- 1. Bestäm hur många stigar av längd 3 som den kompletta bipartita grafen $K_{7.8}$ innehåller
- 2. Bestäm för vilka värden på a och b som den kompletta bipartita grafen $K_{a,b}$ innehåller en Hamiltoncykel.
- 3. Hur många icke-isomorfa träd med 5 hörn finns det?
- 4. Tilldela varje kant i den kompletta grafen K_7 med 7 hörnen vikt från mängden $\{1,2,...,50\}$. Låt A vara mängden av alla viktade grafer som kan bildas på detta sätt. Som bekant har varje viktad graf i A ett billigaste uppspännande träd. Låt B vara mängden av alla olika billigaste uppspännande träd som kan bildas från en viktad graf i mängden A. Vi definierar en relation R på mängden B genom att sätta T_1RT_2 om T_1 och T_2 har samma kostnad, där T_1 och T_2 är två viktade uppspännande träd. Visa att R är en ekvivalensrelation och bestäm antalet olika ekvivalensklasser. Motivera noggrant!
- 5. Finns det någon graf (utan multipla kanter och loopar) med gradtalen 7, 7, 5, 5, 3, 3, 2, 2? Varför/varför inte?
- 6. Betrakta en cykel C_6 med hörnmängden $\{1,2,3,4,5,6\}$. Låt G vara komplementet till C_6 . Från G bildar vi en viktad graf genom att tilldela varje kant ij vikten 2(i+j). Bestäm ett minimalt uppspännande träd i denna viktade graf. Avgör även om G innehåller en Hamiltoncykel.
- 7. Låt K_7 vara en komplett graf med hörnmängd $\{1, 2, 3, 4, 5, 6, 7\}$.
 - a) Avgör hur många olika stigar av längd 3 som K_7 innehåller.
 - b) Från K_7 bildar vi en viktad graf genom att för varje kant ij, där i < j, tilldela kanten vikten $\frac{i+j}{\operatorname{sgd}(i,j)}$. Bestäm ett minimalt uppspännande träd i den viktade grafen.
- 8. Hur många delgrafer som är slutna Eulervägar har den kompletta bipartita grafen $K_{2,4}$,
- 9. Låt K_5 vara den kompletta grafen med 5 hörn. Hur många olika icke-isomorfa uppspännande träd innehåller K_5 ?
- 10. Låt $B=\{1,2,3,4,5\}$ och låt β vara mängden av alla delmängder till B med kardinalitet 2. Definiera en graf G med hörnmängd β där två hörn $B_1,B_2\in\beta$ är grannar om och endast om $B_1\cap B_2=\emptyset$. Avgör hur lång den kortaste cykeln i G är
- 11. Är alla grafer med hörnmängd $\{1,2,3,4,5\}$, som innehåller precis två cykler av längd 3, isomorfa?

- 12. Låt $A=\{1,2\} \times \{1,2,3,4\}$ och definiera en graf G med hörnmängd A genom att låta hörnen (x,y) och (w,z) vara grannar om $x\neq w$, eller om x=w och $y+z\leq 5$. Avgör hur lång den längsta cykeln i G är och bestäm även kromatiska polynomet för G
- 13. Är det sant att varje graf som har en Hamiltoncykel är planär?
- 14. a) Hur många olika cykler av längd 4 innehåller den kompletta grafen $K_n \ (n \in \mathbb{N})$?
 - b) Bestäm det kromatiska talet $\chi(K_n)$.
 - c) Visa att det kromatiska polynomet för en komplett graf K_n är $P(K_n,\lambda)=\lambda(\lambda-1)(\lambda-1)$
 - $2)...(\lambda n + 1).$
- 15. Är varje graf med högst 4 hörn planär? Motivera ditt svar!
- 16. Låt G vara grafen med hörnmängd $V = \{1, 2, 3, 4, 5, 6\}$ där två hörn i och j, där i > j, är grannar om $\left|\frac{i}{j}\right|$ är ett udda tal. Tilldela kanten ij i G vikten i+j.
 - a) Bestäm ett billigaste uppspännande träd i grafen G.
 - b) Låt C vara mängden av alla olika viktade uppspännande träd som den viktade grafen G innehåller. Vi definierar en relation R på mängden C genom att sätta T_1 R T_2 om T_1 inte har högre kostnad än T_2 , där T_1 och T_2 är två viktade uppspännande träd. Är R_3 en partialordning? Motivera noggrant!
- 17. Låt G vara grafen med hörnmängd $V = \{1, 2, 4, 6, 8, 9, 10, 11\}$ och låt hörnen i och j vara förbundna med en kant om i j eller j i är ett udda tal, för alla $i, j \in V$ sådana att $i \neq j$.
 - a) Avgör om G har en hamiltoncykel och/eller eulerväg.
 - b) Bestäm kromatiska talet för G