滑动轴承概述

轴承的作用是支承轴。轴在工作时可以是旋转的, 也可以是静止的。

- 一、轴承应满足如下基本要求:
 - 1. 能承担一定的载荷,具有一定的强度和刚度。
 - 2. 具有小的摩擦力矩, 使回转件转动灵活。
 - 3. 具有一定的支承精度, 保证被支承零件的回转精度。
- 二、轴承的分类

根据轴承中摩擦的性质,可分为滑动轴承和滚动轴承。

根据能承受载荷的方向,可分为向心轴承、推力轴承、向心推力轴承。(或称为径向轴承、止推轴承、径向止推轴承)。

根据润滑状态,滑动轴承可分为:不完全液体润滑滑动轴承。 完全液体润滑滑动轴承。

三、滑动轴承的特点

滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在以下场合,则 主要使用滑动轴承:

- 1. 工作转速很高,如汽轮发电机。
- 2. 要求对轴的支承位置特别精确,如精密磨床。
- 3. 承受巨大的冲击与振动载荷,如轧钢机。
- 4. 特重型的载荷,如水轮发电机。
- 5. 根据装配要求必须制成剖分式的轴承,如曲轴轴承。
- 6. 在特殊条件下工作的轴承,如军舰推进器的轴承。
- 7. 径向尺寸受限制时,如多辊轧钢机。

四、滑动轴承设计内容

轴承的型式和结构选择;轴瓦的结构和材料选择;轴承的结构参数设计; 润滑剂及其供应量的确定;轴承工作能力及热平衡计算。

三、滑动轴承的特点

滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在以下场合,则 主要使用滑动轴承:

新安江水电站是中国第一座自己 勘测、设计、施工和制造设备的大型 水电站,工程于1957年4月开工,1960 年4月第1台机组发电。

滑动轴承的典型结构

一、径向滑动轴承的结构

1. 整体式径向滑动轴承

特点:结构简单,成本低廉。

因磨损而造成的间隙无法调整。

只能从沿轴向装入或拆出。

应用: 低速、轻载或间歇性工作的机器中。

滑动轴承的典型结构

2. 对开式径向滑动轴承

特 点:结构复杂、可以调整磨损而造成的

间隙、安装方便。

应用场合: 低速、轻载或间歇性工作的机器中。

滑动轴承的典型结构

三、止推滑动轴承的结构

止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:

空心式: 轴颈接触面上压力分布较均匀, 润滑条件较实心式的改善。

单环式:利用轴颈的环形端面止推,结构简单,润滑方便,广泛用

于低速、轻载的场合。

多环式:不仅能承受较大的轴向载荷,有时还可承受双向轴向载荷。由于各环间载荷分布不均,其单位面积的承载能力比单环式低50%。

滑动轴承的失效形式及常用材料

一、滑动轴承常见失效形式有:

轴承表面的磨粒磨损、刮伤、咬粘(胶合)、疲劳剥落和腐蚀。 滑动轴承还可能出现气蚀、电侵蚀、流体侵蚀和微动磨损等失效形式。

汽车用滑动轴承故障原因的平均比率

故障原因	不干净	润滑油不足	安装误差	对中不良	超载
比率/%	38.3	11.1	15.9	8.1	6.0
故障原因	腐蚀	制造精度低	气 蚀	其 它	
比率/%	5.6	5.5	2.8	6.7	

滑动轴承的失效形式及常用材料

二、滑动轴承的材料

轴承材料是指在轴承结构中直接参与摩擦部分的材料,如轴瓦和轴承衬的材料。 轴承材料性能应满足以下要求:

