Planche nº 18. Rationnels et réels. Corrigé

Exercice nº 1.

1) Soient m et n deux entiers naturels supérieurs à 2.

$$\sqrt[n]{m} \in \mathbb{Q} \Leftrightarrow \exists (\alpha,b) \in (\mathbb{N}^*)^2 / \sqrt[n]{m} = \frac{\alpha}{b} \Leftrightarrow \exists (\alpha,b) \in (\mathbb{N}^*)^2 / \alpha^n = m \times b^n.$$

Tout d'abord, si b=1, $m=a^n$ et m est une puissance n-ième parfaite. Ensuite, a=1 est impossible car $m \times b^n \geqslant 2$.

Supposons alors que \mathfrak{a} et \mathfrak{b} sont des entiers supérieurs à 2 (et que $\mathfrak{a}^n = \mathfrak{m} \times \mathfrak{b}^n$). L'exposant de tout facteur premier de \mathfrak{a}^n ou de \mathfrak{b}^n est un multiple de \mathfrak{n} et par unicité de la décomposition en facteurs premiers, il en est de même de tout facteur premier de \mathfrak{m} . Ceci montre que, si $\sqrt[n]{\mathfrak{m}}$ est rationnel, \mathfrak{m} est une puissance \mathfrak{n} -ième parfaite.

Réciproquement, si m est une puissance n-ième parfaite, $\sqrt[n]{m}$ est un entier et en particulier un rationnel. En résumé :

$$\sqrt[n]{m} \in \mathbb{Q} \Leftrightarrow \sqrt[n]{m} \in \mathbb{N} \Leftrightarrow m \text{ est une puissance } n \text{ -ième parfaite.}$$

Par suite, si \mathfrak{m} n'est pas une puissance \mathfrak{n} -ième parfaite, $\sqrt[n]{\mathfrak{m}}$ est irrationnel. Par exemple, $\sqrt{2}$ ou $\sqrt[3]{7}$ sont des irrationnels.

2)

$$\begin{split} \log 2 &\in \mathbb{Q} \Rightarrow \exists (a,b) \in (\mathbb{N}^*)^2 / \ \log 2 = \frac{a}{b} \Rightarrow \exists (a,b) \in (\mathbb{N}^*)^2 / \ 10^{a/b} = 2 \Rightarrow \exists (a,b) \in (\mathbb{N}^*)^2 / \ 10^a = 2^b \\ &\Rightarrow \exists (a,b) \in (\mathbb{N}^*)^2 / \ 5^a = 2^{b-a}. \end{split}$$

On a nécessairement b-a>0 car sinon $5^a>1$ et $2^{b-a}\leqslant 1$ ce qui contredit l'égalité $5^a=2^{b-a}$. L'égalité $5^a=2^{b-a}$ est alors impossible par unicité de la décomposition en facteurs premiers d'un entier naturel supérieur ou égal à 2.

On a montré par l'absurde que log 2 est irrationnel.

- 3) Montrons par récurrence que : $\forall n \in \mathbb{N}, \ e = \sum_{k=0}^n \frac{1}{k!} + \int_0^1 \frac{(1-t)^n}{n!} e^t \ dt.$
- Pour n = 0, $\int_0^1 \frac{(1-t)^n}{n!} e^t dt = \int_0^1 e^t dt = e 1$ et donc, $e = 1 + \int_0^1 e^t dt = \sum_{k=0}^0 \frac{1}{k!} + \int_0^1 \frac{(1-t)^0}{0!} e^t dt$. La formule à démontrer est donc vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $e = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} e^{t} dt$.

Les deux fonctions $t\mapsto -\frac{(1-t)^{n+1}}{(n+1)!}$ et $t\mapsto e^t$ sont de classe C^1 sur le segment [0,1]. On peut donc effectuer une intégration par parties qui fournit :

$$\int_0^1 \frac{(1-t)^n}{n!} e^t dt = \left[-\frac{(1-t)^{n+1}}{(n+1) \times n!} e^t \right]_0^1 + \int_0^1 \frac{(1-t)^{n+1}}{(n+1)!} e^t dt = \frac{1}{(n+1)!} + \int_0^1 \frac{(1-t)^{n+1}}{(n+1)!} e^t dt,$$

et donc,

$$e = \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{(n+1)!} + \int_{0}^{1} \frac{(1-t)^{n+1}}{(n+1)!} e^{t} \ dt = \sum_{k=0}^{n+1} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n+1}}{(n+1)!} e^{t} \ dt.$$

Le résultat est ainsi démontré par récurrence.

Soit n un entier naturel non nul. D'après ce qui précède,

$$0 < e - \sum_{k=0}^n \frac{1}{k!} = \int_0^1 \frac{(1-t)^n}{n!} e^t \ dt \leqslant e \int_0^1 \frac{(1-t)^n}{n!} \ dt = \frac{e}{(n+1)!} < \frac{3}{(n+1)!}.$$

Supposons alors par l'absurde que e soit rationnel. Alors, il existe $(a,b) \in (\mathbb{N}^*)^2 / e = \frac{a}{b}$. Soit \mathfrak{n} un entier naturel non nul quelconque. D'après ce qui précède, on a

$$0 < \frac{a}{b} - \sum_{k=0}^{n} \frac{1}{k!} < \frac{3}{(n+1)!},$$

ce qui s'écrit encore

$$0 < an! - b \sum_{k=0}^{n} \frac{n!}{k!} < \frac{3b}{n+1}.$$

En particulier, pour n=3b, on a $0 < a(3b)! - b \sum_{k=0}^{3b} \frac{(3b)!}{k!} < \frac{3b}{3b+1} < 1$. Mais ceci est impossible car $a(3b)! - b \sum_{k=0}^{3b} \frac{(3b)!}{k!}$ est un entier relatif. Il est donc absurde de supposer que e est rationnel. Finalement, e est irrationnel.

4) Une équation du troisième degré dont les solutions sont $\cos \frac{2\pi}{7}$, $\cos \frac{4\pi}{7}$ et $\cos \frac{6\pi}{7}$ est

$$\left(X - \cos\frac{2\pi}{7}\right) \left(X - \cos\frac{4\pi}{7}\right) \left(X - \cos\frac{6\pi}{7}\right) = 0,$$

ou encore

$$X^{3} - \left(\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}\right)X^{2} + \left(\cos\frac{2\pi}{7}\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7}\cos\frac{6\pi}{7} + \cos\frac{4\pi}{7}\cos\frac{6\pi}{7}\right)X - \cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\cos\frac{6\pi}{7} = 0.$$

Calculons alors ces trois coefficients.

Soit $\omega = e^{2i\pi/7}$. Puisque $\omega^7 = 1$ et que $\omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = -1$, on a :

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = \frac{1}{2}\left(\omega + \omega^6 + \omega^2 + \omega^5 + \omega^3 + \omega^4\right) = -\frac{1}{2},$$

puis, en tenant compte de $\omega^7 = 1$,

$$\begin{split} \cos\frac{2\pi}{7}\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7}\cos\frac{6\pi}{7} + \cos\frac{4\pi}{7}\cos\frac{6\pi}{7} &= \frac{1}{4}\left(\left(\omega + \omega^{6}\right)\left(\omega^{2} + \omega^{5}\right) + \left(\omega + \omega^{6}\right)\left(\omega^{3} + \omega^{4}\right) + \left(\omega^{2} + \omega^{5}\right)\left(\omega^{3} + \omega^{4}\right) \\ &= \frac{1}{4}\left(\left(\omega^{3} + \omega^{6} + \omega + \omega^{4}\right) + \left(\omega^{4} + \omega^{5} + \omega^{2} + \omega^{3}\right) + \left(\omega^{5} + \omega^{6} + \omega + \omega^{2}\right)\right) \\ &= \frac{2}{4}\left(\omega + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{5} + \omega^{6}\right) = -\frac{1}{2}, \end{split}$$

et enfin,

$$\begin{split} \cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\cos\frac{6\pi}{7} &= \frac{1}{8}\left(\omega+\omega^6\right)\left(\omega^2+\omega^5\right)\left(\omega^3+\omega^4\right) \\ &= \frac{1}{8}\left(\omega^3+\omega^6+\omega+\omega^4\right)\left(\omega^3+\omega^4\right) = \frac{1}{8}\left(\omega^6+1+\omega^2+\omega^3+\omega^4+\omega^5+1+\omega\right) \\ &= \frac{1}{8}. \end{split}$$

Les trois nombres $\cos \frac{2\pi}{7}$, $\cos \frac{4\pi}{7}$ et $\cos \frac{6\pi}{7}$ sont solution de l'équation $X^3 + \frac{1}{2}X^2 - \frac{1}{2}X - \frac{1}{8} = 0$ ou encore de l'équation $8X^3 + 4X^2 - 4X - 1 = 0$.

Montrons que cette équation n'admet pas de racine rationnelle. Dans le cas contraire, si, pour p entier relatif non nul et q entier naturel non nul tels que p et q sont premiers entre eux, le nombre $r=\frac{p}{q}$ est racine de cette équation, alors $8p^3+4p^2q-4pq^2-q^3=0$. Ceci peut encore s'écrire $8p^3=q(-4p^2+4pq+q^2)$ ce qui montre que q divise $8p^3$. Comme q est premier avec p et donc avec p^3 , on en déduit, d'après le théorème de GAUSS que q divise 8. De même, l'égalité $q^3=p(8p^2+4pq-4q^2)$ montre que p divise 1.

Ainsi, nécessairement $p \in \{-1,1\}$ et $q \in \{1,2,4,8\}$ ou encore $r \in \left\{1,-1,\frac{1}{2},-\frac{1}{2},\frac{1}{4},-\frac{1}{4},\frac{1}{8},-\frac{1}{8}\right\}$. On vérifie aisément qu'aucun de ces nombres n'est racine de l'équation considérée et donc cette équation n'a pas de racine rationnelle. En particulier, $\cos\frac{2\pi}{7}$ est irrationnel.

5) On sait que $\sqrt{2}$, $\sqrt{3}$ et $\sqrt{5}$ sont irrationnels mais ceci n'impose rien à la somme $\sqrt{2} + \sqrt{3} + \sqrt{5}$.

Posons $\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5}$.

$$\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5} \Rightarrow \left(\alpha - \sqrt{2}\right)^2 = \left(\sqrt{3} + \sqrt{5}\right)^2 \Rightarrow \alpha^2 - 2\sqrt{2}\alpha + 2 = 8 + 2\sqrt{15}$$

$$\Rightarrow \left(\alpha^2 - 2\sqrt{2}\alpha - 6\right)^2 = 60$$

$$\Rightarrow \alpha^4 + 8\alpha^2 + 36 - 4\sqrt{2}\alpha^3 - 12\alpha^2 + 24\sqrt{2}\alpha - 60 = 0$$

$$\Rightarrow \alpha^4 - 4\alpha^2 - 24 = 4\sqrt{2}\alpha(\alpha^2 - 6)$$

Si maintenant, on suppose que α est rationnel, puisque $\sqrt{2}$ est irrationnel, on a nécessairement $\alpha(\alpha^2-6)=0$ (dans le cas contraire, $\sqrt{2}=\frac{\alpha^4+8\alpha^2-24}{4\alpha(\alpha^2-6)}\in\mathbb{Q}$). Mais α n'est ni 0, ni $-\sqrt{6}$, ni $\sqrt{6}$ (car $\alpha^2>2+3+5=10>6$). Donc $\sqrt{2}+\sqrt{3}+\sqrt{5}$ est irrationnel.

Exercice nº 2.

A et B sont deux parties non vides et majorées de $\mathbb R$ et admettent donc des bornes supérieures notées respectivement α et β .

Pour tout $(a,b) \in A \times B$, on a $a+b \le \alpha+\beta$. Ceci montre que A+B est une partie non vide et majorée de \mathbb{R} , et donc que $\sup(A+B)$ existe dans \mathbb{R} . De plus, puisque $\alpha+\beta$ est un majorant de A+B, on a $\sup(A+B) \le \alpha+\beta$.

Soit alors $\varepsilon > 0$.

Il existe $a_0 \in A$ et $b_0 \in B$ tels que $\alpha - \frac{\epsilon}{2} < a_0 \leqslant \alpha$ et $\beta - \frac{\epsilon}{2} < b_0 \leqslant \beta$, et donc tels que $\alpha + \beta - \epsilon < a_0 + b_0 \leqslant \alpha + \beta$. En résumé,

- 1) $\forall (a, b) \in A \times B, \ a + b \leq \alpha + \beta \text{ et}$
- 2) $\forall \varepsilon > 0$, $\exists (a, b) \in A \times B / a + b > \alpha + \beta \varepsilon$.

On en déduit que $\sup(A + B) = \alpha + \beta = \sup A + \sup B$.

La démarche et le résultat sont analogues pour les bornes inférieures.

Exercice nº 3.

 $\text{Posons pour } n \text{ entier naturel non nul } u_n = \frac{1}{n} + (-1)^n \text{ de sorte que } A = \{u_n, \ n \in \mathbb{N}^*\} = \left\{0, \frac{1}{2}+1, \frac{1}{3}-1, \frac{1}{4}+1, \frac{1}{5}-1, \ldots\right\}.$

$$\mathrm{Pour} \ n \geqslant 1, \ \mathfrak{u}_{2n} = 1 + \frac{1}{2n}. \ \mathrm{Donc} \ \forall n \in \mathbb{N}^*, \ 1 < \mathfrak{u}_{2n} \leqslant \frac{3}{2}.$$

Pour
$$n \ge 1$$
, $u_{2n-1} = -1 + \frac{1}{2n-1}$. Donc $\forall n \in \mathbb{N}^*$, $-1 < u_{2n-1} \le 0$.

Par suite, $\forall n \in \mathbb{N}^*, -1 < u_n \leqslant \frac{3}{2}$. Donc, $\sup A$ et inf A existent dans \mathbb{R} et de plus $-1 \leqslant \inf A \leqslant \sup A \leqslant \frac{3}{2}$.

Ensuite,
$$\frac{3}{2} = \mathfrak{u}_2 \in A$$
. Donc, sup $A = \max A = \frac{3}{2}$.

Enfin, pour chaque entier naturel non nul n, on a $-1 \le \inf A \le u_{2n-1} = -1 + \frac{1}{2n-1}$. On fait tendre n tend vers l'infini dans cet encadrement, on obtient inf A = -1 (cette borne inférieure n'est pas un minimum).

$$\inf A = -1 \text{ et sup } A = \max A = \frac{3}{2}.$$

Exercice nº 4.

Posons B =
$$\{|y - x|, (x, y) \in A^2\}.$$

A est une partie non vide et bornée de \mathbb{R} , et donc $\mathfrak{m}=\inf A$ et $M=\sup A$ existent dans \mathbb{R} .

 $\text{Pour } (x,y) \in \mathsf{A}^2, \text{ on a } \mathfrak{m} \leqslant x \leqslant \mathsf{M} \text{ et } \mathfrak{m} \leqslant y \leqslant \mathsf{M}, \text{ et donc } \mathsf{y} - \mathsf{x} \leqslant \mathsf{M} - \mathfrak{m} \text{ et } \mathsf{x} - \mathsf{y} \leqslant \mathsf{M} - \mathfrak{m} \text{ ou encore } |\mathsf{y} - \mathsf{x}| \leqslant \mathsf{M} - \mathfrak{m}.$

Par suite, B est une partie non vide et majorée de \mathbb{R} . B admet donc une borne supérieure.

Soit $\varepsilon > 0$. Il existe $(x_0, y_0) \in A^2$ tel que $x_0 > \sup A - \frac{\varepsilon}{2}$ et $y_0 < \inf A + \frac{\varepsilon}{2}$.

Ces deux éléments x_0 et y_0 vérifient,

$$|y_0-x_0|\geqslant x_0-y_0>\left(\sup\,A-\frac{\epsilon}{2}\right)-\left(\inf\,A+\frac{\epsilon}{2}\right)=\sup\,A-\inf\,A-\epsilon.$$

En résumé.

- 1) $\forall (x,y) \in A^2$, $|y-x| \leq \sup A \inf A$ et 2) $\forall \epsilon > 0$, $\exists (x,y) \in A^2 / |y-x| > \sup A \inf A \epsilon$.

Donc, sup $B = \sup A - \inf A$.

Exercice nº 5.

1) $A \cap B$ peut être vide et on n'a rien à dire. Supposons donc $A \cap B$ non vide. Pour $x \in A \cap B$, on a $x \leq \sup A$ et $x \leq \sup B$ et donc $x \leq \min\{\sup A, \sup B\}$.

Dans ce cas, $\sup(A \cap B)$ existe et $\sup(A \cap B) \leq \min\{\sup A, \sup B\}$.

On ne peut pas améliorer. Par exemple, soit $A = [0,1] \cap \mathbb{Q}$ et $B = ([0,1] \cap (\mathbb{R} \setminus \mathbb{Q})) \cup \{0\}$. On a sup A = 1, sup B = 1, $A \cap B = \{0\} \text{ et donc } \sup(A \cap B) = 0 < 1 = \min\{\sup A, \sup B\}.$

2) Pour $x \in A \cup B$, on a $x \leq \max\{\sup A, \sup B\}$.

Donc $\sup(A \cup B)$ existe dans \mathbb{R} et $\sup(A \cup B) \leq \max\{\sup A, \sup B\}$.

Inversement, supposons par exemple sup $A \geqslant \sup B$ de sorte que max $\{\sup A, \sup B\} = \sup A$.

Soit alors $\varepsilon > 0$. Il existe $\alpha \in A$ tel que sup $A - \varepsilon < \alpha \leq \sup A$. De plus, α est dans A et donc dans $A \cup B$.

En résumé,

- 1) $\forall x \in (A \cup B), x \leq \max\{\sup A, \sup B\} \text{ et }$
- 2) $\forall \varepsilon > 0$, $\exists x \in (A \cup B) / \max\{\sup A, \sup B\} \varepsilon < x$.

Finalement, $\sup(A \cup B) = \max\{\sup A, \sup B\}$.

- 3) D'après l'exerccie n° 2, $\sup(A + B) = \sup A + \sup B$.
- 4) Pour $\sup(AB)$, tout est possible. Par exemple, si $A = B =]-\infty, 0]$ alors $\sup A = \sup B = 0$, mais $AB = [0, +\infty[$ et $\sup(AB)$ n'existe pas dans \mathbb{R} .

Exercice nº 6.

Montrons par récurrence que $\forall n \ge 1$, $\sum_{k=1}^{2n-1} \frac{(-1)^k}{k+1} = \sum_{k=1}^{2n} \frac{1}{k}$.

- Pour n = 1, $\sum_{k=0}^{2n-1} \frac{(-1)^k}{k+1} = 1 \frac{1}{2} = \frac{1}{2}$ et $\sum_{k=0}^{2n} \frac{1}{k} = \frac{1}{2}$. L'identité proposée est donc vraie pour n = 1.
- Soit $n \ge 1$. Supposons que $\sum_{k=1}^{2n-1} \frac{(-1)^k}{k+1} = \sum_{k=1}^{2n} \frac{1}{k}$.

On a alors

$$\begin{split} \sum_{k=0}^{2(n+1)-1} \frac{(-1)^k}{k+1} &= \sum_{k=0}^{2n-1} \frac{(-1)^k}{k+1} + \frac{1}{2n+1} - \frac{1}{2n+2} \\ &= \sum_{k=n+1}^{2n} \frac{1}{k} + \frac{1}{2n+1} - \frac{1}{2(n+1)} \text{ (par hypothèse de récurrence)} \\ &= \frac{1}{n+1} + \sum_{k=n+2}^{2n+1} \frac{1}{k} - \frac{1}{2(n+1)} = \sum_{k=n+2}^{2n+1} \frac{1}{k} + \frac{1}{2(n+1)} = \sum_{k=n+2}^{2(n+1)} \frac{1}{k}. \end{split}$$

On a montré par récurrence que $\forall n \geqslant 1$, $\sum_{k=2}^{2n-1} \frac{(-1)^k}{k+1} = \sum_{k=2}^{2n} \frac{1}{k}$ (identité de CATALAN).

Exercice nº 7.

Pour $x \ge 1$, $x + 2\sqrt{x - 1} = x - 1 + 2\sqrt{x - 1} + 1 = \left(\sqrt{x - 1} + 1\right)^2 \ge 0$. De même, $x - 2\sqrt{x - 1} = \left(\sqrt{x - 1} - 1\right)^2 \ge 0$. Donc, si on pose $f(x) = \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}}$, f(x) exists si et seulement $x \ge 1$ et pour $x \ge 1$,

$$f(x) = \sqrt{\left(\sqrt{x-1}+1\right)^2} + \sqrt{\left(\sqrt{x-1}-1\right)^2} = \sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|.$$

Par suite,

$$f(x) = 1 \Leftrightarrow \sqrt{x-1} + |\sqrt{x-1} - 1| = 0 \Leftrightarrow \sqrt{x-1} = 0 \text{ et } \sqrt{x-1} - 1 = 0 \Leftrightarrow \sqrt{x-1} = 0 \text{ et } \sqrt{x-1} = 1,$$

ce qui est impossible. L'équation proposée n'a pas de solution.

Exercice nº 8.

Soient x un réel et ε un réel strictement positif. On a $\sqrt[3]{x} < \sqrt[3]{x+\varepsilon}$. Puisque $\mathbb Q$ est dense dans $\mathbb R$, il existe un rationnel r tel que $\sqrt[3]{x} < r < \sqrt[3]{x+\varepsilon}$ et donc tel que $x < r^3 < x+\varepsilon$, par stricte croissance de la fonction $t \mapsto t^3$ sur $\mathbb R$.

Donc, $\left\{r^3,\;r\in\mathbb{Q}\right\}$ est dense dans $\mathbb{R}.$