

Risk Stratification and Outcome Measures

Rolf Lefering

Institute for Research in Operative Medicine (IFOM)
University Witten/Herdecke, Cologne, Germany

Rolf Lefering

- Mathematician / Biology
- Research Department
- Professor, Health Services Research in Operative Medicine
- Acting Director, Institute for Research in Operative Medicine

Cologne

- TraumaRegister DGU®
- DIVI Intensive Care Registry
- German Resuscitation Registry
- Thorax Registry
- German Burn Registry
- National Emergency Room Registry

•

- founded in 1993 (**25**)
- started with 5 hospitals
- 650 German hospitals
- 3 levels of care
- 30 international hospitals
- inclusion: intensive care
- 35.000 cases per year
- annual reports
- 30 paper / year
- Owner: society

Aims:

- 1. Quality Assessment / Comparison
- 2. Scientific Analyses

Primary Outcome:

Survival

Problem:

Lack of comparability (large vs. small hospitals; severity; ...)

Statistical Methods for Adjustment

- Selection
- Subgroup analyses
- Matched-Pairs
- Outcome Adjustment
- Propensity Score

Group 1

Group 2

Selection

Group 1 Group 2

Selection

Group 1 Group 2

Subgroups

Matched-Pairs

Adjusted Outcome

Group 1

Group 2

Outcome Adjustment

Select the outcome of interest

(survival, ROSC, good neurology, LOS, return to work, ...)

- Identify confounder or prognostic factors
 - (= factors influencing the outcome)
 - patient (age, sex, prior diseases, ...)
 - severity (injuries, rhythm, ...)
 - surroundings (day/night, location, ...)
 - activities (bystander CPR, ...)
 - time intervals
- Combine these factors adequately
 - multivariate statistics
 - scores

Severe Trauma

ISS Injury Severity Score (1974): anatomical severity

RTS Revised Trauma Score (1989): physiology

TRISS ISS + RTS + age (1990)

RISC Revised Injury Severity Classification (2003)

based on 2000 TR-DGU patients

RISC II Update 2013; based on 30,000 TR-DGU patients

13 predictors

THE JOURNAL OF TRAUMA Copyright 6 1990 by The Williams & Wilkins Co.

TRISS

The Major Trauma Outcome Study: Establishing National Norms for Trauma Care

HOWARD R. CHAMPION, F.R.C.S. (EDIN.), F.A.C.S., WAYNE S. COPES, Ph.D., WILLIAM J. SACCO, Ph.D., MARY M. LAWNICK, R.N., B.S.N., SUSAN L. KEAST, R.N., B.S.N., LAWRENCE W. BAIN, JR., MAUREEN E. FLANAGAN, M.S., AND CHARLES F. FREY, M.D., F.A.C.S.*

The Major Trauma Outcome Study (MTOS) is a retrospective descriptive study of injury severity and outcome coordinated through the American College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla. From 1982 through 1987, 139 College of Surgeons' Committee on Traumla.

	Variable	Value C	<u>oefficient</u>	Variable	Value	Coefficient
	Constant	varae e	+ 3.6	Sex	female	+ 0.2
	Worst injury	AIS 3 AIS 4 AIS 5 AIS 6	- 0.5 - 1.3 - 1.7 - 2.9	ASA pre-trauma	male / ??? 1-2 3 / ??? 4	+ 0.3 0 - 1.3
	Second worst	AIS 0-2 AIS 3	+ 0.2 0	Mechanism	blunt / ??? penetrating	0 - 0.6
	injury	AIS 4 AIS 5	- 0.6 - 1.4	GCS motor function	normal directed / ???	
	Head injury	AIS 0-2 AIS 3/4	0 - 0.2		non-directed none	- 0.4 - 0.8
	Age	AIS 5/6 1-5 6-10 11-54	- 0.8 + 1.4 + 0.6 0	Systolic BP on admission	< 90 90-110 / ??? 111-150 > 150	- 0.7 0 + 0.3 0
DIC		55-59 60-64	- 0.5 - 0.8	CPR	nein / ??? ja	0 - 1.8
KIS	CII	65-69 70-74 75-79 80-84 85+	- 0.9 - 1.2 - 1.9 - 2.4 - 2.7	Coagulation: INR	< 1.2 1.2 - <1.4 1.4 - 2.4 / ??? > 2.4	+ 0.6 + 0.2 0 - 0.4
	Pupil reactivity	brisk sluggish/??? fixed	+ 0.2 0 - 1.0	Blood: Hemoglobin	≥ 12.0 7.0-11.9 / ??? <7.0	+ 0.4 0 - 0.5
	Pupil size	normal anisocoric/??? bilat. dilated	+ 0.2	Acidosis: Base deficit	< 6 6-9 / ??? 9-15 15+	+0.3 0 - 0.4 - 1.5

RISC II score value

Observed Mortality vs. RISC II Prognosis

Effect of
whole-body CT
during trauma
resuscitation
on survival

Huber-Wagner, Lefering, et al. "Effect of whole-body CT during trauma resuscitation on survival: a retrospective multicentre study" *Lancet* 2009

Out of Hospital Cardiac Arrest

	Trauma	ОНСА
Patients	Range of severity	single event: CA with CPR
Outcomes	Survival	ROSC Survival Good neurology
Setting	Pre-hospital Hospital	Pre-hospital Hospital
Incidence	40 /100,000 /year	60 /100,000 /year

CPR

Cardio-Pulmonary Resuscitation after Trauma Gräsner et al. Critical Care 2011, 15:R276 http://ccforum.com/content/15/6/R276

RESEARCH

Open Access

Cardiopulmonary resuscitation traumatic cardiac arrest - there are survivors. An analysis of two national emergency registries

Jan-Thorsten Gräsner^{1*}, Jan Wnent², Stephan Seewald¹, Patrick Meybohm¹, Matthias Fischer³, Thomas Paffrath⁴, Arasch Wafaisade⁴, Berthold Bein¹ and Rolf Lefering⁵, for German Resuscitation Registry Working Group, Trauma Registry of the German Society for Trauma Surgery (DGU)

Gräsner JT, Wnent J, Seewald S, Meybohm P, Fischer M, Paffrath T, Wafaisade A, Bein B, Lefering R. Cardiopulmonary resuscitation after traumatic cardiac arrest – there are survivors. An analysis of two national emergency registries. *Crit Care* 2011, 15: R276

European Heart Journal doi:10.1093/eurhearti/ehr107 CLINICAL RESEARCH

ROSC after cardiac arrest—the RACA score to predict outcome after out-of-hospital cardiac arrest

Jan-Thorsten Gräsner^{1*†}, Patrick Meybohm^{1†}, Rolf Lefering², Jan Wnent¹, Jan Bahr³, Martin Messelken⁴, Tanja Jantzen⁵, Rüdiger Franz⁶, Jens Scholz¹, Alexander Schleppers⁷, Bernd W. Böttiger⁸, Berthold Bein¹, and Matthias Fischer⁹, the German Resuscitation Registry Control Acceptable

¹Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schlesser Cardiac Arrest Card

Prediction of ROSC in OHCA patients in Germany

- n = 5471
- ROSC rate 43%
- logistic regression
- validation

Table 2 Results of multivariate logistic regression analysis

Variable	Condition	Regression coefficient	SE	P-values	OR (95% CI)
Sex	Male	-0.17	0.54	0.01	0.85 (0.75-0.96)
Age	≥80 years	-0.19	0.08	0.02	0.83 (0.72-0.97)
Aetiology	Trauma	-0.56	0.21	0.01	0.57 (0.38-0.85)
	Hypoxia Intoxication	+0.68 +0.45	0.12 0.22	<0.001 0.04	1.98 (1.57–2.48) 1.57 (1.02–2.40)
Witnessed	Lay people Professional	+0.62 +0.49	0.07 0.11	<0.001 <0.001	1.86 (1.64-2.12) 1.63 (1.31-2.02)
Location at	Nursing home Doctor's office Public place Medical institution	- 0.27 + 1.17 + 0.34 + 0.52	0.16 0.26 0.08 0.22	0.079 <0.001 <0.001 0.016	0.76 (0.56-1.03) 3.23 (1.93-5.40) 1.40 (1.20-1.64) 1.69 (1.10-2.58)
Initial ECG	PEA Asystole	- 0.82 - 1.08	0.1 0.65	<0.001 <0.001	0.44 (0.36-0.53) 0.34 (0.30-0.39)
Bystander CPR	Yes	+0.23	0.09	0.008	1.26 (1.06-1.49)
EMS arrival time	Per minute	-0.04	0.01	< 0.001	0.96 (0.95-0.97)
Constant		0.29	0.09	0.001	1.34

Multivariate logistic regression analysis was performed to investigate the influence of different variables on chance of return of spontaneous circulation (ROSC). Independent variables that were associated with a positive coefficient increase the chance of ROSC, while negative coefficients decrease the chance of ROSC. Standard category were female gender, age < 80 years, cardiac aetiology, non-witnessed cardiac arrest, location at home and work place, VF as first ECG rhythm, and no bystander CPR. SE, standard error; ECG, electrocardiogram; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; EMS, emergency medical services.

RACA Score

- Rounded coefficients
- 8 predictors
- Score X is transformed into a probability for ROSC

Table 3 Equation of the ROSC after cardiac arrest score

X =

0.3 (constant)

- + ($-0.2 \times male$)
- + $(-0.2 \times age \ge 80 \text{ years})$
- $+ (-0.6 \times \text{trauma}) + (0.7 \times \text{hypoxia}) + (0.5 \times \text{intoxication})$
- + (0.6 \times witnessed by lay people) + (0.5 \times witnessed by professionals)
- + ($-0.3 \times$ nursing home) + ($1.2 \times$ doctor's office) + ($0.3 \times$ public place) + ($0.5 \times$ medical institution)
- $+ (-0.8 \times PEA) + (-1.1 \times asystole)$
- + (0.2 × bystander CPR)
- + (-0.04 \times minutes until EMS arrival)

Probability of ROSC = $1/(1 + e^{-X})$

RACA Score

Table 4 Quality management—examples for ROSC after cardiac arrest practical use

Factor	Patients (n)	Observed ROSC (95% CI; %)	Predicted ROSC (%)	Impact
EMS performance				
Low level (centre A)	514	38.1 (33.9-42.3)	42.6	Negative ^a
High level (centre B)	424	47.4 (42.7–52.3)	42.6	Positive ^a
Difficulties				
Airway management	52	28.8 (18.4-39.2)	43.0	Negative ^a
Specialty				
Anaesthesiologist	2.368	44.5 (42.5-46.5)	43.0	Neutral
Surgeon	316	46.5 (41.5-52.0)	45.1	Neutral
Internal medicine	2809	42.6 (40.8-44.5)	42.4	Neutral

The table demonstrates the potential role of the RACA score in quality management of the resuscitation process. By comparing the observed and predicted ROSC, we found a significant negative impact of low-level emergency medical services (EMS) performance (EMS centre A) and difficulties in airway management. High-level EMS performance from another EMS centre B resulted in a significant better observed ROSC rate, and a significant positive impact comparing observed and predicted ROSC. Comparing different specialty of emergency physicians, we found a neutral impact.

 a Statistical significant (P < 0.05), if the predicted ROSC rate is not within the 95% confidence interval (95% CI) of the observed ROSC rate.

Effect on Survival

Originalarbeit

Einfluss der Hilfsfrist auf das Überleben nach plötzlichem Herz-Kreislauf-Stillstand

Analyse aus dem Deutschen Reanimationsregister

Andreas Bürger*, Jan Wnent*, Andreas Bohn, Tanja Jantzen, Sigrid Brenner, Rolf Lefering, Stephan Seewald, Jan-Thorsten Gräsner, Matthias Fischer

Effect on Survival

- time
- bystander CPR
- prior diseases
- witnessed
- age
- shockable rhythm
- location

Discussion

- > Early (ROSC) and late (survival) outcome
- > Several suspected and confirmed prognostic factors
- > Relative importance of predictors
- > Importance *versus* easy measurement
- > Validation outside the own setting important
- ➤ Only good data provide good results

Discussion

General Aim: Improve Final Outcome

How could this be reached?

- Case selection: only CPR in promising cases
- Comparisons over time

Adjustment

- Comparisons whitin a registry / region
- Comparisons with other registries / countries
- Increase knowledge about prognostic factors