# 实验 #3 曲线拟合的最小二乘法

刘扬 2011012162

#### 实验目标

通过使用最小二乘法对给出的两组数据进行曲线的拟合,其中曲线已经提前给出。

#### 实验原理

对于一个函数f,我们的任务是求出一个g,其中 $g \in \phi$ ,使得 $\sum e_i^2$ 最小,其中 $e_i = |f(x_i) - g(x_i)|$ ,  $\phi = span\{\phi_0, \phi_2...\phi_n\}$ ,于是我们得到了下面的推导过程: 设  $g = \sum a_i \phi_i$ ,

$$E = \sum_{i=0}^{m} (f(x_i) - g(x_i))^2$$
 (1)

$$= \sum_{i=0}^{m} (f(x_i) - \sum_{k=0}^{n} a_k \phi_k(x_i))^2$$
 (2)

求偏导数,得:

$$\frac{\partial E}{\partial a_k} = 2\sum_{i=0}^m \left[\sum_{j=0}^n a_j \phi_j(x_i) - f(x_i)\right] \phi_k(x_i) \tag{3}$$

所以有下面方程成立:

$$\begin{pmatrix} (\phi_{0}, \phi_{0}) & (\phi_{0}, \phi_{1}) & \cdots & (\phi_{0}, \phi_{n}) \\ (\phi_{1}, \phi_{0}) & (\phi_{1}, \phi_{1}) & \cdots & (\phi_{1}, \phi_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\phi_{n}, \phi_{0}) & (\phi_{n}, \phi_{1}) & \cdots & (\phi_{n}, \phi_{n}) \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n} \end{pmatrix} = \begin{pmatrix} (f, \phi_{0}) \\ (f, \phi_{1}) \\ \vdots \\ (f, \phi_{n}) \end{pmatrix}$$

其中我们定义 $(\phi_j, \phi_k) = \sum_{i=0}^m \phi_j(x_i)\phi_k(x_i)$ 关于这个方程有解的条件是(左面的矩阵可逆):

 $1.\phi_0(x)...\phi_n(x)$ 在[a,b]上线性无关

 $2.\{\phi_0x...\phi_n(x)\}$ 的线性组合中的任何一个函数在 $\{x_0...x_m\}$ 中至多有n个不同的零点

# 算法设计与实现

对于具体的问题,我们发现 $\phi_i(x)=x^i$ ,然后根据上面求解的原理使用python实现了OLS函数,给入两个数据的列表,同时给出拟合函数的最高阶,求出拟合的系数值。 具体在实现OLS函数的过程中调用了写好的equation.solve函数,这个函数的作用是使用高斯消元法解方程。

### 实验结果

通过运行程序我得到的拟合函数是  $g(x) = -27.1212121212 + 48.8872053872x - 0.511111111111x^2 + 0.00713804713805x^3$ 

每一项的估计值,实际值和误差的结果为:

| 估计值           | 实际值  | 误差            |
|---------------|------|---------------|
| 803.282828283 | 805  | 1.71717171717 |
| 987.146464646 | 985  | 2.14646464646 |
| 1172.2222222  | 1170 | 2.222222222   |
| 1363.86363636 | 1365 | 1.13636363636 |
| 1567.42424242 | 1570 | 2.57575757576 |
| 1788.25757576 | 1790 | 1.74242424242 |
| 2031.71717172 | 2030 | 1.71717171717 |
| 2303.15656566 | 2300 | 3.15656565657 |
| 2607.92929293 | 2610 | 2.07070707071 |

Table 1: 实验结果

总的误差的平方和 $\sum_{i=0}^{m} e_i^2 = 40.6565656566$  散点图和曲线拟合图为:



## 讨论与反思

使用曲线拟合的方法我们可以方便地对一种数据进行拟合,拟合出我们想要的模型,这种思想有着很大空间的应用。比如在机器学习领域中我们的核心问题是对于给定的x,y在训练集合上如何拟合得到的结果最为精确。 尽管上面的方法能够保证求得的解为最好解,但是它的局限性还是有的: 它的拟合函数必须是给定的一族函数的线性表示

