DC Circuits

Second Order Circuits

Introduction

A second-order circuit is characterized by a second-order differential equation. It consists of resistors and the equivalent of two energy storage elements.

Finding Initial and Final Values

Find: (a) $i(0^+)$, $v(0^+)$, (b) $di(0^+)dt$, $dv(0^+)/dt$, (c) $i(\infty)$, $v(\infty)$.

The capacitor voltage is always continuous $\longrightarrow v(0^+) = v(0^+)$

The inductor current is always continuous $i(0^+) = i(0^-)$

Equivalent circuit

$$t = 0^{-}$$

$$12 \text{ V}$$

$$2 \Omega \neq v$$

$$i(0^{-}) = \frac{12}{4+2} = 2 \text{ A}, \qquad v(0^{-}) = 2i(0^{-}) = 4 \text{ V}$$

As the inductor current and the capacitor voltage cannot change abruptly

$$i(0^+) = i(0^-) = 2 \text{ A}, \qquad v(0^+) = v(0^-) = 4 \text{ V}$$

$$t = 0^{+}$$

$$0.25 \text{ H}$$
The same current flows the both the inductor and caps
$$i_{C}(0^{+}) = i(0^{+}) = 2 \text{ A}$$

The same current flows through both the inductor and capacitor

$$i_C(0^+) = i(0^+) = 2 \text{ A}$$

$$C dv/dt = i_C, dv/dt = i_C/C,$$

$$\frac{dv(0)}{dt}$$

$$\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = \frac{2}{0.1} = 20 \text{ V/s}$$

$$L di/dt = v_L, di/dt = v_L/L$$

$$-12 + 4i(0^{+}) + v_{L}(0^{+}) + v(0^{+}) = 0$$

$$v_{L}(0^{+}) = 12 - 8 - 4 = 0$$

$$\frac{di(0^{+})}{dt} = \frac{v_{L}(0^{+})}{L} = \frac{0}{0.25} = 0 \text{ A/s}$$

 $t \to \infty$

$$i(\infty) = 0 \text{ A}, \qquad v(\infty) = 12 \text{ V}$$

Practice Problems

1

Determine:

(a)
$$i(0^+)$$
, $v(0^+)$, (b) $di(0^+)dt$, $dv(0^+)/dt$, (c) $i(\infty)$, $v(\infty)$.

Answer: (a) 2 A, 4 V, (b) 50 A/s, 0 V/s, (c) 12 A, 24 V.

2

Find:

(a)
$$i_L(0^+)$$
, $v_C(0^+)$, $v_R(0^+)$,

(b)
$$di_L(0^+)/dt$$
, $dv_C(0^+)/dt$, $dv_R(0^+)/dt$,

(c)
$$i_L(\infty)$$
, $v_C(\infty)$, $v_R(\infty)$.

Answer: (a) -3 A, 0, 0, (b) 0, 10 V/s, 0, (c) -1 A, 10 V, 10 V.

Source Free RLC Circuits

Series RLC Circuit

$$Ri + L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} i \ dt = 0$$

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

Parallel RLC Circuit

$$Ri + L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} i \ dt = 0 \qquad \frac{v}{R} + \frac{1}{L} \int_{-\infty}^{t} v \ dt + C\frac{dv}{dt} = 0$$

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

General Equation

$$\left| \frac{d^2x}{dt^2} + 2\alpha \frac{dx}{dt} + \omega_0^2 x = 0 \right|$$

Series RLC Circuit

$$\alpha = \frac{R}{2L}$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$

Parallel RLC Circuit

$$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

General Solution

Overdamped Case ($\alpha > \omega_0$)

$$x = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$\frac{dx}{dt} = A_1 s_1 e^{s_1 t} + A_2 s_2 e^{s_2 t}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - {\omega_0}^2}$$

Critically Damped Case ($\alpha = \omega_0$) $x = e^{-\alpha t} (A_1 t + A_2)$

$$x = e^{-\alpha t} \left(A_1 t + A_2 \right)$$

$$\frac{dx}{dt} = e^{-\alpha t} \left(A_1 - \alpha (A_1 t + A_2) \right)$$

Underdamped Case (
$$\alpha < \omega_0$$
) $x = e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$

$$\frac{dx}{dt} = e^{-\alpha t} \left((A_2 \omega_d - A_1 \alpha) \cos \omega_d t - (A_1 \omega_d + A_2 \alpha) \sin \omega_d t \right)$$
$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

Example

find v(t) for t > 0, assuming v(0) = 0, v(0) =

CASE I If
$$R = 1.923 \ \Omega$$
, $v(t) = 10.625e^{-2t} - 5.625e^{-50t}$
CASE 2 When $R = 5 \ \Omega$, $v(t) = (5 + 150t)e^{-10t} \ V$
CASE 3 When $R = 6.25 \ \Omega$, $v(t) = (5 \cos 6t + 20 \sin 6t)e^{-8t}$

Practice Problem

Find v(t) for t > 0.

Answer: $66.67(e^{-10t} - e^{-2.5t})$ V.

Step Response of RLC Circuits

The complete response of the circuit is the sum of the natural response and the forced response.

$$x(t) = x_f(t) + x_n(t)$$

the $x_f = x(\infty)$ is the final value and $x_n(t)$ is the natural response.

The natural response or transient response is the circuit's temporary response that will die out with time.

The forced response or steady-state response is the behavior of the circuit a long time after an external excitation is applied.

Example 1

find v(t) and i(t) for t > 0. Consider these cases: $R = 5 \Omega$, $R = 4 \Omega$, and $R = 1 \Omega$.

CASE When $R = 5 \Omega$

$$v(t) = 24 + \frac{4}{3}(-16e^{-t} + e^{-4t}) \text{ V}$$
$$i(t) = \frac{4}{3}(4e^{-t} - e^{-4t}) \text{ A}$$

CASE 2 When $R = 4 \Omega$

$$v(t) = 24 + (-19.5 + 57t)e^{-2t} V$$
$$i(t) = (4.5 - 28.5t)e^{-2t} A$$

CASE 3 When $R = 1 \Omega$

$$v(t) = 24 + (21.694 \sin 1.936t - 12 \cos 1.936t)e^{-0.5t} V$$
$$i(t) = (3.1 \sin 1.936t + 12 \cos 1.936t)e^{-0.5t} A$$

Example 2

Find i(t) for $-\infty < t < \infty$

 $t = 0^{-}$

 $t = 0^{+}$

$$50 i(0^+) + v_L(0^+) + v_C(0^+) + 200 i_C(0^+) = 0$$

$$50 (10) + v_L(0^+) + 100 + 200 (0) = 0$$

$$v_L(0^+) = -600 \text{ V}$$

$$\frac{di(0^+)}{dt} = \frac{v_L(0^+)}{L} = \frac{-600}{5}$$

$$\frac{di(0^+)}{dt} = -120 \text{ A/s}$$

 $t \to \infty$

$$i(\infty) = 10 \text{ A}$$

The natural response

$$\alpha = \frac{R}{2L} = \frac{(200 + 50)}{2(5)} = 25$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5(500 \cdot 10^{-6})}} = \frac{100}{5} = 20$$

$$\alpha > \omega_0 \implies \text{Overdamped}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -25 \pm \sqrt{625 - 400} = -25 \pm 15$$

$$s_1 = -10 \quad s_2 = -40$$

$$i_n(t) = A_1 e^{-10t} + A_2 e^{-40t} \text{ A}$$

The forced response

$$i_f(t) = i(\infty) = 10 \text{ A}$$

The complete response

$$i(t) = i_f(t) + i_n(t)$$

$$i(t) = 10 + A_1 e^{-10t} + A_2 e^{-40t} A$$

$$\frac{di(t)}{dt} = -10 A_1 e^{-10t} - 40 A_2 e^{-40t} A/s$$

$$t = 0^+ \qquad i(0^+) = 10 + A_1 + A_2$$

$$10 = 10 + A_1 + A_2$$

$$\frac{di(0^+)}{dt} = -10 A_1 - 40 A_2$$

$$-120 = -10 A_1 - 40 A_2$$

$$A_1 + A_2 = 12 \quad (2)$$

From equation (1) and (2): $A_1 = -4$ $A_2 = 4$

The complete response

$$i(t) = 10 - 4 e^{-10t} + 4 e^{-40t} A$$
 $(t > 0)$

The complete response for $-\infty < t < \infty$

$$i(t) = \begin{cases} 10 \text{ A} & t < 0 \\ 10 - 4 e^{-10t} + 4 e^{-40t} \text{ A} & t > 0 \end{cases}$$

Practice Problem

 $\int \!\!\! \int \operatorname{Find} v(t) \text{ and } v_R(t) \text{ for } t > 0.$

Answer: $10 - (1.1547 \sin 3.464t + 2 \cos 3.464t)e^{-2t} \text{ V},$ $2.31e^{-2t} \sin 3.464t \text{ V}.$

2 Find i(t) and v(t) for t > 0 20u(t) A v = 0.2 F5 H

Answer: $20(1 - \cos t)$ A, $100 \sin t$ V.