

计算机视觉基础与实战

零基础轻松入门 (第十讲 yolov8 对象计数及区域检测实战)

路虽远, 行则将至1 /

目录

- 1 YOLO v8 模型初始化
- 2 YOLO v8 预测参数
- 3 预测函数返回结果
- 4 Boxes对象
- 5 绘制函数plot

① 1 YOLO v8 模型初始化 ◆

使用 YOLO v8 推理预测

- 官方说明文档: https://docs.ultralytics.com/modes/predict/
- 多功能性:能够对图像、视频甚至直播流进行推断
- 性能:设计用于实时,高速处理而不牺牲精度
- 易用性: 直观的Python和CLI界面, 用于快速部署和测试
- 高度可定制:根据您的特定需求调整模型的推理行为的各种设置和参数

预测模式的主要特点

- 多数据源兼容性:无论您的数据是单个图像、图像集合、视频文件还是实时视频流的形式,预测模式都可以满足您的需求。
- 流式模式:使用流式特性来生成一个节省内存的Results对象生成器。通过在预测器的调用方法中设置stream=True来启用此功能。
- 批处理:能够在单个批处理中处理多个图像或视频帧,进一步加快推理时间。
- 集成友好:由于其灵活的API,可以轻松地与现有数据管道和其他软件组件集成。

model 初始化(不可使用stream=True)

来源	类型	举例	解释
image	str or Path	'image.jpg'	单个图片文件
URL	str	'https://ultralytics.com/image s/bus.jpg'	URL地址
screenshot	str	'screen'	捕获屏幕截图。
PIL	PIL.Image	Image.open('im.jpg')	HWC (高度、宽度和通道数)格式的RGB通道图像。
OpenCV	np.ndarray	cv2.imread('im.jpg')	HWC (高度、宽度和通道数) 格式的BGR通道图像。 uint8 (0-255).
numpy	np.ndarray	np.zeros((640,1280,3))	HWC(高度、宽度和通道数)格式的BGR通道图像。 uint8 (0-255).
torch	torch.Tensor	torch.zeros(16,3,320,640)	BCHW (批次,通道数、高度、宽度)格式的RGB通道图像。float32 (0.0-1.0).
CSV	str or Path	'sources.csv'	包含图像、视频或目录路径的CSV文件。

stream=True

- 使用stream=True处理长视频或大型数据集,以有效地管理内存。相比之下,stream=True使用生成器,它只将当前帧或数据点的结果保存在内存中,从而显著减少内存消耗并防止内存不足问题。
- 当stream=False时,所有帧或数据点的结果都存储在内存中,这可能会迅速增加并导致大输入的内存不足错误。

model 初始化(可以使用stream=True)

来源	类型	举例	解释
video	str or Path	'video.mp4'	视频文件格式,如MP4, AVI等。
directory	str or Path	'path/'	包含图像或视频的目录路径。
glob	str	'path/*.jpg'	匹配多个文件的Glob模式。使用*字符作为通配符。
YouTube	str	'https://youtu.be/LNwO DJXcvt4'	YouTube视频的URL。
stream	str	'rtsp://example.com/me dia.mp4'	流协议的URL,如RTSP、RTMP、TCP或IP地址。
multi-stream	str or Path	'list.streams'	流式文本文件

①2 YOLO v8 预测参数 · ·

model.predict() 函数推理参数

来源	类型	默认值	解释
source	str	'ultralytics/assets'	指定用于推断的数据源。可以是图像路径、视频文件、目录、URL或实时提要的设备ID。支持多种格式和源,支持跨不同类型输入的灵活应用程序。
conf	float	0.25	设置检测的最小置信度阈值。以低于此阈值的置信度检测到的对象将被忽略。调整这个值可以帮助减少误报。
iou	float	0.7	非最大抑制(NMS)的IoU (Intersection Over Union)阈值。较低的值通过消除重叠框导致较少的检测,有助于减少重复。
imgsz	int or tuple	640	定义用于推理的图像大小。可以是单个整数640用于正方形大小,也可以是(height, width)元组。适当的大小可以提高检测精度和加工速度。
half	bool	False	支持半精度(FP16)推理,可以在支持的gpu上加速模型推理,同时对精度的影响最小。
device	str	None	指定用于推理的设备(例如,cpu,cuda:0或0)。允许用户在cpu,特定GPU或其他计算设备之间进行模型执行选择。
max_det	int	300	每个图像允许的最大检测数。限制模型在单个推理中可以检测到的对象总数,防止在密集场景中输出过多。
vid_stride	int	1	视频输入的帧跨距。允许跳过视频中的帧,以时间分辨率为代价加快处理速度。1的值处理 每帧,更高的值跳过帧。

