SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

Final Examination

Closed (Book+Notes+All Electronic Devices)

Duration: 150 minutes

Q1	
Q2	
Q 3	
Q4	
Total	

Question 1 (25 points)

- (a) (8 pts) State the full definition of a nondeterministic finite automaton (NFA),
- $A = (Q, \Sigma, \delta, s, F)$ including the extended transition function δE and the condition for a string $u \in \Sigma^*$ to be accepted by A (in your definition the domain and range of the transition functions δ and δE should be explicitly and clearly specified).
- (b) (5pts) Construct an NFA A with at most 3 states that accepts the regular expression E = (1+0)*.1.(1+0) interpreted as a language.
- (c) (6 pts) Construct a DFA B that accepts the language E in part (b).
- (d) (6 pts) Construct a minimal state DFA C that accepts the language E in part (b).

Question 2 (25 points)

- (a) (9 pts) Specify, clearly and with all the details, a context-free grammar (CFG),
- G = (V, T, R, S) that generates the set of all regular expressions over some finite set Σ .
- (b) (8 pts) Write down a regular expression E over the set $\{0,1\}$ corresponding to the language L where for each string u in L, 010 OR 101 is substring of u.
- (c) (8 pts) Sketch an NFA that accepts the language L in part (b) above.

Question 3 (25 points)

- (a) (7 pts) State clearly the definition of a PDA P accepting a language L by final state (L(P)); and by empty stack (N(P)).
- (b) (10 pts) Compute a PDA P that accepts the language
- $L = (\omega \in (0+1)^* / \#1_S = \#0_S \text{ in } \omega)$
- (c) (8 pts) Is your **PDA** a deterministic **PDA** (**DPDA**)? If not try to modify it so that it is a **DPDA**.

Question 4 (25 points)

Consider the language $L = (\omega \in \{a,b,c\}^* / \omega = a^{k+1}b^kc^{k-1}; k > 0)$

(a) (15 pts) Choosing a appropriate $\omega \in L$ (if you do not show explicitly your choice of ω you get NO credit!) and using the pumping lemma show that L is NOT a context-free language.

(b) (10 pts) Compute a 2-tape NDTM TM M that decides $L = (\omega \in \Sigma / \omega = uvu, u, v \in \Sigma^*, u \neq e)$