1

### **Exercises**

Find a regular expression for the language accepted by the following automaton:



# Exercise n°2

The tail of a language is defined as the set of all suffixes of its strings. That is,

$$\mathrm{tail}(L) = \{y | xy \in Lforsomex \in \Sigma^*\}$$

Example:

$$tail\left(\{011,101\}\right)=\{\lambda,1,01,11,011,101\}$$

Show that if L is regular, so is tail(L).

### Exercise n°3

For a string  $a_1 a_2 \dots a_n$  define the operation shift as

$$shift(a_1a_2\cdots a_n)=a_2\cdots a_na_1.$$

From this, we can define the operation on a language as

$$shift(L) = \{v : v = \text{ shift(w) for some w } \in L\}$$

Show that regularity is preserved under the shift operation.

# F)

### Exercise n°4

Let  $G_1$  and  $G_2$  be two regular grammars. Show how one can define regular grammars for the languages

- $L(G1) \cup L(G2)$
- L(G1)L(G2)
- $L(G_1)^*$



### Exercise n°5

A language is said to be a palindrome language if  $L=L^R$ . Find an algorithm for determining if a given regular language is a palindrome language.



### Exercise n°6

Let L be any regular language on  $\Sigma = \{a, b\}$ . Show that an algorithm exists for determining if L contains any strings of even length.



### Exercise n°7

★ Minimize the number of states in the following DFA:



### Exercise n°8

Prove or disprove: If  $M=(Q,\Sigma,\delta,q_0,F)$  is a minimal DFA for a regular language L, then  $\hat{M}=(Q,\Sigma,\delta,q_0,Q\setminus F)$  is a minimal DFA for  $\overline{L}$ .

# -`orange Solution n°1

The regular expression is  $a^*ba^*$ .

## Solution n°2

**^** 

We want to prove that the following language is regular:

$$tail(L) = \{ y \mid xy \in L \text{ for some } x \in \Sigma^* \}$$

Let L be a regular language.

L is regular 
$$\iff \exists$$
 NFA  $M = (Q, \Sigma, \delta, S, F)$  with  $L(M) = L$ 

$$xy \in L = L(M) \iff \delta(q_s, xy) \vdash \dots \vdash \delta(q, y) \vdash \dots \vdash \delta(q_f, \lambda)$$
 (1.1)

Where q denotes any state:  $q \in Q$ . In particular q can be  $q_s$  or  $q_f$ .

Consider the NFA  $\widehat{M} = (Q, \Sigma, \delta, Q, F)$ 

We will show that  $tail(L) \subseteq L(\widehat{M})$ :

 $q_f$  is a final state of M so it's a final state of  $\widehat{M}$  and q is a state of M so q is a starting state of  $\widehat{M}$  hence y is accepeted by  $\widehat{M}$  thus  $y \in L(\widehat{M})$ . The existence of transitions from q to  $q_f$  are guaranteed by the construction of the NFA M as shown by (1.1)

We will show that  $L(\widehat{M}) \subseteq tail(L)$ :

If y is accepted by  $L(\widehat{M})$  it means that there is a path  $\delta(q,y) \vdash^* \delta(q_f,\lambda)$ Let x be a word such that  $\delta(q_s,x) \vdash^* \delta(q,\lambda)$ . It's clear that xy is accepted by M so  $xy \in L$  and the existence of x (quaranteed by the construction of the NFA M) shows that  $y \in tail(L)$ 

There is a NFA  $\widehat{M}$  such that  $L(\widehat{M})=tail(L)$  hence tail(L) is a regular language.

# Solution n°3

$$shift(a_1a_2\cdots a_n)=a_2\cdots a_na_1.$$
  $shift(L)=\{v:v=\text{ shift}(w)\text{ for some }w\in L\}$ 

Let L be a regular language.

L is regular 
$$\iff \exists$$
 DFA  $M = (Q, \Sigma, \delta, q_0, F)$  with  $L(M) = L$ 

For all symbol  $a \in \Sigma$  we define  $M_a$  by changing the initial state from q0to  $q_a \in Q$ , where  $q_0 \stackrel{\text{a}}{\to} q_a$ . As M is a DFA, this is guaranteed to exist and unique.

