Machine Learning Project Documentation

Sudanese Primary Schools Dataset Analysis and Classification based on Facility Availability

Model Refinement

1. Overview

The Model Refinement phase plays a pivotal role in enhancing the performance of the machine learning model, which aims to classify Sudanese primary schools based on facility availability. This phase is critical for ensuring the model's accuracy and relevance to address educational challenges in Sudan, aligning with Sustainable Development Goals 4, 5, and 9.

2. Model Evaluation

In the initial model evaluation, results have been observed. however, areas for improvement were identified. Key metrics, such as precision, recall, and F1-score, along with visualizations from the neural network model steps, guided the focus on refining specific aspects of the model.

3. Refinement Techniques and Hyperparameter Tuning

To refine the model, various techniques have been employed.

- For Naïve bayes model, fitting 10 folds for each of 25 candidates, totaling 250 fits have been done after running the model for different fold number to check the highest accuracy.
- For random forest model it found that 50 number of estimators give the best performance.
- For KNN model, the most important parameter in this model is the number of k neighbors. A small code has been done to check which k value gives the best accuracy.
- For SVM model, kernel type changed until found that linear kernel gives the highest accuracy.
- For NN model, epochs 10 with 32 batch size gives the best accuracy.

6. Feature Selection

For feature selection, from sklearn.feature_selection import RFE library have been used to find the most effective features. For given features it rank them as fellow, Features: 'School ID', 'STCODE', 'LOCCODE', 'location', 'Type', 'Status', 'teachers', 'students_f', 'students_m', 'students_total', 'Total Classrooms', 'Permanent', 'Needs Rehabilitation', 'Fence', 'school_feeding', 'store', 'kindergarten', 'kinder level1', 'kinder level2', 'electricity', 'Potable Water source', 'Latrines', 'Latrine male', 'Latrine female', 'Latrine common', 'PCA1', 'PCA2'

```
Feature: 0, Selected False, Rank: 4.0
Feature: 1, Selected False, Rank: 19.0
Feature: 2, Selected False, Rank: 11.0
Feature: 3, Selected False, Rank: 21.0
Feature: 4, Selected False, Rank: 5.0
Feature: 5, Selected True, Rank: 1.0
Feature: 6, Selected False, Rank: 8.0
Feature: 7, Selected False, Rank: 10.0
Feature: 8, Selected False, Rank: 17.0
Feature: 9, Selected False, Rank: 2.0
Feature: 10, Selected True, Rank: 1.0
Feature: 11, Selected False, Rank: 3.0
Feature: 12, Selected False, Rank: 14.0
Feature: 13, Selected False, Rank: 6.0
Feature: 14, Selected False, Rank: 15.0
Feature: 15, Selected False, Rank: 9.0
Feature: 16, Selected False, Rank: 22.0
Feature: 17, Selected False, Rank: 13.0
Feature: 18, Selected False, Rank: 16.0
Feature: 19, Selected True, Rank: 1.0
Feature: 20, Selected False, Rank: 7.0
Feature: 21, Selected True, Rank: 1.0
Feature: 22, Selected False, Rank: 18.0
Feature: 23, Selected False, Rank: 12.0
Feature: 24, Selected False, Rank: 20.0
Feature: 25, Selected True, Rank: 1.0
Feature: 26, Selected True, Rank: 1.0
```

Test Submission

1. Overview

The Test Submission phase involves preparing the model for deployment or evaluation on a test dataset, marking a crucial step toward addressing educational challenges in Sudan.

2. Data Preparation for Testing

The test dataset was accurately prepared to ensure alignment with real-world scenarios. Considerations were made to account for potential variations and challenges that may be encountered in practice. The same data preparation techniques for training data done for testing as well; missing data check and converting categorical to numerical.

```
As the dataset is quit big, drop all missing data rows have been done
         From 19379 ==> 18716 only 663 rows have been extracted
In [26]:
          1 df = mvdataset.dropna()
           2 df.shape
Out[26]: (18716, 38)
         1st and 5th columns written in Arabic and as both have similer information column written in english ==> Drop
          1 col delete = [1,5]
           2 col delete = df.columns[col delete]
           5 df = df.drop(columns=col_delete, errors='ignore')
         School name, state name, location (LOCENG) ===> drop
In [28]:
          1 col_delete = [1,2,4]
           2 col_delete = df.columns[col_delete]
           4 # Drop
           5 df = df.drop(columns=col delete, errors='ignore')
          School grade1 to grade8 columns ==> drop
          1 col_delete = [10,11,12,13,14,15,16,17]
           2 col_delete = df.columns[col_delete]
           5 df = df.drop(columns=col delete, errors='ignore')
```

edit STCODE and LOCCODE columns to be only the numerical part without "SD"

Out[31]:

	School ID	STCODE	LOCCODE	location	Туре	Status	teachers	students_f	students_m	students_tc
0	53411301	18	18104	urban	Boys	normal	14	0	486	4
1	53411302	18	18104	urban	Boys	normal	14	0	360	1
2	53411303	18	18104	rural	Boys	normal	7	0	454	4
3	53411304	18	18104	rural	Boys	normal	7	0	445	4
4	53411305	18	18104	urban	Girls	normal	13	443	0	4

Convert yes,no to 1,0 in columns; Fence, Store, School_feeding, Latrines

```
In [32]:

1 columns_to_replace = ['Fence', 'store', 'school_feeding', 'kindergarten', 'Latrines']

2 # Replace 'yes' with 1 and 'no' with 0
4 df[columns_to_replace] = df[columns_to_replace].replace({'yes': 1, 'no': 0})

Out[32]:

School_greens_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_toggers_to
```

	School ID	STCODE	LOCCODE	location	Туре	Status	teachers	students_f	students_m	students_total	 school_feeding	kindergarten	k
0	53411301	18	18104	urban	Boys	normal	14	0	486	486	 0	1	
1	53411302	18	18104	urban	Boys	normal	14	0	360	360	 1	1	
2	53411303	18	18104	rural	Boys	normal	7	0	454	454	 0	1	
3	53411304	18	18104	rural	Boys	normal	7	0	445	445	 0	1	

check unique classes in 'location', 'Type', 'Status', 'electricity', 'Potable_Water_source' columns convert them to numerical

```
In [33]: 1 columns_of_interest = ['location', 'Type', 'Status' , 'electricity', 'Potable_Water_source']
           3 for column in columns of interest:
                 unique_classes = df[column].unique()
           4
                  print(f"Unique classes in {column}: {unique_classes}")
         Unique classes in location: ['urban' 'rural']
         Unique classes in Type: ['Boys' 'Girls' 'Mixed']
         Unique classes in Status: ['normal' 'nomadic' 'nongovernmental' 'special needs' 'quranic'
           'complementary' 'displaced']
         Unique classes in electricity: ['No' 'Solar energy' 'Generator' 'Public network']
         Unique classes in Potable_Water_source: ['Well' 'Other' 'Pump' 'No' 'Public network']
In [34]: 1 location_mapping = {'urban': 0, 'rural': 1}
df['location'] = df['location'].map(location_mapping)
          4 type_mapping = {'Boys': 0, 'Girls': 1, 'Mixed': 2}
          5 df['Type'] = df['Type'].map(type_mapping)
          6
          7 status_mapping = {'normal': 0, 'nomadic': 1, 'nongovernmental': 2, 'special needs': 3, 'quranic': 4,
                                 'complementary': 5, 'displaced': 6}
          9 df['Status'] = df['Status'].map(status_mapping)
          10
          11 electricity_mapping = {'No': 0, 'Solar energy': 1, 'Generator': 2, 'Public network': 3}
          12 df['electricity'] = df['electricity'].map(electricity mapping)
          13
          14 | water_source_mapping = {'No': 0,'Well': 1,'Pump': 2, 'Public network': 3, 'Other': 4 }
          15 df['Potable_Water_source'] = df['Potable_Water_source'].map(water_source_mapping)
          16
          17 df
```

3. Model Application

The trained model was applied to the test dataset using the best practices established during the refinement phase. The application process was streamlined to ensure efficiency and accuracy.

• Naïve bayes

```
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import GridSearchCV

params_NB = {'var_smoothing': np.logspace(0,-9, num=25)}
gnb = GridSearchCV(estimator=GaussianNB(), param_grid=params_NB, verbose=1, cv=10, n_jobs=-1)

#Train the model using the training sets
modelnb = gnb.fit(x_train, y_train)

target_predictednb=modelnb.predict(x_test)
print('\nClassification report\n', classification_report(y_test,target_predictednb))

matrix = confusion_matrix(y_test, target_predictednb)
print("Class Confusion Matrix\n", matrix)
```

Random forest

```
from sklearn.ensemble import RandomForestClassifier

random_forest = RandomForestClassifier(n_estimators=50, random_state=0)

model_rf = random_forest.fit(x_train, y_train)

target_predicted_rf = model_rf.predict(x_test)

print('\nClassification report for Random Forest\n', classification_report(y_test, target_predicted_rf))
matrix_rf = confusion_matrix(y_test, target_predicted_rf)
print("Confusion Matrix for Random Forest:\n", matrix_rf)
```

KNN

```
from sklearn.neighbors import KNeighborsClassifier

#print('#k','\t','Accuracy')

#for i in range (1,500):

# neigh = KNeighborsClassifier(n_neighbors=i)

# modelknn = neigh.fit(xtrain, ytrain)

# target_predictedknn=modelknn.predict(xval)

# print(i,'\t','%.3f' %(modelknn.score(xval, yval)*100),'%')

neigh = KNeighborsClassifier(n_neighbors=6)

modelknn = neigh.fit(x_train, y_train)

target_predictedknn=modelknn.predict(x_test)

print('\nClassification report with k=6\n', classification_report(y_test,target_predictedknn))

matrix = confusion_matrix(y_test, target_predictedknn)

print("Class Confusion Matrix\n", matrix)
```

SVM

```
from sklearn.svm import SVC
clf = SVC(kernel='linear',gamma='auto')
modelsvm= clf.fit(x_train, y_train)
target_predictedsvm=modelsvm.predict(x_test)
print('\nClassification report with linear kernel\n', classification_report(y_test,target_predictedsvm))

matrix = confusion_matrix(y_test, target_predictedsvm)
print("Class Confusion Matrix\n", matrix)
```

Neural network

```
13 num_classes = y_train.shape[1]
14 y_train_one_hot = to_categorical(np.argmax(y_train, axis=1), num_classes=num_classes)
15 y_val_one_hot = to_categorical(np.argmax(y_val, axis=1), num_classes=num_classes)
16 y_test_one_hot = to_categorical(np.argmax(y_test, axis=1), num_classes=num_classes)
18 # Build model
19 model = Sequential()
20 model.add(Dense(64, activation='relu', input_shape=(x_train.shape[1],)))
21 model.add(Dense(32, activation='relu'))
22 model.add(Dense(num_classes, activation='softmax'))
24 # Compile
25 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
26
27 # Train
28 model.fit(x_train, y_train_one_hot, epochs=10, batch_size=32, validation_data=(x_val, y_val_one_hot))
29
30 # Evaluate
31 test_loss, test_acc = model.evaluate(x_test, y_test_one_hot)
32 print(f'Test accuracy: {test_acc}')
```

Linear regression

```
# Create a linear regression model
 7
   model = LinearRegression()
 8
 9 # Train the model
10 model.fit(x_train, y_train)
12 # Make predictions on the test set
13 y_pred = model.predict(x_test)
14
15 # Evaluate the model
16 mse = mean_squared_error(y_test, y_pred)
17 r2 = r2_score(y_test, y_pred)
18
19 # Print coefficients and evaluation metrics
20 print(f"Coefficients: {model.coef_}")
21 print(f"Intercept: {model.intercept_}")
22 print(f"Mean Squared Error: {mse}")
23 print(f"R-squared: {r2}")
24
```

4. Test Metrics

Evaluation metrics, including precision, recall, and F1-score, were employed to assess the model's performance on the test dataset. For linear regression only MSE metric have been done.

Table below contains comparative details about test data evaluation.

```
Training set = (14972, 6) (14972,)
Test set = (3744, 6) (3744,)
```

Model	Metrices
Naïve bayes	Fitting 10 folds for each of 25 candidates, totalling 250 fits
	Classification report
	precision recall f1-score support
	0 0.90 0.89 0.89 1154
	1 0.96 0.96 0.96 929 2 0.89 0.93 0.91 912
	3 0.86 0.74 0.80 172
	4 0.96 0.97 0.96 577
	accuracy 0.92 3744
	macro avg 0.91 0.90 0.90 3744 weighted avg 0.92 0.92 3744
	Class Confusion Matrix [[1022 31 93 3 5]
	[35 892 0 2 0]
	[45 2 846 9 10]
	[30 1 5 128 8] [1 5 6 7 558]]
Random forest	Classification report for Random Forest
	precision recall f1-score support
	0 0.94 0.95 0.94 1154
	1 0.98 0.98 0.98 929
	2 0.96 0.94 0.95 912 3 0.92 0.90 0.91 172
	4 0.99 0.99 0.99 577
	accuracy 0.96 3744
	macro avg 0.96 0.95 0.95 3744
	weighted avg 0.96 0.96 0.96 3744
	Confusion Matrix for Random Forest:
	[[1091 13 39 11 0]
	[14 915 0 0 0]
	[43
	[3 2 0 3 569]]
KNN	
	Classification report with k=6 precision recall f1-score support
	precision record re-score suppore
	0 0.92 0.95 0.93 1154
	1 0.98 0.97 0.98 929
	2 0.95 0.93 0.94 912 3 0.95 0.89 0.92 172
	4 0.99 0.98 0.99 577
	accuracy 0.95 3744
	macro avg 0.96 0.95 0.95 3744
	weighted avg 0.95 0.95 0.95 3744
	Class Confusion Matrix
	[[1097 15 36 6 0]
	[22 905 1 0 1]
	[60 2 848 0 2] [17 0 0 153 2]
	[17 0 0 153 2] [2 2 4 2 567]]

SVM	Classification report with linear kernel precision recall f1-score support
	0 0.94 0.94 0.94 1154 1 0.98 0.99 0.98 929
	2 0.95 0.95 0.95 912 3 0.93 0.93 0.93 172
	4 0.99 0.98 0.99 577
	accuracy 0.96 3744
	macro avg 0.96 0.96 0.96 3744 weighted avg 0.96 0.96 3744
	Class Confusion Matrix
	[[1087 14 44 9 0]
	[11 918 0 0 0] [42 2 865 0 3]
	[10 0 0 160 2]
	[4 2 2 3 566]]
Neural network	Epoch 1/10 375/375 [====================================
Training set =	659 Epoch 2/10 375/375 [=============] - 1s 2ms/step - loss: 0.0686 - accuracy: 0.9765 - val_loss: 0.0599 - val_accuracy: 0.9
(11977, 27) (11977, 5)	773 Epoch 3/10
Validation set =	375/375 [==========] - 1s 2ms/step - loss: 0.0467 - accuracy: 0.9836 - val_loss: 0.0568 - val_accuracy: 0.9 796
(2995, 27)	Epoch 4/10 375/375 [====================================
(2333, 27)	Epoch 5/10 375/375 [================] - 15 2ms/step - loss: 0.0313 - accuracy: 0.9891 - val_loss: 0.0390 - val_accuracy: 0.9
(2995, 5)	806 Epoch 6/10
Test set =	375/375 [===============] - 1s 2ms/step - loss: 0.0285 - accuracy: 0.9896 - val_loss: 0.0387 - val_accuracy: 0.9 820 Epoch 7/10
(3744, 27)	= 100.01 / 1/20 = 100.01 / 1/2
(3744, 5)	Epoch 8/10 375/375 [====================================
	843 Epoch 9/10 375/375 [==============] - 1s 2ms/step - loss: 0.0200 - accuracy: 0.9929 - val_loss: 0.0506 - val_accuracy: 0.9
	868 Epoch 10/10
	375/375 [========] - 1s 2ms/step - loss: 0.0185 - accuracy: 0.9938 - val_loss: 0.0308 - val_accuracy: 0.9
	117/117 [===================================
	117/117 [========] - 0s 1ms/step
	Classification Report: precision recall f1-score support
	0 0.99 0.97 0.98 1154
	1 0.99 1.00 0.99 929
	2 0.98 0.99 0.98 912 3 0.94 0.98 0.96 172
	4 0.99 0.99 0.99 577
	accuracy 0.98 3744
	macro avg 0.98 0.98 0.98 3744 weighted avg 0.98 0.98 0.98 3744
	Confusion Matrix:
	[[1121 4 19 9 1]
	[4 925 0 0 0] [4 3 901 0 4]
	[3 0 1 168 0] [3 0 0 2 572]]
Linear regression	- L
rilleal legiession	Mean Squared Error: 0.04532975701283329

5. Model Deployment

Regarding deploying the model in the real-world I am planning to **use Flask or Django** frameworks. The plan is to create a user interface where users can input school information, and the system will provide the corresponding classification group. Additionally, suggestions for facility improvement will be presented based on the model's insights. Integration with other systems or platforms was explored for future implementation.

6. Code Implementation

Clustering step done for making label schools depends on facility availability, elbow method done for choosing the best k value.

```
In [38]:
              from sklearn.cluster import KMeans
              distortions1 = []
              K1= range(1,20)
              for k1 in K1:
                  kmeanModel = KMeans(n_clusters=k1, init='k-means++', random_state=0)
                   kmeanModel.fit(x1)
                   distortions1.append(kmeanModel.inertia_)
In [39]:
              plt.figure(figsize=(8,4))
              plt.plot(K1, distortions1,
              plt.xlabel('k')
plt.ylabel('Distortion')
              plt.title('Optimal k Annual income vs. Spending score')
              plt.show()
                                   Optimal k Annual income vs. Spending score
              1.0
              0.8
              0.6
           Distortion
              0.4
              0.2
              0.0
                           2.5
                                                 7.5
                                                           10.0
                                                                      12.5
                                                                                 15.0
                                                                                            17.5
                                      5.0
```

Then k-means applied to the data

```
# Standardize the data
 8 scaler = StandardScaler()
   scaled_data = scaler.fit_transform(x1)
11 n_clusters = 5
13 # Apply K-Means clustering
14 kmeans = KMeans(n_clusters= n_clusters, random_state=42)
15 clusters = kmeans.fit_predict(scaled_data)
17 # Add cluster Labels to DataFrame
18 df['Cluster'] = clusters
19
20 # Visualize the clusters in 2D using PCA
21 # because features more than 2 PCA is done to find common between them and to ease visualizing
22 pca = PCA(n_components=2)
23 pca_result = pca.fit_transform(scaled_data)
24 df['PCA1'] = pca_result[:, 0]
25 df['PCA2'] = pca_result[:, 1]
26
27 plt.figure(figsize=(10, 6))
28 plt.scatter(df['PCA1'], df['PCA2'], c=df['Cluster'], cmap='viridis', edgecolor='k', s=50)
29 plt.title(f'K-Means Clustering with {n_clusters} Clusters')
30 plt.xlabel('PCA1')
31 plt.ylabel('PCA2')
32 plt.colorbar(label='Cluster')
33 plt.show()
34
```


Conclusion

In conclusion, the Model Refinement phase significantly improved the model's accuracy and robustness, laying the groundwork for addressing educational challenges in Sudan. The Test Submission phase provided valuable insights into the model's real-world applicability, with a focus on making user-friendly deployment through Flask or Django frameworks.