Generalizing the linear mixed model to factorial designs

Tanner Sorensen

University of Potsdam, Potsdam, Germany

Shravan Vasishth

University of Potsdam, Potsdam, Germany, and School of Mathematics and Statistics, University of Sheffield, Sheffield, UK

July 22, 2015

The Gibson and Wu (2013) data-set has a two-condition design. This section presents a varying intercepts, varying slopes model for a 2×2 factorial design. Because of the more general matrix formulation we use here, the Stan code can be deployed with minimal changes for much more complex designs, including correlational studies.

Our example is the 2×2 repeated measures factorial design of Husain, Vasishth, and Srinivasan (2014, Experiment 1), also a self-paced reading study on relative clauses. The dependent variable was the reading time rt of the relative clause verb. The factors were relative clause type, which we code with the predictor so (so = +1 for object relatives and so = -1 for subject relatives) and distance between the head noun and the relative clause verb, which we code with the predictor dist (dist = +1 for far and dist = -1 for near). Their interaction is the product of the dist and so contrast vectors, and labeled as the predictor int. The 60 subjects were speakers of Hindi, an Indo-Aryan language spoken primarily in India. The 24 items were presented in a standard, fully balanced Latin square design. This resulted in a total of 1440 data points ($60 \times 24 = 1440$). The first few lines from the data frame are shown below.

The theoretical interest is in determining whether relative clause type and distance

row	subj	item	so	dist	rt
1	1	14	s	n	1561
2	1	16	O	n	959
3	1	15	O	f	582
4	1	18	\mathbf{s}	n	294
5	1	4	O	n	438
6	1	17	\mathbf{s}	\mathbf{f}	286
:	:	:	:	:	÷
1440	9	13	\mathbf{S}	f	516

Table 1
The first six rows, and the last row, of the data-set of Husain et al. (2014, Experiment 1), as they appear in the data frame.

influence reading time, and whether there is an interaction between these two factors. We use Stan to determine the posterior probability distribution of the fixed effect β_1 for relative clause type, the fixed effect β_2 for distance, and their interaction β_3 .

We fit a varying intercepts, varying slopes model to this data-set. The grand mean β_0 of log rt is adjusted by subject and by item through the varying intercepts u_0 and w_0 , which are unique values for each subject and item respectively. Likewise, the three fixed effects β_1 , β_2 , and β_3 which are associated with the predictors so, dist, and int, respectively, are adjusted by the by-subject varying slopes u_1 , u_2 , and u_3 and by-item varying slopes w_1 , w_2 , and w_3 .

It is more convenient to represent this model in matrix form. We build up the model specification by first noting that, for each subject, the by-subject varying intercept u_0 and slopes u_1 , u_2 , and u_3 have a multivariate normal prior distribution with mean zero and covariance matrix Σ_u . Similarly, for each item, the by-item varying intercept w_0 and slopes w_1 , w_2 , and w_3 have a multivariate normal prior distribution with mean zero and covariance matrix Σ_w . We can write this as follows:

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \Sigma_u \end{pmatrix} \quad \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \Sigma_w \end{pmatrix}$$
(1)

```
rDat<-read.table("HusainEtAlexpt1data.txt", header=TRUE)
2
     rDat$subj <- with(rDat, factor(subj))
3
     rDat$item <- with(rDat, factor(item))
4
     X <- unname(model.matrix(~1+so+dist+int, rDat))</pre>
5
6
     stanDat <- within(list(),
8
9
       N < -nrow(X)
       P <- n_u <- n_w <- ncol(X)
10
11
       X <- X
12
       Z_u < - X
       Z_w <- X
13
14
       J <- length(levels(rDat$subj))</pre>
       K <- length(levels(rDat$item))</pre>
15
       rt <- rDat$rt
16
       subj <- as.integer(rDat$subj)</pre>
17
       item <- as.integer(rDat$item)</pre>
18
19
20
     factorialFit <- stan(file="factorialModel.stan",</pre>
^{21}
22
                             data=stanDat,
                             iter=2000, chains=4)
23
```

Listing 1: Preparation of data for analyzing the Husain et al. data-set, and running the model.

