Trabalho de Algoritmos em Grafos

UFC - Campus Sobral Engenharia de Computação Professor: Josefran Bastos Aluno: Hugo Silveira Sousa Matrícula: 378998

Definição:

Isomorfismo entre os grafos G1 e G2.

Sabemos que isomorfismo dos grafos G1 e G2 é uma bijeção entre os conjuntos de vértices de G1 e G2:

f:
$$V(G1) \rightarrow V(G2)$$

E para quaisquer dois vértices u e v de G1, que são adjacentes em G1, temos que f(u) e f(v), que são vértices de G2, são adjacentes em G2.

Explicação das Características:

Teste 1: Quantidade de vértices dos grafos.

Se a quantidade de vértices de G1 for diferente da quantidade de vértices de G2, isso implica que G1 não é um isomorfo de G2.

Prova 1:

A definição de isomorfismo afirma que há uma bijeção entre os conjuntos de vértices de G1 e G2. Uma bijeção entre os dois conjuntos implica que a quantidade de vértices de G1 é a mesma de G2:

$$|V(G1)| = |V(G2)|$$

Logo, se a quantidade de vértices de G1 for diferente da quantidade de vértices de G2, temos que G1 não é um isomorfo de G2.

Teste 2: Quantidade de arestas dos grafos.

Se a quantidade de arestas de G1 for diferente da quantidade de arestas de G2, isso implica que G1 não é um isomorfo de G2.

Prova 2:

A definição de isomorfismo afirma que para cada aresta $uv \in E(G1)$, temos a aresta $f(u)f(v) \in E(G2)$, logo, também existe uma bijeção nos conjuntos de arestas de G1 e de G2:

h:
$$E(G1) \rightarrow E(G2)$$

Uma bijeção implica na mesma quantidade de arestas dos conjuntos:

$$|E(G1)| = |E(G2)|$$

Logo, se a quantidade de arestas de G1 for diferente da quantidade de arestas de G2, temos que G1 não é um isomorfo de G2.

Teste 3: Se os grafos são conexos ou desconexos.

Se G1 for conexo e G2 for desconexo, ou G1 for desconexo e G2 for conexo, isso implica que G1 não é um isomorfo de G2.

Prova 3:

Analisando o primeiro caso, se G1 for conexo e G2 for desconexo:

Usando as Provas 1 e 2, para G1 ser isomorfos de G2, temos que ter o mesmo número de vértices e o mesmo número de arestas em G1 e G2, logo:

$$|E(G1)| = |E(G2)| e |V(G1)| = |V(G2)|$$

Suponha que G1, que é conexo, é isomorfo de G2, que é desconexo, então:

Para cada aresta $uv \in E(G1)$ tem que existir $f(u)f(v) \in E(G2)$.

Como G1 é conexo, entre quaisquer $u e v \in V(G1)$, existe um caminho k que conecta quaisquer u e v. No caminho k temos que o conjunto de arestas que pertencem a esse caminho estão contidas em E(G1):

xy são as arestas que pertencem ao caminho k, xy \subseteq E(G1)

Como afirmamos que G1 é isomorfo de G2, temos que arestas do caminho k, $xy \subseteq E(G1)$, então $f(x)f(y) \subseteq E(G2)$, como o caminho k, é o caminho entre quaisquer x e $y \in V(G1)$, temos existe um caminho entre quaisquer f(x) e $f(y) \in V(G2)$, isso implica que G2 é conexo, o que é um absurdo, logo, a suposição é falsa, e G1, que é conexo, não é isomorfo de G2, que é desconexo.

Obs 1: uv é uma aresta entre os vértices u e v.

Obs 2: Para o segundo caso, se G2 for conexo e G1 for desconexo, é análogo, apenas trocando todos os termos G1 por G2 e G2 por G1.

Teste 4: Se os grafos apresentam circuitos ou não.

Se G1 tiver algum circuito e G2 não tiver circuitos, ou G2 tiver algum circuito e G1 não tiver circuitos, isso implica que G1 não é um isomorfo de G2.

Prova 4:

Analisando o primeiro caso, G1 tiver algum circuito e G2 não tiver circuitos.

Usando as Provas 1 e 2, para G1 ser isomorfos de G2, temos:

$$|E(G1)| = |E(G2)| e |V(G1)| = |V(G2)|$$

Suponha que G1, que apresenta algum circuito, é isomorfo de G2, que não tem circuitos, então:

Para cada aresta $uv \in E(G1)$ tem que existir $f(u)f(v) \in E(G2)$.

