SNU 4541.310 Programming Language Let-polymorphic Type System

Prof. Kwangkeun Yi

가형 타입 추론 추론 규칙의 안전성 추론 규칙의 구현

다형 타입 시스템 Polymorphic Type System 다형 타입 추론 추론 규칙의 안전성 추론 규칙의 구현

타입 분석의 정확도 올리기

단순 타입 시스템(simple type system)이 "잘 모르겠다"고 하는 경우를 줄여보자.

• 타입 시스템에서는

"잘 모르겠다" = "타입방정식의 해가 없다"

 다형 타입 시스템(polymorphic type system)(⊢p)에서는 "잘 모르겠다"고 하는 경우가 적다, 단순 타입 시스템(simple type system)(⊢) 보다:

$$\Gamma \vdash e : \tau \Rightarrow \Gamma \vdash_{p} e : \tau$$

• ⊢p는 ⊢의 "conservative extension" 이라고 함.

부정확한 단순 타입 시스템

$$\begin{array}{c} \vdots \\ \hline \{f:\tau \to \tau'\} \vdash f:\tau \to \tau' \\ \hline \\ \hline \{f:\tau \to \tau'\} \vdash f:\tau \\ \hline \\ \vdash \lambda f. f \ f: (\tau \to \tau') \to \tau' \\ \end{array} \begin{array}{c} \vdots \\ \hline \{f:\tau \to \tau'\} \vdash f \ f:\tau \\ \hline \\ \vdash \lambda f. f \ f: (\tau \to \tau') \to \tau' \\ \end{array}$$

$$\frac{\vdots}{\{f:\tau\to\tau\}\vdash f:\tau\to\tau} \quad \frac{\vdots}{\{f:\tau\to\tau\}\vdash f:\tau} \quad \tau=\tau\to\tau$$

$$\frac{\{f:\tau\to\tau\}\vdash ff:\tau\to\tau}{\vdash \lambda f.ff:(\tau\to\tau)\to(\tau\to\tau)}$$

$$\vdash (\lambda f.ff)(\lambda x.x):\tau\to\tau$$

타입을 일반화(type generalization) 시키면?

타입(분석 결과 즉, 요약해석 공간의 원소)에 정교한 것이 포함됨:

$$\forall \alpha.\alpha \to \iota, \quad \forall \alpha_1, \alpha_2.\alpha_1 \to \alpha_2, \quad \cdots$$

그래서

$$\frac{\vdots}{\{f : \forall \alpha.\alpha \to \alpha\} \vdash f : (\iota \to \iota) \to (\iota \to \iota)} \quad \frac{\vdots}{\{f : \forall \alpha.\alpha \to \alpha\} \vdash f : \iota \to \iota}$$

$$\frac{\{f : \forall \alpha.\alpha \to \alpha\} \vdash f f : \iota}{\vdash \lambda f.f f : (\forall \alpha.\alpha \to \alpha) \to \iota}$$

이고

$$\frac{\vdots}{\vdash \lambda f.f \ f: (\forall \alpha.\alpha \to \alpha) \to (\iota \to \iota)} \ \frac{\vdots}{\vdash \lambda x.x: \iota \to \iota}$$
$$\vdash (\lambda f.f \ f)(\lambda x.x): \iota \to \iota$$

하지만 함부로 일반화를 이용하면

- 안전하지 않을 뿐더러
- 완전(complete)한 구현이 불가능(undecidable):
 - 2단(rank 2)이상의 다형타입(polymorphism)은 피해야
 - 그러나 "완전한" 면을 포기하면 불가능할 것도 없슴: 프로그램분석의 기본
- 아뭏튼, 1단(rank 1) 다형타입(polymorphism)까지만 이용
 - 0단(rank 0) = 단순타입(monomorphic types)
 - 1단(rank 1) = "∀"이 제일 바깥(prenex forma)인 다형타입

n단 다형타입 $\sigma^n(rank-n polymorphism)$

$$\begin{array}{cccc} \tau, \sigma^0 & ::= & \iota \mid \tau \to \tau \mid \alpha \\ \sigma^{n+1} & ::= & \sigma^n \mid \forall \alpha. \sigma^{n+1} \\ & \mid & \sigma^n \to \sigma^{n+1} \end{array}$$

