北京航空航天大学

2021 - 2022 学年 第二学期期末

离散数学3

《组合数学》

班	级	_学号
姓	名	成绩

班号 学	号 姓名	成绩
------	------	----

离散数学3《组合数学》期末考试卷

	商取数子3《组 百 数 子》 别不有风位
注意	事项: 1、考试时间 120 分钟、开卷。
	2、所有答题写在试卷后面的空白页上,请标明 题号 。
→,	填空题(每空5分,共50分)
(1)	用 $m (m \ge 2)$ 种颜色给 1 行 $n (n \ge 2)$ 列的棋盘的方格染色,使得相邻方格颜色不同的染色方案有种。
(2)	两个6位十进制数,如果把其中一个的各位数进行重排,得到另一个,则称这两个6位十进制数是等价的,那么互不等价的6位十进制数一共有
(3)	设多重集 $S = \{1 \cdot a_1, 1 \cdot a_2,, 1 \cdot a_k, \infty \cdot a_{k+1}, \infty \cdot a_{k+2},, \infty \cdot a_n\}$,则 S 的 r 组合数($1 \le k < r \le n$)为。
` /	一个口袋装有 4 个红球、7 个黑球和 9 个白球,从中至少取出个球才能保证必取出 6 个同色球。
(5)	{ 1, 2, 3, 4, 5, 6, 7, 8, 9 } 的全排列中,至少有 3 个数字在其自然位置上的排列的有
(6)	设 h_n 是把 1 行 n 列的棋盘的方格用红、黄、蓝、绿四种颜色着色,使得没有 3 个着成红色的方格相邻的着色方法数,则 h_n 满足的递推关系为

(7) 多项式 $(2+3x-y+2z)^{10}$ 的展开式中 $x^2y^3z^2$ 的系数为。
(8) 序列 h_n 的一般项是 n 的一个 3 次多项式。如果其差分表的第 0 行
的前 4 个数是 3,0,1,18,则 $\sum_{k=0}^{8} h_k$ 等于。
(9) 假设有无限多的 1 分、 2 分、 5 分、 1 角的硬币,令 h_n 为用这些硬
币凑成 n 分钱的方法数,则数列 $h_0, h_1,, h_n,$ 的生成函数
为。
(10)设集合 $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 1 & 7 & 5 & 8 & 4 & 9 & 2 \end{pmatrix}$ 是 X 上的
一个置换。假设用 4 种颜色对 X 中的元素进行着色,令 C 是 X 的
所有着色的集合,则 f 保持 C 中着色不变的着色数为。
二、已知 $n+1$ 个正整数 $a_0, a_1,, a_n$,满足 $a_0 < a_1 < a_2 < < a_n \le 2n$,
证明:一定可以从这 $n+1$ 个正整数中选出 3 个数(3 个数不一定互不
相同),使得其中两个数之和等于第三个数。 (10分)
三、多重集 $\{2\cdot a_1, 2\cdot a_2,, 2\cdot a_n\}$ 的全排列中,满足任意两个 a_i 均不相
邻的全排列有多少个? (10分)
(即满足 a_1 与 a_1 不相邻, a_2 与 a_2 不相邻,…,且 a_n 与 a_n 不相邻的全排列数目。)
四、从排列 $a_1 a_2 a_n$ ($n \ge 13$) 中选取 4 个元素 a_i , a_j , a_k 和 a_l ($1 \le i < j$
$< k < l < n$), 使得在该排列中 a_i 与 a_i 之间至小有 2 个元素, a_i 与 a_i

之间至少有 3 个元素, a_k 与 a_l 之间最多有 4 个元素,有多少种不同的

选取方法?

(10分)

五、用数字 1, 2, 3, 4, (数字可重复使用)可组成多少个含奇数个 1, 偶数个 2 且至少含 1 个 3 的 n 位数 ? (10 分)

六、假设有 A, B, C, D, E 五种商品,其中 A 和 B 的价格均为 1 元一个, C, D 和 E 的价格均为 2 元一个。某人有 n 元钱,他每天买一种商品,且只买一个该商品。设 h_n 为他花完这 n 元钱的方式的数量(假设 h_0 =1),求出数列 h_0 , h_1 ,..., h_n ,... 满足的递推关系,并求出该递推关系的解 h_n 。

(10分)