Algebraic Multigrid

Michael Wathen

UBC Computer Science

ullet Solving $n \times n$ linear system

$$Ax = b$$

- P prolongation (maps $\mathbb{R}^m \to \mathbb{R}^n$ where m < n)
- P^{T} restriction (maps $\mathbb{R}^n \to \mathbb{R}^m$)
- coarse grid operator $A_c = P^{\mathsf{T}}AP$ (Galerkin operator)

../figures/TwoGrid.png

Smoothness:

$$e^{\mathsf{T}}Ae = \lambda \ll 1$$

$$e^{\mathsf{T}} A e = \sum_{i < j} (-a_{ij})(e_i - e_j)^2 \ll 1$$

Strength of Connection

$$-a_{ij} \geq \theta \max_{k \neq i} \{-a_{ik}\} \quad \text{where } \theta \in (0,1]$$

Choose grid

- 1. Define strength matrix A_s
- 2. Choose set of fine points based on A_s
- 3. Choose extra points to satisfy interpolation requirements

Choose grid

- 1. Define strength matrix A_s
- 2. Choose set of fine points based on A_s
- 3. Choose extra points to satisfy interpolation requirements

FE Poisson stencil:

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

../figures/AMG1.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG2.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG3.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG4.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG5.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG6.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG7.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG8.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG9.png

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

../figures/AMG10.png

Falgout (2006)

- select C-pt with maximal measure
- select neighbours as F-pts
- update measures of F-pt neighbours

Second pass

Classical AMG:

- Loop though F-points
- find pairs of F-points that are strongly connected
- check F-point pair strongly connected to C-point

Interpolate

Smooth error:

$$\lambda^2 = e^{\mathsf{T}} A^{\mathsf{T}} A e = r^{\mathsf{T}} r = ||r|| \ll 1$$

Derive interpolation:

$$r_i = (Ae)_i = 0$$

$$a_{ii}e_i = -\sum_{j \in C_i} a_{ij}e_j - \sum_{j \in F_i} a_{ij}e_j - \sum_{j \in N_i} a_{ij}e_j$$

 C_i : C-points strongly connected to i

 F_i : F-points strongly connected to i

 N_i : all points weakly connected to i

../figures/step1.png

../figures/step2.png

../figures/step3.png

../figures/step4.png

Poisson

$$-\Delta \vec{u} = \vec{f} \quad \text{in } \Omega$$

$$\vec{u} = \vec{0} \quad \text{on } \partial \Omega$$

Grid	DoF	AMG		ILU		Direct (MUMPS)
size		# iters	Soln Time	# iters	Soln Time	Soln Time
2^2	18	1	1.31e-05	1	6.91e-06	5.29e-04
4^{2}	50	2	3.60e-05	5	1.22e-05	4.99e-04
8^{2}	162	3	1.25e-04	8	5.41e-05	8.80e-04
16^{2}	578	4	5.80e-04	14	1.96e-04	2.89e-03
32^{2}	2178	4	1.94e-03	25	1.38e-03	9.74e-03
64^{2}	8450	4	7.73e-03	48	1.06e-02	6.84e-02
128^{2}	33282	4	3.01e-02	93	7.92e-02	3.38e-01
256^{2}	132098	4	1.36e-01	181	6.99e-01	1.77e + 00
512^{2}	526338	4	6.05e-01	349	5.81e + 00	9.76e + 00
1024^{2}	2101250	4	2.49e + 00	668	4.62e + 01	6.33e + 01
2048^{2}	8396802	4	9.98e + 00	1272	3.47e+02	5.66e+02

3 Dimensional example

Grid	DoF	AMG		ILU		Direct (MUMPS)
size		# iters	Soln Time	# iters	Soln Time	Soln Time
2^{3}	81	1	1.81e-05	1	7.87e-06	7.22e-04
4^3	375	2	1.19e-04	4	3.60e-05	1.50e-03
8^{3}	2187	3	1.37e-03	8	3.85e-04	9.22e-03
16^{3}	14739	3	1.24e-02	14	5.35e-03	2.44e-01
32^{3}	107811	3	1.26e-01	26	8.98e-02	1.29e + 01
64^{3}	823875	4	1.63e + 00	45	1.31e + 00	1.04e + 03
128^{3}	6440067	4	1.60e + 01	84	1.94e + 01	-

Summary

- Tries to mimic GMG
- Relies on matrix coefficients
- No geometric information needed
- Black box for elliptic problems