Расчетно-графическая работа № 2 по теории дифференциальных уравнений

("Прикладная математика и информатика")

Расчетно-графическая работа содержит 9 задач. При выполнении РГР студент должен руководствоваться следующими указаниями:

- 1. Работа должна выполняться на листах формата A4; первой страницей является титульный лист, на котором указывается фамилия и имя студента, группа, номер варианта.
- 2. Решение задач следует приводить в порядке номеров, указанных в РГР. Перед решением каждой задачи необходимо полностью переписать ее условие.
- 3. Решение задач следует излагать подробно, делая соответствующие ссылки на сведения из теории с указанием необходимых формул и теорем.
- 4. Решение задач геометрического содержания (фазовые портреты и т.п.) должно сопровождаться соответствующими рисунками.
- 5. Решение задач №№ 8 и 9 необходимо осуществлять с использованием какого-либо математического пакета (например, MATLAB или MAPLE). При этом необходимо привести фрагмент соответствующей программы, а также распечатку полученных графиков.
- 6. Номера вариантов студент выбирает в соответствии с номером своей фамилии в списке группы. Список группы приведен в Приложении.

ЗАДАНИЯ

1^{0} . Найти решение задачи Коши.

1.
$$y'' - y = x^2 - x + 1$$
, $y(0) = -2$, $y'(0) = -2$.

2.
$$y'' + 4y = \sin x$$
, $y(0) = 0$, $y'(0) = 1$.

3.
$$y'' + y = 2\sin 2x$$
, $y(0) = 0$, $y'(0) = 10$.

4.
$$y'' + 2y = \cos x$$
, $y(0) = 0$, $y'(0) = 2$.

5.
$$y'' + 4y = x$$
, $y(0) = 1$, $y'(0) = 2$.

6.
$$2y'' - 5y' + 2y = 2x$$
, $y(0) = 0$, $y'(0) = 2$.

7.
$$y'' - 2y' - 3y = e^{4x}$$
, $y(0) = 0$, $y'(0) = 4$.

8.
$$y'' + 2y' + y = -2$$
, $y(0) = -2$, $y'(0) = 2$.

9.
$$y'' + 8y = 8x$$
, $y(0) = 1$, $y'(0) = 0$.

10.
$$y'' - y = e^{-2x}, y(0) = 0, y'(0) = 1.$$

11.
$$y'' - y = e^{2x}, \ y(0) = \frac{5}{2}, \ y'(0) = 0.$$

12.
$$y'' + 2y' + y = 1$$
, $y(0) = 0$, $y'(0) = -2$.

13.
$$y'' - 2y' + y = 3$$
, $y(0) = 3$, $y'(0) = -1$.

14.
$$4y'' + 4y' + y = -x$$
, $y(0) = 0$, $y'(0) = 5$.

15.
$$y'' - 4y' + 4y = 3$$
, $y(0) = 0$, $y'(0) = -2$.

16.
$$y'' - 9y = -\sin x$$
, $y(0) = 3$, $y'(0) = -2$.

17.
$$y'' + 4y = x$$
, $y(0) = 1$, $y'(0) = -1$.

18.
$$2y'' - 5y' + 2y = x^2$$
, $y(0) = 0$, $y'(0) = 4$.

19.
$$y'' - 2y' - 3y = e^x$$
, $y(0) = 0$, $y'(0) = -1$.

20.
$$y'' + 2y' + y = -2$$
, $y(0) = -2$, $y'(0) = 0$.

21.
$$y'' + 8y = 8x$$
, $y(0) = 1$, $y'(0) = 4$.

22.
$$y'' - 4y = e^{-x}, y(0) = 0, y'(0) = 5.$$

23.
$$y'' - 4y = e^x$$
, $y(0) = 5$, $y'(0) = 0$.

24.
$$y'' + 4y = \sin x$$
, $y(0) = 0$, $y'(0) = 2$.

25.
$$y'' + y = \sin 2x$$
, $y(0) = 0$, $y'(0) = 0$.

26.
$$y'' - 9y = e^x$$
, $y(0) = 1$, $y'(0) = 2$.

2^0 . Выяснить, имеет ли решение краевая задача, и (если имеет) найти это решение.

1.
$$y'' - y = x^2 - x + 1$$
, $y(0) = -2$, $y(1) = -2$.

2.
$$y'' + 4y = \sin x$$
, $y(0) = 0$, $y(\frac{\pi}{4}) = 0$.

