Package 'tipmap'

August 14, 2023

Type Package

Title Tipping Point Analysis for Bayesian Dynamic Borrowing

Version 0.5.2

Description Tipping point analysis for clinical trials that employ Bayesian dynamic borrowing via robust meta-analytic predictive (MAP) priors. Further functions facilitate expert elicitation of a primary weight of the informative component of the robust MAP prior and computation of operating characteristics. Intended use is the planning, analysis and interpretation of extrapolation studies in pediatric drug development, but applicability is generally wider.

License Apache License 2.0

URL https://github.com/Boehringer-Ingelheim/tipmap

BugReports https://github.com/Boehringer-Ingelheim/tipmap/issues

Encoding UTF-8

Imports dplyr, magrittr, purrr, ggplot2, RBesT, assertthat, stats, furrr, future

Suggests knitr, rmarkdown, tidyr, tibble, testthat (>= 3.0.0),

Config/testthat/edition 3

RoxygenNote 7.2.3

VignetteBuilder knitr

Depends R (>= 3.5.0)

NeedsCompilation no

Repository CRAN

Author Christian Stock [aut, cre] (https://orcid.org/0000-0002-3493-3234),

Morten Dreher [aut],

Emma Torrini [ctb],

Boehringer Ingelheim Pharma GmbH & Co. KG [cph, fnd]

Maintainer Christian Stock <christian.stock@boehringer-ingelheim.com>

Date/Publication 2023-08-14 10:30:03 UTC

2 create_new_trial_data

R topics documented:

	create_new_trial_data	2
	create_posterior_data	3
	create_prior_data	4
	create_tipmap_data	5
	default_quantiles	6
	default_weights	6
	draw_beta_mixture_nsamples	7
	fit_beta_1exp	8
	fit_beta_mult_exp	8
	get_cum_probs_1exp	9
	get_model_input_1exp	10
	get_posterior_by_weight	11
	get_summary_mult_exp	11
	get_tipping_points	
	load_tipmap_data	13
	oc_bias	
	oc_coverage	
	oc_pos	
	tipmap_darkblue	
	tipmap_lightred	
	tipmap_plot	19
Index		21

create_new_trial_data Data on new trial in target population

Description

Creates a vector containing data on the new trial in the target population. This may be hypothetical data in the planning stage.

Usage

```
create_new_trial_data(n_total, est, se)
```

Arguments

n_total The total sample size.

est Treatment effect estimate.

se Standard error of the treatment effect estimate.

Value

A numeric vector with data on the new trial, incl. quantiles of an assumed normal data likelihood.

create_posterior_data 3

See Also

```
create_posterior_data, create_tipmap_data
```

Examples

```
new_trial_data <- create_new_trial_data(
  n_total = 30, est = 1.27, se = 0.95
)</pre>
```

Description

Returns a data frame containing the default quantiles of posterior mixture distributions generated with varying weights on the informative component of the MAP prior.

Usage

```
create_posterior_data(map_prior, new_trial_data, sigma, null_effect = 0)
```

Arguments

map_prior	A MAP prior containing information about the trial(s) in the source population, created using RBesT.
new_trial_data	A vector containing information about the new trial. See ${\tt create_new_trial_data()}.$
sigma	Standard deviation to be used for the weakly informative component of the MAP prior, recommended to be the unit-information standard deviation.
null_effect	The mean of the robust component of the MAP prior. Defaults to 0.

