GAUGING THE OPERATIONAL VALUE OF NAVAL INFRASTRUCTURE

The Case of Surface Combatant Manning

Presentation to

The Second Annual Navy Manpower, Personnel, and Training Research and Analysis Conference

Alfred Kaufman
Institute for Defense Analyses

BACKGROUND

- THE NAVY HAS RECENTLY BEGAN ASKING HARD QUESTIONS ABOUT NAVAL INFRASTRUCTURE
 - What is the Military Value of Infrastructure?
 - How to Gauge Effect of Investments in Infrastructure upon the Navy's Warfare Capability
- THESE QUESTIONS ARE DRIVEN BY A NUMBER OF DIFFERENT SPECIFIC CIRCUMSTANCES

 Military: Perceived Imbalance Between

Structure and Infrastructure

- Financial: No Money to Buy Enough of Both

- Administrative: The Navy's IWAR Process
- TO ANSWER, ONE NEEDS TO QUANTITATIVELY CONNECT STRUCTURE AND INFRASTRUCTURE

THE UNDERLYING DIFFICULTY

- WARFIGHTING AND SUPPORT COMMUNITIES ARE NOT MEANINGFULLY CONNECTED TO EACH OTHER
 - Warfighting Community Focuses on Platforms and Systems, and Assumes Infrastructure Will be There
 - Support Community Focuses on Management, and Assumes Infrastructure Will be Useful
- EVEN DEFINITION OF INFRASTRUCTURE CURRENTLY IN USE NO LONGER POINTS TO ITS MILITARY VALUE
 - Either Characterized by Features Irrelevant to Warfighting, Such As Its Relation to Land
 - Or Reduced to a Mere Listing of Activities that Attempts to Be Neither Prioritized Nor Complete

THE GUIDING IDEA

- INFRASTRUCTURE IS THE SET OF ACTIVITIES THAT PRODUCES A NATION'S MILITARY STRUCTURE
 - Acquisition: Procures a Structure that is Ready for Operational Employment
 - Maintenance: Ensures the Structure Remains So
 - R&D: Adjusts Structure to Changing World
- THEREFORE, EACH STRUCTURE COMPONENT, BE IT MAN OR EQUIPMENT, HAS DOUBLE CHARACTER
 - As Instrument of War It Contributes to Warfare
 - As Product of Infrastructure it Reflects Quality of Activities that Contributed to its Production
- THIS OPENS THE WAY TO CONNECTING WARFARE CAPABILITY WITH QUALITY OF INFRASTRUCTURE

ANALYTIC APPROACH

- IN TIME OF PEACE, WARFARE CAPABILITY IS OFTEN ESTIMATED BY APPROPRIATE WARFARE MODELS
 - They Relate Warfare Capability to Inputs of Systems Performance and Human Proficiency
 - These Inputs are Numbers Usually Taken Either from Engineering Studies or from Fleet Data
- BUT, ALL INPUTS SHOULD BE FUNCTIONS OF INFRA-STRUCTURE ACTIVITIES INVOLVED, NOT NUMBERS
- THEREFORE, WE MUST RELATE ALL MODEL INPUTS TO THEIR RELEVANT INFRASTRUCTURE ACTIVITIES
 - Performance Inputs: R&D, Production, Repair
 - Proficiency Inputs: Recruitment, QOL, Training

TESTING THE APPROACH

THE APPROACH CAN BE IMPLEMENTED

- We Show that Approach can Relate Mission Effectiveness to Infrastructure Activities
- Illustration: Organic Mine Countermeasures in Preparation for CV
 Operations
- Illustration: Manning of Surface Combatants
- THE APPROACH CAN AID DECISION MAKERS
 - We Show that Approach Offers a Means of Trading Between Investments in Structure an Investments in Infrastructure Activities
 - Illustration: Should the Navy Build a Shallow Water ASW Training Range?

