Homotopy Type Theory and Hedberg's Theorem

Nicolai Kraus

16/11/12

Intensional Type Theory

a formal system

Intensional Type Theory

a formal system

...and a possible foundation of (constructive) mathematics

Intensional Type Theory

a formal system

...and a possible foundation of (constructive) mathematics

... for proof assistants and (dependently typed) programming

Intensional Type Theory

a formal system
...and a possible foundation of (constructive) mathematics
...for proof assistants and (dependently typed) programming
...as used for Coq and Agda

Intensional Type Theory

a formal system
...and a possible foundation of (constructive) mathematics
...for proof assistants and (dependently typed) programming
...as used for Coq and Agda

e.g.
$$\lambda f \to \lambda a \to f \ a \ a : (A \to A \to B) \to A \to B$$

Reminder: Equality

Definitional Equality

Decidable equality for typechecking & computation; e.g. $(\lambda a.b)x =_{\beta} b[x/a]$

Reminder: Equality

Definitional Equality

Decidable equality for typechecking & computation; e.g. $(\lambda a.b)x =_{\beta} b[x/a]$

Propositional Equality

Equality needing a proof, i. e. a term of the identity type

Propositional equality

... is just an inductive type

Propositional equality

... is just an inductive type

Formation

a, b : A

 $a \equiv b$: type

Propositional equality

... is just an inductive type

Formation

a, b : A

 $a \equiv b$: type

Introduction

a : A

 $refl_a$: $a \equiv a$

Propositional equality

... is just an inductive type

Formation

a, b : A $a \equiv b : type$

Elimination (J)

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$ $J_{(a,b,q)}: P(a, b, q)$

Introduction

a: A $refl_a: a \equiv a$

Propositional equality

... is just an inductive type

Formation

a, b : A $a \equiv b : type$

Elimination (J)

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$ $J_{(a,b,q)}: P(a, b, q)$

Introduction

 $\frac{a:A}{refl_a:a\equiv a}$

Computation (β)

 $J_{(a,a,refl_a)} =_{\beta} ma$

Given a: A and $p: a \equiv a$, can we prove $p \equiv refl_a$?

Given a: A and $p: a \equiv a$, can we prove $p \equiv refl_a$?

Axiom UIP

$$p, q : a \equiv b$$

$$uip : p \equiv q$$

Given a: A and $p: a \equiv a$, can we prove $p \equiv refl_a$?

Axiom UIP

$$p, q : a \equiv b$$

$$uip : p \equiv q$$

Advantages

Simple, Good computational properties

Given a: A and $p: a \equiv a$, can we prove $p \equiv refl_a$?

Axiom UIP

$$p, q : a \equiv b$$

$$uip : p \equiv q$$

Advantages

Simple, Good computational properties

Disadvantages

Intuitively wrong, impossible to express statements about equality, isomorphic sets cannot be equal

Voevodsky (and Awodey, independently, and others):

Voevodsky (and Awodey, independently, and others):

Without UIP: new model of Type Theory (types as weak ω -groupoids)

• best expressible in Simplicial Sets SSets (the topos $Sets^{\Delta^{op}}$)

Voevodsky (and Awodey, independently, and others):

- best expressible in Simplicial Sets SSets (the topos $Sets^{\Delta^{op}}$)
- realization functor $R: SSets \rightarrow Top$

Voevodsky (and Awodey, independently, and others):

- best expressible in Simplicial Sets SSets (the topos $Sets^{\Delta^{op}}$)
- realization functor $R: SSets \rightarrow Top$
- R is a Quillen equivalence of model categories

Voevodsky (and Awodey, independently, and others):

- best expressible in Simplicial Sets SSets (the topos $Sets^{\Delta^{op}}$)
- realization functor $R: SSets \rightarrow Top$
- R is a Quillen equivalence of model categories
- \bullet \Rightarrow (more or less) a model that uses topological spaces as types

Fix a type A.

Decidable Equality

DecidableEquality := $\forall a b \rightarrow (a \equiv b + \neg a \equiv b)$

Hedberg's theorem

 $Decidable Equality \longrightarrow UIP$

Constant Function

$$const(f) := \forall ab \rightarrow fa \equiv fb$$

Constant Endofunction on Path Spaces

$$g: \forall a b \rightarrow a \equiv b \rightarrow a \equiv b$$

 $path\text{-}const(g):= \forall a b \rightarrow const g_{ab}$

Lemma 1

 $Decidable Equality \longrightarrow \Sigma_g$. path-const(g)

Lemma 1

 $Decidable Equality \longrightarrow \Sigma_g$. path-const(g)

Proof.

• Given dec: $\forall ab \rightarrow (a \equiv b + \neg a \equiv b)$.

Lemma 1

 $Decidable Equality \longrightarrow \Sigma_g$. path-const(g)

- Given dec: $\forall ab \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given a, b, we want: g_{ab} : $a \equiv b \rightarrow a \equiv b$.

