

CD40181BMS

December 1992

CMOS 4 Bit Arithmetic Logic Unit

Features

- High Voltage Type (20V Rating)
- Full Look Ahead Carry for Speed Operations on Long Words
- Generates 16 Logic Functions of Two Boolean Variables
- Generates 16 Arithmetic Functions of Two 4 Bit Binary Words
- A = B comparator Output Available
- Ripple Carry Input and Output Available
- Typical Addition Time 200ns at VDD = 10V
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Standardized Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Parallel Arithmetic Units
- Process Controllers
- Low Power Minicomputers

Pinout

CD40181BMS ACTIVE-LOW DATA TOP VIEW

Description

The CD40181BMS is a low power four bit parallel arithmetic logic unit (ALU) capable of providing 16 binary arithmetic operations on two four-bit words and 16 logical functions of two Boolean variables. The mode control input M selects logical (M = High) or arithmetic (M = Low) operation. The four select inputs (S0, S1, S2, and S3) select the desired logical or arithmetic functions, which include AND, OR, NAND, NOR and exclusive-OR and-NOR in the logic mode, and addition, subtraction, decrement, left-shift and straight transfer in the arithmetic mode, according to the truth table. The CD40181BMS operation may be interpreted with either active-low or active-high data at the A and B word inputs and the function outputs F, by using the appropriate truth table.

The CD40181BMS contains logic for full look ahead carry operation for fast carry generation using the carry-generate and carry-propagate outputs \overline{G} and \overline{P} for the four bits of the CD40181BMS. Use of the CD40182BMS look-ahead carry generator in conjunction with multiple CD40181BMS's permits high speed arithmetic operations on long words. A ripple carry output Cn+4 is available for use in systems where speed is not of primary importance.

Also included in the CD40181BMS is a comparator output A = B, which assumes a high level whenever the two four-bit input words A and B are equal and the device is in the subtract mode. In addition, relative magnitude information may be derived from the carry-in input Cn and ripple carry-out output Cn+4 by placing the unit in the subtract mode and externally decoding using the information in Table B.

The CD40181BMS is similar to industry types MC14581 and 74181.

The CD40181BMS is supplied in these 24-lead outline packages:

Braze Seal DIP HNZ Ceramic Flatpack H4P

Functional Diagrams

ACTIVE-LOW DATA

ACTIVE-HIGH DATA

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	θ_{ia}								
Ceramic DIP and FRIT Package	80°C/W	θ _{jc} 20°C/W								
Flatpack Package	70°C/W	20°C/W								
Maximum Package Power Dissipation (P										
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Ty	For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K) 500mW									
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package										
		°C to 200mW								
Device Dissipation per Output Transistor		100mW								
For T _A = Full Package Temperature Ra	inge (All Pack	age Types)								
Junction Temperature		+175°C								

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VDD or GND		3	-55°C	-	10	μА
Input Leakage Current	out Leakage Current IIL VIN = VDD or GND VDD = 20		1	+25°C	-100	-	nA	
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	'	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	VDD = 15V, No Load (Note 3)		+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	VDD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	VDD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	VDD = 15V, VOUT = 1.5V		+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	VDD = 5V, VOUT = 4.6V		+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VE	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	800	ns
A or B to F (Logic Mode), A or B to G or P	TPLH1		10, 11	+125°C, -55°C	-	1080	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	1000	ns
A or B to F, Cn+4, or A = B	TPLH2		10, 11	+125°C, -55°C	-	1350	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	640	ns
Cn to F	TPLH3		10, 11	+125°C, -55°C	-	864	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Cn to Cn+4	TPLH4		10, 11	+125°C, -55°C	-	540	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN MAX		UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	320	ns
A or B to F (Logic Mode) A or B to G or P	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	240	ns
Propagation Delay	TPHL2	· · · · · · · · · · · · · · · · · · ·		+25°C	-	400	ns
A or B to F, $Cn+4$ or $A = B$	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	280	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	270	ns
Cn to F	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	200	ns
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	200	ns
Cn to Cn+4	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	140	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTND	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTPD	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFOR	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (P	re Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1	I (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005 1, 7, 9		
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz	
Static Burn-In 1 (Note 1)	9-11, 13-17	1-8, 12, 18-23	24				
Static Burn-In 2 (Note 1)	9-11, 13-17	12	1-8, 18-24				
Dynamic Burn- In (Note 1)	-	4-6, 8, 12	3, 24	9-11, 13-17	1, 2, 18-23	7	
Irradiation (Note 2)	9-11, 13-17	12	1-8, 18-24				

NOTES

- 1. Each pin except VDD and GND will have a series resistor of 10K $\pm\,5\%,$ VDD = 18V $\pm\,0.5V$
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

