

PAW3370DM-T4QU: Low Power Optical Gaming Navigation Chip

General Description

PAW3370DM-T4QU is PixArt Imaging's new low power gaming navigation chip suitable for wired and wireless gaming application. It has the latest state-of-the-art low-power architecture and automatic power management modes, making it ideal for battery-operated, power-sensitive cordless gaming devices. It provides excellent gaming experience with the features of high speed and high resolution even in low power mode to fulfill gamers' need. It is packaged in 16pin staggered dual-in-line package (DIP) and designed to be used with LM19-LSI or LOAE-LSI1 lens to achieve optimum performance.

Key Features

- Low power consumption of typical 1.5mA @ run mode
- Programmable rest modes
- 16 pin molded lead-frame DIP package with 850nm illumination source
- High speed motion detection 400ips* and acceleration 50g*
- Selectable resolutions up to 19,000cpi
 - 50cpi step size from 50cpi to 10,000cpi
 - 100cpi step size from 10,100cpi to 19,000cpi
- Four-wire serial port interface (SPI)
- Internal oscillator no clock input needed
- Customizable response time and downshift time for rest modes
- Angle snapping
- Lift detection options
 - 1mm setting
 - 2mm setting
 - Manual Lift Cut Off Calibration

Applications

- Wired and wireless Gaming Optical Mouse
- Trackball application

Key Parameters

Parameter	Value				
Power Supply Voltage	VDD: 1.8 – 2.1V				
	VDDIO: 1.8 – 3.3V				
Interface	4-wire Serial SPI				
Supply Current @ VDD	Low Power Gaming Mode 1				
& VDDIO = 1.9V	■ Run: 1.5 mA				
Note: includes LED	■ Power Down: 3 μA				
current					
Resolution (cpi)	Up to 19000				
Tracking Speed (ips)	400*				
Acceleration (g)	50*				
Package Size (mm)	10.90 x 16.20 x 5.01				

Note: * - Low Power Gaming Mode 1

Ordering Information

Part Number	Package Type
PAW3370DM-T4QU	16pin-DIP Optical Gaming
	Navigation Chip
LM19-LSI	Round Lens
LOAE-LSI1	Trim Lens

For any additional inquiries, please contact us at https://www.pixart.com

Version 1.0 | 28 Sep 2020 | 11047EN

Table of Contents

PAW3	370DM-T4QU: Low Power Optical Gaming Navigation Chip	1
Gen	neral Description	1
Key	Features	1
Арр	plications	1
Key	Parameters	1
Ord	lering Information	1
Table o	of Contents	2
List of	Figures	5
List of	Tables	6
1.0	Introduction	7
1.1	Overview	7
1.2	Terminology	8
1.3	Pin Configuration	8
2.0	Operating Specifications	10
2.1	Regulatory Requirements	10
2.2	Absolute Maximum Ratings	10
2.3	Recommended Operating Conditions	11
2.4	Thermal Specifications	11
2.5	DC Characteristics	12
2.6	AC Characteristics	13
3.0	Mechanical Specifications	15
3.1	Chip Package Dimension	15
3.2	Package Marking Identification	15
3.3	Packing Information	16
3	3.3.1 Packing Tube	16
3	3.3.2 Inner Box	17
3	3.3.3 Shipping Carton	18
4.0	Design References	19
4.1	Reference Schematic	19
4.2	Recommended PCB Footprint	20
4.3	Assembly Guide	21
4	1.3.1 PCB Assembly Recommendations	21
4	1.3.2 System Assembly View	22
5.0	Power States & Sequence	24
5.1	Power-Up Sequence	24
5.2	Power-Up Initialization Register Setting	24
5.3	NRESET	27
5.4	Power-Down Sequence	27
6.0	Serial Peripheral Interface Communication	29

6.	.1 Si	gnal Description	29
6.	2 N	1otion Bit Timing	29
6.	.3 C	hip Select Operation	29
6.	.4 W	/rite Operation	30
6.	.5 R	ead Operation	31
6.	6 R	equired Timing between Read and Write Commands	32
6.	.7 B	urst Mode Operation	33
7.0		em Control	
7.	1 G	aming and Office Mode Setting	35
7.		ower Management for Wireless Mode	
7.	.3 U	niversal Lift Cut Off Setting	38
7.	.5 N	Nanual Lift Cut Off Calibration	39
	7.5.1	Lift Cut Off Calibration Procedures	
	7.5.2	Enable Lift Cut Off Calibration Registers Setting	
	7.5.3	Disable Lift Cut Off Calibration Registers Setting	
7.		aw Data Grab	
8.0	_	isters	
8.		egisters List	
8.	2 R	egister Descriptions	43
	8.2.1	Product_ID	
	8.2.2	Motion	43
	8.2.3	DELTA_X_L	
	8.2.4	DELTA_X_H	
	8.2.5	DELTA_Y_L	45
	8.2.6	DELTA_Y_H	
	8.2.7	SQUAL	46
	8.2.8	RAWDATA_SUM	
	8.2.9	MAXIMUM_RAWDATA	
		MINIMUM_RAWDATA	
		SHUTTER_LOWER	
		SHUTTER_UPPER	
		CHIP_OBSERVATION	
		BURST_MOTION_READ	
		POWER_UP_RESET	
		SHUTDOWN	
		7 PERFORMANCE	
		CONFIG1	
		RESOLUTION	
		ANGLE_SNAP	
	8.2.21	RAWDATA_GRAB	51

Low Power Optical Gaming Navigation Chip

8.2.22	RAWDATA_GRAB_STATUS	. 51
	RIPPLE_CONTROL	
8.2.24	AXIS_CONTROL	. 52
8.2.25	INV_PROD_ID	. 52
8.2.26	RUN_DOWNSHIFT	. 53
	REST1_PERIOD	
	REST1_DOWNSHIFT	
8.2.29	REST2_PERIOD	. 54
8.2.30	REST2_DOWNSHIFT	. 55
8.2.31	REST2_DOWNSHIFT	. 55
8.2.32	RUN DOWNSHIFT MULT	. 56
8.2.33	REST DOWNSHIFT MULT	. 57
8.3 Bit	Masks for Register Write	. 58
Document Re	evision History	. 59

Low Power Optical Gaming Navigation Chip

List of Figures

Figure 1. Functional Block Diagram	7
Figure 2. Device Pinout	8
Figure 3. Package Outline Drawing	15
Figure 4. Packing Tube	16
Figure 5. Inner Box Dimension	17
Figure 6. Shipping Carton Dimension	18
Figure 7. Schematic diagram for PAW3370DM-T4QU Chip	19
Figure 8. Recommended chip orientation, mechanical cutouts & spacing (Top View)	20
Figure 9. Exploded View of Assembly with LM19-LSI Lens	22
Figure 10 Exploded View of System Assembly with LOAE-LSI1 Lens	23
Figure 11. Write Operation	30
Figure 12. MOSI Setup and Hold Time	30
Figure 13. Read Operation	31
Figure 14. MISO Delay and hold time	31
Figure 15. Timing between two Write commands	32
Figure 16. Timing between Write and Either Write or Subsequent Read Commands	32
Figure 17. Timing between Read and Either Write or Subsequent Read Commands	32
Figure 18. Motion Burst Timing	33
Figure 19. Raw Data Address Map for 30x30 (Chip looking on the navigation surface through the lens)	41

Low Power Optical Gaming Navigation Chip

List of Tables

Table 1. Pins Description	9
Table 2. Absolute Maximum Ratings	10
Table 3. Recommended Operating Conditions	11
Table 4. Thermal Specifications	11
Table 5. DC Electrical Specifications	
Table 6. AC Electrical Specifications	
Table 7. Package Marking Description	15
Table 8. Recommended R _{LED}	19
Table 9. State of Signal Pins after VDD is Valid	27
Table 10. Status during Shutdown Mode	27
Table 11. SPI Port Signals Description	29
Table 12. Low Power Gaming Modes Setting	35
Table 13. Corded Gaming and Office Modes Setting	36
Table 14. Rest Modes Response & Downshift Time	37
Table 15. Lift Cut Off Setting for LM19-LSI and LOAE-LSI1 lens	38
Table 16. Register List	42

1.0 Introduction

1.1 Overview

The PAW3370DM is an optical navigation chip targeted for high-end corded gaming mouse. It contains an image array as Image Acquisition System (IAS), a Digital Signal Processor (DSP), a four wire serial port, a power control circuit and built-in LED driver integrated with Illumination source in a package as shown in the block diagram. The chip measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values. An external microcontroller reads the Δx and Δy information from the chip serial port. The microcontroller then translates the data into USB, or RF signals before sending them to the host PC or game console.

Note: Throughout this document PAW3370DM-T4QU is referred to as the chip.

