Bisection Method

Mayank Pathania 204103314

February 3, 2021

1 Question No.1

Algorithm 1 Bisection Method

```
procedure BISECTION_METHOD(start_point, end_point, increment)
set a very low \epsilon value.
a = start\_point;
b = a + increment;
evaluate f(a);
evaluate f(b);
while (b \le end\_point) do
   if (f(a) < \epsilon) then
                                                                                     ▶ close to zero
       return a;
   if (f(b) < \epsilon) then
                                                                                     ▶ close to zero
       return b;
   if (f(a) * f(b) < 0) then
       mid = (a+b)/2;
       evaluate f(mid);
       if (f(mid) < \epsilon) then
                                                                                     ▶ close to zero
          return mid;
       else if (f(mid) * f(a) < 0) then
          b = mid;
          f(b) = mid;
       else
          a = mid;
          f(a) = f(mid);
   else
       a = b;
       f(a) = f(b);
       b = a + increment;
       evaluate f(b);
```

2 Flow Chart

3 Results

3.1 Problem a) xe^x

3.1.1 Parameters

 $\begin{array}{lll} start_point: & -2 \\ end_point: & 2 \\ increment: & 4 \\ \boldsymbol{\epsilon}: & \textbf{10}^{-9}; \end{array}$

3.1.2 Output

root	function evaluations
0	3

3.1.3 Observations

The algorithm converged in 3 iterations for the given region.

3.2 Problem b) $x^3 - 2x + 1$

3.2.1 Parameters

start_point : -2end_point : 2increment : 4 ϵ : 10^{-9} ;

3.2.2 Output

root	function evaluations
-1.61803	35

3.2.3 Observations

The algorithm converged in 35 iterations for the given region.

3.3 Problem c) $\sin(x) - \frac{1}{x}$

3.3.1 Parameters

 $\begin{array}{lll} start_point: & -2 \\ end_point: & 2 \\ increment: & 4 \\ \boldsymbol{\epsilon}: & \textbf{10}^{-9}; \end{array}$

3.3.2 Output

root	function evaluations
1.11416	28

3.3.3 Observations

The algorithm converged in 28 iterations for the given region.

4 Remarks

- increment is set to 1 by default in code.
- input arguments can be changed to get different solutions, if exist.