27. a.	derive its 'S' matrix of 3 port device. (i) E – plane (ii) H – plane				
b.	(OR) Design an attenuator using a rectangular to circular transition and a circular to rectangular transition. And demonstrate that the attenuation produced by the designed attenuator is given in the dB by $A = -40 \log (\sin \theta)$ where ' θ ' is the angle the resistive card makes with the direction of electric field.	10	4	2	4
28. a.	Two identical 40 dB directional couplers are used to sample incident and reflected power in a waveguide. The value of VSWR is 7.0 and the output of the coupler sampling incident power is 5mW. What is the value of	10	4	3	4
	reflected power? And, illustrate the method of measuring the power ranging from 10 W to 50 kW.				
b.	(OR) Identify the device which provides information about the voltage (or) energy of the signal as a function of frequency. Provide its working principle with suitable block diagrams.	10	4	3	4
29. a.	Enumerate the various attenuation mechanism in an optical fiber with equations and block diagram.	10	3	4	2
b.i.	(OR) A PIN photo diode has a quantum efficiency of 65% for photons of energy $1.52 \times 10^{-19} J$. Calculate (1) wave length at which the diode is operating. (2) the optical power required to achieve a photo cement of $3\mu A$, when the wavelength of incidence photon is that calculated from above (1) questions.	5	4	4	4
ii.	Mention the needs of double hetero structure in LED and highlight importance of S-LED with its structure.	5	4	4	4
30. a.i.	Write down the procedure to estimate the rise time budget of a fiber optic point to point link and highlighting the deviation of rise time resulting from modal dispersion.	5	4	5	5
ii.	With suitable expressions, elaborate the link power budget of an optical system of 10 km distance.	5	4	5	5
b.	(OR) Mention the need for multiplexing in optical communications and explain working principle of WDM and DWDM.	10	4	5	5

|--|

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

18ECC302J – MICROWAVE AND OPTICAL COMMUNICATIONS (For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note: (i)		ove	r to hall invigilator at the end of		and OMR sheet should be						
(ii)	•	Par	t - B should be answered in answ	ver bookie	·						
Time	: 21	⁄ ₂ Ho	urs	4		Max.	Ma	ırks:	75		
			PART – A (25)	× 1 = 25 I	Marks)	Marks	BL	со	PO		
			Answer AL								
	1.	Mic	rowave frequencies are used	for earth	-space links because they do not	1	1	1	1		
		suff	_								
		(A)	Attenuation	(B)	Fading						
		(C)	Refraction by ionosphere	(D)	Phase distortion						
J.	2.	Whi and	. 1	-1	1	1					
		(A)	Magnetron	(B)	Reflex klystron						
		` '	Travelling wave tube	(D)	Klystron						
	3.		rder to achieve high current le in a TRAPATT diode.	density, a	a compromise in is	1	1	1	1		
		(A)	Size	(B)	Gain						
		(C)		(D)	Directivity						
	4.	With	1	2	1	4					
		of th	ne transistor								
		(A)	Increases	(B)	Decreases						
		(C)	Remains constant	(D)	Behaves abruptly	×					
	5.	A re	eflex klystron functions as			1	2	1	4		
		(A)	Microwave oscillator	(B)	Microwave amplifier						
		(C)	High gain cavity	(D)	Repeater	4.5					
	6.	Scat	1	1	2	2					
		(A)	Skew matrix	(B)	Identify matrix						
		(C)	Unitary	(D)	Symmetric						
	7.	Whi	ich device is based on Farada	y's rotation	on?	1	1	2	2		
			Isolator		Magic tee						
		(C)	H-plane	(D)	E-plane						
		. ,	-			7	- 8				

8.	The mode of propagation supported b	by coupled line coupler is	1	1	2	2	18.	When the input and output power in an optical fiber is 120 μ W and 3 μ W.	2	4	4
	(A) TE mode	(B) TM mode						the length of the fiber is 8 km. What is the signal attenuation per km?			-
	(C) TEM mode	(D) Quasi TEM mode	2 1	ar.				(A) 3 dB/km (B) 2 dB/km			
	(1)	(2) (2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						(C) 4 dB/km (D) 6 dB/km			
Q	In tunnel diode, the tunneling phenon	nenon is due to	1	2	1	4		(C) 4 dD/kiii (D) 0 dD/kiii			
,	(A) Minority carrier effect	(B) Transit time effect					10	The 6:11	1	1	2
							19.	The following has more sophisticated structure that P-I-N photodiode	1	7	2
	(C) Frequency effect	(D) Majority carrier effect						(A) P-N junction diode (B) Avalanche photodiode			
								(C) Laser diode (D) Led diode			
10.	E-plane tee is also known as		1	2	2	4					
	(A) Adder	(B) Subtractor					20.	Condition for the spontaneous emission	1	4	2
	(C) Multiplier	(D) Divider						(A) N1=N2 (B) N1>N2			
								(C) N2>N1 (D) N1>=N2			
11.	Isolation of a directional coupler is a	measure	1	1	3	3					
	-	(B) Power delivered to the coupled	3577				21	The bandgap energy of gallium arsenide is	2	4	2
	uncoupled port	port					21.	The bandgap energy of gaintain arsenide is			
								(A) $E_g = 1.343 eV$ (B) $E_g = 1.443 eV$			
	(C) Power delivered to the second	(D) No power delivered						(C) $E_g = 1.23 \ eV$ (D) $E_g = 1.3 \ eV$			
10	. port		1	1	2	2					
12.	Which is a dominant mode in rectang		1	1	3	3	22.	Find the numerical aperture if core-cladding index difference is 2% and 1	2	4	2
	(A) TE10	(B) TE11						refractive index N1 is 1.480.			
	(C) TM10	(D) TM01						(A) 0.296 (B) 0.52			
		*									
13.	In double minimum method		1	2	3	4	5	(C) 0.356 (D) 0.13			
	(A) $\lambda_g / (d1 - d2)$	(B) $\lambda_g / \pi (d1 - d2)$					22	Snell's law related to	2	4	1
						35	23.	Short Staw Totalog to	2	4	4
	(C) $\pi(d1-d2)$	(D) $\pi \lambda g / (d1 - d2)$						(A) Light reflection (B) Light transmission			
								(C) Light refraction (D) Light attenuation			
14.	What instrument that sweeps over a	band of frequencies to determine the	1	1	3	3					
	range of frequencies are being produc						24.	When the number of channels is very large and wavelength are spaced 1	1	5	2
	(A) Frequency counter	(B) Spectrum analyser						close together, then the system is			
	(C) Bolometer	(D) Function generator				2		(A) WDM (B) WSN			
		(D) I direction generator						(C) DWDM (D) TDM			
15	For a Wilkinson power divider of	insertion loss L and the coupler is	1	1	3	3		(6) 2 (12)			
15.		then the gain of the coupler interms of					25	What type of WDM system required an optical circulator?	2	5	2
	insertion loss is	then the gain of the coupler interms of					25.	what type of weather required air optical enculator.			
		(D) 1									
	(A) 2L	(B) $\frac{1}{L}$					4	(C) Michelson interferometer (D) Fiber bragg grating			
	*	· 2									
	(C) L	(D) 1						$PART - B (5 \times 10 = 50 \text{ Marks})$			
		<u></u>						Answer ALL Questions Marks	BL	CO	PO
	98	-									
16	Slotted line is a transmission line co	onfiguration can be used to determine	1	1	3 =	3	26. a.i.	Write down the working principle of Gunn diode as a Transferred Electron 5	4	1	4
10.	the	omiguration can be used to determine						Device with two valley model and V-I characteristics.			
		(D) Valtage and for mainting					W.				
	(A) Magnetic field amplitude	(B) Voltage used for excitation					ii.	Illustrate the construction and explain operation of IMPATT diode. 5	4	1	4
	(C) Load impedance	(D) Current measured at the load									
								(OR)			
17.	The band of light wavelengths that	are too long to be seen by the human	1	1	4	2	b.	A two cavity Klystron is operated at 10GHz with V ₀ =1300 V and ¹⁰	4	1	1
	eye			12				I ₀ =40mA. Gap spacing in either cavity is 2 mm. Spacing between the			
	(A) Ultraviolent	(B) Infrared						cavity is 5 cm.			
	(C) Amber	(D) X-rays		p;=10				(i) Calculate electron velocity.			
	8							(ii) DC transit time of electron,			
								(iii) Input RF voltage Vi for a maximum output voltage and			
								(iv) The beam coupling coefficient.			

Page 2 of 4 20MF618ECC302J Page 3 of 4