

WebRTC

The Web Way to Communicate

Marcel Großmann

Professorship for Computer Science, Communication Services, Telecommunication Systems and Computer Networks

4. February 2014

- 1 Background
- 2 About WebRTC
- 3 WebRTC Peer-to-Peer Media
- 4 WebRTC Application Programming Interfaces
- 5 WebRTC Protocols and IETF Standards

- 1 Background
- 2 About WebRTC
- 3 WebRTC Peer-to-Peer Media
- 4 WebRTC Application Programming Interfaces
- 5 WebRTC Protocols and IETF Standards

Real-Time Communication on the Internet University of Bamberg

- NVP (Network Voice Protocol) 1977
- RTP (Real-time Transport Protocol) -1992
 - First published as IETF RFC in 1996
 - Still used today for VoIP and with SIP
- ITU H.323 video telephony standard 1996
- IETF SIP (Session Initiation Protocol) 1999
 - Unleashed VoIP revolution on telphony
 - Video and room conferencing
 - Protocol widely used by service providers and in enterprises
- Real-Time Communication on the Web
 - Voice and video on the Internet using browser plugins
 - 2006 with GoogleTalk inside Gmail
 - WebRTC standardizes and eliminates need for plugin or download

Pros

- Most browser already have Flash plugin
- Streaming audio and video uses Flash today
- Flash supports real-time audio and video
- Web developers familiar with Flash

Cons

- Flash is single-vendor proprietary and closed
- Losing market share and not available on iOS
- Limited codec and echo cancellation options
- Proprietary development tools

- lacktriangle Access to camera and microphone without a plugin (ightarrow No more Flash!)
- Audio/video direct from browser to browser
- Why does it matter?
 - Media can stay local
 - Mobile devices eventually dropping voice channel anyway

Games

- 1 Background
- 2 About WebRTC
- 3 WebRTC Peer-to-Peer Media
- 4 WebRTC Application Programming Interfaces
- 5 WebRTC Protocols and IETF Standards

- New Browser Real-Time Communication (RTC)
 Function built-in to browsers
- Contains
 - Audio and video codecs
 - Ability to negotiate peer-to-peer connections
 - Echo cancellation, packet loss concealment
- In Chrome and Mozilla today

- The web is now a platform for real-time communications development
- Communication will be secure (encrypted) by default
- Latest audio and video codecs means superior quality to anything else
- WebRTC provides peer-to-peer media, even through NATs
- Standard that can interoperate with existing VoIP, video conferencing, and even PSTN

- Both browsers running the smae web application from web server
- Peer Connection media session is establised between them
- Signaling is not standardized, could be SIP, Jingle, proprietary.
 Uses HTTP or WebSockets for transport

University of Bamberg

M. Großmann - KTR 11/46

WebRTC Trapezoid

University of Bamberg

- Similar to SIP Trapezoid
- Web Servers communicatie using SIP or Jingle
- Useful for building conventional telephony apps, but unclear how this works in the web world

WebRTC Tapezoid Call Flow with Jingle University of Bamberg

M. Großmann - KTR 13/46

- Peer Connection appears as a standard RTP media session, described by SDP
- Web Server implements a JSEP (JavaScript Session Establishment Protocol) to SIP signaling gateway
- SIP Endpoint must support RTCWEB Media extensions (ICE NAT Traversal, Secure RTP, etc.)

- Browser runs a SIP User Agent by running JavaScript form Web Server
- Secure RTP media connection uses WebRTC APIs.
- Details in [draft-ietf-sipcore-websocket] that defines SIP transport over WebSockets

M. Großmann - KTR 15/46

- Peer Connection terminates on PSTN Gateway
- Audio only
- Could also use SIP trunking such as SIPconnect 1.1 recommendation

- Multiple sources of audio and video are assumed and supported
- All RTP media, voice and video, and RTCP feedback messages are multiplexed over the same UDP port and address

- 1 Background
- 2 About WebRTC
- 3 WebRTC Peer-to-Peer Media
- 4 WebRTC Application Programming Interfaces
- 5 WebRTC Protocols and IETF Standards

How to use WebRTC

University of Bamberg

WebRTC Peer-to-Peer Media Media Flows in WebRTC

University of Bamberg

WebRTC Peer-to-Peer Media Media without WebRTC

University of Bamberg

M. Großmann - KTR 21/46

WebRTC Peer-to-Peer Media Peer-to-Peer Media with WebRTC

University of Bamberg

M. Großmann - KTR 22/46

WebRTC Peer-to-Peer Media NAT Complicates Peer-to-Peer Media

University of Bamberg

Network Address Translator

Most browsers are behind NATs on the Internet, which complicates the establishment of peer-to-peer media sessions

M. Großmann - KTR 23/46

WebRTC Peer-to-Peer Media

NAT Media Through NAT

University of Bamberg

Interactive Communications Establishment, RFC 5245

ICE hole punching can often establish a direct peer-to-peer session between browsers behind different NATs

High Level ICE Call Flow

University of Bamberg

Transport address is IP address and port number

- 1 Gather candidate transport addresses
- Exchange candidates over signaling channel
- 3 Perform connectivity checks
- 4 Choose selected pair and begin media transport
- 5 Send keep-alives

If either side detects a change iin

IP address in use, ICE is restarted

(back to step 1)

M. Großmann - KTR 25/46

WebRTC Peer-to-Peer Media P2P Media Can Stay Local to NAT

University of Bamberg

If both browsers are behind the same NAT, hole punching can often establish a connection that never leaves the NAT

M. Großmann - KTR 26/46

WebRTC Peer-to-Peer Media Browser Queries STUN Server

University of Bamberg

Session Traversal Utilities for NAT, RFC 5389

Browser sends STUN test packet to STUN server to learn its public IP address (address of the NAT)

M. Großmann - KTR 27/46

WebRTC Peer-to-Peer Media TURN Server Can Relay Media

University of Bamberg

Traversal of UDP aRound NAT, RFC 5766

In some cases, hole punching fails, and a TURN Media Relay on the public Internet must be used.

M. Großmann - KTR 28/46

- 1 Background
- 2 About WebRTC
- 3 WebRTC Peer-to-Peer Media
- 4 WebRTC Application Programming Interfaces
- 5 WebRTC Protocols and IETF Standards

M. Großmann - KTR 29/46

- Represents synchronized streams of media
 - taken from camera and microphone input
 - with synchronized video and audio tracks
- Each MediaStream has an input generated by navigator.getUserMedia()
- and an output, which might be passed to a video element or a RTCPeerConnection.

The getUserMedia() method takes three parameters:

- A constraints object.
- A success callback which, if called, is passed a MediaStream.
- A failure callback which, if called, is passed an error object.

Each MediaStream has a label. An array of MediaStreamTracks is returned by the getAudioTracks() and getVideoTracks() methods.

M. Großmann - KTR 30/46

An Audio Example


```
function gotStream(stream) {
       window.AudioContext = window.AudioContext | |
           window.webkitAudioContext;
3
       var audioContext = new AudioContext();
5
       // Create an AudioNode from the stream
       var mediaStreamSource = audioContext.
           createMediaStreamSource(stream);
7
8
       // Connect it to destination to hear yourself
       // or any other node for processing!
       mediaStreamSource.connect(audioContext.destination
10
           );
11
12
13
   navigator.getUserMedia({audio:true}, gotStream);
```

M. Großmann - KTR 31/46

Signaling is used to exchange three types of information

- Session control messages: to initialize or close communication and report errors.
- Network configuration: to the outside world, what's my computer's IP address and port?
- Media capabilities: what codecs and resolutions can be handled by my browser and the browser it wants to communicate with?

The exchange of information via signaling must have completed successfully before peer-to-peer streaming can begin.

M. Großmann - KTR 32/46


```
1 var signalingChannel = createSignalingChannel();
2 var pc;
3 var configuration = ...;
   // run start(true) to initiate a call
   function start(isCaller) {
6
       pc = new RTCPeerConnection(configuration);
7
       // send any ice candidates to the other peer
8
       pc.onicecandidate = function (evt) {
9
           signalingChannel.send(JSON.stringify({ "
               candidate": evt.candidate }));
10
       };
11
       // once remote stream arrives, show it in the
           remote video element
12
       pc.onaddstream = function (evt) {
13
           remoteView.src = URL.createObjectURL(evt.
               stream);
14
       };
```

M. Großmann - KTR 33/46


```
15
       // get the local stream, show it in the local
           video element and send it
16
       navigator.getUserMedia({ "audio": true, "video":
           true }, function (stream) {
            selfView.src = URL.createObjectURL(stream);
17
18
           pc.addStream(stream);
19
           if (isCaller)
20
21
                pc.createOffer(gotDescription);
           else
22
23
                pc.createAnswer(pc.remoteDescription,
                   gotDescription);
24
25
           function gotDescription(desc) {
26
                pc.setLocalDescription(desc);
27
                signalingChannel.send(JSON.stringify({ "
                   sdp": desc }));
28
```



```
29
       });
30
31
32
   signalingChannel.onmessage = function (evt) {
       if (!pc)
33
            start(false);
34
35
36
            signal = JSON.parse(evt.data);
37
       if (signal.sdp)
38
            pc.setRemoteDescription(new
                RTCSessionDescription(signal.sdp));
39
       else
40
            pc.addIceCandidate(new RTCIceCandidate(signal.
                candidate));
41
   };
```

M. Großmann - KTR 35/46

There are many potential use cases for the API, including

- Gaming
- Remote desktop applications
- Real-time text chat
- File transfer
- Decentralized networks

The API has several features to make the most of RTCPeerConnection and enable powerful and flexible peer-to-peer communication:

- Leveraging of RTCPeerConnection session setup.
- Multiple simultaneous channels, with prioritization.
- Reliable and unreliable delivery semantics.
- Built-in security (DTLS) and congestion control.
- Ability to use with or without audio or video.

M. Großmann - KTR 36/46


```
var pc = new webkitRTCPeerConnection(servers,
2
     {optional: [{RtpDataChannels: true}]});
3
   pc.ondatachannel = function(event) {
5
     receiveChannel = event.channel;
     receiveChannel.onmessage = function(event){
6
       document.querySelector("div#receive").innerHTML =
           event.data; };};
8
   sendChannel = pc.createDataChannel("sendDataChannel",
      {reliable: false});
10
   document.guerySelector("button#send").onclick =
11
       function (){
12
     var data = document.querySelector("textarea#send").
         value:
13
     sendChannel.send(data);};
```

M. Großmann - KTR 37/46

- 1 Background
- 2 About WebRTC
- 3 WebRTC Peer-to-Peer Media
- 4 WebRTC Application Programming Interfaces
- 5 WebRTC Protocols and IETF Standards

M. Großmann - KTR 38/46

University of Bamberg

- World Wide Web Consortium (W3C)
 - Standardizing APIs
 - Most work in WEBRTC Working Group
 - Used by JavaScript to access RTC function
- Internet Engineering Task Force (IETF)
 - Standardizing protocols (bit on wire)
 - Codecs
 - Peer Connection will use RTP, SDP, and extensions
 - Some work in RTCWEB Working Group
 - Lots of related work in MMUSIC, AVTCORE, etc.

M. Großmann - KTR 40/46

OPUS Audio Codec Comparison

University of Bamberg

M. Großmann - KTR 41/46

Codec	Use	Specification
Opus	Narrowband to wideband Internet au-	RFC 6716
	dio codec for speech and music	
G.711	PCM audio encoding for PSTN inter-	RFC 3551
	working and backwards compatibility	
	with VoIP systems	
Telephone Events	Transport of Dual Tone Multi Fre-	RFC 4733
	quency (DTMF) tones	
H.264	Video codec requiring licensing	RFC 6184
VP8	Open source video codec	RFC 6386

- Mandatory to Implement (MTI) audio codecs settled on Opus and G.711 (finally!)
- Video is not yet settled (H.264 vs. VP8 fight!)

M. Großmann - KTR 42/46

- Enterprise has unique requirements on WebRTC
- Security
 - Firewall traversal
 - Access control
 - Peer-to-peer data flows
- Compliance
 - Recording & logging
 - Policy compliance
- Integration with existing infrastructure
- New element proposed
 - "Secure Edge" located in enterprise DMZ

M. Großmann - KTR 43/46

- W3C and IETE standards still need to be finalized.
- Browsers need to add support
 - Chrome and Firefox browser have much of this functionality now!
 - Their mobile derivatives are almost on the same level.
- Mandatory to Implement video codec needs to be decided
- Enterprise use of WebRTC need to be worked out

M. Großmann - KTR 44/46

- [1] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web. Digital Codex LLC, 2013. [Online]. Available: http://www.amazon.com/WebRTC-RTCWEB-Protocols-HTML5-Real-Time/dp/098597883X%3FSubscriptionld%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D098597883X
- [2] R. Manson, Getting Started with WebRTC. Packt Publishing, 2013. [Online]. Available: http://www.amazon.com/Getting-Started-WebRTC-Rob-Manson/dp/1782166300%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1782166300

M. Großmann - KTR 45/46

Questions?

Marcel Großmann marcel.grossmann@uni-bamberg.de