DOT/FAA/AR-01/31

Office of Aviation Research Washington, D.C. 20591

Calculating Polymer Flammability From Molar Group Contributions

September 2001

Final Report

DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161.

U.S. Department of Transportation Federal Aviation Administration

20011214 073

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document form (PDF).

		Technical Report Documentation Page
Report No.	2. Government Accession No.	3. Recipient's Catalog No.
DOT/FAA/AR-01/31		
4. Title and Subtitle		5. Report Date
CALCULATRIC DOLVMED ELAMMA	DILITY EDOM MOLA	R GROUP September 2001
CALCULATING POLYMER FLAMMA CONTRIBUTIONS	BILITY FROM MOLA	6. Performing Organization Code
CONTRIBCTIONS		
7. Author(a)		Performing Organization Report No.
7. Author(s)		5. Perofitting Organization Report No.
Richard Walters* and Richard E. Lyon**		
Performing Organization Name and Address		10. Work Unit No. (TRAIS)
*Galaxy Scientific Corporation	**Federal Aviation Ad	
English Creek Avenue, Building C	William J. Hughes T	
Egg Harbor Township, NJ 08234	Airport and Aircraft	
	Research and Develor Fire Safety Section	ppment
	Atlantic City Interna	ational Airport
	New Jersey 08405	
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
U.S. Department of Transportation		Final Report
Federal Aviation Administration		14. Sponsoring Agency Code
Office of Aviation Research Washington, DC 20591		AIR-120
15. Supplementary Notes		
16. Abstract		
Specific heat release rate is the molecular	-level fire response of a	burning polymer. The Federal Aviation Administration (FAA) alyzing the oxygen consumed by complete combustion of the
pyrolysis gases during a linear heating r	orogram. Dividing the	specific heat release rate (W/g) by the rate of temperature rise
(K/s) gives a material fire parameter with	the units (J/g-K) and sig	gnificance of a heat (release) capacity. The heat release capacity
appears to be a true material property th	at is rooted in the cher	mical structure of the polymer and is calculable from additive
molar group contributions. Hundreds of	polymers of known cher	mical composition have been tested to date, providing over 40 apacity. Measured and calculated heat release capacities for 80
polymers agree to within $\pm 15\%$, suggesting	ng a new capability for p	predicting flammability from polymer chemical structure.
programme, and the second		
		•
·		
		•
47 Kan Wanda		18. Distribution Statement
17. Key Words		
Thermochemistry, Polymer flammability contributions, Heat release, Fire, Combu	y, Group astion, Pyrolysis,	This document is available to the public through the Nation Technical Information Service (NTIS), Springfield, Virgin

19. Security Classif. (of this report)

Kinetics

20. Security Classif. (of this page)

Unclassified

22161.

22. Price

21. No. of Pages

32

ACKNOWLEDGEMENTS

The authors are indebted to Dr. Stanislav I. Stoliarov of the University of Massachusetts (Amherst) for performing the optimization calculations for the molar group contributions to the heat release capacity. Certain commercial equipment, instruments, materials, or companies are identified in this report in order to adequately specify the experimental procedure. This in no way implies endorsement or recommendation by the Federal Aviation Administration.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	vii
INTRODUCTION	1
THEORY	1
EXPERIMENTAL	3
Materials Methods	3
RESULTS	4
Calculation of Heat Release Capacity Heat Release Capacity and Fire Hazard Heat Release Capacity and Flammability	19 20 21
CONCLUSION	23
REFERENCES	23

LIST OF FIGURES

Figure		Page
1	Schematic Diagram of the Pyrolysis-Combustion Flow Calorimeter	3
2	Specific Heat Release Rate Data for Several Polymers Measured in the Microscale Calorimeter	5
3	Calculated Versus Measured Heat Release Capacities for 80 Pure Polymers	19
4	Average Flaming Heat Release Rate Versus Heat Release Capacity for Several Polymers	21
5	UL-94 Ratings Versus Measured Heat Release Capacities of Pure Polymers	22
6	Plot of Limiting Oxygen Index Versus Measured Heat Release Capacity	22

LIST OF TABLES

Table		Page
1.	Polymer Structure and Values Derived From Pyrolysis-Combustion Flow Calorimetry	6
2.	Structural Groups and Their Molar Contribution to the Heat Release Capacity	18
3.	Group Contributions Used in the Calculation of the Heat Release Capacity of Bisphenol-A Epoxy	20

EXECUTIVE SUMMARY

Specific heat release rate is the molecular-level fire response of a burning polymer. The Federal Aviation Administration (FAA) obtains the specific heat release rate of milligram samples by analyzing the oxygen consumed by complete combustion of the pyrolysis gases during a linear heating program. Dividing the specific heat release rate (W/g) by the rate of temperature rise (K/s) gives a material fire parameter with the units (J/g-K) and significance of a heat (release) capacity. The heat release capacity appears to be a true material property that is rooted in the chemical structure of the polymer and is calculable from additive molar group contributions. Hundreds of polymers of known chemical composition have been tested to date, providing over 40 different empirical molar group contributions to the heat release capacity. Measured and calculated heat release capacities for over 80 polymers agree to within $\pm 15\%$, suggesting a new capability for predicting flammability from polymer chemical structure.

INTRODUCTION

The additivity of molar group contributions to the physical and chemical properties of polymers is the basis of an empirical methodology for relating chemical structure to polymer properties [1-3]. The early work in this area [4] focused on calculating heats of combustion from the individual atoms comprising small molecules. However, performing calculations for large (polymer) molecules based on the interactions of the individual atoms can prove to be very difficult [2]. A simpler approach to correlating polymer chemical structure with properties is to group the atomic contributions into characteristic structural elements (e.g., –CH₃), determine the value of the group contribution to the property of interest parametrically, and add these group contributions according to their mole fraction in the polymer repeat unit. This method has been used to relate the chemical structure of polymers to their thermal, chemical, optical, and mechanical properties with excellent results [1-3]. Of particular interest in the present context is the ability to predict thermal stability parameters (pyrolysis activation energy, thermal decomposition temperature, char/fuel fraction) from additivity of polymer molar group contributions [1].