3.
$$y'' + y = 6\sin 2x$$
, $y(0) = 0$, $y(\frac{\pi}{4}) = 0$.

4.
$$y'' + y = \cos x$$
, $y(0) = 0$, $y(\frac{\pi}{2}) = 0$.

5.
$$y'' + 4y = x$$
, $y(0) = 1$, $y(\frac{\pi}{2}) = 2$.

6.
$$2y'' - 5y' + 2y = 0$$
, $y(0) = 0$, $2y'(1) - y(1) = 3e^2$.

7.
$$y'' - 2y' - 3y = 5e^{4x}$$
, $y(0) = 0$, $y'(1) = 1 - 3e^{-3}$.

8.
$$y'' + 2y' + y = -2$$
, $y(0) = -2$, $y'(1) = 0$.

9.
$$y'' + 8y = 8x$$
, $y(0) = 1$, $y'(1) = \frac{7}{8}$.

10.
$$y'' - y = e^{-x}, y(0) = 0, y'(1) = y(1).$$

11.
$$y'' - y = e^x$$
, $y(0) + y'(0) = \frac{5}{2}$, $y'(1) - y(1) = \frac{1}{2}$.

12.
$$y'' + 2y' + y = 1$$
, $y(0) = 0$, $y(1) + y'(1) = 0$.

13.
$$y'' - 2y' + y = 3$$
, $y(0) = 3$, $y'(1) = 0$.

14.
$$4y'' + 4y' + y = e^{2x}, y(0) = 0, y'(2) = 1.$$

15.
$$y'' - 4y' + 4y = 3$$
, $y(0) = 0$, $y'(1) = e^2$.

16.
$$y'' - 9y = -18\sin 3x$$
, $y(0) + y'(0) = 3$, $y'(\frac{\pi}{3}) = -3$.

17.
$$y'' + 4y = x$$
, $y(0) = 1$, $y(\frac{\pi}{2}) = \frac{\pi}{2}$.

18.
$$2y'' - 5y' + 2y = x$$
, $y(0) = 0$, $2y'(1) - y(1) = 3e^2$.

19.
$$y'' - 2y' - 3y = 5e^{4x}$$
, $y(0) = 0$, $y'(1) = 1 - 3e^{-3}$.

20.
$$y'' + 2y' + y = -2$$
, $y(0) = -2$, $y'(1) = 0$.

21.
$$y'' + 8y = 8x$$
, $y(0) = 1$, $y'(1) = \frac{7}{8}$.

22.
$$y'' - y = e^{-x}, y(0) = 0, y'(1) = y(1).$$

23.
$$y'' - y = e^x$$
, $y(0) + y'(0) = \frac{5}{2}$, $y'(1) - y(1) = \frac{1}{2}$.

24.
$$y'' + 4y = \sin x$$
, $y(0) = 0$, $y(\frac{\pi}{4}) = 0$.

25.
$$y'' + y = 6\sin 2x$$
, $y(0) = 0$, $y(\frac{\pi}{4}) = 0$.

26.
$$y'' - y = e^x$$
, $y(0) + y'(0) = \frac{5}{2}$, $y'(1) - y(1) = \frac{1}{2}$.

 $3^0.$ Вычислить матричную экспоненту e^{At} и по формуле $x(t)=e^{At}x_0$ построить решение задачи Коши

$$\left\{\begin{array}{ll} x' = Ax, \\ x(0) = x_0, \end{array}\right. \quad \mathbf{гдe} \ x_0 = \left[\begin{array}{c} 1 \\ 0 \end{array}\right].$$

Результат проверить подстановкой...

1.
$$A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$$
.

$$2. \quad A = \begin{bmatrix} 5 & -3 \\ 4 & -2 \end{bmatrix}.$$

$$3. \quad A = \left[\begin{array}{cc} -1 & 2 \\ -3 & 4 \end{array} \right] \ .$$

4.
$$A = \begin{bmatrix} -4 & 1 \\ -2 & -1 \end{bmatrix}$$
.

5.
$$A = \begin{bmatrix} -6 & -4 \\ 3 & 1 \end{bmatrix}$$
.

$$6. \quad A = \left[\begin{array}{cc} 4 & 1 \\ -6 & -1 \end{array} \right] .$$

7.
$$A = \begin{bmatrix} -2 & -2 \\ 6 & 5 \end{bmatrix}$$
.

8.
$$A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$$
.

