### G-TORSORS OVER A DEDEKIND SCHEME

#### MICHAEL BROSHI

ABSTRACT. We prove the equivalence of three "points of view" on the notion of a G-torsor when the base scheme is a Dedekind scheme, generalizing known results when the base is a field. The two main tools that we generalize are Chevalley's theorem on semi-invariants (cf. [1, II.5.1]) and a Tannakian description of G-torsors given by Nori and Saavedra (cf. [10, Sec. 2] and [13, II.4.2]). As an application, we show that the fibered category of G-torsors on a regular proper curve over a field k is an Artin stack locally of finite presentation over k.

#### 1. Introduction

Let us first fix some notation. We fix a Dedekind scheme X (the base scheme). That is, X is a scheme that has a finite affine open cover by the spectra of Dedekind domains. Unless stated otherwise, any unadorned product is assumed to be over X, and for two X-schemes Y and T we often write  $Y_T = Y \times T = Y \times_X T$ . If Y is a scheme over X, we use the "functor of points notation" and write  $y \in Y$  to denote a morphism  $y: T \to Y$  of schemes over X. In the same spirit, if Y is a locally free  $\mathscr{O}_X$ -module of finite rank, we denote also by Y the functor  $Y: T \mapsto V \otimes \mathscr{O}_T$ , for T an X-scheme. This functor is represented by Spec (Sym  $Y^*$ ), where  $Y^* = \mathscr{H}om_{\mathscr{O}_X}(V, \mathscr{O}_X)$  denotes the dual of Y. For any Y, if Y is an Y-module and  $Y \in Y$  is an Y-submodule, we say Y is locally split (in Y) if Y is Zariski-locally on Y a direct summand of Y.

We fix G a flat algebraic group over X, by which we mean a flat, affine group scheme of finite type over X. By a representation of G, we mean a finite rank, locally free  $\mathcal{O}_X$ -module V with a linear G-action (for details, the reader is referred to §3 below). If Y is an X-scheme, a  $G_Y$ -torsor is a scheme P faithfully flat and affine over Y, provided with a right  $G_Y$ -action such that the following two conditions hold:

- (i) The map  $P \to Y$  is  $G_V$ -invariant.
- (ii) The natural map

$$P \times_Y G_Y \to P \times_Y P$$
;  $(p,q) \mapsto (p,pq)$ 

is an isomorphism.

It follows from faithfully flat descent ([6, 2.7.1]) that a  $G_Y$ -torsor is also finitely presented over Y, since G is finitely presented over X. A map  $P \to P'$  of  $G_Y$ -torsors is a  $G_Y$ -equivariant map of Y-schemes. A trivial  $G_Y$ -torsor is a  $G_Y$ -torsor  $P \to Y$  that is isomorphic as a  $G_Y$ -torsor to the projection map  $Y \times G \to Y$ . Given this terminology, condition (ii) is equivalent to:

(ii') The map  $P \to Y$  admits a section fppf-locally on Y.

Date: September 25, 2018.

Let  $X_{\operatorname{Zar}}$  denote the small Zariski site on X, that is, the category whose objects are open subsets  $U \subset X$  and whose morphisms are inclusions. Denote by  $\operatorname{\mathbf{Rep}} G$  the fibered category over  $X_{\operatorname{Zar}}$  where for an object U in  $X_{\operatorname{Zar}}$ ,  $\operatorname{\mathbf{Rep}} G(U) = \operatorname{Rep}_U G$  is the category of representations of  $G_U$  on locally free  $\mathscr{O}_U$ -modules of finite rank. For a scheme Y over X, let  $\operatorname{\mathbf{Bun}}_Y$  denote the fibered category over  $X_{\operatorname{Zar}}$  where for an object U in  $X_{\operatorname{Zar}}$ ,  $\operatorname{\mathbf{Bun}}_Y(U) = \operatorname{Bun}_{Y_U}$  is the category of all finite rank vector bundles on  $Y_U$ . Both  $\operatorname{\mathbf{Rep}} G$  and  $\operatorname{\mathbf{Bun}}_Y$  are tensor categories (as described in §4), and by a tensor functor  $F: \operatorname{\mathbf{Rep}} G \to \operatorname{\mathbf{Bun}}_Y$  we mean a functor of fibered categories respecting the tensor structure.

Let V be a representation of G,  $\{X_1, \ldots, X_r\}$  the (nonempty) connected components of X and  $\mathbf{i} = (i_1, \ldots, i_r)$  a sequence of natural numbers. We denote by  $\bigwedge^{\mathbf{i}} V$  the vector bundle such that  $\bigwedge^{\mathbf{i}} V | X_k = \bigwedge^{i_k} V | X_k$ , for  $k = 1, \ldots, r$ . We denote by t(V) some finite iteration of the operations  $\otimes$ ,  $\bigwedge^{\mathbf{i}}$ ,  $\operatorname{Sym}^j$ ,  $\oplus$ , and  $(\cdot)^*$ . We call such an iteration a tensorial construction. We remark that a tensor functor always respects the operations  $\otimes$ ,  $\oplus$  and  $(\cdot)^*$ , but need not respect  $\bigwedge^{\mathbf{i}}$  or  $\operatorname{Sym}^j$ . However, it is a consequence of Theorem 4.8 that if Y is faithfully flat over X, and  $Y : \operatorname{Rep} G \to \operatorname{Bun}_Y$  is a tensor functor that is exact and faithful on the fibers over  $X_{\operatorname{Zar}}$ , then  $Y : \operatorname{Pop} G \to \operatorname{Sun}_Y$  is a tensorial constructions.

If V is a vector bundle on X, and  $L \subset V$  is a locally split line bundle, we denote by  $\underline{\mathrm{Aut}}(V,L)$  the representable functor whose T-points are automorphisms f of  $V\otimes \mathscr{O}_T$  such that  $f(L\otimes \mathscr{O}_T)=L\otimes \mathscr{O}_T$ . We now state our main theorems.

**Theorem 1.1.** Let G be a flat algebraic group over a Dedekind scheme X. There is a representation V of G, a tensorial construction t(V), and a locally split line bundle  $L \subset t(V)$ , such that  $G \xrightarrow{\sim} \underline{\operatorname{Aut}}(V, L)$ .

| Proof   | This is     | Theorem 3.5. | Г | ٦ |
|---------|-------------|--------------|---|---|
| 1 1001. | T 11110 110 | THOUSE STORE |   | _ |

**Theorem 1.2.** Let G and X be as above. Let Y be a scheme faithfully flat over X. There is a natural equivalence that is functorial in Y of the following groupoids:

- (i) the groupoid of  $G_Y$ -torsors;
- (ii) the groupoid of tensor functors  $F : \mathbf{Rep} G \to \mathbf{Bun}_Y$  that on each fiber over  $X_{\mathbf{Zar}}$  are faithful and exact.

*Proof.* This is Theorem 4.8 (see also Remark 4.9 for an explanation of notation.)  $\Box$ 

We can immediately state a corollary to Theorem 1.1, for which we make the following defintion. Let V be a vector bundle on X, t(V) a tensorial construction and  $L \subset t(V)$  a line bundle. For an X-scheme Y, we define a Y-twist of (V, L), to be a pair  $(\mathscr{E}, \mathscr{L})$  consisting of a locally free sheaf  $\mathscr{E}$  on Y provided with a locally split line bundle  $\mathscr{L} \subset t(\mathscr{E})$  that is fppf-locally isomorphic as a pair to (V, L). That is, there is an fppf cover  $Y' \to Y$  and an isomorphism  $f : \mathscr{E}_{Y'} \xrightarrow{\sim} V_{Y'}$  such that  $f(\mathscr{L}_{Y'}) = L_{Y'}$ . An isomorphism of Y-twists  $f : (\mathscr{E}, \mathscr{L}) \to (\mathscr{E}', \mathscr{L}')$  is an isomorphism of vector bundles  $f : \mathscr{E} \to \mathscr{E}'$  such that  $f(\mathscr{L}) = \mathscr{L}'$ .

**Corollary 1.3.** Let G and X be as above. Fix a pair (V, L) as in Theorem 1.1 so that  $G \xrightarrow{\sim} \underline{\mathrm{Aut}}(V, L)$ . For any scheme Y over X, there is a natural equivalence that is functorial in Y of the following groupoids:

- (i) the groupoid of  $G_Y$  torsors;
- (ii) the groupoid of Y-twists of (V, L).

*Proof.* This is a standard construction. Given a  $G_Y$ -torsor P and a representation W of G, we can form the associated vector bundle

$$P \times^G W := P \times W/(pg, w) \sim (p, g^{-1}w).$$

Note that this construction respects tensorial constructions (see the proof of Lemma 4.1 for details).

Let a  $G_Y$ -torsor P be given. Define  $\mathscr{E} = P \times^G V$  and  $\mathscr{L} = P \times^G L$ . Then it is straightforward to check that  $(\mathscr{E}, \mathscr{L})$  is a Y-twist of (V, L)

For a quasi-inverse, given  $(\mathscr{E}, \mathscr{L})$ , we get a  $G_Y$ -torsor by considering the associated "frame bundle"  $P = \underline{\text{Isom}}((V_Y, L_Y), (\mathscr{E}, \mathscr{L}))$ .

**Remark 1.4.** Combining the equivalences stated in Theorem 1.2 and Corollary 1.3, we get an equivalence from the groupoid of functors as in Theorem 1.2 and the groupoid of Y-twists of (V, L). This has a simple description. Namely, it is given by  $F \mapsto (F(V), F(L))$ .

To see this, given a functor  $F: \mathbf{Rep} G \to \mathbf{Bun}_Y$ , the equivalence in Theorem 1.2 assigns to F the G-torsor F(G) (the notation is explained in Remark 4.9). Corollary 1.3 then assigns to F(G) the pair  $(F(G) \times^G V, F(G) \times^G L)$ . There is a map  $F(G) \times^G V \to F(V)$  induced by applying F to the G-map  $G \times V_0 \to V$  (where  $V_0$  is V provided with the trivial G-action). That this gives a well-defined isomorphism  $(F(G) \times^G V, F(G) \times^G L) \xrightarrow{\sim} (F(V), F(L))$  is shown in the proof of Theorem 4.8.

As we mentioned in the abstract, Theorems 1.1 and 1.2 were known when the base is a field. Furthermore, the idea of confining oneself to locally free, finite rank representations of G (rather than all quasicoherent sheaves with G-action) over Dedekind schemes is already present in Saavedra's book on Tannakian categories [13]. Nonetheless, the equivalence in Theorem 1.2 is only proven there when the base is a field (cf. [13, II.4.2.2]).

Finally, we remark that the formalism involving fibered categories over the Zariski site on X used in Theorem 1.2 is not necessary when X is affine. In that case, one need only consider exact, faithful tensor functors  $F : \operatorname{Rep} G \to \operatorname{Bun}_X$ .

Acknowledgements: I would like to thank Madhav Nori for many helpful discussions, and Torsten Wedhorn and Philipp Gross for their useful correspondence. This paper stems from a result from my PhD thesis, and I am deeply grateful to my advisor, Mark Kisin, for his help and support along the way. I am indebted to Brian Conrad who generously read earlier drafts, and gave numerous comments and suggestions. Finally, I am happy to thank the referee who gave a very careful reading that caught several infelicities and improved the exposition.

## 2. Application to the moduli of G-torsors

Before proceeding with the proof of Theorem 1.1, we give an application to the stack of G-torsors over a curve. By an  $Artin\ stack$ , we mean an algebraic stack as defined in [7, 4.1]. In particular, we assume that an Artin stack has a separated and quasicompact diagonal. For this section only, let k be a field, and assume that X is a connected, regular, proper curve over k. In particular, X is a Dedekind scheme. We also assume for this section that G has connected generic fibre. Finally, for this section only we use the convention that for k-schemes Y and T,  $Y_T = Y \times_{\text{Spec}\,k} T$ .

Let GTor $_X$  denote the fibered category that assigns to a k-scheme T the groupoid of  $G_{X_T}$ -torsors. The goal of this section is to prove the following theorem. We are grateful to Brian Conrad for pointing out this application of Theorem 1.1.

**Theorem 2.1.** The fibered category  $GTor_X$  is an Artin stack, locally of finite presentation over k.

We recall the following definition from [12, 3.3.3], a key input into the proof of the theorem, although the reader can take the statements of the subsequent theorem and lemmas as a black box. Let S be a scheme and T a scheme locally of finite presentation over S. We define the relative associated primes of T over S, denoted Ass (T/S), by

$$\operatorname{Ass}(T/S) = \bigcup_{s \in S} \operatorname{Ass}(T_s).$$

For a point  $s \in S$ , denote by  $(\widetilde{S}, \widetilde{s})$  the henselization of the pair (S, s), and let  $\widetilde{T} = T \times_S \widetilde{S}$ . We say that T is pure along  $T_s$  if for each element  $\widetilde{t} \in \operatorname{Ass}(\widetilde{T}/\widetilde{S})$ , the closure of  $\widetilde{t}$  in  $\widetilde{T}$  meets  $\widetilde{T}_{\widetilde{s}}$ . We say that T is S-pure (or that the map  $T \to S$  is pure) if it is pure along  $T_s$  for each  $s \in S$ .

A simple example of a map that is not pure is given by  $S = \operatorname{Spec} R$  for R a complete DVR,  $T = \operatorname{Spec} K$  where K is the fraction field of R and  $T \to S$  the natural inclusion. Then  $T_s$  is in fact empty for s the closed point of S.

The reason why we introduce this notion of purity is that pure maps have "flattening stratifications." More precisely, we have the following theorem.

**Theorem 2.2.** Suppose that  $T \to S$  is pure. Then there is a monomorphism  $Z \hookrightarrow S$  that is locally of finite presentation such that for any S-scheme S',  $T \times_S S' \to S'$  is flat if and only if  $S' \to S$  factors through Z.

Proof. This is 
$$[12, I.4.3.1]$$
.

