



#### **Stationarity**

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

https://cims.nyu.edu/~cfgranda/pages/MTDS\_spring20/index.html

Carlos Fernandez-Granda

#### Stationarity

Translation

Linear translation-invariant models

Stationary signals and PCA

Wiener filtering

#### Motivation

Goal: Estimate signal  $y \in \mathbb{R}^N$  from noisy data  $x \in \mathbb{R}^N$ 

Regression problem

Optimal estimator?

Linear estimator?

#### Stationarity

#### Translation

Linear translation-invariant models

Stationary signals and PCA

Wiener filtering

#### Circular translation

We focus on circular translations that wrap around

We denote by  $x^{\downarrow s}$  the sth circular translation of a vector  $x \in \mathbb{C}^N$ 

For all  $0 \le j \le N-1$ ,

$$x^{\downarrow s}[j] = x[(j-s) \mod N]$$

### Effect of shift on sinusoids

Shifting a sinusoid modifies its phase

$$\psi_k^{\downarrow s}[I] = \exp\left(\frac{i2\pi k(I-s)}{N}\right)$$
$$= \exp\left(-\frac{i2\pi ks}{N}\right)\psi_k[I]$$

### Effect of translation in Fourier domain

Let  $x \in \mathbb{C}^N$  with DFT  $\hat{x}$  and  $y := x^{\downarrow s}$ 

$$\hat{y}[k] := \langle x^{\downarrow s}, \psi_k \rangle$$

$$= \langle x, \psi_k^{\downarrow - s} \rangle$$

$$= \langle x, \exp\left(\frac{i2\pi ks}{N}\right) \psi_k \rangle$$

$$= \exp\left(-\frac{i2\pi ks}{N}\right) \langle x, \psi_k \rangle$$

$$= \exp\left(-\frac{i2\pi ks}{N}\right) \hat{x}[k]$$

Stationarity

Translation

Linear translation-invariant models

Stationary signals and PCA

Wiener filtering

## Linear translation-invariant (LTI) function

A function  $\mathcal{F}$  from  $\mathbb{C}^N$  to  $\mathbb{C}^N$  is linear if for any  $x,y\in\mathbb{C}^N$  and any  $\alpha\in\mathbb{C}$ 

$$\mathcal{F}(x + y) = \mathcal{F}(x) + \mathcal{F}(y),$$
  
 $\mathcal{F}(\alpha x) = \alpha \mathcal{F}(x),$ 

and translation invariant if for any shift  $0 \le s \le N-1$ 

$$\mathcal{F}(x^{\downarrow s}) = \mathcal{F}(x)^{\downarrow s}$$

### Parametrizing a linear function

Let  $e_i$  be the jth standard vector  $(e_i[j] = 1 \text{ and } e_i[k] = 0 \text{ for } k \neq j)$ 

Let  $\mathcal{F}_L: \mathbb{C}^N \to \mathbb{C}^N$  be a linear function

$$\mathcal{F}_{L}(x) = \mathcal{F}_{L}\left(\sum_{j=0}^{N-1} x[j]e_{j}\right)$$

$$= \sum_{j=0}^{N-1} x[j]\mathcal{F}_{L}(e_{j})$$

$$= \left[\mathcal{F}_{L}(e_{0}) \quad \mathcal{F}_{L}(e_{1}) \quad \cdots \quad \mathcal{F}_{L}(e_{N-1})\right]x$$

$$= Mx$$

### Parametrizing an LTI function

Let  $\mathcal{F}:\mathbb{C}^N \to \mathbb{C}^N$  be linear and translation invariant

$$\mathcal{F}_{L}(x) = \mathcal{F}\left(\sum_{j=0}^{N-1} x[j]e_{j}\right)$$

$$= \sum_{j=0}^{N-1} x[j]\mathcal{F}(e_{j})$$

$$= \sum_{j=0}^{N-1} x[j]\mathcal{F}\left(e_{0}^{\downarrow j}\right)$$

$$= \sum_{i=0}^{N-1} x[j]\mathcal{F}(e_{0})^{\downarrow j}$$

### Impulse response

Standard basis vectors can be interpreted as impulses

LTI are characterized by their impulse response

$$h_{\mathcal{F}}:=\mathcal{F}(e_0)$$

#### Circular convolution

The circular convolution between two vectors  $x, y \in \mathbb{C}^N$  is defined as

