MLLNVLRICI	IVCLVNDGAG	KHSEGRERTK	TYSLNSRGYF	40
RKERGARRSK	ILLVNTKGLD	EPHIGHGDFG	LVAELFDSTR	80
THTNRKEPDM	NKVKLFSTVA	HG <u>NKS</u> ARRKA	YNGSRRNIFS	120
RRSFDKRNTE	VTEKPGAKMF	WNNFLVKMNG	APQ <u>NTS</u> HGSK	160
AQEIMKEACK	TLPFTQNIVH	ENCDRMVIQN	NLCFGKCISL	200
HVPNQQDRRN	TCSHCLPSKF	TLNHLTLNCT	GSKNVVKVVM	240
MVEECTCEAH	KSNFHOTAOF	NMDTSTTLHH		270

Figure 1. Deduced amino acid sequence of Xenopus cerberus protein. SEQ ID NO:1.

Figure 2. Nucleotide sequence of the full-length cerberus DNA derived from the Xenopus organizer. The sense strand is on top (in the 5' to 3' direction) and the antisense strand on the bottom line (on the opposite direction). SEQ ID NO:2.

	CAAGTCGCTC					60
CTTAAGGGTC	GTTCAGCGAG	TCTTTGTGAC	GTCCCAGATC	TATAGTATGT	TACAATGATT	
ATGTACTCAG	GATCTGTATT	ATCGTCTGCC	TTGTGAATGA	TGGAGCAGGA	AAACACTCAG	120
TACATGAGTC	CTAGACATAA	TAGCAGACGG	AACACTTACT	ACCTCGTCCT	TTTGTGAGTC	
AAGGACGAGA	AAGGACAAAA	ACATATTCAC	TTAACAGCAG	AGGTTACTTC	AGAAAAGAAA	180
TTCCTGCTCT	TTCCTGTTTT	TGTATAAGTG	AATTGTCGTC	TCCAATGAAG	TCTTTTCTTT	
	TAGGAGCAAG					240
CTCCTCGTGC	ATCCTCGTTC	TAAGACGACC	ACTTATGATT	TCCAGAACTA	CTTGGGGTGT	
•	TGATTTTCGC					300
AACCCGTACC	ACTAAAAGCG	AATCATCGAC	TTGATAAACT	AAGGTGGTCT	TGTGTATGTT	
	GCCAGACATG					360
TGTCTTTTCT	CGGTCTGTAC	TTGTTTCAGT	TCGAAAAGAG	TTGTCAACGG	GTACCTTTGT	
	AAGAAAAGCT					420
TTTCACGTTC	TTCTTTTCGA	ATGTTACCAA	GATCTTCCTT	ATAAAAAGGA	GCGGCAAGAA	
TTGATAAAAG	AAATACAGAG	GTTACTGAAA	AGCCTGGTGC	CAAGATGTTC	TGGAACAATT	480
	TTTATGTCTC					
TTTTGGTTAA	AATGAATGGA	GCCCCACAGA	ATACAAGCCA	TGGCAGTAAA	GCACAGGAAA	540
AAAACCAATT	TTACTTACCT	CGGGGTGTCT	TATGTTCGGT	ACCGTCATTT	CGTGTCCTTT	
TAATGAAAGA	AGCTTGCAAA	ACCTTGTTTT	TCACTCAGAA	TATTGTACAT	GAAAACTGTG	600
ATTACTTTCT	TCGAACGTTT	TGGAACAAAA	AGTGAGTCTT	ATAACATGTA	CTTTTGACAC	
	GATACAGAAC					660
	CTATGTCTTG					
	TCGACGAAAT					720
	AGCTGCTTTA					
	GAATTGTACT					780
	CTTAACATGA					
	TGAAGCTCAT					840
	ACTTCGAGTA					
					CTTTTGTTGG	900
	GGACGTGGTA					
	ACATACTATG					960
	TGTATGATAC					
	GATTGTATGA					1020
TACCTTATTC	CTAACATACT	TAATATTAAT	TGTTTACCGT	AAAACACATT	GTACGTTCTA	

	TCAGTTGCAA AGTCAACGTT			1080
	ATATATGATA TATATACTAT	 •••	 	1140
	TTTGCCCAGG AAACGGGTCC	 •	 	1200
	TTTAAAAGCA AAATTTTCGT	 		1260
	TCATAGGGGG AGTATCCCCC	 		1320
TGTTACAAAA ACAATGTTTT				

Fig. 2. (Continuation page 2, SEQ ID NO:2).

MSRTRKVDSL	LLLAIPGLAL	LLLPNAYCAS	CEPVRIPMCK	SMPWNMTKMP	NHLHHSTQAN	60
AILAIEQFEG	LLTTECSQDL	LFFLCAMYAP	ICTIDFQHEP	IKPCKSVCER	ARAGCEPILI	120
KYRHTWPESL	ACEELPVYDR	GVCISPEAIV	TVEQGTDSMP	DFSMDSNNGN	CGSGREHCKC	180
KPMKATQKTY	LKNNYNYVIR	AKVKEVKVKC	HDATAIVEVK	EILKSSLVNI	PKDTVTLYTN	240
SGCLCPQLVA	NEEYIIMGYE	DKERTRLLLV	EGSLAEKWRD	RLAKKVKRWD	QKLRRPRKSK	300
DPVAPIPNKN	SNSRQARS					

Figure 3. Deduced amino acid sequence of Xenopus frazzled protein. SEQ ID NO:3.

Figure 4. Nucleotide sequence of the full-length frazzled cDNA derived from the Xenopus organizer. The sense strand of the DNA on top (5' to 3' direction) and the antisense strand on the bottom line (opposite direction). SEQ ID NO:4.

GAATTCCCTT	TCACACAGGA	CTCCTGGCAG	AGGTGAATGG	TTAGCCCTAT	GGATTTGGTT	60
CTTAAGGGAA	AGTGTGTCCT	GAGGACCGTC	TCCACTTACC	AATCGGGATA	CCTAAACCAA	
	GACACATGAT					120
ACAACTAAAA	CTGTGTACTA	ACTAACGAAA	GTCTATCCTA	ACTTCCTGAA	CCTAAAAATA	
					### ### ### ### ### ### ### ### #### ####	100
	ACTTTTAAAT					180
GATTAAGACG	TGAAAATTTA	ATAGACTCAT	TAACAAGTAA	AACATAACCT	ACCCIGATIT	
GATAAACTTA	ACTCCTTGCT	TTTGACTTGC	CCATAAACTA	TAAGGTGGGG	TGAGTTGTAG	240
	TGAGGAACGA					
TTGCTTTTAC	ATGTGCCCAG	ATTTTCCCTG	TATTCCCTGT	ATTCCCTCTA	AAGTAAGCCT	300
AACGAAAATG	TACACGGGTC	TAAAAGGGAC	ATAAGGGACA	TAAGGGAGAT	TTCATTCGGA	
	GTTGGGCAGA					360
TGTGTATGTC	CAACCCGTCT	TATTGTTACA	GAGCTTGTTC	CTTTCACCTG	AGTAATGACG	
				mccmma cmcm	ここのサンこのとのこ	420
	ACCTGGACTG					420
ATGACCGGTA	TGGACCTGAC	CGCGAAGAGA	ATAATGGGIT	ACGAATGACA	COARGUACAC	
AGCCTGTGCG	GATCCCCATG	TGCAAATCTA	TGCCATGGAA	CATGACCAAG	ATGCCCAACC	480
	CTAGGGGTAC					
1000.101.000	•					
ATCTCCACCA	CAGCACTCAA	GCCAATGCCA	TCCTGGCAAT	TGAACAGTTT	GAAGGTTTGC	540
TAGAGGTGGT	GTCGTGAGTT	CGGTTACGGT	AGGACCGTTA	ACTTGTCAAA	CTTCCAAACG	
	ATGTAGCCAG					600
ACTGGTGACT	TACATCGGTC	CTGGAAAACA	AGAAAGACAC	ACGGTACATA	CGGGGGTAAA	
CTACCATCCA	TTTCCAGCAT	CAACCAAMTA	BCCCTTCCBB	CTCCCTCTCC	CAAACCCCCA	660
	AAAGGTCGTA					000
CAIGGIAGCI	AAAGGICGIA	CIIGGIIAAI	ICOGAACGII	Choochanco	CITICOOGI	
GGGCCGGCTG	TGAGCCCATT	CTCATAAAGT	ACCGGCACAC	TTGGCCAGAG	AGCCTGGCAT	720
	ACTCGGGTAA					
	GCCCGTATAT					780
CACTTCTCGA	CGGGCATATA	CTGTCTCCTC	AGACGTAGAG	GGGTCTCCGA	TAGCAGTGTC	
	AACAGATTCA					840
ACCTTGTTCC	TTGTCTAAGT	TACGGTCTGA	AGAGGTACCT	AAGTTTGTTA	CCTTTAACGC	
6336666336	GGAGCACTGT	*********	CONTON	***********	ACCTATCTCA	900
CERCCCCCC	CCTCGTGACA	TTT ACCTTCC	CCATGAAGGC	TTCCCTTTTC	TCCATAGAGT	300
CITCGCCGIC	. CCICGIGACA	LITACGITCG	GGIACIICCG			
AGAATAATTA	CAATTATGTA	ATCAGAGCAA	AAGTGAAAGA	GGTGAAAGTG	AAATGCCACG	960
	GTTAATACAT					
					AACATTCCTA	1020
TGCGTTGTCG	TTAACACCTI	CATTTCCTCT	AAGAGTTCAG	AAGGGATCAC	TTGTAAGGAT	

	GACACTGTAC					1080
	CTGTGACATG					
	AATTATGGGC					1140
TCCTTATGTA	TTAATACCCG	ATACTTCTGT	TTCTCGCATG	GTCCGAAGAT	GATCACCTTC	
GATCCTTGGC	CGAAAAATGG	AGAGATCGTC	TTGCTAAGAA	AGTCAAGCGC	TGGGATCAAA	1200
CTAGGAACCG	GCTTTTTACC	TCTCTAGCAG	AACGATTCTT	TCAGTTCGCG	ACCCTAGTTT	
AGCTTCGACG	TCCCAGGAAA	AGCAAAGACC	CCGTGGCTCC	AATTCCCAAC	AAAAACAGCA	1260
TCGAAGCTGC	AGGGTCCTTT	TCGTTTCTGG	GGCACCGAGG	TTAAGGGTTG	TTTTTGTCGT	
ATTCCAGACA	AGCGCGTAGT	TAGACTAACG	GAAAGGTGTA	TGGAAACTCT	ATGGACTTTG	1320
TAAGGTCTGT	TCGCGCATCA	ATCTGATTGC	CTTTCCACAT	ACCTTTGAGA	TACCTGAAAC	
AAACTAAGAT	TTGCATTGTT	GGAAGAGCAA	AAAAGAAATT	GCACTACAGC	ACGTTATATT	1380
TTTGATTCTA	AACGTAACAA	CCTTCTCGTT	TTTTCTTTAA	CGTGATGTCG	TGCAATATAA	
CTATTGTTTA	CTACAAGAAG	CTGGTTTAGT	TGATTGTAGT	TCTCCTTTCC	TTCTTTTTT	1440
GATAACAAAT	GATGTTCTTC	GACCAAATCA	ACTAACATCA	AGAGGAAAGG	AAGAAAAAA	
TTATAACTAT	ATTTGCACGT	GTTCCCAGGC	AATTGTTTTA	TTCAACTTCC	AGTGACAGAG	1500
AATATTGATA	TAAACGTGCA	CAAGGGTCCG	TTAACAAAAT	AAGTTGAAGG	TCACTGTCTC	
CAGTGACTGA	ATGTCTCAGC	CTAAAGAAGC	TCAATTCATT	TCTGATCAAC	TAATGGTGAC	1560
GTCACTGACT	TACAGAGTCG	GATTTCTTCG	AGTTAAGTAA	AGACTAGTTG	ATTACCACTG	
AA GTGTTTGA	TACTTGGGGA	AAGTGAACTA	ATTGCAATGG	TAAATCAGAG	AAAAGTTGAC	1620
TTCACAAACT	ATGAACCCCT	TTCACTTGAT	TAACGTTACC	ATTTAGTCTC	TTTTCAACTG	
CAATGTTGCT	TTTCCTGTAG	ATGAACAAGT	GAGAGATCAC	ATTTAAATGA	TGATCACTTT	1680
GTTACAACGA	AAAGGACATC	TACTTGTTCA	CTCTCTAGTG	TAAATTTACT	ACTAGTGAAA	
CCATTTAATA	CTTTCAGCAG	TTTTAGTTAG	ATGACATGTA	GGATGCACCT	AAATCTAAAT	1740
GGTAAATTAT	GAAAGTCGTC	AAAATCAATC	TACTGTACAT	CCTACGTGGA	TTTAGATTTA	
ATTTTATCAT	AAATGAAGAG	CTGGTTTAGA	CTGTATGGTC	ACTGTTGGGA	AGGTAAATGC	1800
	TTTACTTCTC					
•	AATTCTGTTT					1860
	TTAAGACAAA	ATTTTTAACG	GATTTATTTA	TAATTCAGGA	TTTATTTTTT	
AAAAAAAA TTTTTTTTTT						

Fig. 4. (Continuation page 2, SEQ ID NO:4).

MLL	LFRAIPM	LLLGLMVLQT	DCEIAQYYID	EEEPPGTVIA	VLSQHSIFNT	TDIPATNFRL	60
MKQ	FNNSLIG	VRESDGQLSI	MERIDREQIC	RQSLHCNLAL	DVVSFSKGHF	KLLNVKVEVR	120
DIN	DHSPHFP	SEIMHVEVSE	SSSVGTRIPL	EIAIDEDVGS	NSIQNFQISN	NSHFSIDVLT	180
RAD	gvky a dl	VLMRELDREI	QPTYIMELLA	MDGGVPSLSG	TAVVNIRVLD	FNDNSPVFER	240
STI	AVDLVED	APLGYLLLEL	HATDDDEGVN	GEIVYGFSTL	ASQEVRQLFK	INSRTGSVTL	300
EGQ'	VDFETKQ	TYEFEVQAQD	LGPNPLTATC	KVTVHILDVN	DNTPAITITP	LTTVNAGVAY	360
IPE'	TATKENF	IALISTTORA	SGSNGQVRCT	LYGHEHFKLQ	QAYEDSYMIV	TTSTLDRENI	420
AAY	SLTVVAE	DLGFPSLKTK	KYYTVKVSDE	NDNAPVFSKP	QYEASILENN	APGSYITTVI	480
A RD:	SDSDQNG	KVNYRLVDAK	VMGQSLTTFV	SLDADSGVLR	AVRSLDYEKL	KQLDFEIEAA	540
DNG	IPQLSTR	VQLNLRIVDQ	NDNCPVITNP	LLNNGSGEVL	LPISAPQNYL	VFQLKAEDSD	600
EGH	NSQLFYT	ILRDPSRLFA	INKESGEVFL	KKQLNSDHSE	DLSIVVAVYD	LGRPSLSTNA	660
TVK	FILTDSF	PSNVEVVILQ	PSAEEQHQID	MSIIFIAVLA	GGCALLLLAI	FFVACTCKKK	720
AGE	FKQVPEQ	HGTCNEERLL	STPSPQSVSS	SLSQSESCQL	SINTESENCS	VSSNQEQHQQ	780
TGI:	KHSISVP	SYHTSGWHLD	NCAMSISGHS	HMGHISTKVQ	WAKEIVTSMT	VTLILVENQK	840
RRA	LSSQCRH	KPVLNTQMNQ	QGSDMPITIS	ATESTRVQKM	GTAHCNMKRA	IDCLTL	

Figure 5. Deduced amino acid sequence of the Xenopus PAPC (paraxial protocadherin) protein. It encodes a member of the cadherin family of transmembrane proteins that has dorsalizing activity when constructs are injected into Xenopus embryos. SEQ ID NO:5.

Figure 6. Nucleotide sequence of the full-length PAPC cDNA derived from the Xenopus organizer. The sense strand of the DNA is shown in the top line (in the 5' to 3' direction), and the bottom line shows the antisense strand (opposite orientation). SEQ ID NO:6.

GAATTCCCAG CTTAAGGGTC			CTGCAGGTCT GACGTCCAGA		6 0
			 TTCAACTTTG AAGTTGAAAC		120
			 TCCAATGCTG AGGTTACGAC		180
		-	 CATAGATGAA GTATCTACTT	GAAGAACCCC CTTCTTGGGG	24 0
			 TAACACTACA ATTGTGATGT		300
			TATCGGAGTC ATAGCCTCAG		360
			 AATCTGCAGG TTAGACGTCC		420
	· - · · · ·		 ACACTTCAAG TGTGAAGTTC		480
			 CTTTCCCAGT GAAAGGGTCA		540
			 TCCTTTAGAA AGGAAATCTT		600
			 CTCAAATAAT GAGTTTATTA		660
			 AGATTTAGTC TCTAAATCAG		720
			 ACTAGCAATG TGATCGTTAC		780
			CCTGGACTTT GGACCTGAAA		840
			AGAGGATGCT TCTCCTACGA		900
				GAAATTGTTT CTTTAACAAA	9 60
			ATTTAAAATT AATTTTAAAT	AACTCCAGAA TTGAGGTCTT	1020

		ATTTTGAGAC TAAAACTCTG		1080
	 	CACTGACTGC GTGACTGACG		1140
		CCATCACTAT GGTAGTGATA		1200
		CCACAAAGGA GGTGTTTCCT		1260
		GACAAGTTCG CTGTTCAAGC		1320
		ACAGTTACAT TGTCAATGTA		1380
		TGACAGTAGT ACTGTCATCA		1440
		TCAAGGTTAG AGTTCCAATC		1500
		CTATTCTGGA GATAAGACCT		1560
		ATAGTGATCA TATCACTAGT		1620
		CACTAACAAC GTGATTGTTG		1680
		TAGACTATGA ATCTGATACT		1740
		CTCAACTCTC GAGTTGAGAG		1800
	 	CTGTGATAAC GACACTATTG	 CTTAATAATG GAATTATTAC	1860
**********	 	CTCCTCAAAA GAGGAGTTTT	 TTCCAGCTCA AAGGTCGAGT	1920
			CTGAGAGATC GACTCTCTAG	1980
			AAACAATTAA TTTGTTAATT	2040
			GGAAGACCTT CCTTCTGGAA	2100
			TCTAACGTTG A AGATTGCAAC	2160

Fig. 6. (Continuation page 2, SEQ ID NO:6).

ANGTOGTTAT TITGCANCCA TOTGCAGANG AGCAGCACCA GATCGATATG TCCATTATAT TTCAGCANTA ANACGTTGGT AGACGTCTTC TCGTCGTGGT CTAGCTATAC AGGTANTATA	2220
TCATTGCAGT GCTGGCTGGT GGTTGTGCTT TGCTACTTTT GGCCATCTTT TTTGTGGCCT AGTAACGTCA CGACCGACCA CCAACACGAA ACGATGAAAA CCGGTAGAAA AAACACCGGA	2280
GTACTTGTAA AAAGAAAGCT GGTGAATTTA AGCAGGTACC TGAACAACAC GGAACATGCA CATGAACATT TTTCTTTCGA CCACTTAAAT TCGTCCATGG ACTTGTTGTG CCTTGTACGT	2340
ATGAAGAACG CCTGTTAAGC ACCCCATCTC CCCAGTCGGT CTCTTCTTCT TTGTCTCAGT TACTTCTTGC GGACAATTCG TGGGGTAGAG GGGTCAGCCA GAGAAGAAGA AACAGAGTCA	2400
CTGAGTCATG CCAACTCTCC ATCAATACTG AATCTGAGAA TTGCAGCGTG TCCTCTAACC GACTCAGTAC GGTTGAGAGG TAGTTATGAC TTAGACTCTT AACGTCGCAC AGGAGATTGG	2460
AAGAGCAGCA TCAGCAAACA GGCATAAAGC ACTCCATCTC TGTACCATCT TATCACACAT TTCTCGTCGT AGTCGTTTGT CCGTATTTCG TGAGGTAGAG ACATGGTAGA ATAGTGTGTA	2520
CTGGTTGGCA CCTGGACAAT TGTGCAATGA GCATAAGTGG ACATTCTCAC ATGGGGCACA GACCAACCGT GGACCTGTTA ACACGTTACT CGTATTCACC TGTAAGAGTG TACCCCGTGT	2580
TTAGTACAAA GGTACAGTGG GCAAAGGAGA TAGTGACTTC AATGACAGTG ACTCTGATAC AATCATGTTT CCATGTCACC CGTTTCCTCT ATCACTGAAG TTACTGTCAC TGAGACTATG	2640
TAGTGGAGAA TCAGAAAAGA AGAGCATTGA GCAGCCAATG CAGGCACAAG CCAGTGCTCA ATCACCTCTT AGTCTTTTCT TCTCGTAACT CGTCGGTTAC GTCCGTGTTC GGTCACGAGT	2700
ATACACAGAT GAATCAGCAG GGTTCCGACA TGCCGATAAC TATTTCAGCC ACCGAATCAA TATGTGTCTA CTTAGTCGTC CCAAGGCTGT ACGGCTATTG ATAAAGTCGG TGGCTTAGTT	2760
CAAGGGTCCA GAAAATGGGA ACTGCACATT GCAATATGAA AAGGGCTATA GACTGTCTTA GTTCCCAGGT CTTTTACCCT TGACGTGTAA CGTTATACTT TTCCCGATAT CTGACAGAAT	2820
CTCTGTAGCT CCTGTATATT ACAATACCTA CCATGCAAGA ATGCCTAACC TGCACATACC GAGACATCGA GGACATATAA TGTTATGGAT GGTACGTTCT TACGGATTGG ACGTGTATGG	2880
GAACCATACC CTTAGAGACC CTTATTACCA TATCAATAAT CCTGTTGCTA ATCGGATGCA CTTGGTATGG GAATCTCTGG GAATAATGGT ATAGTTATTA GGACAACGAT TAGCCTACGT	2940
GGCGGAATAT GAAAGAGATT TAGTCAACAG AAGTGCAACG TTATCTCCGC AGAGATCGTC CCGCCTTATA CTTTCTCTAA ATCAGTTGTC TTCACGTTGC AATAGAGGCG TCTCTAGCAG	3000
TAGCAGATAC CAAGAATTCA ATTACAGTCC GCAGATATCA AGACAGCTTC ATCCTTCAGA ATCGTCTATG GTTCTTAAGT TAATGTCAGG CGTCTATAGT TCTGTCGAAG TAGGAAGTCT	3060
AATTGCTACA ACCTTTTAAT CATTAGGCAT GCAAGTGAGA ATGCACAAAG GCAAGTGCTT TTAACGATGT TGGAAAATTA GTAATCCGTA CGTTCACTCT TACGTGTTTC CGTTCACGAA	3120
TAGCATGANA GCTANATATA TGGAGTCTCC CCTTTCCCTC TGATGGATGG GGGGAGACAC ATCGTACTTT CGATTTATAT ACCTCAGAGG GGANAGGGAG ACTACCTACC CCCCTCTGTG	3180
AGGACAGTGC ATAAATATAC AGCTGCTTTC TATTTGCATT TCACTTGGGA ATTTTTTGTT TCCTGTCACG TATTTATATG TCGACGAAAG ATAAACGTAA AGTGAACCCT TAAAAAACAA	3240
ICCIGICACG INITIATATG ICGACGAAAG ATAAACGIAA AGIGAACCCI IAAAAAACAA	

Fig. 6. (Continuation page 3, SEQ ID NO:6).

ATTARATCCA CAGACCTACA	GTCAAATATT	TGAGGGCCCC	TGAAACAGCA	CATCAGTCAG	3360
TAATTTAGGT GTCTGGATGT					
GACCTANAGT GGCCTTTTTA	CTTTTAGCAG	CTCCTGGGTC	TGCCCTCTGT	GTTAATCAGC	3420
CTGGATTTCA CCGGAAAAAT					
CCCTGGTCAA GTCCTGAGTA	GGATCATGGC	GTTTTTATAT	GCATCTCACC	TACTTTGGAC	3480
GGGACCAGTT CAGGACTCAT					
GTGATTTACA CATAATAGGA	AACGCTTGGT	TTCAGTGAAG	TCTGTGTTGT	ATATATTCTG	3540
CACTAAATGT GTATTATCCT					
TTATATACAC GCATTTTGTO	TTTGTGTATA	TATTTCAAGT	CCATTCAGAT	ATGTGTATAT	3600
AATATATGTG CGTAAAACAC					
AGTGCAGACC TTGTAAATTA	AATATTCTGA	TACTTTTTCC	TCAATAAATA	TTTAAAT	
TCACGTCTGG AACATTTAA					
1000010100 midilitim					

Fig. 6. (Continuation page 4, SEQ ID NO:6).

MVCCGPGRML	LGWAGLLVLA	ALCLLQVPGA	QAAACEPVRI	PLCKSLPWNM	TKMPNHLHHS	60
TQANAILAME	QFEGLLGTHC	SPDLLFFLCA	MYAPICTIDF	QHEPIKPCKS	VCERARQGCE	120
PILIKYRHSW	PESLACDELP	VYDRGVCISP	EAIVTADGAD	FPMDSSTGHC	RGASSERCKC	180
KPVRATQKTY	FRNNYNYVIR	AKVKEVKMKC	HDVTAVVEVK	EILKASLVNI	PRDTVNLYTT	240
SGCLCPPLTV	NEEYVIMGYE	DEERSRLLLV	EGSIAEKWKD	RLGKKVKRWD	MKLRHLGLGK	300
TDASDSTQNQ	KSGRNSNPRP	ARS.				

Figure 7. Deduced amino acid sequence of mouse FRZB-1 protein. SEQ ID NO:7.

Figure 8. Nucleotide sequence of the full-length mouse FRZB-1 cDNA. SEQ ID NO:8. AAGCCTGGGA CCATGGTCTG CTGCGGCCCG GGACGGATGC TGCTAGGATG GGCCGGGTTG 60 TTCGGACCCT GGTACCAGAC GACGCCGGGC CCTGCCTACG ACGATCCTAC CCGGCCCAAC CTAGTCCTGG CTGCTCTCTG CCTGCTCCAG GTGCCCGGAG CTCAGGCTGC AGCCTGTGAG GATCAGGACC GACGAGAGAC GGACGAGGTC CACGGGCCTC GAGTCCGACG TCGGACACTC 180 CCTGTCCGCA TCCCGCTGTG CAAGTCCCTT CCCTGGAACA TGACCAAGAT GCCCAACCAC GGACAGGCGT AGGGCGACAC GTTCAGGGAA GGGACCTTGT ACTGGTTCTA CGGGTTGGTG CTGCACCACA GCACCCAGGC TAACGCCATC CTGGCCATGG AACAGTTCGA AGGGCTGCTG 240 GACGTGGTGT CGTGGGTCCG ATTGCGGTAG GACCGGTACC TTGTCAAGCT TCCCGACGAC GGCACCCACT GCAGCCGGA TCTTCTCTTC TTCCTCTGTG CAATGTACGC ACCCATTTGC 300 CCGTGGGTGA CGTCGGGCCT AGAAGAGAAG AAGGAGACAC GTTACATGCG TGGGTAAACG ACCATCGACT TCCAGCACGA GCCCATCAAG CCCTGCAAGT CTGTGTGTGA GCGCGCCCGA TGGTAGCTGA AGGTCGTGCT CGGGTAGTTC GGGACGTTCA GACACACACT CGCGCGGGCT 420 CAGGGCTGCG AGCCCATTCT CATCAAGTAC CGCCACTCGT GGCCGGAAAG CTTGGCCTGC GTCCCGACGC TCGGGTAAGA GTAGTTCATG GCGGTGAGCA CCGGCCTTTC GAACCGGACG GACGAGCTGC CGGTGTACGA CCGCGGCGTG TGCATCTCTC CTGAGGCCAT CGTCACCGCG 480 CTGCTCGACG GCCACATGCT GGCGCCGCAC ACGTAGAGAG GACTCCGGTA GCAGTGGCGC GACGGAGCGG ATTTTCCTAT GGATTCAAGT ACTGGACACT GCAGAGGGGC AAGCAGCGAA 540 CTGCCTCGCC TAAAAGGATA CCTAAGTTCA TGACCTGTGA CGTCTCCCCG TTCGTCGCTT CGTTGCAAAT GTAAGCCTGT CAGAGCTACA CAGAAGACCT ATTTCCGGAA CAATTACAAC GCAACGTTTA CATTCGGACA GTCTCGATGT GTCTTCTGGA TAAAGGCCTT GTTAATGTTG TATGTCATCC GGGCTAAAGT TAAAGAGGTA AAGATGAAAT GTCATGATGT GACCGCCGTT 660 ATACAGTAGG CCCGATTTCA ATTTCTCCAT TTCTACTTTA CAGTACTACA CTGGCGGCAA GTGGAAGTGA AGGAAATTCT AAAGGCATCA CTGGTAAACA TTCCAAGGGA CACCGTCAAT 720 CACCTTCACT TCCTTTAAGA TTTCCGTAGT GACCATTTGT AAGGTTCCCT GTGGCAGTTA CTTTATACCA CCTCTGGCTG CCTCTGTCCT CCACTTACTG TCAATGAGGA ATATGTCATC 780 GAAATATGGT GGAGACCGAC GGAGACAGGA GGTGAATGAC AGTTACTCCT TATACAGTAG ATGGGCTATG AAGACGAGGA ACGTTCCAGG TTACTCTTGG TAGAAGGCTC TATAGCTGAG 840 TACCCGATAC TTCTGCTCCT TGCAAGGTCC AATGAGAACC ATCTTCCGAG ATATCGACTC AAGTGGAAGG ATCGGCTTGG TAAGAAAGTC AAGCGCTGGG ATATGAAACT CCGACACCTT 900 TTCACCTTCC TAGCCGAACC ATTCTTTCAG TTCGCGACCC TATACTTTGA GGCTGTGGAA GGACTGGGTA AAACTGATGC TAGCGATTCC ACTCAGAATC AGAAGTCTGG CAGGAACTCT 960 CCTGACCCAT TTTGACTACG ATCGCTAAGG TGAGTCTTAG TCTTCAGACC GTCCTTGAGA

					GGCCACACCC		1020
•	ITAGGGGCCG	GTCGTGCGTC	GATTTAGGAC	TTTACATTTT	CCGGTGTGGG	TGCCTGAGGG	
•	TTCTAAGACT	GGCGCTGGTG	GACTAACAAA	GGAAAACCGC	ACAGTTGTGC	TCGTGACCGA	1080
2	AAGATTCTGA	CCGCGACCAC	CTGATTGTTT	CCTTTTGGCG	TGTCAACACG	AGCACTGGCT	
	™ ™≎™™™™	CAGACACCGC	GTGGCTACCG	ል ልርጥጥል ርጥጥር	CGGTCCCCTT	тстсствстт	1140
					GCCAGGGGAA		
							1000
					TCTGTTTCAT		1200
(GAATTACCGC	ACCCCAATCT	AGGAAATTAT	ACAATATATA	AGACAAAGTA	GTTAGTGCAC	
	GGGACTGTTC	TTTTGCAACC	AGAATAGTAA	ATTAAATATG	TTGATGCTAA	GGTTTCTGTA	1260
	CCCTGACAAG	AAAACGTTGG	TCTTATCATT	TAATTTATAC	AACTACGATT	CCAAAGACAT	
					TGAGAATGCA		1320
	GACCTGAGGG	ACCCAAATTA	AACCACAAGA	CATGGGACTA	ACTCTTACGT	TACAAAGTAC	
			m> momo> > o>	1 OM 1 O 1 M 1 M M	CCTCTAACAC	አርርርመርመርርመ	1380
					GCTGTAAGAC		1300
	ATTTCTCTCT	TAGGACCAGT	ATAGAGTTCT	TGATCTATAA	CGACATTCTG	TCGGAGACGA	
	GCTGCGCTTA	TAGTCTTGTG	TTTGTATGCC	TTTGTCCATT	TCCCTCATGC	TGTGAAAGTT	1440
	CGACGCGAAT	ATCAGAACAC	AAACATACGG	AAACAGGTAA	AGGGAGTACG	ACACTTTCAA	
		>m>>>00m>0	* * OCCC	mca a amca ca	CACTGCACAA	CCACACTACC	1500
							1500
	TATGTACAAA	TATTTCCATC	TIGCCGTAAA	ACTITAGICT	GTGACGTGTT	CGICICAICG	
						TCAAGATTGG	1560
	GGTTGTGGTC	CTTCGTAAAT	ACTCCTTTGC	GGTGTGTCGT	ACTGAATAAA	AGTTCTAACC	
					#1 ###################################		1620
	CAGGCAGCAA	AATAAATAGT	GTTGGGAGCC	AAGAAAAGAA	TATTTIGCCT	GGTTAAGGGG	1020
	GTCCGTCGTT	TTATTTATCA	CAACCCTCGG	TTCTTTCTT	ATAAAACGGA	CCAATTCCCC	
	CACACTGGAA	TCAGTAGCCC	TTGAGCCATT	AACAGCAGTG	TTCTTCTGGC	AAGTTTTTGA	1680
	CTCTCACCTT	AGTCATCGGG	AACTCGGTAA	TTGTCGTCAC	AAGAAGACCG	TTCAAAAACT	
	TTTGTTCATA	AATGTATTCA	CGAGCATTAG	AGATGAACTT	ATAACTAGAC	ATCTGTTGTT	1740
	AAACAAGTAT	TTACATAAGT	GCTCGTAATC	TCTACTTGAA	TATTGATCTG	TAGACAACAA	
						CONCORCE A REPORT	1800
	ATCTCTATAG	CTCTGCTTCC	TTCTAAATCA	AACCCATIGI	1 TGGATGCTCC	CTCTCCATTC	1000
	TAGAGATATO	GAGACGAAGC	AAGATTTAGI	TIGGGTAACA	A ACCTACGAGG	GAGAGGTAAG	

		GTATTAAAGT CATAATTTCA	1860
		AAAAGACTAT TTTTCTGATA	1920
	 	TTGCTTTGGG AACGAAACCC	1980
		TAGGTTTAAG ATCCAAATTC	2040
		CTAGACATTA GATCTGTAAT	2100
		AATATGGTTG TTATACCAAC	2160
CGACAACAAC GCTGTTGTTG			

;

MVCGSPGGML	LLRAGLLALA	ALCLLRVPGA	RAAACEPVRI	PLCKSLPWNM	TKMPNHLHHS	60
TQANAILAIE	QFEGLLGTHC	SPDLLFFLCA	MYAPICTIDF	QHEPIKPCKS	VCERARQGCE	120
PILIKYRHSW	PENLACEELP	VYDRGVCISP	EAIVTADGAD	FPMDSSNGNC	RGASSERCKC	180
KPIRATQKTY	FRNNYNYVIR	AKVKEIKTKC	HDVTAVVEVK	EILKSSLVNI	PRDTVNLYTS	240
SGCLCPPLNV	NEEYIIMGYE	DEERSRLLLV	EGSIAEKWKD	RLGKKVKRWD	MKLRHLGLSK	300
SDSSNSDSTQ	SQKSGRNSNP	RQARN.				

Figure 9. Deduced amino acid sequence of human FRZB-1 protein. SEQ ID NO:9.

Figure 10. Nucleotide sequence of the full-length human FRZB-1 cDNA. SEQ ID NO:10. This sequence was assembled from public ESTs from the Genbank database (accession numbers: H18848, R63748, W38677, W44760, H38379 and N71244).

	GCCTTTTGGC CGGAAAACCG	 		60
	GCAGCCCGGG CGTCGGGCCC	 		120
	TGCTCCGGGT ACGAGGCCCA			180
	AGTCCCTGCC TCAGGGACGG	 		240
	ACGCCATCCT TGCGGTAGGA			300
	TGCTCTTCTT ACGAGAAGAA	 		360
	CCATCAAGCC GGTAGTTCGG			420
+ + +	TCAAGTACCG AGTTCATGGC	 		480
	GGGGCGTGTG CCCCGCACAC			540
	ATTCTAGTAA TAAGATCATT			600
	GAGCTACACA CTCGATGTGT			660
	AAGAGATAAA TTCTCTATTT			720
	AGTCCTCTCT TCAGGAGAGA			780
			GGGCTATGAA CCCGATACTT	840