

1/47

Necleotide	Description
1-1542	16S rRNA of Escherichia coli rrnB operon
1536-1540	16S MBS (message binding sequence) GGGAU
1543-1982	16S-23S spacer region
1983-4886	23S rRNA of Escherichia coli rrnB operon
4887-4982	23S-5S spacer region
4983-5098	5S rRNA of Escherichia coli rmB operon
5102-5145	terminator T1 of Escherichia coli rrnB operon
5276-5305	terminator T2 of Escherichia coli rrnB operon
6575-7432	bla (β-lactamase; ampicillin resistance)
7575-8209	replication origin
8813-8622	rop (Rop protein)
10201-9467	GFP (Green Fluorescent Protein)
10213-10209	GFP RBS (ribosome binding sequence) AUCCC
10270-10230	trpc promoter
10745-10785	trpc promoter
10802-10806	CAT RBS (ribosome binding sequence) AUCCC
10814-11473	cam (chloramphemcol acetyltransferase: CAT)
11782-11859	<i>lac^q</i> promoter
11860-12942	lacl ^q (lac repressor)
12985-13026	lacUV5 promoter

Fig. 3

Fig. 4

:)

Fig. 6

Fig. 7

Fig. 8

Oligo	Sequence (5' to 3')	Used for
기 기 기	ATAGGGGTTCCGCGCACATT CTCGAGCCTCCTGAAAGCGGCCG CAACTCAAAAAATACGCCCGGT	Primer cam from268 to249 Creating a Notl in the upstream of cam
OR2 IR2	AAATCGTCGTGGTATTCACT GCGGCCGCTTTCAGGAGGCTCGA	Primer cam from 473 to 492 Creating a Notl in the upstream of cam
TRP'-T	GAAATGGAGAAAAAN LALI GGCGGCTAGCCGGCGAGCTGTTG ACAATTAATCATCGAACTAGTT	Promoter <i>trpc</i> , top strand
TRP'-B	TAATGTGTGGAAGC GGCCGCTTCCACATTAAACTA GTTCGATGATTAATTGTCAACAG	Promoter <i>trpc</i> , bottom strand
SD*-B SD*-T lacU	TCGAGCACAGAGC GGGCACTTCAGTGTGC GGTCATAGGCGGCCGCTGTGGA AATTGTTATCCGCTCACAATTCC	Mutated RBS for pCAM5; top strand Mutated RBS for pCAM5; bottom strand Creating a Notl and PlacUV5 mutation in the 3' end of lacl
lact	ACACA I A I A CGAGGCAAAGC TTGGATCCGACACCATCGAATGG	Creating a BamHI and lacl9 mutation in the 5' end of lacl
01.4	GAAGGATCCGCCGAAGATGTTT	Primer 16S rRNA from -707 to -689; creating a BarnHI in the 5'
1.4	GCGCCGCTTAAAATAATTTTCT	Primer 16S rRNA from -351 to -333, deleting P1P2 and creating a Nort in the 5' end of 16S rRNA
OR4	CCACAAGCTTCGCACCTGAGCGT	Primer 185 RNA from 745 to 765; creating a Hindlil in the middle of 16S rRNA
IR4	AAAATTATTTAAGCGGCCGCTG AGAAAAAGCGAAGC	Primer 16S rRNA from -164 to -180; deleting P1P2 and creating a Nort in the 5' end of 16S rRNA
ASD*-B ASD*-T	GGCGACTITCACTCACAAAC GTCGAAGCTTGGTAACCGTAGGG GAACCTGCGGTTGGATCACACAC	Primer tRNAGlu from +8 to +27 Primer 16S from 1504 to +16, mutating the MBS region from C1536UC1538 to A1536CA1538
Cat-M-Xhol	TTAATGTGTGGAAGCGGCCGCTT TCATATCCCTNNNNAAATGGAG	Primer cam from -39 to +15; creating 4 nucleotide random mutations
Cat-N-Ncol	CAGCACCTTGTCGCCTTGC	Primer cam from 688 to 706

č	Description	0	
Plasmid	Description	neierence	
pUC19	Cloning vector	(67)	
pBR322	Cloning vector	(62)	
pACYC177	Cloning vector	(72)	
pKK3535	pBR322 derivative containing Intact mB operon	(31)	
pSPORT1	pUC19 derivative containing faci	(57)	
DLS1021	pBR322 derivative containing cam	(28)	
pSTL102	pKK3535 containing U1192 in 16S rRNA and G2058 in 23S rRNA	(34)	
pCAM1	pJLS1021 plus a NotI site in the upstream of cam	This study	
pCAM2	pCAM1 plus Ptrpc between Notl sites in the upstream of cam	This study	
pCAM4	pBR322 plus the Nael fragment of pCAM2 containing cam under Ptrpc	This study	
pCAM5	pCAM4 containing RBS (5'-GUGUG) of Hul et al. (1) in cam	This study	
pCAM9	pCAM5 containing selected RBS (5'-AUCCC) in cam	This study	
pCAM10	pCAM9 containing selected upstream sequence of cam	This study	
pRNA3	pUC19 plus lacid and 5' end of 16S rRNA under PlacUV5	This study	
pRNA4	pACYC177 plus lacid and rmB with wild-type MBS under Plac UV5	This study	
pRNA5	pRNA4 containing MBS (5'-CACAC) of Hui et al. (1) in 16S rRNA	This study	
pRNA6	pCAM5 plus the BamHI fragment containing lacid and rmB from pRNA5	This study	
pRNA8	pCAM5 plus the BamHI fragment containing lacid and rmB from pRNA4	This study	
pRNA9	pCAM4 plus the BamHI fragment containing lacid and rmB from pRNA4	This study	
pRNA100	pRNA8 containing selected MBS (5'-GGGAU) and RBS (5'-AUCCC)	This study	
pRNA101	pRNA100 containing U1192 in 16S rRNA	This study	
pRNA104	pRNA101 containing U2058 in 23S rRNA	This study	
p16ST	pUC19 derivative containing cam, lacid and 16S rRNA from pRNA100	This study	
pRNA122	pRNA100 containing selected upstream sequence of cam from pCAM10	This study	
pRNA170	pRNA122 containing U1192 in 16S rRNA and U2058 in 23S rRNA	This study	
			١

MIC with no induction 50 100	0 200	400	500	009	700	800	1000
05	4	-					
100	⊷ (5	16	φ;	-		
200 400	m	121 72	2 5	25 10	c	•	
200		4	=	18	• ю т	· 69 °	ო
008					-	າ	-

Clone	RNA sequences	∆G 37	MIC	ا ن	5	CAI	Induction
	5' C A R1 R2 R3 R4 R5 C U C G 3' CAT mRNA		µg of Cm∕ mL	of Cm/ mL	0	СРМ	
Random	3' A U U MS M4 M3 M2 M1 A C U S' 16S FRNA	kcal/mol	7	Ŧ	T	Ŧ	-1/+1
pRNA9	5, C A <u>G G A G G</u> C U C G 3' 3' A U U <u>C C U C G</u> A C U 5'	-9.8	200	200	2803 ± 68	2700 ± 196	1.0
pRNA6	5, C A G U G U G C U C G 3' 3' A U U C A C A G A C U 5'	-7.8	5	200	4033 ± 1040	12437 ± 2491	3.1
VII30	5, C A <u>U A U C C C U</u> C G 3' 3' A U U <u>U A G G G A</u> C U 5'	-8.4	100	200	6293 ± 706	72206 ± 706	11.5
VII43	5, C A A A C A C C U C G 3' 3' A U U G G A G A A C U 5'	-8.1	125	200	5603 ± 1011	47667 ± 891	8.5
VII64, VII65	5, C A <u>U A C C U</u> C U C G 3' 3' A U U <u>G G A G U</u> A C U 5'	-7.3	6	200	6200 ± 953	37311 ± 3978	6.0
VIII29	5' C A <u>U A A U C C U C</u> G 3' 3' A U U A <u>G G A G</u> A C U 5'	-10.9	125	009	7869 ± 416	91153 ± 4003	11.6
VIII46	5, C A A A U A C C U C G 3' 3' A U U G G A G U A C U 5'	-7.7	00	200	6431 ± 816	46840 ± 796	7.3
VIII77	5, C A <u>C A U A C C U C</u> G 3' 3'A U U <u>G G A G U</u> A C U 5'	-7.7	150	009	6794 ± 650	44358 ± 4841	6.5
VIII93	5, C A <u>C C G G C U C G 3'</u> 3' A U U <u>G G A G A</u> A C U 5'	-8.5	6	200	5643 ± 897	24888 ± 2388	4.4
1)24	5, C A <u>U A U C C</u> U C G 3' 3' A U U <u>A G G Q</u> U A C U 5'	-7.3	9	650	7524 ± 263	91809 ± 4542	12.7
IX32	5, C A <u>A C U A C C U C</u> G 3, 3, A U U <u>G G A G</u> U A C U	-7.7	001	200	5783 ± 971	32164 ± 5862	5.6
1X67	5' C A <u>U A U A C C U C</u> G 3' 3' A U U <u>G G A G</u> A A C U 5'	-8.0	125	009	6063 ± 787	24581 ± 3009	1.4

Clone	RNA sequences	MIC	O
	5' C A U A U C C C U N N N A A A U G 3' CAT mRNA	(Jm/g/mL)	mL)
positions	3'AUUAGGGUACUAGG5' 16S rRNA	Ŧ	7
pRNA100	5, C A U A U C C C U C G A G A A A U G 3' 3'A U U A G G G U A C U A G G 5'	100	059
pRNA100 + wt MBS	s, c a u a u c c c u <u>c c a c</u> a a a a u e s' 3' a u u c <u>c u c</u> c a c u a e e s'	20	20
pRNA122	s, c a u a u c c c u <u>c c c a c</u> a a a u e s' s' a u u a e e e u a c u a e e s'	20	009
pRNA122 + wt MBS	5, c A U A U C C C U <u>C G C</u> A A A U G 3′ 3′A U U C C U C C A C U A G G 5′	10	10
pRNA125	5, C A U A U C C C U <u>C C U G</u> A A A U G 3' 3'A U U A G G G U A C U A G G 5'	80	009
pRNA127	s, c a u <u>a u c c c u c c c a a a a u e s</u> , s, a u <u>u a e e e u</u> a c u a e e s,	90	900
pRNA128	5, C A U A U C C C U C C A C A A A U G 3, 3, A U U A G G G U A C U A G G 5,	20	009

		Percent plasmid-derived 30S in	S.in	
Residue at 516	30S peak	70S peak	Crude ribosomes	% CAT
Ψ	46.5 ± 3.6	53.0 ± 4.5	47.8 ± 2.8	100
∢	54.2 ± 5.4	10.6 ± 1.4	37.5 ± 3.9	0
O	51.8 ± 0.2	27.1 ± 2.9	42.9 ± 5.8	59.4
o	67.5 ± 6	8.8 ± 0.9	44.1 ± 5.2	6.3

