Suggestions for Students

You are about to embark upon a journey through the fascinating world of microelectronics. Fortunately, microelectronics appears in so many facets of our lives that we can readily gather enough motivation to study it. The reading, however, is not as easy as that of a novel; we must deal with *analysis* and *design*, applying mathematical rigor as well as engineering intuition every step of the way. This article provides some suggestions that students may find helpful in studying microelectronics.

Rigor and Intuition Before reading this book, you have taken one or two courses on basic circuit theory, mastering Kirchoff's Laws and the analysis of RLC circuits. While quite abstract and bearing no apparent connection with real life, the concepts studied in these courses form the foundation for microelectronics—just as calculus does for engineering.

Our treatment of microelectronics also requires rigor but entails two additional components. First, we identify many applications for the concepts that we study. Second, we must develop *intuition*, i.e., a "feel" for the operation of microelectronic devices and circuits. Without an intuitive understanding, the analysis of circuits becomes increasingly more difficult as we add more devices to perform more complex functions.

Analysis by Inspection We will expend a considerable effort toward establishing the mentality and the skills necessary for "analysis by inspection." That is, looking at a complex circuit, we wish to decompose or "map" it to simpler topologies, thus formulating the behavior with a few lines of algebra. As a simple example, suppose we have encountered the resistive divider shown in Fig. (a) and derived its Thevenin equivalent. Now, if given the circuit in Fig. (b), we can readily replace V_{in} , R_1 , and R_2 with a Thevenin equivalent, thereby simplifying the calculations.

Example of analysis by inspections.

40 Pages per Week While taking courses on microelectronics, you will need to read about 40 pages of this book every week, with each page containing many new concepts, derivations, and examples. The lectures given by the instructor create a "skeleton" of each chapter, but it rests upon you to "connect the dots" by reading the book carefully and understanding each paragraph before proceeding to the next.

Reading and understanding 40 pages of the book each week requires concentration and discipline. You will face new material and detailed derivations on each page and should set aside two- or three-hour distraction-free blocks of time (no phone calls, TV, email, etc.) so that you can follow the *evolution* of the concepts while honing your analytical skills. I also suggest that you attempt each example before reading its solution.

40 Problems per Week After reading each section and going through its examples, you are encouraged to evaluate and improve your understanding by trying the corresponding end-of-chapter problems. The problems begin at a relatively easy level and gradually become more challenging. Some problems may require that you return to the section and study the subtle points more carefully.

The educational value provided by each problem depends on your *persistence*. The initial glance at the problem may be discouraging. But, as you think about it from different angles and, more importantly, re-examine the concepts in the chapter, you begin to form a path in your mind that may lead to the solution. In fact, if you have thought about a problem extensively and still have not solved it, you need but a brief hint from the instructor or the teaching assistant. Also, the more you struggle with a problem, the more appealing and memorable the answer will be.

Attending the lecture and reading the book are examples of "passive learning:" you simply receive (and, hopefully, absorb) a stream of information provided by the instructor and the text. While necessary, passive learning does not *exercise* your understanding, thus lacking depth. You may highlight many lines of the text as important. You may even summarize the important concepts on a separate sheet of paper (and you are encouraged to do so). But, to *master* the material, you need practice ("active learning"). The problem sets at the end of each chapter serve this purpose.

Homeworks and Exams Solving the problems at the end of each chapter also prepares you for homeworks and exams. Homeworks, too, demand distraction-free periods during which you put your knowledge to work and polish your understanding. An important piece of advice that I can offer here is that doing homeworks with your fellow students is a *bad* idea! Unlike other subject matters that benefit from discussions, arguments, and rebuttals, learning microelectronics requires quiet concentration. (After all, you will be on your own during the exam!) To gain more confidence in your answers, you can discuss the results with your fellow students, the instructor, or the teaching assistants *after* you have completed the homework by yourself.

Time Management Reading the text, going through the problem sets, and doing the homeworks require a time commitment of at least 10 hours per week. Due to the fast pace of the course, the material accumulates rapidly, making it difficult to keep up with the lectures if you do not spend the required time from the very first week. In fact, the more you fall behind, the less interesting and useful the lectures become, thus forcing you to simply write down everything that the instructor says while not understanding much. With your other courses demanding similar time commitments, you can soon become overwhelmed if you do not manage your time carefully.

Time management consists of two steps: (1) partitioning your waking hours into solid blocks, and (2) using each block *efficiently*. To improve the efficiency, you can take the following measures: (a) work in a quiet environment to minimize distractions; (b) spread the work on a given subject over the week, e.g., 3 hours every other day, to avoid saturation and to allow your subconscious to process the concepts in the meantime.

Prerequisites Many of the concepts that you have learned in the circuit theory courses prove essential to the study of microelectronics. Chapter 1 gives a brief overview to refresh your memory. With the limited lecture time, the instructor may not cover this material in the class, leaving it for you to read at home. You can first glance through the chapter and see which concepts "bother" you before sitting down to concentrate.

