SML

Smart Message Language

Version 1.04

(Entwurf: 13.07.2010 / AK 0.14)

Historie

Version	Datum	Kommentar	Verantwortlich
0.xx	26.04.07	Initiale Version, basierend auf Arbeiten aus 2005 / 2006	Wisy
0.xx	27.04.07	Redaktionelle / inhaltliche Überarbeitung	Landis+Gyr / Wisy
0.xx	08.05.07	Berechnung CRC-16: Das zu verwendende Verfahren wird konkretisiert	Wisy
0.xx	15.05.07	Kodierer vereinfacht: Die Länge wird bei allen Datentypen immer in 4 Bit kodiert (alle Versionen zuvor hatten unterschiedliche Längen in Abhängigkeit vom Datentyp vorgesehen)	Landis+Gyr / Wisy
		Berechnung CRC-16: Die Berechnung erfolgt jetzt über alle Bytes im SML- Transportprotokoll	
1.00	20.05.07	Mit ZMP 2007 veröffentlichte, finale Version	Wisy
1.01	25.06.07	Die mit Tab. 2 und Tab. 3 festgelegten Bezeichner wurden aus dem herstellerspezifischen Bereich des OBIS in den applikationsspezifischen Bereich von OBIS- T verschoben	Landis+Gyr / Dr. Neuhaus / Wisy
		Das Verhalten von 'SML_SetProcParameter' bei Angabe fehlerhafter Adressen wurde präzisiert (siehe Tab. 2)	
		Die Begriffe ,SML_Message', ,SML_Messageldentifier' und ,SML_MessageBody' wurden redaktionell korrekt zugeordnet	
		Die Erkennung fehlerhafter SML-Dateien per CRC im SML-Transportprotokoll wurde um die Erkennung fehlerhafter SML-Nachrichten per CRC in der Applikationsschicht erweitert, da nur mit dieser Variante Fehler bei der "on the fly" Bearbeitung (Einsatz per Streaming) bereits mit der Auswertung einer SML-Nachricht erkannt und behandelt werden können (siehe Absatz (A) sowie Erläuterungen zu 'SML_Message')	
		Zur Verwendung von SML in Broadcast-Anwendungen wurden Ergänzungen in ,SML_Open' und ,SML_SetProcParameter' vorgenommen	
		In der Datenstruktur ,SML_TupelEntry' wurden die Elemente ,unit' und ,scaler' ergänzt	
		Der Begriff ,constraints' in ,SML_GetProcParameter.Req' wurde zu 'attribute' geändert	
		 In 'SML_Message' wurde das Element 'endOfSmlMsg' ergänzt 	
		Die Formulierung zur 'clientld' bei 'SML_Open' wurde präzisiert	
1.02	19.01.08	Der Einsatz von 'SML_GetProfList' und 'SML_GetProfPack' im Zusammenhang mit ereignisorientierten Aufzeichnungen wurde präzisiert.	Landis+Gyr / Dr. Neuhaus / Wisy
		Das Verhalten von ,SML_GetProfList' und ,SML_GetProfPack' für den Fall der fehlenden	

EMSYCON GmbH, Dr. M. Wisy,
Seite 2/56

Version	Datum	Kommentar	Verantwortlich
		Information zu den angefragten OBIS-Kennzahlen wurde präzisiert.	
		SML wurde auf den Anwendungsfall 'Broadcast' erweitert.	
		Die Verwendung von SML in Dateien wurde präzisiert.	
		Die Liste der Fehlernummern (siehe Tab. 2) wurde erweitert.	
1.03	12.02.08	Spezifikation eines weiteren Transport-Layers mit integrierter Flußsteuerung zur Verwendung bei Halb-Duplex-Medien ("Block Transport Layer")	Wisy
		Ergänzung von ,SML_GetList' für Werte-Liste.	
		Ergänzung weiterer Fehlernummern.	
	30.10.08	Freigabe als Version 1.03	tLZ-Projektgruppe
1.04	02.10.09	Erweiterung der Datenstruktur zu SML_Time	Wisy
	<mark>16.11.09</mark>	Erweiterung der Datenstruktur zu "SML_ProcParValue"	
	08.01.10	Ergänzung des Bild 4 mit der XML-Schemadatei zur Kodierung von SML per XML	
	24.01.10	Korrektur einiger Fehler in der XML-Schemadatei sowie Angleichung der Notation von in ASN.1 benutzten Namen an die im XML-Schema gewählte Schreibweise.	Wisy
	03.02.10	Integration redaktioneller Korrekturen.	AK 0.14
	16.02.10	Ergänzung von SML_Value mit dem Ziel der Übertragung von Zeitstempeln in SML_ProfileList.Response. Ergänzung weiterer Fehlerkodes.	Wisy
	01.03.10	Überflüssige Auflistung der Nachricht "SetProcParameterResponse" aus der Definition zum "SML_MessageBody" gestrichen.	Wisy
	<mark>27.04.10</mark>	Erweiterung der Spezifikation auf den Transport von COSEM-Services sowie redaktionelle Korrekturen.	Wisy
	<mark>17.05.10</mark>	Präzisierung des Verhaltens bei Broadcast-Adressen.	Wisy
	18.05.10	Überarbeitung der Spezifikation zum Transport von COSEM-Services.	AK 0.14
	01.06.10 13.07.10	Präzisierung des Verhaltens bei Anfragen mit fehlerhaftem SML_Open.	Wisy AK 0.14
	13.07.10	Präzisierung des Verhaltens bei innen liegenden ESC- Sequenzen im SML-Transport-Protokoll der Version 1.	AK 0.14

EMSYCON GmbH, Dr. M. Wisy,
Seite 3/56

Inhaltsverzeichnis

İ ::	Bildverzeichnis Tabellenverzeichnis	6
ii iii		7 8
III İV	Abkürzungsverzeichnis Normen	10
ıv	Normen	10
1	Bezug	11
2	Grundstruktur	11
3	Begriffe	12
3.1.	SML-Datei	12
4	SML, Smart Message Language	13
4.1.	Grundaufbau	13
5	SML-Nachrichten	14
5.1.	SML-Bezeichner	17
5.1.1.	SML_PublicOpen.Req	17
5.1.2.	SML_PublicOpen.Res	19
5.1.3.	SML_PublicClose.Req	20
5.1.4.	SML_PublicClose.Res	20
5.1.5.	SML_GetProfilePack.Req	20
5.1.6.	SML_GetProfilePack.Res	22
5.1.7.	SML_GetProfileList.Req	24
5.1.8.	SML_GetProfileList.Res	25
5.1.9.	SML_GetProcParameter.Req	26
5.1.10.	SML_GetProcParameter.Res	27
5.1.11.	SML_SetProcParameter.Req	29
5.1.12.	SML_Attention.Res	29
5.1.13.	Globale SML-Attentionnumber	30
5.1.14.	SML_GetList.Req	31
5.1.15.	SML_GetList.Res	32
<mark>5.1.16.</mark>	SML_GetCosem.Req	33
<mark>5.1.17.</mark>	SML_GetCosem.Res	33
5.1.18.	SML_SetCosem.Reg	35
5.1.19.	SML_SetCosem.Res	35
5.1.20.	SML_ActionCosem.Req	35
<u>5.1.21.</u>	SML_ActionCosem.Res	36
6	SML binary encoding, direkt gepackte Kodierung	36
-	z za. j zzag, anone gopaone reasoning	00

EMSYCON GmbH, Dr. M. Wisy,
Seite 4/56

SML, Smart Message Language Version 1.04 vom 13. Juli 2010, ENTWURF

6.1.	Type-Length-Field	38
6.2.	Kodierung der Datentypen	39
6.2.1.	Datentyp Octet String	39
6.2.2.	Datentypen Integer8, Integer16, Integer32 und Integer64	39
6.2.3.	Datentypen Unsigned8, Unsigned16, Unsigned32 und Unsigned64	40
6.2.4.	Datentyp Boolean	41
6.2.5.	Datentyp List of	41
6.3.	Kodierung besonderer Merkmale	41
6.3.1.	Merkmal Ende einer SML-Nachricht	41
6.3.2.	Merkmal SEQUENCE	42
6.3.3.	Merkmal CHOICE	42
6.3.4.	Merkmal OPTIONAL	42
7	XML - Kodierung	42
8	SML-Transport-Protokoll	51
8.1.	Version 1	51
8.2.	Version 2	53
8.2.1.	Einleitung der Übertragung nach Version 2	53
8.2.1.1.	Kennzeichnung von Blöcken	53
8.2.1.2.	Kennzeichnung von SML-Dateien	54
8.2.1.3.	Merkmal ,VV'	54
8.2.2.	Vereinbarung des zu verwendenden Timeouts	54
8.2.2.1.	Vereinbarung der maximal zulässigen Blocksize	54
8.2.3.	Prozess zum Aufbau der Übertragung	55
8.2.4.	Prozess zum Ablauf einer Übertragung	55
8.2.5.	Beispiel zum Ablauf des Übertragungsvorgangs nach Version 2	55

EMSYCON GmbH, Dr. M. Wisy,
Seite 5/56

Bildverzeichnis

Bild 1:	SML-Nachrichten und Kommunikationswege.	
Bild 2:	SML-Kommunikationsmodell.	12
Bild 3:	Einordnung von SML in das Umfeld europäischer / internationaler Normen.	13
Bild 4:	XML-Schema-Datei zur Kodierung von SML per XML.	51

EMSYCON GmbH, Dr. M. Wisy,
Seite 6/56

Tabellenverzeichnis

Tab. 1:	Beispiel zur Verwendung des Merkmals 'Gruppen-Nummer'.	16
Tab. 2:	Liste globaler Fehlernummern.	31
Tab. 3:	Liste globaler Hinweisnummern.	31
Tab. 4:	Bitkodierung im Type-Length-Field für das erste Byte einer TL-Field-Angabe.	38
Tab. 5:	Bitkodierung im Type-Length-Field für das zweite und folgende TL-Field-Bytes.	39
Tab. 6:	Bitkodierung im Type-Length-Field für einen Octet String.	39
Tab. 7:	Escape-Merkmale zum SML-Transport-Protokoll.	53

EMSYCON GmbH, Dr. M. Wisy,
Seite 7/56

Abkürzungsverzeichnis

Einheiten:

Hinsichtlich physikalischer Messgrößen und Einheiten gelten die im SI (siehe DIN 1301, Teil 1) getroffenen Vereinbarungen.

Relevante Abkürzungen:

(2) Den nachfolgenden Abkürzungen können arabische Ziffern nachgestellt werden, um mehrfach auftretende Ausprägungen derselben Funktion / desselben Signals unterscheiden zu können.

> +A ⇔ Wirkenergie, Kunde bezieht aus Netz, -A ⇔ Wirkenergie, Kunde liefert an Netz,

ASN.1 ⇔ Abstract Syntax Notation One,

CR ⇔ Carriage Return,

DIN \Leftrightarrow Deutsches Institut für Normung e.V.,

(E) DIN ⇔ Entwurf einer Norm des DIN,

EN ⇔ Europäische Norm,

ID ⇔ Identifikationsnummer,

IEC ⇔ International Electrotechnical Commission,

IEEE ⇔ Institute of Electrical and Electronics Engineers,

IP ⇔ Internet Protocol,

ISO ⇔ Internationale Organisation für Normung,

LAN ⇔ Local Area Network,

LSB ⇔ Least Significant Bit, niederwertigstes Bit,

MDE ⇔ Mobile Datenerfassungseinrichtung,

MSB ⇔ Most Significant Bit, höchstwertigstes Bit,

OBIS-T ⇔ OBIS Telemetrie.

R1 ⇔ Blindenergie Quadrant I,
R2 ⇔ Blindenergie Quadrant II,
R3 ⇔ Blindnergie Quadrant III,
R4 ⇔ Blindnergie Quadrant IV,

RS232 ⇔ Serielle Schnittstelle,

SML ⇔ Smart Message Language,

von Datenelementen,

SML, Smart Message Language Version 1.04 vom 13. Juli 2010, ENTWURF

TCP ⇔ Transmission Control Protocol,

TL ⇔ Type-Length,

UDP ⇔ User Datagram Protocol,

WAN ⇔ Wide Area Network,

XML ⇔ Extensible Markup Language,

ZVEI

Zentralverband Elektrotechnik- und Elektronikindustrie.

EMSYCON GmbH, Dr. M. Wisy,
Seite 9/56

Normen

DIN 1301, Teil 1	10.02	Einheiten, Teil 1: Einheitennamen, Einheitenzeichen	
E DIN 43863-4	09.06	Zählerdatenkommunikation – IP-Telemetrie	
DIN EN 62056-21	01.03	Elektrizitätszähler, Zählerstandsübertragung, Teil 21: Datenübertragung für festen und mobilen Anschluss (3rd edition of IEC 61107, vormals IEC 1107)	
DIN EN 62056-61	01.03	Messung der elektrischen Energie – Zählerstandsübertragung, Teil 61: OBIS Objekt Identification System	
IEC 62056-62 DIN EN 62056-62	2002 01/03	Messung der elektrischen Energie - Zählerstandsübertragung, Tarif- und Laststeuerung - Teil 62: Interface-Klassen (IEC 62056-62:2002)	
DIN EN 62056-46	01/03	Messung der elektrischen Energie - Zählerstandsübertragung, Tarif- un Laststeuerung - Teil 46: Anwendung des HDLC-Protokolls in der Verbindungsschicht (IEC 62056-46:2002)	
CCITT-CRC16		Standard der CCITT zur Prüfsummenberechnung	
ISO 8859-15	03.99	Informationstechnik - 8-Bit-Einzelbyte-codierte Schriftzeichensätze - Teil 15: Lateinisches Alphabet Nr. 9	

EMSYCON GmbH, Dr. M. Wisy,
Seite 10/56

1 Bezug

- Nachfolgende Spezifikation legt ein Kommunikationsprotokoll für Anwendungen im Umfeld der Datenbeschaffung und Parametrierung von Geräten fest.
- Zielsetzung bei der Ausarbeitung der Spezifikation war der primäre Wunsch, eine möglichst einfache, auch zur Implementation auf leistungsschwachen embedded Systems geeignete Struktur zu finden, die für die Datenbeschaffung über Weitverkehrsstrecken genutzt werden kann.
- (5) Vor diesem Hintergrund wurde die "Smart Message Language", SML, geschaffen.

2 Grundstruktur

- (6) Die Grundstruktur gliedert sich in die Elemente:
 - Smart Message Language definiert eine Dateistruktur / Dokumentstruktur zur Aufnahme der zwischen den Endpunkten zu übertragenden Nutzlasten.
 - SML Binary Encoding definiert eine gepackte binäre Kodierung der SML.
 - SML XML Encoding definiert die Kodierung von SML in XML.
 - SML-Transport-Protokoll, benötigt für serielle Punkt-zu-Punkt Verbindungen.
- (7) SML-Nachrichten, siehe Kapitel 4, können, wie letztlich auch eine E-Mail, über zustandslose, gesicherte Kommunikationswege transportiert werden. Für das avisierte Einsatzszenario kann daher folgendes Modell zur Übersicht herangezogen werden:

Bild 1: SML-Nachrichten und Kommunikationswege.

3 Begriffe

(8) Nachstehend werden einige / wichtige der in diesem Dokument verwendeten Begriffe erläutert / definiert:

3.1. SML-Datei

- (9) Als SML-Datei soll eine Informationseinheit verstanden werden, die, vollkommen losgelöst von der jeweils eingesetzten konkreten Transporttechnik (Internet, Telefon, ...), in sich abgeschlossen ist.
- (10) SML-Dateien können in diesem Sinne als abgeschlossene Informationseinheiten aufgefaßt werden, die, genau wie eine E-Mail, in ein Protokoll eingebettet sind und übertragen werden (siehe Bild 2).
- Durch den Ansatz der Verwendung von SML-Dateien wird das Konzept unabhängig von der Aufgabe, konkrete Protokolle zum Informationsaustausch definieren zu müssen. Stattdessen wird lediglich verlangt, in einem konkreten Einsatzfall ein bestimmtes Protokoll (beispielsweise HTTP, FTP, ...) auszuwählen und dieses sachdienlich zu parametrieren.
- Soweit SML-Dateien als Dateien auf Rechnersystemen verwendet werden, sind diese Dateien ohne Einsatz zusätzlicher Rahmen und unter Verwendung der mit Kapitel 6 definierten Kodierung zu notieren, es sei denn, die konkrete Applikation trifft explizit eine anders lautende Vorgabe.

Bild 2: SML-Kommunikationsmodell.

Bild 3: Einordnung von SML in das Umfeld europäischer / internationaler Normen.

4 SML, Smart Message Language

4.1. Grundaufbau

- (13) Eine SML-Datei ist immer als Kette von SML-Nachrichten aufgebaut.
- (14) SML-Dateien können zur Reduktion der Dateigröße segmentiert werden.
- (15) SML-Dateien können in den Varianten ...
 - ... SML-Auftragsdatei,
 - ... SML-Antwortdatei oder
 - ... SML-Kombidatei
 - auftreten.
- (16) SML-Auftragsdateien enthalten die Aufträge ("Requests"). SML-Antwortdateien fassen die Antworten ("Responses") zu den Aufträgen zusammen.
- Jede SML-Auftragsdatei beginnt mit genau einer und enthält genau eine SML_...Open.Req-Nachricht. Sie endet mit genau einer und enthält genau eine SML_...Close.Req-Nachricht. Diese Festlegung gilt ebenfalls für SML-Antwortdateien, denen keine SML-Auftragsdatei zugeordnet werden kann, wobei an Stelle der Variante Request die Variante Response zu verwenden ist.
- (18) SML-Antwortdateien, denen SML-Auftragsdateien zugeordnet werden können, beginnen mit genau einer SML_...Open.Res- oder einer SML_Attention.Res- Nachricht. Sie enden mit genau einer SML_...Close.Res- oder einer SML Attention.Res-Nachricht.

- Zum Einsatz von SML über Transportmedien mit geringer Performance¹, können SML-Nachrichten ohne den Rahmen einer SML-Datei und ausschließlich als "Response without Request" versendet werden. Dieser Anwendungsfall ist explizit von der Applikation zu definieren.
- (20) Eine SML-Kombidatei enthält die SML-Nachrichten einer SML-Auftragsdatei zuzüglich der SML-Nachrichten der zugehörigen SML-Antwortdatei(en).

5 SML-Nachrichten

- (21) Eine SML-Nachricht ist entweder eine "Request-Nachricht" oder eine "Response-Nachricht".
- (22) Eine SML-Nachricht umfaßt Aufgabe und zugeordnete Attribute.

```
SML Message
                                              SEQUENCE
(A)
          {
           transactionId
                                              Octet String,
           groupNo
                                              Unsigned8,
                                              Unsigned8,
           abortOnError
           messageBody
                                              SML MessageBody,
           crc16
                                              Unsigned16,
           endOfSmIMsg
                                              EndOfSmlMsg
          }
```

- Die 'transactionId' wird bei der Erzeugung von 'Request-Nachrichten' in ein-eindeutiger² Form durch den Auftraggeber gebildet. Jede 'Response-Nachricht' spiegelt die zu deren 'Request' gehörende Transaktionsnummer unverändert zurück, so dass eine 'Response' stets dem zugehörigen 'Request' zugeordnet werden kann.
- Wird im Sinne des "Push-Betriebs" eine SML-Datei erzeugt, zu deren SML-Response-Nachrichten prinzipbedingt keine SML-Request-Nachrichten existieren, erzeugt der Ersteller dieser SML-Response-Nachricht selbsttätig ein-eindeutige Transaktionsnummern.
- Das Attribut 'groupNo' erlaubt die Bildung von SML-Nachrichten-Gruppen. Dieser Mechanismus soll dazu verwendet werden, anzugeben, welche SML-Nachrichten in einer bestimmten Reihenfolge abzuarbeiten sind und welche nebenläufig (und zwar sowohl im Sinne von Simultanarbeit der ersten wie auch der zweiten Art) ausgeführt werden dürfen.
- (26) Generell erfolgt die Abarbeitung der Gruppen sequentiell und in der Reihenfolge, in der sie innerhalb einer SML-Datei auftreten.
- (27) Das Vermischen von SML-Nachrichten verschiedener Gruppen ist unzulässig.

¹ Im Sinne dieser Spezifikation gelten als "*Transportmedien mit geringer Performance*" ausschließlich folgende Varianten: Nahfunk- oder PLC-Strecken zwischen Sensoren und Konzentratoren.

² Die Eindeutigkeit ist jeweils innerhalb des Umfelds des Erzeugers der Transaktionsnummer zu gewährleisten; nicht gefordert wird eine weltweite Eindeutigkeit (vergleichbar der MAC-Adresse bei Ethernet). Durch die Angaben in der SML-Open-Nachricht kann die Eindeutigkeit auf den jeweiligen Erzeuger zugeordnet werden.

- Nachrichten innerhalb einer Gruppe können vom Empfänger wahlweise seriell oder nebenläufig abgearbeitet werden.
- Die Prüfsumme (Element ,crc16') ist als CRC16 nach DIN EN 62056-46 zu berechnen. Die Berechnung beginnt mit dem ersten Byte zu ,SML_Message' und endet mit dem letzten Byte zu ,messageBody'. Damit sind die Bytes der Elemente ,crc16' und ,null' von der Prüfsummenberechnung ausgeschlossen.
- Wird eine SML-Request-Nachricht empfangen, die dekodiert werden konnte und deren Prüfsumme fehlerhaft ist, so ist diese SML-Request-Nachricht mit einem "SML_Attention" (81 81 C7 C7 FE 0B, siehe Tab. 2) und dem Feld "transactionld"gemäß Absatz (24) zu beantworten. Wird in diesem Fall die Nachricht "SML_Close-Request" empfangen, so ist der Fehler zu ignorieren und in der Antwort ein korrektes "SML_Close-Request" zu liefern, dessen Feld "transactionld"gemäß Absatz (24) gesetzt wird.
- Wird die Nachricht ,SML_Open-Request' mit fehlerhafter Prüfsumme oder fehlerhafter Struktur ,SML_PublicOpen.Req' empfangen, so ist die ganze SML-Datei zu ignorieren³.
- Wird eine SML-Request-Datei empfangen, die dekodiert werden konnte und die nicht mit ,SML_Open-Request' beginnt, so ist mindestens⁴ für die erste SML-Nachricht dieser SML-Request-Datei ein SML-Attention mit Fehlerkode "unerwartete SML-Nachricht" zu senden. Die weitere Bearbeitung und / oder korrekte Beantwortung der nachfolgenden SML-Nachrichten ist unzulässig.
- Wird eine SML-Nachricht empfangen, die nicht dekodiert werden kann, so ist wie folgt zu verfahren:
 - Handelt es sich bei der SML-Nachricht um die erste Nachricht, so wird die ganze SML-Datei verworfen (gilt sowohl für SML-Auftragsdateien als auch für SML-Antwortdateien).
 - Handelt es sich um eine der nachfolgenden SML-Nachrichten, so wird als Antwort für die betroffene SML-Nachricht ein SML-Attention (81 81 C7 C7 FE 01, siehe Tab. 2) gefolgt von einem SML-Close gesendet (gilt nur für SML-Auftragsdateien). Alle weiteren SML-Nachrichten der betroffenen SML-Datei werden ignoriert (sowohl bei SML-Auftragsdateien als auch bei SML-Antwortdateien).
 - Die ,transactionId' ist für die SML-Attention sowie für das sich anschließende SML-Close gemäß Absatz (24) zu erzeugen.
- (34) SML-Nachrichten werden grundsätzlich in SML-Dateien zusammengefasst.

³ Ignorieren: Der empfangene Inhalt wird verworfen. Es wird keine Antwort generiert.

⁴ Alterantiv ist es zulässig, für jede SML-Nachricht der SML-Datei ein SML-Attention zu generieren.

Reihenfolge der SML-Nachrichten	Trans- aktions- nummer	Gruppen-Nr.	SML-Nachricht	Kommentar
0	0	1	OPEN	Wird zuerst ausgeführt.
1	1	4	GET_ProfilPack	Erste Gruppe, wird als zweiter
2	2	4	GET_ProfilPack	Block ausgeführt.
3	3	4	GET_ProfilPack	Beispielsweise drei Lastgänge ablesen.
4	4	7	GET_ProfilPack	Zweite Gruppe, wird als dritte
5	5	7	GET_ProfilList	Aktion ausgeführt,
6	6	7	GET_ProfilList	Beispielsweise einen Lastgang, die Verrechnungsliste und das Logbuch ablesen.
7	7	8	SET_ProcParameter	Wird als vierte Aktion ausgeführt.
				Beispielsweise den Bezugszeitpunkt nachführen
8	8	8	CLOSE.Req	Wird zuletzt bearbeitet.

Tab. 1: Beispiel zur Verwendung des Merkmals 'Gruppen-Nummer'.

- Damit ist die Transaktionsnummer lediglich das Merkmal, um die Responses den zugehörigen Requests zuzuordnen. Sie hat keinerlei Einfluss auf die Reihenfolge der Ausführung der SML-Nachrichten beim Empfänger.
- Das Attribut 'abortOnError' legt fest, wie im Falle von Fehlern bei der Ausführung der SML-Nachricht verfahren werden soll, wobei das abschließende Close immer ausgeführt werden muss und nicht ausgeführte Requests immer eine Response mit der Fehlermeldung 'nicht ausgeführt' als Rückmeldung erzeugen:

(B)	abortOnError	⇔ 0x00	Ausführung fortsetzen,
	abortOnError	⇔ 0x01	Ausführung ab der
			nächsten Gruppe fortsetzen,
	abortOnError	⇔ 0x02	Ausführung <mark>ab</mark> der aktuellen
			Gruppe fortsetzen, danach
			keine weitere Gruppe
			mehr ausführen.
			Falls innerhalb der selben
			Gruppe ein ,0x02' zu finden
			ist, auf das ein ,0x01' folgt, ist
			die Ausführung sofort
			abzubrechen.
	abortOnError	⇔ 0xFF	Ausführung sofort abbrechen.

(C)	SML_MessageBody	::=CHOICE	
	OpenRequest	[0x00000100]	SML_PublicOpen.Req
	OpenResponse	[0x00000101]	SML_PublicOpen.Res
	CloseRequest CloseResponse	[0x00000200] [0x00000201]	SML_PublicClose.Req SML_PublicClose.Res
	Cioseriesponse	-	-
	GetProfilePackRequest GetProfilePackResponse	[0x00000300] [0x00000301]	SML_GetProfilePack.Req SML_GetProfilePack.Res
	·		-
	GetProfileListRequest	[0x00000400]	SML_GetProfileList.Req
	GetProfileListResponse	[0x00000401]	SML_GetProfileList.Res
	GetProcParameterRequest	[0x00000500]	SML_GetProcParameter.Req
	GetProcParameterResponse	[0x00000501]	SML_GetProcParameter.Res
	SetProcParameterRequest	[0x00000600]	SML_SetProcParameter.Req
	SetProcParameterResponse	[0x00000601]	SML_SetProcParameter.Res
	GetListRequest	[0x00000700]	SML_GetList.Req
	GetListResponse	[0x00000701]	SML_GetList.Res
	GetCosemRequest	[0x00000800]	SML_GetCosem.Req
	GetCosemResponse	[0x00000801]	SML_GetCosem.Res
	SetCosemRequest	[0x00000900]	SML_SetCosem.Req
	SetCosemResponse	[0x00000901]	SML_SetCosem.Res
	ActionCosemRequest	[0x00000A00]	SML_ActionCosem.Req
	ActionCosemResponse	[0x00000A01]	SML_ActionCosem.Res
	AttentionResponse }	[0x0000FF01]	SML_Attention.Res

5.1. SML-Bezeichner

5.1.1. SML PublicOpen.Req

- Der SML_PublicOpen.Req muss immer zu Beginn einer SML-Auftragsdatei vorhanden sein. Er dient der Identifikation des Auftraggebers und der Authentifizierung per Benutzer / Passwort sowie der Zuordnung von SML-Antwortdatei(en) an die SML-Auftragsdatei.
- Jeder Auftragnehmer muss auf den SML_PublicOpen.Req entweder mit einer SML_PublicOpen.Res oder einer SML_Attention.Res antworten. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet

eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML PublicOpen.Req
                                          ::=
                                               SEQUENCE
(D)
                                                Octet String OPTIONAL,
           codepage
                                                Octet String
           clientId
                                                Octet String
           regFileId
                                                Octet String OPTIONAL,
           serverId
           username
                                                Octet String OPTIONAL,
                                                Octet String OPTIONAL.
           password
                                                Unsigned8 OPTIONAL,
            smlVersion
          }
```

(39) Per ,codepage' wird, ist der Wert angegeben, eine andere als die Default-Codepage vereinbart. Die ,Codepage' legt fest, welcher Zeichensatz zur Interpretation von Zeichenketten zu verwenden ist. Fehlt der Wert, wird ,ISO 8859-15' verwendet.

Der Inhalt zur "Codepage" selber ist immer als Zeichenkette in ISO 8859-15 zu notieren.

- (40) Der Parameter 'serverld' erlaubt es, ist er angegeben, per 'PublicOpen.Req' im Sinne einer Adresse gezielt eine SML-Datenquelle (ein konkretes Messgerät) oder ein Softwaremodul anzusprechen. In diesem Fall müssen alle nachfolgenden SML-Nachrichten ebenfalls den Parameter 'serverld' mit Inhalt angeben. Fehlt der Parameter 'serverld' in einer der nachfolgenden Nachrichten, so ist für die entsprechende SML-Nachricht mit einem 'SML_Attention' (81 81 C7 C7 FE 0C, siehe Tab. 2) zu antworten.
- Fehlt der Parameter 'serverld', wird die Anfrage als 'Broadcast' gewertet. In diesem Fall muß bei allen nachfolgenden SML-Nachrichten der Parameter 'serverld' ebenfalls fehlen. SML-Nachrichten, die in dieser Situation dennoch den Parameter 'serverld' angeben, sind zu ignorieren. In jedem Fall ist das abschließende "SML Close' zu beantworten.
- (42) Der Parameter ,clientId' wird bei der Erzeugung einer SML-Auftragsdatei vom Auftraggeber erzeugt und dient der eindeutigen Adressierung der SML-Antwortdatei des Clients.
- Der Parameter 'reqFileId' bezeichnet in systemweit⁵ eindeutiger Form ein konkretes SML-Auftragsdatei- / SML-Antwortdatei-Tupel. Er erlaubt es, SML-Antworten zu deren Aufträgen zuzuordnen.
- Die 'reqFileId' liefert die eindeutige Kennzeichnung der SML-Datei, beispielsweise gebildet aus dem aktuellen Zeitstempel.
- (45) Fehlt der Parameter , smlVersion', wird die Version 1 als Standard angenommen.

EMSYCON GmbH, Dr. M. Wisy.

٠

⁵ Die Eindeutigkeit ist jeweils innerhalb des Umfelds des Erzeugers der 'reqFileld' zu gewährleisten; nicht gefordert wird eine weltweite Eindeutigkeit (vergleichbar der MAC-Adresse bei Ethernet). Durch die anderen Angaben in der SML-Open-Nachricht kann die Eindeutigkeit auf den jeweiligen Erzeuger zugeordnet werden.

5.1.2. SML PublicOpen.Res

(46) Der SML_PublicOpen.Res steht immer zu Beginn einer SML-Antwortdatei. Er dient der Identifikation der SML-Antwortdatei zu der zugehörigen SML-Auftragsdatei.

