Семинар 7. Производные и дифференциалы.

Скубачевский Антон

14 декабря 2021 г.

Пример 0. Взять производные. a)
$$y = \frac{x}{\sqrt{e^{2x}-1}}$$
, Ответ: $\frac{e^{2x}-1-xe^{2x}}{\sqrt{(e^{2x}-1)^3}}$

б) $y = x^x$. Заметим, что это не табличная функция: она не является ни степенной, ни показательной. Сделаем ее показательной, пользуясь свойствами показательных функций: $x^x = e^{x \ln x}$. Теперь уже можно брать производную:

$$y' = (e^{xlnx})' = e^{xlnx}(lnx + x\frac{1}{x}) = x^x(lnx + 1)$$

B). y = ln|sinx|.

Для начала отметим, что
$$(|x|)'=signx$$
, где $signx=\begin{cases} -1, x<0\\ 0, & x=0\\ 1, & x>0 \end{cases}$

sign штука не страшная, а даже крайне простая, сильно упрощающая жизнь, не стоит ее бояться, ей надо пользоваться.

По правилу дифференцирования сложной функции, (|sinx|)' = sign(sinx)cosxДалее следует добавить, что signx обладает замечательным свойством: он убивает модуль: |x|signx = x, ну и |sinx|sign(sinx) = sinx

Производная исходной функции:

$$y' = (ln|sinx|)' = \frac{sign(sinx)cosx}{|sinx|} = \frac{cosx}{sinx} = ctgx$$

Теперь немного теории.

Определение (производная функции f в точке x_0). Пусть функция f определена в $U(x_0)$; тогда предел $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, если он существует, называется производной функции f в точке x_0 и обозначается $f'(x_0)$

Также предел в определении можно заменить на эквивалентный:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

Пример 1 Покажем по определению, что производная функции $f(x) = x^2$ существует $\forall x_0 \in \mathbb{R}$, причем $f'(x_0) = 2x_0$.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$

Геометрический смысл производной в точке: это тангенс угла наклона касательной к графику функции в этой точке.

Определение Дифференцирование - вычисление производной от функшии.

Свойства производных, приведенные ниже, вам уже известны из школы. Обратите, тем не менее, внимание на требование существования и конечности производных функций f и g.

Свойства производных, связанные с арифметическими операциями. Пусть существуют и конечны $f'(x_0)$ и $g'(x_0)$. Тогда существуют и конечны следующие производные:

- $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0);$
- $(cf)'(x_0) = cf'(x_0)$, т.е. константу можно выносить из-под знака производной $(c = const \in \mathbb{R})$
- $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- Если $g(x_0) \neq 0$, то $\exists (\frac{f}{g})(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$

Эти свойства не только говорят нам, как считать, например, производную произведения, но и помогают доказать, что композиция функций также имеет производную в точке. Например, чтобы доказать, что функция $x^2 \cdot sinx$ имеет производную в каждой точке, достаточно сказать, что синус и квадрат имеют конечные производные, а значит по

свойству арифметических операций и их произведение имеет производную. То, что синус имеет конечную производную в каждой точке, легко доказывается по определению, аналогично x^2 , с привлечением формулы разности синусов и замечательного предела. Советую это проделать самостоятельно.

Определение. Правой односторонней производной функции f в точке x_0 называется:

$$f'_{+}(x_0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Левой:

$$f'_{-}(x_0) = \lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Теорема. Производная в точке существует тогда и только тогда, когда в ней существуют левая и правая односторонние производные, и они равны.

Эта теорема дает нам простой и важный инструмент исследования существования производной: нужно посчитать односторонние производные производные и проверить, равны ли они.

Пример 2. Найти односторонние производные функции f(x) = |x| в нуле.

Будем действовать по определению:

$$f'_{+}(0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{x \to 0+0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+0} \frac{|x| - 0}{x - 0} = \lim_{x \to 0+0} \frac{x}{x} = 1$$

$$f'_{-}(0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{x \to 0-0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0-0} \frac{|x| - 0}{x - 0} = \lim_{x \to 0-0} \frac{-x}{x} = -1$$

Вспомнив геометрический смысл производной, легко понять, что мы получили адекватный ответ: модуль икса при x>0 имеет вид y=x, то есть линейная функция с коэффициентом наклона k=1. При x<0 аналогично угол наклона k=-1.

Односторонние производные в нуле не равны, значит, у f(x) = |x| не существует производной в нуле.

