

ENGENHARIA DE SOFWARE

VIII Métodos e Técnicas de Análise e Projeto de Software

Prof. André Luiz de Castro Leal

Doutorando em Informática pela PUC-RIO
Mestrado em Ciência da Computação pela UFV
Especialista em Gestão de Ti
Especialista em Ciência da Computação
andrecastro@ufrrj.br

Engenharia de Software

Macro Estrutura do Conteúdo

- 1) Linha do Tempo
- 2) Métodos de Desenvolvimento de Software
- 3) Análise Estruturada
- 4) Análise Essencial
- 5) Análise Orientada a Objetos

uiso de Sistemas de Impimações cof André Luiz de Castro Leal

Linha do Tempo

- 1957 Criação da Linguagem de Programação Fortran
- 1958 Criação da Linguagem de Programação Algol
- 1964 Criação da Linguagem de Programação Basic
- 1967 Ole-Johan Dhal e Kristen Nygaard desenvolvem a linguagem Simula-67, com vários conceitos que posteriormente seriam base para a Orientação a Objetos: classes, objetos, funções virtuais, garbage collection,...
- 1970 Alan Key cunha os termos "object-oriented" e "objectoriented programming"
- ~1970 Crise do Software

Elementos desencadeadores:

- Desenvolvimento de Software de forma "artesanal" através do desenho de telas e arquivos
- · Constantes erros de execução
- · Pouco tempo para coletar dados
- · Não cumprimento de prazos
- Problemas de custos inesperados relacionados a correção de erros e adaptação do código
- · Código/documentação ilegível ou inexistente
- Comunicação durante o desenvolvimento muito fraca
- · Falta de testes complexos
- · Insatisfação de usuários

Linha do Tempo

1979 - O DoD (Department of Defense) lança a especificação preliminar de Ada.

1980 – Bjarne Stroustrup cria extensões orientadas a objeto para C e chama essa linguagem de "C com classes ".

É lançada Smalltalk-80, com o conceito de metaclasses.

1981 – Grady Booch desenvolve um processo de desenvolvimento para Ada, com uma notação que viria a ser conhecida como "Diagramas de Booch".

1982 - A Agência Espacial Européia propõe uma técnica de projeto orientado a objetos, chamada HOOD (*Hierarchical Object-Oriented Design*), também direcionado para Ada.

1983 – A linguagem de Stroustrup é renomeada para C++

1985 - Bertrand Meyer propõe a linguagem Eiffel

1986 – Primeira conferência OOPSLA (Object-oriented Programming, Systems, Languages, and Applications)

1988 - Sally Shlaer e Stephen J. Mellor desenvolvem um método conhecido como *Object Oriented Structured Analysis* (OOSA), além de propor uma linguagem de modelagem chamada *Object Oriented Design Language* (OODLE).

Engenharia de Software

Linha do Tempo

1989 – É fundado o OMG (*Object Management Group*), que começa a trabalhar na especificação de CORBA (*Common Object Request Broker Architecture*)

1980 – Guido van Rossum desenvolve Python. Rebecca Wirfs-Brock propõe uma metodologia baseada em *Responsibility-Driven Design* (RDD) e cartões CRC (*Class-Responsibility-Collaboration*). Peter Coad e Edward Yourdon lançam uma metodologia conhecida como *Object-Oriented Analysis*.

1991 – James Rumbaugh propõe uma metodologia nomeada OMT (*Object Modeling Technique*). A notação do diagrama de classes de OMT viria a servir como base para UML.

1991 – A Sun começa a desenvolver uma nova linguagem orientada a objetos chamada Java, originalmente projetada para criar software para eletrodomésticos.

1992 – Ivar Jacobson lança o m étodo OOSE (*Object Oriented Software Engineering*). Sua grande contribuição viria a ser a proposta dos Diagramas de Casos de Uso.

1994 – Grady Booch, James Rumbaugh e Ivar Jacobson começam a trabalhar na especificação de UML (*Unified Modeling Language*) Coleman e outros autores propõem a metodologia Fusion.

1995 - A Sun lança oficialmente Java. O JDK 1.0 viria somente em mais um ano.

Curso de Sistemas de Informações

Linha do Tempo

1995 - A Borland lança Delphi 1.0

1997 – Lançada oficialmente a especificação 1.0 de UML. Revisão da UML pela OMG gerando a especificação 1.1.

