www.MathsApi.com

AL/2020/ 10 - S - 1	
A අතාවස	
1. ගණිත අභාවුහනය මූලධර්මය භාවිතයෙන් සියළු $n\in\mathbb{Z}^+$ සඳහා $2n^3+3n^2+n$ යන්න 6 න් පෙන්වන්න.	The state of the s

2. 1.2.3.4.5.6 හා 7 තිබිල 7න් වරකට තිබිල 3 බැගින් ගෙන සැදිය හැකි සංකරණ ගණන සොය	ත්ත. අම්ම සංකරණ
වලින් කොපමන පුමාණයක 3 හා 5 නිඛ්ල අඩංගු නොවේ ද?	

	• • • • • • • • • • • • • • • • • • • •
······································	

$ x-4 \leq 2x+1$
අසමානතාවය නාස්ත කරන x හි සියලුම තාත්වික අගයන් කුලකය සොයන්න.
අතයින් $ x-4 =1-2x$ සම්කරණය විසඳන්න.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
·;····································
4+1++++++++++++++++++++++++++++++++++++
4. ආර්ගන්ඩ් සටහනක $ z-2 \leq 2$ නැ $\frac{\pi n}{2}\leq \arg(z)\leq \frac{\pi}{3}$ යන අවශානාවය නෘජන තරන \mathbb{Z} සංසිරණ සංඛ්‍යාව
4. ආර්ගන්ඩ් සටහනක $ z-2 \leq 2 m \frac{m^2}{2} \leq \arg(z) \leq \frac{\pi}{3}$ යන අවශානාවය නෘජන කරන \mathbb{Z} සංසීරණ සංඛ්‍යාව නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ $ \mathbb{Z} $ උපරිම වන පරිදි \mathbb{Z} සංසීරණ සංඛ්‍යාව සොයන්න.
4. ආර්ගන්ඩ් සටහනක $ z-2 \leq 2$ නා $\frac{ z ^n}{2} \leq \arg(z) \leq \frac{\pi}{3}$ යන අවශානාවය නෘත්ත කරන \mathbb{Z} සංසීරණ සංඛ්යාව නිරුපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ $ \mathbb{Z} $ උපරිම වන පරිදි \mathbb{Z} සංසීරණ සංඛ්යාව සොයන්න.
4. ආර්ගන්ඩ් සටහනක $ z-2 \leq 2$ න $\frac{ z-1 }{2} \leq \arg(z) \leq \frac{\pi}{3}$ යන අවශානාවය නාජන කරන \mathbb{Z} සංසීර්ණ සංඛ්‍යාව නිරුපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ $ \mathbb{Z} $ උපරිම වන පරිදි \mathbb{Z} සංසීර්ණ සංඛ්‍යාව සොයන්න.
4. ආර්ගන්ඩ් සටහනක $ z-2 \leq 2$ නැ $\frac{\pi}{2} \leq \arg(z) \leq \frac{\pi}{3}$ යන අවශානාවය නාජන තරන \mathbb{Z} සංපීරණ සංඛ්යාව නිරූපණය තරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ $ \mathbb{Z} $ උපරිම වන පරිදි \mathbb{Z} සංපීර්ණ සංඛ්යාව සොයන්න.
නිරුපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z සංජීර්ණ සංඛ්‍ය ස්
නිරූපණය තරන E පුදේශය අදුරු තරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z සංජීර්ණ සංඛ්‍යාව මසායන්න.
නිරූපණය තරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z සංජීර්ණ සංඛ්‍යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z අපරිම වන පරිදි Z පංජීර්ණ සංඛ්‍යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z සංජීර්ණ සංඛ්‍යාව සොයන්න.
නිරුපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z අපරිම වන පරිදි Z පංජීර්ණ සංඛ්‍යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z පංජිර්ණ සංඛ්‍යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z පංජිර්ණ සංඛ්‍යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z සංජීර්ණ සංඛ්‍යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z පංජිර්ණ සංඛ්යාව සොයන්න.
නිරුපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z පංජිර්ණ සංඛ්යාව සොයන්න.
නිරූපණය කරන E පුදේශය අදුරු කරන්න. E පුදේශය තුළ Z උපරිම වන පරිදි Z පංජිර්ණ සංඛ්යාව සොයන්න.

5 .	$\lim_{x\to 0} \left(\frac{\sqrt{k^2 - x - k}}{k \sin x} \right) =$	$\frac{-1}{4}$ නම k හි අගය සොයන්න.	

6. $y = \sqrt{\frac{2x}{\sqrt{16 + x^2}}}$ වකුයෙන් x = 4 සරල රේඛාවෙන් හා y = 0 අක්ෂය මගින් ආවෘත වූ පුදේශය R යැයි ගනිමු. (රූප සටහන බලන්න.) x අක්ෂය වටා 2π රේඩියන් වලින් හුමණය කිරීමෙන් ජනනය වන සන විස්තුවේ පරිමාව $2\pi(\sqrt{2}-1)$ බව පෙන්වන්න.

AT /2020/ 10 C T	£
AL/2020/10 - S - I	- 3-

7. $x = \frac{3at}{(1+t^2)}$ හා $y = \frac{3at^2}{(1+t^2)}$ මගින් වනුයක පරාමිතික සම්කරණයක් නිරූපණය වේ. වනුය මත වූ ලසා ෙයක් මත
වන (9.27) දී ක්පර්ශකයේ සම්කරණය $3x + 4y - 135 = 0$ වන බව පෙන්වන්න.
*

•••••••••••••••••••••••••••••••••••••••

8. l_1 හා l_2 යනු පිළිවෙලින් $3x + 2y = 4$ හා $x + 4y = 5$ මහින් දෙනු ලබන සරල ජේඩා යැයි ගනිමු. l_1 හා l_2 හි
ලේදන ලකෂාස හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බතව ලේදනය වන ලකෂායේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂෑයේ බණ්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂෑයේ බණ්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂෑයේ බණ්ඩාංක
ලේදන ලකුෂ්ූසය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂෑයේ බණ්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූසය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂෑයේ බණ්ඩාංක
ලේදන ලකුෂ්ූසය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂෑයේ බණ්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
ලේදන ලකුෂ්ූනය හරහා ගමන් කරන රේඛාව $4x-3y=2$ රේඛාවට ලම්බකව ලේදනය වන ලක්ෂූනයේ බැක්ඩාංක
මේදන ලකුෂාය හරහා ගමන් කරන ජේඛාව $4x-3y=2$ ජේඛාවට ලම්ඛකව ජේදනය වන ලකුෂායේ බැක්ඩාංක සොයන්න.