9.
$$A = \begin{bmatrix} -6 & 6 \\ -2 & 1 \end{bmatrix}.$$

10.
$$A = \begin{bmatrix} 1 & 4 \\ 1 & -2 \end{bmatrix}$$
.

11.
$$A = \begin{bmatrix} 5 & -12 \\ 1 & -2 \end{bmatrix}$$
.

12.
$$A = \begin{bmatrix} 3 & 4 \\ -3 & -5 \end{bmatrix}$$
.

13.
$$A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$$
.

14.
$$A = \begin{bmatrix} -1 & -3 \\ 4 & 6 \end{bmatrix}$$
.

15.
$$A = \begin{bmatrix} 2 & -1 \\ -4 & -1 \end{bmatrix}$$
.

16.
$$A = \begin{bmatrix} 4 & -5 \\ 1 & -2 \end{bmatrix}$$
.

17.
$$A = \begin{bmatrix} 5 & -4 \\ 3 & -3 \end{bmatrix}$$
.

18.
$$A = \begin{bmatrix} 5 & -12 \\ 1 & -2 \end{bmatrix}$$
.

19.
$$A = \begin{bmatrix} 2 & 5 \\ -1 & -4 \end{bmatrix}$$
.

$$20. \quad A = \begin{bmatrix} 5 & -3 \\ 4 & -3 \end{bmatrix}.$$

$$21. \quad A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}.$$

$$22. \quad A = \left[\begin{array}{cc} 5 & -3 \\ 4 & -2 \end{array} \right] .$$

23.
$$A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$$
.

$$24. \quad A = \left[\begin{array}{cc} -4 & 1 \\ -2 & -1 \end{array} \right] .$$

25.
$$A = \begin{bmatrix} -6 & -4 \\ 3 & 1 \end{bmatrix}$$
.

26.
$$A = \begin{bmatrix} 4 & 1 \\ -6 & -1 \end{bmatrix}$$
.

 4^0 . Найти точки равновесия скалярных уравнений первого порядка x' = f(x) и x' = g(x), построить их фазовые портреты в фазовом пространстве и расширенном фазовом пространстве.

1.
$$f(x) = x^3 - 2x^2 - x + 2$$
, $g(x) = 1 + \sin 2x$.

2.
$$f(x) = x^3 - 2x^2 - x + 2$$
, $g(x) = 1 + \cos 2x$.

3.
$$f(x) = x^3 + 2x^2 - x - 2$$
, $g(x) = -1 + \sin 2x$.

4.
$$f(x) = x^3 - 3x^2 - x + 3$$
, $g(x) = -1 + \cos 2x$.

5.
$$f(x) = x^3 + 3x^2 - x - 3$$
, $g(x) = \sin(4 \operatorname{arctg} x)$.

6.
$$f(x) = x^4 + x$$
, $g(x) = \cos(4 \arctan x)$.

7.
$$f(x) = x^4 - x$$
, $g(x) = e^{\sin x} - 1$.

8.
$$f(x) = x^4 - x^3 - 2x^2$$
, $g(x) = e^{\cos x} - 1$.

9.
$$f(x) = x^4 + x^3 - 2x^2$$
, $g(x) = \sin x - \frac{18}{\pi^2}x^2$.

10.
$$f(x) = x^3 - x^2 - 2x$$
, $g(x) = \cos x - \frac{9}{2\pi^2}x^2$.

11.
$$f(x) = x^3 + x^2 - 2x$$
, $g(x) = e^{\sin x} - 0.5$.

12.
$$f(x) = x^3 - 2x^2 - x + 2$$
, $g(x) = 1 + \sin 2x$.

13.
$$f(x) = x^3 - 2x^2 - x + 2$$
, $g(x) = 1 + \cos 2x$.

14.
$$f(x) = x^3 + 2x^2 - x - 2$$
, $g(x) = -1 + \sin 2x$.

15.
$$f(x) = x^3 - 3x^2 - x + 3$$
, $g(x) = -1 + \cos 2x$.

16.
$$f(x) = x^3 + 3x^2 - x - 3$$
, $g(x) = \sin(4 \operatorname{arctg} x)$.

17.
$$f(x) = x^4 + x$$
, $g(x) = \cos(4 \arctan x)$.

18.
$$f(x) = x^4 - x$$
, $g(x) = e^{\sin x} - 1$.

19.
$$f(x) = x^4 - x^3 - 2x^2$$
, $g(x) = e^{\cos x} - 1$.

