Department of Computing Goldsmiths, University of London

Augmented Reality Navigation System for Commercial Spaces

Proposal

by

Arif Kharoti, Nicholas Orford-Williams, Hardik Ramesh, Gabriel Sampaio Da Silva Diogo, Hamza Sheikh, Jonathan Tang

Software Projects – Group 14

Autumn 2018

Submitted in partial fulfillment for the degree of $Bachelor\ of\ Science$ in $Computer\ Science$

Word Count

xyz computed by TeXcount

Abstract

Frustration and confusion are common emotions that are apparent at large shopping centres. After analysing recent studies, it is evident that shopping centres have a huge role to play in the overall retail experience. In order to provide greater value to both consumers and retailers, retail settings are being challenged to become smarter. One approach that is becoming increasingly recognised is mobile augmented reality (MAR) apps. Many consumers have difficulties in locating the store which satisfies their needs. In this research, we endeavour to outline the market requirement of developing an application that allows for smart retail and describing how additional value is created to customers as well as benefiting retailers. It is proposed that the application will implement a 3D model of various shopping centres, featuring navigation functionality to assist users in finding their desired store.

Contents

1	User Need Overview & Concept Introduction		
2	Data Gathering and Requirements	2	
3	Functional Specification	4	
4	Ethical Audit	5	
5	Design	7	
6	Prototyping	8	
7	Technical Architecture	9	
8	Evaluation Plan	10	
9	Project Management	11	
10	Conclusion	12	
Bil	bliography	13	

User Need Overview & Concept Introduction

The main concept for the project revolves around the user of augmented reality on smartphones. Augmented reality (AR) is the superimposing of a computer-generated image onto a user's view of the real world [1]. This technology first came about in the 1960s but has recently gained consumer and wide-spread media attention after the use of it in Snapchat filters and the 2016 game *Pokémon Go* for example. There have been many times where people get lost in unfamiliar spaces such as a museum, where they are immersed by culture and their sense of direction. This project aims to tackle this issue by allowing the users to restore their orientation by having a mobile platform to route users to their destination, using AR. The platform will use the device's camera to work out its surrounding, and will produce a highlighted line on the screen to their destination in real time.

This concept has other various applications to other similar scenarios such as finding products in a supermarket, books in a library, or even valuable items that people own that can emit an electronic signal for it to be tracked down. Further, the concept could also use machine learning (ML) in identifying user's traits in places visited in a museum for example in order to give personalised recommendations at other similar exhibitions.

Data Gathering and Requirements

The main stakeholders are museum visitors and staff. After consulting with them, and potential users of the proposed application, we were able to gain a better understanding of what the apparent need was in the relative market regarding museums. Out of the 21 responses we received, 15 potential users admitted to visiting museums at least once a month. This shows that there is some level of frequency in their visits, and that there is something that can be offered to this group of people.

Since our concept principally considers the user of navigation in museums, when users were asked, "do you find yourself using the maps in the museum more than once?"- a very reassuring 100% of visitors had agreed that they did in fact refer to the maps around the museum more than once, some respondents going on to say that they referred to it over 10 times. However, these maps are not free; in most museums, including the Natural History Museum and the Science Museum in London, require a fee of £1 in order to have access to the paper maps.

This shows that there is an evident need for an accessible tool other than the maps around the museum in order to assist visitors' navigation around the museum. 18 of the respondents had agreed they would much rather prefer using their phone to navigate rather than the paper maps that are currently available to assist in their navigation around the museum. These responses that we received first-hand were very reassuring for us as developers, as it brings to light an evident need for these visitors to have access to an improved navigation solution.

Based on the stakeholder research, the project requirements are,

- navigate the user to an exhibit or room through the use of augmented reality
- to display navigational routes in real time
- calculate the shortest route to the user specified location

CHAPTER 2. DATA GATHERING AND REQUIREMENTS

- work transferably in other museums/commercial spaces
- \bullet contain accessability features such as magnified text and inverted colours for example

Chapter 3 Functional Specification

Ethical Audit

The field of AR is currently not heavily regulated in the UK owing to the emergence of this new technology in recent times. There are certain areas such as data protection, intellectual property (IP), and security that need to be strongly factored in and considered during the development lifecycle. It should be noted that AR will involve collecting an extensive amount of data per user such as names, age and email address, but also appearance, real time location, and their interaction with other users. Within the scope of this project, we will not be working with minors and vulnerable adults. Since the concept of the project relies on the user's camera, accelerometer, and location data on the user's device, ensuring that this data cannot be obtained unlawfully and fits the scope of the Data Protection Act (1998) along with the EU General Data Protection Regulation (GDPR) is of most importance. [2]

Based on large virtual reality companies such as Oculus, these obligations are addressed by the form of a privacy policy in order to detail how data is collected, used and if it is shared with third parties. Since GDPR presents many pitfalls for developers, it is critical these regulatory issues are addressed before the completion of the product and not after. Penalties for non-compliance can be up to £17 million or 4% of annual turnover. [3]

Another regulatory standard is the intellectual property (IP) of the software. The source code and object code that serves as the underlying foundation of the platform will be be original and qualify for copyright protection. Since computer software is usually excluded from patentability in the UK, any ideas that uses AR producing a technical effect, and its associated hardware can be protected by patents. Based on our competitors, it is important that we do not infringe on their patents owned by third parties. Equally, if the concept makes new technical developments in the field relating to AR, then it should be considered whether it would be eligible for patent protection.

Given that the AR experience is built using a database of information about the real world, the database can be protected by copyright. The con-

CHAPTER 4. ETHICAL AUDIT

cept could take on a machine learning viewpoint by recognising third party logos captured on the user's camera. This could cause an infringement claim since AR could be replicating, replacing trademark or copyright works, or distorting the logo.

Design

Chapter 6
Prototyping

Technical Architecture

Chapter 8 Evaluation Plan

Chapter 9 Project Management

Conclusion

Bibliography

- [1] Oxford Dictionary Online. Augmented reality. https://en.oxforddictionaries.com/definition/augmented_reality.
- [2] Kate Brimsted. Virtual and augmented reality: time to update the legal handbook. https://www.itproportal.com/features/virtual-and-augmented-reality-time-to-update-the-legal-handbook/, 2016.
- [3] Eversheds Sutherland. Virtual and augmented reality: what are the legal issues? https://www.eversheds-sutherland.com/global/en/what/articles/index.page?ArticleID=en/tmt/Virtual_and_augmented_reality_what_are_the_legal_issues, 2017.