Linear Methods Exams

isakhammer

July 2020

Contents

1		nm 18h	2	
	1.1	Problem 1	2	
	1.2	Problem 2	2	
2	Appendix			
	2.1^{-}	Sequences in metric spaces and normed spaces	3	
		Linear Operator		
	2.3	Banach Spaces	7	
		Common		

1 Exam 18h

1.1 Problem 1

Determine whether the following statements are true or false. if the statement are true, no further explanation is required. If the statement is false, give a counter example.

1. The Kerner of a bounded linear operator $T:X\mapsto Y$ between normed spaces X and Y is closed.

Answer. True

2. The range of a bounded linear operator $T:X\to Y$ between normed spaces X and Y is closed.

Answer. False. Lets assume that X and Y is closed. Then is this true.

3. The dual space \boldsymbol{X}' of a normed space is a Banach Space.

Answer. True.

4. A closed subspace of a Banach Space is itself a Banach Space.

Answer. True

1.2 Problem 2

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in a normed space $(X, \|.\|)$.

a) Prove that $(x_k)_{k\in\mathbb{N}}$ is a Cauchy sequence, then $(x_k)_{k\in\mathbb{N}}$ is bounded.

Answer. Let v

b) Let $\|.\|_a$ and $\|.\|_b$ be equivalent norms on X and let $x \in X$. Prove that $(x_k)_{k \in \mathbb{N}}$ converges to x in $(X, \|.\|_a)$ if and only if (x_k) $k \in \mathbb{N}$ converges to x in $(X, \|.\|_b)$.

Answer.

2 Appendix

2.1 Sequences in metric spaces and normed spaces

Definition 2.1 (Norm). Criterias for norms

- (i) ||cx|| = c||x||
- (ii) $||xy|| \le ||x|| ||y||$
- (iii) $||x + y|| \le ||x|| + ||y||$
- (iv) ||x|| = 0 only if x = 0

Definition 2.2 (Sequence). Let (X,d) be a metric space. A sequence $(x_n)_{n\in\mathbb{N}}$ in X is said to **converge to** $x\in X$ for every $\epsilon>0$ one can find $N=N(\epsilon)\in\mathbb{N}$ such that

$$d(x_n, x) < \epsilon$$
.

whenever $b \geq N$. The element x is called the **limit** of the sequence $(x_n)_{n \in \mathbb{N}}$. In particular, in $(X, \|.\|)$ is a normed space. then $(x_n)_{n \in \mathbb{N}}$ converge to $x \in X$ for every $\epsilon > 0$ one can find N = N $(\epsilon) \in \mathbb{N}$ such that

$$||x - x_n|| < \epsilon.$$

whenever $n \geq N$..

Definition 2.3. Given a point $x_0 \in X$ and a real number r > 0, we define three types of sets:

- (i) $B(x_0; r) = \{x \in X \mid d(x, x_0) < r\}$ (Open ball)
- (ii) $\hat{B}(x_0; r) = \{x \in X \mid d(x, x_0) \le r\}$ (Closed ball)
- (iii) $S(x_0; r) = \{x \in X \mid d(x, x_0) = r\}$ (Sphere)

Here is x_0 called the center and r the radius. Remark that $S(x_0, r) = \hat{B}(x_0, r) - B(x_0, r)$.

Definition 2.4 (Open and Closed Set). A subset M of a metric space X is said to be open if it contains a ball around each of its points. A subset

K of X is said to be closed if its complement (in X) is open, that is, $K^c = X - K$ is open.

Remark. A complement set is defined such that $A^c = U \setminus A$ or more formally $A^c = \{x \in U \mid x \notin A\}$

Lemma 2.1. A convergent sequence in a metric space (X, d) is bounded.

