For the case of pure heating,
$$dE = dQ$$

$$dS = \frac{dQ}{T} \quad (quasistatic)$$

Note: Basic rates outlined thus far can be used

to understand that there is a maximum
elliwiency for any engine (carnet elliwienacy)
which can be calculated irrespective of details

More définitions:
$$\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{E,N}$$
 thermodynamic $\frac{M}{T} = \frac{1}{2}$

How do we measure entropy changes in a real system? There is no entropy meter...

=) use a quasistatic process to change the temperature of a system from T, to Tz

$$\Delta S = \int_{T_1}^{T_2} \frac{dQ}{dt} = \int_{T_1}^{T_2} C(T) \frac{dT}{T}$$

Ex: For a solid, C & const with temperature and Cy & Cp

$$\Delta S = C \int_{T_1}^{T_2} dT = C \log (T_2/T_1)$$

Ex: Free expansion of an ideal gas

what is AS? | no energy enters | haves => internal energy of gas doesn't change

$$\Delta S = \frac{Q}{T} = 0$$
 277

This conclusion is incorrect as this is not a quasistatic process DS

However, entropy is a state function so we can consider any process 1-2

=) should be quasistatic so we can use rules of thermodynamics

gas does work W to increase volume SV

recall: DE = 0 => Q = - W

DS = NKlog (V2 (V,))

DS > 0 as we expect!

Note: thermodynamics is confusing

- =) we only care about equillibrium states, there is no dynamics!
 - =) we often consider processes that did not actually happen (only initial | final states matter)

Fundamental thermodynamic relation

recall: DE = W+Q

for an infinitesimal, quasistatic change dw = -PdV , dQ = TdS

⇒ dE = Tds - PdV

if we additionally allow particle number to vary

dE = TdS - PdV + MdN FUNDAMENTAL THERMO.

RELATION

MEMORIZE!

Chimical

· mathematical statement that combines 1st & 2nd laws

* starting point for deriving many useful relations!

recall: for any function & (x, y, z) we can write its exact differential as

 $d\theta = \left(\frac{\partial \theta}{\partial x}\right)_{x,t} dx + \left(\frac{\partial \theta}{\partial y}\right)_{x,t} dy + \left(\frac{\partial \theta}{\partial z}\right)_{x,y} dz$

Thus, if we consider the natural variables for E as S,V, N

$$dE = \left(\frac{\partial E}{\partial V}\right)_{s,N} dV + \left(\frac{\partial E}{\partial S}\right)_{V,N} dS + \left(\frac{\partial E}{\partial N}\right)_{V,S} dN$$

comparing with fundamental relation

$$\frac{\partial E}{\partial s} \Big|_{v_1 N} = T$$

$$\frac{\partial E}{\partial v} \Big|_{s_3 N} = P$$

$$\frac{\partial E}{\partial v} \Big|_{s_3 N} = M$$

The entropy can be treated in a similar manner by rearranging the above:

but we can also say:

$$dS = \left(\frac{3E}{3S}\right)^{N/N} dE + \left(\frac{3N}{3S}\right)^{E^{N}} dN + \left(\frac{3N}{3S}\right)^{N/E} dN$$

Now we see where delinitions come from.

- · E, V, N are "natural variables" for 5
 · S, V, N are natural variables for E
 - · both E and S are thermodynamic potentials
 as their partial deriviatives yield equs of state

Third law of thermodynamics

We have seen that the various thermodynamic relations can be used to calculate changes in entropy.

third law = absolute value of S

I we will state this more precisely when we get to stat mech

· consider change at constant volume

$$S(T_2, v) - S(T_1, v) = \int_{T_1}^{T_2} \frac{C_v(T)}{T} dT$$
 (by difficilize)

- · low temperature behavior of Ev, Ep independent of details of system!
 - · established experimentally near turn of 20th century
 - note: ideal gas $C_V = \frac{3}{2}Nk$ must break $C_p = \frac{5}{2}Nk$ down at low T.