20.
$$f(x) = x^4 + x^3 - 2x^2$$
, $g(x) = \sin x - \frac{18}{\pi^2}x^2$.

21.
$$f(x) = x^3 - x^2 - 2x$$
, $g(x) = \cos x - \frac{9}{2\pi^2}x^2$.

22.
$$f(x) = x^3 + x^2 - 2x$$
, $g(x) = e^{\sin x} - 0.5$.

23.
$$f(x) = x^3 - 2x^2 - x + 2$$
, $g(x) = 1 + \cos 2x$.

24.
$$f(x) = x^3 + 2x^2 - x - 2$$
, $g(x) = -1 + \sin 2x$.

25.
$$f(x) = x^3 - 3x^2 - x + 3$$
, $g(x) = -1 + \cos 2x$.

26.
$$f(x) = x^4 - x$$
, $g(x) = e^{\sin x} - 1$.

 5^{0} . Изобразить фазовые портреты линейных систем $x'=A_{1}x,$ $x'=A_{2}x$ и $x'=A_{3}x.$

1.
$$A_1 = \begin{bmatrix} -4 & 3 \\ -2 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & 8 \\ -1 & -1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.

2.
$$A_1 = \begin{bmatrix} -5 & 3 \\ -3 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & 1 \\ -2 & -3 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & 3 \\ -1 & -1 \end{bmatrix}$.

3.
$$A_1 = \begin{bmatrix} -5 & 2 \\ -4 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2 & 2 \\ -1 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} -9 & -6 \\ 6 & 3 \end{bmatrix}$.

4.
$$A_1 = \begin{bmatrix} -4 & 1 \\ -2 & -1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2 & 2 \\ -1 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

5.
$$A_1 = \begin{bmatrix} -2 & 1 \\ -1 & -4 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & 5 \\ -1 & -3 \end{bmatrix}$, $A_3 = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$.

6.
$$A_1 = \begin{bmatrix} 1 & 6 \\ -4 & -9 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & 13 \\ -1 & -1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & -1 \\ 4 & 6 \end{bmatrix}$.

7.
$$A_1 = \begin{bmatrix} 1 & 6 \\ -2 & -6 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 8 & 9 \\ -5 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 5 & 2 \\ 0 & 5 \end{bmatrix}$.

8.
$$A_1 = \begin{bmatrix} 2 & 6 \\ -4 & -8 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & 1 \\ -5 & 7 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 & 5 \\ -2 & 6 \end{bmatrix}$.

9.
$$A_1 = \begin{bmatrix} 1 & 5 \\ -4 & -8 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -3 & 2 \\ -1 & -5 \end{bmatrix}$, $A_3 = \begin{bmatrix} 6 & 1 \\ -1 & 4 \end{bmatrix}$.

10.
$$A_1 = \begin{bmatrix} 1 & 5 \\ -5 & -9 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 2 & 2 \\ -1 & 4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 4 & -1 \\ 1 & 6 \end{bmatrix}$.

11.
$$A_1 = \begin{bmatrix} 1 & 5 \\ -6 & -10 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 8 \\ -5 & -11 \end{bmatrix}$, $A_3 = \begin{bmatrix} -5 & 3 \\ 0 & -5 \end{bmatrix}$.

12.
$$A_1 = \begin{bmatrix} -4 & -2 \\ 3 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & -1 \\ 8 & -1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 3 & -2 \\ 5 & -4 \end{bmatrix}$.

13.
$$A_1 = \begin{bmatrix} -5 & -3 \\ 3 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & -2 \\ 1 & -3 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & -1 \\ 3 & -1 \end{bmatrix}$.

14.
$$A_1 = \begin{bmatrix} -5 & -4 \\ 2 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2 & -1 \\ 2 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} -9 & 6 \\ -6 & 3 \end{bmatrix}$.

15.
$$A_1 = \begin{bmatrix} -4 & -2 \\ 1 & -1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2 & -1 \\ 2 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$.

16.
$$A_1 = \begin{bmatrix} -2 & -1 \\ 1 & -4 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & -1 \\ 5 & -3 \end{bmatrix}$, $A_3 = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.

17.
$$A_1 = \begin{bmatrix} 1 & -4 \\ 6 & -9 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & -1 \\ 13 & -1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 4 \\ -1 & 6 \end{bmatrix}$.

