北京大学线性代数 B 期末试题 2021-2022 年度第一学期

考试时间: 2022年1月5日上午

(1) (20 分) 设实对称矩阵

$$A := \left[\begin{array}{rrr} -4 & 2 & 2 \\ 2 & -1 & 4 \\ 2 & 4 & a \end{array} \right].$$

已知 -5 是 A 的重数为 2 的特征值。

- (1) 求 a 的值.
- (2) 求一个正交矩阵 Q, 使得 $Q^{-1}AQ$ 为对角矩阵。
- 2. (15 分) 令 $\alpha_1 = (1, 2, 1, 0), \alpha_2 = (-1, 1, 1, 1), \beta_1 = (2, -1, 0, 1), \beta_2 = (1, -1, 3, 7)$ 。 求向量 α_1, α_2 生成的子空间与由向量 β_1, β_2 生成的子空间的交的基。
- 3. (15 分) 若二次型 $f(x_1,x_2,x_3)=2x_1^2+x_2^2+x_3^2+2x_1x_2+tx_2x_3$ 是正定的,求 t 的取值范围。
- 4. (10 分) 设 A,B 分别为 $s \times n,n \times s$ 矩阵,证明: $|I_s AB| = |I_n BA|$ 。
- 5. $(10\ eta)$ 令 V 是域 k 上的 n-维线性空间, α_1,\cdots,α_n 为 V 的一组基。定义 $Hom_k(V,V)$ 到 $M_{n\times n}(k)$ 映射 σ , 对于任意线性变换 $\mathcal{A}\in Hom_k(V,V)$ 都有

$$\begin{pmatrix} \mathcal{A}(\alpha_1) \\ \cdots \\ \mathcal{A}(\alpha_n) \end{pmatrix} = \sigma(\mathcal{A}) \begin{pmatrix} \alpha_1 \\ \cdots \\ \alpha_n \end{pmatrix}.$$

证明:

- (i) σ 是线性同构。
- (ii) 判断对于任意 $A, B \in Hom_k(V, V)$ 是否满足 $\sigma(AB) = \sigma(A)\sigma(B)$, 并给 出证明或反例。
- ⑥ $(10 \, f)$ 设 A 为实数域中的任一个 m 行 n 列 1 零矩阵。证明一定存在 m 行 m 列 的正交矩阵 P 和 n 行 n 列的正交矩阵 Q,使得

$$A = P \begin{bmatrix} D_r & 0 \\ 0 & 0 \end{bmatrix} Q,$$

J. W.

第1页 共2页

其中的 D_r 为 r 行 r 列的对角矩阵,对角元都是正数, r = rank(A); 三个 0 表示相应大小的零矩阵。

- 7. (10 分) 设 n-阶方阵 A 满足 $A^2 = 2A$, 证明: A 可以对角化。
- 8. $(10\ eta)$ 令 V 是域 k 上维数大于 1 的线性空间, $V^* = Hom_k(V,k)$ 是 V 到 k 上的所有线性映射的集合。对 i=1,2 取集合 $V^*\times V$ 中的元素 (ϕ_i,w_i) 满足如下条件: $0\neq\phi_i\in V^*, 0\neq w_i\in V$ 且 $\phi_i(w_i)=0$. 定义 V 上的线性变换 $\tau_i(v)=v+\phi_i(v)w_i$ 。证明:
 - (i) τ_i 是可逆线性变换。
 - (ii) 存在 V 上的可逆线性变换 g 使得 $g^{-1}\tau_1g=\tau_2$ 。

$$\chi^{3}$$
 + $(9-0)\lambda^{1}$ + $(24-9)\lambda$
+ $4\lambda^{2}$ + $4(1-0)\lambda$ + $4(24-0)$
- 8λ - $4(9-0)$