BIOS6606: LectureSep04

Introduction to Prism and Good Data Practices

Kathleen Torkko, PhD, MSPH, MS

Some housekeeping

We have are still working on TA office hours and location New TA Kaitlin Olson

Start attendance
Please initial sheet

Suggestion "bags" are on door handles

Aims of this Lecture

- Give you an introduction to the use of GraphPad Prism
- Learn about some good data practices

Help is available to learn Prism

http://www.graphpad.com/guides/prism/8/user-guide/index.htm?how_to_learn_prism.htm

To use Prism effectively, you need to understand these essential concepts:

Prism data tables are organized. It is essential to choose the right kind of data table.

Unlike Excel or most statistics programs, Prism's data tables are organized with a structure or format. To use Prism effectively, therefore, you must learn the <u>distinction between the eight types of data tables</u>. Don't try to choose the kind of table based on the kind of graph to make. That approach doesn't always work. Choose a table based on the organization of your data and the analyses you wish to perform.

A Prism project can contain many data tables and graphs

A Prism project (another term for a Prism file) is not limited to a single graph or data table, but rather can contain up to 500 data tables, graphs, analyses, and page layouts.

Prism can automatically plot error bars from raw data

One of Prism's strengths is its ability to handle replicates and error bars. For XY and Grouped tables, replicates are placed in side-by-side subcolumns. For Column tables, replicates are stacked in each column. If you enter replicate values, Prism can plot either individual replicates or error bars. It can plot error bars from the replicates you entered automatically. You don't have to specify any calculations.

When you edit or replace data, analyses and graphs are automatically updated

Prism remembers the logical links between data tables, info sheets, results tables, graphs and layouts. When you edit or replace data, Prism automatically recomputes linked analyses and redraws linked graphs.

Analyses can be chained

Results tables can be analyzed further. From any results table with green grid lines, click the Analyze button. This lets you, say, first transform your data, and then fit a curve (nonlinear regression) to the results.

Results of analyses can be presented on multiple analysis tabs

Analysis tabs at the top of the results page let you see different parts of the results.

One table ≠ one graph

By default, Prism creates one graph for each data table you create, but this should not limit you. You can plot a table on multiple graphs. And you can plot data from multiple data tables on one graph.

Recycle your work

Once you've analyzed and graphed one data table, it is easy to repeat your work with new data by <u>duplicating a family</u> or <u>cloning a graph</u>.

When you start Prism, you'll see the Welcome dialog. You'll see 8 tabs representing the 8 kinds of data tables.

The six different data tables

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

XY tables - An XY table is a graph where every point is defined by both an X and a Y value. This kind of data are often fit with linear or nonlinear regression.

Table format:		x		A	
		minutes	Т	Test group A	
	×	x	A:Y1	A:Y2	A:Y3
1	Title	0	0.0	0.0	0.0
2	Title	2	391.0	384.0	543.0
3	Title	4	562.0	478.0	584.0
4	Title	6	746.0	798.0	715.0
5	Title	8	823.0	754.0	669.0
6	Title	10	736.0	846.0	742.0
7	Title	12	832.0	855.0	799.0
8	Title	14	923.0	750.0	816.0
9	Title	16	801.0	854.0	826.0
10	Title	18	811.0	795.0	864.0
11	Title	20	942.0	831.0	938.0

Analyses performed with XY data

- Linear regression
- Nonlinear regression
- Correlation (Pearson or Spearman)

<u>Column tables</u> - Use column tables if your groups are defined by one scheme, perhaps control vs. treated, or placebo vs. low-dose vs. high-dose. Each column defines one group.

	A	В	1
	Placebo	Active drug	3
	Y	Y	3
1	45	67	П
2	23	46	-1
3	56	113	
4	76	79	
5	81	123	
6	87		- 7
7	99		- 3
			u

Analyses performed with Column data

- •t test (one-sample, paired and unpaired)
- Mann-Whitney / Wilcoxon
- •Column statistics (means, medians, SD, etc.)
- One-way ANOVA (followed by post tests)
- Kruskal-Wallis
- ROC curves

Also will do correlations

The six data tables

New table & graph

Column

Nested

Grouped Contingency Survival Parts of whole Multiple variables <u>Grouped tables</u> - The idea of two-way variables is best understood by example. One grouping variable (male vs. female in the example below) is defined by rows; the other grouping variable (control vs. treated) is defined by columns.

