12^a Série de Problemas Mecânica Relatividade MEFT

- Determine para o fotão a relação entre a energia entre dois referenciais S e S'. Que conclui?
- 2. O bosão de Higgs com uma massa m_H= 2.25×10^{-25} kg e um tempo próprio de vida t_H= 2×10^{-24} s é activamente procurado no LHC . Considere um bosão de Higgs com velocidade v_H=0.998c (β_{H2} =0.996) no referencial do laboratório.
 - 2.a) Calcule no referencial do laboratório, o momento linear e a energia do bosão de Higgs. Compare com os valores obtidos no referencial do centro de massa.
 - 2.b) Determine no referencial do laboratório, a distância percorrida pelo bosão de Higgs antes de decair.
 - **2.c)** Suponha que o bosão de Higgs decai em dois fotões, emitidos ao longo da linha de voo do bosão. Determine, no referencial do centro de massa do Higgs, a energia dos fotões emitidos.
 - **2.d)** Determine no referencial de laboratório a energia dos fotões emitidos.
 - **2.e)** Verifique que poderia ter chegado ao resultado da alínea d) utilizando o efeito de Doppler.
- 3. No Sol, são convertidas, por segundo, milhões de toneladas de hidrogénio e hélio, protões e energia através de reacções de fusão nuclear. Uma dessas reacções é descrita por

$${}^{3}\text{He} + {}^{3}\text{He} -> {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H}$$

- **3.a)** Sabendo que as massas do ³He, do ⁴He e do ¹H são respectivamente 5.008237x10⁻²⁷ kg, 6.646483x10⁻²⁷ kg e 1.673534x10⁻²⁷ kg, calcule a energia cinética libertada pela fusão nuclear de cada par de ³He em repouso.
- 3.b) Suponha que inicialmente os dois núcleos de ³He se dirigem um para o outro com uma velocidade de 0.5c e que depois da reacção a velocidade de recuo do ⁴He, relativamente ao CM, é de 0.3c. Qual é a energia transportada pelos dois átomos de hidrogénio produzidos na reacção, no referencial do CM?
- **3.c)** Calcule o módulo do momento linear de cada um dos átomos de hidrogénio, supondo que estes seguem com momentos de igual módulo.
- **3.d)** Com que ângulo são emitidos os dois átomos de hidrogénio em relação à direcção de recuo do ⁴He? Faça um esquema.

- **4.** A descoberta do J/Ψ em 1974 foi uma autêntica revolução na física de partículas, com a confirmação do modelo dos quarks o J/Ψ é uma partícula formada por um quark c (charme) e o seu antiquark. O J/Ψ tem uma massa de aproximadamente 66x10⁻²⁸ kg e um tempo de vida de cerca de 5x10⁻²⁰ s. Considere um J/Ψ que no referencial do laboratório tem uma velocidade de 0.9998c.
 - **4.a)** Calcule, no referencial do laboratório, o momento linear e a energia do J/Ψ .
 - **4.b)** Determine, no referencial do laboratório, a distância percorrida pelo J/Ψ antes de decair.
 - **4.c)** Suponha que o J/Ψ decai num par electrão-positrão (electrão positivo). Que fracção da massa do J/Ψ desaparece no decaimento. Porquê?
 - **4.d)** Determine, no referencial do CM do J/Ψ , o momento linear do electrão resultante.
- 5. Uma civilização extraterrestre em exercícios militares na vizinhança da Terra, lança acidentalmente um míssil em direcção ao ponto mais estratégico do nosso planeta: a base das Lajes. O Super-Homem em férias no espaço, é avisado do perigo eminente. Quando na base terrestre das Lajes começa oficialmente a monitorização da missão de salvamento, o míssil encontra-se a 108 m com uma velocidade de 2x107 ms-1 (acontecimento A) e o Super-Homem encontra-se a 9x108 m (acontecimento B) com uma velocidade de cruzeiro v e perfeitamente alinhado com a direcção do míssil.
 - **5.a)** Calcule a velocidade de cruzeiro do Super-Homem para que este salve o planeta no último instante (acontecimento C).
 - **5.b)** Calcule no referencial do Super-Homem a distância no tempo e no espaço entre os acontecimento B e C.
 - **5.c)** Mostre que o intervalo do Universo entre os acontecimento B e C (Δ s), é de facto igual no referencial da Terra e no referencial do Super-Homem (intervalo invariante).
 - **5.d)** O Super-Homem já em velocidade de cruzeiro para a Terra, envia um sinal rádio de frequência 10⁵ Hz na direcção da base. Qual a frequência em que deve ser sintonizado o receptor da base?
 - **5.e)** Afinal o Super-Homem estava no parque de diversões de Martepólis. Sendo a distância Terra-Marte de 10¹¹ m, refaça a línea a).
- **6.** Suponha que na alta atmosfera, a partir da radiação cósmica, é produzido um mesão π^- (pião) com uma massa m_π ~25x10⁻²⁹ kg. O pião decai num muão

