Introduction to Agentic LLMs

Lukas Gienapp

Kassel University

WS2025/26

Observation

Agents are autonomous systems that ...

... observe their environment,

Agents are autonomous systems that ...

- ... observe their environment,
- ... reason about it to make decisions,

Agents are autonomous systems that ...

- ... observe their environment,
- ... reason about it to make decisions,
- ... act to modify their environment,

Agents are autonomous systems that ...

- ... observe their environment,
- ... reason about it to make decisions,
- ... act to modify their environment,

... to achieve a goal.

Thermostat Autonomous - requires no human input Goal-oriented - set target temperature

Thermostat		
Autonomous - requires no human input	Goal-oriented - set target temperature	
$\begin{array}{c} \textbf{Observation - current} \\ \textbf{and desired temperature} \end{array} \rightarrow$	\rightarrow	

Observation - sensors,

cameras, GPS, ...

Reasoning - rules of traffic, risks, route, ...

3

LLM Agents

Autonomous systems that observe, reason, and take action through text/language.

LLM Agents

Autonomous systems that observe, reason, and take action through text/language.

Isn't any LLM an agent then?

LLM Agents

Autonomous systems that observe, reason, and take action through text/language.

Isn't any LLM an agent then? Not really.

LLM Agents

Autonomous systems that observe, reason, and take action through text/language.

Isn't any LLM an agent then? Not really.

Characteristics

- Autonomous? Inference loops beyond zero-shot!
- Goal-oriented? Task 'personas' beyond general prompt!
- Observation: Capability for complex interaction
- Reasoning: Reasoning-tuned LLMs!
- Action: Tool use!

Agentic vs Non-Agentic LLMs

Example: "Write me an essay about new developments in LLM research."

Non-agentic LLM

 Write the essay using internal knowledge only, in one go.

Agentic vs Non-Agentic LLMs

Example: "Write me an essay about new developments in LLM research."

Non-agentic LLM

 Write the essay using internal knowledge only, in one go.

Agentic LLM

- 1. Observation: I need to write an essay
- 2. Reasoning: Do I know enough about the topic?
- 3. Action: Search for more information using web tool.
- 4. **Observation**: Topic + gathered information
- 5. Reasoning: I now have all the information I need.
- 6. Action: Write the first draft of the essay.
- 7. **Observation**: Topic + information + draft
- 8. **Reasoning**: The draft can be improved.
- 9. Action: Revise the draft in writing.
- 10. ...

Less Autonomous

- Predetermined steps
- Hardcoded tools
- Instruction-following agents

Less Autonomous

- Predetermined steps
- Hardcoded tools
- Instruction-following agents

Example

Research bot, that can conduct paper search on arXiv and summarize & cite the results for a given topic.

Less Autonomous

More Autonomous

- Predetermined steps
- Hardcoded tools
- Instruction-following agents
 - tion-following agents

Example

Research bot, that can conduct paper search on arXiv and summarize & cite the results for a given topic.

- Open-ended tasks
- Create its own tools
- Decision-making agents

Less Autonomous

More Autonomous

- Predetermined steps
- Hardcoded tools
- Instruction-following agents

Example

Research bot, that can conduct paper search on arXiv and summarize & cite the results for a given topic.

- Open-ended tasks
- Create its own tools
- Decision-making agents

Example

Coding agent, that autonomously implements a software to spec, with full shell and filesystem access.

- Specialization
 - different agents for different sub-tasks instead of a single model
 - e.g., the research bot can have a Writer, a Search, a Critic, ...

- Specialization
 - different agents for different sub-tasks instead of a single model
 - e.g., the research bot can have a Writer, a Search, a Critic, ...
- Parallelization
 - tools can be used in parallel by many independent sub-agents
 - e.g., the research bot can conduct many different web searches in parallel

- Specialization

- different agents for different sub-tasks instead of a single model
- e.g., the research bot can have a Writer, a Search, a Critic, ...

- Parallelization

- tools can be used in parallel by many independent sub-agents
- e.g., the research bot can conduct many different web searches in parallel

Modularity

- independent parts of the workflow can be changed without retraining, new tools can be made available dynamically
- e.g., we can add a new search endpoint to the existing research bot

- Specialization

- different agents for different sub-tasks instead of a single model
- e.g., the research bot can have a Writer, a Search, a Critic, ...

- Parallelization

- tools can be used in parallel by many independent sub-agents
- e.g., the research bot can conduct many different web searches in parallel

Modularity

- independent parts of the workflow can be changed without retraining, new tools can be made available dynamically
- e.g., we can add a new search endpoint to the existing research bot

Adaptation

- the LLM can self-adjust its behaviour to the specific task at hand
- e.g., the research bot can decide which web sources to use (arXiv, Newspapers, Wiki, ...)

– How do we break down the task so that LLM agents can solve it? ightarrow **Design Patterns**

- How do we break down the task so that LLM agents can solve it? ightarrow Design Patterns
- How do we instruct LLM agents to follow the their task(s)? \rightarrow **Prompt Engineering**

- How do we break down the task so that LLM agents can solve it? \rightarrow **Design Patterns**
- How do we instruct LLM agents to follow the their task(s)? → Prompt Engineering
- How do we describe the world to LLM agents? ightarrow Model Context Protocol

- How do we break down the task so that LLM agents can solve it? \rightarrow **Design Patterns**
- How do we instruct LLM agents to follow the their task(s)? → Prompt Engineering
- How do we describe the world to LLM agents? \rightarrow Model Context Protocol
- How do we give LLM agents access to tools to interact with the world? ightarrow Tool Usage

- How do we break down the task so that LLM agents can solve it? \rightarrow **Design Patterns**
- How do we instruct LLM agents to follow the their task(s)? → Prompt Engineering
- How do we describe the world to LLM agents? → Model Context Protocol
- How do we give LLM agents access to tools to interact with the world? ightarrow Tool Usage
- How do we improve agent effectiveness? \rightarrow Memory & Multi-agent systems

- How do we break down the task so that LLM agents can solve it? \rightarrow **Design Patterns**
- How do we instruct LLM agents to follow the their task(s)? → Prompt Engineering
- How do we describe the world to LLM agents? → Model Context Protocol
- How do we give LLM agents access to tools to interact with the world? ightarrow Tool Usage
- How do we improve agent effectiveness? \rightarrow Memory & Multi-agent systems

Goal of the course: enable you to address these challenges in a group project.

Course Organization

- First part: Lectures (Session 1 3)
 - Foundational knowledge for understanding LLMs
 - Architectures, training, prompt engineering patterns, fine-tuning, ...
 - Goal: Learn basic LLM concepts and methods
- Second part: Exercises (Session 4 10)
 - Engineering concepts and development patterns for agents
 - Python tools, model APIs, ...
 - Goal: Learn to apply concepts in practice and prepare you for the group projects
- Third part: Group Work (Session 11 14)
 - Conceptualize, implement, and evaluate your own agent
 - Give a short (15min) presentation and demo at the end of the semester
 - Hand in a research report (6 pages) about your findings

Syllabus

Week	Date	Topic	Deliverables
1	16.10.2025	_	
2	23.10.2025	Introduction	
3	30.10.2025	Prompting & Reasoning	Agent Ideas
4	06.11.2025	Agents & Tools	Group Formation
5	13.11.2025	Multi-Agent Patterns	Group Topic
6	20.11.2025	Agent Memory	
7	27.11.2025	Model Context Protocol	
8	04.12.2025	Evaluation	
9	11.12.2025	Scientific Writing	
10	18.12.2025		
		Winter Break	
11	22.01.2026		
12	29.01.2026		
13	05.02.2026		
14	12.02.2026		
	? (TBD.)		Project Report

Homework: Agent Ideas

Come up with your own agent idea!

- What is the goal?
- What agent roles are needed?
- What tools could be needed?
- What would a typical workflow look like?

Shortly present these questions on a single slide start of next session!