

ISO/IEC17025Accredited Lab.

Report No: FCC 0901082 File reference No: 2009-02-06

Applicant: KINDWIN OPTO ELECTRONIC (SHENZHEN) CO., LTD

Product: WMC

Model No: WMC

Trademark: KTL

Test Standards: FCC Part 2 Subpart J & Part 22 Subpart H & Part 24 Subpart E

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.4& FCC Part 2 Subpart J & Part 22 Subpart H & Part 24 Subpart E regulations for the evaluation of

electromagnetic compatibility

Approved By

Jack Chung

Jack Chung Manager

withdrawal at

Dated: February 06, 2009

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to

SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District, Shenzhen,CHINA.

Tel (755) 83448688 Fax (755) 83442996

Report No: 0901082 Page 2 of 53

Date: 2009-02-06

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:1999 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 899988

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.:899988.

IC-Registration No.: IC5205A-01

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration No.: IC 5205A-01.

Test Report Conclusion Content

1.0	General Details	3
1.1	Test Lab Details	3
1.2	Applicant Details	3
1.3	Description of EUT	3
1.4	Submitted Sample	3
1.5	Test Duration.	4
1.6	Test Uncertainty	4
1.7	Test Engineer	4
2.0	List of Measurement Equipment	4
3.0	Technical Details	7
3.1	Summary of Test Results	7
3.2	Test Standards	7
4.0	EUT Modification	7
5.0	RF EXPOSURE	8
5.1	Applicable standards	8
5.2	Test Data	8
6.0	MODULATION CHARACTERISTIC	9
5.1	Applicable standards	9
7.0	RF OUTPUT POWER	10
7.1	Applicable standards	10
7.2	Test procedure	10
7.3	Test Data	10
8.0	Occupied Bandwidth	20
8.1	Applicable standards	20
8.2	Test procedure	20
8.3	Test Data	20
9.0	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
9.1	Applicable standards	25
9.2	Test procedure	25
9.3	Test Data	25
10.0	SPURIOUS RADIATED EMISSIONS	36
10.1	Applicable standards	36
10.2	Test procedure	36
10.3	Test Data	36
11.0	BAND EDGES	39
11.1	Applicable standards	39
11.2	Test procedure	39
11.3	Test Data	39

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report

Page 4 of 53

12.0	FREQUENCY STABILITY	48
12.1	Applicable standards	48
12.2	Test procedure	48
12.3	Test Data	48
13 0	Peak-to-average ratio	52

Report No: 0901082 Page 5 of 53

Date: 2009-02-06

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

Address: 5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District,

Shenzhen, CHINA.

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 899988

For 3m & 10 m OATS

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205A-01

For 3m & 10 m OATS

1.2 Applicant Details

Applicant: KINDWIN OPTO ELECTRONIC (SHENZHEN) CO., LTD

Address: B Building, Fuxin Road, Xinnan Xinwu, Pinghu Town, Longgang, Shenzhen, China