	×		A			В			
		Control			Treated				
		A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3		
1	Men	34.5	32.9	43.3	87.5	321.5*	81.7		
2	Women	42.3		45.9	109.4	111.2	115.4		
3 .	Title								

Analyses performed with Grouped data

- Two-way ANOVA
- Repeated-measures two-way ANOVA
- •Bonferroni multiple comparisons test

<u>Contingency tables</u> - Contingency tables are used to tabulate the actual number of subjects (or observations) that fall into the categories defined by the rows and columns of a table.

	×	A	В	Г
		Graft Patent	Graft Obstructed	Γ
		Y	Y	Ī
1	Standard treatment	45	5	Γ
2	Experimental treatment	49	1	ľ
2.			and the state of the second	L

Analyses performed from a contingency table

- Fisher's exact test
- Chi-square test
- Odds ratios and relative risk

<u>Survival tables</u> - Survival tables are used to enter information for each subject. Prism then computes percent survival at each time, and plots a Kaplan-Meier survival plot (and also compares survival with the log-rank and Gehan-Wilcoxon tests).

•Kaplan-Meier / Log-rank

<u>Parts of whole tables</u> - A Parts of whole table is used when it makes sense to ask: What fraction of the total is each value? This table is often used to make a pie chart. The example below shows the number of students who received grades of A, B, C, etc. The sum of the five values in the table (61) is the total number of students.

	Table format:	Α	
Pa	arts of whole	Number of Students	
	×	Y	
1	A	23	
2	В	29	
3	С	7	
4	D	2	
5	E	0	
6	Title		

Analyses performed on parts of whole data
•Chi-square goodness of fit

New table & graph XY Column Grouped Contingency Survival Parts of whole Multiple variables

Nested

New in Prism 8

Multiple variable tables. A multiple variable table is arranged the same way most statistics programs organize data. Each row is a "case" (experiment, animal, etc.). Each column is a different variable. There are no subcolumns in multiple variable tables.

	Table format:	Variable A	Variable B	Variable C	Variable D	Variable E	Variable F	Variable G	Variable H	Variable I	Variable J
Mul	tiple variables	Glycosylated hemoglobin %	Total cholesterol	Glucose	HDL	Age in years	Male?	Height in inches	Weight in pounds	Waist in inches	Hip in inches
- 4	×										
1	Title	4.309999943	203	82	56	46	0	62	121	29	38
2	Title	4.440000057	165	97	24	29	0	64	218	46	48
3	Title	4.639999866	228	92	37	58	0	61	256	49	57
4	Title	4.630000114	78	93	12	67	1	67	119	33	38
5	Title	7.719999790	249	90	28	64	1	68	183	44	41
-0											

<u>Nested tables</u>. A nested table is used when there are two levels of nested or hierarchical replication. In this example, there are two treatments given to three rats each and the outcome variable was measured four times in each rat.

-12		Group A		Group B Teaching method B			
	Tea	ching method	Α				
4	Room 1 Room 2 Room 3			Room 4	Room 5	Room 6	
1	21	18	35	26	38	31	
2	26	25	28	34	44	41	
3	33	26	32	27	34	34	
4	22	24	36		45	35	
5		21	38		38	38	
6		25				46	
7							

Welcome Dialog: Graph Portfolio

Tutorial Datasets

XY Frequency distribution

Column tables have one grouping variable, with each group defined by a column

	A	В
	Control	Treated
	Y	Y
1		
2		

Data table:

- O Enter or import data into a new table
- Start with sample data to follow a tutorial

Select a tutorial data set:

■ Error bars in column tables

 Entering replicate data
 Entering mean (or median) and error values

 ■ T tests

 t test - Unpaired
 t test - Paired
 t test - One sample

 ■ One-way ANOVA

 Ordinary one-way ANOVA
 Repeated measures one-way ANOVA

□ Special uses of column tables

Analyze a stack of P values

ROC curve

Bland-Altman method comparison

Metanalysis (Forest) plot

Descriptive statistics

Existing file

Nested

Grouped

Contingency Survival

Parts of whole

Multiple variables

Open a file

LabArchives

Clone a graph

Graph portfolio

Prism Tips

Cancel

Create

X

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph

Graph portfolio

Grouped tables have two grouping variables, one defined by columns and the other defined by rows

Tab	ile format	A			В		
Grouped		Control			Treated		
		A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3
1	Male						
2	Femal						

Data table:

- Enter or import data into a new table
- Start with sample data to follow a tutorial

Select a tutorial data set:

■ Error bars in grouped tables

Entering replicate data

Entering mean (or median) and error values

■ Two-way ANOVA

Ordinary - two data sets

Ordinary - three data sets

Repeated measures - matched values stacked

Repeated measures - matched values in same row

■ Three-way ANOVA

Three-way ANOVA 2 x 2 x 2

Three-way ANOVA 2 x 2 x K

Special uses of grouped tables

Multiple t tests

Heat map

Prism Tips

Cancel

Create

X

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph

Graph portfolio

Contingency tables: Each row defines a treatment or exposure, each column defines an outcome, and each value is an exact count of objects or events

	Table format	A	В
	Contingency	Cases	Control
		Υ	Y
1.	Smoked		
2	Never smoked		

Learn more

Data table:

- O Enter or import data into a new table
- Start with sample data to follow a tutorial

Select a tutorial data set:

- Chi-square test of prospective data (aspirin and MI)
- O Fishers exact test of retrospective data (smoking and cancer)
- O Sensitivity and specificity (HIV)
- Ohi-square test for trend

Prism Tips

Cancel

Create

٠,

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph

Graph portfolio

Survival tables: Each row tabulates the survival or censored time of a subject

Learn more

Data table:

- Enter or import data into a new table
- Start with sample data to follow a tutorial

Select a tutorial data set:

- Comparing two groups
- O Three groups

Prism Tips

Cancel

Create

٠,

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph

Graph portfolio

Parts of whole tables: Each row defines a mutually exclusive category

	Table format	A
- 1	Parts of whole	Cases
		Υ
1	Male	
2	Female	

Learn more

Data table:

- Enter or import data into a new table
- Start with sample data to follow a tutorial

Select a tutorial data set:

- Distribution of student grades (compute fractions of total)
- Ohi-square to compare observed and expected distributions of Mendel's peas

Prism Tips

Cancel

Create

4

GraphPad

Version 8.2.0 (435)

Multiple variable tables: Each column represents a different variable. Each row represents a different individual or experimental unit.

	able Format	Variable A	Variable B	Variable C
Mul	tiple variables	Title	Title	Title
4	×			
1				

Learn more

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph

Graph portfolio

Data table:

Enter or import data into a new table

Start with sample data to follow a tutorial

Select a tutorial data set:

Multiple regression

O Correlation matrix

Prism Tips

Cancel

Create

....2

New table & graph

XY

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph

Graph portfolio

Nested data tables: Hierarchical or nested is a data design when each treatment was tested in experimental replicates and each experimental replicate was assessed a number of times (technical replicates)

m#	Group A			Group B		
	Control			Treated		
	Rat 1	Rat 2	Rat 3	Rat 4	Rat 5	Rat 6
1						
2						

Data table:

- O Enter or import data into a new table
- Start with sample data to follow a tutorial

Select a tutorial data set:

- Nested one-way ANOVA
- O Nested t test

Prism Tips

Cancel

Create

4

Analyses performed with XY data

- Nonlinear regression (curve fit)
- Linear regression
- •Fit Spline/LOWESS
- •Smooth, Differentiate or Integrate Curve
- Area Under Curve
- Deming (Model II) Linear regression
- Correlation matrix
- Correlation XY
- Interpolate a Standard Curve

Analyses performed with Grouped data

- Two-way ANOVA (and mixed model)
- Three-way ANOVA (and mixed model)
- •Row means with SD or SEM
- •Multiple t tests one per row

Analyses performed with Column data

- Unpaired t test
- Paired t test
- Ratio-paired t test
- Mann-Whitney test
- Wilcoxon test
- Kolmogorov-Smirnov test
- Ordinary one-way ANOVA
- •Brown-Forsythe and Welch ANOVA
- •RM one-way ANOVA
- Kruskal-Wallis test
- Friedman test
- One sample t and Wilcoxon test
- Descriptive Statistics
- Normality and Lognormality Tests
- Frequency Distribution
- ROC Curve
- •Bland-Altman
- Identify Outliers
- Analyze a stack of P values

Analyses performed from a contingency table

- •Chi-square and Fisher's exact test (also computes odds ratios and relative risk)
- Fraction of total

Analyses performed with survival data

There is one survival analysis in Prism that gives you choices for any of these analyses:

- Kaplan-Meier
- Log-rank test
- •Wilcoxon-Gehan test

Analyses performed on parts of whole data

- Fraction of total
- •Chi-square goodness of fit (compare observed distribution with theoretical distribution)

Analyses performed on multiple variable data

- Correlation matrix
- Multiple linear regression
- •Extract and rearrange portions of the data onto a new table
- Transform and select
- Identify outliers
- Descriptive statistics

Analyses performed from nested tables

- Nested t test
- Nested one-way ANOVA
- Descriptive statistics (separate results for each subcolumn)
- •Normality (and lognormality) tests (separate results for each subcolumn)>
- Outlier tests (separate results for each subcolumn)
- One-sample t test (separate results for each subcolumn)

Prism

Control	Treated	Treated+Antagonist
54	87	45
23	98	39
45	64	51
54	77	49
45	89	50
47		55

Most other programs

Weight	Treatment Group
54	Control
23	Control
45	Control
54	Control
45	Control
47	Control
87	Treated
98	Treated
64	Treated
77	Treated
89	Treated
45	Treated+Antagonist
39	Treated+Antagonist
51	Treated+Antagonist
49	Treated+Antagonist
50	Treated+Antagonist
55	Treated+Antagonist

A Prism project file (or PZF file) contains all the pieces of a project. Each Prism project has basic five sections: <u>Data tables</u>, <u>Info sheets</u>, <u>Results</u>, <u>Graphs</u>, and <u>Layouts</u>. Each section can have up to 500 sheets. The term 'sheet' refers to an individual data table, info page, set of results, graph or page layout.

https://www.graphpad.com/guides/prism/8/user-guide/ adding_new_sheets_to_your_proj.htm?q=Adding+new+sheets+to+your+project

Adding new sheets to your project

Click the New button on the Sheet toolbar and choose what kind of sheet you want to create. The first choice is used the most. It adds a new empty <u>data table and linked graph</u> to your project. You can also add a New Data Table (No Automatic Graph), a <u>new Info sheet</u>, a <u>new graph of an existing data table</u>, or a <u>new layout</u>. To be complete, this menu also lets you add a new analysis, but you'll find it easier to start at a data table or graph and <u>click the Analyze button</u>.

You can also add a new table, analysis, graph or layout by a link in the navigator.

You can also add to your project by <u>duplicating a family of sheets</u> or by <u>cloning a graph</u>.

http://www.graphpad.com/guides/prism/8/user-guide/index.htm?tips_for_using_prism.htm

Tips for using Prism

Expand all tips

Collapse all tips

Getting started tips

- Before using Prism for the first time...
- Pay attention to the distinctions between the eight kinds of data tables
- Learn about the various approaches to making bar graphs
- Recycle your work

Navigation tips

- **View all sheets in the gallery**
- **Jump between related sheets using the Family navigator**
- Ping pong (flip back and forth) between two sheets
- Highlight or annotate sheets you want to return to
- Search for sheets

Graphing Tips

- Use the Format Graph and Format Axes dialogs
- **■** Change the color (or size..) of just one symbol or bar
- Use Prism Magic to make graphs consistent
- Change colors by picking a color scheme
- Prism can plot error bars directly from raw data
- **■** To add data to a graph, drag a table from the Navigator and drop onto the graph

Data analysis tips

- Don't run the analysis again -- change the analysis choices
- Use the 'Learn' and 'Analysis checklist' buttons
- Paste results onto your graph
- Create chains of analyses, without copying and pasting

Exporting tips

Differences between Windows and Mac versions of Prism
File compatibility between Windows and Mac
Unique to Prism Windows
Peatures in Windows but not Mac
Working with multiple files in Prism Windows
Automatic back up of Prism files
Unique to Prism Mac
Peatures in Mac but not Windows
Working with multiple files in Prism Mac
Overview: Resume and Versions in Prism Mac
Details: Resume and Versions in Prism Mac
PileSave As command in Mac

Excel issues with Mac?

