Homework 1

3170102587 蒋仕彪

Problem description

Consider the binary classification problem using Logistic Regression.

Assume I is the set of samples. Denote x_i as the feature vector for i-th sample, and $y_i \in \{-1, 1\}$ is its label.

From Logistic Regression, we want to find a vector \boldsymbol{a} to minimize the function:

$$E(\boldsymbol{a}) = \sum_{i \in I} \ln(1 + e^{-y_i \boldsymbol{a}^T \boldsymbol{x}_i})$$
 (1)

Now prove that E(a) is a convex function of a.

Lemma

Lemma 1: The sum of several convex functions is still convex.

This theory can be derived directly from the definition of convex function.

Lemma 2: If f(x) is twice continuously differentiable, f(x) is convex if and only if $f''(x) \ge 0$.

This theory is classical and can be found in any book about convex optimization, so I skip its proof.

Prove

Because E(a) is the sum of n expressions, according to Lemma 1, we can just split them and prove each of them is convex, and finally conclude E(a) is convex.

Now we focus on the function $E_i(\boldsymbol{a}) = \ln(1 + e^{-y_i \boldsymbol{a}^T \boldsymbol{x}_i})$.

According to the definition of convex function, $E_i(\mathbf{a})$ is the convex function if and only if $\forall 0 \leq \lambda \leq 1$, $E_i(\lambda \mathbf{a}_1 + (1 - \lambda)\mathbf{a}_2) \leq \lambda E_i(\mathbf{a}_1) + (1 - \lambda)E_i(\mathbf{a}_2)$

Note that for each fixed i, \boldsymbol{x}_i remains same. Just set $\theta_k = \boldsymbol{a}_k^T \boldsymbol{x}_i$ and $J(\theta) = \ln(1 + e^{-y_i \theta})$, then the above inequality is **equivalent** to $\forall 0 \leq \lambda \leq 1$, $J(\lambda \theta_1 + (1 - \lambda)\theta_2) \leq \lambda J(\theta_1) + (1 - \lambda)J(\theta_2)$.

So it's equivalent to prove the following function $J(\theta)$ is the convex function:

$$J(\theta) = \ln(1 + e^{-y_i \theta}) \tag{2}$$

Now we differentiate $J(\theta)$:

1.
$$J'(\theta)=-rac{y_i}{e^{y_i heta}+1}$$
2. $J''(heta)=rac{e^{y_i heta}}{\left(e^{y_i heta}+1
ight)^2}.$ Since $y_i\in\{1,-1\}$, thus $J''(heta)=rac{e^{ heta}}{\left(e^{ heta}+1
ight)^2}\geq 0$

According to lemma 2, since $J''(\theta) \ge 0$ for any possible θ , so $J(\theta)$ is the convex function.

Then we know $E_i(\mathbf{a})$ is convex of \mathbf{a} and finally $E(\mathbf{a})$ is convex of \mathbf{a} , too.