它运算的时间复杂度比较高

#### 附:实验代码

Listing 1: 曲线拟合代码

```
#-*- coding:utf-8 -*-
   #1ab 3
   from equation import solve
   from matplotlib import pyplot as plt
   def OLS(n, x, y):
        A = []
        m = len(x)
        if m!=len(y):
             return None
10
        for i in range(n + 1):
             A.append([])
             for j in range(n + 1):
                   if i <= j:
                        tmp = 0.0
15
                        for p in range(m):
                             #for q in range(m):
                             tmp += (float(x[p]) ** i) * (float(x[p]) ** j)
                        A[i].append(tmp)
                   else:
20
                        A[i].append(A[j][i])
        \mathsf{B} = []
        for i in range(n+1):
             tmp = 0.0
             for p in range(m):
25
                   #for q in range(m):
                   tmp += (float(x[p]) ** i) * y[p]
             B.append(tmp)
        flag, answer = solve(A, B)
        return answer
30
   if __name__=="__main__":
        x = [20, 25, 30, 35, 40, 45, 50, 55, 60]
        y = [805, 985, 1170, 1365, 1570, 1790, 2030, 2300, 2610]
        a = 0LS(3, x, y)
35
        f = []
        for i in range(len(x)):
             tmp = 1.0
             tmp_f = 0.0
             for j in range(len(a)):
40
                   tmp_f += tmp * a[j]
                   tmp *= x[i]
             f.append(tmp_f)
        print "Answer : ","\t",
        for i in range(len(a)):
45
```

```
print i,"\t",
        print
        print "\t",
        for i in range(len(a)):
             print a[i],"\t",
50
        print "Estimation\t\t Actual Value\t\t ERROR"
        sum = 0.0
        for i in range(len(y)):
             print f[i],"\t\t",y[i],"\t\t",abs(f[i]-y[i])
55
             sum += abs(f[i]-y[i])**2
        print "TOTAL ERROR: ", sum
        plt.plot(x, y,'r.',label="x-y")
        plt.plot(x, f, 'g', label="x-f")
60
        plt.legend()
        plt.show()
```

Listing 2: 高斯消元代码

```
import copy
   #A Tool using by experiment
   #solve the equation AX=B
   def solve(now_A, now_B):
        A = copy.deepcopy(now_A)
        B = copy.deepcopy(now_B)
        m = len(A)
        if m==0 or m!=len(B):
10
             return False, None
        n = len(A[0])
        if m!=n:
             return True, None
        for i in range(n):
15
             #change the A(i,i) to 1
             delta = float(A[i][i])
             if delta==0:
                   return True, None
             for j in range(i, n):
20
                  A[i][j] /= delta
             B[i] /= delta
             #change A(i+...,i) to 0
             for j in range(i+1, n):
                  delta = A[j][i]
25
                   for k in range(i, n):
                        A[j][k] += float(-delta) * A[i][k]
                  B[j] += float(-delta) * B[i]
        x = [0.0 \text{ for i in range(n)}]
30
        for i in range(n):
             now_line = n - i - 1
             tmp = float(B[now_line])
             for j in range(now_line+1, n):
```

```
tmp -= x[j] * A[now_line][j]
35
             x[now\_line] = tmp
        return True, x
   #check the result of the solution
   def check(A, x, B):
        m = len(A)
        n = len(A[0])
        if len(x)!=n or len(B)!=m:
             return False
        for i in range(m):
45
             tmp = 0.0
             for j in range(n):
                  tmp += x[j] * A[i][j]
             if abs(tmp-float(B[i]))>0.001:
                  return False
50
        return True
   ##check program
   if __name__=="__main__":
        A=[[2,3,5.0],[-4.0,5,6],[2,4,6]]
55
        B=[4, 5,87]
        print solve(A, B)
        print check(A, solve(A, B), B)
```