model.predict() 函数推理参数

来源	类型	默认值	解释
stream_buffer	bool	False	确定在处理视频流时是否应该缓冲所有帧(True),或者模型是否应该返回最近的帧(False)。 用于实时应用程序。
visualize	bool	False	在推理过程中激活模型特征的可视化,提供对模型"看到"内容的洞察。用于调试和模型解释。
augment	bool	False	为预测启用测试时间增强(TTA),以牺牲推理速度为代价潜在地提高检测健壮性。
agnostic_nms	bool	False	启用类无关的非最大抑制(NMS),它合并不同类的重叠框。在类重叠很常见的多类检测场景中非常有用。
classes	list[int]	None	将预测筛选到一组类id。只返回属于指定类的检测结果。用于在多类检测任务中聚焦相关对象。
retina_masks	bool	False	如果模型中可用,则使用高分辨率分割掩码。这可以提高分割任务的掩码质量,提供更精细的细节。
embed	list[int]	None	指定要从中提取特征向量或嵌入的层。用于下游任务,如聚类或相似性搜索。

model.predict() 函数可视化参数

来源	类型	默认值	解释
show	bool	False	如果为True,则在窗口中显示注释的图像或视频。用于开发或测试期间的即时视觉反馈。
save	bool	False	允许将注释的图像或视频保存到文件。用于文档编制、进一步分析或共 享结果。
save_frames	bool	False	在处理视频时,将单个帧保存为图像。用于提取特定帧或进行详细的逐 帧分析。
save_txt	bool	False	将检测结果保存为文本文件,格式为[class] [x_center] [y_center] [width] [height] [confidence]。用于与其他分析工具集成。
save_conf	bool	False	包括保存的文本文件中的置信度分数。增强可用于后处理和分析的细节。

model.predict() 函数可视化参数

来源	类型	默认值	解释
save_crop	bool	False	保存检测的裁剪图像。用于数据集增强、分析或为特定对象 创建重点数据集。
show_labels	bool	True	在可视化输出中显示每个检测的标签。提供对检测对象的即时理解。
show_conf	bool	True	在标签旁边显示每个检测的置信度得分。为每个检测提供洞察模型的确定性。
show_boxes	bool	True	在检测到的对象周围绘制边界框。对于图像或视频帧中物体的视觉识别和定位至关重要。
line_width	None or int	None	指定边界框的线宽。如果为None,则根据图像大小自动调整线宽。提供视觉自定义以提高清晰度。

model.track() 函数参数

• 几乎与 predict() 通用

03 预测函数返回结果

Results 返回结果属性

来源	类型	解释
orig_img	numpy.ndarray	作为numpy数组的原始图像。
orig_shape	tuple	原始图像形状(高度, 宽度)格式。
boxes	Boxes, optional	一个Boxes对象,包含检测边界框。
masks	Masks, optional	包含检测分割的mask对象。
probs	Probs, optional	一个包含分类任务中每个类别的概率的Probs对象。

Results 返回结果属性

来源	类型	解释
keypoints	Keypoints, optional	一个Keypoints对象,包含每个对象检测到的关键点。
obb	OBB, optional	包含定向边界框的OBB对象。
speed	dict	一个以毫秒为单位的预处理、推理和后处理速度字典。
names	dict	类名的字典。
path	str	图片文件的路径。

Results 返回结果函数

来源	类型	解释
update()	None	更新Results对象的boxes、mask和probs属性。
cpu()	Results	返回结果对象的副本,所有张量都在CPU内存中。
numpy()	Results	返回Results对象的副本,其中所有张量为numpy数组。
cuda()	Results	返回结果对象的副本,所有张量都在GPU内存中。
to()	Results	返回一个Results对象的副本,其中包含指定设备和dtype 上的张量。
new()	Results	返回一个具有相同图像、路径和名称的新Results对象。
plot()	numpy.ndarray	绘制检测结果。返回带注解的图像的numpy数组。

Results 返回结果函数

来源	类型	解释
show()	None	向屏幕显示带注解的结果。
save()	None	将带注释的结果保存到文件。
verbose()	str	返回每个任务的日志字符串。
save_txt()	None	将预测保存到txt文件中。
save_crop()	None	将裁剪的预测保存到save_dir/cls/file_name.jpg。
tojson()	str	将对象转换为JSON格式。

Boxes对象及plot函数

Boxes对象方法

来源	类型	解释
cpu()	方法	将对象移动到CPU内存中。
numpy()	方法	将对象转换为numpy数组。
cuda()	方法	将对象移动到CUDA内存。
to()	方法	将预测保存到txt文件中。

Boxes对象属性

来源	类型	解释
хуху	属性 (Tensor类型)	以xyxy格式(左上角右下角)返回Boxes对象。
conf	属性 (Tensor类型)	返回框的置信度值。
cls	属性 (Tensor类型)	返回框的类值。
id	属性 (Tensor类型)	返回追踪对象id(比如在model.track视频追踪中)。
xywh	属性 (Tensor类型)	以xywh格式 (中心点,宽,高)返回Boxes对象。
xyxyn	属性 (Tensor类型)	返回按原始图像尺寸归一化后的xyxy格式Boxes对象。
xywhn	属性 (Tensor类型)	返回按原始图像尺寸归一化后的xywh格式Boxes对象。

其他对象

- Masks 对象
- Keypoints 对象
- Probs 对象
- OBB 对象
- 具体参见网页: https://docs.ultralytics.com/modes/predict

plot() 函数参数

参数	类型	默认值	解释
conf	bool	True	包括检测的置信度分数。
line_width	float	None	边界框的线宽。如果为None,则根据图像大小缩放。
font_size	float	None	文本字体大小。如果为None,则根据图像大小缩放。
font	str	'Arial.ttf'	文本注解的字体名称。
pil	bool	False	返回一个PIL图像对象。

plot() 函数参数

参数	类型	默认值	解释
img	numpy.ndarray	None	画图的备选图像。如果为None,则用原始图像。
im_gpu	torch.Tensor	None	gpu加速图像,更快的mask绘图。形状:(1,3,640,640)。
kpt_radius	int	5	绘制关键点的半径大小。
kpt_line	bool	True	是否用线条连接关键点。
labels	bool	True	在注解中是否包含类名标签。
boxes	bool	True	是否在图像上叠加边界框。

plot() 函数参数

参数	类型	默认值	解释
masks	bool	True	是否在图片上叠加分割区域。
probs	bool	True	是否包括分类概率。
show	bool	False	是否使用默认的图像查看器直接显示带注释的图像。
save	bool	False	是否将带注解的图像保存到由filename指定的文件中。
filename	str	None	如果save为True,则保存带注解的图像的文件路径和名称。
color_mode	str	'class'	指定颜色模式,例如"instance"或"class"。

05 对象计数及区域检测

什么是对象计数?

• 使用Ultralytics YOLOv8进行对象计数涉及对视频和摄像机流中特定对象的准确识别和计数。YOLOv8在实时应用中表现出色,由于其最先进的算法和深度学习能力,它为人群分析和监视等各种场景提供了高效和精确的对象计数。

对象计数的优点

- 资源优化:对象计数通过提供准确的计数来促进有效的资源管理,并优化库存管理等应用程序中的资源分配。
- 增强的安全性:对象计数通过准确跟踪和计数实体来增强安全性和监控,帮助主动检测威胁。
- 知情决策:对象计数为决策提供了有价值的见解,可以优化零售、交通管理和其他各种领域的流程。

如何使用Ultralytics YOLOv8计算视频中的对象?

- 导入必要的库(cv2、ultralytics)。
- 加载一个预训练的YOLOv8模型。
- 定义计数区域(如多边形、直线等)。
- 设置视频捕获并初始化对象计数器。
- 处理每一帧来跟踪对象,并在定义的区域内计数。

ObjectCounter参数

参数	类型	默认值	解释
names	dict	None	类名字典。
reg_pts	list	[(20, 400), (1260, 400)]	定义计数区域的点列表。
count_reg_color	tuple	(255, 0, 255)	计数区域的RGB颜色。
count_txt_color	tuple	(0, 0, 0)	计数文本的RGB颜色。
count_bg_color	tuple	(255, 255, 255)	计数文本背景的RGB颜色。
line_thickness	int	2	边框的线粗细。
track_thickness	int	2	轨道线的粗细。

ObjectCounter参数

参数	类型	默认值	解释
view_img	bool	False	控制是否显示视频流的标志。
view_in_counts	bool	True	是否在视频流上显示输入计数的标志。
view_out_counts	bool	True	是否在视频流上显示输出计数的标志。
draw_tracks	bool	False	控制是否绘制对象轨迹的标志。
track_color	tuple	None	轨道的RGB颜色。

ObjectCounter参数

参数	类型	默认值	解释
region_thickness	int	5	对象计数区域的粗细。
line_dist_thresh	int	15	线计数器的欧氏距离阈值。
cls_txtdisplay_gap	int	50	显示每个类计数之间的间隔。

model.track参数

参数	类型	默认值	解释
source	im0	None	图片或视频的源目录
persist	bool	False	在帧之间保持追踪
tracker	bool	botsort.yaml	跟踪方法'bytetrack'或'botsort'
conf	bool	0.3	置信度阈值
iou	tuple	0.5	IOU 阈值
classes	list	None	按类别筛选结果,即classes=0或classes=[0,2,3]
verbose	bool	True	显示对象跟踪结果

利用YOLOv8解决现实世界的问题

- 官网地址: https://docs.ultralytics.com/solutions/
- Ultralytics Solutions提供YOLO模型的尖端应用,提供现实世界的解决方案,如物体计数, 模糊和安全系统,提高不同行业的效率和准确性。发现YOLOv8在实际、有效实现中的强大 功能。

使用Ultralytics YOLOv8进行数据分析

• 三种基本类型的数据可视化:线形图、条形图和饼图

使用Ultralytics YOLOv8进行数据分析

- 例如要使用Ultralytics YOLOv8 Analytics创建线形图,请遵循以下步骤:
 - · 加载YOLOv8模型并打开视频文件。
 - 初始化Analytics类,将类型设置为 "line"。
 - 迭代视频帧, 用相关数据(如每帧的对象计数)更新线形图。
 - 保存显示折线图的输出视频。

对象裁剪

• 使用Ultralytics YOLOv8进行对象裁剪包括从图像或视频中分离和提取特定检测 到的对象。YOLOv8模型功能用于准确识别和描绘对象,实现精确裁剪以进行进 一步分析或操作。

对象裁剪

使用Ultralytics YOLOv8在机场传送带上裁剪行李箱

物体模糊

• 使用Ultralytics YOLOv8进行对象模糊处理,包括对图像或视频中特定检测到的对象应用模糊效果。这可以使用YOLOv8模型功能来识别和操作给定场景中的对象。

物体模糊

- 隐私保护:对象模糊是一种有效的保护隐私的工具,通过隐藏图像或视频中的敏感或个人身份信息。
- 选择性聚焦:YOLOv8允许选择性模糊,使用户能够针对特定对象,确保隐私和保留相关视觉信息之间的平衡。
- 实时处理:YOLOv8的效率使对象能够实时模糊,使其适合需要在动态环境中实时增强隐私的应用程序。

使用Ultralytics YOLOv8进行运动监测

• 通过姿势估计监测运动锻炼与Ultralytics YOLOv8增强运动评估模块相结合,准确跟踪关键的身体指标和实时关节姿态。这项技术提供锻炼形式的即时反馈,跟踪锻炼程序,并测量性能指标,为用户和教练优化训练课程。

锻炼监控的好处

- 优化性能:根据监测数据定制锻炼,以获得更好的效果。
- 目标实现:跟踪和调整健身目标,以实现可衡量的进步。
- 个性化:根据个人数据定制锻炼计划以提高效率。
- 健康意识:早期发现表明健康问题或过度训练的模式。
- 明智的决定:数据驱动的决定,以调整日常工作和设定现实的目标。