Пример 3. Исследовать на существование производной: $f(x) = |\pi - x| sinx$.

У синуса существует производная в каждой точке, у $|\pi - x|$ - во всех точках, кроме $x = \pi$. Значит у f(x), являющейся их произведением, также существуют производные по крайней мере во всех точках, кроме π . Наличие производной в точке π исследуем с помощью односторонних производных.

$$f'_{+}(\pi) = \lim_{x \to \pi + 0} \frac{f(x) - f(\pi)}{x - \pi} = \lim_{x \to \pi + 0} \frac{|\pi - x|\sin x - 0}{x - \pi} = \lim_{x \to \pi + 0} \frac{(x - \pi)\sin x}{x - \pi} = \lim_{x \to \pi + 0} \sin x = 0$$

$$f'_{-}(\pi) = \lim_{x \to \pi - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to \pi - 0} \frac{|\pi - x|sinx - 0}{x - \pi} = \lim_{x \to \pi - 0} \frac{(\pi - x)sinx}{x - \pi} = \lim_{x \to \pi - 0} (-sinx) = 0$$

Односторонние производные равны, значит, в точке $x = \pi$ существует производная и она равна 0.

Мы получили, что у данной функции существуют производные в каждой точке.

Пример 4. Исследовать на существование производной: $f(x) = |\pi - x| cosx$.

Исследуем только в точке $x=\pi,$ в остальных все аналогично предыдущему примеру.

$$f'_{+}(\pi) = \lim_{x \to \pi + 0} \frac{f(x) - f(\pi)}{x - \pi} = \lim_{x \to \pi + 0} \frac{|\pi - x|\cos x - 0}{x - \pi} = \lim_{x \to \pi + 0} \frac{(x - \pi)\cos x}{x - \pi} = \lim_{x \to \pi + 0} \cos x = -1$$

$$f'_{-}(\pi) = \lim_{x \to \pi - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to \pi - 0} \frac{|\pi - x| \cos x - 0}{x - \pi} = \lim_{x \to \pi - 0} \frac{(\pi - x) \cos x}{x - \pi} = \lim_{x \to \pi - 0} (-\cos x) = 1$$

Значит, в точке π не существует производной у этой функции, т.к. односторонние не равны.

Пример 5. Найти производную y' функции y(x), заданной неявно: $e^y + xy = e$, в точке x = 0

Решение:

Для начала, чтобы найти значение у в точке x=0, подставим x=0 в наше уравнение. Получим, что y(0) = 1.

Во всех подобных задачах самый верный способ - просто-напросто взять производную от обеих частей:

$$e^y y' + y + xy' = 0$$

$$y' = -\frac{y}{e^y + x}$$

$$y'(0) == -\frac{1}{e}$$

Теорема 1 (производная обратной функции). Пусть функция y=f(x) непрерывна и строго монотонна на $U(x_0),\ f'(x_0)\neq 0$. Тогда обратная функция $x=f^{-1}(y)$ имеет производную в точке $y_0=f(x_0),$ причем

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Пример 8. В качестве примера посчитаем производную функции, обратной к $f(x) = e^x$ в точке x = 0 (в предположении, что мы тупые и не знаем, что обратная функция - логарифм.) Если $x_0 = 0$, то $y_0 = f(x_0) = 1$. Тогда по формуле из теоремы выше:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{(e^x)'(x_0 = 0)} = \frac{1}{e^0} = 1$$

Проверим, что это действительно так, в предположении, что мы знаем, что обратная функция к экспоненте - натуральный логарифм: $f^{-1}(y) = lny$.

$$(f^{-1})'(y_0) = (\ln y)'(1) = \frac{1}{y}|_{y=1} = \frac{1}{1} = 1$$

Убедились, что ученые не врут, и производную обратной функции действительно можно находить по той теореме.

Производная функции, заданной параметрически

Определение. Пусть на множестве $T \subset \mathbb{R}$ заданы x = x(t); y = y(t). При этом x(t) имеет обратную функцию t(x). Тогда y(x) = y(t(x)) называется функцией, заданной параметрически следующей системой урав-

нений:
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
; t - параметр.

Если выполняются условия теоремы о производной обратной функции, то $t'(x) = \frac{1}{x'(t)}$.

Если также выполняются условия теоремы о производной сложной функции, получаем то, что нас интересует:

$$y'(x) = y'(t)t'(x) = \frac{y'(t)}{x'(t)}$$

Для второй производной вывод аналогичен (применим в последнем правом переходе формулу производной частного):

$$y''(x) = (y'(x))'(x) = (\frac{y'(t)}{x'(t)})'(x) = \frac{(\frac{y'(t)}{x'(t)})'(t)}{x'(t)} = \frac{y''(t)x'(t) - x''(t)y'(t)}{(x'(t))^3}$$

Будем также y'(t) обозначать как y'_t для удобства.

Пример 6. Найти производную y'(x), где y = a(1 - cost), x = a(t - sint).

Решение: Для нахождения производной функции, заданной параметрически, используется формула (которую легко запомнить: "просто делим числитель и знаменатель на $\mathrm{d}t$ "):

$$y'(x) = \frac{y'(t)}{x'(t)} = \frac{asint}{a - acost} = \frac{sint}{1 - cost} = ctg(t/2)$$

Пример 7. Найти y''(x), если x = tcht - sht; y = tsht - cht.

Решение:

Формула для второй производной выводится аналогично как и для первой:

$$y''(x) = \frac{y''(t)x'(t) - x''(t)y'(t)}{(x'(t))^3}$$

Найдем теперь x'(t), x''(t), y'(t) и y''(t) и подставим в эту формулу:

$$y'(t) = tcht$$

$$x'(t) = tsht$$

$$y''(t) = cht + tsht$$

$$x''(t) = tcht + sht$$

Тогда ответ (без упрощений):

$$y''(x) = \frac{(cht + tsht)(tsht) - (tcht + sht)tcht}{(tsht)^3}$$

Есть также второй способ решения: не используя формулу влоб. Этот способ с моей точки зрения быстрее, но в нем проще ошибиться. Решим им.

Ниже будет использовано выражение для гиперболического котангенса: $ctht = \frac{sht}{cht}$

$$y''(x) = \frac{\left(\frac{y'(t)}{x'(t)}\right)'(t)}{x'(t)} = \frac{(ctht)'(t)}{tsht} = \frac{-1/sh^2t}{tsht} = -\frac{1}{tsh^3t}$$

Замечание: некоторые энтузиасты пишут:

$$y_{xx}'' = \frac{d^2y}{dx^2} = \frac{d^2y/dt^2}{dx^2/dt^2} = \frac{y_{tt}''}{(x_t')^2},$$

что, очевидно, не совпадает с ранее написанной формулой. НЕ НА-ДО делить бездумно на dt направо и налево. Дело в том, что "деление на dt формализм, означающий разделить числитель и знаменатель, к примеру, Δy и Δx на Δt , и перейти к пределу при $\Delta t \to 0$. Для деления на dt^2 аналогичного формализма нет, поэтому не нужно лишний раз извращаться.

Определение. Функция g называется бесконечно малой по сравнению с функцией f при $x \to a$ (записывается g = o(f) при $x \to a$), если $g(x) = \varepsilon(x) f(x), \ x \in \overset{\circ}{U}(a),$ причем $\underset{x \to a}{lim} \varepsilon(x) = 0$. Т.е. $\underset{x \to a}{lim} \frac{g(x)}{f(x)} = 0$.

- $x^2 = o(x)$ при $x \to 0$
- $x = o(x^2)$ при $x \to +\infty$

Определение (дифференцируемость функции f в точке x_0). Пусть функция f определена в $U(x_0)$. Пусть ее приращение в точке x_0 может быть представлено в виде:

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$$

 $(A = const \in \mathbb{R})$, при $\Delta x \to 0$. Тогда функцию f называют дифференцируемой в точке x_0 , а $df(x_0) = Adx$ - дифференциалом функции f в точке x_0 $(dx \in (-\infty; +\infty))$

Замечание 1. То, что $A = const \in \mathbb{R}$ и $\Delta x \to 0$ очень важно обговаривать. Также, разумеется, нужно знать, что такое $o(\Delta x)$ (четкое определение).

Замечание 2. Говорить в ответ на вопрос: "Скажите определение дифференцируемости в точке",- "Ну это когда существует производная в точке",- неверно, это не определение дифференцируемости, а скорее следствие из него (как раз про это будет сказано в теореме ниже).

Замечание 3. То, что $dx \in (-\infty; +\infty)$ также нужно знать. dx это так называемый дифференциал независимой переменной. В целом, это все равно, что Δx , dx вместо Δx пишут для симметричности записи.

