T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte III)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, aprendemos que a classificação linear é feita usando-se uma *função discriminante*, que nada mais é do que um *polinômio*, que tem sua saída passada através de outra função chamada de *função de limiar*.
- Como na regressão linear, o problema da classificação está em encontrar os pesos da função discriminante de tal forma que as classes sejam separadas da melhor forma possível.
- Vimos que a função de limiar mais simples é a de *limiar rígido*, porém, ela apresenta alguns problemas como não poder ser utilizada para encontrar uma solução fechada ou com gradiente descendente e não nos dar a confiança de um resultado de classificação.
- Aprendemos também, uma forma intuitiva e iterativa de encontrar os pesos da *função discriminante* quando usamos o *limiar rígido*.
- Na sequência, introduziremos outra função de limiar, chamada de *função logística*, com a qual é possível se encontrar soluções fechada e com o gradiente descendente.

Classificação linear com função de limiar logístico

- Como discutimos anteriormente, a *função hipótese*, $h_a(x) = f(g(x))$, com *limiar de decisão rígido* é descontínua em g(x) = 0 e tem derivada igual a zero para todos os outros valores de g(x).
- Além disso, o *classificador* sempre faz *previsões* completamente confiantes das classes (i.e., 0 ou 1), mesmo para exemplos muito próximos da *fronteira de decisão*.
- Em muitas situações, nós precisamos de previsões mais graduadas, que indiquem incertezas quanto à classificação.
- Todos esses problemas podem ser resolvidos com a suavização da função de limiar rígido através de sua aproximação por uma função que seja contínua, diferenciável e assuma valores reais dentro do intervalo de 0 a 1.

Classificação linear com função de limiar logístico

• A *função logística* (ou *sigmóide*), mostrada na figura ao lado e definida como

$$Logistic(z) = \frac{1}{1 + e^{-z}} \in [0, 1],$$

apresenta tais propriedades matemáticas.

Utilizando a função logística como função de limiar, temos

$$h_{a}(x) = Logistic(x^{T}a) = \frac{1}{1 + e^{-x^{T}a}} \in [0, 1].$$

- A saída será um número real entre 0 e 1, o qual pode ser interpretado como uma **probabilidade** de um dado exemplo pertencer à classe C_2 (ou seja, à **classe positiva**).
- A nova *função hipótese*, $h_a(x)$, forma uma *fronteira de decisão suave*, a qual confere a probabilidade de 0.5 para exemplos em cima da *fronteira de decisão* e se aproxima de 0 ou 1 conforme a posição do exemplo se distancia da fronteira.

A função logística realiza um mapeamento $\mathbb{R} \to [0,1]$.

Quanto mais longe da *fronteira de decisão*, mais próximo o valor de saída da *função hipótese* será de 0 ou de 1 e, portanto, mais certeza teremos sobre uma classificação.

Regressão logística

- Um classificador com função de limiar logístico é conhecido como regressor logístico.
- O regressor logístico é um algoritmo para classificação binária.
- Ele é ótimo para situações em que precisamos classificar entre duas classes, negativa (C_1) e positiva (C_2) .
- O *regressor logístico* estima a *probabilidade* de um exemplo pertencer a uma classe específica.
 - Por exemplo, qual é a probabilidade de uma dado email ser spam?
- Normalmente, se quantiza a saída da *função hipótese*, $h_a(x)$, em dois valores, 0 ou 1.
- Se a probabilidade estimada para um exemplo for igual ou maior que 50%, o classificador prediz que o exemplo pertence à classe positiva, rotulada como 1, ou então prediz que não pertence, ou seja, pertence à classe negativa, rotulada como 0.
- Ou seja, a saída quantizada do *regressor logístico* é dada por

Classe =
$$\hat{y} = \begin{cases} 0 \text{ (classe } C_1 - \text{Negativa), se } h_a(x) < 0.5 \\ 1 \text{ (classe } C_2 - \text{Positiva), se } h_a(x) \ge 0.5 \end{cases}$$

Regressão logística

- Note que Logistic(z) < 0.5 quando z < 0 e $Logistic(z) \ge 0.5$ quando $z \ge 0$, portanto, o modelo de **regressão logística** prediz a classe positiva, C_2 , (i.e., $\hat{y} = 1$) se $g(x) = x^T a \ge 0$ e C_1 (i.e., $\hat{y} = 0$) se $g(x) = x^T a < 0$.
- Como vimos, a *regressão logística* funciona usando uma *combinação linear* dos *atributos*, para que várias fontes de informação (i.e., atributos) possam ditar a saída do modelo.
- Os parâmetros do modelo são os pesos associados aos vários atributos e representam sua importância relativa para o resultado.
- Mesmo sendo uma técnica bastante simples, a regressão logística é muito utilizada em várias aplicações do mundo real em áreas como medicina, marketing, análise de crédito, saúde pública entre outras.
- Além disto, toda a teroria por trás da *regressão logística* foi a base para a criação das primeiras *redes neurais*.

Propriedades da regressão logística

- Os valores de saída da *função hipótese*, $h_a(x)$, ficam restritos ao intervalo $0 \le h_a(x) \le 1$.
- A saída de $h_a(x)$ representa a **probabilidade** do vetor de atributos x pertencer à classe positiva, C_2 , para qual a saída quantizada desejada é y=1.
- Ou seja, $h_a(x)$ dá a probabilidade condicional da *classe positiva*, C_2 , i.e., $h_a(x) = P(C_2 \mid x; a)$.
- Assim, consequentemente, $(1 h_a(x)) = P(C_1 \mid x; a)$ é a probabilidade condicional da classe negativa, C_1 .
- A *fronteira de decisão* é determinada quando há uma *indecisão* entre as classes, ou seja, quando $P(C_1 \mid x; a) = P(C_2 \mid x; a)$, que ocorre quando $P(C_2 \mid x; a) = h_a(x) = 0.5$.
- Observando a figura da *função logística*, nós percebemos que Logistic(z) = 0.5 quando z = 0.
- Desta forma, a *fronteira de decisão* é caracterizada por

$$g(\mathbf{x}) = \mathbf{x}^T \mathbf{a} = 0,$$

onde g(x), como vimos antes, pode ser uma reta, um plano, um círculo, etc.

Função de erro

- Para treinarmos um *regressor logístico* e encontrar os **pesos** da **função hipótese**, nós precisamos, assim como fizemos com a *regressão linear*, definir uma *função de erro*.
- Porém, adotar o *erro quadrático médio* como *função de erro* não é uma boa escolha para a *adaptação dos pesos* no caso da *regressão logística* como veremos a seguir.
- A *função de erro* utilizando o *erro quadrático médio* é dada por

$$J_e(a) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - h_a(x))^2 = \frac{1}{N} \sum_{i=1}^{N} (y(i) - Logistic(x^T a))^2.$$

- Como Logistic(.) é uma função não-linear, $J_e(a)$ não será, consequentemente, uma função convexa, de forma que a superfície de erro poderá apresentar vários mínimos locais que vão dificultar o aprendizado (e.g., o algoritmo pode ficar preso em um mínimo local).
- Ideia: encontrar uma função de erro que tenha superfície de erro resultante convexa.
- Uma proposta *intuitiva* para a *função de erro* para cada exemplo de entrada é dada por

$$Erro(h_a(\mathbf{x}(i)); y(i)) = \begin{cases} -\log(h_a(\mathbf{x}(i))), & \text{se } y(i) = 1\\ -\log(1 - h_a(\mathbf{x}(i))), & \text{se } y(i) = 0 \end{cases}$$

Veremos a seguir o motivo desta escolha.

Função de erro

- As figuras ao lado mostram as duas situações possíveis para a função de erro.
- Como podemos observar, a penalização aplicada a cada saída reflete o erro de classificação.

- O uso dessa *função de erro* faz sentido pois:
 - O valor de $-\log(z)$ se torna muito grande quando z se aproxima de 0, então o erro será grande se o classificador estimar uma probabilidade próxima a 0 para um exemplo positivo (i.e., pertencente à classe C_2)
 - O valor de $-\log(1-z)$ será muito grande se o classificador estimar uma probabilidade próxima de 1 para um exemplo negativo (i.e., pertencente à classe C_1).
 - Por outro lado, $-\log(z)$ se torna próximo de 0 quando z se aproxima de 1, portanto, o erro será próximo de 0 se a probabilidade estimada for próxima de 1 para um exemplo positivo.
 - O valor $-\log(1-z)$ se torna próximo de 0 quando z se aproxima de 0, portanto, o erro será próximo de 0 para um exemplo negativo.

Função de erro

 Nós podemos reduzir a definição da função de erro para cada exemplo a uma expressão única, dada por

$$Erro\left(h_{a}\big(x(i)\big);y(i)\right) = \underbrace{-y\log(h_{a}\big(x(i)\big))}_{\text{S\'o exerce influência no erro se }y(i)=1} \underbrace{-(1-y(i))\log(1-h_{a}\big(x(i)\big))}_{\text{S\'o exerce influência no erro se }y(i)=1}.$$

• Com isto, podemos definir a seguinte função de erro médio:

$$J_{e}(\mathbf{a}) = -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \log \left(h_{a}(\mathbf{x}(i)) \right) + \left(1 - y(i) \right) \log \left(1 - h_{a}(\mathbf{x}(i)) \right)$$

$$= -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \log(P(C_{2} \mid \mathbf{x}(i); \mathbf{a})) + \left(1 - y(i) \right) \log(P(C_{1} \mid \mathbf{x}(i); \mathbf{a})).$$

- A má notícia é que não existe uma equação de forma fechada para encontrar os pesos que minimizem essa função de erro (ou seja, não há um equivalente da equação normal).
- A boa notícia é que essa função de erro é convexa e portanto, é garantido que o algoritmo do gradiente descendente encontre o mínimo global (dado que a taxa de aprendizagem não seja muito grande e você espere tempo suficiente).

Processo de treinamento

- Semelhante ao que fizemos com a regressão linear, usamos o algoritmo do gradiente descendente para encontrar os pesos que minimizam a função de erro médio.
- A atualização iterativa dos pesos é dada por

$$a = a - \alpha \frac{\partial J_e(a)}{\partial a}.$$

• O $vetor\ gradiente$ da $função\ de\ erro\ médio\$ é dado por N-1

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T$$

- De posse do *vetor gradiente*, podemos usá-lo no algoritmo do *gradiente descendente* (nas versões em batelada, estocástico ou mini-batch).
- Percebam que o vetor gradiente da função de erro médio para a regressão logística é similar àquele obtido para a regressão linear com a função de erro quadrático médio.
 Exemplo: logistic regression with gradient descent.ipynb

Observações

- Como vimos, a função hipótese, $h_a(x)$, pode assumir a forma de um **polinômio** e, muitas vezes, nós não sabemos qual a melhor ordem para este polinômio.
- Assim, como nós discutimos no caso da regressão linear, modelos de regressão logística também estão sujeitos à ocorrência de sobreajuste e subajuste.
 - Na primeira figura, a falta de flexibilidade da reta usada faz com que o erro de classificação seja alto.
 - Na última figura, a flexibilidade excessiva do modelo (explorando um polinômio de ordem elevada) dá origem a contorções na *fronteira de decisão* na tentativa de minimizar o erro de classificação junto aos dados de treinamento. Porém, o modelo ficou mais susceptível a erros de classificação para novos dados, ou seja, não irá generalizar bem.
 - Já a figura do meio mostra o que seria uma boa *hipótese de classificação*.
- Por isso, *técnicas de regularização* (e.g., LASSO, Ridge, Elastic-Net, Early-stop) também podem ser empregadas em seu treinamento, assim como *validação cruzada*.

Tarefas

- Quiz: "T320 Quiz Classificação (Parte III)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #3.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Atividades podem ser feitas em grupo, mas as entregas devem ser individuais.

Obrigado!

