

Using Lexical Analysis Software to Understand Student Knowledge Transfer between Chemistry and Biology

Kevin C. Haudek Michigan State University

Acknowledgements

- DQC group at MSU

- Rosa Moscarella
- Mark Urban-Lurain
- John Merrill
- Ryan Sweeder
- Gail Richmond

Funding:

- National Science Foundation DUE #0736952
- Center for Research on College Science Teaching and Learning at MSU

Chemistry of Biology

- Evaluate students' understanding of basic chemistry that may be related to conceptual problems students have in cellular and molecular biology
- Introductory Cell and Molecules Biology
- Focus on two topics: Free energy and acid/base chemistry

Research Questions

- Do students use chemistry concepts in response to biological chemistry problems?
- Can lexical analysis extract and categorize chemistry terms from student responses?
- Are these categories meaningful?

Strong and weak acids: constructed response

- Students were asked to:
 - Give an explanation of a strong acid.
 - Give an explanation of a weak acid.

382 student responses collected from Fall 2008

Lexical analysis

Strong and weak acids: lexical analysis

Each explanation was analyzed separately

Lexical analysis resulted in a total of 27 categories
 Strong acid % of responses
 Weak acid % of responses

• • • • • • • • • • • • • • • • • • • •	J. 19 4516	70 01 10
ionization		68.6
solution		63.4
hydrogen		18.1
donate		9.2
ph		7.6
ions		5.5
concentration		4.5
hydronium		3.9
compounds		3.4
reaction		2.6
strong acid		2.6
don't know		2.4
electrolytes		2.1
conjugate		1.6
bond		1.3
hydrolysis		1.3
not pertinent		1.0
base		1.0
not informative		1.0
not ionized		0.5
pka		0.5
equal		0.3
halogen		0.3

Incomplete ionization	59.9
solution	57.9
hydrogen	28.8
donate	18.1
not ionized	8.6
ph 📕	6.3
ions	5.2
reaction	3.4
compounds	3.4
concentration	2.6
don't know	2.6
ionization	1.8
hydronium	1.6
electrolytes	1.6
conjugate	1.6
base	1.6
bond	1.6
hydrolysis	1.6
not pertinent	1.3
pka	1.3
weak acid	1.0
not informative	0.8
electron	0.5
strong acid	0.5

Strong and weak acids: expert scoring

- Two experts rated 150 responses using 4bin rubric
 - Level 1: Correct explanations both strong and weak acids
 - Level 2: Mostly correct explanations with minor errors
 - Level 3: Mostly incorrect explanations OR one explanation completely correct; one explanation completely incorrect
 - Level 4: Totally incorrect explanations / irrelevant information

Strong and weak acids: expert rating

- Inter-rater reliability of two expert raters
 - Cronbach alpha > .97

1	2	3	4	TOTAL
91	9	18	18	136

Predicting expert score: Discriminant analysis

- Step-wise discriminant analysis
- Dependent Variable: Expert rating
- Independent Variables: Lexical categories

Strong and weak acids: discriminant analysis

Categories			Function		
			2	3	
Strong acid explanation:	hydrolysis	111	.288	248	
	donate	071	.143	.257	
	solution	.323	.237	178	
	hydrogen	062	.101	.187	
	not pertinent	086	132	016	
	conjugate	060	.156	134	
	ionization	.446	.056	417	
Weak acid explanation:	incomplete ionized	.624	094	.222	
	not ionized	157	.354	.279	
Function 1 accounts for	solution	.294	.056	269	
69.9% of variance	not pertinent	122	.106	168	
Function 2: 25.2% Function 3: 5%	electrolytes	.011	.031	.424	

Strong and weak acids: cross-validation

 Cross-validation classification functions results in 83.8% of responses being correctly scored

	Computer Predicted Rating			
Expert Rating	1	2	3	4
1	93.4	3.3	3.3	0.0
2	33.3	33.3	22.2	11.1
3	5.6	5.6	66.7	33.3
4	11.1	0.0	11.1	77.8

Functional groups: multiple choice

 Consider two small organic molecules in the cytoplasm of a cell, one with a hydroxyl group (-OH) and the other with an amino group (-NH2). Which of these small molecules (either or both) is most likely to have an impact on the cytoplasmic pH?

•	A.	Compound with amino group	(35%)
•	B.	Compound with hydroxyl group	(45%)
•	C.	Both	(7%)

• D. Neither (13%)

Functional groups: constructed response

- "Explain your answer."
- 2 Experts rated 131 correct answers using 3-bin rubric
 - Level 1: Correct explanations of functional group chemistry (may include correct supporting reasoning)
 - Level 2: Partly correct explanations with errors in facts or reasoning
 - Level 3: Totally incorrect/irrelevant response

Expert rating: Functional group open response

Cronbach Alpha > .92

	LEVEL		
1	2	3	TOTAL
41	14	58	113
36%	12%	51%	

Lexical analysis: Functional groups

- Each foil analyzed separately
- For correct response:28 categories
 - Ionization 20
 - Accept hydrogen 13

Functional group: Discriminant analysis

Group Centroid

	Function		
Category	1	2	
base/basic	.517	.349	
acid/acidic	378	.629	
amino group	.280	.128	
hydrogen	039	.605	
charge	.121	.137	
accept hydrogen	.345	.388	

Function 1 accounts for 91% of variance

Functional Groups: Computer predicted

Cross-validation results in 77% of the cases scored correctly

	Computer Predicted Rating		
Expert Rating	1	2	3
1	82.9	12.2	4.9
2	21.4	42.9	35.7
3	6.9	12.1	81.0

- Expert/computer inter-rater reliability
 - Intraclass correlation = 0.835

Conclusions: Acid/base chemistry

- Students have difficulty describing activity of acid/base behavior of functional groups, but not in a general format.
- Important terms in student responses change between explanations.
- Inappropriate concept application revealed by lexical analysis.

Conclusions: Lexical and discriminant analyses

- Lexical analysis provides a whole-class picture of term / concept usage.
- Discriminant analysis can help identify categories of importance.
- Classification functions can be developed to accurately predict human scoring.
- Analysis can be done per rubric.

Future Directions

- Refinement of current analysis
 - Collection of more student responses
- Sequences and related constructed response items
- Expansion into other disciplines
 - Evolution and natural selection, geology, genetics
- Just in Time Teaching

Contact Info

- Kevin Haudek
 4100 BPS
 East Lansing, MI 48824
 haudekke@msu.edu
- Mark Urban-Lurain
 111 N. Kedzie Lab
 East Lansing, MI 48824
 urban@msu.edu

