Universitatea Alexandru Ioan-Cuza Facultatea de Informatică

Tema 1

Student name: Bodnar Florina-Alina 2A4, Ungurean Ana-Maria 2A4

Course: Algorimica Grafurilor – Professor: Lect dr. Olariu Florentin - Emanuel
Due date: 4 Noiembrie 2022

Problema 1

- **1. (a).** Urmărind definiția componentei conexe, putem spune că numărul de componente conexe a lui G este cel puțin numărul de stații de tramvai deoarece două triplete ($start_i, station_i, end_i$) și ($start_j, station_j, end_j$) sunt adiacente dacă și numai dacă $station_i = station_j$ și ($start_i, end_i$) \cap ($start_j, end_j$) $\neq \emptyset$. Astfel, vom avea cel puțin k componente conexe, k fiind numărul de stații. Fie c_i , unde $1 \le i \le k$, o componentă conexă a grafului G, este reprezentativă pentru $station_{i-1}$, fiind formată din tripletele care sunt adiacente (tripletele au în comun $station_{i-1}$, și îndeplinesc condiția de intersecție de mai sus). Pe lângă cele k componente conexe, putem avea c_j , componentă conexă, unde j > k, pentru cazurile în care $station_i$ se află în mai multe componente conexe.
- **1. (b).** Știind că $\omega(G)$ reprezintă numărul maxim de clică a lui G, iar K-clică este o submulțime de K noduri a grafului G, care induce un graf complet, putem spune că numărul maxim de tramvaie care se pot găsi în același timp în aceeași stație este $\omega(G)$. Răspunsul este datorat faptului că toate nodurile(tripletele) trebuie să fie adiacente (să aibă muchie între ele) pentru a fi toate în aceeași stație simultan.
- **1. (c).** Din subpunctul (b) \Longrightarrow că numărul maxim de tramvaie care se pot găsi în același timp în aceeași stație este $\omega(G)$, unde $\omega(G) \ge 1$ Observăm că:

Pentru $\omega(G)$ =3, circuitul indus de lungime maximă este 3.

Pentru $\omega(G)$ =4, circuitul de lungime maximă este 4, însă conține două corzi \Longrightarrow lungimea maximă a unui circuit indus a lui G este 3.

Figure 1: Graf 3-clică

Figure 2: Graf 4-clică

În graful din figura 2, circuitul de lungime 4 nu este indus, deoarece avem muchiile 1-4 și 2-3, care sunt corzi.

1. (d). Vom avea nevoie de o listă dublă înlănțuită, în care memorăm indicele nodului din graf și *visitedNeighbors*, care inițial are doar valori de 0. Alegem să inițializăm variabila max cu primul nod din listă. Cât timp lista e nevidă, $\pi[max]=i$ - -, unde i=n și adăugăm nodul la mulțimea S, care inițial era vidă. Apoi, eliminăm nodul max din lista dublă înlănțuită, operație care se realizează în $\mathcal{O}(1)$ (*). Parcurgem lista dublă înlănțuită și creștem cu 1 *visitedNeighbors* a nodurilor care sunt vecine cu max. La sfârșit, aleg un nod din listă a cărei valoare *visitedNeighbors* este maximă.

Astfel, operația * se realizează în $\mathcal{O}(1)$ și întreg programul are timpul de execuție $\mathcal{O}(n+m)$, deoarece inițializarea lui $\pi[v]$, $v \in V(G)$ și formarea listei dublu înlănțuite se realizează în $\mathcal{O}(n)$, iar în $\mathcal{O}(m)$ are loc incrementarea *visitedNeighbors* în listă și căutarea *max*-ului.

1. (e). Aplicăm algoritmul de mai sus pentru subgraful indus de vecinătatea lui x_i în G_i și observăm că $\omega(G)$ este reprezentată de cea mai mare valoare din vectorul *visited-Neighbors* + 1.

Problema 2

- **2. (a).** Observăm că pentru orice digraf al cărui graf suport este complet, ordonarea topologică este unică și gradele interne ale nodurilor sunt distincte două câte două. Nodurile incidente cu arcul $e \in A' \setminus A''$ vor fi interschimbate astfel încât $reverse(\vec{G}', e)$ este tot o orientare aciclică a lui $G \iff$ gradele interioare ale nodurilor se vor interschimba. Astfel, va rezulta că ordonarea topologică a lui $reverse(\vec{G}', e)$ este o permutare a nodurilor din \vec{G}' .
- **2. (b).** Observăm că pentru n=1 nu putem avea un K_1 , pentru care să avem 2 orientări aciclice \vec{K}_1' și \vec{K}_1'' (pentru că $E=\emptyset$) \Longrightarrow card(V) \ge 2.
- I. Caz de Bază:

Fie n=2:

Figure 3: K_2

Figure 4: \vec{K}'_2

Figure 5: $\vec{K_2''}$

Orientarea aciclică din figura 5 a fost determinată prin aplicarea $reverse(\vec{K_2'},ab)$ o singură dată. "A"

II. Presupunem P(k) adevărat, unde P(k): $\vec{K_k'}$ poate fi transformat în $\vec{K_k''}$ prin aplicări repetate ale operației *reverse*.

Ştim că K_k are $\frac{k(k-1)}{2}$ muchii (graf complet) $\Longrightarrow \vec{K_k'}$ și $\vec{K_k''}$ au $\frac{k(k-1)}{2}$ muchii. $\Longrightarrow \vec{K_k'}$ și $\vec{K_k''}$ au cel mult k-1 muchii în comun (deoarce $\vec{K_k'}$ și $\vec{K_k''}$ sunt distincte și nu trebuie să aibă circuite)

Determinăm numărul maxim de muchii distincte
$$\frac{k(k-1)}{2}$$
 - $(k-1) = \frac{k(k-1)-2k+2}{2} = \frac{k^2-k-2k+2}{2} = \frac{k^2-k-2(k-1)}{2} = \frac{k(k-1)-2(k-1)}{2} = \frac{(k-1)(k-2)}{2}$ \Longrightarrow Putem aplica operația *reverse* de maxim $\frac{(k-1)(k-2)}{2}$ ori . "A"

III. Demonstrăm: P(k+1) adevărat, unde P(k+1): $K_{k+1}^{\vec{r}}$ poate fi transformat în $K_{k+1}^{\vec{r}}$ prin aplicări repetate ale operației reverse. P(k+1): $\frac{(k)(k-1)}{2}$ ori Știm că K_{k+1} are $\frac{k(k-1)}{2} + (k-1)$ muchii $\Longrightarrow K_{k+1}^{\vec{r}}$ și $K_{k+1}^{\vec{r}}$ au $\frac{k(k-1)}{2} + (k-1)$ muchii. $\Longrightarrow K_k^{\vec{r}}$ și $K_k^{\vec{r}}$ au cel mult k muchii în comun Determinăm numărul maxim de muchii distincte $\frac{k(k-1)}{2} + (k-1) - k = \frac{k^2 - k + 2k - 2 - 2k}{2}$ $= \frac{k^2 - k + 2k}{2} = \frac{k^2 - 3k - 2 + 2k}{2} = \frac{k^2 - 3k - 2 + 2k}{2} = \frac{(k-1)(k-2)}{2} + k = P(k) + k$ $\Longrightarrow P(k+1)$ adevărat \Longrightarrow Putem aplica operația reverse de maxim $\frac{(k-1)(k-2)}{2} + k$ ori . $\Longrightarrow \vec{K}_n^{\vec{r}}$ poate fi transformat în $\vec{K}_n^{\vec{r}}$ prin aplicări repetate ale operației reverse.

- **2.** (c). Fie A_0 digraful completar a lui $\vec{G} \iff (V, A \cup A_0)$ este o orientare aciclică a lui G cu condiția ca sumele gradelor interioare d_G^- (u) + $d_{A_0}^-$ (u), unde u $\in V$ să fie distincte două câte două (pentru a nu avea circuite) .
- **2. (d).** Știm că: $|\vec{G}'| = |\vec{G}''|$ (\vec{G}' și \vec{G}'' au muchii între aceleași noduri, doar că au orientări diferite sau nu) și că suma gradelor interioare trebuie să fie aceeași.
- **A.** De la (c), știm că orice orientare aciclică, \vec{G} , are un digraf complementar A_0 astfel încât graful suport al digrafului $(V, A \cup A_0)$ este un K_n .
- **B.** Am demonstrat la (b) prin inducție că $\forall K_n$, $\exists \vec{K'_n}$ și $\vec{K''_n}$ două orientări aciclice ale lui K_n și că $\vec{K'_n}$ poate fi transformat în $\vec{K''_n}$ prin aplicări repetate ale lui *reverse*.

Din $A+B \Longrightarrow \vec{G}''$ poate fi obținut prin aplicări repetate a funcției *reverse* asupra \vec{G}'

Problema 3

3. Demonstrăm că algoritmul Dijkstra nu rulează corect în cazul în care anumite arce au cost negativ la care se adaugă o constantă pozitivă suficient de mare la costul fiecărui arc în așa fel încât toate costurile să devină pozitive, fapt susținut de contraexemplul următor:

Figure 6: G

Figure 7: G'

Să presupunem că adăugăm constanta c=2 la costul fiecărui arc din graful G, digraful rezultat este G'.

Aplicând algoritmul Dijkstra, obținem drumul s-u-t de cost=5, dar drumul s-t are cost minim=4.

Problema 4

4. Algoritmul lui Dijkstra poate rezolva problema P2 pe un astfel de digraf, deoarece transformăm digraful astfel : adăugăm valoarea absolută a celui mai mic cost negativ la toate costurile nodurilor astfel încât toate costurile să fie pozitive. Neexistând circuite negative, orice muchie poate fi parcursă o singură dată pe drumul cel mai scurt. Știm că orice drum va traversa o muchie din sursă, astfel cel mai scurt drum va fi de lungimea din graful inițial + constanta pe care am adăugat-o.

Bonus

Pentru i=n, vecinătatea lui x_i în G_i formează chiar graful G. Dacă nodurile vecine ale lui x_i fac parte inițial dintr-o clică, atunci vor face parte dintr-o clică de index mai mic când construim G_i . Deci, rezultă că $N_{G_i}(x_i)$ este o clică în G.