TensorFlow distribuido

Diego Andrade Canosa

Contenidos del curso

- Breve introducción a TensorFlow y Keras
- · Repaso de conceptos de entrenamiento distribuido
- Soporte nativo en TF para entrenamiento distribuido
 - MirroredStrategies
 - ParameterServer

TensorFlow

- TensorFlow (TF) es una plataforma de aprendizaje automática
 - · Junto a Pytorch, su principal competidor, una de las más populares
- Proporciona:
 - Herramientas avanzadas para el procesamiento y carga de datos
 - Definición de modelos utilizando bloques constructores con distinto nivel de complejidad
 - Implementación de servidores de inferencia de modelos (en producción)
 - Técnicas de regularización
 - Herramientas auxiliares como tensorboard o tf profiler

Evolución histórica

- Versión actual: 2.14
- Año 2011: el *Google Brain Team* (Andrew Ng and Jeff Dean) empiezan un proyecto llamadoo DistBelief
 - Sistema de ML escalable y distribuido
- Año 2015: Google libera el código de DistBelief y lo renombra como TensorFlow
 - El código abierto como acelerador de la innovación
- Año 2019: Tensorflow 2.0
 - API más simple
 - Mejor rendimiento
 - Mejor integración con Keras

Ecosistema de TF

- TensorFlow.js (entornos web)
- TensorFlow Lite (IoT)
- TFX (eXtended TF)
- Keras (Bloques constructores más sofisticados)
- TensorBoard (Visualización)
- Jupyter, Colab
- Otras herramientas:
 - Kubeflow (Contenedores para ML)
 - Frameworks distribuidos: Ray, Horovod, etc...

TF vs Pytorch

- Static vs Dynamic Computation Graph
 - Static: Menos flexible, mejor rendimiento
 - Dynamic: Más flexible y fácil de usar, peor rendimiento

```
import torch

# Define the neural network
class Net(torch.nn.Module):
    def forward(self, x, y):
        return x * y

# Create an instance of the neural network
net = Net()

# Define the input values
x = torch.tensor([2.0, 3.0])
y = torch.tensor([4.0, 5.0])

# Compute the output
output = net(x, y)
print(output) # Output: tensor([ 8., 15.])
```

```
import tensorflow as tf

# Define the input values
x = tf.constant([2.0, 3.0])
y = tf.constant([4.0, 5.0])

# Define the computation
output = x * y

# Create a session and run the computation
with tf.Session() as sess:
    result = sess.run(output)
    print(result) # Output: [ 8. 15.]
```


Dynamic Computation Graphs en TF

- Los DCGs están disponibles en TF a través del modo eager
 - Habilitado por defecto
 - Recomendable deshabilitarlo para modelos en producción (inferencia)

Tensorflow (TF): Conceptos básicos

- Características básicas:
 - Soporte para tensores (arrays multidimensionales)
 - Procesamiento en GPU y distribuido
 - Diferenciación automática
 - Definición de modelos, entrenamiento y exportación

TF: Tensores

```
import tensorflow as tf

x = tf.constant([[1., 2., 3.],
[4., 5., 6.]])

print(x)
print(x.shape)
print(x.dtype)
```


Tensores: operadores

- X+X
- 5*X
- transpose
- concat
- reduce_sum
- softmax
- Variables: Son la versión mutable de los tensores (usados para almacenar, por ejemplo, los parámetros entrenables del modelo)

Diferenciación automática

- El mecanismo de **autodiff** es similar al disponible en Pytorch
 - Construye un grafo con los nodos de la computación (durante la pasada *forward*) para calcular los gradientes de los pesos aplicables durante la pasada *backward*
- · Se activa poniendo el código dentro del entorno

```
with tf.GradientTape() as tape: (...)
```


@tf.function

- Se trata de un decorador que aplicado a una función habilita varias características
 - Optimización del rendimiento
 - Acelera inferencia y entrenamiento
 - Exportación del modelo al final del entrenamiento
 - La primera vez que se ejecuta se genera un grafo de la computación que se utiliza para acelerar ejecuciones posteriores

