Licensed by KEBS Standards Information Centre to Mercy Nyamwange for official use only Order # NUMBER/Downloaded: 2020-01-22 Single-user licence only, copying and networking prohibited.

INTERNATIONAL STANDARD

ISO 10318-1

NORME INTERNATIONALE

First edition Première édition 2015-04-01

Geosynthetics —

Part 1:

Terms and definitions

Géosynthétiques —

Partie 1:

Termes et définitions

COPYRIGHT PROTECTED DOCUMENT DOCUMENT PROTÉGÉ PAR COPYRIGHT

© ISO 2015

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l'affichage sur l'internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d'autorisation peuvent être adressées à l'ISO à l'adresse ci-après ou au comité membre de l'ISO dans le pays du demandeur.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland/Publié en Suisse

Contents				
Forew	ord		v	
1	Scope		1	
2	Terms	and definitions	1	
	2.1	Terms related to functions	1	
	2.2	Terms related to products	2	
		Terms related to properties	4	
	2.4	Other terms	7	
Biblio	graphy		8	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 221, *Geosynthetics*.

This first edition of ISO 10318-1 cancels and replaces ISO 10318:2005, which has been technically revised.

ISO 10318 consists of the following parts, under the general title *Geosynthetics*:

- Part 1: Terms and definitions
- Part 2: Symbols and pictograms

Geosynthetics —

Part 1:

Terms and definitions

1 Scope

The intent of this part of ISO 10318 is to define terms related to functions, products, properties, and other terms used in EN and ISO geosynthetics International Standards. Definitions of terms not included in this part of ISO 10318 can be found in the International Standards describing appropriate test methods.

NOTE See also the ISO online browsing platform (OBP): www.iso.org/obp/ui/

2 Terms and definitions

2.1 Terms related to functions

2.1.1

drainage

collecting and transporting of precipitation, ground water, and/or other fluids in the plane of a geosynthetic material

2.1.2

filtration

restraining of uncontrolled passage of soil or other particles subjected to hydrodynamic forces, while allowing the passage of fluids into or across a geosynthetic material

2.1.3

protection

preventing or limiting of local damage to a given element or material by the use of a geosynthetic material

2.1.4

reinforcement

use of the stress-strain behaviour of a geosynthetic material to improve the mechanical properties of soil or other construction materials

2.1.5

separation

prevention from intermixing of adjacent dissimilar soils and/or fill materials by the use of a geosynthetic material

2.1.6

surface erosion control

use of a geosynthetic materials to prevent or limit soil or other particle movements at the surface of, for example, a slope

2.1.7

barrier

use of a geosynthetic to prevent or limit the migration of fluids

2.1.8

stress relief

<for asphalt overlay> use of a geosynthetic to retard the development of cracks by absorbing the stresses that arise from the damaged pavement

2.2 Terms related to products

2.2.1

geosynthetic

GSY

generic term describing a product, at least one of whose components is made from a synthetic or natural polymer, in the form of a sheet, a strip, or a three-dimensional structure, used in contact with soil and/or other materials in geotechnical and civil engineering applications

2.2.1.1

geotextile

GTX

planar, permeable, polymeric (synthetic or natural) textile material, which may be nonwoven, knitted, or woven, used in contact with soil and/or other materials in geotechnical and civil engineering applications

2.2.1.1.1

nonwoven geotextile

GTX-NW

geotextile made of directionally or randomly orientated fibres, filaments, or other elements, mechanically and/or thermally and/or chemically bonded

2.2.1.1.2

knitted geotextile

GTX-K

geotextile produced by interlooping one or more yarns, filaments, or other elements

2.2.1.1.3

woven geotextile

GTX-W

geotextile produced by interlacing, usually at right angles, two or more sets of yarns, filaments, tapes, or other elements

2.2.1.2

geotextile-related product

GTP

planar, permeable, polymeric (synthetic or natural) material used in contact with soil and or other materials in geotechnical and civil engineering applications, which does not comply with the definition of a geotextile

Note 1 to entry: See geotextile (2.2.1.1).

2.2.1.2.1

geogrid

GGR

planar, polymeric structure consisting of a regular open network of integrally connected, tensile elements, which may be linked by extrusion, bonding, or interlooping or interlacing, whose openings are larger than the constituents

2.2.1.2.2

geonet

GNT

geosynthetic consisting of parallel sets of ribs overlying and integrally connected with similar sets at various angles

2.2.1.2.3

geomat

GMA

three-dimensional, permeable structure, made of polymeric monofilaments, and/or other elements (synthetic or natural), mechanically and/or thermally and/or chemically and/or otherwise bonded

2.2.1.2.4

geocell

GCE

three-dimensional, permeable, polymeric (synthetic or natural) honeycomb, or similar cellular structure, made of linked strips of geosynthetics

2.2.1.2.5

geostrip

GST

polymeric material in the form of a strip of width not more than 200 mm, used in contact with soil and/or other materials in geo-technical and civil engineering applications

2.2.1.2.6

geospacer

GSP

three-dimensional polymeric structure with an interconnected air space in between, used in contact with soil and/or other materials in geotechnical and civil engineering applications

2.2.1.3

geosynthetic barrier

GBR

low-permeability geosynthetic material, used in geotechnical and civil engineering applications with the purpose of reducing or preventing the flow of fluid through the construction

2.2.1.3.1

polymeric geosynthetic barrier

GBR-P

geomembrane

factory-assembled structure of geosynthetic materials in the form of a sheet in which the barrier function is essentially fulfilled by polymers

