

Any fool can know. The point is to Albert Einstein Any fool can know. Albert Einstein Any fool can know. 206 Discrete Structures II

Konstantinos P. Michmizos

Computational Brain Lab Computer Science | Rutgers University | NJ, USA

Course Outline

• Part I

- Recap of basics sets, function, proofs, induction
- Basic counting techniques
 - Pigeonhole principle
 - Generating functions

• Part II

- Sample spaces and events
- Basics of probability
- Independence, conditional probability
- Random variables, expectation, variance
- Moment generating functions

• Part III

- Graph Theory
- Machine learning and statistical inference

So Far

- Sets / Functions
- Proofs
- Sum Rule
- Partition Method
- Difference Method
- Bijection Method
- Product Rule
- Generalized product rule
- Permutation/Combinations
- Inclusion-Exclusion / Pigeonhole Principle
- Combinatorial Proofs and Binomial Coefficients

- Consider an equilateral triangle of side length 5, divided into unit length triangle. How many paths from point A to B?
 - Adjacent triangles in a valid path have to share a common edge.
 - A path can never go upwards or revisit a triangle.

- Consider an equilateral triangle of side length 5, divided into unit length triangle. How many paths from point A to B?
 - Adjacent triangles in a valid path have to share a common edge.
 - A path can never go upwards or revisit a triangle.

valid paths = # exit sequences
$$= 1.2.3.4 = 24 paths$$

$$= 1.2.3.4 - (n-1) = (n-1)!$$
answer = 1.2.3.4 - (n-1) = (n-1)!

Product Rule

• If one event can occur in m ways, a second event in n ways and a third event in r, then the three events can occur in $m \times n \times r$ ways.

Example

Erin has 5 tops, 6 skirts and 4 caps from which to choose an outfit. In how many ways can she select one top, one skirt and one cap?

Solution: Ways = $5 \times 6 \times 4$

Product Rule – with Repetition

If one event with **n** outcomes occurs **r** times with repetition allowed, then the number of ordered arrangements is **n**^r

Example

What is the number of arrangements if a die is rolled

- (a) 2 times? 6 x 6
- (b) 3 times? 6 x 6 x 6
- (c) r times? $6 \times 6 \times 6 \times 6 \times \dots = 6^{r}$

Product Rule – Adv'ed Repetition Problems

• How many different car number plates are possible with 3 letters followed by 3 digits?

```
Solution: 26 \times 26 \times 26 \times 10 \times 10 \times 10 = 263 \times 103
```

How many of these number plates begin with ABC

```
Solution: 1 \times 1 \times 1 \times 10 \times 10 \times 10 = 10^{3}
```

• In how many ways can 6 people be arranged in a row?

```
Solution: 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 6!
```

• How many arrangements are possible if only 3 of them are chosen?

Solution: $6 \times 5 \times 4 = 120$

Permutations – Question Example

• How many ways to assign 100 passengers to 20 first class seats?

Permutations vs.
Combinations

It's all about different elements folks...

Permutations and Combinations

• Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these elements matters.

• Many other counting problems can be solved by finding the number of ways to select a particular number of elements from a set of a particular size, where the order of the elements selected does not matter.

The **difference between combinations and permutations** is in

ordering

With permutations we care about the order of the elements, whereas
 with combinations we don't care.

Examples:

- Permutation: Find a locker "combo" is 12345; Cellphone PIN is 5432
- Combination: Pick 5 students from a 180-student audience

Find 4-digit Permutations

of the numbers 2,3,4,5

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Permutations with Repetition

- What if I now want to find the total number of permutations involving the numbers 2, 3, 4, and 5
- but want to include orderings such as 5555 or 2234 where not all of the numbers are used, and some are used more than once?

Permutations with Repetition

$$4 \cdot 4 \cdot 4 \cdot 4 = 4^4 = 256$$

- What if I now want to find the total number of permutations involving the numbers 2, 3, 4, and 5
- but want to include orderings such as 5555 or 2234 where not all of the numbers are used, and some are used more than once?

Choosing a subset (a.k.a. Combinations)

- How many different 5-card hands can be made from a standard deck of cards?
- In this problem the order is irrelevant since it doesn't matter what order we pick the cards.
- We'll begin with five lines to represent our 5-card hand.

Choosing a subset

<u>52</u> • <u>51</u> • <u>50</u> • <u>49</u> • <u>48</u>

- How many <u>different</u> 5-card hands can be made from a standard deck of cards?
- In this problem the order is irrelevant since it doesn't matter what order we select the cards.
- We'll begin with five lines to represent our 5-card hand.

