Lycée Buffon DM 14
MPSI Année 2020-2021

devoir à faire

On considère la matrice $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- 1. Prouver que la matrice A n'est pas semblable à une matrice diagonale.
- 2. Calculer A^2 et A^3 .
- 3. On considère S l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que AM = MA.
 - (a) Soit α , β et γ trois réels et $M = \alpha I_3 + \beta A + \gamma A^2$. Vérifier que $M \in \mathcal{S}$.
 - (b) Réciproquement, considérons $a,\ b,\ c,\ d,\ e,\ f,\ g,\ h$ et i des réels tels que

$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathcal{S}$$
. Déterminer, en fonction des coefficients de M ,

trois réels α , β et γ tels que $M = \alpha I_3 + \beta A + \gamma A^2$.

- (c) En déduire une condition nécessaire et suffisante pour appartenir à \mathcal{S} .
- 4. On considère \mathcal{S}' l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^3=0$ et $M^2\neq 0$.
 - (a) Soit $P \in \mathcal{M}_3(\mathbb{R})$ inversible et $M = PAP^{-1}$. Vérifier que $M \in \mathcal{S}'$.

Dans la suite, tout vecteur de \mathbb{R}^3 sera assimilé à une matrice colonne de $\mathcal{M}_{3,1}(\mathbb{R})$ de sorte que, pour tout vecteur X de \mathbb{R}^3 , le produit matriciel MX soit correctement défini.

(b) Soit
$$M = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & 0 \end{pmatrix}$$
.

i. Vérifier que $M \in \mathcal{S}'$.

On considère f l'endomorphisme de \mathbb{R}^3 dont M est la matrice dans la base canonique, c'est-à-dire $f: \mathbb{R}^3 \to \mathbb{R}^3, X \mapsto MX$.

- ii. Prouver qu'il existe un vecteur $X \in \mathbb{R}^3$ tel que M^2X soit non nul.
- iii. Montrer que la famille $\mathcal{B} = (X, MX, M^2X)$ est une base de \mathbb{R}^3 .
- iv. Déterminer la matrice de f dans la base \mathcal{B} .

- v. En déduire qu'il existe $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $M = PAP^{-1}$.
- (c) On cherche à généraliser ce qui a été montré dans la question précédente. Pour cela on considère $M \in \mathcal{S}'$ et f l'endomorphisme de \mathbb{R}^3 dont M est la matrice dans la base canonique.
 - i. Prouver qu'il existe un vecteur $X \in \mathbb{R}^3$ tel que M^2X soit non nul.
 - ii. En déduire qu'il existe $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $M = PAP^{-1}$.
- (d) En déduire une condition nécessaire et suffisante pour appartenir à \mathcal{S}' .