$$x * y[j] := \sum_{i=1}^{N-1} x[s] y^{\downarrow s}[j], \quad 0 \le j \le N-1$$

### Convolution example: x



## Convolution example: y



# Convolution example: x \* y



#### Circular convolution

The 2D circular convolution between  $X \in \mathbb{C}^{N \times N}$  and  $Y \in \mathbb{C}^{N \times N}$  is

$$X * Y [j_1, j_2] := \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} X [s_1, s_2] Y^{\downarrow (s_1, s_2)} [j_1, j_2], \quad 0 \le j_1, j_2 \le N-1$$

# Convolution example: x



## Convolution example: y



## Convolution example: x \* y



## LTI functions as convolution with impulse response

For any LTI function  $\mathcal{F}: \mathbb{C}^N \to \mathbb{C}^N$  and any  $x \in \mathbb{C}^N$ 

$$\mathcal{F}(x) = \sum_{j=0}^{N-1} x[j] \mathcal{F}(e_0)^{\downarrow j}$$
$$= x * h_{\mathcal{F}}$$

For any 2D LTI function  $\mathcal{F}:\mathbb{C}^{N\times N}\to\mathbb{C}^{N\times N}$  and any  $X\in\mathbb{C}^{N\times N}$   $\mathcal{F}(X)=X*H_{\mathcal{F}}$ 

# Convolution in time is multiplication in frequency

Let 
$$y := x_1 * x_2, x_1, x_2 \in \mathbb{C}^N$$
. Then

$$\hat{y}[k] = \hat{x}_1[k] \hat{x}_2[k], \quad 0 \le k \le N-1$$

# Convolution in time is multiplication in frequency

Let 
$$Y := X_1 * X_2$$
 for  $X_1, X_2 \in \mathbb{C}^{N \times N}$ . Then

$$\hat{Y}[k_1, k_2] = \hat{X}_1[k_1, k_2] \hat{X}_2[k_1, k_2]$$

### Proof

$$\hat{y}[k] := \langle x_1 * x_2, \psi_k \rangle 
= \left\langle \sum_{s=0}^{N-1} x_1[s] x_2^{\downarrow s}, \psi_k \right\rangle 
= \left\langle \sum_{s=0}^{N-1} x_1[s] \frac{1}{N} \sum_{j=0}^{N-1} \exp\left(-\frac{i2\pi js}{N}\right) \hat{x}_2[j] \psi_j, \psi_k \right\rangle 
= \sum_{j=0}^{N-1} \hat{x}_2[j] \frac{1}{N} \langle \psi_j, \psi_k \rangle \sum_{s=0}^{N-1} x_1[s] \exp\left(-\frac{i2\pi js}{N}\right) 
= \sum_{j=0}^{N-1} \hat{x}_1[j] \hat{x}_2[j] \frac{1}{N} \langle \psi_j, \psi_k \rangle 
= \hat{x}_1[k] \hat{x}_2[k]$$



















0.8

- 0.6

0.4

- 0.2





Y











X \* Y



# Convolution in time is multiplication in frequency

LTI functions just scale Fourier coefficients!

DFT of impulse response is the transfer function of the function

For any LTI function  $\mathcal{F}$  and any  $x \in C^N$ 

$$\mathcal{F}(x) = \sum_{k=0}^{N-1} \hat{h}_{\mathcal{F}}[k] \hat{x}[k] \psi_k.$$

For any 2D LTI function  $\mathcal{F}$  and any  $X \in C^{N \times N}$ 

$$\mathcal{F}(X) = \sum_{k_1=0}^{N-1} \sum_{k_2=1}^{N} \hat{H}_{\mathcal{F}}[k_1, k_2] \widehat{X}[k_1, k_2] \Phi_{k_1, k_2}$$

Stationarity

Translation

Linear translation-invariant models

Stationary signals and PCA

Wiener filtering

# Signal with translation-invariant statistics



# Sample covariance matrix



# Eigenvalues







## Stationary signals

 $ilde{x}$  is wide-sense or weak-sense stationary if

1. it has a constant mean

$$\mathrm{E}\left(\tilde{x}[j]\right) = \mu, \quad 1 \leq j \leq N$$

2. there is a function  $a_{\tilde{x}}$  such that

$$\mathrm{E}\left(\tilde{x}[j_1]\tilde{x}[j_2]\right) = \mathsf{ac}_{\tilde{x}}(j_2 - j_1 \, \mathsf{mod} \, N), \quad 0 \leq j_1, j_2 \leq N - 1$$

i.e. it has translation-invariant covariance

#### Autocovariance

 $\mathsf{ac}_{\tilde{x}}$  is the autocovariance of  $\tilde{x}$ 

For any 
$$j$$
,  $\operatorname{ac}_{\tilde{x}}(j) = \operatorname{ac}_{\tilde{x}}(-j) = \operatorname{ac}_{\tilde{x}}(N-j)$ 

$$\begin{split} \Sigma_{\tilde{x}} &= \begin{bmatrix} \mathsf{ac}_{\tilde{x}}(0) & \mathsf{ac}_{\tilde{x}}(N-1) & \cdots & \mathsf{ac}_{\tilde{x}}(1) \\ \mathsf{ac}_{\tilde{x}}(1) & \mathsf{ac}_{\tilde{x}}(0) & \cdots & \mathsf{ac}_{\tilde{x}}(2) \\ & & \cdots & \\ \mathsf{ac}_{\tilde{x}}(N-1) & \mathsf{ac}_{\tilde{x}}(N-2) & \cdots & \mathsf{ac}_{\tilde{x}}(0) \end{bmatrix} \\ &= \begin{bmatrix} a_{\tilde{x}} & a_{\tilde{x}}^{\downarrow 1} & a_{\tilde{x}}^{\downarrow 2} & \cdots & a_{\tilde{x}}^{\downarrow N-1} \end{bmatrix} \end{split}$$

where

$$a_{\tilde{x}} := \begin{bmatrix} \mathsf{ac}_{\tilde{x}}(0) \\ \mathsf{ac}_{\tilde{x}}(1) \\ \mathsf{ac}_{\tilde{x}}(2) \\ \cdots \end{bmatrix}$$

#### Circulant matrix

Each column vector is a unit circular shift of previous column

# Sample covariance matrix



# Eigendecomposition of circulant matrix

Any circulant matrix  $C \in \mathbb{C}^{N \times N}$  can be written as

$$C := \frac{1}{N} F_{[N]}^* \Lambda F_{[N]}$$

where  $F_{[N]}$  is the DFT matrix and  $\Lambda$  is a diagonal matrix

For any vector  $x \in \mathbb{C}^N$ 

$$Cx = c * x$$
  
=  $\frac{1}{N} F_{[N]}^* \operatorname{diag}(\hat{c}) F_{[N]} x$ 

## Eigendecomposition of circulant covariance matrix

A valid eigendecomposition is given by

$$\frac{1}{\sqrt{N}}F_{[N]}^*\operatorname{diag}(\hat{c})\frac{1}{\sqrt{N}}F_{[N]}$$

If  $\hat{c}$  have different values, singular vectors are sinusoids!

## PCA on stationary vector

Let  $\tilde{x}$  be wide-sense stationary with autocovariance vector  $a_{\tilde{x}}$ 

The eigendecomposition of the covariance matrix of  $\tilde{\boldsymbol{x}}$  equals

$$\Sigma_{\widetilde{x}} = \frac{1}{N} F^* \operatorname{diag}(\hat{a}_{\widetilde{x}}) F$$

# CIFAR-10 images









## Rows of covariance matrix



## Rows of covariance matrix



## Rows of covariance matrix









## PCA of natural images

Principal directions tend to be sinusoidal

This suggests using 2D sinusoids for dimensionality reduction

JPEG compresses images using discrete cosine transform (DCT):

- 1. Image is divided into  $8 \times 8$  patches
- 2. Each DCT band is quantized differently (more bits for lower frequencies)

### DCT basis vectors



## Projection of each 8x8 block onto first DCT coefficients



Stationarity

Translation

Linear translation-invariant models

Stationary signals and PCA

Wiener filtering

### Signal estimation

Goal: Estimate N-dimensional signal from N-dimensional data

Minimum MSE estimator is conditional mean (usually intractable)

Linear minimum MSE estimator?

#### Linear MMSE

Let  $\tilde{y}$  and  $\tilde{x}$  be N-dimensional zero-mean random vectors

If  $\Sigma_{\tilde{x}}$  is full rank, then

$$\Sigma_{\tilde{x}}^{-1}\Sigma_{\tilde{x}\tilde{y}} := \arg\min_{B} \mathbb{E}\left(\left|\left|\tilde{y} - B^{T}\tilde{x}\right|\right|_{2}^{2}\right)$$

$$\Sigma_{\tilde{x}\tilde{y}} := \mathrm{E}\left(\tilde{x}\tilde{y}^T\right)$$

The cost function can be decomposed into

$$\operatorname{E}\left(\left|\left|\tilde{y} - B^{T}\tilde{x}\right|\right|_{2}^{2}\right) = \sum_{i=1}^{n} \operatorname{E}\left[\left(\tilde{y}[j] - B_{j}^{T}\tilde{x}\right)^{2}\right]$$

Each one is a linear regression problem with optimal estimator

$$\Sigma_{\tilde{x}}^{-1}(\Sigma_{\tilde{x}\tilde{y}})_j = \arg\min_{B_j} \mathrm{E}\left[(\tilde{y}[j] - \tilde{x}^T B_j)^2\right]$$

where  $(\Sigma_{\tilde{x}\tilde{y}})_j$  is the jth column of  $\Sigma_{\tilde{x}\tilde{y}}$ 

### Joint stationarity

 $\tilde{x}$  and  $\tilde{y}$  are jointly wide-sense or weak-sense stationary if

- 1. they are each wide-sense or weak-sense stationary
- 2. there is a function  $cc_{\tilde{x},\tilde{v}}$  such that

$$\mathrm{E}\left(\tilde{x}[j_1]\tilde{y}[j_2]\right) = \mathsf{cc}_{\tilde{x}\tilde{y}}(j_2 - j_1 \bmod N), \quad 0 \leq j_1, j_2 \leq N - 1$$

i.e. they have translation-invariant cross-covariance

#### Cross-covariance

 $\mathsf{cc}_{\tilde{x}\tilde{y}}$  is the cross-covariance of  $\tilde{x}$  and  $\tilde{y}$ 

$$\begin{split} \Sigma_{\tilde{x}\tilde{y}} \begin{bmatrix} \operatorname{cc}_{\tilde{x}\tilde{y}}(0) & \operatorname{cc}_{\tilde{x}\tilde{y}}(N-1) & \cdots & \operatorname{cc}_{\tilde{x}\tilde{y}}(1) \\ \operatorname{cc}_{\tilde{x}\tilde{y}}(1) & \operatorname{cc}_{\tilde{x}\tilde{y}}(0) & \cdots & \operatorname{cc}_{\tilde{x}\tilde{y}}(2) \\ & & \cdots \\ \operatorname{cc}_{\tilde{x}\tilde{y}}(N-1) & \operatorname{cc}_{\tilde{x}\tilde{y}}(N-2) & \cdots & \operatorname{cc}_{\tilde{x}\tilde{y}}(0) \end{bmatrix} \\ &= \begin{bmatrix} c_{\tilde{x}\tilde{y}} & c_{\tilde{x}}^{\downarrow 1} & c_{\tilde{x}}^{\downarrow 2} & \cdots & c_{\tilde{x}}^{\downarrow N-1} \end{bmatrix} \end{split}$$

where

$$c_{ ilde{x} ilde{y}} := egin{bmatrix} \mathsf{cc}_{ ilde{x} ilde{y}}(0) \ \mathsf{cc}_{ ilde{x} ilde{y}}(1) \ \mathsf{cc}_{ ilde{x} ilde{y}}(2) \ \cdots \end{bmatrix}$$

