> Edward Kemper

Introduction

Dynan Model

Classical Optimal Control

PID Contr

PID Gain Optimization

Conclusions

Quad-Rotor Flight Path Energy Optimization

Edward Kemper

Northern Arizona University edwardkemper@gmail.com

April 29, 2014

Advisor : Niranajan Venkatraman

Edward Kemper

Overview

- Introduction
- 2 Dynamic Model
- 3 Classical Optimal Control
- 4 PID Control
- **6** PID Gain Optimization
- **6** Conclusions

Edward Kemper

Introduction

Model

Optimal Control

PID Control

Optimization

Camaluaiana

Introduction

- Tremendous Development
- Private sector, not just military
- Autonomy
- FAA policy for commercial applications (2015)
- Rapid growth of a multi-billion dollar industry

> Edward Kemper

Introduction

Model

Optimal Control

PID Conti

PID Gain Optimization

Conclusion

Motivation

- Energy management is a pervasive engineering problem
- Quad-rotors have very high energy demand
- Multi-rotor systems are entirely thrust driven
- Instability = Maneuverability = High energy

Edward Kemper

Introduction

Model

Optimal Control

PID Cont

PID Gain Optimizatior

Conclusions

Prior Work

- energy optimization and trajectory planning of fixed wing UAVs
- quad-rotors
 - basic stability
 - attitude and position control
 - · dynamical model
- Classical Optimal Control is a long story

Edward Kemper

Introduction

Model

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusions

Problem Statement

We wish to find a set of control expressions for a quad-rotor UAV which minimizes the energy expended in flying between two known points by optimizing the path.

> Edward Kemper

Introduction

Model

Classical Optimal Control

PID Control

PID Gain

Conclusions

Problem Statement

Assumptions:

- the flight path that will be optimized is free of obstacles
- only modeled environmental variables
- model of the system derived from a Euler-Lagrange formulation

> Edward Kemper

Introduction

Model Model

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusion:

Problem Statement

Classical Optimal Control Approach:

- control of the system and the optimization are represented in a single mathematical formulation
- Solving the optimal control problem is achieved by solving a boundary value problem
- Most literature deals with linear systems

> Edward Kemper

Introduction

Model

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusion:

Problem Statement

Heuristic approach:

- PD gives attitude control
- PID gives position control
- this provides a platform for simulation
- the optimization procedure evaluates the results of these simulations for optimality as a function of the PID gains used in the position control expressions

> Edward Kemper

Introductio

Dynamic Model

Optimal Control

PID Contro

PID Gain Optimization

Conclusions

Dynamic Model

- We must understand the mathematical relationships between the control input and the resulting dynamics of the system
- Euler-Lagrange formulation

Edward Kemper

Introduction

Dynamic Model

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusion

Dynamic Model

- \bullet ψ is the yaw angle around the z-axis
- ullet heta is the pitch angle around the y-axis
- ullet ϕ is the roll angle around the x-axis

Edward Kemper

Introductio

Dynamic Model

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusions

Dynamic Model

The rotor angular velocities are related to the forces they produce by:

$$f_i = k\omega_i^2 \tag{1}$$

> Edward Kemper

Introduction

Dynamic Model

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusions

Dynamic Model

In the quad-rotor frame of reference, the motors produce torques on the system.

$$\boldsymbol{\tau}_{B} = \begin{bmatrix} \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = \begin{bmatrix} lk(-\omega_{2}^{2} + \omega_{4}^{2}) \\ lk(-\omega_{1}^{2} + \omega_{3}^{2}) \\ \sum_{i=1}^{4} b\omega^{2} \end{bmatrix}$$
(2)

> Edward Kemper

Introduction

Dynamic Model

Classical Optimal Control

FID COILIOI

PID Gain Optimization

Dynamic Model

The combined thrust of the rotors in the direction of the quad-rotor frame z axis is $T_B = [0, 0, T]^T$ where,

$$T_B = \sum_{i=1}^4 f_i \tag{3}$$

•

> Edward Kemper

Introduction

Dynamic Model

Classical Optimal Control

PID Con

PID Gain

Conclusions

Dynamic Model

In the inertial frame, the kinetic and potential energy of the system are given by

$$T_{\mathsf{trans}} = \frac{1}{2} m \dot{\xi}^{\mathsf{T}} \dot{\xi} \tag{4}$$

$$T_{\rm rot} = \frac{1}{2} \dot{\eta}^T J \dot{\eta} \tag{5}$$

$$U = mgz. (6)$$

The Lagrangian is formed as the difference between kinetic and potential energy.