2.2.1.3.2

clay geosynthetic barrier

GBR-C

geosynthetic clay liner

factory-assembled structure of geosynthetic materials in the form of a sheet in which the barrier function is essentially fulfilled by clay

2.2.1.3.3

bituminous geosynthetic barrier

GBR-B

bituminous geomembrane

factory-assembled structure of geosynthetic materials in the form of a sheet in which the barrier function is essentially fulfilled by bitumen

2.2.1.4

geocomposite

GCO

manufactured, assembled material using at least one geo-synthetic product among the components

2.3 Terms related to properties

2.3.1 General properties

2.3.1.1

nominal value

NV

value of a material property as declared, rather than measured, by the producer/supplier of the material

2.3.2 Terms related to physical properties

2.3.2.1

thickness

d

distance between the upper and lower surfaces of a geosynthetic, measured normal to the surfaces and under a specified pressure

Note 1 to entry: Unit is expressed in mm.

2.3.2.2

mass per unit area

 ρ_A

ratio of the mass of a specimen of specified dimensions to its area

Note 1 to entry: Unit is expressed in grams per square metre (g/m^2) .

2.3.3 Terms related to hydraulic properties

2.3.3.1

characteristic opening size

090

size of opening which corresponds to the maximum particle size of 90 % by weight of the soil passing through the geotextile

Note 1 to entry: Unit is expressed in μ m.

2.3.3.2

permeability

rate of fluid transmission through a geosynthetic

2.3.3.3

coefficient of permeability normal to the plane

 $k_{\rm n}$

ratio between flow velocity v and hydraulic gradient i normal to plane

Note 1 to entry: Unit is expressed in m/s.

2.3.3.4

flux

 a_n

volumetric flow rate per unit area normal to the plane of the product at a defined head

Note 1 to entry: Unit is expressed in $1/(m^2 \cdot s)$.

2.3.3.5

velocity index

v-index

velocity corresponding to a head loss of 50 mm across a specimen, in a water permeability test

Note 1 to entry: Unit is expressed in mm/s.

2.3.3.6

permittivity

ψ

volumetric flow rate of water and/or other liquids per unit area per unit head loss, under laminar flow conditions, normal to the plane of a product

Note 1 to entry: Unit is expressed in s⁻¹.

2.3.3.7

in-plane flow capacity

 q_p

volumetric flow rate of water and/or other liquids per unit width of specimen, at defined gradients in the plane of a product

Note 1 to entry: Unit is expressed in $l/(m \cdot s)$.

2.3.3.8

transmissivity

θ

volumetric flow rate per unit width of specimen and per unit gradient in the plane of a product

Note 1 to entry: Unit is expressed in $l/(m \cdot s)$.

2.3.3.9

liquid tightness

ability of a geosynthetic to retain liquid

2.3.4 Terms related to mechanical properties

2.3.4.1

tensile stress, related to the cross-sectional area of the specimen

σ

tensile force per cross-sectional area of the specimen prior to loading, carried by a specimen at any given time in a short-term test

Note 1 to entry: Tensile stress, related to the cross-sectional area of the specimen, is expressed in MPa.

2.3.4.1.1

yield point

point on the stress-strain curve, other than the failure point, at which an increase in strain occurs without an increase in stress

2.3.4.1.2

tensile stress at yield point

 σ_{v}

first stress at which an increase in strain occurs without an increase in stress

Note 1 to entry: It may be less than the maximum attainable stress.

2.3.4.1.3

tensile stress at failure

 σ_{f}

tensile stress at which the test specimen ruptures

2.3.4.1.4

maximum tensile stress

 $\sigma_{\rm max}$

maximum tensile stress sustained by the test specimen during a tensile test

2.3.4.2

tensile strength (related to specimen width)

T

tensile force per unit width carried by a specimen at any given time in a short-term test

Note 1 to entry: Unit is expressed in kN/m.

2.3.4.2.1

tensile strength (related to specimen width) at failure

 $T_{\rm f}$

tensile strength at which the test specimen ruptures

2.3.4.2.2

maximum tensile strength (related to specimen width)

 T_{max}

maximum tensile strength sustained by the test specimen during a tensile test

2.3.4.2.3

tensile modulus

I

ratio of the change in tensile stress or strength of a geosynthetic to the corresponding change in elongation

Note 1 to entry: Tensile modulus is expressed in MPa or kN/m.

2.3.4.3

preload

small load equal to 1 % of the expected maximum load, enabling initial gauge length and strain zero to be determined under re-producible conditions

2.3.5 Seaming or attaching of GTX or GTP

2.3.5.1

connection

local or linear attachment of dissimilar geosynthetics or of a geosynthetic and another material

2.3.5.2

joint

local or linear attachment of adjacent rolls of similar geosynthetic

2.3.5.3

bond

areal attachment of the elements of a geocomposite to each other

2.3.5.4

maximum joint or seam strength

 $T_{\rm Imax}$

maximum tensile strength of the seam formed by joining two or more sheets

Note 1 to entry: Unit is expressed in kN/m.

2.3.5.5

joint or seam efficiency

. کر

ratio of the joint or seam strength to the tensile strength of the material measured in the same direction

Note 1 to entry: Unit is expressed in %.

2.3.6 Interface properties

2.3.6.1

friction angle

φ

angle, the tangent of which is equal to the ratio of the friction force per unit area to the normal stress along the interface between two parts of the same material or between two materials

Note 1 to entry: Soil and GSY are examples of two materials.

