IoT Assignment 2

Ultrasonic Pong.

- LED matrix pong game - Paddles controls by Utrasonic Sensors.

GAME GRID

Paddle 1 x 3 LEDs

Ball 1 ×1 LED

Julia Boundary wall

-> ball bounces off

Point Zone

-> If ball enters

point is scored

Inner grid
Somesponds to
LED matrix
18x8

Outer Section

5 Software defined

for walls and

Point zones.

For simplicity won't

91/1

PADDLE POSITIONS

veliability. Can cover max 2 sensors at once Permotations, of covered sensous determenes Paddle location 1:1 mapping (ish) Can use minimum of sensors, could add a fafth veliability is an issue. Could MAYBE use only 3: Paddle controlled via distance of senson from grand. Only need

Would need calebration for people of different heights.

Paddle Collision

Anchor point that counts as paddle position.

middle het region

Hit regions are defined by country from TOP:

$$Top = 0 + 2$$

$$middle = 0 + 4 - 2$$

- 1. Check ball is inline with paddle E. If it's not it obviously luser 4 collided
- 2. Check hall y is within upper a lower bounds of paddle

Size = 5 pixels

Anchor pixel lude = 2

Anchor y coord = A-y

ymin = A-y - 2

 $y max = A_{-y} + 2$

e.g Anchor Pixel Coord = (0,2)

y min = 2 - 2 = 0y max = 2 + 2 = 4

3. Identify the region that
was but

TOP

Bally L= y Max AND > yMax

-tapsize

MIDDLE

ymax

Loosize Jslex Ball. y Z=(ymax - tapsize)

gmin

else bollom

Valid States = 1,2,3,4

(y values)

Interval = [0+(Size-1) - auchor)

y Max - auchor)