18.
$$A_1 = \begin{bmatrix} 1 & -2 \\ 6 & -6 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 8 & 9 \\ -5 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} -5 & 2 \\ 0 & -5 \end{bmatrix}$.

19.
$$A_1 = \begin{bmatrix} 2 & -4 \\ 6 & -8 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & -5 \\ 1 & 7 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 & -2 \\ 5 & 6 \end{bmatrix}$.

20.
$$A_1 = \begin{bmatrix} 1 & -4 \\ 5 & -8 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -3 & -1 \\ 2 & -5 \end{bmatrix}$, $A_3 = \begin{bmatrix} 6 & -1 \\ 1 & 4 \end{bmatrix}$.

21.
$$A_1 = \begin{bmatrix} 1 & -5 \\ 5 & -9 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 2 & -1 \\ 2 & 4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 4 & 1 \\ -1 & 6 \end{bmatrix}$.

22.
$$A_1 = \begin{bmatrix} 1 & -6 \\ 5 & -10 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & -5 \\ 8 & -11 \end{bmatrix}$, $A_3 = \begin{bmatrix} -3 & 2 \\ 0 & -3 \end{bmatrix}$.

23.
$$A_1 = \begin{bmatrix} -5 & 2 \\ -4 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2 & 2 \\ -1 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} -9 & -6 \\ 6 & 3 \end{bmatrix}$.

24.
$$A_1 = \begin{bmatrix} -4 & 1 \\ -2 & -1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -2 & 2 \\ -1 & -4 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

25.
$$A_1 = \begin{bmatrix} -2 & 1 \\ -1 & -4 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & 5 \\ -1 & -3 \end{bmatrix}$, $A_3 = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$.

26.
$$A_1 = \begin{bmatrix} -4 & 3 \\ -2 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 3 & 8 \\ -1 & -1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.

 6^0 . Найти точки равновесия системы x'=f(x), выяснить характер их устойчивости, изобразить схематично фазовый портрет системы в окрестностях этих точек, привести соответствующие линеаризованные уравнения.

1.
$$\begin{cases} x_1' = 2x_1x_2 - 4x_2, \\ x_2' = 4x_2^2 - x_1^2 \end{cases}$$

2.
$$\begin{cases} x_1' = -2x_1 + 2x_2 + x_1 \sin x_1, \\ x_2' = -x_1 - 4x_2 + x_2^3 \end{cases}$$

3.
$$\begin{cases} x_1' = 2x_1 + 5x_2 - x_2^3, \\ x_2' = -x_1 + 4x_2 + x_2^2, \end{cases}$$

4.
$$\begin{cases} x_1' = 3x_1 + x_2 - x_1^2, \\ x_2' = -5x_1 + 7x_2 + 2x_2^2 \end{cases}$$

5.
$$\begin{cases} x_1' = -3x_1 + 2x_2 - x_2^3, \\ x_2' = -x_1 + 5x_2 - 3x_2^2, \end{cases}$$

6.
$$\begin{cases} x_1' = -2 + 2e^{x_1 + x_2}, \\ x_2' = -x_1 + 4x_2 + x_1^2 \end{cases}$$

7.
$$\begin{cases} x_1' = -1 + e^{x_1 + 5x_2}, \\ x_2' = -\sin(5x_1 + 7x_2) \end{cases}$$

8.
$$\begin{cases} x_1' = x_1 + 5x_2 - x_2^2, \\ x_2' = e^{-4x_1 + 5x_2} - 1 \end{cases}$$

9.
$$\begin{cases} x_1' = x_1 + 5x_2 - x_1^2, \\ x_2' = -5\sin(x_1 + x_2) \end{cases}$$

10.
$$\begin{cases} x_1' = -\sin(5x_1 - 2x_2), \\ x_2' = -4x_1 + x_2 + x_2^2 \end{cases}$$

11.
$$\begin{cases} x_1' = -2x_1 + x_2 + x_2^3, \\ x_2' = -\sin(4x_1 + 3x_2) \end{cases}$$

12.
$$\begin{cases} x_1' = x_2 - \sin x_1, \\ x_2' = -3x_1 - 2x_2 \end{cases}$$

13.
$$\begin{cases} x_1' = 4x_2^2 - x_1^2, \\ x_2' = 2x_1x_2 - 4x_2 \end{cases}$$

14.
$$\begin{cases} x_1' = -x_1 - 4x_2 + x_2^3, \\ x_2' = -2x_1 + 2x_2 + x_1 \sin x_1 \end{cases}$$