```
SML PublicOpen.Res
                                                SEQUENCE
                                          ::=
(E)
          {
                                                Octet String OPTIONAL,
            codepage
            clientId
                                                Octet String OPTIONAL.
            regFileId
                                                Octet String,
            serverId
                                                Octet String,
                                                SML Time OPTIONAL,
            refTime
            smlVersion
                                                Unsigned8 OPTIONAL,
          }
```

Das Element ,SML_Time' wird entweder als Sekunden-Index oder als Zeitstempel angegeben.

```
        (F)
        SML_Time
        ::= CHOICE

        {
        secIndex
        [0x01]
        Unsigned32,

        timestamp
        [0x02]
        SML_Timestamp,

        localTimestamp
        [0x03]
        SML_TimestampLocal

        }
```

- Handelt es sich um einen Zeitstempel, wird dieser immer in Sekunden ausgehend vom 01.01.1970, 00:00:00 (UNIX-Bezugszeitpunkt, bezogen auf UTC), gebildet.
- (G) SML_Timestamp

- ::= Unsigned32
- (49) Handelt es sich um eine lokale Zeitangabe, wird diese wie folgt notiert:

- (50) Das Element ,localOffset' ist in Minuten anzugeben.
- (51) Das Element ,seasonTimeOffset' ist in Minuten anzugeben.
- Die lokale Zeit ergibt sich wie folgt:

 localTime = Timestamp + localOffset + seasonTimeOffset
- (53) Falls die Antwort von einem Gerät oder einem Softwaremodul geliefert wird, das selbst nicht über eine Zeitinformation verfügt, fehlt diese Angabe im 'Public-Open.Res'.
- (54) Fehlt der Parameter ,smlVersion', wird die Version 1 als Standard angenommen.
- (55) Ist die SML-Datei eine SML-Response-Datei, zu der eine SML-Request-Datei gehört, wird das Element 'reqFileId' der SML-Request-Datei zurückgegeben.

- (56) Ist die SML-Datei eine SML-Response-Datei, zu der keine SML-Request-Datei gehört, wird das Element 'reqFileId', vergleichbar der Erzeugung dieses Attributs beim Erstellen einer SML-Request-Datei, auf einen systemweit eindeutigen Namen gesetzt.
- (57) Ist die SML-Datei eine SML-Response-Datei, zu der keine SML-Request-Datei gehört, darf das Element ,clientld' weggelassen werden; in allen anderen Fällen ist der mit dem ,PublicOpen.Req' angelieferte Wert dort einzutragen.
- (58) Das Feld ,refTime' liefert den Referenzzeitpunkt zur Erstellung der SML-Antwortdatei.

5.1.3. SML PublicClose.Req

- (59) Der SML_PublicClose.Req muss immer am Ende einer SML-Auftragsdatei vorhanden sein. Er beendet diese Datei.
- Jeder Auftragnehmer muss auf den SML_PublicClose.Req mit einer SML_PublicClose.Res oder einer SML_Attention.Res antworten. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast-oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

5.1.4. SML PublicClose.Res

(61) Der SML_PublicClose.Res steht immer am Ende einer SML-Antwortdatei. Er beendet diese Datei.

(κ) SML_Signature ::= Octet String

5.1.5. SML_GetProfilePack.Req

- (62) In einer SML-Auftragsdatei kann eine oder können mehrere SML_GetProfilePack-Nachrichten vorhanden sein.
- Jede SML_GetProfilePack.Req dient der Anfrage von einzelnen Messwerten oder Messwerte-Listen, die in gepackter Form übertragen werden.
- Der Auftragnehmer muss auf jeden SML_GetProfilePack.Req mit genau einer SML_GetProfilePack.Res oder einer SML_Attention.Res antworten. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast-

oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML GetProfilePack.Reg
                                        ::=
                                              SEQUENCE
(L)
          {
           serverId
                                              Octet String OPTIONAL,
           username
                                              Octet String OPTIONAL,
           password
                                              Octet String OPTIONAL,
           withRawdata
                                              Boolean OPTIONAL,
           beginTime
                                              SML Time OPTIONAL,
           endTime
                                              SML Time OPTIONAL,
           parameterTreePath
                                              SML TreePath,
                                              List of SML ObjRegEntry OPTIONAL,
           object List
           dasDetails
                                              SML Tree OPTIONAL
          }
     List of SML ObjRegEntry
                                        ::=
                                              SEQUENCE OF
(M)
           object_List_Entry
                                              SML_ObjReqEntry
          }
     SML ObiRegEntry
                                              Octet String
(N)
```

- Das Element 'parameterTreePath' bezeichnet die Messwerte-Liste und dient damit der Einordnung in Varianten wie Logbuch, Lastgang oder vergleichbar. Es muß mindestens mit einer Kennzahl besetzt sein {zur Kodierung siehe Absätze (DD) und (97)}.
- Die "object_List" wird benötigt, um die gewünschten Kanäle zur Ablesung von Lastgängen mit dem Auftrag angeben zu können. Ist dieses Element nicht angegeben oder leer, so sind alle in dem Profil vorhandenen Kanäle in der Antwort aufzuführen.
- (67) Der gewünschte Zielbereich wird über Zeitgrenzen angegeben.
- (68) Es gilt folgende Vereinbarung, falls Zeitgrenzen per Sekunden-Index definiert werden⁶:
 - Der Sekunden-Index mit dem Wert ,00000000' beschreibt stets den zeitlich am weitesten in der Vergangenheit liegenden Wert.
 - (70) Der Sekunden-Index mit dem Wert 'FFFFFFF' beschreibt stets den 'aktuellen Eintrag', also den zeitlich direkt vor dem aktuellen Zeitpunkt liegenden Wert.
 - (71) Falls bei Bereichsanfragen der gewünschte Sekunden-Index nicht verfügbar ist, ist in der Antwort ...
 - ... falls für den Beginn einer Bereichsgrenze vorhanden, immer der direkt zeitlich danach⁷ liegende Wert oder

EMSYCON GmbH, Dr. M. Wisy, Seite 21/56

⁶ Das aktuell vorliegende Einsatzumfeld sieht ausschließlich die Verwendung des Sekunden-Index vor, siehe Erläuterung zu 'SML Time'. Mögliche, künftige Erweiterungen können hierzu weitere Alternativen bezeichnen.

⁷ In Richtung größerer Indices.

```
... falls dieser nicht vorhanden ist, der 'aktuelle Eintrag'
```

... falls für das Ende einer Bereichsgrenze vorhanden, immer der direkt zeitlich davor⁸ liegende Wert oder ... falls dieser nicht vorhanden ist, der 'aktuelle Eintrag'

zu verwenden.

- (72) Falls die ,beginTime' nicht angegeben ist, ist der Wert ,00000000' anzunehmen.
- (73) Falls die 'endTime' nicht angegeben ist, ist der Wert 'FFFFFFF' anzunehmen.
- Per 'dasDetails' können bedarfsweise ergänzend für die Datenbeschaffung benötigte Parameter übertragen werden. Diese werden, siehe Kapitel 5.1.10, als Baumstruktur übertragen.

5.1.6. SML GetProfilePack.Res

- (75) In einer SML-Antwortdatei kann eine oder können mehrere SML GetProfilePack.Res-Nachrichten vorhanden sein.
- (76) Jede SML-Datenquelle liefert genau eine SML_GetProfilePack.Res-Antwort auf einen SML_GetProfilePack.Req-Auftrag.

```
SML GetProfilePack.Res
                                                SEQUENCE
(O)
          {
                                                Octet String,
           serverId
           actTime
                                                SML_Time,
           reaPeriod
                                                Unsigned32,
           parameterTreePath
                                                SML TreePath,
                                                List of SML ProfObjHeaderEntry,
           header List
                                                List of SML ProfObjPeriodEntry,
           period List
                                                Octet String OPTIONAL,
           rawdata
            profileSignature
                                                SML Signature OPTIONAL
          }
     List of SML ProfObjHeaderEntry
                                                SEQUENCE OF
(P)
                                          ::=
                                                SML ProfObjHeaderEntry
            header List Entry
     SML ProfObjHeaderEntry
                                          ::=
                                                SEQUENCE
(Q)
          {
           objName
                                                Octet String,
                                                SML Unit,
           unit
                                                Integer8
            scaler
          }
```

⁸ In Richtung kleiner Indices.

```
List_of_SML_ProfObjPeriodEntry
                                            ::=
                                                 SEQUENCE OF
(R)
                                                 SML_ProfObjPeriodEntry
            period_List_Entry
           }
(S)
     SML_ProfObjPeriodEntry
                                            ::=
                                                 SEQUENCE
           {
            valTime
                                                 SML Time,
                                                 Unsigned64,
            status
                                                 List_of_SML_ValueEntry,
            value List
            periodSignature
                                                 SML_Signature OPTIONAL
           }
     List_of_SML_ValueEntry
                                            ::=
                                                 SEQUENCE OF
(T)
           {
            value_List_Entry
                                                 SML_ValueEntry
           }
     SML ValueEntry
                                            ::= SEQUENCE
(U)
           {
            value
                                                 SML Value,
            valueSignature
                                                 SML Signature OPTIONAL
           }
     SML_Value
                                            ::= IMPLICIT CHOICE
(V)
           {
            boolean-Value
                                                                 boolean.
            byte-List
                                                                 Octet String<sup>9</sup>,
            8-Bit-Integer
                                                                 Integer8,
                                                                 Integer16,
            16-Bit-Integer
            32-Bit-Integer
                                                                 Integer32,
            64-Bit-Integer
                                                                 Integer64,
                                                                 Unsigned8,
            8-Bit-Unsigned
            16-Bit-Unsigned
                                                                 Unsigned16,
            32-Bit-Unsigned
                                                                 Unsigned32,
            64-Bit-Unsigned
                                                                 Unsigned64
            smlList ...
                                                                 SML_ListType
          }
     SML Unit
                                            ::= Unsigned8
(W)
```

Zahlenwerte siehe DLMS-Unit-List, zu finden beispielsweise in IEC 62056-62.

Die Anzahl der Elemente in der 'Überschriften-Liste' ('header_List') muss immer identisch mit der Anzahl der Elemente in der Liste der Registrierperioden ('value_List') sein.

⁹ Hinweis: Die Verwendung eines Octet String mit der länge ,0' ist zulässig.

- (78) Die Anordnung der Registrierperioden in der Liste erfolgt nach dem Muster "der Wert mit dem kleinsten Sekunden-Index zuerst".
- (79) Das Element 'actTime' liefert die Zeitinformation, die zum Zeitpunkt des Beginns der Ausführung des Auftrags bei der Datenquelle vorgelegen hat.
- Das Element ,valTime' liefert die Zeitinformation, die zum Zeitpunkt der Messwertbildung bei der Datenquelle vorgelegen hat.
- Das Element ,regPeriod' legt die Dauer der verwendeten Registrierperiode fest. Der Wert wird in Sekunden angegeben. Handelt es sich bei der Aufzeichnung um ein ereignisorientiertes Profil (liegt also keine konkrete Registrierperiode vor), ist als Wert ,0' zu verwenden.
- Die Verwendung der beiden voneinander getrennten Listen ("header_List" und "period_List") wird gewählt, um auf die mehrfache Erfassung redundanter Informationen, wie beispielsweise Sekunden-Index und Status zum Zeitpunkt der Messwertbildung je Registrierperiode bei mehreren Lastgängen ("+A", "-A", …), verzichten zu können.
- Durch die wahlweise Verwendung von 'profileSignature', 'periodSignature' oder 'valueSignature' können sowohl ganze Lastgänge, EinzelMesswerte wie auch Tupel ganzer Registrierperioden gemeinsam geschützt werden. Welcher Ansatz verwendet wird, hängt dabei von der Applikation ab.
- (84) Mit dem Feld ,scaler wird der Bezug zwischen der Einheit und dem Zahlenwert wie folgt hergestellt:

```
Zahlenwert = SML_Value \times 10^{scaler}
```

Per ,smlList' können in einem SML_Value folgende Datenstrukturen transportiert werden:

5.1.7. SML GetProfileList.Req

- (86) In einer SML-Auftragsdatei kann eine oder können mehrere SML_GetProfileList-Nachrichten vorhanden sein.
- Jede SML_GetProfileList.Req dient der Anfrage von einzelnen Messwerten oder Messwerte-Listen, die in simpler Listenform übertragen werden. Im Gegensatz zu SML_GetProfilePack, bei der die Antworten möglichst ohne Redundanz und optimal gepackt übertragen werden, erwartet SML_GetProfile simple Listen. Diese bieten den Nachteil, bei der Übertragung von Tageslastgängen erheblich mehr Datenvolumen zu erzeugen, liefern im Gegenzug aber den Vorteil einer einfachen Struktur, die bei Systemen mit viertelstündlicher Datenbeschaffung erheblich effizienter in der Anwendung wird.
- Der Auftragnehmer kann auf jeden SML_GetProfileList.Req mit einer oder mehreren SML GetProfileList.Res oder einer SML Attention.Res antworten. Die leere ,Server-

ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast-oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
(Y)
     SML GetProfileList.Req
                                             SEQUENCE
          {
           serverId
                                              Octet String OPTIONAL,
                                              Octet String OPTIONAL,
           username
                                              Octet String OPTIONAL,
           password
           withRawdata
                                              Boolean OPTIONAL,
                                              SML_Time OPTIONAL,
           beginTime
           endTime
                                              SML Time OPTIONAL,
           parameterTreePath
                                              SML TreePath,
                                              List of SML ObjRegEntry OPTIONAL,
           object List
           dasDetails
                                              SML Tree OPTIONAL
          }
```

(89) Für die Elemente zu SML_GetProfileList.Req gelten die unter SML GetProfilePack.Req definierten Vorgaben.

5.1.8. SML GetProfileList.Res

- (90) In einer SML-Antwortdatei kann eine oder können mehrere SML_GetProfileList.Res-Nachrichten vorhanden sein.
- Jede SML-Datenquelle liefert eine oder mehrere SML_GetProfileList.Res-Antwort auf einen SML_GetProfileList.Req-Auftrag. Jede SML_GetProfileList.Res-Antwort enthält die Messwerte einer Registrierperiode (damit üblicherweise einer Viertelstunde) im Sinne eines Atoms.

```
SML GetProfileList.Res
                                               SEQUENCE
                                          ::=
(Z)
          {
           serverId
                                               Octet String.
           actTime
                                               SML Time,
           regPeriod
                                               Unsigned32,
           parameterTreePath
                                               SML TreePath,
           valTime
                                               SML Time,
           status
                                               Unsigned64.
           period List
                                               List of SML PeriodEntry,
           rawdata
                                               Octet String OPTIONAL,
           periodSignature
                                               SML Signature OPTIONAL
(AA) List_of_SML_PeriodEntry
                                               SEQUENCE OF
                                         ::=
           period List Entry
                                               SML PeriodEntry
```

EMSYCON GmbH, Dr. M. Wisy, Seite 25/56

Durch die wahlweise Verwendung von 'periodSignature' oder 'valueSignature' können sowohl EinzelMesswerte als auch Tupel ganzer Registrierperioden gemeinsam geschützt werden. Welcher Ansatz verwendet wird, hängt dabei von der Applikation ab.

5.1.9. SML GetProcParameter.Req

- (93) Per SML_GetProcParameter.Req können in einer SML-Auftragsdatei Betriebsparameter (Modem-Parameter, Protokoll-Parameter, Auslastung von Software-Modulen, ...) abgefragt werden.
- Der Auftragnehmer antwortet auf diese Nachricht per SML_GetProcParameter.Res oder SML_Attention.Res in der Antwortdatei. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.
- (95) Ein einzelner Parameter ist immer durch dessen OBIS-Kennzahl definiert. Aus der OBIS-Kennzahl leitet sich implizit der konkrete Datentyp und der Wertebereich für das zu liefernde Ergebnis ab. Die konkrete Zuordnung sowie zulässige OBIS-Kennzahlen und deren Bedeutung sind dem Anhang zu entnehmen. Innerhalb der Kodierung einer SML-Nachricht werden die Datentypen außerdem mit kodiert, so dass die generische Implementation zur Konvertierung der Parameter in interne Programmelemente einfach möglich ist.
- Da die Struktur und Anzahl der für einen konkreten Anwendungsfall benötigten Parameter im Vorfeld unbekannt ist, das ständige Anpassen der SML-Spezifikation an neue Anforderungen aber vermieden werden sollte, verwenden die "SML_..._ProcParameter'-Nachrichten eine Baumstruktur, so dass Parameter-Bäume beliebiger Anordnung transportiert werden können.

```
      (CC)
      SML_GetProcParameter.Req
      ::=
      SEQUENCE

      {
      ServerId
      Octet String OPTIONAL,

      username
      Octet String OPTIONAL,

      password
      Octet String OPTIONAL,

      parameterTreePath
      SML_TreePath

      attribute
      Octet String OPTIONAL,

      }
      Octet String OPTIONAL,
```

- (97) Per SML_TreePath können gezielt Parameter innerhalb eines Parameterbaums adressiert werden. Dabei beginnt ein SML_TreePath grundsätzlich ab dem Root-Element des Parameterbaums. Die Bedeutung (entsprechend der Adresse) des Root-Elements ist mit dessen Parameter-Namen gegeben.
- (98) Durch die Listen-Struktur wird der Parameter-Name des Root-Elements grundsätzlich in jenem SML_TreePath-Element zu finden sein, das als erstes und damit direkt unter ,SML_GetProcParameter.Req' zu finden ist.
- (99) Über die Eigenschaft ,attribute' kann im Bedarfsfall eine Einschränkung / Detailinformation zur Präzisierung des gewünschten Anfrageergebnisses mitgegeben werden.

5.1.10. SML GetProcParameter.Res

(100) Per SML_GetProcParameter.Res wird in einer SML-Antwortdatei der Auftrag SML_GetProcParameter.Req quittiert.

```
SML GetProcParameter.Res
                                           ::=
                                                SEQUENCE
(EE)
           {
            serverId
                                                 Octet String,
            parameterTreePath
                                                 SML TreePath,
            parameterTree
                                                 SML Tree
          }
     SML Tree
                                                SEQUENCE
(FF)
                                           ::=
           {
                                                 Octet String,
            parameterName
                                                 SML ProcParValue OPTIONAL,
            parameterValue
                                                 List_of_SML_Tree OPTIONAL
            child List
          }
     SML ProcParValue
                                           ::= CHOICE
(GG)
           {
                                                               SML Value<sup>10</sup>,
            smlValue
                                                 [0x01]
            smlPeriodEntry
                                                 [0x02]
                                                               SML PeriodEntry.
            smlTupelEntry
                                                 [0x03]
                                                               SML_TupelEntry,
            smlTime
                                                 [0x04]
                                                               SML_Time,
                                                                SML ListEntry
            smlListEntry
                                                 [0x05]
          }
```

Applikationen sollten jeweils festlegen, ob Inhalte vom Typ SML_Time direkt per Choice ,0x04' oder indirekt über den Inhalt von SML_Value zu übertragen sind.

EMSYCON GmbH, Dr. M. Wisy, Seite 27/56

[™] Hinweis

```
SML_TupelEntry
                                           ::= SEQUENCE
(HH)
           {
            serverId
                                            Octet String,
            secIndex
                                            SML_Time,
            status
                                            Unsigned64,
            unit pA
                                            SML_Unit,
            scaler pA
                                           Integer8,
            value pA
                                            Integer64,
            unit_R1
                                            SML_Unit,
            scaler R1
                                            Integer8,
            value R1
                                            Integer64,
            unit_R4
                                            SML_Unit,
            scaler R4
                                            Integer8,
            value R4
                                            Integer64,
            signature pA R1 R4
                                            Octet String,
            unit mA
                                           SML Unit,
            scaler mA
                                            Integer8,
            value mA
                                           Integer64,
            unit R2
                                            SML Unit,
            scaler R2
                                            Integer8,
            value R2
                                           Integer64,
            unit R3
                                            SML Unit,
            scaler R3
                                            Integer8,
            value R3
                                           Integer64,
            signature mA R2 R3
                                           Octet String
           }
     List of SML Tree
                                           :::=
                                                 SEQUENCE OF
(II)
           {
            tree_Entry
                                                 SML_Tree
           }
```

- (101) Per ,SML_Tree' können einzelne Parameter (Blätter oder Knoten) mit deren (bei Knoten) darunter folgenden Kindern (siehe ,child_List') aufgebaut werden. Konkret kann durch einen ,SML Tree' damit ...
 - ... ein einzelner Parameter.
 - ... ein Knoten mit einer darunter hängenden Liste von weiteren Parametern oder
 - ... ein Knoten mit einer darunter hängenden Liste von weiteren Teilbäumen abgebildet werden.
- (102) Die Elemente 'parameterValue' und 'child_List' sind beide optional, so dass folgende Varianten abgebildet werden können:
 - Ein Parameter besteht aus Namen (angegeben per OBIS) und Wert.
 - Ein Parameter besteht aus Namen und Teilbaum oder Liste weiterer Parameter.
 - Ein Parameter besteht aus Namen, Wert und Teilbaum oder Liste weiterer Parameter.
 - Namen werden per OBIS-Kennzahl kodiert.

EMSYCON GmbH, Dr. M. Wisy, Seite 28/56

Ob ein ,SML_Tree' als Blatt oder Knoten zu werten ist, wird durch das Vorhandensein des Elements ,child_List' festgelegt. Hat ein ,SML_Tree' das Element ,child_List', ist es ein Knoten, fehlt dieses Element, ist es ein Blatt.

5.1.11. SML SetProcParameter.Req

- (104) Per SML_SetProcParameter.Req können in einer SML-Auftragsdatei Betriebsparameter (beispielsweise die Baudrate zum Zugriff auf ein Endgerät) übertragen werden.
- (105) Zur Strukturierung sei auf die Hinweise in Kapitel 5.1.9 verwiesen.

```
SML SetProcParameter.Req
                                         ::=
                                              SEQUENCE
(JJ)
          {
           serverId
                                              Octet String OPTIONAL,
                                              Octet String OPTIONAL,
           username
           password
                                              Octet String OPTIONAL,
           parameterTreePath
                                              SML TreePath,
           parameterTree
                                              SML Tree
          }
```

(106) Der Auftragnehmer antwortet auf diese Nachricht per SML_Attention.Res. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast-oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

5.1.12. SML Attention.Res

- (107) Per SML_Attention.Res werden in einer SML-Antwortdatei potentielle positive Quittungen, Fehlermeldungen, Warnungen oder andere Hinweise des Auftragnehmers an den Auftraggeber gemeldet.
- (108) Damit die (Fehler-) Meldungen sowohl automatisch ausgewertet als auch als Text einfach an den Bediener ausgegeben werden können, werden die Elemente ,attentionNo' und ,attentionMsg' verwendet.
- (109) Die Vergabe global gültiger Nummern wird mit Kapitel 5.1.13 definiert.

5.1.13. Globale SML-Attentionnumber

(110) Nachstehend folgt die Liste der global definierten Fehlernummern, siehe Kapitel 5.1.12:

Fehlernummer	Bedeutung
(Darstellung als Bytekette in hexadezimaler Form)	
	reserviert.
81 81 C7 C7 E0 00	Beginn applikationsspezifischer Fehlernummern
	Applikationsspezifische Fehlernummern
81 81 C7 C7 FC FF	Ende applikationsspezifischer Fehlernummern
81 81 C7 C7 FD 00	Siehe Tab. 3
	Siehe Tab. 3
81 81 C7 C7 FD FF	Siehe Tab. 3
81 81 C7 C7 FE 00	Fehlermeldung, die keiner der nachstehend definierten Bedeutungen zugeordnet werden können.
81 81 C7 C7 FE 01	Unbekannter SML-Bezeichner.
81 81 C7 C7 FE 02	Unzureichende Authentifizierung, Benutzer- / Passwort-Kombination unzulässig.
81 81 C7 C7 FE 03	Zieladresse (,serverld') nicht verfügbar.
81 81 C7 C7 FE 04	Auftrag (,reqFileId') nicht verfügbar.
81 81 C7 C7 FE 05	Ein oder mehrere Zielattribut(e) nicht zu beschreiben.
81 81 C7 C7 FE 06	Ein oder mehrere Zielattribut(e) nicht zu lesen.
81 81 C7 C7 FE 07	Kommunikation mit Messstelle gestört.
81 81 C7 C7 FE 08	Rohdaten nicht zu interpretieren.
81 81 C7 C7 FE 09	Gelieferter Wert außerhalb des zulässigen Wertebereichs.
81 81 C7 C7 FE 0A	Auftrag nicht ausgeführt (beispielsweise, weil der angelieferte ,parameterTreePath' auf ein nicht vorhandenes Element zeigt).
81 81 C7 C7 FE 0B	Prüfsumme fehlerhaft
81 81 C7 C7 FE 0C	Broadcast nicht unterstützt
81 81 C7 C7 FE 0D	Unerwartete SML-Nachricht (z.B. eine SML-Datei ohne ein Open Request)
81 81 C7 C7 FE 0E	Unbekanntes Objekt im Profil (der OBIS-Kode in der Anfrage eines Profils verweist auf eine Datenquelle, die nicht im Profil aufgezeichnet worden ist)
81 81 C7 C7 FE 0F	Nicht unterstützter Datentyp innerhalb eines Setzbefehles (z.B. entspricht der Datentyp in einer SetProcPar.Req Nachricht nicht dem erwarteten Datentyp)
81 81 C7 C7 FE 10	Optionales Element nicht unterstützt (Ein in SML als OPTIONAL definiertes Element wurde entgegen der von der Applikation getroffenen Annahme empfangen.)
81 81 C7 C7 FE 11	Angefragtes Profil hat keinen einzigen Eintrag

EMSYCON GmbH, Dr. M. Wisy,
Seite 30/56

Fehlernummer	Bedeutung
(Darstellung als Bytekette in hexadezimaler Form)	
81 81 C7 C7 FE 12	Bei Profilanfragen: Endegrenze liegt vor Beginngrenze
81 81 C7 C7 FE 13	Bei Profilanfragen: Im angefragten Bereich liegen keine Einträge vor. In anderen Bereichen ist mindestens ein Eintrag vorhanden
81 81 C7 C7 FE 14	Eine SML-Datei wurde ohne SML-Close beendet.
81 81 C7 C7 FE 15	Bei Profilanfragen: Das Profil kann temporär nicht ausgegeben werden (weil es beispielsweise zum Zeitpunkt der Anfrage umorganisiert wird oder eine Signatur zum Profileintrag zu berechnen ist).
	reserviert.

Tab. 2: Liste globaler Fehlernummern.

Nachstehend folgt die Liste der global definierten Hinweisnummern, siehe Kapitel 5.1.12:

Hinweisnummer	Bedeutung
(Darstellung als Bytekette in hexadezimaler Form)	
81 81 C7 C7 FD 00	Ok, positive Quittung.
81 81 C7 C7 FD 01	Auftrag wird später ausgeführt und Ergebnis wird per Response-without- Request an Serveradresse übermittelt.
	reserviert

Tab. 3: Liste globaler Hinweisnummern.

5.1.14. SML GetList.Req

Per SML_GetList.Req kann eine im Server vorparametrierte Liste von Datenwerten angefragt werden. Als Antwort ist entweder ein SML_GetList.Res oder ein SML_Attention.Res zu erzeugen. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML GetList.Reg
                                               SEQUENCE
(LL)
          {
           clientId
                                               Octet String,
            serverId
                                               Octet String
                                                              OPTIONAL,
           username
                                               Octet String
                                                              OPTIONAL,
           password
                                               Octet String
                                                              OPTIONAL,
           listName
                                               Octet String
                                                              OPTIONAL
          }
```

(113) Per Attribut ,listName' kann die gewünschte Liste benannt werden. Es legt per OBIS die gewünschte Größe / Liste fest. Dadurch, dass dieses Element als "optional" gekennzeichnet ist, können einfache Geräte auf dessen Interpretation verzichten und

EMSYCON GmbH, Dr. M. Wisy,

Seite 31/56

senden lediglich den einzig von ihnen zu liefernden Zählerstand, wobei sie in der Antwort dessen Bedeutung per OBIS angeben müssen.

5.1.15. SML GetList.Res

(114) Per SML_GetList.Res kann eine Liste vorparametrierter Datenwerte übertragen werden.

```
SML GetList.Res
                                         ::=
(MM)
                                               SEQUENCE
          {
           clientId
                                               Octet String
                                                             OPTIONAL,
           serverId
                                               Octet String,
           listName
                                               Octet String
                                                             OPTIONAL,
           actSensorTime
                                               SML Time
                                                             OPTIONAL,
           valList
                                               SML List,
           listSignature
                                               SML Signature OPTIONAL,
           actGatewayTime
                                               SML Time
                                                             OPTIONAL
          }
```

- Mit dem optionalen Attribut 'actSensorTime' kann ein Sensor, der diese SML-Nachricht erzeugt, seine eigene, aktuelle Zeitinformation beifügen.
- Mit dem optionalen Attribut 'actGatewayTime' kann ein Gateway, das diese SML-Nachricht transportiert / einer Zwischenverarbeitung unterzieht, seine eigene, aktuelle Zeitinformation anhängen.

```
SML List
                                         ::=
                                               SEQUENCE OF
(NN)
          {
          valListEntry
                                               SML ListEntry
          }
(00) SML_ListEntry
                                               SEQUENCE
          {
                                               Octet String,
           objName
                                               SML Status
           status
                                                             OPTIONAL,
           valTime
                                               SML Time
                                                             OPTIONAL,
           unit
                                               SML Unit
                                                             OPTIONAL,
           scaler
                                               Integer8
                                                             OPTIONAL,
           value
                                               SML Value,
                                               SML Signature OPTIONAL
           valueSignature
          }
    SML_Status
                                         :::=
                                               IMPLICIT CHOICE
(PP)
          {
                                               Unsigned8
           status8
           status16
                                               Unsigned16
           status32
                                               Unsigned32
           status64
                                               Unsigned64
          }
```

5.1.16. SML GetCosem.Req

Per SML_GetCosem.Req wird der COSEM-Service "Get" übertragen. Als Antwort ist entweder ein SML_GetCosem.Res oder ein SML_Attention.Res zu erzeugen. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
::= SEQUENCE
(QQ) SML GetCosem.Req
         {
           clientId
                                              Octet String,
           serverId
                                              Octet String
                                                           OPTIONAL.
           username
                                              Octet String
                                                           OPTIONAL,
                                              Octet String
                                                           OPTIONAL.
           password
           objName
                                              Octet String,
           classId
                                              Integer16,
           classVersion
                                              Integer16,
           attributeIndexList
                                              SML CosemAttrIndexList OPTIONAL
    SML CosemAttrIndexList
                                             SEQUENCE OF
           attributeDescription
                                              SML CosemAttributeDesc
    SML CosemAttributeDesc
                                              SEQUENCE
(SS)
           attributeIndex
                                              Integer16,
           selectiveAccessDescriptor
                                              SML CosemSelAccessDesc OPTIONAL
    SML_CosemSelAccessDesc
                                              SEQUENCE OF
(TT)
           accessSelector
                                              Unsigned8,
                                              SML CosemValue
           accessParameters
```

Wird das Element 'attributeIndexList' nicht angegeben, sind alle Attribute des adressierten Objekts zu liefern.

5.1.17. SML GetCosem.Res

Per SML_GetCosem.Res wird die Antwort zu einem COSEM-Service ,Get' übertragen.

```
SML GetCosem.Res
                                              SEQUENCE
(UU)
                                         ::=
                                              Octet String
                                                            OPTIONAL,
           clientId
                                              Octet String,
           serverId
                                              Octet String,
           obiName
           classId
                                              Integer16,
           classVersion
                                              Integer16,
           attributeList
                                              SML CosemAttrList
     SML CosemAttrList
                                              SEQUENCE OF
(VV)
           cosemAttribute
                                              SML CosemAttribute
(ww) SML CosemAttribute
                                              SEQUENCE
           attributeDescription
                                              SML CosemAttributeDesc
           attributeContent
                                              SML CosemAttributeContent
     SML CosemAttributeContent
                                              CHOICE
(XX)
           data
                                              [0x01]
                                                            SML CosemValue
           dataAccessResult
                                              [0x02]
                                                            Unsigned8,
     SML_CosemValue
                                         ::= IMPLICIT CHOICE
           alle Datentyp aus GreenBook Seite 210 übernehmen!
                                                            ???
           nullData
      boolean-Value boolean,
                                                            ???
           bitString
           byte-List
                                                            Octet String,
           8-Bit-Integer
                                                            Integer8,
                                                            Integer16,
           16-Bit-Integer
           32-Bit-Integer
                                                            Integer32,
           64-Bit-Integer
                                                            Integer64,
                                                            Unsigned8,
           8-Bit-Unsigned
           16-Bit-Unsigned
                                                            Unsigned16,
           32-Bit-Unsigned
                                                            Unsigned32,
           64-Bit-Unsigned
                                                            Unsigned64,
                                                            SML CosemValueList,
           struct
                                                            SML CosemValueList
           array
     SML CosemValueList
                                         ::= SEQUENCE OF
(ZZ)
           cosemValue
                                                            SML CosemValue
```

5.1.18. SML SetCosem.Req

Per SML_SetCosem.Req wird der COSEM-Service ,Set' übertragen. Als Antwort ist entweder ein SML_SetCosem.Res oder ein SML_Attention.Res zu erzeugen. Die leere ,Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
(AAA) SML SetCosem.Reg
                                          ::= SEQUENCE
          {
           clientId
                                               Octet String,
           serverId
                                               Octet String
                                                              OPTIONAL.
           username
                                               Octet String
                                                              OPTIONAL,
                                                Octet String
                                                              OPTIONAL,
           password
           objName
                                               Octet String,
           classId
                                               Integer16.
                                               Integer16,
           classVersion
                                                SML CosemAttrList
           attributeList
```

5.1.19. SML SetCosem.Res

(121) Per SML_SetCosem.Res wird die Antwort zu einem COSEM-Service ,Set' übertragen.

5.1.20. SML ActionCosem.Reg

Antwort ist entweder ein SML_ActionCosem.Res oder ein SML_Attention.Res zu erzeugen. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

EMSYCON GmbH, Dr. M. Wisy, Seite 35/56

```
(CCC) SML ActionCosem.Req
                                                SEQUENCE
                                          ::=
           clientId
                                                Octet String,
           serverId
                                                Octet String
                                                               OPTIONAL,
                                                               OPTIONAL.
                                                Octet String
           username
                                                Octet String
                                                              OPTIONAL,
           password
                                                Octet String,
           objName
           classId
                                                Integer16,
           classVersion
                                                Integer16,
           serviceIndex
                                                Unsigned8,
            serviceParameter
                                                SML CosemValue OPTIONAL
```

5.1.21. SML ActionCosem.Res

(123) Per SML_ActionCosem.Res wird die Antwort zu einem COSEM-Service ,Execute' übertragen.

```
      (DDD)
      SML_ActionCosem.Res
      ::=
      SEQUENCE

      {
      ClientId
      Octet String
      OPTIONAL,

      serverId
      Octet String,
      Octet String,

      objName
      Octet String,
      Integer16,

      classId
      Integer16,
      Integer16,

      classVersion
      Integer16,
      SML_CosemAttrList OPTIONAL
```

- 6 SML binary encoding, direkt gepackte Kodierung
- (124) SML verwendet eine auf die Zielsetzung, im Datenvolumen möglichst kleine Nachrichten zu produzieren, optimierte Kodierung.
- Die Kodierung basiert dazu auf der klassischen Type-Length-Value Struktur. Im Gegensatz zu BER faßt sie aber Type und Length in einen für die meisten Anwendungsfälle auf ein einziges Byte reduzierten, als Type-Length-Field ("TL-Field") bezeichneten, Wert zusammen.
- (126) Das Längenfeld beziffert die Anzahl der Elemente, die zu einem einfachen oder komplexen Datentyp gehören.
- (127) Bei einfachen Datentypen entspricht die Längenangabe der Anzahl von Bytes, die zu dem Datentyp gehören.
- Da das Längenfeld ein Teil des Kodes ist und das TL-Field selbst als Element angesehen werden kann, wird das TL-Field wie ein weiteres Element in der Längenangabe mitgezählt.

(129) Bei komplexen Datentypen (beispielsweise Listen) entspricht die Längenangabe der Anzahl Elemente, die mit dem komplexen Datentyp zusammengefaßt werden (beispielsweise die Anzahl der Listeneinträge). Hier wird das TL-Field selber nicht mitgezählt.

EMSYCON GmbH, Dr. M. Wisy,

Seite 37/56

6.1. Type-Length-Field

(130) Das TL-Field legt über die Bitkombination in den höherwertigen Bits des Datenworts fest, ob und wenn ja mit welcher Bedeutung, weitere Bytes mit dem aktuellen Byte zu einem Wort zusammengesetzt werden sollen.

Bitindex	MSB, D7	6	5	4	3	2	1	LSB, D0
Verwendet für Merkmal ,weiteres Byte zum TL-Field folgt	1	X	Х	Х	Х	Х	X	X
Verwendet für Merkmal ,kein weiteres Byte zum TL-Field folgt	0	Х	Х	Х	Х	Х	Х	X
Verwendet für Merkmal ,Datentyp Octet String' verwenden	Х	0	0	0	L	L	L	L
Verwendet für Merkmal ,Boolean' verwenden	0	1	0	0	L	L	L	L
Verwendet für Merkmal ,Datentyp Integer' verwenden	Х	1	0	1	L	L	L	L
Verwendet für Merkmal ,Datentyp Unsigned' verwenden	Х	1	1	0	L	L	L	L
Merkmal ,Datentyp List of' verwendet.	Х	1	1	1	L	L	L	L
Weiteres Byte mit Platz zur Definition zusätzlicher Datentypen folgt; derzeit reserviert	1	1	0	0	L	L	L	L
Reserviert für künftige Verwendung	Х	0	0	1	L	L	L	L
Reserviert für künftige Verwendung	Х	0	1	0	L	L	L	L
Reserviert für künftige Verwendung	Х	0	1	1	L	L	L	L

Tab. 4: Bitkodierung im Type-Length-Field für das erste Byte einer TL-Field-Angabe.

Falls ein zweites (und evtl. weitere) Byte mit einer TL-Field-Angabe folgt, werden die Bits zur Längeninformationen der jeweilig vorangegangenen TL-Field-Angabe nach links geschoben und die "neuen" Bits der folgenden TL-Field-Angabe von rechts her kommend angefügt.

(132) Für das zweite und evtl. folgende weitere Bytes mit einer TL-Field-Angabe sind die Bits zum Datentyp stets wie folgt zu setzen:

Bitindex	MSB, D7	6	5	4	3	2	1	LSB, D0
Verwendet für Merkmal ,weiteres Byte zum TL-Field folgt'	1	X	Х	Х	Х	X	X	X
Verwendet für Merkmal ,kein weiteres Byte zum TL-Field folgt'	0	Х	Х	Х	Х	Х	X	X
Merkmal ,nachfolgende 4 Bit für die Länge verwenden'	Х	0	0	0	L	L	L	L
Reserviert für künftige Zwecke	Х	0	0	1	Х	Х	Х	Х
Reserviert für künftige Zwecke	Х	0	1	0	Х	Х	Х	Х
Reserviert für künftige Zwecke	Х	0	1	1	Х	Х	Х	Х
Reserviert für künftige Zwecke	Х	1	Х	Х	Х	Х	Х	Х

Tab. 5: Bitkodierung im Type-Length-Field für das zweite und folgende TL-Field-Bytes.

6.2. Kodierung der Datentypen

6.2.1. Datentyp Octet String

(133) Ein Octet String (eine Bytekette) mit einer Länge von 0 bis max. 14 Bytes wird wie folgt kodiert:

Bitindex	MSB, D7	6	5	4	3	2	1	LSB, D0
Octet String mit einer Anzahl von 0 bis 14 Bytes	0	0	0	0	L	L	L	L

Tab. 6: Bitkodierung im Type-Length-Field für einen Octet String.

- (134) Im Anschluss an das TL-Field folgt der Octet String (die Bytekette), wobei das Byte der Bytekette mit dem Index ,0' zuerst hinter dem TL-Field folgen muss.
- (135) Falls der Octet String mehr als 14 Bytes enthält, werden entsprechend der Beschreibung in Kapitel 6.1 vor dem ersten Byte der Bytekette weitere Bytes des TL-Field eingefügt.

6.2.2. Datentypen Integer8, Integer16, Integer32 und Integer64

Diese Integer-Datentypen werden wie folgt kodiert, wobei in der Datenübertragung jeweils ganze Bytes, die führende Nullen (bei positiven Zahlen) oder führende Einsen (bei negativen Zahlen) enthalten, derart weggelassen werden dürfen, dass beim Empfänger keine Verfälschung entsteht:

```
(EEE) Integer8
                                                              SEQUENCE
                                                ::=
            TL-Field
                                                0x52.
           Datenwert
                                                0xYY
          }
(FFF) Integer16
                                                              SEQUENCE
                                                ::=
          {
            TL-Field
                                                0x53.
           Datenwert
                                                0xYY 0xZZ
                                                              (0xYY ⇔ High-Byte,
                                                               0xZZ ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
(GGG) Integer32
                                                              SEQUENCE
                                                ::=
            TL-Field
                                                0x55.
                                                0xYY 0xZZ 0xUU 0xVV (0xYY ⇔ High-Byte,
           Datenwert
                                                               0xVV ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
(ннн) Integer64
                                                ::=
                                                              SEQUENCE
            TL-Field
                                                0x59.
           Datenwert
                                                0xYY ... 0xVV (0xYY ⇔ High-Byte,
                                                               0xVV ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
```

6.2.3. Datentypen Unsigned8, Unsigned16, Unsigned32 und Unsigned64

Diese vorzeichenlosen Integer-Datentypen werden wie folgt kodiert, wobei in der Datenübertragung jeweils ganze Bytes, die führende Nullen enthalten, weggelassen werden dürfen:

```
Unsigned8
                                                                    SEQUENCE
(III)
                                                    ::=
           {
             TL-Field
                                                    0x62,
             Datenwert
                                                    0xYY
           }
(JJJ) Unsigned16
                                              ::=
                                                    SEQUENCE
           {
             TL-Field
                                                    0x63.
             Datenwert
                                                    0xYY 0xZZ
                                                                    (0xYY ⇔ High-Byte,
                                                                    0xZZ \Leftrightarrow Low-Byte,
                                                                    Darstellung Big Endian)
           }
```

```
(KKK) Unsigned32
                                            ::=
                                                 SEQUENCE
           {
            TL-Field
                                                 0x65.
            Datenwert
                                                 0xYY 0xZZ 0xUU 0xVV (0xYY ⇔ High-Byte,
                                                                 0xVV ⇔ Low-Byte,
                                                                 Darstellung Big Endian)
          }
(LLL) Unsigned64
                                                 SEQUENCE
            TL-Field
                                                 0x69,
                                                 0xYY ... 0xVV (0xYY ⇔ High-Byte,
            Datenwert
                                                                 0xVV ⇔ Low-Byte,
                                                                 Darstellung Big Endian)
          }
     6.2.4.
             Datentyp Boolean
(138) Dieser Boolean-Datentyp wird wie folgt kodiert:
(MMM) Boolean
                                                 ::=
                                                                SEQUENCE
            TL-Field
                                                 0x42,
            Datenwert
                                                 0xYY
                                                                        0x00 \Leftrightarrow false'
           }
                                                                  alles andere ⇔ ,true' )
```

6.2.5. Datentyp List of ...

- Falls Listen (oder Arrays oder Structures) kodiert werden sollen, enthält das TL-Field zu Beginn der Liste / des Arrays / der Struktur die Anzahl der Elemente. Daran schließt sich das erste Element der Liste / des Arrays / der Struktur an, das ebenfalls wieder mit einem TL-Field beginnt.
- Die Elementangabe im TL-Field von "List of …' weist immer auf das nächste TL-Field, das hinter allen Elementen von "List of …' folgt. Der Wert "überspringt" damit alle TL-Fields, die je Element von "List of …' innerhalb der "List of …'-Daten stehen.

6.3. Kodierung besonderer Merkmale

6.3.1. Merkmal Ende einer SML-Nachricht

Wegen der Verkettung der einzelnen Attribute einer SML-Nachricht kann über das TL-Field das Ende einer SML-Nachricht definiert / gefunden werden:

(000) EndOfSmlMsg

::= 0x00 ⇔ "Eintrag ohne TL-Field" ⇔ Ende

6.3.2. Merkmal SEQUENCE

- Bei Sequenzen werden grundsätzlich alle Komponenten der Sequenz in der Reihenfolge ihrer Auflistung in der ASN.1-Definition in den kodierten Datenstrom übernommen.
- Eine Sequence wird generell als Struktur zusammengefaßt und damit durch den Datentyp ,List of ... 'eingeleitet (siehe Kapitel 6.2.5).

