Review: Random Variables

- * A **random variable** represents a <u>random quantity</u> that depends on the <u>outcome</u> of <u>a random experiment</u>.
- * Example: Let N be the number of satisfied clauses of a 3CNF formula ϕ when we generate an assignment of ϕ by assigning its variables T/F independently and uniformly at random.

$$\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

Outcome	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
Sat?	NNY	NNY	NYY	NYY	YNY	YNY	YYY	YYN
N	1	1	2	2	2	2	3	2

Review: Distribution of an RV

- The **probability** that a random variable is equal to a <u>fixed</u> value is the sum of the probabilities of all outcomes that result in that value occurring.
- **Example:** Let N be the number of satisfied clauses of a 3CNF formula φ when we generate an assignment of ϕ by assigning its variables T/F independently and uniformly at random.

$$\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

Outcome	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
Sat?	NNY	NNY	NYY	NYY	YNY	YNY	YYY	YYN
N	1	1	2	2	2	2	3	2

$$Pr[N = 1] = \frac{2}{8}$$
 $Pr[N = 2] = \frac{5}{8}$ $Pr[N = 3] = \frac{1}{8}$

$$\Pr[N=2] = \frac{5}{8}$$

$$\Pr[N = 3] = \frac{1}{8}$$

(Pr[each outcome] = 1/8)

Review: Expected value of an RV

- * The **expected value** of a random variable is the <u>weighted</u> average of its values (weight of value = its probability).
- * Example: Let N be the number of satisfied clauses of a 3CNF formula ϕ when we generate an assignment of ϕ by assigning its variables T/F independently and uniformly at random.

$$\phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

(Outcome	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
	Sat?	NNY	NNY	NYY	NYY	YNY	YNY	YYY	YYN
	N	1	1	2	2	2	2	3	2

$$Pr[N = 1] = \frac{2}{8}$$
 $Pr[N = 2] = \frac{5}{8}$ $Pr[N = 3] = \frac{1}{8}$

$$\mathbb{E}[N] = 1 \cdot \frac{2}{8} + 2 \cdot \frac{5}{8} + 3 \cdot \frac{1}{8} = \frac{1}{8}(1 + 1 + 2 + 2 + 2 + 2 + 3 + 2)$$

SOHECE CSE

On average, a random assignment satisfies 15/8 clauses of ϕ .

Review: Linearity of Expectation

Observation: The number of clauses satisfied by the resulting assignment is $N = N_1 + N_2 + N_3 + \cdots + N_m$.

- * Linearity of expectation: If $N=N_1+N_2+\cdots+N_m$, then $\mathbb{E}[N]=\mathbb{E}[N_1]+\mathbb{E}[N_2]+\cdots+\mathbb{E}[N_m]$
- * **Example:** Fix a 3CNF formula $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$. Suppose we generate an assignment of ϕ by setting its variables to T/F independently, unif. at random.
 - * For $1 \le i \le m$, let N_i be the indicator random variable for whether clause C_i is satisfied by the assignment.

$$\Phi = (x \lor x \lor x) \land (y \lor y \lor y) \land (\neg x \lor \neg y \lor \neg z)$$

Outcor	me	FFF	FFT	FTF	FTT	TFF	TFT	TTF	TTT
$(N_1,N_2,$	N_3	(0,0,1)	(0,0,1)	(0,1,1)	(0,1,1)	(1,0,1)	(1,0,1)	(1,1,1)	(1,1,0)
N		1	1	2	2	2	2	3	2

$$\mathbb{E}[N_1] = 1/2$$
 $\mathbb{E}[N_2] = 1/2$ $\mathbb{E}[N_3] = 7/8$ $\mathbb{E}[N] = \mathbb{E}[N_1] + \mathbb{E}[N_2] + \mathbb{E}[N_3] = 15/8$

Review: Independence

- * An event is a set of outcomes.
- * Example: Let *V* be an RV for the value when rolling two dice.
 - * V = 5 is an event: the set of outcomes $\{(1,4), (2,3), (3,2), (4,1)\}$
 - * Pr[V = 5] = 4/36 = 1/9
- * Informally: Two events are *independent* if the occurrence of one does not affect the probability of the other occurring.
- * Formally: Events A and B are independent if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$.
- * Alternatively: $Pr[A|B] \coloneqq Pr[A \cap B]/Pr[B] = probability of A given (conditioned on) B.$
 - * A and B are **independent** if $Pr[A \cap B] = Pr[A]$.
- * A <u>collection of random variables</u> $Z_1, ..., Z_n$ is **independent** if for <u>every</u> $b_1, ..., b_n : \Pr[Z_1 = b_1, ..., Z_n = b_n] = \prod_i \Pr[Z_i = b_i]$.

Markov's Inequality

- * Example: The average score on the midterm was 60. What's the maximum fraction of students that got a score of at least 90 (assuming no negative scores)?
 - * 1/2? 6/9? 3/4? 99/100?
- * Markov's Inequality: If X is a <u>non-negative</u> random variable and a > 0, then $\Pr[X \ge a] \le \mathbb{E}[X]/a$.

Variance

* The **variance** of a random variable X is the average squared-distance of X from its mean, i.e., $\mathbf{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

* The **standard deviation** is $SD(X) = \sqrt{Var(X)}$ (it's an upper bound on the average distance of X from $\mathbb{E}[X]$).

Chebyshev's Inequality

 $\mathbf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

* (Recall) Markov's Inequality: For a <u>non-negative</u> RV X and a > 0:

$$\Pr[X \ge a] \le \mathbb{E}[X]/a$$

* Chebyshev's Inequality: For any RV X and a, b > 0:

$$\Pr[|X - \mathbb{E}[X]| \ge a] \le \mathbf{Var}(X)/a^2$$

$$\Pr[|X - \mathbb{E}[X]| \ge b \cdot \mathbf{SD}(X)] \le 1/b^2$$

(proof by applying Markov to $Y = (X - \mathbb{E}[X])^2$)

Chernoff-Hoeffding Bounds

(Often tighter than Chebyshev)

* If $X = X_1 + X_2 + \cdots + X_n$ is the sum of n *i.i.d.* RVs with each $X_i \in [0, 1]$, then, for any $\varepsilon > 0$:

