Please write your answer in this answer sheet and submit electronically to engr233.x@gmail.com

Section: X Student name: Shadi Jiha Student email: shadijiha@gmail.com	Instructor: Alexey Kokotov Student ID: 40131284
	ne exam questions below
1.a) $\phi(x, y, z) = xy^2 \sin(z) - xz$	7.b) $r'(t) = \langle 2t, 3t^2 - 1, 2t - 2 \rangle$. Hence,
	$Velocity = \langle 2,2,0 \rangle$
1.b) $-\frac{\pi}{16} + \frac{1}{32}$	7c) $k = 0.4330127020$. Hence,
	$radius = \frac{1}{k} = 2.3094$
2.	8.a) $dS = \sqrt{\frac{2x^2 + 2y^2}{x^2 + y^2}} dx dy$
3.a) $z = -\frac{3}{2}x + \frac{5}{2}y + 3$	8.b) $\frac{\sqrt{2}}{6}$
3b) $Curl F = <0, 0, -2>$	9.a) $\frac{\pi}{4}$ 2
	$\int_{0}^{\frac{\pi}{4}} \int_{1}^{2} r^{3} \cos(\theta) \sin(\theta) dr d\theta$
	Range of the radius = 1 to 2
$3 c) \iint_R 0 dx dy = 0$	9.b) $\frac{15}{16}$
4.a) $arc \cos\left(-\frac{1}{2}\right) = \frac{\pi}{3}$	10.a) $Div F = -2$
4.b) Distance = 0	10 b)
	$\int_0^{\sqrt{3y}} \int_x^{\sqrt{16-x^2}} \int_1^5 2z dz dy dx = 28$

5.a)	11
π 8 C. C	
$-\int\limits_{\frac{\pi}{4}}\int\limits_{0}^{s}\cos(\theta)r^{2}drd\theta.$	
$\frac{\ddot{\pi}}{4}$ 0	
Range of theta = $\frac{\pi}{4}$ to π	
Then sgc of the car 4 vo h	
5.b) $\frac{256\sqrt{2}}{3}$	12.a) x-coordinate = ∞
6. a) $\frac{1}{x^2+y^2+x^2} = \frac{1}{2^2+0+0} = \frac{1}{4}$	12b) K(max) = (1.4953, 0.4730)
$0. a) \frac{1}{x^2 + y^2 + x^2} - \frac{1}{2^2 + 0 + 0} - \frac{1}{4}$	(2.1700,011.00)
	x-coordinate = 1.4953
	X-coordinate = 1.4933
$(6. b)^{\frac{-6\sqrt{11}}{1331}}$	13.a) $Div F = 1$
1551	
$\frac{1}{2}$	13.b)
6. c) $Max = \nabla f = \frac{\sqrt{22}}{242}$	
7.a) When $z = 0$ \rightarrow it passes through xy plane at	$14.\frac{5t^6}{6} = -152.5471$
P. (100)	6
P = (1,0,0)	