Spring Representation and Calculations

Representation

A spring is represented by a line segment with endpoints $p_1(x_1, y_1)$ and $p_2(x_2, y_2)$. The initial length of the spring is L.

Vector Representation

The displacement vector ${f V}$ is defined as:

$$\Delta x = x_2 - x_1$$

$$\Delta y = y_2 - y_1$$

$$\mathbf{V} = \Delta x \,\mathbf{i} + \Delta y \,\mathbf{j}$$

The magnitude of ${f V}$ (current length M) is:

$$M = \|\mathbf{V}\| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

The unit vector of V is:

$$\hat{\mathbf{V}} = \frac{\mathbf{V}}{M} = \frac{\Delta x}{M} \, \mathbf{i} + \frac{\Delta y}{M} \, \mathbf{j}$$

Force Calculation (Hooke's Law)

The restoring force F is given by Hooke's Law:

$$F = -k x$$

where k is the spring constant (assuming k = 1):

$$F = -x$$

The displacement x is the difference between the current length M and the initial length L:

$$x = M - L$$

Therefore, the force is:

$$F = -(M - L) = L - M$$

Force Vector

The force vector \mathbf{F} is:

$$\begin{split} \mathbf{F} &= F \, \hat{\mathbf{V}} \\ &= (L - M) \left(\frac{\Delta x}{M} \, \mathbf{i} + \frac{\Delta y}{M} \, \mathbf{j} \right) \end{split}$$

The force components are:

$$F_x = (L - M) \frac{\Delta x}{M}$$
$$F_y = (L - M) \frac{\Delta y}{M}$$

Damping

Considering damping, the damped force components are:

$$F'_x = F_x - \text{damping_constant} \cdot v_x$$

 $F'_y = F_y - \text{damping_constant} \cdot v_y$

Newton's Second Law and Updates

Newton's second law states:

$$\mathbf{F} = m\mathbf{a}$$

Assuming m=1 and a time step t=1, we have $\mathbf{a}=\mathbf{v}$, thus $\mathbf{F}=\mathbf{v}$. Velocity updates (at point 2):

$$v_x \leftarrow v_x + F_x'$$
$$v_y \leftarrow v_y + F_y'$$

Velocity updates (at point 1):

$$v_x \leftarrow v_x - F_x'$$
$$v_y \leftarrow v_y - F_y'$$

Position updates (assuming t = 1, and therefore v = d):

$$\Delta x \leftarrow \Delta x + v_x$$
$$\Delta y \leftarrow \Delta y + v_y$$