Suggestions for Instructors

Teaching undergraduate courses proves quite challenging—especially if the emphasis is on thinking and deduction rather than on memorization. With today's young minds used to playing fast-paced video games and "clicking" on the Internet toward their destination, it has become increasingly more difficult to encourage them to concentrate for long periods of time and deal with abstract concepts. Drawing upon more than one decade of teaching, this article provides suggestions that instructors of microelectronics may find helpful.

Therapy The students taking the first microelectronics course have typically completed one or two courses on basic circuit theory. To many, that experience has not been particularly memorable. After all, the circuit theory textbook is most likely written by a person *not* in the field of circuits. Similarly, the courses are most likely taught by an instructor having little involvement in circuit design. For example, the students are rarely told that node analysis is much more frequently used in hand calculations than mesh analysis is. Or, they are given little intuition with respect to Thevenin's and Norton's theorems.

With the foregoing issues in mind, I begin the first course with a five-minute "therapy session." I ask how many liked the circuit theory courses and came out with a "practical" understanding. Very few raise their hands. I then ask, "But how about your calculus courses? How many of you came out of these courses with a "practical" understanding?" Subsequently, I explain that circuit theory builds the foundation for microelectronics just as calculus does for engineering. I further mention that some abstractness should also be expected in microelectronics as we complete the foundation for more advanced topics in circuit analysis and design. I then point out that (1) microelectronics is very heavily based on intuitive understanding, requiring that we go *beyond* simply writing KVLs and KCLs and interpret the mathematical expressions intuitively, and (2) this course offers many applications of microelectronic devices and circuits in our daily lives. In other words, microelectronics is not as dry as arbitrary RLC circuits consisting of $1-\Omega$ resistors, 1-H inductors, and 1-F capacitors.

First Quiz Since different students enter each course with different levels of preparation, I have found it useful to give a 10-minute quiz in the very first lecture. Pointing out that the quiz does not count towards their grade but serves as a gauge of their understanding, I emphasize that the objective is to test their knowledge rather than their intelligence. After collecting the quizzes, I ask one of the teaching assistants to assign a binary grade to each: those who would receive less than 50% are marked with a red star. At the end of the lecture, I return the quizzes and mention that those with a red star need to work harder and interact with the teaching assistants and myself more extensively.

The Big Picture A powerful motivational tool in teaching is the "big picture," i.e., the "practical" application of the concept under study. The two examples of microelectronic systems described in Chapter 1 serve as the first step toward creating the context for the material covered in the book. But, the big picture cannot stop here. Each new concept may merit an application—however brief the mention of the application may be—and most of this burden falls on the lecture rather than on the book.

The choice of the application must be carefully considered. If the description is too long or the result too abstract, the students miss the connection between the concept and the application. My general approach is as follows. Suppose we are to begin Chapter 2 (Basic Semiconductor Physics). I ask either "What would our world look like without semiconductors?" or "Is there a semiconductor device in your watch? In your cellphone? In your laptop? In your digital camera?" In the ensuing discussion, I quickly go over examples of semiconductor devices and where they are used.

Following the big picture, I provide additional motivation by asking, "Well, but isn't this stuff *old*? Why do *we* need to learn these things?" I then briefly talk about the challenges in today's designs and the competition among manufacturers to lower both the power consumption and the cost of portable devices.

Analysis versus Synthesis Let us consider the background of the students entering a microelectronics course. They can write KVLs and KCLs efficiently. They have also seen numerous "random" RLC circuits; i.e., to these students, all RLC circuits look the same, and it is unclear how they came about. On the other hand, an essential objective in teaching microelectronics is to develop specific circuit topologies that provide certain characteristics. We must therefore change the students' mentality from "Here's a circuit that you may never see again in your life. Analyze it!" to "We face the following problem and we must create (synthesize) a circuit that solves the problem." We can then begin with the simplest topology, identify its shortcomings, and continue to modify it until we arrive at an acceptable solution. This step-by-step synthesis approach (a) illustrates the role of each device in the circuit, (b) establishes a "design-oriented" mentality, and (c) engages the students' intellect and interest.

Analysis by Inspection In their journey through microelectronics, students face increasingly more complex circuits, eventually reaching a point where blindly writing KVLs and KCLs becomes extremely inefficient and even prohibitive. In one of my first few lectures, I show the internal circuit of a complex op amp and ask, "Can we analyze the behavior of this circuit by simply writing node or mesh equations?" It is therefore important to instill in them the concept of "analysis by inspection." My approach consists of two steps. (1) For each simple circuit, formulate the properties in an intuitive language; e.g., "the voltage gain of a common-source stage is given by the load resistance divided by $1/g_m$ plus the resistance tied from the source to ground." (2) Map complex circuits to one or more topologies studied in step (1).

