Lecture 6

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

September 17, 2021

Vector Spaces

Theorem

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then the following conditions are equivalent:

- a) A is an invertible matrix.
- b) The matrix equation Ax = O has the unique solution x = O.
- c) The reduced row-echelon form of A is I_n .

An Application. Above Theorem can be used to find the inverse of an invertible matrix. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then by a sequence of elementary row operations, \mathbf{A} can be transformed into the row-echelon form A'. Since \mathbf{A} is an invertible matrix, $A' = I_n$. Thus $E_t E_{t-1} \cdots E_1 A = I_n$ which implies that $B = E_t E_{t-1} \cdots E_1 I_n$ is the inverse of \mathbf{A} . Applying elementary row operations on $n \times 2n$ matrix $\begin{bmatrix} A & I_n \end{bmatrix}$, it can be transformed into $\begin{bmatrix} I_n & B \end{bmatrix}$. Then B is the inverse of A.

Example

Compute the inverse of matrix
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
.

Consider the matrix [A|I]

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ -1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ -1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{5}{2} & \frac{1}{2} & 1 \end{bmatrix} .$$

$$R_2 \to \frac{2}{5}R_2 \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} .$$

$$\xrightarrow{R_2 \to \frac{2}{5}R_2} \left[\begin{array}{cc|c} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{5} & \frac{2}{5} \end{array} \right] \xrightarrow{R_1 \to R_1 - \frac{1}{2}R_2} \left[\begin{array}{cc|c} 1 & 0 & \frac{2}{5} & -\frac{1}{5} \\ 0 & 1 & \frac{1}{5} & \frac{2}{5} \end{array} \right].$$

the inverse of the matrix
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 is $\begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix}$.

Definition

An *n*-tuple of real numbers is an ordered list (x_1, x_2, \dots, x_n) of real numbers. For example (1, 2, 4) is a 3-tuple.

Definition

The n-dimensional space \mathbb{R}^n is the set of all n-tuples (x_1, x_2, \ldots, x_n) of real numbers. The elements of \mathbb{R}^n are called n-dimensional vectors or simply vectors, we often use boldface letters to denote vectors. The ith entry of the vector $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ is called the ith coordinate or ith component. For consistency with matrix operations, we denote the

vector
$$x$$
 by (x_1, x_2, \dots, x_n) or $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

The addition of vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined to be the matrix addition of $n \times 1$ matrices

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$
 (1)

and multiplication of a vector $\mathbf{x} \in \mathbb{R}^n$ by a scalar $\lambda \in \mathbb{R}$ to be the multiplication of a matrix by scalar

$$\lambda \mathbf{x} = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{bmatrix} \tag{2}$$

Then from properties of matrix addition and multiplication of a matrix by a scalar, we see that

- 1. Addition of vectors is commutative: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 2. Addition of vectors is associative: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$.
- 3. The vector $\mathbf{0} \in \mathbb{R}^n$ with all its entries 0 is called zero vector and $\mathbf{x} + \mathbf{0} = \mathbf{x} = \mathbf{0} + \mathbf{x}$ for each vector $\mathbf{x} \in \mathbb{R}^n$.
- 4. For each vector $\mathbf{x} \in \mathbb{R}^n$, there is vector $-\mathbf{x} \in \mathbb{R}^n$, called inverse of vector \mathbf{x} , such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0} = (-\mathbf{x}) + \mathbf{x}$.
- 5. For all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$, we have $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$.
- 6. For each vector $\mathbf{x} \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$, we have $(\lambda + \mu)\mathbf{x} = \lambda \mathbf{x} + \mu \mathbf{x}$.
- 7. For each vector $\mathbf{x} \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$, we have $\lambda(\mu \mathbf{x}) = (\lambda \mu) \mathbf{x}$.
- 8. For $1 \in \mathbb{R}$, we have $1\mathbf{x} = \mathbf{x}$; for each vector $\mathbf{x} \in \mathbb{R}^n$.

The set \mathbb{R}^n together with vector addition, scalar multiplication and satisfying the properties (1)-(8) given above is called a *vector space over* \mathbb{R} (or *real vector space*).

We can extend the concept of a vector by using the basic properties of vectors in \mathbb{R}^n as axioms, which if satisfied by a set of objects, then we say those objects are vectors.

Let $\mathbb V$ be a set of objects and $\mathbb F$ be a field. Then we say that $\mathbb V$ is a *vector space* over $\mathbb F$ if it satisfy the following:

- 1. Closure of addition: $\mathbf{x} + \mathbf{y} \in \mathbb{V}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{V}$,
- 2. Commutativity of addition: x + y = y + x for all $x, y \in \mathbb{V}$,
- 3. Associativity of addition: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{V}$,
- 4. There exists $\mathbf{0} \in \mathbb{V}$ (*zero vector*) such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{V}$,
- 5. For $x \in \mathbb{V}$, there exists $-x \in \mathbb{V}$ (inverse of x) such that x + (-x) = 0,
- 6. Closure of scalar multiplication: $\alpha \mathbf{x} \in \mathbb{V}$ for all $\mathbf{x} \in \mathbb{V}$ and $\alpha \in \mathbb{F}$,
- 7. For all $\mathbf{x}, \mathbf{y} \in \mathbb{V}$ and $\lambda \in \mathbb{F}$, $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$,
- 8. For all $\mathbf{x} \in \mathbb{V}$ and $\lambda, \mu \in \mathbb{F}$, $(\lambda + \mu)\mathbf{x} = \lambda\mathbf{x} + \mu\mathbf{x}$,
- 9. For all $\mathbf{x} \in \mathbb{V}$ and $\lambda, \mu \in \mathbb{F}$, $\lambda(\mu \mathbf{x}) = (\lambda \mu) \mathbf{x}$,
- 10. For $1 \in \mathbb{F}$, we have $1\mathbf{x} = \mathbf{x}$; for all $\mathbf{x} \in \mathbb{V}$.

If $\mathbb{F}=\mathbb{R}$, then we say that \mathbb{V} is a real vector space. If $\mathbb{F}=\mathbb{C}$, then we say that \mathbb{V} is a complex vector space.

Examples

- Rⁿ is a real vector space with usual addition of vectors and scalar multiplication by a real number.
- Real vector space of infinite sequences of real numbers. Let $\mathbb{V} = \{\mathbf{x} = (x_1, x_2, \dots, x_n, \dots) : x_i \in \mathbb{R}\}$. Define addition and scalar multiplication as follows. For $\mathbf{x} = (x_1, x_2, \dots, x_n, \dots)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n, \dots)$

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n, \dots),$$

 $k\mathbf{x} = (kx_1, kx_2, \dots, kx_n, \dots).$

We denote this vector space by \mathbb{R}^{∞} .

Vector Spaces of Matrices

 Let V be a set of 2 × 2 matrices with real entries. Then V is a vector space with addition

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} + \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{bmatrix} x_{11} + y_{11} & x_{12} + y_{12} \\ x_{21} + y_{21} & x_{22} + y_{22} \end{bmatrix}.$$

and scalar (real) multiplications as

$$k\mathbf{x} = v \begin{bmatrix} kx_{11} & kx_{12} \\ kx_{21} & kx_{22} \end{bmatrix}$$
. Check all axioms.

• The vector space of all $m \times n$ matrices with real entries.

Non-example

A set that is not a vector space. Let $\mathbb{V}=\mathbb{R}^2.$ Define addition and scalar multiplication as

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix}$$

and

$$k \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ 0 \end{bmatrix}.$$

Check that $\ensuremath{\mathbb{V}}$ is not a vector space.

K=1