Correction du devoir surveillé 4.

Exercice 1

- 1°) (F) est une équation différentielle linéaire d'ordre 2 à coefficients constants.
 - Son équation caractéristique est : $r^2 1 = 0 \iff r = 1$ ou r = -1. Les solutions de l'équation homogène associée sont donc les $t \mapsto \lambda e^t + \mu e^{-t}$, avec $(\lambda, \mu) \in \mathbb{R}^2$.
 - 1 est solution simple de l'équation caractéristique, on pose donc $z_p: t \mapsto Ate^t$ avec $A \in \mathbb{R}$. z_p est deux fois dérivable sur \mathbb{R}_+^* par produit, et pour tout $t \in \mathbb{R}_+^*$,

$$z'_{p}(t) = Ate^{t} + Ae^{t}$$
 $z''_{p}(t) = Ate^{t} + Ae^{t} + Ae^{t} = Ate^{t} + 2Ae^{t}$

$$z_p$$
 solution de (F) sur \mathbb{R}_+^* $\iff \forall t \in \mathbb{R}_+^*$, $Ate^t + 2Ae^t - Ate^t = e^t$
 $\iff \forall t \in \mathbb{R}_+^*$, $2A = 1$ car $e^t \neq 0$
 $\iff A = \frac{1}{2}$

Ainsi, $t \mapsto \frac{t}{2}e^t$ est une solution de (F).

• Finalement, les solutions de (F) sur \mathbb{R}_+^* sont les fonctions :

2°) a) z est deux fois dérivable sur \mathbb{R}_+^* comme composée de fonctions 2 fois dérivables, et pour tout $t \in \mathbb{R}_+^*$,

$$z'(t) = 2ty'(t^{2})$$

$$z''(t) = 2y'(t^{2}) + 4t^{2}y''(t^{2})$$

b)

$$y \text{ est solution de } (E) \iff \forall x \in \mathbb{R}_+^*, \ 4xy''(x) + 2y'(x) - y(x) = e^{\sqrt{x}}$$

$$\iff \forall t \in \mathbb{R}_+^*, \ 4t^2y''(t^2) + 2y'(t^2) - y(t^2) = e^{\sqrt{t^2}}$$

$$\operatorname{car} t \mapsto t^2 \text{ est bijective de } \mathbb{R}_+^* \text{ dans } \mathbb{R}_+^*$$

$$\iff \forall t \in \mathbb{R}_+^*, \ 4t^2y''(t^2) + 2y'(t^2) - y(t^2) = e^{|t|}$$

$$\iff \forall t \in \mathbb{R}_+^*, \ z''(t) - z(t) = e^t$$

Ainsi, y est solution de (E) sur \mathbb{R}_+^* si et seulement si z est solution de (F) sur \mathbb{R}_+^* .

c) Pour tout $t \in \mathbb{R}_+^*$, $z(t) = y(t^2)$ donc, pour tout $x \in \mathbb{R}_+^*$, $y(x) = z(\sqrt{x})$.

$$y$$
 est solution de (E) sur $\mathbb{R}_+^* \iff z$ est solution de (F) sur \mathbb{R}_+^*

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall t \in \mathbb{R}_+^*, \ z(t) = \frac{t}{2}e^t + \lambda e^t + \mu e^{-t}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall x \in \mathbb{R}_+^*, \ y(x) = \frac{\sqrt{x}}{2}e^{\sqrt{x}} + \lambda e^{\sqrt{x}} + \mu e^{-\sqrt{x}}$$

$$\operatorname{car} x \mapsto \sqrt{x} \text{ est bijective de } \mathbb{R}_+^* \text{ dans } \mathbb{R}_+^*$$

Ainsi, les solutions de (E) sur \mathbb{R}^*_{+} sont les fonctions :

Exercice 2

1°) Comme y est deux fois dérivable, y et y' sont dérivables, donc par somme z est dérivable et z' = y'' + y'. On a :

$$y$$
 solution de (E) sur \mathbb{R} $\iff \forall x \in \mathbb{R}$, $(1+e^x)y''(x)+y'(x)-e^xy(x)=0$
 $\iff \forall x \in \mathbb{R}$, $(1+e^x)y''(x)+(1+e^x)y'(x)-e^xy'(x)-e^xy(x)=0$
 $\iff \forall x \in \mathbb{R}$, $(1+e^x)\left(y''(x)+y'(x)\right)-e^x\left(y'(x)+y(x)\right)=0$
 $\iff \forall x \in \mathbb{R}$, $(1+e^x)z'(x)-e^xz(x)=0$
 $\iff \forall x \in \mathbb{R}$, $z'(x)-\frac{e^x}{1+e^x}z(x)=0$
 $\iff z$ solution de (F) : $z'(x)-\frac{e^x}{1+e^x}z(x)=0$ sur \mathbb{R}

- 2°) Une primitive de $x \mapsto -\frac{e^x}{1+e^x}$ sur \mathbb{R} est $x \mapsto -\ln(1+e^x)$, puisque pour tout $x \in \mathbb{R}$, $1+e^x > 0$. Les solutions de (F) sont donc les fonctions de la forme $x \mapsto \lambda e^{+\ln(1+e^x)}$ avec $\lambda \in \mathbb{R}$, autrement dit les $x \mapsto \lambda (1+e^x)$ avec $\lambda \in \mathbb{R}$.
- 3°) (G_1) admet comme solution particulière $y_1: x \mapsto 1$:
 en effet y_1 est dérivable et pour tout $x \in \mathbb{R}$, $y_1'(x) + y_1(x) = 0 + 1 = 1$. $(G_2) \text{ admet comme solution particulière } y_2: x \mapsto \frac{e^x}{2}:$ en effet y_2 est dérivable et pour tout $x \in \mathbb{R}$, $y_2'(x) + y_2(x) = \frac{e^x}{2} + \frac{e^x}{2} = e^x$.
- 4°) D'après les questions 1 et 2 :

$$y$$
 solution de (E) sur $\mathbb{R} \iff \exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ z(x) = \lambda + \lambda e^x$
 $\iff \exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ y'(x) + y(x) = \lambda \cdot 1 + \lambda e^x$
 $\iff \exists \lambda \in \mathbb{R}, \ y \text{ solution sur } \mathbb{R} \text{ de } (E_{\lambda}) : y'(x) + y(x) = \lambda \cdot 1 + \lambda e^x$

• Soit $\lambda \in \mathbb{R}$. (E_{λ}) est une équation différentielle linéaire d'ordre 1. Son équation homogène associée est $(H_{\lambda}): y'(x) + y(x) = 0$, dont les solutions sont les $x \mapsto \mu e^{-x}$, avec $\mu \in \mathbb{R}$.

D'après le principe de superposition des solutions, $\lambda y_1 + \lambda y_2$ est une solution particulière de (E_{λ}) .

On en tire que l'ensemble des solutions de (E_{λ}) sur \mathbb{R} est :

$$\left\{ x \mapsto \mu e^{-x} + \lambda.1 + \lambda \frac{e^x}{2} / \mu \in \mathbb{R} \right\}.$$

• Finalement, l'ensemble des solutions de (E) sur \mathbb{R} est :

$$\left\{ x \mapsto \mu e^{-x} + \lambda . 1 + \lambda \frac{e^x}{2} / \mu \in \mathbb{R}, \ \lambda \in \mathbb{R} \right\}.$$