Roll No.	44
----------	----

TEC-101

B. TECH. (FIRST SEMESTER) MID SEMESTER EXAMINATION, NOV., 2021

(All Branches)

BASIC ELECTRONICS ENGINEERING

Time: 11/2 Hours

Maximum Marks: 50

- Note: (i) Answer all the questions by choosing any one of the sub-questions.
 - (ii) Each question carries 10 marks.
- (a) Explain formation of energy bands in a solid crystal. Differentiate conductor, semiconductor and insulator based on energy band diagram. Calculate the drift current produced in a intrinsic Ge semiconductor having area of cross-section 2 cm² and length 0.4 mm, if concentration of free electron is 2 × 10¹⁹/m³ a battery of 2 volts is applied across its length. Given that mobility of free electrons and holes is 0.36 m²/V-sec and 0.17 m²/V-sec respectively.

OR

11

(b) Briefly explain drift current and diffusion current in semiconductors.

An intrinsic semiconductor (Si) is doped with a donor type impurity such that there is one impurity atom on 10⁶ atoms of semiconductor.

The total concentration of semiconductor is $5 \times 10^{22}/\text{m}^3$ and intrinsic concentration is $2.5 \times 10^{12}/\text{m}^3$.

Calculate:

10 Marks (CO2)

- (i) Resulting donor atom concentration.
- (ii) Resulting electron concentration.
- (iii) Resulting hole concentration.
- (iv) Conductivity of the doped sample if mobility of electrons is $3800 \text{ m}^2/\text{V-s}$.
- (a) If N_D and N_A are donor and acceptor impurities and n_i is the intrinsic concentration, establish the relation for minority and majority charge densities in extrinsic semiconductors.

A small concentration of minority carries is injected into a homogeneous semiconductor crystal at one point. An electric field of 10 V/cm is applied across the crystal and this moves the minority carries a distance of 1 cm in 20 µ/sec. Determine mobility (in cm²/V-sec).

10 Marks (CO2)

OR

(b) Define mobility and drift velocity. Prove that conductivity of a conductor is given by $\alpha = \mu ne$.

A bar of pure silicon has cross-sectional area of 1 mm² and intrinsic concentration of silicon is 1.5×10^{16} m⁻³. The free electron and hole mobilities are 0.13 m²/V-sec and 0.05 m²/V-sec respectively. Find the conductivity and length of bar whose resistance is $50 \text{ k}\Omega$.

10 Marks (CO2)

3. (a)
$$(7653.21)_8 = (?)_2 = (?)_{16} = (?)_{10}$$
 10 Marks (CO1) $(56543)_7 + (53214)_7 - (3264)_8 = (?)_7$ If $(211)_x = (152)_8$, find the value of base x.

If $(315)_x + (276)_x - (215)_x = (276)_x$, find the value of base x.

(b) Express F(A, B, C, D) = (A'C) + (ABC') + (A'C'D) + (ABD') in canonical SOP and canonical POS form. Simplify the following functions using Boolean rules: 10 Marks (CO1)

$$\overline{A + \overline{AB} + \overline{AB}} + \overline{A + \overline{B}}$$

$$F = (A + C)(AD + AD) + AC + C$$

$$A + AB + AB'C$$

4. (a) Subtract $(7476.23)_9 - (783.5)_9$ by r's complement method. Subtract (FBD9.E3)₁₆ – (A2C.A)₁₆ by (r-1)'s complement method.

$$(111.101)_2 \times (111)_2 = (?)_2$$

 $(111101)_2 / (101)_2 = (?)_2$
OR

(b) Realize EX-NOR gate by NOR gate only.

Derive Boolean expression for output X for given digital circuit and sketch truth table: 10 Marks (CO1)

5. (a) Minimize the following by K-map and realize the minimized function by (i) Basic gates, (ii) NAND gate only and (iii) NOR gate only:

10 Marks (CO1)

$$F(A, B, C, D) = \Pi M(0, 1, 3, 5, 7, 8, 9, 11, 13, 14, 15)$$

OR

(b) For the given truth table, express output Y in minimized SOP and minimized POS form:

10 Marks (CO1)

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0		0 1	1
1	0	0	1
1		1	0
1	1	0	0
1	1		1