Lecture 25: Missing data

Reading: ESL 9.6

STATS 202: Data mining and analysis

November 20, 2019

Missing data is everywhere

- Survey data: nonresponse.
- Longitudinal studies and clinical trials: dropout.
- Recommendation systems: different individuals interact with or express preferences for different items.
- ▶ Data integration: different variables collected by different organizations or in different experiments or trials.

Mechanisms for missing data

- Missing completely at random: Pattern of missingness independent of missing values and the values of any measured variables
 - *Example.* We run a taste study for 20 different drinks. Each subject was asked to rate only 4 drinks chosen at random.
- Missing at random: The pattern of missingness depends on other predictors, but conditional on observed variables, missingness is independent of missing value. Example. In a survey, poor subjects were less likely to answer a question about drug use than wealthy subjects.
 - ▶ Related to observed predictors (income) but not drug use.
- ▶ Missing not at random: The pattern of missingness is related to the missing variable, even after correcting for measured variables. *EX 1:* High earners less likely to report their income. *EX 2:* Record time until subjects have an accident but only follow for three years (censoring).

Dealing with missing data

- ► Categorical case: Treat "missing" as an additional category.
- ► Surrogate variables: Tree-based methods like CART can deal with missingness by introducing surrogate variables!
- ► Observation deletion: Delete observations with missing values.
 - Drawbacks: Reduces dataset size, can bias input feature space, doesn't work at test time.
- ▶ Variable deletion: Delete variables with missing values
 - Drawbacks: May be throwing away valuable variable, can bias input feature space.

Dealing with missing data

- Single imputation: We replace each missing value with a single number.
 - 1. Replace with the mean or median of the column.
 - Replace with a random sample from the non-missing values in the column.
 - 3. Replace missing values in X_j with a regression estimate from other predictors, X_{-j} .

Drawbacks:

- Methods 1 and 2 can give biased coefficients if the data is not missing completely at random. Method 3 does not have bias if the missing variable is predicted well by X_{-j}.
- ▶ Resulting inferences about estimated parameters or predictions do not account for uncertainty in missing values.

Dealing with missing data

- ▶ Multiple imputation: Form many imputed datasets by positing a distribution over unobserved variables and repeatedly sampling from that distribution. For example, each sample could be obtained by replacing each missing value in X_j with a regression estimate from the other predictors X_{-j} , plus some noise. This is repeated several times. Run entire analysis on each dataset, and use multiple results to get a better estimate of uncertainty.
 - ▶ If the regression fit of X_j onto X_{-j} is good, the standard errors from this method can be unbiased.

Missing data in more than one variable

Problem: What if some observations have multiple missing values?

- ► Iterative multiple imputation: Start with a simple imputation. Then, iterate the following:
 - 1. Update imputation of X_1 given current values of X_{-1} .
 - 2. Update imputation of X_2 given current values of X_{-2}
 - 3. Update imputation of X_p given current values of X_{-p} .
- ► Model based imputation: Posit a joint model for all variables. Fit this model and infer best values for all missing datapoints. Rarely worth the trouble.

Missing data in more than one variable

Problem: What if some observations have multiple missing values?

- Low-rank matrix completion:
 - ▶ **Motivation**: In linear regression, \hat{y} can be understood as a projection of y onto the space spanned by the columns of X. In a sense, what matters is not X itself but this column space.
 - Key observation: If predictor matrix is approximately low-rank (if points lie near a lower-dimensional subspace), then one can approximately recover X and its column space even if many entries are missing.
 - ▶ Low-rank matrix completion algorithms find a matrix X' which is similar to X in its non-missing values, and has a low dimensional column space:

$$\min_{\text{subject to rank}(X')=k} \|X' - X\|,$$

where $\|X' - X\|$ is the sum of squared differences of the non-missing entries.

Missing data in more than one variable

Problem: What if some observations have multiple missing values?

Matrix completion:

This problem can be relaxed to a convex optimization:

$$\min ||X' - X|| + \lambda \sum_{i=1}^{p} \sigma_p,$$

where $\sigma_1, \ldots, \sigma_p$ are the singular values of X'. Here, the penalty λ is inversely related to the rank and can be used as a tuning parameter.

Some practical considerations

- It is important to visualize summaries or plots for the pattern of missingness.
- ▶ If the pattern of missingness is informative, include it as a dummy variable.
- ► If a variable has too many missing values, you may want to exclude it from your analysis (you can still include a missingness indicator for that variable.)
- ▶ If we are using a method that allows it, consider weighting variables according to the rate of missing data.
 - Example. In nearest neighbors, scale each variable and multiply by (100-% missing).
- When imputing, keep in mind that some variables are restricted to be positive or bounded.
- Some variables are well modeled as non-linear functions of other variables.