Prerequisite to any structure-property correlation is the ability to identify and reproducibly measure the intrinsic property of interest. In the area of polymer flammability, no single material property has correlated with fire performance, nor does any test measure fire performance unambiguously because burning rate, ignitability, flammability, and heat release rate are not intrinsic properties. Rather, they are extrinsic quantities resulting from the reaction of a macroscopic polymer sample to a severe thermal exposure. Because the sample size in a flammability or fire test is orders of magnitude larger than the chemical process zone [5-7], heat-and mass-transfer dominate the fire response. Thus, an intrinsic material property for use by scientists in designing fire-resistant polymers is not obtainable from standard fire or flammability tests.

Recently, a material fire parameter [5-7] (the heat release capacity) has been identified that appears to be a good predictor of the fire response and flammability of polymers. A quantitative laboratory pyrolysis-combustion method for directly measuring the heat release capacity has been reported [8-10]. This report presents experimental data which suggests that heat release capacity is the material property that correlates polymer structure and fire behavior.

THEORY

The solid-state thermochemistry of flaming combustion [5-7] reveals a material fire parameter that has the units (J/g-K) and significance of a heat (release) capacity,

$$\eta_c = \frac{h_c^o (1 - \mu) E_a}{eR T_p^2} \tag{1}$$

The heat release capacity is a combination of thermal stability and combustion properties, each of which is known to be calculable from additive molar group contributions [1]. The component material properties are the heat of complete combustion of the pyrolysis gases, h_c^o (J/g); the weight fraction of solid residue after pyrolysis or burning, μ (g/g); the global activation energy

for the single-step mass loss process, pyrolysis, E_a (J/mole); and the temperature at the peak mass loss rate, T_p (K), in a linear heating program at constant rate, β (K/s). The constants in equation 1 are the natural number e and the gas constant R. Equation 1 shows the heat release capacity to be a particular function of thermal stability and combustion properties, each of which is known to be calculable from additive molar group contributions [1]. Consequently, η_c itself is a material property and should be calculable from the same (or similar) molar groups as the component properties as long as there are no interactions between the chemical structural units. From this assumption of group additivity and the postulate that for a polymer repeat unit of molar mass M, there is a molar heat release capacity ψ with units of J/mole-K whose functional form is equation 1 but with the thermal stability and combustion properties written as molar quantities, H, V, E, and Y/M in place of h_c^o , $(1-\mu)$, E_a and T_p , respectively. If each chemical group i in the polymer adds to the component molar properties according to its mole fraction n_i in the repeat unit

$$\Psi = \frac{H V E}{eR (Y/M)^2} = \frac{\left(\sum_{i} n_i H_i\right) \left(\sum_{i} n_i V_i\right) \left(\sum_{i} n_i E_i\right)}{eR \left(\sum_{i} n_i Y_i / M_i\right)^2}$$
(2)

with H_i , V_i , E_i , Y_i , and M_i the molar heat of combustion, mole fraction of fuel, molar activation energy, molar thermal decomposition function [1], and molar mass of component i, respectively. Expanding the summations in equation 2 and retaining only the noninteracting terms for which i = j = k ... (i.e., neglecting terms containing products and quotients with mixed indices),

$$\Psi = \sum_{i} n_{i} \frac{H_{i} V_{i} E_{i}}{eR \left(Y_{i} / M_{i} \right)^{2}} = \sum_{i} n_{i} \Psi_{i}$$
(3)

Equation 3 shows that there is a molar group contribution to the heat release capacity ψ_i that adds according to its mole fraction in the repeat unit of the polymer. If N_i and M_i are the number of moles and molar mass, respectively, of group i in the polymer having repeat unit molar mass M

$$n_i = \frac{N_i}{\sum_i N_i}$$
 and $\mathbf{M} = \sum_i n_i M_i = \sum_i \frac{N_i}{\sum_i N_i} M_i$

then the heat release capacity on a mass basis is

$$\eta_c = \frac{\Psi}{M} = \frac{\sum_i n_i \Psi_i}{\sum_i n_i M_i} = \frac{\sum_i N_i \Psi_i}{\sum_i N_i M_i}$$
(4)

Equations 2 through 4 provide the physical basis for an additive heat release capacity function, but the values of the molar contributions of chemical groups must be derived empirically (i.e., experimentally). To this end, the heat release capacities of more than 200 polymers with known chemical structure have been measured using the measurement technique described below and these experimental values have been used to generate over 40 group contributions [11 and 12].

EXPERIMENTAL

MATERIALS.

Polymer samples were unfilled, natural, or virgin-grade resins obtained from Aldrich Chemical Company, Scientific Polymer Products, or directly from manufacturers. Oxygen and nitrogen gases used for calibration and testing were dry, >99.99% purity grades obtained from Matheson Gas Products.

METHODS.

A pyrolysis-combustion flow calorimeter (PCFC) [8-10] was used for all experiments (see figure 1).

FIGURE 1. SCHEMATIC DIAGRAM OF THE PYROLYSIS-COMBUSTION FLOW CALORIMETER

In this device, a pyrolysis probe (Pyroprobe 2000, CDS Analytical) is used to thermally decompose milligram-sized samples in flowing nitrogen at a controlled heating rate. The samples are heated at a constant rate (typically 4.3 K/s) from a starting temperature which is several degrees below the onset degradation temperature of the polymer to a maximum temperature of 1200 K (930°C). The 930°C final temperature ensures complete thermal degradation of organic polymers so that the total capacity for heat release is measured during the test and equation 1 applies. Flowing nitrogen sweeps the volatile decomposition products from the constant temperature (heated) pyrolysis chamber, and oxygen is added to obtain a nominal composition of 4:1, N₂:O₂, prior to entering a 900°C furnace for 60 seconds to effect complete nonflaming combustion. The combustion products (carbon dioxide, water, and possibly acid gases) are then removed from the gas stream using AscariteTM and DrieriteTM scrubbers. The

mass flow rate and oxygen consumption of the scrubbed combustion stream are measured using a mass flowmeter and zirconia oxygen analyzer (Panametrics Model 350), respectively.

