Indian Institute of Information Technology Ranchi Department of Mathematics Department of Mathematics Department of Mathematics Department of Mathematics

Semeste		. Tech End		Examination - Course Instru Branch : CSE	ctor: Prof.	Tarni Mand	23 al	
	Code: CS2004/0	CD-2008		ourse Name:		,	d Scientific	Computing
Duration: 3 Hrs.			Q	QUESTION PAPER			Maximum Marks: 100	
Instruct	ions:							
(1) A	Answer all the qu	uestions.						
(2) 1	Jumber in [] inc	licates mark	is.	4.				
(3)	Scientific calcula	tor is allow	ed in the exa	imination.				
(4)	Any missing data	a can be assi	umed suitabl	y.				
					t	at aire aonarea	Ectimate	[10]
1. (a) The following	table gives	the populati	on of a town o	during the la	St SIX Cellsus.	a pariod	[10]
		s Interpolati	ion formula,	the increase in	n the popula	tion during ti	ie period	
32.181	1946 to 1948.				1041	1051	1061	
-41 (41) 11·11	Year:	1911	1921	, 1931	1941	1951	1961	
	Population:	12	13	20	27	39	52	
	(in thousand)							
	Given							[(1
2.8167	$\log_{10} 654 = 2$	2.8156, log ₁₀	658 = 2.818	$32, \log_{10} 659 =$	2.8189, log ₁	$_{0}$ 661 = 2.820	12,	[6]
	Find log ₁₀ 65	56.						
2 (a) Using Gauss'	s Internolati	on formula	obtain f (3.5) f	rom the follo	wing table.		[10]
4.00000		3 micrpolati 2	3	4	5	U		
4.033125		626	3.454	4.784	6.986			
	b) The Velocity	V of a partic	cle at a distan	ice 's' from a p	oint on its pa	th is table:		[6]
0.313 }	The speed o	f the train (V) in meters p	er second after	t seconds is	given by		
	t: 0	10 2	0 30	40	50 60)		
0.316	V: 47		65	61	52 38			
				eet by using Si	mpson's one-	third rule.		
	Compare the	e result with	Simpson's $\frac{3}{8}$	rule.				
3 a) By applying the fourth order Runge-Kutta Method, find (0.2) from								[10]
1 23	o) Find the root Newton's Rap Using Improv	of the equati	ion $\sin x = 1$	+ x ³ between (-2 -1) to 3 de	cimal places b	ov	[10]
1.2490 (5)	Newton's Rar	or the equal	ion sin x = 1	X between (2, 1) 10 3 40	emai piaces	3	
4	a) Using Improv	ved Euler's	method find	v at x = 0.1 a	nd x = 0.2			[10]
	given $\frac{dy}{dx} = y$							
1.1837	given $\frac{dx}{dx} - y$	$-2\frac{1}{y}$, $y(0)$, -1	5 Ohn Dan	ula Falai Mai	thad		[6]
b) Find the root between (2, 3) of x ² - 2x - 3 - 0 by Regula 1 aist Method.								[6] [10]
, ?5. a) The system o	f equations	are	+ 22 = 4 usi	na Iterative n	nethod improv	e the result	[10]
			z = 8, $-x + 3y$	+2z=4 usi	ng nerative n	ictiod impro-	ve the result	
	x = 2.8, $y =$	1, Z-1.0		f (in				
7 h) Solve the equ	ations						[6]
	2x + y + z =	10.3x + 2y	+3z = 18, x	x + 4y + 9z = 10	6			
-9 5	by using Gau	ss Eliminati	ion Method.					
by using Gauss Elimination Method. 6. a) Solve the following equation using Gauss- Jordan Method								[10]
	$2x_1 + 2x_2 - x_3$	$x_3 + x_4 = 4$.	$4x_1 + 3x_2$	$x_2 - x_3 + 2x_4 =$	- 6,			
	$8x_1 + 5x_2 - 3$	$x_3 + 4x_4 =$	$12,3x_1+3x_1$	$x_2 - 2x_3 + 2x_4 =$	= 6			
7				15				
b)	Solve the foll	owing equat	tion by Jacot	oi's iteration M	lethod			[6]
	20x + y - 2z	= 17, 3x +	20y - z = -18	3, 2x - 3y + 20	Jz = 25			
	•							

1, -1.000, 0.9996