Tarea 13 - Métodos numéricos Giovanni Gamaliel López Padilla

Problema 1

Implementa y evalúa las siguientes integrales usando la regla compuesta de Simpson 3/8 para $n=\{3,6,9,12,15\}$ y muestra una gráfica de n contra el valor absoluto del error.

 $\mathbf{a})$

$$\int_{-1}^{1} e^x dx$$

Puntos	Resultado	Diferencia
3	2.355648	0.005246
6	2.350756	0.000354
9	2.350473	0.000071
12	2.350425	0.000023
15	2.350412	0.000010

Figura 1

b)

$$\int_{-1}^{1} \frac{1}{x^2 + 1} dx$$

Puntos	Resultado	Diferencia
3	1.600000	2.920367e-02
6	1.569231	1.565327e-03
9	1.570850	5.367321e-05
12	1.570792	4.326795 e-06
15	1.570796	3.267949e-07

Figura 2

Problema 2

Implementa el algoritmo de Newton para calcular las raices del polinomio de Legendre $P_n(x)$

$$x_{i+1} = x_i - \frac{P_n(x_i)}{P'_n(x_i)}$$

Usando como puntos iniciales

$$x_0 = cos\left(\frac{\pi(k+0.75)}{n+0.5}\right)$$
 $k = 0, 1, 2, \dots, n$

Problema 3

Implemente el algorito de cuadratura de Gauss-Legendre y evalua las integrales usando 2, 4 y 10 nodos.

Figura 3

$$\int_{-1}^{0} x e^{-x} dx$$

Figura 4