Técnicas para Programação Competitiva Paradigmas de Resolução de Problemas

Prof. Andrei Braga

Conteúdo

- Divisão e conquista
- Algoritmos gulosos
- Referências

Motivação

- Vamos estudar paradigmas de resolução de problemas comumente utilizados para tratar problemas de competições de programação
- Para ter sucesso em competições de programação, precisamos ter um bom domínio sobre estes paradigmas, sabendo usar a opção apropriada para o problema em questão

Divisão e conquista

- Divisão e conquista é um método de resolução de problemas que executa os três seguintes passos:
 - 1. Divida o problema em um ou mais subproblemas menores os subproblemas são instâncias menores do mesmo problema (**divisão**)
 - 2. Resolva os subproblemas (**conquista**)
 - Combine (se necessário) as soluções dos subproblemas para formar uma solução para o problema original
- Um exemplo típico de um algoritmo que segue a estratégia de divisão e conquista é o mergesort

Mergesort – divisão e conquista

- O mergesort é um algoritmo que
 - or recebe como entrada um vetor vet e dois índices i e f tal que $i \le f$ e
 - ordena os elementos da parte vet[i..f] deste vetor, ou seja, a parte que consiste no elemento de índice *i* até o elemento de índice *f* do vetor
- Este algoritmo executa os três seguintes passos:
 - 1. Calcule m = L(i + f) / 2J e divida a parte vet[i..f] a ser ordenada em duas subpartes vet[i..m] e vet[m+1..f] a serem ordenadas (**divisão**)
 - 2. Ordene recursivamente as subpartes vet[i..m] e vet[m+1..f] (conquista)
 - Combine as subpartes vet[i..m] e vet[m+1..f] já ordenadas para obter a parte vet[i..f] ordenada

Mergesort – divisão e conquista

- Este algoritmo executa os três seguintes passos:
 - 1. Calcule m = L(i + f) / 2J e divida a parte vet[i...f] a ser ordenada em duas subpartes vet[i...m] e vet[m+1...f] a serem ordenadas (**divisão**)
 - 2. Ordene recursivamente as subpartes vet[i..m] e vet[m+1..f] (conquista)
 - Combine as subpartes vet[i..m] e vet[m+1..f] já ordenadas para obter a parte vet[i..f] ordenada

Mergesort – divisão e conquista

- O mergesort é um algoritmo que
 - o recebe como entrada um vetor vet e dois índices i e f tal que $i \le f$ e
 - ordena os elementos da parte vet[i..f] deste vetor, ou seja, a parte que consiste no elemento de índice *i* até o elemento de índice *f* do vetor
- Este algoritmo executa os três quatro seguintes passos:
 - 1. Se *i* == *f*, então não faça nada, pois a parte vet[i..f] contém um elemento só e, portanto, já está ordenada
 - 2. Calcule m = L(i + f) / 2J e divida a parte vet[i...f] a ser ordenada em duas subpartes vet[i..m] e vet[m+1...f] a serem ordenadas (**divisão**)
 - 3. Ordene recursivamente as subpartes vet[i..m] e vet[m+1..f] (conquista)
 - 4. Combine as subpartes vet[i..m] e vet[m+1..f] já ordenadas para obter a parte vet[i..f] ordenada

Problemas de Otimização

- Um problema de otimização é um problema tal que
 - o cada **solução** para o problema tem um **valor** associado e
 - o objetivo é encontrar uma solução de valor ótimo valor mínimo ou valor máximo – ou apenas este valor ótimo
- Também chamamos uma solução de valor ótimo de solução ótima
- Um problema de otimização pode ter mais de uma solução ótima por isso, usamos o termo *uma* solução ótima, em vez de a solução ótima, para o problema

Problemas de Otimização

- Um problema de otimização é um problema tal que
 - cada solução para o problema tem um valor associado e
 - o objetivo é encontrar uma solução de valor ótimo valor mínimo ou valor máximo – ou apenas este valor ótimo
- Exemplo:

Problema da Mochila: Dado um conjunto de itens com seus valores e pesos, qual é o maior valor total de itens que um ladrão consegue carregar em sua mochila (sem ultrapassar a capacidade de peso da mochila)?

