Relatività Generale

Prof. E. Castorina, a.a. 2024-25

 ${\bf Leonardo~Cerasi}^{\bf 1}$ Git Hub repository: Leonardo Cerasi/notes

 $^{^{1}{\}rm leo.cerasi@pm.me}$

Indice

Indice	ii
Introduzione	1
I Prima parte	2
1 Primo capitolo	3

Introduzione

Nello studio delle interazioni a distanza si introducono le cosiddette teorie di campo: un campo è un'entità fisica che esiste in ogni punto dello spaziotempo (es: campo elettrico, magnetico, etc...) e che viene modificata dalla presenza di portatori della carica associata al campo.

Nel caso del di una teoria di campo per descrivere la gravità, è necessario un campo gravitazionale che sia influenzato dalla massa. Nel caso Newtoniano il campo gravitazionale $\Phi(\mathbf{r},t)$ è legato alla densità di massa $\rho(\mathbf{r},t)$ da un'equazione di Poisson:

$$\nabla^2 \Phi = 4\pi G \rho \tag{1}$$

dove $G\approx 6.67\cdot 10^{-11}\,\mathrm{m^3kg^{-1}s^{-2}}$ è la costante universale di Newton.

Parte I Prima parte

Primo capitolo