

Forslag til ny modell for beregning av kriteriet for fylkesveg i inntektssystemet for fylkeskommunene

Rapport

Forslag til ny modell for beregning av kriteriet for fylkesveger i inntektssystemet for fylkeskommunene

Prosjekteier:	Kommunal- og moderniseringsdepartementet
Prosjekteiers referanse:	Dorottya Bognar-Láhr dorottya.bognar-lahr@kmd.dep.no Kommunal- og moderniseringsdepartementet Kommunalavdelingen
Prosjektnr./navn	21063/ Kriterier for utgiftsbehov til fylkesvegnettet
Dokumenttype:	Oppdragsrapport
Versjon/ dato:	01/ 2021-05-31
Utarbeidet av:	Åsmund Holen asmund.holen@vianova.no Tor Erik Saltnes tor.erik.saltnes@vianova.no Torgeir Leland torgeir@tleland.no
Kontrollert av:	
Oppdragsansvarlig:	Åsmund Holen
Oppdragsgruppe:	Åsmund Holen, ViaNova AS Tor Erik Saltnes, ViaNova AS Torgeir Leland, TLeland AS
Rapportens formål:	Rapportens formål er å dokumentere arbeidet med utvikling av forslag til forenklet modell for beregning av kriteriet for fylkesveger i inntektssystemet for fylkeskommunene.
Historikk	
Versjon 1:	2021-05-31 Justering iht kommentarer fra styringsgruppa, retting av feil.
Versjon 0:	2021-04-16 Førsteutkast av rapport
versjon o:	2021-04-16 Førsteutkast av rapport

Innhold

1	In	nledr	ning	4		
2	М	etode	e for utvikling av forenklet modell	4		
	2.1	Mult	tippel regresjonsanalyse	4		
	2.2	Spe	siell behandling av fylkesveger i Oslo	5		
3	In	nspill	fra fylkeskommunene	6		
4	М	odellı	utvikling	6		
	4.1	Kos	tnadselementer	6		
	4.2	MO	TIV-beregninger til inntektssystemet for 2021	8		
	4.3	Reg	resjonsanalyse	10		
	4.	3.1	Generelt	10		
	4.	3.2	Tunneler	11		
	4.	3.3	Drenering og vegdekke	13		
	4.	3.4	Hovedprosess 7 Vegutstyr og miljøtiltak	14		
	4.	3.5	Bruer og kaier	16		
	4.	3.6	Vinterdrift	17		
	4.	3.7	Gang- og sykkelveg	20		
	4.4	Орр	summering av signifikante faktorer i forenklet modell	21		
5	R	esulta	ater	24		
	5.1	Bere	egningsresultater fra forenklet modell	24		
	5.2	Den	relative fordelingen mellom fylkeskommunene fra forenklet modell	27		
6	Aı	ndre v	vurderinger	28		
	6.1	Spe	sielle forhold med metoden	28		
	6.2	Vur	dering av objektivitet til faktorer i forenklet modell	29		
	6.3	Орр	odatering av datagrunnlaget	30		
٧	edleç	gg 1 -	- Oppdatering av mengdegrunnlaget			
٧	edleç	gg 2 -	- Mengder for de uavhengige variablene			
٧	edleç	gg 3 -	- Eksempel på trinnvis regresjonsanalyse for kostnadselement			
٧	edleç	gg 4 -	- Hovedprosesser og prosesser – innhold i ulike kontrakter			
V	Vedlegg 5 – Forklaring til utskriften for regresjonsanalyse i Excel					
V	edleç	gg 6 -	- Ordforklaringer			
V	edler	na 7 -	- Vurdering av en alternativ forenklet modell uten bruk av konstantledd			

1 Innledning

Inntektssystemet er et system som fordeler fylkeskommunenes frie inntekter (rammetilskudd og skatteinntekter). De frie inntektene er midler som fylkeskommunene disponerer fritt uten andre føringer fra staten enn gjeldene lover og forskrifter. Inntektssystemet utjevner fylkeskommunenes økonomiske forutsetninger ved å omfordele rammetilskuddet mellom fylkeskommunene (utgiftsutjevning). Utgiftsutjevningen skjer gjennom kostnadsnøkkelen som består av en rekke kriterier med vekter. Kriteriene som inngår i kostnadsnøkkelen skal i størst mulig grad være objektive, basert på offisiell statistikk og mulige å oppdatere jevnlig. Delkostnadsnøkkelen for fylkesveg, som i 2021 utgjør 18 % av den samlede kostnadsnøkkelen, består av kriteriene "antall innbyggere" og "vedlikeholdsbehov fylkesveg". Vedlikeholdsbehovet beregnes i dag etter Statens vegvesens kostnadsmodell MOTIV.

MOTIV ivaretar ulikheter mellom fylkene ved å ta hensyn til klima, vegnett, geometrisk standard, vegobjekter, trafikkmengde, fastsatte standardnivåer mm. Kommunal- og moderniseringsdepartementet (KMD) har vurdert MOTIV som et godt utgangspunkt for å beregne kriteriedata. Etter avviklingen av sams vegadministrasjon vil imidlertid ikke Statens vegvesen lenger automatisk ha tilstrekkelig informasjon til å gjøre MOTIV-beregninger for fylkesvegnettet. Og som følge av Statens vegvesens endrede ansvarsområde, blir fylkesvegene ikke en del av programmet når MOTIV blir tilpasset til nytt vegreferansesystem. Det er derfor behov for å finne et alternativ til MOTIV for å beregne kriteriet "vedlikeholdsbehov fylkesveg" i kostnadsnøkkelen.

Målet til KMD er derfor å utvikle en forenklet modell for å beregne kriteriet "vedlikeholdsbehov fylkesveg", som skal gjenskape beregningsresultatene fra MOTIV best mulig. Samtidig skal forenklet modell gi en prediksjon på endrede kostnader ved endringer i vegnettet i fylkene, og kunne oppdateres årlig. Den nye modellen skal fange opp de relative forskjellene i vedlikeholdsbehovet mellom fylkeskommunene, ettersom kriteriet skal brukes til å fordele en gitt ramme. Kriteriene skal i størst mulig grad være objektive, dvs. at de ikke skal kunne påvirkes av fylkeskommunene, være basert på offisiell statistikk, og det skal være lett å oppdatere kriteriene årlig.

2 Metode for utvikling av forenklet modell

2.1 Multippel regresjonsanalyse

Den valgte metoden for modellutvikling er å benytte multippel regresjonsanalyse.

Regresjonsanalyse er en statistisk analysemetode for å beskrive sammenhengen mellom én eller flere uavhengige variabler og en avhengig variabel. Det gjøres ved å finne frem til en funksjon, det vil si et tilnærmet uttrykk eller en forenklet matematisk beskrivelse av den virkelige sammenhengen. Funksjonen gjør det mulig å fastsette verdien av den avhengige variabelen y når man kjenner verdiene for de aktuelle uavhengige variablene x_1 , x_2 og så videre.

For dette formålet er utgangspunktet kostnadsbehovet beregnet med MOTIV for hvert fylke. Dette er den avhengige variabelen (y) som forenklet modell skal etterstrebe å oppnå.

MOTIV-beregningene skal gjennom den multiple regresjonsanalysen «forklares» med et sett av kriterier representert ved mengder og verdier på uavhengige variabler, i dette tilfellet størrelser, mengder og egenskaper til vegnettet, trafikken og klimaet. De uavhengige variablene er videre i rapporten også omtalt som faktorer.

Antall observasjoner i regresjonsanalysen er antall fylker som inngår i analysen. I utgangspunktet er dette 10 fylker (ikke Oslo, se kap 2.2). I noen tilfeller er antallet færre, for undersjøiske tunneler 7, siden det er 3 fylker som ikke har slike tunneler, og for kaier 9 fylker. Det totale MOTIV-beløpet for hvert fylke blir delt opp i kostnadselementer med utgangspunkt i hovedprosessene 3, 4, 6, 7, 8 og 9 (ref. Statens vegvesen Håndbok R761 Prosesskode 1). Se også Vedlegg 4 med angivelse av prosesser og oppgavetyper som inngår i ulike kontraktstyper innen drift og vedlikehold. Det utføres multippel regresjonsanalyse for hvert kostnadselement (avhengig variabel) hvor en søker å identifisere uavhengige variabler (faktorer) som er signifikante og som kan inngå i en modell for hvert kostnadselement.

Regresjonsanalysene for hvert kostnadselement gjøres som trinnvise analyser for å identifisere uavhengige variabler (faktorer) som er signifikante. En begynner med å teste alle valgte faktorer. Dersom flere faktorer er aktuelle enn de som kan inngå i en regresjonsanalyse med bare 10 observasjoner (11 fylker minus Oslo), velges de faktorene med best korrelasjon mot kostnaden fra MOTIV-beregningen. Det tas utgangspunkt i en nullhypotese. Det gjøres en statistisk analyse for hver faktor hvor en beregner sannsynligheten for at faktoren er forskjellig fra 0 ved å beregne et 95% konfidensintervall. Viser beregningen av dette konfidensintervallet at faktoren kan antas å være forskjellig fra 0, vil en kunne anta at faktoren er et signifikant bidrag til å forklare den relative verdien på det aktuelle kostnadselementet. Hvis en eller flere av faktorene på dette grunnlaget ikke kan utelukkes å være lik 0, velger en ut den faktoren hvor sannsynligheten er størst for at en 0-hypotese er sann. Denne faktoren utelates fra neste trinn av analysen. Analysen med en faktor mindre gjentas slik at en kan ende opp med en modell basert på faktorer som er signifikant forskjellig fra 0, og som derfor har relevante forklaringsvariabler.

Basert på trinnvise analyser for å utelate faktorer som ikke er signifikante, vil en for hvert kostnadselement få fram en formel hvor prediksjonen av kostnad er basert på uavhengige variabler som alle er av signifikant betydning. Disse beregningene vil danne grunnlaget for det videre arbeidet med å utvikle modellene ved at prediksjonen på kostnader for alle kostnadselement summeres for hvert av fylkene, og den relative fordelingen mellom fylkeskommunene beregnes fra sum for hvert fylke.

Det ble i utgangspunktet valgt et signifikansnivå på 95% for å utelukke at 0-hypotesen var sann. Dette ga i noen tilfeller for enkelte fylker store avvik mellom mellom modellens prediksjoner og faktisk verdi for MOTIV kostnader. I samråd med oppdragsgiver ble det bestemt å akseptere et konfidensnivå på 90%.

Se vedlegg 5 for forklaring av de statistiske ord og begreper som benyttes i resultatrapportene fra regresjonsanalysene.

2.2 Spesiell behandling av fylkesveger i Oslo

Tidligere har kostnaden til drift og vedlikehold av det som regnes som fylkesveger i Oslo, vært vurdert til 5 ganger gjennomsnittlig kostnad for primære fylkesveger i landet for øvrig. Statens vegvesen har utført MOTIV-beregninger for det definerte fylkesvegnettet, men da har beregningene gitt kostnader som er vesentlig lavere enn 5 ganger gjennomsnittet for primære fylkesveger. Den antatte årsaken til dette er manglende objektregistreringer på den delen av «Fv-vegnettet» i Oslo som ikke tidligere var riksveg.

Oslo har ikke fått registrert komplette data i NVDB i 2020, og det er derfor ikke mulig å fastsette en referansekostnad med MOTIV for Oslo på linje med det som er gjort for de øvrige fylkene. Det har medført at fylkesvegene i Oslo ikke er med i grunnlaget for utviklingen av den forenklede modellen. Siden vegnettet i Oslo ikke er med i grunnlaget anbefales det heller ikke å inkludere Oslo i senere bruk av forenklet modell, heller ikke etter at en eventuell supplerende registrering er gjennomført. Hovedgrunnen for dette er at det aktuelle vegnettet i Oslo er mindre enn i øvrige fylker, og faller

dermed utenfor området som modellen dekker (medfører større usikkerhet i resultatene), og fordi utstyrsnivået på dette vegnettet nok er veldig annerledes med større tetthet av vegutstyr enn på fylkesvegnettet forøvrig. Det anbefales derfor at verdien for Oslo ligger fast framover, og ny verdi vurderes på annen måte ved eventuelle vegnettsendringer i Oslo.

I forenklet modell videreføres Oslos andel av kriteriet for fylkesveg i inntektssystemet for 2021. Beløpet som ligger til grunn for Oslo er 244 mill kr.

3 Innspill fra fylkeskommunene

Et forslag til inndeling i kostnadselementer og faktorer som ble vurdert å være relevante for hvert av kostnadselementene, ble forelagt referansegruppen som består av representanter for de ulike fylkeskommunene i et møte 2021-01-29.

Innspill fra referansegruppa gitt i møtet, og som skriftlige tilbakemeldinger etter møtet til aktuelle kriterier/faktorer som påvirker kostnadene, ble lagt til som faktorer som skulle inngå i den trinnvise regresjonsanalysen. Innspill til faktorer som ble vurdert å ikke være objektive, ble ikke tatt med i regresjonsanalysene. Ett eksempel på dette er registreringer av steder med behov for bortkjøring av snø.

4 Modellutvikling

4.1 Kostnadselementer

Med begrepet kostnadselement menes de enkelte delene som totalkostnaden (operasjonalisert som MOTIV-beregningene til inntektssystemet i 2021) deles inn i og som det utvikles en delmodell for med trinnvis multippel regresjonsanalyse. I utgangspunktet skulle regresjonsanalysene utføres med inndeling av kostnadselementer for hver hovedprosess. Vedlegg 4 viser prosesser og oppgavetyper som inngår i de ulike hovedprosessene.

For hovedprosess 3 var det i utgangspunktet meningen at undersjøiske og ikke-undersjøiske tunneler skulle bli analysert hver for seg, og tilsvarende for hovedprosess 8 der bruer og kaier skulle bli analysert hver for seg. Det ble også antatt at det kunne bli behov for å underinndele hovedprosess 7 hvis analyse for hele hovedprosessen sett under ett ga for store avvik.

For å minimere fylkesvise avvik (residualer) mellom MOTIV-beregningene og prediksjonene fra regresjonsanalysene, ble det underveis i arbeidet gjort justeringer i inndelingen i kostnadselementene. Den endelige inndelingen er vist i tabell 1.

Hovedprosess	Kostnadselement
3 Tunneler	Tunneler (undersjøiske og ikke-undersjøiske)
4 Grøfter kummer og rør	Drenering og vegdekke
6 Vegdekke	Dieneinig og vogdekke
	Vegutstyr - Strekningsobjekter (kantklipp, rekkverk, renhold, oppmerking, trafikkberedskap, SRO, leskur)
7 Vegutstyr og miljøtiltak	Vegutstyr - Punktobjekter (bergskjæring, mur, sideanlegg, skredsikring, snøskjerm, ferist)
	Vegutstyr - Tettstedsobjekter (kantstein, veglys, støyskjerm, skilt, gjerde)
8 Bruer og kaier	Bruer
o Brao. og .taloi	Kaier
9 Vinterdrift	Vinterdrift

Tabell 1 Inndeling i kostnadselementer for regresjonsanalyse.

Hovedprosessene som er angitt i tabell 1 er de hovedprosessene i Statens vegvesens prosesskodesystem som inkluderer drift- og vedlikeholdsoppgaver og som det beregnes kostnader for i MOTIV. Hovedprosessnr 1, 2 og 5 finnes også i dette systemet. Hovedprosess 1 omfatter forberedende arbeider og generelle kostnader. I MOTIV er disse prosessene inkludert i arbeidsprosessene når det gjelder drift og vedlikehold, og er derfor indirekte inkludert (f.eks. kostnader til arbeidsvarsling). Hovedprosess 2 Sprenging og masseflytting er knyttet til vegbygging og vegutbedring og inngår ikke i drift og vedlikehold. Hovedprosess 5 Vegfundament er også rettet mot vegbygging og har heller ingen driftsoppgaver. Disse hovedprosessene er derfor ikke med i MOTIV.

I noen tilfeller har vi forsøkt å splitte et kostnadselement i flere deler. Dette var tilfelle med «undersjøiske tunneler» og «ikke-undersjøiske tunneler» som ble sammenlignet med en analyse basert på «tunneler samlet». I vurderingen av hva som representerte den beste inndelingen har vi sett på hvilket alternativ som samlet sett ga den laveste summen for ESS (Error Sum of Squares), eller «kvadratsummen av avvikene». Se vedlegg 5 for nærmere forklaring av ESS og andre statistiske størrelser som benyttes for å vurdere resultatene fra regresjonsanalysene.

Den samme tilnærmingen ble brukt for å sammenligne kostnadselementene for drenering (hovedprosess 4) og for vegdekke, (hovedprosess 6) enkeltvis, eller ett kostnadselement for drenering og vegdekke samlet. For vegutstyr (hovedprosess 7) ble det også vurdert å behandle denne samlet, men vi endte opp med å dele hovedprosessen i streknings-, punkt- og tettstedsobjekter.

4.2 MOTIV-beregninger til inntektssystemet for 2021

MOTIV er Statens vegvesens modell for beregning av kostnader knyttet til alle aktuelle drifts- og vedlikeholdsoppgaver som utføres på vegnettet. Modellen er normativ og tar utgangspunkt i en gitt vedlikeholdsstandard, og beregner de antatte kostnadene ved å følge standarden. MOTIV tar utgangspunkt i det faktiske vegnettet og beregner kostnader basert på informasjon om blant annet vegtype, vegobjekter (bro, tunnel og utstyr), levetid, klima og trafikkmengde.

MOTIV -tallene påvirkes ikke av den faktiske tilstanden på vegene. En veg som er mangelfullt vedlikeholdt vil ikke ha et høyere beregnet vedlikeholdsbehov i MOTIV enn en ellers lik veg som er godt vedlikeholdt.

Grunnprinsippet for MOTIV er beregning av årlige gjennomsnittskostnader for drift, vedlikehold og utskiftning knyttet til et vegobjekt eller en aktivitet innenfor en valgt del av vegnettet.

Årlig gjennomsnittskostnad beregnes som:

Årlig gjennomsnittskostnad = Mengde * Antall tiltak pr. år * Enhetspris for tiltak eller i de tilfellene det ikke er mulig å fastsette tiltaksfrekvens og enhetspris for delobjektet, beregnes årlige gjennomsnittskostnader som:

Kostnad= Mengde * Årspris

MOTIV-tallene som er benyttet som avhengig variabel i regresjonsanalysene, er kostnadstallene fra beregningen som ble gjort av Statens vegvesen ved utgangen av 2019. Dette er også grunnlaget for kriteriedata gitt i Grønt hefte 2021¹. I tabell 2 er beløpene fra MOTIV fordelt på de kostnadselementene som det utføres regresjonsanalyse for.

