IT/PC/B/T/411

Machine Learning

Deep Learning Basics

Lecture 01: Feedforward

Dr. Pawan Kumar Singh

Department of Information Technology Jadavpur University

pawankrsingh.cse@gmail.com

+91-6291555693

Motivation I: representation learning

Machine learning

- Collect data and extract features
- Build model: choose hypothesis class ${m {\mathcal H}}$ and loss function l
- Optimization: minimize the empirical loss

Features

Features: part of the model

Linear model

Example: Polynomial kernel SVM

Motivation: representation learning

• Why don't we also learn $\phi(x)$?

Learn $\phi(x)$

Learn
$$w$$
 $y = w^T \phi(x)$

 χ

Feedforward networks

• View each dimension of $\phi(x)$ as something to be learned

Feedforward networks

• Linear functions $\phi_i(x) = \theta_i^T x$ don't work: need some nonlinearity

Feedforward networks

• Typically, set $\phi_i(x) = r(\theta_i^T x)$ where $r(\cdot)$ is some nonlinear function

Feedforward deep networks

• What if we go deeper?

Figure from

Deep learning, by

Goodfellow, Bengio, Courville.

Dark boxes are things to be learned.

Motivation II: neurons

Motivation: neurons

Figure from Wikipedia

Motivation: abstract neuron model

- Neuron activated when the correlation between the input and a pattern θ exceeds some threshold b
- $y = \text{threshold}(\theta^T x b)$ or $y = r(\theta^T x - b)$
- $r(\cdot)$ called activation function

Motivation: artificial neural networks

Motivation: artificial neural networks

• Put into layers: feedforward deep networks

Components in Feedforward networks

Components

- Representations:
 - Input
 - Hidden variables
- Layers/weights:
 - Hidden layers
 - Output layer

Components

Input

Represented as a vector

- Sometimes require some preprocessing, e.g.,
 - Subtract mean
 - Normalize to [-1,1]

Expand

- Regression: $y = w^T h + b$
- Linear units: no nonlinearity

- Multi-dimensional regression: $y = W^T h + b$
- Linear units: no nonlinearity

Output layer

- Binary classification: $y = \sigma(w^T h + b)$
- Corresponds to using logistic regression on h

Output layer

- Multi-class classification:
- $y = \operatorname{softmax}(z)$ where $z = W^T h + b$
- Corresponds to using multi-class logistic regression on h

- Neuron take weighted linear combination of the previous layer
- So can think of outputting one value for the next layer

•
$$y = r(w^T x + b)$$

- Typical activation function r
 - Threshold $t(z) = I[z \ge 0]$
 - Sigmoid $\sigma(z) = 1/(1 + \exp(-z))$
 - Tanh $tanh(z) = 2\sigma(2z) 1$

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

- Activation function ReLU (rectified linear unit)
 - ReLU $(z) = \max\{z, 0\}$

Figure from *Deep learning*, by Goodfellow, Bengio, Courville.

Activation function ReLU (rectified linear unit)

• ReLU $(z) = \max\{z, 0\}$

Gradient 1

- Generalizations of ReLU gReLU $(z) = \max\{z, 0\} + \alpha \min\{z, 0\}$
 - Leaky-ReLU(z) = $\max\{z, 0\} + 0.01 \min\{z, 0\}$
 - Parametric-ReLU (z): α learnable