Telephone: 00086-755-84675019 Fax: 00086-755-84674076

1.3 Description of EUT

Product: WMC

Manufacturer: KINDWIN OPTO ELECTRONIC (SHENZHEN) CO., LTD

Brand Name: KTL

Model Number: WMC

Additional Model Name N/A

Emission Designator: 252KGXW

250KGXW

Power Supply 12V

Type of Modulation GMS/GPRS

Frequency range 824.2-848.8MHz 1850.2-1909.8MHz

Antenna type the antenna gain is 1.0 dBi

1.4 Submitted Sample: 2 Sample

1.5 Test Duration

2009-01-15 to 2009-01-23

1.6 Test Uncertainty

Conducted Emissions Uncertainty = 3.6dB Radiated Emissions Uncertainty = 4.7dB

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 6 of 53

Report No: 0901082 Date: 2009-02-06

1.7 Test Engineer

The sample tested by

Print Name: Terry Tang

2.0		Test Equ	ipments			
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date	
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	2008-12-06	2009-12-05	
Absorbing Clamp	ROHDE&SCHWARZ	MDS-21	100126	2008-12-06	2009-12-05	
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100294	2008-12-06	2009-12-05	
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100253	2008-12-06	2009-12-05	
Ultra Broadband ANT	ROHDE&SCHWARZ	HL562	100157	2008-12-06	2009-12-05	
ESDV Test Receiver	ROHDE&SCHWARZ	ESDV	100008	2008-04-26	2009-04-25	
4-WIRE ISN	ROHDE&SCHWARZ	ENY 41	830663/044	2009-02-17	2010-02-16	
GG ENY22 Double 2-Wire ISN	ROHDE&SCHWARZ	ENY22	83066/016	2009-02-17	2010-02-16	
Impuls-Begrenzer	ROHDE&SCHWARZ	ESH3-Z2	100281 2009-02-17		2010-02-16	
System Controller	CT	SC100	-	2009-02-17	2010-02-16	
Printer	EPSON	РНОТО ЕХЗ	CFNH234850	2009-02-17	2010-02-16	
FM-AM Signal Generator	JUNG.JIN	SG-150M	389911177	2009-02-17	2010-02-16	
Color TV Pattern Generator	PHILIPS	PM5418	LO621747	2009-02-17	2010-02-16	
Computer	IBM	8434	1S8434KCE99BLX LO*	-	-	
Oscillator	KENWOOD	AG-203D	3070002	2009-02-17	2010-02-16	
Power meter	Anritsu	ML2487A	6K00003613	2009-02-17	2010-02-16	
Power sensor	Anritsu	MA2491A	32263	2009-02-17	2010-02-16	

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 7 of 53

Report No: 0901082 Date: 2009-02-06

		12/			
Spectrum Analyzer	HAMEG	HM5012	<u>-</u>	2008-04-26	2009-04-25
Power Supply	LW	APS1502	-	-	-
5K VA AC Power Source	California Instruments	5001iX	56060	2009-02-17	2010-02-16
CDN	EM TEST	CDN M2/M3	-	2009-02-17	2010-02-16
Attenuation	EM TEST	ATT6/75	-	2009-02-17	2010-02-16
Resistance	EM TEST	R100	-	2009-02-17	2010-02-16
Electromagnetic Injection Clamp	LITTHI	EM101	35708	2009-02-17	2010-02-16
Signal Generator	ROHDE&SCHWARZ	SMT03	100029	2009-02-17	2010-02-16
Power Amplifier	AR	150W1000	300999	2009-02-17	2010-02-16
Field probe	Holaday	HI-6005	105152	2009-02-17	2010-02-16
Bilog Antenna	Chase	CBL6111C	2576	2009-02-17	2010-02-16
ESPI Test Receiver	ROHDE&SCHWARZ	ESI26	838786/013	2009-02-17	2010-02-16
3m OATS			N/A	2009-02-17	2010-02-16
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170265	2009-02-17	2010-02-16
Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-631	2008-04-26	2009-04-25
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	1100.0008.02	2008-12-03	2009-12-03

Page 8 of 53

Report No: 0901082 Date: 2009-02-06

3.0 Technical Details

3.1 Summary of test results

FCC RULE	DESCRIPTION OF TEST	Result
§1.1037, §2.1091	RF Exposure	Compliant
§2.1046; § 22.913 (a) § 24.232 (c)	RF Output Power	Compliant
§ 2.1047	Modulation Characteristics	N/A
\$ 2.1049 \$ 22.905 \$ 22.917 \$ 24.238	99% & -26 dB Occupied Bandwidth	Compliant
§ 2.1051, § 22.917 (a) § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliant
§ 2.1053 § 22.917 (a) § 24.238 (a)	Field Strength of Spurious Radiation	Compliant
§ 22.917 (a) § 24.238 (a)	Out of band emission, Band Edge	Compliant
\$ 2.1055 \$ 22.355 \$ 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

3.2 Test Standards

FCC Part 2 Subpart J & Part 22 Subpart H & Part 24 Subpart E

4.0 EUT Modification

No modification by Shenzhen Timeway Technology Consulting Co.,Ltd

The report refers only to the sample tested and does not apply to the bulk.

