Frustrated Magnetic Materials from an ab initio prespective

Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany

Highly Frustrated Magnetism Tutorial, July 9th 2018, UC Davis • What are frustrated magnetic materials : why are they special?

- Microscopic description
 - → from first principles to model Hamiltonians

Predict systems with unconventional properties?

Examples

magnetic interactions

exotic phases beyond ...

paramagnetism

ferro- / antiferromagnetism

magnetic interactions

P.W. Anderson Mat.Res.Bull 8, 153 (1973)

Importance of quantum effects to induce new types of non-ordered states (spin liquid, resonating valence bond state, ...)

magnetic interactions

Ways out of classical magnetic order:

1. Low dimensionality

2. Geometric frustration

(Kagome, Triangular,...)

3. Hamiltonian engineering

(Hamiltonian with only non-conmuting terms. (Honeycomb, ...)
Anisotropic interactions)

Geometric Frustration

Herbertsmithite: spin ½ kagome lattice

 $ZnCu_3(OH)_6Cl_2$

Geometric Frustration

Herbertsmithite: spin ½ kagome lattice

 $ZnCu_3(OH)_6Cl_2$

(BEDT-TTF)₂X : spin ½ triangular lattice

Geometric Frustration

Herbertsmithite: spin ½ kagome lattice ZnCu₃(OH)₆Cl₂

F. Bert, P. Mendels JPSJ **79**, 011001 (2010)

J.S. Helton et al. PRL **104**, 147201 (2010)

κ-(BEDT-TTF)₂Cu₂(CN)₃

Shimizu et al.PRL **91,** 107001 (2003)

Manna et al. PRL **104,** 016403 (2010)

Mott insulators

Geometric Frustration

pyrochlore lattices A₂B₂O₇: corner-sharing B₄ tetrahedra

corner-sharing B₄ tetrahedra

B = transition-metal ion

Spin Hamiltonian

$$\mathcal{H} = \underbrace{J_{ij} \; \mathbf{S}_i \cdot \mathbf{S}_j} + \mathbf{D}_{ij} \cdot \mathbf{S}_i \times \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{\Gamma}_{ij} \cdot \mathbf{S}_j}_{(Isotropic Heisenberg Exchange)}$$
 (Dzyaloshinskii-Moriya Term) (Symmetric Term)

1

strongest interaction

Geometric Frustration

Kitaev Materials

A₂IrO₃ (A = Li, Na)

$$\mathcal{H} = J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{D}_{ij} \cdot \mathbf{S}_i \times \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{\Gamma}_{ij} \cdot \mathbf{S}_j$$

(Isotropic Heisenberg Exchange)

(Dzyaloshinskii-Moriya Term)

(Symmetric Term)

Hamiltonian engineering

strongest interaction

bond-dependent

$$\mathcal{H} = KS_i^{\gamma} S_i^{\gamma}$$

Kitaev Honeycomb Model

Alexei Kitaev, Annals of Physics 321, 2 (2006)

$$Y_1$$
 Z_1
 X_1
 Y_1
 X_1
 Y_2
 Y_3
 Y_4
 Y_4
 Y_5
 Y_5

Majorana Fermions

$$c_i^{\dagger} = c_i \ , \ c_i^2 = 1 \ , \ \{c_i, c_j\} = 0$$

Ettore Majorana

How does the solution work?

1. Write spin-operators in terms of four Majorana fermions:

$$S_i^x = ib_i^x c_i$$

These are related to normal fermions like:

$$S_i^y = ib_i^y c_i$$

$$c_i = \frac{1}{2}(f_i^{\dagger} + f_i)$$
 $c_i^{\dagger} = c_i$, $c_i^2 = 1$, $\{c_i, c_j\} = 0$

$$S_i^z = ib_i^z c_i$$

2. When we write Hamiltonian in this basis, b-fermions can only hop on one bond-type, and c-fermions can hop on all bonds.

e.g.
$$S_i^z S_j^z = b_i^z b_j^z c_i c_j$$

Schaffer, Bhattacharjee, YB Kim arXiv:1206.5814

Kitaev Honeycomb Model

General Interactions

$$J_{ij} = 0 \quad \begin{array}{ll} D_{ij}^a = 0 & \Gamma_{ij}^{ab} = 0 \\ D_{ij}^b = 0 & \Gamma_{ij}^{ac} = 0 & \Gamma_{ij}^{aa}, \Gamma_{ij}^{bb}, \Gamma_{ij}^{cc} = \left\{ \begin{array}{ll} K & \text{(Depending on orientation of the bond.)} \\ D_{ij}^c = 0 & \Gamma_{ij}^{bc} = 0 \end{array} \right.$$

Kitaev Model

Kitaev Honeycomb Model – Relation to Real Materials

How to engineer dominant Kitaev terms?

- For d⁵ metals in an O_h crystal field, with large SOC vs. CFS, low energy degrees of freedom are jeff = ½ moments.
 - G. Jackeli, G. Khaliullin PRL 102, 017205 (2009)
 - J. Chaloupka, G. Jackeli, G. Khaliullin PRL 105, 027204 (2012)

Khaliullin, Maekawa PRL 85, 3950 (2000), Khaliullin, Horsch, Oles PRL 86, 3879 (2001)

Kitaev Honeycomb Model – Relation to Real Materials

How do we engineer dominant Kitaev terms?

◆ For d⁵ metals in an O_h crystal field, with large SOC vs. CFS, low energy degrees of freedom are jeff = ½ moments.

Jackeli, Khaliullin PRL 102, 017205 (2009)

◆ When such metals are edge-sharing

$$J_{ij} \sim 0$$

◆ When such metals have inversion symmetry,

$$\mathbf{D}_{ij} = 0 \qquad \mathbf{\Gamma}_{ij} = 0 + \mathcal{O}(J_H t^2)$$

♦ Subleading term from effective **Hund's coupling** between $j_{eff} = \frac{1}{2}$ states to the $m_j = \pm 3/2$ states that is Ising-like.

$$\mathcal{H} = K S_i^{\gamma} S_j^{\gamma} \qquad K \leftarrow \frac{J_H t^2}{2U + 3\lambda}$$

How do we extract the spin model Hamiltonian from first principles?

Material ←→ Model

microscopic description

N electrons M ions

Coulomb repulsion

$$T_{\mathbf{s}} = \sum_{k=1}^{N} \frac{\mathbf{p}_k^2}{2m_a}$$

$$T_s = \sum_{k=1}^{N} \frac{\mathbf{p}_k^2}{2m_e}, \qquad V_{e-e} = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{k,k',k\neq k'}^{N} \frac{e^2}{|\mathbf{r}_k - \mathbf{r}_{k'}|}$$

$$T_i = \sum_{l=1}^M \frac{\mathbf{P}_l^2}{2M_l}$$

$$T_{i} = \sum_{l=1}^{M} \frac{\mathbf{P}_{l}^{2}}{2M_{l}}, \qquad V_{i-i} = \frac{1}{2} \frac{1}{4\pi\epsilon_{0}} \sum_{l,l',l \neq l'}^{M} \frac{e^{2}}{|\mathbf{R}_{l} - \mathbf{R}_{l'}|}$$

$$V_{e-i} = \sum_{l=1}^{M} \sum_{k=1}^{N} v^{i}(\mid \mathbf{R}_{l} - \mathbf{r}_{k} \mid)$$

many-body Schrödinger equation:

$$(T_s + T_i + V_{e-e} + V_{e-i} + V_{i-i})\Psi = \underline{E}\Psi$$

$$\mathbf{\Psi} = \mathbf{\Psi}(\{\mathbf{r}_k, \mathbf{\sigma}_k\}, \{\mathbf{R}_l\})$$

adiabatic approximation:

$$(T_s + V_{e-e} + V_{ext})\Phi = E_e\Phi$$

$$\mathbf{\Phi} = \mathbf{\Phi}(\{\mathbf{r}_k, \mathbf{\sigma}_k\})$$

■10²³ coupled equations!!!

Density Functional Theory

Walter Kohn Nobel Prize in Chemistry 1998

Hohenberg-Kohn Theorem:

The groundstate energy of a system of interacting particles is a functional of the groundstate density $\rho(r)$: $E[\rho(r)]$

Kohn-Sham Ansatz:

Replace interacting many-body problem:

$$E = E[\mathbf{p}]$$

with a non-interacting problem with all many-body effects in a XC functional

Replace interacting many-body problem:

$$E = E[\mathbf{p}]$$

with a non-interacting problem with all many-body effects in a XC functional:

$$E[\mathbf{p}] = T_S[\mathbf{p}] + E_{ext}[\mathbf{p}] + E_H[\mathbf{p}] + E_{xc}[\mathbf{p}]$$

$$(T + V_{ei}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r}))\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r}) \qquad \rho(\mathbf{r}) = \sum_{occ}\psi_i^*(\mathbf{r})\psi_i(\mathbf{r})$$

$$V_H = e^2 \int d\mathbf{r}' \frac{\mathbf{\rho}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \qquad V_{xc}(\mathbf{r}) = \frac{\delta E_{xc}[\mathbf{\rho}(\mathbf{r})]}{\delta \mathbf{\rho}(\mathbf{r})}$$

$$\psi_{\overrightarrow{k}}(\overrightarrow{r}) = e^{i\overrightarrow{k}\cdot\overrightarrow{r}}u_{\overrightarrow{k}}(\overrightarrow{r})$$

Variational principle!

Bloch wavefunctions

Local Density Approximation (LDA)

$$E_{xc}[\mathbf{n}] = \int d\mathbf{r} \mathbf{n}(\mathbf{r}) \hat{E}_{xc}(\mathbf{n}(\mathbf{r}))$$

Kohn, Sham (1964)

Local Density Approximation (LDA)

$$E_{xc}[\mathbf{n}] = \int d\mathbf{r} \mathbf{n}(\mathbf{r}) \hat{E}_{xc}(\mathbf{n}(\mathbf{r}))$$

Kohn, Sham (1964)

LDA+U

Anisimov, Zaanen, Andersen PRB 44, 943 (1991)

$$E = E^{LDA} - \frac{\underline{U}}{2}N(N-1) + \frac{\underline{J}}{2}[N^{\uparrow}(N^{\uparrow}-1) + N^{\downarrow}(N^{\downarrow}-1)] + \frac{\underline{U}}{2}\sum_{j,k,\sigma}n_{j,\sigma}n_{k,-\sigma} + \frac{1}{2}(\underline{U}-\underline{J})\sum_{i\neq j,\sigma}n_{i,\sigma}n_{j,\sigma}$$

LDA

LDA+U

Example: Kagome lattice

Nearest-neighbor hopping tight-binding

n =1 realization

Herbertsmithite

ZnCu₃(OH)₆Cl₂

DFT-GGA calculation/FPLO basis

Kagome lattice of spin ½ Cu

Cu d_{x2-y2} bands

Herbertsmithite

Herbertsmithite $ZnCu_3(OH)_6Cl_2$

DFT-GGA+U

PRB **88**, 075106 (2013) PRB **97**, 020104(R) (2018) Kagome lattice of spin ½ Cu n=1

Cu d_{x2-y2} bands

Mott insulator

nature of spin liquid

$$\mathcal{H} = J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{D}_{ij} \cdot \mathbf{S}_i \times \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{\Gamma}_{ij} \cdot \mathbf{S}_j$$

Total energy calculations (isotropic case):

➤ Map the energy differences of frozen collinear spin configurations in DFT supercell calculations onto a spin-1/2 Heisenberg model and evaluate J in the dimer approximation

$$H = -2J\mathbf{S}_{i}\mathbf{S}_{j}$$

$$E_{FM} = -J\left[S_{T}(S_{T}+1) - 2S(S+1)\right]$$

$$E_{AFM} = J\left[2S(S+1)\right]$$

$$\Delta E = \frac{E_{FM} - E_{AFM}}{2} = -\frac{J}{2} S_T (S_T + 1)$$

mind the neighbors' scaling factors!

Spin model

Total energy calculations (isotropic case):

Herbertsmithite $ZnCu_3(OH)_6Cl_2$

PRB 88, 075106 (2013)

name	d_{Cu-Cu}	type	J_i (K)
			$U = 6 \mathrm{eV}$
kagomé layer couplings			
J_1	3.4171	kagomé nn	182.4
J_3	5.91859	kagomé 2nd nn	3.4
J_5	6.8342	kagomé 3rd nn	-0.4
interlayer couplings			
J_2	5.07638	interlayer 1st nn	5.3
J_4	6.11933	interlayer 2nd nn	-1.5
J_6	7.00876	interlayer 3rd nn	-6.4
J_7	8.51328	interlayer 4th nn	3.0
J_9	9.17347	interlayer 6th nn	2.5

 J_i determined from total GGA+U energies of 9 spin configurations in 2x1x2 supercells

→ agreement with experiment

What about anisotropic spin hamiltonians?

$$\mathcal{H} = J_{ij} \; \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{D}_{ij} \cdot \mathbf{S}_i imes \mathbf{S}_j + \mathbf{S}_j \cdot \mathbf{S}_j$$

(relevant for non-centrosymmetric systems, Kitaev, ...)

- ➤ The method of total energy calculations requires relativistic non-collinear spin configurations
 - → implementation of LDA+U and non-collinear spin calculations is problematic in some basis sets
 - → may provide unreliable results
 - → (f.i. elk calculations are ok but computationally very heavy)

What about anisotropic spin hamiltonians?

$$\mathcal{H} = J_{ij} \; \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{D}_{ij} \cdot \mathbf{S}_i imes \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{\Gamma}_{ij} \cdot \mathbf{S}_j$$

(relevant for non-centrosymmetric systems, Kitaev, ...)

→ we will consider an alternative method → obtain the low-energy spin Hamiltonian from numerical projection

Reminder: Low-Energy Hamiltonian from Perturbation Theory

Total Hamiltonian:

$$\mathcal{H} = \mathcal{H}_0 + V$$

Projection Operators:

$$\mathbb{P} = |1\rangle\langle 1| + |2\rangle\langle 2| + |3\rangle\langle 3|$$

$$\mathbb{O} = 1 - \mathbb{P}$$

Effective Low-Energy Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \mathbb{P}\mathcal{H}\mathbb{P}$$
$$+\mathbb{P}V\mathbb{Q}(E - \mathcal{H}_0)^{-1}\mathbb{Q}V\mathbb{P} + \dots$$

Exact Low-Energy States:

$$c_n|n'\rangle = |n\rangle + (E - \mathcal{H}_0)^{-1}\mathbb{Q}V|n\rangle + \dots$$

Perturbation theory provides:

- 1. Approximate energies (up to computed order).
- 2. Mapping from exact states to low-energy space.

(Steve Winter)

Low-Energy Hamiltonian from Numerical Projection

Exact Low-Energy States:

$$c_n|n'\rangle = |n\rangle + (E - \mathcal{H}_0)^{-1}\mathbb{Q}V|n\rangle + \dots$$

$$|n'\rangle \rightarrow |n\rangle$$

- We want a mapping: 1. Maximizes $\langle n'|n\rangle$
- $|n'
 angle
 ightarrow |n
 angle \quad |$ 2. Preserve all symmetries.
 - 1. Apply projection numerically:

$$\mathbb{P}|n'\rangle = (1/c_n)|n\rangle$$

2. Orthonormalize obtained states numerically:

$$(1/c_n)|n\rangle \to |n\rangle$$

The "correct" choice is symmetric (Löwdin) orthonormalization:

Overlap Matrix:

$$S_{nm} = \langle n' | \mathbb{P} | m' \rangle$$

Final Mapping:

$$|n\rangle \leftarrow \sum_{m} [\mathbf{S}^{1/2}]_{mn} \mathbb{P} |m'\rangle$$

Low-Energy Hamiltonian from Numerical Projection

and eigenstates.

S. M. Winter, K. Riedl, R. Valenti PRB 95, 060404(R) (2017); (Supplemental Material) Riedl et al. PRB 94, 014410 (2016)

4. Perform projection.

Ab initio-based Kitaev Honeycomb Model

1. Obtain hopping integrals from DFT:

$$\mathcal{H}_{tot} = \mathcal{H}_{hop} + \mathcal{H}_{CF} + \mathcal{H}_{SO} + \mathcal{H}_{U}$$

$$\mathcal{H}_{U} = U \sum_{i,a} n_{a,\uparrow} n_{i,a,\downarrow} + (U' - J_{H}) \sum_{i,a < b,\sigma} n_{i,a,\sigma} n_{i,b,\sigma}$$

$$+ U' \sum_{i,a \neq b} n_{i,a,\uparrow} n_{i,b,\downarrow} - J_{H} \sum_{i,a \neq b} c^{\dagger}_{i,a\uparrow} c_{i,a\downarrow} c^{\dagger}_{i,b\downarrow} c_{i,b\uparrow}$$

$$+ J_{H} \sum_{i,a \neq b} c^{\dagger}_{i,a\uparrow} c^{\dagger}_{i,a\downarrow} c_{i,b\downarrow} c_{i,b\uparrow}$$

$$\mathcal{H}_{ ext{hop}} = -\sum_{ij} ec{\mathbf{c}}_i^\dagger ~ \left\{ \mathbf{T}_{ij} \otimes \mathbb{I}_{2 imes 2}
ight\} ~ ec{\mathbf{c}}_j$$

$$\mathcal{H}_{ ext{CF}} = -\sum_i ec{\mathbf{c}}_i^\dagger \left\{ \mathbf{E}_i \otimes \mathbb{I}_{2 imes 2}
ight\} ec{\mathbf{c}}_i$$

$$\mathcal{H}_{\mathrm{SO}} = rac{\lambda}{2} \sum_{i} ec{\mathbf{c}}_{i}^{\dagger} \left(egin{array}{ccc} 0 & -i\sigma_{z} & i\sigma_{y} \ i\sigma_{z} & 0 & -i\sigma_{x} \ -i\sigma_{y} & i\sigma_{x} & 0 \end{array}
ight) ec{\mathbf{c}}_{i}$$

Example: *Kitaev* Materials

(Isotropic Heisenberg Exchange)

(Dzyaloshinskii-Moriya Term)

(Symmetric Term)

strongest interaction

$$\mathcal{H} = KS_i^{\gamma} S_i^{\gamma}$$

Real materials

- IrO₆ crystal-field splitting t_{2g}-e_g ~ 2-3eV
- ∆_T trigonal-field splitting ~ 75meV
- t2g bandwidth W ~ 1.5eV
 - O-assisted hoppings
 - direct hoppings
- spin-orbit coupling λ ~ 0.5eV
- Hubbard U ~ 1 2 eV
- Hund's coupling J_H ~ 0.5 eV

Mazin, Jeschke, Foyevtsova, Valenti, Khomskii PRL 109, 197201 (2012)

Foyevtsova, Jeschke, Mazin, Khomskii , Valenti PRB 88, 035107 (2013)

Quasi-molecular orbitals

Itinerant description

Mazin, Jeschke, Foyevtsova, Valenti, Khomskii PRL 109, 197201 (2012)

"quasi-molecular orbitals" QMO linear combination of the 6 states on a particular hexagon

The GGA hamiltonian is diagonal in this basis

Na₂IrO₃: electronic structure

DFT non-relativistic calculation: one electron hoppings (FPLO)

Contribution of molecular orbitals:

n.n. + n.n.n hoppings + trigonal distortion

Na₂IrO₃: calculated quasi-molecular orbitals

Na₂IrO₃: spin-orbit coupling

- states at the Fermi level in **relativistic** DFT calculations:

$$j_{eff}=1/2, j_{eff}^{z}=1/2>=$$

(|xy\frac{1}{2}+ |yz|_2> + i |xz|_2>)/sqrt(3)

$$j_{eff}=1/2, j_{eff}^{z}=-1/2>=$$

(-|xy/>+ |yz^> - i |xz^>)/sqrt(3)

Hubbard U: widens the gap

RIXS: H. Gretarsson et al. PRL (2013) j_{eff} =1/2, j_{eff} =3/2

localized description

Due to competing energy scales, difficult to optimize Kitaev interactions:

$$\mathcal{H} = K S_i^{\gamma} S_j^{\gamma} \qquad K \sim \frac{J_H t^2}{(2U + 3\lambda)^2}$$

Distortions and direct metal-metal hopping give additional interactions:

$$\mathcal{H} = \left(\begin{array}{ccc} S_i^x & S_i^y & S_i^z \end{array} \right) \left(\begin{array}{ccc} J & \Gamma & \Gamma' \\ \Gamma & J & \Gamma' \\ \Gamma' & \Gamma' & J + K \end{array} \right) \left(\begin{array}{c} S_j^x \\ S_j^y \\ S_z^z \end{array} \right)$$

Remanent itinerancy makes second and third neighbour interactions much more important.

1. Obtain hopping integrals from DFT:

◆ H_{spin} reproduces **exact spectrum** and respects **all symmetries** of t_{2q} cluster model.

Na₂IrO₃

- ◆ Kitaev terms dominant at first neighbour.
- ◆ Zigzag order enforced by large J₃.
- $\bullet \chi_{||} < \chi_{\perp}$ from small off-diagonal terms.

α -Li₂IrO₃

- ◆ Spiral order from 2nd neighbour DM, anisotropic interactions.
- $\bullet \chi_{||} > \chi_{\perp}$ from large off-diagonal terms.

Minimal model

$$\mathcal{H} = \sum_{\langle i,j \rangle} J_1 \mathbf{S}_i \cdot \mathbf{S}_j + K_1 S_i^{\gamma} S_j^{\gamma} + \Gamma_1 (S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha})$$
$$+ \sum_{\langle \langle \langle i,j \rangle \rangle \rangle} J_3 \mathbf{S}_i \cdot \mathbf{S}_j$$

α-RuCl₃

- ◆ Zigzag order enforced by large J₃.
- ♦ Large off-diagonal Γ_1 terms.
- ullet $\chi_{||} > \chi_{\perp}$ from large Γ_1 terms.

$$\mathcal{H} = \sum_{\langle i,j \rangle} J_1 \mathbf{S}_i \cdot \mathbf{S}_j + K_1 S_i^{\gamma} S_j^{\gamma} + \Gamma_1 (S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha})$$

$$+\sum_{\langle\langle\langle\langle i,j
angle
angle
angle}J_3\;\mathbf{S}_i\cdot\mathbf{S}_j$$

observed moment direction → departure from Kitaev Chaloupka, Khaliullin PRB 92, 024413 (2015)

$$J_1 = -0.5$$
, $K_1 = -5.0$, $\Gamma_1 = +2.5$, $J_3 = +0.5$ meV

Kitaev Honeycomb Model - Complete Models

Interactions very sensitive to bonding geometry.

$$J_{ij} = \frac{4\mathbb{A}}{9} (2t_1 + t_3)^2 - \frac{8\mathbb{B}}{9} \left\{ 9t_4^2 + 2(t_1 - t_3)^2 \right\}$$

$$K_{ij} = \frac{8\mathbb{B}}{3} \left\{ (t_1 - t_3)^2 + 3t_4^2 - 3t_2^2 \right\}$$

$$\Gamma_{ij} = \frac{8\mathbb{B}}{3} \left\{ 2t_2(t_1 - t_3) + 3t_4^2 \right\}$$

$$\Gamma'_{ij} = \frac{8\mathbb{B}}{3} \left\{ t_4(3t_2 + t_3 - t_1) \right\}$$

Winter,Li,Jeschke, Valenti PRB 93, 214431 (2016) Rau, Lee, Kee PRL 112, 077204 (2014)

