Author: Ratnam Dubey

Renaissance Learning

```
In [1]: # Importing Required Libraries

In [2]: import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing le = preprocessing.LabelEncoder() from sklearn.preprocessing import LabelEncoder plt.rcParams.update({'font.size':6}) from collections import defaultdict d = defaultdict(LabelEncoder) d1 = defaultdict(LabelEncoder) from sklearn.linear_model import LogisticRegression
```

Importing the Data

```
In [3]: demographic = pd.read_csv("D:\\Analytics
Excercise\\AnalyticsExercise\\Data\\demographic.csv" )
    quiz_act = pd.read_csv("D:\\Analytics Excercise\\AnalyticsExercise\\Data\\qui
    z_act.csv")
    sub_16 = pd.read_csv("D:\\Analytics Excercise\\AnalyticsExercise\\Data\\sub_d
    ata_15_16.csv")
    sub_17 = pd.read_csv("D:\\Analytics Excercise\\AnalyticsExercise\\Data\\sub_d
    ata_17.csv")

In [4]: sub_16.rename(columns ={'School ID' : 'ID'} , inplace=True)
    sub_17.rename(columns ={'School ID' : 'ID'} , inplace=True)
    demographic.rename(columns ={'School ID' : 'ID'} , inplace=True)
    quiz_act.rename(columns ={'School ID' : 'ID'} , inplace=True)
```

Stripping the columns Name as they are not consistant changing School ID to ID

```
In [5]: sub_16.columns = sub_16.columns.str.strip()
sub_17.columns = sub_17.columns.str.strip()
demographic.columns = demographic.columns.str.strip()
quiz_act.columns = quiz_act.columns.str.strip()
```

Combining the Data with demographic Information as to get better insight on the Data for Analysis

```
In [6]: sub_16_demo = pd.merge(sub_16, demographic, on='ID')
sub_17_demo = pd.merge(sub_17, demographic, on='ID')
```

Replacing the Space with Under Score as the columnn name has space in the names

```
In [7]: sub_16_demo.columns = [c.replace(' ', '_') for c in sub_16_demo.columns]
sub_17_demo.columns = [c.replace(' ', '_') for c in sub_17_demo.columns]
```

Exploring the Data

```
In [8]: sub_16_demo.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 23215 entries, 0 to 23214
        Data columns (total 17 columns):
        ID
                                            23215 non-null int64
        State
                                            23215 non-null object
        Subscription_End_Date
                                            23215 non-null object
        Expiring Dollars
                                            23215 non-null int64
        Expiring_Students
                                           23215 non-null int64
        Subscription Status
                                            23215 non-null object
        Renewal Date
                                            21277 non-null object
        Metro_Code
                                            22135 non-null object
                                            19954 non-null object
        Apple_Mac_Code
        PC Code
                                            19954 non-null object
                                            19781 non-null object
        Poverty Level Code
        Avg_Household_Income
                                            23215 non-null object
                                            19815 non-null object
        Title 1 Code
        Software_budget_per_head
                                            19954 non-null object
        Training_Budget_Per_head
                                            19954 non-null object
        Lunch Program Eligible Students
                                            23215 non-null int64
        Affluence Indicator
                                            23209 non-null float64
        dtypes: float64(1), int64(4), object(12)
        memory usage: 3.2+ MB
```

```
In [9]: | sub_16_demo.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 23215 entries, 0 to 23214
        Data columns (total 17 columns):
        ID
                                            23215 non-null int64
        State
                                            23215 non-null object
        Subscription_End_Date
                                            23215 non-null object
                                            23215 non-null int64
        Expiring_Dollars
        Expiring_Students
                                            23215 non-null int64
        Subscription_Status
                                            23215 non-null object
                                            21277 non-null object
        Renewal_Date
                                            22135 non-null object
        Metro Code
        Apple_Mac_Code
                                            19954 non-null object
                                            19954 non-null object
        PC_Code
        Poverty_Level_Code
                                            19781 non-null object
                                            23215 non-null object
        Avg_Household_Income
                                            19815 non-null object
        Title_1_Code
                                            19954 non-null object
        Software budget per head
        Training_Budget_Per_head
                                            19954 non-null object
        Lunch_Program_Eligible_Students
                                            23215 non-null int64
        Affluence_Indicator
                                            23209 non-null float64
        dtypes: float64(1), int64(4), object(12)
        memory usage: 3.2+ MB
```

Getting demographic changes based on Scaled Data

file:///C:/Users/dubey/Downloads/Final version Ratnam.html

Conclusion :-As we can see there is sales drop in the Renewed Data where as there is Increase in the sales of Non-Renewed Data

Cheking the Demographic Information Based on Avg Income

Results are drived in Excel for Avg Income and Poverty Level

Finding the KPI (Key performance Indicators) like Average Selling Price = Sales / Number of Students

In [15]: # Checking the Impact of Average selling price on the Sales

```
In [16]: ax = sub_16_demo.groupby(['Avg_Sell_price' ,'Subscription_Status' ,'Metro_Cod
    e'])['Expiring_Dollars'].sum().plot(kind="Bar", title="2016 Demograpic Data",
    alpha=0.5 , ylim=(0,20000000) ,)
    plt.xlabel('Avg Sale price and Subscription Status with Metro Code',
    fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
    ts')
    plt.legend()
    plt.show()
```


Avg Sale price and Subscription Status with Metro Code

```
In [17]: ax = sub_17_demo.groupby(['Avg_Sell_price' ,'Subscription_Status' ,'Metro_Cod
    e'])['Expiring_Dollars'].sum().plot(kind="Bar", title="2017 Demograpic Data",
        alpha=0.5 , ylim=(0,20000000) ,)
    plt.xlabel('Avg Sale price and Subscription Status with Metro Code',
    fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
    ts')
    plt.legend()
    plt.show()
```


Avg Sale price and Subscription Status with Metro Code

Conclusion: -2016 - As the Sales prices hiked from 6to7 there is no evidence of Sales drop i.e - Not Renewed Increase 2017 - As the Sales prices hiked from 7to8 there is significant sales drop (Except Rural areas of Renewed in 2017) In Space compared to 2016 Renewed Data there is drop of 22% In Town there is dop of 6% In Urban area drop of 11%

Are we Experiencing any time lag ??

Converting the time in days so that we take take the Difference of Days Days with -tve sign means Subscription was renewed was done prior to Renewal Date: i.e.-61, 61 days before End of Subscription Days with +tve sign means delay in Subscription Renewal in Days: 61, 61 days after Subscription Ends

```
In [18]: sub 16 demo['Renewal Date'] =
         sub 16 demo['Renewal Date'].apply(pd.to datetime)
         sub 16 demo['Subscription End Date'] = sub 16 demo['Subscription End Date'].ap
         ply(pd.to datetime)
         sub_16_demo['Renew_delay'] = sub_16_demo['Renewal_Date'] - sub_16_demo['Subscr
         iption End Date'
         sub 16 demo['Renew delay'] = sub 16 demo['Renew delay'] / np.timedelta64(1,
         'D')
         sub_17_demo['Renewal_Date'] =
         sub_17_demo['Renewal_Date'].apply(pd.to_datetime)
         sub_17_demo['Subscription_End_Date'] = sub_17_demo['Subscription_End_Date'].ap
         ply(pd.to datetime)
         sub_17_demo['Renew_delay'] = sub_17_demo['Renewal_Date'] - sub_17_demo['Subscr
         iption End Date'
         sub_17_demo['Renew_delay'] = sub_17_demo['Renew_delay'] / np.timedelta64(1,
         'D')
```

Grouping the Time Lag

```
In [19]:
         def transform diff grp(dl):
             if dl > 180 : return 10
             elif 150 < dl <= 180 : return 9
             elif 120 < dl <= 150 : return 8
             elif 90 < dl <= 120 : return 7
             elif 30 < d1 <= 90 : return 6
             elif 0 <= d1 <= 30 : return 5
             elif -30 < dl <= -1 : return 4
             elif -90 < d1 <= -30 : return 3
             elif -150 <= dl <= -90 : return 2
             elif -400 < dl <= -151 : return 1
```

```
sub_16_demo["Days_group"] = sub_16_demo['Renew_delay'].map(transform_diff_grp)
In [20]:
         sub_17_demo["Days_group"] = sub_17_demo['Renew_delay'].map(transform_diff_grp)
```

```
In [21]:
         sub_16_demo['Days_group'].fillna(11, inplace=True)
         sub 17 demo['Days group'].fillna(11, inplace=True)
```

```
In [22]: ax = sub_16_demo.groupby(['Days_group'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2016 Renewal Data",
    alpha=0.5 , ylim=(0,70000000))
    plt.xlabel('Days Group', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [23]: ax = sub_17_demo.groupby(['Days_group'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 Renewal Data",
    alpha=0.5 , ylim=(0,70000000))
    plt.xlabel('Days Group', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```


Conclusion # There is Big Increase in the Number 11 which is Not Renewed Data as there is No Renewal Date available # There is almost 800% down fall in the sales for 2017 year #IN 2016 the Renewal patten Except 11 is 3: Subscription got renewed before 30 days to 90 days period 4: before 1 to 30 days 5: After 0 to 30 Days #In 2017 the RenewelPatten is hike in 3: Subscription got renewed before 30 days to 90 days period compared to 4 & 5 But Drop in the Sales as the Sales is less for the period Assumptions are based on the Graph pattern

Gropuing of Renewed and Not Renewed data

```
In [24]: sub_16_demo_ren = sub_16_demo[sub_16_demo['Subscription_Status']== "Renewed"]
    sub_16_demo_nonren = sub_16_demo[sub_16_demo['Subscription_Status']== "Not Renewed"]
    sub_17_demo_ren = sub_17_demo[sub_17_demo['Subscription_Status']== "Renewed"]
    sub_17_demo_nonren = sub_17_demo[sub_17_demo['Subscription_Status']== "Not Renewed"]
```

Imputing Missing values "ZZ" in all the columns as the ZZ is not Present in Data as to get the missing value count

```
In [25]: sub_16_demo_ren.fillna('ZZ', inplace=True)
    sub_17_demo_ren.fillna('ZZ', inplace=True)
    sub_16_demo_nonren.fillna('ZZ', inplace=True)
    sub_17_demo_nonren.fillna('ZZ', inplace=True)
```

C:\Users\dubey\Anaconda2\lib\site-packages\pandas\core\frame.py:2762: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st able/indexing.html#indexing-view-versus-copy downcast=downcast, **kwargs)

Metro Space Analysis { R Rural/Non-Metro , S Suburban, U Urban , T Town }


```
In [28]: ax = sub_16_demo_nonren.groupby(['Metro_Code'])['State'].count().plot(kind="B
    ar" , title= "2016 NON Renew Data", alpha=0.5 , ylim=(0,10000))
    plt.xlabel('Metro Code', fontsize=10)
    plt.ylabel('Count', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin ts')
    plt.legend()
    plt.show()
```


Conclusion # There is Significant amount of Change in the Metro Code # Renewed Data Change 2016 compared to 2017 Rural (2016-2017): 70% Drop SubUrban (2016-2017): 75% Drop Town (2016-2017): 72% Drop Urban (2016-2017): 77% Drop ZZ(Unkown Space) (2016-2017): 75% Drop # NON Renewed Data Change 2016 compared to 2017 Rural (2016-2017): 900% Increase SubUrban (2016-2017): 549% Increase Town (2016-2017): 800% Increase Urban (2016-2017): 400% Increase ZZ(Unkown Space) (2016-2017): 900% Increase # Values are Approx Values

Apple Mac Code {A 1-9 B 10-24 C 25-49 D 50-99 E 100-249 F 250-499 G 500-999 H 1,000-4,999 I 5,000-9,999 J 10,000 Or More K Unknown Quantity}

```
In [30]: ax = sub_16_demo_ren.groupby(['Apple_Mac_Code'])['Expiring_Dollars'].sum().pl
    ot(kind="Bar" , title= "2016 Renew Data", alpha=0.5 , ylim=(0,10000000))
    plt.xlabel('Apple Mac Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin ts')
    plt.legend()
    plt.show()
```



```
In [31]: ax = sub_17_demo_ren.groupby(['Apple_Mac_Code'])['Expiring_Dollars'].sum().pl
    ot(kind="Bar" , title= "2017 Renew Data", alpha=0.5 , ylim=(0,10000000))
    plt.xlabel('Apple Mac Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin ts')
    plt.legend()
    plt.show()
```



```
In [32]: ax = sub_16_demo_nonren.groupby(['Apple_Mac_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2016 NON Renew Data", alp
    ha=0.5 , ylim=(0,10000000))
    plt.xlabel('Apple Mac Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.ge
        t_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
    ts')
    plt.legend()
    plt.show()
```



```
In [33]: ax = sub_17_demo_nonren.groupby(['Apple_Mac_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 NON Renew Data", alp ha=0.5 , ylim=(0,10000000))
    plt.xlabel('Apple Mac Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin ts')
    plt.legend()
    plt.show()
```


Conclusion # Apple Mac Code "H" (1,000-4,999) is high in Non renew Data of 2016 Compared to 2017 # Null values has Significantly Increased # Difference in Non renew Pattern is Different from 2016 to 2017 # Assumptions are based on the Sales figure pattern

PC Code A 1-9 B 10-24 C 25-49 D 50-99 E 100-249 F 250-499 G 500-999 H 1,000-4,999 I 5,000-9,999 J 10,000 Or More K Unknown Quantity)

```
In [34]: ax = sub_16_demo_ren.groupby(['PC_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2016 Renew Data",
    alpha=0.5 , ylim=(0,30000000))
    plt.xlabel('PC Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [35]: ax = sub_17_demo_ren.groupby(['PC_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 Renew Data",
    alpha=0.5 , ylim=(0,30000000))
    plt.xlabel('PC Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [36]: ax = sub_16_demo_nonren.groupby(['PC_Code'])['Expiring_Dollars'].sum().plot(k
    ind="Bar" , title= "2016 NON Renew Data", alpha=0.5 , ylim=(0,30000000))
    plt.xlabel('PC Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [37]: ax = sub_17_demo_nonren.groupby(['PC_Code'])['Expiring_Dollars'].sum().plot(k
   ind="Bar" , title= "2017 Renew Data", alpha=0.5 , ylim=(0,30000000))
   plt.xlabel('PC Code', fontsize=10)
   plt.ylabel('Sales', fontsize=10)
   for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
   plt.legend()
   plt.show()
```


Conclusion # PC Code Missing values has been increased in 2017 compared to 2016 in Renewed Data # Rest all is Same based on plot Pattren

Poverty Level (A 0 - 5.9 Percent B 6 - 15.9 Percent C 16 - 30.9 Percent D 31 Percent Or More E Unclassified)

```
In [38]: ax = sub_16_demo_ren.groupby(['Poverty_Level_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2016 Renew Data",
    alpha=0.5 , ylim=(0,30000000))
    plt.xlabel('Poverty Level Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [40]: ax = sub_16_demo_nonren.groupby(['Poverty_Level_Code'])['Expiring_Dollars'].s
    um().plot(kind="Bar" , title= "2016 NON Renew Data", alpha=0.5 , ylim=(0,30000
    000))
    plt.xlabel('Poverty Level Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
    ts')
    plt.legend()
    plt.show()
```



```
In [41]: ax = sub_17_demo_nonren.groupby(['Poverty_Level_Code'])['Expiring_Dollars'].s
    um().plot(kind="Bar" , title= "2017 NON Renew Data", alpha=0.5 , ylim=(0,30000
    000))
    plt.xlabel('Poverty Level Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin ts')
    plt.legend()
    plt.show()
```


Conclusion # NO DIffererence in the Poverty Level Code Based on the Pattern Structure in the plot

Average House hold Income { A 1-27,999 B 28,000-31,999 C 32,000-34,999 D 35,000-36,999 E 37,000-38,999 F 39,000-40,999 G 41,000-42,999 H 43,000-44,999 I 45,000-47,999 J 48,000-51,999 K 52,000-54,999 L 55,000-59,999 M 60,000-64,999 N 65,000-69,999 O 70,000-80,999 P 81,000-93,999 Q 94,000 Plus Z unclassified }

```
In [42]: ax = sub_16_demo_ren.groupby(['Avg_Household_Income'])['Expiring_Dollars'].su
m().plot(kind="Bar" , title= "2016 Renew Data", alpha=0.5 , ylim=(0,15000000))
plt.xlabel('Average Household Income', fontsize=10)
plt.ylabel('Sales', fontsize=10)
for p in ax.patches:
    ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
plt.legend()
plt.show()
```



```
In [43]: ax = sub_17_demo_ren.groupby(['Avg_Household_Income'])['Expiring_Dollars'].su
    m().plot(kind="Bar" , title= "2017 Renew Data", alpha=0.5 , ylim=(0,15000000))
    plt.xlabel('Average Household Income', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [45]: ax = sub_17_demo_nonren.groupby(['Avg_Household_Income'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 NON Renew Data", alp ha=0.5 , ylim=(0,15000000))
    plt.xlabel('Average Household Income', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin ts')
    plt.legend()
    plt.show()
```


Conclusion Slight Decrease in the Avg House hold Income for the A Category A = 1-27,999 compared 2016 to 2017

Title_1_Code A .00- 149.99 B 150.00- 299.99 C 300.00- 499.99 D \$500.00 Plus Space Unclassified

```
In [46]: ax = sub_16_demo_ren.groupby(['Title_1_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2016 Renew Data",
    alpha=0.5 , ylim=(0,45000000))
    plt.xlabel('Title_1 Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
        plt.legend()
    plt.show()
```



```
In [47]: ax = sub_17_demo_ren.groupby(['Title_1_Code'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 Renew Data",
    alpha=0.5 , ylim=(0,45000000))
    plt.xlabel('Title_1 Code', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [48]: ax = sub_16_demo_nonren.groupby(['Title_1_Code'])['Expiring_Dollars'].sum().p
lot(kind="Bar" , title= "2016 NON Renew Data", alpha=0.5 , ylim=(0,45000000))
plt.xlabel('Title_1 Code', fontsize=10)
plt.ylabel('Sales', fontsize=10)
for p in ax.patches:
    ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
plt.legend()
plt.show()
```



```
In [49]: ax = sub_17_demo_nonren.groupby(['Title_1_Code'])['Expiring_Dollars'].sum().p
lot(kind="Bar" , title= "2017 NON Renew Data", alpha=0.5 , ylim=(0,45000000))
plt.xlabel('Title_1 Code', fontsize=10)
plt.ylabel('Sales', fontsize=10)
for p in ax.patches:
    ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
plt.legend()
plt.show()
```


Conclusion # In 2017 both Renewed and Non Renewed Data "Category D " - D \$500.00 Plus has been declined compared to 2016 # Misssing Values has been Increased in 2017 compare to 2016 for Both Renew and Non Renew Data

Training_Budget_Per_head "A 1-4 B 5-6 C 7-8 D 9-10 E 11-13 F 14-16 G 17-24 H \$25 + Z Unclassified

```
In [50]: ax = sub_16_demo_ren.groupby(['Training_Budget_Per_head'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2016 Renew Data",
    alpha=0.5 , ylim=(0,45000000))
    plt.xlabel('Training Budget', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [51]: ax = sub_17_demo_ren.groupby(['Training_Budget_Per_head'])
    ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 Renew Data",
    alpha=0.5 , ylim=(0,45000000))
    plt.xlabel('Training Budget', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset points')
    plt.legend()
    plt.show()
```



```
In [52]: ax = sub_16_demo_nonren.groupby(['Training_Budget_Per_head'])['Expiring_Dolla
    rs'].sum().plot(kind="Bar" , title= "2016 NON Renew Data", alpha=0.5 , ylim=
    (0,45000000))
    plt.xlabel('Training Budget', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
    ts')
    plt.legend()
    plt.show()
```



```
In [53]: ax = sub_17_demo_nonren.groupby(['Training_Budget_Per_head'])['Expiring_Dolla
    rs'].sum().plot(kind="Bar" , title= "2017 NON Renew Data", alpha=0.5 , ylim=
        (0,45000000))
    plt.xlabel('Training Budget', fontsize=10)
    plt.ylabel('Sales', fontsize=10)
    for p in ax.patches:
        ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
    ts')
    plt.legend()
    plt.show()
```


Conclusion # Traning budget E has decline for renew data 2017 E 11-13 # Where as D 9-10 Category has been Increased for Non Reneweed Data # Increasein Missing Values

Lunch Program Eligible Students


```
In [56]: ax = sub_16_demo_nonren.groupby(['Lunch_Program_Eligible_Students'])['Expirin
g_Dollars'].sum().plot(kind="density" , title= "2016 NON Renew Data", alpha=0.
5 )
plt.xlabel('Lunch_Program_Eligible_Students', fontsize=10)
plt.ylabel('Sales', fontsize=10)
for p in ax.patches:
    ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
ts')
plt.legend()
plt.show()
```



```
In [57]: ax = sub_17_demo_nonren.groupby(['Lunch_Program_Eligible_Students'])['Expirin
g_Dollars'].sum().plot(kind="density" , title= "2017 NON Renew Data", alpha=0.
5 )
plt.xlabel('Lunch_Program_Eligible_Students', fontsize=10)
plt.ylabel('Sales', fontsize=10)
for p in ax.patches:
    ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
ts')
plt.legend()
plt.show()
```


Conclusion NO Significant amount of Changes in 2016 as compare to 2017

Affluence Indicator 1 Low 2 Below Average 3 Average 4 Above Average 5 High Space Unknown

```
In [58]:
         ax1 = sub 16 demo nonren.groupby(['Affluence Indicator'])
         ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 and 2016 NON Renew D
         ata", alpha=0.5,color="Blue",ylim=(0,15000000))
         ax = sub_17_demo_nonren.groupby(['Affluence_Indicator'])['Expiring_Dollars'].s
         um().plot(kind="Bar" , title= "2017 and 2016 NON Renew Data",
         alpha=0.5,color="Red",ylim=(0,15000000))
         plt.xlabel('Affluence_Indicator', fontsize=10)
         plt.ylabel('Sales', fontsize=10)
         for p in ax1.patches:
             ax1.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.g
         et_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poi
         nts')
         for p in ax.patches:
             ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.ge
         t_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
         ts')
         plt.legend()
         plt.show()
```



```
In [59]: ax1 = sub 16 demo ren.groupby(['Affluence Indicator'])
         ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 and 2016 Renew Dat
         a", alpha=0.5,color="Blue",ylim=(0,15000000))
         ax = sub 17 demo ren.groupby(['Affluence Indicator'])
         ['Expiring_Dollars'].sum().plot(kind="Bar" , title= "2017 and 2016 Renew Dat
         a", alpha=0.5,color="Red",ylim=(0,15000000))
         plt.xlabel('Affluence_Indicator', fontsize=10)
         plt.ylabel('Sales', fontsize=10)
         for p in ax1.patches:
             ax1.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.g
         et_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poi
         nts')
         for p in ax.patches:
             ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.ge
         t_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
         ts')
         plt.legend()
         plt.show()
```


Average Selling Price = Sales / Number of Students

```
In [60]:
         ax1 = sub_16_demo_ren.groupby(['Avg_Sell_price'])['Expiring_Dollars'].sum().pl
         ot(kind="line" , title= "2017 and 2016 Renew Data", alpha=0.5,color="Blue" ,y
         lim=(0,55000000))
         ax = sub_17_demo_ren.groupby(['Avg_Sell_price'])['Expiring_Dollars'].sum().plo
         t(kind="line", title= "2017 and 2016 Renew Data", alpha=0.5,color="Red",yli
         m=(0,55000000)
         plt.xlabel('Avg_Sell_price', fontsize=10)
         plt.ylabel('Sales', fontsize=10)
         for p in ax1.patches:
             ax1.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.g
         et_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poi
         nts')
         for p in ax.patches:
             ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.ge
         t_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
         ts')
         plt.legend()
         plt.show()
```



```
In [61]: ax1 = sub 16 demo nonren.groupby(['Avg Sell price'])
         ['Expiring_Dollars'].sum().plot(kind="line" , title= "2017 and 2016 NON
          Data", alpha=0.5,color="Blue" ,ylim=(0,55000000))
         ax = sub 17 demo nonren.groupby(['Avg Sell price'])
         ['Expiring_Dollars'].sum().plot(kind="line" , title= "2017 and 2016 NON Renew
          Data", alpha=0.5,color="Red" ,ylim=(0,55000000))
         plt.xlabel('Avg_Sell_price', fontsize=10)
         plt.ylabel('Sales', fontsize=10)
         for p in ax1.patches:
             ax1.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.g
         et_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poi
         nts')
         for p in ax.patches:
             ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.ge
         t_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
         ts')
         plt.legend()
         plt.show()
```


Conclusion Non Subscriber Data got Increased when the price increased from 7.0 to 8.0 on a contarary when the price increased from 6.0 to 7.0 t there is non renew subscriber got less Primary Reason for non subscription is the Avg price increased in 2017

Data Modelling

Label Encoding on Data For Modelling

```
In [62]: # Creating the Training Data
frames = [sub_16_demo_ren, sub_16_demo_nonren, sub_17_demo_ren]
Final_train = pd.concat(frames)
```

```
In [63]: # Manupulating the Data , For Missing Data iMputing Random value
# IN Subscription End Date and Renewal Date

Final_train.loc[(Final_train.Subscription_End_Date== 'ZZ') , 'Subscription_End_Date' ] = 0
Final_train.loc[(Final_train.Renewal_Date== 'ZZ') , 'Renewal_Date' ] = 0

test = pd.DataFrame(sub_17_demo_nonren)
test['Subscription_End_Date'] = test['Subscription_End_Date'].apply(pd.to_datetime)

Final_train['Subscription_End_Date'] = Final_train['Subscription_End_Date'].apply(pd.to_datetime)
Final_train['Renewal_Date'] = Final_train['Renewal_Date'].apply(pd.to_datetime)

Final_train.loc[(Final_train.Renew_delay== 'ZZ') , 'Renew_delay' ] = 999
test.loc[(test.Renew_delay== 'ZZ') , 'Renew_delay' ] = 999
```

In [64]: # Saving the Files Training and Test

Final_train.to_csv("D:\\Analytics
Excercise\\AnalyticsExercise\\Data\\Findings\\Train.csv", index=True ,
header=True)
test.to_csv("D:\\Analytics Excercise\\AnalyticsExercise\\Data\\Findings\\test.
csv", index=True , header=True)

```
In [65]: # Manually Labelling the Subscription_Status for further analysis
    y = pd.DataFrame(Final_train['Subscription_Status'])
    Final_train = Final_train.drop('Subscription_Status', 1)
    test = test.drop('Subscription_Status', 1)

y.loc[(y.Subscription_Status== 'Renewed') ,'Subscription_Status'] = 0
    y.loc[(y.Subscription_Status== 'Not Renewed') ,'Subscription_Status'] = 1

Y_train = list(y.Subscription_Status.values)
```

```
In [66]: # Encoding the variable
Final_train_Data = Final_train.apply(lambda x: d[x.name].fit_transform(x))
test_Data = test.apply(lambda x: d1[x.name].fit_transform(x))
```

Out[67]:

	ID	State	Subscription_End_Date	Expirir
ID	1.000000	-0.095962	-0.011059	0.0184
State	-0.095962	1.000000	-0.021967	-0.1288
Subscription_End_Date	-0.011059	-0.021967	1.000000	0.1464
Expiring_Dollars	0.018423	-0.128804	0.146446	1.0000
Expiring_Students	0.018499	-0.125126	-0.038972	0.9742
Renewal_Date	0.009274	-0.026287	0.790792	0.1289
Metro_Code	0.009948	-0.055793	-0.027661	0.1520
Apple_Mac_Code	0.039980	-0.057519	-0.001414	-0.1099
PC_Code	-0.130746	-0.045344	-0.006042	0.0125
Poverty_Level_Code	-0.040224	-0.025007	0.007688	-0.1474
Avg_Household_Income	0.124866	-0.037231	0.018711	0.0213
Title_1_Code	-0.065124	-0.031800	0.000902	-0.1968
Software_budget_per_head	-0.188744	0.097045	0.012356	-0.1892
Training_Budget_Per_head	-0.103766	0.061361	0.005958	-0.2234
Lunch_Program_Eligible_Students	0.005604	-0.126394	-0.045527	0.5701
Affluence_Indicator	0.161202	0.026276	0.001067	0.0163
Avg_Sell_price	-0.004899	-0.024648	0.916995	0.1646
Renew_delay	-0.033298	0.017015	-0.210561	-0.0175
Days_group	-0.044256	0.008720	-0.175087	0.0102

In [68]: # Predicting the Renewed and Non Renewed Data for 2017 Defining X and Y
X = Final_train_Data

In [69]: log_reg = LogisticRegression(solver='liblinear', C=100, tol=0.08)
log_reg.fit(X,Y_train)

```
In [70]: print(log reg.score(X, Y train))
         0.999965150723
In [71]: y_test = log_reg.predict(test_Data)
In [72]: # Inverse the encoded
         test = test_Data.apply(lambda x: d1[x.name].inverse_transform(x))
         test['Subscription Status'] = y test
In [73]: # Manually Un-Labelling the Subscription Status
         test.loc[(test.Subscription_Status== 0) ,'Subscription_Status' ] = 'Renewed'
```

In [74]: test.to_csv("D:\\Analytics Excercise\\AnalyticsExercise\\Data\\Findings\\Final _Results.csv", index=True , header=True)

test.loc[(test.Subscription_Status== 1) ,'Subscription_Status'] = 'Not Renewe

```
In [75]: | test_results = test
         # CHecking and Analysing the Results
         test_results.groupby(['Subscription_Status'])
         ['Expiring_Dollars'].count().plot(kind="pie", autopct='%3.3f%%',title= "2017
          Projected Renew Data")
         plt.show()
```

2017 Projected Renew Data

Conclusion There is Expected and Good Chances of Getting Renewed Data from Non Renewed Data in 2017 There is 87% of Chances that the School will Renew the Subscription 13% of School will not Renew the Subscription

Months in which Chances of Getting Renewed

```
In [76]:
         frames = [sub 16 demo ren, sub 16 demo nonren]
         Data 2016 = pd.concat(frames)
         Data final 2016 = Data 2016.drop(Data 2016[Data 2016['Subscription Status'] ==
          "Not Renewed"].index)
         frames1 = [sub_17_demo_ren, test_results]
         Data 2017 = pd.concat(frames1)
         Data_final_2017 = Data_2017.drop(Data_2017[Data_2017['Subscription_Status'] ==
          "Not Renewed"].index)
         Data_final_2016['Subscription_End_Date'] = Data_final_2016['Subscription_End_D
         ate'].apply(pd.to datetime)
         Data final_2017['Subscription_End_Date'] = Data_final_2017['Subscription_End_D
         ate'].apply(pd.to_datetime)
         Data_final_2016['month'] = pd.DatetimeIndex(Data_final_2016['Subscription_End_
         Date']).month
         Data final 2017['month'] = pd.DatetimeIndex(Data final 2017['Subscription End
         Date']).month
```


Getting Non Subscribed School are in which Cities more

```
In [78]:
         non subs school=
         pd.DataFrame(test results[test results['Subscription Status']=="Not Renewed"])
In [79]: | non_subs_school.columns
Out[79]: Index([u'ID', u'State', u'Subscription_End_Date', u'Expiring_Dollars',
                u'Expiring_Students', u'Renewal_Date', u'Metro_Code', u'Apple_Mac_Cod
         е',
                u'PC Code', u'Poverty Level Code', u'Avg Household Income',
                u'Title_1_Code', u'Software_budget_per_head',
                u'Training_Budget_Per_head', u'Lunch_Program_Eligible_Students',
                u'Affluence_Indicator', u'Avg_Sell_price', u'Renew_delay',
                u'Days_group', u'Subscription_Status'],
               dtype='object')
          ax = non_subs_school.groupby(['State'])['ID'].count().plot(kind="Bar" ,
In [80]:
         title= "2017 NON Renew School Data", alpha=0.5 )
         plt.xlabel('State', fontsize=10)
         plt.ylabel('School Count', fontsize=10)
         for p in ax.patches:
             ax.annotate("%.1f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.ge
         t_height()), ha='center', va='center', xytext=(0, 10), textcoords='offset poin
         ts')
         plt.legend()
```


Conclusion North Carilona and Georgia has highest Chances of School Not renewing the Subscription followed by Florida and Albama

plt.show()