Features in Windows but not Mac

- Object linking and embedding. This means you can paste a Prism graph into another program and double-click to edit in Prism. We
 wish we could allow this to work on Prism Mac, but Apple and Microsoft simply do not provide the "hooks" Prism would need.
- <u>Excel linking and embedding</u>. This means you can paste Excel data into Prism, and double click to edit within Excel. We also wish this were possible with the Mac.
- · Import and export EMF and WMF images. These formats are only used on Windows computers.
- Send to Word with a <u>single click</u>.
- · High contrast printing, with no grays and no colors (choice on Preferences dialog).
- . Visual Basic for Applications (VBA) commands to launch Prism and start a script.

Getting Data into Prism

Copy and paste

Pasting data from Excel (Windows)

Select a range of Excel data and copy it to the clipboard. Switch to Prism, move the insertion point to the cell of a data table that will become the upper-left corner of the pasted data.

Pasting Excel data

Then click on the Paste or Paste Special button in the Prism Clipboard toolbar.

If you use the Paste button or the keyboard shortcut (Ctrl+V), you will only paste the values that have been copied to the clipboard. If you choose Paste Special, you have several options about how you want to insert your data into Prism's data table. These options are only available with Windows. If you use a Mac, skip to this page.

- Paste Data -- Prism retains no link back to the Excel spreadsheet. The values will be pasted and nothing else. The only advantage
 to using this method is that it is conceptually simpler.
- Paste Embed -- You paste the selected data into the data table and also paste a copy of the entire spreadsheet file into your Prism
 project, even if it has several worksheets (tabs). This means you don't need to worry about keeping track of multiple files. You don't
 need to save the spreadsheet file separately (except as a backup). You can open Excel from within Prism, edit the data, and
 instantly update the analyses and graphs in Prism. A potential disadvantage of embedding is that you will end up with multiple
 copies of the same data. Another disadvantage is that your Prism files will be larger.
- Paste Link -- Paste the values into the data table but also create a link back to the Excel file. The link has two functions. It lets you trace (and document) the source of the data so you stay organized. It also is a live link. If you edit or replace the data within Excel, Prism will update the analyses and graphs. The Paste Link command is available only if you paste from an Excel workbook that has a name. If you are working with a new Excel file, you must first save it (thus giving it a name) before you can link its data into Prism. When in doubt, use Paste Link.
- · Paste Data Transposed -- Converts data in Excel rows into columns in Prism, and vice versa.

I mostly use ctrl-c and ctrl-v

Getting Data into Prism

Copy and paste

Pasting data from Excel (Mac)

Pasting data from Excel

Select a range of Excel data and copy it to the clipboard. Switch to Prism and move the insertion point to the cell of the data table that will become the upper-left corner of the pasted data.

Then click on the Paste or Paste Special button in the Clipboard toolbar.

- · Paste -- You will only paste the values that have been copied to the clipboard.
- Paste Transpose -- Converts data in Excel rows into columns in Prism, and vice versa.
- Paste Special -- You'll then see the <u>Import and Paste Special</u> dialog, where you can choose whether to filter and rearrange the data (such as transposing).

Note that it is not possible to Paste Embed or Paste Link to Excel files on the Macintosh. Those features only work on Windows.

Dataset: Cholesterol and Personality Type

In California, between 1960-61, 3,154 middle aged men were studied

Is behavior pattern associated with heart disease?

Cholesterol measured in 40 of the heaviest men

20 Type A (aggressive and ambitious)

20 Type B (relaxed and non-competitive)

The best first step is to graph the data (after you get the data into your statistical program)

Why graph the data?

Check for data distribution Is it normal (symmetrical)?

The Normal Distribution

We will talk about the normal distribution, the assumption of normality, the CLT, etc. later

Check for "outliers"

Are they real data?

Are they errors?

