Spatial methods for extreme value analysis

Samuel A. Morris

January 9, 2015

Motivation

- Average behavior is important to understand, but it does not paint the whole picture
 - e.g. When constructing river levees, engineers need to be able to estimate a 100-year or 1000-year flood levels
 - e.g. Probability of exceeding a certain threshold level
- Spatial methods borrow information across space to estimate spatial correlation and make predictions by Kriging at unknown locations
- Want to explore similar methods for extremes

Motivation

Figure: Max 8-hour ozone measurements on July 10, 2005

Defining extremes

- Key in extreme value analysis is to define extremes
- Typically done in one of two ways
 - Block maxima
 - Red dots
 - Over threshold
 - Values over threshold considered extreme

Figure: Monthly maximums recorded over a three years.

Standard analysis - Block maxima

- Asymptotic result:
 - ightharpoonup Let X_1, \ldots, X_n be i.i.d.
 - ightharpoonup Consider $M_n = \max(X_1, \dots, X_n)$
 - ▶ If there exist normalizing sequences $a_n > 0$ and $b_n \in \mathcal{R}$ such that

$$a_n^{-1}(M_n-b_n)\stackrel{d}{\to} G(z)$$

then G(z) follows a generalized extreme value distribution

Standard analysis - Block maxima

- Generalized extreme value distribution has three parameters:
 - $\mu \in \mathcal{R}$ is a location parameter
 - $\sigma > 0$ is a scale parameter
 - $\xi \in \mathcal{R}$ is a shape parameter
 - ▶ Unbounded above if $\xi \ge 0$
 - ▶ Bouded above by $(\mu \sigma)/\xi$ when $\xi < 0$
- Challenge:
 - Lose information by only considering maximum in a block

Standard analysis - Block maxima

Generalized extreme value distribution

$$G(y) = \Pr(Y < y) = \begin{cases} \exp\left\{-\left[1 + \xi\left(\frac{y - \mu}{\sigma}\right)\right]^{-1/\xi}\right\} & \xi \neq 0 \\ \exp\left\{-\exp\left(-\frac{y - \mu}{\sigma}\right)\right\} & \xi = 0 \end{cases}$$

▶ Standardized distribution is unit Fréchet or GEV(1, 1, 1)

$$\Pr(Z < z) = exp(-z^{-1})$$

Standard analysis - Peaks over threshold

- Generalized Pareto distribution has two parameters:
 - $ightharpoonup \sigma > 0$ is a scale parameter
 - $\xi \in \mathcal{R}$ is a shape parameter
 - ▶ Unbounded above if $\xi \ge 0$
 - ▶ Bouded above by $(\mu \sigma)/\xi$ when $\xi < 0$
- Challenges:
 - Sensitive to threshold selection
 - Temporal dependence between observations (e.g. flood levels don't dissipate overnight)

Standard analysis - Peaks over threshold

► Select a threshold, *T*, and use the Generalized Pareto distribution to model the exceedances

$$H(y) = P(Y < y) = \begin{cases} 1 - \left[1 - \xi\left(\frac{y - T}{\sigma}\right)\right]^{-1/\xi} & \xi \neq 0\\ 1 - \exp\left\{\frac{y - T}{\sigma}\right\} & \xi = 0 \end{cases}$$

Related to GEV distribution through

$$H(y) = 1 + \log[G(y)], \quad y \ge T$$

Max-stable processes

- ► For a spatial analysis, max-stable processes give an appropriate limiting distribution (Cooley et al., 2012):
 - ▶ Consider a spatial process $x_t(\mathbf{s})$, t = 1, ..., T.
 - ► Let $M_T(\mathbf{s}) = \left\{\bigvee_{t=1}^T x_t(\mathbf{s}_1), \dots, \bigvee_{t=1}^T x_t(\mathbf{s}_n)\right\}$
 - ▶ If there exists normalizing sequences $a_T(\mathbf{s})$ and $b_T(\mathbf{s})$ such that for all sites, $\mathbf{s}_i, i = 1, ..., d$,

$$a_T^{-1}(\mathbf{s})\left\{M_T(\mathbf{s})-b_T(\mathbf{s})\right\}\stackrel{d}{\to}Y(\mathbf{s})$$

which has a non-degenerate distribution, then $Y(\mathbf{s})$ is a max-stable process.

