

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

SERIES OF REAL NUMBERS

Infinite Series: Let $\langle u_n \rangle$ be a given sequence then a symbol of the form $u_1 + u_2 + ... u_n + ...$ is called infinite series. it is denoted by $\sum_{n=1}^{\infty} u_n$.

Sequence of partial sums of the series: Let $\langle u_n \rangle$ be a sequence and $\sum u_n$ be a series. Then

the sequene <S_n> defined by

$$S_1 = u_1$$
,

$$S_2 = u_1 + u_2$$

.....

$$S_n = u_1 + u_2 + \dots + u_n$$

The elements of the sequence $\langle S_n \rangle$ are called the partial sums of the series and the sequence $\langle S_n \rangle$ is called sequence of partial sums (SOPS).

Sum of Series: Let $\sum u_n$ be a series and S_n is sequence of partial sum of the series then sum of the series = $\lim_{n\to\infty} S_n$

Geometric Series:

Let us consider the series $1 + a + a^2 + \dots + a^n + \dots$

Case -1 If |a| < 1.

Then SOPS of this series is $S_n = 1 + a + a^2 + \dots + a^{n-1}$

Then
$$S_n = \frac{1-a^n}{1-a}$$
 given that $|a| < 1$

So,
$$\lim_{n\to\infty} S_n = \frac{1}{1-a} = \text{Sum of the Series}$$

So, the series is convergent because SOPS of the series is convergent.

Case
$$-2$$
 If $|a| > 1$

$$S_n = \frac{a^n - 1}{a - 1} \qquad \lim_{n \to \infty} S_n = \infty$$

The series is divergent because SOPS of the series is divergent.

Case
$$-3$$
 If $a = 1$

$$\sum u_n = \sum_{n=1}^{\infty} (1)^{n-1}$$

$$S_1 = 1$$
, $S_2 = 1 + 1$, $S_3 = 1 + 1 + 1$,

$$\lim_{n\to\infty} S_n = \infty$$

So, the given series is divergent.

Result: Every constant series is divergent.

Case – 4 If
$$a = -1$$

$$\sum u_n = \sum_{n=1}^{\infty} (-1)^{n-1}$$

$$S_1 = 1$$
, $S_2 = 0$, $S_3 = 1$,

SOPS oscillate so the series is oscillating.

Telescopic Series: Let <an> be a sequence of real numbers,

then the series
$$\sum_{n=1}^{\infty} (a_n - a_{n+1})$$
 and $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ are

convergent iff the sequence <an> is convergent.

$$\sum_{n=1}^{\infty} (a_n - a_{n+1}) = a_1 - \lim_{n \to \infty} a_n \text{ and } \sum_{n=1}^{\infty} (a_{n+1} - a_n) = \lim_{n \to \infty} a_n - a_1 =$$

= Sum of the Series

Converges of positive term series:

The convergence of a positive terms series $\sum_{n=1}^{\infty} u_n$ depend on the sequence $\langle S_n \rangle$ of the partial sum of the series.

- i.e. A series $\sum u_n$ is convergent \Leftrightarrow SOPS is convergent.
 - A series $\sum u_n$ is divergent \Leftrightarrow SOPS is divergent.
 - A series $\sum u_n$ oscillate \Leftrightarrow SOPS oscillate.

Q.1. The sum of the series $\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^{n-1}$ is

(a) 1

(b) 4

(c)0

(d) does not exist

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹ 2,723 / mo	
	Total ₹ 2,723	

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹1,348 / mo	
Save 45%	₹ 13,475 ₹ 12,128	

6 months	₹ 1,838 / mo	
Save 25%	₹-12,252 ₹ 11,027	

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.2. What is the sum of series

$$\left(\frac{1}{2.3} + \frac{1}{2^2.3}\right) + \left(\frac{1}{2^2.3^2} + \frac{1}{2^3.3^2}\right) + \dots + \left(\frac{1}{2^a.3^a} + \frac{1}{2^{a+1}.3^a}\right) + \dots$$

CSIR NET JUNE 2019

(a)
$$\frac{3}{8}$$

(b)
$$\frac{3}{10}$$

(c)
$$\frac{3}{14}$$

(d)
$$\frac{3}{16}$$

Results:

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)....(n+m)} = \frac{1}{m} \cdot \frac{1}{\lfloor m \rfloor}$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \sum_{n=2}^{\infty} \frac{1}{(n-1)n(n+1)} = \frac{1}{2} \cdot \frac{1}{2}$$

Q.3.

sum

of

the

series

$$\frac{1}{2(2^2-1)} + \frac{1}{3(3^2-1)} + \frac{1}{4(4^2-1)} + \dots$$
?

IIT JAM 2020

(a) 1

(b) 0.25

(c) 0.5

(d)2

Q.4. The sum of the series $\sum_{n=1}^{\infty} \frac{1}{(4n-3)(4n+1)}$ is equal to

IIT JAM 2022

(a) 1

(b) 0.5

(c) 0.25

(d) 2

Q.5. The sum of the series $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \dots$

equals:

(a) e

(b) e/2

(c) 3e/2

(d) $1 + \frac{e}{2}$

Q.6. $\lim_{n\to\infty} \frac{1}{n^4} \sum_{j=0}^{2n-1} j^3$ equals:

CSIR NET DEC 2016

- (a) 4
- (c) 1

▲ 1 • Asked by Manvi

Sir please bata dijiye

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR