systemd

"If you can't beat them, join them"
"Like it or not, systemd is here to stay"

Inhoudsopgave

- Naam en adoptatie
- Wat is "systemd"
- Waarom "systemd"
- Overzicht van "systemd" (componenten)
- Units
- Targets
- Services
- Voorbeelden. Ook eigen unit files
- Enkele handige commando's
- Opmerkingen

Naam en adoptatie

Naam komt van: (de **system d**aemon)

Maar ook van: "System D": vermogen om snel te handelen, aan te passen en te improviseren.

Start: rond 2010, Lennart Poettering en Kay Sievers (RedHat software engineers)

Adoptatie: eerst in Fedora (15), daarna openSUSE 12.2, CentOS 7, RHEL7, SUSE12, Debian8 en Ubuntu 15.04.

Wat is systemd?

Een system en service manager wat een Linux systeem in userspace brengt.

Maar niet alleen een vervanging van init:

- event logging (systemd-journald, binair maar tooling (journalctl), ook *alle* bootmessages)
- system configuration (hostnamctl, timezonectl, localectl, ...)
- login management (systemd-logind)
- device management (systemd-udevd)
- network connection management
- scheduling
- tmpfiles
- connectie tussen user-space en kernel-space
- software development platform
- ...

Wel PID 1 maar niet 1 programma maar een "software suite".

systemd belangrijkste eigenschappen

- een default init system (system/service manager)
- ook vervanging andere services (eerder genoemd)
- bouwblok: units
- gebruik van cgroups (resource management)
- correct killen van services
- snelle boot (parallel, on-demand (socket/bus activation))
- altijd logging (ook begin van boot)
- declaratieve configuratie ("ini-stijl") in ascii files

Waarom systemd

Doel was in eerste instantie om het init systeem te verbeteren:

- SystemV / BSD init was aan vervanging toe (zeker voor desktops)
- Om een standaard framework voor de diverse Linux services op de diverse Linux distributies te krijgen: meer consistentie in service configuratie en uitvoering.
- Betere afhankelijkheid ("dependency") checks (bv een apache daemon pas opstarten als het netwerk beschikbaar is).
- De shell "overhead" verminderen

"Bonus": Meer processen gelijktijdig ("concurrent") ipv na elkaar opstarten (bv. een apache daemon al opstarten voordat het netwerk beschikbaar is..;-)) -> "socket activation"

Componenten systemd 1/2

- units basisblok systemd bepaald wat wanneer moet worden opgestart systemd regelt dependencies tussen units
 - services controle van daemons
 - sockets controle van netwerk connecties
 - o mounts, path, timer, slice, ...
- targets logisch groepering van units/targets (vergelijk "runlevels")
- cgroups systemd maakt hevig gebruik van cgroups groepering van services
- systemd daemons
 - systemd system and service manager
 - systemd-logind- login service
 - systemd-journald binaire logging service
 - systemd-udevd- usb device managing service
 - 0 ...

systemd componenten 2/2

commando's

- systemctl controle van de system en service manager (systemd) controle over units (stoppen, starten, enable, disable, status, ...)
- journalctl bekijk de journal (logging)
- hostnamectl
- timedatectl
- localectl
- 0 ..

Units

- Basis component van systemd (service units, target units, socket units, mount units, ...)
- "Onderlinge afhankelijkheid waarmee systemd overweg kan en die het bootproces bepalen"
- Configuratie met unit-files ("ini" stijl). Naamgeving: name.type
- (httpd.service, ssh.socket, logrotate.timer, ...)
- Paden:
 - /usr/lib/systemd/system/ (maintainer)
 - /etc/systemd/system/ (beheerder)
 - /run/systemd/system/ (runtime aanpassingen (niet persistent)).

Targets

- Logische groepering van units
- Geeft bepaald "runlevel" weer:
 - rescue.target
 - multi-user.target
 - graphical.target
- Unit files: "naam".target
- Default target
 - systemctl get-default
 - systemctl set-default "target"
- Overgang naar bepaalde target
 - systemctl isolate "target"
- Meerdere targets tegelijk actief (systemctl list-units -t target)

Services

[Unit]

Belangrijkste units (voor het starten van de diverse services/daemons).

