Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 13 Martie 2010

CLASA A X-A SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. Demonstrați următoarele egalități de mulțimi

(i)
$$\{x \in \mathbb{R} \mid \log_2[x] = [\log_2 x]\} = \bigcup_{m \in \mathbb{N}} [2^m, 2^m + 1)$$
.

(ii)
$$\{x \in \mathbb{R} \mid 2^{[x]} = [2^x]\} = \bigcup_{m \in \mathbb{N}} [m, \log_2 (2^m + 1)).$$

Prin [a] s-a notat partea întreagă a numărului real a.

Soluţie.

- (ii) Dacă $[2^x] = t \in \mathbb{N}$, atunci $\log_2 t \le x < \log_2 (t+1) \dots 1$ punct Din $2^{[x]} = t$, rezultă $[x] = \log_2 t = m \in \mathbb{N}$, apoi rezultă şi $m \le x < \log_2 (2^m + 1) \dots 2$ puncte Reciproc, pentru $x \in \bigcup_{m \in \mathbb{N}} [m, \ 2^m + 1)$, avem $[2^x] = 2^{[x]} = m$ 1 punct

Problema 2. Fie $a \in [-2,\infty), \ r \in [0,\infty)$ și numărul natural $n \geq 1.$ Arătați că

$$r^{2n} + ar^n + 1 > (1 - r)^{2n}$$
.

Gazeta Matematică

Solutie.

Problema 3. Determinați funcțiile $f: \mathbb{N} \to \mathbb{N}$ cu proprietatea

$$3f\left(f\left(f\left(n\right)\right)\right)+2f\left(f\left(n\right)\right)+f\left(n\right)=6n, \text{ pentru orice } n\in\mathbb{N}.$$

Solutie.

 $\begin{array}{l} 3f\left(f\left(f\left(0\right)\right)\right) + 2f\left(f\left(0\right)\right) + f\left(0\right) = 0, \ \mathrm{deci} \ f\left(0\right) = 0 \ \dots \dots \mathbf{1} \ \mathbf{punct} \\ \text{Presupunem} \ f\left(0\right) = 0, \ f\left(1\right) = 1, \dots, \ f\left(n\right) = n \ \dots \dots \mathbf{1} \ \mathbf{punct} \\ \text{Din injectivitate,} \ f\left(n+1\right) \geq n+1 \ \dots \dots \mathbf{1} \ \mathbf{punct} \\ \text{si} \ f\left(f\left(n+1\right)\right) \geq n+1, \ f\left(f\left(f\left(n+1\right)\right)\right) \geq n+1 \ \dots \dots \mathbf{1} \ \mathbf{punct} \\ \text{dar} \ 3f\left(f\left(f\left(n+1\right)\right)\right) + 2f\left(f\left(n+1\right)\right) + f\left(n+1\right) = 6n+6 \ \dots \mathbf{1} \ \mathbf{punct} \\ \text{Finalizare,} \ f\left(n\right) = n, \text{ oricare ar fi} \ n \ \dots \dots \mathbf{1} \ \mathbf{punct} \\ \end{array}$

Problema 4. Fie şirul $a_n = \left| z^n + \frac{1}{z^n} \right|, n \ge 1$, unde $z \in \mathbb{C}^*$ este dat.

(i) Demonstraţi că dacă $a_1 > 2$, atunci

$$a_{n+1} < \frac{a_n + a_{n+2}}{2}$$
, pentru orice $n \in \mathbb{N}^*$.

(ii) Demonstrați că dacă există $k \in \mathbb{N}^*$ astfel încât $a_k \leq 2$, atunci $a_1 \leq 2$.

Soluție.

(i)
$$2\left|z^{n+1}+\frac{1}{z^{n+1}}\right|<\left|z+\frac{1}{z}\right|\cdot\left|z^{n+1}+\frac{1}{z^{n+1}}\right|$$
 ... 1 punct $=\left|z^{n}+\frac{1}{z^{n}}+z^{n+2}+\frac{1}{z^{n+2}}\right|\leq\left|z^{n}+\frac{1}{z^{n}}\right|+\left|z^{n+2}+\frac{1}{z^{n+2}}\right|$... 2 puncte (ii) Presupunem prin absurd $a_{1}>2$. Conform cu (i), şirul $a_{n+1}-a_{n}$ este strict crescător ... 1 punct $a_{n+1}-a_{n}>a_{2}-a_{1}=\left|z^{2}+\frac{1}{z^{2}}\right|-\left|z+\frac{1}{z}\right|$... 1 punct $\left|z^{2}+\frac{1}{z^{2}}\right|>\left|z+\frac{1}{z}\right|$, deoarece $2\left|z+\frac{1}{z}\right|<\left|z+\frac{1}{z}\right|^{2}=\left|z^{2}+\frac{1}{z^{2}}+2\right|\leq\left|z^{2}+\frac{1}{z^{2}}\right|+2<\left|z^{2}+\frac{1}{z^{2}}\right|+\left|z+\frac{1}{z}\right|$... 1 punct Şirul a_{n} este strict crescător, deci $a_{k}\geq a_{1}>2$, contradicție .1 punct