CD40181BMS

TRUTH TABLE

	FUNC	CTION	l	INI	PUTS/OUTPUTS AC	TIVE LOW	W FUNCTION				l l	NPUTS/OUTPUTS AC	TIVE HIGH
	SELECT		LOGIC FUNCTION	ARITHMETIC*	FUNCTION M = L	SELECT				LOGIC FUNCTION	ARITHMETIC*	FUNCTION M = L	
S3	S2	S1	S0	M = H	Cn = L	Cn = H	S3	S2	S1	S0	M = H	Cn = H	Cn = L
0	0	0	0	Ā	A minus 1	Α	0	0	0	0	Ā	А	A plus 1
0	0	0	1	ĀB	AB minus 1	AB	0	0	0	1	A + B	A + B	(A + B) plus 1
0	0	1	0	Ā + B	AB minus 1	AB	0	0	1	0	ĀB	$A + \overline{B}$	(A + B) plus 1
0	0	1	1	Logic 1	minus 1	Zero	0	0	1	1	Logic 0	minus 1	Zero
0	1	0	0	A + B	A plus (A + \overline{B})	A plus (A + \overline{B}) plus 1	0	1	0	0	ĀB	A plus AB	A plus AB plus 1
0	1	0	1	B	AB plus (A + \overline{B})	AB plus (A + \overline{B}) plus 1	0	1	0	1	B	(A + B) plus AB	(A + B) plus AB plus 1
0	1	1	0	Ā⊕B	A minus B minus 1	A minus B	0	1	1	0	A ⊕ B	A minus B minus 1	A minus B
0	1	1	1	A + B	A + B	(A + B) plus 1	0	1	1	1	ΑB	AB minus 1	ΑB
1	0	0	0	ĀВ	A plus (A + B)	A plus (A + B) plus 1	1	0	0	0	Ā + B	A plus AB	A plus AB plus 1
1	0	0	1	A⊕B	A plus B	A plus B plus 1	1	0	0	1	Ā⊕B	A plus B	A plus B plus 1
1	0	1	0	В	AB plus (A + B)	$A\overline{B}$ plus (A + B) plus 1	1	0	1	0	В	(A + B) plus AB	(A + B) plus AB plus 1
1	0	1	1	A + B	A + B	A + B plus 1	1	0	1	1	AB	AB minus 1	AB
1	1	0	0	Logic 0	A plus A	A plus A plus 1	1	1	0	0	Logic 1	A plus A	A plus A plus 1
1	1	0	1	ΑB	AB plus A	AB plus A plus 1	1	1	0	1	A + B	(A + B) plus A	(A + B) plus A plus 1
1	1	1	0	AB	AB plus A	AB plus A plus 1	1	1	1	0	A + B	(A+ B) plus A	(A + B) plus A plus 1
1	1	1	1	А	А	A plus 1	1	1	1	1	Α	A minus 1	Α

^{*} Expressed as two's complement

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

^{1 =} High level

^{0 =} Low level

Typical Performance Characteristics (Continued)

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (FOR A OR B TO F, LOGIC MODE

FIGURE 7. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 8. TYPICAL DYNAMIC DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

CD40181BMS

TABLE A. AC TEST SETUP REFERENCE (ACTIVE LOW DATA)

	AC P	ATHS	DC DATA IN	IPUTS		
TEST DELAY TIMES	INPUTS	OUTPUTS	TO VSS	TO VDD	MODE*	
SUMIN to SUMOUT	B0	Any F	B1, B2, B3, M, Cn	All Ā's	Add	
SUMIN to P	Ā0	P	A1, A2, A3, M, Cn	All B's	Add	
SUMIN to G	B0	G	All A's, M, Cn	B1, B2, B3	Add	
SUMIN to Cn+4	B0	Cn+4	All A's, M, Cn	B1, B2, B3	Add	
Cn to SUMOUT	Cn	Any F	All A's, M	All B's	Add	
Cn to Cn+4	Cn	Cn+4	All A's, M	All B's	Add	
SUMIN to A = B	B0	A = B	All A's, B1, B2, B3, M	Cn	Subtract	
SUMIN to SUMOUT (Logic Mode)	All B's	Any F	All Ā's, Cn	М	Exclusive OR	

^{*} Add Mode: S0, S3 = VDD; S1, S2 = VSS. Subtract Mode: S0, S3 = VSS; S1, S2 = VDD.

TABLE B. MAGNITUDE COMPARISON

ACTIVE HIGH DATA			ACTIVE LOW DATA		
INPUT Cn	OUTPUT Cn+4	MAGNITUDE	INPUT Cn	OUTPUT Cn+4	MAGNITUDE
1	1	$A \leq B$	0	0	$A \leq B$
0	1	A < B	1	0	A < B
1	0	A > B	0	1	A > B
0	0	$A \ge B$	1	1	$A \ge B$

^{1 =} High level 0 =Low level

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: $11k\mathring{A} - 14k\mathring{A}$, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches