

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 7

Название:	Исследование синхронных счетчиков
Дисциплина:	Схемотехника

 Студент
 ИУ6-52Б
(Группа)
 С.В. Астахов
(Подпись, дата)

 Преподаватель
 Т.А. Ким
(Подпись, дата)

Цель работы: изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

Вариант 14 (состояния счетчика: 2,3,4,5,6,7,8,9,10,11)

Ход работы.

- 1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Т-триггерах. Проверить работу счётчика
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Построим схему описанного счетчика (рисунок 1).

Рисунок 1 - Схема суммирующего счетчика с параллельным переносом

Проанализируем работу счетчика с помощью таблицы 1.

Таблица 1 - Таблица переходов счетчика

Номер	Q3	Q2	Q1	Q0
состояния				
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Как видно из таблицы 1, счетчик работает корректно.

Изменим схему для анализа ее работы в динамическом режиме (рисунок 2). Отобразим временную диаграмму сигналов в схеме (рисунок 3). Как видно из временной диаграммы, счетчик изменяет состояния в том же порядке, что в таблице 1.

Как видно из временной диаграммы $t_{\rm вр. 3. p. cq} = 1$ мкс. Расчитаем максимальную частоту срабатывания.

$$f_{max} = \frac{1}{\mathsf{t}_{\text{вр.з.р.сч}}} = 1$$
МГц

Рисунок 2 - Анализ схемы в динамическом режиме

Рисунок 3 - временная диаграмма сигналов

Рисунок 4 - временная диаграмма сигналов

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. Последовательность состояний счётчика для каждого варианта работы приведена в табл.3; десятичными числами обозначены номера двоичных наборов, изображающие десятичные цифры и определяющие состояние счётчика. Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Заданная последовательность состояний счетчика: 2,3,4,5,6,7,8,9,10,11. Составим таблицу переходов состояний счетчика (таблица 2).

Таблица 2 - таблица переходов состояний счетчика

код	Время t Время t+1 Время t, сигналы на JK-три				ригг	epe										
	Q3	Q2	Q1	Q0	Q3	Q2	Q1	Q0	J3	K3	J2	K2	J1	K1	J0	K0
2	0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
3	0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
4	0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	X
5	0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
6	0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	X
7	0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
8	1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
9	1	0	0	1	1	0	1	0	X	0	0	X	1	X	X	1
10	1	0	1	0	1	0	1	1	X	0	0	X	X	0	1	X
11	1	0	1	1	0	0	1	0	X	1	0	X	X	0	X	1

Минимизируем задаваемые таблицей ФАЛ, воспользовавшись картами Карно.

Для Ј0:

Q3Q2	00	01	11	10
Q1Q0				
00	X	1	X	1
01	X	X	X	X
11	X	X	X	X
10	1	1	X	1

J0 = 1

Для К0:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	X	X
01	X	1	X	1
11	1	1	X	1
10	X	X	X	X

K0 = 1

Для Ј1:

Q3Q2	00	01	11	10
Q1Q0				
00	X	0	X	0
01	X	1	X	1
11	X	X	X	X
10	X	X	X	X

$$J1 = Q0$$

Для К1:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	X	X
01	X	X	X	X
11	1	1	X	0
10	0	0	X	0

$$K1 = not-Q3 *Q0$$

Для Ј2:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	X	0
01	X	X	X	0
11	1	X	X	0
10	0	X	X	0

$$J2 = not-Q3 * Q0$$

Для К2:

Q3Q2	00	01	11	10
Q1Q0				
00	X	0	X	X
01	X	0	X	X
11	X	1	X	X
10	X	0	X	X

$$K2 = Q1 * Q0$$

Для Ј3:

Q3Q2	00	01	11	10
Q1Q0				
00	X	0	X	X
01	X	0	X	X
11	0	1	X	X
10	0	0	X	X

$$J3 = Q2 * Q1 * Q0$$

Для К3:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	X	0
01	X	X	X	0
11	X	X	X	1
10	X	X	X	0

$$K3 = Q1 * Q0$$

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

Синтезируем счетчик, опираясь на полученные выше ФАЛ (рисунок 5).

Рисунок 5 - синтезированный десятичный счетчик

- 4. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика
 - от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Проанализируем работу счетчика, составив таблицу его переходов (таблица 3).

Таблица 3 - таблица переходов состояний счетчика

Q3	Q2	Q1	Q0
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
	Q3 0 0 0 0 0 0 0 0	Q3 Q2 0 0 0 0 0 0 0 1 0 1 0 1 0 1	Q3 Q2 Q1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1

8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1

Исходя из содержания таблицы можно заключить, что счетчик работает корректно.

Изменим схему для анализа ее работы в динамическом режиме (рисунок 6). Отобразим временную диаграмму сигналов в схеме (рисунок 7)

Рисунок 6 - анализ работы схемы в динамическом режиме

Рисунок 7 - временная диаграмма сигналов

Согласно диаграмме, счетчик изменяет состояния в том же порядке, что в таблице 3.

С помощью временной диаграммы определим задержку распространения и предельную частоту работы счетчика.

Рисунок 8 - временная диаграмма сигналов

Как видно из временной диаграммы $t_{\text{вр.з.р.сч}} = 1$ мкс. Расчитаем максимальную частоту срабатывания.

 $f_{max} = \frac{1}{\mathsf{t}_{\text{вр.з.р.сч}}} = 1$ МГц

- 5. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160. Проверить работу счётчика
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Составим схему для анализа работы описанного счетчика (рисунок 9)

Рисунок 9 - схема для анализа ИС 74LS160

Составим таблицу состояний счетчика в статическом режиме (таблица 4).

Код	Q3	Q2	Q1	Q0
состояния				
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0

5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Как видно из таблицы, счетчик работает корректно.

Отобразим временную диаграмму сигналов в схеме в динамическом режиме (рисунок 10). Как видно из временной диаграммы, счетчик работает корректно.

Рисунок 10 - временная диаграмма сигналов

Теоретическое время задержки сигнала триггера 27 нс, тогда время общей задержки $t_{\rm зд.р.cч} = 108$ нс. Максимальная частота счета при этом

$$f_{max} = \frac{1}{t_{\text{вр.з.р.сч}}} = 9.25 \text{ МГц}$$

6. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета.

Составим схему счетчика с последовательным переносом между секциями (рисунок 11).

Рисунок 11 - счетчик с последовательным переносом между секциями

Убедимся в корректности его работы на основании временной диаграммы (рисунок 12).

Рисунок 12 - временная диаграмма сигналов

Составим счетчик по структуре «быстрого» счета (рисунок 13).

Рисунок 13 - счетчик составленные по структуре «быстрого» счета

Убедимся в корректности работы данного счетчика на основе временной диаграммы сигналов (рисунок 14).

Рисунок 4 - временная диаграмма сигналов.

Вывод: в ходе данной работы были изучены методы построения различных синхронных счетчиков, проведено изучение их задержек, исследована микросхема ИС 74LS160 и схемы наращивания разрядности счетчиков.