prpy: Probabilistic Robot Localization Python Library

Release 0.1

Pere Ridao

CONTENTS

1.1 Pose Representation 1.2 Feature Representation 1.3 Coordinate Conversion Functions 1.4 Robot Simulation 1.5 Filters 1.6 Localization 1.7 Simulatenous Localization And Mapping		 	11 17
1.3 Coordinate Conversion Functions 1.4 Robot Simulation		 	17
1.4 Robot Simulation 1.5 Filters 1.6 Localization 1.7 Simulatenous Localization And Mapping			
1.5 Filters 1.6 Localization 1.7 Simulatenous Localization And Mapping			20
1.6 Localization	• •	 	20
1.7 Simulatenous Localization And Mapping			
		 	84
2 Indices and tables			87
Index			

Probabilistic Robot Localization is Python Library containing the main algorithms explained in the **Probabilisitic Robot Localization** Book used in the **Probabilisitic Robotics** and the **Hands-on Localization** Courses of the **Intelligent Field Robotic Systems (IFRoS)** European Erasmus Mundus Master.

Note: This documentation is still under construction.

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

API:

1.1 Pose Representation

1.1.1 Pose

class Pose.Pose

Bases: ndarray

Definition of a robot pose interface from where all the particular poses of different DOF inherit. This class defines a robot pose AxB as the pose of the B-Frame expressed in the A-Frame coordinates.

oplus(BxC)

Given a Pose object AxB (the self object) and a Pose object BxC, it returns the compounded Pose object AxC.

The operation is defined as:

$${}^{\mathbf{A}}\mathbf{x}_{\mathbf{C}} = {}^{\mathbf{A}}\mathbf{x}_{\mathbf{B}} \oplus {}^{\mathbf{B}}\mathbf{x}_{\mathbf{C}} \tag{1.1}$$

This is a pure virtual method that must be implemented by a child class.

Parameters

BxC – C-Frame pose expressed in B-Frame coordinates

Returns

C-Frame pose expressed in A-Frame coordinates

$J_1oplus(BxC)$

Jacobian of the pose compounding operation (eq. (1.1)) with respect to the first pose:

$$J_{1\oplus} = \frac{\partial^A x_B \oplus^B x_C}{\partial^A x_B} \tag{1.2}$$

The method returns a numerical matrix containing the evaluation of the Jacobian for the pose AxB (the self object) and the 2^{nd} pose BxC.

This is a pure virtual method that must be implemented by a child class.

Parameters

BxC - 2nd pose

Returns

Evaluation of the $J_{1\oplus}$ Jacobian of the pose compounding operation with respect to the first pose (eq. (1.2))

.ndarray T : ndarray base : NoneType ctypes : NoneType data : NoneType dtype : NoneType flags : NoneType flat : ndarray imag : ndarray itemsize : NoneType nbytes : NoneType ndim : NoneType real : ndarray shape: ndarray size : NoneType strides : NoneType all(axis, out, keepdims) any(axis, out, keepdims) argmax(axis, out) argmin(axis, out) argpartition(kth, axis, kind, order) argsort(axis, kind, order) astype(dtype, order, casting, subok, copy) byteswap(inplace) choose(choices, out, mode) clip(min, max, out) compress(condition, axis, out) conj() conjugate() copy(order) cumprod(axis, dtype, out) cumsum(axis, dtype, out) diagonal(offset, axis1, axis2) dump(file) dumps() fill(value) flatten(order) getfield(dtype, offset) item() itemset() max(axis, out) mean(axis, dtype, out, keepdims) min(axis, out, keepdims) newbyteorder(new_order) nonzero() partition(kth, axis, kind, order) prod(axis, dtype, out, keepdims) ptp(axis, out) put(indices, values, mode) ravel(order) repeat(repeats, axis) reshape(shape, order) resize(new_shape, refcheck) round(decimals, out) searchsorted(v, side, sorter) setfield(val, dtype, offset) setflags(write, align, uic) sort(axis, kind, order) squeeze(axis) std(axis, dtype, out, ddof, keepdims) sum(axis, dtype, out, keepdims) swapaxes(axis1, axis2) take(indices, axis, out, mode) tobytes(order) tofile(fid, sep, format) tolist() tostring(order) trace(offset, axis1, axis2, dtype, out) transpose() var(axis, dtype, out, ddof, keepdims) view(dtype, type) Pose.Pose J_1boxplus(NxB, BxF) J_1oplus(AxB, BxC) J_2boxplus(NxB, BxF) J_2oplus(AxB) J_ominus(AxB) boxplus(NxB, BxF) ominus(AxB)

4 Chapter 1. API:

oplus(AxB, BxC)

J_2oplus()

Jacobian of the pose compounding operation ((1.1)) with respect to the second pose:

$$J_{2\oplus} = \frac{\partial^A x_B \oplus^B x_C}{\partial^B x_C} \tag{1.3}$$

The method returns a numerical matrix containing the evaluation of the Jacobian for the 1^{st} pose AxB (the self object).

This is a pure virtual method that must be implemented by a child class.

Returns

Evaluation of the $J_{2\oplus}$ Jacobian of the pose compounding operation with respect to the second pose (eq. (1.3))

ominus()

Inverse pose compounding of the *AxB* pose (the self object):

$${}^{B}x_{A} = \ominus^{A}x_{B} \tag{1.4}$$

This is a pure virtual method that must be implemented by a child class.

Returns

A-Frame pose expressed in B-Frame coordinates (eq. (1.4))

J_ominus()

Jacobian of the inverse pose compounding operation ((1.1)) with respect the pose AxB (the self object):

$$J_{\ominus} = \frac{\partial \ominus^A x_B}{\partial^A x_B} \tag{1.5}$$

Returns the numerical matrix containing the evaluation of the Jacobian for the pose AxB (the self object). This is a pure virtual method that must be implemented by a child class.

Returns

Evaluation of the J_{\ominus} Jacobian of the inverse pose compounding operation with respect to the pose (eq. (1.12))

boxplus(BxF)

Given a Pose object NxB (the self object) and a Feature object BxF, it returns the Feature object NxF providing the same feature but now expresend in the N-Frame.

Parameters

BxF – Feature object expressed in the B-Frame

Returns

NxF Feature object expressed in the N-Frame

$J_1boxplus(BxF)$

Jacobian of the pose-feature compounding operation (eq. (1.20)) with respect to the robot pose:

$$J_{1\boxplus} = \frac{\partial^N x_B \boxplus^B x_F}{\partial^N x_B} \tag{1.6}$$

Parameters

BxF – Feature object expressed in the B-Frame

Returns

 J_{1} Jacobian of the feature compounding operation with respect to the robot pose (eq. (1.6))

J_2boxplus(BxF)

Jacobian of the pose-feature compounding operation (eq. (1.20)) with respect to the feature:

$$J_{2\boxplus} = \frac{\partial^N x_B \boxplus^B x_F}{\partial^B x_F} \tag{1.7}$$

Parameters

BxF – Feature object expressed in the B-Frame

Returns

 $J_{2 \boxplus}$ Jacobian of the feature compounding operation with respect to the feature (eq. (1.7))

1.1.2 Pose 3DOF

class Pose.**Pose3D**(*input_array=array*([[0.], [0.], [0.]]))

Bases: Pose

Definition of a robot pose in 3 DOF (x, y, yaw). The class inherits from a ndarray. This class extends the ndarray with the *oplus* and *ominus* operators and the corresponding Jacobians.

oplus(BxC)

Given a Pose3D object AxB (the self object) and a Pose3D object BxC, it returns the Pose3D object AxC.

$$\mathbf{^{A}x_{B}} = \begin{bmatrix} ^{A}x_{B} & ^{A}y_{B} & ^{A}\psi_{B} \end{bmatrix}^{T}$$
$$\mathbf{^{B}x_{C}} = \begin{bmatrix} ^{B}x_{C} & ^{B}y_{C} & ^{B}\psi_{C} \end{bmatrix}^{T}$$

The operation is defined as:

$$\mathbf{^{A}x_{C}} = \mathbf{^{A}x_{B}} \oplus \mathbf{^{B}x_{C}} = \begin{bmatrix} ^{A}x_{B} + ^{B}x_{C}\cos(^{A}\psi_{B}) - ^{B}y_{C}\sin(^{A}\psi_{B}) \\ ^{A}y_{B} + ^{B}x_{C}\sin(^{A}\psi_{B}) + ^{B}y_{C}\cos(^{A}\psi_{B}) \\ ^{A}\psi_{B} + ^{B}\psi_{C} \end{bmatrix}$$
(1.8)

Parameters

BxC – C-Frame pose expressed in B-Frame coordinates

Returns

C-Frame pose expressed in A-Frame coordinates

$J_1oplus(BxC)$

Jacobian of the pose compounding operation (eq. (1.8)) with respect to the first pose:

$$J_{1\oplus} = \frac{\partial^A x_B \oplus^B x_C}{\partial^A x_B} = \begin{bmatrix} 1 & 0 & -^B x_C \sin(^A \psi_B) - ^B y_C \cos(^A \psi_B) \\ 0 & 1 & ^B x_C \cos(^A \psi_B) - ^B y_C \sin(^A \psi_B) \\ 0 & 0 & 1 \end{bmatrix}$$
(1.9)

The method returns a numerical matrix containing the evaluation of the Jacobian for the pose AxB (the self object) and the 2^{nd} posepose BxC.

Parameters

BxC - 2nd pose

Returns

Evaluation of the $J_{1\oplus}$ Jacobian of the pose compounding operation with respect to the first pose (eq. (1.9))

J_2oplus()

Jacobian of the pose compounding operation ((1.8)) with respect to the second pose:

$$J_{2\oplus} = \frac{\partial^A x_B \oplus^B x_C}{\partial^B x_C} = \begin{bmatrix} \cos(^A \psi_B) & -\sin(^A \psi_B) & 0\\ \sin(^A \psi_B) & \cos(^A \psi_B) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(1.10)

The method returns a numerical matrix containing the evaluation of the Jacobian for the :math: 1^{s} posepose AxB (the self object).

Returns

Evaluation of the $J_{2\oplus}$ Jacobian of the pose compounding operation with respect to the second pose (eq. (1.10))

ominus()

Inverse pose compounding of the *AxB* pose (the self objetc):

$${}^{B}x_{A} = \ominus^{A}x_{B} = \begin{bmatrix} -{}^{A}x_{B}\cos({}^{A}\psi_{B}) - {}^{A}y_{B}\sin({}^{A}\psi_{B}) \\ {}^{A}x_{B}\sin({}^{A}\psi_{B}) - {}^{A}y_{B}\cos({}^{A}\psi_{B}) \\ -{}^{A}\psi_{B} \end{bmatrix}$$
(1.11)

Returns

A-Frame pose expressed in B-Frame coordinates (eq. (1.11))

J_ominus()

Jacobian of the inverse pose compounding operation ((1.8)) with respect the pose AxB (the self object):

$$J_{\ominus} = \frac{\partial \ominus^{A} x_{B}}{\partial^{A} x_{B}} = \begin{bmatrix} -\cos(^{A} \psi_{B}) & -\sin(^{A} \psi_{B}) & ^{A} x_{B} \sin(^{A} \psi_{B}) - ^{A} y_{B} \cos(^{A} \psi_{B}) \\ \sin(^{A} \psi_{B}) & -\cos(^{A} \psi_{B}) & ^{A} x_{B} \cos(^{A} \psi_{B}) + ^{A} y_{B} \sin(^{A} \psi_{B}) \\ 0 & 0 & -1 \end{bmatrix}$$
(1.12)

Returns the numerical matrix containing the evaluation of the Jacobian for the pose AxB (the self object).

Returns

Evaluation of the J_{\ominus} Jacobian of the inverse pose compounding operation with respect to the pose (eq. (1.12))

1.1.3 Pose 4DOF

class Pose.**Pose4D**(*input_array=array*([[0.], [0.], [0.], [0.]))

Bases: Pose

Definition of a robot pose in 4 DOF (x, y, yaw). The class inherits from a ndarray. This class extends the ndarray with the *oplus* and :math: ominus operators and the corresponding Jacobians.

__init__(input_array=array([[0.], [0.], [0.], [0.]))

oplus(BxC)

Given a Pose3D object AxB (the self object) and a Pose3D object BxC, it returns the Pose4D object AxC.

$${}^{A}x_{B} = \begin{bmatrix} {}^{A}x_{B} & {}^{A}y_{B} & {}^{A}z_{B} & {}^{A}\psi_{B} \end{bmatrix}^{T}$$

$${}^{B}x_{C} = \begin{bmatrix} {}^{B}x_{C} & {}^{B}y_{C} & {}^{B}z_{C} & {}^{B}\psi_{C} \end{bmatrix}^{T}$$

$${}^{A}x_{C} = {}^{A}x_{B} \oplus {}^{B}x_{C} = \begin{bmatrix} {}^{A}x_{B} + {}^{B}x_{C}\cos({}^{A}\psi_{B}) - {}^{B}y_{C}\sin({}^{A}\psi_{B}) \\ {}^{A}y_{B} + {}^{B}x_{C}\sin({}^{A}\psi_{B}) + {}^{B}y_{C}\cos({}^{A}\psi_{B}) \\ {}^{A}z_{B} + {}^{B}z_{C} \\ {}^{A}\psi_{B} + {}^{B}\psi_{C} \end{bmatrix}$$

$$(1.13)$$

Parameters

BxC – C-Frame pose expressed in B-Frame coordinates

Returns

C-Frame pose expressed in A-Frame coordinates

$J_1oplus(BxC)$

Jacobian of the pose compounding operation (eq. (1.13)) with respect to the first pose:

$$J_{1\oplus} = \frac{\partial^A x_B \oplus^B x_C}{\partial^A x_B} = \begin{bmatrix} 1 & 0 & 0 & -^B x_C \sin(^A \psi_B) -^B y_C \cos(^A \psi_B) \\ 0 & 1 & 0 & ^B x_C \cos(^A \psi_B) -^B y_C \sin(^A \psi_B) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1.14)

Parameters

- AxB first pose
- **BxC** − 2nd pose

Returns

 $J_{1\oplus}$ Jacobian of the pose compounding operation with respect to the first pose (eq. (1.14))

J_2oplus()

Jacobian of the pose compounding operation ((1.13)) with respect to the second pose:

$$J_{2\oplus} = \frac{\partial^A x_B \oplus^B x_C}{\partial^B x_C} = \begin{bmatrix} \cos(^A \psi_B) & -\sin(^A \psi_B) & 0 & 0\\ \sin(^A \psi_B) & \cos(^A \psi_B) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1.15)

Parameters

AxB – first pose

Returns

 $J_{2\oplus}$ Jacobian of the pose compounding operation with respect to the second pose (eq. (1.15))

ominus()

Inverse pose compounding of the *AxB* pose (the self object):

$${}^{B}x_{A} = \ominus^{A}x_{B} = \begin{bmatrix} -{}^{A}x_{B}\cos({}^{A}\psi_{B}) - {}^{A}y_{B}\sin({}^{A}\psi_{B}) \\ {}^{A}x_{B}\sin({}^{A}\psi_{B}) - {}^{A}y_{B}\cos({}^{A}\psi_{B}) \\ -{}^{A}z_{B} \\ -{}^{A}\psi_{B} \end{bmatrix}$$
(1.16)

Parameters

AxB – B-Frame pose expressed in A-Frame coordinates

Returns

A-Frame pose expressed in B-Frame coordinates (eq. (1.16)

J_ominus()

Jacobian of the inverse pose compounding operation ((1.13)) with respect the pose AxB (the self object)

$$J_{\Theta} = \frac{\partial \Theta^{A} x_{B}}{\partial^{A} x_{B}} = \begin{bmatrix} -\cos(^{A} \psi_{B}) & -\sin(^{A} \psi_{B}) & 0 & ^{A} x_{B} \sin(^{A} \psi_{B}) - ^{A} y_{B} \cos(^{A} \psi_{B}) \\ \sin(^{A} \psi_{B}) & -\cos(^{A} \psi_{B}) & 0 & ^{A} x_{B} \cos(^{A} \psi_{B}) + ^{A} y_{B} \sin(^{A} \psi_{B}) \\ 0 & 0 & -1 & ^{A} z_{B} \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
(1.17)

Parameters

AxB – B-Fram pose expressed in A-Frame coordinates

Returns

 J_{\odot} Jacobian of the inverse pose compounding operation with respect to the pose (eq. (1.17))

1.2 Feature Representation

1.2.1 Feature

Feature.Feature			
feature			
J_1boxplus(BxF, NxB) J_2boxplus(BxF, NxB) J_2c(selfself) ToCartesian() boxplus(BxF, NxB)			

class Feature.Feature(feature)

Bases: object

This class implements the **interface of the pose-feature compounding operation**. This class provides the interface to implement the compounding operation between the robot pose (represented in the N-Frame) and the feature pose (represented in the B-Frame) obtaining the feature representation in the N-Frame. The class also provides the interface to implement the Jacobians of the pose-feature compounding operation.

boxplus(NxB)

Pose-Feature compounding operation:

$$^{N}x_{F} = ^{N}x_{B} \boxplus^{B}x_{F} \tag{1.18}$$

which computes the pose of a feature in the N-Frame given the pose of the robot in the N-Frame and the pose of the feature in the B-Frame. **This is a pure virtual method that must be overwritten by the child class**.

Parameters

- NxB Robot pose in the N-Frame (Nx_B)
- **BxF** Feature pose in the B-Frame (^Bx_F)

Returns

Feature pose in the N-Frame ($^{N}x_{F}$)

J_1boxplus(NxB)

Jacobian of the Pose-Feature compounding operation (eq. (1.20)) with respect to the first argument $^{N}x_{B}$.

$$J_{1\boxplus} = \frac{\partial^N x_B \boxplus^B x_F}{\partial^N x_B}.$$
 (1.19)

To be overriden by the child class.

