

8:25 -9:55 DM1 EA: VIZSGA (HA VAN GLAK) (2 ALK.) ÍRAÍBETI & SZÓBELI + ELÓUIZERA (PAPIROS + CAPUAS: HÉTRÓL-HERE) ANTAGOK: · AL HPS 2/45 (LOGIKA HALHAZOK, ZETACIÓ, FV.) · Koup It · KOMBINATORIKA (LESLAH(ÁLASOR) · GRATOK

HIERT KELL DM.? LOGIKAI BELEK: ALLITHSOK; ALAP ACLITASOK, LOGIKAI SETEKKEL

OSTEKAPCS ON JA PX205 (2) 1 PRin 12) A 2 cg poins prin:

IGAZSAGTATELA'ZAT, 人 5 +1 UL 13 # MINDIG MEGETUREDÓ

AND, OR, NOT TAGADAS: IMPLIKACIS to It, allow B. (MINDEN x priu, aktor x portala. ZE X WEN CKTEWS

UN. KUANTOROK MINDEN/LETEZIK "AU" "EX にナス" Vx (PRIM(x) =) PAROS (x)) 3 × (----) Akkor igat, ha MINDEN x: AKKOR 16AZ HA a tárójelen beliti kij. igot. VÁN OLYAN X, melyre a Zaro jelen belüh kij. (gaz. PAR "TETEL" (7 (A 18) (7A) , (7B)) (7 (A UB) (17 A) 1 (7B) DE MORGHU AZONOSSÁGOR $\neg \forall x (\mathcal{A}(x))$ $\Rightarrow \exists x (\neg A(x))$ Jto- 7 4x (x(x) -) B(x) () => 3x (A(x) 17 J(x)) HALM/12ac; "dolgok gjij temine", alap fagaloca " ELEME" $x \in H$ x eleme H-naj · elemeknek nincs someralje · mindeg, hog hamper van benne i 1/H Eg halmatt egé Mel mich meghatanor, lung mid at elenei: H=K (XEH B SEK)

$$\{1,2,3\} = \{3,2,1\} = \{2,1,2,3,3,1,2\}$$

HACMAZOK MEGHOA'SA: $A = \left\{ x \in \mathbb{Z} \mid x > 10^{3} \right\}$ A Z-nck AZON clemei AMIKre $\times > 10^{-}$ = { a ti2mel nayobb agran} $\{n+1 \mid n \in \{1,2,3,7\}\}$ v.o. $[n \times n+1 \text{ for } n \text{ in } [1,2,3,7]\}$ = {2,5,6,50}

DEF. $\phi := \{ \}$ at we halman MEGS: $\phi \neq \{\phi\}$ DEF. REIZHALMAZ; A = B: A mide eleve cleve B-me is $\forall \times (\times \in A \Rightarrow \times \in B)$ Venn-diagra > ASI (XSB1A+B VALÓDI:

metrit ANB: XEANB ZO XEA N XEB unis XEAUB = XEX V XEB AUB A és B diszjunkt, he AnB = Ø

MINDEN A,B,C	halmana
A'LL:	
$A \cap B = B \cap A$	KOMMUTAT/U AUB = IJA
(ANB)nC = An(BnC)	ASROCIATIU (AUB)UC = AU(B.
$A \cap A = A$	$A \cup A = A$
$A \cap \emptyset = \emptyset$	$A \cup \emptyset = A$
$A \subseteq S \iff A \land S = A$	ASB (S) AUB-B