```
In [1]: import pandas as pd
         import numpy as np
In [2]: data=pd.read_csv('U:/Documents/Gunn Notes/Data Analyst Training/CELL/pima.csv', head
         er=0, sep=',')
In [4]: print (data.columns)
         data.head(5)
         Index(['Index', 'pregnant', 'glucose', 'diastolic', 'triceps', 'insulin',
                 'bmi', 'diabetes', 'age', 'test'],
               dtype='object')
Out[4]:
            Index pregnant glucose diastolic triceps insulin bmi diabetes age test
         0
               1
                        6
                                      72
                                             35
                                                     0 33.6
                                                              0.627
                                                                     50
                              148
                                                                          1
         1
               2
                        1
                              85
                                      66
                                             29
                                                     0 26.6
                                                              0.351
                                                                     31
                                                                          0
         2
               3
                        8
                              183
                                              0
                                                     0 23.3
                                                              0.672
                                      64
                                                                    32
                                                                          1
         3
               4
                        1
                              89
                                      66
                                             23
                                                    94 28.1
                                                              0.167
                                                                    21
                                                                          0
                        0
         4
               5
                             137
                                      40
                                             35
                                                   168 43.1
                                                              2.288 33
                                                                          1
```

## \*\*QUESTIONS\*\*

In [5]: data.describe()

### Out[5]:

|       | Index      | pregnant   | glucose    | diastolic  | triceps    | insulin    | bmi        | diabetes   |        |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|--------|
| count | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.000000 | 768.00 |
| mean  | 384.500000 | 3.845052   | 120.894531 | 69.105469  | 20.536458  | 79.799479  | 31.992578  | 0.471876   | 33.24  |
| std   | 221.846794 | 3.369578   | 31.972618  | 19.355807  | 15.952218  | 115.244002 | 7.884160   | 0.331329   | 11.76  |
| min   | 1.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.078000   | 21.00  |
| 25%   | 192.750000 | 1.000000   | 99.000000  | 62.000000  | 0.000000   | 0.000000   | 27.300000  | 0.243750   | 24.00  |
| 50%   | 384.500000 | 3.000000   | 117.000000 | 72.000000  | 23.000000  | 30.500000  | 32.000000  | 0.372500   | 29.00  |
| 75%   | 576.250000 | 6.000000   | 140.250000 | 80.000000  | 32.000000  | 127.250000 | 36.600000  | 0.626250   | 41.00  |
| max   | 768.000000 | 17.000000  | 199.000000 | 122.000000 | 99.000000  | 846.000000 | 67.100000  | 2.420000   | 81.00  |

<sup>\*\*</sup>Question 1: What is the mean insulin amount for patients in the study?\*\* Answer: 20.54

\*\*Question 3: Check out the minimum values for glucose, diastolic BP, triceps, insulin and bmi\*\* Answer: Values are 0

<sup>\*\*</sup>Question 2: What was the 3rd quartile of BMI?\*\* Answer: 36.60

```
In [6]: | data.loc[data['glucose'] == 0, 'glucose'] = np.nan
        data.loc[data['diastolic'] == 0, 'diastolic'] = np.nan
        data.loc[data['triceps'] == 0, 'triceps'] = np.nan
        data.loc[data['insulin'] == 0, 'insulin'] = np.nan
        data.loc[data['bmi'] == 0, 'bmi'] = np.nan
In [8]: | print (data.columns)
        data.head(10)
        Index(['Index', 'pregnant', 'glucose', 'diastolic', 'triceps', 'insulin',
               'bmi', 'diabetes', 'age', 'test'],
              dtype='object')
Out[8]:
```

