UNIT 7: COMPUTATIONAL METHODS

Chapter 16

System of Linear Equations

Exercise 16.1				
1.	Solve the following system of equations using Gauss Elimination metha) $x + 2y = 5$, $5x - 3y = -1$			
	Soln:	x + 2y = 5(i)		
	5x - 3y = -1(ii)			
	Mu	ltiplying equation (i) by 5 and subtracting fi	rom (ii), we get	
		-13y = -26	(iii)	
	No	Now, we have the following equations		
		x + 2y = 5	(i)	
		-13y = -26	(iii)	
	From eq. (iii), $-13y = -26$		\Rightarrow y = 2	
	Substituting $y = 2$ in (i), we get			
		$x + 2 \times 2 = 5$	$\Rightarrow x = 1$	
	45	x = 1, y = 2		
	b) $3x - 2y = 5$, $4x - y = 10$			
	Soln:	3x - 2y = 5	(i)	
		4x - y = 10	(ii)	
	Mu	Multiplying eq. (i) by $\frac{4}{3}$ and subtracting from (ii), we get		
		$\frac{5}{3}y = \frac{10}{3}$	(iii)	
Now, we have the following equations,				
	110	3x - 2y = 5	(i)	
		$\frac{5}{3} y = \frac{10}{3}$	(iii)	
	Fro	om eq. (iii), $\frac{5}{3}$ y = $\frac{10}{3}$	\Rightarrow y = 2	
	Sul	stituting $y = 2$ in (i), we get		
		$3x - 2 \times 2 = 5$	$\Rightarrow x = 3$	
	.5	x = 3, y = 2		
	c) 2x	+7y = 3, 6x - 5y = -17		
	Soln:	2x + 7y = 3	(i)	

6x - 5y = -17

.....(ii)

Multiplying eq. (i) by 3 and subtracting from (ii), we get -26y = -26... (iii) Now, we have the following equations, 2x + 7y = 3.....(i) -26y = -26..... (iii) From equation (iii), -26y = -26 \Rightarrow y = 1 Substituting y = 1 in (i), we get $2x + 7 \times 1 = 3$ $\Rightarrow x = -2$ \therefore x = -2, y = 1 5x - 8y = 28, 3x + 7y = 5Solⁿ: 5x - 8y = 28.....(i)(ii) 3x + 7y = 5Multiplying eq. (i) by $\frac{3}{5}$ and subtracting from (ii), $\frac{59y}{5} = -\frac{59}{5}$(iii) Now, we have the following equations 5x - 8y = 28.....(i) $\frac{59y}{5} = -\frac{59}{5}$ (iii) From eq. (iii), $\frac{59y}{5} = -\frac{59}{5}$ \Rightarrow y = -1 Substituting y = -1 in (i), we get $5x - 8 \times (-1) = 28$ $\Rightarrow x = 4$ x = 4, y = -1Solve the following system of equations using Gaussian elimination method a) x + 3y - 2z = 0, 2x - 3y + z = 1, 4x - 3y + z = 3Solⁿ: x + 3y - 2z = 0.....(i) 2x - 3y + z = 1..... (ii) 4x - 3y + z = 3..... (iii) Multiplying equation (i) by 2 and subtracting from (ii), we get 9y - 5z = -1..... (iv) Again multiplying equation (i) by 4 and subtracting from (iii), we get 5y - 3z = -1Multiplying equation (iv) by $\frac{5}{9}$ and subtracting from (v), we get $-\frac{2}{9}z = -\frac{4}{9}$(vi) Now, we have the following equation x + 3y - 2z = 0..... (i) 5y - 3z = -1.....(v) $-\frac{2}{9}z = -\frac{4}{9}$

Substituting the values of y and z in (i),

$$x + 3 \times 8 - 2 \times 2 = 5$$
 $\Rightarrow x = -15$

$$\therefore$$
 x = -15, y = 8, z = 2.

