

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA
TEL: +82-31-645-6300 FAX: +82-31-645-6401

WLAN REPORT

CE Certification

Applicant Name:

Date of Issue: October 20, 2017

WISOL CO., LTD.

Location:

531-7, Gajang-ro, Osan-Si, Gyeonggi-do, 18103, Rep.

HCT CO., LTD.,

of KOREA

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1710-C004-1

MODEL:

SFM20R1

APPLICANT:

WISOL CO., LTD.

Use of Report:

Approval for CE

Eut Type:

Sigfox Quad-mode module

Tx Frequency:

2 412 MHz ~ 2 472 MHz

Rx Frequency:

2 412 MHz ~ 2 472 MHz

Testing Environment:

Temperature : (24.3 ± 3.0)°C

Relative Humidity: (37.0 ± 3.0) %

Date of Test:

April 21, 2017 ~ October 13, 2017

Applicable Standard:

ETSI EN 300 328 V2.1.1 (2016-11)

All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Report prepared by Jung Rae Cho

Engineer of Telecommunication Testing Center

Report approved by: Yong Hyun Lee

Manager of Telecommunication Testing Center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report Revision

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1710-C004	October 16, 2017	- First Approval Report.
HCT-R-1710-C004-1	October 20, 2017	- Added plot for Interference Signal bandwidth on page 33.

Result of Test CONTENTS

1. CLIENT INFORMATION	5
2. EQUIPMENT UNDER TEST (EUT)	5
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	6
3.1 Manufacturers declarations	6
3.2 Channel List	7
3.3 Operating frequency range during under the test	7
3.4 The EUT was operation in special test mode	7
3.5 Data rate of the worst	8
4. TEST SUMMARY	
5. TEST EQUIPMENT	
6. TRANSMITTER MEASUREMENTS – RESULTS	
6.1 RF output power	
6.1.1 Test Setup	
6.1.2 Test Procedure	
6.1.3 Limit	
6.1.4 Test Result	
6.2 Power Spectral Density	
6.2.1 Test Setup	
6.2.3 Limit	
6.2.4 Test Result	
6.3 Occupied channel bandwidth	
6.3.1 Test Setup	
6.3.3 Limit	
6.3.4 Test Result	
6.4 Transmitter unwanted emissions in the out-of-band domain	23
6.4.1 Test Setup	
6.4.2 Test Procedure	_
6.4.4 Test Result	
6.5 Adaptivity	
6.5.1 Test set-up	
6.5.2 Test Procedure	
6.5.3 The energy detection threshold 6.5.4 Signal calibration plot	
6.5.5 Limit	
6.5.6 Test Result	. 37
6.5.7 Test Plot	
6.6 Transmitter unwanted emissions in the spurious domain	
6.6.1 Test Setup	52

6.6.2 Test Procedure	
6.6.3 Test Site	
6.6.4 Test Method	
6.6.5 Limit	
6.6.6 Test Result	
7. RECEIVER MEASUREMENTS - RESULTS	57
7.1 Receiver spurious emissions	57
7.1.1 Test Setup	57
7.1.2 Test Procedure	58
7.1.3 Test Site	
7.1.4 Test Method	
7.1.5 Limit	
7.1.6 Test Result	59
7.2 Receiver Blocking	
7.2.1 Test Setup	60
7.2.2 Test Procedure	61
7.2.3 Limit	
7.2.4 Test Result	64
8. GEO-LOCATION CAPABILITY	66
8.1 Definition	66
8.2 Requirements	
8.3 Declaration by the Manufacturer	66
9. PHOTOGRAPHS OF THE EUT	
40 SETUD BUOTO	60

1. CLIENT INFORMATION

The EUT has been tested by request of

Company	WISOL CO., LTD. 531-7, Gajang-ro, Osan-Si, Gyeonggi-do, 18103, Rep. of KOREA

2. EQUIPMENT UNDER TEST (EUT)

Equipment	Sigfox Quad-mode module
Model	SFM20R1
Serial number	-
Manufacturer	WISOL CO., LTD.
Rating	DC 3.3 V

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

3.1 Manufacturers declarations

No. of units:	One (Transceiver)		
No. of deviating variants:	None		
Application:	Sigfox Quad-mode module		
Equipment category:	Short Range Device		
Model No.:	SFM20R1		
Serial No.:	-		
Type of modulation:	DSSS (802.11b) &OFDM (802.11g, 80	02.11n(HT20))	
Specification(s):	ETSI EN 300 328 V2.1.1 (2016-11)		
Receiver Category:	1		
Type of unit:	Stand-alone equipment		
		ibility to switch to a non-adaptive mode	
Type of Equipment	□ Non-adaptive Equipment		
	☐ Adaptive Equipment which can also operate in a non-adaptive mode		
Operating frequency range:	2 400 MHz ~2 483.5 MHz		
Frequency alignment range:	2 412 MHz ~ 2 472 MHz		
Beam forming	Not applicable		
Channels :	13		
Version:	Hardware : 1.0		
version.	Software : SFM20R_V204		
	Normal voltage :	DC 3.30 V	
Power source:	Extreme lower voltage :	DC 3.20 V	
	Extreme upper voltage :	DC 5.00 V	
	Normal Temperature :	+24.3℃	
Temperature range:	Extreme lower Temperature :	-30.0℃	
	Extreme upper Temperature :	+85.0°C	
Antenna type:	Dipole Antenna		
Max. antenna gain:	4.44 dBi		

Note:

At the request of the customer, all test requirements were performed ETSI EN 300 328 V2.1.1 (2016-11)

3.2 Channel List

802.11b/g/n(20MHz) Working Frequency of Each Channel		
Channel	Frequency(MHz)	
01	2 412	
02	2 417	
03	2 422	
04	2 427	
05	2 432	
06	2 437	
07	2 442	
08	2 447	
09	2 452	
10	2 457	
11	2 462	
12	2 467	
13	2 472	

3.3 Operating frequency range during under the test

Operating frequency	Frequency(MHz)
Bottom	2 412
Middle	2 442
Тор	2 472

3.4 The EUT was operation in special test mode.

The value of the power parameters of the test software, please refer to the table below.

