MARSS model checking

###Original MARSS model outputs (using airtemp as a covariate, airtemp not transformed, no Fourier Series correction for seasonality)

```
mod1.fit <- readRDS("mod1.fit.rds")
mod1.params <- readRDS("mod1.params.rds")
mod2.fit <- readRDS("mod2.fit.rds")
mod2.params <- readRDS("mod2.params.rds")
mod3.fit <- readRDS("mod3.fit.rds")
mod3.params <- readRDS("mod3.params.rds")
mod4.fit <- readRDS("mod4.fit.rds")
mod4.params <- readRDS("mod4.params.rds")
#Model 1, hypothesis 1 (all separate)
mod1.params</pre>
```

```
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 3251 iterations.
## Log-likelihood: 311.9935
## AIC: -445.987
                  AICc: -444.0914
##
##
               ML.Est Std.Err
                                   low.CI
                                             up.CI
## R.diag
             4.66e-02 0.000765
                                4.51e-02 0.048146
             1.08e-02 0.001547 7.79e-03 0.013853
## Q.(1,1)
## Q.(2,1)
             9.58e-03 0.001222 7.18e-03 0.011974
## Q.(3,1)
             1.01e-02 0.001347
                                7.46e-03 0.012739
## Q.(4,1)
             9.63e-03 0.001243
                                7.19e-03 0.012062
## Q.(5,1)
             9.21e-03 0.001261
                                6.74e-03 0.011681
## Q.(6,1)
             1.11e-02 0.001649
                                7.82e-03 0.014285
## Q.(7,1)
              6.48e-03 0.001058
                                4.41e-03 0.008558
## Q.(8,1)
             1.68e-03 0.000590 5.27e-04 0.002839
## Q.(9,1)
             4.73e-03 0.000690 3.38e-03 0.006086
## Q.(10,1)
             3.34e-03 0.000646 2.07e-03 0.004607
## Q.(11,1)
              1.05e-02 0.001379
                                7.75e-03 0.013159
             1.04e-02 0.001281 7.88e-03 0.012899
## Q.(2,2)
## Q.(3,2)
              1.02e-02 0.001268 7.70e-03 0.012676
## Q.(4,2)
              1.02e-02 0.001240
                                7.81e-03 0.012674
## Q.(5,2)
             9.73e-03 0.001239
                                7.30e-03 0.012155
## Q.(6,2)
             1.28e-02 0.001720 9.45e-03 0.016192
## Q.(7,2)
             6.86e-03 0.001020 4.86e-03 0.008859
## Q.(8,2)
             1.64e-03 0.000548 5.62e-04 0.002711
## Q.(9,2)
             5.15e-03 0.000678 3.82e-03 0.006484
## Q.(10,2)
             3.57e-03 0.000618 2.36e-03 0.004778
```

```
## Q.(11,2)
              1.08e-02 0.001313 8.19e-03 0.013339
              1.46e-02 0.001731 1.12e-02 0.018015
## Q.(3,3)
                                 7.82e-03 0.013057
## Q.(4,3)
              1.04e-02 0.001335
## Q.(5,3)
              9.66e-03 0.001318
                                 7.07e-03 0.012241
## Q.(6,3)
              1.02e-02 0.001652
                                 7.00e-03 0.013474
              7.21e-03 0.001153
                                 4.95e-03 0.009474
## Q.(7,3)
## Q.(8,3)
              2.68e-03 0.000683
                                 1.35e-03 0.004022
## Q.(9,3)
              5.84e-03 0.000791
                                 4.29e-03 0.007395
## Q.(10,3)
              4.80e-03 0.000766
                                  3.30e-03 0.006303
## Q.(11,3)
              1.50e-02 0.001688
                                  1.17e-02 0.018303
## Q.(4,4)
              1.02e-02 0.001342
                                  7.54e-03 0.012802
                                  7.23e-03 0.012142
## Q.(5,4)
              9.69e-03 0.001254
## Q.(6,4)
              1.23e-02 0.001680
                                  9.05e-03 0.015640
## Q.(7,4)
              6.73e-03 0.001017
                                  4.73e-03 0.008720
## Q.(8,4)
              1.78e-03 0.000551
                                  7.05e-04 0.002863
## Q.(9,4)
              5.13e-03 0.000681
                                  3.80e-03 0.006468
                                  2.40e-03 0.004828
## Q.(10,4)
              3.61e-03 0.000620
## Q.(11,4)
              1.10e-02 0.001377
                                  8.28e-03 0.013677
                                  6.85e-03 0.012399
## Q.(5,5)
              9.63e-03 0.001415
## Q.(6,5)
              1.16e-02 0.001665
                                  8.36e-03 0.014887
## Q.(7,5)
              6.19e-03 0.000996
                                  4.24e-03 0.008145
## Q.(8,5)
              1.61e-03 0.000547
                                  5.41e-04 0.002686
              4.65e-03 0.000648
                                  3.38e-03 0.005923
## Q.(9,5)
              3.44e-03 0.000627
                                  2.21e-03 0.004671
## Q.(10,5)
## Q.(11,5)
              1.03e-02 0.001396
                                 7.55e-03 0.013027
