Imperial College London

[E2.11 (Maths) ISE 2010]

B.ENG. and M.ENG. EXAMINATIONS 2010

MATHEMATICS (INFORMATION SYSTEMS ENGINEERING E2.11)

Date Thursday 3rd June 2010 2.00 - 4.00 pm

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO

Answer FOUR questions, to include at least one from Section B.

Answers to questions from Section A and Section B should be written in different answer books.

Mathematical and statistics formulae sheets are provided.

[Before starting, please make sure that the paper is complete; there should be 7 pages, with a total of 6 questions. Ask the invigilator for a replacement if your copy is faulty.]

© 2010 Imperial College London

Section A

1. The Fourier transform (FT) of f(t) is given by

$$\widehat{f}(\omega) = FT \{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
.

- (i) Establish the following results:
 - (a) $FT\{f'(t)\} = i\omega \widehat{f}(\omega)$;
 - (b) $FT\{tf(t)\} = i\frac{d}{d\omega} \widehat{f}(\omega)$,

stating any assumptions that you make about the behaviour of f(t) as $t \to \pm \infty$.

(ii) Use the results above to show that

$$FT \left\{ 2f'(t) + tf(t) \right\} = ie^{-\omega^2} \frac{d}{d\omega} \left(e^{w^2} \widehat{f}(\omega) \right) .$$

(iii) Apply the result obtained in (ii) to show that if

$$f(t) = e^{-t^2/4} ,$$

then

$$\widehat{f}(\omega) \ = \ Ae^{-\omega^2} \ ,$$

where A is a constant.

(iv) Compute the constant A by evaluating $\widehat{f}(0)$ directly, making use of the result

$$\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi} .$$

(v) Deduce the value of

$$\int_0^\infty e^{-t^2/4} \cos \omega t \, dt \ .$$

2. The Laplace transform (LT) of f(t) is given by

$$F(s) = LT\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$$
.

(i) Prove the convolution theorem, i.e. if F(s), G(s) are the Laplace transforms of f(t), g(t), then

$$LT\left\{\int_0^t f(t-u)g(u)du\right\} = F(s)G(s) .$$

The function y(t) satisfies

$$y(t) = e^{-\alpha t} - \int_0^t y(t-u) e^{-\beta u} du$$

for t > 0, with α , β positive constants.

(ii) By taking the Laplace transform of this equation and using the tables provided, show that

$$Y(s) = \frac{s+\beta}{(s+\alpha)(s+\beta+1)},$$

where Y(s) is the Laplace transform of y(t).

(iii) Use the residue theorem to invert Y(s) and hence find y(t), distinguishing between the cases $\alpha \neq \beta + 1$ and $\alpha = \beta + 1$.

If F(s) has a pole of order m at s = a, then the residue of F(s) at s = a is given by

$$\frac{1}{(m-1)!} \lim_{s \to a} \left\{ \frac{d^{m-1}}{ds^{m-1}} \left((s-a)^m F(s) \right) \right\} .$$

3. (i) Sketch the region of the x-y plane over which the integral

$$I = \int_0^a \left\{ \int_{\sqrt{(ax-x^2)}}^{\sqrt{(a^2-x^2)}} \frac{2xy}{x^2+y^2} e^{-(x^2+y^2)} dy \right\} dx$$

is taken.

Use polar coordinates to evaluate I.

(ii) Show that

$$I(\alpha) = \int_C (3x^2y^2 + \alpha y e^{xy}) dx + (2x^3y + xe^{xy}) dy$$

is path-independent for a particular value of α (α^* , say) to be determined.

For this value of α , find a suitable potential function and hence evaluate $I(\alpha^*)$ in the case where C starts at (0, 0) and ends at (1, 2).

Verify this answer by finding a suitable parameterization when C is the straight line segment leading from (0, 0) to (1, 2), and evaluating $I(\alpha^*)$ using this parameterization.

4. (i) Classify the singularities of the function

$$f(z) = \frac{e^{i\alpha z}}{z^2 + 2z + 2}$$
 , $(\alpha > 0)$,

in the complex z-plane, and determine the residues at the poles.

(ii) Consider

$$I = \int_C f(z) dz ,$$

where f(z) is as given in (i) and C is the closed semi-circular path formed by the segment of the real axis from -R to R followed by the path $z = \operatorname{Re}^{i\theta}$, $(0 \le \theta \le \pi)$.

Determine the value of I both when $R < \sqrt{2}$ and when $R > \sqrt{2}$.

- (iii) Show that the integral over the curved part of the path tends to zero as $R \to \infty$.
- (iv) Hence evaluate the integrals

$$\int_{-\infty}^{\infty} \; \frac{\cos \alpha x}{x^2 + 2x + 2} \; dx \quad \text{and} \quad \int_{-\infty}^{\infty} \; \frac{\sin \alpha x}{x^2 + 2x + 2} \; dx \; .$$

Deduce the inverse Fourier transform of

$$\frac{1}{\omega^2 + 2\omega + 2} \ .$$

5. The number of errors, X_i , i = 1, 2, 3, made per day in three numeric database fields F_i , i = 1, 2, 3, are well modelled by independent Poisson distributions with,

$$P(X_i = x) = \frac{e^{-\lambda_i} \lambda_i^x}{x!}, \quad x = 0, 1, 2, ...,$$

where $\lambda_1 = 3, \lambda_2 = 2$ and $\lambda_3 = 1$. A fourth field, F_4 , is correctly evaluated if both F_1 and F_2 are error free.

