Building Java ProgramsChapter 8

Classes

Classes and objects

- **class**: A program entity that represents either:
 - 1. A program / module, or
 - 2. A template for a new type of objects.
 - The Fraction class is a template for creating Fraction objects. The Point class is a template for creating Point objects

- object: An entity that combines state and behavior.
 - object-oriented programming (OOP): Programs that perform their behavior as interactions between objects.

Blueprint analogy

iPod blueprint

state:

current song volume battery life

behavior:

power on/off change station/song change volume choose random song

creates

iPod #1

state:

song = "1,000,000 Miles" volume = 17 battery life = 2.5 hrs

behavior:

power on/off change station/song change volume choose random song

iPod #2

state:

song = "Letting You" volume = 9 battery life = 3.41 hrs

behavior:

power on/off change station/song change volume choose random song

iPod #3

<u>state:</u>

song = "Discipline" volume = 24 battery life = 1.8 hrs

behavior:

power on/off change station/song change volume choose random song

Abstraction

- abstraction: A distancing between ideas and details.
 - We can use objects without knowing how they work.
- abstraction in an iPod:
 - You understand its external behavior (buttons, screen).
 - You don't understand its inner details, and you don't need to.

Our task

- In the following slides, we will implement a Point class as a way of learning about defining classes.
 - We will define a type of objects named Point.
 - Each Point object will contain x/y data called fields.
 - Each Point object will contain behavior called methods.
 - Client programs will use the Point objects.

Point objects (desired)

```
Point p1 = new Point(5, -2);
Point p2 = new Point(); // origin, (0, 0)
```

• Data in each Point object:

Field name	Description
X	the point's x-coordinate
У	the point's y-coordinate

Methods in each Point object:

Method name	Description
setLocation(X, Y)	sets the point's x and y to the given values
translate(dx, dy)	adjusts the point's x and y by the given amounts
distance(p)	how far away the point is from point p

Point class as blueprint

Point class state: int x, y behavior: setLocation(int x, int y) translate(int dx, int dy) distance(Point p) draw(Graphics g)

Point object #1

state:

$$x = 5, y = -2$$

behavior:

setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics q)

Point object #2

state:

$$x = -245$$
, $y = 1897$

behavior:

setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:

$$x = 18, y = 42$$

behavior:

setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

- The class (blueprint) will describe how to create objects.
- Each object will contain its own data and methods.

Object state: Fields

Point class, version 1

```
public class Point {
    int x;
    int y;
}
```

- Save this code into a file named Point.java.
- The above code creates a new type named Point.
 - Each Point object contains two pieces of data:
 - an int named x, and
 - an int named y.
 - Point objects do not contain any behavior (yet).

Fields

- **field**: A variable inside an object that is part of its state.
 - Each object has its own copy of each field.
- Declaration syntax:

```
type name;
```

– Example:

Accessing fields

Other classes can access/modify an object's fields.

```
– access: variable . field
```

- modify: variable.field = value;

Example:

```
Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x);  // access
p2.y = 13;  // modify
```

A class and its client

- Point.java is not, by itself, a runnable program.
 - A class can be used by client programs.

PointMain client example

```
public class PointMain {
    public static void main(String[] args) {
        // create two Point objects
        Point p1 = new Point();
        p1.y = 2;
        Point p2 = new Point();
        p2.x = 4;
        System.out.println(p1.x + ", " + p1.y); // 0, 2
        // move p2 and then print it
        p2.x += 2;
        p2.y++;
        System.out.println(p2.x + ", " + p2.y); // 6, 1
```

Object behavior: Methods

Problem with static method

- We are missing a major benefit of objects: code reuse.
 - Every program that uses Points would need their own methods to do things with Points.
- The syntax doesn't match how we're used to using objects.

- The point of classes is to combine state and behavior.
 - The desired behaviors are closely related to a Point's data.
 - The methods belong inside each Point object.

Instance methods

• **instance method** (or **object method**): Exists inside each object of a class and gives behavior to each object.

```
public type name(parameters) {
    statements;
}
```

- same syntax as static methods, but without static keyword

```
Example:
```

```
public void shout() {
    System.out.println("HELLO THERE!");
}
```

Instance method example

```
public class Point {
    int x;
    int y;
   public Point() {
       x = 0;
       y = 0;
    // Returns a string showing this Point object.
    public String toString() {
        String temp = "";
        temp += "(" + this.x + "," + this.y + ") ";
        return temp;
```

- The toString() method doesn't have a Point p parameter.
- How will the method know which point to draw?
 - How will the method access that point's x/y data?

Point objects w/ method

• Each Point object has its own copy of the toString method, which operates on that object's state: p1

System.out.println(p2.toString());

```
Point p1 = new Point();
p1.x = 7;
p1.y = 2;
                              public void toString() {
                                  //this code can use p1's x and y
Point p2 = new Point();
p2.x = 4;
p2.y = 3;
                              public void toString() {
                                  //this code can use p2's x and y
System.out.println(p1.toString());
```

The implicit parameter

• implicit parameter:

The object on which an instance method is called.

- During the call p1.toString();
 the object referred to by p1 is the implicit parameter.
- During the call p2.toString(); the object referred to by p2 is the implicit parameter.
- The instance method can refer to that object's fields.
 - We say that it executes in the context of a particular object.
 - toString() can refer to the x and y of the object it was called on.

Point class, version 2

```
public class Point {
    int x;
    int y;
    public Point () {
       x = 0;
       y = 0;
    // Returns a string showing this Point object.
    public String toString {
        String temp = "";
        temp += "(" + this.x + "," + this.y + ") ";
        return temp;
```

- Each Point object contains a toString() method that draws
that point at its current x/y position.

20

Kinds of methods

- accessor: A method that lets clients examine object state.
 - Examples: distance, distanceFromOrigin
 - often has a non-void return type

- mutator: A method that modifies an object's state.
 - Examples: setLocation, translate

Mutator method questions

• Write a method setLocation that changes a Point's location to the (x, y) values passed.

- Write a method translate that changes a Point's location by a given dx, dy amount.
 - Modify the Point and client code to use these methods.

Mutator method answers

```
public void setLocation(int newX, int newY) {
    x = newX;
    y = newY;
public void translate(int dx, int dy) {
    x = x + dx;
    y = y + dy;
// alternative solution that utilizes setLocation
public void translate(int dx, int dy) {
    setLocation (x + dx, y + dy);
```

Accessor method questions

• Write a method distance that computes the distance between a Point and another Point parameter.

Use the formula: $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

- Write a method distanceFromOrigin that returns the distance between a Point and the origin, (0, 0).
 - Modify the client code to use these methods.

Accessor method answers

```
public double distance(Point other) {
    int dx = x - other.x;
    int dy = y - other.y;
    return Math.sqrt(dx * dx + dy * dy);
public double distanceFromOrigin() {
    return Math.sqrt(x * x + y * y);
// alternative solution that uses distance
public double distanceFromOrigin() {
    Point origin = new Point();
    return distance (origin);
```

Printing objects

By default, Java doesn't know how to print objects:

```
Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34
                                     p is (10, 7)
// better, but cumbersome;
System.out.println("p is (" + p.x + ", " + p.y + ")");
// desired behavior
System.out.println("p is " + p); // p is (10, 7)
```

The toString method

tells Java how to convert an object into a String

```
Point p1 = new Point(7, 2);
System.out.println("p1: " + p1);

// the above code is really calling the following:
System.out.println("p1: " + p1.toString());
```

- Every class has a toString, even if it isn't in your code.
 - Default: class's name @ object's memory address (base 16)

```
Point@9e8c34
```

toString syntax

```
public String toString() {
    code that returns a String representing this object;
}
```

- Method name, return, and parameters must match exactly.
- Example:

```
// Returns a String representing this Point.
public String toString() {
    return "(" + x + ", " + y + ")";
}
```

Object initialization: constructors

Initializing objects

Currently it takes 3 lines to create a Point and initialize it:

We'd rather specify the fields' initial values at the start:

```
Point p = new Point(3, 8); // better!
```

We are able to this with most types of objects in Java.

Constructors

constructor: Initializes the state of new objects.

```
public type(parameters) {
    statements;
}
```

- runs when the client uses the new keyword
- no return type is specified;
 it implicitly "returns" the new object being created

 If a class has no constructor, Java gives it a default constructor with no parameters that sets all fields to 0.

Constructor example

```
public class Point {
    int x;
    int y;
    // Constructs a Point at the given x/y location.
    public Point(int initialX, int initialY) {
        x = initialX;
        y = initialY;
    public void translate(int dx, int dy) {
        x = x + dx;
        y = y + dy;
```

Tracing a constructor call

What happens when the following call is made?

```
Point p1 = new Point(7, 2);
```



```
public Point(int initialX, int initialY) {
    x = initialX;
    y = initialY;
}

public void translate(int dx, int dy) {
    x += dx;
    y += dy;
}
```

Client code, version 3

```
public class PointMain3 {
    public static void main(String[] args) {
        // create two Point objects
        Point p1 = new Point(5, 2);
        Point p2 = new Point(4, 3);
        // print each point
        System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
        System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
        // move p2 and then print it again
        p2.translate(2, 4);
        System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)
```

Multiple constructors

- A class can have multiple constructors.
 - Each one must accept a unique set of parameters.

• Exercise: Write a Point constructor with no parameters that initializes the point to (0, 0).

```
// Constructs a new point at (0, 0).
public Point() {
    x = 0;
    y = 0;
}
```

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):

```
public Point(int initialX, int initialY) {
   int x = initialX;
   int y = initialY;
}
```

 This declares local variables with the same name as the fields, rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

```
public void Point(int initialX, int initialY) {
    x = initialX;
    y = initialY;
}
```

This is actually not a constructor, but a method named Point

Encapsulation

Encapsulation

- encapsulation: Hiding implementation details from clients.
 - Encapsulation forces abstraction.
 - separates external view (behavior) from internal view (state)
 - protects the integrity of an object's data

Private fields

A field that cannot be accessed from outside the class

```
private type name;
```

– Examples:

```
private int id;
private String name;
```

Client code won't compile if it accesses private fields:

```
PointMain.java:11: x has private access in Point System.out.println(p1.x);
```

Accessing private state

```
// A "read-only" access to the x field ("accessor")
public int getX() {
    return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {
    x = newX;
}
```

Client code will look more like this:

```
System.out.println(p1.getX());
p1.setX(14);
```

Point class, version 4

```
// A Point object represents an (x, y) location.
public class Point {
   private int x;
    private int y;
    public Point(int initialX, int initialY) {
        x = initialX;
        y = initialY;
    public int getX() {
        return x;
    public int getY() {
        return y;
    public double distanceFromOrigin() {
        return Math.sqrt(x * x + y * y);
    public void setLocation(int newX, int newY) {
        x = newX;
        y = newY;
    public void translate(int dx, int dy) {
        setLocation (x + dx, y + dy);
```

Benefits of encapsulation

- Abstraction between object and clients
- Protects object from unwanted access
 - Example: Can't fraudulently increase an Account's balance.
- Can change the class implementation later
 - Example: Point could be rewritten in polar coordinates (r, θ) with the same methods.

- Can constrain objects' state (invariants)
 - Example: Only allow Accounts with non-negative balance.
 - Example: Only allow Dates with a month from 1-12.

The this keyword

• this: Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

```
- Refer to a field: this.field
```

- Call a method: this.method(parameters);

One constructorcan call another:

```
this (parameters);
```

Variable shadowing

- **shadowing**: 2 variables with same name in same scope.
 - Normally illegal, except when one variable is a field.

```
public class Point {
   private int x;
   private int y;
   ...
   // this is legal
   public void setLocation(int x, int y) {
       ...
}
```

- In most of the class, \times and y refer to the fields.
- In setLocation, x and y refer to the method's parameters.

Fixing shadowing

```
public class Point {
    private int x;
    private int y;
    ...

    public void setLocation(int x, int y) {
        this.x = x;
        this.y = y;
    }
}
```

- Inside setLocation,
 - To refer to the data field x, say this.x
 - To refer to the parameter x, say x

Calling another constructor

```
public class Point {
    private int x;
    private int y;
    public Point() {
        this(0, 0); // calls (x, y) constructor
    public Point(int x, int y) {
        this.x = x;
        this.y = y;
```

- Avoids redundancy between constructors
- Only a constructor (not a method) can call another constructor

Static methods/fields

Multi-class systems

- Most large software systems consist of many classes.
 - One main class runs and calls methods of the others.
- Advantages:
 - code reuse
 - splits up the program logic into manageable chunks

Redundant program 1

```
// This program sees whether some interesting numbers are prime.
public class Primes1 {
    public static void main(String[] args) {
        int[] nums = {1234517, 859501, 53, 142};
        for (int i = 0; i < nums.length; <math>i++) {
            if (isPrime(nums[i])) {
                System.out.println(nums[i] + " is prime");
    // Returns the number of factors of the given integer.
    public static int countFactors(int number) {
        int count = 0;
        for (int i = 1; i <= number; i++) {
            if (number % i == 0) {
                count++; // i is a factor of the number
        return count;
    // Returns true if the given number is prime.
    public static boolean isPrime(int number) {
        return countFactors (number) == 2;
```

Redundant program 2

```
// This program prints all prime numbers up to a maximum.
public class Primes2 {
    public static void main(String[] args) {
        Scanner console = new Scanner(System.in);
        System.out.print("Max number? ");
        int max = console.nextInt();
        for (int i = 2; i \le max; i++) {
            if (isPrime(i)) {
                System.out.print(i + " ");
        System.out.println();
    // Returns true if the given number is prime.
    public static boolean isPrime(int number) {
        return countFactors(number) == 2;
    }
    // Returns the number of factors of the given integer.
    public static int countFactors(int number) {
        int count = 0:
        for (int i = 1; i <= number; i++) {
            if (number % i == 0) {
                count++; // i is a factor of the number
        return count;
```

Classes as modules

- module: A reusable piece of software, stored as a class.
 - Example module classes: Math, Arrays, System

```
// This class is a module that contains useful methods
// related to factors and prime numbers.
public class Factors {
    // Returns the number of factors of the given integer.
    public static int countFactors(int number) {
        int count = 0;
        for (int i = 1; i <= number; i++) {
            if (number % i == 0) {
                count++; // i is a factor of the number
        return count;
    // Returns true if the given number is prime.
    public static boolean isPrime(int number) {
        return countFactors(number) == 2;
```

More about modules

- A module is a partial program, not a complete program.
 - It does not have a main. You don't run it directly.
 - Modules are meant to be utilized by other *client* classes.

Syntax:

```
class.method(parameters);
```

Example:

```
int factorsOf24 = Factors.countFactors(24);
```

Using a module

```
// This program sees whether some interesting numbers are prime.
public class Primes {
    public static void main(String[] args) {
        int[] nums = \{1234517, 859501, 53, 142\};
        for (int i = 0; i < nums.length; <math>i++) {
            if (Factors.isPrime(nums[i])) {
                System.out.println(nums[i] + " is prime");
// This program prints all prime numbers up to a given maximum.
public class Primes2 {
    public static void main(String[] args) {
        Scanner console = new Scanner (System.in);
        System.out.print("Max number? ");
        int max = console.nextInt();
        for (int i = 2; i \le max; i++) {
            if (Factors.isPrime(i)) {
                System.out.print(i + " ");
        System.out.println();
```

Modules in Java libraries

```
// Java's built in Math class is a module
public class Math {
    public static final double PI = 3.14159265358979323846;
    public static int abs(int a) {
        if (a >= 0) {
            return a;
        } else {
            return -a;
   public static double toDegrees(double radians) {
        return radians * 180 / PI;
```

Static members

- **static**: Part of a class, rather than part of an object.
 - Object classes can have static methods and fields.
 - Not copied into each object; shared by all objects of that class.

<u>class</u>

state:

private static int staticFieldA
private static String staticFieldB

behavior:

public static void someStaticMethodC()
public static void someStaticMethodD()

object #1

state:

int field2
double field2

behavior:

public void method3()
public int method4()
public void method5()

object #2

state:

int field1
double field2

behavior:

public void method3()
public int method4()
public void method5()

object #3

state:

int field1
double field2

behavior:

public void method3()
public int method4()
public void method5()

Static fields

```
private static type name;
or,
private static type name = value;

- Example:
private static int theAnswer = 42;
```

- static field: Stored in the class instead of each object.
 - A "shared" global field that all objects can access and modify.
 - Like a class constant, except that its value can be changed.

Accessing static fields

From inside the class where the field was declared:

```
fieldName
fieldName = value;

// get the value
// set the value
```

• From another class (if the field is public):

```
ClassName.fieldName // get the value ClassName.fieldName = value; // set the value
```

- generally static fields are not public unless they are final

- Exercise: Modify the BankAccount class shown previously so that each account is automatically given a unique ID.
- Exercise: Write the working version of FratGuy.

Summary of Java classes

- A class is used for any of the following in a large program:
 - a *program*: Has a main and perhaps other static methods.
 - example: GuessingGame, Birthday, MadLibs, CritterMain
 - does not usually declare any static fields (except final)
 - an object class: Defines a new type of objects.
 - example: Point, BankAccount, Date, Critter, FratGuy
 - declares object fields, constructor(s), and methods
 - might declare static fields or methods, but these are less of a focus
 - should be encapsulated (all fields and static fields private)
 - a *module*: Utility code implemented as static methods.
 - example: Math