(A_2, \vec{z}_{0,2})$ avec la fourche oscillante S_2 et en liaison pivot d'axe $(O_3, \vec{z}_{0,3})$ avec la lame S_3

Les deux liaisons 5/2 et 5/3 ne sont pas paramétrées

Partie I: Repérage / paramétrage – Equations de liaison

- **I.1 -** Tracer toutes les figures de changement de base.
- **I.2 -** Tracer le graphe des liaisons.
- **I.3** Ecrire la condition de liaison traduisant la fermeture de chaîne réalisée par le cadre S₄ et développer l'équation correspondante.
- **I.4** Ecrire la condition de liaison traduisant la fermeture de chaîne réalisée par la bielle S_5 et développer l'équation correspondante (<u>on ne cherchera pas à résoudre cette équation</u>).
- **I.5 -** Donner la mobilité du système.

Partie II: Cinématique

- II.1 a) Définir la nature du mouvement 2/0.
 - b) Donner la trajectoire de A_2 par rapport au repère du bâti (R_0)
 - c) Calculer la vitesse $\vec{V}(A_2/R_0)$ ainsi que l'accélération $\vec{A}(A_2/R_0)$ en fonction du paramètre cinématique θ et ses dérivées.
- II.2 a) Expliquer pourquoi le vecteur rotation instantanée $\vec{\Omega}(5/0)$ est nécessairement de la forme $\vec{\Omega}(5/0) = \omega \vec{z}_0$.
 - b) En utilisant une formule du changement de point pour le vecteur vitesse, calculer ω en fonction des paramètres cinématiques θ et X et leurs dérivées.

Figure 2 – Schéma cinématique de la commande de lame de faucheuse

Figure 3 – Solide 1 et ses repères