What Are the Questions?

icipal concern throughout engineering:

eer is someone who can do for a dime what any fool a dollar."

۱n

al cost (for programs, time to run, space requirements).
ent costs: How much engineering time? When deliv-

ice costs: Upgrades, bug fixes. failure: How robust? How safe?

am fast enough? Depends on:

purpose; input data.

7:15 2019

ace (memory, disk space)?

ends on what input data.

cale, as input gets big?

7:15 2019 CS61B: Lecture #16 2

S61B Lecture #16: Complexity

Cost Measures (Time)

execution time

b this at home:

e java FindPrimes 1000

es: easy to measure, meaning is obvious.

te where time is critical (real-time systems, e.g.).

ages: applies only to specific data set, compiler, ma-

tement counts of # of times statements are executed:

es: more general (not sensitive to speed of machine).

ages: doesn't tell you actual time, still applies only to ata sets.

ecution times:

prmulas for execution times as functions of input size.

es: applies to all inputs, makes scaling clear.

age: practical formula must be approximate, may tell about actual time.

7:15 2019 CS61B: Lecture #16 4

Enlightening Example

a text corpus (say 10^8 bytes or so), and find and print quently used words, together with counts of how often

nuth): Heavy-Duty data structures

implementation, randomized placement, pointers garal pages long.

loug McIlroy): UNIX shell script:

```
'[:alpha:]' '[\n*]' < FILE | \
```

r -k 1,1 | \

ter?

CS61B: Lecture #16 1

h faster.

ok 5 minutes to write and processes 100MB in ≈ 50 sec.

cases, almost anything will do: Keep It Simple.

7:15 2019 CS61B: Lecture #16 3

Handy Tool: Order Notation

ry to produce specific functions that specify size, but ies of functions with similarly behaved magnitudes.

hething like "f is bounded by q if it is in q's family."

tion g(x), the functions 2g(x), 0.5g(x), or for any K > 0, ave the same "shape". So put all of them into g's family.

h(x) such that $h(x)=K\cdot g(x)$ for x>M (for some has g 's shape "except for small values." So put all of amily.

nits, throw in all functions whose absolute value is evsome member of g's family. Call this set O(g) or O(g(n)).

r limits, throw in all functions whose absolute values is > some member of q's family. Call this set $\Omega(q)$.

he $\Theta(g) = O(g) \cap \Omega(g)$ —the set of functions bracketed by two members of g's family.

7:15 2019 CS61B: Lecture #16 6

Asymptotic Cost

ecution time lets us see shape of the cost function.

e approximating anyway, pointless to be precise about

on small inputs:

ays pre-calculate some results.

or small inputs not usually important.

more interested in *asymptotic behavior* as input size s very large.

factors (as in "off by factor of 2"):

langing machines causes constant-factor change.

fact away from (i.e., ignore) these things?

7:15 2019 CS61B: Lecture #16 5

Big Omega

bounding from below:

 $\geq \frac{1}{2}g(x)$ as long as x>1,

g's "bounded-below family," written

$$f'(x) \in \Omega(g(x)),$$

 $\mathsf{gh}\ f(x) < g(x) \ \mathsf{everywhere}.$

7:15 2019 CS61B: Lecture #16 8

Big Oh

bounding from above.

2g(x) as long as x>1,

g's "bounded-above family," written

$$f(x) \in O(g(x)),$$

gh (in this case) f(x) > g(x) everywhere.

7:15 2019 CS61B: Lecture #16 7

de: Various Mathematical Pedantry

if I am going to talk about $O(\cdot)$, $\Omega(\cdot)$ and $\Theta(\cdot)$ as sets of really should write, for example,

$$f \in O(g)$$
 instead of $f(x) \in O(g(x))$

$$x \in O(g(x))$$
 is short for λx . $f(x) \in O(\lambda x$. $g(x)$.

I notation outside this course, in fact, is f(x) = O(g(x)), ly, I think that's a serious abuse of notation.

7:15 2019 CS61B: Lecture #16 10

Big Theta

previous slides, we not only have $f(x) \in O(g(x))$ and $\{\}\}$...

 $(x) \in \Omega(g(x))$ and $f'(x) \in O(g(x))$.

7:15 2019

marize this all by saying $f(x) \in \Theta(g(x))$ and $f'(x) \in \Theta(g(x))$

CS61B: Lecture #16 9

Why It Matters

ientists often talk as if constant factors didn't matter ne difference of $\Theta(N)$ vs. $\Theta(N^2)$.

ey do matter, but at some point, constants always get

\sqrt{n}	n	$n \lg n$	n^2	n^3	2^n
1.4	2	2	4	8	4
2	4	8	16	64	16
2.8	8	24	64	512	256
4	16	64	256	4,096	65,636
5.7	32	160	1024	32,768	4.2×10^{9}
8	64	384	4,096	262, 144	1.8×10^{19}
11	128	896	16,384	2.1×10^{9}	3.4×10^{38}
:	:	:	:	:	i
32	1,024	10,240	1.0×10^{6}	1.1×10^{9}	1.8×10^{308}
:	:	:	:	:	:
1024	1.0×10^6	2.1×10^7	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

7:15 2019 CS61B: Lecture #16 12

How We Use Order Notation

mathematics, you'll see $O(\ldots)$, etc., used generally to ds on functions.

$$\pi(N) = \Theta(\frac{N}{\ln N})$$

d prefer to write

$$\pi(N) \in \Theta(\frac{N}{\ln N})$$

is the number of primes less than or equal to N.)

ee things like

$$=x^3+x^2+O(x)$$
 (or $f(x) \in x^4+x^2+O(x)$),

$$f(x) = x^3 + x^2 + g(x)$$
 where $g(x) \in O(x)$.

pses, the functions we will be bounding will be cost funcons that measure the amount of execution time or the ace required by a program or algorithm.

7:15 2019 CS61B: Lecture #16 11

Using the Notation

order notation for any kind of real-valued function.

hem to describe cost functions. Example:

sentative operation: number of .equals tests.

th of L, then loop does at most N tests: worst-case sts.

al # of instructions executed is roughly proportional worst case, so can also say worst-case time is O(N), f units used to measure.

provision (in defn. of $O(\cdot)$) to ignore empty list.

7:15 2019 CS61B: Lecture #16 14

ne Intuition on Meaning of Growth

oblem can you solve in a given time?

ving table, left column shows time in microseconds to problem as a function of problem size N.

the size of problem that can be solved in a second, (31 days), and century, for various relationships beequired and problem size.

size.

c) for ze N	$\begin{array}{cccc} \textbf{Max} & N \textbf{ Possible in} \\ 1 \textbf{ second} & 1 \textbf{ hour} & 1 \textbf{ month} & 1 \textbf{ century} \end{array}$					
26 11	1 Second	1 Hour		1 century		
	10^{300000}	$10^{10000000000}$	$10^{8 \cdot 10^{11}}$	$10^{10^{14}}$		
	10^{6}	$3.6 \cdot 10^{9}$	$2.7 \cdot 10^{12}$	$3.2 \cdot 10^{15}$		
	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$		
	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$		
	100	1500	14000	150000		
	20	32	41	51		

7:15 2019 CS61B: Lecture #16 13

Effect of Nested Loops

often lead to polynomial bounds:

```
i = 0; i < A.length; i += 1)
nt j = 0; j < A.length; j += 1)
(i != j && A[i] == A[j])
return true;
lse;
is O(N²), where N = A.length. Worst-case time is</pre>
```

icient though:

```
i = 0; i < A.length; i += 1)
nt j = i+1; j < A.length; j += 1)
(A[i] == A[j]) return true;
llse:</pre>
```

ase time is proportional to

$$-1+N-2+\ldots+1=N(N-1)/2\in\Theta(N^2)$$

ic time unchanged by the constant factor).

7:15 2019 CS61B: Lecture #16 16

Be Careful

that the worst-case time is $O(N^2)$, since $N\in O(N^2)$ bounds are loose.

ase time is $\Omega(N)$, since $N\in\Omega(N)$, but that does *not* le loop *always* takes time N, or even $K\cdot N$ for some K.

are just saying something about the function that maps argest possible time required to process any array of

ch as possible about our worst-case time, we should try ound: in this case, we can: $\Theta(N)$.

hat still tells us nothing about *best-case* time, which n we find X at the beginning of the loop. Best-case time

7:15 2019 CS61B: Lecture #16 15

Binary Search: Slow Growth

```
is an element of S[L . . U]. Assumes ding order, 0 <= L <= U-1 < S.length. */ tring X, String[] S, int L, int U) { eturn false; }//2;  
X.compareTo(S[M]);  
0) return isIn(X, S, L, M-1);  
ect > 0) return isIn(X, S, M+1, U);  
true;  
case time, C(D), (as measured by # of calls to .compareTo),  
ize D = U - L + 1.  
S[M] from consideration each time and look at half the D = 2^k - 1 for simplicity, so:  
C(D) = \begin{cases} 0, & \text{if } D \leq 0, \\ 1 + C((D-1)/2), & \text{if } D > 0. \end{cases} 
= \frac{1+1+\ldots+1}{k} + 0
= k = \lg(D+1) \in \Theta(\lg D)  
7.15 2019  
CS618 Lecture #16 18
```

rsion and Recurrences: Fast Growth

e of recursion. In the worst case, both recursive calls

```
ff X is a substring of S */
turs(String S, String X) {
    aals(X)) return true;
    ngth() <= X.length()) return false;

(S.substring(1), X) ||
(S.substring(0, S.length()-1), X);</pre>
```

to be the worst-case cost of occurs (S,X) for S of fixed size N_0 , measured in # of calls to occurs. Then

$$C(N) = \begin{cases} 1, & \text{if } N \leq N_0, \\ 2C(N-1) + 1 & \text{if } N > N_0 \end{cases}$$

ws exponentially:

$$|N-1| + 1 = 2(2C(N-2) + 1) + 1 = \dots = \underbrace{2(\dots 2 \cdot 1 + 1) + \dots + 1}_{N-N_0}$$

$$|N-1| + 2^{N-N_0-1} + 2^{N-N_0-2} + \dots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)$$

CS61B: Lecture #16 17

