ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

Факультет инфокоммуникационных сетей и систем

Кафедра теоретических основ связи и радиотехники

Расчёт основных характеристик цифровой системы связи с использованием квадратурной модуляции

Учебная дисциплина «Теория электрической связи»

Курсовая работа

Студент группы ИКТО-91 Копыл А. В. зачетная книжка № 1905141

Руководитель

Санкт-Петербург 2021

Цель курсовой работы — изучить и разработать систему цифровой связи, оптимальную в отношении флуктуационной помехи и исключающую появления межсимвольной помехи.

1 Структурная схема системы цифровой связи

Система связи предназначена для передачи аналоговых сообщений по цифровому каналу связи.

Рис. 1: Структурная схема цифровой системы связи

В систему входят следующие функциональные узлы с последующими назначениями:

- 1. Источник сообщений создает реализации a(t) случайного процесса A(t).
- 2. Аналого-цифровой преобразователь преобразует аналоговый сигнал от источника сообщения в последовательность двоичных отсчетов b(t).

- 3. Кодер включает в цифровой поток от АЦП дополнительные символы, предназначенные для повышения помехоустойчивости системы связи;
- 4. Формирователь модулирующих символов служит для получения модулирующих сигналов I(t) и Q(t), соответствующих заданному виду модуляции;
- 5. Сглаживающие формирующие фильтры (СФФ1, СФФ2);
- 6. Перемножители для получения БМ сигналов: синфазного $I(t)\cos\omega_C t$ и квадратурного $Q(t)\sin\omega_C t$.
- 7. Фазовращатель для получения второго несущего колебания, ортогонального по отношению к первому;
- 8. Генератор гармонических колебаний для получения несущего колебания;
- 9. Инвертор;
- 10. Сумматор для объединения синфазного и квадратурного сигналов в единый сигнал с квадратурной модуляцией $S_{KAM}(t) = I(t) \cos \omega_C t + Q(t) \sin \omega_C t;$
- 11. Непрерывный канал среда распространения сигнала $S_{KAM}(t)$;
- 12. Демодулятор для анализа приходящего сигнала, искаженного помехами, и принятии решения о переданном сообщении;
- 13. Преобразователь параллельного кода в последовательный код для преобразования сигнала с выхода демодулятора в последовательный формат кодовых комбинаций;
- 14. Декодер для исправления части ошибок, возникших при приёме сообщения $\hat{b}(t)$ вследствие влияния помех;
- 15. Цифро-аналоговый преобразователь для восстановления аналоговой формы сигнала $\hat{a}(t)$ из его цифрового представления;
- 16. Получатель сообщений.

2 Исходные данные

m = 41

Предельные уровни ана-	$a_{Makc} = 25, 6 \text{ B};$	Внести свои данные
логового сигнала $a_{\it мин},$	$a_{Mun} = -25, 6 \text{ B}$	
$a_{\text{макc}}$ (B)		
Верхняя частота спектра	$f_B = (1 + m \cdot 10^{-2}) \cdot 10^4$	$f_B = 14100$
аналогового сигнала f_B		
Заданный уровень кванто-	$j = 500 - 3 \cdot m$	377
вания		
Спектральная плотность	41	$N_0 = 2, 3 \cdot 10^{-7} B^2 / \Gamma$ ц
мощности флуктуацион-		
ной помехи		
q – номер тактового интер-	$q = m \mod 3 + 1$	q=3
вала ошибки		
Вид модуляции	KAM-16	

3 Расчет составляющих системы цифровой связи

3.1 Источник сообщений

Источник сообщения (ИС) вырабатывает реализации a(t) стационарного случайного процесса A(t), типа квазибелого шума с параметрами $a_{мин}$, $a_{макс}$ и f_B . Мгновенные значения сообщения равновероятны в интервале от значения $a_{мин}$ и до значения $a_{макс}$.

