I - Exercice 1

I.A -

On note $A = \{(i \ i+1) | i \in \{1, 2, \dots, n-1\}\}$ l'ensemble de transpositions et $\langle A \rangle$ le sous-groupe engendré par A. On va montré $\langle A \rangle = \mathscr{S}_n$ par double inclusion.

- ▶ Par définition, $\langle A \rangle$ est un sous-groupe de \mathscr{S}_n , donc $\langle A \rangle \subset \mathscr{S}_n$
- ▶ $\forall s \in \mathscr{S}_n$, si $\forall i \in \{1, 2, \dots, n\}, s(i) = i$, c'est le cas de produit vide. Sinon, par la décomposition, on a $s = \tau_1 \circ \tau_2 \cdots \tau_r$, où $\forall i \in \{1, 2, \dots, r\}, \tau_i$ une transposition, et $r \leq n 1$. On va montrer que pour chaque transposition $(i \ j)$ tel que $(i, j) \in \{1, 2, \dots, n\}^2, i < j$, elle s'écrit

$$(i \quad j) = (j-1 \quad j) \circ (j-2 \quad j-1) \cdots \circ (i \quad i+1) \circ (i+1 \quad i+2) \circ \cdots (j-1 \quad j)$$

On note γ la partie à droite.

• Par récurrence, on a

$$\begin{split} \gamma(j) &= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots \circ (i \quad i+1) \circ (i+1 \quad i+2) \circ \cdots (j-2 \quad j-1)[j-1] \\ &= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots \circ (i \quad i+1) \circ (i+1 \quad i+2) \circ \cdots (j-3 \quad j-2)[j-2] \\ &= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots (i+1 \quad i+2) \circ (i \quad i+1)[i+1] \\ &= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots (i+1 \quad i+2)[i] \\ &= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots (i+2 \quad i+3)[i] \\ &= i \\ &= (i \quad j)[j] \end{split}$$

• De même, on a

$$\gamma(i) = (j-1 \quad j) \circ (j-2 \quad j-1) \cdots \circ (i \quad i+1) \circ (i+1 \quad i+2) \circ \cdots (j-2 \quad j-1)[i]$$

$$= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots \circ (i \quad i+1) \circ (i+1 \quad i+2) \circ \cdots (j-3 \quad j-2)[i]$$

$$= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots (i+1 \quad i+2) \circ (i \quad i+1)[i]$$

$$= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots (i+1 \quad i+2)[i+1]$$

$$= (j-1 \quad j) \circ (j-2 \quad j-1) \cdots (i+2 \quad i+3)[i+2]$$

$$= (j-1 \quad j)[j-1]$$

$$= j$$

$$= (i \quad j)[i]$$

- $\forall m \in \{1, 2, \dots, n\}^2$ tel que m > j ou m < i, m n'est pas influencé par chacune des transpositions : $\gamma(m) = (i \quad j)(m)$
- $\forall k \in \{1, 2, \dots, n\}^2$ tel que i < k < j, on a

$$\gamma(k) = (j-1 \quad j) \circ \cdots (k \quad k+1) \cdots \circ (i \quad i+1) \circ \cdots (j-2 \quad j-1)[k]$$

$$= (j-1 \quad j) \circ \cdots (k \quad k+1) \cdots \circ (i \quad i+1) \circ \cdots (k \quad k+1) \circ \cdots (j-3 \quad j-2)[k]$$

$$= (j-1 \quad j) \circ \cdots (k \quad k+1) \cdots (i \quad i+1) \circ \cdots (k \quad k+1)[k]$$

$$= (j-1 \quad j) \circ \cdots (k \quad k+1) \cdots (i \quad i+1) \circ \cdots (k+2 \quad k+3)[k+1]$$

$$= (j-1 \quad j) \circ \cdots (k \quad k+1)[k+1]$$

$$= k$$

$$= (i \quad j)[k]$$

En tout cas, on a $(i \ j) = \gamma$, ce qui montre que chaque transposition peut s'écrit comme une produit des $(i \ i+1)$. Par la composition, $\forall s \in \mathscr{S}_n$ peut aussi s'écrit comme une produit des $(i \ i+1)$. On a donc $\mathscr{S}_n \subset \langle A \rangle$

Finalement, $\mathscr{S}_n = \langle A \rangle$, on a donc $\boxed{\mathscr{S}_n \text{ est engendr\'e par } A}$

I.B -

Par la même méthode, on note $B = \{(1 \ 2), (1 \ 2 \cdots \ n)\}$ et $\langle B \rangle$ le sous-groupe engendré par B. On va montré $\langle B \rangle = \mathscr{S}_n$ par double inclusion.

