Análise e Projeto de Algoritmos

Busca Local

Prof. Bruno Bruck

 Técnicas de Busca Local (ou Heurísticas de Refinamento) constituem uma família de técnicas baseadas na noção de vizinhança

- □ Seja S o espaço de soluções
 - Uma função N associa cada solução $s \in S$ à sua vizinhança $N(S) \subseteq S$
 - □ Cada solução $s' \in N(S)$ é chamada de vizinho de s

 Denota-se movimento a modificação m que transforma uma solução s em outra s' que esteja em sua vizinhança

- □ De modo intuitivo, um algoritmo de busca local
 - Parte de uma solução inicial qualquer
 - Pode ser obtida por meio de uma heurística construtiva
 - Caminha a cada iteração, de vizinho em vizinho de acordo com a definição da vizinhança adotada

- Variable Neighbourhood Descent (VND)
 - Método de Descida em Vizinhança Variável (no português)
- Método de busca local que explora o espaço de soluções por meio de trocas sistemáticas de vizinhança

- Considere o Problema do Caixeiro Viajante
 - **n** cidades
 - f O custo para percorrer o caminho entre duas cidades m i e m j é dado por $m c_{ij}$
 - Objetivo: Encontrar o ciclo hamiltoniano de menor custo
 - Ciclo hamiltoniano: Um ciclo que passa por cada um dos vértices exatamente uma vez

- Representação da solução
 - Vetor contendo a rota percorrida pelo caixeiro, isto é, a sequência de vértices visitados

- Movimentos de vizinhança
 - \square N_1 = Swap (trocar dois vértices de posição na rota)
 - $Arr N_2 = 2$ -opt (remover 2 arcos e religar a solução novamente)
 - $Arr N_3 =
 m re-insertion$ (remover vértices da rota e reinserir na melhor posição)

```
procedimento VND(f(.),N(.),r,s)
    Seja r o número de estruturas diferentes de vizinhança;
              {Tipo de estrutura de vizinhança corrente}
2 \quad k \leftarrow 1;
   enquanto (k \leq r) faça
        Encontre o melhor vizinho s' \in N^{(k)}(s);
        \underline{\operatorname{se}} \left( f(s') < f(s) \right)
\mathbf{5}
             <u>então</u>
                 s \leftarrow s';
                 k \leftarrow 1;
             senão
                 k \leftarrow k + 1;
10
11
        \underline{\text{fim-se}};
12 fim-enquanto;
13 Retorne s;
fim VND;
```