Page 9 of 53

Report No: 0901082 Date: 2009-02-06

5.0 RF EXPOSURE

5.1 Applicable Standards:

§1.1310 and §2.1093

According to 1.1307(b)(1), systems operating under the provisions of this section shall be operated in Manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to 1.1310 and 2.1091 RF exposure is calculated . Limits for Maximum Pemissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
(B) Limits for General Population/Uncontrolled Exposure							
0.3 - 1.34	614	1.63	*(100)	30			
1. 34 - 30	824/f	2. 19/f	$*(180/f^2)$	30			
30 - 300	27. 5	0.073	0.2	30			
300 - 1500			f/1500	30			
1500 - 100, 000	1500 - 100, 000		1. 0	30			

5.2 Test Data:

 $S=PG/4\Pi R2$

Where: S= Power density P= Power input to antenna

G=Power gain of the antenna in the direction of interest relative to an isotropic radiator

R=Distance to the center of raidation of the antenna

Maximum peak output power at antenna input terminal: 32.42 (dBm) =1.745(W)

Prediction distance 20 (cm)

Prediction frequency:850 (MHz)

Antenna Gain: 1.0 dBi

Power density at predication frequency at 20cm :0.437(mW/cm2)

MPE Limit for uncontrolled exposure at prediction frequency: 850/1500=0.567(mW/cm2)

Report No: 0901082 Page 10 of 53

Date: 2009-02-06

6.0 MODULATION CHARACTERISTIC

6.1 Applicable Standards:

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Page 11 of 53

Report No: 0901082 Date: 2009-02-06

7.0 RF OUTPUT POWER

7.1 Applicable Standards

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), in no case may the peak output power of a base station transmitter exceed 2 watt EIRP.

7.2 Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method:

Please refer to TIA 603-C section 2.2.17

7.3 Test Data:

Environmental conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Conducted Power

Cellular Band Part 22H

GSM

Channel	Frequency	Output Power	Limit
	(MHz)	(dBm)	(dBm)
Low	824.2	32.42	38.45
Middle	836.6	32.12	38.45
High	848.8	31.96	38.45

GPRS

Channel	Frequency	Output Power	Limit
Channel	(MHz)	(dBm)	(dBm)
Low	824.2	32.38	38.45
Middle	836.6	32.10	38.45
High	848.8	31.98	38.45

PCS Band Part 24E

GSM

	Frequency	Output Power	Limit
Channel	(MHz)	(dBm)	(dBm)
Low	1850.2	29.01	33
Middle	1880.0	29.42	33
High	1909.8	29.03	33

GPRS

	Frequency	Output Power	Limit
Channel	(MHz)	(dBm)	(dBm)
Low	1850.2	29.02	33
Middle	1880.0	29.38	33
High	1909.8	28.98	33

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 13 of 53

Report No: 0901082 Date: 2009-02-06

Radiated Power (ERP and EIRP)

Cellular Band Part 22H

GSM:

Indicated		Table	Table Test Antenna		Substituted		Antenna Gain	Cable	Absolute Level	FCC Part 22H	
Frequency (MHz)	Receiver Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Polar (H/V)	Correction	Loss (dB)	(dBm)	Limit (dBm)
	Frequency in Low Channel										
824.2	115.03	120	1.0	Н	824.2	25.75	Н	0	0.9	24.85	38.45
824.2	117.50	80	1.5	V	824.2	28.46	V	0	0.9	27.56	38.45
				Freq	uency in M	iddle Ch	annel				
836.6	117.36	120	125	Н	836.6	28.39	Н	0	0.9	27.49	38.45
836.6	117.56	88	155	V	836.6	28.64	V	0	0.9	27.74	38.45
	Frequency in High Channel										
848.8	117.71	120	1.0	Н	848.8	28.81	Н	0	0.9	27.91	38.45
848.8	117.74	82	1.54	V	848.8	28.99	V	0	0.9	28.09	38.45

GPRS:

Indicated		Table Test Ant		ntenna Substituted		Antenna Gain	Cable	Absolute Level	FCC Part 22H		
Frequency (MHz)	Receiver Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Polar (H/V)	Correction (dBi)	Loss (dB)	(dBm)	Limit (dBm)
	Frequency in Low Channel										
824.2	115.14	120	1.0	Н	824.2	25.86	Н	0	0.90	24.96	38.45
824.2	117.48	80	1.5	V	824.2	28.44	V	0	0.90	27.54	38.45
	Frequency in Middle Channel										
836.6	117.41	120	125	Н	836.6	28.44	Н	0	0.9	27.54	38.45
836.6	117.53	88	155	V	836.6	28.61	V	0	0.9	27.71	38.45
	Frequency in High Channel										
848.8	117.56	120	1.0	Н	848.8	28.66	Н	0	0.9	27.76	38.45
848.8	117.69	82	1.54	V	848.8	28.94	V	0	0.9	28.04	38.45

