

Europäisches Patentamt European Patent Office Office européen des brevets

11 Publication number:

0 582 917 A1

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 93112260.0

Date of filing: 30.07.93

(5) Int. Cl.⁵: **B01D 53/36**, B01D 53/04, F01N 3/08

- (3) Priority: 04.08.92 JP 208090/92
- Date of publication of application: 16.02.94 Bulletin 94/07
- Designated Contracting States:
 DE FR GB

中の34-00年刊 '03. 8.28 SEARCH REPORT

- 7) Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA 1, Toyota-cho Toyota-shi Aichi-ken 471(JP)
- Inventor: Goto, Masato c/o Toyota Jidosha Kabushiki Kaisha, 1, Toyota-cho Toyota-shi, Aichi-ken(JP) Inventor: Iguchi, Satoshi c/o Toyota Jidosha Kabushiki Kaisha, 1, Toyota-cho Toyota-shi, Aichi-ken(JP) Inventor: Katoh, Kenji c/o Toyota Jidosha Kabushiki Kaisha, 1, Toyota-cho Toyota-shi, Aichi-ken(JP) Inventor: Kihara, Tetsuro c/o Toyota Jidosha Kabushiki Kaisha, 1, Toyota-cho Toyota-shi, Aichi-ken(JP)
- Representative: Tiedtke, Harro, Dipl.-Ing. Patentanwaltsbüro Tiedtke-Bühling-Kinne & Partner Bavariaring 4 D-80336 München (DE)
- An exhaust gas purification device for an engine.
- 57 An engine comprising an exhaust passage having therein a NO_x absorbent which absorbs the NO_x when the air-fuel ratio of the exhaust gas flowing into the NO_x absorbent is lean and releases the absorbed NO_x when the air-fuel ratio of the exhaust gas flowing into the NO_x absorbent becomes the stoichiometric air-fuel ratio or rich. A sulphur trapping device for trapping SO_x contained in the exhaust gas is arranged in the exhaust passage upstream of the NO_x absorbent.

10

20

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an exhaust gas purification device for an engine.

2. Description of the Related Art

With respect to an engine in which a lean airfuel mixture is burned, the same applicant has proposed a new type of engine in which a NO_x absorbent is arranged in the exhaust passage of the engine. This NO_x absorbentabsorbs the NO_x when the air-fuel ratio of the exhaust gas flowing into the NOx absorbent is lean, and this NOx absorbent releases the absorbed NO_x when the air-fuel ratio of exhaust gas flowing into the NO_x absorbent becomes rich. In this engine, the $NO_{\mathbf{x}}$ produced when the lean air-fuel mixture is burned is absorbed by the NOx absorbent. The air-fuel ratio of the exhaust gas flowing into the NOx absorbent is temporarily made rich before the absorbing ability of the NOx absorbent is saturated, and at this time, the NO_x is released from the NO_x absorbent. In addition, at this time, the NOx thus released is reduced (See copending U.S. Patent Application No. 66,100 derived from PCT application FP92/01279).

However, since sulphur is contained in fuel and lubricating oil of the engine, sulphur oxides SO_x is contained in the exhaust gas and, in the abovementioned engine, SO_x is absorbed in the NO_x absorbent together with NO_x . Nevertheless, even if the air-fuel ratio of the exhaust gas flowing into the NO_x absorbent is made rich, SO_x thus absorbed is not released from the NO_x absorbent, and thus the amount of SO_x stored in the NO_x absorbent is gradually increased. However, if the amount of SO_x stored in the NO_x absorbent is increased, the amount of NO_x which the NO_x absorbent is able to absorb is gradually reduced, and thus a problem arises in that NO_x cannot be absorbed in the NO_x absorbent.

SUMMARY OF THE INVENTION

An object of the present invention is to provide an exhaust gas purification device capable of maintaining a high absorbing ability of the NO_x absorbent for a long time.

According to the present invention, there is provided an exhaust gas purification device of an engine having an exhaust passage, said device comprising: an NO_x absorbent arranged in the exhaust passage and absorbing NO_x when the air-fuel ratio of the exhaust gas flowing into the NO_x absorbent is lean, said NO_x absorbent releasing ab-

sorbed NO_x when a concentration of oxygen in the exhaust gas flowing into the NO_x absorbentis lowered; and sulphur trapping means arranged in the exhaust passage upstream of the NO_x absorbent for trapping SO_x contained in the exhaust gas.

The present invention may be more fully understood from the description of a preferred embodiment of the invention set forth below, together with the accompanying drawings.

GRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

Fig. 1 is an overall view of an engine;

Fig. 2 is a diagram showing the concentration of unburned HC and CO and O_2 in the exhaust gas; and

Figs. 3A and 3B are views for explaining an absorbing and releasing operation of NO_x .

DESCRIPTION OF A PREFERRED EMBODIMENT

Referring to Figure 1, reference numeral 1 designates an engine body, 2 a piston, 3 a combustion chamber, and 4 a spark plug; 5 designates an intake valve, 6 an intake port, 7 an exhaust valve, and 8 an exhaust port. The intake port 6 is connected to the surge tank (not shown) via a corresponding branch pipe 9, and a fuel injector 10 injecting the fuel toward the interior of the intake port 6 is attached to each branch pipe 9. The exhaust port 8 is connected to a sulphur trapping device 13 via an exhaust manifold 11 and an exhaust pipe 12, and the sulphur trapping device 13 is connected to a casing 16 including a NOx absorbent 18 via an exhaust pipe 14. In the engine illustrated in Fig. 1, the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is normally made learn, and thus a lean air-fuel mixture is normally burned in the combustion chamber 3.

Figure 2 schematically shows the concentration of representative components in the exhaust gas discharged from the combustion chamber 3. As seen from Fig. 2, the concentration of the unburnt HC and CO in the exhaust gas discharged from the combustion chamber 3 is increased as the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 becomes richer, and the concentration of the oxygen O₂ in the exhaust gas discharged from the combustion chamber 3 is increased as the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 becomes leaner.

The NO_{x} absorbent 15 contained in the casing 16 uses, for example, alumina as a carrier. On this carrier, at least one substance selected from alkali metals, for example, potassium K, sodium Na, lithium Li, and cesium Cs; alkali earth metals, for example, barium Ba and calcium Ca; and rare earth

50

10

15

35

4

metals, for example, lanthanum La and yttrium Y and precious metals such as platinum Pt is carried. When referring to the ratio between the air and fuel (hydrocarbons) fed into the intake passage of the engine and the exhaust passage upstream of the NOx absorbent 15 as the air-fuel ratio of the inflowing exhaust gas to the NOx absorbent 15, this NO_x absorbent 15 performs the absorption and releasing operation of NO_x by absorbing the NO_x when the air-fuel ratio of the inflowing exhaust gas is lean, while releasing the absorbed NOx when the concentration of oxygen in the inflowing exhaust gas falls. Note that, where the fuel (hydrocarbons) or air is not fed into the exhaust passage upstream of the NO_x absorbent 15, the air-fuel ratio of the inflowing exhaust gas coincides with the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3, and accordingly in this case, the NO_x absorbent 15 absorbs the NOx when the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is lean and releases the absorbed NOx when the concentration of oxygen in the air-fuel mixture fed into the combustion chamber 3 is lowered.

When the above-mentioned NO_x absorbent 15 is disposed in the exhaust passage of the engine, this NO_x absorbent 15 actually performs the absorption and releasing operation of NO_x, but there are areas of the exact mechanism of this absorption and releasing operation which are not clear. However, it can be considered that this absorption and releasing operation is conducted by the mechanism as shown in Figs. 3A and 3B. This mechanism will be explained by using as an example a case where platinum Pt and barium Ba are carried on the carrier, but a similar mechanism is obtained even if another precious metal, alkali metal, alkali-earth metal, or rare-earth metal is used.

Namely, when the inflowing exhaust gas becomes very lean, the concentration of oxygen in the inflowing exhaust gas is greatly increased. At this time, as shown in Fig. 3A, the oxygen O_2 is deposited on the surface of the platinum Pt in the form of O_2 . At this time, the NO in the inflowing exhaust gas reacts with the O_2 on the surface of the platinum Pt and becomes No_2 (2NO + O_2 2NO₂). Subsequently, a part of the produced NO_2 is oxidized on the platinum Pt and absorbed into the absorbent. While bonding with the barium oxide BaO, it is diffused in the absorbent in the form of nitric acid ions NO_3 as shown in Fig. 3A. In this way, NO_x is absorbed into the NO_x absorbent 15.

So long as the oxygen concentration in the inflowing exhaust gas is high, the NO_x is produced on the surface of the platinum Pt, and so long as the NO_x absorption ability of the absorbent is not saturated, the NO_x is absorbed into the absorbent and nitric acid ions NO₃⁻ are produced. Contrary

to this, when the oxygen concentration in the inflowing exhaust gas is lowered and the production of NO2 is lowered, the reaction proceeds in an inverse direction (NO₃⁻ → NO₂), and thus nitric acid ions NO3- in the absorbent are released in the form of NO₂ from the absorbent. Namely, when the oxygen concentration in the inflowing exhaust gas is lowered, the NOx is released from the NOx absorbent 15. As shown in Fig. 2, when the degree of leanness of the inflowing exhaust gas becomes low, the oxygen concentration in the inflowing exhaust gas is lowered, and accordingly when the degree of leanness of the inflowing exhaust gas is lowered, the NOx is released from the NOx absorbent 15 even if the air-fuel ratio of the inflowing exhaust gas is lean.

