DATA 1010 In-class exercises Samuel S. Watson 26 October 2018

Problem 1

The central limit theorem says that if S_n is a sum of i.i.d. finite-variance random variables is approximately normally distributed with mean $\mathbb{E}[S_n]$ and variance $\text{Var}(S_n)$. Also, about 95% of the probability mass of a normal distribution is within two standard deviations of the mean.

If a million independent Unif([a, b])'s are added, what is the shortest interval containing 95% of the probability mass of the distribution of the resulting sum?

Solution

The mean of the million random variables is 5 million, and the variance is a million times the variance of each random variable, which is $(b-a)^2/12 = 10^2/12$ for Unif([a, b]). Therefore, the smallest interval capturing 95% of the probability mass is approximately

$$[5,000,000 - 2\sqrt{10^2/12 \cdot 10^6}, 5,000,000 + 2\sqrt{10^2/12 \cdot 10^6},] \approx [4994226,5005774].$$

So typical fluctuations are on the order of a few thousand, which is small compared to the total of 5 million.

Problem 2

The multivariate central limit theorem says that if $X_1, X_2, ...$ is an independent sequence of random vectors with a common distribution on \mathbb{R}^n , then the standardized mean

$$\mathbf{S}_n^* = \frac{X_n - n\mu}{\sqrt{n}}$$

converges in distribution to $\mathcal{N}(0,\Sigma)$, where Σ is the covariance matrix of \mathbf{X}_1 .

Investigate the multivariate central limit theorem using by making 2D histograms for i.i.d. sums of (i) uniform samples from the square, and (ii) samples from ((U+V)/2, V), where (U, V) is uniformly sampled from the square.

Solution

We obtain a random vector with correlated components by sampling two independent uniform random variables U and V and returning [X,Y] = [(U+V)/2,V]. Then

$$Cov((U+V)/2, V) = \frac{1}{2}(Cov(U, V) + Cov(V, V)) = \frac{1}{2}Var(V) = \frac{1}{24}$$

since $Var(V) = (b-a)^2/12 = (1-0)^2/12 = 1/12$. So we can see *X* and *Y* are correlated. We calculate a running average and plot a 2D histogram as follows:

```
using Plots
function sample()
    U = rand()
    V = rand()
    X = (U + V)/2
    Y = V
    [X,Y]
end

function runningaverage(n)
    X_sum, Y_sum = sum(sample() for i=1:n)
```

Problem 3

Find the mean and covariance of the random vector [X,Y] defined by $X = \frac{1}{2}(U+V), Y = V$, where U and V are independent uniform random variables on [0,1].

Use the result to find the density of the limiting distribution you plotted in the previous problem.

Solution

We know that $Cov(X,Y) = \frac{1}{24}$ because we calculated it in the previous problem. Also, the variance of Y is $\frac{1}{12}$, and the variance of X is

$$\operatorname{Var}(X) = \frac{1}{4}(\operatorname{Var}(U) + \operatorname{Var}(V)) = \frac{1}{24}$$

Therefore, the covariance matrix is

$$\Sigma = egin{bmatrix} rac{1}{24} & rac{1}{24} \ rac{1}{24} & rac{1}{12} \end{bmatrix}.$$

The vector of means is $\left[\frac{1}{2}, \frac{1}{2}\right]$.

Therefore, the density of the normalized running sums of independent samples from the distribution of [X,Y] is

$$\frac{1}{2\pi\sqrt{\det\Sigma}}\exp\left(-\tfrac{1}{2}[x-\tfrac{1}{2},y-\tfrac{1}{2}]'\Sigma^{-1}[x-\tfrac{1}{2},y-\tfrac{1}{2}]\right) = \frac{12}{\pi}\mathrm{e}^{-\tfrac{1}{2}(48x^2+24y^2-48xy-24x+6)}.$$

Problem 4

Find the conditional expectation of *Y* given *X* if the joint distribution has density

$$f(x,y) = \frac{3}{4000(3/2)\sqrt{2\pi}}x(20-x)e^{-\frac{1}{2(3/2)^2}\left(y-2-\frac{1}{50}x(30-x)\right)^2}.$$

on the strip $[0,20] \times \mathbb{R}$.

Solution

The restriction of f to a vertical line at position x is proportional to the function

$$y \mapsto e^{-\frac{1}{2(3/2)^2} (y-2-\frac{1}{50}x(30-x))^2}.$$

We recognize this function as proportional to the normal density with mean $\frac{1}{50}x(30-x)$ and standard deviation $\frac{3}{2}$. Therefore, once this density is suitably normalized, it will be equal to $\mathcal{N}\left(\frac{1}{50}x(30-x),\frac{3}{2}\right)$. So the desired conditional expectation is

$$\mathbb{E}[Y \mid X] = \frac{1}{50}X(30 - X).$$