Теогета Si I tiene nodelos arbitrariamente grandes entonces I tiene modelo infinito. Demo Definimos en el lenguaje solo con igualdad las siguientes Formulas (son infinitas): $f_z = (x)(x)(x)$ $f_3 = (\exists x)(\exists y)(\exists z)(x \neq y \land y \neq z \land z \neq x)$ Pi = "hay al menos i elementos distintos" \vi > z Sea P'c Mu & li: i>z} un subconjunto finito. Sea n = max { i : li e [1] } u { 0}. Si alguna li está en [1], ln es la fórmula que expresa que hay al menos n elementos, y cualquier otra li el'expresa que hay al menos i elementos con i < n. Es decir n es la contidad mínima de elementos que necesitamos en el modelo para satisfacer 7'. Luego, como l'admite modelos arbitrariamente grandes, en particular tiene modelo con al menos n elementos. Entonces n'es satisfacible.

						Ca											i >>	- 23	
						que A =		int	init	0 .	Cor	10	Γ	П	ر چ ر	Pi:	i >>	23	
Cov	ıclu	siói	U:	A	es i	n f ini	ito	Si	•	A	. ځ =	₽¿:	i >>	ΖŠ					

Ejercicio

Existe un conjunto 17 tal que AFT sii A es infinito?

Sea $\Gamma = \xi I_i : i > z$ de la demo anterior. Γ tiene modelos arbitrariamente grandes por lo tanto tiene modelo infinito. Y avalquier modelo infinito satisface Γ .

(es en esencia la misma demo)

Ejercicio

Existe un conjunto 17 tal que A=17 sii A es finito?

Supongamos que existe tal conjunto 17. Notemos entonces que cualquier A tal que IAI < 00 satisface a 17. Luego 17 tiene modelos arbitrariamente grandes.

Por el teorema anterior, M' tiene un modelo B infinito tal que B=M. Absurdo. No se puede expresar que el modelo es finito. Ejercicio

El conjunto l' que expresa que el modelo es infinito necesariamente tiene que ser infinito.

Supongamos que l'es finito y A = l'sii A es infinito.

Dado que l'es finito, podemos conjugar todas las formulas

de l'en una única fórmula f.

P = ΛΨ ΨεΓ

Si A = 9 sii A es infinito entonces A = 7 sii A es Finito.

Sea $\Gamma' = \{71\}$. I gual que el ejercicio anterior, como Γ' tiene modelos arbitrariamente grandes, por el teorema Γ' tiene modelo infinito. Existe B tal que

B = T'= {7}} sii B es infinito

Absurdo porque 71 afirmaba que el modelo es finito. No se puede expresar que el modelo es infinito con un conjunto finito de fórmulas. Necesariamente necesitamos un conjunto infinito.