Description=A high performance web server and a reverse proxy server

Voorbeeld: /usr/lib/systemd/system/nginx.service

Documentation=man:nginx(8)

[Service]
Type=forking
PIDFile=/run/nginx.pid
ExecStartPre=/usr/sbin/nginx -t -q -g 'daemon on; master_process on;'
ExecStart=/usr/sbin/nginx -g 'daemon on; master_process on;'
ExecReload=/usr/sbin/nginx -g 'daemon on; master_process on;' -s reload
ExecStop=-/sbin/start-stop-daemon --quiet --stop --retry QUIT/5 --pidfile /run/nginx.pid
TimeoutStopSec=5
KillMode=mixed

[Install]
WantedBy=multi-user.target

systemctl commando

Beheren van units doe je met het commando systematl (gebruik bash completion!)

- systemctl start nginx.service elasticsearch ... (*glob* units)
- systemctl stop nginx ...
- systemctl status nginx
- systemctl reload nginx
- systemctl restart nginx
- systemctl enable [--now] nginx
- systemctl disable nginx
- systemctl show [--all] nginx
- systemctl cat nginx
- systemctl daemon-reload

Maar systemctl kan nog veel meer van systemd prijsgeven (komt later)

Voorbeelden: een eigen service unit file maken

Source: http://kwalinux.nl/systemd/data.tgz

go_listen - go programma wat luister op poort 8000 en output geeft.

Unit file: /usr/lib/systemd/system/go_listen.service

mydaemon - real daemon - schrijft elke 5 seconden in de systeem log

Unit file: /lib/systemd/system/mydaemon.service

Enkele handige commando's 1/2

- systemctl list-unit-files
- systemctl list-units --type [target|service]
- pstree -pu
- systemctl status
- systemd-cgls; systemd-cgtop
- systemctl get-default
- systemctl -H hostname restart elasticsearch
- systemctl list-dependencies graphical.target
- systemctl -t service (wat is running?)
- systemctl is-active apache2
- systemctl edit elasticsearch
- systemctl revert elasticsearch
- systemctl --failed
- systemctl daemon-reload
- systemctl mask "service" volledige disable
- systemctl poweroff
- systemctl reboot
- man systemd.unit
- man systemd.service

Enkele handige commando's 2/2

- systemd-detect-virt • journalctl -xe • journalctl -k • journalctl -u "unit" • journalctl -p0..4 -xb • journalctl -f • journalctl --unit elasticsearch --since "2020-07-10 00:00:00" • journalctl -k -S "2020-6-01 00:00:00" -U "2020-07-01 00:00:00" • journalctl --since yesterday • journalctl -S "-5 minutes" • journalctl --list-boots • journalctl -b "boot id"
- journalctl -b "boot id"journalctl -o json-pretty -u ssh
- systemd-analyze blame
- systemd-analyze security "unit"
- hostnamectl
- timedatectl
- networkctl status "interface"
- loginctl list-sessions
- loginctl session-status "ID"

Opmerkingen

- RedHat videos ietwat "lovend" (..)
 - https://www.youtube.com/watch?v=tY9GYsoxeLg (..)
- "My way or the highway" mentaliteit?
- (security) bugs aanpak wat "losjes" (volgens Linus Torvalds)
- Mission creep?
 - linux kernel: 27.800.000 lines systemd: 1.300.000 lines (2020)
- (te) complex?
 - systemctl -t target --state=active
 - systemctl show go_listen.service | wc -l
 - systemd-analyze dot --order | dot -Tsvg > /vagrant/systemd.svg
- Vooral veel verbeteringen (ook meer standaard)

Referenties

- Homepage: https://freedesktop.org/wiki/Software/systemd/
- Hoe het begon: http://0pointer.net/blog/projects/systemd.html
 (hier staan ook veel vervolgstukken over systemd)
- manpages (systemd.unit,m systemd.service, systemd.exec, systemd....., systemctl, journalctl, ...)

Vragen?

Bier?