

Esquema de calificación

Mayo 2017

Química

Nivel medio

Prueba 2

Este esquema de calificaciones es propiedad del Bachillerato Internacional y **no** debe ser reproducido ni distribuido a ninguna otra persona sin la autorización del centro global del IB en Cardiff.

Р	regun	ıta	Respuestas	Notas	Total
1.	а	i	$n(Ag) = \frac{3,275 \text{ g}}{107,87 \text{ g mol}} = 0,03036 \text{ «mol} $ \mathbf{Y} $n(O) = \frac{3,760 \text{ g} - 3,275 \text{ g}}{16,00 \text{ gmol}^{-1}} = \frac{0,485}{16,00} = 0,03031 \text{ «mol} $ $\frac{0,03036}{0,03031} \approx 1 / \text{relación de Ag a O aproximadamente 1:1 por lo tanto} $ $AgO \checkmark$	Acepte otros métodos válidos para M1. Adjudique [1 max] para la fórmula empírica correcta sin método.	2
	а	ii	temperatura demasiada baja O tiempo de calentamiento demasiado corto O el óxido no se descompuso completamente ✓ calentar la muestra hasta masa constante «durante dos o tres ensayos» ✓	Acepte "no se calentó lo suficientemente fuerte". Si M1 está como en la clave, solo se puede adjudicar M2 para el método de masa constante. Acepte "depósito de hollín" (M1) y cualquier forma adecuada de reducirlo (para M2). Acepte "absorbe humedad de la atmósfera" (M1) y "enfriar en un desecador" (M2). Adjudique [1 max] para referencias a impurezas Y una mejora del diseño.	2
	b		 A_r más cercana a 107/ menos que 108 «por lo tanto hay más ¹⁰⁷Ag» O A_r menor que el promedio de (107+109) «por lo tanto hay más ¹⁰⁷Ag» ✓ 	Acepte cálculos correctos con resultado mayor a 50% ¹⁰⁷ Ag.	1

Pregur	nta		Re	spuestas	Notas	Total
С	i	Contenido del recipiente	del solución	Fórmula del producto	No acepte el nombre de los productos. Acepte "Na+ + OH-" para NaOH.	
		Na ₂ O	azul	NaOH ✓	Ignore coeficientes antes de las	3
		P ₄ O ₁₀	Y amarillo √	H₃PO₄ ✓	Ignore coeficientes antes de las fórmulas.	
С	c ii	el Na ₂ O «fundido	» posee iones móvile	es/partículas cargadas móviles Y co	No asigne puntos si el concepto de cargas móviles no está mencionado.	
		la electricidad ✓ el P₄O₁₀ «fundido	» no posee iones mo	óviles/partículas cargadas móviles Y	Adjudique [1 max] si el tipo de enlace o la conductividad eléctrica está identificada correctamente en cada	2
		conduce la electr	Ticidad/ es un condu	ctor pobre de electricidad ✓	No acepte respuestas basadas sobre electrones.	
					Adjudique [1 max] si se hace referencia a soluciones.	
d			Acepte un dibujo adecuado para M1, M2 o ambos.			
		los niveles energ	éticos convergen/se	acercan uno al otro a mayor energi	No asigne puntos para respuestas que se refieren a las líneas del espectro.	2
			éticos convergen al	distanciarse del núcleo √		

2.	а	i	$\operatorname{Sn^{2+}}(\operatorname{aq}) \to \operatorname{Sn^{4+}}(\operatorname{aq}) + 2e^{-} \checkmark$	Acepte el símbolo de equilibrio. Acepte $Sn^{2+}(aq) - 2e^{-} \rightarrow Sn^{4+}(aq)$.	1
	а	ii	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3Sn^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(I) + 3Sn^{4+}(aq)$	Acepte el símbolo de equilibrio.	1
	b	i	«13,239 g ± 0,002 g por lo tanto la incertidumbre porcentual» 0,02 «%» ✓	Acepte respuestas con mayor precisión, como 0,0151%	1
	b	ii			1
	b	iii	$n(Sn^{2+}) = \text{``}0,450 \text{ mol dm}^{-3} \times 0,01324 \text{ dm}^{3} \times \frac{3 \text{ mol}}{1 \text{ mol}} = \text{``}0,0179 \text{``mol}\text{``}\checkmark$ $\text{``}[Sn^{2+}] = \frac{0,0179 \text{ mol}}{0,0100 \text{ dm}^{3}} = \text{``}1,79 \text{``mol dm}^{-3}\text{``}\checkmark$	Adjudique [2] por la respuesta final correcta.	2

Р	regur	nta	Respuestas	Notas	Total
3.	а	i			1
	а	ii	disminución de la temperatura ✓ «reacción» endotérmica Y «el equilibrio» se desplaza hacia la izquierda/los reactivos O «reacción» endotérmica Y K₀ disminuye O «reacción» endotérmica Y aumenta la concentración de PCI₅ /disminuye la concentración de PCI₃ y CI₂ O «el equilibrio» se desplaza en la dirección exotérmica ✓	No acepte "cambio de temperatura". Acepte "ΔΗ positivo" en lugar de "endotérmico". Acepte "productos" en lugar de "PCI3 y CI2".	2
	b		Estructura de Lewis: Cl — P — Cl Cl Geometría molecular: trigonal / pirámide triangular ✓	Penalice la falta de los pares solitarios una vez solamente entre esta pregunta y la 4(b). Acepte cualquier combinación de líneas, puntos o cruces para representar los electrones. No aplique el error por arrastre (ECF).	2