Test Mode	2 412 MHz	2 442 MHz	2 472 MHz
802.11b	6	6	6
802.11g	0	0	0
802.11n(HT20)	0	0	0

3.5 Data rate of the worst

All tests conducted in this report were made at the worst case data rate of each modulation.

For each modulation data rate of the worst, please refer to the table below.

Modulation	Data Rate (Mbps)	
802.11b	11	
802.11g	12	
802.11n(HT20)	MCS0 (6.5 Mbps)	

Parameter	Modulation	Data Rate (Mbps)
Adaptivity	802.11b	1
	802.11g	6
	802.11n(HT20)	MCS0

Parameter	Modulation	Data Rate (Mbps)
Receiver Blocking	802.11b	1

4. TEST SUMMARY

Clause	Parameter	Test method	Result
4.3.2.2	RF Output Power	Conducted	Pass
4.3.2.3	Power Spectral Density	Conducted	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	N/A	(See note1)
4.3.2.5	Medium Utilisation	N/A	(See note1)
4.3.2.6	Adaptivity	Conducted	Pass
4.3.2.7	Occupied Channel Bandwidth	Conducted	Pass
4.3.2.8	Transmitter unwanted emissions in the OOB domain	Conducted	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Radiated	Pass
4.3.2.10	Receiver Spurious emissions	Radiated	Pass
4.3.2.11	Receiver Blocking	Conducted	Pass
4.3.2.12	Geo-location capability	N/A	(See note2)

Note:

- 1. These requirements does not apply to Adaptive Equipment without the possibility to switch to a non-adaptive mode.
- 2. Geo-location capability is implemented in this product and can't be accessible to the user.
- 3. At the request of the customer, all test requirements were performed EN 300 328 V2.1.1 (2016-11).

5. TEST EQUIPMENT

No.	Instrument	Model No.	Due to	Manufacture	Serial No.
NO.		Wiodel No.	Calibration	Wanulacture	Serial No.
	Signal Analyzer (20 Hz ~ 40.0 GHz)	FSV40-N	2018-09-27	ROHDE & SCHWARZ	101068-SZ
	Signal Analyzer (20 Hz ~ 40.0 GHz)	FSP	2018-07-27	ROHDE & SCHWAR	100843
\boxtimes	Signal Analyzer (20 Hz ~ 26.5 GHz)	N9020A	2018-01-05	AGILENT	MY50200666
\boxtimes	SIGNAL GENERATOR (100kHz~40GHz)	SMB100A	2018-07-18	Rohde&Schwarz	177633
	SIGNAL GENERATOR (9kHz~6GHz)	SMBV100A	2017-10-24	Rohde&Schwarz	255727
\boxtimes	Communication Tester	CMW500	2018-02-21	Rohde&Schwarz	157452
	Power Measurement Set	OSP 120(See note3)	2018-08-03	Rohde&Schwarz	101231
\boxtimes	High Pass Filter (3.0 GHz ~ 18 GHz)	WHKX10-2700- 3000-18000-40SS	2018-07-20	Wainwright Instrument	3
\boxtimes	Band rejection filter (2 400 MHz ~ 2 483.5 MHz/DC ~ 4 GHz)	WRCJ2400/2483.5- 2370/2520- 60/12SS	2018-06-30	WAINWRIGHT INSTRUMET	2
\boxtimes	BI-LOG Antenna (30 MHz ~ 1 GHz)	VULB9160	2018-10-14	Schwarzbeck	3368
\boxtimes	Full anechoic chamber	10m×5m×5m	-	EMERSON&CUMING	-
\boxtimes	Fixed Attenuator (10 dB, DC ~ 26.5 GHz)	56-10	2017-11-03	WEINSCHEL	72324
\boxtimes	Fixed Attenuator (20 dB, DC ~ 26.5 GHz)	8493C	2018-06-22	HP	17280
\boxtimes	STEP ATTENUATOR (1 W, DC ~ 18 GHz)	AF9003-69-31	2017-10-24	WEINSCHEL	11787
\boxtimes	Turn Table	DE 3260	-	INNCO GmbH	7860504
\boxtimes	DC power supply	E3632A	2018-03-14	HP	KR75303962
	Temp & Humidity Chamber	SU-642	2018-03-31	ESPEC	0093008124
	POWER SPLITTER (Dc to 26.5 GHz)	11667B	2018-05-04	HP	11275
\boxtimes	POWER DIVIDER- 4WAY (0.5 ~ 18 GHz)	Narda 4426-4	2018-02-22	Narda	11927
\boxtimes	POWER AMP (0.1 GHz ~ 18 GHz)	CBLU1183540B-01	2018-06-12	CERNEX	26822
\boxtimes	Horn Antenna (1 GHz ~ 18 GHz)	BBHA9120D	2018-10-14	Schwarzbeck	9120D-1298
\boxtimes	Companion device (Access Point)	WEA412i (See note4)	-	SAMSUNG	-
\boxtimes	Power Divider-2way (DC ~ 26.5 GHz)	11636B	2017-11-10	HP	11377

Note:

