Sistemas de Telecomunicações

1ºSemestre Lectivo 2021/2022

Trabalho Prático

Objectivos

O trabalho proposto tem por objectivo complementar os conhecimentos adquiridos nas aulas da unidade curricular Sistemas de Telecomunicações e avaliar os alunos quanto à capacidade de estudo e resolução de um problema de engenharia e a capacidade de análise crítica e de exposição escrita.

O foco do trabalho incidirá sobre o tema de engenharia de tráfego. O trabalho pretende promover a autonomia dos alunos na resolução de um problema, utilizando uma abordagem teórica e prática, comparando as duas abordagens e as vantagens e desvantagens nas duas abordagens na resolução de problemas de telecomunicações.

Enunciado do Trabalho

Pretende-se dimensionar uma rede de telecomunicações para acesso a um operador de *Call Center*, e o próprio sistema de atendimento de clientes, de forma a cumprir um conjunto de requisitos abaixo indicados.

Arquitectura da rede

Considera-se que o acesso à empresa de *Call Center* é efectuado através de um operador de rede de comutação de circuitos com uma rede que envolve um conjunto de 3 comutadores de trânsito e 4 comutadores de acesso, estando um deles interligado ao operador de *call center*, conforme se apresenta na figura abaixo.

Figura 1 - Arquitectura considerada.

A rede de comutação de circuitos transporta o tráfego com destino ao *call center*, tendo este tráfego origem no comutador A, B e C e destino o comutador F. O *Call Center* é composto por um sistema de espera e por um conjunto de operadores que processam as chamadas por ordem de chegada.

Condições

Além da arquitectura descrita anteriormente, devem ser consideradas as seguintes condições de funcionamento na resolução do problema:

- Nos comutadores apenas existe bloqueio devido à falta de recursos na saída, não existindo bloqueio na matriz de comutação;
- O tráfego com destino ao call center apenas tem origem nos Pontos 1, 2 e 3 e tem sempre como destino o Ponto 4;
- Os circuitos são estabelecidos prioritariamente pelas rotas mais directas, apenas recorrendo-se às restantes em caso de falta de recursos, e são estabelecidos apenas no sentido 1, 2 e 3 para 4, por exemplo, não existe estabelecimento no sentido D-A, D-B ou E-D, apenas no sentido inverso;
- O comutador F tem disponíveis 810 linhas para interligar ao Call Center.
- O sistema de espera do operador de call center é do tipo FIFO e ideal, ou seja, com capacidade infinita e não se consideram desistências.
- Não são considerados tempos de transição entre atendimentos de chamadas por parte dos operadores.

O problema

Pretende-se dimensionar todas as ligações (número de circuitos) da rede de comutação de circuitos e o *call center* (número de operadores), para que apenas 1.5% das chamadas sejam bloqueadas e que 50% das chamadas sejam atendidas nos primeiros 6 minutos de espera.

Em termos de caracterização do tráfego, é disponibilizado uma amostra constituída pelo registo de chamadas com destino ao *Call Center* ao longo de 24 horas. Nesse registo constam as horas de início, a origem e duração do tempo de atendimento. Para efeitos da resolução do trabalho, deverá ser considerada a média das 3 horas de maior tráfego.

Considere ainda as seguintes probabilidades de bloqueio locais registadas nas condições consideradas para o dimensionamento:

Comutador	Bloqueio
Α	0.003
В	0.004
С	0.003
D	0.005
E	0.002

À entrada do Call Center, ponto 4, a ocupação média das linhas é de 91%.

Como objectivo final pretende-se calcular, no mínimo, os seguintes parâmetros:

- Número de linhas em cada uma das ligações existentes na rede;
- Probabilidade de bloqueio global e local;
- Ocupação média de cada uma das ligações;
- Número de operadores no Call Center
- Tempo médio de espera no Call Center;
- Distribuição estatística do tempo de ocupação das linhas;
- Número médio de utentes em fila de espera;

Abordagem

Pretende-se que seja desenvolvido um simulador dinâmico, estocástico e com eventos

discretos que permita deduzir os resultados necessários para a resolução do problema.

Poderão ser apresentados gráficos que demonstrem a validade do simulador, quando

comparado com uma análise baseada exclusivamente em modelos matemáticos.

Avaliação

A avaliação do trabalho pretende privilegiar a componente de análise de problemas e

capacidade do aluno para resolver autonomamente problemas de engenharia, recorrendo a

diferentes tipos de análise.

É igualmente valorizada a capacidade escrita e expositiva do trabalho de forma, permitindo

aos alunos o desenvolvimento das capacidades de organização e escrita de um relatório,

capacidade de síntese e qualidade da apresentação escrita e oral.

Serão critérios de avaliação:

Clareza, organização e qualidade da abordagem aos tópicos propostos e capacidade

de síntese;

Correcção, objectividade e apresentação do relatório apresentado;

Será publicada a grelha de avaliação a utilizar na avaliação com os diferentes critérios e

respectiva ponderação no cálculo da classificação final.

Prazo de Entrega

O relatório deverá ser entregue em formato eletrónico, através do moodle, até 24 de Janeiro

de 2022.

A não entrega do trabalho na referida data implicará a reprovação na disciplina.

ISEL, 12/12/2021

- 3/3 -