1.	Which of them might be used as a benchmark?
	I. Kernels
	II. Toy programs
	III. Synthetic benchmarks
	a) I, III
	b) II, III
	c) I, II, III
	d) III
2.	Choose the right formula for the cost of integrated circuit:
	a) Cost of integrated circuit = $\frac{(Cost\ of\ die + Cost\ of\ testing\ die)}{Final\ test\ yield}$
	b) Cost of integrated circuit = $\frac{(Cost\ of\ die\ +\ Cost\ of\ testing\ die\ +\ Cost\ of\ final\ tests\ and\ packaging)}{Final\ test\ yield}$
	c) Cost of integrated circuit = $\frac{(Cost\ of\ die\ +\ Cost\ of\ final\ tests\ and\ packaging)}{Final\ test\ yield}$
3.	Choose the right formulas for CPU time:
	$ \text{I. CPU Time} = Instruction \ Count * Cycles \ per \ instruction * Clock \ cycle \ time $
	II. CPU Time = $\frac{Instruction\ Count\ *\ Cycles\ per\ instruction}{Clock\ cycle\ rate}$
	$ \label{eq:cont} \textbf{III. CPU Time} = Instruction \ Count * Cycles \ per \ instruction * Clock \ cycle \ rate $
	a) I, II
	b) I
	c) II
	d) I, III
4.	How many Instruction Set formats do exist in MIPS?
	a) 1
	b) 2
	c) 3
	d) 4
5.	Which of them is the instruction describing Register Addressing Mode?
	a) lw \$v0, 2
	b) add \$t3, \$t1, \$t2
	c) mov \$t3, (\$t4)
6.	Which of them is the instruction describing Immediate Addressing Mode?

- a) lw \$v0, 2
- b) add \$t3, \$t1, \$t2
- c) mov \$t3, (\$t4)
- 7. Which of them is the instruction describing Addressing Mode with a Displacement?
 - a) lw \$v0, 2
 - b) add \$t3, \$t1, \$t2
 - c) mov \$t3, 16(\$t4)
- 8. Choose the right formula for the cost of die:

a. Cost of die =
$$\frac{Cost\ of\ wafer}{Die\ yield\ *\ Die\ per\ wafer}$$

b. Cost of die =
$$\frac{Cost\ of\ wafer\ *\ Die\ yield}{Die\ per\ wafer}$$

c. Cost of die =
$$\frac{Cost \ of \ wafer * Die \ per \ wafer}{Die \ yield}$$

9. Choose the right formula for the number of die per yield:

a. Die per wafer =
$$\frac{Wafer\ area}{Die\ area} = \frac{\pi\ *Wafer\ Radius^2}{4\ *Die\ Area} - \frac{\pi\ *Wafer\ Diameter}{sqrt2*\ Die\ Area}$$

b. Die per wafer
$$=\frac{Wafer\ area}{Die\ area}=\frac{\pi*Wafer\ Diameter^2}{4*Die\ Area}$$

b. Die per wafer =
$$\frac{Wafer\ area}{Die\ area} = \frac{\pi\ *\ Wafer\ Diameter^2}{4\ *\ Die\ Area}$$

c. Die per wafer = $\frac{Wafer\ area}{Die\ area} = \frac{\pi\ *\ Wafer\ Diameter^2}{4\ *\ Die\ Area} - \frac{\pi\ *\ Wafer\ Diameter}{\sqrt{2\ *\ Die\ Area}}$

- 10. If the slowest part of program executes in 52 seconds, in how many seconds the whole program might not be executed?
 - a) 75 seconds
 - b) 42 seconds
 - c) 62 seconds
 - d) 59 seconds

Answers:

- 1. c
- 2. b
- 3. a
- 4. c
- 5. b
- 6. a
- 7. c
- 8. a
- 9. c
- 10. b