Value

A data frame containing posterior distributions for varying weights

References

Best, N., Price, R. G., Pouliquen, I. J., & Keene, O. N. (2021). Assessing efficacy in important subgroups in confirmatory trials: An example using Bayesian dynamic borrowing. Pharm Stat, 20(3), 551–562. https://doi.org/10.1002/pst.2093

See Also

```
create_new_trial_data, create_prior_data
```

4 create_prior_data

Examples

```
# create vector containing data on new trial
new_trial_data <- create_new_trial_data(</pre>
  n_{total} = 30,
  est = 1.27,
  se = 0.95
)
# read MAP prior created by RBesT
map_prior <- load_tipmap_data("tipmapPrior.rds")</pre>
# create posterior data
## Not run:
posterior_data <- create_posterior_data(</pre>
  map_prior = map_prior,
  new_trial_data = new_trial_data,
  sigma = 12
)
## End(Not run)
```

create_prior_data

Creates input data frame for construction of MAP prior

Description

Assembling information from trials in the source population in a structured way (required as a pre-processing step for MAP prior creation).

Usage

```
create_prior_data(study_label = NULL, n_total, est, se)
```

Arguments

study_label An optional vector containing trial labels.

n_total A vector containing total sample sizes.

est A vector containing treatment effect estimates.

se A vector containing standard errors of the effect estimates.

Value

A data frame containing data on the trials in the source population.

See Also

```
create_new_trial_data, create_posterior_data
```

create_tipmap_data 5

Examples

```
prior_data <- create_prior_data(
  n_total = c(160, 240, 320),
  est = c(1.23, 1.40, 1.51),
  se = c(0.4, 0.36, 0.31)
)</pre>
```

create_tipmap_data

Create data frame ready to use for tipping point analysis

Description

Combines new trial data created by createTargetData(), a posterior distribution created by create_posterior_data() and a robust MAP prior using RBesT::automixfit() and an optional meta-analysis, e.g. created using the meta package, into a data frame needed for the functions tipmap_plot() and get_tipping_point().

Usage

```
create_tipmap_data(new_trial_data, posterior, map_prior, meta_analysis = NULL)
```

Arguments

```
new_trial_data A data frame containing data on the new trial in the target population. See create_new_trial_data().

posterior A mixture combining MAP prior and target population. See create_posterior_data().

map_prior A robust MAP prior created by RBesT::automixfit().

meta_analysis A data frame containing a meta-analysis of trial(s) to be borrowed from. See createPriorData().
```

Value

A data frame ready to be used for tipmap_plot() and get_tipping_point()

See Also

```
create_new_trial_data, create_posterior_data, tipmap_plot, get_tipping_points
```

```
# specify new trial data
new_trial_data <- create_new_trial_data(n_total = 30, est = 1.5, se = 2.1)
# read MAP prior data
map_prior <- load_tipmap_data("tipmapPrior.rds")</pre>
```

6 default_weights

```
# read posterior data
posterior <- load_tipmap_data("tipPost.rds")

tip_dat <- create_tipmap_data(
   new_trial_data = new_trial_data,
   posterior = posterior,
   map_prior = map_prior
)</pre>
```

default_quantiles

Default quantiles

Description

Default quantiles

Usage

default_quantiles

Format

An object of class numeric of length 13.

default_weights

Default weights

Description

Default weights

Usage

default_weights

Format

An object of class numeric of length 201.

```
draw_beta_mixture_nsamples
```

Draw samples from a mixture of beta distributions

Description

Draws samples from a mixture of beta distributions, representing pooled weights on the informative component of a robust MAP prior, as elicited from experts via the roulette method.

Usage

```
draw_beta_mixture_nsamples(n, chips_mult, expert_weight = NULL)
```

Arguments

n	Numeric value, the number of samples to be drawn.
chips_mult	Numeric matrix, containing expert weighting (distributions of chips). Rows should represent experts, columns should represent bins / weight intervals.
expert_weight	An optional numeric vector, containing the weight assigned to each expert (defaults to equal weights).

Value

A numeric vector containing samples from a pooled distribution of expert opinions.