Problemas de Otimização

- Um algoritmo para resolver um problema de otimização geralmente realiza uma sequência de passos, a cada passo fazendo uma ou mais escolhas
- Algoritmos deste tipo podem ser classificados em categorias bastante conhecidas
- Duas destas categorias são algoritmos gulosos e algoritmos de programação dinâmica

- Um algoritmo para resolver um problema de otimização geralmente realiza uma sequência de passos, a cada passo fazendo uma ou mais escolhas
- Um algoritmo guloso faz, a cada passo, uma escolha que parece a melhor possível no momento
- Em outras palavras, um algoritmo guloso sempre faz uma escolha localmente ótima com a esperança de que esta escolha leve a uma solução globalmente ótima
- Em muitos casos, não é possível resolver o problema através de um algoritmo guloso!

 Problema: Dados um valor n em centavos e moedas de 50, 10, 5 e 1 centavo, determine o menor número possível de moedas tal que a soma das moedas seja n. Não há restrições quanto a usar várias moedas de um mesmo valor.

Algoritmo guloso:
 MinNumMoedas(n)

- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- 4. Retorne (1 + MinNumMoedas(n c))

 Problema: Dados um valor n em centavos e moedas de 50, 10, 5 e 1 centavo, determine o menor número possível de moedas tal que a soma das moedas seja n. Não há restrições quanto a usar várias moedas de um mesmo valor.

Algoritmo guloso:

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- 4. Retorne (1 + MinNumMoedas(n c))

- Problema: Dados um valor n em centavos e moedas de 50, 10, 5 e 1 centavo, determine o menor número possível de moedas tal que a soma das moedas seja n. Não há restrições quanto a usar várias moedas de um mesmo valor.
- Algoritmo guloso (iterativo):
 - MinNumMoedas(n)
 - 1. $num_moedas = 0$
 - 2. Enquanto n != 0:
 - 3. Escolha uma moeda de maior valor c tal que $c \le n$
 - 4. num_moedas = num_moedas + 1
 - 5. n = n c
 - 6. Retorne num moedas

- Para que seja possível de resolver através de um algoritmo guloso, um problema deve ter duas propriedades:
 - Propriedade da subestrutura ótima:

 Uma solução ótima para o problema contém soluções ótimas para subproblemas

- Propriedade da escolha gulosa:
 - Podemos fazer uma escolha que pareça a melhor possível no momento sem ter que considerar resultados de subproblemas Em outras palavras, podemos obter uma solução globalmente ótima fazendo escolhas localmente ótimas

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- 4. Retorne (1 + MinNumMoedas(*n c*))

- Passos para construir um algoritmo guloso para um problema:
 - Reconfigure o problema como um problema onde, após feita uma escolha gulosa, exista um subproblema a ser resolvido
 - 2. Prove que sempre existe uma solução ótima para o problema que satisfaça à escolha gulosa
 - 3. Prove que, após feita a escolha gulosa, é possível combinar
 - uma solução ótima para o subproblema a ser resolvido com
 - a escolha gulosa

e obter uma solução ótima para o problema

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- Retorne (1 + MinNumMoedas(n - c))

- Em uma competição, não vale a pena fazer as provas dos itens 2 e 3 acima!
- Mas devemos nos convencer de que as condiçes destes itens são válidas

- Passos para construir um algoritmo guloso para um problema:
 - Prove que sempre existe uma solução ótima para o problema que satisfaça à escolha gulosa
- A seguir, vamos fazer a prova do item 2 acima

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- 4. Retorne (1 + MinNumMoedas(*n c*))

