Cyber-Physical Systems (CSC.T431)

Synchronous Model (2)

Instructor: Takuo Watanabe (Department of Computer Science)

1

Agenda

1. Synchronous Model (2)

Course Support & Material

- Slides: OCW-i
- Course Web: https://titech-cps.github.io
- Course Slack: titech-cps.slack.com

Ex. Delay

Ex. Delay

$$x \xrightarrow{in/out} x'$$

$$0 \xrightarrow{0/0} 0; \ 0 \xrightarrow{1/0} 1; \ 1 \xrightarrow{0/1} 0; \ 1 \xrightarrow{1/1} 0$$

bool
$$in$$
bool $x := 0$

$$out := x; x := in$$
bool out

round	init	1	2	3	4	5	6	7	8
in		0	1	0	1	1	0	0	1
\mathcal{X}		0	0	1	0	1	1	0	0
x'	0	0	1	0	1	1	0	0	1
out		0	0	1	0	1	1	0	0

Synchrony Hypothesis

- We assume that the time needed to execute the update code is negligible compared to delay between successive input arrivals (or time between rounds).
- Logically, we can say that the execution of update code takes zero time, and the production of output and reception of inputs occurs at the same time.
- Cf. Synchronous Languages
 - Programming languages based on the synchrony hypothesis
 - e.g., Esterel, Lustre, Signal, Ceu

Synchronous Reactive Components

C = (I, O, S, Init, React)

Synchronous Reactive Components

$$C = (I, O, S, Init, React)$$

- ullet A synchronous reactive component C is described by
 - a finite set I of typed input variables defining the set \mathcal{Q}_I of inputs,
 - a finite set ${\it O}$ of typed output variables defining the set ${\it Q}_{\it O}$ of outputs,
 - a finite set S of typed state variables defining the set \mathcal{Q}_S of states,
 - an initialization Init defining the set $[[Init]] \subseteq Q_S$ of initial states, and
 - a reaction description React defining the set [[React]] of reactions of the form $s \stackrel{i/o}{\to} t$ where s, t are states, i is an input, and o is an output.
- Ex. (Delay) $I = \{in\}, O = \{out\}, S = \{x\}$

Valuations

- ullet V: finite set of typed variables
- $q:V \to D$: a valuation over V
- For all $v \in V$, q(v) is a value of type τ_v (τ_v : type of v)
- \mathcal{Q}_V : set of all valuations over V

finite function as a set of tuples

$$V = \{x, y\}$$

$$q: V \to N$$

$$q(x) = 1, q(y) = 2$$

$$\downarrow \downarrow$$

$$q = \{(x,1), (y,2)\}$$

- Ex. (Delay) $I = \{in\}, O = \{out\}, S = \{x\}$
 - $Q_I = \{\{(in,0)\}, \{(in,1)\}\}, Q_O = \{\{(out,0)\}, \{(out,1)\}\}, Q_S = \{\{(x,0)\}, \{(x,1)\}\}$
 - $[[Init]] = \{\{(x,0)\}\}\$

Reaction

$$s_0 \xrightarrow{i_1/o_1} s_1 \xrightarrow{i_2/o_2} s_2 \xrightarrow{i_3/o_3} s_3 \cdots s_{k-1} \xrightarrow{i_k/o_k} s_k$$

- State: $s_i \in Q_S$ $(0 \le j \le k)$
- Input: $i_j \in Q_I$ $(1 \le j \le k)$
- Output: $o_j \in Q_O$ $(1 \le j \le k)$
- Initial state : $s_0 \in [[Init]]$
- Reaction: $s_{j-1} \xrightarrow{i_j/o_j} s_j \in [[React]] \quad (1 \le j \le k)$

$$C = (I, O, S, Init, React)$$

Full description

Ex. Delay

$$I = \{in\}, O = \{out\}, S = \{x\}$$

$$Q_{I} = \{\{(in,0)\}, \{(in,1)\}\}, Q_{O} = \{\{(out,0)\}, \{(out,1)\}\}, Q_{S} = \{\{(x,0)\}, \{(x,1)\}\}\}$$

$$[[Init]] = \{\{(x,0)\}\}$$

$$[[React]] = \begin{cases} \{(x,0)\} & \xrightarrow{\{(in,0)\}/\{(out,0)\}} \{(x,0)\}, \{(x,0)\} & \xrightarrow{\{(in,1)\}/\{(out,0)\}} \{(x,1)\}, \\ \{(x,1)\} & \xrightarrow{\{(in,0)\}/\{(out,1)\}} \{(x,0)\}, \{(x,1)\} & \xrightarrow{\{(in,1)\}/\{(out,1)\}} \{(x,1)\} \end{cases}$$

Abridged description

$$I = \{in\}, O = \{out\}, S = \{x\}$$

$$Q_I = \{0, 1\}, Q_O = \{0, 1\}, Q_S = \{0, 1\}$$

$$[[Init]] = \{0\}$$

$$[[React]] = \left\{0 \xrightarrow{0/0} 0, 0 \xrightarrow{1/0} 1, 1 \xrightarrow{0/1} 0, 1 \xrightarrow{1/1} 1\right\}$$

Ex. OddDelay

round	init	1	2	3	4	5	6
in		0	1	1	0	1	1
$\boldsymbol{\mathcal{X}}$		0	0	1	1	0	1
x'	0	0	1	1	0	1	1
y		0	1	0	1	0	1
y '	0	1	0	1	0	1	0
out		0	0	0	1	0	1

Ex. Switch

Behavior as an Extended-State Machine

Ex. Switch

Behavior as a program

```
bool press int x := 0 onoff mode := off
```

```
if mode = off then
  if press = 0 then
     skip // do nothing
   else
     mode = on
else // mode = on
  if press = 0 \land x < 10 then
     x := x + 1
  else // press = 1 \lor x \ge 10
    \{ x := 0; mode := off \};
```


Extended-State Machine

An *extended-state machine* is a state machine augmented with extra state variables (*x* for this example).

If we don't use such variables, we need to represent all the possible values of the variables as the states of the state machine as shown in the figure on the right.

Ex. Switch

possible scenario

round	init	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
press		0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
\mathcal{X}		0	0	0	1	2	0	0	0	0	1	2	3	4	5	6	7	8	9	10	0
\mathcal{X}'	0	0	0	1	2	0	0	0	0	1	2	3	4	5	6	7	8	9	10	0	0
mode		off	off	on	on	on	off	off	off	on	off										
mode'	off	off	on	on	on	off	off	off	on	on	on	on	on	on	on	on	on	on	on	off	off

Ex. Switch

Formal Description

$$C = (I, O, S, Init, React)$$

$$I = \{press\}, O = \emptyset, S = \{mode, x\}$$

$$Q_I = \{0, 1\}, Q_O = \{\emptyset\}, Q_S = \{(s, n) \mid s \in \{\mathsf{off}, \mathsf{on}\} \land n \in \mathbb{Z}\}$$

$$[[Init]] = \{(\mathsf{off}, 0)\}$$

$$[[React]] = \{(\mathsf{off}, n) \xrightarrow{0/} (\mathsf{off}, n) \mid n \in \mathbb{Z}\}$$

$$\cup \{(\mathsf{off}, n) \xrightarrow{1/} (\mathsf{on}, n) \mid n \in \mathbb{Z}\}$$

$$\cup \{(\mathsf{on}, n) \xrightarrow{0/} (\mathsf{off}, 0) \mid n \in \mathbb{Z} \land n < 10\}$$

$$\cup \{(\mathsf{on}, n) \xrightarrow{0/} (\mathsf{off}, 0) \mid n \in \mathbb{Z} \land n \ge 10\}$$

$$\cup \{(\mathsf{on}, n) \xrightarrow{1/} (\mathsf{off}, 0) \mid n \in \mathbb{Z}\}$$
The interval of the

$$Q_I = \{ \{(press, 0)\}, \{press, 1\} \}$$

 $Q_S = \{ \{(mode, s), (x, n)\} \mid s \in \{\text{off}, \text{on}\} \land n \in \mathbb{Z} \}$

 \mathbb{Z} : set of integers

Note: Q_S is defined as an infinite set. But the number of states reachable from the initial state is finite.

Finite-State Component

- A synchronous reactive component *C* is finite-state if the types of its input, output, and state variables are finite.
 - Finite types: Boolean, enumerated types
 - Ex. Delay is finite-state

How about Switch?

- The state variable x has type int which is not finite.
- However, the value of x never exceed 10 (and never goes below 0).
- Thus, we can replace the type of x with a finite range-type int[0, 10] and make Switch finite.

Mealy Machine Representation

- The behavior of a finite component C can be represented as a labeled finite graph (Mealy machine).
 - The nodes of the graph are the states of C.
 - If $s \in [[Init]]$, there is a sourceless edge to s.
 - If $s \stackrel{i/o}{\to} t \in [[React]]$, there is an edge from s to t labeled with i/o.
- Ex. Delay

Combinatorial Components

Stateless Components

- A synchronous reactive component C = (I, O, S, Init, React) is *combinatorial* if Q_S is a singleton set (typically $S = \emptyset$).
- Ex. Comparator

- Because S is empty, Q_S should be $\{\emptyset\}$. The only element \emptyset of this set corresponds to the unique state s_{\emptyset} of the component.
- A possible execution of Comparator: $s_\varnothing \xrightarrow{(2,3)/0} s_\varnothing \xrightarrow{(5,1)/1} s_\varnothing \xrightarrow{(40,40)/1} s_\varnothing$

Event-Triggered Components

Ex. TriggeredCopy

- possible execution: $0 \xrightarrow{\bot/\bot} 0 \xrightarrow{0/0} 1 \xrightarrow{1/1} 2 \xrightarrow{1/1} 2 \xrightarrow{\bot/\bot} 2 \xrightarrow{\bot/\bot} 2 \xrightarrow{1/1} 3$
 - $[[React]] = \{n \xrightarrow{\bot/\bot} n \mid n \in \mathbb{N}\} \cup \{n \xrightarrow{b/b} n + 1 \mid b \in \{0,1\} \land n \in \mathbb{N}\}$
- Event types
 - event : enumerated type of events $\{T, \bot\}$ where T and \bot denotes denotes the presence and absence of an event respectively.
 - event(τ): event with type τ (= τ + { \bot }). e.g., event(bool) has values 0, 1, and \bot .

Event-Triggered Components

Ex. ClockedCopy

- possible execution: $0 \xrightarrow{(1,\perp)/0} 0 \xrightarrow{(1,\top)/1} 1 \xrightarrow{(0,\perp)/1} 1 \xrightarrow{(0,\perp)/1} 1 \xrightarrow{(0,\top)/0} 0$
- The output is latched until the next clock event (T) comes.
- The output variable out is implemented as an alias of the state variable x.

Event-Triggered Components

Definition

- For a synchronous reactive component C = (I, O, S, Init, React), a set $J \subseteq I$ of input variables is said to be a *trigger* if:
 - 1. every input variable in J is of type event,
 - 2. every output variable either is latched or is of type event, and
 - 3. if i is an input with all events in J absent (i.e., $\forall x \in J$. $i(x) = \bot$), then for all states s, if $s \stackrel{i/o}{\to} t$ is a reaction, then s = t and $o(y) = \bot$ for every output variable y of event type.
- A component C is said to be *event-triggered* if there exists a subset $J \subseteq I$ of its input variables such that J is a trigger for C.

Deterministic Components

- A synchronous reactive component C is *deterministic* if:
 - 1. C has a single initial state, and
 - 2. for every state s and every input i, there is precisely one output o and one state t such that $s \stackrel{i/o}{\to} t$ is a reaction of C.

 Delay, Switch, Comparator, TriggeredCopy, and ClockedCopy are deterministic.

Nondeterministic Components

- C is nondeterministic if it is not deterministic. In other words, it may respond with different output sequences for the same input sequence.
- Ex. Arbiter

Nondeterministic Components

Ex. LossyCopy (combinatorial, event-trigger, nondeterministic)

- $\bullet \ \ \text{Possible execution:} \ \ S_{\varnothing} \overset{0/0}{\longrightarrow} S_{\varnothing} \overset{1/\bot}{\longrightarrow} S_{\varnothing} \overset{1/\bot}{\longrightarrow} S_{\varnothing} \overset{1/1}{\longrightarrow} S_{\varnothing} \overset{1/\bot}{\longrightarrow} S_{\varnothing} \overset{0/\bot}{\longrightarrow} S_{\varnothing}$
- The update code can be written as: if $in? \land choose(0,1)$ then out! in
 - choose(x, y): nondeterministic choice of x and y

Input-Enabled Components

- For a synchronous reactive component C, an input i is *enabled* in a state s if there exists an output o and a state t such that $s \stackrel{i/o}{\to} t$ is a reaction of C.
- The component is *input-enabled* if every input is enabled in every state. In other words, in every state and for every input, C has at least one reaction.
- Delay, OddDelay, Switch, Comparator, TriggeredCopy, ClockedCopy, Arbiter, and LossyCopy are input-enabled.

Ex. Counter

An example with input assumptions

- The component behaves as a non-negative counter.
 - There are no reactions for input $inc = 1 \land dec = 1$.
 - When x = 0, there are no reactions for input $inc = 0 \land dec = 1$.

Intra-Round Dependency

Ex. Relay & Delay

- Both components have the same input/output variables.
- Intra-round dependency of output variables on input variables
 - In a given round, the output of Delay does not depend on its input in that round, whereas
 Relay can produce its output only after reading the input for the current round.
 - I.e., for each round, the output of Relay must await its input.
- How can we make such dependencies clear?

Tasks

Ex. SplitDelay

- A task $A: x_1, x_2, ..., x_m \mapsto y_1, y_2, ..., y_n$ is a triple (R, W, Update).
 - $R = \{x_1, x_2, ..., x_m\}$ (read-set), $W = \{y_1, y_2, ..., y_n\}$ (write-set)
 - $[[Update]] \subseteq Q_R \times Q_W$ (update)
- Ex. SplitDelay
 - $A_1: x \mapsto out, R_1 = \{x\}, W_1 = \{out\}, [[Update_1]] = \{(b, b) \mid b \in \{0, 1\}\}$
 - $A_2: in \mapsto x, R_2 = \{in\}, W_2 = \{x\}, [[Update_2]] = \{(b,b) \mid b \in \{0,1\}\}$

- Task precedence: $A_1 \prec A_2$ (A_1 should be executed before A_2)
 - There is no task A such that $A \prec^+ A$ (whre \prec^+ is the transitive closure of \prec).
- Task graph: directed graph whose nodes are tasks and edges are task prec.
 - A task graph should be a DAG.

Await Dependency

Intra-round dependency between output and input variables

- Output variables written by a task must *await* the input variables this task reads, and if $A_1 \prec^+ A_2$, then the output variables written by A_2 must await the input variables read by A_1 .
- Notation: y > x iff the output variable y awaits the input variable x.
- Examples:
 - In SplitDelay, *out* does not await in because A_1 does not read in and there are not tasks A such that $A \prec A_1$ and in is read by A.
 - In Relay, clearly *out* awaits *in*.
 - We can say that Delay consists of a single task $A:in,x\mapsto x,out$. According to the above notion of await dependency, *out* must await in.

Task Graph and Await Dependencies (1/2)

- For a synchronous reactive component C = (I, O, S, Init, React), a task-graph description of the reactions using a set L of local variables consists of a set of tasks and a binary precedence relation \prec over these tasks. Each task A has a read-set $R \subseteq I \cup S \cup O \cup L$, a write-set $W \subseteq O \cup S \cup L$, and an update description Update with $[[Update]] \subseteq Q_R \times Q_W$ such that:
 - The precedence relation ≺ is acyclic.
 - Each output variable belongs to the write-set of exactly one task.
 - If an output or a local variable y belongs to the read-set of a task A, then there exists a task A' such that y is in the write-set of A' and $A' \prec^+ A$.
 - If a state or a local variable x belongs to the write-set of a task A and also to either the read-set or write-set of a different task A', then either $A \prec^+ A'$ or $A' \prec^+ A$.

Task Graph and Await Dependencies (2/2)

• For an output variable y and an input variable x, y awaits x (also written y > x), precisely when for the unique task A, such that y belongs to the writeset of A, either x belongs to the read-set of A, or there exists a task A' such that $A' <^+ A$ and x belongs to the read-set of A'.

 Note: Local variables are auxiliary variables used to store the values of intermediate computations.
 They are not state variables.

local int
$$x$$
, y ;
 $x := in_1 + in_2$;
 $x := in_1 + in_2$
 $out := x \times y$

Task Schedule

- A task schedule is a linear ordering of all the tasks that is consistent with ≺.
- Ex. There are five possible schedules for the above example.
 - A_1, A_2, A_3, A_4 ; A_1, A_2, A_4, A_3 ; A_1, A_3, A_2, A_4 ; A_2, A_1, A_3, A_4 ; A_2, A_1, A_4, A_3

Deterministic / Input-Enabled Tasks

Deterministic Tasks

- A task A = (R, W, Update) is deterministic if $\forall s \in Q_R$. $\exists ! t \in Q_W$. $(s, t) \in [[Update]]$.
- Given values for the variables in the read-set, a deterministic task assigns unique values to the variables in the write-set.

Input-Enabled Tasks

- A task A = (R, W, Update) is input-enabled if $\forall s \in Q_R . \exists t \in Q_W . (s, t) \in [[Update]].$
- Given values for the variables in the read-set, an inputenabled task produces at least one result.

Thm.

- If a component has a single initial state and all the tasks in the task-graph are deterministic, the the component is deterministic.
- If all the tasks in the taskgraph of a component are input-enabled, then the component is input-enabled.

Composition of Components

Ex. DoubleDelay from two Delays

- The DoubleDelay is a component with a Boolean input in and a Boolean output out, such that in the first two rounds the output is 0 and in every subsequent round n, the output equals the input in round n-2.
- We can construct DoubleDelay by composing two Delay components as the block diagram above shows.

Composition of Components

Three Operations on Composition

- Instantiation
 - Delay1 (Delay2) is a copy of Delay except its output (input) variable is renamed to temp.
- Parallel Composition
 - Delay1 and Delay2 run in parallel and communicate synchronously via temp.
- Output Hiding
 - The variable temp is not exported to the outside of DoubleDelay.

Composition of Components

Three Operations on Composition

DoubleDelay is textually defined as

 $(Delay[out \mapsto temp] \mid Delay[in \mapsto temp]) \setminus temp$

Parallel Composition

Delay1[$out \mapsto temp$] | Delay2[$in \mapsto temp$]

Reactions:

$$(0,0) \xrightarrow{0/(0,0)} (0,0); (0,0) \xrightarrow{1/(0,0)} (1,0); (0,1) \xrightarrow{0/(0,1)} (0,0); (0,1) \xrightarrow{1/(0,1)} (1,0); (1,0) \xrightarrow{0/(1,0)} (0,1); (1,0) \xrightarrow{1/(1,0)} (1,1); (1,1) \xrightarrow{0/(1,1)} (0,1); (1,1) \xrightarrow{1/(1,1)} (1,1).$$

Feedback Composition

SplitDelay and Inverter: Block Diagram

$$0 \xrightarrow{/(1,0)} 1 \xrightarrow{/(0,1)} 0 \xrightarrow{/(1,0)} 1 \xrightarrow{/(0,1)} 0 \xrightarrow{/(1,0)} \cdots$$

Feedback Composition

SplitDelay and Inverter: Parallel Composition

Component Compatibility

- C_1 , C_2 : synchronous reactive components
 - $C_1 = (I_1, O_1, S_1, Init_1, React_1)$ w/await-dependency $\succ_1 \subseteq O_1 \times I_1$
 - $C_2 = (I_2, O_2, S_2, Init_2, React_2)$ w/await-dependency $\succ_2 \subseteq O_2 \times I_2$
- C_1 and C_2 are compatible if
 - 1. the set O_1 and O_2 are disjoint, and
 - 2. the relation $\succ_1 \cup \succ_2$ is acyclic.

Summary

- Synchronous Model (2)
 - Definition of Synchronous Reactive Components
 - Synchrony Hypothesis
 - Extended-State Machines
 - Finite-State Components / Mealy Machine Representation
 - Combinatorial Components, Event-Triggered Components
 - Deterministic / Nondeterministic Components, Input-Enabled Components
 - Task-Graph / Await Dependency / Schedule of Tasks
 - Composition of Components / Compatibility