Data Distributions

Frequency histograms are useful for assessing whether distributions are symmetrical or skewed (but be careful of bin size)

No Skew
Symmetrical distribution

Right or Positively
Skewed

Long tail to the right

<u>Left or Negatively</u> <u>Skewed</u>

Long tail to the left

Do these look symmetrical?

Frequency Histograms are Used for Continuous Variables Birth Weights (kg)

Frequency vs. Relative Frequency Birth Weights (kg)

The Y-axis can show a *count* of cases falling into each category

Or, it can show the percentage of all cases falling into each category, as in this graph.

The percentage (or proportion) of cases falling into each category is called the relative frequency.

An Example: US Population by Age and Gender

Figure 3.10 U.S. Population by Gender and Age, 1955 (in millions)

Source: U.S. Bureau of the Census, Current Population Reports, 1992, P23-178.

Figure 3.11 U.S. Population by Gender and Age, 2010 (in millions)

Source: U.S. Bureau of the Census, Current Population Reports, 1992, P23-178.

Figure 4. Panel (**A**) Frequency distribution of EPI adipocyte cell size in CTRL (n = 8; white bars) and MCT (medium-chain triglycerides, n = 4; grey bars) mice on PN day 98; Panel (**B**) Frequency distribution of RP adipocyte cell size in CTRL (n = 4; white bars) and MCT (n = 2; black bars) rats on PN day 98. The tables show the mean depot weight and cell size. Values are means \pm SD; * p < 0.05; *** p < 0.001 vs. CTRL; EPI, epididymal fat; RP, retroperitoneal fat.

Nutrients **2017**, *9*(6), 631; doi: 10.3390/nu9060631

Cholesterol and personality type

Create a frequency histogram by type and all types together

We will play with bin width and graph formats

	Α	В	С	D
1	num	TypeA	ТуреВ	
2	1	233	200	
3	2	291	185	
4	3	312	263	
5	4	250	246	
6	5	246	224	
7	6	197	212	
8	7	268	188	
9	8	224	250	
10	9	239	148	
11	10	239	169	
12	11	254	226	
13	12	276	175	
14	13	234	242	
15	14	181	252	
16	15	248	153	
17	16	252	183	
18	17	202	137	
19	18	218	202	
20	19	212	194	
21	20	325	213	
4	•	data	code	+ : •

Welcome to GraphPad Prism

New table & graph

Λ1

Column

Grouped

Contingency

Survival

Parts of whole

Multiple variables

Nested

Existing file

Open a file

LabArchives

Clone a graph Graph portfolio

Column tables have one grouping variable, with each group defined by a column

-#	A	В	
	Control	Treated	
	Y	Y	
1			
2			

Х

Data table:

- Enter or import data into a new table
- Start with sample data to follow a tutorial

Options:

- Enter replicate values, stacked into columns
- O Enter paired or repeated measures data each subject on a separate row
- O Enter and plot error values already calculated elsewhere

Enter:

Mean, SD, N

Prism Tips

But we also wanted to do a distribution for all cholesterol combined

Drop down menu: Choose "New Data Table with Graph"

Right click on graph to "Copy Graph" or press "Control + c". Then paste (or "Control + v") the graph into Word.

Or use the "Send to PowerPoint" button

Go back to the Data Tables to do the Distribution by Type

Interleaved

Double-click on the TypeB to start customizing the graph

Format Graph X							
Appearance Data Sets on Graph Graph Settings Annotations							
— Data set: Histogram of Cholesterol by type:Frequency distri ∨ − < - > − Global ▼							
Style ————————————————————————————————————							
Appearance: Bar V Plot: Mean V							
Bars and boxes							
Fill: Border: 2 pt V Border color: V							
Fill pattern Color:							
Symbols —							
Color: Shape: Shape: Border color:							
Size: Size: Sorder thickness:							
✓ Error bars							
Color: Style: V Dir.: Above V Thickness: Auto (1/2 pt) V							
Lines							
Color: Thickness: Auto (1 pt) V Line and error go:							
Style: V Pattern: V Length: V							
Additional options							
Plot data on: ● Left Y axis ✓ Show legend							
Revert legend to column title Label each point with its row title							
Color: Auto							
Change Graph Type Help Cancel Apply OK							

Double click on bars in graph to continue customizing

Format Graph	X
Appearance Data Sets on Graph Graph Settings Amotations	Format Graph X
Direction	Appearance Data Sets on Graph Graph Settings Annotations
Automatic Bars begin at Y= Hide baseline	Direction
Spacing (as percent of space used for data)	Automatic Bars begin at Y=
Blank/missing cells: 100 % (0 % = no gap)	Hide baseline
Between adjacent data: 50 % Before the first column: 50 %	Spacing (as percent of spage used for data)
Additional gap between groups: 100 % After the last column: 50 %	Blank/missing cells: 100 % (0 % = no gap)
Discontinuous <u>a</u> xis	Between adjacent data: 10 % Before the first column: 50 %
✓ When the axis is discontinuous, also make the bars (or connecting lines) discontinuous	Additional gap between groups: 0 % After the last column: 50 %
Scatter plot appearance	Discontinuous axis
 Standard (Width of distribution of points proportionate to the number of points at that Y value. Best to represent data distribution) 	✓ When the axis is discontinuous, also make the bars (or connecting lines) discontinuous
 Classic (Prioritizes minimizing overlap of individual data points over representing shape of data distribution, May cause "smiles" in the scatterplot) 	Scatter plot appearance
Expanded (Prioritizes minimizing overlap of individual data points over representing shape data distribution. Doesn't cause visual pattern)	 Standard (Width of distribution of points proportionate to the number of points at that Y value. Best to represent data distribution)
Format of individual bars —	Classic (Prioritizes minimizing overlap of individual data points over representing shape of data distribution. May cause "smiles" in the scatterplot)
To format a bar differently than the rest, exit this dialog, right click on the bar and choose "Format This Bar".	Expanded (Prioritizes minimizing overlap of individual data points over representing shape of data distribution. Doesn't cause visual pattern)
Remove all the individual formatting. Revert all bars to the format of their data sets.	Format of individual bars
Shape of legend key	To format a bar differently than the rest, exit this dialog, right click on the bar and choose "Format This Bar".
	Remove all the individual formatting. Revert all bars to the format of their data sets.
Change Graph Type Help Cancel Apply OK	Shape of legend key —
	Change Graph Type Help Cancel Apply OK

GOOD DATA MANAGEMENT

A bad example....

Usual Data Structure in Excel

One variable per column

4	А	В	С	D
	Subject		Year of	
1	ID	Gender	study	Height
2	1	Male	1	170
3	2	Female	2	160
4	3	Female	3	165
5	4	Male	PG	175
6	5	Female	3	168

One row per subject
One record

Good Data Entry Practices

- Variable names should be:
 - Short but informative
 - Have consistent nomenclature
- Missing data should be left blank (create an explanatory column)
 DO NOT use "99" or NA for missing data
- Do not mix text and numbers in the same column
- Make sure the dataset is complete before sending it off to be analyzed.
- Provide a key along with the data
 Define numerical coding such as race categories or gender
- Make a copy of the original data and work on a copy
 You can always go back the original data if you corrupt the data you are working on

Assignment

Create data frequency (distribution) bar graphs using data from the SilvestreRoig paper (pdf of paper in Files/Assignment/Week02Sep04, the week the assignment is given out)

The Excel file with data for the assignment is in Files/Datasets/Week02Sep04

Assignment is in Files/Assignment/Week02Sep04

Due in Canvas next Wednesday before class

General Comments on Homework 2 and Graphing for Assignments in General:

- Read the question: questions will often have multiple parts, make sure you understand what you are asked to do before you start making graphs. Point values of questions will tend to give you an idea of how much work is necessary.
- Make the colors in the graph so that if they were printed in black and white, you could still distinguish between different categories. Typically, one light and one dark color is a good idea.
- When graphing data, look at the end result to make sure it makes sense. Don't compare two different variables on the same axes. Make sure your x-axis and y-axis scales are logical to the data you are looking at.
- Watch the bin widths you use. Typically, the default is the best, but if you do change the bins make sure the bins chosen show the overall trend of the data in the best way. Look at the raw data to see trends.
- X, Y, and Main labels should describe all variables fully but in a concise way.