# Lake Model: Employment and Unemployment

Quantitative Economics with Python

New York University

Thursday 10<sup>th</sup> March, 2016















#### **Overview**

- The lake model is a basic tool for modeling unemployment
- It is a tool for analyzing
  - o flows between unemployment and employment
  - o how they influence steady state employment and unemployment rates
- It is a good model for interpreting monthly labor department reports on gross and net jobs created and jobs destroyed

#### **Overview**

- The "lakes" in the model are the pools of employed and unemployed
- The "flows" between the lakes are caused by
  - firing and hiring
  - o entry and exit from the labor force
- First, the parameters governing transitions into and out of unemployment and employment are exogenous
- Later, some of the transition rates are endogenously: McCall search model

#### **Overview**

- The only knowledge required for this lecture is
  - o basic linear algebra
  - o elementary concepts of Markov Chains
  - o dynamic program
- We'll use some nifty concepts like ergodicity, which provides a fundamental link between cross sectional and long run time series distributions
- These concepts will help us build an equilibrium model of ex ante homogeneous workers whose different luck generates variations in their ex post experiences

#### Model

- The economy is inhabited by a large number of **ex-ante** identical workers.
  - live forever
  - o spend their lives moving between unemployment and employment
- Transition rate between being unemployed and employed are
  - $\circ$   $\lambda$ : job finding rate for currently unemployed workers
  - $\circ$   $\alpha$ : dismissal rate for currently employed workers
  - $\circ$  b: entry rate into the labor force
  - $\circ$  d: exit rate from the labor force
- ullet The growth rate of the labor force evidently equals g=b-d

# **Aggregates**

- We want the dynamics of the following aggregates
  - $\circ$   $E_t$ : total number of employed workers
  - $\circ$   $U_t$ : total number of unemployed workers
  - $\circ$   $N_t$ : number of workers in the labor force
- We also want to know the values of the following objects
  - $_{\circ}$   $e_{t}$ : employment rate  $E_{t}/N_{t}$
  - $\circ$   $u_t$ : unemployment rate  $U_t/N_t$

#### **Laws of Motion**

- ullet Of the mass of workers  $E_t$  who are employed
  - $\circ$   $(1-d)E_t$  will remain in the labor force
  - $\circ (1-lpha)(1-d)E_t$  will remain employed
- ullet Of the mass of workers  $U_t$  workers who are currently unemployed
  - $\circ$   $(1-d)U_t$  will remain in the labor force
  - $\delta \lambda (1-d)U_t$  will become employed
- ullet The number of workers who will be employed at t+1

$$E_{t+1} = (1 - d)(1 - \alpha)E_t + (1 - d)\lambda U_t$$

• The number of workers who will be unemployed at t+1

$$U_{t+1} = (1-d)\alpha E_t + (1-d)(1-\lambda)U_t + b(E_t + U_t)$$



#### **Laws of Motion**

• The total stock of workers  $N_t = E_t + U_t$  evolves as

$$N_{t+1} = (1+b-d)N_t = (1+g)N_t$$

Linear state space

$$X_t = \begin{pmatrix} E_t \\ U_t \end{pmatrix}$$

Law of motion for X is

$$X_{t+1} = \begin{pmatrix} E_{t+1} \\ U_{t+1} \end{pmatrix} = A \begin{pmatrix} E_t \\ U_t \end{pmatrix} = AX_t$$

where

$$A = \begin{bmatrix} (1-d)(1-\alpha) & (1-d)\lambda \\ (1-d)\alpha + b & (1-d)(1-\lambda) + b \end{bmatrix}$$



#### **Laws of Motion**

• Laws of Motion for Rates of Employment and Unemployment

$$\begin{pmatrix} E_{t+1}/N_{t+1} \\ U_{t+1}/N_{t+1} \end{pmatrix} = \frac{1}{1+g} \begin{pmatrix} (1-d)(1-\alpha) & (1-d)\lambda \\ (1-d)\alpha+b & (1-d)(1-\lambda)+b \end{pmatrix} \begin{pmatrix} E_t/N_t \\ U_t/N_t \end{pmatrix}$$

• Define  $x_t$  as

$$x_t = \begin{pmatrix} e_t \\ u_t \end{pmatrix} = \begin{pmatrix} E_t/N_t \\ U_t/N_t \end{pmatrix}$$

or

$$x_{t+1} = \hat{A}x_t$$
 where  $\hat{A} := \frac{1}{1+q}A$ 

• Evidently,  $e_t + u_t = 1$  implies that  $e_{t+1} + u_{t+1} = 1$ 

# **Steady States**

- $\bullet$  The aggregates  $E_t$  and  $U_t$  won't converge to steady states because their sum  $E_t+U_t$  grows at gross rate 1+g
- ullet The vector of employment and unemployment rates  $x_t$  can be in a steady state  $ar{x}$  provided that we can find a solution to the matrix equation

$$\bar{x}=\hat{A}\bar{x}$$

where the components satisfy

$$\bar{e} + \bar{u} = 1$$

- ullet A steady state  $\bar{x}$  is an eigenvector of  $\hat{A}$  associated with a unit eigenvalue
- We also have  $x_t \to \bar{x}$  as  $t \to \infty$  provided that the remaining eigenvalues of  $\hat{A}$  are in modulus less that 1



# **Steady States**

Let us go to Python notebook...

