

Vadhiraj K P P

Department of Electrical Engineering

Unit 2 – Single Phase AC Circuits – Lecture 19 – Overview of Generation, Transmission & Distribution

Vadhiraj K P P

Department of Electrical & Electronics Engineering

PES

Introduction to Single Phase System

- First Power distribution system was a DC System invented by Edison
- Due to the invention of transformer, AC systems have gained popularity over DC Systems for Power Generation, Transmission and Distribution.
- AC Stands for 'Alternating Current'.
- An AC waveform is a periodic waveform which alternates.

PES

Overview of Power Systems

- Power Generation and Power Transmission is done as Three Phase AC Power.
- Power distribution to industries is done as Three Phase AC Power & to domestic consumers is done as Single Phase AC Power.

Basic Terminology

> Periodic waveform:

A periodic waveform is one which repeats itself after certain time interval.

> Time Period(T):

The time taken to complete one cycle of a periodic waveform. It is measured in Seconds.

> Frequency(f):

The number of cycles completed in one second of a periodic waveform. It is measured in Hz.

PES

Concept of Pure AC waveform

- A pure AC waveform is one in which positive area is matched by equal negative area.
- Its average value is zero.
- f1(t) is a pure AC waveform

AC waveform with DC Component

- Positive Area is not matched by equal Negative Area
 Hence, Average Value is Finite
- f2(t) is an AC wave with DC component (Not Pure AC)

Sinusoidal waveform

 Most widely used AC waveform for power generation, transmission & distribution is Sinusoidal Waveform.

Sinusoidal Waveform:

• It can be expressed as a function of angle or time. Accordingly, one cycle completes in 2π radians or T seconds.

Sinusoidal Waveform – Relation between time and angle

$e(\theta)/e(t)$

Time (sec)	Angle θ(Rad)
T	2π
T/2	π
1	(2π/T)
t	2π/T*t

Mathematical Representation of a Sinusoidal waveform

• $e(\theta) = E_m \sin(\theta)$

- $e(t) = E_m sin((2\pi/T)^*t) = E_m sin(\omega t)$ where, $\omega = 2\pi/T = 2\pi f$ is called the angular frequency of the sine wave in rad/s.
- In general, the standard representation of a sinusoidal function is $E_m \sin(\omega t + \phi)$ where ϕ is called the phase angle which can be either positive or negative.

Numerical Example 1

Question: For a Sinusoidal function of frequency 50 Hz, find

- i) Half time period
- ii) Angular frequency

Solution:

Time period, T = 1/f = 1/50 = 0.02s = 20 ms

- i) Half time period T/2 = 20/2=10 ms
- ii) Angular frequency (ω) $\omega = 2\pi f = 2\pi(50) = 100 \pi = 314.159 \text{ rad/sec}$

Numerical Example 2

Question:

The maximum value of a sinusoidal alternating current of frequency 50Hz is 25 A. Write the equation for the instantaneous expression of current,. Determine its value at 3ms and 14 ms.

Solution:

$$\omega$$
= 2 π f = 100 π rad/s
i(t) = 25sin(100 π t) A
i(3ms) = 25sin(100* π *0.003) = 20.22A
Similarly, i(14ms) = -23.77A

Note: If radian scale is selected then substitute ' π ' symbol in above equation. If degree scale is selected then don't use ' π ' symbol, but substitute 180 in place of ' π '.

PES UNIVERSITY

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 2. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 3. "Engineering Circuit Analysis", William Hayt Jr.,
- Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu