

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Winter-Semester 2020/2021

Lineare Algebra I

Musterlösung zu Übungsblatt 2

16.11.20

Aufgabe 1 (*Lineare Abbildung*)

(10 Punkte)

Beweisen Sie, dass die Abbildung

$$\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- a) injektiv ist;
- b) surjektiv ist.

Lösung zu Aufgabe 1

a) Wir zeigen, dass ker $\varphi = \{0\}$. Gilt dann $\varphi(v_1) = \varphi(v_2)$, dann ist

$$0 = \varphi(v_1) - \varphi(v_2) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} v_1 - \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} v_2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} (v_1 - v_2).$$

Also ist $v_1 - v_2 \in \ker \varphi$ und somit $v_1 - v_2 = 0$. Damit ist φ injektiv.

Es gilt:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \ker \varphi \iff \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 \\ x_2 \end{pmatrix}.$$

Schaut man in die zweite Zeile muss $x_2 = 0$ gelten. Setzt man in der ersten Zeile $x_2 = 0$ dann ergibt sich $x_1 = 0$.

b) Es sei
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$$
 gegeben. Dann ist $\varphi \left(\begin{pmatrix} y_1 - 2y_2 \\ y_2 \end{pmatrix} \right) = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

Aufgabe 2 (Nullteiler im Matrizenring)

(10 Punkte)

Es sei eine reelle 3×3 -Matrix

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

gegeben.

- a) Bestimmen Sie eine Matrix $B \in \mathbb{R}^{3\times 3} \setminus \{\mathbf{0}_{3\times 3}\}$, für die $AB = \mathbf{0}_{3\times 3}$ gilt.
- b) Bestimmen Sie eine Matrix $C \in \mathbb{R}^{3\times 3} \setminus \{\mathbf{0}_{3\times 3}\}$, für die $CA = \mathbf{0}_{3\times 3}$ gilt.

Lösung zu Aufgabe 2

- a) Die Matrix $B=\begin{pmatrix}1&0&0\\-2&0&0\\1&0&0\end{pmatrix}$ erfüllt die Anforderungen.
- b) Die Matrix $C = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ löst die Aufgabe.

Aufgabe 3 (Symmetrische Matrizen)

(10 Punkte)

Wir nennen eine Matrix $M \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix, falls $M^{\top} = M$ gilt. Beweisen Sie für alle $A \in \mathbb{R}^{n \times n}$:

- a) AA^{\top} und $A^{\top}A$ sind symmetrische Matrizen
- b) $A + A^{\top}$ ist eine symmetrische Matrix.

Lösung zu Aufgabe 3

Wir benutzen die Rechenregeln für transponierte Matrizen:

a)
$$(AA^{\top})^{\top} = (A^{\top})^{\top}A^{\top} = AA^{\top} \text{ und } (A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A.$$

b)
$$(A + A^{\top})^{\top} = A^{\top} + (A^{\top})^{\top} = A^{\top} + A = A + A^{\top}.$$

Aufgabe 4 (Untervektorräume des \mathbb{R}^n)

(10 Punkte)

- a) Es sei I eine nichtleere Menge und $U_i \subseteq \mathbb{R}^n$ Untervektorräume für jedes $i \in I$. Beweisen Sie, dass die Menge $\bigcap_{i \in I} U_i$ wieder ein Untervektorraum ist.
- b) Geben Sie zwei Untervektorräume $U_1, U_2 \subseteq \mathbb{R}^2$ an sodass $U_1 \cup U_2$ kein Untervektorraum von \mathbb{R}^2 ist.
- c) Sei $M \subseteq \mathbb{R}^n$ eine Teilmenge. Beweisen Sie

$$LH_{\mathbb{R}}(M) \subseteq \bigcap \{U \subseteq \mathbb{R}^n \text{ Untervektorraum } | M \subseteq U\}$$

