Aula prática nº 2 - ÁLGEBRA DE BOOLE

Tópicos

- Postulados de Huntington
- Álgebra de Boole binária: operadores básicos
- Demonstração de teoremas
- Simplificação (analítica) de expressões booleanas
- Conjuntos de operadores funcionalmente completos
- Funções booleanas e sua representação:
 - Algébrica
 - o Tabular (tabelas de verdade)
 - o Esquemática (circuitos lógicos)

A Álgebra de Boole desenvolve-se sobre uma estrutura matemática $(B,+,\bullet)$ [onde B é um conjunto e '+' e '•' representam operações, ditas respetivamente *soma* e *produto*] satisfazendo o seguinte conjunto de postulados (enunciado por Huntington em 1904):

Postulados de Huntington

• P1 Fecho: as operações são fechadas em B

$$\forall b_1, b_2 \in B \quad \begin{cases} b_1 + b_2 \in B \\ b_1 \cdot b_2 \in B \end{cases}$$

• **P2** Comutatividade

$$\forall b_1, b_2 \in B \quad \begin{cases} b_1 + b_2 = b_2 + b_1 \\ b_1 \cdot b_2 = b_2 \cdot b_1 \end{cases}$$

• **P3** Elementos Neutros

$$\exists b_0 \forall b \in B: \quad b + b_0 = b$$

$$\exists b_1 \forall b \in B: \quad b \cdot b_1 = b$$

• P4 Distributividade Mútua

$$\forall b_{1}, b_{2}, b_{3} \in B
\forall b_{1} + (b_{2} \cdot b_{3}) = (b_{1} + b_{2}) \cdot (b_{1} + b_{3})
\forall b_{1}, b_{2}, b_{3} \in B
b_{1} \cdot (b_{2} + b_{3}) = (b_{1} \cdot b_{2}) + (b_{1} \cdot b_{3})$$

• P5 Complementação

$$\forall b \in B \exists \overline{b} \in B \quad \begin{cases} b + \overline{b} = b_1 \\ b \cdot \overline{b} = b_0 \end{cases}$$

• **P6** Cardinal

$$\forall \exists b_1 \in B \ b_2 \in B \ b_1 \neq b_2 \iff B \geq 2$$

Álgebra de Boole binária

O cardinal mínimo de B é 2. Nesta situação $-B=\{0,1\}$ – todos os postulados são satisfeitos pelos seguintes operadores:

SOMA LÓGICA [DISJUNÇÃO] OU (OR)	PRODUTO LÓGICO [CONJUNÇÃO] E (AND)	COMPLEMENTAÇÃO [NEGAÇÃO] NÃO (<i>NOT</i>)
0 + 0 = 0	$0 \cdot 0 = 0$	
0+1=1	$0 \cdot 1 = 0$	$\overline{0} = 1$
1 + 0 = 1	$1 \cdot 0 = 0$	$\overline{1} = 0$
1+1=1	$1 \cdot 1 = 1$	

Estabelece-se assim uma estrutura algébrica de Boole a dois valores (0 e 1).

Teorema da dualidade: Todo o teorema ou identidade algébrica dedutível a partir dos postulados da álgebra de Boole conserva a validade se as operações (+) e (·) e os elementos neutros forem trocados.

Exercícios

Demonstre os seguintes teoremas recorrendo aos postulados de Huntington:

Idempotência: a)

$$\forall b \in B \quad b \cdot b = b$$

Elemento absorvente: b)

$$\forall b \in B \quad b \cdot b_0 = b_0, \quad b + b_1 = b_1$$

Unicidade do complemento c)

Unicidade do elemento neutro

Absorção: e)

$$x + x \cdot y = x$$

Simplificação: f)

$$x + \overline{x} \cdot y = x + y$$

Consenso:

$$x \cdot y + \overline{x} \cdot z + z \cdot y = x \cdot y + \overline{x} \cdot z$$

h) Leis de DeMorgan:

$$\frac{x+y=\overline{x}\cdot\overline{y}}{\overline{x}\cdot\overline{y}}=\overline{x}+\overline{y}$$

Por indução direta (verificação exaustiva da tabela de verdade) demonstre

Teorema da involução:

$$\overline{\overline{x}} = x$$

Propriedade associativa:
$$x + (y + z) = (x + y) + z$$

3 Mostre que o operador "ou" exclusivo (*XOR*), definido por $x \oplus y = x \cdot \overline{y} + \overline{x} \cdot y$, é associativo:

