EE24BTECH11020 - Ellanti Rohith

Question: A triangle ABC can be constructed in which BC = 6cm, $\angle B = 30^{\circ}$ and AC - AB = 4cm.

Solution:

Symbol	Description
а	length of side BC
b	length of side CA
С	length of side AB
∠A	angle at vertex A
$\angle B$	angle at vertex B
$\angle C$	angle at vertex C
K	AC - AB = b - c

TABLE 0: Variables Used

Using the cosine formula in $\triangle ABC$,

$$(K+c)^2 = a^2 + c^2 - 2ac\cos B \tag{1}$$

$$\implies c = \frac{a^2 - K^2}{2(K + a\cos B)} \tag{2}$$

Substituting the values of K = 4 , a = 6 , and $\cos B = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$:

$$c = \frac{6^2 - 4^2}{2(4 + 6\cos 30^\circ)} \tag{3}$$

$$c = \frac{36 - 16}{2\left(4 + \left(6 \times \frac{\sqrt{3}}{2}\right)\right)} \tag{4}$$

$$c = \frac{10}{4 + 3\sqrt{3}}\tag{5}$$

The coordinates of $\triangle ABC$ can then be expressed as:

$$\mathbf{A} = c \begin{pmatrix} \cos B \\ \sin B \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$
 (6)

$$\mathbf{A} = \frac{10}{4+3\sqrt{3}} \left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{\sqrt{2}}}\right), \mathbf{B} = \begin{pmatrix} 0\\0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 6\\0 \end{pmatrix}$$
 (7)

1

Fig. 0: Triangle with BC = 6cm, $\angle B = 30^{\circ}$ and AC - AB = 4cm