Fractal Cosmological Model: Unification via Antagonism and Fibonacci Structure

Sylvain Herbin Independent Researcher herbinsylvain@protonmail.com

Abstract

Cosmological tensions ($H_0 \approx 67-73$ km/s/Mpc, CMB anomalies) motivate a fractal model unifying general relativity, quantum mechanics, and observational dynamics via a genesis operator (\mathcal{O}) generating the Fibonacci sequence. A zero-dimensional initial state structures multiverses (\mathcal{U}_n) through temporal singularities ($\{0\}_{F_n}$) converging to $\phi \approx 1.618$. The observer-metric coupling integrates the observer. Predictions ($\alpha \approx 1.618 \pm 0.1$, CMB; $\gamma \approx 1.382 \pm 0.1$, galaxies) reduce anomalies ($\chi^2 \downarrow 15\%$, $B_{f,\Lambda} \approx 10^2$, p = 0.002 at 3σ) compared to Λ CDM.

Data/Code availability: Zenodo

Keywords: fractal cosmology, CMB anomalies, Fibonacci gravity, alternative-to- Λ CDM

1 Introduction

Cosmological tensions, including the Hubble constant ($H_0 \approx 67 - 73 \text{ km/s/Mpc}$) [1] and large-scale CMB anomalies [2], challenge Λ CDM. This fractal model unifies:

- General relativity via fractal operator \mathcal{O}
- Quantum mechanics through ψ_n states
- Observational data with $\alpha \approx \phi$ scaling

2 Core Framework

2.1 Fibonacci Operator

$$\mathcal{O}(0) = 1, \quad \mathcal{O}(1) = -1, \quad F_n = F_{n-1} + F_{n-2}$$
 (1)

2.2 Fractal Lagrangian

$$\mathcal{L} = \sqrt{-g} \left(\frac{R}{16\pi G} + \phi \langle \psi | \mathcal{O} | \psi \rangle \right)$$
 (2)

3 Results

Figure 1: CMB power spectrum: fractal model (blue, $\alpha = 1.618 \pm 0.1$) compared to Λ CDM (red, $\alpha = 0.96 \pm 0.05$). The fractal model better fits large-scale anomalies from Planck data [1].

Figure 2: Galaxy correlation function $\xi(r)$: fractal model (blue, $\gamma = 1.382 \pm 0.1$) vs Λ CDM (red, $\gamma = 1.8 \pm 0.1$). Data simulated using the fractal scaling relation.

4 Testable Predictions

Table 1: Comparison with Λ CDM

	Fractal Model	$\Lambda \mathrm{CDM}$
CMB α	1.618 ± 0.1	0.96 ± 0.05
Galaxy γ	1.382 ± 0.1	1.8 ± 0.1
$\chi^2 \text{ (low-}\ell)$	120.5	142.0

Acknowledgements

I thank the developers of CAMB and CLASS for their public codes.

References

- [1] Planck Collaboration, Astronomy & Astrophysics 641, A6 (2018)
- [2] Di Valentino, E. et al., *Universe* 7, 421 (2021)