JSC «Kazakh-British Technical University» Faculty of Information Technology

AP.	PROVED	BY
	an of FIT iyev R. N.	
~	»	

SYLLABUS

Discipline: CSE212 Object-Oriented programming and Design

Number of credits: 3(2/0/1)

Term: Fall-2021

Instructor's full name: Zhasdauren Duisebekov

Information about	ormation about Time and place of classes							
the Instructor	Lessons	Office Hours	e-mail					
Duisebekov Zh.A.	Tuesday 09:00 – 11:50	Wednesday						
	Wednesday 09:00 – 11:50	15:00 - 17:00	z.duisebekov@kbtu.kz					
	MS Teams	MS Teams (by						
	IVIS TEAMS	appointment)						

Course duration: 3 credits, 15 weeks (45 class hours) **Course pre-requisites:** Programming Principles

Course Objectives:

Object Technology has been in development for over forty years. It is now embedded in such diverse areas as requirements engineering, software architecture, analysis, design, programming, testing, deployment and maintenance. The most widely used modern programming languages C++, Java and VB.Net all embrace an object oriented approach. This module examines the application of the object oriented paradigm to programming. The fundamental concepts of object oriented programming will be studied using the Java programming language. The main objective of the course is to develop an understanding of the principles underpinning object oriented programming and apply object-based approaches using Java programming language.

Course Goals:

During the course student will obtain the knowledge of fundamental principles of Object-Oriented programming. In particular, he/she will become familiar with the concepts of classes, objects, interfaces, inheritance, nested and abstract classes, polymorphism and data encapsulation. Moreover, by the end of the course he/she will master basic Java constructs – java collections (sets, lists, maps), exceptions, input / output, etc. The main goal to be achieved during this course is to be able to use a high-level object-oriented programming language as a problem-solving tool - including basic data structures and algorithms, object-oriented programming techniques, and software documentation.

Literature:

Required:

- Daniel Liang. *Introduction to Java Programming* (Comprehensive version, 10th edition)

Supplementary:

- Java API documentation: https://docs.oracle.com/javase/7/docs/api/

COURSE CALENDAR

	Class work				DAK	ind	SIS tudents ependent study)	TSIS (teacher supervised independent study)		
W e e k	Торіс	L e c t u r e s , h o u r s	L a b , h o u r s	Se mi na rs, ho ur s	Chap ters for readi ng	H o u r s	Descript ion	Hours	Descriptio n	
1	Introduction									
	Java features. JVM. JRE. Java syntax. Java API. Variables. Programming fundamentals. Intro to OOP.	2	0	1	Ch.1-8	1	Ch.1-8 Exercises	3		
2	Objects and Classes									
	Class vs objects. UML. Constructors. References.	2	0	1	Ch.9	1	Ch.9 Exercises	3		
3	Objects and Classes									
	Data fields and methods. Primitive vs Reference types. Java library classes.	2	0	1	Ch.9	1	Ch.9 Exercises	3		
4	Objects and Classes									
	Instance vs static fields. Encapsulation. Array of objects. Scopes. <i>this</i> keyword.	2	0	1	Ch.9	1	Ch.9 Exercises	3		
5	Object-Oriented Thinking	2	0	1	Ch.10	1	Ch.10 Exercises	3		

	Class abstraction. Procedural vs Object-oriented paradigms. Class relationships. Object-oriented design.								
6	Object-Oriented Thinking Wrapper classes. String classes.	2	0	1	Ch.10	1	Ch.10 Exercises	3	
7	Inheritance and Polymorphism								
	Superclasses and subclasses. The <i>super</i> keyword. Overloading vs overriding.	2	0	1	Ch.11	1	Ch.11 Exercises	3	
8	Inheritance and Polymorphism								
	Object class and its methods. Polymorphism and dynamic binding. ArrayList. <i>protected</i> and <i>final</i> keywords.	2	0	1	Ch.11	1	Ch.11 Exercises	3	
9	Midterm Exam	2	0	1		1		3	
10	Exception Handling and Text I/O				Ch.12				
	Advantages. Error vs Exception. Throw, try, catch. File, PrintWriter, and Scanner classes.	2	0	1		1	Ch.12 Exercises	3	Assignment of Student Project
11	Abstract Classes and Interfaces				Ch.13				
	Generalization. Defining interfaces and classes that implement interfaces. Comparable. Cloneable.	2	0	1		1	Ch.13 Exercises	3	
12	Generics								
	Benefits. Generic classes and interfaces. Generic methods. Raw types. Wildcards. Limitations.	2	0	1	Ch.19	1	Ch.19 Exercises	3	Checkpoint
13	Lists, Stacks, Queues, and Priority Queues				Ch.20				
	Collection interface. Iterator. ArrayList vs LinkedList. Comparable vs Comparator. Collections class.	2	0	1		1	Ch.20 Exercises	3	
14	Sets and Maps	2	0	1	Ch.21	1	Ch.21	3	Project
	Set classes. Sets vs Lists. Collection						Exercises		Defense

	vs Map.								
15	Implementing Lists, Stacks, Queues, and Priority Queues Designing an array list and a linked list. Implementing a stack and a queue.	2	0 1		Ch.24	1	Ch.24 Exercises	3	Project Defense
	Final Exam					In w		itten form	
	Total	3 0	0	15		15			45

COURSE ASSESSMENT PARAMETERS

Type of activity	Final scores
Practice activities	10%
Project	20%
Midterm exam	30%
Final exam	40%
Total	100%

Criteria for evaluation of students during semester:

	Assessment criteria	Weeks														Total		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16- 17	scores
1.	Practice activities						*	*	*	*	*	*	*	*	*	*		10%
2.	Project														*	*		20%
3.	Midterm exam									*								30%
4.	Final exam																*	40%
	Total																	100%

Academic Policy

KBTU standard academic policy is used.

- Cheating, duplication, falsification of data, plagiarism, and crib are not permitted under any circumstances!
- Attendance is mandatory.

Attention. Missing 20% attendance to lessons, student will be taken from discipline with filling in F (Fail) grade.

Students must participate fully in every class. While attendance is crucial, merely being in class does not constitute "participation". Participation means reading the assigned materials, coming to class prepared to ask questions and engage in discussion.

- Students are expected to take an active role in learning.
- Written assignments (independent work) must be typewritten or written legibly and be handed in time specified. Late papers are not accepted!
- Students must arrive to class on time.
- Students are to take responsibility for making up any work missed.
- Make up tests in case of absence will not normally be allowed.
- Mobile phones must always be switched off in class.

- Students should always be appropriately dressed (in a formal/semi-formal style).
- Students should always show tolerance, consideration and mutual support towards other students.