Определение. Вторая производная - производная, взятая от первой производной. Второй дифференциал - дифференциал, взятый от первого дифференциала, взятый при фиксированном dx(зачем фиксировать dx? да потому что df(x) = f'(x)dx - функция не только икса, но и dx, то есть по хорошему это функция двух переменных (т.к. $dx = x - x_0$ -линейная функция, зависящая от x и x_0), а от функции 2 переменных мы дифференциалы брать не умеем, вот и фиксируем dx). Обозначаются соответственно $f''(x_0)$ и d^2f (читается "дэ два эф"). f''(x) = (f'(x))'; $d^2f(x) = d(df(x))$. Не путать с df^2 : $df^2 = (df)^2$, то есть просто первый дифференциал, возведенный в квадрат. Есть свойство, что все дифференциалы независимой переменной выше второго равны нулю, о нем следует помнить. $(dx^2$, разумеется, не равен нулю, так как это не второй дифференциал, а $(dx)^2$).

Теорема 2. Функция дифференцируема в точке $x_0 \Leftrightarrow \exists$ КОНЕЧНАЯ $f'(x_0)$. При этом константа из определения дифференцируемости $A = f'(x_0)$.

Доказательство:

Пусть f дифференцируема в точке x_0 . Это значит, что:

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = A \Delta x + o(\Delta x) \Leftrightarrow [\text{по определению о малого}] \lim_{\Delta x \to 0} \frac{\Delta f - A \Delta x}{\Delta x} = 0$$

 $\Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = A \in \mathbb{R} \Leftrightarrow$ Существует конечная производная, равная A, ч.т.д. в обе стороны

Теорема 3. Дифференцируемая в точке x_0 функция непрерывна в этой точке. Обратное неверно.

Доказательство:

То, что непрерывная функция может быть не дифференцируемой, видно на примере функции f(x) = |x|: она в точке 0 непрерывна, но не дифференцируема.

Докажем теперь, что всякая дифференцируемая функция является непрерывной. Из определения дифференцируемости:

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$$

Т.к. A=const, получаем, что при $\Delta x\to 0\Rightarrow \Delta f\to 0$, следовательно, функция непрерывна в точке x_0 , ч.т.д.

Таким образом имеем: дифференцируемость эквивалентна существованию конечной производной; из дифференцируемости (или существования конечной производной) следует непрерывность. Обратное неверно.

Кроме того, из существования производной без оговорки про конечность не следует непрерывность функции. То есть если у функции существует в точке бесконечная производная, то она может быть в этой точке как непрерывной, так и разрывной, т.е. для бесконечных производных теорема 3 не работает. Пример функции, имеющей бесконечную производную в нуле и разрывную в нем, является f(x) = signx. Докажите самостоятельно по определению, что ее производная в нуле равна $+\infty$ (это очень просто).

Будем теперь учиться искать дифференциалы.

Пример 9. Найти дифференциал: $f(x) = ln(\sqrt{1+2sinx} + \sqrt{2sinx-1})$ в точке $x = \pi/4$

Решение:

Воспользуемся тем, что df(x) = f'(x)dx

$$df(x) = \frac{\frac{cosx}{\sqrt{1+2sinx}} + \frac{cosx}{\sqrt{2sinx-1}}}{\sqrt{1+2sinx} + \sqrt{2sinx-1}} dx = \frac{cosx}{\sqrt{4sin^2x - 1}} dx$$

В точке $x_0 = \pi/4 \ df(x_0) = \frac{\sqrt{2}}{2} dx$

Возьмем теперь дифференциал сложной функции. На этот раз будем его брать, не прибегая к явной формуле df = f'(x)dx. Будем лишь пользоваться свойствами дифференциала, которые, в общем-то, не сильно отличаются от свойств производной.

Пример 10. Найти второй дифференциал функции $y(u(x), v(x)) = \sqrt{u^2 + v^2}$ (т.е. и и v зависят от икса. Они зависимые переменные, а икснезависимая.)

Решение:

В целом, можно найти вторую производную y''(x) и сказать, что $d^2y=y''(x)dx^2$, а потом, учтя, что du=u'(x)dx; dv=v'(x)dx; $d^2v=v''(x)dx^2$; $d^2u=u''(x)dx^2$; $dv^2=(dv)^2=(v'(x)dx)^2=(v'(x))^2dx^2$; $du^2=(du)^2=(u'(x)dx)^2=(u'(x))^2dx^2$, получить ответ. Но мы сделаем вторым способом, чисто считая дифференциалы. Свойства для арифметических операций с дифференциалами такие же, как и с производными.

