

IGBT Power Module

General Description

BYD IGBT Power Module BGW950F08B34L6-D provides low conduction and switching loss as well as short circuit ruggedness. which introduce the advanced Micro-Pattern Trench & field stop IGBT chip and ultra fast & soft recovery anti-parallel FRD to improved connection, it is able to take on a perfect performance in various applications with switching frequencies in the range of 10KHz.

Key Features

- · Full bridge module
- Compact & High power density design
- 750V Micro-Pattern Trench&field stop technology
- Ultra low conduction and switching loss
- Short circuit ruggedness
- Including ultra fast & soft recovery anti-parallel FRD
- Low Inductive Design
- The direct cooled oval PinFin Base Plate
- T_{vj op}=150 ℃
- Short-time extended Operation Temperature T_{vj op}=175℃
- · RoHS compliant

Applications

Automotive applicationHybrid and electric vehicleInverters for motor drive

Datasheet WI-D06F08-H-0499 V1.0 Page 1 of 12

• IGBT

■ Maximum Rated Values

Symbol	Parameter	Conditions	Value	Unit
V _{CES}	Collector-emitter voltage	T _{vj} =25℃	750	V
V _{GES}	Gate-emitter voltage	T _{vj} =25℃	±20	V
I _{CN}	Implemented Collector current		950	Α
I _{C nom}	Continuous DC Collector current	T _F =95℃, T _{vj max} =175℃	450	А
I _{CRM}	Repetitive peak collector current	Pulse, t _P =1ms, T _{vj} =25℃	1900	Α
P _{tot}	Total power dissipation	T _F =65℃,T _{vj max} =175℃	1149	W

□ Characteristics Values

Cumbal	Parameter	Conditions		Value		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		I _C =450A, V _{GE} =15V, T _{vj} =25°C		1.20		
		I _C =450A, V _{GE} =15V, T _{vj} =150°C		1.30		
$V_{CE\;sat}$	Collector-Emitter Saturation Voltage	I _C =450A, V _{GE} =15V, T _{vj} =175℃		1.30		V
	Cataranon vonage	I _C =950A, V _{GE} =15V, T _{vj} =25°C		1.57		
		I _C =950A, V _{GE} =15V, T _{vj} =175°C		1.90		
V_{GEth}	Gate threshold voltage	$V_{CE}=V_{GE},I_{C}=9.6$ mA, $T_{vj}=25$ °C	4.9	5.8	6.5	V
Q_G	Gate charge	V _{GE} =-8V+15V, V _{CE} =400V		1.84		μC
R _{Gint}	Internal gate Resistance	T _{vj} =25℃		0.8		Ω
Cies	Input capacitance			39.6		nF
Coes	Output capacitance	T _{vj} =25°C,f=100KHz, V _{CE} =50V, V _{GE} =0V		1.45		nF
C _{res}	Reverse capacitance			0.19		nF
I _{CES}	Collector-emitter cut-off current	V _{CE} =750V, V _{GE} =0V, T _{vj} =25°C			1	mA
I _{GES}	Gate-emitter leakage current	V _{CE} =0V, V _{GE} =20V, T _{vj} =25°C			400	nA

			T _{vj} =25℃	255	ns
$t_{\sf don}$	Turn-on delay time		T _{vj} =150℃	265	ns
			T _{vj} =175℃	266	ns
			T _{vj} =25℃	77	ns
t_r	Rise time		T _{vj} =150℃	83	ns
			T _{vj} =175℃	97	ns
			T _{vj} =25℃	1035	ns
$t_{ m d\ off}$	V	I _C = 450 A	T _{vj} =150℃	1127	ns
		V _{CE} = 450 V V _{GE} =-8V+15 V	T _{vj} =175℃	1153	ns
		$R_{Gon} = 2.5\Omega$ $R_{Goff} = 13.5\Omega$ $L_s = 30 nH$	T _{vj} =25℃	56	ns
t_f	Fall time		T _{vj} =150℃	83	ns
			T _{vj} =175℃	96	ns
			T _{vj} =25℃	19.0	mJ
Eon	Turn-on energy loss		T _{vj} =150℃	31.5	mJ
			T _{vj} =175℃	33.5	mJ
			T _{vj} =25℃	24.0	mJ
E _{off}	Turn-off energy loss		T _{vj} =150℃	31.0	mJ
			T _{vj} =175℃	31.5	mJ
I _{SC}	SC data	V _{GE} ≤15V,V _{CC} =450V V _{CEmax} =V _{CES} -L _{sCE} *di/dt	tp≤6us,Tvj=25˚C	3600	A
ISC	SO data		tp≤3us,Tvj=175℃	2800	A

Diode

☐ Maximum Rated Values

Symbol	Parameter	Conditions	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	T _{vj} =25℃	750	V
I _{FN}	Implemented forward current		950	А
l _F	Continuous DC forward current		450	А
I _{FRM}	Repetitive peak forward current	Pulse, t _P =1ms, T _{vj} =25°C	1900	А
l ² t	l ² t-value	V_R =0V, t_p =10ms, T_{vj} =150 $^{\circ}$ C V_R =0V, t_p =10ms, T_{vj} =175 $^{\circ}$ C	27000 25000	A ² s A ² s

Datasheet WI-D06F08-H-0499 V1.0 Page 3 of 1 2

□ Characteristics Values

Symbol	Parameter	Parameter Conditions		Value			l lmit	
Symbol	Faranietei	Conditio	Conditions		Тур.	Max.	Unit	
V _F		I _F =450A, V _{GE} =0V, T _{vj} =25℃ I _F =450A, V _{GE} =0V, T _{vj} =150℃ I _F =450A, V _{GE} =0V, T _{vj} =175℃			1.40			
					1.30			
	Forward voltage				1.25		V	
		I _F =950A, V _{GE} =0V, 7	_ _{vj} =25℃		1.68			
		I _F =950A, V _{GE} =0V, T _{vj} =175℃			1.60			
	Peak reverse recovery current		T _{vj} =25℃		247			
I _{RM}				T _{vj} =150℃		327		Α
				T _{vj} =175℃		336		
Qr	Recovered charge	I _F =450A	T _{vj} =25℃		20		μC	
		V _R =450V	T _{vj} =150℃		43		μC	
		V _{GE} =-8V	T _{vj} =175℃		51		μC	
	Reverse recovery energy		T _{vj} =25℃		6		mJ	
E _{rec}		200		T _{vj} =150℃		13		mJ
			T _{vj} =175℃		16		mJ	

NTC-Thermistor

Symbol	abol Parameter Conditions		Value			Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	UIIII
R ₂₅	Rated resistance	T _c =25℃		5.0		ΚΩ
△R/R	Deviation of R100	T _C =100℃,R ₁₀₀ =493	-5		5	%
P ₂₅	Power dissipation	T _C =25℃			20.0	mW
B _{25/50}	B-value	$R_2=R_{25} \exp[B_{25/50}(1/T_2-1/(298.15K))]$		3375		K
B _{25/80}	B-value	R ₂ =R ₂₅ exp[B _{25/80} (1/T ₂ -1/(298.15K))]		3411		K
B _{25/100}	B-value	$R_2=R_{25} \exp[B_{25/100}(1/T_2-1/(298.15K))]$		3433		K

Module

Cumbal	Parameter	Conditions		Value		Unit	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
$T_{vj\;max}$	Maximum junction temperature				175	$^{\circ}$	
		T _{op} continuous	-40		150		
T_{vjop}	Temperature under switching conditions	For 10s within a period of 30s,occurrence maximum 3000 times over lifetime	150		175	${\mathbb C}$	
T_{stg}	Storage temperature	Storage Temperature Range	-40		125	$^{\circ}$	
V _{ISOL}	Isolation test voltage	RMS, f=50Hz, t=30s	3800			V	
△p	Press drop in cooling circuit	\triangle V/ \triangle t=10.0 dm³/min; T _F =65 $℃$		77		mbar	
р	Maximum drop in cooling circuit (relative)	T _{baseplate} <40℃ T _{baseplate} >40℃			2.5 2.0	bar	
L _{sCE}	Stray inductance module			8		nH	
R _{CC'+EE'}	Module lead resistance terminal to chip	Tvj=25℃, per switch		0.75		mΩ	
R _{thj} F IGBT	thermal resistance, junction to cooling fluid	per IGBT, $\triangle V/\triangle t$ =10.0 dm³/min; T _F =65 $^{\circ}$ C		0.0957		K/W	
RthjF Diode	thermal resistance, junction to cooing fluid	per diode, $\triangle V/\triangle t\text{=}10.0 \text{ dm}^3\text{/min; } T_\text{F}\text{=}65^{\circ}\text{C}$		0.142		K/W	
M 1	Mounting torque for module mounting	Screw M4 baseplate to heatsink Screw EJOT Delta PT WN5451 30x10 PCB to frame	1.8 0.45	2.00 0.50	2.20 0.55	N.m	
M_2	Terminal connection torque	Screw M5	3		6	N.m	
m	Weight			710		g	
	Material of module baseplate		Cu+Ni				
	Internal isolation	ceramics	Si ₃ N ₄				
	Cua a maga diata :	Terminal to heatsink		9.0			
d _{Creep}	Creepage distance	Terminal to terminal		9.0		mm	
d_{Clear}	Clearance	Terminal to heatsink		4.5		mm	
G ∪leaf		Terminal to terminal		4.5			
$L \times W \times H$	Dimension		154.5×126.5×32		mm		

□ Characteristics Diagrams

Fig.4: IGBT Switching Loss vs. Ic

Fig.3: IGBT Transfer Characteristics

Fig.9: IGBT Capacity characteristic

Fig.10: IGBT Gate charge characteristic

Fig.11: Maximum allowed collector-emitter voltage

Fig.12: Diode forward characteristic

☐ Circuit Diagram

Datasheet

Package outlines

Attention

Correct and Safety Use of Power Module

Unsuitable operation (such as electrical, mechanical stress and so on) may lead to damage of power modules.

Please pay attention to the following descriptions and use BYD's IGBT modules according to the guidance.

During Transit:

- Tossing or dropping of a carton may damage devices inside.
- If a device gets wet with water, malfunctioning and failure may result. Special care should be taken during rain or snow to prevent the devices from getting wet.

Storage:

П

• The temperature and humidity of the storage place should be 15~25°C and 30~60% respectively. The performance and reliability of devices may be jeopardized if devices are stored in an environment far above or below the range indicated above.

Prolonged Storage:

• When storing devices more than one year, dehumidifying measures should be provided for the storage place. When using devices after a long period of storage, make sure to check the exterior of the devices is free from scratches, dirt, rust, and so on.

Operating Environment:

• Devices should not be exposed to water, organic solvents, corrosive gases, explosive gases, fine particles, or corrosive agents, since any of those can lead to a serious accident.

Anti-electrostatic Measures:

• Following precautions should be taken for gated devices to prevent static buildup which could damage the devices.

(1) Precautions against the device rupture caused by static electricity

Containers that are susceptible to static electricity should not be used for transit or for storage.

Static electricity of human bodies and cartons and/or excessive voltage applied across the gate to emitter may damage and rupture devices. Sense-emitter and temperature-sensor are also vulnerable to excessive voltage. The basis of anti-electrostatic is suppression of build-up and quick dissipation of the charged electricity.

Signal terminals to emitter should be always shorted with a carbon cloth or the like until right before a module is
used. Never touch the signal terminals with bare hands.
Always ground the equipment and your body during installation (after removing a carbon cloth or the like. It is
advisable to cover the workstation and its surrounding floor with conductive mats and ground them.
Use soldering irons with grounded tips.
BYD Semiconductor Co., Ltd. exerts the greatest possible effort to ensure high quality and reliability. Nevertheless,
semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing BYD products, to comply with the standards of safety in making a safe
design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any
accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BYD products are used
within specified operating ranges as set forth in the most recent BYD products specifications.