Lducation Nationale et de la Réforme du Système Educatif pirection des Examens et des Concours

Mouer pour chaque numéro de quest

Sciences physiques session complémentaire

Honneur- Fraternite - Justice Série : Sciences de la nature

Durée: 4H Coefficient: 7

Q.C.M (2,75pts)

0	Le libellé de la question	Réponse A	Réponse B	Réponse C	notes
ı	L'estérification d'un dérivé d'acide carboxylique est une réaction	totale	rapide	réversible	(0,5pt)
The state of the s	Une particule de masse m et de charge q positive se déplace à une vitesse \vec{V} dans un champ magnétique \vec{B} perpendiculaire à la vitesse \vec{V} et décrit alors un cercle de rayon r. Si on double la valeur de la charge q de la particule alors la valeur du rayon r est	divisée par 4	divisée par 2	multiplié par2	(0,5pt))
I	L'ester CH3-COO-CH(CH3) -CH3 est obtenu à partir d'un alcool	Primaire	Secondaire	Tertiaire	(0,5pt)
1	L'oxydation ménagé d'un alcool primaire par un oxydant en excès donne		Une cétone	Un acide carboxylique	(0,5pt)
	Lorsqu'une diode photoémissive reçoit une lumière monochromatique de fréquence v, des électrons de masse m et de charge -e seront libérés par la cathode avec une vitesse V _C et arrêtés à l'anode avec un potentiel d'arrêt U ₀ si	Avec v ₀ fréquence seuil	$V_{C} = \sqrt{\frac{2h(v - v_{0})}{m}}$	$U_0 = -\frac{mV_C^2}{2e}$	(0,75pt

Exercice1 (4,25pts)

1.1. Donner les noms systématiques des composés de formules semi-développées suivantes :

© CH- CH (OH) - CH3; ② HCOOH ③; CH3- CO - CH2- CH3 1.2 On fait réagir le composé ① avec le composé ②

Ecrire l'équation de cette réaction et donner le nom du composé organique obtenu.

(0,5pt)

(0,75pt)

2. L'hydrolyse d'un ester E a fourni un acide carboxylique A et un alcool B.

2.1. Détermination de la formule de A

Sachant que la masse molaire moléculaire du composé A est M=60g/mol, déterminer sa formule brute, sa formule semi-développée et son nom. (0,75pt)

2.2. Détermination de la formule de l'alcool B.

L'analyse élémentaire a permis la détermination de la formule brute de B : C4H10O.

2.2.1. L'oxydation ménagée de B par une solution de permanganate de potassium (K+ MnO) en milieu acide donne un composé B'. Ce composé B' réagit avec une solution de DNPH et avec le réactif de Schiff. Présider la classe de B. Donner les formules semi-développées de B et de B' sachant qu'elles sont ramifiées ainsi que leurs noms.

2.2.2. Donner les formules semi -développées d'un isomère de position et d'un isomère de chaîne de B. (0,5pt)

23. En déduire la formule semi-développée et le nom de l'ester E.

On donne: H=1g/mol; C=12g/mol; O=16g/mol.

(0,5pt)

3,65

(1pt)

Exercice2 (3,5pts)

On dispose de cinq béchers qui contiennent des solutions A, B, C, D et E de même concentration C=10-3mol/L:

At une solution de chlorure de sodium NaCl ; B : une solution d'hydroxyde de sodiu

C: une solution d'acide nitrique HNO3; D: une solution d'acide benzoïque CoH3COOH

et E: une solution de méthylamine CH3-NH2.

1. Pour identifier le contenu de chacun des béchers, on mesure

pH de chaque solution après avoir numéroté les béchers.

N° du bécher pH 10,81 Solution

Reproduire le tableau et compléter le :

(1,25pt)

Calculer les concentrations molaires volumiques des espèces

dimiques présentes dans la solution D. En déduire le pKa du couple acide-base correspondant.

Trouver la relation liant un volume V_B de la solution B et un volume V_C de la solution C pour obtenir un nélange de pH=7. (0,25pt)

4. On mélange 10mL de la solution C avec 10mL de la solution A. Calculer le pH du mélange obtenu. (0,5pt)

Quel volume de la solution B faut-il à ajouter à 10cm² de la solution D ? Quel sera le pH de cette solution ? (0,5pt)

Exercice3 (5pts)

Une piste est constituée d'une partie horizontale AB, d'une partie BC inclinée d'un angle α par rapport à

l'horizontale et d'un fossé de largeur d (voir la figure 1). Sur cette piste un motard cascadeur passe par le point A à la date t=0 avec la vitesse VA et atteint le point B à t=5s avec la vitesse VB. Le graphe représente les variations de la vitesse du centre d'inertie du motard entre A et B.

1.En se basant sur le graphe :

1.1. Écrire l'équation de la droite V=f(t) et déduire la valeur de (1,5pts) l'accélération a du mouvement.

(0,5pt) 1.2. Calculer la distance AB.

2. Sur la partie BC le motard exerce une force motrice F=1660N et subit une force de frottement f=500N.

Ces deux forces sont constantes et parallèles à BC. Calculer la valeur de l'accélération sur cette partie de la piste ainsi que celle de la vitesse Vc.

3. Le motard arrive au point C avec la vitesse Vc.

3.1. En considérant l'instant d'arrivée en C comme instant initial, étudier le mouvement du centre d'inertie dans le repère (C; x; y) et calculer l'équation de la trajectoire.

3.2. Calculer la valeur maximale de la largeur d du fossé pour que le motard ne tombe pas dans ce fossé.

fosse

(1pt)

(0,5pt)

eres f.

Exercice4 (4,5pts)

Afin de déterminer les longueurs d'onde λ de certaines radiations monochromatiques émises par une source de lumière blanche, on réalise l'experience des fentes d'Young en interposant à chaque fois un filtre entre le plan des deux fentes d'Young F1 et F2 et la fente source F.

Les fentes F1 et F2 sont distantes de a = 1 mm et les franges d'interférence sont observées sur un écran (E) placé à la distance D = 1 m du plan des fentes F1 et F2.

Pour chaque filtre on mesure l'interfrange i correspondante.

Les résultats sont rassemblés dans le tableau :

N° du filtre	1	2	3	4
i(10-4m)	4,7	5,2	6	6,5
λ(10 ⁻⁶ m)				
Couleur du filtre				

1.Définir l'interfrane i et donner son expression.

2. Reproduire et completer le tableau sachant que les domaines de longueurs d'onde des radiations visibles de la lumière blanche sont :

ultra viol	et .	violet	iolet bleu		vert	jaune	orange		rouge	infrarouge	
λ (μm)	10000			102/4			59	0,61		75	20

3. Calculer l'abscisse du milieu de la 2 inc frange brillante du système de franges donné par la radiation correspondante au filtre n°2 sachant que la frange centrale brillante coincide avec le point O. (0,75pt)

4. Le filtre est suprimé et la source F émet toujours une lumière blanche.

4.1. Décrire ce qu'on observe sur l'écran E. (0,5pt)

4.2. On place la fente d'un spectroscope en un point M d'abscisse x=3mm.

Préciser le nombre des franges brillantes observées en ce point et leurs longueurs d'onde. (1,25pt)

(1pt)