Generative Models

Generative Models vs. Discriminative Models

Generative Models

- · Generative models learn to produce examples
- Discriminative models distinguish between classes

Discriminator

- The Discriminator is a classifier
- It learns the probability of class Y(real or fake) given features X
- The Probabilities are the feedback for the generator

Approximate the

distribution of

Generator

Generator: Learning

- The generator produces fake data.
- It learns the probability of features X.
 The generator takes as input noise.
- The generator takes as input noise (random features)

BCE Cost Function

Close to zero when the label and the prediction are similar

~1

Approaches infinity when the label and the prediction are different

Relevant when

the label is 0

Mode Collapse

- · Modes are peaks in the distribution of features
- Mode collapse happens when the generator gets stuck in one mode

Problem with BCE Loss

Earth Mover's Distance

- Earth mover's distance (EMD) is a function of amount and distance
- Doesn't have flat regions when the distributions are very
- Approximating EMD solves the problems associated with BCE

Criticizing is more straightforward

Often, the discriminator gets better than the generator

- GANs try to make the real and generated distributions look similar
- When the discriminator improves too much, the function approximated by BCE Loss will contain flat regions
- Flat regions on the cost function = vanishing gradients

Wasserstein Loss

W-Loss approximates the Earth Mover's Distance

- W-Loss looks very similar to BCE Loss
- W-Loss prevents mode collapse and vanishing gradient problems

- Critic's neural network needs to be 1-L Continuous when using W-Loss
- This condition ensures that W-Loss is validly approximating Earth Mover's Distance

1-Lipschitz Continuity Enforcement

1-L Enforcement: Weight Clipping

Weight clipping forces the weights of the critic to a fixed interval

1-L Enforcement: Gradient Penalty

Putting It All Together

$$\min_{c} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

ConditionalGeneration

Conditional	Unconditional
Examples from the classes you want	Examples from random classes
Training dataset needs to be labeled	Training dataset doesn't need to be labeled

Generator Input

Discriminator Input

- The class is passed to the generator as one-hot vectors
- The class is passed to the discriminator as one-hot matrices
- The size of the vector and the number of matrices represent the number of classes

Controllable Generation

Controllable	Conditional
Examples with the features that you want	Examples from the classes you want
Training dataset doesn't need to be labeled	Training dataset needs to be labeled
Manipulate the z vector input	Append a class vector to the input

Z-Space

Interpolation Using the Z-Space

Z-Space and Controllable Generation

Challenges

Feature Correlation

 When trying to control one feature, others that are correlated change

Z-Space Entanglement

It is not possible to control single output features

 Entanglement happens when z does not have enough dimensions

- Classifiers can be used to find directions in the Z-space
- To find directions, the updates are done just to the noise vector

Disentanglement

Encourage Disentanglement: Supervision

Encourage Disentanglement: Loss Function

- Disentangled Z-spaces let you control individual features by corresponding z values directly to them
- There are supervised and unsupervised methods to achieve disentanglement

Evaluation

- No ground-truth = challenging to evaluate
- Fidelity measures image quality and diversity measures variety
- Evaluation metrics try to quantify fidelity & diversity

Two Important Properties

Fidelity:

Diversity: variety of images

Comparing Images

Pixel Distance

Feature Extraction

- Classifiers can be used as feature extractors by cutting the network at earlier layers
- The last pooling layer is most commonly used for feature extraction
- Best to use classifiers that have been trained on large datasets ImageNet

Inception-v3, Embeddings

Inception-v3 Architecture

Fréchet Inception Distance (FID)

Fréchet Distance Between Normal Distributions

Multivariate Normal Distributions

all dimensions are independent d

dimensions covary

Comparing Embeddings

Univariate Normal Fréchet Distance =

Lower FID = closer distributions

$$(\mu_X - \mu_Y)^2 + (\sigma_X^2 + \sigma_Y^2 - 2\sigma_X\sigma_Y)$$

Multivariate Normal Fréchet Distance =

$$\|\mu_X - \mu_Y\|^2 + \text{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Real and fake embeddings are two multivariate normal distributions

Jse large sample size to reduce noise

- FID calculates the difference between reals and fakes
- FID uses the Inception model and multivariate normal Fréchet distance
- Sample size needs to be large for FID to work well

Shortcomings of FID

- Uses pre-trained Inception model, which may not capture all features
- Needs a large sample size
- Slow to run
- Limited statistics used: only mean and covariance

Inception Score

KL Divergence

$$ext{IS} = \exp(\mathbb{E}_{x \sim p_arepsilon} D_{KL}(p(y \mid x) \| p(y)))$$

- Inception Score tries to capture fidelity & diversity
- Inception Score has many shortcomings
 - Can be gamed too easily
 - Only looks at fake images, not reals
 - ImageNet doesn't teach a model all features
- Worse than Fréchet Inception Distance

