ENGSCI 213: MATHEMATICAL MODELLING 2SE

Oliver Maclaren oliver.maclaren@auckland.ac.nz

CURRENT (& LAST) PROBABILITY TOPIC

3. Continuous probability models [3 lectures]

Continuous random variables and continuous probability distributions. Probability density functions and cumulative distribution functions. (Expectation and variance). Uniform, Exponential and Normal distributions.

LECTURE 9

- Recap: Exponential distribution
- The Normal (Gaussian) distribution
- The Central Limit Theorem

RECAP: EXPONENTIAL DISTRIBUTION

The Exponential distribution can be related to the Poisson process - rather than count the number of events in a fixed time interval it describes

The length of time between events - i.e. the 'waiting time' - in a Poisson process

EXPONENTIAL DISTRIBUTION

The exponential distribution has *one parameter*, λ (equals the rate in a Poisson process), which must be positive.

We write

 $X \sim Exponential(\lambda)$, or $X \sim Exp(\lambda)$.

RECAP: EXPONENTIAL DISTRIBUTION

If
$$X \sim \text{Exp}(\lambda)$$
, then
$$(\lambda e^{-\lambda x} \text{ if } x > 0)$$

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0, \\ 0 & \text{otherwise} \end{cases}$

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 - e^{-\lambda x} & \text{otherwise} \end{cases}$$

PLOTTING IN R

Use dexp() and pexp(). See R Markdown notebook on Canvas.

RECAP: MEAN AND VARIANCE OF EXPONENTIAL DISTRIBUTION

If $X \sim \operatorname{Exp}(\lambda)$, then

$$E(X) = \frac{1}{\lambda}$$
 and

$$Var(X) = \frac{1}{\lambda^2}$$

RECAP: MEMORYLESSNESS OF THE EXPONENTIAL DISTRIBUTION

If $X \sim Exp(\lambda)$ then for any $s, t \geq 0$

$$P(X > (s + t) | X > t) = P(X > s)$$

So the process is 'memoryless'

EXAMPLE

Yet another example for the Exponential distribution

THE NORMAL (GAUSSIAN) DISTRIBUTION

The Normal (or Gaussian) distribution is the familiar 'bell-shaped' distribution. It has two parameters, the mean, μ , and the variance, σ^2 .

We write
$$X \sim Normal(\mu, \sigma^2)$$
, or $X \sim N(\mu, \sigma^2)$

PROBABILITY DENSITY FUNCTION

The *probability density function* is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

for $-\infty < x < \infty$ and $-\infty < \mu < \infty, \sigma^2 > 0$

CUMULATIVE DISTRIBUTION FUNCTION

There is *no closed form for the cumulative distribution function* of the Normal distribution.

If $X \sim \text{Normal}(\mu, \sigma^2)$, then $F_X(x)$ can only be calculated by computer.

PLOTTING IN R

Use dnorm() and pnorm() (note: expect SD not VAR!) See R Markdown notebook on Canvas.

MEAN AND VARIANCE OF THE NORMAL DISTRIBUTION

If $X \sim \text{Normal}(\mu, \sigma^2)$, then

$$E(X) = \mu$$
, $Var(X) = \sigma^2$

Note: The Normal distribution is *probably the most used of* all the statistical distributions, mainly due to the Central Limit Theorem (see end of these slides). The theorem implies that the Normal distribution can approximate many natural phenomena.

TRANSFORMATION PROPERTIES

If $X \sim \text{Normal}(\mu, \sigma^2)$ then for constants a, b we get $aX + b \sim \text{Normal}(a\mu + b, a^2\sigma^2)$ In particular this leads to...

STANDARD NORMAL DISTRIBUTION

If
$$X \sim \text{Normal}(\mu, \sigma^2)$$
 then
$$\frac{X - \mu}{\sigma} \sim \text{Normal}(0, 1)$$

This is the 'standard form' that many algorithms/tables of values expect.

EXAMPLE

THE CENTRAL LIMIT THEOREM

The Central Limit Theorem states:

If $X_1, X_2, \ldots X_n$ are a *large* set (n 'big') of *independent*, *identically-distributed* random variables, each with mean μ and variance σ^2 (but are *otherwise arbitrary*), then their *sum* is approximately distributed as

$$X_1 + X_2 + \ldots + X_n \sim \operatorname{approx. Normal}(n\mu, n\sigma^2)$$

EXAMPLES

 $Bin(n, p) \rightarrow Normal(np, np(1-p))$

for $n \to \infty$ and p fixed.

 $Poi(\lambda) \rightarrow Normal(\lambda, \lambda)$

for λ large.

R PLOTS

See R Markdown notebook on Canvas.