- 1. All equipment is calibrated with traceable calibrations.
- 2. Each calibration is traceable to the national or international standards.
- 3. OSP120 spec:
- RMS integration over a significant portion of signal
- Fast response time for accurate burst detection
- Sampling rate 1 MS/s

- Storage of max. 32 Million samples in total
- Synchronous measurement channels for 4 antenna port
- Maximum DUT output power 12 dBm linear without attenuator, with included attenuators 22 dBm linear (and 32 dBm linear optional)
- Measurement tolerances better than ETSI requirements
- 4. Companion device spec:
- 802.11a/b/g/n/ac
- Dual concurrent radio
- 2x2 MIMO, 2 spatial streams
- PHY data rates up to 866 Mbps
- Dynamic frequency selection (DFS)
- 802.11n high throughput (HT20/40)
- 802.11ac high throughput (VHT20/40/80)
- Radio approvals : EN 300 328, EN 301 893(Europe)

FCC Part 15.247, 15.407

Radio Equipment Specifications (Korea)

6. TRANSMITTER MEASUREMENTS - RESULTS

6.1 RF output power

6.1.1 Test Setup

6.1.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.2.2

Step 1:

- Use a fast power sensor suitable for 2,4 GHz and capable of minimum 1 MS/s.
- Use the following settings:
- Sample speed 1 MS/s or faster.
- The samples shall represent the RMS power of the signal.
- Measurement duration: For non-adaptive equipment: equal to the observation period defined in clause 4.3.1.3.2 or clause 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) is captured.

For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.

Step 2:

- For conducted measurements on devices with one transmit chain:
- Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.
- For conducted measurements on devices with multiple transmit chains:
- Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.
- Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500 ns.
- For each individual sampling point (time domain), sum the coincident power samples of all ports and store them. Use these summed samples as the new stored data set.

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.

In case of insufficient dynamic range, the value of 30 dB may need to be reduced appropriately.

Step 4:

• Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. The start and stop points shall be included. Save these Pburst values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

with k being the total number of samples and n the actual sample number.

Step 5:

• The highest of all Pburst values (value A in dBm) will be used for maximum e.i.r.p. calculations.

Step 6:

- Add the (stated) antenna assembly gain G in dBi of the individual antenna.
- If applicable, add the additional beamforming gain Y in dB.
- If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
- The RF Output Power (P) shall be calculated using the formula below:

$$P = A + G + Y$$

• This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.

6.1.3 Limit

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the manufacturer and shall not exceed 20 dBm. See clause 5.4.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the manufacturer.

This limit shall apply for any combination of power level and intended antenna assembly.

6.1.4 Test Result

TEST CONDITIONS.		R	F Output Power (dBm	1)
TEST	TEST CONDITIONS:		2 442 MHz	2 472 MHz
T nom	V nom	16.63	16.74	16.77
	T low		17.33	17.77
T high		16.46	16.14	16.29

Measurement Uncertainty : 0.35 dB (about 95 %, k = 2)

Note:

1. Modulation type: 802.11b

2. P = A + G + Y

(P: RF Output Power, A: Highest of all Pburst values. G: Antenna assembly gain, Y: Beamforming gain)

TEST CONDITIONS:		R	RF Output Power (dBm	1)
TEST	CONDITIONS:	2 412 MHz	2 442 MHz	2 472 MHz
T nom	V nom	17.56	18.01	17.25
T low		18.53	19.09	18.57
T high		17.00	17.67	17.09

Measurement Uncertainty : 0.35 dB (about 95 %, k = 2)

Note:

1. Modulation type: 802.11g

2. P = A + G + Y

(P: RF Output Power, A: Highest of all Pburst values. G: Antenna assembly gain, Y: Beamforming gain)

TEST CONDITIONS:		R	F Output Power (dBm	(dBm)		
1231 (CONDITIONS.	2 412 MHz	2 442 MHz	2 472 MHz		
T nom	V nom	17.37	17.84	17.06		
T low		18.26	18.70	17.97		
T high		16.60	17.17	16.51		

Measurement Uncertainty : 0.35 dB (about 95 %, k = 2)

Note:

1. Modulation type: 802.11n(HT20)

2. P = A + G + Y

(P: RF Output Power, A: Highest of all Pburst values. G: Antenna assembly gain, Y: Beamforming gain)

6.2 Power Spectral Density

6.2.1 Test Setup

6.2.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.3.2

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test

- RBW: 1 MHz

- VBW: 3 MHz

- Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)

Detector Mode: PeakTrace Mode: Max Hold

Step 2:

When the trace is complete, find the peak value of the power envelope and record the frequency.

Step 3:

Make the following changes to the settings of the spectrum analyser:

- Centre Frequency: Equal to the frequency recorded in step 2

- Frequency Span: 3 MHz

- RBW: 1 MHz - VBW: 3 MHz

Sweep Time: 1 minuteDetector Mode: RMSTrace Mode: Max Hold

Step 4:

- When the trace is complete, the trace shall be captured using the "Hold" or "View" option on the spectrum analyser.
- Find the peak value of the trace and place the analyser marker on this peak. This level is recorded as the highest mean power (power spectral density) D in a 1 MHz band.
- Alternatively, where a spectrum analyser is equipped with a function to measure power spectral density, this function may be used to display the power spectral density D in dBm / MHz.
- In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the power spectral density of each transmit chain shall be measured separately to calculate the total power spectral density (value D in dBm / MHz) for the UUT.

Step 5:

The maximum Power Spectral Density (PSD) e.i.r.p. is calculated from the above measured power spectral density D, the observed Duty Cycle (DC) (see clause 5.4.2.2.1.3, step 4), the applicable antenna assembly gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the highest gain shall be used.

$$PSD = D + G + Y + 10 \times \log (1 / DC) (dBm / MHz)$$

6.2.3 Limit

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10dBm per MHz.

6.2.4 Test Result

TEST CONDITIONS:		Power	Spectral Density (dBm	n/MHz)		
		2 412 MHz	2 442 MHz	2 472 MHz		
T nom	V nom	8.79	8.97	9.13		
Measurement Uncertainty : 1.18 dB (about 95 %, k = 2)						

Note:

1. Modulation type: 802.11b

TEST CONDITIONS:		Power	Spectral Density (dBm	n/MHz)		
		2 412 MHz	2 442 MHz	2 472 MHz		
T nom	V nom	6.03	6.62	5.90		
Measurement Uncertainty : 1.18 dB (about 95 %, k = 2)						

Note:

1. Modulation type: 802.11g

TEST COL	ADITIONS.	Power	Spectral Density (dBm	n/MHz)		
TEST CONDITIONS:		2 412 MHz	2 442 MHz	2 472 MHz		
T nom	V nom	5.73	6.33	5.61		
Measurement Uncertainty : 1.18 dB (about 95 %, <i>k</i> = 2)						

Note:

1. Modulation type: 802.11n(HT20)

6.3 Occupied channel bandwidth

6.3.1 Test Setup

6.3.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.7.2

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

• Centre Frequency: The centre frequency of the channel under test

Resolution BW: ~ 1 % of the span without going below 1 %

Video BW: 3 × RBW

• Frequency Span: 2 × Occupied Channel Bandwidth

Detector Mode: RMSTrace Mode: Max Hold

• Sweep time: 1 s

Step 2:

Wait until the trace is completed.

Find the peak value of the trace and place the analyser marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.

6.3.3 Limit

The Occupied Channel Bandwidth shall fall completely within the band given in clause 1.

• clause 1.: 2,4 GHz to 2,4835 GHz.

In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

6.3.4 Test Result

TEST CONDITIONS:		Occupied Channe	Bandwidth (MHz)		
		Bottom Frequency	Top Frequency		
T nom	V nom	11.15	11.16		
Range of 0	OBW(MHz)	2 406.28	~ 2477.56		
Limit(MHz)		2 400 ~ 2 483.5			
Measurement Uncertainty : 95 kHz (about 95 %, <i>k</i> = 2)					

Note:

1. Modulation type: 802.11b

TEST CONDITIONS:		Occupied Channe	Bandwidth (MHz)		
TEST CON	NDITIONS:	Bottom Frequency	Top Frequency		
T nom	V nom	16.43	16.43		
Range of OBW(MHz)		2 403.64	~ 2480.20		
Limit(MHz)		2 400 ~	2 483.5		
Measurement Uncertainty : 95 kHz (about 95 %, $k = 2$)					

Note:

1. Modulation type: 802.11g

TEST CONDITIONS:		Occupied Channe	Bandwidth (MHz)		
		Bottom Frequency	Top Frequency		
T nom V nom		17.49	17.49		
Range of OBW(MHz)		2 403.20	~ 2480.68		
Limit(MHz)		2 400 ~ 2 483.5			
Measurement Uncertainty : 95 kHz (about 95 %, <i>k</i> = 2)					

Note:

1. Modulation type: 802.11n(HT20)

6.4 Transmitter unwanted emissions in the out-of-band domain

6.4.1 Test Setup

6.4.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.8.2

Step 1:

• Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: 2 484 MHz

- Span: 0 Hz

- Resolution BW: 1 MHz

- Filter mode: Channel filter

- Video BW: 3 MHz

- Detector Mode: RMS

- Trace Mode: Max Hold

- Sweep Mode: Continuous

- Sweep Points: Sweep Time [s] / (1 μ s) or 5 000 whichever is greater

- Trigger Mode: Video trigger

NOTE 1: In case video triggering is not possible, an external trigger source may be used.

 Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

- Adjust the trigger level to select the transmissions with the highest power level.
- For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.
- Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power

shall be measured using the Time Domain Power function.

- Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.
- Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 6:

- In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain G in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figure 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain G in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

Comparison with the applicable limits shall be done using any of the options given below:

- Option 1: Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain Y in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.
- Option 2: Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by $10 \times \log 10$ (Ach) and the additional beamforming gain Y in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE: Ach refers to the number of active transmit chains.

It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.

6.4.3 Limit

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

figure 3: Transmit mask

F-TP22-03 (Rev.00) **25/68 HCT CO.,LTD.**

6.4.4 Test Result

		Measured Power (dBm/ MHz)				
Test	Modulation	Bottom F	requency	Top Fre	quency	
Conditions		2400 MHz -2 BW ~ 2400 MHz - BW	2400 MHz - BW ~ 2400 MHz	2483.5 MHz ~ 2483.5 MHz + BW	Top Frequency 83.5 MHz ~ 2483.5 MHz + 83.5 MHz + BW ~ 2483.5	
	802.11b	-40.55	-37.04	-36.53	-40.37	
T nom	802.11g	-31.38	-13.93	-13.28	-32.13	
	802.11n(HT20)	-29.86	-12.85	-12.46	-30.68	

Measurement Uncertainty : 0.70 dB (about 95 %, k = 2)

6.5 Adaptivity

6.5.1 Test set-up

S/A: N9020A

- AP: WEA412i

- S/G: SMBV100A (interferer)

- S/G: SMB100A (Blocker)

- 4WAY-DIVIDER : Narda 4426-4

- Step attenuator : AF9003-69-31

- Power Splitter: 11667B

- Cable Loss

- A: 0.4 dB

- B: 0.4 dB

- D: 0.7 dB

- E: 0.7 dB

- F: 0.7 dB

- G1, G2 : 0.4 dB

Power Splitter: 6.0 dB

MODEL: SFM20R1 Report No.: HCT-R-1710-C004-1

6.5.2 Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.6.2.1.4

Step 1:

• The UUT shall connect to a companion device during the test. The interference signal generator, the unwanted signal generator, the spectrum analyser, the UUT and the companion device are connected using a set-up equivalent to the example given by figure 5, although the interference and unwanted signal generators do not generate any signals at this point in time. The spectrum analyser is used to monitor the transmissions of both the UUT and the companion device and it should be possible to distinguish between either transmission. In addition, the spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the unwanted signals.

• Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.

Testing of Unidirectional equipment does not require a link to be established with a companion device.

• The analyser shall be set as follows::

- RBW: ≥ Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used)

- VBW: 3 × RBW (if the analyser does not support this setting, the highest available setting shall be used)

- Detector Mode: RMS

- Centre Frequency: Equal to the centre frequency of the operating channel

- Span: 0 Hz

- Sweep time: > maximum Channel Occupancy Time

- Trace Mode: Clear Write

- Trigger Mode: Video

Step 2:

• Configure the UUT for normal transmissions with a sufficiently high payload resulting in a minimum transmitter activity ratio (TxOn / (TxOn + TxOff)) of 0,3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

• For Load Based equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.3, step 2 and step 3. When measuring the Idle Period of the UUT, it shall not include the transmission time of the companion device.

For the purpose of testing Load Based Equipment referred to in the first paragraph of clause 4.3.2.6.3.2.3 (IEEE 802.11™ [i.3] or IEEE 802.15.4™ [i.4] equipment), the limits to be applied for the minimum Idle Period and the maximum Channel Occupancy Time are the same as defined for other types of Load Based Equipment (see clause 4.3.2.6.3.2.3, step 2 and step 3). The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3, step 1 and step 2.

Step 3: Adding the interference signal

• An interference signal as defined in clause B.6 is injected on the current operating channel of the UUT. The power spectral density level (at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clause 4.3.2.6.3.2.2 step 5) (frame based equipment) or clause 4.3.2.6.3.2.3 step 5) (load based equipment).

Step 4: Verification of reaction to the interference signal

- The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.
- Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:
- i) The UUT shall stop transmissions on the current operating channel.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel Occupancy Time defined in clause 4.3.2.6.3.2.2 (frame based equipment) or clause 4.3.2.6.3.2.3 (load based equipment).

ii) Apart from Short Control Signalling Transmissions, there shall be no subsequent transmissions while the interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the blocking signal

- With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.
- The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.
- Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:
- i) The UUT shall not resume normal transmissions on the current operating channel as long as both the interference and unwanted signals remain present.

To verify that the UUT is not resuming normal transmissions as long as the interference and unwanted signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering and unwanted signals are present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and blocking signal

• On removal of the interference and unwanted signals the UUT is allowed to start transmissions again on this channel; however, this is not a requirement and, therefore, does not require testing.

Step 7:

• Step 2 to step 6 shall be repeated for each of the frequencies to be tested.

6.5.3 The energy detection threshold

Test Frequency: 2 412 MHz

- Max.PH = 18.53 dBm = 71.29 mW
- The energy detection threshold
- $= -70 \text{ dBm/MHz} + 10 \times \log 10 (100 \text{ mW / Pout}) = -70 + 10 \times \log 10 (100 \text{ mW / } 71.29) = -68.53 \text{ dBm/MHz}$

Test Frequency: 2 472 MHz

- Max.P_H = 18.57 dBm = 71.94 mW
- The energy detection threshold
- $= -70 \text{ dBm/MHz} + 10 \times \log 10 (100 \text{ mW / Pout}) = -70 + 10 \times \log 10 (100 \text{ mW / } 71.94) = -68.57 \text{ dBm/MHz}$

Measurement Uncertainty:

- Time: ± 0.01 % (about 95 %, k=2)
- Threshold level: ±1.18 dB (about 95 %, k=2)

6.5.4 Signal calibration plot

- 1. Threshold level
- 2. Test Frequency: 2 412 MHz

- 1. Threshold level
- 2. Test Frequency: 2 472 MHz

- 1. Interference Signal (bandwidth)
- 2. Test Frequency: 2 412 MHz
- 3. Modulation: 802.11b

- 1. Interference Signal (bandwidth)
- 2. Test Frequency: 2 472 MHz
- 3. Modulation: 802.11b

- 1. Interference Signal (bandwidth)
- 2. Test Frequency: 2 412 MHz
- 3. Modulation: 802.11g/ n

- 1. Interference Signal (bandwidth)
- 2. Test Frequency: 2 472 MHz
- 3. Modulation: 802.11g/ n

- 1. Interference Signal (length): 50ms
- 2. Test Frequency: 2 412 MHz

- 1. Interference Signal (length): 50ms
- 2. Test Frequency: 2 472 MHz

- 1. Unwanted Signal
- 2. Blocking frequency: 2 395.0 MHz
- 3. Limit: -35 dBm
- 4. Type of interfering signal: CW
- 5. This level has to be corrected by the actual antenna assembly gain

- 1. Unwanted Signal
- 2. Blocking frequency: 2 488.5 MHz
- 3. Limit: -35 dBm
- 4. Type of interfering signal : CW
- 5. This level has to be corrected by the actual antenna assembly gain

6.5.5 Limit

Adaptivity Limit

- - √ Channel Occupancy Time shall be less than 13 ms;
 - √ Detection threshold level = -70dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)
- ⊠Short Control Signalling Transmissions:
 - √ Short Control Signalling Transmissions shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.

