First Implementation of QuickPay (2009-2012)

Mar 15, 2021

1 Delays over Time

2 Notation

- Project i, Year-Quarter t
- X_i denotes project level controls: initial duration, initial budget, number of offers received
- $\mu_t, \theta_{firm}, \lambda_{task}$: Year-Quarter, Firm, and Product/Service code Fixed effects
- All continuous variables are winsorized at the 5% level

$$Treat_i = \begin{cases} 1, & \text{if project } i \text{ is a small business} \\ 0, & \text{otherwise} \end{cases}$$

$$Post_t = \begin{cases} 1, & \text{if year-quarter } t > \text{ April 27, 2011} \\ 0, & \text{otherwise} \end{cases}$$

3 Parallel Trends Test

Let Time denote q-th quarter since the beginning of time horizon. For $Post_t = 0$, we run the following regression:

$$Delay_{it} = \alpha + \beta_0 Treat_i + \beta_1 (Treat_i \times Time) + \beta_2 X_i + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

The coefficient of interest is β_1 . If this is significant, we would find evidence of a linear time trend before quickpay implementation – violating the parallel trends assumption.

Table 1: Linear Time Trend Before QuickPay

	Dependent variable:
	$Delay_{it}$ (in days)
$Treat_i$	-1.10
	(2.98)
$Treat_i \times Time$	-0.01
	(0.49)
Fixed effects	Firm, Task, and Year-Quarter
Controls	Budget, Duration, Bids
Observations	74,677
\mathbb{R}^2	0.14
Adjusted R ²	0.03
Note:	*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter. SEs are robust and clustered at the project level. Observations are for quarters before quickpay.

4 Baseline Regressions

$$Delay_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \epsilon_{it}$$

$$Delay_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t)$$

$$+ X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

Table 2: Quickpay 2009-2011

	$Delay_{it}$ (in days)				
	(1)	(2)	(3)		
$\overline{Treat_i}$	-6.19***	-3.58**	-3.09*		
		(1.55)	(1.59)		
$Post_t$	13.04***				
	(0.52)				
$Treat_i \times Post_t$	3.35***	6.88***	6.83***		
	(0.73)	(0.91)	(0.92)		
Constant	33.00***				
	(0.36)				
Year-Quarter Fixed Effects	No	Yes	Yes		
Firm Fixed Effects	No	Yes	Yes		
Task Fixed Effects	No	No	Yes		
Duration, Budget, Bids	No	Yes	Yes		
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes		
Observations	173,900	155,638	155,638		
R^2	0.01	0.11	0.12		
Adjusted R ²	0.01	0.05	0.05		

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

5 Contract Financing

$$CF_i = \begin{cases} 1, & \text{if project } i \text{ receives contract financing} \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{aligned} Delay_{it} = & \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) \\ + & \beta_3 CF_i + \beta_4 (CF_i \times Post_t) + \beta_5 (Treat_i \times Post_t \times CF_i) \\ + & X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it} \end{aligned}$$

Table 3: Effect of Contract Financing: Quickpay 2009-2011

	$Delay_{it}$ (in days)				
	(1)	(2)	(3)		
$Treat_i$	-6.12***	-3.37**	-2.89^*		
	(0.50)	(1.55)	(1.59)		
$Post_t$	13.00***				
	(0.57)				
$Treat_i \times Post_t$	1.53**	5.89***	5.90***		
	(0.78)	(1.00)	(1.01)		
CF_i	-3.97^{***}	-4.68^{***}	-4.76^{***}		
		(0.81)	(0.82)		
$Post_t \times CF_i$	0.72	-0.20	-0.37		
	(1.13)	(1.31)	(1.32)		
$Post_t \times CF_i \times Treat_i$	9.24***	3.94**	3.70**		
	(1.38)	(1.65)	(1.67)		
Constant	33.64***				
	(0.38)				
Year-Quarter Fixed Effects	No	Yes	Yes		
Firm Fixed Effects	No	Yes	Yes		
Task Fixed Effects	No	No	Yes		
Duration, Budget, Bids	No	Yes	Yes		
$Post_t \times \text{(Duration, Budget, Bids)}$	No	Yes	Yes		
Observations	173,900	155,638	$155,\!638$		
\mathbb{R}^2	0.01	0.11	0.12		
Adjusted R ²	0.01	0.05	0.05		

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.

6 Receives Financial Aid

 $Financial Aid = \begin{cases} 1, & \text{if firm receives grants or is a c8A participant} \\ 0, & \text{otherwise} \end{cases}$

$$\begin{aligned} Delay_{it} = & \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \beta_3 Financial Aid \\ & + & \beta_4 (Financial Aid \times Post_t) + \beta_5 (Treat_i \times Post_t \times Financial Aid) \\ & + & X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it} \end{aligned}$$

Table 4: Effect of Grants or C8A Participant: Quickpay 2009-2011

	$Delay_{it}$ (in days)				
	(1)	(2)	(3)		
$Treat_i$	-6.96***	-3.15**	-2.63^{*}		
		(1.55)	(1.59)		
$Post_t$	12.89***				
	(0.53)				
$Treat_i \times Post_t$	3.43***	5.65***	5.57***		
	(0.77)	(0.98)	(0.99)		
Financial Aid	5.72***	1.36	0.45		
	(0.70)	(1.39)	(1.42)		
$Post_t \times FinancialAid$	1.94	4.06*	3.93*		
	(1.61)	(2.10)	(2.12)		
$Post_t \times FinancialAid \times Treat_i$	-1.80	2.51	2.75		
	(1.73)	(2.46)	(2.50)		
Constant	32.42***				
	(0.37)				
Year-Quarter Fixed Effects	No	Yes	Yes		
Firm Fixed Effects	No	Yes	Yes		
Task Fixed Effects	No	No	Yes		
Duration, Budget, Bids	No	Yes	Yes		
$Post_t \times \text{(Duration, Budget, Bids)}$	No	Yes	Yes		
Observations	173,900	155,638	155,638		
\mathbb{R}^2	0.01	0.11	0.12		
Adjusted R ²	0.01	0.05	0.05		

*p<0.1; **p<0.05; ***p<0.01 Each observation is a project-quarter.

SEs are robust and clustered at the project level.

7 Receives Contracts and Financial Aid

$$CFA = \begin{cases} 1, & \text{if firm receives "contracts and grants"} \\ \text{or grants or is a c8A participant} \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{aligned} Delay_{it} = & \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \beta_3 CFA \\ & + & \beta_4 (CFA \times Post_t) + \beta_5 (Treat_i \times Post_t \times CFA) \\ & + & X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it} \end{aligned}$$

Table 5: Effect of Contracts, Grants, or C8A Participant: Quickpay 2009-2011

		$Delay_{it}$ (in days)					
	(1)	(2)	(3)				
$Treat_i$	-6.68***	-3.19**	-2.71^{*}				
		(1.55)	(1.59)				
$Post_t$	12.17***						
	(0.55)						
$Treat_i \times Post_t$	4.19***	5.71***	5.84***				
	(0.79)	(1.02)	(1.03)				
CFA	4.90***	-5.44***	-5.92***				
	(0.62)	(1.78)	(1.80)				
$Post_t \times CFA$	3.91***	5.00***	5.83***				
	(1.21)	(1.60)	(1.64)				
$Post_t \times CFA \times Treat_i$	-4.04***	2.60	1.61				
	(1.38)	(2.12)	(2.16)				
Constant	32.18***						
	(0.37)						
Year-Quarter Fixed Effects	No	Yes	Yes				
Firm Fixed Effects	No	Yes	Yes				
Task Fixed Effects	No	No	Yes				
Duration, Budget, Bids	No	Yes	Yes				
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes				
Observations	173,900	155,638	155,638				
\mathbb{R}^2	0.01	0.11	0.12				
Adjusted R ²	0.01	0.05	0.05				

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

8 Firm's rank order

- Consider a project i of firm f in quarter t.
- Let $\Pi_{f,2010}$ denote all projects of firm f in Fiscal Year 2010.
- Define $\rho_f = \sum_{i \in \Pi_{f,2010}} (Treat_i \times FAO_{if})/Sales_{f,2010}$. ρ_f is the fraction of revenue a firm earned from small government projects in Fiscal Year 2010.
- Let $Rank_f = r(\rho_f)/N$ where $r(\rho_f)$ is the rank statistic of ρ_f and N = number of firms. For example, $r(\rho_f) = 1 \text{ if } \rho_f = \min(\rho_1, \rho_2, \dots, \rho_N).$
- Put simply, $Rank_f$ is a firm's rank order based on the fraction of revenue it earned from small government projects in FY 2010.

8.1 Portfolio Effects: Discrete

- See Jie's notes for details.
- Let $Rank_f^{(k)}$ be an indicator for firm being in the k-th tercile of Rank. Define:

 $- Medium_i = Treat_i * Rank_f^{(2)}$ $- High_i = Treat_i * Rank_f^{(3)}$

 $\beta_0 + \beta_1 Treat_i + \beta_2 Medium_i + \beta_3 High_i + \beta_4 Post_t$ $Delay_{it} =$ $+\beta_5(Treat_i \times Post_t) + \beta_6(Medium_i \times Post_t) + \beta_7(High_i \times Post_t) + \epsilon_{it}$

Table 6: Discrete Portfolio Effects: Quickpay 2009-2011

	$Delay_{it}$ (in days)					
	(1)	(2)	(3)	(4)	(5)	
$Treat_i$	2.85**	-0.51	-0.37	0.38	-6.90	
	(1.37)	(1.54)	(1.55)	(1.64)	(4.47)	
$Medium_i$	-2.92**	-1.11	-1.32	-0.60	12.24**	
	(1.40)	(1.56)	(1.57)	(1.63)	(6.17)	
$High_i$	-3.26**	0.09	-0.07	1.04	-3.11	
	(1.31)	(1.49)	(1.50)	(1.58)	(6.04)	
$Post_t$	15.67***	6.87***				
	(1.05)	(1.83)				
$Treat_i \times Post_t$	-2.42	2.15	1.26	1.32	7.32**	
	(2.04)	(2.36)	(2.39)	(2.43)	(3.16)	
$Treat_i \times Post_t \times Medium_i$	4.28**	1.54	2.31	2.45	0.10	
	(2.09)	(2.38)	(2.41)	(2.45)	(3.22)	
$Treat_i \times Post_t \times High_i$	6.76***	3.46	4.16*	3.58	-1.27	
	(1.97)	(2.28)	(2.31)	(2.35)	(3.07)	
Constant	27.08***	46.30***				
	(0.71)	(1.16)				
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes	
$Post_t \times \text{(Duration, Budget, Bids)}$	No	Yes	Yes	Yes	Yes	
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes	
Task Fixed Effects	No	No	No	Yes	Yes	
Firm Fixed Effects	No	No	No	No	Yes	
Observations	71,753	$63,\!216$	63,216	63,216	63,216	
\mathbb{R}^2	0.01	0.02	0.03	0.06	0.12	
Adjusted R ²	0.01	0.02	0.03	0.04	0.04	

Note:

p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

8.2 Portfolio Effects: Continuous

- See Jie's notes for details.
- Define $\theta_i = Treat_i * Rank_f$

$$Delay_{it} = \beta_0 + \beta_1 Treat_i + \beta_2 \theta_i + \beta_3 \theta_i^2 + \beta_4 Post_t + \beta_5 (Treat_i \times Post_t) + \beta_6 (\theta_i \times Post_t) + \beta_7 (\theta_i^2 \times Post_t) + \epsilon_{it}$$

Table 7: Continuous Portfolio Effects: Quickpay 2009-2011

	$Delay_{it}$ (in days)						
	(1)	(2)	(3)	(4)	(5)		
$Treat_i$	-1.44	-4.54	-4.12	-2.25	-19.01**		
	(2.52)	(2.79)	(2.80)	(2.88)	(8.36)		
$ heta_i$	15.63*	12.24	11.06	8.21	92.44***		
	(8.14)	(8.85)	(8.89)	(9.06)	(34.90)		
θ_i^2	-16.17^{**}	-8.85	-8.10	-5.07	-88.48***		
	(6.56)	(7.11)	(7.15)	(7.30)	(31.25)		
$Post_t$	15.67***	6.85***					
	(1.05)	(1.83)					
$Treat_i \times Post_t$	-3.83	2.64	1.05	0.34	9.39		
	(3.74)	(4.31)	(4.38)	(4.45)	(5.79)		
$\theta_i \times Post_t$	4.16	-3.40	-0.02	3.49	-4.73		
	(12.19)	(13.75)	(13.98)	(14.13)	(17.63)		
$\theta_i^2 \times Post_t$	4.91	6.92	4.92	1.51	1.46		
	(9.87)	(11.09)	(11.27)	(11.38)	(13.78)		
Constant	27.08***	46.30***					
	(0.71)	(1.16)					
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes		
$Post_t \times (Duration, Budget, Bids)$	No	Yes	Yes	Yes	Yes		
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes		
Task Fixed Effects	No	No	No	Yes	Yes		
Firm Fixed Effects	No	No	No	No	Yes		
Observations	71,753	63,216	63,216	63,216	63,216		
R^2	0.01	0.02	0.03	0.06	0.12		
Adjusted R ²	0.01	0.02	0.03	0.04	0.04		

