Inverse square intensity

It is helpful to be able to calculate the intensity of a wave at different distances as it spreads out from a source.

Example context: the distance to a star can be calculated from a knowledge of its luminosity (power) and its brightness when seen from Earth. We can also work out the exposure to ionising radiation at different distances from a source.

 $\begin{array}{ll} P \ {\rm Power} \ ({\rm W}) & A \ {\rm Surface} \ {\rm area} \ \left({\rm m}^2\right) \\ I \ {\rm Intensity} \ \left({\rm W} \ {\rm m}^{-2}\right) & r \ {\rm Distance} \ {\rm from} \ {\rm source} \ \left({\rm m}\right) \end{array}$ Quantities: C Count rate (Bq = s^{-1})

Subscripts label different locations, so I_1 is measured at r_1 .

 $A_{\mathsf{sphere}} = 4\pi r^2 \quad I = \frac{P}{A}$ **Equations:**

- For a source which radiates in all directions, use the equations to derive 16.1 expressions for
 - a) the intensity I at a distance r from a source of power P,
 - b) The distance d at which a source P has intensity I.
 - c) the intensity I_2 at a distance r_2 from a source if the intensity at distance r_1 is I_1 .

Example 1 – The desk in a room is 1.7 m directly below a perfectly efficient light bulb. To read a 0.0625 m² (A4) sheet of paper comfortably, at least 27 mW of light must hit it. Calculate the minimum power of light bulb required.

Intensity required
$$I=\frac{27\times 10^{-3}~\text{W}}{0.0625~\text{m}^2}=0.432~\text{W}~\text{m}^{-2}.$$
 If light spreads out $1.7~\text{m}$ in all directions, it will illuminate a spherical shape

of area $A_{\text{sphere}} = 4\pi \times (1.7 \text{ m})^2 = 36.3 \text{ m}^2$.

The power needed is $P = IA_{\text{sphere}} = 0.432 \times 36.3 = 16 \text{ W}$.

- Calculate the intensity if 130 W of light from a spotlight hits a $4.0 \, \text{m} \times 3.0 \, \text{m}$ 16.2 region of a stage.
- 16.3 The rear light on a bicycle gives off 0.15 W of light in all backwards directions. Calculate the intensity of light 23 m behind the lamp.

- 16.4 Someone can see a lamp providing the intensity is larger than 2.5×10^{-7} W m $^{-2}$. How far away could this person see a 500 W warning lamp which gives off light in all directions?
- 16.5 When sunlight shines perpendicularly on a $0.6 \,\mathrm{m} \times 1.2 \,\mathrm{m}$ solar panel, $195 \,\mathrm{W}$ of electricity is generated. This is 20% of the total radiation incident on it.
 - a) Calculate the intensity of the sunlight at the panel.
 - b) The Earth is 1.50×10^{11} m from the Sun. Calculate the Sun's power.
 - c) How close to your eye would you need to hold a $150\,\mathrm{W}$ light bulb for it to appear as bright as the Sun? Assume that the Sun and the light bulb make visible light with the same efficiency.

Example 2 – A gamma source is 12.3 cm from a detector, which records 942 background-corrected counts in 30.0 s. How many counts would you expect from the same detector in 40.0 s at a distance of 16.8 cm?

The count rate C (in Bq) will be proportional to I at each distance.

Count rate at 12.3 cm
$$=$$
 $\frac{942}{30} = 31.4$ Bq. Cr^2 is the same at all distances (it is proportional to P), so 31.4 Bq \times $(12.3 \text{ cm})^2 = C \times (16.8 \text{ cm})^2$ $C = \frac{31.4 \times 12.3^2}{16.8^2} = 16.8$ Bq. Counts expected in $40 \text{ s} = 16.8 \times 40 = 673$.

- 16.7 The background count in a laboratory is 36 counts in 40 s. When a gamma source is placed 1.5 m from the detector, there are 236 counts each minute.
 - a) Calculate the background-corrected count rate in Bq.

 $0.32 \, \text{m}$ from it.

- b) Calculate the expected background-corrected count rate 15 cm from the source.
- 16.8 On a very dark night, an astronomer can see a 5.3×10^{28} W star with their unaided eye providing the intensity is larger than 1.8×10^{-10} W m $^{-2}$.
 - a) How far away would the star be if it is only just visible?
 - b) What is the minimum visible intensity with a telescope of diameter 7.5 cm rather than an eye with a pupil diameter of 0.75 cm.
 - c) Another star of the same power is just visible using the telescope. How far away is it?

15 Standing waves on a string

(a)
$$f_1 = \frac{c}{\lambda} = \frac{\sqrt{\frac{T}{\mu}}}{\lambda} = \frac{1}{\lambda} \sqrt{\frac{T}{\mu}}$$

(b)
$$f_1 = rac{1}{\lambda} \sqrt{rac{T}{\mu}} = rac{1}{2\ell} \sqrt{rac{T}{\mu}}$$

(c)
$$f_n = \frac{c}{\lambda} = \frac{\sqrt{\frac{T}{\mu}}}{\frac{2\ell}{n}} = \frac{n}{2\ell} \sqrt{\frac{T}{\mu}}$$

16 Inverse square intensity

(a) Area illuminated is
$$A_{\sf sphere} = 4\pi r^2$$
, so $I = \frac{P}{A_{\sf sphere}} = \frac{P}{4\pi r^2}$

(b) Using (a)
$$I=\frac{P}{4\pi r^2}$$
 so $r^2=\frac{P}{4\pi I}$ and $r=\sqrt{\frac{P}{4\pi I}}$

(c)
$$P = I_1 A_1 = I_2 A_2$$
, so $I_1 \times 4 \pi r_1^2 = I_2 \times 4 \pi r_2^2$, so $I_2 = \frac{I_1 r_1^2}{r_2^2}$

In (c) we assumed that the radiation spread equally in all directions (so $A=4\pi r^2$). The reasoning is also true for radiation which spreads in all **relevant** directions. In this case, P will not be the power of the source, but the power of a source which could shine this brightly in all directions.

17 Banked tracks for turning

(a) Resolving vertically,
$$N \cos \theta = mg$$
, so $N = \frac{mg}{\cos \theta}$

(b)
$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{mv^2/r}{mg} = \frac{v^2}{rg}$$
. So, $v = \sqrt{rg \tan \theta}$

(c)
$$t_{p} = \frac{2\pi r}{v} = \frac{2\pi r}{\sqrt{rg \tan \theta}} = 2\pi \sqrt{\frac{r}{g \tan \theta}}$$