SHOWING THAT THE APPROACH CAN BE IMPLEMENTED

MODELING ORGANIC MINE COUNTERMEASURE OPERATIONS

MINEHUNTING OPERATION

CARRIER STRIKE OPERATION

IMPLEMENTING THE APPROACH

- OPERATIONAL EFFECTIVENESS IS MEASURED BY PROBABILITY THAT CARRIER DOESN'T HIT A MINE
- MODEL INPUT IS THE PROBABILITY THAT POST-MISSION ANALYST CORRECTLY IDENTIFIES MINE
- INFRASTRUCTURE ACTIVITIES CAPTURED
 - Realistic Training of Post Mission Analysts
 - Quality of Life Affecting their Retention
- PARAMETERS CHARACTERIZING THE ACTIVITIES
 - Frequency of Realistic Training Opportunities
 - Retention Probability

PROFICIENCY

- PROFICIENCY CHANGES DUE TO THE INTERPLAY BETWEEN LEARNING AND FORGETTING
 - When the Operator is Exercising his Skills, Proficiency Increases as a Result of Learning
 - When the Operator is not Exercising his Skills,
 Proficiency Decreases as a Result of Forgetting
- WE ASSUME THAT THE RATE OF INCREASE IS
 - Proportional to Current Level of Proficiency
 - Inverse Proportional to Length of Time the Operator Employed Skills since Last

ILLUSTRATIVE SOLUTION

$$\frac{d\phi}{ds} = \frac{\alpha f\phi(s)}{s_0 + (s - s_0)f} - \beta(1 - f)(s - s_0)(1 - f)\phi(s)$$

$$\phi(s) = \phi(s_0)(1 + \frac{s - s_0}{s_0} f)^{\alpha} e^{-\frac{1}{2}\beta(1 - f)^2(s - s_0)^2}$$

EFFECT OF OPERATOR SENIORITY

lpha , Rate of learning = 0.8

THE SENIORITY DISTRIBUTION

OPERATIONAL EFFECTIVENESS

1.0

SHOWING THAT THE APPROACH CAN BE IMPLEMENTED

HOW MANY SAILORS TO MAN A SURFACE COMBATANT?

IMPLEMENTING THE APPROACH

- OPERATIONAL EFFECTIVENESS IS MEASURED BY PROBABILITY OF SUCCESS IN PERFORMING AAW
- MODEL INPUTS ARE THE PROBABILITIES THAT SAILORS SUCCESFULLY COMPLETE FUNCTIONS
- THESE INPUTS ARE DETERMINED BY AT LEAST THE FOLLOWING INFRASTRUCTURE ACTIVITIES
 - Realistic Training of Each Sailor
 - Quality of Life Affecting his Retention
 - Training of Ship's Crew
- THESE ACTIVITIES WILL BE DESCRIBED BY
 - Frequency of Realistic Training Opportunities
 - Retention Probability
 - Crew Cohesion and Leadership Quality

FUNCTIONAL STRUCTURE FOR AAW

THE HUMAN FACTOR

- THERE IS NO ALLOWANCE HERE FOR HUMAN PERFORMANCE THAT IS SHORT OF PERFECT
- IN REALITY, HUMAN PERFORMANCE WOULD DEGRADE ALL ENGINEERING VALUES pi(eng)
- WE SHALL THEREFORE REPLACE EACH p_i(eng)
 BY H_i·p_i(eng) WHERE THE FACTOR H_i CAPTURES
 - Reduction due to Individual Proficiency as a Function of Operator Seniority and Training
 - Enhancement of that Proficiency Induced by Crew Cohesion and Command Leadership
 - Reductions Induced by Excessive Time on Watch as Function of Ship's Company

MODELING CREW ENHANCEMENT

- CREW IS GENERALLY MORE PROFICIENT THAN TOTALITY OF ITS MEMBERS BECAUSE
 - Need to Contribute to the Common Goal Induces an Organizing Tendency that Makes Each Crew Member More Proficient (Cohesion)
 - Leadership Reduces the Disorganizing Tendencies Generated by Individuality of its Members
- THE CREW REACHES ITS FULL POTENTIAL WHEN THESE TWO FORCES ARE BALANCED

MODELING CREW ENHANCEMENT

g Order Parameter

h Disorder Parameter

 $(1-\phi_i)$ Misalignment

B Intensity of the Organizing Force

Organizing Force =
$$gB1$$
 - ϕ_i)

Disorganizing Force
$$=h(\phi_i - \phi_i^{(0)})$$

$$gB1-\phi_{i}) = h(\phi_{i} - \phi_{i}^{(0)})$$

$$B = \sum_{i=1}^{F} \phi_{i}$$

DIMINISHING CREW SIZE

THE EFFECTS OF WATCH-STANDING

- PERFORMANCE AT A WATCH STATION DEPENDS ON NATURE OF WATCH-STANDING OPERATION
- IF STATION IS MANNED IN SHIFTS, PROFICIENCY DROPS EXPONENTIALY WITH TIME ON STATION
 - Time on Station Decreases in Direct Proportion With Number of People Assigned to Function
 - The Exponent Increased by Adverse Conditions Prevailing at the Watch Station, such as Noise, Heat, Traffic, and General Disorder in the Area
- IF MANNED UPON REQUEST, QUALITY OF SERVICE DEPENDS UPON NUMBER OF PEOPLE ON STATION
 - Likelihood of a Response Increases, but
 - Proficiency of each Respondent Decreases

MEASURE OF PERFORMANCE

• FOR EACH DISTRIBUTION $\{n_i\}_{i=1...F}$ OF PEOPLE OVER FUNCTIONS EVALUATE:

Pr (Mission Success
$$|\{n_i\}\rangle = \mu \left[H_1(g/h, n_1, \lambda_1) p_1^{eng}, \right]$$

$$H_2(g/h, n_2, \lambda_2) p_2^{eng},, H_F(g/h, n_F, \lambda_F) p_F^{eng}$$

- •; MAXIMIZE THIS CONDITIONAL PROBABILITY OVER ALL DISTRIBUTIONS $\{n_i\}_{i=1...F}$ FOR GIVEN VALUES F
- MEASURE PERFORMANCE BY THE RESULTING OPTIMAL PROBABILITY AS A FUNCTION OF F

RISK OF AUTOMATION

- SINCE MACHINES FUNCTION BETTER THAN MEN
 - Human Factor H is Generally Less than One
 - Replacing Humans with Machines would Raise Proficiency from H.peng to peng
 - One Might Want to Automate All Functions
- HOWEVER, IF THE SITUATIONAL ASSUMPTIONS MADE BY THE CREATOR WERE NOT ACCURATE,
 - What Machines Do will not Necessarily Match with the Prevailing Situation and their Action Might Prove to be Counterproductive
 - Unlike Humans, Machines will not be Able to Correct the Situation in Time to Matter
- THEREFORE, AUTOMATING ALL SHIP FUNCTIONS WOULD REDUCE OVERALL PERFORMANCE

SEEKING PROPER CREW SIZE

- AS SHOWN ABOVE, AUTOMATION TENDS TO
 - Increase Ship Performance by Replacing Men with Faster, More Accurate Machines, though Crew Behavior may Mitigate that Somewhat
 - Decrease Ship Flexibility by Replacing Men with Less Adaptable, Less Robust Machines
- THUS, REDUCING MANNING BY AUTOMATING MORE FUNCTIONS SHIFTS BALANCE BETWEEN
 - Ship's Operational Performance as Measured by Probability of Mission Success Optimized over $\{n_i\}_{i=1...F}$ for a Specified Manning Level F
 - Ship's Operational Flexibility as Measured by Probability of a Match Between the Crew's Perceptions and Operational Reality Given F
- SEEK THE MANNING LEVEL F THAT BALANCES MISSION EFFECTIVENESS WITH FLEXIBILITY

BALANCING PROCESS

SHOWING THAT THE APPROACH CAN AID DECISION MAKERS

SHOULD THE NAVY BUILD A SHALLOW WATER ASW TRAINING RANGE?

THE TRAINING RANGE ISSUE

- THERE ARE THREE KEY ISSUES THE NAVY MUST SETTLE BEFORE A DECISION COULD BE MADE
 - Will Ranges Conform to Environmental Regulations Prevailing in the Area?
 - Will Sonar Operator Schedules Allow Full Exploitation of these Facilities?
 - Is Investment in these Ranges Justified by the Increased Operational Capability?
- TO ANSWER THE LAST QUESTION, WE CONNECT CAPABILITY TO TRAINING IN PRECURSOR ASW

PRECURSOR ASW OPERATIONS

IMPLEMENTING THE APPROACH

- OPERATIONAL EFFECTIVENESS IS MEASURED BY PROBABILITY THAT SUBMARINE FAILS TO HIT CV
- MODEL INPUT IS RECOGNITION DIFFERENTIAL
- INFRASTRUCTURE ACTIVITIES CAPTURED
 - Initial Training at ASW Operator School
 - Subsequent Training in Shallow Water ASW
- PARAMETERS CHARACTERIZING THE ACTIVITIES
 - Recognition Differential at Graduation
 - Frequency of Realistic Training Opportunities

THE TRADE-OFF PROCESS

AVERAGE PROBABILITY THAT CARRIER IS NOT ATTACKED

FRACTION OF THE YEAR OPERATOR GETS OPERATIONAL TRAINING