Esercitazioni di Analisi 2

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

Integrale generale di equazioni lineari e a variabili separabili

1. Determina tutte le soluzioni (Integrale Generale) delle seguenti equazioni differenziali (k è una costante reale arbitraria):

(a)
$$y' = \frac{x-1}{x}y$$

$$\left[y = k \frac{e^x}{|x|}\right]$$

(b)
$$y' + (\cos x) y = 0$$
 $[y = ke^{-\sin x}]$

$$y = ke^{-\sin x}$$

(c)
$$y' = (1 + \log x) y$$
 [$y = kx^x$]

$$[y = kx^x]$$

(d) *y' =
$$-2xy^2$$
 $\left[y = 0, \ y = \frac{1}{x^2 + k}\right]$

(e)
$$y' = (1-x)(1-y)$$

(e)
$$y' = (1-x)(1-y)$$
 $\left[y = ke^{\frac{1}{2}x^2 - x} + 1\right]$

(f)
$$y' + 2xy = xe^{-x^2}$$

(g)
$$y' - (\tan x) y = \frac{1}{\cos x}$$
 $\left[y = \frac{1}{\cos x} (k+x) \right]$

$$\left[y = \frac{1}{\cos x} \left(k + x \right) \right]$$

$$\frac{\mathbf{(h)} \ y'}{x} \equiv \frac{y + \log x}{x} \qquad [y = kx - \ln x - 1]$$

$$[y = kx - \ln x - 1]$$

$$y' = \frac{2y}{x} + x^2$$

$$y = x^3 + kx^2$$

$$(j) y' = \frac{x}{y^2}$$

(k)
$$y' = \frac{y}{x \log x} + \log x$$
 [$y = (k+x) \ln x$]

$$[y = (k+x)\ln x]$$

(1)
$$y' = (\cos x) e^{x-y}$$

(1)
$$y' = (\cos x) e^{x-y}$$

$$\left[y = \ln \left(\frac{e^x}{2} (\cos x + \sin x) + k \right) \right]$$

$$xy' = y \log y$$

$$\left[y = e^{kx} \right]$$

$$(\mathbf{n}) \ xy' = y \log y$$

$$[y = e^{kx}]$$

(n)
$$y' = e^x \sqrt{1 - y^2}$$

(n)
$$y' = e^x \sqrt{1 - y^2}$$
 [$y = \sin(e^x + k)$; $y = \pm 1$]

(o)
$$y' = \frac{\sqrt{2-y}}{x+1}$$

(o)
$$y' = \frac{\sqrt{2-y}}{x+1}$$
 $\left[y = 2 - \left(k - \frac{\ln|x+1|}{2} \right)^2; \ y = 2 \right]$

(p)
$$y' = 2x (1 - e^{-y})$$

$$y = \log\left(ke^{x^2} + 1\right)$$

$$(q) y' = 2x\sqrt{1 - y^2}$$

(p)
$$y' = 2x (1 - e^{-y})$$
 $\left[y = \log \left(ke^{x^2} + 1 \right) \right]$
(q) $y' = 2x \sqrt{1 - y^2}$ $\left[y = \pm 1, y = \sin \left(x^2 + k \right) \right]$

2. *Stabilisci per quali valori $\alpha, \beta \in \mathbb{R}$ l'equazione differenziale $(2\alpha + x^2)y' - 3y + (\beta - 1)y^2 = 0$ è lineare a coefficienti non costanti. $[\alpha \in \mathbb{R}, \beta = 1]$

1

- 3. *Trova una soluzione dell'equazione $y'(t) = t^2(1 y(t))$. [L'equazione è a variabili separabili; ammette ad esempio la soluzione costante $y_1(t) = 1 \ \forall t \in \mathbb{R}$. (Altre soluzioni sono: $y_2(t) = 1 e^{-\left(\frac{1}{3}t^3 + c\right)}, t \in \mathbb{R}, c \in \mathbb{R}; y_3(t) = 1 + e^{-\left(\frac{1}{3}t^3 + c\right)}, t \in \mathbb{R}, c \in \mathbb{R}$. Le tre famiglie di soluzioni possono essere compendiate nella forma $y(t) = 1 + Ke^{-\frac{1}{3}t^3}, t \in \mathbb{R}, K \in \mathbb{R}$; in particolare $y = y_1$ per $K = 0, y = y_2$ per $K < 0, y = y_3$ per K > 0). Mediante opportuna riscrittura si può osservare che l'equazione è lineare...]
- 4. *Data l'equazione differenziale $y'(x) = (y(x) + 1)\sin x$, stabilisci se tutte le soluzioni hanno un massimo in $x = \pi$. [Dall'equazione ricaviamo $y'(\pi) = 0$, $y''(\pi) = -(y(\pi) + 1)$, perciò hanno un massimo in π solo le soluzioni per le quali $y(\pi) > -1$]

nota: gli esercizi contrassegnati da * sono tratti da temi d'esame.