	CSIC5100 HW1 Quesion 1 & 2 LEE, Jooran (SID: 20538819) Question 1.
In [34]:	import numpy as np import numpy.linalg as alg import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.ticker as mtick import matplotlib.cm as cm
In [35]:	<pre>from matplotlib.ticker import MaxNLocator from sklearn.decomposition import PCA (a) Setting up data matrix data = pd.read_csv('/Users/jooranlee/Dropbox/Mac/Desktop/CSIC5100/HW1/train.txt') X = np.array(data, dtype = 'float32')</pre>
Out[35]:	<pre>X = np.transpose(X) # transpose to set up the matrix in pxn X.shape (256, 644) (b) Compute the sample mean mu = np.mean(X, axis=0)</pre>
10 [36]:	<pre>n = X.shape[1] I = np.identity(n) H = I - np.ones((n, n))/n X_row = X.dot(H) X_row = np.transpose(X_row) X_row_1 = np.reshape(X_row[0,:],(16,16)) imgshow = plt.imshow(X_row_1,cmap='gray') # plot one of X_tilda</pre>
	<pre>X = np.transpose(X) X_1 = np.reshape(X[0,:],(16,16)) imgshow = plt.imshow(X_1,cmap='gray') # plot one of X for comparison</pre>
In [37]:	<pre>pca.fit(X) lambda_hat = pca.explained_variance_ratio_</pre>
	<pre>sum = 0 for i in range(len(lambda_hat)): sum += lambda_hat[i] if sum >= 0.95: break print("k: ", i) print(sum) lambda_hat = lambda_hat[:i+1] print(lambda_hat)</pre>
	k: 54 0.950538068311289 [0.19170901 0.11865437 0.10925464 0.09660694 0.04727705 0.03545397 0.03241991 0.02850023 0.02441354 0.02290041 0.02157202 0.01872944 0.01312474 0.01203694 0.01143348 0.010344 0.00981531 0.00937494 0.00859567 0.00774198 0.00746575 0.007072 0.0065004 0.00641337 0.00599196 0.00533758 0.00519231 0.0047779 0.00437474 0.00410675 0.00402912 0.00383348 0.00361316 0.00358362 0.00339337 0.00313996
In [38]:	
Out[38]:	plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_ratio_') Text(0, 0.5, 'explained_variance_ratio_')
	0.105 - 0.100 - 0.005
In [39]:	(e) Visualize the top 20 left singular vector
	<pre>img_mean = np.reshape(mean_, (16,16)) imgshow = plt.imshow(img_mean, cmap='gray') #top1 c_1 = pca.components_[0] img_c = np.reshape(c_1, (16,16)) imgshow = plt.imshow(img_c, cmap='gray')</pre>
	2 - 4 - 6 - 8 - 10 - 10 - 10 - 10 - 10 - 10 - 10
In [40]:	12 - 14 - 14 - 14 - 15 - 15 - 15 - 15 - 15
	<pre>imgshow = plt.imshow(img_c, cmap='gray')</pre>
	8- 10- 12- 14- 00 2.5 5.0 7.5 10.0 12.5 15.0
In [41]:	<pre>#top3 c_3 = pca.components_[2] img_c = np.reshape(c_3,(16,16)) imgshow = plt.imshow(img_c, cmap='gray')</pre>
	4 - 6 - 8 - 10 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14
In [42]:	<pre>mean_projection = np.dot(pca.components_[0], mean_)</pre>
	<pre>v1_list = [] for i in range(X.shape[0]): v_1 = (np.dot(pca.components_[0], (X[i, :]) - mean_)) v1_list.append((i, v_1)) v_1_sorted = sorted(v1_list, key = lambda v: v[1]) print(v_1_sorted) [(376, -5.7659492), (279, -5.62024), (209, -5.6015787), (440, -5.5716467), (384, -5.559865), (265, -5.4918246), (562, -5.4162292), (322, -5.4042807), (235, -5.358263), (261, -5.3512588), (151, -5.3475895), (20, -5.31691), (75, -5.3135185), (426, -5.3056064), (118, -5.2878284), (86, -5.284148), (321, -5.2319155), (610, -5.227692), (563, -5.2197404), (462, -5.1852036), (148, -5.1777096), (202, -5.1697297), (434, -5.14662)</pre>
	17), (574, -5.137332), (278, -5.127184), (478, -5.114633), (561, -5.088279), (590, -5.0850544), (617, -5.0743737), (108, -5.0689626), (289, -5.0529923), (373, -5.0515804), (205, -5.0478864), (400, -5.0457006), (159, -5.033297), (169, -4.9452934), (155, -4.9438143), (488, -4.9204807), (541, -4.9057403), (172, -4.8942537), (485, -4.880453), (631, -4.851296), (26, -4.848444), (2, -4.844345), (360, -4.843701), (520, -4.843077), (58, -4.8064103), (608, -4.7881346), (396, -4.78592), (367, -4.782215), (347, -4.7511), (356, -4.7492695), (54, -4.732635), (204, -4.720461), (355, -4.71956), (366, -4.677823), (293, -4.6721582), (498, -4.6545177), (365, -4.6667695), (161, -4.629586), (611, -4.625413), (449, -4.5914793), (276, -4.591266), (472, -4.5900636), (70, -4.576172), (550, -4.5713463), (414, -4.543414), (615, -4.5425563), (579, -4.51736), (122, -4.5091105), (442, -4.4931097), (487, -4.4828606), (589, -4.479229), (49, -4.457966), (140, -4.4539027), (639, -4.433031), (379, -4.407083), (476, -4.4045267), (191, -4.3942795), (178, -4.37751), (407, -4.3687773), (25, -4.3644), (578, -4.3332844), (98, -4.331321), (463, -4.3276024), (326, -4.3178263), (586, -4.290318), (263, -4.282902), (117, -4.260739), (227, -4.254371), (484, -4.248514), (34, -4.2423563), (37, -4.227482), (111, -4.197852), (332, -4.183259), (96, -4.1611843), (110, -4.1605234), (164, -4.158858), (55, -4.1423407), (316, -4.140803), (21, -4.1289625), (410, -4.1277685), (52, -4.1239142), (23, -4.082953), (354, -4.079895), (585, -4.0763445), (312, -4.064514), (14, -4.0336676), (69, -4.023127), (253, -4.0116544), (482, -3.9940634), (368, -3.992282), (320, -3.9773088), (595, -3.9742608), (636, -3.9693532), (253, -4.0763445), (320, -3.9773088), (595, -3.9742608), (636, -3.9693532), (230, -3.9973088), (595, -3.9742608), (636, -3.9693532), (230, -3.9973088), (595, -3.9742608), (636, -3.9693532), (230, -3.9940634), (320, -3.9973088), (320, -3.9773088), (320, -3.9773088), (320, -3.9773088), (320, -3.9773088), (320, -3.9773088), (320, -3.9773088), (320, -3.9773088), (320
	44, -3.957969), (65, -3.942418), (1, -3.907944), (477, -3.9037423), (245, -3.8923697), (454, -3.8682475), (419, -3.861044), (177, -3.849385), (90, -3.83198), (551, -3.8224936), (275, -3.8015304), (468, -3.7820318), (231, -3.7763155), (4, -3.769145), (524, -3.7586439), (5, -3.7558155), (248, -3.722704), (41, -3.719307), (324, -3.6745324), (228, -3.6537213), (149, -3.642941), (62, -3.6190557), (334, -3.600653), (486, -3.6037126), (333, -3.601909), (271, -3.5822392), (97, -3.5814419), (362, -3.5814419), (362, -3.550197), (546, -3.5375876), (6, -3.423753), (406, -3.386238), (287, -3.3710794), (530, -3.3458037), (511, -3.338304), (531, -3.333184), (331, -3.212442), (416, -3.1916327), (68, -3.1411986), (560, -3.104667), (119, -3.1026921), (80, -3.093767), (351, -3.054595), (266, -3.048678), (33, -3.292438)), (35, -3.212442), (416, -2.9433014), (256, -2.9243891), (39, -2.9137313), (584, -2.9118552), (168, -2.841509), (515, -2.8166056), (139, -2.815133), (331, -2.8148346), (411, -2.8088448), (301, -2.792071), (59, -2.7782753), (158, -2.7638779), (27, -2.743191), (60, -2.698386), (536, -2.6568418), (510, -2.6535313), (349, -2.6515014), (341, -2.6508074), (104, -2.6495984), (211, -2.648203), (113, -2.6438942), (374, -2.6004753), (496, -2.5821385), (160, -2.5715237), (311, -2.541769), (330, -2.520202), (479, -2.5181794), (504, -2.5034192), (588, -2.4955661), (208, -2.4881186), (174, -2.4844632), (567, -2.4650679), (403, -2.4516196), (162, -2.427027), (133, -2.4120317), (623, -2.4040842), (286, -2.400577), (236, -2.391187), (22, -2.3801072), (137, -2.3731236), (251, -2.358328), (582, -2.3523636), (234, -2.323443), (38, -2.3197997), (129, -2.3143735),
	(564, -2.3093467), (199, -2.305026), (221, -2.3006363), (390, -2.2830334), (518, -2.2288775), (630, -2.2102604), (465, -2.1808505), (165, -2.1729581), (401, -2.1671052), (56, -2.1317468), (385, -2.0998995), (25 2, -2.0587833), (63, -2.0511208), (383, -2.0204628), (246, -2.0190892), (184, -2.00996), (336, -2.0006921), (489, -1.9910691), (621, -1.971701), (386, -1.8577068), (397, -1.8529617), (543, -1.8407071), (260, -1.8376958), (469, -1.8251705), (120, -1.8165884), (480, -1.76439), (620, -1.7597556), (409, -1.7512329), (525, -1.7179615), (339, -1.715154), (269, -1.7074199), (352, -1.7031193), (225, -1.6929474), (109, -1.689055), (363, -1.6859845), (503, -1.6734335), (144, -1.6571372), (604, -1.6510541), (73, -1.5763756), (315, -1.5721505), (267, -1.5348012), (156, -1.4895146), (239, -1.4702415), (28, -1.4431376), (447, -1.3357124), (600, -1.3292848), (446, -1.3164178), (220, -1.3117632), (319, -1.2290967), (306, -1.2290967), (306, -1.2290967), (306, -1.2290967), (306, -1.2290967), (306, -1.2290967), (306, -1.2290967), (306, -1.2290967), (306, -1.2290967), (300, -1.0163378), (131, -0.9534104), (519, -0.9036411), (558, -0.8903172), (497, -0.88462067), (229, -0.87791276), (116, -0.8674176), (222, -0.596831), (126, -0.7782932), (641, -0.77816844), (186, -0.73398644), (138, -0.66695774), (340, -0.6580924), (44, -0.6370044), (71, -0.60794586), (77, -0.600726), (79, -0.5752711), (180, -0.55601573), (507, -0.556668), (603, -0.34998325), (17, -0.29718527), (572, -0.52676709), (493, -0.520534), (219, -0.5100746), (268, -0.443007), (32, -0.44310937), (529, -0.42056262), (506, -0.41804403), (378, -0.40727055), (532, -0.3588668), (603, -0.34998325), (17, -0.29718527), (572, -0.52676709), (493, -0.520534), (219, -0.5100746), (268, -0.443007), (32, -0.44310937), (529, -0.42056262), (506, -0.41804403), (378, -0.40727055), (532, -0.3588668), (603, -0.34998325), (17, -0.29718527), (572, -0.52676709), (493, -0.520534), (219, -0.5100746), (228, -0.443007), (32, -0.44310937), (529, -0.42056262), (506, -0.41804403), (378, -0.4072705
	29692078), (224, -0.2889006), (348, -0.27801937), (167, -0.2776247), (557, -0.24942613), (29, -0.22337236), (452, -0.21896306), (243, -0.18899745), (613, -0.18545112), (40, -0.15700865), (237, -0.14733449), (15 3, -0.13097277), (544, -0.12799948), (619, -0.124260515), (580, -0.11734554), (31, -0.09970337), (3, -0.09565422), (242, -0.0742936), (417, -0.07182335), (540, -0.05557047), (597, -0.045818828), (483, -0.0401301 1), (490, 0.0078053325), (526, 0.01478947), (323, 0.03979391), (593, 0.042011783), (114, 0.055007815), (357, 0.0887121), (522, 0.104175374), (262, 0.11248952), (568, 0.12548344), (382, 0.14521524), (638, 0.17767 164), (210, 0.20915377), (375, 0.23706745), (545, 0.241393), (74, 0.24357927), (280, 0.27631176), (8, 0.2951115), (238, 0.35523918), (106, 0.36069742), (46, 0.4571926), (616, 0.5375049), (132, 0.54057395), (296, 0.5536691), (570, 0.5728945), (342, 0.5946933), (9, 0.66055254), (453, 0.61916363), (134, 0.64773446), (183, 0.68863857), (282, 0.70953435), (154, 0.7199193), (443, 0.799193), (443, 0.799193), (452, 0.836367), (45
	840263), (361, 1.847708), (299, 1.8498489), (290, 1.8510098), (549, 1.8592429), (11, 1.8868892), (203, 1.8889192), (425, 1.889991), (303, 1.9217548), (500, 1.9543228), (214, 1.9571365), (389, 1.9684818), (91, 1.9812893), (317, 2.0064983), (226, 2.0078702), (307, 2.0445716), (634, 2.0596402), (517, 2.090681), (264, 2.1043277), (310, 2.1093352), (583, 2.1146362), (420, 2.1256423), (556, 2.1555603), (505, 2.168726), (345, 2.1868045), (222, 2.214088), (292, 2.236528), (467, 2.2491312), (76, 2.2595696), (502, 2.2980795), (66, 2.307055), (272, 2.3266249), (16, 2.3697233), (402, 2.3756294), (388, 2.3883412), (30, 2.4007232), (166, 2.4197476), (294, 2.4505954), (196, 2.455892), (632, 2.4793837), (542, 2.4840274), (270, 2.502842), (95, 2.5277388), (459, 2.5325665), (100, 2.5446136), (456, 2.5681825), (255, 2.5818417), (377, 2.6017208), (206, 2.616119), (575, 2.617332), (277, 2.622541), (428, 2.6730587), (88, 2.7026758), (528, 2.7078278), (591, 2.7141871), (346, 2.7192216), (435, 2.7270477), (547, 2.758829), (175, 2.7642124), (249, 2.7861543), (614, 2.8579183), (223, 2.8695092), (626, 2.877091), (533, 2.9072886), (42, 2.9201646), (413, 2.9622781), (36, 2.996934), (72, 3.0349817), (213, 3.155935), (48, 3.17422), (338, 3.1818604), (640, 3.2160368), (599, 3.2325206), (189, 3.2481022), (625, 3.2826602), (43, 3.3047674), (185, 3.3094637), (474, 3.3197095), (473, 3.3588672), (605, 3.361715), (422, 3.460567), (359, 3.474064), (559, 3.5380309), (92, 3.5524745), (477, 3.6115327), (521, 3.625118), (125, 3.649173), (327, 3.6761367), (398, 3.70244), (258, 3.7052073), (475, 3.709403), (460, 3.7463634), (298, 3.7569335), (513, 3.7980318), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (187, 3.7991028), (412, 3.8046072), (85, 3.8183), (18
	53), (430, 3.869589), (135, 3.887476), (523, 3.90596), (170, 3.9063811), (569, 3.908512), (212, 3.9737318), (431, 3.984134), (0, 3.984871), (553, 3.9903293), (501, 3.9996197), (554, 4.0010257), (328, 4.0198455), (147, 4.0567074), (33, 4.0684023), (424, 4.0867805), (461, 4.130041), (618, 4.1321034), (433, 4.177686), (577, 4.2195973), (254, 4.235586), (45, 4.2464647), (335, 4.2606883), (241, 4.2760425), (455, 4.298154), (13, 4.302039), (629, 4.306821), (380, 4.3218927), (128, 4.347275), (492, 4.349016), (552, 4.361728), (218, 4.3687954), (441, 4.3706856), (318, 4.3800273), (607, 4.4426537), (404, 4.440722), (432, 4.454863), (284, 4.4562488), (514, 4.460986), (395, 4.524272), (344, 4.5331464), (314, 4.543898), (18, 4.5467954), (448, 4.582946), (491, 4.5965676), (481, 4.6103005), (124, 4.611637), (392, 4.62083), (499, 4.6219773), (146, 4.6257734), (67, 4.6511097), (102, 4.6566963), (94, 4.679815), (182, 4.729253), (534, 4.7576075), (609, 4.767764), (130, 4.781751), (539, 4.80536), (81, 4.851967), (89, 4.864304), (35, 4.8710036), (93, 4.9299, 484), (195, 4.937922), (602, 4.9589796), (464, 4.9987717), (192, 5.0042477), (538, 5.0319633), (548, 5.0349617), (57, 5.0431957), (194, 5.1026644), (509, 5.1457434), (200, 5.1457434), (216, 5.496208), (281, 5.1873646), (84, 5.2000318), (309, 5.2568736), (364, 5.28148), (438, 5.2973604), (573, 5.3426104), (101, 5.3767986), (470, 5.394759), (450, 5.451957), (177, 5.854927), (216, 5.932913), (171, 5.9440727), (295, 6.009368), (50, 6.030156), (163, 6.0473347), (291, 6.1051426), (565, 6.1186295), (429, 6.1664696), (51, 6.2025146), (198, 6.2831993), (358, 6.2953115), (197, 6.32199), (152, 6.383405), (527, 6.4386816), (2
In [43]:	40, 6.474352), (297, 6.489066), (369, 6.5015545), (15, 6.642235), (624, 6.707614), (445, 7.045072), (64, 7.133168), (181, 7.2333193), (587, 7.2449675), (305, 7.290532), (371, 7.3478227), (285, 7.4061203), (207, 7.438265), (343, 7.5009127), (304, 7.52311), (150, 7.941571), (19, 8.224452)] (g) Plotting the scatter plot when k = 2
In [25]:	<pre>v2_list = [] for i in range(X.shape[0]): v_2 = (np.dot(pca.components_[1], (X[i, :]) - mean v1_list[i][1]*pca.components_[0])) v2_list.append((i, v_2)) points = [] for i in range(X.shape[0]): points.append([v1_list[i][1], v2_list[i][1])) points = np.array(points)</pre>
	<pre># quantile points v1_percentile = np.quantile(points[:, 0], [0.05, 0.25, 0.50, 0.75, 0.95], interpolation='lower') v2_percentile = np.quantile(points[:, 1], [0.05, 0.25, 0.50, 0.75, 0.95], interpolation='lower') v1_percentile_index = [] v2_percentile_index = [] # scatter plot for projection plt.figure() plt.scatter(points[:, 0], points[:, 1], c='g', s=5)</pre>
	<pre>img = np.zeros([16*5, 16*5]) for i in range(5): for j in range(5): point = [v1_percentile[i], v2_percentile[j]] point_index = (np.sum((points[:, :] - point)**2, axis=1)).argmin() plt.plot(points[point_index, 0], points[point_index, 1], 'o', markerfacecolor='none', c='r') # corresponding images img[16*i:16*(i+1), 16*j:16*(j+1)] = np.reshape(X[point_index,:],(16,16))</pre>
Out[25]:	<pre># plot corresponding images plt.figure() plt.imshow(img, cmap='gray')</pre>
	77777 77777 77777
In [27]:	(h) parallel analyis with permutation test # permutation X_permute = np.copy(X) m = X.shape[1]
	<pre>pca = PCA(n_components=m-1, svd_solver='arpack') pca.fit(X) lambda_hat = pca.explained_variance_ratio_ sum_eigens = np.empty(X.shape[1]-1) # Repeat 100 times for r in range(100): # Permutation for in range(n):</pre>
	<pre>for i in range(m): X_permute[:, i] = np.random.permutation(X_permute[:, i]) pca_random = PCA(n_components=m-1, svd_solver='arpack') pca_random.fit(X_permute) sum_eigens = sum_eigens + pca_random.singular_values_ if r == 0: img = np.zeros([16, 16*5]) for i in range(5):</pre>
	<pre>img[:, 16*i:16*(i+1)] = np.reshape(X_permute[i, :],(16,16)) plt.imshow(img, cmap='gray') plt.title("Examples of randomly permuted data") # Average over the number of runs avg_eigens = sum_eigens / 100 plt.figure() plt.plot(range(1, m), avg_eigens, 'r', label='Randomized Trace', alpha=0.4)</pre>
Out [271:	<pre>plt.plot(range(1, m), pca.singular_values_, 'b', label='Real Trace') plt.title('Parallel Analysis', {'fontsize': 20}) plt.xlabel('Dimension', {'fontsize': 15}) # plt.xticks(ticks=range(1, m+1), labels=range(1, m+1)) plt.ylabel('Singualr Values', {'fontsize': 15}) plt.legend() <matplotlib.legend.legend 0x7fe5f40216d0="" at=""></matplotlib.legend.legend></pre>
Out[27]:	Examples of randomly permuted data 10 -
	Parallel Analysis Randomized Trace Real Trace Real Trace
	Dimension
In [117	Question 2. (a) Collect the pairwise air traveling distances dist = {'beijing':{'beijing':0, 'shanghai':1070.48, 'seoul':956.30, 'wuhan':1057.09, 'guangzhou':1890.71, 'nanjing':902.02, 'hongkong':1973.70},
In [118	<pre> 'seoul':{'beijing':913.89, 'shanghai':1218.90, 'seoul':0, 'wuhan':648.95, 'guangzhou':1309.88, 'nanjing':950.98, 'hongkong':1428.01}, 'wuhan':{'beijing':1057.09, 'shanghai':687.30, 'seoul':1404.38, 'wuhan':0, 'guangzhou':834.25, 'nanjing':458.49, 'hongkong':922.97}, 'guangzhou':{'beijing':1890.71, 'shanghai':1206.63, 'seoul':2070.53, 'wuhan':834.25, 'guangzhou':0, 'nanjing':1129.45, 'hongkong':129.70}, 'nanjing':{'beijing':902.02, 'shanghai':268.02, 'seoul':968.51, 'wuhan':458.49, 'guangzhou':1129.45, 'nanjing':0, 'hongkong':1178.23}, 'hongkong':{'beijing':1973.70, 'shanghai':1227.83, 'seoul':2097.78, 'wuhan':922.97, 'guangzhou':129.70, 'nanjing':1178.23, 'hongkong':0}} df = pd.DataFrame(dist) print(df) D = df.values</pre>
	plt.imshow(D) plt.colorbar() beijing shanghai seoul wuhan guangzhou nanjing hongkong beijing 0.00 1070.48 913.89 1057.09 1890.71 902.02 1973.70 shanghai 1070.48 0.00 1218.90 687.30 1206.63 268.02 1227.83 seoul 956.30 870.86 0.00 1404.38 2070.53 968.51 2097.78 wuhan 1057.09 687.30 648.95 0.00 834.25 458.49 922.97 guangzhou 1890.71 1206.63 1309.88 834.25 0.00 1129.45 129.70
Out[118]	nanjing 902.02 268.02 950.98 458.49 1129.45 0.00 1178.23 hongkong 1973.70 1227.83 1428.01 922.97 129.70 1178.23 0.00
	2 - 1250 3 - 1000 4 - 750 5 - 6 - 250
In [119	print(D) [[0. 1070.48 913.89 1057.09 1890.71 902.02 1973.7] [1070.48 0. 1218.9 687.3 1206.63 268.02 1227.83] [956.3 870.86 0. 1404.38 2070.53 968.51 2097.78] [1057.09 687.3 648.95 0. 834.25 458.49 922.97]
In [120	[1890.71 1206.63 1309.88 834.25
In [121	<pre>S = -0.5*np.matmul(C,np.matmul(D,np.transpose(C))) eigen = np.linalg.eig(S) U = eigen[1] (c) Plot the normalized eigenvalues in a descending order eigen = sorted(np.array(eigen[0]), reverse=True)</pre>
Out[121]	<pre>sum_eigen = np.sum(eigen) array = np.array(eigen/sum_eigen) print('Eigenvalues are: ', np.real(array)) plt.plot(range(1, 8), array) Eigenvalues are: [4.97821786e-01 1.79726434e-01 1.34185937e-01 3.43940601e-02 1.96858463e-02 -2.72587411e-17] [<matplotlib.lines.line2d 0x7fe5f7032550="" at="">]</matplotlib.lines.line2d></pre>
	0.5
	There is no negative eigenvalues. The last -2.72587411e-17 value indicates an extremely small negative number, therefore cannot be viewed as a negative number.
In [122	<pre>Lambda = np.where(eigen<=0, 0, eigen) print('Eigenvalues are:\n',np.real(Lambda))</pre>
	<pre>scores = np.matmul(np.sqrt(np.linalg.inv(np.diag(m[:,0]))), np.matmul(U,np.sqrt(np.diag(Lambda)))) x_proj = scores[:,0] y_proj = scores[:,1] fig1 = plt.figure() plt.scatter(x_proj[:],y_proj[:], color='red', s=150, alpha=0.75) for i, txt in enumerate(df.iteritems()): plt.annotate(txt[0], (x proj[i]+2), size=12, style='italic')</pre>
	plt.annotate(txt[0], (x_proj[i]-2, y_proj[i]+2), size=12, style='italic') plt.title('4 Feature, 2D MDS Projection of California and Texas cities') plt.xlabel('First MDS dimension', size=20) plt.ylabel('Second MDS dimension', size=20) plt.subplots_adjust(left=0.0, bottom=0.0, right=1.5, top=1.7, wspace=0.5, hspace=0.3) plt.show() Eigenvalues are: [1589.92579567 574.0039931 428.55834941 428.55834941 109.84654536
	·
	UO Seoul
	NOW Proposition of the propositi
	-304060 -40 -20 0 20 40 First MDS dimension
	The graph reflects the position relationshi: Seoul, and shanghai were the east and north of most cities, respectively. After the projection, the relative position actually remains unchanged.