- ▶ Par définition, $\langle B \rangle$ est un sous-groupe de \mathscr{S}_n , donc $\langle B \rangle \subset \mathscr{S}_n$
- ▶ $\forall s \in \mathscr{S}_n$, on a montré qu'elle s'écrit comme un produit de $(i \ i+1)$, on va montrer que $(i \ i+1) \in \langle B \rangle$. On note $c=(1 \ 2 \cdots n)$ le n-cycle. Puisque $c^n=Id_{\{1,2,\cdots n\}}$, on va etudier $\sigma=c^{i-1}\circ (1 \ 2)\circ c^{n-i+1}$
 - lorsque $i = 1, \ \sigma = c^0 \circ (1 \ 2) \circ c^n = (1 \ 2)$
 - pour 1 < i < n, on a $1 \le i-1 \le n-2$ et $2 \le n-i+1 \le n-1$, donc $c^{i-1} \ne Id_{\{1,2,\cdots n\}}$, $c^{n-i+1} \ne Id_{\{1,2,\cdots n\}}$. On a donc

$$--\sigma(i) = c^{i-1} \circ (1 \quad 2) \circ c^{n-i+1}(i) = c^{i-1} \circ (1 \quad 2)(1) = c^{i-1}(2) = i+1$$

$$- \sigma(i+1) = c^{i-1} \circ (1 \quad 2) \circ c^{n-i+1}(i) = c^{i-1} \circ (1 \quad 2)(2) = c^{i-1}(1) = i$$

$$\forall k \in \{1, 2, \dots, n\} \setminus \{i, i+1\}, \ c^{n-i+1}(k) \notin \{1, 2\}, \ \text{donc}$$

$$\sigma(k) = c^{i-1} \circ (1 \quad 2) \circ c^{n-i+1}(k) = c^{i-1} \circ c^{n-i+1}(k) = c^n(k) = k$$

En tout cas, on a donc $\sigma = (i \ i+1)$. Donc $(i \ i+1)$ s'écrit comme un produit d'éléments de $\langle B \rangle$. Par le résultat précédent, on a s aussi. Alors $\forall s \in \mathscr{S}_n, s \in \langle B \rangle$, donc $\mathscr{S}_n \in \langle B \rangle$.

Finalement, par double inclusion, on a $\mathscr{S}_n = \langle B \rangle$, donc $\boxed{\mathscr{S}_n \text{ est engendr\'e par } B}$

I.C -

I.C.1 -

- ▶ réflexivité : $\forall \sigma \in \mathscr{S}_n$, $\exists Id_{\{1,2,\cdots,n\}} \in \mathscr{S}_n$, tel que $\sigma = Id_{\{1,2,\cdots,n\}} \circ \sigma \circ Id_{\{1,2,\cdots,n\}}$, donc σ est conjuguée à elle-même $(Id_{\{1,2,\cdots,n\}}^{-1} = Id_{\{1,2,\cdots,n\}})$.
- ▶ symétrie : on sait que $\forall \rho \in \mathscr{S}_n, \ \rho^{-1} \in \mathscr{S}_n^2$ car c'est une bijection, alors $\forall (\sigma, \sigma') \in \mathscr{S}_n^2$, $\sigma \mathcal{R} \sigma' \iff \exists \rho \in \mathscr{S}_n, \sigma = \rho \circ \sigma' \circ \rho^{-1} \iff \exists \rho' = \rho^{-1} \in \mathscr{S}_n, \sigma' = \rho' \circ \sigma \circ \rho'^{-1} \iff \sigma' \mathcal{R} \sigma'$
- ▶ transitivité : $\forall (a,b,c) \in \mathscr{S}_n^3$, soient $a\mathcal{R}b$, $b\mathcal{R}c$, alors $\exists (\rho,\rho') \in \mathscr{S}_n^2$ tels que $a=\rho \circ b \circ \rho^{-1}$, $b=\rho' \circ c \circ \rho'^{-1}$. Alors $a=\rho \circ \rho' \circ c \circ \rho'^{-1} \circ \rho^{-1}$.

Car (\mathscr{S}_n, \circ) est un groupe, alors $\rho \circ \rho' \in \mathscr{S}_n$, et $(\rho \circ \rho')^{-1} = \rho'^{-1} \circ \rho^{-1} \in \mathscr{S}_n$.

En notant $\phi = \rho \circ \rho'$, on a $\phi \in \mathscr{S}_n$, et $a = \phi \circ c \circ \phi^{-1}$. On a donc $a\mathcal{R}c$

Alors par les définitions, on a \mathcal{R} est une relation d'équivalence

I.C.2 -

Dans le cours, on a montré que $\forall \sigma \in \mathscr{S}_n$, soit $(a_1 \ a_2 \cdots a_p) \in \mathscr{S}_n$ un p-cycle, alors $\sigma \circ (a_1 \ a_2 \cdots a_p) \circ \sigma^{-1}$ est aussi un p-cycle. Soin $k \in \{1, 2, \cdots n\}$, $\alpha = (a_1 \ a_2 \cdots a_k)$, $\beta = (b_1 \ b_2 \cdots b_k)$ deux k-cycles.