In addition to efficiency, analysis by inspection also provides great intuition. As we cover various examples, I emphasize to the students that the results thus obtained reveal the circuit's dependencies much more clearly than if we simply write KVLs and KCLs without mapping.

"What If?" Adventures An interesting method of reinforcing a circuit's properties is to ask a question like, "What if we tie this device between nodes C and D rather than between nodes A and B?" In fact, students themselves often raise similar questions. My answer to them is "Don't be afraid! The circuit doesn't bite if you change it like this. So go ahead and analyze it in its new form."

For simple circuits, the students can be encouraged to consider several possible modifications and determine the resulting behavior. Consequently, the students feel much more comfortable with the original topology and understand why it is the only acceptable solution (if that is the case).

Numeric versus Symbolic Calculations In the design of examples, homeworks, and exams, the instructor must decide between numeric and symbolic calculations. The students may, of course, prefer the former type as it simply requires finding the corresponding equation and plugging in the numbers.

What is the value in numeric calculations? In my opinion, they may serve one of two purposes: (1) make the students comfortable with the results recently obtained, or (2) give the students a feel for the typical values encountered in practice. As such, numeric calculations play a limited role in teaching and reinforcing concepts.

Symbolic calculations, on the other hand, can offer insight into the behavior of the circuit by revealing dependencies, trends, and limits. Also, the results thus obtained can be utilized in more complex examples.

Blackboard versus Powerpoint This book comes with a complete set of Powerpoint slides. However, I suggest that the instructors carefully consider the pros and cons of blackboard and Powerpoint presentations.

I can offer the following observations. (1) Many students fall asleep (at least mentally) in the classroom if they are not writing. (2) Many others feel they are missing something if they are not writing. (3) For most people, the act of writing something on paper helps "carve" it in their mind. (4) The use of slides leads to a fast pace ("if we are not writing, we should move on!"), leaving little time for the students to digest the concepts. For these reasons, even if the students have a hardcopy of the slides, this type of presentation proves quite ineffective.

To improve the situation, one can leave blank spaces in each slide and fill them with critical and interesting results in real time. I have tried this method using transparencies and, more recently, tablet laptops. The approach works well for graduate courses but leaves undergraduate students bored or bewildered.

My conclusion is that the good old blackboard is still the best medium for teaching undergraduate microelectronics. The instructor may nonetheless utilize a hardcopy of the Powerpoint slides as his/her own guide for the flow of the lecture.

Discrete versus Integrated How much emphasis should a microelectronics course place on discrete circuits and integrated circuits? To most of us, the term "microelectronics" remains synonymous with "integrated circuits," and, in fact, some university curricula have gradually reduced the discrete design flavor of the course to nearly zero. However, only a small fraction of the students taking such courses eventually become active in IC products, while many go into board-level design.

My approach in this book is to begin with general concepts that apply to both paradigms and gradually concentrate on integrated circuits. I also believe that even board-level designers must have a basic understanding of the integrated circuits that they use.

Bipolar Transistor versus MOSFET At present, some controversy surrounds the inclusion of bipolar transistors and circuits in undergraduate microelectronics. With the MOSFET dominating the semiconductor market, it appears that bipolar devices are of little value. While this view may apply to graduate courses to some extent, it should be borne in mind that (1) as mentioned above, many undergraduate students go into board-level and discrete design and are likely to encounter bipolar devices, and (2) the contrasts and similarities between bipolar and MOS devices prove extremely useful in understanding the properties of each.

The order in which the two species are presented is also debatable. (Extensive surveys conducted by Wiley indicate a 50-50 split between instructors on this matter.) Some

Course sequences for covering bipolar technology first or CMOS technology first.

instructors begin with MOS devices to ensure enough time is spent on their coverage. On the other hand, the natural flow of the course calls for bipolar devices as an extension of pn junctions. In fact, if diodes are immediately followed by MOS devices, the students see little relevance between the two. (The pn junctions in MOSFETs do not come into the picture until the device capacitances are introduced.)

My approach in this book is to first cover bipolar devices and circuits while building the foundation such that the MOS counterparts are subsequently taught with greater ease. As explained below, the material can comfortably be taught even in one quarter with no sacrifice of details of either device type.

Nonetheless, the book is organized so as to allow covering CMOS circuits first if the instructor so wishes. The sequence of chapters for each case is shown below. Chapter 16 is written with the assumption that the students have not seen any amplifier design principles so that the instructor can seamlessly go from MOS device physics to MOS amplifier design without having covered bipolar amplifiers.

Course Syllabi This book can be used in a two-quarter or two-semester sequence. Depending on the instructor's preference, the courses can follow various combinations of the chapters. Figure illustrates some possibilities.

I have followed Syllabus I for the quarter system at UCLA for a number of years.¹ Syllabus II sacrifices op amp circuits for an introductory treatment of digital CMOS circuits.

In a semester system, Syllabus I extends the first course to current mirrors and cascode stages and the second course to output stages and analog filters. Syllabus II, on the other hand, includes digital circuits in the first course, moving current mirrors and cascodes to the second course and sacrificing the chapter on output stages.

