Appln. No. 10/643,756 Amdt. dated March 30, 2007 Reply to Office Action of October 31, 2006

Amendments to the Specification:

Please replace paragraph 09 with the following amended paragraph:

Fig. 1 is a simplified block diagram of a prior art MIMO TCM encoder 10. TCM encoder 10 includes a serial-to-parallel converter 12, a convolutional encoder 14, a symbol mapper 16 and a serial-to-parallel converter 18. The MIMO system (not shown) of which MIMO TCM encoder 10 is a part, includes M_t transmit antennas and M_r receive antennas (not shown). The channel through which the data encoded by TCM encoder 10 is transmitted is characterized by the complex matrix H having the dimensions of $[[M_t x \ M_r]]\underline{M_r x \ M_t}$. The channel is assumed to be an AWGN channel. Convolutional encoder 14 in conjunction with symbol mapper $[[14]]\underline{16}$ performs the TCM encoding.

Please replace paragraph 27 with the following amended paragraph:

Fig. 3 is a simplified block diagram of a MIMO TCM encoder 100, in accordance with one embodiment of the present invention. MIMO TCM encoder 100 includes, in part, a serial-to-parallel converter 102, a convolutional encoder 104, a symbol mapper 106, a serial-to-parallel converter 108, and a coordinate swapper 110. Data supplied by coordinate swapper 110 is transmitted by at least two transmit antennas (not shown) and received by M_t receive antennas (not shown). The channel through which the data encoded by TCM encoder 100 is transmitted is characterized by the complex matrix H having the dimensions of [[M_tx M_t]]M_tx M_t. In the following description of MIMO TCM encoder 100, it is assumed that M_t is equal to two. It is understood, however, that the present invention applies to MIMO TCM encoders having more than two transmit antennas.