

A.**B.**

Figs. 1A and 1B

Fig. 2

Fig. 3

Figs. 4A, 4B and 4C

A.
B.

Figs. 5A and 5B

C.

Fig. 5C

In vivo effects of NBN on nigral dopamine neurons**Fig. 6**

FIG. 7

9/19

Alignment of Neublastin primers used in Rapid-Screen with homologous regions in other GDNF ligands

5' -C CTG GCC AGC CTA CTG GG-3'	SEQ ID No 17
G CTG GCC CGG CTG CAG GG	persephin
G CTG CGA CGA CTG CGC CA	neurturin
A TTG AAA AAC TTA TCC AG	GDNF

5' -AA GGA GAC CGC	TTC GTA GCG-3'	SEQ ID No 18
TA GGC CAC GTC	GGT GTA GCG	persephin
AA GGA CAC CTC GTC CTC GTA GGC		neurturin
AA CGA CAG GTC ATC ATC AAA GGC		GDNF

conserved nucleotides shown in **bold**

Fig. 8

10 / 19

Fig. 9

Fig. 10

12 / 19

Relative Chemiluminescence Units (R.U.)

(Off Scale, -50R.U.)

Fig. 11

13/19

1. Control medium stained with R30 anti-peptide antibody
2. Neublastin containing conditioned medium stained with R30 anti-peptide antibody
3. Control medium stained with R31 anti-peptide antibody
4. Neublastin containing conditioned medium stained with R31 anti-peptide antibody

Fig. 12

14 / 19

Extraction of neublastin by affinity-binding on RETL3-Ig

Lane 1: bound from CHO control conditioned media

Lane 2: bound from neublastin overexpressing CHO conditioned media

Fig. 13

Neublastin Syngene

NcoI (318)

316 TACCATGGCT GGAGGACCGG GATCTCGTGC TCGTGCAGCA GGAGCACGTG GCTGTCGTCT
 AT~~TACCGA CCTCCGGCC CTAGAGCACG AGCACCGTCGT CCTCGTGCAC CGACAGCAGA
 1▶ M A G G P G S R A R A A G A R G C R L

376 GCGTTCTCAA CTAGTGCCGG TCGTGCACT CGGACTGGGA CACC GTTCCG ACGAACTAGT
 CGCAAGAGTT GATCACGGCC ACGCACGTGA GCCTGACCCCT GTGGCAAGGC TGCTTGATCA
 19▶ R S Q L V P V R A L G L G H R S D E L V

436 ACGTTTCGT TTTGTTCAAG GATCTTGTG TCGTGCACGT TCTCCGCATG ATCTATCTCT
 TGCAAAAGCA AAAACAAGTC CTAGAACAGC AGCACGTGCA AGAGGGCGTAC TAGATAGAGA
 39▶ R F R F C S G S C R R A R S P H D L S L

496 AGCATCTCTA CTAGGAGCCG GAGCACTAAG ACCGCCGCCG GGATCTAGAC CTGTATCTCA
 TCGTAGAGAT GATCCTCGGC CTCGTGATTC TGGCGGCCGGC CCTAGATCTG GACATAGAGT
 59▶ A S L L G A G A L R P P P G S R P V S Q

556 ACCTTGTGT AGACCTACTA GATA CGAAGC AGTATCTTC ATGGACGTAA ACTCTACATG
 TGGAAACAACA TCTGGATGAT CTATGCTTCG TCATAGAAAG TACCTGCATT TGAGATGTAC
 79▶ P C C R P T R Y E A V S F M D V N S T W

BamHI (671)

616 GAGAACCGTA GATAGACTAT CTGCAACCGC ATGTCGCTGT CTAGGATGAT AATAGGGATC
 CTCTGGCAT CTATCTGATA GACGTTGGCG TACACCGACA GATCCTACTA TTATCCCTAG
 99▶ R T V D R L S A T A C G C L G . . .

676 CGGCT
 GCCGA

Fig. 14

HisNeublastin

Xhol (340)

301 TACCATGGGC CATCATCATC ATCATCATCA TCATCATCAC TCGAGCGGCC ATATCGACGA
ATCTACCCG GTAGTAGTAG TAGTAGTAGT AGTAGTAGTG AGCTCGCCGG TATAAGCTGCT
1 ▶ M G H H H H H H H H S S G H I D D

361 CGACGACAAG GCTGGAGGAC CGGGATCTCG TGCTCGTGCA GCAGGAGCAC GTGGCTGTGCG
SCTGCTGTTG CGACCTCCTG GCCCTAGAGC ACGAGCACGT CGTCCTCGTG CACCGAAGC
19 ▶ D D K A G G P G S R A R A A G A R G C R

421 TCTGCGTTCT CAACTAGTGC CGGTGCGTGC ACTCGGACTG GGACACCGTT CCGACGAAC
AGACGCAAGA GTTGATCACG GCCACGACG TGAGCCTGAC CCTGTGGCAA GGCTGCTTGA
39 ▶ L R S Q L V P V R A L G L G H R S D E L

481 AGTACGTTTT CGTTTTGTT CAGGATCTTG TCCTCGTGCA CGTTCTCCGC ATGATCTATC
TCATGCAAAA GCAAAACAA GTCTAGAAC AGCAGCACGT GCAAGAGGCG TACTAGATAG
59 ▶ V R F R F C S G S C R R A R S P H D L S

541 TCTAGCATCT CTACTAGGAG CGGGAGCACT AAGACCGCCG CGGGATCTA GACCTGTATC
AGATCGTAGA GATGATCCTC GGCTCGTGAA TTCTGGCGGC GGCCCTAGAT CTGGACATAG
79 ▶ L A S L L G A G A L R P P P G S R P V S

601 TCAACCTTGT TGTAGACCTA CTAGATACGA AGCAGTATCT TTCATGGACG TAAACTCTAC
AGTTGGAACA ACATCTGGAT GATCTATGCT TCCTCATAGA AAGTACCTGC ATTTGAGATG
99 ▶ Q P C C R P T R Y E A V S F M D V N S T

BamHI (719)

661 ATGGAGAACCG TAGATAGAC TATCTGAAAC CGCATGTGGC TGTCTAGGAT GATAATAGGG
TACCTCTTGG CATCTATCTG ATAGACGTTG GCGTACACCG ACAGATCCTA CTATTATCCC
119 ▶ W R T V D R L S A T A C G C L G . .

721 ATCCGGCTGC TAACAAAGCC CG
TAGGCCGACG ATTGTTCCGG GC

Fig. 15

17 / 19

Fig. 16

FIG. 17

FIG. 18