四川大学数字逻辑复习题(2017~2018-1)

课程号: 304131030 课程名称: 数字逻辑(双语) 任课教师: 潘薇吴志红卢晓春陈虎吕泽均熊伟袁学东兰时勇

Chapter 1

Digital Analog logic levels Digital Waveforms ICs

P12 TRUE/FALSE QUIZ 1~9; SELF TEST 1~12

1. As the following waveform shows, it's period is () and frequency is ().

Chapter 2

Decimal Binary Octal Hexadecimal Conversion Binary Arthmetics Signed Numbers

P58 TRUE/FALSE QUIZ 1~11; SELF TEST 1~20

1. Covert the following numbers to the indicated radix numbers.

a).
$$(1101011.1)_2 = ($$

$$)_{10} = ($$

 $)_{16} = ($

 $)_{10} = ($

 $)_{BCD}$

)8

b).
$$(1011101.0101)_2 = ($$

d).
$$(52.625)_{10} = ($$

$$)_{2}=($$

$$)_{16} = ($$

$$)_{BCD}.$$

2. Perform the following binary multiplications:

c). $(01000101.011000100101)_{BCD} = ($

- a) 111×101
- b) 1110×1101

3. Convert each decimal number into its corresponding 2s complement code prior to performing the indicated operation.

a)
$$(-101)+(11)$$

4. The following is the operation of the complement, which is correct. (

	original code	complement code
A	01110001	01111111
В	10011001	11100111
C	10010010	11101101
D	00110010	11001110

Chapter 3

课程名称:数字逻辑应用与设计 任课教师:吴志红 学号:

Gates: Inverter/AND/OR/NAND/NOR/E-OR/E-NOR...

Truth Tables

Logic Expressions

姓名:

P100 TRUE/FALSE QUIZ 1~7, 9; SELF TEST 1~4, 9

1. An exclusive-NOR function f(A,B) is expressed as

Chapter 4

Boolean Algebra Logic Circuits Simplificaion Standard Forms SOP POS K-Map

P153 TRUE/FALSE QUIZ 1~10; SELF TEST 1~18

- 1. Demonstrate by means of truth tables the validity of AB' + A'B = (A + B)(A' + B').
- 2. Prove the identity of the following Bootlean equation, using algebraic manipulation: $AB + \bar{A}C + (\bar{B} + \bar{C})D = AB + \bar{A}C + D$.
- 3. Simplify the Boolean expressions to expessions containing a minimum number of literals: $F=A(C+BD)(\bar{A}+BD)+B(\bar{C}+DE)+BC$, and implement it using logic gates.
- 4. A Karnaugh map is a diagram made up of squares that is to simplify Boolean eqations. Each square represents a or from an equation.
- 5. ______ is a term in a Boolean equation that represents a condition where an output variable is a logical 0 in the output function truth table.
- 6. Simplify the following Boolean equations:
 - 1) $R = f(w,x,y,z) = \sum m(1,3,4,5,6,9,11,12,13,14)$
 - 2) T = a' bc+ad' +bcd'
 - 3)G = y'z+w'xy'+w'xy+xy'z
- 7. ApplyDeMorgan's theorems to the following: $\overline{(A + \overline{B}\overline{C} + CD)} + \overline{B}\overline{C}$
- 8. Write the Boolean expression for the logic gate in the figure.

- 9. Convert the following expression to standard SOP forms and develop its truth table: $\overline{A}(B + \overline{C}) + A(B \oplus C)$
- 10. Using Boolean algebra, simplify the following expression: $(B + BC)(B + \bar{B}C)(B + D)$
- 11. Use a Karnaugh map to reduce each expression.
 - a) $F(a,b,c,d)=\sum m(2,4,6,8,9,12,13,14,15)$
 - b) $F(x,y,z,w) = \sum m(2,4,6,8,13,14,15) + \sum d(0,7,9,10)$

Chapter 5

Combinatioonal Logic Circuits Analysis /Design Universal gates

P188 TRUE/FALSE QUIZ 1~10; SELF TEST 1~10

- 1. Implement F=AB+A(B+C)+B(B+C) using and only using 2 input AND and OR.
- 2. Design a truth table to indicate a majority of three inputs is true, write down the simplified Boolean equation.
- 3. A four-bit binary character is presented to a circuit that must detect whether the input is a legitimate BCD code. If a non-BCD code is entered, the output is to be true(logical 1). Please construct the truth table and write down the simplified Boolean equation.
- 4. Use AND gates, OR gate, and inverters as needed to implement the following logic expressions as stated.
 - a) X = A(CD + B)
- b) $X = \overline{ABC} + B(EF + \overline{G})$
- 5. The standard AND-OR is a logical expression consisting of ().
 - a) 与项相或
- b)最小项相或
- c)最大项相与
- d)或项相与

Adders Comparators Decoders Encoders MUX Parity Generators/Checkers

P246 TRUE/FALSE QUIZ 1~10; SELF TEST 1~12

- 1. If a 1-of-16 decoder with active-LOW outputs exhibits a LOW on the decimal 6 output, what are the inputs?
- 2. For each of the three full-adders in Figure, determine the outputs.

3. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel adder. Determine the resulting sequence of bits on each sum output.

A_1	1010
A_2	1100
A_3	0101
A_4	1101
B_1	1001
B_2	1011
B_3	0000
B_4	0001

4. Use the decoder 74LS138 with active-LOW outputs to implement the function of a full-adder.

Latches/Flip Flops **Edge-Triggered**

P298 TRUE/FALSE QUIZ 1~7; SELF TEST 1~3, 5~9

Chapter 8

Counters Asynchronous/Synchronous

SELF TEST 1~7, 9~11, 13,14 P353 TRUE/FALSE QUIZ 1~10;

- 1. Assume the clock for a 3-bit binary counter is 512MHz. The output frequency of the third stage is MHz.
- 2. How many flip-flops does a modulus-8 ring counter require?

Chapter 9

Registers Serial/Parallel **Shift**

P394 TRUE/FALSE QUIZ 1~10; SELF TEST 1~8

- 1. A register's function include (
- a) data storage b) data movement
- c) neither a) not b)
- d) both a) and b)
- 2. To parallel load a byte of data into a shift register with a synchronous load, there must be ()
 - a) one clock pulse
- b) one clock pulse for each I in the data
- c) eight clock pulses
- d) one clock pulse for each 0 in the data
- 3. For the ring counter in Figure, show the waveforms for each flip-flop output with respect to the clock.

Assume that FF0 is initially SET and that the rest are RESET. Show at least ten clock pulses.

4. For the 8-bit bidirectional register in Figure, determine the state of the register after each clock pulse for the RIGHT/LEFT control waveform given. A HIGH on this input enables a shift to the right, and a LOW enables a shift to the left. Assume that the register is initially storing the decimal number seventy-six in binary, with the right-most position being the LSB. There is a LOW on the data-input line.

5. For the data input and clock in Figure, determine the states of each flip-flop in the shift register of Figure and show the Q waveforms. Assume that the register contains all 1s initially.

1. As the following waveform shows, it's period is (10ms) and frequency is (100Hz).

Chapter 2

1. Covert the following numbers to the indicated radix numbers.

b). 1110×1101

```
a). (1101011.1)_2 = (107.5)_{10} = (100000111.0101)_{BCD}
b). (1011101.0101)_2 = (5C.5)_{16} = (135.24)_8
c). (01000101.011000100101)_{BCD} = (45.625)_{10} = (101101.101)_2 = (2D.A)_{16}
d). (52.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625)_{10} = (20.625
```

2. Perform the following binary multiplications:

3. Convert each decimal number into its corresponding 2s complement code prior to performing the indicated operation.

4. The following is the operation of the complement, which is correct. (

	original code	complement code
A	01110001	01111111
В	10011001	11100111
C	10010010	11101101
D	00110010	11001110

Chapter 3

1. An exclusive-NOR function f(A,B) is expressed as $\underline{A'B'+AB}$.

- 1. Demonstrate by means of truth tables the validity of AB' + A'B = (A + B)(A' + B').
- 2. Prove the identity of the following Bootlean equation, using algebraic manipulation: $AB + \bar{A}C + (\bar{B} + \bar{C})D = AB + \bar{A}C + D_{\circ}$
- 3. Simplify the Boolean expressions to expessions containing a minimum number of literals: $F=A(C+BD)(\bar{A}+BD)+B(\bar{C}+DE)+BC$, and implement it using logic gates \circ
- 4. A Karnaugh map is a diagram made up of squares that is to simplify Boolean equations. Each square represents a <u>minterm</u> or <u>maxterm</u> from an equation.
- 5. <u>Maxterm</u> is a term in a Boolean equation that represents a condition where an output variable is a logical 0 in the output function truth table.
- 6. Simplify the following Boolean equations:
- (1) $R = f(w,x,y,z) = \sum m(1,3,4,5,6,9,11,12,13,14)$
- (2) T = a'bc+ad'+bcd'
- (3) G = y'z + w'xy' + w'xy + xy'z

Answers:

- (1) R = XY' + X'Z + XZ'
- (2) T = a'bc+ad'
- (3) G = w'x + y'z
- 7. ApplyDeMorgan's theorems to the following: $\overline{(A + \overline{B}\overline{C} + CD)} + \overline{B}\overline{C}$ = $\overline{A}B\overline{C}(\overline{C} + \overline{D}) + BC = \overline{A}B\overline{C} + BC = \overline{A}B + BC$
- 8. Write the Boolean expression for the logic gate in the figure.

9. Convert the following expression to standard SOP forms and develop its truth table: $\overline{A}(B + \overline{C}) + A(B \oplus C)$ $\overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$

A	В	C	X
A 0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

10. Using Boolean algebra, simplify the following expression: $(B+BC)(B+\bar{B}C)(B+D) = B$

- 11. Use a Karnaugh map to reduce each expression.
 - a) $F(a,b,c,d)=\sum m(2,4,6,8,9,12,13,14,15)$
 - b) $F(x,y,z,w)=\sum m(2,4,6,8,13,14,15) + \sum d(0,7,9,10)$

(a)					
ab	l \	00	01	11	10
00					1
01		1			1
11		1	1	1	1
10		1	1		

F=ab+ac' +bd' +a' cd'

(b)				
z w xy	00	01	11	10
00	d			1
01	1		d	1
11		1	1	1
10	1	d		d

F=zw'+yz+x'w'+y'w'+xz'w

Chapter 5

- 1.Implement F=AB+A(B+C)+B(B+C) using and only using 2 input AND and OR $_{\circ}$
- 2. Design a truth table to indicate a majority of three inputs is true, write down the simplified Boolean equation.

 Answer:

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3. A four-bit binary character is presented to a circuit that must detect whether the input is a legitimate BCD code. If a non-BCD code is entered, the output is to be true(logical 1). Please construct the truth table and write

down the simplified Boolean equation.

Answer:

hex	A_3	A_2	A_1	A_0	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
a	1	0	1	0	1
b	1	0	1	1	1
С	1	1	0	0	1
d	1	1	0	1	1
e	1	1	1	0	1
f	1	1	1	1	1

Y = AB + AC

4. Use AND gates, OR gate, and inverters as needed to implement the following logic expressions as stated.

a)
$$X = A(CD + B)$$
 b) $X = \overline{ABC} + B(EF + \overline{G})$
(a)

(b)

- 5. The standard AND-OR is a logical expression consisting of (B).
 - a) 与项相或
- b)最小项相或
- c)最大项相与
- d)或项相与

- 1. If a 1-of-16 decoder with active-LOW outputs exhibits a LOW on the decimal 6 output, what are the inputs?
- 2. For each of the three full-adders in Figure, determine the outputs.

- (a) The input bits are A = 1, B = 0, and Cin = 0. 1 + 0 + 0 = 1 with no carry, Therefore, $\sum = 1$ and Cout = 0.
- (b) The input bits are A = 1, B = 1, and Cin = 0. 1 + 1 + 0 = 0 with a carry of 1, Therefore, $\sum 0$ and Cout = 1.
- (c) The input bits are A = 1, B = 0, and Cin = 1. 1 + 0 + 1 = 0 with a carry of 1,, Therefore, $\sum 0$ and Cout = 1.
- 3. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel adder. Determine the resulting sequence of bits on each sum output.

$$egin{array}{cccc} A_1 & 1010 \\ A_2 & 1100 \\ A_3 & 0101 \\ A_4 & 1101 \\ B_1 & 1001 \\ B_2 & 1011 \\ B_3 & 0000 \\ B_4 & 0001 \\ \end{array}$$

$$\Sigma 1 = 0111; \Sigma 2 = 0011; \Sigma 3 = 1110; \Sigma 4 = 1110$$

4. Use the decoder 74LS138 with active-LOW outputs to implement the function of a full-adder.

解: (1) 根据全加器的功能需求, 列出真值表:

Inp	uts		Outp	uts
Α	В	C_{in}	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(2) 根据真值表写出输出的逻辑函数 (最小项表达式):

$$\Sigma = \Sigma \mathbf{m}(1,2,4,7) = = \overline{m_1 \bullet m_2 \bullet m_4 \bullet m_7}$$

$$C_{\text{out}} = \Sigma \mathbf{m}(3,5,6,7) = \overline{m_3} \bullet \overline{m_5} \bullet \overline{m_6} \bullet \overline{m_7}$$

根据 3 线-8 线译码器 74LS138 输入输出的有效电平,结合译码器的输出对应最小项 $\overline{Y_i} = \overline{m_i}$, $i=0\sim7$,再选用逻辑与非门实现电路设计如下:(5 分)

- 1. A register's function include (d)
 - a) data storage b) data movement c) neither a) not b) d) both a) and b)
- 2. To parallel load a byte of data into a shift register with a synchronous load, there must be (a)
 - a) one clock pulse b) one clock pulse for each I in the data
 - c) eight clock pulses d) one clock pulse for each 0 in the data
- 3. For the ring counter in Figure, show the waveforms for each flip-flop output with respect to the clock. Assume that FF0 is initially SET and that the rest are RESET. Show at least ten clock pulses.

Answer:

4. For the 8-bit bidirectional register in Figure, determine the state of the register after each clock pulse for the RIGHT/LEFT control waveform given. A HIGH on this input enables a shift to the right, and a LOW enables a shift to the left. Assume that the register is initially storing the decimal number seventy-six in binary, with the right-most position being the LSB. There is a LOW on the data-input line.

Answer:

Initially (76): 01001100

CLK1: 10011000 left

CLK2: 01001100 right

CLK3: 00100110 right

CLK4: 00010011 right

CLK5: 00100110 left

CLK6: 01001100 left

CLK7: 00100110 right

CLK8: 01001100 left

CLK9: 00100110 right

CLK10: 01001100 left

CLK11: 10011000 left

5. For the data input and clock in Figure, determine the states of each flip-flop in the shift register of Figure and show the Q waveforms. Assume that the register contains all 1s initially.

Answer:

