Sample Midterm Solutions

$\underline{\text{Problem 1}}$

(a)

$$\begin{aligned} x_2'x_0'(x_3+x_3')(x_1+x_1') + x_1'x_0(x_2+x_2')(x_3+x_3') + \\ x_2'x_1'(x_3+x_3')(x_0+x_0') + x_3x_2x_0(x_1+x_1') \\ &= x_3x_2'x_1x_0' + x_3'x_2'x_1x_0' + x_3x_2'x_1'x_0' + \\ x_3'x_2'x_1'x_0' + x_3x_2x_1'x_0 + x_3'x_2x_1'x_0 + \\ x_3x_2'x_1'x_0 + x_3'x_2'x_1'x_0 + x_3x_2'x_1'x_0 + \\ x_3'x_2'x_1'x_0 + x_3'x_2'x_1'x_0' + x_3x_2'x_1'x_0' + \\ x_3x_2x_1x_0 + x_3x_2x_1'x_0 \\ &= \Sigma m(0, 1, 2, 5, 8, 9, 10, 13, 15) \\ &= E_2(x_3, x_2, x_1, x_0) \end{aligned}$$

(b) $\Pi M(3, 4, 5, 7, 11, 12, 14)$

Problem 2

$$X = A' + B'C'$$

$$z = (XD)'$$

$$= ((A' + B'C')D)'$$

$$= (A' + B'C')' + D'$$

$$= D' + A(B'C')'$$

$$= D' + A(B + C)$$

$$= D' + AB + AC$$

Problem 3

(a)

$$\begin{split} T_{pHL} &=& T_{pHL}(X_1) + T_{pHL}(A_2) + T_{pHL}(O_2) + T_{pHL}(X_2) \\ &=& 0.32 + 0.023(2) + 0.18 + 0.019(2) + 0.22 + 0.021(1.1) + 0.32 + 0.023(1) \\ &=& 1.170 ns \\ T_{pLH} &=& T_{pLH}(X_1) + T_{pLH}(A_2) + T_{pLH}(O_2) + T_{pLH}(X_2) \\ &=& 0.32 + 0.038(2) + 0.15 + 0.039(2) + 0.14 + 0.039(1.1) + 0.32 + 0.038(1) \\ &=& 1.165 ns \end{split}$$

(b)
$$\begin{array}{cccc} & & & & & & & \\ & & & & AND & OR & XOR \\ & size = & 3(2) & +2(2) & +2(3) & =16 \end{array}$$

Problem 4

$$E = (a'b + d)' + (b' + d')'$$

$$= (a'b)'d' + (bd)$$

$$= (a + b')d' + bd$$

$$= ad' + b'd' + bd$$

Only bd and b'd' are essential prime implicants. Sum of products is not unique: another solution is ab + b'd' + bd

Product of sums =
$$(db' + ba'd')'$$

= $(db')'(ba'd')'$
= $(d' + b)(b' + a + d)$

Product of sums is unique

$\underline{\text{Problem 5}}$

$$z = ((a+b')' + ((a'+b)' + (a+b+c)')')'$$

$$= (a+b)'((a'+b)' + (a+b+c)')$$

$$= (a+b')(ab' + a'b'c')$$

$$= ab' + a'b'c'$$

$$= b'(a + a'c')$$

$$= b'(a + c')$$

$$= ab' + b'c'$$

Problem 6

ODICIII U		
	$x_3x_2x_1x_0$	$y_3y_2y_1y_0$
	0000	0011
	0001	0100
	0010	0101
	0011	0110
	0100	0111
	0101	1000
	0110	1001
	0111	1010
	1000	1011
	1001	1100
	1010	xxxx
	1011	xxxx
	1100	xxxx
	1101	xxxx
	1110	xxxx
	1111	xxxx

$$y_3 = x_3 + x_2x_0 + x_2x_1$$

$$y_2 = x_2x'_1x'_0 + x_0x'_2 + x'_2x_1$$

$$y_1 = x'_1x'_0 + x_1x_0$$

$$y_0 = x'_0$$

