Chapter 17 (AIAMA) Making Complex Decisions

Sukarna Barua Associate Professor, CSE, BUET

In a sequential decision problem:

- Utility)do not depend on a single decision/action.
 - Example: You have two choices in a game: First choice gives you 10k with probability ½ and 0k otherwise. Second choice gives you 30k with probability ¼ and 5k otherwise. Which action should a rational agent choose? It is simple to choose this single action!
- Utility depends on a sequence of agent's decisions/actions.
 - What an agent should do at any time depends on what it will do in the future.
 - What an agent does in the future depends on what it did before.

Consider an agent's exploration in a 4×3 grid environment:

- Agent begins in the START state
- Agent chooses an action in each state
 - Actions: UP, LEFT, DOWN, RIGHT
 - Exploration ends when agent reaches
 one of the goal states (+1 or -1)

Actions of agent:

- Agent chooses an action in each state
 - Actions: UP, LEFT, DOWN, RIGHT
- Action effect is <u>not deterministic</u> rather stochastic
 - Each action takes agent in the right direction with probability 0.8
 - With 0.1 probability, agent can move to the right angles of the intended direction
 - If agent hits a wall, it bumps and stays in the same location

Actions of agent: Example

- Agent chooses action UP in (1,1)
 - With 0.8 prob, agent moves to (1,2)
 - With 0.1 prob, agent moves to (2,1)
 - With 0.1 probability, moves to left, bumps to wall and stays at (1,1)

What if action effect was deterministic?

- The problem turns into a simple search problem:
 - Find the sequence of moves leading to goal.
 - DFS/BFS can easily find this.
- In sequential decision problem:
 - Action effect is not deterministic.
 - Simple search do not work [Why? We need action for for every state instead of a shortest path to goal]

- Agent cannot reach goal by following the action sequence: UP, UP, RIGHT, RIGHT, RIGHT. [Why?]
 - Because action effects are not deterministic
- What is the probability that agent reaches +1 by by following the path given above as action sequence?
 - Answer: $0.8^5 = 0.32768$

Sequential Decision Problems Rewards from the environment: Rewards from the environment:

Rewards from the environment:

Agent receives a reward from the environment

- For state s, reward is R(s)
- -/R(s) = -1.0 and +1.0 for terminal states
- R(s) = -0.04 in all other states
- The utility of a sequence of steps is the sum of all rewards.
 - Say, agent reaches +1 state after 10 steps

-total utility =
$$10 \times -0.04 + 1.0 = 0.6$$

Utility from the environment:

- Agent tries to reach +1 as quickly as possible

 Otherwise, agent gets negative reward and utility decrease

 - Consider, agent reaches +1 with 10 steps vs 5 steps.
 - For 10 steps, total utility received = 0.6
 - For 5 steps, total utility received $\neq 0.8$

- Real utility is gained only from terminal states.
 - However, utility can be decreased/increased by the cost/penalty incurred from visiting each state s to reach the terminal state.

Transition model:

- Agent moves a new state by following an action in current state.
 - Modeled by a transition probability P(s'|s,a)
 - -Can be described by a three-dimensional table specifying all probability values
 - The transition model is Markovian
 - $\sim P(s'|s,a)$ depends only on current state s and not on
 - any previous states visited. Example P((1,2)|(1,1),UP) = 0.8, P((2,1)|(1,1),UP) = 0.1, etc.

Markov Decision Process

- A Markov Decision Process (MDP) is a sequential decision problem where:
 - Environment is fully observable [Agent knows where it is]
 - Environment is stochastic [Actions do not always leads to the intended state]
 - Transition model is Markovian
 - Rewards are additive
- A MDP consists of
 - A set of states (with initial state s_0)
 - \checkmark A set of actions ACTIONS(s) in each state s
 - \blacksquare A transition model P(s'|s,a)
 - \blacksquare A reward model R(s)

Markov Decision Process

- Partially Observable Markov Decision Process (POMDP) is a sequential decision problem where:
 - Environment is partially observable
 - Agent does not necessarily know where it is in
 - Reward and action do not just depend on s but also on how much the agent knows when it is in s
 - More complex than ordinary MDPs. [We won't study in this course]

Markov Decision Process: Solution

A solution to an MDP is called a policy that defines

- Which action agent should follow for every state
- Usually denoted by π or $\pi(s)$.
- If agent is given to follow a policy, the agent always takes the action given in the policy, no matter what the outcome is.