Unwanted Signal parameters		
Wanted signal mean power from companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted signal frequency (MHz)
sufficient to maintain the link (see note 2)	2 395 or 2 488,5 (see note 1)	-35 (see note 3)

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.

6.5.6 Test Result

Minimum requirements test					
Modulation	Frequency	Maximum Occupancy time			
Mode	(MHz)	(ms)			
802.11b	2 412	11.90			
	2 472	11.90			
Test Result : Pass					

Adaptivity test						
Modulation Mode	Freq. (MHz)	interference Signal Frequency (MHz)	Transmission (ms)	Short Control Signalling Transmissions		
				(ms)		
802.11b	2 412	2 412	2.693	0.28		
	2 472	2 472	0.260	0.28		
	2 472	2 472 Test Result :		0.28		

	Receiver Blocking test							
Modulation Mode	Freq. (MHz)	Blocking Signal Frequency (MHz)	Blocking Signal Mean power (dBm)	Verification of reaction				
000 441	2 412	2 488.5	-35	Maintain the transmission stop state				
802.11b	2 472	2 395.0	-35	Maintain the transmission stop state				
	Test Result : Pass							

F-TP22-03 (Rev.00) **37/68 HCT CO.,LTD.**

	Minimum requirements test					
Modulation	Frequency	Maximum Occupancy time				
Mode	(MHz)	(ms)				
802.11g	2 412	1.976				
	2 472	1.976				
	Test Result : Pass					

interference Signal Frequency (MHz)	Transmission (ms)	Short Control Signalling Transmissions
		(ms)
2 412	0.6000	0.02
2 472	0.5067	0.02
	2 472	

	Receiver Blocking test							
Modulation Mode	Freq. (MHz)	Blocking Signal Frequency (MHz)	Blocking Signal Mean power (dBm)	Verification of reaction				
000 44 1	2 412	2 488.5	-35	Maintain the transmission stop state				
802.11g	2 472	2 395.0	-35	Maintain the transmission stop state				
	Test Result : Pass							

Minimum requirements test					
Modulation	Frequency	Maximum Occupancy time			
Mode	(MHz)	(ms)			
802.11n(HT20)	2 412	1.844			
	2 472	1.844			
Test Result : Pass					

Adaptivity test						
Modulation Mode	Freq. (MHz)	interference Signal Frequency (MHz)	Transmission (ms)	Short Control Signalling Transmissions		
				(ms)		
802.11n(HT20)	2 412	2 412	0.3200	0.28		
	2 472	2 472	0.7733	0.28		
Test Result : Pass						

Receiver Blocking test							
Modulation Mode	Freq. (MHz)	Blocking Signal Frequency (MHz)	Blocking Signal Mean power (dBm)	Verification of reaction			
000 44. (UT00)	2 412	2 488.5	-35	Maintain the transmission stop state			
802.11n(HT20)	2 472	2 395.0	-35	Maintain the transmission stop state			
Test Result : Pass							

6.5.7 Test Plot

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Result : 11.90 ms

- 1. Adaptivity
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Marker(1△2)
 - : Transmission time after the interference signal injected = 2.693 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

- 1. Monitoring
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Marker(1△2) : Monitoring time = 60 s
- 5. Result
 - : There is no transmissions while the interference& blocking signal injected.
- 6. Interference signal BW: 20 MHz

- 1. Short Control Signaling
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 412 MHz
- 4. Result : 0.28 ms

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 472 MHz
- 4. Result: 11.90 ms

- 1. Adaptivity
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 472 MHz
- 4. Marker(1△2)
 - : Transmission time after the interference signal injected = 0.26 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

- 1. Monitoring
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 472 MHz
- 4. Marker($1\triangle 2$): Monitoring time = 60s
- 5. Result
 - : There is no transmissions while the interference & blocking signal injected.
- 6. Interference signal BW: 20 MHz

- 1. Short Control Signaling
- 2. Modulation type: 802.11b
- 3. Test Frequency: 2 472 MHz
- 4. Result : 0.28 ms

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 412 MHz
- 4. Result: 1.976 ms

- 1. Adaptivity
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 412 MHz
- 4. Marker(1△2)
 - : Transmission time after the interference signal injected = 0.60 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

- 1. Monitoring
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 412 MHz
- 4. Marker($1\triangle 2$): Monitoring time = 60s
- 5. Result
 - : There is no transmissions while the interference & blocking signal injected.
- 6. Interference signal BW: 20 MHz

- 1. Short Control Signaling
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 412 MHz
- 4. Result : 0.02 ms

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 472 MHz
- 4. Result: 1.976 ms

- 1. Adaptivity
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 472 MHz
- 4. Marker(1△2)
 - : Transmission time after the interference signal injected = 0.5067 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

- 1. Monitoring
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 472 MHz
- 4. Marker($1\triangle 2$): Monitoring time = 60s
- 5. Result
 - : There is no transmissions while the interference& blocking signal injected.
- 6. Interference signal BW: 20 MHz

- 1. Short Control Signaling
- 2. Modulation type: 802.11g
- 3. Test Frequency: 2 472 MHz
- 4. Result : 0.02 ms

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 412 MHz
- 4. Result: 1.844 ms

- 1. Adaptivity
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 412 MHz
- 4. Marker(1△2)
 - : Transmission time after the interference signal injected = 0.32 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

- 1. Monitoring
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 412 MHz
- 4. Marker($1\triangle 2$): Monitoring time = 60s
- 5. Result
 - : There is no transmissions while the interference& blocking signal injected.
- 6. Interference signal BW: 20 MHz

- 1. Short Control Signaling
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 412 MHz
- 4. Result: 0.28 ms

- 1. Maximum Occupancy time
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 472 MHz
- 4. Result: 1.844 ms

- 1. Adaptivity
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 472 MHz
- 4. Marker(1△2)
 - : Transmission time after the interference signal injected = 0.7733 ms
- 5. Result
 - : Stopped the transmissions on the current operating channel.

