diabetes-prediction-system

December 29, 2023

```
[1]: #import
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
[10]: from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import
       accuracy_score,classification_report,confusion_matrix
      from sklearn.preprocessing import StandardScaler
      from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.neighbors import KNeighborsClassifier
 [3]: data=pd.read_csv("E:\diabetes.csv")
      data
 [3]:
                        Glucose
                                 BloodPressure
                                                 SkinThickness
           Pregnancies
                                                                 Insulin
                                                                           BMI
      0
                     6
                             148
                                             72
                                                             35
                                                                       0
                                                                          33.6
      1
                     1
                              85
                                             66
                                                             29
                                                                       0 26.6
      2
                     8
                             183
                                             64
                                                              0
                                                                       0 23.3
      3
                     1
                                             66
                                                             23
                                                                      94 28.1
                              89
                     0
                                                                     168 43.1
      4
                             137
                                             40
                                                             35
      763
                    10
                             101
                                             76
                                                             48
                                                                     180 32.9
      764
                                             70
                                                                       0 36.8
                     2
                             122
                                                             27
      765
                     5
                             121
                                             72
                                                             23
                                                                     112 26.2
      766
                     1
                             126
                                             60
                                                              0
                                                                       0 30.1
      767
                     1
                              93
                                             70
                                                             31
                                                                       0 30.4
           DiabetesPedigreeFunction
                                      Age
                                           Outcome
      0
                               0.627
                                       50
      1
                               0.351
                                       31
                                                  0
      2
                               0.672
                                       32
                                                  1
      3
                               0.167
                                       21
                                                  0
      4
                               2.288
                                       33
                                                  1
```

• •	•••	•••	
763	0.171	63	0
764	0.340	27	0
765	0.245	30	0
766	0.349	47	1
767	0.315	23	0

[768 rows x 9 columns]

[4]: sns.heatmap(data.isnull())

[4]: <Axes: >

[5]: correlation=data.corr() print(correlation)

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age	Pregnanci 1.0000 0.1294 0.1412 -0.0816 -0.0735 0.0176 -0.0335 0.5443	00 59 82 72 35 83 23	0.3313 0.2210 0.1373	59 00 90 28 57 71	BloodPressure 0.141282 0.152590 1.000000 0.207371 0.088933 0.281805 0.041265 0.239528	SkinThickness -0.081672 0.057328 0.207371 1.000000 0.436783 0.392573 0.183928 -0.113970	\
Outcome	0.2218	98	0.4665	81	0.065068	0.074752	
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome	Insulin -0.073535 0.331357 0.088933 0.436783 1.000000 0.197859 0.185071 -0.042163 0.130548	0. 0. 0. 1. 0.	BMI 017683 221071 281805 392573 197859 000000 140647 036242 292695	Di	0 0 0 0 0 1	unction \ .033523 .137337 .041265 .183928 .185071 .140647 .000000 .033561 .173844	
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome	Age 0.544341 0.263514 0.239528 -0.113970 -0.042163 0.036242 0.033561 1.000000 0.238356	0. 0. 0. 0. 0.	utcome 221898 466581 065068 074752 130548 292695 173844 238356 000000				

[6]: sns.heatmap(data.corr())

[6]: <Axes: >


```
[11]: #standardize the feature
scaler=StandardScaler()
X_train_scaled=scaler.fit_transform(X_train)
X_test_scaled=scaler.transform(X_test)
[8]: #prevaring the data
```

```
[12]: #train a random classifier
model=RandomForestClassifier(random_state=42)
model.fit(X_train_scaled,Y_train)
```

[12]: RandomForestClassifier(random_state=42)

```
[22]: #make prediction on the test set
     prediction=model.predict(X_test_scaled)
     print(prediction)
    [0\;0\;0\;0\;0\;1\;0\;1\;1\;1\;0\;1\;0\;0\;0\;0\;0\;1\;1\;0\;0\;0\;0\;1\;1\;0\;0\;0\;0\;1\;1\;1\;1\;1\;1\;1
     0 1 0 0 0 0]
[23]: #evaluate the model
     accuracy_score(Y_test,prediction)
     print(accuracy)
    0.7207792207792207
[24]: #display the first few rows
     print(data.head())
     #checking for missing values
     print(data.isnull().sum())
     #statistical summary
     print(data.describe())
       Pregnancies
                 Glucose BloodPressure SkinThickness
                                                   Insulin
                                                           BMI
    0
               6
                     148
                                   72
                                                        0 33.6
                                               35
                                                        0 26.6
    1
               1
                      85
                                   66
                                               29
    2
               8
                                   64
                                                0
                                                        0
                                                          23.3
                     183
    3
               1
                      89
                                   66
                                               23
                                                       94 28.1
    4
               0
                                   40
                                                35
                                                      168 43.1
                     137
       DiabetesPedigreeFunction
                             Age
                                 Outcome
    0
                       0.627
                              50
    1
                       0.351
                              31
                                      0
    2
                       0.672
                              32
                                      1
    3
                       0.167
                              21
                                      0
    4
                       2.288
                              33
                                      1
                            0
    Pregnancies
    Glucose
                            0
    BloodPressure
                            0
    SkinThickness
                            0
    Insulin
                            0
                            0
    DiabetesPedigreeFunction
                            0
                            0
    Age
                            0
    Outcome
    dtype: int64
          Pregnancies
                        Glucose
                               BloodPressure
                                            SkinThickness
                                                            Insulin \
```

