

QUERY LANGUAGE

- A query language is a language in which a user requests information from the database
- A Language which is used to store and retrieve data from database
- E.g.
 - SQL
- Two types
 - Procedural Query language
 - Non-procedural query language

QUERY LANGUAGE

Procedural Query language

- user instructs the system to perform a sequence of operations on the database to compute the desired result
- users tells what data to be retrieved from database and how to retrieve it.

Non-procedural query language

- user describes the desired information without giving a specific procedure for obtaining that information
- users tells what data to be retrieved from database but doesn't tell how to retrieve it.

QUERY LANGUAGE

- Relational Algebra
 - conceptual procedural query language used on relational model
- Relational Calculus
 - conceptual non-procedural query language used on relational model

Relational algebra and calculus are the theoretical concepts used on relational model

SQL is a practical implementation of relational algebra and relational calculus

RELATIONAL ALGEBRA

- procedural query language that works on relational model
- it tells what data to be retrieved and how to be retrieved
- takes Relation as input and generate relation as output
- It uses operators to perform queries
- Relational Algebra works on the whole table at once, so we do not have to use loops etc to iterate over all the rows(tuples) of data one by one
- specify the table name from which we need the data, and in a single line of command, relational algebra will traverse the entire given table to fetch data for you

RELATIONAL ALGEBRA

 $\pi_{\text{Name, Grade}}(\sigma_{\text{Id,Name}}(A \times B))$

RELATIONAL ALGEBRA-OPERATIONS

Select
Project
Rename
Union
Intersect
Set Difference
Cartesian Product
Join

RELATIONAL ALGEBRA-OPERATIONS

Operation	My HTML	Symbol
Projection	PROJECT	π
Selection	SELECT	σ
Renaming	RENAME	ρ
Union	UNION	U
Intersection	INTERSECTION	\cap
Assignment	<-	\leftarrow

Operation	My HTML	Symbol
Cartesian product	x	×
Join	JOIN	M
Left outer join	LEFT OUTER JOIN	M
Right outer join	RIGHT OUTER JOIN	X
Full outer join	FULL OUTER JOIN	X
Semijoin	SEMIJOIN	×

SELECT

- used to select the required tuples of data from a relation.
- denoted by sigma (o)
- During selection, we can specify certain conditions that the data must satisfy
- Syntax :

$$\sigma_{p}(\textbf{r})$$

- σ Selection Predicate
- p propositional logic (where we specify the conditions may use connectors like:

AND OR and NOT. These relational can use as relational operators like =,

$$\neq$$
, \geq , $<$,>, \leq)

r - Relation

Member

Member ID	Name	Date of Birth
1	Alice	03/03/1995
2	Bob	11/07/1993
3	Charlie	21/10/1997
4	Mike	16/09/1992
5	Katie	21/10/1997

SELECT - EXAMPLE

Query:

Details of the members who were born on 21/10/1997.

$$\sigma_{Date\ of\ Birth=21/10/1997}(Member)$$

Member ID	Name	Date of Birth
3	Charlie	21/10/1997
5	Katie	21/10/1997

loan-number	branch-name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwood	2000
L-93	Mianus	500

SELECT - QUIZ

Query:

Select the tuples of the loan relation whose branch belongs to perryridge?

loan-number	branch-name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwood	2000
L-93	Mianus	500

SELECT – QUIZ ANS

loan-number	branch-name	amount
L-15	Perryridge	1500
L-16	Perryridge	1300

σ BRANCH_NAME="perryride" (LOAN)

SELECT - QUIZ

Query:

Students with age more than 17

Query:

Selects tuples from **Tutorials** where **topic = 'Database'**

Query:

Select male Students, for which age will be greater than 17

SELECT – QUIZ ANS

Query:

Students with age more than 17

$$\sigma_{age > 17}$$
 (Student)

Query:

Selects tuples from **Tutorials** where **topic = 'Database'**

Query:

Select male Students, for which age will be greater than 17

$$\sigma_{age}$$
 > 17 and gender = 'Male' (Student)

PROJECT

- used to select the required columns of data from a relation
- projection removes duplicate data
- Denoted by Π
- Syntax:

$$\Pi_{A1, A2...}(r)$$

• A1, A2 etc are attribute names

PROJECT - EXAMPLE

Query:

Member IDs of members who have borrowed books.

 $\pi_{Member\ ID}(Borrow)$

Member ID	Book ID	Book Name
1	1	OOPS
3	5	DBMS
4	3	DS
5	2	Java

Member ID
1
3
4
5

PROJECT - EXAMPLE

Query:

Member IDs of members and the Book IDs of the books they have borrowed books.

Member ID	Book ID	Book Name
1	1	OOPS
3	5	AI
3	3	DBMS
4	2	DS
5	4	Java

 $\pi_{Member\ ID,Book\ ID}(Borrow)$

Member ID	Book ID
1	1
3	5
3	3
4	2
5	4

CustomerIDCustomerNameStatus1GoogleActive2AmazonActive3AppleInactive4AlibabaActive

PROJECT - QUIZ

Query:

Select the columns customer Name and status from the table Customers

CustomerID	CustomerName	Status
1	Google	Active
2	Amazon	Active
3	Apple	Inactive
4	Alibaba	Active

PROJECT – QUIZ ANS

Query:

Select the columns customer Name and status from the table Customers

Π _{CustomerName}, _{Status} (Customers)

CustomerName	Status
Google	Active
Amazon	Active
Apple	Inactive
Alibaba	Active

RENAME

- Rename operation allows renaming a certain output relation
- It is denoted using small <u>Greek letter rho (ρ)</u>.
- Syntax:

ρ(RelationNew, RelationOld)

RENAME - EXAMPLE

Member

Member ID	Name	Date of Birth
1	Alice	03/03/1995
2	Bob	11/07/1993
3	Charlie	21/10/1997
4	Mike	16/09/1992
5	Katie	21/10/1997

Query:

Rename the Member relation as Library Member.

$$\rho_{LibraryMember}(Member)$$

LibraryMember

Member ID	Name	Date of Birth
1	Alice	03/03/1995
2	Bob	11/07/1993
3	Charlie	21/10/1997
4	Mike	16/09/1992
5	Katie	21/10/1997

RENAME - EXAMPLE

You can select particular column and rename it and use as a relation

Table: CUSTOMER

Customer_Id	Customer_Name	Customer_City
C10100	Steve	Agra
C10111	Raghu	Agra
C10115	Chaitanya	Noida
C10117	Ajeet	Delhi
C10118	Carl	Delhi

ρ(CUST_NAMES, ∏(Customer_Name)(CUSTOMER))

CUST_NAMES

Steve

Raghu

Chaitanya

Ajeet

Carl

UNION

- used to fetch data from two relations(tables) or temporary relation(result of another operation)
- both the relations must have the same set of attributes
- Duplicate tuples should be automatically removed
- denoted by U symbol
- Syntax:

Ta	ble A	Tal	ble B
column 1	column 2	column 1	column 2
1	1	1	1
1	2	1	3

A ∪ B gives

Table A ∪ B		
column 1	column 2	
1	1	
1	2	
1	3	

UNION - EXAMPLE

Table 1: COURSE

Course_Id	Student_Name	Student_Id
C101	Aditya	S901
C104	Aditya	S901
C106	Steve	S911
C109	Paul	S92 <mark>1</mark>
C115	Lucy	S931

Table 2: STUDENT

Student_Id	Student_Name	Student_Age
S901	Aditya	19
S911	Steve	18
S921	Paul	19
S931	Lucy	17
S941	Carl	16
S951	Rick	18

∏ Student_Name (COURSE) U ∏ Student_Name (STUDENT)

UNION - OUTPUT

OUTPU T

```
Student_Name
------
Aditya
Carl
Paul
Lucy
Rick
Steve
```

UNION - EXAMPLE

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

Π CUSTOMER_NAME (BORROW) ∪ Π CUSTOMER_NAME (DEPOSITOR)

UNION - EXAMPLE

Π CUSTOMER_NAME (BORROW) ∪ Π CUSTOMER_NAME (DEPOSITOR)

• gives the customer name from both relation Depositor and Borrower by eliminating duplication.

INTERSECTION

- defined by the symbol ∩
- Suppose there are two tuples A and B. The set intersection operation contains all tuples that are in both A & B
- Syntax: A n B

INTERSECTION

Ta	ble A	Ta	ble B
column 1	column 2	column 1	column 2
1	1	1	1
1	2	1	3

Table A ∩ B	
column 1	column 2
1	1

INTERSECTION

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

 Π CUSTOMER_NAME (BORROW) \cap Π CUSTOMER_NAME (DEPOSITOR)

CUSTOMER_NAME

Smith

Jones

SET DIFFERENCE

- we have two relations R1 and R2 and selects all those tuples(rows) that are present in Relation R1 but not present in Relation R2
- denoted by symbol
- both the relations must have the same set of attributes
- Syntax:

```
table_name1 - table_name2
```

SET DIFFERENCE

Tal	ble A	Tal	ble B
column 1	column 2	column 1	column 2
1	1	1	1
1	2	4	2

A-B

Table A - B		
column 1	column 2	
1	2	

∏ author (Books) - ∏ author (Articles)

Provides the name of authors who have written books but not articles

SET DIFFERENCE -QUIZ

Table 1: COURSE

Course_Id	Student_Name	Student_Id
C101	Aditya	S901
C104	Aditya	S901
C106	Steve	S911
C109	Paul	S921
C115	Lucy	S931

Table 2: STUDENT

Student_Id	Student_Name	Student_Age
S901	Aditya	19
S911	Steve	18
S921	Paul	19
S931	Lucy	17
S941	Carl	16
S951	Rick	18

write a query to select those students who have not enrolled their courses

SET DIFFERENCE —QUIZ ANS

Table 1: COURSE

Course_Id	Student_Name	Student_Id
C101	Aditya	S901
C104	Aditya	S901
C106	Steve	S911
C109	Paul	S921
C115	Lucy	S931

Table 2: STUDENT

Student_Id	Student_Name	Student_Age
S901	Aditya	19
S911	Steve	18
S921	Paul	19
S931	Lucy	17
S941	Carl	16
S951	Rick	18

write a query to select those students who have not enrolled their courses

Output:

SET DIFFERENCE -QUIZ

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

write a query to select customers who have loan but does not maintain a deposit in the bank

SET DIFFERENCE —QUIZ ANS

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

write a query to select customers who have loan but does not maintain a deposit in the bank

Output:

CUSTOMER_NAME
Jackson
Hayes
Willians
Curry

∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

- operation used to merge columns from two relations
- Combines information of two different relations into one
- denoted by X symbol
- A X B will results all the attributes of A followed by each attribute of B
- Each record of A will pairs with every record of B
- It is also called Cross Product or Cross Join
- Syntax:

A X B

meaningful operation when it is followed by other operations

Table 1: R

Col_B
100
200
300

Table 2: S

Col_X	Col_Y
XX	99
YY	11
ZZ	101

RXS

Col_A	Col_B	Col_X	Col_Y
AA	100	XX	99
AA	100	YY	11
AA	100	ZZ	101
ВВ	200	XX	99
ВВ	200	YY	11
ВВ	200	ZZ	101
CC	300	XX	99
CC	300	YY	11
CC	300	ZZ	101

Total rows in R X S = no of rows in R x no of rows in S = 3×3

= 9

EMPLOYEE

EMP_ID	EMP_NAME	EMP_DEPT
1	Smith	А
2	Harry	С
3	John	В

DEPARTMENT

DEPT_NO	DEPT_NAME
А	Marketing
В	Sales
С	Legal

EMPLOYEE X DEPARTMENT

EMP_ID	EMP_NAME	EMP_DEPT	DEPT_NO	DEPT_NAME
1	Smith	А	А	Marketing
1	Smith	А	В	Sales
1	Smith	А	С	Legal
2	Harry	С	Α	Marketing
2	Harry	С	В	Sales
2	Harry	С	С	Legal
3	John	В	Α	Marketing
3	John	В	В	Sales
3	John	В	С	Legal

Characters

name	house
Tyrion	Lannister
Daenerys	Targaryen

Episodes

<u>season</u>	num	title
1	1	Winter is Coming
1	2	The Kingsroad

$Characters \times Episodes$

name	house	season	<u>num</u>	title
Tyrion	Lannister	1	1	Winter is Coming
Tyrion	Lannister	1	2	The Kingsroad
Daenery	Targaryen	1	1	Winter is Coming
Daenery	Targaryen	1	2	The Kingsroad

JOINS

- selectively pairs up tuples from two relations
- Join operation is essentially a cartesian product followed by a selection criterion.
- denoted by ⋈.
- combines related tuples from different relations, if and only if a given join condition is satisfied
- Syntax:

Relation1 ⋈ condition

Relation2

EMPLOYEE

EMP_CODE	EMP_NAME
101	Stephan
102	Jack
103	Harry

SALARY

EMP_CODE	SALARY
101	50000
102	30000
103	25000

JOINS - EXAMPLE

EMPLOYEE ⋈ **SALARY**

EMP_CODE	EMP_NAME	SALARY
101	Stephan	50000
102	Jack	30000
103	Harry	25000

Characters

name	house
Tyrion	Lannister
Daenerys	Targaryen

Appearances

name	season	num
Jon Snow	2	1
Tyrion	1	1
Tyrion	2	2
Daenerys	1	2

JOINS - EXAMPLE

Characters $\triangleright \triangleleft_{name}$ Appearances

<u>name</u>	house	<u>name</u>	<u>season</u>	<u>num</u>
Tyrion	Lannister	Tyrion	1	1
Tyrion	Lannister	Tyrion	2	2
Daenerys	Targaryen	Daenery	1	2

INNER JOIN — THETA JOIN

- general case of JOIN operation
- denoted by symbol θ
- combines tuples from different relations provided they satisfy the theta condition
- Syntax

 $A\bowtie_{\theta} B$

INNER JOIN — THETA JOIN

Table A		Table B		
column 1	column 2	column 1	column 2	
1	1	1	1	
1	2	1	3	

Α	⋈ A.column	2	>	B.column	2	(B)
Α	⋈ A.column	2	>	B.column	2	

column 1	column 2
1	2

INNER JOIN — THETA JOIN

Student					
SID	Name	Std			
101	Alex	10			
102	Maria	11			

	Subjects
Class	Subject
10	Math
10	English
11	Music
11	Sports

INNER JOIN — EQUI JOIN

- When Theta join uses only equality comparison operator, it is said to be equijoin
- special case of conditional join where only equality condition holds between a pair of attributes
- As values of two attributes will be equal in result of equijoin, only one attribute will be appeared in result

$$A \bowtie A.column 2 = B.column 2 (B)$$

INNER JOIN – EQUI JOIN

Table A		Та	Table B	
column 1	column 2	column 1	column 2	
1	1	1	1	
1	2	1	3	

$$A \bowtie A.column 2 = B.column 2 (B)$$

column 1	column 2
1	1

- binary operator
- can only be performed if there is a common attribute (column) between the relations.
- set of tuples of all combinations in R and S that are equal on their common attribute names
- does not use any comparison operator. It does not concatenate the way a Cartesian product does
- name and type of the attribute must be same.
- Syntax:

С		
Num	Square	
2	4	
3	9	

D		
Num	Cube	
2	8	
3	27	

C ⋈ D

acts on those matching attributes where the values of attributes in both the relations are same

	C⋈D	
Num	Square	Cube
2	4	4
3	9	27

Courses			
	CID	Course	Dept
CS01		Database	CS
ME01		Mechanics	ME
EE01		Electronics	EE

HoD	
Dept	Head
CS	Alex
ME	Maya
EE	Mira

Courses ⋈ HoD			
Dept	CID	Course	Head
CS	CS01	Database	Alex
ME	ME01	Mechanics	Maya
EE	EE01	Electronics	Mira

Emp	
Id	Dept_name)
120	IT
125	HR
110	Sale
111	IT
	Id 120 125 110

Dep	
(Dept_name	Manager)
Sale	Υ
Prod	Z
IT	А

Emp :	⊠ Dep		
Name	Id	Dept_name	Manager
А	120	IT	А
С	110	Sale	Υ
D	111	IT	А

JOIN

R

sid	name	gpa	
1111	Joe	3.2	
2222	Ann	4.0	
3333	Mike	3.5	

S

sid	did	cid	term	grade
1111	1	210	Fall 2012	Α
2222	1	220	Winter 2013	

$R \bowtie S$

R.sid	R.name	R.gpa	S.sid	S.did	S.cid	S.term	S.grade
1111	Joe	3.2	1111	1	210	Fall 2012	Α
2222	Ann	4.0	2222)1	220	Winter 2013	

in any course?

What are the names of students who got an A

Students

sid	name	gpa	
1111	Joe	3.2	
2222	Ann	4.0	
3333	Mike	3.5	

Enrollment

sid	did	cid	term	grade
1111	1	210	Fall 2015	Α
2222	1	220	Winter 2016	

(Students ⋈ Enrollment) (

	R.sid	R.name	R.gpa	S.sid	S.did	S.cid	S.term	S.grade
\langle	1111	Joe	3.2	1111	1	210	Fall 2012	Α
	2222	Ann	4.0	2222	1	220	Winter 2013	

 $(\sigma_{grade='A'}(Students \bowtie Enrollment))$

$$\pi_{name}$$
 ($\sigma_{grade='A'}$ (Students \bowtie Enrollment))

name Joe

Students

sid	name	gpa	
1111	Joe	3.2	
2222	Ann	4.0	
3333	Mike	3.5	

What are the names of students who got an A in any course?

Enrollment

sid	did	cid	term	grade
1111	1	210	Fall 2015	Α
2222	1	220	Winter 2016	

$$\pi_{name}$$
 (Students \bowtie ($\sigma_{grade='A'}$ Enrollment))

OUTER JOIN — LEFT JOIN

- Select records from the first (left-most) table with matching right table records
- join starting with the first (left-most) table.
- Then, any matched records from the second table (right-most) will be included
- there is no matching tuple is found in right relation, then the attributes of right relation in the join result are filled with null values
- Syntax : A → B

Α			
Num	Square		
2	4		
3	9		
4	16		

В			
Num	Cube		
2	8		
3	18		
5	75		

LEFT JOIN - EXAMPLE

$A \bowtie B$

Num	Square	Cube	
2	4	8	
3	9	18	
4	16	-	

CUSTOMER Id =0 FirstName LastName City Country Phone

LEFT JOIN - EXAMPLE

List all customers and the total amount they spent irrespective whether they placed any orders or not.

OrderNumber	TotalAmount	FirstName	LastName	City	Country
NULL	NULL	Diego	Roel	Madrid	Spain
NULL	NULL	Marie	Bertrand	Paris	France
542912	12.50	Patricio	Simpson	Buenos Aires	Argentina
542937	18.40	Paolo	Accorti	Torino	Italy
542897	28.00	Pascale	Cartrain	Charleroi	Belgium

RIGHT JOIN

- operation allows keeping all tuple in the right relation
- join starting with the second (right-most) table and then any matching first (left-most) table records
- no matching tuple is found in the left relation, then the attributes of the left relation in the join result are filled with null values
- Syntax:

Α	
Num	Square
2	4
3	9
4	16

В		
Num	Cube	
2	8	
3	18	
5	75	

RIGHT JOIN - EXAMPLE

A X B

Num	Square	Cube
2	4	8
3	9	18
5	-	75

RIGHT JOIN - EXAMPLE

ORDER

Id

OrderDate

OrderNumber

-0

CustomerId

TotalAmount

CUSTOMER

-0

Id

FirstName

LastName

City

Country

Phone

List customers that have not placed orders

TotalAmount	FirstName	LastName	City	Country
NULL	Diego	Roel	Madrid	Spain
NULL	Marie	Bertrand	Paris	France

FULL JOIN

- all tuples from both relations are included in the result, irrespective of the matching condition.
- Syntax:

A × B

FULL JOIN - EXAMPLE

Α	
Square	
4	
9	
16	

В		
Num	Cube	
2	8	
3	18	
5	75	

 $A \bowtie B$

Num	Square	Cube
2	4	8
3	9	18
4	16	-
5	-	75

FULL JOIN - EXAMPLE

Match all customers and suppliers by country

FirstName	LastName	CustomerCountry	SupplierCountry	CompanyName
NULL	NULL	NULL	Australia	Pavlova, Ltd.
NULL	NULL	NULL	Australia	G'day, Mate
NULL	NULL	NULL	Japan	Tokyo Traders
NULL	NULL	NULL	Japan	Mayumi's
NULL	NULL	NULL	Netherlands	Zaanse Snoepfabriek
NULL	NULL	NULL	Singapore	Leka Trading
Patricio	Simpson	Argentina	NULL	NULL
Yvonne	Moncada	Argentina	NULL	NULL
Sergio	Gutiérrez	Argentina	NULL	NULL

SUPPLIER		
Id	-0	
Company	/Name	
ContactN	ContactName	
City		
Country		
Phone		
Fax		

Semi Join

• Semi-Join matches the rows of two relations and then show the matching rows of the relation whose name is mentioned to the left side of ⋉ Semi Join operator.

Relation Teacher

ID	Rank	Salary
101	Assistant Professor	80,000
102	Associate Professor	90,000
103	Lecturer	70,000

Relation Student

ID	RollNo	Marks
103	2017 – 01	80
104	2017 – 02	90
105	2017 – 03	70

ID	RollNo	Marks
103	2017 – 01	80

ID	Rank	Salary
103	Lecturer	70,000

Semi Join - Examples

<i>Employ</i> ee				
Name	Emp Id	DeptNam e		
Sameed	1	CS		
Shahzeb	2	SE		
Abid	3	CS		
Shamil	4	IT		

Department		
DeptName	Manager	
SE	Shahzeb	
IT	Shamil	

Employee ⋉ Dept				
Name	EmpId	DeptName		
Shahzeb	2	SE		
Shamil	4	IT		

Assignment Operator (←)

- We can write the operations as a single relational algebra expression by nesting the operations, or we can apply one operation at a time and create intermediate result relations.
- In the latter case, we must name the relations that hold the intermediate results.
- Here, we use the assignment operator (←).

Syntax:

Relational Variable \leftarrow Expression (or) R \leftarrow E.

R is a relation.

E is the Expression whose result we wish to assign to the relation variable R.

Example:

 $R1 \leftarrow \pi name(Customer)$

 $R2 \leftarrow \pi name(Employee)$

R = R1 - R2

Division Operator (÷)

- Division operation is denoted by ÷ sign.
- Let R (R-Schema) and S(S-Schema) be relations and any attribute of S Schema is also in R Schema.
- The relation R / S is a relation on schema R-Schema S-Schema i.e. on the schema containing all the attributes of Schema R that are not in Schema S.

Syntax:

 $P = R \div S$

Where,

P is result we get after applying division operator,

R and **S** stands for relation (name of the tables) on which division operation is applied.

Division Operator (+) Examples

A tuple t is in $r \div s$ if and only if both the conditions hold.

- T is in $\pi R S(r)$
- For every tuple ts in S, there is a tuple tr in R satisfying both of the following:
 - tr[s] = ts[s]
 - tr[R-S] = t

Relation P

Α	В
A1	B1
A1	B2
A2	B1
A3	B1
A4	B2
A5	B1
A5	B2

Relation Q

 $R = P \div Q$ is

Relation R

B1 B2

A A1 A5

Division Operator (+) Examples

Relation P

Α	В
A1	B1
A1	B2
A2	B1
A3	B1
A4	B2
A5	B1
A5	B2

Relation Q

 $R = P \div Q$ is

Relation R

B1

Α1 A2 А3 A5

Relation Q

 $R = P \div Q$ is

Relation R

В

A1 A2 А3 A4 **A5**

EXAMPLES

Example Database

Movies

title	director	myear	rating
Fargo	Coen	1996	8.2
Raising Arizona	Coen	1987	7.6
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

Actors

actor	ayear
Cage	1964
Hanks	1956
Maguire	1975
McDormand	1957

Acts

actor	title	
Cage	Raising Arizona	
Maguire	Spiderman	
Maguire	Wonder Boys	
McDormand	Fargo	
McDormand	Raising Arizona	
McDormand	Wonder Boys	

Directors

director	dyear	
Coen	1954	
Hanson	1945	
Raimi	1959	

Example: Find (director, actor) pairs where the director is younger than the actor

Directors

director	dyear	
Coen	1954	
Hanson	1945	
Raimi	1959	

Actors

actor	ayear
Cage	1964
Hanks	1956
Maguire	1975
McDormand	1957

 $e_1 = \text{Directors} \bowtie_{dyear > ayear} \text{Actors}$

director	dyear	actor	ayear
Raimi	1959	Hanks	1956
Raimi	1959	McDormand	1957

 $\pi_{director,actor}(e_1)$

director	actor
Raimi	Hanks
Raimi	McDormand

 $e_1 = Acts \bowtie_{Acts.title} = Movies.title$ Movies

actor	title	director	myear	rating
Cage	Raising Arizona	Coen	1987	7.6
Maguire	Spiderman	Raimi	2002	7.4
Maguire	Wonder Boys	Hanson	2000	7.6
McDormand	Fargo	Coen	1996	8.2
McDormand	Raising Arizona	Coen	1987	7.6
McDormand	Wonder Boys	Hanson	2000	7.6

$$\pi_{actor}(\sigma_{director='Coen'}((e_1))$$

actor
Cage
McDormand

Sailors (sid, name, rating, age) Boats (bid, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Reserves (sid, bid, day)

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

List names of sailors who reserved boat 102

 π_{name} (Sailors \bowtie ($\sigma_{bid=102}$ Reserves))

Sailors (sid, name, rating, age) Boats (bid, name, color)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Reserves (sid, bid, day)

	The second secon	
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

List names of sailors who reserved the red Interlake.

```
TT Sailors.name (
         Sailors ⋈ (
               ( σ<sub>name=Interlake and color=red</sub> Boats) ⋈ Reserves))
```

Sailors (sid, name, rating, age) Boats (bid, name, color)

Reserves (sid, bid, day)

sid	name	rating	age
1	Dustin	7	45
2	Rusty	10	35
3	Horatio	5	35
4	Zorba	8	18
5	Julius		25

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

	7	
sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

List names of boats that were reserved by Horatio.

Sailors (sid, name, rating, age)

name

Dustin

Rusty

Zorba

Julius

5

Horatio

rating

10

5

age

45

35

35

18

25

0		

Boats (bid, name, color)

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

List days on which some sailor with rating higher than 7 was at sea

 π_{day} (($\sigma_{rating>7}$ Sailors) \bowtie Reserves)

Reserves (sid, bid, day)

sid	bid	day
1	101	10/10/12
1	102	10/10/12
1	101	10/7/12
2	102	11/9/12
2	102	7/11/12
3	101	7/11/12
3	102	7/8/12
4	103	19/9/12

JOIN VS CARTESIAN PRODUCT

Conceptually, to compute $R \bowtie_{\mathcal{C}} S$

- compute a Cartesian product R x S
- 2. then compute a selection σ_C (R × S) using the join condition $R \bowtie_C S = \sigma_C (R \times S)$

$$R \bowtie_{R.age < S.age} S = \sigma_{R.age < S.age} (R \times S)$$

R.id	R.name	R.age	S.id	S.name	S.age
1	Ann	18	3	Mike (21
1	Ann	18	4	Dave	27
2	Jane	22)3—	Mike C	21
2	Jane (22	4	Dave	27

Find movies made after 1997

Movies

title	director	myear	rating
Fargo	Coen	1996	8.2
Raising Arizona	Coen	1987	7.6
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

 $\sigma_{myear>1997}(ext{Movies})$

title	director	myear	rating
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

Find movies made by Hanson after 1997

Movies

title	director	myear	rating
Fargo	Coen	1996	8.2
Raising Arizona	Coen	1987	7.6
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

 $\sigma_{myear>1997} \wedge director='Hanson'$ (Movies)

title	director	myear	rating
Wonder Boys	Hanson	2000	7.6

Find all movies and their ratings

Movies

title	director	myear	rating
Fargo	Coen	1996	8.2
Raising Arizona	Coen	1987	7.6
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

 $\pi_{title, \ rating}(\mathbf{Movies})$

title	rating
Fargo	8.2
Raising Arizona	7.6
Spiderman	7.4
Wonder Boys	7.6

Find all actors & directors

Find Coen's movies with McDormand

Acts

actor	title	
Cage	Raising Arizona	
Maguire	Spiderman	
Maguire	Wonder Boys	
McDormand	Fargo	
McDormand	Raising Arizona	
McDormand	Wonder Boys	

Movies

title	director	myear	rating
Fargo	Coen	1996	8.2
Raising Arizona	Coen	1987	7.6
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

Find movies with Maguire but not McDormand

Movies

title	director	myear	rating
Fargo	Coen	1996	8.2
Raising Arizona	Coen	1987	7.6
Spiderman	Raimi	2002	7.4
Wonder Boys	Hanson	2000	7.6

$$e_1 = \rho_{T(title2)}(\pi_{title}(\sigma_{director='Coen'}(Movies)))$$

×

Acts

actor	title	
Cage	Raising Arizona	
Maguire	Spiderman	
Maguire	Wonder Boys	
McDormand	Fargo	
McDormand	Raising Arizona	
McDormand	Wonder Boys	

title2
Fargo
Raising Arizona

actor	title	title2
Cage	Raising Arizona	Fargo
Cage	Raising Arizona	Raising Arizona
Maguire	Spiderman	Fargo
Maguire	Spiderman	Raising Arizona
Maguire	Wonder Boys	Fargo
Maguire	Wonder Boys	Raising Arizona
McDormand	Fargo	Fargo
McDormand	Fargo	Raising Arizona
McDormand	Raising Arizona	Fargo
McDormand	Raising Arizona	Raising Arizona
McDormand	Wonder Boys	Fargo
McDormand	Wonder Boys	Raising Arizona

actor	title	title2
Cage	Raising Arizona	Fargo
Cage	Raising Arizona	Raising Arizona
Maguire	Spiderman	Fargo
Maguire	Spiderman	Raising Arizona
Maguire	Wonder Boys	Fargo
Maguire	Wonder Boys	Raising Arizona
McDormand	Fargo	Fargo
McDormand	Fargo	Raising Arizona
McDormand	Raising Arizona	Fargo
McDormand	Raising Arizona	Raising Arizona
McDormand	Wonder Boys	Fargo
McDormand	Wonder Boys	Raising Arizona

 $\rightarrow e_3 = \sigma_{title=title2}(e_2)$

 e_3

actor	title	title2	
Cage	Raising Arizona	Raising Arizona	
$_{ m McDormand}$	Fargo	Fargo	
McDormand	Raising Arizona	Raising Arizona	

 π_{actor} Cage
McDormand

 e_2

$$\pi_{actor}(\sigma_{title=title2} (\text{Acts} \times \rho_{T(title2)}(\pi_{title}(\sigma_{director='Coen'}(\text{Movies})))))$$

What are the names of students whose GPA is at least 3.5?

Students

sid	name	gpa	
1111	Joe	3.2	
2222	Ann	4.0	
3333	Mike	3.5	

$$\sigma_{gpa \ge 3.5}$$
 (Students)

sid	name	gpa
2222	Ann	4.0
3333	Mike	3.5

 π_{name} ($\sigma_{gpa \ge 3.5}$ (Students))

name	
Ann	
Mike	