Figure 1. Functional Block Diagram

PixArt Imaging Inc. http://www.pixart.com

1.2 Terminology

Term	Description
DSP	Digital Signal Processing
LED	Light Emitting Diode
NCS	Chip Select
VDDREG	LDO output (only for sensor internal usage)
VDD	Supply voltage
VDDIO	I/O power supply
SCLK	Serial Clock
MOSI	Serial Data Input
MISO	Serial Data Output
NRESET	Chip reset
SPI	Serial Peripheral Interface
GND	Ground
MOTION	Motion Detect

1.3 Pin Configuration

Figure 2. Device Pinout

Table 1. Pins Description

Pin No.	Function	Symbol	Туре	Description
1	Reserved	NC	NC	No connection
2	Reserved	NC	NC	No connection
3	C	VDDREG	Power	LDO output (only for sensor internal usage)
4	Supply Voltage and I/O Voltage	VDD	Power	Power supply
5	1/O Voltage	VDDIO	Power	I/O power supply
6	Reserved	NC	NC	No Connection
7	Reset Control	NRESET	Input	Chip reset (Active Low)
8	Ground	GND	GND	Ground
9	Motion Output	MOTION	Output	Motion detect
10		SCLK	Input	Serial data clock
11	4-wire SPI	MOSI	Input	Serial data input
12	4-WITE SPI	MISO	Output	Serial data output
13		NCS	Input	Chip select (Active Low)
14	Reserved	NC	NC	No connection
15	LED	LED_P	Input	LED Anode
16	Reserved	NC	NC	No connection

2.0 Operating Specifications

2.1 Regulatory Requirements

- Passes FCC "Part15 Subpart, Class B", "ICES-003:2016 Issue 6, Class B" and "ANSI C63.4:2014" when assembled into a mouse with shielded USB cable using ferrite bead and following PixArt's recommendations.
- Passes IEC 62471:2006 Photo biological safety of lamps and lamp systems.

2.2 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Lead Solder Temperature	T _{SOLDER}		260	°C	For 7 seconds, 1.6mm below seating
Supply Voltage	V_{DD}	-0.5	2.10	V	
Supply voltage	V_{DDIO}	-0.5	3.30	V	
ESD	ESD _{HBM}		2	kV	Human Body Model on All pins
Input Voltage	V_{IN}	-0.5	V_{DDIO}	V	All I/O pins.

Notes:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are the stress ratings only and functional operation of the device at these or any other condition beyond those indicated for extended period of time may affect device reliability.
- 2. The inherent design of this component causes it to be sensitive to electrostatic discharge. The ESD threshold is listed above. To prevent ESD induced damage, take adequate ESD precautions when handling this product

2.3 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	0		40	°C	
	V_{DD}	1.8	1.9	2.1	V	Including 100mVp-p supply noise
Power Supply Voltage	V_{DDIO}	1.8	1.9	3.3	V	Including 100mVp-p supply noise $(V_{DDIO}$ must be same or greater than V_{DD})
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to VDD & VDDIO
Supply Noise	V_{NA}			100	mV_{p-p}	10kHz – 75MHz
Serial Port Clock Frequency	f_{SCLK}			8	MHz	Active drive, 50% duty cycle
Distance from Lens Reference Plane to Tracking Surface	Z	2.20	2.40	2.60	mm	
Speed						Tested on QCK at 45 degree
Low Power Gaming Mode 1		400				
Low Power Gaming Mode 2	S	200			ips	
Corded Gaming Mode		400				
Office Mode		30				
Acceleration						In run mode
Low Power Gaming Mode 1		50				Tested on QCK at 45 degree
Low Power Gaming Mode 2	А	40			g	
Corded Gaming Mode		50				
Office Mode		10				
Load Capacitance	C_L			20	pF	MISO, MOTION
Lift Cutoff 1mm setting	Lift _{1mm}		1		mm	LM19-LSI & IOAE-LSI1
Lift Cutoff 2mm setting	Lift _{2mm}		2		mm	LM19-LSI & IOAE-LSI1
Lift Cutoff (Manual Calibration)	Liftcal		1		mm	LM19-LSI & IOAE-LSI1
Resolution Error	Reserr		0.5		%	In Low Power Gaming Mode 1 Up to 200ips at 3000cpi on QCK

Note: PixArt does not guarantee the chip performance if the operating temperature is beyond the specified limit.

2.4 Thermal Specifications

Table 4. Thermal Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Ts	-25	-	80	°C	
Lead-free Solder Temperature	ТР	-	-	260	°C	For 10 seconds, 1.6mm below seating plane for wave soldering

2.5 DC Characteristics

Table 5. DC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
DC Supply Current (Run mode)						Average Run current on QCK
						Includes I _{LED}
Low Power Gaming Mode 1	IDD_RUN [LPGM1 mode]		1.5		mΑ	Measured at 1ms polling rate
Low Power Gaming Mode 2	I _{DD_RUN} [LPGM2 mode]		1.2		mΑ	Measured at 8ms polling rate
Corded Gaming Mode	I _{DD_RUN} [Corded mode]		3.0		mΑ	Measured at 1ms polling rate
Office Mode	I _{DD_RUN} [Office mode]		0.5		mA	Measured at 8ms polling rate
DC Supply Current (Rest mode)						Average Rest current
	I _{DD_REST1} (LPGM1 mode)		610		uA	Includes I _{LED}
Low Power Gaming Mode 1 &	I _{DD_REST2} (LPGM1 mode)		25		uA	
Corded Gaming Mode	I _{DD_REST3} (LPGM1 mode)		5		uA	
	I _{DD_REST1} (LPGM2 mode)		160		uA	
Low Power Gaming Mode 2	I _{DD_REST2} (LPGM2 mode)		25		uA	
	I _{DD_REST3} (LPGM2 mode)		5		uA	
	I _{DD_REST1} (Office mode)		75		uA	
Office Mode	I _{DD_REST2} (Office mode)		10		uA	
	I _{DD_REST3} (Office mode)		5		uA	
Power Down Current	I _{PD}		3		uA	
Input Low Voltage	V _{IL}			0.3* V _{DDIO}	V	SCLK, MOSI, NCS
Input High Voltage	V _{IH}	0.7* V _{DDIO}			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS,
Input Leakage Current	I _{LEAK}		± 1	± 10	uA	Vin=V _{DDIO} or 0V, SCLK, MOSI, NCS
Output Low Voltage	Vol			0.45	V	I _{OUT} = 1mA, MISO, MOTION
Output High Voltage	V _{OH}	V _{DDIO} -0.45			V	I _{OUT} = -1mA, MISO, MOTION
Input Capacitance	C _{in}		10		рF	SCLK, MOSI, NCS

Note: All the parameters are tested under recommended operating conditions. Typical values at 25 °C, V_{DD} & V_{DDIO} = 1.9 V & LED current = 24mA

2.6 AC Characteristics

Table 6. AC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Motion Delay After Reset	t _{MOT-RST}	50			ms	From reset to valid motion, assuming motion is present
Shutdown	t _{stdwn}			500	ms	From Shutdown mode active to low current This timing could be affected by Rest3 period
Wake up from Shutdown	t _{WAKEUP}	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "5.2 Power Down Sequence", also note t _{MOT-RST.}
MISO Rise Time	t _{r-MISO}		6		ns	C _L = 20pF
MISO Fall Time	$t_{\text{f-MISO}}$		6		ns	$C_L = 20pF$
MISO Delay After SCLK	t _{DLY-MISO}			38	ns	From SCLK falling edge to MISO data valid, $C_L = 20$ pF with 10kOhm pull up resistor.
MISO Hold Time	t _{hold-MISO}	31.25			ns	Data held until next falling SCLK edge
MOSI Hold Time	t _{hold-MOSI}	31.25			ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	31.25			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	t _{sww}	5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time Between Write And Read Commands	t _{swr}	5			μs	From rising SCLK for last bit of the 1st data byte, to rising SCLK for last bit of the second address byte
SPI Time Between Read And Subsequent Commands	t _{srw} t _{srr}	2			μs	From rising SCLK for last bit of the 1st data byte, to falling SCLK for the 1st bit of data being read.
SPI Read Address-Data Delay	t _{srad}	2			μs	From rising SCLK for last bit of the address byte, to falling SCLK for the 1st bit of data being read.

Version 1.0 | 28 Sep 2020 | 11047EN

Low Power Optical Gaming Navigation Chip

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	From last NCS falling edge to 1st SCK rising edge.
SCLK To NCS Inactive (For Read Operation)	t _{SCLK-NCS} read	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer.
SCLK To NCS Inactive (For Write Operation)	tsclK-NCS write	1			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer.
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state
Transiant Supply Current	I _{DDT}		70		mA	Max supply current during the supply ramp from 0V to V _{DD} with min 150us and max 20ms rise time. (Does not include charging currents of bypass capacitors)
Transient Supply Current	Ірртіо		60		mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150us and max 20ms rise time. (Does not include charging currents of bypass capacitors)

Note: All the parameters are tested under recommended operating conditions. Typical values at 25 °C & VDD & VDDIO =1.9V

3.0 Mechanical Specifications

This section covers PAW3370's guidelines and recommendations in term of chip, lens & PCB assemblies.