Parameters

• NxB – Robot pose in the N-Frame ($^{N}x_{B}$)

• **BxF** – Feature pose in the B-Frame (^Bx_F)

Returns

Jacobian matrix $J_{1 \boxplus}$

$J_2boxplus(NxB)$

Jacobian of the Pose-Feature compounding operation (eq. (1.20)) with respect to the second argument Bx_F .

$$J_{2\boxplus} = \frac{\partial^N x_B \boxplus^B x_F}{\partial^B x_F}.$$
 (1.20)

To be overriden by the child class.

Parameters

NxB – Robot pose in the N-Frame ($^{N}x_{B}$)

Returns

Jacobian matrix $J_{2\boxplus}$

ToCartesian()

Translates from its internal representation to the representation used for plotting. **To be overriden by the child class**.

Returns

Feature in Cartesian Coordinates

J_2c()

Jacobian of the ToCartesian method. Required for plotting non Cartesian features. **To be overriden by the child class**.

Returns

Jacobian of the transformation

1.2.2 Cartesian Feature

class Feature.CartesianFeature(input_array)

Bases: Feature, ndarray

Cartesian feature class. The class inherits from the Feature class providing an implementation of its interface for a Cartesian Feature, by implementing the \boxplus operator as well as its Jacobians. The class also inherits from the ndarray numpy class allowing to be operated as a numpy ndarray.

boxplus(NxB)

Pose-Cartesian Feature compounding operation:

$$F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$${}^{N}x_{F} = {}^{N}x_{B} \boxplus^{B}x_{F} = F({}^{N}x_{B} \oplus^{B}x_{F})$$
(1.21)

which computes the Cartesian position of a feature in the N-Frame given the pose of the robot in the N-Frame and the Cartesian position of the feature in the B-Frame.

Parameters

- NxB Robot pose in the N-Frame ($^{N}x_{B}$)
- **BxF** Cartesian feature pose in the B-Frame (^Bx_F)

Returns

Feature pose in the N-Frame ($^{N}x_{F}$)

J_1boxplus(NxB)

Jacobian of the Pose-Cartesian Feature compounding operation with respect to the robot pose:

$$J_{1\boxplus} = FJ_{1\oplus} \tag{1.22}$$

Parameters

- NxB robot pose represented in the N-Frame ($^{N}x_{B}$)
- **BxF** Cartesian feature pose represented in the B-Frame $({}^Bx_F)$

Returns

Jacobian matrix $J_{boxplus}$ (eq. (1.22)) (eq. (1.22))

$J_2boxplus(NxB)$

Jacobian of the Pose-Cartesian Feature compounding operation with respect to the feature position:

$$J_{2\boxplus} = F J_{2oplus} \tag{1.23}$$

Parameters

- NxB robot pose represented in the N-Frame ($^{N}x_{B}$)
- **BxF** Cartesian feature pose represented in the B-Frame (Bx_F)

Returns

Jacobian matrix $J_{1\boxplus}$ (eq. (1.23))

ToCartesian()

Translates from its internal representation to the representation used for plotting.

Returns

Feature in Cartesian Coordinates

J_2c()

Jacobian of the ToCartesian method. Required for plotting non Cartesian features. **To be overriden by the child class**.

Returns

Jacobian of the transformation

1.2.3 Polar Feature

class Feature.PolarFeature(input_array, *args)

Bases: CartesianFeature, ndarray

Polar feature class. The class inherits from the *Feature* class providing an implementation of its interface for a Polar Feature, by implementing the \boxplus operator as well as its Jacobians. The class also inherits from the ndarray numpy class allowing to be operated as a numpy ndarray.

boxplus(NxB)

Pose-Polar Feature compounding operation:

$$F = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$${}^{N}x_{F} = {}^{N}x_{B} \boxplus^{B}x_{F} = F({}^{N}x_{B} \oplus^{B}x_{F})$$

$$(1.24)$$

which computes the Polar pose of a feature in the N-Frame given the pose of the robot in the N-Frame and the Polar pose of the feature in the B-Frame.

Parameters

- NxB Robot pose in the N-Frame ($^{N}x_{B}$)
- **BxF** Polar feature pose in the B-Frame (Bx_F)

Returns

Polar feature pose in the N-Frame ($^{N}x_{F}$)

J_1boxplus(NxB)

Jacobian of the Pose-Polar Feature compounding operation with respect to the robot pose:

$$J_{1\boxplus} = FJ_{1\oplus} \tag{1.25}$$

Parameters

- NxB robot pose represented in the N-Frame ($^{N}x_{B}$)
- BxF Polar eature pose represented in the B-Frame (Bx_F)

Returns

Jacobian matrix $J_{boxplus}$ (eq. (1.25))

J_2boxplus(NxB)

Jacobian of the Pose-Polar Feature compounding operation with respect to the feature pose:

$$J_{2\boxplus} = F J_{2oplus} \tag{1.26}$$

Parameters

- NxB Robot pose represented in the N-Frame ($^{N}x_{B}$)
- BxF Polar feature pose represented in the B-Frame (Bx_F)

Returns

Jacobian matrix J_{1} (eq. (1.26))

ToCartesian()

Translates from its internal representation to the representation used for plotting.

Returns

Feature in Cartesian Coordinates

J_2c()

Jacobian of the ToCartesian method. Required for plotting non Cartesian features. **To be overriden by the child class**.

Returns

Jacobian of the transformation

1.3 Coordinate Conversion Functions

This functions are used to convert between different coordinate systems (e.g. from cartesian to polar, from polar to cartesian, etc.). The functions are implemented in a way that they can be used with numpy arrays. or each coordinate conversion its Jacobian is also implemented. This functions are required to convert from the observation space (the coordinates in which the features are observed) to the storage space (the coordinates in which the features are stored in the map). For instance, if the features are observed in polar coordinates, but stored in cartesian coordinates, the conversion from polar to cartesian is required.

1.3.1 Polar To Cartesian

conversions.p2c(p)

Converts from a 2D Polar coordinate to its corresponding 2D Cartesian coordinate:

$$p = \begin{bmatrix} \rho \\ \theta \end{bmatrix}$$

$$c = p2c \left(\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \rho \cos(\theta) \\ \rho \sin(\theta) \end{bmatrix} \right)$$
(1.27)

Parameters

p – point in polar coordinates

Returns

point in cartesian coordinates

conversions. $J_p2c(p)$

Jacobian of the 2D Polar to cartesian conversion:

$$J_{p2c} = \begin{bmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\rho\sin(\theta) \\ \sin(\theta) & \rho\cos(\theta) \end{bmatrix}$$
(1.28)

Parameters

p – linearization point in polar coordinates

Returns

Jacobian matrix J_{p2c} (eq. (1.28))

1.3.2 Cartesian To Polar

conversions.c2p(c)

2D Cartesian to polar conversion:

$$c = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$p = c2p \left(\begin{bmatrix} \rho \\ \theta \end{bmatrix} = \begin{bmatrix} \sqrt{x^2 + y^2} \\ atan2(y, x) \end{bmatrix} \right)$$
(1.29)

Parameters

c – point in cartesian coordinates

Returns

point in polar coordinates

conversions. $J_c2p(c)$

Jacobian of the 2D Cartesian to polar conversion:

$$J_{c2p} = \begin{bmatrix} \frac{\partial \rho}{\partial x} & \frac{\partial \rho}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ -\frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{bmatrix}$$
(1.30)

Parameters

c – point in cartesian coordinates

Returns

Jacobian matrix J_{c2p} (eq. (1.30))

1.3.3 Spherical To Cartesian

conversions.s2c(s)

3D Spherical to cartesian conversion:

$$s = \begin{bmatrix} \rho \\ \theta \\ \varphi \end{bmatrix}$$

$$c = s2c \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \rho \sin(\theta) \cos(\varphi) \\ \rho \sin(\theta) \sin(\varphi) \\ \rho \cos(\theta) \end{bmatrix}$$

$$(1.31)$$

Parameters

s – point in spherical coordinates

Returns

point in cartesian coordinates

conversions.**J_s2c**(s)

Jacobian of the 3D Spherical to cartesian conversion:

$$J_{s2c} = \begin{bmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{bmatrix} = \begin{bmatrix} \sin(\theta)\cos(\varphi) & \rho\cos(\theta)\cos(\varphi) & -\rho\sin(\theta)\sin(\varphi) \\ \sin(\theta)\sin(\varphi) & \rho\cos(\theta)\sin(\varphi) & \rho\sin(\theta)\cos(\varphi) \\ \cos(\theta) & -\rho\sin(\theta) & 0 \end{bmatrix}$$
(1.32)

Parameters

s – linearization point in spherical coordinates

Returns

Jacobian matrix J_{s2c} (eq. (1.32))

1.3.4 Cartesian To Spherical

conversions.c2s(c)

3D Cartesian to spherical conversion:

$$c = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$s = c2s \left(\begin{bmatrix} \rho \\ \theta \\ \varphi \end{bmatrix} = \begin{bmatrix} \sqrt{x^2 + y^2 + z^2} \\ atan2(\sqrt{x^2 + y^2}, z) \\ atan2(y, x) \end{bmatrix} \right)$$
(1.33)

Parameters

c – point in cartesian coordinates

Returns

point in spherical coordinates

conversions.**J_c2s**(c)

Jacobian of the 3D Cartesian to spherical conversion:

$$J_{c2s} = \begin{bmatrix} \frac{\partial \rho}{\partial x} & \frac{\partial \rho}{\partial y} & \frac{\partial \rho}{\partial z} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} & \frac{\partial \theta}{\partial z} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} & \frac{\partial \varphi}{\partial z} \end{bmatrix} = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2 + z^2}} & \frac{y}{\sqrt{x^2 + y^2 + z^2}} & \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} & 0 \\ \frac{-xz}{(x^2 + y^2)\sqrt{x^2 + y^2}} & \frac{-yz}{(x^2 + y^2)\sqrt{x^2 + y^2}} & \frac{\sqrt{x^2 + y^2}}{x^2 + y^2} \end{bmatrix}$$
(1.34)

Parameters

c – linearization point in cartesian coordinates

Returns

Jacobian matrix J_{c2s} (eq. (1.34))

1.3.5 Identity Conversion

conversions.v2v(v)

Identity transformation. Returns the same vector.

Parameters

v - input vector

Returns

output vector

conversions. $J_v2v(v)$

Jacobian of the identity transformation. Returns the identity matrix of the same dimensionality as the input vector.

Parameters

 \mathbf{v} – input vector

Returns

Identity matrix of the same dimensionality as the input vector.

1.4 Robot Simulation

SimulatedRobot.SimulatedRobot M: list Qsk: NoneType Rsk: NoneType dt: float k:int nf plt_samples: list trajectory usk: NoneType vehicleAxes vehicleFig: NoneType vehicleIcon: VehicleIcon visualizationInterval: int xTraj: list xsk : NoneType xsk_1 yTraj: list PlotRobot() SetMap(map) fs(xsk_1, usk)

Fig. 1: SimulatedRobot Class Diagram.

class SimulatedRobot.SimulatedRobot(xs0, map=[], *args)

Bases: object

This is the base class to simulate a robot. There are two operative frames: the world N-Frame (North East Down oriented) and the robot body frame body B-Frame. Each robot has a motion model and a measurement model. The motion model is used to simulate the robot measurements.

All Robot simulation classes must derive from this class.

dt = 0.1

class attribute containing sample time of the simulation

__init__(xs0, map=[], *args)

Parameters

- **xs0** initial simulated robot state x_{s_0} used to initialize the the motion model
- \mathbf{map} feature map of the environment $M = [^N x_{F_1}^T, ..., ^N x_{F_{n\,f}}^T]^T$

Constructor. First, it initializes the robot simulation defining the following attributes:

- k: time step
- Qsk: To be defined in the derived classes. Object attribute containing Covariance of the simulation motion model noise

- usk: To be defined in the derived classes. Object attribute contining the simulated input to the
 motion model
- xsk: To be defined in the derived classes. Object attribute contining the current simulated robot state
- zsk: To be defined in the derived classes. Object attribute contining the current simulated robot measurement
- Rsk: To be defined in the derived classes. Object attribute contining the observation noise covariance matrix
- xsk : current pose is the initial state
- xsk_1: previouse state is the initial robot state
- M : position of the features in the N-Frame
- **nf** : number of features

Then, the robot animation is initialized defining the following attributes:

- vehicleIcon: Path file of the image of the robot to be used in the animation
- vehicleFig: Figure of the robot to be used in the animation
- vehicleAxes: Axes of the robot to be used in the animation
- xTraj: list containing the x coordinates of the robot trajectory
- yTraj: list containing the y coordinates of the robot trajectory
- visualizationInterval: time-steps interval between two consecutive frames of the animation

PlotRobot()

Updates the plot of the robot at the current pose

$fs(xsk_1, usk)$

Motion model used to simulate the robot motion. Computes the current robot state x_k given the previous robot state x_{k-1} and the input u_k . It also updates the object attributes xsk, xsk_1 and usk to be made them available for plotting purposes. To be overriden in child class.

Parameters

- xsk_1 previous robot state x_{k-1}
- usk model input u_{sk}

Returns

current robot state x_k

SetMap(map)

Initializes the map of the environment.

$_{\mathbf{PlotSample}}(x, P, n)$

Plots n samples of a multivariate gaussian distribution. This function is used only for testing, to plot the uncertainty through samples. :param x: mean pose of the distribution :param P: covariance of the distribution :param n: number of samples to plot

1.4. Robot Simulation 21

1.4.1 3 DOF Diferential Drive Robot Simulation

class DifferentialDriveSimulatedRobot.DifferentialDriveSimulatedRobot(xs0, map=[], *args)

Bases: SimulatedRobot

This class implements a simulated differential drive robot. It inherits from the SimulatedRobot class and overrides some of its methods to define the differential drive robot motion model.

__init__(xs0, map=[], *args)

Parameters

- **xs0** initial simulated robot state $\mathbf{x_{s_0}} = [{}^N x_{s_0} \, {}^N y_{s_0} \, {}^N \psi_{s_0} \,]^T$ used to initialize the motion model
- \mathbf{map} feature map of the environment $M = [^N x_{F_1}, ..., ^N x_{F_{nf}}]$

Initializes the simulated differential drive robot. Overrides some of the object attributes of the parent class SimulatedRobot to define the differential drive robot motion model:

• Qsk: Object attribute containing Covariance of the simulation motion model noise.

$$Q_k = \begin{bmatrix} \sigma_{\dot{u}}^2 & 0 & 0\\ 0 & \sigma_{\dot{v}}^2 & 0\\ 0 & 0 & \sigma_{\dot{r}}^2 \end{bmatrix}$$
 (1.35)

• usk: Object attribute containing the simulated input to the motion model containing the forward velocity u_k and the angular velocity r_k

$$\mathbf{u_k} = \begin{bmatrix} u_k & r_k \end{bmatrix}^{\mathbf{T}} \tag{1.36}$$

• xsk : Object attribute containing the current simulated robot state

$$x_k = \begin{bmatrix} {}^{N}x_k & {}^{N}y_k & {}^{N}\theta_k & {}^{B}u_k & {}^{B}v_k & {}^{B}r_k \end{bmatrix}^T$$
 (1.37)

where ${}^{N}x_{k}$, ${}^{N}y_{k}$ and ${}^{N}\theta_{k}$ are the robot position and orientation in the world N-Frame, and ${}^{B}u_{k}$, ${}^{B}v_{k}$ and ${}^{B}r_{k}$ are the robot linear and angular velocities in the robot B-Frame.