Lemma 1

 $Decidable Equality \longrightarrow \Sigma_g$. path-const(g)

- Given dec: $\forall ab \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given a, b, we want: g_{ab} : $a \equiv b \rightarrow a \equiv b$.
- If $decab = inr_{}$, then nothing to do

Lemma 1

 $Decidable Equality \longrightarrow \Sigma_g$. path-const(g)

- Given dec: $\forall ab \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given a, b, we want: g_{ab} : $a \equiv b \rightarrow a \equiv b$.
- If decab = inr, then nothing to do
- If decab = inlp, then $g_{ab}(\underline{\ }) = p$

Lemma 2

 Σ_q . path-const $(g) \longrightarrow UIP$

Lemma 2

$$\Sigma_q$$
 . path-const $(g) \longrightarrow UIP$

Proof.

• Given $g: \forall ab \rightarrow a \equiv b \rightarrow a \equiv b$ which is constant

Lemma 2

$$\Sigma_q$$
 . path-const $(g) \longrightarrow UIP$

- Given $g: \forall ab \rightarrow a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.

Lemma 2

$$\Sigma_q$$
 . path-const $(g) \longrightarrow UIP$

- Given $g: \forall ab \rightarrow a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.
- Claim: $p \equiv (g_{aa}refl_a)^{-1} \circ g_{ab}(p)$

Lemma 2

$$\Sigma_q$$
 . path-const $(g) \longrightarrow UIP$

- Given $g: \forall ab \rightarrow a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.
- Claim: $p \equiv (g_{aa}refl_a)^{-1} \circ g_{ab}(p)$
- Proof with *J*: Just do it for (*a*, *a*, *refl_a*). That's true!

Lemma 2

$$\Sigma_q$$
 . path-const $(g) \longrightarrow UIP$

- Given $g: \forall ab \rightarrow a \equiv b \rightarrow a \equiv b$ which is constant
- Given any a, b : A and $p, q : a \equiv b$.
- Claim: $p \equiv (g_{aa}refl_a)^{-1} \circ g_{ab}(p)$
- Proof with J: Just do it for (a, a, refl_a). That's true!
- Same for q. But g_{aa} and g_{ab} are constant.

Generalizations of Hedberg's theorem

We have seen

Lemma 1

DecidableEquality $\longrightarrow \Sigma_q$. path-const(g)

DecidableEquality is a very strong property. How about something weaker?

Generalizations of Hedberg's theorem

We have seen

Lemma 1

 $Decidable Equality \longrightarrow \Sigma_q$. path-const(g)

DecidableEquality is a very strong property. How about something weaker? For example:

Separated

$$\forall ab \rightarrow \neg \neg (a \equiv b) \rightarrow a \equiv b$$

"general"

 $\forall a b \rightarrow [propositional \ evidence \ for \ a \equiv b] \rightarrow a \equiv b$

Propositions

So, what is "propositional evidence"?

Propositions

So, what is "propositional evidence"?

Type A is a Proposition if

$$prop_A = \forall ab \rightarrow a \equiv b$$

"at most one inhabitant"

Propositions

So, what is "propositional evidence"?

Type A is a Proposition if

$$prop_A = \forall ab \rightarrow a \equiv b$$

"at most one inhabitant"

Write **Prop** for this "subset" of **Type**

H-Propositional Reflection

A some type. We want a way to say that A is inhabited without giving away a specific inhabitant.

H-Propositional Reflection

A some type. We want a way to say that A is inhabited without giving away a specific inhabitant.

H-propositional reflection

 * : Type \rightarrow Prop

is defined to be the left adjoint of emb: **Prop** \hookrightarrow **Type**

H-Propositional Reflection

A some type. We want a way to say that A is inhabited without giving away a specific inhabitant.

H-propositional reflection

 * : Type \rightarrow Prop

is defined to be the left adjoint of emb: **Prop** \hookrightarrow **Type**

This means:

- A* is in **Prop**
- $\eta:A\to A^*$
- if P is a proposition and $A \rightarrow P$, then $A^* \rightarrow P$

Generalizations of Hedberg's Theorem

"Propositional evidence for $a \equiv b$ " is now just [an inhabitant of] $(a \equiv b)^*$.

H-Separated

$$\forall ab \rightarrow (a \equiv b)^* \rightarrow a \equiv b$$

Generalizations of Hedberg's Theorem

"Propositional evidence for $a \equiv b$ " is now just [an inhabitant of] $(a \equiv b)^*$.

H-Separated

$$\forall ab \rightarrow (a \equiv b)^* \rightarrow a \equiv b$$

Theorem

h-separated_A $\longleftrightarrow \Sigma_g$. path-const $(g) \longleftrightarrow UIP_A$

Nearly uncountable many things to be done . . .

- Higher Inductive Types (see Mike Shulman's work)
- Model construction with modern abstract (not point-set) homotopy theory
- Constructive Simplicial Sets (the combinatorial version of what I have shown; see Thierry Coquand's / Simon Huber's work)
- Univalent foundations / Univalence ("alternative" to K) in general (see Voevodsky)
- ... and possible computational properties (Thorsten?)

THANK YOU!