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 14 of 53

Report No: 0901082 Date: 2009-02-06

GSM:

Indic	Indicated Table		Test Antenna		Substituted			Antenna Gain	Cable		FCC Part 22H
Frequency (MHz)	Receiver Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Polar (H/V)	Correction	Loss (dB)	(dBm)	Limit (dBm)
Frequency in Low Channel											
1850.2	118.63	240	1.8	Н	1850.2	17.45	Н	6.2	1.02	22.63	33
1850.2	124.45	80	1.0	V	1850.2	24.61	V	6.2	1.02	29.79	33
	Frequency in Middle Channel										
1880	119.0/	230	1.85	Н	1880	17.78	Н	6.2	1.03	22.95	33
1880	125.38	82	1.0	V	1880	24.38	V	6.2	1.03	29.55	33
	Frequency in High Channel										
1909.8	119.40	240	1.9	Н	1909.8	19.66	Н	6.2	1.03	24.83	33
1909.8	124.79	82	1.04	V	1909.8	24.59	V	6.2	1.03	29.76	33

GPRS:

Indicated Table		Table	Test Antenna		Substituted			Antenna Gain	Cable		FCC Part 22H
Frequency (MHz)	Receiver Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Polar (H/V)	Correction (dBi)	Loss (dB)	(dBm)	Limit (dBm)
	Frequency in Low Channel										
1850.2	117.90	240	1.8	Н	1850.2	16.72	Н	6.2	1.02	21.90	33
1850.2	122.96	80	1.0	V	1850.2	23.12	V	6.2	1.02	28.30	33
	Frequency in Middle Channel										
1880	120.09	230	1.85	Н	1880	18.87	Н	6.2	1.03	24.04	33
1880	122.60	82	1.0	V	1880	21.6	V	6.2	1.03	26.77	33
	Frequency in High Channel										
1909.8	116.89	240	1.9	Н	1909.8	17.15	Н	6.2	1.03	22.32	33
1909.8	122.37	82	1.04	V	1909.8	22.17	V	6.2	1.03	27.34	33

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Plots of Conducted Output Power for Cellular Band (GSM):

Low Channel

Middle Channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Plots of Conducted Output Power for Cellular Band (GPRS):

Low Channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co.,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

High channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 0901082

Low Channel

Middle Channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co.,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Plots of Conducted Output Power for PCS Band (GPRS):

Low Channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

High channel

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 21 of 53

Report No: 0901082 Date: 2009-02-06

8.0 Occupied Bandwidth

8.1 Applicable Standards:

CFR 47 §2.1049, §22.917, §22.905 and §24.238.

8.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 30 kHz (Cellular /PCS) and the 26 dB & 99% bandwidth was recorded.

8.3 Test Data:

Environmental conditions:

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 22 of 53

Report No: 0901082 Date: 2009-02-06

For GSM 850

Channel	Channel frequency	99% Power Bandwidth	26 dB Bandwidth		
	(MHz)	(kHz)	(kHz)		
Channel 190	836.6	252.0	336.0		

Please refer to the following plots.

99% Power Bandwidth

Date: 5.JAN.2009 13:39:53

Page 23 of 53

Report No: 0901082 Date: 2009-02-06

26 dB bandwidth

Date: 5.JAN.2009 13:40:40

Page 24 of 53

Report No: 0901082 Date: 2009-02-06

For PCS1900

Channel	Channel frequency	99% Power Bandwidth	26 dB Bandwidth		
	(MHz)	(kHz)	(kHz)		
Channel 661	1880.0	250.0	334.0		

Please refer to the following plots.