- 3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive semi-definite $(p.s.d. \text{ or } K \succeq 0)$ iff for every $x \in \mathbb{R}^n$, $x^T K x \geq 0$.
 - (a) Show that $K \succeq 0$ if and only if its eigenvalues are all nonnegative.
 - (b) Show that $d_{ij} = K_{ii} + K_{jj} 2K_{ij}$ is a squared distance function, *i.e.* there exists vectors $u_i, v_j \in \mathbb{R}^n \ (1 \le i, j \le n)$ such that $d_{ij} = ||u_i u_j||^2$.
 - (c) Let $\alpha \in \mathbb{R}^n$ be a signed measure s.t. $\sum_i \alpha_i = 1$ (or $e^T \alpha = 1$) and $H_\alpha = I e\alpha^T$ be the Householder centering matrix. Show that $B_\alpha = -\frac{1}{2}H_\alpha DH_\alpha^T \succeq 0$ for matrix $D = [d_{ij}]$.
 - (d) If $A \succeq 0$ and $B \succeq 0$ $(A, B \in \mathbb{R}^{n \times n})$, show that $A + B = [A_{ij} + B_{ij}]_{ij} \succeq 0$ (elementwise sum), and $A \circ B = [A_{ij}B_{ij}]_{ij} \succeq 0$ (Hadamard product or elementwise product).

(a) Given that $K \ge 0 \iff X \in \mathbb{R}^n$, $X^T K \times \ge 0$. We will prove that $X \in \mathbb{R}^n$, $X^T K \times \ge 0 \iff an$ eigenvalues are non-negative.

<=:
$$\exists Q \ s.t. \ k = Q \land Q^T$$
 $X^T K X = X^T (Q A Q^T) X = Y^T A Y = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2 \ge 0$

where $y = Q^T X = (y_1, y_2, \cdots, y_n) \ne 0$.

=>: Kis a real symmetric matrix. (K=Q)QT)

(b)
$$dij = K_{ii} + K_{jj} - 2K_{ij} = U_i^T K U_i + V_j^T K V_j - 2U_i^T K V_j$$

$$= (U_i - V_j)^T K (U_i - V_j)$$

as kis a symmetric matrix =) dij is a squared distance function.

(c) squared distance function is conditionally negative define (c.n.d). We will prove that $Ba = -\frac{1}{2}Hapha^T \ge 0$ for $D = [dij] \iff [dij]$ is c.n.d.

$$\therefore X^T B \lambda X = \frac{1}{2} (H \lambda^T X)^T P (H \lambda^T X) \geq_0 \text{ as d is c.n.d.}$$

=>: For
$$\forall x \in \mathbb{R}^n$$
 s.t. $e^{T}x = 0$, we have $\forall x = (I - de^{T})x = x - de^{T}x = x$.

(d)
$$A+B= EAij+BijJij \ge 0$$
 because $A\ge 0$ and $B\ge 0$ (due to property of positive semi-define matrix).

- 4. Distance: Suppose that $d: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ is a distance function.
 - (a) Is d^2 a distance function? Prove or give a counter example.
 - (b) Is \sqrt{d} a distance function? Prove or give a counter example.