**Lemma 2.3.** With G and X as above, G is X-pure.

Proof. Let  $\xi \in X$  be the generic point of X. By assumption  $G_{\xi}$  is connected, so it is in fact geometrically irreducible by  $[3, \, \mathrm{VI_A} \, 2.4]$ . By  $[6, \, 2.3.7]$ , since G is flat over X, and X is irreducible, the image of  $G_{\xi}$  in G is dense. In particular, since  $G_{\xi}$  is irreducible so is G. Since X has  $\xi$  as its unique associated prime, Ass  $G = \mathrm{Ass}\,G_{\xi}$  by the X-flatness of G (see  $[6, \, 3.3.1]$ , which describes associated primes along fibers). Let  $\eta \in G$  be its generic point. We claim that  $\mathrm{Ass}\,G_{\xi} = \{\eta\}$ . Suppose on the contrary that  $Z \subset G_{\xi}$  is an embedded component. In particular  $\dim G_{\xi} > 0$ . Denote by  $\overline{\xi}$  an algebraic closure of  $\xi$ . Then  $Z_{\overline{\xi}} \subset G_{\overline{\xi}}$  is a union of finitely many embedded components. Furthermore, for each closed point  $g \in G_{\overline{\xi}}$ ,  $gZ_{\overline{\xi}}$  is also a union of finitely many distinct closed sets amongst the pairwise disjoint  $\{gZ_{\overline{\xi}}\}_{g \in G}$ . But, this is a contradiction since  $G_{\overline{\xi}}$  is of finite type over  $\overline{\xi}$  hence has only finitely many associated primes.

Thus far, we have concluded that G is an irreducible scheme over X, and its generic point  $\eta \in G$  is its unique associated prime. To show G is pure over a closed point  $x \in X$  we may replace X by  $\operatorname{Spec} \mathscr{O}_{X,x}$ . So, we may assume that X is the spectrum of a DVR with closed point x (G is still irreducible and its generic point is its unique associated prime after this base change). Let  $(\widetilde{X}, \widetilde{x})$  be the henselization of (X, x). Then  $\widetilde{X}$  has its generic point at its unique associated

prime. It then follows as above that  $\widetilde{G} := G \times_X \widetilde{X}$  also has its generic point as its unique associated prime. Thus,  $\operatorname{Ass}(\widetilde{G}/\widetilde{X})$  consists of the generic point of  $\widetilde{G}$  together with points on  $\widetilde{G}_{\widetilde{x}}$  (in fact just the generic points of the latter, but this is not needed). In particular, the closures of these points in  $\widetilde{G}$  meet  $\widetilde{G}_{\widetilde{x}}$ . This shows that G is pure along  $G_x$  for each closed point  $x \in X$ , and it is straightforward to check that G is pure along  $G_\xi$  as well. Hence, G is pure over X, as claimed.  $\square$ 

**Lemma 2.4.** Let  $T \to S$  be locally of finite presentation. If  $S' \to S$  is fppf, then  $T \times_S S' \to S'$  is flat and pure if and only if  $T \to S$  is flat and pure.

*Proof.* For purity this is [12, I.3.3.7], and for flatness this is [6, 2.5.1].

**Lemma 2.5.** Let  $\mathscr{I}$  and  $\mathscr{Q}$  be an Artin stacks over k, and let  $f: \mathscr{I} \to X_{\mathscr{Q}}$  be representable in schemes and locally of finite presentation. The condition on  $\mathscr{Q}$ -schemes T that  $\mathscr{I} \times_{\mathscr{Q}} T \to X_T$  is flat and pure is representable by an Artin stack locally of finite presentation over  $\mathscr{Q}$ .

*Proof.* Let  $\mathscr{Z}$  denote the fibered category over  $\mathscr{Q}$  where  $\mathscr{Z}(T) \subset \mathscr{Q}(T)$  is the full subcategory consisting of those objects of  $\mathscr{Q}(T)$  for which  $\mathscr{I} \times_{\mathscr{Q}} T \to X_T$  is flat and pure. Using Lemma 2.4, it is straightforward to verify that  $\mathscr{Z}$  is a stack. We must show that the map  $\mathscr{Z} \to \mathscr{Q}$  is representable and locally of finite presentation.

Let  $Q \to \mathcal{Q}$  be a smooth scheme cover, and let  $I = \mathscr{I} \times_{\mathcal{Q}} Q$ , a smooth scheme cover of  $\mathscr{I}$ . It suffices to show that  $Z = \mathscr{Z} \times_{\mathcal{Q}} Q$  is an algebraic space, locally of finite presentation over Q. By definition, for any k-scheme T, a map  $T \to Q$  lies in  $Z(T) \subset Q(T)$  if and only if  $I \times_Q T \to X_T$  is flat and pure. Thus, we must represent that condition on Q-schemes. We first represent the purity condition. By [12, 3.3.8], purity is an open condition, so there is an open immersion  $U' \hookrightarrow X_Q$  such that  $X_T \to X_Q$  factors through U' if and only if  $I \times_Q T = I \times_{X_Q} X_T$  is pure over  $X_T$ . To get an open subspace of Q representing the purity condition, we take the (closed) image of the closed complement of U' under  $X_Q \to Q$  and let U be complement of that image. It then follows that  $T \to Q$  factors through U if and only if  $I \times_Q T$  is pure over  $X_T$ .

Thus, replacing Q by U and I by the inverse image of  $X_U$ , we may assume that  $I \to X_Q$  is pure. In this case, by Theorem 2.2, there is a representable monomorphism  $Z' \to X_Q$  such that  $Y \to X_Q$  factors through Z' if and only if  $I \times_{X_Q} Y \to Y$  is flat. We now want to represent the condition on Q-schemes T that  $X_T \to X_Q$  factors through Z'. These are exactly the T-points of the restriction of scalars  $\operatorname{Res}_Q^{X_Q}(Z')$ . By [11, 1.5], since  $X_Q \to Q$  is a proper, flat, and locally finitely presented, and  $Z' \to X_Q$  is separated and locally of finite presentation,  $\operatorname{Res}_Q^{X_Q}(Z')$  is an algebraic space, locally of finite presentation over Q.

Proof of Theorem 2.1. By Theorem 1.1, we can find a representation of G on a finite rank vector bundle V, a tensorial construction t(V) and a locally split line bundle  $L \subset t(V)$  such that  $G \xrightarrow{\sim} \operatorname{Aut}(V, L)$ . We now fix such a pair (V, L). Since X is connected, V has constant rank n for some  $n \in \mathbb{N}$ . For any X-scheme Y, the identification  $G \xrightarrow{\sim} \operatorname{Aut}(V, L)$  pulls back to  $G_Y \xrightarrow{\sim} \operatorname{Aut}(V_Y, L_Y)$ . Let  $\operatorname{Bun}_X^n$  denote the stack of rank n vector bundles over X (where N is the rank of N). That is, to each N-scheme N, N-scheme N, N-scheme N, N-scheme N-sch

