Homework 3

Erik Gonzalez

March 2, 2020

Knights and Knaves:

Case	Р	Q
1	Knight	Knight
2	Knave	Knight
3	Knight	Knave
4	Knave	Knave

• Knave: always tells lie

• Knight: always tells truth

• If P is a Knight then whatever he/she says is true. If P is a Knave, whatever he/she says is false. If P was a Knight, case 1 can't happen, but 3 can. if P was a knave, both case 2 and 4 couldn't have happen because no matter what the knave says, will be false. Row 3 is the only possible case.

Case	Р	Q
1	Knight	Knight
2	Knave	Knight
3	Knight	Knave
4	Knave	Knave

• If P is a Knight then what he says would be true. If P is a knave then what he says would be False. If P was a knight, case 1 and 3 couldn't have happened. If P was a knave, 4 couldn't have happened because whatever they say is a false. This leave case 2 being the only possible case.

Logical Identities:

$$\bullet \ -(p \to (q \to p))$$

– Implication Law: $p \to q \equiv \neg q \lor p$. so, $\neg (p \to (\neg q \lor p)$

– Implication Law: $\neg(\neg p \lor (\neg q \lor p))$

– De Morgans's Law: $\neg(a \lor b) \equiv \neg a \land \neg b, \neg p \equiv a \ and \ (\neg q \lor p) \equiv b$

 $* \neg (\neg p) \land \neg (\neg q \lor p)$

– De Morgans's Law: $\neg(a \lor b) \equiv \neg a \land \neg b$,

*
$$\neg q$$
 is a

$$* \neg (\neg p) \land \neg (\neg q) \land \neg p$$

– double negation law: $\neg(\neg p) \equiv p$

$$*\ p \wedge q \wedge \neg p$$

$$* p \land \neg p \land q$$

$$-p \wedge \neg p \equiv F$$
, thus

$$- FALSE \land q \equiv q$$

$$\bullet \ -p((p \land q) \to (q \lor p))$$

- Let
$$(p \wedge q)$$
 be a, $(q \vee p)$ be b

– Implication Law,
$$p \to q \equiv \neg p \vee q$$

$$* \neg a \lor b$$

- Substituting the values of a and b,

$$* \neg (p \land q) \lor (q \lor p)$$

- De Morgan's Law: $\neg(p \land q) \equiv \neg p \lor \neg q$

$$* \neg p \lor \neg q \lor (q \lor p) \longrightarrow 1$$

– associative law: $(p \lor q) \lor r \equiv p \lor (q \lor r)$

- Rearranging 1,

$$* (\neg p \lor p) \lor (\neg q \lor q)$$

- negation laws, $p \vee \neg p \equiv T$

 $- \ TRUE \lor TRUE \equiv TRUE$

Logical Equivalences

•
$$p \to (q \to r)$$
 and $(p \land q) \to r$

– Answer:
$$p \to (q \to r) \neq (p \land q) \to r$$

•
$$p \to (q \to r)$$
 and $(p \to q) \to r$

- Answer:
$$p \to (q \to r) \neq (p \to q) \to r$$

Logical Consequence

• 1.

Jimmy is smart

Smart People are rich

Jimmy is Rich

Answer: Valid: Jimmy is rich

Jimmy is smart

Jimmy then smart

 $\mathrm{Jimmy} \to \mathrm{smart}$

Smart People are rich

Smart then rich

 $Smart \rightarrow rich$

 $Jimmy \rightarrow rich \equiv Jimmy is rich$

• 2.

Islands are surrounded by water

Puerto Rico is surrounded by water

Puerto Rico is an island

Answer: Not Valid: We cannot say Puerto Rico is an island is always true.

Islands are surrounded by water

Islands \rightarrow surrounded by water

Puerto Rico is surrounded by water

Puerto Rico \rightarrow surrounded by water

Puerto Rico is not always an island