QR פירוק

"אב" של הפירוק QR הוא גראם (1883). מאוחר יותר שמידט (1907) הוכיח את **QR decomposition theorem**.

Jørgen Pedersen Gram (1850 –1916)

Erhard Schmidt (1876-1959)

אם $m{A}$ - מטריצה $m{m} imes m{n}$, עם עמודות בת"ל אזי היא ניתנת לפירוק

$$A = QR$$

אשר בו

מטריצה $m{m} imesm{m}$ אשר עמודותיה הן בסיס אורטונורמאלי עבור - מרחב עמודות של $m{A}$

מטריצה משולשת עליונה לא סינגולארית -R

: מוטיבציה

- Ax = b אלטרנטיבה לשיטת גאוס לפתרון
 - מציאת ערכים עצמיים של מטריצה
- מציאת בסיס של תת-מרחבים אורטוגונליים
 - 'ıɔı –

דוגמאות לאפשרות לבניית מטריצה אורטוגונלית:

- תהליך Gram-Schmidt
- Householder Reflection -
 - Givens Rotation -

Alston Scott Householder

Born: 5 May 1904 in Rockford, Illinois, USA.

Died: 4 July 1993 in Malibu, California, USA.

אתה בעלי אותה - x,y אם : (Householder reflection) משפט

 $oldsymbol{y} = oldsymbol{H} oldsymbol{x}$ המקיימת מטריצה אורטוגונלית סימטרית אזי קיימת מטריצה אורטוגונלית

 $H = I - 2ww^T$

-1

$$w = \frac{1}{\|x - y\|_2} (x - y)$$

$$\boldsymbol{H}^{-1} = \boldsymbol{H}$$

מסקנה (מטריצה ה- k- ית של Householder מסקנה (מטריצה ה- k- ית של הואם המקיים -x- וקטור כלשהו. אם -x- מספר שלם המקיים -x- וקטור כלשהו. אם אזי אפשר לבנות וקטור w_k - ומטריצה $H_k = I - 2w_k w_k^T$ - כך ש

$$egin{array}{c|cccc} oldsymbol{x}_1 & oldsymbol{x}_1 \ dots & oldsymbol{x}_k \ oldsymbol{x}_k & oldsymbol{x}_k \ oldsymbol{x}_{k+1} & = oldsymbol{x}_k \ oldsymbol{x}_{k+2} & oldsymbol{0} \ dots & dots \ oldsymbol{x}_n \ oldsymbol{y} \ oldsymbol{0} \ dots \ oldsymbol{0} \ oldsymbol{0} \ \end{array}$$

תהליך הפירוק QR בעזרת טרנספורמציית טרנספורמציית

$$A = Q^{(1)}R^{(1)} = \underbrace{Q^{(1)}H^{(2)}}_{Q^{(2)}}\underbrace{H^{(2)}R^{(1)}}_{R^{(2)}}$$

$$\begin{bmatrix} * & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & 0 & * & * & * & * \end{bmatrix}$$

צעד 2

$$Q^{(2)} = Q^{(1)}H^{(2)} = H^{(1)}H^{(2)}$$

 $R^{(2)} = H^{(2)}R^{(1)} = H^{(2)}H^{(1)}A$

$$A = Q^{(m)}R^{(m)} = QR$$

שעד m

$$Q = Q^{(m)} = H^{(1)}H^{(2)}...H^{(m)}$$

 $R = R^{(m)} = H^{(m)}...H^{(2)}H^{(1)}A$

דוגמא 1: מצא פירוק QR של המטריצה הבאה

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$

צעד 1

$${f A}^{(0)} = {f A}$$
 נגדיר.

$$w_1 = \frac{1}{\|v_1\|_2} v_1, \quad v_1 = a_1 - se_1, \quad s = sign(a_{11}) \sqrt{\|a_1\|_2}$$
.2

$$\boldsymbol{w}_{1} = \frac{1}{\|\boldsymbol{v}_{1}\|_{2}} \boldsymbol{v}_{1} = \frac{1}{2} \begin{vmatrix} -1 \\ 1 \\ 1 \end{vmatrix}, \boldsymbol{v}_{1} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} - 2 \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} -1 \\ 1 \\ 1 \end{vmatrix}, \boldsymbol{s} = \sqrt{4} = 2$$

$$\boldsymbol{H}_1 = \boldsymbol{I} - 2\boldsymbol{w}_1 \boldsymbol{w}_1^T \quad .3$$

$$\boldsymbol{H}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - 2 \cdot \frac{1}{4} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix}$$

$$\boldsymbol{A}^{(1)} = \boldsymbol{H}_1 \boldsymbol{A}^{(0)} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & -5 & 2 \end{bmatrix}$$

$oldsymbol{A}^{(1)}$ צעד $oldsymbol{2}$: נתבונן רק בתת-מטריצה של

$$\begin{bmatrix} 2 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & -5 & 2 \end{bmatrix}$$

$$\boldsymbol{w}_{1}^{(1)} = \frac{1}{\|\boldsymbol{v}_{1}^{(1)}\|_{2}} \boldsymbol{v}_{1}^{(1)}, \quad \boldsymbol{v}_{1}^{(1)} = \boldsymbol{a}_{1}^{(1)} - \boldsymbol{s}^{(1)} \boldsymbol{e}_{1}^{(1)}, \quad \boldsymbol{s}^{(1)} = \boldsymbol{sign}(\boldsymbol{a}_{11}^{(1)}) \sqrt{\|\boldsymbol{a}_{1}^{(1)}\|_{2}}$$

$$\mathbf{w}_{1}^{(1)} = \frac{1}{\sqrt{50}} \begin{bmatrix} -5\\0\\-5 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\-1 \end{bmatrix}, \mathbf{v}_{1} = \begin{bmatrix} 0\\0\\-5 \end{bmatrix} - 5 \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} -5\\0\\-5 \end{bmatrix}, \mathbf{s} = \sqrt{25} = 5$$

$$\boldsymbol{H}_2 = \begin{bmatrix} 1 & 0 \\ 0 & \boldsymbol{I} - 2\boldsymbol{w}_1^{(1)}\boldsymbol{w}_1^{(1)\boldsymbol{T}} \end{bmatrix}$$

$$I - 2w_1^{(1)}w_1^{(1)T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 2 \cdot \frac{1}{2} \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{H}_2 = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix}$$

$$\boldsymbol{A}^{(2)} = \boldsymbol{H}_2 \boldsymbol{A}^{(1)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & -5 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix} = \boldsymbol{R}$$

Slide 12

$$Q^{(2)} = H^{(1)}H^{(2)} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 & -1/2 \end{bmatrix}$$

: קיבלנו

$$\begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

שיטות איטרטיביות לפתרון מערכת משוואות ליניאריות

• השיטות שימושיות עבור מערכות גדולות ודלילות

$$x_{k+1} = Bx_k + c, \quad k = 0,1,2,...$$
 $Ax = b$: רעיון •

$$Ax=b$$
 : רעיון

$$oldsymbol{A} = oldsymbol{L} + oldsymbol{D} + oldsymbol{U}$$
יהי •

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ l_{21} & 0 & 0 \\ l_{31} & l_{32} & 0 \end{bmatrix} + \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix} + \begin{bmatrix} 0 & u_{12} & u_{13} \\ 0 & 0 & u_{23} \\ 0 & 0 & 0 \end{bmatrix}$$

Slide 14

$$Ax = b$$

$$\downarrow \downarrow$$

$$(L+D+U)x = b$$

שיטת גאוס-זיידל

Gauss-Seidel's Method

$$(L+D)x = -Ux + b$$

$$\downarrow \qquad \qquad \downarrow$$

$$x = -(L+D)^{-1}Ux + (L+D)^{-1}b$$

$$\downarrow \qquad \qquad \downarrow$$

$$x_{k+1} = -(L+D)^{-1}Ux_k + (L+D)^{-1}b$$

שיטת יעקובי

Jacobi's Method

$$Dx = -(L+U)x + b$$

$$\downarrow \downarrow$$

$$x = -D^{-1}(L+U)x + D^{-1}b$$

$$\downarrow \downarrow$$

$$x_{k+1} = -D^{-1}(L+U)x_k + D^{-1}b$$

שיטת גאוס-זיידל: צורה שקולה, שימושית יותר

$$(L+D)x=-Ux+b$$
 לי $(L+D)x_{k+1}=-Ux_k+b$ לי $(L+D)x_{k+1}=-Ux_k+b$ לי $Dx_{k+1}=-Lx_{k+1}-Ux_k+b$ לי $x_{k+1}=-D^{-1}Lx_{k+1}-D^{-1}Ux_k+D^{-1}b$

שוני בין שתי השיטות – צורת עדכון של איטרציה

דוגמא

$$\begin{cases} 2x - y + z = -1 \\ x + 2y - z = 6 \\ x - y + 2z = -3 \end{cases}$$

: איטרציית יעקובי

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \\ z^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0.5 & -0.5 \\ -0.5 & 0 & 0.5 \\ -0.5 & 0.5 & 0 \end{pmatrix} \begin{pmatrix} x^k \\ y^k \\ z^k \end{pmatrix} + \begin{pmatrix} -0.5 \\ 3 \\ -1.5 \end{pmatrix}$$

$$\begin{cases} x^{k+1} = 0.5y^k - 0.5z^k - 0.5 \\ y^{k+1} = -0.5x^k + 0.5z^k + 3 \\ z^{k+1} = -0.5x^k + 0.5y^k - 1.5 \end{cases}$$

: איטרציית גאוס – זיידל

$$\begin{cases} x^{k+1} = 0.5y^k - 0.5z^k - 0.5 \\ y^{k+1} = -0.5x^{k+1} + 0.5z^k + 3 \\ z^{k+1} = -0.5x^{k+1} + 0.5y^{k+1} - 1.5 \end{cases}$$

איטרציית יעקובי עם ניחוש התחלתי $^{\mathsf{T}}[0\ 0\ 0]$

$$\begin{cases} x^{k+1} = 0.5y^k - 0.5z^k - 0.5 \\ y^{k+1} = -0.5x^k + 0.5z^k + 3 \\ z^{k+1} = -0.5x^k + 0.5y^k - 1.5 \end{cases}$$

iteration	X	y	Z
0	0	0	0
1	-0.5	3	-1.5
2	1.75	2.5	0.25
3	0.625	2.25	-1.125
4	1.1875	2.125	-0.6875
5	0.90625	2.0625	-1.03125
6	1.046875	2.03125	-0.92188
7	0.976563	2.015625	-1.00781
8	1.011719	2.007813	-0.98047
9	0.994141	2.003906	-1.00195
10	1.00293	2.001953	-0.99512

איטרציית יעקובי עם ניחוש התחלתי $^{\mathsf{T}}[0\ 0\ 0]$

$$\begin{cases} 2x - y + z = -1 \\ x + 2y - z = 6 \end{cases}$$

$$\begin{cases} x - y + 2z = -3 \end{cases}$$

iteration	X	y	Z
0	0	0	0
1	6	1	-1.5
2	2.5	11.5	-4
3	-21	2	3
4	5	-38	10
5	92	21	-23
6	-59	162	-37
7	-355	-154	109
8	423	-600	99
9	1305	946	-513
10	-2399	2098	-181

איטרציית גאוס - זיידל עם ניחוש התחלתי $^{\mathsf{T}}[0 \ 0 \ 0]$

$$\begin{cases} x^{k+1} = 0.5y^k - 0.5z^k - 0.5 \\ y^{k+1} = -0.5x^{k+1} + 0.5z^k + 3 \\ z^{k+1} = -0.5x^{k+1} + 0.5y^{k+1} - 1.5 \end{cases}$$

iteration	X	y	Z
0	0	0	0
1	-0.5	3.25	0.375
2	0.9375	2.71875	-0.60938
3	1.164063	2.113281	-1.02539
4	1.069336	1.952637	-1.05835
5	1.005493	1.968079	-1.01871
6	0.993393	1.99395	-0.99972
7	0.996836	2.001721	-0.99756
8	0.999639	2.001402	-0.99912
9	1.00026	2.00031	-0.99997
10			

תנאים להתכנסות השיטות האיטרטיביות

משפט (תנאי הכרחי ומספיק להתכנסות האיטרציה מהצורה • ($x_{k+1} = Bx_k + c, \ k = 0, 1, 2, ...$

בהינתן וקטור התחלתי כלשהו $oldsymbol{x}_0$ האיטרציה הנ"ל תתכנס אם ורק אם

.
$$\rho(\mathbf{B}) = \max_{1 \le i \le n} \left| \lambda_i(\mathbf{B}) \right| < 1$$
 מתקיים

.Bנקרא hoר הרדיוס הספקטראלי של ho

- $\|oldsymbol{B}\|\!<\!1$: תנאי מספיק להתכנסות האיטרציה הנ"ל $oldsymbol{\cdot}$
- ממש. אזי מטריצה עם אלכסון דומיננטי (שולט) ממש. אזי A

מערכת בעלת פתרון יחיד ואיטרציית יעקובי וגם איטרציית Ax=b

גאוס -זיידל יוצרות סדרת הניחושים המתכנסים לפתרון הזה לכל בחירה

של ניחוש התחלתי.

- ברוב המקרים איטרציית גאוס זיידל מתכנסת יותר מהר מאשר איטרציית יעקובי
- בחלק מהמקרים בהם איטרציית גאוס זיידל לא תתכנס, איטרציית יעקובי כן תתכנס.
 - $\left\|x^k x^{k-1}
 ight\| < arepsilon$: תנאי עצירה עבור איטרציות •

מציאת ערכים עצמיים של מטריצה

מקיימים v_i , $n \times n$ בגודל A מקיימים •

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{v}_i = 0, \, \mathbf{v}_i \neq 0$$

משוואה אופיינית

$$\boldsymbol{p}_{\boldsymbol{A}}(\lambda) = \det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

אם ידוע ו"ע, אפשר לקבל מיידית את ע"ע המתאים לפי •

$$\lambda_i = \frac{v_i^T A v_i}{v_i^T v_i}$$

$$\frac{v_i^T A v_i}{v_i^T v_i} = \lambda_i \qquad \Leftarrow \quad v_i^T A v_i = \lambda_i v_i^T v_i \qquad \Leftarrow v_i^T A v_i = v_i^T \lambda_i v_i \qquad \Leftarrow \quad A v_i = \lambda_i v_i$$

ע"ע עבור מטריצה סימטרית.

 $oldsymbol{a_{ij}} = oldsymbol{a_{ji}}$, $oldsymbol{i}, oldsymbol{j} = 1..oldsymbol{n}$ כלומר A : הגדרה

$m{n} imes m{n}$ תכונות של מטריצה ממשית וסימטרית

- 1) כל הע"ע הם מספרים ממשיים
- יש n ו"ע $v^{(i)}, i=1..n$ והם אורטוגונאליים בזוגות (2
- ע"טור x ניתן לייצוג באופן יחיד כצירוף ליניארי של וx (3

-ן
$$oldsymbol{U}oldsymbol{U}^T = oldsymbol{U}^Toldsymbol{U} = oldsymbol{I}$$
 אזי $oldsymbol{U} = oldsymbol{ig[v^{(1)}, v^{(2)}, ... v^{(n)}ig]}$ ו-

$$\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{U} = \boldsymbol{D} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{bmatrix}$$

$$||A||_2 = \rho(A)$$
 (5)

Power method

שיטה למציאת ערך עצמי הגדול ביותר בערך מוחלט •

$$|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n|$$
 : הנחה •

 $oldsymbol{v}^{(1)}$ -ו $\lambda_{\!\scriptscriptstyle \parallel}$ ו-

• אלגוריתם

 $z^{(0)}$ איטרציה 1: 1) נבחר ניחוש התחלתי עבור $oldsymbol{v}^{(1)}$ ונקרא לו

.
$$\alpha_1 = \max_{i=1} \left| w_i^{(1)} \right|$$
 ונגדיר $w^{(1)} = Az^{(0)}$ נגדיר (2

$$z^{(1)} = \frac{1}{\alpha_1} w^{(1)}$$
 נגדיר (3

4) לחזור על התהליך

١

Slide 25

$$z^{(m)} = \frac{1}{\alpha_m} w^{(m)}$$
 גנדיך $\alpha_m = \max_{i=1..n} \left| w_i^{(m)} \right|, w^{(m)} = Az^{(m-1)}$:m איטרציה

: הוכחת אלגוריתם

בעלת n ו"ע בת"ל, מנורמלים ומהווים בסיס וגם A-

$$\max_{k=1..n} \left| z_k^{(0)} \right| = 1, \quad c_1 \neq 0$$

$$z^{(0)} = \sum_{i=1}^{n} c_i v^{(i)}$$

: 1 צעד

$$\mathbf{w}^{(1)} = A\mathbf{z}^{(0)} = A\sum_{i=1}^{n} c_{i} \mathbf{v}^{(i)} = \sum_{i=1}^{n} c_{i} A\mathbf{v}^{(i)} = \sum_{i=1}^{n} c_{i} \lambda_{i} \mathbf{v}^{(i)} = \lambda_{1} \sum_{i=1}^{n} c_{i} \frac{\lambda_{i}}{\lambda_{1}} \mathbf{v}^{(i)}$$

$$z^{(1)} = \frac{\lambda_1}{\alpha_1} \sum_{i=1}^{n} c_i \frac{\lambda_i}{\lambda_1} v^{(i)}$$

: 2 צעד

$$\mathbf{w}^{(2)} = A\mathbf{z}^{(1)} = A\frac{\lambda_{1}}{\alpha_{1}}\sum_{i=1}^{n} c_{i} \frac{\lambda_{i}}{\lambda_{1}} \mathbf{v}^{(i)} = \frac{\lambda_{1}}{\alpha_{1}}\sum_{i=1}^{n} c_{i} \frac{\lambda_{i}}{\lambda_{1}} A\mathbf{v}^{(i)} = \frac{\lambda_{1}}{\alpha_{1}}\sum_{i=1}^{n} c_{i} \frac{\lambda_{i}^{2}}{\lambda_{1}} \mathbf{v}^{(i)} = \frac{\lambda_{1}^{2}}{\alpha_{1}}\sum_{i=1}^{n} c_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{2} \mathbf{v}^{(i)}$$

$$z^{(2)} = \frac{\lambda_1^2}{\alpha_1 \alpha_2} \sum_{i=1}^{n} c_i \left(\frac{\lambda_i}{\lambda_1}\right)^2 v^{(i)}$$

: m צעד

$$\boldsymbol{w}^{(m)} = \frac{\lambda_1^m}{\alpha_1 \alpha_2 ... \alpha_{m-1}} \sum_{i=1}^n \boldsymbol{c}_i \left(\frac{\lambda_i}{\lambda_1}\right)^m \boldsymbol{v}^{(i)}$$

$$z^{(m)} = \frac{\lambda_1^m}{\alpha_1 \alpha_2 ... \alpha_m} \sum_{i=1}^n c_i \left(\frac{\lambda_i}{\lambda_1}\right)^m v^{(i)}$$

$$\lim_{m \to \infty} c_i \left(\frac{\lambda_i}{\lambda_1} \right)^m v^{(i)} = 0 \text{ for all } i = 2..n \qquad \qquad \Leftarrow \left| \frac{\lambda_i}{\lambda_1} \right| < 1$$

$$\lim_{m \to \infty} z^{(m)} = \lim_{m \to \infty} \frac{\lambda_1^m}{\alpha_1 \alpha_2 ... \alpha_m} \sum_{i=1}^n c_i \left(\frac{\lambda_i}{\lambda_1} \right)^m v^{(i)} = \lim_{m \to \infty} \frac{c_1 \lambda_1^m}{\alpha_1 \alpha_2 ... \alpha_m} v^{(1)} \quad \longleftarrow$$

$$\lim_{m \to \infty} z^{(m)} = v^{(1)} \Leftarrow \lim_{m \to \infty} \frac{c_1 \lambda_1^m}{\alpha_1 \alpha_2 \dots \alpha_m} = 1 \qquad \Leftarrow \max_{i=1..n} \left| z_i^{(m)} \right| \\
= \max_{i=1..n} \left| v_i^{(1)} \right| = 1, \quad m = 1..n$$

$$\lim_{m\to\infty}\frac{c_1\lambda_1^{m-1}}{\alpha_1\alpha_2...\alpha_{m-1}}=1$$
 $m-1\leftarrow m$ ב- (**)

$$\lim_{m \to \infty} \frac{\lambda_{1}}{\alpha_{m}} = \lim_{m \to \infty} \frac{\frac{c_{1} \lambda_{1}^{m}}{\alpha_{1} \alpha_{2} ... \alpha_{m}}}{\frac{c_{1} \lambda_{1}^{m-1}}{\alpha_{1} \alpha_{2} ... \alpha_{m-1}}} = 1$$

$$\downarrow \downarrow$$

$$\lambda_{1} = \lim_{m \to \infty} \alpha_{m}$$

מ.ש.ל.

דוגמא: מצא ע"ע כלשהו של

$$A = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix}$$

$$z^{(0)} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$
 כאשר

צעד 1

$$\boldsymbol{w}^{(1)} = \boldsymbol{A}\boldsymbol{z}^{(0)} = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 12 \end{bmatrix} = \boldsymbol{12} \begin{bmatrix} 0.5 \\ 2/3 \\ 1 \end{bmatrix} = \alpha_1 \boldsymbol{z}^{(1)}$$

צעד 2

$$\boldsymbol{w}^{(2)} = \boldsymbol{A}\boldsymbol{z}^{(1)} = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix} \begin{bmatrix} 0.5 \\ 2/3 \\ 1 \end{bmatrix} = \begin{bmatrix} 7/3 \\ 10/3 \\ 16/3 \end{bmatrix} = \frac{16}{3} \begin{bmatrix} 7/16 \\ 5/8 \\ 1 \end{bmatrix} = \alpha_2 \boldsymbol{z}^{(2)}$$

: תוצאות של 6 צעדים ראשונים

$$12\begin{bmatrix} 0.5 \\ 2/3 \\ 1 \end{bmatrix}, \ \frac{16}{3}\begin{bmatrix} 7/16 \\ 5/8 \\ 1 \end{bmatrix}, \ \frac{9}{2}\begin{bmatrix} 5/12 \\ 11/18 \\ 1 \end{bmatrix}, \ \frac{38}{9}\begin{bmatrix} 31/76 \\ 23/38 \\ 1 \end{bmatrix}, \ \frac{78}{19}\begin{bmatrix} 21/52 \\ 47/78 \\ 1 \end{bmatrix}, \ \frac{158}{39}\begin{bmatrix} 127/316 \\ 95/158 \\ 1 \end{bmatrix}$$

:או במספרים עשרוניים

$$12\begin{bmatrix} 0.5 \\ 0.667 \\ 1 \end{bmatrix}, 5.333\begin{bmatrix} 0.436 \\ 0.625 \\ 1 \end{bmatrix}, 4.5\begin{bmatrix} 0.417 \\ 0.611 \\ 1 \end{bmatrix}, 4.222\begin{bmatrix} 0.408 \\ 0.605 \\ 1 \end{bmatrix}, 4.105\begin{bmatrix} 0.404 \\ 0.603 \\ 1 \end{bmatrix}, 4.051\begin{bmatrix} 0.402 \\ 0.601 \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} 0.4 & 0.6 & 1 \end{bmatrix}^T$ מסקנה : ע"ע מתכנס ל-4 וו"ע מתכנס ל

Inverse power method

- . למציאת ע"ע הקטן בערך מוחלט
- הם A^{-1} הם איטה מתבססת על המשפט שערכים עצמיים של A^{-1} הם מספרים הופכיים לע"ע של מטריצה A.
- במקום חישוב $oldsymbol{A}^{-1}z=oldsymbol{w}$ למציאת קירוב הבא של ו"ע, אנחנו נפתור •

עבור w . זה בדיוק מצב בו פיוק LU עבור M . זה בדיוק מצב בו Aw=z

Shifted power method

A-bI בעלת ע"ע וו"'ע λ_i, v_i בהתאמה אזי ע"ע שלA - A בעלת ע"ע באר A בהתאמה אזי ע $\mu_i = \lambda_i - b$ הוא

$$(a-bI)v=(\lambda-b)v,\; Av-bv=\lambda v-bv\; \Leftarrow\; Av=\lambda v$$
 : הוכחה הוכחה לפי הגדרה $(\lambda-b),v$ ו"ע וע"ע בהתאמה של לפי הגדרה מ.ש.ל.

כך , eta משפט בתנאים של המשפט הקודם, אפשר למצוא קבוע , כך , בתנאים של המשפט הקודם, אפשר למצוא קבוע $\mu_i = 1/\lambda_i - eta$ ש ש $\mu_i = 1/\lambda_i - eta$ מטריצה $(A - eta I)^{-1}$ מטריצה .

דוגמא: נחזור לדוגמא שראינו

$$\mathbf{B} = \mathbf{A} - 4\mathbf{I} = \begin{bmatrix} -4 & 11 & -5 \\ -2 & 13 & -7 \\ -4 & 26 & -14 \end{bmatrix}$$
 נגדיר

: Power method נבצע

$$\begin{bmatrix} -4 & 11 & -5 \\ -2 & 13 & -7 \\ -4 & 26 & -14 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 8 \begin{bmatrix} 0.25 \\ 0.5 \\ 1 \end{bmatrix}, \begin{bmatrix} -4 & 11 & -5 \\ -2 & 13 & -7 \\ -4 & 26 & -14 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ -1 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} 0.25 \\ 0.5 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
0.25 \\
0.5 \\
1
\end{bmatrix}, 115 \begin{bmatrix}
0.4261 \\
0.5 \\
1
\end{bmatrix}, -2.7043 \begin{bmatrix}
0.4453 \\
0.5000 \\
1.0000
\end{bmatrix}, -2.7814 \begin{bmatrix}
0.4607 \\
0.5000 \\
1.0000
\end{bmatrix}, -2.8428 \begin{bmatrix}
0.4723 \\
0.5000 \\
1.0000
\end{bmatrix}, \\
-2.8894 \begin{bmatrix}
0.4809 \\
0.5000 \\
1.0000
\end{bmatrix}, -2.9234 \begin{bmatrix}
0.4869 \\
0.5000 \\
1.0000
\end{bmatrix}, -2.9476 \begin{bmatrix}
0.4911 \\
0.5000 \\
1.0000
\end{bmatrix}, -2.9645 \begin{bmatrix}
0.4940 \\
0.5000 \\
1.0000
\end{bmatrix}, -2.9760 \begin{bmatrix}
0.4960 \\
0.5000 \\
1.0000
\end{bmatrix}$$

אם נבצע עוד מספר איטרציות, נראה כי ע"ע מתכנס ל

$$\mu_i = \lambda_i - 4 = -3$$

$$\lambda_i = 1$$
 מכאן,

$$v_i = \begin{bmatrix} 0.5000 \\ 0.5000 \\ 1.0000 \end{bmatrix}$$

מערכת משוואות לא ליניאריות

(2)
$$\begin{cases} x_1 = g_1(x_1, x_2, ..., x_m) \\ x_2 = g_2(x_1, x_2, ..., x_m) \\ \vdots \\ x_m = g_m(x_1, x_2, ..., x_m) \end{cases}$$
 (1)
$$\begin{cases} f_1(x_1, x_2, ..., x_m) = 0 \\ f_2(x_1, x_2, ..., x_m) = 0 \\ \vdots \\ f_m(x_1, x_2, ..., x_m) = 0 \end{cases}$$

 $\overline{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_m)$ היא נקודה שבת של מערכת (2) היא נקודה : נקודת שבת של

 $(3) \begin{cases} \alpha_1 = \mathbf{g}_1(\alpha_1, \alpha_2, ..., \alpha_m) \\ \alpha_2 = \mathbf{g}_2(\alpha_1, \alpha_2, ..., \alpha_m) \\ \vdots \\ \alpha_m = \mathbf{g}_m(\alpha_1, \alpha_2, ..., \alpha_m) \end{cases}$

איטרצית נקודת שבת

$$\begin{cases} x_1^{(n+1)} = g_1(x_1^{(n)}, x_2^{(n)}, ..., x_m^{(n)}) \\ x_2^{(n+1)} = g_2(x_1^{(n)}, x_2^{(n)}, ..., x_m^{(n)}) \\ \vdots \\ x_m^{(n+1)} = g_m(x_1^{(n)}, x_2^{(n)}, ..., x_m^{(n)}) \end{cases}$$

 $n = 0, 1, \dots$ עבור

משפט : נניח כי פונקציות g_i ונגזרות החלקיות מסדר ראשון שלהן רציפות בסביבת נקודת השבת השבת $ar{lpha}=(lpha_1,lpha_2,...,lpha_m)$ אם לבחור נקודה התחלתית קרוב מספיק לנקודת שבת, אזי יתקיים

$$\left| \sum_{i=1}^{m} \left| \frac{\partial \mathbf{g}_{1}}{\partial \mathbf{x}_{i}} (\alpha_{1}, \alpha_{2}, ..., \alpha_{m}) \right| < 1, \quad \left| \sum_{i=1}^{m} \left| \frac{\partial \mathbf{g}_{2}}{\partial \mathbf{x}_{i}} (\alpha_{1}, \alpha_{2}, ..., \alpha_{m}) \right| < 1, \quad ..., \sum_{i=1}^{m} \left| \frac{\partial \mathbf{g}_{m}}{\partial \mathbf{x}_{i}} (\alpha_{1}, \alpha_{2}, ..., \alpha_{m}) \right| < 1$$

שיטת ניוטון – רפסון רב-מימדי

בהינתן מערכת

$$\begin{cases} f_1(x_1, x_2, ..., x_m) = 0 \\ f_2(x_1, x_2, ..., x_m) = 0 \\ \vdots \\ f_m(x_1, x_2, ..., x_m) = 0 \end{cases}$$

$$\overline{x}^0 = (x_1^{0}, x_2^{0}, ..., x_m^{0})^T$$
 קירוב התחלתי $\overline{x}^* = (x_1^{*}, x_2^{*}, ..., x_m^{*})^T$ שורש אמיתי

$$\begin{cases} 0 = f_1(\overline{x}^*) \approx f_1(\overline{x}^0) + \sum_{j=1}^m \left(\overline{x}_j^* - \overline{x}_j^0\right) \frac{df_1}{dx_j}(\overline{x}^0) \\ 0 = f_2(\overline{x}^*) \approx f_2(\overline{x}^0) + \sum_{j=1}^m \left(\overline{x}_j^* - \overline{x}_j^0\right) \frac{df_2}{dx_j}(\overline{x}^0) \\ \vdots \\ 0 = f_m(\overline{x}^*) \approx f_m(\overline{x}^0) + \sum_{j=1}^m \left(\overline{x}_j^* - \overline{x}_j^0\right) \frac{df_m}{dx_j}(\overline{x}^0) \end{cases}$$

$$\begin{bmatrix} f_1(\overline{x}^0) \\ f_2(\overline{x}^0) \end{bmatrix} \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\overline{x}^0) & \frac{\partial f_1}{\partial x_2}(\overline{x}^0) & \dots & \frac{\partial f_1}{\partial x_m}(\overline{x}^0) \\ \frac{\partial f_2}{\partial x_2}(\overline{x}^0) & \frac{\partial f_2}{\partial x_2}(\overline{x}^0) & \dots & \frac{\partial f_2}{\partial x_m}(\overline{x}^0) \end{bmatrix} \begin{bmatrix} \overline{x}_1^* - \overline{x}_2^* - \overline{x}_2^* \end{bmatrix}$$

$$\overline{0} = \begin{bmatrix} f_1(\overline{x}^*) \\ f_2(\overline{x}^*) \\ \vdots \\ f_m(\overline{x}^*) \end{bmatrix} \approx \begin{bmatrix} f_1(\overline{x}^0) \\ f_2(\overline{x}^0) \\ \vdots \\ f_m(\overline{x}^0) \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\overline{x}^0) & \frac{\partial f_1}{\partial x_2}(\overline{x}^0) & \dots & \frac{\partial f_1}{\partial x_m}(\overline{x}^0) \\ \frac{\partial f_2}{\partial x_1}(\overline{x}^0) & \frac{\partial f_2}{\partial x_2}(\overline{x}^0) & \dots & \frac{\partial f_2}{\partial x_m}(\overline{x}^0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\overline{x}^0) & \frac{\partial f_m}{\partial x_2}(\overline{x}^0) & \vdots & \frac{\partial f_m}{\partial x_m}(\overline{x}^0) \end{bmatrix} \begin{bmatrix} \overline{x}_1^* - \overline{x}_1^0 \\ \overline{x}_2^* - \overline{x}_2^0 \\ \vdots \\ \overline{x}_m^* - \overline{x}_m^0 \end{bmatrix}$$

$$|\overline{\boldsymbol{x}}|^* \approx -\boldsymbol{J}^{-1}(\overline{\boldsymbol{x}}^0)\overline{\boldsymbol{f}}(\overline{\boldsymbol{x}}^0) + \overline{\boldsymbol{x}}^0$$

או
$$\overline{f}(\overline{x}^0) + J(\overline{x}^0) \left(\overline{x}^* - \overline{x}^0\right) \approx 0$$

: נוסחת איטרציה

$$\overline{x}^{(n+1)} = \overline{x}^{(n)} - J^{-1}(\overline{x}^{(n)}) \overline{f}(\overline{x}^{(n)})$$

$$\Delta x$$

דוגמא: בהינתן מערכת

$$\begin{cases} x^2 - y - 1 = 0 \\ x + y^2 - 0.5 = 0 \end{cases}$$

$$\begin{pmatrix} \boldsymbol{x}^0 \\ \boldsymbol{y}^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 עם קירוב ראשון

$$J^{-1} = \frac{1}{4xy+1} \begin{pmatrix} 2y & 1 \\ -1 & 2x \end{pmatrix}$$
 בניית איטרציה : $J = \begin{pmatrix} 2x & -1 \\ 1 & 2y \end{pmatrix}$: בניית איטרציה

$$\overline{x}^{(n+1)} = \overline{x}^{(n)} - \frac{1}{4x^{(n)}y^{(n)} + 1} \begin{pmatrix} 2y^{(n)} & 1 \\ -1 & 2x^{(n)} \end{pmatrix} \begin{pmatrix} \left(x^{(n)}\right)^2 - y^{(n)} - 1 \\ x^{(n)} + \left(y^{(n)}\right)^2 - 0.5 \end{pmatrix}$$

Slide 41

number of iteration	$J^{-1}\left(\overline{x}^{(n-1)} ight)$	$\overline{x}^{(n)}$	$\left\ \overline{x}^{(n)} - \overline{x}^{(n-1)}\right\ _2$
1	$\begin{pmatrix} 0.4 & 0.2 \\ -0.2 & 0.4 \end{pmatrix}$	$\begin{pmatrix} 1.1 \\ 0.2 \end{pmatrix}$	0.8062
2	$\begin{pmatrix} 0.2128 & 0.5319 \\ -0.5319 & 1.1702 \end{pmatrix}$	$\begin{pmatrix} 0.7574 \\ -0.5436 \end{pmatrix}$	0.8187
3	(1.6803 -1.5455 (1.5455 -2.3413)	$\begin{pmatrix} 1.4149 \\ 0.5697 \end{pmatrix}$	1.2929
4	(0.2697	$\begin{pmatrix} 1.0049 \\ -0.1583 \end{pmatrix}$	0.8355

:
$$\begin{pmatrix} \mathbf{x}^0 \\ \mathbf{y}^0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
 עבור ניחוש התחלתי

number of iteration	$\overline{x}^{(n)}$	$\left\ \overline{x}^{(n)} - \overline{x}^{(n-1)}\right\ _2$
1	$\begin{pmatrix} -0.5 \\ -1 \end{pmatrix}$	0.5
2	$\begin{pmatrix} -0.3333 \\ -0.9167 \end{pmatrix}$	0.1863
3	$\begin{pmatrix} -0.3135 \\ -0.9021 \end{pmatrix}$	0.0246
4	$\begin{pmatrix} -0.3133 \\ -0.9018 \end{pmatrix}$	0.00033826