高中联赛难度平面几何习题集

向禹

2020年8月24日

1. 如图 (1.a), P 为 $\odot O$ 外一点, PA, PB 分别切 $\odot O$ 于 A, B, PCD 为 $\odot O$ 的一条割线, CD 交 $\odot O$ 于另一点 E, AC, EB 交于点 F, 证明: CD 平分 $\angle ADF$.

图 1: 第 1 题图

证明 方法一 如图 (1.b), 延长 ED 交 CA 于 K, 根据条件知四边形 CADB 为调和四边形, 故 ED, EC, EA, EB 构成一组调和线束, 进而知 K, C, A, F 构成一组调和点列. 而 $KD\bot CD$, 故 CD 平分 $\angle ADF$.

方法二 如图 (1.c), 连接 OA, OB, AB, BC, 因为

$$\angle AFB = \angle ACE - \angle BEC = \frac{\angle AOE - \angle BOC}{2}$$
$$= \frac{180^{\circ} - \angle AOC - \angle BOC}{2} = \frac{\angle APC}{2}$$

且 PA = PB, 故点 P 为 $\triangle ABF$ 的外心. 于是知 $\angle PFA = \angle PAC = \angle PDA$, 所以 P, A, D, F 四点共圆. 由 PA = PF, 故 CD 平分 $\angle ADF$.

2. 如图 (2.a), AB 为 $\odot O$ 的直径, C, D 为 $\odot O$ 上的两点, 且在 AB 同侧, $\odot O$ 在 C, D 两处的切线交于点 E, BC, AD 交于点 F, EF 交 AB 于 M, 证明: E, C, M, D 四点共圆.

证明 如图 (2.b), 延长 AC, BD 交于点 K, 则 $BC \bot AK$, $AD \bot BK$, 从而知 F 为 $\triangle KAB$ 的垂心. 又在圆内接六边形 CCADDB 中使用帕斯卡定理, 知 K, E, F 三点 共线, 从而 $KM \bot AB$ 于 M. 于是有 $\angle CMF = \angle CAF = \angle CDE$, 所以 E, C, M, D 四点共圆.

3. 如图 (3.a), AB 为 $\odot O$ 的直径, C, D 为 $\odot O$ 上两点, 且在 AB 同侧. $\odot O$ 在 C, D 两处 的切线交于点 E, BC, AD 交于点 F, EB 交 $\odot O$ 于点 G, 证明: $\angle CEF = 2\angle AGF$.

图 2: 第 2 题图

图 3: 第 3 题图

证明 如图 (3.b), 根据条件知

$$\angle CFD = \frac{\widehat{AB} + \widehat{CD}}{2} = \frac{\left(180^{\circ} - \widehat{AC}\right) + \left(180^{\circ} - \widehat{BD}\right)}{2}$$
$$= \angle CAB + \angle DBA = \angle ECF + \angle EDF,$$

且 EC = ED, 故点 E 为 $\triangle CFD$ 的外心. 于是 $\angle EFC = \angle ECF = \angle CAB = \angle CGE$, 因此 E, C, F, G 四点共圆, 所以

$$\angle CGF = \angle CEF = 2(90^{\circ} - \angle ECF) = 2(90^{\circ} - \angle CAB) = 2\angle ABC = 2\angle AGC,$$

故 $\angle AGF = \frac{\angle CGF}{2} = \frac{\angle CEF}{2}$,即得 $\angle CEF = 2\angle AGF$.

4. 如图 (4.a), AB 为 $\odot O$ 的直径, P 为 AB 延长线上一点, PC 切 $\odot O$ 于点 C, 点 C 关于 AB 的对称点为点 D. $CE \bot AD$ 于 E, F 为 CE 中点, AF 交 $\odot O$ 于 K, 求证: AP 为 $\triangle PCK$ 外接圆的切线. (第三十九届 IMO 预选题)

图 4: 第 4 题图

证明 如图 (4.b), 连接 PD, 根据圆的对称性知, 点 D 在 $\odot O$ 上, 且 PD 切 $\odot O$ 于 D. 连接 CD 交 AB 于 T, 则 $CT \bot AB$, 且 T 为 CD 的中点. 连接 TE, TK.

显然 TF 为 $\triangle CDE$ 的中位线, 所以 $TF/\!\!/AD$, $TF \perp CE$, 且 $\angle TFK = \angle DAK = \angle TCK$, 故 C, F, T, K 四点共圆. 于是 $\angle KTP = 90^\circ - \angle KTC = \angle KCD = \angle KDP$, 所以 T, D, P, K 四点共圆, 因此 $\angle TPK = \angle TDK = \angle PCK$, 即 AP 为 $\triangle PCK$ 外接 圆的切线.

5. 如图 (5.a), 四边形 ABCD 内接于 $\odot O$, 且 AC 为 $\odot O$ 的直径. D 关于 AC 的对称 点为 E, C 关于 BD 的对称点为 F. AF 交 BD 于点 G, BE 交 AC 于点 K. 求证: $KG \bot BG$. (2014年新加坡数学奥林匹克公开赛第二轮试题)

证明 方法一 如图 (5.b), 连接 GC. 根据条件, 显然点 E 在 $\odot O$ 上, 从而 BC 平分 $\angle DBE$. 设 BD 交 AC 于 M. 注意到 $\angle ABC = 90^\circ$, 所以 AB 为 $\angle KBM$ 的外角平分 线, 于是知

$$\frac{KC}{MC} = \frac{KB}{MB} = \frac{KA}{MA},$$

从而
$$\frac{AM}{CM} = \frac{AK}{CK}$$
.

根据对称性, GB 平分 $\angle AGC$, 所以 $\frac{AG}{CG} = \frac{AM}{CM} = \frac{AK}{CK}$, 所以 KG 为 $\angle AGC$ 的外角平分线, 因此 $KG \perp BG$.

图 5: 第 5 题图

方法二 如图 (5.b), 连接 GC. 根据条件, 显然点 E 在 $\odot O$ 上, 从而 BC 平分 $\angle DBE$. 设 BD 交 AC 于 M. 注意到 $\angle ABC = 90^\circ$, 所以 K, M, C, A 构成一组调和点列.

根据对称性, GB 平分 $\angle AGC$, 根据调和性质知 $KG \perp BG$.

6. 如图 (6.a), PA, PB 分别切 $\odot O$ 于 A, B, K 为 $\odot O$ 上一点, $BD\bot OK$ 于 D, 分别交 KP, KA 于点 E, F. 证明: E 为 BF 的中点.

图 6: 第 6 题图

证明 如图 (6.b), 延长 KO 交 $\odot O$ 于点 T, 延长 TA 交 KB 于点 S, 连接 TB 交 AK 于点 H. 在圆内接六边形 AATBBK 中使用帕斯卡定理, 知 S, P, H 三点共线. 又

 $KA \perp TS$, $TB \perp KS$, 故 H 为 $\triangle STK$ 的垂心. 进而知 $\angle SAP = \angle TKA = \angle ASP$, 从而 $P \neq SH$ 的中点. 注意到 $SH/\!\!/BD$, 所以 E 为 BF 的中点.

7. 如图 (7.a), $\triangle ABC$ 中, CA = CB, D 为 AB 的中点, EF 过点 D, 且使得 $\triangle ABC$ 与 $\triangle EFC$ 有相同的内心. 证明: $DE \cdot DF = DA^2$.

