Ponto extra: 11/12/2024 - Tentar reduzir o número de pontos para algo abaixo de 7

Exemplo original do Kleinberg (Slide 005DivideAndConquer1 pág 73)

Definição: Seja s_i um ponto na faixa de tamanho 2δ , com a i-ésima menor coordenada y.

Afirmação: Se |j-i| > 7, então a distância entre s_i e s_j é pelo menos δ .

Prova:

- Considere um retângulo R de 2δ por δ na faixa cuja mínima coordenada y é a coordenada y do ponto s_i .
- A distância entre s_i e qualquer ponto s_i acima de R é $\geq \delta$.
- Subdivida R em 8 quadrados.
- Haverá no máximo 1 ponto por quadrado. (O diâmetro é $\delta/\sqrt{2} < \delta$)
- No máximo **7** outros pontos podem estar em R.
 - o A constante pode ser aprimorada com um argumento mais refinado de geometric packing.

Postulado: Dado que δ é a menor distância entre dois pontos dentro do problema dividido de menores distâncias por meio de divisão e conquista. Se |j-i|>7, então a distância entre s_i e s_j é pelo menos δ .

Ponto extra: fazer uma prova para reduzir a constante de quantos pontos podem ser comparados dentro da faixa cinza e que podem ser menores que delta.

Solução: apenas analisar os quadrados do lado oposto

Como estamos buscando o menor valor, teremos que, caso a distância entre dois pontos de um mesmo lado tenha valor menor que δ , isso o tornaria o novo δ , sendo assim, consideramos que o menor valor entre dois pontos de um mesmo lado do L, não pode ser menor que δ .

Com isso, entendemos que a menor distância entre qualquer par de pontos pertencente ao intervalo $[L-\delta,L]$ ou ao intervalo $[L,L+\delta]$ é δ . Então, para potencialmente encontrarmos uma solução menor que δ , para um ponto pertencente ao lado esquerdo de L, para cada um dos pontos, precisamos apenas analisar os pontos do lado oposto ao qual ele se encontra.

Assim, considerando ainda a partição em quadrantes, reduz-se o número máximo de pontos a serem
comparados para 4.