## Q.(6,6)
              1.79e-02 0.002708
                                 1.26e-02 0.023167
              7.88e-03 0.001378
                                 5.18e-03 0.010581
## Q.(7,6)
## Q.(8,6)
              1.23e-03 0.000759 -2.58e-04 0.002719
              5.99e-03 0.000938
                                 4.15e-03 0.007829
## Q.(9,6)
## Q.(10,6)
              3.37e-03 0.000818
                                 1.76e-03 0.004972
## Q.(11,6)
              1.11e-02 0.001744
                                  7.73e-03 0.014565
## Q.(7,7)
              6.65e-03 0.001153
                                  4.39e-03 0.008907
## Q.(8,7)
              1.65e-03 0.000485
                                  7.03e-04 0.002604
              3.78e-03 0.000595
                                  2.61e-03 0.004944
## Q.(9,7)
## Q.(10,7)
              2.94e-03 0.000557
                                  1.85e-03 0.004035
                                  5.54e-03 0.010368
## Q.(11,7)
              7.95e-03 0.001232
## Q.(8,8)
              1.91e-03 0.000383
                                  1.16e-03 0.002664
## Q.(9,8)
              1.83e-03 0.000367
                                  1.12e-03 0.002553
              1.82e-03 0.000360
                                  1.12e-03 0.002529
## Q.(10,8)
              2.80e-03 0.000708
                                  1.42e-03 0.004189
## Q.(11,8)
              3.36e-03 0.000483
                                  2.41e-03 0.004304
## Q.(9,9)
              2.70e-03 0.000416
                                 1.88e-03 0.003512
## Q.(10,9)
## Q.(11,9)
              6.07e-03 0.000812
                                  4.47e-03 0.007658
              2.74e-03 0.000457
                                  1.85e-03 0.003640
## Q.(10,10)
## Q.(11,10)
              4.92e-03 0.000785
                                  3.39e-03 0.006461
## Q.(11,11)
                                  1.21e-02 0.019280
              1.57e-02 0.001843
## x0.X1
              8.12e-01 0.321857
                                  1.81e-01 1.442374
## x0.X2
              1.01e+00 0.311113
                                  3.97e-01 1.617014
## x0.X3
              1.03e+00 0.354114
                                  3.32e-01 1.720270
## x0.X4
              1.03e+00 0.308485
                                  4.28e-01 1.637267
## x0.X5
              1.36e+00 0.312260
                                  7.45e-01 1.969097
## x0.X6
              1.25e+00 0.438070
                                  3.89e-01 2.106327
## x0.X7
              8.37e-01 0.258043
                                 3.31e-01 1.342717
## x0.X8
              7.08e-01 0.143317 4.27e-01 0.988510
```

```
## x0.X9
              1.02e+00 0.170085 6.88e-01 1.355067
## x0.X10
              9.43e-01 0.162580 6.25e-01 1.261890
## x0.X11
              1.08e+00 0.362198 3.68e-01 1.787971
## C.X1
              1.99e-04 0.000386 -5.58e-04 0.000955
## C.X2
              1.35e-04 0.000377 -6.03e-04 0.000873
## C.X3
              2.92e-04 0.000446 -5.82e-04 0.001165
## C.X4
              1.45e-04 0.000373 -5.86e-04 0.000876
             -1.64e-04 0.000365 -8.78e-04 0.000551
## C.X5
## C.X6
              6.89e-05 0.000503 -9.16e-04 0.001054
              2.24e-04 0.000305 -3.73e-04 0.000821
## C.X7
## C.X8
              5.23e-04 0.000166 1.98e-04 0.000847
## C.X9
              3.51e-04 0.000215 -7.00e-05 0.000771
              3.40e-04 0.000196 -4.36e-05 0.000724
## C.X10
              2.73e-04 0.000461 -6.30e-04 0.001177
## C.X11
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod1.fit, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
    acf(residuals, na.action = na.pass)
  }
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 2, hypothesis 2 (creeks vs ponds)
mod2.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 91 iterations.
## Log-likelihood: -4891.9
## AIC: 9799.801
                   AICc: 9799.817
##
             ML.Est Std.Err
                                low.CI
                                          up.CI
## R.diag 0.176657 0.002753
                              0.171261 0.182053
## Q.(1,1) 0.004101 0.000690
                              0.002748 0.005453
## Q.(2,1) 0.005458 0.000909
                              0.003676 0.007240
## Q.(2,2) 0.008550 0.001468
                              0.005672 0.011428
## x0.X1
           0.933060 0.198706
                              0.543604 1.322515
           1.055530 0.293369
## x0.X2
                             0.480537 1.630523
## C.X1
           0.000300 0.000239 -0.000168 0.000768
## C.X2
           0.000325 0.000346 -0.000353 0.001003
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
```