Modules, layers, tensor, variables & models

- Como en Pytorch, existen varias abstracciones que actúan como contenedores o bloques constructores de modelos de ML
 - Module: Similar al concepto homónimo de Pytorch
 - Los modules sirven de contenedores para los modelos
 - Layers predefinidas: Evitan tener que definir tipos de capas comunes desde cero mediante tensores

Keras

- Es un API de nivel superior de TF
- Proporciona bloques constructores de alto nivel para aplicaciones de ML
 - Interfaz sencilla y consistente
 - Minimizar el código necesario para casos de uso comunes
 - Mejora la legibilidad del código

Keras: Layers y Models

- Layers: Encapsulan una capa de un modelo de ML: un estado (pesos) y alguna computación (call)
 - Los pesos pueden ser entrenables o no
 - Las capas se componen recursivamente
 - También se pueden usar para tareas de preprocesado
- Models: Son agrupaciones de capas
 - El modelo Sequential es el más común, se usa para agrupar una secuencia de capas
 - Arquitecturas más comunes se componen usando la Keras functional API
 - Proporciona:
 - Método fit: para entrenar el modelo
 - Método predict: para generar predicciones (inferencia) en base a samples de entrada
 - Método evaluate: para devolver la función de pérdida y otras métricas generadas en el momento de la compilación (*compile*) del modelo

Otros componentes de Keras

- Optimizers
- Metrics
- Losses
- Utilidades de carga de datos

Bucles de entrenamiento: Contexto

- Estructura de un script de entrenamiento
 - 1. Importar y procesar un conjunto de datos (dataset). Separar en:
 - 1. Entrenamiento
 - 2. Validación
 - 2. Definir la arquitectura del modelo e instanciarlo
 - 3. Bucle de entrenamiento
 - 1. Inferencia
 - 2. Cálculo de la función de pérdida
 - 3. Cálculo de los gradientes
 - 4. Aplicación de los gradientes a los parámetros del modelo
 - 4. Validación de la precisión del modelo

Bucle de entrenamiento en TF

```
model=keras.Sequential([layer1, layer2, layer2 ...])
model.compile(optimizer="optname", loss="lossfuncname", metrics=['metric1', metric2, ...])

for epoch in range(num_epochs):
    for i in range(0,len(train_data, batch_size):
        with tf.GradientTape as tape:
            predictions= model(batch_data)
            loss=tf.keras.loses.somelossfunction(batch_labels,predictions
            gradients = tape.gradient(loss, model.trainable_variables)
            optimizer.apply_gradients(zip(gradients, model.trainable_variables)))

model.save('filename')
```

• <u>Guía Keras:</u>
https://www.tensorflow.org/tutorials/quickstart/beginner?hl=e
s-419

• <u>Guía TF:</u>
https://www.tensorflow.org/tutorials/quickstart/advanced?hl=es-419

Entrenamiento distribuido

- Paralelismo de datos
- · Paralelismo de modelo
- Paralelismo híbrido

Model and Data Parallelism

Centralizado vs descentralizado

- Copias espejo (Mirror)
 - allreduce
- Parameter Server
 - 1 PS n trabajadores
 - n PS n trabajadores

Figure 4: Architecture of a parameter server communicating with several groups of workers.

Promediado de pesos

Promediado síncrono vs asíncrono

- Síncrono: Hay que esperar por todos los trabajadores para promediar los pesos
 - La sincronización supone un cuello de botella
- Asíncrono: El promediado se produce sin asegurar la sincronización de los trabajadores
 - Convergencia más lenta del modelo

Estrategias avanzadas

- Paralelismo de tensores
- Paralelismo multinivel
 - Data + Model + Tensor
- Estrategias ad-hoc para ciertas arquitecturas de modelo
- Estrategias avanzadas como Zero-DeepSpeed

Actividad: Conf. y prueba del entorno

- Creación y configuración del entorno
 - Conectarse a FT3
 - compute —gpu
 - cd Cesga2023Courses/tf_dist/scripts
 - source createVENVTF.sh
 - source \$STORE/mytf/bin/activate
- Comprobar la instalación
 - python

```
>> import tensorflow as tf
```

```
>> print("Num GPUs Available: ",
len(tf.config.list_physical_devices('GPU')))
```


Actividad: Conf. y prueba del entorno

• Clona el repositorio en \$STORE

cd \$STORE

git clone https://github.com/diegoandradecanosa/Cesga2023Courses.git

• Si ya lo tenías basta con hacer un pull cd \$STORE/Cesga2023Courses git pull

Soporte nativo para TF distribuido

- Evaluación del rendimento (tf.profile)
- Coexistencia con SLURM y envío de trabajos
- Carga de datos en entornos distribuido
- Entrenamiento en un nodo (CPU)
- Estrategias de entrenamiento distribuido
 - Mirrored y MultiworkerMirrored
- Estrategias de tipo Parameter-Server
- Uso de DTENSORS

Explotación de una GPU

- TF puede utilizar una GPU de forma totalmente transparente
 - No necesita cambios en el código
- En FT3 es necesario estar en un *compute node* con una GPU disponible: *compute –gpu*

```
import tensorflow as tf
print("Num GPUs Available:
",len(tf.config.list_physical_devices('GPU'))
)
```


Explotación de una GPU: modo de explotación

- Cuando haya una CPU y una GPU disponibles
 - TF prioriza la GPU si la operación a ejecutar tiene una implementación específica para GPU
 - En caso contrario, se ejecuta en la CPU
- El siguiente código permite saber dónde se ejecuta una función (ej. matmul)

```
tf.debugging.set_log_device_placement(True)

# Create some tensors
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
c = tf.matmul(a, b)
print(c)
```

Exploración de una GPU: modo de explotación

• Existe una forma de forzar una ubicación para unos cálculos

```
tf.debugging.set_log_device_placement(True)

# Place tensors on the CPU
with tf.device('/CPU:0'):
    a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
    b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Run on the CPU
c = tf.matmul(a, b)
print(c)
```


Explotación de una GPU: Límite de memoria

- Por defecto, TF se asigna a toda la memoria de todas la GPUs visibles
 - Podemos usar el método set_visible_devices para limitarlo

Explotación de una GPU: Límite de memoria

- También podemos usar el mecanismo experimental set_memory_growth
 - Hace un aumento paulatino de la reserva de memoria bajo demanda

Explotación de una GPU: Límite de memoria

• También se puede establecer un límite fijo a través del mecanismo set_logical_device_configuration

Explotación de una GPU única en un sistema multi-GPU

```
tf.debugging.set_log_device_placement(True)

try:
    # Specify an invalid GPU device
    with tf.device('/device:GPU:0'):
    ...

except RuntimeError as e:
    print(e)
```


Tensorflow ClusterResolver

- Es una librería que permite tener acceso a los recursos computacionales reservados en entornos de supercomputación
- Se asocia con el framework ClusterSpec
- Soporta varios sistemas:
 - GCE
 - Kubernetes
 - Slurm
 - •
- Fuente: Module: tf.distribute.cluster_resolver | TensorFlow v2.11.0

Tensorflow ClusterResolver

- SlurmClusterResolver es el que corresponde con Slurm el sistema de colas de FT3
- Devuelve un objeto ClusterResolver que puede ser usado directamente en TF
- El método cluster_spec devuelve un objeto ClusterSpec para ser usado en Distributed TF

```
tf.distribute.cluster_resolver.SlurmClusterResolver(
    jobs=None,
    port_base=8888,
    gpus_per_node=None,
    gpus_per_task=None,
    tasks_per_node=None,
    auto_set_gpu=True,
    rpc_layer='grpc'
)
```


Actividad: ClusterResolver

• https://github.com/diegoandradecanosa/Cesga2023Courses/bloom/main/tf dist/TF/002/README.md

Distribute.strategy de TF: CrossDeviceOps

- Clase para seleccionar la implementación a usar para los algoritmos de
 - Reducción
 - Broadcasting
- Es uno de los parámetros que podemos pasar a la MirroredStrategy
- Implementaciones:
 - tf.distribute.ReductionToOneDevice
 - Copia todos los valores a un dispositivo donde se hará la reducción de forma centralizada
 - tf.distribute.NcclAllReduce
 - Usa la implementación de Nvidia NCCL para el all reduce
 - tf.distribute.HierarchicalCopyAllReduce
 - Utiliza un algoritmo de reducción jerárquica
 - Pensado para Nvidia-DGX1
 - Asume que las GPUs están interconectadas como en ese tipo de nodo

Fuente: https://www.tensorflow.org/api_docs/python/tf/distribute/CrossDeviceOps

Distribute.strategy de TF: DistributedDataSet

- Clase que permite definir un *dataset* distribuido entre varios nodos
 - Apropiado para su uso con el módulo tf.distribute.strategy
- Dos APIs diferentes:
 - tf.distribute.Strategy.experimental_distribute_dataset(dataset)
 - Más sencillo de utilizar si tenemos un dataset convencional
 - tf.distribute.Strategy.distribute_datasets_from_function(dataset_fn)
 - Más difícil de utilizar pero más flexible

Fuente:

https://www.tensorflow.org/api docs/python/tf/distribute/Distribut edDataset

Distribute.strategy de TF: DistributedDataSet

- Concepto más amplio: Dataset sharding
 - Distribución del conjunto de datos entre varios nodos

Distributed training en TF

- El uso de hardware *en paralelo* puede reducir el tiempo de entrenamiento
- La paralelización del entrenamiento requiere esfuerzo por parte del programador
 - El uso de una GPU o una CPU sí que no requiere ese esfuerzo
- La paralelización requiere que TF sepa cómo coordinar el trabajo de varios trabajadores (*workers*)

Fuente: https://www.youtube.com/watch?v=S1tN9a4Proc

Distribute.Strategy de TF

- Tf.distribute.Strategy es una API de TF para distribuir el entrenamiento entre múltiples GPUs, máquinas o TPUs
- Permite ejecutar los entrenamientos en paralelo ávidamente (eagerly) o siguiendo una estrategia de grafo (usando tf.function)
 - Ávidamente -> depuración
 - Tf.function -> Recomendado
- Fuente: Distributed training with TensorFlow | TensorFlow Core

Distributed training en TF

- Categorías de algoritmos paralelos de TF
 - Paralelismo de datos (data paralellism)
 - Paralelismo de modelo (model paralellism)

Distributed training en TF: Data parallelism

Paralelismo de datos (data paralellism)

model.fit(x,y,batch_size=32)

Dimensiones del entrenamiento:

- Epoch (procesado de todo el *dataset*). Una pasada completa del *dataset*
- En cada *step* procesamos *batch_size* elementos del data_set a la vez
 - Incrementar el batch_size está limitado por la memoria de una GPU
 - Incrementarlo mejora el rendimiento -> Podemos hacer más cosas en paralelo
 - Usando varios workers
 - Podemos seguir aumentando el batch_size
 - Se divide efectivamente entre varias GPUs
 - Y acortar el entrenamiento
- Usando varios workers
 - Cada uno procesa un *step* del entrenamiento de forma independiente calculando sus propios gradientes
 - Estos gradientes son *reducidos* (promediados) entre todos los trabajadores y usados en la actualización de los pesos

Distributed training en TF: Data parallelism

Fuente: <u>Understanding Data Parallelism in Machine</u> Learning

Distributed training en TF: Data parallelism

- Cuello de botella: actualización de los gradientes por todos los workers
 - Basada en la operación all-reduce
 - Los valores de un array se promedian a partir de los valores de la copia privada del array de los trabajadores
 - El array global, con sus valores calculados, se transfiere de vuelta a los trabajadores
 - Hay múltiples implementaciones del algoritmo all-reduce
 - Dependiendo de la topología de los trabajadores
 - El patrón de intercambio de valores
 - TF se encarga de seleccionar el algoritmo que realizará la operación de la forma más eficiente en cada caso

- El algoritmo all-reduce ring se compone de dos fases:
 - Reduce-scatter
 - All-gather

- El algoritmo all-reduce ring se compone de dos fases:
 - Reduce-scatter
 - All-gather

- El algoritmo all-reduce ring se compone de dos fases:
 - Reduce-scatter
 - All-gather

- El algoritmo all-reduce ring se compone de dos fases:
 - Reduce-scatter
 - All-gather

- El algoritmo all-reduce ring se compone de dos fases:
 - Reduce-scatter
 - All-gather

Distributed training en TF: Model parallelism

- Paralelismo de modelo (model parallelism)
 - Dividimos la arquitectura del modelo entre varios workers
 - Es necesario que las partes se puedan ejecutar de forma independiente
 - Más difícil de implementar conceptualmente, y depende de la arquitectura del modelo

Distribute.Strategy de TF

- Tipos de estrategia, se cubren varias posibilidades en un abanico amplio dependiendo de varios factores:
 - Entrenamiento síncrono o asíncrono
 - Son dos estrategias distintas para aplicar paralelismo de datos
 - Condicionadas por el cuello de botella de la actualización de los gradientes
 - Operación all-reduce
 - Síncrono: Se divide el dataset de entrenamiento entre los diferentes trabajadores que realizan el entrenamiento de forma independiente, y los gradientes se agregan al final de cada step
 - Asíncrono: No se divide el dataset, todos los trabajadores lo usan por completo, y actualizan las variables de forma asíncrona
 - Plataformas hardware utilizada
 - Tipo de acelerador utilizado: Multicore CPU, GPU, TPU, etc...
 - Un nodo con múltiples aceleradores o varios nodos

Distribute.Strategy de TF

- Estrategias disponibles en TF:
 - Síncrono
 - OneDeviceStrategy -> https://www.tensorflow.org/api_docs/python/tf/distribute/OneDeviceStrategy
 - MirroredStrategy
 - TPUStrategy
 - MultiWorkerMirroredStrategy
 - Asíncrono
 - ParameterServerStrategy
 - CentralStorageStrategy
 - https://www.tensorflow.org/guide/distributed training
 - https://www.tensorflow.org/api_docs/python/tf/distribute/Strategy

Distribute.StrategyExtended

• API adicional para algoritmos que necesitan ser distributionaware

• https://www.tensorflow.org/api_docs/python/tf/distribute/StrategyExtended

Distribute.Strategy de TF

Grado de soporte de estrategias en TF en diversos escenarios

Training API	MirroredStrategy	TPUStrategy	MultiWorkerMirroredStrategy	CentralStorageStrate gy	ParameterServerStrat egy
Keras <u>Model.fi</u>	Supported	Supported	Supported	Experimental support	Experimental support
Custom training loop	Supported	Supported	Supported	Experimental support	Experimental support
Estimator API	Limited Support	Not supported	Limited Support	Limited Support	Limited Support

Distribute.Strategy de TF

Grado de soporte de estrategias en TF en diversos escenarios

Training API	MirroredStrategy	TPUStrategy	MultiWorkerMirroredStrategy	CentralStorageStrate gy	ParameterServerStrat egy
Keras <u>Model.fi</u> <u>t</u>	Supported	Supported	Supported	Experimental support	Experimental support
Custom training loop	Supported	Supported	Supported	Experimental support	Experimental support
Estimator API	Limited Support	Not supported	Limited Support	Limited Support	Limited Support

Distribute.Strategy de TF: MirroredStrategy

- La MirroredStrategy soporta entrenamiento distribuido síncrono en múltiples GPUs en un nodo
- Se crea una réplica por cada GPU
 - Juntas forman una única variable conceptual llamada MirroredVariable
 - Se mantiene la coherencia aplicando actualizaciones similares en todas
 - Como si fuese un espejo (mirror)
 - Implementaciones eficientes de algoritmos all-reduce

mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:o", "/gpu:1"])

Distribute.Strategy de TF: MirroredStrategy

- Cada GPU realiza la *forward pass* en un subconjunto diferente de los datos de entrada para calcular la *loss function*
- Cada GPU calcula sus propios gradientes basándose en la *loss* function calculada localmente
- Se realiza la agregación global (promedio) de estos gradientes a través de un algoritmo *all-reduce*
- Se actualizan los pesos usando los gradientes resultantes
 - Todos los dispositivos tendrán una copia sincronizada (espejo) del modelo entrenado

Actividad: Entrenamiento 1 nodo – 2 GPUs

• https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf_dist/TF/003#actividad-un-nodo-dos-gpus

Actividad: Entrenamiento 1 nodo – 2 GPUs

- · Solución de problemas comunes
 - Si se cuelga el kernel hay que reiniciarlo
 - Kernel -> Restart kernel
 - O la combinación de teclas "o+o"
 - Si falla la ejecución por problemas de uso de memoria, entonces podemos matar los procesos que hayan quedado ejecutándose en la GPU
 - nvidia-smi Al final del comando habrá una lista de procesos
 - Eliminarlos con kill -9 pid

Distribute.Strategy de TF: TPUStrategy

- Específica para Google TPUs
- Similar a MirroredStrategy
- Usa una implementación específica de las operaciones all-reduce optimizada para TPUs

```
cluster_resolver =
tf.distribute.cluster_resolver.TPUClusterResolver(
    tpu=tpu_address)
    tf.config.experimental_connect_to_cluster(cluster_resolver)
    tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
    tpu_strategy = tf.distribute.TPUStrategy(cluster_resolver)
```


Distribute.Strategy de TF: MultiWorkerMirroredStrategy

- MultiWorkerMirroredStrategy es similar a MirroredStrategy pero con soporte para varios nodos
 - Crea copias de todas las variables en todos los trabajadores y en todos los dispositivos

communication_options = tf.distribute.experimental.CommunicationOptions(
implementation=tf.distribute.experimental.CommunicationImplementation.NCCL)
strategy =
tf.distribute.MultiWorkerMirroredStrategy(communication_options=communication_options)

Hay 2 opciones para las Comunicaciones entre dispositivos:

.RING: Basado en RPC, válido para CPU y GPU

.NCCL: Específico para GPU, mejor rendimiento cuando se puede utilizar

.AUTO: Deja a TF elegir el mejor método disponible

Distribute.Strategy de TF: MultiWorkerMirroredStrategy

Fuente: Distributed training with TensorFlow | TensorFlow Core

```
• El uso de múltiples nodos requiere configurar la variable de entorno: TF_CONFIG.
• Tiene estructura de diccionario
• Dos componentes:
• La definición de un cluster
• Diccionario con listas de nodos (host:puerto) de distintos tipos:
• Ps: servidores
• Workers: trabajadores
• La definición de cada tarea (task)
• Type: worker/ps
• Index

os.environ["TF_CONFIG"] = json.dumps({
    "cluster": {
        "worker": ["host1:port", "host2:port", "host3:port"],
        "ps": ["host4:port", "host5:port"]
        },
        "task": {"type": "worker", "index": 1}
})
```


Actividad: Entrenamiento 2 nodos – 2 GPUs

• https://github.com/diegoandradecanosa/Cesga2023Courses/bloom/main/tf dist/TF/004/README.md

Distribute.Strategy de TF: ParameterSeverStrategy

- Es un tipo de entrenamiento multimodo asíncrono
 - Reduce el cuello de botella del allreduce en las estrategias síncronas
 - Recomendable para usar un nodo alto de trabajadores
- Los nodos implicados se dividen en:
 - Workers (tf.distribute.Server)
 - Parameter servers (tf.distribute.Server)
 - Un coordinator (tf.distribute.experimental.coordinat or.ClusterCoordinator)
 - Usa la ParameterServerStrategy para definir el paso de entrenamiento y usar un ClusterCoordinator que envía pasos de entrenamiento a los trabajadores

