Postulates for AND – OR – NOT

Postulates are self evident truths, facts

$$1 \longrightarrow \overline{1}=0$$

$$0 \longrightarrow \overline{0}=1$$

0 · 0 = 0	0 + 0 = 0
1 · 1 = 1	1 + 1 = 1
1 · 0 = 0	0 + 1 = 1
0 = 1	<u>1</u> = 0

Postulates for XOR – XNOR

Postulates are self evident truths, facts

0 ⊕ 0 = 0	<u>0</u> ⊕ <u>0</u> = 1
1 ⊕ 1 = 0	<u>1 ⊕ 1</u> = 1
1 ⊕ 0 = 1	<u>0</u> ⊕ 1 = 0

1=0⊕0

1=1 + 1

 $0=\overline{0\oplus 1}$

Algebraic Properties

Algebraic properties that we are familiar with

Commutative Property of Addition	A + B = B + A
Commutative Property of Multiplication	A • B = B • A
Associative Property of Addition	(A + B) + C = A + (B + C)
Associative Property of Multiplication	$(A \bullet B) \bullet C = A \bullet (B \bullet C)$
Distributive Property of Addition and Multiplication	A • (B + C) = AB + AC (A + B) • C = AC + BC
Reciprocal of Nonzero Number	A • (1/A) = 1
Additive Inverse	A + (-A) = 0
Additive Identity	A + 0 = 0 + A = A
Multiplicative Identity	A • 1 = 1 • A = A

Boolean Algebra Properties

Ordinary algebraic properties also apply to Boolean algebra. Some are unique to Boolean algebra.

AND	OR	XOR	
Commutative			
AB = BA	A + B = B + A	$A \oplus B = B \oplus A$	
Associative			
A(BC) = AB(C)	A + (B + C) = (A + B) + C	$(A \oplus B) \oplus C = A \oplus (B \oplus C)$	
Distributive			
A(B + C) = AB + AC	A + BC = (A + B)(A + C)	$A(B \oplus C) = AB \oplus AC$ $(A \oplus B)(A \oplus C) = AB + AB = C$	

Let us examine the Boolean algebra identities using logic gates

Commutative Properties – Circuit Diagrams

Commutative property implies the circuit is not affected by the order or sequence of the variables (inputs)

Associative Properties for AND – Circuit Diagrams

Associative property implies that a sequence exclusively of AND functions is not affected by the placement of the parentheses....A(BC) = AB(C)

Associative Properties for OR – Circuit Diagrams

Associative property implies that a sequence exclusively of OR functions is not affected by the placement of the parentheses....

$$A+(B+C) = (A+B)+C$$

Associative Properties for XOR – Circuit Diagrams

Associative property implies that a sequence exclusively of OR functions is not affected by the placement of the parentheses....

 $(A \oplus B) \oplus C = (B \oplus C) \oplus A$

Distributive Properties for AND/OR – Circuit Diagrams

Distributive property produces 2 forms of an expression...2 possible circuits....A(B+C) = AB+AC

Distributive Properties for AND/OR – Circuit Diagrams

Distributive property produces 2 forms of an expression...2 possible circuits....A+BC=(A+B)(A+C)

Distributive Properties for XOR – Circuit Diagrams

Distributive property produces 2 forms of an expression...2 possible circuits.... $A(B \oplus C) = AB \oplus AC$

Distributive Properties for XOR – Circuit Diagrams

Distributive property produces 2 forms of an expression...2 possible circuits.... $(A \oplus B)(A \oplus C) = \overline{A} B C + A \overline{B} \overline{C}$