

Universidade Presbiteriana Mackenzie

Banco de Dados – Aula 17 Linguagem SQL SELECT com várias tabelas (LEFT, RIGHT e FULL JOIN)

Profa. Elisângela Botelho Gracias

Faculdade de Computação e Informática

Introdução

Considere o seguinte Banco de Dados para esta aula (chave primária está sublinhada)

- Departamento = {Cod Depto, Nome_Depto}
- Funcionario = {Cod Func, Nome_Func, Salario, Cod_Depto}
 - Cod_depto é chave estrangeira que referencia o atributo
 Cod_depto da tabela Departamento
- Projeto = {Cod Proj, Nome_Proj, Duracao}
- Func_Proj = {Cod Func, Cod Proj, Horas_Trab}
 - Cod_Func é chave estrangeira que referencia o atributo Cod_Func da tabela Funcionario
 - Cod_Proj é chave estrangeira que referencia o atributo Cod_Proj da tabela Projeto

Departamento

Cod_Depto	Nome_Depto
1	Marketing
2	Vendas
3	Dados
4	Pesquisa

Funcionário

Cod Func	Nome Func	Salario	Cod Depto
	1401110_1 0110	Calano	004_D0pt0
101	Joao da Silva	2000	2
102	Mario Souza	1500	1
103	Sergio Santos	2400	2
104 Maria Castro		1200	1
105	Marcio Santana	1400	4

Projeto

Cod_Proj	Nome_Proj	Duracao
1001	Sistema A	2
1002	Sistema B	6
1003	Sistema X	4

Func_Proj

Cod_Func	Cod_Proj	Horas_Trab
101	1001	24
101	1002	160
102	1001	56
102	1003	45
103	1001	86
103	1003	64
104	1001	46

```
-- Script de Criação do BD Projeto
DROP TABLE Func Proj CASCADE CONSTRAINT;
DROP TABLE Projeto CASCADE CONSTRAINT;
DROP TABLE Funcionario CASCADE CONSTRAINT;
DROP TABLE Departamento CASCADE CONSTRAINT;
CREATE TABLE Departamento
(Cod Depto INTEGER,
Nome Depto VARCHAR(20) NOT NULL,
PRIMARY KEY(Cod Depto));
CREATE TABLE Funcionario
(Cod Func INTEGER,
Nome Func VARCHAR(20) NOT NULL,
Salario INTEGER NOT NULL,
Cod Depto INTEGER,
PRIMARY KEY(Cod Func),
FOREIGN KEY (Cod Depto) REFERENCES Departamento (Cod Depto));
CREATE TABLE Projeto
(Cod Proj INTEGER,
Nome Proj VARCHAR(20) NOT NULL,
Duracao INTEGER NOT NULL,
PRIMARY KEY(Cod Proj));
CREATE TABLE Func Proj
(Cod Func INTEGER,
Cod Proj INTEGER,
Horas Trab INTEGER,
PRIMARY KEY(Cod Func, Cod Proj),
FOREIGN KEY (Cod Func) REFERENCES Funcionario(Cod Func),
FOREIGN KEY (Cod Proj) REFERENCES Projeto(Cod_Proj));
```

```
INSERT INTO Departamento (Cod Depto, Nome Depto) VALUES (1, 'Marketing');
INSERT INTO Departamento (Cod_Depto, Nome_Depto) VALUES (2, 'Vendas');
INSERT INTO Departamento (Cod Depto, Nome Depto) VALUES (3, 'Dados');
INSERT INTO Departamento (Cod Depto, Nome Depto) VALUES (4, 'Pesquisa');
INSERT INTO Funcionario (Cod Func, Nome Func, Salario, Cod Depto) VALUES (101, 'Joao da Silva Santos', 2000, 2);
INSERT INTO Funcionario (Cod Func, Nome Func, Salario, Cod Depto) VALUES (102, 'Mario Souza', 1500, 1);
INSERT INTO Funcionario (Cod Func, Nome Func, Salario, Cod Depto) VALUES (103, 'Sergio Silva Santos', 2400, 2);
INSERT INTO Funcionario (Cod Func, Nome Func, Salario, Cod Depto) VALUES (104, 'Maria Castro', 1200, 1);
INSERT INTO Funcionario (Cod Func, Nome Func, Salario, Cod Depto) VALUES (105, 'Marcio Silva Santana', 1400, 4);
INSERT INTO Projeto (Cod Proj, Nome Proj, Duracao) VALUES (1001, 'SistemaA', 2);
INSERT INTO Projeto (Cod Proj, Nome Proj, Duracao) VALUES (1002, 'SistemaB', 6);
INSERT INTO Projeto (Cod Proj, Nome Proj, Duracao) VALUES (1003, 'Sistemax', 4);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (101, 1001, 24);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (101, 1002, 160);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (102, 1001, 56);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (102, 1003, 45);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (103, 1001, 86);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (103, 1003, 64);
INSERT INTO Func Proj (Cod Func, Cod Proj, Horas Trab) VALUES (104, 1001, 46);
COMMIT;
```


Junção Externa

- Uma junção entre duas tabelas gera um resultado onde tem-se linhas que se combinam sobre a coluna de junção
- O operador de junção externa gera o resultado da junção (as linhas combinadas) mais as linhas não combinadas

Junção Externa

- Uma junção externa de um lado gera um resultado com as linhas combinadas mais as linhas não combinadas com base em uma das tabelas
- A linguagem SQL utiliza as palavras-chave <u>LEFT JOIN</u> e
 <u>RIGHT JOIN</u> para produzir a junção externa de um lado

A palavra-chave <u>LEFT JOIN</u> gera um resultado contendo as

linhas combinadas e as linhas não combinadas da tabela da

esquerda

 Junção externa completa das tabelas Departamento e Funcionario, utilizando o LEFT JOIN:

SELECT *

FROM Departamento D LEFT JOIN Funcionario F

ON (D.Cod_depto = F.Cod_depto)

ORDER BY D.Nome_Depto ASC;

 Junção externa completa das tabelas Departamento e Funcionario, utilizando o LEFT JOIN:

```
SELECT *
```

FROM Departamento D LEFT JOIN Funcionario F

ON (D.Cod_depto = F.Cod_depto)

ORDER BY D. Nome Depto ASC;

A junção externa completa das tabelas Departamento e Funcionario gera o seguinte resultado:

Cod_Depto	Nome_Depto	Cod_Func	Nome_Func	Salario	Cod_Depto
3	Dados	NULL	NULL	NULL	NULL
1	Marketing	102	Mario Souza	1500	1
1	Marketing	104	Maria Castro	1200	1
4	Pesquisa	105	Marcio Silva Santana	1400	4
2	Vendas	101	Joao da Silva Santos	2000	2
2	Vendas	103	Sergio Silva Santos	2400	2

 A junção externa completa das tabelas Departamento e Funcionario gera o seguinte resultado:

Cod_Depto	Nome_Depto	Cod_Func	Nome_Func	Salario	Cod_Depto
<mark>3</mark>	Dados	NULL	NULL	NULL	NULL
1	Marketing	102	Mario Souza	1500	1
1	Marketing	104	Maria Castro	1200	1
4	Pesquisa	105	Marcio Silva Santana	1400	<mark>4</mark>
2	Vendas	101	Joao da Silva Santos	2000	<mark>2</mark>
2	Vendas	103	Sergio Silva Santos	2400	

A junção externa completa das tabelas Departamento e Funcionario gera o seguinte resultado:

Cod_[Depto	Nome_Depto	Cod_Func	Nome_Func	Salario	Cod_Depto
	3	Dados	NULL	NULL	NULL	NULL
	1	Marl	102	Mario Souza	1500	1
		ing	104	Maria Castro	1200	1)
		esquisa	105	Marcio Silva Santana	1400	4

Observe que o departamento 'Dados' não tem funcionário, portanto, os dados referentes a um funcionário aparecem como nulos

Exemplo (LEFT JOIN): Obtenha os nomes de TODOS os departamentos da empresa, com os nomes dos funcionários que trabalham em cada um.

SELECT D.Nome_Depto, F.Nome_func

FROM Departamento D LEFT JOIN Funcionario F

ON (D.Cod_depto = F.Cod_depto)

ORDER BY D.Nome_Depto;

Nome_Depto	Nome_func
Dados	NULL
Marketing	Mario Souza
Marketing	Maria Castro
Pesquisa	Marcio Silva Santana
Vendas	Joao da Silva Santos
Vendas	Sergio Silva Santos

Exemplo (LEFT JOIN): Obtenha os nomes de todos os

Observe que o

departamento 'Dados' não

tem funcionário, mas

apareceu no resultado

n, com os nomes dos n em cada um.

me_func

epto

Nome_Depto	Nome_func
Dados	NULL
Marketing	Mario Souza
Marketing	Maria Castro
Pesquisa	Marcio Silva Santana
Vendas	Joao da Silva Santos
Vendas	Sergio Silva Santos

Junção Externa - RIGHT JOIN

- A palavra-chave <u>RIGHT JOIN</u> gera um resultado contendo as linhas combinadas e as linhas não combinadas da tabela da direita
- Assim, o resultado de uma junção externa de um lado depende da direção (<u>DIREITA</u> ou <u>ESQUERDA</u>) e da <u>posição</u> dos nomes das tabelas

Junção Externa - RIGHT JOIN

 Exemplo (RIGHT JOIN): Obtenha os nomes de todos os departamentos da empresa, com os nomes dos funcionários que trabalham em cada um.

SELECT D.Nome_Depto, F.Nome_func

FROM Funcionario F RIGHT JOIN Departamento D

ON (D.Cod depto = F.Cod depto)

ORDER BY D.Nome_Depto;

Nome_Depto	Nome_func
Dados	NULL
Marketing	Mario Souza
Marketing	Maria Castro
Pesquisa	Marcio Silva Santana
Vendas	Joao da Silva Santos
Vendas	Sergio Silva Santos

Junção Externa – RIGHT JOIN

 Exemplo (RIGHT JOIN): Obtenha os nomes de todos os departamentos da empresa, com os nomes dos funcionários que trabalham em cada um.

SELECT D.Nome_Depto, F.Nome_func

FROM Funcionario F **RIGHT JOIN** Departamento D

ON (D.Cod_depto = F.Cod_depto)

ORDER BY D.Nome Depto;

Nome_Depto	Nome_func
Dados	NULL
Marketing	Mario Souza
Marketing	Maria Castro
Pesquisa	Marcio Silva Santana
Vendas	Joao da Silva Santos
Vendas	Sergio Silva Santos

Junção Externa - RIGHT JOIN

 Observe que os <u>exemplos anteriores</u>, utilizando LEFT JOIN e RIGHT JOIN, trazem o <u>mesmo resultado</u>, com alterações apenas na <u>ordem em que as tabelas aparecem</u> na cláusula FROM.

- <u>Exemplo</u>: Obtenha os nomes de TODOS os departamentos da empresa e a quantidade de funcionários pertencentes a cada um deles (retorne mesmo aqueles departamentos onde não tem funcionários)
- Observe os exemplos a seguir utilizando <u>LEFT JOIN e RIGHT</u>
 <u>JOIN</u>

LEFT JOIN

SELECT D.Nome_Depto, COUNT(F.Cod_Func) AS Total FROM Departamento D **LEFT JOIN** Funcionario F

ON (D.Cod_depto = F.Cod_depto)
GROUP BY D.Nome_Depto
ORDER BY D.Nome Depto ASC;

	// / 65//
Nome_Depto	Total
Dados	0
Marketing	2
Pesquisa	1
Vendas	2

• LEFT JOIN

SELECT D.Nome_Depto, COUNT(F.Cod_Func) AS Total

FROM Departamento D LEFT JOIN Funcionario F

ON (D.Cod_depto = F.Cod_depto)

GROUP BY D.Nome_Depto

ORDER BY D.Nome_Depto ASC;

Nome_Depto	Total
Dados	0
Marketing	2
Pesquisa	1
Vendas	2

• LEFT JOIN

SELECT D.Nome_Depto, COUNT(F.Cod_Func) AS Total
FROM Departamento D LEFT JOh Incionario F

ON (D.Cod_depto = F.Cod_dep*

GROUP BY D.Nome_Depto

Observe que o departamento de 'Dados' tem ZERO funcionários, portanto, atente-se ao atributo que colocar no COUNT

Nome_Depto	Total
Dados	0
Marketing	2
Pesquisa	1
Vendas	2

RIGHT JOIN

SELECT D.Nome_Depto, COUNT(F.Cod_Func) AS Total

FROM Funcionario F **RIGHT** JOIN Departamento D

ON (D.Cod_depto = F.Cod_depto)

GROUP BY D.Nome_Depto

ORDER BY D.Nome_Depto ASC;

Nome_Depto	Total
Dados	0
Marketing	2
Pesquisa	1
Vendas	2

Exemplos de LEFT JOIN com mais de 2 tabelas

LEFT JOIN: Obtenha o nome de todos os funcionários e o nome dos projetos que cada um trabalhou (retorne mesmo aqueles funcionários que não trabalharam em nenhum projeto ainda)

SELECT F.Nome_Func, P.Nome_Proj

FROM Funcionario F LEFT JOIN Func_Proj FP

ON (F.Cod_Func = FP.Cod_Func)

LEFT JOIN Projeto P **ON** (FP.Cod_Proj = P.Cod_Proj)

ORDER BY P.Nome_Proj ASC;

Exemplos de LEFT JOIN com mais de 2 tabelas

LEFT JOIN: Obtenha o nome de todos os funcionários e o nome dos projetos que cada um trabalhou (retorne mesmo aqueles funcionários que não trabalharam em nenhum projeto ainda)

SELECT F.Nome_Func, P.Nome_Proj

FROM Funcionario F **LEFT JOIN** Func_Proj FP

ON (F.Cod_Func = FP.Cod_Func)

LEFT JOIN Projeto P **ON** (FP.Cod_Proj = P.Cod_Proj)

ORDER BY P.Nome_Proj ASC;

O resultado da consulta anterior gera o seguinte resultado:

Nome_Func	Nome_Proj
Marcio Silva Santana	NULL
Maria Castro	SistemaA
Sergio Silva Santos	SistemaA
Joao da Silva Santos	SistemaA
Mario Souza	SistemaA
Joao da Silva Santos	SistemaB
Mario Souza	SistemaX
Sergio Silva Santos	SistemaX

O resultado da consulta anterior gera o seguinte resultado:

Nome_Func	Nome_Proj		
Marcio Silva Santana	NULL		
Maria Castro	SistemaA		

Observe que o funcionário 'Marcio Silva Santana', que não participou de nenhum projeto, apareceu no resultado, mas sem nenhum projeto vinculado a ele

Sergio Silva Santos

Iviario Souza Sistemax

SistemaX

exemplos de RIGHT e LEFT JOIN na mesma consulta

Observe que o exemplo anterior pode ser feito utilizando tanto o <u>LEFT JOIN quanto o RIGHT JOIN</u>, trazendo o mesmo resultado:

```
SELECT F.Nome_Func, P.Nome_Proj
FROM Func_Proj FP RIGHT JOIN Funcionario F
ON (FP.Cod_Func = F.Cod_Func)
LEFT JOIN Projeto P
ON (FP.Cod_Proj = P.Cod_Proj);
```


exemplos de RIGHT e LEFT JOIN na mesma consulta

Observe que o exemplo anterior pode ser feito utilizando tanto o <u>LEFT JOIN quanto o RIGHT JOIN</u>, trazendo o mesmo resultado:

```
SELECT F.Nome_Func, P.Nome_Proj
FROM Func_Proj FP RIGHT JOIN Funcionario F
ON (FP.Cod_Func = F.Cod_Func)

LEFT JOIN Projeto P
ON (FP.Cod_Proj = P.Cod_Proj);
```


Exemplos de RIGHT e INNER JOIN na mesma consulta

Observe que o exemplo anterior pode ser feito utilizando tanto o <u>INNER JOIN quanto o RIGHT JOIN</u>, trazendo o mesmo resultado:

```
SELECT F.Nome_Func, P.Nome_Proj
```

FROM Func_Proj FP INNER JOIN Projeto P

ON (FP.Cod_Proj = P.Cod_Proj)

RIGHT JOIN Funcionario F

ON (FP.Cod_Func = F.Cod_Func);

Exemplos de RIGHT e INNER JOIN na mesma consulta

Observe que o exemplo anterior pode ser feito utilizando tanto o <u>INNER JOIN quanto o RIGHT JOIN</u>, trazendo o mesmo resultado:

```
SELECT F.Nome_Func, P.Nome_Proj
```

FROM Func_Proj FP INNER JOIN Projeto P

ON (FP.Cod_Proj = P.Cod_Proj)

RIGHT JOIN Funcionario F

ON (FP.Cod_Func = F.Cod_Func);

Junção Externa – FULL JOIN

 A palavra-chave <u>FULL JOIN</u> gera um resultado contendo as linhas combinadas mais todas as linhas não combinadas das tabelas envolvidas neste FULL JOIN

Junção Externa - FULL JOIN

- Exemplo (FULL JOIN): Vamos inserir mais um funcionário, mas ele não pertencerá, inicialmente, a nenhum departamento.
- Lembrando que: se você não definiu a chave estrangeira Cod_Depto da tabela Funcionario como NOT NULL, é permitido que um funcionário não pertença a nenhum departamento

INSERT

INTO Funcionario (Cod_Func, Nome_Func, Salario)
VALUES (106, 'Antonio Silva', 2800);

Junção Externa - FULL JOIN

- Exemplo (FULL JOIN): Agora, temos:
 - um departamento que não tem funcionário que é o departamento de 'Dados '
 - um funcionário que não pertence a nenhum
 departamento que é o funcionário 'Antonio Silva'

Junção Externa — FULL JOIN

 <u>Exemplo (FULL JOIN)</u>: Obtenha todas as informações de funcionários e departamentos. Retorne mesmo aqueles departamentos que não tem funcionários e mesmo aqueles funcionários que não pertencem a nenhum departamento

SELECT *

FROM Departamento D FULL JOIN Funcionario F

ON (D.Cod depto = F.Cod depto);

Junção Externa - FULL JOIN

Exemplo (FULL JOIN): Obtenha todas as informações de funcionários e departamentos. Retorne mesmo aqueles departamentos que não tem funcionários e mesmo aqueles funcionários que não pertencem a nenhum departamento

Cod_Depto	Nome_Depto	Cod_Func	Nome_Func	Salario	Cod_Depto
1	Marketing	102	Mario Souza	1500	1
1	Marketing	104	Maria Castro	1200	1
2	Vendas	101	Joao da Silva Santos	2000	2
2	Vendas	103	Sergio Silva Santos	2400	2
3	Dados	NULL	NULL	NULL	NULL
4	Pesquisa	105	Marcio Silva Santana	1400	4
NULL	NULL	106	Antonio Silva	2800	NULL

<u>luncão Evtorna — ELILLIOIN</u>

Observe que, além das linhas combinadas, foram retornados o departamento de 'Dados' que não tem funcionário, e os dados do funcionário 'Antonio Silva' que não pertence a nenhum departamento

Cod_		Nome_Depto	Cod_Func	Nome_Func	Salario	Cod_Depto
		arketing	102	Mario Souza	1500	1
		keting	104	Maria Castro	1200	1
	2		101	Joao da Silva Santos	2000	2
	2	V	103	Sergio Silva Santos	2400	2
	3	Dados	NULL	NULL	NULL	NULL
	4	Pesquisa	105	Marcio Silva Santana	1400	4
NUI	LL	NULL	106	Antonio Silva	2800	NULL