- Seja $c_1 = 1$, $c_2 = 5$, $c_3 = 10$, $c_4 = 50$
- Considere que uma solução ótima para o problema é uma coleção com o menor número possível de moedas tal que a soma das moedas seja n
 - \circ Exemplo: Para n = 67, a coleção (50, 10, 5, 1, 1) é uma solução ótima
- **Observação 1:** Uma solução ótima contém menos que c_{i+1} / c_i moedas de valor c_i para qualquer i = 1, 2, 3
- Prova:
 - O Note que $(c_{i+1} / c_i) \times c_i = c_{i+1}$
 - Se uma solução ótima contivesse c_{i+1} / c_i moedas de valor c_i , poderíamos trocar estas moedas por uma única moeda de valor c_{i+1} e obter uma solução com menor número de moedas; isto seria uma contradição \Box

Observação 2: Se uma solução ótima não contém nenhuma moeda de valor
 c_i ou maior, então o seu valor total é no máximo c_i - 1

Prova:

- O máximo valor total de uma solução ótima deste tipo é atingido quando a solução contém o maior número possível de moedas de valor c_i para todo i < j
- \circ Pela Observação 1, este número é (c_{i+1} / c_i 1) para todo i < j
- Neste caso, o valor total da solução é

$$(c_2/c_1-1) \times c_1 + (c_3/c_2-1) \times c_2 + \dots + (c_j/c_{j-1}-1) \times c_{j-1}$$

$$\circ = (c_2 - c_1) + (c_3 - c_2) + \dots + (c_i - c_{i-1})$$

$$\circ = c_i - 1 \quad \Box$$

- Passos para construir um algoritmo guloso para um problema:
 - Prove que sempre existe uma solução ótima para o problema que satisfaça à escolha gulosa

• Prova:

- Seja c_i o maior valor de moeda tal que $c_i \le n$
- Considere uma solução ótima para o problema
- Note que esta solução não pode conter uma moeda de valor maior que c_j (caso contrário, o valor total da solução seria maior que n)
- \circ Pela Observação 2, se esta solução não contivesse uma moeda de valor c_j , então o seu valor total seria no máximo c_i 1 < n; isto seria uma contradição
- \circ Portanto, toda solução ótima para o problema contém c_{j}^{-} \Box

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- Retorne (1 + MinNumMoedas(n - c))

- Problema (versão diferente): Dados um valor n em centavos e moedas de 4, 3 e 1 centavo (suponha que estas moedas existem ⊕), determine o menor número possível de moedas tal que a soma das moedas seja n. Não há restrições quanto a usar várias moedas de um mesmo valor.
- O algoritmo guloso anterior resolve o problema?

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- Retorne (1 + MinNumMoedas(n - c))

- Problema (versão diferente): Dados um valor n em centavos e moedas de 4, 3 e 1 centavo (suponha que estas moedas existem ⊕), determine o menor número possível de moedas tal que a soma das moedas seja n. Não há restrições quanto a usar várias moedas de um mesmo valor.
- O algoritmo guloso anterior resolve o problema?
 Não!
 - Se n = 6, a solução (3, 3) com 2 moedas é ótima e o algoritmo retorna 3
- A diferença é que, para os valores de moeda 4, 3 e 1,
 não é verdade que cada valor é divisível pelo valor
 imediatamente menor

- 1. Se n == 0:
- 2. Retorne 0
- 3. Escolha uma moeda de maior valor c tal que $c \le n$
- 4. Retorne (1 + MinNumMoedas(*n c*))

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Capítulo 15 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 4th. ed. MIT Press, 2022.
 - Capítulo 3 do livro HALIM, S.; HALIM, F.; EFFENDY, S. Competitive Programming 4: The Lower Bound of Programming Contests in the 2020s, book 1, chs. 1-4. Lulu, 2018.
 - Capítulo 6 do livro
 LAAKSONEN, A. Guide to Competitive Programming: Learning and Improving Algorithms Through Contests, 2. ed. Springer, 2020.