TP3 – Contrôle d'une eau minérale

Objectifs

- \rightarrow Sélectionner et utiliser le matériel adapté à la précision requise.
- → Utiliser les appareils de mesure (masse, pH, conductance) en s'aidant d'une notice.
- → Identifier et exploiter la réaction support du titrage.
- \rightarrow Proposer ou justifier le protocole d'un titrage à l'aide de données fournies ou à rechercher.
- \rightarrow Mettre en œuvre un protocole expérimental correspondant à un titrage direct ou indirect.
- → Exploiter une courbe de titrage pour déterminer la concentration en espèce titrée.
- ightarrow Mettre en œuvre une réaction d'oxydo-réduction pour réaliser une analyse quantitative en solution aqueuse.

Le port de la blouse et des lunettes de protection est obligatoire dans la salle.

Argentimétrie

On souhaite effectuer un contrôle de qualité des ions chlorure de l'eau St Yorre, dont la composition est indiquée ci-dessous par l'embouteilleur.

SOURCES ROYALES COMPOSITION MOYENNE en mg/l:			
Bicarbonates :		Sodium :	
Chlorures :		Potassium :	
Sulfates :		Calcium :	
Fluorures :		Magnésium :	
Clorure de sodium (sel): 528mgl (soit 0,5g/l) Bicarbonates de sodium: 6015mg/l (soit 6g/l) (valeurs théoriques maximales)			
Minéralisation totale, extrait sec à 180°C : 4774 mg/l-ph : 6,6			

On rappelle les masses molaires : $M(Cl) = 35.5 \,\mathrm{g \cdot mol^{-1}}$ et $M(Na) = 23 \,\mathrm{g \cdot mol^{-1}}$.

Le titrage est réalisé par argentimétrie c'est-à-dire qu'on titre l'eau minérale par une solution de nitrate d'argent de concentration précise et qu'on suit la concentration en ions argent Ag^+ et chlorure Cl^- via une électrode d'argent. On note C_1 la concentration en ion chlorure de l'eau minérale, C_2 la concentration en ions Ag^+ de la solution titrante, V_1 le volume d'eau minérale, V_0 le volume d'eau distillé ajoutée à la solution titrée, V_2 le volume de solution titrante versé.

- 1. Préciser l'équation de précipitation entre les ions argent et les ions chlorure. On donne $K_s = 10^{-9.8}$.
- 2. Compléter le tableau d'avancement (en moles) ci-dessous.

3. Expliquer qualitativement comment varie le potentiel de la solution au cours du tirage pour chacun des cas (b), (c) et (d). Justifier par des formules.

Analyse de l'eau

On utilise une électrode d'argent et une électrode au calomel saturé (ECS) qui servira de référence. Réaliser le protocole suivant :

- Rincer puis remplir la burette d'une solution de nitrate d'argent de concentration $C_2 = 0.01 \,\text{mol} \cdot \text{L}^{-1}$.
- Prélever $V = 10 \,\mathrm{mL}$ d'eau minérale et les transvaser dans un bécher de $100 \,\mathrm{mL}$.
- Rincer les électrodes de mesure et de référence à l'eau distillée puis les introduire dans le bécher. Ajouter $V=50\,\mathrm{mL}$ d'eau distillée de façon à ce que les électrodes soient complètement immergées.
- Brancher le millivoltmètre.
- Réaliser le titrage en relevant la tension U entre les deux électrodes tous les 1 mL avant le saut de potentiel, tous les 0.1 mL dans le saut de potentiel (vers 9 mL) et tous les 2 mL après le saut de potentiel.
- 4. Justifier la nécessité d'utiliser une garde au nitrate de potassium.
- 5. Déterminer la concentration massique en ions chlorure de l'eau minérale (avec une incertitude).
- 6. Comparer à la valeur annoncée par l'embouteilleur. Commenter.

Document 1 - Matériel

- Eau minérale St Yorre;
- Solution de nitrate d'argent à $0.01 \,\mathrm{mol} \cdot L^{-1}$;
- Eau distillée;
- Burette graduée;
- Agitateur magnétique;

- Pipette jaugée 10 mL;
- Bécher 100 mL;
- Electrode ECS avec protection;
- Électrode d'argent;
- Millivoltmètre.