Linear Algebra I - Practice Final 2019 Fall

1. Let V and W be subspaces of the space of real functions. Suppose V admits a basis $\alpha = \{\sin(x), \cos(x), \sin(2x), \cos(2x)\}$ and W admits a basis $\{1, x, x^2, x^3\}$. Consider the linear transform $T: V \to W$ given by

$$T(f(x)) = f(0) + f'(0)x + f''(0)x^{2} + f'''(0)x^{3}.$$

- Find the matrix A of T with respect the bases α and β .
- Find the inverse of A.
- 2. Let V be the real vector space of two variable functions with the basis $B = \{x^3, x^2y, xy^2, y^3\}$. Let T(f(x,y)) = f(y,x) be a function from V to V.
 - \bullet Show that T is a linear transform.
 - \bullet Show that T is an isomorphism.
 - Find the matrix A of T with respect to the basis B.
 - Find eigenvalues of T.
 - Write $A = PDP^{-1}$ where D is a diagonal matrix and P is a diagonal matrix.
- 3. Let

$$A = \begin{pmatrix} 4 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 4 & f \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

be a real matrix. Determine for which a, b, c, d, e, f, A is diagonalizable.

- 4. For $V = \mathbb{R}^4$ and $W = \text{span}\left\{ \begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Let P be the orthogonal projection from V onto W.
 - \bullet Find the orthogonal complement of W.
 - Find $P(\begin{pmatrix} 2\\2\\3\\4 \end{pmatrix})$.
 - Find the matrix of P with respect to the standard basis.
 - Find the least square solution of the following system.

$$\begin{pmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 3 \\ 4 \end{pmatrix}.$$

5. Let V be a real vector space of functions with the basis $B = \{\sin(x), \cos(x), \sin(2x), \cos(2x)\}$ with the inner product

$$\langle f(x), g(x) \rangle = f(0)g(0) + f'(0)g'(0) + f''(0)g''(0) + f'''(0)g'''(0).$$

- Apply the Gram-Schmidt method to B with respect to the given inner product.
- Suppose there is a function f(x) in V satisfying f(0) = 1, f'(0) = 3, f''(0) = 4, f'''(0) = 2. Find f(x).

6. Let $T: V \to V$ be a linear transformation. Suppose $T^2 = T$. Show that T is diagonalizable. (Hint: Show that $V = E(0) \oplus E(1)$)

1