See Also

```
fit_beta_mult_exp and get_summary_mult_exp.
```

```
rweights <- draw_beta_mixture_nsamples(
    n = 50,
    chips_mult = rbind(
        c(0, 0, 0, 0, 2, 3, 3, 2, 0, 0),
        c(0, 0, 0, 1, 2, 4, 2, 1, 0, 0),
        c(0, 0, 0, 2, 2, 2, 2, 2, 0, 0)
    ),
    expert_weight = rep(1/3, 3)
)
print(rweights)
## Not run:
hist(rweights)
## End(Not run)</pre>
```

8 fit_beta_mult_exp

fit_beta_1exp

Fit beta distribution for one expert

Description

Fit beta distribution to data elicited from one expert via the roulette method.

Usage

```
fit_beta_1exp(df)
```

Arguments

df

A dataframe generated by get_model_input_1exp.

Details

This function is based on SHELF::fitdist and yields identical results.

Value

Parameters (alpha and beta) of a beta fit.

See Also

```
get_model_input_1exp and fit_beta_mult_exp.
```

Examples

```
chips <- c(0, 2, 3, 2, 1, 1, 1, 0, 0, 0)
x <- get_cum_probs_lexp(chips)
y <- get_model_input_lexp(x)
fit_beta_lexp(df = y)["par"]</pre>
```

fit_beta_mult_exp

Fit beta distributions for multiple experts

Description

Fit beta distributions to data elicited from multiple experts via the roulette method.

Usage

```
fit_beta_mult_exp(chips_mult)
```

get_cum_probs_1exp 9

Arguments

chips_mult

A dataframe or matrix containing weights. It should contain one row per expert and 10 columns, one for each bin, representing weights from 0 to 1.

Value

A dataframe containing the parameters of the individual beta distributions.

See Also

```
fit_beta_1exp.
```

Examples

```
beta_fits <- fit_beta_mult_exp(
  chips_mult = rbind(
    c(0, 0, 0, 0, 2, 3, 3, 2, 0, 0),
    c(0, 0, 0, 1, 2, 4, 2, 1, 0, 0),
    c(0, 0, 0, 2, 2, 2, 2, 2, 0, 0)
  )
)
print(beta_fits)</pre>
```

get_cum_probs_1exp

Get cumulative probabilities from distribution of chips of one expert

Description

Get cumulative probabilities from distribution of chips of one expert

Usage

```
get_cum_probs_1exp(chips)
```

Arguments

chips

Vector of integers, representing the distribution of chips assigned by one expert, as elicited through the roulette method. Each element of the vector represents one bin in the grid.

Value

A numeric vector with the cumulative distribution of chips.

See Also

```
get_model_input_1exp and fit_beta_1exp.
```

Examples

```
chips <- c(0, 2, 3, 2, 1, 1, 1, 0, 0, 0)
x <- get_cum_probs_lexp(chips)
print(x)</pre>
```

get_model_input_1exp Transform cumulative probabilities to fit beta distributions

Description

Transform cumulative probabilities to fit beta distributions

Usage

```
get_model_input_1exp(cum_probs, w = NULL)
```

Arguments

Numeric vector, containing cumulative probabilities of weights for one expert, as elicited through the roulette method. Each element of the vector represents one bin in the grid.
 Numeric vector, upper interval limit of bin (defaults to 1:length(cum_probs) / length(cum_probs)).

Value

Dataframe to be used as input to fit beta distributions by fit_beta_1exp.

See Also

```
get_cum_probs_1exp and fit_beta_1exp.
```

```
chips <- c(0, 2, 3, 2, 1, 1, 1, 0, 0, 0)
x <- get_cum_probs_lexp(chips)
print(x)
y <- get_model_input_lexp(x)
print(y)</pre>
```

```
get_posterior_by_weight
```

Filter posterior by given weights

Description

Returns quantiles of the posterior distribution of the treatment effect for one or more specified weights.

Usage

```
get_posterior_by_weight(posterior, weight)
```

Arguments

posterior The posterior data to be filtered (see create_posterior_data()). weight The weight(s) to be filtered by.