Kitaev Honeycomb Model – Complete Models

Interactions very sensitive to bonding geometry.

$$J_{ij} = \frac{4\mathbb{A}}{9} (2t_1 + t_3)^2 - \frac{8\mathbb{B}}{9} \left\{ 9t_4^2 + 2(t_1 - t_3)^2 \right\}$$

$$K_{ij} = \frac{8\mathbb{B}}{3} \left\{ (t_1 - t_3)^2 + 3t_4^2 - 3t_2^2 \right\}$$

$$\Gamma_{ij} = \frac{8\mathbb{B}}{3} \left\{ 2t_2(t_1 - t_3) + 3t_4^2 \right\}$$

$$\Gamma'_{ij} = \frac{8\mathbb{B}}{3} \left\{ t_4(3t_2 + t_3 - t_1) \right\}$$

Winter, Li, Jeschke, Valenti PRB 93, 214431 (2016) Rau, Lee, Kee PRL 112, 077204 (2014)

 $A \sim 1/U \ B \sim J_{H}/3U^{2}$

Exact Diagonalization (ED)

$$\mathcal{I}(\mathbf{k},\omega) \propto f^{2}(\mathbf{k}) \int dt \sum_{\mu,\nu} (\delta_{\mu,\nu} - k_{\mu}k_{\nu}/k^{2}) \times \\ \times \sum_{i,j} \langle S_{i}^{\mu}(t) S_{j}^{\nu}(0) \rangle e^{-i\mathbf{k}\cdot(\mathbf{r}_{i}-\mathbf{r}_{j})-i\omega t}$$

 $J_1 = -0.5$, $K_1 = -5.0$, $\Gamma_1 = +2.5$, $J_3 = +0.5$ meV

experiment

Banerjee et al. Science 356, 1055 (2017)

Nature of the continuum?

Majorana excitations? ←→ multimagnon decay?

Nature of excitations and magnetic field effects α-RuCl₃

Winter, Riedl, Maximov, Chernyshev, Honecker, Valenti Nature Comm. 8, 1152 (2017)

$$\mathcal{H} = \sum_{\langle ij \rangle} J_1 \mathbf{S}_i \cdot \mathbf{S}_j + K_1 S_i^{\gamma} S_j^{\gamma} + \Gamma_1 \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} \right)$$
$$+ \sum_{\langle \langle \langle \langle ij \rangle \rangle \rangle} J_3 \mathbf{S}_i \cdot \mathbf{S}_j - \mu_B \sum_i \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S}_i$$

Kitaev model → Γ model

Gohlke et al. PRB 97, 075126 (2018)

Barnejee et al. npj Quant. Mat. 3, 8 (2018)

Rousochatzakis, Perkins PRL 118, 147204 (2017)

Summary

Microscopic description of frustrated magnetic materials

→ from first principles to spin model Hamiltonians

$$\mathcal{H} = J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{D}_{ij} \cdot \mathbf{S}_i \times \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{\Gamma}_{ij} \cdot \mathbf{S}_j$$

Predict systems with unconventional properties

Challenges and opportunities?

Collaborators

Theory:

Steve Winter (Frankfut)
Ying Li (Frankfurt)
Kira Riedl (Frankfurt)
David Kaib (Frankfurt)
Harald Jeschke (Okayama)
Daniel Khomskii (Köln)
Igor Mazin (NRL, Washington DC)

Andreas Honecker (Paris)

Experiment:

Radu Coldea, Roger Johnson (Oxford)
Steve Blundell, Franz Lang (Oxford)
Cornelius Krellner (Frankfurt)
Philipp Gegenwart (Augsburg)

Sasha Chernyshev, Pavel Maximov (UC Irvine)

Financial support: German Science Foundation DFG