图 7: 第 7 题图

8. 如图 (8.a), AD 平分 $\angle BAC$ 交 BC 于点 D, $DE \bot AB$ 于 E, $DF \bot AC$ 于 F, CE, BF 交于点 K, 证明: $AK \bot BC$.

图 8: 第 8 题图

证明 如图, 延长 AH 交 BC 于 G, 根据塞瓦定理得

$$\frac{CG}{BG} \cdot \frac{GE}{EA} \cdot \frac{AF}{FC} = 1 \Rightarrow \frac{CG}{BG} = \frac{CF}{BE} = \frac{\tan \angle ABC}{\tan \angle ACB} \Rightarrow AK \bot BC.$$

9. 如图 (9.a), *P* 为 ⊙ *O* 外一点, *PA*, *PB* 分别切 ⊙ *O* 于 *A*, *B*. *C* 为 ⊙ *O* 上一点, 过 *C* 作 ⊙ *O* 的切线分别交 *PA*, *PB* 于 *E*, *F*. *OC* 交 *AB* 于 *L*, *LP* 交 *EF* 于 *D*. 证明: *D* 为 *EF* 的中点. (1991 年四川竞赛题)

图 9: 第 9 题图

证明 如图 (9.b), 过点 L 作 OC 的垂线分别交 PA, PB 于点 M, N, 注意到 $OA \perp PM$, $OB \perp PN$, 根据西姆松定理的逆定理知 O, M, P, N 四点共圆. 又 OP 平分 $\angle APB$, 故 OM = ON, 进而知 LM = LN. 而 $MN /\!\!/ EF$, 故 D 为 EF 的中点.

10. 如图 (10.a), 点 P 为 $\odot O$ 外一点, PA, PB 分别切 $\odot O$ 于 A, B. C 为 $\odot O$ 上一点, $CD \bot AB$ 于 D, 过 C 作 $\odot O$ 的切线分别交 PA, PB 于 E, F, 证明: CD 平分 $\angle EDF$. 证明 方法一 如图 (10.b), 延长 FE 交 BA 于点 K, 过 K 作 $\odot O$ 的切线 KT 切 $\odot O$ 于点 T, 注意到点 K 在 P 关于 $\odot O$ 的极线上, 过点 P 也在点 K 关于 $\odot O$ 的极线上, 从而知 P, C, T 共线, 所以 K, C, E, F 构成一组调和点列. 而 $CD \bot AB$, 故 CD 平分 $\angle EDF$.

方法二 如图 (10.c), 作 $EM \perp AB \oplus M$, 作 $FN \perp AB \oplus N$, 则

$$\frac{EM}{FN} = \frac{FA}{FB} = \frac{EC}{FC} = \frac{MD}{ND},$$

故 $\triangle EMD$ $\triangle FND$, 所以 $\angle EDM = \angle FDN$, 因此 $\angle EDC = \angle FDC$.

11. 如图 (11.a), AB 为 $\odot O$ 的直径, PA 切 $\odot O$ 于点 A, PCD 为 $\odot O$ 的一条割线, PO 交 BD 于 E. 证明: $AC \bot AE$.

图 10: 第 10 题图

图 11: 第 11 题图

证明 方法一 如图 (11.b),作 PK 且 $\odot O$ 于 K,则 $PE \bot AK$, $BK \bot AK$, 所以 $KB/\!\!/PE$. 又注意到四边形 CADK 为调和四边形,故 BK, BA, BC, BD 构成一组调和线束,从 而 O 为 EF 的中点. 进而知四边形 AEBF 为平行四边形,于是 $AE/\!\!/BC$, $AE \bot AC$.

方法二 如图 (11.c), 连接 BC 交 PE 于 F, 作 $OK \perp CD$ 于 K, 则 K 为 CD

的中点. 注意到 O, K, A, P 四点共圆, 故 $\angle AKD = \angle FOB$. 又 $\angle ADK = \angle FBO$, 则 $\triangle ADK \hookrightarrow \triangle FBO$. 注意到 O 为 AB 的中点, 故 $\triangle ADC \hookrightarrow \triangle FBA$, 从而知 $\angle FAB = \angle ACD = \angle ABD$, 故 AF//BD, 于是四边形 AEBF 为平行四边形, 所以 AE//BC, $AE\perp AC$.

方法三 如图 (11.d), 延长 AE 交 $\odot O$ 于点 K, 在圆内接六边形 AABDCK 中使用帕斯卡定理, 注意到 P, O, E 共线, 故 C, O, K 共线, 所以 $AE \bot AC$.

12. 如图 (12.a), AB 为半圆 O 的直径, C, D 为半圆上两点. 过 B 作半圆的切线交 CD 于 P, 直线 PO 分别交直线 CA, AD 于点 E, F. 求证: OE = OF. (2007 年第四届东南地区数学奥林匹克试题)

图 12: 第 12 题图

证明 方法一 如图 (12.b), 过 P 作 PG 切半圆 O 于 G, 连接 GA, GB, GC, GD, BC, BD. 易知 $OP \bot BG$, $AG \bot BG$, 所以 $AG /\!\!/ OP$. 又四边形 CBDG 为调和四边形, 所以 AC, AD, AG, AB 构成一组调和线束. 又因为 $AG /\!\!/ OP$, 所以 OE = OF.

方法二 如图 (12.c),作 PG 切半圆 $O \oplus G$,则 B, G 关于 P, O 对称,且 P, B, O, G 四点共圆. 所以 $\angle GPO = \angle GBA = \angle GDA$, 于是知 D, P, F, G 四点共圆. 进而知 $\angle FBP = \angle FGP = \angle FDP = \angle CDA = \angle CBA$, 故 $\angle FBC = \angle PBA = 90^\circ = \angle ECB$, 所以 $FB/\!\!\!/EA$. 而 O 为 AB 的中点, 所以 O 为 EF 的中点.

13. 如图 (13.a), $\triangle ABC$ 中, D, E 分别为 AB, AC 上一点, 且 $DE/\!\!/BC$, BE, CD 交于点 F. $\triangle BDF$ 的外接圆 $\bigcirc O$ 与 $\triangle CEF$ 的外接圆 $\bigcirc P$ 交于点 G, 求证: $\angle BAF = \angle CAG$. 证明 如图 (13.b), 延长 AF 交 BC 于 H. 因为 $DE/\!\!/BC$, 所以 H 为 BC 的中点, 延

图 13: 第 13 题图

长 AH 到 I, 使得 AH = HI, 连接 BC, CI, 则四边形 ABIC 是平行四边形.

连接 GC, GE, GD, GB, FG, 因为 $\angle ACG = \angle BFG = \angle BDG$, 所以 A, D, G, C 四点共圆. 于是知 $\angle DGC = 180^{\circ} - \angle BAC = \angle ABI$. 同理可知 A, B, G, E 四点共圆, 所以 $\angle DBG = \angle CEG$, $\angle BDG = \angle ECG$, 所以 $\triangle BDG \Leftrightarrow \triangle ECG$, 所以

$$\frac{DG}{CG} = \frac{BD}{CE} = \frac{AB}{AC} = \frac{AB}{IB},$$

所以 $\triangle DGC \hookrightarrow \triangle ABI$, 因此 $\angle BAF = \angle GDC = \angle CAG$.

