Classification MNIST avec PCA et SVM

Ce notebook illustre l'utilisation d'une **Analyse en Composantes Principales (PCA)** pour réduire la dimension du jeu de données MNIST, suivie de l'entraînement et de l'évaluation d'un classifieur **SVM** (Support Vector Machine) sur les données transformées.

1. Importer les bibliothèques et charger MNIST

Ce que nous faisons :

- 1. Importer les bibliothèques Python nécessaires : NumPy, matplotlib, seaborn et les utilitaires de scikit-learn.
- 2. Récupérer le jeu de données MNIST via OpenML.

À la fin de cette étape, nous aurons :

- X : nos données (images),
- y : les étiquettes (chiffres de 0 à 9).

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_openml
from sklearn.metrics import accuracy_score, classification_report

# Charger Le jeu de données MNIST depuis OpenML
mnist = fetch_openml('mnist_784', version=1)

# Convertir Les données en float32 et les étiquettes en int
X, y = mnist.data.astype(np.float32), mnist.target.astype(int)
```

2. Normaliser les données

Ce que nous faisons :

- Diviser chaque pixel par 255.0 afin que les valeurs soient comprises entre **0** et **1**.
- La normalisation facilite l'entraînement et améliore souvent les performances du modèle.

```
In [2]: # Normalisation des données
X /= 255.0
```

3. Réduction de dimension avec PCA

Ce que nous faisons :

- 1. Réduire la dimension de 784 à 50.
- 2. La PCA aide à capturer l'essentiel de la variance en moins de dimensions, rendant l'entraînement plus rapide et parfois tout aussi précis.

Pourquoi 50?

C'est un choix assez courant pour MNIST : un compromis entre la perte d'information et la vitesse de calcul.

```
In [3]: pca = PCA(n_components=50)
X_pca = pca.fit_transform(X)
```

4. Séparer en données d'entraînement et de test

Ce que nous faisons :

- Réserver 20 % des données pour le test afin de vérifier la capacité de généralisation du modèle.
- Utiliser train_test_split avec un random_state pour rendre les résultats reproductibles.

```
In [4]: X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, ran
```

5. Entraîner un classifieur SVM

Ce que nous faisons :

- 1. Créer un SVC (Support Vector Classifier) avec un noyau RBF.
- 2. Régler le paramètre C=10, souvent efficace pour MNIST.
- 3. Ajuster (fit) le modèle sur nos données d'entraînement.

Pourquoi un SVM?

Les SVM peuvent donner de très bons résultats sur des tâches de classification d'images (y compris MNIST), surtout avec un noyau approprié et des données prétraitées.

6. Prédictions et évaluation du modèle

Ce que nous faisons :

1. Prédire les étiquettes sur les données de test.

- 2. Calculer la **précision (accuracy)** et afficher un **rapport de classification** (précision, rappel, F1-score).
- 3. Afficher ces résultats pour évaluer les performances du modèle.

Pourquoi évaluer?

Il est important de vérifier que le modèle a appris correctement et qu'il est capable de généraliser sur de nouvelles données.

```
In [6]: y pred = svm model.predict(X test)
       accuracy = accuracy_score(y_test, y_pred)
       print(f"Taux de précision (SVM après PCA) : {accuracy * 100:.2f}%")
       print(classification_report(y_test, y_pred))
      Taux de précision (SVM après PCA) : 98.54%
                 precision recall f1-score
                                            support
               0
                      0.99
                             0.99
                                      0.99
                                              1343
                     0.99
                             0.99
               1
                                      0.99
                                              1600
               2
                     0.97
                             0.99
                                     0.98
                                              1380
                             0.98
               3
                    0.98
                                     0.98
                                              1433
                                    0.98
0.99
0.99
                             0.99
                                              1295
               4
                     0.98
                    0.99
                             0.98
                                             1273
               5
               6
                    0.99
                             0.99
                                              1396
                                     0.99
               7
                    0.98
                             0.99
                                              1503
                             0.99
0.98 0.98
0.97 0.00
                     0.98
               8
                                              1357
                             0.97
                     0.98
                                      0.98
                                              1420
                                      0.99 14000
         accuracy
                   0.99 0.99
                                      0.99
                                              14000
        macro avg
                                    0.99
      weighted avg
                     0.99
                             0.99
                                              14000
```

7. Visualisation en 2D

Ce que nous faisons :

- Réduire les données à **2 composantes principales** pour les représenter sous forme de nuage de points (scatter plot).
- Il est normal que les chiffres se mélangent un peu en 2D car MNIST nécessite généralement plus de dimensions pour une bonne séparation.