Figure shows the approximate length of time spent on the chapters as practiced at UCLA. In a semester system, the allotted times are more flexible.

¹We offer a separate undergraduate course on digital circuit design, which the students can take only *after* our first microelectronics course.

Quarter System, Syllabus I

Quarter System, Syllabus II

Semester System, Syllabus I

Semester System, Syllabus II

Different course structures for quarter and semester systems.

Quarter System, Syllabus I

Timetable for the two courses.

Coverage of Chapters The material in each chapter can be decomposed into three categories: (1) essential concepts that the instructor should cover in the lecture, (2) essential skills that the students must develop but cannot be covered in the lecture due to the limited time, and (3) topics that prove useful but may be skipped according to the instructor's preference.² Summarized below are overviews of the chapters showing which topics should be covered in the classroom.

Chapter 1: Introduction to Microelectronics The objective of this chapter is to provide the "big picture" and make the students comfortable with analog and digital signals. I spend about 30 to 45 minutes on Sections 1.1 and 1.2, leaving the remainder of the chapter (Basic Concepts) for the teaching assistants to cover in a special evening session in the first week.

Chapter 2: Basic Semiconductor Physics Providing the basics of semiconductor device physics, this chapter deliberately proceeds at a slow pace, examining concepts from different angles and allowing the students to digest the material as they read on. A terse language would shorten the chapter but require that the students reread the material multiple times in their attempt to decipher the prose.

It is important to note, however, that the instructor's pace in the classroom need not be as slow as that of the chapter. The students are expected to read the details and the examples on their own so as to strengthen their grasp of the material. The principal point in this chapter is that we must study the physics of devices so as to construct circuit models for them. In a quarter system, I cover the following concepts in the lecture: electrons and holes; doping; drift and diffusion; pn junction in equilibrium and under forward and reverse bias.

Chapter 3: Diode Models and Circuits This chapter serves four purposes: (1) make the students comfortable with the pn junction as a nonlinear device; (2) introduce the concept of linearizing a nonlinear model to simplify the analysis; (3) cover basic circuits with which any electrical engineer must be familiar, e.g., rectifiers and limiters; and (4) develop the

²Such topics are identified in the book by a footnote.

skills necessary to analyze heavily-nonlinear circuits, e.g., where it is difficult to predict which diode turns on at what input voltage. Of these, the first three are essential and should be covered in the lecture, whereas the last depends on the instructor's preference. (I cover it in my lectures.) In the interest of time, I skip a number of sections in a quarter system, e.g., voltage doublers and level shifters.

Chapter 4: Physics of Bipolar Transistors Beginning with the use of a voltage-controlled current source in an amplifier, this chapter introduces the bipolar transistor as an extension of *pn* junctions and derives its small-signal model. As with Chapter 2, the pace is relatively slow, but the lectures need not be. I cover structure and operation of the bipolar transistor, a very simplified derivation of the exponential characteristic, and transistor models, mentioning only briefly that saturation is undesirable. Since the T-model of limited use in analysis and carries little intuition (especially for MOS devices), I have excluded it in this book.

Chapter 5: Bipolar Amplifiers This is the longest chapter in the book, building the foundation necessary for all subsequent work in electronics. Following a bottom-up approach, this chapter establishes critical concepts such as input and output impedances, biasing, and small-signal analysis.

While writing the book, I contemplated decomposing Chapter 5 into two chapters, one on the above concepts and another on bipolar amplifier topologies, so that the latter could be skipped by instructors who prefer to continue with MOS circuits instead. However, teaching the general concepts does require the use of transistors, making such a decomposition difficult.

Chapter 5 proceeds slowly, reinforcing, step-by-step, the concept of synthesis and exploring circuit topologies with the aid of "What if?" examples. As with Chapters 2 and 4, the instructor can move at a faster pace and leave much of the text for the students to read on their own. In a quarter system, I cover all of the chapter, frequently emphasizing the concepts illustrated in Figure 5.7 (the impedance seen looking into the base, emitter, or collector). With about two (perhaps two and half) weeks allotted to this chapter, the lectures must be precisely designed to ensure the main concepts are imparted in the classroom.

Chapter 6: Physics of MOS Devices This chapter parallels Chapter 4, introducing the MOSFET as a voltage-controlled current source and deriving its characteristics. Given the limited time that we generally face in covering topics, I have included only a brief discussion of the body effect and velocity saturation and neglected these phenomena for the remainder of the book. I cover all of this chapter in our first course.

Chapter 7: CMOS Amplifiers Drawing extensively upon the foundation established in Chapter 5, this chapter deals with MOS amplifiers but at a faster pace. I cover all of this chapter in our first course.