- $\stackrel{ extstyle ilde{f Y}}{ extstyle extstyl$
- 14. 如图 (14.a), $\odot O$, $\odot P$ 交于 A, B 两点, BO, PA 的延长线交于点 C, CD, CE 分别切 $\odot O$, $\odot P$ 于 D, E, 连接 DE 交 AB 于 F. 求证: F 为 DE 的中点. (深圳黎誉俊老师 题)

证明 如图 (14.b), 延长 AP 交 $\odot P$ 于 G, 连接 EG, EP, EA, EB, OP, oA, OD, AD, BD. 设 $\odot O$, $\odot P$ 的半径分别为 r_1, r_2 . 因为

$$\frac{CO}{CP} = \frac{\sin \angle CPO}{\sin \angle BOP} = \frac{\sin \angle APO}{\angle AOP} = \frac{AO}{AP} = \frac{r_1}{r_2},$$

所以 $\triangle CDO$ \triangle $\triangle CEP$, 于是知 $\frac{CD}{CE} = \frac{r_1}{r_2}$. 进而可知 $\triangle CDB$ \triangle $\triangle CEG$ \triangle $\triangle CAE$, 于是 $\frac{DB}{AE} = \frac{CD}{CA} = \frac{CB}{CE}$. 由 $\frac{CD}{CA} = \frac{CB}{CE}$ 知 $\triangle CDA$ \triangle $\triangle CBE$, 从而 $\frac{DA}{BE} = \frac{CA}{CE}$, 因

图 14: 第 14 题图

此

$$\begin{split} \frac{S_{\triangle DAB}}{S_{\triangle EAB}} &= \frac{DA \cdot DB \sin \angle ADB}{EA \cdot EB \sin \angle AEB} = \frac{DA}{BE} \cdot \frac{DB}{AE} \cdot \frac{\sin \angle ADB}{\sin \angle AEB} \\ &= \frac{CD}{CA} \cdot \frac{CA}{CE} \cdot \frac{\sin \angle AOP}{\sin \angle APO} = \frac{CD}{CE} \cdot \frac{\sin \angle AOP}{\sin \angle APO} = \frac{r_1}{r_2} \cdot \frac{r_2}{r_1} = 1. \end{split}$$

所以 F 为 DE 的中点.

15. 如图 (15.a), 半径不相等的两圆 $\odot O$, $\odot P$ 交于 A, B 两点, 过点 A 的直线 CD 分别交 $\odot O$, $\odot P$ 于 C, D. CB 延长线交 $\odot P$ 于 F, DB 交 $\odot O$ 于 E. 过 A 作 CD 的垂线交 EF 的中垂线于 G, 求证: $AG^2 = EG^2 + AC \cdot AD$. (2013年 CMO 第一题推广)

图 15: 第 15 题图

证明 如图 (15.b), 连接 AB, CE, DF, GF. 因为

$$\angle CAE = \angle CBE = \angle FBD = \angle FAD, \angle ACE = \angle ABD = \angle AFD,$$

所以 $\triangle ACE$ \hookrightarrow $\triangle AFD$, 因此 $AC \cdot AD = AE \cdot AF$. 又由于 $\odot O$, $\odot P$ 的半径不相等, 所以 $AE \neq AF$. 又 GE = GF,

$$\angle EAG = 90^{\circ} - \angle CAE = 90^{\circ} - \angle CBE = 90^{\circ} - \angle FBD = 90^{\circ} - \angle FAD = \angle FAG$$

所以 A, E, G, F 四点共圆. 易知 $\triangle GEK \hookrightarrow \triangle GAE$, 所以 $EG^2 = GK \cdot AG$. 又易知 $\triangle AEK \hookrightarrow \triangle AGF$, 所以 $AK \cdot AG = AE \cdot AF = AC \cdot AD$, 因此

$$EG^2 + AC \cdot AD = GK \cdot AG + AK \cdot AG = AG^2$$
.

16. 如图 (16.a), $\triangle ABC$ 内接于 $\bigcirc O$, D 为 BC 的中点, AD 交 $\bigcirc O$ 于 E. 过点 E 作 $EF/\!\!/BC$, 交 $\bigcirc O$ 于 F, 过点 C 作 $CG \bot AC$, 交 AE 于 G. 求证: $\angle AGC = \angle FGC$.

图 16: 第 16 题图

证明 如图 (16.b), 连接 BE, CF, 过点 C 作 CK//BE 交 AE 于 K. 因为 BD = CD, 所以四边形 BECK 为平行四边形. 于是知

$$CK = BE = CF, \angle KCD = \angle EBC = \angle FCB,$$

所以 $\triangle KCD \cong \triangle FCD$, 所以 $KF \perp BC$. 于是知

$$\angle CFK = 90^{\circ} - \angle FCD = 90^{\circ} - \angle EBC = 90^{\circ} - \angle EAC = \angle CGK$$

所以 G, F, C, K 四点共圆. 而 CK = CF, 所以 $\angle AGC = \angle FGC$.

17. 如图 (17.a), $\triangle ABC$ 的内切圆 $\odot I$ 切 $BC \mp D$, 过 I 作 $IE/\!\!/AD$ 交 $BC \mp E$, 过 E 作 $\odot I$ 的切线, 分别交 AB, AC 与 F, G. 求证: E 为 FG 的中点.

图 17: 第 17 题图

证明 如图 (17.b), 设 \odot I 切 FG 于点 H, 连接 DH 交 IE 于 M, 则 M 为 DH 的中点. 连接 AH, 延长 MI 交 AH 于 N, 因为 $MN/\!\!/AD$, 所以 N 为 AH 的中点. 在退化的圆外切四边形 EFAG 中使用牛顿定理, 即知 E 为 FG 的中点.

18. 如图 (18.a), $\odot P$, $\odot Q$ 交于 A, B 两点, 它们的外公切线 CD 分别切 $\odot P$, $\odot Q$ 于 C, D. E 为 BA 延长线上一点, EC 交 $\odot P$ 于 F, ED 交 $\odot Q$ 于 G, AH 平分 $\angle FAG$ 交 FG 于 H. 求证: $\angle FCH = \angle GDH$. (深圳黎誉俊老师题)

图 18: 第 18 题图

证明 因为 E 在 $\odot O$, $\odot P$ 的根轴上, 所以 F, C, D, G 四点共圆.

我的博客: yuxtech.github.io

如图 (18.b), 设点 O 为 $\odot P$, $\odot Q$ 的外位似中心, 则 $\odot P$, $\odot Q$ 以点 O 为反演中心 互为反形. 延长 OF 交 $\odot Q$ 于 G_1 , 则 $OA^2 = OC \cdot OD = OF \cdot OG$, 所以 F, C, D, G_1 四点共圆, 于是点 G_1 与点 G 重合为一点. 以 O 为圆心, 以 OA 为半径作 $\odot O$ 交 CD 于 K, 则 $\odot O$ 为 K 关于 C, D 的阿波罗尼斯圆. 由于 AH 平分 $\angle FAG$, 所以点 H 为 $\odot O$ 与 FG 的交点, 从而 $\odot O$ 也为点 H 关于 F, G 的阿波罗尼斯圆. 于是

$$\angle FCH - \angle GDH = (\angle FCA - \angle HCA) - (\angle GDA - \angle HDA)$$

$$= (\angle FCA - \angle GDA) - (\angle HCA - \angle HDA)$$

$$= [(180^{\circ} - \angle FBA) - (180^{\circ} - \angle GBA)]$$

$$- [(\angle HCA - \angle HKA) - (\angle HDA + \angle HKA) + 2\angle HKA]$$

$$= (\angle GBA - \angle FBA)$$

$$- [(\angle KAC - \angle KHC) - (\angle KAD - \angle KHD) + 2\angle HKA]$$

$$= [(\angle GBH + \angle HBA) - (\angle FBH - \angle HBA) - 2\angle HKA]$$

$$= 2\angle HBA - 2\angle HKA = 0,$$

所以 $\angle FCH = \angle GDH$.

19. 如图 (19.a), $\odot O$ 为 $\triangle ABC$ 的外接圆, I, E 分别为 $\triangle ABD$ 的内心和一个旁心. $\angle BAC$ 的外角平分线交 BC 的延长线于 D. $IF \bot DE$ 于 F, $\overline{\bigcirc}$ $\bigcirc O$ 于 G, 求证: G 为 IF 的中点. (潘成华老师题)

证明 方法一 如图 (19.b), 连接 EB, EC 并延长, 分别交直线 AC 于 K, J. 易知 K, J 也是 $\triangle ABC$ 的旁心, 且 $\triangle ABC$ 为 $\triangle EKJ$ 的垂足三角形, I 为 $\triangle EKJ$ 的垂心, 从而 $\bigcirc O$ 为 $\triangle EKJ$ 的九点圆.

设 \odot O 分别交 KJ, IE 于 L, M, 则知 L, M 分别为 KJ 和 IE 的中点. 又易知 K, B, C, J 四点共圆,且圆心为 L, 于是知 $LI \perp DE$, 所以 L, I, G, F 四点共线. 因此 $\angle MGL = \angle MAL = 90^\circ$, 从而 $MG/\!\!/DE$. 又 M 为 IE 的中点,所以 G 为 IF 的中点.

方法二 如图 (19.c), 连接 AE 交 $\odot O$ 于 J, 则知 A, I, J, E 共线, 且 J 为 IE 的中点. 又因为 $\angle IBE = \angle ICE = \angle IFE$, 所以 B, E, F, C, I 五点共圆, 且圆心为 J.

延长 DA 交 $\odot O$ 于 H, 则知 $DF \cdot DE = DC \cdot DB = DA \cdot DH$, 所以 H, A, E, F 四点共圆, 于是知 $\angle HFE = \angle HAE = 90^\circ$, 所以 H, I, G, F 四点共线. 又

图 19: 第 19 题图

 $\angle HGJ = \angle HAJ = 90^{\circ}$, 所以 $JG/\!\!/EF$, 故 G 为 IF 的中点.

20. 如图 (20.a), 在锐角 $\triangle ABC$ 中, $\angle B > \angle C$, F 是 BC 的中点, BE, CD 是高, G, H 分别是 FD, FE 的中点. 若过 A 且平行于 BC 的直线交 GH 于 I, 求证: AI = FI.

图 20: 第 20 题图

证明 如图 (20.b), 显然 B, C, D, E 四点共圆, 且圆心为点 F. 过点 A 作 AF 的垂线, 交 CB 于 M, 交 DE 于 N, 根据蝴蝶定理知 AM = AN, 从而 $\triangle AFM \cong \triangle AFN$, 所

设 GH 交 FN 于 I', 因为 $GH/\!\!/DE$, 所以 I 是 FN 的中点, AI' = FI', 所以 $\angle I'AF = \angle I'FA = \angle MFA$, 所以 $AI'/\!\!/BC$, 于是知 I' 与 I 重合为一点, 所以 AI = FI.

21. 如图 (21.a), D 是 $\triangle ABC$ 边 BC 上一点, 使得 $\angle DAC = \angle ABD$, $\odot O$ 过点 B, D 分别交 AB, AD 于点 E, F, 直线 BF 交 DE 于点 G, 求证: $CM \bot AO$. (2009 年国家集训队选拔考试试题)

图 21: 第 21 题图

证明 方法一 如图 (21.b), 连接 EF 并延长交 BC 于点 J, 延长 AG 交 BD 于点 I, 交 EF 于 H. 连接 AJ, CJ, 则知直线 GK 为点 A 关于 $\odot O$ 的极线, 于是知 $JG \bot AO$.

又
$$\angle DAC = \angle ABD = \angle DFJ$$
, 所以 $HJ/\!\!/AC$, 所以 $\frac{IH}{IA} = \frac{IJ}{IC}$.

又在完全四边形 BDFEJA 中, 知 (AGHI) 是一组调和点列. 又 M 是 AG 的中点, 所以 $IG \cdot IA = IH \cdot IM$, 即 $\frac{IG}{IM} = \frac{IH}{IA} = \frac{IJ}{IC}$, 于是知 $CM/\!\!/JG$, 所以 $CM \perp AO$.

方法二 如图 (21.c), 因为 A, G 为一对共轭点, 故 M 关于 $\odot O$ 的幂为 MA^2 , 于 是知 $MO^2 - MA^2 = R^2 = CO^2 - CD \cdot CB = CO^2 - CA^2$, 从而 $CM \perp AO$.

22. 如图 (22.a), CD 为 $\odot O$ 的直径, PC, PE 分别切 $\odot O$ 于 C, E, 割线 PBA 交 $\odot O$ 于 A, B, AC, BD 交于点 F, DE 交 AB 于 G, 求证: $\angle GFE = \angle ADE$.

证明 如图 (22.b), 延长 PA 交 CD 于 H, 连接 AE, BE, BC, 因为四边形 AEBC 是调和四边形, 所以 DA, DB, DE, DC 是一组调和线束, 从而 H, G, A, B 是一组调和点列, 于是知 G 在 H 关于 $\odot O$ 的极线上. 又 F 在 H 关于 $\odot O$ 的极线上, 所以直线 GF

图 22: 第 22 题图

是 H 关于 $\odot O$ 的极线, 于是知 $GF \perp CD$. 从而知

$$\angle GFB = 90^{\circ} - \angle FDC = \angle DCB = 180^{\circ} - \angle GEB$$

所以 G, F, B, E 四点共圆, 于是知 $\angle GFE = \angle GBE = \angle ADE$.

23. 如图 (23.a), O 为 $\triangle ABC$ 的外心, D, E 分别为 AB, AC 上一点, $OF \bot DE$ 于 F, L, M, N 分别为 DE, BE, CD 的中点, 求证: F, L, M, N 四点共圆.

引理的证明: 如图 (23.c), 作 $\triangle ABC$ 的外接圆 $\bigcirc O$, 分别延长 BF, CF 交 $\bigcirc O$ 于 I, J, 延长 JD, IE 交于点 K, 根据帕斯卡定理知 K 在 $\bigcirc O$ 上. 延长 KF 交 $\bigcirc O$ 于 T, 连接 TB 交 DE 于 P, 连接 TC 交 DE 于 Q. 根据蝴蝶定理: FP = FE, FD = FQ. 由中位线定理知 $MF/\!\!/BP$, $NF/\!\!/CE$, 所以 $\angle MFN = \angle BTC = \angle BAC$.

