# Theory in Experimental Designs

Danilo Freire

7th August 2023



## Causality and experiments

- As researchers, we are interested in research questions about how the world works.
- ► There are a number of different types of questions that we may want to answer.
  - ▶ Descriptive questions: Descriptions of a given phenomena: e.g., "how do bureaucrats allocate their time across different tasks?"
  - ► Causal questions: Questions about how X affects Y: e.g., "Does providing vocational training to migrants improve their economic integration in the receiving country?"
- ▶ Then we can move on to questions about why?  $\rightarrow$  i.e., knowing the effect of a cause is necessary before moving on to understanding the causes of an effect.
- ► (Next session: more on about what we mean by causality and how experiments give us leverage to make causal claims.)



## Theory

- What is the phenomenon we want to explain?
  - Our outcome (we are going to call it Y)
- Does the cause we theorize lead to observing changes in Y?
  - **Our treatment** (in the context of experiments) (we are going to call it  $\mathcal{T}$ )
- What is the theory of change?
- We are ultimately interested in how two theoretical concepts are related, measured by observed variables T (our treatment) and Y (our outcomes)



## Why is theory important?

- Our theory allows us to:
- Derive observable implications (hypotheses) that we test in the real world.
- ightharpoonup Separate two completely unrelated experiments with identical empirical properties for Y and  $\mathcal T$ 
  - ► For example, we could have two identically sized experiments with the same treatment assignment, the same observed outcomes, but with significantly different underlying theories.



## From theory to research design

- We then need to connect what we are interested in to what we observe in the real world → operationalization of theoretical concepts.
- ► How are we going to *measure* our outcomes? How are we going to *manipulate* the cause of interest?
- ► This close link between theory and research design helps us interpret the results of our experiment.



#### Measurement

- ► Measurement is the link between a researcher's theory and an (experimental) research design.
- Measurement then follows from our theory of the way you think the world works and how our treatment manipulates that world.
- ► The ideal case is direct measurement of the phenomenon of interest with no error. But this is generally not possible.
- ▶ We are often only able to measure indicators connected to the underlying phenomenon of interest.



# Let's consider the example from our experiment practicum

- ▶ What is the outcome of interest (Y)?
- ▶ What is the cause of interest  $(\mathcal{T})$ ?
- What can be a theory that yields to this experimental design?
- ▶ What can be the main hypothesis?



## Measuring treatments

- ► Can we directly manipulate T? (underlying treatment concept of interest)
  - Ethical, logistical and other types of considerations can limit our ability to manipulate all of the indicators of  $\mathcal{T}$ .
  - At best, we may be able to change some of its indicators.
  - ▶ We design a treatment, **T**, to do so.
- ► How does T relate to T?
  - But T can be manipulating other things (bundled treatments).
- ► Did everyone receive T?
  - Measure compliance.



## Thinking about the treatment from the practicum...

- ▶ What could be underlying treatment concept (T)?
- ▶ What was the actual treatment (**T**)?
- ▶ What dimensions of  $\mathcal{T}$  does **T** manipulate?
- ▶ What else can **T** be manipulating? What is the "bundle" of **T**?



## Thinking about the treatment from the practicum...

- Now think of yourselves as the researchers.
- In pairs or groups of three:
  - Generate hypothesis on the direction of expected average effect
  - Generate hypothesis on potential heterogeneous effects
  - Generate expected effect size
  - Discuss theories behind the hypothesis and expected effect size, with emphasis on the importance of theory
  - Other ways of measuring the outcome or mode of administering the treatment?



#### Measuring outcomes

➤ As social scientists, we cannot directly observe the true value of the outcome concept for most of the outcomes we are interested in.

#### Examples:

- Correct answers to problems (indicators) for underlying mathematical aptitude (the actual phenomenon).
- Days without food (indicators) for hunger (the actual phenomenon).
- Reports of bribes (indicators) for corruption (the actual phenomenon).
- Moreover, the underlying outcome concept may be even under debate (e.g., democracy).
- ▶ If our indicators don't measure the underlying concept that we're interested in, then we may not be able to learn very much, even if we have an otherwise very sound experiment.



## Back to our experiment practicum...

- ▶ What items are designed to measure our theoretical outcome of interest (Y)?
  - Any concerns about this operationalization?
  - ▶ Other possible ways to measure Y?



## Things to consider

- Problems with measurement can lead you to draw incorrect causal inferences from your study (systematic error, more bias).
- Noisy measurement reduces power (random error, less precision) [discussing this on Thursday].
- ▶ Data collection often takes up a very large portion of the time and financial resources available in the project budget.
- New data can be a useful research output in its own right and an important foundation for future research. Data is a public good!



#### To wrap up

- As researchers, we have theories about how the world works.
- Some of these theories imply causal statements, and we can use experiments to test them empirically (i.e., with the data we observe from the real world).
- Measurement connects theory and research design.
- We observe real-world indicators of the broader theoretical concepts we are interested in.



## Questions?

► Your questions are most welcome!