```
In [7]: pca_2d = PCA(n_components=2)
X_pca_2d = pca_2d.fit_transform(X)

plt.figure(figsize=(10, 6))
sns.scatterplot(x=X_pca_2d[:, 0], y=X_pca_2d[:, 1], hue=y, alpha=0.5)
plt.xlabel("Composante Principale 1")
plt.ylabel("Composante Principale 2")
plt.title("Visualisation MNIST en 2D après PCA")
plt.legend(title="Chiffres")
plt.show()
```


8. Comparaison de différents paramètres du SVM et visualisation

Composante Principale 1

Dans cette section, nous allons tester plusieurs **noyaux** (kernel) et plusieurs valeurs de **C** pour notre SVM, puis afficher un graphique pour observer l'impact de ces variations sur la précision (accuracy) en test.

• Noyaux testés: linear, rbf, poly

• Valeurs de C testées : 0.1, 1, 10

Pourquoi ces choix?

- Le noyau (kernel) détermine la fonction de transformation utilisée par le SVM.
- Le paramètre C contrôle la marge d'erreur tolérée : une valeur plus élevée de C cherche davantage à éviter les erreurs sur l'ensemble d'entraînement (risque de surapprentissage), tandis qu'une valeur plus faible de C est plus tolérante (potentiellement moins précise, mais parfois mieux généralisée).

Après avoir entraîné chaque configuration, nous calculerons la précision sur l'ensemble de **test**. Finalement, nous afficherons des graphes pour comparer les résultats obtenus.

```
In [10]: from sklearn.decomposition import PCA

# Projection en 2D (PCA)
pca_2d = PCA(n_components=2)
X_train_2d = pca_2d.fit_transform(X_train)
X_test_2d = pca_2d.transform(X_test)
```

Cellule: SVM (kernel=linear, C=0.1)

```
In [11]: from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score
         import matplotlib.pyplot as plt
         # SVM linéaire avec C=0.1
         svm_lin_01 = SVC(kernel='linear', C=0.1)
         svm_lin_01.fit(X_train, y_train)
         # Prédiction
         y_pred_lin_01 = svm_lin_01.predict(X_test)
         acc_lin_01 = accuracy_score(y_test, y_pred_lin_01)
         print("Précision (kernel=linear, C=0.1) :", acc_lin_01)
         # Visualisation PCA 2D
         plt.figure()
         plt.scatter(X_test_2d[:, 0], X_test_2d[:, 1], c=y_pred_lin_01, alpha=0.5)
         plt.title("Nuage de points (kernel=linear, C=0.1)")
         plt.xlabel("Composante Principale 1")
         plt.ylabel("Composante Principale 2")
         plt.show()
```

Précision (kernel=linear, C=0.1) : 0.9323571428571429

Nuage de points (kernel=linear, C=0.1)

SVM (kernel=linear, C=0.1)

- Un **C** faible (0.1) autorise davantage d'erreurs sur l'entraînement (faible pénalisation).
- Peut engendrer un **sous-apprentissage** si la frontière linéaire ne suffit pas à bien séparer les chiffres.
- La **précision** obtenue est souvent assez modeste.

Cellule: SVM (kernel=linear, C=1)

```
In [12]: svm_lin_1 = SVC(kernel='linear', C=1)
    svm_lin_1.fit(X_train, y_train)

y_pred_lin_1 = svm_lin_1.predict(X_test)
    acc_lin_1 = accuracy_score(y_test, y_pred_lin_1)
    print("Précision (kernel=linear, C=1) :", acc_lin_1)

plt.figure()
    plt.scatter(X_test_2d[:, 0], X_test_2d[:, 1], c=y_pred_lin_1, alpha=0.5)
    plt.title("Nuage de points (kernel=linear, C=1)")
    plt.xlabel("Composante Principale 1")
    plt.ylabel("Composante Principale 2")
    plt.show()
```

Précision (kernel=linear, C=1) : 0.9333571428571429

Nuage de points (kernel=linear, C=1)

SVM (kernel=linear, C=1)

- Un **C** plus grand (1) renforce la pénalisation des erreurs et réduit le sousapprentissage.
- On obtient généralement une **meilleure précision** qu'avec C=0.1, mais le noyau linéaire reste limité pour MNIST.
- La frontière linéaire n'est pas toujours assez flexible pour classer tous les chiffres.

Cellule: SVM (kernel=rbf, C=1)