Let  $\mathscr{E}^{\mathrm{univ}}$  denote the universal rank n vector bundle on  $X \times \mathrm{Bun}_X^n$ . Let  $\mathscr{Q}$  denote the relative quot scheme over  $\mathrm{Bun}_X^n$  classifying all rank one, locally split subbundles of  $t(\mathscr{E}^{\mathrm{univ}})$  (where t is the same tensorial construction as that defining G). That is, for a scheme T over  $\mathrm{Bun}_X^n$ ,  $\mathscr{Q}(T)$  is the groupoid of locally split line bundles  $\mathscr{L}_{X_T} \subset t(\mathscr{E}^{\mathrm{univ}})_{X_T} = t(\mathscr{E}^{\mathrm{univ}}_{X_T})$  on  $X_T$ . Since X is projective over k, it follows from [5, no. 221 Theorem 3.1] that  $\mathscr{Q} \to \mathrm{Bun}_X^n$  is representable and locally of finite presentation. Let  $\mathscr{L}^{\mathrm{univ}} \subset t(\mathscr{E}^{\mathrm{univ}}_{X_{\mathscr{Q}}})$  denote the universal line bundle on  $X_{\mathscr{Q}}$ . Finally, let  $\mathscr{I}$  over  $X_{\mathscr{Q}}$  denote the fibered category, where for an  $X_{\mathscr{Q}}$ -scheme T,  $\mathscr{I}(T) = \mathrm{Isom}\,((V_T, L_T), (\mathscr{E}^{\mathrm{univ}}_T, \mathscr{L}^{\mathrm{univ}}_T))$ . Then  $\mathscr{I} \to X_{\mathscr{Q}}$  is representable in schemes, affine and of finite presentation.

By Lemma 2.5, there is an Artin stack  $\mathscr{Z}$  locally of finite presentation over  $\mathscr{Q}$  representing the condition on  $\mathscr{Q}$ -schemes T that  $\mathscr{I} \times_{\mathscr{Q}} T$  is flat and pure over  $X_T$ . In particular,  $\mathscr{I} \times_{\mathscr{Q}} \mathscr{Z}$  is flat over  $X_{\mathscr{Z}}$ . Let  $\mathscr{U}' \subset X_{\mathscr{Q}}$  denote its open image. Let  $\mathscr{U} \subset \mathscr{Q}$  denote the complement of the closed image of the complement of  $\mathscr{U}'$  under the projection  $X_{\mathscr{Q}} \to \mathscr{Q}$ . Thus,  $\mathscr{U}$  represents the condition on  $\mathscr{Q}$ -schemes T that  $\mathscr{I} \times_{\mathscr{Q}} T$  is flat, surjective (hence fppf since  $\mathscr{I} \to X_{\mathscr{Q}}$  is finitely presented) and pure over  $X_T$ . Furthermore, we still have that  $\mathscr{U}$  is locally of finite presentation over  $\mathscr{Q}$ . We now show that  $\mathscr{U}$  is naturally isomorphic to GTor $_X$ . By Corollary 1.3, GTor $_X$  is isomorphic to the fibered category that assigns to a k-scheme T the groupoid of  $X_T$ -twists of (V, L). It suffices to show that  $\mathscr{U}$  is naturally isomorphic to this latter fibered category.

Let T be a  $\mathscr{Q}$ -scheme and denote by  $f: X_T \to X_{\mathscr{Q}}$  the corresponding map. For ease, we write  $f^*\mathscr{I}$  for the pullback of  $\mathscr{I}$  along f. The map  $f: X_T \to X_{\mathscr{Q}}$  gives rise to a pair  $(f^*\mathscr{E}_{X_{\mathscr{Q}}}^{\mathrm{univ}}, f^*\mathscr{L}^{\mathrm{univ}})$ . We claim that  $(f^*\mathscr{E}_{X_{\mathscr{Q}}}^{\mathrm{univ}}, f^*\mathscr{L}^{\mathrm{univ}})$  is an  $X_T$ -twist of (V, L) if and only if T factors through  $\mathscr{U}$ . First assume that  $T \to \mathscr{Q}$  factors through  $\mathscr{U}$ . In particular,  $f^*\mathscr{I} \to X_T$  is fppf. Note that the canonical projection  $f^*\mathscr{I} \to \mathscr{I}$  gives an isomorphism  $(\mathscr{E}_{f^*\mathscr{I}}^{\mathrm{univ}}, \mathscr{L}_{f^*\mathscr{I}}^{\mathrm{univ}}) \cong (V_{f^*\mathscr{I}}, L_{f^*\mathscr{I}})$ . Thus,  $f^*\mathscr{I} \to X_T$  gives the desired fppf cover. Conversely, if  $(f^*\mathscr{E}_{X_{\mathscr{Q}}}^{\mathrm{univ}}, f^*\mathscr{L}^{\mathrm{univ}})$  is an  $X_T$ -twist of (V, L), then  $f^*\mathscr{I}$  is a  $G_{X_T}$ -torsor (cf. the proof of Corollary 1.3), and so fppf over  $X_T$ . Furthermore, since G is X-pure by Lemma 2.3, it follows by Lemma 2.4 the  $G_{X_T}$ -torsor  $f^*\mathscr{I}$  is  $X_T$ -pure. Thus, T factors through  $\mathscr{U}$ . We conclude that  $\mathscr{U}$  is naturally isomorphic to the desired fibered category, which completes the proof.

# 3. Algebraic groups over Dedekind schemes

With notation as in the introduction, let G be a flat algebraic group scheme over X. This means that G is a flat affine group scheme of finite type over X. Let  $f:G\to X$  denote the structure map. We will abuse notation and denote the  $\mathscr{O}_X$ -bialgebra  $f_*(\mathscr{O}_G)$  simply by  $\mathscr{O}_G$ . Let  $\Delta:\mathscr{O}_G\to\mathscr{O}_G\otimes\mathscr{O}_G$  denote the comultiplication map and  $\varepsilon:\mathscr{O}_G\to\mathscr{O}_X$  the counit. As above, if  $W\subset V$  is Zariskilocally on X a direct summand as an  $\mathscr{O}_X$ -module, we will call the inclusion locally split. If W and V are (compatibly)  $\mathscr{O}_G$ -comodules, that the inclusion  $W\subset V$  is locally split does not imply in general that  $W\subset V$  is locally a direct summand as an  $\mathscr{O}_G$ -comodule. Finally, recall that GL(V) is an algebraic group scheme that is represented by Spec (Sym  $(V\otimes V^*)[1/\det]$ ). Our presentation of this section follows [16, Chap. 3] and [1, Chap. 5], generalized to our current situation.

**Lemma 3.1.** Let V be an X-flat quasicoherent  $\mathcal{O}_G$ -comodule. Then V is the direct limit of  $\mathcal{O}_G$ -comodules that are locally free  $\mathcal{O}_X$ -modules of finite rank.

