1 The computation of $G_n(\mathbb{Q}_p)$

1.1 The computation of the first block M_{11}

Proposition 1.1.1. Let $x = \sum_{i=1}^{n-1} \lambda_i e_{i,i+1}$, where $\lambda_i \in \mathbb{Q}_p$ not all zero. Then $\dim \mathcal{C}_{\gamma_1/\gamma_3}(x) = l + m$, where \mathbf{l} is the number of sequences of non-zero coefficients of the form $\lambda_j, \lambda_{j+1}, \ldots, \lambda_{j+k-1}, \lambda_{j+k}$ and $\lambda_{j-1} = \lambda_{j+k+1} = 0^1$, and \mathbf{m} is the number of zero coefficients $\lambda_j = 0$, such that also $\lambda_{j-1} = \lambda_{j+1} = 0$.

Proof. Let $y = \sum_{i=1}^{n-1} \mu_i e_{i,i+1} \in \mathcal{C}_{\gamma_3}(x)$, where $\lambda_i \in \mathbb{Q}_p$. For every $1 \leq 1$ $i \leq n-1$, denote by c_i the constraint equation $[\lambda_i e_{i,i+1}, \mu_{i+1} e_{i+1,i+2}]$ $[\lambda_{i+1}e_{i+1,i+2},\mu_ie_{i,i+1}] = (\lambda_i\mu_{i+1} - \lambda_{i+1}\mu_i)e_{i,i+2} = 0.$ Let $1 \le j \le n-1$ and $1 \le k \le n-1-j$ be two indices, such that $\lambda_{j-1} = \lambda_{j+k+1} = 0$, and $\lambda_j, \lambda_{j+1}, \ldots, \lambda_{j+k-1}, \lambda_{j+k}$ are all non-zero, then by constraints $c_j, c_{j+1}, \ldots, c_{m-1}$ we have that $\mu_m = \frac{\lambda_m}{\lambda_{m-1}} \mu_{m-1} = \frac{\lambda_m}{\lambda_{m-1}} \frac{\lambda_{m-1}}{\lambda_{m-2}} \mu_{m-2} = \frac{\lambda_m}{\lambda_{m-2}} \mu_{m-2} = \cdots = \frac{\lambda_m}{\lambda_j} \mu_j$, for every $j+1 \leq m \leq j+k-1$, which means that all μ coefficients of y, with indices from j+1 to j+k, depend on the first coefficient, namely μ_i . We denote the free choice of μ_i by $\mu_i = *$. One easily checks that we can choose freely any coefficient μ_m from j+1 to j+k, instead of μ_j , and all other coefficients in that range will depend on our choice of μ_m . By constraint c_{j-1} , we have that $\lambda_{j-1}\mu_j - \lambda_j\mu_{j-1} = 0$, but $\lambda_{j-1} = 0$, hence $\lambda_j\mu_{j-1}$ must vanish, but $\lambda_j \neq 0$, which obviously means that $\mu_{j-1} = 0$. Similarly, we have that $\mu_{j+k+1} = 0$, due to constraint c_{j+k} . By constraint c_{j+k+1} , we have that $\lambda_{k+k+1}\mu_{j+k+2} - \lambda_{j+k+2}\mu_{j+k+1} = 0$, but $\lambda_{j+k+1} = \mu_{j+k+1} = 0$, hence, $\lambda_{j+k+1}\mu_{j+k+2}$ must vanish, but $\lambda_{j+k+1}=0$, which means that we need to look at constraint c_{j+k+2} , that is, $\lambda_{j+k+2}\mu_{j+k+3} - \lambda_{j+k+3}\mu_{j+k+2} = 0$. We check the different options. If $\lambda_{j+k+2} = 0$, then $\lambda_{j+k+3}\mu_{j+k+2}$ must vanish. Therefore, if $\lambda_{j+k+3} \neq 0$, then $\mu_{j+k+2} = 0$, but if $\lambda_{j+k+3} = 0$, then $\mu_{j+k+2} = *$. If $\lambda_{i+k+2} \neq 0$, then again $\mu_{i+k+2} = *$. If $\lambda_{i+k+2} \neq 0$, then $\mu_{i+k+2} = *$, and we continue the same way as for λ_i and its following coefficients.