예)

$$\iota \to \iota$$
 0단
 $\forall \alpha.(\alpha \to \alpha)$ 1단
 $(\forall \alpha.\alpha) \to \iota$ 2단
 $((\forall \alpha.\alpha) \to \iota) \to \iota$ 3단

함부로 일반화하면 불안전

$$\begin{array}{c} \vdots \\ \hline \{f: \forall \alpha.\alpha \rightarrow \iota\} \vdash f: \iota \rightarrow \iota \\ \hline \{f: \forall \alpha.\alpha \rightarrow \iota\} \vdash f \ 1: \iota \\ \hline \hline \{f: \forall \alpha.\alpha \rightarrow \iota\} \vdash (f \ 1, f \ \mathsf{true}): \iota \times \iota \\ \hline \vdash \lambda f. (f \ 1, f \ \mathsf{true}): (\forall \alpha.\alpha \rightarrow \iota) \rightarrow (\iota \times \iota) \\ \hline \vdash (\lambda f. (f \ 1, f \ \mathsf{true}))(\lambda x.x + 1): \iota \times \iota \end{array}$$

혹은

$$\frac{\vdots}{\vdash (\lambda x. (\texttt{let} \; y = x \; \texttt{in} \; (y \; 1, y \; \texttt{true})))(\lambda z. z \; + \; 1) : \iota \times bool}$$

다형 타입의 의미 $\gamma(\forall \alpha.\tau)$?

값들의 집합

- 모든 타입 α 에 대해서 τ 타입인 값들
- 예를들어, ∀α.α → α의 의미는: 인자타입에 상관없이 일을 하고 인자타입과 같은 타입의 값을 리턴하는 함수들의 집합
- 즉,

$$\gamma(\forall \alpha. \tau) = \bigcap_{t \in SimpleType} \gamma(\{t/\alpha\}\tau)$$

예를들어,

$$\begin{array}{lll} \gamma(\forall \alpha.\alpha \rightarrow \alpha) & = & \bigcap_{t \in SimpleType} \gamma(t \rightarrow t) \\ & = & \gamma(\iota \rightarrow \iota) \cap \gamma(bool \rightarrow bool) \cap \cdots \\ & = & \{\lambda x.x, \lambda x.1, \lambda x.x + 1, \cdots\} \cap \\ & & \{\lambda x.x, \lambda x.(x | | \mathsf{true}), \cdots\} \cap \cdots \end{array}$$

"Hindley-Milner style let-polymorphism"

- 프로그램이 특별히 생긴 경우만 그렇게 정교한 분석이 작동하도록
- 함수가 어디서 무슨 인자로 어떻게 사용되는 지를 알 수 있는 경우 즉,

$$(\lambda x.\underbrace{\cdots x\cdots x\cdots}_{e})e'$$

즉,

$$let x = e' in e$$

인 경우만

- 이 경우, e'이 다형타입일 수 있는 지 "안전하게" 분석한 후에, e안에서 x가 어떻게 사용되는 지 분석.
- 다형타입은 1단(rank-1 polymorphism)까지만:

$$\iota \to \iota, \forall \alpha.\alpha \to \alpha, \forall \alpha_1, \alpha_2.\alpha_1 \to \alpha_2$$

다형 타입 추론

타입(type)과 타입틀(type scheme)

타입틀(type scheme)은 단순타입과 다형타입을 포함. 다형타입은 1단(rank-1)까지만 (prenex form).

- 추론규칙(inference rules)은 "T ⊢ e : τ" 꼴을 유추하는 규칙들
- ♪ 가정들 Γ
 - 변수들의 타입틀(type scheme)에 대한 가정
 - *x* + 1 : *ι*, 가정 *x* : *ι* 아래서.
 - $(f 1, f \text{ true}) : \iota \times bool$, 가정 $f : \forall \alpha . \alpha \rightarrow \alpha$ 아래서

$\Gamma \vdash e : \tau$ 를 추론하는 규칙

$$\begin{array}{lll} \overline{\Gamma \vdash n : \iota} & \overline{\Gamma \vdash x : \tau} & \sigma \succ \tau, x : \sigma \in \Gamma \\ & \underline{\Gamma \vdash e : \tau} & \Gamma + x : Gen_{\Gamma}(\tau) \vdash e' : \tau \\ \hline \Gamma \vdash \text{let } x = e \text{ in } e' : \tau \\ & \underline{\Gamma \vdash e_1 : \iota} & \Gamma \vdash e_2 : \iota \\ \hline \Gamma \vdash e_1 + e_2 : \iota \\ & \underline{\Gamma \vdash e_1 : \tau' \to \tau} & \Gamma \vdash e_2 : \tau' \\ \hline \Gamma \vdash e_1 e_2 : \tau \\ & \underline{\Gamma \vdash x : \tau \vdash e : \tau'} \\ \hline \Gamma \vdash \lambda x . e : \tau \to \tau' \\ \\ generalization & Gen_{\Gamma}(\tau) &= \forall \alpha_1, \cdots, \alpha_n. \tau & \{\alpha_1, \cdots, \alpha_n\} = FTV(\tau) \setminus FTV(\Gamma) \\ instantiation & \sigma \succ \tau & \sigma = \forall \alpha_1, \cdots, \alpha_n. \tau', \tau = \{\tau_i/\alpha_i\}_i \tau \\ FTV(\tau) &= TV(\tau) \\ FTV(\forall \alpha . \sigma) &= FTV\sigma \setminus \{\alpha\} \\ FTV(\Gamma) &= \cup_{x: \sigma \in \Gamma} FTV(\sigma) \\ \end{array}$$

추론 규칙의 안전성: $Gen_{\Gamma}(\tau)$

왜 타입 τ 를 일반화 $\forall \alpha. \tau$ 시키는데 α 가 Γ 에 나타나면 제외?

$$Gen_{\Gamma}(\tau) = orall lpha_1, \cdots, lpha_n$$
. 여기서 $\{lpha_1, \cdots, lpha_n\} = FTV(\tau) \setminus FTV(\Gamma)$

- Γ에 가정(x:σ)이 첨가 되는 경우는 λx.e의 경우
- Γ에 있는 가정을 사용하는 경우는 함수안에서 함수의 인자를 분석할 때
- 함수의 인자 타입을 일반화시키고나서 함수 내부가 분석되면 않되
- 함수가 호출되면서 전달받는 실제인자는 일반화된 타입의 값이 아닐 수 있기 때문

예를 들어.

$$\lambda x.(\text{let } y = x \text{ in } (y 1, y \text{ true}))$$

이고 이 함수가 $\lambda z.z + 1$ 에 적용되면?

추론 규칙의 안전성 증명: 추론되는 대로 실행된다

타입이 있으면 문제없이 진행:

Theorem (Progress)

 $\vdash e : \tau$ 이고 e가 값이 아니면 반드시 진행 $e \rightarrow e'$ 한다.

진행은 타입을 보존:

Theorem (Subject Reduction, Preservation)

 $\vdash e : \tau$ 이고 $e \rightarrow e'$ 이면 $\vdash e' : \tau$.

