Table of Contents

1. Select and show a random frame from your video	1
2. Segment the frame into image patches using patchImage function	
3. For each patch use [matDCTCoeff] = dctCoeffi(imagePatch)	
4. For each patch, reconstruct it using the first 16/32 coefficients	
5. Reconstruct the frame and calculate the quality loss in Mean Squared Error	
6. Apply quantization to DCT coefficients and study the quantity loss in Mean Squared Error	

1. Select and show a random frame from your video

You can also load a pre-stored grayscale frame in but it needs to maintain a good resolution!

```
patchDim = 8;
frame = imread('michelleBW.jpg');
[originalHeight, originalWidth] = size(frame);
```

2. Segment the frame into image patches using patchImage function

```
[patches, height, width] = patchImage(frame, patchDim, patchDim);
```

3. For each patch use [matDCTCoeff] = dctCoeffi(imagePatch)

to get the cosine square matrix and denote the patch using a vector of DCT coefficients.

4. For each patch, reconstruct it using the first 16/32 coefficients

```
for i = 1: length(patches)
   patchRow = patchesEncoded(:,:,i);
   patchesDecoded(:,:,i) = reshape( patchRow * baseVectorMatrix, patchDim, patchDend
```

5. Reconstruct the frame and calculate the quality loss in Mean Squared Error

task 1. show the reconstructed frame using 16/32 coefficients respectively task 2. calculate loss

```
X = reshape(patchesDecoded, patchDim, []);
X = reshape( X, [ patchDim width height./patchDim ] );
X = permute( X, [ 1 3 2 ] );
X = reshape( X, [ height width ] );
X = uint8(X);

X = X(1:originalHeight, 1: originalWidth);  %Make sure X has same dimensions disp('Mean squared error is:');
disp(meanSquaredError(frame, X));
imshow(X);

Mean squared error is:
    0.0820
```


6. Apply quantization to DCT coefficients and study the quantity loss in Mean Squared Error

task 1. reconstructed frame using quantized 16/32 coefficients respectively (command floor can be used for quantization) task 2. calculate loss

% We will quantize by setting only keeping the top-left value of every

```
% patch. This is also called the constant component and defines the
% constant hue of the patch.
patchesEncoded(1,2:end,:) = 0;
for i = 1: length(patches)
    patchRow = patchesEncoded(:,:,i);
    patchesDecoded(:,:,i) = reshape( patchRow * baseVectorMatrix, patchDim, patchD
end
X = reshape(patchesDecoded, patchDim, []);
X = reshape( X, [ patchDim width height./patchDim ] );
X = permute(X, [132]);
X = reshape( X, [ height width ] );
X = uint8(X);
[height, width] = size(frame);
X = X(1:height, 1:width);
                               %Make sure X has same dimensions as frame.
disp('Mean squared error is:');
disp(meanSquaredError(frame, X));
imshow(X);
Mean squared error is:
  285.6206
```


Published with MATLAB® R2014b