 μ de massa m $^{\mu}$ \approx 20x10 $^{-29}$ kg e num anti-neutrino ν de massa desprezável. O tempo de vida médio do pião é τ_{π} - \approx 2.5x10 $^{-8}$ s.

- **6.a)** Se o pião for criado na alta atmosfera, com uma energia total E_{π} =3.5 x10⁻¹¹ J no referencial da Terra, qual a sua velocidade vista também do referencial da Terra?
- **6.b)** Qual o espaço percorrido pelo pião até decair visto dos referenciais próprio e da Terra?
- **6.c)** Calcule o momento linear total do sistema, após o decaimento do pião, nos referenciais do pião e da Terra.
- 7. Num laboratório são produzidos feixes de muões e anti-muões (partícula e anti-partícula semelhantes ao electrão e positrão mas com uma massa $m_{\mu} \sim 200~m_{e})$ para realizar colisões. Considere que o tempo médio de vida dos muões em repouso é $2,2x10^{-6}s$. Considere como acontecimento A a produção de um muão numa das pontas do laboratório e como acontecimento B o desaparecimento desse muão, por decaimento, ao fim do seu tempo de vida médio e na outra ponta do laboratório.
 - **7.a)** Determine o módulo da velocidade com que o muão se deve deslocar em relação ao referencial do laboratório, V, de modo a que Δt^{AB}_{lab} = 4x10⁻⁶s.
 - 7.b) Determine a distância percorrida pelo muão durante o seu tempo média de vida no referencial do laboratório e no seu referencial próprio (ΔX^{AB}_{lab} e ΔX^{AB}_{muão}).
 - 7.c) Fazem-se colidir frontalmente um muão e um anti-muão tendo cada um, no referencial do laboratório, o módulo da velocidade obtida em a). Será possível obter da colisão um hipotético bosão de Higgs com uma massa de 3x10⁵ m_e? Justifique.
- 8. Um mesão π com momento linear p=5m $_\pi$ c colide elasticamente com um protão de massa m $_p$ =7 m $_\pi$ que se encontra inicialmente em repouso. O tempo de vida próprio do mesão é de 2.6x10⁻⁸ s
 - **8.a)** Calcule a velocidade inicial do π ?
 - **8.b)** Quanto é que o π percorre antes de decair?
 - **8.c)** Calcule a energia total no referencial do centro de massa do sistema.
 - **8.d)** Qual é a velocidade do centro de massa do sistema e o momento do π e a velocidade inicial do π no referencial do centro de massa.

- **9.** Considere um mesão π^0 de massa 134 MeV/c² que entra na atmosfera da Terra com uma energia de 100 GeV e que durante o seu percurso na atmosfera da Terra decai em dois fotões.
 - **9.a)** Determine a velocidade com que o pião entra na atmosfera da Terra.
 - **9.b)** Determine, no referencial do π^0 , a energia e o momento de cada um dos fotões resultantes do decaimento do π^0 .
 - **9.c)** Determine a energia e o momento, no referencial da Terra de cada um dos fotões resultantes do decaimento do π^0 , considerando que os fotões são emitidos segundo a linha de voo do π^0 .
 - **9.d)** Quais são as velocidades no referencial da Terra dos fotões resultantes do decaimento do mesão π^0 ?