추론 규칙의 구현

- 단순타입 유추 알고리즘 M과 W의 "자연스러운" 확장
- M_p 나 W_p 도 모두 충실한 구현. 예를들어,

안전(sound)
$$W_p(\Gamma,e) = (\tau,S) \Rightarrow S\Gamma \vdash e : \tau$$
$$W_p(\Gamma,e) = (\tau,S) \\ \wedge \Gamma' = RS\Gamma \\ \wedge R(Gen_{S\Gamma}(\tau)) \succ \tau' \end{cases} \Leftarrow \Gamma' \vdash e : \tau'$$

참고: "Proofs about a Folklore Let-Polymorphic Type Inference Algorithm", Oukseh Lee and Kwangkeun Yi, *TOPLAS*, 20(4), 1998

let-다형 타입 유추 알고리즘 W

$$\mathcal{W}: \mathit{TyEnv} \times \mathit{Exp} \rightarrow ((\mathit{TyVar} \stackrel{\mathsf{fin}}{\rightarrow} \mathit{Type}) \times \mathit{Type})$$

$$\mathcal{W}(\Gamma, n) = (\emptyset, \iota)$$

$$\mathcal{W}(\Gamma, x) = (\emptyset, \{\alpha_i \mapsto \beta_i\}_{i=1}^n \tau) \text{ where } \Gamma(x) = \forall \vec{\alpha}.\tau, \text{ new } \vec{\beta}$$

$$\mathcal{W}(\Gamma, \lambda x.E) = \text{let } (S_1, \tau_1) = \mathcal{W}(\Gamma + x \colon \beta, E), \text{ new } \beta$$

$$\text{in } (S_1, S_1 \beta \rightarrow \tau_1)$$

$$\mathcal{W}(\Gamma, E_1 E_2) = \text{let } (S_1, \tau_1) = \mathcal{W}(\Gamma, E_1)$$

$$(S_2, \tau_2) = \mathcal{W}(S_1 \Gamma, E_2)$$

$$S_3 = \mathcal{U}(S_2 \tau_1, \tau_2 \rightarrow \beta), \text{ new } \beta$$

$$\text{in } (S_3 S_2 S_1, S_3 \beta)$$

$$\mathcal{W}(\Gamma, \text{let } x = E_1 \text{ in } E_2) = \text{let } (S_1, \tau_1) = \mathcal{W}(\Gamma, E_1)$$

$$(S_2, \tau_2) = \mathcal{W}(S_1 \Gamma + x \colon \mathit{GEN}_{S_1 \Gamma}(\tau_1), E_2)$$

$$\text{in } (S_2 S_1, \tau_2)$$

let-다형 타입 유추 알고리즘 M

$$\mathcal{M}: \mathit{TyEnv} \times \mathit{Exp} \times \mathit{Type} \rightarrow (\mathit{TyVar} \xrightarrow{\mathit{fin}} \mathit{Type})$$

$$\mathcal{M}(\Gamma, n, \tau) = \mathcal{U}(\tau, \iota)$$

$$\mathcal{M}(\Gamma, x, \tau) = \mathcal{U}(\tau, \{\alpha_i \mapsto \beta_i\}_{i=1}^n \tau') \text{ where } \Gamma(x) = \forall \vec{\alpha}.\tau', \text{ new } \mathcal{M}(\Gamma, \lambda x.E, \tau) = \text{let } S_1 = \mathcal{U}(\tau, \beta_1 \to \beta_2), \text{ new } \beta_1, \beta_2$$

$$S_2 = \mathcal{M}(S_1\Gamma + x : S_1\beta_1, E, S_1\beta_2)$$

$$\text{in } S_2S_1$$

$$\mathcal{M}(\Gamma, E_1 E_2, \tau) = \text{let } S_1 = \mathcal{M}(\Gamma, E_1, \beta \to \tau), \text{ new } \beta$$

$$S_2 = \mathcal{M}(S_1\Gamma, E_2, S_1\beta)$$

$$\text{in } S_2S_1$$

$$\mathcal{M}(\Gamma, \text{let } x = E_1 \text{ in } E_2, \tau) = \text{let } S_1 = \mathcal{M}(\Gamma, E_1, \beta), \text{ new } \beta$$

$$S_2 = \mathcal{M}(S_1\Gamma + x : \mathit{GEN}_{S_1\Gamma}(S_1\beta), E_2, S_1\tau)$$

$$\text{in } S_2S_1$$

$$\mathcal{M}(S_1\Gamma + x : \mathit{GEN}_{S_1\Gamma}(S_1\beta), E_2, S_1\tau)$$

