Fourier级数逼近

Fourier级数展开

- >给定周期函数 $f(x), x \in [-L, L], T = 2L$
 - \rightarrow 满足 f(x) = f(x + kT)
 - \rightarrow 一般 (a,b) 区间,变量替换 $L = \frac{b-a}{2}, \ x_1 = x + L + a$
- Fourier级数展开

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

$$\begin{cases}
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, & n = 0, 1, 2, \dots \\
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, & n = 1, 2, 3, \dots
\end{cases}$$

Fourier 级数展开函数编写

- 文解 [F, A, B] = fseries(f, x, p, a, b)
- ▶求Fourier级数展开的MATLAB代码

```
function [F,A,B]=fseries(f,x,varargin)
[p,a,b]=default_vals({6,-pi,pi},varargin{:});
L=(b-a)/2; if a+b, f=subs(f,x,x+L+a); end
A=int(f,x,-L,L)/L; B=[]; F=A/2;
for n=1:p
    an=int(f*cos(n*pi*x/L),x,-L,L)/L; A=[A, an];
    bn=int(f*sin(n*pi*x/L),x,-L,L)/L; B=[B,bn];
    F=F+an*cos(n*pi*x/L)+bn*sin(n*pi*x/L);
end
if a+b, F=subs(F,x,x-L-a); end
```

支持函数的编写

▶给函数参数分派默认值

```
function varargout=default_vals(vals,varargin)
if nargout~=length(vals),
    error('number of arguments mismatch');
else, nn=length(varargin)+1;
    varargout=varargin;
    for i=nn:nargout, varargout{i}=vals{i};
end, end, end
```

- ▶其他函数也可能使用
- ▶后面将用到这个公用函数

end

>数学描述
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

$$\begin{cases} a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, & n = 0, 1, 2, \cdots \\ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, & n = 1, 2, 3, \cdots \end{cases}$$

A=int(f,x,-L,L)/L; B=[]; F=A/2;for n=1:pan=int(f*cos(n*pi*x/L),x,-L,L)/L; A=[A, an]; bn=int(f*sin(n*pi*x/L),x,-L,L)/L; B=[B,bn];F=F+an*cos(n*pi*x/L)+bn*sin(n*pi*x/L);

例3-33 函数的Fourier近似

- >逐数 $y = x(x-\pi)(x-2\pi)$
 - **其中** $x \in (0, 2\pi)$
- ▶ 求它的Fourier级数展开
 - >> syms x; f=x*(x-pi)*(x-2*pi);
 [F,A,B]=fseries(f,x,12,0,2*pi);F
- ▶结果比较
 - >> ezplot(f,[0,2*pi]),
 hold on, ezplot(F,[0,2*pi]), hold off

展开的结果和效果

ightharpoonup更大的区域 $x \in (-\pi, 3\pi)$

$$x \in (-\pi, 3\pi)$$

>> ezplot(f,[-pi,3*pi]),

hold on, ezplot(F,[-pi,3*pi]), hold off

▶数学描述

$$f(x) = 12\sin x + \frac{3\sin 2x}{2} + \frac{4\sin 3x}{9} + \frac{3\sin 4x}{16} + \frac{12\sin 5x}{125} + \frac{\sin 6x}{18} + \frac{12\sin 7x}{343} + \frac{3\sin 8x}{128} + \frac{4\sin 9x}{243} + \frac{3\sin 10x}{250} + \frac{12\sin 11x}{1331} + \frac{\sin 12x}{144}$$

$$f(x) = \sum_{n=0}^{\infty} \frac{12}{n^3} \sin nx$$

例3-34 分段函数的近似

>给定函数
$$y = \begin{cases} 1 & x \geqslant 0 \\ -1 & x < 0 \end{cases} \quad x \in (-\pi, \pi)$$

》原函数可以表示成 $f(x) = \frac{|x|}{x}$

$$f(x) = \frac{|x|}{x}$$


```
>> syms x; f=abs(x)/x; xx=[-pi:pi/200:pi];
  xx=xx(xx~=0); xx=sort([xx,-eps,eps]);
   yy=subs(f,x,xx); plot(xx,yy), hold on
   for n=1:20
      [f1,a,b] = fseries(f,x,n);
      y1=subs(f1,x,xx); plot(xx,y1)
   end
```


展开效果与函数

- ▶前14项的Fourier级数展开
 - >> [f1,a,b]=fseries(f,x,14); f1
- ▶数学形式

$$f(x) \approx 4\frac{\sin x}{\pi} + \frac{4\sin 3x}{3\pi} + \frac{4\sin 5x}{5\pi} + \frac{4\sin 7x}{7\pi} + \frac{4\sin 9x}{9\pi} + \frac{4\sin 11x}{11\pi} + \frac{4\sin 13x}{13\pi}$$

>一般形式
$$f(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k-1)x}{2k-1}$$

周期函数的假设

▶在区间[-2π,2π]进行拟合效果比较


```
>> xx=[-2*pi:pi/200:2*pi];
    xx=xx(xx~=0);
    xx=sort([xx,-eps,eps]);
    yy=subs(f,x,xx);
    plot(xx,yy), hold on
    y1=subs(f1,x,xx); plot(xx,y1), hold off
```

ightarrow回忆一下开始的假设 f(t) = f(kT + t)

