CCA-Secure and Authentication Encryption

Yu Zhang

HIT/CST/NIS

Cryptography, Autumn, 2014

Outline

- **1** Constructing CCA-Secure Encryption Schemes
- 2 Obtaining Privacy and Message Authentication
- 3 Key Derivation Function (FYI)
- **4** Deterministic Encryption (FYI)

Content

- 1 Constructing CCA-Secure Encryption Schemes
- 2 Obtaining Privacy and Message Authentication
- 3 Key Derivation Function (FYI)
- 4 Deterministic Encryption (FYI)

Recall Security Against CCA

The CCA indistinguishability experiment $PrivK_{\mathcal{A},\Pi}^{cca}(n)$:

- 2 \mathcal{A} is given input 1^n and oracle access $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ and $\mathcal{A}^{\mathsf{Dec}_k(\cdot)}$, outputs m_0, m_1 of the same length.
- **3** a random bit $b \leftarrow \{0,1\}$ is chosen. Then $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A} .
- **4** \mathcal{A} continues to have oracle access **except for** c, outputs b'.
- **5** If b'=b, \mathcal{A} succeeded $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}=1$, otherwise 0.

Definition 1

 Π has indistinguishable encryptions under a CCA (CCA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Constructing CCA-Secure Encryption Schemes

Construction 2

 $\Pi_E = (\mathsf{Gen}_E, \mathsf{Enc}, \mathsf{Dec})$, $\Pi_M = (\mathsf{Gen}_M, \mathsf{Mac}, \mathsf{Vrfy})$. Π' :

- $\operatorname{\mathsf{Gen}}'(1^n)$: $k_1 \leftarrow \operatorname{\mathsf{Gen}}_E(1^n)$ and $k_2 \leftarrow \operatorname{\mathsf{Gen}}_M(1^n)$.
- $\operatorname{Enc}'_{k_1,k_2}(m)$: $c \leftarrow \operatorname{Enc}_{k_1}(m)$, $t \leftarrow \operatorname{Mac}_{k_2}(c)$ and output $\langle c, t \rangle$.
- $\operatorname{Dec}'_{k_1,k_2}(\langle c,t\rangle)$: If $\operatorname{Vrfy}_{k_2}(c,t)\stackrel{?}{=}1$, output $\operatorname{Dec}_{k_1}(c)$; otherwise output "failure" \bot .

Content

- 1 Constructing CCA-Secure Encryption Schemes
- 2 Obtaining Privacy and Message Authentication
- 3 Key Derivation Function (FYI)
- **4** Deterministic Encryption (FYI)

Message Transmission Scheme

- **Key-generation** algorithm outputs $k \leftarrow \text{Gen}'(1^n)$. $k = (k_1, k_2)$. $k_1 \leftarrow \text{Gen}_E(1^n)$, $k_2 \leftarrow \text{Gen}_M(1^n)$.
- Message transmission algorithm is derived from $\operatorname{Enc}_{k_1}(\cdot)$ and $\operatorname{Mac}_{k_2}(\cdot)$, outputs $c \leftarrow \operatorname{EncMac'}_{k_1,k_2}(m)$.
- **Decryption** algorithm is derived from $\mathsf{Dec}_{k_1}(\cdot)$ and $\mathsf{Vrfy}_{k_2}(\cdot)$, outputs $m \leftarrow \mathsf{Dec}'_{k_1,k_2}(c)$ or \bot .
- **Correctness requirement**: $\operatorname{Dec}'_{k_1,k_2}(\operatorname{EncMac}'_{k_1,k_2}(m)) = m$.

Defining Secure Message Transmission

The secure message transmission experiment $Auth_{\mathcal{A},\Pi'}(n)$:

- 1 $k = (k_1, k_2) \leftarrow \mathsf{Gen}'(1^n).$
- 2 \mathcal{A} is given input 1^n and oracle access to $\operatorname{EncMac'}_k$, and outputs $c \leftarrow \operatorname{EncMac'}_k(m)$.

Definition 3

 Π' achieves authenticated communication if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{Auth}_{\mathcal{A},\Pi'}(n)=1] \leq \mathsf{negl}(n).$$

Definition 4

 Π' is **secure (authenticated encryption)** if it is both CCA-secure and also achieves authenticated communication. ¹

¹CPA security and integrity imply CCA security.

Combining Encryption and Authentication

■ Encrypt-and-authenticate (e.g., SSH):

$$c \leftarrow \mathsf{Enc}_{k_1}(m), \ t \leftarrow \mathsf{Mac}_{k_2}(m).$$

■ Authenticate-then-encrypt (e.g, SSL):

$$t \leftarrow \mathsf{Mac}_{k_2}(m), \ c \leftarrow \mathsf{Enc}_{k_1}(m||t).$$

■ Encrypt-then-authenticate (e.g, IPsec):

$$c \leftarrow \mathsf{Enc}_{k_1}(m), \ t \leftarrow \mathsf{Mac}_{k_2}(c).$$

Analyzing Security of Combinations

All-or-nothing: Reject any combination for which there exists even a single counterexample is insecure.

- **Encrypt-and-authenticate**: $Mac'_k(m) = (m, Mac_k(m))$.
- Authenticate-then-encrypt:
 - Trans : $0 \rightarrow 00$; $1 \rightarrow 10/01$; Enc' uses CTR mode; c = Enc'(Trans(m||Mac(m))).
 - Flip the first two bits of c and verify whether the ciphertext is valid. $10/01 \rightarrow 01/10 \rightarrow 1$, $00 \rightarrow 11 \rightarrow \bot$.
 - If valid, the first bit of message is 1; otherwise 0.
 - For any MAC, this is not CCA-secure.
- Encrypt-then-authenticate:

Decryption: If $Vrfy(\cdot) = 1$, then $Dec(\cdot)$; otherwise output \perp .

