Automatic Dysarthric Speech Detection Exploiting Pairwise Distance-Based Convolutional Neural Networks

Parvaneh Janbakhshi, Ina Kodrasi, and Hervé Bourlard

Idiap Research Institute

Virtual ICASSP

May 2021

Outline

- 1. Automatic Dysarthric Speech Detection
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

Dysarthric speech detection

- » Dysarthria \rightarrow disturbances of muscular control on speech production system
 - Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS)

Dysarthric speech detection

- » Dysarthria \rightarrow disturbances of muscular control on speech production system
 - ▶ Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS)
- » Dysarthric speech detection: discriminating between normal and dysarthric speech

Dysarthric speech detection

- » Dysarthria \rightarrow disturbances of muscular control on speech production system
 - ▶ Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS)
- » Dysarthric speech detection: discriminating between normal and dysarthric speech

- » Subjective screening based on judgement of medical practitioners
 - ► Labor-intensive
 - Inconsistency
 - ▶ Difficulties with early diagnosis

- » Automatic and objective detection method
 - Efficient, economical
 - Repeatable
 - ► Early diagnosis

Outline

- 1. Automatic Dysarthric Speech Detection
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Focusing on connected speech analysis (words and sentences) \rightarrow Crucial for assessment of dysarthria
 - ► Traditional machine learning approaches
 - Deep learning approaches

Traditional machine learning approaches (Hegde et al., 2019; Kodrasi and Bourlard, 2020; Hernandez et al., 2020)

Traditional machine learning approaches (Hegde et al., 2019; Kodrasi and Bourlard, 2020; Hernandez et al., 2020)

 \wedge Abstract but important acoustic cues not characterized by handcrafted features

- » Deep learning approaches \rightarrow Data-driven approach using no prior knowledge
 - Exploit high-level abstract representations from low-level speech representations or raw waveforms
 - Challenge: alleviating overfitting associated with limited available dysarthric training data

- » Deep learning approaches \rightarrow Data-driven approach using no prior knowledge
 - Challenge: alleviating overfitting associated with limited available dysarthric training data

Analysing (many) short segments of speech (Vasquez et al., 2017; Vaiciukynas et al., 2017; An et al., 2018; Mallela et al., 2020)

- » Deep learning approaches \rightarrow Data-driven approach using no prior knowledge
 - Challenge: alleviating overfitting associated with limited available dysarthric training data
 - \wedge Analysing (many) short segments of speech \rightarrow less robust to speaker variabilities (unrelated to dysarthria)

- » Deep learning approaches \rightarrow Data-driven approach using no prior knowledge
 - Challenge: alleviating overfitting associated with limited available dysarthric training data
 - ∧ Analysing (many) short segments of speech
 - ↑ Training different LSTM Siamese networks for different utterances (Bhati et al., 2019)

Outline

- 1. Automatic Dysarthric Speech Detection
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Considering pairs of inputs representations; one of which is always from a healthy speaker (reference) and a test speaker
- » Computing frame-level distance matrices between reference representations and phonetically-mathced test representations \rightarrow inputs to CNN for classification

Hypothesis

The frame-level distance matrix between two healthy utterances have different patterns (i.e., expected to be more quasi-diagonal) than between a healthy and a pathological utterances

- » Considering pairs of inputs representations; one of which is always from a healthy speaker (reference) and a test speaker
- » Computing frame-level distance matrices between reference representations and phonetically-mathced test representations \rightarrow inputs to CNN for classification

Hypothesis

The frame-level distance matrix between two healthy utterances have different patterns (i.e., expected to be more quasi-diagonal) than between a healthy and a pathological utterances

✓ Pairwise training Advantageous for limited training data and for extracting features robust to unrelated speaker variabilities

✓ A single network can be used for different utterances Since CNN operates on distance matrices

The frame-level distance matrix between two healthy utterances have different patterns (i.e., expected to be more quasi-diagonal) than between a healthy and a pathological utterances

Reference representation: $\mathbf{R} = [\mathbf{r}_1, \dots, \mathbf{r}_S]$ Test representation: $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_S]$ \mathbf{r}_i and \mathbf{t}_j : reference and test feature vectors at time frame i and j.

Distance matrix **D** with (i, j)-th entry: The distance d between \mathbf{r}_i and \mathbf{t}_j $\mathbf{D}_{i,j} = d(\mathbf{t}_i, \mathbf{r}_j)$

Input utterance representations

- » Short-time Fourier transform (STFT) representation, e.g., in (Vasquez et al., 2017)
- » Articulatory posteriors (APs)

Input utterance representations

- » Short-time Fourier transform (STFT) representation
- » Articulatory posteriors (APs) 🗸
- » APs \rightarrow CNN-based phoneme-to-articulatory feature mapping trained using healthy speech data
 - ▶ Mapping phone/phoneme into a set of multi-valued features based on the articulators used to produce it, e.g., manner, place, height, and vowel (Rasipuram and Magimai-Doss, 2016)
 - Characterising articulation
 - Robustness to noise
 - ▶ Multilingual and crosslingual portability

» AP and STFT representation of a sample utterance

» Distance matrices computed from AP representations of a sample utterance from a pair of test dysarthric-reference and from a pair of test healthyreference speakers.

