6.172
Performance
Engineering
of Software
Systems

LECTURE 3
Bit Hacks

Julian Shun

Binary Representation

Let $x = \langle x_{w-1}x_{w-2}...x_0 \rangle$ be a w-bit computer word. The unsigned integer value stored in x is

 $x = \sum_{k=0}^{w-1} x_k 2^k$ designates a Boolean constant.

The prefix Ob

For example, the 8-bit word <a>0b10010110 represents the unsigned value 150 = 2 + 4 + 16 + 128.

The signed integer (two's complement) value stored in x is

$$x = \left(\sum_{k=0}^{w-2} x_k 2^k\right) - x_{w-1} 2^{w-1}.$$

For example, the 8-bit word 0b10010110 represents the signed value -106 = 2 + 4 + 16 - 128.

Two's Complement

We have 0b00...0 = 0.

What is the value of x = 0b11...1?

$$x = \left(\sum_{k=0}^{w-2} x_k 2^k\right) - x_{w-1} 2^{w-1}$$

$$= \left(\sum_{k=0}^{w-2} 2^k\right) - 2^{w-1}$$

$$= \left(2^{w-1} - 1\right) - 2^{w-1}$$

$$= -1.$$

Complementary Relationship

Important identity

```
Since we have x + \sim x = -1, it follows that -x = \sim x + 1.
```

```
x = 0b011011000

\sim x = 0b100100111

-x = 0b100101000
```

Binary and Hexadecimal

	Decimal	Hex	Binary	Decimal	Hex	Binary
	0	0	0000	8	8	1000
	1	1	0001	9	9	1001
	2	2	0010	10	Α	1010
	3	3	0011	11	В	1011
	4	4	0100	12	С	1100
The	prefix <mark>o</mark>	X 5	0101	13	D	1101
designates a hex constant.			0110	14	E	1110
		t. 7	0111	15	F	1111

To translate rom hex to binary, translate each hex digit to its a nary equivalent, and concatenate the bits.

Example: 0xDEC1DE2C0DE4F00D is

C Bitwise Operators

Operator	Description
&	AND
	OR
^	XOR (exclusive OR)
~	NOT (one's complement)
<<	shift left
>>	shift right

Examples (8-bit word)

```
A = 0b10110011

B = 0b01101001
```

```
A\&B = ObOO100001   \sim A = ObO1001100

A|B = Ob111111011   A >> 3 = ObO0010110

A^B = Ob11011010   A << 2 = Ob11001100
```

Set the kth Bit

Problem

Set kth bit in a word x to 1.

Idea

Shift and OR.

$$y = x | (1 << k);$$

$$k = 7$$

X	1011110101101101
1 << k	00000001000000
x (1 << k)	1011110111101101

Clear the kth Bit

Problem

Clear the kth bit in a word x.

Idea

Shift, complement, and AND.

$$y = x & \sim (1 << k);$$

$$k = 7$$

X	1011110111101101
1 << k	00000001000000
~(1 << k)	1111111101111111
x & ~(1 << k)	1011110101101101

Toggle the kth Bit

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

$$y = x ^ (1 << k);$$

Example $(0 \rightarrow 1)$

$$k = 7$$

X	1011110101101101
1 << k	00000001000000
x ^ (1 << k)	1011110111101101

Toggle the kth Bit

Problem

Flip the kth bit in a word x.

Idea

Shift and XOR.

$$y = x ^ (1 << k);$$

Example $(1 \rightarrow 0)$

$$k = 7$$

X	1011110111101101
1 << k	00000001000000
x ^ (1 << k)	1011110101101101

Extract a Bit Field

Problem

Extract a bit field from a word x.

Idea

Mask and shift.

Example

shift = 7

X	1011110101101101	
mask	0000011110000000	
x & mask	0000010100000000	
x & mask >> shift	000000000001010	

Set a Bit Field

Problem

Set a bit field in a word x to a value y.

Idea

Invert mask to clear, and OR the shifted value.

$$x = (x \& \sim mask) \mid (y << shift);$$

Example

shift = 7

X	1011110101101101
у	00000000000011
mask	0000011110000000
x & ~mask	1011100001101101
$x = (x \& \sim mask) \mid (y << shift);$	1011100111101101

Set a Bit Field

Problem

Set a bit field in a word x to a val

Idea

Invert mask to clear, and OR the sh

```
For safety's sake:
  ((y << shift) & mask)</pre>
```

 $x = (x \& \sim mask) \mid (y << shift);$

Example

shift = 7

X	1011110101101101
у	00000000000011
mask	0000011110000000
x & ~mask	1011100001101101
$x = (x \& \sim mask) (y << shift);$	1011100111101101

Ordinary Swap

Problem

Swap two integers x and y.

```
t = x;
x = y;
y = t;
```

Problem

Swap x and y without using a temporary.

