EE655: Computer Vision & Deep Learning

Lecture 05

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Lecture Outline

Haar Features

Harris Corner Detection

How can we use features for face detection

Start with a window, with roughly the size of the face we are looking for

Keep moving it and extract features

Use a classifier to identify if the features extracted represent a face

WE CAN REPRESENT THE MOST RELEVANT FEATURES WITH HAAR-FEATURES !!!

Haar Features

Set of Correlation Responses to Haar Filters

Need to perform correlation with these 2-valued Haar filters (1 or -1)

 $V_A \approx 0$

 $V_A = -127$

Haar features

Face detection

Haar filters

Detecting Faces of Different Size

Compute Haar Features at different scales to detect faces of different sizes.

For each window:

Extract
Features

Match
Face Model

Yes / No

Computing A Haar Feature

White = 1, Black = -1

 H_A

Response to Filter H_A at location (i, j):

$$V_A[i,j] = \sum_{m} \sum_{m} I[m-i,n-j] H_A[m,n]$$

 $V_A[i,j] = \sum$ (pixel intensities in white area)

– \sum (pixels intensities in black area)

And it needs to be done efficiently

Integral Image

A table that holds the sum of all pixel values to the left and top of a given pixel, inclusive.

98	110	121	125	122	129
99	110	120	116	116	129
97	109	124	111	123	134
98	112	132	108	123	133
97	113	147	108	125	142
95	111	168	122	130	137
96	104	172	130	126	130

Image I

98	208	329	454	576	705	
197	417	658	899	1137	1395	
294	623	988	1340	1701	2093	
392	833	1330	1790	2274	2799	
489	1043	1687	2255	2864	3531	
584	1249	2061	2751	3490	4294	
680	1449	2433	3253	4118	50 2	
	72772-5104-1			12000	10.000	

Integral Image II

Integral
Image
concept is
introduced
to do it
efficiently

98	110	121	125	122	129	98	208	329	454	576	705
99	110	120	116	116	129	197	417	658	899	1137	1395
97	109	124	№111	123	134	294	623	988	1340	1701	2093
98	112	132	108	123	133	392	833	1330	1790	2274	2799
97	113	147	108	125	142	489	1043	1687	2255	2864	3531
95	111	168	122	130	137	584	1249	2061	2751	3490	4294
96	104	172	130	126	130	680	1449	2433	3253	4118	5052
Image I					Ir	iteg	ral	Ima	ige	II	

122 129 899 1137 1395 623 988 1340 1701 2093 1330 1790 2274 2799 1043 1687 2255 2864 3531 130 137 1249 2061 2751 3490 4294 1449 2433 3253 4118 5052 Image I Integral Image II

98	110	121	125	122	129
99	110	120	116	116	129
97	109	124	111	123	134
98	112	132	108	123	133
97	113	147	108	125	142
95	111	168	122	130	137
96	104	172	130	126	130

Integral Image II

$$Sum = II_P - II_Q - II_S + II_R$$

= 3490 - 1137 - 1249 + 417 = 1521

Computational Cost: Only 3 additions

Haar Response using Integral Image

$$V_A = \sum (pixel intensities in white) - \sum (pixel intensities in black)$$

= $(II_O - II_T + II_R - II_S) - (II_P - II_O + II_T - II_O)$

Computational Cost: Only 7 additions

Computing Integral Image

Raster Scanning

Let I_A and II_A be the values of Image and Integral Image, respectively, at pixel A.

$$II_A = II_B + II_C - II_D + \underline{I}_A$$

Lecture Outline

Haar Features

Harris Corner Detection

Harris Corner Detection

Slightly shifting windows of homogeneous regions doesn't change the window content.

In contrast, Slightly shifting windows of corners change the window content very much.

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Mathematical Formulation

$$f(\Delta x, \Delta y) = \sum_{(x_k, y_k) \in W} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

 $I(x+\Delta x,y+\Delta y)$ can be approximated by a Taylor expansion. Let I_x and I_y be the partial derivatives of I, such that

$$I(x+\Delta x,y+\Delta y)pprox I(x,y)+I_x(x,y)\Delta x+I_y(x,y)\Delta y$$

This produces the approximation

$$f(\Delta x, \Delta y) pprox \sum_{(x,y) \in W} (I_x(x,y) \Delta x + I_y(x,y) \Delta y)^2,$$

which can be written in matrix form:

$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) Migg(rac{\Delta x}{\Delta y} igg),$$

where M is the structure tensor,

$$M = \sum_{(x,y) \in W} egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix} = egin{bmatrix} \sum_{(x,y) \in W} I_x^2 & \sum_{(x,y) \in W} I_x I_y \ \sum_{(x,y) \in W} I_y^2 \end{bmatrix}$$

Note: E=f(dx,dy)

- f(dx,dy) is an equation of ellipse.
- M can be viewed as a covariance matrix.
- The eigenvectors of M represent the principal directions of gradient variation.
- The eigenvalues represent the magnitude of variation in those directions.

$$R = \lambda_1 \lambda_2 - k \cdot (\lambda_1 + \lambda_2)^2 = \det(M) - k \cdot \operatorname{tr}(M)^2$$

where k is an empirically determined constant; $k \in [0.04, 0.06]$

Lecture Outline

Haar Features

Harris Corner Detection

$$R = min(\lambda_1, \lambda_2)$$

