COOPERATIVE GAME THEORY

RICHARD MUŽÍK

RICHARD@IMUZIK.CZ

APRIL 17, 2023

INTRODUCTION

COOPERATIVE GAME

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v \colon 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... values of coalition
- \blacksquare usually $N = \{1, \ldots, n\}$
 - \blacktriangleright (S, v_S) is **subgame** (N, v):

 - $\mathbf{v}_{S}(T) := v(T) \text{ pro } T \subseteq S$

COOPERATION - EXAMPLES OF MODELS: MINIMAL SPANNING-TREE GAMES

Goal: Find the best connection of players to a source

- $N = N' \cup \{o\}$... set of players + source
- $c_{ij} ... cost of connecting i, j$
- solution: a network, where each $i \in N$ is connected to 0 with minimal sum of costs

GOAL OF THE MODEL OF COOPERATIVE GAMES

Money first!

- Payoff vector $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ightharpoonup players prefer x_i over v(i)
- $\mathcal{I}^*(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$... preimputation
 - $ightharpoonup x(S) := \sum_{i \in S} x_i$
- $\mathcal{I}(v) = \{x \in \mathcal{I}^*(v) \mid \forall i \in \mathbb{N} : x_i \geq v(i)\}$... imputation

- Set of payoff vectors satisfying further properties are solution concepts
- Can reflect payoff distribution, which is
 - ► ...fair...
 - ► ...non-discriminatory...
 - ► ...stable (players will accept it)...
 - **...**

Formally:

- 1. sets of payoff vectors
 - $\blacktriangleright \ \Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $\blacktriangleright \ \Sigma \colon \Gamma^n \to 2^{\mathbb{R}^n}$

We distringush

- 1. single-point solution concepts
 - ightharpoonup as a set: $\Sigma(v) = \{x\}$
 - we prefer: $\Sigma(v) = x$
 - ▶ as a function: $\Sigma \colon \Gamma^n \to \mathbb{R}$
- 2. multi-point solution concepts

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - ► model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players
- $x(S) > v(S) \implies$ coalition S does not leave N
 - ► would lead to (S, v_S)
 - \triangleright v(S) ... distributed value

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(\mathbf{v}) = \{ \mathbf{x} \in \mathcal{I}^*(\mathbf{v}) \mid \mathbf{x}(\mathbf{S}) \ge \mathbf{v}(\mathbf{S}), \forall \mathbf{S} \subseteq \mathbf{N} \}.$$

Reminder

Nash equilibrium

Strategy profile $(s_1, ..., s_n)$ is **Nash equilibrium**, if it holds for every player i,

$$v_i(s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) \ge v_i(s_1, \dots, s_{i-1}, t_i, s_{i+1}, \dots, s_n)$$

for every $t_i \in S_i$.

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Emptyness of the core

There are cooperative games (N, v) with empty core.

- Non-esential games
 - $ightharpoonup v(N) < \sum_{i \in N} v(i)$
- Let $x \in C(v)$

$$ightharpoonup x(N) = v(N) < \sum_{i \in N} \le x(N)$$

a x does not exist \implies $(v) = \emptyset$

Question: When is the core non-empty We can encode the core as linear program (P) and determine the dual program (D)

We derive the weak Bondereva-Shapley theorem

Weak Bondareva-Shapley theorem

Cooperative game (N, v) has non-empty core if and only if

$$v\left(N\right) \geq \sum_{S \subseteq N} y_S v\left(S\right) \text{ for all feasible } y \in \mathbb{R}^{(2^n-1)}$$

SINGLE-POINT SOLUTION CONCEPT: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $=\frac{s!(n-s-1)!}{n!}$
 - weights reflecting different sizes of coalitions
- $\blacksquare \sum_{S \subseteq N \setminus i}$
 - ► sum of all marginal contributions of i

SINGLE-POINT SOLUTION CONCEPT: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- The players agree om the following procedure:
 - 1. Form the grandcoalition N.
 - 2. Enter the the coalition individually and randomly.
 - 3. When player *i* enters coalition *S*, he receives $v(S \cup i) v(S)$.
- \blacksquare s! (n-s-1)! ... number of situations, in which i enters S
- \blacksquare n! ... number of all possible ways to construct N
- $\phi_i(v)$... the average value of player i's payment

SHAPLEY VALUE

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
 - $ightharpoonup \sum_{i \in N} f_i(v) = v(N)$
- 2. (AXIOM OF SYMMETRY)
 - $\forall i,j \in N \ (\forall S \subseteq N \setminus \{i,j\} : v(S \cup i) = v(S \cup j)) \implies f_i(v) = f_j(v)$
- 3. (AXIOM OF NULL PLAYER)
 - $ightharpoonup \forall i \in N \ (\forall S \subseteq N : v(S) = v(S \cup i)) \implies f_i(v) = 0$
- 4. (AXIOM OF ADDITIVITY)
 - $ightharpoonup v, w \in \Gamma^n : f(v+w) = f(v) + f(w)$

■ monotonic game

$$(S \subseteq T \subseteq N) (v(S) \le v(T))$$

■ superadditive game

$$(S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$$

■ convex game

$$(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$$

■ essential game

$$v(N) \ge \sum_{i \in N} v(i)$$

■ balanced game

$$C(v) \neq \emptyset$$

Ouestion: What are the relations between them

Balanced and essential

Balanced cooperative games are essential.

- \blacksquare (N, v) is essential
- \blacksquare (N, v) is balanced
 - \blacktriangleright $\emptyset \neq C(v) \subseteq \mathcal{I}(v)$

Question: What are the relations between them

Convex and superadditive

Convex cooperative games are superadditive.

- \blacksquare (N, v) is convex
 - $(S, T \subseteq N) (v(S) + v(T) \le v (S \cap T) + v (S \cup T))$
- \blacksquare (N, v) is superadditive
 - $(S, T \subseteq N, S \cap T = \emptyset) (v(S) + v(T) \le v(S \cup T))$
- \blacksquare $S \cap T = \emptyset$
 - ightharpoonup $(s \cap T) = 0$
 - $ightharpoonup v(S) + v(T) \le v(S \cup T)$