```
In [3]: import pandas as pd #impoerting pandas library to help in computation
import seaborn as sns #for visualation of data in graphical format

In [4]: df=pd.read_csv("BlackFriday.csv") #df means dataframe
```

Dataset Walkthrough

In [6]:	df										
Out[6]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Produ
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	
	4	1000002	P00285442	М	55+	16	С	4+	0	8	
	•••										
	537572	1004737	P00193542	М	36- 45	16	С	1	0	1	
	537573	1004737	P00111142	М	36- 45	16	С	1	0	1	
	537574	1004737	P00345942	М	36- 45	16	С	1	0	8	
	537575	1004737	P00285842	М	36- 45	16	С	1	0	5	
	537576	1004737	P00118242	М	36- 45	16	С	1	0	5	
	537577 r	ows × 12	columns								

```
df.info()#it gives the count of total rows.columns and data type of the values
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 537577 entries, 0 to 537576
        Data columns (total 12 columns):
             Column
                                         Non-Null Count
                                                          Dtype
             User ID
                                         537577 non-null int64
             Product ID
         1
                                         537577 non-null object
             Gender
                                         537577 non-null object
         3
                                         537577 non-null object
             Age
             Occupation
                                         537577 non-null int64
             City Category
                                         537577 non-null object
             Stay_In_Current_City_Years 537577 non-null object
                                         537577 non-null int64
         7
             Marital Status
             Product Category 1
                                         537577 non-null int64
             Product Category 2
                                         370591 non-null float64
         10 Product Category 3
                                         164278 non-null float64
         11 Purchase
                                         537577 non-null int64
        dtypes: float64(2), int64(5), object(5)
        memory usage: 49.2+ MB
        df.isnull().sum()#isnull gives the is there is any null values or not and with sum() it gies the total no of null value
In [7]:
                                           0
        User ID
Out[7]:
        Product ID
                                           0
        Gender
                                           0
        Age
        Occupation
        City Category
        Stay In Current City Years
        Marital Status
                                           0
                                           0
        Product Category 1
        Product Category 2
                                      166986
        Product Category 3
                                      373299
        Purchase
                                           0
        dtype: int64
        del df["Product Category 2"]# deleting two column which containing null values
In [8]:
        del df["Product Category 3"]
In [9]: df
```

Out[9]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purch
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	8
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	15
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	1
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	1
	4	1000002	P00285442	М	55+	16	С	4+	0	8	7
	•••										
	537572	1004737	P00193542	М	36- 45	16	С	1	0	1	11
	537573	1004737	P00111142	М	36- 45	16	С	1	0	1	19
	537574	1004737	P00345942	М	36- 45	16	С	1	0	8	8
	537575	1004737	P00285842	М	36- 45	16	С	1	0	5	7
	537576	1004737	P00118242	М	36- 45	16	С	1	0	5	6
	537577 r	ows × 10	columns								
											•

Analyzing Columns

In [10]: df.head() # by default head gives details of the 5 rows

Out[10]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purchase	
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	8370	
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	15200	
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	1422	
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	1057	
	4	1000002	P00285442	М	55+	16	С	4+	0	8	7969	
4											•	
In [11]:	df	["User_I	D"].nunique	e()#nuni	que g	give all the	e unique valu	es present in a particu	ılar column			
Out[11]:	589	5891										
In [12]:	<pre>df["User_ID"].nunique()</pre>											
Out[12]:	589	5891										
In [13]:	df["Gender"].unique()											
Out[13]:	array(['F', 'M'], dtype=object)											
In [14]:	df	["Age"].	unique()									
Out[14]:	arı		17', '55+', e=object)	, '26-35	', '4	6-50', '51-	55', '36-45'	, '18-25'],				
In [15]:	df	["Occupa	tion"].nun:	ique()								
Out[15]:	21											
In [16]:	df	["City_C	ategory"].ı	unique()								
Out[16]:	arı	ray(['A'	, 'C', 'B'], dtype	=obje	ct)						
In [17]:	df	["Stay_I	n_Current_0	City_Yea	rs"].	unique()						

```
array(['2', '4+', '3', '1', '0'], dtype=object)
         df["Marital_Status"].unique()
In [18]:
         array([0, 1], dtype=int64)
Out[18]:
         df["Product_Category_1"].nunique()
In [19]:
Out[19]:
         df["Purchase"].sum()
         5017668378
Out[20]:
         for i in df.columns:# Automating the process for each column to find the no of unique values
In [21]:
             print(i,df[i].nunique())
         User ID 5891
         Product ID 3623
         Gender 2
         Age 7
         Occupation 21
         City_Category 3
         Stay_In_Current_City_Years 5
         Marital Status 2
         Product_Category_1 18
         Purchase 17959
```

Analyzing Gender


```
In [27]: df.groupby('Gender').size().plot.pie(x='Ratio',figsize=(6,6),autopct="%.2f",title='Gender Ratio on Pie Chart')#this bet

Out[27]: <a href="mailto:AxesSubplot:title={'center':'Gender Ratio on Pie Chart'}, ylabel='None'></a>
```

Female

Gender Ratio on Pie Chart


```
In [28]: df.groupby('Gender').size().plot.bar(figsize=(6,6),title='Gender Ratio on Bar Chart')
Out[28]: <AxesSubplot:title={'center':'Gender Ratio on Bar Chart'}, xlabel='Gender'>
```


Purchase ratio on gender basis


```
In [31]: df.groupby('Gender').sum()['Purchase'].plot.bar(figsize=(6,6),title='Purchase ratio on gender basis')
Out[31]: <AxesSubplot:title={'center':'Purchase ratio on gender basis'}, xlabel='Gender'>
```


In [32]: df.groupby('Gender').mean()['Purchase'].plot.pie(x='Ratio',figsize=(6,6),autopct="%.2f",title='Purchase ratio on gender
Out[32]: <AxesSubplot:title={'center':'Purchase ratio on gender basis'}, ylabel='Purchase'>

Purchase ratio on gender basis

Analysing Age and Marital Status

```
df.groupby("Age").size()#to count the no of people on a spcified age range
In [33]:
         Age
Out[33]:
         0-17
                    14707
                   97634
         18-25
         26-35
                   214690
         36-45
                  107499
         46-50
                   44526
         51-55
                    37618
                    20903
         55+
         dtype: int64
         df.groupby("Age").size().plot.bar(figsize=(12,6),title='Age size')#ploting a bar graph on the basis of size of each age
         <AxesSubplot:title={'center':'Age size'}, xlabel='Age'>
 Out[7]:
```



```
In [35]: l=[]
    for i in df["Age"].unique():
        l.append([i,df[df['Age']==i]['Product_ID'].nunique()])# how many unique proucts bought by each age range

In [36]: data=pd.DataFrame(l,columns=['Age','Products'])

In [37]: data
```

Out[37]:		Age	Products
	0	0-17	2300
	1	55+	2573
	2	26-35	3419
	3	46-50	3099
	4	51-55	2877
	5	36-45	3318
	6	18-25	3213

In [38]: data.plot.bar(x='Age',figsize=(12,6),title="Unique products based on age")#ploting a bar graph of unique proucts bought

Out[38]: <AxesSubplot:title={'center':'Unique products based on age'}, xlabel='Age'>


```
In [39]: df.groupby('Age').sum()['Purchase'].plot.bar(figsize=(12,6),title="Amount spent based on age")
```

Out[39]: <AxesSubplot:title={'center':'Amount spent based on age'}, xlabel='Age'>

In [40]: df.groupby('Age').mean()['Purchase'].plot.pie(figsize=(12,6),title="Average amount spent on age",autopct="%.1f")# average of a spent on age and a spent on age are a spent on age and a spent on a spent on

Average amount spent on age

In [41]: df.groupby('Marital_Status').size().plot.pie(figsize=(12,6),title="Marital Status",autopct="%.1f")# to plot total perce
Out[41]: <AxesSubplot:title={'center':'Marital Status'}, ylabel='None'>

Multi column analysis

In [42]:	<pre>df.head()</pre>												
Out[42]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purchase		
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	8370		
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	15200		
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	1422		
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	1057		
	4	1000002	P00285442	М	55+	16	С	4+	0	8	7969		
4													

```
In [43]: sns.set(rc = {'figure.figsize' : (12,6)})
sns.countplot(x = "Age", hue = 'Gender', data = df)#ploting the no of male and female on each age range
```

Out[43]: <AxesSubplot:xlabel='Age', ylabel='count'>


```
In [44]: sns.set(rc = {'figure.figsize' : (12,6)})
sns.countplot(x = "Gender", hue = 'Age', data = df)#ploting the no of male and female on each age range
Out[44]: 
Out[44]:
```



```
In [45]: sns.set(rc = {'figure.figsize' : (6,6)})
sns.countplot(x = "Gender", hue = 'Marital_Status', data = df)# to plot marital status based on gender

Out[45]: <AxesSubplot:xlabel='Gender', ylabel='count'>
```



```
In [46]: sns.countplot(x=df['City_Category'])#to plot the no of people living in each city
Out[46]: <AxesSubplot:xlabel='City_Category', ylabel='count'>
```



```
In [47]: df.groupby('City_Category').size().plot.pie(autopct="%.1f")
```

Out[47]: <AxesSubplot:ylabel='None'>


```
In [48]: sns.countplot(x='City_Category',hue='Age',data=df)#plotig diff age group people living on each city
Out[48]: <AxesSubplot:xlabel='City_Category', ylabel='count'>
```



```
In [49]: sns.countplot(x='City_Category',hue='Marital_Status',data=df)#marital status on each city
```

Out[49]: <AxesSubplot:xlabel='City_Category', ylabel='count'>

In [50]: sns.countplot(x='City_Category',hue='Gender',data=df)#no of males and female in each city

Out[50]: <AxesSubplot:xlabel='City_Category', ylabel='count'>


```
In [51]: df.groupby('City_Category').sum()['Purchase'].plot.pie(autopct="%.1f")#which city purchase more
Out[51]: <AxesSubplot:ylabel='Purchase'>
```



```
In [52]: df.groupby('City_Category').mean()['Purchase'].plot.pie(autopct="%.1f")#average amount spent by each city
Out[52]:
```


Occupation and product Analysis

In [53]:	df	.head()									
Out[53]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purchase
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	8370
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	15200
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	1422
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	1057
	4	1000002	P00285442	М	55+	16	С	4+	0	8	7969
4											

```
In [54]: sns.countplot(x=df['Stay_In_Current_City_Years'])#tendancy to stay in current city in years
```

Out[54]: <AxesSubplot:xlabel='Stay_In_Current_City_Years', ylabel='count'>

In [55]: sns.countplot(x='Stay_In_Current_City_Years',hue='Gender',data=df)#tendancy to stay in current city in years on the bas

Out[55]: <AxesSubplot:xlabel='Stay_In_Current_City_Years', ylabel='count'>

In [56]: sns.countplot(x='Stay_In_Current_City_Years',hue='Marital_Status',data=df)#tendancy to stay in current city in years on Out[56]: <AxesSubplot:xlabel='Stay_In_Current_City_Years', ylabel='count'>

In [57]: sns.countplot(x='Stay_In_Current_City_Years',hue='City_Category',data=df)#tendancy to stay in current city in years on Out[57]: <AxesSubplot:xlabel='Stay_In_Current_City_Years', ylabel='count'>


```
In [58]: sns.countplot(x='City_Category',hue='Age',data=df)#which age group stay in each city
```

Out[58]: <AxesSubplot:xlabel='City_Category', ylabel='count'>

In [59]: df.groupby('Stay_In_Current_City_Years').sum()['Purchase'].plot.bar(figsize=(12,6))#which stay in current city has the Out[59]: <AxesSubplot:xlabel='Stay_In_Current_City_Years'>

In [60]: df.groupby('Stay_In_Current_City_Years').mean()['Purchase'].plot.bar(figsize=(12,6))# averag purchasing power of peropl
Out[60]: <AxesSubplot:xlabel='Stay_In_Current_City_Years'>

In [61]: sns.countplot(x=df['Occupation'])#to plot the no of occupation
Out[61]: <AxesSubplot:xlabel='Occupation', ylabel='count'>

In [62]: df.groupby('Occupation').size().sort_values().plot.bar(figsize=(6,6))#occupation on size

Out[62]: <AxesSubplot:xlabel='Occupation'>

In [63]: df.groupby('Occupation').sum()['Purchase'].sort_values().plot.bar(figsize=(6,6))#which occupation people purchasing mor

Out[63]: df.groupby('Occupation').sum()['Purchase'].sort_values().plot.bar(figsize=(6,6))#which occupation people purchasing mor

In [64]: df.groupby('Occupation').mean()['Purchase'].sort_values().plot.bar(figsize=(6,6))#which occupation people spending more

Out[64]: df.groupby('Occupation').mean()['Purchase'].sort_values().plot.bar(figsize=(6,6))#which occupation people spending more

In [65]: df.groupby('Occupation').mean()['Purchase'].sort_values()

```
Occupation
Out[65]:
                8714.335934
          19
                8754.249162
          20
                8881.099514
          1
                9017.703095
          2
                9025.938982
          10
                9052.836410
          0
                9186.946726
          18
                9233.671418
          3
                9238.077277
          4
                9279.026742
          11
                9299.467190
          6
                9336.378620
                9388.848978
          5
          13
                9424.449391
          16
                9457.133118
          7
                9502.175276
          14
                9568.536426
                9576.508530
          8
          15
                9866.239925
          12
                9883.052460
                9906.378997
          17
          Name: Purchase, dtype: float64
          sns.countplot(x='Occupation',hue='Marital Status',data=df)#occupation based on marital status
In [66]:
          <AxesSubplot:xlabel='Occupation', ylabel='count'>
Out[66]:
```


In [67]: sns.countplot(x='Occupation',hue='Gender',data=df)#ocuupation on the basis of gender
Out[67]: <AxesSubplot:xlabel='Occupation', ylabel='count'>

In [68]: df.groupby('Occupation').nunique()['Product_ID'].sort_values().plot.bar(figsize=(6,6))#which occupation purchasing uniq
Out[68]:


```
In [69]: df.groupby('Product_Category_1').size().sort_values().plot(kind='bar')#no of product category
Out[69]: <AxesSubplot:xlabel='Product_Category_1'>
```



```
In [70]: df.groupby('Product_Category_1').sum()['Purchase'].sort_values().plot(kind='bar')#which category purchased more
Out[70]:
```


In [71]: df.groupby('Product_Category_1').mean()['Purchase'].sort_values().plot(kind='bar')#on which category more money spent
Out[71]:

In [72]: df.groupby('Product_ID').sum()['Purchase'].nlargest(10).sort_values().plot(kind='bar')#top 10 product id interms of pur
Out[72]: <AxesSubplot:xlabel='Product_ID'>

In [73]: df.groupby('Product_ID').mean()['Purchase'].nlargest(10).sort_values().plot(kind='bar')#top 10 product idon which more
Out[73]: <AxesSubplot:xlabel='Product_ID'>

Combining Gender and Marital Status

In [74]: df.head()

Out[74]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purchase
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	8370
	1	1000001	P00248942	F	0- 17	10	А	2	0	1	15200
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	1422
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	1057
	4	1000002	P00285442	М	55+	16	С	4+	0	8	7969
											•
	<pre>l=[] for i in range(len(df)):</pre>										
In [77]:		['Marita	lGender']=]	1							
In [77]: In [78]:			lGender']=i	1							
	df	['Marita			Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purchase
In [78]:	df	['Marita			Age 0- 17	Occupation 10	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Purchase 8370
In [78]:	df	['Marita .head() User_ID	Product_ID	Gender							
In [78]:	o 1	<pre>['Marita .head() User_ID 1000001</pre>	Product_ID P00069042	Gender F	0- 17	10	А	2	0	3	8370
In [78]:	0 1 2	['Marita .head() User_ID 1000001 1000001	Product_ID P00069042 P00248942	Gender F	0- 17 0- 17 0- 17	10	A	2	0	3 1 12	8370 15200
In [78]:	0 1 2	['Marita .head() User_ID 1000001 1000001	Product_ID P00069042 P00248942 P00087842	Gender F F	0- 17 0- 17 0- 17 0- 17	10 10 10	A A A	2	0 0	3 1 12	8370 15200 1422
In [78]:	0 1 2	['Marita .head() User_ID 1000001 1000001 1000001	Product_ID P00069042 P00248942 P00087842 P00085442	Gender F F	0- 17 0- 17 0- 17 0- 17	10 10 10	A A A	2 2 2	0 0 0	3 1 12	8370 15200 1422 1057
In [78]:	0 1 2 3 4	['Marita .head() User_ID 1000001 1000001 1000001 1000002	Product_ID P00069042 P00248942 P00087842 P00085442 P00285442	Gender F F M	0- 17 0- 17 0- 17 0- 17 55+	10 10 10 10 16	A A A C	2 2 2	0 0 0	3 1 12 12 8	8370 15200 1422 1057 7969

Out[82]: <AxesSubplot:xlabel='MaritalGender', ylabel='count'>


```
In [83]: sns.countplot(x='MaritalGender',hue='Age',data=df)#marital gender on the basis of gender
Out[83]: <AxesSubplot:xlabel='MaritalGender', ylabel='count'>
```


In [85]: sns.countplot(x='Product_Category_1',hue='MaritalGender',data=df)#product category on the basis of marital gender
Out[85]: <AxesSubplot:xlabel='Product_Category_1', ylabel='count'>

In [87]: sns.countplot(x='Stay_In_Current_City_Years',hue='MaritalGender',data=df)#stay in current city on the basisof marital g

Out[87]: <AxesSubplot:xlabel='Stay_In_Current_City_Years', ylabel='count'>

In [88]: sns.countplot(x='City_Category',hue='MaritalGender',data=df)# city category on the basisof marital gender

Out[88]: <AxesSubplot:xlabel='City_Category', ylabel='count'>

In [1]: pip install Pandoc

Requirement already satisfied: Pandoc in c:\anaconda\lib\site-packages (2.2)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: ply in c:\anaconda\lib\site-packages (from Pandoc) (3.11)
Requirement already satisfied: plumbum in c:\anaconda\lib\site-packages (from Pandoc) (1.7.2)
Requirement already satisfied: pywin32 in c:\anaconda\lib\site-packages (from plumbum->Pandoc) (302)