d)
$$2x - 3y + 3z = 27$$
, $4x + y - 2z = 0$, $-6x - 4y + 2z = 0$

Solⁿ:
$$2x - 3y + 3z = 27$$
(i)

$$4x + y - 2z = 0$$
 (ii)

$$-6x - 4y + 2z = 0$$
 (iii)

Multiplying equation (i) by 2 and subtracting from (ii), we get

$$7y - 8z = -54$$
 (iv)

Multiplying equation (i) by 3 and adding with (iii), we get

$$-13y + 11z = 81$$
(v)

Multiplying equation (iv) by $\frac{13}{7}$ and adding (v), we get

$$-\frac{27}{7}z = -\frac{135}{7}$$
 (vi)

Now, we have the following equation

$$2x - 3y + 3z = 27$$
(i)

$$7y - 8z = -54$$
 (iv)

$$-\frac{27}{7}z = -\frac{135}{7}$$
 (vi

From (vi),
$$-\frac{27}{7}z = -\frac{135}{7}$$
 $\Rightarrow z = \frac{135}{27} = 5$

Substituting the value of z in (iv), we get

$$7y - 8 \times 5 = -54$$
 $\Rightarrow y = -2$

Substituting the value of y and z in (i), we get

$$2x - 3 \times (-2) + 3 \times 5 = 27$$
 $\Rightarrow x = 3$

$$x = 3, y = -2, z = 5$$

e)
$$3x + 2y - z = 1$$
, $2x - 2y + 4z = -2$, $-x + \frac{1}{2}y - z = 0$

Solⁿ:
$$3x + 2y - z = 1$$
(i)

$$2x - 2y + 4z = -2$$
(ii)

$$-2x + y - 2z = 0$$
 (iii)

Multiplying equation (i) by $\frac{2}{3}$ and subtracting from (ii), we get

$$-\frac{10}{3}y + \frac{14}{3}z = -\frac{8}{3}$$
(iv)

Multiplying equation (i) by $\frac{1}{3}$ and adding(iii), we get

$$\frac{7}{6}y - \frac{4}{3}z = -\frac{1}{3}$$
(v)

Multiplying equation (iv) by $\frac{7}{20}$ and adding (v), we get

$$\frac{9}{30}z = -\frac{9}{15}$$
(vi)

Now, we have the following three equation

$$3x + 2y - z = 1$$
(i)

$$-\frac{10}{3}y + \frac{14}{3}z = -\frac{8}{3}$$
 (iv)

$$\frac{9}{30}z = -\frac{9}{15}$$
(vi)

From (vi),
$$\frac{9}{30}z = -\frac{9}{15}$$
 $\Rightarrow z = -2$

Substituting the value of z in (iv), we get

$$-\frac{10}{3}y + \frac{14}{3} \times (-2) = -\frac{8}{3}$$
 $\Rightarrow y = -2$

Substituting the values of y and z in (i)

$$3x + 2 \times (-2) - (-2) = 1$$
 $\Rightarrow x = 1$

$$x = 1, y = -2, z = -2$$

f)
$$3x_1 + 6x_2 + x_3 = 16$$
, $2x_1 + 4x_2 + 3x_3 = 13$, $x_1 + 3x_2 + 2x_3 = 9$

Solⁿ:
$$3x_1 + 6x_2 + x_3 = 16$$
(i)

$$2x_1 + 4x_2 + 3x_3 = 13$$
 (ii)

$$x_1 + 3x_2 + 2x_3 = 9$$
 (iii)

Multiplying eq. (i) $\frac{2}{3}$ and subtracting from (ii)

$$\frac{7}{3}$$
 $x_3 = \frac{7}{3}$ (iv)

Again multiplying eq. (i) by $\frac{1}{3}$ and subtracting from (iii)

$$x_2 + \frac{5}{3} x_3 = \frac{11}{3}$$
(v)

Now, we have the following equations

$$3x_1 + 6x_2 + x_3 = 16$$
(i)

$$x_2 + \frac{5}{3} x_3 = \frac{11}{3}$$
(v)

$$\frac{7}{3} x_3 = \frac{7}{3}$$
 (iv)

From equation (iv),
$$\frac{7}{3} x_3 = \frac{7}{3}$$
 $\Rightarrow x_3 = 1$

Substituting $x_3 = 1$ in (v), we get

$$x_2 + \frac{5}{3} = \frac{11}{3}$$
 $\Rightarrow x_2 = \frac{11}{3} - \frac{5}{3} = 2$

Substituting $x_2 = 2$ and $x_3 = 1$ in (i), we get

$$3x_1 + 6 \times 2 + 1 = 16$$
 $\Rightarrow x_1 = 1$

$$x_1 = 1, x_2 = 2, x_3 = 1$$

g)
$$x_1 - 2x_2 + 3x_3 = 10$$
, $2x_1 + 3x_2 - 2x_3 = 1$, $-x_1 - 2x_2 + 4x_3 = 13$
Solⁿ: $x_1 - 2x_2 + 3x_3 = 10$ (i) $2x_1 + 3x_2 - 2x_3 = 1$ (ii) $-x_1 - 2x_2 + 4x_3 = 13$ (iii) Multiplying equation (i) by 2 and then subtracting from (ii), we get $7x_2 - 8x_3 = -19$ (iv) Adding (i) and (iii), we get $-4x_2 + 7x_3 = 23$ (v)

Multiplying equation (iv) by $\frac{4}{7}$ and adding (v), we get

$$\frac{17}{7}$$
 x₃ = $\frac{85}{7}$ (vi)

Now, we have the following equation,

$$x_1 - 2x_2 + 3x_3 = 10$$
 (i)
 $-4x_2 + 7x_3 = 23$ (v)
 $\frac{17}{7}x_3 = \frac{85}{7}$ (vi)

From (iii),
$$\frac{17}{7} x_3 = \frac{85}{7}$$
 $\Rightarrow x_3 = 5$

Substituting the value of x_3 in (ii), we get

$$-4 \times x_2 + 7 \times 5 = 23$$
 $\Rightarrow x_2 = 3$

Substituting the value of x_2 and x_3 in (i), we get

$$x_1 - 2 \times 3 + 3 \times 5 = 10 \qquad \Rightarrow x_3 = 5$$

$$x_1 = 1, x_2 = 3, x_3 = 5.$$

h)
$$3x_1 - x_2 + x_3 = 2$$
, $-15x_1 + 6x_2 - 5x_3 = 5$, $5x_1 - 2x_2 + 2x_3 = 1$
Solⁿ: $3x_1 - x_2 + x_3 = 2$ (i) $-15x_1 + 6x_2 - 5x_3 = 5$ (ii) $5x_1 - 2x_2 + 2x_3 = 1$ (iii)

Multiplying equation (i) by 5 and adding with (ii), we get

$$x_2 = 15$$
 (iv)

Multiplying equation (i) by $\frac{5}{3}$ and adding with (ii), we get

$$-\frac{1}{3}x_2 + \frac{1}{3}x_3 = -\frac{7}{3} \qquad \dots \dots (v)$$

Multiplying equation (iv) by $\frac{1}{3}$ and adding (v), we get

$$\frac{1}{3}x_3 = \frac{8}{3} \dots \dots (vi)$$

Now, we have following system of equations

$$3x_1 - x_2 + x_3 = 2$$
 (i)
 $x_2 = 15$ (iv)

$$x_2 = 15$$
 (iv)

$$\frac{1}{3}x_3 = \frac{8}{3}$$
 (vi

From (vi), $x_3 = 8$

From (iv),
$$x_2 = 15$$

Substituting the values of x_2 and x_3 in (i), we get

$$3x_1 - 15 + 8 = 2$$

$$x_1 = 3, x_2 = 15, x_3 = 8$$

3. Solve, using Gaussian elimination method with partial pivot, the following equations:

 $\Rightarrow x_1 = 3$

a)
$$5x + 4y = 9$$
, $x - 5y = 25$

Solⁿ: Given,
$$5x + 4y = 9$$
(i)

$$x - 5y = 25$$
(ii)

