Sayısal Haberleşme

Prof. Dr. İbrahim Altunbaş

Soru: Nyquist Frekansı 1

Aşağıda verilen sinyallerin Nyquist frekanslarını ve Nyquist aralıklarını bulunuz.

- a) $m_1(t) = 5\cos 1000\pi t\cos 4000\pi t$
- **b)** $m_2(t) = \frac{\sin 200\pi t}{\pi t} = 200 \operatorname{sinc} 200t$ **c)** $m_3(t) = \left(\frac{\sin 200\pi t}{\pi t}\right)^2 = (200 \operatorname{sinc} 200t)^2$

1.1 Cevap:

a)

$$m_1(t) = 5\cos 1000\pi t \cos 4000\pi t = 2, 5(\cos 5000\pi t + \cos 3000\pi t)$$

 $m_1(t)$ band sınırlı bir işarettir.

Maksimum frekans $f_{maks} = 2500 \text{ Hz}.$

Nyquist frekansı: $f_{Nyq}=2f_{maks}=5000~{\rm Hz}=5~{\rm kHz}$

Nyquist aralığı: $T_{Nyq} = \frac{1}{f_{Nyq}} = \frac{1}{5000} = 0, 2$ msn.

$$m_2(t)=\frac{\sin 200\pi t}{\pi t}=200\sin c\,200t$$
ise Fourier dönüşümü $\mathbb{F}\{m_2(t)\}=\prod\left(\frac{f}{200}\right)$

 $m_2(t)$ band sınırlı bir işarettir.

Maksimum frekans $f_{maks} = 100 \text{ Hz}.$

Nyquist frekansı: $f_{Nyq}=2f_{maks}=200~{\rm Hz}.$

Nyquist aralığı: $T_{Nyq} = \frac{1}{f_{Nyq}} = \frac{1}{200} = 5$ msn.

c)

$$m_3(t) = m_2(t)m_2(t) \xrightarrow{\mathbb{F}} M_3(f) = M_2(f) * M_2(f)$$

 $m_3(t)$ band sınırlı bir işarettir.

Maksimum frekans $f_{maks} = 200 \text{ Hz}.$

Nyquist frekansı: $f_{Nyq} = 2f_{maks} = 400$ Hz.

Nyquist aralığı: $T_{Nyq}=\frac{1}{f_{Nyq}}=\frac{1}{400}=2,5$ msn.

Şekil 1: $m_1(t)$ işaretinin genlik spektrumu.

Şekil 2: $m_2(t)$ işaretinin genlik spektrumu.

Şekil 3: $m_3(t)$ işaretinin genlik spektrumu.

2 Soru: Örnekleme

a) Frekans spektrumu şekilde verilen x(t) işaretinin alıcı kısımda yeniden elde edilebilmesi için f_s örnekleme frekansının alacağı en düşük değer ne olmalıdır?

Şekil 4: x(t) işaretinin frekans spektrumu.

- b) x(t) işareti i. $f_s = 10$ kHz, ii. $f_s = 12$ kHz, iii. $f_s = 30$ kHz'de örneklenirse örneklenmiş işaretin spektrumunu çiziniz.
- c) Örneklenmiş işaretten, tekrar bilgi işaretini elde edebilmek için H(f) band geçiren süzgeci nasıl olmalıdır? $f_s = 12$ kHz için bu süzgeç kullanılabilir mi?

2.1 Cevap:

a)

Biliyoruz ki $f_u=15$ kHz, W=15-11=4 kHz, $f_s=\frac{2f_u}{\nu}$ ve $\nu=\lfloor\frac{f_u}{W}\rfloor$ olmak üzere $\nu=\lfloor\frac{15}{4}\rfloor=3$ olarak bulunur. ν yerine konursa $f_s=\frac{2.15.10^3}{3}=10$ kHz olarak bulunur.

b)

