CoxIter

Computations of invariants of hyperbolic Coxeter groups

1.0b

17/08/2016

Rafael Guglielmetti

Rafael Guglielmetti

Email: rafael@rgug.ch Homepage: https://rgug.ch

Address: Chemin du Musee, CH-1700 Fribourg

Contents

1	Introduction		3
	1.1	The standalone program	3
	1.2	The GAP package	3
2	Cox	Iter automatic generated documentation	5
	2.1	CoxIter automatic generated documentation of attributes	5
		CoxIter automatic generated documentation of methods	
3	Som	Some examples	
References			8
In	dex 9		

Chapter 1

Introduction

This chapter gives general information about the GAP package CoxIter.

1.1 The standalone program

CoxIter was first developped as a standalone C++ program whose goal is to compute invariant of hyperbolic Coxeter groups. We consider a hyperbolic Coxeter group $\Gamma \leq \text{Isom}(\mathbb{H}^n)$ and the associated polyhedron P. The input of the program consists a file containing the description of the Coxeter graph of Γ . Then, the output consists of the following information:

- Euler characteristic (and thus volume of *P* if *n* is even)
- f-vector (f_0, f_1, \dots, f_n) : P has f_0 vertices, f_1 edges, f_2 2-faces, ...
- Cofiniteness test: test whether P has finite volume or not
- Cocompactness test: test whether P is compact or not
- · Growh series
- Growth rate and some of its algebraic properties (note: this is not available in the GAP package)

A description of the mathematical results behind CoxIter can be found in the article [Gug15].

1.2 The GAP package

1.2.1 Encoding a group

Let $\Gamma = \langle s_1, \dots, s_d : (s_i \cdot s_j)^{m_{i,j}} \rangle$ be a Coxeter group and let $P = \bigcap_{i=1}^d H_i^-$ be its associated polyhedron. There is two ways to encode Γ in for the package:

- Via its Coxeter graph: CreateCoxIterFromCoxeterGraph (??)
 The graph can be described with a list containing the neighbours of every vertex, together with the weights. CoxIter uses that following convention:
 - If the hyperplanes H_i and H_j are parallel, then the weight is 0
 - If the hyperplanes H_i and H_j are ultra-parallel, then the weight is 1

CoxIter 4

For example, the graph of the Coxeter group \tilde{B}_5 can be described as follows: [[1,[2,4]],[2,[3,3]],[3,[4,3]],[4,[5,3],[6,3]]]

• Via its Coxeter matrix: CreateCoxIterFromCoxeterMatrix (??)

The Coxeter matrix M is the symmetric $d \times d$ matrix with entries $m_{i,j}$. Again, we use the following convention:

- If the hyperplanes H_i and H_j are parallel, then $M_{i,j} = 0$
- If the hyperplanes H_i and H_j are ultra-parallel, then $M_{i,j} = 1$

1.2.2 A complete example

We consider the 4-dimensional simplex [4,3,3,5] whose Coxeter graph is the linear graph with weights 4,3,3,5.

First, we cerate the CoxIter object:

We can now ask for one of the invariants:

```
gap> EulerCharacteristic(ci);
17/28800
gap> Cocompact(ci);
1
gap> Cofinite(ci);
1
gap> FVector(ci);
[ 5, 10, 10, 5, 1 ]
gap> g := GrowthSeries(ci);;
gap> Value(g[2],1)/Value(g[1],1);
17/28800
```

Chapter 2

CoxIter automatic generated documentation

2.1 CoxIter automatic generated documentation of attributes

2.1.1 Cofinite (for IsCoxIter)

▷ Cofinite(CoxIter, object)

(attribute)

Returns: 1 (cofinite), 0 (not cofinite), -1 (cannot decide)

Test whether the group is cofinite or not.

2.1.2 Cocompact (for IsCoxIter)

▷ Cocompact(CoxIter, object)

(attribute)

Returns: 1 (cocompact), 0 (not cocompact), -1 (cannot decide)

Test whether the group is cocompact or not.

2.1.3 EulerCharacteristic (for IsCoxIter)

▷ EulerCharacteristic(CoxIter, object)

(attribute)

Returns: the Euler characteristic Compute the Euler characteristic

2.1.4 FVector (for IsCoxIter)

▷ FVector(CoxIter, object)

(attribute)

Returns: the f-vector of the associated polyhedron Compute the f-vector of the associated polyhedron

2.1.5 GrowthSeries (for IsCoxIter)

▷ GrowthSeries(CoxIter, object)

(attribute)

Returns: [f,g] where f/g is the rational expansion of the growth series

Compute the rational expansion of the growth series

CoxIter 6

2.2 CoxIter automatic generated documentation of methods

$\textbf{2.2.1} \quad \textbf{CreateCoxIterFromCoxeterGraph} \ (\textbf{CreateCoxIterFromCoxeterGraph})$

▷ CreateCoxIterFromCoxeterGraph(gr, dimension)

(operation)

Returns: a CoxIter object

Creates a CoxIter object from the Coxeter graph gr. If the dimension dim is unknown, 0 can be given.

2.2.2 CreateCoxIterFromCoxeterMatrix (for IsMatrix, IsInt)

▷ CreateCoxIterFromCoxeterMatrix(mat, dimension)

(operation)

Returns: a CoxIter object

Creates a CoxIter object from the Coxeter matrix mat. If the dimension dim is unknown, 0 can be given.

2.2.3 CoxIterCompute (for IsCoxIter)

▷ CoxIterCompute(ci)

(operation)

Returns:

Compute the invariants of the Coxiter object ci

Chapter 3

Some examples

First, we consider the 8 dimensional cocompact group found by Bugaenko.

References

[Gug15] Rafael Guglielmetti. CoxIter - Computing invariants of hyperbolic Coxeter groups. *LMS Journal of Computation and Mathematics*, 18(1):754–773, December 2015. 3

Index

```
{\tt Cocompact}
    for IsCoxIter, 5
Cofinite
    for IsCoxIter, 5
{\tt CoxIterCompute}
    for IsCoxIter, 6
{\tt CreateCoxIterFromCoxeterGraph}
    CreateCoxIterFromCoxeterGraph, 6
{\tt CreateCoxIterFromCoxeterMatrix}
    for IsMatrix, IsInt, 6
EulerCharacteristic
    for IsCoxIter, 5
FVector
    for IsCoxIter, 5
GrowthSeries
    for IsCoxIter, 5
```