FREE

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY		
	CHANNEL-1	CHANNEL-2
V _{DS} (V)	30	30
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.00450	0.00184
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.00700	0.00257
Q _g typ. (nC)	6.9	19.4
I _D (A) ^a	75	141
Configuration	Du	ıal

FEATURES

- TrenchFET® Gen IV power MOSFET
- SkyFET® low side MOSFET with integrated Schottky
- 100 % R_a and UIS tested

• Internally connected half-bridge configuration in HALOGEN 3.3 mm-by-3.3 mm footprint

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- CPU core power
- Computer / server peripherals
- · Synchronous buck converter
- Telecom DC/DC

ORDERING INFORMATION	
Package	PowerPAIR 3 x 3F
Lead (Pb)-free and halogen-free	SiZF300DT-T1-GE3

PARAMETER	SYMBOL	CHANNEL-1	CHANNEL-2	UNIT	
Drain-source voltage		V _{DS}	30	30	V
Gate-source voltage		V _{GS}	+20, -16	+16, -12	¬
	T _C = 25 °C		75	141	
Continuous drain surrent (T = 150 °C)	T _C = 70 °C	1 , [60	113	7
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	I _D	23 ^{b, c}	34 ^{b, c}	
	T _A = 70 °C		18 ^{b, c}	27 b, c	٦ ,
Pulsed drain current (t = 100 µs)		I _{DM}	150	200	A
Continuous durin dia da cumunt	T _C = 25 °C		44	105	
Continuous source-drain diode current	T _A = 25 °C	I _S	3.4 b, c	6.2 b, c	7
Single pulse avalanche current	l 0.1 mll	I _{AS}	14	16	7
Single pulse avalanche energy	I = 0.1 mH		9.8	12.8	mJ
	T _C = 25 °C		48	74	
NA	T _C = 70 °C		31	47	w
Maximum power dissipation	T _A = 25 °C	P _D	3.8 b, c	4.3 b, c	vv
	T _A = 70 °C		2.4 b, c	2.8 b, c	7
Operating junction and storage temperate	ure range	T _J , T _{stg}	-55 to	- 00	
Soldering recommendations (peak tempe	rature) ^{d, e}		20	°C	

THERMAL RESISTANCE RATING	GS						
PARAMETER		SYMBOL	CHAN	NEL-1	CHAN	NEL-2	UNIT
PARAMETER		STIVIBOL	TYP.	MAX.	TYP.	MAX.	UNIT
Maximum junction-to-ambient b, f	t ≤ 10 s	R _{thJA}	26	33	23	29	°C/W
Maximum junction-to-case (source)	Steady state	R_{thJC}	2	2.6	1.3	1.7	C/VV

Notes

- a. $T_C = 25$ °C
- b. Surface mounted on 1" x 1" FR4 board
- t = 10 s
- See solder profile (www.vishay.com/doc?73257). The PowerPAIR 3 x 3F is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- Maximum under steady state conditions is 66 °C/W for channel-1 and 67 °C/W for channel-2

