Microeconomía

Mercados competitivos

Leandro Zipitría

Departamento de Economía Facultad de Ciencias Sociales - UdelaR

Maestría en Economía Internacional

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Equilibrio competitivo parcial: corto plazo

Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo

Ejemplos

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Fiemplo de equilibrio competitivo

Equilibrio genera

Equilibrio competitivo parcial: largo plazo Ejemplos

Presentación

- ► Objetivos:
 - estudiar óptimo de Pareto y equilibrio competitivo
 - presentar modelo de equilibrio parcial
- Vínculo entre el resultado de mercados competitivos y eficiencia
- Teoremas fundamentales del bienestar

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Equilibrio competitivo parcial: corto plazo

Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo

Ejemplos

Componentes

Economía: I consumidores $i=1,\ldots,I$; J empresas $j=1,\ldots,J$; L bienes $\ell=1,\ldots,L$

Consumidores

- conjunto de consumo $X_i \subset \mathbb{R}^L$
- ▶ preferencias representadas por $u_i(.)$.
- dotaciones iniciales $\omega_{\ell} \geq 0$, $\ell = 1, ..., L$

Empresas

- cada empresa j tiene conjunto de producción $Y_j \subset \mathbb{R}^L$
- $y_j \in Y_j$, con $y_j = (y_{1j}, \dots, y_{Lj}) \in \mathbb{R}^L$

► Cantidad neta de bienes disponibles: $\omega_{\ell} + \sum_{j} y_{\ell j}$

Asignación económica

DefiniciÃ³n

Una asignación económica $(x_1,\ldots,x_I,y_1,\ldots,y_J)$ es una especificación de un vector de consumo $x_i \in X_i$ para cada consumidor $i=1,\ldots,I$ y un vector de producción $y_j \in Y_j$ para cada empresa $j=1,\ldots,J$. La asignación $(x_1,\ldots,x_I,y_1,\ldots,y_J)$ es factible si

$$\sum_{i=1}^{J} x_{\ell i} \le \omega_{\ell} + \sum_{j=1}^{J} y_{\ell j} \quad \text{para } \ell = 1, \dots, L$$

▶ Una asignación económica es factible si el total consumido de cada bien no excede el monto disponible

Óptimo de Pareto

DefiniciÃ³n

Una asignación económica $(x_1,\ldots,x_I,y_1,\ldots,y_J)$ es Pareto óptima -o Pareto eficiente- si no hay otra asignación posible $(x_1',\ldots,x_I',y_1',\ldots,y_J')$ tal que $u_i(x_i')\geq u_i(x_i)$ $\forall\,i=1,\ldots,I$ y $u_i(x_i')>u_i(x_i)$ para algún i.

- Una asignación Pareto óptima utiliza los recursos de forma eficiente: no hay forma de mejorar a algún consumidor sin empeorar al resto
- Nada dice respecto a si la asignación es equitativa, es decir en términos distributivos

Equilibrio competitivo

- Análisis de economía de mercado competitivas
 - existe un mercado para cada uno de los L bienes:

$$p=(p_1,\ldots,p_L)$$

- consumidores y productores son precio aceptantes
 - chicos en relación al tamaño del mercado
 - si aceptan precios y mercado se vacía ⇒ no tienen incentivo a cambiar decisiones (equilibrio)
- ▶ Dotaciones y empresas propiedad de consumidores
 - **b** dotación del consumidor $i: \omega_i = (\omega_{1i}, \dots, \omega_{Li})$
 - Participación en empresa j: θ_{ij} , con $\sum_i \theta_{ij} = 1$

Definición

La asignación $(x_1^*, \dots, x_I^*, y_1^*, \dots, y_J^*)$ y el vector de precios $(x_{1i}p^*) \in \mathbb{R}^{\mathbb{L}}$ constituyen un equilibrio competitivo o walrasiano si se cumple:

1. Maximización de beneficios. Para cada empresa j, y_i^* resuelve

$$\max_{y_i \in Y_i} p^* \cdot y_i$$

2. Maximización de utilidad. Para cada consumidor i, x_i^* resuelve

$$\underset{x_i \in X_i}{\text{Max}} u_i(x_i) \quad \text{s. a } p^* \cdot x_i \leq p^* \cdot \omega_i + \sum_{j=1}^J \theta_{ij} \left(p^* \cdot y_j^* \right)$$

3. Cierre de mercado. Para cada bien $\ell = 1, ..., L$

$$\sum_{i=1}^{I} x_{\ell i}^* = \omega_{\ell} + \sum_{j=1}^{J} y_{\ell j}^*$$

Ley de Walras

Hecho

Si la asignación $(x_1,\ldots,x_I,y_1,\ldots,y_J)$ y el vector de precios $p\gg 0$ satisface la condición de cierre de mercado para todos los bienes $\ell\neq k$ y si la restricción presupuestaria de cada consumidor se cumple con igualdad $\left[p\cdot x_i=p\cdot \omega_i+\sum_j\theta_{ij}p\cdot y_j,\ \forall i\right]\Rightarrow el$ mercado k también cierra.

Demostración.

Deberes.

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Equilibrio competitivo parcial: corto plazo Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo Ejemplos

Presentación

- Equilibrio parcial: análisis del mercado de un bien
- ▶ Mercado pequeño ⇒
 - ▶ ∄ efecto riqueza (puedo usar EC)
 - los precios de otros bienes no están afectados por cambios en el mercado analizado (no hay efecto retroalimentación)
- Otros precios fijos ⇒ agregan en un bien numerario compuesto
- **Dos bienes**: ℓ y numerario

Agentes

- $w_{\ell} = 0$: el bien ℓ tiene que ser producido; $\omega_{mi} > 0$
- $ightharpoonup p_m = 1$: el precio p refiere al bien ℓ

Consumidores

- Utilidad: $u_i(m_i, x_i) = m_i + \phi_i(x_i)$
- m cantidad de dinero en otros bienes
- $\phi_{i}(0) = 0; \ \phi'_{i}(x_{i}) > 0;$ $\phi''_{i}(x_{i}) < 0$

Empresas

- ▶ producen bien ℓ utilizando m como insumo
- $c_j(q_j) = \text{cantidad de } m$ requerida para producir ℓ
- $c'_{j}(q_{j}) > 0 \text{ y } c''_{j}(q_{j}) \geq 0$

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Equilibrio competitivo parcial: corto plazo

Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo Ejemplos

Equilibrio competitivo: 2 bienes

Maximización de beneficios. Dado p^* para el bien ℓ , q_j^* resuelve

$$\underset{q_{j}\geq 0}{\mathsf{Max}}\;p^{*}\cdot q_{j}-c_{j}\left(q_{j}\right)$$

- lackbox CPO (necesarias y suficientes) $p^* \leq c_j^{'}\left(q_j^*
 ight)$, con igualdad si $q_i^*>0$
- Maximización de utilidad. Dado p^* para el bien ℓ , q_i^* resuelve

$$Max_{m_i,x_i} m_i + \phi_i(x_i)$$

s. a
$$m_i + p^* \cdot x_i \le \omega_{mi} + \sum_j \theta_{ij} \left(p^* \cdot q_j^* - c_j \left(q_j^* \right) \right)$$

Equilibrio competitivo: 2 bienes (cont.)

▶ Maximización de utilidad. En el óptimo $\lambda > 0 \Rightarrow$ programa es

$$M_{\underset{X_{i}}{x_{i}}} \quad \phi_{i}\left(x_{i}\right) - p^{*} \cdot x_{i} + \left[\omega_{mi} + \sum_{j} \theta_{ij} \left(p^{*} \cdot q_{j}^{*} - c_{j}\left(q_{j}^{*}\right)\right)\right]$$

- ▶ CPO (necesarias y suficientes) $p^* \ge \phi_i^{'}(x_i^*)$, con igualdad si $x_i^* > 0$
- Usando el Lema anterior:

$$m_{i}^{*} = \left[\omega_{mi} + \sum_{j} \theta_{ij} \left(p^{*} \cdot q_{j}^{*} - c_{j} \left(q_{j}^{*}\right)\right)\right] - p^{*} \cdot x_{i}^{*}$$