On the other hand, at this time, when the airfuel ratio of the air-fuel mixture fed into the combustion chamber 3 is made rich and the air-fuel ratio of the inflowing exhaust gas becomes rich, as shown in Fig. 2, a large amount of unburnt HC and CO is discharged from the engine, and these unburnt HC and CO react with the oxygen O2- on the platinum Pt and are oxidized. Also, when the airfuel ratio of the inflowing exhaust gas becomes rich, the oxygen concentration in the inflowing exhaust gas is extremely lowered, and therefore the NO₂ is released from from the absorbent. This NO₂ reacts with the unburnt HC and CO as shown in Fig. 3B and is reduced. In this way, when the NO₂ no longer exists on the surface of the platinum Pt, the NO2 is successively released from the absorbent. Accordingly, when the air-fuel ratio of the inflowing exhaust gas is made rich, the NOx is released from the NOx absorbent 15 in a short

As mentioned above, when the air-fuel ratio of the inflowing exhaust gas is made lean, NO_x is absorbed in the NO_x absorbent 15 and, when the air-fuel ratio of the inflowing exhaust gas is made rich, NO_x is released from the NO_x absorbent 15 in a short time. Accordingly, in the engine illustrated in Fig. 1, when a time period during which a lean air-fuel mixture is burned exceeds a fixed time period, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is temporarily made rich to release NO_x from the NO_x absorbent 15.

However, SO_x is contained in the exhaust gas, and not only NO_x but also SO_x are absorbed in the NO_x absorbent 15. The mechanism of the absorption of SO_x into the NO_x absorbent 15 is considered to be almost the same as the absorption mechanism of NO_x . Next, this absorption mechanism of SO_x will be explained by using as an example a case where platinum Pt and barium Ba are carried on the carrier, as is the same manner as explaining the absorption mechanism of NO_x .

Namely, as mentioned above, when the air-fuel ratio of the inflowing exhaust gas is lean, the oxygen O_2 is deposited on the surface of the platinum Pt in the form of O_2 . At this time, SO_2 in the inflowing exhaust gas reacts with the O_2 on the surface of the platinum Pt and becomes SO_3 . Subsequently, a part of the produced SO_3 is oxidized on the platinum Pt and absorbed into the absorbent. While bonding with the barium oxide BaO, it is diffused in the absorbent in the form of nitric acid ions SO_4 ²⁻, and sulfate BaSO₄ is produced.

However, this sulfate BaSO₄ is less easily dissociated and, even if the air-fuel ratio of the inflowing exhaust gas is made rich, this sulfate BaSO₄ remains as it stands without being dissociated. Accordingly, the amount of sulfate BaSO₄ increases as a time passes, and thus the amount of NO_x which the NO_x absorbent 15 is able to absorb is reduced as a time passes.

Therefore, in the present invention, to prevent SO_x from flowing into the NO_x absorbent 15, the sulphur trapping device 13 is arranged in the exhaust passage upstream of the NOx absorbent 15. In this case, since the NOx absorbent 15 absorbs SOx, but does not release SOx, an absorbent which is similar to the NO_x absorbent 15 can be used for the sulphur trapping device 13. In the embodiment illustrated in Fig. 1, the sulphur trapping device 13 comprises a SO_x absorbent 17 and a casing 18 surrounding the SOx absorbent 17, and the SOx absorbent 17 uses, for example, alumina as a carrier. On this carrier, at least one substance selected from alkali metals, for example, potassium K, sodium Na, lithium Li, and cesium Cs; alkali-earth metals, for example, barium Ba and calcium Ca; and rare-earth metals, for example, lanthanum La and yttrium Y and precious metals such as platinum Pt is carried.

In this case, with respect to the SO_x absorbent 17, it is not necessary to take a good absorbing and releasing operation of NO_x into consideration, but it is sufficient to take only a good trapping operation of SO_x into consideration, and therefore, it is preferable that the amount of the above-mentioned alkali metals, alkali earth metals or rare earth metals, contained in the SO_x absorbent 17 be increased as compared to the amount of those metals contained in the NO_x absorbent 15. In addition, cerium Ce may be added to the SO_x absorbent 17.

Where the SO_x absorbent 17 is arranged in the exhaust passage upstream of the NO_x absorbent 15 as illustrated in Fig. 1, the whole SO_x discharged from the engine is absorbed in the SO_x absorbent 17, and the SO_x absorbed in the SO_x absorbent 17 is not released even if the air-fuel ratio of air-fuel mixture fed into the combustion chamber 3 is made rich. Accordingly, only NO_x is absorbed in the NO_x absorbent 15, and thus it is

possible to prevent a NO_x absorbing ability of the NO_x absorbent 15 from being reduced.

Therefore, according to the present invention, it is possible to maintain a high NO_x absorbing ability of the NO_x absorbent 15 even if the NO_x absorbent 15 is used for a long time.

While the invention has been described by reference to a specific embodiment chosen for purposes of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the invention.

An engine comprising an exhaust passage having therein a NO_x absorbent which absorbs the NO_x when the air-fuel ratio of the exhaust gas flowing into the NO_x absorbent is lean and releases the absorbed NO_x when the air-fuel ratio of the exhaust gas flowing into the NO_x absorbent becomes the stoichiometric air-fuel ratio or rich. A sulphur trapping device for trapping SO_x contained in the exhaust gas is arranged in the exhaust passage upstream of the NO_x absorbent.

Claims

25

35

40

45

 An exhaust gas purification device for an engine having an exhaust passage, said device comprising:

an NO_x absorbent arranged in the exhaust passage and absorbing NO_x when an air-fuel ratio of exhaust gas flowing into the NO_x absorbent is lean, said NO_x absorbent releasing an absorbed NO_x when a concentration of oxygen in the exhaust gas flowing into said NO_x absorbent is lowered; and

sulphur trapping means arranged in the exhaust passage upstream of said NO_x absorbent for trapping SO_x contained in the exhaust gas.

- An exhaust gas purification device according to claim 1, wherein said sulphur trapping means comprises a SO_x absorbent which absorbs SO_x therein.
- 3. An exhaust gas purification device according to claim 2, wherein said SO_x absorbent contains at least one substance selected from alkali metals comprising potassium, sodium, lithium, cesium; alkali-earth metals comprising barium, calcium; and rare-earth metals comprising lanthanum, yttrium and contains platinum.
- An exhaust gas purification device according to claim 3, wherein said NO_x absorbent contains at least one substance selected from alkali metals comprising potassium, sodium, lithium, cesium; alkali-earth metals comprising barium,

calcium; and rare-earth metals comprising lanthanum, yttrium and contains platinum, and an amount of said metals contained in said SO_x absorbentis larger than an amount of said metals contained in said NO_x absorbent.

5. An exhaust gas purification device according to claim 1, further comprising air-fuel ratio control means for controlling said air-fuel ratio of exhaust gas to make said air-fuel ratio of exhaust gas lean when NO_x is to be absorbed in said NO_x absorbent and to make said air-fuel ratio of exhaust gas rich when NO_x is to be released

6. An exhaust gas purification device according to claim 5, wherein said air-fuel ratio control means controls said air-fuel ratio of exhaust gas by controlling an air-fuel ratio of air-fuel mixture fed into the engine.

from said NO_x absorbent.

7. An exhaust gas purification device according to claim 1, wherein said NO_x absorbent contains at least one substance selected from alkali metals comprising potassium, sodium, lithium, cesium; alkali-earth metals comprising barium, calcium; and rare-earth metals comprising lanthanum, yttrium and contains platinum.

5

10

15

20

25

30

35

40

45

50 -

Fig.1

EUROPEAN SEARCH REPORT

Application Number EP 93 11 2260

	DOCUMENTS CONS	IDERED TO BE RELEVAN	<u> </u>	<u></u>	
Category	Citation of document with of relevant	indication, where appropriate, passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.5)	
P,Y	WO-A-93 12863 (TOY 1993 * abstract; figure	OTA JIDOSHA KK) 8 July s 1-3,7 *	1,2,4-7	B01D53/36 B01D53/04 F01N3/08	
Y		F JAPAN (M-1016)27 August 1990 (MAZDA MOTOR CORP) 8	1,2,4-7	·	
P,Y	WO-A-93 07363 (TOY 1993 * abstract; figure	OTA JIDOSHA KK) 15 April s 4,5,14,15 *.	1-3,5-7		
Y	DE-A-35 09 035 (WE * page 6, line 3 - figure 1 *	RZ) line 13; claims 1-7;	1-3,5-7		
A	DE-A-35 02 866 (MA * page 20, line 1 figure 5 *	NGOLD ET AL.) - line 6; claims 1-22;	1-3	TECHNICAL FIELDS SEARCHED (Int.Cl.5)	
A	US-A-4 047 895 (UO * column 3, line 1 * column 4, line 3 figures 1-5 *		1-4,7	BO1D FO1N	
1	AND ENERGY SYSTEMS	5 - line 65; claims	1,2		
Ī	EP-A-0 287 217 (GE) * page 2, line 47 - claims 1-7 *	NERAL MOTORS CORP.) - page 3, line 23;	1,4-7		
	DE-A-40 08 371 (RIM * claims 1-17 *	(EN KK)	1,4,7		
		-/			
	The present search report has t				
	Place of search	Date of completion of the search		Examiner	
	THE HAGUE	5 November 1993		(ENBOOM, T	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document T: theory or principle E: earlier patent document document cited in D: document cited in L: document cited for A: technological background A: member of the same document			ment, but publis e the application other reasons	hed on, or	

EPO FORM 1500 03.42 (POLCO)

EUROPEAN SEARCH REPORT

Application Number EP 93 11 2260

Category	Citation of document with i of relevant pa	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL5)	
A	DATABASE WPI Section Ch, Week 87 Derwent Publication Class E36, AN 87-18 & JP-A-62 117 620 (29 May 1987 * abstract *	is Ltd., London, GB;	1,4-7	
A	DATABASE WPI Section Ch, Week 86 Derwent Publication Class E36, AN 86-25 & JP-A-61 181 538 (14 August 1986 * abstract *	is Ltd., London, GB;	1,4,7	·
,	DATABASE WPI Section Ch, Week 86 Derwent Publication Class E36, AN 86-17 & JP-A-61 111 127 (May 1986 * abstract *	is Ltd., London, GB;	1,4,7	TECHNICAL FIELDS SEARCHED (lat.Cl.5)
	The present search report has t	een drawn up for all claims		
	Place of search	Date of completion of the search	F	Exeminer VENDOOM T
	THE HAGUE	5 November 1993		KENBOOM, T
X : part Y : part doc: A : tech	CATEGORY OF CITED DOCUME incularly relevant if taken alone incularly relevant if combined with an unent of the same category unlougical background -written disclosure	E : earlier patent doo zher the filing di other D : document cited i L : document cited fo	cument, but publi ate n the application or other reasons	ished on, ar

EUROPEAN SEARCH REPORT

Application Number EP 01 11 2571

	DOCUMENTS CONSID	ERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
x √	11 August 1998 (199	RRAUTO ROBERT J ET AL) 08-08-11) .2 - column 11, line 35;	1,2,5,6	B01D53/94 F02D41/02 F01N3/08 F01N3/20 B01D53/86	
x √	EP 0 582 917 A (TOY 16 February 1994 (1 * claims 1-4 *		1,2,5,6		
Y 🗸	EP 0 891 806 A (VOL 20 January 1999 (19 * abstract; figure	99-01-20)	1,2,5,6	·	
<i>(</i>	EP 0 815 925 A (TOY 7 January 1998 (199 * claims 1-5 *		1,2,5,6		
		٠,		TECHNICAL FIELDS SEARCHED (Int.CI.7)	
				B01D F02D	
• -	The present search report has	been drawn up for all claims			
	Place of search	Date of completion of the search		Examiner	
MUNICH		18 August 2003	Tati	Tatus, W	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		L : document cited fo	cument, but publise the application or other reasons	shed on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT

ON EUROPEAN PATENT APPLICATION NO.

EP 01 11 2571

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-08-2003

Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
US	5792436	Α	11-08-1998	AU	2994097	Α	05-12-1997
		• •		BR		Ä	09-05-2000
				CN	1218422	A	02-06-1999
				DE	19781763	TO	15-04-1999
				JP	2000510041	T	08-08-2000
				KR	2000010978	Α	25-02-2000
				US	2002006363	A1	17-01-2002
				WO	9743034	A1	20-11-1997
		•		ZA	9703990	Α	09-12-1997
EP	0582917	—————————————————————————————————————	16-02-1994	JP	2605553	B2	30-04-1997
				JΡ	6058138	Α	01-03-1994
				DE	69331083	D1	13-12-2001
				DE	69331083	T2	06-06-2002
				EP	0582917		16-02-1994
				US	5472673	Α	05-12-1995
EP	0891806	A	20-01-1999	DE	19731131	A1	21-01-1999
				DE	59807160	D1	20-03-2003
				EP	0891806		20-01-1999
				EP	0892158		20-01-1999
				US	6164064	A	26-12-2000 [°]
EP	0815925	A	07-01-1998	JP	3289879	B2	10-06-2002
				JP	10015350	Α	20-01-1998
				EΡ	0815925	A1	07-01-1998