3.1 Chip Package Dimension

Figure 3. Package Outline Drawing

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

3.2 Package Marking Identification

Refer to Figure 2. Pinout

Table 7. Package Marking Description

Items	Marking	Remark
Product Number	PAW3370DM-T4QU	
Lot Code	AYWWXXXXX	A: Assembly house
		Y : Year
		WW : Week
		XXXXX: PixArt reference

3.3 Packing Information

3.3.1 Packing Tube

Quantity: 25 units per tube

■ Size: 500 mm X 13.5 mm X 7.0 mm

Figure 4. Packing Tube

3.3.2 Inner Box

Quantity: 1000 units per box

• Size: 163 mm X 525 mm X 67 mm)

Note: All dimensions are in mm

Figure 5. Inner Box Dimension

3.3.3 Shipping Carton

Quantity: 12,000 units per cartonSize: 540 mm X 550 mm X 300 mm

Note: All dimensions are in mm

Figure 6. Shipping Carton Dimension

4.0 Design References

4.1 Reference Schematic

Figure 7. Schematic diagram for PAW3370DM-T4QU Chip

Table 8. Recommended RLED

V _{LED} (V)	Recommended R _{LED} (Ω)
1.9	16

4.2 Recommended PCB Footprint

Figure 8. Recommended chip orientation, mechanical cutouts & spacing (Top View)

4.3 Assembly Guide

4.3.1 PCB Assembly Recommendations

- 1. Insert the integrated chip and all other electrical components into PCB.
- 2. Wave-solder the entire assembly in a no-wash solder process utilizing solder-fixture. A solder-fixture is required to protect the chip from flux spray and wave solder.
- 3. Avoid getting any solder flux onto the chip body as there is potential for flux to seep into the chip package. The solder fixture should be designed to expose only the chip leads to flux spray & molten solder while shielding the chip body and optical apertures. The fixture should also set the chip at the correct position and height on the PCB.
- 4. Place the lens onto the base plate. Care must be taken to avoid contamination on the optical surfaces.
- 5. Remove the protective Kapton tapes from optical apertures of the chip. Care must be taken to prevent contaminants from entering the apertures. Do not place the PCB with the chip facing up during the entire product assembly process. Hold the PCB vertically when removing Kapton tape.
- 6. Remove the protective Kapton tapes from optical apertures of the chip. Care must be taken to prevent contaminants from entering the apertures. Do not place the PCB with the chip facing up during the entire mouse assembly process. Hold the PCB vertically when removing Kapton tape.
- 7. Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly. The chip package will self-align to the lens via the guide posts. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
- 8. Install mouse top case. There must be a feature in the top case to press down onto the PCB assembly to ensure all components are stacked or interlocked to the correct vertical height

4.3.2 System Assembly View

Figure 9. Exploded View of Assembly with LM19-LSI Lens

Figure 10 Exploded View of System Assembly with LOAE-LSI1 Lens

5.0 Power States & Sequence

5.1 Power-Up Sequence

Although the sensor performs an internal power up self-reset, it is still recommend that the Power_Up_Reset register is written every time power is applied. The appropriate sequence is as follows:

- 1. Apply power to VDD and VDDIO in any order, with a delay of no more than 100ms in between each supply. Ensure all supplies are stable.
- 2. Wait for 50ms.
- 3. Drive NCS high, and then low to reset the SPI port.
- 4. Write 0x5A to Power_Up_Reset register (or alternatively toggle the NRESET pin).
- 5. Wait for at least 5ms.
- 6. Load Power-up initialization register setting.
- 7. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion bit state.

5.2 Power-Up Initialization Register Setting

Note: Power-up initialization register setting must be loaded into the chip before performing any register read.

- 1. Write register 0x7F with value 0x12
- 2. Write register 0x47 with value 0x00
- 3. Write register 0x7F with value 0x00
- 4. Write register 0x18 with value 0x00
- 5. Write register 0x40 with value 0x80
- 6. Write register 0x55 with value 0x01
- 7. Wait for at least 1ms
- 8. Write register 0x7F with value 0x0E
- 9. Write register 0x43 with value 0x1D
- 10. Read register 0x46 and store in Var"R1"
- 11. Write register 0x43 with value 0x1E
- 12. Read register 0x46 and store in Var"R2"
- 13. Write register 0x7F with value 0x14
- 14. Write register 0x6A with value "R1"
- 15. Write register 0x6C with value "R2"
- 16. Write register 0x7F with value 0x00
- 17. Write register 0x55 with value 0x00
- 18. Write register 0x4D with value 0x50
- 19. Write register 0x4E with value 0x3B
- 20. Write register 0x4F with value 0x46
- 21. Write register 0x54 with value 0x34
- 22. Write register 0x77 with value 0x24
- 23. Write register 0x7F with value 0x05
- 24. Write register 0x44 with value 0xA8
- 25. Write register 0x46 with value 0x15

- 26. Write register 0x4A with value 0x14
- 27. Write register 0x51 with value 0x10
- 28. Write register 0x53 with value 0x0C
- 29. Write register 0x55 with value 0xC9
- 30. Write register 0x5B with value 0xEA
- 31. Write register 0x61 with value 0x13
- 32. Write register 0x62 with value 0x0B
- 33. Write register 0x64 with value 0x18
- 34. Write register 0x6D with value 0x86
- 35. Write register 0x7D with value 0x85
- 36. Write register 0x7E with value 0x03
- 37. Write register 0x7F with value 0x06
- 38. Write register 0x60 with value 0x80
- 39. Write register 0x61 with value 0x00
- 40. Write register 0x6D with value 0x29
- 41. Write register 0x6E with value 0x23
- 42. Write register 0x7E with value 0x40
- 43. Write register 0x7F with value 0x07
- 44. Write register 0x42 with value 0x15
- 45. Write register 0x7F with value 0x08
- 46. Write register 0x42 with value 0x28
- 47. Write register 0x43 with value 0x32
- 48. Write register 0x7F with value 0x09
- 49. Write register 0x40 with value 0x03 50. Write register 0x7F with value 0x0A
- 51. Write register 0x4A with value 0x28
- 52. Write register 0x4C with value 0x28
- 53. Write register 0x49 with value 0x00
- 33. Write register 0x43 with value 0x00
- 54. Write register 0x4F with value 0x02 55. Write register 0x7F with value 0x0C
- 56. Write register 0x40 with value 0x90
- 30. Write register ox 40 with value ox 30
- 57. Write register 0x41 with value 0x50
- 58. Write register 0x42 with value 0x0C
- 59. Write register 0x43 with value 0xA8
- 60. Write register 0x44 with value 0x47
- 61. Write register 0x45 with value 0x01
- 62. Write register 0x4D with value 0x4F
- 63. Write register 0x4E with value 0x1B
- 64. Write register 0x54 with value 0x00 65. Write register 0x55 with value 0x60
- 66. Write register 0x56 with value 0x60
- 67. Write register 0x58 with value 0x30

Version 1.0 | 28 Sep 2020 | 11047EN

- 68. Write register 0x59 with value 0x63
- 69. Write register 0x7F with value 0x0D
- 70. Write register 0x4B with value 0x23
- 71. Write register 0x4C with value 0x40
- 72. Write register 0x4E with value 0x6B
- 73. Write register 0x5E with value 0xC3
- 74. Write register 0x4F with value 0x02
- 75. Write register 0x7F with value 0x10
- 76. Write register 0x45 with value 0x1E
- 77. Write register 0x46 with value 0xF0
- 78. Write register 0x48 with value 0x0F
- 79. Write register 0x49 with value 0x88
- 80. Write register 0x4C with value 0x15
- 81. Write register 0x4F with value 0x00
- . .
- 82. Write register 0x51 with value 0x6F
- 83. Write register 0x52 with value 0x90
- 84. Write register 0x54 with value 0x64
- 85. Write register 0x55 with value 0xF0
- 86. Write register 0x5C with value 0x40
- 87. Write register 0x61 with value 0xEE
- 88. Write register 0x62 with value 0xE5
- 89. Write register 0x7F with value 0x14
- 90. Write register 0x53 with value 0x0C
- 91. Write register 0x4A with value 0x67
- 92. Write register 0x6D with value 0x20
- 93. Write register 0x6E with value 0x00
- 94. Write register 0x73 with value 0x83
- 95. Write register 0x74 with value 0x00
- 96. Write register 0x7A with value 0x16
- 97. Write register 0x63 with value 0x14
- 98. Write register 0x62 with value 0x14
- 99. Write register 0x7F with value 0x00
- 100. Write register 0x5B with value 0x40
- 101. Write register 0x61 with value 0xAD
- 102. Write register 0x51 with value 0xEA
- 103. Write register 0x19 with value 0x9F
- 104. Read register 0x20 at 1ms interval until 0x0F is obtained of read up to 100ms, this register read interval must be carried out at 1ms interval with timing tolerance of +/- 1%.
- 105. Write register 0x19 with value 0x10
- 106. Write register 0x61 with value 0xD5
- 107. Write register 0x40 with value 0x00
- 108. Write register 0x7F with value 0x00

During power-up there will be a period of time after the power supply is high but before any clocks are available. The table below shows the state of the various pins during power-up and reset.

