Started on	Thursday, 28 March 2024, 8:37 PM
State	Finished
Completed on	Thursday, 28 March 2024, 8:41 PM
Time taken	3 mins 9 secs
Grade	5.00 out of 5.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Adott $(t_1, f_1), \ldots, (t_m, f_m)$ megfigyelésekre akarunk legkisebb négyzetes értelemben modellt illeszteni. Válassza ki azokat a modelleket, melyek az x_1, x_2, x_3 ismeretlen paraméterek lineáris függvényei.

Select one or more:

$$lacksquare$$
 a. $F(t)=x_1e^{t^2}+x_2+rac{x_3}{t}$ \checkmark

$$\square$$
 b. $F(t)=x_1t^2+x_2\log\left(rac{x_3}{t}
ight)$

$$lacksquare$$
 c. $F(t) = x_1 + x_2 \log(t) + rac{x_3}{t^2}$ 🗸

$$lacksquare$$
 d. $F(t)=x_1t+rac{x_2}{1+e^{x_3t}}$

$$oxed{\ }$$
 e. $F(t)=x_1+rac{1}{1+x_2\log(t)}+x_3t^2$

The correct answers are: $F(t)=x_1+x_2\log(t)+rac{x_3}{t^2}$, $F(t)=x_1e^{t^2}+x_2+rac{x_3}{t}$

Question 2

Correct

Mark 1.00 out of 1.00

Feladat

Egy polinom együtthatói, a főegyütthatóval kezdve, a p vektorban vannak felsorolva. Egészítse ki a lenti kódot úgy, hogy

- ullet a a polinom 1-ben vett helyettesítési értéke legyen,
- b az a vektor legyen, amely a polinom -1-ben, 2-ben és 6-ban számolt helyettesítési értékeit tartalmazza (ebben a sorrendben)

Ne feledkezzen meg a sorvégi pontosvesszőkről!

Kiegészítő információk:

Ennél a feladatnál tilos használni ["for", "while", "do", "until", "if", "switch"]-re épülő konstrukciókat.

For example:

Test	Result
<pre>disp(forbidden({'for','while','do','until','if','switch'})); p=[1,-1,4]; [a,b]=fun(p); disp(a); disp(b);</pre>	restrictions: passed 4 6 6 34
<pre>disp(forbidden({'for','while','do','until','if','switch'})); p=[2,0,2,2]; [a,b]=fun(p); disp(a); disp(b);</pre>	restrictions: passed 6 -2 22 446

Answer: (penalty regime: 0 %)

Reset answer

```
1 | function [a,b]=fun(p)
2 | a = polyval(p, 1);
    b = polyval(p, [-1 2 6]);
end
```

	Test	Expected	Got	
~	<pre>disp(forbidden({'for','while','do','until','if','switch'})); p=[1,-1,4]; [a,b]=fun(p); disp(a); disp(b);</pre>	restrictions: passed 4 6 6 34	restrictions: passed 4 6 6 34	~

Correct

Mark 1.00 out of 1.00

Adott $(t_1,f_1),\ldots,(t_8,f_8)$ pontpárok esetén megadtuk a $t=(t_1,\ldots,t_8)$, $f=(f_1,\ldots,f_8)$ vektorokat és kiadtuk a következő Matlab parancsot:

p = polyfit(t,f,3)

A kapott polinomot a pontpárokkal együtt ábrázoltuk, a lenti ábrák egyikét kaptuk. Melyik ez az ábra?

- O a. A
- b. B ✓
- O c. C
- Od. D

The correct answer is:

В

Question 4

Correct

Mark 1.00 out of 1.00

Feladat

- Határozza meg a (-1,0), (0,-1), (1,0.5), (2,3) pontokra legkisebb négyzetes értelemben legjobban illeszkedő másodfokú polinomot.
- ullet Vegyen fel 18 egyforma lépésközű pontot a [-1,2] intervallumban (a határok is legyenek benne).
- Számítsa ki az illesztett polinom értékét az előbb felvett pontokban

Egészítse ki a lenti kódot úgy, hogy az így kiszámított értékek vektorával térjen vissza.

Ne feledkezzen meg a sorvégi pontosvesszőkről!

Kiegészítő információk:

Ennél a feladatnál tilos használni ["for", "while", "do", "until", "if", "switch"]-re épülő konstrukciókat.

Answer: (penalty regime: 0 %)

Reset answer

```
function y=fun()

t = [-1 0 1 2];
f = [0 -1 0.5 3];
p = polyfit(t, f, 2);

xx = linspace(-1, 2, 18);
y = polyval(p, xx);
end
```

	Test	Expected	Got	
~	<pre>disp(forbidden({'for','while','do','until','if','switch'}));</pre>	·	restrictions: passed	~
	disp(fun())	-0.075 -0.325692	-0.075 -0.325692	
		-0.521886 -0.663581	-0.521886 -0.663581	
		-0.750779 -0.783478	-0.750779 -0.783478	
		-0.761678 -0.685381	-0.761678 -0.685381	
		-0.554585 -0.369291	-0.554585 -0.369291	
		-0.129498 0.164792	-0.129498 0.164792	
		0.513581 0.916869 1.37465	0.513581 0.916869 1.37465	
		1.88694 2.45372 3.075	1.88694 2.45372 3.075	

Passed all tests! ✓

► Show/hide question author's solution (Octave)

Correct

Marks for this submission: 1.00/1.00.

Mark 1.00 out of 1.00				
Megfigyelünk a $t=(t_1,\ldots,t_m)$ időpillanatokban egy folyamatot, a megfigyelések vektora $f=(f_1,\ldots,f_m)$. Az adatokra legkisebb négyzetes értelemben legjobban illeszkedő $F(t)=p_1t^2+p_2t+p_3$ alakú függvényt keressük. Jelölje meg azt a kódsort, mely a keresett paraméterek vektorát adja.				
a. p=polyfit(f,t,2)				
○ b. p=polyval(t,f)				
○ d. p=polyfit(t,f,1)				
e. p=polyfit(t,f)				
○ f. p=polyfit(f,t,1)				
g. p=polyval(t,f,2)				
○ h. p=polyval(t,f,1)				
The correct answer is: p=polyfit(t,f,2)				
■ Lineáris egyenletrendszerek, normák				
Jump to				

Mátrixok Matlab-ban -

Question 5
Correct

Kapcsolat:

elearning@metk.unideb.hu