|   | Index | pregnant | glucose | diastolic | triceps | insulin | bmi  | diabetes | age | test |
|---|-------|----------|---------|-----------|---------|---------|------|----------|-----|------|
| 0 | 1     | 6        | 148.0   | 72.0      | 35.0    | NaN     | 33.6 | 0.627    | 50  | 1    |
| 1 | 2     | 1        | 85.0    | 66.0      | 29.0    | NaN     | 26.6 | 0.351    | 31  | 0    |
| 2 | 3     | 8        | 183.0   | 64.0      | NaN     | NaN     | 23.3 | 0.672    | 32  | 1    |
| 3 | 4     | 1        | 89.0    | 66.0      | 23.0    | 94.0    | 28.1 | 0.167    | 21  | 0    |
| 4 | 5     | 0        | 137.0   | 40.0      | 35.0    | 168.0   | 43.1 | 2.288    | 33  | 1    |
| 5 | 6     | 5        | 116.0   | 74.0      | NaN     | NaN     | 25.6 | 0.201    | 30  | 0    |
| 6 | 7     | 3        | 78.0    | 50.0      | 32.0    | 88.0    | 31.0 | 0.248    | 26  | 1    |
| 7 | 8     | 10       | 115.0   | NaN       | NaN     | NaN     | 35.3 | 0.134    | 29  | 0    |
| 8 | 9     | 2        | 197.0   | 70.0      | 45.0    | 543.0   | 30.5 | 0.158    | 53  | 1    |
| 9 | 10    | 8        | 125.0   | 96.0      | NaN     | NaN     | NaN  | 0.232    | 54  | 1    |

In [9]: | data.describe()

### Out [9]:

|       | Index      | pregnant   | glucose    | diastolic  | triceps    | insulin    | bmi        | diabetes   |     |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| count | 768.000000 | 768.000000 | 763.000000 | 733.000000 | 541.000000 | 394.000000 | 757.000000 | 768.000000 | 768 |
| mean  | 384.500000 | 3.845052   | 121.686763 | 72.405184  | 29.153420  | 155.548223 | 32.457464  | 0.471876   | 33  |
| std   | 221.846794 | 3.369578   | 30.535641  | 12.382158  | 10.476982  | 118.775855 | 6.924988   | 0.331329   | 11  |
| min   | 1.000000   | 0.000000   | 44.000000  | 24.000000  | 7.000000   | 14.000000  | 18.200000  | 0.078000   | 21  |
| 25%   | 192.750000 | 1.000000   | 99.000000  | 64.000000  | 22.000000  | 76.250000  | 27.500000  | 0.243750   | 24  |
| 50%   | 384.500000 | 3.000000   | 117.000000 | 72.000000  | 29.000000  | 125.000000 | 32.300000  | 0.372500   | 29  |
| 75%   | 576.250000 | 6.000000   | 141.000000 | 80.000000  | 36.000000  | 190.000000 | 36.600000  | 0.626250   | 41  |
| max   | 768.000000 | 17.000000  | 199.000000 | 122.000000 | 99.000000  | 846.000000 | 67.100000  | 2.420000   | 81  |

<sup>\*\*</sup>Question 4: What is the mean insulin amount for patients in the study now?\*\* Answer: 155.54

\*\*Question 6: Check out the minimum values for glucose, diastolic BP, triceps, insulin and bmi now\*\* Answer: Non zero values are dispalyed now