- zsk: Object attribute containing $z_{s_k} = [n_L n_R]^T$ observation vector containing number of pulses read from the left and right wheel encoders.
- Rsk : Object attribute containing $R_{s_k}=diag(\sigma_L^2,\sigma_R^2)$ covariance matrix of the noise of the read pulses`.
- wheelBase: Object attribute containing the distance between the wheels of the robot (w = 0.5 m)
- wheelRadius: Object attribute containing the radius of the wheels of the robot (R = 0.1 m)
- pulses_x_wheelTurn : Object attribute containing the number of pulses per wheel turn (pulseXwheelTurn = 1024 pulses)
- Polar2D_max_range : Object attribute containing the maximum Polar2D range $(Polar2D_max_range=50 \text{ m})$ at which the robot can detect features.
- **Polar2D_feature_reading_frequency**: Object attribute containing the frequency of Polar2D feature readings (50 tics -sample times-)
- Rfp : Object attribute containing the covariance of the simulated Polar2D feature noise $(R_{fp} = diag(\sigma_{\rho}^2, \sigma_{\phi}^2))$

Check the parent class prpy. SimulatedRobot to know the rest of the object attributes.

```
k: int
                nf
                plt_samples: list
                trajectory
                usk: NoneType
                vehicleAxes
                vehicleFig: NoneType
                vehicleIcon: VehicleIcon
                visualizationInterval: int
                xTraj: list
                xsk: NoneType
                xsk_1
                yTraj: list
                PlotRobot()
                SetMap(map)
                fs(xsk_1, usk)
DifferentialDriveSimulatedRobot.DifferentialDriveSimulatedRobot
Distance feature reading frequency: int
Distance max range: int
K : ndarray
Polar2D_feature_reading_frequency: int
Polar2D max range: int
Osk: ndarray
Re: ndarray
Rfp: ndarray
Rsk: ndarray
distance_noise_std : float
encoder_reading_frequency: int
k
linear_acceleration
pulse_x_wheelTurns: int
trajectory
usk
v_yaw_std : ndarray
wheelBase: float
wheelRadius: float
xsk: ndarray
xsk 1
xy_feature_reading_frequency: int
xy_max_range : int
yaw_reading_frequency: int
zsk: ndarray
PlotRobot()
ReadCartesian2DFeature()
ReadCompass()
ReadEncoders()
ReadPolar2DFeature()
ReadRanges()
fs(xsk_1, usk)
```

SimulatedRobot.SimulatedRobot

M: list

Qsk : NoneType Rsk : NoneType dt : float

Fig. 2: DifferentialDriveSimulatedRobot Class Diagram.

fs(xsk 1, usk)

Motion model used to simulate the robot motion. Computes the current robot state x_k given the previous robot state x_{k-1} and the input u_k :

$$\eta_{s_{k-1}} = \begin{bmatrix} x_{s_{k-1}} & y_{s_{k-1}} & \theta_{s_{k-1}} \end{bmatrix}^{T} \\
\nu_{s_{k-1}} = \begin{bmatrix} u_{s_{k-1}} & v_{s_{k-1}} & r_{s_{k-1}} \end{bmatrix}^{T} \\
x_{s_{k-1}} = \begin{bmatrix} \eta_{s_{k-1}}^{T} & \nu_{s_{k-1}}^{T} \end{bmatrix}^{T} \\
u_{s_{k}} = \nu_{d} = \begin{bmatrix} u_{d} & r_{d} \end{bmatrix}^{T} \\
w_{s_{k}} = \dot{\nu}_{s_{k}} \\
x_{s_{k}} = f_{s}(x_{s_{k-1}}, u_{s_{k}}, w_{s_{k}}) \\
= \begin{bmatrix} \eta_{s_{k-1}} \oplus (\nu_{s_{k-1}} \Delta t + \frac{1}{2} w_{s_{k}} \Delta t^{2}) \\ \nu_{s_{k-1}} + K(\nu_{d} - \nu_{s_{k-1}}) + w_{s_{k}} \Delta t \end{bmatrix} ; K = diag(k_{1}, k_{2}, k_{3}) \quad k_{i} > 0$$
(1.38)

Where $\eta_{s_{k-1}}$ is the previous 3 DOF robot pose (x,y,yaw) and $\nu_{s_{k-1}}$ is the previous robot velocity (velocity in the direction of x and y B-Frame axis of the robot and the angular velocity). u_{s_k} is the input to the motion model containing the desired robot velocity in the x direction (u_d) and the desired angular velocity around the z axis (r_d). w_{s_k} is the motion model noise representing an acceleration perturbation in the robot axis. The w_{s_k} acceleration is the responsible for the slight velocity variation in the simulated robot motion. K is a diagonal matrix containing the gains used to drive the simulated velocity towards the desired input velocity.

Finally, the class updates the object attributes xsk, xsk_1 and usk to made them available for plotting purposes.

To be completed by the student.

Parameters

- $\mathbf{xsk_1}$ previous robot state $x_{s_{k-1}} = \begin{bmatrix} \eta_{s_{k-1}}^T & \nu_{s_{k-1}}^T \end{bmatrix}^T$
- \mathbf{usk} model input $u_{s_k} = \nu_d = \begin{bmatrix} u_d & r_d \end{bmatrix}^T$

Returns

current robot state x_{s_k}

ReadEncoders()

Simulates the robot measurements of the left and right wheel encoders.

To be completed by the student.

Return zsk,Rsk

 $zk = [\Delta n_L \ \Delta n_R]^T$ observation vector containing number of pulses read from the left and right wheel encoders during the last differential motion. $R_{s_k} = diag(\sigma_L^2, \sigma_R^2)$ covariance matrix of the read pulses.

ReadCompass()

Simulates the compass reading of the robot.

Returns

yaw and the covariance of its noise *R_yaw*

ReadCartesian2DFeature()

Simulates the reading of 2D cartesian features. The features are placed in the map in cartesian coordinates.

Returns

zsk: [[x1 y1],...,[xn yn]]

Cartesian position of the feature observations.

Rsk: block_diag($R_1,...,R_n$), where $R_i=[[r_x x r_x y],[r_x y r_y y]]$ is the

2x2 i-th feature observation covariance. Covariance of the Cartesian feature observations. Note the features are uncorrelated among them.

ReadPolar2DFeature()

Simulates the reading of 2D Polar features. The features are placed in the map in cartesian coordinates.

Returns

zsk: [[x1 y1 z1],...,[xn yn zn]]

Cartesian position of the feature observations.

Rsk: block_diag(R_1,...,R_n), where R_i=[[r_xx r_xy r_xz],[r_xy r_yz r_yz],[r_xz r_yz r_yy]] is the

2x2 i-th feature observation covariance. Covariance of the Polar feature observations. Note the features are uncorrelated among them.

ReadRanges()

Simulates the reading of distance towards 2D Cartessian features. Returns a vector of distances towards the features within the maximum range Distance_max_range. The functions works at a frequency of Distance_feature_reading_frequency.

Returns

vector of distances towards the features.

PlotRobot()

Updates the plot of the robot at the current pose

1.4.2 4 DOF AUV Robot Simulation

class AUV4D0FSimulatedRobot.**AUV4D0FSimulatedRobot**(xs0, map=[], *args)

Bases: SimulatedRobot

This class simulates an AUV equipped with the following sensors: Gyro, Compass, DVL, Depth, direct USBL and inverted USBL.

dt = 0.1

class attribute containing sample time of the simulation

```
__init__(xs0, map=[], *args)
```

Constructor.

Parameters

- **xs0** initial simulated robot pose $x_{s_k} = [x_{s_k}, y_{s_k}, z_{s_k}, \psi_{s_k}]$ in the N-Frame
- map map of the environment

PlotRobot()

Updates the plot of the robot at the current pose

```
fs(xsk_1, usk)
```

Motion model used to simulate the robot motion. Computes the current robot state x_k given the previous

1.4. Robot Simulation 25

k:int

 xsk_1

SetMap(map) fs(xsk_1, usk)

```
SimulatedRobot.SimulatedRobot
            M: list
            Qsk : NoneType
Rsk : NoneType
            dt : float
            k:int
            nf
            plt_samples : list
            trajectory
            usk: NoneType
            vehicleAxes
            vehicleFig: NoneType
            vehicleIcon: VehicleIcon
            visualizationInterval: int
            xTraj: list
            xsk: NoneType
            xsk_1
            yTraj : list
            PlotRobot()
            SetMap(map)
            fs(xsk_1, usk)
AUV4DOFS imulated Robot. AUV4DOFS imulated Robot\\
Distance_feature_reading_frequency: int
Distance_max_range : int
K : ndarray
M: list
Polar2D_feature_reading_frequency: int
Polar2D_max_range : int
Qsk : ndarray
R: float
R_iusbl: ndarray
R_lin_vel : ndarray
R_usbl_cartesian
Rfp: ndarray
Rfp: Indarray
Rfxy: ndarray
Rsk: ndarray
XY_feature_reading_frequency: int
distance_noise_std: float
dt: float
dvl_reading_frequency : int
iusbl_reading_frequency : int
linear_acceleration
max_iusbl_range : int
max_xy_range: int
plt_samples : list
pulseXwheelTurn: int
trajectory
v_depth_std: float
v_r_std : ndarray
v_yaw_std : ndarray
vehicleIcon : VehicleIcon
visualizationInterval: int
w: float
xTraj : list
xsk : ndarray
yTraj : list
zsk : ndarray, int
PlotRobot()
ReadCartesian2DFeature()
ReadCartesian3DFeature()
ReadCompass()
ReadDVL()
ReadDepth()
ReadGyro()
ReadPolar2DFeature()
ReadRanges()
ReadSpherical3DFeature()
ReadUSBL()
```

Fig. 3: AUV4DOFSimulatedRobot Class Diagram.

robot state x_{k-1} and the input u_k :

$$\eta_{s_{k-1}} = \begin{bmatrix} x_{s_{k-1}} & y_{s_{k-1}} & z_{s_{k-1}} & \psi_{s_{k-1}} \end{bmatrix}^{T} \\
\nu_{s_{k-1}} = \begin{bmatrix} u_{s_{k-1}} & v_{s_{k-1}} & w_{s_{k-1}} & r_{s_{k-1}} \end{bmatrix}^{T} \\
x_{s_{k-1}} = \begin{bmatrix} \eta_{s_{k-1}}^{T} & \nu_{s_{k-1}}^{T} \end{bmatrix}^{T} \\
u_{s_{k}} = \nu_{d} = \begin{bmatrix} u_{d} & v_{d} & w_{d} & r_{d} \end{bmatrix}^{T} \\
w_{s_{k}} = \dot{\nu}_{s_{k}} \\
x_{s_{k}} = f_{s}(x_{s_{k-1}}, u_{s_{k}}, w_{s_{k}}) \\
= \begin{bmatrix} \eta_{s_{k-1}} \oplus (\nu_{s_{k-1}} \Delta t + \frac{1}{2} w_{s_{k}}) \\ \nu_{s_{k-1}} + K(\nu_{d} - \nu_{s_{k-1}}) + w_{s_{k}} \Delta t \end{bmatrix} ; K = diag(k_{1}, k_{2}, k_{3}, k_{4}) \quad k_{i} > 0$$

Where $\eta_{s_{k-1}}$ is the previous 3 DOF robot pose (x,y,yaw) and $\nu_{s_{k-1}}$ is the previous robot velocity (velocity in the direction of x and y B-Frame axis of the robot and the angular velocity). u_{s_k} is the input to the motion model containing the desired robot velocity in the x direction (u_d) and the desired angular velocity around the z axis (r_d). w_{s_k} is the motion model noise representing an acceleration perturbation in the robot axis. The w_{s_k} acceleration is the responsible for the slight velocity variation in the simulated robot motion. K is a diagonal matrix containing the gains used to drive the simulated velocity towards the desired input velocity.

Finally, the class updates the object attributes xsk, xsk_1 and usk to made them available for plotting purposes.

To be completed by the student.

Parameters

- **xsk_1** previous robot state $x_{s_{k-1}} = \begin{bmatrix} \eta_{s_{k-1}}^T & \nu_{s_{k-1}}^T \end{bmatrix}^T$
- usk model input $u_{s_k} = \nu_d = \begin{bmatrix} u_d & r_d \end{bmatrix}^T$

Returns

current robot state x_{s_k}

SetMap(map)

Initializes the map of the environment.

ReadGyro()

Simulates the gyro reading of the robot.

Returns

angular velocity [r] and the covariance of the noise [R_r]

ReadCompass()

Simulates the compass reading of the robot.

Returns

yaw and the covariance of its noise R_yaw

ReadDVL()

Simulates the DVL reading of the robot.

Returns

linear velocity [u v w] and the covariance of the noise [R_lin_vel]

ReadDepth()

Simulates the depth reading of the robot.

1.4. Robot Simulation 27

Returns

depth and the covariance of the noise [R_depth]

ReadUSBL()

Simulates the USBL reading of the robot. Assumes that the USBL transceiver is placed at the origin of the N Frame and the transceiver is placed at the origin of the robot's B-Frame.

Returns

zsk: cartesian position [x y z] Rsk: Covariance of the noise [R_usbl_cartesian]

ReadSpherical3DFeature()

Simulates the inverted USBL sensor. In this case the transceiver is mounted at the origin of the robot's B-Frame and n transponders are layed out on the seafloor. The Cartesian position of the transponders is stored in the map in Cartesian coordinates.

Returns

```
zsk=[[r_0 theta_0 varphi_0],...,[r_i theta_i varphi_i],...[r_n theta_n varphi_n]], Rsk=block_diag(R_0,...,R_i,...,R_n)
```

where [r_i theta_i phi_i] is the spherical position of the i transponder, being, r_i the distance, theta_i the elevation angle and varphi_i the azimuth angle. The covariance is a block diagonal matrix (since the transponder positions are uncorrelated) where each block is a 3x3 matrix corresponding to the covariance of the noise of each transponder within the range of the sensor.

ReadCartesian2DFeature()

Simulates the reading of 2D cartesian features. The features are placed in the map in cartesian coordinates.

Returns

```
zsk: [[x1 y1],...,[xn yn]]
```

Cartesian position of the feature observations.

Rsk: block_diag($R_1,...,R_n$), where $R_i=[[r_x x r_x y],[r_x y r_y y]]$ is the

2x2 i-th feature observation covariance. Covariance of the Cartesian feature observations. Note the features are uncorrelated among them.

ReadPolar2DFeature()

Simulates the reading of 2D Polar features. The features are placed in the map in cartesian coordinates.

Returns

```
zsk: [[x1 y1 z1],...,[xn yn zn]]
```

Cartesian position of the feature observations.

```
Rsk: block_diag(R_1,...,R_n), where R_i=[[r_xx r_xy r_xz],[r_xy r_yy r_yz],[r_xz r yz r yy]] is the
```

2x2 i-th feature observation covariance. Covariance of the Polar feature observations. Note the features are uncorrelated among them.

ReadRanges()

Simulates the reading of distance towards 2D Cartessian features. Returns a vector of distances towards the features within the maximum range Distance_max_range. The functions works at a frequency of Distance_feature_reading_frequency.

Returns

vector of distances towards the features.

ReadCartesian3DFeature()

Simulates the reading of 3D cartesian features. The features are placed in the map in cartesian coordinates.

Returns

```
zsk: [[x1 \ y1 \ z1],...,[xn \ yn \ zn]]
```

Cartesian position of the feature observations.

```
Rsk: block_diag(R_1,...,R_n), where R_i=[[r_x x r_x y r_x z],[r_x y r_y r_y z],[r_x z r_y z r_y y]] is the
```

3x3 i-th feature observation covariance. Covariance of the Cartesian feature observations. Note the features are uncorrelated among them.

```
_{\mathbf{PlotSample}}(x, P, n)
```

Plots n samples of a multivariate gaussian distribution. This function is used only for testing, to plot the uncertainty through samples. :param x: mean pose of the distribution :param P: covariance of the distribution :param n: number of samples to plot

1.5 Filters

1.5.1 Histogram Filter

Histogram Filter

HF.HF Pk: NpzFile cell_size_x cell_size_y nCells num bins x num bins y p0: Histogram2D pk: Histogram2D pk_1: Histogram2D pk_hat : Histogram2D x_range x_size y_range y_size MeasurementProbability(zk) Prediction(pk_1, uk) StateTransitionProbability() StateTransitionProbability_4_uk(uk) ToCell(m) Update(pk_hat, zk) uk2cell(uk)

class HF.HF(p0, *args)

Bases: object

Histogram Filter base class. Implements the histogram filter algorithm using a discrete Bayes Filter.

```
__init__(p0, *args)
```

The histogram filter is initialized with the initial probability histogram $p\theta$. It creates the following attributes:

- self.p0: the initial belief histogram
- self.pk_1: the previous belief histogram, initially initialized from p0
- self.pk_hat: the prior belief histogram, after applying the Total Probability theorem

1.5. Filters 29

• self.pk: the posterior belief histogram, after applying the Bayes Rule

that will be updated during the execution of the filter. This method also initializes the state transition probability matrix *self.Pk*. If the file *StateTransitionProbability.npy* exists, the matrix will be loaded from it. Otherwise, it is computed by the derived class through the pure virtual method *StateTransitionProbability(·)* and stored in the file for posterior uses. This is done to avoid recomputing the matrix every since this is a time-consuming operation. The state transition probability matrix is used in the *Prediction()* step and the measurement probability matrix is used in the *Update()* one.

Parameters

p0 – initial probability histogram

ToCell(m)

Converts a metric value to a cell displacement.

Parameters

m – value in meters

Returns

value in cells

StateTransitionProbability()

Returns the state transition probability matrix. This is a pure virtual method that must be implemented by the derived class.

Returns

Pk state transition probability matrix

StateTransitionProbability_4_uk(uk)

Returns the state transition probability matrix for the given control input uk. This is a pure virtual method that must be implemented by the derived class.

Parameters

 \mathbf{uk} – control input. In localization, this is commonly the robot displacement. For example, in the case of a differential drive robot, this is the robot displacement in the robot frame commonly computed through the odometry.

Returns

Puk state transition probability matrix for a given uk

MeasurementProbability(zk)

Returns the measurement probability matrix for the given measurement zk. This is a pure virtual method that must be implemented by the derived class.

Parameters

zk – measurement.

Returns

pzk measurement probability histogram

uk2cell(uk)

Converts the control input uk to a cell displacement. :param uk: :return:

$Prediction(pk_1, uk)$

Computes the prediction step of the histogram filter. Given the previous probability histogram pk_1 and the control input uk, it computes the predicted probability histogram pk_hat after the robot displacement uk according to the motion model described by the state transition probability.

Parameters

pk_1 – previous probability histogram

• uk - control input

Returns

pk_hat predicted probability histogram

Update(pk_hat, zk)

Computes the update step of the histogram filter. Given the predicted probability histogram pk_hat and the measurement zk, it computes first the measurement probability histogram pzk and then uses the Bayes Rule to compute the updated probability histogram pk. :param pk_hat : predicted probability histogram :param zk: measurement :return: pk: updated probability histogram

class Histogram.Histogram2D(num_bins_x, num_bins_y, x_range, y_range)

Bases: object

Class for creating and manipulating a 2D histogram.

```
__init__(num_bins_x, num_bins_y, x_range, y_range)
```

Initialize a new Histogram2D instance.

Param

num_bins_x (int): Number of bins in the X-direction. num_bins_y (int): Number of bins in the Y-direction. x_range (numpy.ndarray): Range of values for the X-axis. y_range (numpy.ndarray): Range of values for the Y-axis.

property histogram_2d

Get the 2D histogram data as a NumPy array.

Returns

numpy.ndarray: The 2D histogram data.

property histogram_1d

Get the histogram data as a 1D NumPy array.

Returns

numpy.ndarray: The 1D histogram data.

plot_histogram()

Plot the 2D histogram using Matplotlib.

property element

Property to access individual elements of the histogram using range values.

Returns

ElementAccessor: An instance of ElementAccessor for getting and setting individual elements by range.

1.5.2 Particle Filter

Particle Filter

To be completed...

