Also published as:

JP3855606 (B2)

US7177529 (B2)

EP1176595 (A2)

more >>

US2001051033 (A1)

🏗 US2007116432 (A1)

OPTICAL RECORDER, OPTICAL RECORDING METHOD AND DIGITAL STILL CAMERA

Publication number: JP2001351314 (A)

Publication date: 2001-12-21

Inventor(s): YOSHIDA CHISATO: MAEDA HIROSHI

Applicant(s): SONY CORP

Classification:

- international: H04N5/225; G11B7/004; G11B19/04; G11B20/10;

G11B27/00; G11B27/034; G11B27/19; G11B27/24; G11B27/30; G11B27/32; G11B27/34; G11B27/36;

H04N5/77; H04N5/85; G11B7/09; H04N9/804; H04N5/225;

G11B7/00; G11B19/04; G11B20/10; G11B27/00; G11B27/031; G11B27/19; G11B27/30; G11B27/32;

G11B27/34; G11B27/36; H04N5/77; H04N5/84; G11B7/09; H04N9/804; (IPC1-7): G11B19/04; G11B7/004; G11B19/02;

G11B20/10; H04N5/225; H04N5/85

- European: H04N5/77B; G11B19/04; G11B27/034; G11B27/24;

G11B27/30C; G11B27/32D2; G11B27/34; G11B27/36

Application number: JP20000175889 20000612 Priority number(s): JP20000175889 20000612

Abstract of JP 2001351314 (A)

PROBLEM TO BE SOLVED: To prevent the troubles that occur in a closed session operation time. SOLUTION: The digital still camera 1 is provided with a vibration detection sensor 24. The control part 25 of the camera 1 controls the analyzing processing (closed session) according to a condition for reading out the data recorded on a recording medium 26 via a reproducer corresponding to a CD-ROM, etc. In regard to the control of a closed session operation, the closed session operation is started when a prescribed time has passed after the execution of the closed session operation is selected by a user. At the same time, the remaining time set before the closed session operation is started is counted down and displayed.; When a vibration detection means detects vibrations after the count-down operation is over or during the count-down operation set before the closed session operation is started, the closed session operation is not started.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-351314 (P2001-351314A)

(43)公開日 平成13年12月21日(2001.12.21)

(51) Int.Cl.7		識別記号		FΙ				ý	₹]ド(参	考)
G11B	19/04	501		C11B 1		19/04		501D 5C		22
								501Q	5 C 0 5	2
	7/004					7/004		С	5 D 0 4	4
	19/02	5 0 1				19/02		501W	5 D 0 9	0
	20/10	3 1 1				20/10		311		
			審查請求	未請求	請求	項の数30	OL	(全 15 頁)	最終頁	に続く
(21)出顧番号	}	特願2000-175889(P20	00-175889)	(71)出願人		. 000002	185			
						ソニー	株式会	社		
(22)出顧日		平成12年6月12日(2000.6.12)				東京都	品川区	北品川 6 丁目	7番35号	
				(72)	発明者	吉田	千里			
						東京都	晶川区	北品川6丁目	7番35号	ソニ
						一株式	会社内			
				(72)	発明者	前田	传史			
						東京都向	品川区	北品川6丁目	7番35号	ソニ
						一株式:	会社内			
				(74)	代理人	. 1000677	736			
						弁理士	小池	晃 (外2	名)	
									最終頁	に続く

(54) 【発明の名称】 光記録装置、光記録方法、及びデジタルスチルカメラ

(57)【要約】

【課題】 クローズドセッション動作時に発生するトラブルを防止する。

【解決手段】 デジタルスチルカメラ1は、振動を検出する振動検出センサ24を備え、制御部25は、記録媒体26に対して記録したデータをCD-ROM等に対応した再生装置で読出し可能とするためのファイナライズ処理(クローズドセッション)を条件に応じて制御する。クローズドセッション動作の制御としては、ユーザによっ

ロースドセッション動作の制御としては、ユーザによってクローズドセッション動作の実行が選択されてから所 定時間が経過した後、クローズドセッション動作を開始 すること、そのときクローズドセッション動作の開始までの残時間をカウントダウンして表示すること、カウントダウンが終了した後、またクローズドセッション動作 の開始までのカウントダウン中に振動検出手段が振動を 検出した場合にはクローズドセッション動作を開始しないこと等が挙げられる。

【特許請求の範囲】

【請求項1】 記録媒体に対して光記録によってデータの記録を行う光記録装置であって、

上記記録媒体に対してデータを書込む書込み手段と、 上記書込まれたデータを他の再生装置で読出し可能とす るためのクローズドセッション動作を制御する制御手段 とを有し、

上記制御手段は、クローズドセッション動作に必要とされる条件に応じてクローズドセッション動作を実行することを特徴とする光記録装置。

【請求項2】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することを特徴とする請求項1記載の光記録装置。

【請求項3】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してからクローズドセッション動作の開始までの残時間を表示することを特徴とする請求項2記載の光記録装置。

【請求項4】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作の実行を確認することを特徴とする請求項2記載の光記録装置。

【請求項5】 上記制御手段は、クローズドセッション 動作を実行する旨の信号を受信した後、安定物上に設置 する旨の通知を行うことを特徴とする請求項2記載の光 記録装置。

【請求項6】 振動を検出する振動検出手段を備え、 上記制御手段は、上記振動検出手段が振動を検出した場 合にはクローズドセッション動作を開始しないことを特 徴とする請求項1記載の光記録装置。

【請求項7】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することを特徴とする請求項6記載の光記録装置。

【請求項8】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してからクローズドセッション動作の実行までの残時間を表示することを特徴とする請求項7記載の光記録装置。

【請求項9】 上記制御手段は、クローズドセッション 動作を実行する旨の信号を受信してから所定時間が経過 する間に、上記振動検出手段が振動を検出した場合に は、クローズドセッション動作を開始しないことを特徴 とする請求項7記載の光記録装置。

【請求項10】 上記記録媒体は、追記型記録媒体及び 書換型記録媒体であることを特徴とする請求項1記載の 光記録装置。

【請求項11】 記録媒体に対して光記録によってデータの記録を行う光記録方法であって、

上記記録媒体に対してデータを書込み、

上記書込まれたデータを他の再生装置で読出し可能とす

るためのクローズドセッション動作をクローズドセッション動作に必要とされる条件に応じて実行することを特徴とする光記録方法。

【請求項12】 クローズドセッション動作を実行する 旨の信号を受信してから所定時間が経過した後、クロー ズドセッション動作を開始することを特徴とする請求項 11記載の光記録方法。

【請求項13】 クローズドセッション動作を実行する 旨の信号を受信してからクローズドセッション動作の実 行までの残時間を表示することを特徴とする請求項12 記載の光記録方法。

【請求項14】 クローズドセッション動作を実行する 旨の信号を受信してから所定時間が経過した後、クロー ズドセッション動作の実行を確認することを特徴とする 請求項12記載の光記録方法。

【請求項15】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信した後、安定物上に設置する旨の通知を行うことを特徴とする請求項12記載の光記録方法。

【請求項16】 振動を検出する振動検出工程を備え、 上記振動検出工程において振動が検出された場合にはクローズドセッション動作を開始しないことを特徴とする 請求項11記載の光記録方法。

【請求項17】 クローズドセッション動作を実行する 旨の信号を受信してから所定時間が経過した後、クロー ズドセッション動作を開始することを特徴とする請求項 16記載の光記録方法。

【請求項18】 クローズドセッション動作を実行する 旨の信号を受信してからクローズドセッション動作の実 行までの残時間を表示することを特徴とする請求項17 記載の光記録方法。

【請求項19】 クローズドセッション動作を実行する 旨の信号を受信してから所定時間が経過する間に、振動 検出工程において振動が検出された場合には、クローズ ドセッション動作を開始しないことを特徴とする請求項 17記載の光記録方法。

【請求項20】 上記記録媒体は、追記型記録媒体及び 書換型記録媒体であることを特徴とする請求項11記載 の光記録方法。

【請求項21】 被写体を撮像する撮像手段と、

撮像した画像データを処理する画像処理手段と、

記録媒体に対してデータの記録及び/又は再生を行う記録再生手段と、

上記記録されたデータを再生装置で読出し可能とするためのクローズドセッション動作を制御する制御手段とを 備え、

上記制御手段は、クローズドセッション動作に必要とされる条件に応じてクローズドセッション動作を実行することを特徴とするデジタルスチルカメラ。

【請求項22】 上記制御手段は、クローズドセッショ

ン動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することを特徴とする請求項21記載のデジタルスチルカメラ。

【請求項23】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してからクローズドセッション動作の開始までの残時間を表示することを特徴とする請求項22記載のデジタルスチルカメラ。

【請求項24】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作の実行を確認することを特徴とする請求項22記載のデジタルスチルカメラ。

【請求項25】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信した後、安定物上に設置する旨の通知を行うことを特徴とする請求項22記載のデジタルスチルカメラ。

【請求項26】 振動を検出する振動検出手段を備え、 上記制御手段は、上記振動検出手段が振動を検出した場合にはクローズドセッション動作を開始しないことを特 徴とする請求項21記載のデジタルスチルカメラ。

【請求項27】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することを特徴とする請求項26記載のデジタルスチルカメラ。

【請求項28】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してからクローズドセッション動作の実行までの残時間を表示することを特徴とする請求項27記載のデジタルスチルカメラ。

【請求項29】 上記制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過する間に、上記振動検出手段が振動を検出した場合には、クローズドセッション動作を開始しないことを特徴とする請求項27記載のデジタルスチルカメラ。

【請求項30】 上記記録媒体は、追記型記録媒体及び 書換型記録媒体であることを特徴とする請求項27記載 のデジタルスチルカメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レーザ光を使用して記録媒体に対してデータの記録を行う光記録装置、光記録方法、及びデジタルスチルカメラに関し、特に記録媒体に書込んだデータを再生装置で読出し可能とするためのクローズドセッション動作を制御する光記録装置、光記録方法、及びデジタルスチルカメラに関する。

[0002]

【従来の技術】光学的読取りを応用した、いわゆるCD (Compact Disc) のようなディスク状記録媒体(以下、光ディスクと記す。)は、記憶容量が大きく、ランダムアクセスが可能である。また、光学読取りは、非接触であることから、磁気テープのような接触型の記録媒体と

比較してヘッドクラッシュ等の危険や読取りによる摩耗・損傷がない。また、ディスク表面が頑丈なことから、 偶発的なデータ消失の危険性も少ない。このように多く の利点を持つ光ディスクは、コンピュータ周辺のメモリ として、またデータ制作・データ保存において優れた記 録媒体である。

【0003】近年においては、CD-R (Compact Disc-Rec ordable)と呼ばれる追記型の光ディスクを用いた記録再生装置が開発されている。このようなCD-Rのなかには、CD-ROM、CD-ROM/XA、CD-I、CD-DAといったコンパクト・ディスクで使用される全ての標準的なフォーマットに対応した書込みを簡単に行うことができるものもある。またCD-Rは、従来の磁気テープ、磁気ディスク等に代わって、電子機器に搭載されて、データを記録及び/又は再生する記録再生装置として使用されるようになってきている。

【 O O O 4 】CD-Rでは、記録データが追記されて書き足されていくために、記録可能な状態では、CD-ROM等においてディスク内周部に記録されている目次情報(以下、TOC: Table Of Contentsと記す。)は、記述されていない。

【0005】即ち、CD-Rでは、もうこれ以上データが追記されないという状況になったときに、初めてファイナライズ処理(クローズドセッション動作)を行って、記録媒体の目次情報としてのTOC情報を書込むようになっている。

【0006】したがって、CD-Rは、ファイナライズ処理が行われていない状態(追記可能な状態)では、記録媒体のPMA(Program Management Area)に書き込まれている暫定TOCを参照することで追記開始位置や、再生データの記録位置を探っている。CD-ROMを再生するための再生装置では、PMAに記述されたこの暫定TOCを読出すことができないため、ファイナライズ処理されていない追記型記録媒体をCD-ROMに対応する再生装置で読み取ることは不可能である。そのため、CD-ROM対応の再生装置で再生可能とするためには、ファイナライズ処理を行う必要がある。

【0007】以下に、従来の記録装置において行われるファイナライズ処理(クローズドセッション動作)を図12を用いて説明する。

【0008】ユーザからの操作により、クローズドセッション動作の実行が指示されると、記録装置は、ステップS41において、記録媒体のプログラムマネジメント領域(Program Managemant Area:PMA)から、暫定的な目次情報(以下、TOC:TableOf Contentsと記す。)を含む記録済み領域の情報を読出す。

【0009】次に、ステップS42において、記録済み領域の情報に基づいて正規のTOCを作成する。

【0010】次に、ステップS43において、リードアウト領域をゼロ埋めする。

【0011】続いて、ステップS44において、リードイン領域に正規のTOCを書込み、書込みが終了したらクローズドセッション動作を完了する。

【0012】クローズドセッション動作では、リードイン領域に約9.2Mbyteとリードアウト領域に約4.6Mbyteとを合わせた約13.8Mbyteのクローズドセッション用データが書き込まれる。

【0013】特に、初回のクローズドセッション動作では、リードイン領域の約20Mbyteとリードアウト領域の約13.8Mbyteとを合わせた約33.8Mbyteのデータが書き込まれることが規格上で定められている。

【0014】従来の記録装置においては、追記型の記録 媒体に対して、以上のようなファイナライズ処理(クローズドセッション動作)を施すことによって、CD-ROM対 応の再生装置においても再生可能にしている。

[0015]

【発明が解決しようとする課題】ところが、クローズドセッション用データを記録媒体に書込むためのクローズセッション動作では、1倍速で駆動する通常の記録装置において、初回のクローズドセッション動作に約8分40秒、2回目以降のクローズドセッション動作に約1分30秒の時間を必要とする。

【0016】従来の記録装置では、上述のようなクローズドセッション動作において、特に初回のクローズドセッション動作の記録容量が多く、それに伴ってクローズドセッションに要する時間も長くなる。

【0017】クローズドセッション動作間における記録装置に対する衝撃や振動は、クローズドセッション動作を失敗する要因となる。クローズドセッション動作に失敗した場合、再試行が困難であり、クローズドセッション動作の失敗により、記録媒体に記録されているデータが読めなくなる場合がある。

【0018】本発明は、このような従来の実情に鑑みて 提案されたものであり、クローズドセッション動作時に 発生するトラブルを防止することが可能な光記録装置、 光記録方法、及びデジタルスチルカメラを提供すること を目的とする。

[0019]

【課題を解決するための手段】上述した目的を達成するために、本発明に係る光記録装置は、記録媒体に対して光記録によってデータの記録を行う光記録装置であって、記録媒体に対してデータを書込む書込み手段と、書込まれたデータを他の再生装置で読出し可能とするためのクローズドセッション動作を制御する制御手段とを有し、制御手段は、クローズドセッション動作に必要とされる条件に応じてクローズドセッション動作を実行することを特徴とする。

【0020】ここで、制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することが

挙げられる。また、当該光記録装置は、振動を検出する 振動検出手段を備え、制御手段は、振動検出手段が振動 を検出した場合にはクローズドセッション動作を開始し ないことが挙げられる。また、記録媒体は、追記型記録 媒体及び書換型記録媒体であることが挙げられる。

【0021】また、上述した目的を達成するために、本発明に係る光記録方法は、記録媒体に対して光記録によってデータの記録を行う光記録方法であって、記録媒体に対してデータを書込み、書込まれたデータを他の再生装置で読出し可能とするためのクローズドセッション動作をクローズドセッション動作に必要とされる条件に応じて実行することを特徴とする。

【0022】ここで、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することが挙げられる。また、光記録方法は、振動を検出する振動検出工程を備え、振動検出工程において振動が検出された場合にはクローズドセッション動作を開始しないことが挙げられる。記録媒体は、追記型記録媒体及び書換型記録媒体であることが挙げられる。

【0023】また、上述の目的を達成するために、本発明に係るデジタルスチルカメラは、被写体を撮像する撮像手段と、撮像した画像データを処理する画像処理手段と、記録媒体に対してデータの記録及び/又は再生を行う記録再生手段と、記録されたデータを再生装置で読出し可能とするためのクローズドセッション動作を制御手段とを備え、制御手段は、クローズドセッション動作に必要とされる条件に応じてクローズドセッション動作を実行することを特徴とする。

【0024】ここで、制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することが挙げられる。また、当該デジタルスチルカメラは、振動を検出する振動検出手段を備え、制御手段は、振動検出手段が振動を検出した場合にはクローズドセッション動作を開始しないことが挙げられる。また、記録媒体は、追記型記録媒体及び書換型記録媒体であることが挙げられる。

[0025]

【発明の実施の形態】以下、本発明の実施の形態について、図面を参照して詳細に説明する。

【0026】本発明の実施の形態の一構成例として示すデジタルスチルカメラは、UDF (Universal Disk Format)に準拠したファイルシステムに基づいて、追記型の記録媒体に対して、振像した画像データの書込み、及び記録媒体からの画像データの読出しを行うものであって、記録した画像データを他の再生装置において再生可能とするためのファイナライズ処理(クローズドセッション)を条件に応じて制御するものである。クローズドセッション動作の制御としては、ユーザによってクロー

ズドセッション動作の実行が選択されてから所定時間が 経過した後、クローズドセッション動作を開始すること、そのときクローズドセッション動作の開始までの残 時間を表示すること、ユーザによってクローズドセッション動作の実行が選択された際に、安定物上に設置する 旨の通知を行うこと、振動検出手段が振動を検出した場 合にはクローズドセッション動作を開始しないこと等が 挙げられる。

【0027】続いて、本発明の実施の形態として示すデジタルスチルカメラについて、詳細を説明する。

【 O O 2 8】始めに、UDF (Universal Disk Format)とは、CD-R (Compact Disc-Recordable)、WORM (Write-Once Read-Many optical disk)、CD-R/RW (Compact Disc-Recordable/Rewritable)、MO (Magnet Optical Disk)、DVD (Digital VersatileDisk)等の各種メディアに対して相互に使用可能なファイル名の文字コード、ファイル属性等を記述するための定義の1つであり、OSTA(Optical Storage Technology Association)によって策定されている。

【0029】つまり、UDFは、どの様なOSからも書込可能で、かつ書き込んだファイルは、特別なリーダプログラム無しにあらゆるOS上での再生互換が実現されるファイルシステムである。

【OO30】UDFでは、主なデータ構造として、ファイ ルエントリICB (File Entry Information Control Bloc k) が用いられている。UDFでは、全てのファイルとディ レクトリが独自のICBを持っている。本発明の実施の形 態における撮像画像の画像データ等の実データを格納し ているファイルは、一般的にそれを定義するICBよりも 前に書かれるようになっているため、ファイルが複数の エクステント (データ列)上に置かれる場合、ICBには それらのエクステントのリストを含めることができる。 【0031】UDFでは、VAT(Virtual Allocation Tabl e) と呼ばれるマッピングテーブルを利用して、各ファ イルに仮想参照 (Virtual Reference) のためのシーケ ンシャルな番号(仮想アドレス)を割り当てている。国 際規格であるIS09660に準拠するファイルシステムが記 録媒体上の各ファイルやディレクトリを論理アドレスに よって直接参照するようになっているのに対して、UDF では上述のような仮想アドレスで参照している。VAT は、トラック内のどの場所にでも配置することができ、 更にVATは、VATの位置を指し示すVAT ICBによって参照 されるようになっている。

【 O O 3 2】UDFにおいてVAT ICBは、記録媒体上に最後に記録された物理アドレスに置くことが決められている。VATは、複数のエクステント上に分割されて配置されているが、VAT ICBは、VATのエクステントリストを含んでいる。したがって、UDFでは、ファイルが何らかの方法で変更されたとしても、一連のファイルポインタ全体を変更する必要はなく、最終的にはVAT ICBのみを変

更すれば、変更されたファイルに辿り着くことができ ス

【0033】UDFに準拠するファイルシステムにおいて、ファイル等を収容し、着脱可能な記録媒体の管理上の単位(以下、ボリュームと記す。)構造は、図1に示すようになっている。

【 O O 3 4 】 UDFに準拠するファイルシステムでは、セッションの先頭を0セクタとしたときの16セクタ以降に記録されるエクステンデッドエリア内のBEAD (Begining Extended Area Descriptor) と、TEAD (Terminating Extended Area Descriptor) とに挟まれるVSD (Volume Structure Descriptor) にUDFファイルシステムを認識するための情報が書かれている。

