SRM Institute of Science and Technology, Kattankulathur Department of Mathematics

18MAB101T - CALCULUS AND LINEAR ALGEBRA TUTORIAL SHEET - UNIT II - FUNCTIONS OF SEVERAL VARIABLES

SLOT:B2 SHEET 1

PART - B

- 1. Find $\frac{dy}{dx}$, if $(cosx)^y = (siny)^x$.
- 2. Find $\frac{du}{dx}$, if $u = tan^{-1} \left(\frac{y}{x}\right)$.
- 3. Find $\frac{dz}{dt}$, when $z = xy^2 + x^2y$, where $x = at^2$, y = 2at.
- 4. If $u = x^2y^3$, x = logt, $y = e^t$, then find $\frac{du}{dt}$.
- 5. Find $\frac{du}{dt}$, when $u = x^2y$, $x = t^2$, $y = e^t$.

PART - C

- 6. Expand $e^x cosy$ near the point $(1, \frac{\pi}{4})$ by Taylor's series up to second degree.
- 7. Expand $x^2y + 3y 2$ in powers of x 1 and y + 2 using Taylor's theorem up to third degree.
- 8. If z=f(x,y), where $x=u^2-v^2,\ y=2uv$, then prove that $\frac{\partial^2 z}{\partial u^2}+\frac{\partial^2 z}{\partial v^2}=4\left(u^2+v^2\right)\left[\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}\right]$.
- 9. Expand e^{xy} in powers of x-1 and y-1 using Taylor's theorem up to third degree.
- 10. Find $\frac{du}{dt}$, when $u = sin\left(\frac{x}{y}\right)$, $x = e^t$, $y = t^2$.

* * * * * * ALL THE BEST * * * * * *