1998 - O RUP 5.0, baseado em UML, é formado pela união das melhores metodologias de projeto de sis temas (*ObjectoryProcess*: versões 1.0 a 3.8 (1987 a 1995) que posteriormente integrou-se à abordagem da Rational (*Rational Objectory Process* – ROP).

2001 - Revisão da UML gerando a especificação 1.4 de UML.

2004 - Lançada a especificação 2.0 de UML.

urso de Sistemas de Informações rof. André Luiz de Castro Leal

Métodos de Desenvolvimento de Software

A análise auxilia na comunicação entre as pessoas envolvidas no processo de desenvolvimento do software, no gerenciamento da complexidade e na redução dos custos de desenvolvimento.

Técnica	Foco	Abordagem
Análise Estruturada	Processos e Dados	Top-Down
Análise Essencial	Controles, Processos e Dados	Middle-Out
Análise Orientada ao Objetos	Dados, Controles e Processos	Definição de Objetos

turso de Sistemas de Informações Prof. André Luiz de Castro Leal

Utiliza as ferramentas:

- Diagrama de Fluxo de Dados
- · Dicionário de Dados
- Especificação da Lógica de Processos

A análise estruturada clássica não modela o comportamento temporal, nem complexos relacionamentos de dados.

Análise Estruturada

DFD – Diagrama de Fluxos de Dados

- Utilizado para especificar o modelo dos processos do sistema, ou seja, como a informação é criada, armazenada e utilizada
- A ênfase está nos processos
- Devem ser simples para que possa ser compreendido facilmente pelo analista, pelo cliente e pela equipe de desenvolvimento
- Os componentes do DFD são: processo, fluxo de dados, entidade externa e depósito de dados

Engenharia de Software

Análise Estruturada

DFD – Diagrama de Fluxos de Dados

- Deve ser utilizado quando for necessário conhecer:
 - a funcionalidade do sistema
 - a forma como tudo acontece
 - a forma como os elementos se inter-relacionam e se transformam
- A sua construção é realizada em níveis:
 - Nível 0: Diagrama de Contexto
 - Nível 1: Explosão do nível 0, contendo *Título* e *Numeração dos Processos*: 1; 2; 3;...
 - Nível 2: Explosão do nível 1, contendo *Título* e *Numeração dose Processos:* 1.1; 1.2; 1.3;... 2.1; 2.2;...
 - E assim por diante.

Curso de Sistemas de Informaçõ

Análise Estruturada

DFD - Processo

- Representa o elemento que transforma entradas em saídas
- O processo sempre tem um nome que deve descrever o melhor possível a funcionalidade que será desempenhada pelo processo
- O nome do processo, geralmente, é formado por um verbo (Calcular) e um objeto (Média dos Alunos)
- Formas de representação:

Calcular Média dos Alunos Calcular Média dos Alunos

Calcular Média dos Alunos

Curso de Sistemas de Infe

Análise Estruturada

DD - Dicionário de dados

É uma lista organizada dos elementos do sistema, com definições precisas e rigorosas, de forma que o usuário e o analista de sistemas tenham uma compreensão comum dos fluxos de entrada, dos fluxos de saída, dos componentes dos depósitos de dados e dos cálculos intermediários.

Na descrição do dicionário é utilizada uma gram ática, quase formal, para descrever o conteúdo dos elementos definidos durante a análise estruturada.

Pode ser feito através de uma ferramenta CASE.

Curso de Sistemas de Informaçã Prof. André Luiz de Castro Leal

Engenharia de Software

Análise Estruturada

DD - Dicionário de dados

O Dicionário de Dados:

- · Descreve o significado dos fluxos e dos depósitos de dados
- \cdot Detalha a composição dos pacotes agregados de dados que se movimentam pelos fluxos
- · Mostra a composição dos pacotes de dados nos depósito
- · Especifica os "valores" e "unidades" de partes elementares de informações dos fluxos de dados e dos depósitos de dados
- \cdot Detalha os relacionamentos entre os depósitos especificados em um DER

Curso de Sistemas de Informações Prof. André Luiz de Castro Leal

Análise Estruturada

DD - Dicionário de dados

Exemplo de descrição para um elemento:
nome do aluno – faz parte do fluxo de dados "inf.alunos ":
nome do aluno= titulo + prim -nome + (nome-intermediário) + ult-nome
titulo = [Sr. | Srta. | Sra. | vazio]
prim -nome = { qualquer-caracter-válido }
nome-intermediário = { qualquer-caracter-válido }
ult-nome = { qualquer-caracter-válido }
qualquer-caracter-válido = [A-Z | a-z | espaço em branco]

Curso de Sistemas de Informações Prof. André Luiz de Castro Leal

Análise Estruturada

DD - Dicionário de dados - Exemplo

```
cliente-pedido = * cliente que encaminhou o pedido * nome-cliente + [endereço-cliente | telefone-cliente]
```

item-pedido = * item do pedido de um cliente * nome-item + quantidadeitem

pedido-livro = * pedido de livros dos clientes da livraria * cliente-pedido + 1{item-pedido}

pedido-livro = * pedido de livros dos clientes da livraria* (<u>especificação ruim</u>) nome-cliente + endereço-cliente + (telefone-cliente) + 1{nome-item + quantidade-item}

pedido-livro = *pedido de livros dos clientes da livrara* (<u>especificação boa</u>) cliente-pedido + 1 {item-pedido}

Engenharia de Software

Análise Estruturada

DD - Dicionário de dados - Exemplo

Quando dois ou mais dados possuírem a mesma composição, suas definições podem ser feitas por meio de referências cruzadas.

Exemplo:

endereço = **
rua + complemento + bairro + cep + estado

endereço-cliente = ** endereço

endereço-fornecedor = ** endereço

Jurso de Sistemas de Informações Prof. André Luiz de Castro Leal

Análise Estruturada

DD - Dicionário de dados - Exemplo

As mensagens transportadas pelos fluxos de dados, quando definidas no dicionário de dados, devem ser escritas entre aspas.

Exemplos:

pedido-inválido = * pedido de cliente rejeitado pela livraria*
"livro inexistente"

situação-aluno = * aproveitamento do aluno na disciplina* [nota-aluno | "reprovado"]

livro-indisponível = * livro indisponível para empréstimo* nome-livro + ["emprestado" | "reservado"]

curso de Sistemas de informaço Prof. André Luiz de Castro Leal

Engenharia de Software

Análise Estruturada

EP - Especificação de Processo

É usada para descrever o que ocorre dentro de todos os processos que aparecem no nível mais baixo do DFD.

Também se utiliza o termo Mini-especificação.

Algumas ferramentas para especificação de processos são:

- Português-Estruturado
- Tabelas de Decisão
- Árvores de Decisão

A especificação de processos deve ser expressa de uma forma que possa ser verificada pelo usuário e pelo analista de sistemas.

PE - Português estruturado

É utilizado para descrever, passo a passo, a execução de alguma tarefa, utilizando uma linguagem natural, por exemplo, o português. Usa três estruturas de controle da programação estruturada:

- seqüência
- seleção: se... então... senão, escolha....
- repetição: enquanto... faça, para faça, repita... até.

Curso de Sistemas de Informações Prof. André Luiz de Castro Leal

Análise Estruturada

PE - Português estruturado

Exemplo: Verifica a situação do aluno na disciplina

lê nota1, nota2, nota3, nota4, notaSeminário notaRelatório média = (nota1 + nota2 + nota3 + nota4*3) / 6

se ((m édia >= 6) e (notaSeminário >= 5) e (notaRelatório >= 5)) então imprima "aluno aprovado"

senão se (((m édia >= 6) e (notaSeminário >= 5)) ou ((m édia >=6) e (notaRelatório >=5)) ou ((notaSeminário >=5) e (notaRelatório >= 5))) então imprima "aluno em exame"

senão

imprima "aluno reprovado"

Curso de Sistemas de Informação Prof. André Luiz de Castro Leal

Análise Estruturada

TD - Tabelas de decisão

São indicadas para especificar quais ações serão executadas a partir de um conjunto de valores condicionais.

É composta de:

- conjunto de regras
- linhas de condições
- linhas de ações
 Formato Geral:

de Sistemas de Informações

	TABELA-CASACO	R1	R2	R3
C1	chovendo	Y	Y	N
C2	frio	Y	N	Y
A1	usar capa forrada	X		
A2	usar capa sem forro		X	
A3	usar pulover de lã			X
			•	•

Análise Estruturada

TD - Tabelas de decisão

Etapas para criação de uma Tabela de Decisão:

- Identifique todas as condições ou variáveis/valores.
- Calcule o número de combinações de condições. Se há N variáveis binárias o número de combinações é 2N.
- Identifique cada ação correspondente.
- Crie a tabela de decisão vazia, relacionando todas as condições e ações no lado esquerdo e numerando as regras no alto da tabela.
- Relacione todas as combinações de condições.
- Examine cada regra e identifique as ações adequadas a realizar.
- Identifique todas as omissões, contradições e ambigüidades.
- Discuta as omissões, contradições e ambigüidades com o usuário.

Curso de Sistemas de Informações Prof. André Luiz de Castro Leal

7	MANUFACTURES, O.O. O.O. O.O.O.O.O.O.O.O.O.O.O.O.O.O.	
		lings.

Análise Estruturada: Exemplo

		1	2	3	4	5	6	7	8
C1:	media >= 6	S	S	S	S	N	Ν	N	N
C2:	notaSeminário >= 3	S	S	Ν	Ν	S	S	Ν	N
C3:	notaRelatório >= 3	S	Ν	S	N	S	Ν	S	N
A1:	aluno aprovado	Χ							
A2:	aluno em exame		X	Χ		Χ			
A3:	aluno reprovado				Χ		Χ	Χ	Χ

curso de Sistemas de imormações. Prof. André Luiz de Castro Leal

É uma evolução da Análise Estruturada por adicionar a preocupação com o controle e faz uso de suas ferramentas para representar os requisitos do sistema.

A Análise Essencial é um composto de três elementos:

- descrição das características do sistema
- identificação das atividades essenciais do sistema
- classificação das restrições de implementação

Na análise essencial um requisito verdadeiro é uma característica ou capacidade que um sistema deve ter para cumprir sua finalidade, independente de como ele é implementado.

Os requisitos verdadeiros constituem a essência do sistema.

Análise Essencial

Modelo essencial é construído sem considerar restrições de implementação (assume uma tecnologia perfeita) – essência do sistema.

O modelo essencial é formado pelo:

- Modelo Ambiental que define a fronteira entre o sistema e o ambiente
- Modelo Comportamental que descreve o comportamento interno do sistema.
- *Modelo de Informação* que modela os dados necessários às atividades essenciais do sistema
- Modelo de Implementação que é uma extensão do modelo essencial com restrições de implementação.

Prof. André Luiz de Castro Leal

Modelo Essencial - Modelo Ambiental

Diagrama de Contexto

Define as interfaces entre o sistema e o ambiente. São identificadas informações externas e as produzidas como saída.

Visão geral das características do sistema:

- Entidades externas
- Dados recebidos e processados
- Dados produzidos e exteriorizados

Lista de Eventos

Identifica os eventos que ocorrem no ambiente e como o sistema deve reagir. Lista de eventos:

- Evento
- Estímulo
- Resposta

Análise Essencial

Modelo Essencial - Modelo Comportamental

Mostra o comportamento interno do sistema.

Aborda as atividades essenciais do sistema modeladas em um DFD.

Cada atividade corresponde a um evento.

Uma mini-especificação em português estruturado detalha o comportamento e valida a entradas e saídas das atividades essenciais (Especificação de processos – EP).

O Diagrama de Transição de Estado (DTE) mostra as transformações de controle do sistema no tempo.

Usa Dicionário de Dados.

Curso de Sistemas de Inf

Modelo Essencial - Modelo de Informação

Representa os dados necessários ao sistema.

Define os depósitos de dados que constituem a memória essencial do sistema e auxilia no levantamento da lista de eventos

As ferramentas utilizadas são:

- Diagrama de Entidade e Relacionamento
 - Deriva da lista de eventos
 - Representa a estrutura estática dos dados
- · Dicionário de Dados

Curso de Sistemas de Int Prof. André Luiz de Cast

Análise Essencial

Modelo de Implementação

Considera restrições tais como processador, capacidade de armazenamento, Sistema Gerenciador de Banco de Dados (SGBD), programação, recursos humanos e financeiros, etc.

Aborda os seguintes pontos:

- Modelo Lógico de Dados
- Características de Processamento
- Interface Homem Máquina

Curso de Sistemas de mornações Prof. André Luiz de Castro Leal

Modelo de Implementação - Modelo Lógico de Dados

É voltado para as características de implementação do Sistema Gerenciador de Banco de Dados (SGBD).

Por exemplo:

Classe de entidades: Aluno

id_aluno	nome	curso	cpf
000001	José da Silva	Gastronomia	10010010011
000002	Mariana Santos	Telecomunicações	10020010012

Curso de Sistemas de Informa Prof. André Luiz de Castro Le

Análise Essencial

Modelo de Implementação – Características de Processamento

Analisa, principalmente, os elementos:

- Tipo de processamento: Manual ou Automático.
- Modo de processamento: Lote, On-line, Tempo Real.
- A freqüência de execução.
- As atividades adicionais: Introdução dos Dados e Correção de Erros.

Modelo de Implementação – Interface Homem Máquina

Neste ponto são especificados:

- · Os dispositivos de Entrada e Saída
- Formato de todas as entradas originadas pelas Entidades

Engenharia de Software

Externas

• Formato de todas as Saídas destinadas às Entidades

Externas

• Seqüência e Temporização das Entradas e Saídas.

Curso de Sistemas de miorniações Prof. André Luiz de Castro Leal

DER - Diagrama de Entidade-Relacionamento

Foi originalmente proposto por Peter Chen (1976) e é o modelo mais utilizado no processo de projeto de base de dados relacional.

Os seus componentes são:

- Entidade: representa um objeto ou conceito existente no mundo real, como um aluno, uma disciplina ou as notas do aluno.
- Relacionamentos: associação entre conjuntos de dados ou entidades, podendo ser "1:1", "1:n" ou "n:n".
- Atributos: representa alguma característica de uma entidade ou de um relacionamento. Conceito de campo de dados.

Uma propriedade importante de um relacionamento é a *cardinalidade* que indica quantas ocorrências de uma entidade podem estar associadas a uma determinada ocorrência através do relacionamento.

Surso de Sistemas de Informa[.] Prof. André Luiz de Castro Le*s*

DTE - Diagrama de Transição de Estado

Representa o comportamento de um sistema, descrevendo seus estados e os eventos que fazem com que o sistema mude de estado.

> Indica também quais ações são executadas como consegüência de um dado evento. Diagrama de Transição de Estados para software de fotocopiadora, extraído de "Engenharia de Software, Pressman R., 5aEd.,

> > Engenharia de Software

Análise Orientada a Objetos

O objetivo é encontrar objetos, organizá-los, descrever como interagem entre si através da troca de mensagens e definir as operações relativas aos seus comportamentos.

Concentra-se nos aspectos essenciais do objeto sem detalhamento, focando em suas características e no que ele faz.

Combina estrutura (dados) e comportamento (funções) em um único objeto.

Enfatiza a estrutura de objetos e não as estruturas de funções, ou seja, o que o objeto é e não como ele é utilizado.

Compartilha elementos estruturais e de comportamento com objetos de níveis inferiores.

Análise Orientada a Objetos

Mudança do enfoque das funções para os dados.

Análise mais próxima da realidade. O mundo real é composto por objetos.

Objetos como entidades do mundo real.

Facilidade na comunicação com o usuário.

Objetos com estrutura e comportamento e que se comunicam.

"Um sistema construído usando um método Orientado a Objetos é aquele cujos componentes são partes encapsuladas de dados e funções, que podem herdar atributos e comportamentos de outros componentes da mesma natureza, e cujos componentes comunicam -se entre si por meio de mensagens."

(Edward Yourdon)

Curso de Sistemas de Infor

Análise Orientada a Objetos

Com o rápido crescimento da Orientação a Objetos surgiram várias metodologias.

Algumas metodologias, desenvolvidas entre 1898-1994, foram:

- Wirfs-Brock de Rebecca Wirfs-Brock, Wilkerson e Weiner
- BOOCH de Grady Booch
- COAD/YOURDON de Coad-Yourdon
- OOSE de Jacobson
- OMT de Rumbaugh

Jurso de Sistemas de Informações Prof. André Luiz de Castro Leal

Análise Orientada a Objetos

A partir do grande uso do método de Booch e do OMT, os autores juntaram forças para fazer um m étodo unificado, com uma linguagem padrão.

