Note for 2pt calculation with Chroma

Jinchen He

1 Chroma Installation

1.1 Download package

Download necessary packages for Installation from GitHub.

- Use "git clone –recursive . . . ", "recursive" means after the clone is created, initialize all submodules within, using their default settings.
- If the connection to the GitHub is not stable on the server, you are suggested to clone on your local machine, then use "scp" to upload.

Package list:

- 1. qmp
- 2. qio
- 3. qla
- 4. qdp
- 5. qopqdp
- 6. qdpxx

1.2 Configure and make

Configure and make in each folder of packages.

- The whole process can be divided into 7 parts (6 packages above and chroma), so that you can locate the errors conveniently.
- "export PATH=...:\$PATH", makes environment variables available to other programs called from bash.
- "autoreconf -vi": used to update generated configuration files, "-v" means verbosely reporting processing, "-i" means copying missing auxiliary files.
- "./configure", you can use "./configure –help" to see the options
- "./autogen.sh"

2 Source code

2.1 Plug in packages

Users are allowed to write some plug in packages and register in the Chroma, so that those packages can be used.

2.2 Make

- Makefile
- make.sh

3 2pt calculation

3.1 Perl script

Used to print the .xml file as the input for Chroma. Write perl script as the structure in "xxx.h".

3.1.1 Sink smear

```
print <<"EOF";</pre>
<elem>
  <Name>SINK_SMEAR</Name>
  <Frequency>1</Frequency>
  <Param>
   <version>5</version>
   <Sink>
      <version >1</version >
      <SinkType>POINT_SINK</SinkType>
      <j_decay>3</j_decay>
    </Sink>
  </Param>
  <NamedObject>
   <gauge_id>$gauge_id/gauge_id>
   cprop_id>${prop_sum}
    <smeared_prop_id>prop_m${quark_mass}_p${quark_mom_x}$${quark_mom_y}
    ${quark_mom_z}.sum_sp</smeared_prop_id>
  </NamedObject>
</elem>
EOF
```

This block read the propagator in $< prop_id > < /prop_id >$, then use the method in < SinkType > < /SinkType >, and output the smeared propagator as $< smeared_prop_id > < /smeared_prop_id >$.

3.2 Inline xxx.cc

3.3 Inline xxx.h

In perl script,

```
<sl_quark_props>
<elem>prop_m${c_mass}_p000.sum_sp</elem>
</sl_quark_props>
So, in the inline_xxx.h,
multi1d<std::string> sl_quark_props;
```

here just need to read the name of the variable, which is a string, because the Sinksmear block in perl script told Chroma to output a smeared propagator with name $xxx.sum_up$, and here we just need to let Chroma know which variable should be used.

3.4 Add new plug in packages

If you want to use a new plug in package in the Chroma for calculation, you should:

- 1. Write the .cc file and .h file.
- 2. Put two files above into the source code folder.
- 3. In the source code folder, add '#include "inline_xxx.h" ' and "foo &= InlinexxxEnv::registerAll();" into "chroma.cc".
- 4. In the source code folder, add "inline_2pt.h" and "inline_2pt.o" into "Makefile".
- 5. "bash make.sh" again

- 6. Update your .pl file to use the new plug in package, and remake the soft link of "chroma" in the same path as .pl file.
- 7. "sbatch xxx.sh" again.

3.5 Change to use different configurations

If you want to use other different configurations:

- 1. In the perl script, change "cfg file" and "cfg type", which are configuration path and configuration type.
- 2. In the perl script, change "ns" and "nt", which are numbers of lattice on space axes and time axis.
- 3. In the perl script, change "mg layout".
- 4. In the perl script, change $\langle tseq \rangle xx \langle /tseq \rangle$ in the EOF block.

Conf	Size	clovCoeff	mass(140,220,310,670)	mg_layout	geom
A12m310	24×64	1.05088	-0.0785, -0.075,-0.0695,-0.0191	3332	1114
A12m130	48×64	1.05088	-0.0785, -0.075,-0.0695,-0.0191	4 4 4 4	1232
A09m310	32×96	1.04239	-0.058, -0.0554,-0.05138,-0.0174	4 4 4 4	1126
A09m130	64×96	1.04239	-0.058, -0.0554,-0.05138,-0.0174	4 4 4 4	2226
A06m310	48×144	1.03493	-0.0439,-0.04222,-0.0398, -0.0191	4436	1226
A06m130	96×192	1.03493	-0.0439,-0.04222,-0.0398, -0.0191	4 4 4 4	3 3 3 12
a045m310	64×192	1.03144	-0.0365(310)	4444	2 2 2 12