1. Коммуникационная сложность

Алиса и Боб играют в следующую игру. Алисе сообщается число x, а Бобу — число y, также им задана функция f от двух аргументов, и они хотят вычислить её значение f(x,y) на некотором входе. В их распоряжении есть устройство связи, которое позволяет передавать друг другу битовые сообщения (т.е. за одно сообщение можно послать «0» или «1»). Алиса и Боб могут заранее договориться о том, какие сообщения они будут посылать.

Определение 1 (Коммуникационный протокол)

Пусть X, Y и Z — это три произвольных непустых конечных множества, а $f\colon X\times Y\to Z$ — некоторая функция. *Коммуникационный протокол* Π для функции f — это упорядоченное корневое двоичное дерево со следующими пометками:

- каждая внутренняя вершина помечена буквой «А» или «Б»,
- каждое ребро к левому потомку помечено нулём, к правому единицей,
- каждый лист помечен элементом множества Z.

Для каждой внутренней вершины v с пометкой «А» определена функция $A_v\colon X\to\{0,1\}$, а для каждой внутренней вершины u с пометкой «Б» определена функция $B_u\colon Y\to\{0,1\}$.

Результат протокола Π на входе (x,y) обозначается $\Pi(x,y)$, и определяется, как пометка конечной вершины пути $\pi(x,y)$, построенного по следующим правилам:

- первая вершина пути $\pi(x,y)$ это корень,
- каждая следующая вершина пути является потомком предыдущей, причём
 - каждая вершина пути v с пометкой «А» соединена с потомком ребром с пометкой $A_v(x)$
 - каждая вершина u с пометкой «Б» соединена с потомком ребром с пометкой $B_u(y)$
- последняя вершина пути $\pi(x,y)$ лист.

Протокол Π называется *корректным* протоколом для функции f, если для каждой пары входов (x,y) выполняется $\Pi(x,y) = f(x,y)$.

Протокол описывает общение игроков на всех возможных входах. Пометки во внутренних вершинах — это указание на игрока, который посылает сообщение, пометки на рёбрах — это посылаемые сообщения, пометки в листьях — это результат вычисления f(x,y), а функции в вершинах — это правила, по которым игроки выбирают сообщение, которое нужно послать в данный момент. Каждой паре входов (x,y) соответствует путь $\pi(x,y)$ от корня к некоторому листу, который задаётся описанными выше правилами. Если протокол корректный, то для каждой пары входов (x,y) путь $\pi(x,y)$ заканчивается в листе с пометкой f(x,y).

Рис. 1. Возможное взаимодействие Алисы и Боба.

Определение 2

Сложностью функции f называется наименьшая глубина протокола, вычисляющего функцию f (обозначается C(f)). (Глубина дерева — это максимальная рёберная длина пути от корня до листа.)

Также обозначим за L(f) — минимальное число листьев в протоколе для функции f.

Входное пространство коммуникационной задачи можно вопринимать как матрицу. Каждой функции f будем сопоставлять матрицу $X \times Y(M_f)$, в которой в клетке (x_i, y_j) стоит значение $f(x_i, y_j)$.

Утверждение 1

Рассмотрим дерево протокола со входом из множества $X \times Y$. Рассмотрим в нём произвольную вершину u. Тогда все входы, из которых можно прийти в вершину u, образуют комбинаторный прямоугольник прямоугольник $R_u = X_u \times Y_u \subseteq X \times Y$.

Доказательство. Это можно доказать двумя способами.

Первый способ: пусть на входах (x_1,y_1) и (x_2,y_2) мы приходим в вершину u. Тогда нетрудно убедиться, что на входе (x_1,y_2) Алиса и Боб будут делать те же действия, что и на входах (x_1,y_1) и (x_2,y_2) соответственно. Отсюда видно, что входы, приводящие в вершину u, образуют прямоугольник $R_u = X_u \times Y_u \subseteq X \times Y$.

Второй способ: Рассмотрим таблицу элементов $X \times Y$. После первого хода Боба табличка делится пополам горизонтальной линией, так как при одних $x \in X$ Боб посылает Алисе 1, а при других — 0. Потом Алиса посылает свой бит Бобу, и каждый из двух получившихся прямоугольников делится своей вертикальной прямой, и так далее. В итоге мы получим разбиение $X \times Y$ на непересекающиеся прямоугольники, и каждый из этих прямоугольников соответствует листу в коммуникационном протоколе.

Про прямоугольник R_u можно думать в следующим образом: если мы находимся в вершине протокола u, то нам необходимо решить задачу (то есть построить протокол) для всех входов из прямоугольника R_u . В частности этот подход можно рассмотреть, как комбинаторное определение протокола: бинарное дерево, в котором каждой вершине сопоставлен прямоугольник входов. И если вершины a,b являются потомками u, то $R_u \subseteq R_a \cup R_b$.

Определение 3

Прямоугольник $R\subset X\times Y$ называется одноцветным для функции f, если существует $z\in Z$, что для всех $(x,y)\in R$ верно f(x,y)=z. Такой прямоугольник будем называть z-одноцветным.

Заметим, что в листьях коммуникационного протокола находятся одноцветные прямоугольники.

Допустим, что игрокам нужно вычислить функция $f\colon\{0,1\}^n\times\{0,1\}^n\to\{0,1\}$. Рассмотрим величину $\chi_0(f)$, равную минимальному числу комбинаторных (то есть это необязательно геометрически один прямоугольник) прямоугольников, которыми можно дизъюнктно покрыть нули в таблице. Аналогично определяется $\chi_1(f)$. Тогда листьев в коммуникационном протоколе будет хотя бы $\chi_0(f)+\chi_1(f)$. Эти рассуждения дают следующую оценку:

$$C(f) \ge \log(\chi_0(f) + \chi_1(f)).$$

Однако эта оценка не всегда точна. Теперь рассмотрим пример, когда разбиение на одноцветные прямоугольники может не соответствовать протоколу.

Пример 1. Рассмотрим такой пример разбиения таблицы $X \times Y$ на прямоугольники: в центре находится прямоугольник из 1, а вокруг него расположены 4 прямоугольника из 0. Покажем, что для этого разбиения не существует дерева протокола. Действительно, рассмотрим первое действие игроков. После него таблица должна поделиться на две части, но на рисунке 2 видно, что нет разреза, проходящего через всю таблицу.

Рис. 2.

2. Задачи

- 1. Приведите пример такой матрицы M_f , что $L(f) > \chi(f) = \chi_0(f) + \chi_1(f)$. (пример выше не походит, можете подумать почему)
- 2. Докажите, что

$$\chi(f) = \chi_0(f) + \chi_1(f) \le C(f) \le \mathcal{O}(\log \chi_0(f) \log \chi_1(f)),$$

где $\chi_0(f)$, $\chi_1(f)$ — количество нулевых (единичных) прямоугольников в минимальном разбиении M_f .

- **3.** Докажите, что $C(\mathsf{EQ}_n) \geq n$, где $\mathsf{EQ}_n \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ и $\mathsf{EQ}_n(x,y) = 1 \Leftrightarrow x = y$.
- **4.** Рассмотрим функцию SUM: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{n+1}$, возвращающую сумму чисел в двоичной системе счисления. Докажите, что C(SUM) = 2n.
- **5.** Пусть дан граф G без петель. Алиса и Боб получают две вершины данного графа x,y и хотят узнать существует ли ребро (x,y). Докажите, что детерминированная сложность данной задачи не менее $\log \chi(G)$, где $\chi(G)$ хроматическое число графа G.

Подсказка: попробуйте предъявить хорошую раскраску, если есть короткий коммуникационный протокол.

- **6.** Покажите, что $C(\text{MED}) = \mathcal{O}(\log^2 n)$, где x и y это характеристические функции подмножеств [n], а MED(x,y) медиана мультимножества $x \cap y$ (если элемент встречается и в x и в y, то считаем его дважды). Комментарий: на самом деле $C(\text{MED}) = \Theta(\log n)$.
- **7.** У Алисы имеется n-битная строка x, а у Боба n-битная строка y. Известно, что y получен из x инвертированием одного бита.
 - а) Придумайте детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x.
 - b) Придумайте однораундовый детерминированный коммуникационный протокол сложности $\mathcal{O}(\log n)$, который позволяет Бобу узнать x. (В однораундовом протоколе Алиса посылает некоторое сообщение Бобу, после чего Боб вычисляет результат).
- **8.** Пусть для некоторой функции $f \colon X \times Y \to Z$ существует коммуникационный протокол с ℓ листьями. Докажите, что $C(f) \le \mathcal{O}(\log \ell)$.
- **9.** Докажите, что $C(\operatorname{CIS}_G) = \mathcal{O}(\log^2 n)$. Где x интерпретируется как характеристическая функция некоторой клики в графе G, а y как характеристическая функция некоторого независимого множества в графе G. $\operatorname{CIS}_G(x,y) = 1$, если клика и независимое множество имеют общую вершину, обе стороны знают граф G.