Proof. For X affine, this is the Corollary to Proposition 1.2 in [14]. We quickly sketch the proof in the general case as the details are the same as in *ibid*. Since X is noetherian, by [4, 9.4.9] any quasicoherent sheaf is the direct limit of its coherent subsheaves. Since a coherent  $\mathcal{O}_X$ -submodule of V is locally free, it suffices to show that for any coherent submodule  $W \subset V$ , W is contained in a coherent  $\mathcal{O}_G$ -subcomodule of V. Let  $\rho: V \to V \otimes \mathcal{O}_G$  denote the comodule map. Since  $\rho(W)$  is coherent, there is a coherent submodule  $W' \subset V$  such that  $\rho(W) \subset W' \otimes \mathcal{O}_G$ . Define a quasicoherent  $\mathcal{O}_X$ -module  $E = \rho^{-1}(W' \otimes \mathcal{O}_G)$ . By working over open affines in X, one can show that  $E \subset W'$ , so it is coherent, and E is an  $\mathcal{O}_G$ -comodule (cf. [14, Section 1.5]).

**Lemma 3.2.** There is a representation V of G such that the map  $G \to GL(V)$  is a closed embedding.

Proof. Consider the regular representation  $\Delta: \mathscr{O}_G \to \mathscr{O}_G \otimes \mathscr{O}_G$ . By Lemma 3.1, there is a locally free, finite rank  $\mathscr{O}_G$ -subcomodule  $V \subset \mathscr{O}_G$  that locally contains a finite system of  $\mathscr{O}_X$ -algebra generators of  $\mathscr{O}_G$ . By restricting  $\Delta$  to V, we have an  $\mathscr{O}_G$ -comodule  $\rho: V \to V \otimes \mathscr{O}_G$ . To check the corresponding map  $G \to GL(V)$  is a closed embedding, we may assume that  $X = \operatorname{Spec} R$ , where R is a DVR. In this case,  $V \cong R^n$ , and  $\mathscr{O}_{GL(V)} \cong R[x_{11}, \ldots, x_{nn}][1/\det]$ . The verification that  $\mathscr{O}_{GL(V)} \to \mathscr{O}_G$  is surjective is then identical to the proof in [16, 3.4].

Namely, if we choose a basis  $\{v_1, \ldots, v_n\}$  of V and write  $\rho(v_i) = \sum v_j \otimes a_{ij}$ , then the map  $\mathscr{O}_{GL(V)} \to \mathscr{O}_G$  is given by  $x_{ij} \mapsto a_{ij}$ . Since  $v_j = (\varepsilon \otimes 1)\Delta(v_j) = \sum \varepsilon(v_i)a_{ij}$ , the image of the map  $\mathscr{O}_{GL(V)} \to \mathscr{O}_G$  contains V, hence is surjective since V contains the algebra generators of  $\mathscr{O}_G$ .

Let  $\{X_1,\ldots,X_r\}$  denote the set of (nonempty) connected components of X. Let  $\mathscr{K}_{X_i}$  denote the stalk of  $\mathscr{O}_{X_i}$  at the generic point of  $X_i$ , and write  $\mathscr{K}_X = \prod \mathscr{K}_{X_i}$ . If M is a locally free of finite rank  $\mathscr{O}_X$ -module, and  $N' \subset M$  is a coherent submodule, we call  $N = (N' \otimes \mathscr{K}_X) \cap M \subset M \otimes \mathscr{K}_X$  the saturation of N' in M. (The point is that N' may not be a subbundle of M.)

**Lemma 3.3.** Let W be a representation of G,  $U' \subset W$  a subrepresentation, and let U denote the saturation of U' in W. Then, U is a subrepresentation of W that is locally split as an  $\mathcal{O}_X$ -module.

Proof. Since X is Dedekind, it is straightforward to check that U is locally split in W (say, by looking at stalks and using the elementary divisors theorem). It remains to show that U is G-stable. Let  $\rho: W \to W \otimes \mathscr{O}_G$  denote the comodule map. We wish to show that  $\rho(U) \subset U \otimes \mathscr{O}_G$ . This can be checked Zariski-locally on X, so can assume that  $X = \operatorname{Spec} A$  is a Dedekind domain, and U/W is free. To show that the image of U in  $W \otimes \mathscr{O}_G$  is contained in  $U \otimes \mathscr{O}_G$ , we must show the image of any element in  $W \otimes \mathscr{O}_G$  goes to zero in  $(U/W) \otimes \mathscr{O}_G$ . Since this latter A-module is flat, we can check that the image is zero on the generic point of  $\operatorname{Spec} A$ . But, over the generic point U = U', so the result follows from the G-stability of U'.

**Lemma 3.4.** Let W be a finite rank vector bundle on X, and suppose  $U \subseteq W$  is a locally split subbundle. Let  $\mathbf{d} = (d_1, \ldots, d_r)$  be the sequence of ranks of U on each nonempty connected component of X. Define  $L = \bigwedge^{\mathbf{d}} U \subset \bigwedge^{\mathbf{d}} W$ . Let  $g \in GL(W)$ . Then

$$gL = L \iff gU = U.$$

*Proof.* The statement is local on X, so we suppose that  $X = \operatorname{Spec} A$  for a Dedekind domain A, and that  $U \subset W$  is a rank d direct summand. The direction  $\Leftarrow$  is immediate by functoriality, so we assume now that gL = L. First, note that for any A-algebra B,

$$U \otimes B = \{ \omega \in W \otimes B \mid \omega \wedge (L \otimes B) = 0 \}.$$

If  $g \in GL(W \otimes B)$  and  $u \in U \otimes B$ , then

$$gu \wedge (L \otimes B) = g(u \wedge g^{-1}(L \otimes B)) = g(u \wedge L \otimes B) = 0.$$

It follows from the previous remark that  $gu \in U \otimes B$ , as desired.

**Theorem 3.5.** There is a representation V of G, a tensorial construction t(V), and a locally split line bundle  $L \subset t(V)$  such that

$$G = \{ g \in GL(V) \mid gL = L \}.$$

*Proof.* By Lemma 3.2, we can fix a representation V of G such that  $G \to GL(V)$  is a closed embedding. We must now construct t(V) and  $L \subset t(V)$ . We can write

(3.1) 
$$\mathscr{O}_{GL(V)} = \varinjlim_{i} \left( \bigoplus_{m \geq 0} \operatorname{Sym}^{m} (V \otimes V^{*}) \cdot \det^{-i} \right).$$

Identifying G as a closed subgroup of GL(V), G is defined by a coherent sheaf of ideals  $\mathscr{I} \subset \mathscr{O}_{GL(V)}$ . Note that since G is flat over X,  $\mathscr{I}$  is saturated in  $\mathscr{O}_{GL(V)}$ . Choose a finite open affine cover  $\{X_i\}$  of X. On each  $X_i$ ,  $\mathscr{I}|X_i$  is finitely generated in  $\mathscr{O}_{GL(V)}|X_i$  as an  $\mathscr{O}_{X_i}$ -module. Hence, by taking integers M and N sufficiently large, we can ensure that the module generators of  $\mathscr{I}$  on each  $X_i$  are contained in

$$t'(V) = \bigoplus_{m=0}^{M} \operatorname{Sym}^{m} (V \otimes V^{*}) \cdot \det^{-N}.$$

Let  $U' = \mathscr{I} \cap t'(V)$ . Let  $G' = \{g \in GL(V) \mid gU' = U'\}$ . We claim that G = G'. First, note that

$$G = \{ g \in GL(V) \mid g\mathscr{I} = \mathscr{I} \}.$$

In particular,  $G \subseteq G'$ . On the other hand, if  $g \in G'(B)$ , then by definition the induced map  $(1 \otimes g) \circ \Delta : U' \to \mathscr{O}_{GL(V)} \otimes B$  factors through  $U' \otimes B$ . However, since  $(1 \otimes g) \circ \Delta$  is an  $\mathscr{O}_{X}$ -algebra map, it follows that  $\mathscr{I} \to \mathscr{O}_{GL(V)} \otimes B$  factors through  $\mathscr{I} \otimes B$ . That is,  $G' \subseteq G$ , thus G = G'.

