Statistiques avancées — Régression

Régression en grande dimension

Geneviève Robin

Objectif du cours

- ▶ On reprend le modèle de régression linéaire multiple, mais...
- ▶ Dans le contexte de la grande dimension que l'on va expliciter
- Cela correspond au contexte d'une partie des données modernes
- "Big data" dans un certain sens

Rappel de régression linéaire

- Échantillon $(X_i, Y_i)_{1 \le i \le n}$ avec $X_i \in \mathbb{R}^p$ un vecteur de covariables (prédicteurs) et $Y_i \in \mathbb{R}$ la réponse.
- Modèle linéaire avec bruit Gaussien additif :

$$Y_i = X_i \beta + \varepsilon_i$$

où $\beta \in \mathbb{R}^p$ est le vecteur de coefficients de régression inconnu et $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

▶ Dans les cours précédents on a vu l'estimateur du maximum de vraisemblance/des moindres carrés.

Estimateur des moindres carrés classiques — Rappel

- ▶ MLE/OLS: $\hat{\beta} \in \operatorname{argmin}_{\beta \in \mathbb{R}^p} \|Y X\beta\|^2$, $Y \in \mathbb{R}^n$ vecteur de réponse, $X \in \mathbb{R}^{n \times p}$ matrice de design
- ▶ Rappel: Si X^TX est inversible alors $\hat{\beta}$ admet la forme close

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y.$$

- ▶ $X^{\top}X$ inversible $\Leftrightarrow X^{\top}X$ de rang plein (de rang p).
- **Si** p > n cette hypothèse ne peut être vérifiée.

Qu'est-ce que la grande dimension?

- ▶ En sciences des données, on parle de "grande dimension" lorsque p >> n.
- Dans ce cas, l'estimateur des moindres carrés est mal spécifié : n équations à p inconnues, p >> n.
- ▶ De plus, l'erreur d'estimation/de prédiction peut devenir grande (voir TD de cet après-midi).
- Pour y remédier, une solution classique est de recourir à la régularisation/pénalisation.

Pénalisation

En définissant

$$\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

on définit en général un mauvaix classifieur, notamment dans les cas où il y a beaucoup de features.

On considère plutôt

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \right\}$$

οù

- pen est un terme de penalisation, ça permettra à w ne pas pas être trop "complexe"
- ho C > 0 est un paramètre qui contrôle la force de la pénalisation (appelé paramètre de **tuning** ou de **smoothing**)

Pénalisation ridge

La pénalisation ridge est définie par

$$\mathsf{pen}(w) = \frac{1}{2} \|w\|_2^2 = \frac{1}{2} \sum_{i=1}^d w_i^2$$

Elle pénalise la taille de w.

- C'est simple
- ► Elle permet de "régler" les problèmes de corrélation entre variables
- ► Elle aide par ailleurs les algorithmes d'optimisation (problème plus simple)

Interprétation géométrique

Figure 1: from https://online.stat.psu.edu/stat508/

Sparsité

On remarque que, si $\hat{w}_j=0$, alors la feature j n'a pas d'impact sur la prédiction

$$\hat{y} = \text{sign}(\langle x, \hat{w} \rangle + \hat{b})$$

Si on a beaucoup de features (si d est grand), on aimerait obtenir un \hat{w} qui contient beaucoup de **zeros**.

On obtientra alors un modèle plus simple avec une dimension "réduite" et donc plus facilement interprétable

Comment faire ?

Pénalisation par la norme
$$\|\cdot\|_0$$

On aimerait définir

$$\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \|w\|_0 \right\},$$

οù

$$||w||_0 = \#\{j \in \{1,\ldots,d\} : w_j \neq 0\}.$$

Mais, pour résoudre le problème de minimisation qui n'est pas convexe, il faudrait explorer tous les supports possibles de w: c'est trop long (NP-hard)

Pénalisation par la norme $\|\cdot\|_1$: le LASSO

Une solution est donc de trouver un "proxy" convexe de la $\|\cdot\|_0$: la **norme** ℓ_1 $\|w\|_1 = \sum_{i=1}^d |w_i|$

Pourquoi cela induit-il de la sparsité ?

LASSO vs ridge : interprétation géométrique

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

Régression pénalisée

Considérons le problème de minimisation

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \Big\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \Big\},$$

Pour $\ell(y,y') = \frac{1}{2}(y-y')^2$ et pen $(w) = \frac{1}{2}\|w\|_2^2$, c'est la **régression ridge**

Pour $\ell(y,y') = \frac{1}{2}(y-y')^2$ et pen $(w) = ||w||_1$, c'est le **Lasso** (Least absolute shrinkage and selection operator)

Pour $\ell(y,y') = \log(1+e^{-yu'})$ et pen $(w) = ||w||_1$, c'est la régression logistique pénalisée ℓ_1

Il y a de nombreuses combinaisons possibles

Elastic-net

Les combinaisons

(régression linéaire ou logistique) + (ridge or ℓ_1)

sont les plus utilisées.