#Model 3, hypothesis 3 (trib vs. trib) mod3.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 2518 iterations.
## Log-likelihood: -1836.822
## AIC: 3711.645
                  AICc: 3711.734
##
##
            ML.Est Std.Err
                                low.CI
                                          up.CI
## R.diag 0.082798 0.001311 8.02e-02 0.085368
## Q.(1,1) 0.010326 0.001421
                             7.54e-03 0.013112
## Q.(2,1) 0.009662 0.001319 7.08e-03 0.012248
## Q.(3,1) 0.003657 0.000625 2.43e-03 0.004882
## Q.(4,1) 0.009611 0.001286 7.09e-03 0.012132
```

```
## Q.(2,2) 0.012367 0.001709 9.02e-03 0.015717
## Q.(3,2) 0.004285 0.000690 2.93e-03 0.005637
## Q.(4,2) 0.011955 0.001590 8.84e-03 0.015070
## Q.(3,3) 0.002523 0.000420 1.70e-03 0.003347
## Q.(4,3) 0.004213 0.000667 2.91e-03 0.005520
## Q.(4,4) 0.011584 0.001559 8.53e-03 0.014640
## x0.X1
           0.992099 0.320593 3.64e-01 1.620449
## x0.X2
           1.076092 0.339679 4.10e-01 1.741850
## x0.X3
           0.918146 0.153676 6.17e-01 1.219345
## x0.X4
           1.083917 0.326099 4.45e-01 1.723059
## C.X1
           0.000116 0.000377 -6.23e-04 0.000854
## C.X2
           0.000300 0.000412 -5.08e-04 0.001108
          0.000373 0.000187 5.91e-06 0.000741
## C.X3
## C.X4
           0.000293 0.000398 -4.88e-04 0.001074
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod3.fit, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
    acf(residuals, na.action = na.pass)
  }
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 4, hypothesis 4 (all same) mod4.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 36 iterations.
## Log-likelihood: -5032.398
## AIC: 10072.8
                  AICc: 10072.8
##
##
            ML.Est Std.Err
                               low.CI
                                        up.CI
## R.diag 0.184194 0.002858
                             0.178593 0.18980
          0.004608 0.000759
                             0.003121 0.00610
## Q.Q
## x0.x0 0.936723 0.210525
                             0.524102 1.34934
## C.C
          0.000314 0.000253 -0.000182 0.00081
## Initial states (x0) defined at t=0
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod4.fit, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
```