Four characteristics of distance function:

- i) d(A,B) ≥0
- ii) d (A,A) = 0
- (ii) d(A,B) = d(B,A)
- iv) triangle inequality: d(A,B) < d(A,C) +d(C,B)
- .. (a) No. The counter example is:

$$d(A,B)=5 d(A,C)=2 d(B,C)=1 d(A,C)^{2}=2^{2}=4 d(B,C)^{2}=1^{2}=1$$

However, d(A,B) > d(A,c) + d(B,c) , which doesn't satisfy the triangle inequality.

=>
$$d(A,B) \le d(B,C) + d(C,B) + 2 d(A,C) d(C-B)$$

=> $(\sqrt{d(A,B)})^2 \le (\sqrt{d(B,C)} + \sqrt{d(C,B)})^2$

- 5. *Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to the singular value decomposition is Chapter 2 in this book:

 Matrix Computations, Golub and Van Loan, 3rd edition.
 - (a) Existence: Prove the existence of the singular value decomposition. That is, show that if A is an $m \times n$ real valued matrix, then $A = U\Sigma V^T$, where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \ldots, \sigma_p)$ (where $p = \min\{m, n\}$) is an $m \times n$ diagonal matrix. It is customary to order the singular values in decreasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$. Determine to what extent the SVD is unique. (See Theorem 2.5.2, page 70 in Golub and Van Loan).
 - (b) Best rank-k approximation operator norm: Prove that the "best" rank-k approximation of a matrix in the operator norm sense is given by its SVD. That is, if $A = U\Sigma V^T$ is the SVD of A, then $A_k = U\Sigma_k V^T$ (where $\Sigma_k = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_k, 0, \dots, 0)$ is a diagonal matrix containing the largest k singular values) is a rank-k matrix that satisfies

$$||A - A_k|| = \min_{\text{rank}(B)=k} ||A - B||.$$

(Recall that the operator norm of A is $||A|| = \max_{||x||=1} ||Ax||$. See Theorem 2.5.3 (page 72) in Golub and Van Loan).

(c) Best rank-k approximation - Frobenius norm: Show that the SVD also provides the best rank-k approximation for the Frobenius norm, that is, $A_k = U \Sigma_k V^T$ satisfies

$$||A - A_k||_F = \min_{\text{rank}(B)=k} ||A - B||_F.$$

(a) Let $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}^n$ be the unit 2-norm vectors that Satisfy AX = GY with $G = ||A||_2$. From the Golub and Van Loan Theorem, there exists $V_2 \in \mathbb{R}^{n \times (n-1)}$ and $U_2 \in \mathbb{R}^{m \times (m-1)}$. So, $V = [X_2V_2] \in \mathbb{R}^{n \times n}$ and $U = [YU_2] \in \mathbb{R}^{m \times m}$ are orthogonal to each other.

and if w=0 (a5 $\sigma^2 = ||A||_2^2 = ||A_1||_2^2$), $U^TAV = \begin{bmatrix} \sigma & \omega^T \\ 0 & B \end{bmatrix} = A_1$

(b) As $U^TAV = diag(G_1...GK, O_2...,O)$, it follows that rank CAK) = K, and $U^T(A-AK)V = diag(O_2...,O,GKH,...,GP)$, and therefore IA - AKID = GKH

And if rank(B) = k for some BER $^{m \times n}$, we can say null(B) = $span(X_1, \dots, X_{n-k})$ as the orthogonal vectors are X_1, X_2, \dots, X_{n-k} .

And the dimension argument shows that

Span 1x1, ..., xn-ky / span tv1, ..., vk+1 9 + to 9

Let 2 be an unit 2-norm vector in this intersection. Since $B_Z = 0$, and $A_Z = \sum_{i=1}^{L} \sigma_i (V_i^T Z) U_{ij}$,

- (() Let's say B minimizes IIA-BIIF among all ranks. And let V be the space spanned by the rows of the B, and the highest dimension of B is at K.

 If the B minimizes IIA-BIIF, it must be that each row of B is the projection of the corresponding row of A onto V.

 And IIA-BIIF = Sum of the squared distances of rows of A onto B, as each row of B is the projection of the corresponding row of A.
 - · Ar minimizes the sum of squared distance of rows of A to any F- dimensional space, mathematically:

 | | A-Arilf 4 | 1A-B||_F.