Como G1 tem circuito, existe algum vértice $v_0 \in V(G1)$, com um caminho k ($v_0, v_1, v_2, ..., v_n, v_0$) que sai de v_0 , passa por no mínimo mais 2 vértices diferentes de v_0 , e voltam para v_0 . No caminho k temos que o conjunto de arestas que pertencem a esse caminho estão contidas em E(G1):

 $v_i \ v_j$ são as arestas que pertencem ao caminho k, $v_i \ v_j \subseteq E(G1)$, i, j = 0 ... n

Como afirmamos que G1 é isomorfo de G2, com as arestas do caminho k, $v_i v_j \subseteq E(G1)$, e os vértices do caminho k, v_0 , v_1 , v_2 ,..., v_n , $v_0 \in V(G1)$, então $f(v_i)f(v_j) \subseteq E(G2)$, e $f(v_0),f(v_1),f(v_2),...,f(v_n),f(v_0) \in V(G2)$, então existe um caminho que sai de $f(v_0)$ passa por no mínimo mais 2 vértices diferentes de $f(v_0)$, e voltam para $f(v_0)$, implicando em um circuito em G2, o que é um absurdo, logo, a suposição é falsa, e G1, que tem algum circuito, não é isomorfo de G2, que não tem circuitos.

Obs 1: $v_i \ v_i$ é uma aresta entre os vértices $\ v_i \ e \ v_j$.

Obs 2: Para o segundo caso, G2 tiver algum circuito e G1 não tiver circuitos, é análogo, apenas trocando todos os termos G1 por G2 e G2 por G1.

Teste 5: Quantidade de componentes conexas dos grafos.

Se G1 tiver X componentes conexas, e G2, Y componentes conexas, com $X \neq Y$, isso implica que G1 não é isomorfo de G2.

Prova 5:

Suponha G1 isomorfo de G2, com $X \neq Y$

Usando as Provas 1 e 2, para G1 ser isomorfos de G2, temos:

$$|E(G1)| = |E(G2)| e |V(G1)| = |V(G2)|$$

G1 tem X K caminhos, um Ki para cada componente conexa, uv pertence ao caminho Ki, que $u,v \in V(G1)$ e $uv \in E(G1)$, então como são isomorfos, $f(u),f(v) \in V(G1)$ e $f(u)f(v) \in E(G2)$.

Logo, existem Y K caminhos em G2, com Y = X, o que é um absurdo, portanto G1 não é isomorfo de G2.

Teste 6: Análise dos graus de todos os vértices dos grafos.

Se for criado um vetor w, onde em cada posição desse vetor está armazenada o grau de cada vértice de G1, e z com os graus dos vértices de G2, depois de ordenados os vetores, se w for diferente de z, isso implica que G1 não é isomorfo de G2.

Obs: Ou os dois vetores são ordenados de forma crescente, ou os dois são ordenados de forma decrescente.

Prova 6:

Usando as Provas 1 e 2, para G1 ser isomorfos de G2, temos:

|E(G1)| = |E(G2)| e |V(G1)| = |V(G2)|

O vetor w deve ser do mesmo tamanho de z.

- O vetor w, tem a seguinte estrutura: [..., a,, ...] de posições 1 à |V(G1)|; e
 o vetor z: [..., ..., a , ...] de posições 1 à |V(G2)|.
- w = ordena(w) e z= ordena(z)
- w terá a estrutura: [..., a,, ...]; e z: [..., a,, ...], se w ≠ z

Suponha que G1 é isomorfo de G2, com o vetor w ordenado diferente de z ordenado.

Tome $v_i,...,v_j \in V(G1)$, tal que $d(v_i)$ =a, sabemos que $f(v_i),...,f(v_j) \in V(G2)$, tal que $d(f(v_i))$ = a.

Para ser isomorfo, w tem que ter os mesmos elementos de z, porque |E(G1)| = |E(G2)|, $\Sigma d(V(G1)) = 2.|E(G1)|$ e $\Sigma d(V(G2)) = 2.|E(G2)|$.

Logo depois de ordenado w e z devem ser iguais para ser isomorfo.

Obs 2: Suponha que é sem perda de generalidade.

Exemplos de grafos que passam nos testes, mas não são isomorfos:

Tabela de Comparação dos Tempos de Execução:

Média com 1000 repetições			
	n = 8	n = 12	n = 16
p = 0.25	3,637 ms	5,642 ms	5,645 ms
p = 0.50	4,462 ms	4,598 ms	6,624 ms
p = 0.75	4,251 ms	4,369 ms	5,934 ms

n é o número de vértices;

p é a probabilidade de gerar uma aresta.

Obs: Média realizada com 1000 repetições, analisando os 6 testes de características. O tempo calculado inclui apenas os testes e as saídas de sistema (prinft) das funções de testes, não foram incluídos as criações dos grafos. Configurações da máquina de teste:

- Processador: Intel Celeron CPU 1005M 1.90 GHz;
- Memória RAM: 4 GB;
- Sistema Operacional: Windows 10, 64 bits.