Corollary 1.1.2. Let $\mathcal{L}_{n,p}$ be the \mathbb{Q}_p -Lie algebra associated with $\mathcal{U}_n(\mathbb{Z})$. If $n \geq 5$, then $\dim \mathcal{C}_{\gamma_1/\gamma_3}(x) = \dim^{\gamma_1/\gamma_3} - 1$ if and only if $x \in \{\lambda e_{12} + \gamma_2 \mathcal{L}_{n,p}\}$ or $x \in \{\lambda e_{n-1,n} + \gamma_2 \mathcal{L}_{n,p}\}$, for a non-zero scalar $\lambda \in \mathbb{Q}_p$. If n = 4, then $\dim \mathcal{C}_{\gamma_1/\gamma_3}(x) = \dim^{\gamma_1/\gamma_3} - 1$ if and only if $x \in \{\lambda e_{12} + \mu e_{34} + \gamma_2 \mathcal{L}_{n,p}\}$, for $\lambda, \mu \in \mathbb{Q}_p$ not both zero.

¹We extend our notation of indices, to include also the case where j=1 or j+k=n-1, and define that $\lambda_{j-1}=\lambda_0=0$ or $\lambda_{j+k+1}=\lambda_n=0$, respectively

Proof. Let $z = \lambda_{j,j+2}e_{j,j+2}$, where $1 \leq j \leq n-2$ and $\lambda_{j,j+2} \in \mathbb{Q}_p$, then for every $w \in {}^{\gamma_1}/{}_{\gamma_3}$, either z commutes with w or $[z,w] \in {}^{\gamma_3}\mathcal{L}_{n,p}$, which means that $\lambda_{j,j+2}e_{j,j+2} \in \mathcal{C}_{\gamma_1/\gamma_3}$, for every $1 \leq j \leq n-2$. Hence, ${}^{\gamma_2}/{}_{\gamma_3} = \langle e_{13}, e_{24}, \ldots, e_{n-2,n} \rangle \subset \mathcal{C}_{\gamma_1/\gamma_3}(x)$. Therefore, we only need to discuss elements of the quotient ${}^{\gamma_1}/{}_{\gamma_2}$, for the purpose of this proof. Suppose that $x = \lambda_1 e_{12} + z$, where $z \in \gamma_2 \mathcal{L}_{n,p}$, then we have one sequence of non-zero coefficients, namely λ_1 , and we have n-2 zero coefficients $\lambda_2 = \lambda_3 = \cdots = \lambda_{n-1} = 0$, from which n-3 are between two other zeros. Hence, by 1.1.1, we have that $\mathcal{C}_{\gamma_1/\gamma_2}(x) = 1 + (n-3) = n-2 = (n-1)-1 = \dim {}^{\gamma_1}/{}_{\gamma_2} - 1$. Similarly, the same goes also for $x = \lambda_{n-1}e_{n-1,n} + z$. Suppose that $\dim \mathcal{C}_{\gamma_1/\gamma_2}(x) = \dim {}^{\gamma_1}/{}_{\gamma_2} - 1$, but $x = \sum_{i=1}^{n-1} \lambda_i e_{i,i+1}$, such that either of the following options is true:

- 1. there is more than one sequence of consecutive non-zero coefficients in the linear combination that forms x.
- 2. there is one sequence of consecutive non-zero coefficients, but at least one of those coefficients has index $2 \le j \le n-2$, meaning it is not λ_1 nor λ_{n-1} .

For the second option, we start by fixing one index $2 \le j \le n-2$, and assume that $x = \lambda_i e_{i,j+1}$. The number of zero coefficients in x is n-1-1=n-2, but λ_i and the zeros in indices j-1, j+1 are neighboring, hence $m_1 = n - 2 - 2 = n - 4$, and then dim $C_{\gamma_1/\gamma_2}(x) = l_1 + m_1 = 1 + n - 4 = 1$ $n-3 < n-2 = \dim \frac{\gamma_1}{\gamma_2} - 1$. We denote by k the length of the sequence of consecutive non-zero parameters, and prove that for any k > 0, where at least one non-zero coefficient λ_j lies in $2 \le j \le n-2$, dim $C_{\gamma_1/\gamma_2}(x) < n-2$, by simple induction on k. For k=1, we have just shown that. For k>1, there are k-1 additional zeros that are replaced by non-zero coefficients, where except for λ_{j-1} and λ_{j+1} , all the other zeros were originally lying between two other zeros. If the original sequence was $\lambda_2 e_{23}$ or $\lambda_{n-2} e_{n-2,n-1}$, and the new sequence is $\lambda_1 e_{12}$, $\lambda_2 e_{23}$ or $\lambda_{n-2} e_{n-2,n-1}$, $\lambda_{n-1} e_{n-1,n}$, respectively, then $m_k =$ m_1 , but clearly, in any other case, $m_k < m_1$, while $l_k = l_1 = 1$ at any case. by the assumption, for the original sequence, dim $C_{\gamma_1/\gamma_2}(x) = l_1 + m_1 < n-2$, hence for the new sequence, dim $C_{\gamma_1/\gamma_2}(x) = l_k + m_k \le l_1 + m_1 = n - 3 < n - 2$. Now we check the first option, starting from the case where $x = \lambda_1 e_{12} +$ $\lambda_{n-1}e_{n-1,n}$. In this case, $l_2=2$ and the number of zeros is n-1-2=n-3, but λ_1 and the zero in index 2 are neighboring, and so are λ_{n-1} and the zero in index n-2, hence $m_2 = n-3-2 = n-5$ zeros are lying between two other zeros, therefore dim $C_{\gamma_1/\gamma_2}(x) = l_2 + m_2 = n - 5 + 2 = n - 3 < n - 2$. if we add

