Informática Teórica Tarea #1 "Esto no se compila"

Andrés Navarro // 201673001-K

25 de septiembre de 2017

Una forma alternativa de construir una expresión regular que reconoce el lenguaje aceptado por el DFA $M = (Q, \Sigma, \delta, q_0, F)$ es plantear expresiones regulares para las palabras que llevan al DFA desde el estado inicial a cada uno de los estados. Básicamente, llamando R_q a la expresión para llegar al estado q, si $\delta(q,a) = p$, entre las alternativas para R_p estará $R_q a$. El lenguaje aceptado por M es la alternancia entre las expresiones para estados finales.

Esto termina en un sistema de ecuaciones para los distintos R_q , podemos usar nuestro teorema sobre solución de ecuaciones de la forma $X = XA \cup B$ entre lenguajes para resolver una de ellas, y substituir en las demás, hasta finalmente tener todos los R_q requeridos.

Comentarios en C++ quedan definidos por el DFA de la figura 1, donde hemos omitido el estado muerto y las transiciones a él para simplificar. El alfabeto usado es $\{/, *, a, n\}$, donde / y * representan esos caracteres, n representa al fin de línea (se escribe $' \setminus n'$ en C++) y a es cualquier otro caracter válido.

Figura 1: Comentarios en C++

1. Plantee el sistema de ecuaciones descrito para expresiones regulares R_1 a R_7 partiendo del autómata de la figura 1. Use s en vez del símbolo * para evitar ambigüedades.

Dado que R_1 es el correspondiente al estado 1, el cual es el inicial, se llega a el consumiendo solamente ϵ , para el resto de expresiones R_n , su ecuación fue confecionada visualizando el autómata.

 $R_1 = \epsilon$

A R_2 solo se puede llegar desde R_1 consumiendo /

 $R_2 = R_1 /$

Para R_3 podemos llegar desde R_2 consumiendo s, desde el mismo consumiendo a,n o /, o desde R_4 consumiendo a o n

 $R_3 = R_2 s |R_3| |R_3 a| |R_3 n| |R_4 a| |R_4 n|$

A R_4 se puede llegar desde R_3 consumiendo s, o desde el mismo consumiendo s

 $R_4 = R_3 s | R_4 s$

Para R_5 se tiene que solo se puede llegar desde R_4 consumiendo /

 $R_5 = R_4 /$

Para R_6 se puede llegar consumiendo / desde R_2 o desde el mismo consumiendo s o a

 $R_6 = R_2/|R_6/|R_6s|R_6a$

Por último, para R_7 se tiene que se puede llegar a el desde R_6 consumiendo n

 $R_7 = R_6 n$

Finalmente tenemos el sistema:

 $R_1 = \epsilon$

 $R_2 = R_1 /$

 $R_3 = R_2 s |R_3| |R_3 a| |R_3 a| |R_4 a| |R_4 a|$

 $R_4 = R_3 s | R_4 s$

 $R_5 = R_4 /$

 $R_6 = R_2/|R_6/|R_6s|R_6a$

 $R_7 = R_6 n$

2. Dé la expresión regular para el lenguaje aceptado por el autómata en términos de los R_k .

Se trabajará sobre las ecuaciones.

Tanto R_1 como R_2 permanecen igual.

 $R_1 = \epsilon$

 $R_2 = R_1 /$

Reemplazando R_2 en R_3 .

 $R_3 = R_2 s |R_3/|R_3 a|R_3 n|R_4 a|R_4 n \Rightarrow R_3 = R_1/s |R_3/|R_3 a|R_3 n|R_4 a|R_4 n$

Ahora, en R_4 reemplazamos R_3

 $R_4 = R_3 s | R_4 s \Rightarrow R_4 = (R_1/s | R_3/| R_3 a | R_3 n | R_4 a | R_4 n) s | R_4 s$

En R_5 finalmente nos queda:

 $R_5 = ((R_1/s|R_3/|R_3a|R_3n|R_4a|R_4n)s|R_4s)/$

Por otro lado, reemplazando R_2 en R_6 :

 $R_6 = R_2/|R_6/|R_6s|R_6a \Rightarrow R_6 = R_1//|R_6/|R_6s|R_6a$

Finalmente R_7 queda como:

 $R_7 = R_6 n \Rightarrow R_7 = (R_1 / / |R_6 / |R_6 s| R_6 a) n$

Dado que nuestro DFA tiene dos estados finales, nuestra expresion regular estará dada por los R_n correspondientes a estos dos estados. Estos estados corresponden al 5 y al 7, por lo que nuesto RE sería:

$$RE = R_5 | R_7$$

Si reemplazamos con lo obtenido:

$$RE = ((R_1/s|R_3/|R_3a|R_3n|R_4a|R_4n)s|R_4s)/|(R_1//|R_6/|R_6s|R_6a)n$$

3. Indique paso a paso cómo resuelve el sistema de ecuaciones para las variables necesarias para la pregunta 2. Recordar que el teorema 1.1 nos dice que:

$$X = A|XB \Rightarrow X = AB^*$$

O bien:

$$X = A|BX \Rightarrow X = B^*A$$

Primero reemplazamos R_1 en R_2

$$R_1 = \epsilon$$

$$R_2 = R_1/ \Rightarrow R_2 = \epsilon/ \Rightarrow R_2 = /$$

Trabajando sobre R_3

Primero tenemos:

$$R_3 = R_4 a | R_4 n \Rightarrow R_3 = R_4 (a | n)$$

Con lo obtenido anteriormente de R_2 :

$$R_3 = R_2 s \Rightarrow R_3 = /s$$

Tenemos:

$$R_3 = /s|R_3/|R_3a|R_3n|R_4(a|n) \Rightarrow R_3 = /s|R_3(/|a|n)|R_4(a|n)$$

Ahora, ocupando el teorema 1.1:

$$R_3 = /s|R_3(/|a|n) \Rightarrow R_3 = /s(/|a|n)^*$$

$$R_3 = R_4(a|n)|R_3(/|n|a) \Rightarrow R_3 = R_4(a|n)(/|n|a)^*$$

Finalmente:

$$R_3 = /s(/|a|n)^* |R_4(a|n)(/|n|a)^*$$

Trabajando sobre R_4

Ocupando el teorema 1.1 tenemos:

$$R_4 = R_3 s | R_4 s \Rightarrow R_4 = R_3 s s^*$$

Sabiendo que $ss* = s^+$:

$$R_4 = R_3 s^+$$

Con lo obtenido en R_3 :

$$R_4 = (/s(/|a|n)^*|R_4(a|n)(/|n|a)^*)s^+ \Rightarrow R_4 = /s(/|a|n)^*s^+|R_4(a|n)(/|n|a)^*s^+$$

Ocupando el teorema 1.1 tenemos:

$$R_4 = /s(/|a|n)^* s^+ |R_4(a|n)(/|n|a)^* s^+ \Rightarrow R_4 = /s(/|a|n)^* s^+ ((a|n)(/|n|a)^* s^+)^*$$

Trabajando sobre R₅

Ocupando lo obtenido en R_4 :

$$R_5 = R_4/ \Rightarrow R_5 = /s(/|a|n)^* s^+ ((a|n)(/|n|a)^* s^+)^*/$$

Trabajando sobre R_6 :

$$R_6 = R_6/|R_6 s|R_6 a \Rightarrow R_6 = R_6(/|s|a)$$

Ocupando el teorema 1.1 tenemos:

$$R_6 = R_2/|R_6(/|s|a) \Rightarrow R_6 = R_2/(/|s|a)^*$$

Reemplazando R₂:

$$R_6 = //(/|s|a)^*$$

Trabajando sobre R_7 :

Reemplazando R_6 :

$$R_7 = R_6 n \Rightarrow R_7 = //(/|s|a)^* n$$

Con lo respondido en la pregunta 2, sabemos que la RE esta descrita por:

$$RE = R_5 | R_7$$

Reemplazando con lo obtenido:

$$RE = \frac{|s(|a|n)^* s^+ ((a|n)(|n|a)^* s^+)^*}{||(a|n)(|n|a)^* s^+)^*} / \frac{||(a|n)^* s^+ (a|n)(|n|a)^* s^+)^*}{||a|^* s^+ (a|n)(|n|a)^* s^+)^*} / \frac{||a|^* s^+ (a|n)(|n|a)^* s^+}{||a|^* s^+ (a|n)(|n|a)^* s^+} / \frac{||a|^* s^+ (a|n)(|n|a)^* s^+}{||a|^* s^+ (a|n)(|n|a)^* s^+} / \frac{||a|^* s^+ (a|n)(|n|a)^* s^+}{||a|^* s^+ (a|n)(|n|a)^*} / \frac{||a|^* s^+ (a|n)(|n|a)^* s^+}{||a|^* s^+ (a|n)(|n|a)^*} / \frac{||a|^* s^+ (a|n)(|n|a)^*}{||a|^* s^+ (a|n)(|n|a)^*} / \frac{||a|^* s^+ (a|n)(|n|a|a)^*}{||a|^* s^+ (a|n)(|n|a)^*} / \frac{||a|^* s^+ (a|n)(|n|a)^*}{||a|^* s^+ (a|n)(|n|a)^*} / \frac{||a|^* s^+ (a|n)(|n|a)^*}{||a|^* s^+ (a|n)(|n|a|a)^*} / \frac{||a|^* s$$

Condiciones Generales

- La tarea se realizará *individualmente* (esto es grupos de una persona), sin excepciones.
- La tarea debe ser entregada impresa o manuscrita en la Secretaría Docente de Informática (Piso 1, edificio F3) el día indicado en Moodle.
- Opcionalmente, puede desarrollar la tarea en LŒEX, lo cual tiene una bonificación de 10 puntos. Para obtener la bonificación, junto con entregar la tarea impresa en hojas tamaño carta deberá depositar copia de los fuentes LŒEX de su solución en un tarball en el área designada al efecto en Moodle bajo el formato tarea1-rol.tar.gz. El archivo debe contener el directorio tarea1-rol, en el cual están los archivos de su solución (al menos tarea1.tex). Tiene derecho a la bonificación sólo si el tarball tiene el nombre y contenido correctos, y los fuentes LŒEX (y posibles otros archivos anexos) se procesan correctamente en el ambiente que ofrece el Laboratorio de Computación del Departamento de Informática, y están escritos en forma legible.
 - Si la entrega es en manuscrito, está afecta a descuento de hasta 20 puntos por desorden o ilegibilidad.
- Por cada día de atraso se descontarán 20 puntos. A partir del tercer día de atraso no se reciben más tareas y la nota es automáticamente cero.
- La nota de la tarea puede ser según lo entregado, o (en el caso de algunos estudiantes elegidos al azar) el resultado de una interrogación en que deberá explicar lo entregado. No presentarse a la interrogación significa automáticamente nota cero.
 - Sobre la nota de la interrogación se aplican los descuentos por atraso si proceden, y la bonificación por entrega en La la la interrogación por desorden.