A policy π

- Is not an action-planning [which actions leads to goal, simple search problem]
 In fact, an action-sequence is not guaranteed to take to goal.
- Is a strategy planning [which action to take at each state, MDP]

• A policy π

- Does not always takes an agent to the same state [stochastic action effects]
- Each execution of a policy may result in a different state sequence followed by the agent [due to the stochastic nature of the action effect].
- What makes a policy π optimal?
 - A policy is optimal if it yields the highest expected utility [not a reward]
 - Usually denoted by π^*

Example An optimal policy for the grid world problem with R(s) =

- 0.04 for nonterminal states.

- What happens to optimal policy when $R(s) \le -1.6284$?
 - Life is so painful that the agent heads straight for the nearest exit, even if the exit is worth -1.
 - Note the action at (3,2) [Agent chooses -1 to quickly exit]

$$R(s) < -1.6284$$

- hat happens to optimal policy when -0.4278 < R(s) < -0.0850?
 - Life is not so painful but unpleasant; the agent takes the shortest route to +1, and is willing to risk falling to -1 by accident
 - Note the action at (3,1) [Agent chooses UP to quickly exit]

- What happens to optimal policy when -0.0221 < R(s) < 0?
 - The optimal policy takes *no risks at all*. In (4,1) and (3,2), the agent heads directly away from the −1 state so that it cannot fall in by accident, even though this means banging its head against the wall quite a few times.

Markov Decision Process: Reward Types

- Assume an agent visits an state sequence $[s_0, s_1, ...]$ The utility obtained is $U_h([s_0, s_1, ...])$ can be considered in two ways:
 - Additive rewards: $U_h([s_0, s_1, s_2, ...]) = R(s_0) + R(s_1) + R(s_2) ...$
 - Already considered in our previous grid world example
 - Discounted rewards: $U_h([s_0, s_1, s_2, ...]) = R(s_0) + \gamma R(s_1) + (\gamma^2 R(s_2) + ...)$ Future rewards are discounted by a factor γ where $0 < \gamma \le 1$.

 - γ close 1 (Agent considers future rewards as highly as current rewards
 - γ close 0: Agent considers distant rewards insignificant

Markov Decision Process: Expected Utility is Bounded

- With discounted rewards, the utility obtained from visiting an infinite sequence of states is still finite as shown below:
- -Assume rewards are bounded by $\pm R_{max}$ and $\gamma < 1$
- The total utility after infinite number of steps is:

$$U_h = \sum_{i=0}^{\infty} \gamma^i R(s_i) \le \sum_{i=0}^{\infty} \gamma^i R_{max} = R_{max} \left(\frac{1}{1 - \gamma} \right)$$

$$\sqrt{Vn} = R max \frac{1}{1-8}$$

Markov Decision Process: Expected Utility of a Policy

- Assume agent starts at initial state s.
- Agent reaches state S_t at time t when executing a policy π [Note S_t is not a deterministic state; it is a random variable. Why?]
- Agent acts in an infinite-horizon [no limit on the # of steps, but exploration ends as soon as terminal state is reached]
- The probability distribution over the state sequences S_1, S_2, \dots visited by the agent is determined by:
 - The initial state s
 - The policy π
 - The transition mode P(s'|s,a)

Markov Decision Process: Expected Utility for a Policy

The expected utility obtained by executing a given policy is computed as:

$$U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^t R(S_t)] \text{ where } S_0 = s$$

[We can't just sum $R(S_t)$ as $R(S_t)$ is a random variable having a probability distribution over states, so we need to take the expected value]

- Can we compute $U^{\pi}(s)$ using the above equation?
 - Not easy!
 - As t increases, computing $R(S_t)$ becomes extremely difficult [with exponential number of values for the random variable S_t , Why?]

Optimal Policy: The optimal policy is the one that gives the maximum expected utility:

$$\pi_s^* = argmax_{\pi} U^{\pi}(s)$$

- $\pi_s^* = \operatorname{argmax}_{\pi} \mathcal{O}^{\pi}(s)$ $\pi_s^* \text{ is the optimal policy starting with state } s.$
 - $\{\pi_s^*\}$ is a policy; hence it recommends an action for every state.
- ptimal policy is independent of start state s. [Why?]
 - Remember policy is like a function specifying an action for every state; hence it does not matter where you start; you always have an action-sequence as per the optimal policy
 - We can simply write the optimal policy as π^* .

Markov Decision Process: Utility Function

- The maximum achievable utility starting from any state s is given by: $U^{\pi^*}(s)$
 - The sum of the discounted rewards if agent executed optimal policy starting from s.
 - We simply express it $U(s) = U^{\pi^*}(s)$
 - Note U(s) and R(s) are quite different quantities!
 - Note U(s) and $U^{\pi}(s)$ are two different quantities!
 - $\mathcal{U}(s)$ depends on s [Why?]

Markov Decision Process: Utility Function

- Following figure shows the maximum utility U(s) for different states in the grid world problem for $\gamma = 1$ and R(s) = -0.04
- Note that states closer to +1 have higher utilities compared to states far from it.
 - Why? [Because starts far away needs more steps to reach +1, thus additive rewards (-0.04 per state) reduces the utility]

Markov Decision Process: Optimal Action

- Agent can use the utility function U(s) to choose the best action at each state:
 - hoose the action <u>a</u> in state <u>s</u> which gives you maximum utility from the next possible states; such action-sequence defines an optimal policy.

$$\pi^*(s) = argmax_{a \in A(s)} \sum_{s'} U(s')P(s'|s,a)$$
• The above is the optimal policy equation.

Markov Decision Process: Value Iteration

- Value iteration: An algorithm to calculate the optimal policy
- Basic idea of the algorithm:
 - Step 1: Calculate utility U(s) for every state s [Remember U(s) is the maximum utility achievable from state s by following optimal policy]
 - Step 2: Calculate optimal action for each state based on calculated U(s) in Step 1 using optimal policy equation [see previous slide].
 - Seems chicken and egg problem? [As in Step 1, we don't have an optimal policy!]
 - No! U(s) can be calculated without knowing optimal policy!

Markov Decision Process: Bellman Equation

- Utility function: Let's define utility function in a different way.
- The optimal utility U(s) of a state s satisfies the following equation:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a)U(s')$$

- U(s) = immediate reward + expected discounted utility of next state [assume agent follows optimal action as per optimal policy]
- This is optimal substructure property for the optimal utility!
- This is called **Bellman equation**.

Markov Decision Process: Bellman Equation Example 3 0.812 0.868

- Let's verify Bellman Equation for grid world problem.
- Bellman equation for state (1,1) is:

		1	2	3	4	
$U(1,1) = -0.04 + \gamma \max[$	0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),	(Up)				
	0.9U(1,1) + 0.1U(1,2),	(Left)				
0	0.9U(1,1) + 0.1U(2,1),	(Down)				
0	0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)].	(Right)				

0.918

0.660

0.611

0.762

0.705

0.655

+1

-1

- Plugging in numbers from the figure:
 - We can show UP is the best action
 - Choose any other action (i.e., RIGHT) and verify Bellman equation won't be satisfied,

- Based on Bellman equations
- Number of states $\neq n$, Number of Bellman equations $\neq n$
- Number of unknowns = n[U(s)] for every state s]
 - If equations were linear, we could easily use Gauss Elimination to solve.
 - Bellman equations are non-linear due to the max operation!
 - Hence, easier approaches won't help
 - Solution: iterative optimization known as **Value Iteration** algorithm.

