Offenlegungsschrift

27 03 529

Ø

Aktenzeichen: Anmeldetag: P 27 03 529.6-35

Anmeldelag

28. 1.77

Offenlegungstag:

3. 8.78

3

Unionspriorität:

Ø Ø Ø

_

Bezeichnung:

7910d (St. 7

Implantat zur Verbindung von Trennstellen in lebendem Gewebe

Ø

Anmelder:

Fried. Krupp GmbH, 4300 Essen

മ

Erfinder:

Baumgart, Frank, Prof. Dr.-Ing., 4030 Ratingen;

Bensmann, Günter, Dr.-Ing.; Hartwig, Jürgen, Dr.-Ing.; Jorde, Joachim, Dipl.-Ing.; Müller; Manfred, Dr.-Ing.; Schlegel, Karl Fried., Prof. Dr.med.; 4300 Essen

Prüfungsantrag gem. § 28b PatG ist gestellt

Patentansprüche:

- 1. Implantat zur mechanischen Verbindung von Trennstellen in lebendem Gewebe und/oder zur Entfernung des Verbindungselementes nach erfolgter Heilung oder zum Abklemmen von Blutgefäßen, gekennzeichnet durch die Verwendung einer Legierung, insbesondere Ni - Ti oder Ti - Nb, die aufgrund von Gefügeumwandlungen ihre Form bei Wärmezufuhr bleibend ändert.
- Implantat nach Anspruch 1, dadurch gekennzeichnet, daß die verwendete Legierung gewebeverträglich ist.
- 3. Implantat nach Anspruch 1, dadurch gekennzeichnet, daß es aus einer Legierung besteht, die mit einer gewebeverträglichen und bei Bedarf wärmeisolierenden Hülle umgeben ist.

EV 83/76 Vo/Ko

FRIED. KRUPP GESELLSCHAFT MIT BESCHRÄNKTER HAFTUNG IN ESSEN

2703529

Implantat zur Verbindung von Trennstellen in lebendem Gewebe

Die Erfindung betrifft Vorrichtungen zur Verbindung von Trennstellen in lebendem Gewebe.

- 5 Bereits bekannt ist in der Medizin die Verwendung unveränderlich starrer Implantate wie z.B. Nägel,
 Krampen und Stifte mit denen Trennstellen mechanisch
 zusammengefügt werden. Dabei werden die Bruchstellen
 mittels externer Spannvorrichtungen und verschraubter
 10 Platten so aneinander gedrückt, daß sich ein heilungsfördernder Druck einstellt. Ebenso sind prothetische
 Teile als Knochenstückersatz bekannt, die entweder einzementiert werden müssen (wie z.B. in der DT-OS
 2 408 950 beschrieben) oder mit dem Knochen verschraubt
 15 werden (wie z.B. in der DT-AS 2 411 618). Neben dem
 großen operativen Aufwand besitzen alle diese Vorrichtungen den Nachteil, daß sie sich nach einiger
 Zeit lockern und damit neue, gewebeschädigende Befestigungen der Implantate nötig sind.
- 20 In der Technik sind ferner (vgl. z.B. die deutsche Auslegeschrift 2 661 710) unter der Bezeichnung "Memory-Legierungen" Werkstoffe bekannt, die nach entsprechender Vorverformung durch Wärmezufuhr mechanische Arbeit leisten können. Dieser auf Gefügeumwand-
- 25 lungen beruhender Effekt wird ausgelöst, wenn nach einer plastischen Verformung bestimmte Legierungen durch Erwärmung über eine materialspezifische Temperatur wieder in ihre ursprüngliche Form zurückkehren, die

. 2

sie vor der Verformung besaßen. Der Temperaturbereich, bei dem die mit einer plastischen Verformung erfolgte Gefügeumwandlung sich spontan umkehrt, wird Umwandlungstemperaturbereich genannt. Er liegt beispielsweise bei einer aus 55 Gew.-% Ni und 45 Gew.-% Ti bestehenden Legierung bei etwa 60°C. Eine Änderung der prozentualen Zusammensetzung oder die Zugabe von Fe, Co, Mn, Al, Au oder Zirkon bewirkt eine Verschiebung der Umwandlungstemperatur. Somit ist es möglich, durch geeignete Wahl der Zusammensetzung einer "Memory-Legierung" thermisch gesteuert Kräfte auszulösen.

Aufgabe der Erfindung ist es, diese Kräfte für die Verbindung von Trennstellen in lebendem Gewebe nutzbar zu machen und dadurch die Mängel der bisher be-15 kannten Implantate zu überwinden. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Werkstoff für die Implantate "Memory-Legierungen" gewählt werden, die aufgrund von Gefügeumwandlungen ihre Form bei Wärmezufuhr bleibend verändern. Aus solchem Werkstoff 20 können als Verbindungselemente dienende Drähte, Nägel, Fliden, Platten, Krampen, Klammern, Hülsen, Ringe, Scheiben, Stifte oder Röhren hergestellt werden. Die Fixierung der beiden Trennstellen kann - je nach plastischer Verformung - durch Drehen, Stauchen, Biegen oder 25 Tordieren erreicht werden. Falls die Fixierung der getrennten Gewebeteile schrittweise erfolgen soll, bietet sich eine so stufenweise Wärmezufuhr an, daß die Herstellung des Endzustandes in mehreren Schritten erreicht wird. Dieses kann auch dadurch erreicht wer-35 den, daß Implantate aus mehreren Legierungen mit verschiedener prozentualer Zusammensetzung verwendet werden. Jede dieser Legierungen besitzt einen bestimmten Umwandlungstemperaturbereich, was bei mehreren Legierungen eine mehrmalige temperaturgesteuerte Auslösung des "Memory-Effektes" ermöglicht. Wegen der funktionalen Abhängigkeit der Umwandlungstemperatur von der prozentualen Zusammensetzung der
"Memory-Legierung" kann der Effekt zwischen Körpertemperatur und weit höheren Temperaturen ausgelöst werden.

Bei externer Aufheizung kann man sich die stromleitenden Eigenschaften der Legierung zunutze machen, in denen man sie als elektrische Widerstandskörper 10 für induktive, kapazitive oder ohmsche Erwärmung verwendet.

Ebenso wie sich durch Auslösung des "Memory-Effektes" zwischen den Gewebeteilen Spannungen erzeugen lassen, die die Heilung begünstigen, können nach abgeschlossener Heilung die Verbindungselemente mittels Ausnutzung des "Memory-Effektes" entfernt werden.

Besonders vorteilhaft ist es, als Werkstoff für Implantate "Memory-Legierungen" zu verwenden, die eine ausreichende Gewebeverträglichkeit besitzen. Es können aber auch Implantate aus "Memory-Legierungen", die mit einer Schutzhülle aus gewebeverträglichem Werkstoff umgeben sind, in menschliche oder tierische Körper eingesetzt werden. In einer besonders vorteilhaften Ausführung enthält die Schutzhülle wärmeiso-

Der wesentliche Vorteil der vorliegenden Erfindung gegenüber den bisher verwendeten, unveränderlich starren Verbindungselementen liegt darin, daß zur Erzeugung günstiger Druck- oder Zugspannungen zwi-30 schen den Trennstellen thermisch gesteuert Kräfte ausgelöst werden können. Dadurch wird außer der Im folgenden wird die Erfindung an Hand schematischer Zeichnungen und Ausführungsbeispielen erläutert.

Es zeigt

- Fig. 1 eine Prinzipdarstellung einer Heftvor-10 richtung mit Memory-Klammern und Krampen
 - Fig. 2 weitere Ausführungsbeispiele von Befestigungselementen
 - Fig. 3 die Darstellung einer Schutzhülle als Kappe auf einem Gelenkteil.
- 15 In Fig. 1 sind Memory-Klammern (1a, c, g) und Krampen (1b, d, h) dargestellt. Dabei zeigen die Abb. a und b die Ausgangsgestalt dieser Elemente, die auch als Endzustand (Abb. 1g und 1h) nach Erwärmung wieder erreicht wird. Entsprechend dem Abstand der zu ver-
- 20 bindenden Trennstellen werden die Elemente kalt verformt (Abb.1c, d) und mittels eines Heftapparates (Abb. 1e) in Gewebelappen eingeheftet bzw. in vorgebohrte Löcher eingesetzt. Der "Memory-Effekt" wird ausschließlich durch eine im Heftapparat be-
- 25 findliche Heizung oder die Körperwärme ausgelöst, so daß der Formschluß (Abb.1g und 1h) erreicht wird.

Fig. 2 zeigt einige Beispiele für eine Anwendung bei der Befestigung eines Dreilamellennagels für Schenkelhalsfrakturen. In gleicher Weise sind Befestigungselemente der verschiedensten Formen denkbar. Speziell
zur Verankerung z.B. von Prothesen in Röhrenknochen,
von Marknägeln, von Platten für die Osteosynthese
5 oder von Prothesenteilen miteinander können Formschlußelemente wie z.B. Spreizdübel, Haken oder
Scheiben verwendet werden.

Eine weitere Anwendungsmöglichkeit zeigt Fig. 3. Die Befestigung von Kappen auf Gelenkkopfteilen, wie 2.B. eine Kappe auf dem Femurkopf, besitzt einen Kragen aus Memory-Legierung, der sich nach dem Aufsetzen formschlüssig um den Hals legt.

Weiterhin sind Knochennägel denkbar, die wie üblich in lange Bohrungen eingebracht werden und sich infolge des "Memory-Effekts" aufweiten und damit fest-klammern. Dabei lassen sich offene Querschnitte mit Wellen- oder stumpfen Sägezahnprofilen längs des Nagels zur Haftung verwenden.

Leerseite

Nummer:

Int. Cl.²:

27 03 529 A 61 B 17/08

28. Januar 1977

Anmeldetag: Offenlegungstag:

3. August 1978

FIG. 1a 2703529 FIG. 1b

FIG. 1c

FIG.1d

FIG. 1e

FIG.1f

FIG. 1g

FIG.1h

FIG. 2a

F1G. 2b

FIG. 2c

FIG.3