Multivariate representations

- Marginally at each site, observations follow a generalized extreme value distribution
- Finite collection of sites:
 - ▶ The multivariate representation for the GEV is

$$\mathsf{Pr}(\mathbf{Z} \leq \mathbf{z}) = G^*(\mathbf{z}) = \exp(-V(\mathbf{z}))$$
 $V(\mathbf{s}) = d \int_{\Delta_d} \bigvee_{i=1}^d rac{w_i}{z_i} H(\mathsf{d}w)$

where

- ▶ $\Delta_d = \{ \mathbf{w} \in \mathcal{R}^d_+ \mid w_1 + \dots + w_d = 1 \}$
- ▶ H is a probability measure on Δ_d

Multivariate GEV challenges

- ▶ Only a few closed-form expressions for V(z) exist (Stephenson, 2003)
- ▶ Two common forms for V(z):
 - ► Symmetric logistic

$$V(\mathbf{z}) = \left[\sum_{i=1}^{n} \left(\frac{1}{z_i}\right)^{1/\alpha}\right]^{\alpha}$$

Asymmetric logistic

$$V(\mathbf{z}) = \sum_{l=1}^{L} \left[\sum_{i=1}^{n} \left(\frac{w_{il}}{z_i} \right)^{1/\alpha_l} \right]^{\alpha_l}$$

where $w_{il} \in [0, 1]$ and $\sum_{l=1}^{L} w_{il} = 1$.

Multivariate peaks over threshold

- ► Not a lot of existing methods
- Often use max-stable methods due to the relationship between GEV and GPD
- ▶ Joint distribution function given by Falk et al. (2011)

$$H(z) = 1 - V(z)$$

where V(z) is defined as in the GEV

Extremal dependence: χ statistic

- \blacktriangleright The χ statistic is a measure of extremal dependence in the tails
- ▶ Specifically, we focus on $\chi(h)$ for the upper tail given by

$$\chi(h) = \lim_{c \to \infty} \Pr(Y(s) > c \mid Y(t) > c)$$

where
$$h = ||\mathbf{s} - \mathbf{t}||$$

▶ If $\chi(h) = 0$, then observations are asymptotically independent at distance h

Existing challenges

- ► Multivariate max-stable and GPD models have nice features, but they are
 - computationally challenging (Falk et al., 2011)
 - Asymmetric logistic has $2^{n-1}(n+2)-(2n+1)$ free parameters
 - joint distribution only available in low dimension
- Some recent approaches:
 - ▶ Bayesian hierarchical model (Reich and Shaby, 2012)
 - ▶ Pairwise likelihood approach (Huser and Davison, 2014)
- Many opportunities to explore new methods

Three principal contributions

- 1 A spatio-temporal model with flexible tails, asymptotic spatial dependence, and computation on the order of Gaussian models for large space-time datasets
- 2 Predicting exceedances using a spatially dependent generalized extreme-value link function
- 3 A Bayesian hierarchical model to allow for non-stationary covariance in extreme value models.

Spatiotemporal modeling for extreme values

- Model to analysis spatiotemporal extreme values
- Model objectives:
 - Has marginal distribution with a flexible tail
 - allow for asymmetric distributions
 - ► allow for heavy tails
 - Has asymptotic spatial dependence
 - ► Has computation on the order of Gaussian models for large space-time datasets

Gaussian spatial model

- ▶ In geostatistics Y(s) are often modeled using a Gaussian process with mean function $\mu(s)$ and covariance function $\rho(h)$.
- ► Model properties:
 - Nice computing properties (closed-form likelihood)
 - ► For a Gaussian spatial model $\lim_{c\to\infty} \chi(h) = 0$ regardless of the strength of the correlation in the bulk of the distribution
 - ► Tail is not flexible:
 - ▶ light tailed
 - symmetric

Spatial skew-t distribution

Assume observed data Y(s) come from a skew-t (Zhang and El-Shaarawi, 2012)

$$Y(s) = X(s)\beta + \lambda |z| + v(s)$$

where

- $\lambda \in \mathcal{R}$ controls the skewness
- $z \sim N(0, \sigma^2)$ is a random effect
- $\mathbf{v}(\mathbf{s})$ is a Gaussian process with variance σ^2 and Matérn correlation
- $\sigma^2 \sim \mathsf{IG}(a,b)$

Spatial skew-t distribution

- ▶ Conditioned on z and σ^2 , Y(s) is a Gaussian spatial model
- Can use standard geostatistical methods to fit this model
- Predictions can be made through Kriging

Spatial skew-t distribution

▶ Marginalizing over z and σ^2 (via MCMC),

$$Y(s) \sim \mathsf{skew-t}(\mathbf{X}(s), \mathbf{\Omega}, \alpha, \mathsf{df} = 2a)$$

where

- $ightharpoonup X(s)\beta$ is the location
- $m \Omega = rac{1}{ab}ar{m \Omega}$ is a correlation matrix
- \triangleright Σ is a postive definite correlation matrix
- $\boldsymbol{\lambda} = \lambda (1 + \lambda^2 \mathbf{1}^T \mathbf{\Sigma}^{-1} \mathbf{1})^{-1/2} \mathbf{1}^T \mathbf{\Sigma}^{-1}$ controls the skewness

