Novo Espaço – Matemática A, 11.º ano

Proposta de teste de avaliação global [maio de 2021]

Ano/Turma: _____ N.º: ____

- Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
- As cotações dos itens encontram-se no final do enunciado.
- 1. Nas regiões mais favoráveis à ocorrência de ventos constroem-se parques eólicos.

Na figura ao lado está representado um esquema de um tipo de aerogerador com as respetivas dimensões.

Data: ___-

Em relação ao esquema apresentado, sabe-se que:

- [ED] representa a torre do aerogerador, sendo $\overline{ED} = 70 \,\mathrm{m}$;
- os pontos A, B e C são as extremidades das pás, igualmente espaçadas, sendo $\overline{DA} = \overline{DB} = \overline{DC} = 40 \,\mathrm{m}$;
- a amplitude, em radianos, do ângulo orientado EDA, durante uma volta completa da pá [DA], é representada por θ , com $\theta \in [0, 2\pi]$.
- Qual é a amplitude, em radianos, do ângulo orientado *BDF* para $\theta = \frac{\pi}{4}$? 1.1.
 - **(A)**

- Seja h a função que a cada valor de θ faz corresponder a distância, em metros, do 1.2. ponto A ao solo (à reta r), sendo definida por:

$$h(\theta) = 70 - 40\cos\theta$$
, com $\theta \in [0, 2\pi]$

Para que valores de θ a distância do ponto A ao solo é 90 m?

Proposta de teste de avaliação global [maio de 2021]

2. Para comemorar a inauguração de um parque urbano, realizou-se um concerto musical, com início às 21 horas, tendo sido vendidos 1200 bilhetes.

As portas do recinto foram abertas às 18 horas, três horas antes do início do espetáculo.

Sabe-se que, *t* horas após a abertura das portas do recinto, o número de espectadores que faltavam entrar é dado pelo seguinte modelo matemático:

$$F(t) = \frac{3600 - 950t}{t+3}$$
, com t em horas

- **2.1.** Calcula F(2) e explica, no contexto, o significado do valor encontrado.
- **2.2.** A que horas o número de espetadores, no recinto, atingiu 75% do número de pessoas que compraram bilhete?

Resolve este problema recorrendo às capacidades gráficas da calculadora.

Na tua resposta, deves:

- indicar uma equação que te permita resolver o problema;
- representar, num referencial, o(s) gráfico(s) da(s) função(ões), visualizado(s) na calculadora, que te permite(m) resolver a equação, incluindo a janela de visualização;
- apresentar a resposta em horas e minutos, com os minutos arredondados às unidades.
- 3. Em relação a um referencial o.n. Oxyz, considera a superfície esférica definida pela equação $(x+1)^2 + (y-1)^2 + (z+2)^2 = 11$ e o plano α , tangente a essa superfície esférica no ponto P de coordenadas (0,-2,-1).
- **3.1.** Sabe-se que [PT] é um diâmetro da superfície esférica.

Quais são as coordenadas do ponto T?

(A)
$$(-2,4,-3)$$

(B)
$$(2,2,-1)$$

(C)
$$(1,-3,-1)$$

(D)
$$(-2,0,1)$$

Proposta de teste de avaliação global [maio de 2021]

- **3.2.** Representa o plano α por uma equação do tipo ax+by+cz+d=0, com $a,b,c,d\in\mathbb{R}$.
- **3.3.** A reta r passa no ponto P e tem a direção do vetor \bar{u} de coordenadas (2,1,-2). Determina as coordenadas do ponto de interseção da reta r com o plano xOz.
- **4.** Considera as sucessões (u_n) , (v_n) , (w_n) , (s_n) e (t_n) , tais que:

$$u_n = \frac{3n+2}{2n-1}$$
; $v_n = \frac{n^2-5}{2n+3}$; $w_n = \begin{cases} 2n & \text{se } n < 500 \\ 1-n^2 & \text{se } n \ge 500 \end{cases}$; $s_n = -\frac{1}{n^3}$; $t_n = (-1)^n \times 3$

Das sucessões dadas, indica uma que seja:

- **4.1.** um infinitésimo;
- **4.2.** um infinitamente grande positivo;
- **4.3.** convergente para um número positivo;
- **4.4.** limitada não convergente;
- **4.5.** um infinitamente grande negativo.
- 5. A soma dos 13 primeiros termos de uma progressão aritmética, (v_n) , é 1027. Determina a razão dessa progressão aritmética, sabendo que o primeiro termo é 25.
- Na figura, em referencial o.n. Oxy, estão representadas a função f, de domínio $\mathbb{R} \setminus \{2\}$, definida por $f(x) = \frac{x+1}{x-2}$, e as assíntotas ao seu gráfico.

6.1. Seja *S* o ponto de interseção das assíntotas ao gráfico da função *g*, sendo g(x) = 2 - f(x+1).

Quais são as coordenadas do ponto S?

 $(\mathbf{A}) \qquad \left(-1, -1\right)$

(B) (-1, 3)

 $(\mathbf{C}) \qquad (2, -1)$

2

- **(D)** (1, 1)
- **6.2.** Seja (u_n) a sucessão de termo geral $u_n = \frac{1+2n}{n}$. A que é igual $\lim_{n \to \infty} f(u_n)$?
 - (A)
- **(B)** −∞
- **(C)** 1
- (**D**) +∞

Novo Espaço - Matemática A, 11.º ano

Proposta de teste de avaliação global [maio de 2021]

- 7. Na figura, num referencial o.n. *Oxy*, estão representados o gráfico de uma função *f* e uma reta *t*. Sabe-se que:
 - a reta t é tangente ao gráfico de f no ponto A, de abcissa 1;
 - a reta t interseta o eixo Oy no ponto de coordenadas (0, 1) e o eixo Ox em (-1, 0).

Determina o valor de $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$, explicando os passos da resolução.

8. No referencial o.n. Oxy da figura estão representados o gráfico da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \frac{3}{x}$, e o trapézio [*OAPB*]. Sabe-se que:

- o ponto A tem coordenadas (6, 0);
- o ponto P pertence ao gráfico de f e tem abcissa $x \in [0, 6]$;
- o ponto *B* pertence ao eixo *Oy* e tem ordenada igual à ordenada do ponto *P*.

Seja g a função que à abcissa, x, de P faz corresponder a área do trapézio [OAPB].

- **8.1.** Mostra que $g(x) = \frac{18+3x}{2x}$, com $x \in]0, 6[$.
- **8.2.** Utiliza o resultado apresentado em **8.1.** e calcula o valor da taxa média de variação da função *g* no intervalo [2, 4].
- 9. Seja f a função, de domínio \mathbb{R} , definida por: $f(x) = \begin{cases} \frac{2x}{x^2 2x} & \text{se } x < 0 \\ x^2 3x 1 & \text{se } x \ge 0 \end{cases}$
- **9.1.** Calcula, caso exista, $\lim_{x\to 0} f(x)$.
- **9.2.** Determina a equação reduzida da reta tangente ao gráfico de f no ponto de abcissa 2.

FIM

Questões	1.1.	1.2.	2.1.	2.2.	3.1.	3.2.	3.3.	4.	5.	6.1.	6.2.	7.	8.1.	8.2.	9.1.	9.2.	Total
Cotação (pontos)	10	14	10	14	10	14	14	14	14	10	10	14	12	12	14	14	200