GroupRepresentation 8

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023 年 11 月 17 日

ROBEM I R is a ring with identity element. If every non zero element in R is inversible, we call R is division ring. Prove: if D is a division ring, then $M_n(D)$ is a monocycle.

SOLITON. Assume I is a non-zero two-sided ideal of $M_n(D)$, now we only need to prove $I = M_n(D)$. Only need to prove $E_{ij} \in I$, $\forall i, j$. Since $I \neq \{0\}$, assume $A \in I$ and $A_{st} \neq 0$. Then $\forall i, j, E_{is}AE_{tj} \in I$. i.e., $a_{st}E_{ij} \in I$. So $a_{st}^{-1}I_na_{st}E_{ij} \in I$, i.e., $E_{ij} \in I$. So $I = M_n(D)$.

ROBEM II V is right module of division ring D, let $\operatorname{Hom}_D(V, V)$ is the set of all module isomorphic of V. Given $\dim_D V = n$, prove that $\operatorname{Hom}_D(V, V) \cong M_n(D)$.

SOLTION. Assume $\{a_1, \dots, a_n\}$ is a maximal linearly independent set of V. First we prove $\forall x \in V, \exists ! d_1, \dots, d_n \in D$ such that $x = \sum_{k=1}^n d_k a_k$.

Existence: Since A is maximal linearly independent set, we have $A \cup \{x\}$ is not linearly independent. So $\exists t_1, \dots, t_n, t \in D$ such that $\sum_{k=1}^n t_k a_k + tx = 0$ and t_1, \dots, t_n, t are not all 0. If t = 0, then we get a_1, \dots, a_n are not linearly independent, contradiction! So $t \neq 0$. Since D is division ring, we get $\exists w \in D$ such that tw = wt = 1. Let $d_k = -wt_k, k = 1, \dots, n$, then $\sum_{k=1}^n d_k a_k = \sum_{k=1}^n -wd_k a_k = wt = x$.

Uniqueness: If $x = \sum_{k=1}^{n} d_k a_k = \sum_{k=1}^{n} t_k a_k$, then $\sum_{k=1}^{n} (d_k - t_k) a_k = 0$. Since $a_k, k = 1, \dots, n$ is linearly independent, we get $d_k - t_k = 0, k = 1, \dots, n$. So the form is unique.

Now let $f_j: V \to D, \sum_{k=1}^n d_k a_k \mapsto d_j$, for $j=1,\dots,n$. Then f_k is well-defined. Let $F: \operatorname{Hom}_D(V,V) \to M_n(D), F(\varphi)_{ij} := f_i(\varphi(a_j))$. Now we prove F is isomorphic.

Since $\varphi(\sum_{k=1}^n d_k a_k) = \sum_{k=1}^n d_k \varphi(a_k)$, so $\varphi(\sum_{k=1}^n d_k a_k)_i = \sum_{k=1}^n d_k F(\varphi)_{ik}$. So φ can be repersented by $F(\varphi)$, so F is injection.

For $A \in M_n(D)$, assume $A = (a_{ij})$. Let $\varphi(\sum_{k=1}^n d_k a_k)_i := \sum_{k=1}^n d_k a_{ik}$. Easily we get $\varphi \in \text{Hom}_D(V, V)$. And $F(\varphi) = A$. So F is surjective.

Easily $F(\varphi\psi)_{ij} = f_i(\varphi\psi a_j) = f_i(\varphi\sum_{k=1}^n f_k(\psi a_j)a_k) = \sum_{k=1}^n F(\varphi)_{ik}F(\psi)_{kj}$. So $F(\varphi\psi) = F(\varphi)F(\psi)$. And obviously $F(a\varphi + b\psi) = aF(\varphi) + bF(\psi)$.

So all in all we get F is a isomorphic.