Rapport 31.05.2021 8

¹ Inntektssystemet for kommunar og fylkeskommunar 2021 (<u>https://www.regjeringen.no/no/tema/kommunerog-regioner/kommuneokonomi/gront-hefte/id547024/</u>)

Fylke	Tunnel ²	Drenering og vegdekke	Vegutstyr – streknings- objekter	Vegutstyr – punkt- objekter	Vegutstyr – tettsteds- objekter
Viken	45 473	486 201	185 979	60 784	244 692
Innlandet	5 443	492 195	164 678	49 650	91 875
Vestfold og Telemark	24 163	257 480	112 763	23 466	119 418
Agder	52 062	239 728	92 040	25 739	82 916
Rogaland	99 556	180 712	93 389	32 006	126 961
Vestland	248 295	351 862	196 399	132 199	139 768
Møre og Romsdal	124 032	209 954	93 730	56 542	76 632
Trøndelag	107 213	406 135	154 964	45 486	116 498
Nordland	71 061	274 430	91 264	68 410	48 849
Troms og Finnmark	87 870	303 829	94 173	62 858	91 361
Sum	865 168	3 202 526	1 279 379	557 140	1 138 970

Fylke	Bru	Kai	Vinterdrift	Gang- og sykkelveg	Sum per fylke
Viken	55 965	925	369 521	75 008	1 524 549
Innlandet	40 721	658	305 772	21 572	1 172 564
Vestfold og Telemark	31 798	0	200 682	28 786	798 556
Agder	31 437	817	176 039	23 962	724 739
Rogaland	29 910	6 668	114 797	36 434	720 433
Vestland	73 981	15 540	348 939	37 104	1 544 087
Møre og Romsdal	40 285	15 153	178 983	18 124	813 435
Trøndelag	65 075	7 333	306 742	40 283	1 249 729
Nordland	56 299	19 836	235 260	11 947	877 356
Troms og Finnmark	26 179	10 757	335 577	13 147	1 025 751
Sum	451 650	77 687	2 572 312	306 367	10 451 199

Tabell 2 MOTIV-beregninger til inntektssystemet for 2021. Beregnede kostnader per kostnadselement og fylke fra beregning utført av Statens vegvesen ved utgangen av 2019. Beløpene er gitt i 1000 kr.

-

² Hovedprosess 3 inneholder også kostnader fra oppgaver på hovedprosess 7 som kun omfatter kostnader i tunneler.

4.3 Regresjonsanalyse

4.3.1 Generelt

Det er utført regresjonsanalyser for hvert kostnadselement (KE) som har resultert i ligninger av typen

$$Kostnad_{KE} = A_{KE} + B_{KE} * X_1 + C_{KE} * X_2 + D_{KE} * X_3 + + N_{KE} * X_i$$

der A er konstantleddet og B, C, D ...N er de beregnede koeffisientene til de signifikante faktorene X₁, X₂, X₃, ..., X_i som kom ut av regresjonsanalysen, jf. metodebeskrivelsen i kap. 2.1.

For at en faktor skal kunne brukes må den i tillegg til å være signifikant, også være «riktig» fra et faglig ståsted. I en regresjonsanalyse kan beregnede koeffisienter for signifikante faktorer også bli negative. I mange situasjoner kan ikke negative koeffisienter for faktorer «godkjennes», f.eks. hvis dette gjelder en faktor som er antall vegutstyr/vegobjekt av en eller annen type. En økning i utstyrsmengden eller veglengden bør ikke gi negative utslag i en kostnadsberegningsmodell. Eksempler på slike forhold framkommer i behandlingen som er beskrevet for hvert kostnadselement.

I andre sammenhenger kan og må negative koeffisienter for faktorer aksepteres. Dette kan være uttrykk for at en (eller flere) faktorer gir for høy uttelling i regresjonsligningen og denne overkompensasjonen må justeres. Slike situasjoner følger av den metoden som er valgt, multippel regresjonsanalyse. Eksempler på slike forhold framkommer også i behandlingen som er beskrevet for hvert kostnadselement.

De faktorene som har vært testet for hvert kostnadselement, er framkommet basert på faglige vurderinger i arbeidsgruppa supplert med innspill fra fylkene i gjennomgangen av kostnadselementer og faktorer i referansegruppemøtet i januar 2021.

Med den nye fylkesinndelingen med 11 fylker der Oslo ikke inngår i regresjonsanalysen har vi derfor inndata for 10 fylker, dvs 10 observasjoner i regresjonsanalysen. Antall faktorer kan maks være antall observasjoner minus 1. Når skjæringspunkt (verdien på y-aksen ved origo) inngår blant elementene i modellen, regnes også denne som en av disse faktorene, og det betyr at maks 8 valgfrie faktorer kan inngå samtidig i analysen når en tar utgangspunkt i at funksjonen skal inneholde et skjæringspunkt.

Faktorene som ble testet i regresjonsanalysen for hvert av kostnadselementene, er vist i kapittel 4.3.2 til 4.3.7 der behandlingen av hvert kostnadselement er beskrevet.

Vi har benyttet faktorer der mengdedata er tilgjengelig gjennom åpne kilder som NVDB og SSB. I tillegg har vi også benyttet ulike klimadata som faktorer, særlig knyttet til hovedprosess 9 Vinterdrift, men noen av dem har også vært testet ved behandling av kostnadselementene for hovedprosess 4, 6, 7 og for gang- og sykkelveg.

Klimadata som er benyttet i arbeidet er i sin helhet basert på klimaparameterne og klimadata som benyttes i MOTIV. Klimadata i MOTIV er basert på normalverdier for Meteorologisk institutts værstasjoner for normalperioden 1961-1990. Fylkesvegnettet er tilordnet til disse værstasjonene strekningsvis. Denne tilordningen er beskrevet i NVDB som et eget vegobjekt. Den strekningsvise tilordningen av representativ værstasjon er benyttet for å beregne et vektet gjennomsnittlig klimadatasett for fylkesvegene i hvert fylke. Vektingen er gjort ut fra lengden på fylkesvegnettet som hver enkelt værstasjon representerer.

Ved gjennomføring av en regresjonsanlayse vil en regresjonsligning der summen av kvadratet av avviket (ESS, Error Sum of Squares) mellom beregnet kostnad og MOTIV kostnad for hver observasjon er minst, representere den beste tilpasningen. Samtidig må alle de uavhengige variablene (faktorene) være signifikant forskjellig fra 0 basert på et konfidensnivå som i

utgangspunktet var på 95%. Disse forutsetningene er lagt til grunn for analysene som er gjennomført. Dette ga i noen tilfeller, for enkelte fylker, store avvik mellom modellens prediksjoner og faktisk verdi for MOTIV kostnader. I samråd med oppdragsgiver ble det for enkelte kostnadselementer bestemt å akseptere et konfidensnivå på 90% slik at en hadde flere signifikante faktorer etter den tinnvise analysen som ga mindre avvik mellom prediksjon og MOTIV-beregningen.

4.3.2 Tunneler

Det ble forsøkt brukt faktorer som kunne begrunnes faglig. Blant disse var de som fylkeskommunene mente var egnet. Mellom de ulike faktorene er det ulik styrke av korrelasjon, noe som innebærer at en faktor kan bidra til å forklare andre faktorer som ikke inngår som en uavhengig variabel. For tunneler var modellutviklingen krevende som følge av at det var mange aktuelle faktorer og begrensningen med at modellen i utgangspunktet bare kunne inneholde et utvalg av disse. Det ble satt sammen ulike grupper av faktorer som ble forsøkt brukt som grunnlag for utviklingen av modellverket for tunneler. De faktorene som en endte opp med i regresjonsanalysen, har ulik grad av korrelasjon med andre faktorer som ble valgt bort, og vil bidra til å forklare disse også i modellen.

Tunneler ble først behandlet som to kostnadselementer, undersjøiske tunneler og ikke-undersjøiske tunneler. Det ble deretter gjort et forsøk med å analysere alle tunneler under ett, og heller skille under- og oversjøiske tunneler med faktorene. Denne testen resulterte i et bedre resultat i form av mindre ESS for prediksjonen og MOTIV-beregninger for det sammenslåtte alternativet, enn ved å behandle undersjøiske og ikke-undersjøiske tunneler hver for seg.

Ikke-undersjøiske tunneler

Det ble testet 3 alternative sett med faktorer for ikke-undersjøiske tunneler. Disse er vist i tabell 3.

Alt. 1	Alt. 2	Alt. 3
Antall tunneler	Antall tunneler	Antall tunneler
Antall tunnelløp (hovedløp)	Lengde tunnel	Lengde tunnel
Lengde tunnel	Lengde i tunnelkl A	Antall i tunnelkl A
Lengde tunnelløp	Lengde i tunnelkl B	Antall i tunnelkl B
Trafikkarbeid på tunnelvegnettet	Lengde i tunnelkl C og D	Antall i tunnelkl C og D
Antall hovedløp > 500 m	Lengde i tunnelkl E og F	Antall i tunnelkl E og F
Sum løpslengde > 500 m	Lengde uten tunnelkl	Antall uten tunnelkl
	Trafikkarbeid på tunnelvegnettet	Trafikkarbeid på tunnelvegnettet

Tabell 3 Faktorer i regresjonsanalyse av ikke-undersjøiske tunneler.

Trinnvis analyse med Alternativ 1 gav det beste resultatet (minst ESS).

Undersjøiske tunneler

Også for undersjøiske tunneler ble 3 alternative sett med faktorer testet, som vist i tabell 4. Siden undersjøiske tunneler ikke finnes i 3 av fylkene (Innlandet, Vestfold og Telemark og Nordland), er antall observasjoner tilgjengelig for analysen tilsvarende færre og antall faktorer som kan inngå i analysen er dermed bare 5. De faktorene med best korrelasjon mot MOTIV-beregningene ble plukket ut til analysen. Disse er vist i tabell 4.

Alt. 1	Alt. 2	Alt. 3
Lengde tunnel	Antall tunneler	Antall tunneler
Lengde tunnelløp	Lengde tunnel	Lengde tunnel
Trafikkarbeid på tunnelvegnettet	Lengde i tunnelkl C og D	Antall i tunnelkl C og D
Sum løpslengde > 500 m	Trafikkarbeid på tunnelvegnettet	Trafikkarbeid på tunnelvegnettet

Tabell 4 Faktorer i regresjonsanalyse av undersjøiske tunneler.

Trinnvis analyse med Alternativ 1 gav det beste resultatet (minst ESS).

Tunneler samlet

Det ble videre forsøkt å behandle alle tunneler samlet som ett kostnadselement, og det viste seg å gi et bedre resultat.

Faktorene som ble benyttet i analysen er vist i tabell 5.

Faktorer - Tunneler
Lengde ikke-undersjøiske tunnelløp
Lengde undersjøiske tunnelløp
Lengde undersjøiske tunneler
Antall undersjøiske hovedløp > 500 m
Trafikkarbeid på det undersjøiske tunnelvegnettet
Lengde ikke-undersjøiske tunneler
Trafikkarbeid på det ikke-undersjøiske tunnelvegnettet
Antall hovedløp, ikke-undersjøiske > 500 m

Tabell 5 Faktorer i regresjonsanalyse av Tunneler.

Sum av kvadratet av avvikene (ESS) ble mindre for tunneler samlet enn ved å summere ESS for undersjøiske og «ikke-undersjøiske» tunneler. Derfor benyttes disse resultatene, dvs tunneler samlet, videre i forenklet modell.

Regresjonsanalysen resulterte i signifikante faktorer med tilhørende koeffisienter og statistiske størrelser som vist i tabell 6.

				Standardisert
Signifikante faktorer Tunneler	Koeffisienter	P-verdi	Standardfeil	koeffisient
Skjæringspunkt	17768.37	0.063	8043.5	
Lengde ikke-undersjøiske tunnelløp	0.746789	0.001	0.1452	0.5606
Lengde undersjøiske tunnelløp	3.862765	0.002	0.8170	0.5154

Tabell 6a Faktorer og koeffisienter for Tunneler til forenklet modell.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk				
Multippel R	0.9752			
R-kvadrat	0.9511			
Justert R-kvadrat	0.9371			
Standardfeil	17077.1			
Observasjoner 10				

Tabell 6b Statistiske størrelser for Tunneler.

Det må bemerkes at MOTIV-tallene som er den avhengige variabelen er beregnet ut fra det utstyret som faktisk var i tunnelene på det tidspunktet MOTIV-tallene ble beregnet. Modellen representerer derfor tunneler med gjennomsnittlig mengde tunnelutstyr. De vil dermed ikke være representative for de fylkesvise forskjellene når alle fylkeskommuner har oppfylt tunnelsikkerhetsforskriften og tunnelene dermed har fått mer utstyr. Dette gir utfordringer i bruken av koeffisentene for tunneler i tiden framover, siden den trinnvise analysen kun resulterte i faktorer for tunnellengde (vanlig tunnel og undersjøisk), og ingen faktorer for tunnelutstyr.

4.3.3 Drenering og vegdekke

Hovedprosess 4 og 6 ble innledningsvis behandlet hver for seg. Men det viste seg at det var mange av de samme faktorene som ble signifikante for begge hovedprosessene. Dermed ble det gjort et forsøk på regresjonsanalyse av hovedprosess 4 og 6 samlet. ESS ble mindre for hovedprosess 4 og 6 samlet enn ved å summere ESS for hver av hovedprosessene.

Faktorene som ble testet i analysen av hovedprosess 4 og 6 samlet (kostnadselementet drenering og vegdekke), er vist i tabell 7.

Faktorer - Drenering og vegdekke
Veglengde, km
Trafikkarbeid - mill. kjtkm/døgn
Km veg med ÅDT >= 1500kjt
Feltlengde km
Fortaulengde km
Veglengde uten fast dekke, km
Km veg fartsgrense 50 km/t eller lavere
Kummer totalt
Stikkrenner, antall
Sum nedbør snø og regn (mm vann)
Middeltemperatur vinter

Tabell 7 Faktorer i regresjonsanalyse av Drenering og vegdekke.

Faktorene Fortaulengde, Km veg fartsgrense 50 km/t eller lavere og Kummer totalt hadde lavest korrelasjon mot MOTIV-beregningene for drenering og vegdekke, og de ble derfor utelatt for å begrense utvalget til 8 faktorer som var utgangspunktet for den trinnvise regresjonsanalysen.

Regresjonsanalyse ble gjennomført i 8 trinn før alle gjenværende faktorer var signifikante. Faktorene med tilhørende koeffisienter som var signifikante iht. analysen er vist i tabell 8.

Signifikante faktorer Drenering og				Standardisert
vegdekke	Koeffisienter	P-verdi	Standardfeil	koeffisient
Skjæringspunkt	0			
Trafikkarbeid - mill. kjtkm/døgn	12752.49	1.59E-05	1219.0	0.3236
Feltlengde km, Vegkart	24.02414	1.53E-08	0.83	0.6118
Middeltemperatur vinter	-9975.188	9.05E-05	1245.6	-0.2762

Tabell 8a Faktorer og koeffisienter for Drenering og vegdekke til forenklet modell.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk		
Multippel R	0.9997	
R-kvadrat	0.9994	
Justert R-kvadrat	0.8564	
Standardfeil	9752.7	
Observasjoner 10		

Tabell 8b Statistiske størrelser for Drenering og vegdekke

Den uavhengige variabelen Middeltemperatur vinter får i dette tilfellet en negativ koeffisient. I fylker med middeltemperatur under 0 i vintermånedene gir dette høyere kostnad jo lavere temperaturen er. Dette samsvarer nok noe med behov for tining av stikkrenner som er en del av kostnadene i dette kostnadselementet.

4.3.4 Hovedprosess 7 Vegutstyr og miljøtiltak

Hovedprosess 7 ble først behandlet som ett kostnadselement. Resultatet av en samlet regresjonsanalyse for hovedprosess 7 gav imidlertid enkelte store fylkesvise avvik sammenlignet med MOTIV- beregningene. Det ble derfor prøvd ut noen ulike oppdelinger av hovedprosessen. Den beste oppdelingen, som i sum gav lavest ESS, var inndeling av hovedprosess 7 i de tre gruppene som kunne karakteriseres som enten strekningsobjekter, punktobjekter eller tettstedsobjekter. Faktorene som ble testet i analysen av de tre gruppene for hovedprosess 7 er vist i tabell 9.

Faktorer - Vegutstyr-	Faktorer - Vegutstyr -	Faktorer - Vegutstyr -
strekningsobjekter	punktobjekter	tettstedsobjekter
Veglengde km	Veglengde km	Veglengde km
Feltlengde km	Km veg fartsgrense 50 km/t eller	Feltlengde km
	lavere	
Km veg med ÅDT >= 1500kjt	Middeltemperatur mai-august, °C	Km veg med ÅDT >= 1500kjt
Km veg med ÅDT < 250 kjt	Km veg med ÅDT < 250 kjt	Km veg fartsgrense 50 km/t eller
		lavere
Km veg fartsgrense 50 km/t eller	Sum nedbør som regn (mm)	Trafikkarbeid - mill. kjtkm/døgn
lavere		
Trafikkarbeid - mill. kjtkm/døgn	Sideanlegg med toalett toalett,	Lyspunkt i dagen, antall
	antall (rasteplasser)	
Middeltemperatur mai-august,	Mur totalt, m2	
grader C		
Rekkverk totalt, Im	Bergskjæring Motiv97 (m2/km)	

Tabell 9 Faktorer for hvert kostnadselement i regresjonsanalyse av hovedprosess 7.

Regresjonsanalysen for hver av kostnadselementene resulterte i de signifikante faktorene og med tilhørende koeffisienter som vist i tabell 10, 11 og 12.

Vegutstyr-strekningsobjekter

Signifikante faktorer Vegutstyr-				Standardisert
strekningsobjekter	Koeffisienter	P-verdi	Standardfeil	koeffisient
Skjæringspunkt	0			
Feltlengde km	4.6466397	0.0048	1.1450	0.3054
Trafikkarbeid - mill. kjtkm/døgn	8112.07454	0.0002	1105.02	0.5312
Rekkverk totalt, Im	0.03161049	0.0019	0.00652	0.3966

Tabell 10a Faktorer og koeffisienter for Vegutstyr-strekningsobjekter til forenklet modell.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk		
Multippel R	0.9985	
R-kvadrat 0.9970		
Justert R-kvadrat 0.8532		
Standardfeil	8843.1	
Observasjoner 10		

Tabell 10b Statistiske størrelser for Vegutstyr-strekningsobjekter.

Vegutstyr-punktobjekter

Signifikante faktorer Vegutstyr-				Standardisert
punktobjekter	Koeffisienter	P-verdi	Standardfeil	koeffisient
Skjæringspunkt	87820.55	0.0249	27745.8	
Km veg fartsgrense 50 km/t eller lavere	76.2584	0.0019	12.7224	0.6181
Middeltemperatur mai-august, °C	-7557.04	0.0366	2669.51	-0.3068
Sum nedbør som regn (mm)	-19.5334	0.0647	8.27571	-0.2930
Bergskjæring Motiv97 (m2/km)	57.0521	0.0031	10.7213	0.7305

Tabell 11a Faktorer og koeffisienter for Vegutstyr-Punktobjekter til forenklet modell.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk			
Multippel R	0.9852		
R-kvadrat 0.9706			
Justert R-kvadrat	0.9471		
Standardfeil	7167.08		
Observasjoner	10		

Tabell 11b Statistiske størrelser for Vegutstyr-punktobjekter.

De uavhengige variablene Middeltemperatur mai-august og Sum nedbør som regn får i dette tilfellet en negativ koeffisient, dvs modellen gir lavere kostnad ved høyere temperatur. Dette må sees på som en justering som kompenserer for at modellen totalt med de uavhengige variablene skal stemme.

Vegutstyr-tettstedsobjekter

Signifikante faktorer Vegutstyr-				Standardisert
tettstedsobjekter	Koeffisienter	P-verdi	Standardfeil	koeffisient
Skjæringspunkt	0			
Km veg med ÅDT >= 1500kjt	-74.70306	0.0116	22.032	-0.8248
Trafikkarbeid - mill. kjtkm/døgn	27666.81	0.0005	4565.15	1.4557
Lyspunkt i dagen, antall	2.360411	0.0009	0.425	0.4075

Tabell 12a Faktorer og koeffisienter for Vegutstyr-tettstedsobjekter til forenklet modell..

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk			
Multippel R	0.9987		
R-kvadrat	0.9973		
Justert R-kvadrat	0.8537		
Standardfeil	7718.40		
Observasjoner	10		

Tabell 12b Statistiske størrelser for Vegutstyr-tettstedsobjekter.

Den uavhengige variabelen Km veg med ÅDT >= 1500 kjt får i dette tilfellet en negativ koeffisient, dvs dette leddet i modellen gir lavere kostnad ved større vegnett med høyere ÅDT. Dette må også sees på som en justering som kompenserer for at modellen totalt med de uavhengige variablene skal stemme.

4.3.5 Bruer og kaier

Bruer

Brukostnader har blitt testet med faktorer som kan hentes fra NVDB. Det ble vurdert å benytte data fra Brutus, noe som ville muliggjort en mer detaljert modell. Data fra Brutus er imidlertid ikke åpent tilgjengelig, og det er derfor mer krevende å hente oppdateringer fra Brutus enn fra NVDB. Brutus som datakilde ble derfor vurdert å ikke være aktuell.

Det ble funnet en modell som tilsynelatende traff veldig godt, med forholdsvis små avvik mellom prediksjon av kostnad og MOTIV-beregningene. Men dette alternativet hadde negative koeffisienter for byggverkstype 2 og 3 (plate- og bjelkebruer). Det ville medført at nye bruer av byggverkstype 2 eller 3 ville gitt en lavere tildeling, noe som er ulogisk. Andre alternativer har blitt prøvd ut. Det ble gjort beregninger for over 50 ulike alternative kombinasjoner av faktorer (antall, lengder, materialtyper, byggverkstyper og klimafaktorer), og det alternativet som anses som best (minst ESS) i regresjonsanalysen med signifikante verdier på faktorene, ga resultatet som er vist i tabell 13.

Signifikante faktorer Bruer	Koeffisienter	P-verdi	Standardfeil	Standardisert koeffisient
Skjæringspunkt	0			
Lengde bruer av stål	2.262933	0.011	0.6854	0.64192
Lengde bruer av andre matr. enn stål	1.320837	0.003	0.3153	0.66521

Tabell 13a Faktorer og koeffisienter for Bruer til forenklet modell.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk			
Multippel R	0.9846		
R-kvadrat	0.9675		
Justert R-kvadrat	0.8384		
Standardfeil	9637.7		
Observasjoner	10		

Tabell 13b Statistiske størrelser for Bruer.

Basert på regresjonsanalysen har stålbruer 70 % høyere årlige kostnader for drift og vedlikehold enn bruer i andre materialer. Det er betongbruer som utgjør mesteparten av denne gruppen. Ved riktig utførelse ved bygging antas det at betongbruer ikke krever større reparajsonstiltak gjennom levetiden, mens for at stålkonstruksjoner skal vare hele dimensjoneringsperioden (100 år) vil det i løpet av levetida ganske sikkert være nødvendig med flere større tiltak knyttet til overflatebehandling for å hindre rustangrep som vil svekke bruas bæreevne. Disse forskjellene antas å forklare mye av den forskjellen som vi ser fra forskjellen i koeffisientene til materialtypene.

Kaier

I første runde ble faktorene Antall ferjekaibruer, Antall tilleggskaier og Antall sekundær og liggekaier testet i en regresjonsanalyse. Trinnvis analyse resulterte i at faktorene Antall ferjekaibruer og Antall tilleggskaier var signifikante og skulle kunne inngå i forenklet modell. Men det var så store avvik for enkelte av fylkene at det ble forsøkt en analyse med kun én faktor. Da ble først en modell med sum alle kai-elementer (ferjekaibruer, tilleggskaier og sekundær- og liggekaier) testet og deretter sum ferjekaibruer og tilleggskaier. Det sistnevnte alternativet gav den minste ESS og er derfor benyttet videre i forenklet modell.

Signifikante faktorer - Kaier	Koeffisienter	P-verdi	Standardfeil
Skjæringspunkt	0		
Sum antall ferjekaibruer og tilleggskaier	279.4119	5.446E-12	6.0766

Tabell 14a Faktorer i beste alternativ for regresjonsanalyse av Kaier.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk			
Multippel R	0.9979		
R-kvadrat	0.9958		
Justert R-kvadrat	0.8847		
Standardfeil	713.34		
Observasjoner 10			

Tabell 14b Statistiske størrelser for Kaier.

4.3.6 Vinterdrift

Det ble først gjennomført en regresjonsanalyse knyttet mot hele hovedprosess 9. Deretter ble hovedprosess 9 oppdelt i de tre kostnadselementene *Brøyting og rydding, Strøing* og *Tiltak pga vind*. Denne oppdelingen gav i sum lavere ESS enn regresjonsanalysen der hele hovedprosess 9 ble behandlet under ett, og alternativet med en slik oppdeling ble derfor vurdert som den beste

modellen for hovedprosess 9. Faktorene som var signifikante ved denne inndelingen i kostnadselementer, var som vist nedenfor for hvert av kostnadselementene.

Brøyting og rydding:

- Veglengde
- Fortaulengde
- Nedbør som snø
- Vinterlengde

Strøing:

- Feltlengde
- Trafikkarbeid
- Km veg med ÅDT >= 1500kjt
- Vinterlengde

Tiltak pga. vind:

- Veglengde km offisiell SSB/31.12.2020
- Snødybde
- Nedbør som snø
- Vinterlengde
- Middeltemperatur vinter
- Middeltemperatur mai-august
- Dager med vind > 10 m/s
- Dager med vind >= 15 m/s

Faktorene som beskriver klimaet, er i oversikten over uthevet og i kursiv. Disse har konstante, men ulike fylkesvise verdier, og er i MOTIV hovedgrunner til at vinterkostnad pr. km veg varierer mellom fylkene. I en regresjonsanalyse der totalkostnaden for kostnadselementet er den avhengige variabelen som skal predikeres, vil resultatet av regresjonsanalysen være en funksjon som beskriver den beste prediksjonen med koeffisienter som gjelder for hele landet, og der størrelsen på faktorene for hvert fylke gir de fylkesvise forskjellene. De faktorene som ikke er konstanter i oversikten ovenfor, er enten relatert til veglengde eller trafikkmengde. Men når det kun er veglengde og trafikk som påvirker kostnadsberegningen, vil bruk av regresjonsligningen gi samme tilleggskostnad for en vegnettsendring i alle fylkene. Dette blir ikke riktig for vinterdrift fordi forskjell i klima må gi en forskjell i kostnad for vinterdrift når en tilleggskostnad skal beregnes. Vi har derfor håndtert kostnadselementet for hovedprosess 9 annerledes enn de øvrige kostnadselementene.

Istedenfor å benytte kostnad pr. fylke som avhengig variabel, har vi benyttet kostnad pr. feltkm pr. fylke som den avhengige variabelen og på den måten tatt fram en fylkesfaktor for vinterdrift. Vi har valgt kostnad pr. feltkm framfor kostnad pr. km veg, siden MOTIV-beregningen for hovedprosess 9 har noe bedre korrelasjon med feltlengde enn med veglengde som vist i følgende tabell 15 fra korrelasjonsberegning med Excel:

	Hpr 9 Vinterdrift	Veglengde SSB 2020 (km)	Feltlengde (km)
Hpr 9 Vinterdrift	1		
Veglengde SSB 2020 (km)	0.8323	1	
Feltlengde (km)	0.8424	0.9931	1

Tabell 15 Korrelasjonskoeffisienter - MOTIV-beregning og faktorene veglengde og feltlengde.

.

En regresjonsanalyse med kostnad pr. feltkm resulterte i de signifikante faktorene og tilhørende koeffisienter som vist i tabell 16 (alternativ med 90% konfidensnivå).

Signifikante faktorer hovedprosess 9	Koeffisienter
Skjæringspunkt	-269.5454
Snødybde (cm)	-0.700239
Nedbør som Snø (mm vann)	0.073966
Middel temperatur mai-august, °C	15.35928
Vinter-lengde (døgn)	0.726095
Dager med vind >= 10 m/s	-0.520548
Dager med vind >= 15 m/s	2.546223

Tabell 16 Faktorer og koeffisienter for hovedprosess 9 til forenklet modell.

Alle de signifikante faktorene er faste og dermed av den typen som ikke skal oppdateres årlig, og som derfor ikke påvirkes av vegnettsendringer i fylkene. Dermed vurderes regresjonsanalyse av dette kostnadselementet å være et unødvendig trinn, og for vinterdrift benyttes heller den avhengige variabelen (MOTIV-beregningen dividert med feltlengden) direkte i forenklet modell.

Ved bruk av forenklet modell blir da beregnet kostnad produktet av den avhengige variabelen og feltlengde pr. fylke. Vær oppmerksom på at dette avviker fra modellprinsippet som for øvrig er brukt i modellutviklingen, men er vurdert å være akseptabelt for dette kostnadselementet. Metoden medfører at avviket blir null for alle fylkene mellom MOTIV-beregningen og beregnet kostnad for vinterdrift med forenklet modell.

Fylkesfaktoren for vinterdrift (Motiv-beregning dividert med Feltlengde) blir som vist i tabell 17.

Fylke	MOTIV- beregning Vinterdrift (1000 kr)	Feltlengde (km)	Fylkesfaktor Vinterdrift (1000 kr/feltkm)
Viken	369 521	11 307	32.681
Innlandet	305 772	13 664	22.378
Vestfold og Telemark	200 682	6 386	31.425
Agder	176 039	7 382	23.847
Rogaland	114 797	5 744	19.986
Vestland	348 939	11 631	30.001
Møre og Romsdal	178 983	6 545	27.347
Trøndelag	306 742	12 532	24.477
Nordland	235 260	9 306	25.280
Troms og Finnmark	335 577	9 430	35.586
Sum/gj.snitt	2 572 312	93927	27.386

Tabell 17 Fylkesfaktorer for kostnadselement Vinterdrift.

4.3.7 Gang- og sykkelveg

Faktorene som har blitt testet for kostnadselementet gang- og sykkelveg er vist i tabell 18.

Faktorer - Gang- og sykkelveg
Gs-veglengde
Brulengde på gs-veg
Tunnellengde på gs-veg
Vinter-lengde
Nedbør som snø
Tempdøgn med nedbør
Tempdøgn uten nedbør
Middeltemperatur vinter

Tabell 18 Faktorer i regresjonsanalyse av Gang- og sykkelveg.

Regresjonsanalysen ble gjennomført i 5 trinn før alle gjenværende faktorene var signifikante. Faktorene med tilhørende koeffisienter som var signifikante iht analysen, er vist i tabell 19.

Signifikante faktorer for Gang- og sykkelveg	g Koeffisienter	P-verdi	Standardfeil	Standardisert koeffisient
Skjæringspunkt	-64511.8672	0.0251	20408.5	
Gs-veglengde	139.334476	0.0001	11.65	1.169
Vinterlengde	489.815814	0.0195	144.53	0.658
Nedbør som snø	-80.6445627	0.0421	29.72	-0.319
Middeltemperatur vinter	3993.52987	0.0113	1022.26	0.661

Tabell 19a Faktorer og koeffisienter for Gang- og sykkelveg til forenklet modell.

Andre statistiske størrelser fra analysen er vist her:

Regresjonsstatistikk								
Multippel R	0.9979							
R-kvadrat	0.9958							
Justert R-kvadrat	0.8847							
Standardfeil	713.34							
Observasjoner	10							

Tabell 19b Statistiske størrelser for Gang- og sykkelveg.

Modellen inneholder en negativ faktor, «Nedbør som snø». Korrelasjonsanalysen som ble utført, viste at det er en sterk negativ korrelasjon mellom MOTIV kostnader og verdien for nedbør som snø som vist i tabell 20. Det peker i retning av at regresjonskoeffisienten blir negativ.

		Nedbør som
	Sum Motiv	Snø
<u>Korrelasjonskoeffisient</u>	GSV	(mm vann)
Sum Motiv GSV	1	
Nedbør som Snø (mm vann)	-0.52319	1

Tabell 20 Korrelasjon mellom MOTIV-beregning for Gang- og sykkelveg og Nedbør som snø.

4.4 Oppsummering av signifikante faktorer i forenklet modell

De faktorene som til sammen, fra hvert av kostnadselementene, er funnet å være signifikante og som inngår i forenklet modell, er vist i tabell 21. I tabellen vises også hvilke faktorer som krever oppdatering av mengdegrunnlaget ved nye beregninger, og opphavet/kilden til data for faktorene.

Faktor i forenklet modell	Kostnadselement faktoren benyttes i	Faktor med behov for årlig oppdatering	Fast faktor, ingen årlig oppdatering	Kilde
Gang- og sykkelveglengde (km)	Gang- og sykkelveg	Х		SSB
Feltlengde (km)	Drenering og vegdekke Vegutstyr - Strekningsobjekter	х		NVDB
Trafikkarbeid (mill. kjtkm/døgn)	Drenering og vegdekke Vegutstyr - Strekningsobjekter Vegutstyr - Tettstedsobjekter	х		NVDB
Veglengde med ÅDT > 1500 (km)	Vegutstyr - Tettstedsobjekter	Х		NVDB
Veg med fartsgrense 50 km/t eller lavere (km)	Vegutstyr - Punktobjekter	Х		SSB
Rekkverk totalt (Im)	Vegutstyr - Strekningsobjekter	Х		NVDB
Lyspunkt i dagen, antall	Vegutstyr - Tettstedsobjekter	Х		NVDB
Lengde «ikke-undersjøiske» tunnelløp (m)	Tunnel	х		NVDB
Lengde undersjøiske tunnelløp (m)	Tunnel	Х		NVDB
Lengde Bruer av stål (m)	Bru	Х		NVDB
Lengde bruer av andre matr.typer enn stål (m)	Bru	Х		NVDB
Ferjekaibruer og tilleggskaier, antall	Kai	Х		NVDB
Bergskjæringsfaktor (m2/km)	Vegutstyr - Punktobjekter		Х	MOTIV
Nedbør som snø (mm vann)	Gang- og sykkelveg		х	мотіν
Sum nedbør som regn (mm)	Vegutstyr - Punktobjekter		Х	MOTIV
Middeltemperatur vinter (°C)	Drenering og vegdekke Gang- og sykkelveg		Х	мотіv
Middeltemperatur mai-august (°C)	Vegutstyr – Punktobjekter		X	мотіν
Vinterlengde (døgn)	Gang- og sykkelveg		х	MOTIV

Tabell 21 Faktorer i forenklet modell, samt behov for årlige oppdateringer.

Koeffisientene for faktorene for hvert av kostnadselementene og sum av koeffisientene for alle kostnadselementer er vist i tabell 22.

Koeffisienter for kostnadselementene									
Faktorer	Tunnel	Drenering og vegdekke	Vegutstyr- strekning	Vegutstyr- punkt	Vegutstyr- Tettsted	Bru	Kai	Gang- og sykkelveg	Sum unntatt Vinterdrift
Konstantledd	17 768.4			87 820.6				-64 511.9	41 077.1
Lengde gang- og	3-		20		32				5-
sykkelveg (km)			5					139.3345	139.334
Feltlengde (km)		24.024	4.6466					G 01	28.6708
Trafikkarbeid (mill.									
kjtkm/døgn)		12752.49	8112.07		27 666.8				48531.4
Veglengde med ÅDT >								St.	
1500 (km)					-74.703			5:	-74.7031
Veg med fartsgrense 50									
km/t eller lavere (km)				76.258					76.2584
Nedbør som Snø (mm)) 	
vann)			14 9		5			-80.6446	-80.645
Sum nedbør som regn									
(mm)				-19.533					-19.533
Middel temperatur					Ò			01	*
vinter (grader C)		-9975.19			5			3993.53	-5981.66
Middel temperatur									
mai-august (grader C)				-7557.037					-7557.04
Vinterlengde (døgn)								489.82	489.82
Bergskjæringsfaktor	-								3
(m2/km)				57.052					57.0521
Rekkverk totalt (lm)			0.0316						0.03161
Lyspunkt i dagen,									
(antall)					2.3604				2.36041
Lengde ikke-	-			,	-			ÿ.	÷ .
undersjøiske tunnelløp									
(m)	0.7468								0.74679
Lengde undersjøiske						,			-
tunnelløp (m)	3.8628		9						3.86276
Lengde Bruer av stål									
(m)						2.2629			2.26293
Lengde bruer av andre									8
matr.typer enn stål (m)			<u> </u>			1.3208			1.32084
Antall ferjekaibruer og									
tilleggskaier							279.41		279.41

Tabell 22 Konstantledd og koeffisienter i forenklet modell.

For vinterdrift beregnes kostnaden fylkesvis som produktet av «Fylkesfaktor-Vinterdrift» og Feltlengde (km). «Fylkesfaktor-Vinterdrift» er gitt i tabell i kap 4.3.6.

Formel for beregning av totale kostnader er *A: Sum alle kostnadselementer unntatt vinterdrift* for hvert fylke med basis i tabellen ovenfor, pluss et ledd for *B: Vinterdrift*.

A: Kostnad_Fylke N = Konstantledd

+ koeff_{Faktor 1} * (Mengde_{Faktor 1})_ Fylke N

+

+ koeff_{Faktor n} * (Mengde_{Faktor n})_ Fylke N

B: Vinterkostnad_Fylke N = Fylkesfaktor-Vinterdrift_FylkeN * Feltlengde_Fylke N

Total kostnad = A + B

Konstantledd = hentes fra tabellen ovenfor, enten for kostnadselement eller for sum

koeff_{Faktor} = hentes fra tabellen ovenfor, enten for kostnadselement eller for sum

MengdeFaktor1 = hentes fra Vedlegg 2 for aktuell faktor, fylkesvise mengder

Fylkesfaktor-Vinterdrift_Fylke N = hentes fra tabell i kap. 4.3.6

Feltlengde_Fylke N = hentes fra Vedlegg 2 (faktoren Feltlengde)

5 Resultater

5.1 Beregningsresultater fra forenklet modell

Summen av beregnet kostnadsbehov med forenklet modell og MOTIV-beregningene er vist for hvert fylke i figur 1 og tabell 23. For Oslo er det i figuren lagt inn samme beløp som angitt i Grønt hefte, se også kap 2.2. De beregnede resultatene fra forenklet modell er justert slik at sum avvik i forhold til MOTIV-beregningene blir 0. Sum fra forenklet modell før justering var 37 kkr mer enn MOTIV-beregningene til inntektssystemet for 2021. Dette avviket er trukket fra fylkene proratarisk. Dette var nødvendig pga Oslo skulle beholde samme andel av fordelingen som i Grønt hefte.

Figur 1 Sammenligning av beregnet behov fra forenklet modell med behov i Grønt hefte 2021 basert på MOTIV.

	Forenklet	MOTIV-	Differanse,	
	modell, justert	beregninger	justert	
Fylke	(1000 kr)	(1000 kr)	(1000 kr)	Differanse (%)
Viken	1 531 468	1 524 549	6 919	0.5 %
Oslo	244 000	244 000	0	0.0 %
Innlandet	1 169 194	1 172 564	-3 370	-0.3 %
Vestfold og Telemark	806 791	798 556	8 234	1.0 %
Agder	724 823	724 739	84	0.0 %
Rogaland	734 841	720 433	14 408	2.0 %
Vestland	1 516 694	1 544 087	-27 394	-1.8 %
Møre og Romsdal	807 014	813 435	-6 421	-0.8 %
Trøndelag	1 233 848	1 249 729	-15 882	-1.3 %
Nordland	877 810	877 356	454	0.1 %
Troms og Finnmark	1 048 717	1 025 751	22 966	2.2 %
Sum alle fylker	10 695 199	10 695 199	0	0.0 %

Tabell 23 Beregningsresultater fra forenklet modell og MOTIV-beregninger samt avvik mellom dem. MOTIV-tall for Oslo er ikke beregnet, men hentet fra Grønt hefte.