#### Wiener filter

Let  $\tilde{x}$  and  $\tilde{y}$  be zero-mean and jointly stationary

The linear estimate of  $\tilde{y}$  given  $\tilde{x}$  that minimizes MSE as the convolution of  $\tilde{x}$  with the Wiener filter w, defined by

$$\hat{w}[k] := \frac{\operatorname{Cov}(\tilde{x}_{F}[k], \tilde{y}_{F}[k])}{\operatorname{Var}(\tilde{x}_{F}[k])}, \quad 0 \le k \le N-1$$

where  $\tilde{x}_F$  and  $\tilde{y}_F$  denote the DFT coefficients of  $\tilde{x}$  and  $\tilde{y}$ , and

$$\operatorname{Cov}(\tilde{x}_{F}[k], \tilde{y}_{F}[k]) := \operatorname{E}\left(\tilde{x}_{F}[k]\overline{\tilde{y}_{F}[k]}\right)$$
$$\operatorname{Var}(\tilde{x}_{F}[k]) := \operatorname{E}\left(\left|\tilde{x}_{F}[k]\right|^{2}\right), \quad 0 \leq k \leq N-1$$

$$\begin{split} \Sigma_{\tilde{x}} &= \frac{1}{N} F^* \operatorname{diag}(\hat{a}_{\tilde{x}}) F \\ \Sigma_{\tilde{x}\tilde{y}} &= \frac{1}{N} F^* \operatorname{diag}(\hat{c}_{\tilde{x}}) F \\ \Sigma_{\tilde{x}\tilde{y}}^T \Sigma_{\tilde{x}}^{-1} &= \left(\frac{1}{N} F^* \operatorname{diag}(\hat{a}_{\tilde{x}}) F\right)^{-1} \frac{1}{N} F^* \operatorname{diag}(\hat{c}_{\tilde{x}}) F \\ &= \frac{1}{N} F^* \operatorname{diag}(\hat{a}_{\tilde{x}}^{-1}) F \frac{1}{N} F^* \operatorname{diag}(\hat{c}_{\tilde{x}}) F \\ &= \frac{1}{N} F^* \operatorname{diag}(\hat{a}_{\tilde{x}}^{-1} \hat{c}_{\tilde{x}}) F \end{split}$$

$$\begin{split} \Sigma_{\tilde{x}_F} &:= \mathrm{E} \left( F \tilde{x} (F \tilde{x})^* \right) \\ &= F \mathrm{E} \left( \tilde{x} \tilde{x}^T \right) F^* \\ &= F \Sigma_{\tilde{x}} F^* \\ &= F \frac{1}{N} F^* \operatorname{diag}(\hat{a}_{\tilde{x}}) F F^* \\ &= N \operatorname{diag}(\hat{a}_{\tilde{x}}) \end{split}$$

 $\hat{a}_{\tilde{x}}[k] = \frac{\operatorname{Var}(\tilde{x}_{F}[k])}{N}, \quad 0 \leq k \leq N-1$ 

$$\begin{split} \Sigma_{\tilde{x}_{F}\tilde{y}_{F}} &:= \mathrm{E}\left(F\tilde{x}(F\tilde{y})^{*}\right) \\ &= F\mathrm{E}\left(\tilde{x}\tilde{y}^{T}\right)F^{*} \\ &= F\Sigma_{\tilde{x}\tilde{y}}F^{*} \\ &= F\frac{1}{N}F^{*}\operatorname{diag}(\hat{c}_{\tilde{x}})FF^{*} \\ &= N\operatorname{diag}(\hat{c}_{\tilde{x}}) \end{split}$$
$$\hat{c}_{\tilde{x}\tilde{y}}[k] = \frac{\operatorname{Cov}(\tilde{x}_{F}[k], \tilde{y}_{F}[k])}{N}, \quad 0 \leq k \leq N-1 \end{split}$$

$$\begin{split} \Sigma_{\tilde{x}\tilde{y}}^T \Sigma_{\tilde{x}}^{-1} &= F^* \operatorname{diag}(\hat{a}_{\tilde{x}}^{-1} \hat{c}_{\tilde{x}}) F \\ &= F^* \operatorname{diag}_{k=0}^{N-1} \left( \frac{\operatorname{Cov}(\tilde{x}_F[k], \tilde{y}_F[k])}{\operatorname{Var}(\tilde{x}_F[k])} \right) F \end{split}$$

