カットとフロー

離散数学・オートマトン 2024 年後期 佐賀大学理工学部 只木進一

- 1 ネットワークとフロー
- ② 補助ネットワークの導入
- 3 最大フローのアルゴリズム
- 4 カット: Cut

ネットワークとフロー: Networks and Flows

- 交通網中の流れ
 - 都市間を流れる車両の数、及びその上限
 - 都市間を結ぶ航空路線が輸送する人数、及びその上限
- 物流
 - 倉庫間を移動している商品数とその上限
- 作業
 - 各工程における処理数とその上限

容量と流れ: Capacities and Flows

- 各辺に容量 (上限) がある
 - 交通機関の輸送能力
 - 通信速度
- 各辺に実際に流れる流量
 - 容量以下
- ネットワークの二点に最大流量を実現する方法

2端子フロー

- 有向ネットワーク
- 入口 s⁺ と出口 s⁻
- 入口から出口までの有向道が存在する
- 各辺に容量が定義され、それ以下の流量を割り当てる。

2端子フローの定義

- グラフ G = (V, E)
- 入口 s⁺ と出口 s⁻ の間に有向道がある
- $\forall e \in E$ に、流量上限 (capacity) $c(e) \geq 0$ を定義する
- $\forall e \in E$ に、流量 (flow) $c(e) \geq \phi(e) \geq 0$ を設定する
- 入口 s⁺ から出口 s⁻ への最大流量を求める

流量に対する制約

- $\bullet \ \forall v \in V \setminus \{s^+, s^-\}$
- 容量による制約: $0 \le \phi(e) \le c(e)$
- 流量保存則: 頂点 v で「湧き出し (source)」と「吸い込み (sink)」がない

$$\partial \phi(v) \equiv \sum_{e \in \delta^+ v} \phi(e) - \sum_{e \in \delta^- v} \phi(e) = 0$$

$$\delta^- v \xrightarrow{\sum_{e \in \delta^- v} \phi(e)} \delta^+ v$$

$$\sum_{e \in \delta^- v} \phi(e) \sum_{e \in \delta^+ v} \phi(e)$$

ネットワークフローのイメージ

• ネットワークの流量

$$Q(\phi) = \partial \phi(s^{+}) = -\partial \phi(s^{-}) \tag{1.1}$$

 \bullet s^+ から入った流れは全て s^- へ至る

最大フローを見つける考え方

数字: 流量/容量

最大フローを見つける考え方: 流量を増やせる道を見つける

数字: 流量/容量

最大フローを見つける考え方: 流量を増やせる道を見つける2

数字: 流量/容量

わかりやすいアルゴリズムへ

- わかりにくい点
 - 辺の向きとは逆方向に「流す」
 - 逆向きの辺の流量を減らす
 - 容量と流量の二つの量が出てくる
- 補助ネットワークの導入
 - 各辺に一つの量

補助ネットワーク: Auxiliary Network

$$N_A = (G_{\phi}(V, E_{\phi}), s^+, s^-, c_{\phi})$$
 (2.1)

$$E_{\phi} = E_{\phi}^+ \cup E_{\phi}^- \tag{2.2}$$

- ullet E_{ϕ}^{+} : 元のネットワークと個方向の辺。容量として、容量の残り余裕を設定
- ullet E_{ϕ}^- : 元のネットワークと<mark>逆方向</mark>の辺。容量として、流量を設定

E_{ϕ}^{+} の構成

- 元のネットワークGの $\forall e \in E$ に対して、
 - 辺の追加: E_{ϕ}^+ $\{ \forall e \in E \}$
 - 容量の設定: 残りの容量: $c(e) \leftarrow c(e) \phi(e)$

E_ϕ^+ の構成

E_ϕ^+ の構成

c(e)=0 である $e\in E_\phi^+$ は表示しない

E_{ϕ}^{-} の構成

- 元のネットワークGの $\forall e \in E$ に対して
 - ullet e と逆向きの辺 e^\dagger の追加: $E_\phi^- = \left\{ e^\dagger \mid orall e \in E
 ight\}$
 - 容量の設定: 削減可能流量: $c(e^{\dagger}) \leftarrow \phi(e)$
 - 元のネットワークと辺の向きが逆である

E_ϕ^- の構成

c(e)=0 である $e\in E_\phi^+$ は表示しない

補助ネットワーク

増加道を見つける

補助ネットワーク中に、s⁺ から s⁻ への有向道 P (有向道) があれば、

$$d = \min_{e \in P} c_{\phi}(e) \tag{2.3}$$

だけ流量を増やすことができる

- ullet $e \in E_{\phi}^+$ ならば、容量に余裕がある
- ullet $e\in E_\phi^-$ ならば、逆方向の辺の流量を減らすことができる

