choose 双向不经意传输. 当然,增加的这两个字符串被 R 接收到 1 个还是 2 个,依然由 R 的 cut-and-choose 指示比特 j 来决定.需要注意的是,引入选择比特 σ 会带来以下问题: 当 j 为 0 时,R 必须知道 x_0 和 x_1 这两个值应该获得哪一个.如果按照正常顺序 x_0,x_1 发送这两个值,则 R 可以获得 σ 的值,这与 σ 需要保密相矛盾.因此,需要引入一个置换比特 b 来对 x_0 和 x_1 的位置进行随机置换,从而达到隐藏 σ 的目的.这样,R 就可以在不知道 σ 的情况下获得 x_σ . 置换比特的引入会对接收方的输出造成影响: 当 cut-and-choose 指示比特 j 为 1 时,接收方除了获得被置换位置后的两个字符串 x_b,x_{1-b} 之外,还需要拿到 b 的值,以获得正常顺序的 x_0,x_1 ; 当 cut-and-choose 指示比特 j 为 0 时,接收方除了获得由发送方指定应该获得的 x_σ 之外,实际上也获得了 x_σ 的位置信息 σ 0。即当获得 x_b,x_{1-b} 中的第 1 个时,说明 σ 0 为 10,反之则说明 10 为 11 这功能可以由下面的功能函数 10 公司。

功能函数 \mathcal{F}_{ccbot} .

输入:

- --S 输入 $(x_0,x_1,y_0,y_1,b,\sigma)$,其中 $x_0,x_1,y_0,y_1 \in \{0,1\}^n,b \in \{0,1\}$ 为置换比特, $\sigma \in \{0,1\}$ 为S 的选择比特.
- --R 输入 (j,τ) ,其中 $j \in \{0,1\}$ 为 cut-and-choose 指示比特, $\tau \in \{0,1\}$ 为 R 的选择比特.

输出:

- --S 输出 L.
- --R 输出 z:

当 j=1 时,z 为($x_b,x_{1-b},1-b,y_0,y_1$);

当 j=0 时,z 为($x_{\sigma},y_{\tau},\sigma\oplus b$),其中 $\sigma\oplus b$ 指示 x_{σ} 的位置信息.

2.2 协议构造

Cut-and-choose 双向不经意传输可以基于同态加密构造.主要思想是利用加密方案的同态性,将接收方cut-and-choose 指示比特的密文与发送方的输入进行特定运算.具体构造请见协议 1.

协议 1. Cut-and-Choose 双向不经意传输协议.

输入:发送方 S 输入 $(x_0,x_1,y_0,y_1,b,\sigma)$;接收方 R 输入 (j,τ) .

辅助输入:安全参数 1^n ;满足定义 1 的选择明文攻击(CPA)安全的加法同态加密方案 M=(Gen,Enc,Dec). 协议过程:

步骤 1. R 将 τ 编码为两个比特 $\tau_0\tau_1$,其中 $\tau_{\tau}=1$, $\tau_{1-\tau}=0$.具体来说,如果 $\tau=1$,则编码为 $\tau_0\tau_1=01$;如果 $\tau=0$,则编码为 $\tau_0\tau_1=10$.另外,R 将 j 编码为两个比特 $j_0j_1=j0$.然后,R 生成一组密钥(pk,sk)← $Gen(1^n)$,公开公钥 pk,并用 pk 对 $(j_0j_{\tau_0}+\tau_0,j_{\tau_1}+\tau_1)$ 进行加密,将加密后得到的密文三元组($Enc_{pk}(j_0)$, $Enc_{pk}(j_{\tau_0}+\tau_0)$, $Enc_{pk}(j_{\tau_1}+\tau_1)$)发送给 S.

步骤 2. S 将 σ 编码为两个比特 $\sigma_0\sigma_1$,其中 $\sigma_\sigma=1$, $\sigma_1-\sigma=0$.具体来说,如果 $\sigma=1$,则编码为 $\sigma_0\sigma_1=01$;如果 $\sigma=0$,则编码为 $\sigma_0\sigma_1=10$.然后,S 利用 R 的公钥 pk 计算($Enc_{pk}(j_1)$, $Enc_{pk}(\sigma_0)$, $Enc_{pk}(\sigma_1)$, $Enc_{pk}(b)$),并计算密文五元组:

$$\begin{split} w_b &= (Enc_{pk}(j_{\sigma_b}) \cdot Enc_{pk}(\sigma_b))^{x_b}, \\ w_{1-b} &= (Enc_{pk}(j_{\sigma_{1-b}}) \cdot Enc_{pk}(\sigma_{1-b}))^{x_{1-b}}, \\ w_2 &= (Enc_{pk}(j_b) \cdot Enc_{pk}(b))^{1-b}, \\ w_3 &= (Enc_{pk}(j_{\tau_0} + \tau_0))^{y_0}, \\ w_4 &= (Enc_{pk}(j_{\tau_1} + \tau_1))^{y_1}. \end{split}$$

计算完成后,将密文五元组 $(w_b, w_{1-b}, w_2, w_3, w_4)$ 发送给 R.

步骤 3. R 用私钥 sk 对接收到的密文五元组进行解密,得到明文五元组(u_b,u_{1-b},u₂,u₃,u₄):

- $\stackrel{\text{def}}{=} j=1$ ff, $\Leftrightarrow (u_b, u_{1-b}, u_2, u_3, u_4) = (x_b, x_{1-b}, 1-b, y_0, y_1);$
- 当 j=0 时,忽略 u_2 的值,令 u_b,u_{1-b} 中不为 0 的值为 x_σ ,即 u_b,u_{1-b} 中的第 $\sigma \oplus b+1$ 个;令 u_3,u_4 中的第 $\tau+1$ 个为 y_τ ,得到输出($x_\sigma,y_\tau,\sigma \oplus b$).