```
acf(residuals,na.action = na.pass)
}
```


#...these models are not good

###Comparing Original AICc values

```
## Model AICc
## 1 Model1 -444.1
## 2 Model2 9799.8
## 3 Model3 3711.7
## 4 Model4 10072.8
```

correct for seasonality using Fourier Series, and z-scoring air temperature as an additional covariate ### Question: Did I do the period correctly?

```
#Correct for seasonality using Fourier Series
TT = ncol(transformed_dat) # number of time periods/samples
period = 365 # number of "seasons" (e.g., 12 months per year)
per.1st = 1 # first "season" (e.g., Jan = 1, July = 7)
c = diag(period) # create factors for seasons
for(i in 2:(ceiling(TT/period))) {c = cbind(c,diag(period))}
dim(c)
```

[1] 365 730

```
#Create Fourier Series
cos.t = cos(2 * pi * seq(TT) / period)
sin.t = sin(2 * pi * seq(TT) / period)
c.Four = rbind(cos.t,sin.t)
cor(c.Four[1,],c.Four[2,]) # not correlated!
```

[1] 0.007872561

```
matplot(t(c.Four), type="1")
```



```
#Now fit model with seasonality AND an additional covariate (airtemp from above)
airtemp_z <- zscore(airtemp$TAVG)
newcovarsFour_airtemp <-rbind(c.Four, "airtemp"=airtemp_z)
matplot(t(newcovarsFour_airtemp), type="l", col=c("black","red","blue"))</pre>
```


###Checking model results and residuals when log transformed

```
mod5.fit <- readRDS("mod5.fit.rds")
mod5.params <- readRDS("mod5.params.rds")
mod6.fit <- readRDS("mod6.fit.rds")
mod6.params <- readRDS("mod6.params.rds")
mod7.fit <- readRDS("mod7.fit.rds")
mod7.params <- readRDS("mod7.params.rds")
mod8.fit <- readRDS("mod8.fit.rds")
mod8.params <- readRDS("mod8.params.rds")

