Практика по матану, 3 сем (преподаватель Демченко О. В.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Teo	рия групп
	1.1	Жордановы формы, 03.09.2019
	1.2	Собственные вектора, 10.09.2019
	1.3	Жордановы матрицы, 17.09.2019
	1.4	В ожидании кр, 24.09.2019
	1.5	Комутаторы и комутанты, 01.10.2019
		1.5.1 Действие группы на множество
	1.6	Комутаторы и комутанты, 15.10.2019
		1.6.1 Евклидовы пространства

1 Теория групп

1.1 Жордановы формы, 03.09.2019

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

Пусть
$$A \in M_n(\mathbb{C})$$
, $U \in GL_n(\mathbb{C}) = \{U \in M_n(\mathbb{C}) : |U| \neq 0\}$
Сопряжение матрицы A с помощью U: $A \longmapsto U^-1AU$

Теорема (Жордана, матрич. форма)

$$\forall A \exists U : U^{-1}AU = J$$

Пусть $U^{-1}AU=J,\,V^{-1}AV=I$ - совпадают с точностью до перестановки жардановых блоков

Пример

$$\begin{pmatrix}
A_1 \in M_n(K), A_2 \in M_m(K) \\
A_1 & 0 \\
0 & A_2
\end{pmatrix}
\begin{pmatrix}
A_2 & 0 \\
0 & A_1
\end{pmatrix}$$

С помощью какой матрицы можно поулчить сопряжением другую

Теорема (Жордана, операт. форма)

Пусть $L \in L(V)$ (оператор на V), V - конечномерное пр-во над $\mathbb C$. Тогда $\exists \{e_1,...,e_n\}$ (жарданов базис) - базис V. $[L]_e = J$

Единственность: если есть два базиса, то матрицы можно получить перестановкой

—— тут не хватает чего-то

1.2 Собственные вектора, 10.09.2019

------- что-то пропущено

1.3 Жордановы матрицы, 17.09.2019

Пример

$$A \in M_n(\mathbb{C})$$

$$X^2 = A = C^{-1}JC$$

Пример
$$J=\begin{pmatrix}\lambda&1\\0&\lambda\end{pmatrix},\,Y^2=J,\,Y=\begin{pmatrix}\sqrt{\lambda}&?\\0&\sqrt{\lambda}\end{pmatrix},\,?$$
 - из уравнения

Как найти Ј и С?

1) Находим все ссобственные числа матрицы A Если все с.ч. равны, то J без единичек

Если одно собственное число а) диагонализируема $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$

б) блоки 2 и 1
$$\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$
 в) $\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$

Пример

Найдём, сколько собственных вектор-столбцов

Первая матрица:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix} \Rightarrow \begin{cases} \lambda x_1 = \lambda x_1 \\ \lambda x_2 = \lambda x_2 \\ \lambda x_3 = \lambda x_3 \end{cases}$$

 $x_1, x_2, x_3 \in R$ - три л.н. переменные

Для второго решение: $\begin{pmatrix} \lambda x_1 \\ 0 \\ \lambda x_3 \end{pmatrix}$ - 2 собственных вектор-столбца

Пример

Пусть у нас матрица 4*4, 2 собственных л.н. столбца (два блока)

y_{TB}

G,H - изоморфны, G - комм. $\Rightarrow H$ - комм.

Док-во

 $\exists \varphi: G \to H: \varphi$ - биекция и $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$, кроме того, $g_1g_2 = g_2g_1$ $\forall g_1, g_2 \in G$, применим φ к последнему выражению $h_1h_2 = \varphi(g_1)\varphi(g_2) = \varphi(g_1g_2) = \varphi(g_2g_1) = \varphi(g_2)\varphi(g_1) = h_2h_1$

$$X^2 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

Дз: G,\dot{H} - изоморфны, G - цикл. \Rightarrow H - цикл.

Решение

Грппа G - цикл $\Leftrightarrow \exists g \in G : \forall g' \in G \quad \exists k \in \mathbb{Z}$

$$G$$
 - цикл., $G\cong H\Rightarrow \exists \varphi:G\to H$

$$\forall h' \in H \quad \exists g' \in G : h' = \varphi(g') = \varphi(g^k) = \varphi(\underbrace{g...g}) = \underbrace{\varphi(g)...\varphi(g)}_k = \underbrace{h...h}_k = h^k$$

Чтобы доказать, что две группы не изоморфны, можно доказать что у одной из них свойство выполняется, а у другой нет

Пример

- 1. $\mathbb{Z}/_{6\mathbb{Z}}$, D_3 коммуннитативность
- $2. \ \mathbb{Z}/_{4\mathbb{Z}}, \ \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ цикличность
- $3. \ \mathbb{Z}/_{8\mathbb{Z}}, \ \mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ дз
- 4. $\mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}, \, \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ порядки элементов
- 5. \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$ цикличность?