- (i) Find the probability that
 - (a) F_1 has more than one error;
 - (b) F_2 has more than one error;
 - (c) F_3 has more than one error;
 - (d) F_1 , F_2 and F_3 all have more than one error;
 - (e) F_4 returns an error.
- (ii) An independent diagnostic test is run every day. If F_3 has more than one error and F_4 returns an error then the database has a 90% chance of failing the diagnostic test, otherwise it has a 20% chance of failing the test.
 - (a) Find the probability that the diagnostic test fails.
 - (b) If the diagnostic test has failed what is the probability that F_3 has more than one error and F_4 returns an error?
 - (c) Over 5 consecutive days what is the probability that the diagnostic test will fail no more than once?

 The functioning lifetime, T, of a component, in days, has probability density function

$$f(t) = \begin{cases} \frac{c}{t^{\alpha+1}} & t > 1; \\ 0 & \text{otherwise.} \end{cases}$$

for $\alpha > 0$.

- (i) (a) Determine the normalising constant c.
 - (b) For t > 1, determine the reliability function, R(t), and show that the hazard function, h(t), is given by

$$h(t) = \frac{\alpha}{t}, \qquad t > 1.$$

- (c) What is the probability that such a component is functioning after 2 days?
- (ii) A system is made up of six such components, operating independently with $\alpha=0.5$, which operates if there is a path of functioning components between S and T.

- (a) Determine the value for the system reliability at 2 days.
- (b) To improve the system reliability, components A₁ and A₆ are replaced with two identical components of a different type. Find the minimum reliability of the replacement component to ensure the overall reliability at 2 days exceeds 0.5.

END OF PAPER

MATHEMATICS DEPARTMENT

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$a = a_1 i + a_2 j + a_3 k = (a_1, a_2, a_3)$$

Scalar (dot) product: $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$

Vector (cross) product:

$$a \times b = \begin{bmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

Scalar triple product:

$$[a, b, c] = a.b.c. = b.c. = c.a.b = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Vector triple product: $a \times (b \times c) = (c.a)b - (b.a)c$

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots \quad (\alpha \text{ arbitrary, } |x| < 1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} \div \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots - (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

 $\cos iz = \cosh z$; $\cosh iz = \cos z$; $\sin iz = i \sinh z$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} D f D^{n-1}g + \ldots + \binom{n}{n} D^{r} f D^{n-r}g + \ldots + D^{n}fg.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $c_n(h) = h^{n+1} f^{(n+1)} (u + \theta h) / (n+1)!, \quad 0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h,b+k) = f(a,b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y=y(x)$$
, then $f=F(x)$, and $\frac{dF}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If
$$x = x(u, v)$$
, $y = y(u, v)$, then $f = F(u, v)$, and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let $\{u, b\}$ be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a,b}$. If D > 0 and $f_{xx}(u, b) < 0$, then $\{a, b\}$ is a maximum;

If D > 0 and $f_{xx}(a,b) > 0$, then (a,b) is a minimum;

If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)]$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- $\sin \theta = 2l/(1+l^2)$, $\cos \theta = (1-l^2)/(1+l^2)$, $d\theta = 2dl/(1+l^2)$. (a) An important substitution: $tan(\theta/2) = t$:
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a}\right) = \ln \left\{\frac{x}{a} + \left(1 + \frac{x^2}{a^2}\right)^{1/2}\right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a}\right) = \ln \left|\frac{x}{a} + \left(\frac{x^2}{a^2} - 1\right)^{1/2}\right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x)=0 occurs near x=a, take $x_0=a$ and $x_{n+1}=x_n-[f(x_n)/f'(x_n)], \ n=0,1,2\dots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n=x_0+nh$, $\ y_n=y\left(x_n
 ight)$.
 - i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) \left[y_0 + y_1 \right]$.
- ii. Simpson's rule (2-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/3) \left[y_0 + 4y_1 + y_2 \right]$.
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let I_1 , I_2 be two estimates of $\it I$ obtained by using Simpson's rule with intervals $\it h$ and $\it h/2$. Then, provided h is small enough,

$$l_2 + (l_2 - l_1)/15$$

is a better estimate of I.

7. LAPLACE TRANSFORMS

Transform	aF(s) + bG(s)	$s^3F(s) - sf(0) - f'(0)$	-dF(s)/ds	F(s)/s		$n!/s^{n+1}$, $(s>0)$	$\omega/(s^2+\omega^2),\ (s>0)$	$\langle T = e^{-sT}/s, (s, T > 0)$
Function	af(t) + bg(t)	42 //413	(1)(1)	16, 5(1) 14		$t^n(n=1,2\ldots)$	sinul	$s/(s^2 + \omega^2)$, $(s > 0)$ $II(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$
Transform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	sF(s) - f(0)	F(s-a)	$(\partial/\partial\alpha)F(s,\alpha)$	F(s)G(s)	1/8	1/(s-a), (s>a)	$s/(s^2 + \omega^2)$, $(s > 0)$
Function	7(0)	1p/Jp	e 4 (t)	$(\theta/\theta\alpha)f(t,\alpha)$	$\int_0^t f(u)g(t-u)du$	-)	100 soo