9. $S_1 \text{ to: } S_2 \text{ total Backets } x^2 + y^2 + 2x - 4y - 4 = 0 \text{ to: } x^2 + y^2 - 4x - 10y - 7 = 0 \text{ total acts}$
ලබන දිනේක අදකක් යැයි ගනිම. S, හා S2 අජ්දනය වන බව පෙන්වා එම අජ්දන ලක්ෂය කරනා යමින් (Juli
ලක්ෂාය හරහා ගමන් කරන වෘත්තයේ සම්කරණය $7x^2 + 7y^2 - 8x - 50y - 39 = 0$ වන විදු පෙන්වන්න.

······································

10. $0 < \theta < \frac{\pi}{2} \infty 0 < \emptyset < \frac{\pi}{2} $ තදහා $\cos \theta + \cos \emptyset = a$ හා $\sin \theta + \sin \emptyset = b$ හැයි ගතිළි.
10. 0 0 2 2 20 0 7 2 2 20 0 7 2
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ ඛව ලෙපන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අපන්නනය
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ බව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ පෙන්නනය තරන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ වීව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ වීට $a=b$ බඩ අවස්තනය තරන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ වීව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ වීට $a=b$ බඩ අවස්තනය තරන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ වීව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ වීට $a=b$ බඩ අවස්තනය තරන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ වීව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ වීට $a=b$ බඩ අවස්තනය තරන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ බව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ විට $a=b$ බඩ අම්පන්නය නාන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(\theta+\emptyset)=rac{2ab}{a^2+b^2}$ බව පෙන්වන්න. $\theta=rac{\pi}{3}$ හා $\emptyset=rac{\pi}{6}$ වීට $a=b$ බඩ අපේනනය තරන්න.
$a,b\in\mathbb{R}$ වේ. $\sin(heta+ heta)=rac{2ab}{a^2+b^2}$ බව පෙන්වන්න. $ heta=rac{\pi}{3}$ හා $ heta=rac{\pi}{6}$ විට $a=b$ බඩ අපස්තනය පරන්න.

සියලු ම කිමිකම ඇවරිණි] All Rights Reserved]

THE DE LOS TRANS THE PARTY OF THE Department of Expirimination - Salmaga THE SPRINGER OF THE REST OF THE PARTY OF THE Deputation - Sabaraga Department of Examination - Sabaraga muwa manusa - Sabaraga - Sabaraga

සබරගමුව සළාත් අධනාසන දෙපාර්තමේන්තුව சப்பிரகமுவ பர்டசைக் கிணைக்களம்

a Depart and

ඉතුවන චාර පරීක්ෂණය - 13 ඉල්ණිය Third Term Test - Grade 13

සංගුක්ත ගණිතය — I

B කොටස

තෝරාගත් පුශ්න 05 (පහසාව) පමණක් පිළිතුරු සපගන්න.

11. (a). $(x+p)^2+(x+q)^2=n$ හි තාත්වික පුහිත්ත මූල දෙක අභා β නම්, $(p-q)^2<2n$ මීඩ පෙන්ඩින්න. n=2 විට |p-q|<2 වන බව අපෝහනය කරන්න.

 $(p\alpha+q\beta)+(q\alpha+p\beta)+(p+q)^2=0$ බව පෙන්වන්න. එමතින් $(\alpha+2\beta)$, $(2\alpha+\beta)$ මුල වන වර්ගජ සම්කරණය $(x+a)^2+(x+b)^2=2$ ආකාරයට ලිවිය හැකි බව පෙන්වන්න. මෙයි a හා b ගි අගයන් සොයන්න. වෙහි p හා q තාත්විත නියන අගයන් වේ.

(b). f(x) වර්ගප් ශිතය (x-2), (x-1), (2x+1) මඟින් පිළිවෙලින් බෙදුවිට ශේෂය පිළිවෙලින් −5, −6 , හා 0වේ. f(x) සොයන්න.

g(x) = f(x).h(x) + 3x + 2 නම 3x + 2 = A(x - 3) + B ආකාරයට g(x) සකස් පිරිමෙන් g(x), (x-3)න් බෙදුවිට ශේෂය සොයන්න. A හා B නිර්ණය කල යුතු තාත්වික නියත වේ.

12. ද්වීපද පුසාරණ දැනුම භාවිතයෙන්

$$(1-x)^n (1+\frac{1}{x})^n = \sum_{r=1}^n {}_r^n C_r (-1)^{n-r} (x)^{n-2r}$$
 බව පෙන්වන්න.

n = 12 විට ඉහත පුසාරණයේ x වලින් ස්වායත්ත පදයේ සංගුණකය සොයන්න.

- (b). COVID-19 රෝගීන් සිටින චාට්වුවක සේවය කිරීම සඳහා වෛද පවරු දෙදෙනෙකු, හෙද නිලධාරීන් තිලදලනකු හා කම්කරුවන් පස් දෙනෙකුගෙන් යුත් කණ්ඩායමක් තෝර ගැනීමට රෝහල් අධ්යක්ෂවරයාට අවශාය වී ඇත. රෝහල තුළ පිරිමි ජෛදයවරු තිදෙනෙක්. ගැහැණු ජෛදයවරියන් දෙදෙනෙක, පිරිමි භෞද නිළධාරින් හතර දෙනෙකු, ගැහැණු හෙද නිළධාරින් සිදෙනෙකු හා කම්කරුවන් අට දෙනෙකු සිටිනි.
 - i). ඉහත කණ්ඩායම තෝරා ගත හැකි එකිනෙකට වෙනස් ආකාර ගණන කොපමණද?
 - ii). ඉහත කණ්ඩායමේ අනිචාර්යයෙන් එක් වෛද පවරියක් සමඟ අඩුම තරම්න් එක් හෙදියක්වන සිටන සේ කණ්ඩායමට කෝරා ගත හැකි ආකාර ගණන සොයන්න.

$$(c).\ r\in \mathbb{Z}^+$$
 සඳහා $U_r=rac{2(3-r)}{(r+1)(r+3)(r+5)}$ හා $v_r=rac{Ar+B}{(r+1)(r+3)}$ $U_r=V_r-V_{r+2}$ වන පරිදි A සහ B තාත්වික නියතවල අගයන් යන්න. එනයින් $n\in \mathbb{Z}^+$ සඳහා

$$\sum_{r=1}^{n} U = \frac{-1}{15} + \frac{n}{(n+2)(n+4)} + \frac{n+1}{(n+3)(n+5)}$$

බව පෙත්වන්න.

 $\sum_{r=1}^{\infty} U_r$ අපරිමිත ශේණිය අභිසාර් බව අපෝහනය කර එහි එකතුව සොයන්න.

$$r\in\mathbb{Z}^+$$
 සඳහා $w_r=rac{2(3-r)}{(r+3)(r+5)}$ නාම $.n\in\mathbb{Z}^+$ සඳහා

$$\sum_{r=1}^{n} \frac{6r - 2r^2}{(r+1)(r+3)(r+5)} = \sum_{r=1}^{n} w_r + \frac{1}{15} - \frac{n}{(n+2)(n+4)} - \frac{n+1}{(n+3)(n+5)}$$

බව පෙන්වන්න.

13.(a). A යනු තුන්වන සහයේ නිර්සාණ අවයව සහිත උඩත් නිකෝණිත නාහසයකි.

$$A \cdot A^T = \begin{pmatrix} 14 & 23 & 18 \\ 23 & 25 & 30 \\ 18 & 30 & 36 \end{pmatrix}$$
 වන පරිදි A නාහසය සොයන්න.

 $B = \begin{pmatrix} a-2 & 0 \\ 2 & -1 \end{pmatrix}_{3\times 3}$ යැයි ගනිමු. C = B + 2I වන පරිදි C නනාසය සොයන්න. මෙහි I යනු දෙවන සතයේ ඒකක නවාසයකි.

 $C = C^{-1}$ වන පරිදි a හි අගය සොයන්න.

- (b). (i). ද මුවාවර් පුමේයය භාවිතයෙන් . $(\overline{Z^n}\,)=(\bar Z\,)^n$ ඛව පෙන්වන්න.
 - $(Z) = \sqrt{2}(1+i)$ නම්, $(\bar{Z})^{10}$ මඟින් නිරුපණය වන සංජීර්ණ සංඛ්‍යාව සොයන්න.
 - (ii). Z_1 සංකීර්ණ සංඛනාව A ලක්ෂාය මඟින්ද. Z_2 සංකීර්ණ සංඛනාව B ලක්ෂාය මඟින්ද. නිරූපණය කරයි. ABරේඛාව m:n අනුපාතයෙන් අභාන්තරව බෙදෙන $\mathcal C$ ලක්ෂනය මඟින් නිරුපණය වන Z සංසීර්ණ සංඛ්යාව $\frac{nZ_1 + mZ_2}{n+m}$ බව පෙන්වන්න.
 - (iii). $W = \frac{1+Zl}{7+l}$ වේ. W හුදෙක් අතාත්වික නම්. Z ද හුදෙක් කොත්වික බව පෙන්වන්න.
 - (iv). $Z = \frac{1}{2}(1 + \sqrt{3}\,i)\,\,Z\,,\,\,Z^2\,,Z^3\,$ නිරූපණය කරන ලක්ෂාය ආගන්ඩ සටහනක ලකුණු තරන්න එම ලක්ෂයෙ මඟින් නිරූපණය වන තිකෝණයෙහි පරිකේන්දුය මඟින් නිරූපණයවන සංඛ්යාව $Z-Z^2+Z^3$ බවද. ලබාගන්න.

$$14.(a). \ x \neq -1$$
 සඳහා $f(x) = \frac{(x+2)}{(x+1)^2}$ යැයි ගනිමු. $x \neq -1$ සඳහා $f(x)$ වළක්පන්නය $f'(x)$ නම $f'(x) = \frac{-(x+3)}{(x+1)^3}$ බව පෙන්වන්න.

 $x \neq -1$ සඳහා $f''(x) = \frac{2(x+4)}{(x+1)^4}$ දී ඇත. ස්පර්ශෝන්මුඛ, y අන්තංඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින් y = f(x) පුස්තාර දළ සටහනක් අදින්න. තවද y = f(x) පුස්තාරයේ නතිවර්තන ලක්ෂාවල x ඛණ්ඩාංක සොයන්න.

- (b). ලෝහ දණ්ඩක දිග 50m වන අතර එය කොටස් දෙකකට වෙන් කරනු ලැබේ. එලෙස කපාගත් කොටස් වලින් කොටස් අපතේ නොයන ලෙස හා එක මත එක නොපිහිටන පරිදි වෘත්තාකාර හා සමවතුරසාකාර රාමු යුගලක් නිර්මාණය කරයි. එම රාමු යුගලෙන් ආවරණය වන පුදේශයන්හි වර්ගඑඵල වල එකතුව දෙම වන පරිදි රාමු යුගල නිර්මාණය කරගත යුතු හම් ලෝහ මේ සදහා දණ්ඩෙන් කපාගත යුතු කොටස් වල දිා වෙන වෙනම සොයන්න.
- 15. (a). $x^{\frac{1}{3}} = t$ ආදේශය මඟින් අන් කුමයකින් $\int \frac{1+x^{\frac{-2}{3}}}{1+x} dx අනුකලනය තරන්න.$
 - (b). කොටස් වශයෙන් අනුකලනය භාවිතයෙන් $\int x^3 \cos(x^2) dx$ සොයන්න.
 - (c). $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ බව පෙන්වන්න.

$$\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} \, dx = \frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sin x + \cos x} = \frac{\pi}{2\sqrt{2}} \ln(\sqrt{2} + 1)$$

බව පෙන්වන්න.

16. (α, β) ලක්ෂයයක සිට $l \equiv ax + by + c = 0$ රේඛාවට ලම්භ දුර $\frac{|a\alpha + b\beta + c|}{\sqrt{a^2 + b^2}}$ මඟින් ලැබෙන බව පෙන්වන්න.

 $A \equiv (1,-1)$ ලක්ෂා සිට $l \equiv 12x-5y+22=0$ රේඛාවට ලම්භ දුර සොයන්න. ඒනයින් A කේන්දුය වන l ස්පර්ශකයක් වන පරිදි S_1 වෘත්ත සම්කරණය ලඛාගන්න. එම ස්පර්ශක ලක්ෂාය Pනම්. AP රේඛාව මත C කේන්දුය පවතින S_1 සමඟ පුලම්භව ජේදනය වන, l ජනයක් වන පරිදි ඇති වීවලා වෘත්තයේ සම්කරණය λ මඟින් ලඛාගන්න. මෙහි λ යනු වීවලා වෘත්තයේ කෙන්දුයේ x

ඛණ්ඩාංකය වේ. මෙම විචලා වෘත්තයේ අරය ඒකක 4ක් වේ නම්, ${\it CA}$ රේඛාව ${\it P}$ න් බෙදෙන

අනුපාතය CP: PA = 2:3 බවද ලබාගන්න.

17.

- (a). $-\pi < \theta < \pi$ සඳහා $\sin \theta \sin 2\theta + \sin 3\theta = 0$ විසඳන්න
- (b). ABC තිකෝණයේ BAC කෝණයේ සමච්චේදකය BC පාදය D හිදී හමුවේ නම් ABD තිකෝණයට සයින් සූතුය දීමෙන් AD = $\frac{ac\sin B}{(b+c)\sin\frac{A}{2}}$ බව පෙන්වා ,

ABC තිකෝණයට සයින් සූතුය යෙදීමෙන් AD සදහා පුකාශයක් ගොඩනගා ඒවා විසදිගේන $AD(b+c)=2bc\cos\frac{A}{2}$ බව පෙන්වන්න

තවද AD=l ද විට $a=(b+c)\left(1-\frac{l^2}{bc}\right)^{\frac{1}{2}}$ බව පෙන්වන්න

(c). $\tan^{-1}\left(\frac{1}{2(p+1)^2}\right) + \tan^{-1}\left(\frac{1}{2p+3}\right) - \tan^{-1}\left(\frac{1}{2p+1}\right) = 0$ බව පෙන්වන්න

-					
			_	Fa	_
	-	•	~	-	_
_			_	_	

١.	සුමට සිරස් මේකයන් මත තබා ඇති ස්කන්ධය m වන A නම් සුමට කුඩා ගෝලයක් u පුවේගයෙන් ගොස්
	නිසලව ඇති සමාන තරමේ ස්කන්ධය 2 m වන B නම් සුමට කුඩා ගෝලයක් සමඟ සරල ලෙස ගැමටි.
	ගෝල අතර පුතාස්ථා සංගුණසය e වේ. ගැඩුමෙන් පසු A හි චලිත දිශාව පුතාවර්ථ වූයේ නම් $e > \frac{1}{2}$
	බවද චාලක ශක්ති භාතිය $E > rac{1}{4} \ mu^2$ බවද පෙන්වන්න.

	•••••••••••••••••••••••••••••••••••••••

2.	තිරස් පොළොව මත වු θ ලක්ෂයක සිට හිරසට θ $(0<\theta<\frac{\pi}{2})$ කෝණයකින් $u=\sqrt{3ga}$ පුවේගයක්
2.	තරස් පොළොව මත වූ U ලක්ෂයක් සට තරසට θ ($0 < \theta < \frac{1}{2}$) කෝණයක්ත් $u = \sqrt{3}ga$ පුවේගයක් සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O
2.	
2.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O
2.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
!.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
!.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
!.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
!.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
!.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
2.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ චලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට
1.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිනු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියකයකි. $\lambda < \frac{4}{3}$ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.
2.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුන්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිනු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියකයකි. $\lambda < \frac{4}{3}$ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.
1.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුක්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිනු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියතයකි. $\lambda < \frac{4}{3}$ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.
1.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුත්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී. P හි O සිට මනිනු ලබන නිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියනයනි. $\lambda < \frac{4}{3}$ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.
1.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුක්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලන්නයක වදී. P හි O සිට මනිතු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියනයකි. $\lambda < \frac{4}{3}$ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.
1.	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුක්වය යටතේ වලන වී P ලක්ෂයක ඇති ඉලන්නයක වදී. P හි O සිට මනිනු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියනයකි. $\lambda < \frac{4}{3}$ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.
	සහිතව පුක්ෂේප කරන ලද අංශුවක් ගුරුන්වය පටතේ වලන වී P ලක්ෂයක ඇති ඉලක්කයක වදී P හි O සිට මනිනු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙලින් a හා λa වේ. මෙහි λ යනු නියනයකි. λ < ⅓ විට පුක්ෂේපණ දිශා දෙකක් ඇති බව පෙන්වන්න.

[කුන්දැන් පිළිව බලන්න

3.	ස්කන්ධය මෙව්විසික් වොන් M වන රථයක් V kmh ⁻¹ නියන වේගයෙන් R N නියන පුතිරෝධයක් යටතේ
	ධාවනය තරන විට එහි එන්ජීම H kw ක්ෂමතාවෙන් කියා තරයි නම RV = 3600H බව පෙන්වන්න.
	දැන් එන්ජීම අතුිය කර තිරිංග යෙදු විට a km දුරකදී රථය නිශ්චලතාවයට පත්වේ. මුළු චලිතය සදහා
	මාර්ග පුතිරෝධය නොවෙනස් බව උපකල්පනය තර කිරිංගවල මන්දන බලය R' නම
	$R'aV = \frac{25}{648}MV^3 - 3600Ha බව ලෙසත්වන්න.$

4.	රූපයේ පරිදි තිරස් සිව්ලිමක එල්ලා ඇති අවල සුමට කප්පි දෙකක් මතින් යන ලූහු අවිතනා තන්තුවක
	ලේ අතලවර ට සමාන තරමේ m_1 හා m_2 අංශු දෙකක් ද කප්පි අතර චලනය වන සුමට ස්තන්ධය m_3 ක්
	වන කප්පියක් ද සියලු තන්තු කොටස් සිරස් වන පරිදි තබා නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ.
	තන්තුවේ ආතතිය
	$T = \frac{4m_1m_2m_3g}{4m_1m_2+m_2m_3+m_1m_3}$ බව ලපන්වන්න.
	(m)
	m, • (m) • m;
	m, 6 (m) 6 m;
	m, 6 m;