Table 9. State of Signal Pins after VDD is Valid

Pin	During Reset	After Reset
NRESET	Functional	Functional
NCS	Ignored	Functional
MISO	Undefined	Depends on NCS
SCLK	Ignored	Depends on NCS
MOSI	Ignored	Depends on NCS
MOTION	Undefined	Functional

5.3 NRESET

The NRESET pin is used to perform the full chip reset. When asserted, it performs the same reset function as the Power_Up_Reset_Register. The NRESET pin needs to be asserted (held to logic 0) for at least 100 ns duration for the chip to reset.

Note: NRESET pin has built in weak pull up circuit. During active low reset phase, it can draw a static current of up to 600uA.

5.4 Power-Down Sequence

PAW3370DM-T4QU can be set in Shutdown mode by writing to Shutdown register 0x3B with value 0xB6. The SPI port should not be accessed when Shutdown mode is asserted, except the power-up command (writing 0x5A to register 0x3A). Other ICs on the same SPI bus can be accessed, as long as the chip's NCS pin is not asserted.

To de-assert Shutdown mode:

- 1. Drive NCS high, and then low to reset the SPI port.
- 2. Write 0x5A to Power_Up_Reset register.
- 3. Wait for at least 5ms.
- 4. Load power up initialization register setting as per Section 5.0, step 6.
- 5. Read from registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion bit state.

Table 10. Status during Shutdown Mode

Pin	Status
NRESET	High
NCS	High ^{*1}
MISO	Hi-Z ^{*2}
SCLK	Ignore if NCS = 1*3
MOSI	Ignore if NCS = 1*4
MOTION	Output High

Version 1.0 | 28 Sep 2020 | 11047EN

Low Power Optical Gaming Navigation Chip

Notes:

- *1. NCS pin must be held to 1 (high) if SPI bus is shared with other devices. It is recommended to hold to 1 (high) during Shutdown unless powering up the Chip. It must be held to 0 (low) if the chip is to be re-powered up from shutdown (writing 0x5a to register 0x3a).
- *2. MISO should be either externally pulled up or down during shutdown in order to meet the low power consumption specification in

the datasheet.

- *3. SCLK is ignored if NCS is 1 (high). It is functional if NCS is 0 (low).
- *4. MOSI is ignored if NCS is 1 (high). If NCS is 0 (low), any command present on the MOSI pin will be ignored except power-up command (writing 0x5a to register 0x3a).

CAUTION: There is long wakeup time from shutdown. Shutdown should not be used for power management during normal mouse motion.

6.0 Serial Peripheral Interface Communication

6.1 Signal Description

The synchronous serial port is used to write and read registers in the chip.

The port is a four wire port. The host microcontroller always initiates communication. The chip never initiates any data transfers. SCLK, MOSI and NCS may be driven directly by a microcontroller. The port pins may be shared with other SPI slave devices. When the NCS pin is driven high, the input signals are ignored and the output is tri-stated.

Table 11. SPI Port Signals Description

Signal Name	Functional Description
SCLK	Clock input, generated by the master (microcontroller).
MOSI	Input data. (Master Out/Slave In)
MISO	Output data. (Master In/Slave Out)
NCS	Chip select input (active low). NCS needs to be low to activate the serial port; otherwise, MISO will be high Z, and MOSI & SCLK will be ignored. NCS can also be used to reset the serial port in case of an error.

6.2 Motion Bit Timing

The motion pin is an active low output that signals the micro-controller when motion has occurred. The motion pin is lowered whenever the motion bit is set; in other words, whenever there is non-zero data in the Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers. Clearing the motion bit (by reading Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers) will put the motion pin high.

6.3 Chip Select Operation

The serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset. After a transaction is aborted, the normal address-to-data or transaction-to-transaction delay is required before beginning the next transaction. In order to improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because any ESD and EFT/B event could be interpreted as serial communication and put the chip into an unknown state. In addition, NCS must be raised after each burst-mode transaction is complete or to terminate burst-mode operation. The port is not available for further use until burst-mode is terminated.

6.4 Write Operation

Write operation, defined as data going from the micro-controller to chip, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The chip reads MOSI on rising edges of SCLK.

MOSI Driven by Micro-Controller

Figure 11. Write Operation

Figure 12. MOSI Setup and Hold Time

6.5 Read Operation

A read operation, defined as data going from chip to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over MOSI, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by PAW3370DM-T4QU chip over MISO. The chip outputs MISO bits on falling edges of SCLK and samples MOSI bits on every rising edge of SCLK.

Figure 13. Read Operation

Figure 14. MISO Delay and hold time

Note: The minimum high state of SCLK is also the minimum MISO data hold time of PAW3370DM-T4QU chip. Since the falling edge of SCLK is actually the start of the next read or write command, the chip will hold the state of data on MISO until the falling edge of SCLK.

6.6 Required Timing between Read and Write Commands

There are minimum timing requirements between read and write commands on the serial port.

If the rising edge of the SCLK for the last data bit of the second write command occurs before the t_{SWW} delay, then the first write command may not complete correctly.

Figure 15. Timing between two Write commands

Figure 16. Timing between Write and Either Write or Subsequent Read Commands

If the rising edge of SCLK for the last address bit of the read command occurs before the t_{SWR} required delay, the write command may not complete correctly. During a read operation SCLK should be delayed at least t_{SRAD} after the last address data bit to ensure that the chip has time to prepare the requested data.

The falling edge of SCLK for the first address bit of either the read or write command must be at least t_{SRR} or t_{SRW} after the last SCLK rising edge of the last data bit of the previous read operation. In addition, during a read operation SCLK should be delayed after the last address data bit to ensure that the chip has time to prepare the requested data.

Figure 17. Timing between Read and Either Write or Subsequent Read Commands

6.7 Burst Mode Operation

Burst mode is a special serial port operation mode which may be used to reduce the serial transaction time for predefined registers. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address and by not requiring the normal delay period between data bytes.

Figure 18. Motion Burst Timing

Motion Burst Read

Reading the Burst_Motion_Read register activates this mode. The chip will respond with the following motion burst report in order. Motion burst report:

BYTE[00] = Motion

BYTE[01] = Chip Observation

BYTE[02] = Delta X L

BYTE[03] = Delta_X_H

BYTE[04] = Delta Y L

BYTE[05] = Delta Y H

BYTE[06] = SQUAL

BYTE[07] = RawData Sum

BYTE[08] = Maximum RawData

BYTE[09] = Minimum RawData

BYTE[10] = Shutter_Upper

BYTE[11] = Shutter Lower

After sending the register address, the microcontroller must wait for t_{SRAD} , and then begin reading data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the microcontroller must raise the NCS line for at least t_{BEXIT} to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

Procedure to start motion burst as below.

- 1. Pull NCS line to low.
- 2. Read Motion_Burst register (address 0x16).
- 3. Wait for t_{SRAD} .
- 4. Start reading SPI Data continuously up to 12 bytes. Motion burst may be terminated by pulling NCS high for at least t_{BEXIT} .
- 5. To read new motion burst data, start again from step 1.

Burst mode must be terminated by the micro-controller by raising the NCS line for at least t_{BEXIT} . The serial port is not available for use until it is reset with NCS signal, even for a second Burst transmission.

Note: Motion burst data can be read from Motion_Burst register even in rest modes.

7.0 System Control

7.1 Gaming and Office Mode Setting

PAW3370DM-T4QU can be programmed to different gaming and office modes per the register settings in the table below. Please note that upon chip start-up per the recommended Power-Up Sequence, the chip is set to Low Power Gaming Mode 1 as default.