Une autre pénalité très utilisée est

$$pen(w) = \frac{1-\alpha}{2} ||w||_2^2 + \alpha ||w||_1$$

appelée **elastic-net**, elle bénéfie des avantages des pénalisations ridge et ℓ_1 ($\alpha > 0$ équilibre les deux)

Figure 2: http://scikit-learn.sourceforge.net/

Problème de minimisation

Nous avons vu des problèmes de minimisation de la forme

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + g(w)$$

où f est une fonction de goodness-of-fit

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle w, x_i \rangle)$$

où ℓ est une fonction de perte et

$$g(w) = \frac{1}{C} \operatorname{pen}(w)$$

où pen(·) est une pénalisation, par exemple pen(w) = $\frac{1}{2} ||w||_2^2$ (ridge) et pen(w) = $||w||_1$ (Lasso)

Remarque : on oublie dans cette partie le paramètre b.

Gradient et hessienne

On veut minimiser

$$F(w) = f(w) + g(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle x_i, w \rangle) + \frac{1}{C} \operatorname{pen}(w)$$

Calculons le gradient et la hessienne de f

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \langle x_i, w \rangle) x_i$$
$$\nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \langle x_i, w \rangle) x_i x_i^{\top}$$

avec

$$\ell'(y,y') = \frac{\partial \ell'(y,y')}{\partial y'}$$
 et $\ell''(y,y') = \frac{\partial^2 \ell'(y,y')}{\partial y'^2}$

Convexité et *L*-régularité

Remarquons que f est convexe si et seulement si

$$y' \mapsto \ell(y_i, y')$$

l'est pour tout $i = 1, \ldots, n$.

Definition. On dit f est L-régulière si elle est continuement différentiable et si

$$\|\nabla f(w) - \nabla f(w')\|_2 \le L\|w - w'\|_2$$
 pour tout $w, w' \in \mathbb{R}^d$

Si f est deux fois différentiable, c'est équivalent à supposer

$$\lambda_{\max}(\nabla^2 f(w)) \leq L$$
 for any $w \in \mathbb{R}^d$

(la plus grande valeur propre de la hessienne de f est plus petite que L)

Cas particuliers : perte des moindres carrés

Pour la perte des moindres carrés (least-squares loss)

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} (\langle x_i, w \rangle - y_i) x_i, \quad \nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

donc

$$L = \frac{1}{n} \lambda_{\max} \left(\sum_{i=1}^{n} x_i x_i^{\top} \right)$$

Cas particuliers : perte logistique

Pour la perte logistique

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} y_i (\sigma(y_i \langle x_i, w \rangle) - 1) x_i$$

et

$$\nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^{n} \sigma(y_i \langle x_i, w \rangle) (1 - \sigma(y_i \langle x_i, w \rangle)) x_i x_i^{\top}$$

donc

$$L = \frac{1}{4n} \lambda_{\max} \left(\sum_{i=1}^{n} x_i x_i^{\top} \right)$$

Lemme de descente

Lemme de descente

Si f est L-régulière, alors

$$f(w) \le f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{L}{2} ||w - w'||_2^2$$

pour tout $w, w' \in \mathbb{R}^d$

Preuve dans le cours d'optimisation

On a donc, autour du point w^k à l'itération k

$$f(w) \le f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} ||w - w^k||_2^2$$

pour tout $w \in \mathbb{R}^d$

Descente de gradient proximale

En considérant le problème de départ, on a donc à l'itération k

$$f(w) + g(w) \le f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} ||w - w^k||_2^2 + g(w)$$

et

$$\begin{aligned} & \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} \|w - w^k\|_2^2 + g(w) \right\} \\ &= \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{L}{2} \left\| w - \left(w^k - \frac{1}{L} \nabla f(w^k) \right) \right\|_2^2 + g(w) \right\} \\ &= \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \left\| w - \left(w^k - \frac{1}{L} \nabla f(w^k) \right) \right\|_2^2 + \frac{1}{L} g(w) \right\} \\ &= ???? \end{aligned}$$

Opérateur proximal

Pour tout $g:\mathbb{R}^d \to \mathbb{R}$ convexe (pas forcément différentiable), et tout $w \in \mathbb{R}^d$, on définit

$$\operatorname{prox}_{g}(w) = \operatorname{argmin}_{w' \in \mathbb{R}^{d}} \left\{ \frac{1}{2} \|w - w'\|_{2}^{2} + g(w') \right\}$$

Prox de la pénalité ridge

Calculer l'opérateur proximal de la pénalité ridge.

Calcul direct du prox du LASSO (1)

Considérons le problème de minimisation

$$\min_{z'\in\mathbb{R}}\frac{1}{2}(z'-z)^2+\lambda|z'|$$

pour $\lambda > 0$ et $z \in \mathbb{R}$.

Calcul direct du prox du LASSO (2)

- La dérivée sur $\mathbb{R} + +^*$: $z' z + \lambda$, en $0 + d_+ = -z + \lambda$
- La dérivée en \mathbb{R}_+^{\star} : $z'-z-\lambda$, en $0-d_-=-z-\lambda$

Soit z_* la solution, elle vérifie

- $ightharpoonup z_* = 0$ ssi $d_+ > 0$ et $d_- < 0$, soit $|z| < \lambda$
- \triangleright $z_* > 0$ ssi $d_+ < 0$, soit $z > \lambda$ et $z_* = z \lambda$
- $ightharpoonup z_* \le 0$ ssi $d_- \ge 0$, soit $z \le -\lambda$ et $z_* = z + \lambda$

donc

$$z_* = \operatorname{sign}(z)(|z| - \lambda)_+$$

On l'appelle l'opérateur de seuillage doux (soft-thresholding operator).

Calcul direct du prox du LASSO (3)

$$\underset{z' \in \mathbb{R}}{\operatorname{argmin}} \, \frac{1}{2} (z'-z)^2 + \frac{1}{C} |z'| = \operatorname{sign}(z) \Big(|z| - \frac{1}{C} \Big)_+$$

donc

$$\underset{w' \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|w' - w\|_2^2 + \frac{1}{C} \|w'\|_1 = \operatorname{sign}(w) \odot \left(|w| - \frac{1}{C}\right)_+.$$

Exemple avec C=1

Descente de gradient proximale (PGD)

- ▶ Input: initialisation w^0 , constante de Lipschitz L > 0 pour ∇f ,
- ▶ pour k = 1, 2, ... jusqu'à *convergence* faire

$$w^k \leftarrow \operatorname{prox}_{g/L} \left(w^{k-1} - \frac{1}{L} \nabla f(w^{k-1}) \right)$$

► Renvoyer w^k

Pour le Lasso

$$\hat{w} \in \operatorname*{argmin}_{w \in \mathbb{R}^d} \left\{ \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \|w\|_1 \right\},$$

l'itération est donnée par

$$w^k \leftarrow S_{\lambda/L} \Big(w^{k-1} - \frac{1}{Ln} X^\top (Xw^{k-1} - y) \Big),$$

où S_{λ} est l'opérateur de seuillage doux.

Exercices

Avec l'intercept b

Récrire l'algorithme de descente de gradient proximale quand ℓ dépend à la fois de w et de b, c'est-à-dire pour le problème de minimisation

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \Big\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \Big\}.$$

Elastic-net

Récrire l'algorithme de descente de gradient proximale pour la pénalité elastic-net

$$pen(w) = \frac{1 - \alpha}{2} \|w\|_2^2 + \alpha \|w\|_1$$

Point d'étape

On sait calculer

$$\hat{w}, \hat{b} \in \underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \right\}.$$

dans les cas du LASSO pen $(w) = ||w||_1$ et de la ridge pen $(w) = \frac{1}{2}||w||_2^2$ pour une valeur de C ou de $\lambda = 1/C$. Il reste donc à choisir C > 0 ou $\lambda > 0$.

Sur-apprentissage / sur-ajustement / over-fitting

Sur le jeu de données d'exemple linear j'ai ajouté des features en prenant des polynômes des features initiales.

But de l'apprentissage statistique

Le but de l'apprentissage supervisé (dans le cas de la classification) est en fait de trouver le classifieur qui minimise l'erreur de généralisation

$$c^*_{ ext{generalisation}} \in \operatorname*{argmin}_{c} \mathbb{E}ig(\ell(\mathit{Y}_+, c(\mathit{X}_+))ig)$$

ou, dans les cas étudiés dans ce chapitre:

$$w^*_{\mathsf{generalisation}} \in \operatorname*{argmin}_{w \in \mathbb{R}^d} \mathbb{E}(\ell(Y_+, \langle X_+, w \rangle))$$

Pourtant nous définissions

$$\hat{w}, \hat{b} \in \operatorname*{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \Big\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b) + \frac{1}{C} \operatorname{pen}(w) \Big\}.$$

- On doit donc trouver une valeur de C qui rend petite l'erreur de généralisation.
- On va utiliser la cross-validation en montrant comment elle permet d'estimer l'erreur de généralisation.