The specific heat release rate \dot{Q}_c in the pyrolysis-combustion flow calorimeter is determined from oxygen consumption measurements by assuming that 13.1 kJ of heat is released per gram of diatomic oxygen consumed by combustion [13-16]. Since \dot{Q}_c is equal to the fractional mass loss rate multiplied by the heat of complete combustion of the pyrolysis products

$$\dot{Q}_c(t) = \frac{E}{m_o} \Delta \dot{O}_2(t) = -\frac{h_{c,v}^{\circ}(t)}{m_o} \frac{dm(t)}{dt}$$
(5)

where $E=13.1\pm0.6$ kJ/g-O₂, $\Delta\dot{O}_2$ is the instantaneous mass consumption rate of oxygen, m_o is the initial sample mass, $h_{c,v}^0$ is the instantaneous heat of complete combustion of the volatile pyrolysis products, and dm/dt is the instantaneous mass loss (fuel generation) rate of the sample during the test. The advantage of synchronized oxygen consumption calorimetry to determine the specific heat release rate is the ease and speed of the method compared to simultaneous measurement of the mass loss rate of the solid and the heat of combustion of the pyrolysis gases [17]. At the temperature of maximum mass loss rate T_p , the specific heat release rate has an analytic form [18, 5-7]

$$\dot{Q}_{c}^{max} = \frac{E}{m_{o}} \Delta \dot{O}_{2}^{max} = \frac{-h_{c,v}^{\circ}(t)}{m_{o}} \left[\frac{dm(t)}{dt} \right]_{max} = h_{c}^{\circ} \frac{\beta (1-\mu) E_{a}}{eRT_{p}^{2}}$$

$$\tag{6}$$

The rate-independent heat release capacity is obtained from equation 6 by dividing the maximum specific heat release rate by the constant sample heating rate, β (K/s)

$$\eta_c \equiv \frac{\dot{Q}_c^{max}}{\beta} = \frac{E}{\beta m_o} \Delta \dot{O}_2^{max} = \frac{h_c^{\circ} (1 - \mu) E_a}{eRT_p^2}$$
(7)

The quantities measured in the test are the specific heat release rate \dot{Q}_c (W/g); the heat release capacity η_c (J/g-K) calculated from the peak specific heat release rate and the linear heating rate of the sample; the total heat released by complete combustion of the pyrolysis gases h_c^0 (J/g); and the residual mass fraction μ (g/g) after the test.

RESULTS

Pyrolysis-combustion flow calorimeter data for the specific heat release rate of polyethylene (PE), polypropylene (PP), polystyrene (PS), an acrylonitrile-butadiene-styrene terpolymer (ABS), polymethymethacrylate (PMMA), polyethyleneterephthalate (PET), polyetheretherketone (PEEK), and polybenzimidazole (PBI) are shown in figure 2, horizontally shifted for clarity. Dividing the maximum specific heat release rate (W/g) measured during the test (peak height in figure 2) by the constant sample heating rate ($\beta = 4.3$ K/s in these tests) gives the heat release capacity of the polymer in units of J/g-K for materials which thermally decompose in a single

step. Materials exhibiting multiple heat release peaks are beyond the scope of this report and will be addressed in the future.

FIGURE 2. SPECIFIC HEAT RELEASE RATE DATA FOR SEVERAL POLYMERS MEASURED IN THE MICROSCALE CALORIMETER (Horizontally shifted for clarity)

Measured heat release capacities for more than 100 polymers with known chemical structure are shown in table 1. This data has been used to generate the group contributions shown in table 2. The molar group contributions were obtained by treating the Ψ_i as adjustable parameters in the linear system of equations (equation 4) for polymers with known chemical structures and measured η_c . The optimization calculation continued until the sum of the squares of the relative error between the measured η_c and the value calculated from group contributions was a minimum. The calculation converged rapidly to the unique Ψ_i listed in table 2 which were independent of initial estimates.

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY

	MW (g/mol)	28.06	30.03	42.08	44.03	44.05	56.11	62.48	64.02	71.08	72.06
	Char (%)	0	0	0	3.3	1.7	0	15.3	7	8.3	6.1
Total	HR (kJ/g)	41.6	14	41.4	21.6	21.6	44.4	11.3	9.7	13.3	12.5
HR	Capacity (J/g-K)	1676	169	1571	533	652	1002	138	311	104	165
	Repeat Unit Structure	$$ CH $_2$ -CH $_2$	—CH ₂ -0—	—СН ₂ -СН— СН ₃	—СН ₂ -СН— ОН	—CH ₂ -CH ₂ -0—	$\begin{array}{c} cH_3 \\CH_2 - C \\ CH_3 \end{array}$	CH ₂ CH	—CH ₂ -C—	O, NH ₂ C 	—сн ₂ -сн— о°с,
	Repeat Unit Composition	C_2H_4	CH ₂ O	$\mathrm{C}_3\mathrm{H}_6$	C ₂ H ₄ O	C ₂ H ₄ O	C_4H_8	C ₂ H ₃ Cl	$C_2H_2F_2$	C ₃ H ₅ NO	C ₃ H ₄ O ₂
	CAS Number	[9002-88-4]	[9002-81-7]	[25085-53-4]	[9002-89-5]	[25322-68-3]	[9003-27-1]	[9002-86-2]	[24937-79-9]	[9003-05-8]	[9003-01-4]
Trade Name,	Manufacturer/ Supplier	LDPE Polysciences, Inc.	Polysciences, Inc.	Polysciences, Inc.	Aldrich Chemical Company, Inc.	Polysciences, Inc.	Aldrich	PVC	PVDF MW:120000 Polysciences	Polysciences, Inc.	Polysciences
Material and	Abbreviated Name	Polyethylene PE	Polyoxymethylene POM	Polypropylene PP	Polyvinylalcohol (≥99%) PVOH	Polyethyleneoxide	Polyisobutylene	Polyvinylchloride	Polyvinylidene fluoride	Polyacrylamide	Polyacrylic Acid

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

	MM	(g/mol)	86.09	86.09	88.54	100.02	100.12	100.12	100.12
	Char	(%)	1.2	0.5	12.9	0	0	0	0.3
Total	HR	(KJ/g)	19.2	18.4	16.1	3.7	24.3	23.2	22.6
HR	Capacity	(J/g-K)	313	464	188	35	514	461	323
		Repeat Unit Structure	$-CH_2$ - CH - 0	$-CH_2 - CH_3$ $0 \ \ OH$	$-CH_2$, CH_2 -	—CF ₂ -CF ₂ —	CH ₂ -C	$-CH_2 - C - CH_3 - C - CH_3 - C - CH_3$	$-CH_2$ - CH - C
	Repeat Unit	Composition	C ₄ H ₆ O ₂	C4H6O2	C4H ₅ Cl	C_2F_4	C ₅ H ₈ O ₂	C ₅ H ₈ O ₂	C ₅ H ₈ O ₂
	CAS	Number	[9003-20-7]	[25087-26-7]	[9010-98-4]	[9002-84-0]	[9011-14-7]	[9011-14-7]	[9003-32-1]
Trade Name,	Manufacturer/	Supplier	Polysciences, Inc.	MW:100000 Polysciences	Neoprene Polysciences	Aldrich Chemical Company, Inc.	Aldrich Chemical Company, Inc.	Polysciences MW: 75000	Polysciences MW:70000
Material and	Abbreviated	Name	Polyvinylacetate PVAc	Polymethacrylic Acid	Polychloroprene	Polytetrafluoro ethylene PTFE	Polymethyl methacralate PMMA	Polymethyl methacralate PMMA	Polyethylacrylate