Utterance from

CNN-based detection system exploiting pairwise distance matrices

» Applying CNNs on frame-level distance matrices computed from user-defined representations of utterances

Utterance from

- CNNs frame-level distance Applying on matrices computed from user-defined representations of utterances
 - The user-defined representations might not be optimal for healthy and dysarthric speech detection

Utterance from

- » Distance matrices from optimal representations→ incorporating a front-end feature extraction layer prior to computing distance matrices
- » The front-end feature extraction, distance matrix computation, and final healthy and dysarthric speech detection layers are jointly optimized in an end-to-end framework.

- » System inputs: phonetically-matched pairs of test and reference (healthy) representations
 - ▶ Being resized to the same temporal dimension (i.e., by down-sampling and padding)
- » Evaluating an utterance from an unseen test speaker
 - Pairing it to its phonetically-matched counterpart from many reference speakers in the training
 - ▶ Analysing the given pairs (giving distance matrices) by the CNN classifier
 - Soft voting on all CNN prediction scores for all distance matrices from the test speaker

Outline

- 1. Automatic Dysarthric Speech Detection
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

- » Dataset
 - ► Spanish PC-GITA database (Orozco et al., 2014)
 - 50 PD patients vs. 50 healthy speakers (10-fold CV paradigm)
 - ► French MoSpeeDi database
 - 20 Dysarthric (PD and ALS) patients vs. 20 healthy speakers (5-fold CV paradigm)
- » Evaluation
 - ▶ Detection accuracy: percentage of correctly classified speakers
 - ► AUC: area under ROC curve

- » Baseline networks and the proposed network
 - ► B-CNN₁
 - ► B-CNN₂
 - Proposed network

- » Baseline networks and the proposed network
 - ► B-CNN₁
 - ▶ B-CNN₂
 - Proposed network

- » Baseline networks and the proposed network
 - ► B-CNN₁
 - ► B-CNN₂
 - Proposed network

» Classification results using B-CNN $_1$ on STFT and AP representations for considered databases

Database	Input representation	AUC	Accuracy [%]
Spanish PC-GITA	STFT	0.56	53.67
Spanish PC-GITA	AP	0.75	72.00
French MoSpeeDi	STFT	0.64 0.73	52.50
French MoSpeeDi	AP		60.83

» Classification results using B-CNN $_1$ on STFT and AP representations for considered databases

Database	Input representation	AUC	Accuracy [%]
Spanish PC-GITA	STFT	0.56 0.75	53.67
Spanish PC-GITA	AP		72.00
French MoSpeeDi	STFT	0.64 0.73	52.50
French MoSpeeDi	AP		60.83

- ▶ AP representations perform better than STFT independently of the language or diseases
- ▶ Demonstrating the advantages of articulatory modeling of speech using AP for dysarthric speech detection

» Classification results using baseline systems and the proposed approach on both databases (input AP representations)

Database	CNN	AUC	Accuracy [%]
Spanish PC-GITA	Baseline B-CNN ₁	0.75	72.00
Spanish PC-GITA	Baseline B-CNN ₂	0.78	68.33
Spanish PC-GITA	Proposed	0.83	77.67
French MoSpeeDi	Baseline B-CNN $_1$	0.733	60.83
French MoSpeeDi	Baseline B-CNN $_2$	0.77	70.83
French MoSpeeDi	Proposed	0.84	76.67

» Classification results using baseline systems and the proposed approach on both databases (input AP representations)

Database	CNN	AUC	Accuracy [%]
Spanish PC-GITA	Baseline B-CNN ₁	0.75	72.00
Spanish PC-GITA	Baseline B-CNN ₂	0.78	68.33
Spanish PC-GITA	Proposed	0.83	77.67
French MoSpeeDi	Baseline B-CNN ₁	0.733	60.83
French MoSpeeDi	Baseline B-CNN ₂	0.77	70.83
French MoSpeeDi	Proposed	0.84	76.67

- ▶ Proposed approach (pairwise distance-based CNN with a front-end feature extraction layer) significantly improves the performance in comparison to B-CNN₂ (computing distance matrices directly on AP representations)
- ▶ Proposed approach outperforms baseline systems for different databases with different languages

Outline

- 1. Automatic Dysarthric Speech Detection
- 2. State-of-the-art
- 3. Proposed Method
- 4. Experimental Results
- 5. Summary

Summary

- » Goal: feasibility of automatic dysarthric speech detection using a pairwise distancebased CNN.
- » Considering phonetically-matched AP representations from healthy (i.e., reference) and test speakers.
- » Extracting features and processing distance matrix computed from features by a CNN-based classifier
- » End-to-end optimizing feature extraction, distance matrix computation, and classification.
- » The proposed approach is generalizable across languages outperforming state-ofthe-art CNN-based systems.

Thank You

Reference

- An, K., Kim, M., Teplansky, K., Green, J., Campbell, T., Yunusova, Y., Heitzman, D., and Wang, J. (2018). Automatic early detection of amyotrophic lateral sclerosis from intelligible speech using convolutional neural networks. In Proc. Annual Conference of the International Speech Communication Association, Hyderabad, India.
- Bhati, S., Velazquez, L. M., Villalba, J., and Dehak, N. (2019). LSTM siamese network for parkinson's disease detection from speech. In In Proc. IEEE Global Conference on Signal and Information Processing, pages 1-5, Ottawa. Canada.
- Hegde, S., Shetty, S., Rai, S., and Dodderi, T. (2019). A survey on machine learning approaches for automatic detection of voice disorders. *Journal of Voice*, 33(6):947.e11-947.e33.
- Hernandez, A., Yeo, E. J., Kim, S., and Chung, M. (2020). Dysarthria Detection and Severity Assessment Using Rhythm-Based Metrics. In Proc. 21st Annual Conference of the International Speech Communication Association, pages 2897-2901, Shanghai, China.
- Kodrasi, I. and Bourlard, H. (2020). Spectro-temporal sparsity characterization for dysarthric speech detection. IEEE Transactions on Audio, Speech, and Language Processing, 28(1):1210-1222.
- Mallela, J., Illa, A., Belur, Y., Atchayaram, N., Yadav, R., Reddy, P., Gope, D., and Ghosh, P. K. (2020). Raw Speech Waveform Based Classification of Patients with ALS, Parkinson's Disease and Healthy Controls Using CNN-BLSTM. In Proc. 21st Annual Conference of the International Speech Communication Association, pages 4586-4590, Shanghai, China.
- Orozco, J. R., Arias-Londoño, J. D., Vargas-Bonilla, J., González-Rátiva, M., and Noeth, E. (2014). New spanish speech corpus database for the analysis of people suffering from parkinson's disease. In Proc. International Conference on Language Resources and Evaluation, Reykjavik, Iceland.
- Rasipuram, R. and Magimai-Doss, M. (2016). Articulatory feature based continuous speech recognition using probabilistic lexical modeling. Computer Speech & Language, 36:233-259.
- Vaiciukynas, E., Gelzinis, A., Verikas, A., and Bacauskiene, M. (2017). Parkinson's disease detection from speech using convolutional neural networks. In In Proc. International Conference on Smart Objects and Technologies for Social Good, pages 206-215, Pisa, Italy. Springer International Publishing.
- Vasquez, J., Orozco, J. R., and Noeth, E. (2017). Convolutional neural network to model articulation impairments in patients with parkinson's disease. In In Proc. Annual Conference of the International Speech Communication Association, pages 314-318, Stockholm, Sweden.

Knowledge-based phoneme-to-articulatory feature map

Manner of articulation (degree of constriction), place of articulation (place of constriction), height of articulation (height of the tongue or roundedness) and vowel

Phoneme	Manner	Place	Height	Vowel
sil	sil	sil	sil	sil
aa.	vowel	back	low	88
ie .	vowel	mid-front	low	ac
ah	vowel	bim	mid	ah
10	vowel	back	mid-low	ao
ov1	vowel	mid-front	low	aw1
cw2	vowel	mid-back	high	aw2
ox.	vowel	mid	mid	ax
our	approximant	retroflex	mid	consonan
ry1	vowel	back	low	ay1
iy2	vowel	mid-front	high	ay2
	voiced-stop	labial	max	consonan
h	stop	front	max	consonan
	voiced-stop	alveolar	max	consonan
lh	voiced-fricative	dental	max	consonan
h	vowel	mid-front	mid	ch
1	approximant	lateral	very-high	consonan
m	nasal	labial	max	consonan
'n	nasal	alveolar	max	consonan
r	vowel	mid	mid	er
y1	vowel	front	mid-high	ey1
y2	vowel	mid-front	high	ey2
,-	fricative	labial	max	consonan
	voiced-stop	dorsal	max	consonan
i sh	aspirated	unknown	max	consonan
h	vowel	mid-front	high	ih
y y	vowel	front	very-high	iv
,	voiced-stop	front	max	consonan
	stop	dorsal	max	consonan
	approximant	lateral	very-high	consonan
n	nasal	labial	max	consonan
n I	nasai	alveolar	max	consonan
		dorsal		
ig iw1	nasal vomel	back	max mid	consonan ow1
w1 w2		mid-back		ow1
	vowel		high	
yl	vowel	back	mid-low	oy1
ıy2	vowel	mid-front	high	oy2
	stop	labial	max	consonan
	approximant	retroflex	mid-low	consonan
	fricative	alveolar	max	consonan
h	fricative	front	max	consonan
	stop	alveolar	max	consonan
h	fricative	dental	max	consonan
h	vowel	mid-back	high	uh
iw	vowel	back	very-high	uw
	voiced-fricative	labial	max	consonan
v	approximant	back	very-high	consonan
	approximant	front	very-high	consonar
	voiced-fricative	alveolar	max	consonar
h	voiced-fricative	front	max	consonan