Práctica: CAPÍTULO 3 - ORTOGONALIDAD (segunda parte)

Cuando no se especifica lo contrario, el producto interno en \mathbb{R}^n es x^Ty y el espacio vectorial \mathbb{R}^n se considera con suma y producto por escalares habituales.

1. En cada uno de los siguientes casos, considerar a L como el subespacio de \mathbb{R}^3 tal que $L=\langle a\rangle$. Calcular $proy_{s/L}$ b y comprobar que el vector $b-proy_{s/L}$ b es perpendicular al vector a.

$$a) \ b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \text{ y } a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

b)
$$b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
 $y a = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$.

- 2. Sea W un subespacio vectorial de V y $\{w^1, \ldots, w^p\}$ base ortogonal de W. Sea $v \in V W$, probar que $v proy_{s/W} v$ es perpendicular a w para todo $w \in W$.
- 3. Sea W un subespacio de \mathbb{R}^n con una base ortogonal $\{w^1,\ldots,w^p\}$ y sea $\{v^1,\ldots,v^q\}$ una base ortogonal de W^\perp .
 - a) Explicar por qué $\{w^1,\ldots,w^p,v^1,\ldots,v^q\}$ es un conjunto ortogonal.
 - b) Explicar por qué el conjunto definido en el ítem anterior genera \mathbb{R}^n . Sugerencia: Utilizar el ejercicio anterior.
 - c) Demostrar que $\dim W + \dim W^{\perp} = n$.
- 4. a) Sean $v^1=(2,1), v^2=(-1,1)\in\mathbb{R}^2$. Aplicar el proceso de Gram-Schmidt y encontrar una base ortogonal $\{w^1,w^2\}$ en \mathbb{R}^2 . Dibujar los vectores v^1,v^2,w^1 y w^2 .
 - b) Sean $v^1=(1,0,0), v^2=(1,1,1), v^3=(1,1,2)\in\mathbb{R}^3$. Aplicar el proceso de Gram-Schmidt y encontrar una base ortogonal $\{w^1,w^2,w^3\}$ en \mathbb{R}^3 . Dibujar los vectores v^1,v^2,v^3,w^1,w^2 y w^3 .
- 5. a) Encontrar un conjunto ortonormal q^1, q^2, q^3 para el cual q^1 y q^2 generan el espacio columna de:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

- b) ¿Cuál es el espacio asociado a A que contiene a q^3 ?
- 6. Sea W el subespacio de \mathbb{R}^4 generado por $v^1=\begin{bmatrix}3\\1\\-1\\1\end{bmatrix}$ y $v^2=\begin{bmatrix}1\\-1\\1\\-1\end{bmatrix}$.
 - a) Si $y = (3, 1, 5, 1)^T$, escribirlo como la suma de un vector en W y uno en W^{\perp} .
 - b) Si $y = (3, -1, 1, 13)^T$, encontrar el punto más cercano a y en W.
- 7. Sea V el subespacio de \mathbb{R}^4 generado por los vectores $v^1 = (1, -1, 0, 0)^T$ y $v^2 = (0, 1, -1, 0)^T$.
 - a) Hallar una base ortonormal para V.
 - b) Hallar una base para V^{\perp} .
 - c) Extender la base hallada en a) a una base ortonormal de \mathbb{R}^4 .
- 8. Sean

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 0 \\ 0 & 0 \end{bmatrix} \qquad \text{y} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}.$$

- a) Probar que Ax = b es un sistema inconsistente.
- b) Encontrar las ecuaciones normales asociadas al sistema.
- c) Encontrar \hat{x} , la solución que minimiza el error ||b Ax||.
- d) Calcular el error.
- e) Encontrar \tilde{b} , la paroyección de b sobre el espacio columna de A.
- 9. Sea A una matriz de tamaño $n \times k$ con columnas l.i.. Probar que $A^T A$ es inversible.
- 10. Sea A una matriz de tamaño $n \times k$ con columnas l.i. y P la matriz de proyección sobre C(A). Probar que P es simétrica e idempotente (i.e $P^2 = P$ y $P^T = P$). Recíprocamente, probar que toda matriz simétrica e idempotente es una matriz de proyección.

Ayuda: Para probar la recíproca, probar que Pb es la proyección de b sobre C(P).

11. Sean
$$u^1=\left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)^T$$
, $u^2=\left(-\frac{2}{3},\frac{2}{3},\frac{1}{3}\right)^T$ y $U=[u^1u^2]$.

- a) Calcular $U^T U$ y UU^T .
- b) Sean $y=(4,8,1)^T$ y W=C(U). Calcular $proy_{s/W}$ y y $(UU^T)y$.
- 12. a) Hallar una base ortogonal para el subespacio S de \mathbb{R}^4 generado por todas las soluciones de:

$$x_1 + x_2 + x_3 - x_4 = 0.$$

- b) Calcular una base para S^{\perp} .
- c) Encontrar $u \in S$ y $v \in S^{\perp}$ tales que $u + v = w = (1, 1, 1, 1)^T$.
- 13. Sean

$$u^1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \qquad u^2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad \text{y} \qquad b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}.$$

- a) Hallar la matriz de proyección sobre el espacio $W = \langle \{u^1, u^2\} \rangle$.
- b) Calcular la proyección de b sobre W^{\perp} .
- c) Hallar la matriz de proyección sobre el espacio W^{\perp} .
- 14. Hallar la matriz de proyección sobre el plano 2x + y z = 0 de \mathbb{R}^3 .
- 15. Determinar los valores a, b, \ldots, f de manera que las siguientes matrices sean ortogonales.

a)
$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & a \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & b \\ \frac{1}{\sqrt{2}} & 0 & c \end{bmatrix}.$$

b)
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & d \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & e \\ 0 & 0 & f \end{bmatrix}.$$

16. a) Encontrar c, x_1 , x_2 , x_3 y x_4 de modo que la matriz

$$Q = c \begin{bmatrix} 1 & -1 & -1 & x_1 \\ -1 & 1 & -1 & x_2 \\ -1 & -1 & -1 & x_3 \\ -1 & -1 & 1 & x_4 \end{bmatrix}$$

sea ortogonal.

b) Obtener la proyección del vector $b = (1, 1, 1, 1)^T$ sobre el espacio generado por la primer columna de Q. Luego proyectar b sobre el espacio generado por las dos primeras columnas de Q.

- 17. Sea A una matriz de columnas l.i. y tamaño $k \times n$. Sea Q la matriz que se obtiene ortonormalizando las columnas de A.
 - a) Probar que $R = Q^T A$ es triangular superior inversible.
 - b) Probar que A = QR.
- 18. a) ¿Qué múltiplo de $a^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ debe restarse a $a^2 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ para que el resultado sea ortogonal a a^1 ?
 - b) Encontrar una factorización QR de $A=\begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$.
- 19. Sea

$$A = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right].$$

Encontrar una factorización QR de A.

- 20. Sea Q una matriz ortogonal $n \times n$. Probar que:
 - a) $Q^T = Q^{-1}$.
 - b) Para todo $x \in \mathbb{R}^n$, ||Qx|| = ||x||.
- 21. Sean $V = \mathcal{C}\left([-1,1]\right)$ con el producto interno $\langle f,g \rangle = \int\limits_{-1}^{1} f\left(x\right)g\left(x\right) \; dx, B = \{p_0,p_1,p_2,p_3\}$ donde $p_j: [-1,1] \to \mathbb{R}/p_j\left(x\right) = x^j, j = 0,1,2,3 \text{ y } W = \langle B \rangle.$
 - a) Aplicar el proceso de ortogonalización de Gram-Schmidt y obtener una base ortogonal B' de W.
 - b) Sea $f \in V$ tal que f(x) = sen(x) para todo $x \in [-1, 1]$. Obtener $proy_{s/W} f$. Ayuda: Evitar el cálculo de las integrales usando las siguientes identidades:

$$\int_{-1}^{1} sen(x) dx = 0$$

$$\int_{-1}^{1} x sen(x) dx = 2 sen(1) - 2 cos(1) \left(\simeq \frac{3}{5} \right)$$

$$\int_{-1}^{1} x^{2} sen(x) dx = 0$$

$$\int_{-1}^{1} x^{3} sen(x) dx = 10 cos(1) - 6 sen(1) \left(\simeq \frac{1}{3} \right)$$

c) ¿Cuál es la recta más próxima a la parábola $y=x^2$?

Ayuda: Considerar $Z=\langle\{p_0,p_1\}\rangle$ el conjunto de rectas y $f\in V$ tal que $f(x)=x^2$.