

RoboDebt Advisor

Using Machine Learning for Financial Education

Gia R. NATHAN

11th Grade, James Logan High School, Union City California 03/28/2023

Humanize Al Challenge

- Application
- Problem Statement
- Possible Solution
- Solution Overview
- Methodology Used
- Machine Learning Model
- Results
- Summary

Project Purpose: RoboDebt Advisor: A Fintech Application for Financial Education

- Consumer Debt is a major problem in the USA
- However most consumers do not have the means to hire a financial advisor
- I want to leverage the power of AI/ML in building
 - A fintech application that acts like a virtual financial advisor
 - It would help a consumer to recover from a financial debt by promoting financial education

• This is one of the ways we can use AI/ML for society's benefit

Problem Statement: Consumer Debt in the USA

- Consumer debt in America was approximately \$16.51
 Trillion in Q3 2022*
- The Credit Card debt across USA, was roughly \$0.93 Trillion.
- Majority of the consumers with credit card debt have their finances out of control.
- Often end up making decisions that leads them into taking on ³ more debt.
- Given a chance they would like to get out this situation
- For putting in a mitigation plan those consumers:
 - Just don't have the financial education.
 - Or funds necessary to hire a financial planner

Total Debt Balance and its Composition

Problem Statement: Consumer Debt in the USA

Credit Limit and Balance for Credit Cards and HE Revolving

Total Balance by Delinquency Status

My Solution: RoboDebt Advisor & What it Does

- RoboDebt Advisor Functions:
 - Aggregate a Consumer's financial transaction data from any existing free application api (Mint)
 - Develops an ML Model on the consumer transactions
 - Generates Recommendations on Debt Reduction Strategies and financial mitigation plan
 - Generate a daily report on the consumer's financial health
- RoboDebt Advisor Features:
 - Suggest potential ways to prevent the customer default:
 - By flagging high interest debt by with a set of actions/recommendations
 - Real time monitoring with a workflow engine to trigger alerts and actions
 - Auto-scheduling payments based on pre-determined thresholds.

RoboDebt Advisor: High Level Overview

- Mint is a popular free personal finance application for personal finance
- This Mobile application and web platform leverages Mint's API
- How this solution works:
 - Customer's sign up for Mint and enter their financial data
 - Mint aggregates the Consumer's financial Data
 - Customer downloads RoboDebt Advisor application
 - Logs in to this application with their Mint ID/Password
 - The Phone app creates the account on RoboDebt Web Platform
 - Pulls in customer data from Mint via intuit customer data API*
 - Goes through the following phases

RoboDebt Advisor: Algorithm Overview Data Acquisition Phase

- Aggregate the Bill data from Check Module (Mint Bills) & data from income sources
 - Add up all the bills and income
 - Figure out the difference to arrive at the money left for servicing debt.
 - Rank the obligations into
 - High interest debt
 - Non-deductible low-interest debt
 - Tax-deductible debt
 - Pull in the most recent credit score from Mint's built in VantageScore® interface
 - Record the most up to date information of the consumer's creditworthiness

RoboDebt Advisor: Algorithm Overview Data Analysis Phase 1

- Provide a review day-to-day expenditure. Provide recommendations to cut back.
- Provide a review of subscriptions along with recommendations for cut backs.
- Based on the ranking of the debt provide recommendations for a debt avalanching*
 - high-interest debt (first), suggest doubling up on payments to speed up the payback period
 - non-deductible, low-interest debt (next), again suggestions for doubling up payments
 - tax-deductible debt (last).
 - Provide recommendation to the user for alternatives or encourage quitting the habit of using high-interest debt.
- Based on the credit rating
 - Provide lender recommendations for larger, lower-interest loan, and roadmap to consolidate all the consumer's debts into this loan.
 - *n.b: Debt Avalanche: Please refer this <u>Investopedia link</u> for details