X	10111101		
у	00101110		

Problem

Swap x and y without using a temporary.

X	10111101	10010011	
У	00101110	00101110	

Problem

Swap x and y without using a temporary.

X	10111101	10010011	10010011	
У	00101110	00101110	10111101	

Problem

Swap x and y without using a temporary.

X	10111101	10010011	10010011	00101110
у	00101110	00101110	10111101	10111101

Problem

Swap x and y without using a temporary.

Example

X	10111101	10010011	10010011	00101110
у	00101110	00101110	10111101	10111101

Why it works

$$(x \wedge y) \wedge y \Rightarrow x$$

X	у	x ^ y	(x ^ y) ^ y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Problem

Swap x and y without using a temporary.

Example

X	10111101		
у	00101110		

Why it works

$$(x \wedge y) \wedge y \Rightarrow x$$

X	у	x ^ y	(x ^ y) ^ y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Problem

Swap x and y without using a temporary.

Mask with 1's
$$x = x ^ y$$
; where bits differ. $y = x ^ y$; $x = x ^ y$;

Example

X	10111101	10010011	
У	00101110	00101110	

Why it works

$$(x \wedge y) \wedge y \Rightarrow x$$

X	у	x ^ y	(x ^ y) ^ y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Problem

Swap x and y without using a temporary.

Example

X	10111101	10010011	10010011	
у	00101110	00101110	10111101	

Why it works

$$(x \wedge y) \wedge y \Rightarrow x$$

X	у	x ^ y	(x ^ y) ^ y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Problem

Swap x and y without using a temporary.

Example

X	10111101	10010011	10010011	00101110
у	00101110	00101110	10111101	10111101

Why it works

$$(x \wedge y) \wedge y \Rightarrow x$$

X	у	x ^ y	(x ^ y) ^ y
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Problem

Swap x and y without using a temporary.

Example

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Why it works

XOR is its own inverse: $(x ^ y) ^ y \Rightarrow x$

version WIN!

Naive temp

variable

Performance 👎

Poor at exploiting *instruction-level parallelism (ILP)*.

Minimum of Two Integers

Problem

Find the minimum r of two integers x and y.

```
if (x < y)
    r = x;
else
    r = y;</pre>
or    r = (x < y) ? x : y;
```

Performance

A mispredicted branch empties the processor pipeline.

Caveat

The compiler is usually smart enough to optimize away the unpredictable branch, but maybe not.

No-Branch Minimum

Problem

Find the minimum \mathbf{r} of two integers \mathbf{x} and \mathbf{y} without using a branch.

$$r = y ^ ((x ^ y) & -(x < y));$$

Why it works

- The C language represents the Booleans TRUE and FALSE with the integers 1 and 0, respectively.
- If x < y, then $-(x < y) \Rightarrow -1$, which is all 1's in two's complement representation. Therefore, we have $y \land (x \land y) \Rightarrow x$.
- If $x \ge y$, then $-(x < y) \Rightarrow 0$. Therefore, we have $y \land 0 \Rightarrow y$.

Merging Two Sorted Arrays

```
static void merge(long * __restrict C,
                 long * restrict A,
                  long * restrict B,
                  size_t na,
                  size t nb) {
 while (na > 0 && nb > 0) {
   if (*A <= *B) {
     *C++ = *A++; na--;
   } else {
     *C++ = *B++; nb--;
 while (na > 0) {
   *C++ = *A++;
   na--;
 while (nb > 0) {
   *C++ = *B++;
   nb--;
```

3	12	19	46
4	14	21	23

Branching

```
static void merge(long * restrict C,
                 long * restrict A,
                  long * __restrict B,
                  size_t na,
                  size t nb) {
 while (na > 0 && nb > 0) {
   if (*A <= *B) {
    *C++ = *A++; na--;
   } else {
     *C++ = *B++; nb--;
 while (na > 0) {
   *C++ = *A++;
   na--;
  while (nb > 0) {
   *C++ = *B++;
   nb--;
```

Branch	Predictable?
1	Yes
2	Yes
3	№o
4	Yes

Branchless

```
static void merge(long * restrict C,
                 long * restrict A,
                 long * __restrict B,
                  size t na,
                 size t nb) {
 while (na > 0 && nb > 0) {
   long cmp = (*A <= *B);
   long min = *B ^ ((*B ^ *A) & (-cmp));
   *C++ = min;
   A += cmp; na -= cmp;
   B += !cmp; nb -= !cmp;
 while (na > 0) {
   *C++ = *A++;
   na--;
 while (nb > 0) {
   *C++ = *B++;
   nb--;
```

This optimization works well on some machines, but on modern machines using clang -03, the branchless version is usually slower than the branching version. Modern compilers can perform this optimization better than you can!

Why Learn Bit Hacks?

Why learn bit hacks if they don't even work?

- Because the compiler does them, and it will help to understand what the compiler is doing when you look at the assembly code.
- Because sometimes the compiler doesn't optimize, and you have to do it yourself by hand.
- Because many bit hacks for words extend naturally to bit and word hacks for vectors.
- Because these tricks arise in other domains, and so it pays to be educated about them.
- Because they're fun!

Modular Addition

Problem

Compute (x + y) mod n, assuming that $0 \le x < n$ and $0 \le y < n$.

$$r = (x + y) \% n;$$

Division is expensive, unless by a power of 2.

```
z = x + y;

r = (z < n) ? z : z-n;
```

Unpredictable branch is expensive.

```
z = x + y;

r = z - (n & -(z >= n));
```

Same trick as minimum.

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n >> 32;
++n;
```

001000001010000

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n >> 32;
++n;
```

001000001010000
001000001001111

Problem

Compute 2^[lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Example

从最高位1开始,全部填充为1, 结果必然是 pow(2, k)-1

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Problem pow(2,ceil(lgn))

Compute 2 [lg n].

Bit Ign - 1 must be set

```
uint64 t n;
 = n >> 1;
 = n \gg 2;
 = n >> 4;
n = n \gg 8;
 = n >> 16;
n = n \gg 32;
++n;
```

Example

Set bit [lg n]

Populate all bits to the right with 1

Problem

Compute 2 [lg n].

```
uint64 t n;
--n;
n = n \gg 1;
n = n \gg 2;
n = n \gg 4;
n = n \gg 8;
n = n \gg 16;
n = n \gg 32;
++n;
```

Example

```
00100000010100000010000001001111001100000110111100111100011111110011111111111110100000000000000
```

Why decrement?

To handle the boundary case when n is a power of 2.

Least-Significant 1

Problem

Compute the mask of the least-significant 1 in word x.

$$r = x & (-x);$$

Example

X	001000001010000
-x	1101111110110000
x & (-x)	000000000010000

Why it works

The binary representation of -x is (-x)+1.

Question

How do you find the index of the bit, i.e., lg r?

Log Base 2 of a Power of 2

Problem

Compute $\lg x$, where x is a power of 2.

```
const uint64 t deBruijn = 0x022fdd63cc95386d;
const int convert[64] = {
  0, 1, 2, 53, 3, 7, 54, 27,
  4, 38, 41, 8, 34, 55, 48, 28,
  62, 5, 39, 46, 44, 42, 22, 9,
  24, 35, 59, 56, 49, 18, 29, 11,
  63, 52, 6, 26, 37, 40, 33, 47,
  61, 45, 43, 21, 23, 58, 17, 10,
  51, 25, 36, 32, 60, 20, 57, 16,
  50, 31, 19, 15, 30, 14, 13, 12
r = convert[(x * deBruijn) >> 58];
```

Mathemagic Trick

5 volunteers who can follow directions

Introducing Jess Ray, "The Golden Raytio"

Log Base 2 of a Power of 2

Why it works

A *deBruijn sequence* s of length 2^k is a cyclic 0–1 sequence such that each of the 2^k 0–1 strings of length k occurs exactly once as a substring of s.

```
0b00011101*2^{4} \Rightarrow 0b11010

0b11010000 >> 5 \Rightarrow 6

convert[6] \Rightarrow 4

start with
```

Performance

Limited by multiply and table look-up.

Example: k=3

```
00011101
000
 001
  011
    111
     110
      101
index=2 010
         100
```

```
const int convert[8]
= {0,1,6,2,7,5,4,3};
```

all O's

Queens Problem

Problem

Place n queens on an $n \times n$ chessboard so that no queen attacks another, i.e., no two queens in any row, column, or diagonal. Count the number of possible

solutions.

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Try placing queens row by row. If you can't place a queen in a row, backtrack.

Backtrack!

Strategy

Strategy

Try placing queens row by row. If you can't place a queen in a row, backtrack.

Backtrack!

Strategy

Try placing queens row by row. If you can't place a queen in a row, backtrack.