2.2 Linear Operator

Definition 2.5. A linear operator T is an operator such that

- 1. the domain $\mathbb{D}(T)$ of T is a vector space and the range R(T) lies in a vector space over the same field.
- 2. $\forall x, y \in \mathbb{D}(T)$ and scalars α

$$T(x+y) = Tx + Ty$$
 and $T(\alpha x) = \alpha Tx$. (1)

Definition 2.6 (Bounded Linear Operator). An linear operator $T: X \mapsto Y$ is bounded if $\forall x \in X$ and c > 0 such that $||Tx|| = ||T|| ||x|| \le c||x||$

Remark. What is the smallest possible c such that $||Tx|| \le c||x||$ still hold for all non-zero $x \in \mathbb{D}(T)$? (We can leave out x = 0 since Tx = 0 for x = 0) By division,

$$\frac{\|Tx\|}{\|x\|} \le c.$$

and this shows that c must be at least as big as the supremum of the expression on the left taken over the range $\mathbb{D}(T) - \{0\}$. Hense the answer to our question is that the smallest possible c is that supremum. This quantity denoted by ||T||, thus

$$||T|| = \sup_{\substack{x \in \mathbb{D}(T) \\ x \neq 0}} \frac{||Tx||}{||x||}$$

||T|| is called the **norm** of the operator T. If the range $\mathbb{D}(T) = \{0\}$, we define ||T|| = 0. Note that with c = ||T|| is

$$||Tx|| \le ||T|| ||x||$$

which is a quite frequently used formula.

Lemma 2.2. Let T be a bounded linear operator. Then is this true,

(i)
$$.\|T\| = \sup_{\substack{x \in \mathbb{D}(T) \\ x \neq 0}} \frac{\|Tx\|}{\|x\|} = \sup_{\substack{x \in \mathbb{D}(T) \\ x = 1}} \|Tx\|$$

 ${\it (ii)}\ \ {\it The\ norm\ satisfy\ general\ norm\ aksioms}.$

Proof. (i) Let ||x|| = a and define $y = \frac{x}{a}$. Using this definition can we see that ||y|| = 1. Hense can we rewrite the definition.

$$\sup_{\substack{x\in\mathbb{D}(T)\\x\neq 0}}\frac{\|Tx\|}{\|x\|}=\sup_{\substack{x\in\mathbb{D}(T)\\x\neq 0}}\frac{\|Tx\|}{a}=\sup_{\substack{x\in\mathbb{D}(T)\\x\neq 0}}\|\frac{Tx}{a}\|=\sup_{\substack{y\in\mathbb{D}(T)\\y=1}}\|Ty\|$$

(ii) We need to prove that it satisfy the criteria ||cT|| = c||T|| and $||T_1 + T_2|| \le ||T_1|| + ||T_2||$.

$$||cT|| = \sup_{\substack{y \in \mathbb{D}(T) \\ ||y|| = 1}} ||Tcy|| = \sup_{\substack{y \in \mathbb{D}(T) \\ ||y|| = 1}} c||Ty||$$
$$= c||T||.$$

$$||T_1 + T_2|| = \sup_{x \in \mathbb{D}(T), ||x|| = 1} || (T_1 x + T_2 x) || \le \sup_{x \in \mathbb{D}(T), ||x|| = 1} ||T_1 x|| + ||T_2 x||$$
$$= ||T_1|| + ||T_2||.$$

Theorem 2.1. Let $T: \mathbb{D} \mapsto Y$ be a linear operator where $\mathbb{D} \subset X$ and X, Y are normed spaces, then

- 1. T is continous if and only if T is bounded.
- 2. If T is continous at a single point, T is continious.

Proof. 1. For T=0 the statement is trivial. Let $T \neq 0$. Then $||T|| \neq 0$. We Assume T To be bounded and consider any $x_0 \in \mathbb{D}(T)$. Let any $\epsilon > 0$. Then, since T is linear, for every $x \in \mathbb{D}(T)$ such that

$$||x - x_0|| < \delta \quad where \quad \delta = \frac{\epsilon}{||T||}$$

we obtain

$$||Tx - Tx_0|| = ||T(x - x_0)|| \le ||T|| ||x - x_0|| < ||T|| \delta = \epsilon$$

. Since $x_0 \in \mathbb{D}(T)$ was arbitary, this shows that T is continuous.

Conversely, assume that T is continous at an arbitary $x_0 \in \mathbb{D}(T)$ then, given any $\epsilon > 0$, there is a $\delta > 0$ such that

$$||Tx - Tx_0|| \le \epsilon$$
 for all $x \in \mathbb{D}(T)$ satisfying $||x - x_0|| \le \delta$.. (2)

We now take any $y \neq 0$ in $\mathbb{D}(T)$ and set

$$x = x_0 + \frac{\delta}{\|y\|} y$$
. then $x - x_0 = \frac{\delta}{\|y\|} y$.

Hence $||x - x_0|| = \delta$, so that we may use the result in (3) . Since T is linear we have

$$||Tx_0 - Tx|| = ||T(x - x_0)|| = ||T(\frac{\delta}{||y||}y)|| = \frac{\delta}{||y||}||Ty||$$

and this implies

$$\frac{\delta}{\|y\|}\|Ty\| \le \epsilon.$$
 Thus $\|Ty \le \frac{\epsilon}{\delta}\|\|y\|.$

This can be written $||Ty|| \le ||y||$, where $c = \frac{\epsilon}{\delta}$ and shows that T is bounded.

2. Continuity of T at a point implies boundedness of T by the second part of the proof of (a), which in turn implies boundedness of T by (a).

2.3 Banach Spaces

Definition 2.7 (Cauchy Sequence). Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in the metric space (X,d). We say that $(x_n)_{n\in\mathbb{N}}$ is **Cauchy Sequence** if for any $\epsilon > 0$ there exist an $N \in \mathbb{N}$ such that

$$d(x_n, x_m) < \epsilon$$
.

In particular if $(x_n)_{n\in\mathbb{N}}$ is a sequence in the normed space $(X, \|.\|)$, then $(x_n)_{n\in\mathbb{N}}$ is Cauchy if for any $\epsilon>0$ there exist an $N\in\mathbb{N}$ such that

$$||x_n - x_m|| < \epsilon, \quad s.t. \quad n, m \ge N.$$

In an inner product space $(X, \langle .,. \rangle)$, we say that a sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy if the sequence is Cauchy with respect to the indeuced norn $||x|| := \langle x, x \rangle^{\frac{1}{2}}$.

Lemma 2.3. Any Cauchy sequence in (X, d) is bounded.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence. Then there exist $N\in\mathbb{N}$ such that for all $m,n\geq N$ we have

$$d(x_m, x_n) < 1.$$

In particular, we have

$$d(x_N, x_m) < 1 \quad \forall \quad m \ge N.$$

Or equivalently $x_m \in B_1(x_N)$ for all $m \geq N$. Now let

$$r = max\{1, d(x_1, x_N), d(x_2, x_N), \dots, d(x_{N-1}, x_N)\}.$$

Then for any $n \in \mathbb{N}$ we have $x_n \in B_{r+1}(x_N)$ so $(x_n)_{n \in \mathbb{N}}$ is bounded.

Remark. A set is **closed** if the set contains all of its boundary points (the closure of the set is equal to the set). There are some other definitions for closed also. A set is **bounded** if the distance between any two points in the set is less then some finite constant. A set in \mathbb{R}^n is bounded if all of the points are contained within a disc of finite radius.

Definition 2.8 (Completeness). A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space X=(X,d) is said to be Cauchy (or fundemental) if for every $\epsilon>0$ there is an $N=N(\epsilon)$ such that $d(x_m,x_n)<\epsilon$ for every $m,n\geq N$. The space X is said to be complete if every Ceachy sequence in X converges (that is, has a limit which is an element of X).

Remark (Procedure for Completeness proofs). To prove completeness do we choose an arbitary Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ in X and show that it does converge in X. They often have the same pattern.

- 1. Contruct an element x (to be used as an limit).
- 2. Prove that x is in the space considered.
- 3. Prove convergence $x_n \mapsto x$

Theorem 2.2 (Convergent sequences). Every convergent sequences in a metric space is a Cauchy Sequence.

Proof. Let $x_n \mapsto x$ for $x \in X$, then is for an $N = N(\epsilon)$

$$d(x_n, x) < \frac{\epsilon}{2}$$
 for any $n > N$.

To prove that this is Cauchy can we use the triangulation theorem such that

$$d(x_n, x_m) \le d(x, x_n) + d(x, x_m) < \epsilon$$
 such that $m, n \ge N(\epsilon)$

This proves that $(x_n)_{n\in\mathbb{N}}$ is Cauchy.

Definition 2.9 (Banach Space and Hilbert Space). A metric space (X, d) is said to be complete if every Cauchy sequence $(x_n)_{x_n \in \mathbb{N}} \in X$ converges to a limit $x \in X$. A complete normed space $(X, \|.\|)$ is classed a Banach Space. Similarly, a complete inner product space $(X, \langle ., . \rangle)$ is called a Hilbert space.

Theorem 2.3. Let (f_n) be a sequence of continuous functions on [a,b] which converges uniformly to a limit function f. Then f is continuous on [a,b].

Proof. We want to show that for any fixed $y \in [a,b]$ and $\epsilon > 0$ we can find a $\delta > 0$ such that

$$||x - y|| < \delta \implies ||f(x) - f(y)|| < \epsilon$$

By the uniformly convergence (f_n) to f, there exist an N such that

$$||f_n(x) - f(x)|| < \epsilon$$
 for all $x \in [a, b], n \ge N$.

Moreover, the function f_n is continuous, so there exist a $\delta > 0$ such that

$$||x - y|| < \delta \implies ||f_N(x) - f_N(y)|| < \frac{\epsilon}{3}.$$

It follow that

$$||f(x) - f(y)|| \le ||f(x) - f_N(x)|| - ||f_N(x) - f_N(y)|| + ||f_N(y) - f(y)|| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$
whenever $||x - y|| < \delta$

Theorem 2.4. $(C[a,b], \|.\|_{\infty})$ is a Banach Space

Proof. (i) Find a candidate for the limit

Fix $x \in [a, b]$ and note that

$$||f_n(x) - f(x)|| \le ||f_n - f_m||_{\infty} = \max_{a \le x \le b} ||f_n(x) - f_m(x)||.$$

This if (f_n) is a Cauchy sequence in $(C[a,b], \|.\|_{\infty})$, then $(f_n(x))_{n\in\mathbb{N}}$ is a Cauchy Sequence in $(\mathbb{R}, \|.\|)$. Since $(\mathbb{R}, \|.\|)$ is complete, there exist a point $f(x) \in \mathbb{R}$ such that $f_n(x) \mapsto f(x)$. A reasonable candidate for the limit is the function f given by the pointwise limits.

(ii) Show that $f \in C[a, b]$

We observe that the convergence of f_n to f is not only pointwise, but in fact uniform; Since (f_n) is Cauchy, there is for every $\epsilon > 0$ an integer N such that

$$||f_n - f||_{\infty} = \max_{a \le x \le b} ||f_n(x) - f_m(x)|| < \frac{\epsilon}{2}, \quad n, m \ge N$$

In particular, this hold as $m \mapsto \infty$, and we get

$$\max_{a \le x \le b} \|f_n(x) - f(x)\| \le \frac{\epsilon}{2} < \epsilon, \quad n \ge N \quad . \tag{3}$$

Thus, f_n converges uniformly to f on the interval [a,b], and it follows by Theorem 3.13 (linear method lecture notes) that $f \in C[a,b]$.

(iii) Show that $f_n \mapsto f$

Follows from (3)

2.4 Common

Definition 2.10 (Range). A range of a function $f: X \mapsto Y$, is denoted by range (f) or f(X), is the set of all $y \in Y$ that are the image of some $x \in X$. More compact can this be written.

 $range\left(f\right)=\left\{ y\in Y\mid there\ exist\ x\in X\ such\ that\ f\left(x\right)=y\right\}$

Definition 2.11. Let $f: X \mapsto Y$ be a function.

- 1. We call f injective or one-to-one if $f(x_1) = f(x_2)$ implies $x_1 = x_2$, i.e, no two elements of the domain have the same image. Equivalently, if $x \neq x_2$ then $f(x_1) \neq f(x_2)$.
- 2. We call f surjective or onto if range (f)=Y, i.e each $y\in Y$ is the image of at least one $x\in X$.
- 3. We call f bijective if f is both injective and surjective.

Definition 2.12 (Closed Set). Let X be a subset of a set Y. If X is closed is this true.

- (i) The compliment X^c is an open set.
- (ii) X is it own set closure.
- (iii) Sequences/nets/filters in X that converge do so in X.

 $(iv) \ Every \ point \ outside \ X \ has \ a \ neightbourhood \ disjoint \ from \ X$