Table 12. Low Power Gaming Modes Setting

	Low Power Gaming Mode 1 (Default)		Low Power Gaming Mode 2
1.	Write register 0x7F with value 0x05	1.	Write register 0x7F with value 0x05
2.	Write register 0x40 with value 0x80	2.	Write register 0x40 with value 0x8C
3.	Write register 0x53 with value 0x0C	3.	Write register 0x53 with value 0x10
4.	Write register 0x55 with value 0xC9	4.	Write register 0x55 with value 0xC9
5.	Write register 0x61 with value 0x13	5.	Write register 0x61 with value 0x13
6.	Write register 0x62 with value 0x0B	6.	Write register 0x62 with value 0x18
7.	Write register 0x7D with value 0x85	7.	Write register 0x7D with value 0x86
8.	Write register 0x7E with value 0x03	8.	Write register 0x7E with value 0x03
9.	Write register 0x7F with value 0x06	9.	Write register 0x7F with value 0x06
10.	Write register 0x60 with value 0XB0	10.	Write register 0x60 with value 0X80
11.	Write register 0x61 with value 0x00	11.	Write register 0x61 with value 0x01
12.	Write register 0x62 with value 0x10	12.	Write register 0x62 with value 0x10
13.	Write register 0x63 with value 0x00	13.	Write register 0x63 with value 0x00
14.	Write register 0x7F with value 0x00	14.	Write register 0x7F with value 0x00
15.	Write register 0x54 with value 0x34	15.	Write register 0x54 with value 0x34
16.	Write register 0x77 with value 0x31	16.	Write register 0x77 with value 0x31
17.	Write register 0x78 with value 0x01	17.	Write register 0x78 with value 0x04
18.	Write register 0x79 with value 0x4F	18.	Write register 0x79 with value 0x14
19.	Write register 0x7A with value 0x08	19.	Write register 0x7A with value 0x08
20.	Write register 0x7B with value 0x4A	20.	Write register 0x7B with value 0x4A

Table 13. Corded Gaming and Office Modes Setting

	Corded Mode		Office Mode
1.	Write register 0x7F with value 0x05	1.	Write register 0x7F with value 0x05
2.	Write register 0x40 with value 0x80	2.	Write register 0x40 with value 0x80
3.	Write register 0x53 with value 0x0C	3.	Write register 0x53 with value 0x10
4.	Write register 0x55 with value 0xC9	4.	Write register 0x55 with value 0x84
5.	Write register 0x61 with value 0x13	5.	Write register 0x61 with value 0x11
6.	Write register 0x62 with value 0x04	6.	Write register 0x62 with value 0x50
7.	Write register 0x7D with value 0x85	7.	Write register 0x7D with value 0x85
8.	Write register 0x7E with value 0x03	8.	Write register 0x7E with value 0x23
9.	Write register 0x7F with value 0x06	9.	Write register 0x7F with value 0x06
10.	Write register 0x60 with value 0X40	10.	Write register 0x60 with value 0x00
11.	Write register 0x61 with value 0x00	11.	Write register 0x61 with value 0x06
12.	Write register 0x62 with value 0x10	12.	Write register 0x62 with value 0x60
13.	Write register 0x63 with value 0x00	13.	Write register 0x63 with value 0x00
14.	Write register 0x7F with value 0x00	14.	Write register 0x7F with value 0x00
15.	Write register 0x54 with value 0x34	15.	Write register 0x54 with value 0x42
16.	Write register 0x77 with value 0x31	16.	Write register 0x77 with value 0x0C
17.	Write register 0x78 with value 0x01	17.	Write register 0x78 with value 0x0A
18.	Write register 0x79 with value 0x4F	18.	Write register 0x79 with value 0x02
19.	Write register 0x7A with value 0x08	19.	Write register 0x7A with value 0x19
20.	Write register 0x7B with value 0x4A	20.	Write register 0x7B with value 0x0C

Note: Corded Gaming mode provides similar tracking performance as Low Power Gaming Mode 1 with consistent delta_X and delta_Y report size over USB report rate.

7.2 Power Management for Wireless Mode

PAW3370DM-T4QU has three power-saving modes. Each mode has a different motion detection period with its respective response time to mouse motion. Response time is the time taken for the chip to 'wake up' from rest mode when motion is detected. When left idle, the chip automatically changes or downshift from Run mode to Rest1, then to Rest2 and finally to Rest3 which consumes the least amount of current.

The current consumption is lowest at Rest3 and highest at Rest1. However the time required for chip to respond to motion from Rest1 is the shortest and longest from Rest3. Downshift time is the elapsed time (under no motion condition) from an existing mode to the next mode. For example, it takes 20s for the chip which is in Rest1 mode to change (downshift) to Rest2. The response time and downshift time for each mode is shown in the following table.

However user can change the timing setting for each mode via register 0x77 through 0x7C.

Table 14. Rest Modes Response & Downshift Time

Mode	Low Power Gaming Mode 1 Mode (Default)		Low Power G	aming Mode 2	Office Mode		
	Response Time	Downshift Time	Response Time	Downshift Time	Response Time	Downshift Time	
Rest1	1ms	1s	4ms	1s	10ms	248ms	
Rest2	32ms	20s	32ms	20s	100ms	5s	
Rest3	500ms	600s	500ms	600s	500ms	300s	

Note: These timings are based on Power-Up Initialization Register Setting in section 5.0 and subjected to change if any of the register 0x77 to 0x7C value is updated

7.3 Universal Lift Cut Off Setting

The Universal Lift Cut Off setting applies to all PixArt Standard Gaming Surfaces. The lift-cut off can be set to 1mm and 2mm when mated with the LM19-LSI and LOAE-LSI1 lens, per the register settings in the table below.

Please note that upon sensor start-up per the recommended Power-Up Sequence, the lift cut off is set to 1mm as default.

Table 15. Lift Cut Off Setting for LM19-LSI and LOAE-LSI1 lens

Lens	Lift Cut Off Setting	Register Setting
LM19-LSI &	1mm setting (Default in Power Up Sequence)	 Write register 0x7F with value 0x0C Write register 0x40 with value 0x90 Write register 0x41 with value 0x50 Write register 0x42 with value 0x0C Write register 0x43 with value 0xA8 Write register 0x44 with value 0x47 Write register 0x45 with value 0x01 Write register 0x4A with value 0x19 Write register 0x4C with value 0x60 Write register 0x4E with value 0x1B Write register 0x6D with value 0x7F Write register 0x7F with value 0x00
LOAE-LSI1	2mm setting	 Write register 0x7F with value 0x0C Write register 0x40 with value 0x14 Write register 0x41 with value 0x14 Write register 0x42 with value 0x20 Write register 0x43 with value 0x18 Write register 0x44 with value 0xD3 Write register 0x45 with value 0x0E Write register 0x4A with value 0x0A Write register 0x4B with value 0x08 Write register 0x4C with value 0x45 Write register 0x4E with value 0x0F Write register 0x6D with value 0x5F Write register 0x7F with value 0x00

7.5 Manual Lift Cut Off Calibration

PAW3370 has the capability to optimize its lift performance by tuning internal parameter on a specific gaming mat or tracking surface, this feature involves end user interaction.

7.5.1 Lift Cut Off Calibration Procedures

- 1. Ensure that the chip is powered up according to the Power Up Sequence in section 5.0.
- 2. Prompt the user that the manual lift cut off calibration is about to begin and ensure that the mouse is placed nominally on the surface (mouse is not lifted).
- 3. Start the calibration procedure by loading the following register values in sequence:
 - Write register 0x7F with value 0x06
 - Write register 0x71 with value 0x01
 - Write register 0x7F with value 0x0C
 - Read register 0x4E and store its value into Var_Config
 - Write register 0x4E with value 0x00
 - Write register 0x7F with value 0x00
 - Write register 0x40 with value 0x80
 - Write register 0x7F with value 0x04
 - Write register 0x40 with value 0x81
- 4. The calibration procedure can be started by a SW prompt to the user or user-initiated through a mouse-click event. Recommend to move the mouse over a distance of >20inch to cover most area of the tracking surface.
- 5. Write register 0x40 with value 0x80, then write register 0x40 with value 0x00 to stop the Calibration.
- 6. Read register 0x4C bit[2] to check the status of the calibration process.
 - If the returned value is HIGH, it indicates the calibration is completed, proceed to step7.
 - Whereas LOW indicates the calibration is incomplete, repeat step5.
- 7. Check register 0x4C bit[0],
 - If the returned value of bit[0] is HIGH, the calibration is completed successfully, proceed to step 8.
 - Else, the calibration is failed, load the following register values to exit the lift cut off calibration process, then restart from step 1.
 - i. Write register 0x7F with value 0x0C
 - ii. Write register 0x4E with value Var Config
 - iii. Write register 0x7F with value 0x06
 - iv. Write register 0x71 with value 0x00
 - v. Write register 0x7F with value 0x00
 - vi. Write register 0x40 with value 0x00
- 8. Write register 0x7F with value 0x04
- 9. Read register 0x4D and store its value into VarA
- 10. Read register 0x4E and store its value into VarB
- 11. Write register 0x7F with value 0x0C
- 12. Write register 0x4E with value Var_Config
- 13. Write register 0x7F with value 0x00
- 14. Write register 0x40 with value 0x00
- 15. Prompt the user that the calibration process is completed, continue to section 7.5.2.

Version 1.0 | 28 Sep 2020 | 11047EN

7.5.2 Enable Lift Cut Off Calibration Registers Setting

Write the following set of register values to enable lift cut off calibration register setting. VarA and VarB obtained from section 7.5.1 would be used in this section.

- 1. Write register 0x7F with value 0x09
- 2. Write register 0x5D with VarA
- 3. Write register 0x5B with VArB
- 4. Write register 0x7F with value 0x06
- 5. Write register 0x71 with value 0x01
- 6. Write register 0x73 with value 0x0C
- 7. Write register 0x7F with value 0x00

7.5.3 Disable Lift Cut Off Calibration Registers Setting

Write the following set of register values to disable lift cut off calibration registers setting in Section 7.5.2 and revert to previous lift cut off setting (1mm or 2mm lift cut off setting).

- 1. Write register 0x7F with value 0x06
- 2. Write register 0x71 with value 0x00
- 3. Write register 0x73 with value 0x00
- 4. Write register 0x7F with value 0x00

Low Power Optical Gaming Navigation Chip

7.6 Raw Data Grab

Raw data grab is the way to download a full array of raw data values from a single frame. Once raw data grab is enabled, the next complete frame image will be stored to memory. In order to stream out the Raw Data values, register read operation is used.

Procedure to start frame capture burst mode is listed as below:

- 1. Write register 0x7F with value 0x00
- 2. Write register 0x40 with value 0x80
- 3. Write register 0x7F with value 0x13
- 4. Write register 0x47 with value 0x30
- 5. Write register 0x7F with value 0x00
- 6. Write register 0x55 with value 0x04
- 7. Continuously read register 0x02 until getting both OP_Mode1 and OP_Mode0 equal to 0.
- 8. Write register 0x58 with value 0xFF
- 9. Continuously read register 0x59 until getting PG_FIRST as "1"
- 10. Continuously read register 0x59 until getting PG VALID as "1".
- 11. Read register 0x58 for 7 bit ADC data (RAWDATA 6-0). Repeat (10) and (11) for 900 times to form a complete picture element array information.
- 12. Write register 0x55 with value 0x00
- 13. Write register 0x40 with value 0x00
- 14. Write register 0x7F with value 0x13
- 15. Write register 0x47 with value 0x20
- 16. Write register 0x7F with value 0x00

Figure 19. Raw Data Address Map for 30x30 (Chip looking on the navigation surface through the lens)

Note: The X/Y reporting direction shown above follows all the power up initialization sequence in the Power Up section.

8.0 Registers

8.1 Registers List

The chip registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Table 16. Register List

Address	Register Name	Access	Reset Value
0x00	Product_ID	R	0x4E
0x02	Motion	RW	0x20
0x03	Delta_X_L	R	0x00
0x04	Delta_X_H	R	0x00
0x05	Delta_Y_L	R	0x00
0x06	Delta_Y_H	R	0x00
0x07	SQUAL	R	0x00
0x08	RawData_Sum	R	0x00
0x09	Maximum_RawData	R	0x00
0x0A	Minimum_RawData	R	0x7F
0x0B	Shutter_Lower	R	0x00
0x0C	Shutter_Upper	R	0x01
0x15	Chip_Observation	RW	0x40
0x16	Burst_Motion_Read	R	0x00
0x3A	Power_Up_Reset	W	0x00
0x3B	Shutdown	W	0x00
0x40	Performance	RW	0x00
0x4D	Config 1	RW	0x90
0x4E	Resolution	RW	0x12
0x56	Angle_Snap	RW	0x04
0x58	RawData _Grab	RW	0x00
0x59	RawData _Grab_Status	R	0x00
0x5A	Ripple_Control	RW	0x10
0x5B	Axis_Control	RW	0x60
0x5F	Inv_Product_ID	R	0xB1
0x77	Run_DownShift	RW	0x0C
0x78	Rest1_Period	RW	0x01
0x79	Rest1_Downshift	RW	0x4F
0x7A	Rest2_Period	RW	0x08
0x7B	Rest2_Downshift	RW	0x4A
0x7C	Rest3_Period	RW	0x3F
0x7D	Run_Downshift_Mult	RW	0x07
0x7E	Rest_Downshift_Mult	RW	0x77

8.2 Register Descriptions

8.2.1 Product_ID

Register Name	Product_ID	Product_ID									
Address	0x00										
Access	Read			Reset Value		0x4E					
Bit	7	6	5	4	3	2	1 0				
Field				PID	7-0						
	This registe	r contains a	unique iden	tification assi	gned to the	PAW3370DM	1-T4QU. The value in				
Description	this register	does not ch	nange; it car	be used to ve	erify that th	e serial comm	nunications link is				
	functional.										

8.2.2 Motion

Register Name	Motion							
Address	0x02							
Access	Read/Write			Reset Value		0x20		_
Bit	7	6	5	4	3	2	1	0
Field	MOT	Reserved	1	Reserved	Lift_Stat	Reserved	OP_Mode ₁	OP_Mode ₀

This register allows the user to determine if motion has occurred since the last time it was read. The procedure to read the motion registers (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H) is as follows:

- 1.Read the Motion register. This will freeze the Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H register values.
- 2.If the MOT bit is set, Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers should be read in the given sequence to get the accumulated motion. Note: if Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers are not read before the motion register is read for the second time, the data in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H will be lost.
- 3.To read a new set of motion data (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H), repeat from Step 1.

Description

Description							
Motion since last report							
0 = No motion							
1 = Motion occurred, data ready for reading in Delta_X_L, Delta_X_H, Delta_Y_L							
and Delta_Y_H registers							
Indicate the lift status of chip							
0 – Chip on surface							
1 – Chip lifted							
00 – Run Mode							
01 – Rest 1							
10 - Rest 2							
11 - Rest 3							

Write any value to this register will clear all motion data.

7FFE

7FFF

8.2.3 **DELTA_X_L**

Register Name	DELTA_X_L										
Address	0x03										
Access	Read			Reset Value	:	0x00					
Bit	7	6	5	4	3	2	1 0				
Field	X ₇	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁ X ₀				
		16 bits 2's complement number. Lower 8 bits of Delta_X. X movement is counts since last report. Absolute value is determined by resolution.									
Description	Motion	-32768 -3276	⁷ -2	-1	0 +1	+2	+32766 +32767				

FFFE

FFFF

8.2.4 DELTA_X_H

Delta_X

8000

8001

Register Name	DELTA_X_H								
Address	0x04								
Access	Read			Reset Value		0x00	0x00		
Bit	7	6	5	4	3	2	1	0	
Field	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁₁	X ₁₀	X_9	X ₈	
Description	Delta_X_H n	nust be read	after Delta_	per 8 bits of E _X_L to have t er 0x02, 0x03,	the full moti	on data. and 0x06 to l	be read sequ	uentially.	

8.2.5 DELTA_Y_L

Register Name	DELTA_Y_L						
Address	0x05						
Access	Read			Reset Value	•	0x00	_
Bit	7	6	5	4	3	2	1 0
Field	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁ Y ₀

8.2.6 **DELTA_Y_H**

Register Name	DELTA_Y_H	DELTA_Y_H									
Address	0x06	0x06									
Access	Read			Reset Value		0x00	0x00				
Bit	7	6	5	4	3	2	1	0			
Field	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y ₉	Y ₈			
Description	Delta_Y_H n	nust be read	after Delta	per 8 bits of C _Y_L to have t er 0x02, 0x03,	– he full motio		be read sequ	entially.			

8.2.7 **SQUAL**

Register Name	SQUAL	QUAL									
Address	0x07	0x07									
Access	Read			Reset Value		0x00	0x00				
Bit	7	6	5	4	3	2	1	0			
Field	SQ ₇	SQ ₆	SQ ₅	SQ ₄	SQ ₃	SQ ₂	SQ ₁	SQ₀			
Description	chip in the Number of The maxim in changes	current fram Features = S um SQUAL ro in SQUAL, va	ne. Use the fos GUAL Regist egister value ariations in S	r is a measure ollowing form er Value * 4 is 0xB6. Since QUAL when le hip is in run m	ula to find the small chang	ne total numl ges in the culurface is exp	ber of valid for rrent frame contents	eatures. can result			

8.2.8 RAWDATA_SUM

Register Name	RAWDATA	RAWDATA_SUM									
Address	0x08										
Access	Read			Reset Value		0x00	0x00				
Bit	7 6 5			4	3	2	1	0			
Field	RDS ₇	RDS ₆	RDS ₅	RDS ₄	RDS ₃	RDS ₂	RDS ₁	RDS ₀			
Description	counter wh follows the Averag The maximu	ich sums all formula bel ge pixel value um register v	900 raw data ow: e = PIX_ACCL value is 0xDF	average raw a in the curre JM*512/900 (hex) or 223(dame. Disable	nt frame. To dec) and the	find the aver	rage raw dat gister value is	a value s 0. The raw			

8.2.9 MAXIMUM_RAWDATA

Register Name	MAXIMUM	MAXIMUM_RAWDATA							
Address	0x09								
Access	Read			Reset Value		0x00			
Bit	7	6	5	4	3	2	1	0	
Field	MaxRD ₇	MaxRD ₆	MaxRD ₅	MaxRD ₄	MaxRD ₃	MaxRD ₂	$MaxRD_1$	MaxRD ₀	
Description		Maximum Raw Data value in current frame. Minimum value = 0, maximum value = 127. The naximum raw data value can change every frame.							

8.2.10 MINIMUM_RAWDATA

Register Name	MINIMUM_	MINIMUM_RAWDATA							
Address	0x0A								
Access	Read			Reset Value		0x7F			
Bit	7	6	5	4	3	2	1	0	
Field	MinRD ₇	MinRD ₆	MinRD ₅	MinRD ₄	MinRD ₃	MinRD ₂	MinRD ₁	MinRD ₀	
Description		Minimum Raw data value in current frame. Minimum value = 0, maximum value = 127. The minimum raw data value can change every frame.							

8.2.11 SHUTTER_LOWER

Register Name	SHUTTER_I	HUTTER_LOWER							
Address	0x0B								
Access	Read			Reset Value		0x00			
Bit	7	6	5	4	3	2	1	0	
Field	S ₇	S ₆	S ₅	S ₄	S ₃	S ₂	S_1	S ₀	
Description	Lower byte	ower byte of the 12-bit Shutter register.							

8.2.12 SHUTTER_UPPER

Register Name	SHUTTER_U	SHUTTER_UPPER								
Address	0x0C	0x0C								
Access	Read	Read			Reset Value 0x01					
Bit	7	6	5	4	3	2	1	0		
Field	Reserved	Reserved	Reserved	Reserved	S ₁₁	S ₁₀	S ₉	S ₈		
Description	Shutter_Up adjusted to	per first, the keep the av and automat	en Shutter_L erage raw da	gister. Units a ower. They sh ata values wit ed to a new v	nould be read thin normal c	d consecutive perating ran	ely. The shut iges. The shu	ter is Itter value		

8.2.13 CHIP_OBSERVATION

Register Name	CHIP_OBSE	RVATION						
Address	0x15	0x15						
Access	Read/Write	Read/Write I				0x40		_
Bit	7	7 6 5			3	2	1	0
Field	CO ₇	CO ₆	CO ₅	CO ₄	CO ₃	CO ₂	CO ₁	CO ₀
Description	read the reg value is inco as per section a problem ca T _{dly_obs} is de chip is in Re	gister. The varrect, recome on 5.2 in this aused by EF fined as the est3 mode. C	alue of CO ₇₋₀ nmend to pe data sheet. Γ/B or ESD ev longest frar lock frequen	the register should be 0x rform chip re The register rent. me period + 1 cy tolerance verts is used, then	kBF or 0xB7 if set and reloa may be used 10% variation value need to	f the chip is want the power as part of recons. The longes or be taken in	working corre up initializat covery schem st frame peri	ectly. If the cion setting e to detect

8.2.14 BURST_MOTION_READ

Register Name	BURST_MC	BURST_MOTION_READ							
Address	0x16	0x16							
Access	Read			Reset Value 0x00					
Bit	7	7 6 5 4 3 2							
Field	MB ₇	MB ₆	MB ₅	MB ₄	MB ₃	MB ₂	MB_1	MB ₀	
Description	Delta_X_L, Minimum_I	The Burst_Motion_Read register is used for high-speed access to the Motion, Observation, Delta_X_L, Delta_X_H, Delta_Y_L, Delta_Y_H, SQUAL, Raw Data_Sum, Maximum_RawData, Minimum_RawData, Shutter_Upper and Shutter_Lower registers. See Burst Mode-Motion Read section 6.7 for use details.							

8.2.15 POWER_UP_RESET

Register Name	POWER_UP	POWER_UP_RESET							
Address	0x3A								
Access	Write			Reset Value NA		NA			
Bit	7	6	5	4	3	2	1	0	
Field	PRST ₇	PRST ₆	PRST ₅	PRST ₄	PRST ₃	PRST ₂	PRST ₁	PRST ₀	
Description		Vrite 0x5A to this register to reset the chip and all settings will revert to default values. Reset is equired after recovering from Shutdown mode.							

8.2.16 SHUTDOWN

Register Name	SHUTDOW	١						
Address	0x3B							
Access	Write			Reset Value		NA		
Bit	7	6	5	4	3	2	1	0
Field	SD ₇	SD_6	SD ₅	SD ₄	SD ₃	SD ₂	SD_1	SD_0
Description		Vrite 0xB6 to set the chip to Shutdown mode. Refer to the Shutdown section for more details on ecovery procedure.						

8.2.17 PERFORMANCE

Register Name	PERFORMA	NCE						
Address	0x40							
Access	Read/Write F		Reset Value	Reset Value		0x00		
Bit	7	6	5	4	3	2	1	0
Field	AWAKE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	This registe	r configures	the operatin	ng mode of th	e chip.			
						_		
Description	Field Name	e De	scription					
	AWAKE	0:	Enable Rest N	Mode		_		
		1:	Disable Rest	Mode		_		

8.2.18 CONFIG1

Register Name	CONFIG1							
Address	0x4D							
Access	Read/Write I			Reset Value		0x90		
Bit	7	6	5	4	3	2	1	0
Field	CON	1	Reserved	1	Reserved	Reserved	Reserved	Reserved
	This register configures the dpi step size of the chip. Upon chip start-up per the recom Power-Up Sequence, the chip is set to 50cpi step size as default.						er the recom	mended
Description	Field Name	e De	scription					
	CON Change dpi step size							
		0 =	50 dpi					
		1 =	100 dpi			_		

8.2.19 RESOLUTION

Register Name	RESOLUTIO	RESOLUTION							
Address	0x4E								
Access	Read/Write	!		Reset Value		0x12			
Bit	7	6	5	4	3	2	1	0	
Field	RES ₇	RES ₆	RES ₅	RES ₄	RES ₃	RES ₂	RES ₁	RES ₀	

This register set the chip resolution, the approximate resolution value for each register setting can be defined using the table shown below. The maximum resolution setting of 50cpi step size is 10000cpi, configure the chip to 100cpi step size in order to select up to 19000cpi. Please note that upon chip start-up per the recommended Power-Up Sequence, the chip is set to 3000cpi and 50cpi step size as default.

Note: Recommend to set bit-7 in RIPPLE_CONTROL register to enable the ripple control when select resolution of 5000cpi and above.

	Field Name	Description
	RES _{7:0}	To select chip resolution from 50cpi to 10000cpi, write register 0x4D with
		value 0x50 to set the step size of approximately 50cpi.
		0x00: 50cpi
Description		0x01: 100cpi
		0x02: 150cpi
		0x3B: 3000cpi (default)
		0xC7: 10000cpi
		To select chip resolution from 10100cpi to 19000cpi, write register 0x4D with
		value 0xD0 to set the step size of approximately 100cpi.
		0x64: 10100cpi
		0x65: 10200cpi
		0x66: 10300cpi
		:
		0xBD: 19000cpi (max)

8.2.20 ANGLE_SNAP

ANGLE_SNA	AP .							
0x56								
Read/Write			Reset Value		0x04		1 0 0 0	
7	7 6 5			3	2	1	0	
EN	0	0	0	0	1	0	0	
Write to this register to enable angle snap feature.								
Field Name	e Descr	iption						
EN	0: An	gle snap disa	ble		_			
	1: An	gle snap ena	ble					
	0x56 Read/Write 7 EN Write to thi Field Name	Read/Write 7 6 EN 0 Write to this register to Field Name Descr EN 0: An	Ox56 Read/Write 7 6 5 EN 0 0 Write to this register to enable angle Field Name Description EN 0: Angle snap disa	Ox56 Read/Write Reset Value 7 6 5 4 EN 0 0 0 Write to this register to enable angle snap feature Field Name Description	Ox56 Read/Write Reset Value 7 6 5 4 3 EN 0 0 0 0 0 Write to this register to enable angle snap feature. Field Name Description EN 0: Angle snap disable	Ox56 Read/Write Reset Value Ox04 7 6 5 4 3 2 EN 0 0 0 0 1 Write to this register to enable angle snap feature. Field Name Description EN 0: Angle snap disable	Ox56 Read/Write Reset Value Ox04 7 6 5 4 3 2 1 EN 0 0 0 0 1 0 Write to this register to enable angle snap feature. Field Name Description EN 0: Angle snap disable	

8.2.21 RAWDATA_GRAB

Register Name	RAWDATA	RAWDATA_GRAB							
Address	0x58	0x58							
Access	Read/Write	2		Reset Value		0x00			
D:+	7	6	5	4	3	2	1	0	
Bit Field	Reserved	RAWDATA ₆	RAWDATA ₅	RAWDATA ₄	RAWDATA ₃	RAWDATA ₂	RAWDATA ₁	RAWDATA 0	
Description	_			vels when the		rab process	is enabled. F	or details	

8.2.22 RAWDATA_GRAB_STATUS

Register Name	RAWDATA_	AWDATA_GRAB_STATUS								
Address	0x59	0x59								
Access	Read			Reset Value		0x00				
Bit	7	6	5	4	3	2	1	0		
Field	PG_VALID	PG_FIRST	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
	This register provides additional information for user to monitor the chip navigation status.							atus.		
Description	Field Name	e Desc	ription							
Description	PG_VALID	1 = R	aw Data Gra	b valid		_				
	PG_FIRST	1 = R	aw Data Gra	b first		_				

