ECE 220 Lecture 02: Input/Output Abstractions

Outline

- Section 8.1-8.4 of Patt and Patel
- I/O principles
- Input from keyboard
- Output to monitor (reading assignment)

- Key concepts
 - Memory mapped I/O
 - Asynchronous and synchronous communication

I/O with the physical world

Complete system

Many more examples

- Autopilot
- Antilock brakes
- ...
- Autonomous cars
- UAVs/Drones
- Space rovers
- Smart pacemakers
- Powerplants
- ..

I/O Layout

 How to connect a keyboard to LC3?

how should we connect a keyboard to the computer?

LC3 Memory: Memory mapped device registers

Address	Contents	Comments
x0000		;system space
•••		
x3000		; user space
		; programs
		; and data
xFE00	KBSR	; Device registers maps
xFE02	KBDR	
xFE04	DSR	
xFE00	DDR	
•••		
xFFFF		

These are the memory addresses to which the device registers (KBDR, etc.) are mapped

The device registers physically are separate circuits from the memory

Circuit for memory mapped Inout

Conventional memory access: LD DR, addr

- o MAR←addr
- MDR←MEM[MAR]
- ⊃ DR←MDR

Memory-mapped input access: LD DR, xFE02

- O MAR←xFE02
- O MDR←KBDR
- DR←MDR

Reading Input (first attempt)


```
START LDI R1, KBDR ; Read from KBD ....

BRnzp START

KBDR .FILL xFE02 ; Address of KBDR
```

Does this work?

Handshaking using KBDR and KBSR

- When a char is typed by user in the keyboard
 - Its ASCII code is placed in KBDR[0:7]
 - KBSR[15] is set to 1 (ready bit)
 - Keyboard is disabled, i.e., any further keypress is ignored
- When KBDR is read by CPU
- Hardware.

This is part of the keyboard

- KBSR[15] is set to 0
- Keyboard is enabled

Reading Input the right way

START	LDI	R1, KBSR_ADDR	; Test for
	BRzp	START	; character input
	LDI	RO, KBDR_ADDR	
	BRnzp	NEXT_TASK	; Go to the next
task			
	• • •		
KBSR_ADDR	.FILL	xFE00	; Address of KBSR
KBDR_ADDR	.FILL	xFE02	; Address of KBDR

I/O Layout

 How to connect a display to LC3?

Circuit for memory mapped output

Conventional write: ST SR, addr

- MAR←addr
- O MDR←SR
- Mem[MAR]←MDR

Memory-mapped input access: ST SR, xFE06

- O MAR←xFE06
- O MDR←SR
- DDR←MDR

Handshaking using DDR and DSR

- When monitor is ready to display another char
 - DSR[15] is set to 1: (ready bit)
- When new char is written to DDR
 - DSR[15] is set to 0
 - Any other chars written to DDR are ignored
 - DDR[7:0] is displayed

This is part of the display hardware.

Writing TRAP x21

This is how TRAP x21 = OUT works!

START	LDI	R1, DSR_ADDR	; Test for
	BRzp	START	; character input
	STI	RO, DDR_ADDR	
	BRnzp	NEXT_TASK	; Go to the next task
	•••		
DSR_ADDR	.FILL	xFEO4	; Address of DSR
DDR_ADDR	.FILL	xFE06	; Address of DDR

Exercises

- Write code for PUTS (display a stored string)
- Write code for ECHO (read a char and display it)
- Read Interrupt-driven I/O

Summary of concepts

- Memory mapped I/O (extra hardware for flexibility and convenience of programming)
- Asynchrony
- Polling