2.3.6.2

friction interaction (efficiency) coefficient

 $f_{\rm s,GSY}$

ratio between the tangent of the friction angle between soil and GSY, and the tangent of the friction angle of the soil

2.4 Other terms

2.4.1

machine direction

MD

direction of manufacture of a geosynthetic product (the warp direction for woven geotextiles)

2.4.2

cross-machine direction

CMD

direction perpendicular to the direction of manufacture of a geo-synthetic product (the weft direction for woven geotextiles)

2.4.3

design life

period of time from the start of installation to the point where the material no longer fulfils its required design properties in order to perform its function within defined limits

2.4.4

peel test

tensile test of a bond, join, or connection in which two components are separately clamped and one component is peeled away from the other in order to determine peel strength

2.4.5

tensile shear test

tensile test of a bond, joint, or connection in which two components are separately clamped and load is applied in the plane of the product in order to determine tensile shear strength

Bibliography

[1] ISO 9863-1:2005, Geosynthetics — Determination of thickness at specified pressures — Part 1: Single layers

Sommaire Avant-proposi					
2	Tern	nes et définitions	1		
	2.1	Termes relatifs aux fonctions			
	2.2	Termes relatifs aux produits	2		
	2.3	Termes relatifs aux propriétés	4		
	2.4	Autres termes	7		
Rihli	iogranh	nie	8		

Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.

Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents critères d'approbation requis pour les différents types de documents ISO. Le présent document a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www. iso.org/directives).

L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de brevets reçues par l'ISO (voir www.iso.org/brevets).

Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un engagement.

Pour une explication de la signification des termes et expressions spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de l'ISO aux principes de l'OMC concernant les obstacles techniques au commerce (OTC), voir le lien suivant: Avant-propos — Informations supplémentaires.

Le comité chargé de l'élaboration du présent document est l'ISO/TC 221, Produits géosynthétiques.

Cette première édition de l'ISO 10318-1 remplace l'ISO 10318:2005, qui a fait l'objet d'une révision technique.

L'ISO 10318 comprend les parties suivantes, présentées sous le titre général Géosynthétiques:

- Partie 1: Termes et définitions
- Partie 2: Symboles et pictogrammes

Géosynthétiques —

Partie 1:

Termes et définitions

1 Domaine d'application

L'objectif de la présente partie de l'ISO 10318 est de définir les termes relatifs aux fonctions, aux produits et aux propriétés, ainsi que d'autres termes utilisés dans les normes EN et ISO géosynthétiques. Les définitions de termes non incluses dans la présente partie de l'ISO 10318, peuvent être trouvées dans les Normes internationales qui décrivent les méthodes d'essai correspondantes.

NOTE Voir aussi la plateforme de consultation en ligne (OBP): www.iso.org/obp/ui/

2 Termes et définitions

2.1 Termes relatifs aux fonctions

2.1.1

drainage

collecte et transport des eaux pluviales, souterraines et/ou d'autres fluides dans le plan d'un géosynthétique

2.1.2

filtration

rétention du sol ou d'autres particules soumis(es) à des forces hydrodynamiques tout en permettant le passage de fluides à travers ou dans un matériau géosynthétique

2.1.3

protection

prévention ou limitation des endommagements localisés d'un élément ou d'un matériau donné par l'emploi d'un matériau géosynthétique

2.1.4

renforcement

utilisation du comportement en résistance-déformation d'un matériau géosynthétique afin d'améliorer les propriétés mécaniques du sol ou d'autres

2.1.5

separation

prévention du mélange de sols ou de matériaux de remblai de nature différente par l'emploi d'un matériau géosynthétique

2.1.6

contrôle de l'érosion de surface

utilisation d'un matériau géosynthétique, pour prévenir ou limiter les mouvements du sol ou d'autres particules à la surface, par exemple, d'une pente

2.1.7

barrière

utilisation d'un géosynthétique afin de prévenir ou de limiter la migration de fluides

2.1.8

relaxation de contrainte

<pour les couches d'enrobés> emploi d'un géosynthétique pour retarder le développement de fissures par absorption des contraintes dues à l'endommagement de la chaussée

2.2 Termes relatifs aux produits

2.2.1

géosynthétique

GSY

terme générique désignant un produit, dont au moins l'un des constituants est à base de polymère synthétique ou naturel, se présentant sous forme de nappe, de bande ou de structure tridimensionnelle, utilisé en contact avec le sol et/ou d'autres matériaux dans les domaines de la géotechnique et du génie civil

2.2.1.1

géotextile

GTX

matière textile plane, perméable et à base de polymère (naturel ou synthétique), pouvant être non tissée, maillée ou tissée, utilisée en contact avec le sol et/ou d'autres matériaux dans les domaines de la géotechnique et du génie civil

2.2.1.1.1

géotextile non tissé

GTX-NW

géotextile fait de fibres, de filaments ou d'autres éléments orienté(e)s directionnellement ou de façon aléatoire et lié(e)s de façon mécanique et/ou thermique et/ou chimique

2.2.1.1.2

géotextile maillé

GTX-K

géotextile produit par entrelacement d'un ou de plusieurs fils, de filaments ou d'autres éléments

2.2.1.1.3

géotextile tissé

GTX-W

géotextile produit par entrelacement, habituellement à angle droit, de deux ou de plusieurs faisceaux de fils, de filaments, de bandelettes ou d'autres éléments

2.2.1.2

produit apparenté aux géotextiles

GTP

matériau plan, perméable et à base de polymère (synthétique ou naturel) utilisé en contact avec le sol et/ou d'autres matériaux dans les domaines de la géotechnique et du génie civil ne correspondant pas à la définition d'un géotextile

Note 1 à l'article: Voir *géotextile* (2.2.1.1).

2.2.1.2.1

géogrille

GGR

structure plane à base de polymère, constituée par un réseau ouvert et régulier d'éléments résistants à la traction et pouvant être assemblés par extrusion, par collage ou par entrelacement, dont les ouvertures ont des dimensions supérieures à celles des constituants

2.2.1.2.2

géofilet

GNT

géosynthétique constitué d'ensembles de tiges parallèles et superposés entièrement reliés à d'autres ensembles similaires selon des angles variables

2.2.1.2.3

géomatelas

GMA

structure tridimensionnelle perméable, constituée de filaments, et/ou d'autres éléments (synthétiques ou naturels) à base de polymère, liés de façon mécanique et/ou thermique et/ou chimique et/ou d'une autre façon

2.2.1.2.4

géosynthétique alvéolaire

GCE

structure tridimensionnelle en nid d'abeilles ou similaire, perméable, à base de polymère (synthétique ou naturel), constituée de bandes de géosynthétiques reliées entre elles

2.2.1.2.5

géobande

GST

matériau à base de polymère sous forme de bande dont la largeur n'excède pas 200 mm, utilisé en contact avec le sol et/ou d'autres matériaux dans les domaines de la géotechnique et du génie civil

2.2.1.2.6

géoespaceur

GSP

structure tridimensionnelle à base de polymère, conçue pour créer un espace d'air dans le sol et/ou dans d'autres matériaux dans les domaines de la géotechnique et du génie civil

2.2.1.3

géosynthétique d'étanchéité

GBR

matériau géosynthétique de faible perméabilité, utilisé dans des applications géotechniques et de génie civil afin de réduire ou de prévenir l'écoulement ou le passage de fluides à travers la structure

2.2.1.3.1

géosynthétique d'étanchéité polymérique

GBR-P

géomembrane

structure assemblée en usine, constituée de géosynthétiques, se présentant sous la forme d'une feuille et dans laquelle la fonction d'écran est essentiellement assurée par des polymères

2.2.1.3.2

géosynthétique d'étanchéité argileux

GBR-C

géosynthétique bentonitique

structure assemblée en usine, constituée de géosynthétiques, se présentant sous la forme d'une feuille et dans laquelle la fonction d'écran est essentiellement assurée par de l'argile

2.2.1.3.3

géosynthétique d'étanchéité bitumineux

GBR-B

géomembrane bitumineuse

structure assemblée en usine, constituée de géosynthétiques, se présentant sous la forme d'une feuille et dans laquelle la fonction d'écran est essentiellement assurée par du bitume

2.2.1.4

géocomposite

GCO

assemblage manufacturé de matériaux dont au moins l'un des composants est un produit géosynthétique

2.3 Termes relatifs aux propriétés

2.3.1 Propriétés générales

2.3.1.1

valeur nominale

NV

valeur d'une propriété d'un matériau déclarée par le fabricant/fournisseur du matériau, plutôt que mesurée

2.3.2 Termes relatifs aux propriétés physiques

2.3.2.1

épaisseur

d

distance entre les faces supérieure et inférieure d'un géosynthétiques, mesurée perpendiculairement aux surfaces et sous une pression spécifiée

Note 1 à l'article: L'unité est exprimée en mm.

2.3.2.2

masse surfacique

 ρ_A

rapport de la masse d'une éprouvette de dimensions données sur la surface de l'éprouvette

Note 1 à l'article: L'unité est le g/m².

2.3.3 Termes relatifs aux propriétés hydrauliques

2.3.3.1

ouverture de filtration caractéristique

 0_{90}

dimension de l'ouverture correspondant à la dimension maximale des 90 % de particules de sol passant à travers le géotextile

Note 1 à l'article: L'unité est le µm.

2.3.3.2

perméabilité

taux de transmission de liquides à travers un géosynthétique

2.3.3.3

coefficient de perméabilité normale au plan

 $k_{\rm n}$

rapport entre la vitesse v et le gradient hydraulique i

Note 1 à l'article: L'unité est le m/s.

2.3.3.4

débit

 $q_{\rm n}$

débit volumétrique par unité de surface, perpendiculairement au plan du produit sous une charge définie

Note 1 à l'article: L'unité est exprimée en l/(m²·s).

2.3.3.5

indice de vitesse

v-index

vitesse d'écoulement correspondant à une perte de charge de 50 mm à travers une éprouvette lors d'un essai de perméabilité à l'eau

Note 1 à l'article: L'unité est le mm/s.

2.3.3.6

permittivité

ψ

débit volumétrique d'eau et/ou d'autres liquides par unité de surface et par unité de perte de charge, dans des conditions de flux laminaire, perpendiculairement au plan du produit

Note 1 à l'article: L'unité est exprimée en s-1.

2.3.3.7

capacité de débit dans le plan

 q_r

débit volumétrique d'eau et/ou d'autres liquides, dans le plan d'un produit, par unité de largeur d'éprouvette, pour des gradients définis

Note 1 à l'article: L'unité est exprimée en l/(m·s).

2.3.3.8

transmissivité

Α

capacité de débit dans le plan d'un produit, exprimée pour un gradient hydraulique égal à 1

Note 1 à l'article: L'unité est exprimée en l/(m·s).