$\chi(h)$ plot

Figure: χ plot for symmetric t, skew-t, and Gaussian

Censoring data to focus on tail behavior

- ▶ We censor the observed data at a high threshold *T*.
- Censored data:

$$ilde{Y}_t(\mathbf{s}) = \left\{ egin{array}{ll} Y_t(\mathbf{s}) & \delta(\mathbf{s}) = 1 \ T & \delta(\mathbf{s}) = 0 \end{array}
ight.$$

where
$$\delta(s) = I[Y(s) > T]$$

▶ Allows tails of the distribution to speak for themselves.

Spatial skew-t distribution properties

- Model properties
 - ► Has flexible tail:
 - ▶ Skewness controlled by λ
 - Weight of tails controlled by degrees of freedom 2a
 - ▶ For a skew-t distribution $\lim_{c\to\infty} \chi(h) > 0$ (Padoan, 2011)
 - Computation that is on the order of Gaussian computation
- ▶ Challenge: $\chi(h) > 0$ as $h \to \infty$ (Padoan, 2011)
 - ▶ This occurs because all observations (near and far) share the same z and σ^2
 - ► We deal with this through a daily random partition (similar to Kim et al., 2005)

Random partition

▶ Daily random partition allows z and σ^2 to vary by site

$$Y(s) = X(s)\beta + \lambda z(s) + \sigma(s)v(s)$$

▶ Consider a set of knots $\mathbf{w}_k \sim \text{Uniform that define a random partition } P_1, \dots, P_K \text{ such that}$

$$P_k = \{ s : k = \arg\min_{\ell} ||\mathbf{s} - \mathbf{w}_{\ell}|| \}$$

where $\mathbf{w} = (w_1, w_2)$

▶ For $\mathbf{s} \in P_k$

$$z(s) = z_k$$

$$\sigma^2(\mathbf{s}) = \sigma_k^2$$

Random partition

- Within each partition Y(s) has the same MV skew-t distribution as before
- Across partitions Y(s) are asymptotically independent, but still correlated through v(s)

Example partition

Figure: Two sample partitions (number is at partition center)

$\chi(h)$ plot

4□ > 4□ > 4□ > 4□ > 4□ > 9

Random partition skew-t model

- ► This new model is called a random partition skew-t model, and it has the properties we desire
 - Marginal distribution with flexible tails
 - $ightharpoonup \lambda$ term allows for asymmetry
 - ▶ d.f. controls heavy vs light tails
 - Asymptotic spatial dependence for that decays with distance between sites via partition
 - Computation is on the order of Gaussian models for large space-time datasets

Temporal dependence

- Temporal dependence should be accounted for when using daily data
- ► For multiple days of observations the model becomes

$$Y_t(s) = \mathbf{X}_t(s)^T \boldsymbol{\beta} + \lambda \sigma_t(s) |z_t(s)| + \sigma_t(s) v_t(s)$$

where t = 1, ..., T denotes the day of each observation.

- ▶ Different ways to incorporate the temporal dependence
 - ▶ Time series on \mathbf{w}_t , $z_t(\mathbf{s})$, and $\sigma_t(\mathbf{s})$
 - ▶ Three dimensional covariance model for $v_t(\mathbf{s})$ (e.g. Huser and Davison, 2014)
- ▶ Our model incorporates the time series because the $z_t(\mathbf{s})$ and $\sigma_t(\mathbf{s})$ terms dictate the tail behavior.

MCMC details

- ► Three main steps:
 - 1. Impute censored data below T
 - 2. Update parameters with standard random walk Metropolis Hastings or Gibbs sampling
 - 3. Make spatial predictions
- Priors are selected to be conjugate when possible

Simulation study

- ▶ 6 different data settings:
 - Gaussian, K = 1 partition
 - ightharpoonup T, K=1 partition
 - ightharpoonup T, K = 5 partitions
 - ▶ Skew-t, K = 1 partition
 - ▶ Skew-t, K = 5 partitions
 - Max-stable
 - Marginally: GEV($\mu = 1, \sigma = 1, \xi = 0.2$)
 - ▶ Dependence function: asymmetric logistic with $\alpha = 0.5$

