

UNIVERSIDAD NACIONAL DE LANUS

LICENCIATURA EN SISTEMAS Introducción a los Sistemas Operativos

Profs.: Dr. Pablo Pytel

GUIA DE TRABAJOS PRÁCTICOS – UNIDAD 4

Ejericico 1. Resuelva el siguiente ejercicio de planificación de procesos para utilizar el procesador indicando la traza completa de ejecución de los mismos.

	Comienza en	2		Duración	
Proceso	tiempo	Prioridad	CPU	E/S	CPU
P1	t1	Alta	4	3	3
P2	t1	Baja	2	4	3
P3	t3	Media	2	5	1
P4	t3	Media	1	4	5
P5	t5	Alta	3	2	3

Consideraciones:

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación

- a) First In First Out (No Apropiativo).
- b) Prioridades (No Apropitativo).
- c) Shortest Process Next (No Apropiativo).
- d) Shortest Remaining Time (Apropiativo).
- e) Round Robing q=3 (Apropitativo).

Ejericico 2. Resuelva el siguiente ejercicio de planificación de procesos para utilizar de procesador indicando la traza completa de ejecución de los mismos.

Proceso	Comienza en	Prioridad	Duración						
Proceso	tiempo	Prioridad	CPU	E/S	CPU				
P1	t1	Baja	4	2	1				
P2	t1	Media	2	4	3				
P3	t2	Alta	1	2	1				
P4	t2	Media	3	1	2				
P5	t3	Alta	3	2	4				

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación

- a) First In First Out (No Apropiativo).
- b) Shortest Process Next (No Apropiativo).
- c) Por Prioridades (No Apropiativo).
- d) Shortest Remaining Time (Apropiativo).
- e) Round Robin (q = 1)
- f) Round Robin (q = 3)
- g) Round Robin (q = 8)

Ejericico 3. Resuelva el siguiente ejercicio de planificación de procesos para utilizar de procesador indicando la traza completa de ejecución de los mismos.

Dracaca	Comienza en	Drioridad	Duración Prioridad								
Proceso	tiempo	PHOHUAU	CPU	E/S	CPU	E/S	CPU				
P1	t1	Media	5	1	3	1	4				
P2	t2	Baja	2	3	3	2	2				
P3	t2	Alta	4	2	4	3	1				
P4	t3	Baja	2	1	1	2	3				
P5	t4	Alta	3	2	4	5	4				

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación:

- a) First In First Out (No Apropiativo).
- b) Shortest Process Next (No Apropiativo).
- c) Por Prioridades (No Apropiativo).
- d) Shortest Remaining Time (Apropiativo).
- e) Round Robin (q = 1)
- f) Round Robin (q = 3)
- g) Round Robin (q = 5)

Ejericico 4. Resuelva el siguiente ejercicio de planificación de procesos para utilizar de procesador indicando la traza completa de ejecución de los mismos.

Dracaca	Comienza en	Drioridad	Prioridad Duración								
Proceso	Proceso tiempo	Prioriuau	CPU	E/S	CPU	E/S	CPU				
P1	t1	Baja	1	1	3	1	4				
P2	t2	Media	2	1	3	2	1				
P3	t2	Alta	3	2	1	3	2				
P4	t3	Media	1	3	2	1	3				
P5	t4	Alta	3	2	4	5	4				

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación:

- a) First In First Out (No Apropiativo).
- b) Shortest Process Next (No Apropiativo).
- c) Por Prioridades (No Apropiativo).
- d) Shortest Remaining Time (Apropiativo).
- e) Round Robin (q = 1)
- f) Round Robin (q = 2)
- g) Round Robin (q = 4)

Ejericico 5. Dada la configuración de los procesos

	Comienza en		Prioridad		
Proceso	tiempo	CPU	E/S	СРИ	
P1	t1	2	1	3	Media
P2	t2	3	2	1	Alta
P3	t2	1	3	2	Baja

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.
- a) Si se obtiene siguiente traza de ejecución:

Proceso	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
P1	E	E	В			E	E		E	T							
P2			E	E				E	В	В		E	T				
Р3					E	В	В	В		E	E	Т					

Entonces, el algoritmo que fue utilizado por el Planificador de Corto Alcance es...

b) Si se obtiene siguiente traza de ejecución:

Proceso	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
P1	E	E	В							E	E	E	Т				
P2				Е	E	E	В	В	E	Т							
Р3			E	В	В	В	E	E	T								

Entonces, el algoritmo que fue utilizado por el Planificador de Corto Alcance es...