E.M.E

Chapter 3: EQUIVALENCE RELATIONS

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- determine properties of a partition of a set A under an equivalence relation
- determine a partition of a set A under a given equivalence relation
- define a transversal of an equivalence relation
- determine a transversal of a set A under a given equivalence relation
- ÷

PARTITIONS

Theorem (3.2.1)

Let $A \neq \emptyset$ and \approx be an equivalence relation on a set A, and $a, b \in A$. Then

"a is related to a"

(i) $a \in [a]$, $\forall a \in A$.

Proof: $a \approx a \quad \forall a \in A$ by reflexive prop

$$\Rightarrow$$
 $a \in [a], \forall a \in A.$

$$\Rightarrow$$
 [a] $\neq \emptyset$.

(ii) [a] = [b] if and only if $a \approx b$.

$$\Rightarrow) \qquad [a]=[b] \Rightarrow a \approx b$$

$$\iff a \approx b \Rightarrow [a]=[b]$$

Proof : \Rightarrow

 $[a] = [b] \Rightarrow b \in [a] \Rightarrow b \approx a \Rightarrow a \approx b$ by symmetric prop

 \Leftarrow

 $a \approx b \Rightarrow b \approx a$ symmetric prop $\Rightarrow a \in [b]$ and $b \in [a]$. Now $c \in [a] \Rightarrow c \approx a$, but $a \approx b$ therefore $c \approx b$ by transitive prop $\Rightarrow c \in [b] \Rightarrow [a] \subseteq [b]$. Similarly, $[b] \subseteq [a]$ so [a] = [b].

(iii) If $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$. Proof: (proving contrapositive) $c \in [a] \cap [b] \Rightarrow c \in [a] \text{ and } c \in [b]$ $\Rightarrow c \approx a \text{ and } c \approx b$ $\Rightarrow a \approx b \text{ by transitivity prop}$ $\Rightarrow [a] = [b] \text{ by part(ii)}.$

 \therefore [a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset .

assume the contrary to the given condition, i.e. assume that the intersection is non empty and reach a contradiction.

(iv) If $a \in C$ where C is any equivalence class then C = [a]. Let C be an equivalence class in A such that C = [b]. If $a \in C \Rightarrow a \in [b] \Rightarrow a \approx b \Rightarrow [a] = [b] = C$ by part(ii). e.g. On \mathbb{Z} , $a \approx b$ iff a - b = 2k, $k \in \mathbb{Z}$ [0] = [2] = [-8] [1] = [-1] = [-99]

Part 2 E.M.B

Recall definition of a partition from chapter 1 If A is a non-empty set, a family or collection Σ of subsets of A is a partition of A, with the elements in Σ called cells, if

(i) no cell $A_i \in \Sigma$ is empty. That is $A_i \neq \emptyset$ for all $A_i \in \Sigma$. [Theorem 0.1 part(i)]

Part 2 E.M.B

- the cells are pair-wise disjoint. That is : $A_i \cap A_j = \emptyset$ for all A_i and A_j in the partition Σ . [Theorem 0.1 part(iii)]
- every element of A belongs to some cell. That is: If $a \in A_i$ for some $A_i \in \Sigma$. By (ii) above a will belong to exactly one cell in the partition. We can write A as the union of the cells in the partition as follows: $A \bigcup_{A_i \in \Sigma} A_i$. [Theorem 0.1 part(i)]

E.M.B

Hence, if $A \neq \emptyset$ and \approx is an equivalence relation on A, then $\Sigma = A_{\approx} = \{C | \quad C \text{ is an equivalence class of } A\}$ is a partition of A.

Example:Let
$$A = \mathbb{Z}$$
, $a \approx b$ iff $a - b = 2k$, $k \in \mathbb{Z}$ $\Sigma = \{[0], [1]\}$.
$$\Sigma = \{[0], [1]\}$$

Definition (3.2.2 TRANSVERSAL)

Let Σ be the set of disjoint, distinct equivalence classes of A under \approx . Let τ be a set consisting of exactly one element from each equivalence class. Then the set τ is called a Transversal to A under \approx

e.g. On
$$\mathbb{Z}$$
, $a \approx b$ iff $a - b = 2k$, $k \in \mathbb{Z}$
 $\tau = \{0, 1\} = \{-110, 99\}.$
 $[0] \cup [1] = \mathbb{Z}$ and $[0] \cap [1] = \emptyset.$