

University of BRISTOL

Numerical methods Spring 2018

Lecture 7: Series

A series is an infinite sum i.e.

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots + a_n + \dots$$

For example we have

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1$$

Note that we sometimes begin a sum from n=1 and sometimes from n=0. Either way it's still a series but the value of the series will be different - the above series would be equal to 2 if we started from n=0.

Numerical methods Spring 2018

Spring 2018

Sequences and series

Numerical methods

Lectures 7 and 8: Series

Oscar Benjamin and Lucia Marucci

In this part of the unit we look at two different but related things. Don't get them mixed up!

A sequence is a an ordered set of numbers that goes on forever:

$$\{a_n\}_{n=1}^{\infty} = a_1, \ a_2, \ a_3, \ \dots, a_n, \dots$$

A series is the sum of the terms of a sequence:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

We already looked at sequences in the last lecture. Today we are talking about series (sums)...

Numerical methods Spring 2018

Convergence of a series

Given a series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

We are adding up *infinitely* many things, so shouldn't the answer be infinite?

It is possible to add infinitely many things and get a finite answer. In this case we say that a series *converges*.

Key question we often want to answer is "does it converge?".

Numerical methods Spring 2018

Partial sums

Given a series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

we can define the partial sums of the series as

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$

The kth partial sum is given by

$$s_k = \sum_{n=1}^k a_n = a_1 + a_2 + a_3 + \dots + a_k$$

Numerical methods Spring 2018

Definition of convergence of a series

Given a series we can make a sequence of the partial sums of the series

$$\{s_k\} = s_1, \ s_2, \ s_3, \ \cdots, \ s_k, \ \cdots$$

If this $\it sequence$ of partial sums converges to S we say that the $\it series$ converges and equals S :

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} s_k = S$$

The geometric series

One common series is the geometric series (also known as geometric progression)

$$\sum_{n=0}^{\infty} r^n$$

₭ In this case, we can find the partial sums explicitly:

$$s_k = 1 + r + r^2 + r^3 + \dots + r^k$$

 $rs_k = r + r^2 + r^3 + \dots + r^k + r^{k+1}$

$$(1-r)s_k = 1 - r^{k+1} \quad \Rightarrow \quad s_k = \frac{1 - r^{k+1}}{(1-r)}$$

We have an explicit formula for the partial sum of a geometric series.

Numerical methods Spring 2018

General geometric series

More general form of geometric series:

Sum of a geometric series

Let

$$s_k = \sum_{n=0}^{k} ar^n$$

The general expression for the sum of the first k+1 terms is

$$s_k = \frac{a(1 - r^{k+1})}{(1 - r)}$$

If |r| < 1, then

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

The geometric series - convergence from the definition

Given a geometric series $\sum_{n=0}^\infty r^n$ the partial sums are given by $s_k=\sum_{n=0}^k r^n=rac{1-r^{k+1}}{1-r}$. We have then that

$$\sum_{n=0}^{\infty} r^n = \lim_{k \to \infty} s_k = \lim_{k \to \infty} \frac{1 - r^{k+1}}{1 - r}$$

For a geometric sequence we know that $\lim_{k\to\infty} r^k = 0$ if |r| < 1 so

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

 ${\rm provided}\; |r|<1.$

Numerical methods Spring 2018

General geometric series - sum from 1 or 0

The formula for the partial or total sum of a geometric series varies dependinding on whether you sum from n=1 or n=0.

Compare the following formulas:

$$\sum_{n=0}^k ar^k = \frac{a(1-r^{k+1})}{(1-r)} \qquad \text{vs} \qquad \sum_{n=1}^k ar^k = \frac{a(r-r^{k+1})}{(1-r)}$$

If $\left|r\right|<1$, then

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{vs} \quad \sum_{n=1}^{\infty} ar^n = \frac{ar}{1-r}$$

Numerical methods Spring 2018

Exercises

1. First example in Lecture 6:

$$s_k = \sum_{n=0}^k \frac{1}{2^n} = 1 + (1/2) + (1/4) + (1/8) + \dots$$

find

- $\blacktriangleright \ \ \text{the sum as} \ k \to \infty$
- ▶ the sum of the first 80 terms
- $\qquad \qquad \text{the lowest number } k \text{ such that } s_k > 1.999$

2. Find
$$\sum_{n=1}^\infty a_n$$
 where $a_n=5 imes(0.2)^n$ What about $a_n=rac{1}{2^n}+\left(rac{5}{6}
ight)^n$

Numerical methods Spring 2018

Engineering Hotspot: mortgages

Suppose I buy a house costing $\pounds250000$ and have a $\pounds50000$ deposit. I will need to borrow $\pounds200000$ from the bank and expect to pay this back over 25 years. If the interest rate is 3% what will be the monthly repayment?