Equilibrio competitivo parcial

- ▶ la asignación $(x_1^*,...,x_I^*,q_1^*,...,q_J^*)$ y el precio p^* son un equilibrio competitivo \iff
- 1. $p^* \leq c_j'\left(q_j^*\right)$, con igualdad si $q_j^* > 0$; $j = 1, \ldots J$
- 2. $p^* \ge \phi'_i(x_i^*)$, con igualdad si $x_i^* > 0$; i = 1,..., I
- 3. $\sum_{i=1}^{J} x_i^* = \sum_{j=1}^{J} q_j^*$
- ▶ Hay (I+J+1) condiciones que caracterizan el equilibrio
- Nota: el equilibrio (asignaciones, precio) es independiente de la distribución de dotaciones y participaciones en las empresas (por supuesto)
- Se cumple que demanda agregada: $x(p) = \sum_i x_i(p)$, continua y no creciente $\forall p > 0$

Ejemplo: RDE

▶ $c_j(\cdot)$ estrictamente convexa ⇒ Oferta agregada: $q(p) = \sum_j q_j(p)$, continua y no decreciente $\forall p > 0$

Figura: (a) Oferta individual; (b) Oferta agregada con J=2 empresas

Ejemplo: RDE

 Equilibrio de mercado único, producción de cada empresa está definida

Figura: Equilibrio oferta - demanda

Ejemplo: RCE

 $ightharpoonup c_j(\cdot)$ convexa, ej. rendimientos constantes a escala

Figura: Equilibrio con \overline{RCE}

 Equilibrio es único, producción de cada empresa no está definida

Ejemplo: ¿RCE?

- ► Si RCE puede no existir equilibrio competitivo
- Sea $CT(q) = \begin{cases} F + cq & si \ q > 0 \\ 0 & si \ q = 0 \end{cases} \Rightarrow \text{no convexa} \Rightarrow \textbf{no} \text{ existe}$ equilibrio competitivo (en clase)
- Sea $CT(q) = \begin{cases} F + cq + dq^2 & si \ q > 0 \\ 0 & si \ q = 0 \end{cases}$ con $F, c, d > 0 \Rightarrow$ no convexa \Rightarrow **existe** equilibrio competitivo (deberes)

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Equilibrio competitivo parcial: corto plazo

Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo Ejemplos

Ejemplo

- Estática comparativa de un impuesto a las ventas:
 - $ightharpoonup t \geq 0$ impuesto por unidad vendida
 - ightharpoonup x(p) demanda agregada [x'(p) < 0]
 - ▶ q(p) oferta agregada $[q'(p) \ge 0]$
- ► El equilibrio implica $x^*(p^*(t)+t) = q(p^*(t))$ (¿por qué?), donde $p^*(t)$ es el precio de equilibrio con impuesto t

Ejemplo (cont.)

▶ Diferenciando $d[x(p^*(t)+t)-q(p^*(t))]$ = $x'(p^*(t)+t)[p^{*'}(t)+1]-q'(p^*(t))p^{*'}(t)=0$, ⇒

$$p^{*'}(t) = \frac{-x'(p^*(t)+t)}{[x'(p^*(t)+t)-q'(p^*(t))]} < 0$$

- Se obtiene que
 - $ightharpoonup -1 \le p^{*'}(t) < 0$ para cualquier t
 - ▶ $p^*(t) \downarrow$ si $t \uparrow$, donde $p^*(t)$ es el precio pagado por el productor
 - $ightharpoonup p^*(t) + t \uparrow \text{ si } t \uparrow$, precio pagado por los consumidores
- ► Si $q'(p^*(t)) \to \infty \Rightarrow p^{*'}(t) \to 0 \Rightarrow$ impuesto lo paga el consumidor (gráfico b)
- ► Si $q'(p^*(t)) = 0 \Rightarrow p^{*'}(t) = -1 \Rightarrow$ impuesto lo paga la empresa (gráfico c)

Ejemplo (cont.)

