数据结构与算法平时考试 1

陈宇琪

2020年4月19日

目录

1	层次	" 遍历	2
	1.1	题面	2
	1.2	输入约定	2
	1.3	输出约定	3
	1.4	样例 1	3
	1.5	样例 2	3
	1.6	数据规模约定	3
2	医疗	排队	4
	2.1	题面	4
	2.2	输入约定	4
	2.3	输出约定	4
	2.4	样例	4
	2.5	数据约定	5
	2.6	样例说明	5
3	数独	以问题	6
	3.1	题面	6
	3.2	输入约定	6
	3.3	输出约定	6
	3.4	样例 1	7
	3.5	样例 2	7
	3.6	数 据约完	Q

1 层次遍历

1.1 题面

给定一棵数,实现层次遍历,并输出层次遍历的顺序,这里假设树的根节点为 1。 为了简化问题,我们采用这种方式来定义树:

- 假设这是一棵二叉树,即一个节点最多只有两个子节点
- 每个节点有一个编号 i, 满足 $1 \le i \le n$ 。
- 每个节点有左儿子和右儿子,如果没有的话用 -1 表示。

图片展示的是层次遍历的过程:

图 1: Level Order

下图展示的是一棵二叉树,样例1中将给出这棵树的表示方式:

图 2: Tree Sample

1.2 输入约定

输入第一行为一个数 n,表示节点个数。接下来 n 行,第 i 行的两个树,表示节点 i 的左儿子和右儿子。

1.3 输出约定

输出 n 个数,表示层次遍历的顺序。

1.4 样例 1

1.4.1 样例输入 1

- 7
- 2 3
- 4 5
- -16
- -1 -1
- -1 -1
- -1 7
- -1 -1

1.4.2 样例输出 1

 $1\ 2\ 3\ 4\ 5\ 6\ 7$

1.5 样例 2

1.5.1 样例输出 2

- 4
- -1 4
- -1 -1
- -1 -1
- 2 3

1.5.2 样例输出 2

 $1\ 4\ 2\ 3$

1.6 数据规模约定

对于 30% 数据满足: $1 \le n \le 10$ 。

对于 70% 数据满足: $1 \le n \le 10^4$ 。

对于 100% 数据满足: $1 \le n \le 10^6$ 。

2 医疗排队

2.1 题面

假设一个国家的每个公民都将被分配一个唯一的数字,从 1 到 P(这里的 P 是当前的人口)。它们将被放入一个队列,1 在 2 前面,2 在 3 前面,以此类推。医院将从这个队列中逐一处理病人。一旦市民被服务,他们会立即从队伍的前面移到后面。

当然,有时会出现紧急情况——如果你刚刚被一个蒸汽压路机碾过,你不能等到半个国家去做常规检查后再接受治疗!因此,对于这些(希望是罕见的)情况,可以使用一个快速命令将一个人移到队列的前面。其他国家的相对秩序将保持不变。

给定处理命令和快速命令的顺序,输出当前服务的公民的编号。

图 3: Medical System

2.2 输入约定

第一行两个数 n, p,表示命令个数和公民个数。接下来 n 行,每行为一个命令:

- 1: 表示当前队列首部的公民被服务,被服务后自动放到队列末位。
- $2 \times x$: 表示将编号为 x 的公民移动到队列首部(不进行服务操作)。
- 3: 询问当前队列首部的公民的编号(即下一个要被服务的公民编号)。

满足 $1 \le x \le p$ 。

2.3 输出约定

对于每个 3 命令,输出一个数表示当前队列首部的公民的编号。

2.4 样例

2.4.1 样例输入

10 5

2 1

3

2 5

3

1

1

1

3

1 3

2.4.2 样例输出

1

5

3

4

2.5 数据约定

对于 30% 数据满足: $1 \le n, p \le 10$ 。

对于 70% 数据满足: $1 \le n, p \le 5 \times 10^3$ 。

对于 100% 数据满足: $1 \le n, p \le 10^6$ 。

2.6 样例说明

开始队列为: 12345

第一个命令执行后队列为: 12345(1本来就在队首)

第二个命令执行后队列为: 12345, 输出1

第三个命令执行后队列为:51234

第四个命令执行后队列为: 51234, 输出5

第五个命令执行后队列为: 12345

第六个命令执行后队列为: 23451

第七个命令执行后队列为: 34512

第八个命令执行后队列为: 34512, 输出3

第九个命令执行后队列为: 45123

第十个命令执行后队列为: 45123, 输出4

3 数独问题

3.1 题面

给定一个不完整的数独,要求将数独中空白的部分用 1 到 9 的数字填充。一个数独的解法需遵循如下规则:

- 数字 1 到 9 在每一行只能出现一次。
- 数字 1 到 9 在每一列只能出现一次。
- 数字 1 到 9 在每一个以粗实线分隔的 3×3 宫内只能出现一次。 下图为一个简单的数独:

5	3			7				
6			1	9	5			
	9	8		- 5			6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

图 4: Sudo Sample

下图为上面数独的解。

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	m	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

图 5: Sudo Solution

3.2 输入约定

输入9行,每行9个字符,空格用.表示。

3.3 输出约定

输出 9 行,每行 9 个字符,如果有多解,输出字典序最小的解。

其中字典序定义为将数独按照行优先比较,即假设两个数独 a 和数独 b,如果前 i 行都一样,则按照第 i+1 行的字典序大小决定两个数独的大小。

3.4 样例 1

3.4.1 输入样例 1

- 53..7....
- 6..195...
- .98....6.
- 8...6...3
- 4..8.3..1
- 7...2...6
- .6....28.
- ...419..5
-8..79

3.4.2 输出样例 1

- 534678912
- 672195348
- 198342567
- 859761423
- 426853791
- 713924856
- 961537284
- 287419635
- 345286179

3.5 样例 2

3.5.1 输入样例 2

- 534678...
- 6..19534.
- 1983..567
- 85.761.23
- 426853..1
- 7..924856
- 961..7284
- 287419635
- ..5286179

3.5.2 输出样例 2

- 534678912
- 672195348
- 198342567
- 859761423
- 426853791
- 713924856

 $961537284 \\ 287419635$

345286179

3.6 数据约定

对于 30% 数据满足: 数独中最多 7 个空格。 对于 70% 数据满足: 数独保证有唯一解。

对于 100% 数据满足:数独不保证有唯一解。