1.5. Filters 31

1.5.3 Kalman Filter

Kalman Filter

class KF.KF(Ak, Bk, Hk, Vk, x0, P0, *args)

Bases: GaussianFilter

Kalman Filter class. Implements the GaussianFilter interface for the particular case of the Kalman Filter.

 $_$ init $_$ (Ak, Bk, Hk, Vk, x0, P0, *args)

Constructor of the KF class.

Parameters

- Ak Transition matrix of the motion model
- Bk Input matrix of the motion model
- **Hk** Observation matrix of the observation model
- Vk Noise projection matrix of the motion model
- **x0** initial mean of the state vector
- **P0** initial covariance matrix
- **args** arguments to be passed to the parent class

Prediction(uk, Qk, xk_1=None, Pk_1=None)

Prediction step of the Kalman Filter.

Parameters

- uk input vector
- Qk covariance matrix of the motion model noise
- **xk_1** previous mean state vector
- **Pk_1** previous covariance matrix

Return xk bar, Pk bar

current mean state vector and covariance matrix

Update(zk, Rk, xk_bar=None, Pk_bar=None)

Update step of the Kalman Filter.

Parameters

- **zk** observation vector
- **Rk** covariance of the observation model noise
- xk_bar predicted mean state vector
- **Pk_bar** predicted covariance matrix

Return xk.Pk

current mean state vector and covariance matrix

1.5.4 Extended Kalman Filter

Extended Kalman Filter

class EKF.EKF(x0, P0, *args)

Bases: GaussianFilter

Extended Kalman Filter class. Implements the GaussianFilter interface for the particular case of the Extended Kalman Filter.

```
\_init\_(x0, P0, *args)
```

Constructor of the EKF class.

Parameters

- **x0** initial mean state vector
- P0 initial covariance matrix
- args arguments to be passed to the parent class

 $f(xk_1=None, uk=None)$

" Motion model of the EKF to be overwritten by the child class.

Parameters

- **xk_1** previous mean state vector
- uk input vector

Return xk_bar, Pk_bar

predicted mean state vector and its covariance matrix

1.5. Filters 33

```
GaussianFilter.GaussianFilter
     Pk
     Pk_1
     xk
     xk_1
     Prediction(uk, Qk, xk_1, Pk_1)
     Update(zk, Rk, xk_bar, Pk_bar)
                  EKF.EKF
Pk_1 : NoneType
Pk_bar
Qk
Ŕk
nz
uk
xk
xk_1: NoneType
xk_bar
zk
Jfw(xk_1)
Jfx(xk_1)
Prediction(uk, Qk, xk_1, Pk_1)
Update(zk, Rk, xk_bar, Pk_bar, Hk, Vk)
f(xk_1, uk)
h(xk_bar)
```

Jfx(xk 1=None)

Jacobian of the motion model with respect to the state vector. Method to be overwritten by the child class.

Parameters

 xk_1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

$Jfw(xk_1=None)$

Jacobian of the motion model with respect to the noise vector. Method to be overwritten by the child class.

Parameters

 \mathbf{xk} _1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

$h(xk \ bar=None)$

Observation model of the EKF. We differentiate two types of observations: 1. **Measurements**: observations that are directly measured by the sensors. For example, the position of the robot, its heading, its speed, etc. 2. **Features**: observations of map features. For example, the position of a landmark.

This method calls the EKF.hm() which implements the measurements observation equation. To implement a standard EKF, the EKF.hm method should be overwritten by the child class to be used as the observation equation for measurements.

Parameters

xk_bar – mean of the predicted state vector. By default it is taken from the class attribute.

Returns

expected observation vector

$hm(xk_bar=None)$

Observation model related to the measurements observations of the EKF to be overwritten by the child class.

Parameters

xk_bar – mean of the predicted state vector. By default it is taken from the class attribute.

Returns

expected observation vector

Prediction(uk, Ok, xk 1=None, Pk 1=None)

Prediction step of the EKF. It calls the motion model and its Jacobians to predict the state vector and its covariance matrix.

Parameters

- uk input vector
- Qk covariance matrix of the noise vector
- **xk_1** previous mean state vector. By default it is taken from the class attribute. Otherwise it updates the class attribute.
- **Pk_1** covariance matrix of the previous state vector. By default it is taken from the class attribute. Otherwise it updates the class attribute.

1.5. Filters 35

Return xk bar, Pk bar

predicted mean state vector and its covariance matrix. Also updated in the class attributes.

```
Update(zk, Rk, xk\_bar, Pk\_bar, Hk, Vk)
```

Update step of the EKF. It calls the observation model and its Jacobians to update the state vector and its covariance matrix.

Parameters

- zk observation vector
- **Rk** covariance matrix of the noise vector
- **xk_bar** predicted mean state vector. By default it is taken from the class attribute. Otherwise it updates the class attribute.
- **Pk_bar** covariance matrix of the predicted state vector. By default it is taken from the class attribute. Otherwise it updates the class attribute.

Return xk,Pk

updated mean state vector and its covariance matrix. Also updated in the class attributes.

1.6 Localization

1.6.1 Robot Localization

Localization.Localization index k: int kSteps log_x : ndarray log_xs: ndarray plot_xy_estimation : bool robot trajectory xTraj: list xk xk_1 yTraj: list GetInput() LocalizationLoop(x0, usk) Localize(xk_1, uk) Log(xsk, xk) PlotTrajectory() PlotXY()

class Localization.**Localization**(*index*, *kSteps*, *robot*, *x0*, **args*)

Bases: object

Localization base class. Implements the localization algorithm.

__init__(index, kSteps, robot, x0, *args)

Constructor of the DRLocalization class.

Parameters

- **index** Logging index structure (Index)
- **kSteps** Number of time steps to simulate
- robot Simulation robot object (Robot)
- args Rest of arguments to be passed to the parent constructor
- **x0** Initial Robot pose in the N-Frame

GetInput()

Gets the input from the robot. To be overidden by the child class.

Returns

• uk: input variable

Localize(xk_1, uk)

Single Localization iteration invoked from DRLocalization. Localization(). Given the previous robot pose, the function reads the inout and computes the current pose.

Parameters

xk_1 – previous robot pose

Returns

xk current robot pose

LocalizationLoop(x0, usk)

Given an initial robot pose x_0 and the input to the SimulatedRobot this method calls iteratively DRLocalization.Localize() for k steps, solving the robot localization problem.

Parameters

x0 – initial robot pose

Log(xsk, xk)

Logs the results for later plotting.

Parameters

- xsk ground truth robot pose from the simulation
- **xk** estimated robot pose

PlotXY()

Plots, in a new figure, the ground truth (orange) and estimated (blue) trajectory of the robot at the end of the Localization Loop.

PlotTrajectory()

Plots the estimated trajectory (blue) of the robot during the localization process.

1.6.2 Dead Reckoning

4 DOF AUV Dead REckoning using DVL and Gyro

class DR_4DOFAUV_DVLGyro.DR_4DOFAUV_DVLGyro(index, kSteps, robot, x0, *args)

Bases: Localization

Dead Reckoning Localization for a 4DOF AUV with DVL and Gyro sensors

index k:int kSteps log_x : ndarray log_xs : ndarray plot_xy_estimation : bool robot trajectory xTraj: list xk xk_1 yTraj: list GetInput() LocalizationLoop(x0, usk) Localize(xk_1, uk) Log(xsk, xk) PlotTrajectory() PlotXY() DR_4DOFAUV_DVLGyro.DR_4DOFAUV_DVLGyro Dt: float dt: float dvl: bool etak_1 gyro: bool nuk t: float t_1: float GetInput() Localize(xk_1, uk)

Localization.Localization

__init__(index, kSteps, robot, x0, *args)

Constructor of the DR_4DOFAUV_DVLGyro class.

Parameters

args – Rest of arguments to be passed to the parent constructor

Localize(xk 1, uk)

Motion model for the 4DOF ($[x_k \ y_k \ z_k \ \psi_k]^T$) AUV using as input the lineal velocity read from the DVL senosr and angular velocity read from the Gyro sensor

Parameters

- \mathbf{xk}_1 previous robot pose estimate $([x_{k-1} \ y_{k-1} \ z_{k-1} \ \psi_{k-1}]^T)$
- **uk** input vector $([u_k \ v_k \ w_k \ r_k]^T)$

Return xk

current robot pose estimate ($[x_k \ y_k \ z_k \ \psi_k]^T$)

GetInput()

Gets the input vector and the input noise covariance matrix from the robot. The input vector contains the linear read from the DVL and angular velocity read from the Gyro of the robot.

$$u_{k} = \begin{bmatrix} v_{DVL}^{T} & r_{Gyro}^{T} \end{bmatrix}^{T} = \begin{bmatrix} u_{DVL} & v_{DVL} & w_{DVL} & r_{Gyro} \end{bmatrix}^{T}$$

$$Q_{k} = \begin{bmatrix} Q_{DVL} & 0 \\ 0 & \sigma_{Gyro}^{2} \end{bmatrix} \quad \text{where} \quad Q_{DVL} = \begin{bmatrix} \sigma_{u_{DVL}}^{2} & \sigma_{uv_{DVL}} & \sigma_{uw_{DVL}} \\ \sigma_{vu_{DVL}} & \sigma_{v_{DVL}}^{2} & \sigma_{vw_{DVL}} \\ \sigma_{wu_{DVL}} & \sigma_{wv_{DVL}} & \sigma_{w_{DVL}}^{2} \end{bmatrix}$$

$$(1.40)$$

Returns

input vector u_k and input noise covariance matrix Q_k defined in eq. (1.40).

3 DOF Differential Drive Mobile Robot Example

class DR_3DOFDifferentialDrive.DR_3DOFDifferentialDrive(index, kSteps, robot, x0, *args)

Bases: Localization

Dead Reckoning Localization for a Differential Drive Mobile Robot.

__init__(index, kSteps, robot, x0, *args)

Constructor of the DR 3D0FDifferentialDrive class.

Parameters

args – Rest of arguments to be passed to the parent constructor

Localize(xk_1, uk)

Motion model for the 3DOF $(x_k = [x_k \ y_k \ \psi_k]^T)$ Differential Drive Mobile robot using as input the readings of the wheel encoders $(u_k = [n_L \ n_R]^T)$.

Parameters

- \mathbf{xk}_1 previous robot pose estimate $(x_{k-1} = [x_{k-1} \ y_{k-1} \ \psi_{k-1}]^T)$
- **uk** input vector $(u_k = [u_k \ v_k \ r_k]^T)$

Returns

• **xk** current robot pose estimate $([x_k \ y_k \ \psi_k]^T)$

Localization.Localization

index k: int kSteps

log_x : ndarray log_xs : ndarray

plot_xy_estimation : bool robot

trajectory xTraj: list xk xk_1

yTraj : list

GetInput()

LocalizationLoop(x0, usk)

Localize(xk_1, uk) Log(xsk, xk)

PlotTrajectory()

PlotXY()

$DR_3DOFD ifferential Drive. DR_3DOFD ifferential Drive$

dt : float etak_1 t_1 : float uk

wheelBase : float wheelRadius : float

xk

GetInput()

Localize(xk_1, uk)

GetInput()

Get the input for the motion model. In this case, the input is the robot displacement computed from the left and right wheel encoders pulses using.

Returns

• **uk:** input vector $(u_k = {}^B [\Delta x \ \Delta y]^T)$

1.6.3 Grid Localization

Grid Localization

class GL.**GL**(p0, index, kSteps, robot, x0, *args)

Bases: HF

Grid Localization.

```
\_init\_(p0, index, kSteps, robot, x0, *args)
```

Constructor of the GL_4D0FAUV class. Initializes the Dead reckoning localization algorithm as well as the histogram filter algorithm.

Parameters

- dx_max maximum x displacement in meters
- dy_max maximum y displacement in meters
- range_dx range of x displacements in meters
- range_dy range of y displacements in meters
- **p0** initial probability histogram
- **index** index struture containing plotting information
- **kSteps** number of time steps to simulate the robot motion
- robot robot object
- **x0** initial robot pose
- args additional arguments

GetMeasurements()

Read the measurements from the robot. This is a pure virtual method that must be implemented by the derived class.

StateTransitionProbability_4_uk(uk)

Returns the state transition probability matrix for the given control input uk. This is a pure virtual method that must be implemented by the derived class.

Parameters

 \mathbf{uk} – control input. In localization, this is commonly the robot displacement. For example, in the case of a differential drive robot, this is the robot displacement in the robot frame commonly computed through the odometry.

Returns

Puk state transition probability matrix for a given uk

StateTransitionProbability()

Computes the complete state transition probability matrix. The matrix is a $n_u imes m_u imes n^2$ matrix, where n_u and m_u are the number of possible displacements in the x and y axis, respectively, and n is the number of cells in the map. For each possible displacement u_k , each previous robot pose x_{k-1} and each current robot pose x_k , the probability $p(x_k|x_{k-1},u_k)$ is computed. This is a pure virtual method that must be implemented by the derived class.

Returns

state transition probability matrix $P_k = px_k | x_{k-1}, uk$

MeasurementProbability(zk)

Computes the measurement probability histogram given the robot pose η_k and the measurement z_k . Method to be overriden by the child class.

Parameters

zk – vector of measurements

Returns

Measurement probability histogram $p_z = p(z_k | \eta_k)$

GetInput(usk)

Gets the number of cells the robot has displaced along its DOFs in the world N-Frame. Method to be overriden by the child class.

Parameters

usk – control input of the robot simulation

Returns

uk: vector containing the number of cells the robot has displaced in all the axis of the world N-Frame

uk2cell(uk)

Parameters

uk -

Returns

LocalizationLoop(p0, usk)

Given an initial robot pose x_0 and the input to the AUV4D0FSimulatedRobot.SimulatedRobot this method calls iteratively GL_4D0FAUV.Localize() for k steps, solving the robot localization problem.

Parameters

- **p0** initial robot pose
- usk control input of the robot simulation

Localize(pxk_1 , uk, zk)

Overrides the parent method DR_4D0FAUV_DVLGyro.Localize().

Parameters

- **pxk_1** histogram of the previous robot position
- uk robot displacement in number of cells in the world N-Frame
- zk vector containing the measurements of the robot position in the world N-Frame

Returns

pk: histogram of the robot position after the prediction and the update steps

4 DOF AUV

AUV Grid Localization Example

```
\textbf{class} \ \ \texttt{GL\_4D0FAUV}. \\ \textbf{GL\_4D0FAUV}(dx\_max, dy\_max, range\_dx, range\_dy, p0, index, kSteps, robot, x0, *args)
```

Bases: GL, DR_4DOFAUV_DVLGyro

Grid Reckoning Localization for a 4 DOF AUV.

__init__(dx_max, dy_max, range_dx, range_dy, p0, index, kSteps, robot, x0, *args)

Constructor of the $GL_4DOFAUV$ class. Initializes the Dead reckoning localization algorithm as well as the histogram filter algorithm.

Parameters

- dx_max maximum x displacement in meters
- **dy_max** maximum y displacement in meters
- range_dx range of x displacements in meters

- range_dy range of y displacements in meters
- **p0** initial probability histogram
- **index** index struture containing plotting information
- **kSteps** number of time steps to simulate the robot motion
- robot robot object
- **x0** initial robot pose
- args additional arguments

GetMeasurements()

Read the measurements from the robot. Returns a vector of range distances to the map features. Only those features that are within the SimulatedRobot.SimulatedRobot.Distance_max_range of the sensor are returned. The measurements arribe at a frequency defined in the SimulatedRobot.SimulatedRobot.Distance_feature_reading_frequency attribute.

Returns

vector of distances to the map features

StateTransitionProbability_4_uk(uk)

Returns the state transition probability matrix for the given control input uk. This is a pure virtual method that must be implemented by the derived class.

Parameters

 \mathbf{uk} – control input. In localization, this is commonly the robot displacement. For example, in the case of a differential drive robot, this is the robot displacement in the robot frame commonly computed through the odometry.

Returns

Puk state transition probability matrix for a given uk

StateTransitionProbability_4_xk_1_uk(etak_1, uk)

Computes the state transition probability histogram given the previous robot pose η_{k-1} and the input u_k :

$$p(\eta_k|\eta_{k-1},u_k)$$

Parameters

- etak_1 previous robot pose in cells
- uk input displacement in number of cells

Returns

state transition probability $p(\eta_k | \eta_{k-1}, u_k)$

StateTransitionProbability()

Computes the complete state transition probability matrix. The matrix is a $n_u imes m_u imes n^2$ matrix, where n_u and m_u are the number of possible displacements in the x and y axis, respectively, and n is the number of cells in the map. For each possible displacement u_k , each previous robot pose x_{k-1} and each current robot pose x_k , the probability $p(x_k|x_{k-1},u_k)$ is computed.

Returns

state transition probability matrix $P_k = px_k | x_{k-1}, uk$

uk2cell(uk)

Parameters

uk –

Returns

MeasurementProbability(zk)

Computes the measurement probability histogram given the robot pose η_k and the measurement z_k . In this case the measurement is the vector of the distances to the landmarks in the map.

Parameters

 $\mathbf{zk} - z_k = [r_0 \ r_1 \ ... r_k]$ where r_i is the distance to the i-th landmark in the map.

Returns

Measurement probability histogram $p_z = p(z_k|\eta_k)$

GetInput(usk)

Provides an implementation for the virtual method GL.GetInput(). Gets the number of cells the robot has displaced in the x and y directions in the world N-Frame. To do it, it calls several times the parent method super().GetInput(), corresponding to the Dead Reckoning Localization of the robot, until it has displaced at least one cell in any direction. Note that an iteration of the robot simulation SimulatedRobot.fs() is normally done in the GL_4DOFAUV.LocalizationLoop() method of the GL_4DOFAUV.Localization class, but in this case it is done here to simulate the robot motion between the consecutive calls to super().GetInput().