Сначала найдем первым дифференциал, а потом будем брать второй (как первый от первого).

$$dy = \frac{1}{2\sqrt{u^2 + v^2}} (2udu + 2vdv)$$

$$d^2y = d(\frac{1}{\sqrt{u^2 + v^2}})(udu + vdv) + \frac{1}{\sqrt{u^2 + v^2}} d(udu + vdv) =$$

$$= -(u^2 + v^2)^{-1.5} (udu + vdv)^2 + \frac{1}{\sqrt{u^2 + v^2}} (ud^2u + du^2 + vd^2v + dv^2)$$

Инвариантность формы первого дифференциала

Поговорим теперь о таком важном свойстве как инвариантность формы первого дифференциала. Прежде всего, что это значит? Это значит, что первый дифференциал сложной функции y(x(t)) можно расписать двумя способами: $dy = y_t' dt = y_x' dx$.

Докажем это:

По определению дифференциал это произведение производной по независимой переменной на дифференциал независимой переменной. Слово независимая переменная здесь важно: по определению $dy = y'(x(t))_t dt$. Докажем, что также $dy = y'_x dx$:

$$dy = y'(x(t))_t dt = [$$
правило дифференцирования сложной функции $] = y'_x x'_t dt = [dx(t) = x't dt \ ($ здесь x - обычная функция, зависящая от t $) \] = y'_x dx,$ ч.т.д.

Покажем теперь, что второй дифференциал не обладает свойством инвариантности:

$$d^2y(x(t)) = y_{tt}''dt^2 \neq y_{rr}''dx^2$$

Доказательство:

$$d^{2}y(x(t)) = y''_{tt}dt^{2} = (y'_{x}x'_{t})'_{t}(dt)^{2} =$$

$$= (y''_{x}(x'_{t})^{2} + y'_{x}x''_{tt})dt^{2} = y''_{xx}(dx)^{2} + y'_{x}d^{2}x \neq y''_{xx}(dx)^{2}$$

Замечание В данном семинаре мы для удобства записи употребляем обозначения y_x' и y_t' . Так обычно обозначают частные производные. НО ЭТО НЕ ЧАСТНЫЕ ПРОИЗВОДНЫЕ в нашем случае, т.к. частные производные имеют отношение к функциям нескольких переменных, а наша функция - функция одного переменного, хоть и сложного. Под такой записью имеется в виду: $y_x' = y'(x)$; $y_t' = y'(x(t))$, то есть если $y(x) = x^2$, x(t) = sint, то $y(x(t)) = sin^2t$. Тогда y'(x) = 2x = 2sint, а y'(t) = 2sintcost.

Ну и под конец дадим определение непрерывной дифференцируемости (которое, почему-то, мало кто знает) и решим теоретическую задачку.

Определение. Непрерывная дифференцируемость. Функция f(x) называется непрерывное дифференцируемой в точке x_0 , если она дифференцируема в точке x_0 , а также ее производная в x_0 непрерывна. Соответственно функция называется непрерывно дифференцируемой на множестве (отрезке, интервале), если она дифференцируема в каждой точке этого множества и ее производная является непрерывной в каждой точке этого множества. (определение непрерывной дифференцируемости на множестве как существование производной "всюду"или "в каждой точке этого множества которое любят многие студенты отвечать на экзамене, неверно: это просто определение дифференцируемости на множестве)

Пример 11. Функцию

$$f(x) = \begin{cases} |x|^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

исследовать на непрерывность, дифференцируемость и непрерывную дифференцируемость при всех α .

Решение:

Во-первых, очевидно, что при всех альфа при всех $x \neq 0$ наша функция непрерывно дифференцируема как композиция непрерывно дифференцируемых функций (ну и, следовательно, дифференцируема и, следовательно, непрерывна).

Значит нам нужно исследовать поведение функции только в точке 0.

1) Исследуем на непрерывность в нуле. То есть по определению непрерывности нужно найти альфа, при которых

$$\lim_{x \to 0} f(x) = f(0) = 0$$

.

Очевидно, что при $\alpha>0$ этот предел равен нулю, т.к. $0\leq \lim_{x\to 0} |f(x)|\leq \lim_{x\to 0} |x|^\alpha=0$ при $\alpha>0$, следовательно, по теореме о двух милиционерах, предел есть и равен нулю.

