UNIVERSITY OF TORONTO

Faculty of Applied Science and Engineering

Final Examination, April 1995

First Year - Programs

CHE112S-CHEMISTRY

Examiners: B. Saville and Staff

DATA:

 $R = 8.314 \text{ kPa L mol}^{-1} \text{ K}^{-1} \text{ or Pa m3 mol}^{-1} \text{ K}^{-1} \text{ or J mol}^{-1} \text{ K}^{-1}$

 $\frac{RT}{nF}\ln Q = \frac{0.059}{n}\log Q \text{ at } 25^{\circ}C$

 $F = 96485 \text{ Coul/mol e}^{-1}$

- 1. (a) Sulfur dioxide (SO₂) occurs in polluted air. [i] What are the principal sources of atmospheric SO₂? [ii] What harmful effects does SO₂ in the atmosphere cause?
- (b) The exhaust gas from a combustion process contains some SO₂. A sample of this exhaust gas, having a volume of 10.00 L measured at 99.5 kPa and at 22.8°C, is passed through an aqueous solution of volume 185 mL, which absorbs all the SO₂ from the sample. A standard solution of potassium permanganate (KmnO₄) is made by dissolving 1.250 g KmnO₄ in water to make 1.000 L of solution. The solution containing the SO₂ is then titrated with the standard KMnO₄ solution. 18.26 mL of the KMnO₄ solution are needed to oxidize all the SO₂, according to the equation

$$5 \text{ SO}_2 + 2 \text{ MnO}_4^- + 2 \text{H}_2 \text{O} = 5 \text{SO}_4^{2-} + 2 \text{Mn}^{2+} + 4 \text{H}^+.$$

How many parts per million of SO₂ (by volume) did the exhaust gas contain?

Atomic masses In g/mol: H 1.008, O 16.00, S 32.07, K 39.10, Mn 54.94

2. The composition of dry air In mol % is 78.04% N₂, 20.99% O₂, 0.937% argon and other noble gases, and 0.033% CO₂. A system for separation and purification of gases takes In 5.000 m³ of dry air, measured at 103.0 kPa and at 18.0°C. It recovers 99.99% of the nitrogen as pure N₂ and 99.98% of the oxygen as pure Os. The remainder of the air is discharged as byproduct gas at 97.0 kPa and at 40.0°C. [i] What is the volume of this byproduct gas? [ii] How many moles of argon and other noble gases does it contain? [iii] What Is the partial pressure of CO₂ in it?

- 3. It is desired to manufacture MgO by heating and decomposing one of two magnesium salts, MgCO₃ to release CO₂, or Mg(OH)₂ to release H₂O. Given the thermodynamic data below answer the following:
- (a) Write the stoichiometric equations and calculate ΔH (or each decomposition process at 25°C (kJ/mol salt). Are they endo or exothermic?
- (b) Will any of these reactions proceed spontaneously at 25°C under standard conditions?
- (c) At what approximate temperature (°C) will each reaction just proceed spontaneously under standard conditions?
- (d) In your opinion, which is the preferred process? Why?

Data at 25°C	ΔH_f° (kJ/mol)	$S^{\circ}(J/mol/K)$
$MgCO_{3(s)}$	-1113	66
$Mg(OH)_{2 (s)}$	-925	61
MgO (s)	-602	27
$CO_{2(g)}$	-394	214
$H_2O_{(g)}$	-242	189

- 4. A chemical of formula C_8H_{10} is used as a jet fuel yielding CO_2 , and H_2O gases as combustion products. Assuming that the pressure is constant at 101.3 kPa and that the gases are ideal:
- (a) What is the stoichiometric equation for reaction with oxygen and, what is the heat of combustion (kJ/mol) of the fuel from both its liquid and vapour states at 25°C?
- (b) How much heat is required (kJ) to convert 1 mol of fuel from liquid state at 10°C to vapour state at 225°C?
- (c) What are $\Delta(PV)$ and $\Delta(internal\ energy)$ (I.e., ΔE or All] (kJ/mol) for combustion of the vapour in (a) above?

Data	ΔH _f ° kJ/mol	C _f J/mol K
at 25°C		
$C_8H_{10}(g)$	19	129
$C_8H_{10}(1)$	-24	184
$CO_2(g)$	-394	34
$H_2O(g)$	-242	36
$O_2(g)$	-	29

- 5. (a) Calculate the pH of a 0.15M solution of NH₄Cl in water.
- (b) How many mg of solid NaOH must be added to 100.0 mL of the solution in part(a) to raise its pH to 9.50?

Given: K_b of $NH_3 = 1.8 \times 10^{-5}$; $K_w = 1.0 \times 10^{-4}$; MW of NaOH = 40.0 g/mol.

6. A quantity of phosgene gas (COCI₂) was placed in an evacuated, sealed container and heated to 724 K until the following reaction had reached equilibrium:

$$COCI_2(g) \leq > CO(g) + Cl_2(g)$$

If the total pressure at equilibrium was one bar, and the density of the gas was 1.16 g/L at equilibrium, determine:

- (a) the equilibrium constant for the reaction, assuming Ideal gas behavior
- (b) the percentage dissociation of phosgene under these conditions
- (c) if the above system, at equilibrium, is compressed to a pressure of 2 bar at a constant temperature, and allowed to re-equilibrate, will the gas density be greater than or less than 2.32 g/L (i.e. twice the original value)? Explain your answer.

Data: Atomic masses in g/mol: C 12.01; O 16.00; Cl 35.45

- 7. Given an electrochemical cell consisting of Cr/Cr^{3+} and Zn/Zn^{2+} half cells where E° (Cr^{3+}/Cr) = -0.744V and e° (Zn^{2+}/Zn) = -0.762V
- (a) Assuming standard conditions,
- (i) write the equations describing the reactions at the anode and at the cathode (clearly label which one is for the anode and which for the cathode in this galvanic cell). State the direction of current flow in the external circuit.
- (ii) write the equation describing the whole cell
- (b) calculate the cell emf at 25°C for

$$[Zn^{2+}] = 0.0090 \text{ M}, \text{ and } [Cr^{3+}] = 0.0070 \text{ M}.$$

- 8. a) A solution of glucose in water freezes at -1°C. What is the vapor pressure of this solution at 100° C? The molal freezing point constant for water, K_f , is 1.85° C/molal. Assume that there is 1 kg of solvent present.
- b) What mass of NaCl must be added to 1 kg of water to produce an aqueous solution which freezes at -1°C?

Data: MW glucose = 180g/mol MW NaCl = 58 g/mol