Function Approximation Introduction

Marius Lindauer

Winter Term 2021

Overview

- Last time: Control (making decisions) without a model of how the world works
 - ▶ We have to search for a well-performing policy
 - We still don't know the MDP model
 - ▶ We assume that we can model everything by table look-ups

Overview

- ▶ Last time: Control (making decisions) without a model of how the world works
 - We have to search for a well-performing policy
 - We still don't know the MDP model
 - We assume that we can model everything by table look-ups
- ▶ This time: How can we learn if it does not fit into a table
 - ▶ table-based RL is often only applicable to toy problems
 - the real-world is much more complex
 - often we cannot see all kinds of states
 - ▶ Solution: we approximate the value functions by some kind of function
 - → First step towards deep reinforcement learning

Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized function instead of a table

▶ For finite action spaces, often represent the Q function as a vector: takes s as input and outputs a vector with one value for each action $[Q(s, a_1), Q(s, a_2), ...]$

Motivation for Value Function Approximation (VFA)

- Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - ► State-action value
 - Policy

Motivation for Value Function Approximation (VFA)

- Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - State-action value
 - Policy
- ▶ Want more compact representation that generalizes across state or states and actions

Motivation for Value Function Approximation (VFA)

- Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - State-action value
 - Policy

Lindauer

- Want more compact representation that generalizes across state or states and actions
- ▶ When is this possible / a reasonable thing to hope for?
 - ► smoothness in the state space (and action space)
 - \leadsto in similar states, actions should have similar effects
 - structure in the problem

Benefits of Generalization

- ▶ Reduce memory needed to store $(P,R)/V/Q/\pi$
- ▶ Reduce computation needed to compute $(P,R)/V/Q/\pi$
- lacktriangle Reduce experience needed to find a good $(P,R)/V/Q/\pi$