6.3.3. Merkmal CHOICE

- (144) Bei Auswahllisten wird das TAG zum ausgewählten Element Unsigned kodiert. Das TAG erhält, genau wie jede andere Unsigned-Komponente auch, sein TL-Field vorangestellt.
- (145) Elemente vom Typ SML_MessageBody kodieren das TAG als Unsigned32, alle anderen als Unsigned8.
- Die CHOICE selbst wird als Struktur behandelt und damit durch den Datentyp ,List of ... 'eingeleitet (siehe Kapitel 6.2.5). Sie führt also immer zu einer Struktur mit zwei Elementen: Das erste Element ist das TAG und das zweite das damit definierte CHOICE-Element.

6.3.4. Merkmal OPTIONAL

(147) Falls in der ASN.1-Definition eine Komponente als 'OPTIONAL' gekennzeichnet wurde, ist diese in den Datenstrom mit dem TL-Field '0x01' zu setzen. Dabei wird für dieses TL-Field immer der Datentyp 'Octet String' angenommen und die Element-Angabe direkt hinter dem TL-Field positioniert.

7 XML - Kodierung

- (148) Alternativ kann SML auch per XML-Kodierung transportiert werden. Gegenüber der Darstellung nach Kapitel 6 bewirkt die XML-Kodierung prinzipiell ein deutlich erhöhtes Datenvolumen, liefert aber standardisiert lesbare SML-Dateien.
- (149) Das Kapitel soll bei Bedarf im weiteren Verlauf der Arbeiten mit Inhalt gefüllt werden; die XML-SML-Transformation wird aktuell nicht benötigt.

Nachfolgend wird das XML-Schema zur Kodierung von SML per XML vereinbart:

```
Bezug: SML-Spezifikation Version 1.04 (Entwurf)
<!--
<!--
          Hinweise: Alle Namen werden in Anlehnung an die Namen der SML-ASN.1-Notation
                       gebildet.
<!--
<!--
          Historie: 03.11.09 / MW, - Initialversion auf Basis von iAD (www.iad-de.com) und
<1--
                                           Robotron (www.robotron.de) im Umfeld von SML benutzter
<!--
                                            Schemata.
                     O8.01.10 / MW, - Umstellung der bisher anonymen Datentypen zu 'SML_Message'
und 'SML_File' in benannte Typen.

- Die Notation zu 'List of SML ObjReqEntry' wurde von
'complexType' auf 'simpleType' vereinfacht.

- Das Schema wurde auf den Stand des Entwurfs zu SML 1.04
vom 08.01.2010 gebracht.
<!--
<1--
<!--
<!--
<!--
                      08.01.10 / MW, - Interne Ergänzung zur Verpackung von COSEM-Objekten auf-
<!--
                                            genommen.
                      24.01.10 / MW, - Mit Umstellung vom 08.01.10 war das Root-Element abhanden gekommen; im Sinne einer künftig möglicherweise notwendigen Versionierung wurde nun ein Root-Element ergänzt.
<1--
                                          Zwei innere Elemente zu 'SML TupelEntry' wurden an die
<!--
                                            Notation aus SML 1.04 angeglichen.

    Die Notation zu 'SML Tree->parameterValue' wurde an die
in SML 1.04 benutzte Schreibweise angepasst.
    Die Notation zu 'SML GetProfileList.Res->period List'

<1--
<!--
<!--
                                            wurde an die in SML 1.04 benutzte Schreibweise angepasst. -->
                                         - Die mit 08.01.10 zu 'List of SML ObjReqEntry' eingeführte
                                           Änderung wurde zurückgenommen. Der Type wird nun wieder
                     als 'complexType' notiert.

27.04.10 / MW, - Die Spezifikation wurde zum Transport von COSEM-Services,
(siehe Normenreihe IEC 62056 zu DLMS) erweitert.

- Die Definition der Datenstruktur zu 'SML Tree' wurde ge-
<!--
<1--
<!--
                                           ändert, um eine fehlerhafte XML-Notation (siehe "Unique
                                            Particle Attribution (UPA) rule is XML Schema's mechanism to prevent schema ambiguity") zu beheben.
<!--
<!--
             Stand: 27.04.10 / MW
<!-- Einfache Datentypen
    </xs:simpleType>
    <xs:simpleType</pre>
</xs:simpleType>
    <xs:simpleType</pre>
</xs:simpleType>
    </xs:simpleType>
<!-- Implizite Auswahl-Datentypen
    <xs:aroup</pre>
         <xs:element</pre>
                          name = "valBoolean"
                                                          type = "xs:hexBinary"/>
type = "xs:hexBinary"/>
type = "xs:byte"/>
                           name = "valByteList"
         <xs:element</pre>
                            name = "valInteger8"
         <xs:element</pre>
                                                          type = "xs:short"/>
                           name = "valInteger16"
         <xs:element</pre>
                           name = "valInteger32"
                                                          type = "xs:int"/>
         <xs:element</pre>
                           name = "valInteger64"
                                                          type = "xs:long"/>
         <xs:element</pre>
                                                          type = "xs:unsignedByte"/
         <xs:element</pre>
                           name = "valUnsigned8"
                            name = "valUnsigned16"
                                                          type = "xs:unsignedShort"/>
         <xs:element</pre>
                           name = "valUnsigned32"
                                                          type = "xs:unsignedInt"/>
         <xs:element</pre>
                            name = "valUnsigned64"
                                                          type = "xs:unsignedLong"/>
         <xs:element</pre>
    </xs:choice>
</xs:group>
    group name = "SML_Status">
<xs:choice>
        <xs:element name = "status8"</pre>
                                                          type = "xs:unsignedByte"/
                           name = "status16"
name = "status32"
                                                          type = "xs:unsignedShort"/>
         <xs:element</pre>
                                                          type = "xs:unsignedInt"/>
         <xs:element</pre>
                                                          type = "xs:unsignedLong"/>
                            name = "status64"
         <xs:element</pre>
    </xs:choice>
</xs:group>
```

```
<!-- Zusammengesetzte Datentypen
type = "SML_Timestamp"/>
         <xs:element</pre>
                           name = "timestamp
                           name = "localOffset"
                                                               type = "xs:short"/>
         <xs:element</pre>
                           name = "summerTimeOffset"
                                                               type = "xs:short"/>
        <xs:element</pre>
    </xs:sequence>
</xs:complexType>
<xs:choice>
                                                               type = "xs:unsignedInt"/
type = "SML Timestamp"/>
                                                                         "xs:unsignedInt
                                                               type = "SML TimestampLocal"/>
    </xs:choice>
</xs:complexType>
    complexType name = "SML_ProfObjHeaderEntry">
<xs:sequence>
<xs:complexType</pre>
         <xs:element</pre>
                      name = "objName"
name = "unit"
name = "scaler"
                                                   type = "xs:hexBinary"/>
type = "SML_Unit"/>
         <xs:element</pre>
                                                   type = "xs:byte"/>
        <xs:element</pre>
</xs:sequence>
</xs:complexType>
    <xs:complexType</pre>
        <xs:element name = "valTime"</pre>
                                                                     = "SML Time"/>
                          name = "status"
name = "value_List"
         <xs:element</pre>
                                                                     = "xs:unsignedLong"/>
                                                         type
                                                                    = "List_of_SML_ValueEntry"/>
= "SML_Signature"
         <xs:element</pre>
                                                         type
                           name = "periodSignature" type
         <xs:element</pre>
    </xs:sequence>
</xs:complexTvpe>
ref = "SML_Value" />
name = "valueSignature"
         <xs:group
                                                         type = "SML_Signature"
minOccurs = "0"/>
         <xs:element</pre>
    </xs:sequence>
</xs:complexType>
    <xs:complexType</pre>
                                                         type = "xs:hexBinar
type = "SML_Unit"/>
                                                                         "xs:hexBinary"/>
                          name = "scaler"
ref = "SML_Value" />
                                                                     = "xs:byte"/>
         <xs:element</pre>
                                                          type
         <xs:group
                          ref = "SML_Value" />
name = "valueSignature" type = "SML_Signature"
minOccurs = "0"/>
         <xs:element</pre>
    </xs:sequence>
</xs:complexType>
<xs:group
                                 ref = "SML_Value"/>
             </xs:complexType>
         </xs:element>
                        name = "smlPeriodEntry" type = "SML_PeriodEntry"/>
         <xs:element</pre>
                                 name = "smlTupelEntry"
                                                              type = "SML_TupelEntry"/>
type = "SML_Time"/>
         <xs:element</pre>
                                 name = "smlTime"
         <xs:element</pre>
         <xs:element</pre>
                                 name = "smlListEntry"
                                                               type = "SML ListEntry"/>
    </xs:choice>
</xs:complexType>
    <xs:complexType</pre>
        :sequence>
<xs:element name = "serverId"
<xs:element name = "secIndex"
<xs:element name = "status"
<xs:element name = "unit pA"
<xs:element name = "scaler_pA"
<xs:element name = "value_pA"
<xs:element name = "unit_R1"
<xs:element name = "scaler_R1"
<xs:element name = "value_R1"
<xs:element name = "value_R1"
<xs:element name = "value_R1"
<xs:element name = "value_R1"</pre>
                                                               type = "xs:hexBinary"/>
type = "SML_Time"/>
                                                               type = "xs:unsignedLong"/>
                                                               type = "SML Unit"/>
                                                               type = "xs:byte"/>
                                                               type = "xs:long"/>
                                                              type = "SML_Unit"/>
type = "xs:byte"/>
                                                               type = "xs:long"/>
                                                               type = "SML_Unit"/>
                          name = "unit_R4"
name = "scaler R4"
name = "value R4"
name = "signature_pA_R1_R4"
name = "unit_mA"
                                                               type = "xs:byte"/
         <xs:element</pre>
                                                               type = "xs:long"/>
         <xs:element</pre>
                                                               type = "xs:hexBinary"/>
         <xs:element</pre>
                                                               type = "SML_Unit"/>
         <xs • element</pre>
                          name = "scaler_mA"
                                                               type = "xs:byte"/>
         <xs:element</pre>
                           name = "value mA"
                                                               type = "xs:long"
         <xs:element</pre>
         <xs:element</pre>
                           name = "unit R2"
                                                               type = "SML Unit"/>
```

```
name = "scaler_R2"
name = "value_R2"
name = "unit_R3"
        <xs:element</pre>
                                                           type = "xs:byte"/>
                                                           type = "xs:long"
        <xs:element</pre>
                                                          type = "SML_Unit"/>
        <xs:element</pre>
                         name = "scaler R3"
                                                           type = "xs:byte"/>
        <xs:element</pre>
        <xs:element</pre>
                         name = "value R3"
                                                           type = "xs:long"/>
                          name = "signature_mA_R2_R3" type = "xs:hexBinary"/>
        <xs:element</pre>
    </xs:sequence>
</xs:complexType>
type = "xs:hexBinary"
minOccurs = "1"
        <xs:element</pre>
                          name = "path Entry"
                                                     maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                              name = "SML_Tree">
<xs:complexType</pre>
    <xs:sequence>
                                                           type ="xs:hexBinary"/>
type = "SML_ProcParValue"
                               name = "parameterName"
name = "parameterValue"
        <xs:element</pre>
        <xs:element</pre>
                                                           minOccurs = "0"
                                                           maxOccurs = "1"/>
                                                          type = "List_of_SML_Tree"
minOccurs = "0"
                               name = "child List"
        <xs:element</pre>
                                                           maxOccurs = "1"/>
    </xs:sequence>
</xs:complexType>
                              name = "SML_ListEntry">
<xs:complexType</pre>
   <xs:sequence>
                              name = "objName"
ref = "SML_Status"
name = "valTime"
                                                          type = "xs:hexBinary"/>
minOccurs = "0"/>
       <xs:element
        <xs:group</pre>
                                                                     = "SML_Time"
        <xs:element</pre>
                                                           type
                                                           minOccurs = "0"/>
                                                                     = "SML Unit"
                               name = "unit"
        <xs:element</pre>
                                                           type
                                                          minOccurs = "0"/>
                               name = "scaler"
                                                                     = "xs:byte"
        <xs:element</pre>
                                                           type
                                                           minOccurs = "0"/>
                               ref = "SML_Value"/>
name = "valueSignature"
        <xs:group</pre>
                                                          type = "SML_Signature"
minOccurs = "0"/>
        <xs:element</pre>
    </xs:sequence>
</xs:complexType>
<!-- Listen-Datentypen
   type = "SML_ValueEntry"
minOccurs = "0"
        <xs:element</pre>
                          name = "value_List_Entry"
                                                           maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                          name = "List_of_SML_ProfObjHeaderEntry">
<xs:complexTvpe</pre>
   <xs:sequence>
        <xs:element
                          name = "header List Entry
                                                                     = "SML_ProfObjHeaderEntry"
                                                           minOccurs = "0"
                                                           maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
type = "SML_ProfObjPeriodEntry"
minOccurs = "0"
        <xs:element</pre>
                        name = "period_List_Entry"
                                                           maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                          name = "List_of_SML_PeriodEntry">
<xs:complexType</pre>
   <xs:sequence>
                                                           type = "SML_PeriodEntry"
minOccurs = "0"
                         name = "period List Entry"
        <xs:element</pre>
                                                           maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                         name = "List_of_SML_Tree">
    <xs:sequence>
        <xs:element
                         name = "tree Entry"
                                                           minOccurs = "1"
                                                           maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
```

```
<xs:complexType
                                                      type = "SML_ListEntry"
minOccurs = "0"
       <xs:element name = "valListEntry"</pre>
                                                      maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
                    name = "List_of_SML_ObjReqEntry">
<xs:complexType</pre>
   <xs:sequence>
                                                     type = "SML_ObjReqEntry"
minOccurs = "1"
       <xs:element</pre>
                       name = "object List Entry"
                                                      maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
<!-- SML-Nachrichten
     <!-- SML-Open
                       name = "SML_PublicOpen.Req">
<xs:complexType</pre>
   <xs:sequence>
                                                type = "xs:hexBinary" minOccurs = "0"/>
type = "xs:hexBinary"/>
type = "xs:hexBinary" minOccurs = "0"/>
                       name = "codepage"
name = "clientId"
       <xs:element
       <xs:element</pre>
                       name = "reqFileId"
       <xs:element</pre>
                       name = "serverId'
       <xs • element</pre>
                                                                               minOccurs = "0"/>
minOccurs = "0"/>
                                                 type = "xs:hexBinary"
                       name = "username"
       <xs:element</pre>
                       name = "password"
name = "smlVersion"
                                                 type = "xs:hexBinary"
       <xs:element</pre>
                                                 type = "xs:unsignedByte"
       <xs:element</pre>
   </xs:sequence>
</xs:complexType>
   <xs:complexType</pre>
       <xs:element</pre>
                       name = "codepage"
                                                 type = "xs:hexBinary"
                                                                               minOccurs = "0"/
                                                type = "xs:hexBinary"
type = "xs:hexBinary"/>
                       name = "clientId"
                                                                               minOccurs = "0"/>
       <xs:element</pre>
                       name = "reqFileId"
       <xs:element</pre>
                       name = "serverId"
                                                 type = "xs:hexBinary"/>
       <xs:element</pre>
                       name = "refTime"
                                                 type = "SML_Time"
                                                                               minOccurs = "0"/>
minOccurs = "0"/>
       <xs:element</pre>
       <xs:element</pre>
                       name = "smlVersion"
                                                 type = "xs:unsignedByte"
   </xs:sequence>
</xs:complexType>
   <xs:complexType</pre>
       </xs:sequence>
</xs:complexType>
<xs:element</pre>
                    </xs:sequence>
</xs:complexType>
     <!-- SML-GetProfilePack
   <xs:complexType</pre>
       <xs:element</pre>
                     name = "serverId"
                                                              = "xs:hexBinary"
                                                      minOccurs = "0"/
                                                               = "xs:hexBinary"
                      name = "username"
       <xs:element</pre>
                                                      type
                                                      minOccurs = "0"/>
                                                               = "xs:hexBinary"
       <xs:element</pre>
                       name = "password"
                                                      type
                                                      minOccurs = "0"/
                                                     type = "xs:boolean"
minOccurs = "0"/>
       <xs:element</pre>
                       name = "withRawdata"
                       name = "beginTime"
                                                               = "SML Time"
       <xs:element</pre>
                                                      type
                                                     minOccurs = "0"/>
                                                               = "SML Time"
        <xs:element</pre>
                       name = "endTime"
                                                      type
                                                      minOccurs = "0"/>
                                                     type = "SML_TreePath"/>
type = "List_of_SML_ObjReqEntry"
minOccurs = "0"/>
                       name = "parameterTreePath"
name = "object_List"
       <xs:element</pre>
       <xs:element</pre>
                                                               = "SML Tree"
                       name = "dasDetails"
       <xs:element</pre>
                                                      type
```

```
</xs:sequence>
</xs:complexType>
                           name = "SML GetProfilePack.Res">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element</pre>
                           name = "serverId"
                                                                          = "xs:hexBinary"/>
                                                                         = "SML_Time"/
                           name = "actTime"
        <xs:element</pre>
                                                              type
                           name = "regPeriod"
                                                                         = "xs:unsignedInt"/>
        <xs:element</pre>
                                                              type
                                                                         = "SML_TreePath"/>
= "List_of_SML_ProfObjHeaderEntry"/>
= "List_of_SML_ProfObjPeriodEntry"/>
         <xs:element</pre>
                          name = "parameterTreePath"
                                                              type
                         name = "header_List"
name = "period_List"
         <xs:element</pre>
                                                              type
        <xs:element</pre>
                                                              type
                                                              type = "xs:hexBinary'
minOccurs = "0"/>
                           name = "rawdata"
         <xs:element</pre>
                                                                         = "SML_Signature"
                           name = "profileSignature"
         <xs:element</pre>
                                                              type
    </xs:sequence>
</xs:complexType>
     <!-- SML-GetProfileList
                        name = "SML_GetProfileList.Req">
<xs:complexType</pre>
    <xs:sequence>
         <xs:element
                           name = "serverId"
                                                                            "xs:hexBinary"
                                                              minOccurs = "0"/>
                                                              type = "xs:hexBinary"
minOccurs = "0"/>
        <xs:element</pre>
                           name = "username"
                           name = "password"
                                                                            "xs:hexBinary"
        <xs:element</pre>
                                                              type
                                                              minOccurs = "0"/>
                           name = "withRawdata"
                                                              <xs:element</pre>
        <xs:element</pre>
                           name = "beginTime"
                                                              minOccurs = "0"/>
                                                                        = "SML_Time'
         <xs:element</pre>
                           name = "endTime"
                                                              tvpe
                                                              minOccurs = "0"/>
                           name = "parameterTreePath"
name = "object_List"
                                                              type = "SML_TreePath"/>
type = "List_of_SML_ObjReqEntry"
         <xs:element</pre>
         <xs:element</pre>
                                                              minOccurs = "0"/>
                                                                         = "SML_Tree"
                           name = "dasDetails"
         <xs:element</pre>
                                                              type
                                                              minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
                           name = "SML GetProfileList.Res">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element</pre>
                         name = "serverId"
                                                                             "xs:hexBinary"/>
                                                              type
                           name = "actTime"
        <xs:element</pre>
                                                              type
                                                                          = "SML_Time"/>
                           name = "regPeriod"
        <xs:element</pre>
                                                              type
                                                                         = "xs:unsignedInt"/
                          name = "parameterTreePath"
name = "valTime"
                                                                         = "SML_TreePath"/>
= "SML_Time"/>
        <xs:element</pre>
                                                              type
        <xs:element</pre>
                                                              type
                                                                         = "xs:unsignedLong"/>
= "List_of_SML_PeriodEntry"/>
                         name = "status"
        <xs:element</pre>
                                                              type
                          name = "period_List"
name = "rawdata"
         <xs:element</pre>
                                                              type
         <xs:element</pre>
                                                                         = "xs:hexBinary"
                                                              type
                                                              minOccurs = "0"/>
                                                              type = "SML Signature"
minOccurs = "0"/>
         <xs:element</pre>
                           name = "periodSignature"
    </xs:sequence>
</xs:complexType>
     <!-- SML-GetProcParameter
     <!--
    <xs:element name = "serverId"</pre>
                                                                     = "xs:hexBinary"
                                                              minOccurs = "0"/
                           name = "username"
                                                                         = "xs:hexBinary"
         <xs:element</pre>
                                                              type
                                                              minOccurs = "0"/>
                                                              type = "xs:hexBinary"
minOccurs = "0"/>
                           name = "password"
        <xs:element</pre>
                                                              type = "SML TreePath"/>
                           name = "parameterTreePath"
name = "attribute"
         <xs:element</pre>
                                                                         = "xs:hexBinary"
         <xs:element</pre>
                                                              minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
                           name = "SML_GetProcParameter.Res">
<xs:complexType</pre>
    <xs:sequence>
         <xs:element
                           name = "parameterTreePath"
                                                              type = "SML_TreePath"/>
         <xs:element</pre>
                           name = "parameterTree"
                                                              type = "SML Tree"/>
        <xs • element</pre>
    </xs:sequence>
</xs:complexType>
```

```
<!-- SML-SetProcParameter
              (Hier gibt es nur einen Request)
                         name = "SML_SetProcParameter.Req">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element</pre>
                                                                      = "xs:hexBinary"
                                                           minOccurs = "0"/>
                                                                        "xs:hexBinary"
"0"/>
        <xs:element</pre>
                         name = "username"
                                                          minOccurs =
                                                                        "xs:hexBinary"
                         name = "password"
        <xs:element</pre>
                                                           type
                                                          minOccurs = "0"/>
                         name = "parameterTreePath"
name = "parameterTree"
                                                                  = "SML_TreePath"/>
        <xs:element</pre>
                                                           type
        <xs:element</pre>
                                                           type
                                                                      = "SML_Tree"/>
    </xs:sequence>
/xs:complexType>
     <!-- SML-GetList
     <!--
   <xs:complexType</pre>
                         name = "clientId"
name = "serverId"
        <xs:element</pre>
                                                                        "xs:hexBinary"/>
                                                                      = "xs:hexBinary"
        <xs • element</pre>
                                                           type
                                                                        "0" />
                                                           minOccurs
                                                                        "xs:hexBinary"
        <xs:element</pre>
                         name = "username'
                                                           type
                                                                        "0"/>
                                                           minOccurs
        <xs:element</pre>
                         name = "password"
                                                                      = "xs:hexBinary"
                                                           minOccurs = "0"/>
                                                                     = "xs:hexBinary"
                         name = "listName"
        <xs:element</pre>
                                                           type
    </xs:sequence>
</xs:complexType>
                          name = "SML_GetList.Res">
<xs:complexType</pre>
   <xs:sequence>
                                                          type = "xs:hexBinary"
minOccurs = "0"/>
        <xs:element</pre>
                         name = "clientId"
                                                                  = "xs:hexBinary"/>
        <xs:element</pre>
                         name = "serverId"
                                                           type
                                                           type = "xs:hexBinary"
type = "xs:hexBinary"
minOccurs = "0"/>
                         name = "listName"
        <xs:element</pre>
                                                                        "SML_Time'
                         name = "actSensorTime
        <xs:element</pre>
                                                           type
                                                           minOccurs = "0"/>
        <xs:element</pre>
                         name = "valList"
                                                           type
                                                                      = "SML_List"/>
                         name = "listSignature"
                                                                     = "SML_Signature"
        <xs:element</pre>
                                                           minOccurs = "0"/>
                                                                     = "SML_Time"
                         name = "actGatewayTime"
        <xs:element</pre>
                                                           type
                                                           minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
     <!-- SML-Attention
              (Hier gibt es nur eine Response)
                      name = "SML_Attention.Res">
<xs:complexTvpe</pre>
    <xs:sequence>
                         name = "serverId"
name = "attentionNo"
        <xs:element
                                                                     = "xs:hexBinary"/>
= "xs:string"
        <xs:element</pre>
                                                           type
                         name = "attentionMsg"
        <xs • element</pre>
                                                           type
                                                           minOccurs = "0"/>
        <xs:element</pre>
                         name = "attentionDetails"
                                                                        "SML Tree"
                                                           type
    </xs:sequence>
/xs:complexType>
     <!-- SML-Message-Body
    <xs:complexType</pre>
        <xs:element
                                                                type = "xs:hexBinary"/>
type = "xs:unsignedByte"/>
type = "xs:unsignedByte"/>
                         name = "transactionId"
name = "groupNo"
name = "abortOnError"
        <xs • element</pre>
        <xs:element</pre>
        <xs:choice>
```

```
type = "SML_PublicOpen.Res"/>
             <xs:element name = "OpenResponse"</pre>
             <xs:element name = "CloseRequest"</pre>
                                                                type = "SML_PublicClose.Req"/>
type = "SML_PublicClose.Res"/>
             <xs:element name = "CloseResponse"</pre>
             <xs:element name = "GetProfilePackRequest"</pre>
                                                                type = "SML GetProfilePack.Req"/>
                                                                 type = "SML GetProfilePack.Res"/>
             <xs:element name = "GetProfilePackResponse"</pre>
             <xs:element name = "GetProfileListRequest"</pre>
                                                                 type = "SML GetProfileList.Req"/>
                                                                 type = "SML_GetProfileList.Res
             <xs:element name = "GetProfileListResponse"</pre>
                                                                type = "SML_GetProcParameter.Req"/>
type = "SML_GetProcParameter.Res"/>
type = "SML_SetProcParameter.Req"/>
             <xs:element name = "GetProcParameterRequest"</pre>
             <xs:element name = "GetProcParameterResponse"</pre>
             <xs:element name = "SetProcParameterRequest"</pre>
             <xs:element name = "GetListRequest"</pre>
                                                                type = "SML_GetList.Req"/>
             <xs:element name = "GetListResponse"</pre>
                                                                type = "SML GetList.Res"/>
             <xs:element name = "GetCosemRequest"</pre>
                                                                type = "SML_GetCosem.Req"/>
             <xs:element name = "GetCosemResponse"</pre>
                                                                type = "SML_GetCosem.Reg"/>
type = "SML_SetCosem.Reg"/>
type = "SML_SetCosem.Reg"/>
             <xs:element name = "SetCosemRequest"</pre>
             <xs:element name = "SetCosemResponse"</pre>
             <xs:element name = "RunCosemRequest"
<xs:element name = "RunCosemResponse"</pre>
                                                                type = "SML RunCosem.Req"/>
                                                                type = "SML RunCosem.Res"/>
             <xs:element name = "AttentionResponse"</pre>
                                                                        "SML_Attention.Res"/>
        </xs:choice>
    </xs:sequence>
</xs:complexType>
<!-- SML-Datei
    <xs:complexType</pre>
        <xs:element name = "SmlMessage" type = "SML Message"</pre>
                                             maxOccurs = "unbounded"/>
                         minOccurs = "1"
    </xs:sequence>
</xs:complexType>
<!-- XML-Root-Elemente
</xs:choice>
 </xs:complexType>
                         name = "SML XML 1 04">
<xs:element</pre>
    <xs:complexType>
        <xs:sequence>
            <xs:element name = "smlXmlBody" type = "SML_XML_Body_V_1_04"/>
        </xs:sequence>
    </xs:complexType>
</xs:element>
<!-- COSEM-spezifische Datentypen
         - SML-GetCosem
     <!-- .....
    <xs:complexType
        <xs:element name = "clientId"
<xs:element name = "serverId"</pre>
                                                           type = "xs:hexBinary"/>
type = "xs:hexBinary"
                                                           type
                                                           minOccurs = "0" />
                                                          type = "xs:hexBinary"
minOccurs = "0"/>
        <xs:element</pre>
                         name = "username"
                                                                     = "xs:hexBinary"
                         name = "password"
        <xs:element</pre>
                                                           type
                                                           minOccurs = "0"/>
                                                           type = "xs:hexBinary"/>
type = "xs:short"/>
type = "xs:short"/>
type = "SML CosemAttrIndexList"
                       name = "objName"
name = "classId"
name = "classVersion"
        <xs:element</pre>
        <xs:element</pre>
        <xs:element</pre>
                         name = "attributeIndexList"
        <xs:element</pre>
                                                           minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
    <xs:complexType</pre>
        <xs:element name = "clientId"</pre>
                                                                  = "xs:hexBinary"
                                                           minOccurs = "0"/>
                         name = "serverId"
                                                                      = "xs:hexBinary
        <xs:element</pre>
                                                           type
                         name = "objName"
                                                                     = "xs:hexBinary"/>
= "xs:short"/>
        <xs:element</pre>
                                                           type
                         name = "classId"
        <xs:element</pre>
                                                           type
                         name = "classVersion"
                                                                      = "xs:short"/>
        <xs:element</pre>
                                                           type
                         name = "attributeList"
                                                                      = "SML CosemAttrList"/>
         <xs:element</pre>
                                                           type
    </xs:sequence>
```

</xs:complexType>

```
<!-- SML-SetCosem
     <!-- .....
                      name = "SML_SetCosem.Req">
<xs:complexType</pre>
    <xs:sequence>
                        name = "clientId"
name = "serverId"
        <xs:element</pre>
                                                                      = "xs:hexBinary"/>
                                                           type
                                                                     = "xs:hexBinary"
= "0" />
        <xs:element</pre>
                                                           type
                                                          minOccurs
                                                                     = "xs:hexBinary"
                         name = "username"
        <xs:element</pre>
                                                          type
                                                          minOccurs =
                                                                      = "xs:hexBinary"
        <xs:element</pre>
                         name = "password"
                                                           type
                                                          minOccurs = "0"/>
                        name = "objName"
name = "classId"
name = "classVersion"
        <xs:element</pre>
                                                           type
                                                                     = "xs:hexBinary"/>
                                                                     = "xs:short"/>
= "xs:short"/>
= "SML_CosemAttrList"/>
        <xs:element</pre>
        <xs • element</pre>
                                                           type
                         name = "attributeList"
        <xs:element</pre>
                                                          type
    </xs:sequence>
</xs:complexType>
   <xs:complexType</pre>
                                                           type = "xs:hexBinary"
                                                          minOccurs = "0"/>
        <xs:element</pre>
                        name = "serverId"
                                                                 = "xs:hexBinary"/
                                                           type
                                                                     = "xs:hexBinary
= "xs:short"/>
                        name = "objName"
name = "classId"
        <xs:element</pre>
                                                           type
        <xs • element</pre>
                                                           type
                                                                     = "xs:short"/>
= "SML CosemAttrList"
                         name = "classVersion"
        <xs:element</pre>
                                                           type
                        name = "attributeList"
        <xs:element</pre>
                                                           type
    </xs:sequence>
</xs:complexType>
     <!-- SML-RunCosem
     <!--
                       name = "SML_RunCosem.Req">
<xs:complexType</pre>
    <xs:sequence>
<xs:element</pre>
                         name = "clientId"
name = "serverId"
                                                                        "xs:hexBinary"/>
                                                           type
                                                                      = "xs:hexBinary"
                                                           type
                                                           minOccurs = "0" />
                                                                     = "xs:hexBinary"
                         name = "username'
        <xs • element</pre>
                                                          type
                                                          minOccurs = "0"/>
                                                                     = "xs:hexBinary"
        <xs:element</pre>
                         name = "password"
                                                          type
                                                          minOccurs = "0"/>
                                                                  = "xs:hexBinary"/>
        <xs:element</pre>
                         name = "objName"
                                                           type
                                                                   = "xs:short"/>
= "xs:short"/>
= "xs:short"/>
= "xs:byte"/>
= "xs:byte"/>
= "SML_CosemAttrList"
                        name = "classId"
        <xs:element</pre>
                                                          type
                         name = "classVersion"
        <xs:element</pre>
                                                           type
                         name = "serviceIndex"
        <xs:element</pre>
                                                          type
                         name = "attributeList"
        <xs:element</pre>
                                                           type
                                                           minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
                        name = "SML_RunCosem.Res">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element</pre>
                         name = "clientId"
                                                                    = "xs:hexBinary"
                                                           minOccurs = "0"/>
                                                                  = "xs:hexBinary"/
                         name = "serverId"
        <xs 'element</pre>
                                                           type
                         name = "objName"
                                                                     = "xs:hexBinary"/>
        <xs:element</pre>
                                                           type
                                                                   = "xs:short"/>
= "xs:short"/>
                         name = "classId"
        <xs:element</pre>
                                                           type
                         name = "classVersion"
name = "attributeList"
        <xs:element</pre>
                                                           type
                                                                     = "SML_CosemAttrList"
        <xs:element</pre>
                                                           minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
     <!-- COSEM-Attribute
                         name = "SML_CosemAttrIndexList">
itemType = "xs:short"/>
<xs:simpleType
    <xs:list
</xs:simpleType>
<xs:complexType name = "SML_CosemAttrList">
        <xs:element name = "SML_CosemAttr" minOccurs = "0" maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                       name
                                   = "SML CosemAttr">
<xs:complexType</pre>
   <xs:sequence>
       <xs:element name = "attributeIndex" type = "xs:short"/>
```


</xs:schema>

Bild 4: XML-Schema-Datei zur Kodierung von SML per XML.

8 SML-Transport-Protokoll

8.1. Version 1

- Zur Übertragung von SML-Nachrichten über ungesicherte Verbindungen, wie beispielsweise direkte optische Ablesung per MDE vor Ort, Ablesung über PSTN-Modem, GSM-Modem oder vergleichbare Strecken, wird das SML-Transport-Protokoll definiert.
- (151) Es kann ebenfalls bei gesicherten Verbindungen (beispielsweise TCP) angewendet werden.
- (152) Es folgt als Streaming-Protocol dem Ansatz, in den Endgeräten den Datenverkehr ,on the fly' zu kodieren und damit auf den Einsatz umfangreicher Puffer verzichten zu können.
- (153) Das Regelwerk wird wie folgt definiert:

- Beginn, Ende sowie weitere Merkmale einer Nachricht werden über Escape-Sequenzen gekennzeichnet.
- Eine Escape-Sequenz wird mit einer Escape-Zeichenfolge eingeleitet. An diese Escape-Zeichenfolge schließt sich das der Nachricht hinzugefügte Merkmal (Beginn, Ende, ...) an.
- Tritt im Nutzlastdatenstrom selbst die Escape-Zeichenfolge an beliebiger Stelle auf, wird diese selbst als Escape-Sequenz übertragen. In diesem Fall ist das der Nachricht hinzugefügte Merkmal die Escape-Zeichenfolge (sie wird damit zweimal nacheinander übertragen).
- Die Anzahl der Bytes im Nutzlastdatenstrom wird am Ende immer auf eine restfrei durch die Anzahl der Bytes der Escape-Zeichenfolge teilbare Menge erweitert¹¹. Zur Erweiterung werden jeweils Bytes mit dem Inhalt ,00' (hex) verwendet.
- (154) Als Escape-Zeichenfolge wird die Byte-Kette ,1b 1b 1b 1b (Angabe in hex.) festgelegt.
- (155) Folgende Escape-Merkmale sind definiert:

Pos.	Escape-Merkmal (Angabe in hex)	Bedeutung / Hinweis
1	1b 1b 1b 1b	Kennzeichnet den Fall, dass die Escape-Sequenz selbst im Nutzdatenstrom enthalten ist.
2	01 01 01 01	Leitet Übertragung der Version 1 als Datenstrom ein.
		Kennzeichnet das Merkmal ,Beginn einer Nachricht'.
3	02 TT UU VV	Leitet Übertragung der Version 2 mit Blocktransfer ein, siehe Kapitel 8.2.
4	03 00 RR RR	Wird nur in Zusammenhang mit der Version 2 verwendet, und legt das zu verwendende Timeout fest, siehe Kapitel 8.2.
5	04 00 SS SS	Wird nur in Zusammenhang mit der Version 2 verwendet, und legt die zu verwendende Blocksize fest, siehe Kapitel 8.2.
6	1a XX YY ZZ	Kennzeichnet das Merkmal ,Ende einer Nachricht'.
		,XX' ⇔ Kann Werte des Bereichs ,00', ,01', ,02' oder ,03' annehmen und liefert die Anzahl von Bytes, die am Ende der Nutzlast angefügt worden sind, um die Anzahl der Bytes der Nutzlast restfrei durch die Anzahl der Bytes einer Escape-Zeichenfolge teilen zu können.
		,YY ZZ' ⇔ Kann Werte im Bereich ,00FF' annehmen und enthält die Prüfsumme über die ganze Nachricht. YY ist dabei das Most Significant Byte und ZZ das Least Significant Byte der Prüfsumme.
7	Alle anderen Kombinationen	Reserviert für künftige Erweiterungen.

¹¹ Da die Escape-Zeichenfolge aus 4 Bytes besteht, wird die Anzahl der Bytes der Nutzlast ebenfalls immer so erweitert, dass eine Division modulo 4 genau 0 liefert. Damit muss der Absender entweder kein Byte, oder ein, zwei oder drei Bytes anfügen.

EMSYCON GmbH, Dr. M. Wisy,

_

- Tab. 7: Escape-Merkmale zum SML-Transport-Protokoll.
- Die Prüfsumme ist nach CCITT-CRC16 zu berechnen. Sie wird über alle Bytes des Datenstroms im SML-Transportprotokoll mit Ausnahme der letzten beiden Bytes (und damit ohne die Bytes der Prüfsumme selber) berechnet.
- (157) Die Berechnung erfolgt gemäß DIN EN 62056-46.
- (158) Erfolgt die Datenbeschaffung über TCP- oder UDP-Verbindungen, wird das SML-Transport-Protokoll zur Kennzeichnung zusammenhängender SML-Dateien verwendet.

8.2. Version 2

- Zur Übertragung von SML-Dateien über ungesicherte Halbduplex-Verbindungen kann das SML-Transport-Protokoll der Version 2 verwendet werden. Dieses bietet einen simplen Mechanismus zur Fluss-Steuerung, so dass der Sender seine Ausgaben an die Anfordernisse von möglicherweise mit wenig Ressourcen ausgestattete Clients anpassen kann.
- (160) Das SML-Transport-Protokoll der Version 2 ist damit ebenfalls anzuwenden, wenn SML-Dateien über optischen Strecken, vergleichbar DIN EN 62056-21 zu übertragen sind.
- Das zur Lösung dieser Anforderungen realisierte Konzept teilt die zu übertragende SML-Datei in Blöcke auf und verwendet Timeouts zum Restart bei Fehlern. Sowohl die Blockgröße als auch die Timeouts werden bei Beginn der Übertragung zwischen Sender und Empfänger ausgehandelt. Als Timeout und minimale Blockgröße für das Aushandeln werden verwendet:

Inital zu verwendendes Timeout: 5 s; Initial zu verwendende minimale Blockgröße: 32 Bytes.

- (162) Die Version 2 verwendet drei gegenüber der Version 1 zusätzlich definierte ESC-Sequenzen.
 - 8.2.1. Einleitung der Übertragung nach Version 2
- Zur Unterscheidung der Version 2 des SML-Transport-Protokolls von der Version 1
 (siehe Kapitel 8.1) wird als Einleitung die Sequence
 1b 1b 1b 02 TT UU VV

verwendet (alle Angaben in hex, siehe Tab. 7).

Die Elemente "TT UU VV" dienen dabei Kennzeichnung von Blöcken, und SML-Dateien.

8.2.1.1. Kennzeichnung von Blöcken

- (165) Blöcke werden per Element "TT", siehe Tab. 7, gekennzeichnet. Die Kennzeichnung verwendet folgende Merkmale:
 - Bit 7, MSB: 0 ⇔ Sendeblock,

1 ⇔ Empfangen als ACK;

Bit 6: 0 ⇔ weitere Blöcke folgen,

1 ⇔ letzter Block der SML-Datei.

• Bit 5 ... Bit 0, LSB: Blocknummer,

beginnend mit 0x00, rollierend bei 0x3F auf 0x01.

8.2.1.2. Kennzeichnung von SML-Dateien

- (166) SML-Dateien werden per Element "UU", siehe Tab. 7, gekennzeichnet. Die Kennzeichnung verwendet folgende Merkmale:
 - Die erste über die Strecke zu übertragende SML-Datei erhält die Kennzeichnung ,0x00';
 - Mit jeder weiteren über die Strecke zu übertragenden SML-Datei wird das Merkmal um eins inkrementiert;
 - Wird der Wert ,0xFF' erreicht, ist danach wieder mit ,0x00' zu beginnen.

8.2.1.3. Merkmal ,VV'

Das Element "VV", siehe Tab. 7, ist für künftige Erweiterungen reserviert und immer auf "0x01' zu setzen.

8.2.2. Vereinbarung des zu verwendenden Timeouts

(168) Mit Beginn einer Übertragung schlägt der Sender das zu verwendende Timeout vor. Er verwendet dazu eine ESC-Sequenz der Art

1b 1b 1b 1b 03 00 RR RR

wobei per "RR RR" das von ihm vorgeschlagene Timeout in "ms' anzugeben ist.

(169) Das Timeout ist in der Form

1b 1b 1b 1b 03 00 High-Byte Low-Byte

in die ESC-Sequenz einzutragen.

(170) Der Empfänger beantwortet diese ESC-Sequenz mit dem von ihm tatsächlich gewählten Timeout, wobei er nur denselben oder einen größeren Zahlenwert wählen darf. Der Sender hat das vom Empfänger abschließend festgelegte Timeout zu verwenden.

8.2.2.1. Vereinbarung der maximal zulässigen Blocksize

(171) Mit Beginn einer Übertragung schlägt der Sender die maximal zulässige Blocksize vor. Er verwendet dazu eine ESC-Sequenz der Art

1b 1b 1b 1b 04 00 SS SS

wobei per "SS SS" die von ihm vorgeschlagene Blocksize in 'Byte' anzugeben ist.

(172) Die Blocksize ist in der Form

1b 1b 1b 1b 04 00 High-Byte Low-Byte

in die ESC-Sequenz einzutragen.

(173) Der Empfänger beantwortet diese ESC-Sequenz mit der von ihm tatsächlich gewählten Blocksize, wobei er nur denselben oder einen kleineren Zahlenwert

EMSYCON GmbH, Dr. M. Wisy, Seite 54/56

wählen darf. Der Sender hat die vom Empfänger abschließend festgelegte Blocksize zu verwenden.

8.2.3. Prozess zum Aufbau der Übertragung

(174) Eine Übertragung nach Version 2 wird durch folgenden Prozess eingeleitet:

• Der Sender versendet den ersten Datenblock, der exakt wie folgt aufzubauen ist:

```
1b 1b 1b 02 00 UU VV
1b 1b 1b 1b 03 00 RR RR (mit RR RR proposed timeout in ms)
1b 1b 1b 1b 04 00 SS SS (mit SS SS proposed block size in Byte)
1b 1b 1b 1b 1a xx yy zz
```

Der Empfänger quittiert diesen ersten Datenblock:

```
1b 1b 1b 02 80 UU VV
1b 1b 1b 1b 03 00 rr rr (mit rr rr confirmed timeout in ms)
1b 1b 1b 1b 04 00 ss ss (mit ss ss confirmed block size in Byte)
1b 1b 1b 1a xx yy zz
```

8.2.4. Prozess zum Ablauf einer Übertragung

- Eine Übertragung nach Version 2 wird wie vorstehend beschrieben eingeleitet und arbeitet danach als "Ping-Pong" von gesendeten und quittierten Datenblöcken.
- Der Zustandsautomat fällt mit einfachem Timeout an den Beginn des aktuellen Übertragungsschritts zurück, falls er keine Rückmeldung auf den zuletzt versendeten Block erhält.
- (177) Bei Fehlern ist nach doppeltem Timeout die komplette Dateiübertragung zu wiederholen.
 - 8.2.5. Beispiel zum Ablauf des Übertragungsvorgangs nach Version 2
- (178) Als Beispiel eines Übertragungsvorgangs kann nachstehender Ablauf angesehen werden:
 - Start der Übertragung mit:

```
1b 1b 1b 02 00 UU VV
1b 1b 1b 1b 03 00 RR RR (mit RR RR proposed timeout in ms)
1b 1b 1b 1b 04 00 SS SS (mit SS SS proposed block size in Byte)
1b 1b 1b 1b 1a xx yy zz
```

- Wird der Start der Übertragung nicht korrekt dekodiert / empfangen, erfolgt keine Reaktion durch den Empfänger. Der Sender muss den Beginn der Übertragung erneut einleiten.
- Übertragung confirmed mit:

```
1b 1b 1b 02 80 UU VV
1b 1b 1b 1b 03 00 rr rr (mit rr rr confirmed timeout in ms)
1b 1b 1b 1b 04 00 ss ss (mit ss ss confirmed block size in Byte)
1b 1b 1b 1a xx yy zz
```

EMSYCON GmbH, Dr. M. Wisy, Seite 55/56

Erste Nutzlast senden mit:

1b 1b 1b 1b 02 01 UU VV

Nutzlast

1b 1b 1b 1b 1a xx yy zz

Erste Nutzlast bestätigen mit ACK:

1b 1b 1b 1b 02 81 UU VV

1b 1b 1b 1b 1a xx yy zz

Erste Nutzlast abweisen mit NAK:

1b 1b 1b 1b 02 80 UU VV

(mit "alter" Blocknummer in 0x80)

1b 1b 1b 1b 1a xx yy zz

• Zweite Nutzlast senden mit:

1b 1b 1b 1b 02 02 UU VV

Nutzlast

1b 1b 1b 1b 1a xx yy zz

Zweite Nutzlast bestätigen mit ACK:

1b 1b 1b 1b 02 82 UU VV

1b 1b 1b 1b 1a xx yy zz

Zweite Nutzlast abweisen mit NAK:

1b 1b 1b 1b 02 81 UU VV

(mit "alter" Blocknummer in 0x81)

1b 1b 1b 1b 1a xx yy zz

Dritte und letzte Nutzlast senden mit:

1b 1b 1b 1b 02 43 UU VV

Nutzlast

1b 1b 1b 1b 1a xx yy zz

Dritte und letzte Nutzlast bestätigen mit ACK:

1b 1b 1b 1b 02 C3 UU VV

1b 1b 1b 1b 1a xx yy zz

• Dritte und letzte Nutzlast abweisen mit NAK:

1b 1b 1b 1b 02 82 UU VV

(mit "alter" Blocknummer in 0x81)

1b 1b 1b 1b 1a xx yy zz