References: Introduction to Real Analysis (Bartle & Sherbert), Thomas Calculus 12th Edition

單元導數定義

由牛頓發揚光大的流數法,今時今日變成了以極限定義的導數。

定義 1 (導數定義). 若f在c可導, 則其導數f'(c)為

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

定義 2 (現代導數嚴謹定義). L為f在c的導數當: 對於任意 $\epsilon > 0$,若存在 $\delta(\epsilon) > 0$ 使得對於 $0 < |x - c| < \delta(\epsilon)$,

$$\left|\frac{f(x) - f(c)}{x - c} - L\right| < \epsilon$$

則寫f'(c) = L。

定理. 若 $f: I \to \mathbb{R}$ 在 $c \in I$ 可微, 則f在 $c \in I$ 連續。

證明. 導數存在, 則

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} (x - c)$$
$$= f'(c) \cdot 0$$
$$= 0$$

因此 $\lim f(x) = f(c)$ 使得f在 $c \in I$ 連續。

導數的目的在於處理函數的變化:從算式可見,導數取自f的變化除以變量x的變化,即可理解爲變化的比例,等於變化比率。簡而言之,導數為函數的斜率。

定理 (基本導數定則). 1. 常函數的導數:

$$\frac{d}{dx}(c) = 0$$

2. 幂函數的導數:

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

3. 自然指數的導數:

$$\frac{d}{dx}(e^x) = e^x$$

4. 自然對數的導數:

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

5. 三角函數的導數:

(a)
$$\frac{d}{dx}(\sin x) = \cos x$$
(b)
$$\frac{d}{dx}(\cos x) = -\sin x$$
(c)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

證明. 留做習題。

定理 (導數的性質). 導數擁有以下性質:

1. 綫性性: 對於可微函數f,g, 常數 α,β , $(\alpha f + \beta g)' = \alpha f' + \beta g'$ 。

2. 乘積法則: 對於連續函數f,g, $(f \cdot g)' = f' \cdot g + f \cdot g'$ 。

3. 除法定則: 對於連續函數f,g, $(\frac{f}{g})' = \frac{f' \cdot g - f \cdot g'}{g^2}$ 。 證明.

1. 綫性性: 從f,g的可微性,可得對任意 $\varepsilon > 0$,均有 $\delta_f,\delta_g > 0$ 使得對於所有c,若x符合 $0 < |x-c| < \min\{\delta_f,\delta_g\}$ 時,

$$\left|\frac{f(x) - f(c)}{x - c} - f'(c)\right| < \frac{\varepsilon}{2\alpha}; \left|\frac{g(x) - g(c)}{x - c} - g'(c)\right| < \frac{\varepsilon}{2\beta}$$

則

$$\left| \frac{(\alpha f(x) + \beta g(x)) - (\alpha f(c) + \beta g(c))}{x - c} - (\alpha f'(c) + \beta g'(c)) \right|$$

$$< \alpha \left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| + \beta \left| \frac{g(x) - g(c)}{x - c} - g'(c) \right|$$

$$< \alpha \cdot \frac{\varepsilon}{2\alpha} + \beta \cdot \frac{\varepsilon}{2\beta}$$

 $=\varepsilon$

2. 乘積法則: 從f,q的可微性,可得

$$\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = \lim_{x \to c} \frac{f(x)g(x) - f(x)g(c) + f(x)g(c) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \cdot g(c) + f(x) \cdot \frac{g(x) - g(c)}{x - c}\right)$$

$$= f'(c)g(c) + f(c)g'(c)$$

3. 除法定則: 留作習題

衍理. 導數擁有以下性質:

1. 綫性性: 對於一系列可微函數 $\{f_k\}_{k=1}^n$,及一系列常數 $\{\alpha_k\}_{k=1}^n$, $(\sum_{k=1}^n \alpha_k f_k)' = \sum_{k=1}^n (\alpha_k f_k')$ 。

2. 乘積法則: 對於一系列可微函數 $\{f_k\}_{k=1}^n$, $(\prod_{k=1}^n f_k)' = \sum_{k=1}^n (f_1 f_2 \cdots f_k' \cdots f_{n-1} f_n)$ 。

定理 (鏈鎖律). 對於複合函數 $h := (q \circ f)$,

$$h' = (g' \circ f) \cdot (f')$$

證明. 留做習題 □

定理 (逆函數). 對於逆函數 $g := f^{-1}$,

$$g' = \frac{1}{f' \circ g}$$

證明. 設 $g(x) = f^{-1}(x)$,則 $(f \circ g)(x) = x$ 。利用鏈鎖律,可得

$$(f' \circ g)(x) \cdot g'(x) = 1$$
$$g'(x) = \frac{1}{(f' \circ g)(x)}$$

導數可視爲函數於任意點的斜率,換言之,利用直綫方程的點斜式,可得出函數f於任意點 $(x_0, f(x_0))$ 上的切綫方程為

$$y - f(x_0) = f'(x_0)(x - x_0)$$

П

定義 3 (高維導數). 若f可微, 則f'為f的第一導數; 若f'可微, 則f''為f的第二導數, 並記

$$f''(x) = \frac{d}{dx}(f'(x)) = \frac{d^2}{dx^2}(f(x))$$

如此類推, 我們稱 $f^{(n)}(x)$ 為f的第n導數, 記

$$f^{(n)}(x) = \frac{d^n}{dx^n}(f(x))$$

均值定理

均值定理為數學分析其中一個重要工具,亦是導數的重要應用結果。其含義在 於將導數與函數值作連接,將切綫普及化。

定理 (極值定理). 設 $c \in I$ 使得 $f: I \to \mathbb{R}$ 有極值於c。若f可微,則f'(c) = 0。

證明. 先證明f(c)為極大值的情況: 若f'(c) > 0,則存在c的鄰域 $V \subseteq I$ 使得對於 $x \in V$,

$$\frac{f(x) - f(c)}{x - c} > 0$$

因此,若 $x \in V$ 同時x > c,則

$$f(x) - f(c) = (x - c) \cdot \frac{f(x) - f(c)}{x - c} > 0$$

此則違反f(c)為極大值的假設, $f'(c) \ge 0$ 。

同理,證明 $f'(c) \neq 0$ 可運用相似做法,因此f'(c) = 0。

衍理. 設 $f:I\to\mathbb{R}$ 為連續函數,並設f在 $c\in I$ 有極值。則f'(c)不存在或f'(c)=0。

小記. f(x) := |x|可作衍理的例證: $f a 0 \in I := [-1,1]$ 上存在極小值,但f'(0)並不存在。

定理 (羅爾定理). 設f在閉合區間[a,b]上連續,且可微於開放區間(a,b),使得f(a) = f(b) = 0。則存在至少一個 $c \in (a,b)$ 使得f'(c) = 0。

定理 (基本均值定理). 設f在閉合區間[a,b]上連續,且可微於開放區間(a,b),則存在至少一個 $c \in (a,b)$ 使得

$$f(b) - f(a) = f'(c)(b - a)$$

證明. 設

$$\varphi(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

可見 φ 在閉合區間[a,b]上連續,且可微於開放區間(a,b),而且 $\varphi(b) = \varphi(a) = 0$ 。則可利用羅爾定理引存在 $c \in (a,b)$ 使得

$$0 = \varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

通過簡單移項, 便得

$$f(b) - f(a) = f'(c)(b - a)$$

逆微分的基本原理,以及導數第一測試,都是從均值定理發展的一些應用。

定理. 設f在閉合區間I := [a,b]上連續,且可微於開放區間(a,b),且f'(x) = 0對所有 $x \in (a,b)$,則f為I上的常函數。

證明. 利用均值定理,存在至少一個 $c \in (a,b)$ 使得f(b)-f(a)=f'(c)(b-a)=0,則f(a)=f(b); 並對於所有 $x \in (a,b)$,均有 $c \in (x,a)$ 使得f(x)-f(a)=f'(c)(x-a)=0。則f(x)=f(a)對所有 $x \in [a,b]$ 成立。

衍理. 設f,g在閉合區間I:=[a,b]上連續,且均可微於開放區間(a,b),且f'(x)=g'(x)對所有 $x\in(a,b)$,則f=g+C,其中C為常數。

洛必達法則

泰勒定理

向量函數

偏導數與全導數

方向導數

切面與法綫

二維極值與鞍點