0

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} , \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{J_n} f(x) \cos \frac{n\pi x}{L} dx, \quad n = 0, 1, 2, \dots, \text{ and}$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^{2} dx = \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2} \right) .$$

1. Probabilities for events

For events
$$A$$
, B , and C
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
More generally
$$P(\bigcup A_i) = \sum P(A_i) - \sum P(A_i \cap A_j) + \sum P(A_i \cap A_j \cap A_k) - \cdots$$
The odds in favour of A
$$P(A) / P(\overline{A})$$
Conditional probability
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \quad \text{provided that } P(B) > 0$$
Chain rule
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$
Bayes' rule
$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(A) P(B \mid A) + P(\overline{A}) P(B \mid \overline{A})}$$
 A and B are independent if
$$P(B \mid A) = P(B)$$
 A , B , and C are independent if
$$P(A \cap B \cap C) = P(A) P(B) P(C), \quad \text{and}$$

$$P(A \cap B) = P(A) P(B), \quad P(B \cap C) = P(B) P(C), \quad P(C \cap A) = P(C) P(A)$$

2. Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is called the probability mass function (pmf) and is the complete set of probabilities $\{p_x\} = \{P(X=x)\}$

Expectation
$$E(X) = \mu = \sum_{x} x p_x$$

For function
$$g(x)$$
 of x , $E\{g(X)\} = \sum_x g(x)p_x$, so $E(X^2) = \sum_x x^2p_x$

Variance
$$var(X) = \sigma^2 = E\{(X - \mu)^2\} = E(X^2) - \mu^2$$

$$\frac{\text{Sample variance}}{s^2} = \frac{1}{n-1} \left\{ \sum_k x_k^2 - \frac{1}{n} \left(\sum_j x_j \right)^2 \right\} \quad \text{estimates } \sigma^2$$

Standard deviation
$$\operatorname{sd}(X) = \sigma$$

If value y is observed with frequency n_y

$$n = \sum_y n_y \,, \quad \sum_k x_k = \sum_y y n_y \,, \quad \sum_k x_k^2 = \sum_y y^2 n_y$$

Kurtosis
$$\beta_2 = E\left(\frac{X-\mu}{\sigma}\right)^4 - 3$$
 is estimated by $\frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s}\right)^4 - 3$

Sample median \widetilde{x} or x_{med} . Half the sample values are smaller and half larger lift he sample values x_1 , ..., x_n are ordered as $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$, then $\widetilde{x} = x_{(\frac{n+1}{2})}$ if n is odd, and $\widetilde{x} = \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n+2}{2})} \right)$ if n is even

 α -quantile $Q(\alpha)$ is such that $P(X \leq Q(\alpha)) = \alpha$

Sample α -quantile $\widehat{Q}(\alpha)$ Proportion α of the data values are smaller

Lower quartile $Q1 = \widehat{Q}(0.25)$ one quarter are smaller

Upper quartile Q3 = $\widehat{Q}(0.75)$ three quarters are smaller

Sample median $\tilde{x} = \widehat{Q}(0.5)$ estimates the population median Q(0.5)

Probability distribution for a continuous random variable 3.

The <u>cumulative distribution function</u> (cdf) $F(x) = P(X \le x) = \int_{x_0 = -\infty}^{x} f(x_0) dx_0$

 $f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$ The probability density function (pdf)

 $E(X) = \mu = \int_{-\infty}^{\infty} x \, f(x) dx$, $var(X) = \sigma^2 = E(X^2) - \mu^2$, where $E(X^2) = \int_{-\infty}^{\infty} x^2 \, f(x) dx$

Discrete probability distributions 4.

Discrete Uniform Uniform (n)

$$p_x = \frac{1}{n} \quad (x = 1, 2, \dots, n)$$

$$\mu = (n+1)/2$$
, $\sigma^2 = (n^2-1)/12$

Binomial distribution $Binomial(n, \theta)$

 $p_x = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad (x=0,1,2,\ldots,n) \qquad \quad \mu = n\theta, \quad \sigma^2 = n\theta(1-\theta)$

Poisson distribution $Poisson(\lambda)$

$$p_x = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $(x = 0, 1, 2, ...)$ (with $\bar{\lambda} > 0$) $\mu = \lambda$, $\sigma^2 = \lambda$

Geometric distribution $Geometric(\theta)$

$$p_x = (1 - \theta)^{x - 1}\theta$$
 $(x = 1, 2, 3, ...)$ $\mu = \frac{1}{\theta}, \ \sigma^2 = \frac{1 - \theta}{\theta^2}$

Continuous probability distributions 5.

Uniform distribution $Uniform(\alpha, \beta)$

$$f(x) = \left\{ egin{array}{ll} rac{1}{eta-lpha} & (lpha < x < eta), & \mu = (lpha + eta)/2\,, & \sigma^2 = (eta-lpha)^2/12 \\ & 0 & ext{(otherwise)}. \end{array}
ight.$$

Exponential distribution $Exponential(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (0 < x < \infty), & \mu = 1/\lambda, \quad \sigma^2 = 1/\lambda^2 \\ 0 & (-\infty < x \le 0). \end{cases}$$

Normal distribution $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty), \quad E(X) = \mu, \quad \operatorname{var}(X) = \sigma^2$$

Standard normal distribution N(0,1)

If
$$X$$
 is $N(\mu, \sigma^2)$, then $Y = \frac{X - \mu}{\sigma}$ is $N(0,1)$

6. Reliability

For a device in continuous operation with failure time random variable T having pdf $f(t) \ (t>0)$

The reliability function at time t R(t) = P(T > t)

The failure rate or hazard function h(t) = f(t)/R(t)

The <u>cumulative hazard function</u> $H(t) = \int_0^t h(t_0) dt_0 = -\ln\{R(t)\}$

The Weibull (α, β) distribution has $H(t) = \beta t^{\alpha}$

7. System reliability

For a system of k devices, which operate independently, let

$$R_i = P(D_i) = P("device i operates")$$

The system reliability, R, is the probability of a path of operating devices

A system of devices in series operates only if every device operates

$$R = P(D_1 \cap D_2 \cap \dots \cap D_k) = R_1 R_2 \dots R_k$$

A system of devices in parallel operates if any device operates

$$R = P(D_1 \cup D_2 \cup \cdots \cup D_k) = 1 - (1 - R_1)(1 - R_2) \cdots (1 - R_k)$$

8. Covariance and correlation

The covariance of X and Y $cov(X,Y) = E(XY) - \{E(X)\}\{E(Y)\}$

From pairs of observations $(x_1, y_1), \ldots, (x_n, y_n)$ $S_{xy} = \sum_k x_k y_k - \frac{1}{n} (\sum_i x_i) (\sum_i y_j)$

$$S_{xx} = \sum_{k} x_k^2 - \frac{1}{n} (\sum_{i} x_i)^2, \qquad S_{yy} = \sum_{k} y_k^2 - \frac{1}{n} (\sum_{j} y_j)^2$$

Sample covariance $s_{xy} = \frac{1}{n-1} S_{xy}$ estimates cov(X,Y)

Correlation coefficient $\rho = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\operatorname{sd}(X) \cdot \operatorname{sd}(Y)}$

Sample correlation coefficient $r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$ estimates ho

9. Sums of random variables

$$\begin{split} E(X+Y) &= E(X) + E(Y) \\ \text{var}\,(X+Y) &= \text{var}\,(X) + \text{var}\,(Y) + 2 \cot(X,Y) \\ \cos(aX+bY,\ cX+dY) &= (ac)\,\text{var}\,(X) + (bd)\,\text{var}\,(Y) + (ad+bc)\cos(X,Y) \\ \text{If X is $N(\mu_1,\sigma_1^2)$, Y is $N(\mu_2,\sigma_2^2)$, and $\cot(X,Y) = c$, then $X+Y$ is $N(\mu_1+\mu_2,\ \sigma_1^2+\sigma_2^2+2c)$ \end{split}$$

10. Bias, standard error, mean square error

If t estimates θ (with random variable T giving t)

Bias of
$$t$$
 bias $(t) = E(T) - \theta$

Standard error of
$$t$$
 se (t) = sd (T)

Mean square error of
$$t$$
 MSE (t) = $E\{(T-\theta)^2\}$ = $\{\operatorname{se}(t)\}^2 + \{\operatorname{bias}(t)\}^2$

If \overline{x} estimates μ , then bias $(\overline{x})=0$, se $(\overline{x})=\sigma/\sqrt{n}$, MSE $(\overline{x})=\sigma^2/n$, se $(\overline{x})=s/\sqrt{n}$ Central limit property If n is fairly large, \overline{x} is from $N(\mu, \sigma^2/n)$ approximately

11. Likelihood

The likelihood is the joint probability as a function of the unknown parameter θ .

For a random sample x_1, x_2, \ldots, x_n

$$\ell(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1 \mid \theta) \cdots P(X_n = x_n \mid \theta)$$
 (discrete distribution)

$$\ell(\theta; x_1, x_2, \dots, x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) \dots f(x_n \mid \theta)$$
 (continuous distribution)

The maximum likelihood estimator (MLE) is $\widehat{ heta}$ for which the likelihood is a maximum

12. Confidence intervals

If x_1, x_2, \ldots, x_n are a random sample from $N(\mu, \sigma^2)$ and σ^2 is known, then the 95% confidence interval for μ is $(\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}})$

If σ^2 is estimated, then from the Student t table for t_{n-1} we find $t_0=t_{n-1,0.05}$

The 95% confidence interval for μ is $(\overline{x} - t_0 \frac{s}{\sqrt{n}}, \ \overline{x} + t_0 \frac{s}{\sqrt{n}})$

13. Standard normal table Values of pdf $\phi(y)=f(y)$ and cdf $\Phi(y)=F(y)$

y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\Phi(y)$
0	.399	.5	.9	.266	.816	1.8	.079	.964	2.8	.997
.1	.397	.540	1.0	.242	.841	1.9	.066	.971	3.0	.999
.2	.391	.579	1.1	.218	.864	2.0	.054	.977	0.841	.8
.3	.381	.618	1.2	.194	.885	2.1	.044	.982	1.282	.9
.4	.368	.655	1.3	.171	.903	2.2	.035	.986	1.645	.95
.5	.352	.691	1.4	.150	.919	2.3	.028	.989	1.96	.975
.6	.333	.726	1.5	.130	.933	2.4	.022	.992	2.326	.99
.7	.312	.758	1.6	.111	.945	2.5	.018	.994	2.576	.995
.8	.290	.788	1.7	.094	.955	2.6	.014	.995	3.09	.999

14. Student t table Values $t_{m,p}$ of x for which P(|X|>x)=p, when X is t_m

m	p= 0.10	0.05	0.02	0.01	m	p = 0.10	0.05	0.02	0.01
1	6.31	12.71	31.82	63.66	9	1.83	2.26	2.82	3.25
2	2.92	4.30	6.96	9.92	10	1.81	2.23	2.76	3.17
3	2.35	3.18	4.54	5.84	12	1.78	2.18	2.68	3.05
4	2.13	2.78	3.75	4.60	15	1.75	2.13	2.60	2.95
5	2.02	2.57	3.36	4.03	20	1.72	2.09	2.53	2.85
6	1.94	2.45	3.14	3.71	25	1.71	2.06	2.48	2.78
7	1.89	2.36	3.00	3.50	40	1.68	2.02	2.42	2.70
8	1.86	2.31	2.90	3.36	∞	1.645	1.96	2.326	2.576

15. Chi-squared table Values $\chi^2_{k,p}$ of x for which P(X>x)=p, when X is χ^2_k and p=.995, .975, etc

					And the second s								
k	.995	.975	.05	.025	.01	.005	k	.995	.975	.05	.025	.01	.005
1	.000	.001	3.84	5.02	6.63	7.88	18	6.26	8.23	28.87	31.53	34.81	37.16
2	.010	.051	5.99	7.38	9.21	10.60	20	7.43	9.59	31.42	34.17	37.57	40.00
3	.072	.216	7.81	9.35	11.34	12.84	22	8.64	10.98	33.92	36.78	40.29	42.80
4	.207	.484	9.49	11.14	13.28	14.86	24	9.89	12.40	36.42	39.36	42.98	45.56
5	.412	.831	11.07	12.83	15.09	16.75	26	11.16	13.84	38.89	41.92	45.64	48.29
6	.676	1.24	12.59	14.45	16.81	18.55	28	12.46	15.31	41.34	44.46	48.28	50.99
7	.990	1.69	14.07	16.01	18.48	20.28	30	13.79	16.79	43.77	46.98	50.89	53.67
8	1.34	2.18	15.51	17.53	20.09	21.95	40	20.71	24.43	55.76	59.34	63.69	66.77
9	1.73	2.70	16.92	19.02	21.67	23.59	50	27.99	32.36	67.50	71.41	76.15	79.49
10	2.16	3.25	13.31	20.48	23.21	25.19	60	35.53	40.48	79.08	83.30	88.38	91.95
12	3.07	4.40	21.03	23.34	26.22	28.30	70	43.28	48.76	90.53	95.02	100.4	104.2
14	4.07	5.63	23.68	26.12	29.14	31.32	80	51.17	57.15	101.9	106.6	112.3	116.3
16	5.14	6.91	26.30	28.85	32.00	34.27	100	67.33	74.22	124.3	129.6	135.8	140.2

16. The chi-squared goodness-of-fit test

The frequencies n_y are grouped so that the fitted frequency \widehat{n}_y for every group exceeds about 5.

$$X^2 = \sum_y rac{(n_y - \widehat{n}_y)^2}{\widehat{n}_y}$$
 is referred to the table of χ_k^2 with significance point p ,

where k is the number of terms summed, less one for each constraint, eg matching total frequency, and matching \overline{x} with μ

17. Joint probability distributions

Discrete distribution
$$\{p_{xy}\}$$
, where $p_{xy} = P(\{X = x\} \cap \{Y = y\})$. Let $p_{x\circ} = P(X = x)$, and $p_{\circ y} = P(Y = y)$, then $p_{x\circ} = \sum_y p_{xy}$ and $P(X = x \mid Y = y) = \frac{p_{xy}}{p_{\circ y}}$

Continuous distribution

$$\begin{array}{lll} \underline{\text{Joint cdf}} & F(x,y) &=& P(\{X \leq x\} \ \cap \ \{Y \leq y\}) &=& \int_{x_0=-\infty}^x \int_{y_0=-\infty}^y f(x_0\,,y_0) \,\mathrm{d}x_0 \,\mathrm{d}y_0 \\ \\ \underline{\text{Joint pdf}} & f(x,y) &=& \frac{\mathrm{d}^2 F(x,y)}{\mathrm{d}x \,\mathrm{d}y} \\ \\ \underline{\text{Marginal pdf of } X} & f_X(x) &=& \int_{-\infty}^\infty f(x,y_0) \,\mathrm{d}y_0 \\ \\ \underline{\text{Conditional pdf of } X \ \text{ given } Y=y} & f_{X|Y}(x|y) &=& \frac{f(x,y)}{f_Y(y)} \ \text{ (provided } f_Y(y) > 0) \end{array}$$

18. Linear regression

To fit the <u>linear regression</u> model $y=\alpha+\beta x$ by $\widehat{y}_x=\widehat{\alpha}+\widehat{\beta} x$ from observations $(x_1,y_1),\ldots,(x_n,y_n)$, the <u>least squares fit</u> is $\widehat{\alpha}=\overline{y}-\overline{x}\widehat{\beta}$, $\widehat{\beta}=\frac{S_{xy}}{S_{xx}}$

