Математический анализ

3 октября 2022

Характеристическая функция множества

Определение. Характеристическая функция множества

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Лемма 12. { Точки разрыва $\chi_E(x)$ } = δE

Доказательство. $x \in \operatorname{Int} E \cup \operatorname{Ext} E$

На внутренних точках $\lim \chi_E(x) = 1 = \chi_E(x)$

На внешних точках $\lim \chi_E(x) = 0 = \chi_E(x)$

На границе разрывна - очев

Определение. $E \in \Pi, \ \Pi$ - $n/n, \ f: E \to \mathbb{R}$ - ограничена

$$\int_{E} f = \int_{\Pi} f \cdot \chi_{E}$$

$$\tilde{f} = f \cdot \chi_E(x)$$

Лемма 13. $\mu(\delta E)=0,\ f:E o\mathbb{R}$ - почти везде непрерывна на E

$$T$$
ог $\partial a \; \exists \int\limits_{E} f$

Доказательство. Необходимо доказать, что $\exists \int \tilde{f}$

 $\{$ Точки разрыва \tilde{f} на $\Pi \} = \{$ Точки разрыва \tilde{f} на $\inf E \} \cup \{$ Точки разрыва \tilde{f} на iТочки разрыва iТочки

{Точки разрыва \tilde{f} на Π } \subset {Точки разрыва f на $\operatorname{Int} E$ } $\cup \delta E$ μ ({Точки разрыва \tilde{f} на Π }) = 0 - по критерию Лебега существует интеграл

Определение. E - ограничено, $\mu(\delta E)=0$

$$\exists \Pi \in \mathbb{R}^n \text{ - } n/n \text{: } E \in \Pi$$

$$\upsilon(E) = \int\limits_E 1 = \int\limits_\Pi \chi_E(x)$$
 - Жорданов объём