#### Least squares

Training set  $(y_1, x_1), (y_2, x_2), \ldots, (y_n, x_n)$  optimal LTI estimator

$$w := \arg\min_{v} \sum_{j=1}^{n} ||y_j - v * x_j||_2^2$$

is Wiener filter with transfer function

$$\hat{w} = rac{\mathsf{cov}\left(\hat{\mathcal{X}}[k], \hat{\mathcal{Y}}[k]
ight)}{\mathsf{var}\left(\hat{\mathcal{X}}[k]
ight)}, \quad 0 \leq k \leq \mathit{N}-1$$

where

$$\operatorname{cov}\left(\hat{\mathcal{X}}[k], \hat{\mathcal{Y}}[k]\right) := \frac{1}{n} \sum_{j=1}^{n} \hat{x}_{j}[k] \overline{\hat{y}_{j}[k]}$$

$$\operatorname{var}\left(\hat{\mathcal{X}}[k]\right) := \frac{1}{n} \sum_{j=1}^{n} |\hat{x}_{j}[k]|^{2}, \quad 0 \leq k \leq N-1$$

#### Proof

$$\begin{split} \sum_{j=1}^{n} ||y_{j} - v * x_{j}||_{2}^{2} &= \sum_{j=1}^{n} \left| \left| \frac{1}{\sqrt{N}} F^{*} (\hat{y}_{j} - \hat{v} \circ \hat{x}_{j}) \right| \right|_{2}^{2} \\ &= \frac{1}{N^{2}} \sum_{j=1}^{n} ||\hat{y}_{j} - \hat{v} \circ \hat{x}_{j}||_{2}^{2} \\ &= \frac{1}{N^{2}} \sum_{i=1}^{n} \sum_{k=1}^{N} |\hat{y}_{j}[k] - \hat{v}[k] \hat{x}_{j}[k]|^{2} := \frac{1}{N^{2}} \sum_{k=1}^{N} C_{k} \left(\hat{v}[k]\right) \end{split}$$

## Denoising

Measurements

$$\tilde{x} = \tilde{y} + \tilde{z}$$
,

where  $\tilde{z}$  is zero-mean Gaussian noise with variance  $\sigma^2$ , independent of  $\tilde{y}$ 

#### Noise

Linear transformation  $A\tilde{z}$  of a Gaussian vector with mean  $\mu$  and covariance matrix  $\Sigma$  is Gaussian with mean  $A\mu$  and cov. matrix  $A\Sigma A^*$ 

Fourier coefficients of noise are Gaussian with zero mean and covariance matrix  $F_{[N]}\sigma^2 I F_{[N]}^* = N\sigma^2 I$  (iid Gaussian with variance  $N\sigma^2$ )

#### Wiener filter

$$\begin{aligned} \operatorname{Cov}(\tilde{x}_{F}[k], \tilde{y}_{F}[k]) &= \operatorname{E}\left(\tilde{x}_{F}[k]\overline{\tilde{y}_{F}[k]}\right) \\ &= \operatorname{E}\left(\tilde{y}_{F}[k]\overline{\tilde{y}_{F}[k]}\right) + \operatorname{E}\left(\tilde{z}_{F}[k]\overline{\tilde{y}_{F}[k]}\right) \\ &= \operatorname{Var}\left(\tilde{y}_{F}[k]\right) \\ \operatorname{Var}(\tilde{x}_{F}[k]) &= \operatorname{Var}\left(\tilde{y}_{F}[k]\right) + \operatorname{Var}\left(\tilde{z}_{F}[k]\right) \\ &= \operatorname{Var}\left(\tilde{y}_{F}[k]\right) + \sigma^{2} \end{aligned}$$
$$\hat{w}[k] &= \frac{\operatorname{Var}\left(\tilde{y}_{F}[k]\right)}{\operatorname{Var}\left(\tilde{y}_{F}[k]\right) + \sigma^{2}}, \quad 0 \leq k \leq N - 1$$

#### Audio data



#### Audio data: Variance of Fourier coefficients























# Image data



### Image data: Variance of Fourier coefficients













