Projeto PipeMania

Grupo tp033

Francisco Ferro Pereira, nº107502 Tiago Romão, nº104182

Estratégia utilizada - Visão Geral

- Pré-processamento nas bordas.
- Propagação de restrições pelo tabuleiro (iterando em espirais).
- Chamar algoritmo de procura para gerar os diferentes estados para ações incertas.
- goal_test() verifica se existem clusters usando um BFS que começa num ponto arbitrário do tabuleiro.

Pré-processamento das bordas

Problema resolvido sem procura!

Procura

- Por vezes, a propagação de restrições não consegue inferir mais nada no tabuleiro.
- Precisamos da procura para gerar os estados das diferentes configurações possíveis do tabuleiro.

FD	LH	VE	VB	LH	FE	FB	VB	FE	FD	LH	BB	LH	LH	FE
FB	VB	VC	BD	LH	FE	BD	VC	VB	VE	VB	BC	FE	VB	FE
BD	BC	LH	VC	VB	FE	LV	FB	LV	LV	BD	LH	LH	BC	FE
LV	FB	FB	VB	VC	FB	LV	LV	LV	LV	BD	LH	FE	VB	FE
BD	BC	BC	BC	LH	BC	VD	VC	BB	BB	VC	FD	VB	BE	FB
LV	VB	FE	FB	VB	LV	VB	FD	BE	BC	FD	VD	BE	VD	VC
BD	VC	FD	BE	LH	FD	FC	FE	LH	BC	LH	FE	BD	LH	VE
VD	LH	VE	VD	BC	LV	VE	VC	LV	BE	LH	LH	BC	FE	LV
FD	LH	BC	LH	BE	BB	VE	FB	LH	BE	BB	VE	VB	LH	VC
VB	FE	FB	VB	BD	VB	FE	LV	LV	FE	LV	FC	LV	VB	FE
VD	BB	BC	BC	BE	LH	BB	BE	BB	VD	LV	FD	BC	BE	FB
FD	BE	FB	VB	BC	BE	BD	BE	VE	FE	FC	FB	FB	VD	BE
FD	BE	VD	BE	FB	LV	FC	LV	LV	FB	FB	BD	BC	VE	LV
VB	BE	FB	BD	VC	VD	FE	LV	FC	VD	BE	VD	VE	LV	LV
FC	FC	VD	BC	LH	LH	FE	VD	LH	LH	BC	FE	FC	VD	VC

Uso de dicionários

```
(11, 7): {'BB', 'BD', 'BE'}
> (4, 6): {'VC', 'VD'}
> (4, 7): {'VC', 'VD'}
> (4, 8): {'BD', 'BC', 'BE'}
> (4, 9): {'BD', 'BC', 'BE'}
> (4, 10): {'VC', 'VD'}
> (4, 11): {'FB', 'FE'}
> (11, 8): {'VE', 'VB'}
> (5, 3): {'FB', 'FD'}
> (10, 4): {'BB', 'BE'}
> (11, 5): {'BB', 'BE'}
> (11, 9): {'FE', 'FC'}
> (8, 4): {'BB', 'BE', 'BC'}
> (9, 4): {'BB', 'BC', 'BE'}
> (5, 4): {'VE', 'VB'}
> (4, 5): {'BE', 'BC'}
> (6, 3): {'BB', 'BE'}
> (7, 4): {'BB', 'BE', 'BC'}
> (10, 9): {'VC', 'VE'}
> (11, 6): {'BB', 'BE', 'BD'}
> (7, 9): {'BB', 'BC', 'BD'}
> (8, 9): {'BB', 'BC', 'BD'}
> (9, 9): {'FB', 'FE', 'FC'}
> (5, 10): {'FD', 'FE', 'FC'}
> (6, 9): {'BB', 'BD', 'BC'}
```

Sort por número de ações possíveis


```
> (4, 6): {'VD', 'VC'}
> (4, 7): {'VD', 'VC'}
> (4, 10): {'VD', 'VC'}
> (4, 11): {'FE', 'FB'}
> (11, 8): {'VE', 'VB'}
> (5, 3): {'FB', 'FD'}
> (10, 4): {'BE', 'BB'}
> (11, 5): {'BE', 'BB'}
> (11, 9): {'FE', 'FC'}
> (5, 4): {'VE', 'VB'}
> (4, 5): {'BE', 'BC'}
> (6, 3): {'BE', 'BB'}
> (10, 9): {'VE', 'VC'}
> (11, 7): {'BE', 'BD', 'BB'}
> (4, 8): {'BE', 'BD', 'BC'}
> (4, 9): {'BE', 'BD', 'BC'}
> (8, 4): {'BE', 'BB', 'BC']
> (9, 4): {'BE', 'BB', 'BC'}
> (7, 4): {'BE', 'BB', 'BC'}
> (11, 6): {'BE', 'BD', 'BB']
> (7, 9): {'BD', 'BB', 'BC'}
> (8, 9): {'BD', 'BB', 'BC'}
> (9, 9): {'FE', 'FB', 'FC'}
> (5, 10): {'FE', 'FD', 'FC'}
> (6, 9): {'BD', 'BB', 'BC'}
```

Heurísticas

1 ° - Número de pipes desconectados.

<u>Inadmissível</u>

2° - Número de aberturas de pipes desconectadas (+ granular e informativa)

Prós e Contras

Prós:

 Pré-processamento e propagação reduzem número de nós a gerar (menos profundidade na árvore de procura)

 Ordenar o dicionário permite-nos considerar primeiro ações com menos opções.

Contras:

 Ordenar o dicionário a cada nó expandido é custoso computacionalmente.

 A verificação do goal_test() a cada nó também pode ser um bottleneck porque tem de percorrer o tabuleiro todo.

Comparação entre algoritmos

