Introducción al procesamiento digital de señales y sus aplicaciones

Señal

Parámetro que varía en el tiempo, espacio, u otras variables

□ Sistema

 Todo aquello que realiza operaciones sobre una señal de entrada y genera una señal de salida

Procesamiento de señales

Adquisición, transformación, y análisis de señales y sistemas

□ Procesamiento digital de señales (DSP)

- Procesamiento de señales y sistemas mediante representaciones yoperaciones digitales (binario y tiempo discreto)
- Se realiza en computadores o en hardware dedicado

Procesamiento Digital de Señales (DSP)

Conversión A/D:

- CODEC audio
- CCD cámaras
- Touch-tone

Métodos:

- Flash
- Pipelined
- Cíclico
- Sigma-delta

Procesamiento:

- Computador
- DSK, DSP

Tarea principal:

• Multiplicar y sumar

Tareas secundarias:

- Control de conversores
- Manejo de memoria

Conversión D/A:

- CODEC audio
- Display

Métodos:

- Divisor resistivo
- Binary Weighted
- PWM
- Sigma-delta

□ Ventajas del procesamiento digital de señales

- Alta precisión, reproducible, mejor almacenamiento
- Procesamiento más avanzado y reprogramable
- Flexible, menor tamaño, bajo consumo, menor costo
- Baja sensibilidad a condiciones ambientales, tolerancia y envejecimiento de componentes
- Tecnología digital puede ser usada para DSP
- Implementación mediante operaciones aritméticas o lógicas
- Uso de circuitos biestables para almacenar, procesar y transmitir señales

Conceptos básicos

Desventajas del procesamiento digital de señales

- Pérdida de información por muestreo
 - Señal no continua en el tiempo → No toda la información está presente
 - Ancho de banda restringido → Necesita filtro anti-alias
 - Reconstrucción → Perfecta sólo para señal filtrada en frecuencia
- Error de redondeo por cuantización
 - Redondeo distorsiona la señal → Sensibilidad depende de la aplicación
 - Valores discretos pueden traer complicaciones en ciertas aplicaciones
- Velocidad de adquisición de datos y procesamiento
 - Barrera tecnológica que mejora cada año
 - Complicaciones para el trabajo con señales de gran ancho de banda

Transmisior

Receptor

Transmisior-receptor

Receptor-transmisor

Símbolos

- sonidos
- abecedario
- •iconos
- claves

Señales

- eléctricas
- luminosas

- •detectar
- •identificar
- •estimar

Comunicar es seleccionar y detectar símbolos bien definidos.

$$\mathbf{m} = \{\mathbf{s}_1, \mathbf{s}_2, \dots \mathbf{s}_n\}$$

ej: Hola.

Información no es solo una sucesión de símbolos.

$$m_1+m_2+\cdots\cdots+m_L$$

ej:Mañana saldrá el sol.

Obtención de conocimiento

Todos los dias sale el sol.

Medir es conocer

Imaginémonos una mesa una mesa de madera de color verde claro (λ,ν) de un metro cuadrado y de un metro de alto

Objetivo de la comunicación

- conocer
- evolucionar
- actuar
- crear

Comunicación con el medio ambiente

Ej: aplicación en la organización social en la administración, producción y servicios

Información Comunicación Automatización Elemento humano

Ejemplo: Computer Integrated Manufacture

Se caracteriza por

objetivo: satisfacer necesidades

contempla: ciclo de vida del producto

ser: complejidad del proceso

depende: materiales, transporte y almacenaje

debe: control de calidad

necesita: control de inventarios

tiene: servicios al cliente

etc.

Conclusion: computadoras hoy

Hogar

Oficina
Servicios
Industria
Esneñanza
Guerra
Ventas

Unica

Unica

Grupo

I. Clasificación

1.1 Introducción

PROCESAMIENTO DIGITAL DE SEÑALES:

PROCESADO: Son las operaciones realizadas en un sistema sobre una señal.

señal: Cantidad física

DIGITAL: Generalmente son sintetizadas para comunicar información entre humanos ó humano-maquina.

SOFTWARE: Programa que realiza un algoritmo.

ALGORITMO: Conjunto de reglas para la realización de un programa.

REALIZAR ALGORITMOS EFICIENTES PARA EFECTUAR

OPERACIONES SOBRE SEÑALES

VENTAJAS:

PROGRAMABLE: Permite flexibilidad para reconfigurar las operaciones del proceso

(Cambiar solo el software) PRECISIÓN: Mejor control

ALMACENAMIENTO: Señales transportables para posterior procesado

BARATO: en la mayoría de las ocasiones

Procesamiento de la señal

APLICACIONES

Grabado de sonido → compresores y limitadores, expansión y ruido, ecualizadores y filtros, sistemas de reducción de ruido, retardos y reverberancia**, efectos especiales.

Telefonía → Cancelación de eco en redes telefónica, marcación de tonos FM stereo

Síntesis de música electrónica

Identificación de Señales

SEÑAL:

Cantidad física que varía con respecto a una o varias variables independientes como tiempo, presión, temperatura, distancia, posición, etc.

Esta cantidad física, lleva información sobre el estado o comportamiento de un sistema físico. Se describen matemáticamente como una función:

$$S_1(t) = 5t$$

$$S_2(t) = 20t^2$$

$$S_3(x, y) = 3x + 2xy + 10y^2$$

$$\sum_{i=1}^{N} A_i(t) sen(2\pi F_i(t)t + \theta_i(t))$$

Clasificación

Por su variable independiente: Continua y Discreta:

También puede ser real o compleja:

$$x(t) = e^{jt}$$
$$x(t) = e^{t}$$

$$x(t) = e^t$$

Por la fuente que la generó, puede ser:

Escalar Una sola fuente (voz)

<u>Vectorial o multicanal</u> Varias fuentes (imagen color RGB)

Por el número de variables independientes:

<u>Unidimensional</u> (voz)

Bidimensional (imagen)

Multi-dimensional (video)

Señal <u>analógica</u>: Continua en el tiempo y amplitud, "t" ó "x" y "y"

Señal digital: Discreta en tiempo y en amplitud

Señal <u>muestreada</u>: Discreta en tiempo y continua en amplitud, "n", ó "m y n"; <u>muestra.</u>

Señal <u>cuantizada</u>: Continua en tiempo y discreta en amplitud

Por la forma de describirse:

Señal <u>determinista</u>.- puede ser determinada únicamente por un proceso bien definido, por ejemplo por una expresión matemática, regla ó tabla.

Señal <u>aleatoria</u>.- es generada en forma aleatoria y no puede predecirse.

Esquema de Procesamiento Digital de Señales

FIGURE 1.1 A digital signal processing scheme.

Filtro analógico
Limita rango de frecuencias

ADC
Convierte a digital

Procesador DS
Aplica algoritmos DSP

DAC
Convierte a analógico

Ejemplos de Aplicaciones DSP

Filtrado digital

Elimina ruido de señales

Análisis espectral

Examina contenido de frecuencias

Audio digital

Procesa y mejora sonido

Filtrado Digital de Ruido

FIGURE 1.3 (*Top*) Digitized noisy signal. (*Bottom*) Clean digital signal using the digital lowpass filter.

Análisis de Frecuencia de Señales

FIGURE 1.6 Speech sample and speech spectrum.

Sistema de Audio Digital Crossover

FIGURE 1.7 Two-band digital crossover.

Cancelación de Interferencia en ECG

ECG con ruido
Interferencia de 60 Hz

Filtro notch digital
Elimina 60 Hz

ECG limpio
Sin interferencia

FIGURE 1.8 Elimination of 60-Hz interference in electrocardiography (ECG).

FIGURE 1.9A Simplified data compressor.

FIGURE 1.9B Simplified data expander (decompressor).

Codificación y Compresión de Voz

1

Señal analógica

Voz original

2

ADC

Digitalización

3

Compresión

Reduce datos

4

Almacenamiento

Guarda datos comprimidos

FIGURE 1.10A Simplified encoder of the CD recording system.

FIGURE 1.10B Simplified decoder of the CD recording system.

Aplicaciones del DSP

Audio digital

CD, ecualizadores, sonido envolvente

Telefonía digital

Reconocimiento de voz, cancelación de eco

Imágenes médicas

ECG, rayos X digitales

Aplicaciones de DSP: Comunicaciones

- Sistemas inalámbricos
- Estimación de señales en ruido
- Estimación y compensación de canales
- Codificación / Decodificación
- Optimización de ancho de banda

Aplicaciones de DSP: Militar

- Radar Sonar
- Detección de objetivos
- Estimación de velocidad
- Seguimiento
- Navegación

Aplicaciones de DSP: Procesamiento de Voz

- Reducción de ruido
- Codificación y síntesis
- Reconocimiento automático del habla
- Biometría: Reconocimiento del locutor
- Detección de estados emocionales

Aplicaciones de DSP: Control y Electrónica Industrial

- Control de calidad
- Control de procesos
- Reconocimiento de patrones
- Identificación plantas
- Reducción de ruido y armónicos
- Robótica

Aplicaciones de DSP: Procesamiento de Imágenes

- Captura y fotografía
- Impresión
- Mejoramiento de calidad de imágenes
- Compresión de imágenes
- Reconocimiento de patrones
- Búsqueda por imágenes
- Biometría
- Detección de estados emocionales

Aplicaciones de DSP : Multimedia

- Televisión digital
- Cine/video 3D
- Video conferencia
- Videojuegos

Aplicaciones de DSP: Audio y Música

- Captura
- Grabación
- Manipulación
- Reproducción

Aplicaciones de DSP: Ingeniería Biomédica

- Captura y análisis de señales médicas (1D, 2D, 3D)
- Sistemas de diagnóstico
- Implantes
- Monitoreo de pacientes
- Telemedicina
- Cuidado preventivo