Indian Institute of Information Technology Vadodara MA 101: Linear Algebra and Matrices Tutorial 7

1. Find the eigenvalues of following matrices with their arithmetic and geometric multiplicities and therby answer diagonalizability over \mathbb{R} :

a)
$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1 \end{bmatrix}$$
, b) $B = \begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix}$

- 2. Let $A = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}$, $v_1 = \begin{bmatrix} 3/7 \\ 4/7 \end{bmatrix}$, $x_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$.
 - a) Find a basis of \mathbb{R}^2 consisting of v_1 and another eigenvector v_2 of A.
 - b) Write x_0 as $v_1 + cv_2$ for some scalar c.
 - c) Let $x_k = Ax_{k-1}$ for $k \ge 1$. Compute x_1, x_2 and write a formula for x_k . Show that x_k converges to v_1 as k increases.
- 3. Show that A^2 is diagonalizable if A is diagonalizable. Will AB be diagonalizable if A, B are diagonalizable?
- 4. Compute A^{100} , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$.
- 5. Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ be eigenvectors of $A_{3\times 3}$. Then find eigenvectors of A^T .
- 6. Let $B = \{e_1, e_2, e_3\}$ be stand basis of \mathbb{R}^3 and $\{v_1, v_2, v_3\}$ be a basis of V. Define $T : \mathbb{R}^3 \to V$ as $T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = (x_3 x_2)b_1 (x_1 + x_3)b_2 + (x_1 x_2)b_3$. Is T diagonalizable?
- 7. Find an invertible matrix P and a matrix C of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that $A = PCP^{-1}$, where $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$.

- 8. Let $A = \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$ with eigenvalue 4-i. Find $u,v \in \mathbb{R}^2$ such that Au = 4u + v, Av = -u + 4v. Compute A(u+iv).
- 9. Let A be an $n \times n$ real matrix with the property that $A^T = A$. Show that if $Ax = \lambda x$ for some nonzero vector x in \mathbb{C}^n then in fact, λ is real number and the real part of x is an eigenvector of A. (Show that $\overline{x}^T Ax \in \mathbb{R}$ and examine the real and imaginary parts of Ax.)