

Lecture 1 – Introduction and Number systems

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Chapter 1 (first half)

Introductions

- B. Tech in IIT Roorkee (2009):
- After B. Tech.:
 - Design Engineer, Analog Devices India (2011)
- Joined KAUST as M.S. in 2011
- Continued as Ph.D. from Jan 2013
- Postdoc in Harvard University up to Jan 2018

- Total of 74 research papers and 7 patents in the last 6 years
 - 800+ citations in Google scholar

Courses

- Digital Systems and Microcontrollers (DSM) [UG1 core]
 - Digital logic
 - Basic digital circuits
 - Basics of microcontrollers
- Principles of Semiconductor Devices [Elective]
 - Quantum mechanics and physics of silicon lattice
 - Electron/hole motion in silicon
 - Function of pn junction and transistors from basic physics
- Flexible Electronics [Elective]
 - Semiconductor fabrication
 - Materials for flexible electronics
 - Processes and applications

About the course

- Name: Digital Systems and Microcontrollers (DSM)
- Textbook:
 - M. Morris Mano and Michael D. Ciletti, "Digital Design", 6th edition
- Logistics:
 - Two 1.5 hour lectures per week
 - One 3 hour lab per week
 - One 1 hour Tut per week

- Faculty: Dr. Aftab M. Hussain
- Office: B6-306, Vindhaya
- Office timings: Prefer drop-ins if I am there or appointments through email

Digital systems and Microcontrollers

Everything around us uses digital systems – phones, computers, TVs, internet, watches

 Why digital? Information is harder to corrupt and corrupt information is easier to decorrupt in digital domain

- Some systems are naturally digital (or quantized) like cricket each ball has a fixed number of runs associated with it
- Others are more continuous like football harder to determine fixed moments in time when a particular event occured

Counting

• Lets relearn counting...

0 1 2 3 4 5 6 7 8 9 **10**

Counting

• Lets relearn counting...

0 1

1

2

3

4

5

6

7

8

10

- The number system:
 - Put symbols in specific places/positions to denote their "power"
 - The base or the radix of the decimal number system is 10

Various number systems

- Octal number system
 - The base or radix is 8
 - The symbols are: 0, 1, 2, 3, 4, 5, 6, 7
- Hexadecimal number system
 - The base or radix is 16
 - The symbols are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Binary number system
 - The base or radix is 2
 - The symbols are: 0, 1
- We denote the base of the number using a suffix subscript: $(10395)_{10}$
- In general a number $(a_4a_3a_2a_1a_0)_r = a_4r^4 + a_3r^3 + a_2r^2 + a_1r^1 + a_0r^0$

Conversions to decimal

Octal number system

- $(110)_8 = 1*8^2 + 1*8^1 + 0*8^0 = (72)_{10}$
- (777)₈ =
- (11)₈ =
- Hexadecimal number system
 - $(110)_{16} = 1*16^2 + 1*16^1 + 0*16^0 = (272)_{10}$
 - $(BAD)_{16} =$
 - $(DAD)_{16} =$
- Binary number system
 - $(110)_2 = 1*2^2 + 1*2^1 + 0*2^0 = (6)_{10}$
 - $(101010)_2 =$
 - (1111)₂ =

Conversions from decimal

• Algorithm:

- Divide by radix
- Save the remainder
- Repeat
- Arrange remainders in reverse order
- Octal number system
 - 912
 - 75
 - 22
- Hexadecimal number system
 - 1729
 - 133
 - 15
- Binary number system
 - 21
 - 10
 - 43

Conversions from Oct/Hex to Binary

- From Oct/Hex to binary, we can take a short cut because the bases are (2)³ and (2)⁴ respectively
- For octal: take each digit and convert it individually into three bits
- For hex: take each digit and convert it individually into four bits

- Octal number system
 - (433)₈
 - (70)₈
- Hexadecimal number system
 - (DEAD)₁₆
 - (FEED)₁₆

Conversions from Binary to Oct/Hex

- The reverse course can be taken for converting binary to oct or hex
- For octal: take three bits and convert it individually into a symbol
- For hex: take four bits and convert it individually into a symbol

- Octal number system
 - (110101011)₂
 - (1010111101)₂
- Hexadecimal number system
 - (11101011)₂
 - (110000110)₂
 - (101011111)₂

Addition

Octal number system

- $(73)_8$ + $(157)_8$
- $(57)_8$ + $(23)_8$
- $(113)_8$ + $(23)_8$
- Hexadecimal number system
 - $(AA)_{16} + (BB)_{16}$
 - $(BAD)_{16} + (DAD)_{16}$
 - $(93)_{16}$ + $(157)_{16}$
- Binary number system
 - $(1101)_2$ + $(111)_2$
 - $(10101)_2 + (100)_2$
 - $(11)_2$ + $(111)_2$

Subtraction

Octal number system

- (172)₈ (161)₈
- $(32)_8$ $(21)_8$
- (107)₈ (67)₈

Hexadecimal number system

- (BB)₁₆ (AA)₁₆
- (DAD)₁₆ (BAD)₁₆
- (63)₁₆ (F)₁₆

Binary number system

- $(1101)_2$ $(111)_2$
- (10101)₂ (100)₂
- (1011)₂ (111)₂

Multiplication

Binary number system

- Examples:
 - $(111)_2$ * $(110)_2$
 - $(1011)_2$ * $(1010)_2$

The "decimal" point

- The powers of radix decrease after the decimal point
- Binary to decimal:

•
$$(1.011)_2 = 1*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3}$$

= $1+0.25+0.125$
= 1.375

- (0.1101)₂
- Decimal to binary:

•
$$(0.75)_{10} = 0.75*2 = 1.50$$
 1
 $0.5*2 = 1.00$ 1
 $=(11)_2$

• (0.625)₁₀