Örneklenmiş işaret

$$x_s(t) = x(t)s(t)$$

şeklinde yazılmakta olup burada

$$s(t) = \sum_{k} \delta \left(t - kT_s \right)$$

şeklindedir. İmpuls katarı s(t)'nin Fourier dönüşümü $S(f) = \mathbb{F}\{s(t)\} = f_s \sum_k \delta\left(f - kf_s\right)$ olarak yazılabilir. Dolayısıyla örneklenmiş işaretin Fourier dönüşümü

$$X_s(f) = \mathbb{F}\{x_s(t)\} = \mathbb{F}\{x(t)s(t)\} = \mathbb{F}\{x(t)\} * \mathbb{F}\{s(t)\}$$
$$= f_s(X(f)) * \sum_k \delta(f - kf_s) = f_s \sum_k X(f - kf_s)$$

şeklinde bulunur.

Farklı f_s 'ler için $X_s(f)$ 'ler aşağıdaki gibi çizilebilir.

i.

Şekil 5: $f_s=10~\mathrm{kHz}$ olduğu durumda $X_s(f)$.

ii.

Şekil 6: $f_s=12$ kHz olduğu durumda $X_s(f)$.

iii.

Şekil 7: $f_s=30$ kHz olduğu durumda $X_s(f)$.

c) H(f) süzgeci aşağıdaki gibi olmalı. $f_s=12$ kHz için x(t)'ye ilişkin spektrum bozulduğundan hiç bir süzgeç kullanılamaz.

Şekil 8: H(f) frekans cevabı.

3 Soru: Pulse Amplitude Modulation (PAM) işaretin gücü

 $x(t) = \left\{ \begin{array}{ll} e^{-100t}, & 0 \leq t \leq 10 \text{ msn} \\ 0, & \text{dışında} \end{array} \right. \text{işareti şekildeki örnekleyici devresinin girişine uygulanıyor.}$

 $\begin{array}{c|c}
\uparrow^{h(t)} \\
\hline
0 & \tau & t
\end{array}$

Şekil 9: Örnekleyici devre.

Şekil 10: h(t) impuls cevabı.

- a) Örneklenmiş $x_s(t)$ işaretinin değişimini çiziniz.
- b) Sürekli işaret / örneklenmiş işaret güçleri oranı 6 dB olduğuna göre, τ tutulma süresini bulunuz.

3.1 Cevap:

a)

Şekil 11: $x_s(t)$ işareti.

b) $T_0=10.10^{-3}$ olmak üzere T_0 süresince ortalama güç: $S_x=\frac{1}{T_0}\int_0^{T_0}x^2(t)dt$ 'dir. Dolayısıyla

$$S_x = \frac{1}{10^{-2}} \int_0^{10^{-2}} x^2(t) dt = \frac{1}{10^{-2}} \int_0^{10^{-2}} e^{-200t} dt = 0,432$$

olarak bulunur. $x_s(t)$ işaretinin T_0 süresince ortalama gücü:

$$\begin{split} S_{x_s} &= \frac{1}{10^{-2}} \int_0^{10^{-2}} x_s^2(t) dt \\ &= \frac{1}{10^{-2}} \left(\int_0^\tau 1^2 dt + \int_{2.10^{-3}}^{2.10^{-3} + \tau} (e^{-0.2})^2 dt + \int_{4.10^{-3}}^{4.10^{-3} + \tau} (e^{-0.4})^2 dt \right. \\ &+ \int_{6.10^{-3}}^{6.10^{-3} + \tau} (e^{-0.6})^2 dt + \int_{8.10^{-3}}^{8.10^{-3} + \tau} (e^{-0.8})^2 dt \right) \\ &= \frac{1}{10^{-2}} \left(1 + 0.6 + 0.449 + 0.301 + 0.201 \right) \tau = 262.18\tau \end{split}$$

olarak bulunur.

Sürekli işaret / örneklenmiş şaret güçleri oranı 6 dB ise, $10\log\left(\frac{S_x}{S_{x_s}}\right)=10\log\left(\frac{0,432}{262,18\tau}\right)=6$ dB olur.

Öyleyse $\frac{0,432}{262,18\tau}=10^{0,6}$ ve $\tau=0,417$ ms
n olarak bulunur.