

# Predicting Electricity Prices Using Machine Learning

June 2021

César Montilla Pérez

### Agenda

- Business Overview
- Context and Data Acquisition
- Data Processing & Analysis
- Modeling and Evaluation
- Conclusions and Recommendations





# Business Overview

#### Electricity

- Traded using market rules
- Unique commodity
- Depends on weather, intensity of activities, and seasonality
- Price dynamics not observed in other markets



#### Electricity Price Forecasting (EPF) - Motivation

- Extreme price volatility has forced market participants to hedge volume and price risks
- The cost or over- and under-contracting can lead to significant financial losses
  - California Crisis (2000-2001): \$45 billion
  - Texas Energy Crisis (2021): \$195 billion



# EPF has become a fundamental input to energy companies' decision-making process

#### **Business Evaluation**

#### Outcome

 Accurate prediction of electricity price

#### Action

Accurate power bidding/scheduling

#### Judgement

 Can the models' accuracy be trusted to make critical business decisions?

# Inaccurate Predictions

Potential for significant financial loses

Over or undercontracting

# Accurate Predictions

Accurate electricity bidding

Decrease the risk associated with electricity trading

# Context and Data Acquisition

#### Context

- Data from a Data Centre at Cork Airport
- Covers periods from 2011 to 2013
- Main sources of energy are Oil, Gas, and Wind
- The average person in Ireland consumes 6,407 kWh per year



#### Data Understanding - Features

- Dates & time
- Wind Energy Production
- System Load
- Temperature
- Windspeed
- CO<sub>2</sub> intensity
- Electricity Price (Actual & Forecasted)



#### Data Limitations and Assumptions

- No information about consumers or stakeholders
- No units provided for some columns, assumed euro cents per kWh for electricity price and SI units for the rest
- Data are accurate and collected properly



# Data Processing & Analysis

#### Data Cleaning and preprocessing

Check problems with data

Extract relevant information

Preliminary results





#### **Exploratory Data Analysis**



#### **Exploratory Data Analysis**



### Exploratory Data Analysis



# Modeling and Evaluation

#### Machine Learning Overview

#### **Classical Programming**



#### **Machine Learning**



#### Splitting The Data



#### Linear Regression Overview





### Model Comparison



#### Modeling - Business Outcome

Power Generators

Power Suppliers

**Energy Traders** 



#### Modeling - Business Outcome

For every 1% reduction in the error of prediction there are \$300,000 per year in savings\*



\*for a utility with 1GW peak load

#### Conclusions



The baseline model can be improved using Machine Learning by as much as 50%



Estimated savings of \$2,820,000 per year were shown



This model could be used to decreased the risks associated with electricity trading

#### Recommendations







Test other modeling approaches



Interface with business development to calculate ROI and other business metrics