8.2.23 RIPPLE_CONTROL

Register Name	RIPPLE_CO	IPPLE_CONTROL						
Address	0x5A							
Access	Read/Write			Reset Value		0x10		
Bit	7	6	5	4	3	2	1	0
Field	EN	Reserved	Reserved	1	Reserved	Reserved	Reserved	Reserved
	Set bit-7 to enable ripple control.							
Description	Field Name	e Des	cription				1	
Description	EN	0: F	0: Ripple Control Disable.					
		1: F	Ripple Control	Enable.		_		

8.2.24 AXIS_CONTROL

Register Name	AXIS_CONTE	AXIS_CONTROL							
Address	0x5B								
Access	Read/Write			Reset Value		0x60			
Bit	7	6	5	4	3	2	1	0	
Field	Swap_XY	INV_Y	INV_X	Reserved	Reserved	Reserved	Reserved	Reserved	
	The register set the axis direction of the chip reporting.								
	Field Name	Descr	iption						
Description	Swap_XY	1: Swa	ap XY directi	ons		_			
	_INV_Y	1: Inv	ert Y directio	on		<u></u>			
	_INV_X	1: Inv	ert X direction	on		<u> </u>			

8.2.25 INV_PROD_ID

Register Name	INV_PROD_	ID							
Address	0x5F								
Access	Read			Reset Value		0xB1		1 0 To test the SPI port	
Bit	7	6	5	4	3	2	1	0	
Field				IPID) ₇₋₀				
Description	This registed hardware.	This register value is the inverse of the Product_ID register value. It is used to test the SPI port							

8.2.26 RUN_DOWNSHIFT

Register Name	RUN_DOW	NSHIFT						
Address	0x77							
Access	Read/Write			Reset Value		0x0C		
Bit	7	6	5	4	3	2	1	0
Field	RD ₇	RD ₆	RD ₅	RD ₄	RD ₃	RD ₂	RD_1	RD_0
Description	Run Downsl Example for Please note 49 as defau Max Downs Min value is	hift time (ms 12k FPS = 4 that upon o lt. hift time is 1 5 0x01. A val	s) = RD[7:0] x 49 x 256 x 80 chip start-up 189 x 256 x 8 ue of 0x00 w	ownshift time RUN_DOWN 77us = 1s (de per the reco 80.77us = 3.9s yill be interna	NSHIFT_MUL efault) mmended Po s lly clipped to	T (default 25 ower-Up Seq	6) x 80.77us	

8.2.27 REST1_PERIOD

Register Name	REST1_PER	IOD							
Address	0x78								
Access	Read/Write			Reset Value		0x01)x01		
Bit	7 6 5		4	3	2	1	0		
Field	R1R ₇	R1R ₆	R1R ₅	R1R ₄	R1R ₃	R1R ₂	R1R ₁	R1R ₀	
Description	Min value is	d = R1P[7:0] t1 period = 1 s 0x01. A val	x 1ms 1 x 1ms = 1m ue of 0x00 is		6 tolerance.				

8.2.28 REST1_DOWNSHIFT

Register Name	REST1_DO\	REST1_DOWNSHIFT									
Address	0x79										
Access	Read/Write			Reset Value		0x4F					
Bit	7	6	5	4	3	2	1	0			
Field	R1D ₇	R1D ₆	R1D ₅	R1D ₄	R1D₃	R1D ₂	R1D ₁	R1D ₀			
Description	Rest1 Dowr (default 1m Default = 79 Min value is	nshift time (r s) 9 x 256 x 1m s 0x01. A val	ns) = R1D[7: s = 20224ms ue of 0x00 w	downshift tim O] x REST1_D s = 20s vill be internal o have +/- 109	OWNSHIFT_I	MULT (defau	. \ (

8.2.29 REST2_PERIOD

Register Name	REST2_PER	REST2_PERIOD								
Address	0x7A									
Access	Read/Write			Reset Value		0x08				
Bit	7 6 5			4	3	2	1	0		
Field	R2P ₇	R2P ₆	R2P ₅	R2P ₄	R2P₃	R2P ₂	R2P ₁	R2P ₀		
Description	Rest2 perio Default Res Min value is	s 0x01. A val	x 4ms 3 x 4ms = 32 ue of 0x00 is		% tolerance.					

8.2.30 REST2_DOWNSHIFT

Register Name	REST2_DO\	REST2_DOWNSHIFT								
Address	0x7B									
Access	Read/Write			Reset Value 0x4A						
Bit	7	7 6 5			3	2	1	0		
Field	R2D ₇	R2D ₆	R2D ₅	R2D ₄	R2D₃	R2D ₂	R2D ₁	R2D ₀		
Description	Rest2 Down (default 32r Default = 74 Min value is	nshift time (ms) 4 x 256 x 32r s 0x01. A val	ms) = R2D[7 ms = 606.208 ue of 0x00 w	downshift tim 2:0] x REST2_I 3s = 10 min 2:ill be internal 3 have +/- 109	DOWNSHIFT <u></u> Ily clipped to	_MULT (defa	. \ (

8.2.31 REST3_PERIOD

Register Name	REST3_PER	REST3_PERIOD								
Address	0x7C									
Access	Read/Write			Reset Value		0x3F				
Bit	7 6 5			4	3	2	1	0		
Field	R3P ₇	R3P ₆	R3P ₅	R3P ₄	R3P ₃	R3P ₂	R3P ₁	R3P ₀		
Description	Min value is	d = R3P[7:0] t3 period = 6 s 0x01. A val	x 8ms 53 x 8ms = 50 ue of 0x00 is		% tolerance.					

Low Power Optical Gaming Navigation Chip

8.2.32 RUN_DOWNSHIFT_MULT

Register Name	RUN_DOWNSHIFT_MULT							
Address	0x7D							
Access	Read/Write		Reset Value		0x07			
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Reserved	Reserved	Reserved	RUN_M ₃	RUN_M ₂	RUN_M ₁	RUN_M ₀

This register set the Run Downshift Multiplier. (Refer to the formula in Register RUN_DOWNSHIFT)

	Field Name	Descript	ion
	RUN_M _{0:3}	Hex	RUN_DOWNSHIFT_MULT
		0x0	2
escription		0x1	4
		0x2	8
		0x3	16
		0x4	32
		0x5	64
		0x6	128
		0x7	256 (default)
		0x8	512
		0x9	1024
		0xA	2048

8.2.33 REST_DOWNSHIFT_MULT

Register Name	REST_DOWNSHIFT_MULT							
Address	0x7E							
Access	Read/Write		Reset Value		0x77			
Bit	7	6	5	4	3	2	1	0
Field	Reserved	REST_M ₆	REST_M ₅	REST_M ₄	Reserved	REST_M ₂	REST_M ₁	REST_M ₀

This register set the REST Downshift Multiplier. (Refer to the formula in Register REST1_DOWNSHIFT and REST2_DOWNSHIFT)

	Field Name	Description	า
	REST_M _{0:2}	Hex	REST2_DOWNSHIFT_MULT
		0x0	2
		0x1	4
		0x2	8
		0x3	16
		0x4	32
		0x5	64
escription (0x6	128
		0x7	256 (default)
	REST_M _{4:6}	Hex	REST1_DOWNSHIFT_MULT
		0x0	2
		0x1	4
		0x2	8
		0x3	16
		0x4	32
		0x5	64
		0x6	128
		0x7	256 (default)

8.3 Bit Masks for Register Write

Special precaution needs to be taken for some of the registers have "Reserved" bit. In order to overwrite specific bits in the register, one need to read and store its current value first, then apply bit masking and write back the new value into the register. This is accomplished by using bitwise operators such as AND(&), OR(|), or INVERSE(~).

Example:

To disable the Rest Mode in Register 0x40 (set bit-7 to 1)

Read register 0x40 and store in VarA

VarA |= 0x80

Write register 0x40 with value VarA

To enable the Rest Mode in Register 0x40 (set bit-7 to 0)

Read register 0x40 and store in VarA

VarA &= ~ 0x80

Write register 0x40 with value VarA

Document Revision History

Revision Number	Date	Description
0.80	31 Jan 2020	Initial creation
0.81	17 July 2020	Pg 23 – added a note in section 5.2 Pg 26 – removed step 109 and correction on step 18 in power up sequence Pg 41 – added Lift_Stat bit into Motion register Pg 46 – updated description of CHIP_OBSERVATION Pg 48 – updated register 0x4D Pg 49 – updated description of RESOLUTION Pg 37 – correction on step 7 in section 7.5.1
1.0	28 Sep 2020	Pg 11,12,35 – added Corded Gaming Mode Pg 1, 11, 23, 37- added LOAE-LSI1