Figura: (a) Equilibrio; (b) Oferta elástica; (c) Oferta inelástica

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial: corto plazo Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo Ejemplos

Primer teorema del bienestar

Teorema

Si el precio p y la asignación $(x_1^*, ..., x_I^*, q_1^*, ..., q_J^*)$ constituye un equilibrio competitivo \Rightarrow es eficiente en el sentido de Pareto.

► Es decir, dado p los ingresos de los consumidores y la tecnología disponible, no hay forma alternativa para organizar la producción y distribución de bienes y servicios de forma de que algún (algunos) consumidor(es) estén estrictamente mejor, sin empeorar a los restantes

Segundo teorema del bienestar

Teorema

Bajo determinadas condiciones, todo plan eficiente en el sentido de Pareto puede alcanzarse si se redistribuye previamente los ingresos de los consumidores.

Condiciones: preferencias de los consumidores convexas, no decrecientes, continuas, y no saciables localmente; y conjuntos de producción de las empresas convexos.

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial

Equilibrio competitivo parcial: corto plazo

Ejemplo de equilibrio competitivo

Equilibrio genera

Equilibrio competitivo parcial: largo plazo

Ejemplos

Características

- Antes tecnología dada
- Ahora:
 - existen infinitas empresas
 - todas tienen igual acceso a la tecnología
 - las empresas entran y salen del mercado en respuesta a los beneficios
- ► C(q) función de costos: c(0) = 0 (no hay costos hundidos en el largo plazo)

Equilibrio competitivo de largo plazo

Es una terna (p, q, J)

Definición

Definiciones

dada una demanda agregada x(p) y una función de costos c(q) para cada empresa potencialmente activa, con c(0) = 0, la terna (p, q, J) es un equilibrio competitivo de largo plazo si:

Maximización de beneficios: q^* resuelve $\max_{q \ge 0} p^* \cdot q - c(q)$

 $\underline{\mathsf{Oferta} = \mathsf{Demanda}} : \qquad \qquad x(p^*) = J^* \cdot q^*$

Libre entrada: $p^* \cdot q^* - c(q^*) = 0$

Introducción

Óptimo de Pareto y equilibrio competitivo

Equilibrio competitivo parcial: corto plazo Ejemplo de equilibrio competitivo

Equilibrio general

Equilibrio competitivo parcial: largo plazo Ejemplos

Ejemplo: RDE

- ► Función de costos estrictamente convexa ⇒ # equilibrio competitivo
- ► Si $p > c'(0) \Rightarrow \pi(p) > 0 \Rightarrow$ entran ∞ empresas
- ► Si $p < c'(0) \Rightarrow \pi(p) < 0 \Rightarrow \text{oferta} = 0$

Figura: (a) Oferta individual; (b) No hay intersección oferta - demanda

Ejemplo: RDE (cont.)

Figura: Comportamiento en el límite con costos estrictamente convexos

Ejemplo: RCE

▶ Si la tecnología tiene \overline{RCE} \Rightarrow indeterminados J^* y q^*

$$Q(p) = \begin{cases} \infty & \text{si } p > c \\ [0, \infty) & \text{si } p = c \\ 0 & \text{si } p < c \end{cases}$$

Ejemplo: RCE

Figura: (a) Oferta individual; (b) Equilibrio de largo plazo

Existencia

- Equilibrio competitivo de largo plazo con un número determinado de empresas existe si el CMe tiene mínimo
- ▶ Sea \overline{q} el punto donde *CMe* es mínimo: $\overline{c} = \frac{c(\overline{q})}{\overline{q}}$ y $x(\overline{c}) > 0$
- ► Equilibrio de largo plazo (p^*, q^*, J^*) implica que $p = \overline{c}$, $q^* = \overline{q}$ y $J^* = \frac{x(\overline{c})}{\overline{q}}$

Existencia (cont.)

Figura: (a) Oferta individual; (b) Equilibrio de largo plazo