311,875,200 *permutations*

Choosing a subset

<u>52 • 51 • 50 • 49 • 48</u>

- How many different 5-card hands can be made from a standard deck of cards?
- In this problem the order is irrelevant since it doesn't matter what order we select the cards.
- We'll begin with five lines to represent our 5-card hand.
- That's permutations, not combinations
- To fix this we need to divide by the number of hands that are <u>different</u>
 permutations but the same combination

Choosing a subset

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

- That's permutations, not combinations.
- To fix this we need to divide by the number of hands that are different permutations but the same combination.
- This is the same as saying how many different ways can I arrange 5 cards?

Why not subtraction?

We actually do repeated subtraction, a method that subtracts the equal number of items from a group, also known as division.

Choosing a subset - Combinations

$$\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 2,598,960$$

• So the number of fivecard hands combinations is:

Rewriting with Factorials

$$\frac{52!}{47!} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47 \cdot 46 \cdot \dots \cdot 2 \cdot 1}{47 \cdot 46 \cdot \dots \cdot 2 \cdot 1}$$

- With a little ingenuity we can rewrite the above calculation using factorials.
- We know 52! = 52•51•50•...•3•2•1, but we only need the products of the integers from 52 to 48. How can we isolate just those integers?
- We'd like to divide out all the integers except those from 48 to 52. To do this divide by 47! since it's the product of the integers from 47 to 1.

Rewriting with Factorials

52! 5!47!

Make sure to divide
 by 5! to get rid of the
 extra permutations:

There we go!

Combinations Formula

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• If we have *n* objects and we want to choose k of them, we can find the total number of combinations by using the formula on the left

Combinations Formula

$$\binom{n}{k} = C_k^n = C_k$$

• Different Annotations

Permutations Formula

$$P_k^n = \frac{n!}{(n-k)!}$$

• The formula for permutations is similar to the combinations formula, except we needn't divide out the permutations, so we can remove k! from the denominator:

Take a Break

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

9=1, Choose 1 od of nelements, n ways

easy... order is not important here

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

Let A = all ways to choose 2 out of n

elements

Let B = all ways to Permute 2 out of n

elements

Order is important

We know
$$|B| = P_2 = n(n-1)$$

How to go from $|B|$ to $|A|$?

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

Associated (hoice sequence for Counting 13) Pick 1st element Pick and element **Order** is important Hence n(m) ways Consider a pair (e,ez) in A. In B [e,ez] is counted twice. Either e, can be pecked as 1st element and le as second, or vice versa

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

In other words, for each element of A there are 2 Choiles sequences in B that generate the same out come.

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

Hence,
$$|A| = \frac{|B|}{2} = \frac{n(n-1)}{2} = \binom{n}{2} \leftarrow n$$
 choose 2

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

Every element in A (an be reached Via 3! (hoice sogvencos in B

• Choosing r out of n elements in no specific order. $\binom{n}{r}$

• A permutation of *n* objects is an ordering of the objects.

• The number of permutations of *n* distinct elements

$$= n \cdot (n-1) \cdot (n-2) \cdots (1) = n!$$

• A permutation of *n* objects is an ordering of the objects.

• How many different permutations of a deck of 52 cards?

answar 52.51.50 ... I= 52!

• How many ways to assign 100 passengers to 100 seats?

Permuting rout of nobjects

• How many ways to assign 100 passengers to 20 first class seats?

Permutations Formula – One more time...

• Permuting r out of n distinct objects. ${}^{n}P_{r}$

$$\frac{n}{P_1} \frac{n-1}{P^2} \frac{n-2}{P^2} - \frac{n-n+1}{P^2}$$

$$answa = n \cdot (n-1) \cdot (n-2) \cdot - (n-n+1) = \frac{n!}{(n-n)!}$$

Repetitions

- Have *n* colors. Want to paint *k* tiles. How many ways?
 - Can reuse colors any number of times.

Permutations - Formulas

- Permuting r out of n distinct objects.

 - With repetition

Exercise

• How many sequences of 7 letters are there?

Exercise

• If 10 horses race, how many orderings of the top 3 finishers are there?

• Distinctly ordered sets are called permutations (arrangements). The number of permutations of n objects taken k at a time is given by:

$$P_k^n = \frac{n!}{(n-k)!}$$

N = number of objects

K = number of positions

Permutations Formula

$$P_k^n = \frac{n!}{(n-k)!}$$

• The formula for permutations is similar to the combinations formula, except we needn't divide out the permutations, so we remove k! from the denominator:

Combinations Formula

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• If we have *n* objects and we want to choose k of them, we can find the total number of combinations by using the formula on the left