

Kourosh Davoudi kourosh@uoit.ca

Ensample Techniques

CSCI 4150U: Data Mining

Learning Outcome

- What is the Nearest Neighbor Classifier?
 - Learn the ideas
 - Know the issues
- What is the Naïve Bayes classifier
 - Learn the main ideas
 - Explain are the issues and considerations
- What is Bayesian Belief Network?
- What are the Support Vector Machines?
 - Understand the main ideas
- What are ensemble approaches?
 - Learn the ideas and different approaches

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of test records by combining the predictions made by multiple classifiers

General Approach

Original Data:

Bagging

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

• Build classifier on each bootstrap sample

At least once

• Each data instance has probability 1- $(1 - 1/n)^n$ of being selected as part of the bootstrap sample

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i.
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: C*(x) = arg max_y ∑_i δ(C_i(x) = y), {δ(·) = 1 if its argument is true, and 0 otherwise.}

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy
 - Use the majority as the leaf label

Bagging Round 1:										
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Baggin	g Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \rightarrow y = -1$
Paggin	a Pour	v4 2:									
Baggin		0.2	0.3	0.4	0.5	0.5	0.9	4	4	4	x <= 0.7 → y = 1
X	0.1	0.2	0.3	0.4	0.5		0.9	1	<u>'</u>	4	$x > 0.7 \Rightarrow y = 1$ $x > 0.7 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	1	1	1	1	K' on 2 y
Baggin	g Rour	nd 3:									
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \rightarrow y = -1$
Danis		1.4									
Baggin			0.0	0.4		0.5				2.2	v <= 0.2 A v = 1
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x \le 0.3 \Rightarrow y = 1$ $x > 0.3 \Rightarrow y = -1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	X > 0.5 -2 y = -1
Baggin	g Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x \le 0.35 \rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$

Baggir	ng Rour	nd 6:									
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x <= 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 7:				ı					
X	0.1	0.4	0.4	0.6	0.7	8.0	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Baggir	ng Rour	nd 8:									
X	0.1	0.2	0.5	0.5	0.5	0.7	0.7	8.0	0.9	1	$x <= 0.75 \Rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 9:									_
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	8.0	1	1	$x <= 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	g Rour	nd 10:									
Х	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	$x \le 0.05 \Rightarrow y = 1$ $x > 0.05 \Rightarrow y = 1$
У	1	1	1	1	1	1	1	1	1	1	x > 0.05 -y y - 1

Summary of Training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

Original Data:

Bagging Example

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records:
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are <u>wrongly</u> classified will have their <u>weights</u> <u>increased</u>
- Records that are classified <u>correctly</u> will have their <u>weights</u> <u>decreased</u>

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: $C_1, C_2, ..., C_T$
- Error rate of classifier *i*:

$$\varepsilon_{i} = \frac{1}{N} \sum_{j=1}^{N} w_{j} \delta(C_{i}(x_{j}) \neq y_{j})$$

• Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

How to update weights in AdaBoost?

Weight update:

The weigh w_j decreses if x_j is classified correctly

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

The weigh w_i increases if x_i is classified incorrectly

where Z_i is the normalization factor: $Z_i = \sum_j w_j^{(i)}$

AdaBoost Algorithm

 If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated

Classification:

$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{i=1}^{T} \alpha_i \delta(C_i(x) = y)$$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}
 Let k be the number of boosting rounds.
 3: for i = 1 to k do
         Create training set D_i by sampling (with replacement) from D according to w.
       Train a base classifier C_i on D_i.
       Apply C_i to all instances in the original training set, D.
 7: \epsilon_i = \frac{1}{n} \left[ \sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error}
       if \epsilon_i > 0.5 then
       \mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}. {Reset the weights for all n instances.}
       Go back to Step 4.
11:
        end if
        \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
Update the weight of each instance according to equation w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}
       \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
14: end for
15: C^*(\mathbf{x}) = \arg \max_{y} \sum_{i=1}^{T} \alpha_i \delta(C_i(\mathbf{x}) = y).
```


Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Weights

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

 Round
 x=0.1
 x=0.2
 x=0.3
 x=0.4
 x=0.5
 x=0.6
 x=0.7
 x=0.8
 x=0.9
 x=1.0

 1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

Weights

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x = 0.6	x=0.7	x=0.8	x=0.9	x = 1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Boosting Round 1:

X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1

Boosting Round 2:

Х	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
у	1	1	1	1	1	1	1	1	1	1

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x = 0.6	x=0.7	x=0.8	x = 0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Boosting Round 1:

Х	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1
у	1	-1	-1	-1	-1	-1	-1	-1	1	1

Boosting Round 2:

X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1

Boosting Round 3:

X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1

• Training sets for the first 3 boosting rounds:

Boostir	ng Roui	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostir	g Roui	nd 2:								
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1
Boostir	ng Roui	nd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1
	•									•

• Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x = 0.6	x = 0.7	x=0.8	x = 0.9	x = 1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	8.0=x	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{i=1}^{T} \alpha_i \delta(C_i(x) = y)$$

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Original Data:

х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