#Model 5, hypothesis 1 (all separate)
mod5.params</pre>
```

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 2833 iterations.
## Log-likelihood: 386.5636
## AIC: -551.1273
                    AICc: -548.1774
##
##
                      ML.Est Std.Err
                                         low.CI
                                                     up.CI
                    0.046473 0.000759
                                       4.50e-02
                                                 0.047961
## R.diag
## Q.(1,1)
                    0.010158 0.001506
                                       7.21e-03
                                                 0.013110
                    0.009165 0.001216
## Q.(2,1)
                                       6.78e-03
                                                 0.011549
```

```
## Q.(3,1)
                    0.009139 0.001270
                                        6.65e-03 0.011629
                    0.008580 0.001184
## Q.(4,1)
                                        6.26e-03
                                                   0.010900
## Q.(5,1)
                    0.008557 0.001234
                                        6.14e-03
                                                   0.010974
                    0.011278 0.001651
## Q.(6,1)
                                        8.04e-03
                                                   0.014514
## Q.(7,1)
                    0.005811 0.001014
                                        3.82e-03
                                                   0.007798
                    0.000830 0.000477 -1.05e-04
## Q.(8,1)
                                                   0.001766
## Q.(9,1)
                    0.004203 0.000609
                                        3.01e-03
                                                   0.005397
## Q.(10,1)
                    0.002646 0.000550
                                        1.57e-03
                                                   0.003725
## Q.(11,1)
                    0.010720 0.001434
                                        7.91e-03
                                                   0.013530
## Q.(2,2)
                    0.010017 0.001353
                                        7.37e-03
                                                   0.012669
## Q.(3,2)
                    0.009388 0.001231
                                        6.97e-03
                                                   0.011801
## Q.(4,2)
                    0.009248 0.001201
                                        6.89e-03
                                                   0.011602
## Q.(5,2)
                    0.009075 0.001228
                                        6.67e-03
                                                   0.011482
## Q.(6,2)
                                        9.43e-03
                    0.012821 0.001729
                                                   0.016210
## Q.(7,2)
                    0.006211 0.000999
                                        4.25e-03
                                                   0.008170
## Q.(8,2)
                    0.000715 0.000454 -1.75e-04
                                                   0.001606
## Q.(9,2)
                    0.004508 0.000607
                                        3.32e-03
                                                   0.005697
## Q.(10,2)
                    0.002712 0.000533
                                        1.67e-03
                                                   0.003757
## Q.(11,2)
                    0.011067 0.001394
                                        8.34e-03
                                                   0.013799
## Q.(3,3)
                    0.013393 0.001641
                                        1.02e-02
                                                   0.016610
## Q.(4,3)
                    0.009152 0.001256
                                        6.69e-03
                                                   0.011614
## Q.(5,3)
                    0.008776 0.001280
                                        6.27e-03
                                                   0.011285
## Q.(6,3)
                    0.010262 0.001630
                                        7.07e-03
                                                   0.013456
                    0.006238 0.001091
## Q.(7,3)
                                        4.10e-03
                                                   0.008375
## Q.(8,3)
                    0.001496 0.000552
                                        4.14e-04
                                                   0.002578
## Q.(9,3)
                    0.004957 0.000687
                                        3.61e-03
                                                   0.006304
                    0.003860 0.000651
## Q.(10,3)
                                        2.58e-03
                                                   0.005135
## Q.(11,3)
                    0.015018 0.001701
                                        1.17e-02
                                                   0.018353
## Q.(4,4)
                    0.008663 0.001352
                                        6.01e-03
                                                   0.011312
## Q.(5,4)
                    0.008441 0.001184
