Homework (fair game for quiz).

§6.7: Exercises 1-12, §6.8: Exercises 1-6, §6.4: Exercises 1-6

Challenge problems (won't be on the quiz)!

- 1. 🥠 §6.8, Exercise 10
- 2. 🥠 §6.8, Project 1
- 3. \checkmark A mathematical knot is any embedding of the unit circle S^1 into three-dimensional space \mathbb{R}^3 . Knots are classified by how many times they cross over themselves. The simplest knot is called the **trivial knot** or **unknot**, which has 0 crossings. The simplest nontrivial knot is called the **trefoil knot**, which has three crossings. In this problem, we compute the length of a particular parametric representation of the trefoil knot.
 - (a) Write down a definition for "parametric curve in three-dimensional space." (Hint: In perfect analogy with the two-dimensional case we learned about in class, it's a function into \mathbb{R}^3 with some particular type of object for its domain.)
 - (b) Given points (x_1, y_1, z_1) , (x_2, y_2, z_2) in three-dimensional space, write down a formula that gives the distance between the two points (*Hint: Use your knowledge of the two-dimensional case, and extrapolate*). Use your formula to find an analogue of §6.8, formula (2) for a curve in three-dimensional space.
 - (c) Find a bijective (AKA invertible you may have to look ahead in chapter 7 to find these definitions) function from S^1 to the half-open interval $[0, 2\pi)$.
 - (d) Find the length of the trefoil knot given parametrically by

$$x(t) = (2 + \cos(3t))\cos(2t), \ y(t) = (2 + \cos(3t))\sin(2t), \ z(t) = \sin(3t)$$
 for $t \in [0, 2\pi)$.