Clone	Alignment of CAT mRNA and 16S rRNA	ا io gم)	MIC (Cm/mL)	
Random	5' C A R1 R2 R3 R4 R5 C U C G 3' CAT mRNA 3' A U U M5 K4 M3 M2 M1 A C U 5' 165 rRNA	no IPTG	1 mM IPTG	ΔG <u>₹</u> - (kcal/mol)
wild-type	5' C A Q Q A Q Q C · U C Q 3' 3' A U U C C U C Q X C U 5'	500	500	-9.8
1	5'. C A A U C C C C C U C G 3' 3' A U U A Q Q Q A A C U 5'	100	400	-8.3
2	5' C A U A C C U C U C G 3' 3' A U U Q Q Q - U A A C U 5'	50	100	-4
3	5' C A C A Q U C C U C G 3' 3' A U U A Q C A Q A C U 5'	50	100	-1.9
4	5' C A A A C C A C U C G 3' 3' A U U U A Q U Q A C U 5'	50	100	-4.1
5	5' C A W A Q C C C U C G 3'	50	100	-7.6
6	5' C A H C H H C C U C G 3'	50	100	-7.4
7	5' C A A U U A U C U C G 3' 3' A U U U U A A Q A C U 5'	50	100	-3.1
8	5' C A Q A Q A A C U C G 3' 3' A U U Q A Q U A A C U 5'	100	200	-3.6
9	5' C A A A Q U U C U C G 3' 3' A U U Q A Q U A A C U 5'	100	200	-0.6
10	5' C A A U U C A C U C G 3' 3' A U U A A Q U Q A C U 5'	100	400	-7.7
11	5' C A A C U C A C U C Q 3' 3' A U U Q U G A Q A C U 5'	100	200	-7.1
12	5' C A A C C C A C U C G 3' 3' A U U A C C C U A C U 5'	50	100	-ė
13	5' C A Y C C Y U C U C C 3' 3' A U U C A Q A A A C U 5'	50	200	-2.2
14	5' C A Q A Q Q A C U C G 3' 3' A U U U U Q Q U A C U 5'	50	100	-4.7
15	5' C A Q Q Q A A A C U 5'	50	200	-7
16	5' C A U Q Q Q A C U C G 3' 3' A U U Q Q Q Q A A C U 5'	50	100	-7.3
17	5' C A A A C U C C U C G 3' 3' A U U A U C A U A C U 5'	50	100	0.8
18	5' C A U A C A U C U C G 3' 3' A U U U Q A Q A A C U 5'	50	100	-2.1
19	5' C A A C U C U C U C G 3' 3' A U U A Q A Q Q A O U 5'	50	200	-5.6
20	5' C A A A U A U C U C O 3'	200	500	-6.2
21	5' C A U A C C U C U C G 3' 3' A U U Q Q A Q U A C U 5'	200	500	-7.3
22	5' C A U A Q U A C U C Q 3' 3' A U U U A Q Q U A C U 5'	100	200	0.3
23	5' C A A U C C A C U C G 3'	200	400	-10.6
24	S' C A Q A Q A Q C U C Q 3'	100	200	-0.2

Fig. 15

Clone	Alignment of CAT mRNA and 169 rRNA	(μg o	MIC f Cm/mL)	
Random	5' C A R1 R2 R3 R4 R5 C U C G 3' CAT mRNA 3' A U U K5 H4 K3 H2 N1 A C U 5' 165 rRNA	no IPTG	1 mM IPTG	4Gg7 (kcal/mol)
25	5' C A <u>U A Q C A</u> C U C G 3' 3' A U U A <u>U C Q U</u> A C U 5'	200	400	-6.8
26	5' C A A Q U A A C U C G 3' 3' A U U Q U G A U A C U 5'	100	200	-3.4
27	5' C A A A U A U C U C G 3' 3' A U U A U Q Q A A C U 5'	100	400	-5.3
28	5' C A A A U A Q A Q Q A C U 5'	200	400	-1.6
29	5'.C A C W C C W C U C G 3' 3' A U U A G Q A Q A C U 5'	50	100	-9.1
30	5' C A U A A Q Q U A C U 5'	100	400	-5.3
31	5' C A A C C U A C U C G 3' 3' A U U A Q A Q Q A C U 5'	50	200	-3.1
32	5' C A A U Q Q A C U C G 3'	100	400	-4.5
33	5' C A A C C C C C C C G 3' 3' A U U Q Q Q A Q A C U 5'	100	400	-7.2
34	5' C A A A Q A U C U C G 3' 3' A U U Q U A Q A A C U 5'	200	400	-8
35	5' C A U C C C A C U C Q 3' 3' A U U A U Q Q Q A C U 5'	50	200	-5
36	5' C A C U Q A U C U C G 3' 3' A U U A Q Q A G A C U 5'	200	500	-3.9
37	5' C A U A U Q Q C U C G 3' 3' A U U U A Q Q Q A C U 5'	100	500	-8.4
38	5' C A A A Q A Q C U C Q 3' 3' A U U Q Q A Q A A C U 5'	150	500	-8.1
39	5' C A A C Q A A C U C G 3' 3' A U U Q U Q A Q A C U 5'	100	400	-5.7
40	5' C A U C U A U C U C G 3' 3' A U U A Q A Q Q A C U 5'	100	400	-6.2
41	5' C A U A C C U C C 3' 3' A U U G Q A Q U A C U 5'	100	500	-7.3
42	5' C A U A U A A C U C G 3' 3' A U U A Q A Q A A C U 5'	200	500	-3.6
43	5' C A A A U A Q C U C Q 3' 3' A U U Q Q A Q U A C TU 5'	100	500	-7.7
44	5' C A C A U A C C U C G 3' 3' A U U Q Q A Q U A C U 5'	150	600	-7.7
45	5' C A Q Q Q A Q C U C Q 3' 3' A U U Q Q A Q A A C U 5'	100	500	-8.5
46	5' C A U A U C C C U C G 3' 3' A U U Q Q Q Q U A C U 5'	100	700	-7.3
47	5' C A A C U A C C U C Q 3' 3' A U U Q Q A Q U A C U 5'	100	500	-7.7
48	2, C Y A Y A G C A O O 2,	200	600	-8

Fig. 16

Nucleotide	Description
1-931	part of 16S rRNA from Escherichia coli rrnB operon
932-1542	part of 16S rRNA from Mycobacterium tuberculosis rrn operon
1536-1540	16S MBS (message binding sequence) GGGAU
1791-1834	terminator T1 of Escherichia coli rrnB operon
1965-1994	terminator T2 of Escherichia coli rrnB operon
3054-2438	replication origin
3214-4074	bla (β-lactamase; ampicillin resistance)
5726-4992	GFP (Green Fluorescent Protein)
5738-5734	GFP RBS (ribosome binding sequence) AUCCC
5795-5755	trpc promoter
6270-6310	trpc promoter
6327-6331	CAT RBS (ribosome binding sequence) AUCCC
6339-6998	cam (chloramphenicol acetyltransferase; CAT)
7307-7384	lacl ^q promoter
7385-8467	lacl ^q (lac repressor)
8510-8551	lacUV5 promoter

Fig. 17

Fig. 18

19/47

MIC* (µg/ml)	787	788	789	Nucle 790	eotide sequen 791	792	793	794	<i>7</i> 95	Number of mutations	Number of occurrences ^d
600°	A	U	U	A	G	A	U	A	С	0	WT
550 500	A A	ប ប	ប ប	A C	G G	GA	U C	A A	A	2 3	1
500	Α	Α	U	C Ā	G G G	Ğ	CID CID CIAID	Α	ğ	2	1
500 450	A A	. <u>Ā</u>	U U	A A	G	ç	C U	U Ā	C	4 1	1 1
450	Α	ŭ	U	<u>C</u> Ā	G	Ā	ç	Ä	č	2	1
450 450	A A	<u>C</u>	U U	A A	G G	<u>c</u>	₽	C U	<u>A</u>	5 3	1 1
450	Α	U CICIAIAIAIU	U	Α	G G	Ă	U	Ā	č	1	2
450 450	A A	A	ប ប	A C	G G G	ς υ	₽	U	C	4 5	1
450	G Ā	Ä	U	C Ā	Ğ	Ğ	ซื	Ā	<u>ū</u>	4	1
400 400	A A	A	บ บ	A A	G .	G	Ü	Ŭ	C	2 3 .	1 2
400 400	Α	<u>A</u> <u>A</u> <u>U</u>	Ü	Α	G	Ω̈́	<u>c</u>	Ā	A	4	2
350	A A		บ	<u>C</u>	0 0 0 0	Ä	Ā	A	A	5 2	1 1
350 350	A A	ប ប	U U	A A	G	Ë	Ğ	A	<u>c</u>	2 3	2 3
350	Α	U	U	Α	G	<u>c</u>	<u>C</u>	X	A	3	2
350 350	A A	ဋ	ប	A A	Ġ G	Ë	Ç	<u>U</u>	. <u>c</u>	4 3	2 2
350	Α	Ğ	U	Α	G	<u>Ğ</u>	<u>A</u>	<u>ŭ</u>	č	4	2 .
350 350	A A	이이데이이이 이이이이이이에서 소독하는 아이에 나는 아이에 아이에 아이에 아이에 아이에 아이에 나를 보는데 하는데 얼마나 나를 보는데 하는데 아이에 아이에 나를 보는데 하는데 아이에 아이에 나를 보는데 아이에 아이에 아이에 나는데 아이에 아이에 아이에 나를 보는데 아이에 아이에 나를 보는데 아이에 아이에 나를 보는데 아이에 아이에 나를 보는데 아이에	U U	A A	Ğ G	אומומוטוטים א אומומוטיטים א אומומוטיטיטיט אומומוטיטיט א אומוטיטיטיט א אומומיטיט א אומומיטיט איטיט אוטימיט איטי	くいじ いじ いいんけんごうじじん くじしじ	א טוטוא טוטוא א טוא טוא א טוא טוטוטוטוטו	이 시간이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	3 4	1
350	Α	Ĕ	U	Α	G G	Ă	Ŭ	Ā	<u>ŭ</u>	2	1
350 350	A A	Ċ	ប	A A	Ğ G	A C	U A	<u>C</u>	C	2 3	1 1
350	Α	ᅙ	ប ប	A	G G G	Ē	Ā	ň	Ç	4	3
350 350	A A	ᅙ	U	A A	G	ਫੁੱ	AAU CAA	Ŭ	춘	3 4	1 2
350 350	A A	Ē	ប ប	A A	G G	ټ	Ā	Ā	C	3 4	1
350	Α	<u> </u>	U	Α	Ğ	<u>ប</u> ្	₩	<u> </u>	· c	3	1 1
350 350	A A	A	ប ប	A A	G G	A	U	ក្ត	c	2 4	1 2
350	Α	Ä	U	Α	G	Ĕ	ACCICICIO U	Ă	Ã	4	1
350 350	A A	A	ប	A A	G. G	<u>c</u>	<u>C</u>	A U	C A	3 5	3 1
350	Α	Ā	U	Α	G G	<u>Ē</u>	Ū	Ā	Ā	3	2
350 350	G	Ğ	บ บ	A A	G G	嵌		G	មួ	3 6	1 1
350 350	Ē	Ğ	บ บ	A	G G	<u>ប្</u>	<u>č</u>	Ā	ច្ឆ	5	· 1
300	Ä	$\frac{\Delta}{A}$	U	A A	G	Ä	Â	Ā	င	6 2	1
300 300	င္ပ	U G	ប	A A	G G G	A	ACIAI U U	A	G	2	1 2
300	ତାତାତାକ ତାତାତା କ	ğ	U	Α	Ğ	<u>ŭ</u>	U	<u>Ŭ</u>	<u>Ğ</u>	5 5	1
250 250	A A	Ü	ប ប	C G A	G G G	GA	· ∆	A A	Ê	4 2	1 1
250 250	Α	S	U	Ā	Ğ	A	Ē	Ģ	Č.	3	3
250 250	A A	č	U U	A A	G	Ğ	5	Ŭ	AA	4 5	1 1
250 250	A A	Ā	U U	A A	G	Ë	Ā	č	Ā	5 4	1
250	Α	A	U	A	G G G	ᄞ	<u> </u>	A GIA GIA A DIDIA A GIA DICIA CIA	<u>X</u>	5	1 1
250 250	읃	บ บ	U U	A A	· G G	Ϋ́	Ü	A A	A	3 3	1
250 250	Ğ			A	Ğ		Ĕ	Ä		4	1
250 250	င္မ	<u>e</u>	U	A A	G	든	Č	Ŭ	<u>U</u> .	6 5 4	1
250	Ğ	Ğ	Ŭ ´	Α	Ğ	ğ	ΰ	Ā	<u>Ğ</u>	4 '	î
250 250	G	G	U	A A	G .·	<u>G</u>	U	<u>U</u>	ប្ដ	5 5 6	2
250 250 250 250 250 250 200	ଠାତାତାତାତାତାତାତାତାବ 🛦 🛦	Ā	טטטט טטטטטטט טטטט	Α	Ğ	Ē	<u>Ē</u>	Σ̈́	ξ	6	1 1 2 1 2
200	G A	€	U U	A A	G G	Ä	Ü	<u>G</u>	Ä	6 2	1 1
200	A	Ğ	Ú	Ā	Ğ	Ç	Ú	Ψ̈́	<u> </u>	4	1 1
200 200 200	A A	Ğ	บ	A C	G	င	Ċ	Ŭ	<u>G</u>	3 5	1 1
200		<u> </u>		Ā	Ğ	Ā	<u> <u> </u></u>	<u>Ú</u>	č	3	1
200	A	Ā	U	č	G G	<u>C</u>	A	<u>G</u>	C	5 5	1 1
200 200 200	<u>Ğ</u>	ਫ਼ੇ	ប័	Â	Ğ	Ă	บั	ਫੁੱ	ប្តី	4	1 1 1
200	Ğ	G	U	A	G G	ᅜ	<u>C</u>	$\frac{\mathbf{G}}{\mathbf{A}}$	<u>U</u>	6 5	1 1
200 200 150	< < ଠାଠାଠାଠାଠାଠାଠା	୦ ଓାଠାଠାଠାଠାଧାରୀ ଧାରାଠା ଧାର୍ଯ୍ୟ ଓ ଓାଠାଠାଠ	บ บ บ บ บ	A A CI A CIA A A CIA A			GIOICIAID U U U CIOID U U CIAIDIO U U CIAIDIO	4 기4 4 의미미미미 대 MICIOI 4 4 미	ididialalala o didialalalalalalalalalalalalalalalalalal	6 2 4 3 5 3 5 5 4 6 5 5 5 5	1
150	<u>G</u>	G	บ	A	G	<u>G</u>	U	<u>U</u>	<u>G</u>	5	1

Fig. 19

Nucleotide	787	788	789	790	791	792	793	794	795
A. Nucleotide d	istribution of	functional mi	ıtants ^a						
Α	<u>54</u>	24	0	69	0	15	18	35	16
C	2	16	0	<u>69</u> 8	Ō	15 24	26	<u>35</u> 5	
G	22	21	0	1	<u>78</u>	16	4	9	<u>34</u> 7
υ.	0	1 <i>7</i>	78	Ō	$\frac{1}{0}$	23	30	29	21
Consensus	R	<u>17</u> N	<u>78</u> U	M	Ğ	N	<u>30</u> H	· w	H
B. Nucleotide di	istribution in	all known bac	teria ^b						
A	573	0	0	578	1	578	n	577	0
C	3	0	0	0	î	2/0	ň	3//	- U
G	1	0	Ō	ŏ	576	ň	3	ņ	<u>578</u>
IJ	1	<u>578</u>	578	Ď	<u>576</u> 0	ň	575	0	0
Consensus	A	Ū	U	Å	Ğ	Ă	<u>575</u> U	Ä	Č
C. Nucleotide di	istribution in	all known org	anisms ^e						
A	1657	2 °	1	1648	2	1655	5	1664	- 1
3	6	1	566	9	ĩ	1	12	1004	1665
3	4	0	Ó	3	1662	7	46	2	1665
J	1	1664	1101	7	3	3	1605	1	0
Δ	0	1	0	í	ő	2	1003	1	Ü
Consensus	Α	Ü	Ý	Â	Ğ	Δ	11		2

Nucleotide ^a		Mean CAT	% Mutant 30 S in		Thermodynamics ^d	
787	795	activity ^b	30 S peak ^c	70 S peaks	ΔG_{37}° (kcal/mol)	$T_{\rm m}$ (°C)
Α	С	100	46.1 ± 0.8	41.7 ± 3.3	-3.25	61.8
A	A C	83.8 ± 2.5	n.d.	n.d.	-2.90	61.3
<u>C</u>		80.5 ± 0.5	n.d.	n.d.	-2.84	60.7
<u>C</u>	<u>U</u>	74.1 ± 3.4	n.d.	n.d.	n.d.	n.d.
Α	טוטוטוט	72.1 ± 4.5	74.3 ± 0.5	14.3 ± 1.0	-5.62	75.3
<u>U</u>	<u>U</u>	72.0 ± 2.4	n.d.	n.d.	n.d.	n.d.
<u>G</u>	<u>U</u>	70.5 ± 1.8	56.1 ± 1.4	14.2 ± 0.6	-4.96	68.1
<u>U</u>	C	65.5 ± 2.1	n.d.	n.d.	-2.88	60.6
⊆	<u>A</u>	53.4 ± 1.0	n.d.	n.d.	n.d.	n.d.
<u>G</u>	<u>G</u>	52.9 ± 0.4	n.d.	n.d.	-3.70	64.9
$\underline{\mathbf{G}}$	<u>A</u>	46.0 ± 1.4	n.d.	n.d.	n.d.	n.d.
Α	<u>G</u>	37.5 ± 0.5	n.d.	n.d.	-3.19	63.5
<u>U</u>	<u>A</u>	36.7 ± 0.4	70.8 ± 7.4	10.1 ± 0.4	-5.82	74.3
<u>u</u>	AIGIAIGIAIGIO	13.5 ± 3.3	57.7 ± 12.1	5.5 ± 3.4	-5.15	69.4
א טוטוש טוטוטוטוטוש א טוטושוטוט		5.5 ± 1.8	58.3 ± 8.2	5.1 ± 1.3	-7.61	83.4
<u>C</u>	<u>G</u>	1.2 ± 0.1	n.d.	n.d.	n.d.	n.d.

22/47

GACGCCGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACT TGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGT AAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAAC TTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACA ACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAAC AACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAA CAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCT CGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCG TGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGT ATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAAT AGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAG ACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTT AAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTT AACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCTTAATAAGATGATCTTCT TGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAAAACGAAAAAACCG CCTTGCAGGCCGTTTTTCGAAGGTTCTCTGAGCTACCAACTCTTTGAACCGA GGTAACTGGCTTGGAGGAGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGC CTTAACCGGCGCATGACTTCAAGACTAACTCCTCTAAATCAATTACCAGTGG CTGCTGCCAGTGGTGCTTTTGCATGTCTTTCCGGGTTGGACTCAAGACGATAG TTACCGGATAAGGCGCAGCGGTCGGACTGAACGGGGGGTTCGTGCATACAG TCCAGCTTGGAGCGAACTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGA GACAAACGCGGCCATAACAGCGGAATGACACCGGTAAACCGAAAGGCAGGA ACAGGAGAGCGCACGAGGGAGCCGCCAGGGGGAAACGCCTGGTATCTTTAT AGTCCTGTCGGGTTTCGCCACCACTGATTTGAGCGTCAGATTTCGTGATGCTT GTCAGGGGGGGGGCCTATGGAAAAACGGCTTTGCCGCGGCCCTCTCACTT CCCTGTTAAGTATCTTCCTGGCATCTTCCAGGAAATCTCCGCCCCGTTCGTAA GCCATTTCCGCTCGCCGCAGTCGAACGACCGAGCGTAGCGAGTCAGTGAGCG AGGAAGCGGAATATATCCTGTATCACATATTCTGCTGACGCACCGGTGCAGC CTTTTTCTCCTGCCACATGAAGCACTTCACTGACACCCTCATCAGTGCCAAC ATAGTAAGCCAGTATACACTCCGCTAGCATCGTCCATTCCGACAGCATCGCC AGTCACTATGGCGTGCTGCTAGCGCTATATGCGTTGATGCAATTTCTATGCGC ACCCGTTCTCGGAGCACTGTCCGACCGCTTTGGCCGCCCCCAGTCCTGCTCG CTTCGCTACTTGGAGCCACTATCGACTACGCGATCATGGCGACCACACCCGT CCTGTGGATCCTCTACGCCGGACGCATCGTGGCCGGCCACGATGCGTCCGGC GTAGAGGATCTATTTAACGACCCTGCCCTGAACCGACGACCGGGTCGAATTT GCTTTCGAATTTCTGCCATTCATCCGCTTATTATCACTTATTCAGGCGTAGCA CCAGGCGTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCCCGCCCT GCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAA GCCATCACAGACGCATGATGAACCTGAATCGCCAGCGGCATCAGCACCTTG TCGCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGGCGAAGAAGTTGT CCATATTGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCAGGGATTGGC TGAGACGAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTTT TCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAAACTGCCGGAAAT CGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGAA

AACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCACCGTCTTTC ATTGCCATACGGAATTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAA TAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCC ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATAT CCAGTGATTTTTTCTCCATTTCTCGAGCACACTGAAAGCGGCCGCTTCCACA CATTAAACTAGTTCGATGATTAATTGTCAACAGCTCGCCGCTATATGCGTTGA TGCAATTTCTATGCGCACCCGTTCTCGGAGCACTGTCCGACCGCTTTGGCCGC CGCCCAGTCCTGCTCGCTACTTGGAGCCACTATCGACTACGCGATCAT GGCGACCACCCGTCCTGTGGATCCCAGACGAGTTAAGTCACCATACGTTA GTACAGGTTGCCACTCTTTTGGCAGACGCAGACCTACGGCTACAATAGCGAA GCGGTCCTGGTATTCATGTTTAAAAATACTGTCGCGATAGCCAAAACGGCAC TCTTTGGCAGTTAAGCGCACTTGCTTGCCTGTCGCCAGTTCAACAGAATCAAC ATAAGCGCAAACTCGCTGTAATTCTACGCCATAAGCACCAATATTCTGGATA GGTGATGAGCCGACACCAGGAATTAATGCCAGATTTTCCAGACCAGGC ATACCTTCCTGCAAAGTGTATTTTACCAGACGATGCCAGTTTTCTCCGGCTCC TACATGTAAATACCACGCATCAGGTTCATCATGAATTTCGATACCTTTGATCC GGTTGATGATCACCGTGCCGCGATAGTCCTCCAGAAAAAGTACATTACTTCC TTCACCCAGAATAAGAACGGGTTGTCCTTCTGCGGTTGCATACTGCCAGGCA TTGAGTAATTGTTGTTCGTCTTCGGCACATACAATGTGCTGAGCATTATGATC AATGCCAAATGTGTTCCAGGGTTTTAAGGAGTGGTTCATAGCTGCTTTCCTGA TGCAAAAACGAGGCTAGTTTACCGTATCTGTGGGGGGATGGCTTGTAGATAT GACGACAGGAAGAGTTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGC CTTCTGCTTAATTTGATGCCTGGCAGTTTATGGCGGGCGTCCTGCCCGCCACC CTCCGGGCCGTTGCTTCGCAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTA CTCAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCT TTCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCAT GGGGAGACCCCACACTACCATCGGCGCTACGGCGTTTCACTTCTGAGTTCGG CATGGGGTCAGGTGGGACCACCGCGCTACTGCCGCCAGGCAAATTCTGTTTT ATCAGACCGCTTCTGCGTTCTGATTTAATCTGTATCAGGCTGAAAATCTTCTC TCATCCGCCAAAACAGCTTCGGCGTTGTAAGGTTAAGCCTCACGGTTCATTA GTACCGGTTAGCTCAACGCATCGCTGCGCTTACACACCCGGCCTATCAACGT CGTCGTCTTCAACGTTCCTTCAGGACCCTTAAAGGGTCAGGGAGAACTCATC TCGGGGCAAGTTTCGTGCTTAGATGCTTTCAGCACTTATCTCTTCCGCATTTA GCTACCGGGCAGTGCCATTGGCATGACACCCGAACACCAGTGATGCGTCCA CTCCGGTCCTCGTACTAGGAGCAGCCCCCCTCAGTTCTCCAGCGCCCACG GCAGATAGGGACCGAACTGTCTCACGACGTTCTAAACCCAGCTCGCGTACCA CTTTAAATGGCGAACAGCCATACCCTTGGGACCTACTTCAGCCCCAGGATGT GATGAGCCGACATCGAGGTGCCAAACACCGCCGTCGATATGAACTCTTGGGC GGTATCAGCCTGTTATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCCTT CCATTCAGAACCACCGGATCACTATGACCTGCTTTCGCACCTGCTCGCGCCGT CACGCTCGCAGTCAAGCTGGCTTATGCCATTGCACTAACCTCCTGATGTCCG ACCAGGATTAGCCAACCTTCGTGCTCCTCCGTTACTCTTTAGGAGGAGACCG CCCCAGTCAAACTACCCACCAGACACTGTCCGCAACCCGGATTACGGGTCAA CGTTAGAACATCAAACATTAAAGGGTGGTATTTCAAGGTCGGCTCCATGCAG