Remarks on Secure Message Transmission

- Authentication may leak the message.
- Secure message transmission implies CCA-security. The opposite direction is not necessarily true.
- Different security goals should always use different keys.
 - otherwise, the message may be leaked if $Mac_k(c) = Dec_k(c)$.
- Implementation may destroy the security proved by theory.
 - Attack with padding oracle (in TLS 1.0):
 Dec return two types of error: padding error, MAC error.
 Adv. learns last bytes if no padding error with guessed bytes.
 - Attack non-atomic dec. (in SSH Binary Packet Protocol): Dec (1)decrypt length field; (2)read packets as specified by the length; (3)check MAC.
 - **Adv.** (1)send c; (2)send l packets until "MAC error" occurs; (3)learn l = Dec(c).

Content

- **1** Constructing CCA-Secure Encryption Schemes
- 2 Obtaining Privacy and Message Authentication
- 3 Key Derivation Function (FYI)
- 4 Deterministic Encryption (FYI)

Key Derivation Function (KDF)

Key Derivation Function (KDF) generates many keys from a secret source key sk.

For uniformly random sk: F is PRF, ctx is a unique string identifying application,

$$\mathsf{KDF}(sk, ctx, l) = \langle F_{sk}(ctx||0), F_{sk}(ctx||1) \cdots, F_{sk}(ctx||l) \rangle.$$

For not-uniform sk: extract-then-expand paradigm.

extract: HKDF $k \leftarrow \mathsf{HMAC}(salt, sk)$. salt is a random number.

expand: as the above.

Password-Based KDF (PBKDF)

Key stretching increases the time of testing key (with slow hash function).

Key strengthening increases the length/randomness of key (with salt).

PKCS#5 (**PBKDF1**): $H^{(c)}(pwd||salt)$, iterate hash function c times.

Attack: either try the enhanced key (larger key space), or else try the initial key (longer time per key).

IV, Nonce, Counter and Salt

IV an input to a cryptographic primitive, providing randomness.nonce a number used only once to sign a communication.counter a sequence number used as nonce.

salt consists of random bits, creating the input to a function.

Content

- 1 Constructing CCA-Secure Encryption Schemes
- 2 Obtaining Privacy and Message Authentication
- 3 Key Derivation Function (FYI)
- **4** Deterministic Encryption (FYI)

Deterministic CPA Security

- **Deterministic encryption**: the same message is encrypted to the same ciphertext under the same key.
- **Application**: encrypted database index, disk encryption.
- But no deterministic encryption is CPA-secure.
- **Deterministic CPA Security**: CPA-secure if *never encrypt* same message twice using same key. The pair $\langle k, m \rangle$ is unique.
- **Common Mistake**: CBC/CTR with **fixed** *IV*.

Adversary can query (m_{q1},m_{q2}) and get (c_{q1},c_{q2}) ; then output PT: $IV\oplus c_{q1}\oplus m_{q2}$ and expect CT: c_{q2} .

Synthetic IV (SIV) for Det. Encryption

- Synthetic IV (SIV): If F is PRF, Π : $(\operatorname{Enc}_k(r,m),\operatorname{Dec}_k(r,s))$ is CPA-secure, then Π_{det} is det. CPA-secure scheme: $(k_1,k_2) \leftarrow \operatorname{Gen}$; $SIV \leftarrow F_{k_1}(m)$; $s \leftarrow \operatorname{Enc}_{k_2}(SIV,m)$; output $c = \langle SIV, s \rangle$.
- Deterministic Authenticated Encryption (DAE): det. CPA-security and integrity.
- DAE for free with SIV-CTR: Tag $t := SIV \leftarrow F_{k_1}(m)$ then CTR_{k_2} encryption.

Wide Block PRP for Det. Encryption

- **Just PRP**: If *F* is PRP, then *F* is also det. CPA-secure.
- PRP-based DAE: $\operatorname{Enc}_k(m\|0^\ell)$. In Dec, if $\neq 0^\ell$, output \perp .
- Narrow block may leak info. as some blocks are the same.
- Wide block PRP: PRP with longer block length (e.g. a sector on disk) from PRP with short block length (e.g. AES).
- **Standards**: CBC-mask-CBC (CMC) and ECB-mask-ECB (EME) in IEEE P1619.2.
- **Cost**: 2x slower than SIV due to two-pass encryption.

Tweakable Encryption

- **Encryption without expansion**: $\mathcal{M} = \mathcal{C}$ implies det. encryption without integrity (e.g., disk encryption).
- Trivial solution: $k_t = F_k(t), t = 1, ..., \ell$.
- Tweakable block ciphers: many PRPs from one key $\mathcal{K} \times \mathcal{T} \times \mathcal{X} \to \mathcal{X}$, \mathcal{T} is the set of tweaks.
- XTS: XEX(Xor-Encrypt-Xor)-based tweaked-codebook mode with ciphertext stealing. (XTS-AES, NIST SP 800-38E)
- **XEX**: To encrypt block j in sector I, $c = F_k(m \oplus x) \oplus x$, where $x = F_k(I) \otimes 2^j$ in Galois field, (I,j) is tweak.
- Ciphertext stealing (CTS): no padding, no expansion.

Summary

- CCA-secure, AE, det. enc., det. CPA-secure, DAE.
- Enc-then-auth, KDF, SIV, wide block cipher, tweakable encryption.
- SIV-CTR, PBKDF, salt, enc. w/o expansion, CTS.