Value

The filtered posterior values

See Also

```
create_posterior_data
```

Examples

```
get_posterior_by_weight(
  posterior = load_tipmap_data("tipPost.rds"),
  weight = c(0.05, 0.1)
)
```

```
get_summary_mult_exp Summarize expert weights
```

Description

Computes minimum, maximum, mean and quartiles for expert weights.

Usage

```
get_summary_mult_exp(chips_mult, n = 500, expert_weight = NULL)
```

12 get_tipping_points

Arguments

chips_mult Numeric matrix, containing expert weights.

n Number of samples to be drawn to obtain summary statistics (defaults to 500).

expert_weight Weights assigned to each expert (defaults to equal weights).

Value

A vector containing summary statistics.

Examples

```
get_summary_mult_exp(
  chips_mult = rbind(
    c(0, 0, 0, 0, 2, 3, 3, 2, 0, 0),
    c(0, 0, 0, 1, 2, 4, 2, 1, 0, 0),
    c(0, 0, 0, 2, 2, 2, 2, 2, 0, 0)
  ),
  n = 50
)
```

get_tipping_points

Identify tipping point for a specific quantile.

Description

Identifies the weights closest to tipping points for specified quantiles.

Usage

```
get_tipping_points(tipmap_data, quantile, null_effect = 0)
```

Arguments

 $\label{eq:tipmap_data} A \ data \ frame \ created \ by \ create_tipmap_data().$

quantile The quantile(s) of the tipping point. Possible values are 0.025, 0.05, 0.1, 0.2,

0.8, 0.9, 0.95 and 0.975.

null_effect The null treatment effect. Defaults to 0.

Value

The weight closest to the tipping point for the specified quantile

See Also

```
create_tipmap_data
```

load_tipmap_data 13

Examples

```
tip_dat <- load_tipmap_data("tipdat.rds")#'
get_tipping_points(tip_dat, quantile = 0.025)
get_tipping_points(tip_dat, quantile = c(0.025, 0.05, 0.1, 0.2), null_effect = 0.1)</pre>
```

load_tipmap_data

Load exemplary datasets

Description

Loads one of three exemplary datasets in the package.

Usage

```
load_tipmap_data(file)
```

Arguments

file

The dataset to be loaded.

Value

A pre-saved dataset.

Examples

```
load_tipmap_data(file = "tipdat.rds")
load_tipmap_data(file = "tipmapPrior.rds")
load_tipmap_data(file = "tipPost.rds")
```

oc_bias

Assessing bias

Description

Assessment of absolute bias in posterior means and medians for a given weight and evidence level, using simulated data as input.

14 oc_bias

Usage

```
oc_bias(
    m,
    se,
    true_effect,
    weights = seq(0, 1, by = 0.01),
    map_prior,
    sigma,
    n_cores = 1,
    eval_strategy = "sequential"
)
```

Arguments

m	Numerical vector of simulated effect estimates.
se	Numerical vector of simulated standard errors (m and se need to have the same length).
true_effect	Numerical value, representing the true treatment effect (usually the mean of the simulated \mbox{m}).
weights	Vector of weights of the informative component of the MAP prior (defaults to $seq(0, 1, by = 0.01)$).
map_prior	A MAP prior containing information about the trials in the source population, created using RBesT; a mixture of normal distributions is required.
sigma	Standard deviation of the weakly informative component of the MAP prior, recommended to be the unit-information standard deviation.
n_cores	Integer value, representing the number of cores to be used (defaults to 1); only applies if eval_strategy is not "sequential".
eval_strategy	Character variable, representing the evaluation strategy, either "sequential", "multisession", or "multicore" (see documentation of future::plan, defaults to "sequential").

Value

A 2-dimensional array containing results on bias.

