Data splitting for variable selection

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

 Dezeure, Buhlmann, Meier, Meinshausen (2015). High dimensional inference: Confidence intervals, *p*-values and r-software hdi. Statistical Science, 533–558

High-dimensional inference

- Consider the gaussian linear model

$$y \sim N_n(1_n\beta_0 + X\beta, \sigma^2 I_n)$$

with $n \times p$ design matrix X and $p \times 1$ vector of coefficients β

- When $p \ge n$, classical approaches for estimation and inference of β cannot be directly applied
- How to perform inference on β (e.g. confidence intervals and p-values for individual regression parameters β_j , $j=1,\ldots,p$) in a high-dimensional setting?

Support set

- The *support* set is

$$S = \{j \in \{1, \dots, p\} : \beta_j \neq 0\}$$

with cardinality s = |S|, and its complement is the *null set*, i.e.

$$N = \{j \in \{1, \ldots, p\} : \beta_j = 0\}$$

– Let $\hat{S} \subseteq \{1, \dots, p\}$ be an estimator of *S*. Then

$$|\hat{S} \cap N|$$

is the number of the wrong selections (type I errors) and

$$|S \setminus \hat{S}|$$

is the number of wrong deselections (type II errors)

Error rates

– Define the False Discovery Proportion (FDP) by

$$FDP(\hat{S}) = \frac{|\hat{S} \cap N|}{|\hat{S}|}$$

with
$$FDP(\emptyset) = 0$$

- FamilyWise Error Rate (FWER)

$$P(FDP(\hat{S}) > 0) = P(\hat{S} \cap N \neq \emptyset)$$

False Discovery Rate (FDR)

$$\mathbb{E}(\text{FDP}(\hat{S}))$$

Error control

– We would like to *control* the chosen error rate at level α , i.e.

$$P(\hat{S} \cap N \neq \emptyset) \le \alpha$$
 or $\mathbb{E}(FDP(\hat{S})) \le \alpha$

while maximizing some notion of power e.g. the average power

AvgPower =
$$\frac{\sum_{j \in S} P(\hat{S} \in j)}{|S|}$$

 We are dealing with the trade-off between type I and type II errors, and since FWER is more stringent than FDR, i.e.

$$\mathbb{E}(\text{FDP}(\hat{S})) \le P(\hat{S} \cap N \neq \emptyset)$$

methods that control FWER are less powerful

Simulate data as described in Section 3.1 of Hastie et al. (2020)

Given n (number of observations), p (problem dimensions), s (sparsity level), beta-type (pattern of sparsity), ρ (predictor autocorrelation level), and ν (signal-to-noise ratio (SNR) level)

- 1. we define coefficients $\beta \in \mathbb{R}^p$ according to s and the beta-type; e.g. beta-type 2: β has its first s components equal to 1, and the rest equal to 0
- 2. we draw the rows of the predictor matrix $X \in \mathbb{R}^{n \times p}$ i.i.d. from $N_p(0, \Sigma)$, where $\Sigma \in \mathbb{R}^{p \times p}$ has entry (i, j) equal to $\rho^{|i-j|}$ (Toeplitz matrix)
- 3. we draw the response vector $y \in \mathbb{R}^n$ from $N_n(X\beta, \sigma^2 I_n)$ with σ^2 defined to meet the desired SNR level, i.e. $\sigma^2 = \beta^t \Sigma \beta / \nu$

Lasso active set

Lasso with λ chosen by e.g. the 1-se rule

$$\hat{S} = \{ j \in \{1, \dots, p\} : \hat{\beta}_j \neq 0 \}$$

Simulated data with n=200, p=1000, s=10, $\rho=0,$ $\nu=2.5$:

Size # Type I # Type II FDP Sensitivity
$$|\hat{S}|$$
 $|\hat{S} \cap N|$ $|S \setminus \hat{S}|$ $|\hat{S} \cap N|/|\hat{S}|$ $|S \setminus \hat{S}|/|S|$

23 13 0 56.5% 100%

100 replications

	1	2	3	4	5	6	7
Size	23	20	13	25	23	21	11
# Type I	13	10	3	15	13	11	4
# Type II	0	0	0	0	0	0	3
FDP	0.57	0.50	0.23	0.60	0.57	0.52	0.36
Sensitivity	1	1	1	1	1	1	0.7

Naïve two-step procedure

1. Perform the lasso in order to obtain the active set

$$\hat{M} = \{ j \in \{1, \dots, p\} : \hat{\beta}_j \neq 0 \}$$

2. Use least squares to fit the submodel containing just the variables in \hat{M} , i.e. linear regression of the $n \times 1$ response y on the reduced $n \times |\hat{M}|$ submatrix $X_{\hat{M}}$. Obtain

$$\hat{S} = \{ j \in \hat{M} : p_j \le \alpha \}$$

where p_j is the p-value for testing the null hypothesis $H_j: \beta_j = 0$ in the linear model including only the selected variables

Simulation with n = 200, p = 1000, s = 10, $\rho = 0$, $\nu = 2.5$, $\alpha = 5\%$:

Size $ \hat{S} $		# Type II $ S \setminus \hat{S} $	$FDP \\ \hat{S} \cap N / \hat{S} $	Sensitivity $ S \setminus \hat{S} / S $
15	5	0	33.3%	100%

100 replications

	1	2	3	4	5	6	7
Size	15	18	12	17	18	17	11
# Type I	5	8	2	7	8	7	4
# Type II	0	0	0	0	0	0	3
FDP	0.33	0.44	0.17	0.41	0.44	0.41	0.36
Sensitivity	1	1	1	1	1	1	0.7

FWER = 99%, FDR = 42.1%, AvgPower = 99.6%

- The main problem with the naïve two-step procedure is that it peeks at the data twice: once to select the variables to include in \hat{M} , and then again to test hypotheses associated with those variables
- Here \hat{M} is a random variable (it is a function of the data), but
- inference for linear model assumes it fixed (given a priori) - A secondary problem is the multiplicity of the tests performed
- A simple idea is to use data-splitting to break up the dependence

of variable selection and hypothesis testing (Cox, 1975)

The *single-split* approach (Wasserman and Roeder, 2009) splits the data into two parts I and L of equal sizes $n_I = n_L = n/2$:

1. Use variable selection on the L portion (X^L, y^L) to obtain

$$\hat{M}^L \subseteq \{1,\ldots,p\}$$

2. Use the *I* portion (X^I, y^I) for constructing *p*-values

$$p_j = \begin{cases} p_j^I & \text{if } j \in \hat{M}^L \\ 1 & \text{if } j \notin \hat{M}^L \end{cases}$$

where p_j^I is the p-value testing H_j : $\beta_j = 0$ in the linear model including only the selected variables, i.e. based on the linear regression of the reduced $n_I \times 1$ response y^I on the reduced $n_I \times |\hat{M}^L|$ matrix $X_{\hat{M}^L}^I$

3. Adjust the *p*-values for their multiplicity $|\hat{M}^L|$, by e.g. Bonferroni

 $\tilde{S} = \{ j \in \hat{M}^L : \tilde{p}_i \leq \alpha \}$

4. Selected variables

$$ilde{p}_j = \min(|\hat{M}^L| \cdot p_j, 1), \quad j = 1, \dots, p$$

Theorem

Assume that

- 1. the linear model $\gamma \sim N_n(1\beta_0 + X\beta, \sigma^2 I)$ holds
- 2. the variable selection procedure satisfies the screening property for the first half of the sample, i.e.

$$P(\hat{M}^L \supseteq S) \ge 1 - \delta$$

for some $\delta \in (0,1)$.

3. The reduced design matrix for the second half of the sample satisfies rank $(X_{\hat{h}d.}^{I}) = |\hat{M}^{L}|$.

Then the single-split procedure yields FWER control at α against inclusion of null predictors up to the additional (small) value δ , i.e.

$$P(\tilde{S} \cap N \neq \emptyset) \leq \alpha + \delta$$

Proof.

Let $E = {\hat{M}^L \supseteq S}$ with $P(E^c) \le \delta$ by assumption. If E happens, then p_j^I is a valid p-value, i.e. $P(p_j^I \le u|E) \le u$ for $j \in N \cap \hat{M}^L$. We have

$$\begin{split} & P(\tilde{S} \cap N \neq \emptyset) = P(\bigcup_{j \in \hat{M}^L \cap N} \{\tilde{p}_j \leq \alpha\}) \\ = & P(\bigcup_{j \in \hat{M}^L \cap N} \{\tilde{p}_j \leq \alpha\} | E) P(E) + P(\bigcup_{j \in \hat{M}^L \cap N} \{\tilde{p}_j \leq \alpha\} | E^c) P(E^c) \\ \leq & \left[\sum_{j \in \hat{M}^L \cap N} P(p_j^I \leq \frac{\alpha}{|\hat{M}^L|} | E) \right] P(E) + P(\bigcup_{j \in \hat{M}^L \cap N} \mathbb{1} \{\tilde{p}_j \leq \alpha\} | E^c) P(E^c) \\ \leq & |\hat{M}^L \cap N| \frac{\alpha}{|\hat{M}^L|} \cdot 1 + 1 \cdot \delta \\ \leq & \alpha + \delta \end{split}$$

Ш

P-value lottery

A major problem of the single data-splitting method is that different data splits lead to different *p*-values

Multi-split

The multi-split approach (Meinshausen et al., 2009)

1. For b = 1, ..., B apply the single-split procedure (L^b, I^b) to obtain

$$\{\tilde{p}_j^b, j=1,\ldots,p\}$$

2. Aggregate the *p*-values as

$$\bar{p}_j = 2 \cdot \text{median}(\tilde{p}_j^1, \dots, \tilde{p}_j^B), \quad j = 1, \dots, p$$

3. Selected predictors:

$$\bar{S} = \{j \in \{1,\ldots,p\} : \bar{p}_j \leq \alpha\}$$

Simultaneous confidence intervals

$$P(\beta_j \in [\hat{L}_j, \hat{U}_j] \ \forall j \in \{1, \dots, p\}) \ge 1 - \alpha$$

j	lower	upper
1	0.20	1.76
2	0.65	1.88
3	0.54	1.79
4	0.37	1.61
5	0.39	1.64
6	0.62	1.74
7	0.25	1.49
8	0.34	1.68
9	0.40	1.58
10	0.41	1.54
11	$-\infty$	∞
• • •		