768.000000

768.000000 768.000000

768.000000 768.000000

count

mean	3.845052	120.894531	69.10546	9 20.53	6458	79.7994	179
std	3.369578	31.972618	19.35580	7 15.95	2218	115.2440	002
min	0.000000	0.000000	0.00000	0.00	0000	0.0000	000
25%	1.000000	99.000000	62.00000	0.00	0000	0.0000	000
50%	3.000000	117.000000	72.00000	0 23.00	0000	30.5000	000
75%	6.000000	140.250000	80.00000	0 32.00	0000	127.2500	000
max	17.000000	199.000000	122.00000	99.00	0000	846.0000	000
	BMI	DiabetesPedi	greeFunction	Age	01	ıtcome	
count	768.000000		768.000000	768.000000	768.	000000	
mean	31.992578		0.471876	33.240885	0.3	348958	
std	7.884160		0.331329	11.760232	0.4	476951	
min	0.000000		0.078000	21.000000	0.0	000000	
25%	27.300000		0.243750	24.000000	0.0	000000	
50%	32.000000		0.372500	29.000000	0.0	000000	
75%	36.600000		0.626250	41.000000	1.0	000000	
max	67.100000		2.420000	81.000000	1.0	000000	

```
[25]: #distribution of target variable
sns.countplot(x='Outcome',data=data)
plt.title('Distribution of outcome(0:no diabetes,1:diabetes)')
plt.show()
```



```
[27]: #additional evaluation metrics
      print('\n classification report:')
      print(classification_report(Y_test,prediction))
      classification report:
                   precision
                                recall f1-score
                                                    support
                0
                        0.79
                                   0.78
                                             0.78
                                                         99
                1
                        0.61
                                   0.62
                                             0.61
                                                         55
                                             0.72
                                                        154
         accuracy
        macro avg
                        0.70
                                   0.70
                                             0.70
                                                        154
     weighted avg
                        0.72
                                   0.72
                                             0.72
                                                        154
[28]: print('\nconfusion matrix:')
      print(confusion_matrix(Y_test,prediction))
     confusion matrix:
     [[77 22]
      [21 34]]
[31]: sns.set(style="whitegrid")
      #1.Preqnancies
      plt.figure(figsize=(10,6))
      sns.countplot(x='Pregnancies',data=data)
      plt.title('No. of Pregnancies')
      plt.show()
      #2.Glucose
      plt.figure(figsize=(10,6))
      sns.histplot(x='Glucose',data=data,kde=True)
      plt.title('Distribution of Glucose Levels')
      plt.show()
      #3.Blood Pressure
      plt.figure(figsize=(10,6))
      sns.histplot(x='BloodPressure',data=data,kde=True)
      plt.title('Distribution of Blood Pressure')
      plt.show()
      #4.Skin THickness
      plt.figure(figsize=(10,6))
      sns.histplot(x='SkinThickness',data=data,kde=True)
      plt.title('Distribution of Skin Thickness')
      plt.show()
```

```
#5.Insulin
plt.figure(figsize=(10,6))
sns.histplot(x='Insulin',data=data,kde=True)
plt.title('Distribution of Insulin Levels')
plt.show()
#6.BMI
plt.figure(figsize=(10,6))
sns.histplot(x='BMI',data=data,kde=True)
plt.title('Distribution of BMI')
plt.show()
#7.Diabetes Pedigree Function
plt.figure(figsize=(10,6))
sns.histplot(x='DiabetesPedigreeFunction',data=data,kde=True)
plt.title('Distribution of Diabetes Pedigree Function Scores')
plt.show()
#8.Age
plt.figure(figsize=(10,6))
sns.histplot(x='Age',data=data,kde=True)
plt.title('Distribution of Age')
plt.show()
#9.Outcome
plt.figure(figsize=(10,6))
sns.countplot(x='Outcome',data=data)
plt.title('Distribution of Outcome 1: Diabetes (0: No Diabetes)')
plt.show()
```



```
[33]: #boxplot of skin thickness
plt.figure(figsize=(8,5))
sns.boxplot(x='SkinThickness',data=data)
plt.title('Boxplot of Skin Thickness')
plt.show()
```

Boxplot of Skin Thickness


```
[34]: #outliners in skin thickness
Q1_skin_thickness=data['SkinThickness'].quantile(0.25)
Q3_skin_thickness=data['SkinThickness'].quantile(0.75)
IQR_skin_thickness=Q3_skin_thickness-Q1_skin_thickness
lower_bound_skin_thickness=Q1_skin_thickness-1.5*IQR_skin_thickness
upper_bound_skin_thickness=Q3_skin_thickness+1.5*IQR_skin_thickness
outliers_skin_thickness=data[(data['SkinThickness']<lower_bound_skin_thickness)|(data['SkinThickness']<lower_bound_skin_thickness)]')
```

Number of outliers in SkinThickness:1

```
[35]: #boxplot of insulin
plt.figure(figsize=(8,5))
sns.boxplot(x='Insulin',data=data)
plt.title('Boxplot of Insulin')
```

plt.show()

Number of outliers in Insulin: 34

```
[37]: #visualization between features and pair plot
sns.pairplot(data,hue='Outcome',diag_kind='kde',markers=["o","s"])
plt.suptitle('Pair plotof Features with Outcome')
plt.show()
```

D:\Users\RAVI\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight

self._figure.tight_layout(*args, **kwargs)


```
[39]: #Distribution of Age
plt.figure(figsize=(10, 6))
sns.histplot(x='Age', data=data, kde=True)
plt.title('Distribution of Age')
plt.show()
```



```
[40]: #Distribution of cases accross BMI
plt.figure(figsize=(10, 6))
sns.boxplot(x='Outcome', y='BMI', data=data)
plt.title('Distribution of Diabetic Cases across BMI')
plt.show()
```



```
[41]: #Distribution of cases accross glucose level
plt.figure(figsize=(10, 6))
sns.boxplot(x='Outcome', y='Glucose', data=data)
plt.title('Distribution of Diabetic Cases across Glucose Levels')
plt.show()
```


[]: