XKG400 设计理论计算

一、产品性能参数

1. 使用环境条件

环境温度:(-45~+85)℃

振 动: (10~200) Hz,49 m/s² (5g)

冲 击:稳定性: 196m/s²(20g)

强 度: 490m/s²(50g)

2. 线圈参数

电源类型: 直流

额定功耗: 额定功耗 2.5W 24V 线圈: 吸合电压≤5.5V

释放电压: 1~3V

3. 其余技术指标

触点间耐压: 2500V/AC 触点一线圈间耐压: 2500V

绝缘电阻: 1000MΩ 500V/DC

二、机械参数

1. 触点压力: 35N

2. 铁心行程: 3±0.1

3. 触点间隙: 2.2±0.2

4. 触点超行程: 0.8±0.1

5. 触动力(返回弹簧预压力): 1.4 N

6. 返回力(返回弹簧终压力): 8.4N

三、计算 s

1. 线圈计算:

采用导线式线圈,设定线圈电压 3V,线圈额定消耗功率 2.5W,得线圈电阻 $3.6~\Omega$,线圈电流 0.83A,根据线圈载流密度得出漆包线线径 0.64mm。

线圈尺寸如右图所示,线圈窗口长度 L=1.56cm 线圈绕满厚度 b=1.43cm 裸线直径选 0.64mm, 查标准可得其填充系数 f=0.67,根据公式:

14.30

可得 W=465。

实际线圈电阻可根据公式:

$$R_{\theta} = \frac{\rho_{\theta} L}{\frac{\pi d^{2}}{4}} = \frac{\rho_{\theta} D_{p} W^{2}}{d^{2}} \times 10^{-2} = \frac{\pi \rho_{\theta} D_{p} W^{2}}{f L b} \times 10^{-4} (\Omega)$$

可得 R_θ=3.47 Ω。

2. 弹簧计算:

弹簧	线径d	中径Dp	有效圈数n	自由长度H	刚性模数G	弹性系数K	预压缩量	触动力	终压缩量	返回力
返回弹簧	0.8 mm	7 mm	5	10.8 mm	78000	2.3 N/mm	0.6 mm	1.4 N	3.6 mm	8.4 N
弹簧	线径d	中径Dp	有效圈数	自由长度H	刚性模数G	弹性系数K	预压缩量	预压力	终压缩量	终压力
触头弹簧	1.2 mm	7.5 mm	2	6.6 mm	78000	24 N/mm	0.66 mm	15.8 N	1.46 mm	35 N

3. 电磁吸力计算:

根据电磁吸力简化计算公式:

$$F = 6.4 \times 10^{-8} \times (IW)^2 \times \left[\frac{\pi r_{\Theta U}^2}{e^{\frac{1}{4}} \delta^2} + \frac{2\pi}{\ln \frac{r_{\Theta U}}{r_{\Theta U}}} \times \left(\frac{\chi}{\gamma} \right) \right]$$

IW:表示线圈在某一电压下的安匝;

 πr_{thu}^2 : 表示铁心吸合面积,单位 cm²;

r_{线圈}:表示线圈的半径,单位 cm;

χ: 表示铁心插入线圈组件中的长度,单位 cm;

γ: 线圈长度 (包含线圈架两端塑料的厚度), 单位 cm;

 δ : 表示铁心到磁极间的气隙,单位 cm;

吸合电压 8.0V 时:

安匝数 IW=8.0/3.47×465=1072, 铁心吸合面积=3.69cm², 铁芯行程δ=0.3cm, 线圈半径=1.47cm, χ =1.28cm, γ =2.35cm 根据上公式计算各铁芯行程下的吸力和反力如下表:

8. 0V下吸力曲线									
铁心行程/mm	吸力/N	返回力/N	触头压力/N	注释					
3.0	3.02	1.40	0						
2.8	3.46	1.86	0						
2.6	4.02	2.33	0						
2.4	4.71	2.79	0						
2.2	5.61	3.26	0						
2.0	6.79	3.73	0						
1.8	8.38	4.19	0						
1.6	10.60	4.66	0						
1.4	13.85	5.12	0						
1.2	18.85	5.59	0						
1.0	27.14	6.05	0						
0.8	42.41	6.52	15.84	触点闭合					
0.6	75.39	6.99	20.64						
0.4	169.63	7.45	25.44						
0.2	678.54	7.92	30.24						

从上表可以看出,在规定的吸合电压下,铁心闭合的整个过程,电磁吸力都大于返回弹簧反力与触点压力之和, 所以产品在 8.0V 时,产品能可靠吸合,并且不存在二次吸合的现象。

4. 导体导电截面积、电流密度计算

动簧片宽 15.7mm, 厚 5mm, 截面积为 78.5mm², 载流密度约 5A/mm², 静接线柱平均直径 14mm, 有效截面积=77mm² 载流密度约 5.2A/mm², 导体载流面积符合要求。