Homework 2

1.) Asymptotics: Place following from smallest to largest
$$3 n^2 + 2$$
, $\log_{n}(\sqrt{n})$, $70,000$, $2 \frac{2}{\kappa \pi}$, $2 \frac{2}{10}$, $\log(n^2)$, $(5n+2)^2$, 3^2 , $2\sqrt{n}$, $(\log(n))^2$

simplifying expressions:

$$log_n(f_n) = log_n(n'^2) = 1/2$$
 by definition of low $log_n(b) = C$ is equiv.
 $log_n(f_n) = log_n(b) = C$ is equiv.

Ordering expressions:

$$\frac{70,000 = \log_{n}(\sqrt{n})}{\frac{7n}{10}} = \frac{2}{2\pi} \frac{n}{2\pi} \frac{3n^{2}+2}{3n^{2}+2} \frac{3^{n}}{3n^{2}+2} \frac{(5n+2)^{n}}{3n^{2}+2}$$

A	В	0	О	Ω	ω	Θ
n!	ē ⁿ	Λ0	10	yes	بروي	vo
10n ² +6n-2	$\binom{n}{2}$	ye>	10	yes	n0	yes
$\sum_{k=2}^{n} \frac{1}{\ln k}$	$\log (\log n)^n$	yes	ye)	ho	ho	116
$\log(n^7)$	$e^{\ln{(\ln{n})}}$	yes	no	ખુહ	ha	ye)
$\sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k} \right)$	\sqrt{n}	yes	yes	W	m	10

$$\binom{n}{2} = \frac{\binom{n}{2}!(n-2)!}{2!(n-2)!} = \frac{n\cdot(n-1)}{2} = \frac{n^2-n}{2}$$

$$\sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k} \right) = \sum_{k=1}^{n} \left(\frac{1}{\alpha_{k}} - \frac{1}{\alpha_{k-1}} \right) = \sum_{k=1}^{n} \left(\frac{1}{\alpha_{k-1}} - \frac{1}{\alpha_{k-1}} \right) = \sum_{k=1}^{n}$$

in this case we have

O K+1 - OK) but same Principle applies.

$$-\log(\log n)^n \Rightarrow (\log \log n)$$