1.4 В ожидании кр..., 24.09.2019

Пример

$$A \in M_n(\mathbb{C}), \quad A = C^{-1}JC, \quad C \in_n(\mathbb{C})$$

$$J = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix}$$

- 1) находим все с.ч.
- 2) для каждого с.ч. находим л.н. уравнение
- 3) решаем систему линейных уравнений ...ЗДЕСЬ ЧТО-ТО ПРОПУЩЕНО, СМ. ТЕТРАДЬ

Пример

$$D_3 = \{e, l, r, s_1, s_2, s_3\}$$

$$H_1 = \{e, r, l\}$$

$$H_2 = \{e, s_1\}$$

- 1) Разбить по подгруппам, по левым и правым классам. Какая нормальная, какая нет?
- 2) Найти g,G. Чтобы произведение не лежало в H_2

Дз:
$$D_4 = \{...\}$$
, $H_1 = \{e, s_2\}$, $H_2 = \{e, r^2\}$
Дз: $K(D_3)$ - найти коммутант для D_3

1.5 Комутаторы и комутанты, 01.10.2019

Пример

Дз (прошлое):
$$G = D_4$$
 $H = \{e, r^2\}$ $H \triangleleft G$ $G/_H$

Дз (новое):

1. Чему изоморфно $G/_H$? $\mathbb{Z}/_{4\mathbb{Z}}$, $\mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$

2.
$$|G| = 4 \Rightarrow \begin{bmatrix} G \cong \mathbb{Z}/_{4\mathbb{Z}} \\ G \cong \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}} \end{bmatrix}$$

Пример (я не знаю, что это было)

Пример

1.
$$\mathbb{C}^* \to \mathbb{R}^* \quad (z \mapsto |z|)$$

2.
$$\mathbb{C}^* \to \mathbb{C}^* \quad (z \mapsto z^4)$$

Что получается при применении основной теоремы о гомоморфизме? (найти ядро образ, факторизовать, д-ть, что изморфна образу)

Решение

1.
$$\mathbb{C}^*/_{\{Z \in \mathbb{C}: |z|=1\}} \cong \mathbb{R}^*_{>0}$$

2. ДЗ

Пример

ДЗ:
$$\mathrm{GL}_n(\mathbb{R})/_{\{A\in\mathrm{GL}_n(\mathbb{R}):\ \det A=\pm 1\}}\cong$$
?
Как это сделать? Нужно найти $\varphi:\mathrm{GL}_n(\mathbb{R})\to H$ - гомоморфизм: $\mathrm{Ker}\, \varphi=\{A\in_n(\mathbb{R}):\ \det A=\pm 1\}$

Решение

$$\varphi(A) = |\det A|$$

$$\varphi(A) = (\det A)^2$$
 ДЗ: $\operatorname{GL}_n(\mathbb{R})/_{\{A \in \operatorname{GL}_n(\mathbb{R}): \det A = \pm 1, \pm i\}} \cong ?$

1.5.1 Действие группы на множество

Пример

 D_4

Написать разбиение этого множества из 16 эл-ов на орбиты. Сколько орбит?

Решение А

1.6 Комутаторы и комутанты, 15.10.2019

Пример

Грани кубика красят в три цвета, сколькими способами это можно сделать?

Док-во Группа - группа всех самосовмещений куба, сохраняющих ориентацию, она действует на множестве всех раскрасок фиксированного куба. Орбита - множество всех раскрасок фиксированного куба, которые можно получить его поворотом. Элементы G:

- 1. е 1 шт.
- 2. Поворот отн. оси, соединяющей центры противоположных граней на 90 градусов 6 шт.
- 3. ... на 180 3 шт.
- 4. Поворот отн. диагонали на 120 градусов 8 шт.
- 5. Поворот отн. оси, соединяющей центры противоположных рёбер на 180 градусов 6 шт.

$$\Rightarrow |G| = 24$$

Число орбит
$$=rac{1}{|G|}\sum_{a\in G}|M^g|$$

$$M^g = \{ m \in M : gm = m \}$$

$$=\frac{1}{24}\left(3^{6}+{}^{4} {}^{\text{одн. цв.}} {}^{\text{цв.}} + {}^{2} {}^{\text{пр. одн. цв.}} {}^{\text{3 одн. цв.}} + {}^{2} {}^{\text{одн. цв.}} {}^{2} {}^{\text{одн. цв.}} + {}^{2} {}^{\text{одн. цв.}} {}^{\text{2 одн. цв.}} \right)=57$$

ДЗ 1: Аналогично, но красим в два цвета рёбра

ДЗ 2 (а): Есть ожерелье из 8 бусинок. Сколькими способами можно составить ожерелье из рубинов и алмазов

ДЗ 2 (б): если ограничение: должно быть 3 белых шарик и 5 черных

1.6.1 Евклидовы пространства

Пример

 $\mathbb{R}[x]_3$. Является ли это евклидовым пространством?

1.
$$(f,g) = f(0)g(0) + f(1)g(1)$$

2.
$$(f,g) = f(0)g(0) + f(1)g(1) + 2f(2)g(2)$$

3.
$$(f,q) = f(0)q(0) + f(1)q(1) + f(2)q(2) + 3f(3)f(3)$$

4.
$$(f,g) = f(0)g(0) + f(1)g(1) + f(2)g(2) - f(3)f(3)$$

Док-во

1. Не является, потому что для $f = x^2 - x$

$$(f,f)=0$$
 - не работает

- 2. не является
- 3. является
- 4.

Пример

Составить матрицу Грамма для в

Базис:
$$e_11$$
, $e_2 = x$, $e_3 = x^2$, $e_4 = x^3$ $(x^2 - 1, x - 1)$

Док-во

a