2 Chapter 9: Current and Resistance

1. An ECG monitor must have an RC time constant less than $100\mu s$ to be able to measure variations in voltage over small time intervals. (a) If the resistance of the circuit (due mostly to that of the patients chest) is 1.00 k Ω , what is the maximum capacitance of the circuit? (b) Would it be difficult in practice to limit the capacitance to less than the value found in (a)? (c) If the patient's resistance really is 1.00 k Ω , and the typical maximum amplitude of the patient's heartbeat is 60 mV, when does the voltage rise to 30 mV in the EKG monitor (using the C you found in (a))?

a)
$$+=100\mu_s \rightarrow 1 \neq 10^{-4}5$$

b) No, it wouldn't be difficult to limit the carracters.

$$L = (r \rightarrow c = \frac{t}{r})$$

$$C = \frac{1 \times 10^{-4}}{1 \times 10^{-3}} = \frac{t}{1 \times 10^{-4}}$$

$$C = \frac{1 \times 10^{-4}}{1 \times 10^{-3}} = \frac{1 \times 10^{-4}$$

the voltage follows a form

$$V(t) = V_0 \sin(2\pi f t + \phi) \tag{1}$$

The wall outlets in the USA have f = 60 Hz and $V_0 = 120$ V. We have the freedom to choose ϕ in this example, much like choosing the zero-point of voltage. (a) Suppose $\phi = 0$. At what times will V(t) = 0? (b) What is the max power delivered to a $1k\Omega$ resistor? (c) What is the average power delivered to a $1k\Omega$ resistor?

3. For those of us stuck at home! A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00 A and a voltage of 110 V, a lamp that contains a 100-W bulb, an overhead light with a 60-W bulb, and various other small devices adding up to 3.00 W. In Southern California, electricity costs about 0.2 dollars per kiloWatt-hour. How much money does this student spend if the total wattage is on for 12 hours per day for one month?

P=IV

$$P_{t} = (3(110)) + (100 + 60 + 3)$$

 $= 1.7748 + 105 + 107 + 177.47 + 177.47 + 177.48$

Chapter 10: Direct-Current (DC) Circuits

a)
$$\xi = 1.5 \text{ U}$$
 $f = .25 \text{ Anr}$
 $f = .25 \text{ I}$
 $f = .25 \text{ I}$

Figure 2: Two AA batteries are connected in parallel to power a calculator represented by R. (a) The batteries are connected in parallel. (b) A circuit diagram representing the circuit in (a).

4 Chapter 11: Magnetic Forces and Fields

Figure 3: The trajectory of a sub-atomic particle through a cloud chamber.

- 1. The experimental result depicted in Fig. 3 shows the trajectory of a sub-atomic particle that is revealed by a device called a *cloud chamber*. The particle bends to the *left* after passing through a lead plate. (a) The magnetic field is *into the page*. What is the sign of the charge of this particle? (b) It was later deduced that this particle had the mass of an electron, from the radius of curvature. Why is that strange? (c) Imagine the B-field had a strength of 0.05 T and the velocity of the paricle was 10⁶ m/s. What was the force on the particle, and in what direction was the force?
 - a) Positive
- b) Due to the mass of the Porticly being the some as an eletra, it is started as eletras are negatively church