57

Strategy

Board Representation

The backtrack search can be implemented as a simple recursive procedure, but how should the board be represented to facilitate queen placement?

- array of n² bytes?
- array of n² bits?
- array of n bytes?
- 3 bitvectors of size n, 2n-1, and 2n-1.

Bitvector Representation

Placing a queen in column c is not safe if down & (1 << c); is nonzero.

Bitvector Representation

Placing a queen in row r and column c is not safe if

left & (1 << (r+c)) is nonzero.

Bitvector Representation

Placing a queen in row r and column c is not safe if right & (1 << (n-1-r+c)) is nonzero.

Population Count I

Problem

Count the number of 1 bits in a word x.

```
for (r=0; x!=0; ++r)
x &= x - 1;
```

Repeatedly eliminate the least-significant 1.

Example

X	0010110111010000
x - 1	0010110111001111
x & (x - 1);	0010110111000000

Issue

Fast if the popcount is small, but in the worst case, the running time is proportional to the number of bits in the word.

Population Count II

Table look-up

```
static const int count[256] =
{ 0, 1, 1, 2, 1, 2, 2, 3, 1, ..., 8 };

for (int r = 0; x != 0; x >>= 8)
   r += count[x & OxFF];
```

Performance depends on the size of x. The cost of memory operations is a major bottleneck. Typical costs:

```
    register: 1 cycle,
```

- L1-cache: 4 cycles,
- L2-cache: 10 cycles,
- L3-cache: 50 cycles,
- DRAM: 150 cycles.

per 64-byte cache line

Population Count III

Parallel divide-and-conquer

```
// Create masks
                                           Notation:
M5 = \sim ((-1) << 32); // 0^{32}1^{32}
M4 = M5 ^ (M5 << 16); // (0^{16}1^{16})^2
                                           X^k = X X \cdots X
M3 = M4 ^ (M4 << 8); // (0818)^4
                                               k times
M2 = M3 ^ (M3 << 4); // (0<sup>4</sup>1<sup>4</sup>)<sup>8</sup>
M1 = M2 ^ (M2 << 2); // (0^21^2)^{16}
MO = M1 ^ (M1 << 1); // (O1)^{32}
// Compute popcount
x = ((x >> 1) & MO) + (x & MO);
x = ((x >> 2) \& M1) + (x \& M1);
x = ((x >> 4) + x) & M2;
x = ((x >> 8) + x) & M3;
x = ((x >> 16) + x) & M4;
x = ((x >> 32) + x) & M5;
```

85

Population Count III

Population Count III

Parallel divide-and-conquer

```
// Create masks
M5 = \sim ((-1) \ll 32); // 0^{32}1^{32}
M4 = M5 ^ (M5 << 16); // (0^{16}1^{16})^2
M3 = M4 ^ (M4 << 8); // (0818)^4
M2 = M3 ^ (M3 << 4); // (0<sup>4</sup>1<sup>4</sup>)<sup>8</sup>
M1 = M2 ^ (M2 << 2); // (0^21^2)^{16}
M0 = M1 ^ (M1 << 1); // (01)^{32}
// Compute popcount
x = ((x >> 1) & M0) + (x & M0);
x = ((x >> 2) \& M1) + (x \& M1);
x = ((x >> 4) + x) & M2;
x = ((x >> 8) + x) & M3;
x = ((x >> 16) + x) & M4;
x = ((x >> 32) + x) & M5;
```

Performance

 $\Theta(\lg w)$ time, where w = word length.

Avoid overflow

No worry about overflow.

© 2008-2018 by the MIT 6.172 Lecturers

Popcount Instructions

Most modern machines provide popcount instructions, which operate much faster than anything you can code yourself. You can access them via compiler intrinsics, e.g., in GCC:

```
int __builtin_popcount (unsigned int x);
```

Warning: You may need to enable certain compiler switches to access built-in functions, and your code may be less portable.

Exercise

Compute the log base 2 of a power of 2 quickly using a popcount instruction.

Further Reading

Sean Eron Anderson, "Bit twiddling hacks," http://graphics.stanford.edu/~seander/bithacks.h tml, 2009.

Donald E. Knuth, *The Art of Computer Programming*, Volume 4A, *Combinatorial Algorithms, Part 1*, Addison-Wesley, 2011, Section 7.1.3.

Henry S. Warren, *Hacker's Delight*, Addison-Wesley, 2003.

Happy Bit-Hacking!

MIT OpenCourseWare https://ocw.mit.edu

6.172 Performance Engineering of Software Systems Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.