99% Power Bandwidth

Date: 5.JAN.2009 13:35:50

Page 25 of 53

Report No: 0901082 Date: 2009-02-06

Date: 5.JAN.2009 13:34:06

Date: 2009-02-06

9.1 Applicable Standards

CFR 47 §2.1051, §22.917(a) and §4.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

9.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

9.3 Test Data:

Environmental conditions:

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

Please refer to the hereinafter plots.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No: 0901082 Page 27 of 53

Date: 2009-02-06

30MHz-1000MHz - Middle Channel

Page 28 of 53

Report No: 0901082 Date: 2009-02-06

Report No: 0901082 Page 29 of 53

Date: 2009-02-06

30MHz-1000MHz - Middle Channel

Date: 03.3HN.2003 14.00.13

Page 30 of 53

Report No: 0901082 Date: 2009-02-06

Date: 09.JAN.2009 13:47:54

Page 31 of 53

Report No: 0901082 Date: 2009-02-06

Report No: 0901082 Page 32 of 53

Date: 2009-02-06

30MHz-1000MHz - Middle Channel

Date: 09.JAN.2009 13:30:07

Page 33 of 53

Report No: 0901082 Date: 2009-02-06

Report No: 0901082 Page 34 of 53

Date: 2009-02-06

30MHz-1000MHz - Middle Channel

Date: 09.JAN.2009 13:40:08

Page 35 of 53

Report No: 0901082

Date: 2009-02-06

Page 36 of 53

Report No: 0901082 Date: 2009-02-06

Page 37 of 53

10.1 Applicable Standards:

CFR 47 § 2.1053, 22.917 and § 24.238.

10.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Page 38 of 53

Report No: 0901082 Date: 2009-02-06

10.3 Test Data:

Environmental conditions:

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

For GSM 850 Band: Below 1GHz:

Indica	ited	Table	Test An	tenna	Substitu	uted	Antenna	Cable	Absolute	I imit	Margin
Frequency	Reading	Angle	Height	Polar	Frequency	Level	Gain	Loss	Level	(dBm)	J
(MHz)	(dBµV)	Degree	Meter	H/V	(MHz)	(dBm)	(dBi)	(dB)	(dBm)	(uDiii)	(ub)
	Middle Channel										
782.89	37.53	242	1.2	V	782.89	-61.3	0	0.88	-62.18	-13	49.18
757.41	38.12	70	1.5	V	757.41	-62.1	0	0.86	-62.96	-13	49.96
80.40	25.07	150	1.5	Н	80.40	-67.3	0	0.45	-67.75	-13	54.75
158.93	21.58	210	1.0	Н	158.93	-73.6	0	0.48	-74.08	-13	61.08

For PCS 1900 Band: Below 1GHz

Indica	ited	Table	Test An	tenna	Substitu	uted	Antenna	Cable	Absolute	Limit	Margin
Frequency	Reading	Angle	Height	Polar	Frequency	Level	Gain	Loss	Level	(dBm)	Ü
(MHz)	(dBµV)	Degree	Meter	H/V	(MHz)	(dBm)	(dBi)	(dB)	(dBm)	(uDIII)	(ub)
	Middle Channel										
900.15	42.38	137.0	1.2	V	900.15	-53.7	0	0.76	-54.46	-13	41.46
760.70	37.15	199.0	1.3	V	760.70	-58.4	0	0.86	-59.26	-13	46.26
952.09	32.99	130	1.5	Н	952.09	-59.8	0	0.86	-60.66	-13	47.66
900.15	35.81	240	1.2	Н	900.15	-60.3	0	0.76	-61.06	-13	48.06

Page 39 of 53

Report No: 0901082 Date: 2009-02-06

For GSM 850 Band: above 1GHz:

Indica	ited	Table	Test An	tenna	Substitu	uted	Antenna	Cable	Absolute	Limit	Margin
Frequency	Reading	Angle	Height	Polar	Frequency	Level	Gain	Loss	Level	(dBm)	Ü
(MHz)	(dBµV)	Degree	Meter	H/V	(MHz)	(dBm)	(dBi)	(dB)	(dBm)	(uDiii)	(ub)
	Middle Channel										
2509.8	63.66	210	1.8	Н	2509.8	-38.58	7.3	1.19	-32.47	-13	19.47
1673.2	59.98	220	1	V	1673.2	-40.27	6.2	0.94	-35.01	-13	22.01
2509.8	59.82	130	1.5	V	2509.8	-42.00	7.3	1.19	-35.89	-13	22.89
1673.2	56.42	100	1.9	Н	1673.2	-43.73	6.2	0.94	-38.47	-13	25.47
1937.9	50.03	180	1.6	V	1937.9	-44.8	6.1	1.04	-39.74	-13	26.74
3346.6	44.53	150	1.4	V	3346.6	-59.11	6.7	1.38	-53.79	-13	40.79
3346.6	44.12	130	1.6	Н	3346.6	-59.75	6.7	1.38	-54.43	-13	41.43

