{} = (A > (A > B) > (A > B) use deduction method. 1. A > (A > R) Deduction nethod Premise 1. A Deluction netzed premise

1. A B Deluction netzed premise

3. A >B 1,2, mg

-4. B 2,3, mg

5. A B 2-4 deduction withou (discharges assumption in line of the lines of the (3) = (A > (A > B)) -> (A > B) use deduction method. 1. A > (A > B) Deduction method Premise

/now show A > B) 1. A Deduction method premise

1. A B Liling

5. A B L-4 deduction without (discharges assumption in line d).

6. A B I-5 ded method show put cite lines

(A) (A-B) > (A >B) (discharges line)

.

What if 4 is $A \rightarrow (A \rightarrow (A \rightarrow B))$ Take as premizes A, A, and A and show B.

-not going to happer

1. A del outred premiso

1. A del outred premiso

9. A del netrod premise

1. A del netrod premise

1. A del outred premise

2. A del outred premise

1. A del outred premi

Ψ.

Show (SADIS) B-XS = A >C (hypothesis premise)

i.e. Show (A >B) ~ (B-X) -> (A >C))

i.e. Show (A >B) ~ (B-X) -> (A >C))

1. A >B

ded article premise

3. B -> C

ded article

led article

// prove C

Formalizing English Arguments

1. identify true /false statements and arran variables to their

A = Jack tetcher paul

B = Jack worker hard

C E Jack o poil

	A -> A
if A To	A ->B
BIFA	$A \rightarrow B$
B caly it A	BIA

). translate argument exing letters and Becleon combinations

A A only if B B only if C i. C

₹A, A→B, B→·C} = C?? yes using either =

Logics

To define a *logic*, answer three questions:

- 1. What are the *models*?
- 2. What are the *formulas*?
- 3. Which formulas are true in which models?
- A logic is a formal system relating syntax (formulas) and semantics (models of the world).

Propositional Logic: Models

Covered on the overhead projector

Propositional Logic: Formulas

Covered on the overhead projector

Example formulas and non-formulas

Covered on the overhead projector

Precedence in formulas

- See p. 6 in text
- Covered on the overhead projector

When is a formula true in a model?

Each Boolean connective has a truth table

What about the other connectives?

Р	Q	$P \to Q$	Р	Q	$P \leftrightarrow Q$
T	T	Т	T	Т	Т
Т	F	F	Т	F	F
F	Т	T	F	Т	F
F	F	T	F	F	Т
Trick	ty cases	S	"P is the same as Q"		

Using truth tables to evaluate formulas

• Given the truth tables for the connectives, it is easy to tell when a formula is true in a model.

Terminology

• If a formula Φ is true in a model M, we say M is a model of Φ .

Entailment

Given some premises

$$\begin{array}{c} A \\ B \rightarrow C \\ (A \wedge B) \rightarrow (D \vee \neg C) \\ B \end{array}$$

 When are we willing to conclude some new query formula?

Entailment (continued)

Let *P* be the conjunction of the premises:

$$A \land (B \rightarrow C) \land ((A \land B) \rightarrow (D \lor \neg C)) \land B$$

- Believing P is true involves committing to a class of models:
 - Those models that make P true
- We should be willing to also believe any formula that is true in all those models.

Entailment defined

We say that *P* entails *Q* whenever

- Every model making *P* true makes *Q* true.
- ...written $P \mid = Q$

Tautologies and Contradictions

- A tautology is a formula that is true in every model. (also called a theorem)
 - for example, $(A \cap A)$ is a tautology
 - ...written |= (A [∨] ¬A)
- A contradiction is a formula that is <u>false</u> in every model.
 - for example, (A $^{\wedge} \neg A$) is a contradiction
 - ...written $= \neg (A ^ \neg A)$

An example

What is the difference between:

1.
$$P = Q$$
 ($P \text{ entails } Q$)

2.
$$|= P \rightarrow Q$$
 $(P \rightarrow Q \text{ is a tautology})$

Expand the definition of |= for each.

Expanding the definition of |=

<u>Surprise</u>: these are actually the same thing! (this result is called the *deduction theorem*)

Demonstrating entailment

- A straightforward argument for entailment requires checking all models ("model checking")
 - But there are exponentially many models, so this can be prohibitively expensive.
 - For the worst case, it is believed there is no better approach
 - this is so unless P = NP (covered later)
 - But we can give an an approach that often works better, called a <u>proof system</u>

Example of model checking

Covered in class on overhead projector

A Proof System

- A *proof system* is a syntactic system for finding formulas entailed by your premises.
 - "syntactic" means manipulating syntax
 - i.e. manipulating formulas rather than models.
- A proof is a sequence of formulas, where each formulas in the sequence is either
 - a premise
 - a formula justified by previous formulas and a proof rule.
- The sequence "proves" the last formula.