Требуется:

1. Написать аналитические выражения для плотности вероятности w(a) мгновенных значений сообщения, функции распределения F(a) и построить их графики (рис. 2).

$$w(a) = \frac{1}{a_{\text{Marc}} - a_{\text{Mun}}} = \frac{1}{\Delta} = \frac{1}{25, 6 + 25, 6} = 0,02$$

$$F(a) = \int_{-\infty}^{a} w(a) da = \int_{a_{\text{Mun}}}^{a} \frac{1}{\Delta} da = \begin{cases} 1, & a > a_{\text{Marc}} \\ \frac{a - a_{\text{Mun}}}{\Delta}, & a_{\text{Mun}} \leq a \leq a_{\text{Marc}} \\ 0, & a < a_{\text{Mun}} \end{cases}$$

где $\Delta = a_{\text{макс}} - a_{\text{мин}} = 51, 2 B.$

Рис. 2: Графики функции распределения и плотности вероятности

2. Рассчитать математическое ожидание $\overline{A(t)}$ и дисперсию $D\{A(t)\}$ сообщения A(t).

$$\overline{A(t)} = \int_{-\infty}^{\infty} a \cdot w(a) da = \int_{a_{\text{Mun}}}^{a_{\text{Makc}}} a \frac{1}{a_{\text{Makc}} - a_{\text{Mun}}} da = \frac{a^2}{2\Delta} \bigg|_{a_{\text{Mun}}}^{a_{\text{Makc}}} = \frac{a_{\text{Makc}}^2 - a_{\text{Mun}}^2}{2\Delta} = 0$$

$$D\{A(t)\} = \int_{-\infty}^{\infty} (a - \overline{A(t)})^2 w(a) da = \int_{a_{Mun}}^{a_{Makc}} a^2 w(a) da$$
$$= \frac{a^3}{3\Delta} \Big|_{a_{Mun}}^{a_{Makc}} = \frac{a_{\min}^2 + a_{\max} a_{\min} + a_{\max}^2}{3} = 218, 5$$

3. Написать аналитическое выражение для спектральной плотности мощности $G_A(f)$ сообщения A(t) и построить график (рис. 3).

$$G_A(f) = rac{D\{A(t)\}}{2f_B} = rac{218,5}{2\cdot 1,41\cdot 10^4} = 7,7\,\mathrm{M}B^2/\Gamma$$
ų,
$$G_A(f) = \begin{cases} 7,7\,\mathrm{M}B^2/\Gamma$$
ų, $|f| \le f_B \\ 0, & |f| > f_B \end{cases}$

Рис. 3: График спектральной плотности мощности

4. Найти аналитическое выражение для корреляционной функции $B_A(\tau)$ сообщения A(t) и построить график (рис. 4). По форме графика $B_A(\tau)$ определить, является ли сообщение A(t) эргодическим случайным процессом или не является таковым.

$$B_{A}(\tau) = \int_{-\infty}^{\infty} \frac{G_{A}(f)}{2} e^{j2\pi f \tau} df = \int_{-f_{B}}^{f_{B}} \frac{G_{A}}{2} \cos 2\pi f \tau df$$
$$= \frac{G_{A}}{2} \frac{\sin 2\pi f \tau}{2\pi \tau} \Big|_{-f_{B}}^{f_{B}} = G_{A} \frac{\sin 2\pi f_{B} \tau}{2\pi \tau}$$

Рис. 4: График корреляционной функции $B_A(\tau)$

3.2 Аналого-цифровой преобразователь

Аналого-цифровой преобразователь (АЦП) преобразует реализации аналогового (непрерывного) сообщения A(t) в цифровую форму, в поток

двоичных символов: нулей и единиц, т. е. в последовательность прямоугольных импульсов, где «0» имеет нулевое напряжение, а «1» — прямоугольный импульс положительной полярности. Амплитуда импульсов Uравна 1 В.

Преобразование аналогового сигнала в цифровую форму осуществляется в три этапа.

На первом этапе производится дискретизация реализации a(t) сообщения A(t) по времени. В моменты времени t_i берутся непрерывные по уровню отсчеты $a(t_i)$ мгновенных значений реализации a(t). Расстояние между отсчетами равно интервалу Δt , величина которого определяется в соответствии с теоремой Котельникова:

$$\Delta t \le \frac{1}{2f_B}; f_d = \frac{1}{\Delta t} \ge 2f_B$$

где f_d – частота дискретизации.

