Podstawowe pojęcia. Teoria informacji

Kodowanie i kompresja danych - Wykład 1

Maciek Gębala

26 luty 2020

Maciek Gebala

odstawowe pojecia. Teoria informacji

Literatura

- D. Salomon, G. Motta, Handbook of Data Compression, Springer-Verlag London 2010 (ISBN: 978-1-84882-903-9)
- K. Sayood, *Kompresja danych wprowadzenie*, READ ME 2002 (ISBN 83-7243-094-2)
- J. Adamek, Fundations of Coding, Wiley 1991 (ISBN 0-47-162187-0)
- R. Hamming, Coding and Information Theory, Prentice-Hall (ISBN 0-13-139139-1)
- A. Przelaskowski, *Kompresja danych*, BTC 2005 (ISBN: 83-60233-05-5)

Maciek Gębal

Podstawowe pojęcia. Teoria informacji

Rodzaje kodowania

Kodowanie

Przyporządkowanie elementom jakiegoś alfabetu ciągów binarnych (lub ciągów nad innym alfabetem).

Kodowanie może mieć różne cele:

- Zmniejszenie objętości danych kompresja.
- Zapewnienie odporności na błędy kody korekcyjne.
- Zapewnienie poufności danych kryptografia.

Maciek Gębala

odstawowe pojęcia. Teoria informacji

Kompresja bezstratna i stratna

Kompresje bezstratna (lossless compression)

Z postaci skompresowanej można (zawsze!) odtworzyć postać danych identyczną z oryginałem.

Kompresja stratna (lossy compression)

Algorytm dopuszcza pewien poziom utraty informacji w zamian za lepszy współczynnik kompresji. Uwaga: W niektórych zastosowaniach może być to niebezpieczne! (np. obrazy medyczne)

Notatki
Notatki
Notatki
Notatki

Rodzaje kodów	Notatki
Kody stałej długości – np. kody ASCII o długości 8 bitów. (Ponieważ długość jest stała nie ma kłopotu z podziałem na znaki.)	
Kody o różnej długości – kody prefiksowe, kod Morse'a. (Ważne jest zapewnienie, że kody da się prawidłowo odczytać.)	
Maciek Gebala Podatawowe pojęcia. Teoria informacji	
Kody jednoznaczne	Notatki
Litera Prawd. kod 1 kod 2 kod 3 kod 4	
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	
a₃ 0,125 1 00 110 011 a₄ 0,125 10 11 111 111 średnia długość 1,125 1,25 1,75 1,75	
kod 2: 1111 - czego to jest kod?	
 kod 3: kod prefiksowy - żąden kod nie jest prefiksem drugiego. kod 4: 011111111111: co jest pierwszą literą? 	
Clock in Children in Collect plantatiq more.	
Madek Gębala Podstawowe pojęcia. Teoria informacji	
Techniki kompresji	Notatki
 Dwa algorytmy - kompresja i dekompresja. Kompresja bezstratna – dane po kompresji i dekompresji są 	
identyczne z danymi wejściowymi. • Kompresja stratna – dane wejściowe są wstępnie przetwarzane	
aby zwiększyć stopień kompresji ale po dekompresji są różne od wejściowych.	
Miary jakości kompresji	
 Stosunek liczby bitów danych do bitów po kompresji. Procentowy stosunek bitów po kompresji do bitów danych. Czas kompresji i dekompresji – w zależności od sposobu użycia 	
może być ważny.	
Maciek Gębala Podatawowe pojęcia. Teoria informacji	
Modelowanie danych	Notatki
Przykład 1	
• Weźmy ciąg: 9 11 11 11 14 13 15 17 16 17 20 21	
Do zapamiętania tego ciągu dosłownie potrzebujemy 5 bitów na każdą liczbę. Woźmy wzory ŵ - a + 8 i o - x - ŵ	
 Weźmy wzory x̂_n = n + 8 i e_n = x_n - x̂_n. Wówczas ciąg e_n ma postać: 0 1 0 - 1 1 - 1 0 1 - 1 - 1 1 1 	
 Teraz dla każdego elementu nowego ciągu wystarczą 2 bity. Dane spełniają w przybliżeniu pewną regułę. 	

.....

Modelowanie danych

Przykład 2

- Weźmy ciąg:
 - 27 28 29 28 26 27 29 28 30 32 34 36 38
- Do zapamiętania tego ciągu dosłownie potrzebujemy 6 bitów na każdą liczbę.
- Każda wartość w ciągu jest bliska poprzedniej.
- Weźmy wzory $e_n = x_n x_{n-1}$, $e_1 = x_1$. Nowy ciąg ma postać: 27 1 1 -1 -2 1 2 -1 2 2 2 2 2
- Teraz ciąg do zakodowania jest prostszy.

Maciek Gebala

ndstawowe pojecia. Teoria informacii

Modelowanie danych

Przykład 3

- Weźmy tekst:
- a_barayaran_array_ran_far_faar_faaar_away
- Mamy 8 różnych symboli, więc na każdy potrzebujemy 3 bity.
- Jeśli użyjemy kodu z tabelki poniżej, to zostanie użytych 106 bitów zamiast 123 (2,58 bitu na symbol).

Wykorzystujemy własności statystyczne danych.

Maciek Gębala

Podstawowe pojęcia. Teoria informac

Zagadka

Czy istnieje algorytm kompresji bezstratnej, który skompresuje wszystkie podane mu dane?

- Kompresja bezstratna jest funkcją różnowartościową.
- Różnych danych długości *n* jest 2ⁿ (ciągi bitów).
- Różnych ciągów bitowych długości mniejszej niż n jest 2^n-1 . $(\sum_{i=1}^{n-1} 2^i)$
- Wniosek 1: istnieje ciąg który nie może być skompresowany.
- Wniosek 2: ponad połowa ciągów skróci się o co najwyżej 1 bit.

Maciek Gębal

odstawowe pojecja. Teoria informa

Teoria informacji

Jeśli P(A) jest prawdopodobieństwem wystąpienia informacji A to niech

$$i(A) = \log \frac{1}{P(A)} = -\log P(A)$$

będzie miarą tej informacji.

Jeśli A i B są niezależne, to

$$i(AB)$$
 = $\log \frac{1}{P(AB)} = \log \frac{1}{P(A)P(B)} =$
 = $\log \frac{1}{P(A)} + \log \frac{1}{P(B)} = i(A) + i(B)$

Podstawą logarytmu jest 2 a jednostką informacji bit.

Notatki
Notatki
Notatki
Notatki

Teoria informacji

Zalóżmy, że mamy zbiór wiadomości A_1,\ldots,A_n , które pojawiają się z prawdopodobieństwami $P(A_1),\ldots,P(A_n)$ $(\sum_{i=1}^n P(A_i)=1)$.

Średnia informacja w tym zbiorze jest określona wzorem

$$H=\sum_{i=1}^n P(A_i)i(A_i)$$

Wielkość tą nazywamy entropią.

Kody jednoznacznie dekodowalne w modelu z niezależnymi wystąpieniami symboli muszą mieć średnią długość co najmniej równą entropii.

aciek Gebala

odstawowe pojęcia. Teoria informacji

Przykład

- Weźmy ciąg 1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 10
- $P(1) = P(6) = P(7) = P(10) = \frac{1}{16}$, $P(2) = P(3) = P(4) = P(5) = P(8) = P(9) = \frac{2}{16}$
- $H = -\sum_{i=1}^{10} P(i) \log P(i) = 3,25$
- Najlepszy schemat kodujący ten ciąg wymaga 3,25 bitu na znak.
- Jeśli jednak założymy, że elementy ciągu nie są niezależne i zastąpimy ciąg różnicami to otrzymamy 1 1 1 -1 1 1 1 -1 1 1 1 1 -1 1 1

Maciek Gębal

Podstawowe pojęcia. Teoria informac

Przykład

- Weźmy ciąg 1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2
- Prawdopodobieństwa wynoszą: $P(1) = P(2) = \frac{1}{4}$ i $P(3) = \frac{1}{2}$.
- Entropia jest równa 1,5 bitu na znak.
- Jeśli jednak weźmiemy bloki złożone z dwóch znaków to $P(12)=\frac{1}{2}$ i $P(33)=\frac{1}{2}$, czyli entropia jest równa 1 bit na parę (0,5 bitu na znak).