<sup>\*\*</sup>Question 5: What is the 3rd quartile of BMI now?\*\* Answer: 36.60

```
In [10]: | #diabetes 0-no, 1-yes
          data['test'] = data['test'].replace(0, 'No')
          data['test'] = data['test'].replace(1, 'Yes')
In [12]: | print (data.columns)
          data.head(10)
          Index(['Index', 'pregnant', 'glucose', 'diastolic', 'triceps', 'insulin',
                 'bmi', 'diabetes', 'age', 'test'],
                dtype='object')
Out[12]:
             Index pregnant glucose diastolic triceps insulin bmi diabetes age test
          0
                              148.0
                                       72.0
                                              35.0
                                                     NaN 33.6
                                                                 0.627
                                                                            Yes
           1
                               85.0
                                       66.0
                                              29.0
                                                     NaN 26.6
                                                                 0.351
                 2
                                                                        31
                         1
                                                                            No
           2
                 3
                         8
                              183.0
                                       64.0
                                              NaN
                                                     NaN 23.3
                                                                 0.672
                                                                        32
                                                                           Yes
           3
                               89.0
                                       66.0
                                              23.0
                                                     94.0 28.1
                                                                 0.167
                                                                        21
                         1
                                                                            Nο
           4
                 5
                         0
                              137.0
                                       40.0
                                              35.0
                                                    168.0 43.1
                                                                 2.288
                                                                        33
                                                                           Yes
           5
                 6
                         5
                              116.0
                                       74.0
                                              NaN
                                                     NaN 25.6
                                                                 0.201
                                                                        30
                                                                            No
                 7
                              78.0
                                       50.0
                                              32.0
           6
                         3
                                                     88.0 31.0
                                                                 0.248
                                                                        26
                                                                           Yes
                         10
                              115.0
                                       NaN
                                              NaN
                                                     NaN 35.3
                                                                 0.134
                                                                            No
                                       70.0
                                              45.0
           8
                 9
                         2
                              197.0
                                                    543.0 30.5
                                                                 0.158
                                                                        53
                                                                           Yes
                              125.0
                                       96.0
                                                                 0.232
                10
                                              NaN
                                                     NaN NaN
                                                                        54 Yes
In [13]: | data.dtypes
Out[13]: Index
                        int64
          pregnant
                        int64
          glucose float64
          diastolic float64
          triceps float64
          insulin
                      float64
          bmi
                      float64
                    float64
          diabetes
          aσe
                        int64
          test
                        object
          dtype: object
In [14]: | #df['col_name'] = df['col_name'].astype('category')
          data.test.value_counts()
Out[14]: No
                 500
          Yes
                 268
          Name: test, dtype: int64
```

\*\*Question 7: use the table function on the test column to determine how many in this dataset have diabetes?\*\* Answer: 268 patients have diabetes

# Plot glucose against diastolic blood pressure (use the plot function)



\*\*Question 8: Do we get normal (or near normal) distributions?\*\* Answer: We get normal distribution

```
In [26]: g = sns.jointplot(x='glucose', y='diastolic', data=data, kind="reg")
    regline = g.ax_joint.get_lines()[0]
    regline.set_color('red')
    regline.set_zorder('5')
```

```
TypeError
                                          Traceback (most recent call last)
P:\Anaconda\lib\site-packages\matplotlib\pyplot.py in post_execute()
    107
                    def post_execute():
    108
                        if matplotlib.is_interactive():
--> 109
                            draw_all()
    110
    111
                    # IPython >= 2
P:\Anaconda\lib\site-packages\matplotlib\_pylab_helpers.py in draw_all(cls, force)
                for f_mgr in cls.get_all_fig_managers():
    127
                    if force or f_mgr.canvas.figure.stale:
--> 128
                        f_mgr.canvas.draw_idle()
    129
    130 atexit.register(Gcf.destroy_all)
P:\Anaconda\lib\site-packages\matplotlib\backend_bases.py in draw_idle(self, *args,
**kwargs)
  1905
                if not self._is_idle_drawing:
   1906
                    with self._idle_draw_cntx():
-> 1907
                        self.draw(*args, **kwargs)
  1908
   1909
            def draw_cursor(self, event):
P:\Anaconda\lib\site-packages\matplotlib\backends\backend_agg.py in draw(self)
                self.renderer = self.get_renderer(cleared=True)
    387
                with RendererAgg.lock:
--> 388
                    self.figure.draw(self.renderer)
    389
                    # A GUI class may be need to update a window using this draw, so
    390
                    # don't forget to call the superclass.
P:\Anaconda\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer,
*args, **kwargs)
     36
                       renderer.start_filter()
     37
---> 38
                   return draw(artist, renderer, *args, **kwargs)
     39
                finally:
                    if artist.get_agg_filter() is not None:
P:\Anaconda\lib\site-packages\matplotlib\figure.py in draw(self, renderer)
                   self.patch.draw(renderer)
  1707
  1708
                    mimage._draw_list_compositing_images(
-> 1709
                        renderer, self, artists, self.suppressComposite)
   1710
  1711
                    renderer.close_group('figure')
P:\Anaconda\lib\site-packages\matplotlib\image.py in _draw_list_compositing_images (re
nderer, parent, artists, suppress_composite)
    133
           if not_composite or not has_images:
    134
               for a in artists:
--> 135
                    a.draw(renderer)
    136
            else:
    137
                # Composite any adjacent images together
P:\Anaconda\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer,
*args, **kwargs)
```

```
TypeError
                                          Traceback (most recent call last)
P:\Anaconda\lib\site-packages\IPython\core\formatters.py in __call__(self, obj)
    339
                        pass
    340
                    else:
--> 341
                        return printer(obj)
    342
                    # Finally look for special method names
                    method = get_real_method(obj, self.print_method)
    343
P:\Anaconda\lib\site-packages\IPython\core\pylabtools.py in <lambda>(fig)
    242
    243
            if 'png' in formats:
--> 244
                png_formatter.for_type (Figure, lambda fig: print_figure (fig, 'png',
**kwargs))
            if 'retina' in formats or 'png2x' in formats:
    2.45
    246
                png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwarg
s))
P:\Anaconda\lib\site-packages\IPython\core\pylabtools.py in print_figure(fig, fmt, bb
ox_inches, **kwargs)
    126
    127
          bytes_io = BytesIO()
--> 128
           fig.canvas.print_figure(bytes_io, **kw)
    129
          data = bytes_io.getvalue()
    130
           if fmt == 'svg':
P:\Anaconda\lib\site-packages\matplotlib\backend_bases.py in print_figure(self, filen
ame, dpi, facecolor, edgecolor, orientation, format, bbox_inches, **kwargs)
  2054
                                orientation=orientation,
   2055
                                dryrun=True,
-> 2056
                                **kwargs)
   2057
                            renderer = self.figure._cachedRenderer
   2058
                            bbox_artists = kwargs.pop("bbox_extra_artists", None)
P:\Anaconda\lib\site-packages\matplotlib\backends\backend_agg.py in print_png(self, f
ilename_or_obj, metadata, pil_kwargs, *args, **kwargs)
    525
    526
                else:
--> 527
                    FigureCanvasAgg.draw(self)
    528
                    renderer = self.get_renderer()
    529
                    with cbook._setattr_cm(renderer, dpi=self.figure.dpi), \
P:\Anaconda\lib\site-packages\matplotlib\backends\backend_agg.py in draw(self)
                self.renderer = self.get_renderer(cleared=True)
    387
               with RendererAgg.lock:
--> 388
                    self.figure.draw(self.renderer)
    389
                    # A GUI class may be need to update a window using this draw, so
    390
                    # don't forget to call the superclass.
P:\Anaconda\lib\site-packages\matplotlib\artist.py in draw_wrapper(artist, renderer,
*args, **kwargs)
     36
                       renderer.start_filter()
     37
---> 38
                    return draw(artist, renderer, *args, **kwargs)
     39
               finally:
     40
                    if artist.get_agg_filter() is not None:
```

<Figure size 432x432 with 3 Axes>

```
In [43]: from matplotlib import pyplot as plt
         #scatterplot of glucose against diastolic
         x = data.glucose
         y = data.diastolic
         colors = ('#d62728', '#9467bd')
          # '#d62728', '#9467bd'
          #'red', 'green'
         area = np.pi*3
          # Plot
         plt.scatter(x, y,s=area, alpha=0.7)
         #c=colors,
         plt.title('Glucose vs. Diastolic')
         plt.xlabel('Glucose')
         plt.ylabel('Diastolic')
         plt.show()
         print("Glucose=red and Diastolic=green")
```



Glucose=red and Diastolic=green

```
In [24]: import numpy as np
    #masked arrey numpy module
    #np.corrcoef not NaN tolerant
    import numpy.ma as ma
    print(ma.corrcoef(ma.masked_invalid(data.glucose), ma.masked_invalid(data.diastolic)))

[[1.0 0.22319177824954192]
    [0.22319177824954192 1.0]]
In []:
```