15.
$$\begin{cases} x_1' = -x_1 + 4x_2 + x_2^2, \\ x_2' = 2x_1 + 5x_2 - x_2^3 \end{cases}$$

16.
$$\begin{cases} x_1' = -5x_1 + 7x_2 + 2x_2^2, \\ x_2' = 3x_1 + x_2 - x_1^2 \end{cases}$$

17.
$$\begin{cases} x_1' = -x_1 + 5x_2 - 3x_2^2, \\ x_2' = -3x_1 + 2x_2 - x_2^3, \end{cases}$$

18.
$$\begin{cases} x_1' = -x_1 + 4x_2 + x_1^2, \\ x_2' = -2 + 2e^{x_1 + x_2} \end{cases}$$

19.
$$\begin{cases} x_1' = -\sin(5x_1 + 7x_2), \\ x_2' = -1 + e^{x_1 + 5x_2} \end{cases}$$

20.
$$\begin{cases} x_1' = e^{-4x_1 + 5x_2} - 1, \\ x_2' = x_1 + 5x_2 - x_2^2 \end{cases}$$

21.
$$\begin{cases} x_1' = -4x_1 + x_2 + x_2^2, \\ x_2' = -\sin(5x_1 - 2x_2) \end{cases}$$

22.
$$\begin{cases} x_1' = -\sin(4x_1 + 3x_2), \\ x_2' = -2x_1 + x_2 + x_2^3, \end{cases}$$

23.
$$\begin{cases} x_1' = -2x_1 + 2x_2 + x_1 \sin x_1, \\ x_2' = -x_1 - 4x_2 + x_2^3 \end{cases}$$

24.
$$\begin{cases} x_1' = 2x_1 + 5x_2 - x_2^3, \\ x_2' = -x_1 + 4x_2 + x_2^2 \end{cases}$$

25.
$$\begin{cases} x_1' = 3x_1 + x_2 - x_1^2, \\ x_2' = -5x_1 + 7x_2 + 2x_2^2 \end{cases}$$

26.
$$\begin{cases} x_1' = 2x_1 + 5x_2 - x_2^3, \\ x_2' = -x_1 + 4x_2 + x_2^2, \end{cases}$$

7^{0} . Применяя критерий Рауса-Гурвица выяснить, при каких значениях параметра a нулевое решение уравнения является асимптотически устойчивым.

1.
$$y'''' + 2y''' + ay'' + 3y' + 2y = 0$$
.

2.
$$y'''' + 2y''' + ay'' + 7y' + 2y = 0$$
.

3.
$$y'''' + 2y''' + ay'' + 5y' + 6y = 0$$
.

4.
$$y'''' + 8y''' + ay'' + 36y' + 45y = 0$$
.

5.
$$y'''' + 2y''' + 4y'' + ay' + 2y = 0$$
.

6.
$$y'''' + 2y''' + 3y'' + ay' + 2y = 0$$
.

7.
$$y'''' + 2y''' + 6y'' + ay' + 6y = 0$$
.

8.
$$y'''' + 8y''' + 14y'' + ay' + 45y = 0$$
.

9.
$$y'''' + ay''' + 4y'' + 3y' + 2y = 0$$
.

10.
$$y'''' + ay''' + 3y'' + 7y' + 2y = 0$$
.

11.
$$y'''' + ay''' + 6y'' + 5y' + 6y = 0$$
.

12.
$$y'''' + ay''' + 14y'' + 36y' + 45y = 0$$
.

13.
$$y'''' + 2y''' + 4y'' + 3y' + ay = 0$$
.

14.
$$y'''' + 2y''' + 3y'' + 7y' + ay = 0$$
.

15.
$$y'''' + 2y''' + 6y'' + 5y' + ay = 0$$
.

16.
$$y'''' + 8y''' + 14y'' + 36y' + ay = 0$$
.

17.
$$y'''' + 2y''' + ay'' + 3y' + 2y = 0$$
.

18.
$$y'''' + 2y''' + a3y'' + 7y' + 2y = 0$$
.

19.
$$y'''' + 2y''' + ay'' + 5y' + 6y = 0$$
.

20.
$$y'''' + 8y''' + ay'' + 36y' + 45y = 0$$
.

21.
$$y'''' + 2y''' + 4y'' + ay' + 2y = 0$$
.

22.
$$y'''' + 2y''' + 3y'' + ay' + 2y = 0$$
.