- Iterative approach to solve Bellman equations [Value Iteration Algorithm]
 - Start with random values for *Us* [*usual practice: start with all zeros*]
 - Repeat until equilibrium:
 - Calculate right hand side of Bellman equations using current values of U's and use it to update left-hand side (new updated values for U's):

$$U_{i+1}(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U_i(s')$$

[The above step is known as **Bellman update**]

Pseudocode of value iteration algorithm:

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function
  inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a), rewards R(s), discount \gamma
   local variables: U, U', vectors of utilities for states in S, initially zero
                         \delta, the maximum change in the utility of any state in an iteration
   repeat
        U \leftarrow U'; \delta \leftarrow 0
        for each state s in S do
         \mathcal{N}U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']
  \inf |U'[s]-U[s]|>\delta \ \text{then} \ \delta \leftarrow |U'[s]-U[s]| until \delta<\epsilon(1-\gamma)/\gamma
   return U
```

Markov Decision Process: Value Iteration Example

- Value iteration applied to grid world problem with initial utilities as 0s.
 - Note the number of iterations required for convergence of utilities for different states.

- Does the value iteration converge to a solution?
 - If apply Bellman update infinitely often, the equilibrium is guaranteed.
 - Final utility values must be the solutions to Bellman equations.
 - The solution is also unique.
 - Proof of convergence: We won't study in this course.
 - Once utilities are obtained, we can also find the optimal policy! [best action from each state satisfying Bellman equation]

- Is it possible to get an optimal policy even when the utility function estimate is inaccurate?
 - Answer: Yes. If one action is clearly better than all others, then the exact magnitude of the utilities on the states involved need not be precise.
- An alterative approach can be designed using the above idea. This is known as
 Policy Iteration.

- Steps of Policy Iteration Algorithm
 - Start with a random policy π_0
 - Repeat until convergence:
 - Policy Evaluation: Using the current policy π_i , calculate utilities U_i s as:

$$U_i(s) = U^{\pi_i}(s)$$

• Policy improvement: Using the utilities U_i 's, galculate a new udpdated policy π_{i+1} as

$$\pi_{i+1}(s) = \left(argmax_{a \in A(s)} \sum_{s'} U_i(s') P(s'|s,a) \right)$$

Termination criteria: The above algorithm terminates when policy improvement yields no change.

- How to evaluate the two steps?
 - Policy improvement: Pretty straightforward.
 - Policy evaluation: Not easy thought! [we discussed it previously]
 - *Solution?* Use an approach similar to the value iteration algorithm.
 - One important difference: Bellman equations for unities will be linear now! [why?]

- Policy evaluation:
 - Utilities $U_i(s)$ of each state will satisfy the following simpler version of Bellman equation:

$$U_i(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) U_i(s')$$

- The equations are linear [no max operation over actions as the policy is given and agent just follows the action given in the policy]
- \blacksquare We have n equations with n unknowns; all equations are linear.
- Gaussian Elimination (or similar methods) will solve this.

- *Policy evaluation*:
 - Small state space: Gaussian elimination with $O(n^3)$ run-time.
 - For large space: Use modified policy iteration to find U's
 - Same as policy iteration algorithm
 - Se small number of iterations as exact solution is not needed

Pseudocode:

return π

```
function Policy-Iteration(mdp) returns a policy inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a) local variables: U, a vector of utilities for states in S, initially zero \pi, a policy vector indexed by state, initially random repeat U \leftarrow \text{Policy-Evaluation}(\pi, U, mdp) unchanged? \leftarrow \text{true} for each state s in S do if \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s'] > \sum_{s'} P(s' \mid s, \pi[s]) \ U[s'] then do \pi[s] - \arg\max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s'] unchanged? \leftarrow \text{false} until unchanged?
```