ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 14

Cap 3.2 – Variantes de MT (Enumeradores)

Profa. Ariane Machado Lima ariane.machado@usp.br

Aulas anteriores...

Máquinas de Turing – Definição formal

Uma *máquina de Turing* é uma 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{aceita}}, q_{\text{rejeita}})$, onde Q, Σ, Γ são todos conjuntos finitos e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada sem o símbolo em branco \Box ,
- **3.** Γ é o alfabeto de fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial,
- 6. $q_{\text{aceita}} \in Q$ é o estado de aceitação, e
- 7. $q_{\text{rejeita}} \in Q$ é o estado de rejeição, onde $q_{\text{rejeita}} \neq q_{\text{aceita}}$.

$$\delta \colon Q' \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$$
, onde $Q' \notin Q$ sem $q_{\text{aceita}} \in q_{\text{rejeita}}$

Máquinas de Turing

- Uma máquina de Turing pode tanto escrever sobre a fita quanto ler a partir dela.
- 2. A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita.
- 3. A fita é infinita.
- 4. Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

3.2 – Variantes de Máquinas de Turing (Dispositivos EQUIVALENTES)

Máquinas de Turing Multifita

Máquinas de Turing Não-Determinísticas

$$\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{E, D\}).$$

Simulação de uma MTND por uma MT Determinística:

Uma cadeia é aceita se ALGUM ramo da computação a aceita Uma cadeia não é aceita se NENHUM ramo da computação a aceita (NÃO basta um ramo rejeitar)

Aula de hoje

Enumeradores

Duas fitas, sendo uma só de escrita (impressora)

Começa com a fita impressora em branco

Imprime cadeias da linguagem, em qualquer ordem, possivelmente com repetição

TEOREMA 3.21 -----

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

TEOREMA 3.21

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (<=)

Temos um enumerador E

M funciona assim: dada uma cadeia w

•

•

•

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (<=)

Temos um enumerador E

M funciona assim: dada uma cadeia w

- roda E e compara a cadeia enumerada com w
- se for igual, aceita w
- rejeita w se acabar a enumeração

M aceita as cadeias enumeradas por E

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (<=)

Temos um enumerador E

Uma MT M que utiliza E funciona assim: dada uma cadeia w

- · roda E e compara a cadeia enumerada com w
- se for igual, aceita w
- rejeita w se acabar a enumeração

Se w pertence a L, será aceita Se w não pertence a L,

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (<=)

Temos um enumerador E

Uma MT M que utiliza E funciona assim: dada uma cadeia w

- · roda E e compara a cadeia enumerada com w
- se for igual, aceita w
- rejeita w se acabar a enumeração

Se w pertence a L, será aceita

Se w não pertence a L,

M rejeita se L for finita

M não pára se L for infinita

TEOREMA 3.21

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

•

•

•

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

•

•

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- · Ignore a entrada
- para i = 1, 2, 3, ...

Rode M sobre s_i

Imprima s_i se for aceita

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- · Ignore a entrada
- para i = 1, 2, 3, ...

Rode M sobre s_i

Imprima s_i se for aceita

Problema?

TEOREMA 3.21

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- · Ignore a entrada
- para i = 1, 2, 3, ...

Rode M sobre s_i

Imprima s_i se for aceita

Problema?

E se M entrar em loop?

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- · Ignore a entrada
- para i = 1, 2, 3, ...

Rode M sobre s_i

Imprima s_i se for aceita

Problema?

E se M entrar em loop? Travará o enumerador...

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- Ignore a entrada
- para i = 1, 2, 3, ...

Rode M sobre si

Imprima s_i se for aceita

Problema?

E se M entrar em loop? Travará o enumerador...

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- Ignore a entrada
- para i = 1, 2, 3, ...

Rode i passos de M sobre s₁, ..., s_i

Imprima as s_j que foram aceitas

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Prova: (=>) Temos uma Máquina de Turing M

O enumerador E funciona assim:

Seja s_1 , s_2 , s_3 , ... sequências de Σ^* (ordem crescente de comprimento e ordem lexicográfica)

- Ignore a entrada
- para i = 1, 2, 3, ...

Rode i passos de M sobre s₁, ..., s_i

Imprima as s_j que foram aceitas

Se w pertence a L, w é impressa um número infinito de vezes

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Por isso linguagens Turing-reconhecíveis são também chamadas linguagens recursivamente enumeráveis