このときの、ネットワーク中の新しい流量

$$\phi'(e) = \begin{cases} \phi(e) + d & \text{for } e \in E_{\phi}^+ \land e \in P \\ \phi(e) - d & \text{for } e \in E_{\phi}^- \land e \in P \\ \phi(e) & \text{otherwise} \end{cases} \tag{2.4}$$

容量が整数ならば流量は整数

増加道を見つける

容量0の辺は対象外とする

流量増加 d=2

補助ネットワーク構成

増加道を見つける

流量増加 d=1

補助ネットワーク構成

補助ネットワークに有向道はない

いちいち元のネットワーク戻す必要があるか

- 補助ネットワークの各辺の容量を更新するアルゴリズム
- ullet $e \in E_p hi^\pm$ の容量を更新したら、 $e \in E_p hi^\mp$ も更新

アルゴリズムとして整理

Algorithm 1 最大フローのアルゴリズム

```
補助ネットワーク Na を構成する
s^+ から s^- への有向道 P を得る
while P が存在 do
  d = \min_{e \in P} c_{\phi}(e)
   update(N_A, P, D)
   s^+ から s^- への有向道 P を得る
end while
deploy(N_A)
                               ▷ 元のネットワークへ反映
```

▷ N / を更新

30/40

Algorithm 2 補助ネットワーク更新

procedure $\operatorname{UPDATE}(N_A,P,d)$ for $e\in P$ do $c_\phi(e)=c_\phi(e)-d$ $e\in E_\phi^\pm$ ならば、対応する辺 $e^\dagger\in E_\phi^\mp$ $c_\phi(e^\dagger)=c_\phi(e^\dagger)+d$ end for end procedure

Algorithm 3 元のネットワークへの反映

```
procedure 	ext{DEPLOY}(N_A) for e \in E do f \in E_\phi^- は a に対応する辺 \phi(e) = c_\phi(f) end for end procedure
```

カット: Cut

- ネットワークのカット: *U* ⊂ *V*
 - \bullet s^+ を含み、 s^- を含まない頂点集合

$$\left(s^{+} \in U\right) \wedge \left(s^{-} \notin U\right) \tag{4.1}$$

- カットの容量: κ_C(U)
 - ullet Δ^+U : U から出て、 $U\setminus V$ へ入る辺全体

$$\kappa_{\mathbf{C}}(U) = \sum_{e \in \Lambda^{+}U} c(e) \tag{4.2}$$

カットとその境界

流量とカット

ullet N 中の任意のフロー ϕ と任意のカット U

$$Q(\phi) \le \kappa_{\mathcal{C}}(U) \tag{4.3}$$

直感的には: s⁺ と s⁻ の途中にあるボトルネック部分で流量上限が定まる

$$Q(\phi) = \sum_{e \in \Delta^+ U} \phi(e) - \sum_{e \in \Delta^- U} \phi(e)$$

$$\leq \sum_{e \in \Delta^+ U} c(e) - 0 = \kappa_{\mathcal{C}}(U)$$
(4.4)

最大流量と最小カット

$$\max Q(\phi) \le \min \kappa_{\mathbf{C}}(U)$$
 (4.5)

- 実際には等号がなりたつ
- つまり、ボトルネック容量で最大流量が定まる

最大流量と最小カット: 等号が成り立つこと

- \bullet ネットワーク N の最大流量 ϕ が実現しているならば
 - 補助ネットワーク N_A には、 s^+ から s^- への有向道は存在しない
 - 注意:容量()の辺は存在しないものとする
- ullet 補助ネットワーク中の s^+ から到達可能な頂点集合: $W\subset V$
 - N_A には、W から外向きの辺は存在しない。

Wへの内向きの辺eは、以下のいずれかである

ullet $e^\dagger \in E_\phi^-\colon N$ の対応する辺 e の容量を使い切っている

$$\phi(e) = c(e)$$

 \bullet $e \in E_{\phi}^{+}$: N の辺の流量は 0

$$\phi(e) = 0$$

$$Q(\phi) = \sum_{e \in \Delta^+ W} \phi(e) - \sum_{e \in \Delta^- W} \phi(e)$$
$$= \sum_{e \in \Delta^+ W} c(e) - 0 = \kappa_{\mathbf{C}}(W)$$

38/40

(4.8)

(4.6)

補助ネットワークにおけるカット

元のネットワークにおけるカット

