Probability and Statistics for Economics Cheatsheet

Random experiments

The outcome in a random experiment is **unpredictable**:

- outcome is too complicates or poorly understood
- outcome is designed to be unpredictable
- coincidences, or independent chains of events

Random card shuffle experiment: take top card from a deck and insert randomly, to complete the shuffle of n cards, we need $T = n + \frac{n}{2} + \dots + \frac{n}{n-1} + 1 = n \log n$ shuffles.

Random number generator: $x_{n+1} = \frac{ax_n + b}{c} - \left[\frac{ax_n + b}{c}\right]$, the remainder after dividing by c, hence $x_{n+1} \in [0, c-1]$, let $u_{n+1} = \frac{x_{n+1}}{c}$, x_0, a, b, c all be integers. For very large a and good choice of b, c, the sequence u_1, u_2, \cdots is like a sequence of numbers randomly picked from [0, 1]

Probabilities

Ways of assigning probabilities:

- symmetry: assume all outcomes are equally likely
- experimental method: relative frequency in repeated random experiment
- subjective method: assign probabilities using knowledge of random experiment
- market method

Elements of **probability space**

- outcome space Ω and outcomes $\omega \in \Omega$
- event $E, E \subset \Omega$
- probability function/measure $P: \mathcal{A} \to [0, 1]$: a function from a collection \mathcal{A} of subsets of Ω to the interval [0, 1].

Classes of events

Events E_1, E_2, \cdots are just sets. They also follow the algebras of sets, such as:

A \subseteq B \subseteq A \cap B \subseteq C \cap A \cap B \cap C \cap \cap

Two special relations:

- disjoint: $E_1 \cap E_2 = \emptyset$
- partition: $\bigcup_{i=1}^{\infty} E_i = \Omega$

σ -field and Borel σ -field

Definition of σ -field: \mathcal{A} (a collection of subsets of Ω) is a σ -field if

- (i) $\varnothing \in \mathcal{A}$
- (ii) $E \in \mathcal{A} \Rightarrow E^C \in \mathcal{A}$
- (iii) $E_1, E_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$ smallest σ -field: $\mathcal{A} = \{\varnothing, \Omega\}$

Variation of Parameters

$$F(x) = y'' + y'$$

$$y_h = b_1 y_1(x) + b_2 y_2(x), y_1 y_2 \text{ are L.I.}$$

$$y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$$

$$u_1 = \int_0^t -\frac{y_2 F(t) dt}{w[y_1, y_2](t)}$$

$$u_2 = \int_0^t \frac{y_1 F(t) dt}{w[y_1, y_2](t)}$$

$$y = y_h + y_p$$

Series Solution

$$y'' + p(x)y' + q(x)y = 0$$
Useful when $p(x), q(x)$ not constant
$$\frac{Guess}{e^x} \quad y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\frac{e^x}{\sin x} \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\frac{\cos x}{\cos x} \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Systems

$\vec{x}' = A\vec{x}$	
A = Ax $A is diagonalizable$	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + \dots +$
	$a_n e^{\lambda_n t} \vec{v_n}$
A is not diagonalizable	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + a_2 e^{\lambda t} (\vec{w} + \vec{v_1})$
	$t ec{v})$
	where $(A - \lambda I)\vec{w} = \vec{v}$
	\vec{v} is an Eigenvector w/ value
	λ
	i.e. \vec{w} is a generalized Eigen-
	vector
$\vec{x}' = A\vec{x} + \vec{B}$	$\frac{\text{vector}}{\text{Solve } y_h}$
$\vec{x}' = A\vec{x} + \vec{B}$	
$\vec{x}' = A\vec{x} + \vec{B}$	Solve y_h
$\vec{x}' = A\vec{x} + \vec{B}$	Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$
$\vec{x}' = A\vec{x} + \vec{B}$	Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$ $\vec{X} = [\vec{x_1}, \vec{x_2}]$

Matrix Exponentiation

$$A^n = SD^nS^{-1}$$

D is the diagonalization of A

Laplace Transforms

$$\begin{split} L[f](s) &= \int_0^\infty e^{-sx} f(x) dx \\ f(t) &= t^n, n \geq 0 & F(s) = \frac{n!}{s^{n+1}}, s > 0 \\ f(t) &= e^{at}, a \ constant & F(s) = \frac{1}{s-a}, s > a \\ f(t) &= \sin bt, b \ constant & F(s) = \frac{b}{s^2+b^2}, s > 0 \\ f(t) &= \cos bt, b \ constant & F(s) = \frac{s}{s^2+b^2}, s > 0 \\ f(t) &= t^{-1/2} & F(s) = \frac{\pi}{s^{1/2}}, s > 0 \\ f(t) &= b(t-a) & F(s) = e^{-as} \\ f' & L[f'] &= sL[f] - f(0) \\ f'' & L[f''] &= s^2L[f] - sf(0) - f'(0) \\ L[e^{at}f(t)] & L[f](s-a) \\ L[u_a(t)f(t-a)] & L[f]e^{-as} \end{split}$$

Gaussian Integral

$$\int_{-\infty}^{+\infty} e^{-1/2(\vec{x}^T A \vec{x})} = \frac{\sqrt{2\pi^n}}{\sqrt{\det A}}$$

Complex Numbers

Systems of equations	If $\vec{w_1} = \vec{u(t)} + i\vec{v(t)}$ is a so-
	lution, $\vec{x_1} = \vec{u(t)}, \vec{x_2} = \vec{v(t)}$
	are solutions
	i.e. $\vec{x_h} = c_1 \vec{x_1} + c_2 \vec{x_2}$
Euler's Identity	$e^{ix} = \cos x + i\sin x$

Vector Spaces
$v_1, v_2 \in V$
$1. v_1 + v_2 \in V$
$2. \ k \in \mathbb{F}, kv_1 \in V$
$3. \ v_1 + v_2 = v_2 + v_1$
4. $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$
5. $\forall v \in V, 0 \in V \mid 0 + v_1 = v_1 + 0 = v_1$
6. $\forall v \in V, \exists -v \in V \mid v + (-v) = (-v) + v = 0$
7. $\forall v \in V, 1 \in \mathbb{F} \mid 1 * v = v$
8. $\forall v \in V, k, l \in \mathbb{F}, (kl)v = k(lv)$

9. $\forall k \in \mathbb{F}, k(v_1 + v_2) = kv_1 + kv_2$

10. $\forall v \in V, k, l \in \mathbb{F}, (k+l)v = kv + lv$