```
In [13]: svm_rbf_1 = SVC(kernel='rbf', C=1)
    svm_rbf_1.fit(X_train, y_train)

y_pred_rbf_1 = svm_rbf_1.predict(X_test)
    acc_rbf_1 = accuracy_score(y_test, y_pred_rbf_1)
    print("Précision (kernel=rbf, C=1) :", acc_rbf_1)

plt.figure()
    plt.scatter(X_test_2d[:, 0], X_test_2d[:, 1], c=y_pred_rbf_1, alpha=0.5)
    plt.title("Nuage de points (kernel=rbf, C=1)")
    plt.xlabel("Composante Principale 1")
    plt.ylabel("Composante Principale 2")
    plt.show()
```

Précision (kernel=rbf, C=1) : 0.9806428571428571

Nuage de points (kernel=rbf, C=1)

SVM (kernel=rbf, C=1)

- Le **noyau RBF** (Radial Basis Function) gère mieux la non-linéarité.
- Sur MNIST, il améliore souvent la **précision** par rapport au linéaire.
- C=1 propose un compromis régularisation/flexibilité correct, les performances sont déjà satisfaisantes.

Cellule: SVM (kernel=rbf, C=10)

```
In [14]: svm_rbf_10 = SVC(kernel='rbf', C=10)
    svm_rbf_10.fit(X_train, y_train)

y_pred_rbf_10 = svm_rbf_10.predict(X_test)
    acc_rbf_10 = accuracy_score(y_test, y_pred_rbf_10)
```

3/21/25, 10:04 AM mnist pca sym

```
print("Précision (kernel=rbf, C=10) :", acc_rbf_10)

plt.figure()
plt.scatter(X_test_2d[:, 0], X_test_2d[:, 1], c=y_pred_rbf_10, alpha=0.5)
plt.title("Nuage de points (kernel=rbf, C=10)")
plt.xlabel("Composante Principale 1")
plt.ylabel("Composante Principale 2")
plt.show()
```

Précision (kernel=rbf, C=10) : 0.9853571428571428

Nuage de points (kernel=rbf, C=10)

SVM (kernel=rbf, C=10)

- Un **C** plus élevé (10) pénalise davantage les erreurs sur l'entraînement.
- Cela peut encore augmenter la précision (si le surapprentissage n'est pas trop fort).
- Sur MNIST, la combinaison RBF + C relativement élevé est souvent performante.

Cellule: SVM (kernel=poly, C=1)

```
In [15]: svm_poly_1 = SVC(kernel='poly', C=1)
    svm_poly_1.fit(X_train, y_train)

y_pred_poly_1 = svm_poly_1.predict(X_test)
    acc_poly_1 = accuracy_score(y_test, y_pred_poly_1)
    print("Précision (kernel=poly, C=1) :", acc_poly_1)

plt.figure()
    plt.scatter(X_test_2d[:, 0], X_test_2d[:, 1], c=y_pred_poly_1, alpha=0.5)
    plt.title("Nuage de points (kernel=poly, C=1)")
    plt.xlabel("Composante Principale 1")
```

```
plt.ylabel("Composante Principale 2")
plt.show()
```

Précision (kernel=poly, C=1) : 0.9814285714285714

Nuage de points (kernel=poly, C=1)

SVM (kernel=poly, C=1)

- Le noyau **poly** propose une séparation polynomiale.
- C=1 garde une régularisation intermédiaire ; les performances peuvent être bonnes, parfois équivalentes au RBF.
- Le **degré** polynominal (3 par défaut) joue un rôle important, même si on ne le modifie pas ici.

Cellule: SVM (kernel=poly, C=10)

```
In [16]: svm_poly_10 = SVC(kernel='poly', C=10)
svm_poly_10.fit(X_train, y_train)

y_pred_poly_10 = svm_poly_10.predict(X_test)
acc_poly_10 = accuracy_score(y_test, y_pred_poly_10)
print("Précision (kernel=poly, C=10) :", acc_poly_10)

plt.figure()
plt.scatter(X_test_2d[:, 0], X_test_2d[:, 1], c=y_pred_poly_10, alpha=0.5)
plt.title("Nuage de points (kernel=poly, C=10)")
plt.xlabel("Composante Principale 1")
plt.ylabel("Composante Principale 2")
plt.show()
```

Précision (kernel=poly, C=10) : 0.9827142857142858

Nuage de points (kernel=poly, C=10)

SVM (kernel=poly, C=10)

- Ici, on renforce la pénalisation (C=10) avec un noyau polynominal.
- Peut conduire à de meilleurs résultats ou à un **surapprentissage**, selon les données et le degré.
- 1

Conclusion générale

- **kernel=linear**: utile si les données sont très bien séparables par un hyperplan, mais reste parfois trop limité pour MNIST.
- **kernel=rbf** : souvent un très bon choix pour MNIST, grâce à la **flexibilité** du noyau RBF à modéliser des frontières complexes.
- **kernel=poly**: peut approcher ou égaler la performance RBF, mais **dépend fortement** du degré polynominal et d'autres hyperparamètres.
- Paramètre C : plus il est élevé, plus on pénalise les erreurs sur l'entraînement. Cela peut améliorer la précision, mais attention au risque de surapprentissage si la valeur de C est trop grande.

In []: