Design a Single Ended Two Stage Miller Compensated OTA meets the Specs (Use IREF = 10u)

Spec.				
DC Gain	≥ 54 dB			
Unity Gain Frequency	≥ 300 MHz			
Power Consumption	≤ 1 mW			
Cap Load	1 pF			

- Assume $C_C = 0.5 C_L = 0.5 pF$
- Assume CMIR from $0.2 \rightarrow 0.6 \: V \rightarrow$ use PMOS input transistors
- Assign higher gain for the first stage $A_V=A_{V1}, A_{V2}=28*18$

$$I_{\text{Cons,max}} = \frac{P_{\text{cons}}}{V_{\text{DD}}} \rightarrow I_{\text{Cons,max}} \le 830 \text{ uA}$$

$$\text{UGF} = \frac{g_{\text{m1,2}}}{2\pi C_{\text{C}}} \geq 300 \text{ MHz} \rightarrow g_{\text{m1,2}} \geq 943 \text{ uS} \rightarrow g_{\text{m1,2}} = 1.2 \text{ mS}$$

Assume M
$$_{1,2}$$
 in MI $\left(\frac{g_{m1,2}}{I_D}=15\right) \rightarrow I_{D1,2}=80~\text{uA} \rightarrow I_{B1}=160~\text{uA}$

$$A_{V1} = \frac{g_{m1,2} r_{o2,4}}{2} (\text{Assume } r_{o2} = r_{o4}) \geq 28 \rightarrow r_{o2,4} = 47 \; \text{k} \Omega \rightarrow (g_m r_o)_{1,2} = 56$$

$$L_{1,2} = 500 \text{ nm}$$
 , $V_{GS1,2} = 377.7 \text{ mV}$, $W_{1,2} = 60.63 \text{ um}$

Choose
$$\omega_{p2}=4\omega_u \rightarrow g_{m7}=8~g_{m1,2}=9.6~mS \rightarrow I_{B2}=4I_{B1}=640~uA$$

$$A_{V2} = \frac{g_{m7} r_{o6,7}}{2} (\text{Assume } r_{o6} = r_{o7}) \geq 18 \rightarrow r_{o2,4} = 47 \; \text{k}\Omega \rightarrow (g_m r_o)_7 = 32$$

$L_7=130~\text{nm}$, $V_{\text{GS}7}=409.3~\text{mV}$, $W_7=37.37~\text{um}$

set $V_{GS3,4} = V_{GS7}$ @ $r_{o3,4} = 47~\mbox{k}\Omega, I_D = 80~\mbox{uA}$

$L_{3,4} = 500 \text{ nm}$, $W_{3,4} = 13.29 \text{ um}$

$$\text{CMIR}_{\text{H}} = -\text{V}_{\text{SG1,2}} - \text{V}_5^* + \text{V}_{\text{DD}} = 0.6 \rightarrow \text{V}_5^* \leq 0.19 \; \text{V} \rightarrow \text{V}_5^* = 0.16 \; \text{V} \rightarrow \left(\frac{g_{\text{m5}}}{I_{\text{D}}}\right) = 12.5$$

$L_{CM} = L_5 = L_6 = 180 \; \text{nm, W}_{CM} = 1.47 \; \text{um, W}_5 = \; 23.51 \; \text{um, W}_6 = 94.06 \; \text{um}$

	M1	M2	M3	M4	M5	M6	M7	MCM
L	500n	500n	500n	500n	180n	180n	130n	180n
W	60.63u	60.63u	13.29u	13.29u	23.51u	94.06u	37.37u	1.47u

Simulations Results

- TB

- DC Operating Points

- AC Analysis

- CMIR Results

- STB Analysis