$$\text{in } S_2S_1$$

Polymorphic Imperatives

Let-polymorphic Imperatives: trial

$$\begin{split} \frac{\Gamma \vdash E : \tau}{\Gamma \vdash \text{malloc } E : \tau \ loc} \\ \frac{\Gamma \vdash E : \tau \ loc}{\Gamma \vdash !E : \tau} \\ \frac{\Gamma \vdash E_1 : \tau \ loc}{\Gamma \vdash E_1 : \tau \ loc} \\ \frac{\Gamma \vdash E_2 : \tau}{\Gamma \vdash E_1 : \tau \ loc} \end{split}$$

이번에도 일반화 할 때 조심스러워야:

$$\frac{\Gamma \vdash E : \tau \quad \Gamma + x : \mathit{GEN}_{\Gamma}(\tau) \vdash E' : \tau}{\Gamma \vdash \mathtt{let} \; x = E \; \mathtt{in} \; E' : \tau}$$

식 E가 실행중에 메모리 주소를 새롭게 할당받는 일이 없는 경우에만 안전하다.

Unsound typing example

```
\begin{array}{l} \text{let} & \text{f} = \text{malloc } (\lambda \textbf{x}.\textbf{x}) \\ \text{in} & \text{f} := \lambda \textbf{x}.\textbf{x}{+}1; \\ & \text{(!f) true} \end{array}
```

- 실행중 타입 에러.
- 그러나 우리의 타입 시스템은 타입이 있는 것으로 허용.

- 식 E가 실행중에 메모리 주소를 할당받을 지를 유추해야.
- 실행전에 정확히는 할 수 없다.
- 하지만, 안전하게는 판단할 수 있다.

그래서 let-식의 타입 유추 규칙이 다음과 같이 세분화 된다:

$$\frac{\Gamma \vdash E : \tau \quad \Gamma + x : \mathit{GEN}_{\Gamma}(\tau) \vdash E' : \tau}{\Gamma \vdash \mathsf{let} \; x = E \; \mathsf{in} \; E' : \tau} \; \neg expansive(E)$$

$$\frac{\Gamma \vdash E : \tau \quad \Gamma + x : \tau \vdash E' : \tau}{\Gamma \vdash \mathsf{let} \ x = E \ \mathsf{in} \ E' : \tau} \ expansive(E)$$

expansive(n) = false expansive(x) = false $expansive(\lambda x.E) = false$

 $expansive(E_1 E_2) = true$

 $expansive(let x = E_1 in E_2) = expansive(E_1) \lor expansive(E_2)$

Let-polymorphic Imperatives

```
\Gamma \vdash E : \tau
                                        \overline{\Gamma \vdash \mathtt{malloc} \ E : \tau \ loc}
                                                \Gamma \vdash E : \tau \ loc
                                                 \Gamma \vdash \bot E \cdot \tau
                                   \Gamma \vdash E_1 : \tau \ loc \quad \Gamma \vdash E_2 : \tau
                                      \Gamma \vdash E_1 := E_2 : \tau
                                    \frac{\Gamma \vdash E_1 : \tau_1 \quad \Gamma \vdash E_2 : \tau_2}{\Gamma \vdash E_1 : E_2 : \tau_2}
        \Gamma \vdash E : \tau \quad \Gamma + x : \mathit{GEN}_{\Gamma}(\tau) \vdash E' : \tau \quad \neg \mathit{expansive}(E)
                      \Gamma \vdash \text{let } x = E \text{ in } E' : \tau
                  \frac{\Gamma \vdash E : \tau \quad \Gamma + x : \tau \vdash E' : \tau}{\Gamma \vdash \exists \text{et. } x = E \text{ in } E' : \tau} expansive(E)
                              expansive(n) = false
                              expansive(x) = false
                       expansive(\lambda x.E) = false
                     expansive(E_1 E_2) = true
expansive(let x = E_1 in E_2) = expansive(E_1) \lor expansive(E_2)
```