Simulation study

- 5 different models:
 - Gaussian
 - Skew-t with K = 1 partition, no thresholding
 - Skew-t with K = 1 partition, thresholding at q(0.80)
 - Skew-t with K = 5 partitions, no thresholding
 - ▶ Skew-t with K = 5 partitions, thresholding at q(0.80)

Brier score

- Brier score used to determine model that gives best fit (Gneiting and Raftery, 2007)
- ▶ The Brier score for predicting exceedance of threshold *c* is

$$[e(c) - P(c)]^2$$

where

- ▶ y is a test set value
- e(c) = I[y > c]
- ightharpoonup P(c) is the predicted probability of exceeding c
- Relative Brier scores:

$$BS_{rel} = \frac{BS_{method}}{BS_{Gaussian}}$$

Simulation study results

Figure: Relative Brier score results

Simulation study results

Figure: Relative Brier score results

Simulation study results

Figure: Relative Brier score results

Simulation study results

- Key findings:
 - ▶ Improvement over Gaussian methods when partitioning
 - Underestimating the number of knots has a detrimental impact
 - In all cases, non-thresholded models perform better than thresholded models

Data analysis

- Ozone measurements
 - max 8-hour ozone measurements
 - ▶ data from 1089 sites
 - ▶ July 2005
- ► We take a stratified sample of *n* = 800 sites:
 - ▶ 271 from northeast
 - ▶ 96 from northwest
 - ▶ 269 from southeast
 - ▶ 164 from southwest

Figure: Ozone monitoring station locations

Data analysis

Figure: Max 8-hour ozone measurements on July 10, 2005

Exploratory data analysis

Figure: $\widehat{\chi}$ -plot for sample quantiles of ozone observations

Model comparisons

- 9 different analysis methods incorporating
 - ► Gaussian vs t vs skew-t marginal distribution
 - K = 1, 5, 6, 7, 8, 9, 10, 15 partitions
 - Thresholding at
 - ► *T* = 0
 - T = 50 ppb, q(0.48)
 - T = 75ppb, q(0.92)
 - ► T = 85ppb, q(0.97)
- Compare Brier scores using two-fold cross validation

Model comparisons

- \blacktriangleright All methods use a Matérn or exponential covariance (u=0.5)
- Covariate data from the Environmental Protection Agency's Community Multiscale Air Quality (CMAQ) system.
- Mean function modeled as

$$X_t(s)\beta = \beta_0 + \beta_1 \cdot \mathsf{CMAQ}_t(s)$$

Two-fold cross-validation results

Figure: Relative Brier score results

Two-fold cross-validation results

- Key findings:
 - Partitioning improves performance across all high thresholds.
 - Models with anywhere from K=5 to K=10 partitions perform similarly
 - In all cases, non-thresholded models perform better than thresholded models

Discussion and future work

- Improvement of model performance when using partitioned models
- ► Thresholding makes results worse
 - Possible numerical instability due to truncated normal distribution
- Different partition structure
 - Distance weighting for each knot vs indicator functions
- Knot selection
 - ▶ Possible prior on the probability a knot is in the spatial domain

Future work: temporal dependence

We extend our previous model to be

$$Y_t(\mathbf{s}) = \mathbf{X}_t(\mathbf{s})^T \boldsymbol{\beta} + \lambda \sigma_t(\mathbf{s})|z_t(\mathbf{s})| + \sigma_t(\mathbf{s})v_t(\mathbf{s})$$

where t = 1, ..., T denotes the day of each observation.

• We incorporate an AR(1) time series on $\mathbf{w}_{tk}^* = (w_{tk1}^*, w_{tk2}^*)$, z_{tk} , and σ_{tk}^* where

$$\begin{aligned} w_{tki}^* &= \Phi^{-1} \left[\frac{w_{tki} - \min(\mathbf{s}_i)}{\mathsf{range}(\mathbf{s}_i)} \right] \quad i = 1, 2 \\ \sigma_t^{2*}(\mathbf{s}) &= \Phi^{-1} \{ \mathsf{IG}[\sigma_t^2(\mathbf{s})] \} \end{aligned}$$

are transformations to \mathcal{R}^2

- Movivation:
 - Want to incorporate spatial dependence when modeling rare events.
 - ► Examples:
 - Diseased trees
 - Disease outbreak
- We observe

$$Y_i = \left\{ egin{array}{ll} 1 & ext{ event occurred} \\ 0 & ext{ no event occurred} \end{array}
ight.$$

▶ We model $Pr[Y_i = 1]$

- Common examples with non-spatial analysis
 - Logistic regression

$$\mathsf{Pr}[Y_i = 1] = rac{\mathsf{exp}(\mathbf{X}_i oldsymbol{eta})}{1 + \mathsf{exp}(\mathbf{X}_i oldsymbol{eta})}$$