> Edward Kemper

Introduction

Dynamic Model

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusion

Dynamic Model

The dynamics of the system are represented by the Euler - Lagrange differential equations of motion.

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}} \right) - \frac{\delta L}{\delta q} = F \tag{7}$$

$$q = [x, y, z, \psi, \theta, \phi]^{\mathsf{T}} = [\xi, \eta]^{\mathsf{T}}.$$
 (8)

$$\xi = [x, y, z]^T, \quad \eta = [\psi, \theta, \phi]^T$$
(9)

> Edward Kemper

Introductio

Dynamic Model

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusion:

Dynamic Model

The linear components of the generalized forces produce the following equations.

$$f = RT_B = m\ddot{\xi} - G \tag{10}$$

The angular components are expressed as

$$\ddot{\eta} = J^{-1} \big(\tau_b - C(\eta, \dot{\eta}) \dot{\eta} \big) \tag{11}$$

> Edward Kemper

Introduction

Dynamic Model

Classical Optimal Control

PID Control

DID Colo

- -----

Conclusions

Dynamic Model

A complete mathematical representation of the quad-rotor is as follows.

$$\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ g \end{pmatrix} + \frac{T}{m} \begin{pmatrix} c_{\psi} s_{\theta} c_{\phi} + s_{\psi} s_{\phi} \\ s_{\psi} s_{\theta} c_{\phi} - c_{\psi} s_{\phi} \\ c_{\theta} c_{\phi} \end{pmatrix}$$
(12)

$$\begin{pmatrix} \ddot{\phi} \\ \ddot{\theta} \\ \ddot{\psi} \end{pmatrix} = J^{-1} \begin{bmatrix} \begin{pmatrix} lk(-\omega_2^2 + \omega_4^2) \\ lk(-\omega_1^2 + \omega_3^2) \\ \sum_{i=1}^4 b\omega_i^2 \end{pmatrix} - C \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$$
(13)

Edward Kemper

Introduction

Dynan Model

Classical Optimal Control

PID Conti

Optimization

Conclusions

Classical Optimal Control

We Define:

- Performance index (Lagrangian) $L[q(t), u(t), t] = u^T I u$
- Constraint equations are the system equations of motion
- The Hamiltonian $H = L(q(t), u(t), t) + \lambda(t)^{T} (F(q(t), u(t), t))$
- The full objective function can be written as

$$\mathcal{J} = \nu^T \Psi(q(t_f), t_f) + \int_{t_0}^{t_f} H(q(t), u(t), t) - \lambda^T \ddot{q} dt \qquad (14)$$

Edward Kemper

Introduction

Model

Classical Optimal Control

PID Control

PID Gain

Ориннгация

Classical Optimal Control

The first variation in ${\mathcal J}$ is given by

$$\delta \mathcal{J} = \frac{\partial \mathcal{J}}{\partial q} \delta q + \frac{\partial \mathcal{J}}{\partial \dot{q}} \delta \dot{q} + \frac{\partial \mathcal{J}}{\partial u} \delta u = 0$$
 (15)

Edward Kemper

Introduction

Dynan Model

Classical Optimal Control

PID Control

Optimizatio

Conclusions

Classical Optimal Control

By setting the variation of J equal to zero we obtain the Co-state equations:

$$\frac{\partial H}{\partial q} = \ddot{\lambda} \tag{16}$$

$$\ddot{\lambda} = \left(\frac{\partial L}{\partial q}\right)^T + \left(\frac{\partial F}{\partial q}\right)^T \lambda \tag{17}$$

Note: this is a second order system...

> Edward Kemper

Introductio

Mode

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusion

Classical Optimal Control

and the Stationarity Conditions:

$$\frac{\partial H}{\partial u} = 0 \tag{18}$$

$$\frac{\partial L}{\partial u} + \left(\frac{\partial F}{\partial u}\right)^T \lambda = 0 \tag{19}$$

