${\bf Math~218A-Probability~Theory}$

Albert Zhang Professor Shirshendu Ganguly

Fall 2019

Contents

1	September 5	2
2	September 10	3
	2.1 Random Variables	3
3	September 12	5
	3.1 Distribution Functions	5
	3.2 Integrals	5
4	September 17	7

Notes from first two days got corrupted:(.

Goal: To define uniform/length measure on $B(\mathbb{R})$, the Borel σ -algebra on \mathbb{R} .

Define a pre-measure μ on $\Sigma_{\text{semi}} = \{(a, b] : -\infty \le a < b \le \infty\}$. We verified μ satisfies

- (i) finite additivity
- (ii) countable subadditivity

This was where we stopped last class. Now, the second step is to extend this semi-algbra to an algebra.

Definition 1 (Algebra). An algebra \mathcal{A} (or field) on state space Ω is a subset of the power set 2^{Ω} satisfying

- (i) closed under complements
- (ii) closed under finite unions and intersections
- (iii) $\emptyset, \Omega \in \mathcal{A}$

We claim that given a semialgebra \mathcal{A} , the smallest algebra \mathcal{B} containing \mathcal{A} is the set

$$\{\sqcup_{i=1}^k A_i : A_i \in \mathcal{A}\}$$

Proof. It suffices to prove for $C, D \in \mathcal{B}$ that $C^C, C \cap D \in \mathcal{B}$. To see that $C \cap D \in \mathcal{B}$, we use distributive property

$$C \cap D = \sqcup_{i,j} A_i \cap B_j \implies C \cap D \in \mathcal{B}$$

where we let

$$C = \bigsqcup_{i=1}^k A_i, \qquad D = \bigsqcup_{j=1}^l B_j.$$

Now, to see that $C^C \in \mathcal{B},...$

We now extend the semi-algebra to an algebra.

Plan:

- complete proof of uniqueness under desirable conditions
- random variables
- integration

Theorem 2 (Dynkin's $\pi - \lambda$ Theorem)

A class of sets \mathcal{P} is called a π -system if closed under intersections. A clsas of sets \mathcal{L} is a λ -system if

- 1. $\Omega \in \mathcal{L}$
- 2. $A \subset B \in \mathcal{L}$ implies $B \setminus A \in \mathcal{L}$
- 3. closed under increasing limits: $(A_n) \in \mathcal{L}$ and $A_n \uparrow A$ implies $A \in \mathcal{L}$

If we have $\mathcal{P} \subset \mathcal{L}$ then $\sigma(P) \subset \mathcal{L}$.

Now, to show uniqueness of extension, we use the "good set principle". Basic strategy is to show every element of $\sigma(\mathcal{P})$ satisfies some nice properties and show that the class of sets satisfying it contains \mathcal{P} and is a λ -system.

Proof. See **A.1** in Durrett.

2.1 Random Variables

Definition 3 (Measurable Function). Suppose we have (Ω, Σ, μ) , and an observable (r.v.) $f: \Omega \to \mathbb{R}$. Then f is measurable (w/r to Σ) if $f^{-1}(B) \in \Sigma \forall B \in \mathcal{B}(\mathbb{R})$.

FIX: $(\Omega_1, \Sigma_1), (\Omega_2, \Sigma_2)$

Lemma 4. If $\Sigma_2 = \Sigma(\mathcal{A})$ then f is measurable if $f^{-1}(A) \in \Sigma_1$ for every $A \in \mathcal{A}$.

Proof. Consider the class of sets $X = \{B \in \Sigma(A) : f^{-1}(B) \in \Sigma_1\}$. By construction it contains A. So it suffices to show that X is a σ -algebra.

Suppose $B \in X$. Then

$$f^{-1}(B^C) = (f^{-1}(B))^C$$

and

$$f^{-1}(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} f^{-1}(B_i).$$

Therefore $X = \sigma(\mathcal{A})$.

Exercise. Show that composition of measurable functions is measurable.

Exercise. Suppose $(f_i)_{i=1}^d$ are measurable functions from $(\Omega, \Sigma) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then the tuple (f_1, \ldots, f_d) is a measurable function going into $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. (Hint: suffices to verify measurability for the generating sets)

Exercise. Suppose we have $(f_i)_{i=1}^d$ are as above. Then the sum $f_1 + \cdots + f_d$ is measurable. (Hint: express as composition of functions; also show that continuous functions are measurable)

Exercise. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of measurable functions. Then $\limsup f_n$ and $\liminf f_n$ are measurable. (Hint: show $\sup f_n$ measurable first)

Consider two measurable spaces (Ω_1, Σ_1) and $(\Omega_2, \Sigma_2) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then a measurable function $f: \Omega_1 \to \mathbb{R}$ will be called a *random variable*.

Given a sequence of measurable functions (f_i) , we wish to show that

$$\sup f_i$$
, $\inf f_i$, $\limsup f_i$, $\liminf f_i$

are all measurable (Exercise!)

3.1 Distribution Functions

Given a random variable X on (Ω_1, Σ_1) , and a μ on Σ_1 , X induces a measure $\hat{\mu}$ on in $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by

$$\hat{\mu}(B) = \mu(X^{-1}(B))$$

Assume μ is a probability measure. Then $\hat{\mu}$ induces a function F given by

$$F(x) = \hat{mu}((-\infty, x]) = \mathbb{P}(X \le x)$$

known as the distribution function. We have the following properties:

- 1. F is monotone non-decreasing.
- 2. Since μ is bounded, F is right-continuous.
- 3. $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$.

Now, the question is: can we retrieve the (unique) random variable from the distribution function satisfying the above properties (1-3)?

Suppose we are given $([0,1], \mathcal{B}([0,1]), \mu)$, where μ is the uniform measure. We want to retrieve $X : [0,1] \to \mathbb{R}$ given $F_X = F$. For $\omega \in (0,1)$. There is a unique x_ω such that $F(x_\omega) = \omega$, where we denote $X(\omega) = x_\omega$. See rest of proof in **Durrett 1.2**.

The moral is that R.V's are in one-to-one correspondence with distribution functions.

3.2 Integrals

Fix a measure space (Ω, Σ, μ) , assume that μ is σ -finite. Suppose we have a measurable $f: \Omega \to \mathbb{R}$. We want to assign meaning to

$$\int f d\mu$$
.

We do this in steps:

1. Simple functions (linear combinations of indicators):

$$f = \sum_{i=1}^{k} c_i \mathbb{I}_{A_i}, \quad \mu(A_i) < \infty, \quad A_i \text{ disjoint}$$

- 2. Bounded functions with support E such that $\mu(E) < \infty$
- 3. Nonnegative functions
- 4. General functions
- 1. For simple functions, we define

$$\int f d\mu = \sum_{i=1}^{k} c_i \mu(A_i)$$

We may verify that the following properties are satisfied (*Exercise!*):

- (i) $f \geq 0$ a.e. then $\int f \geq 0$.
- (ii) $a \in \mathbb{R}$, then $\int af = a \int f$.
- (iii) $\int f + g = \int f + \int g$.
- (iv) $f \ge g$ a.e. then $\int f \ge \int g$. (v) f = g a.e then $\int f = \int g$.
- (vi) $\left| \int f \right| \leq \int |f|$.
- 2. For bounded functions with finite support, we define

$$\int f = \sup \left\{ \int g : g \le f, g \text{ is simple} \right\} = a$$
$$= \inf \left\{ \int f : h \ge f, h \text{ is simple} \right\} = b$$

We need to show that this is well-defined, and check that (1) and (2) agree for simple functions.

3. For $f \geq 0$, we define

$$\int f = \sup \left\{ \int h : 0 \le h \le f, \mu(\sup f) < \infty \right\}.$$

Finishing integrals from last week:

- 1. Simple functions \rightarrow bounded functions \rightarrow non-negative functions.
- 2. From non-negative functions, we may extend to general measurable functions.

Take any measurable f. We say that f is integrablle if $\int |f| < \infty$. We define

$$f = f_+ - f_-,$$

where $f_{+} = \max(f, 0)$ and $f_{-} = -\min(f, 0)$. Then we define

$$\int f = \int f_{+} - \int f_{-}.$$

Lemma 5. If $f = f_1 - f_2$ where $f_i \ge 0$ and $\int f_i < \infty$ for i = 1, 2, then $\int f = \int f_1 - \int f_2$.

Proof. Lemma 1.4.6 in Durrett.

Theorem 6 (Bounded Convergence)

Let f_n be defined in E such that $\mu(E) < \infty$ and $|f_n| \le M$. Suppose $f_n \to f$ a.e. (for every point outside a zero set, $f_n(x) \to f(x)$ pointwise) for some measurable f. Then

$$\int f_n \to \int f.$$

Example 4.1 (Almost Sure Convergence but not in Probability/Measure)

Let $I_n = [-1/n, 1/n]$, and $f_n = \mathbb{I}_{I_n}$, defined on [-1, 1]. Move around subsequent intervals...?

Theorem 7 (Fatou's Lemma)

Let $f_n \geq 0$. Then

$$\liminf \int f_n \ge \int \liminf f_n.$$

Example 4.2

If we do not require non-negativity of the f_n , the theorem may not hold. For example, let $f_n = \mathbb{I}_{[-n,n]^C}$. Check that the theorem fails.

Theorem 8 (Monotone Convergence)

If $f_n \geq 0$ and $f_n \uparrow f$ then

$$\int f_n \uparrow \int f$$

Proof. One line proof from Fatou's Lemma.

Theorem 9 (Dominated Convergence)

If $f_n \to f$ a.e. and |f| < g with $\int g < \infty$, then

$$\int f_n \to \int f.$$