

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 1

Docket No.: H6808.0056/P056

App No.: 10/849,517 Inventor: Akihiro Sano et al.

FIG. 2

Docket No.: H6808.0056/P056

App No.: 10/849,517 Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 3 A

PRIOR ART METHOD

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 3 B

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 3 C

EMBODIMENT 2

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 4

(AUTOMATIC) STORAGE IN DB

AMINO ACID SEQUENCE OF IDENTIFIED PROTEIN A

IN THE CASE OF HUMAN MYOGLOBIN

N TERMINAL--- MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKH---

---LKSEDEMKASEDLKKHGATVLTALGGIL KKKGHHEAEIKPLAQSHATKHKIPVK---

---YLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG --- C TERMINAL

TYPES OF DIGESTIVE ENZYME

(EXAMPLE) TRYPSIN

FEATURE OF CLEAVAGE C TERMINAL IS R OR K

SEQUENCE AND MASS NUMBER OF PEPTIDE EXPECTED TO BE PRODUCED AFTER ENZYMATIC DIGESTION

EXPECTED PRODUCED PEPTIDE	AMINO ACID SEQUENCE	MASS NUMBER M [Da]
PEPTIDE A	MGLSDGEWQLVLNVWGK	1932.20484
PEPTIDE B	VEADIPGHGQEVLIR	1632.81642
PEPTIDE C	LFK	406.519220
PEPTIDE D	GHPETLEK	909.983260
PEPTIDE E	FDK	408.448980
PEPTIDE F	FK	293.361540
PEPTIDE G	HLK	396.484720
PEPTIDE H	SEDEMK	737.777560
PEPTIDE I	ASEDLK	661.702060
PEPTIDE J	K	146.187640
PEPTIDE K	HGATVLTALGGILK	1350.60666
PEPTIDE L	K	146.187640
PEPTIDE M	K	146.187640
PEPTIDE N	GHHEAEIK PLAQSHATK	1854.048
PEPTIDE O	HK	283.327040
PEPTIDE P	IPVK	455.591640
PEPTIDE Q	YLEFISECIIQVLQSK	1913.23960
PEPTIDE R	HPGDFGADAQGAMNK	1515.60806
PEPTIDE S	ALELFR	747.882340
PEPTIDE T	K	146.187640
PEPTIDE U	DMASNYK	827.903480
PEPTIDE V	ELGFQG	649.692900
_		

* SINGLE-LETTER NOTATION OF AMINO ACIDS

(AUTOMATIC) STORAGE IN INTERNAL DATABASE

Docket No.: H6808.0056/P056 App No.: 10/849,517

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

CONTENT OF THE INTERNAL DATABASE

CHARACTERISTICS DATA OF A PEPTIDE THAT HAS ONCE BEEN SUBJECTED TO MSⁿ (n ≥ 2) MEASUREMENT

(MASS NÙMBÉR m, RETENTION TIME IN LC τ, VALENCE z, MASS-TO-CHARGE RATIO m/z, DETECTION INTENSITY I, ANALYSIS CONDITION)

PEPTIDE NAME /SEOUENCE	m [Da]	z [-]	m/z	ı	r [min]	ANALYSIS CONDITION (EXAMPLE: ORDER OF TANDEM ANALYSIS)
PEPTIDE A	200	1	200	15160	20	2
PEPTIDE B	700	2	350	2100	28	3
PEPTIDE C	450	1	450	4754	35	2
:	:	:	:	:	:	:
I •	•	•	•	•	•	• /

 CHARACTERISTICS DATA OF A PEPTIDE DERIVED FROM A PROTEIN THAT HAS ONCE BEEN IDENTIFIED OR THAT SHOULD BE ELIMINATED FROM THE OBJECTS FOR TANDEM ANALYSIS

(PROTEIN NUMBER, ID NUMBER, MASS NUMBER m, RETENTION TIME IN LC T, VALENCE Z, MASS-TO-

CHARGE RATIO m/z, DETECTION INTENSITY I, ANALYSIS CONDITION)