Let U be the saturation of U' in t'(V). By Lemma 3.3, U is G-stable and locally split in t'(V). It follows that  $G \subseteq \{g \in GL(V) \mid gU = U\}$ . Conversely, to check that  $\{g \in GL(V) \mid gU = U\} \subseteq G$ , it suffices to check on an affine cover of X. Then one can see that  $\{g \in GL(V) \mid gU = U\} \subseteq G$  exactly as in the proof of Lemma 3.3. Thus,  $G = \{g \in GL(V) \mid gU = U\}$ . Let  $\mathbf{d} = (d_1, \ldots, d_n)$  be the sequence of ranks of U on each nonempty connected component of X. Define  $t(V) = \bigwedge^{\mathbf{d}} t'(V)$  and  $L = \bigwedge^{\mathbf{d}} U \subset t(V)$ . By Lemma 3.4, we have that  $G = \{g \in GL(V) \mid gL = L\}$ , as claimed.

### 4. Tannakian viewpoint

We recall the notation from the introduction. As usual, G denotes a flat algebraic group over a Dedekind scheme X. In this section, we fix a faithfully flat X-scheme Y. Recall that unadorned products are fiber products over X and for an X-scheme T,  $Y_T = Y \times T = Y \times_X T$ . For each open subscheme  $U \subset X$ , let  $\mathscr{O}_U = \mathscr{O}_X | U$ . We write  $\operatorname{Rep}_U G$  for the category of representations of  $G_U$  on finite rank, locally free  $\mathscr{O}_U$ -modules. Then,  $\operatorname{Rep}_U G$  is an  $\mathscr{O}_U$ -linear, rigid tensor category. Here, rigid means that  $\operatorname{Rep}_U G$  has internal homs. Of course, unless  $\mathscr{O}_U$  is a field, this will not be an abelian category. Denote by  $X_{\operatorname{Zar}}$  the small Zariski site on X. Denote by  $\operatorname{Rep} G$  the fibered over  $X_{\operatorname{Zar}}$  where for an object U in  $X_{\operatorname{Zar}}$ ,  $\operatorname{Rep} G(U) = \operatorname{Rep}_U G$ . Then  $\operatorname{Rep} G$  is a  $(\operatorname{fibered})$  tensor category in the following sense:

(i) There is a monoidal structure

$$\operatorname{\mathbf{Rep}} G \times_{X_{\operatorname{\mathbf{Zar}}}} \operatorname{\mathbf{Rep}} G \to \operatorname{\mathbf{Rep}} G$$

(along with associativity and commutativity constraints) that over each U in  $X_{\operatorname{Zar}}$  induces the usual tensor structure on  $\operatorname{Rep}_U G$ .

- (ii) There is an object  $1_X \in \operatorname{Rep}_X G$  that pulls back to the unit object in  $\operatorname{Rep}_U G$  for each U in  $X_{\operatorname{Zar}}$ .
- (iii) For each  $U' \subset U$ , the pullback map  $\operatorname{Rep}_U G \to \operatorname{Rep}_{U'} G$  is a tensor functor.

Let  $\mathbf{Bun}_Y$  denote the fibered category over  $X_{\mathrm{Zar}}$  where for an object U in  $X_{\mathrm{Zar}}$ ,  $\mathbf{Bun}_Y(U) = \mathrm{Bun}_{Y_U}$  is the category of all finite rank vector bundles on  $Y_U$  (not to be confused with  $\mathrm{Bun}_Y^n$  in §2). Then  $\mathbf{Bun}_Y$  is a tensor category each of whose fibers over  $X_{\mathrm{Zar}}$  is  $\mathcal{O}_{Y_U}$ -linear and rigid. By a (fibered) tensor functor  $F: \mathbf{Rep} G \to \mathbf{Bun}_Y$ , we mean a functor of fibered categories over  $X_{\mathrm{Zar}}$  that induces a tensor functor (in the usual sense) on each fiber. In particular, F must respect unit objects on each fiber.

Let  $P \to Y$  be a  $G_Y$ -torsor. Then, for each object U in  $X_{Zar}$ ,  $P_U$  is a  $G_{Y_U}$ -torsor. We define a functor  $F_P : \mathbf{Rep} \ G \to \mathbf{Bun}_Y$  as follows. For an object U in  $X_{Zar}$ , and V in  $\mathrm{Rep}_U \ G$ ,

$$F_P: V \mapsto P_U \times^{G_{Y_U}} (V \times_U Y_U) = P_U \times (V \times_U Y_U) / ((p, v) \sim (pg, g^{-1}v)).$$

Concretely, we are pushing out P along the map  $G \to GL(V)$  to associate to the  $G_{Y_U}$ -torsor P a  $GL(V_U)$ -torsor, that is, a vector bundle on  $Y_U$ . It is clear  $F_P$  respects pullback maps, so it is a functor of fibered categories. When no confusion will arise, we will write  $F_P(V) = P \times^G V$  for notational ease.

**Lemma 4.1.** The functor  $F_P$  is a tensor functor that on each fiber over  $X_{Zar}$  is faithful and exact.

*Proof.* It is clear that  $F_P$  is a functor of fibered categories over  $X_{\operatorname{Zar}}$ , so we must show it is an exact, faithful tensor functor on each fiber. Fix an object U in  $X_{\operatorname{Zar}}$ . Since G acts transitively on P, it is straightforward to check from the definition that  $F_P(\mathcal{O}_U) = \mathcal{O}_{Y_U}$ , where  $\mathcal{O}_U$  has the trivial  $G_U$ -action. Thus,  $F_P$  respects unit objects. For V and W in  $\operatorname{Rep}_U G$ , there is a natural map

$$(4.1) P \times^G (V \otimes W) \to (P \times^G V) \otimes (P \times^G W); (p, v \otimes w) \mapsto (p, v) \otimes (p, w),$$

which is straightforward to check is well defined. It suffices to check that (4.1) is an isomorphism fppf-locally on U, so we may assume that  $P_U = G_{Y_U} \times_U Y_U$  is the trivial  $G_{Y_U}$ -torsor. Under the identification,  $P \times^G V = V_{Y_U}$ , (4.1) becomes the identity map. Hence,  $F_P$  is a tensor functor.