下面借助引理证明原命题. 如图 (23.d), 连接 MF, NF, ML, NL, 根据引理知 $\angle MFN = \angle A$. 又因为 $ML/\!\!/BD$, $NL/\!\!/CF$, 所以 $\angle MLN = \angle A$. 于是 $\angle MFN = \angle MLN$, 所以 F, L, M, N 四点共圆.

42. 如图 (42.a), AB 为半圆 O 的直径, $OC \perp AB$, C 在圆上, P 是 BA 延长线上一点, PD 切 $\odot O$ 于 D, PE 平分 $\angle DPB$, 分别交 AC, BC 于 E, F, 求证: $\angle EOF = 90^\circ$. (2007年辽宁高中数学竞赛)

图 23: 第 23 题图

图 42: 第 42 题图

证明. 如图 (42.b), 连接 DA, DE, DO, DB, DF, DC, 则

$$\angle DPE = \frac{1}{2} \angle DPO = \frac{1}{2} (90^{\circ} - \angle DOA) = 45^{\circ} - \angle DBA$$

$$= \angle ABC - \angle ABD = \angle DBC = \angle DAC$$

所以 D, P, A, E 四点共圆, P, D, F, B 四点共圆. 注意到 AF 平分 $\angle DAB$, 因此 AE = DE, BF = DF. 又 OA = OD = OB, 所以 $OE \bot AD$, $OF \bot BD$, 因此 $OE \bot OF$, 即 $\angle EOF = 90^\circ$.

43. 如图 (43.a), PA 为 $\odot O$, PBC 为 $\odot O$ 的割线, $AD \perp OP$ 于 D, $\triangle ADC$ 的外接圆与 BC 的另一个交点为 E, 证明: $\angle BAE = \angle ACB$. (2012 年初中数学联赛二试试题)

图 43: 第 43 题图

证明. 如图 (43.b), 连接 OA, OB, OC, BD, CD. 因为 $OA \perp PA$, 根据射影定理知 $PA^2 = PD \cdot PO$. 又根据切割线定理知 $PA^2 = PB \cdot PC$, 所以 $PD \cdot PO = PB \cdot PC$, 因此 B, D, O, C 四点共圆. 于是知

$$\angle BEA = 180^{\circ} - \angle AEC = 180^{\circ} - \angle ADC$$
$$= 90^{\circ} - \angle CDO = 90^{\circ} - \angle CBO = \angle BAC.$$

因此 $\triangle ABE \hookrightarrow \triangle CBA$, 所以 $\angle BAE = \angle ACB$.

44. 如图 (44.a), $\square ABCD$ 中, $CE \perp AB$ 于 E, $CF \perp AD$ 于 F, EF 交 BD 于 G, 求证 $GC \perp AC$.

证明. 如图 (44.b), 设 AC, BD 交于点 O, 则 O 为 BD 的中点. 根据条件知 C, E, A, F 四点共圆, 圆心为 O, 作四边形 CEAF 的外接圆 $\odot O$. 过 E 作 $EM/\!\!/BD$, 交 AD 于 M, 交 AC 于 N. 因为 O 为 BD 的中点, 所以 N 为 EM 的中点. 过 O 作 $OK \bot EF$, 根据垂径定理知 K 为 EF 的中点, 所以 $NK/\!\!/MF$, 于是知 $\angle NKE = \angle AFE = \angle ACE$,

图 44: 第 44 题图

所以 E, N, K, C 四点共圆, 所以 $\angle KCO = \angle KEN = \angle KGO$, 所以 O, K, G, C 四点共圆, 所以 $\angle OCG = 180^{\circ} - \angle OKG = 90^{\circ}$, 所以 $GC \bot AC$.

45. 如图 (45.a), $\triangle ABC$ 内接于 $\bigcirc O$, $AD \bot BC$ 于 D, AD 交 CO 于 E, F 为 AE 的中点, FO 交 BC 于 H, $CG \bot AO$ 于 G, 求证: B, H, O, G 四点共圆.

证明. 方法一 如图 (45.b), 延长 AO 交 $\bigcirc O$ 于 J, 连接 EJ, BJ, CJ. 因为

$$\angle BCJ = \angle BAJ = \angle CAE, \angle CBJ = \angle CAJ = \angle ACE,$$

所以 $\triangle BCJ \hookrightarrow \triangle CAE$, 所以

$$\frac{AE}{CJ} = \frac{AC}{BC} \Rightarrow AE \cdot BC = AC \cdot CJ = CG \cdot AJ \Rightarrow \frac{AE}{CG} = \frac{AJ}{BC}.$$

又 $\angle EAJ = \angle GCB$, 所以 $\triangle EAJ \hookrightarrow \triangle GCB$, 所以 $\angle CJA = \angle GBH$. 又 OF 为 $\triangle AJE$ 的中位线, 所以 $OF/\!\!/JD$, 故 $\angle HOJ = \angle EJA = \angle GBH$, 所以 B, H, O, G 四 点共圆.

方法二 如图 (45.c), 延长 CG 交 $\odot O$ 于 K, 则 G 为 CK 的中点, 且 $\angle KBC$ = $2\angle ABC$ = $\angle EOA$. 又易知 A, G, D, C 四点共圆, 则 $\angle BCK$ = $\angle OAE$, 所以 $\triangle CBK$ \backsim $\triangle AOE$. 又注意到 F 为 AE 的中点, G 为 CK 的中点, 所以 $\triangle CBG$ \backsim $\triangle AOF$, 故 $\angle CBG$ = $\angle AOF$, 所以 B, H, O, G 四点共圆.

方法三 如图 (45.d), 延长 CO 交 ⊙O 于 J, 连接 JB 交 AO 的延长线于 M, 连接 CM, 延长 FH 交 JM 于 K. 因为 $JM \bot BC$, $AD \bot BC$, 所以 $JM /\!\!/ AD$, 又 F 为 AE 的中点, 所以 K 为 JM 的中点, 所以 OK 为 $\triangle JMC$ 的中位线, 则 $OK /\!\!/ MC$. 又显然 B, M, C, G 四点共圆, 所以 $\angle BGO = \angle BCM = \angle CHO$, 所以 B, H, O, G 四点共圆.

图 45: 第 45 题图

46. 如图 (46.a), I 是 $\triangle ABC$ 的内心, A 关于 BC 的对称点为 K, E 为 BC 的中点, F 为 \widehat{BC} 的中点, EF 的中点为 N, BI 的中点为 M, MN 交 BC 于 D, 求证: A, K, D, M 四点共圆.

证明. 根据条件知 K 在直线 BC 上, 且 AB = KB. 连接 AF, 则 AF 过点 I, 且 FB = FI. 因为 M 为 BI 的中点, 所以 $FM \perp BI$, 于是知 B, M, E, F 四点共圆, 所以

$$\angle MFE = \angle EBI = \angle ABI, \angle FME = \angle FBC = \angle FAC = \angle BAI,$$

所以 $\triangle MFE$ \hookrightarrow $\triangle ABI$. 又 N, M 分别为 EF, BI 的中点, 所以 $\triangle MFN$ \hookrightarrow $\triangle ABM$, 于是知 $\angle FMN = \angle BAM$, 所以

$$\angle DMA + \angle DKA = (\angle FMA - \angle FMN) + \angle BAK$$

图 46: 第 46 题图

$$= (\angle FMA - \angle BAM) + (\angle BAM + \angle MAK)$$
$$= \angle FMA + \angle MAK.$$

又因为 $FM \perp BI$, $AK \perp BI$, 所以 FM //AK, $\angle FMA + \angle MAK = 180^\circ$, 于是知 $\angle DMA + \angle DKA = 180^\circ$, 即 A, K, D, M 四点共圆.