Parameters

usk – control input of the robot simulation

Returns

uk: vector containing the number of cells the robot has displaced in the x and y directions in the world N-Frame

3 DOF Differential Drive Mobile Robot

Differential Drive Grid Localization Example

Bases: GL, DR_3DOFDifferentialDrive

Grid Reckoning Localization for a 4 DOF AUV.

__init__(dx_max, dy_max, range_dx, range_dy, p0, index, kSteps, robot, x0, *args)

Constructor of the GL_4D0FAUV class. Initializes the Dead reckoning localization algorithm as well as the histogram filter algorithm.

Parameters

- dx_max maximum x displacement in meters
- **dy_max** maximum y displacement in meters
- range_dx range of x displacements in meters
- range_dy range of y displacements in meters
- **p0** initial probability histogram
- **index** index struture containing plotting information
- **kSteps** number of time steps to simulate the robot motion
- **robot** robot object
- **x0** initial robot pose

• args – additional arguments

GetMeasurements()

Read the measurements from the robot. Returns a vector of range distances to the map features. Only those features that are within the SimulatedRobot.SimulatedRobot.Distance_max_range of the sensor are returned. The measurements arribe at a frequency defined in the SimulatedRobot.SimulatedRobot.Distance_feature_reading_frequency attribute.

Returns

vector of distances to the map features

StateTransitionProbability_4_uk(uk)

Returns the state transition probability matrix for the given control input *uk*. This is a pure virtual method that must be implemented by the derived class.

Parameters

 \mathbf{uk} – control input. In localization, this is commonly the robot displacement. For example, in the case of a differential drive robot, this is the robot displacement in the robot frame commonly computed through the odometry.

Returns

Puk state transition probability matrix for a given uk

StateTransitionProbability_4_xk_1_uk(etak_1, uk)

Computes the state transition probability histogram given the previous robot pose η_{k-1} and the input u_k :

$$p(\eta_k|\eta_{k-1},u_k)$$

Parameters

- etak_1 previous robot pose in cells
- uk input displacement in number of cells

Returns

state transition probability $p(\eta_k|\eta_{k-1},u_k)$

StateTransitionProbability()

Computes the complete state transition probability matrix. The matrix is a $n_u imes m_u imes n^2$ matrix, where n_u and m_u are the number of possible displacements in the x and y axis, respectively, and n is the number of cells in the map. For each possible displacement u_k , each previous robot pose x_{k-1} and each current robot pose x_k , the probability $p(x_k|x_{k-1},u_k)$ is computed.

Returns

state transition probability matrix $P_k = px_k | x_{k-1}, uk$

uk2cell(uk)

Parameters

uk –

Returns

MeasurementProbability(zk)

Computes the measurement probability histogram given the robot pose η_k and the measurement z_k . In this case the measurement is the vector of the distances to the landmarks in the map.

Parameters

 $\mathbf{zk} - z_k = [r_0 \ r_1 \ ... r_k]$ where r_i is the distance to the i-th landmark in the map.

Returns

Measurement probability histogram $p_z = p(z_k | \eta_k)$

GetInput(usk)

Provides an implementation for the virtual method GL.GetInput(). Gets the number of cells the robot has displaced in the x and y directions in the world N-Frame. To do it, it calls several times the parent method super().GetInput(), corresponding to the Dead Reckoning Localization of the robot, until it has displaced at least one cell in any direction. Note that an iteration of the robot simulation SimulatedRobot.fs() is normally done in the GL_4DOFAUV.LocalizationLoop() method of the GL_4DOFAUV.Localization class, but in this case it is done here to simulate the robot motion between the consecutive calls to super().GetInput().

Parameters

usk – control input of the robot simulation

Returns

uk: vector containing the number of cells the robot has displaced in the \boldsymbol{x} and \boldsymbol{y} directions in the world N-Frame

1.6.4 Montecarlo Localization

Montecarlo Localization

To be completed...

1.6.5 Gaussian Filter Localization

Gaussian Filter Localization

class GFLocalization.**GFLocalization**(*index*, *kSteps*, *robot*, *x0*, *P0*, **args*)

Bases: Localization, GaussianFilter

Map-less localization using KF and EKF filters.

__init__(index, kSteps, robot, x0, P0, *args)

Constructor.

Parameters

- x0 initial state
- **P0** initial covariance
- index Named tuple used to map the state vector, the simulation vector and the observation vector (prpy.IndexStruct)
- **kSteps** simulation time steps
- robot Simulated Robot object
- args arguments to be passed to the parent constructor

GetInput()

Get the input from the robot. Relates to the motion model as follows:

$$x_k = f(x_{k-1}, u_k, w_k) w_k = N(0, Q_k)$$
(1.41)

To be overidden by the child class.

Return uk, Qk

input and covariance of the motion model

GetMeasurements()

Get the measurements from the robot. Corresponds to the observation model:

$$z_k = h(x_k, v_k)$$

$$v_k = N(0, R_k)$$
(1.42)

To be overidden by the child class.

Return zk, Rk

observation vector and covariance of the observation noise.

Localize(xk 1, Pk 1)

Localization iteration. Reads the input of the motion model, performs the prediction step, reads the measurements, performs the update step and logs the results. The method also plots the uncertainty ellipse of the robot pose.

Parameters

- **xk_1** previous state vector
- **Pk_1** previous covariance matrix

Return xk, Pk

updated state vector and covariance matrix

LocalizationLoop(x0, P0, usk)

Localization loop. During *self.kSteps* it calls the *Localize()* method for each time step.

Parameters

- **x0** initial state vector
- P0 initial covariance matrix

$Log(xsk, xk, Pk, xk_bar, zk)$

Logs the results for later plotting.

Parameters

- **xsk** ground truth robot pose from the simulation
- **xk** estimated robot pose

PlotState()

Plot the results of the localization For each state DOF s -si[s] is the corresponding simulated stated -x1[s] is the corresponding observation

PlotXY(estimation=True)

Plot the x-y trajectory of the robot simulation: True if the simulated XY robot trajectory is available

PlotRobotUncertainty(xk, Pk)

PlotUncertainty(xk, Pk)

4 DOF AUV

4 DOF AUV EKF Localization using an Input Velocity Motion Model with Depht, Yaw and Linear Velocity Measurements

Bases: GFLocalization, DR_4DOFAUV_DVLGyro, EKF

This class implements an EKF localization filter for a 4 DOF AUV using an input velocity motion model incorporating DVL linear velocity measurements, a gyro angular speed measurement, as well as depth and yaw measurements. Inherits from GFLocalization because it is a Localization method using Gaussian filtering, and from EKF because it uses an EKF. It also inherits from DR_4DOFAUV_DVLGyro to reuse its motion model solved_prlab.DR_4DOFAUV_DVLGyro.Localize() and the model input solved_prlab.DR_4DOFAUV_DVLGyro.GetInput().

__init__(kSteps, robot, *args)

Constructor.

Parameters

args – arguments to be passed to the base class constructor

 $\mathbf{f}(xk_1, uk)$

Non-linear motion model using as input the DVL linear velocity and the gyro angular speed:

$$x_k = f(x_{k-1}, u_k, w_k) = x_{k-1} \oplus (u_k + w_k) \Delta t$$

$$x_{k-1} = [x_{k_1}^T, y_{k_1}^T, z_{k_1}^T, \psi_{k_1}^T]^T$$

$$u_k = [u_k, v_k, w_k, r_k]^T$$

Parameters

- **xk_1** previous mean state vector $(x_{k-1} = [x_{k-1}^T, y_{k-1}^T, z_{k-1}^T, \psi_{k-1}^T]^T)$ containing the robot position and heading in the N-Frame
- \mathbf{uk} input vector $u_k = [u_k^T, v_k^T, w_k^T, r_k^T]^T$ containing the DVL linear velocity and the gyro angular speed, both referenced in the B-Frame

Returns

current mean state vector containing the current robot position and heading $(x_k = [x_k^T, y_k^T, z_k^T, \psi_k^T]^T)$ represented in the N-Frame

Jfx(xk 1)

Jacobian of the motion model with respect to the state vector:

$$J_{fx} = \frac{\partial f(x_{k-1}, u_k, w_k)}{\partial x_{k-1}} = \frac{\partial x_{k-1} \oplus (u_k + w_k)}{\partial x_{k-1}} = J_{1\oplus}$$

$$\tag{1.43}$$

Parameters

xk_1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

Jfw(xk 1)

Jacobian of the motion model with respect to the motion model noise vector:

$$J_{fx} = \frac{\partial f(x_{k-1}, u_k, w_k)}{\partial w_k} = \frac{\partial x_{k-1} \oplus (u_k + w_k)}{\partial w_k} = J_{2\oplus}$$
(1.44)

Parameters

 \mathbf{xk}_{-1} – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

$hm(xk_bar)$

Observation model related to the measurements observations of the EKF to be overwritten by the child class.

Parameters

xk_bar – mean of the predicted state vector. By default it is taken from the class attribute.

Returns

expected observation vector

Jhmx(xk)

Jacobian of the measurement model with respect to the state vector:

$$J_{hmx} = H_{m_k} = \frac{\partial h_m(x_k, v_k)}{\partial x_k} = \frac{\partial [z_{depth}^T, \psi_{compass}^T]^T}{\partial x_k} = \begin{bmatrix} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1.45)

Parameters

 \mathbf{xk} – mean state vector containing the robot position and heading $(x_k = [x_k^T, y_k^T, z_k^T, \psi_k^T]^T)$ represented in the N-Frame

Returns

observation matrix (Jacobian) matrix eq. (1.45).

$Jhmv(xk_bar)$

Jacobian of the measurement model with respect to the measurement noise vector:

$$J_{hmv} = V_{m_k} = \frac{\partial h_m(x_k, v_k)}{\partial v_k} = I_{2 \times 2}$$
(1.46)

Parameters

xk – mean state vector containing the robot position and heading $(x_k = [x_k^T, y_k^T, z_k^T, \psi_k^T]^T)$ represented in the N-Frame

Returns

observation noise (Jacobian) matrix eq. (1.46).

GetInput()

Get the input from the robot. Relates to the motion model as follows:

$$x_k = f(x_{k-1}, u_k, w_k)$$

$$w_k = N(0, Q_k)$$
(1.47)

To be overidden by the child class.

Return uk, Qk

input and covariance of the motion model

GetMeasurements()

Get the measurements from the robot. Corresponds to the observation model:

$$z_k = h(x_k, v_k) v_k = N(0, R_k)$$
(1.48)

To be overidden by the child class.

Return zk, Rk

observation vector and covariance of the observation noise.

4 DOF AUV EKF Localization using a Constant Velocity Motion Model with Depht, Yaw and Linear Velocity Measurements

Bases: GFLocalization, DR_4DOFAUV_DVLGyro, EKF

__init__(kSteps, robot, *args)

Constructor.

Parameters

- x0 initial state
- P0 initial covariance
- **index** Named tuple used to map the state vector, the simulation vector and the observation vector (prpy.IndexStruct)
- **kSteps** simulation time steps
- robot Simulated Robot object
- args arguments to be passed to the parent constructor

 $\mathbf{f}(xk_1, uk)$

" Motion model of the EKF to be overwritten by the child class.

Parameters

- **xk_1** previous mean state vector
- uk input vector

Return xk bar, Pk bar

predicted mean state vector and its covariance matrix

 $Jfx(xk_1)$

Jacobian of the motion model with respect to the state vector. Method to be overwritten by the child class.

Parameters

 \mathbf{xk}_{-1} – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

$Jfw(xk_1)$

Jacobian of the motion model with respect to the noise vector. Method to be overwritten by the child class.

Parameters

 xk_1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

$hm(xk_bar)$

Observation model related to the measurements observations of the EKF to be overwritten by the child class.

Parameters

xk_bar – mean of the predicted state vector. By default it is taken from the class attribute.

Returns

expected observation vector

Jhmx(xk bar)

Jhmv(xk_bar)

GetInput()

Get the input from the robot. Relates to the motion model as follows:

$$x_k = f(x_{k-1}, u_k, w_k) w_k = N(0, Q_k)$$
(1.49)

To be overidden by the child class.

Return uk, Ok

input and covariance of the motion model

GetMeasurements()

Get the measurements from the robot. Corresponds to the observation model:

$$z_k = h(x_k, v_k) v_k = N(0, R_k)$$
 (1.50)

To be overidden by the child class.

Return zk. Rk

observation vector and covariance of the observation noise.

3 DOF Differential Drive Mobile Robot

Differential Drive Grid EKF Using an Input displacement Motion Model

 $Bases: \textit{GFLocalization}, \textit{DR_3D0FD} if ferential \textit{Drive}, \textit{EKF}$

This class implements an EKF localization filter for a 4 DOF AUV using an input velocity motion model incorporating DVL linear velocity mesurements, a gyro angular speed measurement, as well as depth and yaw measurements. Inherit from PoseCompounding4D0F first, to ensure it uses the overridden \oplus and \ominus methods.

Then, it inherits from GFLocalization to implement a localization filter and, finally, it inherits from EKF to use the EKF Gaussian filter implementation for the localization.

__init__(kSteps, robot, *args)

Constructor.

Parameters

args – arguments to be passed to the base class constructor

GetInput()

Get the input from the robot. Relates to the motion model as follows:

$$x_k = f(x_{k-1}, u_k, w_k) w_k = N(0, Q_k)$$
(1.51)

To be overidden by the child class.

Return uk, Qk

input and covariance of the motion model

 $\mathbf{f}(xk_1, uk)$

Non-linear motion model using as input the DVL linear velocity and the gyro angular speed:

$$x_k = f(x_{k-1}, u_k, w_k) = x_{k-1} \oplus (u_k + w_k) \Delta t$$

$$x_{k-1} = [x_{k_1}^T, y_{k_1}^T, z_{k_1}^T, \psi_{k_1}^T]^T$$

$$u_k = [u_k, v_k, w_k, r_k]^T$$

Parameters

- \mathbf{xk} _1 previous mean state vector $(x_{k-1} = [x_{k-1}^T, y_{k-1}^T, z_{k-1}^T, \psi_{k-1}^T]^T)$ containing the robot position and heading in the N-Frame
- \mathbf{uk} input vector $u_k = [u_k^T, v_k^T, w_k^T, r_k^T]^T$ containing the DVL linear velocity and the gyro angular speed, both referenced in the B-Frame

Returns

current mean state vector containing the current robot position and heading $(x_k = [x_k^T, y_k^T, z_k^T, \psi_k^T]^T)$ represented in the N-Frame

Jfx(xk 1)

Jacobian of the motion model with respect to the state vector:

$$J_{fx} = \frac{\partial f(x_{k-1}, u_k, w_k)}{\partial x_{k-1}} = \frac{\partial x_{k-1} \oplus (u_k + w_k)}{\partial x_{k-1}} = J_{1\oplus}$$

$$\tag{1.52}$$

Parameters

xk_1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

Jfw(xk 1)

Jacobian of the motion model with respect to the motion model noise vector:

$$J_{fx} = \frac{\partial f(x_{k-1}, u_k, w_k)}{\partial w_k} = \frac{\partial x_{k-1} \oplus (u_k + w_k)}{\partial w_k} = J_{2\oplus}$$
(1.53)

Parameters

xk_1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

hm(xk)

Observation model related to the measurements observations of the EKF to be overwritten by the child class.

Parameters

xk_bar – mean of the predicted state vector. By default it is taken from the class attribute.

Returns

expected observation vector

GetMeasurements()

Gets the measurement vector and the measurement noise covariance matrix from the robot. The measurement vector contains the depth read from the depth sensor and the heading read from the compass sensor.

Returns

observation vector z_k and observation noise covariance matrix R_k defined in eq. eq-zk-EKF_3DOFDifferentialDriveInputDisplacement.

Differential Drive Grid EKF Using a Constant Velocity Motion Model

Bases: GFLocalization, DR_3DOFDifferentialDrive, EKF

__init__(kSteps, robot, *args)

Constructor.

Parameters

- x0 initial state
- **P0** initial covariance
- **index** Named tuple used to map the state vector, the simulation vector and the observation vector (prpy.IndexStruct)
- **kSteps** simulation time steps
- robot Simulated Robot object
- args arguments to be passed to the parent constructor

$\mathbf{f}(xk \ 1, uk)$

" Motion model of the EKF to be overwritten by the child class.

Parameters

- xk_1 previous mean state vector
- uk input vector

Return xk_bar, Pk_bar

predicted mean state vector and its covariance matrix

$Jfx(xk_1)$

Jacobian of the motion model with respect to the state vector. Method to be overwritten by the child class.

Parameters

 \mathbf{xk} _1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

$Jfw(xk_1)$

Jacobian of the motion model with respect to the noise vector. Method to be overwritten by the child class.

Parameters

 \mathbf{xk} _1 – Linearization point. By default the linearization point is the previous state vector taken from a class attribute.

Returns

Jacobian matrix

hm(xk)

Observation model related to the measurements observations of the EKF to be overwritten by the child class.

Parameters

xk_bar – mean of the predicted state vector. By default it is taken from the class attribute.

Returns

expected observation vector

GetInput()

Get the input from the robot. Relates to the motion model as follows:

$$x_k = f(x_{k-1}, u_k, w_k) w_k = N(0, Q_k)$$
(1.54)

To be overidden by the child class.

Return uk, Qk

input and covariance of the motion model

GetMeasurements()

Get the measurements from the robot. Corresponds to the observation model:

$$z_k = h(x_k, v_k)$$

 $v_k = N(0, R_k)$ (1.55)

To be overidden by the child class.

Return zk, Rk

observation vector and covariance of the observation noise.