For PCS 1900 Band: above 1GHz

Indica	ited	Table	Test An	tenna	Substit	uted	Antenna	Cable	Absolute	Limit	Margin
Frequency	Reading	Angle	Height	Polar	Frequency	Level	Gain	Loss	Level	(dBm)	Ü
(MHz)	(dBµV)	Degree	Meter	H/V	(MHz)	(dBm)	(dBi)	(dB)	(dBm)	(uDiii)	(ub)
	Middle Channel										
3760	52.81	200	1.6	V	3760	-50.71	6.9	1.47	-45.28	-13	32.28
3760	51.94	190	1.9	Н	3760	-51.44	6.9	1.47	-46.01	-13	33.01
7520	43.98	110	1.5	V	7520	-56.06	7.6	2.09	-50.55	-13	37.55
5640	44.59	80	1.5	V	5640	-57.43	8.3	1.76	-50.89	-13	37.89
7520	43.46	180	1.5	Н	7520	-56.52	7.6	2.09	-51.01	-13	38.01
5640	43.83	170	1.6	Н	5640	-58.39	8.3	1.76	-51.85	-13	38.85

Page 40 of 53

Report No: 0901082 Date: 2009-02-06

11.0 BAND EDGES

11.1 Applicable Standards:

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

11.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

11.3 Test Data

Environmental conditions:

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

Please refer to the following tables and plots.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 41 of 53

Report No: 0901082 Date: 2009-02-06

For GSM 850

Frequency (MHz)	Emission (dBm)	Limit (dBm)
824	-17.68	-13
849	-17.01	-13

Page 42 of 53

Report No: 0901082 Date: 2009-02-06

Page 43 of 53

Report No: 0901082 Date: 2009-02-06

For PCS1900

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1850	-16.88	-13
1910	-16.95	-13

Date: 09.JAN.2009 14:11:38

Page 44 of 53

Report No: 0901082 Date: 2009-02-06

Page 45 of 53

Report No: 0901082 Date: 2009-02-06

For GPRS (850 MHz)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
824	-14.75	-13
849	-17.55	-13

Date: 09.JAN.2009 14:23:39

Page 46 of 53

Report No: 0901082 Date: 2009-02-06

Date: 09.JAN.2009 14:37:23

Page 47 of 53

Report No: 0901082 Date: 2009-02-06

For GPRS (1900 MHz)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1850	-15.15	-13
1910	-19.13	-13

Page 48 of 53

Report No: 0901082 Date: 2009-02-06

Page 49 of 53

Report No: 0901082 Date: 2009-02-06

12.0 FREQUENCY STABILITY

12.1 Applicable Standards:

CFR47 § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range	Base, fixed	Mobile ≤3 watts	Mobile ≤ 3 watts
(MHz)	(ppm)	(ppm)	(ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

12.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

The report refers only to the sample tested and does not apply to the bulk.

Page 50 of 53

Report No: 0901082 Date: 2009-02-06

12.3 Test Data

Environmental conditions:

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Cellular Band:

Middle channel, fo =836.6MHz					
Temperature	Power Supplied	Frequency Error	Error	Limit	
(℃)	(V)	(Hz)	(ppm)	(ppm)	
	10.2	-21	-0.0251	2.5	
-30	12.0	-24	-0.0287	2.5	
	13.8	-23	-0.0275	2.5	
	10.2	-21	-0.0251	2.5	
-20	12.0	-27	-0.0323	2.5	
	13.8	-24	-0.0287	2.5	
	10.2	-23	-0.0275	2.5	
-10	12.0	-23	-0.0275	2.5	
	13.8	-24	-0.0287	2.5	
	10.2	-23	-0.0275	2.5	
0	12.0	-23	-0.0275	2.5	
	13.8	-24	-0.0287	2.5	
	10.2	-32	-0.0383	2.5	
10	12.0	-25	-0.0299	2.5	
	13.8	-24	-0.0287	2.5	
	10.2	-28	-0.0335	2.5	
20	12.0	-37	-0.0442	2.5	
	13.8	-25	-0.0299	2.5	
	10.2	-59	-0.0705	2.5	
30	12.0	-27	-0.0323	2.5	
	13.8	-32	-0.0383	2.5	
	10.2	-70	-0.0837	2.5	
40	12.0	-41	-0.0490	2.5	
	13.8	-32	-0.0383	2.5	
	10.2	-72	-0.0861	2.5	
50	12.0	-34	-0.0406	2.5	
	13.8	-32	-0.0383	2.5	

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 51 of 53

Report No: 0901082 Date: 2009-02-06

PCS Band:

Middle channel, fo =1880MHz					
Temperature	Power Supplied	Frequency Error	Error	Limit	
(℃)	(V)	(Hz)	(ppm)	(ppm)	
	10.2	-17	-0.0090	2.5	
-30	12.0	-15	-0.0080	2.5	
	13.8	-14	-0.0074	2.5	
	10.2	-16	-0.0085	2.5	
-20	12.0	-15	-0.0080	2.5	
	13.8	-16	-0.0085	2.5	
	10.2	-18	-0.0096	2.5	
-10	12.0	-8	-0.0043	2.5	
	13.8	-16	-0.0085	2.5	
	10.2	-18	-0.0096	2.5	
0	12.0	-17	-0.0090	2.5	
	13.8	-16	-0.0085	2.5	
	10.2	-14	-0.0074	2.5	
10	12.0	-15	-0.0080	2.5	
	13.8	-16	-0.0085	2.5	
	10.2	-21	-0.0112	2.5	
20	12.0	-22	-0.0117	2.5	
	13.8	-18	-0.0096	2.5	
	10.2	-26	-0.0138	2.5	
30	12.0	-24	-0.0128	2.5	
	13.8	-18	-0.0096	2.5	
40	10.2	-31	-0.0165	2.5	
	12.0	-28	-0.0149	2.5	
	13.8	-18	-0.0096	2.5	
	10.2	-28	-0.0149	2.5	
50	12.0	-29	-0.0154	2.5	
	13.8	-18	-0.0096	2.5	

Page 52 of 53

Report No: 0901082 Date: 2009-02-06

13.0 Peak-to Average Ratio

13.1 Applicable Standards:

According to CFR47 § 24.232 (d) ,the peak-to-average ratio(PAR) of transmission may not exceed 13 dB.

13.2 Test Procedure

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

13.3 Test Data

Environmental conditions:

Temperature:	25 ° C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

Note: The Formula of Peak-to-average ratio = 20log(Peak value/average value)

Page 53 of 53

Report No: 0901082 Date: 2009-02-06

GSM

Channel	Frequency (MHz)	Output Power Peak value (dBm)	Output Power Average value (dBm)	Peak-to-average ratio (dB)	Limit (dB)
Low	824.2	32.42	31.89	0.663	13
Middle	836.6	32.12	31.71	0.112	13
High	848.8	31.96	31.13	0.112	13

GPRS

Channel	Frequency (MHz)	Output Power Peak value (dBm)	Output Power Average value (dBm)	Peak-to-average ratio (dB)	Limit (dB)
Low	824.2	32.38	31.77	0.165	13
Middle	836.6	32.10	31.64	0.125	13
High	848.8	31.98	31.03	0.262	13

PCS Band Part 24E

GSM

Channel	Frequency (MHz)	Output Power Peak value (dBm)	Output Power Average value (dBm)	Peak-to-average ratio (dB)	Limit (dB)
Low	1850.2	29.01	28.35	0.209	13
Middle	1880.0	29.42	28.68	0.221	13
High	1909.8	29.03	28.44	0.178	13

GPRS

Channel	Frequency (MHz)	Output Power Peak value (dBm)	Output Power Average value (dBm)	Peak-to-average ratio (dB)	Limit (dB)
Low	1850.2	29.02	28.58	0.133	13
Middle	1880.0	29.38	28.85	0.158	13
High	1909.8	28.98	28.12	0.262	13

****END OF REPORT****

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to