Lecture 14 - Problem Solving and Design, Part 1

Overview

This is the first of our lectures dedicated primarily to problem solving and design rather than on particular programming constructs and techniques

- Design:
 - Choice of container/data structure; choice of algorithm.
 - At the moment, we don't know too many containers, but we will think about different ways to use the one container - lists - we do know about.
 - Implementation
 - Testing
 - Debugging
- We will discuss these in the context of several variations on one problem:
 - Finding the mode in a sequence of values the value (or values) occurring most often.
- There is no direct connect to a chapter in the text.
- We will start with a completely blank slate so that the whole process unfolds from scratch. This includes looking for other code to adapt.
- Working through problems like this is a good way to review what we've learned thus far.

Problem: Finding the Mode

- Given a series of values, find the one that occurs most often.
- Variation 1: is there a limited, indexable range of values?
 - Examples that are consistent with this variation include test scores or letters of the alphabet
 - Examples not consistent include counting words and counting amino acids
- Variation 2: do we want just the modes or do we want to know how many times each value occurs?
- Variation 3: do we want a histogram where values are grouped?
 - Example: ocean temperature measurements, pixel intensities, income values.

 In each of these cases, a specific value, the number of occurrences of a specific temperature, such as 2.314C, is not really of interest. More important is the number of temperature values in certain ranges.

Our Focus: A Sequence of Numbers

- · Integers, such as test scores
- Floats, such as temperature measurements

Sequence of Discussion

- Brainstorm ideas for the basic approach. We'll come with at least two.
 - We will discuss an additional approach when we learn about dictionaries.
- · Algorithm / implementation
- Testing
 - Generate test cases
 - Which test cases we generate will depend on the choice of algorithm. We will combine them.
- Debugging:
 - If we find a failed test case, we will need to find the error and fix it.
 - Use a combination of carefully reading the code, working with a debugger, and generating print statements.
- Evaluation
 - We can analyze using theoretical tools we will learn about later or through experimental timing

Discussion of Variations

- Frequency of occurrence:
 - What are the ten most frequently occurring values? What are the top ten percent most frequent values?
 - Output the occurrences for each value.
- Clusters / histograms:
 - Test scores in each range of 10
- Quantiles: bottom 25% of scores, median, top 25%