Problem 3.18. Given two vectors spaces E and F, let $(u_i)_{i\in I}$ be any basis of E and let $(v_i)_{i\in I}$ be any family of vectors in F. Prove that the unique linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$ is surjective iff $(v_i)_{i\in I}$ spans F.

Problem 3.19. Let $f: E \to F$ be a linear map with $\dim(E) = n$ and $\dim(F) = m$. Prove that f has rank 1 iff f is represented by an $m \times n$ matrix of the form

$$A = uv^{\top}$$

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension n.

Problem 3.20. Find a nontrivial linear dependence among the linear forms

$$\varphi_1(x, y, z) = 2x - y + 3z, \quad \varphi_2(x, y, z) = 3x - 5y + z, \quad \varphi_3(x, y, z) = 4x - 7y + z.$$

Problem 3.21. Prove that the linear forms

$$\varphi_1(x, y, z) = x + 2y + z, \quad \varphi_2(x, y, z) = 2x + 3y + 3z, \quad \varphi_3(x, y, z) = 3x + 7y + z$$

are linearly independent. Express the linear form $\varphi(x, y, z) = x + y + z$ as a linear combination of $\varphi_1, \varphi_2, \varphi_3$.