Inside a layer: Units/Neurons

Notation 1

Layer l, for $1 \leq l \leq L$:

- ullet Produces output vector $\mathbf{y}_{(l)}$
- $oldsymbol{\cdot}$ $\mathbf{y}_{(l)}$ is a vector of $n_{(l)}$ synthetic features

$$n_{(l)} = ||\mathbf{y}_{(l)}||$$

 $\bullet\,$ Takes as input $\mathbf{y}_{(l-1)}$, the output of the preceding layer

The input ${f x}$

- Is called "layer 0"
- $\mathbf{y}_{(0)} = \mathbf{x}$

The output $\mathbf{y}_{(L)}$ of the final layer L

- Becomes the input of a Classifier/Regression model
- ullet Which we call layer L+1

Layer

- Input vector of $n_{(l-1)}$ features: $\mathbf{y}_{(l-1)}$
- Produces output vector or $n_{(l)}$ features $\mathbf{y}_{(l)}$
- ullet Feature j defined by the function

$$\mathbf{y}_{(l),j} = \sigma(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

Each feature $\mathbf{y}_{(l),j}$ is produced by a unit (neuron)

- ullet There are $n_{(l)}$ units in layer l
- The units are homogenous
 - ${\color{red} \bullet}$ same input $\mathbf{y}_{(l-1)}$ to every unit
 - same functional form for every unit
 - lacksquare units differ only in $\mathbf{W}_{l,j}$

Units are also sometimes refered to as Hidden Units

- They are internal to a layer.
- From the standpoint of the Input/Output behavior of a layer, the units are "hidden"

The functional form

$$\mathbf{y}_{l,j} = \sigma(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

is called a Dense or Fully Connected unit.

It is called Fully connected since

- each unit takes as input $\mathbf{y}_{(l-1)}$, all $n_{(l-1)}$ outputs of the preceding layer

The *Fully Connected* part can be better appreciated by looking at a diagram of the connectivity of a *single* unit producing a *single* feature.

A Fully Connected/Dense Layer producing a single feature at layer l computes $\mathbf{y}_{(l),1} = a_{(l)}(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),1})$

Fully connected, single feature

The edges into the single unit of layer l correspond to $\mathbf{W}_{(l),1}$.

A Fully Connected/Dense Layer with multiple units producing multiple feature at layer l computes

$$\mathbf{y}_{(l),j} = a_{(l)}(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

Fully connected, two features

The edges into each unit of layer l correspond to

- $\mathbf{W}_{(l),1},\mathbf{W}_{(l),2}\dots$
- ullet Separate colors for each units/row of f W

Each unit $\mathbf{y}_{(l),j}$ in layer l creates a new feature using pattern $\mathbf{W}_{(l),j}$

The functional form is of

- A dot product $\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j}$
 - lacksquare Which can be thought of matching input $\mathbf{y}_{(l-1)}$ against pattern $\mathbf{W}_{(l),j}$
- \bullet Fed into $\sigma,$ the $\emph{sigmoid}$ function we have previously encountered in Logistic Regression.

where

- $\mathbf{y}_{(l)}$ is a vector of length $n_{(l)}$
- $\hat{\mathbf{W}}_{(l)}$ is a matrix
 - $lacksquare n_{(l)}$ rows
 - $\mathbf{w}_{(l)}^{(j)}$

$$= \mathbf{W}_{(l),j}$$

Writen with the shorthand Dense(n_l)

We will introduce other types of layers.

- Most will be homogeneous
- Not all will be fully Connected
- The dot product will play a similar role

The sigmoid function σ may be the most significant part of the functional form

- The dot product is a *linear* operation
- The outputs of sigmoid are *non-linear* in its inputs

So the sigmoid induces a non-linear transformation of the features $\mathbf{y}_{(l-1)}$

The outer function which applies a non-linear transformation to linear inputs
 Is called an activation function Sigmoid is one of several activation functions we will study

- The operation of a layer does not always need to be a dot production
- The activation function of a layer need not always be the sigmoid

More generically we write a layer as

Layers

$$\mathbf{y}_{(l)} = a_{(l)}\left(f_{(l)}(\mathbf{y}_{(l-1)},\mathbf{W}_{(l),j})
ight)$$

where

- $f_{(l)}$ is a function of $\mathbf{y}_{(l)-1}$ and $\mathbf{W}_{(l)}$
- $a_{(l)}$ is an activation function

Layers

In slightly more mathematical terms:

- Layer l if computing a function $\mathbf{y}_{(l)} = F_{(l)}$

$$F_{(l)}(\mathbf{y}_{(l-1)}) = \mathbf{y}_{(l)}$$

$$F_{(l)}: \mathcal{R}^{||\mathbf{y}_{(l-1)}||} \mapsto \mathcal{R}^{||\mathbf{y}_{(l)}||}$$

If we expand $F_{(l)}$, we see that it is the l-fold composition of functions $F_{(1)},\ldots,F_{(l)}$

$$egin{array}{lll} \mathbf{y}_{(l)} &=& F_{(l)}(\mathbf{y}_{(l-1)}) \ &=& F_{(l)}(F_{(l-1)}(\mathbf{y}_{(l-2)})) \ &=& F_{(l)}(F_{(l-1)}(F_{(l-2)}(\mathbf{y}_{(l-3)}))) \ &=& dots \end{array}$$

So the layer-w (composed) fu	ise architecture is nothing nction.	g more than a way o	f computing a nest

```
In [4]: print("Done")
```

Done