Edward Kemper

Introductio

Mode

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusions

Classical Optimal Control

and Secondary algebraic Co-state conditions

$$\frac{\partial H}{\partial \dot{q}} = 0 \tag{20}$$

$$\left(\frac{\partial F}{\partial \dot{a}}\right)^T \lambda = 0 \tag{21}$$

> Edward Kemper

Introduction

Model

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusions

Classical Optimal Control

and Terminal Boundary conditions:

$$\nu^{T} \frac{\partial \Psi}{\partial q}|_{t_f} + \dot{\lambda}(t_f)^{T} = 0$$
 (22)

$$\nu^{T} \frac{\partial \Psi}{\partial \dot{q}} |_{t_f} - \lambda (t_f)^{T} = 0$$
 (23)

and Initial Co-state conditions

$$(\lambda^T \delta \dot{q} - \dot{\lambda}^T \delta q)|_{t_0} = 0 \tag{24}$$

$$\lambda(t_0)^T \delta \dot{q} = \dot{\lambda}(t_0)^T \delta q) \tag{25}$$

> Edward Kemper

Introductio

Model

Classical Optimal Control

PID Control

PID Gain

Optimization

Conclusion

Classical Optimal Control

The optimality conditions form a two-point boundary value problem in 18 coupled, nonlinear, partial differential equations!! to obtain a solution:

- the shooting method
- finite difference method

Since there are six state variables

> Edward Kemper

Introduction

Dynan Model

Classical Optimal Control

PID Conti

PID Gain Optimization

C l.

The Shooting Method

the algorithm:

- solving the set of differential equations as an initial value problem
- measuring the error in the final state of the system compared to the desired final state
- Advantages
 - straightforward iterative quadrature method and error minimization
- Disadvantages
 - does not always converge, subject to the stability of the differential equations in question

Edward Kemper

Introduction

Dynan Model

Classical Optimal Control

PID Cont

PID Gain Optimizatio

Conclusions

The Finite Difference Method

- create a system of algebraic equations at each instance in time where the solution is desired
- derivatives in the differential equations are expressed as finite differences
- The values of each state and co-state variable are defined as unknowns at each time step
- thousands of equations and unknowns
- Advantages
 - turns the BVP into a system of algebraic equations
 - easy to solve for linear system
- Disadvantages
 - hard to solve for nonlinear system
 - does not always converge

> Edward Kemper

Introductio

Model

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusion

Decision Time

The BVP takes too long to solve so we must find another way! A Heuristic Method

- Control of the system achieved with PID expressions
- Optimization achieved by appropriately manipulating PID gains in order to change the system behavior
- Quantify system behavior with performance metrics

> Edward Kemper

Introductio

Model

Classical Optimal Control

PID Control

PID Gain Optimization

Conclusion

PID Control

- PID controllers for the x, y, and z directions
- PD controllers for each of the Euler angles (ϕ, θ, ψ)
- Assume process noise and measurement noise are zero

Edward Kemper

Introductio

Dynan Model

Classical Optimal Control

PID Control

PID Gain Optimizatio

Conclusions

PID Control

PID Control Algorithm

- The position control expressions give 'commanded' linear accelerations
- 2 The necessary total thrust, pitch, and roll are determined.
- 3 The commanded torques are given by PD controllers using the commanded yaw, pitch, and roll as angular set points.
- 4 The motor speeds can then be determined.
- **6** The system model can be used to obtain the updated state of the system.
- 6 Repeat.

> Edward Kemper

Introductio

Model

Optimal Control

PID Control

Optimization

. . .

Simulation Parameters

g = -9.81	m/s^2	acceleration due to gravity
m = 1	kg	mass
L = 1	m	length of quad-rotor arm
$b = 10^{-6}$	Nms^2/Rad^2	aerodynamic torque coef
$k = 2.45 * 10^{-6}$	Ns^2/Rad^2	aerodynamic thrust coef
$Ixx = 5.0 * 10^{-3}$	Nms^2/Rad	moments of inertia
$Iyy = 5.0 * 10^{-3}$	""	
$Izz = 10.0 * 10^{-3}$	""	

Table: Simulation Parameters

> Edward Kemper

Introduction

Model

Classical Optimal Control

PID Control

PID Gain

Conclusions

Edward Kemper

Introduction

Dynan Model

Classical Optimal Control

PID Control

PID Gain Optimization

Оринигация

Edward Kemper

Introduction

Model

Classical Optimal Control

PID Control

PID Gain

Conclusions

Edward Kemper

Introduction

Dynam

Classical Optimal Control

PID Control

PID Gain

Optimization

> Edward Kemper

PID Control

Edward Kemper

Introduction

Dynam Model

Classical Optimal Control

PID Control

PID Gain Optimization

Optimization

Arbitrary Sub-optimal Paths

Edward Kemper

Introduction

Model

Classical Optimal Control

___ _

PID Gain Optimization

Lonclusion:

Our Heuristic Optimization Method

- We aim to find: $argmin[\sum_{k,i} \omega_i[k] \mid K_p, K_i, K_d]$
- $\omega_i[k]$ is the *ith* rotor speed at the *kth* time step
- The variables K_p , K_i and K_d are the vectors of proportional, integral, and derivative gains respectively

> Edward Kemper

Introductio

Model

Optimal Control

PID Gain

PID Gain Optimization

Conclusion

Heuristic Method

In reality, there are other important performance criteria

- over-shoot of the desired location
- the time of flight
- marginal instabilities

Edward Kemper

Introductio

Dynan Model

Classica Optimal Control

PID Contro

PID Gain Optimization

Оринигасно

Heuristic Method

An Algorithm for Optimization

- 1 Choose a set of proportional and derivative gains for each vector direction (x,y, and,z),
- Perform a simulation that controls the quad-rotor from an initial vector position to a desired vector position
- 3 Calculate the sum of the four motor speeds over the duration of the simulation
- 4 Appropriately change the PID gains such that the sum of the motor speeds decreases
- **6** Go to step 1. Repeat until the sum of the motor speeds is found to be a minimum.

> Edward Kemper

Introductio

Model

Classica Optima Control

PID Contr

PID Gain Optimization

Optimization

conclusion

Heuristic Method

The relationship between the measured total thrust and PID gains is not well behaved!!

- NO steepest descent
- Needed a deeper understanding of the relationship between PID gains and performance metrics
- Try brute force approach: manually create a look-up table of PID gains v.s. measured metrics

Edward Kemper

Introductio

Model Model

Classical Optimal Control

FID COILIO

PID Gain Optimization

Conclusion

Heuristic Method

first attempt at creating a lookup table:

- Need to reduce the number of gain variables in the procedure
- Use the set point [0,0,1] so that x and y controllers are irrelevant
- Ziegler-Nichols PID tuning method allows for PID gains to be expressed as a function of k_u

Path-Energy Optimization Edward

Kemper

Introductio

Dynar

Classic Optima

PID Con

PID Gain Optimization

Conclusion

First look-up table results

Edward Kemper

Introduction

Dynam

Classical Optimal

PID Contr

PID Gain Optimization

Conclusions

Control Block Diagram

> Edward Kemper

Introductio

Dynan Model

Optima Control

PID Contr

PID Gain Optimization

Conclusions

Brute-Force Implementation

- perform roughly 6000 simulations
- limit range and granularity of gain variation
- parse results for optimal run according to performance metrics

Edward Kemper

Introduction

Mode

Classica Optimal Control

PID Contr

PID Gain Optimization

_ . . .

Brute-Force Results

The Optimal Run	
kpx	15
kpy	15
kpz	40
kix	0.8
kiy	0.8
kiz	15
kdx	10
kdy	10
kdz	50
ending iteration	987
flight time	9.87 (s)
return value	1 (great success)
initial position	[0, 0, 1] (m)
set point	[1, 1, 2] (m)
total thrust	4969.8 (Newton seconds)
x crossings	3
x overshoot	0.0249 (m)
y crossings	1
y overshoot	0.0185 (m)
z crossings	1
z overshoot	0.0992 (m)

> Edward Kemper

Introduction

Model

Classical Optimal Control

PID Cont

PID Gain Optimization

Conclusions

Brute-Force Results

The Optimal Run

April 29, 2014

Edward Kemper

Introductio

Model Model

Optimal Control

PID Control

PID Gain Optimization

Conclusion

Brute-Force Results

A general look-up table

- Only need to account for a small number of set points , (0,0,1),(0,1,0),(0,1,1)...
- Arbitrary optimal paths can be composed of granular optimal paths (further work)
- This approach comes closer to a real time optimization

> Edward Kemper

Introductio

Model

Classical Optimal Control

PID Cont

PID Gain Optimizatior

Conclusions

Conclusions

- Classical Optimal Control requires too much computation
- The Heuristic Method is not viable
- Brute Force is acceptable

> Edward Kemper

Introductio

Model

Classical Optimal Control

PID Gain

Optimization

Conclusions

Further Work

- nonlinear control
- control / optimization of swarms
- sensor fusion and state estimation

> Edward Kemper

Introductio

Mode

Classical Optimal Control

PID Con

PID Gain Optimization

Conclusions

Questions?