Chapter 8: Operational Amplifier as a Black Box Dealing with op-amp-based circuits, this chapter is written such that it can be taught in almost any order with respect to other chapters. My own preference is to cover this chapter *after* amplifier topologies have been studied, so that the students have some bare understanding of the internal circuitry of op amps and its gain limitations. Teaching this chapter near the end of the first course also places op amps closer to differential amplifiers (Chapter 10), thus allowing the students to appreciate the relevance of each. I cover all of this chapter in our first course.

Chapter 9: Cascodes and Current Mirrors This chapter serves as an important step toward integrated circuit design. The study of cascodes and current mirrors here also provides the necessary background for constructing differential pairs with active loads or cascodes in Chapter 10. From this chapter on, bipolar and MOS circuits are covered together and various similarities and contrasts between them are pointed out. In our second microelectronics course, I cover all of the topics in this chapter in approximately two weeks.

Chapter 10: Differential Amplifiers This chapter deals with large-signal and small-signal behavior of differential amplifiers. The students may wonder why we did not study the large-signal behavior of various amplifiers in Chapters 5 and 7; so I explain that the differential pair is a versatile circuit and is utilized in both regimes. I cover all of this chapter in our second course.

Chapter 11: Frequency Response Beginning with a review of basic concepts such as Bode's rules, this chapter introduces the high-frequency model of transistors and analyzes the frequency response of basic amplifiers. I cover all of this chapter in our second course.

Chapter 12: Feedback and Stability Most instructors agree the students find feedback to be the most difficult topic in undergraduate microelectronics. For this reason, I have made great effort to create a step-by-step procedure for analyzing feedback circuits, especially where input and output loading effects must be taken into account. As with Chapters 2 and 5, this chapter proceeds at a deliberately slow pace, allowing the students to become comfortable with each concept and appreciate the points taught by each example. I cover all of this chapter in our second course.

Chapter 13: Oscillators This new chapter deals with both discrete and integrated oscillators. These circuits are both important in real-life applications and helpful in enhancing the feedback concepts taught previously. This chapter can be comfortably covered in a semester system.

Chapter 14: Output Stages and Power Amplifiers This chapter studies circuits that deliver higher power levels than those considered in previous chapters. Topologies such as push-pull stages and their limitations are analyzed. This chapter can be covered in a semester system.

Chapter 15: Analog Filters This chapter provides a basic understanding of passive and active filters, preparing the student for more advanced texts on the subject. This chapter can also be comfortably covered in a semester system.

Chapter 16: Digital CMOS Circuits This chapter is written for microelectronics courses that include an introduction to digital circuits as a preparation for subsequent courses on the subject. Given the time constraints in quarter and semester systems, I have excluded TTL and ECL circuits here.

Chapter 17: CMOS Amplifiers This chapter is written for courses that cover CMOS circuits before bipolar circuits. As explained earlier, this chapter follows MOS device physics and, in essence, is similar to Chapter 5 but deals with MOS counterparts.

xviii Suggestions for Instructors

Problem Sets In addition to numerous examples, each chapter offers a relatively large problem set at the end. For each concept covered in the chapter, I begin with simple, confidence-building problems and gradually raise the level of difficulty. Except for the device physics chapters, all chapters also provide a set of design problems that encourage students to work "in reverse" and select the bias and/or component values to satisfy certain requirements.

SPICE Some basic circuit theory courses may provide exposure to SPICE, but it is in the first microelectronics course that the students can appreciate the importance of simulation tools. Appendix A of this book introduces SPICE and teaches circuit simulation with the aid of numerous examples. The objective is to master only a *subset* of SPICE commands that allow simulation of most circuits at this level. Due to the limited lecture time, I ask the teaching assistants to cover SPICE in a special evening session around the middle of the quarter—just before I begin to assign SPICE problems.

Most chapters contain SPICE problems, but I prefer to introduce SPICE only in the second half of the first course (toward the end of Chapter 5). This is for two reasons: (1) the students must first develop their basic understanding and analytical skills, i.e., the homeworks must exercise the fundamental concepts; and (2) the students appreciate the utility of SPICE much better if the circuit contains a relatively large number of devices (e.g., 5-10).

Homeworks and Exams In a quarter system, I assign four homeworks before the midterm and four after. Mostly based on the problem sets in the book, the homeworks contain moderate to difficult problems, thereby requiring that the students first go over the easier problems in the book on their own.

The exam questions are typically "twisted" versions of the problems in the book. To encourage the students to solve *all* of the problems at the end of each chapter, I tell them that one of the problems in the book is given in the exam verbatim. The exams are openbook, but I suggest to the students to summarize the important equations on one sheet of paper.

Happy Teaching!

Contents

1 INTRODUCTION TO	3.1.2 Ideal Diode 61		
MICROELECTRONICS 1	3.1.3 Application Examples 65		
1.1 Electronics versus	3.2 <i>pn</i> Junction as a Diode 70		
Microelectronics 1	3.3 Additional Examples 72		
1.2 Examples of Electronic Systems 2	3.4 Large-Signal and Small-Signal		
1.2.1 Cellular Telephone 2	Operation 77		
1.2.2 Digital Camera 5	3.5 Applications of Diodes 86		
1.2.3 Analog Versus Digital 7	3.5.1 Half-Wave and Full-Wave		
1.3 Basic Concepts 8	Rectifiers 86		
1.3.1 Analog and Digital Signals 8	3.5.2 Voltage Regulation 99		
1.3.2 Analog Circuits 10	3.5.3 Limiting Circuits 101		
1.3.3 Digital Circuits 11	3.5.4 Voltage Doublers 105		
1.3.4 Basic Circuit Theorems 12	3.5.5 Diodes as Level Shifters and		
1.4 Chapter Summary 20	Switches 110		
Chapter Summary 20	3.6 Chapter Summary 112		
2 BASIC PHYSICS OF	Problems 113		
SEMICONDUCTORS 21	SPICE Problems 120		
2.1 Semiconductor Materials and			
Their Properties 22	4 PHYSICS OF BIPOLAR		
2.1.1 Charge Carriers in Solids 22	TRANSISTORS 122		
2.1.2 Modification of Carrier	4.1 General Considerations 122		
Densities 25	4.2 Structure of Bipolar		
2.1.3 Transport of Carriers 28	Transistor 124		
2.2 <i>pn</i> Junction 35	4.3 Operation of Bipolar Transistor		
2.2.1 <i>pn</i> Junction in Equilibrium 36	in Active Mode 125		
2.2.2 <i>pn</i> Junction Under Reverse	4.3.1 Collector Current 128		
Bias 41	4.3.2 Base and Emitter		
2.2.3 <i>pn</i> Junction Under Forward	Currents 131		
Bias 45	4.4 Bipolar Transistor Models and		
2.2.4 I/V Characteristics 48	Characteristics 133		
2.3 Reverse Breakdown 53	4.4.1 Large-Signal Model 133		
2.3.1 Zener Breakdown 54	4.4.2 I/V Characteristics 135		
2.3.2 Avalanche Breakdown 54	4.4.3 Concept of		
2.4 Chapter Summary 54	Transconductance 137		
Problems 55	4.4.4 Small-Signal Model 139		
CDICE Duelslands 50	4.4.5 Early Effect 144		
SPICE Problems 58	4.5 Operation of Bipolar Transistor		
SPICE Problems 58	in Saturation Mode 150		
3 DIODE MODELS AND			
3 DIODE MODELS AND	4.6 The <i>PNP</i> Transistor 153 4.6.1 Structure and		

4	.6.2	Large-Signal Model 154		6.2.6	Other Second-Order
		Small-Signal Model 157			Effects 292
		er Summary 160	6.3	MOS	Device Models 293
		ems 161			Large-Signal Model 293
S	PICE	E Problems 168			Small-Signal Model 295
					S Transistor 296
5 B II	POL	AR AMPLIFIERS 170			S Technology 298
5 1 6	Janei	ral Considerations 170			parison of Bipolar and MOS
	5.1.1			vices	
5		Input and Output Impedances 171	6.7		ter Summary 299
5	1 2	Biasing 175			ems 300
		DC and Small-Signal			E Problems 307
3.	.1.5	Analysis 175		srep.	oso dispo
52 (ners	ating Point Analysis and	7	CMOS	S AMPLIFIERS 309
Desig			7 1	Gene	ral Considerations 309
_		Simple Biasing 178	•	7.1.1	
		Resistive Divider Biasing 181			Topologies 309
		Biasing with Emitter		7.1.2	Biasing 309
		Degeneration 184			Realization of Current
5	.2.4	Self-Biased Stage 188			Sources 313
		Biasing of <i>PNP</i>	7.2	Comi	non-Source Stage 314
		Transistors 191		7.2.1	_
5.3 B	Bipola	ar Amplifier		7.2.2	CS Stage with Current-Source
	-	S 195			Load 317
	_	Common-Emitter		7.2.3	CS Stage with Diode-
		Topology 196			Connected Load 318
5.	.3.2	Common-Base Topology 223		7.2.4	CS Stage with
		Emitter Follower 239			Degeneration 320
5.4 S	umm	ary and Additional		7.2.5	
Exam			7.3	Comi	non-Gate Stage 325
5.5 C	hapt	er Summary 253		7.3.1	CG Stage with Biasing 330
P	roble	ems 253	7.4	Sourc	ce Follower 331
S	PICE	E Problems 268		7.4.1	Source Follower Core 332
				7.4.2	Source Follower with
6 PH	4YS	ICS OF MOS			Biasing 334
TRANSISTORS 270		7.5	Sumn	nary and Additional	
			Exa	mples	336
6.1 Structure of MOSFET 2706.2 Operation of MOSFET 2736.2.1 Qualitative Analysis 273		7.6	Chap	ter Summary 340	
		Problems 340			
	.2.1 .2.2	Qualitative Analysis 273 Derivation of I-V		SPIC	E Problems 352
0	.2.2	Characteristics 279			
e			8 (PER	ATIONAL AMPLIFIER
0	.2.3	Channel-Length Modulation 288			LACK BOX 354
£	.2.4	MOS Transconductance 290	2 1	Gene	ral Considerations 355
	.2. 4 .2.5	Velocity Saturation 292	8.2		Amp-Based Circuits 357
O.	.2.3	verocity Saturation 232	J.Z	Op-	mp-Dasca Circuits 331