RoboDebt Advisor: Algorithm Overview Data Analysis Phase 2

- Recommend a Debt renegotiation plan:
 - Rank the customers lending institutions with whom they have outstanding debts
 - If customer owes more than one bank, start with the bank with which they have the best history.
 - Provide a damage report, a new cash-based budget
 - List out the steps to take to avoid defaulting on the existing debts
 - Suggest renegotiation terms for the debt the customer has with the institution

RoboDebt Advisor: Software Platform Building Blocks

Functional Block Diagram

RoboDebt Advisor: Implementation of Credit Card Default Predictor

- In this challenge round I plan on implementing the Credit Default Predictor
- I used the Credit Card Default Analysis from UC Irvine from Kaggle, for this ML program
 - The variables are:
 - Default Payment (0 = No, 1 = Yes)
 - Amount of Given Credit
 - Gender (1 = Male, 2 = Female)
 - Education (1 = Graduate School, 2 = University, 3 = High School, 4 = Other, 5 = Unknown)
 - Marital Status (1 = Married, 2 = Single, 3 = Others)
 - Age
 - History of Past Payment from April 2005 to September 2005 where -2=no consumption, -1=pay duly, 0=the use of revolving credit, 1=payment delay for one month, 2=payment delay for two months, ... 9=payment delay for nine months and above
 - Amount of Bill Statement from April 2005 to September 2005
 - Amount of Previous Payment April 2005 to September 2005

RoboDebtAdvisor: Machine Learning for Credit Card Default Analysis

- In this challenge round I am implementing a Credit Default Predictor
- In this challenge round I implemented a Credit Default Predictor Application
- This will be a subapplication in the RoboDebt Advisor application
- Chose Credit Card debt as it is the most common type of Debt in USA
- Data Source used for Development: Kaggle UCI Credit Card Data
 - https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
 - The data contains 24 variables and a total of 30,000 individual instances of customer data
 - The last column indicates credit card default for a customer
 - I modified the:
 - Random Forest code sample from O-Reilly's Introduction to Machine Learning with Python
 - This is a technology demonstrator as should be treated as such.
 - The development was done on windows running Anaconda Python
 - Pandas and Sklearn library was used

C:\Users\gia.nathan\Desktop>pvthon

Python 3.6.3 |Anaconda, Inc.| (default, Nov 8 2017, 15:10:56) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 24 columns):
    Column
                Non-Null Count Dtype
     LIMIT BAL
               30000 non-null float64
    SEX
    EDUCATION
               30000 non-null
    MARRTAGE
                30000 non-null
    AGE
    PAY 0
                30000 non-null
                               int64
    PAY 2
    PAY 3
                30000 non-null
                               int64
    PAY 4
    PAY 5
                               int64
    PAY 6
 11 BILL AMT1
               30000 non-null
                               float64
 12 BILL AMT2
               30000 non-null
 13 BILL AMT3
               30000 non-null
                               float64
    BILL AMT4
               30000 non-null
    BILL AMT5
    BILL AMT6
    PAY AMT1
                               float64
    PAY AMT2
    PAY AMT3
                               float64
    PAY AMT4
 21 PAY AMT5
                               float64
    PAY AMT6
 23 Default
                30000 non-null
dtypes: float64(13), int64(11)
memory usage: 5.5 MB
```

RoboDebtAdvisor: What the program does

- The program takes in Customer Credit Card information
- The raw data
 - Is in the form of a comma separated value file
 - It is read and cleaned using Pandas Library
 - This is the raw input used by sklearn library to build a model
- We then teach the computer to detect patterns in the data
- This is stored in a file called "Model"
- The Model is trained to detect certain types of patterns.
 - The data is divided into a training and test set to verify the accuracy.
 - The model is trained using algorithms that allows the computer to learn the patterns in data
 - When new data is presented to the data the model is able to detect or 'predict' based on what it learned
 - One such algorithm is Decision Tree.
 - A Decision Tree is a graph representation of all possible solutions to a decision based on certain conditions.
 - It can be used for classification tasks (credit card default or not)
 - We can concatenate a number of decision trees using an algorithm can Random Forest. (diagram)
 - This is a supervised algorithm as we are teaching the algorithm with manually cleaned data

RoboDebtAdvisor: What the program does

- We can implement the Random Forest algorithm using the sklearn package like so:
 - I divide the data into training and test set
 - The y represents the variable I want to predict
 - 1 represents a default
 - 0 represents normal credit
 - RAN (random forest) is the model
- Sklearn is able to predict with 82% accuracy in few lines of code.
- This is a rudimentary implementation
- The algorithm can definitely be improved