Take home message il n'y a pas de machine learning sans cross-validation !

Cross-validation V-Fold

▶ On prend V=5 ou V=10. On choisit une partition aléatoire I_1,\ldots,I_V de $\{1,\ldots,n\}$, où $|I_V|\approx \frac{n}{V}$ pour tout $V=1,\ldots,V$

On choisit une grille

$$C = \{C_1, \ldots, C_K\}$$

de valeurs possibles pour C. Pour tout $v = 1, \ldots, V$

- ▶ Posons $I_{v,\text{train}} = \bigcup_{v' \neq v} I_{v'}$ et $I_{v,\text{test}} = I_v$
- ▶ Pour tout $C \in \mathcal{C}$, on cherche

$$\hat{w}_{\mathsf{v},\mathsf{C}} \in \operatorname*{\mathsf{argmin}}_{\mathsf{w}} \left\{ \frac{1}{|I_{\mathsf{v},\mathtt{train}}|} \sum_{i \in I_{\mathsf{v},\mathtt{train}}} \ell(\mathsf{y}_i, \langle \mathsf{x}_i, \mathsf{w} \rangle) + \frac{1}{\mathsf{C}} \, \mathsf{pen}(\mathsf{w}) \right\}$$

On pose

$$\hat{C} \in \operatorname*{argmin} \sum_{c \in \mathcal{C}}^{V} \sum_{i \in I_{V, \mathrm{test}}} \ell(y_i, \langle x_i, \hat{w}_{v, C} \rangle)$$

Remarque on peut utiliser d'autres pertes ou métriques pour choisir \hat{C}

► Erreur visible/erreur empirique/training error:

$$C \mapsto \sum_{v=1}^{V} \sum_{i \in I_{v, train}} \ell(y_i, \langle x_i, \hat{w}_{v,C} \rangle)$$

► Erreur de test/de validation/de cross-validation/testing error

$$C \mapsto \sum_{v=1}^{V} \sum_{j \in I_{v \text{ test}}} \ell(y_i, \langle x_i, \hat{w}_{v,C} \rangle)$$

Métriques standard classification (1)

▶ Precision, Recall, F-Score, AUC

Pour chaque individu i nous avons

- son vrai label yi
- **>** son label prédit \hat{y}_i

On peut construire la matrice de confusion

	Predicted Class				
		Yes	No		$TP = \sum_{i=1}^{n} \mathbb{1}_{v_i = 1, \hat{v}_i = 1}$
Actual Class	Yes	TP	FN	with	$\begin{array}{l} TP = \sum_{i=1}^{n} \mathbb{1}_{y_{i}=1,\hat{y}_{i}=1} \\ TN = \sum_{i=1}^{n} \mathbb{1}_{y_{i}=-1,\hat{y}_{i}=-1} \\ FN = \sum_{i=1}^{n} \mathbb{1}_{y_{i}=1,\hat{y}_{i}=-1} \\ FP = \sum_{i=1}^{n} \mathbb{1}_{y_{i}=-1,\hat{y}_{i}=1} \end{array}$
	No	FP	TN	_	

avec yes = 1 et no = -1

Métriques standard classification (2)

$$\begin{aligned} & \mathsf{Precision} = \frac{\mathsf{TP}}{\#(\mathsf{predicted}\;\mathsf{P})} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}} \\ & \mathsf{Recall} = \frac{\mathsf{TP}}{\#(\mathsf{real}\;\mathsf{P})} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} = \\ & \mathsf{Accuracy} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{TN} + \mathsf{FP} + \mathsf{FN}} \end{aligned}$$

$$\mathsf{F-Score} = 2\frac{\mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

Un peu de vocabulaire

- ► Recall = Sensitivity
- $\blacktriangleright \ \, \mathsf{False-Discovery} \,\, \mathsf{Proportion} \,\, \mathsf{FDP} = 1 \mathsf{Precision}$

Courbe ROC

- On part des probalitités estimées $\hat{\pi}_1(x_i) = \hat{\mathbb{P}}(Y = 1|X = x_i)$
- ► Chaque point A_t de la courbe a pour coordonnées (FPP_s, Recall_s), où FPP_s et Recall_s sont les FPP et le recall de la matrice de confusion obtenue avec la règle de classification

$$\hat{Y}_i = \left\{egin{array}{ll} 1 & ext{si } \hat{\pi}_1(x_i) \geq s \ -1 & ext{sinon} \end{array}
ight.$$

pour un seuil s variant dans [0,1]

▶ l'AUC est alors l'aire sous la courbe ROC.