安全报警系统

- 利用Ultralytics YOLOv8的安全报警系统项目集成了先进的计算机视觉功能,以增强安全措施。
 由Ultralytics开发的YOLOv8提供实时对象检测,使系统能够及时识别和响应潜在的安全威胁。
 这个项目有几个优点:
 - 实时检测:YOLOv8的效率使安全报警系统能够实时检测和响应安全事件,最大限度地减少响应时间。
 - 准确性:YOLOv8以其在物体检测方面的准确性,减少误报和提高安全报警系统的可靠性而闻名。
 - 集成能力:该项目可与现有安全基础设施无缝集成,提供升级的智能监控层。

热图简介

• 使用Ultralytics YOLOv8生成的热图将复杂的数据转换为充满活力的彩色编码矩阵。这个可视化工具使用一系列颜色来表示不同的数据值,其中较暖的色调表示较高的强度,较冷的色调表示较低的值。热图在可视化复杂的数据模式、相关性和异常方面表现出色,为跨不同领域的数据解释提供了一种可访问且引人入胜的方法。

为什么选择热图进行数据分析?

- 直观的数据分布可视化:热图简化了对数据集中和分布的理解,将复杂的数据集转换为易于理解的可视化格式。
- 高效的模式检测:通过以热图格式可视化数据,可以更容易地发现趋势、集群和异常值,从而促进更快的分析和见解。
- 增强的空间分析和决策:热图有助于说明空间关系,有助于商业智能、环境研究和城市规划等部门的决策过程。

实例分割

- Ultralytics YOLOv8实例分割涉及识别和概述图像中的单个对象,提供对空间分布的详细了解。与语义分割不同,它唯一地标记并精确地描绘每个对象,这对于物体检测和医学成像等任务至关重要。
- 在Ultralytics包中有两种类型的实例分割跟踪:
- 类对象的实例分割:每个类对象被分配一个唯一的颜色,以便清晰的视觉分离。
- 带有目标轨迹的实例分割:每个轨迹都由不同的颜色表示,便于识别和跟踪。

实例分割

VisionEye对象映射

• Ultralytics YOLOv8 VisionEye为计算机提供识别和精确定位物体的能力,模拟人眼的观测精度。这种功能使计算机能够辨别和聚焦于特定的物体,就像人眼从特定的角度观察细节一样。

VisionEye的目标跟踪主要特点

- VisionEye的目标跟踪与Ultralytics YOLOv8允许用户跟踪视频帧内物体的运动。主要特点包括:
- 实时对象跟踪:在对象移动时保持跟踪。
- 目标识别:利用YOLOv8强大的检测算法。
- 距离计算:计算对象与指定点之间的距离。
- 注释和可视化:为跟踪对象提供可视化标记。

速度估计

• 速度估计是在给定环境中计算物体运动速率的过程,通常用于计算机视觉应用。使用Ultralytics YOLOv8,您现在可以使用物体跟踪以及距离和时间数据来计算物体的速度,这对于交通和监视等任务至关重要。速度估计的准确性直接影响到各种应用的效率和可靠性,使其成为智能系统进步和实时决策过程的关键组成部分。

距离计算

测量两个物体之间的距离称为特定空间内的距离计算。在UltralyticsYOLOv8中,使用边界框质心来计算用户突出显示的边界框的距离。

队列管理

• 使用Ultralytics YOLOv8的队列管理包括组织和控制人员或车辆的队列,以减少等待时间并提高效率。它是关于优化队列,以提高零售、银行、机场和医疗机构等各种环境中的客户满意度和系统性能。

停车场管理系统

• 停车管理与Ultralytics YOLOv8通过组织空间和监控可用性,确保高效和安全的停车。 YOLOv8可以通过实时车辆检测和车位占用情况来改善停车场管理。

停车场管理系统的优点

- 效率: 停车场管理优化停车位的使用, 减少拥堵。
- 安全和安保:使用YOLOv8的停车管理通过监控和安保措施提高了人员和车辆的安全性。
- 减少排放:停车管理使用YOLOv8管理交通流量,最大限度地减少停车场的 闲置时间和排放。

讲解完毕, 谢谢!