【0035】UDFに準拠するファイルシステムでは、記録媒体へのデータの書込みがされた状態で、且つセッションをクローズする前では、ファイルに辿り着くために光学ヘッドが最初に読出しを行うAVDP(Anchor Volume Descriptor Pointer)を記録することが認められている。AVDPは、セッションの先頭を0セクタとしたときの論理ブロック番号(LBN:Logical Block Number)が512セクタ目の領域に記述されている。

【 O O 3 6 】つまり、セクタ512にAVDPが存在していれば、UDFに準拠するファイルシステムに基づいて記録されていることが分かる。AVDPは、記録媒体のクローズドセッション動作によって、LBN=256のセクタと、LBN=(最後書込みセクタのLBN)-256のセクタのうちの2カ所のセクタに記述される。クローズドセッション動作後は、セクタ512に記述されたAVDPは、読出しの際に使用されない。AVDPは、ボリューム記述子(以下、VDS: Volume Descriptor Sequenceと記す。)を指し示すものである。VDS群は、セクタ512以降に記述されている。

【0037】VDSとは、ボリューム構造の中身に関する情報を示した記述子であり、VDSには基本ボリューム記述子、論理ボリューム記述子(以下、LVD: Logical Volume Discriptionと記す。)、アプリケーション用ボリューム記述子、仮想パーティション記述子、実パーティション記述子等のボリューム情報やパーティション情報が含まれている。

【0038】パーティションには、実パーティションと仮想パーティションの2つがある。実パーティションには、記録媒体上に記録されるデータの実際の論理アドレスが含まれている。一方、仮想パーティションは、データの仮想アドレスに基づくテーブルであり、記録媒体の記録領域全体を物理アドレスから仮想アドレスにリマッピングしたときの領域の区分である。仮想パーティションは、VATによって決定される。

【0039】また、VDS内には実パーティションと仮想パーティションとを指す2つの記述子が置かれている。パーティション番号が0であれば、ファイルシステムは、実パーティション、つまり実際の論理アドレスを参

照し、1ならば仮想パーティション (VAT) を参照する。

【 O O 4 O 】 VDSにおけるLVDは、ファイルセット記述子 (以下、FSDS: File Set Descriptor Sequenceと記 す。)の集合、つまりボリューム内に存在するファイル セットの集合を指している。それぞれのFSDSは、RDICB (Root Directory Information Control Block)を指し ており、RDICBには、具体的なディレクトリ名、ファイル名等の情報が含まれている。

【 O O 4 1】パケットライティングに適したUDFに準拠したファイルシステムでは、2つの固有なデータ構造がある。ファイルシステム内に存在する各ファイルを識別するためのファイルエントリICB (File Entry ICB)と、ファイル識別記述子(以下、FID: File Identifier Descriptorと記す。)である。FIDは、ファイルエントリICBの物理アドレスを指し示す。又は、VATを介して、間接的にファイルエントリICBを指し示している。

【0042】RDICBから参照されるディレクトリは、関連するFIDを集めたテーブルとして構成されている。ファイルエントリICBには、格納されるファイルの全てのエクステントリスト、日付、及びファイル属性等が入っている。したがって、このファイルエントリICBの内容は、ファイルが変更又は編集されたときに変化する可能性がある物理アドレスである。

【0043】FIDは、ファイルエントリICBを指し、ファイルエントリICBによって参照されるファイルエントリが実際のファイルを指している。ディレクトリは、一種のファイルであるから、ファイルエントリは、ディレクトリを指すことも可能である。これによってUDFに準拠したファイルシステムでは、ツリー状の階層構造を構成している。

【 O O 4 4 】このように、RDICBによってルートディレクトリを参照することができる。また、ルートディレクトリには、ファイルエントリICBを参照するためのFIDか、ディレクトリエントリICBを指すFIDが含まれている。

【 0 0 4 5】FIDは、例えば「パーティション 1 / ブロック 2 0 0」のような情報を持っている。パーティションが 1 ならば仮想パーティションであるから、ファイルシステムは、ファイルを探すために直接論理アドレス # 200へは行かない。代わりに、まずVATを参照し、VATを介して論理アドレスを指し示すことになる。

【0046】以上のファイルシステムの結果、UDFではファイルをシークするために、図2に模式的に示すシーケンスを実行する。

【0047】光ヘッドは、まず、ディスクの記録済みエリアの1番最後の領域を読みに行く。ここにはVAT ICBが記述されている。VAT ICBからVATが読み込まれる。

【0048】続いて光ヘッドは、セクタ256のAVDPを参照する。次にAVDPに記述されるVDSを参照する。

【 0 0 4 9 】 VDSから、パーティションが実パーティションであるか、仮想パーティションであるかを判別する。

【0050】更にVDSから、FSDSを参照する。FSDSには、RDICBが示されており、RDICBにはルートディレクトリが示されている。ルートディレクトリの中には、ファイルの毎のIDを示すFIDが含まれている。

【0051】最後に、FIDによって構成されるルートディレクトリのVDSのパーティションフラグが実パーティションになっている場合は、ファイルエントリICBの物理アドレスを直接参照し、フラグが仮想パーティションになっている場合は、VATを介してファイルエントリICBを参照することによって所望とするファイルに辿り着くことになる。

【 O O 5 2 】 FIDとファイルエントリICBとの間にVATを設けることによって、ファイルエントリICBが書き換えられた場合であっても、VAT上でファイルエントリICBのアドレスをすり替えることで仮想的にファイルエントリICBが書き換えられたように扱うことができる。

【0053】したがって、例えばルートディレクトリの中身を変更したことによってファイルエントリICBの場所が変わったとしても、VATを変更すれば、FIDを書き換える必要がない。

【0054】UDFに準拠するファイルシステムでは、以上のようなシーク動作を行うことによって、シーケンシャルライトの記録媒体を、あたかもランダムリードライトの記録媒体であるかのように扱うことを可能としている。

【0055】続いて、本発明の実施の形態の一構成例として示すデジタルスチルカメラの具体的な構成について、図3を参照して説明する。当該デジタルスチルカメラは、例えば、記録媒体に対してデータの書込及び読み出しを行うものであって、ここでは追記型の記録媒体として、ディスク形状を呈するいわゆるCD-R (Compact Disc-Recordable)を使用する。

【0056】デジタルスチルカメラ1は、被写体を撮像する撮像部10と、撮像部10からの画像信号に変換を施す画像信号演算処理部(Image Signal Processor)11と、当該デジタルスチルカメラ1を操作するための操作情報、画像信号等を表示する表示部12と、後述する記録媒体に対して書込及び/又は読出しを行うOP(Optical Pickup)部13と、読出し信号をFF処理するFF処理部14と、FF処理部14からの各信号からサーボ信号処理部15と、サーボ信号処理部15からの信号に基づいて各ドライバを制御するためのアナログ信号を生成するアナログフィルタ処理部16と、後述する記録媒体からの読出し信号を処理する信号処理コイン・スピンドルモータの画転を制御するスピンドルドライバ18と、スレッドモータの動作を制御するスレッドドライバ19と、OP部13の対物レンズを揺動す

