

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría I Examen XI

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2023-2024

Asignatura Geometría I.

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Ros Mulero.

Descripción Convocatoria Extraordinaria¹.

Fecha 8 de febrero de 2024.

¹El examen lo pone el departamento.

Ejercicio 1 (2.5 puntos). Sea $V(\mathbb{K})$ un espacio vectorial sobre $\mathbb{K} = \mathbb{R}$ ó \mathbb{C} con dimensión $n \geq 2$, y sean U, W dos subespacios vectoriales no triviales de V tales que $V = U \oplus W$.

1. **1.25 puntos** Construir razonadamente una base de V/U (es decir, probando que cumple las condiciones para ser base).

Demostrado en clase.

2. **1.25 puntos** Encontrar explícitamente un isomorfismo de V/U en W.

Como $\dim(V/U) = \dim(V) - \dim(U) = \dim(W)$, los dos espacios vectoriales son isomorfos. Para construir el isomorfismo vamos a asignar imágenes a una vase de V/U de forma que estas imágenes constituyan una base de W, ya que en este caso la aplicación lineal estará totalmente determinada y como la aplicación lineal lleva una base de V/U en una base de W entonces será un isomorfismo de espacios vectoriales.

Como se ha visto en el apartado anterior, si $\{w_1, \ldots, w_k\}$ es una base de W, entonces $\{w_1 + U, \ldots, w_k + U\}$ es una vase de V/U. Definimos f como la única aplicación lineal $f: V/U \to W$ tal que $f(w_i + U) = w_i$ para todo $i = 1, \ldots, k$. Por lo comentado anteriormente, f es un isomorfismo.

Ejercicio 2 (2.5 puntos). Sea $V(\mathbb{R})$ un espacio vectorial real con dimensión finita y f un endomorfismo de V que cumple $f \circ f = 4f$.

1. **1.25 puntos** Probar que $V = \ker(f) \oplus Im(f)$.

Veamos que $\ker(f) \cap Im(f) = \{0\}$: Sea $x \in Im(f)$. Como $x \in Im(f)$, existe $z \in V$ tal que f(z) = x. Como $x \in \ker(f)$, tenemos $0 = f(x) = f(f(z)) = (f \circ f)(z) = 4f(z) = 4x$, de donde x = 0.

Como $\ker(f) \cap Im(f) = \{0\}$ y $\dim(\ker(f)) + \dim(Im(f)) = \dim(V)$, por la fórmula de las dimensiones concluimos que

$$\dim(\ker(f) + Im(f)) = \dim(\ker(f)) + \dim(Im(f)) - \dim(\ker(f) \cap Im(f)) = \dim(V)$$

$$y \ V = \ker(f) \oplus Im(f).$$

2. 1.25 puntos Demostrar que existe una base \mathcal{B} de V tal que

$$M(f, \mathcal{B}) = \left(\begin{array}{c|c} 4I_r & 0 \\ \hline 0 & 0 \end{array}\right)$$

para algún $r \in \{0, 1, \dots, \dim(V)\}.$

Sea r el rango de f. Como $V = \ker(f) + Im(f)$, por el apartado (a), concluimos de la fórmula de la nulidad y el rango que la nulidad de f es n - r, siendo $n = \dim_{\mathbb{K}}(V)$.

Tenemos ahora bases $\{x_1, \ldots, x_r\}$ de Im(f) y $\{x_{r+1}, \ldots, x_n\}$ de $\ker(f)$. De nuevo, por ser $V = \ker(f) \oplus Im(f)$, concluimos que $\{x_1, \ldots, x_r, x_{r+1}, \ldots, x_n\}$ es base de V. Ordenamos esa base tal y como la hemos escrito, llamamos \mathcal{B} a la base ordenada y calculamos ; (f, \mathcal{B}) :

Para cada i = 1, ..., r existe $z_i \in V$ tal que $f(z_i = x_i)$ (porque $x_i \in Im(f)$), luego $f(x_i) = f(f(z_i)) = (f \circ f)(z_i) = 4f(z_i) = 4z_i$, que en coordenadas respecto de \mathcal{B} es (0, ..., 4, ..., 0) donde 4 está en la posición i. Para cada i = r + 1, ..., n tenemos $x_i \in \ker(f)$, luego $f(x_i) = 0$, que en coordenadas respecto de \mathcal{B} es (0, ..., 0). Juntando por columnas todo esto, deducimos que

$$M(f, \mathcal{B}) = \left(\begin{array}{c|c} 4I_r & 0 \\ \hline 0 & 0 \end{array}\right)$$

Ejercicio 3 (2.5 puntos). En el espacio vectorial $\mathbb{R}_2[x]$ de los polinomios con coeficientes reales y grado ≤ 2 , se considera la base ordenada usual $\mathcal{B} = (1, x, x^2)$ y el endomorfismo f_k de $\mathbb{R}_2[x]$ cuya matriz respecto de \mathcal{B} es

$$M(f_k, \mathcal{B}) = \begin{pmatrix} 1 & 1 & -2 \\ 0 & k - 1 & 1 \\ 1 & k^2 & 0 \end{pmatrix}$$

siendo $k \in \mathbb{R}$ un parámetro.

1. (1.25 puntos) Hallar $\ker(f_k)$ e $Im(f_k)$ explícitamente en función de k. ¿Para qué valores de k es f_k inyectiva? ¿Y sobreyectiva?

Los valores de $k \in \mathbb{R}$ para los que k es inyectiva son aquellos para los que la matriz $M(f_k, \mathcal{B})$ es regular, es decir, su determinante es distinto de cero. Dicho determinante es $-(k-1)^2$, luego f_k es inyectiva si y sólo si $k \neq 1$. Por ser f_k un endomorfismo, es inyectiva si y sólo si es automorfismo, con lo que los mismos valores $k \neq 1$ son aquellos para los que f_k es sobreyectiva.

Ahora determinamos el núcleo e imagen de f_k . Si $k \neq 1$, sabemos que f_k es un automorfismo, luego $\ker(f_k) = \{0\}$ e $Im(f_k) = \mathbb{R}_2[x]$. Queda hallar $\ker(f_1)$ e $Im(f_1)$:

Trabajaremos en coordenadas respecto de \mathcal{B} : un polinomio $p(x) \in \mathbb{R}_2[x]$ con coordenadas (a_1, a_2, a_3) respecto de \mathcal{B} está en el núcleo de f_1 si y sólo si,

$$\begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

es decir, las ecuaciones cartesianas de $ker(f_1)$ respecto a \mathcal{B} son

$$\begin{cases} a_1 + a_2 - 2a_3 = 0 \\ a_3 = 0 \\ a_1 + a_2 = 0 \end{cases}$$

o equivalentemente,

$$\begin{cases}
 a_1 + a_2 & = 0 \\
 & a_3 = 0
\end{cases}$$
(1)

Esto determina $\ker(f_1)$ como el espacio de polinomios dentro de $\mathbb{R}_2[x]$ cuyas coordenadas respecto de \mathcal{B} son las soluciones del sistema homogéneo (1), que

tiene dimención 1 y está generado por el polinomio de coordenadas (1, -1, 0) respecto de \mathcal{B} , es decir, por q(x) = 1 - x.

Por otro lado, $Im(f_1) = L(\{f_1(1), f_1(x), f_1(x^2)\})$, es decir, $Im(f_1)$ está generado por los polinomios de $\mathbb{R}_2[x]$ cuyas coordenadas respecto a \mathcal{B} son las columnas de $M(f_1, \mathcal{B})$:

$$f_1(1)_{\mathcal{B}} = (1,0,1) = f_1(x)_{\mathcal{B}}, \quad f_1(x^2)_{\mathcal{B}} = (-2,1,0)$$
 (2)

Pasando de nuevo las coordenadas a polinomio en $\mathbb{R}_2[x]$, tenemos

$$f_1(1) = 1 + x^2 = f_1(x), f_1(x^2) = -2 + x$$
 (3)

con lo que $Im(f_1) = L(\{1+x^2, -2+x\})$ y el rango de f_1 es 2 (en particular, $\{1+x^2, -2+x\}$ es base de $Im(f_1)$).

2. (1.25 puntos) Para los valores de $k \in \mathbb{R}$ que sea posible, dar bases ordenadas \mathcal{B}_k , \mathcal{B}'_k de $\mathbb{R}_2[x]$ tal que la matriz de f_k respecto de dicho par de bases sea

$$M(f_k, \mathcal{B}'_k \leftarrow \mathcal{B}_k) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

La matriz anterior no es regular (su rango es 2), así que f_k no puede ser sobreyectiva. Por lo obtenido en el apartado (a), deducimos que k=1. También del apartado (a) tenemos que una base del núcleo de f_1 es q(x)=1-x. Ampliamos esta base de $\ker(f_1)$ a una base de $\mathbb{R}_2[x]$, tomando $p_1(x)=1$, $p_2(x)=x^2$ (notemos que $\{p_1(x), p_2(x), q(x)\}$ son linealmente independientes porque son polinomios de grados distintos, y por tanto son base de $\mathbb{R}_2[x]$). Ordenamos dicha base definiendo $\mathcal{B}_1:=(p_1(x),p_2(x),q(x))$. De la expresión de la matriz que nos dan en este apartado deducimos que los dos primeros vectores de la segunda base \mathcal{B}_1 deben tomarse como

$$f_1(p_1) = f_1(1) \stackrel{\text{(3)}}{=} 1 + x^2, \quad f_1(p_2) = f_1(x^2) \stackrel{\text{(3)}}{=} -2 + x,$$

