Datta Meghe College of Engineering, Airoli

LINEAR PROGRAMMING PROBLEMS

Group Members:

SHITAL KACHARE - 53

RATNAKAR GARJE - 54

JIDNYASA BHOIR - 55

TWO – PHASE SIMPLEX METHOD

DEFINITION

- In Two Phase Method, the whole procedure of solving a linear programming problem (LPP)involving artificial variables is divided into two phases.
- In Phase 1, we solve an auxiliary LP problem to either get a feasible basis or conclude that (P) is infeasible.
- In Phase 2, we solve (P) starting from the feasible basis found in Phase 1.
- Using simplex method make iterations till an optimal basic feasible solution for it is obtained.
- It may be noted that the new objective function is always of minimization type regardless of whether the given (original) L.P.P. is of maximization or minimization type.

Steps:

Step-1: Phase-1

a. Form a new objective function by assigning zero to every original variable (including slack and surplus variables) and -1 to each of the artificial variables.

eg. Max Z = -A1 - A2

b. Using simplex method, try to eliminate the artificial varibles from the basis.

c. The solution at the end of Phase-1 is the initial basic feasible solution for Phase-2.

Step-2: Phase-2

a. The original objective function is used and coefficient of artificial variable is o (so artificial variable is removed from the calculation process).

b. Then simplex algorithm is used to find optimal solution.

Revised Simplex Method

DEFINITION

- The revised simplex method is mathematically equivalent to the standard simplex method but differs in implementation.
- In simplex method the entire simplex tableau is updated while a small part of it is used.
- Advantages over the tableau version:
 - 1.Time and space are saved
 - 2. Errors due to floating-point arithmetic are easier to control.

Steps:

- Step 1 Express the given problem in standard form I
 Ensure all bi ≥ o .
- Step 2 Construct the starting table in the revised simplex form
 Express (1) in the matrix form with suitable notation
- Step 3 Computation of Δ j for a1 (1) and a2 (1) Δ 1 = first row of B1 -1 * a1 (1)

 Δ_2 = first row of B1 -1 * a2 (1)

- Step 4 Apply the test of optimality Both $\Delta 1$ and $\Delta 2$ are negative. So find the most negative value and determine the incoming vector.
- Step 5 Compute the column vector Xk
 Xk = B1 -1 * a1
- Step 6 Determine the outgoing vector.
- Step 7 Determination of improved solution
 Column e1 will never change, x1 is incoming so place it outside the rectangular boundary.