I. Algebraic Integers

1. Motivation

At its most elementary, number theory is the study of integers. Few topics:

- o primes;
- o integer equations;
- o divisibility;
- o gcd; and
- o prime factorization.

The goal is to generalize these topics with *commutative algebra*.

Naive approach is to use UFD's. A problem with this is that there are many *integer-like* integral domains, such as $\mathbb{Z}\left[\sqrt{5}\right]$, that are not UFD's.

Let us do some random math and see where it goes. Consider

$$\alpha = \frac{1+\sqrt{5}}{2}.$$

Note that $\alpha \in \mathbb{Q}\left[\sqrt{5}\right]$. In fact, observe that α is the root of the polynomial x^2-x-1 , so that

$$\alpha^2 = \alpha + 1. \tag{1.1}$$

Def'n 1.1. $\mathbb{Z}[\alpha]$

Given $\alpha \in \mathbb{C}$, define

$$\mathbb{Z}\left[\alpha\right] = \left\{f(\alpha) : f \in \mathbb{Z}\left[x\right]\right\}.$$

For the specific $\alpha = \frac{1+\sqrt{5}}{2}$, observe that [1.1] tells us that we can replace any α^2 with a linear polynomial in α , so that

$$\mathbb{Z}\left[\alpha\right] = \left\{a + b\alpha : a, b \in \mathbb{Z}\right\}.$$

This simplification worked because

there is a monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

In fact, observe that $\alpha = \frac{1+\sqrt{5}}{2}$ implies that

$$(2\alpha - 1)^2 = 5,$$

which means if we have any other number congruent to 5 mod 4 in place of 5, we would still get a polynomial of the form

$$4\alpha^2 - 4\alpha - b = 0,$$

where $b \equiv 0 \mod 4$.

The last thing we note about $\mathbb{Z}[\alpha]$ is that

$$\mathbb{Z}[\alpha] = \mathbb{Z} + \mathbb{Z} \alpha.$$

In general, we want to have

$$\mathbb{Z}\left[\alpha\right] = \mathbb{Z} + \mathbb{Z} \alpha + \dots + \mathbb{Z} \alpha^{n-1}$$

which allows us to do \mathbb{Z} -module theory.

2. Algebraic Integers

Def'n 1.2. Algebraic Integer

We say $\alpha \in \mathbb{C}$ is an *algebraic integer* if and only if there exists a monic $f \in \mathbb{Z}[x]$ such that

$$f(\alpha) = 0.$$

We do not insist that f is irreducible. For instance, $7, \sqrt{5}, \frac{1+\sqrt{5}}{2}, i, 1+i, \zeta_n$ are all algebraic integers, where ζ_n is an nth root of unity.

How do we tell if an *algebraic number* $\alpha \in \mathbb{C}$ (i.e. α is a root of a not-necessarily monic polynomial over \mathbb{Z}) is an algebraic integer?

Theorem 1.1.

An algebraic number $\alpha \in \mathbb{C}$ is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} is over \mathbb{Z} .

Postponed

Corollary 1.1.1.

The only algebraic integers in \mathbb{Q} are integers.

Example 1.1. —

Consider

$$\beta = \frac{1+\sqrt{3}}{2}.$$

Then $(2\beta - 1)^2 = 3$, so that β is a root for

$$f = x^2 - x - \frac{1}{2}$$
.

But f is a monic polynomial with deg (f) = 2 and a root β of f is irrational, it follows that f is the minimal polynomial for β over \mathbb{Q} . Thus β is not an algebraic integer.

Suppose that

$$f = \sum_{j=0}^{n} a_j x^j \in \mathbb{Z}[x].$$

Then the *content* of *f* is

content
$$(f) = \gcd(a_0, \ldots, a_n)$$

and we say that

f is *primitive*
$$\iff$$
 content $(f) = 1$.

In this setting, Gauss's lemma can be stated as following.

Lemma 1.2. Gauss's Lemma

Let $f, g \in \mathbb{Z}[x]$. If f, g are primitive, then so is fg.

Proof of Theorem 1.1

(←) This direction is trivial, as any minimal polynomial is monic.

(\Longrightarrow) Let $\alpha \in \mathbb{C}$ be an algebraic integer and let $m \in \mathbb{Q}[x]$ be its minimal polynomial. Let $f \in \mathbb{Z}[x]$ be monic such that $f(\alpha) = 0$. Since m is the minimal polynomial,

$$f = mg$$

for some $g \in \mathbb{Q}[x]$.

Take $N_1, N_2 \in \mathbb{N}$ be the smallest positive integers such that $N_1m, N_2g \in \mathbb{Z}[x]$. If $p \in \mathbb{N}$ is a prime dividing all coefficients of N_1m , then $\frac{N_1}{p}m \in \mathbb{Z}[x]$. In fact, $\frac{N_1}{p} \in \mathbb{Z}$, since m is monic so that the leading coefficient of N_1m is N_1 . This leads to a contradiction, as $\frac{N_1}{p} < N_1$ violates minimality of N_1 .

Also note that f, m are monic, so that g is monic as well. Hence by following a similar argument, N_2g is primitive.

Now,

$$N_1N_2f = (N_1m)(N_2g)$$

Since f is monic, observe that the content of N_1N_2f is N_1N_2 . But N_1m , N_2g are primitive, so by Gauss's lemma, (N_1m) (N_2g) is primitive. Therefore

$$N_1N_2 = \operatorname{content}(N_1N_2f) = \operatorname{content}((N_1m)(N_2g)) = 1,$$

which means $N_1 = N_2 = 1$. Thus $m \in \mathbb{Z}[x]$.

QED

3. Ring of Integers

Example 1.2.

Let $d \in \mathbb{Z}$ be *square-free* and $d \neq 1$. That is, in the prime factorization of d, there are no multiplicities. Consider

$$K = \mathbb{Q}\left(\sqrt{d}\right) = \left\{a + b\sqrt{d} : a, b \in \mathbb{Q}\right\}.$$

Then we know that

 K/\mathbb{Q} is finite $\implies K/\mathbb{Q}$ is algebraic.

We are going to find all algebraic integers in *K*. Let

$$\alpha = a + b\sqrt{d} \in K$$

be an algebraic integer. Consider the conjugate

$$\overline{\alpha} = a - b\sqrt{d}.$$

Then

$$m = (x - \alpha)(x - \overline{\alpha}) = x^2 - 2ax + a^2 - db^2$$

is the minimal polynomial for α over \mathbb{Q} . By Theorem 1.1, it follows that $2a, a^2 - db^2 \in \mathbb{Z}$. Now,

$$4(a^2 - db^2) = (2a)^2 - d(2b)^2$$

but $a^2 - db^2$, $(2a)^2 \in \mathbb{Z}$, so that

$$d(2b)^2 \in \mathbb{Z}$$
.

Since d is square-free, it follows that $2b \in \mathbb{Z}$. If not, then the denominator of 2b is not 1. This means the denominator of $(2b)^2$ has a square of a prime as a factor, which contradicts the fact that d is square-free. Hence y = 2a, $\delta = 2b \in \mathbb{Z}$. This means

$$a^2 - db^2 = \left(\frac{\gamma}{2}\right)^2 - d\left(\frac{\delta}{2}\right)^2 = \frac{\gamma^2 - d\delta^2}{4} \in \mathbb{Z}.$$

It follows $y^2 - d\delta^2 \equiv 0 \mod 4$.

We have few cases.

Case 1. $d \equiv 1 \mod 4$.

It follows that

$$\gamma^2 \equiv \delta^2 \mod 4$$
.

But even numbers square to 0 mod 4 and odd numbers square to 1 mod 4. Hence

$$\gamma \equiv \delta \mod 2$$
.

It follows that α is of the form

$$\alpha = a + b\sqrt{d} = \frac{\gamma + \delta\sqrt{d}}{2}$$

for some $\gamma, \delta \in \mathbb{Z}$.

(End of Case 1)

Case 2. $d \equiv 2 \mod 4$ or $d \equiv 3 \mod 4$.

It is a routine exercise to show that

$$\gamma^2 - d\delta^2 \equiv 0 \mod 4 \iff \gamma \equiv \delta \equiv 0 \mod 2.$$

Hence

$$\alpha = \frac{\gamma}{2} + \frac{\delta}{2}\sqrt{d}$$

but γ , δ are even numbers, so that $a = \frac{\gamma}{2}$, $b = \frac{\delta}{2} \in \mathbb{Z}$ and

$$\alpha = a + b\sqrt{d}.$$

(End of Case 2)

Exercise: check these conditions are also sufficient.

The above example gives the following idea.

Given a finite extension K/\mathbb{Q} , we find all algebraic integers in K.

This motivates the following definitions.

Def'n 1.3. Number Field, Ring of Integers of a Number Field

We call a finite extension K of \mathbb{Q} a *number field*.

Given a number field *K*, we call

$$\mathcal{O}_K = \{ \alpha \in K : \alpha \text{ is an algebraic integer} \}$$

the *ring of integers* of *K*.

We are going to prive that \mathcal{O}_K is a ring.¹ To do so, we first show

$$\mathbb{A} = \{ z \in \mathbb{C} : z \text{ is an algebraic integer} \}$$

is a ring, so that

$$\mathcal{O}_K = \mathbb{A} \cap K$$

is also a ring.

Recall that, given $\alpha \in \mathbb{A}$, we have

$$\mathbb{Z}\left[\alpha\right] = \mathbb{Z} + \mathbb{Z} \alpha + \cdots + \mathbb{Z} \alpha^{n-1}.$$

This allows us to do module theory over \mathbb{Z} .

Def'n 1.4. R-module

Let R be a ring. An R-module is an abelian group (M, +) with a left R-action on M such that

- (a) 1m = m for $m \in M$;
- (b) $(r_1 + r_2) m = r_1 m + r_2 m$ for $r_1, r_2 \in R, m \in M$;
- (c) $r(m_1 + m_2) = rm_1 + rm_2$ for $r \in R, m_1, m_2 \in M$; and
- (d) $(r_1r_2) m = r_1(r_2m)$ for $r_1, r_2 \in R, m \in M$.

¹We are going to assume that every ring is unital and commutative throughout, if not stated otherwise.

Example 1.3. Examples of *R*-modules

Given a ring *R*, *R* is an *R*-module with left action

$$r \cdot m = rm$$

$$\forall r, m \in R$$
.

In fact, given any subring $S \subseteq \mathbb{R}$, R is an S-module with

$$s \cdot r = sr$$
,

$$\forall s \in S, r \in R$$
.

Similar to \mathbb{R}^n which is a \mathbb{R} -vector space, \mathbb{R}^n is an \mathbb{R} -module with

$$r\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} rx_1 \\ \vdots \\ rx_n \end{bmatrix},$$

$$\forall r \in R, \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in R^n.$$

Example 1.4.

Consider $R = \mathbb{Z}$ and consider an R-module M. Then given $n \in \mathbb{N}$, $m \in M$,

$$n \cdot m = (1 + \dots + 1) \cdot m = 1 \cdot m + \dots + 1 \cdot m = m + \dots + m = nm$$
.

That is, the \mathbb{Z} -module on an abelian group M does not impose any additional structure on M; a \mathbb{Z} -module is simply an abelian group.

As an exercise, we can also check that

$$(-n) \cdot m = -nm$$

for $n \in \mathbb{N}$, $m \in M$.

Def'n 1.5. R-submodule, Homomorphism of R-modules, Finitely Generated R-module

Let *R* be a ring and let *M* be an *R*-module. We say $N \subseteq M$ is an *R*-submodule of *M* if *N* is an *R*-module using the same operations as *M*.

Given *R*-modules M, N, we say $f: M \to N$ is a **homomorphism** if and only if

$$f(rm_1 + m_2) = rf(m_1) + f(m_2),$$
 $\forall r \in R, m_1, m_2 \in M.$

In case *f* is bijective, we say *f* is an *isomorphism*.

We say an *R*-module is *finitely generated* if there are $m_1, \ldots, m_n \in M$ such that

$$M = Rm_1 + \cdots + Rm_n$$
.

That is, for any $m \in M$, there exists $r_1, \ldots, r_n \in R$ such that

$$m=\sum_{j=1}^n r_j m_j.$$

In other words, finite number of elements m_1, \ldots, m_n generate M.

Observe that

 $N \subseteq M$ is an R-submodule \iff N is subgroup of M closed under R-left action.

Example 1.5.

Given a ring *R*, as an *R*-module, the only *R*-submodules are the ideals of *R*.

Def'n 1.6. Integral over R

Let R, S be integral domains, such that R is a subring of S. We say $\alpha \in S$ is *integral* over R if there is monic $f \in R[x]$ such that $f(\alpha) = 0$.

Example 1.6.

In case $R = \mathbb{Z}$, $S = \mathbb{C}$, given $\alpha \in S$,

 α is integral $\iff \alpha$ is algebraic integer.

That is, being integral over *R* is a generalization of being an algebraic integer.

Theorem 1.3.

Let R, S be integral domains where R is a subring of S and let $\alpha \in S$. Then

 α is integral over $R \iff R[\alpha] = \{f(\alpha) : f \in R[x]\}$ is a finitely generated R-module.

Proof. (\Longrightarrow) Suppose α is integral over R. Then there is a polynomial relation

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \cdots + a_{1}\alpha + a_{0} = 0$$

for some $a_0, \ldots, a_{n-1} \in R$. Rearranging for α^n ,

$$\alpha^n = -\left(a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0\right).$$

This means, given any $f \in R[x]$, every powers $\alpha^n, \alpha^{n+1}, \dots$ in $f(\alpha)$ can be replaced by lower powers of α , so that

$$f(\alpha) = g(\alpha)$$

for some $g \in R[x]$ with deg $(g) \le n - 1$. That is,

$$R[\alpha] \subseteq R + R\alpha + \cdots + R\alpha^{n-1}$$
.

But the reverse containment is trivial, so that $R[\alpha]$ is finitely generated.

(\iff) Suppose $R[\alpha]$ is finitely generated, say

$$R[\alpha] = Rf_1(\alpha) + \cdots + Rf_n(\alpha)$$

with $f_1, \ldots, f_n \in R[x]$. Take $N = \max_{1 \le j \le n} \deg(f_j)$. Then $\alpha^{N+1} \in R[x]$ as a polynomial of α , so that

$$\alpha^{N+1} = \sum_{i=1}^{n} r_{i} f_{i}(\alpha)$$

for some $r_1, \ldots, r_n \in R$.

Now consider

$$g = x^{N+1} - \sum_{i=1}^{n} r_{i} f_{i} \in R[x].$$

Then $g(\alpha) = 0$. But $\deg(x^{N+1}) = N+1 > N = \max_{1 \le j \le n} \deg(f_j)$, so that g is monic as well. Thus α is algebraic over R.

QED

The big idea for Theorem 1.3 is that

showing $\mathbb{Z}[\alpha]$ is finitely generated is often easier than finding monic $f \in \mathbb{Z}[x]$ with $f(\alpha) = 0$.

"Let's work with generators instead of polynomials" - Blake.

Theorem 1.4.

Let

$$\mathbb{A} = \{ z \in \mathbb{C} : z \text{ is an algebraic integer} \}.$$

Then \mathbb{A} is a subring of \mathbb{C} .

Proof Attempt. If we are in PMATH 348, proving something is *easy*; we simply apply the subring test. Let's see how it fails here. Let $\alpha, \beta \in \mathbb{A}$. We must show that $\alpha - \beta, \alpha\beta \in \mathbb{A}$. That is, we must show

 $\mathbb{Z}\left[\alpha-\beta\right], \mathbb{Z}\left[\alpha\beta\right]$ are finitely generated \mathbb{Z} -modules.

Since α , β are algebraic integers, write

$$\mathbb{Z}\left[\alpha\right] = \sum_{j=1}^{n} \mathbb{Z} \, \alpha_{j}, \quad \mathbb{Z}\left[\beta\right] = \sum_{j=1}^{m} \mathbb{Z} \, \beta_{j}.$$

Therefore,

$$\mathbb{Z}[\alpha, \beta] = \{ f(\alpha, \beta) : \mathbb{Z}[x, y] \}$$

is also finitely generated. In fact, it is generated by $\left\{\alpha_i\beta_j\right\}_{1\leq i\leq n, 1\leq j\leq m}$. Hence $\mathbb{Z}\left[\alpha,\beta\right]$ is finitely generated as a \mathbb{Z} -module.

We have that $\mathbb{Z}[\alpha - \beta]$, $\mathbb{Z}[\alpha\beta]$ are \mathbb{Z} -submodules of the \overline{fg} module $\mathbb{Z}[\alpha, \beta]$.

Now, if we use the intuition from linear algebra, we should be done here. Recall that subspaces of a finite-dimensional vector space are finite-dimensional. But this is not the case for modules!

Proof Failed

Example 1.7. Submodule of a Finitely Generated Module That Is Not Finitely Generated

Consider

$$R=[x_1,x_2,\ldots].$$

Then R is a finitely generated R-module (i.e. R = R1). But observe that

$$I = \langle x_1, x_2, \ldots \rangle$$

is not finitely generated.

To see this, observe that elements of R are polynomials in x_1, x_2, \ldots , which has *only finitely many indeterminates*. So having finitely many polynomials does not give enough number of indeterminates to generate I.

To resolve this issue, we consider the following definition.

Def'n 1.7. Noetherian Ring

Let *R* be a ring. We say *R* is *Noetherian* if every *R*-submodule (i.e. ideal) of *R* is finitely generated.

Example 1.8.

Observe that \mathbb{Z} is Noetherian, as it is a PID (i.e. every ideal of \mathbb{Z} is generated by *an* element).

Theorem 1.5.

Let *R* be a Noetherian ring and let *M* be a finitely generated *R*-module. Then every *R*-submodule of *M* is finitely generated.

Theorem 1.5 resolves the issue we left in Theorem 1.4, since \mathbb{Z} is Noetherian.

Let us reduce Theorem 1.5 a bit. Consider a finitely generated R-module

$$M = R\alpha_1 + \cdots + R\alpha_n$$

and an epimorphism of *R*-modules

$$f: R^n \to M$$

$$(r_1, \dots, r_n) \mapsto r_1 \alpha_1 + \dots + r_n \alpha_n$$

That is, every finitely generated R-module can be viewed as an R-submodule of R^n .

Moreover, for any *R*-submodule $N \subseteq M$,

$$f^{-1}(N) \subseteq R^n$$
.

If
$$f^{-1}(N) = R\beta_1 + \cdots + R\beta_m$$
, then

$$N = Rf(\beta_1) + \cdots + Rf(\beta_m)$$
.

Hence it remains to show that every *R*-submodule *N* of *M* satisfy $f^{-1}\left(N\right)=R\beta_{1}+\cdots+R\beta_{m}$ for some $\beta_{1},\ldots,\beta_{m}\in R$.

Proof of Theorem 1.5

We may assume $M = R^n$. If n = 1, then R is Noetherian and we are done.

Suppose that the result holds for some $n \ge 1$ and consider $M = R^{n+1}$. Consider the epimorphism

$$\pi: R^{n+1} \to R$$
$$(r_1, \dots, r_{n+1}) \mapsto r_{n+1}$$

Let N be an R-submodule of M. Consider

$$N_1 = \{(r_1, \ldots, r_{n+1}) \in N : r_{n+1} = 0\}$$

which is isomorphic to an R-submodule of R^n . Hence by inductive hypothesis, N_1 is finitely generated. Moreover,

$$N_2 = \pi(N)$$

is an *R*-submodule of *R*, so is finitely generated (by inductive hypothesis).

Say

$$N_1 = Rx_1 + \dots + Rx_p$$

$$N_2 = R\pi (y_1) + \dots + R\pi (y_q)$$

for some $x_1, \ldots, x_p, y_1, \ldots, y_q \in R$. Let $x \in N$. Then

$$\pi\left(x\right)=r_{1}\pi\left(y_{1}\right)+\cdots+r_{q}\pi\left(y_{q}\right)$$

for some $r_1, \ldots, r_q \in R$. But π is a homomorphism of R-modules, so that

$$\pi\left(x-\sum_{j=1}^q r_j y_j\right)=0.$$

This means the (n+1)th entry of $x-\sum_{j=1}^q r_j y_j$ is 0, so that $x-\sum_{j=1}^q r_j y_j \in N_1$. That is,

$$x - \sum_{i=1}^{q} r_j y_j = \sum_{k=1}^{p} s_k x_k$$

for some $s_1, \ldots, s_p \in R$.

Thus

$$x = \sum_{j=1}^{q} r_j y_j + \sum_{k=1}^{p} s_k x_k,$$

so that

$$N = \sum_{i=1}^{q} Ry_j + \sum_{k=1}^{p} Rx_k,$$

as required.

4. Additive Structure

So far, it has been very useful to consider \mathcal{O}_K as a \mathbb{Z} -module. Let us investigate this \mathbb{Z} -module as an abelian group

$$(\mathcal{O}_K,+)$$

without multiplication structure, where *K* is a number ring (i.e. $[K : \mathbb{Q}] < \infty$).

The next definition will make it clear the kind of *linear algebraic* approach we are going to take.

Def'n 1.8. **Linearly Independent** Subset of an R-module, **Basis** for an R-module, **Free** R-module Let R be a ring and let M be an R-module. Let R be a ring and let R be an R-module.

(a) Say B is *linearly independent* if and only if for all $m_1, \ldots, m_n \in B, r_1, \ldots, r_n \in R$,

$$r_1m_1+\cdots+r_nm_n=0 \implies r_1=\cdots=r_n=0.$$

(b) Say *B* spans *M* if for all $x \in M$, there are $b_1, \ldots, b_n \in B, r_1, \ldots, r_n \in R$ such that

$$x = r_1b_1 + \cdots + r_nb_n.$$

(c) Say *B* is a *basis* for *M* if *B* is linearly independent and spans *M*. In case *M* admits a basis, we call it a *free R*-module.

In case there is a basis B for M, the size of any other basis for M is |B|.

Def'n 1.9. Rank of a Free R-module

Let R be a ring and let M be a free R-module. Then the size of a basis for M is called the *rank* of M, denoted as rank (M).

Proposition 1.6.

Let *R* be a ring and let *M* be an *R*-module. Let $B \subseteq M$. Then

B is a basis \iff every $x \in M$ can be uniquely written as an R-linear combination of elements of B.

In particular,

M is free with rank $(M) = n < \infty \iff M \cong \mathbb{R}^n$ by $(r_1, \dots, r_n) \leftrightarrow r_1b_1 + \dots + r_nb_n$ for some $b_1, \dots, b_n \in M$, in which case $\{b_1, \dots, b_n\}$ is a basis for M.

Example 1.9. Free but not Finitely Generated —

Consider $R = \mathbb{Z}, M = \mathbb{Z}[x], B = \{1, x, x_2, \ldots\}$. Then M is a free module generated by B but is not finitely generated.

Example 1.10. Finitely Generated but not Free

Consider $R = \mathbb{Z}$, $M = \mathbb{Z}_2$. Then $2 \cdot 1 = 0$ but $2 \neq 0$ in R. So the only R-linearly independent subset of M is the emptyset \emptyset , so that M is fintely generated but not free.

Example 1.11. —

Consider $R = \mathbb{Z}, M = \mathbb{Z} \times \mathbb{Z}, N = \mathbb{Z} \times 2 \mathbb{Z}$. Then M is free with a basis

$$B_1 = \{(1,0),(0,1)\},\$$

so that rank (M) = 2. Also, N is free with a basis

$$B_2 = \{(1,0), (0,2)\},\$$

so that rank (N) = 2. However, observe that B_2 is an R-linearly independent subset of M with rank (M) elements!

This particular example shows that it is possible for modules of rank n to have a linearly independent subset of n elements which does not span the whole module, unlike the case in linear algebra.

We are going to present two facts without proof. Fix a PID R and a free R-module M with rank $(M) = n < \infty$.

Fact 1.7.

For an *R*-submodule $N \subseteq M$, *N* is free with rank $(N) \le n$.

Fact 1.8.

Any maximal linearly independent subset of M has n elements.

The next goal is to show that ring of integers is a free module. That is, given a number field K with $[K:\mathbb{Q}]=n$, our goal is to find an embedding (i.e. monomorphism) $\varphi:\mathcal{O}_K\to\mathbb{Z}^n$ such that $\mathrm{rank}\,(\varphi(\mathcal{O}_K))=n$.

This will tell us $\mathcal{O}_k \cong \mathbb{Z}^n$ as \mathbb{Z} -modules. In particular, $(\mathcal{O}_K, +)$ is a free module with rank n.

Def'n 1.10. Integral Basis

Given a free \mathbb{Z} -module M, a basis for M is called an *integral basis*.

We introduce two useful tools in algebraic number theory.

Def'n 1.11. Trace, Norm of an Element of a Number Field

Let *K* be a number field with $[K : \mathbb{Q}] = n < \infty$. Let $\alpha \in K$ and consider

$$T_{\alpha}: K \to K$$

 $x \mapsto \alpha x'$

which is a Q-linear operator.

(a) The *trace* of α relative to K/\mathbb{Q} , denoted as $\operatorname{tr}_{K/\mathbb{Q}}(\alpha)$, is

$$\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = \operatorname{tr}(T_{\alpha}).$$

(b) The *norm* of α relative to K/\mathbb{Q} , denoted as $N_{K/\mathbb{Q}}(\alpha)$, is

$$N_{K/\mathbb{O}}(\alpha) = \det(T_{\alpha})$$
.

Note that $\operatorname{tr}_{K/\mathbb{Q}}(\alpha)$, $N_{K/\mathbb{Q}}(\alpha) \in \mathbb{Q}$, since T_{α} is a \mathbb{Q} -linear operator (hence the entries of any matrix representation of T_{α} are rational).

Let $\alpha \in K$. Let β be a \mathbb{Q} -basis for K and let $A = [T_{\alpha}]_{\beta}$. Consider the characteristic and minimal polynomials $f, p \in \mathbb{Q}[x]$, respectively, of A. Notice that, for $g \in \mathbb{Q}[x]$ and $v \in K$,

$$g(T_{\alpha}) v = g(\alpha) v$$

since $T_{\alpha}^m v = \alpha^m v$ for $m \in \mathbb{N} \cup \{0\}$. In particular,

$$g(\alpha) = 0 \iff g(T_{\alpha}) = 0,$$

so that *p* is the minimal polynomial for α over \mathbb{Q} . By the Cayley-Hamilton theorem, p|f. However,

$$deg(f) = [K : \mathbb{Q}] = n.$$

We consider the following particular case.

Case 1. Suppose

$$K = \mathbb{Q}(\alpha)$$
.

On the other hand, since p is the minimal polynomial of α ,

$$deg(p) = [\mathbb{Q}(\alpha) : \mathbb{Q}] = [K : \mathbb{Q}] = n.$$

Hence p|f, deg $(f) = \deg(p)$, and f, p are monic, so that f = p.

Let $\alpha = \alpha_1, \alpha_2, \dots, \alpha_n$ be the conjugates of α (i.e. the roots of p in \mathbb{C}). But the roots of the characteristic polynomial of an operator are the eigenvalues (with multiplicity) and f = p, so that

$$\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = \operatorname{tr}(T_{\alpha}) = \sum_{j=1}^{n} \alpha_{j}$$

and

$$N_{K/\mathbb{Q}}(\alpha) = \det(T_{\alpha}) = \prod_{j=1}^{n} \alpha_{j}.$$

Also note that

$$\sum_{j=1}^{n} \alpha_j = -\left[x^{n-1}\right] p$$

and

$$(-1)\left[x^{0}\right]p=\left(-1\right)^{n}p\left(0\right).$$

Recall from the field theory that the embeddings of $K = \mathbb{Q}(\alpha)$ in \mathbb{C} are exactly given by $\sigma_j(\alpha) = \alpha_j$ for $j \in \{1, \ldots, n\}$. That is,

$$\operatorname{tr}_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^{n} \alpha_{i} = \sum_{j=1}^{n} \sigma_{j}(\alpha)$$

and

$$N_{K/\mathbb{Q}}\left(lpha
ight)=\prod_{j=1}^{n}lpha_{j}=\prod_{j=1}^{n}\sigma_{j}\left(lpha
ight).$$

(End of Case 1)

Apart from Case 1, we want to compute $\operatorname{tr}_{K/\mathbb{Q}}(\alpha)$, $N_{K/\mathbb{Q}}(\alpha)$ in general. To do so, we introduce the following lemma with a technical proof.

Lemma 1.9.

Suppose that *K* is a number field with $[K : \mathbb{Q}] = n$ and let $\alpha \in K$ with $[K : \mathbb{Q}(\alpha)] = m$. Consider

$$T_{\alpha}: K \to K$$

 $x \mapsto \alpha x$

Let $f \in \mathbb{Q}[x]$ be the characteristic polynomial of T_α and let $p \in \mathbb{Q}[x]$ be the minimal polynomial for α . Then

$$f = p^m$$
.

Note that we recover Case 1 when m = 1 (i.e. $K = \mathbb{Q}(\alpha)$).

Proof. Let

$$\beta = \{y_1, \dots, y_d\}$$

be a \mathbb{Q} -basis for $\mathbb{Q}(\alpha)$ and let

$$\beta' = \{z_1, \ldots, z_m\}$$

be a $\mathbb{Q}(\alpha)$ -basis for K. By the tower theorem, we have that

$$\{y_j z_k\}_{1 \le j \le d, 1 \le k \le m}$$

is a \mathbb{Q} -basis for K.

Let $A = [T_{\alpha}]_{\beta} \in \mathbb{Q}^{d \times d}$ (where we consider the restriction $T_{\alpha} : \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$). Recall from linear algebra that

$$\alpha y_j = T_{\alpha}(y_j) = (A[y_j]_{\beta})^T[y_1 \quad \cdots \quad y_d^T] = (Ae_j)^T[y_1 \quad \cdots \quad y_d^T] = \sum_{k=1}^d a_{k,i}y_k,$$

where $A = [a_{k,i}]_{k,i=1}^d$. This implies

$$\alpha y_i z_j = \sum_{k=1}^d a_{ki} y_k z_j. \tag{1.2}$$

QED

Consider the ordered basis

$$\gamma = (y_1z_1, \ldots, y_dz_1, y_1z_2, \ldots, y_dz_2, \ldots, y_1z_m, \ldots, y_dz_m).$$

Then [1.2] gives (exercise)

$$\left[T_{lpha}
ight]_{\gamma}=egin{bmatrix}A&&&&\ &A&&&\ &A&&&\ &&\ddots&&\ &&&A\end{bmatrix}.$$

Immediately,

$$f = \det\left(xI - A\right)^m = p^m,$$

where the last equality follows from Case 1.

Consider the setting of Lemma 1.9. Observe that

$$\operatorname{tr}_{K/\mathbb{Q}}\left(lpha
ight)=\operatorname{tr}\left(T_{lpha}
ight)=\sum_{j}\lambda_{j},$$

where λ_j 's are the eigenvalues of T_α . But f is the characteristic polynomial for T_α and $f = p^m$, so that

$$\operatorname{tr}_{K/\mathbb{Q}}\left(lpha
ight)=m\sum_{j=1}^{rac{m}{n}}lpha_{j}.$$

Similarly,

$$N_{K/\mathbb{Q}}\left(lpha
ight)=\left(lpha_{1}\cdotslpha_{rac{n}{m}}
ight)^{m}.$$

The embeddings of $\mathbb{Q}(\alpha)$ in \mathbb{C} are determined by $\sigma_j(\alpha) = \alpha_j$ for $j \in \{1, \dots, \frac{n}{m}\}$. By Assignment 1, each σ_j extends to exactly m embeddings of K in \mathbb{C} . If ρ_1, \dots, ρ_n are the embeddings of K in \mathbb{C} , them

$$\operatorname{tr}_{K/Q}(\alpha) = m \sum_{j=1}^{n} \sigma_{j}(\alpha) = \sum_{j=1}^{n} \rho_{n}(\alpha).$$

Similarly,

$$N_{K/\mathbb{Q}}\left(lpha
ight)=\prod_{j=1}^{n}
ho_{j}\left(lpha
ight).$$

Let *K* be a number field with $[K : \mathbb{Q}] = n$ and let $\alpha, \beta \in K, q \in \mathbb{Q}$. Then

$$\operatorname{tr}_{K/\mathbb{Q}}\left(q\alpha+\beta\right)=\sum_{j=1}^{n}\sigma_{j}\left(q\alpha+\beta\right)=q\sum_{j=1}^{n}\sigma_{j}\left(\alpha\right)+\sum_{j=1}^{n}\sigma_{j}\left(\beta\right)=q\operatorname{tr}_{K/\mathbb{Q}}\left(\alpha\right)+\operatorname{tr}_{K/\mathbb{Q}}\left(\beta\right).$$

That is, $\operatorname{tr}_{K/\mathbb{Q}}$ is a linear map.

On the other hand,

$$N_{K/\mathbb{Q}}\left(q\alpha\beta\right) = \prod_{j=1}^{n} \sigma_{j}\left(q\alpha\beta\right) = \prod_{j=1}^{n} q\sigma_{j}\left(\alpha\right)\sigma_{j}\left(\beta\right) = q^{n}N_{K/\mathbb{Q}}\left(\alpha\right)N_{K/\mathbb{Q}}\left(\beta\right).$$

Now suppose $\alpha \in \mathcal{O}_K$. Then

$$\operatorname{tr}_{K/\mathbb{Q}}\left(\alpha\right) = \sum_{j=1}^{n} \sigma_{j}\left(\alpha\right).$$

If α is the root of a monic $f \in K[x]$, then so are $\sigma_j(\alpha)$'s, since the minimal polynomial for α divides f. Hence $\operatorname{tr}_{K/\mathbb{Q}}(\alpha) \in \mathcal{O}_K$. But the trace is always a rational number, so that

$$\operatorname{tr}_{K/\mathbb{O}}(\alpha) \in \mathbb{Z}$$
.

In a similar manner,

$$N_{K/\mathbb{O}}(\alpha) \in \mathbb{Z}$$
.

Example 1.12.

Consider $K = \mathbb{Q}\left(\sqrt{d}\right)$, where $d \in \mathbb{N}$ is squarefree and $d \neq 1$. Let

$$\alpha = a + b\sqrt{d}$$

for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Then

$$\operatorname{tr}_{K/\mathbb{Q}}\left(lpha
ight)=\left(a+b\sqrt{d}
ight)+\left(a-b\sqrt{d}
ight)=2a$$

and

$$N_{K/\mathbb{Q}}\left(lpha
ight)=\left(a+b\sqrt{d}
ight)\left(a-b\sqrt{d}
ight)=a^2-db^2.$$

Recall that $a^2 - db^2$ is frequently used in (elementary) ring theory! That is

$$a+b\sqrt{d}$$
 is a unit in $\mathbb{Q}\left(\sqrt{d}\right)\iff a^2-db^2=1$ or $a^2-db^2=-1$.

We have the following generalization, left as an exercise.

Exercise 1.13.

Consider a number field K and let $R = \mathcal{O}_K$. Prove that for $\alpha \in R$,

$$\alpha \in R^{\times} \iff N_{K/\mathbb{O}}(\alpha) = 1 \text{ or } N_{K/\mathbb{O}}(\alpha) = -1.$$

This concludes every properties of trace and norm for the course. As a first application, we are going to prove that every \mathcal{O}_K is a free \mathbb{Z} -module.

Here we prove a very powerful theorem with a cascade of useful corollaries. Fix

K a number field with $[K : \mathbb{Q}] = n$.

Theorem 1.10.

 $(\mathcal{O}_K,+)\cong \mathbb{Z}^n$.

Proof. Let $\{x_1, \ldots, x_n\}$ be a \mathbb{Q} -basis for K. By Assignment 1, we may assume each $x_i \in \mathcal{O}_K$. Let

$$\varphi: K \to \mathbb{Q}^n$$
$$x \mapsto (\operatorname{tr}(xx_1), \dots, \operatorname{tr}(xx_n)),$$

where tr is the shorthand for $\operatorname{tr}_{K/\mathbb{Q}}$.

Since tr is \mathbb{Q} -linear, so that φ is \mathbb{Q} -linear. Moreover, if for $x \in K$,

$$\varphi(x) = 0$$
,

then

$$\operatorname{tr}(xx_i) = 0, \quad \forall j \in \{1, \dots, n\}.$$

But $\{x_1, \ldots, x_n\}$ is a \mathbb{Q} -basis for K, so that

$$\operatorname{tr}(xy) = 0, \quad \forall y \in K.$$
 [1.3]

For contradiction, suppose $x \neq 0$. Since $x \in K$ is nonzero and K is a field, we have $x^{-1} \in K$. But

$$\operatorname{tr}(xx^{-1}) = \operatorname{tr}(1) = \operatorname{tr}(I_{n \times n}) = n \neq 0.$$

This contradicts [1.3], so we conclude x = 0. Hence φ has trivial kernel, which means φ is a monomorphism of \mathbb{Q} -vector spaces. Since we know that $\varphi(\alpha) \in \mathbb{Z}$ for $\alpha \in \mathcal{O}_K$, it follows that

$$\mathcal{O}_K \stackrel{\varphi}{\cong} \varphi \left(\mathcal{O}_K \right) \subseteq \mathbb{Z}^n$$
.

That is, \mathcal{O}_K isomorphic to a \mathbb{Z} -submodule of \mathbb{Z}^n .

By Fact 1.7, it follows that \mathcal{O}_K is a free \mathbb{Z} -module with rank $(\mathcal{O}_K) \leq n$, since \mathbb{Z} is a PID. But we have a \mathbb{Q} -linearly independent, hence \mathbb{Z} -linearly independent, set $\{x_1, \ldots, x_n\}$ contained in \mathcal{O}_K , so that rank $(\mathcal{O}_K) \geq n$. Thus we conclude

$$\operatorname{rank}\left(\mathcal{O}_{K}\right)=n$$

by Fact 1.8.

QED

Example 1.14. Warning Example

Consider $\{1, \sqrt{5}\} \subseteq \mathbb{Q}(\sqrt{5})$, which is a \mathbb{Q} -basis for $\mathbb{Q}(\sqrt{5})$. However, it is not an *integral basis* for $\mathbb{Q}(\sqrt{5})$ over \mathbb{Q} . Theorem 1.10 only shows that *integral basis exists*, but it hasn't constructed one!

Corollary 1.10.1.

If *I* is a nonzero ideal of \mathcal{O}_K , then $(I, +) \cong \mathbb{Z}^n$.

Proof. Let $\{x_1, \ldots, x_n\}$ be an integral basis for \mathcal{O}_K and let $a \in I$ be nonzero. Then $\{ax_1, \ldots, ax_n\}$ is a \mathbb{Z} -linearly independent subset of I, so that $n \leq \operatorname{rank}(I)$.

QED

Corollary 1.10.2.

If *I* is a nonzero ideal of \mathcal{O}_K , then \mathcal{O}_K/I is finite.

To prove Corollary 1.10.2, here is the last fact we steal from commutative algebra.

Fact 1.11.

If *M* is a finitely generated \mathbb{Z} -module, then $M \cong \mathbb{Z}^n \times T$, where is *T* is a finite \mathbb{Z} -module.

Fact 1.11 is a consequence of the unfamous structure theorem for finitely generated modules over a PID.

Proof of Corollary 1.10.2

By Fact 1.11, we know

$$\mathcal{O}_K/I\cong Z^k\times T$$

as Z-modules, where T is finite. We are going to show that k=0. To do so, observe that for $k \ge 1$, there is an element of infinite order in \mathbb{Z}^k . Hence it suffices to show that there is no element of infinite order in \mathcal{O}_K/I .

Suppose

$$\overline{x} = x + I \in \mathcal{O}_K / I$$

is an element of infinite order for contradiction. Let $\{x_1, \ldots, x_n\}$ be an integral basis for I. We note that, since $x_1, \ldots, x_n \in I$ but x + I has infinite order, so that $x \notin I$.

Claim 1. $\{x, x_1, \dots, x_n\}$ is linearly independent.

Suppose

$$cx + \sum_{j=1}^{n} c_j x_j = 0$$

for some $c, c_1, \ldots, c_n \in \mathbb{Z}$. Then

$$c\overline{x} = 0 + I$$
.

But \overline{x} has an infinite order, so that c = 0. But x_1, \ldots, x_n are linearly independent, so that $c_1, \ldots, c_n = 0$ as well.

(End of Claim 1)

Note that the conclusing of Claim 1 contradicts the fact that $I \cong \mathbb{Z}^n$. Thus we conclude that

$$\mathcal{O}_K/I \cong T$$
.

- QED

Corollary 1.10.3.

Every nonzero prime ideal of \mathcal{O}_K is maximal.

Proof. Since *P* is a prime ideal, \mathcal{O}_K/P is an integral domain. By Corollary 1.10.2, \mathcal{O}_K/P is a finite integral domain, so it is a field. Hence *P* is maximal.

— QED

Corollary 1.10.4.

 \mathcal{O}_K is Noetherian.

Proof. Let *I* be an ideal of \mathcal{O}_K . Then *I* is a free \mathbb{Z} -module with finite rank *n*, which means *I* is a finitely generated \mathbb{Z} -module. Since \mathbb{Z} is a submodule of \mathcal{O}_K , *I* is also a finitely generated \mathcal{O}_K .

QED

II. Discriminant

Suppose we have a number field K with $[K : \mathbb{Q}] = n$ and let $R = \mathcal{O}_K$. Given $\{v_1, \dots, v_n\} \subseteq R$, we desire to find a way to discriminate whether or not $\{v_1, \dots, v_n\}$ is an integral basis for R.

Fix *K*, *R* throughout.

1. Elementary Properties of Discriminant

We first record the definition of discriminant and than investigate many importnat properties of it.

Def'n 2.1. **Discriminant** of Finite Subset of *K*

Let $\sigma_1, \ldots, \sigma_n$ be embeddings of K in \mathbb{C} . The *discriminant* of $\{a_1, \ldots, a_n\} \subseteq K$, denoted as disc (a_1, \ldots, a_n) , is

$$\operatorname{disc}(a_1,\ldots,a_n)=\operatorname{det}\left(\left[\sigma_i\left(a_j\right)\right]_{i,j=1}^n\right)^2.$$

Because of the presence of the power 2, Def'n 2.1 is *independnet* of choice of ordering of the σ_i 's and a_i 's.

Consider

$$B = \left[\sigma_i\left(a_j\right)\right]_{i,i}^n$$

and let $A = B^T$. Since determinant is multiplicative and is invariant under transpose, it follows

$$\det(a_1,\ldots,a_n)=\det(AB).$$

However, the (i, j)th entry of AB is

$$\begin{bmatrix} \sigma_1\left(a_i\right) & \cdots & \sigma_n\left(a_i\right) \end{bmatrix} \begin{bmatrix} \sigma_1\left(a_j\right) \\ \vdots \\ \sigma_n\left(a_i\right) \end{bmatrix} = \sum_{k=1}^n \sigma_k\left(a_i\right) \sigma_k\left(a_j\right) = \sum_{k=1}^n \sigma_k\left(a_ia_j\right) = \operatorname{tr}_{K/\mathbb{Q}}\left(a_ia_j\right).$$

Therefore,

$$\operatorname{disc}\left(a_{1},\ldots,a_{n}\right)=\operatorname{det}\left[\operatorname{tr}_{K/\mathbb{Q}}\left(a_{i}a_{j}\right)\right]_{i,j=1}^{n}.$$

Some texts use the above formula as the definition.

Since we know that $\operatorname{tr}_{K/\mathbb{Q}}(a)$ is a rational number for $a \in K$,

$$\operatorname{disc}(a_1,\ldots,a_n)\in\mathbb{Q}$$
.

In particular, when $a_1, \ldots, a_n \in \mathcal{O}_K$,

$$\operatorname{disc}(a_1,\ldots,a_n)\in\mathbb{Z}$$
.

Consider $v, w \in K^n$ and $A \in \mathbb{Q}^{n \times n}$ such that

$$Av = w$$
.

Then, for $i \in \{1, \ldots, n\}$,

$$A\sigma_{i}(v) = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,n} \end{bmatrix} \begin{bmatrix} \sigma_{i}(v_{1}) \\ \vdots \\ \sigma_{i}(v_{n}) \end{bmatrix} = \begin{bmatrix} \sigma_{i}\left(\sum_{j=1}^{n} A_{1,j}v_{j}\right) \\ \vdots \\ \sigma_{i}\left(\sum_{j=1}^{n} A_{n,j}v_{j}\right) \end{bmatrix} = \begin{bmatrix} \sigma_{i}(w_{1}) \\ \vdots \\ \sigma_{i}(w_{n}) \end{bmatrix}.$$

Therefore,

$$A\left[\sigma_{i}\left(v_{j}\right)\right]_{i,j=1}^{n}=\left[\sigma_{i}\left(w_{j}\right)\right]_{i,j=1}^{n}.$$

Thus we conclude

$$\det\left(A^{2}\right)\operatorname{disc}\left(v\right)=\operatorname{disc}\left(w\right).$$

Let $\{v_1,\ldots,v_n\}\subseteq\mathcal{O}_K$ be an integral basis for \mathcal{O}_K and let $\{w_1,\ldots,w_n\}\subseteq\mathcal{O}_K$. Then there is $\{C_{i,j}\}_{i,j}^n\subseteq\mathbb{Z}$ such that

$$w_i = \sum_{j=1}^n C_{i,j} \nu_j, \qquad \forall i \in \{1, \dots, n\}.$$

That is,

$$w = Cv$$
.

where $C = [C_{i,j}]_{i,j=1}^n$. Hence

$$\operatorname{disc}(w) = \operatorname{det}(C^2)\operatorname{disc}(v)$$
.

Let $\beta = \{v_1, \dots, v_n\}$ and

$$T: \mathcal{O}_K \to \mathcal{O}_K$$
 $v_i \mapsto w_i, \qquad \forall i \in \{1, \dots, n\}$

which is a \mathbb{Z} -linear homomorphism. Then

$$[T]_{\beta} = [[T(v_1)]_{\beta} \quad \cdots \quad [T(v_n)]_{\beta}] = [[w_1]_{\beta} \quad \cdots \quad [w_n]_{\beta}] = C^T.$$

Let $A \in \mathbb{Z}^{n \times n}$. If det $(A) \neq 0$, then recall that

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Since $A \in \mathbb{Z}^{n \times n}$, every cofactor of A is in \mathbb{Z} , so that adj $(A) \in \mathbb{Z}^{n \times n}$. Thus,

$$A^{-1} \in \mathbb{Z}^{n \times n} \iff \det(A) = 1 \text{ or } \det(A) = -1.$$

Let $\{v_1, \ldots, v_n\}$ \mathcal{O}_K be an integral basis and suppose

$$\operatorname{disc}(v) = \operatorname{disc}(w)$$

for some $\{w_1,\ldots,w_n\}\in\mathcal{O}_K$. Then

$$Cv = w$$

for some $C \in \mathbb{Z}^{n \times n}$. This implies that

$$\det\left(C^{2}\right)\operatorname{disc}\left(v\right)=\operatorname{disc}\left(w\right),$$

so that

$$(\det(C))^2 = 1.2$$

Hence $\det(C) = 1$ or $\det(C) = -1$, which means C is invertible with $C^{-1} \in \mathbb{Z}^{n \times n}$. This implies that C^T is invertible with integer inverse, so that

$$T: \mathcal{O}_K \to \mathcal{O}_K$$

²Note the degenerate case where disc (v) = disc(w) = 0. We will show that this never happens.

Therefore, given an integral basis $\{v_1, \dots, v_n\}$, we can search for other integral basis by looking at subsets $\{w_1, \dots, w_n\}$ whose discriminant agrees with disc (v).

Conversely, if

$$\{v_1,\ldots,v_n\},\{w_1,\ldots,w_n\}\subseteq\mathcal{O}_K$$

are integral bases, then Av = w, Bw = v for some $A, B \in \mathbb{Z}^{n \times n}$. It follows that $\det(A)^2 \operatorname{disc}(v) = \operatorname{disc}(w)$ and $\det(B)^2 \operatorname{disc}(w) = \operatorname{disc}(w)$ $\operatorname{disc}(v)$. Thus we have that

$$\operatorname{disc}(v) = \operatorname{disc}(w)$$
.

Let $\{a_1,\ldots,a_n\}\subseteq K$. Suppose there is nonzero $(c_1,\ldots,c_n)\in\mathbb{Q}^n$ such that

$$\sum_{j=1}^n c_j a_j = 0.$$

This means

$$\sum_{j=1}^{n} c_{j} \sigma_{i} \left(a_{j} \right) = 0$$

for any embedding σ_i of K in \mathbb{C} , so that $\left[\sigma_i\left(a_j\right)\right]_{i,j}^n$ is not invertible. It follows that

$$\operatorname{disc}(a_1,\ldots,a_n)=0.$$

Conversely, suppose that disc $(a_1, \ldots, a_n) = 0$. Then the columns of $\left[\sigma_i\left(a_j\right)\right]_{i,j=1}^n$ are linearly dependent. That is,

$$\sum_{i=1}^{n} c_{j} \sigma_{i} \left(a_{j} \right) = 0, \qquad \forall i$$

for some nonzero $(c_1,\ldots,c_n)\in\mathbb{Q}^n$. By considering $\sigma_i=\iota:K\to\mathbb{C}$ by $k\mapsto k$, we observe that $\sum_{j=1}^n a_j=0$. Thus $\{a_1,\ldots,a_n\}$ is Q-linearly dependent.

2. Discriminant of Number Fields

Fix a number field K with $[K : \mathbb{Q}] = n$.

Def'n 2.2. Discriminant of a Number Field

We define the *discriminant* of K, disc (K), as

$$\operatorname{disc}(K)=\operatorname{disc}(\nu_1,\ldots,\nu_n)\,,$$

where v_1, \ldots, v_n is an integral basis for \mathcal{O}_K .

Consider $K = \mathbb{Q}\left(\sqrt{d}\right)$, where $d \neq 1$ is squarefree.

Case 1. $d\equiv 1 \mod 4$. We claim that $\left\{1,\frac{1+\sqrt{d}}{2}\right\}$ is an integral basis (check this; exercise!). Then

$$\operatorname{disc}(K) = \operatorname{det} \begin{bmatrix} 1 & \frac{1+\sqrt{d}}{2} \\ 1 & \frac{1-\sqrt{d}}{2} \end{bmatrix}^2 = \left(\frac{1-\sqrt{d}}{2} - \frac{1+\sqrt{d}}{2}\right)^2 = \left(-\sqrt{d}\right)^2 = d.$$

(End of Case 1)

Case 2. $d \equiv 2, 3 \mod 4$.

In this case, $\{1, \sqrt{d}\}$ is an integral basis, so that

$$\operatorname{disc}(K) = \det \begin{bmatrix} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{bmatrix}^2 = 4d.$$

(End of Case 2)

3. Computational Considerations

Recall 2.3. Discriminant of a Polynomial

Let $p \in \mathbb{C}[x]$ and let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be the roots of p. Then we define the *discriminant* of p, disc (p), by

$$\operatorname{disc}(p) = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Example 2.2. Discriminant of Quadratic, Cubic Polynomials

For a quadratic $x^2 + bx + c$,

$$\operatorname{disc}(x^2 + bx + c) = b^2 - 4c.$$

For a *depressed* cubic $x^3 + bx + c$,

$$\operatorname{disc}(x^3 + bx + c) = -4b^3 - 27c^2.$$

To turn a general cubic $x^3 + ax^2 + bx + c$ into a depressed cubic, substitute x by $x - \frac{a}{3}$ which *eliminates* x^2 term. Since every root is *shifted by the same amout* $\frac{a}{3}$, it follows that the discriminant is the same:

$$\operatorname{disc}(x^3 + ax^2 + bx + c) = -4b^3 - 27c^2.$$

Def'n 2.4. **Discriminant** of an Algebraic Number

Suppose $\alpha \in \mathbb{C}$ is such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$. Then we define the *discriminant* of α , disc (α) , to be

$$\operatorname{disc}(\alpha) = \operatorname{disc}(1, \alpha, \dots, \alpha^{n-1}).$$

Observe that $\{1, \alpha, \dots, \alpha^{n-1}\}$ is an integral basis for $\mathbb{Z}[\alpha]$. Moreover,

$$\operatorname{disc}(\alpha) = \det \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{bmatrix}^2.$$

Observe that we have a Vandermonde matrix, whose determinant is famously

$$\det\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{bmatrix} = \prod_{i < j} (\alpha_i - \alpha_j)$$

Since we have the square term, it follows that

$$\operatorname{disc}(\alpha) = \prod_{i < j} (\alpha_i - \alpha_j)^2 = \operatorname{disc}(p),$$

where p is the minimal polynomial of α . Thus the discriminant of an algebraic number and its minimal polynomial coincides.

Suppose $\{v_1, \ldots, v_n\}$ is an integral basis for $\mathcal{O}_{\mathbb{Q}(\alpha)}$. Then

$$\begin{bmatrix} 1 \\ \cdots \\ \alpha^{n-1} \end{bmatrix} = A \begin{bmatrix} v_1 \\ \cdots \\ v_n \end{bmatrix}$$

for some invertible $A \in \mathbb{Z}^{n \times n}$. Therefore,

$$\operatorname{disc}(\alpha) = \operatorname{det}(A)^{2}\operatorname{disc}(\mathbb{Q}(\alpha)) = \left[\mathcal{O}_{\mathbb{Q}(\alpha)} : \mathbb{Z}\left[\alpha\right]\right]^{2}\operatorname{disc}(\mathbb{Q}(\alpha))$$

by Assignment 2.

As a corollary, if disc (α) is squarefree, then

$$\mathcal{O}_{\mathbb{Q}(\alpha)} = \mathbb{Z}[\alpha].$$

Example 2.3.

Suppose $\alpha \in \mathbb{C}$ is such that $p(\alpha) = 0$, where

$$p = x^3 + x + 1.$$

Note that p is irreducible over \mathbb{Q} , so it is the minimal polynomial for α . Then disc $(\alpha) = \operatorname{disc}(p) = -4 - 27 = -31$, which is prime so is squarefree.

Thus

$$\mathcal{O}_{\mathbb{Q}(\alpha)} = \mathbb{Z}[\alpha] = \{a + b\alpha + c\alpha^2\}.$$

Let α be an algebraic number with minimal polynomial $p \in \mathbb{Q}[x]$ and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$. Let $\alpha_1 = \alpha$ and let $\alpha_2, \dots, \alpha_n$ be the conjugates of α . Then

$$p=(x-\alpha_1)\cdots(x-\alpha_n).$$

Consider the *formal derivative* of *p*, which we can find using the product rule:

$$p' = \sum_{i=1}^{n} \prod_{j=1, j\neq i}^{n} (x - \alpha_j).$$

Then

$$p'(\alpha_i) = \prod_{j=1, j\neq i}^n (\alpha_i - \alpha_j),$$
 $\forall i.$

Now, given the embeddings $\sigma_1, \ldots, \sigma_n : \mathbb{Q}(\alpha) \to \mathbb{C}$,

$$N_{K/\mathbb{Q}}\left(p'\left(\alpha\right)\right) = \prod_{i=1}^{n} \sigma_{r}\left(p'\left(\alpha\right)\right) = \prod_{i=1}^{n} p'\left(\sigma_{i}\left(\alpha\right)\right)$$
 since σ_{i} fix each element in \mathbb{Q}

$$= \prod_{i=1}^{n} p'\left(\alpha_{i}\right) = \prod_{i\neq j}^{n} \left(\alpha_{i} - \alpha_{j}\right) = (-1)^{\binom{n}{2}} \prod_{i < j}^{n} \left(\alpha_{i} - \alpha_{j}\right)^{2}$$

$$= (-1)^{\binom{n}{2}} \operatorname{disc}\left(p\right) = (-1)^{\binom{n}{2}} \operatorname{disc}\left(\alpha\right).$$

Def'n 2.5. Resultant

Let $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j \in \mathbb{C}[x]$. Then we define the *resultant* of f, g, denoted as res (f,g), is the determinant of

$$\begin{bmatrix} a & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & a & 0 & \cdots & \cdots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ b & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & b & 0 & \cdots & \cdots & \cdots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & b & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{Q}^{(n+m)\times(n+m)},$$

where $a = (a_n, ..., a_0)$, $b = (b_m, ..., b_0)$.

Example 2.4.

We have

$$\operatorname{res}\left(x^{3} + x + 2, x^{2} + 4x - 1\right) = \det\begin{bmatrix} 1 & 0 & 1 & 2 & 0\\ 0 & 1 & 0 & 1 & 2\\ 1 & 4 & -1 & 0 & 0\\ 0 & 1 & 4 & -1 & 0\\ 0 & 0 & 1 & 4 & -1 \end{bmatrix}.$$

Fact 2.1.

Let $\alpha \in \mathbb{C}$ be an algebraic number with the minimal polynomial $p \in \mathbb{Q}[x]$ such that $\alpha \in \mathcal{O}_{\mathbb{Q}(\alpha)}$ and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$. Then

$$\operatorname{disc}\left(\alpha\right)=\left(-1\right)^{\binom{n}{2}}\operatorname{res}\left(p,p'\right).$$

Example 2.5.

Let $\alpha \in \mathbb{C}$ be such that $p(\alpha) = 0$, where

$$p = x^3 - x^2 - 1.$$

Since p(1), $p(-1) \neq 0$, so p is irreducible over \mathbb{Q} . Hence $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$.

Note that

$$p'=3x^2-2x.$$

It follows that

$$\operatorname{disc}(\alpha) = (-1)^{\binom{3}{2}} \det \begin{bmatrix} 1 & -1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & -1 \\ 3 & -2 & 0 & 0 & 0 \\ 0 & 3 & -2 & 0 & 0 \\ 0 & 0 & 3 & -2 & 0 \end{bmatrix} = 31.$$

Since 31 is squarefree, so that

$$\mathcal{O}_K = \mathbb{Z}\left[\alpha\right]$$
.

III. Prime Factorization

Let *K* be a number field and let $R = \mathcal{O}_K$. Let's recall some important properties of *R* as a ring.

- (a) Every nonzero prime ideal of *R* is maximal.
- (b) If I is a nonzero ideal, then R/I is finite.
- (c) *R* is Noetherian.

1. Some Useful Ring Theory

Proposition 3.1.

Let *R* be a ring.¹ The following are equivalent.

- (a) *R* is Noetherian.
- (b) Every ascending chain of ideals stabilizes.2

ascending chain condition (acc)

(c) Every nonempty collection of ideals of *R* has a maximal (with respect to inclusion) element.

Proof is left as an exercise

The idea for (b) \implies (a) is that, given an ascending chain of ideals, the union is also an ideal. For this ideal to be finitely generated, it must be the case that the chain stabilizes.

For (b) \implies (c), if we assume (c) is false, then we can construct an ascending chain of ideals that does not stabilize.

Proposition 3.2.

Let R be a Noetherian ring and let I be a proper ideal of R. Then there exists prime ideals P_1, \ldots, P_n of R such that

- (a) $I \subseteq P_i$ for i;
- (b) $P_1 \cdots P_n \subseteq I$.

We know that prime factorization of numbers does not work well in a ring of integers. After all, a ring of integers need not be a UFD! Hence, instead of factoring numbers, we are going to *factor ideals* in \mathcal{O}_K . This will work well, and introduce us the notion of *Dedekind domains*.

Note that Proposition 3.2 is bit more general than we require, that it works for any *Noetherian ring*. Indeed, any ring of integer is a Noetherian ring (Corollary 1.10.4, *the* result of Chapter 1).

Proof of Proposition 3.2

Let *X* be the collection of proper ideals of *R* not having the property. Assume for contradiction that *X* is nonempty. Let $I \in X$ be an maximal *element* of *X* (we do not insist that *I* is a maximal *ideal* in *R*).

Clearly *I* is not prime. If not, then take $P_1 = I$ and observe that *I* has the property. Since *I* is not prime, we may find $a, b \in R$ such that $ab \in I$ but $a, b \notin I$. By maximality of I, $I + \langle a \rangle$, $I + \langle b \rangle \notin X$. Note that, for any ideal I, $II \subseteq I$ (this is a property of ideal product; check this!). Moreover, $ab \in I$ and $\langle a \rangle$, $\langle b \rangle$ are principal ideals, so that $\langle a \rangle \langle b \rangle = \langle ab \rangle \subseteq I$. Hence it follows that

$$(I + \langle a \rangle) (I + \langle b \rangle) \subseteq I.$$

Hence $I + \langle a \rangle$, $I + \langle b \rangle \neq R$ (since JR = RJ = J for any ideal J). Therefore, there are prime ideals $P_1, \ldots, P_n, Q_1, \ldots, Q_m$ such that

(a)
$$I + \langle a \rangle \subseteq P_i, I + \langle b \rangle \subseteq Q_j$$
 for $i, j \Longrightarrow I \subseteq I + \langle a \rangle \subseteq P_i, I \subseteq I + \langle b \rangle \subseteq Q_j$ for i, j ; and

(b)
$$P_1 \cdots P_n \subseteq I + \langle a \rangle$$
, $Q_1 \cdots Q_m \subseteq I + \langle b \rangle \implies P_1 \cdots P_n Q_1 \cdots Q_m \subseteq (I + \langle a \rangle) (I + \langle b \rangle) \subseteq I$.

Thus $I \notin X$, which is a contradiction.

QED

¹Let us recall that a ring is always commutative and unital in our course.

²This is the *usual* definition of Noetherian ring in commutative algebra.

Def'n 3.1. Coprime Ideal

Let *R* be a ring and let $I, J \subseteq R$ be prime ideals. We say *I*, *J* are *coprime* if and only if I + J = R.

A motivation for the above definition comes from the Bezout lemma.

Proposition 3.3.

Let *R* be a ring and let *I*, *J* be coprime ideals of *R*. Then for any $n, m \in \mathbb{N}$, I^n, I^m are coprime.

Proof. Since *I*, *J* are proper, so are $I^n \subseteq I$, $J^m \subseteq J$. Suppose for contradiction that

$$I^n + J^m \neq R$$
.

Then $I^n + J^m \subseteq M$ for some maximal ideal M, which means $I^n, J^m \subseteq M$. But any maximal ideal is a prime ideal, so that M is a prime ideal. Recall that,

given two ideals \tilde{I}, \tilde{J} and a prime ideal P such that $\tilde{I}, \tilde{J} \subseteq P$, $\tilde{I} \subseteq P$ or $\tilde{J} \subseteq P$.

In particular, $I, J \subseteq M$. This means $I + J \subseteq M \neq R$, a contradiction.

QED

Recall the following theorem from ring theory.

Theorem 3.4. Chinese Remainder Theorem

Let *R* be a ring and let *I*, *J* be coprime ideals of *R*. Then $R/IJ \cong R/I \times R/J$.

Proof. When we want two algebraic objects to be *isomorphic*, 99.9% of the time we want to explicitly find an isomorphism. Since we are working with quotient rings, we resort to the first isomorphism theorem.

Let

 $\varphi: R \to R/I \times R/J$ $x \mapsto (x+I, x+J).$

Then

$$\ker(\varphi) = I \cap J$$
.

Now observe that,

$$\mathit{IJ} \subseteq \mathit{I} \cap \mathit{J} = (\mathit{I} \cap \mathit{J}) \, R = (\mathit{I} \cap \mathit{J}) \, (\mathit{I} + \mathit{J}) = \underbrace{(\mathit{I} \cap \mathit{J}) \, \mathit{I}}_{\subseteq \mathit{IJ}} + \underbrace{(\mathit{I} \cap \mathit{J}) \, \mathit{J}}_{\subseteq \mathit{IJ}} \subseteq \mathit{IJ}, ^{1}$$

so that

$$IJ \subset I$$
.

Hence we conclude

$$\ker(\varphi) = IJ.$$

To invoke the first isomorphism theorem, we want to show that φ is surjective. Take $a \in I, b \in J$ such that a + b = 1 (since I + J = R). For $x, y \in R$

$$\varphi(ax + by) = \left(\underbrace{ax}_{\in I} + by + I, ax + \underbrace{by}_{\in J} + J\right) = (by + I, ax + J)$$
$$= (b + I, a + J) (y + I, x + J) = (1 + I, 1 + J) (y + I, x + J) = (y + I, x + J).$$

Note that we are using a + b = 1 but a + I = 0 + I, b + J = 0 + J to obtain the second-last equality.

Thus φ is surjective and

$$R/II \cong R/I \times R/I$$

by the first isomorphism theorem.

Note that the above argument worked because of the *coprimeness* of I, J: R = I + J.

Theorem 3.5. Generalized Chinese Remainder Theorem

Let *R* be a ring and let I_1, \ldots, I_n be *pairwise* coprime ideals. Then $R/I_1 \cdots I_n \cong R/I_1 \times \cdots \times R/I_n$.

Proposition 3.6.

Let *R* be a finite ring. Then

$$R \cong R/P_1^{n_1} \times \cdots \times R/P_m^{n_m}$$

for some distinct prime ideals P_1, \ldots, P_m and $n_1, \ldots, n_m \in \mathbb{N}$.

In case *R* is an integral domain, we can simply take $P_1 = \{0\}$ and *call it a day!* In fact, the key idea for the general case is to identify *R* with $R/\{0\}$.

Proof of Proposition 3.6 -

Note that

$$R$$
 is finite $\implies R$ is Noetherian.

So we may find prime ideals $Q_1, \ldots, Q_k \subseteq R$ such that $Q_1 \cdots Q_k = \{0\}$. *Graping* the Q_i 's we obtain distinct prime ideals P_1, \ldots, P_m such that

$$P_1^{n_1}\cdots P_m^{n_m}=\{0\}$$
.

For each P_i ,

R is finite and P_i is prime $\implies R/P_i$ is finite integral domain $\implies R/P_i$ is a field.

Hence each P_i is maximal, which imply

$$P_i + P_j = R,$$
 $\forall i \neq j.$

It follows $P_i^{n_i} + P_j^{n_j} = R$. Hence P_1, \dots, P_m are pairwise coprime ideals, so by the generalized Chinese remainder theorem,

$$R \cong R/\{0\} = R/P_1^{n_1} \cdots P_m^{n_m} \cong R/P_1^{n_1} \times \cdots R/P_m^{n_m}.$$

QED

2. Prime Ideals of a Ring of Integers

Once again, let *K* be a number field of degree *n* and let $R = \mathcal{O}_K$. Then we recall that

- (a) *R* is Noetherian;
- (b) R/I is finite for any nonzero proper ideal I;
- (c) every ideal \bar{J} of R/I is of the form $\bar{J} = J/I$, where $J \subseteq R$ is an ideal such that $I \subseteq J$; moreover, \bar{J} is prime if and only if J is prime; and correspondence theorem
- (d) $R/I \cong (R/I) / (P_1^{n_1}/I) \times \cdots \times (R/I) / (P_m^{n_m}/I) \cong R/P^{n_1} \times \cdots \times R/P_m^{n_m}$, where each $P_i \subseteq R$ is prime with $I \subseteq P_i$.

The big idea for this section is that:

to understand I, we study the prime ideals P containing I.

Turns out, for a prime ideal *P*,

$$I \subseteq P \iff P$$
 is a prime factor of I .

¹"Good luck in finding an infinite ascending chain in a finite ring!" - Blake

³In fact, this is true for any ring!