1. Assignment 1

1.1. 1-D

We consider the "unit square" in 1-D, $\xi = [-1, 1]$. Given two functions,

$$g(\xi) = \sin(\pi \xi) ,$$

$$f(\xi) = \pi \cos(\pi \xi) .$$

Let $-1 = \xi_0 < \xi_1 < \dots < \xi_N = 1$ be N + 1 Gauss-Lobatto nodes. They give rise to N + 1 Lagrange basis functions of degree N:

$$h_i(\xi), \quad i = 0, 1, \dots, N.$$

Meanwhile, N edges, $[\xi_{i-1}, \xi_i]$, $i = 1, 2, \dots, N$, result in N edge basis functions of degree N-1:

$$e_i(\xi), \quad i = 1, 2, \dots, N.$$

What we have to do is to discretize $g(\xi)$ with $h_i(\xi)$ into

$$g^h(\xi) := \sum_{i=0}^{N} g_i h_i(\xi) ,$$

where $g_i = g(\xi_i)$, and to discretize $f(\xi)$ with $e_i(\xi)$ into

$$f^h(\xi) := \sum_{i=1}^{N} f_i e_i(\xi) ,$$

where $f_i = \int_{\xi_{i-1}}^{\xi_i} f(\xi) d\xi$.

Lets call the process of getting the coefficients, g_i , f_i , from the analytical functions **reduction**, and call the process of obtaining $g^h(\xi)$ and $f^h(\xi)$ from the coefficients **reconstruction**. They are what you have to code in this assignment.

1.2. 2-D

Once you have successfully done the 1-D case, I believe you now are able to do the 2-D case. We consider the real "unit square", $\xi \times \eta = [-1,1]^2$, and have a vector $\boldsymbol{u} = [u(\xi,\eta),v(\xi,\eta)]^T$ and a scalar $f(\xi,\eta)$ given as

$$\begin{cases} u(\xi, \eta) = \sin(\pi \xi) \cos(\pi \eta) \\ v(\xi, \eta) = \cos(\pi \xi) \sin(\pi \eta) \end{cases},$$

$$f(\xi, \eta) = 2\pi \cos(\pi \xi) \cos(\pi \eta) .$$

Now, we not only construct basis functions $h_i(\xi)$ and $e_i(\xi)$ along ξ -axis like what we have done in 1-D case, but also have to construct basis function, $h_j(\eta)$, $e_j(\eta)$, along η -axis.

With these basis functions, we can discretize $f(\xi, \eta)$ either into

$$f^{h}(\xi,\eta) := \sum_{i=0}^{N} \sum_{\substack{j=0\\1}}^{N} f_{i,j} h_{i}(\xi) h_{j}(\eta) ,$$

where $f_{i,j} = f(\xi_i, \eta_j)$, or into

$$f^h(\xi,\eta) := \sum_{i=1}^N \sum_{j=1}^N f_{i,j} e_i(\xi) e_j(\eta) ,$$

where $f_{i,j} = \int_{\xi_{i-1}}^{\xi_i} \int_{\eta_{j-1}}^{\eta_j} f(\xi, \eta) d\xi d\eta$. As for the vector function $\boldsymbol{u} = [u(\xi, \eta), v(\xi, \eta)]^T$, we discretize its components with basis functions $h_i(\xi)e_j(\eta)$ and $e_i(\xi)h_{j(\eta)}$ into

$$\begin{cases} u^{h}(\xi,\eta) := \sum_{i=0}^{N} \sum_{j=1}^{N} u_{i,j} h_{i}(\xi) e_{j}(\eta) \\ v^{h}(\xi,\eta) := \sum_{i=1}^{N} \sum_{j=0}^{N} v_{i,j} e_{i}(\xi) h_{j}(\eta) \end{cases},$$

where $u_{i,j} = \int_{\eta_{j-1}}^{\eta_j} u(\xi_i, \eta) d\eta$ and $v_{i,j} = \int_{\xi_{i-1}}^{\xi_i} v(\xi, \eta_j) d\xi$. These more or less concludes the processes of **reduction** and **reconstruction** in

Please code your program doing these 2-D reduction and reconstruction and play with it using different N, or even you can have different N, i.e. N_x and N_y , along ξ -axis