See Also

```
oc_pos and oc_coverage.
```

```
set.seed(123)
n_sims <- 5 # small number for exemplary application
sim_dat <- list(
   "m" = rnorm(n = n_sims, mean = 1.15, sd = 0.1),
   "se" = rnorm(n = n_sims, mean = 1.8, sd = 0.3)
)</pre>
```

oc_coverage 15

```
results <- oc_bias(
    m = sim_dat[["m"]],
    se = sim_dat[["se"]],
    true_effect = 1.15,
    weights = seq(0, 1, by = 0.01),
    map_prior = load_tipmap_data("tipmapPrior.rds"),
    sigma = 16.23,
    eval_strategy = "sequential",
    n_cores = 1
)
print(results)</pre>
```

oc_coverage

Assessing coverage

Description

Assessment of coverage of posterior intervals for a given weight and evidence level, using simulated data as input.

Usage

```
oc_coverage(
   m,
   se,
   true_effect,
   weights = seq(0, 1, by = 0.01),
   map_prior,
   sigma,
   n_cores = 1,
   eval_strategy = "sequential"
)
```

Arguments

m	Numerical vector of simulated effect estimates.
se	Numerical vector of simulated standard errors (\mathbf{m} and \mathbf{se} need to have the same length).
true_effect	Numerical value, representing the true treatment effect (usually the mean of the simulated \mbox{m}).
weights	Vector of weights of the informative component of the MAP prior (defaults to $seq(0, 1, by = 0.01)$).
map_prior	A MAP prior containing information about the trials in the source population, created using RBesT; a mixture of normal distributions is required.
sigma	Standard deviation of the weakly informative component of the MAP prior, recommended to be the unit-information standard deviation.

0c_pos

n_cores Integer value, representing the number of cores to be used (defaults to 1); only applies if eval_strategy is not "sequential".

eval_strategy Character variable, representing the evaluation strategy, either "sequential", "multisession", or "multicore" (see documentation of future::plan, defaults to "sequential").

Value

A 2-dimensional array containing results on coverage.

See Also

```
oc_pos and oc_bias.
```

Examples

```
set.seed(123)
n_sims <- 5 # small number for exemplary application
sim_dat <- list(
   "m" = rnorm(n = n_sims, mean = 1.15, sd = 0.1),
   "se" = rnorm(n = n_sims, mean = 1.8, sd = 0.3)
)
results <- oc_coverage(
   m = sim_dat[["m"]],
   se = sim_dat[["se"]],
   true_effect = 1.15,
   weights = seq(0, 1, by = 0.01),
   map_prior = load_tipmap_data("tipmapPrior.rds"),
   sigma = 16.23
)
print(results)</pre>
```

oc_pos

Assessing probability of success

Description

Assessment of the probability of truly or falsely (depending on simulated scenario) rejecting the null hypothesis of interest for a given weight and evidence level, using simulated data as input.

Usage

```
oc_pos(
    m,
    se,
    probs,
    weights = seq(0, 1, by = 0.01),
    map_prior,
```

oc_pos 17

```
sigma,
null_effect = 0,
direction_pos = T,
n_cores = 1,
eval_strategy = "sequential"
)
```

Arguments

m	Numerical vector of simulated effect estimates.
se	Numerical vector of simulated standard errors (m and se need to have the same length).
probs	Vector of quantiles q, with 1 minus q representing an evidence level of interest (where positive effect estimate indicate a beneficial treatment).
weights	Vector of weights of the informative component of the MAP prior (defaults to $seq(0, 1, by = 0.01)$).
map_prior	A MAP prior containing information about the trials in the source population, created using RBesT; a mixture of normal distributions is required.
sigma	Standard deviation of the weakly informative component of the MAP prior, recommended to be the unit-information standard deviation.
null_effect	Numerical value, representing the null effect (defaults to 0).
direction_pos	Logical value, TRUE (default) if effects greater that the null_effect indicate a beneficial treatment and FALSE otherwise.
n_cores	Integer value, representing the number of cores to be used (defaults to 1); only applies if eval_strategy is not "sequential".
eval_strategy	Character variable, representing the evaluation strategy, either "sequential", "multisession", or "multicore" (see documentation of future::plan, defaults to "sequential").