Avviket mellom forenklet modell og MOTIV-beregninger fordeler seg på de ulike kostnadselementene som vist i tabell 24. Det største avviket finnes for kostnadselementet Bru, men det er også store avvik fylkene imellom for andre kostnadselementer. Avvikene i tabellen er beregnede avvik før justering for Oslo og avviker dermed noe fra *Differanse*, *justert* i tabell 22.

Fylke	Tunnel	Drenering og ' vægdekke	Vegutstyr- Strekning	Vegutstyr- Punkt	Vegutstyr- Tettsted	Bru	Kai	Vinterdrift	Gang-og sykkelveg	Sum
Viken	-3 739	-5 803	4 675	-2 340	1 198	14 045	472	0	-1582	6 925
Innlandet	13 541	-8 271	-13 762	-6 062	10 953	3 414	-99	0	-3 080	-3 366
Vestfold og Telemark	2 821	1 5 075	-7872	1 886	-6 1 96	-3 529	0	0	6 052	8 237
Agder	-13 101	615	11 240	2 966	-3 045	871	580	0	-40	86
Rogaland	5 689	6 655	524	-5 161	8 456	-2 499	-521	0	1 269	14 411
Vestland	-7 794	4 084	-7 174	-930	-8 366	-4 284	666	0	-3 591	-27 388
Møre og Romsdal	14 986	-14 150	4 218	2 5 4 7	-5 41 5	-6 756	-903	0	-945	-6 41 8
Trøndelag	-33 001	-1 673	4 248	12 195	107	2 210	-907	0	943	-15 877
Nordland	5 527	7 673	6 096	-4 359	6 476	-20 736	-277	0	57	457
Troms og Finnmark	15 070	3 635	4 809	-743	-5 933	3 978	1 258	0	896	22 970
Sum	0	7 840	7 001	0	-1 766	-13 286	26 9	0	-21	37

Tabell 24 Avvik mellom prediksjonen i regresjonsanalyse og MOTIV-tall pr. fylke. Beløp i 1000 kr.

Noe av avviket mellom forenklet modell og MOTIV-beregningen skyldes nok at det har skjedd endringer i mengdegrunnlaget for faktorene som inngår i forenklet modell. Datagrunnlag for Motivberegningen er fra utgangen av 2019, mens mengdene for faktorene i forenklet modell som er hentet fra NVDB og SSB er fra mars 2021.

Beregningsresultatet fra Forenklet modell og MOTIV-beregningen som er grunnlaget for tabell 23 er vist i tabell 25.

Forenklet modell - be	løp i 100	0 kr								
Fylke	Tunnel	Drenering og vegdekke	Vegutstyr- Strekning	Vegutstyr- Punkt	Vegutstyr- Tettsted	Bru	Kai	Vinterdrift	Gang- og sykkelveg	wns
Viken	41 734	480 398	190 654	58 444	245 890	70 010	1 397	369 521	73 426	1 531 473
Innlandet	18 984	483 924	150 916	43 588	102 828	44 135	559	305 772	18 492	1 169 198
Vestfold og Telemark	26 984	272 555	104 891	25 352	113 222	28 269	0	200 682	34 838	806 794
Agder	38 961	240 343	103 280	28 705	79 871	32 308	1 397	176 039	23 922	724 826
Rogaland	105 245	187 367	93 913	26 845	135 417	27 411	6 147	114 797	37 703	734 843
Vestland	240 502	355 946	189 225	131 269	131 402	69 697	16 206	348 939	33 513	1 516 699
Møre og Romsdal	139 018	195 804	97 948	59 089	71 217	33 529	14 250	178 983	17 179	807 017
Trøndelag	74 212	404 462	159 212	57 681	116 605	67 285	6 426	306 742	41 226	1 233 852
Nordland	76 588	282 103	97 360	64 051	55 325	35 563	19 559	235 260	12 004	877 813
Troms og Finnmark	102 940	307 464	98 982	62 115	85 428	30 157	12 015	335 577	14 043	1 048 721
Sum	865 168	3 210 366	1 286 380	557 140	1 137 204	438 364	77 956	2 572 312	306 346	10 451 236
MOTIV-beregning - be	eløp i 100	00 kr								
Fylke	Tunnel	Drenering og vegdekke	Vegutstyr- Strekning	Vegutstyr- Punkt	Væutstyr- Tettsted	Bru	Kai	Vinterdrift	Gang- og sykkelveg	Sum
Viken	45 473	486 201	185 979	60 784	244 692	55 965	925	369 521	75 008	1 524 549
Innlandet	5 443	492 195	164 678	49 650	91 875	40 721	658	305 772	21 572	1 172 564
Vestfold og Telemark	24 163	257 480	112 763	23 466	119 418	31 798	0	200 682	28 786	798 556
Agder	52 062	239 728	92 040	25 739	82 916	31 437	817	176 039	23 962	724 739
Rogaland	99 556	180 712	93 389	32 006	126 961	29 910	6 668	114 797	36 434	720 433
Vestland	248 295	351 862	196 399	132 199	139 768	73 981	15 540	348 939	37 104	1 544 087
Møre og Romsdal	124 032	209 954	93 730	56 542	76 632	40 285	15 153	178 983	18 124	813 435
Trøndelag	107 213	406 135	154 964	45 486	116 498	65 075	7 333	306 742	40 283	1 249 729
Nordland	71 061	274 430	91 264	68 410	48 849	56 299	19 836	235 260	11 947	877 356
Troms og Finnmark	87 870	303 829	94 173	62 858	91 361	26 179	10 757	335 577	13 147	1 025 751
Sum	865 168	3 202 526	1 279 379	557 140	1 138 970	451 650	77 687	2 572 312	306 367	10 451 199

Tabell 25 Beregningsresultat fra forenklet modell pr.kostnadselement og fylke og tilsvarende MOTIV-beregning (samme som i tabell 2 i kap. 4.2).

5.2 Den relative fordelingen mellom fylkeskommunene fra forenklet modell

Fordelingen skal inkludere Oslo. Fordi Oslo ikke var med i regresjonsanalysene (jf. kap. 2.2), beholdes Oslos andel uendret med samme andel som i Grønt hefte.

Den relative fordelingen av kriteriedata fra forenklet modell og fra Grønt hefte er vist i tabell 26. Tabellen viser også endringen som forenklet modell medfører, i forhold til Grønt hefte.

		MOTIV/Grønt	
Fylke	Forenklet modell	hefte 2021	Endring
Viken	0.1432	0.1425	0.5 %
Oslo	0.0228	0.0228	0.0 %
Innlandet	0.1093	0.1096	-0.3 %
Vestfold og Telemark	0.0754	0.0746	1.1 %
Agder	0.0678	0.0678	0.0 %
Rogaland	0.0687	0.0673	2.0 %
Vestland	0.1418	0.1444	-1.8 %
Møre og Romsdal	0.0755	0.0760	-0.8 %
Trøndelag	0.1154	0.1169	-1.3 %
Nordland	0.0821	0.0820	0.1 %
Troms og Finnmark	0.0981	0.0960	2.2 %
Sum alle fylker	1.0000	1.0000	0 %

Tabell 26 Den relative fordelingen av kriteriedata fra forenklet modell sammenlignet med MOTIVtall i Grønt hefte.

Det må presiseres at forenklet modell er utviklet for å brukes til å fordele en gitt ramme, og ikke til å fastsette størrelsen på rammen. Modellberegningen er derfor ikke det samme som det kriteriet for fylkesveger utløser for den enkelte fylkeskommune, og differansen mellom modellene i tabell 19 er derfor ikke det samme som endringen i rammetilskudd for den enkelte fylkeskommune.

6 Andre vurderinger

6.1 Spesielle forhold med metoden

Spennet i MOTIV-tallene for fylkene, og det tilhørende spennet for verdiene i datasettet for de uavhengige variablene (faktorene) for de samme fylkene, var grunnlaget for å utvikle modellen. Hvis verdier for de uavhengige variablene som er vesentlig forskjellig fra det som ble brukt i datasettet ved regresjonsanalysen blir brukt ved en ny beregning med forenklet modell, øker feilmarginene og riskoen for at resultatet er feil. I vår modellutvikling er 10 fylker grunnlaget. Forsøker en å beregne en verdi for hele landet ved å bruke modellen på et aggregert nivå, er ikke modellen gyldig. Det må først gjøres beregninger på fylkesnivå før en aggregerer resultatet. Tilsvarende vil ikke modellen være gyldig for beregninger for små geografiske områder (mindre enn fylker). Sagt på en annen måte, kostnader må beregnes på et fylkesnivå uten alt for store endringer i mengdene som er lagt til grunn for utviklingen av modellene. Dette kravet angir begrensningene for modellenes gyldighetsområde.

Et annet paradoks kan være at koeffisienter til enkelte faktorer har negative verdier. Dette må sees i sammenheng med de andre faktorene som brukes i den samme delmodellen. En negativ verdi kan innebære en korreksjon av at en annen faktor gir for stor «uttelling» når en MOTIV-kostnad beregnes. I vurderingene som ble gjort da modellene ble utarbeidet, har en valgt å fjerne faktorer som gir mindre tildeling hvis omfanget av vegnettet eller vegobjekter øker, og utført nye trinnvise beregninger med faktorer som ikke blir negative. Ulempen med dette har da vært at ESS for delmodellen har blitt større, dvs delmodellen gir større avvik fylkene imellom.

6.2 Vurdering av objektivitet til faktorer i forenklet modell

Inndata til forenklet modell er hentet fra NVDB, SSB og fra MOTIV-programmet. Verdiene for faktorene fra MOTIV er konstante og skal ikke endres. De faktorene som inngår i analysene er vurdert mht objektivitet i tabell 26.

Med objektive faktorer eller kriterier menes kriterier som fylkeskommunene ikke kan påvirke direkte selv. De fleste kriteriene/faktorene i forenklet modell er ikke fullt ut objektive siden fylkeskommunene kan påvirke dem ved å bygge ny vei, utvide eksisterende vei, sette opp flere lyspunkt og flere rekkverk mm. Slike faktorer har fått vurderingen påvirkbar faktor i tabell 27.

E-law if any lilea was dell	ICT I	Årlig	Mondayin -
Faktor i forenklet modell	Kilde	oppdatering	<u>-</u>
Lengde gang- og sykkelveg (km)	SSB	Ja	Påvirkbar faktor
Veg med fartsgrense 50 km/t eller lavere (km)	SSB	Ja	Påvirkbar faktor
Feltlengde (km)	NVDB	Ja	Påvirkbar faktor
Trafikkarbeid (mill. kjtkm/døgn)	NVDB	Ja	Påvirkbar faktor
Veglengde med ÅDT > 1500 (km)	NVDB	Ja	Påvirkbar faktor
Rekkverk totalt (lm)	NVDB	Ja	Påvirkbar faktor, noe varierende kvalitet mht egenskapsdata
Lyspunkt i dagen, antall	NVDB	Ja	Påvirkbar faktor, noe varierende kvalitet mht egenskapsdata
Lengde «ikke-undersjøiske» tunnelløp (m)	NVDB	Ja	Påvirkbar faktor
Lengde undersjøiske tunnelløp (m)	NVDB	Ja	Påvirkbar faktor
Lengde Bruer av stål (m)	NVDB	Ja	Påvirkbar faktor
Lengde bruer av andre matr.typer enn stål (m)	NVDB	Ja	Påvirkbar faktor
Ferjekaibruer og tilleggskaier, antall	NVDB	Ja	Påvirkbar faktor
Bergskjæringsfaktor (m2/km)	мотіv	Nei	Dette er fylkesvise konstanter fra MOTIV-grunnlaget som erstatning for manglende landsdekkende registrering av bergskjæringer. Oppdateres ikke, og eventuell ny veg med mer bergskjæring enn gjennomsnitt for fylket får ikke beregnet tillegg for det.
Nedbør som snø (mm vann)	MOTIV	Nei	Objektiv. Basert på normalverdier fra Meteorologisk institutt.
Middeltemperatur vinter (°C)	MOTIV	Nei	li li
Middeltemperatur mai-august (°C)	MOTIV	Nei	II II
Vinterlengde (døgn)	MOTIV	Nei	II

Tabell 27 Vurdering av faktorer mht. om de er objektive.

Det er ikke benyttet objekter som er basert på subjektive registreringer (f.eks. objekt «Snø-/isrydding – Bortkjøring» i NVDB).

Det er heller ikke benyttet objekter som åpenbart er usikre mht. kvalitet i form av feil i registreringene og manglende registrering (objektene Skjæring, Bergsikring og Bolter m.fl. i NVDB).

6.3 Oppdatering av datagrunnlaget

Mengdene til de faktorene i forenklet modell som skal oppdateres ved de årlige beregningene, jf. tabell i kap. 4.4, er åpent tilgjengelige. Det gjelder data både fra SSB og NVDB.

De aktuelle data fra SSB oppdateres 2 ganger i året, hhv. 15. mars (foreløpige tall) og 15. juni (endelige tall). Data fra SSB gjelder pr.31.12 året før. De data fra SSB som inngår i forenklet modell finnes i SSB-tabell «11842: Fylkesveier. Tunneler, bruer og veisikring».

Uttak av data fra NVDB for hvert av NVDB-objektene som benyttes som faktor i forenklet modell er beskrevet i Vedlegg 1.

Vedlegg 1 - Oppdatering av mengdegrunnlaget fra NVDB

Metode og framgangsmåte for datauttak fra NVDB og eventuell viderebehandling og bearbeiding av datarapportene beskrives objekt for objekt i dette vedlegget.

Dette gjelder følgende objekter:

Rekkverk

Belysningspunkt

Feltlengde

Trafikkarbeid

Veglengde med ÅDT > 1500

Lengde ikke-undersjøiske tunnelløp

Lengde undersjøiske tunnelløp

Lengde bruer av stål

Lengde bruer av andre materialtyper enn stål

Antall ferjekaibruer og tilleggskaier

Objekt: Rekkverk

Mengdegrunnlag for faktor: Rekkverk, totalt, Im

Uthenting av mengdegrunnlag - kilde:

NVDB rapporter https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)

Velg objekttype: «Rekkverk»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F

Lagre fil som regneark for hvert fylke Legg inn to kolonner til venstre og legg inn fylkesnummer og fylkesnavn på hver linje.

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

Bearbeiding av samlet fil

Lengde rekkverk (kolonne «Lengde») er ikke registrert for alle rekkverk i NVDB Dersom ikke «Lengde» er registrert, brukes lengde fra kolonne «Lengde vegnett» Verdi fra kolonne «Lengde» eller «Lengde vegnett» legges i en ny kolonne som kan kalles «Lengde bearbeidet»

Filtrere samlet fil med følgende filtre (med f.eks. bruk av pivottabell)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)
Eier: Fylkeskommune

Stat, Statens vegvesen

(tom)

Beregn sum lengde rekkverk for hvert fylke fra kolonne «Lengde bearbeidet»

Resultat (med bruk av pivot-tabell i excel)

Trafikantgruppe	K
Vegkategori	F
Fase	V

Eier Fylkeskommune

Stat, Statens vegvesen

	(tom)
Radetiketter	Summer av Lengde bearbeidet
Agder	1186864
Innlandet	1360838
Møre og Romsdal	1296059
Nordland	1110550
Rogaland	941773
Troms og Finnmark	1164511
Trøndelag	1829547
Vestfold og Telemark	905634
Vestland	2722901
Viken	1272547
Totalsum	13791224

Objekt: Belysningspunkt i dagen

Mengdegrunnlag for faktor: Lyspunkt i dagen, antall

Uthenting av mengdegrunnlag - kilde:

NVDB rapporter(https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)

Velg objekttype: «Belysningspunkt»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke Legg inn to kolonner til venstre og legg inn fylkesnummer og

fylkesnavn på hver linje.

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)
Bruksområde: Belysning bru

Belysning ferjeleie Belysning gangfelt Belysning område/plass

Belysning skilt Belysning veg/gate Belysning vegkryss

(tom)

Eier: Fylkeskommune

Stat, Statens vegvesen

(tom)

Beregn sum antall lyspunkt i dagen (belysningspunkt) for hvert fylke fra f.eks. kolonne «Objekt Id»

Resultat (med bruk av pivot-tabell i excel)

Trafikantgruppe	К
Vegkategori	F
Fase	V
Bruksområde	Belysning bru
	Belysning ferjeleie
	Belysning gangfelt
	Belysning område/plass
	Belysning skilt
	Belysning veg/gate
	Belysning vegkryss
	(tom)
Eier	Fylkeskommune
	Stat, Statens vegvesen
	(tom)

Radetiketter	Antall av Objekt id	
Agder		9356
Innlandet		11006
Møre og Romsdal		13293
Nordland		5104
Rogaland		25775
Troms og Finnmark		17058
Trøndelag		22171
Vestfold og Telemark		13334
Vestland		15987
Viken		36842
Totalsum		169926

Faktor: Feltlengde

Mengdegrunnlag: Feltlengde (km)

Uthenting av mengdegrunnlag - kilde:

NVDB rapporter https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)

Velg objekttype: «Feltstrekning»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F

Lagre fil som regneark for hvert fylke
Legg inn to kolonner til venstre og
legg inn fylkesnummer og
fylkesnavn på hver linje

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)

Beregn sum lengde vegnett for hver type veg fra kolonne «Feltoversikt».

Med bruk av pivot-tabell vil summering av lengde vegnett se slik ut:

Vegkategori	F .T								
Fase	V								
Trafikantgruppe	K T								
Summer av Lengde vegne	tt Kolonneetiketter								
Radetiketter	<u>*</u> 1	1#10#12#20#3#40#60#80	1#10#20#3#40#60#80	1#110#130#10#2#30#50#70#90	1#110#130#2#30#50#70#90	1#1F#2	1#1H#2	1#1H1	1#1H1#1H2#
Agder	14752.67					880.21	40.25	39.44	
Innlandet	13374.49					188.83			
Møre og Romsdal	3666.98							28	,
Nordland	1240.69								
Rogaland	25269.36					277.13		59.92	
Troms og Finnmark	2141.14								
Trøndelag	10566.02	46.17	42.94						
Vestfold og Telemark	15020.65					647.12			
Vestland	24047.1			81.18	56.11			25.16	
Viken	42088.13								
Totalsum	152167.23	46.17	42.94	81.18	56.11	1993.29	40.25	152.52	

Raden med «1#10#2O#3#4O#6O#8O» angir kode for antall og type felt på delstrekningen, og indikerer her at det er 7 felt. Tilsvarende indikerer «1#1H#2» at det er 3 felt. Regelen for telling av antall felt blir da «antall # +1». Se for øvrig dokumentasjon av feltkoder:

https://datakatalogen.vegdata.no/793-NVDB%20dokumentasjon

For å fastlegge antall feltkilometer i hvert fylke må lengde vegnett multipliseres med antall felt for hver type veg (fra kolonne «feltoversikt») i tabellen over. Manuelt må det derfor legges inn en ny rad over denne tabellen som angir antall felt, slik som vist i tabellen under (med rød skrift):

For hvert fylke må sum feltlengde beregnes ved å summere produktene av veglengde for hver type veg (fra kolonne «feltoversikt») multiplisert med antall felt fra den innlagte raden (rød skrift) slik som i tabellen under:

Resultat (med bruk av pivot-tabell i excel og manuell bearbeiding)

Faktor: Trafikkarbeid

FASE

1. Uttak av data fra NVDB

Mengdegrunnlag: NVDB objekt 540 Trafikkmengde

Uthenting av mengdegrunnlag - kilde:

Vegkart (https://vegkart.atlas.vegvesen.no/#kartlag:geodata/@600000,7225000,3)

Velg (skriv i søkefeltet): Trafikkmengde

Velg (skriv i søkefeltet): Fylkesveg (NB! Hele landet må vises i kartutsnittet)
Pek på og velg «Antall» vegobjekter
Velg fra Last ned datasett: CSV

Lagre nedlastet fil som regneark, .xlsx

2. Behandling av data fra NVDB i Excel

Legg til ny kolonne for beregning av seksjonslengder

Lengde (km) = («TIL METER» - «FRA METER»)/1000 km

Legg til ny kolonne for beregning av trafikkarbeid pr. seksjon:

Trafikkarbeid = «ÅDT, TOTAL» * Lengde (km) / 1 000 000 mill kjt.km pr. døgn

Summere trafikkarbeid pr. fylke for eksisterende veg (f.eks. med bruk av pivottabell):

1710	EKSISTETCHAC									
Sum of Trafikkarbeid (mill kjt.km/døgn)										
FYLKESNUMMER FYLKE Total										
30	Viken	12.07								
34	Innlandet	5.47								
38	Vestfold og Telemark	5.74								
42	Agder	3.88								
11	Rogaland	4.62								
46	Vestland	6.05								
15	Møre og Romsdal	3.27								
50	Trøndelag	5.32								
18	Nordland	2.34								
54	Troms og Finnmark	2.26								
Grand Total		51.03								

Eksisterende

Faktor: Veglengde med ÅDT > 1500

1. Uttak av data fra NVDB (samme datasett som for Trafikkarbeid)

Mengdegrunnlag: NVDB objekt 540 Trafikkmengde

Uthenting av mengdegrunnlag - kilde:

Vegkart (https://vegkart.atlas.vegvesen.no/#kartlag:geodata/@600000,7225000,3)

Velg (skriv i søkefeltet): Trafikkmengde

Velg (skriv i søkefeltet): Fylkesveg (NB! Hele landet må vises i kartutsnittet)
Pek på og velg «Antall» vegobjekter
Velg fra Last ned datasett: CSV

Lagre nedlastet fil som regneark, .xlsx

2. Behandling av data fra NVDB i Excel

FASE

Legg til ny kolonne for beregning av seksjonslengder

Eksisterende

Lengde (km) = («TIL METER» - «FRA METER»)/1000 km

Legg til ny kolonne for sjekk om ÅDT på seksjon er over eller under grense på 1500 kjøretøy Veglengde med ÅDT>=1500: IF(«ÅDT, TOTAL»>=1500 ; «Lengde (km)» ; 0)

Summere veglengde med ÅDT >= 1500 pr. fylke for eksisterende veg (f.eks. med bruk av pivottabell):

TAJL	LKSISTELLINE									
Sum of Lengde ADT										
FYLKESNUMMER	YLKESNUMMER FYLKE									
30	Viken	2341.6								
34	Innlandet	998.7								
38	Vestfold og Telemark	1032.8								
42	Agder	662.8								
11	Rogaland	711.6								
46	Vestland	988.2								
15	Møre og Romsdal	679.6								
50	Trøndelag	1109.5								
18	Nordland	288.7								
54	Troms og Finnmark	233.3								
Grand Total		9046.8								

Faktor: Lengde ikke-undersjøiske tunnelløp (m)

1. Uttak av data fra NVDB

Uthenting av mengdegrunnlag - kilde:

NVDB rapporter(https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)
Velg objekttype: «Tunnel»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke Legg inn to kolonner til venstre og legg inn fylkesnummer og fylkesnavn på hver linje.

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

2. Behandling av data fra NVDB i Excel

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)

Undersjøisk Nei

Beregn sum for kolonnen «Sum lengde alle løp».

Med bruk av pivot-tabell i Excel kan summering av «Sum lengde alle løp» gjøres slik::

Undersjøisk Nei Trafikantgruppe K Fase V

Åpningsår (Multiple Items)

Sum of Sum lengde alle	
Fylke	Total
Agder	16383
Innlandet	1628
Møre og Romsdal	57774
Nordland	76031
Troms og Finnmark	46369
Trøndelag	18938
Vestfold og Telemark	12341
Vestland	173928
Viken	12565
Rogaland	32277
Grand Total	448234

Faktor: Lengde undersjøiske tunnelløp (m)

1. Uttak av data fra NVDB

Uthenting av mengdegrunnlag – kilde (samme rapport som for ikke-undersjøisk tunnel):

NVDB rapporter(https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)

Velg objekttype: «Tunnel»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke
Legg inn to kolonner til venstre og
legg inn fylkesnummer og
fylkesnavn på hver linje.

rymoonavii pa

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

2. Behandling av data fra NVDB i Excel

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)

Undersjøisk Ja

Beregn sum for kolonnen «Sum lengde alle løp».

Med bruk av pivot-tabell i Excel kan summering av «Sum lengde alle løp» gjøres slik::

Undersjøisk Ja Trafikantgruppe K Fase V

Åpningsår (Multiple Items)

Sum of Sum lengde alle løp	
Fylke	Total
Agder	2319
Møre og Romsdal	20220
Troms og Finnmark	13085
Trøndelag	10951
Vestland	24079
Viken	3775
Rogaland	16406
Grand Total	90835

Faktor: Lengde bruer av stål (m) og

Lengde bruer av andre materialtyper enn stål (m)

1. Uttak av data fra NVDB

Uthenting av mengdegrunnlag – kilde:

NVDB rapporter(https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)
Velg objekttype: «Bru»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke Legg inn to kolonner til venstre og

legg inn fylkesnummer og fylkesnavn på hver linje.

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

2. Behandling av data fra NVDB i Excel

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell i Excel)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)
Brukategori Bru i fylling, Vegbru
Status: Trafikkert, (blank)

Filtreringshjelp 1

Med bruk av pivot-tabell i Excel kan summering av brulengder for ulike materialtyper gjøres slik:

	14-									
Trafikantgruppe	K	<u> </u>								
Vegkategori	F	T								
Fase	V	I								
Brukategori	(Multiple Ite	≖ \$)								
Status	(Multiple Ite	T ;)								
Filteringshjelp	1	T.								
Sum of Lengde	Materialtype	-								
		Annet								
		konstruksjons	:-		Spenn-					
Fylke	Aluminium	materiale	Betong	Plast	betong	Stein	Stål	Tre	(blank)	Grand Total
Agder		2	21 8 589	9	5 416	199	5 969			20 203
Innlandet			8 465		5 803	236	10 200	1 436		26 139
Møre og Romsdal		<u>:</u>	11 256	3	6 811	352	4 055		0	22 492
Nordland	4	13	3 7 327	24	9 321	20	5 941		10	22 687
Rogaland			9 733		4 422	468	3 577			18 201
Troms og Finnmark			4 4 930	23	6 979	20	6 348			18 304
Trøndelag		4	26 10 264	21	8 082	181	18 832	46	53	37 509
Vestfold og Telemark			2 8 093	13	2 791	276	5 969			17 145
Vestland			13 924	. 7	16 109	311	13 084			43 435

[«]Lengde bruer av stål» er da gitt pr. fylke i kolonne med overskrift «Stål».

[«]Lengde bruer av andre materialtyper enn stål» beregnes for hvert fylke med subtraksjon av kolonnene «Grand Total» - «Stål».

Faktor: Antall ferjekaibruer og tilleggskaier

1. Uttak av data fra NVDB (samme rapport som for bruer)

Uthenting av mengdegrunnlag – kilde:

NVDB rapporter(https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)
Velg objekttype: «Bru»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke
Legg inn to kolonner til venstre og
legg inn fylkesnummer og
fylkesnavn på hver linje.

Etablere samlet fil for alle fylker (eks Oslo)

Legge filene for hvert fylke etter hverandre i samme regneark

2. Behandling av data fra NVDB i Excel

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell i Excel)

Trafikantgruppe: K (kjørende)
Vegkategori: F (fylkesveg)
Fase: V (eksisterende)

Brukategori Ferjeleie

Status: Trafikkert, (blank)

Filtreringshjelp 1

Byggverkstype 810, 811, 812, 820, 822, 823, 824

Med bruk av pivot-tabell i Excel kan summering av brulengder for ulike materialtyper gjøres ...

slik:

Trafikantgruppe	K JT								
Vegkategori	F →T								
Fase	V								
Brukategori	Ferjeleie -T								
Status	(Multiple Items								
Filteringshjelp	1								
Count of NummerOgNavn	Byggverkstype -T	Ferjekaibru	Ferjekaibru	Ferjekaibru		Tilleggskai	Tilleggskai	Tilleggskai	
Fylke	Ferjekaibru (810)	(811)	(812)	(819)	Kai (820)	(822)	(823)	(824)	Grand Total
Agder		4			1				5
Innlandet	2								2
Møre og Romsdal	47		4						51
Nordland	14	17	23	1		6	5	4	70
Rogaland	16	3	1	1		1			22
Troms og Finnmark	12	. 3	27			1			43
Trøndelag	20	2	1						23
Vestland	1	. 17	21	19					58
Viken	1	. 1	2			1			5
Grand Total	113	47	79	21	1	9	5	4	279

Mengde for faktoren er den fylkesvise summen i kolonnen «Grand Total».

Vedlegg 2 - Mengder for de uavhengige variablene

Fylkesvise mengder for de uavhengige variablene (faktorene) slik de inngår i forenklet modell i april 2021 er vist i følgende tabeller. Data fra SSB og NVDB er lastet ned i mars 2021.

Mengder for faktorer fra SSB:

Fylke	G/S- veglengde (km)	Veg med fartsgrense 50 km/t eller lavere (km)
Viken	655	961
Innlandet	260	523
Vestfold og Telemark	371	450
Agder	279	601
Rogaland	294	639
Vestland	291	1 178
Møre og Romsdal	182	462
Trøndelag	364	670
Nordland	130	427
Troms og Finnmark	108	411
Sum:	2 934	6322
Min:	108	411
Maks:	655	1178
Median:	285.0	562.0
Middel:	293.4	632.2
Std.avvik:	155.1	252.5

Mengder for faktorer fra NVDB:

Fylke	Feltlengde (km)	Trafikkarbeid (mill. kjtkm/døgn)	Veglengde med ÅDT > 1500 (km)	Rekkverk totalt (lm)	Lyspunkt i dagen, (antall)
Viken	11 307	12.07	2 342	1 272 547	36 842
Innlandet	13 664	5.47	999	1 360 838	11 006
Vestfold og Telemark	6 386	5.74	1 033	905 634	13 334
Agder	7 382	3.88	663	1 186 864	9 356
Rogaland	5 744	4.62	712	941 773	25 775
Vestland	11 631	6.05	988	2 722 901	15 987
Møre og Romsdal	6 545	3.27	680	1 296 059	13 293
Trøndelag	12 532	5.32	1 110	1 829 547	22 171
Nordland	9 306	2.34	289	1 110 550	5 104
Troms og Finnmark	9 430	2.26	233	1 164 511	17 058
Sum:	93 927	51.03	9047	13 791 224	169 926
Min:	5 744	2.26	233	905634	5104
Maks:	13 664	12.07	2342	2722901	36 842
Median:	9 368.0	4.97	849.9	1229705.5	14 660.5
Middel:	9 392.7	5.10	904.7	1379122.4	16 992.6
Std.avvik:	2 814.4	2.80	588.4	537259.9	9 198.6

Fylke	Lengde ikke- undersjøiske tunnelløp (m)	Lengde undersjøiske tunnelløp (m)	Lengde Bruer av stål (m)	Lengde bruer av andre matr.typer enn stål (m)	Antall ferjekai- bruer og tilleggskaier
Viken	12 565	3 775	9 238	37 178	5
Innlandet	1 628	0	10 200	15 939	2
Vestfold og Telemark	12 341	0	5 969	11 176	0
Agder	16 383	2 319	5 969	14 235	5
Rogaland	32 277	16 406	3 577	14 624	22
Vestland	173 706	24 079	13 084	30 351	58
Møre og Romsdal	57 774	20 220	4 055	18 437	51
Trøndelag	18 938	10 951	18 832	18 677	23
Nordland	78 763	0	5 941	16 747	70
Troms og Finnmark	46 369	13 085	6 348	11 956	43
Sum:	450 744	90 835	83 212	189 321	279
Min:	1628	0	3577	11176	o
Maks:	173706	24079	18832	37178	70
Median:	25607.5	7363.0	6158.4	16343.0	22.5
Middel:	45074.4	9083.5	8321.2	18932.1	27.9
Std.avvik:	51131.6	9088.9	4700.6	8345.4	25.8

Konstanter fra MOTIV:

Fylke	Nedbør som snø (mm vann)	Sum nedbør som regn (mm)	Middel- temperatur vinter (°C)	Middel- temperatur mai-august (°C)	Vinter- lengde (døgn)	Bergskjærings- faktor (m2/km)
Viken	192	610	-5.5	13	172	148
Innlandet	197	440	-8.6	12	198	239
Vestfold og Telemark	234	706	-4.6	13	173	286
Agder	262	1191	-1.4	13	155	295
Rogaland	130	1548	1.0	13	139	263
Vestland	252	1879	0.1	12	158	1 442
Møre og Romsdal	375	1285	0.3	12	174	855
Trøndelag	303	863	-3.6	11	191	359
Nordland	319	1025	-2.9	10	195	730
Troms og Finnmark	317	482	-5.2	9	224	401
Sum:						5 020
Min:	130	440	-9	9	139	148
Maks:	375	1879	1	13	224	1 442
Median:	256.8	943.7	-3.2	12.0	173.8	327.3
Middel:	258.0	1002.8	-3.0	11.8	178.0	502.0
Std.avvik:	73.1	475.1	3.1	1.3	24.9	398.8

Vedlegg 3 – Eksempel på trinnvis regresjonsanalyse for kostnadselement

Den trinnvise analysen er utført slik:

- Velge ut faktorer (uavhengige variabler) som kan være aktuelle forklaringsvariable for MOTIV-beregnet kostnad (avhengig variabel) for kostnadselementet.
- 2. Beregne korrelasjonskoeffisient for uavhengige og avhengig variabel(er).
- 3. Hvis det er begrensning i antall faktorer som kan brukes når regresjonsanalysen starter, velges de faktorene med størst korrelasjon med MOTIV-beregningen som utgangspunkt for trinnvis analyse (vanligvis 8 stk).
- 4. Utføre regresjonsanalyse.
- 5. Utelate faktor med størst P-verdi for at 0-hypotesen er sann forutsatt at største verdi er større enn 10% iht besluttet konfidensnivå på 90%.
- 6. Ny regresjonsanalyse med én utelatt faktor
- 7. Gjenta trinn 5 og 6 til alle gjenværende faktorene har P-verdi < 0.10. Gjenstående faktorer er de signifikante faktorene. Koeffisientene til disse vises i resultatrapporten.

Den trinnvise analysen er nå ferdig. Deretter gjenstår en vurdering av om de signifikante faktorene kan benyttes i forenklet modell, ref. diskusjon om bruk av faktorer med negative koeffisienter i kap. 6.1.

Eksempel på den trinnvise regresjonsanalysen er vist for kostnadselementet for hovedprosess 4 og 6, Drenering og Vegdekke på de etterfølgende sidene:

Grunnlag for analyse av hovedprosess 4 og 6 - 11 fylker

Fylire	Sum Motiv Hp 4 og 6	Veg- lengde SSB km	Trafikkar beid - mill. kjtkm/dø gn	Km veg med ÅDT >= 1500kjt	Feltlengde km, Vegkart	Fortau lengde km, Vegkart	Veglengd e uten fast dekke, SSB, km	Km veg fartsgren se 50 km/t eller lavere SSB-data	Kummer totalt	Stildrenne r, antall	Sum nedbør snø og regn (mm vann)	Middel temperatu r vinter
Viken	486 201	5 495	12.07	2341.6	11307	361.9	292	961	43 157	44861	802	-5.5
Innlandet	492 195	6 795	5.47	998.7	13884	122.9	1103	523	16 136	66311	636	-8.6
Vestfold og Telemark	257 480	3 108	5.74	1032.8	6386	153.9	119	450	27 470	33267	940	-4.6
Agder	239 728	3 658	3.88	662.8	7382	160.5	541	601	13 632	44980	1453	-1.4
Rogaland	180 712	2 538	4.62	711.6	5744	202.1	. 0	639	29 131	19306	1678	1.0
Vestland	351 862	5 485	6.05	988.2	11631	386.9	1	1178	42 805	52507	2130	0.1
Møre og Romsdal	209 954	2 991	3.27	679.6	6545	83.0	0	462	24 646	41648	1680	0.3
Trondelag	406 135	6 108	5.32	1109.5	12532	115.2	1013	670	37 897	56651	1165	-3.6
Nordland	274 430	4 055	2.34	288.7	9306	54.6	243	427	4 050	38419	1344	-2.9
Troms og Finnmark	303 829	4 468	2.26	233.3	9430	60.0	300	411	3 310	45368	799	-5.2
Sumalle fylker	3 202 526	44.701	51.03	9 046.8	93 927	1 701.1	3 612	6 322	242 234	443 318		

Korrelasjon - avhengig faktor og uavhengige faktorer:

	Sum Motiv hpr 4 og 6	Veg- lengde SSB km	Trafikkar beid - mill. kjtkmidog n	Kmveg med ÅDT >= 1500kjt	Feltlengde km Vegkart	Fortau Iengde km Vegkart	Veglengde uten fast dekke, SSB, km	farts- grense 50 kmt eller lavere SSB-data	Kunmer totalt	Stikk- renner, antall	Sum nedbør snø og regn (mm vann)	Middel temperatu r vinter
Sum Motiv Hp 4 og 6	1					A1-2-1-1-1			7107			
Veglengde SSB km	0.936462	1										
Trafikkarbeid - mill. kjtkm/døgn	0.63438	0.390572	1									
Km veg med ÅDT >= 1500kjt	0.6448	0.404876	0.987084	1								
Feltlengde km, Vegkart	0.918008	0.993047	0.357212	0.386153	1							
Fortau leng de km, Veg kart	0.342324	0.237721	0.774408	0.704201	0.23038625	1						
Veglengde uten fast dekke, SSB, km	0.639957	0.724999	0.053989	0.123055	0.68134321	-0.2800097	1					
Km veg fartsgrense 50 km/t eller lav	0.40264	0.395132	0.659305	0.607132	0.4039729	0.94257429	-0.152405	1				
Kummer totalt	0.32116	0.231914	0.744676	0.759997	0.21364131	0.77993912	-0.112563	0.784912	1			
Stikkrenner, antall	0.769978	0.892124	0.137903	0.188207	0.86808815	0.02463853	0.7400201	0.20385	0.048943	1		
Sum nedbør snø og regn (mm vann	-0.54229	-0.37704	-0.24113	-0.26213	-0.33037494	0.31447435	-0.55632	0.424135	0.28949	-0.30354	1	
Middel temperatur vinter	-0.73924	-0.63256	-0.28212	-0.28904	-0.59482946	0.17313813	-0.652302	0.231559	0.220445	-0.55952	0.926878	1

Trinnvis analyse:

Fylke	Sum Motiv Hp 4 og 6	Vegleng de SSB km	Trafikkar beid - mill. kjtkm/dø gn	med	Feltlengde km, Vegkart	Veglengde uten fast dekke, SSB, km	Stikkrenner , antall	Sum nedbør snø og regn (mm vann)	Middel temperatu r vinter
Viken	486 201	5 495	12.07	2341.6	11307	292	44861	802	-5.5
Innlandet	492 195	6 795	5.47	998.7	13864	1103	66311	636	-8.6
Vestfold og Telemark	257 480	3 108	5.74	1032.8	6386	119	33267	940	-4.6
Agder	239 728	3 658	3.88	662.8	7382	541	44980	1453	-1.4
Rogaland	180 712	2 538	4.62	711.6	5744	0	19306	1678	1.0
Vestland	351 862	5 485	6.05	988.2	11631	1	52507	2130	0.1
Møre og Romsdal	209 954	2 991	3.27	679.6	6545	0	41648	1660	0.3
Trendelag	406 135	6 108	5.32	1109.5	12532	1013	56651	1165	-3.6
Nordland	274 430	4 055	2.34	288.7	9306	243	38419	1344	-2.9
Troms og Finnmark	303 829	4 468	2.26	233.3	9430	300	45368	799	-5.2

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.99907					
R Square	0.998141					
Adjusted R Square	0.983271					
Standard Error	14293.36					
Observations	10					

ANOVA

	of	SS	MS	F	Significance F
Regression	8	1.1E+11	1.37E+10	67.12259	0.0941384
Residual	1	2.04E+08	2.04E+08		
Total	9	1.1E+11			

	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	8138.99	63374.32	0.128427	0.918686	-797108.035	813386.016
Veglenade SSB km	-35 6055	83 30037	-0 42744	0.742849	-1094 03715	1022 82808

Trafikkarbeid - mill. kjtkm/døgn	16337.25	25207.21	0.648118	0.633911	-303950.673	336625.174
Km veg med ADT >= 1500kjt	-6.43124	106.0044	-0.08087	0.961424	-1353.34454	1340.48205
Feltlengde km, Vegkart	37.96952	32.37062	1.172963	0.449433	-373.338173	449.277218
Veglengde uten fast dekke, SSB, km	5.122784	38.49318	0.133083	0.915772	-483.97939	494.224959
Stikkrenner, antall	1.546826	2.101753	0.73597	0.59609	-25.1584753	28.2521273
Sum nedbør snø og regn (mm vann	-34.9684	56.5242	-0.61865	0.647302	-753.176458	683.239562
Middel temperatur vinter	-3538.44	10088.15	-0.35132	0.784918	-131439.058	124366.185

Modell 2

Fylke	Sum Motiv Hp 4 og 6	Vegleng de SSB km	Trafikkar beid - mill. kjtkm/dø gn	Feitleng de km, Vegkart	Veglengde uten fast dekke, SSB, km	Stikkrenner, antall	Sum nedbør snø og regn (mm vann)	Middel temperatu r vinter
Viken	486 201	5 495	12.07	11307	292	44861	802	-5.5
Innlandet	492 195	6 795	5.47	13864	1103	66311	636	-8.6
Vestfold og Telemark	257 480	3 108	5.74	6386	119	33267	940	-4.6
Agder	239 728	3 658	3.88	7382	541	44980	1453	-1.4
Rogaland	180 712	2 538	4.62	5744	0	19306	1678	1.0
Vestland	351 862	5 485	6.05	11631	1	52507	2130	0.1
Møre og Romsdal	209 954	2 991	3.27	6545	. 0	41648	1660	0.3
Trøndelag	406 135	6 108	5.32	12532	1013	56651	1165	-3.6
Nordand	274 430	4 055	2.34	9306	243	38419	1344	-2.9
Troms og Finnmark	303 829	4 468	2.26	9430	300	45368	799	-5.2

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.999067					
R Square	0.998134					
Adjusted R Square	0.991605					
Standard Error	10125.52					
Observations	10					

ANOVA

Manager de	df	SS	MS	F	Significance F
Regression	7	1.1E+11	1.57E+10	152.8594	0.00651454
Residual	2	2.05E+08	1.03E+08		
Total	9	1.1E+11			

9	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept					-184954.029	
Veglengde SSB km	-32.4601	46.18747	-0.70279	0.554975	-231,188709	166,2686
Trafikkarbeid - mill. kitkm/døgn	14822.82	2485.158	5.964545	0.026977	4130.0602	25515.5834
Feltlengde km, Vegkart	36.8361	18.72718	1.966985	0.188071	-43.7404732	117.412668
Veglengde uten fast dekke, SSB, kn	n 3.641052	21.07725	0.172748	0.87875	-87.0470227	94.3291257
Stikkrenner, antall	1.446228	0.914912	1.580729	0.25473	-2.49032094	5.38277743
Sum nedbør snø og regn (mm vani	n -33.0913	33.51018	-0.9875	0.427492	-177.27391	111.091393
Middel temperatur vinter	-3888.48	5826.938	-0.66733	0.573253	-28959.7661	21182.8111

Modell 3

Fylke	Sum Motiv Hp 4 og 6	Vegleng de SSB km	Trafikkar beid - mill. kjtkm/dø gn	Feltleng de km, Vegkart	Stikkrenner, antall	Sum nedbør snø og regn (mm vann)	Middel temperatur vinter
Viken	486 201	5 495	12.07	11307	44861	802	-5.5
Innlandet	492 195	6 795	5.47	13864	66311	636	-8.6
Vestfold og Telemark	257 480	3 108	5.74	6386	33267	940	-4.6
Agder	239 728	3 658	3.88	7382	44980	1453	-1.4
Rogaland	180 712	2 538	4.62	5744	19306	1678	1.0
Vestland	351 862	5 485	6.05	11631	52507	2130	0.1
More og Romsdal	209 954	2 991	3.27	6545	41648	1880	0.3
Trøndelag	406 135	6 108	5.32	12532	56651	1165	-3.6
Nordland	274 430	4 055	2.34	9306	38419	1344	-2.9
Troms og Finnmark	303 829	4 468	2.26	9430	45368	799	-5.2

Modeli 4 SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.999053					
R Square	0.998107					
Adjusted R Square	0.99432					
Standard Error	8328.9					
Observations	10					

ANOVA					
	df	55	MS	F	Significance F

Page 2 of 4

6 1.1E+11 1.83E+10 263.5638 0.00035965 3 2.06E+08 69370570 9 1.1E+11 Regression Residual Total

	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12140.64	31783.7	0.381977	0.72793	-89009.2824	113290.568
Veglengde SSB km	-27.3786	29.29091	-0.93471	0.418888	-120.595383	65.838157
Trafikkarbeid - mill. kitkm/døgn	14541.67	1544.846	9.413024	0.00254	9625.28267	19458.0812
Feltlengde km, Vegkart	34.95119	12.51952	2.791737	0.06832	-4.89149382	74.7938785
Stilkrenner, antall	1.413607	0.73637	1.919696	0.150683	-0.92985213	3.75706551
Sum nedbør snø og regn (mm vani	n -35.8516	24.22888	-1.47972	0.235509	-112.958051	41.254782
Middel temperatur vinter	-3466.74	4352.055	-0.79657	0.483912	-17316.9158	10383.4457

Modell 5

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.999904			
R Square	0.999808			
Adjusted R Square	0.749568			
Standard Error	7386.361			
Observations	10			

ANOVA

822 CHC	df	SS	MS	F	Significance F
Regression	6	1.14E+12	1.89E+11	3468.18	7.5703E-06
Residual	4	2.18E+08	54558330		
Total	10	1.14E+12			

*	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A
Veglengde SSB km	-29.5414	25.48626	-1.15911	0.310892	-100.302602	41.2197757
Trafikkarbeid - mill. kjtkm/døgn	14710.16	1312.992	11.20354	0.000361	11084.7084	18355.6081
Feltlengde km, Vegkart	35.51955	11.02405	3.222005	0.032219	4.91187847	66.1272306
Stillvenner, antall	1.44719	0.648368	2.232051	0.089407	-0.3529679	3.24734712
Sum nedbør snø og regn (mm vann	-28.031	11.48908	-2.43979	0.071224	-59.9297541	3.86782146
Middel temperatur vinter	-4842.08	2167.968	-2.23346	0.089267	-10861.323	1177.16793

Modell 6

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.999872			
R Square	0.999743			
Adjusted R Square	0.799538			
Standard Error	7635.897			
Observations	10			

ANOVA

A CALL DE LA CALL DE L	df	SS	MS	F	Significance F
Regression	5	1.14E+12	2.27E+11	3893.998	1.8454E-07
Residual	5	2.92E+08	58306919		
Total	10	1.14E+12			

2	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A
Trafikkarbeid - mill. kjtkm/døgn	13730.03	1038.393	13.22239	4.42E-05	11060.76	16399.3072
Feltlengde km, Vegkart	22.97395	2.164137	10.61576	0.000128	17.4108617	28.5370461
Stildrenner, antall	0.882606	0.442395	1.995084	0.102584	-0.25460632	2.01981785
Sum nedbør snø og regn (mm vann	-18.1207	7.933798	-2.28399	0.071182	-38.5151766	2.27377886
Middel temperatur vinter	-5920.53	2024.32	-2.9247	0.032834	-11124.2117	-716.84892

Modell 7

Fylke	Sum Motiv Hp 4 og 6	Trafikkar beid - mill. kjtkm/dø gn	Feltleng de km, Vegkart	Sum nedbør snø og regn (mm vann)	Middel temperatur vinter
Viken	486 201	12.07	11307	802	-5.5
Innlandet	492 195	5.47	13864	636	-8.6
Vestfold og Telemark	257 480	5.74	6386	940	-4.6
Agder	239 728	3.88	7382	1453	-1.4
Rogaland	180 712	4.62	5744	1678	1.0
Vestland	351 862	6.05	11631	2130	0.1
Møre og Romsdal	209 954	3.27	6545	1660	0.3
Trøndelag	406 135	5.32	12532	1165	-3.6
Nordland	274 430	2.34	9306	1344	-2.9
Troms og Finnmark	303 829	2.26	9430	799	-5.2

Page 3 of 4

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.999769				
R Square	0.999539				
Adjusted R Square	0.832642				
Standard Error	9341,773				
Observations	10				

ANOVA

	df	SS	MS	F	Significance F
Regression	4	1.14E+12	2.84E+11	3251.46	1.013E-08
Residual	6	5.24E+08	87268729		
Total	10	1.14E+12			

V000	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A
Trafikkarbeid - mill. kjtkm/døgn	12956.48	1178.487	10.99417	3.37E-05	10072.823	15840,1284
Feltlengde km, Vegkart	26.11144	1.818856	14.35597	7.15E-08	21.660864	30.5620251
Sum nedbør snø og regn (mm vann	-11.1088	8.701209	-1.27645	0.248976	-32.3977083	10.1844761
Middel temperatur vinter	-7403 70	2280 022	-3 28542	0.018700	-13075 0058	-1012 578

Modell 8

Fylke	Sum Motiv Hp 4 og 6	Trafikkar beid - mill. kjtkm/dø gn	Feltleng de km, Vegkart	Middel temperatu r vinter
Viken	486 201	12.07	11307	-5.5
Innlandet	492 195	5.47	13664	-8.6
Vestfold og Telemark	257 480	5.74	6386	-4.6
Agder	239 728	3.88	7382	-1.4
Rogaland	180 712	4.62	5744	1.0
Vestland	351 862	6.05	11631	0.1
Møre og Romsdal	209 954	3.27	6545	0.3
Trøndelag	406 135	5.32	12532	-3.6
Nordland	274 430	2.34	9306	-2.9
Troms og Finnmark	303 829	2.26	9430	-5.2

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.999707				
R Square	0.999414				
Adjusted R Square	0.856389				
Standard Error	9752.658				
Observations	10				

ANOVA

A DECEMBER OF THE PARTY OF THE	off	SS	MS	F	Significance F
Regression	3	1.13E+12	3.78E+11	3977.181	2.777E-10
Residual	7	6.66E+08	95114338		
Total	10	1.14E+12	1000000		500

A.5.	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A
Trafikkarbeid - mill. kitkm/degn	12752.49	1218.957	10.46181	1.59E-05	9870.11895	15634.8678
Feltlengde km, Vegkart	24.02414	0.831394	28.89621	1.53E-08	22.0582051	25.9900745
Middel temperatur vinter	-9975.19	1245.585	-8.00844	9.05E-05	-12920.5283	-7029.8476

RESIDUAL OUTPUT

Observation	SumMotiv	Residuals
Viken	480392.9	5808.573
Innlandet	483920.5	8274.58
Vestfold og Telemark	272550.4	-15070
Agder	240334.3	-608.642
Rogaland	187367	-6654.92
Vestland	355949.1	-4087.29
Møre og Romsdal	195809.1	14144.64
Trøndelag	404461.4	1673.283
Nordland	282111.6	-7681.58
Troms og Finnmark	307468.7	-3639.68

MOTIV	Modell	Avvik	Avvik %
486 201	480 392.9	-5 809	-1.2 %
492 195	483 920.5	-8 275	-1.7 %
257 480	272 550.4	15 070	5.9 %
239 728	240 334.3	607	0.3 %
180 712	187 367.0	6 655	3.7 %
351 862	355 949.1	4 087	1.2 %
209 954	195 809.1	-14 145	-6.7 %
406 135	404 461.4	-1 673	-0.4 %
274 430	282 111.6	7 682	28%
303 829	307 468.7	3 640	1.2 %
3 202 526	3 210 364.9	7 839	0.2 %

Vedlegg 4 – Hovedprosesser og prosesser – innhold i ulike kontrakter

Hovedprosesser og prosesser i driftskontrakt veg

TUNNELE	R
37 Drift o	g vedlikehold av tunneler
4 GRØFTE	R, KUMMER OG RØR
48 Dren	ns- og avløpsanlegg
	Fjerning av torvkanter
48.3	Rensk av grøfter
48.4	Utskifting av stikkrenner
48.5	Utskifting og nedsetting av kummer
48.7	Rensk og slamsuging av kummer og oppsamlingsbasseng
6 VEGDE	KKE
61.8 G	Grusdekker
	aste dekker 12 Lapping av hull i asfaltdekker
68.3 G	Grusskuldre langs veg med fast dekke
7 VEGU	TSTYR OG MILJØTILTAK
71 M	urer
71	.8 Drift og vedlikehold av murer
- PA - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	gningsmessige arbeider og støytiltak .8 Støyskjerner og snøskjerner
73 Ø	vrig vegutstyr, renhold, m.m
73	.2 Servicebygg og utstyr på sideanlegg el.l
73	3 Renhold

	73.4 Stabilitetssikring i dagen
	73.8 Andre byggverk og annet utstyr
	73.84 Leskur
	73,86 Ferister
74	Grøntarealer og skråninger
75	Kantstein, rekkverk og gjerder
76	Trafikkregulering og belysning
77	Skilt, vegmerking og optisk ledning
	77.8 Drift og vedlikehold av skilt, vegmerking og optisk ledning
8 BRU	JER OG KAIER
88	8 Drift og vedlikehold av bruer og kaier
9 VIN	FERDRIFT
95	Brøyting, rydding, strøing m.m.

Hovedprosesser og prosesser i driftskontrakt elektro

3 TUNNELER	
38 Elektriske anlegg i tunneler	
38.1 Strømforsyning, belysning, ventilasjon og pumper	
38.2 Sikkerhetsutrustning	
38.3 Trafikkstyrings- og overvåkingsutstyr	
38.4 Kommunikasjonssystemer	
38.5 Tekniske bygninger og tekniske rom	
38.6 Øvrige elektriske anlegg	
38.7 Øvrige inspeksjoner	
7 VEGUTSTYR OG MILJØTILTAK	
73 Øvrig vegutstyr, renhold, m.m.	
73.8 Andre byggverk og annet utstyr	
76 Trafikkregulering og belysning	
76.8 Drift og vedlikehold av vegbelysnings-, trafikkregulerings- og overvåkingsanlegg	
78 Øvrige elektriske anlegg	
78.1 Pumper	
78.2 Varmekabler	
78.3 Automatisk høydevarsel	
78.4 Avfuktingsanlegg	
78.5 Elektriske anlegg i bygninger	
8 BRUER OG KAIER	
88.8 Drift og vedlikehold av bruer og kaier	
88.81 Elektriske anlegg - bruer, underganger og kaier	

Hovedprosesser og prosesser i en asfaltkontrakt 6 VEGDEKKE

63 RIVING, SKJÆRING, FRESING OG OPPRETTING AV FASTE DEKKER 64 OVERFLATEBEHANDLING

65 ASFALTDEKKER

66 BETONGDEKKER OG DEKKER AV BELEGNINGSSTEIN OG HELLER

Hovedprosesser og prosesser i en vegoppmerkingskontrakt

7 Vegutstyr og miljøtiltak

77 Skilt, vegmerking og optisk ledning

77.2 Fresing og rengjøring før vegoppmerking

77.3 Vegoppmerking, manuelt med termoplast

77.4 Vegmerking, maskinelt

Vedlegg 5 – Forklaring til utskriften for regresjonsanalyse i Excel

Eksempel for beregning av kostnader for Hovedprosess7 Punktobjekter:

SAMMENDRAG (UTDATA)								
Regresjonsstatistikk								
Multippel R	0,985181046							
R-kvadrat	0,970581694							
Justert R-kvadrat	0,947047048							
Standardfeil	7167,081669							
Observasjoner	10							
Variansanalyse								
	fg	SK	GK	F	Signifkans-F			
Regresjon	4	8473623036	2118405759	41,24054936	0,000508615			
Residualer	5	256835298,3	51367059,65					
Totalt	9	8730458334						
	Koeffisienter	Standardfeil	t-Stat	P-verdi	Nederste 95%	Øverste 95%	Nedre 90,0%	Øverste 90,0%
Skjæringspunkt	87820,55147	27745,82868	3,16518034	0,024949545	16497,62825	159143,4747	31911,36452	143729,7384
Km veg fartsgrense 50 km/t eller lavere SSB-data	76,25835802	12,72242337	5,994011975	0,001854405	43,5543276	108,9623884	50,62205951	101,8946565
Middel temperatur mai-august, grader C	-7557,036568	2669,518037	-2,830861775	0,036637598	-14419,25114	-694,8219931	-12936,24455	-2177,828591
Sum nedbør som regn (mm)	-19,53340081	8,275719861	-2,36032649	0,064724796	-40,80681596	1,740014338	-36,20937666	-2,857424969
Bergskjæring Motiv97 (m2/km)	57,05206916	10,72132829	5,321362022	0,003136672	29,49201742	84,6121209	35,44807404	78,65606428

Forklaring til utskriften:

Multippel R

Dette er korrelasjonskoeffisienten for modellen sammenlignet med grunnlaget (aktuelt MOTIV tall for fylket).

R-kvadrat

Denne omtales ofte som «determinasjonskoeffisienten» og viser i hvilken grad en avhengig variabel som beregnet Motiv-kostnad (Y) kan beregnes gjennom de uavhengige variablene (X -faktorene). Den beregnes som verdien av kvadratet av «Multippel R», og ligger mellom 0 og 1. Verdien gjenspeiler andelen av Y som kan forklares av X-faktorene.

Justert R-kvadrat

Her tas det hensyn til antall faktorer i modellen. Denne utrykker det samme som R-kvadrat, men det foretas en justering basert på antall faktorer som inngår i modellen. For en modell med flere faktorer bør denne verdien brukes for å vurdere «godheten» av modellen.

Standardfeil (for regresjonsmodellen)

Dette er et estimat av standardavviket for feilen i modellen. Dette er en verdi som kan brukes til å sammenligne hvor gode prediksjonene er, og det tilstrebes en lavest mulig verdi.

Variansanalyse

Når en modell utvikles, representerer modellen med lavest Kvadratavvik for feil (ESS) den beste modellen.

