

Rechnernetze Kapitel 2: Physical Layer

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2021/22

Folien basieren auf:

A. Tanenbaum, D. Wetherall: Computer Networks

Inhalt

Nachrichtentechnische Grundlagen

Welche Grenzen setzt die Physik bzgl. der Datenrate?

Übertragungsmedien

Über welche Medien kann man Daten übertragen?

Digitale Modulation

Wie überträgt man Bitsequenzen über Kabel und über die Luft?

Multiplexing

Wie überträgt man Datenströme über ein geteiltes Medium?

Fourier-Analyse

- Ubertragung von Bitsequenzen durch zeitliche Veränderung von physikalischen Größen (z.B. Spannung)
- Fourier: 2 *gleichwertige* Beschreibungen für ein *Signal*
 - Zeitdomäne: Signalverlauf über die Zeit
 - **Frequenzdomäne**: Frequenzanteile $(a_n)(b_n)$ aus denen sich Signal zusammensetzt.

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

 a_n, b_n : Frequenzdomäne

Demo: http://www.falstad.com/fourier/

Signalübertragung bei begrenzter Bandbreite

Jedes Signal besteht aus vielen verschiedenen Frequenzen.

Dämpfung

Je länger die Leitung, desto mehr Dämpfung (Verringerung der Leistung/Amplituden)

Verzerrung

- Übertragungsmedien dämpfen Frequenzen verschieden stark.
- Meist nur Frequenzen bis zu bestimmtem Maximalwert f_c gut übertragbar.

Bandbreite

- Elektrotechnik: Frequenzbereich, der "gut" übertragen werden kann.
- Informatik: Datenrate, die bei physikalischen Bedingungen möglich ist.
- Beispiel: Übertragung des Signals 01100010

Signale mit begrenzter Bandbreite

- Wegen Verzerrung werden bestimmte Frequenzanteile nicht gut übertragen.
- □ Verlust hoher Frequenzanteile → Signal nicht rekonstruierbar.

Demo: Audacity

- Download: <u>www.audacity.de</u>
- Aufzeichnung und Analyse von Audiodateien
- Demo: Welche "Bandbreite" hat ein Mensch?
 - Aufzeichnung der Stimme mit Laptop-Mikrofon
 - Analyse der enthaltenen Frequenzen (= Bandbreite)

Quelle: www.audacity.de

Nyquist: Datenrate D bei unverrauschtem Kanal

- Datenrate D bei rauschfreiem Kanal abhängig von:
 - B: Bandbreite, Größe des übertragbaren Frequenzbereichs
 - V: Anzahl der verwendeten Symbole
 - Siehe nächste Folie!
 - Vorerst V=2, d.h. "HIGH" und "LOW"
- □ Hohe Bandbreite → hohe Datenrate
- Übung:
 - Im rechten Verlauf gibt es 2 Symbole: V=2
 - B=4 kHz
 - Wie hoch ist maximal mögliche Datenrate?

Nyquist-Theorem:

$$D = 2B \log_2 V$$
Oft V=2, dann:

D = 2B

Binäres Signal: *V*=2 (2 Signalstufen)

Symbole, Baudrate vs. Bitrate

Symbol

- Definierte, messbare Signaländerung im physischen Übertragungsmedium
- Beispiel unten: V=4 Symbole

Bitrate = Datenrate

- Übertragene Bits pro Zeiteinheit.
- Einheit: bps, kbps, KB/s, etc.

 $Bitrate = \log_2 V * Baudrate$

Baudrate = Symbolrate

- Übertragene Symbole pro Zeiteinheit.
- Einheit: Baud / Bd
- o 1 Symbol kann mehrere Bits repräsentieren!
- Sehr viele Symbole → Unterscheiden durch Empfänger wird schwieriger.

4 Symbole, jedes Symbol repräsentiert 2 Bits!

Publikums-Joker: Bitrate, Baudrate (Multiple Choice)

Welche Aussage ist korrekt?

- A. In einem rauschfreien Medium ist die erzielbare Bitrate theoretisch nach oben begrenzt.
- B. Die Bitrate kann gleich groß sein wie die Baudrate.
- Die Baudrate bezeichnet die Anzahl der Symbole pro Sekunde.
- Verdoppelt man die Anzahl der Symbole, so verdoppelt sich auch die Bitrate (Rahmenbedingungen bleiben unverändert)

Beispiel: Bitfehler in verrauschtem Kanal

Aus Tanenbaum

Shannon: Maximale Datenrate D bei verrauschtem Kanal

Shannon Theorem:
$$D = B \log_2(1 + SNR)$$
 absolut, nicht in dB

- **Abgrenzung**
 - Gilt zusätzlich (!) zu Nyquist bei verrauschtem Kanal.
- SNR: Signal-Rauschabstand (Signal-to-Noise Ratio)
 - Leistung des Nutzsignals S / Leistung des Rauschens N
- SNR meist in *Dezibel (dB)* angegeben
 - dB-Wert: $10 * \log_{10} SNR$
 - Beispiel: S = 100mW, N = 1 mW
 - $SNR = 100 \rightarrow Das entspricht 20 dB!$
- Rauschquellen
 - Intermodulation, Übersprechen, thermisches Rauschen

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
- Multiplexing

Übertragungsmedien

Drahtgebunden / Kabel

- Twisted Pair
- Koaxialkabel
- Lichtwellenleiter
- Stromnetz

Drahtlos / Luft

- Richtfunkstrecken
- Satellit
- Mobilfunk
- WLAN
- □ Verschiedene Übertragungsmedien → verschiedene Eigenschaften und Bandbreiten

Twisted Pair

- Häufig verwendet in
 - Local Area Networks (LANs)
 - Telefonleitungen
- Verdrillung vermindert Dämpfung
 - Kabel strahlt sonst wie eine Antenne ab.
- Verschiedene Spezifikationen (Categories)
 - CAT5: Betriebsfrequenz 100 MHz
 - CAT6: Betriebsfrequenz bis 250 MHz bei 100m
 - CAT6/7: Bis zu 600 Mbps auf bei 100m

Aus Tanenbaum

Koaxialkabel

- Bessere Isolierung als Twisted Pair
- Im allgemeinen höhere Bandbreite

Aus Tanenbaum

Glasfaser

- Multi-Mode
 - Kern mit "größerem" Durchschnitt (>10 μm)
 - Mehrere gleichzeitige Lichtstrahlen möglich.
- Single-Mode
 - Sehr enger Kern (<10 μm)
 - 1 gleichzeitiger Lichtstrahl, kein Zickzackverlauf
 - o Teurer → für weitere Entfernungen!

Terminologie: Duplex vs. Simplex

- Full duplex (dt. vollduplex)
 - Beide Übertragungsrichtungen gleichzeitig möglich
- Half duplex (dt. halbduplex)
 - Beide Übertragungsrichtungen, aber nicht gleichzeitig
- Simplex
 - Nur eine Übertragungsrichtung möglich
 - Unüblich.
- Frage: Full-duplex, half-duplex, oder simplex?
 - Vorlesung?
 - Fußballplatz?
 - Einbahnstraße?

Publikums-Joker: Duplex vs. Simplex

Welche der folgenden Technologien ist so gut wie immer *halbduplex*?

- A. Ethernet
- B. WLAN
- c. USB

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
 - Übertragung im Basisband
 - Übertragung durch Verschiebung in höheren Frequenzbereich
- Multiplexing

Basisband vs. Verschiebung in Frequenzbereich

- Modulation am Sender: Bitsequenz → übertragbares Signal
- □ Demodulation am Empfänger: Übertragenes Signal → Bitsequenz

- 2 Grundarten:
 - Übertragung im Basisband
 - Signal beinhaltet Frequenzen im Bereich [0; f_{max}] und wird direkt / unverändert in diesem Frequenzbereich [0; f_{max}] übertragen.
 - Normales Vorgehen bei drahtgebundener Kommunikation.
 - Übertragung durch Verschiebung in höheren Frequenzbereich
 - Nutzsignal verändert ein sogenanntes Trägersignal.
 - Am Empfänger: Rückgewinnung der Bitsequenz (Demodulation)
 - Vorgehen bei drahtloser Übertragung.

Übertragung im Basisband

Leitungscodes

- Festlegung: Was repräsentiert ein 0- bzw. 1-Bit?
- Beispiel NRZ-Code: +1V ist "1", -1V = "0"

Welches
Prinzip liegt
den
Leitungscodes
zugrunde?

Warum werden Leitungscodes eingesetzt?

Warum Leitungscodes? (1)

- Zur Rückgewinnung der Symbole: Häufige Symbolwechsel beim Empfänger benötigt.
 - Beispiel: In folgendem Beispiel hätte es der Empfänger schwer zu entscheiden wie viele 0er gesendet wurden.

1 0 0 0 0 0 0 0 0 0 0 0

Mögliche Abhilfe:

- Synchrone Uhren bei Empfänger/Sender, eigene Taktleitung
- Manchester-Code: XOR von Takt und Nutzsignal (Taktfrequenz = 2* "Bitfrequenz")
- Codierung: z.B. 4B/5B Code bildet 4 Bits auf 5 Bits mit 0er und 1er ab.

Data	Code	Data	Code	Data	Code	Data	Code
0000	11110	0100	01010	1000	10010	1100	11010
0001	01001	0101	01011	1001	10011	1101	11011
0010	10100	0110	01110	1010	10110	1110	11100
0011	10101	0111	01111	1011	10111	1111	11101

4B/5B Code

Was ist allen Codes Gemeinsam?

Warum Leitungscodes? (2)

Effizientes Ausnutzen der vorhandenen Bandbreite

- Übersetzen der Bitsequenz in eine Sequenz von Symbolen mit vielen verschiedenen Symbolen (hohe Baudrate).
- Siehe auch: Bitrate vs. Baudrate

Unterdrückung eines Gleichspannungsanteils

- Starke Dämpfung von Gleichstromanteilen bei Übertragung!
- Gleichstromanteilen erschweren kapazitive Kopplung.
- Möglich Abhilfe, z.B. AMI-Code:
 - Spannung +1V und 0V;
 - Jedes HIGH ändert den Pegel.

Publikums-Joker: 4B/5B Code (Single Choice)

Welche der folgenden Aussagen bzgl. 4B/5B Code ist falsch?

- A. Der 4B/5B Code vereinfacht die Taktrückgewinnung beim Empfänger.
- B. Der 4B/5B Code erh

 öht die Baudrate.
- Der 4B/5B Code vermeidet lange Sequenzen von 0-Bits oder 1-Bits.

Data	Code	Data	Code	Data	Code	Data	Code
0000	11110	0100	01010	1000	10010	1100	11010
0001	01001	0101	01011	1001	10011	1101	11011
0010	10100	0110	01110	1010	10110	1110	11100
0011	10101	0111	01111	1011	10111	1111	11101

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
 - Übertragung im Basisband
 - Übertragung durch Verschiebung in höheren Frequenzbereich

Multiplexing

Übertragung durch Verschiebung

Verschiebe Nutzsignal vor Übertragung in höheren Frequenzbereich!

- Warum ist das notwendig?
 - Nur mit höheren Frequenzen Übertragung per Luft möglich.
 - Nur so können mehrere Signale gleichzeitig auf verschiedenen Trägerfrequenzen übertragen werden.

- Ansatz: Nutzsignal verändert ein sogenanntes Trägersignal.
 - Amplitude: Das Signal wechselt zwischen > 2 verschiedenen Amplituden.
 - Frequenz: Mehr als 2 Frequenzen nötig, um 1 oder 0 zu repräsentieren.
 - Phase: Zwei oder mehr Phasensprünge kodieren die Information.

Bandpassbereich: Modulationsarten

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying

- Beispiel: Amplitude Shift Keying (ASK)
 - Durch An- und Ausschalten des Signals wird Information übertragen.
- Amplituden- (ASK) und Phasenmodulation (PSK) werden häufig kombiniert.
 - Ergibt mehr Symbole und damit eine höhere Bitrate bei gleichbleibender Baudrate.

Publikums-Joker: Digitale Modulation (Single Choice)

Um welche Modulationsart handelt es sich unten?

- A. ASK
- B. FSK
- c. PSK

Inhalt

- Nachrichtentechnische Grundlagen
- Übertragungsmedien
- Digitale Modulation
 - Wie übersetzt man Bits in Signale?
- Multiplexing

• Wie teilen sich mehrere Nutzer ein Übertragungsmedium?

Frequency Division Multiplexing (FDM)

- Frequenzbereiche werden Benutzern zugeteilt.
- Jeder Benutzer verwendet seinen Frequenzbereich.

Time Division Multiplexing (TDM)

- Frequenzbereich (Kanal) wird über die Zeit geteilt.
- Benutzer wechseln sich zeitlich ab.
- Häufig verwendet in Telefon- und Mobilfunknetzen.

Zusammenfassung

- Nachrichtentechnische Grundlagen
 - Die Physik setzt der maximalen Datenrate Grenzen
 - Nyquist, Shannon
- Übertragungsmedien
 - Twisted Pair, Koaxial, Glasfaser
- Digitale Modulation
 - Wie übersetzt man Bits in Signale?
 - Basisband: Leitungscodes
 - Bandpassbereich: Amplitude, Phase, Frequenz
- Multiplexing
 - Wie teilen sich mehrere Nutzer ein Übertragungsmedium?
 - Frequenz- und Zeitmultiplex