- 1. Monitoring
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 472 MHz
- 4. Marker(1△2) : Monitoring time = 60 s
- 5. Result
 - : There is no transmissions while the interference & blocking signal injected.
- 6. Interference signal BW : 20 MHz

- 1. Short Control Signaling
- 2. Modulation type: 802.11n(HT20)
- 3. Test Frequency: 2 472 MHz
- 4. Result: 0.28 ms

6.6 Transmitter unwanted emissions in the spurious domain

6.6.1 Test Setup

6.6.2 Test Procedure

- Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.9.2

- The test site as described in annex B and applicable measurement procedures as described in annex C shall be used. The test procedure is further as described under clause 5.4.9.2.1.

6.6.3 Test Site

- Fully Anechoic Room

6.6.4 Test Method

- Correction values from a verified site calibration was used.
- During the tests, the measurement antenna polarization and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.
- The test was performed by placing the EUT on 3 orthogonal axis(X, Y, Z) and shown the worst case on this report.
- If the test data is very low, the data is not reported.

6.6.5 Limit

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 Hz	-30 dBm	1 MHz

6.6.6 Test Result

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
84.02	V	-49.56	-30.00	19.56	Peak
2352.07	V	-44.73	-30.00	14.73	Peak
4818.61	V	-39.54	-30.00	9.54	Peak
7236.00	V	-44.66	-30.00	14.66	Peak
9648.00	V	-41.59	-30.00	11.59	Peak
Management III and sinter		Below	1 GHz : 5.16 dE	3 (about 95 %	, <i>k</i> = 2)
Measurement Unce	ertairity	Above	1 GHz : 5.57 dE	3 (about 95 %	, <i>k</i> = 2)

<u>Note</u>

Modulation type: 802.11b
 Test Frequency: 2 412 MHz

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
2716.06	V	-44.95	-30.00	14.95	Peak
4938.92	V	-38.32	-30.00	8.32	Peak
7416.00	V	-43.61	-30.00	13.61	Peak
9888.00	V	-41.59	-30.00	11.59	Peak
Management		Below	1 GHz : 5.16 dE	3 (about 95 %	, <i>k</i> = 2)
Measurement Uncertainty		Above	1 GHz : 5.57 dE	3 (about 95 %	, <i>k</i> = 2)

Note

Modulation type: 802.11b
 Test Frequency: 2 472 MHz

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
2379.47	V	-63.48	-30.00	33.48	RMS
4824.00	V	-41.31	-30.00	11.31	Peak
7236.00	V	-43.93	-30.00	13.93	Peak
9648.00	V	-42.05	-30.00	12.05	Peak
Measurement Uncertainty		Below	1 GHz : 5.16 dE	3 (about 95 %	, <i>k</i> = 2)
weasurement once	панну	Above	1 GHz : 5.57 dE	3 (about 95 %	, <i>k</i> = 2)

<u>Note</u>

Modulation type: 802.11g
 Test Frequency: 2 412 MHz

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
2508.40	V	-63.48	-30.00	33.48	RMS
4944.00	V	-39.35	-30.00	9.35	Peak
7416.00	V	-43.30	-30.00	13.30	Peak
9888.00	V	-39.62	-30.00	9.62	Peak
Measurement Uncertainty		Below	1 GHz : 5.16 dE	3 (about 95 %	, <i>k</i> = 2)
ivieasurement Unc	eriamiy	Above	1 GHz : 5.57 dE	3 (about 95 %	, k = 2)

Note

Modulation type: 802.11g
 Test Frequency: 2 472 MHz

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
2379.05	V	-62.84	-30.00	32.84	RMS
4827.74	V	-39.80	-30.00	9.80	Peak
7236.00	V	-43.74	-30.00	13.74	Peak
9648.00	V	-41.08	-30.00	11.08	Peak
Magaurament Uncertainty		Below	1 GHz : 5.16 dE	3 (about 95 %	, <i>k</i> = 2)
Measurement Unce	ertainty	Above	1 GHz : 5.57 dE	3 (about 95 %	, <i>k</i> = 2)

<u>Note</u>

Modulation type: 802.11n(HT20)
 Test Frequency: 2 412 MHz

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
2505.34	V	-36.49	-30.00	6.49	Peak
4944.73	V	-37.46	-30.00	7.46	Peak
7416.00	V	-44.37	-30.00	14.37	Peak
9888.00	V	-41.69	-30.00	11.69	Peak
Management I in a set sint o		Below	1 GHz : 5.16 dE	3 (about 95 %	k = 2)
Measurement Unc	ertainty	Above	1 GHz : 5.57 dE	3 (about 95 %	k = 2

Note

Modulation type: 802.11n(HT20)
 Test Frequency: 2 472 MHz

7. RECEIVER MEASUREMENTS - RESULTS

- 7.1 Receiver spurious emissions
- 7.1.1 Test Setup

7.1.2 Test Procedure

- Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.10.2

- The test site as described in annex B and applicable measurement procedures as described in annex C shall be used. The test procedure is further as described under clause 5.4.10.2.1.

7.1.3 Test Site

- Fully Anechoic Room

7.1.4 Test Method

- Correction values from a verified site calibration was used.
- During the tests, the measurement antenna polarization and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.
- The test was performed by placing the EUT on 3 orthogonal axis(X, Y, Z) and shown the worst case on this report.
- If the test data is very low, the data is not reported.

7.1.5 Limit

Frequency range	Maximum power	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12.75 GHz	-47 dBm	1 MHz

7.1.6 Test Result

Measurement	Polarization	Level	Limit	Margin	Detector
Frequency(MHz)		(dBm)	(dBm)	(dB)	
No Peak Found					
Magaurament Unas	Below	1 GHz : 5.16 dE	3 (about 95 %	, <i>k</i> = 2)	
wieasurement Once	Measurement Uncertainty		1 GHz : 5.57 dE	3 (about 95 %	, <i>k</i> = 2)

<u>Note</u>

1. Test Frequency: 2 412 MHz

Measurement Frequency(MHz)	Polarization	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
No Peak Found					
Measurement Unce		1 GHz : 5.16 dE 1 GHz : 5.57 dE	•	,	

Note

1. Test Frequency: 2 472 MHz

7.2 Receiver Blocking

7.2.1 Test Setup

- Companion device : CMW500

- Signal Generator : N5182A

- 30 dB attenuator : 8493C-030

- Power divider: 11636B

- We performed PER test using the Companion device.

7.2.2 Test Procedure

Step 1:

• For non-frequency hopping equipment, the UUT shall be set to the lowest operating channel.

Step 2:

• The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

Step 3:

- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6. The attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin.
- This signal level (Pmin) is increased by the value provided in the table corresponding to the receiver category and type of equipment.

Step 4:

• The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is met.

Step 5:

• Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

Step 6:

• For non-frequency hopping equipment, repeat step 2 to step 5 with the UUT operating at the highest operating channel.

7.2.3 Limit

The minimum performance criterion shall be a PER less than or equal to 10 %.

While maintaining the minimum performance criteria, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table below.

Receiver Category 1

Wanted signal mean power from companion	Blocking signal frequency	Blocking signal power	Type of blocking signal
device (dBm)	(MHz)	(dBm)	
Pmin + 6 dB	2 380	-53	CW
1 11111 · 0 dB	2 503,5		011
	2 300		
Pmin + 6 dB	2 330	-47	CW
	2 360		
	2 523,5		
	2 553,5		
Pmin + 6 dB	2 583,5	-47	CW
Pillili + 0 QD	2 613,5	-4 1	CVV
	2 643,5		
	2 673,5		

■ Receiver Category 2

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal	
Pmin + 6 dB	2 380	-57	CW	
T HIIIT T O GB	2 503,5	-57	CVV	
Pmin + 6 dB	2 300	-47	CW	
PIIIIII + 6 QB	2 583,5	-4 <i>1</i>	CVV	

Receiver Category 3

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	Type of blocking signal	
Pmin + 12 dB	2 380	-57	CW	
	2 503,5	•		
Pmin + 12 dB	2 300	-47	CW	
FIIIII + 12 UD	2 583,5	-47	CVV	

7.2.4 Test Result

Companion device (dBm)	Blocking signal power (dBm)	Blocking signal frequency (MHz)	Performance criterion (%)
Pmin + 6 dB	5 2	2 380	1.00
PIIIIII + 0 QB	-53	2 503,5	1.67
	-47	2 300	1.67
Pmin + 6 dB		2 330	1.67
		2 360	2.00
		2 523,5	2.00
		2 553,5	4.00
Davis a CalD	47	2 583,5	2.67
Pmin + 6 dB	-47	2 613,5	4.33
		2 643,5	3.00
		2 673,5	3.00

Note:

1. Receiver Category: 1

2. Type of blocking signal: CW

3. Pmin : Pmin is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria in the absence of any blocking signal = -91.30 dBm

4. Minimum performance criterion : PER less than or equal to 10 %.

5. Test Frequency : 2 412 MHz6. Modulation type: 802.11b

7. Data Rate: 1Mbps

8. The smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth.(Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.11.1)

Companion device (dBm)	Blocking signal power (dBm)	Blocking signal frequency (MHz)	Performance criterion (%)
Pmin + 6 dB	-53	2 380	1.67
PIIIIII + 0 UD	-55	2 503,5	0.67
	-47	2 300	1.00
Pmin + 6 dB		2 330	2.00
		2 360	2.67
		2 523,5	1.33
		2 553,5	2.67
Duraina a CadD	47	2 583,5	2.67
Pmin + 6 dB	-47	2 613,5	0.67
		2 643,5	1.67
		2 673,5	1.33

Note:

1. Receiver Category: 1

2. Type of blocking signal: CW

3. Pmin : Pmin is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria in the absence of any blocking signal = -93.50 dBm

4. Minimum performance criterion : PER less than or equal to 10 %.

5. Test Frequency : 2 472 MHz6. Modulation type: 802.11b

7. Data Rate: 1Mbps

8. The smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth.(Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.11.1)

8. GEO-LOCATION CAPABILITY

8.1 Definition

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

8.2 Requirements

The geographical location determined by the equipment as defined in clause 8.1 shall not be accessible to the user.

8.3 Declaration by the Manufacturer

Geo-location capability is implemented in this product and can't be accessible to the user.

9. PHOTOGRAPHS OF THE EUT

Photographs is described in Appendix A. Please refer to Appendix A.

10. SETUP PHOTO

Setup photo is described in Appendix B. Please refer to Appendix B.