# Programming Languages and Compiler Design

Optimization Using Data-flow Analysis

Yliès Falcone, Jean-Claude Fernandez

Master of Sciences in Informatics at Grenoble (MoSIG) Univ. Grenoble Alpes (Université Joseph Fourier, Grenoble INP)

Academic Year 2015 - 2016

## Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

### Optimization

Where are we in the compiler steps?



1 | 55

## Outline - Optimization Using Data-flow Analysis

#### Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

### Objectives of this chapter

Give some hints on general optimization techniques:

- data-flow analysis,
- register allocation,
- software pipelining,
- etc.

Describe the main data-structures used:

- Control Flow Graph (CFG),
- ▶ intermediate code (e.g., 3-address code),
- Static Single Assignment form (SSA),
- etc.

See some concrete examples.

But not a complete panorama of the whole optimization process.

## Objective of the optimization phase

Improve the **efficiency** of the target code, while preserving the source semantics.

#### Several (antagonist) criteria:

- execution time,
- code size,
- used memory,
- energy consumption,
- etc.
- ⇒ no optimal solution, no general algorithm

#### A bunch of optimization techniques:

- dependent from each other,
- sometimes based on heuristics.

## Two kinds of optimization techniques

### Optimization independent from the target machine

- Objective: optimize the performance of the program.
- "source level" or "assembly level" pgm transformations.

### Example (Optimization independent from the target machine)

- constant propagation, constant folding
- dead code elimination
- common sub-expressions elimination
- code motion

### Optimization dependent from the target machine

Objective: optimize the use of hardware resources.

### Example (Optimization dependent from the target machine)

- machine instruction,
- memory hierarchy (registers, cache, pipeline, etc.).

## Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine Local Optimization Techniques Global Optimization Techniques

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

## Main principle

Input: initial intermediate code

Output: optimized intermediate code

#### Several steps:

- 1. generation of a control flow graph (CFG)
- 2. analysis of the CFG
- 3. transformation of the CFG
- 4. generation of the output code

## Analysis and transformations

| Analysis                 | Transformation                                |
|--------------------------|-----------------------------------------------|
| Available expressions    | Elimination of redundant computation          |
| common sub-expressions   |                                               |
| Active Variables         | Elimination of useless code                   |
| Constant propagation     | Replacing variables by their constant value   |
| Induction Variable       | Strength reduction                            |
| Loop Invariant           | Moving the invariant code outside the loop    |
| Dead-code elimination    | Suppress useless instructions                 |
|                          | (which do not influence the execution)        |
| Constant folding         | Performing operations between constants       |
| Copy propagation         | Suppress useless variables                    |
|                          | (i.e., equal to another one or to a constant) |
| Algebraic simplification | Replace costly computations                   |
| Strength reduction       | by less expensive ones                        |

## Intra-procedural 3-address code (TAC)

#### "High-level" assembly code:

- binary logic and arithmetic operators,
- use of temporary memory location ti,
- assignments to variables, temporary locations,
- a label can be assigned to an instruction,
- conditional jumps goto.

### Example (3-address code)

- ▶ 1: x := y op x
- ▶ 1: x := op y
- ▶ 142: x := y
- ▶ 19: goto l'
- ▶ l': if x oprel y goto l''

## Basic block (BB)

Definition and how to compute them

### Definition (Basic Block)

A maximal instruction sequence  $S = i_1 \cdot \cdot \cdot \cdot i_n$  such that:

- ▶ *S* execution is never "broken" by a jump  $\Rightarrow$  no goto instruction in  $i_1 \cdots i_{n-1}$
- S execution cannot start somewhere in the middle ⇒ no label in i<sub>2</sub>···i<sub>n</sub>
- $\Rightarrow$  execution of a BB is "atomic".

### Partitioning a 3-address code into BBs

- computation of BB heads:
   1st inst., inst. target of a jump, inst. following a jump
- computation of BB tails: last inst., inst. before a BB head
- $\Rightarrow$  a single traversal of the TAC.

## Control-Flow Graph (CFG)

A representation of how the execution may progress inside the TAC.

```
Definition (Control-Flow Graph)

A graph (V, E) such that:

V = \{B_i \mid B_i \text{ is a basic block}\}
E = \{(B_i, B_j) \mid \text{"tail of } B_i \text{ is a jump to head of } B_j" \text{ or "head of } B_j \text{ follows the tail of } B_i \text{ in the TAC"}\}
```

## Basic Block and Control-Flow Graph: example

#### Example/Exercise

Give the Basic Blocks and CFG associated to the following TAC sequence:

- 0. x := 11. y := 2
- 2. if c goto 6
- 3. x := x+1
- 4. z := 4
- 5. goto 8

- 6. z := 5
- 7. if d goto 0
- 8. z := z+2 9. r := 1
- 10 y := y-1

- ► Heads of blocks: 0, 3, 6, 8.
- ► Tails of blocks: 2, 5, 7, 10.



## Optimization techniques performed on the CFG

Two levels: local and global.

### Local optimization techniques

- Computed inside each BB.
- BBs are transformed independently from each other.

### Global optimizations techniques

- Computed on the CFG.
- Transformation of the CFG:
  - code motion between BBs,
  - transformation of BBs,
  - modification of the CFG edges.

## Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine Local Optimization Techniques

Global Optimization Techniques

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

#### Initial code:

```
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
```

#### Algebraic simplification:

```
a := x ** 2 a := x * x
b := 3 b := 3
c := x c := x
d := c * c d := c * c
e := b * 2 e := b << 1
f := a + d
g := e * f
```

#### Copy propagation:

```
a := x * x

b := 3

c := x

d := c * c

e := b << 1

f := a + d

g := e * f

a := x * x

b := 3

c := x

d := x * x
```

#### Constant folding:

```
a := x * x

b := 3

c := x

d := x * x

e := 3 << 1

f := a + d

g := e * f

a := x * x

c := x

d := x * x
```

#### Elimination of common sub-expressions:

```
a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

a := x * x

c := x

d := a

e := 6

f := a + d

g := e * f
```

#### Copy propagation:

```
a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f
```

Dead code elimination (+ strength reduction):

```
a := x * x a := x * x a := x * x b := 3 c := x d := a e := 6 f := a + a f := a + a f := a << 1 g := 6 * f g := 6 * f
```

### Local optimization: a more concrete example

Initial source program: addition of matrices

```
for (i=0 ; i < 10 ; i ++)
for (j=0 ; j < 10 ; j++)
S[i,j] := A[i,j] + B[i,j]
```

```
\begin{array}{lll} \text{B1:} & \text{i} := 0 \\ \text{B2:} & \text{if i} > 10 \text{ goto B7} \\ \text{B3:} & \text{j} := 0 \\ \text{B4:} & \text{if j} > 10 \text{ goto B6} \\ \hline \text{B5} & \\ \text{B6:} & \text{i} := \text{i} + 1 \\ \text{goto B2} \\ \\ \text{B7: end} \end{array}
```



### Initial Block B5

## Optimization of B5 (1/4)

```
B5:  \begin{array}{c} t1 := 4 * i \\ t2 := 40 * j \\ t3 := t1 + t2 \\ t4 := A[t3] \\ \hline t5 := 4 * i \\ t6 := 40 * j \\ t7 := t5 + t6 \end{array}   \begin{array}{c} t8 := B[t7] \\ t9 := t4 + t8 \\ \hline t10 := 4 * i \\ t11 := 40 * j \\ t12 := t10 + t11 \\ S[t12] := t9 \\ j := j + 1 \\ goto B4 \end{array}
```

The same value is assigned to temporary locations t1, t5, t10.

## Optimization of B5 (2/4)

$$\begin{array}{lll} \text{B5:} & \text{t1} := 4 \text{ * i} \\ & \text{t2} := 40 \text{ * j} \\ & \text{t3} := \text{t1} + \text{t2} \\ & \text{t4} := A[\text{t3}] \\ & \text{t6} := 40 \text{ * j} \\ & \text{t7} := \text{t1} + \text{t6} \end{array}$$

A same value is assigned to temporary locations t2, t6, t11.

## Optimization of B5 (3/4)

```
\begin{array}{lll} \text{B5:} & \text{t1} := 4 \text{ * i} \\ & \text{t2} := 40 \text{ * j} \\ & \text{t3} := \text{t1} + \text{t2} \\ & \text{t4} := A[\text{t3}] \\ & \text{t7} := \text{t1} + \text{t2} \\ \end{array} \qquad \begin{array}{ll} \text{t8} := B[\text{t7}] \\ & \text{t9} := \text{t4} + \text{t8} \\ & \text{t12} := \text{t1} + \text{t2} \\ & \text{S[t12]} := \text{t9} \\ & \text{j} := \text{j} + 1 \\ & \text{goto B4} \end{array}
```

A same value is assigned to temporary locations t3, t7, t12.

## Optimization of B5 (4/4): the final code

```
\begin{array}{lll} \text{B5:} & \text{t1} := 4 * i \\ & \text{t2} := 40 * j \\ & \text{t3} := \text{t1} + \text{t2} \\ & \text{t4} := \text{A[t3]} \\ & \text{t8} := \text{B[t3]} \\ & \text{t9} := \text{t4} + \text{t8} \\ & \text{S[t3]} := \text{t9} \\ & \text{j} := \text{j} + 1 \\ & \text{goto B4} \end{array}
```

## Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine Local Optimization Techniques Global Optimization Techniques

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

### Global optimization techniques

### Example (Global optimization techniques)

- constant propagation trough several basic blocks
- elimination of global redundancies
- ▶ code motion: move invariant computations outside loops
- ▶ dead code elimination

#### How to extend local optimization to the whole CFG?

- Associate (local) properties to entry/exit points of BBs (e.g., set of active variables, set of available expressions, etc.)
- Propagate them along CFG paths
   → enforce consistency w.r.t. the CFG structure
- 3. Update each BB (and CFG edges) according to these global properties.
- ⇒ a possible technique: data-flow analysis

## Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

#### Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

### Data-flow analysis

Static computation of data-related properties of programs.

### Data-flow problem

- $\triangleright$  (local) Properties  $\varphi_i$  associated to some pgm locations i
- ► Set of data-flow equations:
  - $\rightarrow$  how the  $\varphi_i$ 's are transformed along pgm executions.
- Regarding propagation:
  - forward vs backward propagation (depending on  $\varphi_i$ )
  - the property can depend on its previous value on either all paths or at least one path
  - cycles inside the control flow ⇒ fix-point equations!

### Solving the equation system

- A solution of this equation system assigns "globaly consistent" values to each  $\varphi_i$ .
- ▶ Such a solution may not exist...
- Decidability may require abstractions and/or approximations.

## Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

### Computing available expressions

Getting intuition on examples

Let us consider expression a + b.

How to determine whether a + b is available, i.e., whether its value has been previously computed and does not need to be computed again.



▶ Which computation of a+b is not needed?



► How does the information "being previously computed" propagate?

## Computing available expressions

#### Getting intuition on examples



- What can make a+b not available?
- What can make a+b available?



- What is needed for a+b to be available in the last block?
- How does the notion of availability depend on previous paths?

# Computing available expressions

#### Getting intuition on examples



# Elimination of redundant computation with available expressions

Running example



## Available expressions

We consider the set of expressions appearing in the program.

## Definition (Available expression)

An expression e is available at location i iff

- ▶ it is computed at location *i*,
- ▶ this expression is computed on every path going from the initial location to location *i*,
- ▶ on each of these paths: operands of *e* are not modified between the last computation of *e* and location *i*

Remark We consider syntactic equality.

#### Available expression



- a + b is available at the exit of B2 and B3, and at the entrance of B5.
- y + 1 is not available at the exit of B4.