                                        6.12e-03
                                                   0.010761
## Q.(6,4)
                    0.011778 0.001645
                                        8.55e-03
                                                   0.015002
## Q.(7,4)
                    0.005720 0.000954
                                        3.85e-03
                                                   0.007589
## Q.(8,4)
                    0.000853 0.000435
                                        2.70e-07
                                                   0.001706
## Q.(9,4)
                    0.004265 0.000599
                                        3.09e-03
                                                   0.005439
## Q.(10,4)
                    0.002588 0.000515
                                        1.58e-03
                                                   0.003598
## Q.(11,4)
                    0.010750 0.001427
                                        7.95e-03
                                                   0.013546
## Q.(5,5)
                    0.008782 0.001465
                                        5.91e-03
                                                   0.011652
## Q.(6,5)
                    0.011434 0.001663
                                        8.17e-03
                                                   0.014694
## Q.(7,5)
                    0.005485 0.000970
                                        3.58e-03
                                                   0.007386
                    0.000821 0.000443 -4.68e-05
## Q.(8,5)
                                                   0.001689
## Q.(9,5)
                    0.004152 0.000608
                                        2.96e-03
                                                   0.005344
                    0.002672 0.000543
## Q.(10,5)
                                        1.61e-03
                                                   0.003736
## Q.(11,5)
                    0.010456 0.001475
                                        7.56e-03
                                                   0.013348
                    0.017758 0.002693
                                        1.25e-02
## Q.(6,6)
                                                   0.023036
## Q.(7,6)
                    0.007440 0.001336
                                        4.82e-03
                                                   0.010058
                    0.000452 0.000606 -7.34e-04
## Q.(8,6)
                                                   0.001639
## Q.(9,6)
                    0.005568 0.000825
                                        3.95e-03
                                                   0.007185
## Q.(10,6)
                    0.002661 0.000688
                                        1.31e-03
                                                   0.004009
## Q.(11,6)
                    0.012286 0.001848
                                        8.66e-03
                                                   0.015908
## Q.(7,7)
                    0.005763 0.001094
                                        3.62e-03
                                                   0.007908
## Q.(8,7)
                    0.000596 0.000373 -1.35e-04
                                                   0.001328
## Q.(9,7)
                    0.002840 0.000494
                                        1.87e-03
                                                   0.003807
## Q.(10,7)
                    0.001981 0.000454
                                        1.09e-03
                                                   0.002870
## Q.(11,7)
                    0.007796 0.001271 5.31e-03 0.010287
```

```
## Q.(8,8)
                    0.000707 0.000217
                                        2.82e-04
                                                  0.001133
## Q.(9,8)
                    0.000548 0.000227
                                        1.03e-04
                                                  0.000992
                    0.000664 0.000214
## Q.(10,8)
                                        2.45e-04
                                                   0.001083
                                        5.85e-04
## Q.(11,8)
                    0.001822 0.000631
                                                  0.003059
## Q.(9,9)
                    0.002243 0.000386
                                        1.49e-03
                                                   0.003000
                    0.001554 0.000288
                                        9.90e-04
                                                   0.002119
## Q.(10,9)
## Q.(11,9)
                    0.005728 0.000773
                                        4.21e-03
                                                   0.007243
## Q.(10,10)
                    0.001559 0.000342
                                        8.89e-04
                                                   0.002229
## Q.(11,10)
                    0.004413 0.000730
                                        2.98e-03
                                                   0.005845
## Q.(11,11)
                    0.017198 0.002019
                                        1.32e-02
                                                  0.021156
## x0.X1
                    1.004073 0.318263
                                        3.80e-01
                                                  1.627856
## x0.X2
                    1.127373 0.312950
                                        5.14e-01
                                                   1.740745
                    1.171648 0.345779
## x0.X3
                                        4.94e-01
                                                   1.849363
                    1.239960 0.289868
## x0.X4
                                        6.72e-01
                                                   1.808091
## x0.X5
                    1.380072 0.301517
                                        7.89e-01
                                                   1.971035
## x0.X6
                    1.342542 0.438404
                                        4.83e-01
                                                  2.201798
## x0.X7
                    0.833946 0.249183
                                        3.46e-01
                                                  1.322335
## x0.X8
                    0.589145 0.098786
                                        3.96e-01
                                                   0.782761
## x0.X9
                    0.870386 0.143302
                                        5.90e-01
                                                  1.151253
## x0.X10
                    0.840911 0.128746
                                        5.89e-01
                                                  1.093248
## x0.X11
                    1.175008 0.386189
                                        4.18e-01
                                                   1.931925
## C.(X1,cos.t)
                   -0.024999 0.016304 -5.70e-02
                                                  0.006956
## C.(X2,cos.t)
                   -0.004857 0.015634 -3.55e-02
                                                   0.025785
## C.(X3,cos.t)
                   -0.017093 0.017866 -5.21e-02
                                                  0.017923
## C.(X4,cos.t)
                   -0.007122 0.014761 -3.61e-02
                                                  0.021809
## C.(X5,cos.t)
                   -0.005733 0.015306 -3.57e-02
                                                  0.024266
## C.(X6,cos.t)
                    0.016513 0.021392 -2.54e-02
                                                   0.058440
## C.(X7,cos.t)
                    0.000410 0.013149 -2.54e-02
                                                  0.026181
## C.(X8,cos.t)
                    0.014757 0.005707 3.57e-03
                                                   0.025944
## C.(X9,cos.t)
                    0.014909 0.007670 -1.25e-04
                                                  0.029942
## C.(X10,cos.t)
                    0.017251 0.007092
                                       3.35e-03
                                                   0.031152
## C.(X11,cos.t)
                   -0.008135 0.020074 -4.75e-02
                                                  0.031208
## C.(X1,sin.t)
                   -0.033801 0.009749 -5.29e-02 -0.014694
## C.(X2,sin.t)
                   -0.027244 0.009508 -4.59e-02 -0.008608
## C.(X3,sin.t)
                   -0.032358 0.010931 -5.38e-02 -0.010933
## C.(X4,sin.t)
                   -0.028507 0.008907 -4.60e-02 -0.011050
## C.(X5,sin.t)
                   -0.026807 0.009112 -4.47e-02 -0.008948
## C.(X6,sin.t)
                   -0.016866 0.012844 -4.20e-02 0.008307
                   -0.021720 0.007615 -3.66e-02 -0.006794
## C.(X7,sin.t)
## C.(X8,sin.t)
                   -0.012635 0.003042 -1.86e-02 -0.006673
## C.(X9,sin.t)
                   -0.016143 0.004585 -2.51e-02 -0.007155
## C.(X10,sin.t)
                   -0.015757 0.004046 -2.37e-02 -0.007826
## C.(X11,sin.t)
                   -0.028513 0.012338 -5.27e-02 -0.004331
## C.(X1,airtemp)
                    0.027508 0.012689 2.64e-03
                                                  0.052378
## C.(X2,airtemp)
                    0.010778 0.012049 -1.28e-02
                                                  0.034393
## C.(X3,airtemp)
                    0.024818 0.013737 -2.11e-03
                                                   0.051741
## C.(X4,airtemp)
                    0.012634 0.011413 -9.74e-03
                                                   0.035004
## C.(X5,airtemp)
                    0.007170 0.011941 -1.62e-02
                                                   0.030575
## C.(X6,airtemp)
                   -0.010031 0.016617 -4.26e-02
                                                   0.022538
## C.(X7,airtemp)
                    0.010245 0.010376 -1.01e-02
                                                   0.030582
## C.(X8,airtemp)
                    0.006441 0.004683 -2.74e-03
                                                  0.015620
## C.(X9,airtemp)
                    0.003239 0.005980 -8.48e-03
                                                  0.014960
## C.(X10,airtemp)
                    0.000764 0.005654 -1.03e-02
                                                  0.011845
## C.(X11,airtemp)
                    0.016581 0.015404 -1.36e-02
                                                  0.046773
```

```
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
```

MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.

#Model 6, hypothesis 2 (creeks vs ponds) mod6.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 196 iterations.
## Log-likelihood: -4871.922
## AIC: 9767.843
                 AICc: 9767.88
##
                    ML.Est Std.Err low.CI
                                                up.CI
## R.diag
                  1.77e-01 0.002751 0.17150 0.18228
## Q.(1,1)
                  2.97e-03 0.000550 0.00189 0.00405
## Q.(2,1)
                 4.67e-03 0.000798 0.00310 0.00623
## Q.(2,2)
                 7.84e-03 0.001417 0.00506 0.01061
## x0.X1
                 9.19e-01 0.175447 0.57535 1.26309
## x0.X2
                 1.14e+00 0.288131 0.57517 1.70463
## C.(X1,cos.t) -3.69e-05 0.009149 -0.01797 0.01789
## C.(X2,cos.t) -2.06e-02 0.014972 -0.04996 0.00873
## C.(X1,sin.t) -2.25e-02 0.005374 -0.03301 -0.01194
## C.(X2,sin.t) -3.41e-02 0.008765 -0.05130 -0.01695
## C.(X1,airtemp) 1.18e-02 0.007176 -0.00223 0.02590
## C.(X2,airtemp) 2.87e-02 0.011763 0.00567 0.05178
## Initial states (x0) defined at t=0
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
 for (j in 1:5) {
   plot.ts(residuals<-MARSSresiduals(mod6.fit, type = "tt1")$model.residuals[j, ],</pre>
           ylab = "Residual")
   abline(h = 0, lty = "dashed")
   acf(residuals, na.action = na.pass)
```


#Model 7, hypothesis 3 (trib vs. trib) mod7.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 3245 iterations.
## Log-likelihood: -1790.67
## AIC: 3635.341
                   AICc: 3635.519
##
##
                    ML.Est Std.Err
                                        low.CI
                                                  up.CI
## R.diag
                   0.08268 0.001304
                                     0.080121
                                                0.08523
                                     0.007160
## Q.(1,1)
                   0.00989 0.001390
                                                0.01261
## Q.(2,1)
                   0.00883 0.001253
                                      0.006374
                                                0.01128
                   0.00281 0.000467
                                      0.001896
                                                0.00372
## Q.(3,1)
## Q.(4,1)
                   0.00986 0.001349
                                      0.007212
                                                0.01250
                   0.01087 0.001611
## Q.(2,2)
                                     0.007714
                                                0.01403
                   0.00306 0.000502
                                     0.002082
                                                0.00405
## Q.(3,2)
## Q.(4,2)
                   0.01160 0.001577
                                      0.008509
                                                0.01469
## Q.(3,3)
                   0.00117 0.000232
                                     0.000712
                                                0.00162
## Q.(4,3)
                   0.00345 0.000549
                                     0.002378
                                                0.00453
## Q.(4,4)
                   0.01251 0.001777
                                      0.009031
                                                0.01600
## x0.X1
                   1.05597 0.320861
                                      0.427090
                                                1.68484
## x0.X2
                   1.18240 0.327436
                                     0.540634 1.82416
```

```
## x0.X3
                  0.78272 0.109468 0.568165 0.99727
## x0.X4
                 1.17979 0.345826 0.501981 1.85759
## C.(X1,cos.t) -0.00858 0.015715 -0.039381 0.02222
## C.(X2,cos.t) -0.01866 0.016721 -0.051431 0.01412
## C.(X3,cos.t)
                 0.01416 0.005922 0.002556 0.02577
## C.(X4,cos.t) -0.01592 0.017692 -0.050597 0.01876
## C.(X1,sin.t)
                 -0.02797 0.009499 -0.046582 -0.00935
## C.(X2,sin.t)
                 -0.03301 0.010034 -0.052673 -0.01334
## C.(X3,sin.t)
                 -0.01549 0.003431 -0.022210 -0.00876
## C.(X4,sin.t) -0.03196 0.010695 -0.052923 -0.01100
## C.(X1,airtemp) 0.01313 0.012137 -0.010659 0.03692
## C.(X2,airtemp) 0.02633 0.012964 0.000922 0.05174
## C.(X3,airtemp) 0.00376 0.004686 -0.005427 0.01294
## C.(X4,airtemp) 0.02383 0.013676 -0.002969 0.05064
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
 for (j in 1:5) {
   plot.ts(residuals<-MARSSresiduals(mod7.fit, type = "tt1")$model.residuals[j, ],</pre>
           ylab = "Residual")
   abline(h = 0, lty = "dashed")
   acf(residuals, na.action = na.pass)
 }
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 8, hypothesis 4 (all same) mod8.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 39 iterations.
## Log-likelihood: -5020.639
## AIC: 10053.28
                   AICc: 10053.29
##
##
                    ML.Est Std.Err
                                        low.CI
                                                  up.CI
## R.diag
                   0.18437 0.002857
                                      0.178767
                                                0.18997
                                      0.002345
                                                0.00482
## Q.Q
                   0.00358 0.000631
## x0.x0
                   0.94813 0.193187
                                      0.569495
                                                1.32677
## C.(X1,cos.t)
                  -0.00513 0.010009 -0.024749
                                                0.01449
## C.(X1,sin.t)
                  -0.02543 0.005889 -0.036968 -0.01389
## C.(X1,airtemp) 0.01621 0.007838 0.000849 0.03157
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod8.fit, type = "tt1")$model.residuals[j, ],</pre>
```

```
ylab = "Residual")
abline(h = 0, lty = "dashed")
acf(residuals,na.action = na.pass)
}
```


#...these models are not good

 $\#\#\#\mathrm{Comparing}$ corrected AICc values

```
## Model AICc
## 1 Model5 -548.2
## 2 Model6 9767.9
## 3 Model7 3635.5
## 4 Model8 10053.3
```