ACTGGCGTCCACACTTCAAAGCCTCCCACCTATCCTACACATCAAGGCTCAA TGTTCAGTGTCAAGCTATAGTAAAGGTTCACGGGGTCTTTCCGTCTTGCCGCG GGTACACTGCATCTTCACAGCGAGTTCAATTTCACTGAGTCTCGGGTGGAGA CAGCCTGGCCATCATTACGCCATTCGTGCAGGTCGGAACTTACCCGACAAGG AATTTCGCTACCTTAGGACCGTTATAGTTACGGCCGCCGTTTACCGGGGCTTC GATCAAGAGCTTCGCTTGCGCTAACCCCATCAATTAACCTTCCGGCACCGGG CAGGCGTCACACCGTATACGTCCACTTTCGTGTTTTGCACAGTGCTGTGTTTTT AATAAACAGTTGCAGCCAGCTGGTATCTTCGACTGATTTCAGCTCCATCCGC GAGGGACCTCACCTACATATCAGCGTGCCTTCTCCCGAAGTTACGGCACCAT TTTGCCTAGTTCCTCACCCGAGTTCTCTCAAGCGCCTTGGTATTCTCTACCTG ACCACCTGTGTCGGTTTGGGGTACGATTTGATGTTACCTGATGCTTAGAGGCT TTTCCTGGAAGCAGGCATTTGTTGCTTCAGCACCGTAGTGCCTCGTCATCAC GCCTCAGCCTTGATTTTCCGGATTTGCCTGGAAAACCAGCCTACACGCTTAA ACCGGGACAACCGTCGCCCGGCCAACATAGCCTTCTCCGTCCCCCCTTCGCA GTAACACCAAGTACAGGAATATTAACCTGTTTCCCATCGACTACGCCTTTCG GCCTCGCCTTAGGGGTCGACTCACCCTGCCCGATTAACGTTGGACAGGAAC CCTTGGTCTTCCGGCGAGCGGGCTTTTCACCCGCTTTATCGTTACTTATGTCA GCATTCGCACTTCTGATACCTCCAGCATGCCTCACAGCACACCTTCGCAGGCT TACAGAACGCTCCCCTACCCAACACGCATAAGCGTCGCTGCCGCAGCTTCG GTGCATGGTTTAGCCCCGTTACATCTTCCGCGCAGGCCGACTCGACCAGTGA GCTATTACGCTTTCTTTAAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGT CTGGGCCTTCCCACATCGTTTCCCACTTAACCATGACTTTGGGACCTTAGCTG GCGGTCTGGGTTGTTTCCCTCTTCACGACGGACGTTAGCACCCGCCGTGTGTC TCCCGTGATAACATTCTCCGGTATTCGCAGTTTGCATCGGGTTGGTAAGTCGG GATGACCCCCTTGCCGAAACAGTGCTCTACCCCCGGAGATGAATTCACGAGG CGCTACCTAAATAGCTTTCGGGGAGAACCAGCTATCTCCCGGTTTGATTGGC CTTTCACCCCAGCCACAAGTCATCCGCTAATTTTTCAACATTAGTCGGTTCG GTCCTCCAGTTAGTGTTACCCAACCTTCAACCTGCCCATGGCTAGATCACCGG GTTTCGGGTCTATACCCTGCAACTTAACGCCCAGTTAAGACTCGGTTTCCCTT CGGCTCCCCTATTCGGTTAACCTTGCTACAGAATATAAGTCGCTGACCCATTA TACAAAAGGTACGCAGTCACACGCCTAAGCGTGCTCCCACTGCTTGTACGTA CACGGTTTCAGGTTCTTTTCACTCCCCTCGCCGGGGTTCTTTTCGCCTTTCCC TCACGGTACTGGTTCACTATCGGTCAGTCAGGAGTATTTAGCCTTGGAGGAT GGTCCCCCATATTCAGACAGGATACCACGTGTCCCGCCCTACTCATCGAGC TCACAGCATGTGCATTTTTGTGTACGGGGCTGTCACCCTGTATCGCGCGCCTT TCCAGACGCTTCCACTAACACACACACTGATTCAGGCTCTGGGCTGCTCCCC GTTCGCTCGCCGCTACTGGGGGAATCTCGGTTGATTTCTTTTCCTCGGGGTAC TTAGATGTTTCAGTTCCCCCGGTTCGCCTCATTAACCTATGGATTCAGTTAAT GATAGTGTCGAAACACACTGGGTTTCCCCATTCGGAAATCGCCGGTTATA ACGGTTCATATCACCTTACCGACGCTTATCGCAGATTAGCACGTCCTTCATCG CCTCTGACTGCCAGGGCATCCACCGTGTACGCTTAGTCGCTTAACCTCACAA CCCGAAGATGTTTCTTTCGATTCATCATCGTGTTGCGAAAATTTGAGAGACTC ACGAACAACTCTCGTTGTTCAGTGTTTCAATTTTCAGCTTGATCCAGATTTTT AAAGAGCAAAAATCTCAAACATCACCCGAAGATGAGTTTTGAGATATTAAG GTCGGCGACTTTCACTCACAAACCAGCAAGTGGCGTCCCCTAGGGGATTCGA

ACCCTGTTACCGCCGTGAAAGGGCGGTGTCCTGGGCCTCTAGACGAAGGGG ACACGAAAATTGCTTATCACGCGTTGCGTGATATTTTCGTGTAGGGTGAGCTT TCATTAATAGAAAGCGAACGGCCTTATTCTCTTCAGCCTCACTCCCAACGCGT AAACGCCTTGCTTTCACTTTCTATCAGACAATCTGTGTGAGCACTACAAAGT ACGCTTCTTTAAGGTAAGTGTGTGATCCAACCGCAGGTTCCCCTACGGTTACC TTGTTACGACTTCACCCCAGTCATGAATCACAAAGTGGTAAGCGCCCTCCCG AAGGTTAAGCTACCTACTTCTTTTGCAACCCACTCCCATGGTGTGACGGGCG GTGTGTACAAGGCCCGGGAACGTATTCACCGTGGCATTCTGATCCACGATTA CTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTCCAATCCGGACTACG ACGCACTTTATGAGGTCCGCTTGCTCTCGCGAGGTCGCTTCTCTTTGTATGCG CCATTGTAGCACGTGTGTAGCCCTGGTCGTAAGGGCCATGATGACTTGACGT CATCCCACCTTCCTCCAGTTTATCACTGGCAGTCTCCTTTGAGTTCCCGGCC GGACCGCTGGCAACAAAGGATAAGGGTTGCGCTCGTTGCGGGACTTAACCC AACATTTCACAACACGAGCTGACGACAGCCATGCAGCACCTGTCTCACGGTT CCCGAAGGCACATTCTCATCTCTGAAAACTTCCGTGGATGTCAAGACCAGGT AAGGTTCTTCGCGTTGCATCGAATTAAACCACATGCTCCACCGCTTGTGCGG GCCCCGTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGT CGACTTAACGCGTTAGCTCCGGAAGCCACGCCTCAAGGGCACAACCTCCAAG TCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCC ACGCTTTCGCACCTGAGCGTCAGTCTTCGTCCAGGGGGCCGCCTTCGCCACC GGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCC CCTCTACGAGACTCAAGCTTGCCAGTATCAGATGCAGTTCCCAGGTTGAGCC TAATTCCGATTAACGCTTGCACCCTCCGTATTACCGCGGCTGCTGGCACGGA GTTAGCCGGTGCTTCTTCTGCGGGTAACGTCAATGAGCAAAGGTATTAACTT TACTCCCTTCCTCCCCGCTGAAAGTACTTTACAACCCGAAGGCCTTCTTCATA CACGCGCATGCCTCCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTG CTGCCTCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGGTCATC CTCTCAGACCAGCTAGGGATCGTCGCCTAGGTGAGCCGTTACCCCACCTACT AGCTAATCCCATCTGGGCACATCCGATGGCAAGAGGCCCGAAGGTCCCCCTC TTTGGTCTTGCGACGTTATGCGGTATTAGCTACCGTTTCCAGTAGTTATCCCC CTCCATCAGGCAGTTTCCCAGACATTACTCACCCGTCCGCCACTCGTCAGCA AAGAAGCAAGCTTCTTCCTGTTACCGTTCGACTTGCATGTGTTAGGCCTGCCG CCAGCGTTCAATCTGAGCCATGATCAAACTCTTCAATTTAAAAGTTTGACGCT CAAAGAATTAAACTTCGTAATGAATTACGTGTTCACTCTTGAGACTTGGTATT CATTTTTCGTCTTGCGACGTTAAGAATCCGTATCTTCGAGTGCCCACACAGAT TGTCTGATAAATTGTTAAAGAGCAGTGCCGCTTCGCTTTTTCTCAGCGGCCGC TGTGTGAAATTGTTATCCGCTCACAATTCCACACATTATACGAGCCGGAAGC ATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTG CGTTGCGCTCACTGCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCAT TAATGAATCGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAG GGTGGTTTTCTTTTCACCAGTGAGACGGCCAACAGCTGATTGCCCTTCACCG CCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAG GCGAAAATCCTGTTTGATGGTGGTTGACGGCGGGATATAACATGAGCTGTCT TCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGG

ACTCGGTAATGGCGCCCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAG CATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAA CCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATT GCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCCGCGAGACAGA ACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGA TGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGA TGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGG CAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAG CCCACTGACCCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCG ACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGG CGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACT GGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCC ACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCG CGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGA TAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACAT TCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAA GGTTTTGCACCATTCGATGGTGTCGGATCCTAGAGCGCACGAATGAGGGCCG ACAGGAAGCAAAGCTGAAAGGAATCAAATTTGGCCGCAGGCGTACCGTGGA CAGGAACGTCGTGCTGACGCTTCATCAGAAGGGCACTGGTGCAACGGAAATT GCTCATCAGCTCAGTATTGCCCGCTCCACGGTTTATAAAATTCTTGAAGACG AAAGGCCTCGTGCATACGCCTATTTTTATAGGTTAATGTCATGATAATAAT GGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCT ATTTGTTTATTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAA CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTT GCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGT GCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGA GTTTTCGCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTA TGTGGCGCGGTATTATCCCGTGTT

27/47

1 }

GATCCTCTACGCCGGACGCATCGTGGCCGGCCACGATGCGTCCGGCGTAGAG GATCTATTTAACGACCCTGCCCTGAACCGACGACCGGGTCGAATTTGCTTTC GAATTTCTGCCATTCATCCGCTTATTATCACTTATTCAGGCGTAGCACCAGGC GTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCCCGCCCTGCCACT CATCGCAGTACTGTTATATTCATTAAGCATTCTGCCGACATGGAAGCCATC ACAGACGGCATGATGAACCTGAATCGCCAGCGGCATCAGCACCTTGTCGCCT TGCGTATAATATTTGCCCATGGTGAAAACGGGGGGCGAAGAAGTTGTCCATAT TGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGAC GAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCG TAACACGCCACATCTTGCGAATATATGTGTAGAAACTGCCGGAAATCGTCGT GGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGAAAACGGT GTAACAAGGGTGAACACTATCCCATATCACCAGCTCACCGTCTTTCATTGCC ATACGGAATTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAG GCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTAAT TCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCAGT GATTTTTTCTCCATTTGCGGAGGGATATGAAAGCGGCCGCTTCCACACATTA AACTAGTTCGATGATTAATTGTCAACAGCTCGCCGGCGCGCACCTCGCTAACG GATTCACCACTCCAAGAATTGGAGCCAATCGATTCTTGCGGAGAACTGTGAA TGCGCAAACCAACCCTTGGCAGAACATATCCATCGCGTCCGCCATCTCCAGC AGCCGCACGCGCATCTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCA TGATCGTGCTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTAC TGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTG CTGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGTCTTCGGTTTCCGT GTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATGTTCC GGATCTGGGTACCGAGCTCGAATTCACTGGCCGTCGTTTTACAACGTCGTGA CTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCT TTCGCCAGGCATCGCAGGATGCTGCTGCTACCCTGTGGAACACCTACATCT GTATTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCG CATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTT CATCATCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCGGTATCATT ACCCCCATGAACAGAAATTCCCCCTTACACGGAGGCATCAAGTGACCAAACA GGAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACG CTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGT GAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGCGTT TCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCAC AGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTC AGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGA TAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGA GAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAAT ACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTC GTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTAT CCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGC AAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCT CCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCG AAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC

GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCT CCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTT CGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCA GCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTA AGACACGACTTATCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGA GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACG GCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTAC AGCGGTGGTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT CTCAAGAAGATCCTTTGATCTTTCTACGGGGTCTGACGCTCAGTGGAACGA AAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC TAGATCCTTTTAAATTAAAATGAAGTTTTAAATCAATCTAAAGTATATATG AGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTC AGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACC CTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTT GCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTG GTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATC CCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCA GAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAA TTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACT CAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC GGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTC ATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGT TGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCT TTTACTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCG CAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT TTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACA CCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACC TATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTCTCATGTTT GACAGCTTATCATCGATAAGCTTTAATGCGGTAGTTTATCACAGTTAAATTGC TAACGCAGTCAGGCACCGTGTATGAAATCTAACAATGCGCTCATCGTCATCC TCGGCACCGTCACCCTGGATGCTGTAGGCATAGGCTTGGTTATGCCGGTACT GCCGGCCTCTTGCGGGATATCGTCCATTCCGACAGCATCGCCAGTCACTAT GGCGTGCTAGCGCTATATGCGTTGATGCAATTTCTATGCGCACCCGTTCT CGGAGCACTGTCCGACCGCTTTGGCCGCCGCCCAGTCCTGCTCGCTTCGCTAC TTGGAGCCACTATCGACTACGCGATCATGGCGACCACACCCGTCCTGTGGAT CCCAGACGAGTTAAGTCACCATACGTTAGTACAGGTTGCCACTCTTTTGGCA GACGCAGACCTACGGCTACAATAGCGAAGCGGTCCTGGTATTCATGTTTAAA AATACTGTCGCGATAGCCAAAACGGCACTCTTTGGCAGTTAAGCGCACTTGC TTGCCTGTCGCCAGTTCAACAGAATCAACATAAGCGCAAACTCGCTGTAATT CTACGCCATAAGCACCAATATTCTGGATAGGTGATGAGCCGACACAACCAGG AATTAATGCCAGATTTTCCAGACCAGGCATACCTTCCTGCAAAGTGTATTTTA

CCAGACGATGCCAGTTTTCTCCGGCTCCTACATGTAAATACCACGCATCAGG TTCATCATGAATTTCGATACCTTTGATCCGGTTGATGATCACCGTGCCGCGAT AGTCCTCCAGAAAAAGTACATTACTTCCTTCACCCAGAATAAGAACGGGTTG TCCTTCTGCGGTTGCATACTGCCAGGCATTGAGTAATTGTTGTTCGTCTTCGG CACATACAATGTGCTGAGCATTATGATCAATGCCAAATGTGTTCCAGGGTTT TAAGGAGTGGTTCATAGCTGCTTTCCTGATGCAAAAACGAGGCTAGTTTACC GTATCTGTGGGGGATGGCTTGTAGATATGACGACAGGAAGAGTTTGTAGAA ACGCAAAAAGGCCATCCGTCAGGATGGCCTTCTGCTTAATTTGATGCCTGGC AGTTTATGGCGGCCGCCCCCCCCCCCGGGCCGTTGCTTCGCAACG TTCAAATCCGCTCCCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACA AACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTAT TTGATGCCTGGCAGTTCCCTACTCTCGCATGGGGAGACCCCACACTACCATC GGCGCTACGGCGTTCACTTCTGAGTTCGGCATGGGGTCAGGTGGGACCACC GCGCTACTGCCGCCAGGCAAATTCTGTTTTATCAGACCGCTTCTGCGTTCTGA TTTAATCTGTATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACAGCTTCGGC GTTGTAAGGTTAAGCCTCACGGTTCATTAGTACCGGTTAGCTCAACGCATCG CTGCGCTTACACACCCGGCCTATCAACGTCGTCGTCTTCAACGTTCCTTCAGG ACCCTTAAAGGGTCAGGGAGAACTCATCTCGGGGCAAGTTTCGTGCTTAGAT GCTTCAGCACTTATCTCTTCCGCATTTAGCTACCGGGCAGTGCCATTGGCAT GACAACCCGAACACCAGTGATGCGTCCACTCCGGTCCTCTCGTACTAGGAGC AGCCCCCTCAGTTCTCCAGCGCCCACGGCAGATAGGGACCGAACTGTCTCA CGACGTTCTAAACCCAGCTCGCGTACCACTTTAAATGGCGAACAGCCATACC CTTGGGACCTACTTCAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAA ACACCGCCGTCGATATGAACTCTTGGGCGGTATCAGCCTGTTATCCCCGGAG TACCTTTTATCCGTTGAGCGATGGCCCTTCCATTCAGAACCACCGGATCACTA TGACCTGCTTTCGCACCTGCTCGCGCCGTCACGCTCGCAGTCAAGCTGGCTTA TGCCATTGCACTAACCTCCTGATGTCCGACCAGGATTAGCCAACCTTCGTGCT CCTCCGTTACTCTTTAGGAGGAGACCGCCCAGTCAAACTACCCACCAGACA CTGTCCGCAACCCGGATTACGGGTCAACGTTAGAACATCAAACATTAAAGGG TGGTATTTCAAGGTCGGCTCCATGCAGACTGGCGTCCACACTTCAAAGCCTC CCACCTATCCTACACATCAAGGCTCAATGTTCAGTGTCAAGCTATAGTAAAG GTTCACGGGGTCTTTCCGTCTTGCCGCGGGTACACTGCATCTTCACAGCGAGT TCAATTTCACTGAGTCTCGGGTGGAGACAGCCTGGCCATCATTACGCCATTC GTGCAGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACCGTTAT AGTTACGGCCGCCGTTTACCGGGGCTTCGATCAAGAGCTTCGCTTGCGCTAA CCCCATCAATTAACCTTCCGGCACCGGGCAGGCGTCACACCGTATACGTCCA ATCTTCGACTGATTTCAGCTCCATCCGCGAGGGACCTCACCTACATATCAGC GTGCCTTCTCCCGAAGTTACGGCACCATTTTGCCTAGTTCCTTCACCCGAGTT CTCTCAAGCGCCTTGGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTAC GATTTGATGTTACCTGATGCTTAGAGGCTTTTCCTGGAAGCAGGGCATTTGTT GCTTCAGCACCGTAGTGCCTCGTCATCACGCCTCAGCCTTGATTTTCCGGATT TGCCTGGAAAACCAGCCTACACGCTTAAACCGGGACAACCGTCGCCCGGCCA ACATAGCCTTCTCCGTCCCCCTTCGCAGTAACACCCAAGTACAGGAATATTA ACCTGTTTCCCATCGACTACGCCTTTCGGCCTCGCCTTAGGGGTCGACTCACC CTGCCCGATTAACGTTGGACAGGAACCCTTGGTCTTCCGGCGAGCGGGCTT

TTCACCCGCTTTATCGTTACTTATGTCAGCATTCGCACTTCTGATACCTCCAG CATGCCTCACAGCACACCTTCGCAGGCTTACAGAACGCTCCCCTACCCAACA ACGCATAAGCGTCGCTGCCGCAGCTTCGGTGCATGGTTTAGCCCCGTTACAT GCTGCTTCTAAGCCAACATCCTGGCTGTCTGGGCCTTCCCACATCGTTTCCCA CTTAACCATGACTTTGGGACCTTAGCTGGCGGTCTGGGTTGTTTCCCTCTTCA CGACGGACGTTAGCACCCGCCGTGTGTCTCCCGTGATAACATTCTCCGGTATT CGCAGTTTGCATCGGGTTGGTAAGTCGGGATGACCCCCTTGCCGAAACAGTG CTCTACCCCGGAGATGAATTCACGAGGCGCTACCTAAATAGCTTTCGGGGA GAACCAGCTATCTCCCGGTTTGATTGGCCTTTCACCCCCAGCCACAAGTCATC CGCTAATTTTCAACATTAGTCGGTTCGGTCCTCCAGTTAGTGTTACCCAACC TTCAACCTGCCCATGGCTAGATCACCGGGTTTCGGGTCTATACCCTGCAACTT AACGCCCAGTTAAGACTCGGTTTCCCTTCGGCTCCCCTATTCGGTTAACCTTG CTACAGAATATAAGTCGCTGACCCATTATACAAAAGGTACGCAGTCACACGC CTAAGCGTGCTCCCACTGCTTGTACGTACACGGTTTCAGGTTCTTTTTCACTC CCCTCGCCGGGGTTCTTTTCGCCTTTCCCTCACGGTACTGGTTCACTATCGGT CAGTCAGGAGTATTTAGCCTTGGAGGATGGTCCCCCCATATTCAGACAGGAT ACCACGTGTCCCGCCCTACTCATCGAGCTCACAGCATGTGCATTTTTGTGTAC GGGGCTGTCACCCTGTATCGCGCGCCTTTCCAGACGCTTCCACTAACACACA CACTGATTCAGGCTCTGGGCTGCTCCCCGTTCGCCGCCGCTACTGGGGGAA TCTCGGTTGATTTCTTTTCCTCGGGGTACTTAGATGTTTCAGTTCCCCCGGTTC GCCTCATTAACCTATGGATTCAGTTAATGATAGTGTCGCAAACACACTGGG TTTCCCCATTCGGAAATCGCCGGTTATAACGGTTCATATCACCTTACCGACGC TTATCGCAGATTAGCACGTCCTTCATCGCCTCTGACTGCCAGGGCATCCACCG ATCGTGTTGCGAAAATTTGAGAGACTCACGAACAACTCTCGTTGTTCAGTGT TTCAATTTCAGCTTGATCCAGATTTTTAAAGAGCAAAAATCTCAAACATCAC CAAGTGGCGTCCCCTAGGGGATTCGAACCCCTGTTACCGCCGTGAAAGGGCG GTGTCCTGGGCCTCTAGACGAAGGGGACACGAAAATTGCTTATCACGCGTTG CGTGATATTTCGTGTAGGGTGAGCTTTCATTAATAGAAAGCGAACGGCCTT ATTCTCTTCAGCCTCACTCCCAACGCGTAAACGCCTTGCTTTTCACTTTCTATC AGACAATCTGTGTGAGCACTACAAAGTACGCTTCTTTAAGGTAATCCCATGA TCCAACCGCAGGTTCCCCTACGGTTACCTTGTTACGACTTCACCCCAGTCATG CAACCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTAT TCACCGTGGCATTCTGATCCACGATTACTAGCGATTCCGACTTCATGGAGTCG AGTTGCAGACTCCAATCCGGACTACGACGCACTTTATGAGGTCCGCTTGCTC TCGCGAGGTCGCTTCTCTTTGTATGCGCCATTGTAGCACGTGTGTAGCCCTGG TCGTAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATCAC TGGCAGTCTCCTTTGAGTTCCCGGCCGGACCGCTGGCAACAAAGGATAAGGG TTGCGCTCGTTGCGGGACTTAACCCAACATTTCACAACACGAGCTGACGACA GCCATGCAGCACCTGTCTCACGGTTCCCGAAGGCACATTCTCATCTCTGAAA ACTTCCGTGGATGTCAAGACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAA ACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAAC CTTGCGGCCGTACTCCCCAGGCGGTCGACTTAACGCGTTAGCTCCGGAAGCC

ACGCCTCAAGGGCACAACCTCCAAGTCGACATCGTTTACGGCGTGGACTACC AGGGTATCTAATCCTGTTTGCTCCCACGCTTTCGCACCTGAGCGTCAGTCTT CGTCCAGGGGCCGCCTTCGCCACCGGTATTCCTCCAGATCTCTACGCATTTC ACCGCTACACCTGGAATTCTACCCCCCTCTACGAGACTCAAGCTTGCCAGTA TCAGATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCTGACTTAACAAA CCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCG TATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGTAAC GTCAATGAGCAAAGGTATTAACTTTACTCCCTTCCTCCCGCTGAAAGTACTT TACAACCCGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCG CCCATTGTGCAATATTCCCCACTGCTGCCTCCGTAGGAGTCTGGACCGTGTC TCAGTTCCAGTGTGGCTGGTCATCCTCTCAGACCAGCTAGGGATCGTCGCCT AGGTGAGCCGTTACCCCACCTACTAGCTAATCCCATCTGGGCACATCCGATG GCAAGAGGCCCGAAGGTCCCCCTCTTTGGTCTTGCGACGTTATGCGGTATTA GCTACCGTTTCCAGTAGTTATCCCCCTCCATCAGGCAGTTTCCCAGACATTAC TCACCCGTCCGCCACTCGTCAGCAAAGAAGCAAGCTTCTTCCTGTTACCGTTC GACTTGCATGTTTAGGCCTGCCGCCAGCGTTCAATCTGAGCCATGATCAAA CTCTTCAATTTAAAAGTTTGACGCTCAAAGAATTAAACTTCGTAATGAATTAC GTGTTCACTCTTGAGACTTGGTATTCATTTTTCGTCTTGCGACGTTAAGAATC CGTATCTTCGAGTGCCCACACAGATTGTCTGATAAATTGTTAAAGAGCAGTG CCGCTTCGCTTTTCTCAGCGGCCGCTGTGTGAAATTGTTATCCGCTCACAAT TCCACACATTATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAA TGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTC GGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAG AGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGAC GGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAG CGGTCCACGCTGGTTTGCCCCAGCAGCGGAAAATCCTGTTTGATGGTGGTTG ACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGA GATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCC AGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCAT TCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCC CCAGACGCAGACGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGA TTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTC TTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGA AATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGT CATCCAGCGGATAGTTAATGATCAGCCCACTGACCCGTTGCGCGAGAAGATT GTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCA CCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTG CGACGCGCGTGCAGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGA CTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCG TTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACAT CGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGG CGCTATCATGCCATACCGCGAAAGGTTTTGCACCATTCGATGGTGTCG

AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAAC ACATGCAAGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTG GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTA CTGGAAACGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGGAC CTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGG GGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAG CCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGG GAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAG AAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTT AATACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGT GCCAGCAGCCGCGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGG GCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCT CAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGG TAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGG TGGCGAAGGCGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTG GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCG ACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTC GACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGG GGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAA **CCTTACCTGGTC**

TTGACATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGA GACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAG CTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAA GTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATAC AAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAG TCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATC GTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC GTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGG AGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTA ACCGTAGGGGAACCTGCGGTTGGATCATGGGATTACCTTAAAGAAGCGTACT TTGTAGTGCTCACACAGATTGTCTGATAGAAAGTGAAAAGCAAGGCGTTTAC GCGTTGGGAGTGAGGCTGAAGAGAATAAGGCCGTTCGCTTTCTATTAATGAA AGCTCACCCTACACGAAAATATCACGCAACGCGTGATAAGCAATTTTCGTGT CCCCTTCGTCTAGAGGCCCAGGACACCGCCCTTTCACGGCGGTAACAGGGGT CTTAATATCTCAAAACTCATCTTCGGGTGATGTTTGAGATTTTTGCTCTTTAA AAATCTGGATCAAGCTGAAAATTGAAACACTGAACAACGAGAGTTGTTCGTG **TTGT**

GACCGCCAGCTAAGGTCCCAAAGTCATGGTTAAGTGGGAAACGATGTGGGA AGGCCCAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAGAAA GCGTAATAGCTCACTGGTCGAGTCGGCCTGCGCGGAAGATGTAACGGGGCTA AACCATGCACCGAAGCTGCGGCAGCGACGCTTATGCGTTGTTGGGTAGGGGA GCGTTCTGTAAGCCTGCGAAGGTGTGCTGTGAGGCATGCTGGAGGTATCAGA AGTGCGAATGCTGACATAAGTAACGATAAAGCGGGTGAAAAGCCCGCTCGC CGGAAGACCAAGGGTTCCTGTCCAACGTTAATCGGGGCAGGGTGAGTCGAC CCCTAAGGCGAGGCCGAAAGGCGTAGTCGATGGGAAACAGGTTAATATTCC TGTACTTGGTGTTACTGCGAAGGGGGGGCGAGAAGGCTATGTTGGCCGGGC GACGGTTGTCCCGGTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAA AATCAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGCAACAAAT GCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGTAACATCAAATCGTACCC CAAACCGACACAGGTGGTCAGGTAGAGAATACCAAGGCGCTTGAGAGAACT CGGGTGAAGGAACTAGGCAAAATGGTGCCGTAACTTCGGGAGAAGGCACGC TGATATGTAGGTGAGGTCCCTCGCGGATGGAGCTGAAATCAGTCGAAGATAC CAGCTGGCTGCAACTGTTTATTAAAAACACAGCACTGTGCAAACACGAAAGT GGACGTATACGGTGTGACGCCTGCCCGGTGCCGGAAGGTTAATTGATGGGGT TAGCGCAAGCGAAGCTCTTGATCGAAGCCCCGGTAAACGGCGGCCGTAACT ATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCCGACCTGCAC **GAATGGCGTAA**

TGATGCCAGGCTGTCTCCACCCGAGACTCAGTGAAATTGAACTCGCTGTGA
AGATGCAGTGTACCCGCGGCAAGACGGAAAGACCCCGTGAACCTTTACTATA
GCTTGACACTGAACATTGAGCCTTGATGTGTAGGATAGGTGGGAGGCTTTGA
AGTGTGGACGCCAGTCTGCATGGAGCCGACCTTGAAATACCACCCTTTAATG
TTTGATGTTCTAACGTTGACCCGTAATCCGGGTTGCGGACAGTGTCTGGTGG
GTAGTTTGACTGGGGCGGTCTCCTCCTAAAGAGTAACGGAGGAGCACGAAG
GTTGGCTAATCCTGGTCGGACATCAGGAGGTTAGTGCAATGGCATAAGCCAG
CTTGACTGCGAGCGTGACGGCGCGCGAGCAGGTGCGAAAGCAGGTCATAGTGA
TCCGGTGGTTCTGAATGGAAGGGCCATCGCTCAACGGATAAAAAGGTACTCCG
GGGATAACAGGCTGATACCGCCCAAGAGTTCATATCGACGCCGTGTTTTGGC

ACCTCGATGTCGGCTCATCACATCCTGGGGCTGAAGTAGGTCCCAAGGGTAT GGCTGTTCGCCATTTAAAGTGGTACGCGAGCTGGGTTTAGAACGTCGTGAGA CAGTTCGGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGGCTGCTCC TAGTACGAGAGGACCGGAGTGGACGCATCACTGGTGTTCGGGTTGTCATGCC AATGGCACTGCCCGGTAGCTAAATGCGGAAGAGATAAGTGCTGAAAGCATC TAAGCACGAAACTTGCCCCGAGATGAGTTCTCCCTGACCCTTTAAGGGTCCT GAAGGAACGTTGAAGACGACGTTGATAGGCCGGGTGTGTAACCTTACAACG CATGCGTTGAGCTAACCGGTACTAATGAACCGTGAGGCTTAACCTTACAACG CCGAAGCTGTTTTGGCGGATGAGAAGAATTTTCAGCCTGATACAGATTAAA TCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGC GCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCG CCGATGGTAGTGTGGGGGTCTCCCCCATGCCGAAGTAGGA

ACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTT CGTTTTATCTGTTGTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCC GGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGG ACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGAC GGATGGCCTTTTTGCGTTTCTACAAACTCTTCCTGTCGTCATATCTACAAGCC ATCCCCCACAGATACGGTAAACTAGCCTCGTTTTTGCATCAGGAAAGCAGC TATGAACCACTCCTTAAAACCCTGGAACACATTTGGCATTGATCATAATGCT CAGCACATTGTATGGGCCTTAAGGGCCCAACAATTACTCAATGCCTGGCAGT ACTTTTCTGGAGGACTATCGCGGCACGGTGATCATCAACCGGATCAAAGGT ATCGAAATTCATGATGAACCTGATGCGTGGTATTTACATGTAGGAGCCGGAG AAAACTGGCATCGTCTGGTAAAATACACTTTGCAGGAAGGTATGCCTGGTCT GGAAAATCTGGCATTAATTCCTGGTTGTCGGCTCATCACCTATCCAGAAT ATTGGTGCTTATGGCGTAGAATTACAGCGAGTTTGCGCTTATGTTGATTCTGT TGAACTGGCGACAGGCAAGCAAGTGCGCTTAACTGCCAAAGAGTGCCGTTTT GGCTATCGCGACAGTATTTTAAACATGAATACCAGGACCGCTTCGCTATTG TAGCCGTAGGTCTGCGTCTGCCAAAAGAGTGGCAACCTGTACTAACGTATGG TGACTTAACTCGTCTGGGATCCACAGGACGGGTGTGGTCGCCATGATCGCGT AGTCGATAGTGGCTCCAAGTAGCGAAGCGAGCAGGACTGGGCGGCGGCCAA **AGC**

GGTCGGACAGTGCTCCGAGAACGGGTGCGCATAGAAATTGCATCAACGCAT
ATAGCGCTAGCAGCACGCCATAGTGACTGGCGATGCTGTCGGAATGGACGAT
ATCCCGCAAGAGGCCCGGCAGTACCGGCATAACCAAGCCTATGCCTACAGC
ATCCAGGGTGACGGTGCCGAGGATGACGATGAGCGCATTGTTAGATTTCATA
CACGGTGCCTGACTGCGTTAGCAATTTAACTGTGATAAACTACCGCATTAAA
GCTTATCGATGATAAAGCTGTCAAACATGAGAATTCTTGAAGACGAAAGGGCC
TCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAG
ACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATT
TTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAA
ATGCTTCAATAATATTGAAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTG
TCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAG
AAACGCTGGTGAAAGTAAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGG
GTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCC

CGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCG GTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACT ATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTAC GGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGAT AACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTA ACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGG AA

CCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCT TAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAG GACCACTTCTGCGCTCGGCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCT GGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATG GTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTAT GGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCA TTCATTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATG ACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAG AAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTTCTGCGCGTAATCTGCTGC AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACC AAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCT GTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGC CAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCG GATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGC TTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGA GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGC **GGC**

AGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGG TATCTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTT GTGATGCTCGTCAGGGGGGGGGGGGGCGAGCCTATGGAAAAACGCCAGCAACGCGGC CTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGC CCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAG CGGAAGAGCGCCTGATGCGGTATTTCTCCTTACGCATCTGTGCGGTATTTCA CACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAA GCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGA CACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCAT CCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT TTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCG TGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTT GAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTA AGGGCGGTTTTTTCCTGTTTGGTCACTTGATGCCTCCGTGTAAGGGGGAATTT CTGTTCATGGGGGTAATGATACCGATGAAACGAGAGGAGGATGCTCACGATA CGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAAC AACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAAT

GCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCA TCCTGCGATGCCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGT AACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTC GAGCTCGGTACCTGCACTGACGACAGGAAGAG

TTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGCCTTCTGCTTAATTTG ATGCCTGGCAGTTTATGGCGGGCGTCCTGCCCGCCACCCTCCGGGCCGTTGC TTCGCAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTACTCAGGAGAGCGT TCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTT TCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCATGGGGAGACCCCACA CTACCATCGGCGCTACGACTAGATTATTTGTAGAGCTCATCCATGCCATGTGT AATCCCAGCAGCAGTTACAAACTCAAGAAGGACCATGTGGTCACGCTTTTCG TTGGGATCTTTCGAAAGGGCAGATTGTGTCGACAGGTAATGGTTGTCTGGTA AAAGGACAGGCCATCGCCAATTGGAGTATTTTGTTGATAATGGTCTGCTAG TTGAACGGATCCATCTTCAATGTTGTGGCGAATTTTGAAGTTAGCTTTGATTC CATTCTTTTGTTTGTCTGCCGTGATGTATACATTGTGTGAGTTATAGTTGTACT CGAGTTTGTCCGAGAATGTTTCCATCTTTAAAATCAATACCTTTTAAC TCGATACGATTAACAAGGGTATCACCTTCAAACTTGACTTCAGCACGCGTCT TGTAGTTCCCGTCATCTTTGAAAGATATAGTGCGTTCCTGTACATAACCTTCG GGCATGCCACTCTTGAAAAAGTCATGCCGTTTCATATGATCCGGATAACGGG AAAAGCATTGAACACCATAAGAGAAAGTAGTGACAAGTGTTGGCCATGGAA CAGGTAGTTTCCAGTAGTGCAAATAAATTTAAGGGTAAGCTTTCCGTATGT AGCATCACCTTCACCCTCTCCACTGACAGAAAATTTGTGCCCATTAACATCAC CATCTAATTCAACAAGAATTGGGACAACTCCAGTGAAAAGTTCTTCT CCTTTGCTCGCAGTGATTTTTTTCTCCATTTGCGGAGGGATATGAAAGCGGCC GCTTCCACACATTAAACTAGTTCGATGATTAATTGTCAACAGCTCGCCGGCG GCACCTCGCTAACGGATTCACCACTCCAAGAATTGGAGCCAATCGATTCTTG CGGAGAACTGTGAATGCGGGTACCCAGATCCGGAACATAATGGTGCAGGGC GCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTC ATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGC TCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTA GCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGGACC CAACGCTGCCGAGATGCGCCGCGTGCGGCTGCTGGAGATGGCGGACGCGA TGGATATGTTCTGCCAAGGGTTGGTTTGCGCATTCACAGTTCTCCGCAAGAAT CGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGC GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAAGCGGCCGCT TTCATATCCCTCCGCAAATGGAGAAAAAAATCACTGGATATACCACCGTTGA ÂATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGAC CGTAAAGAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCC GCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCT GGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTG AAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTC TACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTT CCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGA GTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCC

GTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGC TGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAAT GCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTT TTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGAATAAGT GATAATAAGCGGATGAATGGCAGAAATTCGAAAGCAAATTCGACCCGGTCG TCGGTTCAGGGCAGGGTCGTTAAATAGCCGCTTATGTCTATTGCTGGTTTACG GTTTATTGACTACCCGAAGCAGTGTGACCCTGTGCTTCTCAAATGCCTGAGG GCAGTTTGCTCAGGTCTCCCGTGGGGGGGAATAATTAACGGTATGAGCCTTA CGGCGGACGGATCGTGGCCGCAAGTGGGTCCGGCTAGAGGATCCGACACCA TCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGA GTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGA GTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGC CACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTG AATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGC TGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTC GCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGA

GGTAGAACGAAGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCT CGCGCAACGGGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGAT GCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGT CTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACG CGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGT AAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGAC TGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCA TCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAAT GCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTG GGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTCAACCACCA TCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGcGGACCGCTTGCTGCA ACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTG GTGAAAAGAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGC GCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAA CCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGAATTGTGAGC GGATAACAATTTCACACAGCGGCCGCTGAGAAAAAGCGAAGCGGCACTGCT CTTTAACAATTTATCAGACAATCTGTGTGGGCACTCGAAGATACGGATTCTT AACGTCGCAAGACGAAAAATGAATACCAAGTCTCAAGAGTGAACACGTAAT TCATTACGAAGTTTAATTCTTTGAGCGTCAAACTTTTAACGACGCCAGTGA ATTCGAGCTCGGTACCTGCACTGACGACAGGAAGAG

AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAAC ACATGCAAGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTG GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTA CTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGAC CTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGG GGTAACGGCTCACCTAGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAG CCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGG GAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAG AAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTT AATACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGT GCCAGCAGCCGCGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGG GCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCT CAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGG TAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGG TGGCGAAGGCGCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTG GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCG ACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTC GACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGG GGCCCGCACAAGCGGCGAGCATGTGGATTAATTCGATGCAACGCGAAGAA CCTTACCTGGGTTTGACATGCACAGGACGCGTCTAGAGATAGGCGTTCCCTT GTGGCCTGTGTGCAGGTGGTGCATGGCTGTCGTCAGCTCGTGTGAGATG TTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCTCATGTTGCCAGCACGT AATGGTGGGGACTCGTGAGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGG GATGACGTCAAGTCATCCCCCTTATGTCCAGGGCTTCACACATGCTACA ATGGCCGGTACAAAGGGCTGCGATGCCGCGAGGTTAAGCGAATCCTTAAAA GCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGT CGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTG TACACACCGCCCGTCACGTCATGAAAGTCGGTAACACCCGAAGCCAGTGGCC TAACCCTCGGGAGGGAGCTGTCGAAGGTGGGATCGGCGATTGGGACGAAGT CGTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCATGGGATTACCTTA AAGAAGCGTACTTTGTAGTGCTCACACAGATTGTCTGATAGAAAGTGAAAAG CAAGGCGTTTACGCGTTGGGAGTGAGGCTGAAGAGAATAAGGCCGTTCGCTT TCTATTAATGAAAGCTCACCCTACACGAAAATATCACGCAACGCGTGATAAG CAATTTCGTGTCCCCTTCGTCTAGAGGCCCAGGACACCGCCCTTTCACGGCG AAGTCGCCGACCTTAATATCTCAAAACTCATCTTCGGGTGATGTTTGAGATTT TTGCTCTTTAAAAATCTGGATCAAGCTGAAAATTGAAACACTGAACAACGAG AGTTGTTCGTGAGTCTCTCAAATTTTCGCAACACGATGATGAATCGAAAGAA ACATCTTCGGGTTGTGAGGTTAAGCGACTAAGCGTACACGGTGGATGCCCTG GCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGATAAGCGTCGGTAAGG TGATATGAACCGTTATAACCGGCGATTTCCGAATGGGGAAACCCAGTGTGTT TCGACACACTATCATTAACTGAATCCATAGGTTAATGAGGCGAACCGGGGGA ACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCGAGATTCCCCCA TAGTGGAAGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGTACAC

AAAAATGCACATGCTGTGAGCTCGATGAGTAGGGCGGGACACGTGGTATCCT TAGTGAACCAGTACCGTGAGGGAAAGGCGAAAAGAACCCCGGCGAGGGGA GTGAAAAAGAACCTGAAACCGTGTACGTACAAGCAGTGGGAGCACGCTTAG GCGTGTGACTGCGTACCTTTTGTATAATGGGTCAGCGACTTATATTCTGTAGC AAGGTTAACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGGCGT TAAGTTGCAGGGTATAGACCCGAAACCCGGTGATCTAGCCATGGGCAGGTTG AAGGTTGGGTAACACTAACTGGAGGACCGAACCGACTAATGTTGAAAAATT AGCGGATGACTTGTGGCTGGGGGTGAAAGGCCAATCAAACCGGGAGATAGC TGGTTCTCCCGAAAGCTATTTAGGTAGCGCCTCGTGAATTCATCTCCGGGG GTAGAGCACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGATGCAA ACTGCGAATACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAAC GTCCGTCGTGAAGAGGGAAACAACCCAGACCGCCAGCTAAGGTCCCAAAGT CATGGTTAAGTGGGAAACGATGTGGGAAGGCCCAGACAGCCAGGATGTTGG CTTAGAAGCAGCCATCATTTAAAGAAAGCGTAATAGCTCACTGGTCGAGTCG GCCTGCGCGGAAGATGTAACGGGGCTAAACCATGCACCGAAGCTGCGGCAG CGACGCTTATGCGTTGTTGGGTAGGGGAGCGTTCTGTAAGCCTGCGAAGGTG TGCTGTGAGGCATGCTGGAGGTATCAGAAGTGCGAATGCTGACATAAGTAAC GATAAAGCGGGTGAAAAGCCCGCTCGCCGGAAGACCAAGGGTTCCTGTCCA ACGTTAATCGGGGCAGGGTGAGTCGACCCCTAAGGCGAGGCCGAAAGGCGT AGTCGATGGGAAACAGGTTAATATTCCTGTACTTGGTGTTACTGCGAAGGGG GGACGGAGAAGGCTATGTTGGCCGGGCGACGGTTGTCCCGGTTTAAGCGTGT AGGCTGGTTTTCCAGGCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACG AGGCACTACGGTGCTGAAGCAACAAATGCCCTGCTTCCAGGAAAAGCCTCTA AGCATCAGGTAACATCAAATCGTACCCCAAACCGACACAGGTGGTCAGGTA GAGAATACCAAGGCGCTTGAGAGAACTCGGGTGAAGGAACTAGGCAAAATG GTGCCGTAACTTCGGGAGAAGGCACGCTGATATGTAGGTGAGGTCCCTCGCG GATGGAGCTGAAATCAGTCGAAGATACCAGCTGGCTGCAACTGTTTATTAAA AACACAGCACTGTGCAAACACGAAAGTGGACGTATACGGTGTGACGCCTGC CCGGTGCCGGAAGGTTAATTGATGGGGTTAGCGCAAGCGAAGCTCTTGATCG AAGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAAT TCCTTGTCGGGTAAGTTCCGACCTGCACGAATGGCGTAATGATGGCCAGGCT GTCTCCACCCGAGACTCAGTGAAATTGAACTCGCTGTGAAGATGCAGTGTAC CCGCGGCAAGACGGAAAGACCCCGTGAACCTTTACTATAGCTTGACACTGAA CATTGAGCCTTGATGTGTAGGATAGGTGGGAGGCTTTGAAGTGTGGACGCCA GTCTGCATGGAGCCGACCTTGAAATACCACCCTTTAATGTTTGATGTTCTAAC GTTGACCCGTAATCCGGGTTGCGGACAGTGTCTGGTGGGTAGTTTGACTGGG GCGGTCTCCTAAAGAGTAACGGAGGAGCACGAAGGTTGGCTAATCCTGG TCGGACATCAGGAGGTTAGTGCAATGGCATAAGCCAGCTTGACTGCGAGCGT GACGCCGCGAGCAGGTCCGAAAGCAGGTCATAGTGATCCGGTGGTTCTGAA TGGAAGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAACAGGCTG ATACCGCCCAAGAGTTCATATCGACGGCGGTGTTTGGCACCTCGATGTCGGC TCATCACATCCTGGGGCTGAAGTAGGTCCCAAGGGTATGGCTGTTCGCCATT TAAAGTGGTACGCGAGCTGGGTTTAGAACGTCGTGAGACAGTTCGGTCCCTA TCTGCCGTGGGCGCTGGAGAACTGAGGGGGGCTGCTCCTAGTACGAGAGGA

CCGGAGTGGACGCATCACTGGTGTTCGGGTTGTCATGCCAATGGCACTGCCC GGTAGCTAAATGCGGAAGAGATAAGTGCTGAAAGCATCTAAGCACGAAACT TGCCCGAGATGAGTTCTCCCTGACCCTTTAAGGGTCCTGAAGGAACGTTGA AGACGACGACGTTGATAGGCCGGGTGTGTAAGCGCAGCGATGCGTTGAGCT AACCGGTACTAATGAACCGTGAGGCTTAACCTTACAACGCCGAAGCTGTTTT GGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGAACGCAGA AGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGTGGTCCCAC CTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGT GGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAA GCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGC AACGCCCGGAGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATC AAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAAC TCTTCCTGTCGTCATATCTACAAGCCATCCCCCCACAGATACGGTAAACTAGC CTCGTTTTTGCATCAGGAAAGCAGCTATGAACCACTCCTTAAAACCCTGGAA CACATTTGGCATTGATCATAATGCTCAGCACATTGTATGGGCCTTAAGGGCC CAACAATTACTCAATGCCTGGCAGTATGCAACCGCAGAAGGACAACCCGTTC TTATTCTGGGTGAAGGAAGTAATGTACTTTTTCTGGAGGACTATCGCGGCAC GGTGATCATCAACCGGATCAAAGGTATCGAAATTCATGATGAACCTGATGCG TGGTATTTACATGTAGGAGCCGGAGAAAACTGGCATCGTCTGGTAAAATACA CTTTGCAGGAAGGTATGCCTGGTCTGGAAAATCTGGCATTAATTCCTGGTTGT GTCGGCTCATCACCTATCCAGAATATTGGTGCTTATGGCGTAGAATTACAGC CTTAACTGCCAAAGAGTGCCGTTTTGGCTATCGCGACAGTATTTTTAAACATG AATACCAGGACCGCTTCGCTATTGTAGCCGTAGGTCTGCGTCTGCCAAAAGA GTGGCAACCTGTACTAACGTATGGTGACTTAACTCGTCTGGGATCCACAGGA CGGGTGTGGTCGCCATGATCGCGTAGTCGATAGTGGCTCCAAGTAGCGAAGC GAGCAGGACTGGGCGGCGCCAAAGCGGTCGGACAGTGCTCCGAGAACGGG TGCGCATAGAAATTGCATCAACGCATATAGCGCTAGCAGCACGCCATAGTGA CTGGCGATGCTGTCGGAATGGACGATATCCCGCAAGAGGCCCGGCAGTACC GGCATAACCAAGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGATG ACGATGAGCGCATTGTTAGATTTCATACACGGTGCCTGACTGCGTTAGCAAT TTAACTGTGATAAACTACCGCATTAAAGCTTATCGATGATAAGCTGTCAAAC ATGAGAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGT TAATGTCATGATAATAGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGA AATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTA TCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGG AAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGC ATTTTGCCTCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATG CTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAG CGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGC ACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCA AGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTAC TCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTAT

AACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGA AACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGC AAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAG ACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCC GGCTGGCTGGTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGC GGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTA TCTACACGACGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCG CTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTA CTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCT AGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTT TCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAG CCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGT AACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCG TAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCT GCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACC GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGA ACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAA CTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGG AGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCG CACGAGGGAGCTTCCAGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGG TTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCG GAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTT TGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGAT AACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGA CCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGCAAGAGCGCCTGATGCGGT ATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTC AGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATC GCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACCCGCTGAC GCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGA CCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACG CGCGAGGCAGCTGCGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACA GATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTA ATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTG GTCACTTGATGCCTCCGTGTAAGGGGGAATTTCTGTTCATGGGGGGTAATGAT ACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGAACA TGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGG CGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACA GATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCCTGGCGAAA GGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGT CACGACGTTGTAAAACGACGCCAGTGAATTCGAGCTCGGTACCTGCACTGA CGACAGGAAGAGTTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGCCT TCTGCTTAATTTGATGCCTGGCAGTTTATGGCGGGCGTCCTGCCCGCCACCCT CCGGGCCGTTGCTTCGCAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTACT

CAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTT CGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCATGG GGAGACCCCACACTACCATCGGCGCTACGACTAGATTATTTGTAGAGCTCAT CCATGCCATGTGTAATCCCAGCAGCAGTTACAAACTCAAGAAGGACCATGTG GTCACGCTTTTCGTTGGGATCTTTCGAAAGGGCAGATTGTGTCGACAGGTAA TGGTTGTCTGGTAAAAGGACAGGGCCATCGCCAATTGGAGTATTTTGTTGAT AATGGTCTGCTAGTTGAACGGATCCATCTTCAATGTTGTGGCGAATTTTGAA GTTAGCTTTGATTCCATTCTTTTGTTTGTCTGCCGTGATGTATACATTGTGTGA GTTATAGTTGTACTCGAGTTTGTGTCCGAGAATGTTTCCATCTTCTAAAAT CAATACCTTTTAACTCGATACGATTAACAAGGGTATCACCTTCAAACTTGACT TCAGCACGCGTCTTGTAGTTCCCGTCATCTTTGAAAGATATAGTGCGTTCCTG TACATAACCTTCGGGCATGGCACTCTTGAAAAAGTCATGCCGTTTCATATGA TCCGGATAACGGGAAAAGCATTGAACACCATAAGAGAAAGTAGTGACAAGT GCTTTCCGTATGTAGCATCACCTTCACCCTCTCCACTGACAGAAAATTTGTGC CCATTAACATCACCATCTAATTCAACAAGAATTGGGACAACTCCAGTGAAAA GTTCTTCTCCTTTGCTCGCAGTGATTTTTTTTCTCCATTTGCGGAGGGATATGA AAGCGGCCGCTTCCACACATTAAACTAGTTCGATGATTAATTGTCAACAGCT CGCCGGCGCACCTCGCTAACGGATTCACCACTCCAAGAATTGGAGCCAATC GATTCTTGCGGAGAACTGTGAATGCGGGTACCCAGATCCGGAACATAATGGT GCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAG ACCATTCATGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCA CGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGC CAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCC AGGACCCAACGCTGCCGAGATGCGCCGCGTGCGGCTGCTGGAGATGGCGG ACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCGCATTCACAGTTCTCCGC AAGAATCGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCC GCCGGCGAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAAGCG GCCGCTTTCATATCCCTCCGCAAATGGAGAAAAAAATCACTGGATATACCAC CGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCA GTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTT AAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATT CTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACG GTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAG CAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGC AGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGC CTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCT GGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTC GCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGA TGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGC AGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCG TAATTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGA ATAAGTGATAATAAGCGGATGAATGGCAGAAATTCGAAAGCAAATTCGACC CGGTCGTCGGTCAGGGCAGGGTCGTTAAATAGCCGCTTATGTCTATTGCTG GTTTACGGTTTATTGACTACCCGAAGCAGTGTGACCCTGTGCTTCTCAAATGC

CTGAGGGCAGTTTGCTCAGGTCTCCCGTGGGGGGGAATAATTAACGGTATGA GCCTTACGGCGGACGGATCGTGGCCGCAAGTGGGTCCGGCTAGAGGATCCG ACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGA AGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTC GCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGG CCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGG AGCTGAATTACATTCCCAACCGCGTGGCACAACACTGGCGGGCAAACAGTC GTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAA ATTGTCGCGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGG TGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACA ATCTTCTCGCGCAACGGGTCAGTGGGCTGATCATTAACTATCCGCTGGATGA CCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTC TTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGAC GGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCG TGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAG GCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGA GGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGC GCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGG TAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTCAAC CACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGcGGACCGCTTG CTGCAACTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCT CACTGGTGAAAAGAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCC CCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTG GCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGAATTGT GAGCGGATAACAATTTCACACAGCGGCCGCTGAGAAAAAGCGAAGCGGCAC TGCTCTTTAACAATTTATCAGACAATCTGTGTGGGCACTCGAAGATACGGAT TCTTAACGTCGCAAGACGAAAAATGAATACCAAGTCTCAAGAGTGAACACG TAATTCATTACGAAGTTTAATTCTTTGAGCGTCAAACTTTT

44/47

AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAAC ACATGCAAGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTG GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGGTAACTA CTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGGAC CTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGG GGTAACGGCTCACCTAGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAG CCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGG GAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAG AAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTT AATACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGT GCCAGCAGCCGCGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGG GCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCT CAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGG TAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGG TGGCGAAGGCGCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTG GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCG ACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTC GACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGG GGCCCGCACAAGCGCGAGCATGTGGATTAATTCGATGCAACGCGAAGAA CCTTACCTGGGTTTGACATGCACAGGACGCGTCTAGAGATAGGCGTTCCCTT GTGGCCTGTGTGCAGGTGGTGCATGGCTGTCGTCAGCTCGTGTGAGATG TTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCTCATGTTGCCAGCACGT AATGGTGGGACTCGTGAGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGG GATGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACACATGCTACA ATGGCCGGTACAAAGGGCTGCGATGCCGCGAGGTTAAGCGAATCCTTAAAA GCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGT CGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTG TACACACCGCCGTCACGTCATGAAAGTCGGTAACACCCGAAGCCAGTGGCC TAACCCTCGGGAGGGAGCTGTCGAAGGTGGGATCGGCGATTGGGACGAAGT CGTAACAAGGTAACCGTAGGGAACCTGCGGTTGGATCATGGGATTACCTTA AAGAAGCGTACTTTGTAGTGCTCACACAGATTGTCTGATAGAAAGTGAAAAG CAAGGCGTTTACGCGTTGGGAGTGAGGCTGAAGAGAATAAGGCCGTTCGCTT TCTATTAATGAAAGCTCACCCTACACGAAAATATCACGCAACGCGTGATAAG CAATTTCGTGTCCCCTTCGTCTAGACGTAGCGCCGATGGTAGTGTGGGGTCT CCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCA GTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCC TGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGC CCGGAGGGTGGCGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTA AGCAGAAGGCCATCCTGACGGATGGCCTTTTTTGCGTTTCTACAAACTCTTCCT GTCGTCACTGCAGGCATGCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCT GTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCA TAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGC GTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATT AATGAATCGGCCAACGCGGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTC CGCTTCCTCGCTCACTGACTCGCTGCGCTCGTTCGGCTGCGGCGAGCG

GTATCAGCTCACACAGGCGGTAATACGGTTATCCACAGAATCAGGGGATA ACGCAGGAAAGACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGT AAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGC ATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTAT AAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCG ACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGC GCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCT CCAAGCTGGGCTGTGCACGAACCCCCGTTCAGCCCGACCGCTGCGCCTT ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCA CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGT GCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAG TATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGG TAGCTCTTGATCCGGCAAACAACCACCGCTGGTAGCGGTGGTTTTTTTGTTT GCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGA TCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAA AATGAAGTTTTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAG TTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTT CATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGG CTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCG GCTCCAGATTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGA AGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGA AGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATT CGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAA TGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCA TCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGA ATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAAT ACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTT CGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTA ACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTT CTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAAGGGAATAAGG GCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAG CATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGA AAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGA CGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATC ACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGAC ACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAG CAGACAGCCCGTCAGGGCGCTCAGCGGGTGTTGGCGGGTGTCGGGGCTG GCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGG TGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCAT TCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTT CGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTG GGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAA

TTCGAGCTCGGTACCTGCAGTGACGACAGGAAGAGTTTGTAGAAACGCAAA AAGGCCATCCGTCAGGATGGCCTTCTGCTTAATTTGATGCCTGGCAGTTTATG GCGGGCGTCCTGCCCGCCACCCTCCGGGCCGTTGCTTCGCAACGTTCAAATC ATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCT GGCAGTTCCCTACTCTCGCATGGGGAGACCCCACACTACCATCGGCGCTACG TCTAGATTATTTGTAGAGCTCATCCATGCCATGTGTAATCCCAGCAGCAGTTA CAAACTCAAGAAGGACCATGTGGTCACGCTTTTCGTTGGGATCTTTCGAAAG GGCAGATTGTCTCGACAGGTAATGGTTGTCTGGTAAAAGGACAGGGCCATCG CCAATTGGAGTATTTTGTTGATAATGGTCTGCTAGTTGAACGGATCCATCTTC CGTGATGTATACATTGTGTGAGTTATAGTTGTACTCGAGTTTGTGTCCGAGAA TGTTTCCATCTTTAAAATCAATACCTTTTAACTCGATACGATTAACAAGG GTATCACCTTCAAACTTGACTTCAGCACGCGTCTTGTAGTTCCCGTCATCTTT GAAAGATATAGTGCGTTCCTGTACATAACCTTCGGGCATGGCACTCTTGAAA AAGTCATGCCGTTTCATATGATCCGGATAACGGGAAAAGCATTGAACACCAT AAGAGAAAGTAGTGACAAGTGTTGGCCATGGAACAGGTAGTTTTCCAGTAGT GCAAATAAATTTAAGGGTAAGCTTTCCGTATGTAGCATCACCTTCACCCTCTC CACTGACAGAAATTTGTGCCCATTAACATCACCATCTAATTCAACAAGAAT TGGGACAACTCCAGTGAAAAGTTCTTCTCCTTTGCTAGCAGTGATTTTTTCT CCATTTGCGGAGGGATATGAAAGCGGCCGCTTCCACACATTAAACTAGTTCG ATGATTAATTGTCAACAGCTCGCCGGCGCACCTCGCTAACGGATTCACCAC TCCAAGAATTGGAGCCAATCGATTCTTGCGGAGAACTGTGAATGCGGGTACC CAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTT ACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGT AACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCA CGATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGAGATGCGCCGCGT TGCGCATTCACAGTTCTCCGCAAGAATCGATTGGCTCCAATTCTTGGAGTGGT GAATCCGTTAGCGAGGTGCCGCCGGCGAGCTGTTGACAATTAATCATCGAAC TAGTTTAATGTGTGGAAGCGGCCGCTTTCATATCCCTCCGCAAATGGAGAAA AAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAAC ATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAG CTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTT ATCCGGCCTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTC CGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTT GTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGA ATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCG TGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTT TTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGG CCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACG CAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCT GTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGA TGAGTGGCAGGGCGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAA

ACGCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAA ATTCGAAAGCAAATTCGACCCGGTCGTCGGTTCAGGGCAGGGTCGTTAAATA GCCGCTTATGTCTATTGCTGGTTTACGGTTTATTGACTACCCGAAGCAGTGTG ACCCTGTGCTTCTCAAATGCCTGAGGGCAGTTTGCTCAGGTCTCCCGTGGGG GGGAATAATTAACGGTATGAGCCTTACGGCGGACGGATCGTGGCCGCAAGT GGGTCCGGCTAGAGGATCCGACACCATCGAATGGTGCAAAACCTTTCGCGGT ATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAA CCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCG TTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAA AGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACA ACAACTGGCGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTG GCCCTGCACGCGCCGTCGCAAATTGTCGCGCGATTAAATCTCGCGCCGATC AACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAG CCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGGGTCAGTGGGCTGAT ACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAG TATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTC GCATTGGGcCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTC GGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATT CAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAA CAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTG CCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCT GCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAG CTCATGTTATATCCCGCCGTCAACCACCATCAAACAGGATTTTCGCCTGCTGG GGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAA GGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCG CCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGC TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATT AATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCC GGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACACAGCGGCC GCTGAGAAAAAGCGAAGCGGCACTGCTCTTTAACAATTTATCAGACAATCTG TGTGGGCACTCGAAGATACGGATTCTTAACGTCGCAAGACGAAAAATGAAT ACCAAGTCTCAAGAGTGAACACGTAATTCATTACGAAGTTTAATTCTTTGAG **CGTCAAACTTTT**