摘要

本来寒假打算在个人主页上面更新泛函分析的自学笔记,但在markdown文件中插入latex真不太方便,故单独用LFTEX文件来记泛函笔记。

我自学使用的教材为张恭庆老师的《泛函分析讲义(上)》,在此笔记中主要记录书中的核心内容,配以心得体会。

目录

1	度量	空间	2
	1.1	压缩映射原理	2
	1.2	完备化	2
	1.3	列紧集	2
	1.4	赋范线性空间	2
	1.5	凸集与不动点	2
	1.6	内积空间	2
2	线性算子与线性泛函		
	2.1	线性算子的概念	4
	2.2	Riesz表示定理及其应用	4
	2.3	纲与开映射定理	4
	2.4	Hahn-Banach定理	4
	2.5	共轭空间、弱收敛、自反空间	4
	2.6	线性算子的谱	4

1 度量空间

- 1.1 压缩映射原理
- 1.2 完备化
- 1.3 列紧集
- 1.4 赋范线性空间
- 1.5 凸集与不动点
- 1.6 内积空间

定理 1.6.1. 如果C是Hilbert空间 \mathcal{X} 中的一个闭凸子集, 那么在C上存在唯一元素 x_0 取到最小范数.

证明. 存在性: 设 $d = \inf_{z \in C} ||z||, \mathbb{R}[x_n, \mathbb{R}[x_n]] \leq d + \frac{1}{n}$ 利用

$$||x_m - x_n||^2 = 2(||x_m||^2 + ||x_n||^2) - 4||\frac{x_m + x_n}{2}||^2$$

可以证明 $\{x_n\}$ 是柯西列.

唯一性: 同上利用极化恒等式可证唯一性.

推论 1.6.1 (Hilbert空间闭凸子集中最佳逼近元存在且唯一). $\angle E$ Hilbert空间 $\mathcal X$ 中的一个闭凸子集,则对 $\forall y \in \mathcal X$, $\exists ! x_0 \in C$,使得

$$||y - x_0|| = \inf_{x \in C} ||x - y||$$

证明. 将C平移-y之后,利用上面的定理即可.

定理 1.6.2 (最佳逼近元的刻画). 设C是内积空间 \mathscr{X} 中的闭凸子集, $\forall y \in \mathscr{X}$ 为了 x_0 是y在C上的最佳逼近元,必须且仅须它适合

$$\operatorname{Re}(y - x_0, x_0 - x) \ge 0, \forall x \in C$$

证明. $\forall x \in C$,考虑函数 $\varphi_x(t) = \|y - tx - (1 - t)x_0\|^2$,为了 x_0 是y在C上的最佳逼近元,必须且仅需

$$\varphi_x(t) \ge \varphi_x(0) \quad \forall x \in C, \forall t \in [0, 1]$$

考察此二次函数的取值即可,这是容易地.

推论 1.6.2. 设M是Hilbert空间 \mathscr{X} 的一个闭线性子流形, $\forall x \in \mathscr{X}$,为了y是x在M上的最佳 逼近元,必须且仅须它适合

$$x - y \perp M - \{y\}$$

推论 1.6.3 (正交分解). 设M是Hilbert空间 $\mathcal X$ 中的一个闭线性子空间,那么 $\forall x \in \mathcal X$,存在下列唯一的正交分解:

$$x = y + z \quad (y \in M, z \in M^{\top})$$

证明. 实际上, y为x在M上的最佳逼近元.

2 线性算子与线性泛函

2.1 线性算子的概念

定义 2.1.1 (线性算子).

定义 2.1.2 (连续性与有界性).

2.2 Riesz表示定理及其应用

定理 2.2.1 (Riesz表示定理(Hilbert空间)).

Riesz表示定理有很多应用,这首先依赖于Hilbert空间本身的良好性质,其次要求是连续线性泛函.

定义 2.2.1 (弱解).

定理 2.2.2 (Laplace方程Dirichlet边值问题的弱解存在唯一).

2.3 纲与开映射定理

定义 2.3.1 (疏集,第一纲集,第二纲集).

定理 2.3.1 (Baire).

定理 2.3.2 (开映射定理).

定理 2.3.3 (Banach).

定义 2.3.2 (闭线性算子).

推论 2.3.1 (等价范数定理).

定理 2.3.4 (闭图像定理).

定理 2.3.5 (一致有界定理).

2.4 Hahn-Banach定理

- 2.5 共轭空间、弱收敛、自反空间
- 2.6 线性算子的谱