MAT 2110 - Cálculo I para Química

2^a Prova - 11 de maio de 2015

Questão 1 (3 pts) Seja $f(\theta) = \frac{2}{\cos \theta} + \frac{1}{\sin \theta}$.

- (a) Mostre que $f'(\theta)$ se anula em um, e em somente um, valor de θ pertencente a $(\frac{\pi}{6}, \frac{\pi}{3})$.
- (b) Calcule o menor e o maior valor que $f(\theta)$ assume quando θ percorre o intervalo $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$.

Solução: (a) Temos:

(1)
$$f'(\theta) = -\frac{2}{(\cos \theta)^2} \cdot (-\sin \theta) - \frac{1}{(\sin \theta)^2} \cdot \cos \theta = \frac{2(\sin \theta)^3 - (\cos \theta)^3}{(\sin \theta)^2 (\cos \theta)^2}.$$

Daí,

$$f'(\theta) = 0 \iff 2(\operatorname{sen}\theta)^3 - (\cos\theta)^3 = 0 \iff (\tan\theta)^3 = \frac{1}{2} \iff \tan\theta = 2^{-\frac{1}{3}}. \iff \theta = \arctan(2^{-\frac{1}{3}})$$

Além disso, como $2(\operatorname{sen}\theta)^3 - (\cos\theta)^3$ é uma função crescente de θ no intervalo $(0, \frac{\pi}{2})$ (pois $\operatorname{sen}\theta$ é crescente e $\cos\theta$ é decrescente em $(0, \frac{\pi}{2})$), $\operatorname{arctan}(2^{-\frac{1}{3}})$ é o único valor de θ no intervalo $(0, \frac{\pi}{2})$ para o qual $f'(\theta) = 0$.

Como a função tangente é crescente no intervalo $(0, \frac{\pi}{2})$, para mostrar que $\frac{\pi}{6} < \arctan(2^{-\frac{1}{3}}) < \frac{\pi}{3}$, basta mostrar que $\tan(\frac{\pi}{6}) < \tan(\arctan(2^{-\frac{1}{3}})) < \tan(\frac{\pi}{3})$, ou seja, que

$$\frac{1}{\sqrt{3}} < \frac{1}{\sqrt[3]{2}} < \sqrt{3}$$

A segunda destas desigualdades é evidente: $\sqrt{3}$ é maior do que 1 e $\frac{1}{\sqrt[3]{2}}$ é menor do que 1. A primeira desigualdade também é verdadeira, pois $(\sqrt[3]{2})^6 = 4 < (\sqrt{3})^6 = 27$.

(b) Como $2(\operatorname{sen}\theta)^3 - (\cos\theta)^3$ é uma função crescente de θ no intervalo $(0,\frac{\pi}{2})$ e só se anula em $\arctan(2^{-\frac{1}{3}})$, e como o denominador da fração no lado esquerdo de (1) é sempre positivo, segue que $f'(\theta) > 0$ se $\theta > \arctan(2^{-\frac{1}{3}})$, $f'(\theta) < 0$ se $\theta < \arctan(2^{-\frac{1}{3}})$ e, portanto, $\arctan(2^{-\frac{1}{3}})$ é ponto de mínimo de f em $(0,\frac{\pi}{2})$. Como já sabemos que $\arctan(2^{-\frac{1}{3}}) \in (\frac{\pi}{6},\frac{\pi}{3})$, segue que o menor valor que f assume em $[\frac{\pi}{6},\frac{\pi}{3}]$ é $f(\arctan(2^{-\frac{1}{3}}))$. [Observação: É possível usar trigonometria e álgebra para mostrar que $f(\arctan(2^{-\frac{1}{3}})) = (2^{\frac{2}{3}} + 1)^{\frac{3}{2}}$, mas descobrir que o menor valor de

[Observação: E possível usar trigonometria e álgebra para mostrar que $f(\arctan(2^{-3})) = (2^3 + 1)^2$, mas descobrir que o menor valor de f é assumido em $\arctan(2^{-\frac{1}{3}})$ e que, portanto, $f(\arctan(2^{-\frac{1}{3}}))$ é o menor valor já responde a pergunta feita no enunciado.]

O máximo de f em $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ será assumido necessariamente em um dos extremos, pois o único ponto crítico do interior é o ponto de mínimo. Para decidir qual é o máximo, basta portanto calcular

$$f(\frac{\pi}{6}) = \frac{2}{\cos(\frac{\pi}{6})} + \frac{1}{\sin(\frac{\pi}{6})} = \frac{2}{\frac{\sqrt{3}}{2}} + \frac{1}{\frac{1}{2}} = \frac{4}{\sqrt{3}} + 2$$

 \mathbf{e}

$$f(\frac{\pi}{3}) = \frac{2}{\cos(\frac{\pi}{3})} + \frac{1}{\sin(\frac{\pi}{3})} = \frac{2}{\frac{1}{2}} + \frac{1}{\frac{\sqrt{3}}{2}} = 4 + \frac{2}{\sqrt{3}}.$$

Daí

$$f(\frac{\pi}{3}) - f(\frac{\pi}{6}) = 2 - \frac{2}{\sqrt{3}} > 0$$

e, portanto, $f(\frac{\pi}{3}) = \frac{4}{\sqrt{3}} + 2$ é o maior valor que f assume em $[\frac{\pi}{6}, \frac{\pi}{3}]$.

Questão 2 (3 pts) Seja $f(x) = \ln\left(\frac{x}{1-x}\right)$, 0 < x < 1.