Sampling and Truncation

Sampling Fakes

- Fakes are sampled using the training or prior distribution of z
- Truncate more for higher fidelity, lower diversity
- Human evaluation is still necessary for sampling
- HYPE(Human eYe Perceptual Evaluation)

HYPE and Human Evaluation

- Crowdsourced evaluation from Amazon Mechanical Turk
- · HYPEtime measures time-limited perceptual thresholds
- HYPE
 measures error rate on a percentage of images
- Ultimately, evaluation depends on the type of downstream task

Precision and Recall

Precision

· Use truncation trick to improve precision

- Relates to fidelity
- Looks at overlap between reals and fakes, over how much extra gunk the generator produces (non-overlap red)

Alternatives to GANs

- VAEs have the opposite pros/cons as GANs
 - · Often lower fidelity results
 - Density estimation, inversion, stable training

Autoregressive Models

Relies on previous pixels to generate next pixel

Left: source image

Right: new portraits generated from high-level latent representation

Hybrid Models

Recall

Models tend to be better at recall

- Relates to diversity
- Looks at overlap between reals and fakes, over all the reals that the generator cannot model
 (non-overlap blue)

StyleGAN

Progressive Growing

Stochastic Variation

Small details: hair strands, wrinkles, etc.

Different extra noise values create stochastic variation

Sample noise from Normal distribution
 Concatenate noise to x, before AdalN

Step 1: Instance normalization

Step 2: Adaptive styles

- Style mixing increases diversity that the model sees during training
- Stochastic noise causes small variations to output
- Coarse or fineness depends where in the network style or noise is added
 - Earlier for coarser variation
 - Later for finer variation

Progressive growing gradually doubles image resolution

Helps with faster, more stable training for higher resolutions

AdalN

Step 1: Normalize convolution outputs using Instance Normalization

Step 2: Apply adaptive styles using the intermediate noise vector

- AdaIN transfers style information onto the generated image from the intermediate noise vector W
- Instance Normalization is used to normalize individual examples before apply style statistics from W

Noise Mapping Network

- · Noise mapping allows for a more disentangled noise space
- The intermediate noise vector is used as input to the generator

- Main components of StyleGAN:
- Progressive Growing
- Noise Mapping Network
- AdalN

 $\operatorname{AdaIN}(\mathbf{x}_i,\mathbf{y}) = \mathbf{y}_{s,i}$

- Style Mixing
- Stochastic Noise

StyleGAN Goals:

- Greater fidelity on high-resolution images
- Increased diversity of outputs
- More control over image features

Pix2Pix

Pix2Pix Generator

- Inputs and outputs are similar to a conditional GAN
 - Take in the original image, instead of the class vector
 - No explicit noise as input
- Generator and discriminator models are upgraded

- PatchGAN discriminator outputs a matrix of values, each between 0 and 1
- Label matrices: 0's = fake, 1's = real

Pix2Pix

Pix2Pix Discriminator

Additional Loss Term

 $\min_{g} \max_{c}$ Adversarial Loss + λ * Pixel loss term

Pix2Pix Generator Loss

BCE Loss +
$$\lambda \sum_{i=1}^{n} \left| \frac{1}{n} \right|$$

- Softly encourages the generator with this additional supervision
 - The target output labels are the supervision
 - · Generator essentially "sees" these labels

Classification matrix

Real matrix

- Pix2Pix's generator is a U-Net
- U-Net is an encoder-decoder, with same-size inputs and outputs
- · U-Net uses skip connections
 - Skip connections help the decoder learn details from the encoder directly
 - Skip connections the encoder learn from more
 - gradients flowing from decoder
- U-Net generator: image → image
- PatchGAN discriminator
 - · Inputs input image and paired output (either real target or fake
 - Outputs classification matrix
 - Generator loss has a regularization term

CycleGAN

CycleGAN Components

- Unpaired image-to-image translation: (this method is unsupervised)
 - Learns a mapping between two piles of images
 - Examines common elements of the two piles (content) and unique elements of each pile (style)
- CycleGAN uses two GANs for unpaired image-to-image translation
- The discriminators are PatchGAN
- The generators are similar to a U-Net and DCGAN generator with additional skip connections

- Least squares fits a line from several points
- Least Squares Loss is used as the Adversarial Loss function in CycleGAN
- · More stable than BCELoss, since the gradient is only flat when prediction is exactly correct

Cycle Consistency Loss

Cycle Consistency

Loss

Cycle

Consistency

- Cycle consistency helps transfer uncommon style elements between the two GANs, while maintaining common content
- Add an extra loss term to each generator to softly encourage cycle consistency
- Cycle consistency is used in both directions

- ldentity Loss takes a real image in domain B and inputs it into Generator: A → B, expecting an identity mapping
 - · the output is the same as the input
- Pixel distance is used
 - Ideally, no difference between input and output!
- Identity Loss is optionally added to help with color preservation

Cycle Consistency Loss

Identity Loss

Least Squares Adversarial Loss