Probit regression

$$\Pr[Y_i = 1] = \Phi[\mathbf{X}_i \boldsymbol{\beta}]$$

where Φ is the standard normal distribution function

▶ Wang and Dey (2010): Generalized extreme value link function

$$\Pr[Y_i = 1] = 1 - \exp\left[-(1 + \xi \mathbf{X}_i \boldsymbol{eta})^{-1/\xi}\right]$$

- Proposed method will
 - use the GEV link function
 - use the hierarchical method for spatially dependent extremes from Reich and Shaby (2012)
- Model parameters fit using MCMC

- We fit parameters ξ and β in order to transform the data to GEV(1, 1, 1) marginal distributions.
- Using the link function

$$p_i = 1 - \exp\left[-(1 + \xi \mathbf{X}(\mathbf{s}_i)oldsymbol{eta})^{-1/\xi}
ight]$$

▶ Latent variable $z_i = -\frac{1}{\log(1-\rho_i)}$ used to evaluate the likelihood.

Likelihood function

▶ We use a multivariate generalized extreme value distribution with asymmetric logistic dependence function (Reich and Shaby, 2012)

$$G(\mathbf{z}) = \Pr[Z_1 < z_z, \dots, Z_n < z_n] = \exp\left\{-\sum_{l=1}^{L} \left[\sum_{i=1}^{n} \left(\frac{w_l(\mathbf{s}_i)}{z_i}\right)^{1/\alpha}\right]^{\alpha}\right\}$$

where

- w_l is a weighting function subject to the constraint that $\sum_{l=1}^{L} w_l = 1$.
- $ightharpoonup \overline{\alpha}$ controls spatial dependence
 - ho $\alpha = 0$ is strong dependence
 - $\alpha = 1$ is joint independence

Weighting function

► We use the Gaussian weights proposed by Reich and Shaby (2012) given by

$$w_{l}(\mathbf{s}_{i}) = \frac{\exp\left[-0.5\left(\frac{||\mathbf{s}_{i} - \mathbf{v}_{l}||}{\rho}\right)^{2}\right]}{\sum_{l=1}^{L} \exp\left[-0.5\left(\frac{||\mathbf{s}_{i} - \mathbf{v}_{l}||}{\rho}\right)^{2}\right]}$$

where

- ▶ **v**_I are spatial knots
- ho is a bandwidth term for the kernel function

Joint likelihood

- Let $K_t = \sum_{i=1}^n Y_{it}$ be the number of exceedances that occur on day t.
- Rearrange the sites so
 - Y_1, \ldots, Y_K are the observations where $Y(\mathbf{s}_i) = 1$
 - $ightharpoonup Y_{K+1}, \ldots, Y_n$ are the observations where $Y(\mathbf{s}_i) = 0$
- ▶ Then for K = 0, 1, 2

$$Pr(Y_1 = y_1, ..., Y_n = y_n) = \begin{cases} G(z) & K = 0 \\ G(z_{(1)}) - G(z) & K = 1 \\ G(z_{(12)}) - G(z_{(1)}) - G(z_{(2)}) + G(z) & K = 2 \end{cases}$$

where
$$G(\mathbf{z}_{(1)} = \Pr(Z_2 < z_2, \dots, Z_n < z_n)$$
.

ightharpoonup K > 2 can be derived similarly

Joint likelihood

- ▶ For small K, we can evaluate the likelihood directly.
- For large K, we use the hierarchical model of Reich and Shaby (2012).

Non-stationary covariance for extreme values

Knot-specific bandwidth

Thesis outline

- ► Chapter 1: Extreme value theory August 2015
- ► Chapter 2: Spatiotemporal model for extreme value analysis based on the skew-t distribution February 2015
- ► Chapter 3: Spatial binary regression May / June 2015
- Chapter 4: Non-stationary covariance through knot-specific bandwidth August 2015

Questions

- Questions?
- ▶ Thank you for your attention.
- Acknowledgment: This work was funded by EPA STAR award R835228

References

- ▶ Demarta, S. and McNeil, A. J. (2007) The *t* copula and related copulas. *International Statistical Review*, **73**, 111–129.
- ► Huser, R. and Davison, A. C. (2014) Space-time modelling of extreme events. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **76**, 439–461.
- ▶ Padoan, S. A. (2011) Multivariate extreme models based on underlying skew-t and skew-normal distributions. *Journal of Multivariate Analysis*, 102, 977–991.
- ► Zhang, H. and El-Shaarawi, A. (2010) On spatial skew-Gaussian processes and applications. *Environmetrics*, **21**, 33–47.