1.6.6 Feature Map based EKF Localzation

Feature Map based EKF Localization

Map Feature

MapFeature.MapFeature
GetFeatures()
GetRobotPose(xk)
J_o2s(v)
J_s2o(v)
Jgv(xk, BxFj)
Jgx(xk, BxFj)
JhfHix(xk, Fj)
Jhfv(xk)
Jhfx(xk)
g(xk, BxFj)
hf(xk)
hfHi(xk_bar, Fj)
o2s(v)
s2o(v)

class MapFeature.MapFeature(*args)

Bases: object

This class provides the functionality required to use Map Features for Robo Localization. It has methods for reading the feature pose using the robot the sensors (*GetFeatures()*), as well as for computing its:

- observation model (hf()),
- inverse observation model (g())
- all the required Jacobians (Jhfx(), Jhfv(), Jgx()) and Jgv()).

When mapped, a feature may involve 2 different representations:

- The observation representation, which is the representation used by the sensors to observe the feature.
- The storage representation, which is the representation used to store the feature within the map within the state vector.

For instance, a feature may be observed in polar coordinates but stored in Cartesian coordinates. In this case, the observation representation is the polar coordinates and the storage representation is the Cartesian coordinates. The class provides method to convert from one representation to the other (s2o()) and o2s()) and their corresponding Jacobians ($J_s2o()$) and $J_s2o()$). By default, the observation representation is the same as the storage representation, but this behaviour may be overriden in child classes.

GetFeatures()

Reads the Feature observations from the sensors. For all features within the field of view of the sensor, the method returns the list of robot-related poses, the covariance of their corresponding observation noise, the corresponding observation matrix and the noise Jacobian matrix. **This is a pure virtual method that must be overriden in child classes**.

Returns

vector of features observations in the B-Frame and the covariance of their corresponding noise.

- $z_k = \begin{bmatrix} {}^B x_{F_i}^T \cdots {}^B x_{F_j}^T \cdots {}^B x_{F_k}^T \end{bmatrix}^T$
- $R_k = block_diag([R_{F_i} \cdots R_{F_j} \cdots R_{F_k}])$
- $H_k = block_diag([H_{F_i} \cdots H_{F_j} \cdots H_{F_k}])$

•
$$V_K = I_{z_{nf} \times z_{nf}}$$

s2o(v)

Conversion function from the storage representation to the observation representation. By default, it returns the same vector as the one provided as input, assuming that the observation representation is the same as the storage representation. In case it is not, this method must be overriden in the child class.

Parameters

v – vector in the storage representation

Returns

vector in the observation representation

o2s(v)

Conversion function from the observation representation to the storage representation. By default, it returns the same vector as the one provided as input, assuming that the observation representation is the same as the storage representation. In case it is not, this method must be overriden in child classes.

Parameters

v – vector in the observation representation

Returns

vector in the storage representation

$J_s2o(v)$

Jacobian of the conversion function from the storage representation to the observation representation. By default, it returns the identity matrix, assuming that the observation representation is the same as the storage representation. In case it is not, this method must be overriden in the derived class.

Parameters

v – vector in the storage representation

Returns

Jacobian of the conversion function from the storage representation to the observation representation

$J_o2s(v)$

Jacobian of the conversion function from the observation representation to the storage representation. By default, it returns the identity matrix, assuming that the observation representation is the same as the storage representation. In case it is not, this method must be overriden in the derived class.

Parameters

 \mathbf{v} – vector in the observation representation

Returns

Jacobian of the conversion function from the observation representation to the storage representation

$\mathbf{hf}(xk)$

This is the direct observation model, implementing the feature observation function for the data association hypothesis $H = [H_1 \cdots H_i \cdots H_{n_zf}]$ stored in the attibute FEKFMBL.FEKFMBL.H. Given the obsevation vector $z_f = [z_{f_1}^T \cdots z_{f_i}^T \cdots z_{f_{n_{zf}}}^T]^T$, the state vector $x_k = [{}^N x_B^T \ x_{rest}^T]^T$ and the observation noise $v_k = [v_{f1_k}^T \cdots v_{fi_k}^T \cdots v_{fn_{zf_k}}^T]^T$ the observation equation is given by:

$$z_f = h_f(x_k, v_k) \tag{1.56}$$

which may be expanded as follows:

$$\begin{bmatrix} z_{f_{1}} \\ \vdots \\ z_{f_{i}} \\ \vdots \\ z_{n_{zf}} \end{bmatrix} = \begin{bmatrix} h_{f_{H_{1}}}(x_{k}, v_{k}) \\ \vdots \\ h_{f_{H_{i}}}(x_{k}, v_{k}) \\ \vdots \\ h_{f_{H_{n_{z_{f}}}}}(x_{k}, v_{k}) \end{bmatrix} = \begin{bmatrix} s2o(\ominus^{N}x_{B} \boxtimes^{N} x_{F_{H_{1}}}) + v_{f1_{k}} \\ \vdots \\ s2o(\ominus^{N}x_{B} \boxtimes^{N} x_{F_{H_{i}}}) + v_{fi_{k}} \\ \vdots \\ s2o(\ominus^{N}x_{B} \boxtimes^{N} x_{F_{H_{n_{z_{f}}}}}) + v_{fn_{z_{f}}} \end{bmatrix}$$

$$(1.57)$$

being hfHi() the observation function (eq. (1.59)) for the data association hypothesis $H_i \Rightarrow z_{fi} \rightarrow^N x_{F_{H_i}}$, and s2o() the conversion function from the storage representation to the observation one.

The method computes the expected observation h_f for the z_f observation. To do it, it iterates over each feature observation z_{f_i} calling the method hfHi() to compute the expected observation h_{fH_i} for each feature observation z_{f_i} , collecting all them in the returned vector.

Parameters

xk – state vector mean \hat{x}_k .

Returns

vector of expected features observations corresponding to the vector of observed features z_f .

$\mathbf{Jhfx}(xk)$

Computes the Jacobian of the feature observation function hf() (eq. (1.55)), with respect to the state vector \bar{x}_k :

$$J_{hfx} = \frac{\partial h_f(x_k, v_k)}{\partial x_k} = \begin{bmatrix} \frac{\partial h_{f_{H_1}}(x_k, v_k)}{\partial x_k} \\ \vdots \\ \frac{\partial h_{f_{H_i}}(x_k, v_k)}{\partial x_k} \\ \vdots \\ \frac{\partial h_{f_{H_{n_{zf}}}}(x_k, v_k)}{\partial x_k} \end{bmatrix} = \begin{bmatrix} J_{hfH1x} \\ \vdots \\ J_{hfH2x} \\ \vdots \\ J_{hfHn_{zf}x} \end{bmatrix}$$
(1.58)

where J_{hfHix} is the Jacobian of the observation function hfHi() (eq. (1.60)) for the feature observation z_{fi} . To do it, given a vector of observations $z_f = [z_{f_1} \cdots z_{f_i} \cdots z_{f_{n_{z_f}}}]$ this method iterates over each feature observation z_{fi} calling the method JhfHix() to compute the Jacobian of the observation function for each feature observation (J_{hfHix}), collecting all them in the returned Jacobian matrix J_{hfx} .

Parameters

 \mathbf{xk} – state vector mean \hat{x}_k .

Returns

Jacobian of the observation function hf() with respect ro the robot pose $J_{hfx}=\frac{\partial h_f(\bar{x}_k,v_{f_k})}{\bar{x}_k}$

$\mathbf{Jhfv}(xk)$

Computes the Jacobian of the observation function hf() with respect to the observation noise v_k . Normally, the observation noise in the observation B-Frame is linear (see eq. (1.56)) so the Jacobian is the identity

matrix.

$$J_{hfv} = \frac{\partial h_{f}(x_{k}, v_{k})}{\partial v_{k}}$$

$$= \begin{bmatrix} \frac{\partial h_{f_{H_{1}}}(x_{k}, v_{k})}{\partial v_{k}} \\ \vdots \\ \frac{\partial h_{f_{H_{1}}}(x_{k}, v_{k})}{\partial v_{k}} \\ \vdots \\ \frac{\partial h_{f_{H_{i}}}(x_{k}, v_{k})}{\partial v_{k}} \end{bmatrix} = \begin{bmatrix} \frac{\partial h_{f_{H_{1}}}(x_{k}, v_{k})}{\partial v_{f_{1}_{k}}} & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{\partial h_{f_{H_{1}}}(x_{k}, v_{k})}{\partial v_{f_{i_{k}}}} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \frac{\partial h_{f_{H_{1}}}(x_{k}, v_{k})}{\partial v_{f_{n_{z}f_{k}}}} \end{bmatrix} = I_{n_{zf} \times n_{zf}}$$

$$(1.59)$$

If it is not the case, this method must be overriden.

Parameters

xk – state vector mean \hat{x}_k .

Returns

Jacobian of the observation function hf() with respect ro the observation noise v_k $J_{hfv} = I_{n_{zf} \times n_{zf}}$

$\mathbf{hfHi}(xk\ bar, Fi)$

This is the direct observation model for a single feature observation z_{f_i} , so it implements its related observation function (see eq. (1.59)). For a single feature observation z_{f_i} of the feature ${}^Nx_{F_{H_i}}$ the method computes its expected observation from the current robot pose Nx_B . This function uses a generic implementation through the following equation:

$$z_{f_i} = h_{f_{H_i}}(x_k, v_k) = s2o(\ominus^N x_B \boxplus^N x_{F_{H_i}}) + v_{f_{i_k}}$$
(1.60)

Wwere ${}^{N}x_{B}$ is the robot pose included within the state vector ($x_{k} = [{}^{N}x_{B}^{T} \ x_{rest}^{T}]^{T}$) and s2o() is a conversion function from the store representation to the observation representation.

The method is called by hf() to compute the expected observation for each feature observation contained in the observation vector $z_f = [z_{f_1}^T \ \cdots \ z_{f_{n_z}f}^T]^T$.

Parameters

- xk_bar mean of the predicted state vector
- **Fj** map index of the observed feature: ${}^{N}x_{F_{i}} = self.M[Fj]$

Returns

expected observation of the feature $^{N}x_{F_{i}}$

JhfHix(xk, Fj)

Jacobian of the single feature direct observation model hfHi () (eq. (1.59)) with respect to the state vector \bar{x}_k :

$$x_{k} = \begin{bmatrix} {}^{N}x_{B}^{T} x_{rest}^{T} \end{bmatrix}^{T}$$

$${}^{N}x_{B} = F \cdot x_{k}; F = \begin{bmatrix} I_{p \times p} & 0_{p \times np} \end{bmatrix}$$

$$J_{hfHix} = \frac{\partial h_{f_{zfi}}(\bar{x}_{k}, {}^{N}x_{F_{j}}, v_{k})}{\partial x_{k}} = \frac{\partial s2o(\ominus F \cdot x_{k} \boxplus^{N}x_{F_{j}}) + v_{fi_{k}}}{\partial x_{k}}$$

$$= J_{s2o}(\ominus^{N}x_{B} \boxplus^{N}x_{F_{H_{i}}}) J_{1} \boxplus (\ominus^{N}x_{B}, {}^{N}x_{F_{H_{i}}}) J_{\ominus}({}^{N}x_{B}) F$$

$$(1.61)$$

where p is the dimension of the robot pose $^{N}x_{B}$ and np is the dimension of the rest of the state vector x_{rest} .

Parameters

- **xk** state vector mean
- Fj map index of the observed feature

Returns

Jacobian matrix defined in eq. (1.60)

g(xk, BxFj)

This method provides a generic implementation of the inverse observation model. It computes the feature pose in the N-Frame ${}^N x_{F_j}$ by compounding the robot pose ${}^N x_B$, from where the observation was taken, with the B-Frame referenced feature observation Bx_{F_i} :

$${}^{N}x_{F_{i}} = {}^{N}x_{B} \boxplus o2s({}^{B}x_{F_{i}} + v_{k})$$
 (1.62)

In this case, o2s() is the conversion function converting from the observation space to the representation one. It is worth noting that the robot pose Nx_B is included within the state vector x_k but might not be the whole state vector. For instance, in some cases the state vector may include as well the robot velocity $x_k = [{}^Nx_B^T {}^B\nu_k^T]^T$. Note that the g() works with a single feature observation, instead than with a vector of feature observations.

Parameters

- \mathbf{xk} mean state vector containing the robot pose $^{N}x_{B}$ from where the observation was taken
- **BxFj** feature observation in the B-Frame ${}^Bx_{F_i}$

Returns

mean feature pose in the N-Frame $^{N}x_{F_{i}}$

Jgx(xk, BxFi)

Jacobian of the inverse observation model g(), with respect to the state vector x_k . According to the generic implementation of the inverse observation model g() eq. (1.61), the Jacobian is computed as follows:

$$J_{gx} = \frac{\partial g(^{N}x_{B}, ^{B}x_{F_{j}})}{x_{k}} = \left[J_{1} \oplus (^{N}x_{B}, o2s(^{B}x_{F_{j}})) \quad 0\right]$$
(1.63)

The zero submatrix, if present, corresponds to the derivate with respect to the non-positional elements of the state vector, for instance the robot velocity ${}^{B}\nu_{k}$, in case this was included within the state vector. If the state vector only containes the pose, then the 0 submatrix vanishes.

Parameters

xk_bar – predicted state vector

Returns

Jacobian of the inverse observation model g() with respect to the state vector (eq. (1.62))

Jgv(xk, BxFj)

Jacobian of the inverse observation model g(), with respect to the observation noise v_k . According to the generic implementation of the inverse observation model g() eq. (1.61), the Jacobian is computed as follows:

$$J_{gv} = \frac{\partial g(^N x_k, ^B x_{F_j}), v_k}{v_k} = J_{2\boxplus}(^N x_B, o2s(^B x_{F_j})) J_{o2s}(^B x_{F_j})$$
(1.64)

Parameters

• \mathbf{xk} – state vector containing the robot pose ${}^{N}x_{B}$ from where the observation was taken

• **BxFj** – feature observation in the B-Frame ${}^Bx_{F_i}$

Returns

Jacobian of the inverse observation model g() with respect to the observation noise J_{gv} (see eq. (1.63)).

GetRobotPose(xk)

Extracts the robot pose from the state vector.

Parameters

 \mathbf{xk} – mean of the state vector:math:x k

Returns

mean robot pose x_{B_k}

Cartesian Map Feature

class MapFeature.Cartesian2DMapFeature(*args)

Bases: MapFeature

This class inherits from the *MapFeature* and implements a 2D Cartesian feature model for the MBL problem. The Cartesian coordinates are used for both, observing the feature and for its storage within the map. This class overrides the *GetFeatures()* method to read the 2D Cartesian Features from the robot.

GetFeatures()

Reads the Features observations from the sensors. For all features within the field of view of the sensor, the method returns the list of robot-related poses and the covariance of their corresponding observation noise in **2D Cartesian coordinates**.

Return zk. Rk

list of Cartesian features observations in the B-Frame and the covariance of their

corresponding observation noise: *
$$z_k = [{}^Bx_{F_i}^T\cdots{}^Bx_{F_j}^T\cdots{}^Bx_{F_k}^T]^T$$
 * $R_k = block_diag([R_{F_i}\cdots R_{F_j}\cdots R_{F_k}])$

Cartesian Map Feature Observed in Polar Coordinates

class MapFeature.Cartesian2DStoredPolarObservedMapFeature(*args)

Bases: Cartesian2DMapFeature

This class implements the <code>MapFeature</code> interface for landmarks observed in polar coordinates and stored in Cartesian coordinates. It inherits from <code>Cartesian2DMapFeature</code> which provides the <code>Cartesian2DMapFeature</code>. <code>GetFeatures()</code> in charge of reading the 2D Cartesian Features from the robot and overrides the <code>o2s()</code> and <code>s2o()</code> methods to allow the conversion between the observation and storage representations.

GetFeatures()

Reads the Features observations from the sensors. For all features within the field of view of the sensor, the method returns the list of robot-related poses and the covariance of their corresponding observation noise in **2D Cartesian coordinates**.

Return zk, Rk

list of features observations in the B-Frame and the covariance of their corresponding observation noise: * $z_k = [{}^B x_{F_i}^T \cdots {}^B x_{F_i}^T \cdots {}^B x_{F_k}^T]^T * R_k = block_diag([R_{F_i} \cdots R_{F_j} \cdots R_{F_k}])$

o2s(p)

Converts the feature from the observation frame to the sensor frame.

Parameters

p – feature in the observation frame

Returns

feature in the sensor frame

s2o(c)

Converts the feature from the sensor frame to the observation frame.

Parameters

c – feature in the sensor frame

Returns

feature in the observation frame

 $J_o2s(p)$

Jacobian of the o2s() function.

Parameters

p – feature in the observation frame

Returns

Jacobian of the o2s() function

 $J_s2o(c)$

Jacobian of the s20() function.

Parameters

c – feature in the sensor frame

Returns

Jacobian of the \$20() function

Feature Map based EKF Localization

class FEKFMBL.FEKFMBL(M, alpha, *args)

Bases: GFLocalization, MapFeature

Feature Extended Kalman Filter Map based Localization class. Inherits from *GFLocalization*. *GFLocalization* and *MapFeature*. MapFeature. The first one provides the basic functionality of a localization algorithm, while the second one provides the basic functionality required to use features. *FEKFMBL*. *FEKFMBL* extends those classes by adding functionality to use a map based on features.

__init__(M, alpha, *args)

Constructor of the FEKFMBL class.

Parameters

- xBpose_dim dimensionality of the robot pose within the state vector
- xB_dim dimensionality of the state vector
- **xF_dim** dimentsionality of a feature
- zfi_dim dimensionality of a single feature observation

- M Feature Based Map $M = [{}^N x_{F_1}^T \dots {}^N x_{F_{n_s}}^T]^T$
- alpha Chi2 tail probability. Confidence interaval of the individual compatibility test
- args arguments to be passed to the EKFLocalization constructor

$\mathbf{h}(xk)$

Observation model for the joint measurements and feature observations:

$$z_k = h(x_k, v_k) \Rightarrow \begin{bmatrix} z_m \\ z_f \end{bmatrix} = \begin{bmatrix} h_m(x_k, v_m) \\ h_f(x_k, v_f) \end{bmatrix} \; ; \; v_k = [v_m^T \; v_f^T]^T$$
 (1.65)

This method calls *EKF.EKF.hm()* and *MapFeature.MapFeature.hf()* to obtain the expected sensor measurements and the expected feature observations respectively. The method returns an stacked vector of expected measurements and feature observations.

