Candidate's Name					• • • • • •			
Signature		Random No.				Personal No.		
545/3								
CHEMISRY								
(PRACTICAL)								
PAPER 3								
2 Hours								

Uganda Certificate of Education

CHEMISTRY PRACTICAL

Paper 3

2 hours

INSTRUCTIONS TO CANDIDATES:

Answer **both** questions. Answers are to be written in the spaces provided in this booklet. Use **blue** or **black** ink ball pen only. Any work done in **pencil** will not be marked except drawings.

You are **not** allowed to use reference books (i.e. text books, booklets on qualitative analysis etc.)

All working must be clearly shown.

Mathematical tables and silent non-programmable calculators may be used.

For Examiners' use only				
Q. 1				
Q. 2				
Total				

1.	You are	provided	with	the	foll	owing	solutions:
		1				- 0	

P is a solution of metal carbonate, M_2CO_3

Q is a solution of hydrochloric acid.

You are required to prepare solution BA1 and BA2 and use to determine the relative atomic mass, M in M_2CO_3

Procedure 1:

Measure 25cm³ of P into a 100cm³ measuring cylinder and top up to a 100cm³ mark using distilled water. Transfer the resultant solution into a beaker and label it BA1.

Measure 25cm³ of solution Q into a 100cm³ measuring cylinder and top up to a 75cm³ mark using distilled water. Transfer the solution to a beaker and label it BA2.

Procedure II

Pipette 20.0 (or 25.0cm³) of **BA1** into a clean conical flask. Add 2-3 drops of methyl orange indicator and shake the mixture.

Titrate the mixture with **BA2** from the burette until the end point.

Repeat the titration until you obtain consistent results.

Record your results in the table below.

Results:

Experiment number	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of BA2 used (cm ³)			

Volume of BA2 used in calculating average volume	$(4\frac{1}{2}marks)$ $(\frac{1}{2}mark)$
Average volume of BA2 used	_

Questions:

	$(1\frac{1}{2}mark$
	llculate the;
(i)	Number of moles BA2 that reacted
(1)	(Concentration of hydrochloric acid = 0.05 moles per litre)
(ii)	Number of moles of the metal carbonate per litre of solution BA1
c) Dete	ermine the;
(i)	Relative formula mass of M_2CO_3
· /	$(500cm^3 \ of \ solution \ contains \ 0.99379g \ of \ M_2CO_3)$
	(======================================
	••••••

	•••••
::\</th <th>D-1-4'</th>	D-1-4'
(ii)	Relative atomic mass of M in M_2CO_3
	(C = 12; O = 16)

2. You are provided with substance **T**, which contains **two** cations and **one** anion. You are required to carry out the following tests on **T** to identify the cations and the anion in **T**. identify any gas(es) that may be given off and record your observations and deductions in the table below; (32 *marks*)

	Tests	Observations	Deductions
(a)	Heat a spatula end-ful of T		
	strongly in a dry test tube.		
(1.)			
(b)	To two spatula end-fuls of T ,		
	in a boiling tube, add dilute		
	nitric acid drop wise until the		
	solid has just dissolved. Then		
	add dilute sodium hydroxide		
	solution drop wise until in		

		Filter and keep both te and the residue.	
(c)	acid drop	Itrate, add dilute nitric wise until the is just acidic. Divide	
		c solution into three	
	parts.		
	(i)	To the first part of	
		the acidic solution,	
		add dilute sodium	
		hydroxide solution	
		drop wise until in	
	(**)	excess.	
	(ii)	To the second part of	
		the acidic solution, add dilute ammonia	
		solution drop wise	
		until in excess.	
	(iii)	To the third part of	
	(222)	the acidic solution,	
		add dilute sulphuric	
		acid.	
(d)	Transfer	the residue into the	
	test tube	and then add dilute	
		d until the solid has	
		d. Divide the resultant	
		into three portions.	
	(i)	To the first portion	
		of the solution, add	
		dilute sodium	
		hydroxide drop wise until in excess.	
	(ii)	To the second	
	(11)	portion of the	
		solution, add dilute	
		ammonia solution	
		drop wise until in	
		excess.	
	(iii)	To the third portion	
		of the solution, add	

	few drops of dilute sulphuric acid.		
(e)Id (i) (ii)	entify the; Cations in T Anion in T	and	

CONFIDENTIAL

Great care should be taken that the information given below does not reach the candidates either directly or indirectly.

INSTRUCTIONS FOR PREPARING APPARATUS

N.B: the Head teacher must ensure that the teacher responsible for preparing the apparatus hands in his/her trial results properly sealed in a separate envelope and firmly fastened (attached) to the candidates' scripts envelope(s)

- 1. The description of the reagents and chemicals specified below does not necessarily correspond with the description in the question paper.
- 2. In addition to the fittings, apparatus and substances ordinarily contained in a chemistry laboratory, each candidate will require the following;

1 burette $(50cm^3)$

1 pipette $(25cm^3 or 20cm^3)$

2 conical flasks.

2 measuring cylinders

6 test tubes

1 filter paper.

2 beakers labeled **BA1** and **BA2**

200cm³ of distilled water.

 $50cm^3$ of solution **P**

 $50cm^3$ of solution Q

P is a solution made by dissolving 7.95g of anhydrous sodium carbonate in one litre of solution.

 \mathbf{Q} is a solution made by dissolving 12.9cm³ of concentrated hydrochloric acid in one litre of solution.

Methyl orange indicator.

T is a mixture of $MgCO_3$ and $PbCO_3$ in the ratio of 1:1 respectively.