

Technische Universität München

Department of Physics

Ferienkurs zur Analysis 1 - Übungen Taylor, Fourier, Matrixexponential und DGL

Freitag, 23.03.2012

Sascha Frölich

1 Taylorreihenentwicklung

Aufgabe 1

(i) Finden Sie die Taylorreihe von $f(x) = \arctan(x)$ um den Urpsrung...

- (ii) Berechnen Sie die Taylorreihe von e^x und e^{2x} um den Ursprung.
- (iii) Berechnen Sie die ersten drei Glieder der Taylorreihe von $f(x) = \sqrt{x}$ um den Punkt $x_0 = 36.$

2 Fourier

Aufgabe 2

(i) Sei g(x)
$$2\pi$$
-periodisch mit $g(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 < x < \pi \end{cases}$
Bestimmen Sie die Fourierkoeffizienten $\hat{g}(k)$ ohne $\hat{g}(0)$ der Funktion (sog. Rechtecks-

Hinweis: Nutzen Sie $e^{\pm ik\pi} = -1$ und $e^{\pm 2ik\pi} = 1$

(ii) Sei f(x) 2π -periodisch mit $f(x) = \frac{1}{4}(x-\pi)$ für $x \in [0,2\pi]$. Bestimmen Sie die Fourierkoeffizienten $\hat{f}(k)$ ohne $\hat{f}(0)$ der Funktion. *Hinweis:* Nutzen Sie $e^{-2ik\pi} = 1$

Aufgabe 3 Wie lautet die Fouriertransformierte von
$$f(x) = \begin{cases} 1 - \frac{|x|}{a} & \text{für } |x| < a \\ 0 & \text{sonst} \end{cases}$$
Hinweis: $\int x e^{-ikx} dx = e^{-ikx} \left(\frac{1}{k^2} + \frac{ix}{k} \right)$

3 Matrixexponential und Differentialgleichungen

Aufgabe 4

- (i) Berechnen Sie das Matrixexponential der Matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
- (ii) Berechnen Sie das Matrix
exponential der Matrix $B=\begin{pmatrix}1&2&-1\\2&2&2\\-1&2&1\end{pmatrix}$ (Sie brauchen die Transformationsmatrizen nicht explizit auszurechnen).

Aufgabe 5

(i) Berechnen Sie das AWP

$$\dot{\vec{x}} = \begin{pmatrix} -4 & 1 & 1\\ 1 & 5 & -1\\ 0 & 1 & -3 \end{pmatrix} \vec{x}, \ \vec{x}_0 = \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$$

Hinweis: Das Inverse von $\begin{pmatrix} \frac{1}{72} & \frac{1}{8} & -\frac{1}{72} \\ \frac{1}{9} & 0 & -\frac{1}{9} \\ -\frac{1}{8} & -\frac{1}{8} & \frac{9}{8} \end{pmatrix}$ ist $\begin{pmatrix} 1 & 10 & 1 \\ 8 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

(ii) Die Differentialgleichung der gedämpften Schwingung lautet

$$\ddot{x} + 2\mu\dot{x} + \omega_0^2 x = 0, \, \mu \ge 0, \omega_0 > 0$$

Mit dem Ansatz $y_1 = x, y_2 = \dot{x}$ forme man diese DGL um in ein lineares System 1. Ordnung $\dot{y} = Ay, A \in \mathbb{R}^{2\times 2}$. Lösen Sie das AWP für den Sonderfall $\mu = \omega_0$ mit den Anfangsbedingungen $\vec{x}_0 = {}^t(1,0)$ mit Hilfe des Matrixexponentials.

Aufgabe 6

Untersuchen Sie die folgenden DGL auf Ordnung und Linearität:

(i)
$$\dot{x}(t) = -(x(t))^2 + 2x(t) - 4$$

(ii)
$$\ddot{x}(t) = -\dot{x}(t) + 2x(t)$$

(iii)
$$0 = (\ddot{x})^2 - 3x(t)$$

Aufgabe 7

Lösen Sie die folgenden AWP mit Hilfe der Trennung der Variablen:

(i)
$$\dot{x}(t) = t \cdot x(t) \text{ mit } x(0) = 1$$

(ii)
$$x(t) = t\dot{x}(t) \text{ mit } x(1) = 2$$

(iii)
$$\dot{x}(t) = -t(x(t))^2 \text{ mit } x(1) = 2$$

(iv)
$$t = x(t)\dot{x}(t) \text{ mit } x(0) = 2$$