

NHẬP MÔN LẬP TRÌNH

GVHD: Trương Toàn Thịnh

- Giới thiệu
- Kiểu dữ liệu, hằng & biến
- Các kiểu dữ liệu cơ sở
- Thư viện hàm
- Định dạng dữ liệu nhập/xuất
- Bài tập

GIỚI THIỆU

• Ví dụ

Dòng	C++	С
1	//Tập tin Hello.cpp	//Tập tin Hello.c
2	#include <iostream></iostream>	#include <stdio.h></stdio.h>
3	using namespace std;	
4	void main()	void main()
5	{	{
6	cout<<"Hello World!!!"< <endl;< td=""><td>printf("Hello World!!!\n");</td></endl;<>	printf("Hello World!!!\n");
7	}	}

GIỚI THIỆU

- Dòng 2: thư viện iostream trong C++ hỗ trợ input/output (tương tự scanf & printf)
- Dòng 3: Sử dụng 'namespace std' để gọi cout (có thể dùng std::cout nếu không có 'namespace std')
- Dòng 6: Dùng cout để in "Hello world" với toán tử "endl" tương tự như '\n'

- Giới thiệu
- Kiểu dữ liệu, hằng & biến
- Các kiểu dữ liệu cơ sở
- Thư viện hàm
- Định dạng dữ liệu nhập/xuất
- Bài tập

- Kiểu dữ liệu
 - C hỗ trợ kiểu
 - · Ký tự (char): ví dụ 'a', 'b'
 - · Số nguyên (int, long): ví dụ 23, 24L
 - Số thực độ chính xác đơn (float): ví dụ 1.2F, 2.2F
 - · Số thực độ chính xác kép (double): ví dụ 1.2, 2.2
 - Mỗi kiểu đều có giá trị min & max
 - Kiểu kí tự & số nguyên sử dụng như nhau
 - Ví dụ: char a = 65
 - Kiểu số nguyên có thể có dấu hay không dấu

• Hằng: là các đại lượng mà giá trị của nó không thay đổi

Địa chỉ cao STACK

- Hằng kí tự: 'a', 'b'
- Hằng số nguyên: 22, 22L
- Hằng số thực: 1.2, 1.2F
- Hàng chuỗi: "hello"

- Định nghĩa tên hằng: ví dụ muốn đặt tên cho đại lượng 3.14 là PI
 - #define PI 3.14 (Ngôn ngữ C)
 - const int PI 3.14; (Ngôn ngữ C++)

- Biến: là các đại lượng mà giá trị của nó có thể thay đổi
 - Ví dụ: int a, char c, float f...
- Qui ước đặt tên biến:
 - ° Gợi nhớ: int dienTich, char kt... Địa chỉ thấp
 - \circ Luôn bắt đầu với ký tự (A \rightarrow Z), dấu gạch chân(_)
 - Cũng có thể tuân thủ theo hợp đồng riêng
- Kích thước kiểu dữ liệu có thể lấy bằng toán tử sizeof với đầu vào là một tên biến hoặc kiểu dữ liệu (Đơn vị là byte)
 - Ví dụ: sizeof(int) (= 4), sizeof(c) (= 1)

HEAP

INITIALIZED DATA

TEXT

• Ví dụ

Dòng	Mô tả
1	//Tap tin Circle.c
2	#include <stdio.h></stdio.h>
3	void main()
4	{
5	#define PI 3.14159
6	float $R = 1.25$;
7	float DienTich;
8	DienTich = PI*R*R;
9	printf("Hinh tron, ban kinh = %f\n", R);
10	printf("Dien tich = %f", DienTich);
11	}

- Dòng 5: Đặt tên cho hằng số 3.14 là PI
- Dòng 6: Khai báo & định nghĩa giá trị cho biến số thực R giá trị là 1.25
- Dòng 7: Khai báo biến số thực DienTich
- Dòng 8: Tính diện tích theo công thức, sau đó gán giá trị cho biến DienTich
- Dòng 9 & 10: Xuất giá trị ra màn hình

• Ví dụ

Dòng	Mô tả
1	//Tap tin varSize.c
2	#include <stdio.h></stdio.h>
3	void main()
4	{
5	short Delta = 9;
6	printf("Kich thuoc delta = %d\n", sizeof(delta));
7	<pre>printf("Kich thuoc kieu int = %d\n", sizeof(int));</pre>
8	printf("Kich thuoc kieu long = %d\n", sizeof(long));
9	<pre>printf("Kich thuoc kieu float = %d\n", sizeof(float));</pre>
10	printf("Kich thuoc kieu char = %d\n", sizeof(char));
11	}

- Có thể khái quát quá trình xử lý vấn đề bao gồm ba bước
 - Nhập dữ liệu
 - Xử lý dữ liệu
 - Xuất kết quả
- Các kí hiệu trong lưu đồ thuật toán

: Bắt đầu/kết thúc (Start/End)

/ : Nhập/xuất (Input/output)

: Xử lý kết quả (Process)

- Giới thiệu
- Kiểu dữ liệu, hằng & biến
- Các kiểu dữ liệu cơ sở
- Thư viện hàm
- Định dạng dữ liệu nhập/xuất
- Bài tập

- Kiểu số nguyên
 - char: ký tự 8-bit có dấu có giá trị ∈ [-128, 127]
 - unsigned char: ký tự không dấu 8-bit có giá trị từ [0, 255]
 - int: số nguyên có dấu 32-bit có giá trị từ $[-2^{31}, 2^{31} 1]$
 - unsigned int: số nguyên không dấu 32-bit có giá trị từ [0, 2³²-1)
 - short: số nguyên có dấu 16-bit có giá trị từ [-32768, 32767]
 - unsigned short: số nguyên không dấu 16-bit có giá trị từ [0, 65535]
- Hỗ trợ các thao tác: +, -, ×, ÷, %
- Cách biểu diễn kiểu số nguyên
 - Dạng thập phân: ví dụ 15₁₀
 - Dạng nhị phân: ví dụ 1111₂
 - Dạng thập lục: ví dụ 0xF
 - Dạng bát phân: ví dụ 17₈

- Ví dụ số nguyên có dấu kích thước 16-bit
 - Xét số âm (bit đầu là 1)

- Ví dụ số nguyên có dấu kích thước 16-bit
 - Xét số dương (bit đầu là 0)

- Các thao tác trên kiểu số nguyên
 - $X \text{ \'et } A = 10_{10} (1010_2) \& B = 15_{10} (1111_2)$
 - \bullet A & B = (1010_2) & (1111_2) = 1010_2 (10_{10})
 - \circ A | B = (1010₂) | (11111₂) = 1111₂ (15₁₀)
 - $^{\circ}$ A $^{\wedge}$ B = (1010₂) $^{\wedge}$ (1111₂) = 0101₂ (5₁₀)
 - ° \sim A = \sim (1010₂) = \sim (00001010₂) = (11110101₂) = -11 (Nhớ công thức \sim (n) = -n-1)
 - $^{\circ}$ A << 1 = (00001010₂) << 1 = (00010100₂) = 20_{10}
 - $^{\circ}$ A >> 1 = (00001010₂) >> 1 = (00000101₂) = 5₁₀
- Xét các trường họp:
 - \circ unsigned char c = -1; // c = 255 = -1 + 256
 - \circ char b = -129; // b = 127 = -129 + 256
 - \circ char a = 128; // a = -128 = 128 256

- Kiểu thực có hai loại
 - float: kích thước 4-byte, có giá trị từ [1.401298×10⁻⁴⁵, 3.40282×10³⁸]
 - double: kích thước 8-byte, có giá trị từ 4.94066×10⁻³²⁴,
 1.79769×10³⁰⁸]
- Hỗ trợ các thao tác +, -, ×, ÷
- Ví dụ: xét số thực 209.8125F
 - \circ 209₁₀ = 11010001₂
 - ∘ $0.8125 \times 2 \rightarrow 1.625 \times 2 \rightarrow 1.25 \times 2 \rightarrow 0.5 \times 2 \rightarrow 1.0$: vậy 0.8125 = 0.1101
 - Vậy 209.8125 = 11010001.1101₂
 - Chuẩn hóa về '1.F': 1.10100011101 (Dời dấu chấm qua trái 7 vị trí).
 - $\mathbf{L\hat{a}y} \ 7 + \mathbf{127} = 134 = 10000110_2$ (Dùng số 'quá 127')
 - Cuối cùng ta có

31 30 23 22 0

- Kiểu luận lý: là kiểu nguyên đặc biệt trong C/C++
- Có hai giá trị $\{\text{true} (\neq 0), \text{ false} (0)\}$
- Hỗ trợ các thao tác:
 - &&: (A && B) true khi hai biểu thức A và B đều true
 - ||: (A || B) false khi hai biểu thức A và B đều false
 - !: (!B) là true khi B false và ngược lại

Ví dụ kiểu luận lý

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	void main(){
3	bool bVal;
4	float $x = 46.7F$, $y = 93F$, z ;
5	bVal = (x == y);
6	printf("%d\n", bVal);
7	bVal = (x < y);
8	printf("%d\n", bVal);
9	z = (x > y)*x + (x <= y)*y;
10	printf("%f\n", z);
11	}

- Kiểu ký tự có hai loại
 - Kí tự 8-bit: kiểu char hay unsigned char
 - Kí tự 16-bit: kiểu wchar_t (Lưu ý đây là kiểu riêng cho kí tự 16-bit nên không xét dấu)
- Ví dụ: char c = 'a'; wchar_t d = L'a';
- Kí tự 8-bit có giá trị [0, 255] ∈ ASCII
- Kí tự 16-bit theo bảng mã Unicode
- Có thể dùng phép toán so sánh và +, với kiểu ký tự

Ví dụ kiểu kí tự

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	void main(){
3	char ch = 65;
4	printf("%c\n", ch);
5	ch = 'A';
6	printf("%c\n", ch);
7	printf("Nhap ch: ");
8	scanf("%c", &ch);
9	printf("ASCII code: %d\n", ch);
10	ch -= ('a' - 'A')*(ch >= 'a' && ch <= 'z');
11	printf("Upper case: %c\n", ch);
12	}

- Phép gán:
 - a = b: giá trị biến b giữ sẽ gán cho biến a (giá trị b và a lúc này bằng nhau)
 - a = b = c: ...
 - a = a + 1: giá trị biến a tăng lên 1, sau đó gán lại cho chính nó (a tăng 1 đơn vị)
 - a++:...
 - ++a:...
 - a = b++: lấy giá trị b gán cho a, sau đó tăng b
 lên 1 đơn vị
 - a = ++b: tăng b lên 1 đơn vị, sau đó lấy giá trị mới tăng đó gán cho a

- Độ lớn & độ chính xác:
 - Kiểu dữ liệu trên máy tính có độ lớn giới hạn.
 - Ví dụ xét hai số nguyên kiểu short

short
$$a = 400$$
, $b = 500$, z ;

$$z = a*b$$
; // $z = 3392 = 200000 \mod 2^{16}$

- Khi số thực vượt quá độ lớn cho phép có thể xảy ra một vài hiện tượng lạ:
- Ví dụ xét số float:
 - Số thực 1.401298E-45F/2=0
 - Số thực: 3.40282E+38F+10=3.40282E+38F

- Độ lớn & độ chính xác:
 - Nếu số thực không biểu diễn được 'trọn vẹn' sẽ có tình trạng xấp xỉ → không chính xác
 - Xét ví dụ biểu diễn được:

Xét ví dụ không biểu diễn được

$$a = 1.123f$$

 $b = 1.456f$
 $c = a + b \neq 2.579f$

- Giới thiệu
- Kiểu dữ liệu, hằng & biến
- Các kiểu dữ liệu cơ sở
- Thư viện hàm
- Định dạng dữ liệu nhập/xuất
- Bài tập

THƯ VIỆN HÀM

- Tập các hàm được viết sẵn để phục vụ cho mục tiêu nào đó được gọi là thư viện hàm
 - Ví dụ thư viện hàm
 - <math.h>: tập các hàm toán học
 - <ctype.h>: tập các hàm xử lý kí tự
- Hàm là một đơn vị xử lý trong lập trình cần đầu vào hợp lệ và sẽ ra một kết quả dựa trên đầu vào.
 - Ví dụ hàm sqrt(double) có
 - Đầu vào là một số thực kiểu double
 - Đầu ra là kết quả của phép tính $\sqrt{\ }$

THƯ VIỆN HÀM

Một số hàm xử lý kiểu char/wchar_t

int isupper(char)	Kiểm tra xem ký tự đầu vào có là
<pre>int iswupper(wchar_t)</pre>	ký tự hoa hay không
char toupper(char)	Trả về ký tự hoa tương ứng với ký
<pre>wchar_t towupper(wchar_t)</pre>	tự thường đầu vào
int islower(char)	Kiểm tra xem ký tự đầu vào có là
<pre>int iswlower(wchar_t)</pre>	ký tự thường hay không
char tolower(char)	Trả về ký tự thường tương ứng với
<pre>wchar_t towlower(wchar_t)</pre>	ký tự hoa đầu vào

THƯ VIỆN HÀM

- Ví dụ viết chương trình tính $y = log_2 8$
- Gợi ý: $\log_a b = \frac{\log_c b}{\log_c a}$