The initial amount borrowed is called P (the principal). Each month the bank charges interest at a rate I and I pay a fixed amount F back to the bank. So if x_n is the amount owed we have the recurrence $x_{n+1}=x_n(1+I)-F$. Let's say that r=1+I then

$$x_0 = P$$

$$x_1 = x_0r - F = Pr - F$$

$$x_2 = x_1r - F = Pr^2 - Fr - F$$

$$x_3 = x_2r - F = Pr^3 - Fr^2 - Fr - F$$

Can you recognise the pattern forming?

The rhs has a geometric series so the amount owed after n months is

$$x_n = Pr^n - F \sum_{i=0}^{n-1} r^i = Pr^n - F \frac{1-r^n}{1-r}$$

The payment ${\cal F}$ is chosen so that after N months the amount owed $x_N=0$ giving

$$F = P(r-1)\frac{r^N}{r^N - 1}$$

So if the (nominal) interest rate is 3% per year the monthly rate is I=0.25% and r=1.0025. After 25 years $N=12\times25=300$ so

$$F = \pounds 200,000 \times 0.0025 \times \frac{1.0025^{300}}{1 - 1.0025^{300}} \approx \pounds 948.42$$

Exercise: Koch snowflake

Koch snowflakes are formed by joining together a series of triangles;

- If the area of the central triangle (blue) is 1, what is the area of the snowflake?
- 2. What is the length of the perimeter of the snowflake?

This is an example of a Fractal

Numerical methods Spring 2018

Numerical methods Spring 2018

Solution 1

Solution 2

Numerical methods Spring 2018

Height of a bouncing ball

Remember the bouncing ball

The heights and velocities of the bounces form sequences $\{h_n\}$ and $\{v_n\}$ with

$$\{v_n\} = v_0, \ ev_0, \ e^2v_0, \ e^3v_0, \ \cdots$$

and $v_0=\sqrt{2gh_0}$. From v=u+at we have that the time for the initial fall is given as $t_0=\frac{v_0}{g}=\sqrt{\frac{2h_0}{g}}$.

Numerical methods Spring 2018

Height of a bouncing ball

Then the ball bounces up and down taking time t_1 and bounces again taking t_2 . The time to finish bouncing is

$$T = t_0 + t_1 + t_2 + \cdots$$

Using $\boldsymbol{v} = \boldsymbol{u} + at$ again we have

$$t_n = \frac{2v_n}{q} = \frac{2v_0}{q}e^n = 2t_0e^n$$

We have then that

$$T = t_0 + \sum_{n=1}^{\infty} t_n = t_0 + 2t_0 \sum_{n=1}^{\infty} e^n$$

So how long does it take if $h_0=1\,\mathrm{m}$ and $g=10\,\mathrm{ms}^{-2}$ and e=0.9?

Other elementary series . . .

- ... for which we can express partial sum James Section 7.3

$$s_k = \sum_{n=0}^k (a+nd) = \frac{k+1}{2}(2a+kd) = \frac{(k+1)}{2}(a_0+a_n)$$

$$s_k = \sum_{n=0}^k n^2 = \frac{1}{6}k(k+1)(2k+1)$$

► Arithmetic-geometric

$$s_k = \sum_{n=1}^k nr^{n-1} = \frac{1-(k+1)r^k + nr^{k+1}}{(1-r)^2}$$

- $m{k}$ For most series there is no explicit expression for s_k

Spring 2018

Integral test

Suppose $a_n = f(n)$ where f is a decreasing function.

$$\int_{1}^{\infty} f(x) \mathrm{d}x \leq \sum_{n=1}^{\infty} f(n) \leq f(1) + \int_{1}^{\infty} f(x) \mathrm{d}x$$

University of BRISTOL

Series, the story so far

Two important examples:

the geometric series

diverges to infinity

Lecture 8: Convergence of series

converges if |r| < 1 to limit $L = \frac{a}{1-r}$ Now we'll see that the harmonic seres

Ke $s_k = \sum_{n=0}^k a_n, (k=0,1,2...)$ is called the sequence of partial sums

 $\sum_{n=0}^{k} ar^{n} = \frac{a(1 - r^{k+1})}{1 - r}$

 $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$

We say the series *converges* if $\{s_k\}$ converges as $k o \infty$

Spring 2018

Integral test

- If f is decreasing then the series $\sum_{n=1}^{\infty} f(n)$ is bounded from below and above by the integral $\int_{1}^{\infty} f(x) \mathrm{d}x$.
- The series converges if and only if the integral does.
- Return to the harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

Lespite the fact that $\frac{1}{n} \to 0$ as $n \to \infty$, this diverges!

Proof:

$$\sum_{n=1}^{\infty} \frac{1}{n} \ge \int_{1}^{\infty} \frac{1}{x} dx = \ln(\infty) - \ln(1) = \infty$$

Numerical methods Spring 2018

Exercise: integral test

The harmonic series $\sum_{n=1}^{\infty}\frac{1}{n}$ is of the form

$$\sum_{i=1}^{\infty} n^{\alpha}$$
 (1)

with $\alpha = -1$. We've seen that this diverges.

Show that these series always

- $\norm{\ensuremath{\not{k}}}$ diverge if $\alpha > -1$.
- $\norm{\ensuremath{\not{k}}}$ converge if $\alpha < -1$.

Hence for series (1) the harmonic series is the boundary between convergence and divergence.

Numerical methods Spring 2018

Solution 1

Solution 2

Three simple criteria for convergence/divergence

Terms must go to zero

 $\sum_{n=0}^{\infty} a_n$ diverges if $\lim_{n \to \infty} |a_n| \neq 0$

Alternating series

 $\sum_{n=0}^{\infty} a_n$ converges if

- $\ensuremath{\not k}\ensuremath{a_n}$ alternate in sign, and
- $\lim_{n\to\infty} |a_n| = 0,$
- \not and $|a_{n+1}| < |a_n|$ for all n

The comparison test

(for positive series $a_n\geqslant 0$) $\sum_{n=0}^{\infty}a_n$

- $\mbox{$\swarrow$}$ converges if $b_n\geqslant a_n\geqslant 0$ and $\sum_{n=0}^{\infty}b_n$ converges
- $\mbox{\em \&}$ diverges if $a_n\geqslant b_n\geqslant 0$ and $\sum_{n=0}^\infty b_n$ diverges

Numerical methods Spring 2018

Spring 2018

Examples

Find whether the following series converge or diverge:

Example 1

$$\sum_{1}^{\infty} \frac{(-1)^n}{n}$$

- k the terms alternate in sign,
- $\lim_{n\to\infty}\frac{1}{n}=0,$
- $|a_{n+1}| < |a_n| \text{ (since } \frac{1}{n+1} < \frac{1}{n}\text{)}$
- k hence the series converges

Numerical methods Spring 2018

Example 2

$$\sum_{1}^{\infty} \frac{n+2}{n^2}$$

 \swarrow each term in the series is positive, and bigger than $\frac{1}{n}$ since

$$\frac{n+2}{n^2} = \frac{1}{n} + \frac{2}{n^2} > \frac{1}{n}$$

- $\swarrow \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (harmonic series)
- k hence the series diverges by the comparison test

Numerical methods Spring 2018

Example 3

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

 $\mbox{$\not$ \ensuremath{\&}$}$ each term in the series is positive, and less than $\frac{1}{2^{n-1}}$ since

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \ge 2 \cdot 2 \cdot 2 \cdots 2 \cdot 1 = 2^{n-1}$$

$$\Leftrightarrow \frac{1}{n!} \le \frac{1}{2^{n-1}}$$

- $\bigvee_{n=1}^{\infty} rac{1}{2^{n-1}}$ converges (geometric series)
- ke hence the series converges by the comparison test

D'Alembert's ratio test

★ The most useful test for series convergence is the ratio test:

If
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1$$
 then $\sum_{n=0}^{\infty}a_n$ is absolutely convergent

If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
 then $\sum_{n=0}^{\infty} a_n$ is divergent

If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
 then the test gives *no information*

Absolute convergence

 $\sum_{n=0}^{\infty} a_n$ is absolutely convergent if $\sum_{n=0}^{\infty} |a_n|$ is convergent

Absolutely convergent series are themselves convergent and may be rearranged to make new absolutely convergent series

Numerical methods Spring 2018

A word of caution

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

converges (to ln 2); a little rearrangement gives

$$\underbrace{1 - \frac{1}{2}}_{1/2} - \frac{1}{4} + \underbrace{\frac{1}{3} - \frac{1}{6}}_{1/6} - \frac{1}{8} + \underbrace{\frac{1}{5} - \frac{1}{10}}_{1/10} - \frac{1}{12} + \underbrace{\frac{1}{7} - \frac{1}{14}}_{1/14} - \frac{1}{16} + \cdots$$

which gives

$$\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \dots = \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots \right)$$

half its original value!

Infinite series can only be rearranged if they are absolutely convergent!

Numerical methods Spring 2018

Homework for series

- Read Section 7.2.2
- ✓ Section 7.3
- K Exercises 7.3.4: 20, 24 & 25
- ✓ Section 7.6
- **№** Exercises 7.6.4: 41, 44–49.

Ratio test examples

1. $\sum_{n=0}^{\infty} \frac{1}{n!}$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{1}{(n+1)!} \frac{n!}{1} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$$

$$\Rightarrow \text{ converges}$$

2. $\sum_{n=1}^{\infty} \frac{3^n}{n!}$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{3^{n+1}}{(n+1)^3}\frac{n^3}{3^n}\right|=\lim_{n\to\infty}3\left(\frac{n}{n+1}\right)^3=3>1$$

3. for $\sum_{n=1}^{\infty} \frac{1}{n}$ (the harmonic series) we have

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{n}{n+1}\right|=1\qquad\Rightarrow\text{ no information}$$

Numerical methods Spring 2018

Exercises

Find whether or not the following series converge as $n \to \infty$

1.

$$\sum_{n=1}^{\infty} \frac{e^n}{n!}$$

2.

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2}$$

3.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$