23.
$$y'''' + 2y''' + 6y'' + ay' + 6y = 0$$
.

24.
$$y'''' + 8y''' + 14y'' + ay' + 45y = 0$$
.

25.
$$y'''' + 2y''' + ay'' + 3y' + 2y = 0$$
.

26.
$$y'''' + 2y''' + ay'' + 7y' + 2y = 0$$
.

- 8^0 . Груз массы m на горизонтальной плоскости прикреплен к пружине нулевой массы. При отклонении груза на расстояние x пружина действует на него с силой G(x), направленной к положению равновесия. Сила трения F_c направлена в сторону, противоположную скорости. Предполагается, что зависимость упругой силы G(x) от деформации x подчиняется закону Гука, т.е. имеет вид G(x) = ax, где a положительный коэффициент. Предполагается также, что сила трения F_c пропорциональна скорости x', т.е. $F_c = bx'$, где b положительный коэффициент.
- 1). Получите дифференциальное уравнение, описывающее колебания груза.
- 2). Изобразите движение груза на фазовой плоскости (x,x'), если известно, что при t=0 пружина растянута, при этом груз находится на расстоянии h от положения равновесия и имеет нулевую скорость. Где будет находиться груз при t=1 и какова будет его скорость?

1.
$$m = 2$$
, $a = 1$, $b = 2$, $h = 3$.

2.
$$m = 1$$
, $a = 2$, $b = 2$, $h = 4$.

3.
$$m = 1$$
, $a = 2$, $b = 1$, $h = 2$.

4.
$$m = 2$$
, $a = 3$, $b = 1$, $h = 5$.

5.
$$m = 3$$
, $a = 1$, $b = 2$, $h = 4$.

6.
$$m = 2$$
, $a = 2$, $b = 3$, $h = 3$.

7.
$$m = 3$$
, $a = 2$, $b = 3$, $h = 2$.

8.
$$m = 1$$
, $a = 3$, $b = 3$, $h = 5$.

9.
$$m = 4$$
, $a = 3$, $b = 3$, $h = 5$.

10.
$$m = 3$$
, $a = 2$, $b = 4$, $h = 4$.

11.
$$m = 2$$
, $a = 1$, $b = 1$, $h = 2$.

12.
$$m = 2$$
, $a = 3$, $b = 3$, $h = 6$.

13.
$$m = 2$$
, $a = 2$, $b = 2$, $h = 6$.

14.
$$m = 3$$
, $a = 2$, $b = 2$, $h = 5$.

15.
$$m = 1$$
, $a = 4$, $b = 3$, $h = 5$.

16.
$$m = 1$$
, $a = 3$, $b = 3$, $h = 4$.

17.
$$m = 2$$
, $a = 1$, $b = 2$, $h = 3$.

18.
$$m = 1$$
, $a = 3$, $b = 2$, $h = 5$.

19.
$$m = 1$$
, $a = 2$, $b = 2$, $h = 2$.

20.
$$m = 3$$
, $a = 2$, $b = 4$, $h = 4$.

21.
$$m = 3$$
, $a = 1$, $b = 2$, $h = 5$.

22.
$$m = 2$$
, $a = 2$, $b = 3$, $h = 2$.

23.
$$m = 1$$
, $a = 2$, $b = 1$, $h = 2$.

24.
$$m = 2$$
, $a = 3$, $b = 1$, $h = 5$.

25.
$$m = 3$$
, $a = 1$, $b = 2$, $h = 4$.

26.
$$m = 2$$
, $a = 2$, $b = 3$, $h = 3$.

 9^0 . Перейти от дифференциального уравнения второго порядка y'' + f(y,y') + g(y) = 0 к автономной системе x' = F(x) $(x \in R^2)$ на основе замены $x_1 = y$, $x_2 = y'$. Найти точки равновесия полученной системы, определить их тип, выяснить характер ее устойчивости. Построить на фазовой плоскости (x_1, x_2) траекторию решения x(t) полученной системы на промежутке $0 \le t \le 20$, соответствующей решению задачи Коши для дифференциального уравнения.

1.
$$y'' - \frac{(1-y^2)y'}{2} + y = 0$$
, $y(0) = 2$, $y'(0) = 5$.

2.
$$y'' - 2(1 - y^2)y' + 2y = 0$$
, $y(0) = 3$, $y'(0) = 5$.

3.
$$y'' - (1 - y^2)y' + 2y = 0$$
, $y(0) = 3$, $y'(0) = 6$.

4.
$$y'' - \frac{2(1-y^2)y'}{3} + \frac{y}{2} = 0$$
, $y(0) = 3$, $y'(0) = 6$.

5.
$$y'' - \frac{(1-2y^2)y'}{3} + \frac{y}{2} = 0$$
, $y(0) = 2$, $y'(0) = 4$.

6.
$$y'' - \frac{(1-y^2)y'}{3} + \frac{2y}{3} = 0$$
, $y(0) = 2$, $y'(0) = 4$.

7.
$$y'' - \frac{3(1-y^2)y'}{2} + \frac{y}{2} = 0$$
, $y(0) = 2$, $y'(0) = 5$.

8.
$$y'' - \frac{2(1-y^2)y'}{5} + y = 0$$
, $y(0) = -3$, $y'(0) = 5$.

9.
$$y'' - \frac{(1-2y^2)y'}{3} + \frac{y}{3} = 0$$
, $y(0) = -3$, $y'(0) = 4$.

10.
$$y'' - \frac{(1-y^2)y'}{2} + \frac{2y}{3} = 0$$
, $y(0) = -2$, $y'(0) = 4$.

11.
$$y'' - \frac{(1-y^2)y'}{2} + \frac{y}{2} = 0$$
, $y(0) = -2$, $y'(0) = 5$.

12.
$$y'' - \frac{2(1-y^2)y'}{3} + \frac{y}{2} = 0$$
, $y(0) = 3$, $y'(0) = 6$.

13.
$$y'' - \frac{(1-2y^2)y'}{3} + \frac{y}{2} = 0$$
, $y(0) = 2$, $y'(0) = 4$.

14.
$$y'' - \frac{(1-y^2)y'}{3} + \frac{2y}{3} = 0$$
, $y(0) = 2$, $y'(0) = 4$.

15.
$$y'' - \frac{3(1-y^2)y'}{2} + \frac{y}{2} = 0$$
, $y(0) = 2$, $y'(0) = 5$.

16.
$$y'' - \frac{2(1-y^2)y'}{5} + y = 0$$
, $y(0) = -3$, $y'(0) = 5$.

17.
$$y'' - \frac{(1-2y^2)y'}{3} + \frac{y}{3} = 0$$
, $y(0) = -3$, $y'(0) = 4$.

18.
$$y'' - \frac{(1-y^2)y'}{2} + \frac{2y}{3} = 0$$
, $y(0) = -2$, $y'(0) = 4$.

19.
$$y'' - \frac{(1-y^2)y'}{2} + \frac{y}{2} = 0$$
, $y(0) = -2$, $y'(0) = 5$.

20.
$$y'' - \frac{(1-y^2)y'}{2} + y = 0$$
, $y(0) = 2$, $y'(0) = 5$.

21.
$$y'' - 2(1 - y^2)y' + 2y = 0$$
, $y(0) = 3$, $y'(0) = 5$.

22.
$$y'' - (1 - y^2)y' + 2y = 0$$
, $y(0) = 3$, $y'(0) = 6$.

23.
$$y'' - \frac{(1-y^2)y'}{2} + y = 0$$
, $y(0) = 2$, $y'(0) = 5$.

24.
$$y'' - 2(1 - y^2)y' + 2y = 0$$
, $y(0) = 3$, $y'(0) = 5$.

25.
$$y'' - (1 - y^2)y' + 2y = 0$$
, $y(0) = 3$, $y'(0) = 6$.

26.
$$y'' - \frac{(1-2y^2)y'}{3} + \frac{y}{3} = 0$$
, $y(0) = -3$, $y'(0) = 4$.

ПРИЛОЖЕНИЕ

Список группы

Группа № 23

- 1. Ахметшин Марат
- 2. Галиева Нурия
- 3. Гирфанов Камиль
- 4. Давлетбаев Артур
- 5. Жуков Данил
- 6. Зябкова Юлия
- 7. Кабирова Вероника
- 8. Камалеев Никита
- 9. Каримов Альберт
- 10. Кузнецов Александр
- 11. Манапова Наталия
- 12. Мухаметшин Риназ
- 13. Попов Дмитрий
- 14. Рахматов Светлан
- 15. Сабанова Екатерина
- 16. Султанов Эльвир
- 17. Тарасов Никита
- 18. Тухватуллин Илья
- 19. Хакимова Римма