# Data-flow equations for available expressions (1/3)

For a basic block B, we note:

- ► Kill(B): expressions made non available by B (because an operand of e is modified by B).
- ▶ Gen(B): expressions made available by B (computed in B, operands not modified afterwards).
- ▶ In(B): available expressions when entering B.
- ightharpoonup Out(B): available expressions when exiting B

$$Out(B) = (In(B) \setminus Kill(B)) \cup Gen(B) = F_b(In(B)),$$

where:  $F_B$ : transfer function of block B

# Data-flow equations for available expressions (2/3)

To define *Gen* and *Kill*, for a block *B*, we introduce local functions  $Gen_I$  and  $Kill_I$ :

```
Gen(B)
                                   Gen_l(B,\emptyset)
Kill(B)
                               = Kill_l(B, \emptyset)
Gen_l(\mathbf{x} := \mathbf{a}; B, X)
                               = Gen_l(B, X \setminus \{e' \mid x \in Used(e')\})
                                                \cup \{a \mid x \notin Used(a)\})
Gen_l(if b goto 1, X)
                              = X \cup \{b\}
Gen_I(goto 1, X)
Gen_I(\epsilon, X)
Kill_I(x := a; B, X) = Kill_I(B, X \cup \{e' \mid x \in Used(e')\})
Kill_I(\text{if b goto } 1, X) = X
                       = X
Kill_{l}(goto 1, X)
Kill_{l}(\epsilon, X)
                               = X
```

## Running example

Computing Gen and Kill





- $Gen(B1) = \emptyset$ ,  $Kill(B1) = \{a+b\}$
- $Gen(B2) = \{a+b\}, Kill(B2) = \{y+1\}$
- $Gen(B3) = \{a+b, x+1\}, Kill(B3) = \emptyset$
- $Gen(B4) = \emptyset$ ,  $Kill(B4) = \{y+1\}$
- $Gen(B5) = \{a+b\}, Kill(B5) = \emptyset$

# Data-flow equations for available expressions (2/3)

How to compute In(b)?

▶ if *b* is the initial block:

$$In(b) = \emptyset$$

▶ if b is not the initial block: An expression e is available at its entry point iff it is available at the exit point of all predecessor of b in the CFG.

$$In(b) = \bigcap_{b' \in Pre(b)} Out(b')$$

⇒ forward data-flow analysis along the CFG paths.

How to deal with cycles inside the CFG? fix-points computation!

We want to as much available expressions possible: greatest fix-point.

# Using data-flow equations to compute available expressions

#### Initialisation

It is a forward analysis  $\Rightarrow$  initialisation concerns the In(b) sets.

- ▶ Initialise  $In(B_{init})$  to  $\emptyset$ : there is no available expression at the beginning of the program.
- ▶ Initialise In(b), for  $b \neq B_{init}$  to the maximal element, i.e., to the set of all expressions.

#### Iteration until stabilisation

Iterate the following steps until stabilisation, i.e., when the In(b) sets are the same as in the previous step. At stabilisation, one has found the (greatest) fix-point.

- 1. Compute Out(b) sets using  $Out(b) = (In(b) \setminus Kill(b)) \cup Gen(b)$ .
- 2. Compute the (new) In(b) sets using  $In(b) = \bigcap_{b' \in Pre(b)} Out(b')$ .

## Suppressing redundant computations

We look at all computed available expressions in each block (In(b) sets).

#### Is the computation of an available expression redundant?

Let e be an available expression at the entry of a basic block b.

If the two following conditions are met:

- e appears in b, and
- none of the operand of e is assigned from the beginning of the block until the use of e
- $\Rightarrow$  the computation of e is redundant.

#### Suppressing redundant computation

Let e be an expression which computation is redundant in a block b.

- ▶ Introduce a new variable, say *u*.
- ▶ Using a backward analysis from b, locate each occurrence of x := e, and replace it with  $\begin{cases} u := e; \\ x := u; \end{cases}$
- ▶ Replace the occurrence of *e* where its computation is redundant.