8.3	 8.3.1 Precision Rectifier 370 8.3.2 Logarithmic Amplifier 371 8.3.3 Square-Root Amplifier 372 Op Amp Nonidealities 373 8.4.1 DC Offsets 373 	 10.3 MOS Differential Pair 458 10.3.1 Qualitative Analysis 459 10.3.2 Large-Signal Analysis 463 10.3.3 Small-Signal Analysis 467 10.4 Cascode Differential Amplifiers 471 10.5 Common-Mode Rejection 475 10.6 Differential Pair with Active Load 479 10.6.1 Qualitative Analysis 480 10.6.2 Quantitative Analysis 482
	8.4.2 Input Bias Current 376	10.7 Chapter Summary 487 Problems 488
	8.4.3 Speed Limitations 3798.4.4 Finite Input and Output	SPICE Problems 500
	Impedances 384	SFICE FIODICIIS 500
8.5	•	
8.6	-	11 FREQUENCY
	Problems 388	RESPONSE 502
	SPICE Problems 394	11.1 Fundamental Concepts 502
		11.1.1 General Considerations 502
		11.1.2 Relationship Between
	ASCODE STAGES AND	Transfer Function and
CUI	RRENT MIRRORS 395	Frequency Response 505
9.1	Cascode Stage 395	11.1.3 Bode's Rules 508
	9.1.1 Cascode as a Current	11.1.4 Association of Poles with
	Source 395	Nodes 509
0.0	9.1.2 Cascode as an Amplifier 402	11.1.5 Miller's Theorem 511 > 5 / 9 / 9 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6
9.2		11.1.6 General Frequency
	9.2.1 Initial Thoughts 4119.2.2 Bipolar Current Mirror 412	Response 514
	9.2.3 MOS Current Mirror 421	11.2 High-Frequency Models of Transistors 517
9.3	Chapter Summary 424	11.2.1 High-Frequency Model of
	Problems 425	Bipolar Transistor 517
	SPICE Problems 435	11.2.2 High-Frequency Model of
		MOSFET 519
		11.2.3 Transit Frequency 520
	DIFFERENTIAL	11.3 Analysis Procedure 522
AM	PLIFIERS 437	11.4 Frequency Response of CE and
10.1	General Considerations 437	CS Stages 523
	10.1.1 Initial Thoughts 437	11.4.1 Low-Frequency
	10.1.2 Differential Signals 439	Response 523
	10.1.3 Differential Pair 442	11.4.2 High-Frequency
10.2	Bipolar Differential Pair 442	Response 524
	10.2.1 Qualitative Analysis 442	11.4.3 Use of Miller's Theorem 524
	10.2.2 Large-Signal Analysis 448	11.4.4 Direct Analysis 527
	10.2.3 Small-Signal Analysis 453	11.4.5 Input Impedance 530

Lo vimes en

(reo q' la vouer a vez, pero viene mucho despuis

11.5	Frequency Response of CB and		12.6.2 Voltage-Current
CG St	tages 532		Feedback 589
	11.5.1 Low-Frequency		12.6.3 Current-Voltage
	Response 532		Feedback 592
	11.5.2 High-Frequency		12.6.4 Current-Current
	Response 532		Feedback 597
11.6	Frequency Response of	12.7	Effect of Nonideal I/O
	wers 535	Impe	dances 600
	11.6.1 Input and Output		12.7.1 Inclusion of I/O
	Impedances 538		Effects 601
11.7	Frequency Response of	12.8	Stability in Feedback
Casco	ode Stage 541	Syste	ms 613
	11.7.1 Input and Output		12.8.1 Review of Bode's
	Impedances 545		Rules 614
11.8	Frequency Response of		12.8.2 Problem of
Differ	rential Pairs 546		Instability 615
	11.8.1 Common-Mode Frequency		12.8.3 Stability Condition 618
	Response 548		12.8.4 Phase Margin 621
11.9	Additional Examples 549		12.8.5 Frequency
11.10	Chapter Summary 553		Compensation 623
	Problems 554		12.8.6 Miller ———— /
	SPICE Problems 562		Compensation 626 6
		12.9	Chapter Summary 627
12 F	EEDBACK 563		Problems 628
12.1			SPICE Problems 639
12.1	General Considerations 563		
10.0	12.1.1 Loop Gain 566	13 (SCILLATORS 641 _
12.2	Properties of Negative back 568	13.1	
reedu	12.2.1 Gain Desensitization 568	13.1	Ding Oscillators 644
	12.2.1 Gain Desensitization 568 12.2.2 Bandwidth Extension 569	13.3	L C Oscillators 649
	12.2.3 Modification of I/O	10.0	12.2.1 Develol I C Topks 649
	Impedances 571		13.3.2 Cross-Coupled
	12.2.4 Linearity Improvement		Oscillator 652
	575		13.3.3 Colpitte Oscillator 654
12.3	Types of Amplifiers 576	13.4	Phase Shift Oscillator 657
12.0	12.3.1 Simple Amplifier	13.5	Wien-Bridge Oscillator 660
	Models 576	13.6	Crystal Oscillators 661
	12.3.2 Examples of Amplifier	10.0	13.6.1 Crystal Model 661
	Types 577		13.6.2 Negative-Resistance
12.4			Circuit 663
	iques 579		13.6.3 Crystal Oscillator
	Polarity of Feedback 582		Implementation 664
12.6	Feedback Topologies 584	13.7	Chapter Summary 667
12.0	12.6.1 Voltage-Voltage	. 317	Problems 667
	Feedback 585		SPICE Problems 672
	1 CCGCGCII OOO		