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

	MM (g/mol)	101.1	104.15	104.15	105.14	105.14	108.16	111.14
	Char (%)	4.5	0	0	0	0	41.6	0
Total	HR (kJ/g)	18.7	38.8	39.9	34.7	31.7	17.1	25.1
HR	Capacity (J/g-K)	103	927	088	612	268	165	332
	Repeat Unit Structure	CH ₂ — CH ₂ — CONH ₂	-CH ₂ -CH-	—сн ₂ -сн—	CH ₂ -CH-	-CH ₂ -CH		$-\frac{CH-CH_2-}{N}$
	Repeat Unit Composition	C ₄ H ₇ NO ₂	C ₈ H ₈	$\mathrm{C}_8\mathrm{H}_8$	C ₇ H ₇ N	C ₇ H ₇ N	C ₆ H ₄ S	C ₆ H ₉ NO
	CAS Number	[25014-12-4]	[9-83-8006]	[25086-18-4]	[25014-15-7]	[25232-41-1]	[9016-75-5]	[9003-39-8]
Trade Name,	Manufacturer/ Supplier	Polysciences	Polysciences, Inc.	Questra	Polysciences MW:200000- 400000	Polysciences MW:300000	Aldrich Chemical Company, Inc	Polysciences
Material and	Abbreviated Name	Polymethacrylamide	Polystyrene PS	Isotactic Polystyrene	Poly-2-vinylpyridene	Poly-4-vinylpyridene	Poly-1,4-Phenylene Sulfide PPS	Poly-n- vinylpyrrolidone

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

HR Total	Repeat UnitCapacityHRCharMWCompositionRepeat Unit Structure(J/g-K)(kJ/g)(%)(g/mol)	C ₆ H ₁₁ NO O 487 28.7 — (CH ₂) ₅ – C—NH—	C ₆ H ₁₀ O ₂	C ₆ H ₁₀ O ₂ C _{H₂} 470 26.4 0 114.14 — CH ₂ — Ch ₃	$C_6H_{10}O_2$ $C_{H_2}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	C_9H_{10} \bigcirc 730 35.5 0 118.18 \bigcirc $-CH_2-C$ \bigcirc	C_8H_8O C_{H_3} C_{H
		4] C ₆ H ₁₁ NO			[9003-42-3] C ₆ H ₁₀ O ₂	[52014-31-7] C ₉ H ₁₀	34-01-4]
Trade Name,			Polysciences, [249 Inc.	Polysciences [900 MW:250000	Aldrich [900 MW:850000	Aldrich	Noryl 0.4 IV [251 virgin General Electric
Material and	Abbreviated Name	Polycaprolactam	Polycaprolactone	Polyethyl methacrylate	Polyethyl methacrylate	Poly α Methyl styrene	Poly-2,6-dimethyl-1,4-phenyleneoxide PPO

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

	J	1	1	1	Γ΄	T
MW	120.15	126.11	142.1	154.21	180.21	192.17
Char (%)	2.8	2.8	0.1	0	65.2	5.1
Total HR	27.6	12.1	26.9	39	10.9	15.3
HR Capacity (1/o-K)	261	138	908	834	41	332
Reneat Unit Structure	—CH ₂ -CH—	-CH ₂ CH ₂ -	——CH ₂ -CH————————————————————————————————————	—CH ₂ -CH—		$-\operatorname{och_2ch_2oc} \longrightarrow \operatorname{ch_2ch_2oc} \longrightarrow ch_2ch_2$
Repeat Unit	C ₈ H ₈ O	$C_6H_6O_3$	C ₈ H ₁₄ O ₂	C ₁₂ H ₁₀	$C_{13}H_8O$	C ₁₀ H ₈ O ₄
CAS	[24979-70-2]	[9002-26-2]	[63148-65-2]	[28406-56-6]	[ÑA]	[25038-59-9]
Trade Name, Manufacturer/ Supplier	Polysciences MW:22000	Polysciences	Polysciences MW:100000- 150000	Aldrich MW:175000	POLYX-1000, MAXDEM, Inc.	Polysciences, Inc.
Material and Abbreviated Name	Poly-4-vinylphenol	Polyethylenemaleic anhydride	Polyvinylbutyral	Poly-2- vinylnaphthalene	Polybenzoyl-1,4- Phenylene	Polyethylene Terephthalate PET

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

Material and	Trade Name.			in the state of th	HR	Total		
Abbreviated	Manufacturer/	CAS	Repeat Unit		Capacity	HR	Char	MM
	Supplier	Number	Composition	Repeat Unit Structure	(J/g-K)	(kJ/g)	(%)	(lom/g)
Polyetherketone PEK	P22 (virgin), Victrex USA	[27380-27-4]	$C_{13}H_8O_2$		124	10.8	52.9	196.2
Polylaurolactam	Nylon 12	[25030-74-8]	C ₁₂ H ₂₃ O	0=	743	33.2	0	197.32
	Polysciences, Inc.		•	$-(CH_2)_{11}-C-NH-$		i		
Polystyrene maleicanhydride	Polysciences	[9011-13-6]	$C_{12}H_{10}O_3$	\bigcirc	279	23.3	2.2	202.21
				-cH CH2-				
Polyacrylonitrile	ABS	[9003-56-9]	C ₁₅ H ₁₇ N		699	36.6	0	211.31
Butadiene-Styrene ABS	Polysciences, Inc.			CH ₂ -CH ₂ -CH=CH-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH				
Poly-1,4-butanediol Terephthalate PBT	Polysciences, Inc.	[26062-94-2]	C ₁₂ H ₁₂ O ₄	$-$ OCH ₂ CH ₂ CH ₂ CH ₂ CCH ₂ CCC $\begin{vmatrix} 0 & 0 \\ - & 0 \end{vmatrix}$	474	20.3	1.5	220.22
Polyhexamethylene	Nylon 6/6	[32131-17-2]	31-17-2] C ₁₂ H ₂₂ O ₂ N ₂	0 0	615	27.4	0	226.32
Adiapamide	Polysciences, Inc.	1	-	NH(CH ₂) ₆ -NHC(CH ₂) ₄ -C				
Polyazomethine	UMASS	[NA]	C ₁₅ H ₉ N ₃	C=N C=N—CH=N—CH=CH—	36	8.7	77.8	231.26
Poly-1,4-Phenylene Ethersulfone PES	BASF Ultrason E1010/ Natural BASF	[25667-42-9]	C ₁₂ H ₈ O ₃ S		115	11.2	29.3	232.26
T								

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

MW (g/mol)	234.21	238.25	238.25	242.23	251.32	254.28	259.24
Char (%)	69.5	36.1	48.4	18.2	27.1	21.7	20
Total HR (kJ/g)	5.4	14.8	11.7	16.8	20.1	16.3	21.9
HR Capacity (J/g-K)	42	302	52	309	493	359	204
Repeat Unit Structure			0=U 0=U H-N H-N	——————————————————————————————————————	Noo-Noo-Noo-Noo-Noo-Noo-Noo-Noo-Noo-Noo	$-0 \longrightarrow \bigcup_{\substack{i=1\\i\in H_3\\i\in H_3}}^{i=H_3} \longrightarrow 0 \longrightarrow 0$	OCH,CH,
Repeat Unit Composition	C_1 4 $H_6O_2N_2$	$C_{14}H_{10}O_2N_2$	$C_{14}H_{10}O_2N_2$	$\mathrm{C}_{14}\mathrm{H}_{10}\mathrm{O}_4$	C ₁₇ H ₁₇ NO	$\mathrm{C}_{16}\mathrm{H}_{14}\mathrm{O}_3$	C ₁₄ H ₁₄ PNO ₃
CAS	[852-36-8]	[308069-56-9]	[24938-60-1]	[24968-11-4]	[1355-71-0]	[24936-68-3]	[NA]
Trade Name, Manufacturer/ Supplier	PBO, DOW Chemical Co.	Kevlar Dupont	Nomex Dupont	Eastman Chemical Company	XU-71787 Dow Chemical	Polysciences Inc., 32-36K MW	Eypel-A Rice University
Material and Abbreviated Name	Poly-p-Phenylene Benzobisoxazole PBO	Poly(p-phenylene Terephthalamide)	Poly(m-Phenylene Isophthalamide)	Polyethylene naphthylate PEN	Dicyclopentadienyl Bisphenol	Polycarbonate of Bisphenol-A PC	Polyphosphazine

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

Material and Abbreviated	Trade Name, Manufacturer/	240	Repeat I Init		HR	Total	į	
Name	Supplier	Number	Composition	Repeat Unit Structure	Capacity (1/o-K)	HR (kI/a)	Char (%)	MW (a/mol)
Polydiphenylether Chloral	Rice University MW:9350	[NA]	C ₁₄ H ₈ OCl ₂		16	5.2	57.1	263.12
Cyano-Substituted Kevlar	UMASS	[NA]	C ₁₅ H ₉ N ₃ O ₂		54	9.1	58.3	263.26
Bisphenol-E Cyanate Ester	AroCy L-10 Ciba Specialty Chemicals	[47073-92-7]	$C_{16}H_{12}O_2N_2$	-N=C-O-C-N-1	316	14.7	41.9	264.28
Bisphenol-A Cyanate Ester	AroCy B-10 Ciba Specialty Chemicals	[1156-51-0]	C ₁₇ H ₁₄ O ₂ N ₂	$-N = \stackrel{\mid}{C} - O - \bigcirc \bigcirc \bigcirc \stackrel{CH_3}{\stackrel{\vdash}{CH_3}} \bigcirc \bigcirc - O - \bigcirc = N - \bigcirc$	283	17.6	36.3	278.31
Polyhexamethylene Sebacamide	Nylon 6/10 Polysciences	[9-99-8006]	$C_{16}H_{30}O_2N_2$	-NH-(CH ₂) ₆ -NH-C-(CH ₂) ₈ -C-	878	35.7	0	282.43
Polyetheretherketone PEEK	450F Victrex USA	[29658-26-2]	C ₁₉ H ₁₂ O ₃	-j-(O)(O)(O)	155	12.4	46.5	288.3
PSA	General Electric	[NA]	C ₁₈ H ₁₈ SiO ₂	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	119	15.7	60.1	294.42
Polyetherketone ketone PEKK	G040 (virgin flake), Dupont	[74970-25-5]	C ₂₀ H ₁₂ O ₃		96	8.7	60.7	300.31
Tetramethylbisphenol- F Cyanate Ester	AroCy M-10, Ciba Specialty Chemical	[101657-77-6]	C ₁₉ H ₁₈ O ₂ N ₂	$\begin{array}{c c} & H_3C \\ \hline \\ -N=C-O \\ \hline \\ & H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \hline \\ CH_2 \\ \hline \\ CH_3 \\ \end{array}$	280	17.4	35.4	306.36

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

	MW (g/mol)	307.13	308.34	310.48	331.16	340.42	344.32	354.36
	Char (%)	50.1	67.5	0	53.3	3.9	49.8	53.6
Total	HR (kJ/g)	3.0	9.8	30.8	4.2	26.0	∞	7.1
HR	Capacity (J/g-K)	29	36	707	24	657	28	33
	Repeat Unit Structure			O O O O O O O O O O O O O O O O O O O	-N = C - O - O - C = N - O -	-0-CH; -0-CH; -0-CH; -0-CH; -0-CH; -0-CH; -0-CH; -0-		-NH-C (N-V)
	Repeat Unit Composition	C ₁₅ H ₈ O ₃ Cl ₂	C ₂₀ H ₁₂ N ₄	C ₁₈ H ₃₄ N ₂ O ₂	C ₁₆ H ₈ O ₂ Cl ₂	$C_{21}H_{24}O_4$	C ₂₁ H ₁₂ O ₅	$C_{15}H_8O_3N_2$
	CAS		[25928-81-8]	[26098-55-5]	[NA]	[001675-54-3]	[NA]	[42955-03-3]
Trade Name	Manufacturer/	BPCPC General Electric	CELAZOLE PBI, Hoechst Celanese	Nylon 6/12 Polysciences,	BPCCE Ciba Specialty	DER-332 Dow Chemical	Dow Chemical	TORLON 4203L, Amoco
Motoriolond	Abbreviated	Bisphenol-C Polycarbonate	Polybenzimidazole PBI	Polyhexamethylene Dodecanediamide	Bisphenol-C Cyanate Ester	Bisphenol-A Epoxy, Catalytic cure	Phenolphthalein Polycarbonate	Polyamideimide PAI

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

	MW (a/mol)	381.39		382.33	386.25	393.26	396.49	400.45	411.02	438.44	442.53
	Char (%)	51.9		51.9	55.2	36	26.4	38.4	42.7	78.8	28.1
Total	HR (kI/o)	6.6		9.9	2.3	10	22.5	11.3	7.6	3.5	19.4
HR	Capacity (I/o-K)	122		25	32	909	239	153	21	15	345
	Reneat Unit Structure	Z Z Z Z			$-N = \stackrel[C - o \longrightarrow C \stackrel{\Gamma_3}{\longrightarrow} C \stackrel[C - o \longrightarrow C] - O \longrightarrow C = N \longrightarrow C \stackrel[C - o \longrightarrow C] \longrightarrow C \longrightarrow $	-0-CH;-0-CH;-0-CH;-CH	$-N = \stackrel{\stackrel{\Gamma}{\leftarrow}}{-} \circ - \bigcirc \bigcirc \stackrel{\stackrel{\Gamma}{\leftarrow}}{-} \circ \stackrel{\stackrel{\Gamma}{\leftarrow}}{\bigcirc} \circ \stackrel{\stackrel{\Gamma}{\leftarrow}}{-} \circ - \circ - \stackrel{\Gamma}{\leftarrow} \circ - \circ $		-3-(O-3-o-(O-3-o-)-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	\(\sigma = \frac{1}{2} \cdot \	
	Repeat Unit	C ₂₃ H ₁₅ O ₃ N ₃		$C_{22}H_{10}O_5N_2$	$C_{17}H_8O_2N_2F_6$	C ₂₀ H ₁₈ O ₄ Cl ₂	C ₂₆ H ₂₄ O ₂ N ₂	C ₂₄ H ₁₆ SO ₄	C22H12O4Cl2	C ₂₈ H ₁₄ N ₄ O ₂	C ₂₇ H ₂₂ O ₄ S
	CAS	[173452-35-2]	[30944-92-4]	[26023-21-2]	[32728-27-1]	[NA]	[127667-44-1]	[25839-81-0]	[NA]	[NA]	[25135-57-7]
Trade Name,	Manufacturer/ Supplier	Primaset PT-30 Allied Signal	XU-371 Ciba	Aldrich Chemical Company, Inc.	AroCy F-10, Ciba Specialty Chemicals	BPCE	AroCy XU-366, Ciba Specialty Chemicals	Radel R5200 Amoco	BPCPA UMass	Navy	Udel
Material and	Abbreviated Name	Novolac Cyanate Ester		Polyimide PI	Hexafluorobisphenol- A Cyanate Ester	Bisphenol-C Epoxy	Bisphenol-M Cyanate AroCy XU-366, Ester Ciba Specialty Chemicals	Polyphenylsulphone	Bisphenol-C Polyarylate	Biphenol Phthalonitrile	Polysulfone of Bisphenol-A PSF

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

MW (g/mol)	474.43	474.55	480.52	568.59	588.46	592.61	650.6	692.71	700.55
Char (%)	57	15.9	73.6	41.8	63.8	49.2	40.6	63	57
Total HR (kJ/g)	6.7	18.9	5.9	15.3	2.8	11.8	11.1	11.7	3.4
HR Capacity (J/g-K)	38	246	40	131	6	121	164	135	14
Repeat Unit Structure		CH2	N=)=c/)=c/)=c/)=c-/ (F ₁)				
Repeat Unit Composition	C ₂₈ H ₁₄ N ₂ O ₆	$C_{10}H_{11}O$	C ₃₁ H ₂₀ N ₄ O ₂	$C_{34}H_{24}N_4O_5$	C31H14N4O2F6	C ₃₇ H ₂₄ O ₆ N ₂	C ₃₉ H ₂₂ O ₁₀	$C_{44}H_{29}N_4O_3P$	$\mathrm{C}_{37}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{6}\mathrm{F}_{6}$
CAS	[105030-42-0]	[028064-14-4]	[NA]	[NA]	[NA]	[61128-46-9]	[70679-92-4]	[191985-77-0]	[79062-55-8]
Trade Name, Manufacturer/ Supplier	NASA Langley	DEN-438, Dow Chemical	Navy	UMASS	Navy	Ultem 1000, General Electric	Vectra C LCP (virgin/ unfilled) Hoechst Celanese	NASA Langley	NASA Langley
Material and Abbreviated Name	LaRC-1A	Epoxy Novolac, Catalytic Cure Phenoxy-N	Bisphenol-A Phthalonitrile	Technora	Bisphenol-A6F Phthalonitrile	Polyetherimide PEI	Polyester of Hydroxybenzoic and Hydroxynapthoic Acids	TOR	LaRC-CP2

TABLE 1. POLYMER STRUCTURE AND VALUES DERIVED FROM PYROLYSIS-COMBUSTION FLOW CALORIMETRY (Continued)

Material and	Trade Name,				HR	Total		
Abbreviated	Manufacturer/	CAS	Repeat Unit		Capacity	HR	Char MW	MM
Name	Supplier	Number	Composition	Repeat Unit Structure	(J/g-K)	(J/g-K) (kJ/g)	(%)	(%) (g/mol)
LaRC-CP1	NASA Langley [871	[87186-94-5]	$186-94-5$ $C_{46}H_{22}N_{2}O_{6}F_{12}$		13	2.9	52	52 926.66

TABLE 2. STRUCTURAL GROUPS AND THEIR MOLAR CONTRIBUTION TO THE HEAT RELEASE CAPACITY (Molar group contributions derived from a single polymer are marked with an asterisk (*).)