Parameters

xk – mean state vector used as linearization point

Returns

Joint stacked vector of the expected mesurement and feature observations

SquaredMahalanobisDistance(hfj, Pfj, zfi, Rfi)

Computes the squared Mahalanobis distance between the expected feature observation hf_j and the feature observation z_{f_i} .

Parameters

- hfj expected feature observation
- Pfj expected feature observation covariance
- **zfi** feature observation
- Rfi feature observation covariance

Returns

Squared Mahalanobis distance between the expected feature observation hf_j and the feature observation z_{f_i}

IndividualCompatibility(D2_ij, dof, alpha)

Computes the individual compatibility test for the squared Mahalanobis distance D_{ij}^2 . The test is performed using the Chi-Square distribution with dof degrees of freedom and a significance level α .

Parameters

- D2_ij squared Mahalanobis distance
- dof number of degrees of freedom
- alpha confidence level

Returns

bolean value indicating if the Mahalanobis distance is smaller than the threshold defined by the confidence level

ICNN(hf, Phf, zf, Rf, dim)

Individual Compatibility Nearest Neighbor (ICNN) data association algorithm. Given a set of expected feature observations h_f and a set of feature observations z_f , the algorithm returns a pairing hypothesis H that associates each feature observation z_{f_i} with the expected feature observation h_{f_j} that minimizes the Mahalanobis distance D_{ij}^2 .

Parameters

- **hf** vector of expected feature observations
- **Phf** Covariance matrix of the expected feature observations
- **zf** vector of feature observations
- Rf Covariance matrix of the feature observations
- **dim** feature dimensionality

Returns

The vector of asociation hypothesiss

DataAssociation(xk, Pk, zf, Rf)

Data association algorithm. Given state vector $(x_k \text{ and } P_k)$ including the robot pose and a set of feature observations z_f and its covariance matrices R_f , the algorithm computes the expected feature observations h_f and its covariance matrices P_f . Then it calls an association algorithms like ICNN() (JCBB, etc.) to build a pairing hypothesis associating the observed features z_f with the expected features observations h_f .

The vector of association hypothesis H is stored in the H attribute and its dimension is the number of observed features within z_f . Given the j^{th} feature observation z_{f_j} , self.H[j]=i means that z_{f_j} has been associated with the i^{th} feature . If self.H[j]=None means that z_{f_j} has not been associated either because it is a new observed feature or because it is an outlier.

Parameters

- **xk** mean state vector including the robot pose
- Pk covariance matrix of the state vector
- **zf** vector of feature observations
- **Rf** Covariance matrix of the feature observations

Returns

The vector of asociation hypothesiss

Localize(xk_1, Pk_1)

Localization iteration. Reads the input of the motion model, performs the prediction step (*EKF. Prediction()*), reads the measurements and the features, solves the data association calling <code>DataAssociation()</code> and the performs the update step (<code>EKF.EKF.Update()</code>) and logs the results. The method also plots the uncertainty ellipse (<code>PlotUncertainty()</code>) of the robot pose, the feature observations and the expected feature observations.

Parameters

- **xk_1** previous state vector
- Pk_1 previous covariance matrix

Return xk, Pk

updated state vector and covariance matrix

${\tt StackMeasurementsAndFeatures}({\it zm},{\it Rm},{\it Hm},{\it Vm},{\it zf},{\it Rf},{\it H})$

Given the vector of measurements observations z_m together with their covariance matrix R_m , the vector of feature observations z_f together with their covariance matrix R_f , The measurement observation matrix H_m , the measurement observation noise matrix V_m and the vector of feature associations H, this method returns the joint observation vector z_k , its related covariance matrix R_k , the stacked Observation matrix H_k , the stacked noise observation matrix V_k , the vector of non-paired features v_k and its noise covariance matrix v_k . It is assumed that the measurements and the features observations are independent, therefore the covariance matrix of the joint observation vector is a block diagonal matrix.

Parameters

- **zm** measurement observations vector
- Rm covariance matrix of the measurement observations
- **Hm** measurement observation matrix
- Vm measurement observation noise matrix
- **zf** feature observations vector
- **Rf** covariance matrix of the feature observations
- H features associations vector

Returns

vector of joint measurement and feature observations z_k and its covariance matrix R_k

SplitFeatures(zf, Rf, H)

Given the vector of feature observations z_f and their covariance matrix R_f , and the vector of feature associations H, this function returns the vector of paired feature observations z_p together with its covariance matrix R_p , and the vector of non-paired feature observations z_{np} together with its covariance matrix R_{np} . The paired observations will be used to update the filter, while the non-paired ones will be considered as outliers. In the case of SLAM, they become new feature candidates.

Parameters

- **zf** vector of feature observations
- **Rf** covariance matrix of feature observations
- H hypothesis of feature associations

Returns

vector of paired feature observations z_p , covariance matrix of paired feature observations R_p , vector of non-paired feature observations z_{np} , covariance matrix of non-paired feature observations R_{np} .

PlotFeatureObservationUncertainty(zf, Rf)

Plots the uncertainty ellipse of the feature observations. This method is called by FEKFMBL. PlotUncertainty().

Parameters

- **zf** vector of feature observations
- **Rf** covariance matrix of the feature observations

PlotExpectedFeaturesObservationsUncertainty()

For all features in the map, this method plots the uncertainty ellipse of the expected feature observations. This method is called by *FEKFMBL.PlotUncertainty()*.

PlotSampleObservationSpace(NxB, BxFj, BPFj, n, color='r.')

Plots n samples from a Gaussian distribution with mean x and covariance P. This method is called by FEKFMBL.PlotUncertainty(). This is a method for testing. It can be used to compare the uncertainty ellipse with the samples.

Parameters

- x mean of the Gaussian distribution
- P covariance of the Gaussian distribution
- **n** number of samples
- **color** color of the samples

PlotSample(x, P, n, color='r.')

Plots n samples from a Gaussian distribution with mean x and covariance P. This method is called by FEKFMBL.PlotUncertainty(). This is a method for testing. It can be used to compare the uncertainty ellipse with the samples.

Parameters

- **x** mean of the Gaussian distribution
- P covariance of the Gaussian distribution
- **n** number of samples
- **color** color of the samples

PlotRobotUncertainty()

Plots the robot trajectory and its uncertainty ellipse. This method is called by FEKFMBL. PlotUncertainty().

PlotUncertainty(zf, Rf)

Plots the uncertainty ellipses of the robot pose (*PlotRobotUncertainty(*)), the feature observations (*PlotFeatureObservationUncertainty(*)) and the expected feature observations (*PlotExpectedFeaturesObservationsUncertainty(*)). This method is called by *FEKFMBL*. *Localize(*) at the end of a localization iteration in order to update the online visualization.

Parameters

- **zf** vector of feature observations
- **Rf** covariance matrix of the feature observations

GetRobotState(xk)

Returns the robot state from the state vector.

Parameters

 \mathbf{xk} – mean of the state vector:math: x_k

Returns

mean robot state x_{B_k}

SetRobotState(xk, xB)

Updates the robot state within the state vector.

Parameters

- \mathbf{xk} mean of the state vector:math:x k
- **xB** mean robot state x_{B_k}

Returns

updatd mean state vector x_k

GetRobotStateCovariance(Pk)

Returns the robot covariance from the state covariance matrix.

Parameters

Pk – state vector covariance matrix P_k

Returns

robot state covariance P_{B_k}

SetRobotStateCovariance(Pk, PB)

Updates the robot covariance from the state covariance matrix.

Parameters

- **Pk** state vector covariance matrix P_k
- **PB** robot state covariance P_{B_k}

Returns

updatd state covariance matrix P_k

SetRobotPose(xk, xB)

Updates the robot pose within the state vector.

Parameters

- $\mathbf{x}\mathbf{k}$ mean of the state vector:math:x k
- **xB** mean robot pose x_{B_k}

Returns

updatd mean state vector x_k

GetRobotPoseCovariance(Pk)

Returns the robot pose covariance from the state covariance matrix.

Parameters

 \mathbf{Pk} – state vector covariance matrix P_k

Returns

robot pose covariance P_{B_k}

SetRobotPoseCovariance(Pk, PB)

Updates the robot pose covariance from the state covariance matrix.

Parameters

- \mathbf{Pk} state vector covariance matrix P_k
- **PB** robot pose covariance P_{B_k}

Returns

updated state covariance matrix P_k

4 DOF AUV

4 DOF AUV Map based EKF Localization using an Input Velocity Motion Model with Depht, Yaw and Linear Velocity Measurements, and a 2D Cartesian Feature Observation Model

3 DOF Differential Drive Mobile Robot

Differential Drive EKF Map Based Localization EKF Using an Input displacement Motion Model and 2D Cartesian Feature Observation Model

class MBL_3D0FDDInputDisplacementMM_2DCartesianFeatureOM.MBL_3D0FDDInputDisplacementMM_2DCartesianFeatureOm.

 $Bases:\ Cartesian 2DM ap Feature,\ FEKFMBL,\ EKF_3DOFD ifferential DriveInput Displacement$

Feature EKF Map based Localization of a 3 DOF Differential Drive Mobile Robot $(x_k = [^N x_{B_k} \ ^N y_{B_k} \ ^N \psi_{B_k}]^T)$ using a 2D Cartesian feature map $(M = [[^N x_{F_1} \ ^N y_{F_1}] \ [x_{F_2} \ ^N y_{F_2}] \ ... \ [^N x_{F_n} \ ^N y_{F_n}]]^T)$, and an input displacement motion model (:math:u_k=[^BDeltax_k ^BDelta y_k ^BDelta x psi_k]^T`). The class inherits from

the following classes: * Cartesian2DMapFeature: 2D Cartesian MapFeature using the Catesian coordinates for both, storage and landmark observations. * FEKFMBL: Feature EKF Map based Localization class. * EKF_3DOFDifferentialDriveInputDisplacement: EKF for 3 DOF Differential Drive Mobile Robot with input displacement motion model.

Constructor of the FEKFMBL class.

Parameters

- **xBpose_dim** dimensionality of the robot pose within the state vector
- **xB_dim** dimensionality of the state vector
- xF_dim dimentsionality of a feature
- **zfi_dim** dimensionality of a single feature observation
- M Feature Based Map $M = [{}^N x_{F_1}^T \dots {}^N x_{F_{n_f}}^T]^T$
- alpha Chi2 tail probability. Confidence interaval of the individual compatibility test

class MBL_3D0FDDInputDisplacementMM_2DCartesianFeatureOM.MBL_3D0FDDInputDisplacementMM_2DCartesianFeatureOM.

• args – arguments to be passed to the EKFLocalization constructor

Differential Drive EKF Map Based Localization EKF Using an Input displacement Motion Model and 2D Feature Store in Cartesina and Observed in Polar Coordinates

2D Feature Store in Cartesina and Observed in Polar Coordinates

Bases: Cartesian2DMapFeature, FEKFMBL, EKF_3DOFDifferentialDriveInputDisplacement

Feature EKF Map based Localization of a 3 DOF Differential Drive Mobile Robot $(x_k = [^N x_{B_k} \ ^N y_{B_k} \ ^N \psi_{B_k} \]^T)$ using a 2D Cartesian feature map $(M = [[^N x_{F_1} \ ^N y_{F_1}] \ [x_{F_2} \ ^N y_{F_2}] \ ... \ [^N x_{F_n} \ ^N y_{F_n}]]^T)$, and an input displacement motion model (:math:u_k=[^BDeltax_k ^BDelta y_k ^BDelta x psi_k]^T`). The class inherits from the following classes: * Cartesian2DMapFeature: 2D Cartesian MapFeature using the Catesian coordinates for both, storage and landmark observations. * FEKFMBL: Feature EKF Map based Localization class. * EKF_3D0FDifferentialDriveInputDisplacement: EKF for 3 DOF Differential Drive Mobile Robot with input displacement motion model.

Constructor of the FEKFMBL class.

Parameters

- xBpose_dim dimensionality of the robot pose within the state vector
- **xB_dim** dimensionality of the state vector
- xF_dim dimentsionality of a feature
- **zfi_dim** dimensionality of a single feature observation
- • M – Feature Based Map $M = [^N x_{F_1}^T \ \dots \ ^N x_{F_{n_f}}^T]^T$
- alpha Chi2 tail probability. Confidence interaval of the individual compatibility test
- args arguments to be passed to the EKFLocalization constructor

Differential Drive EKF Map Based Localization EKF Using an Input displacement Motion Model and 2D Polar Feature Observation Model

 ${\bf class} \ {\tt MBL_3D0FDDInputDisplacementMM_2DPolarFeatureOM.} {\bf MBL_3D0FDDInputDisplacementMM_2DPolarFeatureOM} (*arguments) {\bf class} \ {\tt M$

 $Bases: {\tt PolarMapFeature}, {\tt \it FEKFMBL}, {\tt \it EKF_3D0FD} if ferential {\tt \it DriveInputDisplacement}$

Feature EKF Map based Localization of a 3 DOF Differential Drive Mobile Robot $(x_k = [^N x_{B_k} \ ^N y_{B_k} \ ^N \psi_{B_k}]^T)$ using a 2D Cartesian feature map $(M = [[^N x_{F_1} \ ^N y_{F_1}] \ [x_{F_2} \ ^N y_{F_2}] \ ... \ [^N x_{F_n} \ ^N y_{F_n}]]^T)$, and an input displacement motion model (:math:u_k=[^BDeltax_k ^BDelta y_k ^BDelta x psi_k]^T`). The class inherits from the following classes: * Cartesian2DMapFeature: 2D Cartesian MapFeature using the Catesian coordinates for both, storage and landmark observations. * FEKFMBL: Feature EKF Map based Localization class. * EKF_3D0FDifferentialDriveInputDisplacement: EKF for 3 DOF Differential Drive Mobile Robot with input displacement motion model.

Constructor of the FEKFMBL class.

Parameters

- xBpose_dim dimensionality of the robot pose within the state vector
- xB_dim dimensionality of the state vector
- **xF_dim** dimentsionality of a feature
- zfi_dim dimensionality of a single feature observation
- • M – Feature Based Map $M = [{}^N x_{F_1}^T \ ... \ {}^N x_{F_{n_f}}^T]^T$
- alpha Chi2 tail probability. Confidence interaval of the individual compatibility test
- args arguments to be passed to the EKFLocalization constructor

Differential Drive EKF Map Based Localization EKF Using a Ct Velocity Motion Model and 2D Cartesian Feature Observation Model

1.7 Simulatenous Localization And Mapping

1.7.1 Feature based EKF Simultaneous Localization And Mapping

Feature based EKF Simultaneous Localization And Mapping

To be completed...

