Solar Bulletin

THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS SOLAR SECTION

Rodney Howe, Editor, Chairperson c/o AAVSO, 49 Bay State Rd Cambridge, MA 02138

Web: http://www.aavso.org/solar-bulletin
Email: solar.aavso@gmail.com *ISSN 0271-8480*

The graph above shows the Solar Dynamics Observatory (SDO) data http://www.nasa.gov/mission_pages/sdo/main/ with the SDO Wolf number (data in the SunEntry database), the AAVSO American Relative number (Ra) together with the Penticton 10.7 cm Solar Flux Unit (SFU) values for most of 2013. The NRC Penticton data (labeled f10.7) come from here: http://ftp.geolab.nrcan.gc.ca/data/solar_flux/daily_flux_values/fluxtable.txt and the International Sunspot Number (ISN) comes from the Solar Influences Data Center (SIDC) Royal Observatory, Belgium.http://sidc.oma.be/sunspot-index-graphics/sidc_graphics.php Graphs courtesy of Thierry Dudok de Wit (Laboratoire de Physique et Chimie de l'Environment et de l'Espace). There are more plots and explanation on the last page of this Solar Bulletin.

Sudden Ionospheric Disturbance Report

Sudden Ionospheric Disturbances (SID) Records During January, 2014

Date	Max	Imp	Date	Max	Imp	Date	Max	Imp
140101	1546	1+	140104	1020	1+	140107	0703	2
140101	1847	2	140104	2142	1+	140107	0718	2
140101	2205	2	140104	0214	2	140107	1825	2
140101	1855	2+	140104	0244	2	140107	0745	2+
140102	0428	1+	140104	0632	2	140107	1043	2+
140102	1224	1+	140104	1028	2	140107	1500	2+
140102	2103	1+	140104	0604	2+	140107	0412	3
140102	2317	1+	140104	2231	2+	140108	0310	1+
140102	0157	2	140104	1925	3	140108	0159	2
140102	0220	2	140105	1543	1+	140108	0320	2
140102	0400	2	140105	0228	2+	140108	0345	2
140102	1157	2	140105	1120	2+	140108	1510	2
140102	2218	2	140106	0845	1+	140109	1616	1+
140102	0232	2+	140106	2247	1+	140109	1013	2
140102	1131	2+	140107	0314	1+	140109	1132	2
140103	0632	1+	140107	1014	1+	140109	1440	2+
140103	0817	1+	140107	1310	1+	140110	0647	1+
140103	1533	1+	140107	1417	1+	140110	1300	1+
140103	2222	1+	140107	1442	1+	140110	0718	2
140103	2324	1+	140107	2212	1+	140110	1110	2
140103	0358	2	140107	2231	1+	140110	2223	2
140103	0658	2	140107	0234	2	140111	0003	2
140103	1512	2	140107	0323	2	140111	1740	2
140103	0252	3	140107	0351	2	140111	0740	2+

Date	Max	Imp	Date	Max	Imp	Date	Max	Imp
140111	0928	2+	140118	0324	2	140128	0529	2
140111	1120	2+	140118	1530	2+	140128	0730	2
140111	2318	2+	140119	0657	1+	140128	2215	2
140112	2138	2	140119	0930	1+	140129	0335	1+
140112	0005	2+	140119	0548	2+	140129	2249	1+
140112	0206	2+	140119	1500	2+	140129	0712	2
140112	2126	2+	140120	0213	1+	140129	0422	2+
140113	1140	1+	140120	0222	2	140129	1442	2+
140113	2150	1+	140120	0236	2+	140129	0437	3
140113	1030	2	140121	0115	1+	140130	0314	1+
140113	0505	2+	140124	1400	2	140130	0638	1+
140114	0327	2+	140125	0550	2+	140130	0809	1+
140114	1040	2+	140126	0606	2+	140130	0440	2
140114	1500	2+	140126	0616	2+	140130	0803	2
140115	1415	1+	140127	0114	1+	140130	1603	2
140115	0945	3+	140127	2209	1+	140130	0250	2+
140116	0552	1+	140127	0207	2	140130	1059	2+
140116	1230	1+	140127	0416	2	140130	1611	2+
140116	0905	2+	140127	0504	2	140131	0005	1+
140116	1500	2+	140127	1950	2+	140131	0744	1+
140116	1524	2+	140127	2227	2+	140131	1119	1+
140117	1330	2	140128	0036	1+	140131	1315	1+
140117	0231	2+	140128	0310	1+	140131	0455	2
140117	0412	2+	140128	1940	1+	140131	0504	2
140117	1941	2+	140128	0405	2	140131	1015	2

Solar Events

Importance rating: Duration (min)	1-: <19	1: 19-25	1+: 26-32	2: 33-45	2+: 46-85	3: 86-125	3+: >125
-----------------------------------	---------	----------	-----------	----------	-----------	-----------	----------

Sudden Ionospheric Disturbances	s (SID) Observer	s During January, 2014
---------------------------------	------------------	------------------------

<u>Observer</u>	<u>Code</u>	Station(s) monitored	<u>Observer</u>	<u>Code</u>	Station(s) monitored
A McWilliams	A94	NML	J Karlovsky	A131	DHO NSY
R Battaiola	A96	HWU	R Green	A134	JJI NWC
J Wallace	A97	NAA	R Mrllak	A136	GQD NSY
L Loudet	A118	DCF NAA TBB	D Koawl	A137	HWU NAA NML
B Terrill	A120	JJI NWC	S Aguirre	A138	NLK
F Adamson	A122	NWC	F Francione & C Re	A139	HWU NAA NSY
S Oatney	A125	NLK NML	L Corp	A140	DHO
K Cotar	A129	DHO	I Ryumshin	A142	DHO GQD HWU

There were 176 solar flares measured by GOES-15 for January, 2014, 1 X class, 26 M class, 135 C class and 11 B class flares. The slightly more active this month compared to last, with many M class flares. There were 16 AAVSO SID observers who submitted reports this month.

