Chương 4. ĐƯỜNG ĐI NGẮN NHẤT

Thuật toán Bellman-Ford

ThS. Nguyễn Chí Hiếu

2019

NỘI DUNG

① Đồ thị có trọng số âm

2 Thuật toán Bellman-Ford

3 Ứng dụng của thuật toán Bellman-Ford

Ví dụ 1

Cho đồ thị G gồm 4 đỉnh, tìm đường đi ngắn nhất từ $0 \rightsquigarrow 3$:

Hình 1: Đồ thị G có trọng số âm.

Câu hỏi

• Áp dụng thuật toán Dijkstra được không?

Câu hỏi

• Áp dụng thuật toán Dijkstra được không?

• Đường đi ngắn nhất: $0 \rightarrow 2 \rightarrow 3$ với khoảng cách là 9 (không chính xác).

Chú ý

Thuật toán Dijkstra không áp dụng đối với đồ thị có trọng số âm.

Nguyễn Chí Hiếu Lý thuyết đồ thị 4/61

Ví du 2

Cho đồ thị G_2 gồm 5 đỉnh như hình:

Hình 2: Đồ thị G_2 có chu trình âm.

Chu trình âm (negative cycle)

Là chu trình trong đồ thị có tổng trọng số các cạnh là một số âm.

Hình 3: Đồ thị G_2 có chu trình âm.

• Đường đi ngắn nhất từ $0 \rightsquigarrow 2$?

Hình 3: Đồ thị G_2 có chu trình âm.

- Đường đi ngắn nhất từ 0 → 2 ?
 - $0 \rightarrow 1 \rightarrow 2:6$
 - $\hfill\Box$ $0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2:5$
 - $\ \ \square\ \ 0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2:4$
 - □ ...

Nguyễn Chí Hiếu Lý thuyết đồ thị 6/61

Hình 4: Đường đi từ $s \rightsquigarrow v$.

Nhân xét

 Nếu đường đi từ s \(\sim v \) có chứa chu trình âm, thì không tồn tại đường đi ngắn nhất từ s \(\sim v \).

Nguyễn Chí Hiếu Lý thuyết đồ thị 7/61

Hình 5: Đường đi từ $s \rightsquigarrow v$.

Nhân xét

 Nếu đường đi từ s → v không chứa chu trình âm, thì tồn tại đường đi ngắn nhất từ s → v.

Hình 6: Đường đi ngắn nhất từ $s \rightsquigarrow v$.

Nguyên tắc giảm cạnh không cần thiết (edge relaxation)

Giả sử, cạnh $(u, v) \in E$ là *cạnh cuối* của đường đi ngắn nhất từ $s \rightsquigarrow u \rightarrow v$.

- d[u] là khoảng cách đường đi ngắn nhất từ $s \rightsquigarrow u$.
- d[v] là khoảng cách đường đi ngắn nhất từ $s \rightsquigarrow v$.
- Nếu cạnh (u, v) giúp đường đi từ $s \rightsquigarrow u \rightarrow v$ ngắn hơn trước, thì cập nhật lại khoảng cách và đường đi tại v.

$$\begin{cases} d[v] = \min\{d[v], d[u] + w(u, v)\} \\ p[v] = u \end{cases}$$
 (1)

với p[v] = u có nghĩa là u chính là đỉnh kề trước của v.

Hình 7: Đường đi ngắn nhất từ $v_1 \rightsquigarrow v_n$ chứa tối đa |n-1| cạnh.

Ý tưởng

- Dựa vào nguyên tắc giảm cạnh không cần thiết, một khoảng cách xấp xỉ dần được thay thế bằng khoảng cách chính xác của đường đi ngắn nhất.
- Vì đường đi ngắn nhất giữa hai đỉnh trong đồ thị G=(V,E) có $t \acute{o}i$ $da \ |V|-1$ cạnh, nên chỉ cần $l \ddot{a}p$ $t \acute{o}i$ $da \ k=|V|-1$ lần để tìm được đường đi ngắn nhất giữa hai đỉnh. Mỗi lần lặp, thực hiện nguyên tắc giảm cạnh không cần thiết đối với tất cả các cạnh.
- Chỉ áp dụng đối với đồ thị không chứa chu trình âm.

Thuật toán 1: BellmanFord(G, s)

- Đầu vào: đồ thị G, đỉnh s.
- Đầu ra: đường đi ngắn nhất từ đỉnh s đến các đỉnh khác.

```
1
        for each u \in V
 2
            d[u] \leftarrow \infty // distance
 3
           p[u] ← NO_PATH // previous/parent
4
       d[s] \leftarrow 0
 5
 6
        for k \leftarrow 1 to |V| - 1
 7
            for each edge(u, v) \in E // Relax(u, v)
                if d[v] > d[u] + w(u, v)
 8
 9
                   d[v] \leftarrow d[u] + w(u,v)
                   p[v] \leftarrow u
10
```

Giải thích

- Dòng $1 \to 3$: khởi tạo khoảng cách và đường đi ngắn nhất đến tất cả đỉnh trong đồ thị.
- Dòng 4: bắt đầu tại đỉnh s, cập nhật khoảng cách của đường đi đến đỉnh này là 0.
- Dòng 6: lặp k = |V| 1 lần, tìm k cạnh trong đường đi ngắn nhất từ đỉnh 0 đến các đỉnh khác thực hiện nguyên tắc giảm cạnh không cần thiết đối với tất cả các cạnh.
- Sau khi thực hiện vòng lặp thứ k = |V| 1, giá trị của d[v] chính là khoảng cách đường đi ngắn nhất từ $s \rightsquigarrow v$.

Độ phức tạp của thuật toán

```
for k ← 1 to |V| - 1
for each edge(u, v) ∈ E // Relax(u, v)

if d[v] > d[u] + w(u, v)

d[v] ← d[u] + w(u, v)

p[v] ← u
```

- Dòng 6: lặp k = |V| 1 lần $\Rightarrow \mathcal{O}(|V| 1)$.
- Dòng 7: lặp |E| lần $\Rightarrow \mathcal{O}(|E|)$.

Do đó, độ phức tạp thời gian của thuật toán

$$T \approx \mathcal{O}(|V||E|)$$
.

Ví dụ 3

Cho đồ thị G gồm 5 đỉnh. Tìm đường đi ngắn nhất từ $0 \rightsquigarrow 3$.

Hình 8: Đồ thị G.

 Bước 1: Khởi tạo khoảng cách và đường đi ngắn nhất từ đỉnh 0 đến tất cả các đỉnh trong đồ thị.

Khởi tạo					
	0	1	2	3	4
d	0	∞	∞	∞	∞
р	-1	-1	-1	-1	-1

- Bước 2: Vì đồ thị có 5 đỉnh, nên lặp k=4 lần để tìm k cạnh trong đường đi ngắn nhất từ đỉnh 0 đến các đỉnh khác.
 - **...**
 - **.**..
 - **...**

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3) (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	∞	∞	∞
р	-1	0	-1	-1	-1

Nguyễn Chí Hiểu Lý thuyết đồ thị 17/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	∞	∞
р	-1	0	1	-1	-1

Nguyễn Chí Hiểu Lý thuyết đồ thị 18/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)1 cạnh

0 1 2 3 4

d 0 1 4 ∞ ∞ p -1 0 1 -1 -1

• Xét cạnh (3,2), tìm $d[2] = \min\{d[2], d[3] + w[3,2]\}$

Nguyễn Chí Hiếu Lý thuyết đồ thị 19/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	4	∞
р	-1	0	1	1	-1

Nguyễn Chí Hiểu Lý thuyết đồ thị 20/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	4	∞
р	-1	0	1	1	-1

Nguyễn Chí Hiếu ${
m L}{
m \acute{y}}$ thuyết đồ thị ${
m 21/61}$

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	4	∞
р	-1	0	1	1	-1

Nguyễn Chí Hiểu Lý thuyết đồ thị 22/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	4	3
р	-1	0	1	1	0

Nguyễn Chí Hiểu Lý thuyết đồ thị 23/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiếu ${
m L}{
m \acute{y}}$ thuyết đồ thị ${
m 24/61}$

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

1 cạnh					
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 25/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh	<u> </u>	<i>,</i> , , ,	, () , , (<i>, , , , ,</i>	<i></i>
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 26/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh					
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 27/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh	<u> </u>				
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 28/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh					
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 29/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh					
	0	1	2	3	4
d	0	1	4	4	-7
р	-1	0	1	1	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 30/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh					
	0	1	2	3	4
d	0	1	4	-3	-7
р	-1	0	1	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 31/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh						
	0	1	2	3	4	
d	0	1	4	-3	-7	
р	-1	0	1	4	1	

Nguyễn Chí Hiểu Lý thuyết đồ thị 32/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh					
	0	1	2	3	4
d	0	1	4	-3	-7
р	-1	0	1	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 33/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

2 cạnh						
	0	1	2	3	4	
d	0	1	4	-3	-7	
р	-1	0	1	4	1	

Nguyễn Chí Hiểu Lý thuyết đồ thị 34/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh	(-) // () -	<i>y.</i> (<i>y y</i>	, () - / (, , , , ,	<i>,</i> , , <i>,</i> ,
	0	1	2	3	4
d	0	1	4	-3	-7
р	-1	0	1	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 35/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh	<u> </u>	<i>/· ()</i>	<u> </u>	, , , , ,	, , , ,
	0	1	2	3	4
d	0	1	4	-3	-7
р	-1	0	1	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 36/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 37/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 38/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 39/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh		<i>y</i> . (<i>,</i> ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , ,	, , , ,
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 40/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu ${
m L}{
m \acute{y}}$ thuyết đồ thị ${
m 41/61}$

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh	<u> </u>	<i></i>	, () , , (<i>)) ()</i>	<i></i>
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 42/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

3 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 43/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 44/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh	<u> </u>	<u> </u>			<u> </u>
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 45/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 46/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 47/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu Lý thuyết đồ thị 49/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiểu Lý thuyết đồ thị 50/61

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu ${\rm L\acute{y}}$ thuyết đồ thị ${\rm 51/61}$

• (0,1), (1,2), (3,2), (1,3), (2,3), (4,3), (0,4), (1,4), (2,4)

4 cạnh					
	0	1	2	3	4
d	0	1	-1	-3	-7
р	-1	0	3	4	1

Nguyễn Chí Hiếu ${\rm L\acute{y}}$ thuyết đồ thị ${\rm 52/61}$

- Đường đi ngắn nhất từ 0 \leadsto 3: 0 \to 1 \to 4 \to 3.
- Khoảng cách của đường đi ngắn nhất từ $0 \rightsquigarrow 3: -3$.

Nguyễn Chí Hiếu Lý thuyết đồ thị 53/61

Ví dụ 4

Cho đồ thị G gồm 5 đỉnh. Tìm đường đi ngắn nhất từ $0 \rightsquigarrow 2$.

Hình 9: Đồ thị G.

• Áp dụng thuật toán Bellman-Ford tìm chu trình âm của đồ thị.

```
Thuật toán 2: BellmanFord(G, s)
```

```
1
        for each u \in V
 2
           d[u] \leftarrow \infty // distance
 3
           p[u] ← NO_PATH // previous/parent
 4
       d[s] \leftarrow 0
 5
 6
        for k \leftarrow 1 to |V| - 1
           for each edge (u,v) \in E // Relax(u,v)
 8
               if d[v] > d[u] + w(u,v)
 9
                   d[v] \leftarrow d[u] + w(u,v)
10
                   p[v] \leftarrow u
11
12
        for each edge (u,v) \in E
           if d[v] > d[u] + w(u,v)
13
14
               return false // negative cycle
15
        return true
```

Nguyễn Chí Hiểu Lý thuyết đồ thị 55/61

Giải thích

- Dòng $12 \rightarrow 15$: tìm chu trình âm của đồ thị.
 - Nếu tìm thấy trả về false (đồ thị có chu trình âm và không tìm thấy đường đi ngắn nhất).
 - Ngược lại, trả về true (đồ thị không có chu trình âm và tìm thấy đường đi ngắn nhất).

Ví dụ 5

Cho đồ thị G gồm 5 đỉnh. Tìm đường đi ngắn nhất từ $0 \rightsquigarrow 2$.

Hình 10: Đồ thị G.

Nguyễn Chí Hiếu Lý thuyết đồ thị 57/61

Ứng dụng của thuật toán Bellman-Ford

- Tìm đường đi ngắn nhất giữa 2 đỉnh của đồ thị có trọng số âm.
- Phát hiện chu trình âm trong đồ thị.

Bài tập

① Cho đồ thị G gồm 5 đỉnh. Tìm đường đi ngắn nhất từ $0 \rightsquigarrow 3$.

Hình 11: Đồ thị G.

Nguyễn Chí Hiếu Lý thuyết đồ thị 59/61

Bài tập

② Bài toán chuyển đổi ngoại tệ: cho *n* loại tiền tệ và tỷ giá giữa các loại tiền tệ. Kiểm tra giá trị có bị lệch hay không?

Trong ví dụ 3, không cần lặp đến k=|V|-1 lần để tìm đường đi ngắn nhất từ s đến các đỉnh khác. Cải tiến thuật toán Bellman-Ford.

Tài liệu tham khảo

ADRIAN BONDY, U.S.R. MURTY, Graph Theory, Springer, 2008.

Kenneth H. Rosen, *Discrete Mathematics and its Applications, 7th Edidion*, McGraw-Hill, 2011.

NGUYỄN ĐứC NGHĨA, NGUYỄN TÔ THÀNH, *Toán rời rạc*, NXB Đại học Quốc gia Hà Nội, 2003.

NGUYỄN CAM, CHU ĐứC KHÁNH, *Lý thuyết đồ thị*, NXB Đại học Quốc gia Tp Hồ Chí Minh. 2008.

REINHARD DIESTEL, Graph Theory, Springer, 2005.