Comparison of R² Value of different Machine Linear Regression algorithms for same dataset

1. Multiple Linear Regression- $R^2 = 0.935$

2. Support Vector Machine

S.NO	Hyper	R ² linear	R ² rbf	R ² poly	R ² sigmoid
	Parameter				
	"c" value				
1	10	-0.039	-0.0568	-0.053	-0.054
2	100	0.106	-0.0507	-0.019	-0.030
3	1000	0.780	0.0067	0.266	0.185
4	2000	0.876	0.0675	0.481	0.397
5	<mark>5000</mark>	0.900	0.2124	0.793	0.730

Best Model, Parameter= "linear" with c= 5000, R²= 0.9

3. Decision tree

S.NO	Splitter	R ²	R^2	R ²	R^2
		squared_error	friedman_mse	absolute_error	poisson
1	best	0.913	0.935	<mark>0.966</mark>	0.914
2	random	0.871	0.908	0.871	0.905

Best Model, Splitter=best, criterion= absolute_error, R²= 0.96