The <u>residual sum of squares</u> RSS = $S_{yy} - \frac{S_{xy}^2}{S_{xx}}$

$$\widehat{\sigma^2} = \frac{\text{RSS}}{n-2}$$
 $\frac{n-2}{\sigma^2}$ $\widehat{\sigma^2}$ is from χ^2_{n-2}

$$E(\widehat{\alpha}) = \alpha$$
, $E(\widehat{\beta}) = \beta$,
 $\operatorname{var}(\widehat{\alpha}) = \frac{\sum x_i^2}{n \, S_{xx}} \sigma^2$, $\operatorname{var}(\widehat{\beta}) = \frac{\sigma^2}{S_{xx}}$, $\operatorname{cov}(\widehat{\alpha}, \widehat{\beta}) = -\frac{\overline{x}}{S_{xx}} \sigma^2$

$$\widehat{y}_x = \widehat{\alpha} + \widehat{\beta} x$$
, $E(\widehat{y}_x) = \alpha + \beta x$, $\operatorname{var}(\widehat{y}_x) = \left\{ \frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}} \right\} \sigma^2$

$$\frac{\widehat{\alpha} - \alpha}{\widehat{\operatorname{se}} \; (\widehat{\alpha})} \; , \qquad \frac{\widehat{\beta} - \beta}{\widehat{\operatorname{se}} \; (\widehat{\beta})} \; , \qquad \frac{\widehat{y}_x - \alpha - \beta \, x}{\widehat{\operatorname{se}} \; (\widehat{y}_x)} \quad \text{are each from } t_{n-2}$$

	EXAMINATION QUESTIONS/SOLUTIONS 2009-2010	Course
	EZ 11 Isez naths -	ISEZ
		10.10
Question Solution 1	~	Marks & seen/unseen
Parts	$(i)^{(a)} f(t) = \int_{-\infty}^{\infty} f'(t) e^{-i\omega t} dt$	
	(by parts) $[f(t)e^{-i\omega t}]^{\infty} - \int_{-\infty}^{\infty} (-i\omega) f(t)e^{-i\omega t} dt$	2
	$= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$ $= \frac{i\omega f(\omega)}{(i)(b)} = \int_{-\infty}^{\infty} f(t) \cdot te^{-i\omega t} dt$	2 for assumpti
	$= \frac{d}{d\omega} \int_{-\infty}^{\infty} f(t) \frac{1}{i} e^{-i\omega t} dt = i \frac{d}{d\omega} \hat{f}(\omega)$	2
(ii)	from above, $FT \left\{ 2f' + tf \right\} = 2i\omega \hat{f}(\omega) + i\hat{f}'(\omega)$ and $ie^{-\omega^2} \frac{d}{d\omega} (e^{\omega^2} \hat{f}) = ie^{-\omega^2} (2\omega e^{\omega^2} \hat{f} + e^{\omega^2} \hat{f}') = 2i\omega \hat{f} + i\hat{f}'$	2 } 4
	: LHS = RHS. Given, $f(t) = e^{-t^2/4}$ then $2f' + tf = 2(-2t)e^{-t^2/4} + te^{-t^2/4}$ = 0	2)
(iii)	Given, $f(t) = e^{-t}$ then $2f + if = a(4/c)$: from (ii): $ie^{-\omega^2} \frac{d}{d\omega} (e^{\omega^2} \hat{f}) = 0 \implies e^{\omega^2} \hat{f} = const$ = A, say.	2 4
	Have C 10-W2	2)
(w)	Directly: $\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-t^2/4} e^{-i\omega t} dt$ and so $\hat{f}(o) = \int_{-\infty}^{\infty} e^{-t^2/4} dt$ Subst $t = 2u$: $\hat{f}(o) = \int_{-\infty}^{\infty} e^{-u^2} 2 du = 2\sqrt{\pi}$ using given integral	2
	Hence $\Lambda = f(0) = \lambda \sqrt{\pi}$	<i>)</i>
(V)	We have that $FT(e^{-t^2/4}) = 2\sqrt{\pi}e^{-\omega^2}$, i.e. $\int_{-\infty}^{\infty} e^{-t^2/4} e^{-i\omega t} dt = 2\sqrt{\pi}e^{-\omega^2}$.	$\left \frac{1}{\omega^2} \right ^2$
	Since $\int_{-\infty}^{\infty} e^{-t^2/4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-t^2/4} \int_{-\infty}^{\infty} $	Total 20
	Setter's initials Algum Checker's initials	Page number 1 of 4

All unseen except for part (i), but similar done.

	EXAMINATION QUESTIONS/SOLUTIONS 2009-2010	Course ISE2
Question Solution 2		Marks & seen/unseen
Parts (i)	Region of integration: Reverse order of integration & cover with vertical strips: $u=t$ $u=t$ t t t t t t t	2 2 5 2 1
	Y(s) has poles at $s = -\alpha$, $s = -\beta - 1$. Provided $x \neq \beta + 1$ these Res Y(s)est = $\lim_{S \to -\infty} \frac{(S+\alpha)(s+\beta)}{(s+\beta)}$ = $\frac{(B-\alpha)e^{-\alpha t}}{(B-\alpha)e^{-\alpha t}}$ Res Y(s)est = $\lim_{S \to -\beta - 1} \frac{(S+\beta)(s+\beta)e^{st}}{(S+\beta)e^{st}}$ = $\frac{(B-\alpha)e^{-\alpha t}}{(B-\alpha)e^{-\alpha t}}$ $\frac{(B+\alpha)e^{-\alpha t}}{(B+\alpha)e^{-\alpha t}}$ $\frac{(B+\alpha)e^{-\alpha t}}{(B+\alpha)e^{-\alpha t}}$ $\frac{(B+\alpha)e^{-\alpha t}}{(B+\alpha)e^{-\alpha t}}$ If $\alpha = \beta + 1$ then Y(s) = $\frac{S+\beta}{(S+\alpha)^2}$ and has a $\frac{(\alpha \neq \beta + 1)e^{-\alpha t}}{(S+\alpha)^2}$ Res Y(s)est = $\lim_{S \to -\alpha} \frac{(B+\alpha)e^{-\alpha t}}{(B+\alpha)e^{-\alpha t}}$ = $\lim_{S \to -\alpha} \frac{(B+\alpha)e^{-\alpha t}}{(B+\alpha)e^{-\alpha t}}$ $\frac{(B+\alpha)e^{-\alpha t}}{(B+\alpha)e^{-\alpha t}}$	1 2 6 2 1 2 1 2 1 4
	Setter's initials Algue Checker's initials	Page number 2 of 4