Distribute.Strategy de TF: ParameterSeverStrategy

- Soporta dos modos de entrenamiento
 - Keras Model.fit
 - Bucles de entrenamiento definidos por el usuario
- Abstracciones de Model.fit
 - Cluster, Jobs y Tasks
- Con PS, también tenemos:
 - Un Coordinator job (called *chief*)
 - Varios Worker jobs (llamados *workers*)
 - Varios PS Jobs (llamados ps)

Distribute.Strategy de TF: ParameterSeverStrategy

- Cada *worker* pide la última copia de los parámetros a cada uno de los *parameter servers*
 - Los parámetros están distribuidos entre varios servidores
- Cada *worker* calcula los gradientes de acuerdo a un subconjunto del *dataset*
- Los *workers* envían los parámetros de vuelta a los *parameter servers* donde se integran (reducen)

Preparación del Clúster

- Components: 1 Coordinator (type *chief*), N PS (*ps*), N Workers (*worker*), y puede que una tarea Evaluator
- La tarea de coordinación necesita conocer las direcciones y puertos de todas las tareas Server (PS y Workers), pero no del Evaluator
- Las tareas Server deben saber en qué puerto escuchar
- La tarea Evaluator no tiene por qué conocer la configuración del Clúster
- La estrategia PS usará todas las GPUs disponibles en cada nodo
 - Todos deben tener el mismo número de GPUs

PS con Keras model.fit(): Esqueleto

```
variable_partitioner = (
    tf.distribute.experimental.partitioners.MinSizePartitioner(
        min_shard_bytes=(256 << 10),
        max_shards=NUM_PS))

strategy = tf.distribute.experimental.ParameterServerStrategy(
    tf.distribute.cluster_resolver.TFConfigClusterResolver(),
    variable_partitioner=variable_partitioner)
coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
    strategy)

with strategy.scope():
    //model definition
    model.compile(...)

model.fit(...)</pre>
```


Concepto relacionado: Variable sharding

- Consiste en dividir una variable en variables más pequeñas llamadas shards
- Útil para:
 - Reducir consumo de red
 - Distribuir la carga de computación y almacenamiento de una variable
 - Útil, por ejemplo, para *embeddings* muy grandes que no caben en la memoria de un dispositivo
- Cómo hacerlo: Pasando un *variable_partitioner* al construir un objeto *ParameterServerStrategy*
- El particionador entonces se llamará cada vez que se cree una variable, y devuelve un nuevo de shards particionando en cada dimensión de la variable
- Varios particionadores disponibles: [Min/Max/Fixed]SizePartitioner

PS con bucle de usuario

- Creación de una instancia de un ClusterCoordinator para enviar trabajos (normalmente *steps* de entrenamiento) para su ejecución en otros *workers*
 - Opcional trabajando con Keras Model.fit
 - Necesario con bucles de entrenamiento de usuario

Definición del step de entrenamiento

Wrapper tf.function

```
def step_fn(iterator):
                                                                                              Inferencia para un batch
             def replica_fn(batch_data, labels):
                           with tf.GradientTape() as tape:
                                        pred = model(batch_data, training=True)
                                        per_example_loss = tf.keras.losses.BinaryCrossentropy(
                                        if model losses:
                           optimizer.apply_gradients(zip(gradients, model.trainable_variables))
                           actual pred = tf.cast(tf.greater(pred, 0.5), tf.int64)
                                                                                                     1. Siguiente batch
                                                                                                         Ejecutar step de entrenamiento para cada
                           return loss
                                                                                                     3. Reducción de los resultados en cada
             batch data_ labels = next(iterator)
                                                                                                         trabajador
              losses = strategy.run(replica_fn, args=(batch_data, labels))
              return strategy.reduce(tf.distribute.ReduceOp.SUM, losses, axis=None)
```


Definición del ClusterCoordinator (I)

Instancia del coordinador

Definición del ClusterCoordinator (II)

Central Storage Strategy

• Es una estrategia de tipo servidor de parámetros que pone todas las variables en el mismo dispositivo

https://www.tensorflow.org/api docs/python/tf/distribute/experimental/CentralStorageStrategy

Actividad: ParameterServer Ejemplo simple

• https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf_dist/TF/005#parameter-server-ejemplo-simple