To show that  $F_P$  is exact, we must show that if  $0 \to V' \to V \to V'' \to 0$  is exact, then so is  $0 \to P \times^G V' \to P \times^G V \to P \times^G V'' \to 0$ . Again, we can check that this sequence is exact fppf-locally on  $Y_U$ , so we can assume that  $P_U = G_{Y_U} \times_U Y_U$ . We can then identify the latter exact sequence with  $0 \to V'_{Y_U} \to V_{Y_U} \to V''_{Y_U} \to 0$ , which is exact since Y is flat over X. Finally, to show that  $F_P$  is faithful, we assume that  $F_P(V) = 0$ . Passing to an fppf-cover of  $Y_U$ , this implies that  $V_{Y_U} = 0$ . Hence V = 0 since Y is faithfully flat over X.

**Remark 4.2.** The proof above that  $F_P$  respects tensor products generalizes easily to show that in fact  $F_P$  respects any tensorial construction.

Thus,  $F_P$  is a tensor functor that on each fiber over  $X_{\text{Zar}}$  is faithful and exact. We now prove that the converse is true. Let  $F: \text{Rep } G \to \text{Bun}_Y$  be a tensor functor that on each fiber over  $X_{\text{Zar}}$  is faithful and exact. We show that there is a natural equivalence  $F \xrightarrow{\sim} F_P$  for a uniquely defined  $G_Y$ -torsor P. We closely follow the elegant presentation in [10, Sec. 2], generalizing to our current situation. The main idea to define P is to apply F to the regular representation of G. Of course, this is not a finite rank representation, so we must first suitably extend F.

We denote by  $\operatorname{\mathbf{Rep}}'G$  the fibered category over  $X_{\operatorname{Zar}}$ , where for each U in  $X_{\operatorname{Zar}}$ ,  $\operatorname{\mathbf{Rep}}'G(U)=\operatorname{Rep}'_UG$  is the category of flat quasicoherent  $\mathscr{O}_U$ -modules that are also  $\mathscr{O}_{G_U}$ -comodules. Denote by  $\operatorname{\mathbf{QCoh}}_Y$  the fibered category over  $X_{\operatorname{Zar}}$  where for each U in  $X_{\operatorname{Zar}}$ ,  $\operatorname{\mathbf{QCoh}}_Y(U)=\operatorname{QCoh}_{Y_U}$  is the category of quasicoherent  $\mathscr{O}_{Y_U}$ -modules.

Since we will be working over open subschemes of X, we will need the following slight generalization of Lemma 3.1.

**Lemma 4.3.** Let  $U \subset X$  be an open subscheme and let V be an object of  $\operatorname{Rep}'_U G$ . Then, V is the direct limit of its subobjects in  $\operatorname{Rep}_U G$ .

*Proof.* The proof is identical to that of Lemma 3.1. One need only note that it is still the case that any coherent  $\mathcal{O}_U$ -submodule of V is locally free.

**Lemma 4.4.** The functor F extends uniquely to a tensor functor  $F : \mathbf{Rep}' G \to \mathbf{QCoh}_V$  such that:

- (i) On each fiber over  $X_{Zar}$ , F is exact and faithful.
- (ii) The extended F respects direct limits.
- (iii) The  $\mathcal{O}_Y$ -module  $F(\mathcal{O}_G)$  is faithfully flat.

*Proof.* Fix an object U in  $X_{Zar}$ . To extend F, let V be a flat, quasicoherent  $\mathcal{O}_{U}$ module, and define

$$F(V) = \varinjlim_{W \subset V} F(W),$$

where the colimit is over all coherent  $\mathcal{O}_G$ -subcomodules  $W \subset V$ . By Lemma 4.3, this is a direct limit. Since filtered colimits are exact and commute with tensor product, F(V) is flat, and the extended functor is a tensor functor that is exact. This establishes (i)

Next, we show that the extended F respects colimits. Suppose  $W = \varinjlim_{\alpha} W_{\alpha}$ , and write  $W_{\alpha} = \varinjlim_{\beta} W_{\alpha\beta}$ , where each  $W_{\alpha\beta}$  is a finite rank  $\mathscr{O}_{G}$ -comodule. Since colimits can be iterated by [9, IX.8], we have  $W = \varinjlim_{\alpha,\beta} W_{\alpha,\beta}$ . It follows that

$$F(W) = \varinjlim_{\alpha,\beta} F(W_{\alpha,\beta}) = \varinjlim_{\alpha} \varinjlim_{\beta} F(W_{\alpha\beta}) = \varinjlim_{\alpha} F(W_{\alpha}),$$

hence F respects colimits, which establishes (ii).

It remains to show that  $F(\mathscr{O}_G)$  is faithfully flat. By [6,2.2.1],  $F(\mathscr{O}_G)$  is faithfully flat over Y if and only if the functor  $M\mapsto F(\mathscr{O}_G)\otimes_{U'}M$  is an exact and faithful functor on  $\mathrm{QCoh}_{U'}$  for all  $U'\subset Y$  open. Since  $F(\mathscr{O}_G)$  is flat,  $M\mapsto F(\mathscr{O}_G)\otimes_{U'}M$  is exact. It remains to show that for any  $M\neq 0$ ,  $F(\mathscr{O}_G)\otimes_{U'}M$  is nonzero. Since  $\mathscr{O}_G$  has  $\mathscr{O}_X$  as a direct summand, and F is exact,  $F(\mathscr{O}_G)$  contains  $F(\mathscr{O}_X)=\mathscr{O}_Y$  as a direct summand. In particular,  $F(\mathscr{O}_G)\otimes_{U'}M=M\oplus M'$  (for some M') is nonzero, which completes the proof.

**Lemma 4.5.** The functor F naturally induces a functor from the fibered category over  $X_{\text{Zar}}$  of U-schemes with  $G_U$ -action that are flat and affine over U to the fibered category over  $X_{\text{Zar}}$  of schemes flat and affine over  $Y_U$ . The resulting functor, which we again denote by F, respects products and has the property that if  $T_0$  has a trivial  $G_U$ -action then  $F(T_0) = Y_U \times_U T_0$ .

*Proof.* Fix an object U in  $X_{\operatorname{Zar}}$ . Let T be a scheme flat and affine over U with  $G_U$ -action. Then (the pushforward of)  $\mathscr{O}_T$  is an  $\mathscr{O}_U$ -algebra and  $\mathscr{O}_{G_U}$ -comodule. Furthermore, the multiplication map  $\mathscr{O}_T \otimes \mathscr{O}_T \to \mathscr{O}_T$  is an  $\mathscr{O}_{G_U}$ -comodule map. Thus, since F is a tensor functor,  $F(\mathscr{O}_T)$  is naturally an  $\mathscr{O}_{Y_U}$ -algebra and flat by Lemma 4.4. We can therefore define

$$F(T) = \operatorname{Spec} F(\mathcal{O}_T),$$

a scheme that is flat and affine over  $Y_U$ . Since F is a tensor functor, it is clear that it respects products.

To verify the last claim, we identify the full subcategory of trivial representations in  $\operatorname{Rep}_U G$  with the category of finite rank vector bundles on U. For each affine open  $U' \subset Y_U$ , we will give a natural isomorphism

$$F(V)|U' \xrightarrow{\sim} \mathscr{O}_{U'} \otimes_{\mathscr{O}_U} V$$

and it will be clear from the construction that these isomorphisms will agree on overlaps. Thus, we may assume that  $Y = \operatorname{Spec} B$  is affine.