All unseen (except (i)) but similar done.

Total 20

	EXAMINATION QUESTIONS/SOLUTIONS 2009-2010	Course
		ISE2
Question Solution 3		Marks & seen/unseen
Parts (i)	$\Rightarrow (x-\frac{1}{2}) + y' = (\frac{\alpha}{2})' \text{ with } y > 0, \text{ are of circle contre} \\ y = N(\alpha^2 - x^2) \Rightarrow x^2 + y^2 = \alpha^2 \text{ with } y > 0, \text{ are of circle centre} (0,0) \\ \text{Redius a (cure C_2)} \\ \text{C2} \\ \text{A So integral is taken} \\ \text{over shaded region.} \\ \text{C1} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C5} \\ \text{C5} \\ \text{C7} \\ \text{C7} \\ \text{C8} \\ \text{C9} \\ \text{C9}$	2 8 1 7Aal 20
	Setter's initials Agw Checker's initials	Page number 3 of 4

Unseen, but similar done.

	EXAMINATION QUESTIONS/SOLUTIONS 2009-2010	Course ISE2
Question Solution 4		Marks & seen/unseen
Parts (1)	$f(z)$ has pole singularities when $z^2+2z+2=0$, i.e when $z=(-2\pm\sqrt{(4-8)})/2=-1\pm i$ distinct roots, Res $f(z)=1$ im $(z-(-1+i))e^{i\alpha z}$	}4
	$\frac{z=1+i}{z\rightarrow -1+i} \qquad (z-(-1+i))(z-(-1-i))$	}2
	Res $f(z) = \lim_{z \to -1-i} (z - (-1+i)) \frac{e}{(z - (-1+i))(z - (-1-i))} = \frac{e}{-2i}$]2
(ii)	$\begin{array}{c c} P(-1+i) & \text{ If } R < \sqrt{2} & \text{ then both poles} \\ \hline Ive outside C. f(z) is so analytic \\ in & on C and so \\ \hline -R & R & \\ \hline \\ & C & \text{ the crewn} \\ \end{array}$	2
	If $R > \sqrt{2}$ then pole at -1+i These insade C. If $R > \sqrt{2}$ then pole at -1+i These insade C.	2
1.5	det cured port be! On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid = On I, z = Reid de = Rieid On I, z = Reid de = Rieid = On I, z = Reid de = Rieid On I, z = Reid de = Ri	3
(iv)	$\lim_{x \to \infty} \int_{\Gamma} f(z) dz \to 0 \text{ as } R \to \infty.$ $\lim_{x \to \infty} \int_{\Gamma} f(z) dz = \lim_{x \to \infty} \int_{\Gamma} f(z) dz + \lim_{x \to \infty} \int_{R} f(x) dx$ $\lim_{x \to \infty} \int_{\Gamma} f(z) dz = \lim_{x \to \infty} \int_{\Gamma} f(z) dz + \lim_{x \to \infty} \int_{R} f(x) dx$ $\lim_{x \to \infty} \int_{\Gamma} f(z) dz = \lim_{x \to \infty} \int_{\Gamma} f(z) dz + \lim_{x \to \infty} \int_{R} f(x) dx$ $\lim_{x \to \infty} \int_{\Gamma} f(z) dz = \lim_{x \to \infty} \int_{R} f(x) dx$ $\lim_{x \to \infty} \int_{R} f(x) dx$	} 3
2.1	$\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{x^2 + 2x + 2} \frac{dx}{dx} = \pi e^{-\alpha(1+i)} = \pi e^{-\alpha}(Gs\alpha - iSn x)$ $\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{x^2 + 2x + 2} \frac{dx}{dx} = \pi e^{-\alpha(1+i)} = \pi e^{-\alpha}(Gs\alpha - iSn x)$	-TTE Sina
(v)	$(FT)^{-1} \left(\frac{1}{\omega^{2} + 2\omega + 2} \right) = \frac{1}{2\pi \pi} \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{\omega^{2} + 2\omega + 2} d\omega = \frac{1}{2\pi \pi} \frac{\pi e^{-t(1+i)}}{\sin^{2}(\theta)} = \frac{1}{2} e^{-(1+i)t}$]2
	Setter's initials Checker's initials XV	Page number 4 of 4

All unseen but similar done.

10t2

	EXAMINATION QUESTIONS/SOLUTIONS 2009-10 SOLUTIONS	Course ISE2
Question 5.		Marks
Parts (i)	(a)	
	$P(X_1 > 1) = 1 - (P(X_1 = 0) + P(X_1 = 1))$ = 1 - (e ⁻³ + 3e ⁻³) = 1 - 4e ⁻³ = 0.8009	
	(b)	3
	$P(X_2 > 1) = 1 - (P(X_2 = 0) + P(X_2 = 1))$ = 1 - (e ⁻² + 2e ⁻²) = 1 - 3e ⁻² = 0.5940	
	(c)	2
	$P(X_3 > 1) = 1 - (P(X_3 = 0) + P(X_3 = 1))$ $= 1 - (e^{-1} + e^{-1}) = 1 - 2e^{-1} = \boxed{0.2642}$	
	(d)	2
	$P((X_1 > 1) \cap (X_2 > 1) \cap (X_3 > 1)) = P(X_1 > 1)P(X_2 > 1)P(X_3 > 1)$ $= (1 - 4e^{-3})(1 - 3e^{-2})(1 - 2e^{-1})$	
	= 0.1260	2
	(e) $P(X_4 > 0) = 1 - P(X_4 = 0) = 1 - P(X_1 = 0) \cap (X_2 = 0))$	
	$= 1 - e^{-3}e^{-2} = 1 - e^{-5} = \boxed{0.9933}$	2
(ii)	Let $T=$ event test fails and $E=$ event that $X_3>1$ and $X_4>0$.	
	$P(T) = P(T \mid E)P(E) + P(T \mid \overline{E})P(\overline{E})$	
	$P(E) = P((X_3 > 1) \cap (X_4 > 0)) = (1 - 2e^{-1})(1 - e^{-5}) = \boxed{0.2625}$ $P(T) = 0.9 \times P(E) + 0.2 \times (1 - P(E)) = \boxed{0.3838}$	4
	(b) $P(E \mid T) = \frac{P(T \mid E)P(E)}{P(T)} = \frac{0.9(1 - 2e^{-1})(1 - e^{-5})}{P(T)} = \boxed{0.3837}$	2
	(c) Let $N=$ number of times that the diagnostic test fails, then	
a 9	$N \sim Binomial(5, p)$ where $p = P(T)$.	
	$P(N \le 1) = P(N = 0) + P(N = 1)$ $= (1 - p)^5 + 5p(1 - p)^4 = \boxed{0.3656}$	
		3
	Setter's initials Checker's initials	Page n
	EJM	1 0

E	EXAMINATION QUESTIONS/SOLUTIONS 2009-10 SOLUTIONS	Course ISE2
Question 6.		Marks & seen/unseen
Parts		
(i) (a)		
	$\int_{1}^{\infty} \frac{c}{t^{\alpha+1}} dt = 1 \Rightarrow c \left[-\frac{t^{-\alpha}}{\alpha} \right]_{1}^{\infty} = 1 \Rightarrow \overline{c = \alpha}$	3
(b)		,
	$R(t) = P(T > t) = \int_{t}^{\infty} \frac{\alpha}{x^{\alpha+1}} dx = \left[-x^{-\alpha} \right]_{t}^{\infty} = \left[\frac{1}{t^{\alpha}}, \ t > 1 \right]$	3
	$h(t) = \frac{f(t)}{R(t)} = \frac{\alpha}{t^{\alpha+1}} t^{\alpha} = \left[\frac{\alpha}{t}, t > 1\right]$	2
(c)	$R(2) = \frac{1}{2^{\alpha}}$	1
(ii) (a)	Let $R(t)$ be the system reliability at time t , A_i be the event that component A_i is functioning at time t .	
	$R(t) = P(A_1 \cap ((A_2 \cap A_3) \cup (A_4 \cap A_5)) \cap A_6)$ = $P(A_1)P(A_6)P((A_2 \cap A_3) \cup (A_4 \cap A_5))$	
	$= P(A_1)P(A_6)(P(A_2)P(A_3) + P(A_4)P(A_5) - P(A_2 \cap A_3 \cap A_4 \cap A_5))$	
	$= \left(\frac{1}{t^{\alpha}}\right)^2 \left[\left(\frac{1}{t^{\alpha}}\right)^2 + \left(\frac{1}{t^{\alpha}}\right)^2 - \left(\frac{1}{t^{\alpha}}\right)^4 \right]$	
	$=\frac{1}{t^{4\alpha}}\left(2-\frac{1}{t^{2\alpha}}\right)$	
	$R(2) = \frac{1}{4} \left(2 - \frac{1}{2} \right) = \frac{3}{8} = \boxed{0.375}$	7
(b)	Let p be the reliability at 2 days of the new component, let $R_c(t)$ be the reliability of the other components at time t , then the reliability at 2 days for the new system is	
	$R(2) = p^{2} \left(2R_{c}(2)^{2} - R_{c}(2)^{4} \right)$	51
	$R(2) > 0.5 \Rightarrow p^2 \left(2R_c(2)^2 - R_c(2)^4 \right) > 0.5$	
	$\Rightarrow p^2 \left(2\frac{1}{2} - \frac{1}{4}\right) > 0.5 \Rightarrow p^2 \left(\frac{3}{4}\right) > 0.5$	
- 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	$\Rightarrow p^2 > \frac{2}{3} \Rightarrow [p > 0.8165]$	4
1		
Se	etter's initials Checker's initials	Page number