Det beregnes to størrelser for kvadratavvik – RSS (Regression Sum of Squares) og ESS (Error Sum of Squares). I norsk utgave av Excel er forkortelsen «SK» brukt som står for «Sum kvadrat»:

Variansanalyse					
EXTENDED TO THE PROPERTY OF TH	fg	SK	GK	F	Signifkans-F
Regresjon	4	8473623036	2118405759	41,24054936	0,000508615
Residualer	5	256835298,3	51367059,65	i i	
Totalt	9	8730458334			

- Regresjon kvadrat-avvik = «Regression Sum of Squares» = RSS Kvadratsum (Faktisk MOTIV verdi, Y_{fylke} – Beregnet MOTIV verdi, Y_{fylke}))
- Kvadratavvik for feil = «Error Sum of Squares» = ESS
 Kvadratsum (Middelverdi MOTIV verdi, Y_{middel} Beregnet MOTIV verdi, Y_{fylkel})

Verdien av ESS (SK for Residualer) representerer grunnlaget for å sammenligne «godheten» av den aktuelle modellen, modellen med lavest verdi representerer den beste modellen.

Betegnelsen «fg» står for antall frihetsgrader som brukes i analysen. Utgangspunktet er antall observasjoner fratrukket verdien 1. I dette tilfellet var det 10 observasjoner (en for hvert fylke), dvs 9 frihetsgrader tilgjengelig for å beregne modellen. Siden modellen i dette tilfellet hadde 4 uavhengige variabler, er verdien 4 frihetsgrader knyttet til «Regresjon» og 5 til «Residualer», i alt 9.

I utskriften var vi også en kolonne for «GK» som står for «Gjennomsnitt for **k**vadratavvik». Verdiene i kolonnen GK er verdien av tallet for SK dividert med verdien for «fg», altså kvadratavvik dividert med antall frihetsgrader. I dette tilfellet er dette tallet 5,14 mill for residualene, og roten av dette tallet er 7167 som er verdien som fremkommer i den øverste delen av utskriften:

Regresionsst	atistikk
Multippel R	0,985181046
R-kvadrat	0,970581694
Justert R-kvadrat	0,947047048
Standardfeil	7167.081669
Observasjoner	10

Verdien av «F» er knyttet til verdien som brukes i en «F-test» for å teste «0-hypotesen»: «En regresjonsmodell med kun skjæringspunkt og modellen som er beregnet, er like gode.»

I dette tilfellet er sannsynligheten for at 0-hypotesen er korrekt, 0,5 ‰. Altså kan man med en sikkerhet på minst 99,95% sikkerhet si at modellen som i dette tilfellet har fått beregnet en verdi for skjæringspunktet og for 4 uavhengige variabler, er en bedre modell enn en modell som kun er basert på beregning av verdien for skjæringspunktet.

«t-stat» - P-verdi – og konfidensintervall

Tabellen hvor beregningene av verdiene for skjæringspunktene og de ulike koeffisientene fremkommer, inneholder også overskriftene «t-stat», «P-verdi» og verdier for konfidensintervall:

	Koeffisienter	Standardfeil	t-Stat	P-verdi	Nederste 95%	Øverste 95%	Nedre 90,0%	Øverste 90,0%
Skjæringspunkt	87820,55147	27745,82868	3,16518034	0,024949545	16497,62825	159143,4747	31911,36452	143729,7384
Km veg fartsgrense 50 km/t eller lavere SSB-data	76,25835802	12,72242337	5,994011975	0,001854405	43,5543276	108,9623884	50,62205951	101,8946565
Middel temperatur mai-august, grader C	-7557,036568	2669,518037	-2,830861775	0,036637598	-14419,25114	-694,8219931	-12936,24455	-2177,828591
Sum nedbør som regn (mm)	-19,53340081	8,275719861	-2,36032649	0,064724796	-40,80681596	1,740014338	-36,20937666	-2,857424969
Bergskjæring Motiv97 (m2/km)	57,05206916	10,72132829	5,321362022	0,003136672	29,49201742	84,6121209	35,44807404	78,65606428

«t-stat» representerer verdien i «Student-t» fordelingen» som det skal gjøres oppslag i. Ved oppslag i denne tabellen fremkommer verdien for sannsynligheten for «0-hypotesen» om at verdien for den aktuelle parameteren er lik 0. Hvis en ser på verdien for skjæringspunkt som er beregnet til 87820,6, er sannsynligheten for at denne er lik 0 på 2,49%. Dette betyr at man med 97,51% sikkerhet kan si at verdien er forskjellig fra 0, og på dette grunnlaget avvise 0-hypotesen som usannsynlig.

Det er her beregnet 2 konfidensintervall rundt verdien for faktoren, 95% konfidensintervall og 90% konfidensintervall fordi en i dette tilfellet valgte å sette grensen på 90% som akseptnivå. Hvis konfidensintervallet omslynger verdien 0, betyr dette at 0-hyptesen måtte aksepteres, og at den aktuelle faktoren derfor må utelates i den trinnvise regresjonsanalysen.

Vedlegg 6 – Ordforklaringer

Hovedprosess

Hovedinndeling i Statens vegvesens strukturerte opplisting av arbeidsprosesser knyttet til bygging, drift og vedlikehold av veger.

Prosesser knyttet til bygging er beskrevet i Håndbok R761 og R762

Prosesser knyttet til drift og vedlikehold er bekrevet i Håndbok R763 – driftskontrakter veg, R763 – driftskontrakter elektro

Inndelingen i hovedproseseser er slik:

• Hovedprosess 1 Forberedende tiltak og generelle kostnader

Hovedprosess 2 Sprengning og masseflytting

Hovedprosess 3 Tunneler

Hovedprosess 4 Grøfter, kummer og rør

Hovedprosess 5 Vegfundament

Hovedprosess 6 Vegdekke

Hovedprosess 7 Vegutstyr og miljøtiltak

Hovedprosess 8 Bruer og kaier

· Hovedprosess 9 Vinterdrift

ÅDT ÅrsDøgnTrafikk - det totale antall kjøretøy som passerer et snitt på en veg i

løpet av ett år, dividert med 365

Trafikkarbeidet er et mål på omfanget av trafikken, og betegner det arbeidet

som blir utført av ett eller flere kjøretøy under en transport fra et sted til et annet. Det omfatter både gods- og persontransport. Trafikkarbeidet måles vanligvis i kjøretøykilometer, og påvirkes ikke av antall personer eller

godsmengde som fraktes.

NVDB Nasjonal Vegdatabank

Objekt Fysiske bestanddeler på, i og langs vegen som beskrives gjennom

type/geometri, lokalisering, egenskaper, tilstand og

antall/lengde/areal/volum e.l.

Begrepet benyttes i NVDB også på elementer tilknyttet vegen som f.eks.

vinterdriftsklasse og ÅDT.

Bergskjæring Areal langs veg bestående av skjæring i fjell.

Bergskjærings-

faktor

Dette er fylkesvise konstanter fra MOTIV-grunnlaget som erstatning for

manglende landsdekkende registrering av bergskjæringer.

Kjørefelt Hvert enkelt av de langsgående felt som en kjørebane er delt i ved

oppmerking, eller som er bredt nok for trafikk med en bilrekke (hentet fra

trafikkreglene).

Feltlengde Lengde av kjørefelt

Ferjekaibru Kjørbar forbindelse mellom ferje og kai.

Tilleggskai Den del av kai som ferja legger til.

Vedlegg 7 – Vurdering av en alternativ forenklet modell uten bruk av konstantledd

Oppdragsgruppen (ViaNova og TLeland) ble bedt av prosjektets styringsgruppe om å utføre alternative beregninger der konstantledd skulle utelates som mulig utfall av regresjonsanalysen. Denne forespørselen var begrunnet med at ved en eventuell framtidig splitting av fylker ville konstantleddene i forenklet modell medføre at forenklet modell i sum ikke vil gi samme beløpsstørrelse hvis den skal benyttes i en situasjon med flere fylker enn dagens 11.

I notatet som følger i dette vedlegget er det gjennomført vurderinger av aktuelle modeller som kan være et alternativ til modeller uten konstantledd. De alternative modellene og resultatene fra disse, er vurdert opp mot oppdragsgruppens forslag til forenklet modell. Dette omfatter vurderinger for kostnadselementene Tunneler, Vegutstyr-punktobjekter og Gang- og sykkelveger. Se kap. 1, 2 og 3 under, og kap. 5 med en anbefaling på bakgrunn av analysene som er gjort.

Problemstillingen om hvor egnet modellen er når en oppslitting av fylker evt. skjer, er gitt en spesiell omtale i kap. 4.

Innspill til noen spørsmål som er reist til første utkast av rapporten «Forslag til ny modell for beregning av kriteriet for fylkesveg i inntektssystemet for fylkeskommunene»

Innhold

1.	Modell for hovedprosess 3 «Tunneler»	2
1	1.1 Konklusjon og anbefaling om en forenklet modell for hovedprosess 3 «Tunneler»	4
2.	Modell for hovedprosess 7 «Punktobjekter»	6
2	2.1 Konklusjon og anbefaling om en forenklet modell for hovedprosess 7 «Punktobjel Error! Bookmark not defined.	der»
3.	Modell for Gang- og sykkelveger	9
_	3.1 Konklusjon og anbefaling om en forenklet modell for Gang- og sykkelveger Bookmark not defined.	Error!
4.	Egnethet for modellene hvis eksisterende fylker deles opp	12
5.	Konklusion og anbefaling om en alternativ modell uten konstantledd	13

1. Modell for hovedprosess 3 «Tunneler»

Modellen under ble presentert i første utkastet av rapporten. Denne var basert på forutsetningen om at konfidensnivå for de uavhengige variablene var minst 90%:

Opprinnelia modell

Trøndelag

Nordland

Troms og Finnmark

SUMMARY OUTPUT				+							
Regression Statist	ics			t							
Multiple R	0,975246	776									
R Square	0,951106	273		T							
Adjusted R Square	0,937136	637		T							
Standard Error	17077,06	837		Τ							
Observations		10		I							
ANOVA				H							
	df		SS		MS	F	-	Signific	cance F		
Regression		2	39710063452	2	1,99E+10	68,0838257		7 2,58456E-05			
Residual		7	2 041 383 848		2,92E+08						
Total		9	41751447300)							
	Coefficients	5	Standard Error		t Stat	P-va	alue	Lowe	er 95%	Up	per 95%
Intercept	17768,3	708	8043,5092	2	2,209032	32 0,062887007		-1251	,506127	36	788,2477
Lengde ikke-undersjøiske tunnell	ø 0,746788	746	0,145217879	9	5,14254	0,001334979		0,403403027		1,0	09017446
Lengde undersjøiske tunnelløp	3,86276	479	0,816954719)	4,728248	0,002136907		1,930973849		5,7	79455573
RESIDUAL OUTPUT											
Fylke	MOTIV modell alle tunneler		Residuals		МО	ΓΙV	Mod	lell	Awik	1	Avvik %
Viken	41 734		3 739			45 473		41 734	-3 7	39	-8,2 %
Innlandet	18 984		-13 541			5 443		18 984	13 5	41	248,8 %
Vestfold og Telemark	26 984		-2 821			24 163		26 984	28	21	11,7 %
	38 961		13 101			52 062		38 961	-13 1	.01	-25,2 %
Agder	38 901				99 556 1						
Agder Rogaland	105 245		-5 689			99 556	1	.05 245	5 6	89	5,7 %
· -			-5 689 7 794 -14 986		2	99 556 48 295 24 032	2	.05 245 .40 502 .39 018	5 6 -7 7 14 9	94	5,7 % -3,1 % 12,1 %

33 001

-5 527

-15 070

107 213

71 061

87 870

865 168

74 212

76 588

102 940

865 168

-33 001

5 527

15 070

-30,8%

7,8%

17,2 %

74 212

76 588

102 940

Alternativ modell uten skjæringspunkt:

Det ble også forsøkt å fjerne skjæringspunktet i det neste trinnet av analysen, og dette ga følgende resultater:

SAMMENDRAG (UTDATA)						
Regresjonsstatistikk						
Multippel R	0,985032					
R-kvadrat	0,970288					
Justert R-kvadrat	0,841574					
Standardfeil	20810,06					
Observasjoner	10					
Variansanalyse			2		aa	
	fg	SK	GK	F	Signifkans-F	
Regresjon	2	1,13139E+11		130,6274046	2,8703E-06	
Residualer	8	3 464 468 470	4,33E+08			
Totalt	10	1,16603E+11				
	Koeffisiente	Standardfeil	t-Stat	P-verdi	Nederste 95%	Øverste 95%
Skjæringspunkt	0	#I/T	#I/T	#I/T	#I/T	#I/T
Lengde ikke-undersjøiske tunnelløp	0,817808	0,172570855	4,73897	0,001465898	0,41985893	1,215757141
Lengde undersjøiske tunnelløp	4,584748	0,912399216	5,024936	0,001020581	2,480751138	6,688743866

AVVIK (UTDATA)						
Observasjon	Fremskrevet Sum Motiv Alle Tunneler	Residualer	MOTIV	Modell	Avvik	Avvik %
Viken	27 583	17 890	45 473	27 583	-17 890	-39,3 %
Innlandet	1 331	4 112	5 443	1 331	-4 112	-75,5 %
Vestfold og Telemark	10 093	14 070	24 163	10 093	-14 070	-58,2%
Agder	24 030	28 032	52 062	24 030	-28 032	-53,8%
Rogaland	101 614	-2 058	99 556	101 614	2 058	2,1%
Vestland	252 454	-4 159	248 295	252 454	4 159	1,7 %
Møre og Romsdal	139 952	-15 919	124 032	139 952	15 919	12,8%
Trøndelag	65 695	41 518	107 213	65 695	-41 518	-38,7 %
Nordland	64 413	6 648	71 061	64 413	-6 648	-9,4%
Troms og Finnmark	97 912	-10 042	87 870	97 912	10 042	11,4%
			865 168	785 078	-80 091	

Ved sammenligning av opprinnelig modell og alternativ modell uten skjæringspunkt, kan følgende observeres:

R-kvadrat

Den alternative modellen har R-kvadrat verdi 0,970, mens den opprinnelige modellen hadde en verdi på 0,951. Tilsvarende verdier for «Justert R-kvadrat» (hvor en tar hensyn antall faktorer i modellen og dermed antall «ledige» frihetsgrader) var 0,842 for den alternative modellen sammenlignet med 0,937 for den opprinnelige modellen. Det anbefales at denne verdien legges til grunn for sammenligning av verdier for R-kvadrat når en modell inneholder flere enn en uavhengig variabel, se «Excel Regression Analysis

Output Explained»3.

Vi deler oppfatningen om at en bør en legge «Justert R-kvadrat» verdiene til grunn når en vurderer «godheten» til modellen basert på en R-verdi, altså har den opprinnelige modellen en bedre

R-verdi.

Standardfeil for regresjonsmodellen

Dette begrepet er forklart som «Standard error of regression» i artikkelen «Excel Regression Analysis Output Explained», altså «standardavviket for feilen i beregningen». Den opprinnelige modellen har en «Standardfeil» på 17 077 og den alternative modellen 20 810. Her har den opprinnelige modellen den laveste og dermed den beste verdien.

Error Sum of Squares – ESS

Verdiene for «sum kvadratavvik» er angitt med betegnelsen «SK» i utskriften fra Excel. Den opprinnelige modellen har en verdi på 2 041 millioner sammenlignet med 3 464 millioner for den alternative modellen.

Det er den modellen som har lavest verdi for ESS som normalt ansees som den beste og som ble beregnet gjennom den trinnvise regresjonsanalysen, forutsatt at alle koeffisienter har en verdi som er signifikant forskjellig fra 0 basert på valgt konfidensnivå.

I dette tilfellet ble det valgt et konfidensnivå på 90% som grenseverdi i den opprinnelige modellen for de uavhengige variablene som ble valgt. For den alternative modellen oppfylles kriteriet på 95% konfidensnivå.

Beregnet avvik for fylkenes prediksjoner sammenlignet med MOTIV verdier

Ved å sammenligne %-vise avvik, ser en at den opprinnelige modellen har +249% (Innlandet) og -30,8% (Trøndelag) som maksimale avvik når en sammenligner med MOTIV. Tilsvarende for den alternative modellen er +12,8% (Vestfold og Telemark) og -75,5% (Innlandet).

Tilsvarende absolutte størrelser er +15,1 mill.kr. (Troms og Finnamrk) og -33,0 mill.kr. (Trøndelag) for den opprinnelige modellen og +15,9 mill.kr. (Møre og Romsdal) og -41,5 mill.kr. (Trøndelag). «Sum spenn for avviket» er 48,1 mill.kr. for den opprinnelige modellen og 57,4 mill.kr. for den alternative modellen.

Samlet sett gir den alternative modellen uten skjæringspunkt større avvik.

1.1 Konklusjon og anbefaling om en forenklet modell for hovedprosess 3 «Tunneler»

For Tunneler har vi valgt å legge vekt på verdien av ESS hvor den opprinnelige modellen hadde et vesentlig lavere verdi på 2 041 millioner sammenlignet med 3 464 millioner for den alternative modellen, i tråd med «beste praksis» ved utvikling av regresjonsmodeller forutsatt at alle koeffisienter har en verdi som er signifikant forskjellig fra 0 basert på valgt konfidensnivå.

-

³ https://www.statisticshowto.com/probability-and-statistics/excel-statistics/excel-regression-analysis-output-explained/

Dessuten peker verdien av «Standardfeil» for modellen i samme retning med en verdi på 17 077 for den valgte modellen med skjæringspunkt sammenlignet med den alternative modellen med en verdi på 20 810.

Den samme tendensen gjør seg gjeldende med å se på avvik målt i absolutte størrelser. Legges %-vise størrelser til grunn, er verdien på 249% for Innlandet høy, men den absolutte verdien er mer på linje med andre fylker.

I samme retning trekker sammenligningen av verdiene for «Justert R-kvadrat» (hvor en tar hensyn antall faktorer i modellen og dermed antall «ledige» frihetsgrader) med 0,842 for den alternative modellen og 0,937 for den opprinnelige modellen.

I motsatt retning trekker det faktum at det må aksepteres et konfidensnivå på (1-0,063) = 0,937 eller 93,7% sammenlignet med verdien på 95%. Dette er et relativt lite avvik. Samtidig har vi for andre modeller akseptert en grenseverdi på 90% for konfidensnivået. Basert på denne praksisen fremstår sannsynligheten for at verdien på skjæringspunktet er signifikant forskjellig fra 0 tilstrekkelig stor.

I sum trekker de fleste vurderingskriteriene i retning av å velge den opprinnelige modellen med et skjæringspunkt i den forenklede modellen for Hovedprosess 3 Tunneler. Det anbefales at denne modellen legges til grunn for den forenklede modellen.