Maciek Gebala

Podstawowe pojęcia. Teoria informac

Test na jednoznaczną dekodowalność

Kod a jest prefiksem kodu b, jeśli b jest postaci $ax.\ x$ nazywamy sufiksem b względem a.

Algorytm

Tworzymy listę słów kodowych.

Dla każdej pary sprawdzamy, czy jedno słowo jest prefiksem drugiego. Jeśli tak to do listy dodajemy sufiks drugiego słowa (chyba, że już dodaliśmy taki sufiks).

Powtarzamy powyższą procedurę, aż do momentu kiedy znajdziemy na liście sufiks równy słowu kodowemu (*kod nie jest jednoznaczny*), albo nie można znaleźć nowych sufiksów (*kod jest jednoznaczny*).

Notatki
Notatki
Notatki

Przykład Notatki • Weźmy kod {0, 01, 11}. • Kod 0 jest prefiksem 01. Innych par nie ma, więc nowa lista ma postać {0, 01, 11, 1}. • Teraz dla tej listy mamy 0 jako prefiks 01 i 1 jako prefiks 11, ale sufiks 1 już dopisaliśmy do listy, więc lista się nie zmienia. • Kod jest więc jednoznacznie dekodowalny. Przykład Notatki Weźmy kod {0, 01, 10}. • Kod 0 jest prefiksem 01. Innych par nie ma, więc nowa lista ma postać {0, 01, 10, 1}. • Teraz dla tej listy mamy 0 jako prefiks 01, ale on już jest na liście, oraz 1 jako prefiks 10, ale sufiks 0 jest równy kodowi 0. • Kod nie jest więc jednoznacznie dekodowalny. Kody prefiksowe Notatki Kod w którym żadne słowo kodowe nie jest prefiksem innego słowa kodowego. (Łatwo zauważyć, że kod prefiksowy jest jednoznacznie dekodowalny.) Nierówność Krafta-McMillana Niech ${\it C}$ będzie kodem składającym się z ${\it N}$ słów o długościach l_1, l_2, \ldots, l_N . Jeżeli C jest jednoznacznie dekodowalny, to Nierówność Krafta-McMillana - dowód Notatki • Jeśli a > 1, to a^n dąży do nieskończoności. Jeśli a^n nie rośnie, to a ≤ 1. Dla dowolnego n $[K(C)]^n = \left(\sum_{i=1}^N \frac{1}{2^{l_i}}\right) \cdot \ldots \cdot \left(\sum_{i=1}^N \frac{1}{2^{l_i}}\right) = \sum_{l_1=1}^N \sum_{l_2=1}^N \ldots \sum_{l_n=1}^N \frac{1}{2^{l_1+l_2+1}}$ • Wykładnik $I_{i_1}+I_{i_2}+\ldots+I_{i_n}$ jest sumą długości n słów z kodu C.

- Niech $I = \max\{I_1, I_2, \dots, I_N\}$. Wtedy maksymalny wykładnik jest równy nl.
- Powyższą sumę można zapisać jako

$$[K(c)]^n = \sum_{k=n}^{nl} A_k 2^{-k}$$

gdzie A_k jest sumą kombinacji n słów kodowych o długości k.

Nierówność Krafta-McMillana - dowód

 Istnieje 2^k różnych ciągów binarnych długości k. Ale jeśli kod jest jednoznacznie dekodowalny, to każdy taki ciąg może reprezentować tylko jeden ciąg słów kodowych. Czyli

$$A_{k} \leq 2^{k}$$

Stąd

$$[K(C)]^n \le \sum_{k=n}^{nl} 2^k 2^{-k} = nl - n + 1$$

 Ale jeśli K(C) byłoby większe od 1, to [K(C)]ⁿ rosłoby wykładniczo, a według powyższej nierówności rośnie liniowo. Czyli

$$K(C) \leqslant 1$$
.

Maciek Gebala

odstawowe pojecia. Teoria informacji

Kody Shannon-Fano

- Niech symbole a_i występują odpowiednio z prawdopodobieństwami p_i.
- Weźmy długości kodów $I_i = \lceil -\log p_i \rceil$.
- Długości I; spełniają nierówność Krafta-McMillana.

$$\sum_{i=1}^N \frac{1}{2^{l_i}} \leqslant \sum_{i=1}^N \frac{1}{2^{-\log p_i}} = \sum_{i=1}^N p_i = 1$$

- Istnieje więc kod prefiksowy o takich długościach.
- Łatwo zauważyć, że średnia długość tego kodu jest nie większa niż entropia plus 1.

Maciek Gębala

odstawowe pojęcia. Teoria informacj

Konstrukcja kodu o podanych długościach

- Niech $I_1 \leqslant I_2 \leqslant \ldots \leqslant I_N$.
- Definiujemy pomocnicze $\textit{w}_1, \textit{w}_2, \dots, \textit{w}_N$ jako

$$w_1 = 0$$
 $w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i}$

- Binarna reprezentacja w_j dla j > 1 zajmuje $\lceil \log w_j \rceil$ bitów.
- ullet Liczba bitów w_j jest mniejsza lub równa l_j . Dla w_1 to oczywiste.

$$\log w_{j} = \log \left[\sum_{i=1}^{j-1} 2^{l_{j}-l_{i}} \right] = \log \left[2^{l_{j}} \sum_{i=1}^{j-1} 2^{-l_{i}} \right] =$$

$$= l_{j} + \log \left[\sum_{i=1}^{j-1} 2^{-l_{i}} \right] \leq l_{j}$$

Maciek Gebala

Podstawowe pojęcia. Teoria informacj

Konstrukcja kodu o podanych długościach

Kodowanie wygląda następująco:

Jeżeli $\lceil \log w_j \rceil = l_j$, to j-te słowo kodowe jest binarną reprezentacją w_j . Jeżeli jest mniejsze, to reprezentację w_j uzupełniamy odpowiednią liczbą zer z lewej strony.

Notatki
Notatki
Notatki

Konstrukcja kodu o podanych długościach

Czy to jest kod prefiksowy?

- Załóżmy, że c_j jest prefiksem c_k i j < k. Wtedy l_j pierwszych bitów c_k tworzy c_j , czyli $w_j = \left\lfloor \frac{w_k}{2^k l_j} \right\rfloor$
- Ale $w_k = \sum_{i=1}^{k-1} 2^{l_k l_i}$.
- Czyli

$$\begin{array}{rcl} \frac{w_k}{2^{l_k-l_j}} & = & \sum_{i=1}^{k-1} 2^{l_j-l_i} = w_j + \sum_{i=j}^{k-1} 2^{l_j-l_i} = \\ \\ & = & w_j + 2^0 + \sum_{i=j+1}^{k-1} 2^{l_j-l_i} \geqslant w_j + 1 \end{array}$$

ullet Sprzeczne z założeniem, że c_j jest prefiksem c_k .

faciek Gehala

odstawowe pojęcia. Teoria informacji

Przykład

- Weźmy a, b, c, d z prawdopodobieństwami $\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}$.
- Odpowiednio długości kodów Shannon-Fano wynoszą 2, 2, 2, 3.
- Wyliczamy $w_a = 0$, $w_b = 1$, $w_c = 2$, $w_d = 6$.
- Kody to odpowiednio kod(a) = 00, kod(b) = 01, kod(c) = 10, kod(d) = 110.

Maciek Gęb

odstawowe pojęcia. Teoria informac

Notatki
Notatki
Noted
Notatki
Notatki
Notatki
Notatki