ENCUESTA

DE PERCEPCIÓN CIUDADANA

Jimena Uribe Giraldo Daniel Puentes Rocha

EPC

La Encuesta de Percepción Ciudadana, EPC, desde su primera edición en 2006, permite recoger la voz de los ciudadanos sobre su propio bienestar y la satisfacción que tienen con la oferta de bienes y servicios que ofrece Medellín.

Modelo

El modelo a realizar es una regresión logística bayesiana. En este modelo elegimos como variables predictoras (comuna, edad, estrato socioeconómico y sexo) y como variable respuesta la vulnerabilidad.

fit

X1 Comuna

X2 Sexo

X3 Edad

X4 Estrato

 $eta \sim N(\mu, \sigma^2)$

 $y \sim \text{Bernoulli-logit}(X \cdot \beta)$

Inference for Stan model: anon_model.

3 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=15000.

	mean	se_mean sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
beta[1]	0.39	0.01 0.35	-0.29	0.15	0.39	0.63	1.06	3592	1
beta[2]	0.22	0.01 0.38	-0.52	-0.03	0.22	0.48	0.97	4471	1
beta[3]	0.27	0.01 0.34	-0.40	0.03	0.26	0.50	0.95	3732	1
beta[4]	0.10	0.01 0.36	-0.61	-0.14	0.10	0.35	0.82	3743	1
beta[5]	0.46	0.01 0.39	-0.31	0.19	0.46	0.73	1.23	4211	1
beta[6]	0.06	0.01 0.34	-0.60	-0.17	0.06	0.29	0.74	3672	1
beta[7]	0.49	0.01 0.33	-0.15	0.26	0.48	0.71	1.13	3216	1
beta[8]	0.79	0.01 0.34	0.14	0.56	0.78	1.02	1.46	3462	1
beta[9]	0.38	0.01 0.35	-0.30	0.15	0.38	0.62	1.08	3542	1
beta[10]	0.38	0.01 0.39	-0.39	0.11	0.37	0.64	1.15	3581	1
beta[11]	0.68	0.01 0.44	-0.18	0.38	0.67	0.97	1.55	3557	1
beta[12]	0.50	0.01 0.40	-0.28	0.22	0.49	0.76	1.30	3188	1
beta[13]	0.84	0.01 0.36	0.13	0.59	0.83	1.08	1.55	4046	1
beta[14]	1.36	0.01 0.46	0.47	1.04	1.35	1.66	2.28	3743	1
beta[15]	0.68	0.01 0.35	0.01	0.45	0.68	0.92	1.38	3051	1
beta[16]	1.06	0.01 0.35	0.39	0.82	1.05	1.29	1.75	3083	1
beta[17]	-0.43	0.00 0.11	-0.64	-0.50	-0.43	-0.35	-0.21	11495	1
beta[18]	-0.03	0.00 0.00	-0.04	-0.03	-0.03	-0.03	-0.02	11691	1
beta[19]	0.52	0.00 0.21	0.11	0.38	0.52	0.66	0.94	6453	1
beta[20]	0.83	0.00 0.24	0.37	0.67	0.83	0.99	1.30	5046	1
beta[21]	1.17	0.00 0.30	0.58	0.97	1.17	1.38	1.78	5723	1
beta[22]	0.87	0.01 0.37	0.14	0.62	0.87	1.12	1.58	5279	1
beta[23]	0.94	0.01 0.48	-0.01	0.62	0.94	1.26	1.88	6716	1
1p	-1002.51	0.04 3.41	-1010.07	-1004.59	-1002.18	-1000.07	-996.80	6130	1

Tabla estimaciones

Variable	Parámetro	HDI
Intercepto	$\beta 1 = 0.39$	(-0.29,1.06)
Comuna 2	β2 = 0.22	(-0.52,0.97)
Comuna 3	β3 = 0.27	(-0.40,0.95)
Comuna 4	$\beta 4 = 0.10$	(-0.61,0.82)
Comuna 5	β5 = 0.46	(-0.31,1.23)
Comuna 6	$\beta 6 = 0.06$	(-0.60,0.74)
Comuna 7	β7 = 0.49	(-0.15,1.13)
Comuna 8	β8 = 0.79	(0.14,1.46)
Comuna 9	β9 = 0.38	(-0.30,1.08)
Comuna 10	β 10 = 0.38	(-0.39,1.15)
Comuna 11	$\beta 11 = 0.68$	(-0.18,1.55)

Variable	Parámetro	HDI
Comuna 12	β12 = 0.50	(-0.28,1.30)
Comuna 13	β 13 = 0.84	(0.13,1.55)
Comuna 14	β14 = 1.36	(0.47,2.28)
Comuna 15	β 15 = 0.68	(0.01,1.38)
Comuna 16	β 16 = 0.50	(0.39,1.75)
Sexo (Hombre)	β 17 = -0.43	(-0.64,-0.21)
Edad	β 18 = -0.03	(-0.04,-0.02)
Estrato 2	β 19 = 0.52	(0.11,0.94)
Estrato 3	β 20 = 0.84	(0.37,1.30)
Estrato 4	β21 = 1.17	(0.58, 1.78)
Estrato 5	β22 = 0.87	(0.14,1.58)
Estrato 6	β23 = 0.94	(0.02,1.86)

Curva ROC

Esto nos indica que puede ser un buen modelo predictivo, ya que no tiene falsos positivos (Valores que indiquen una probabilidad de 0 cuando en realidad es 1).

Comparación de modelos

Calculamos el factor de Bayes

$$M_1:\ y\sim x_2+x_3+x_4 \ ext{vs} \ M_2:y\sim x_1+x_2+x_3+x_4$$

$$BF_{1,2} = rac{\int p(D|M_1)p(M_1)\,deta_1}{\int p(D|M_2)p(M_2)\,deta_2} = rac{\int f(y\mid x_2,x_3,x_4)f(eta_1\mid y)\,deta_1}{\int f(y\mid x_1,x_2,x_3,x_4)f(eta_2\mid y)\,deta_0} pprox 0.1524$$

Esto significa que el modelo completo proporciona una mejor explicación de los datos en comparación con el modelo reducido.

Método de validación cruzada

	Diferencia de la Densidad Puntual Predictiva	Error Cuadrado de la Diferencia
Modelo 2	0.0	0.0
Modelo 1	-0.2	5.7

Esto nos indica que el modelo completo tiene menor variabilidad en sus predicciones en comparación del modelo reducido.

Interpretación parámetros

Variable	e^β
Comuna 2	1,48
Comuna 11	1,97
Comuna 14	3,90
Sexo	0,65
Edad	0,97
Estrato 2	1,68
Estrato 6	2,56

Edad: Por un incremento unitario en la edad, la chance de ser no vulnerable disminuye en un 3% (Entre más edad, más probable ser vulnerable)

Comuna 14: Los pertenecientes a la comuna 14 (Poblado) tienen casi 4 veces más probabilidades de no ser vulnerables en comparación con la comuna 1 (Popular, nivel de referencia).

Interpretación parámetros

Variable	e^β
Comuna 2	1,48
Comuna 11	1,97
Comuna 14	3,90
Sexo	0,65
Edad	0,97
Estrato 2	1,68
Estrato 6	2,56

Sexo: En comparación con las mujeres (nivel de referencia), los hombres tienen aproximadamente un 35% menos de probabilidad de ser vulnerables.

Estrato 6: Los pertenecientes al estrato tienen casi 2.56 veces más probabilidades de no ser vulnerables en comparación con el estrato 1 (nivel de referencia).

i GRACIAS!