2. Modell for hovedprosess 7 «Punktobjekter»

Modellen under er planlagt brukt i rapporten. Grunnlaget for valg av faktorer var et min. konfidensnivå på 90%:

Utkast til modell

Nordland

Troms og Finnmark

SAMMENDRAG (UTDATA)										
Regresjonsstatistikk										
Multippel R			18105							
R-kvadrat		0,970	58169							
Justert R-kvadrat		0,9470	04705							
Standardfeil		7167,0	08167							
Observasjoner			10							
Variansanalyse										
		fg		SK	GK	F	Signifk ans-F			
Regresjon			4	011002000		41,2405494	0,00050861			
Residualer			5	256835298						
Totalt			9	8730458334	l .					
		Koeffis	ienter	Standardfeil	t-Stat	P-verdi	Nederste 95%	Øverste 95	5% Nedre 90,0	0%
Skjæringspunkt		87820	,5515	27745,8287	3,16518034	0,02494954	16497,6282	159143,4	75 31911,36	143729,73
Km veg fartsgrense 50 km/t eller lavere SSB-data		76,2	58358	12,7224234	5,99401198	0,00185441	43,5543276	108,9623	88 50,62205	595 101,89465
Middel temperatur mai-august, grader C		-7557,0	03657	2669,51804	-2,83086178	0,0366376	-14419,2511	-694,8219	93 -12936,24	45 -2177,8285
Sum nedbør som regn (mm)		-19,53	34008	8,27571986	-2,36032649	0,0647248	-40,806816	1,740014	34 -36,20937	767 -2,8574249
Bergskjæring Motiv97 (m2/km)		57,052	20692	10,7213283	5,32136202	0,00313667	29,4920174	84,61212	35,4480	78,656064
AVVIK (UTDATA)										
Observasjon	Sum N	∕lotiv H	Res	siduals		MOTIV	Mode	ell	Awik	Avvik %
Viken		3,6557		0,34429		60 7		8 444	-2 340	-3,9 %
Innlandet	43588	8,2935	60	61,7065		49 6	550 4	3 588	-6 062	-12,2 %
Vestfold og Telemark		1,9724	-188	5,97242		23 4		5 352	1 886	8,0 %
Agder	28705	5,2959	-296	6,29587		25 7	739 2	8 705	2 966	11,5 %
Rogaland	26844	4,6834	516	1,31664		32 0	006 2	6 845	-5 161	-16,1 %
Vestland	13126	69,492	929	,508412		132 1	L99 13	1 269	-930	-0,7 %
Møre og Romsdal	59089	9,1399	-254	7,13987		56 5	542 5	9 089	2 547	4,5 %
Trøndelag	57680	0,9745	-121	.94,9745		45 4	186 5	7 681	12 195	26,8 %

-4 359

-743

-6,4 %

-1,2 %

68 410

62 858

557 140

64 051

62 115

557 140

På bakgrunn av at denne modellen inneholder «skjæringspunkt», ble ViaNova/TLeland bedt om å vurdere en modell hvor bruk av «skjæringspunkt» ble utelatt.

742,879972

Beregningene for en slik modell ga følgende resultater når det samme konfidensnivå på 90% legges til grunn:

64051,3732 4358,62682

62115,12

Alternativ modell uten skjæringspunkt

SAMMENDRAG (UTDATA)								
Regresjonsstatis	tikk							
Multippel R	0,994333912							
R-kvadrat	0,988699929							
Justert R-kvadrat	0,816383227							
Standardfeil	8654,619553							
Observasjoner	10							
Variansanalyse								
	fg	SK	GK	F	Signifkans-F			
Regresjon	4	39321541656	9830385414	131,2425265	3,00558E-05			
Residualer	6	449414637,7	74902439,61					
Totalt	10	39770956294						
	Koeffisienter	Standardfeil	t-Stat	P-verdi	Nederste 95%	Øverste 95%	Nedre 90,0%	Øverste 90,0%
Skjæringspunkt	0	#I/T	#I/T	#I/T	#I/T	#I/T	#I/T	#I/T
Km veg fartsgrense 50 km/t eller lavere SSI	56,11522678	11,97598642	4,685645491	0,00337607	26,81104367	85,41940989	32,84372612	79,38672744
Km veg med ÅDT < 250 kjt	7,239795403	3,274086096	2,211241608	0,069025183	-0,771604667	15,25119547	0,877655864	13,60193494
Sum nedbør som regn (mm)	-22,9582514	8,223291846	-2,791856574	0,031500299	-43,07992168	-2,836581128	-38,93758996	-6,978912845
Bergskjæring Motiv97 (m2/km)	64,97629673	10,67882365	6,084593106	0,000896107	38,84615659	91,10643686	44,2254172	85,72717625

AVVIK (UTDATA)						
Observasjon	mskrevet Sum Motiv Hpr7 Pun	Residualer	MOTIV	Modell	Awik	Avvik %
Viken	55605,90096	5178,099045	60 784	55 606	-5 178	-8,5 %
Innlandet	50519,94298	-869,9429785	49 650	50 520	870	1,8 %
Vestfold og Telemark	30918,67495	-7452,674948	23 466	30 919	7 453	31,8 %
Agder	32812,84611	-7073,846109	25 739	32 813	7 074	27,5 %
Rogaland	22673,15138	9332,848624	32 006	22 673	-9 333	-29,2 %
Vestland	131151,7659	1047,234087	132 199	131 152	-1 047	-0,8 %
Møre og Romsdal	59494,08335	-2952,083354	56 542	59 494	2 952	5,2 %
Trøndelag	57258,09075	-11772,09075	45 486	57 258	11 772	25,9 %
Nordland	63807,94724	4602,052756	68 410	63 808	-4 602	-6,7 %
Troms og Finnmark	55138,61559	7719,384406	62 858	55 139	-7 719	-12,3 %
			557 140	559 381	2 241	

Ved sammenligning av opprinnelig modell og alternativ modell uten skjæringspunkt, kan følgende observeres:

Faktorer

Den opprinnelige modellen innehold faktorene «Km veg fartsgrense 50 km/t eller lavere SSB-data», «Middel temperatur mai-august, grader C», «Sum nedbør som regn (mm)» og «Bergskjæring Motiv97 (m2/km)», mens den alternative modellen uten skjæringspunkt inneholdt «Km veg fartsgrense 50 km/t eller lavere SSB-data», «Km veg med ÅDT < 250 kjt», «Sum nedbør som regn (mm)» og «Bergskjæring Motiv97 (m2/km)».

Den alternative modellen inneholder «Km veg med ÅDT < 250 kjt» i stedet for «Skjæringspunkt» i den foreslåtte modellen.

R-kvadrat

Den alternative modellen har R-kvadrat verdi 0,989, mens den foreslåtte modellen har en verdi på 0,971. Tilsvarende verdier for «Justert R-kvadrat» (hvor en tar hensyn antall faktorer i modellen og dermed antall «ledige» frihetsgrader) var 0,816 for den alternative modellen sammenlignet med 0,947 for den foreslåtte modellen.

Standardfeil for regresjonsmodellen

Den foreslåtte modellen har en «Standardfeil» på 7 167 og den alternative modellen 8 655. Den foreslåtte modellen har den laveste og dermed den beste verdien.

• Error Sum of Squares - ESS

Verdiene for «sum kvadratavvik» er angitt med betegnelsen «SK» i utskriften fra Excel. Den foreslåtte modellen har en verdi på 256,8 millioner sammenlignet med 449,4 for den alternative modellen.

Beregnet avvik for fylkenes prediksjoner sammenlignet med MOTIV verdier Ved å sammenligne %-vise avvik, ser en at den foreslåtte modellen har +26,8% (Trøndelag) og

-16,1% (Rogaland) som maksimale avvik når en sammenligner med MOTIV. Tilsvarende for den alternative modellen er +31,8% (Vestfold og Telemark) og -29,2% (Rogaland).

Tilsvarende absolutte størrelser er +12,2 mill.kr. (Trøndelag) og -6,1 mill.kr. (Innlandet) for den foreslåtte modellen og +11,8 mill.kr. (Trøndelag) og -9,3 mill.kr. (Rogaland). «Sum spenn for avviket» er 18,3 mill.kr. for den foreslåtte modellen og 21,1 mill.kr. for den alternative modellen.

Den foreslåtte modellen fremstår som den beste, både når %-vise og absolutte størrelser vurderes.

2.1 Konklusjon og anbefaling om en forenklet modell for hovedprosess 7 «Punktobjekter»

Alle statistiske parametere unntatt en (R-kvadrat) som er undersøkt, indikerer at den foreslåtte modellen er den som er best egnet i en forenklet modell. Verdiene for «Justert R-kvadrat» viser imidlertid at den foreslåtte modellen representerer den beste tilpasningen, slik som for de øvrige statistiske parameterene.

Både den foreslåtte modellen og den alternative modellen har en negativ koeffisient for «Sum nedbør som regn (mm)». Rent intuitivt kan det være en utfordring å forklare en slik faktor. Den foreslåtte modellen har en verdi på -19,5 sammenlignet med -23,0 for den alternative modellen. Dessuten har den foreslåtte modellen en negativ faktor for middeltemperatur om sommeren, altså større tildeling til fylker med lav sommertemperatur, noe som kan bidra til å dempe effekten av den negative verdien for «Sum nedbør som regn (mm)» hvis en antar at fylker med lav sommertemperatur har mer nedbør, slik som ofte kan være tilfelle langs kysten i midtre og nordlige deler av landet.

Samlet sett fremstår den foreslåtte modellen som best egnet, og det anbefales at denne modellen legges til grunn for den forenklede modellen.

3. Modell for Gang- og sykkelveger

Modellen under ble presentert i første utkastet av rapporten. Denne var basert på forutsetningen om at minimum konfidensnivå for de uavhengige variablene var minst 95%:

Opprinnelig modell

SAMMENDRAG (UTDATA)						
	kk					
Multippel R	0,98921934					
R-kvadrat	0,97855491					
Justert R-kvadrat	0,96139883					
Standardfeil	3634,11203					
Observasjoner	10					
Variansanalyse						
	fg	SK	GK	F	Signifkans-F	
Regresjon	4	3013171823	753292956	57,0383934	0,000232105	
Residualer	5	66 033 851	13206770,2			
Totalt	9	3079205674				
	 Koeffisienter	Standardfeil	t-Stat	P-verdi	Nederste 95%	Øverste 95%
Skjæringspunkt	-64511,8672	20408,5432	-3,16102265	0,02506633	-116973,6976	-12050,0369
g/s-veglengde SSB 2020 km	139,334476	11,6455206	11,9646412	7,1918E-05	109,3987118	169,270239
Vinter-lengde	489,815814	144,52625	3,38911315	0,01948008	118,2992611	861,332367
Nedbør som Snø (mm vann)	-80,6445627	29,7211856	-2,71336964	0,04210655	-157,0453027	-4,24382278
Middel temperatur vinter	3993,52987	1022,26195	3,90656217	0,01133413		6621,33788

AVVIK (UTDATA)						
	Fremskrevet Sum Motiv					
Observasjon	Gsv	Residualer	MOTIV	Modell	Avvik	Avvik %
Viken	73 412	1 596	75 008	73 412	-1 596	-2,1%
Innlandet	18 485	3 087	21 572	18 485	-3 087	-14,3 %
Vestfold og Telemark	34 853	-6 067	28 786	34 853	6 067	21,1 %
Agder	23 940	22	23 962	23 940	-22	-0,1%
Rogaland	37 714	-1 280	36 434	37 714	1 280	3,5 %
Vestland	33 499	3 605	37 104	33 499	-3 605	-9,7%
Møre og Romsdal	17 195	929	18 124	17 195	-929	-5,1%
Trøndelag	41 218	-935	40 283	41 218	935	2,3 %
Nordland	12 026	-79	11 947	12 026	79	0,7 %
Troms og Finnmark	14 025	-878	13 147	14 025	878	6,7 %
			306 367	306 367	0	

Det ble beregnet en modell hvor bruk av «skjæringspunkt» ble utelatt. Denne modellen ga følgende resultater:

Alternativ modell uten skjæringspunkt

SAMMENDRAG (UTDATA)					
Regresjonsstatis	stikk					
Multippel R	0,98842584					
R-kvadrat	0,97698563					
Justert R-kvadrat	0,86587452		Standardfeil	beste model	l:	
Standardfeil	5645,84902		3634,11203			
Observasjoner	10					
Variansanalyse						
	fg	SK	GK	F	Signifkans-F	
Regresjon	1	12178399043	1,2178E+10	382,060096	4,8785E-08	
Residualer	9	286 880 500	31875611,1			
Totalt	10	12465279543				
	Koeffisienter	Standardfeil	t-Stat	P-verdi	Vederste 95%	Øverste 95%
Skjæringspunkt	0	#I/T	#I/T	#I/T	#I/T	#I/T
g/s-veglengde SSB 2020 l	106,31756	5,439251774	19,5463576	1,1115E-08	94,0131179	118,622003

AVVIK (UTDATA)						
	Fremskrevet					
Observasion	Sum Motiv	Dociduator	MOTIV	Modell	Avvik	Awik %
Observasjon	Gsv	Residualer	WOTTV	Modeli	AVVIN	
Viken	69 638	5 370	75 008	69 638	-5 370	-7,2 %
Innlandet	27 643	-6 071	21 572	27 643	6 071	28,1%
Vestfold og Telemark	39 444	-10 658	28 786	39 444	10 658	37,0%
Agder	29 663	-5 701	23 962	29 663	5 701	23,8%
Rogaland	31 257	5 177	36 434	31 257	-5 177	-14,2 %
Vestland	30 938	6 166	37 104	30 938	-6 166	-16,6%
Møre og Romsdal	19 350	-1 226	18 124	19 350	1 226	6,8%
Trøndelag	38 700	1 583	40 283	38 700	-1 583	-3,9 %
Nordland	13 821	-1874	11 947	13 821	1 874	15,7%
Troms og Finnmark	11 482	1 665	13 147	11 482	-1 665	-12,7 %
			306 367	311 936	5 569	

Ved sammenligning av opprinnelig modell med alternativ modell uten skjæringspunkt, kan følgende observeres:

Faktorer

Den alternative modellen uten skjæringspunkt har kun én faktor som ble signifikant – «g/sveglengde SSB 2020 km». I analysen av en modell uten skjæringspunkt var innledningsvis alle aktuelle faktorer med, men ble fjernet en etter en gjennom den trinnvise analysen selv om det ble anvendt en grenseverdi på 90% konfidensnivå.

R-kvadrat

Den alternative modellen har R-kvadrat verdi 0,977, mens den opprinnelige modellen hadde en verdi på 0,979. Tilsvarende verdier for «Justert R-kvadrat» (hvor en tar hensyn antall faktorer i modellen og dermed antall «ledige» frihetsgrader) var 0,866 for den alternative modellen sammenlignet med 0,961. Begge R-faktorene indikerer at den opprinnelige modellen representerer den beste tilpasningen.

Standardfeil

Den opprinnelige modellen har en «Standardfeil» på 3 634 og den alternative modellen 5 646. Den opprinnelige modellen den laveste og dermed den beste verdien.

• Error Sum of Squares - ESS

Verdiene for «sum kvadratavvik» er angitt med betegnelsen «SK» i utskriften fra Excel. Den opprinnelige modellen har en verdi på 66,0 millioner sammenlignet med 286,9 for den alternative modellen.

Beregnet avvik for fylkenes prediksjoner sammenlignet med MOTIV verdier Ved å sammenligne %-vise avvik, ser en at den opprinnelige modellen har +21,1% (Vestfold og Telemark) og -14,3% (Innlandet) som maksimale avvik når en sammenligner med MOTIV.

For den alternative modellen er tilsvarende tall +37,0% (Vestfold og Telemark) og -16,6% (Vestland).

Tilsvarende absolutte størrelser er +6,1 mill.kr. (Vestfold og Telemark) og -3,6 mill.kr. (Vestland) for den opprinnelige modellen, og +10,7 mill.kr. (Vestfold og Telemark) og -6,2 mill.kr. (Vestland). «Sum spenn» er 9,7 mill.kr. for den opprinnelige modellen og 16,9 mill.kr. for den alternative modellen.

Den opprinnelige modellen fremstår som den beste, både når %-vise og absolutte størrelser vurderes.

3.1 Konklusjon og anbefaling om en forenklet modell for Gang- og sykkelveger Alle statistiske parametere som er undersøkt, indikerer at den opprinnelige modellen som er beskrevet i førsteutkastet av rapporten, er den som er best egnet i en forenklet modell.

Det anbefales at den opprinnelige modellen legges til grunn for den forenklede modellen.

4. Egnethet for modellene hvis eksisterende fylker deles opp

Innledning

Spørsmålet som ViaNova/TLeland ble bedt om å vurdere, var om en modell med et konstantledd var egnet ved en eventuell oppdeling av et eksisterende fylke til nye enheter. Bakgrunnen for spørsmålet var at de nye og mindre fylkene ville kunne får en uforholdsmessig høy tildeling fordi det er et konstantledd i modellen som representerer en gevinst som vil komme gjennom en oppdeling til mindre fylker. Dette kan man i så fall motvirke ved å fjerne konstantleddet i modellene og kun anvende modeller uten konstantledd.

Modellen gir lavest usikkerhet hvis det gjøres beregninger som representerer «middelverdier» for MOTIV og de ulike faktorene som er brukt i modellen. Det er vist på figuren til venstre.

Hvis det gjøres en oppdeling av et fylke som i utgangspunktet er «stort» i mindre enheter som i størrelse tilsvarer de fylkene som ble brukt i utviklingen av modellen, er det god grunn til å anta at modellen fortsatt kan gi resultater med

nøyaktighet som tilsvarer fylker med noenlunde samme størrelse. Ett fylke som i utgangspunktet var «stort», som f.eks. Viken, har også en stor usikkerhet knyttet til beregningen av den avhengige variabelen i modellen, altså modellverdien for MOTIV.

Hvis det skal gjennomføres en oppdeling av et stort fylke, vil utgangspunktet være at dette fylket ligger til høyre på regresjonslinjen som er vist i figuren over. Et mulig utfall av en oppdeling kan være at utgangspunktet med et stort fylke som har en modell verdi for MOTIV som har en forholdsvis stor usikkerhet» fordi det aktuelle fylket befinner seg i ytterkanten av det aktuelle spennet for både avhengige og uavhengige variabler, kan bli f.eks. 3 beregninger for tilsvarende nye fylker hvor hver enkelt har en mindre usikkerhet knyttet til seg forutsatt at inndelingen gir fylker med «gjennomsnittsstørrelse» hvor konfidensintervallet rundt regresjonsmodellen er minst. Men hvis inndelingen gir nye fylker som i gjennomsnitt er svært små, gir dette modellberegninger med svært stor usikkerhet fordi de nye fylkene befinner seg til venstre på figuren over. Dette er belyst med et eksempel under.

Eksempel ved bruk av modell for hovedprosess 7 «Punktobjekter»

I grunnlaget for beregningen, er det i alt 557,1 mill.kr. som skal fordeles. Gjennomsnittet er 55,7 mill.kr. Viken har i beregningen en MOTIV verdi på 60,7 mill.kr., noe som utgangspunktet et «gjennomsnittsfylke». Hvis f.eks. Viken deles i 3, blir gjennomsnittet for de tre nye fylkene omtrent 20 mill.kr. Dette tallet er lavere enn for fylket med lavest MOTIV verdi som er 23,5 mill.kr. for Vestfold og Telemark. Hvis det gjøres en inndeling som representerer verdier på utside av det spennet som var grunnlaget for utviklingen av modellen, er usikkerheten større enn det som var grunnlaget for å bestemme om modellen var god nok eller ikke da den ble utviklet.

Dette eksemplet viser at det må gjøres vurderinger knyttet til størrelsen av beregnet MOTIV verdi for å kunne ta stilling til om usikkerheten er akseptabel eller ikke.

Konklusjon

ViaNova/TLeland sin vurdering er at så lenge de nye fylkene befinner seg innenfor det spennet som var grunnlaget for utviklingen av modellen, må dette ansees som en akseptabel bruk av modellen, uavhengig av om modellen inneholder et konstantledd eller ikke. Når de nye fylkene representerer verdier for den avhengige variabelen (beregnet MOTIV verdi) som ligger utenfor spennet som lå til

grunn for utviklingen av modellen, er modellen dårlig egnet uansett om den inneholder et konstantledd eller ikke.

5. Konklusjon og anbefaling om en alternativ modell uten konstantledd

Alle statistiske parametere som er undersøkt og som ansees som relevante, indikerer at den opprinnelige modellen som er beskrevet i førsteutkastet av rapporten, er den som er best egnet i en forenklet modell.

Det anbefales at den opprinnelige modellen legges til grunn for den forenklede modellen.