Example proof rule

Given the formulas above the line, we can add the formula below the line to the proof.

Example proof

- Premises: C, B, $B \rightarrow (C \rightarrow A)$
- Conclusion: A
- 1. *B*
- 2. $B \rightarrow (C \rightarrow A)$
- 3. $C \rightarrow A$
- 4. C
- 5. *A*

premise

premise

1, 2, *mp*

premise

3, 4, mp

Proof Rules: Inference Rules

From	Can derive	Rule name	Abbr.
$P, P \rightarrow Q$	Q	Modus ponens	mp
$P \rightarrow Q$, $\neg Q$	$\neg P$	Modus tollens	mt
P, Q	$P^{\wedge}Q$	Conjunction	con
$P ^{\wedge} Q$	P, Q	Simplification	sim
P	$P^{\vee}Q$	Addition	add

Proof rules: Equivalence rules

Expression	Equivalent	Rule name	Abbr.
P ^V Q P ^A Q	Q ^v P Q [^] P	Commutative	comm
(P [^] Q) [^] R (P [^] Q) [^] R	P ' (Q ' R) P ' (Q ' R)	Associative	ass
$\neg (P \lor Q)$ $\neg (P \land Q)$	$\neg P \land \neg Q$ $\neg P \lor \neg Q$	De Morgan	dm
$P \rightarrow Q$	$\neg P \lor Q$	Implication	imp
¬(¬ P)	P	Double Neg.	dn
$P \leftrightarrow Q$	$egin{pmatrix} (P ightarrow Q) \ (Q ightarrow P) \end{pmatrix}$	Equivalence	equ

Another Example Proof

Show D from

A, B, B
$$\rightarrow$$
C, and (A $^{\wedge}$ B) -> (D $^{\vee}$ C')

Covered in class on overhead projector

Deduction Method in Proofs

- The deduction theorem allows a natural method for proving implications.
 - Recall, the deduction theorem: P = Q if and only if $P = P \rightarrow Q$
- When proving $P \rightarrow Q...$
 - add P to premises and prove Q.
 - (you are proving P = Q instead)
- Repeat to prove $P \rightarrow (Q \rightarrow R)$
 - add P and Q to premises and prove R.

Example proof using deduction method

Prove
$$\models [A \rightarrow (A \rightarrow B)] \rightarrow (A \rightarrow B)$$
.

1.
$$[A \rightarrow (A \rightarrow B)] \rightarrow (A \rightarrow B)$$
 ded. method
a. $A \rightarrow (A \rightarrow B)$ ded. method premise
b. $A \rightarrow B$ ded. method
i. A ded. method premise
ii. $A \rightarrow B$ 1a, 1bi, mp
iii. B 1bi, 1bii, mp

- Each ded. method line must be justified by a nested proof of its right-hand side which can use the left-hand side as a "ded. method premise"
- Proofs can only cite lines from enclosing nesting levels.
 - i.e. once a nesting level is closed, its lines cannot be cited

Formalizing English Arguments

To formalize an English argument:

- 1. Find the minimal *statements* in the argument and symbolize them with propositional letters *A*, *B*, ...
- 2. Convert English connectives to propositional ones.
- 3. Give a proof of the conclusion using the premises.

Examples

Jack went to fetch a pail of water. Jack fetches a pail of water only if Jack works hard. Jack works hard only when Jack is paid. Therefore Jack was paid.

Minimal True/False Statements

Jack went to fetch a pail of water. Jack fetches a pail of water only if Jack works hard. Jack works hard only if Jack is paid. Therefore Jack was paid.

A = Jack fetches a pail of water

B = Jack works hard

C =Jack is paid

A. A only if B. B only if C. Therefore C.

Eliminating connectives

A. A only if B. B only if C. Therefore C.

becomes

Premises: $A, A \rightarrow B, B \rightarrow C$.

Conclusion: C.

Easy to prove that these premises entail this conclusion using rule mp.

Examples — a bad argument

Jack went to fetch a pail of water. Jack fetches a pail of water if Jack works hard. Jack works hard if Jack is paid. Therefore Jack was paid.

Premises: $A, B \rightarrow A, C \rightarrow B$.

Conclusion: C.

Premises do <u>not</u> entail conclusion...to show this, give a model of the premises that makes the conclusion false.

• A=T, B=T, C=F

Another example

Fish can walk. Fish can walk only if elephants can fly. Elephants can fly only if eggplants can talk. Therefore, eggplants can talk.

Is this a valid argument?

Examples where propositional logic fails

Every positive number is greater than zero. Five is a positive number. Therefore, five is greater than zero.

Minimal statements?

A =Every positive number is greater than zero.

B = Five is a positive number.

C = Five is greater than zero.

Premises: A, B. Conclusion: C.

Conclusion not entailed (concider A = B =

Conclusion not entailed (consider A = B = T, C = F)

Our logic does not model the internal structure of the propositions