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

- Recorrendo ao teorema da dualidade, determine o operador dual do "ou" exclusivo \oplus . Compare as tabelas de verdade.
- 5 Mostre que $x \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot z + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot z = x + y \cdot z$
- 6 Mostre que os operadores *NAND* $(\overline{x \cdot y} = \overline{x} + \overline{y})$ e *NOR* $(\overline{x + y} = \overline{x} \cdot \overline{y})$ são completos.
- 7 Uma função booleana é uma regra (correspondência) que associa um elemento do conjunto $B=\{0,1\}$ a cada uma das 2^n combinações que as n variáveis independentes podem assumir. Recorrendo a uma notação vetorial para o caso geral do sistema digital com n entradas e m saídas, temos:

$$\mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \longrightarrow \mathbf{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

- a) Quantas funções diferentes existem?
- b) Concretize para n = 4 e m = 1.
- 8 Na ignição de um motor de um carro atual, através de um botão START, o motor de arranque deve ser acionado quando se cumprir o seguinte:
 - o botão "START" for pressionado e uma das duas seguintes:
 - o pedal de embraiagem estiver carregado ou
 - o travão estiver carregado **e** o carro estiver em ponto-morto (mudança não engatada)
 - a) Recorrendo às variáveis S (botão START pressionado), E (embraiagem carregada), T (travão carregado) e C (caixa com velocidade engatada), construa a tabela de verdade da função M, que vale 1 nas situações em que o motor de arranque deve ser acionado.
 - b) Defina M através de uma expressão algébrica em S, E, T e C.
 - c) Desenhe o circuito que realiza a função *M* e implemente-o em DesignWorks. Para as linhas que representam as variáveis e a função, dê-lhes o nome da respetiva variável.

d) [Complementar] O ficheiro teste_motor_start.tsv é um ficheiro de vetores de teste para o circuito. Ou seja, contém um conjunto de valores das variáveis de entrada (um vetor é um conjunto ordenado de valores escalares) que são usados para testar o circuito e avaliar o seu funcionamento. A primeira linha:

define os sinais para o teste. O primeiro bloco \$I (abreviatura de \$INPUT) indica quais os sinais de entrada, e que neste caso são valores binários (separados por espaços) que representam os sinais S, E, T e C. O segundo bloco, \$O (abreviatura de \$OUTPUT) indica as variáveis de saída. Como pode ver, o ficheiro não está completo (não estão incluídos todos os valores possíveis para as entradas). Complete o ficheiro de vetores de teste para que cubra todas as combinações possíveis das entradas e simule o circuito (Simulation -> Test Vectors -> Run Test Vector File). Use o resultado para verificar a correcção da tabela de verdade construída em a).

9. Considere a seguinte função booleana:

$$y = \overline{x}_1 \cdot \overline{x}_3 \cdot \overline{x}_4 + \overline{x}_1 \cdot \overline{x}_3 \cdot x_4 + \overline{x}_1 \cdot \overline{x}_3 \cdot x_4 + x_1 \cdot x_2 \cdot x_4 + x_1 \cdot x_2 \cdot \overline{x}_4 + x_1 \cdot \overline{x}_2 \cdot x_3 + x_1 \cdot x_2$$

- a) Simplifique-a
- b) Construa a tabela de verdade que define y
- b) Por manipulação algébrica, reescreva y apenas com operadores *NAND*
- c) Por manipulação algébrica, reescreva y apenas com operadores *NAND* que não poderão ter mais de 2 argumentos (entradas)
- d) Desenhe os diagramas lógicos correspondentes a a), c) e d) e proceda a uma análise de custos em termos de número e variedade de operadores envolvidos
- **10.** A função "Maioria", M(x,y,z), é igual a 1 sempre que pelo menos dois dos seus três argumentos são iguais a 1:
 - a) Construa a tabela de verdade da função *M*.
 - b) A partir da tabela de verdade, determine a expressão algébrica que define M.
 - c) Construa o circuito lógico que realiza M.
 - d) Mostre que M(x,y,z), juntamente com a operação de complementação e a constante "0", forma um conjunto de operações funcionalmente completo.