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

9 Firm's rank order [Vibhuti]

9.1 Continuous model

• We have $\theta_{if} = Treat_i * Rank_f$

$$Delay_{ift} = \beta_0 + \beta_1 \theta_{if} + \beta_2 (\theta_{if} \times Post_t) + \beta_3 Post_t + \beta_4 Rank_f + \epsilon_{ift}$$

- Consider a firm with $Rank_f = k$. Then, we have
 - Large + Before = $\beta_0 + \beta_4 k$
 - Large + After = $\beta_0 + \beta_3 + \beta_4 k$

 - $\begin{array}{l} \text{ Small } + \text{ Before} = \beta_0 + \beta_1 k + \beta_4 k \\ \text{ Small } + \text{ After} = \beta_0 + \beta_1 k + \beta_2 k + \beta_3 + \beta_4 k \end{array}$
 - Treatment effect: $\beta_2 k$

Interpretation:

- Treatment effect is $\beta_2 k$ for a firm that received a proportion k of its revenue from small projects.
- In other words, for a firm earning k proportion of revenue from small projects, Quickpay increased delays on small projects by $\beta_3 k$ days.

Assumption: Parallel trends between large and small projects of the same firm.

Table 8: Continuous Portfolio Effects: Quickpay 2009-2011

	$Delay_{it}$ (in days)						
	(1)	(2)	(3)	(4)	(5)		
$\overline{ heta_{if}}$	-4.81^{*}	-6.34**	-5.86**	-3.31	-4.43		
•	(2.60)	(2.63)	(2.64)	(2.66)	(3.59)		
$Rank_f$	4.98*	7.22**	6.53**	5.66*			
•	(2.93)	(2.95)	(2.97)	(2.99)			
$Post_t$	14.74***	6.92***					
	(0.96)	(1.68)					
$\theta_{if} \times Post_t$	4.91***	5.66***	5.60***	5.24***	6.23***		
·	(1.40)	(1.54)	(1.56)	(1.58)	(1.75)		
Constant	26.88***	44.82***					
	(0.77)	(1.14)					
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes		
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes		
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes		
Task Fixed Effects	No	No	No	Yes	Yes		
Firm Fixed Effects	No	No	No	No	Yes		
Observations	71,753	63,216	63,216	63,216	63,216		
\mathbb{R}^2	0.01	0.02	0.03	0.06	0.12		
Adjusted R ²	0.01	0.02	0.03	0.04	0.04		

 $^*\mathrm{p}{<}0.1;\ ^{**}\mathrm{p}{<}0.05;\ ^{***}\mathrm{p}{<}0.01$

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

9.2 Continuous Quadratic Model

• We have $\theta_{if} = Treat_i * Rank_f$

$$Delay_{ift} = \beta_0 + \beta_1\theta_{if} + \beta_2\theta_{if}^2 + \beta_3(\theta_{if} \times Post_t) + \beta_4(\theta_{if}^2 \times Post_t) + \beta_5Post_t + \beta_6Rank_f + \epsilon_{ift}$$

- Consider a firm with $Rank_f = k$. Then, we have
 - Large + Before = $\beta_0 + \beta_6 k$
 - Large + After = $\beta_0 + \beta_5 + \beta_6 k$

 - Small + Before = $\beta_0 + \beta_1 k + \beta_2 k^2 + \beta_6 k$ Small + After = $\beta_0 + \beta_1 k + \beta_2 k^2 + \beta_3 k + \beta_4 k^2 + \beta_5 + \beta_6 k$ Treatment effect: $\beta_3 k + \beta_4 k^2$

Interpretation: * One unit increase in rank k increases treatment effect by $\beta_3 + 2k\beta_4$.

Assumption: Parallel trends between large and small projects of the same firm.

Table 9: Continuous Portfolio Effects: Quickpay 2009-2011

	$Delay_{it}$ (in days)						
	(1)	(2)	(3)	(4)	(5)		
$\overline{ heta_{if}}$	8.16*	-3.96	-3.59	-0.81	26.72		
•	(4.51)	(4.98)	(5.02)	(5.21)	(18.44)		
$ heta_{if}^2$	-15.84***	-2.95	-2.68	-3.17	-38.43^{*}		
•	(4.56)	(5.11)	(5.15)	(5.38)	(21.55)		
$Rank_f$	7.00**	7.62**	6.76**	6.19**			
	(3.05)	(3.06)	(3.08)	(3.10)			
$Post_t$	15.33***	7.03***					
	(1.01)	(1.78)					
$\theta_{if} \times Post_t$	-6.42	4.03	2.96	4.50	20.71**		
•	(6.39)	(7.32)	(7.43)	(7.52)	(8.88)		
$\theta_{if}^2 \times Post_t$	12.31*	1.79	2.87	0.81	-15.74^{*}		
-,	(6.73)	(7.75)	(7.87)	(7.96)	(9.43)		
Constant	25.79***	44.57***					
	(0.84)	(1.23)					
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes		
$Post_t \times \text{(Duration, Budget, Bids)}$	No	Yes	Yes	Yes	Yes		
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes		
Task Fixed Effects	No	No	No	Yes	Yes		
Firm Fixed Effects	No	No	No	No	Yes		
Observations	71,753	$63,\!216$	63,216	63,216	$63,\!216$		
\mathbb{R}^2	0.01	0.02	0.03	0.06	0.12		
Adjusted R ²	0.01	0.02	0.03	0.04	0.04		

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

10 Firm level analysis:

- Treatment is now defined at the firm level.
- There is variation in the portfolio of small projects held by each firm
- We compare what happens to delays of a *firm* holding too many versus too few small projects once quickpay was implemented.
- Drawback: We cannot distinguish the effects for a given firm's large and small projects because of multicollinearity.

10.1 Proxy 1: Revenue from small projects

- We defined ρ_f as the share of revenue a firm received from small projects in fiscal year 2010.
- The numerator of ρ_f is the sum of all federal obligations from small projects of a firm in fiscal year 2010. Because obligations can be negative, the sum can be zero or negative even if the firm held substantial number of small projects.

- In the previous section, we ranked the values of ρ_f . But this makes interpretation somewhat tricky. The minimum rank for each firm is now 1/N and it is never zero. What does a unit increase in Rank mean?
- An alternative can be to simply scale the values of ρ_f to between 0 and 1. That is, for a firm A, we define $Share_A = (\rho_A \min(\rho_f))/(\max(\rho_f) \min(\rho_f))$.
 - Suppose $\rho_A = -1, \max(\rho_f) = 3, \min(\rho_f) = -2$. Then, $Share_A = (-1 (-2))/(3 (-2)) = 1/5$.
 - The max share will be 1 and min share will be 0.
- Setting aside measurement issues described earlier, we have:
 - $-Share_f = 0$ represents a firm getting no revenue from small projects.
 - $-Share_f = 1$ represents a firm getting its entire revenue from small projects.

10.1.1 Continuous effect

$$Delay_{ift} = \beta_0 + \beta_1 Share_f + \beta_2 Post_t + \beta_3 (Share_f \times Post_t) + \epsilon_{ift}$$

- Control is firm with $Share_f = 0$:
 - Before = β_0
 - After = $\beta_0 + \beta_2$
- Treated firm with $Share_f = j$:
 - Before = $\beta_0 + \beta_1 j$
 - $After = \beta_0 + \beta_2 + \beta_1 j + \beta_3 j$
- Treatment effect: $\beta_3 j$

Interpretation: For a firm that received a proportion j of its revenue from small projects, delays after quickpay increased by $\beta_3 j$ days relative to a firm that received no revenue from small projects.

Assumption: Parallel trends for overall delays of treated and control firms.

• For better interpretation, in the regressions below, $Share_f$ is scaled to be between 0 and 100.

- So we can interpret a one percentage point increase in $Share_f$

Table 10: Discrete Portfolio Effects: Quickpay 2009-2011

	$Delay_{it}$ (in days)				
	(1)	(2)	(3)	(4)	(5)
${Share_f}$	-0.77^{***}	-0.85**	-0.89**	-0.64**	
•	(0.24)	(0.37)	(0.38)	(0.30)	
$Post_t$	16.30***	8.88***			
	(0.82)	(1.53)			
$Share_f \times Post_t$	0.58**	0.71**	0.72**	0.57^{*}	0.47
, -	(0.27)	(0.33)	(0.35)	(0.31)	(0.34)
Constant	28.84***	47.33***			
	(0.65)	(1.14)			
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes
$Post_t \times \text{(Duration, Budget, Bids)}$	No	Yes	Yes	Yes	Yes
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes
Task Fixed Effects	No	No	No	Yes	Yes
Firm Fixed Effects	No	No	No	No	Yes
Observations	71,753	63,216	$63,\!216$	$63,\!216$	63,216
R^2	0.01	0.02	0.03	0.06	0.12
Adjusted R ²	0.01	0.02	0.03	0.04	0.04

Note:

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

10.1.2 Discrete effect

• Let $Share_f^{(k)}$ denote k-th tercile of $Share_f$.

 $Delay_{ift} = \beta_0 + \beta_1 Share_f^{(2)} + \beta_2 Share_f^{(3)} + \beta_3 Post_t + \beta_4 (Share_f^{(2)} \times Post_t) + \beta_5 (Share_f^{(3)} \times Post_t) + \epsilon_{ift}$

- Control is firms in first tercile:
 - Before = β_0
 - After = $\beta_0 + \beta_3$
 - Treated firms in second tercile:
 - Before = $\beta_0 + \beta_1$
 - $After = \beta_0 + \beta_1 + \beta_3 + \beta_4$
 - Treatment effect: β_4
 - Treated firms in third tercile:
 - Before = $\beta_0 + \beta_2$
 - $After = \beta_0 + \beta_2 + \beta_3 + \beta_5$
 - Treatment effect: β_5

Interpretation: For a firm in medium range of revenue from small projects, delays after quickpay increased by β_4 days relative to a firm that received low revenue from small projects.

Assumption: Parallel trends for overall delays of treated and control firms.

Table 11: Discrete Portfolio Effects: Quickpay 2009-2011

	$Delay_{it}$ (in days)					
	(1)	(2)	(3)	(4)	(5)	
$Share_f^{(2)}$	-1.21	-1.53	-1.67	-0.45		
J	(0.97)	(1.05)	(1.06)	(1.11)		
$Share_f^{(3)}$	-1.07	0.003	-0.09	1.59		
j	(0.85)	(0.91)	(0.92)	(0.97)		
$Post_t$	14.68***	7.25***				
	(0.93)	(1.65)				
$Share_f^{(2)} \times Post_t$	3.09**	3.68**	3.69**	3.82**	6.00***	
j	(1.45)	(1.61)	(1.63)	(1.65)	(1.93)	
$Share_f^{(3)} \times Post_t$	5.24***	5.30***	5.33***	4.88***	4.79***	
j	(1.29)	(1.43)	(1.45)		(1.65)	
Constant	27.93***	46.06***				
	(0.62)	(1.05)				
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes	
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes	
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes	
Task Fixed Effects	No	No	No	Yes	Yes	
Firm Fixed Effects	No	No	No	No	Yes	
Observations	71,753	$63,\!216$	63,216	63,216	63,216	
\mathbb{R}^2	0.01	0.02	0.03	0.06	0.12	
Adjusted R ²	0.01	0.02	0.03	0.04	0.04	

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

10.2 Proxy 2: Ratio of small projects

- For firm f, define $Share_f = \frac{\text{Num of small projects in FY 2010}}{\text{Total num of projects in FY 2010}}$ Same analysis as before but advantages:
- - Sample size: only firms excluded are new entrants to government projects.
 - No measurement problem. $Share_f$ will be zero for firms with no small projects, and one for firms with only small projects.
 - We can control for differences across firms through fixed effects. This will be less of an issue here because we will have enough observations.