ROS tutorial

navigation/gmapping

ROBOT OPERATING SYSTEM LAB SESSION 7 17/04/2018

gmapping

- The gmapping package provides laser-based SLAM
- you can create a 2-D occupancy grid map (like a building floorplan) from laser and pose data collected by a mobile robot
- node —— slam_gmapping

Slam_gmapping

Subscribe Topics

```
tf(tf/tf_Message)
```

Transforms necessary to relate frames for laser, base, and odometry

Scan(sensor_msg/LaserScan)

Laser scans to create the map from

Published Topics

Map_metadata(nav_msgs/MapMetaData)

Get the map data from this topic, which is latched, and updated periodically.

map (nav_msgs/OccupancyGrid)

Get the map data from this topic, which is latched, and updated periodically

Slam_gmapping

Parameters:

~map_frame (string, default: "map") The frame

The frame attached to the map.

~odom_frame (string, default: "odom")

The frame attached to the odometry system

~minimumScore (float, default: 0.0)

Minimum score for considering the outcome of the scan matching good. Can avoid jumping pose estimates in large open spaces when using laser scanners with limited range

~particles (int, default: 30)

Number of particles in the filter

Transforms

Required tf

```
Laser scan base_link
```

usually a fixed value, broadcast periodically by a robot_state_publisher, or a tf static_transform_publisher.

base_link odom

usually provided by the odometry system (e.g., the driver for the mobile base)

Provided tf

 $map \rightarrow odom$

the current estimate of the robot's pose within the map frame

transform

Hokuyo kinetic gmapping

Step 1 hokuyo driver hokuyo_node / urg_node publish /scan

Step 2 transform

publish /tf /tf_static

Laser scan base_link

<node pkg="tf" type="static_transform_publisher"

name="base2laser" args="0.28 0 0.16 0 0 0

base_link laser 500"/>

base_link odometry

geometry_msgs::TransformStamped odom_trans;

Step3 odometry

publish /odom

nav_msgs::Odometry odom

Step4 slam_gmapping

publish /map

rosrun gmapping slam_gmapping

demostration

homework

bagfile as a reference

turtle_slam0417.bag

Generate your map.pgm by your turtlebot and hokuyo.bag
Submit by a group of four

rosrun map_server map_saver -f <map_name> save the map