On pose $\rho \in \mathscr{S}_n$ une bijection qui envoie b_i à a_i $\forall i \in \{1, 2, \dots k\}$. Donc sa réciproque ρ^{-1} est une bijection qui envoie a_i à b_i $\forall i \in \{1, 2, \dots k\}$. On a donc

- ▶ $\forall i \in \{1, 2, \dots, k-1\}$, on a $\alpha(a_i) = a_{i+1}$. Et on a $\rho \circ \beta \circ \rho^{-1}(a_i) = \rho \circ \beta(b_i) = \rho(b_{i+1}) = a_{i+1}$
- \bullet $\alpha(a_k) = a_1$, et $\rho \circ \beta \circ \rho^{-1}(a_k) = \rho \circ \beta(b_k) = \rho(b_1) = a_1$
- ▶ $\forall j \in \{1, 2, \dots k\} \setminus \{a_1, \dots, a_k, b_1, \dots b_k\}, \alpha(j) = j \text{ et } \rho \circ \beta \circ \rho^{-1}(j) = \rho \circ \beta(j^{-1}) = \rho(j^{-1}) = j, \text{ où } j^{-1} \text{ est l'image de } j \text{ par } \rho^{-1}.(\text{car } \rho, \rho^{-1}) \text{ sont des bijections.}$

En tout cas, on a $\alpha = \rho \circ \beta \circ \rho^{-1}$, donc les deux k-cycles satisfont $\alpha \mathcal{R}\beta$. De plus, il n'y a pas de bijections entre deux cycles de cardinaux différents.

Finalemant, la classe d'équivalence pour \mathcal{R} est l'ensemble des k-cycles de \mathscr{S}_n .

I.D -

Dans le cours, on sait que $\forall s \in \mathscr{S}_n$, s se décompose comme un produits des k-cycles uniquement à l'ordre près de support distincts.

▶ sens indirect : si $(s, s') \in \mathscr{S}_n^2$ qui ont la même liste (dans l'ordre croissant) des longueurs de leurs cycles à supports disjoints. Soit $s = a_1 \circ \cdots \circ a_p$, $s' = b_1 \circ \cdots \circ b_p$, avec a_i , b_i les cycles de même longueur(on peut ranger les compositions de s et s' car ils sont de support distincts, donc ils commutent).

Pour chaque couple des cycles $(a_i, b_i)_{i \in \{1, 2, \cdots, p\}}$ (de même longueur), car ils sont dans une même class d'équivalence il exist donc $\rho \in \mathscr{S}_n$ telle que $a_i = \rho \circ b_i \circ \rho^{-1}$. où ρ la bijection qui envoie tous les supports de a_i à ceux de b_i , $\forall i \in \{1, 2, \cdots, p\}$ (car les a_i sont de supports disjoints, et a_i est b_i sont de même longueurs, la bijection ρ est bien définie)

On a donc $s = \rho^p \circ (b_1 \circ \cdots \circ b_p) \circ \rho^{p^{-1}}$

Car on a $\rho \in \mathscr{S}_n$, et donc $\rho^p \in \mathscr{S}_n$, $\rho^{p^{-1}} \in \mathscr{S}_n$ car (\mathscr{S}_n, \circ) est un groupe. On a donc $s = \rho^p \circ s' \circ \rho^{p^{-1}}$, d'où $s\mathcal{R}s'$

▶ sens direct : Soit $(s, s') \in \mathscr{S}_n^2$, conjugué, alors $\exists \rho \in \mathscr{S}_n$ telle que $s = \rho \circ s' \circ \rho^{-1}$. Soit s' se décompose somme $s' = \beta_1 \circ \cdots \circ \beta_p$, $\forall i \in \{1, 2, \cdots, p\}$, on pose $\alpha_i = \rho \circ \beta_i \circ \rho^{-1}$, on a $\alpha_i \mathcal{R} \beta_i$, elles sont dans la même classe d'équivalence, donc elles ont la même longueur. De plus, les β_i sont de supports disjoints, donc les α_i sont de supports disjoints car ρ et ρ^{-1} sont des bijections

On a aussi $s = \rho \circ s' \circ \rho^{-1} = \rho \circ \beta_1 \circ \cdots \circ \beta_p \circ \rho^{-1} = (\rho \circ \beta_1 \circ \rho^{-1}) \circ \cdots \circ (\rho \circ \beta_p \circ \rho^{-1}) = \alpha_1 \circ \cdots \circ \alpha_p$ les $(a_i)_{i \in \{1,2,\dots,p\}}$ sont bien une décomposition des cycles de s, ils sont de support disjoints (car $(b_i)_{i \in \{1,2,\dots,p\}}$ le sont, et ρ est une bijection)

donc s et s' ont la même liste (dans l'ordre croissant) des longueurs de leurs cycles à supports disjoints.

Finalement, on a $\forall (s, s') \in \mathcal{S}_n^2$, elles sont conjuguées si et seulement si

elles ont la même liste (dans l'ordre croissant) des longueurs de leurs cycles à supports disjoints