STAT5030 Assignment2 solution

- 1. Suppose $A = I_n \frac{1}{n}J_n$, $B = \frac{1}{n}\mathbf{1}^{\top}\mathbf{1}$, and $Z = Y \alpha$, where $J_n = \mathbf{1}^{\top}\mathbf{1}$. Then $U = \frac{1}{\sigma^2}Z^{\top}A^{\top}AZ$, $\bar{Y} = BY$, and $V = \frac{1}{\sigma^2}BZ^2$. Since $AB = (I_n \frac{1}{n}J_n) = \frac{1}{n}\mathbf{1}^{\top}\mathbf{1} = 0$, therefore U and V are independent.
- 2. Denote $\bar{Y} = \frac{1}{n} \mathbf{1}^{\top} Y$, $Q_1 = \frac{1}{n} Y^{\top} \mathbf{1}^{\top} \mathbf{1} Y$ and $Q_2 = Y^{\top} (I \frac{1}{n} J) Y$.
 - (a) Since $\frac{1}{n}\mathbf{1}^{\top}(I-\frac{1}{n}J)=0$, \bar{Y} and Q_2 are independent.
 - (b) Since $\mathbf{1}^{\top}\mathbf{1}(I-\frac{1}{n}J)=0$, Q_1 and Q_2 are independent.
 - (c) $Q_1 \sim \chi_{1,\frac{\mu^2 n}{2}}^2$, and $Q_2 \sim \chi_{n-1}^2$.
- 3. Refer to Theorem 1 in Chapter 2. Distributions and Quadratic Forms.
- 4. (a) $\frac{y^{\top}Ay}{\sigma^2} = \chi^2_{2,\frac{19}{3\sigma^2}}$.
 - (b) Since $BA \neq 0$, then $y^{\top}Ay$ and By are not independent.
 - (c) Let $C = (1,1,1)^{\top}$, then $y_1 + y_2 + y_3 = Cy$. Since AC = 0, therefore $y^{\top}Ay$ and $y_1 + y_2 + y_3$ are independent.
- 5. $X_1X_2 X_3X_4$ can be negative, but χ^2 distribution will not take negtive value.
- 6. Denote that

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{\sigma^2 (1 - \rho)} = y^{\top} \left\{ \frac{I - \frac{1}{n} J}{\sigma^2 (1 - \rho)} \right\} y = y^{\top} A y.$$

Since AA = A is idempotent, then $y^{\top}Ay$ follows χ^2 distribution. $rank\left(\frac{I - \frac{1}{n}J}{\sigma^2(1-\rho)}\right) = n - 1$. $(\mu \mathbf{1})^{\top}(I - \frac{1}{n}J)(\mu \mathbf{1}) = 0$. Therefore, $y^{\top}Ay \sim \chi^2_{n-1}$.

- 7. $E(U) = E(Y^{\top}(I \frac{J}{n})Y) = tr((I \frac{J}{n})\Sigma) + \mu^{\top}(I \frac{J}{n})\mu = 6.$
- 8. (a) $E(U) = E(\sum_{i < j} (Y_i Y_j)^2) = \sum_{i < j} E(Y_i Y_j)^2 = \sum_{i < j} E(Y_i^2 2Y_iY_j + Y_j^2) = \sum_{i < j} 2\sigma^2 = n(n-1)\sigma^2$.
 - (b) $k = \frac{1}{n(n-1)}$.
- 9. Since $E(U) = E[\sum_{i=1}^{n} (Y_i \bar{Y})^2] = (n-1)(1-\rho)\sigma^2$. Therefore $k = \frac{1}{(n-1)(1-\rho)}$.