

Introduction to TensorFlow 2.0

Kareem Negm

Solution Challenge

DSC Al-Azhar

TensorFlow

Deep Learning

Intro to TensorFlow & Colab

TensorFlow @Google Examples

Why Tensorflow

Getting Started

Deep Learning

Height

Examples of cats

Examples of dogs

(0-D Tensor)

vector (rank 1) (1-D Tensor)

matrix (rank 2) (2-D Tensor)

3-D Tensor (rank 3)

MADRID MEETUP @Soygema

You have **lots** of data (~ 10k+ examples)

You have **lots** of data (~ 10k+ examples)

The problem is "complex" - speech, vision, natural language

You have **lots** of data (~ 10k+ examples)

The problem is "complex" - speech, vision, natural language

The data is unstructured

You have **lots** of data (~ 10k+ examples)

The problem is "complex" - speech, vision, natural language

The data is unstructured

You need the absolute "best" model

You have **lots** of data (~ 10k+ examples)

The problem is "complex" - speech, vision, natural language

The data is unstructured

You need the absolute "best" model

Powerful compute resources available (GPU acceleration)

You **don't** have a large dataset

You **don't** have a large dataset

You are performing sufficiently well with traditional ML methods

You don't have a large dataset

You are performing sufficiently well with traditional ML methods

Your data is structured and you possess the proper domain knowledge

You don't have a large dataset

You are performing sufficiently well with traditional ML methods

Your data is structured and you possess the proper domain knowledge

Limited computational power

TensorFlow

TensorFlow

Open source deep learning library Utilities to help you write neural networks

GPU / TPU support ==

Released by Google in 2015

2.0 released September 2019

41,000,000+ 69,000+ 12,000+ 2,200+ downloads commits pull requests contributors

Global localization in Google Maps

The Magic Behind Google Translate: Sequence-to-Sequence Models and TensorFlow

TensorFlow 2.0

Simplified APIs. Focused on Keras and eager execution

Powerful

Flexibility and performance.

Power to do cutting edge research

and scale to > 1 exaflops

Scalable

Tested at Google-scale.

Deploy everywhere

Deploy anywhere

Servers

TensorFlow Extended **Edge devices**

TensorFlow Lite **JavaScript**

TensorFlow .JS

TRAINING

DEPLOYMENT

Specifics

What's Gone

```
Session.run

tf.control_dependencies

tf.global_variables_initializer

tf.cond, tf.while_loop

tf.contrib
```


Specifics

What's Gone

```
Session.run

tf.control_dependencies

tf.global_variables_initializer

tf.cond, tf.while_loop

tf.contrib
```

What's New

Eager execution by default tf.function
Keras as main high-level api


```
model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(),
   tf.keras.layers.Dense(512, activation='relu'),
   tf.keras.layers.Dropout(0.2),
   tf.keras.layers.Dense(10, activation='softmax')
])
```

```
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
1)
model.compile(optimizer='adam',
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
```

```
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
1)
model.compile(optimizer='adam',
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.fit(x train, y train, epochs⇒)
```

```
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
1)
model.compile(optimizer='adam',
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.fit(x train, y train, epochs⇒)
model.evaluate(x test, y test)
```


tensorflow_datasets


```
import tensorflow datasets as tfds
dataset = tfds.load('cats vs dogs', as supervised=True)
mnist train, mnist test = dataset['train'],
dataset['test']
def scale(image, label):
  image = tf.cast(image,
  tf.float32) image /= 255
  return image, label
mnist train =
mnist train.map(scale).batch(64) mnist test
= mnist test.map(scale).batch(64)
```


TensorFlow Datasets

- audio
 - o "nsynth"
- image
 - "cifar10"
 - "diabetic_retinopathy_detection"
 - "imagenet2012"
 - o "mnist"
- structured
 - "titanic"

- text
 - o "imdb reviews"
 - o "lm1b"
 - o "squad"
- translate
 - "wmt_translate_ende"
 - "wmt_translate_enfr"
- video
 - "bair_robot_pushing_small"
 - "moving_mnist"
 - "starcraft_video"

More at

tensorflow.org/datasets

Transfer Learning

Transfer Learning

```
import tensorflow as tf
base model =
                 tf.keras.applications.SequentialMobileN
                 etV2 ( input shape = (160, 160, 3),
                 include top=False,
                 weights='imagenet')
base model.trainable = False
model = tf.keras.models.Sequential([
  base model,
  tf.keras.layers.GlobalAveragePooling2D()
  , tf.keras.layers.Dense(1)
```


TensorFlow 2.0

pip install tensorflow

Installing TensorFlow 2.0, Keras, & Python 3.8 in Windows 10

New Courses

Introduction to TensorFlow for AI, ML and DL

coursera.org/learn/introduction-tensorflow

Intro to
TensorFlow for
Deep Learning

udacity.com/tensorflow

github.com/orgs/tensorflow/projects/4

TensorFlow Datasets

Data Infeed Made Simple

Kareem Negm

Solution Challenge

DSC Al-Azhar

Questions!

Kareem Negm

Solution Challenge

DSC Al-Azhar