14 OUTPUT STAGES AND	15.4 Active Filters 729
POWER AMPLIFIERS 673	15.4.1 Sallen and Key Filter 729
14.1 General Considerations 673	15.4.2 Integrator-Based
14.2 Emitter Follower as Power	Biquads 735
Amplifier 674	15.4.3 Biquads Using Simulated
14.3 Push-Pull Stage 677	Inductors 738
14.4 Improved Push-Pull Stage 68	15.5 Approximation of Filter
14.4.1 Reduction of Crossover	Response 743
Distortion 680	15.5.1 Butterworth Response 744
14.4.2 Addition of CE Stage 68	15.5.2 Chebyshev Response 748
14.5 Large-Signal	15.6 Chapter Summary 753
Considerations 687	Problems 754
14.5.1 Biasing Issues 687	SPICE Problems 758
14.5.2 Omission of PNP Power	
Transistor 688	16 DIGITAL CMOS
14.5.3 High-Fidelity Design 69	1 CIRCUITS 760
14.6 Short-Circuit Protection 692	16.1 General Considerations 760
14.7 Heat Dissipation 692	16.1.1 Static Characterization of
14.7.1 Emitter Follower Power	Gates 761
Rating 693	16.1.2 Dynamic Characterization
14.7.2 Push-Pull Stage Power	of Gates 768
Rating 694	16.1.3 Power-Speed Trade-Off
14.7.3 Thermal Runaway 696	771
14.8 Efficiency 697	16.2 CMOS Inverter 773
14.8.1 Efficiency of Emitter	16.2.1 Initial Thoughts 773
Follower 697	16.2.2 Voltage Transfer
14.8.2 Efficiency of Push-Pull	Characteristic 775
Stage 698	16.2.3 Dynamic
14.9 Power Amplifier Classes 699	
14.10 Chapter Summary 700	16.2.4 Power Dissipation 786
Problems 701	16.3 CMOS NOR and NAND
SPICE Problems 705	Gates 790
4	16.3.1 NOR Gate 790
15 ANALOG FILTERS 707	16.3.2 NAND Gate 793
15.1 General Considerations 707	16.4 Chapter Summary 794
15.1.1 Filter Characteristics 70	Problems 795
15.1.2 Classification of	SPICE Problems 800
Filters 709	17 CMOC AMPLIFIEDS
15.1.3 Filter Transfer	17 CMOS AMPLIFIERS 801
Function 712	17.1 General Considerations 801
15.1.4 Problem of Sensitivity 7	
15.2 First-Order Filters 717	Impedances 802
15.3 Second-Order Filters 720	17.1.2 Biasing 806
15.3.1 Special Cases 720	17.1.3 DC and Small-Signal
15.3.2 RLC Realizations 724	Analysis 807

xxiv Contents

17.2 Operating Point Analysis		17.4.2 CS Stage with Diode-	
and Design 808		Connected Load 825	
17.2.1 Simple Biasing 810		17.4.3 CS Stage with Source	
17.2.2 Biasing with Source		Degeneration 826	
Degeneration 812		17.4.4 Common-Gate	
17.2.3 Self-Biased		Topology 838	
Stage 815		17.4.5 Source Follower 849	
17.2.4 Biasing of PMOS	17.5	Additional Examples 855	
Transistors 816	17.6	Chapter Summary 859	
17.2.5 Realization of Current		Problems 860	
Sources 817		SPICE Problems 871	
17.3 CMOS Amplifier			
Topologies 818	_		
17.4 Common-Source	Appendix A INTRODUCTION TO SPICE 873		
Topology 819			
17.4.1 CS Stage with Current-		Index 893	
Source Load 824			