EE 156: Advanced Topics in Computer Architecture

Spring 2019 Tufts University

Instructor: Prof. Mark Hempstead mark.hempstead@tufts.edu

Lecture 13: Dyanmic Voltage and Frequency Scaling (DVFS)

1

DVFS Intro – Dynamic Voltage Frequency Scaling

- Dynamic Power ~ aCV²f
- Wouldn't it be nice to reduce the voltage
- Modern machines can do this with off chip regulators
 - Some systems have fast onchip regulators

ECEC 623 Mark Hempstead

rk Hempstead

DVFS: How it works

- A voltage setting is transmitted from the core to the regulator. (chip is often stalled during the process)
- The regulator adjusts the voltage
- The on-chip PLL (phase-locked-loop) adjusts to the new frequency
- This is often slow (10 us)
- Newer designs in 100ns, like the plot below [Kim HPCA'08]

1V, 1GHz						h.	1V, 1GH
1		0.0	866V, 0.	866GHz		1	
9	1		~				
8	1		1	-			
7	-		1	0.700	V, 0.733	-	
.6	1	_		0.733	v, u./33	GHZ	
5	0.6V,	0.6GH:			_		_
0 100	200	300	400 Time	500 (ns)	600	700	800

Build it and they will come

- OK, we've argued that DVFS is useful
 - In fact, most CPU chips have it
- It's no good adding hardware if the software cannot use it reasonably well!
- The O/S controls DVFS via P states (for "Performance")
 - P0 = highest V/F
 - P1 = next highest
 - Pn = lowest V/F
- The O/S requests a given P state via the Advanced Configuration and Power Interface; the chip may or may not grant the request
 - The chip will not let itself exceed max power or overheat
- But how does the O/S decide what to request?

EE 194/Adv. VLSI Joel Grodstein

"Work"

"Slack"

"Iime (see)

"Idle"

- · DVFS approaches are all designed to exploit slack
- · Types/sources of slack
 - Circuit timing slack (time between clock cycles that a circuit is not switching)
 - Microarchitectural slack (functional unit, or memory hierarchy)
 - Application slack (idle times between tasks)

ECEC 623 Mark Hempstead

DVFS Making Deadlines

- Problem: How to reduce voltage and frequency so that *deadlines* are not missed.
- · Types of Deadlines
 - "Real-time" applications. Often found in embedded devices, statically scheduled off-line.
 - · Audio encoding/decoding
 - Video
 - · Control systems
 - Often single workloads or statically scheduled multi-programmed workloads
 - User perception deadlines. Flautner et al. [78]
 - Interactive tasks threshold is 50-100 ms

ECEC 623 Mark Hempstead

Using Deadlines to save energy

- With periodic user deadlines we can run at a lower voltage and frequency
- Analyzed applications to find periodic tasks and interactive tasks

ECEC 623 Mark Hempstead

DVFS IN LINUX AND MODERN SYSTEMS

ECEC 623 Mark Hempstead

Controls on Linux

- Controlled by cpufreq subsystem
 - cpufreq module
 - CPU-specific drivers
 - In-kernel governors (policy)
- User-interface via sysfs
 - List of CPUs
 - min|max frequency
 - Available frequencies (read-only)
 - Current governor
 - Stats

ECEC 623 Mark Hempstead

	٠

Linux Governors

- Implement simple DVFS policies
- Originally, 3 governors
 - Powersave
 - Run at lowest frequency
 - Performance
 - Run at highest frequency
 - Userspace
 - Run at user-specified frequency
- · On-demand governor
 - Utilizes low-latency frequency switching
 - Intel Speedstep => 10us
 - Determines frequency based on CPU utilization

11

On-demand Algorithm

for every CPU in the system
every X milliseconds
get utilization since last check
if (utilization > UP_THRESHOLD)
increase frequency to MAX
every Y milliseconds
get utilization since last check
if (utilization < DOWN_THRESHOLD)
decrease frequency by 20%

Adaptive Voltage Scaling

- No longer use static voltage tables
 - Frequencies are still fixed
 - Adaptive voltage
 - Determined using post-silicon testing & run-time temperature

13

Modern Machines

- Intel Enhanced SpeedStep (Core2 Processors) 2⁷ different voltage settings from 1.5 V to 0 V with the VID Pins that can be set by the OS
- Besides voltage scaling the cores can power down. Both the Core2 and Core i7 have similar C states

ECEC 623 Mark Hempstead

14

Core States (Intel)

- Core i7 States
 - (http://download.intel.com/design/processor/datashts/3221 64.pdf)
 - C0: Normal Operating State
 - C1: low power state, but can still process bus snoops
 - C3: All caches are flushed, clocks are stopped for a core. Does not wake up for snoop traffic, but architected state is saved.
 - C6: Deep sleep, voltage is set to zero, all state saved to SRAM
- Core i7 Sandybridge C states:
 - http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.92T.SandyBridge_Power_10-Rotem-Intel.pdf (Hot'Chips 2011)

ECEC 623 Mark Hempstead

DVFS DESIGN ISSUES

ECEC 623 Mark Hempstead

16

Resources

- "Computer Architecture: A Quantitative Approach," Fif Edition, John L. Hennessy and David A. Patterson, ISB 978-0-12-383872-8
- · Two Additional References:
 - "Computer Architecture Techniques for Power-
 - By Stefanos Kaxiras, Margaret Martonosi, 2010
 - "Power-Efficient Computer Architectures: Recent Advances"
 - By Magnus Själander, Margaret Martonosi, Stefanos Kaxiras, Dec 2014
 - Part of the Synthesis Lectures on Computer Architecture Series. Available free from the Library http://library.tufts.edu:80/record=b2812045~S1
- Research papers (will be available on the web)

DVFS Design Issues (pg 24)

- (1) At what level should the DVFS Control policies operate?
 - System-level based on system slack: change the whole processor or system based on the entire system load
 - Program-level based on instruction slack: make DVFS decisions based on programs current state. Change voltage based on program behavior. Can hide memory
 - Hardware-level: change voltage dynamically to reflect the slack in the critical path of circuits (Razor)

ECEC 623 Mark Hempstead

DVFS Design Issues (pg 24)

- (2) How will the DVFS settings be selected and orchestrated?
 - Programmable registers (VIN) set by the OS or application
 - When to decide on the (V, f) settings?
 - · Offline: Compile time
 - · Online: dynamic and reactive
 - Hardware controllers making decisions under the covers

ECEC 623 Mark Hempstead

19

DVFS Design Issues (pg 24)

- (3) What is the hardware granularity which the voltage and frequency can be controlled?
 - Entire core at once
 - Main memory / cache at the different voltage
 - Multiple clock domains (MCD) on a single chip
- (4) How do the implementation characteristics of DVFS approach being used affect the strategies to employ?
 - How long to switch to a new (V,f)?
 - Fast: Use dynamic control
 - Slow: Try a static analysis technique. Because performance could be lost if settings are not correct

ECEC 623 Mark Hempstead

20

DVFS Design Issues (pg 24)

- (5) How does the DVFS landscape change when considering parallel applications on multiple processors?
 - Frequency of thread0 could make thread1 wait longer for dependant results

ECEC 623 Mark Hempstead

DVFS Cost (2014, pg 15) • There is a delay when changing Voltage and Frequency t(n+2) t(n+3) time · Regulators must switch voltage Phase-lock loops take a while to transition On-chip regulators have been proposed to speed this up ECEC 623 Mark Hempstead 22

Predicting DVFS performance Interval Model (2014 pg 17) Performance (execution time) does not scale linearly with frequency

- The execution of a program it split into intervals of different

 - Steady state intervals: IPC limited by issue-width and program dependencies
 Miss-intervals: introduce stalls in the processor. Start with a cache miss and last until the processor pipeline is full again

Figure 2.8: Interval model for f scaling [106].

23

DVFS IN MULTICORE AND MULTICOMPONENT

ECEC 623 Mark Hempstead

Semeraro et al. and online DVFS [199]

- Showed that the hardware can control DVFS of each domain by watching the occupancy of *issue queues* (inputs) between stages
- · Collect occupancy during intervals of time
- · Two modes
 - Attack: significant change in occupancy between intervals therefore significant frequency change (up or down)
 - Decay: small change between intervals, small frequency reduction
- 19% reduction in energy/instruction, 16.7% EDP improvement, 3.2% increase in CPI

ECEC 623 Mark Hempstead

29

Multi-threaded DVFS (2014, pg 25-29)

- Ongoing research challenge, how to schedule DVFS for multithreaded workloads
 - One thread could depend on data from another thread
 - Should use "critical path" analysis to avoid performance issues
- Scheduling algorithms (p26)
 - Some approaches set real-time deadlines and create a static schedule
 - Other dynamic approaches use synchronization points (e.g. barriers) to determine the DVFS schedule

ECEC 623 Mark Hempstead