que forman base de $Im(f_1)$ como se vio en el apartado (a). Ampliamos esta base a una de $\mathbb{R}_2[x]$: Usando (2) y que el determinante

$$\begin{vmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$

concluimos que los polinomios $1+x^2$, -2+x, x^2 son base de $\mathbb{R}_2[x]$. Llamamos $\mathcal{B}'_1 = (1+x^2, -2+x, x^2)$. Entonces, las coordenadas de $f_1(p_1)$ en \mathcal{B}'_1 son mat(1,0,0), las de $f_1(p_2)$ en \mathcal{B}'_1 son (0,1,0), y las de $f_1(q)$ en \mathcal{B}'_1 son (0,0,0). Juntando todo esto por columnas, deducimos que

$$M(f_k, \mathcal{B}) = \begin{pmatrix} 1 & 1 & -2 \\ 0 & k - 1 & 1 \\ 1 & k^2 & 0 \end{pmatrix}$$

Ejercicio 4 (2.5 puntos).

1. (1.25 puntos) Determinar un endomorfismo f de \mathbb{R}^4 que cumpla las condiciones

$$Im(f^t) = an(L(\{(1,0,-1,0),(0,2,1,1)\})), \quad \ker(f) \oplus Im(f) = \mathbb{R}^4$$

Como $Im(f^t) = an(\ker(f))$, la primera condición anterior equivale a imponer $an(\ker(f)) = an(L(\{(1,0,-1,0),(0,2,1,1)\}))$, o lo que es lo mismo,

$$L(\{(1,0,-1,0),(0,2,1,1)\}) = \ker(f)$$

Sean $x_1 = (1, 0, -1, 0)$, $x_2 = (0, 2, 1, 1) \in \mathbb{R}^4$. Es claro que x_2, x_2 son linealmente independientes (por ejemplo, porque el menor de orden 2 formado por las dos primeras coordenadas de ambos vectores es $2 \neq 0$). Ampliamos $\{x_1, x_2\}$ a una base de \mathbb{R}^4 con los vectores $x_3 = (0, 0, 1, 0)$, $x_4 = (0, 0, 0, 1)$ ($\{x_2, x_2, x_3, x_4\}$ forman base de \mathbb{R}^4 porque el determinante de la matriz que forman es $2 \neq 0$). Planteamos ahora el cuadro

$$\begin{array}{cccc}
\mathbb{R}^4 & \to & \mathbb{R}^4 \\
x_1 & \mapsto & 0 \\
x_2 & \mapsto & 0 \\
x_3 & \mapsto & x_3 \\
x_4 & \mapsto & x_4
\end{array}$$

Por el teorema fundamental de las aplicaciones lineales, exite un único endomorfismo f de \mathbb{R}^4 que cumple el cuadro anterior. Así, la imagen de f está generada por x_3, x_4 (luego rango(f) = 2, $\{x_3, x - 4\}$ es base de Im(f) y nulidad(f) = 4 - 2 = 2), y el núcleo de f tiene por base a $\{x_1, x_2\}$. Además,

$$\mathbb{R}^4 = L(\{x_1, x_2, x_3, x_4\}) = L(\{x_1, x_2\}) \oplus L(\{x_3, x_4\}) = \ker(f) \oplus Im(f)$$

luego f cumple las condiciones pedidas (no es única con estas condiciones).

2. (1.25 puntos) Calcular la matriz de f^t en la base dual de la base canónica de \mathbb{R}^4 .

Si \mathcal{B}_u es la base ordenada usual de \mathbb{R}^4 , la matriz de f respecto de las bases ordenadas $\mathcal{B} = (x_1, x_2, x_3, x_4)$ y \mathcal{B}_u es

Por tanto,

Finalmente, la matriz que nos piden es

$$M(f^t, \mathcal{B}_u^*) = M(f, \mathcal{B}_u)^t = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & -1/2 & 1 & 0 \\ 0 & -1/2 & 0 & 1 \end{pmatrix}^t = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

También se puede obtener $M(f, \mathcal{B}_u)$ calculando directamente lo que valen las imágenes de los vectores de la base usual de \mathbb{R}^4 . Ya sabemos que f(0,0,1,0) = (0,0,1,0) y que f(0,0,0,1) = (0,0,0,1). Por otro lado,

$$\begin{split} f(1,0,0,0) &= f(1,0,-1,0) + f(0,0,1,0) = (0,0,1,0) \\ f(0,1,0,0) &= \frac{1}{2} f(0,2,1,1) - \frac{1}{2} (0,0,1,0) - \frac{1}{2} f(0,0,0,1) = (0,0,-1/2,-1/2) \end{split}$$

Poniendo estos valores por columnas en el orden adecuado obtenemos la matriz (5).