

Process Modelling at Purac

Gerard van Bochove

Advanced Process Modelling Forum 2013

London, 18 April 2013

Outline

Purac profile

- Part of Dutch multinational CSM
- Focus on:
 - Natural food preservation
 - Biobased building blocks & chemicals
 - Monomers for bioplastics
- Long history of development, production and marketing of natural lactic acid based chemicals
- Increasing range of bio-based products
- Cooperation with BASF on succinic acid

Purac around the globe:

Purac's product portfolio

Food market:

- Natural preservation solutions
- Taste & Nutrition solutions

Chemical & Pharma markets:

- Lactic acid, Lactides and Lactic acid derivatives
- Biobased building blocks (Succinic Acid, ..)

Polylactic acid markets:

- L-Lactide monomers for PLA based bioplastics
- D-Lactide monomers for PLA based bioplastics

Medical markets:

- Lactide, glycolide and caprolactone monomers
- Polymers for medical devices and drug delivery

Purac's 'pure by nature' concept

Raw materials from nature

Processes at mild conditions

Products compatible with nature

- Beet sugar
- Cane sugar
- Corn starch
- Tapioca starch
- Fermentation
- Crystallization
- Filtration
- Evaporation
- Environmentally friendly
- Biodegradable
- Low CO₂ footprint

Why we need process modelling...

Place and Scope of Modelling

Why the choice of a modelling platform is not so trivial..

- Products and impurities at Purac are not so common in physical property databases
- Combination of solid, liquid and vapour phases in one process or unit operation
- Unit operations that are less common to chemical industry
- ... and covering a wide range: from fermentation to lactide polymerization, from batch to continuous

A platform is needed that allows easy use of

- inhouse databases and model libraries
- steady-state and dynamic simulations
- custom modelling and flowsheeting:

History of gPROMS @ Purac

2006	First evaluation of gPROMS
2006-2008	Dynamic gPROMS model to design lactide synthesis process with complex kinetics and phase equilibria (APMF 2008)
2009-2010	Dynamic gPROMS model for polymerization of lactide to PLA (APMF 2010)
2011	Lactide and PLA plants designed in gPROMS start up successfully!
From 2010	Development of in-house library and in-house physical property databases for flowsheeting. All new R&D projects use gPROMS
From 2012	Engineering uses gPROMS for next generation plants
2013-	Promote use of gPROMS in Operations

Implementation of process modelling

If we want people from R&D to operations to use gPROMS, we need at least to....

- Make sure relevant components, properties and thermodynamics are present
- Provide a model library that
 - Matches with the unit operations present at Purac
 - Contains specific settings and inputs for Purac
 - Has dedicated help and documentation
- Provide training adjusted to specific Purac problems using these libraries and databases
 - Custom modelling training (R&D)
 - Flowsheeting (R&D, Operations)

Purac Model Library

- Dedicated library of models for Purac's most important unit operations, properties and kinetics
- Collection of unit operation models for detailed modelling or flowsheeting:
 - Wide range of models: Fermentation, oligomerisation, evaporation, polymerization, crystallization, COD-/pH, recycle breaker, etc
 - Different levels of detail or operation modes
- Easy to use for non-experts in gPROMS
 - Dialogue boxes offer selection of predefined settings and properties
 - Provided with links to documentation and starting-values
 - Ready for drag-and-drop flowsheet modeling
- Starting point for model development by experts

Purac Model Library (Features)

- Provides framework for cost calculations and economic optimization
 - Cost of consumptions and waste streams
 - Utility calculation in unit operation models
 - Calculations for sizing of equipment
- Export of stream reports to Excel
 - Our wish: Better stream tables with labels in Modelbuilder
- Separate component list for solid components
 - Excluded from flash calculations
 - Facilitating solid-liquid separating unit operations
- Predefined solubilities for a number of components
 - Planned for this year: electrolyte chemistry

Example: Fermentation

- Two versions:
 - 1. Steady-state flowsheeting, less detail but with economy
 - Dynamic, standalone with Excel interface, high detail
- Includes:
 - 1. Formation of product e.g. lactic acid, succinic acid;
 - 2. Formation of impurities/ by-products e.g. biomass
 - 3. Neutralization of organic acids if applicable
 - 4. Other reactions, checks on solubilities

Features:

- Predefined sets of inputs for different fermentations
- Calculates consumptions
 - Agitation (electricity)
 - Temperature profile (energy)
 - Nutrients (costs)
- Links to intranet documents

Complex flowsheets

- Biggest challenge: getting a robust and fast converging model that is easy to use
- Library uses dynamics to close recycles and set difficult specifications
- Use of multiple component lists/property sets
- Flowsheet model can be run per section

Example Flowsheet modelling

End 2012/early 2013 existing lactic acid plant model was converted to gPROMS

- Together with PSE consultancy
- Based on inhouse libraries and databases
- Matching PFD's
- >75000 model equations, >150000 variables
- Runs (but speed needs to be improved)

Example Flowsheet modelling

End 2012/early 2013 existing lactic acid plant model was converted to gPROMS

- Together with PSE consultancy
- Based on inhouse libraries and databases

Implementation of process modelling

If we want people from R&D to operations to use gPROMS, we need at least to....

- Make sure relevant components, properties and thermodynamics are present and correct
- Provide a model library that
 - Matches with the unit operations present at Purac
 - Contains specific settings and inputs for Purac
 - Has dedicated help and documentation
- Provide training adjusted to specific Purac problems using these libraries and databases
 - Custom modelling training (R&D)
 - Flowsheeting (R&D, Operations)

Physical property packages

- Cape-Open connection to Aspen Properties or another physical property package
 - + Easiest to implement
 - Too slow, not always robust
- IPPFO (ideal)
 - Limited capacity and possibilities
- Multiflash
 - Limited database, limited visualization
 - Most integrated of all existing physical property packages
- Own physical property package
 - H Maximal fit to needs
 - Labour intensive

Physical properties: Multiflash

Multiflash:

- Most integrated of all existing physical properties and further integration in gPROMS promised by PSE
- Supposed to give most robust and stable simulation because analytical derivatives are sent to gPROMS
- Possibilities to set up inhouse databases for pure and binary component properties
- Actions that were needed:
 - ✓ Setup inhouse databases for pure components, pseudo components and solid properties and NRTL parameters
 - ✓ Salts added both as solid and as dissolved components to database with different physical properties
 - ✓ Stability issues with strongly nonideal systems with solids present solved with support Infochem and PSE
 - ✓ Excel interfaces to facilitate visualization of physical properties by non-experts

Status of gPROMS implementation

R&D Minimal modeling Technology/Business/Economic Fit Idea Flowsheeting for alternative screening Existing model blocks, splitters Available physical properties, constant K Flowsheeting for conceptual design • Improved model blocks/flow sheets Dedicated physical property models Detailed flowsheets Detailed unit operation models Dynamic modeling (reactions, start-up) **Engineering & Process Optimization** Training & Education **OPS** Model validation **Plant**

Almost ready!

Recommendations to PSE

- More support, training and documentation on convergence and robustness
- Improve error diagnosis in execution output
 - E.g. physical properties
- Improve user-friendliness for engineering
 - Units
 - Stream tables and labels
- Improve optimization capabilities
 - For example intrinsic tasks should not be ignored by parameter estimation or optimization
-

But maybe this has already been dealt with in gPROMS 4.....

Conclusions

- gPROMS can be used from idea fit, conceptual process design, to engineering and optimization
 - ... for batch and continuous processes
 - ... for custom modelling by experts
- if you invest time in library development and physical property databases
- and involve people from all of the organisation

Purac's strategy aims for many new products, processes and plants:

Process modelling will make the difference!