47. 如图 (47.a), H 为 $\triangle ABC$ 的垂心, D 为 CH 的中点, $BE \perp AD$ 于 E, 证明: B, C, E, H 四点共圆. (田开斌老师题)

图 47: 第 47 题图

证明. 方法一 如图 (47.b), 延长 AD 到 F, 使得 DF = DA, 则四边形 AHFC 为平行 四边形, 所以 CF//AH, FH//AC. 因为 $AH \bot BC$, 所以 $FC \bot BC$, 所以 B, E, C, F 四点共圆; 因为 $BH \bot AC$, 所以 $BH \bot FH$, 所以 B, H, E, F 四点共圆, 因此 B, H, E, C, F 五点共圆, 得证.

方法二 如图 (47.c), 延长 AH 交 BC 于 F, 连接 BH, EH, EF, DF. 因为 $HF \perp BC$ 于 F, 所以 DF = DC = DH, 所以 $\angle DFC = \angle DCF = \angle HAB$. 又显然 A, B, F, E 四点共圆, 所以 $\angle EFD = \angle FAD$, 因此 $DE \cdot DA = DF^2 = DH^2$, 所以 $\angle DHE = \angle EAH = \angle EBC$, 所以 B, C, E, H 四点共圆.

48. 如图 (48.a), $\odot O$ 为 $\triangle ABC$ 的外接圆, D 为 \widehat{BAC} 的中点, E 为 \widehat{BC} 的中点, $CF \bot AB$ 于 F, 连接 EF, 过 F 作 $FG \bot EF$ 交 DA 的延长线于 G, 求证: CG = CD.

图 48: 第 48 题图

证明. 如图 (48.b), 连接 DE 交 BC 于 K, 则 K 为 BC 的中点. 连接 FK, 知 $\angle BFK = \angle FBK$. 连接 EC, EA, 则 $EA\bot DG$. 由于 $FG\bot EF$, 从而 E, F, A, G 四点共圆. 于是 知 $\angle EGF = \angle EAF = \angle ECK$, 所以 $\triangle EFG$ \backsim $\triangle EKC$, 因此 $\triangle ECG$ \backsim $\triangle EKF$, 于是知 $\angle CGE = \angle KFE$. 从而

$$\angle CGD = \angle AGE - \angle CGE = \angle BFE - \angle KFE = \angle BFK = \angle FBK = \angle CDG$$
,
所以 $CG = CD$.

☆

49. 如图 (49.a), A, B, C 为 \odot O 上三点, 过 C 作 $DC \bot AC$ 交 AB 延长线于 D, 过 D 作 $DE \bot AD$ 交 \odot O 于 F, 交 AC 于 E, 过 B, E, F 三点的圆为 \odot P, 过 C, D, F 三点的圆为 \odot P, 求证: \odot P 与 \odot P 外切于点 P. (2012年巴尔干地区数学奥林匹克试题)

图 49: 第 49 题图

证明. 如图 (49.b), 连接 BE, BC, PE, PF, QD, QF. 我们要证 $\odot P$ 与 $\odot Q$ 外切于点 F, 只需证明 B, F, Q 共线, 即只需证明 $\angle PFE = \angle QFD$. 而

$$\angle PFE = 90^{\circ} - \angle EBF, \angle QFD = 90^{\circ} - \angle DCF,$$

所以我们只需证明 $\angle EBF = \angle DCF$.

因为 $DE \perp AO$, 所以 $\angle BDE = 90^{\circ} - \angle BAO = \angle BCE$, 所以 B, D, C, E 四点共圆, 因此 $\angle DBE = \angle DCE = 90^{\circ}$. 又 $\angle DBF = \angle ECF$, 所以 $\angle EBF = \angle DCF$, 命题得证.

50. 如图 (50.a), $\triangle ABC$ 中, D, E, F 分别为 BC, CA, AB 的中点, 过 E 作 $EM \bot AC$ 交 AD 于 M, 过 F 作 $FN \bot AB$ 交 AD 于 N, EM, FN 交于点 O. CM, BN 交于点 K, 求证: $OK \bot AK$.

图 50: 第 50 题图

☆

证明. 方法一 如图 (50.b), 连接 OA < OB, OC, OD, 延长 OK 交 BC 于 L, 连接 AL.

显然 $\triangle O$ 为 $\triangle ABC$ 的外心, 所以 $OD \bot BC$. 根据对称性值 $\angle OCM = \angle OAM = \angle OBN$, 所以 B, C, K, O 四点共圆, 于是知 $\angle OKB = \angle OCB = \angle OBL$, 所以 $\triangle OBK \hookrightarrow \triangle OLC$, 所以 $\angle OLD = \angle OBK = \angle OAD$, 因此 O, D, L, A 四点共圆, 所以 $\angle OAL = 90^\circ$. 另一方面, 因为 $\triangle OBK \hookrightarrow \triangle OLC$, 所以

 $OK \cdot OL = OB^2 = OA^2 \Rightarrow \triangle OAK \Leftrightarrow \triangle OLA \Rightarrow \angle OKA = \angle OAL = 90^\circ$

即 $OK \perp AK$.

方法二 记 d(P,l) 表示点 P 到直线 l 的距离. 注意到 D 为 BC 的中点, 根据对称性 知 d(A,BK)=d(B,AD)=d(C,AD=d(A,CK), 所以 $\angle AKB=\angle AKC$.

如图 (50.c), 延长 AK 交 BC 于 P, 则 PK 平分 $\angle BKC$. 根据条件知 O 为 $\triangle ABC$ 的外心, 连接 OA, OB, OC, 根据对称性知 $\angle OCM = \angle OAM = \angle OBK$, 所以 B, O, K, C 四点共圆. 因此

$$\angle OKM = \angle OBC = \angle OCB = \angle OKB$$
,

即 OK 平分 $\angle BKM$, 所以 $OK \perp AK$.

51. 如图 (51.a), $\triangle ABC$ 中, D 为 BC 的中点, $\odot O$ 过 A, C 两点, 且切 DA 于 A, 延长 BA 交 $\odot O$ 于 E, CE 的延长线交 DA 于 F, 求证: $FO \bot BC$. (2013 年第九届北方数学奥林匹克试题)

证明 方法一 如图 (51.a), 延长 FO 交 BC 于 M. 过 O 作 $ON \bot EC$ 于 N, 则 N 为 CE 的中点, 连接 DN, 则 $DN/\!\!/BE$. 连接 ND, NA, OA, 则 $OA \bot FA$.

因为 DN//AB, 所以 $\angle NDA = \angle BAD = \angle EAF = \angle NCA$, 所以 A, D, C, N 四点共圆. 又 $\angle ONF = \angle OAF = 90^\circ$, 所以 O, N, A, F 四点共圆. 于是知 $\angle FOA = \angle FNA = \angle ADC$, 所以 A, D, M, O 四点共圆, 所以 $OM \perp BC$.

