SAGE: Intrusion Alert-driven Attack Graph Extractor

Azqa Nadeem*, Sicco Verwer*, Shanchieh Jay Yang^

*Delft University of Technology, The Netherlands

^Rochester Institute of Technology, USA

IEEE Symposium on Visualization for Cyber Security (VizSec)

Background

- Attacker strategy identification requires manual effort
 - How?
 - Multiple attackers?
 - Strategic similarity?
- Answers via cybersec data + expert input

Background

Security analysts receive > 1M intrusion alerts/day*

Background

Automate attacker strategy identification

via Alert-driven Attack Graphs

Traditional approaches

- Topological Vulnerability Analysis (TVA)
 - Network topology + Vulnerability reports
 - MulVal by Ou et al. (USENIX '05)
- Alert-driven attack scenario modelling
 - Causal analysis by Ning et al. (CCS '02)
 - Visual summary by De Alvarenga et al. (Computers & Security '18)
 - Strategy discovery by Moskal *et al.* (ISI '18)

Anatomy of an Alert-driven Attack Graph

TUDelft

Key design challenges

Key design challenges

1. Alert-type imbalance

Key design challenges

- 1. Alert-type imbalance
- 2. Context modelling

SAGE: IntruSion alert-driven Attack Graph Extractor

Alert → Episode sequences

SAGE: IntruSion alert-driven Attack Graph Extractor

Suffix-based PDFA

- Summarizes attack paths
- Brings infrequent episodes to the top
 - Red → Severe | Blue → Medium severity
- States → milestones with context

- Good model quality compared to alternatives
 - via Perplexity

SAGE: IntruSion alert-driven Attack Graph Extractor

Adding context & AG formation

Experimental dataset

- Suricata alerts from Collegiate Penetration Testing Competition¹
 - 6 multi-attacker teams
 - 1 fictitious network
 - 330,270 alerts
- Moskal's Action-Intent framework²
 - Alert signature → Attack stage
 - Based on MITRE ATT&CK

2. S. Moskal and S. J. Yang, "Framework to describe intentions of a cyber attack action," arXiv preprint arXiv:2002.07838, 2020.

[1] Alert triaging

- 330,270 alerts → 93 alert-driven AGs
- ~500 alerts in < 25 vertices
- Average simplicity = 0.81

	# alerts (raw)	# alerts (filtered)	#episodes	#ES/ #ESQ	#ESS	#AGs
T1	81373	26651	655	103	108	53
T2	42474	4922	609	86	92	7
T5	52550	11918	622	69	74	51
T 7	47101	8517	576	63	73	23
T8	55170	9037	439	67	79	33
T9	51602	10081	1042	69	110	30

[2] Attacker strategy visualization

- Shows how the attack transpired
- 3 teams, 5 attempts
- 3 ways to reach objective
 - Discovered by S-PDFA

[3] Attacker strategy comparison

- T5 and T8 share a common strategy
- Only T1 does user privilege escalation
- Some paths are shorter than others
- Attackers follow shorter paths to reexploit an objective in 84.5% cases

Future research directions

- Attack graph prioritization
- Advanced comparative visual analysis for strategy comparison
- Applications
 - Improving IDS signatures
 - Suggesting additional sources for evidence collection

Take aways

- SAGE uses sequence learning to extract attacker strategies
 - Builds attack graphs from intrusion alerts without expert input
- The S-PDFA is critical for
 - Accentuating infrequent severe actions,
 - Identifying contextually different actions
- Alert-driven attack graphs
 - Compress thousands of alerts in a few AGs
 - Provide insights into attacker strategies
 - Capture attackers' behavior dynamics

Thank you!

Questions?

- ➤ SAGE uses sequence learning to extract attacker strategies

 Builds attack graphs from intrusion alerts without expert input
- The S-PDFA is critical for Accentuating infrequent severe actions, Identifying contextually different actions
- Alert-driven attack graphs
 Compress thousands of alerts in a few AGs
 Provide insights into attacker strategies
 Capture attackers' behavior dynamics

Extra: S-PDFA specifics

- $A = \langle Q, \Sigma, \Delta, P, q_0 \rangle \rightarrow \text{model structure}$
- $Q \rightarrow$ finite set of states
- $\Sigma \rightarrow$ finite alphabet of symbols
- $\Delta \rightarrow$ finite set of transitions
- $q_0 \in Q \rightarrow$ final state (suffix model)

- $\langle q, q', a \rangle \in \Delta \rightarrow \text{a transition, where } q, q' \in Q \text{ and } a \in \Sigma$
- $\{P: \Delta \rightarrow [0,1]\} \rightarrow$ transition probability function
- $P(s) = \prod_{0 \le i \le n} P(\langle q_i, q_{i+1}, a_{n-i} \rangle) \rightarrow \text{sequence probability}$
- $\sum_{q,a} P(\langle q, q', a \rangle) = 1$

Extra: S-PDFA specifics

Extra: S-PDFA evaluation

•
$$Perplexity(M) = 2^{-\frac{1}{N}\sum_{i=1}^{N}log_2P(x_i)}$$

- $P(x_i) \rightarrow \text{probability of trace}$
- $N \rightarrow Number of traces$

	Suffix tree	Markov chain	SAGE S-PDFA
Training set	1265.4*	13659.6	2397.8
Holdout test set	13020.7	11617.8	9884.6*

Extra: Suffix-tree specifics

Extra: Suricata alert specifics

Extra: Episode creation specifics

