

Tópicos de Física Moderna Exame de Recurso – parte 3 Licenciatura em Engenharia Informática

4 de julho de 2012 - 14h00 Duração - 2h00

	NOME:	n°:						
	O teste é constituído por sete questões. As questões de escolha múltipla só são consideradas corretas s							
	forem assinaladas todas as opções corretas o	Forem assinaladas <u>todas</u> as opções corretas que lhes correspondem. <u>Nos espaços livres deve</u>						
	apresentar os cálculos que justifiquem as opçõ	es assinaladas.						
4.0val	al Q1. Das seguintes afirmações assinale as que são	verdadeiras (V) e as que são falsas (F)						
	A interação eletromagnética é responsável p	or manter o núcleo coeso, uma vez que o núcleo é						
_	formado por partículas com carga elétrica.							
	A interação eletromagnética é fundamental pa	ra explicar a estrutura atómica e molecular.						
	A interação eletromagnética é sempre atrativa	e de alcance infinito.						
	A interação fraca é responsável por manter o n	úcleo coeso.						
	A interação fraca é a que permite que protões/neutrões se possam transformar em neutrões/protões originando-se assim nuclídeos de outros elementos químicos.							
	A interação fraca é a que permite explicar a de	sintegração radioativa β.						
	A interação nuclear forte é sempre atrativa e de alcance infinito.							
Ī	A interação nuclear forte é sempre atrativa e d	e muito curto alcance (<10 ⁻¹³ cm).						
	A interação gravitacional é sempre atrativa e d	e alcance infinito.						
	As interações mais importantes para perceber o comportamento dos núcleos são a interação nuclea forte e a fraca.							
	A interação nuclear forte é fundamental para e	A interação nuclear forte é fundamental para explicar a estrutura atómica.						
	A interação gravitacional é fundamental para e	explicar a coesão das galáxias.						
1.5va	Q2. O cloro natural tem uma massa de 35.453 u e	e é uma mistura apenas dos isótopos $^{35}_{17}$ C l e $^{37}_{17}$ C l .						
	Representando a percentagem de cada isótop	o numa amostra de cloro natural por (p ₁ ; p ₂) tem-se						
	\square (18.78; 81.22)	p_1 é a percentagem do isótopo $\frac{35}{17}Cl$						
	\square $p_1 < p_2$	p_2 é a percentagem do isótopo $^{37}_{17}Cl$						
	(75.76; 24.24)	(37 CL) 24 060 - (37 CL) 26 066						
		$m\binom{35}{17}Cl$) = 34.969 u; $m\binom{37}{17}Cl$) = 36.966						
	\square (81.22; 18.78)	u;						

