

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/06/2011	09:00

05.570 18 06 11 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/06/2011	09:00

Problema 1

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.
 - A: Hi ha crisis
 - B: Els ciutadans estan contents
 - C: Els ciutadans protesten
 - D: Els polítics es posen d'acord
 - E: Els polítics escolten els ciutadans
 - 1) Només si els polítics es posen d'acord i escolten els ciutadans, no hi haurà crisis i els ciutadans estaran contents.

$$\neg A {\wedge} B {\rightarrow} \ D {\wedge} E$$

2) Si hi ha crisis els ciutadans no estan contents, i si no n'hi ha els ciutadans protesten quan els polítics no els escolten.

$$(A \rightarrow \neg B) \land (\neg A \rightarrow (\neg E \rightarrow C))$$

3) Quan hi ha crisis i el polítics no escolten els ciutadans, cal que els ciutadans protestin perquè els polítics es posin d'acord.

$$A \land \neg E \rightarrow (\neg C \rightarrow \neg D)$$

b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Domini: un conjunt no buit

P(x): x és un partit polític

C(x): x és corrupte

H(x): x està content

E(x): x és un elector

V(x,y): x vota a y (x és votant de y)

Constant

i: Partit Lògic

1) No tots els partits polítics són corruptes, però alguns sí que ho són.

$$\neg \forall x[P(x) \rightarrow C(x)] \land \exists x[P(x) \land C(x)]$$

2) Quan tots els electors estan contents, alguns electors voten el Partit Lògic.

$$\forall x[E(x) \rightarrow H(x)] \rightarrow \exists x[E(x) \land V(x,i)]$$

3) No hi ha partits polítics que siguin votats per tots els electors.

$$\neg\exists x \{P(x) \land \forall y [E(y) \rightarrow V(y,x)]\}$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/06/2011	09:00

Problema 2

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Utilitzeu només les 9 regles bàsiques (és a dir, no utilitzeu ni regles derivades ni equivalents deductius).

$$\begin{array}{l} S {\scriptstyle \vee} Q \rightarrow (P \rightarrow \neg R) \\ \neg R \rightarrow S \\ S {\scriptstyle \vee} R \rightarrow \neg (Q {\scriptstyle \wedge} S) \\ \therefore \ P \rightarrow \neg Q \end{array}$$

Solució

		I		
1	$S\lor Q\to (P\to \neg R)$			Р
2	¬R→S			Р
3	$S \lor R \rightarrow \neg (Q \land S)$			Р
4		Р		Η
5			Q	Ι
6			S∨Q	l∨ 5
7			P→¬R	E→1,6
8			¬R	E→4, 7
9			S	E→2,8
10			S∨R	l∨ 9
11			¬(Q∧S)	E→3,10
12			Q∧S	I∧ 5, 9
13		¬Q		I–5, 11,12
14	P→¬Q			l→ 4, 13

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/06/2011	09:00

Problema 3

Indiqueu aplicant resolució si el següent raonament és vàlid, indiqueu també si les premisses són consistents.

$$\begin{split} P &\rightarrow \neg S \land R \\ R \lor S &\rightarrow \neg T \\ \therefore P &\rightarrow \neg (R \rightarrow (\neg S \rightarrow T)) \end{split}$$

Solució

$$\begin{split} & \mathsf{FNC}(\mathsf{P} \rightarrow \neg \mathsf{S} \land \mathsf{R}) = (\neg \mathsf{P} \lor \neg \mathsf{S}) \land (\neg \mathsf{P} \lor \mathsf{R}) \\ & \mathsf{FNC}(\mathsf{R} \lor \mathsf{S} \rightarrow \neg \mathsf{T}) = (\neg \mathsf{R} \lor \neg \mathsf{T}) \land (\neg \mathsf{S} \lor \neg \mathsf{T}) \\ & \mathsf{FNC}(\neg (\mathsf{P} \rightarrow \neg (\mathsf{R} \rightarrow (\neg \mathsf{S} \rightarrow \mathsf{T}))))) = \mathsf{P} \land (\neg \mathsf{R} \lor \mathsf{S} \lor \mathsf{T}) \end{split}$$

Conjunt de clàusules ={ $\neg P \lor \neg S$, $\neg P \lor R$, $\neg R \lor \neg T$, $\neg S \lor \neg T$, **P**, $\neg R \lor S \lor T$ }

Clàusules troncals	Clàusules laterals
Р	¬P∨¬S
¬S	$\neg R \lor S \lor T$
¬R∨T	$\neg R \lor \neg T$
¬R	¬P∨R
¬P	Р

Consistència de premisses:

Conjunt de clàusules ={ $\neg P \lor \neg S, \neg P \lor R, \neg R \lor \neg T, \neg S \lor \neg T$ } Per la regla de literal pur ($\neg P$) podem eliminar $\neg P \lor \neg S, \neg P \lor R$ Conjunt de clàusules ={ $\neg R \lor \neg T, \neg S \lor \neg T$ } Per la regla de literal pur ($\neg T$) podem eliminar $\neg R \lor \neg T, \neg S \lor \neg T$ Conjunt de clàusules ={} Raonament vàlid i premisses consistents

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/06/2011	09:00

Problema 4

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Podeu utilitzar les regles bàsiques, i les regles derivades i els equivalents deductius vistos a l'assignatura.

$$\begin{split} &\forall x (P(x) \to \exists y \; R(x,y)) \\ &\forall x \neg \exists y \; R(x,y) \\ &\therefore \; \exists x [P(x) \land Q(x)] \; \to \; \exists y \; T(y) \end{split}$$

<u>Solució</u>

1	$\forall x (P(x) \to \exists y \ R(x,y))$		Р
2	∀х¬∃у R(х,у)		Р
3		$\exists x (P(x) \wedge Q(x))$	Н
4		P(a) ∧ Q(a)	E∃ 3
5		P(a)	E ∧ 4
6		$P(a) \rightarrow \exists y \ R(a,y)$	E∀ 6
7		∃y R(a,y)	E→ 5,6
8		¬∃у R(a,y)	E∀2
9		∃yT(y)	QS 7,8
10	$\exists x (P(x) \land Q(x)) \to \exists y \ T(y)$		l→ 3,9

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/06/2011	09:00

Problema 5

Es vol dissenyar, usant únicament portes NOR, un circuit lògic que es correspongui amb la següent expressió:

 $A \leftrightarrow B$

- a) Reescriu la fórmula de manera justificada usant únicament l'operador ↓.
- b) Comprova l'equivalència de les dues fórmules construint la seva taula de veritat.

Solució

a) Expressem la fórmula inicial només amb les operacions +,· i ~. Apliquem una doble negació davant de l'expressió resultant, que és una conjunció, per a convertir-la en la negació d'una disjunció (un NOR) mitjançant la llei de De Morgan. Per últim les negacions més internes es poden transformar també en expressions amb NOR fent servir l'equivalència ~A = A NOR A.

$$A \leftrightarrow B = (A \rightarrow B) \cdot (B \rightarrow A) = (\sim A + B) \cdot (\sim B + A) = \sim \sim [(\sim A + B) \cdot (\sim B + A)] = \sim [\sim (\sim (A + A) + B) + \sim (\sim (B + B) + A)] = [(A \downarrow A) \downarrow B] \downarrow [(B \downarrow B) \downarrow A]$$
b)

A	В	X=A↓A	Y=B↓B	X↓B	Y↓A	$(X \downarrow B) \downarrow (Y \downarrow A)$	A↔B
0	0	1	1	0	0	1	1
0	1	1	0	0	1	0	0
1	0	0	1	1	0	0	0
1	1	0	0	0	0	1	1