- (a) Calcule f'(x) para todo x, 0 < x < 1. Dica: $\ln \frac{a}{b} = \ln a \ln b$.
- (b) Mostre que, se 0 < x(t) < 1 e $x'(t) = x(t) x(t)^2$ para todo $t \in \mathbb{R}$, então $\frac{d}{dt}f(x(t)) = 1$ para todo $t \in \mathbb{R}$.
- (c) Encontre $x(t),\,t\in\mathbb{R},$ satisfazendo $x'=x-x^2$ e $x(0)=\frac{2}{3}.$
- (d) Sendo x(t) a função encontrada no item (c), calcule $\lim_{t\to +\infty} x(t)$

Solução: (a) $f(x) = \ln(x) - \ln(1-x)$ e

$$f'(x) = \frac{1}{x} - \frac{1}{1-x} = \frac{1}{x-x^2}, \quad 0 < x < 1.$$

(b) Pela regra da cadeia, e pelo item (a), temos:

$$\frac{d}{dt}f(x(t)) = f'(x(t)) \cdot x'(t) = \frac{1}{x(t) - x(t)^2} \cdot x'(t).$$

Por hipótese, $x'(t) = x(t) - x(t)^2$ para todo $t \in \mathbb{R}$. Logo a fração no lado direito da fórmula acima é igual a 1, para todo $t \in \mathbb{R}$.

(c) Como a derivada de f(x(t)) é igual a 1 para todo t, existe uma constante $C \in \mathbb{R}$ tal que

$$f(x(t)) = \ln \left[\frac{x(t)}{1 - x(t)} \right] = t + C$$
, para todo $t \in \mathbb{R}$.

 $Como x(0) = \frac{2}{3},$

$$C = \ln \frac{\frac{2}{3}}{1 - \frac{2}{3}} = \ln 2.$$

Logo,

$$\ln\left[\frac{x(t)}{1-x(t)}\right] = t + \ln 2$$
, para todo $t \in \mathbb{R}$.

Tomando a exponencial nos dois lados da equação, vem

$$\frac{x(t)}{1 - x(t)} = 2e^t;$$

daí

$$x(t) = \frac{2e^t}{2e^t + 1} = \frac{2}{2 + e^{-t}}.$$

(d)
$$\lim_{t \to +\infty} x(t) = \lim_{t \to +\infty} \frac{2}{2 + e^{-t}} = \frac{2}{2 + 0} = 1.$$

Questão 3 (2,5 pts) Seja $f(x) = (1 - \ln x)^2, x > 0.$

- (a) Mostre que f possui um, e apenas um, ponto crítico.
- (b) Mostre que f possui um, e apenas um, ponto de inflexão.
- (c) Esboce o gráfico de f

Solução: (a)

$$f'(x) = 2(1 - \ln x) \cdot \frac{(-1)}{x} = \frac{2(\ln x - 1)}{x} = 0 \iff \ln x = 1 \iff x = e.$$

Logo, e é o único ponto crítico de f.

(b) Como $f''(x) = \frac{\frac{2}{x} \cdot x - 2(\ln x - 1)}{x^2} = \frac{2}{x^2}(2 - \ln x)$, temos que f'' só se anula em $x = e^2$. Além disso, f''(x) > 0 se $x < e^2$, f''(x) < 0 se $x > e^2$ e, portanto, e^2 é o único ponto de inflexão de f.

(c) As seguintes informações devem estar indicadas, ou sugeridas, na figura: o gráfico de f é côncavo para cima no intervalo $(0, e^2)$, é côncavo para baixo no intervalo $(e^2, +\infty)$; o único ponto de mínimo é e, no qual f vale zero; no ponto de inflexão, temos $f(e^2) = 1$; além disso, f tende a infinito quando x tende a 0 ou a $+\infty$.

Questão 4 (3 pts)

- (a) Mostre que, para todo x > 0, são verdadeiras as designaldades $x \frac{x^2}{2} < \ln(1+x) < x \frac{x^2}{2} + \frac{x^3}{3}$.
- (b) Calcule $\lim_{x\to 0} \frac{\ln(1+x)-x}{x^2}$.

Solução: (a) Definamos a função $f(x) = \ln(1+x) - \left(x - \frac{x^2}{2}\right)$, x > -1. Temos que f(0) = 0 e queremos mostrar que f(x) > 0 para todo x > 0. Para isso, é suficiente mostrar que f'(x) > 0 para todo x > 0. Mas

$$f'(x) = \frac{1}{1+x} - (1-x) = \frac{x^2}{1+x} > 0$$
, para todo $x > 0$,

logo a primeira das desigualdades pedidas está provada.

Definamos a função $g(x)=\left(x-\frac{x^2}{2}+\frac{x^3}{3}\right)-\ln(1+x),\ x>-1$. Temos que g(0)=0 e queremos mostrar que g(x)>0 para todo x>0. Para isso, é suficiente mostrar que g'(x)>0 para todo x>0. Mas

$$g'(x) = (1 - x + x^2) - \frac{1}{1+x} = \frac{(1+x)(1-x+x^2)-1}{1+x} = \frac{x^3}{1+x} > 0$$
, para todo $x > 0$,

logo a segunda desigualdade também está provada.

(b) Pela regra de L'Hôspital,

$$\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = \lim_{x \to 0} \frac{-\frac{x}{1+x}}{2x} = -\lim_{x \to 0} \frac{1}{2(1+x)} = -\frac{1}{2}.$$