another non-zero coefficient, then it must lie in some index $2 \le j \le n-2$, for which we have already proved that dim $C_{\gamma_1/\gamma_2}(x) < n-2$, which completes the proof for $n \geq 5$. For n = 4, we can check explicitly. Assume $x = \lambda e_{12} + \mu e_{34}$, denote an element in the centralizer of x by $y = \rho e_{12} + \tau e_{23} + \nu e_{34}$, and we observe that $[x,y] = [\lambda e_{12}, \tau e_{23}] + [\mu e_{34}, \tau e_{23}] = \lambda \tau e_{13} - \tau \mu e_{24} = 0$, hence $\tau = 0$, while $\rho = *$ and $\nu = *$, so dim $C_{\gamma_1/\gamma_2}(x) = 2 = \dim^{\gamma_1/\gamma_2}(x)$, as requested, and it is readily seen that even if either $\lambda = 0$ or $\mu = 0$, but not both, then τ still has to be zero, in order to satisfy either $\tau \mu = 0$ or $\lambda \tau = 0$, respectively, and ρ, ν can still be anything, which means that in either case, where the coefficient of e_{23} is zero but $x \neq 0$, we have dim $\mathcal{C}_{\gamma_1/\gamma_2}(x) = 2$. Assume dim $C_{\gamma_1/\gamma_2}(x) = \dim^{\gamma_1/\gamma_2}(x) = 3-1 = 3$, then if x is not of the suggested form, it means that $x = \lambda e_{12} + \sigma e_{23} + \mu e_{34}$, where $\sigma \neq 0$ and either λ or μ or both can be zero. If $x = \lambda e_{12} + \sigma e_{23} + \mu e_{34}$ and all coefficients are non-zero, then for every $y \in \mathcal{C}_{\gamma_1/\gamma_2}(x)$ denoted by $y = \rho e_{12} + \tau e_{23} + \nu e_{34}$, we have $[x, y] = [\lambda e_{12}, \tau e_{23}] + [\sigma e_{23}, \rho e_{12}] + [\sigma e_{23}, \nu e_{34}] + [\mu e_{34}, \tau e_{23}] = (\lambda \tau - \epsilon_{34})$ $(\sigma \rho)e_{13} + (\sigma \nu - \mu \tau)e_{24}$, hence $\tau = \frac{\sigma}{\lambda}\rho$ and $\nu = \frac{\mu}{\sigma}\tau = \frac{\mu}{\sigma}\frac{\sigma}{\lambda}\rho = \frac{\mu}{\lambda}\rho$, but this means that dim $\mathcal{C}_{\gamma_1/\gamma_2}(x) = 1$, because both τ and ν depend on ρ . If either λ or μ or both are zero, then either $\sigma\rho$ or $\sigma\mu$ or both are zero, which means that ρ or ν or both are zero, since $\sigma \neq 0$, but this means that either $y = \tau e_{23} + \frac{\mu}{\sigma} \tau e_{34}$ or $y = \frac{\lambda}{\sigma} \tau e_{12} + \tau e_{23}$ or $y = \tau e_{23}$, respectively. Therefore, in either case, where $\sigma \neq 0$, we have dim $\mathcal{C}_{\gamma_1/\gamma_2}(x) = 1$, which completes the proof for n = 4.