				BEF	RJ 9	Jo	se Alberto Berdejo
	D 1 4	C	(N 1 (D) C	BMI	= 12	Mi	chael Boschat
			pot Numbers (Ra) for	BRA	AB 25	Bre	enda Branchett
-	_		e = maximum, minimum]	BRA	AF 7	Ra	iffaello Braga
DAY	NumObs		Ra	BRA	AM 1	Ма	ark Bradbury
1	30	102	76	BRO	OB 29	Ro	bert Brown
2	24	119	94	BSA	AB 28	Sa	ntanu Basu
3	25	131	101	BXD	7	Ale	exandru Burda
4	23	110	84	CAI	DA 1	Ad	air Cardoso
5	24	126	90	CFC) 1	Je	an F. Coliac
6	30	136	98	CHA	AG 26	Ge	erman Morales Chavez
7	27	104	80	CIO	A 12	loa	annis Chouinavas
8	20	96	79	CKE	3 16	Bri	an Cudnik
9	28	103	82	CLZ	. 1	La	urent Corp
10	25	124	92	CN	Γ 10	De	ean Chantiles
11	30	124	93	CVJ	1	Jo	se Carvajal
12	34	118	87	DGI	P 16	Ge	erald Dyck
13	28	99	75	DJC)B 6	Jo	rge del Rosario
14	26	89	66	DUE	3F 19	Fra	anky Dubois
15	23	81	59	FAN	4	Fa	bio Mariuzza
16	24	78	56	FEF	RJ 10	Ja	vier Ruiz Fernandez
17	30	70	52	FLE	T 24	То	m Fleming
18	28	102	76	FLF	20	Fre	edirico Luiz Funari
19	28	100	79	FTA	A 11	Ta	deusz Figiel
20	27	129	96	FUJ	K 23	K.	Fujimori
21	24	133	102	HAY	/K 6	Kir	n Hay
22	31	142	107	HO\	NR 24	Ro	dney Howe
23	31	119	91	JGE	4	Ge	erardo Jimenez Lopez
24	31	99	73	JJM	A 5	Je	ssica M.Johnson
25	29	87	67	KAN	ND 14	Ka	indilli Observatory
26	33	71	52	KAF	PJ 21	Jo	hn Kaplan
27	22	67	46	KNJ	IS 25	Ja	mes & Shirley Knight
28	25	70	55	KRO	DL 18	La	rry Krozel
29	26	84	66	LKF	R 6	Kri	stine Larsen
30	24	77	65	MAI	RE 5	En	rico Mariani
31	22	81	61	MCI	E 28	Ets	suiku Mochizuki
Average	26.8	102.3	77.3	MG	AA 3	Ga	el Mariani
Obs	#Obs	Name		MIL	J 6	Ja	y Miller
	1		Abbett	MJH	HA 24	Jo	hn McCammon
AAP AAX		A. Patrick		MM	I 13	Mi	chael Moeller
	20	Alexandre		OAT	ΓS 12	Su	san Oatney
ADAC	16	J. Alonso		ON	J 8	Jo	hn O'Neill
ARAG	29 6	Gema Ara		RIC	E 7	E.	C. Richardson
ASA	6	Salvador	-	RLN	<i>I</i> 4	Ma	at Raymonde
BARH	14	Howard B		RRO	7	Ra	llph Rogge
BATR	3	Roberto E		SDO	OH 31	SE	OO - Jan Alvestad
BDDA	18	Diego Ba	Suarii	SCO	GL 21	Ge	erd-Lutz Schott

SIMC	2	Clyde Simpson	WRP	7 Russell Wheeler		
SONA	8	Andries Son				
STAB	26	Brian Gordon-States				
SUZM	27	Miyoshi Suzuki				
TESD	24	David Teske	Total	Ob	servers:	66
URBP	12	Piotr Urbanski	Total	Obse	ervations:	863
VARG	16	A. Gonzalo Vargas				
VIDD	8	Daniel Vidican				
WAU	2	Artur Wargin				
WILW	13	William M. Wilson				

35 of our 66 observers submitted data on the sunspot and group counts for the Sun's north and south hemispheres. It is interesting to note how the Wolf numbers of group and sunspot counts do not cross over any day this month; the southern hemisphere is predominant.

Reporting Addresses:

Sunspot Reports – Kim Hay

solar.aavso@gmail.com

SID Solar Flare Reports – Rodney Howe

ahowe@frii.com

Graphs courtesy Thierry Dudok de Wit (Laboratoire de Physique et Chimie de l'Environment et de l'Espace)

1) Power spectra for AAVSO Ra, SDO HMI data from Jan Alvestad, NRC Penticton 10.7 cm SFU flux values, and the International Sunspot Number SSN (SIDC). The first plot suggests that SDO has a higher signal level by a factor of 4 to 8 when compared to the other indices.

2) The second graph shows their distance map, or how close or far they are from matching up to one another. Clearly, the AAVSO and the ISN fully agree, whereas SDO contains a component that cannot be described by either the radio flux or SDO data itself. It is not due to the higher noise level, it is just different.

The above graph shows the magnitude of difference between these indices.

The above graph shows the 'spatial distance' between these indices.