Теперь осталось доказать отсутствие непрерывности при $\alpha \leq 0$, то есть что $\neq \lim_{x\to 0} f(x)$ (ну или что этот предел не равен f(0)). Мы докажем, что его не существует, пользуясь определением предела по Гейне. Нужно доказать, что $\exists x_n', x_n''$:

$$\lim_{n\to\infty} f(x_n') \neq \lim_{n\to\infty} f(x_n'').$$
 Возьмем $x_n' = \frac{1}{2\pi n}$ и $x_n'' = \frac{1}{\pi/2 + 2\pi n}$, обе $\to 0$ при $n\to\infty$.
$$sin(x_n') = 0$$

$$sin(x_n'') = 1$$

$$\lim_{n\to\infty} f(x_n'') = \begin{cases} 1, \alpha = 0 \\ \infty, \alpha < 0 \end{cases}$$

Следовательно, предела нет в нуле по определению Гейне.

Итак, функция непрерывна в нуле при $\alpha>0,$ а в остальных точках при всех α

2) Дифференцируемость: в случае таких странно заданных функций следует действовать по определению:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} |x|^{\alpha - 1} sin \frac{1}{x} signx = 0$$
 при $\alpha > 1$,

т.к. $sin\frac{1}{x}$ - функция ограниченная, а $|x|^{\alpha-1}$ - бесконечно малая. signx взялся при делении модуля икса на икс, т.к. (|x|=xsignx). Итак, мы доказали, что при $\alpha>1$ функция дифференцируема в нуле (ну и значит в каждой точке, т.к. в остальных точках, как мы уже заметили, она дифференцируема).

Но из этого не следует, что при $\alpha \leq 1$ функция не дифференцируемая в нуле. Это надо показать. Т.е. надо показать, что $\nexists \lim_{x\to 0} |x|^{\alpha-1} sin \frac{1}{x} signx$ при $\alpha \leq 1$. Показывается отсутствие предела обычно с помощью определения по Гейне: возьмем 2 последовательности $x_n' = \frac{1}{2\pi n}$ и $x_n'' = \frac{1}{\pi/2 + 2\pi n}$, обе $\to 0$ при $n \to \infty$.

Тогда при таких последовательностях:

$$\lim_{n \to \infty} |x_n'|^{\alpha - 1} \sin \frac{1}{x_n'} \operatorname{sign} x_n' = 0,$$

т.к. $sin(2\pi n) = 0;$

$$\lim_{n \to \infty} |x_n''|^{\alpha - 1} \sin \frac{1}{x_n''} \operatorname{sign} x_n'' = \lim_{n \to \infty} |x_n''|^{\alpha - 1} \operatorname{sign} x_n'' \neq 0,$$

т.к.
$$sin(\pi/2 + 2\pi n) = 1$$
; $\lim_{n \to \infty} |x_n''|^{\alpha - 1} = \begin{cases} 1, \alpha = 1 \\ \infty, \alpha < 1 \end{cases}$

Т.о., мы получили, что по определению предела функции по Гейне не существует предела $\lim_{n\to\infty} g(x)$ при $\alpha\le 1$, где $g(x)=|x|^{\alpha-1}sin\frac{1}{x}signx$, т.к $\exists x_n',x_n''$:

$$\lim_{n \to \infty} g(x_n') \neq \lim_{n \to \infty} g(x_n'')$$

(Один равен нулю, а второй единице или бесконечности).

Резюме исследования на дифференцируемость: при $\alpha>1$ функция дифференцируема во всех точках. При $\alpha\leq 1$ функция дифференцируема во всех точках кроме x=0.

3). Исследуем на непрерывную дифференцируемость в точке x=0. Для этого возьмем производную и исследуем производную на непрерывность в нуле (напомню, что непрерывная дифференцируемость - непрерывность производной как функции).

$$f'(x) = \alpha x^{\alpha - 1} \sin \frac{1}{x} signx - |x|^{\alpha} x^{-2} \cos \frac{1}{x} = \alpha x^{\alpha - 1} \sin \frac{1}{x} signx - |x|^{\alpha - 2} \cos \frac{1}{x}$$

. Аналогично предыдущим двум пунктам убеждаемся, что производная будет непрерывна в нуле при $\alpha>2$:

$$0 \le \lim_{x \to 0} |f'(x)| \le \lim_{x \to 0} (\alpha |x|^{\alpha - 1} + |x|^{\alpha - 2}) = 0, \alpha > 2$$

(Тут использовалось, что модуль суммы меньше суммы модулей.) Далее убеждаемся с помощью определения предела по Гейне в том,

что при $\alpha \leq 2$ производная не будет непрерывна. Аналогично берем те же последовательности.

Задача решена.