Value

A 2-dimensional array containing probabilities, either of truly (probability of success) or falsely rejecting the null hypothesis of interest for a given weight and evidence level.

See Also

```
oc_bias and oc_coverage.
```

```
set.seed(123)
n_sims <- 5 # small number for exemplary application
sim_dat <- list(
   "m" = rnorm(n = n_sims, mean = 1.15, sd = 0.1),
   "se" = rnorm(n = n_sims, mean = 1.8, sd = 0.3)
)
results <- oc_pos(</pre>
```

18 tipmap_lightred

```
m = sim_dat[["m"]],
se = sim_dat[["se"]],
probs = c(0.025, 0.05, 0.1, 0.2),
weights = seq(0, 1, by = 0.01),
map_prior = load_tipmap_data("tipmapPrior.rds"),
sigma = 16.23,
null_effect = 0,
direction_pos = TRUE,
eval_strategy = "sequential",
n_cores = 1
)
print(results)
```

tipmap_darkblue

Custom dark blue

Description

Custom dark blue

Usage

tipmap_darkblue

Format

An object of class character of length 1.

 ${\tt tipmap_lightred}$

Custom light red

Description

Custom light red

Usage

tipmap_lightred

Format

An object of class character of length 1.

tipmap_plot 19

tipmap_plot	Visualize tipping point analysis	
-------------	----------------------------------	--

Description

Uses a data frame created by create_tipmap_data() to visualize the tipping point analysis.

Usage

```
tipmap_plot(
  tipmap_data,
  target_pop_lab = "Trial in target\n population",
  y_range = NULL,
  y_breaks = NULL,
  title = NULL,
  y_lab = "Mean difference",
  x_lab = "Weight on informative component of MAP prior",
  map_prior_lab = "MAP\nprior",
  meta_analysis_lab = "MA",
  legend_title = "Posterior quantile",
  null_effect = 0
)
```

Arguments

tipmap_data	A data frame containing tipping point data, generated by create_tipmap_data().	
target_pop_lab	A label for the trial in the target population.	
y_range	An optional argument specifying range of the y-axis.	
y_breaks	An optional vector specifying breaks on the y-axis.	
title	The plot title.	
y_lab	The label for the y axis. Defaults to "Mean difference".	
x_lab	The label for the x axis. Defaults to "Weight on informative component of MAP prior".	
map_prior_lab	The label for the MAP prior. Defaults to "MAP prior"	
meta_analysis_lab		
	An optional label for a meta-analysis (if included).	
legend_title	An optional title for the plot legend. Defaults to "Posterior quantiles".	
null_effect	The null treatment effect, determining where tipping points are calculated. Defaults to 0.	

Value

A ggplot object of the tipping point plot

20 tipmap_plot

See Also

```
create_tipmap_data
```

```
tipmap_data <- load_tipmap_data("tipdat.rds")
tipmap_plot(tipmap_data)</pre>
```

Index

```
* datasets
    default_quantiles, 6
    default_weights, 6
    tipmap_darkblue, 18
    tipmap_lightred, 18
create_new_trial_data, 2, 3-5
create_posterior_data, 3, 3, 4, 5, 11
create_prior_data, 3, 4
create_tipmap_data, 3, 5, 12, 20
default_quantiles, 6
\texttt{default\_weights}, \textcolor{red}{6}
draw_beta_mixture_nsamples, 7
fit_beta_1exp, 8, 9, 10
fit_beta_mult_exp, 7, 8, 8
get_cum_probs_1exp, 9, 10
get_model_input_1exp, 8, 9, 10
get_posterior_by_weight, 11
get_summary_mult_exp, 7, 11
get_tipping_points, 5, 12
{\tt load\_tipmap\_data}, {\tt 13}
oc_bias, 13, 16, 17
oc_coverage, 14, 15, 17
oc_pos, 14, 16, 16
tipmap_darkblue, 18
tipmap_lightred, 18
tipmap_plot, 5, 19
```