Point Processing & Modeling

Sources cours de Jean-Marc Thiery : https://perso.telecom-paristech.fr/jthiery/ Roi Pooran ETH

Processus d'acquisition

Scan:

nuages de points

Recalage:

tous les scans dans le même système de coordonnées

Reconstruction:

Integration des scans dans un seul maillage

Postprocess:

- Filtrage géométrique et topologique filtering
- Remaillage...

Digital Michelangelo Project

1G sample points \rightarrow 8M triangles

4G sample points \rightarrow 8M triangles

Entrée de la reconstruction

Nuage de points

Nuages de points orientés

Reconstruction explicite Connecter les échantillons avec des triangles

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

Reconstruction explicite Connecter les échantillons avec des triangles

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

Reconstruction explicite Connecter les échantillons avec des triangles

Problèmes:

- Données bruitées ou mal alignées
- Peut générer des trous ou des configurations nonvariétés

Reconstruction implicite:

Estimer une fonction de distance signée (SDF)

Extraire le niveau zéro

Reconstruction implicite:

Estimer une fonction de distance signée (SDF) Extraire le niveau zéro (zéro set)

Courbes et Surfaces implicites

Surfaces implicites

- Zero set d'une fonction scalaire
 - Courbe en 2D : $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
 - Surface en 3D : $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Partitionnement de l'espace

$$\{x\in\mathbb{R}^m|f(x)>0\} \text{ Extérieur}$$

$$\{x\in\mathbb{R}^m|f(x)=0\} \text{ Surface/courbe}$$

$$\{x\in\mathbb{R}^m|f(x)<0\} \text{ Intérieur}$$

Surfaces implicites

- ullet Zero set d'une fonction scalaire $f:\mathbb{R}^m{
 ightarrow}\mathbb{R}$
 - Courbe en 2D : $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
 - Surface en 3D : $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Ensemble de niveau zéro d'une fonction de distance signée

Surfaces implicites

Cercle et sphère implicite

$$f(x,y) = x^2 + y^2 - r^2$$
 $f(x,y,z) = x^2 + y^2 + z^2 - r^2$

Reconstruction implicite:

éstimer une fonction de distance signée (SDF) extraire le zero set

Reconstruction implicite:

éstimer une fonction de distance signée (SDF) extraire le zero set

Avantages:

- Approximation des points d'entrée
- Watertight manifold par construction

Implicite vs. Explicite

SDF: points et normales

Calculer la distance signée au plan tangent du point le plus proche

Les normales aident à distinguer exterieur/interieur

"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

SDF: points et normales

Calculer la distance signée au plan tangent du point le plus proche

SDF: points et normales

Calculer la distance signée au plan tangent du point le plus proche

Problème ?

La fonction ne sera pas continue

Utilisation des MLS

On peut definir une fonction implicite

$$f(x) = (x-p(x))^{T}n(x)$$

p(x): projection sur la surface MLS

(la surface est alors le « 0-set » de cette fonction).

Exemple: Reconstruction

Extraire la Surface

Comment extraire la surface d'un ensemble de niveaux ?

Échantillonner la SDF

Échantillonner la SDF

Échantillonner la SDF

Extraction de surface a partir d'une fonction implicite sur une grille

- Entrée : une fonction continue f définie partout dans l'espace
- On extrait la surface correspondant au « 0-set » de f
- On définira une fonction implicite à partir d'un pointset. On pourra donc extraire la surface correspondante

Ressources extérieures utilisées : http://www.cs.wustl.edu/~taoju/cse554/index.htm#lectures

« Marching cubes »

Étiqueter les sommets comme
 « intérieur » ou « extérieur »

« Marching cubes »

- Étiqueter les sommets comme
 « intérieur » ou « extérieur »
- Sur les arêtes changeant de signe, créer un sommet.
- Connecter les arêtes (en procédant cellule par cellule).

« Marching cubes »

- En 3D : 28 = 256 combinaisons
- Look-up table
- Fastidieux à implémenter
- Code open source disponible
- Toujours manifold comme sortie
- Géométrie de basse qualité

Marching Cubes – Problèmes

- Grille non adaptative
- Beaucoup de primitives pour représenter les petites caractéristiques

Images from: "Dual Marching Cubes: Primal Contouring of Dual Grids" by Schaeffer et al.

Marching Cubes – Problèmes

Marching Cubes – Problèmes

Problèmes d'arêtes courtes

- Surface intersecte le cube près d'un coin, le petit triangle résultant ne contribue pas beaucoup au maillage (aire réduite)
- Si l'intersection est proche d'une arête du cube, les triangles sont mal formés (mauvais aspect ratio)

Grid Snapping

Solution: fixer un seuil sur les distances entre les sommets créés les coins du cube quand < d_{snap} le sommet est ramené au coin

Si plus d'un sommet d'un triangle sont ramenés au même point, le triangle est ignoré

Méthodes primales et duales

Primales: nouveaux sommets sur les aretes de la grille (par ex, Marching cubes)

Duales : nouveaux sommets dans les cellules de la grille

Méthodes duales (dual contouring)

- Pour chaque cellule avec un changement de signe: créer un sommet
- Pour chaque arête avec un changement de signe : connecter les sommets des cellules séparées par l'arête

- Pour chaque cellule avec un changement de signe : créer un sommet
- Pour chaque arête avec un changement de signe : connecter les sommets des cellules séparées par l'arête
- Pas besoin de look-up table

Comparaison

Marching Cubes

Dual Contouring

- Plusieurs manières possibles de définir la position d'un sommet
- Meilleure qualité avec Dual Contouring
- Dual Contouring peut être réalisé sur une structure non-uniforme
- La sortie peut être non-manifold

Dual contouring sur un quadtree

grille uniforme

- Choix raisonnables pour la position du sommet inséré dans la cellule :
 - Centre de la cellule
 - Projection sur la surface MLS
 - ... ?

- Stratégie raisonnable pour l'extraction sur un octree :
 - Initialiser à un niveau minimum (par ex, 5)
 - Itérativement, subdiviser une cellule si la fonction implicite à ses coins change de signe. S'arrêter à une profondeur maximale (par ex, 10)

Pour les arêtes :

- Partir des nœuds les plus profonds pour tester les arêtes qui changent de signe.
- Trouver les 3 cellules adjacentes, et insérer le morceau de surface correspondant.
- Difficile à coder.

Extensions: manifold dual contouring (3D)

Questions?

