ÁLGEBRA (Grado en Ingeniería Informática)

CURSO 2015/16. Convocatoria Extraordinaria 2.

Nombre:			_DNI :	Gr. Teoría:	Gr. Práct.:
Evaluación continua	□ Sí □ No	□ Polinomios. Nota: □ El Grupo Simétrico. Nota: □ Teoría de Grafos. Nota:	Prácticas	□ Apto. Nota _□	_

- 1. (10 puntos) Dado el siguiente polinomio, $p(x) = 14x^2 47x^3 + 42x^4 42x^5 + 28x^6 + 5x^7$. Se pide:
 - a) Factorizar y calcular sus raíces en $\mathbb{Z}[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{C}[x]$.
 - b) Definir polinomio asociado a p(x) y buscar un polinomio asociado a p(x) en $\mathbb{Z}[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{C}[x]$.
- 2. (10 puntos) Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$, definimos la aplicación $\sigma: X \longrightarrow X$ dada por

$$\sigma(x) = \begin{cases} x & \text{si } x \in \{1, 2, 3, 10, 11, 12 \\ x+1 & \text{si } & x \in \{4, 6\} \\ x-1 & \text{si } & x \in \{9, 7\} \\ 9 & \text{si } & x = 5 \\ 4 & \text{si } & x = 8 \end{cases}$$

Definir permutación y comprobar si σ lo es. En caso afirmativo:

- a) Determinar si el número de inversiones de σ es par.
- b) Calcular $\tau = \sigma^{612}$ y τ^{-1} .

 G_2 . Se pide:

- a) Representar gráficamente y dibujar una coloración óptima de ambos grafos.
- b) Definir grafo de Euler, de Hamilton y plano; y razonar si lo son o no G_1 y G_2 .
- c) ξG_1 y G_2 son isomorfos? Razona tu respuesta.
- 4. (15 puntos) Sean $V_1 = M_2(\mathbb{R})$ y $V_2 = P_2(\mathbb{R})$,
 - a) Comprobar que $B_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ es base de V_1 y que $B_2 = \left\{ x x^2, 1 + x, -1 \right\}$ es base de V_2 .
 - b) Sea $f: V_1 \longrightarrow V_2$ la aplicación dada por $f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a-b) + bx + (c-d)x^2$, comprobar que es lineal.
 - c) Calcular la expresión matricial de f especto de las bases canónicas.
 - d) Calcular, base, dimensión, ecuaciones implícitas y paramétricas del núcleo y la imagen de f. ¿Es inyectiva? ¿y sobreyectiva?
 - e) Calcular la expresión matricial de f respecto de B_1 y B_2 .
 - f) ¿Qué relación existe entre las matrices anteriores?
- 5. (5 puntos) En el espacio vectorial U de las matrices de $M_2(\mathbb{R})$ simétricas de traza cero consideramos el producto escalar $\langle A, C \rangle = tr(AC^t)$, se pide
 - a) Enunciar las propiedades de producto escalar y demostrar dos de ellas.
 - b) Calcular una base B de U y calcular la matriz de Gram respecto de ella.
 - c) ¿Es *B* ortogonal? Calcular una base ortonormal.
- 6. (10 puntos) Sea V un espacio vectorial con base $B = \{v_1, v_2, v_3, v_4\}$, y sea f un endomorfismo en V cuya expresión matricial respecto de B es $A = \begin{pmatrix} 2 & 0 & 0 & \alpha \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \alpha & 0 & 0 & 2 \end{pmatrix}$.
 - a) Determinar para qué valores de α la matriz A es diagonalizable por semejanza.
 - b) Calcular, según α , las dimensiones de los subespacios vectoriales propios.