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

prpy: Probabilistic Robot Localization Python Library, Release 0.1		

INDEX

Symbols	init() (Pose.Pose4D method), 8
PlotSample() (AUV4DOFSimulatedRobot.AUV4DO	FSimulatedRobot (SimulatedRobot.SimulatedRobot method),
method), 29	20
_PlotSample() (SimulatedRobot.SimulatedRob	oot A
method), 21	A
init() (AUV4DOFSimulatedRobot.AUV4DOFSi	mula AUNADOF Simulated Robot (class in
method), 25	AUV4DOFSimulated $Robot$), 25
init() (DR_3DOFDifferentialDrive.DR_3DOFL	Differ en tialDrive
method), 39	[™] В
init() (DR_4DOFAUV_DVLGyro.DR_4DOFAU	V_D voxp_slus() (Feature.CartesianFeature method), 12
method), 37	boxplus() (Feature.Feature method), 11
init() (DifferentialDriveSimular	te- boxplus() (Feature.PolarFeature method), 14
dRobot.DifferentialDriveSimulatedRobot	boxplus() (Pose.Pose method), 5
method), 22	
init() (EKF.EKF method), 33	C
init() (EKF_3DOFDifferentialDriveCtVelocity.	EKF_ SPPQF D nifforahtlalDniveRstVols)çit7
method), 60	c2s() (in module conversions), 19
init() (EKF_3DOFDifferentialDriveInputDispla	acementeKFi3h2ONApjfeceniceDeluskipuMipplanamen68
method), 57	Cartesian2DStoredPolarObservedMapFeature
init() (EKF_4DOFAUV_CtVelocityMM_DVLDe	epthYawOM.EKFla4DiAFALijNFeatWedo,cityMM_DVLDepthYawOM
method), 55	CartesianFeature (class in Feature), 12
init() (EKF_4DOFAUV_InputVelocityMM_DVI	LDepthYawOM.EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM
method), 52	D
init() (FEKFMBL.FEKFMBL method), 72	<pre>DataAssociation() (FEKFMBL.FEKFMBL method),</pre>
init() (Feature.Feature method), 11	74
init() (GFLocalization.GFLocalization method	d), DifferentialDriveSimulatedRobot (class in Differ-
49	entialDriveSimulatedRobot), 22
init() (GL.GL method), 42	DR 3D0FDifferentialDrive (class in
init() (GL_3DOFDifferentialDrive.GL_3DOFD	OifferentialDrivDR_3DOFDifferentialDrive), 39
method), 46	DR_4DOFAUV_DVLGyro (class in
init() (GL_4DOFAUV.GL_4DOFAUV method	d), DR_4DOFAUV_DVLGyro), 37
43	${\tt dt}(AUV4DOFS imulated Robot. AUV4DOFS imulated Robot$
init() (<i>HF.HF method</i>), 29	attribute), 25
init() (Histogram.Histogram2D method), 31	dt (SimulatedRobot.SimulatedRobot attribute), 20
init() (KF.KF method), 32	_
init() (Localization.Localization method), 36	E
init() (MBL_3DOFDDInputDisplacementMM_	2DCartesianFeatureOM.MBL_3DOFDDInputDisplacementMM_2DCartesianFo
method), 78, 81	EKF_3D0FDifferentialDriveCtVelocity (class in 2DPolarFeatureOM_3D0FDDIfferentialDriveCtVelocity), MM_2DPolarFeatureOM
init() (MBL_3DOFDDInputDisplacementMM_	2DPolarFeatureQM_MBL_3DQFDDInpytDjsplagementMM_2DPolarFeatureOl
meinoa), 81	EKF_3D0FDifferentialDriveInputDisplacement
init() (MapFeature.MapFeature method), 64	(class in EKF_3DOFDifferentialDriveInputDisplacement),
init() (Pose.Pose3D method), 6	57

```
EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM (class GetInput() (GFLocalization.GFLocalization method),
                         in EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM),
                                                                                                                                                     GetInput() (GL.GL method), 42
EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM
                                                                                                                                                     GetInput() (GL\_3DOFDifferentialDrive.GL\_3DOFDifferentialDrive
                         (class in EKF_4DOFAUV_InputVelocityMM_DVLDepthYaw@eth)qd), 49
                                                                                                                                                     GetInput() (GL 4DOFAUV.GL 4DOFAUV method),
element (Histogram. Histogram 2D property), 31
                                                                                                                                                     GetInput() (Localization.Localization method), 37
F
                                                                                                                                                     GetMeasurements() (EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOF
                                                                                                                                                                              method), 62
f() (EKF.EKF method), 33
 \textbf{f()} \ (EKF\_3DOFD ifferential DriveCtVelocity. EKF\_3DOFD ifferential DriveInput Displacement. EKF\_3DOFD ifferential DriveInput D
                                                                                                                                                                              method), 60
                        method), 60
f() (EKF_3DOFDifferentialDriveInputDisplacement.EKF_9DOFD) PROPERTY OF THE PRO
                                                                                                                                                                              method), 57
                         method), 59
f() (EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM.EKF_MP3OFAEVELEKFMADDFABYPHYAWOMDVLDepthYaw
                                                                                                                                                                              method), 54
f() (EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM: ENTE ADDITION ShiputVellAcontination (EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM: ENTE ADDITION (EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM: EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM: Ekf_4DOFAUV_InputVelocityMM_DVLD
                                                                                                                                                                              method), 51
                         method), 52
                                                                                                                                                     GetMeasurements() (GL.GL method), 42
Feature (class in Feature), 11
                                                                                                                                                     GetMeasurements() (GL 3DOFDifferentialDrive.GL 3DOFDifferentialD
FeatureObservation()
                                                                                   (FEKFMBL.FEKFMBL
                                                                                                                                                                              method), 48
                         method), 78
                                                                                                                                                     GetMeasurements()
                                                                                                                                                                                                                   (GL 4DOFAUV.GL 4DOFAUV
FeatureObservationCovariance()
                                                                                                                                                                              method), 45
                         (FEKFMBL.FEKFMBL method), 78
                                                                                                                                                     GetRobotPose() (MapFeature.MapFeature method), 68
FeatureStoredInCartesian()
                                                                                                     (Feature.Feature
                                                                                                                                                     GetRobotPoseCovariance() (FEKFMBL.FEKFMBL
                        method), 12
                                                                                                                                                                              method), 77
FEKFMBL (class in FEKFMBL), 72
\texttt{fs()} \ (AUV4DOFS imulated Robot. AUV4DOFS imulated Robot \texttt{State()} \ (FEKFMBL.FEKFMBL\ method), 76 \\
                                                                                                                                                     GetRobotStateCovariance() (FEKFMBL.FEKFMBL
                        method), 25
                                                                                                                                                                              method), 77
                                                                           (DifferentialDriveSimulate-
fs()
                                                                                                                                                     GFLocalization (class in GFLocalization), 49
                        dRobot. Differential Drive Simulated Robot
                                                                                                                                                     GL (class in GL), 41
                        method), 22
                                                                                                                                                     GL_3DOFDifferentialDrive
                                                                                                                                                                                                                                                          (class
                                                                                                                                                                                                                                                                                               in
fs() (SimulatedRobot.SimulatedRobot method), 21
                                                                                                                                                                              GL_3DOFDifferentialDrive), 46
G
                                                                                                                                                     GL_4D0FAUV (class in GL_4D0FAUV), 43
g() (MapFeature.MapFeature method), 67
                                                                                                                                                     Н
GetFeatures() (MapFeature.Cartesian2DMapFeature
                                                                                                                                                     h() (EKF.EKF method), 35
                        method), 68
                                                                                                                                                    h() (FEKFMBL.FEKFMBL method), 72
GetFeatures()
                                                                                                                      (MapFea-
                         ture.Cartesian2DStoredPolarObservedMapFeatur#F (class in HF), 29
                                                                                                                                                     hf() (MapFeature.MapFeature method), 65
                        method), 70
                                                                                                                                                     hfHi() (MapFeature.MapFeature method), 66
GetFeatures() (MapFeature.MapFeature method), 64
GetInput() (DR_3DOFDifferentialDrive.DR_3DOFDifferentiatDrivame (class in Histogram), 31
                                                                                                                                                     histogram_1d (Histogram.Histogram2D property), 31
GetInput() (DR_4DOFAUV_DVLGyro.DR_4DOFAUV_D\vistgagram_2d (Histogram.Histogram2D property), 31
                                                                                                                                                     hm() (EKF.EKF method), 35
GetInput() (EKF_3DOFDifferentialDriveCtVelocity.EKF_\\text{MYOOFTKifferentialDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_\text{MYOOFTKifferentialDifferentialDriveCtVelocity}}
                                                                                                                                                                              method), 62
                         method), 62
GetInput() (EKF 3DOFDifferentialDriveInputDisplacement@KFKFDDPPffeifenenter/DeinehmutBisplacement.EKF_3DOFDifferen
                                                                                                                                                                              method), 59
                        method), 59
GetInput() (EKF_4DOFAUV_CtVelocityMM_DVLDepthYannOMEKKE4DOGFAUVV_CVVelocityMM44_DVVDopthYannOMEKF_4DOFAU
                                                                                                                                                                              method), 57
                         method), 57
```

method), 54

GetInput() (EKF_4DOFAUV_InputVelocityMM_DVLDep\\ \text{THYCOMORITERP_QTDVFAUVP_UHYBLOVERSMMMMMY_LDVP_UBYBMVQM\DKF_4DOFA

method), 54

```
Jfx() (EKF 4DOFAUV InputVelocityMM DVLDepthYawOM.EKF 4DOF
                                                                                              method), 52
ICNN() (FEKFMBL.FEKFMBL method), 74
                                                                                 Jgv() (MapFeature.MapFeature method), 68
IndividualCompatibility() (FEKFMBL.FEKFMBL
                                                                                 Jgx() (MapFeature.MapFeature method), 67
             method), 72
                                                                                 JhfHix() (MapFeature.MapFeature method), 67
J
                                                                                 Jhfv() (MapFeature.MapFeature method), 66
                                                                                 Jhfx() (MapFeature.MapFeature method), 65
J_1boxplus() (Feature.CartesianFeature method), 14
                                                                                 Jhmv() (EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM.EKF_4DOFA
J_1boxplus() (Feature. Feature method), 11
                                                                                              method), 57
J_1boxplus() (Feature.PolarFeature method), 16
                                                                                 Jhmv() (EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM.EKF_4DO
J_1boxplus() (Pose.Pose method), 5
                                                                                              method), 54
J_loplus() (Pose.Pose method), 3
                                                                                 Jhmx() (EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM.EKF_4DOFA
J_loplus() (Pose.Pose3D method), 6
                                                                                              method), 57
J_loplus() (Pose.Pose4D method), 10
                                                                                 Jhmx() (EKF_4DOFAUV_InputVelocityMM_DVLDepthYawOM.EKF_4DO
J_2boxplus() (Feature. Cartesian Feature method), 14
                                                                                              method), 54
J_2boxplus() (Feature.Feature method), 12
J_2boxplus() (Feature.PolarFeature method), 16
                                                                                 K
J_2boxplus() (Pose.Pose method), 5
                                                                                KF (class in KF), 32
J_2c() (Feature. Cartesian Feature method), 14
J_2c() (Feature.Feature method), 12
J_2c() (Feature.PolarFeature method), 16
                                                                                Localization (class in Localization), 36
J_2oplus() (Pose.Pose method), 3
                                                                                LocalizationLoop() (GFLocalization.GFLocalization
J_2oplus() (Pose.Pose3D method), 6
                                                                                              method), 51
J_2oplus() (Pose.Pose4D method), 10
                                                                                LocalizationLoop() (GL.GL method), 43
J_c2p() (in module conversions), 17
                                                                                LocalizationLoop()
                                                                                                                          (Localization.Localization
J_c2s() (in module conversions), 19
\verb|J_o2s()| (Map Feature. Cartesian 2D Stored Polar Observed Map Feature {\it method}), 37
                                                                                 Localize() (DR_3DOFDifferentialDrive.DR_3DOFDifferentialDrive
             method), 70
                                                                                              method), 39
J_o2s() (MapFeature.MapFeature method), 65
                                                                                Localize() (DR_4DOFAUV_DVLGyro.DR_4DOFAUV_DVLGyro
J_ominus() (Pose.Pose method), 5
                                                                                              method), 39
J_ominus() (Pose.Pose3D method), 8
                                                                                Localize() (FEKFMBL.FEKFMBL method), 74
J_ominus() (Pose.Pose4D method), 10
                                                                                Localize() (GFLocalization.GFLocalization method),
J_p2c() (in module conversions), 17
J_s2c() (in module conversions), 18
\verb|J_s2o()| (Map Feature. Cartesian 2D Stored Polar Observed Map Feature()| (GL.GL method), 43
                                                                                 Localize() (Localization.Localization method), 37
             method), 70
                                                                                Log() (GFLocalization.GFLocalization method), 51
J_s2o() (MapFeature.MapFeature method), 65
                                                                                Log() (Localization.Localization method), 37
J_v2v() (in module conversions), 19
Jfw() (EKF.EKF method), 35
Jfw() (EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity
                                                                                MapFeature (class in MapFeature), 62
             method), 62
]fw()(EKF_3DOFDifferentialDriveInputDisplacement.EKMBBDDOFDIFFINDUtDISplacementMuc2DCartesianFeatureOM
                                                                                              (class in MBL_3DOFDDInputDisplacementMM_2DCartesianFed
             method), 59
Jfw() (EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM.EKF_4DOFAUV_CtVelocityMM_DVLDepthYawOM
                                                                                MBL_3DOFDDInputDisplacementMM_2DPolarFeatureOM
Jfw() (EKF_4D0FAUV_InputVelocityMM_DVLDepthYaw0M.EKF_UD0FAUMBIngAPQFDPMmm1Dvp1lpogmentMVM2DPolarFeature
             method), 52
                                                                                 MeasurementProbability() (GL.GL method), 42
Jfx() (EKF.EKF method), 33
Jfx()(EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriveCtVelocity.EKF_3DOFDifferentialDriv
                                                                                              (GL_3DOFDifferentialDrive.GL_3DOFDifferentialDrive
             method), 60
Jfx() (EKF_3DOFDifferentialDriveInputDisplacement.EKF_3DOFDifferentialDriveInputDisplacement
                                                                                MeasurementProbability()
             method), 59
J£x() (EKF 4DOFAUV CtVelocityMM DVLDepthYawOM.EKF 4DOFADDQFALDepthYawOMod),
             method), 55
                                                                                MeasurementProbability() (HF.HF method), 30
```

O	R
o2s() (MapFeature.Cartesian2DStoredPolarObservedMap	ReadCartesian2DFeature()
method), 70	(AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
o2s() (MapFeature.MapFeature method), 64	method), 28
ominus() (Pose.Pose method), 5	ReadCartesian2DFeature() (DifferentialDriveSim-
ominus() (Pose.Pose3D method), 8	ulated Robot. Differential Drive Simulated Robot
ominus() (Pose.Pose4D method), 10	method), 24
oplus() (Pose.Pose method), 3	ReadCartesian3DFeature()
oplus() (Pose.Pose3D method), 6	(AUV4DOFS imulated Robot. AUV4DOFS imulated Robot
oplus() (Pose.Pose4D method), 8	method), 28
Р	ReadCompass() (AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot method), 27
p2c() (in module conversions), 17	ReadCompass() (DifferentialDriveSimulate-
PairedAndNonPairedFeatures()	dRobot.DifferentialDriveSimulatedRobot
(FEKFMBL.FEKFMBL method), 75	method), 24
plot_histogram() (Histogram.Histogram2D method),	ReadDepth() (AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
31	method), 27
PlotExpectedFeaturesObservationsUncertainty()	ReadDVL() (AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
(FEKFMBL.FEKFMBL method), 76	method), 27
PlotFeatureObservationUncertainty()	ReadEncoders() (DifferentialDriveSimulate-
(FEKFMBL.FEKFMBL method), 75	dRobot. Differential Drive Simulated Robot
${\tt PlotRobot()}\ (AUV4DOFS imulated Robot. AUV4DOFS imulated Robot. A$	alatedRobo†method), 24
method), 25	${\tt ReadGyro()} \ (AUV4DOF Simulated Robot. AUV4DOF Simulated Robot$
PlotRobot() (DifferentialDriveSimulate-	method), 27
dRobot.DifferentialDriveSimulatedRobot	ReadPolar2DFeature()
method), 25	(AUV4DOFS imulated Robot. AUV4DOFS imulated Robot
<pre>PlotRobot() (SimulatedRobot.SimulatedRobot method),</pre>	method), 28
21	ReadPolar2DFeature() (DifferentialDriveSimulat-
PlotRobotUncertainty() (FEKFMBL.FEKFMBL	ed Robot. Differential Drive Simulated Robot
method), 76	method), 25
PlotRobotUncertainty() (GFLocaliza-	ReadRanges() (AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
tion.GFLocalization method), 51	method), 28
PlotSample() (FEKFMBL.FEKFMBL method), 76	ReadRanges() (DifferentialDriveSimulate-
PlotSampleObservationSpace()	dRobot.DifferentialDriveSimulatedRobot
(FEKFMBL.FEKFMBL method), 76	method), 25
PlotState() (GFLocalization.GFLocalization method),	ReadSpherical3DFeature()
51	(AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
PlotTrajectory() (Localization.Localization method),	method), 28 ReadUSBL() (AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
37	method), 28
PlotUncertainty() (FEKFMBL.FEKFMBL method),	<i>memoa j</i> , 20
76	S
PlotUncertainty() (GFLocalization.GFLocalization method), 51	s2c() (in module conversions), 18
PlotXY() (GFLocalization.GFLocalization method), 51	s2o() (In module conversions), 18 s2o() (MapFeature.Cartesian2DStoredPolarObservedMapFeature
PlotXY() (Localization.Localization method), 37	method), 70
PolarFeature (class in Feature), 14	s2o() (MapFeature.MapFeature method), 64
Pose (class in Pose), 3	SetMap() (AUV4DOFSimulatedRobot.AUV4DOFSimulatedRobot
Pose3D (class in Pose), 6	method), 27
Pose4D (class in Pose), 8	SetMap() (SimulatedRobot.SimulatedRobot method), 21
Prediction() (EKF.EKF method), 35	SetRobotPose() (FEKFMBL.FEKFMBL method), 77
Prediction() (HF.HF method), 30	SetRobotPoseCovariance() (FEKFMBL.FEKFMBL
Prediction() (KF.KF method), 32	method), 77
(SetRobotState() (FEKFMBL.FEKFMBL method), 77
	37 \

```
SetRobotStateCovariance() (FEKFMBL.FEKFMBL
        method), 77
SimulatedRobot (class in SimulatedRobot), 20
SquaredMahalanobisDistance()
        (FEKFMBL.FEKFMBL method), 72
StackMeasurementsAndFeatures()
        (FEKFMBL.FEKFMBL method), 75
StateTransitionProbability()(GL.GL method), 42
StateTransitionProbability()
        (GL\_3DOFDifferentialDrive.GL\_3DOFDifferentialDrive
        method), 48
StateTransitionProbability()
        (GL_4DOFAUV.GL_4DOFAUV
                                        method),
StateTransitionProbability()(HF.HF method), 30
StateTransitionProbability_4_uk()
                                         (GL.GL
        method), 42
StateTransitionProbability_4_uk()
        (GL\_3DOFD ifferential Drive.GL\_3DOFD ifferential Drive
        method), 48
StateTransitionProbability_4_uk()
        (GL_4DOFAUV.GL_4DOFAUV
                                        method),
        45
StateTransitionProbability_4_uk()
                                         (HF.HF
        method), 30
StateTransitionProbability_4_xk_1_uk()
        (GL\_3DOFDifferentialDrive.GL\_3DOFDifferentialDrive
        method), 48
StateTransitionProbability_4_xk_1_uk()
        (GL_4DOFAUV.GL_4DOFAUV
                                        method),
        45
Т
ToCartesian() (Feature. Cartesian Feature method), 14
ToCartesian() (Feature.Feature method), 12
ToCartesian() (Feature. Polar Feature method), 16
ToCell() (HF.HF method), 30
U
uk2cel1() (GL.GL method), 43
uk2cel1() (GL_3DOFDifferentialDrive.GL_3DOFDifferentialDrive
        method), 48
uk2cell() (GL 4DOFAUV.GL 4DOFAUV method), 45
uk2cel1() (HF.HF method), 30
Update() (EKF.EKF method), 36
Update() (HF.HF method), 31
Update() (KF.KF method), 33
V
v2v() (in module conversions), 19
```