morning glory 😭

V .	
* (*)	
≠ex4).	M22. 11- 10 11-00
	M_{22} . $M_{i} = \frac{10}{M_{2}} = \frac{01}{M_{3}} = \frac{00}{M_{4}} = \frac{00}{01}$.
	M. ~ Mu Space /Uza?
	/ he
	$B \in \mathcal{M}_{22}$, $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \alpha \mathcal{M}_1 + b \mathcal{M}_2 + c \mathcal{M}_3 + d \mathcal{M}_4$, spans.
	MINMY Indep? V.
x ex5).	Pag 5=8
	J. コンド
	447 ···/4 ··· /2 /33 /38 3/2/92 · /2 /3 /2/123 · (66)
A ex6).	\mathbb{R}^{∞} , $\mathcal{E}(-\infty,\infty)$, $\mathcal{C}(-\infty,\infty)$.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* Than 4.5.1,	! S= basis of V.
	2: V is usinguly expressed by S.
× Def 2).	S= qu, Va, -, Un 2 : basis of V. g (C1, C2, 6)
	V = GV+C2U2++ CaVa. Coordinates of V relative to
	=> Sor Het 3/F/K
	$S(C_1, C_2, \dots, C_n) = Coordinate Vector relative to S$ $S(X)_S = CC_1, C_2, \dots C_n)$
	1. (L)s = CC, , C2, Cn).
fex8).	(a). Pn P = Co + C, X+ - + Cn Xa
	⇒[P]s = (Co, C1,, Cn). (*s: standard basis).
	(a) b. Relative from a to b.
	(b) BEM22, B= ab
	$(B)_{s} = (a, b, c, d).$
	· · · · · · · · · · · · · · · · · · ·

	40117.	
0		
	* ex9).	(a). $S = \{ \underline{U}_1, \underline{V}_2, \underline{V}_3 \}. $ (V) $= 2$
		V = (5, -1, 9). (Y)s =?
		$\int_{-1}^{1} (5,-1,9) = C_1(1,2,1) + C_2(2,9,0) + C_3(3,3,4).$
		$\begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} (for salukion).$
		Ce = - (for salution)
		Tr.
		(b).
		and (for check).
		(b). $(\underline{V})_{S} = (-1, 3, 2)$. $\Rightarrow (-1)(1, 2, 1) + (3)(2, 9, 0) + (2)(3, 3, 4)$. $\underline{V} = ?$
		(2/s - (-1, 3, 4), -(-1)(1, 2, 1) + (3/2, 4, 3) - (2/3, 3, 4).
		<u>V</u> = !
U		
	(47) k	