Analyse technique de logiciel Galaxy

Florian CARRE Benjamin DARTIGUES Sebastien BEAUQUIS Guillaume BERNARD Tom LESLUYES

Université de Bordeaux 1

30 Janvier 2012

- 1 Etat de l'art
 - Les logiciels de workflow
- - Pyroséquençage
 - Illumina

- 1 Etat de l'art
 - Les logiciels de workflow
- 2 NGS : Next Generation Sequencing
 - Pyroséquençage
 - Illumina
- 3 Utilisation
 - Utilisation en ligne
 - Utilisation en local
- 4 Fonctionnalités
 - Présentation générale
 - Ajout de plug-ins
 - Workflow

- 1 Etat de l'art
 - Les logiciels de workflow
- NGS : Next Generation Sequencing
 - Pyroséquençage
 - Illumina
- 3 Utilisation
 - Utilisation en ligne
 - Utilisation en local
- 4 Fonctionnalités
 - Présentation générale
 - Ajout de plug-ins
 - Workflow

- 1 Etat de l'art
 - Les logiciels de workflow
- 2 NGS : Next Generation Sequencing
 - Pyroséquençage
 - Illumina
- 3 Utilisation
 - Utilisation en ligne
 - Utilisation en local
- 4 Fonctionnalités
 - Présentation générale
 - Ajout de plug-ins
 - Workflow

On distingue deux types de logiciels de workflow :

- les logiciels de workflow 1
- les logiciels de workflow 2

Les logiciels de workflow

les logiciels de worflow 1

Ergatis, BIOMOBY

- Ergatis
- BIOMOBY

NGS

Présentation des techniques de NGS

- la technique 454 : le pyrosequençage
- la méthode de sequençage Illumina.

Pyroséquençage

Pyroséquençage

Illumina

Illumina

Illustration de la déprotection d'un nucléotide protégé en 3'-0 par le goupement 2 nitrophénil après illumination au UV >30 nm

De Sanger à Illumina

CRT: Cycle Reversible Termination

Illumina

Illumina

Trois types d'utilisation différentes

- Utilisation en ligne.
- Utilisation en local.
- Utilisation sur un "cloud".

Utilisation en ligne

Avantages et inconvénient

Avantages de l'utilisation en ligne

- Aucune installation nécessaire.
- Interface ergonomique.
- Nombreux "tutoriels" et aides.

Inconvénient de l'utilisation en ligne

Connexion internet requise.

Utilisation en ligne

Interface graphique

Utilisation en ligne

Page d'aide d'un des outils de Galaxy

Utilisation en local

Avantages et Inconvénient

Avantages de l'utilisation en local

- Ne nécessite pas de connexion internet.
- Possibilité de modifier les paramêtres des plug-ins.
- Possibilité d'ajouter des plug-ins.
- Vitesse d'analyse.
- Conservation des données sensibles.

Inconvénient de l'utilisation en local

Installation nécessaire.

Utilisation en local

Téléchargement du code source

- Récupération de la dernière version de Galaxy depuis Bitbucket.
- Téléchargement du répertoire Galaxy à partir de Mercurial.

Utilisation

Utilisation en local

Récupération à partir de Mercurial

Commandes pour copier le répertoire

mkdir Galaxy cd Galaxy

hg clone https://bitbucket.org/galaxy/galaxy-dist/

Commandes pour effectuer les mises à jour

hg incoming

hg pull -u

Utilisation

Exécution du serveur local

Commandes pour exécuter le script run.sh

sh run.sh # commande de base sudo run.sh # commande administrateur

Adresse du serveur de Galaxy

serving on http://127.0.0.1:8080

Utilisation en local

Exécution du serveur local

Fonctionnalités

Très nombreuses

- Présentation générale
- Ajout de plug-ins
- Workflow

Fonctionnalités

Très nombreuses

- Présentation générale
- Ajout de plug-ins
- Workflow

Pré-traitement

- Manipulation de fichiers
 - ouverture de fichiers volumineux
 - ajout/suppression de lignes
 - concaténation, filtrage, intersection
 - etc ...
- Opérations sur les données
 - addition, soustraction, moyenne, calcul de taille de séquences
 - conversion, formatage
 - etc ..

Pré-traitement

- Manipulation de fichiers
 - ouverture de fichiers volumineux
 - ajout/suppression de lignes
 - concaténation, filtrage, intersection
 - etc ...
- Opérations sur les données
 - addition, soustraction, moyenne, calcul de taille de séquences
 - conversion, formatage
 - etc ...

Traitement

- Analyse de séquences
 - calcul de corrélation
 - recherche d'orthologues
 - utilisation des outils d'EMBOSS
 - etc ...
- Visualisation des données
 - alignements multiples
 - distribution de données (histogramme, scatterplot)
 - arbres phylogéniques

Traitement

- Analyse de séquences
 - calcul de corrélation
 - recherche d'orthologues
 - utilisation des outils d'EMBOSS
 - etc ...
- Visualisation des données
 - alignements multiples
 - distribution de données (histogramme, scatterplot)
 - arbres phylogéniques
 - etc ...

Ajout de plug-ins

- Instance locale
- Langages interprétés
- Langages compilés

Ajout de plug-ins

- Instance locale
- Langages interprétés
- Langages compilés

Ajout de plug-ins

Calcul du GC% à l'aide d'un script Perl

```
#!/usr/bin/perl -w
   open (IN, "<$ARGV[0]");
   open (OUT, ">$ARGV[1]");
   while (<IN>) {
       chop:
6
       if (m/^>/) {
7
           s/^>//;
8
           if (\$. > 1) {
9
                print OUT sprintf("%.3f", $gc/$length) . "\n";
10
11
           gc = 0:
12
           length = 0;
13
       } else {
14
           ++$gc while m/[gc]/ig;
15
           length += length _-;
16
17
   print OUT sprintf("%.3f", $gc/$length) . "\n";
   close (IN):
   close ( OUT );
```

tool_conf.xml

toolExample.xml

```
<tool id="fa_gc_content_1" name="Compute GC content">
    <description>for each sequence in a file</description>
    <command interpreter="perl">toolExample.pl $input $output</command>
    <inputs>
      <param format="fasta" name="input" type="data" label="Source file"/>
6
7
    </inputs>
    <outputs>
8
      <data format="tabular" name="output" />
9
    </outputs>
10
    <tests>
11
      <test>
12
        <param name="input" value="fa_gc_content_input.fa"/>
13
        <output name="out_file1" file="fa_gc_content_output.txt"/>
14
      </test>
15
    </tests>
16
    <help>
   This tool computes GC content from a FASTA file.
18
    </help>
19
  </tool>
```

Aiout de plug-ins

Outil implémenté

MyTools Compute GC content for each sequence in a file

FIGURE: Ajout du script dans la liste d'outils

FIGURE: Fichier d'entrée

FIGURE: Résultat.

Exemple de workflow

FIGURE: Workflow de métagénomique

Lancement de workflow

FIGURE: Lancement du workflow

Workflow

Résultat du workflow

FIGURE: Résultat du workflow

Merci de votre attention

