Задание 10 (на 20.04).

- **CC 53.** Докажите, что язык булевых формул с ровно одним выполняющим набором (USAT):
 - (a) **co-NP**-трудным;
 - (6) лежит в $\mathbf{P}^{\mathbf{NP}}$.

Определим класс **UP**. $L \in \mathbf{UP}$, если существует такая недетерминированная машина Тьюринга M, что для любого x выполнено: M(x) = L(x) и существует не более одной подсказки, которая принимается машиной M.

СС 54. Докажите, что:

- (a) язык простых чисел лежит в классе UP;
- (б) если $USAT \in UP$, то NP = co NP.

[CC 55.] Покажите, что существует такой оракул A и язык $L \in \mathbf{NP}^A$, что L не сводится по Тьюрингу к ЗSAT, даже если сведение может использовать оракул A.

СС 10. Докажите, что:

(a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a \in 2,3,\ldots,n-1$ при котором $a^{n-1} \equiv 1 \pmod n$, а $a^{\frac{n-1}{q}} \not\equiv 1 \pmod n$;

CC 26. (подсказка: **NEXP**^{NP}vs.**NEXP**) Докажите, что если **P** = **NP**, то существует язык из **EXP**, схемная сложность которого не меньше $\frac{2^n}{10n}$.

CC 33. Докажите, что задача CircuitEval P-полная.

СС 43. | (подсказка: понизьте ошибку) Докажите, что $MA \subseteq AM$.

СС 44. Покажите, что:

(B) $\mathbf{BPP} \subseteq \mathbf{BPTime}(n^{\log n}) \subsetneq \mathbf{BPTime}(2^n)$.

| CC 45. | Определим язык

QNR = $\{(y, m) \mid y$ не является квадратичным вычетом по модулю $m\}$.

Докажите, что $QNR \in \mathbf{IP}$.

 $[CC \ 48.]$ Докажите, что $BPP/poly \subseteq P/poly \ (BPP/poly -$ класс языков, которые разрешаются вероятностными (есть специальные гейты, куда подаются случайные $[CC \ 48.]$ схемами полиномиального размера).

СС 49. Покажите, что:

- (в) если граф представляет собой шахматную доску с выбитыми клетками (вершины клетки, ребра соединяют соседние клетки), то существует полиномиальный алгоритм, который считает число полных паросочетаний (подсказка: иногда вес ребра удобно взять комплексным).
- СС 51. Существует вариант класса **MA** с односторонней ошибкой. $L \in \mathbf{MA}_1$, если существует такая полиномиальная вероятностная машина V и полином p, что если $x \in L$, то найдется такая строка $y \in \{0,1\}^{p(n)}$, что $\Pr[V(x,y)=1]=1$, а если $x \notin L$, то для любой строки $y \in \{0,1\}^{p(n)}$ выполняется $\Pr[V(x,y)=1]<\frac{1}{3}$. Покажите, что $\mathbf{MA} = \mathbf{MA}_1$.

 $|\mathbf{CC} \ \mathbf{52.}|$ Покажите, что $\mathbf{MA} \subseteq \Sigma_2^P$.