5	$\overrightarrow{OA} = a - 2b \cdot \overrightarrow{OB} = 3a + b$ m OA 1 OB m a.b = $\frac{3}{5} a ^2 - \frac{2}{5} b ^2$ as conform
	a =1 හා $ b =2$ හාම a හා b අතර කෝණය සොයන්න.
	······································

6	රූපයේ දැක්වෙන රළු තිරස් තලයකට සවිකර ඇති අරය 7 වු සුමට ගෝලයක් ස්පර්ශ කරමින් ඒකාකාර
0.	
0.	2b දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ තිරසට ආනතිය 2α වන අතර
0.	
0.	2b දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ තිරසට ආනතිය 2α වන අතර
0.	$2b$ දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ තිරසට ආනතිය $2a$ වන අතර $b < rcota$ වේ. දණ්ඩ හා තිරස් තලය අතර සර්ෂණ සංගුණකය μ නම්,
0.	$2b$ දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ ති්රසට ආනතිය 2α වන අතර $b < rcota$ වේ. දණ්ඩ හා ති්රස් කලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)}$ බව පෙන්වන්න.
0.	$2b$ දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ ති්රසට ආනතිය 2α වන අතර $b < rcota$ වේ. දණ්ඩ හා ති්රස් කලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)}$ බව පෙන්වන්න.
0.	$2b$ දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ ති්රසට ආනතිය 2α වන අතර $b < rcota$ වේ. දණ්ඩ හා ති්රස් කලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)}$ බව පෙන්වන්න.
0.	$2b$ දිග දණ්ඩක් ගෝලයේ කේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ ති්රසට ආනතිය 2α වන අතර $b < rcota$ වේ. දණ්ඩ හා ති්රස් කලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)}$ බව පෙන්වන්න.
0.	$2b$ දිග දණ්ඩක් ගෝලයේ තේන්දය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ තිරසට ආනතිය 2α වන අතර $b< rcot \alpha$ වේ. දණ්ඩ හා තිරස් කලය අතර සර්ෂණ සංගුණකය μ නම්, $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)}$ බව පෙන්වන්න.
0.	$2b$ දිග දණ්ඩක් ගෝලයේ කේන්දය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ තිරසට ආනතිය 2α වන අතර $b < rcot \alpha$ වේ. දණ්ඩ හා තිරස් හලය අතර සර්ෂණ සංගුණකය μ නම්, $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)} \; \text{d} \theta \; \text{d} \; \text{eest} \theta \; \text{d} $
0.	$2b$ දිග දණ්ඩක් ගෝලයේ සේන්දුය හරහා යන සිරස් හරස්කඩිනි. දණ්ඩේ හිරසට ආනතිය $2a$ වන අතර $b < r \cot a$ වේ. දණ්ඩ හා තිරස් හලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4a}{2(r \cot a - b \cos^2 2a)}$ බව පෙන්වන්න.
0.	$2b$ දිග දක්වත් ගෝලයේ තේන්දය හරහා යන සිරස් හරස්කඩති. දක්වේ තිරසට ආනතිය 2α වන අතර $b < r \cot \alpha$ වේ. දක්ව හා තිරස් සලය අතර සර්ෂණ සංගුණකය μ නම්, $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)}$ බව පෙන්වන්න.
0.	$2b$ දිග දණ්ඩක් ලොලයේ තේන්දුය හරහා යන සිරස් හරස්කඩකි. දණ්ඩේ තිරසට ආනසිය $2a$ වන අතර $b < rcota$ වේ. දණ්ඩ හා තිරස් තලය අතර සර්ෂණ සංගුණකය μ නම්, $\mu \geq \frac{b \sin 4a}{2(r \cot a - b \cos^2 2a)} \ \text{d} \mathcal{D} \ \text{ecal} \mathcal{D} \text{d} \text{d} $
0.	$2b$ දිග දක්වත් ගෝලයේ තේන්දුය හරහා යන සිරස් හරස්කඩති. දක්වේ තිරසට ආනතිය 2α වන අතර $b < rcot lpha$ වේ. දක්ව හා තිරස් හලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4\alpha}{2(r \cot \alpha - b \cos^2 2\alpha)} \ \text{බව පෙන්වන්න}.}$
0.	$2b$ දින දණ්ඩක් තෝලයේ තේන්දය හරහා යන සිරස් හරස්කඩති. දණ්ඩේ හිරසට ආනතිය 2α වන අතර $b < rcota$ වේ. දණ්ඩ හා හිරස් හලය අතර සර්ෂණ සංගුණකය μ නම්. $\mu \geq \frac{b \sin 4a}{2(r \cot a - b \cos^2 2a)}$ බව පෙන්වන්න.

7.	අවලව සවිකර ඇති සුමට අර්ධ ගෝලාකාර පාතුයක් තුල සමතුලිතව තබා ඇති W බර ඒකානාට දණ්ඩක
	ගොලයේ කේන්දය හරහා යන සිරස් හරස්කඩක් රූපයේ දක්වා ඇත. පාතුයේ ගැටිය තිරස් වන අතර
	දණ්ඩ තිරසට α කෝණයක් ආනත වේ. ගෝලය මගින් දණ්ඩ මත ඇතිකරන පුතිකුයා W හා α ඇසුරින්
	අසායන්න.
	•••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••

	••••••••••••••••••••••••••••••

8.	l දිගැති සැහැල්ලු අවිතනා තන්තුවක දෙකෙලවරට M හා m ස්කන්ධ ඇති අංශු දෙකක් ගැට යසා සුමට
8.	l දිගැති සැහැල්ලු අවිතනා තන්තුවක දෙකෙලවරට M හා m ස්කන්ධ ඇති අංශු දෙකක් ගැට යසා සුමට තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට
8.	
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන
8.	තිරස් මේසයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය පහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන මොහොත දක්වා ගත වූ මුළු කාලය $\frac{l}{m}(M+2m)u$ බව පෙන්වන්න.
8.	තිරස් මේපයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ජකන්වය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතත් සිට M අංශුව චලනය වී l දුරක් ගමන් කරන මොහොත දක්වා ගත වූ මුළු කාලය $\frac{l}{m}(M+2m)u$ බව පෙන්වන්න.
8.	තිරජ මේසයන් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ කබා m ස්තන්වය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන මොහොත දක්වා ගත වූ වුළු කාලය $\frac{l}{m}(M+2m)u$ බව පෙන්වන්න.
8.	තිරස් මේපයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ජකන්වය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතත් සිට M අංශුව චලනය වී l දුරක් ගමන් කරන මොහොත දක්වා ගත වූ මුළු කාලය $\frac{l}{m}(M+2m)u$ බව පෙන්වන්න.
8.	තිරස් මේපයක් මත තබා ඇත. ආරම්භයේදී අංශු දෙකම එකම ස්ථානයේ තබා m ස්කන්ධය සහිත අංශුවට පමණක් u පුවේගයක් දෙනු ලැබේ. එම මොහොතේ සිට M අංශුව චලනය වී l දුරක් ගමන් කරන මොහොත දක්වා ගත වූ මුළු කාලය $\frac{l}{m}(M+2m)u$ බව පෙන්වන්න.

9.	A , B යනු S අවකාශයේ ඇති නිරවගේෂ සහ අනෝනාය වශයෙන් බහිෂ්තාර වන සිද්ධ දෙනසි C යනු
	එම S අවකාශයේ පවතින A සහ C ස්වායක්ත වන තවත් සිද්ධියකි. $\mathrm{P}(\mathrm{A}) = \frac{2}{5}$ ද $\mathrm{P}(\mathrm{C}) = \frac{1}{2}$ ද හම
	(i) P(B) සොයන්න.
	(ii) $P(A' \cap C')$ සොයන්න.
	•••••••••••••••••••••••••••••••••••••••

	•••••••••••••••••••••••••••••••••••••••

	Wathe
10.	. ධන නිඛ්ල පහතින් යන් ඒක මාන සංඛන කලකයකු අතියට අවයෝණයේ BRaklas සංකය 85 කෙළුග
10.	. ධන නිඛ්ල පහතින් යුත් ඒක මාන සංඛන කුලකයක අවසට අවරෝහණ පිළිවේලට සැකසු විට අවසාන සංඛනාව 31 වේ. මෙම සංඛනා පහෙසි මධානනය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	. ධන නිඛ්ල පහතින් යුත් ඒක මාන සංඛන කුලකයක අවශ්ව අවරෝහණ පිළිවේලව සැකසු විට අවසාන සංඛනාව 31 වේ. මෙම සංඛනා පහෙහි මධානනය 35 ද මධනස්ථය 36 ද වන අතර මානය හා මධනස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානනාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානනාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානනාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානනාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානනාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානනාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාසේථය
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහෙහි මධ්‍යන්‍ය 35 ද මධ්‍යස්ථය 36 ද වන අතර මාතය හා මධ්‍යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහෙති මධ්‍යන්‍ය 35 ද මධ්‍යාස්ථය 36 ද වින අතර මාතය හා මධ්‍යාස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහෙති මධ්යන්සය 35 ද මධ්යස්ථය 36 ද වන අතර මාතය හා මධ්යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහෙහි මධ්‍යනාශ 35 ද මධ්‍යස්ථය 36 ද වින අතර මාතය හා මධ්‍යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහති මධ්‍යනය 35 ද මධ්‍යස්ථය 36 ද වන අතර මාතය හා මධ්‍යස්ථය සමාන නොවේ. එවැනි කුලසා හතරක් පවතින බව පෙන්වන්න.
10.	සංඛනාව 31 වේ. මෙම සංඛනා පහෙති මධානාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධ්‍යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහති මධ්යනයය 35 ද වන අතර මාතය හා මධ්යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහති මධ්යනයය 35 ද මධ්යස්ථය 36 ද වන අතර මානය හා මධ්යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.
10.	සංඛ්‍යාව 31 වේ. මෙම සංඛ්‍යා පහති මධ්යනයය 35 ද වන අතර මාතය හා මධ්යස්ථය සමාන නොවේ. එවැනි කුලක හතරක් පවතින බව පෙන්වන්න.

Hog @ B@m@ q; BOd]
All Rights Reserved]

Department of Examination - Saharaga Department of Examination - Sabaragamuwamanasco - கொண்கள்

තෙවන වාර පරීක්ෂණය - 13 ලෝසිය Third Term Test – Grade 13

සංගුක්ත ගණිතය – II

B කොවස

තෝරාගත් පුශ්න 05 (පහසාව) පමණක් පිළිතුරු සපගන්න.

- 11. a) කුළුනක මුදුනේ O ලක්ෂයක සිට අංගුවක් ගුරුත්වය යටතේ සිරුවෙන් මුදා හරියි. එය $x \, m$ දුරක් චලිත වු පසු දෙවන B අංගුවක් O සිට $y \, m$ පහළින් වු P ලක්ෂයකින් නිශ්චලතාවයේ සිට ගුරුත්වය යටතේ මුදා හරියි. A හා B අංගු දෙකම එකම මොහොතේ කුළුන පාමුලට පැමිණේ නම් අංගු දෙකෙහිම චලිතය සදහා පුවේග කාල පුස්ථාරය එකම සටහනක ඇද කුළුනේ උස $\frac{(x+y)^2}{4x}$ බව පෙන්වත්න.
 - b) A තුරුලු කුඩුවක සිට තුරුල්ලෙකු උතුරින් θ කෝණයකින් නැගෙනහිර දිශාවෙන් පිහිටි B කුඩුවක් වෙත පියාසර කරයි. AB = a m වන අතර නිසල වාතයේ කුරුල්ලාගේ උපරිම පුවේගය V ms^{-1} වේ. සුළග U ms^{-1} (U < V) ක පුවේගයෙන් දකුණට හමයි. කුරුල්ලාගේ A සිට B චලිතය සහ B සිට A චලිතය සදහා පුවේග නිකෝණය එකම සටහනක ඇද A සිට B චලිත කාලය t_1 හා B සිට A දන්වා කාලය t_2 නම් හා V, U ට අනුලෝමව සමානුපාතික නම්

 $\mathbf{t_1} - \mathbf{t_2} = \frac{2a\cos\theta}{U(k^2-1)}$ බව පෙන්වන්න. මෙහි k යනු නියනයකි.

12. a) ස්කත්ධය M වන සනකයක සමාන්තර මුහුණත් දෙකක එක් මුහුණතක මධ්‍ය ලක්ෂයේ සිට අනෙක් මුහුණතේ ඉහළ දාරයේ මධ්‍ය ලක්ෂය දක්වා ඒකාකාර සිදුරක් හාරා ඇත. සනකය තිරස් සුමට මේසයක් මන තබා ඇත. සනකයේ සිරස් හරස්කඩක් රූපයේ දක්වා ඇත. මෙහි A කෙළවරින් ස්කන්ධය m වන පබළුවක් තබා පද්ධතිය සිරුවෙන් මුදාහරි. AB = x පිහිටුමේ දී පබළුවේ සනකයට සාපේක්ෂව ක්වරණය

 $\ddot{x} = \frac{(M+m)g\sin\theta}{M+m\sin^2\theta}$ බව ලෙන්වන්න.

භනකයේ පැත්තක දිග 2a නම් පබළුව C හි ඇති විට සනකයේ චාලක ශක්තිය $\frac{4 M m^2 ga}{(M+m)(5 M+m)}$ බව පෙන්වන්න.

b) රූප සටහනේ දැක්වෙන්නේ AB තිරස් නලයකින් හා කේන්දය O ද අරය a ළද BC අර්ථ වෘත්තාකාර නල කොටසකින් සමන්විත නලයකි. එහි B හි m ස්කන්ධයක් ඇති අංශුවක් නිසලව තමා 2m න්කන්ධයක් සහිත අංශුවක් u පුවේගයෙන් A සිට නලය තුළට වලනය කරයි. අංශු දෙක ගැටී නාවී වලනය වේ සංයුක්ත අංශුව P හි ඇති විට OP සිරස සමග සාදන යටී අත් කෝණය ම විට එහි පුවේගය

$$\frac{4u^2}{9} - 2ga(1 - \cos\theta)$$
 බඩ පෙන්වන්න.

තවද අංශුව මත නලයෙන් ඇතිවන පුතිතියාව සොයන්න.

සංයුක්ත අංගුව C කෙළවරින් පිටගවද AB=2a නම ද

- i). $u > 3\sqrt{ga}$ බවද
- ii). සංයුක්ත අදශුව A මතට පතිත වේ නම් $\mathbf{u}=\frac{3}{2}\sqrt{5ga}$ බවද පෙන්වන්න.

- 13. සුමට ආනත තලයක තබා ඇති ස්කන්ධය m සහිත අංකුවක් පුත්‍යස්ථනා මාපාංකය 2mg වන සර්පිල දුන්හනට සවිකර දුන්නේ අනික් කෙළවර 0 ලක්ෂයකදී තිරස් බිමකට සවිකර ඇත. සර්පිල දුන්නේ මුල් දිග l වන අතර අංකුව රූපයේ පරිදි ආනත තලය දිගේ P දක්වා ඇද නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. මෙහි OP = l + a වේ. සුදුසු ආදේශයක් භාවිතයෙන් හෝ අන් කුමයකින් ඉහත චලිතය $\ddot{y} + \omega^2 y = 0$ ආකාර වන බව පෙන්වන්න. එහි විසදුම $y = Asin\omega t + Bcos\omega t$ ආකාර වේ. A, B හා ω නියත නිර්ණය තරන්න. නැවත පුවේගය ශූනා වන මොහොතේ දී තිරස් හලයේ සිට අංකුව පිහිටන සිරස් උසද ගතවී කාලයද සොයන්න.
 - එම පිහිටිමේදී අංශුවේ ස්කන්ධයෙන් හරි අඩක් සිරුවෙන් ක්ෂණිකව ඉවත් කරයි. $lpha=rac{\pi}{6}$ ලෙස ගෙන පසු චලිතය $\ddot{x}+\omega^2x=0$ ආකාරයේ පරල අනුවර්භීය වන බව පෙන්වන්න.

මෙහි x යනු 0 සිට ආනත තලය දිගේ $\frac{7!}{8}$ ක දුරක සිට ඉහළට මනින විස්ථාපනය වේ. අංශුව යමන් කරන උපරිම සිරස් උස ද ඒ සදහා ගතවන කාලය ද සොයන්න. .

එම උපරිම උසේදී දුන්න සීරුවෙන් ඉවත් කරයි නම් නැවත O වෙත ලගාවන විට අංශුවේ සියළ චලිත සදහා ගතවී ඇති මුළු කාලය

 $(2+\sqrt{2})\pi\sqrt{\frac{1}{8g}}+\sqrt{\frac{5l+4a}{g}}$ බව පෙන්වන්න.

- 14. a) O ලක්ෂය අනුබද්ධයෙන් A හා B ලක්ෂවල පිහිටුම් දෙෙයික පිළිවෙලින් 2a හා 2b ෙෙ 0B සහ BA හි මධා ලක්ෂ පිළිවෙලින් C සහ D වන අතර BD මත E ලක්ෂය පවතින්නේ $\cdot EB:ED = \lambda:1$ වන පරිදි වේ. මෙහි $\lambda \in \mathbb{R}^+$ වේ. CD සහ OE රේඛාවල ජේදන ලක්ෂය F වේ. λ . a සහ b දැකුවෙන්
 - i) \widetilde{OE} සොයන්න.
 - ii) OF සොයන්න.
 - iii) FD සොයන්න.
 - $iv) \ F$ යනු CD හි මධා ලක්ෂය නම් BE:EA=1:2 බව පෙන්වන්න.
 - b) AOB තිකෝණයේ $A\hat{O}B = \frac{\pi}{2}$ ද $OA = OB = 4\,m$ ද වේ. රූපයේ පරිදි 10N, $5√2\,N$, 3N. $√5\,N$ බල පිළිවෙලින් OA, AB, CD සහ OE පාද ඔස්සේ කියා කරයි.
 - i) සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයා එය OA ජේදනය වන ලක්ෂයට O පිට ඇති දුර සොයන්න.
 - ii) ඉහත පද්ධතිය වමාවර්තව 32Nm වන යුග්මයකට තුලා වන පරිදි යෙදිය යුතු නව තති බලයේ ව්‍‍රාලත්වයත් දිශාවත් කුියා රේඛාව CD ඡේදනය වන ස්ථානයට C සිට ඇති දුරත් සොයන්න.
 - iii) මෙම යුත්මය සහිත පද්ධතියෙන් OA මත ඇති 10N ක බලය ඉවත් කලේ නම් නව පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව කියා ජේබාව OB ඡේදනය වන ලක්ෂයට O සිට ඇති දුරක් සොයන්න.

- 15. a) බර w බැගින් වු දඩු හතරක් A, B, C, D ලක්ෂවලදී සුමටව සන්ධී තර A වලින් එල්ලා සමතුලිනව තබා ඇත්තේ AB හා AD හි මධ්‍ය ලක්ෂ යා කරන සැහැල්ලු දණ්ඩක් හා B හා D සන්ධි වලදී එල්ලන ලද w හාර මගිනි $BAD = 2\alpha$ ද $BCD = 2\theta$ ද AB = AD = 2a ද නම් C සන්ධියේ කුියාව හා සැහැල්ලු දණ්ඩේ තෙරපුම් බලය $w[\tan\theta + \tan\alpha(4 + \tan^2\theta)]$ බව පෙන්වන්න.
 - b) සැහැල්ලු දඩු හතක් සුමට ලෙස සන්ධි කිරීමෙන් ABCDE රාමු සැකිල්ල සාදා තිබේ.
 එහි AB = BC = BE = CE = CD = DE වේ. D හිදී සුවල ලෙස අසව් කොට ඇති මෙම රාමු සැකිල්ල
 DE හා ABC තිරස් ලෙස පිහිටන සේ E හිදී යෙදෙන සිරස් P බලයක් මගින් සිරස් කලයක
 සමතුලිතතාවේ තිබේ. A හා B සන්ධිවලදී පිළිවෙලින් w හා 2w වු භාර එල්ලා ඇත. E හිදී යෙදෙන
 සිරස් P බලය සොයන්න. බෝ අංකනය යෙදීමෙන් පුතන බල රූප සටහන ඇද එමයින් එක් එක්
 දක්වේ පුතන බල ආතතිද තෙරසුමද යන්න වෙන් කර දක්වමින් සොයා D අසව්වේ පුතිමුයාවේ සිරස්
 හා තිරස් සංරචකද සොයන්න.

16. එකිනෙකට a දුරකින් වූ අරය a හා 2a වූ වෘත්තාකාර ගැවී දෙකකින් යුත් ඒකාකාර වූ තන සෘජු වෘත්තාකාර කේතුවක ජින්නකයේ ගුරුත්ව කේන්දය කුඩා ගැටීයේ කේන්දයේ සිට $\frac{17a}{28}$ දුරකින් ඇති බව හා එහි ස්කන්ධය $\frac{7}{3}\pi a^2 p$ බව පෙන්වන්න. තවද අරය a වූ අර්ධ වෘත්තාකාර වාස කොටසක ගුරුත්ව කේන්දය කේන්දයේ සිට $\frac{2a}{\pi}$ දුරකින් ඇති බව අනුකලනය මගින් පෙන්වන්න. මෙම ජින්නකයේ කුඩා ගැටීයට අරය a හා උස 2a වන $\frac{ap}{2}$ සනත්වයෙන් යුත් සෘජු වෘත්ත කුගර සිලින්ඩරයක් සවිකර ඇත. පිලින්ඩරයේ A හා B ලක්ෂ යා වන පරිදි රේගීය සනත්වය $a^2\sigma$ වූ අර්ධ වෘත්තාකාර වාස කොටසක් පැස්සීමෙන් රූපයේ දැක්වෙන බදුන සකස් කර ඇත. බදුනේ ගුරුත්ව කේන්දයේ පිහිටීම $G(\bar{X},\bar{Y})$ සොයා බදුන A ලක්ෂයෙන් එල්ලා ඇති විට එහි අක්ෂය සිරසට ආනත කෝණය a නම $\tan \alpha = \frac{1}{2}$ විට $7\pi p = 12(\pi + 4)\sigma$ බව පෙන්වන්න.

- 17. a) පාසලක A කණ්ඩායම පිරිමි ළමයෙක් ගෙන් හා ගැහැණු ළමයි පස් දෙනෙකුගෙන් ද B කණ්ඩායම පිරිමි ළමයි දෙදෙනක් හා ගැහැණු ළමයි හතර දෙනකුගෙන් ද C කණ්ඩායම ගැහැණු ළමයි හය දෙනෙකුගෙන් ද පමන්විතය. මොවුන් අතරින් අහඹු ලෙස ළමයෙක් තෝරා ගනී.
 - i) ළමයෙකු තෝරා ගත් විට ගැහැණු ළමයෙකු විමේ
 - ii) ගැහැණු ළමයෙකු තෝරා ගත්විට ඇය B කණ්ඩායමේ තොවීමේ
 - iii) ගැහැණු ළමයෙකු තෝරා ගත් විව ඇය C කණ්ඩායමේ වීමේ යන ඒවායේ සම්භාවිතාව සොයන්න.
 - b) \vec{X} හා \vec{Y} යනු දත්ත පිළිවෙලින් n_x හා n_y වන කුලක දෙකක මධානය වේ. කිවු මධානය $\frac{n_x \vec{X} + n_y \vec{Y}}{n_x + n_y}$ බව පෙන්වන්න. එම කුලක දෙකෙහි වීචලතා පිළිවෙලින් σ_x^2 හා σ_y^2 වේ නම් කිවු වීචලතාවය $\frac{(n_x \sigma_x^2 + n_y \sigma_y^2)(n_x + n_y) + n_x n_y (\vec{X} + \vec{Y})^2}{(n_x + n_y)^2}$ බව පෙන්වන්න.
- c) පාසලක 13 ශේණීයේ සංයුත්ත ගණීතය විෂය සදහා පෙනී සිටි පිරිමි ළමුන් පනස් දෙනෙකුගේ ලකුණු වල මධානාපය 63ක් ද සම්මත අපගමනය 9ක් ද වන අතර ගැහැණු ළමයි 40කයේ ලකුණු වල මධානාපය 54ක් ද සම්මත අපගමනය 6ක් ද වේ. මෙම සියළු ළමයි ඇතුළත් කණ්ඩායමේ
 - i) මධානත්ය
 - ii) සම්මත අපගමනය සොයන්න.
 - iii) ගැහැණු ළමයෙකු ලබාගත් ලකුණු පුමාණය 18කින් වැඩිවිය යුතු නම එවිට පිළියෙල කළ නව ලකුණු වාර්ථාවේ මුළු සිසුන්ගේ මධානාය සොයන්න.