るトラッキングドライバ20と、ディスク状記録媒体に対してOP部13の対物レンズを垂直方向に動かしてビームの焦点を制御するフォーカスドライバ21と、ディスク状記録媒体を駆動するスピンドルモータ22と、OP部13を記録媒体の径方向に移動するスレッドモータ23と、振動を検出する振動検出センサ24と、各部を制御する制御部25とを備え、記録媒体26に対して、撮像した画像データの書込み、及び画像データの読出しを行う。

【0057】撮像部10は、被写体の像を取り込むレンズ部と、画像信号を生成する電荷結合素子(以下、CCDと記す。)と、サンプリング/ホールド(以下、S/Hと記す。)回路と、画像信号をデジタル信号に変換するA/D変換回路とを有している。CCDは、レンズ部からの被写体像から画像信号を生成し、生成した画像信号をS/H回路へと供給する。S/H回路は、CCDからの画像信号をサンプリング及びホールドした後、A/D変換回路へと供給する。A/D変換回路は、S/H回路からの画像信号をデジタル信号へと変換し、画像信号演算処理部11へと供給する。

【0058】画像信号演算処理部11は、CPUに制御されて、撮像部10からのデジタル画像信号に対して、RGB信号から色差・輝度信号への色基準形変換、ホワイトバランス処理、 r補正、縮小画像処理、JPEG圧縮処理等の画像処理を行う。処理された画像信号は、信号処理部17へと供給される。また、画像信号演算処理部11は、処理した画像信号を表示部12へと供給する。

【0059】表示部12は、例えば液晶ディスプレイ (LCD: Liquid Crystal Display)であり、画像信号処 理演算部からの画像信号を表示する。

【0060】OP (Optical Pickup) 部13は、対物レンズ、レーザダイオード (LD)、レーザダイオードドライバ、フォトディテクトIC (Photo Detect IC)、ハーフミラー等を含み、光信号を検出してRF処理部14へと出力する。また、記録媒体26に対して記録する際には、ピット形成に必要な信号処理部17からのレーザの点減・駆動信号 (DECEFMW)、レーザ強度と明滅の最適値を示す(ライトストラテジ)信号等に基づいて記録媒体26に対してデータの書込を行う。

【 O O 6 1】RF処理部14は、OP部13から検出された ビームシグナル、サイド、メインからなる8系統の信号 を、サンプリング及びホールドし、演算処理を行って、 8系統の信号のうちの所定の信号からFE(フォーカスエ ラー)、TE(トラッキングエラー)、MIRR(ミラー)、 ATIP(Absolute Time In Pregroove)、読出し主信号等 の信号を生成する。RF処理部14は、生成した信号のう ち、FMDT(FrequencyModulation Data)、FMCK(Freque ncy Modulation Clock)、TE、FEをサーボ信号処理部1 5へと出力し、試し書きによって検出したレーザ強度の 最適値(OPC:Optical Power Calibration)信号及びレ ーザ点滅・駆動信号を信号処理部17へと出力し、MIRRを制御部25へと出力する。

【 O O 6 2 】 サーボ信号処理部 1 5 は、RF処理部 1 4 からのFMDT (Frequency Modulation Data)、FMCK (Frequency Modulation Clock)、TE、FEを入力し、制御部 2 5 に制御されて光ディスク特有の各種サーボを制御する信号を生成し、アナログフィルタ処理部 1 6 へと出力する

【0063】アナログフィルタ処理部16は、サーボ信号処理部15からの各種サーボの制御信号からアナログ信号を生成して、スピンドルドライバ18、スレッドドライバ19、トラッキングドライバ20、フォーカスドライバ21へと出力する。

【0064】信号処理部17は、制御部25に制御されて、RF処理部14からのOPC、DECEFMを入力し、CIRCデコード及びエンコード、ライトストラテジ、ADDrデコード、アシンメトリ計算、ランニングOPC等の処理を行う。記録媒体に対してデータの書込を行う場合は、レーザの点滅・駆動信号、レーザ強度の最適値を示す信号等の信号をOP部13に対して出力する。

【0065】スピンドルドライバ18は、アナログフィルタ処理部16からの信号に基づいてスピンドルモータ22の回転を制御する。

【0066】スレッドドライバ19は、アナログフィルタ処理部16からの信号に基づいてスレッドモータ23のスレッド動作を制御する。

【0067】トラッキングドライバ20は、アナログフィルタ処理部16からの信号に基づいてOP部13を揺動して、記録媒体26のディスク表面に照射されるビームスポットの位置を制御する。

【0068】フォーカスドライバ21は、アナログフィルタ処理部16からの信号に基づいてOP部13を記録媒体26のディスク表面に対して垂直方向に動かすことによって、レーザの焦点調整を制御する。

【0069】スピンドルモータ22は、スピンドルドライバ18からの信号に基づいて記録媒体を回転させる。 【0070】スレッドモータ23は、スレッドドライバ19からの信号に基づいてOP部13のスレッド動作を行う。

【0071】制御部25は、各種処理を行うためのプログラムを格納するプログラムメモリと、VAT ICB及び各種データを一時的に記憶するワークエリアとしてのSRAM (Static Random Access Memory)と、CPUとを備え、VAT ICBの読出し、及びVAT ICBの書込みを制御している。また、制御部25は、各部を統括して制御する。

【0072】ここで、SRAMは、具体的に、記録媒体上から抽出されたVAT ICBを一時的に展開する作業領域として使用される。また、DRAMは、ファイルやディレクトリの更新、追加、削除等に伴ってその都度更新されるVATと仮想パーティションが開始される記録媒体上の論理ア

ドレスとの対応テーブルを当該デジタルスチルカメラ1 の主電源がオフになる直前まで記憶する。

【0073】記録媒体26は、UDFに準拠したファイルシステムに基づいてデータの書込み及び読出しを行う追記型記録媒体であって、ディスク形状を呈するいわゆるCD-R (Compact Disc-Recordable)である。

【0074】記録媒体26の断面図を図4乃至図5に示す。図4は、記録媒体26をディスク表面に対して垂直に切断したときの切断面を示している。また図5は、図4の断面図におけるディスク内周側を拡大して示したものである。

【0075】図4に示すように、記録媒体26は、パワーキャリブレーション領域(PowerCariblation Area:PC A)と、プログラムマネジメント領域(Program ManegementArea:PMA)と、リードイン領域(Lead-in Area)と、インフォメーション領域(Imformation Area)をと有している。

【0076】更に、その拡大図を図5に示すように、パワーキャリブレーション領域は、実際に試し書きを行う領域としてのテスト領域と、試し書きの開始位置及び回数等をカウントするためのカウント領域とを有している。

【0077】図4及び図5に斜線で示されている領域は、記録済みであることを示している。

【0078】テスト領域は、100個のパーティションに分割され、このパーティションは、リードイン領域の開始時間からの相対時間によって指定されている。各パーティションは、最小で1フレームで構成されるが、5サブパーティションに分割され、1サブパーティションは、更に3フレームに分割されるため、最大15フレームで構成される。このサブパーティションを使用して書込みの直前に試し書きを行うことによりレーザ出力を調整する。

【0079】上述のように構成されたデジタルスチルカメラとしての機能を有するデジタルスチルカメラ1において、記録媒体26に記録されている信号を読出す際の各構成要素の動作を説明する。

【0080】記録媒体26のディスク表面から反射されたレーザダイオードの光は、UP部13のレンズ光学系で読取られる。レンズ光学系からの光は、PDIC (Photo DetectIC)によって電気信号に変換されてRF処理部14内でサンプリング及びホールドされ、8つのそれぞれ所定の信号からフォーカスエラー(FE)、トラッキングエラー(TE)、ミラー(MIRR)、ATIP (Absolute Time In Pregroove)、読出し主信号等の信号が演算処理により生成される。

【0081】始めに、RF処理部14で求められたフォーカスエラーは、サーボ信号処理部15 (Digital Servo Processor) にて特性を調整された後、アナログフィルタ処理部16 (Analog Filter Block)を通り、フォー

カスドライバ21に入力される。フォーカスドライバ21は、図示しないOP部13のレンズ駆動フォーカスコイルを上下方向に移動し、フォーカスのずれを修正する。【0082】同様に、RF処理部14で求められたトラッキングエラーは、サーボ信号処理部15(Digital Servo Processor)にてAC成分を取り出され、デジタルフィルタ処理が施される。その後、アナログフィルタ処理部16を通り、トラッキングドライバ20に入力される。トラッキングドライバ20は、OP部13のレンズ駆動トラッキングコイルを半径方向へと微動させ、トラッキングのずれを修正する。

【0083】また、RF処理部14で求められたトラッキングエラーは、サーボ信号処理部15にてDC成分が取り出され、デジタルフィルタ処理が施される。その後、アナログフィルタ処理部16を通り、スレッドドライバ19に入力される。スレッドドライバ19は、スレッドモータを動作させ、OP部13全体を記録媒体の径方向に移動し、スレッド動作のずれを修正する。シーク動作時には、このスレッド制御の電圧を外部から意図的に加えることによって強制的にスレッドモータを駆動している。【0084】以上のように、トラッキングエラーのAC成分を元にレンズのみが径方向に微動されるトラッキング動作が行われ、DC成分を元にOP部13全体を径方向に移動するスレッド動作が行われる。

【0085】RF処理部14から出力される記録媒体の反射率変化の検出信号(ミラー)は、OP部13がトラックを横切りる際に検出されるため、CPUは、ミラーをカウントすることによって、現在のシーク位置及び読取り位置の検出、光ピックアップ動作の開始及び停止を行う。【0086】スピンドルモータ22の制御は、ATIP(Absolute Time In Pregroove)処理に基づいて行われる。記録媒体に書き込まれているウォッブル(Wobble)溝と呼ばれる蛇行した溝には、径方向に22.05kHzの中心周波数で+/-1kHzのFM変調により、時間情報が記録されている。変調されているのは、Bi-Phase変調されたATIP(Absolute Time In Pregroove)と呼ばれる時間情報である。

【0087】フォーカスとトラッキングが合っているとき、RF処理部14では、入力された8信号の所定の組み合わせからウォッブル信号が取り出される。FM復調、ATIPデコードが施され、中心周波数に相当するクロック信号(FMCK)と時間情報(FMDT)として取り出される。

【0088】FMDTは、サーボ信号処理部15(Servo Processor)にてメディアの絶対時間位置、即ちアドレスとその他の付加情報として分類された所定のレジスタに格納されている。それに応じて、CPUがBUS経由で読み出しを行う。

【0089】読出し動作時には、RF処理部14にて8信号の所定の組み合わせから記録ピットに対応した信号を取り出し、イコライザー処理をした後、EFM (Eight to

Fourteen Moduration) 信号の形式のまま信号処理部1 7に供給される。信号処理部17で、CIRC (Cross Inte rleave Reed-Solomon Code) に基づいた復号を行って所 望のデータを得る。

【0090】続いて、書込み動作について説明する。書 込み動作では、まず始めにリードイン領域にピックアッ プを移動してATIP情報を読出す。更に、その中からスペ シャルインフォメーション2 (Special Imformation 2)の部分を読出す。

【0091】図6に、リードイン領域に書き込まれてい るATIPのフレーム構造の概略を示した。図6におけるフ レーム番号Nのフレームにはスペシャルインフォメーシ ョン1が記述され、フレーム番号(N+10)にはスペシャ ルインフォメーション2が記述されている。また、各ス ペシャルインフォメーションに続くフレーム番号(N+ 1) から (N+9)、及び(N+11) から (N+19) のフレーム にはノーマルタイムコードが記述されている。

【0092】10フレーム毎に記述されているスペシャル インフォメーション領域には、記録媒体のリードイン領 域の開始位置が時間情報として書き込まれている。ここ で読み出されるフレーム番号(N+10)に記述されるスペ シャルインフォメーション2領域にもリードイン領域の 開始位置が時間情報として所定の形式で記述されてい る。

【0093】例えば、記録媒体の記録開始点から2分1 1 秒経過した位置からリードイン領域が開始される媒体 である場合、記録媒体25のスペシャルインフォメーシ ョン2領域には、合計収録時間の100分から2分11 秒を減算した97分49秒という時間情報をデジタル化 した信号が記述されている。即ち、「97:49:00」という 時間情報が「1001 0111 0100 1001 0000 0000」として 記述されている。

【0094】このスペシャルインフォメーション領域に 書込まれている情報は、記録媒体を識別するための識別 コードに相当するものである。記録媒体の再生装置で は、この識別コードに対応するライトストラテジパラメ ータと他の関連パラメータとをテーブルとして予め記憶 している。ライトストラテジとは、書込み後のピットサ イズが規格を満たすように、書込時のレーザパルスを各

アシンメトリ値(%) = (3Tセンタ-11Tセンタ) / 11T振幅····(1)

目標とするアシンメトリ値は、ジッタ値を最小とする理 想的な値であり、このアシンメトリ値は、記録媒体固有 の値としてライトストラテジパラメータの中に含まれ、 記録媒体のリードイン領域の開始位置情報と対応して予 め記憶されている。ここでは、目標アシンメトリ値を一ち %としている。

【0101】書込時のレーザ出力と書込み後のアシンメ トリ値の関係を図9に示す。図9からも分かるように、 書込時のレーザ出力と書込み後のアシンメトリ値は比例 関係にある。CD-Rの光学ピックアップに使用されるレー ピット毎に時間方向とレベル方向に修正するための補正 パラメータである。再生装置には、予め記録媒体毎のラ イトストラテジが用意されている。ライトストラテジに 従った記録信号は、例えば図7に示すように詳細に設定 されている。

【0095】図7(a)には、EFM信号が示されている。図 7(b)は、図7(a)のEFM信号を書込む際の実際のR F信号が示されている。ここで、ライトストラテジに従 った記録信号は、aTだけ遅延して書き始め、書込みの初 期(bT)期間は、PwよりもΔPだけ大きい出力で記述さ れ、その後は出力Pwで記述するように決定されている。 【0096】次に、レーザ出力の最適値を決定するため のOPC (Optimum Power Calibration) 動作を行う。上述 のライトストラテジが書込みピット毎のレーザの詳細な 制御であるのに対して、OPC動作は、書込み動作全体を 通してのレーザ出力の最適値を算出するための動作であ る。OPCを行うことによって、理想的な読取り目標値を 実現するためのピットの書込み設定値を得ることができ

【0097】OPCは、PCAのテスト領域で行われる。テス ト領域は、100個のパーティションに分割され、この パーティションは、リードイン領域の開始時間からの相 対時間によって指定されている。各パーティションは、 更に最大で15個のフレームに分割されている。この1 パーティションを使用して書込みの直前に試し書きを行 うことで、レーザ出力を調整する。

【0098】具体的には、レーザ出力を所定の値から段 階的に変化させて、段階毎に記録媒体に書込みを行う。 このときのレーザ出力を読み出して、各段階におけるア シンメトリを測定し、目標とするアシンメトリ付近の設 定値から直線近似により目標のアシンメトリ値を示すレ ーザ出力の設定値を得る。

【0099】ここで、アシンメトリ値とは、3TPit/Land の中心レベルと11TPit/Landの中心レベルとのずれを定 義したものであり、以下の式(1)によって算出される 値である。アシンメトリ値を算出する際に用いられるピ ットの復調レベルを図8に示した。

[0100]

ザダイオードは、一般に動作環境温度に対するレーザ出 力の変動が大きく、常温で目標アシンメトリ値になるよ うなレーザ出力を設定したとしても、図9に示すよう に、環境温度に応じてレーザ出力が大きく変化する。そ の結果、図10に示したアシンメトリ値と記録ジッタ値 の関係を表すグラフからも分かるように、アシンメトリ 値の変動が、記録ジッタ値の悪化に大きく影響してい

【0102】そのため、レーザ出力の最適値を決定する ためのOPC動作は、書込み動作の直前に実行する必要が

あり、上記作業によりレーザ出力の最適設定を行った後に、固定値として用意されている各パラメータを設定して最適な書込みを実現している。アシンメトリ値の測定は、A/D変換器から取り込んで信号処理部において行われる。

【 O 1 O 3 】 PCAのカウント領域では、OPCの実施により、各パーティション内のサブパーティションが1つでも使用されると、カウント領域の対応するパーティションが塗りつぶされるようになっている。次回、OPCを行う際には、PCAの使用済みパーティション内の未使用サブパーティションをシークしてからOPC動作が行われる

【 O 1 O 4 】 具体的に書込みに際しては、SRAM中に用意された圧縮済みの撮影画像データを、シグナルプロセッサ内でCIRCやEFMのエンコード処理を行った後に、ピット形成に必要なレーザの点滅・駆動信号(DECEFMW)、レーザ強度の最適値を示す(ライトストラテジ)信号としてOP部のレーザドライバに入力される。

【 0 1 0 5 】このときATIPをデコードして得られるFMDT 信号から得られるフレーム単位のアドレスを基準としてファイルシステムに沿って、所定の位置にタイミングを合わせて書込みが行われる。

【0106】最初の書込みでは、後のクローズセッションの際にリードインエリアとなる約20Mbyte分の領域をスキップした位置から書込みを開始する。

【0107】追記型記録媒体に対してもうこれ以上追記をしない場合、或いはCD-ROMのような他の再生装置で再生しようとする場合には、CD-ROMで読取り可能とするためにリードイン領域とリードアウト領域とを書込むためのファイナライズ処理(クローズドセッション動作)を行う必要がある。

【0108】本発明の実施の形態においては、このファイナライズ処理(クローズドセッション)を条件に応じて制御している。クローズドセッション動作の制御としては、ユーザによってクローズドセッション動作の実行が選択されてから所定時間が経過した後、クローズドセッション動作を開始すること、そのときクローズドセッション動作の開始までの残時間をカウントダウンして表示すること、カウントダウンが終了した後、クローズドセッション動作を実行するためのユーザによってクローズドセッション動作の実行が選択された際に、安定物上に設置する旨の通知を行うこと、またクローズドセッション動作の開始までのカウントダウン中に振動検出手段が振動を検出した場合にはクローズドセッション動作を開始しないこと等が挙げられる。

【0109】更に具体的には、デジタルスチルカメラ1は、クローズドセッション動作の実行が選択されると、安定した場所に静置することを指示する旨の表示を行い、静置したら確認ボタンを押すようにユーザに通知する。

【0110】また、クローズドセッション動作の実行が選択されてから、クローズドセッション動作の開始までの時間は、例えば5秒間とし、確認ボタンが押されるとカウントダウンを開始する。

【 0 1 1 1 】また、この間に、振動検出センサにおいて振動が検出されると、クローズドセッション動作までのカウントダウンを停止する。

【0112】本発明の実施の形態として示すデジタルスチルカメラがクローズドセッション動作を行うときの処理を図11を用いて詳細に説明する。

【0113】ユーザによってファイナライズ処理(クローズドセッション)の実行が選択されると、ステップS1において、制御部25は、記録媒体のPMA(Power Management Area)に書き込まれている暫定TOCを読出す。

【0114】制御部25は、ステップS2において、暫定TOCに基づいて、正規TOCを作成する。

【0115】制御部25は、ステップS3において、安定な場所に静置し、クローズドセッション動作を行う準備ができたら確認するような警告表示を行う旨の指示を出す。ここでの警告表示としては、例えば「安定な場所にカメラを置いて下さい。準備ができたら確認ボタンを押して下さい。」等が挙げられる。

【0116】制御部25は、ステップS4において、確認ボタンが押されたか否かの判別を行う。確認ボタンが押されたことを確認した場合、ステップS5において、クローズドセッション動作の開始までの残時間を意味するカウントダウン表示を行う。具体的な表示としては「 $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 2$ 中の表示が挙げられる

【0117】一方、ステップS4において、確認ボタンが押されたことが確認できない場合は、ステップS4の工程を繰り返す。

【0118】また、この間に振動検出センサによって振動が検出された場合、クローズドセッション動作を行わないようにする処理、例えばステップS3から繰り返す、或いはクローズドセッション動作を実行しないようにすることによって、クローズドセッション動作中に発生するクローズドセッションの不具合を回避する。

【0119】振動が検出されなければカウントダウンが 正常に行われ、ステップS6へ進みクローズドセッション動作を開始する。クローズドセッション動作を開始すると、制御部25は、始めにリードアウト領域への書込みを行う。このときリードアウト領域には、全てゼロ埋めされるような情報が書込まれる。

【0120】リードアウト領域への書込みが終了すると、ステップS7において、リードイン領域への書込みが行われる。ここではステップS2において作成された正規TOCが繰り返し書込まれていく。

【0121】リードイン領域への書込みが終了すると、 制御部25は、ステップS8において、クローズドセッ ション動作の終了を示す旨の表示を行って一連の処理を 終了する。表示としては「セッションクローズ終了」等 が挙げられる。

【0122】以上のように、本発明の実施の形態の一構成例として示すデジタルスチルカメラ1は、クローズドセッション動作の実行が指示された際に、所定時間後にクローズドセッション動作を開始する処理、ユーザに対して当該デジタルスチルカメラを安定状態に保つことを指示する処理、振動検出センサ24によって振動を検出した際にはクローズドセッション動作を行わないようにする処理等によって、クローズドセッション動作中に発生するクローズドセッションの失敗や不完全といったトラブルの発生を防止することを可能とする。

【 0 1 2 3 】なお、本発明は上述した実施の形態のみに 限定されるものではなく、本発明の要旨を逸脱しない範 囲において種々の変更が可能であることは勿論である。

[0124]

【発明の効果】本発明に係る光記録装置は、記録媒体に対して光記録によってデータの記録を行う光記録装置であって、記録媒体に対してデータを書込む書込み手段と、書込まれたデータを他の再生装置で読出し可能とするためのクローズドセッション動作を制御する制御手段とを有し、制御手段は、クローズドセッション動作に必要とされる条件に応じてクローズドセッション動作を実行する。

【 0 1 2 5 】 ここで、制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することが挙げられる。また、当該光記録装置は、振動を検出する振動検出手段を備え、制御手段は、振動検出手段が振動を検出した場合にはクローズドセッション動作を開始しないことが挙げられる。また、記録媒体は、追記型記録媒体及び書換型記録媒体であることが挙げられる。

【0126】したがって、本発明に係る光記録装置によれば、クローズドセッション動作中に発生するクローズドセッションの失敗や不完全といったトラブルの発生を防止することが可能となる。

【 0 1 2 7 】また、本発明に係る光記録方法は、記録媒体に対して光記録によってデータの記録を行う光記録方法であって、記録媒体に対してデータを書込み、書込まれたデータを他の再生装置で読出し可能とするためのクローズドセッション動作をクローズドセッション動作に必要とされる条件に応じて実行する。

【0128】ここで、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することが挙げられる。また、光記録方法は、振動を検出する振動検出工程を備え、振動検出工程において振動が検出された場合にはクローズドセッション動作を開始しないことが挙げられる。記録媒体は、追記型記録媒体及び書換型記録媒体で

あることが挙げられる。

【0129】したがって、本発明に係る光記録方法によれば、クローズドセッション動作中に発生するクローズドセッションの失敗や不完全といったトラブルの発生を防止することが可能となる。

【0130】また、本発明に係るデジタルスチルカメラは、被写体を撮像する撮像手段と、撮像した画像データを処理する画像処理手段と、記録媒体に対してデータの記録及び/又は再生を行う記録再生手段と、記録されたデータを再生装置で読出し可能とするためのクローズドセッション動作を制御する制御手段とを備え、制御手段は、クローズドセッション動作に必要とされる条件に応じてクローズドセッション動作を実行する。

【0131】ここで、制御手段は、クローズドセッション動作を実行する旨の信号を受信してから所定時間が経過した後、クローズドセッション動作を開始することが挙げられる。また、当該デジタルスチルカメラは、振動を検出する振動検出手段を備え、制御手段は、振動検出手段が振動を検出した場合にはクローズドセッション動作を開始しないことが挙げられる。また、記録媒体は、追記型記録媒体及び書換型記録媒体であることが挙げられる。

【0132】したがって、本発明に係るデジタルスチルカメラによれば、クローズドセッション動作中に発生するクローズドセッションの失敗や不完全といったトラブルの発生を防止することが可能となる。

【図面の簡単な説明】

【図1】UDFに準拠するファイルシステムにおいて、ファイル等を収容し、着脱可能な記録媒体の管理上の単位 (以下、ボリュームと記す。)構造を示す図である。

【図2】UDFに準拠するファイルシステムにおけるファイルのシーク処理を模式的に示す図である。

【図3】本発明の実施の形態として示すデジタルスチル カメラの構成を示すブロック図である。

【図4】本発明の実施の形態として示すデジタルスチルカメラで使用される記録媒体を媒体表面に対して垂直に切断したときの切断面を示す断面図である。

【図5】本発明の実施の形態として示すデジタルスチルカメラで使用される記録媒体を媒体表面に対して垂直に切断したときの切断面を示す断面図である。

【図6】本発明の実施の形態として示すデジタルスチルカメラで使用される記録媒体のリードイン領域に書き込まれているATIP情報のフレーム構造の概略を示す概略図である。

【図7】図7(a)は、時間経過によって変化するEFM信号の強度を示す図であり、図7(b)は、図7(a)のEFM信号を書込む際の実際のRF信号の強度を示す図である

【図8】本発明の実施の形態として示すデジタルスチルカメラが記録媒体毎のアシンメトリ値を算出する際に使

用されるピットの復調レベルを示す図である。

【図9】本発明の実施の形態として示すデジタルスチルカメラが記録媒体に対してデータを書込む時のレーザ出力と書込み後のアシンメトリ値の関係を示す関係図である

【図10】本発明の実施の形態として示すデジタルスチルカメラが算出した書込時のアシンメトリ値と記録ジッタ値の関係を表す関係図である。

【図11】本発明の実施の形態として示すデジタルスチルカメラが記録媒体に対して行うクローズドセッション動作の処理を説明するフローチャートである。

【図12】従来の記録装置において行われるファイナラ

イズ処理 (クローズドセッション動作) を説明するフローチャートである。

【符号の説明】

1 デジタルスチルカメラ、10 撮像装置、11 画像信号演算処理部、12 表示部、13 OP部、14 RF処理部、15 サーボ信号処理部、16 アナログフィルタ処理部、17 信号処理部、18 スピンドルドライバ、19スレッドドライバ、20 トラッキングドライバ、21 フォーカスドライバ、22 スピンドルモータ、23 スレッドモータ、24 振動検出センサ、25制御部、26 記録媒体、30 レンズ部、31 電荷結合素子、32 S/H回路、33 A/D変換回路

【図3】

【図4】

【図5】

例:T_{SL}=97:49:00

【図7】

【図6】

フレーム番号	フレーム内容					
N	スペシャルインフォメーション1					
N+1	***					
:	ノーマルタイムコード					
N+9						
N+10	スペシャルインフォメーション2					
N+11						
	ノーマルタイムコード					
N+19						
N+20	スペシャルインフォメーション3					
N+21						
:	ノーマルタイムコード					
harana and a second						

【図12】

【図8】

【図10】

【図9】

フロントページの続き

 (51) Int. Cl. 7
 識別記号
 F I
 (参考)

 H O 4 N
 5/225
 H O 4 N
 5/225
 F

 5/85
 5/85
 Z

Fターム(参考) 50022 AA11 AC01 AC11 AC31 AC69 AC74 AC78 CA00 50052 AA02 AB03 AB04 AB09 DD09 EE03 5D044 BC05 CC06 DE03 DE12 DE17 DE23 DE29 DE39 DE54 EF05 5D090 AA01 BB03 CC12 DD03 GG03