l e
او
ilmen l-c
X, < >c
njunto
de la tiena
a cero.
ergenci-
nelia
(×
5

(4827) Movimiento Browniano $\frac{d \times_{t} \nabla \times_{t} \times_{t} \times_{t} \times_{t} \times_{t} \times_{t}}{dt} = \frac{d \times_{t} \times_{t} \times_{t} \times_{t} \times_{t}}{(\cdot, \cdot, \cdot)}$ > Tiene incrementos independientes (X++8-X+) T(X+-X+-8) $X_t \sim N(0, r^t)$ Tiene incrementos estacionarios Y ++8 - X = X = N(0, (++8-+) \(\frac{1}{2} \) $X_t - X_s \sim N(0, (t-s)\sigma^2)$ Mov. browniano estinda (F=1)

Louis Bachelier (1900)
Asume que los precios de las acciones Siguen un movimiento browniquo
Signer un movimiento browniano
Black, Scholes & Merton
Asumir un proceso lognormal pare los acciónes.
tos acciónes.

Lema: Supergames
$$\frac{1}{2}$$
 (exercises and variable aleaforic $\frac{1}{2}$ $\frac{1$

$$= \frac{2^{2}}{2^{2}}$$

$$am + \frac{1}{2}a^{2}s^{2}$$
= C
 $[1 - N(c)] = C$
 $N(-c)$

$$-b + m + as^{2} = d = e N(d)$$

=) ¿Qué page con un call con strike
$$K^{?}$$
.

> $P = (S_1 - K)_+$; $S_7 = (e^{e^{-\frac{1}{2}a^2 t} + a\sqrt{t}e^2})$
 $= 2 \sim N(0, 1)$

Considerando que vamos a calcula el precio del cal cono:

$$S_{0} \stackrel{\vee}{e}^{-} K > O_{e^{-}} y > \ln \left(\frac{K}{S_{0}} \right) = \underline{b}$$

$$\Rightarrow e^{-r} \int_{S_{0}}^{r} (S_{0} \stackrel{\vee}{e}^{-} K) \int_{y} (y) dy = \frac{1}{2} \int_{S_{0}}^{r} (S_{0} \stackrel{\vee}{e}^{-} K) \int_{y} (y) dy = \frac{1}{2} \int_{S_{0}}^{r} (Y_{0} \stackrel{\vee}{e}^{-} K) \int_{y}^{r} (Y_{0} \stackrel{\vee}{e}^{-} K) dy = \frac{1}{2} \int_{S_{0}}^{r} (Y_{0} \stackrel{\vee}{e}^{-} K) \int_{S_{0$$

Opciones Digitales: Supongamos que tenemos una opción cuyo payoff es de la signiente Forma! Payoff (Si St < X ->N1 (St >K)

Si St < X C= ETE[1(ST>K)N]= ETENTES->K]+

OPES-EK] = NeTP[ST>K]=NeTP[Soe>K] 7= (1- 2021) + 145 Z~N(0,1) =NETP[ey> = NETP[y> In (=)] =Ner B[7- (n- = 0,) +) - (n- = 0,) +]

= NeN(d2);
$$d_2 = \frac{\ln(\frac{S_0}{K}) + (r - \frac{1}{2}\sigma^2)r}{\sqrt{T_1}}$$