CSE/ISyE 6740 Computational Data Analysis

Clustering

08/20/2025

Kai Wang, Assistant Professor in Computational Science and Engineering kwang692@gatech.edu

Outline

Unsupervised learning

- Clustering
 - Formal statement of clustering problem
 - K-means algorithm
 - Hardness
 - Distance
 - Generalized k-means

Spectral clustering

- How to handle network information?
- Adjacency matrix, graph Laplacian, and eigenvectors as representation!

Clustering

Clustering Images

 Goal of clustering: Divide object into groups, and objects within a group are more similar than those outside the group

Cluster Other Things...

Cluster Handwritten Images

1691445406273151203812671673

How to Represent Objective?

 Represent image as a vector of pixels, and each pixel as a value between 0 and 1.

Formal Statement of Clustering Problem

- Given n data points: $\{x^1, x^2, ..., x^n\} \in \mathbb{R}^d$
- Find k cluster centers: $\{c^1, c^2, ..., c^k\} \in \mathbb{R}^d$
- Assign each data point to one cluster: $\pi(i) \in \{1,2,...,k\}$

• Such that the averaged square distances from each data point to its respective cluster center is small, i.e.,

$$\min_{c,\pi} \frac{1}{n} \sum_{i=1}^{n} ||x^i - c^{\pi(i)}||^2$$

K-means Algorithm

1. define "K"'s value

2. randomly get k points idomly as cluster centers. • Initialize k cluster centers $\{c^1, c^2, ..., c^k\}$ randomly

3. assign each data points. Do

Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment)

nt)
$$\pi(i) = argmin_{j=1,2,...k} \|x^i - c^j\|^2 \quad to the rearest$$

$$cluster center.$$

Adjust the cluster center (center adjustment)

$$c^{j} = \frac{1}{|\{i: \pi(i) = j\}|} \sum_{i: \pi(i) = j} x^{i}$$

While(any cluster center has been changed)

Questions

- Will different initializations lead to different results?
 - Yes
 - No
 - Sometimes

- Will the algorithm always stop after some iterations?
 - Yes
 - No (we have to set a maximum number of iterations)
 - Sometimes

Clustering is NP-hard in General

• Find k cluster centers, $\{c^1, c^2, ..., c^k\} \in \mathbb{R}^d$, and assign each data point i to one cluster, $\pi(i) \in \{1, 2, ..., k\}$, to minimize

 $\min_{c,\pi} \frac{1}{n} \sum_{i=1}^{n} ||x^{i} - c^{\pi(i)}||^{2}$

- A search problem over the space of discrete assignments
 - For all n data points together, there are k^n possibility.
 - The cluster assignment determines cluster centers, and vice versa.

Convergence of k-means Clustering

Will k-means objective oscillate?

$$\frac{1}{n} \sum_{i=1}^{n} \|x^i - c^{\pi(i)}\|^2$$

- The minimum value of the objective is finite.
- Each iteration of k-means algorithm decrease the objective.
 - Cluster assignment step decreases the objective

•
$$\pi(i) = argmin_{j=1,2,...k} ||x^i - c^j||^2$$

Center assignment step decreases the objective

•
$$c^{j} = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x^{i} = \operatorname{argmin}_{c} \sum_{i:\pi(i)=j} ||x^{i} - c||^{2}$$

How Many Clusters?

- Fixed a-priori? Data-driven approach?
- Silhouette value: $S_i = \frac{b_i a_i}{\max(a_i, b_i)} \in [-1, 1]$ (one heuristic)
 - **Distance to closest cluster** b_i : the minimum average distance from the i-th point to points in a different cluster, minimized over clusters.
 - In-cluster distance a_i : the average distance from the i-th point to other points in the same cluster as i.
- No gold standard method
 - Often determined by trial-and-error

Are These Everything About Clustering?

What is considered similar/dissimilar?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Object in Real Life

Image of Different Sizes

You Pick Your Similarity/Dissimilarity

What Similarity/Dissimilarity Function?

- Desired properties of dissimilarity (distance) function $d: X \times X \to \mathbb{R}^+ \cup \{0\}$
 - Symmetry: d(x, y) = d(y, x)
 - Otherwise, you could claim "Alex looks like Bob, but Bob doesn't look like Alex".
 - Positive separability: d(x, y) = 0 if and only if x = y.
 - Otherwise, there are objects that are different, but you can't tell apart.
 - Triangle inequality: $d(x, y) \le d(x, z) + d(z, y)$
 - Otherwise, you may have "Alex is very like Bob, Bob is very like Carl, but Alex is very unlike Carl."

Distance Function for Vectors

- Suppose two data points, both in \mathbb{R}^d
 - $x = (x_1, x_2, ..., x_d)^{\mathsf{T}}$
 - $y = (y_1, y_2, ..., y_d)^{\mathsf{T}}$
- Euclidean distance: $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Minkovski distance: $d(x,y) = \sqrt[p]{\sum_{i=1}^{n} (x_i y_i)^p}$ (or so call p norm)
 - Euclidean distance: p = 2
 - Manhattan distance: p = 1, $d(x, y) = \sum_{i} |x_i y_i|$
 - "inf"-distance: $p = \infty$, $d(x, y) = \max_{i} |x_i y_i|$

Distance Example

- Euclidean distance: $\sqrt{3^2 + 4^2} = 5$
- Manhattan distance: 4 + 3 = 7
- "inf"-distance: $max{4,3} = 4$

Hamming Distance

- Manhattan distance is also called Hamming distance when all the features are binary (or categorical)
- Count the number of differences between two binary (categorical) vectors
- Example, $x, y \in \mathbb{R}^{17}$

															15		
X	0	1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1
у	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0	1	1

$$d(x,y)=5$$

Edit Distance

 Transform one of the objects into the other, and measure how much effort it takes

d: deletion (cost 5)

s: substitution (cost 1)

i: insertion (cost 2)

$$d(x, y) = 5 \times 1 + 1 \times 3 + 2 \times 1 = 10$$

Generalized K-means Clustering

• Initialize k cluster centers $\{c^1, c^2, ..., c^k\}$ randomly

- Do
 - Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment)

$$\pi(i) = \operatorname{argmin}_{j=1,2,\dots k} d(x^i, c^j)$$

Adjust the cluster center (center adjustment)

$$c^{j} = argmin_{v \in \mathbb{R}^{d}} \sum_{i: \pi(i)=j} d(x^{i}, v)$$

While(any cluster center has been changed)

Squared Euclidean distance

$$c^{j} = \frac{1}{|\{i: \pi(i) = j\}|} \sum_{i: \pi(i) = j} x^{i}$$

Spectral Clustering

Clustering Nodes in a Network

Visualization tools:

- Networkx
- Gephi
- •

No Feature? Find A Representation!

If we have features associated to each node, you can use them to cluster nodes.

 However, if we don't have features of the nodes in a network, we will need to find a representation to represent the nodes.

 Adjacency matrix, graph Laplacian, and their eigenvectors are good options for you to handle network data!

Spectral Clustering Algorithm

Step 1: represent the graph as adjacency matrix A, and diagonal matrix D

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} D = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Step 2: form a special matrix L = D - A (the graph Laplacian)

$$L = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Spectral Clustering Algorithm

33

• Step 3: compute k eigenvectors, $v^1, v^2, ..., v^k$, of the Laplacian L, corresponding to the k-smallest eigenvalues ($k \ll n$).

$$L v^i = egin{pmatrix} 1 & -1 & 0 & 0 \ -1 & 1 & 0 & 0 \ 0 & 0 & 1 & -1 \ 0 & 0 & -1 & 1 \end{pmatrix} v^i = \lambda_i v^i$$

• Step 4: run k-means algorithm on $Z = (v^1, v^2, ..., v^k)$ by treating each row as a new data point:

Why This Works?

 Adjacency matrix and Graph Laplacian include information about neighborhoods in the network (graph).

- Eigenvectors are a good way to represent the matrix and extract the most relevant information, i.e., Principal Component Analysis.
 - Eigenvectors tell you information about how nodes are clustered.
 - For connected graphs, eigenvectors with smaller eigenvalues can be used as a compact representation.

$$Lv^{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$L\nu^{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 Ceorgia

How About this Dataset?

What's a Reasonable Similarity Measure?

Comparison: K-means v.s. Spectral Clustering

Registration

- Friday is the registration deadline.
- Work on Homework 0 earlier to check if you feel comfortable with the prerequisites, and get yourself familiar with Gradescope and autograder.
- If you decide to drop the course, please do so asap so that other people on the waitlist have time to register!
- See you next week!