方法二 如图 (51.c), 作 FG 切 $\odot O$ 于 G, 则 $FO \bot AG$. 又因为四边形 ACGE 为调和四边形, 所以 AC, AE, AG, AF 为调和线束, 而 D 为 BC 的中点, 所以 $AG/\!\!/BC$, 所以 $FO \bot BC$.

52. 如图 (52.a), AB 为 $\odot O$ 的直径, CB 切 $\odot O$ 于 B, D 为 \widehat{AB} 上任一点, CD 交 $\odot O$ 于 F, AD, OC 交于点 E, 连接 EB, FB, 证明: $EB \bot FB$.

图 51: 第 51 题图

图 52: 第 52 题图

证明 方法一 如图 (52.b), 过 C 作 CG 切 $\odot O$ 于 G, 连接 GA, GB, GC, GD, GE, GO. 易知 OC 为线段 BG 的中垂线, 所以 EG = EB, $\angle CEB = \angle CEG$. 又 $AG \bot BG$, 所以 $AG /\!\!/ EO$, 所以 $\angle CED = \angle DAG = \angle DGC$, 所以 G, D, C, E 四点共圆, 因此 $\angle CEG = \angle GDF = \angle GBF$, 所以 $\angle CEB = \angle GBF$. 而 $BG \bot OE$, 所以 $EB \bot FB$.

方法二 如图 (52.c), 延长 EB 交 $\odot O$ 于 G, 连接 GF 交 AB 于 O'. 在六边形 FGBBAD 中使用帕斯卡定理知 O', E, C 三点共线, 所以 O' = O, 于是知 $FB \bot EB$.

53. 如图 (53.a), 正方形 ABCD 与正方形 EFGH, EF 交 AB 于 J, FG 交 BC 于 K, GH 交 CD 于 L, HE 交 DA 于 I, 求证: $IK \bot JL$.

证明 如图 (53.b), 作 $KM \perp HE$ 于 M, $KN \perp AD$ 于 N, $JP \perp HG$ 于 P, $JQ \perp CD$ 于

图 53: 第 53 题图

Q. 设 IK, JK 交于点 S, MK, PJ 交于点 R. 已知

$$KM = JP, KN = JQ, \angle MKN = 180^{\circ} - \angle MIN = 180^{\circ} - \angle PLJ = \angle PIQ.$$

所以 $\triangle KMN \cong \triangle PJQ$, 于是

$$\angle LJP = \angle LQP = 90^{\circ} - \angle JQP = 90^{\circ} - \angle KNM = \angle INM = \angle PJQ$$

所以 J, K, S, R 四点共圆, $\angle KSJ = \angle KRJ = 90^{\circ}$, 即 $IK \perp JL$.

54. 如图 (54.a), $\odot P$, $\odot Q$ 交于 A, B 两点, 它们的外公切线 CD 分别切 $\odot P$, $\odot Q$ 于 C, D, E 为 BA 延长线上一点, EC 交 $\odot P$ 于 G, FG 分别交 $\odot Q$, $\odot P$ 于 M, N, 求证明: $\angle FCM = \angle GDM$. (深圳黎誉俊老师题)

证明 如图 (54.b), 连接 CN, DM. 因为 $EA \cdot EB = EC \cdot EF = ED \cdot EG$, 所以 C, F, G, D 四点共圆. 所以 $\angle FGD = \angle ECD = \angle FNC$, 因此 $CN/\!\!/EF$. 同理可知, $DM/\!\!/EG$. 于是 $\angle FCN = \angle GDM$. 又 $\angle DMN = \angle CPN = \angle DCN$, 所以 M, N, D, C 四点共圆, 所以 $\angle FCN = \angle MDN$, 于是知 $\angle FCM = \angle GDN$.

55. 如图 (55.a), 等腰 $\triangle ABC$ 中, AB = AC, E 为 AC 的中点, D 为 BC 上一点, 使得 BD = 2CD, $DF \bot BE$ 于 F, 连接 CF, 求证: $\angle EFC = \angle ABC$. (2007 年保加利亚国家队选拔试题)

证明 如图 (55.b), 作 $AH \perp BC$ 于 H, 交 BE 于 G, 则 G 为 $\triangle ABC$ 的重心, 从 而 AG = 2HG. 取 BD 的中点 I, 则 BI = 2HI, 于是知 $GI/\!\!/AB$. 因为 $\angle GFD =$

图 54: 第 54 题图

图 55: 第 55 题图

 $\angle GHD = 90^{\circ}$, 所以 G, F, H, D 四点共圆, 从而

$$BF \cdot BG = BH \cdot BD = \frac{3}{2}BI \cdot \frac{2}{3}BC = BI \cdot BC,$$

故 F, I, C, G 四点共圆, 所以 $\angle EFC = \angle GIC = \angle ABC$.

56. 如图 (56.a), 在 $\triangle ABC$ 中, D, E 分别是 AB, AC 上一点, 且满足 $DE/\!\!/BC$. BE, CF 交 于点 F, O, P, Q, R 分别是 $\triangle ADF$, $\triangle AEF$, $\triangle BDF$, $\triangle CEF$ 的外心, 求证: O, P, Q, R 四点共圆.

证明 如图 (56.a), 延长 AF 交 BC 于 G, 所以 G 为 BC 的中点. 延长 AG 到 H, 使 得 GH = AC, 连接 BH, CH, 则四边形 ABHC 为平行四边形.

图 56: 第 56 题图

连接 OF, PF, QF, RF. 因为 O, Q 分别为 $\triangle ADF$, $\triangle BDF$ 的外心, 所以 $\triangle OFQ$ $\backsim \triangle AFB$, 于是知 $\angle FQO = \angle FBA$. 又

$$\angle QFR180^{\circ} - (\angle DFQ + \angle CFR) = 180^{\circ} - [(90^{\circ} - \angle DBF) + (\angle FEC - 90^{\circ})]$$
$$= 180^{\circ} - \angle BAC = \angle ABH.$$

且根据正弦定理知

$$\frac{FQ}{FR} = \frac{\frac{BD}{\sin \angle BFD}}{\frac{CE}{\sin \angle CFE}} = \frac{BD}{CE} = \frac{AB}{AC} = \frac{AB}{HB},$$

所以 $\triangle QFR \circlearrowleft \triangle ABR$, 于是知 $\angle FQR = \angle FAB$. 从而知

$$\angle OQR = \angle OQF + \angle RQF = \angle FBA + \angle FAB = \angle AFE = 180^{\circ} - \angle OPR$$

即 $\angle OQR + \angle OPR = 180^{\circ}$, 于是知 O, P, Q, R 四点共圆.

57. 如图 (57.a), $\triangle ABC$ 的旁切圆 $\odot I$ 分别切 BC, AB, AC 于 D, E, F. ED, FD 分别交 AI 于 M, N, G 为 BC 的中点, H 为 A 在 BC 上的垂足, 求证: G, N, H, M 四点共圆.