Corollary 1.1.3. Let $\mathcal{L}_{n,p}$ be a \mathbb{Q}_p -Lie algebra, where $n \geq 4$, and let $\varphi \in G_n(\mathbb{Q}_p)$ be an $\mathcal{L}_{n,p}$ -automorphism, then $\varphi_{11}(e_{12}) = \lambda_1 e_{12}$ and $\varphi_{11}(e_{n,n-1}) = \lambda_{n-1}e_{n-1,n}$, or $\varphi_{11}(e_{12}) = \lambda_{n-1}e_{n-1,n}$ and $\varphi_{11}(e_{n,n-1}) = \lambda_1 e_{1,2}$.

Proof. We look at the centralizer of e_{12} in the quotient γ_1/γ_3 , namely $C_{\gamma_1/\gamma_3}(e_{12})$. Clearly, for any $e_{i,i+2} \in \gamma_2/\gamma_3$, we have that $[e_{12}, e_{i,i+2}]$ is either zero, or i=2 and then $[e_{12}, e_{24}] = e_{14} \in \gamma_3 \mathcal{L}_{n,p}$, which vanishes in the quotient γ_1/γ_3 , which means that in either case it is zero in this quotient. Therefore, we look only at elements $e_{i,i+1} \in \gamma_1/\gamma_2$. It is readily seen that every element of the form $e_{i,i+1}$ where $i \neq 2$ commutes with e_{12} , hence $C_{\gamma_1/\gamma_2}(e_{12}) = \langle e_{12}, e_{34}, e_{45}, \ldots, e_{n-2,n-1}, e_{n-1,n} \rangle$, so $\dim C_{\gamma_1/\gamma_2}(e_{12}) = \dim \gamma_1/\gamma_2 - 1$, but since φ_{11} is an automorphism, it must preserve the dimension of the centralizer, meaning $\dim C_{\gamma_1/\gamma_2}(\varphi_{11}(e_{12})) = \dim C_{\gamma_1/\gamma_2}(e_{12}) = \dim \gamma_1/\gamma_2 - 1$. But by corollary 1.1.2, if $n \geq 5$, then $\varphi_{11}(e_{12}) = \lambda e_{12}$ or $\varphi_{11}(e_{12}) = \lambda e_{n-1,n}$, and it is readily seen that the same applies also for $\varphi_{11}(e_{n-1,n})$, and since φ is injective, then clearly, if $\varphi_{11}(e_{12}) = \lambda e_{12}$ then $\varphi_{11}(e_{n-1,n}) = \lambda e_{n-1,n}$, and if $\varphi_{11}(e_{12}) = \lambda e_{n-1,n}$ then $\varphi_{11}(e_{n-1,n}) = \lambda e_{12}$. If n = 4, then by

the same corollary, $\varphi_{11}(e_{12}) = \lambda e_{12} + \mu e_{34}$, where λ and μ are not both zero, and the same applies for $\varphi_{11}(e_{34})$. Assume that λ and μ are both non-zero, and denote by $\psi = \varphi^{-1}$, the inverse of φ . Obviously, ψ itself must be of the same form $\psi_{11}(e_{12}) = \rho e_{12} + \tau e_{34}$, where ρ and τ are not both zero, and $\psi_{11}(e_{34}) = \nu e_{12} + \sigma e_{34}$, where ν and σ are not both zero. Then $e_{12} = \psi_{11}(\varphi_{11}(e_{12})) = \psi_{11}(\lambda e_{12} + \mu e_{34}) = \lambda \psi_{11}(e_{12}) + \mu \psi_{11}(e_{34}) = \lambda \rho e_{12} + \lambda \tau e_{34} + \mu \nu e_{12} + \mu \sigma e_{34} = (\lambda \rho + \mu \nu) e_{12} + (\lambda \tau + \mu \sigma) e_{34}$. Clearly, the coefficient $\lambda \tau + \mu \sigma$ of e_{34} must vanish, so the equation can be satisfied. We observe that τ and σ must be either both zero or both non-zero, otherwise $\lambda \tau + \mu \sigma \neq 0$. Assume $\tau = \sigma = 0$, then $\psi_{11}(e_{12}) = \rho e_{12}$ and $\psi_{11}(e_{34}) = \nu e_{12}$. But then $e_{12} = \varphi_{11}(\psi_{11}(e_{12})) = \varphi_{11}(\rho e_{12}) = \rho \varphi_{11}(e_{12}) = \rho \lambda e_{12} + \rho \mu e_{34}$, which means that $\rho \mu$ must vanish, hence $\rho = 0$, but then $\psi_{11}(e_{12}) = 0$.