PEPTIDE NAME /SEQUENCE	PROTEIN NAME	m [Da]	z [-]	m/z	ı	r [min]	ANALYSIS CONDITION (EXAMPLE: ORDER OF TANDEM ANALYSIS)
PEPTIDE A	PROTEIN A	570	1	570	25010	25	2.
PEPTIDE B	PROTEIN A	652	1	652	3140	32	3
PEPTIDE C	PROTEIN A	652	2	326	58754	45	2
	•	:	:	:	:	43	. • • • • • • • • • • • • • • • • • • •
PEPTIDE D	PROTEIN B	1042	2	521	6456	22	• 2
PEPTIDE E	PROTEIN B	718	2	359	3080	35	2
PEPTIDE F	PROTEIN B	671	2	335.5	8054		3
:	:	•	•	:	:	48	?
•	•	•	•	•	•	<u> </u>	

 CHARACTERISTICS DATA OF A SUGAR CHAIN THAT HAS ONCE BEEN SUBJECTED TO MS^n (n \geq 2) MEASUREMENT

(MASS NUMBER m, RETENTION TIME IN LC T, VALENCE Z, MASS-TO-CHARGE RATIO m/z. DETECTION INTENSITY I, ANALYSIS CONDITION)

SUGAR CHAIN NAME /STRUCTURE	m [Da]	z [-]	m/z	ı	r [min]	ANALYSIS CONDITION (EXAMPLE: ORDER OF TANDEM ANALYSIS)
SUGAR CHAIN A	1002	2	501	15710	55	2
SUGAR CHAIN B	840	2	420	8340	34	3
SUGAR CHAIN C	1280	2	640	10754	42	2
:	:	:	:	:	:	

 CHARACTERISTICS DATA OF A CHEMICAL SUBSTANCE THAT HAS ONCE BEEN SUBJECTED TO MSⁿ ($n \ge 2$) MEASUREMENT

(MASS NUMBER m, RETENTION TIME IN LC τ, VALENCE z, MASS-TO-CHARGE RATIO m/z. DETECTION INTENSITY I. ANALYSIS CONDITION)

IIVZ, DETECTION INTE	110111	, AIVAI	<u>- 1 919 CO</u>	NULLI	עאנע.	
CHEMICAL SUBSTANCE NAME/STRUCTURE	m [Da]	z [-]	m/z	1	r [min]	ANALYSIS CONDITION (EXAMPLE: ORDER OF TANDEM ANALYSIS)
CHEMICAL SUBSTANCE A	270	1	270	85510		2
CHEMICAL SUBSTANCE B	358	1	358	9840	47	2
CHEMICAL SUBSTANCE C	682	2	341	20764	82	2
•	:	:	:	:	:	:
•	•	•	•	•	•	•

•CHARACTERISTICS DATA OF AN ION SPECIES DERIVED FROM NOISE OR IMPURITIES (MASS NUMBER m, RETENTION TIME IN LC τ, VALENCE z, MASS-TO-CHARGE RATIO m/z, DETECTION INTENSITY I. ANALYSIS CONDITION)

120110111	· I DI IOI I	1 4, 1 11 11		DOLIDII	UNIT CONTROL C	
m [Da]	z [-]	m/z	1	r [min]	ANALYSIS CONDITION (EXAMPLE: ORDER OF TANDEM ANALYSIS)	
361	1	361	_	15	-	
640	1	640	_	40	-	
740	1	740	-	31	-	
•	•	•	•	•	•	
:	:	:	:	:	:	_
		<u>-</u>				-

FIG. 7 3-1 LIST ESTIMATED ISOTOPE PEAKS WITH PEAK INTERVAL $\Delta m/z < 1.1$ MASS SPECTRUM ISOTOPE ESTIMATION P2-1 **ISOTOPE** ISOTOPE ESTIMATION P₁₋₂ (ONE ISOTOPE) ESTIMATION P₃₋₁ (TWO ISOTOPE) (ONE ISOTOPE) **ISOTOPE** ISOTOPE-ESTIMATION P₁₋₁ **ISOTOPE** LESS P₃₋₀ ISOTOPE-LESS P₂₋₀ ESTIMATION P₃₋₂ (ONE ISOTOPE) (m/z=513)(m/z=520)(TWO ISOTOPE) ISOTOPE-**ISOTOPE** LESS P₁₋₀ **ISOTOPE** ESTIMATION P₁₋₃ ESTIMATION P₃₋₃ NTENSIT (m/z=500)(THREE ISOTOPE) (THREE ISOTOPE) m/z Δ1 Δ2 Δ3 Δ5 Δ7Δ8Δ9 Δ6 $\Delta 1 = \Delta 2 = \Delta 3 = 1.0 (\leq 1.1), \ \Delta 4 > 1.1, \ \Delta 5 = 1.0 (\leq 1.1), \ \Delta 6 > 1.1, \ \Delta 7 = \Delta 8 = \Delta 9 = 0.5 (\leq 1.1)$

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 8

FIG. 9 A

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 9 B

CALCULATION OF ISOTOPE PEAK INTENSITY DISTRIBUTION AND DETERMINATION OF FINAL ISOTOPE PEAK

CALCULATION OF EACH ELEMENT NUMBER FROM MASS NUMBER

IN THE CASE OF A PEPTIDE (C_{Nc}N_{Nn}H_{Nh}O_{No}S_{Ns})

NUMBER OF C: Nc= m × nC / 111.1807 NUMBER OF O: No= m × nO / 111.1807 NUMBER OF N: Nn= m × nN / 111.1807 NUMBER OF H: Nh= m × nH / 111.1807

NUMBER OF S: $Ns = m \times nS / 111.1807$

TABLE A: EACH ELEMENT NUMBER PER AVEARAGE AMINO ACID

пC	nO	nN	nН	nS
4.9583	1.4733	1.3547	7.8185	0.0396

CALCULATION OF ISOTOPE PEAK INTENSITY DISTRIBUTION

IN THE CASE WHERE ONLY AN ISOTOPE (C¹³) IS CONSIDERED

ISOTOPE PEAK INTENSITY P_{Nix} (WHEN NUMBER OF ISOTOPES IS Nis):

 $P_{Nis} = [_{Nc}C_{Nis} \cdot pC(1)^{(Nc-Nis)} \cdot pC(2)^{Nis}]$ $\times pH(1)^{Nh} \cdot pN(1)^{Nn} \cdot pO(1)^{No} \cdot pS(1)^{Ns}$

TABLE B: MASS NUMBER AND ABUNDANCE RATIO OF EACH ISOTOPE ELEMENT

3-3

	MASS	NUMBER	ABUNDA	NCE RATIO
С	mC(1)	12	pC(1)	0.9889
<u> </u>	mC(2)	13.003354	pC(2)	0.0111
Н	mH(1)	1.007825	pH(1)	0.9999
	mH(2)	2.014102	pH(2)	0.0001
Ν	mN(1)	14.003074	pN(1)	0.9963
	mN(2)	15.000108	pN(2)	0.0037
0	mO(1)	15.994915	pO(1)	0.9976
1	mO(2)	16.999133	pO(2)	0.0004
	mO(3)	17.999160	pO(3)	0.0020
s	mS(1)	31.972074	pS(1)	0.9502
1	mS(2)	32.971460	pS(2)	0.0075
	mS(3)	33.967864	pS(3)	0.0422
L	mS(4)	35.967091	pS(4)	0.0001

DETERMINATION OF FINAL ISOTOPE PEAK

OF THE ESTIMATED ISOTOPE PEAKS, AN INTENSITY DISTRIBUTION CALUCATED VALUE P_{Nis} OF ISOTOPE PEAKS AGREES WITH A RELATIVE VALUE OF A RELATIVE MEASURED INTENSITY FORISOTOPE-LESS PEAKS WITH AN ERROR OF LESS THAN 50%

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 10

App No.: 10/849,517 Docket Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM Docket No.: H6808.0056/P056 MS³ SELECTION AND DISSOCIATION $\Delta T_{p}\!:\!PREPARATION$ TIME FOR THE NEXT ANALYSIS SPECTROSCOPY OF MS2 PARENT ION MASS TIME MS² SELECTION AND DISSOCIATION OF MS2 PARENT ION MS³ANALYSIS AND ACCUMULATION OF ION INTRODUCTION MS² SELECTION AND DISSOCIATION SPECTROSCOPY MASS $\Delta T_{p}\!:\! PREPARATION$ TIME FOR THE NEXT ANALYSIS OF MS2 PARENT ION MS²ANALYSIS INTRODUCTION AND ACCUMULATION OF ION SPECTROSCOPY MASS MS¹ANALYSIS AND ACCUMULATION OF ION INTRODUCTION VOLTAGE

App No.: 10/849,517 Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 12

App No.: 10/849,517 Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 13

App No.: 10/849,517 Dog

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 14

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 15

ISOTOPE PEAK INTENSITY DISTRIBUTION PATTERNS DEPENDING ON ION MASS NUMBER

Inventor: Akihiro Sano et al.

FIG. 16

FIG. 17
ISOTOPE-LESS
PEAK
ISOTOPE
PEAK

M/z

Docket No.: H6808.0056/P056

App No.: 10/849,517 Inventor: Akihiro Sano et al.

FIG. 18

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 19

SELECT A PROTEIN WITH A VARIATION IN INTENSITY RATIO AS THE TARGET FOR THE NEXT TANDEM MASS SPECTROSCOPY

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 20

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 21

MASS SPECTRUM

App No.: 10/849,517 Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 22 a

Docket No.: H6808.0056/P056

App No.: 10/849,517 Docket Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM

FIG. 22 b

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 23

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 24 a

App No.: 10/849,517 Docket Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM Docket No.: H6808.0056/P056

FIG. 24 b

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 25

Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM FIG. 26 INITIAL VALUE n = 1n = n + 1**MASS SPECTRUM** DATA (MSⁿ DATA) PEAK DETERMINATION (PEAK TOTAL NUMBER N_n) ISOTOPE PEAK DETERMINATION (NUMBER OF PEAKS WITHOUT ISOTOPE N_{ni}) 28 27 Yes **DATA EVALUATION** $n \ge 2$? 29 No AUTOMATIC STORAGE OF DATA IN INTERNAL DB COLLATION WITH INTERNAL DATABASE (repeated at N_{ni} where i=1) 4-1 LC RETENTION **CALCULATION OF MASS** TIME NUMBER m FOR EACH PEAK i 10 4-3 Yes (No) **ELIMINATE AS A CORRESPOND** PARENT ION OBJECT FOR MS^{n+1} ANALYSIS **INTERNAL** TO STORED VALUE IN INTERNAL DB? DATABASE (DB) No (Yes) PARENT ION OBJECT CANDIDATE FOR MSn+1 9 (AUTOMATIC) No IS THERE STORAGE IN DB A PARENT ION OBJECT CANDIDATE? No **NEXT** DETERMINE THE CONTENT SAMPLE ANALYSIS OF MSn+1 ANALYSIS (MS1) OR END OF **MEASUREMENT** MSn+1 ANALYSIS 28/63

Docket No.: H6808.0056/P056

App No.: 10/849,517

App No.: 10/849,517 Inventor: Akihiro Sano et al.

Docket No.: H6808.0056/P056

FIG. 27

INTERN	IAL DATAB	ASE			
No.	M [Da]	VALENCE z	τ [min]	Accumulation time[msec]	quality
1	921.23	2	24.5	260	5
2	926.09	2	26.9	345	4
3	973.26	2	32.0	289	4
4	700.39	2	34.1	401	5
5	480.66	2	39.2	269	3
6	582.29	2	44.7	159	2
7	1638.66	2	47.8	362	4
8	1954.86	3	50.8	410	5
$\sqrt{\frac{9}{9}}$	507.8	2	51.1	359	5
/ 10 CLI	_{CK} 1510.54	2	57.6	190	3
/ 11	740.25	2	59.8	278	5
12	1478.5	2	61.3	371	4
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•		•	•	•	
•	•	•	•	•	1

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Docket No.: H6808.0056/P056

App No.: 10/849,517 Docket Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM

FIG. 29

<u>8</u> 9 10	M [Da] 921.23 926.09 973.26 700.39 480.66 582.29	VALENCE z 2 2	τ [min] 24.5	Accumulation time[msec]	quality	
2 3 4 5 6	926.09 973.26 700.39 480.66	2	24.5			1
3 4 5 6	973.26 700.39 480.66			260	5	
4 5 6	700.39 480.66		26.9	345	4	
5 6	480.66	2	32.0	289	4	
6		2	34.1	401	5	
	502.20	2	39.2	269	3	
7 8 9 10	J0Z.Z3	2	42.7	159	2	
8 9 10	1638.66	<u>2</u>	<u>47.6</u>	362	2	
9 10	1638.67	<u>2</u> 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	47.7	359	2	
<u>10</u>	<u>1638.65</u>	2	47.7	339	3	
11	1638.66	<u>2</u>	47.7	352	3	
<u> 11</u> .	1638.67	<u>2</u>	47.8	254	4	
	1638.68	<u>2</u>	47.8	262	5	
	1638.66	2	47.8	219	5 (
	1638.65	$\overline{f 2}$	47.8	285	4	≯ CAN BE CONSIDERED
	1638.66	<u>-</u>	47.8	248	5 (AS IDENTICAL ION
16	1638.65	2	47.8	299	4 -	(BASED ON MASS
17	1638.68	<u>-</u>	47.9	280	4	NUMBER, VALENCE,
	1638.67		47.9	310	3	AND RETENTION TIM
	1638.67	$\overline{f 2}$	48.0	307	3	1
	1638.64	$\overline{2}$	48.0	336	3	
	1638.65	$\overline{f 2}$	48.0	318	3 /	
	1954.86	3	50.8	410	5	
23	507.8	2	51.1	359	5	★
24 ·	1510.54	2	57.6	190	3	DELETE REDUNDANT
25	740.25	2	59.8	278	5	DATA FROM DB
26	1478.5	2	61.3	371	4	<u> BATAT KOM DB</u>
•	•	•	•	•	•	
•	•	•	•	•	•	
•		. •	•	•	•	
•	•	_	•	_	_	į vardo ir daras ir d
•	•	•	•	•		1

Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM FIG. 30 INITIAL VALUE n = 1n = n + 1MASS SPECTRUM DATA (MSⁿ DATA) PEAK DETERMINATION (PEAK TOTAL NUMBER N_p) ISOTOPE PEAK DETERMINATION (NUMBER OF PEAKS WITHOUT ISOTOPE N_{p_i}) 28 Yes $n \ge 2$? **DATA EVALUATION** 29 No AUTOMATIC STORAGE OF DATA IN INTERNAL DB PROCESSING OF INTERNAL DB STORED DATA COLLATION WITH INTERNAL DATABASE (repeated at N_{pi} where i=1) 30 LC RETENTION **CALCULATION OF MASS** NUMBER m FOR EACH PEAK i **TIME** 10 **ELIMINATE AS A** Yes (No) CORRESPOND PARENT ION **INTERNAL** TO STORED VALUE IN **OBJECT FOR INTERNAL** DATABASE (DB) MSⁿ⁺¹ ANALYSIS DB? No (Yes) PARENT ION OBJECT CANDIDATE FOR MSn+1 9 (AUTOMATIC) IS THERE No STORAGE IN DB A PARENT ION OBJECT CANDIDATE? No Yes **NEXT** DETERMINE THE CONTENT SAMPLE ANALYSIS OF MSn+1 ANALYSIS (MS¹) OR END OF **MEASUREMENT** MSn+1 ANALYSIS 32/63

Docket No.: H6808.0056/P056

App No.: 10/849,517

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 31

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 32

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 33

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 34

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 35 a

PROTEIN ANALYSIS AND IDENTIFICATION FLOW IN PRIOR ART

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 35 b

PROTEIN ANALYSIS AND IDENTIFICATION FLOW IN THE PRESENT EMBODIMENT

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 36

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 37

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 38

FLOWCHART (REAL-TIME DB SEARCH)

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 39

(FLOWCHAR: SPECIFIC CONDITIONS → MS3/MS2')

Inventor: Akihiro Sano et al.

FIG. 40

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 41

(FLOWCHART: DETERMINATION BASED ON PEAK GROUP)

App No.: 10/849,517 Docket No.: H6808.0056/P056 Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

FIG. 42

(FLOWCHART: DETERMINATION BASED ON NUMBER OF PEAKS)

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 43

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 44

App No.: 10/849,517 Inventor: Akihiro Sano et al.

FIG. 45

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 46

Inventor: Akihiro Sano et al.

FIG. 47

Inventor: Akihiro Sano et al.

FIG. 48

Inventor: Akihiro Sano et al.

FIG. 49

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 50

App No.: 10/849,517 Inventor: Akihiro Sano et al.

FIG. 51

App No.: 10/849,517 Inventor: Akihiro Sano et al.

FIG. 52

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

Title: MASS SPECTROMETER SYSTEM

ION TRAP

App No.: 10/849,517 Inventor: Akihiro Sano et al.

FIG. 54

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 55

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 56

Docket No.: H6808.0056/P056

Inventor: Akihiro Sano et al.

FIG. 57

Inventor: Akihiro Sano et al.

FIG. 58

App No.: 10/849,517 Docket Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM

FIG. 59

App No.: 10/849,517 Docket Inventor: Akihiro Sano et al. Title: MASS SPECTROMETER SYSTEM

FIG. 60

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
CØLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.