减摩性: 材料副具有较低的摩擦系数。

耐磨性: 材料的抗磨性能,通常以磨损率表示。

抗咬粘性: 材料的耐热性与抗粘附性。

摩擦顺应性: 材料通过表层弹塑性变形来补偿轴承滑动表面初始配合不良的能力。

嵌入性: 材料容纳硬质颗粒嵌入, 从而减轻轴承滑动表面发生刮伤或磨粒磨损的性能。

磨合性: 轴瓦与轴颈表面经短期轻载运行后, 形成相互吻合的表面形状和粗糙度的能力(或性质)。

此外还应有足够的强度和抗腐蚀能力、良好的导热性、工艺性和经济性。

常用轴承材料

(1) 轴承合金(白合金、巴氏合金)

是锡、铅、锑、铜等金属的合金、锡或铅为基体。

优点: 摩擦系数小, 抗胶合性能好、对油的吸附性强、耐腐蚀性好、 容易跑合、是优良的轴承材料, 常用于高速、重载的轴承。

缺点: 价格贵、机械强度较差;

只能作为轴承衬材料浇注在钢、铸铁、或青铜轴瓦上。

工作温度: t<120℃, 巴式合金熔点低。

(2) 铜合金

优点:青铜强度高、承载能力大、耐磨性和导热性都优于轴承合金。 工作温度高达250 ℃。

缺点:可塑性差、不易跑合、与之相配的轴径必须淬硬。

青铜可以单独制成轴瓦, 也可以作为轴承衬浇注在钢或铸铁轴瓦上。

锡青铜 →中速重载

铅青铜 →中速中载

铝青铜 →低速重载

(3) 铝基合金

铝锡合金: 有相当好的耐腐蚀合和较高的疲劳强度,摩擦性能也较好。在部分领域取代了较贵的轴承合金与青铜。

(4) 铸铁: 用于不重要、低速轻载轴承。

(5) 多孔质金属材料

含油轴承: 用粉末冶金法制作的轴承,具有多孔组织,可存储润滑油。可用于加油不方便的场合。

(6) 非金属材料

工程塑料:具有摩擦系数低、可塑性、跑合性良好、耐磨、耐腐蚀、可用水、油及化学溶液等润滑的优点。

缺点:导热性差、膨胀系数大、容易变形。为改善此缺陷,可作为轴承 衬粘复在金属轴瓦上使用。

碳-石墨: 是电机电刷常用材料, 具有自润滑性, 用于不良环境中。

橡胶轴承:具有较大的弹性,能减轻振动使运转平稳,可用水润滑。常用于潜水泵、沙石清洗机、钻机等有泥沙的场合。

木材: 具有多孔结构, 可在灰尘极多的环境中使用。

表 13-1 常用轴瓦材料性能

				市内相比切	1 1 1-4-1	70	
	最大许用值				1	轴颈	
轴瓦材料		[p] (MPa)	[v] (m/s)	[pv]* (MPa·m/s)	最小 種童		备 注
锡锑 轴承 合金	ZSnSb11Cu6 ZSnSb8Cu4	平稳载荷			150	150	用于高速、重载下工作的 重要轴承。变载荷下易于疲 劳。价贵。
		25 80 20					
		冲击载荷					
		20	60	15			力。训贝。
铅锑 轴承 合金	ZPbSb16Sn16Cu2	10	12	15	150	150	用于中速、中等载荷的轴 承、不宜受显著的冲击载荷。可 作为锡锑轴承合金的代用品。
	ZPbSb15Sn5Cu3Cd2	5	6	5	150	150	
锡青铜	ZCuSn10P1	15	10	15	100	300	用于中速、重载或变载荷 的轴承。
	ZCuSn5Pb5Zn5	8	3	15	180	~400	用于中速、中等载荷的 轴承。
铝青铜	ZCuAll0Fe3	30	8	12	150	280	最宜用于润滑充分的低 速重载轴承。
铸铁	HT150 HT200	4 2	0.5	_	150	200 ~250	用于低速、轻载的不重要 轴承。价廉。
酚醛塑料		39~41	12~13	0.18~0.5	110 ~ 120		抗胶合性好,强度好,能耐水、酸、碱,导热性差。重载时需用水或油充分润滑,易膨胀,间隙应大些。
聚四氟乙烯		3~ 3.4	0.25~	0.04~	250		摩擦因数低,自润滑性好,耐腐蚀。
碳-石墨		4	13	0.5~5.25	440		有自润滑性,耐化学腐蚀,常用于要求清洁工作的机器中。

注:[pv]*值为混合摩擦润滑下的许用值。

一、轴瓦的形式和结构

整体式 需从轴端安装和拆卸,可修复性差。 可以直接从轴的中部安装和拆卸,可修复。 节省材料,但刚度不足,故对轴承座孔的加工精度要求 具有足够的强度和刚度,可降低对轴承座孔的加工精度要求。 单材料 强度足够的材料可以直接作成轴瓦, 如黄铜, 灰铸铁。 轴瓦衬强度不足, 故采用多材料制作轴瓦。 铸造 铸造工艺性好,单件、大批生产均可,适用于厚壁轴瓦。 按加工 只适用于薄壁轴瓦, 具有很高的生产率。

单材料、整体式 厚壁铸造轴瓦

多材料、对开式厚壁铸造轴瓦 多材料、整体式、薄壁轧制轴瓦

多材料、对开式薄壁轧制轴瓦

二、轴瓦的定位

目的: 防止轴瓦相对于轴承座产生轴向和周向的相对移动。

方法: 对于轴向定位有: 轴瓦一端或两端做凸缘 定位唇(凸耳)

对于周向定位有: 紧定螺钉

(也可做轴向定位)

销 钉(也可做轴向定位)

三、轴瓦的油孔及油槽

目的: 把润滑油导入轴颈和轴承所构成的运动副表面。

原则:尽量开在非承载区,尽量不要降低或少降低承载区油膜的承载

能力;轴向油槽不能开通至轴承端部,应留有适当的油封面。

形式:按油槽走向分——沿轴向、绕周向、斜向、螺旋线等。

按油槽数量分——单油槽、多油槽等。

单轴向油槽开在非承载区 (在最大油膜厚度处)

双轴向油槽开在非承载区 (在轴承剖分面上)

双斜向油槽 (用于不完全液体润滑轴承)

滑动轴承润滑剂的选择

二、润滑油及其选择

特 点: 有良好的流动性,可形成动压、静压或边膜界润滑膜。

适用场合: 不完全液体滑动轴承和完全液体润滑滑动轴承。

选择原则:主要考虑润滑油的粘度。

转速高、压力小时,油的粘度应低一些;反之,粘度应高一些。

高温时,粘度应高一些;低温时,粘度可低一些。

三、固体润滑剂及其选择

特 点:可在滑动表面形成固体膜。

适用场合: 有特殊要求的场合, 如环境清洁要求处、真空中或高温中。

常用类型: 二硫化钼, 碳一石墨, 聚四氟乙烯等。

使用方法:涂敷、粘结或烧结在轴瓦表面;制成复合材料,依靠材料自

身的润滑性能形成润滑膜。

不完全液体润滑滑动轴承的设计计算

一、失效形式与设计准则

工作状态: 因采用润滑脂、油绳或滴油润滑, 故无法形成完全的承载油

膜,工作状态为边界润滑或混合摩擦润滑。

失效形式: 边界油膜破裂。

设计准则:保证边界膜不破裂。

因边界膜强度与温度、轴承材料、轴颈和轴承表面粗糙度、

润滑油供给等有关,目前尚无精确的计算方法,但一般可作

条件性计算。

校核内容:

- 1. 验算平均压力p ≤ [p],以保证强度要求。
- 2. 验算摩擦发热pv≤[pv],fpv是摩擦力,限制pv即间接限制摩擦发热。
- 3. 验算滑动速度v≤[v], p, pv的验算都是平均值。考虑到轴瓦不同心, 受载时轴线弯曲及载荷变化等的因素, 局部的 p 或 p v 可能不足, 故 应校核滑动速度v。

不完全液体润滑滑动轴承的设计计算

二、径向滑动轴承的设计计算

已知条件: 外加径向载荷F(N)、轴颈转速n(r/mm)及轴颈直径d(mm)验算及设计:

1. 验算轴承的平均压力p (MPa)

$$p = \frac{F}{dB} \le [p]$$

2. 验算摩擦热

$$pv = \frac{F}{Bd} \cdot \frac{\pi dn}{60 \times 1000} = \frac{Fn}{19100B} \le [pv]$$

v—轴颈圆周速度, m/s; [pv]—轴承材料的pv许用值, MPa·m/s

3. 验算滑动速度v (m/s)

4. 选择配合 一般可选H9/d9或H8/f7、H7/f6

不完全液体润滑滑动轴承的设计计算

三、推力滑动轴承的设计计算

已知条件: 外加径向载荷 F_A 、轴承实际承载的外径和内径颈 $d \cdot d_0$ 验算及设计:

1. 验算轴承的平均压力p (MPa)

$$p = \frac{F_A}{\frac{\pi}{4} (d^2 - d_0^2) Z} \le [p]$$

2. 验算摩擦热

$$pv \leq [pv]$$

3. 验算滑动速度v (m/s)

一、流体动力润滑基本方程的建立

对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简化 形式的流体动力平衡方程。这些假设条件是:

流体为牛顿流体,即 $\tau = \eta(\frac{\partial u}{\partial y})$ 。

流体的流动是层流,即层与层之间没有物质和能量的交换;

忽略压力对流体粘度的影响,实际上粘度随压力的增高而增加;

略去惯性力及重力的影响,故所研究的单元体为静平衡状态或匀速直 线 运动,且只有表面力作用于单元体上;

流体不可压缩, 故流体中没有"洞"可以"吸收"流质;

流体中的压力在各流体层之间保持为常数。

- ●坐标系oxyz固定不动,平板A位于xoz平面。
- 平板沿z方向无限长,故不计z方向的液体 流动。

● 平板的左端和右端压力为0(或是给定压力)。

由
$$\sum F_X = 0$$

得:
$$p dy dz + \tau dx dz - (p + \frac{\partial P}{\partial x} dx) dy dz - (\tau + \frac{\partial \tau}{\partial y}) dx dz = 0$$

dxdz

 $\tau + \frac{\partial \tau}{\partial y} dy dxdz$

即

$$\frac{\partial P}{\partial x} = -\frac{\partial \tau}{\partial y}$$

将 $\tau = -1 \frac{\partial u}{\partial v}$ 两端对y求偏导,并代入上式得:

$$\frac{\partial p}{\partial x} = \eta \frac{\partial^2 u}{\partial y^2}$$

将 $\frac{\partial p}{\partial x} = \eta \frac{\partial^2 u}{\partial y^2}$ 积分,并利用以下边界条件:

$$y=0$$
时, $u=v$; $y=h$ 时, $u=0$ 。

可得到:
$$u = \frac{v(h-y)}{h} - \frac{y(h-y)}{2\eta} \cdot \frac{\partial p}{\partial x}$$

h 2η ∂x $\frac{\partial^2 u}{\partial y^2} < 0 \ (h < h_0)$ 考虑任意截面的流量 $q = \int_0^h u dy$,且处处相等。 $\frac{\partial^2 u}{\partial y^2} = 0 \ (h = h_0)$

设:
$$h = h_0$$
 处有 $p = p_{\text{max}}$, 即 $\frac{\partial p}{\partial x} = 0$

$$\frac{\partial p}{\partial x} = \frac{6\eta v}{h^3} (h - h_0)$$

该式就是一维雷诺方程,它是计算流体动力润滑的基本方程。

液体压力分布曲线

液体流速分布曲线

从两平板所构成的楔形空间中,取某一层液体的一部分作为单元体,通过建立平衡方程和给定边界条件,得出一维雷诺方程:

$$\frac{\partial p}{\partial x} = \frac{6\eta v}{h^3} (h - h_0)$$

流体动力润滑的必要条件是:

- 1.相对运动的两表面间构成楔形空间。
- 2.楔形空间中充满具有粘性的液体。
- 3.两板相对运动的结果,应使液体在粘性力的作用下由楔形空间的大端 流向楔形空间的小端。

二、径向滑动轴承形成流体动力润滑时的状态

- ◆ 轴承的孔径D和轴颈的直径d名义尺寸相等; 直径间隙d是公差形成的。
- ◆ 轴颈上作用的液体压力与F相平衡,在与F垂直的方向,合力为零。
- ◆ 轴颈最终的平衡位置可用φ_α和偏心距e来表示。
- ◆ 轴承工作能力取决于 h_{lim} ,它与 η 、 ω 、 Δ 和F等有关,应保证 $h_{lim} \geq [h]$ 。

三、径向滑动轴承的几何关系和承载量系数

直径间隙 $\Delta = D - d$ 半径间隙 $\delta = R - r$ 相对间隙 $\psi = \frac{\Delta}{d} = \frac{\delta}{r}$

偏心率
$$\chi = \frac{e}{R-r} = \frac{1}{\varepsilon}$$
 油膜厚度 $h = R - r + e \cos \alpha = e(\varepsilon + \cos \alpha)$

最大油压处油膜厚度 $h_0 = e(\varepsilon + \cos \alpha_0)$ 将雷诺方程 $\frac{\partial p}{\partial x} = \frac{6\eta v}{h^3}(h - h_0)$ 转换为极坐标 $dx = rd\alpha$

$$\frac{dp}{d\alpha} = \frac{6\eta \text{vr}}{e^2} \left[\frac{\cos \alpha - \cos \alpha_0}{(\varepsilon + \cos \alpha)^3} \right]$$

从而可求任意位置角 α 的径向油压 Pa

油膜的承载能力

$$F_{R} = \frac{6\eta v B K_{A} \varepsilon^{2}}{\psi^{2}} \left\{ \int_{\alpha_{1}}^{\alpha_{2}} \int_{\alpha_{1}}^{\alpha} \left[\frac{\cos \alpha_{0} - \cos \alpha}{(\varepsilon + \cos \alpha)^{3}} \right] d\alpha \cos(\varphi + \alpha) d\alpha \right\}$$

$$\Phi_F = 6K_A \varepsilon^2 \left\{ \int_{\alpha_1}^{\alpha_2} \int_{\alpha_1}^{\alpha} \left[\frac{\cos \alpha_0 - \cos \alpha}{(\varepsilon + \cos \alpha)^3} \right] d\alpha \cos(\varphi + \alpha) d\alpha \right\}$$

$$F_R = \frac{\eta v B}{\psi^2} \Phi_F \qquad \Phi_F = \frac{F_R \psi^2}{\eta v B}$$

 $Φ_F$ — 承载量系数,与轴承包角β,宽径比B/d和偏心率 χ 有关。

B── 轴承宽度, m; ν── 圆周速度, m/s。

分析思路: 1)根据已知条件计算求得 Φ_F 。

2)根据 Φ_F 由承载量系数表查取偏心率 χ 。

3) 计算最小油膜厚度h_{min}。

四、最小油膜厚度 h_{min}

动力润滑轴承的设计应保证: $h_{\min} \geq [h]$

其中:

$$[h] = S(R_{z1} + R_{z2})$$

R_{z1}、R_{z2}— 分别为轴颈和轴承孔表面粗糙度十点高度。

对于一般轴承可取为3.2μm和6.3μm, 1.6 μm和3.2μm。

对于重要轴承可取为 $0.8\mu m$ 和 $1.6\mu m$,或 $0.2\mu m$ 和 $0.4\mu m$ 。

S——安全系数,考虑表面几何形状误差和轴颈挠曲变形等,常取S≥2。

- 五、液体动力润滑径向滑动轴承的设计过程
 - 1. 已知条件: 外加径向载荷F(N), 轴颈转速n(r/min)及轴颈直径d(mm)。
 - 2. 设计及验算:
 - ① 保证在平均油温t_m下 h_{min}≥[h] 选择轴承材料,验算 p、v、pv。

选择轴承参数,如轴承宽度(B)、相对间隙(ψ)和润滑油(η)。

计算承载量系数并查表确定偏心率(χ)。

计算最小油膜厚度(hmin)和许用油膜厚度([h])。

❷ 验算温升

计算轴承与轴颈的摩擦系数(f)。

根据宽径比(B/d)和偏心率(χ)查取润滑油流量系数 ($\frac{\mathcal{Q}}{\psi v B^2 d}$) 计算轴承温升(Δt)和润滑油入口平均温度(t_i)。

- 极限工作能力校核
 根据直径间隙(Δ),选择配合及轴承和轴颈的尺寸公差。
 根据最大间隙(Δ_{max})和最小间隙(Δ_{min}),校核轴承的最小油膜
 厚度和润滑油入口油温。
- 4 绘制轴承零件图
- 六、滑动轴承的参数选择

其它形式滑动轴承简介

一、无润滑轴承和自润滑轴承

自润滑轴承: 当无润滑轴承材料本身就是固体润滑材料时,或轴瓦中 含有润滑介质,这种无润滑轴承常称自润滑轴承。

二、多油楔滑动轴承

固定轴瓦多油楔轴承

可倾轴瓦多油楔轴承

其它形式滑动轴承简介

三、液体静压轴承

原理:依靠液压系统供给压力油,压力油在轴承腔内强制形成压力油膜,以隔开摩擦表面。示意图1、示意图2

特点: ◆在任何转速和预定载荷下轴承均处于液体润滑状态;

- ◆ 轴颈与轴承不直接接触, 轴承对材料要求低, 寿命长;
- ◆油膜刚性大,有良好的吸振性,运转平稳;
- ◆需要一套供油设备。

四、气体润滑轴承

原理:以气体作为润滑介质,可以空气、氢气、氮气作为润滑介质。

分类: 气体动压润滑轴承、气体静压润滑轴承。

特点: 高转速(n > 100000r/min)、低摩擦损失、无污染、承载能力低。

应用: 高速磨头、高速离心分离机、原子反应堆等场合。

机械设计实践及讨论课

设计选题: 在以下选题中任选一个作为设计选题:

- 1) 模仿自然界动物的运动形态、功能特点的机械产品(简称仿生机械);
- 2) 用于修复自然生态的机械装置,包括防风固沙、植被修复和净化海洋污染物的机械装置(简称生态修复机械)

(题目同时也是浙江大学第27届机械设计竞赛的题目) http://kyjs.zju.edu.cn/xkjs/front/zixun?zixunid=Q240Zlg5JUdvZjAxNTc=

以组为单位完成设计任务,每组人数不超过3人,由同学自愿组合。 "机械设计实践及讨论课"记入课程成绩,15%。

机械设计实践及讨论课

设计实践

提交设计报告(word电子版),PPT(电子版)各1份 参加课堂讨论并做PPT介绍。 设计报告Word、PPT在2021年1月3日前提交到学在浙大。

讨论课时间安排:

冬学期第8周(2021年12月27日)

参加浙江大学第二十七届大学生机械设计竞赛的同学请在:

2022年1月3日前登陆浙江大学本科生科研训练与学科竞赛管理系统 (http://kyjs.zju.edu.cn/xkjs/front/index)进行报名参赛并提交材料

《机械设计实践》讨论课

PPT、word主要内容(包括但不限于)

- 1.设计目标(功能)
- 2.主要技术参数
- 3.国内外技术现状
- 4.原理方案设计(示意图)
- 5.关键结构分析、设计及计算
- 6.小结(含设计体会)