Formalising Modal Embeddings of Call-by-Name and Call-by-Value

Floris Reuvers

Supervisor: dr. N.M. van der Weide Second Reader: dr. E.G.M. Hubbers

June 18, 2025

Radboud University

Introduction

Context

Functional Programming Languages

• OCaml, F#, SML, Haskell, Clean

Evaluation Strategies

- Call-by-value (cbv)
 - Evaluate the argument first, then substitute
 - OCaml, F#, SML
- Call-by-name (cbn) / lazy
 - Substitute the argument, evaluate only when needed
 - Haskell, Clean

Example cbn and cbv

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f (3 + 3)

cbn: cvb:
$$f(3+3) \to (3+3) * (3+3)$$
 $f(3+3) \to f(6)$ $f(3+3) \to 6*6$ $f(3+3) \to 6*6$ $f(3+3) \to 6*6$ $f(3+3) \to 6*6$

Reasons to Unify cbn and cbv

Pros and Conns of cbn and cbv

Sometimes arguments are used:

- zero times: cbn is more efficient
- multiple times: cbv is more efficient

Unification

- Best of both worlds
- Universal Framework

Approaches to Unification

Thunks and CPS Translation

- Wrappers around expressions to delay evaluation
- Continuous Passing Style translation

Linear Logic

- Explicit control over resources
- Arguments correspond to resource usage

Modal Logic

- Adds box modality
- Boxed terms are treated as values

Formalisation in Agda

- Agda: programming language and proof assistant
- Unification of cbn and cbv into a universal framework
- Formalise this framework in Agda
- Proof of the main properties of the framework

Main Contribution

We formalised the unification of call-by-name and call-by-value using modal logic in Agda

Background

Lambda Calculus (λ -calculus)

Simple and formal model of computation

λ -terms and types

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN \qquad A ::= X \mid A \rightarrow A'$$

Example terms and types

Call-by-name evaluation λ -calculus

 β -reduction

$$(\lambda x.M)N \to M[x \mapsto N]$$
 (β_n)

Closure rule

$$\frac{M \to M'}{MN \to M'N} (\mu)$$

cbn evaluation

 β -reduction together with the μ closure rule

Call-by-box λ -calculus

λ -terms

$$M, N, P, Q ::= \varepsilon(x) \mid \lambda x. M \mid MN \mid box(N)$$

Idea

- ε : unbox operator
- box: box operator
- paramters of abstractions are boxed

Types

$$A ::= X \mid B \rightarrow A \mid B$$
 $B ::= \Box A$

Call-by-box evaluation

 β -reduction

$$(\lambda x.M)$$
box $(N) \to M[\varepsilon(x) \mapsto N]$ (β_b)

Closure rules

$$\frac{M \to M'}{MN \to M'N} (\mu) \qquad \frac{N \to N'}{MN \to MN'} (\nu)$$

Call-by-box (cbb) evaluation

 β -reduction together with the μ and ν closure rule

Embeddings into λ_b

Girard's and Gödel's Translation

- Translate standard λ -calculus into λ_b
- Girard's translation: λ_n into λ_b
- Gödel's translation: λ_{v} into λ_{b}
- Cbb simulates
 - cbn under Girard's embedding
 - cbv under Gödel's embedding
- Notation: M° is the Girard translation of λ -term M
- Main propositions

Girard's Embedding

Translation from cbn λ -terms to λ_b

$$X^{\circ} = X$$
 $x^{\circ} = \varepsilon(x)$ $(A_1 \to A_2)^{\circ} = \Box A_1^{\circ} \to A_2^{\circ}$ $(\lambda x.M)^{\circ} = \lambda x.M^{\circ}$ $(MN)^{\circ} = M^{\circ} box(N^{\circ})$

Embedding of $(\lambda x.x)y$

$$((\lambda x.x)y)^{\circ} = (\lambda x.x)^{\circ} box(y^{\circ})$$

$$= (\lambda x.x)^{\circ} box(\varepsilon(y))$$

$$= (\lambda x.x^{\circ}) box(\varepsilon(y))$$

$$= (\lambda x.\varepsilon(x)) box(\varepsilon(y))$$

Girard's Image

Well-typed terms after translation

$$M, N ::= \varepsilon(x) \mid \lambda x.M \mid Mbox(N)$$

- Eliminates the ν closure rule
- Only the μ rule remains
- Call-by-box becomes deterministic
- If M evaluates to N with cbn, then M° evaluates to N° with cbb

Agda

What is Agda?

- Functional programming language
- Inspired by Haskell
- Proof assistant
- Dependently typed
- Hole-based programming

Some Agda code

Girard's Embedding for Types

$$(A_1 \to A_2)^{\circ} = \Box A_1^{\circ} \to A_2^{\circ}$$
$$X^{\circ} = X$$

Embedding in Agda

```
embedType : Type \to Typeb embedType (C \Rightarrow D) = \square (embedType C) \Rightarrowb embedType D embedType X = X
```

Challenges

- Variables
 - Use of de Bruijn indices
 - Variables represented as natural numbers
- Ill-typed terms
 - λ -term $y(\lambda x.x)$ is not typeable
 - Solution: restrict to well-typed λ -terms
- Formal definition of substitution
- Formal definition of raise in Gödel's translation

Experience Working with Agda

- Intersting learning experience
- High learning curve
- Hole based programming is amazing
- Error message are not always helpful
- But give it a try!
 - Follow the online PLFA book (Programming Language Foundations in Agda)
 - https://plfa.github.io/

Conslusions

Conclusion

- Recap of the λ -calculus
- Explained λ_b
- Defined the unifying relation cbb
- Girard's translation
- Formally proved the main properties of the translations

Questions?