Dados:	poteticamente o nuclídeo radio m $\binom{40}{19}K$)= 39.964000 u	$m \binom{36}{17}Cl = 35.$	968307 u	m $\binom{40}{20}Ca$)= 39.962591 u				
2 440001	$m_{\alpha} = 4.002603 \text{ u}$		10 ⁻⁴ u	$u = 1.660540 \times 10^{-27} \text{ kg}$				
a) Escre	a) Escreva a equação que traduz o decaimento α deste nuclídeo.							
b) Escre	b) Escreva a equação que traduz o decaimento β deste nuclídeo.							
c) Cor	c) Como sabe as desintegrações radioativas são espontâneas.							
	Indique, <u>ju</u> nientemente, qual ou quais icos mecanismos de des		c-2) A desintegreé:	energia (Q) libertada na ação radioativa identificada em c-1				
	fetivamente ocorrer.	83		Q = 1.314 MeV				
				Q = 0.803 MeV				
				$Q = 2.106 \times 10^{-13} J$				
				$Q = 1.314 \times 10^6 \text{ eV}$				
				$Q = 1.409 \times 10^{-3} \text{ u c}^2 \text{ (J)}$				
				$Q = 0.8604 \times 10^{-3} \text{ u c}^2$ (J)				
				$Q = 1.286 \times 10^{-13} \text{ eV}$				
referido 3.5×10 ³	Q4. Uma mesma quantidade de um dado isótopo radioativo, cujo período de meia vida é de 8 dias, é entregue num hospital no mesmo dia e hora de cada semana. Um médico encontra um frasco do referido isótopo, sem a etiqueta de chegada. Coloca-o em frente a um detetor de Geiger, que regista 3.5×10^3 contagens por minuto. Substituindo este frasco por outro acabado de chegar, obtêm-se 47×10^3 contagens por minuto.							
a) O isó	topo encontrado sem rótulo e	stava no hospital						
	20.8 dias			4.32×10^4 minutos				
	30 dias			3.0×10^4 minutos				
	C . 0.103			7200 horas				
	b) Cada frasco entregue no hospital contém, em t=0, N ₀ nuclídeos radioativos sendo							
	$N_0 = 5.42 \times 10^5$ nuclídeos			$N_0 = 3.76 \times 10^5$ nuclídeos				
	$N_0 = 7.81 \times 10^8$ nuclídeos			$N_0 = 0.542 \times 10^6$ nuclídeos				
c) Ao fii	m de 40 dias a fração de amos	stra (f) que ainda	permanece i					
	\Box f = 0.03125			f = 0.20				
	f = 0.0200			f = 0.3125				
	\Box f = 3.125×10 ⁻²		П	f = 8/40				

2.0val	Q5. Para exposições do corpo inteiro à radiação, o limite máximo permissível (LMP) para o público em geral é de 1 mSv/ano. Um paciente de 75 kg teve de realizar, no mesmo ano, 95 exames radiológicos. Em cada exame foram utilizadas 5×10 ⁸ partículas α (fator de qualidade 20), com a energia de 0.66 MeV cada uma. O coeficiente de absorção desta radiação pelos tecidos vivos é de 7					
	a) A dose equivalente (H) a que foi: ☐ H = 5.6×10 ⁻² Sv/and ☐ maior do que a LMH ☐ H = 56 mSv/ano ☐ H = 1.34×10 ⁻³ Sv/ard ☐ menor do que a LMH ☐ H = 1.34 mSv/ano	ue esteve sujeito	b) A espessura da (x _{1/2}) (espessura do :	camada semi-redutora material absorvente que ntensidade da radiação 0 ⁻² cm n		
2.0val	Q6. Indique, justificando, se as ${}^{60}_{28}\text{Ni} (\alpha,p) {}^{62}_{29}\text{Cu}$ ${}^{55}_{25}\text{Mn} (n,\gamma) {}^{56}_{25}\text{Mn}$	seguintes reações nucle	eares são permitidas (P) o $^{27}_{13}$ Al $(\alpha,n)^{30}_{15}$ P $^{39}_{19}$ K $(p,\alpha)^{36}_{17}$ Cl .	ou não permitidas (NP)		
4.0val	Q7. Das seguintes afirmações a Quer os bariões quer os me grupo dos quarks e genericar Os neutrões e os protões são Todas as partículas elementa A principal diferença entre os Uma diferença entre os qua carga elementar e nos segundos mesões são partículas ele Os mesões são partículas cor O eletrão é uma partícula ele Os protão, o neutrão e o eletra Os peutrinos pertencem ao a	esões são partículas commente designadas por ha partículas compostas pares têm spin 1/2. Tares pertencentes ao grupos quarks e os leptões estarks e os leptões é que dos e carga elétrica é numentares. Tares pertencentes ao grupos desentares do grupo dos le grupos des pertencem ao grupo de rga elétrica nula ou um rega elétrica eletrica eletr	npostas formadas por pa adrões. or três quarks e pertence po dos fermiões têm spin tá no spin. nos primeiros a carga e ala ou múltiplo inteiro de ês quarks. ptões. dos leptões.	artículas elementares do em ao grupo dos bariões. n 1/2.		
	Os neutrinos pertencem ao g	rupo dos leptões.				