"Gaussian elimination method of partial pivoting"

Multiplying eqⁿ (i) by $\frac{1}{5}$ and then subtracting from eqⁿ (ii), we get

$$-\frac{29}{5}$$
y = $\frac{116}{5}$

Now, we have the following equations

$$5x + 4y = 9$$
(i)

$$-\frac{29}{5}y = \frac{116}{5}$$
 (iii)

From eqⁿ (iii),
$$-\frac{29}{5}y = \frac{116}{5}$$
 $\Rightarrow y = -4$

Substituting y = -4 in eqⁿ (i), we get

$$5x + 4 \times (-4) = 9 \qquad \Rightarrow x = 5$$

$$\therefore$$
 $x = 5, y = -4$

"Gaussian elimination method with partial pivot"

The matrix form of the above equations is,

$$\begin{pmatrix} 5 & 4 : 9 \\ 1 & -5 : 25 \end{pmatrix}$$

Here, $a_{11} > a_{12}$

Applying $R_2 \rightarrow 5 \times R_2 - R_1$, we get

$$\begin{pmatrix} 5 & 4 : 9 \\ 0 & -29 : 116 \end{pmatrix}$$

Then,
$$5x + 4y = 9$$
 (iii)

$$-29y = 116$$
 (iv)

From eqⁿ (iv),
$$-29y = 116$$
 $\Rightarrow y = -4$

Substituting y = -4 in eqⁿ (iii), we get

$$5x + 4 \times (-4) = 9 \qquad \Rightarrow x = 5$$

$$\therefore$$
 x = 5, y = -4

b)
$$x - 8y = -26, 4x + 3y = 1$$

Solⁿ: Given,
$$x - 8y = -26$$
(i)

$$4x + 3y = 1$$
 (ii)

The matrix form of the above equations is,

$$\begin{pmatrix} 1 & -8:-26 \\ 4 & 3:1 \end{pmatrix}$$

Here, $|a_{11}| < |a_{21}|$

Applying $R_1 \leftrightarrow R_2$ to make $|a_{11}| > |a_{21}|$, we get

$$\begin{pmatrix} 4 & 3 & : & 1 \\ 1 & -8 & : & -26 \end{pmatrix}$$

 $R_2 \rightarrow 4 \times R_2 - R_1$, we get

$$\begin{pmatrix} 4 & 3 & : & 1 \\ 0 & -35 & : & -105 \end{pmatrix}$$

Then,
$$4x + 3y = 1$$
 (iii)

$$-35y = -105$$
 (iv)

From eqⁿ (iv),
$$-35y = -105$$
 $\Rightarrow y = 3$.

Substituting y = 3 in eqⁿ (iii), we have

$$4x + 3 \times 3 = 1$$
 $\Rightarrow x = -2$

$$\therefore$$
 $x = -2, y = 3$

c)
$$3x + y - 2z = 10$$
, $2x + 4y - 5z = 24$, $x - 2y + 3z = -11$

Solⁿ: Given,
$$3x + y - 2z = 10$$
(i)

$$2x + 4y - 5z = 24$$
(ii)

$$x - 2y + 3z = -11$$
 (iii)

The matrix form of the above equations is,

$$\begin{pmatrix} 3 & 1 & -2 : & 10 \\ 2 & 4 & -5 : & 24 \\ 1 & -2 & 3 : & -11 \end{pmatrix}$$

Here, $a_{11} > a_{21}$ and a_{31}

Applying $R_2 \rightarrow R_2 - \frac{1}{3} \times R_1$ and $R_3 \rightarrow R_3 - \frac{1}{3} \times R_1$, we get

$$\begin{pmatrix}
3 & 1 & -2 : 10 \\
0 & \frac{10}{3} & -\frac{11}{3} : \frac{52}{3} \\
0 & -\frac{7}{3} & \frac{11}{3} : -\frac{43}{3}
\end{pmatrix}$$

Here, $|a_{22}| > |a_{32}|$

Applying $R_3 \rightarrow R_3 + \frac{7}{10} R_2$, we get

$$\begin{pmatrix}
3 & 1 & -2 : 10 \\
0 & \frac{10}{3} & -\frac{11}{3} : \frac{52}{3} \\
0 & -\frac{7}{3} & \frac{11}{10} : -\frac{33}{15}
\end{pmatrix}$$

Then,
$$3x + y - 2z = 10$$
 (iv)

$$\frac{11}{10}z = -\frac{33}{15}$$
 (vi)

From (vi),
$$\frac{11}{10}z = -\frac{33}{15}$$
 $\Rightarrow z = -2$

Substituting z = -2 in (v), we get

$$\frac{10}{3} y - \frac{11}{3} x - 2 = \frac{52}{3}$$
 $\Rightarrow y = 3$

Substituting y = 3 and z = -2 in eqⁿ (iv), we get

$$3x + 3 - 2(-2) = 10$$
 $\Rightarrow x = 1$

$$x = 1, y = 3, z = -2.$$

d) x-y+z=10, 4x-2y-5z=9, 3x+4y-2z=1

Solⁿ: Given,
$$x - y + z = 10$$
(i)

$$4x - 2y - 5z = 9$$
(ii)

$$3x + 4y - 2z = 1$$
 (iii)

The matrix form of the above equations is,

$$\begin{pmatrix} 1 & -1 & 1 : 10 \\ 4 & -2 & -5 : 9 \\ 3 & 4 & -2 : 1 \end{pmatrix}$$

Here, $a_{11} < a_{21}$ and a_{31}

Applying $R_1 \leftrightarrow R_2$ to make $a_{11} > a_{21}$ and a_{31} , we get

$$\begin{pmatrix} 3 & -2 & -5 : 9 \\ 1 & -1 & 1 : 10 \\ 3 & 4 & -2 : 1 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - \frac{1}{4} \times R_1$$
 and $R_3 \rightarrow R_3 - \frac{3}{4} \times R_1$, we get

$$\begin{pmatrix}
4 & -2 & -5: & 9 \\
0 & -\frac{1}{2} & \frac{9}{4}: & \frac{31}{4} \\
0 & \frac{11}{2} & \frac{7}{4}: & -\frac{23}{4}
\end{pmatrix}$$

Here, $|a_{22}| < |a_{23}|$

Applying $R_2 \leftrightarrow R_3$ to make $|a_{22}| > |a_{23}|$, we get

$$\begin{pmatrix} 4 & -2 & -5: & 9 \\ 0 & \frac{11}{2} & \frac{7}{4}: & -\frac{23}{4} \\ 0 & -\frac{1}{2} & \frac{9}{4}: & \frac{31}{4} \end{pmatrix}$$

Applying $R_3 \rightarrow R_3 + 11 \times R_2$, we get

$$\begin{pmatrix} 4 & -2 & -5: & 9 \\ 0 & \frac{11}{2} & \frac{7}{4}: & -\frac{23}{4} \\ 0 & 0 & \frac{53}{22}: & \frac{159}{22} \end{pmatrix}$$

Then,
$$4x - 2y - 5z = 9$$
 (iv)

$$\frac{11}{2}y - \frac{7}{4}z = -31$$
(v)

$$\frac{52}{22}z = \frac{159}{22}$$
 (vi)

From eqⁿ (vi),
$$\frac{52}{22}z = \frac{159}{22}$$
 $\Rightarrow z = 3$

Substituting z = 3 in eqⁿ (v), we get

$$\frac{11}{2}y - \frac{7}{4} \times 3 = -31$$
 $\Rightarrow y = -2$

Substituting z = 3 and y = -2 in eqⁿ (iv), we get

$$4 \times -2(-2) - 5 \times 3 = 9$$
 $\Rightarrow x = 5$

$$x = 5, y = -2, z = 3.$$

4. Solve the following system of equations using Gaussian elimination method if possible;

a)
$$x_1 - x_2 + x_3 = 1$$
, $3x_1 + x_2 + 5x_3 = 11$, $4x_1 + 2x_2 + 7x_3 = 16$

Solⁿ:
$$x_1 - x_2 + x_3 = 1$$
(i)

$$3x_1 + x_2 + 5x_3 = 11$$
 (ii)

$$4x_1 + 2x_2 + 7x_3 = 16$$
 (iii)

