36

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Escuela de Ingeniería DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 4 – Respuesta Pregunta 2

1

Esta afirmación es VERDADERA.

Sea $(x, y) \in R$ y $(a, b) \in S$.

Para que (x, y) pueda juntarse con (a, b), deben poder hacer (x, y) (a, b)

R = (x, y), S = (y, b)Todos los elementos que cumplen \leq_1 deben cumplir esto.

Luego:

RoS = S

(x,y) o (y,b) = (y,b)

(x,b) = (y,b)

x = y

 $\therefore R = (y, y).$

Esto significa que la relación $R \leq_1 S$ solo tomará en cuenta los elementos del tipo (x,x) del conjunto R. Por lo tanto, para que el nodo que representa al conjunto S tenga caminos debería estar formado por elementos del tipo (x, x).

Entonces, $S \leq_1 S_2$

Para que se cumpla $R \leq_1 S$ y $S \leq_1 S_2$ a la vez, sin que ningún conjunto sea vacío, el conjunto S debe estar formado por elementos del tipo (x,x), y para que eso pase, el conjunto R también debe estar formado por elementos del tipo (x, x) (No exclusivamente).

Luego, todos los (y,y) del conjunto S, se formaron a partir de los (x,x) de R, por lo que, como para cada conjunto (y,y) formado, el conjunto (x,x) que lo formó debe cumplir que x=y.

Así, podemos concluir que R contiene al menos todos los elementos de S del tipo (y,y).

Sabiendo esto, podemos afirmar que $RoS_2 = S_2$, pues como se indicó antes, solo se toma en cuenta los elementos del tipo (x, x) los cuales contiene R.

Así que \leq_1 es transiente.

$\mathbf{2}$

Al igual que en el caso anterior, para que se pueda hacer un camino entre un nodo R y uno S, y luego uno entre S y S_2 , R y S deben contener elementos del tipo (x, x).

Y como ya sabemos que $R \circ S \subseteq S$, podemos decir que S y R están formados por elementos del tipo (x,x), y R contendrá todo los elementos (x,x) de S. Por lo que se cumplirá que R o $S_2=S_2$

Y queda demostrado que la relación \leq_2 es transiente.