Structural Group	Contribution (kJ/mol-K)	Structural Group	Contribution (kJ/mol-K)	Structural Group	Contribution (kJ/mol-K)
Y					
	118*	—н	8.1	—ОН	-19.8
	77.0	NH	7.6	—Br	-22.0
	69.5	—СH ₂ -О—	4.18	0 	-22.0
	30.6	CF ₂	1.8	C=0	-23.2*
CH₃ —C— CH₃	29.5	C C C	0.1		-25.5
	28.8	#~z	-8.8	—Cl	-34.7
	28.3	—s—	-10.9*	>	-36.4*
—сн 	26.6	-0-	-11.6	O= 	Pendant:-39.5 Backbone:-13.7
— СН ₃	22.5	-N=P	-13.8	_n\	-43.0*
	19.0	—NН ₂	-13.9*	o_c_o_	-49.0
$-\bigcirc_{\!\scriptscriptstyle{N}}$	18.7	—CF ₃	-14.8	—Si—	-53.5*
CH ₂	16.7	—C≡N	-17.6		-66.7
-\$	15.1	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-18.9*		-74.5
C=C	9.7	O=	-19.2	-0 -0 0	-76.7

Figure 3 is a plot of calculated versus measured heat release capacities for over 80 polymers for which optimized Ψ_i were determined. The correlation coefficient between measured and predicted heat release capacities is r = 0.96 and the average relative error is $\pm 15\%$.

FIGURE 3. CALCULATED VERSUS MEASURED HEAT RELEASE CAPACITIES FOR 80 PURE POLYMERS

CALCULATION OF HEAT RELEASE CAPACITY.

The following example illustrates the calculation of heat release capacity from molar group contributions for a diglycidylether of bisphenol-A (BPA epoxy) cured by anionic ring opening polymerization. This polymer has the repeat unit chemical structure

$$\begin{array}{c} -\text{CH}_2 \\ \text{CH-CH}_2 - \text{O} \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{O-CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \end{array} \\ \begin{array}{c} \text{CH}_2 - \text{O} \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \end{array} \\ \end{array}$$

The polymer repeat unit is comprised of six basic chemical groups, and the heat release capacity is calculated from the associated N_i , M_i , and Ψ_i for these groups, which are listed in table 3.

TABLE 3. GROUP CONTRIBUTIONS USED IN THE CALCULATION OF THE HEAT RELEASE CAPACITY OF BISPHENOL-A EPOXY

Chemical Group, i	N	M _i (g/mole)	Ψ (kJ/mole-K)	$N_i M_i$ (g/mole)	N _i Ψ (kJ/mole-K)
-C- 1	1	12	28.3	12	28.3
Сн Сн	2	13	26.6	26	53.2
CH ₂	4	14	16.7	56	66.8
—СН ₃	2	15	22.5	30	45.0
-	2	76	28.8	152	57.6
-0-	4	16	-11.6	64	-46.4
		Total:		340	204.5

The molar heat release capacity is obtained by summing the group contributions according to their mole fraction in the repeat unit, then dividing by the molar mass of the repeat unit to give the heat release capacity on a mass basis in units of J/g-K.

$$\eta_c = \frac{\Psi}{M} = \frac{\sum_{i} n_i \Psi_i}{\sum_{i} n_i M_i} = \frac{\sum_{i} N_i \Psi_i}{\sum_{i} N_i M_i} = \frac{204.5 \, kJ \, / \, mole - K}{340 \, g \, / \, mole} = 601 \, J/_{g-K}$$

The predicted value of 601 J/g-K compares favorably with the measured value of 657 J/g-K for this polymer.

HEAT RELEASE CAPACITY AND FIRE HAZARD.

The primary indicator of the fire hazard of a material is the heat release rate in forced flaming combustion [19]. Figure 4 is a plot of the average flaming heat release rate (HRR) of 10- by 10-by 0.64-cm (≈ 80 -g) samples of pure polymer measured in a fire calorimeter at an external heat flux $\dot{q}_{ext} = 50 \text{ kW/m}^2$ according to standard methods [20-22] versus the measured heat release capacity. Proportionality is observed between the flaming heat release rate of kilogram-sized samples and the heat release capacity of milligram-sized samples of the same polymer with slope 1.0 (kg/s)/m²/K, in general agreement with predictions for steady burning [5-7]. Consequently, η_c is a reasonable predictor of fire hazard using the physically based empirical correlation in figure 4.

FIGURE 4. AVERAGE FLAMING HEAT RELEASE RATE VERSUS HEAT RELEASE CAPACITY FOR SEVERAL POLYMERS

HEAT RELEASE CAPACITY AND FLAMMABILITY.

Flammability is taken here to mean the tendency of a thin sample of material ignited by a Bunsen burner to continue burning in the absence of a radiant heat source after removal of the burner. Self-extinguishing behavior in these tests implies a certain resistance to flame propagation, and standard methods have been developed to measure this characteristic. These flame tests are widely used to rank the burning propensity of combustible solids but they do not yield any material property information. Two common flammability test methods are the Underwriters Laboratories UL 94 test for upward vertical (V) and horizontal burning (HB) [23] and the critical oxygen concentration for flame extinguishment or limiting oxygen index (L.O.I.) in downward burning [24].

In the absence of an external heat flux from a radiant heater or fire, the flame heat flux at the sample tip must provide all of the thermal energy to degrade the solid polymer surface to gaseous fuel. If the flame heat flux is constant (UL 94 test) or increases in a known way with oxygen concentration (L.O.I.), the criterion for self-extinguishing behavior in these tests can be formulated in terms of a critical heat release capacity by assuming that a minimum heat release rate (typically 100 kW/m^2) is needed to sustain flaming combustion. Such an analysis for the UL 94 test [6] indicates that polymers with $\eta_c \leq 300 \text{ J/g-K}$ do not release heat at a high enough rate after removal of Bunsen burner to overcome heat losses by the sample and thus the flame cannot propagate, they self-extinguish. Thus, for pure polymers with $\eta_c \leq 300 \text{ J/g-K}$, self-extinguishing behavior (UL 94 V rating) is expected. Figure 5 contains UL 94 data [25] which shows that a transition from burning (HB) to self-extinguishing behavior (V-0) occurs in the vicinity of $\eta_c = 300 \text{ J/g-K}$.

FIGURE 5. UL-94 RATINGS VERSUS MEASURED HEAT RELEASE CAPACITIES OF PURE POLYMERS

The criterion for self-extinguishing behavior in the L.O.I. test must take into account the fact that an increase in the oxygen concentration of the flowing gas stream in the test chamber increases the temperature (radiant heat flux) of the sample diffusion flame and, therefore, the amount of thermal energy incident on the polymer. Since the heat release rate of the sample increases with the flame heat flux, which in turn increases with oxygen concentration, an inverse relationship between η_c and the limiting oxygen concentration is expected and observed, as shown in the L.O.I. data [1, 26, and 27] plotted versus η_c in figure 6.

