Memo: Interessante Sachen

Simon Kapfer

13. März 2014

Zusammenfassung

Merkzettel zu diversen Sachen und Mottos, die nicht in einen anderen Kontext eingebettet sind.

1 Kohomologisches

- **1.1.** *Gruppenkohomologie* einer Gruppe G soll die (singuläre) Kohomologie eines Raumes sein, dessen Fundamentalgruppe gleich G ist und dessen andere Homotopiegruppen trivial sind. Den Raum kann man konstruieren: er heißt 'Eilenberg–MacLane Raum'.
- **1.2.** *Tensorprodukt über Gruppenringen* M, N seien Links-G-Moduln. $M \otimes_G N$ ist so definiert, daß $mg \otimes gn = m \otimes n$. Dann ist $M \otimes_G N \cong (M \otimes N)_G$.
- **1.3.** Welche Kohomologieklassen können als Chernklassen realisiert werden? Für X eine projektive Kurve kann jede Klasse aus $H^2(X,\mathbb{Z})$ als erste Chernklasse eines Vektorbündels geschrieben werden.

Für X eine komplexe Fläche geht das auch für beliebiges $c_1 \in H^{1,1}(X) \cap H^2(X,\mathbb{Z})$ und $c_2 \in H^4(X,\mathbb{Z}) \cong \mathbb{Z}$ (Satz von Schwarzenberger).

1.4. Äquivariante Kohomologie Wenn eine kompakte Liegruppe G auf einem Raum X wirkt, so wird die Äquivariante Kohomologie $H_G^*(X;\mathbb{R}) := H^*(\frac{X \times EG}{G};\mathbb{R})$ über den folgenden (Totalkomplex des Doppel-)Komplex berechnet:

$$\Omega_G^i(X) = \bigoplus \left(S^j(\mathfrak{g}^*) \otimes \Omega^{i-2j}(X) \right)^G$$

1.5. Charakteristische Klassen Insbesondere hat man für $X = \{pt\}$ und G = U(n)

$$H_G^*(X) = H^*(BG) = S^*(\mathfrak{g}^*)^G = \mathbb{R}[c_1, \dots, c_n], \qquad \det(\lambda - A) = \sum_i (-1)^i c_i(A) \lambda^{n-i}$$

wobei die c_i die Chernklassen sind. Für G=O(n) erhält man Pontrjagin–Klassen. Für V ein Vektorbündel über einem beliebigen X hat man durch Wahl von lokalen Rahmen die Struktur eines G-Hauptfaserbündels und damit eine Abbildung $X \to BG$. Die charakteristischen Klassen des Bündels ergeben sich dann durch Rückzug von BG.

2 Algebraisches

2.1. *Lieableitung und Intuition.* Seien f(x), g(x) parameterabhängige, lineare Operatoren (z. B. einfach Multiplikation mit Zahlen: $f(x) \in \mathbb{R}$). Differentialoperatoren wie $\frac{d}{dx}$ fallen auch in diese Kategorie. Es gilt

$$\frac{d}{dx}fg = \left(\frac{\partial}{\partial x}f\right)g + f\frac{d}{dx}g$$

Daher macht es Sinn, den abgeleiteten Operator $f' := \left(\frac{\partial}{\partial x} f\right)$ zu definieren als:

$$f' = \frac{d}{dx}f - f\frac{d}{dx} = \left[\frac{d}{dx}, f\right]$$

Hier also eine Möglichkeit, die Lieklammer zu verstehen. Die Jacobi-Identität wird dann zu einem Spezialfall der Leibnizregel:

$$[x, [y, z]] = [[x, y], z] + [y, [x, z]]$$

Die blauen Klammern stehen jeweils für Ableitung nach x, die schwarzen Klammern sind einfach nur eine Bilinearform, die hier zufällig gleich der Lieklammer ist.

2.2. Es gibt keinen Körper, der als ℤ–Modul frei ist.

3 Exakte Sequenzen

3.1. *Eulersequenz* Auf \mathbb{P}^n hat man

$$\begin{split} 0 &\to \mathcal{O} \to \mathcal{O}(1)^{\oplus n+1} \to \mathcal{T} \to 0 \quad \text{bzw.} \\ 0 &\to \Omega \to \mathcal{O}(-1)^{\oplus n+1} \to \mathcal{O} \to 0 \end{split}$$

3.2. *Exponentialsequenz* Auf komplexen Räumen liefert die exp–Funktion

$$0 \to 2\pi i \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$$