Schematic & Layout Deliberations

Boris Murmann bmurmann@hawaii.edu

KLayout Grid

Top-Level Testbench

Simulating 11 input voltages:

Linear Fit After Decimation

→ The modulator is still "reasonably linear" with inputs between 0.35...0.85V (0.5V full-scale range)

https://github.com/bmurmann/EE628/blob/main/5 Design/3 Real circuits/tb IDSM2.ipynb

Input-Referred Noise of IDMS2 (From lecture 11)

- Noise from second integrator is negligible (attenuated by first integrator)
- Decimation filter averages noise from M samples
- There is a penalty factor of 4/3 due to nonuniform impulse response of the decimation filter

$$\overline{v_n^2} = \overline{v_s^2} \sum_{i=1}^{M} w_i^2 < \overline{v_s^2} \frac{4}{3M}.$$
 (12)

Input-referred noise of first integrator

Input-Referred Noise of an SC Integrator

■ At the end of \$\phi^2\$, find noise charge left behind at node Y

$$\overline{v_s^2} = \frac{kT}{\frac{C_s}{\phi_1}} + \frac{kT}{\frac{1}{C_s}} + \frac{1}{1 + \frac{1}{x}} + \alpha \gamma \frac{kT}{C_s} \frac{1}{1 + x}$$
 $x = 2g_m R_{on}$ (switch resistance)
$$\overline{v_s^2} \approx \frac{kT}{C_s} + \alpha \gamma \frac{kT}{C_s} \approx \frac{3kT}{C_s}$$

Can simulate the noise contributed during \$\phi2\$

Noise Testbench

Bias point helpers

MODEL

- .lib \$::SG13G2_MODELS/cornerMOSlv.lib mos_tt
- .lib \$::SG13G2_MODELS/cornerCAP.lib cap_typ
- .inc \$::PDK_ROOT/sg13g2/libs.ref/sg13g2_stdcell/spice/sg13g2_stdcell.spice

Boris Murmann

/foss/designs/tb_stage_noise.sch

Bring out some internal nodes (avoid changing the circuit block for simulation purposes

```
.param temp=27 vdd=1.2
.param vin=0.6 vlo=0.3 vhi=0.9
.global x1.vx2 x1.vx3 x1.vx4

.control
save all
op
write tb_stage_noise.raw

noise v(x1.vx1, x1.vx2) Vin dec 100 1 1000gig
display
print v(onoise_total)
set color0 = white
setplot noise1
plot onoise_spectrum
plot sqrt(integ(onoise_spectrum^2))
.endc
```


2024-03-29 19:46:05

Stage Schematic

Simulation Result

Dynamic Range Calculation

$$\overline{v_s^2} \approx \frac{kT}{C_s} + N_{redist}$$

$$\overline{v_s^2} \approx (280\mu V)^2 + (408\mu V)^2 = (495\mu V)^2$$

$$\overline{v_n^2} \approx (495\mu V)^2 \frac{4}{3M} = (54.5\mu V)^2$$
 $M = 110$ (number of samples)

$$DR \approx 10 \log \left(\frac{\frac{1}{2} \left(\frac{500mV}{2} \right)^2}{(54.5\mu V)^2} \right) = 70.2dB$$

- Measured value in Chae's design is ~75 dB
- Uses somewhat larger full-scale range
- Our design is good enough to be useful....