Multiplying equation (i) by 3 and then subtracting from (ii)

$$4x_2 + 2x_3 = 8$$
 (iv)

Again multiplying equation (i) by 4 and then subtracting from (iii)

$$6x_2 + 3x_3 = 12$$
(v)

Multiplying equation (v) by $\frac{3}{2}$ and then subtracting from (v),

$$0 = 0$$

or,
$$0.x_3 = 0$$
 (vi)

Now, we have the following equations,

$$x_1 - x_2 + x_3 = 1$$
(i)

$$4x_2 + 2x_3 = 8$$
 (iv)

$$0.x_3 = 0$$
 (vi)

The equation (vi) is true for all values of x3.

.. The system of equation has infinitely many solutions hence consistent.

Thus, if $x_3 = k$

From (iv),
$$4x_2 + 2k = 8$$
 $\Rightarrow x_2 = \frac{4 - k}{2}$

d)
$$x_1 + 2x_2 + 3x_3 = 4$$
, $4x_2 + 5x_2 + 6x_3 = -7$, $7x_1 + 8x_2 + 9x_3 = 10$

Solⁿ:
$$x_1 + 2x_2 + 3x_3 = 4$$
(i)

$$4x_2 + 5x_2 + 6x_3 = -7$$
 (ii)

$$7x_1 + 8x_2 + 9x_3 = 10$$
 (iii)

Multiplying eq. (i) by 4 and then subtracting from (ii),

$$-3x_2 - 6x_3 = -23$$
 (iv)

Again multiplying eq. (i) by 7 and then subtracting from (iii)

$$-6x_2 - 12x_3 = -18$$
(v)

Multiplying eq. (iv) by 2 and then subtracting from (v)

$$0 = 28$$
(vi)

Now, we have the following equations,

$$x_1 + 2x_2 + 3x_3 = 4$$
(i)

$$-3x_2 - 6x_3 = -23$$
 (iv)

$$0.x_3 = 28$$
 (vi)

There is no value for x3that satisfies equation (vi)

:. The system has no solution hence inconsistent.

Hint and Solution of MCQ's

To solve the system

$$a_1x + b_1y = c_1$$
 and

 $a_2x + b_2y = c_2$ using Gauss-elimination the co-efficient of first variable in first equation is non-zero $(a \neq 0)$.

2. To solve the system

$$a_1x + b_1y + c_1z = d_1$$

$$a_2x + b_2y + c_2z = d_2$$

 $a_3x + b_3y + c_3z = d_3$, using Gauss-elimination if $a_1 = 0$, interchange either first and second equation or first and third equation.

- After forward elimination by Gaussian method, the system of equation changed into upper triangular matrix.
- 4. To solve

$$3x + y = 10 \dots (ii)$$

eliminate x, using the technique c) equation (1) - $\frac{2}{3}$ equation (2)

5. After elimination the system reduces the form

$$px + qy = m$$

$$ry = n$$
 such that $r \neq 0$

then the solution system has unique solution.

6. In the system using Gaussian elimination, the co-efficient a₁₁, a₂₂ and a₃₃ are known as pivot elements

System of Linear Equations •337•

- 7. The system of equations in x, y, z such that after the forward elimination z becomes free variable, i.e. 0.z = 0 (true for any choices of z) then the system is consistent and has infinitely many solution.
- If forward elimination of Gaussian method gives
 0.z = k ≠ 0, then the system is inconsistent and has no solution.
- To solve the system

$$2x + 2y + z = 6...(i)$$

$$4x + 2y + 3z = 4 \dots$$
 (ii)

x - y + z = 0 (iii), using partial pivoting rearrange the system in order 2, 1, 3, so that the absolute value of co-efficient of x in equation (i) would be large.