# Back to the example of available expressions



# Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

## Computing active variables

Getting intuition on examples

Let us consider a variable x appearing in a program.

How to determine whether x is *active*, i.e., whether its value is needed for computation.



- ▶ Where is the value of x needed?
- ► How does the information "being needed" propagate?

# Computing active variables

Getting intuition on examples



// ...
// x := ...

// x
// active?
// active?

- What can make x not active?
- ▶ What can make x active?

- What is needed for x to be active in the first block?
- How does the notion of activity depend on previous paths? (note, previous refers to a successor block)

## Computing active variables

#### Getting intuition on examples



► What is active when the program terminates? =



- The CFG structure gives us relations between the availabilities at the exits and entrances of blocks.
- ► Activity at exits is obtained from the activity at the entrance.
- ▶ How to deal with cycles?

#### **Active Variables**

Objective: remove useless instructions.

## Definition (Active Variable)

A variable x is active at location i if it is used in at least one CFG-path going from i to j, where j is:

- either a final instruction, or
- ▶ an assignment to x.

## Definition (Useless instructions)

An instruction x := e at location i is useless if x is inactive at location i.

Remark Used means "in the right-hand side of an assignment or in a branch condition".

# Data-flow analysis for inactive variables

We compute the set of active variables. . .

#### Local analysis

Gen(b) is the set of variables x s.t. x is used in block b, and, in this block, any assignment to x happens after the (first) use of x.

Kill(i) is the set of variables x assigned in block b.

#### Global analysis

Backward analysis,  $\exists$  a CFG-path (least solution).

▶ 
$$In(b) = (Out(b) \setminus Kill(b)) \cup Gen(b)$$
.

$$\mathtt{Out}(b) \ = \ \left\{ \begin{array}{ll} \emptyset & \text{if $b$ is final,} \\ \bigcup_{b' \in \mathit{Succ}(b)} \mathit{In}(b') & \text{otherwise.} \end{array} \right.$$



# Computation of functions Gen and Kill

Recursively defined on the syntax of a basic block *B*:

$$B ::= \varepsilon \mid B$$
;  $x := a \mid B$ ; if b goto  $1 \mid B$ ; goto  $1$ 

*Used*(e): set of variables appearing in expression e.

#### Removal of useless instructions

- 1. Compute the sets In(B) and Out(B) of active variables at entry and exit points of each block.
- 2. Let  $F: Code \times 2^{Var} \to Code$ F(B,X) is the code obtained when removing useless assignments inside B, assuming that variables of X are active at the end of B execution.

$$F(\texttt{B}\;;\;\texttt{x}\;:=\texttt{a},X) = \begin{cases} F(\texttt{B},X) & \text{if } x\not\in X \\ F(\texttt{B},(X\setminus\{x\})\cup Used(\texttt{a})); \texttt{x} :=\texttt{a} & \text{if } x\in X \end{cases}$$
 
$$F(\texttt{B}\;;\;\texttt{if}\;\texttt{b}\;\texttt{goto}\;\texttt{1},X) = F(\texttt{B},X\cup Used(\texttt{b})); \texttt{if}\;\texttt{b}\;\texttt{goto}\;\texttt{1}$$
 
$$F(\texttt{B}\;;\;\texttt{goto}\;\texttt{1},X) = F(\texttt{B},X); \texttt{goto}\;\texttt{1}$$
 
$$F(\epsilon,X) = \epsilon$$

3. Replace each block B by F(B, Out(B)).

Remark This transformation may produce new inactive variables. . .

# Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

#### Constant Propagation

Generalization

Summary

# Constant propagation

A variable is constant at location 1 if its value at this location can be computed at compilation time.

## Example (Constant propagation principle)



- ▶ At exit point of B1 and B2, i and j are constants.
- ▶ At entry point of B3, i is not constant, j is constant.

## Constant propagation: the lattice

Intuitively, the property is an "abstraction" of the memory:

- ▶ Each variable takes its value in  $D = \mathbb{N} \cup \{\top, \bot\}$ , where:
  - ▶ ⊤ means "non constant value"
  - ▶ ⊥ means "no information"

#### Defining the lattice:

- ▶ Partial order relation  $\leq$ : if  $v \in D$  then  $\bot \leq v$  and  $v \leq \top$ .
- ► The least upper bound  $\sqcup$ : for  $x \in D$  and  $v_1, v_2 \in \mathbb{N}$

$$x \sqcup T = T \mid x \sqcup \bot = x \mid v_1 \sqcup v_2 = T \text{ if } v_1 \neq v_2 \mid v_1 \sqcup v_1 = v_1$$

Remark Relation  $\leq$  is extended to functions  $Var \rightarrow D$  $f1 \leq f2$  iff  $\forall x : f1(x) \leq f2(x)$ .

# Constant propagation: data-flow equations

A basic block = sequence of assignments

$$\mathtt{b} \quad ::= \quad \epsilon \mid \mathtt{x} \colon \mathtt{=e} \ ; \ \mathtt{b}$$

- ▶ Property at location 1 is a function  $Var \rightarrow D$ .
- ► Forward analysis:

$$In(b) = \begin{cases} \lambda x. \bot & \text{if } b \text{ is initial,} \\ \sqcup_{b' \in Pred(b)} Out(b') & \text{otherwise} \end{cases}$$
  
 $Out(b) = F_b(In(b))$ 

## Transfer function $F_b$ by syntactic induction

$$F_{x:=e}$$
;  $b(f) = F_b(f[x \mapsto f(e)])$  (assuming variable initialization)  
 $F_e(f) = f$ 

#### Program transformation

$$\forall$$
 block  $b, f \in In(b), f(e) = v \Rightarrow x := e$  replaced by  $x := v$ 

Remark We assume that variables are properly initialized.

# Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

## Recall data-flow analysis

Static computation of data-related properties of programs:

#### Data-flow problem

- (local) Properties  $\varphi_i$  associated to some pgm locations i
- ► Set of data-flow equations:
  - ightarrow how  $arphi_i$  are transformed along pgm execution
- Regarding propagation:
  - forward vs backward propagation (depending on  $\varphi_i$ )
  - ► cycles inside the control flow ⇒ fix-point equations!

#### Solving the equation system

- A solution of this equation system assigns "globaly consistent" values to each  $\varphi_i$ .
- Such a solution may not exist...
- Decidability may require abstractions and/or approximations

#### Generalization

Data-flow properties are expressed as finite sets associated to entry/exit points of basic blocks: In(b), Out(b).

#### Forward analysis

- ▶ property is "false" (⊥) at entry of initial block
- $Dut(b) = F_b(In(b))$
- ▶ In(b) depends on Out(b'), where  $b' \in Pred(b)$  ( $\sqcap$  for " $\forall$  paths",  $\sqcup$  for " $\exists$  path")

#### Backward analysis

- ▶ property is "false" (⊥) at exit of final block
- $In(b) = F_b (Out(b))$
- ▶ Out(b) depends on In(b'), where  $b' \in Succ(b)$  ( $\sqcap$  for " $\forall$  paths",  $\sqcup$  for " $\exists$  path")

# Data-flow equations: forward analysis

| Forward analysis,  | In(b)  | = | $ \left\{ \begin{array}{c} \bot \\ \bigsqcup_{b' \in \mathit{Pre}(b)} \mathit{Out}(b') \end{array} \right. $ | if <i>b</i> is initial otherwise. |
|--------------------|--------|---|--------------------------------------------------------------------------------------------------------------|-----------------------------------|
| least fix-point    |        |   |                                                                                                              |                                   |
|                    | Out(b) | = | $F_b(In(b))$                                                                                                 |                                   |
|                    | In(b)  |   |                                                                                                              | if b is initial                   |
| Forward analysis,  | III(D) | _ | $ \left\{ \begin{array}{l} \bot \\ \bigcap_{b' \in Pre(b)} Out(b') \end{array} \right. $                     | otherwise.                        |
| greatest fix-point |        |   |                                                                                                              |                                   |
|                    | Out(b) | = | $F_b(In(b))$                                                                                                 |                                   |

