Efficient Computation and Informative Estimation of h⁺ by Integer and Linear Programming

Masood Feyzbakhsh Rankooh and Jussi Rintanen Aalto University

Introduction

- Delete-free planning: actions add but do not delete propositions
- The optimal cost of the solution: h⁺
- Computing h⁺ is NP-complete
- h⁺ is hard to approximate

Causal Partial Functions

- 1. if f(p) = a then a adds p
- if f(p) = a then for every precondition q of a, either q ∈ I or f is defined for q
- 3. for every $p \in G$, either $p \in I$ or f is defined for p.

Causal Relaxed Plan Representations

- For any causal partial function f, we construct a digraph G_f that includes (q,p) iff for some a, f(p) = a and q is a precondition of a.
- f is a causal relaxed plan representation iff G_f is acyclic.
- cost(f) is the total cost of all actions to which some atomic proposition is mapped by f.

Equivalence

- For every STRIPS planning problem Π there exists a causal relaxed plan representation f for Π such that cost(f) = h+(Π)
- Let Π be a STRIPS planning problem and f be a causal relaxed plan representation for Π. Then cost(f) is an upper bound of h+(Π)

IP Model - Objective Function

$$minimize \sum_{a \in A} f_a \cdot cost(a)$$

IP Model - Causal Partial Functions

$$f_a \in \{0,1\}$$
 $f_p \in \{0,1\}$ $f_{p,a} \in \{0,1\}$
$$\forall p \in P, \quad f_p = \sum_{p \in add(a)} f_{p,a}$$

$$\forall p, q \in P, \quad \left(\sum_{q \in pre(a), p \in add(a)} f_{p,a}\right) \leq f_q$$

$$\forall p \in G, \quad f_p = 1$$

$$\forall a \in A, p \in add(a) \quad f_{p,a} \leq f_a$$

Cycle Prevention – Time Labels

$$\begin{split} t_i &\in \{1,...,|P|\} \\ \forall a \in A, p_i \in pre(a), p_j \in add(a), \\ t_i - t_i + 1 &\leq |P|(1 - f_{v_j,a}) \\ \text{IP-TL}(\prod), \mathsf{h}_{\mathsf{TL}}(\prod,\mathsf{O}) \\ \text{Vertex Elimination Graphs} \end{split}$$

Vertex Elimination Graphs - Triangles

Cycle Prevention – Vertex Elimination

$$\begin{aligned} e_{i,j} &\in \{0,1\} \\ \forall a \in A, p_i \in pre(a), p_j \in add(a) \quad f_{p_j,a} \leq e_{i,j} \\ \forall (p_i, p_j) \in E_\Pi^*, \quad e_{i,j} + e_{j,i} \leq 1 \\ \forall (p_i, p_j, p_k) \in \Delta, \quad e_{i,j} + e_{j,k} - 1 \leq e_{i,k} \end{aligned}$$

Main idea: if G_M is cyclic then G_M^* has a cycle of length 2

IP-VE(\prod ,O) LP-relaxation: $h_{VF}(\prod$,O)

Theoretical Results

Let Π = (P, A, I, G, cost) be a STRIPS planning problem, and O be any order on members of P.

- Theorem 1. If f is a causal relaxed plan representation for Π with cost c, then IP-VE(Π, O) has a feasible solution with objective value c.
- Theorem 2. If IP-VE(Π, O) has a feasible solution with objective value c, then there exists a causal relaxed plan representation for Π with cost at most c.
- Theorem 3. $h_{VE}(\prod, O) \ge h_{TL}(\prod)$

Exact Methods - Coverage

Admissible Heuristics - Informativeness

Admissible Heuristics - Efficiency

Admissible Heuristics – A* Coverage