Posteriormente Jacobson juntou-se a equipe.

Linguagem de modelagem proposta por Booch, Rumbaugh e Jacobson UML (*Unified Modeling Language*).

Padronizada pela OMG (Object Management Group).

Conta atualmente com o apoio de vários autores e várias empresas.

Análise Orientada a Objetos

Os principais diagramas da UML são:

- Fase de Análise
 - Diagrama de casos de uso
- Fase de Projeto
 - Diagrama de classes
 - Diagramas de seqüência
 - Diagramas de atividades e estado
 - Diagrama de componentes
 - Diagrama de implantação

O RUP (*Rational Unified Process*) foi proposto como uma metodologia para desenvolvimento de sistemas, orientada a objetos, utilizando UML.

Drof André Luiz de Castro Leal

Análise Orientada a Objetos

Algumas possíveis vantagens do desenvolvimento orientado a objetos são:

- Melhor reutilização de código e de projeto
- Maior facilidade de manutenção
- Melhora a comunicação entre os usuários e os desenvolvedores do sistema
- Maior capacidade de abstração e encapsulamento Algumas dificuldade são:
- Usuários não pensam seus problemas de forma orientada a objetos
- Requisitos não são orientados a objetos ? são funcionais

Curso de Sistemas de Informações Prof. André Luiz de Castro Leal

Análise Orientada a Objetos

Nos métodos de análise estruturada e essencial, o comportamento do sistema e seus dados são considerados separadamente.

Na orientação a objetos, comportamento e dados são integrados, encapsulando detalhes internos de um objeto.

Análise Estruturada e Essencial

Conjunto de programas que executam processos sobre dados Análise Orientada a Objetos

Conjunto de elementos que tem características e comportamentos próprios

Jurso de Sistemas de Informaçõe Prof. André Luiz de Castro Leal

♦ Material de apoio:

Bibliografia Básica

PRESSMAN, R. Engenharia de software. Rio de Janeiro: MacGraw-Hill, 2006. SOMMERVILLE, I. Engenharia de software. 8. ed. São Paulo: Addison Wesley, 2007.

Bibliografia Complementar

PFLEEGER, S.L., et al, "Software Engineering", Prentice Hall, 2005, 3rd edition.

IEEE Computer Society Real-World Software problems: A Self-Study Guide for Today's Software Professional, Wiley-IEEE Computer Society Press, 2006. Guide to the Software Engineering Body of Knowledge, IEEE Computer Society, 2004. Disponível em http://swebok.org.

urso de Sistemas de Informa

Engenharia de Softwar

Booch, G., Rumbaugh, J. e Jacobson, I., *The Unified Modeling language User Guide*, Addison-Wesley, 1999.

Wazlawick, Raul Sidney, Análise e Projeto de Sistemas de Informação Orientados a Objetos, Ed. Campus, Série Campus/SBC, 2004.

FOWLER, Martin. UML Essencial: um breve guia para a linguagem padrão de modelagem de objetos. Bookman, 2005.

Rumbaugh, James, e outros, Modelagem e Projetos Baseados em Objetos, Editora Campus, 1994.

Coad, Peter e Yourdon, Edward, Análise Baseada em Objetos, Editora Campus, 1992.

Coad, Peter e Yourdon, Edward, Projeto Baseado em Objetos, Editora Campus, 1993.

Gane, Chris e Sarson, Trish, Análise Estruturada de Sistemas, Ed. LTC, 1983.

Davis, W. S., Análise e Projetos de Sistemas: Uma abordagem Estruturada, Ed. LTC, 1987.

DeMarco, T., Análise Estruturada e Especificação de Sistema, Ed. Campus, 1989.

Yourdon, E. Análise Estruturada Moderna, Ed. Campus, 1990.

McMenamim, S. M. e Palmer, J. F., Análise Essencial de Sistemas, Editora McGraw-Hill, Ltda., 1991.

Gorender, S., Santana, M., *Histórico das Metodologias de Desenvolvimento de Sistemas*, http://www.lasid.ufba.br/easd/1_Apresenta__oHistoricoMetodologias_I.ppt, junho, 2007.

Jurso de Sistemas de Informações Brof Ardré Luiz do Contro Lool