Р	regur	nta	Respuestas	Notas	Total
4.	а	i	enlace triple en «la molécula de» nitrógeno Y simple en la hidrazina ✓ el enlace triple es más fuerte que el enlace simple O más «pares de» electrones compartidos forman uniones más fuertes/atraen más a los núcleos ✓	Acepte valores para las entalpías de enlace del cuadernillo de datos (158 y 945 kJ mol ₋₁).	2
	а	ii	enlace de hidrógeno «entre moléculas, en el tetróxido de dinitrógeno no» ✓		1
	а	iii	N_2H_4 : -2 Y N_2O_4 : +4 \(\neq\)		1
	а	iv	 N₂H₄ Y se ha oxidado / el estado de oxidación aumenta O N₂H₄ Y pierde hidrógeno O N₂H₄ Y ha reducido / remueve oxígeno al N₂O₄ ✓ 	Acepte "N ₂ H ₄ Y cede electrones «a N ₂ O ₄ »".	1
	b			Acepte cualquier combinación de líneas, puntos o cruces para representar los electrones. No penalice la falta de los pares solitarios si ya se hizo en 3b. No acepte estructuras representando enlaces de 1,5.	2 max

F	regur	nta	Respuestas	Notas	Total
5.	а	i	la concentración del ácido disminuye O la superficie del magnesio disminuye ✓	Acepte "menor frecuencia/chance/velocidad/ probabilidad de colisiones". No acepte solamente "menos ácido" o "menos magnesio". No acepte "concentraciones de reactivos disminuyen".	1
	a	ii	Tiempo / s curva comenzando en el origen con gradiente más empinado Y alcanzando el mismo volumen máximo ✓		1
	b		« <i>E</i> _{a(inversa)} = 226 + 132 =» 358 «kJ» ✓	No acepte –358.	1
	С		$2NO_2(g) + H_2O(I) \rightarrow HNO_3(aq) + HNO_2(aq)$ O $4NO_2(g) + 2H_2O(I) + O_2(g) \rightarrow 4HNO_3(aq) \checkmark$	Acepte formas ionizadas de los ácidos.	1

F	Pregunta	Respuestas	Notas	Total
6.	а	Iniciación: CI−CI → CI• + CI• ✓	No penalice por omitir el punto del electrón en el radical si es coherente en toda la respuesta.	
		Propagación:	Acepte CI ₂ , HCI y CH ₃ CI sin mostrar los enlaces.	3
		$Cl \cdot + CH_4 \rightarrow Cl - H + \cdot CH_3 \checkmark$	No acepte radical hidrógeno, H• o H, pero aplique ECF para otros pasos de	_
		$CI-CI + {}_{\bullet}CH_3 \rightarrow CI-CH_3 + CI {}_{\bullet} \checkmark$	la propagación.	
	b	hexano Y 1-hexeno √	Acepte "benceno Y hexano Y 1-hexeno".	1
	С	H ₂ C=CHCl	Acepte "CH2CHCI" o "CHCICH2"	
		o	No acepte "C₂H₃C/".	
		H C=C Cl		1

Р	regur	nta		Resp	uestas Notas	Total
7.	7. a i		agua/H₂O ✓		Acepte "ion hidróxido/OH-".	1
	а	ii	Ácido	Base		
			HOCI Y	OCI-		
			0			1
			H ₂ O Y	OH⁻ ✓		
	b	i	« 0,100 mol dm ^{−3} × 0,	0250 dm^3 » = 0,002	250 « mol » ✓	1
	b	ii		• 204 «g mol ⁻¹ » ✓		1
	b	iii	$(1,00 \times 10^{-14} = [H^+] \times 1,00 \times 10^{-13}$ (mol dm			1

Р	regun	ıta	Respuestas	Notas	Total
8.	а	i	$\Delta H = 177,0 - \frac{189,2}{2} - 285,5 \text{ «kJ» }\checkmark$	Acepte otros métodos de manipulación correcta de las tres ecuaciones.	
			«∆ <i>H</i> =» – 203,1 «kJ» ✓	Adjudique [2] por la respuesta final correcta.	2
	а	ii	203,1 «kJ» = 0,850 «kg» × 4,18 «kJ kg ⁻¹ K ⁻¹ » × ΔT «K» O « ΔT =» 57,2 «K» \checkmark « T_{final} = (57,2 + 21,8)°C =» 79,0«°C» / 352,0 «K» \checkmark	Adjudique [2] por la respuesta final correcta. Si se especifican las unidades, deben ser consistentes con el valor dado.	
			Si usó 200,0 kJ: $200,0 \text{ «kJ} = 0,850 \text{ «kg} \times 4,18 \text{ «kJ kg}^{-1} \text{ K}^{-1} \times \Delta T \text{ «K} \times O$ C		2
	b		C ₆ H ₄ (OH) ₂ ⁺ ✓	Acepte "ion molecular". No acepte "C ₆ H ₄ (OH) ₂ " (sin la carga positiva).	1
	С		«mayor valor <i>m</i> / <i>z</i> » 108 ✓	Acepte solo 108 exacto, ningún valor aproximado.	1