

消草大学

Tsinghua University

Al.
$$\frac{d(x)}{dx} + \frac{d(x)}{dx} + \frac{d(y')}{dx} = 0 \Rightarrow 2x + y + \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{2x+y}{x+2y}$$

$$\begin{cases} x^{2} + xy + y^{2} = 12 \\ -\frac{2x+y}{x+2y} = 0 \end{cases} \Rightarrow \begin{cases} x = -2 \\ y = 4 \end{cases} \begin{cases} x = 2 \\ y = -4 \end{cases}$$

on (-2.4) and (2.-4) is horizontal tangent.

$$\begin{cases} x^{2} + xy + y^{2} = 12 \\ -\frac{x+2y}{2x+y} = 0 \end{cases} = \begin{cases} x = 4 \\ y = -2 \end{cases}$$

$$\begin{cases} x = -4 \\ y = 2 \end{cases}$$

on (4.-2) and (-4,2) is vertical tangent

$$A2. (1)$$
 $L(a) = f(a)(a-a) + f(a) = L(a) = f(a)$

(2)
$$L'(\alpha) = (f'(a)(x-a) + f(a))' = (f'(a)x)' - (f'(a)a)' + (f(a))'$$
.

$$= f'(a) - 0 + 0 = f'(a) , \text{ so } L'(a) = f'(a)$$

A3.
$$P(a) = C = f(a)$$

 $P'(x) = 2A(x-a) + B$, $P'(a) = B = f'(a)$
 $P''(x) = 2A$, $P''(a) = 2A = f''(a)$

so there exist a unique $P(x) = \frac{f'(a)}{2}(x-a)^2 + f'(a)(x-a) + f(a)$ of degree 2 is satisfying these conditions.

A4. $-\alpha^{3} - 9\alpha = \alpha(x-3)(x+3)$.

for $\alpha \in \{0, -3\}$: $f'(x) = (-x^{3} + 9\alpha)' = -3\alpha^{2} + 9 = -3(x-5)(x+5)$ f(x) = 0, and down't exist α such that f'(x) = 0for $\alpha \in (-3, 0]$: $f'(\alpha) = (\alpha^{3} - 9\alpha)' = 3\alpha^{2} - 9 = 3(\alpha - 5)(\alpha + 5)$ f(0) = 0, and f'(-5) = 65for $\alpha \in \{0, 3\}$, $f'(\alpha) = -3(\alpha - 5)(\alpha + 5)$ f(3) = 0. and f'(5) = 65

for $xt (3, +\infty)$, f'(x) = 3(x-5)(x+5)There doesn't exist x each that f'(x) = 0

in sum: the global minimum is 0, and doesn't have the global maxim.

and the point (-3,0), (0,0), (3,0) is the extrema are attained by t.

A5. Let the length of rectargle is xcm, and the height is 11-x cm

The oven: $C(x) = x \cdot \sqrt{1-x^2}$. (0 < x < 1)(cm) $C'(x) = \sqrt{1-x^2} + x \cdot (-2x \cdot \frac{1}{1-x^2}) = \sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}} = \frac{1-2x^2}{\sqrt{1-x^2}}$ where $C(x) = x \cdot \sqrt{1-x^2} + x \cdot (-2x \cdot \frac{1}{1-x^2}) = \sqrt{1-x^2} = \frac{1-2x^2}{\sqrt{1-x^2}}$, if $x = \frac{E}{2}$, C'(x) = 0where $C(x) = x \cdot \sqrt{1-x^2} + x \cdot (-2x \cdot \frac{1}{1-x^2}) = \sqrt{1-x^2} = \frac{1-2x^2}{\sqrt{1-x^2}}$, if $x = \frac{E}{2}$, C'(x) = 0where $C(x) = x \cdot \sqrt{1-x^2} + x \cdot (-2x \cdot \frac{1}{1-x^2}) = \sqrt{1-x^2} = \frac{1-2x^2}{\sqrt{1-x^2}}$, if $x = \frac{E}{2}$, C'(x) = 0.

清華大学 Tsinghua University

Bonus exercises

B) (a) if $f(x) = \{x \sin(x) \mid 0 \mid x \leq 1 \}$ than f(x) is continue

but there doesn't exist S s.t $\forall x \in (0, S) \Rightarrow f(x) \neq 0$. or $\forall x \in (0, S) \Rightarrow f(x) \leq 0$

(b) assume that $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & 0 < x < 1 \\ 0 & x = 0 \end{cases}$

 $f(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(x)}{x} = 0$, so f(x) is differentiable.

but there doesn't exist δ s.t. $\forall \alpha \in (0, \delta) \Rightarrow f(\alpha) \geq 0$ or $\forall \alpha \in (0, \delta) \Rightarrow f(\alpha) \leq 0$