На втором этапе выполняется квантование точных отсчетов $a(t_i)$ по уровню. Для этого интервал Δ , равный разности $\Delta = a_{\text{макс}} - a_{\text{мин}}$, разбивается на уровни квантования с постоянным шагом $\Delta a = 0, 1$ B. Уровни квантования нумеруются целыми числами 0, 1, 2, 3, ..., L-1. Нумерация уровней начинается с уровня, которому соответствует значение $a_{\text{м}}un$, и заканчивается на уровне, которому соответствует значение $a_{\text{м}}an$. Обычно величина шага квантования Δa выбирается так, чтобы число уровней квантования L можно было представить в виде $L=2^k$, где k – целое число.

Каждый аналоговый отсчет $a(t_i)$ заменяется значением ближайшего к нему уровня квантования j в виде целого числа, удовлетворяющего неравенству $0 \le j \le L-1$. Получаем квантованный отсчет $j_{10}(t_i)$ в виде целого числа в десятичной форме счисления.

На третьем этапе число $j_{10}(t_i)$ в десятичной форме переводится в двоичную форму счисления $j_2(t_i)$ в виде последовательности k двоичных символов и на выходе АЦП появляется сигнал в виде двоичной цифровой последовательности из k информационных символов.

Требуется:

1. Рассчитать интервал дискретизации Δt для получения непрерывных отсчетов $a(t_i)$ реализации $a(t), t_i = i \cdot \Delta t, i = 0, \pm 1, \pm 2,$

$$\Delta t \le \frac{1}{2f_B} = \frac{1}{2 \cdot 14100} = 3,546 \cdot 10^{-5} c$$

2. Рассчитать частоту дискретизации f_d .

$$f_d = \frac{1}{\Delta t} \ge 2f_B = \frac{1}{3,546 \cdot 10^{-5}} = 28200$$

3. Определить число уровней квантования L.

$$k = 9$$
; $L = 2^9 = 512$

4. Рассчитать мощность шума квантования $P_{I\!I\!I\!K}$ и сравнить ее с мощностью непрерывного сообщения A(t).

$$P_{IIIK} = \Delta a^2 / 12 = \frac{0, 1^2}{12} = 8, 33 \cdot 10^{-4} B^2$$

 $P_{A(t)} = A^2(t) = 1 B^2$
 $P_{A(t)} >> P_{IIIK}$

5. Найти минимальное число k двоичных разрядов, требуемое для записи в двоичной форме любого номера j из L-1 номеров уровней квантования.

$$L - 1 = 511_{10} = 111111111_2$$

 $k_{\text{sno6}} = 9$

6. Записать k-разрядное двоичное число, соответствующее заданному уровню квантования j.

$$j = 377_{10} = 101111001_2$$

7. Начертить временную диаграмму отклика АЦП $b_{AЦ\Pi}(t)$ на заданный уровень квантования j в виде последовательности импульсов, сопоставляя единичным символам прямоугольные импульсы положительной полярности, а нулевым – нулевые напряжения. Амплитуда импульсов U равна 2h В. Над импульсами надписать значения соответствующих двоичных информационных символов (ДИС). Длительность отклика АЦП на каждый отсчет не должна превышать интервала дискретизации Δt .

Рис. 5: Временная диаграмма отклика АЦП

3.3 Кодер

Используется помехоустойчивый сверточный код.

- 1. Параметры сверточного кода.
 - Степень кодирования k/n = 1/2,
 - длина кодового ограничения K = 3,
 - ullet векторы связи $\overline{g}_1=111$ и $\overline{g}_2=101,$
 - импульсная характеристика h(k) = 111011000...
 - кодовое расстояние d=5.
- 2. Структурная схема кодера.

3. Решетчатая диаграмма кодера.

Рис. 6: Решетка кодера

4. По решетчатой диаграмме сверточного кодера определить последовательность кодовых символов (КС) \overline{u} на выходе кодера при условии, когда на вход кодера поступает 9-разрядная двоичная последовательность информационных символов (ИС) \overline{m} , соответствующая заданному уровню квантования j.

ИС													
KC	11	10	00	01	10	10	01	11	11	01	11	00	00

 $\overline{u} = 111000011010011111101110000$

5. На решетчатой диаграмме кодера отметить путь, соответствующий полученным КС.

Рис. 7: Путь на решетке кодера

3.4 Формирователь модулирующих символов

Формирователь модулирующих символов служит для получения модулирующих сигналов I(t) и Q(t), соответствующих заданному виду модуляции.

Требуется:

1. Изобразить сигнальное созвездие для заданного вида модуляции.

Рис. 8: Сигнальное созвездие для КАМ-16

2. Изобразить график реализации c(t) случайного процесса C(t), формируемого с выхода блока сверточного кодера (K). Реализация c(t) поступает на вход блока ФМС на первых 16 бинарных интервалах длительностью T_B . Написать аналитическое выражение для случайного процесса C(t).

Рис. 9: График реализации c(t) с выхода сверточного кодера

$$C(t) = \sum_{n=-\infty}^{\infty} C_n \cdot g_1(t - nT_B)$$

где $g_1(t)$ – прямоугольный импульс длительностью T_B .

$$g_1(t) = \begin{cases} 1 B, & 0 \le t \le T_B; \\ 0 B, & t < 0, t > T_B, \end{cases}$$

где $g_1(t-nT_B)$ – прямоугольный импульс такой же формы, как и $g_1(t)$, но сдвинутый вправо относительно импульса $g_1(t)$ на величину nT_B , если n>0, или влево, если n<0;

 C_n — численный коэффициент, являющийся реализацией случайной величины C_n на n-интервале T_B . Величина C_n принимает два дискретных значения h(B) и -h(B) с вероятностью 0,5 каждое, т. е.

$$P(h) = P(-h) = 0, 5.$$

Если в заданной реализации c(t) на n-интервале передается информационный символ «1», то $c_n = h(B)$, если передается символ «0», то $c_n = -h(B)$.

3. В соответствии с сигнальным созвездием модулятора КАМ-16 изобразить графики реализаций i(t) и q(t) на выходе блока ФМС, соответствующие входной реализации c(t). Написать аналитические выражения для случайных процессов I(t) и Q(t).

$$I(t) = \sum_{n = -\infty}^{\infty} I_n \cdot g_2(t - nT_S); \ Q(t) = \sum_{n = -\infty}^{\infty} Q_n \cdot g_2(t - nT_S),$$
 (1)

где $g_(t)$ — прямоугольный импульс длительностью $T_S = 4T_B$. T_S — символьный интервал; T_B — бинарный интервал;

$$g_2(t) = \begin{cases} 1 B, & 0 \le t \le T_B; \\ 0 B, & t < 0, t > T_B, \end{cases}$$

где $g_2(t-nT_S)$ – прямоугольный импульс такой же формы, как и $g_2(t)$, но сдвинутый вправо относительно импульса $g_2(t)$ на величину nT_S , если n>0, или влево, если n<0;

 I_n и Q_n — независимые случайные величины, заданные на символьном интервале с номером n, которые согласно сигнальному созвездию (рис. 8) принимают четыре дискретных значения -3h, -h, h, 3h с вероятностью 0.25 каждое, т. е.

$$P(-3h) = P(-h) = P(h) = P(3h) = 0,25.$$

Рис. 10: График реализации i(t)

Рис. 11: График реализации q(t)

4. Написать аналитические выражения для корреляционной функции $B_C(\tau)$ и спектральной плотности мощности $G_C(\omega)$ входного случайного процесса C(t) и построить графики этих функций.

Процесс C(t) является случайным синхронным телеграфным сигналом. Его корреляционная функция имеет вид:

$$B_C(\tau) = \begin{cases} h^2(1 - \frac{|\tau|}{T}), & |\tau| \le T \\ 0, & |\tau| > T \end{cases},$$

а спектральная плотность мощности

$$G_C(\omega) = \int_{-\infty}^{\infty} B_C(\tau) e^{-i\omega\tau} d\tau = \int_{-\infty}^{\infty} B_C(\tau) \cos \omega \tau d\tau = T \cdot h^2 \cdot \frac{\sin^2(\frac{\omega T}{2})}{(\frac{\omega T}{2})^2},$$

где $T=T_B$ – длительность тактового интервала.

Рис. 12: График корреляционной функции $B_C(\tau)$

Рис. 13: График спектральной плотности мощности $G_C(\omega)$

5. Написать аналитические выражения для корреляционных функций $B_I(\tau)$ и $B_Q(\tau)$, спектральных плотностей мощности $G_I(\omega)$ и $G_Q(\omega)$ случайных процессов I(t) и Q(t). Построить графики этих функций.

Процессы I(t) и Q(t) будут иметь идентичные друг другу корреляционные функции и спектральные плотности мощности, поскольку они оба отличаются от процесса C(t) лишь длительностью сигнального интервала $T_S = 4T_B$.

$$B_I(0) = B_Q(0) = D\{I(t)\} = D\{Q(t)\}$$

$$G_I(0) = G_Q(0) = \frac{D\{I(t)\}}{T_S} = \frac{D\{Q(t)\}}{T_S}$$

$$D\{I(t)\} = D\{Q(t)\} = \sum_{n=1}^{4} (i_n - \overline{I_n(t)})^2 \cdot P(i_n)$$

= 0,25(-3h)² + 0,25(-h)² + 0,25h² + 0,25(3h)² = 5h²

Корреляционные функции:

$$B_I(\tau) = B_Q(\tau) = \begin{cases} 5h^2(1 - \frac{|\tau|}{T_B}), & |\tau| \le T_B \\ 0, & |\tau| > T_B \end{cases}$$

Энергетический спектр:

$$G_I(\omega) = G_Q(\omega) = \int_{-\infty}^{\infty} B_C(\tau) e^{-i\omega\tau} d\tau = T \cdot h^2 \cdot \frac{\sin^2(\frac{\omega T}{2})}{(\frac{\omega T}{2})^2}$$

Рис. 14: График корреляционной функции $B_I(\tau),\,B_Q(\tau)$

Рис. 15: График спектральной плотности мощности $G_I(\omega),\,G_Q(\omega)$

6. Сравнить графики корреляционных функций и спектральных плотностей мощности сигналов на входе и выходе блока ФМС. Привести краткое описание результатов сравнения и, используя общие положения теории преобразования Фурье, пояснить, почему спектр выходных сигналов уже спектра входного сигнала.

Рис. 16: Графики корреляционной функции $B_C(\tau)$ и $B_I(\tau)$

Рис. 17: График спектральной плотности мощности $G_C(\omega)$ и $G_I(\omega)$

Выходной спектр уже, поскольку функция $G(\omega)$ равна 0 при значениях $\omega=n/T$, а $T_S=4T_B$, поэтому изгибы встречаются в 4 раза чаще.

3.5 Модулятор

В состав модулятора структурной схемы цифровой системы связи (ЦСС), рис. 1, между блоками Φ MC и перемножителями входят сглаживающие формирующие фильтры С Φ Ф, необходимые для оптимизации ЦСС в отношении межсимвольной помехи, а также инвертор и сумматор, на выходе которого получаем сигнал заданного вида модуляции.

Рис. 18: Структурная схема модулятора

3.5.1 Сглаживающий формирующий фильтр

Требуется:

- 1. Изобразить структурную схему модулятора в составе ЦСС (рис. 18).
- 2. Написать аналитические выражения для сигнала x(t) со «спектром приподнятого косинуса» (импульса Найквиста) и его спектральной плотности $S_x(f)$ для значений коэффициента сглаживания $0 \le \beta \le 1$. Изобразить графики сигналов x(t) и соответствующие спектральные плотности при $0 \le \beta \le 1$.

Импульсы Найквиста x(t) и их спектральные плотности $S_x(f)$ характеризуются следующими аналитическими выражениями:

$$x(t) = \frac{\sin(\frac{\pi \cdot t}{T})}{\frac{\pi \cdot t}{T}} \cdot \frac{\cos(\frac{\pi \beta t}{T})}{1 - \frac{4\beta^2 t^2}{T^2}};$$
 (2)

$$S_x(f) = \begin{cases} T, & 0 \le |f| \le \frac{1-f}{2T}; \\ \frac{T}{2} \cdot \left\{ 1 + \cos\left[\frac{\pi T}{\beta} \cdot \left(|f| - \frac{1-\beta}{2T}\right)\right] \right\}, & \left(\frac{1-f}{2T}\right) \le |f| \le \left(\frac{1+f}{2T}\right); \\ 0, & |f| > \frac{1+f}{2T}, \end{cases}$$

$$(3)$$

где β – коэффициент сглаживания (или ската), который может принимать значения в интервале $0 \le \beta \le 1$.

Рис. 19: График импульсов Найквиста x(t)

Рис. 20: График спектральных плотностей $S_x(f)$

3. На одном рисунке изобразить графики спектральных плотностей $S_x(\omega)$ и $S_{x1}(\omega)$ сигналов x(t) и $x_1(t)$, где x(t) – импульс Найквиста при коэффициенте сглаживания $\beta=1;\ x_1(t)$ – импульс со спектральной плотностью $S_{x1}(\omega)=\sqrt{S_x(\omega)}$.

Рис. 21: Графики спектральных плотностей $S_x(\omega)$ и $S_{x1}(\omega)$ сигналов x(t) и $x_1(t)$

4. На одном рисунке изобразить графики импульсов x(t) и $x_1(t)$.

Рис. 22: Импульс Найквиста x(t) и искомый импульс $x_1(t)$

5. Написать аналитические выражения для случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$.

$$I_{\phi}(t) = \sum_{n=-\infty}^{\infty} I_n g_3(t - nT),$$

где i_n – детерминированная величина, которая является реализацией случайной величины I_n . Величины i_n в выражениях для i(t) и $i_{\phi}(t)$ принимают одинаковые значения на соответствующих символьных интервалах T.

$$Q_{\phi}(t) = \sum_{n=-\infty}^{\infty} Q_n g_3(t - nT),$$

где $I_n(t)$ и $Q_n(t)$ – независимые случайные величины, принимающие известные дискретные значения с заданными вероятностями, какие они имеют в формулах (1);

 $g_3(t)=x_{1n}(t-3T)$ – детерминированный импульс, спектральная плотность которого выражается через спектральную плотность импульса Найквиста.

6. Написать аналитические выражения для корреляционных функций и спектральных плотностей мощности случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$ и построить графики этих функций.

$$B_{I_{\phi}}(\tau) = \frac{\overline{I_n^2}}{1,27^2} \cdot x(\tau),\tag{4}$$

где $\overline{I_n^2}=5h^2$ для KAM-16;

 $x(\tau)$ – импульс Найквиста при значении $\beta = 1$.

Так как случайный процесс $Q_{\phi}(t)$ на выходе нижнего сглаживающего формирующего фильтра (СФФ) имеет такие же вероятностные характеристики, как и процесс $I_{\phi}(t)$, то можно написать следующие равенства:

$$B_{Q_{\phi}}(\tau) = B_{I_{\phi}}(\tau); G_{Q_{\phi}}(\omega) = G_{I_{\phi}}(\omega). \tag{5}$$

Рис. 23: График корреляционных функций $B_{I_{\phi}}(\tau)$ и $B_{Q_{\phi}}(\tau)$ случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$

$$G_{I_{\phi}}(\omega) = \begin{cases} \frac{\overline{I_n^2}}{1,27^2} \cdot \frac{T}{2} \left[1 + \cos\left(\omega \frac{T}{2}\right) \right], & |\omega| \le \frac{2\pi}{T}; \\ 0, & |\omega| > \frac{2\pi}{T}. \end{cases}$$

$$(6)$$

Рис. 24: График спектральных плотностей мощности $G_{I_{\phi}}(\omega)$ и $G_{Q_{\phi}}(\omega)$

3.5.2 Блоки перемножителей, инвертор, сумматор

Требуется:

1. Написать аналитические выражения для корреляционных функций $B_{I_{\phi}\cos}(\tau)$ и $B_{Q_{\phi}\sin}(\tau)$ случайных сигналов $I_{\phi}(t) \cdot \cos(\omega_C t + \varphi_C)$ и $Q_{\phi}(t) \cdot \sin(\omega_C t + \varphi_C)$ на выходах перемножителей, где φ_C – случайная фаза с равномерной плотностью вероятности на интервале $0...2\pi$. Случайная фаза φ_C не зависит от случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$.

$$B_{I_{\phi}\cos}(\tau) = B_{Q_{\phi}\sin}(\tau) = \frac{1}{2}B_{I_{\phi}}(\tau) \cdot \cos \omega_c \tau, \tag{7}$$
 где $\tau = (t_2 - t_1)$.

2. Написать аналитические выражения для корреляционных функций $B_S(\tau) = B_{I_{\phi}}(\tau) \cdot \cos \omega_C \tau = B_{Q_{\phi}}(\tau) \cdot \cos \omega_C \tau$ и для спектральной плотности мощности $G_S(\omega)$ сигнала S(t) на выходе сумматора. Построить графики этих функций.

$$B_S(\tau) = \overline{I_n^2} \cdot \frac{1}{1,27^2} \cdot x(\tau) \cdot \cos \omega_C \tau, \tag{8}$$

где $x(\tau)$ — импульс Найквиста, определяемый (2) при $\beta=1$ (рис. 19);

$$\overline{I_n^2} = 5h^2$$
 для КАМ-16.

Спектральная плотность мощности $G_S(\omega)$ случайного сигнала S(t) в соответствии с теоремой Винера — Хинчина определяется через преобразование Фурье корреляционной функции $B_S(\tau)$. Используя (8), получим:

$$G_S(\omega) = \int_{-\infty}^{\infty} B_{I_{\phi}\cos}(\tau) \cdot e^{-i\omega\tau} d\tau = \overline{I_n^2} \cdot \frac{1}{1,27^2} \int_{-\infty}^{\infty} x(\tau) \cdot \cos\omega_C \tau \cdot e^{-i\omega\tau} d\tau$$
$$= \frac{1}{2} \cdot \frac{\overline{I_n^2}}{1,27^2} [S_x(\omega - \omega_C) + S_x(\omega + \omega_C)],$$
(9)

Учитывая, что функция $S_x(\omega)$ импульса Найквиста x(t) при значении $\beta=1$ и $f=\frac{\omega}{2\pi}$ равна

$$S_x(\omega) = \begin{cases} \frac{T}{2} \left(1 + \cos \frac{T}{2} \omega \right), & |\omega| \le \frac{2\pi}{T}; \\ 0, & |\omega| > \frac{2\pi}{T}. \end{cases}$$
 (10)

Спектральная плотность $G_S(\omega)$ на выходе сумматора будет равна удвоенной спектральной плотности $G_{I_{\phi}\cos}(\omega)$.

Рис. 25: График корреляционной функции $B_S(\tau)$

Рис. 26: Спектральные плотности мощности $G_S(\omega)$

3.6 Непрерывный канал

Передача сигнала S(t) происходит по непрерывному неискажающему каналу с постоянными параметрами в присутствии аддитивной помехи n(t) типа гауссовского белого шума. Сигнал Z(t) на выходе такого канала имеет вид

$$Z(t) = \mu \cdot S(t) + n(t), \tag{11}$$

где $\mu = 1$ – коэффициент передачи канала.

Односторонняя спектральная плотность мощности помехи n(t) равна $N_0=2, 3\cdot 10^{-7}~B^2/ \Gamma u.$

3.7 Декодер

По каналу передавался код $\overline{u}=11100001101011111...$. Ошибка произошла на тактовом интервале q=3. Таким образом, на вход декодера поступает последовательность $\overline{Z}=11\overset{\times}{0}000011010011111...$. Крестиком обозначен ошибочно принятый символ.

3.7.1 Диаграмма декодера

Рис. 27: Решетка декодера

Рис. 28: Сегмент решетки декодера от t=0, до t=3

Рис. 29: Сегмент решетки декодера от t=0, до t=4

Рис. 30: Сегмент решетки декодера от t=0, до t=5

Рис. 31: Сегмент решетки декодера от t=0, до t=6

Рис. 32: Сегмент решетки декодера от t=0, до t=7

Рис. 33: Сегмент решетки декодера от t=0, до t=8

Рис. 34: Сегмент решетки декодера от t=0, до t=9

Рис. 35: Полная решетка декодера

Наложив полученный путь на решетку кодера, узнаем декодированное слово. $\overline{m}_{nonyu}=101111001$