2.3.3.9

étanchéité aux liquides

aptitude d'un géosynthétique à retenir les liquides

2.3.4 Termes relatifs aux propriétés mécaniques

2.3.4.1

contrainte de traction rapportée à la surface de la section transversale

σ

force de traction par la surface de section transversale de l'éprouvette avant chargement, subie par une éprouvette à tout instant lors d'un essai à court terme

Note 1 à l'article: La contrainte de traction rapportée à la surface de la section transversale est exprimée en MPa.

2.3.4.1.1

seuil d'écoulement

point sur la courbe contrainte-déformation, différent du point de rupture, à partir duquel une augmentation de la déformation se produit sans augmentation de la contrainte

2.3.4.1.2

contrainte en traction au seuil d'écoulement

 $\sigma_{
m v}$

première contrainte pour laquelle une augmentation de la déformation se produit sans augmentation de la charge

Note 1 à l'article: Cette valeur peut être inférieure à la valeur maximale atteinte.

2.3.4.1.3

contrainte en traction à la rupture

 $\sigma_{\rm f}$

contrainte de traction à laquelle l l'éprouvette d'essai se rompt

2.3.4.1.4

contrainte maximale en traction

 $\sigma_{\rm max}$

contrainte maximale de traction supportée par l'éprouvette d'essai lors d'un essai de traction

2.3.4.2

résistance à la traction (relative à la largeur de l'éprouvette)

T

effort de traction par unité de largeur, subi par une éprouvette, à tout instant lors d'un essai à court terme

Note 1 à l'article: L'unité est exprimée en kN/m.

2.3.4.2.1

résistance à la traction (relative à la largeur de l'éprouvette) à la rupture

 $T_{\rm f}$

effort de traction auquel l'éprouvette d'essai se rompt

23422

résistance maximale à la traction (relative à la largeur de l'éprouvette)

 T_{\max}

effort de traction maximal, supporté par l'éprouvette d'essai lors d'un essai de traction

2.3.4.2.3

module de traction

Ι

rapport entre la variation de contrainte en traction d'un géosynthétique et la variation correspondante en déformation

Note 1 à l'article: Le module de traction est exprimé en MPa ou en kN/m.

2.3.4.3

pré-tension

faible charge équivalant à 1 % de la charge maximale attendue, permettant de déterminer la longueur initiale entre repères et la déformation zéro dans des conditions reproductibles

2.3.5 Couture ou assemblage de GTX ou de GTP

2.3.5.1

raccord

assemblage ponctuel ou continu de géosynthétiques non identiques ou d'un géosynthétique et un autre matériau

2.3.5.2

joint

assemblage ponctuel ou continu de rouleaux adjacents

2.3.5.3

liaison

surface d'assemblage entre eux d'éléments d'un géocomposite

2.3.5.4

résistance du joint ou de la couture

 $T_{\rm Imax}$

effort de traction maximal du joint formé par l'assemblage de deux ou de plusieurs feuilles

Note 1 à l'article: L'unité est exprimée en kN/m.

2.3.5.5

efficacité du joint ou de la couture

ξς

rapport de la résistance du joint ou de la couture à la force de traction du matériau mesurée dans la même direction

Note 1 à l'article: L'unité est exprimée en %.

2.3.6 Caractéristiques en frottement

2.3.6.1

angle de frottement

ф

angle dont la tangente est égale au rapport de la force de frottement par unité de surface et la contrainte normale entre deux matériaux

Note 1 à l'article: Sol et GSY sont des exemples de deux matériaux.

2.3.6.2

coefficient de frottement

 $f_{
m s.GSY}$

rapport entre la tangente de l'angle de frottement entre sol et GSY et la tangente de l'angle de frottement du sol

2.4 Autres termes

2.4.1

sens machine

MD

sens de fabrication d'un produit géosynthétique (le sens de la chaîne pour les géotextiles tissés)

2.4.2

sens travers

sens perpendiculaire au sens de fabrication d'un produit (le sens de la trame pour les géotextiles tissés)

2.4.3

durée de service

période entre le début de l'installation et le moment où le matériau ne satisfait plus les propriétés de dimensionnement en vue de remplir sa fonction dans des limites définies

2.4.4

essai de pelage

essai de traction d'une liaison, joint ou raccord où les composants sont maintenus séparément et où l'un des composants est détaché de l'autre afin de déterminer une résistance au pelage

2.4.5

essai de traction-cisaillement

essai de traction d'une liaison, joint ou raccord où les composants sont maintenus séparément et où un effort est appliqué dans le plan du produit afin de déterminer une résistance en traction en cisaillement

Bibliographie

[1] ISO 9863-1:2005, Géosynthétiques — Détermination de l'épaisseur à des pressions spécifiées — Partie 1: Couches individuelles

Inhalt

		Seite
Vorwo	ort	3
1	Anwendungsbereich	3
2	Begriffe	3
2.1	Funktionsbezogene Begriffe	3
2.2	Produktbezogene Begriffe	4
2.3	Eigenschaftsbezogene Begriffe	6
2.3.1	Allgemeine Eigenschaften	6
2.3.2	Begriffe bezogen auf physikalische Eigenschaften	6
2.3.3	Begriffe bezogen auf hydraulische Eigenschaften	
2.3.4	Begriffe bezogen auf mechanische Eigenschaften	8
2.3.5	Überlappen und Anbinden von GTX oder GTP	
2.3.6	Grenzflächeneigenschaften	10
2.4	Sonstige Begriffe	
Litera	turhinweise	12

Vorwort

Dieses Dokument (ISO 10318-1:2015) wurde vom Technischen Komitee ISO/TC 221 "Geosynthetics" in Zusammenarbeit mit dem Technischen Komitee CEN/TC 189 "Geokunststoffe" erarbeitet, dessen Sekretariat vom NBN gehalten wird.

Diese Europäische Norm muss den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis Monat Jahr (DOP), und etwaige entgegenstehende nationale Normen müssen bis Monat Jahr (DOW) zurückgezogen werden.

Es wird auf die Möglichkeit hingewiesen, dass einige Elemente dieses Dokuments Patentrechte berühren können. CEN [und/oder CENELEC] sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Entsprechend der CEN-CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen: Belgien, Bulgarien, Dänemark, Deutschland, die ehemalige jugoslawische Republik Mazedonien, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, Schweiz, Slowakei, Slowenien, Spanien, Tschechische Republik, Türkei, Ungarn, Vereinigtes Königreich und Zypern.

Anerkennungsnotiz

Der Text von ISO 10318-1:2015 wurde vom CEN als EN ISO 10318-1:2015 ohne irgendeine Abänderung genehmigt.

ISO 10318 Geokunststoffe besteht aus:

- Teil 1: Begriffe
- Teil 2: Symbole und Piktogramme

1 Anwendungsbereich

Die Absicht dieses Teils von ISO 10318 ist es, Begriffe-, bezogen auf Funktion, Produkte, Eigenschaften sowie andere Begriffe, die in Europäischen und Internationalen Normen zu Geokunststoffen verwendet werden, festzulegen. Definitionen von Begriffen, die nicht in diesem Teil der ISO 10318 enthalten sind, können in Normen festgelegt sein, die entsprechende Prüfverfahren beschreiben.

ANMERKUNG Siehe auch ISO online Browsing Platform (OBP): www.iso.org/obp/ui/.

2 Begriffe

2.1 Funktionsbezogene Begriffe

2.1.1

Dränen

Sammeln und Ableiten von Niederschlägen, Grundwasser und/oder anderen Fluiden in der Ebene eines Geokunststoffes

2.1.2

Filtern

Verhindern des unkontrollierten Durchgangs von Boden oder anderen Teilchen, die hydrodynamischen Kräften ausgesetzt sind, während Fluide in oder durch einen Geokunststoff dringen können

2.1.3

Schützen

Vermeiden oder Verringern lokaler Schäden eines bestimmten Bauteils oder -materials durch die Verwendung eines Geokunststoffes

2.1.4

Bewehren

Nutzung des Spannungs-Dehnungs-Verhaltens eines Geokunststoffes zur Verbesserung der mechanischen Eigenschaften des Bodens oder von anderen Baustoffen

2.1.5

Trennen

Vermeiden des Mischens aneinandergrenzender verschiedener Böden und/oder Füllstoffe durch die Verwendung eines Geokunststoffes

2.1.6

Schützen gegen Oberflächenerosion

Verwendung eines Geokunststoffes, um Bewegungen von Boden oder anderen Teilchen auf der Oberfläche, z. B. einer Böschung, zu verhindern oder zu verringern

2.1.7

Dichten

Verwendung eines Geokunststoffes, um die Migration von Fluiden zu verhindern oder zu verringern

2.1.8

Spannungsabbau

<als Asphalteinlage>

Verwendung eines Geokunststoffes, um die Ausbreitung von Rissen infolge von Spannungen aus schon beschädigten Asphalttragschichten zu minimieren

2.2 Produktbezogene Begriffe

2.2.1

Geokunststoff

GSY

Oberbegriff, der ein Produkt beschreibt, bei dem mindestens ein Bestandteil aus synthetischem oder natürlichem Polymerwerkstoff hergestellt wird in Form einer Bahn, eines Streifens oder einer dreidimensionalen Struktur, das bei geotechnischen und anderen Anwendungen im Bauwesen im Kontakt mit Boden und/oder anderen Materialien verwendet wird

2.2.1.1

Geotextil

GTX

flächenhaftes, durchlässiges, polymeres (synthetisches oder natürliches) Textil, entweder Vliesstoff, Maschenware oder Gewebe, das bei geotechnischen und anderen Anwendungen im Bauwesen im Kontakt mit Boden und/oder anderen Materialien verwendet wird

2.2.1.1.1

Geovliesstoff

GTX-NW

Geotextil aus gerichteten oder regellosen Fasern, Filamenten oder anderen Elementen, die mechanisch und/oder thermisch und/oder chemisch verfestigt werden

2.2.1.1.2

Geomaschenware

GTX-K

Geotextil, das durch Verschlingen von einem oder mehreren Garnen, Filamenten oder anderen Elementen hergestellt wird

2.2.1.1.3

Geogewebe

GTX-W

Geotextil, das durch Verkreuzen, i. d. R. rechtwinklig, von zwei oder mehr Fadensystemen, Filamenten, Bändchen oder anderen Elementen hergestellt wird

2.2.1.2

geotextilverwandtes Produkt

GTP

flächenhaftes, durchlässiges, polymeres (synthetisches oder natürliches) Material, das nicht der Definition eines Geotextils entspricht, das bei geotechnischen und anderen Anwendungen im Bauwesen im Kontakt mit Boden und/oder anderen Materialien verwendet wird

Anmerkung 1 zum Begriff: Siehe Geotextil (2.2.1.1).