Hence  $M_a = (Q \setminus \{q_0\}, \Sigma, \delta, q_a, F)$  and each  $M_a$  accept the language  $\{w \mid aw \in L\}$ 

We create a new NFA  $\widehat{M}$  by combining all the DFAs  $M_a$  and defining the set of initial states as the initial states of the  $M_a$ .  $\widehat{M}$  accepts the language  $\{w \mid aw \in L\}$ .

We modify our NFA by adding a state  $q_f$  where for every  $M_a$  we add a-transitions to  $q_f$  for all final states in  $M_a$ . Finally,  $q_f$  becomes the only final state.

It will now accept the word if it is in the language  $\{wa \mid aw \in L\}$ , which, if we consider all the  $a \in \Sigma$ , is exactly shift(L).

We have created an NFA that accepts shift(L) therefore shift(L) is regular.



# Solution n°5

We want to prove the following property:

It is decidable whether a regular language L is a palindrome language:  $L=L^R.$ 

Let L be a regular language. As L is regular, so is LR. Hence, we can create DFAs M and  $M^R$  such that L(M)=L and  $L(M^R)=L^R$ . These two DFAs can then be minimized to  $M'=(Q',\Sigma,\delta',q_0',F')$  and  $M^{R\prime}=(Q^{R\prime},\Sigma,\delta^{R\prime},q_0^{R\prime},F^{R\prime})$ .

If  $L = L^R$  then M' and  $M^{R'}$  must be isomorphic because of the uniqueness of DFAs.

The algorithm, then, must compare M' and  $M^{R'}$ :



# Solution n°7



Initial partitioning:

$$\big\{\{\{q_0,q_1\},\{q_0,q_1,q_2\},\{q_1,q_2\},\{q_1\}\},\{\{q_0\},\{q_2\},\emptyset\}\big\}$$

$$R = \{ \{q_0, q_1\}, \{q_0, q_1, q_2\}, \{q_1, q_2\}, \{q_1\} \}$$
  $S = \{ \{q_0\}, \{q_2\}, \emptyset \}$ 

New partitioning:

$$\big\{\{\{q_0,q_1\},\{q_0,q_1,q_2\}\},\{\{q_1,q_2\},\{q_1\}\},\{\{q_0\},\{q_2\},\emptyset\}\big\}$$

$$R = \{ \{q_0\}, \{q_2\}, \emptyset \} \quad S = \{ \{q_1, q_2\}, \{q_1\} \} \quad 1$$

New partitioning:

$$\big\{\{\{q_0,q_1\},\{q_0,q_1,q_2\}\},\{\{q_1,q_2\},\{q_1\}\},\{\{q_2\},\emptyset\},\{\{q_0\}\}\big\}\big\}$$

We introduce a new notation for reasons of readability:

- $A = \{\{q_0, q_1\}, \{q_0, q_1, q_2\}\}$
- $B = \{\{q_1, q_2\}, \{q_1\}\}$
- $C = \{\{q_2\}, \emptyset\}$



# -`orange in Solution n°8

If  $M=(Q,\Sigma,\delta,q_0,F)$  is a minimal DFA for a regular language L then  $\widehat{M}=(Q,\Sigma,\delta,q_0,Q\setminus F)$  is a DFA for  $\overline{L}$ . But nothing proves that  $\widehat{M}$  is minimal.

Assume it's not minimal.

Then there exists a DFA  $\widehat{M}'=(Q',\Sigma,\delta',q_0,F')$  with fewer states than M, which accepts the language L.

But then the DFA  $M' = (Q', \Sigma, \delta', q_0, Q' \setminus F')$  accepts the language L and has fewer states than M. This means that M is not minimal. This contradicts with M being minimal.

Therefore, our assumption that there is a  $\widehat{M}'$  with fewer states cannot be true.

Thus  $\widehat{M}$  is minimal DFA which accepts  $\overline{L}$ .