Semester 1							
Course Code	CSC 541 2.0	CSC 541 2.0					
Course Name	Computer System	Computer System Architecture					
Credit Value	2.0	2.0					
Core/Optional	Core	Core					
Hourly Breakdown	Theory	Practical/Tutorial	Independent Learning				
	28		72				

Course Aim/Intended Learning Outcomes:

At the completion of this course student will be able to

- > Explain the architecture of a processor and a computer system.
- Appreciate the concept of an ISA and the nature of a machine level instruction in terms of its functionality and use of resources.
- Be aware of the various classes of instructions.
- ➤ Compile high-level instructions to assembly instructions and then to machine language instructions.
- ldentify various types of buses in a computer system and understand how devices compete for a bus and are granted access to the bus.
- > Describe various types of memory, their errors and techniques used for fault tolerance
- > Justify the need of a memory hierarchy in order to reduce the memory latency.
- > Explain the organization of cache memory.
- Measure the performance of a computer, and interpret results.
- > Discuss the concept of parallel processing, and identify the relationship between parallelism and performance.

Course Content: (Main topics, Sub topics)

Processor and System Architecture

Processor structure, Processor specification, Instruction pipeline, processor and system performance

Memory System Organization and Architecture

Types of memory, Main memory organization, Memory errors, Techniques for fault tolerance, Cache organization, Cache performance, Secondary memory

Instruction Set Architecture (ISA)

Overview of ISA, Instruction formats, Addressing, Instruction types, RISC V assembly language, RISC V machine language

Multiprocessing and Parallelism

On-chip parallelism, Coprocessors, Shared-memory multiprocessor, Message-passing multicomputer

Teaching /Learning Methods:

- 1. Direct instruction based teaching for the lectures using visual aid via slides
- 2. Self-learning method for in-depth knowledge of specialized topics
- 3. Inquire based teaching for the practical/tutorial sessions

Assessment Strategy:

Continuous Assessment		Final Assessment			
30%		100%			
Details: quizzes %, mid-term %, Assignments %		Theory (%)	Practical (%)	Other (%)(specify)	
0%	100%	0%	100%	0%	0%

References/Reading Materials:

- ➤ Computer Organization and Design RISC-V Edition: The Hardware/Software Interface, Patterson, D., and Hennesey, J., Morgan Kaufmann, Second Edition, 2020
- Structured Computer Organization, Tanenbaum, A., and Austin, T., Pearson Education Inc., Sixth Edition, 2013