

Instituto Superior Técnico Departamento de Engenharia Electrotécnica e de Computadores Área Científica de Electrónica

Guia de laboratório de Electrónica II

Realimentação

Grupo Nº_____

Data ____/___

(1º trabalho)

Número	Nome

Marcelino Santos e José Teixeira de Sousa

Setembro 2015

Motivação

Na secção RF do site *Circuit Exchange International* (http://www.zen22142.zen.co.uk/) é proposto o receptor de sinais de rádio com amplitude modulada (AM) que consiste nos dois primeiros andares do circuito que se apresenta na Figura 1.

Figura 1 - Receptor de sinais de rádio com amplitude modulada (AM) seguido de andar de saída.

O circuito proposto, seguido pelo andar de potência apresentado, constitui um receptor simples que irá ser parcialmente analisado neste 1º trabalho de laboratório. O 2º andar cumpre uma dupla função: amplificação e detecção. Neste trabalho de laboratório analisa-se este andar unicamente como amplificador, que é a função realizada quando o sinal de entrada tem uma amplitude muito baixa.

1ª Parte – Preparação Teórica

Para a preparação teórica, use os valores típicos dos catálogos e considere $|V_{BE}| = 0.7$ V. Para o ponto de funcionamento em repouso, tome β como o ganho de corrente contínua (DC current gain, H_{FE}) e na análise de sinais fracos tome como h_{fe} .

- Determine o PFR do circuito da Figura 3 (efetue os cálculos para o transístor BC547B e o transístor BC547C). Calcule a variação percentual de V_C quando o transístor é substituído.
- 2) Determine o valor de R₄ da Figura 2 para que o PFR obtido em 1) para o transístor BC547B se mantenha. Mantendo R₄ e substituindo o transístor pelo BC547C, determine o novo PFR e conclua sobre o efeito da realimentação na sensibilidade ao ganho de corrente do transístor.
- 3) Identifique o tipo de realimentação e calcule os parâmetros das matrizes mais adequadas para descrever A e β do circuito da Figura 3.
- 4) Determine o ganho, $k_v = v_o/v_i$, do circuito da Figura 3.
- 5) Determine a impedância de entrada, Z_i, e de saída, Z_o, do circuito da Figura 3.

Figura 2: Amplificador com TJB sem realimentação.

Figura 3: Amplificador com TJB com realimentado.

2ª Parte – Preparação laboratorial

- 1) Monte o circuito da Figura 3 (com o transístor BC547B) e faça v_i = 0. Meça a tensão no ponto C, $V_{C 547B}$.
- 2) Troque o transistor para o BC547C e meça a tensão no ponto C.
- 3) Reponha o transístor BC547B. Com $v_I = 10 \text{ sen}(2\pi 1000 \text{ t}) \text{ [mV]}$, meça o ganho de tensão $k_v = v_o/v_i$ e a impedância de entrada.
- 4) Compare os valores obtidos nos pontos 1) a 4) com os obtidos na preparação teórica. Sugestão: estime o valor do H_{FE} e h_{fe} dos transístores que está a usar.

Interrompa a ligação entre o ponto B e o ponto C e efectue a ligação entre o ponto B e o ponto A, obtendo o circuito representado na Figura 2 (com o transístor BC547B)¹. Ajuste o valor da resistência R4 para que V_C fique aproximadamente igual ao medido no ponto 1). Desta forma o TJB fica com o mesmo PFR mas o andar amplificador fica sem realimentação.

¹ Devem ser usados os mesmos transístores que foram usados nos pontos 1 a 5 a fim de ser possível efectuar uma comparação de resultados.

5) Repita os pontos 1) a 5) para o amplificador sem realimentação e, com base nos valores medidos, conclua sobre a importância da realimentação na estabilização do PFR e do efeito sobre o ganho e sobre a impedância de entrada