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	#include <math.h></math.h>
3	void main(){
4	double $a = 2, b = 8, c;$
5	$c = \log(8)/\log(2);$
6	printf("%lf\n", c);
7	}

NỘI DUNG

- Giới thiệu
- Kiểu dữ liệu, hằng & biến
- Các kiểu dữ liệu cơ sở
- Thư viện hàm
- Định dạng dữ liệu nhập/xuất
- Bài tập

- Ta có thể qui định cách thức hiến thị trên màn hình console
 - Kiểu số nguyên có dấu
 - Để in số nguyên 'int': dùng "%d"
 - Để in số nguyên dài 'long': dùng "%ld"
 - Để in số nguyên ngắn 'short': dùng "%hd"
 - Kiểu số nguyên không dấu: dùng "%u"
 - Kiểu số thực 'float': dùng "%f" hay "%e"
 - Kiểu số thực dài 'double': dùng "%lf' hay "%le"
 - Kiểu kí tự 'char': dùng "%c"
 - Kiểu chuỗi kí tự 'char*': dùng "%s"
 - Kiểu số nguyên theo cơ số:
 - Cơ số 16: "%x"
 - Cơ số 8: "%o"

• Ví dụ

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	<pre>void main(){</pre>
3	int $a = 28$; long $b = -9$; short $c = 8$;
4	float $d = 1.2E-8F$;
5	printf("%d\n", a);
6	printf("%hd\n", c);
7	printf("%ld\n", b);
8	printf("%o\n", a);
9	printf("%x\n", a);
10	printf("%e\n", c);
11	}

- Ta có thể qui định độ rộng và độ chính xác cho kiểu nguyên và kiểu thực
- Dùng dạng '<bổ từ>width.precision' để xác định kết quả xuất ra
- Ví dụ số thực:

```
float a = 2.335
printf("%0.2f", a);//2.33
```

Ví dụ số nguyên với bổ từ '0':

```
int a = 2;
printf("%05d", a);//000002
```

• Còn một số bổ từ như '-' hay '*'...

- Định dạng nhập xuất với C++:
 - Được thực hiện với hai đối tượng cin và cout kết hợp toán tử ">>" và "<<"
 - Cần khai báo
 - #include <iostream>
 - using namespace std;
 - Khi muốn định dạng dữ liệu xuất cần khai báo thêm #include <iomanip>. Thư viện chứa một số toán tử và hàm tiện ích
 - setw(n): thiết lập độ rộng (bên trái hay bên phải) để in ra đúng n ký tự ra màn hình (mặc định chèn khoảng trắng)
 - setfill(ch): thường dùng kèm với setw để in ra n ký tự ch
 - setprecision(n): xác định độ chính xác khi in ra số thực
 - Ngoài ra còn có các toán tử hex, oct, endl, left, right

- Định dạng nhập xuất với C++:
 - Ví dụ
 - #include <iostream>
 - #include <iomanip>
 - void main(){
 - int a = 970, h = 10, v = 9700;
 - cout << setw(8) << "Area" << setw(10) << a << endl;
 - cout << setw(8) << "H" << setw(10) << h << endl;
 - cout << setw(8) << "Volume" << setw(10) << v << endl;
 - Kết quả khi chạy chương trình
 Area 970
 H 10
 Volume 9700

8 ký tự 10 ký tự

- Định dạng nhập xuất với C++:
 - Ví dụ
 - #include <iostream>
 - #include <iomanip>
 - void main(){
 - long n;
 - cout << "n (hexadecimal) = ";
 - cin >> hex >> n;
 - cout << "Octal representation: " << oct << n << endl;
 - Kết quả khi chạy chương trình n (hexadecimal) = 8 ↓
 Octal representation: 10

- Giới thiệu
- Kiểu dữ liệu, hằng & biến
- Các kiểu dữ liệu cơ sở
- Thư viện hàm
- Định dạng dữ liệu nhập/xuất
- Bài tập

BÀI TẬP

- Viết các chương trình thực hiện một số công việc sau đây
 - Cho người dùng nhập năm sinh, in ra tuổi
 - Cho người dùng nhập kí tự, in ra kí tự hoa
 - Cho người dùng nhập số tiền cần rút, in ra số lượng tiền xuất ra theo mệnh giá: 500,000 200,000 100,000 50,000 20,000 10,000
 - Ví dụ: 2,600,000đ = $5 \times 500,000 + 0 \times 200,000 + 1 \times 100,000 + 0 \times 50,000 + 0 \times 20,000 + 0 \times 10,000$