Teoria da Computação

Exame

Universidade da Beira Interior

Segunda-Feira 6 de Fevereiro de 2006 das 9h30 às 12h00 - sala 6.05

A consulta dos apontamentos da disciplina (**e só esses**) é tolerada.

Proibido o uso de calculadora e de telemóvel.

Qualquer fraude implica reprovação na disciplina.

Só serão corrigidas as provas **legíveis**.

Relembramos que, na tradição da axiomática de Peano, a notação \mathbb{N} refere-se ao conjunto dos naturais incluindo o 0. Referiremo-nos ao conjunto dos naturais sem o 0 por \mathbb{N}^* .

1. Sejam A um conjunto e AB_A o conjunto das árvores binárias (eventualmente vazias) de elementos de A. A relação R de sub-árvore define-se da seguinte forma: sejam a e b duas árvores de AB_A , a é sub-árvore de b quando (1) existe um nodo n de b de que a é filho (esquerdo ou direito) (2) a é b. Veja por exemplo a figura seguinte onde a árvore C é sub-árvore de B e B é sub-árvore de A.

Figura 1: Árvores e Sub-árvores

Mostre que a relação R é uma relação de ordem larga.

2. Seja $\mathbb D$ o conjunto das funções parciais de $\mathbb N$ para $\mathbb N$. Seja fun a função recursiva de $\mathbb D$ definida por

$$fun \triangleq [f \in \mathbb{D} | f(0) = 2, f(1) = 3, f(n+2) = n \times f(n) + 5]$$

- (a) Defina o operador de ponto fixo F_{fun} f x associado à função fun.
- (b) Calcule fun_0 , fun_1 , fun_2 , fun_3 e fun_4 .
- 3. Considere as seguintes funções OCaml:

Admita neste exercício que todas as operações aqui utilizadas, com a excepção de $remove_elemento$ e de $remove_duplicados$, terminam.

- (a) Indique porque podemos afirmar sem dúvida que remove elemento termina?
- (b) Sabendo que $length\ l$ calcula o comprimento da lista l demonstre, por indução estrutural sobre a lista l, que $\forall l \in ('a\ list)\ \forall e \in A,\ length\ (remove_elemento\ e\ l) \leq length\ l$.
- (c) Utilizando a propriedade estabelecida no ponto anterior, demonstre, por indução bem fundada que a função remove_duplicados termina.

Sugestões: As listas são definidas por indução estrutural pelo conjunto base $\{[\]\}$ (um só elemento de base, a lista vazia) e pelo único construtor :: que, de um elemento e e de uma lista l constroi uma nova lista e :: l. Deste facto podem deduzir a resposta ao primeiro ponto e induzir o princípio de indução associado que poderá ser utilizado na resolução do segundo ponto.

- 4. Usando o sistema numérico de Church,
 - (a) Diga que termo t codifica a expressão 2+3.
 - (b) Calcule a forma normal de t.
 - (c) Define um lambda termo que represente a função $f: x \mapsto 2 \times (x+1)$.