Variation

- Types of Variation
- SNPs

Types of Variation

- Indels Insertions or deletions
- CNV Copy Number Variation
- SNPs Single Nucleotide Polymorphisms

Slides adapted from Irene Paratheodoro

What are SNPs?

- DNA sequence variations occurring when a single nucleotide in the genome is altered
- Frequency of 1% or more
- Occur in both coding and non-coding regions
- Occur every 100-300 bases
- ~15 million in human genome

seq 1(A)	ATGCGGCGATTGCCATGGGTA
seq 2(A)	ATGCGGCGATTGCCATGGGAA
seq 3(A)	ATGCGGCGATTGCCATGGGTA
seq 1(B)	ATGCGGCAATTGCCATGGGTA
seq 2(B)	ATGCGGCAATTGCCATGGGTT
seq 3(B)	ATGCGGCAATTGCCATGGGTA
Contig	ATGCGGCGATTGCCATGGGTA

Figure from Alexander Kozik, Compositae Genome Projec

Categories of SNPs

- Missense/Non-synonymous
 - Changes AA
 - May alter function / structure of protein
 - Cause of some monogenetic diseases e.g. cystic fibrosis
- Nonsense
 - Introduces a stop codon
 - Similar consequences to missense SNPs

Categories of SNPs

- Synonymous
 - Does not change coding sequence
 - May alter splicing
- · Non-coding
 - May be promoter or regulatory sequences
 - Might affect gene expression

SNP Discovery

- Usually from sequencing
- Separate errors from 'real' differences in sequence and assessing frequency in population

	ATGCGGCGATTGCCATGGGTA
	ATGCGGCGATTGCCATGGGAA
seq 3(A)	ATGCGGCGATTGCCATGGGTA
seq 1(B)	ATGCGGCAATTGCCATGGGTA
seg 2(B)	ATGCGGCAATTGCCATGGGTT
seq 3(B)	ATGCGGCAATTGCCATGGGTA
Contig	ATGCGGCGATTGCCATGGGTA
removes a	sup† ††

Figure from Alexander Kozik, Compositae Genome Proje

SNP Discovery: Experimental

- Re-sequencing alleles from different haplotypes
- Targeted re-sequencing of certain regions
- SSCP: Single Strand Conformation Polymorphism analysis

SNP Discovery: Computational Discovery Systems

Pipelines/Systems	Data types	Source
ssahaSNP/PolyBayes	EST data; paralogue identification; genome reference requirement	Ning et al. 2001/Marth et al. 1999
PolyPhred/SNPdetector/no voSNP	PCR re-sequencing from diploid samples	Stephens et al. 2006/Zhang et al. 2005/Weckx et al. 2005
QualitySNP	EST data; paralogue identification	Tang J et al. BMC Bioinformatics 2006
PanGEA	Reads from 454 pyrosequencing	Kofler R et al. BMC Bioinformatics 2009
MAQ	Reads from NGS; genome reference requirement	Li H et al. Genome Research 2008

Pipeline of SNP discovery

SNP resources

- dbSNP
 - Central repository for SNPs
 - Initial SNPs identified with PolyBayes
 - dbSNP build 138, human genome build 37.5 233M submissions at 63M loci
 - High false positive rate?
- HapMap
 - Database of haplotypes and 'tag' SNPs which identify them
 - Samples from 270 people from Nigeria, Japan, China, USA (of North and West European decent)

What are SNPs used for?

- Association studies: SNPs as markers to identify regions associated with a phenotype
- Study variation in human populations
- Evolutionary analyses
- · To infer disease susceptibility
- To infer drug resistance

SNP Genotyping

- PCR Taqman assays
- Bead-based Illumina
- Arrays Affymetrix SNP chips
- Mass Spectrometry Sequenom

References

- Kwok et al. Detection of single nucleotide polymorphisms – Curr. Issues Mol. Bio. 2003
- Mitchell et al. Discrepancies in dbSNP confirmation rates and allele frequency distributions from varying genotyping error rates and patterns. – Bioinformatics 2004

Practical 5:

- Categorise a number of SNPs from the bacterium *Streptococcus pneumoniae* TIGR4.
- SNPs produce by alignment of reads to reference genome using MAQ.

	_
-	
	_