Bemerkung: Ist \mathcal{X} eine Menge von Mengen, dann ist das Symbol $\bigcap \mathcal{X}$ definiert durch $x \in \bigcap \mathcal{X} \iff x \in \bigcap_{Y \in \mathcal{X}} Y \iff \forall Y \in \mathcal{X} : x \in Y.$

d) Zusatzaufgabe: Beweisen Sie, dass in Aufgabenteil c) Gleichheit gilt. (+2 Punkte)

Lösung zu Aufgabe 4

- a) Wir definieren $U := \bigcap_{i \in I} U_i$. Nach Definition 2.3.1 müssen wir für alle $v, w \in U$ und $\lambda \in \mathbb{R}$ die folgenden drei Aussagen beweisen:
 - (i) $0 \in U$: Für alle $i \in I$ ist U_i ein Untervektorraum und somit $0 \in U_i$. Damit gilt auch $0 \in \bigcap_{i \in I} U_i$.
 - (ii) $v + w \in U$: Wegen $v, w \in U$ gilt für alle $i \in I$ auch $v, w \in U_i$ und somit $v + w \in U_i$. Daraus folgt $v + w \in U$.
 - (iii) $\lambda v \in U$: Wegen $v \in U$ gilt für alle $i \in I$ auch $v \in U_i$ und somit $\lambda v \in U_i$. Daraus folgt $\lambda v \in U$.
- b) Ein solches Beispiel ist durch

$$U_1 := \left\{ \begin{pmatrix} a \\ 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \qquad \qquad U_2 := \left\{ \begin{pmatrix} 0 \\ a \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$

gegeben. Es gilt nämlich $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \not\in U_1 \cup U_2$ und somit ist $U_1 \cup U_2$ kein Untervektorraum.

c) Zu zeigen ist

$$v \in \mathrm{LH}_{\mathbb{R}}(M) \implies v \in \bigcap \{U \subseteq \mathbb{R}^n \text{ Untervektorraum } | M \subseteq U \}$$

 $\iff \forall U \subseteq \mathbb{R}^n \text{ Untervektorraum mit } M \subseteq U : v \in U$

Jedes Element $v \in LH_{\mathbb{R}}(M)$ hat die Form

$$v = \sum_{j=1}^{r} \lambda_j v_j$$

mit $r \in \mathbb{N}_0$, $\lambda_j \in \mathbb{R}$ und $v_j \in M$ für alle $j = 1, \ldots, r$.

Ist $U \subseteq \mathbb{R}^n$ ein Untervektorraum mit $M \subseteq U$, so gilt insbesondere $v_j \in U$ und somit $\lambda_j v_j \in U$ für alle j. Damit liegt auch die Summe $v = \sum_{j=1}^r \lambda_j v_j$ in U. (Dies folgt aus der Definition eines Untervektorraums.) Insgesamt haben wir also

$$v \in \mathrm{LH}_{\mathbb{R}}(M) \implies \forall U \subseteq \mathbb{R}^n$$
 Untervektorraum mit $M \subseteq U : v \in U$

gezeigt, woraus die zu zeigende Aussage folgt.

d) Angenommen, für ein $v \in \mathbb{R}$ gilt

$$\forall U \subseteq \mathbb{R}^n$$
 Untervektorraum mit $M \subseteq U : v \in U$.

Da $U := LH_{\mathbb{R}}(M)$ selbst ein Untervektorraum von \mathbb{R}^n mit $M \subseteq U$ ist, folgt daraus direkt auch $v \in LH_{\mathbb{R}}(M)$. Damit ist die Rückrichtung

$$v \in \mathrm{LH}_{\mathbb{R}}(M) \Longleftarrow \forall U \subseteq \mathbb{R}^n$$
 Untervektorraum mit $M \subseteq U : v \in U$

gezeigt und die Gleichheit

$$\mathrm{LH}_{\mathbb{R}}(M) = \bigcap \{U \subseteq \mathbb{R}^n \text{ Untervektorraum } | \ M \subseteq U \}$$

bewiesen.