FIGURE 6. PLOT OF LIMITING OXYGEN INDEX VERSUS MEASURED HEAT RELEASE CAPACITY

As shown in figures 5 and 6, self-extinguishing behavior in the UL 94 vertical test occurs at a lower heat release capacity ($\eta_c = 300 \pm 100 \text{ J/g-K}$) than in the L.O.I. test ($\eta_c = 550 \pm 100 \text{ J/g-K}$) at ambient conditions (298 K, 20% O₂). The reason for this is that the L.O.I. test is a downward burning test so there is no buoyancy-driven convective preheating of the polymer by the surface flame as occurs in the UL 94 upward burning test. Since less thermal energy is deposited in the L.O.I. sample from the surface flame at ambient conditions than is deposited in the UL 94 specimen after removal of the ignition sources, the heat release rate is lower in the L.O.I. test and self-extinguishing behavior should (and does) occur at a higher heat release capacity.

CONCLUSION

The heat release capacity is a physically based material property that is a good predictor of the fire behavior and flammability of pure polymers. The heat release capacity is simply calculated for pure polymers from their chemical structure using additive molar group contributions which have been determined empirically with a high level of confidence (±15%). The proposed methodology for predicting the fire behavior and flammability of polymers from their chemical structure allows for the molecular-level design of ultra-fire-resistant polymers without the expense of synthesizing and testing new materials.

REFERENCES

- 1. D.W. Van Krevelen, *Properties of Polymers*, 3rd edition, Elsevier, Amsterdam, 1990.
- 2. Jozef Bicerano, *Prediction of Polymer Properties*, 2nd edition, Marcel Dekker, Inc., New York, NY, 1996.
- 3. M.M. Coleman, J.F. Graf, and P.C. Painter, Specific Interactions and the Miscibility of Polymer Blends, Technomic Publishing Co., Inc., Lancaster, PA, 1991.
- 4. S.W. Bensen, Thermochemical Kinetics, Methods for the Estimation of Thermochemical Data and Rate Parameters, John Wiley, New York, NY, 1968.
- 5. R.E. Lyon, "Solid-State Thermochemistry of Flaming Combustion," in *Fire Retardancy of Polymeric Materials*, C.A. Wilkie and A.F Grand, eds., Marcel Dekker, Inc., NY, 2000.
- 6. R.E. Lyon, "Heat Release Capacity," *Proceedings of the 7th International Conference on Fire and Materials*, San Francisco, CA, 2001, pp. 285-300.
- 7. R.E. Lyon, "Heat Release Kinetics," Fire and Materials, 24, pp.179-186, 2000.
- 8. R.N. Walters and R.E. Lyon, "A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials," *Proceedings 42nd International SAMPE Symposium and Exhibition*, 42(2), pp. 1335-1344, 1997.
- 9. R. N. Walters and R.E. Lyon, "A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials," NISTIR 5904, K. Beall, ed., pp. 89-90, 1996.

- 10. U.S. Patent 5981290, Microscale Combustion Calorimeter, R.E. Lyon and R.N. Walters, 11/09/1999.
- 11. R.N. Walters and R.E. Lyon, "Molar Group Contributions to Polymer Flammability," *PMSE Preprints*, <u>83</u>, 86, ACS National Meeting, Washington, D.C., August 2000.
- 12. R.N. Walters and R.E. Lyon, "Calculating Polymer Flammability from Molar Group Contributions," *Proceedings of the BCC Conference on Flame Retardancy of Polymeric Materials*, Stamford, CT, May 22-24, 2000.
- 13. W. Thornton, "The Role of Oxygen to the Heat of Combustion of Organic Compounds," *Philosophical Magazine and Journal of Science*, 33, pp. 196-205, 1917.
- 14. Clayton Hugget, "Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements," *Fire and Materials*, 4 (2), pp. 61-65, 1980.
- 15. M. Janssens and W.J. Parker, "Oxygen Consumption Calorimetry," in *Heat Release in Fires*, V. Babrauskas, S.J. Grayson, eds., Elsevier Applied Science, London, Chapter 3, 1992, pp. 31-59.
- 16. R.N. Walters, S.M. Hackett, and R.E. Lyon, "Heats of Combustion of High-Temperature Polymers," *Fire and Materials*, <u>24</u>, pp. 245-252, 2000.
- 17. T.V. Inguilizian, "Correlating Polymer Flammability Using Measured Pyrolysis Kinetics," Master of Science Thesis, University of Massachusetts, Amherst, January 1999.
- 18. R.E. Lyon, "Pyrolysis Kinetics of Char Forming Polymers," *Polymer Degradation and Stability*, 61(2), pp. 201-210, 1998.
- 19. V. Babrauskas and R.D. Peacock, "Heat Release Rate: The Single Most Important Variable in Fire Hazard," *Fire Safety Journal*, <u>18</u>, pp. 255-272, 1992.
- 20. M.M. Hirschler, "Heat Release From Plastic Materials," in *Heat Release in Fires*, V. Babrauskas and S. Grayson, eds., Elsevier Applied Science, New York, pp. 207-232, 1992.
- 21. M.J. Scudamore, P.J. Briggs, and F.H. Prager, "Cone Calorimetry—A Review of Tests Carried Out on Plastics for the Association of Plastic Manufacturers in Europe," *Fire and Materials*, 15, pp. 65-84, 1991.
- 22. R.E. Lyon, S. Gandhi, and R.N. Walters, "Flammability Study of Advanced Engineering Thermoplastics," *Proceedings of the Society for the Advancement of Materials and Process Engineering (SAMPE) 44th International Symposium and Exhibition*, Long Beach, CA, May 23-27, 1999.

- 23. Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, Underwriters Laboratory: UL 94, 4th edition, Underwriters Laboratories, Inc., Research Triangle Park, NC, 1991.
- 24. "Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics: ASTM D2863," American Society for Testing and Materials, Philadelphia, PA, 1991.
- 25. "Plastics Digest, Ranked Properties Reference Index," *Flammability*, <u>17</u>(1), pp. 773-889, D.A.T.A. Business Publishing, Englewood, CO, 1996.
- 26. C.F. Cullis and M.M. Hirschler, *The Combustion of Organic Polymers*, Oxford University Press, Oxford, 1981.
- 27. C.J. Hilado, *Flammability Handbook for Plastics*, 5th edition, Technomic Publishing Co., Lancaster, Pennsylvania, 1998.