The error ε is assumed to have a normal distribution with mean zero and standard deviation σ_e .

We proceed to implement the model in Stan. First we read in the data-set (see Listing 1). Instead of passing the predictors so, dist, and their interaction int to stan as vectors, as we did with so earlier, we make so, dist, and int into a design matrix X using the function model.matrix available in R. The first column of the design matrix X consists of all ones. The second column is the predictor so which codes the factor for relative clause type. The third column the predictor dist which codes the factor for distance. The fourth column is the predictor int which codes the interaction between relative clause type and distance. The model matrix thus consists of a fully factorial 2×2 design, with blocks of this design repeated for each subject. For the full data-set, we could write it very compactly in matrix form as follows:

¹Here, we would like to acknowledge the contribution of Douglas Bates in specifying the model in this general matrix form.

```
data {
2
      int<lower=0> N;
                                     //no trials
      int<lower=1> P;
                                      //no fixefs
3
      int<lower=0> J;
                                     //no subjects
4
      int<lower=1> n_u;
                                      //no subj ranefs
5
6
      int<lower=0> K;
                                      //no items
      int<lower=1> n_w;
                                      //no item ranefs
8
      int<lower=1, upper=J> subj[N]; //subject indicator
9
      int<lower=1,upper=K> item[N]; //item indicator
                                     //fixef design matrix
10
      row_vector[P] X[N];
                                     //subj ranef design matrix
      row_vector[n_u] Z_u[N];
11
                                     //item ranef design matrix
12
      row_vector[n_w] Z_w[N];
                                      //reading time
13
      vector[N] rt;
14
    parameters {
15
                                      //fixef coefs
      vector[P] beta;
16
      cholesky_factor_corr[n_u] L_u; //cholesky factor of subj ranef corr matrix
17
      cholesky_factor_corr[n_w] L_w; //cholesky factor of item ranef corr matrix
18
      vector<lower=0>[n_u] sigma_u; //subj ranef std
19
      vector<lower=0>[n_w] sigma_w; //item ranef std
20
                               //residual std
      real<lower=0> sigma_e;
^{21}
22
      vector[n_u] z_u[J];
                                      //subj ranef
23
      vector[n_w] z_w[K];
                                      //item ranef
24
25
    transformed parameters {
                                      //subj ranefs
26
      vector[n_u] u[J];
27
      vector[n_w] w[K];
                                      //item ranefs
28
        matrix[n_u,n_u] Sigma_u;
                                     //subj ranef cov matrix
29
        matrix[n_w,n_w] Sigma_w;
                                     //item ranef cov matrix
30
        Sigma_u <- diag_pre_multiply(sigma_u,L_u);</pre>
31
        Sigma_w <- diag_pre_multiply(sigma_w,L_w);</pre>
32
        for(j in 1:J)
33
          u[j] \leftarrow Sigma_u * z_u[j];
34
35
        for(k in 1:K)
          w[k] \leftarrow Sigma_w * z_w[k];
36
      }
37
38
    model {
39
      //priors
40
      L_u ~ lkj_corr_cholesky(2.0);
41
      L_w ~ lkj_corr_cholesky(2.0);
42
      for (j in 1:J)
43
        z_u[j] \sim normal(0,1);
44
      for (k in 1:K)
45
        z_w[k] \sim normal(0,1);
46
      //likelihood
47
      for (i in 1:N)
48
        rt[i] ~ lognormal(X[i] * beta +
49
                            Z_u[i] * u[subj[i]] +
50
                            Z_w[i] * w[item[i]],
51
                            sigma_e);
52
53
```

Listing 2: Stan code for Husain et al data.

$$\log(\mathbf{rt}) = \mathbf{X}\beta + \mathbf{Z}_u\mathbf{u} + \mathbf{Z}_w\mathbf{w} + \varepsilon \tag{2}$$

Here, **X** is the $N \times P$ model matrix (with N = 1440, since we have 1440 data points; and P = 4 since we have the intercept plus three other fixed effects), β is a $P \times 1$ vector of fixed effects parameters, \mathbf{Z}_u and \mathbf{Z}_w are the subject and item model matrices $(N \times P)$, and u and u are the by-subject and by-item adjustments to the fixed effects estimates; these are identical to the design matrix \mathbf{X} in the model with varying intercepts and varying slopes included. For more examples of similar model specifications in Stan, see the R package RePsychLing on github (https://github.com/dmbates/RePsychLing).

Having defined the model, we proceed to assemble the list stanDat of data, relying on the above matrix formulation; please refer to Listing 1. The number N of observations, the number J of subjects and K of items, the reading times rt, and the subject and item indicator variables subj and item are familiar from the previous models presented. The integer P is the number of fixed effects (four including the intercept). Model 2 includes a varying intercept u_0 and varying slopes u_1, u_2, u_3 for each subject, and so the number n_u of by-subject random effects equals P. Likewise, Model 2 includes a varying intercept w_0 and varying slopes w_1, w_2, w_3 for each item, and so the number n_w of by-item random effects also equals P. The data block contains the corresponding variables. We declare the fixed effects design matrix X as an array of N row vectors whose components are the predictors associated with the N reading times. Likewise for the subject and item random effects design matrices Z_u and Z_w , which correspond to Z_u and Z_w respectively in Model 2. The vector beta contains the fixed effects β_0 , β_1 , β_2 , and β_3 . The matrices L_u, L_w and the arrays z_u, z_w of vectors (not to be confused with the design matrices Z_u and Z_w) will generate the varying intercepts and slopes u_0, \ldots, u_3 and w_0, \ldots, w_3 . The vector sigma_u contains the standard deviations of the by-subject varying intercepts and slopes u_0, \ldots, u_3 , and the vector sigma_w contains the standard deviations of the by-item varying intercepts and slopes w_0, \ldots, w_3 . The variable sigma_e is the standard deviation σ_e of the error ε . The transformed parameters block generates the by-subject intercepts and slopes u_0, \ldots, u_3 and the by-item intercepts and slopes w_0, \ldots, w_3 .

We place lkj priors on the random effects correlation matrices through the lkj_corr_cholesky(2.0) priors on their Cholesky factors L_u and L_w. We implicitly place uniform priors on the fixed effects β_0, \ldots, β_3 , the random effects standard deviations $\sigma_{u0}, \ldots, \sigma_{u3}$, and $\sigma_{w0}, \ldots, \sigma_{w3}$ and the error standard deviation σ_e by omitting any prior specifications for them in the model block. We specify the likelihood with the probability statement that rt[i] is distributed log-normally with mean X[i] * beta + Z_u[i] * u[subj[i]] + Z_w[i] * w[item[i]] and standard deviation sigma_e. The next step towards model-fitting is to pass the list stanDat to stan, which compiles a C++ program to sample from the posterior distribution of the model parameters.

Figure 1 plots histograms of the marginal posterior distribution of the fixed effects. The HPD interval of the fixed effect $\hat{\beta}_1$ for relative clause type is entirely below zero. This is evidence that object relatives are read faster than subject relatives. The HPD interval of the fixed effect $\hat{\beta}_2$ for distance is also entirely below zero. This is evidence of a slowdown when the verb (where reading time was measured) is closer to the head noun of the relative clause. The HPD of the interaction $\hat{\beta}_3$ between relative clause type and distance is greater than zero, which is evidence for a greater slowdown on subject relatives when the distance between the verb and head noun is short.

A major advantage of the above matrix formulation is that we do not need to write a new Stan model for a future repeated measures factorial design. All we have to do now is define the design matrix X appropriately, and include it (along with appropriately defined Z_u and Z_w for the subjects and items random effects) as part of the data specification that is passed to Stan.

Figure 1. Marginal posterior distribution and HPD intervals of the fixed effects grand mean β_0 , slope β_1 for relative clause type, slope β_2 for distance, and interaction β_3 . All fixed effects are on the log-scale.

References

- Gibson, E., & Wu, H.-H. I. (2013). Processing chinese relative clauses in context. *Language* and Cognitive Processes, 28(1-2), 125–155.
- Husain, S., Vasishth, S., & Srinivasan, N. (2014). Strong expectations cancel locality effects: Evidence from Hindi. $PLoS\ ONE,\ 9(7),\ 1-14.$