2.2.1.2.1

Geogitter

GGR

flächenhafte, polymere Struktur aus einem regelmäßigen offenen Netzwerk, dessen Zugelemente durch Extrudieren, Verbinden oder Verschlingen oder Verflechten miteinander verbunden sind und dessen Öffnungen größer als die Bestandteile sind

2.2.1.2.2

Geonetz

GNT

Geokunststoff bestehend aus parallel angeordneten und übereinander liegenden Rippen, die fest miteinander verbunden sind, wobei die Winkel unterschiedlich ausfallen können

2.2.1.2.3

Geomatte

GMA

Dreidimensionale, durchlässige Struktur aus polymeren Monofilamenten und/oder anderen Elementen (synthetisch oder natürlich), die mechanisch und/oder thermisch und/oder chemisch und/oder anderweitig verfestigt werden

2.2.1.2.4

Geozelle

GCE

dreidimensionale, durchlässige polymere (synthetische oder natürliche) Waben- oder ähnliche Zellstruktur, hergestellt aus miteinander verbundenen Geokunststoffstreifen

2.2.1.2.5

Geoband

GST

polymeres Material in Form eines Streifens mit einer Breite von höchstens 200 mm, das bei geotechnischen Anwendungen und im Bauwesen in Kontakt mit Boden und/oder anderen Materialen verwendet wird

2.2.1.2.6

Geospacer

GSP

dreidimensionale polymere Struktur mit einem dazwischenliegenden zusammenhängenden Luftraum, die bei geotechnischen Anwendungen und im Bauwesen in Kontakt mit Boden und/oder anderen Materialien verwendet wird

2.2.1.3

geosynthetische Dichtungsbahn

GBR

geosynthetisches Material niedriger Durchlässigkeit, das bei geotechnischen Anwendungen und im Bauwesen zu dem Zweck verwendet wird, das Durchströmen eines Fluids durch das Bauwerk zu verringern oder zu vermeiden

2.2.1.3.1

geosynthetische Kunststoffdichtungsbahn

GBR-P

Geomembran

fabrikgefertigte Struktur aus geosynthetischen Materialien in Form einer Bahn, wobei die Dichtungsfunktion im Wesentlichen durch Polymere erfüllt wird

2.2.1.3.2

geosynthetische Tondichtungsbahn

GBR-C

geosynthetische Tondichtungsbarriere)

fabrikgefertigte Struktur aus geosynthetischen Materialien in Form einer Bahn, wobei die Dichtungsfunktion im Wesentlichen durch Ton erfüllt wird

2.2.1.3.3

geosynthetische Bitumendichtungsbahn

GBR-B

Bitumenbarriere

fabrikgefertigte Struktur aus geosynthetischen Materialien in Form einer Bahn, wobei die Dichtungsfunktion im Wesentlichen durch Bitumen erfüllt wird

2.2.1.4

Geoverbundstoff

GCO

hergestelltes zusammengesetztes Material, bei dem mindestens ein Bestandteil ein Geokunststoff ist

2.3 Eigenschaftsbezogene Begriffe

2.3.1 Allgemeine Eigenschaften

2.3.1.1

Nennwert

NV

vom Materialhersteller/-lieferanten angegebener und nicht gemessener Wert einer Materialeigenschaft

2.3.2 Begriffe bezogen auf physikalische Eigenschaften

2.3.2.1

Dicke

1

Abstand zwischen der oberen und unteren Grenzfläche eines Geokunststoffes, senkrecht zu den Grenzflächen und unter einer definierten Auflast gemessen

Anmerkung 1 zum Begriff: Einheit: mm.

2.3.2.2

flächenbezogene Masse

 $\rho_{\rm A}$

Verhältnis der Masse einer Messprobe mit definierten Abmessungen zu ihrer Fläche

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in Gramm je Quadratmeter (g/m²).

2.3.3 Begriffe bezogen auf hydraulische Eigenschaften

2.3.3.1

charakteristische Öffnungsweite

 O_{90}

Öffnungsweite, die dem maximalen Korndurchmesser von 90 Gew.-% des Bodens entspricht, der durch das Geotextil dringt

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in µm.

2.3.3.2

Durchlässigkeit

Durchfluss von Fluid durch einen Geokunststoff

2.3.3.3

Durchlässigkeitsbeiwert normal zur Ebene

 k_{n}

Verhältnis von Durchflussgeschwindigkeit v und hydraulischem Gefälle i normal zur Ebene

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in m/s.

2.3.3.4

Durchflussrate

 q_{n}

Volumendurchsatz je Flächeneinheit normal zur Ebene des Produkts bei einer definierten Druckhöhe

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in I/(m²·s).

2.3.3.5

Geschwindigkeitsindex

v-index

Durchflussgeschwindigkeit entsprechend der Druckhöhendifferenz von 50 mm durch eine Messprobe bei einem Wasserdurchlässigkeitsversuch

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in mm/s.

2.3.3.6

Permittivität

Ψ

Volumendurchsatz von Wasser und/oder anderen Flüssigkeiten je Flächeneinheit je Einheit Druckverlust, unter laminaren Strömungsbedingungen normal zur Ebene eines Produkts

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in s⁻¹.

2.3.3.7

Ableitvermögen in der Ebene

 q_{n}

Volumendurchsatz von Wasser und/oder einer anderen Flüssigkeit je Breiteneinheit einer Messprobe bei definierten Gefällen in der Ebene eines Produkts

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in I/(m·s).

2.3.3.8

Transmissivität

A

Volumendurchsatz je Breiteneinheit einer Messprobe und je Ableitvermögen in der Ebene eines Produkts

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in I/(m·s).

2.3.3.9

Dichtheit gegenüber Flüssigkeiten

Fähigkeit eines Geokunststoffes, Flüssigkeiten zurückzuhalten

2.3.4 Begriffe bezogen auf mechanische Eigenschaften

2.3.4.1

Zugspannung bezogen auf die Querschnittsfläche einer Messprobe

σ

Zugkraft je Querschnittsfläche einer Messprobe vor der Belastung, die bei einer Kurzzeitprüfung zu jedem beliebigen Zeitpunkt auf die Messprobe wirkt

Anmerkung 1 zum Begriff: Die Zugspannung bezogen auf die Querschnittsfläche einer Messprobe wird angegeben in MPa.

2.3.4.1.1

Streckgrenze

Punkt auf einer Spannungs-Dehnungs-Kurve, bei dem die Dehnung zunimmt, ohne dass die Spannung steigt, jedoch nicht der Bruchpunkt

2.3.4.1.2

Zugspannung an der Streckgrenze

 σ_{y}

erste Spannung, bei der die Dehnung zunimmt, ohne dass die Spannung steigt

Anmerkung 1 zum Begriff: Sie kann kleiner als die erreichbare Höchstspannung sein.

2.3.4.1.3

Zugspannung bei Bruch

 $\sigma_{\!\scriptscriptstyle \mathsf{f}}$

Zugspannung, bei der die Messprobe bricht

2.3.4.1.4

Höchstzugspannung

 $\sigma_{\rm max}$

maximale Zugspannung, die die Messprobe während eines Zugversuchs aushält

2.3.4.2

Zugfestigkeit (bezogen auf die Messprobenbreite)

Τ

Zugkraft je Breiteneinheit, die bei einer Kurzzeitprüfung zu jedem beliebigen Zeitpunkt auf die Messprobe wirkt

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in kN/m.

2.3.4.2.1

Zugfestigkeit bei Bruch (bezogen auf die Messprobenbreite)

 T_{f}

Zugfestigkeit, bei der die Messprobe zerreißt

2.3.4.2.2

Höchstzugfestigkeit (bezogen auf die Messprobenbreite)

 T_{max}

Höchstzugfestigkeit, die die Messprobe während eines Zugversuchs aushält

2.3.4.2.3

Zugmodul

I

Verhältnis zwischen Veränderung von Zugspannung oder Zugfestigkeit eines Geokunststoffes und entsprechender Veränderung der Dehnung

Anmerkung 1 zum Begriff: Das Zugmodul wird in MPa oder kN/m angegeben.

2.3.4.3

Vorspannlast

geringe Last, die 1 % der erwarteten Höchstlast entspricht, zur Bestimmung der Anfangsmesslänge und des Dehnungs-Nullpunktes unter reproduzierbaren Bedingungen

2.3.5 Überlappen und Anbinden von GTX oder GTP

2.3.5.1

Verbindung

punktuelle oder fortlaufende Anbindung von unterschiedlichen Geokunststoffen oder eines Geokunststoffs mit einem anderen Material

2.3.5.2

Überlappung

punktuelle oder fortlaufende Anbindung von nebeneinander liegenden gleichartigen Geokunststoffen

2.3.5.3

Verbund

flächige Verbindung der Elemente eines Geoverbundstoffes miteinander

2.3.5.4

Höchstverbindungs- oder Nahtfestigkeit

 T_{Jmax}

Höchstzugfestigkeit des Verbunds von zwei oder mehr Bahnen

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in kN/m.

2.3.5.5

Verbindungs- oder Nahtwirksamkeit

ξs

Verhältnis der Verbindungs- oder Nahtfestigkeit zu der Zugfestigkeit des Materials in derselben Richtung

Anmerkung 1 zum Begriff: Die Einheit wird angegeben in %.

2.3.6 Grenzflächeneigenschaften

2.3.6.1

Reibungswinkel

φ

Winkel, dessen Tangens gleich dem Verhältnis der Reibungskraft je Flächeneinheit zur Normalspannung zwischen zwei Teilen desselben Materials oder zwischen zwei Materialien ist

Anmerkung 1 zum Begriff: Boden und GSY sind Beispiele für zwei Materialien.

2.3.6.2

Beiwert der Reibungswirksamkeit

 $f_{\rm S}$ GSY

Verhältnis zwischen dem Tangens des Reibungswinkels zwischen Boden und GSY und dem Tangens des Reibungswinkels des Bodens

2.4 Sonstige Begriffe

2.4.1

Produktionsrichtung

МГ

Produktionsrichtung eines geosynthetischen Produkts (bei einem Geogewebe die Kettrichtung)

2.4.2

Querrichtung

CMD

Richtung senkrecht zur Produktionsrichtung eines geosynthetischen Produkts (bei einem Geogewebe die Schussrichtung)

2.4.3

Gebrauchslebensdauer

Zeitraum von Beginn des Einbaus bis zu dem Zeitpunkt, zu welchem das Material nicht länger seine geforderten Konstruktionseigenschaften erfüllt, um seine Funktion innerhalb der festgelegten Grenzen ausüben zu können

2.4.4

Schälverbundversuch

Zugversuch eines Verbundes, einer Überlappung oder einer Verbindung, bei der zwei Komponenten separat eingespannt werden und eine Komponente von der anderen abgeschält wird, um die Schälfestigkeit zu bestimmen

2.4.5

Zugscherversuch

Zugversuch eines Verbundes, einer Überlappung oder einer Verbindung, bei der zwei Komponenten separat eingespannt werden und eine Last in der Ebene des Produkts aufgebracht wird, um die Scherfestigkeit zu bestimmen

Literaturhinweise

[1] ISO 9863-1:2005, Geosynthetics — Determination of thickness at specified pressures — Part 1: Single layers