```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

healthcare=pd.read_excel(r"C:\Users\DELL\Downloads\healthcare_patient_data (1).xlsx")
healthcare.head()

		Patient ID	Age	Gender	BMI	Blood Pressure	Cholesterol	Smoking	Exercise Hours	Diagnosis	Treatment Cost	Region
	0	P00001	32	М	20.3	135/88	259	No	3	Heart Disease	5802	East
	1	P00002	61	F	18.2	100/65	230	Yes	4	Diabetes	3443	East
	2	P00003	48	М	28.3	138/90	257	Yes	7	Diabetes	3302	East
	3	P00004	35	F	30.4	120/80	235	Yes	6	Heart Disease	4996	North
	4	P00005	43	М	33.6	100/65	218	No	6	Diabetes	3288	East

healthcare.shape

→ (35000, 11)

healthcare.info()

```
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 35000 entries, 0 to 34999
    Data columns (total 11 columns):
    # Column
                       Non-Null Count Dtype
    0 Patient ID
                       35000 non-null object
                       35000 non-null int64
        Gender
                        35000 non-null object
        BMI
                       35000 non-null float64
        Blood Pressure 35000 non-null object
        Cholesterol
                        35000 non-null int64
                       35000 non-null object
        Smoking
        Exercise Hours 35000 non-null int64
        Diagnosis
                        26251 non-null object
        Treatment Cost 35000 non-null int64
    10 Region
                       35000 non-null object
    dtypes: float64(1), int64(4), object(6)
```

healthcare.isnull().sum()

memory usage: 2.9+ MB

₹	Patient ID	0
	Age	0
	Gender	0
	BMI	0
	Blood Pressure	0
	Cholesterol	0
	Smoking	0
	Exercise Hours	0
	Diagnosis	8749
	Treatment Cost	0
	Region	0
	dtype: int64	

healthcare["Diagnosis"].value_counts()

```
Diagnosis
Hypertension 8836
Diabetes 8711
Heart Disease 8704
Name: count, dtype: int64
```

v this is your first way to replace null values-- central tendenciees -- mean, medain mode

```
healthcare["Diagnosis"].fillna(healthcare["Diagnosis"].mode()[0],inplace=True)
```

```
healthcare.isnull().sum()
→ Patient ID
     Age
     Gender
                       a
    BMI
                       0
     Blood Pressure
    Cholesterol
     Smoking
                       0
     Exercise Hours
                       0
    Diagnosis
                       0
     Treatment Cost
                       0
     Region
    dtype: int64
healthcare["Diagnosis"].value_counts()
→ Diagnosis
     Hypertension
                     17585
     Diabetes
                       8711
                       8704
     Heart Disease
     Name: count, dtype: int64
```

second way of doing is if you are working with helath care data is to remove the rows in which these confusion are.

healthcare2=pd.read_excel(r"C:\Users\DELL\Downloads\healthcare_patient_data (1).xlsx")
healthcare2.head()

_ →		Patient ID	Age	Gender	BMI	Blood Pressure	Cholesterol	Smoking	Exercise Hours	Diagnosis	Treatment Cost	Region
	0	P00001	32	М	20.3	135/88	259	No	3	Heart Disease	5802	East
	1	P00002	61	F	18.2	100/65	230	Yes	4	Diabetes	3443	East
	2	P00003	48	М	28.3	138/90	257	Yes	7	Diabetes	3302	East
	3	P00004	35	F	30.4	120/80	235	Yes	6	Heart Disease	4996	North
	4	P00005	43	М	33.6	100/65	218	No	6	Diabetes	3288	East

healthcare2.isnull().sum()

healthcare2=healthcare2.dropna()

healthcare2.isnull().sum()

→ Patient ID Age 0 Gender 0 BMI Blood Pressure 0 Cholesterol 0 Smoking Exercise Hours 0 Diagnosis 0 Treatment Cost 0 Region dtype: int64

healthcare2.shape

→ (26251, 11)

if missing values are less than 5-7% thn consider dropping them ...

ex- you hve 4 coulmns missing vales -- 23,4,12,1-- firstly 23% imputation-- thn 12%

healthcare2[['Systolic','Diastolic']]=healthcare2['Blood Pressure'].str.split('/',expand=True).astype(float)

healthcare2.head()

₹		Patient ID	Age	Gender	BMI	Blood Pressure	Cholesterol	Smoking	Exercise Hours	Diagnosis	Treatment Cost	Region	Systolic	Diastolic
	0	P00001	32	М	20.3	135/88	259	No	3	Heart Disease	5802	East	135.0	88.0
	1	P00002	61	F	18.2	100/65	230	Yes	4	Diabetes	3443	East	100.0	65.0
	2	P00003	48	М	28.3	138/90	257	Yes	7	Diabetes	3302	East	138.0	90.0
	3	P00004	35	F	30.4	120/80	235	Yes	6	Heart Disease	4996	North	120.0	80.0

healthcare2.drop(columns=["Blood Pressure"],inplace=True)

healthcare2.head()

→		Patient ID	Age	Gender	BMI	Cholesterol	Smoking	Exercise Hours	Diagnosis	Treatment Cost	Region	Systolic	Diastolic
	0	P00001	32	М	20.3	259	No	3	Heart Disease	5802	East	135.0	88.0
	1	P00002	61	F	18.2	230	Yes	4	Diabetes	3443	East	100.0	65.0
	2	P00003	48	М	28.3	257	Yes	7	Diabetes	3302	East	138.0	90.0
	3	P00004	35	F	30.4	235	Yes	6	Heart Disease	4996	North	120.0	80.0
	4	P00005	43	М	33.6	218	No	6	Diabetes	3288	East	100.0	65.0

healthcare2["Diagnosis"].value_counts()

→ Diagnosis

Hypertension 8836
Diabetes 8711
Heart Disease 8704
Name: count, dtype: int64

 $\verb|healthcare.describe().T|\\$

_									
→		count	mean	std	min	25%	50%	75%	max
	Age	35000.0	49.001200	18.205521	18.0	33.0	49.0	65.0	80.0
	ВМІ	35000.0	26.490106	4.894053	18.0	22.2	26.5	30.7	35.0
	Cholesterol	35000.0	215.022600	31.961938	160.0	187.0	215.0	243.0	270.0
	Exercise Hours	35000.0	3.514800	2.297897	0.0	1.0	4.0	6.0	7.0
	Treatment Cost	35000.0	2469.280886	1776.684292	100.0	1200.0	1993.0	3494.0	6000.0

 $average_cost_Treatment=health care 2.group by ('Diagnosis')['Treatment Cost'].mean() \\ average_cost_Treatment$

→ Diagnosis

Diabetes 3001.512570
Heart Disease 5002.425437
Hypertension 1598.295835
Name: Treatment Cost, dtype: float64

→ Health Trends and Lifestyle Analysis

```
# Grouping the data correctly
heatmap_data = healthcare2.groupby('Diagnosis')['Exercise Hours'].mean().to_frame()
# Double-check the data
print(heatmap_data.shape)
print(heatmap_data.head())
# Plotting
plt.figure(figsize=(10, 6))
sns.heatmap(heatmap_data, annot=True, cmap='YlGnBu')
plt.title('Average Exercise Hours by Diagnosis')
plt.xlabel('Exercise Hours')
plt.ylabel('Diagnosis')
plt.tight_layout()
plt.show()
→ (3, 1)
                    Exercise Hours
     Diagnosis
     Diabetes
                          3.523820
     Heart Disease
                          3.487132
     Hypertension
                          3.517995
```

Average Exercise Hours by Diagnosis

Start coding or generate with AI.