

Metrics and Evaluation Anett Seeland

DFKI Bremen & Universität Bremen Robotics Innovations Center Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics robotics@dfki.de

Outline

- (1) Performance metrics
- (2) Sampling limited data

Outline

- (1) Performance metrics
- (2) Sampling limited data

 A classifier C was built on a large training set an then tested on a set with m = 100 instances. Of the 50 true instances C predicted 40 to be true. And on the 50 false instances C said that 45 were false.

1. Set up the confusion matrix.

 A classifier C was built on a large training set an then tested on a set with m = 100 instances. Of the 50 true instances C predicted 40 to be true. And on the 50 false instances C said that 45 were false.

1. Set up the confusion matrix.

		predicti	ed class
		yes	no
actual	yes	40	10
class	no	5	45

predicted class

- A classifier C was built on a large training set an then tested on a set with m = 100 instances. Of the 50 true instances C predicted 40 to be true. And on the 50 false instances C said that 45 were false.
- 1. Set up the confusion matrix.
- 2. Calculate the performance metrics: TP rate, FP rate, Specitivity, Precision, F-measure, Accuracy and Error Rate

Common metrics derived from the confusion matrix

predicted class

- TP rate = Recall = Sensitivity = 4/5 = 0.8
- FP rate = FP / (FP + TN) = 0.1
- Specitivity = TN / (FP + TN) = 1 FP rate = 0.9

- Precision = Positiv predictive value = TP / (TP + FP) = 8/9 = 0.88
- F-measure = $\frac{2}{1/\text{Recall} + 1/\text{Precision}} = 16/19 = 0.8421$
- Accuracy = success rate = (TP + TN) / (TP + FN + FP + TN) = 0.85
- Error rate = 1 success rate = 0.15

- A classifier C was built on a large training set an then tested on a set with m = 100 instances. Of the 50 true instances C predicted 40 to be true. And on the 50 false instances C said that 45 were false.
- 1. Set up the confusion matrix.
- 2. Calculate the performance metrics: TP rate, FP rate, Specitivity, Precision, F-measure, Accuracy and Error Rate.
- 3. Calculate the normalized mutual information.

Normalized mutual information

predicted class P

ves

no

$I(A; P) = \sum_{a \in A} \sum_{g \in P} p(a, g) \log_2 \frac{p(g)}{p(a)}$	$\frac{(a,g)}{(a,g)}$ actual	Yes	40	10
$a\in A$ $g\in P$ $p(a)\cdot p(g)$ class A	No	5	45	

$$p(a,g) = p(A = a, P = g) = \frac{c_{ag}}{m}$$

•
$$p(A=Y,P=Y) = 40/100 = 0.4$$

•
$$p(A=Y,P=N) = 10/100 = 0.1$$

•
$$p(A=N,P=Y) = 5/100 = 0.05$$

•
$$p(A=N,P=N) = 45/100 = 0.45$$

$$p(a) = p(A = a) = 1/m \sum_{g} c_{ag}$$

 $p(g) = p(P = g) = 1/m \sum_{g} c_{ag}$

•
$$p(A=Y) = (40+10)/100 = 0.5$$

•
$$p(A=N) = (5+45)/100 = 0.5$$

•
$$p(P=Y) = (40+5)/100 = 0.45$$

•
$$p(P=N) = (10+45)/100 = 0.55$$

Normalized mutual information

predicted class P

VAS

no

$I(A; P) = \sum_{a \in A} \sum_{g \in P} p(a, g) \log_2 \frac{1}{2}$	$\frac{p(a,g)}{p(a)}$	actual	Yes	40	10
$\sum_{a \in A} \sum_{g \in P} p(a) \cdot p$	$p(a) \cdot p(g)$	Class A	No	5	45

•
$$p(A=Y,P=Y) = 40/100 = 0.4$$

•
$$p(A=Y,P=N) = 10/100 = 0.1$$

•
$$p(A=N,P=Y) = 5/100 = 0.05$$

•
$$p(A=N,P=N) = 45/100 = 0.45$$

•
$$p(A=Y) = (40+10)/100 = 0.5$$

•
$$p(A=N) = (5+45)/100 = 0.5$$

•
$$p(P=Y) = (40+5)/100 = 0.45$$

•
$$p(P=N) = (10+45)/100 = 0.55$$

$$I(A,P) = 0.4 \log_2 (0.4/(0.5*0.45)) + 0.1 \log_2 (0.1/(0.5*0.55)) + 0.05 \log_2 (0.05/(0.5*0.45)) + 0.45 \log_2 (0.45/(0.5*0.55))$$

$$\approx 0.3973$$

Normalized mutual information

predicted class P

VAC

 $n \cap$

$I(A; P) = \sum_{a \in A} \sum_{g \in P} p(a, g) \log_2$	$\frac{p(a,g)}{p(a) \cdot p(g)}$	actual class A	Yes	40	10
$a \in A \ g \in P$			No	5	45

$$I(A;P) = 0.4 \log_2 (0.4/(0.5*0.45)) + 0.1 \log_2 (0.1/(0.5*0.55)) + 0.05 \log_2 (0.05/(0.5*0.45)) + 0.45 \log_2 (0.45/(0.5*0.55))$$

$$\approx 0.3973$$

$$NI(A; P) = \frac{I(A; P)}{H(A)} \qquad H(A) = -\sum_{a \in A} p(a) \log_2 p(a)$$

 $NI(A;P) \approx 0.3973 / (-0.5*log2(0.5)-0.5*log2(0.5))$ $\approx 0.3973 / 1 \approx 0.3973$

ROC graphs

Inst #	Class	Score	Inst #	Class	Score
1	Yes	0.95	11	No	0.10
2	Yes	0.28	12	Yes	0.59
3	Yes	0.90	13	No	0.57
4	No	0.62	14	No	0.29
5	No	0.85	15	Yes	0.56
6	Yes	0.64	16	No	0.36
7	Yes	0.53	17	No	0.80
8	No	0.38	18	No	0.43
9	Yes	0.67	19	Yes	0.76
10	No	0.44	20	Yes	0.71

- Draw a ROC graph.
- 2. How should you choose the treshold to obtain highest accuracy?
 - \rightarrow 0.53

Outline

- (1) Performance metrics
- (2) Sampling limited data

Sampling methods – repetition

- Holdout methods
- Cross validation
- Leave-one-out
- Bootstrap

Leave-one-out – a special example

 Assume you have a random data set with exactly the same number of each of two classes. A classifier is used that predicts the majority class.

1. True error rate?

→50%

- 2. Problem with Leave-one-out?
 - →In each fold, the opposite class to the test instance is in the mayority
 - → Prediction will always be incorrect, sample error = 100%

0.632 Bootstrap – a special example

- Assume you have a random data set with two classes and use a classifier that memorizes the training set.
- 1. True error rate?

2. Sample error rate?

$$\rightarrow$$
e_{final} = 0.632 · e_{test} + 0.368 · e_{training}
= 0.632 · 50% + 0.368 · 0% = 31.6%

→ misleadingly optimistic

Thank you!

DFKI Bremen & Universität Bremen Robotics Innovations Center Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics robotics@dfki.de

