Παράδειχμα 5

•
$$\frac{1}{1}(y) = \cos(k_1 y)$$
 $\frac{1}{1}(x) = \sin h(k_1(x-2a))$ $k_1 = \frac{3\pi}{2b}$

•
$$A_{z_1} = (1.8) \ln (k_1(x-2a)) \cos(k_1y)$$

sinh (3k,a)

•
$$A_{2g}(x=-a) = 0 \Rightarrow X_{2g}(x) = sin(k_{2g}(x+a))$$
 $k_{2g} = \pi/4 \Rightarrow Y_{2g}(y) = cosh(k_{2g}(y+2b))$

• Azy =
$$c_2 \sin(k_2(x+a)) \cosh(k_2(y+2b))$$

Ly
$$A_{z_0}(x, y = b/3) = c_0 \sin(k_0(x+a)) \cosh(k_0(b/3+9b)) = A_0 \sin(k_0(x+a)) \Rightarrow c_0 = A_0$$

The padely
$$\mu a = 6$$
 $\phi = 0$
 $\phi = 0$

•
$$\nabla^{3} \phi_{o} = 0$$
:

• $\phi_{o} = -\frac{\beta_{o}}{2a} \left(\frac{2a}{\pi} \right)^{2} \left(\frac{2a}{2a} \right)$
• $\phi_{o} = \phi - \phi_{r}$
• $\phi_{o} \left(\frac{2a}{x}, y \right) = \phi \left(\frac{2a}{x}, y \right) - \phi_{h} \left(\frac{2a}{x}, y \right) = 0 - 0 = 0$
• $\chi_{o}(x) = \cos \left(\frac{\pi x}{2a} \right)$
• $\chi_{o}(y) = \cosh \left(\frac{\pi y}{2a} \right)$

$$\Phi = \frac{f_0}{\varepsilon_0} \left(\frac{g_a}{\pi} \right)^2 \cos \left(\frac{\pi x}{2a} \right) \left(1 - \frac{\cosh \left(\frac{\pi y}{2a} \right)}{\cosh \left(\frac{\pi 5}{2a} \right)} \right)$$

•
$$a_0 = \frac{1}{2a} \int_{-a}^{a} F(x) dx$$
• $a_0 = \frac{1}{a} \int_{-a}^{a} F(x) \cos(\frac{n\pi x}{a}) dx$
• $b_0 = \frac{1}{a} \int_{-a}^{a} F(x) \cdot \sin(\frac{n\pi x}{a}) dx$

Tapadsiyna

•
$$\int_{-a}^{a} \cos \left(\frac{n\pi x}{a} \right) dx = \begin{cases} 2a & m=n \\ 0 & m\neq n \end{cases}$$

• $\int_{-a}^{a} \sin \left(\frac{n\pi x}{a} \right) \sin \left(\frac{n\pi x}{a} \right) dx = \begin{cases} a & m=n \neq 0 \\ 0 & m\neq n \end{cases}$

• $\int_{-a}^{a} \sin \left(\frac{n\pi x}{a} \right) \sin \left(\frac{n\pi x}{a} \right) dx = \begin{cases} a & m=n \neq 0 \\ 0 & m\neq n \end{cases}$

• $\int_{-a}^{a} \sin \left(\frac{n\pi x}{a} \right) \cos \left(\frac{n\pi x}{a} \right) dx = \begin{cases} a & m=n \neq 0 \\ 0 & m\neq n \end{cases}$

• $\int_{-a}^{a} \sin \left(\frac{n\pi x}{a} \right) \cos \left(\frac{n\pi x}{a} \right) dx = \begin{cases} a & m=n \neq 0 \\ 0 & m\neq n \end{cases}$

• $\int_{-a}^{a} \sin \left(\frac{n\pi x}{a} \right) \cos \left(\frac{n\pi x}{a} \right) dx = \begin{cases} a & m=n \neq 0 \\ 0 & m\neq n \end{cases}$

$$X_n(x) = \sin(k_{nx})$$
 , $k_n = \frac{n\pi}{\alpha}$ \Rightarrow Tepitan TE

TEPIZTH'		Apria	TE.
<u>-a</u>	٥	-a	۵.

Η επιλογή ΤΕ επιβάλλεται από τις υπόλοιπες Ορ. Ζωθ.

	$Z_{Elpá}$ Fourier Zwn przów (FCS) $a_0 + \sum_{N=1}^{\infty} a_N \cos(\frac{N\pi x}{a}) \sim F(x)$, $0 \le x \le a$
$b_n = \frac{2}{a} \int_0^a \sin\left(\frac{n\pi x}{a}\right) F(x) dx$	$a_{n} = \frac{9}{a} \int_{0}^{a} F(x) \cos\left(\frac{n\pi x}{a}\right) dx$

$$\frac{\int_{0}^{\alpha} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{n\pi x}{a}\right) dx = \frac{a}{2} \frac{\delta_{mn}}{\delta_{mn}}$$

$$\frac{\int_{0}^{\alpha} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{n\pi x}{a}\right) dx = \frac{a}{2} \frac{(1 + \delta_{mn}) \delta_{mn}}{\delta_{mn}}$$

$$\frac{\int_{0}^{\alpha} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{n\pi x}{a}\right) dx = \frac{a}{2} \frac{(1 + \delta_{mn}) \delta_{mn}}{\delta_{mn}}$$

$$\frac{\int_{0}^{\alpha} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{n\pi x}{a}\right) dx \neq 0$$

$$\int_{a}^{\infty} \sin\left(\frac{n\pi x}{a}\right) \cos\left(\frac{n\pi x}{a}\right) dx \neq 0$$