PRAC 4 – REDOX CHEMISTRY (WEEK 6)

Zinc reacts with HCl acid giving off H₂ gas

FROM WEEK 6 LECTURES

- An oxidation cannot occur without a simultaneous reduction and vise versa
- One substance must release electrons (oxidised)
- The other must accept the electrons (reduced)
- If oxidants and reductants are separated by a conducting wire we can obtain a useful current
- A galvanic cell derives electrical energy from a spontaneous redox reaction

12.3 GALVANIC CELLS

Chemical Change >>>> Electric Current

 $ightharpoonup Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

12.3 GALVANIC CELLS

Why??

 $Cu(s) + ZnSO_4(aq) \rightarrow no reaction$

Copper cannot reduce zinc ions to metallic zinc therefor no reaction

12.4 REDUCTION POTENTIALS

When two half-cells are connected:

- •The one with the larger reduction potential will acquire electrons and undergo reduction
- The half-cell with the lower reduction potential will give up electrons and undergo oxidation

In this prac we are not separating reaction in cells.

Part A - corrosion

A solution of 3 % sodium chloride (salt water to facilitate conductance)

0.2 % potassium ferricyanide (turns blue when Fe^{2+} is made = oxidation)

0.1 % phenolphthalein (turns pink when OH made = reduction)

1.0 % agar – creates homogenous jelly like plate with above reagents

Pink colour represents OH⁻ formed, so another substance has been oxidised A blue colour forms when the ferricyanide complex is formed, Fe is oxidised to Fe²⁺

Textbook section 12.5 has more information regarding corrosion

Nail 1: Plain iron (Fe) nail

Fe nail in oxygenated salt water with indicator Small amount of blue indicating Fe²⁺ formed, Pink formed in different location, indicating OH⁻ formed.

Note pink and blue in different areas

Oxidation and reduction have to take place in different locations

https://edu.rsc.org/exhibition-chemistry/nailing-corrosion-demonstrations/2000054.article

Oxygenated water near surface – able to take electrons from iron

- Oxygenated water accepts electrons
- Hydroxide ions formed
- Indicator turns pink

$$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$$

$$\frac{1}{2}O_{2}(g) + H_{2}O(I) + 2e^{-} \Rightarrow 2OH^{-}(aq) + 0.40 V$$

Nail 2: Plain Fe nail with Cu wrapped around

Fe nail and Cu wire, Fe²⁺ formed at nail (anode), OH⁻ formed at cathode (Cu)

Cu is the cathode, electrons transferred to but $O_2 + H_2O$ are reduced

Cu already fully reduced so it simply transferred electrons

https://edu.rsc.org/exhibition-chemistry/nailing-corrosion-demonstrations/2000054.article

Fe nail wrapped in cupper metal

$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.45 V
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.45 V
$\frac{1}{2}O_{2}(g) + H_{2}O(I) + 2e^{-} \rightleftharpoons 2OH^{-}$ (aq)	+0.40 V

https://edu.rsc.org/exhibition-chemistry/nailing-corrosion-demonstrations/2000054.article

Nail 3: Galvanised nail, Fe coated in Zn

Zn coating removed at the tip of the nail so that **BOTH** Fe and Zn are present

Check out electrochemical series, predict which element will oxidise

Zn oxidised here, Zn²⁺ doesn't form blue colour

Fe acts as the cathode, and is fully reduced (no blue formed)

OH⁻ formed where Fe is exposed Reaction for nail 3, note <u>no reaction for Fe(s)</u> in the nail, it is acting as the cathode and transferring electrons to reduce water and oxygen.

It is the <u>zinc that is getting oxidised</u>, OH⁻ formed at the tip where the Fe metal is exposed,

transferring electrons to H₂O and O₂, creating OH⁻.

Part B: reactions of metals with acid

Link this to the electrochemical series, on pg 716 of the textbook

Weakest	K+(aq) + e-	#	K(s)	-2.92 s	tronges
	Ca ²⁺ (aq) + 2e ⁻		Ca(s)	-2.76	
	Na+(aq) + e-	=	Na(s)	-2.71	
	Mg ²⁺ (aq) + 2e ⁻	#	Mg(s)	-2.37	
	Al3+(aq) + 3e-	=	Al(s)	-1.66	
	2H ₂ O(l) + 2e ⁻		H ₂ (g) + 2OH ⁻ (aq)	-0.83	
	Zn ²⁺ (aq) + 2e ⁻	#	Zn(s)	-0.76	
	Cr3+(aq) + 3e-		Cr(s)	-0.74	
	Fe ²⁺ (aq) + 2e ⁻	#	Fe(s)	-0.44	
	Cd ²⁺ (aq) + 2e ⁻	#	Cd(s)	-0.40	
	PbSO ₄ (s) + H ⁺ (aq) + 2e ⁻	=	Pb(s) + HSO ₄ -(aq)	-0.36	
	Co ²⁺ (aq) + 2e ⁻	=	Co(s)	-0.28	
	Ni ²⁺ (aq) + 2e ⁻	=	Ni(s)	-0.25	
	Sn ²⁺ (aq) + 2e ⁻	=	Sn(s)	-0.14	
	2H+(aq) + 2e-	#	H ₂ (g)	0	
	AgBr(s) + e ⁻		Ag(s) + Br (aq)	+0.07	
	Sn ⁴⁺ (aq) + 2e ⁻	=	Sn ²⁺ (aq)	+0.15	
	SO ₄ ²⁻ (aq) + 4H ⁺ (aq) + 2e ⁻	#	H ₂ SO ₃ (aq) + H ₂ O(I)	+0.17	
	AgCl(s) + e ⁻	#	Ag(s) + Cl ⁻ (aq)	+0.23	
	Hg ₂ Cl ₂ (s) + 2e ⁻	#	2Hg(l) + 2Cl-(aq)	+0.27	
	Cl ₂ (aq) + 4OH ⁻ (aq)	=	20Cl (aq) + 2H2O(l) + 2e-	+0.32	
	Cu ²⁺ (aq) + 2e ⁻		Cu(s)	+0.34	
	NiO ₂ (s) + 2H ₂ O(l) + 2e ⁻	ph	$Ni(OH)_2(s) + 2OH^-(aq)$	+0.49	

Metals higher will not react with the acid (Cu)

Metals below will react.

Note Fe and Sn hard to see in the video

Part C: Reactions of metals with solutions of metal ions

- Some reactions hard to see, use the electrochemical series to help
- Al has oxide coating so does not react as predicted, table has been filled in for Al
- If solution containing metal ion (eg Cu²⁺) is higher on the series then it should react with the solid metal