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static		1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2					
	.,		Ch-1	30	-	-	
Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30	-	-	.,
0	,,	V V 1 050 A	Ch-1	1.1	-	2.2	V
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-2	1.0	-	2.2	
0-1		$V_{DS} = 0 \text{ V}, V_{GS} = +20 \text{ V}, -16 \text{ V}$	Ch-1	-	-	± 100	- ^
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = +16 \text{ V}, -12 \text{ V}$	Ch-2	-	-	± 100	nA
		V _{DS} = 30 V, V _{GS} = 0 V	Ch-1	-	-	1	
7		$v_{DS} = 30 \text{ v}, v_{GS} = 0 \text{ v}$	Ch-2	-	30	350	
Zero Gate voltage drain current	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V, T _J = 55 °C	Ch-1	-	-	5	μA
		VDS = 30 V, VGS = 0 V, TJ = 33 O	Ch-2	-	150	3000	
On-state drain current ^b	I- ()	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	10	-	-	Α
On-state drain current -	I _{D(on)}	V _{DS} ≥ 3 V, V _{GS} = 10 V	Ch-2	10	-	-	Α.
		$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	Ch-1	-	0.00330	0.00450	
Drain-source on-state resistance b	D	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	Ch-2	-	0.00160	0.00184	Ω
Diam-source on-state resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A}$	Ch-1	-	0.00490	0.00700	52
		$V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A}$	Ch-2	-	0.00210	0.00257	
Forward transconductance b	C,	$V_{DS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-1	-	60	-	S
	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		90	-	3
Dynamic ^a							
Input capacitance	C _{iss}		Ch-1	-	1100	-	
input capacitance	O _{ISS}	Channel-1	Ch-2	-	3150	-	
Output capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1	-	530	-	pF
Output capacitance	Ooss	, de ,	Ch-2	-	1550	-	
Reverse transfer capacitance	C_{rss}	Observation	Ch-1	-	40	-	
Tieverse transfer supusitance	Orss	Channel-2 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2	-	170	-	<u> </u>
C _{rss} /C _{iss} ratio		VDS = 10 V, VGS = 0 V, 1 = 1 WH 12	Ch-1	-	0.036	0.072	
0155 0155 14110			Ch-2		0.054	0.108	
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	Ch-1	-	14.4	22	
Total gate charge	Q_g		Ch-2	-	41	62	_
	g	Channel-1	Ch-1		6.9	10.5	
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$	Ch-2	-	19.4	29	
Gate-source charge	Q_{gs}		Ch-1	-	3.1	-	nC
	93	Channel-2	Ch-2	-	7.1	-	
Gate-drain charge	Q_{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$	Ch-1	-	1.5	-	
	94		Ch-2	-	3.8	-	
Output charge	Q _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1	-	13	-	
· · ·			Ch-2	-	40	-	
Gate resistance	R_{g}	f = 1 MHz	Ch-1	0.14	0.7	1.4	Ω
	3		Ch-2	0.12	0.62	1.2	
Turn-on delay time	t _{d(on)}	Channel-1	Ch-1		17	35	4
	, ,	V_{DD} = 15 V, R_L = 3 Ω	Ch-2	-	25	50	
Rise time	t _r	$I_D\cong 5~A,~V_{GEN}=4.5~V,~R_g=1~\Omega$	Ch-1	-	40	80	
			Ch-2	-	53	110	
Turn-off delay time	t _{d(off)}	Channel-2	Ch-1	-	23	45	
	· , ,	$V_{DD} = 15 \text{ V}, R_L = 3 \Omega$	Ch-2	-	30 7	60 15	
Fall time	t _f	$I_D \cong 5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1 Ch-2	-	12	15 25	
			Ch-2		11	25	ns
Turn-on delay time	t _{d(on)}	Channel-1	Ch-1	-	13	25	
		$V_{DD} = 15 \text{ V}, R_L = 3 \Omega$	Ch-1	_	5	10	
Rise time	t _r	$I_D \cong 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1	-	20	40	
				_	23	45	
Turn-off delay time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V, } R_L = 3 \Omega$		-	32	65	
	1			-	5		
	t _f	$I_D \cong 5 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1			10	\dashv

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C	, unless of	therwise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Drain-Source Body Diode Characteristics								
Continuous source-drain diode current	Is	T _C = 25 °C	Ch-1	-	-	44		
Continuous source-drain diode current	IS	1C = 23 C	Ch-2	-	-	105	^	
Pulse diode forward current ^a	1		Ch-1	-	-	150	^	
Fulse diode forward current "	I _{SM}		Ch-2	-	-	200	A V ns nC ns	
Body diode voltage	V _{SD}	$I_{S} = 5 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-1	-	0.75 1.1		V	
		I _S = 5 A, V _{GS} = 0 V	Ch-2	-	0.44	0.7	1 V	
Body diode reverse recovery time	+		Ch-1	-	36	75	20	
Body diode reverse recovery time	t _{rr}		Ch-2	-	46	90	115	
Dady diada wayaraa waayaw aharra	Q _{rr}	Channel-1 $I_F = 10 \text{ A, di/dt} = 100 \text{ A/µs, T}_{,l} = 25 ^{\circ}\text{C}$	Ch-1	-	26	55		
Body diode reverse recovery charge			Ch-2	-	40	80	ns nC	
Poverse receivery fall time	+	Oha a a d O	Ch-1	-	16	-		
Reverse recovery fall time	t _a	Channel-2 $I_F = 10 \text{ A, di/dt} = 100 \text{ A/µs, T}_{.1} = 25 ^{\circ}\text{C}$	Ch-2	-	18	-		
Poverse receivery rice time	+	1, 111, 22 100, 100, 10	Ch-1	-	20	-	IIS	
Reverse recovery rise time	t _b		Ch-1 - 36 75 ns Ch-2 - 46 90 Ch-1 - 26 55 Ch-2 - 40 80 Ch-1 - 16 - 25 °C Ch-2 - 18 - ns					

Notes

- a. Guaranteed by design, not subject to production testing
- b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Output Characteristics

On-Resistance vs. Drain Current

I_D - Drain Current (A)

100 80 I_D - Drain Current (A) 60 40 20 T_C = 125 = -55 °C 0 0 2 5 V_{GS} - Gate-to-Source Voltage (V)

Transfer Characteristics

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Output Characteristics

100

Transfer Characteristics

On-Resistance vs. Drain Current

Capacitance

Gate Charge

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Reverse Current (Schottky)

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Current Derating a

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?76288.

PowerPAIR® 3 x 3F Case Outline

DIM		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN. NOM.				
Α	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	0.02	0.05	0.000	0.001	0.002		
b	0.25	0.30	0.35	0.010	0.012	0.014		
С		0.20 ref.			0.008 ref.			
D	3.20	3.30	3.40	0.126	0.130	0.134		
D1	2.15	2.20	2.25	0.085	0.087	0.089		
D2	2.45	2.50	2.55	0.096	0.098	0.100		
D3	0.65	0.70	0.75	0.026	0.028	0.030		
D4	1.75	1.80	1.85	0.069	0.071	0.073		
Е	3.20	3.30	3.40	0.126	0.130	0.134		
E1	0.69	0.74	0.79	0.027	0.029	0.031		
E2	1.73	1.78	1.93	0.068	0.070	0.072		
E3	0.92	0.97	1.02	0.036	0.038	0.040		
E4	0.76	0.81	0.86	0.030	0.032	0.034		
е	0.80 BSC			0.031 BSC				
K1		0.40 ref.		0.016 ref.				
K2		0.50 ref.			0.020 ref.			
K3	0.35 ref.			0.014 ref.				
K4	0.25 ref.			0.010 ref.				
H1		0.30 ref.		0.012 ref.				
H2		0.25 ref.			0.010 ref.			
H3		0.15 ref. 0.006 ref			0.006 ref.			
L	0.35	0.40	0.45	0.014 0.016 0.0				
L1	0.80	0.85	0.90	0.031	0.033	0.035		

T18-0135-Rev. A, 02-Apr-18 DWG: 6065

Notes

- (1) Use millimeters as the primary measurement
- (2) Dimensioning and tolerances conform to ASME Y14.5M 1994
- (3) N is the number of terminals; Nd is the numer of terminals in X-direction; Ne is the number of terminals in Y-direction
- (4) Dimension b applies to plated terminal and is measured between 0.20 mm and 0.25 mm from terminal tip
- ⁵⁾ The pin # 1 identifier must be existed on the top surface of the package by using identation mark or other feature of package body
- (6) Exact shape and size of this features is optional
- (7) Package warpage max. 0.08 mm
- 8) Applied only for terminals

Revision: 02-Apr-18

Document Number: 76603

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.