Range

Variance

Standard Deviation

Coefficient of Variation

Measures of Variability

Table 2.11: Annual Payouts for Two Different Investment Funds

Year	Fund A (\$)	Fund B (\$)
1	1,100	700
2	1,100	2,500
3	1,100	1,200
4	1,100	1,550
5	1,100	1,300
6	1,100	800
7	1,100	300
8	1,100	1,600
9	1,100	1,500
10	1,100	350
11	1,100	460

Table 2.11: Annual Payouts for Two Different Investment Funds (cont.)

Year	Fund A (\$)	Fund B (\$)
12	1,100	890
13	1,100	1,050
14	1,100	800
15	1,100	1,150
16	1,100	1,200
17	1,100	1,800
18	1,100	100
19	1,100	1,750
20	1,100	1,000
Mean	1,100	1,100

Range:

- ► The range can be found by subtracting the smallest value from the largest value in a data set.
- ▶ Illustration: Consider the data on home sales in a Cincinnati, Ohio, suburb.

► Largest home sales price: \$456,250.

Range = Largest value – Smallest value

► Smallest home sales price: \$108,000.

=\$456,250 -\$108,000

=\$348,250

Drawback: Range is based on only two of the observations and thus is highly influenced by extreme values.

Measures of Variability

- ▶ Variance:
 - ▶ is a measure of variability that utilizes all the data.
 - ▶ It is based on the deviation about the mean, which is the difference between the value of each observation

Population Variance	Sample Variance	
$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$	$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$	
σ^2 = population variance x_i = value of i^{th} element μ = population mean N = population size	s^2 = sample variance x_i = value of i^{th} element \overline{x} = sample mean n = sample size	

Table 2.12: Computation of Deviations and Squared Deviations About the Mean for the Class Size Data

Number of Students in Class (x_i)	Mean Class Size (\bar{x})	Deviation About the Mean $(x_i - \overline{x})$	Squared Deviation About the Mean $(x_i - \overline{x})^2$
46	44	2	4
54	44	10	100
42	44	- 2	4
46	44	2	4
32	44	$\frac{-12}{0}$ $\Sigma(x_i - \overline{x})$	$\frac{144}{256}$ $\Sigma (x_i - \overline{x})^2$

► Computation of Sample Variance: $s^2 = \frac{\Sigma(x_i - \bar{x})^2}{n-1} = \frac{256}{4} = 64 \text{ (students)}^2$

- ► Standard deviation:
 - ▶is the positive square root of the variance.
- ▶ Measured in the same units as the original data.

SAMPLE STANDARD DEVIATION

$$s = \sqrt{s^2} \tag{2.5}$$

▶ For population, $\sigma = \sqrt{\sigma^2}$.

- ▶The coefficient of variation
 - is a descriptive statistic that indicates how large the standard deviation is relative to the mean.
- Expressed as a percentage.

COEFFICIENT OF VARIATION

$$\left(\frac{\text{Standard deviation}}{\text{Mean}} \times 100\right)\% \tag{2.6}$$

Measures of Variability

Illustration:

► Consider the class size data:

▶ Mean,

$$\overline{x} = 44$$
.

► Standard deviation, *s* = 8 (students).

Coefficient of variation =

$$\left(\frac{8}{44} \times 100\right)\% = 18.2\%.$$

The coefficient of variation tells that the sample standard deviation is 18.2% of the value of the sample mean.

Percentiles Empirical Rule

Quartiles Identifying Outliers

z-Scores Boxplots

Analyzing Distributions

- ► A percentile
 - is the value of a variable at which a specified (approximate) percentage of observations are below that value.
- ▶ The pth percentile tells us the point in the data where:
 - Approximately p percent of the observations have values less than the pth percentile.
 - ► Approximately:

(100-p) percent of the observations have values greater than the pth percentile.

Location of the pth Percentile

$$L_p = \frac{p}{100}(n+1) \tag{2.7}$$

Illustration:

- ▶ To determine the 85th percentile for the home sales data:
- ▶ Arrange the data in ascending order:

```
108,000 138,000 138,000 142,000 186,000 199,500 208,000 254,000 254,000 257,500 298,000 456,250
```

2. Compute $L_{85} = \frac{p}{100}(n+1) = \left(\frac{85}{100}\right)(12+1) = 11.05.$

3. The interpretation of $L_{85}=11.05$ is that the 85^{th} percentile is 5% of the way between the value in position 11 and value in position 12.

Analyzing Distributions

Illustration (cont.):

- ▶ To determine the 85th percentile for the home sales data:
 - ▶ The value in the 11th position is 298,000.
 - ► The value in the 12th position is 456,250.
 - ▶ \$305,912.50 represents the 85th percentile of the home sales data:

85th percentile = 298,000 + 0.05(456,250 - 298,000)= 298,000 + 0.05(158,250)= 305,912.50

- ▶ Quartiles: When the data is divided into four equal parts:
 - ▶ Each part contains approximately 25% of the observations.
 - ▶ Division points are referred to as quartiles.
 - Q_1 = first quartile, or 25th percentile.
 - Q_2 = second quartile, or 50th percentile (also the median).
 - Q_3 = third quartile or 75th percentile.
- ► The difference between the third and first quartiles is often referred to as the interquartile range, or IQR.

Analyzing Distributions

- ▶ The **z-score**:
 - ▶ measures the relative location of a value in the data set.
- ► Helps to determine how far a particular value is from the mean relative to the data set's standard deviation.
- ▶ Often called the standardized value.
- ▶ The z -score can be interpreted as the number of standard deviations x_i is from the mean x_i .

z-Scores (cont.):

If $x_1, x_2, ..., x_n$ is a sample of n observations:

z-SCORE

$$z_i = \frac{x_i - \overline{x}}{s} \tag{2.8}$$

where

 z_i = the z-score for x_i

 \overline{x} = the sample mean

s = the sample standard deviation

Analyzing Distributions

Table 2.13: z-Scores for the Class Size Data

No. of Students in Class (x_i)	Deviation About the Mean $(x_i - \overline{x})$	$z\text{-Score}\left(\frac{x_i-\overline{x}}{s}\right)$
46	2	2/8 = 0.25
54	10	10/8 = 1.25
42	-2	-2/8 = -0.25
46	2	2/8 = 0.25
32	-12	-12/8 = -1.50

For class size data, $\overline{x} = 44$ and s = 8.

For observations with a value > mean, z-score > 0.

For observations with a value $\,<\,$ mean, z-score $\,<\,$ 0.

Empirical Rule:

- ▶ For data having a bell-shaped distribution:
 - ▶ Approximately 68% of the data values will be within 1 standard deviation.
 - ▶ Approximately 95% of the data values will be within 2 standard deviations.
 - ► Almost all the data (99.7%) values will be within 3 standard deviations.

Analyzing Distributions

- ► The height of adult males in the United States
 - ▶ Mean 69.5 inches and
 - Standard deviation of 3 inches.
- ▶ 1 SD -> 68% of U.S. males are between 66.5 and 72.5 in tall
- ▶ 2 SD -> 95% of U.S. males are between 63.5 and 75.5 in tall
- ▶ 3 SD -> 99.7% of U.S. males are between 60.5 and 78.5 in tall

-3 SD -2 SD -1 SD +1 SD +2 SD +3 SD 0.40.30.30.295% 99.7%

Standard Deviations from the Mean

A Symmetric Bell-Shaped Distribution

▶Outliers:

- Extreme values in a data set.
- ▶ They can be identified using standardized values (z-scores).
- ▶ Any data value with a z-score less than -3 or greater than +3 is an outlier.
- ► Such data values can then be reviewed to determine their accuracy and whether they belong in the data set.

Analyzing Distributions

▶Outliers:

- ▶ Data value incorrectly recorded;
 - ► Correct before further analysis.
- ▶ Data value incorrectly included
 - ▶ It can be removed.
- ▶ Unusual data value that has been recorded correctly
 - ▶ The observation should remain.

- ► A boxplot:
 - ▶ is a graphical summary of the distribution of data.
- ▶ Developed from the quartiles for a data set.

Figure 2.22: Boxplot for the Home Sales Data

Analyzing Distributions

- ► Steps used to male boxplot:
 - ▶ Draw box with ends located at the first and third quartiles.
 - ► E.g. Q1 = 139,000 and Q3 = 256,625.
 - ▶ Draw a line at the median (203,750)
 - ► Find Outliers
 - ► IQR = Q3 Q1
 - ► Limits = Q1 1.5(IQR), Q3 + 1.5(IQR)
 - ► IQR = 117,625.
 - ▶ Limits =
 - ► 139,000 1.5(117,625) = -37,437.5
 - **>** 256,625 + 1.5(117,625) = 433,062.5

- Draw Whiskers
 - ▶ Dashed lines from the ends of the box to the smallest and largest values inside the limits computed in Step 3.
 - ▶ Values of 108,000 and 298,000.
- Finally, the location of each outlier is shown with an asterisk
 - **456,250.**

