МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

Институт Интеллектуальных Кибернетических Систем Кафедра Кибернетики

> Лабораторная работа №4: По курсу «Численные методы» Вариант 16

Работу выполнил: студент группы Б17-511: Чудновец И.В.

Проверил: Саманчук В.Н.

Постановка задачи

Аппроксимировать таблично заданную функцию по методу наименьших квадратов, используя полиномы по девятый порядок включительно.

X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Y	5	6	8	10	12	13	12	10	8	10	8	11	7	9	11	10	9	12	11	6

Методика решения

Для решения задачи была написана программа на языке Python, в которой реализован алгоритм аппроксимирования таблично заданной функции, используя полиномы по девятый порядок включительно.

Теоретическая справка

Суть метода наименьших квадратов в выборе независимой системы функций

 $f_i(x)$, $i=0,1,\cdots$, m и подборе неизвестных коэффициентов a_0,a_1,\cdots , a_m с целью минимизации функции:

$$F(a_0, a_1, \dots, a_m) = \sum_{j=1}^n (y_j - \sum_{i=0}^m a_i * f_i(x))^2 \to \min$$

Для случая аппроксимации полиномами по 9-ый порядок включительно:

Нужно решить СЛАУ 10-го порядка относительно коэффициентов a_0, a_1, \cdots, a_9 :

$$\begin{cases} a_0 * \sum_{i=1}^{20} x_i^{18} + a_1 * \sum_{i=1}^{20} x_i^{17} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{9} = \sum_{i=1}^{20} y_i * x_i^{9} \\ a_0 * \sum_{i=1}^{20} x_i^{17} + a_1 * \sum_{i=1}^{20} x_i^{16} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{8} = \sum_{i=1}^{20} y_i * x_i^{8} \\ a_0 * \sum_{i=1}^{20} x_i^{16} + a_1 * \sum_{i=1}^{20} x_i^{15} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{7} = \sum_{i=1}^{20} y_i * x_i^{7} \\ a_0 * \sum_{i=1}^{20} x_i^{15} + a_1 * \sum_{i=1}^{20} x_i^{14} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{6} = \sum_{i=1}^{20} y_i * x_i^{6} \\ a_0 * \sum_{i=1}^{20} x_i^{14} + a_1 * \sum_{i=1}^{20} x_i^{13} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{5} = \sum_{i=1}^{20} y_i * x_i^{5} \\ a_0 * \sum_{i=1}^{20} x_i^{13} + a_1 * \sum_{i=1}^{20} x_i^{12} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{4} = \sum_{i=1}^{20} y_i * x_i^{4} \\ a_0 * \sum_{i=1}^{20} x_i^{12} + a_1 * \sum_{i=1}^{20} x_i^{11} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{3} = \sum_{i=1}^{20} y_i * x_i^{3} \\ a_0 * \sum_{i=1}^{20} x_i^{11} + a_1 * \sum_{i=1}^{20} x_i^{10} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{2} = \sum_{i=1}^{20} y_i * x_i^{2} \\ a_0 * \sum_{i=1}^{20} x_i^{10} + a_1 * \sum_{i=1}^{20} x_i^{9} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{1} = \sum_{i=1}^{20} y_i * x_i^{1} \\ a_0 * \sum_{i=1}^{20} x_i^{10} + a_1 * \sum_{i=1}^{20} x_i^{9} + \cdots + a_9 * \sum_{i=1}^{20} x_i^{1} = \sum_{i=1}^{20} y_i * x_i^{1} \end{cases}$$

Сумма квадратов отклонений между узловыми значениями функции и аппроксимирующей кривой вычисляются по формуле:

$$\sum_{i=1}^{20} (y_i - \sum_{n=0}^{9} a_i * x_i^n)^2$$

Решение задачи

least_squares.py

```
# -*- coding: utf-8 -*-
from sympy import *
import matplotlib.pyplot as plt
import numpy as np
```

```
def create polinom(x , x list, y list, n):
    display(A)
        x values.append(x i)
            x_values.append(x i + step * j)
    x values.append(x list[-1])
```

```
import matplotlib.pyplot as plt
from sympy import *
import pylab
pylab.rcParams['figure.figsize'] = (15.0, 10.0)
plt.rcParams.update({'font.size': 22})
init_printing()
var('x')
y_20 = [5, 6, 8, 10, 12, 13, 12, 10, 8, 10, 8, 11, 7, 9, 11, 10, 9, 12, 11, 6]
x_20 = [x_i \text{ for } x_i \text{ in range}(1, len(y_20) + 1)]
display(x_20)
display(y_20)
polinom_9, coeffs = LeastSquares.create_polinom(x, x_20, y_20, 9)
x_{list} = LeastSquares.split_intervals(x_20, 10)
LeastSquares.plot(x_list, coeffs)
plt.scatter(x_20, y_20, color='red', s=100)
plt.plot(x_20, y_20)
```

Условные обозначения:

--- - означает, что код в Jupyter Notebook разделён в разные ячейки

Результат работы

6. 8. 10, 12, 13, 12. 10, 8, 10, 8, 11, 7, 9, 11, 10, 9, 12, 11, 6] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 201 Matrix A:

426453788542828686799730	22036397710027769309220	1142003663611187899466	59376590676022063500	3098689489300027490
22036397710027769309220	1142003663611187899466	59376590676022063500	3098689489300027490	162401629714694580
1142003663611187899466	59376590676022063500	3098689489300027490	162401629714694580	8553403807182266
59376590676022063500	3098689489300027490	162401629714694580	8553403807182266	453084917113500
3098689489300027490	162401629714694580	8553403807182266	453084917113500	24163571680850
162401629714694580	8553403807182266	453084917113500	24163571680850	1299155279940
8553403807182266	453084917113500	24163571680850	1299155279940	70540730666
453084917113500	24163571680850	1299155279940	70540730666	3877286700
24163571680850	1299155279940	70540730666	3877286700	216455810
1299155279940	70540730666	3877286700	216455810	12333300

162401629714694580	8553403807182266	453084917113500	24163571680850	1299155279940
8553403807182266	453084917113500	24163571680850	1299155279940	70540730666
453084917113500	24163571680850	1299155279940	70540730666	3877286700
24163571680850	1299155279940	70540730666	3877286700	216455810
1299155279940	70540730666	3877286700	216455810	12333300
70540730666	3877286700	216455810	12333300	722666
3877286700	216455810	12333300	722666	44100
216455810	12333300	722666	44100	2870
12333300	722666	44100	2870	210
722666	44100	2870	210	20

Matrix b:

Сумма квадратов отклонений между узловыми значениями функции и аппроксимирующей кривой: 20.655 $7.2558 \cdot 10^{-8} x^9 - 7.5469 \cdot 10^{-6} x^8 + 0.00032398 x^7 - 0.0074375 x^6 + 0.098527 x^5 - 0.75463 x^4 + 3.1597 x^3 - 6.4954 x^2 + 6.9809 x + 2.0418$

В работе требовалось аппроксимировать таблично заданную функцию по методу наименьших квадратов, используя полиномы по девятый порядок включительно. Для решения данной задачи была написана программа. Результат представлен в виде скриншота выше.