ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea in Ingegneria e Scienze Informatiche

Integrazione di RAG e LLM nello Sviluppo del Software

Tesi di laurea in: Programmazione ad oggetti

Relatore
Prof. Viroli Mirko

Candidato
Bollini Simone

Correlatore

Dott. Aguzzi Gianluca

Sommario

I Large Language Model (LLM) addestrati per sviluppare il codice sono oggi altamente efficaci e in grado di generare soluzioni di qualità. L'addestramento fatto sui modelli è però su fonti generali, questo non da quindi la possibilità al modello di generare soluzioni su misura per una specifica richiesta utilizzando codice già creato dal programmatore o dalla propria azienda per casi simili. Da questo nasce l'esigenza di addestrare il modello per personalizzare le soluzioni proposte, contestualizzandole alla propria realtà aziendale e al proprio stile nel programmare. Servirebbe quindi una nuova fase di fine-tunig per adattare il modello alle proprie esigenze, ma questa soluzione è un processo molto costoso che richiede particolari competenze tecnica difficilmente presenti in molte aziende. Inoltre il fine-tuning non permette di aggiornare il modello in maniera rapida e dinamica, richiedendo un nuovo addestramento per ogni modifica. Per rispondere a questa esigenza entra in gioco la Retrieval-Augmented Generation (RAG), che permette di aumentare la conoscenza del modello, recuperando informazioni da una propria base di conoscenza, esterna al modello, come librerie specifiche di un azienda, arricchendo il prompt della query di input che sarà elaborata dal LLM. Il RAG, ricercando semanticamente i chunk maggiormente somiglianti a quanto richiesto se trovati, li inserirà per aumentare il prompt del LLM, estendendo la base di informazioni sulla quale genererà l'output con la risposta. Questa tesi approfondisce questi concetti e sperimenta l'integrazione di un RAG specifico per codice Java e un LLM con lo scopo di ottenere risposte personalizzate che solo con la conoscenza del LLM, anche se estremamente performante e completo, sarebbe stato impossibile ottenere.

Grazie

v

Indice

INDICE

Sommario						
1	Introduzione					
2	Addestrare un LLM per la Generazione del Codice					
	2.1	Scelta Modello	3			
	2.2	Raccolta e Preparazione dei Dataset	4			
		2.2.1 Pulizia e Pre-Processo	4			
	2.3	Pre-Addestramento	6			
	2.4	Fine-Tuning	6			
		2.4.1 Tecniche di Apprendimento	6			
	2.5	Pre-Addestramento vs Fine-Tuning	7			
	2.6	Valutazione e Ottimizzazione	8			
		2.6.1 Metriche di Valutazione	9			
		2.6.2 Tecniche di Ottimizzazione	9			
3	Ret	rieval Augmented Generation	11			
	3.1	Introduzione	11			
	3.2	Funzionamento	11			
		3.2.1 Creazione Vector Database	12			
		3.2.2 Fase 1: User query e function calling	13			
		3.2.3 Fase 2: Recupero delle Informazioni	13			
		3.2.4 Fase 3: Aumento del Prompt	14			
	3.3	Perchè RAG	15			
4	Imp	olementazione di un sistema RAG per lo sviluppo di codice per				
	_	nguaggio Java	17			
	4.1	Obiettivo	17			
	4.2	Architettura del Sistema	18			
	4.3	Software Utilizzati	19			
		4.3.1 Ollama 😭	19			

vii

INDICE

		4.3.2	Llama 3.2	19	
		4.3.3	Codequen 1.5	20	
		4.3.4	LangChain	20	
		4.3.5	BGE-M3	20	
		4.3.6	FAISS	20	
	4.4	Datas	et	20	
	4.5 Scenario base del Caso Studio				
		4.5.1	Codice di riferimento per rispondere alla query	21	
		4.5.2	Risultato Atteso	22	
	4.6	Imple	mentazione	22	
		4.6.1	Creazione dei Chunk	22	
		4.6.2	Arricchire i chunk con metadati relativi al codice	26	
		4.6.3	Generazione degli Embedding	27	
		4.6.4	Esecuzione di query sul Database FAISS	28	
		4.6.5	Creazione della Pipeline RAG	30	
	4.7	Test S	Sistema RAG	34	
		4.7.1	Query base senza riferimenti al metodo utilizzato all'interno		
			di segnaleWow	34	
		4.7.2	Query Completa con riferimenti al metodo utilizzato all'in-		
			terno di segnaleWow	35	
		4.7.3	Commento risultati ottenuti	36	
	4.8	azione "llm as a judge"	36		
		4.8.1	Crezione domande	36	
		4.8.2	Metrica del punteggio	42	
		4.8.3	llm as a judge	45	
5	Con	clusio	ni	51	
6	Rin	grazia	menti	55	

viii INDICE

Capitolo 1

Introduzione

Essere programmatori significa lavorare in un settore in continua evoluzione, sopratutto negli ultimi anni con l'introduzione dell'AI. Con l'avvento di questa nuova
tecnologia è cambiato il modo di eseguire parte del lavoro, ora sono presenti software che assistono i programmatori nella scrittura del codice. Questi software sono
in grado di completare il codice, suggerire correzioni e creare documentazione pertinente. Aiutano inoltre i programmatori nei compiti più ripetivi e meccanici,
aumentando la produttività e riducendo i tempi di sviluppo. Un esempio della potenza di queste funzioni è l'utility di **Github Copilot**: 'Generate Commit
Message with Copilot' che propone il testo da utilizzare come descrizione di un
commit, basandosi sulle modifiche apportate al codice come mostrato in figura
fig. 1.1.

Figura 1.1: Esempio di commit autogenerato da Copilot

Software come Copilot utilizzano LLM per riprodurre codice e testo, scansionando in pochi istanti il contesto nel codice che si sta costruendo. In progetti complessi questo non riduce il ruolo del programmatore che detiene la realizzazione di compiti complessi ad alto valore aggiunto delegando la generazione di parti del codice semplici e ripetitive a questi software. È quindi importante capire il funzionamento di questi strumenti, sapere come chiedere e formulare correttamente le domande, esplicitando nel dettaglio con parole chiave mirate come deve essere realizzato il codice per indirizzarlo nell'elaborazione e ragionamento corretto.

Figura 1.2: Questi software producono valide soluzioni

Questi software hanno una problematica importante, essendo addestrati su dataset generici e non personalizzati, sono validi nel fornire risposte standard e generiche, ma non sono in grado di fornire risposte personalizzate e specifiche per un'azienda o un programmatore. Proprio per questo l'ultimo miglio da percorrere per sfruttare questi strumenti è la personalizzazione delle risposte, per fare in modo che il LLM impari lo stile del programmatore e produca codice coerente con quanto già realizzato e conosciuto. Per fare questo entrano in gioco il **Fine-Tuning** e i **RAG** che verrano ampiamente approfonditi.

Capitolo 2

Addestrare un LLM per la Generazione del Codice

L'addestramento di LLM per la generazione del codice di programmazione richiede una serie di passaggi complessi e costi significativi. Conoscere questo processo è utile per poter poi comprendere al meglio la successiva implementazione con le tecniche di **RAG**. La procedura si divide nelle seguenti fasi:

- Scelta del Modello
- Raccolta e Preparazione dei Dataset
- Pre-Addestramento
- Fine-Tuning
- Valutazione e Ottimizzazione

Analizziamo ora nel dettaglio ogni fase.

2.1 Scelta Modello

Gli LLM utilizzano tipicamente architetture basate su transformers, che sono particolarmente efficaci nell'elaborazione di sequenze di dati, come il testo e il codice. I transformers utilizzano meccanismi di auto-attenzione per valutare l'importanza di diversi elementi in una sequenza, permettendo al modello di comprendere le relazioni tra parole o token. Questa capacità è fondamentale nella generazione del codice, poiché le dipendenze tra variabili e funzioni possono estendersi su ampie sezioni del codice, richiedendo al modello di considerare un ampio contesto per trovare le risposte corrette. L'architettura del modello scelto influenzerà in maniera decisiva tutte le successive fasi di addestramento. È utile notare che sebbene i transformers siano attualmente lo standard, esistono anche altri approcci come le reti neurali ricorrenti (RNN e LSTM) e nuove tecniche in continua evoluzione come i Large Concept Models [?].

2.2 Raccolta e Preparazione dei Dataset

La qualità e la quantità dei dati per l'addestramento è di primaria importanza per prepare un modello alla generazione di codice in maniera efficace. È quindi essenziale utilizzare per il training codice proveniente da molteplici fonti tra cui codice sorgente, file readme, documentazione tecnica, commenti nel codice, pagine Wiki, API e discussioni su forum specializzati in programmazione, arricchendo così il dataset con esempi pratici e ricchezza terminologica. In rete è possibile trovare diverso materiale open source tra cui dataset già etichettati. Alcuni dataset hanno un valore altissimo, per questo motivo per tutelare il costo speso per produrli per certi dataset è previsto il diritto d'autore. I dati si dividono in due tipologie:

- Dati Strutturati: seguono un formato specifico e predefinito, seguono la struttora in coppie (descrizione, codice).
- Dati non Strutturati: non sono organizzati e sono quindi più difficili da interpretare dal modello.

2.2.1 Pulizia e Pre-Processo

La raccolta di dati va visionata con cura, se non si conosce la provenienza del codice è possibile che contenga bug o codice obsoleto che possono essere trasmessi al modello. Con la rapida evoluzione del codice molte librerie e tecniche vengono **rapidamente deprecate** e superate per questo anche utilizzando i più noti modelli LLM ad oggi disponibili, può capitare di ricevere come output **codice obsoleto** che risolve il quesito ma con soluzioni contenti tecniche, api e librerie deprecate o non più disponibili. Per questo motivo i dati raccolti devono essere puliti e pre-processati per rimuovere errori e informazioni non pertinenti, garantendo così un dataset di alta qualità per l'addestramento.

Tokenizzazione

Il modello per poter elaborare il dataset ha bisogno che quest'ultimo venga diviso in parti più piccole chiamate token per mantenere l'integrita del dato [?], i token possono essere parole, parti di parole o singoli caratteri, e questa suddivisione è fondamentale per:

- Gestione del contesto: mantenere la relazione semantica tra i diversi elementi del codice
- Efficienza computazionale: processare grandi quantità di testo in modo ottimizzato
- Limitazioni del modello: rispettare i limiti massimi di input del modello (tipicamente tra 512 e 4096 token)
- Preservazione della struttura: mantenere la struttura sintattica del codice sorgente

Ad esempio, nel codice Java, i token potrebbero includere:

- Parole chiave (public, class, static)
- Identificatori (nomi di variabili e metodi)
- Operatori e simboli (+, =, {, })
- Stringhe letterali e commenti

2.3 Pre-Addestramento

Il pre-addestramento di un LLM specializzato nella generazione di codice ha lo scopo di fornire al modello una conoscenza generale della sintassi e delle strutture logiche dei linguaggio di programmazione. Durante questa fase il modello impare a generare codice partendo da dati non etichettati utilizzando tecniche come il language modeling autoregressivo per insegnare al modello di predire il token successivo in una sequenza. Questo approccio rende la generazione contestualmente e coerente di codice, sfruttando la capacità del modello di 'ricordare' il contesto anche su ampie sequenze di dati.

2.4 Fine-Tuning

Il fine-tuning è la fase in cui il modello già pre-addestrato viene ulteriormente specializzato per la generazione di codice adattando e migliorando il modello per specifici domini di applicazione. Durante questa fase, il modello affina le sue capacità attraverso dataset specializzati composti da coppie descrizione-codice, documentazione tecnica e commenti, esempi di bug-fixing e refactoring.

2.4.1 Tecniche di Apprendimento

- Supervisionato: Addestramento basato su coppie input-output predefinite, dove il modello impara a mappare descrizioni in linguaggio naturale al codice corrispondente.
 - Esempio: Utilizzo di un dataset contenente descrizioni come 'Scrivi una funzione in Python che calcoli la media di una lista' abbinate al relativo codice Python. In questo modo, il modello impara a generare il codice corretto partendo dalla descrizione fornita.
- Per Rinforzo: Ottimizzazione basata su un sistema di feedback, dove il modello riceve una ricompensa in base alla qualità del codice generato, come correttezza, efficienza e aderenza a specifiche metriche.

- Esempio: Un modello genera una funzione di ordinamento. Il codice viene eseguito e sottoposto a una serie di test (ad esempio, verificando l'ordinamento corretto e l'efficienza computazionale). Se il codice supera i test e rispetta i criteri di prestazione, il modello riceve una ricompensa che ne rafforza le scelte, migliorando così la qualità delle future generazioni.
- Few-shot Learning: Capacità di adattarsi a nuovi compiti o contesti con pochissimi esempi di addestramento.
 - Esempio: Dopo aver osservato solo alcuni esempi di come tradurre una descrizione in linguaggio naturale al codice in un nuovo linguaggio di programmazione (ad esempio, Rust), il modello è in grado di generare codice in Rust anche per nuove descrizioni simili, senza necessità di un vasto dataset specifico per quel linguaggio.

2.5 Pre-Addestramento vs Fine-Tuning

È importante comprendere la distinzione tra queste due fasi:

Pre-Addestramento

Il pre-addestramento è la fase iniziale in cui il modello:

- Acquisisce una comprensione generale del linguaggio di programmazione
 - Esempio: Il modello analizza milioni di righe di codice open-source, apprendendo le regole base e la struttura sintattica di linguaggi come Python, Java e C++.
- Viene addestrato su grandi quantità di codice sorgente generico
 - Esempio: Utilizzando un vasto corpus proveniente da repository pubblici (ad esempio, GitHub), il modello impara le convenzioni e le pratiche comuni adottate dalla comunità di sviluppo.
- Impara le strutture base e la sintassi del linguaggio

- Esempio: Durante questa fase, il modello apprende come si definiscono funzioni, variabili, cicli e condizioni, senza però concentrarsi su particolari logiche applicative.
- Non è ancora specializzato per compiti specifici
 - Esempio: Pur essendo in grado di generare codice sintatticamente corretto, il modello non ha ancora imparato a ottimizzare o personalizzare il codice per particolari applicazioni, come la sicurezza o le performance.

Fine-Tuning

Il fine-tuning è la fase di specializzazione in cui il modello:

- Si adatta a un dominio specifico o a compiti particolari
 - Esempio: Un modello pre-addestrato può essere ulteriormente raffinato per generare codice dedicato allo sviluppo di applicazioni web, concentrandosi su framework come Django o Flask.
- Utilizza dataset specifici e composti da dati strutturati
 - Esempio: Il fine-tuning può avvenire su un dataset che contiene esempi di codice per la gestione dell'autenticazione, la validazione degli input e la gestione degli errori, rendendo il modello più efficace nel risolvere problemi tipici di un dominio applicativo specifico.

2.6 Valutazione e Ottimizzazione

Dopo l'addestramento, è fondamentale sottoporre il modello a una fase di valutazione per verificare la qualità del codice generato. Questa valutazione non si limita a controllare la correttezza sintattica, ma si estende anche alla funzionalità e all'efficienza del codice. I risultati ottenuti offrono spunti preziosi per intervenire con ottimizzazioni mirate, come l'aggiustamento dei pesi, modifiche all'architettura o l'integrazione di ulteriori dati di addestramento.

2.6.1 Metriche di Valutazione

Per garantire che il modello produca codice di alta qualità, vengono utilizzate diverse metriche, tra cui:

- Correttezza Sintattica: Verifica che il codice generato sia privo di errori di sintassi e possa essere compilato o interpretato senza problemi.
- Funzionalità: Assicura che il codice realizzi effettivamente la funzionalità desiderata, testando se il comportamento del programma rispetti le specifiche iniziali.
- Efficienza: Valuta le prestazioni del codice in termini di tempo di esecuzione e utilizzo delle risorse, garantendo un'operatività ottimale.

2.6.2 Tecniche di Ottimizzazione

Una volta completata la valutazione, i risultati ottenuti possono guidare il processo di ottimizzazione del modello. Tra le tecniche adottabili troviamo:

- Aggiustamento dei Pesi: Modifica dei parametri interni del modello per migliorare la precisione e l'affidabilità del codice generato.
- Modifiche all'Architettura: Introduzione di nuove componenti o revisione di quelle esistenti per aumentare la capacità del modello di apprendere e generalizzare.
- Integrazione di Dati Aggiuntivi: Ampliamento del dataset di addestramento con ulteriori esempi, mirati a colmare le lacune individuate durante la valutazione.

2.6.	VALUTAZIONE E OTTIMIZZAZIONE

Capitolo 3

Retrieval Augmented Generation

3.1 Introduzione

La sigla RAG, acronimo di Retrieval Augmented Generation (in italiano, Generazione Aumentata tramite Recupero), indica un approccio innovativo volto a potenziare le capacità di un modello linguistico (LLM). Questo sistema amplia la base di conoscenza del modello integrando informazioni esterne, al di fuori dal dataset di addestramento originale. In pratica, il prompt in ingresso al LLM viene arricchito con contenuti aggiuntivi ('chunk'), ottenuti attraverso tecniche di recupero che identificano corrispondenze rilevanti in un database dedicato. Tale integrazione consente al modello di generare risposte più accurate, contestualizzate e aggiornate, migliorando significativamente la qualità complessiva dell'output.

3.2 Funzionamento

Il sistema RAG si integra al LLM attivando un meccanismo di recupero delle informazioni per aumentare il prompt della richiesta. Il funzionamento si articola in diverse fasi qui sotto illustrate:

3.2.1 Creazione Vector Database

La propria *knowledge base* deve essere salvata in un database vettoriale, in modo da poter essere interrogata in maniera efficiente dal sistema RAG. Per creare questo database vengono utilizzati dati esterni al training set originale del LLM,

provenienti da diverse fonti come:

- API e database interni
- Archivi documentali
- File di testo e codice

La creazione di un database ben strutturato e <u>la parte più importante</u> di tutto il processo, dividere il codice in chunk correttamente etichettando ogni elemento con i corretti metadati è fondamentale per la sucessiva fase di interrogazione. Il processo di creazione del Vector Database segue la seguente pipeline:

- Chunking: Divisione del codice in chunk
- Embedding: Conversione dei chunk in vettori numerici
- Vector Store: Memorizzazione degli embedding in un database vettoriale

3.2.2 Fase 1: User query e function calling

Data la query d'input da parte dell'utente, il sistema RAG è avviato da una chiamata di funzione per ricercare nel Vector Database i chunk più rilevanti per la query. Nei modelli più complessi in RAG è di fatto un agente integrato nel sistema che viene chiamato all'occorrenza quando la base di conoscenza del LLM non è sufficiente per fornire una risposta adeguata, in questo modo viene anche razionalizzato e ottimizzato il costo computazionale del processo, attivato solo quando strettamente necessario. Rimane comunque questo passaggio una scelta configurabile in base allo specifico utilizzo del sistema, ad esempio per un azienda che utilizza il LLM solo per compiti specifici e sempre contestualizzati può essere configurato il sistema in modo che chiami la funzione RAG sempre.

3.2.3 Fase 2: Recupero delle Informazioni

Quando l'utente sottopone una query:

• La domanda viene convertita in un vettore ad alta dimensionalità

- Il sistema cerca nel database vettoriale i chunk più simili alla query, calcolando la distanza tra i vettori utilizzando tecniche di confronto come la similarità coseno o la distanza euclidea. In fig. 3.1 è rappresentata, riducendo a due dimensioni lo spazio vettoriale, la distanza devi vettori più simili trovati nel database e la query.
- Se trovate corrispondenze con uno score di similarità sufficiente, i chunk vengono recuperati.

Figura 3.1: Esempio di distanze tra chunk e query

3.2.4 Fase 3: Aumento del Prompt

Il sistema RAG arricchisce il prompt dell'utente con le informazioni recuperate, fornendo al LLM un contesto più ampio e dettagliato per generare una risposta coerente. In questo modo, il LLM riceve un input informazioni relativa alla risposta che dovrà generare, unendo la sua conoscenza a questi dati riesce a rispondere in maniera più precisa e contestualizzata. Un prompt arricchito da chunk potrebbe esserre strutturato in questo modo:

• Query Utente: 'Scrivi una funzione in Java che valuti la precisione dei tiri a Basket'

 Chunk Recuperato: 'chunk contente una funzione che calcola la precisione dei tiri a Basket'

Inserendo all'interno del Prompt la risposta che dovrà generare si eviterà che il LLM la inventi totalmente partendo solo dai suoi dati di addestramento ma sarà fortamente condizionato nel suo processo di generazione della risposta ad utilizzare le informazioni aggiuntive inserite.

3.3 Perchè RAG

Il RAG permette di superare le limitazioni di conoscenza dei LLM, fornendo risposte accurate e contestualizzate grazie all'integrazione di conoscenze interne e personalizzate. Dopo aver costruito un sistema RAG è possibile eseguire rapidamente aggiornamenti al **Vector database**, cosa che sarebbe molto più difficile da ottenere con il fine-tuning, che richiede tempo e risorse significative. Avere un LLM addestrato fin da subito su misura per le proprie esigenze e sempre aggiornato sarebbe fantastico ma per quasi tutte le aziende richiederebbe risorse impossibili da sostenere ed è quindi molto più comune costruire un RAG che intervenire direttamente sulla conoscenza del LLM che restano solitamente proprietà di terzi. Riassumendo i vantaggi principali di un sistema RAG sono:

- ottenere risposte mirate e personalizzate contenti knowledge relativa a librerie e codice custom
- migliorare il codice generato rendendolo più specifico al dominio riducendo le allucinazioni
- facilitare l'assistenza da parte del modello nella fase di debugging migliorando la sua comprensione di sistemi complessi
- supportare la creazione di documentazione aggiornata
- permettere all'interno di un Team di migliorare la coerenza del codice scritto da diversi programmatori proponendo librerie e standard comuni
- evitare risposte imprecise a causa della confusione terminologica, in cui diverse fonti utilizzano la stessa terminologia per parlare di cose diverse.

3.3. PERCHÈ RAG

e dinamica			

Capitolo 4

Implementazione di un sistema RAG per lo sviluppo di codice per il linguaggio Java

4.1 Obiettivo

Questo caso studio si propone l'obiettivo di verificare il livello di personalizzazione e qualità delle risposte di un LLM integrato con un sistema RAG. Potenziando la query nel prompt di input del LLM attraverso la creazione di un sistema RAG di supporto, verranno costruite e analizzate singolarmente tutte le fasi che compongono il processo. Il sistema RAG è stato testato con della classi JAVA uniche create appositamente per il caso studio.

Problematica da affrontare:

Chiamate a più livelli di classi e metodi, dove il RAG potrebbe non essere in grado di estrapolare le informazione necessarie da inserire nel prompt per ottenere dal LLM risposte coerenti con quanto richiesto.

4.2 Architettura del Sistema

Figura 4.1: Architettura del sistema RAG

Il sistema RAG implementa un'architettura modulare composta da cinque componenti principali:

1. Text Processor (Chunking):

- Suddivide i file Java in chunk di un numero definito appositamente di token
- Gestisce sovrapposizione di token tra chunk
- Preserva il contesto del codice

2. Embedder (BGE-M3):

- Converte i chunk in vettori numerici
- Utilizza il modello BGE-M3 per la generazione degli embedding
- Normalizza i vettori per ottimizzare la ricerca

3. Vector DB (FAISS):

• Memorizza gli embedding in un database vettoriale

- Ottimizza la ricerca per similarità
- Garantisce recupero efficiente dei chunk rilevanti

4. Retriever:

- Esegue query semantiche sul database
- Recupera i k chunk più rilevanti
- Prepara il contesto per il LLM

5. LLM Interface (CodeQwen e Llama 3.2):

- Interfaccia tramite Ollama con i LLM CodeQwen e Llama 3.2
- Genera risposte basate sul contesto recuperato

4.3 Software Utilizzati

4.3.1 Ollama

Ollama [?] è un software che permette di utilizzare in locale LLM senza dover dipendere da servizi cloud esterni. Il software è stato scelto per la sua flessibilità, permettendo di integrare facilmente i modelli LLM nel sistema RAG.

LLM

Ogni LLM è specializzato per determinati scopi, per questo motivo per rendere più completa la ricerca sono stati utilizzati due modelli con caratteristiche differenti:

4.3.2 Llama 3.2

Llama 3.2 3B [?], un modello di linguaggio open source. Il modello, con 3 miliardi di parametri, è ottimizzato per compiti di dialogo multilingue e si distingue per le sue capacità di recupero e sintesi delle informazioni. La scelta è ricaduta su questa versione per il suo equilibrio tra prestazioni e requisiti computazionali che permottono il suo utilizzo senza hardware troppo potente.

4.3.3 Codequen 1.5

Codeqwen [?] è un modello di linguaggio open source specializzato nella generazione di codice e documentazione tecnica. Con 7 miliardi di parametri, il modello è stato addestrato su un ampio dataset di codice sorgente e documentazione tecnica, permettendo di generare codice coerente e ben strutturato. La scelta di questo modello è stata dettata, a differenza di llama3.2, dalla sua specializzazione nella programmazione e dalla sua capacità di generare codice di alta qualità.

4.3.4 LangChain

LangChain [?] è un framework open source progettato per costruire applicazioni basate su LLM. Fornisce strumenti avanzati per integrare modelli con dati esterni ed API, creare pipeline con chain e gestire database vettoriali, supportando l'implementazione di sistemi RAG.

4.3.5 BGE-M3

BGE-M3 [?] è un modello di embedding testuale open source per la gestione di dati strutturati e non strutturati multilingue. Il modello permettendo di convertire testo in vettori numerici ad alta dimensionalità.

4.3.6 FAISS

FAISS (Facebook AI Similarity Search) [?] è una libreria open source per la ricerca efficiente di similarità e il clustering di vettori densi. Progettata per gestire dataset su larga scala, FAISS supporta operazioni di ricerca anche su insiemi di vettori che superano la capacità della RAM, grazie a tecniche di indicizzazione avanzate e ottimizzazioni computazionali.

4.4 Dataset

Il dataset è stato creato appositamente per testare il sistema RAG ed è composto da diciannove classi Java:

DateUtilCustom.java Classe personalizzata per gestire le date

GiorniMagici.java Classe per calcolare in maniera particolare dei giorni

BasketballStats.java Classe abstract per statistiche di basket

AdvancedBasketballStats Classe che estende BasketballStats

BasketballTest Classe per testare le statistiche di basket implementate in AdvancedBasketballStats

Altre classi java Non strettamente correlate con le prime due utili per aumentare la base dati sul quale effettuare le ricerche e per testare la capacità di generalizzazione del sistema.

4.5 Scenario base del Caso Studio

DateUtilCustom.java e GiorniMagici.java sono strettamente correlate infatti GiorniMagici.java richiama metodi definiti in DateUtilCustom.java. Andremo a testare il sistema RAG con la seguente query:

• Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 2, 14))?