# Data-flow equations: backward analysis

|                    | Out(b) | = | $ \left\{ \begin{array}{c} \bot \\ \bigsqcup_{b' \in Succ(b')} In(b') \end{array} \right. $       | if b is final |
|--------------------|--------|---|---------------------------------------------------------------------------------------------------|---------------|
| Backward analysis, |        |   | $\bigcup_{b' \in Succ(b')} In(b')$                                                                | otherwise.    |
| least fix-point    |        |   |                                                                                                   |               |
|                    | In(b)  | = | $F_b(Out(b))$                                                                                     |               |
|                    | Out(b) | = | $ \left\{ \begin{array}{l} \bot \\ \square_{b' \in Succ(b)} \mathit{In}(b') \end{array} \right. $ | if b is final |
| Backward analysis, |        |   | $\bigcap_{b' \in Succ(b)} In(b')$                                                                 | otherwise.    |
| greatest fix-point |        |   | `                                                                                                 |               |
|                    | In(b)  | = | $F_b(Out(b))$                                                                                     |               |

# Solving the data-flow equations (1/2)

Let  $(E, \leq)$  a partial order.

- ▶ For  $X \subseteq E$ ,  $a \in E$ :
  - ▶ a is an upper bound of X if  $\forall x \in X : x \leq a$ ,
  - ▶ a is a lower bound of X if  $\forall x \in X : a \leq x$ .
- ▶ The least upper bound (lub,  $\sqcup$ ) is the smallest upper bound.
- ▶ The greatest lower bound  $(glb, \sqcap)$  is the largest lower bound.
- $\blacktriangleright$   $(E, \leq)$  is a lattice if any two elements of E admit a *lub* and a *glb*.
- ▶ A function  $f: 2^E \to 2^E$  is increasing if:

$$\forall X, Y \subseteq E \quad X \leq Y \Rightarrow f(X) \leq f(Y)$$

- ▶  $X = \{x_0, x_1, \dots x_n, \dots\} \subseteq E$  is an (increasing) chain if  $x_0 \le x_1 \le \dots x_n \le \dots$
- ▶ A function  $f: 2^E \to 2^E$  is ( $\sqcup$ -)continuous if  $\forall$  increasing chain X,  $f(\sqcup X) = \sqcup f(X)$

# Solving the data-flow equations (2/2)

#### Fix-point equation: solution?

- lacktriangle properties are finite sets of expressions  ${\mathcal E}$
- ▶  $(2^{\mathcal{E}}, \subseteq)$  is a complete lattice ⊥: least element (aka minimum),  $\top$ : greatest element (aka
  - maximum)

    □: greatest lower bound (aka supremum), □: least upper bound (aka infimum)
- ▶ data-flow equations are defined on monotonic and continuous operators  $(\cup, \cap)$  on  $(2^{\mathcal{E}}, \subseteq)$ .
- Kleene and Tarski theorems:
  - ▶ the set of solutions is a complete *lattice*
  - the greatest (resp. least) solution can be obtained by successive iterations w.r.t. the greatest (resp. least) element of  $2^{\mathcal{E}}$

$$\mathsf{lfp}(f) = \sqcup \{f^i(\bot) \mid i \in \mathbb{N}\} \qquad \mathsf{gfp}(f) = \sqcap \{f^i(\top) \mid i \in \mathbb{N}\}$$

# Outline - Optimization Using Data-flow Analysis

Introduction

Optimization Techniques Independent from the Target Machine

Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Active Variables

Constant Propagation

Generalization

Summary

# Summary

#### Code Optimization using data-flow analysis

- Objective: produce a semantically equivalent version of 3-address code that is optimized.
- ▶ Focused on optimizations independent from the target machine:
  - available expressions for the suppression of redundant computations,
  - active variables for useless assignments
  - constant propagation for replacing variables with their (fixed) values.