```
from sklearn.ensemble import RandomForestClassifier
Ran = RandomForestClassifier(criterion= 'gini', max depth= 6,
                                     max features= 5, n estimators= 150,
                                     random state=0)
Ran.fit(X train, y train)
v pred = Ran.predict(X test)
print('Accuracy:', metrics.accuracy score(y pred,y test))
## 5-fold cross-validation
cv scores =cross val score(Ran, X, y, cv=5)
# Print the 5-fold cross-validation scores
print()
print(classification report(y test, y pred))
print()
print("Average 5-Fold CV Score: {}".format(round(np.mean(cv scores),4)),
       ", Standard deviation: {}".format(round(np.std(cv scores),4)))
plt.figure(figsize=(4,3))
ConfMatrix = confusion matrix(y test,Ran.predict(X test))
sns.heatmap(ConfMatrix,annot=True, cmap="Blues", fmt="d",
            xticklabels = ['Non-default', 'Default'],
            yticklabels = ['Non-default', 'Default'])
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.title("Confusion Matrix - Random Forest");
```

Accuracy: 0.8171666666666667

RoboDebtAdvisor: What the program does

- Next I implemented:
 - A simple method to use this model for predictions.
 - I then created a pandas dataframe to hold/mimic new customer data
 - This is data the model has never seen before
- We can see that the model
 - is able to predict
 - Credit default 1
 - or
 - No default 0

Fairly accurately

```
def RF_Prediction(creditCardData):
    crd=pd.DataFrame(creditCardData)
    results = Ran.predict(crd)

    print("The predicted Credit status is: $", results)
    print("")
    print("Here is how to interpret the credit default status of a customer:")
    print("")
    print("")
    print("An outcome of '1' indicates that there is high likely hood of a default on their credit card debt")
    print("")
    print("An outcome of '0' indicates that the customer has high probability of paying their credit card debt")
    return
```

```
newCustomerCreditCardData=data[29991:]
newCustomerCreditCardData= newCustomerCreditCardData.drop("Default", axis=1)

RF_Prediction(newCustomerCreditCardData)

The predicted Credit status is: $ [1 0 0 1 0 0 1 0 0]

Here is how to interpret the credit default status of a customer:

An outcome of '1' indicates that there is high likely hood of a default on their credit card debt

An outcome of '0' indicates that the customer has high probability of paying their credit card debt
```

RoboDebtAdvisor: Some Thoughts on preventing Bias

- ML equivalent of "Blind Taste Test"
 - We can begin by denying the algorithm the information suspected of biasing the outcome
 - This will ensure that it makes predictions blind to that variable.
 - This is similar to blind taste test used for food products

Getting Direct Input From End Users

- We can collect a sampling of personal experiences with our AI model by phone or email.
- We can then focus on finding issues that need correcting based on actual customer feedback

Constant Monitoring and Transparency

- We can share data used and outcomes with openness, transparency with data providers
- Solicit feedback from time to time to prevent bias from creeping in
- Always make sure that we follow Lawful and Ethical practices when collecting data

Use of Awareness and Debiasing Tools for Supervised Learning Algorithms

Companies like IBM have developed tools (AI Fairness 360 (AIF360))

Source: IBM: https://github.com/Trusted-AI/AIF360

Summary: RoboDebt Advisor: A Fintech Application for Consumer Financial Education

- Consumer Debt is a major problem in the USA
- However most consumers do not have the means to hire a financial advisor.
- We can leverage the power of AI/ML to build a fintech application that acts like a virtual financial advisor
- This application can help people recover from a financial debt by promoting financial education

THANK YOU!

© Gia R. Nathan

gn1188@nhusd.k12.ca.us