4.5.1 Codice di riferimento per rispondere alla query

In GiorniMagici.java è presente la seguente funzione:

Listing 4.1: Metodo segnaleWow in GiorniMagici.java

Questa funzione richiama il metodo getMessaggioMagico presente in DateUtil-Custom.java:

Listing 4.2: Metodo getMessaggioMagico in DateUtilCustom.java

```
public static String getMessaggioMagico(LocalDate datamagica) throws
       DateTimeParseException {
       DayOfWeek giornoSettimana = datamagica.getDayOfWeek();
3
       switch(giornoSettimana) {
           case MONDAY: return "La magia inizia nel silenzio...";
4
           case TUESDAY: return "I sussurri degli antichi si fanno sentire.";
5
           case WEDNESDAY: return "Il velo tra i mondi e' sottile oggi.";
6
           case THURSDAY: return "L'energia magica e' potente e chiara.";
           case FRIDAY: return "Attenzione agli incantesimi del crepuscolo.";
           case SATURDAY: return "Il giorno perfetto per scoprire segreti nascosti.";
           case SUNDAY: return "Riposa e rigenera il tuo potere magico.";
           default: return "Il giorno e' avvolto nel mistero...";
11
       }
12
```

4.5.2 Risultato Atteso

Essendo il 14 Febbraio 2025 un venerdì, ci aspettiamo come risposta:

"il tuo segnale Wow è: Attenzione agli incantesimi del crepuscolo."

4.6 Implementazione

4.6.1 Creazione dei Chunk

22

I modelli di embedding hanno limiti massimi di input (512-4096 token) per questo spezzare il codice in chunk di dimensioni adeguate è obbligatorio oltre ad essere in ogni caso fondamentale. Inoltre occorre prestare attenzione alla dimensione dei chunk generati, se troppo piccoli riducono il contesto disponibile per il modello mentre se troppo grandi perdono focalizzazione semantica. Per suddividere il file Java in chunk viene utilizzata la libreria langchain_text_splitters. Il seguente codice Python mostra come suddividere i file Java in chunk di dimensione fissa, salvando i risultati in un file JSON.

Listing 4.3: Codice Python per la suddivisione dei file Java in chunk

```
from langchain_text_splitters import RecursiveCharacterTextSplitter
import json
```

```
# Funzione per caricare e suddividere un file Java
4
5
       def process_file(file_path):
6
            with open(file_path, "r", encoding="utf-8") as f:
             lines = f.readlines()
8
            # Ricostruisce il testo mantenendo le informazioni sulle linee
9
            text = ''.join(lines)
11
            splitter = RecursiveCharacterTextSplitter(
12
            chunk_size=512, # medio-basso per prevenire merge di metodi
13
            chunk_overlap=128,
14
            separators=[
                # I seguenti separatori sono stati usati per mantenere i metodi uniti
16
17
                # Prioritari: catturano la fine dei metodi
                \nn\npublic ",
18
                "\n}\n\nprivate ",
19
20
                "\n}\n\nprotected ",
21
                \nn\nstatic ",
22
                \nn}\n\n// End of method",
23
                # Secondari: separatori generici
24
                "\nclass ", # Inizio nuove classi
25
                "\n@", # Annotazioni
26
                "\n/**",  # Javadoc
27
                "\n * ",
28
                "\n"
29
           ],
30
            keep_separator=True
31
32
            is_separator_regex=False
33
34
            chunks = splitter.split_text(text)
35
            # Calcola le linee esatte per ogni chunk
36
            chunk_metadata = []
37
38
            cursor = 0
            for chunk in chunks:
39
                start_line = text.count('\n', 0, cursor) + 1
40
                chunk_length = len(chunk)
41
                end_line = text.count('\n', 0, cursor + chunk_length) + 1
42
43
                chunk_metadata.append({
                    "start_line": start_line,
44
                    "end_line": end_line,
45
                    "text": chunk
46
                })
47
                cursor += chunk_length
48
49
            return chunk_metadata
50
51
       # Carica e suddividi i file Java
       files = glob.glob("my_project/classi_java_custom/*.java") #["my_project/
53
```

```
DateUtilCustom.java", "my_project/GiorniMagici.java", "my_project/
            BasketballStats.java", "my_project/Ventunoclassi.java"]
        all_chunks = []
        for file_path in files:
56
            chunks_info = process_file(file_path)
57
            for chunk_info in chunks_info:
58
                chunk_text = chunk_info["text"]
61
                # Aggiungi contesto strutturale
                class_context = ""
62
                if "class " in chunk_text:
63
                    class_name = chunk_text.split("class ")[1].split("{")[0].strip()
64
                    class_context = f"Classe: {class_name}\n"
65
66
                all_chunks.append({
67
                    "id": len(all_chunks) + 1,
68
                    "text": f"// File: {file_path}\n{class_context}{chunk_text}",
69
70
                    "source": file_path,
                    "type": "code",
71
                    "start_line": chunk_info["start_line"],
72
                    "end_line": chunk_info["end_line"],
73
                    "class": class_context.replace("Classe: ", "") if class_context
74
                        else ""
                })
76
        # Salva i chunk in un file JSON
77
       with open("chunks.json", "w", encoding="utf-8") as f:
78
            json.dump(all_chunks, f, indent=4, ensure_ascii=False)
```

Il chunking è costruito in maniera specifica per **codice java**, i separatori sono stati scelti per tentare di segmentare il codice secondo la struttura tipica dei metodi e delle classi, garantendo che il chunk contenga blocchi di codice "interi". L'opzione keep_separator=False crea punti di split più naturali per il codice Java, allineandosi meglio con la struttura dei metodi e delle classi. Per ciascun chunk, se nel testo è presente la stringa class, il codice estrae il nome della classe (prendendo il testo che segue class fino al primo {) e lo utilizza per creare un contesto strutturale (es Classe: NomeClasse). Questo contesto viene preappeso al testo del chunk e salvato anche come valore nel campo "class".

Il risultato nel file chunks.json è il seguente:

24

Listing 4.4: Esempio di chunks generati

```
"id": 1,
"text": "// File: my_project/classi_java_custom\\
 AdvancedBasketballStats.java\nClasse:
 AdvancedBasketballStats extends BasketballStats\
 npackage classi_java_custom;\nimport java.time.
 LocalDate; \nimport java.util.Arrays; \npublic
 class AdvancedBasketballStats extends
 BasketballStats {\n \n // Override con
 formula avanzata PER\n
                         @Override\n
 double calcolaEfficienzaGiocatore(int punti, int
 rimbalzi, int assist, \n
                                           int
 pallePerse, int tiriSbagliati) {\n
                                           return
 (punti * 1.2 + rimbalzi * 1.1 + assist * 1.3) - \
                (pallePerse * 0.9 + tiriSbagliati
 * 0.7);\n
             }",
"source": "my_project/classi_java_custom\\
 AdvancedBasketballStats.java",
"type": "code",
"start_line": 1,
"end_line": 14,
"class": "AdvancedBasketballStats extends
 BasketballStats\n"
"id": 2.
"text": "// File: my_project/classi_java_custom\\
AdvancedBasketballStats.java\n(pallePerse * 0.9 +
  tiriSbagliati * 0.7);\n
                            }\n
                                    \n
 Override con valutazione dettagliata\n
 @Override\n
               public String valutaTiro(double
 distanzaCanestro, int pressioneDifensiva) {\n
        if (distanzaCanestro < 1.5 &&
 pressioneDifensiva < 4) {\n</pre>
                                        return \"
 Tiro ad alto rendimento (85% successo) \";\n
        } else if (distanzaCanestro >= 7.0 &&
 pressioneDifensiva > 6) {\n return \"
```

Ogni chunk mantiene:

- Il riferimento al file sorgente
- Il nome della classe
- Le righe di inizio e fine nel file originale
- Il contenuto del codice con la sua struttura

4.6.2 Arricchire i chunk con metadati relativi al codice

Oltre al testo del codice, è importante mantenere informazioni aggiuntive per facilitare la ricerca e l'interpretazione dei chunk. La seguente funzione extract_method_name aggiunge una stringa contestuale per ogni chunk che include:

- Il nome del metodo o della classe
- La classe di appartenenza

26

• Le righe di inizio e fine del codice

Listing 4.5: Funzione extract_method_name

```
6
            # Pattern per i costruttori
            constructor_pattern = r'(?:public|private|protected)\s+(\w+)\s*\([^)]*\)'
            # Cerca la firma di un metodo
9
            matches = re.findall(method_pattern, text)
            if matches:
11
                return matches[0] # Restituisce il primo metodo trovato
12
13
14
            # Cerca costruttori
            constr_matches = re.findall(constructor_pattern, text)
            if constr_matches:
16
                 return constr_matches[0] + " (costruttore)"
17
18
19
            # Cerca chiamate a metodi
            method_calls = re.findall(r' \setminus (w+) \setminus s* \setminus (', text)
20
            if method_calls:
21
22
                return f"Chiamata a: {method_calls[-1]}"
23
            return "unknown_method" # Default se non trova nulla
```

4.6.3 Generazione degli Embedding

Gli embedding trasformano i chunk in rappresentazioni vettoriali che catturano il significato semantico. Il seguente codice Python mostra come generare gli embedding e creare un database Faiss. Come precedentemente descritto, il modello di embedding utilizzato è BGE-M3, questo modello usa due rappresentazioni per complementarietà, la rappresentazione densa cattura relazioni semantiche mentre quella sparsa cattura relazioni sintattiche. Mentre sul database FAISS ad alta dimensionalità verrà settata la ricerca di somiglianza utilizzando la distanza euclidea tra i vettori.

Listing 4.6: Codice Python per la generazione degli embedding e la creazione di un database FAISS

```
11
           # 2. Carica il modello BGE-M3 e genera gli embedding
12
           embedder = SentenceTransformer('BAAI/bge-m3')
13
           embeddings = embedder.encode(
                [f"METHOD:{extract_method_name(c['text'])} CLASS:{c['class']} LINES:{c
14
                    ['start_line']}-{c['end_line']} CONTENT:{c['text']}"
                for c in chunks_data],
                show_progress_bar=True
18
           # 3. Crea un database FAISS
19
           vector_store = FAISS.from_embeddings(
20
                text_embeddings=list(zip(chunks, embeddings)), # Abbina testi e
21
                embedding=embedder, # Modello per future operazioni
22
23
24
25
           # 4. Salva il database
26
           vector_store.save_local("./faiss_db")
           print("Database FAISS creato e salvato in ./faiss_db.")
```

Il metodo encode() del modello BGE-M3 genera gli embedding per ogni chunk, chiamando la funzione $extract_method_name$ per arricchire il contesto e creare vettori con relazioni semantiche strutturate.

4.6.4 Esecuzione di query sul Database FAISS

Una volta creato il database FAISS, è possibile eseguire ricerche semantiche sui chunk memorizzati:

Listing 4.7: Esecuzione di una query sul database FAISS

```
from langchain_community.vectorstores import FAISS
       {\tt from\ langchain\_huggingface\ import\ HuggingFaceEmbeddings}
       # 1. Carica il modello di embedding nel formato corretto
       embedder = HuggingFaceEmbeddings(
           model_name="BAAI/bge-m3",
           model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
9
10
       # 2. Carica il database FAISS esistente
11
       vector_store = FAISS.load_local(
12
           folder_path="./faiss_db",
           embeddings=embedder,
15
           allow_dangerous_deserialization=True
```

```
)
16
17
       # 3. Query di esempio
18
19
       query = "Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"
20
       # 4. Cerca i chunk piu' simili
21
       docs = vector_store.similarity_search_with_score(
22
23
            query,
24
            k=5,
            score_threshold=0.90, # bassa similarita'
25
            search_type="similarity", # Piu' efficace per il codice
26
            lambda_mult=0.5
                                  # Bilancia diversita'/rilevanza
27
28
29
       # 5. Stampa i risultati con relativo score
30
       for i, (doc, score) in enumerate(docs):
31
            print(f"Risultato {i+1} (Score: {score:.4f}):")
32
33
            print(doc.page_content)
34
            print("-" * 40)
```

Risultati con query base (senza alcun riferimento al metodo utilizzato all'interno di segnale Wow)

- Query:
 "Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"
- Output: viene restituito il chunk corretto con uno score di similarità di 0.7014. Questo valore, basato sulla cosine similarity, non è particolarmente alto ma sufficiente per identificare il chunk corretto.

Nota: È importante riscontrare che viene restituito un solo chunk nonostante k=5. Questo accade perché nessun altro chunk supera la soglia di similarità impostata. Tale comportamento evidenzia una criticità: la funzione segnaleWow() richiama un metodo presente nella libreria DateUtilCustom che non viene estratto dal Dataset.

Riformulazione query (aggiungendo riferimento al metodo utilizzato all'interno di segnale Wow)

• Per risolvere questo problema, la query è stata riformulata:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10)) che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?"

• L'output fornisce 5 risultati:

- Primo chunk (score: 0.5441): contiene la funzione segnaleWow
- Secondo, terzo e quarto chunk (scores: 0.7325, 0.7466, 0.7989): contengono la funzione getMessaggioMagico
- Quinto chunk (score: 0.8301): funzione non rilevante relativa alle date

Conclusione: Sono state riscontrate due problematiche molto rilevanti, la prima riguarda la mancanza di estrazione di metodi da librerie esterne se non esplicitate nella query. Mentre la seconda guarda i chunk estratti, lo score ottenuto non è particolarmente alto e questo con un database più ampio relativo a funzioni con terminologie e meccanismi simili potrebbe portare a risultati non coerenti. Per il secondo punto questa analisi ha portato alla decisione di abbassare score_threshold da 0.90 a 0.80, questa piccola correzione risolve in parte la problematica o almeno evita di propagarla ulteriormente preferendo non ottenere risultati piuttosto che ricevere risposte non coerenti.

4.6.5 Creazione della Pipeline RAG

Listing 4.8: Pipeline RAG

```
from langchain_community.vectorstores import FAISS
       from langchain_huggingface import HuggingFaceEmbeddings
       from langchain_ollama import OllamaLLM
       from langchain.chains import create_retrieval_chain
       from langchain.chains.combine_documents import create_stuff_documents_chain
       from langchain.prompts import PromptTemplate
6
       # Configurazione embedding
       embedder = HuggingFaceEmbeddings(
9
10
           model_name="BAAI/bge-m3",
           model_kwargs={'device': 'cpu'},
11
12
           encode_kwargs={'normalize_embeddings': True}
```

```
)
13
14
15
        # Caricamento database FAISS
16
        vector_store = FAISS.load_local(
            folder_path="./faiss_db",
17
            embeddings=embedder,
18
            allow_dangerous_deserialization=True
19
20
21
        # Aggiunta del database FAISS al retriever
22
        retriever=vector_store.as_retriever(
                search_kwargs={
23
                    "k": 5,
                                                # Piu' documenti per contesto
24
                     "score_threshold": 0.80, # medio-bassa similarita' inizialmente
25
                     "search_type" : "similarity", # Piu' efficace per il codice
26
                                              # Bilancia diversita'/rilevanza
                     "lambda_mult":0.5
27
28
                }
29
            )
30
        varStileLLM = "Sei un programmatore che risponde conciso e sintetico."
31
32
        # Configurazione Template del prompt specifici per i modelli
33
        LLAMA_TEMPLATE = """ < | begin_of_text | >
34
        <|start_header_id|>system""" + varStileLLM + """<|end_header_id|>
35
36
        Contesto: {context}<|eot_id|>
37
        <|start_header_id|>user<|end_header_id|>
        Domanda: {input}<|eot_id|>
38
        <|start_header_id|>assistant<|end_header_id|>"""
39
40
        CODEQWEN_TEMPLATE = """<|im_start|>system """ + varStileLLM + """
41
42
        {context}<|im_end|>
        {{ if .Functions }} < | im_start| > functions
43
        {{    .Functions }}<|im_end|>{{    end }}
44
        <|im_start|>user
45
46
        {input}<|im_end|>
47
        <|im_start|>assistant
        0.00
48
49
        COMMON_PARAMS = {
50
51
            "temperature": 0.3, #lasciamo una bassa creativita' non vogliamo che
                inventi risposte
            "top_p": 0.85  # Bilancia creativita'/controllo nei token generati
53
54
        # Caricamento modello
55
56
        def load_model(model_name):
            models = {
57
                "llama3.2": {
58
59
                     "template": LLAMA_TEMPLATE,
                    "params": COMMON_PARAMS
60
```

```
},
61
62
                 "codeqwen": {
63
                     "template": CODEQWEN_TEMPLATE,
                     "params": COMMON_PARAMS
65
            }
66
            if model_name not in models:
67
68
                 raise ValueError(f"Modello non supportato: {model_name}")
            return OllamaLLM(
                 model=model_name ,
70
71
                 **models[model_name]["params"]
            ), PromptTemplate(
72
                 template=models[model_name]["template"],
73
                 input_variables=["input", "context"]
74
            )
75
76
77
        # Inizializza il modello
        llm , prompt = load_model("codeqwen")
78
79
        # Catena RAG
80
        document_chain = create_stuff_documents_chain(llm, prompt)
81
        rag_chain = create_retrieval_chain(
82
            retriever.
83
            document_chain
84
86
        # Funzione query
87
        def ask_ollama(question):
88
89
            try:
                 result = rag_chain.invoke({"input": question})
90
91
                 print("DOMANDA:", question)
                 print("RISPOSTA:")
92
                 print(result["answer"])
93
                 print("FONTI:")
94
95
                 for i, doc in enumerate(result["context"], 1):
                     print(f"{i}. {doc.page_content[:150]}...")
                     if 'source' in doc.metadata:
97
                         print(f" Fonte: {doc.metadata['source']}")
98
                     print("-" * 80)
99
100
            except Exception as e:
101
                 print(f"ERRORE: {str(e)}")
103
        # Esempio d'uso
        if __name__ == "__main__":
             ask_ollama("Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 2, 14))
105
                 che utilizza la funzione getMessaggioMagico() della libreria
                 DateUtilCustom?")
            #ask_ollama("Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 2, 14))
106
```

Spiegazione Pipeline del RAG

Seguendo la struttura precedentemente creata, per eseguire l'embedder della query di input viene utilizzato il modello BAAI/bge-m3 e caricato il database FAISS contenente la **knowledge base**. La chiamata iniziale alla funzione $ask_ollama()$ richiede come parametro **la query di input** per poi essere processata dalla pipeline RAG. Sfruttando le funzionalità della libreria LangChain [?], result sarà un array contente la risposta("answer") e il contesto("context") fornito alla query.

$rag_chain.invoke()$

Questa funzione esegue la catena RAG creata tramite il metodo *create_retrieval_chain()* che prende come parametri il retriever e il document chain.

- la funzione **create_stuff_documents_chain()** carica una catena di documenti prendendo in input il modello LLM e il template del prompt.
- load_model() carica il modello LLM e il template del prompt in base al modello scelto sfruttando OllamaLLM e PromptTemplate.

Temperature

Per i due LLM è stata data una temperature molto bassa **0.3** in modo da garantire da parte dei LLM risposte coerenti e precise senza provi ad inventarle.

Top_p

Il parametro top_p è stato impostato a 0.85 per bilanciare creatività e controllo nei token generati.

System

Come parametro di sistema da passare al LLM è stata creata la variabile varStileLLM con il seguente valore: "Sei un programmatore che risponde conciso e sintetico" questa richiesta verrà sempre passata al LLM e condizionerà tutte le risposte fornite.

4.7 Test Sistema RAG

Valutiamo se il sistema RAG è in grado di rispondere in maniera coerente alla query proposta. Ricordiamo che il risultato atteso è: "il tuo segnale Wow è: Attenzione agli incantesimi del crepuscolo."

4.7.1 Query base senza riferimenti al metodo utilizzato all'interno di segnaleWow

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 2, 14))?"

Fonti aggiunte al prompt

Il RAG aggiunge solo il chunk dove è presente la funzione segnaleWow e non il chunk con la funzione getMessaggioMagico della libreria DateUtilCustom per questo le risposte dei due modelli sono incomplete:

Output con LLM Llama3.2

L'output ottenuto utilizzando il modello Llama3.2 è stato:

"Il metodo segnaleWow restituisce una stringa che contiene un messaggio magico associato alla data specificata. In questo caso, la data è il 14 Febbraio 2025. La risposta esatta sarebbe: "il tuo segnale Wow è : [messaggio magico]" dove [messaggio magico] è il risultato dell'applicazione di 'DateUtilCustom.getMessaggioMagico(date)."

Modifica Temperature

CodeQwen provava a dare risposta anche senza avere tutte le informazioni necessarie, ho deciso di abbassare la temperatura da 0.3 a 0.2 per vedere se il modello CodeQwen avrebbe risposto in maniera più precisa. Cosa che è avvenuta:

Output con LLM CodeQwen

Utilizzando invece il modello CodeQwen, la risposta ottenuta è stata:

"Se si chiama il metodo 'segnaleWow' con un'istanza di 'LocalDate' che rappresenta la data "14 febbraio 2025", il valore restituito sarà una stringa che indica il segnale Wow associato a tale data. "'java String result = GiorniMagici.segnaleWow(LocalDate.of(2025, 2, 14)); System.out.println(result); "Il metodo 'getMessaggioMagico' viene richiamato su un'istanza di 'DateUtilCustom', passando la data "14 febbraio 2025" come parametro. Questo metodo presumibilmente restituisce un messaggio magico associato a tale data, ad esempio "La data del New Year è una data speciale". Il risultato finale sarà: "' il tuo segnale Wow è: La data del New Year è una data speciale"

4.7.2 Query Completa con riferimenti al metodo utilizzato all'interno di segnaleWow

''Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 2, 14)) che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?''

Fonti aggiunte dal RAG al prompt

In questo caso il RAG aggiunge 5 chunk, ovvero oltre a quello relativo alla funzione segnaleWow anche i chunk relativi alla funzione getMessaggioMagico della libreria DateUtilCustom. Ne consegue che le risposte date dai due modelli sono coerenti con quanto atteso.

Output con LLM Llama3.2

"Il metodo **segnaleWow** restituisce una stringa che contiene il messaggio magico per la data specificata. Per determinare il messaggio esatto, dobbiamo analizzare la data fornita: 'LocalDate.of(2025, 2, 14)'. La data è il 14 febbraio 2025. Il giorno della settimana corrisponde a 'FRIDAY'. Quindi, il messaggio magico restituito dal metodo 'getMessaggioMagico' sarà: "**Attenzione agli incantesimi del crepuscolo.**""

Output con LLM CodeQwen

"Se si chiama il metodo 'segnaleWow' con una data di 'LocalDate.of(2025, 2, 14)', utilizzando la funzione 'getMessaggioMagico()' della libreria 'DateUtilCustom', il risultato sarà: "' Il tuo segnale Wow è : Il giorno perfetto per scoprire segreti nascosti. "' Questo è dato che la data 2025-02-14 cade mercoledì, quindi il metodo 'getMessaggioMagico()' restituisce il messaggio "Il giorno perfetto per scoprire segreti nascosti."

4.7.3 Commento risultati ottenuti

I risultati ottenuti mostrano come il sistema RAG sia in grado di rispondere in maniera coerente alla query proposta. La ricerca dei chunk più simili funziona correttamente soprattutto se si scrive la richiesta in maniera più dettagliata possibile. CodeQwen ha sbagliato a calcolare il giorno della settimana a causa di un suo errore nel calcolare il giorno della settimana corrispondente alla data fornita come parametro ma la risposta utilizza correttamente il metodo getMessaggioMagico().

4.8 Valutazione "llm as a judge"

Per eseguire una valutazione più ampia del sistema usiamo l'approccio "llm as a judge" per valutare automaticamente quanto prodotto dal sistema RAG. Generiamo 30 domande sulle quali sarà richiesta risposta al sistema RAG e sucessivamente eseguita una valutazione automatizzata delle risposte prodotte da parte di un altro LLM.

4.8.1 Crezione domande

Passando un file contenente tutte le librerie a **NotebookLM**, sono state generate 30 domande per valutare il sistema RAG. La domanda fatta al LLM è stata:

''Dalle mie classi genera 30 domande/risposte per valutare il mio rag la prima è:

Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 2, 14))

che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?''

Il risulta è stato il seguente:

Listing 4.9: Domande/Risposte generate da NotebookLM

```
"question1": "Cosa ritorna il metodo 'segnaleWow(LocalDate
     .of(2025, 2, 14))' che utilizza la funzione '
     getMessaggioMagico() ' della libreria 'DateUtilCustom'?",
    "answer": "Ritorna la stringa \"il tuo segnale Wow e':
     Attenzione agli incantesimi del crepuscolo.\""
   "question2": "La classe 'AnalizzatoreRilascio' contiene un
      metodo chiamato 'stimaDataRilascio'. Quali sono i due
     parametri di input richiesti da questo metodo?",
    "answer": "Il metodo 'stimaDataRilascio' richiede un array
      di interi ('int[] taskCompletati') e un valore double ('
     double velocitaSviluppo') come input."
},
    "question3": "Nella classe 'AnalizzatoreRilascio', come
     viene calcolato il numero di task rimanenti nel metodo '
     stimaDataRilascio '?",
   "answer": "Il numero di task rimanenti viene calcolato
     sottraendo la somma dei task completati (assumendo un
     totale di 100 task)."
 },
   "question4": "Qual e' il valore di soglia critica per l'
     indice di rischio rilascio (IRR) nella classe '
     AnalizzatoreRilascio'?",
   "answer": "La soglia critica per l'IRR e' **8.5**."
 },
    "question5": "Quali sono i parametri di input del metodo '
     calcolaProbabilitaSuccesso' nella classe'
     AnalizzatoreRilascio' e come viene calcolata la
     probabilita' di successo?",
```

```
"answer": "I parametri sono 'numeroBugRisolti' e '
     numeroTestPassati'. La probabilita' di successo e'
     calcolata come '(numeroBugRisolti * 0.4) + (
     numeroTestPassati * 0.6)'."
},
    "question6": "Qual e' lo scopo del metodo '
     stimaTempoRimanente' nella classe 'AnalizzatoreRilascio'
     e quali parametri accetta?",
    "answer": "Stima il tempo rimanente per il rilascio.
     Accetta 'taskRimanenti' (numero di task rimanenti) e '
     velocitaSviluppo' come parametri."
},
    "question7": "Nella classe 'BasketballStats', qual e' la
     formula utilizzata per calcolare l'efficienza di un
     giocatore nel metodo 'calcolaEfficienzaGiocatore'?",
    "answer": "La formula e' '(punti + rimbalzi + assist) - (
     pallePerse + tiriSbagliati)'."
},
    "question8": "Quali sono i criteri utilizzati nel metodo '
     valutaTiro' della classe 'BasketballStats' per valutare
     la qualita' di un tiro?",
    "answer": "La **distanza dal canestro** ('distanzaCanestro
     ') e la **pressione difensiva** ('pressioneDifensiva')."
},
    "question9": "Cosa restituisce il metodo '
     analisiStatisticheSquadra' della classe 'BasketballStats
    "answer": "Restituisce un report dettagliato delle
     prestazioni della squadra."
},
    "question10": "Quali sono gli input del metodo '
     previsioneVincitore' nella classe 'BasketballStats' e
     cosa rappresentano?",
    "answer": "Gli input sono due array di double ('
```

```
squadraCasa 'e 'squadraOspite') che contengono '[
     puntiMedi, rimbalziMedi, assistMedi]', e una 'LocalDate
     dataPartita'."
},
    "question11": "Come viene calcolato il margine nel metodo
     'previsioneVincitore' della classe 'BasketballStats'?",
    "answer": "Il margine e' calcolato come il valore assoluto
      della differenza tra la valutazione della squadra di
     casa e la valutazione della squadra ospite."
},
    "question12": "Cosa rappresenta l'input del metodo '
     calcolaMomentum 'nella classe 'BasketballStats'?",
    "answer": "Rappresenta gli ultimi punti segnati dalla
     squadra di casa ('ultimiPuntiCasa') e dalla squadra
     ospite ('ultimiPuntiOspite')."
    "question13": "Qual e' il requisito per la lunghezza della
      chiave segreta nel metodo 'cifraturaVortex' della classe
      'CifratoreAziendale'?",
    "answer": "La chiave segreta deve essere di 12 caratteri."
},
    "question14": "Cosa fa il metodo 'mascheraDatiSensibili'
     nella classe 'TrasformatoreDati'?",
    "answer": "Il metodo maschera i dati sensibili sostituendo
      i caratteri originali con caratteri casuali."
},
    "question15": "Nella classe 'DateUtilCustom', descrivi
     cosa fa il metodo 'formatDate(Date date)' e fornisci un
     esempio del formato di output.",
    "answer": "Formatta una data nel formato \"dd/MM/yyyy\".
     Ad esempio, se la data e' il 25 dicembre 2023, l'output
     sara' \"25/12/2023\"."
```

```
"question16": "Qual e' la differenza tra i metodi '
     formatDate(Date date) ' e 'formatDate(Date date, String
     format) ' nella classe 'DateUtilCustom'?",
    "answer": "Il primo utilizza il formato predefinito \"dd/
     MM/yyyy\", mentre il secondo permette di specificare un
     formato personalizzato."
},
    "question17": "Cosa puo' accadere se si utilizza il metodo
      'parseDate' della classe 'DateUtilCustom' con una
     stringa che non corrisponde al formato specificato?",
    "answer": "Verra' lanciata una 'ParseException'."
},
    "question18": "Nella classe 'DateUtilCustom', cosa calcola
      il metodo 'getDifferenceInDays(Date startDate, Date
     endDate) '?",
    "answer": "Calcola la differenza in giorni tra due date."
},
    "question19": "Cosa fa il metodo 'addDays(Date date, int
     days) ' nella classe 'DateUtilCustom'?",
    "answer": "Aggiunge un numero specificato di giorni a una
     data."
},
    "question20": "Come si verifica se una data e' nel passato
      usando la classe 'DateUtilCustom'?",
    "answer": "Utilizzando il metodo 'isPastDate(Date date)'."
},
    "question21": "Cosa fa il metodo '
     giorniAlmiocompleannoSpecial(Date dataNascita, String
     nome) 'nella classe 'DateUtilCustom'?",
    "answer": "Calcola i giorni che mancano al compleanno di
     una persona e restituisce un messaggio personalizzato."
},
    "question22": "In 'ElaboratoreLinguaggio', come viene
```

```
calcolato il punteggio di sentimento di un testo?",
    "answer": "Il punteggio di sentimento e' calcolato come '(
     punteggioPositivo - punteggioNegativo) / (double) (
     punteggioPositivo + punteggioNegativo + 1) '."
},
    "question23": "Qual e' lo scopo del metodo '
     estraiEntitaNominate 'nella classe 'ElaboratoreLinguaggio
    "answer": "Estrae entita' nominate dal testo."
},
    "question24": "Cosa fa il metodo 'applicaTemplate' nella
     classe 'GestoreConfigurazioni'?",
    "answer": "Sostituisce i placeholder in un template con i
     valori corrispondenti forniti in una mappa di
     configurazioni."
    "question25": "In 'GestoreConoscenza', cosa fa il metodo '
     estraiMetadati'?",
    "answer": "Estrae metadati da un documento, inclusi autore
     , data e parole chiave."
},
    "question26": "Qual e' lo scopo del metodo '
     generaldentitaDigitale' nella classe 'GestoreIdentita' e
     cosa prende come input?",
    "answer": "Genera un'identita' digitale sotto forma di
     token JWT firmato digitalmente. Prende come input dati
     biometrici codificati ('byte[] parametriBiometrici')."
},
    "question27": "Cosa verifica il metodo 'verificaIdentita'
     nella classe 'GestoreIdentita'?",
    "answer": "Verifica l'identita' confrontando un token JWT
     con un'impronta hash attesa."
```

```
"question28": "Quali controlli vengono eseguiti all'
     interno del metodo 'generaChiaveAttivazione' della classe
      'GestoreLicenze'?",
    "answer": "Verifica che il codice cliente sia di 8 cifre e
      che la data di scadenza sia nel formato corretto (
     AAAAMMGG)."
},
    "question29": "Cosa calcola il metodo '
     calcolaIndiceManutenibilita' della classe '
     IspezionatoreCodice '?",
    "answer": "Calcola un valore MI (Maintainability Index)
     basato su metriche interne come la lunghezza delle righe,
      il numero di commenti e la complessita' ciclomatica."
    "question30": "In 'MetricheAgili', cosa rappresenta il '
     fattoreComplessita' nel metodo 'calcolaVelocityScore' e
     qual e' il suo range?",
    "answer": "Rappresenta un fattore di complessita' e il suo
      range e' da 1 a 5."
```

4.8.2 Metrica del punteggio

Per valutare le domande generate da **LMNotebook**, è stato chiesto a **GPT4o** e a **Mistral** di fornire un "punteggio totale" che indichi la capacità di rispondere alla domanda senza ambiguità con il contesto dato. Su una scala da 1 a 5, dove 1 significa che la domanda è risolvibile anche senza conoscere il contesto specifico, mentre 5 quando la domanda è chiaramente e inequivocabilmente risolvibile solo conoscendo il contesto.

Risultati

42

I modelli hanno valutato le domande generate da LMNotebook con punteggi diversi:

• **Mistral**: 145 su 150

• **GPT4o**: 121 su 150

GPT40 mi ha fornito anche una tabella riepilogativa con i punteggi di ogni domanda:

ID	Domanda	Punteggio (1-5)	Motivazione
1	Metodo segnaleWow e	5	Impossibile senza accesso al
	<pre>getMessaggioMagico()</pre>		codice specifico.
2	Parametri di	5	I parametri sono arbitrari e non
	stimaDataRilascio		deducibili senza documentazione.
3	Calcolo task rimanenti in	5	La logica interna non è
	stimaDataRilascio		prevedibile senza codice.
4	Soglia critica dell'IRR	5	Questo valore è arbitrario e
			definito solo nel
			codice/documentazione specifica.
5	Parametri e calcolo di	5	La formula è sconosciuta senza
	calcolaProbabilitaSuccesso		accesso diretto.
6	Scopo e parametri di	5	Dipende dalla logica
	stimaTempoRimanente		implementata.
7	Formula di	4	Se usa metriche standard NBA,
	calcolaEfficienzaGiocatore		potrebbe essere ipotizzabile,
			altrimenti no.
8	Criteri di valutaTiro	4	Se segue principi di analisi
			statistica sportiva, si può
			ipotizzare, ma senza certezza.
9	Output di	4	Può essere stimato, ma la
	analisiStatisticheSquadra		struttura esatta non è nota.
10	Input e significato di	4	Alcuni parametri sono
	previsioneVincitore		prevedibili, ma i dettagli precisi
			no.
11	Calcolo del margine in	5	La formula specifica è ignota.
	previsioneVincitore		

4.8. VALUTAZIONE "LLM AS A JUDGE"

ID	Domanda	Punteggio (1-5)	Motivazione
12	Input di calcolaMomentum	4	Se segue definizioni standard,
			potrebbe essere deducibile.
13	Lunghezza chiave in	5	È una regola arbitraria del
	cifraturaVortex		software specifico.
14	Scopo di	3	Il concetto è generico, ma
	mascheraDatiSensibili		l'implementazione varia.
15	Scopo e output di formatDate	2	È un metodo comune, altamente prevedibile.
16	Differenza tra i due formatDate	2	Differenza standard tra metodi
			di formattazione con/senza specifica del formato.
17	Comportamento di parseDate	3	Tipicamente lancia un'eccezione,
	con input errato		ma la gestione può variare.
18	$Funzione \ {\tt getDifferenceInDays}$	2	Metodo comune,
			implementazione prevedibile.
19	Funzione addDays	2	Standard in qualsiasi utility di
			date.
20	Verifica se una data è nel passato	2	Operazione semplice con
0.4		_	isBefore().
21	Scopo di	5	Nome ambiguo, logica ignota.
22	giorniAlmiocompleannoSpecial	4	
22	Calcolo punteggio di sentimento	4	Se segue NLP standard,
ດາ	Carra di antoni Portita Namiorata	9	potrebbe essere ipotizzabile.
23	Scopo di estraiEntitaNominate	3	NLP standard, facile da descrivere.
24	Funzione applicaTemplate	5	Nome troppo generico, può fare
24	runzione applicarempiate	9	qualsiasi cosa.
25	Funzione estraiMetadati	4	Dipende da cosa si intende per
20	Tunzione escrametadati	4	metadati nel contesto specifico.
26	Scopo e input di	5	Implementazione sconosciuta,
	generaldentitaDigitale	j	input indefiniti.
	5		•

ID	Domanda	Punteggio (1-5)	Motivazione
27	Verifica di verificaIdentita	4	Probabilmente autenticazione,
			ma non si può sapere
			esattamente come.
28	Controlli in	5	Dipende dalle policy aziendali
	${\tt generaChiaveAttivazione}$		specifiche.
29	Calcolo di	5	Nessuno standard universale,
	${\tt calcolaIndiceManutenibilita}$		dipende dalla formula interna.
30	${\tt fattoreComplessita} \ {\rm in}$	5	Senza definizione esatta, non si
	calcolaVelocityScore		può dedurre.

Verranno usati come riferimento i punteggi dati da **GPT4o**, nel dettaglio hanno questa corrispondenza:

- Domande con punteggio 5: Non risolvibili senza accesso al codice/documentazione.
- Domande con punteggio 4: Difficili, ma in alcuni casi il modello può ipotizzare una risposta sensata.
- Domande con punteggio 3: Risolvibili parzialmente con conoscenze standard, ma con margini di errore.
- Domande con punteggio 2: Generalmente risolvibili perché rientrano in pattern comuni di programmazione.

4.8.3 llm as a judge

Il sistema RAG ha elaborato le domande e fornito risposta salvando il risultato in un file JSON:

Listing 4.10: Codice aggiunto alla pipeline per elaborare massivamente le domande

```
def load_questions(file_path: str) -> List[Dict]:
    """Carica le domande dal file JSON esterno"""
    try:
        actual_path = Path(__file__).parent / file_path
```

```
with actual_path.open('r', encoding='utf-8') as f:
5
6
                data = json.load(f)
            # Validazione della struttura
            required_keys = {'id', 'question', 'answer', 'punteggio'}
9
            for item in data:
10
                if not required_keys.issubset(item.keys()):
11
                    raise ValueError("Struttura JSON non valida")
12
            return data
14
15
        except FileNotFoundError:
16
            raise Exception(f"File {file_path} non trovato")
17
        except json.JSONDecodeError:
18
            raise Exception("Errore nel parsing del JSON")
19
20
   def process_questions(questions: List[Dict]) -> List[Dict]:
21
22
        results = []
23
        for q in questions:
24
            try:
                result = rag_chain.invoke({"input": q["question"]})
25
26
                entry = {
27
                    "id": q["id"],
28
                    "question": q["question"],
                    "answerOK": q["answer"], # Mantiene il contesto originale
30
                    "answerRAG": result["answer"],
31
                    "punteggio": q["punteggio"],
32
                    "sources": [
33
34
                        {
35
                             "content": doc.page_content[:50]
36
                        for doc in result["context"]
37
                    ]
38
39
                }
                results.append(entry)
40
41
                print(f"Processata {q['id']}")
42
43
44
            except Exception as e:
                print(f"Errore su {q['id']}: {str(e)}")
45
                results.append({
46
                    "id": q["id"],
47
                    "punteggio": q["punteggio"],
48
                    "error": str(e),
49
                    "question": q["question"]
50
                })
51
52
        return results
```

Questi file sono stati valutati da **DeepSeek**, il quale ha assegnato un punteggio specifico per ogni domanda confrontando le risposte answerOK e answerRAG. Sono state effettuate quattro elaborazioni differenti:

- CodeQwen con score threshold 1.0

- Punteggio totale: 109/124
- Punteggi per domanda: [0,5,5,5,5, 5,4,4,4,4, 5,0,5,0,2, 2,3,2,2,2,5,4,3,5,4, 5,4,5,5,5]

- Llama3.2 score threshold 0.8

- Punteggio totale: 87/124
- Punteggi per domanda: [0,5,0,5,5, 5,4,4,0,4, 5,4,5,0,2, 2,3,0,0,2, 0,4,3,5,0, 5,0,5,5,5]

- Llama3.2 score threshold 1.0

- Punteggio totale: 97/124
- Punteggi per domanda: [0,5,0,5,5, 5,4,4,0,4, 5,4,5,0,2, 2,3,0,2,2, 0,4,3,5,4, 5,4,5,5,5]

- Llama3.2 score threshold 0.4

- Punteggio totale: 28/124
- Punteggi per domanda: [0,0,0,0,0, 0,0,0,0, 0,0,0,0,2, 2,3,0,2,2, 5,0,3,5,4, 0,0,0,0,0]

Nota: È interessante notare che tutti i modelli hanno sbagliato la prima domanda, non per mancanza di Chunk forniti al prompt ma a causa di un errore nel calcolo del giorno della settimana. Questo errore non si sarebbe verificato con le versioni con più parametri degli stessi modelli.

Figura 4.2: Confronto risposte modelli RAG

La configurazione migliore è stata quella del LLM CodeQwen con score threshold 1.0, i test effettuati hanno dimostrato che è meglio aumentare la tolleranza di score dei Chunk estratti nella fase di Retriever. Questo score relativamente alto, come già analizzato nei capitoli precedenti, può causare l'inserimento di alcuni Chunk non coerenti ma allo stesso tempo evita di escluderne di validi e fondamentali per permettere al LLM di rispondere correttamente. Abbiamo visto che gli score avrebbero valori molto bassi solo se le query fossero scritte in maniera molto accurata ma questo solitamente non avviene. Questa minore rigidità può essere utile per ridurre una sorta di overfitting del modello RAG. In ogni caso per prevenire il plorifirarsi di Chunk non coerenti viene sempre impostato il limite a 5 Chunk in questo modo il prompt non viene mai eccessivamente appesantito e il modello riesce ad elaborare buone risposte. Per rinforzare queste considerazione testando Llma3.2 con score threshold 1.0 e con threshold 0.8 il risultato migliore è stato con threshold maggiore perchè non ha estromesso nella fase di Retriever Chunk validi e fondamentali per la risposta. I risultati sono stati ottimi e il sistema RAG funziona correttamente aumentando le conoscenze dei LLM in manera vincente, ne è ulteriore prova l'impostazione di uno score threshold 0.4 con il quale vengono esclusi praticamente tutti i Chunck e per questo le risposte sono date

Figura 4.3: Completezza per domanda

solo dalle conoscenze del LLM con risultati estremamente scarsi non conoscendo i contesti e le librerie specificate nelle domande.

Capitolo 5

Conclusioni

"Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an 'intelligence explosion,' and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make."

— I.J. Good (1965)[?]

Questi mesi di lavoro mi hanno portato a cercare di conosce e capire il più possibile come funzionano realmente questi modelli di Intelligenza Artificiale. Nella fase di ricerca ho sempre trovato nei vari articoli e analisi stupore e meraviglia nel commentare i risultati e le capacità dimostrate da questi modelli. Il saggio di Leopold Aschenbrenner [?] "SITUATIONAL AWARENESS: The Decade Ahead", da me conosciuto quasi al termine della scrittura di questa tesi, spiega e approfondisce lo stesso giudizio che oggi ho sul futuro dell'IA. Non voglio addentrarmi ora in ulteriori giudizi generali sul futuro dell'intelligenza Artificiale preferendo tornare nel contesto di questa tesi e affermere che l'integrazione di RAG e LLM nello sviluppo del Software è oggi già piena realtà. Il sistema RAG d'esempio implementato funziona correttamente nonostante i limiti dei modelli utilizzati e con un ulteriore implementazione delle tecniche Chunking potrebbe essere realmente utilizzato con buoni risultati. Implementazioni di sistemi RAG per le aziende oggi

Figura 5.1: fig: tratta da situational-awareness.ai

danno ottimi risultati, ma resta sempre il peso e la consapevolezza che in questo momento sono sempre un passo indietro rispetto ai miglioramenti globali che giornalmente vengono rilasciati. Come programmatore al momento userò questi strumenti nel mio lavoro marginalmente perchè è mio desiderio continuare ad avere il controllo dei progetti realizzati e allo stesso tempo continuare ad avere soddisfazione e orgoglio nel riuscirci da solo. Certo sono consapevole che permettendo di velocizzare e migliorare la qualità del mio codice facendomi conoscere e ragionare su nuove tecniche e soluzioni aumentando la mia base di conoscenza. Proprio per questo mi piace concludere pensando che noi programmatori 'semplicemente' stiamo imparando da altri programmatori che non incontreremo e conosceremo mai di persona e l'AI sia, in questo campo, 'solo' un grandissimo trasmettitore di

conoscenza.

"De nihilo nihil"

— Lucrezio (55 a.c)

Capitolo 6

Ringraziamenti

Ringrazio il mio relatore il Prof. Viroli Mirko e il Dott. Aguzzi Gianluca per l'interessantissimo argomento di tesi proposto e per la disponibilità e professionalità dimostrata. Ringrazio tutta lo comunità di ricercatori che forniscono materiale open source e documentazione per permettere a tutti di apprendere e migliorare questa incredibile tecnologia. In particolare Simone Rizzo che grazie ai suoi video estremamente chiari e tecnici mi ha permesso di comprendere moltissimi concetti.