证明 如图 (57.b), 连接 ID, IC, IM, 连接 BN 并延长交 AF 于 L. 因为 I 为 $\triangle ABC$ 的旁心, 所以 IC 平分 $\angle BCF$, 所以 $\angle MIC = \frac{1}{2} \angle BAC = \angle MDC$, 故 I, C, M, D 四点共圆, 因此 $CM \bot AI$. 同理可知 $BN \bot AI$, 进而知 N 为 BL 的中点, 所以 $GN /\!\!/ AC$,

图 57: 第 57 题图

知 $\angle GNM = \angle CAM$. 又 $\angle AMC = \angle AHC$, 所以 A, M, H, C 四点共圆, 所以 $\angle GHM = \angle CAM$, 因此 $\angle GNM = \angle GHM$, 得 G, N, H, M 四点共圆.

58. 如图 (58.a), 四边形 ABCD 内接于 $\odot O$, AB, DC 交于点 E, AD, BC 交于点 F, 点 G 为 EF 的中点, AG 交 $\odot O$ 于 K, 求证: C, K, F, E 四点共圆.

证明 如图 (58.b), 延长 AG 到 J, 使得 GJ = AG, 连接 JE, JF, CK, 则四边形 AEJF 为平行四边形. 因为 $\angle CEJ = \angle CDA = \angle CKA$, 所以 E, J, K, C 四点共圆. 又因为 $\angle JFC = \angle ABC = \angle JKC$, 所以 C, K, F, J 四点共圆, 进而 E, C, K, F, J 五点共圆.

59. 如图 (59.a), AB 为半 $\odot O$ 的直径, $CA \perp AB$ 于 A, $DB \perp AB$ 于 B, EC, ED 分别为半 $\odot O$ 的两条切线, $OF \perp CD$ 于 F, 连接 EF, 求证: $\angle EFD = \angle FOB$.

证明 如图 (59.b), 设 EC 切半 $\odot O$ 于 M, ED 切半 $\odot O$ 于 N. 连接 OC, OM, AM, AF, MF, OD, ON, FB, FN, BN.

易知 O, M, C, A 四点共圆, O, F, C, A 四点共圆, 所以 O, F, M, C, A 五点共圆. 同理, O, F, N, D, B 五点共圆. 从而

$$\angle EMF + \angle ENF = \angle FOC + \angle FOD = \angle COD = \angle COD$$

= $\angle ACO + \angle BDO = \angle MCO + \angle NDO$

图 58: 第 58 题图

图 59: 第 59 题图

$$= (180^{\circ} - \angle MFO) + (180^{\circ} - \angle NFO) = \angle MFN,$$

又因为 EM = EN, 所以 EM = EN = EF. 于是

$$\angle EFD = 180^{\circ} - (\angle EFM + \angle MFC) = 180^{\circ} - (\angle EMF + \angle MAC)$$

$$= 180^{\circ} - (\angle EMF + \angle AMC) = \angle AMF = \angle FOB.$$

60. 如图 (60.a), AB, AC 分别切 $\odot O$ 于 A, C. D 为 AB 延长线上一点, $\triangle ADC$ 的外接圆 $\odot P$ 交 $\odot O$ 于 E, $BF\bot CD$ 于 F, 求证: $\angle DEF = 2\angle ADC$. (1995 年第十五届伊朗 数学奥林匹克试题)

图 60: 第 60 题图

证明 方法一 如图 (60.b), 设 $\odot O$ 交 CD 于 G, 延长 EG 交 AD 于 K, 连接 KF, AE, CE. 因为 AC 为 $\odot O$ 的切线, 所以 $\angle ACE = \angle DGE$, 又 $\angle GDE = \angle CAE$, 所以 $\angle DEG = \angle AEC = \angle ADC$.

又因为 $\angle DEG = \angle ADC$, 所以 $\triangle KDE \hookrightarrow \triangle KGD$, 所以 $KD^2 = KG \cdot KE$. 又根据切割线定理知 $KB^2 = KG \cdot KE$, 所以 K 为 BD 的中点, 即 DK = FK, 故 $\angle KFD = \angle KDF = \angle KED$, 所以 K, D, E, F 四点共圆, 因此 K, D, E, F 四点共圆, 所以 $\angle DEF = 2\angle DEG = 2\angle ADC$.

方法二 如图 (60.c), 连接 CE, 延长 DE 交 $\odot O$ 于 K, 设 $\odot O$ 交 CD 于 G. 连接 GE 并两端延长, 分别交 CK, AD 于 M, N. 连接 BM, DM, FN.

因为 $\angle ACE = \angle CKE$, 所以

$$\angle CKD + \angle ADE = \angle ACE + \angle ADE = 180^{\circ}$$
,

因此 CK//AD, 故 $\angle DEG = \angle DKC = \angle ADC$.

显然 M 在 D 关于 $\odot O$ 的极线上, 所以直线 MB 即为 D 关于 $\odot O$ 的极线, 所以 MG, MC, MD, MB 是一组调和线束. 而 MC//AD, 所以 N 为 BC 的中点.

又 $\angle BFD = 90^\circ$, 所以 $\angle NFD = \angle NDF = \angle NED$, 故 D, E, F, N 四点共圆. 而 ND = NF, 所以 $\angle DEF = 2\angle DEG = 2\angle ADC$.

61. 如图 (61.a), AB 为 $\odot O$ 的直径, 弦 AE 平分半径 OC, 证明: DE 平分 BC.

图 61: 第 61 题图

证明 如图 (61.b), 设 AE 交 OC 于 M, DE 交 BC 于 N, 连接 BD. 根据圆的对称 性知 BC = BD, $\angle ABC = \angle ABD$. 因为

$$\angle MAO = \angle NDB, \angle AOM = 2\angle ABC = \angle DBM,$$

所以 $\triangle MOA|xs\triangle NBD$, 于是知 $\frac{BN}{BD}=\frac{OM}{OA}=\frac{1}{2}$, 所以 $BN=\frac{1}{2}BD=\frac{1}{2}BC$, 于是 知 DE 平分 BC.

62. 如图 (62.a), $\odot O$ 为 $\triangle ABC$ 的外接圆, D, E 分别为 AB.AC 的中点, H 为 $\triangle ABC$ 的 垂心, DH 延长线交 $\odot O$ 于 F, EH 延长线交 $\odot O$ 于 G, DE, GF 交于点 I, 连接 AI, 求证: $AI \bot AO$.

证明 延长 HD, HE 分别交 $\odot O$ 于 J, K, 连接 JA, JB, KA, KC. 因为 $AH \perp BC$, $JB \perp BC$, 所以 $AH / \!\!/ JB$. 同理可知 $BH / \!\!/ JA$, 于是知四边形 AJBH 是平行四边形, 从而 D 为 JH 的中点. 同理, E 为 HK 的中点. 由中位线定理知 $DE / \!\!/ JK$, 从而 $\angle HDE = \angle HJK = \angle HGF$, 所以 G, F, E, D 四点共圆, 设为 $\odot M$.

连接 OD, OE, 根据垂径定理知 $OD \perp AB$, $OE \perp AC$, 所以 A, D, O, E 四点 共圆, 设为 $\odot L$, 则 L 为 AD 的中点. 易知 $\odot L$ 与 $\odot O$ 内切, 于是知 $\odot O$, $\odot L$ 的根轴 为两圆的公切线. 又 DE 为 $\odot L$, $\odot M$ 的根轴, GF 为 $\odot O$, $\odot M$ 的根轴, 根据蒙日定理 知, 三条根轴共点, 所以 AI 为 $\odot O$, $\odot L$ 的公切线, 从而 $AI \perp AO$.

图 62: 第 62 题图