Statistics Notes (II)

Contents

1	Probbility				
	1.1	Important Concepts			
		1.1.1 Terms			
		1.1.2 Set Theory			
		1.1.3 Permutaion			
		1.1.4 Combination			
	1.2	Three Definitions of Probability			
	1.3	Probability Theorems			
	1.4	Coin and Die Problems			
		1.4.1 Tree Method			
	1.5	Set Theory Problems			
	1.6	Problems: Drawing Items at Once			
	1.7	Problems: Drawing Items One by One			
	1.8	Addition vs Multiplication			
	1.9	Playing card Concept and Problems			
	1.10	Condional Probability Theory			
		Condional Probability Problems			
		Digit Problems			

1 Probbility

1.1 Important Concepts

1.1.1 Terms

Trial A single performance of well-defined experiment

Experiment a scientific test in which you perform a series of actions and carefully observe their effects in order to learn about something.

1.1.2 Set Theory

1.1.3 Permutaion

Permutaion is all about arranging items, while combination is used to find the ways to to select items.

If we have 3 items A, B, and C; we can arrange them in the following way.

- ABC
- ACB
- BAC
- BCA
- CAB
- CBA

There are 6 possible ways to arrange 3 items in 3 positions.

Thinking another way, there are 3 positions and 3 items. The first position can be filled up in 3 ways (A or B or C), the second in 2 ways (after one item is fixed in the first position, be it A or B, or C), and the third in 1 way.

Position	1	2	3
Possible options	3	2	1

Mathematically, this is also written as 3! (3 factorial), which is nothing but $3 \times 2 \times 1 = 6$ Similarly, if we have 4 items to arrange in 4 places, we can write:

Position	1	2	3	4
Possible options	4	3	2	1

Thus we can arrange this in $4 \times 3 \times 2 \times 1 = 4! = 24$ ways.

Not Using All Items

Now, what if want to arrange 2 items out of 4 items. In this case we have 2 places, but 4 items.

Position	1	2
Possible options	4	3

We get $4 \times 3 = 12$ ways.

This is also written as ${}^4P_2 = 12$ (shown below)

$$^{n}P_{r} = \frac{n!}{(n-p)!}$$

Repeating Items

In the above examples, items cannot be repeated in places. In some scenario, this is absurd; after all, one person cannot sit on 2 chairs.

However, consider using digits to make up telephone numbers.

Position	1	2	3	4	5	6	7
Possible options	10	10	10	10	10	10	10

All 10 digits can be used in each position.

Hence, for 7-digit telephone numbers, we can have telephone number in 10^7 ways.

Think

- What is the general formula of the above case?¹
- What if the first digit is always zero (0)?
- What if not all 7 digits can be same?
- What if some particular digit cannot be repeated, or can be repeated only twice?
- How many license plates can make using 5 letters, 2 digits and 3 letters, or 1 letter and 3 digits, where items can be repeated?

 $^{^{1}}n^{r}$, where n = no. of items and r = no. of places

1.1.4 Combination

Combination is used when we are concerned with selecting items or individuals.

Example: How can we select 2 items out of 3 (A, B, and C)?

$$AB, AC, BC (AB = BA, AC = CA, BC = CB)$$

In permutation, we had 6 ways. The reason is obvious.

Not Using All Items

$${}^nC_r = \frac{n!}{r!(n-r)!}$$

Think

- In how many ways can a coach select 11 footballers from a squad of 15?
- What if s/he must keep 5 specific players?
- In how many ways the players can be placed in the field?

Think More

- How many 5-digit numbers can be made using the digits 4, 5, 2, 1, 0?
- How many are odd and even?
- How many end with zero?

1.2 Three Definitions of Probability

Classical

$$P(A) = \frac{n(A)}{n(S)}$$

Relative frequency

$$\lim_{n(S)\to\infty}\frac{n(A)}{n(S)}$$

Axiomatic

Three axioms

Say, S is sample space and A_i is an event

- $0 \le P(A) \le 1 \text{ (NOT } P(A) \ge 0)$
- At least one of S will occur. P(S) = 1; Certain event.
- $P(A_1UA_2U...UA_n) = P(A_1) + P(A_2) + ... + P(A_n)$ or

$$P\left(\cup_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}P(E_{i})$$

1.3 Probability Theorems

- $P(A) + P(\bar{A}) = 1$ (prove)
- $\sum_{i=1}^{k} P(A_i) = 1$ $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 P(A \cup B)$ (Venn)
- If A & B are independent, are \bar{A} & \bar{B} independent? (Prove by an example)

1.4 Coin and Die Problems

1.4.1 Tree Method

The sample space if a coin is tossed thrice (or 3 coins tossed together)

: bulb: What is the general formula? $^{2}\,$

- 1.5 Set Theory Problems
- 1.6 Problems: Drawing Items at Once
- 1.7 Problems: Drawing Items One by One
- 1.8 Addition vs Multiplication
- 1.9 Playing card Concept and Problems
- 1.10 Condional Probability Theory
- 1.11 Condional Probability Problems
- 1.12 Digit Problems

 $^{^{2}2^{}n}$ for a coin and 6^{r} for a die. What would be a more general formula?