Furthermore, it suffices to prove the result for some affine cover of X so we may assume that  $X = \operatorname{Spec} A$  is affine. Since F is a tensor functor, F(A) = B. Thus, for any vector bundle V the composition

$$V \xrightarrow{\sim} \operatorname{Hom}_A(A, V) \xrightarrow{F} \operatorname{Hom}_B(B, F(V))$$

gives rise to a natural map of B-modules  $\psi: V \otimes_A B \to F(V)$  by adjunction. Furthermore,  $\psi$  is an isomorphism for  $V = A^n$ . Since any vector bundle is a direct summand of a free module, it follows that  $\psi$  is an isomorphism for all V.

**Remark 4.6.** The above lemma establishes the aim of this section in the case that G is the trivial group. When X is not affine, the use of fibered categories is crucial to establish this result.

**Lemma 4.7.** Let P = F(G). Then P is a  $G_Y$ -torsor naturally in F and Y.

*Proof.* By Lemma 4.4(iii), P is faithfully flat over Y. Denote the group map  $m: G \times G \to G$  and the identity section  $e: X \to G$ . Let  $G_0$  denote the same underlying scheme as G with the trivial G-action. By Lemma 4.5, applying F to the map of G-sets  $G \times G_0 \to G$  gives rise to a map  $P \times_Y G_Y \to P$ . Again by Lemma 4.5, applying F to the commutative diagrams of G-sets



establishes that the map  $P \times_Y G_Y \to P$  is a right G-action. Since the G-map

$$G \times G_0 \to G \times G; \ (g,h) \mapsto (g,gh)$$

is an isomorphism, the corresponding map induced by F,  $P \times_Y G_Y \to P \times_Y P$ , is an isomorphism. Thus, P is a  $G_Y$ -torsor.

**Theorem 4.8.** Let Y be faithfully flat scheme over X. The functor from the category of  $G_Y$ -torsors to the category of tensor functors  $F : \mathbf{Rep} G \to \mathbf{Bun}_Y$  that on each fiber over  $X_{\mathrm{Zar}}$  are faithful and exact, given by

$$P \mapsto [F_P : V \mapsto P_U \times^{G_{Y_U}} (V \times_U Y_U)],$$

is an equivalence of fibered categories. The quasi-inverse is given by  $F \mapsto F(G)$  (see below remark).

**Remark 4.9.** Before we begin the proof, let us summarize the definition of F(G). As in Lemma 4.4, we can define  $F(\mathcal{O}_G) = \varinjlim F(V)$  where V ranges over  $\mathcal{O}_X$ -coherent  $\mathcal{O}_G$ -subcomodules of  $\mathcal{O}_G$ . Then, as described in the proof of Lemma 4.5,  $F(\mathcal{O}_G)$  is an  $\mathcal{O}_X$ -algebra, so we can define  $F(G) = \operatorname{Spec} F(\mathcal{O}_G)$ . The  $G_Y$ -action on F(G) is described in the proof of Lemma 4.7.

Proof of Theorem 4.8. We must show that the two functors are quasi-inverses. Given a  $G_Y$ -torsor P, that  $F_P(G)$  is naturally isomorphic to P follows directly from the definition of  $F_P$ :

$$F_P(G) = P \times^G G = P \times G/[(p, x) \sim (pg, g^{-1}x)] \xrightarrow{\sim} P.$$

Here the last map is given by  $(p, x) \mapsto px$ , which respects the right action on  $P \times^G G$  given by  $(p, x) \cdot g = (pg, x) = (p, gx)$ .

Let  $F: \mathbf{Rep} G \to \mathbf{Bun}_Y$  be given. Let P = F(G). We must show that  $F_P$  is naturally equivalent to F. For the remainder of the proof, we will make frequent use of Lemma 4.5 without explicit mention. We again use the notation that if T is some object with G-action, then  $T_0$  is the same underlying object with the trivial G-action. Recall that the right  $G_Y$ -action on P is given by applying F to the G-map  $G \times G_0 \to G$ . Since F respects products,  $P_U = F(G_U)$  and the right  $G_Y$ -action on  $P_U$  is given by applying F to  $G_U \times_U (G_U)_0 \to G_U$ . Fix an object U of  $X_{Zar}$  and let V be a representation of  $G_U$ . Applying F to  $\rho: G_U \times_U V_0 \to V$  induces a map  $\phi = F(\rho): P_U \times_{Y_U} (V \times_U Y_U) \to F(V)$ .

We first show that  $\phi$  factors through the quotient map  $P_U \times (V \times_U Y_U) \to P_U \times^{G_{Y_U}} (V \times_U Y_U)$ . By definition, this quotient is defined to be the coequalizer of

$$P_{U} \times_{Y_{U}} G_{Y_{U}} \times_{Y_{U}} (V \times_{U} Y_{U}) \xrightarrow{\pi_{1,3}} P_{U} \times_{Y_{U}} (V \times_{U} Y_{U}),$$

where  $\beta:(p,g,v)\mapsto (pg,g^{-1}v)$ . Thus, it suffices to show that  $\phi\circ\pi_{1,3}=\phi\circ\beta$ . Denote by  $\alpha:G_U\times_U(G_U)_0\times_UV_0\to G_U\times_UV_0$  the  $G_U$ -map  $(g,h,v)\mapsto (gh,h^{-1}v)$ .

Then it is immediate that the following diagram commutes.

$$G_U \times_U (G_U)_0 \times_U V_0 \xrightarrow{\pi_{1,3}} G_U \times_U V_0$$

$$\downarrow^{\rho}$$

$$G_U \times_U V_0 \xrightarrow{\rho} V$$

By definition of the G-action,  $\beta = F(\alpha)$ . Thus, by applying F to the above diagram, we conclude that  $\phi \circ \pi_{1,3} = \phi \circ \beta$ . It follows that  $\phi$  descends to a map  $\phi : P_U \times^{G_{Y_U}} (V \times_U Y_U) \to F(V)$ , which it remains to show is an isomorphism.

Since  $P_U \to Y_U$  is faithfully flat, it suffices to show that  $\phi$  is an isomorphism after pulling back to  $P_U$ . One checks from the definitions that we have the following sequence of isomorphisms:

$$P_{U} \times_{Y_{U}} (V \times_{U} Y_{U}) \xrightarrow{\sim} (P_{U} \times_{U} G_{Y_{U}}) \times^{G_{Y_{U}}} (V \times_{U} Y_{U})$$

$$\xrightarrow{\sim} (P_{U} \times_{Y_{U}} P_{U}) \times^{G_{Y_{U}}} (V \times_{U} Y_{U})$$

$$\xrightarrow{\sim} P_{U} \times_{Y_{U}} (P_{U} \times^{G_{Y_{U}}} (V \times_{U} Y_{U})).$$

Thus, identifying the source of  $1 \times \phi$  with the first term in the above sequence, it remains to show that the induced map  $\psi: P_U \times_{Y_U} (V \times_U Y_U) \to P_U \times_{Y_U} F(V)$  is an isomorphism. Following the construction, one sees that  $\psi$  comes from applying F to the  $G_U$ -map  $G_U \times_U V_0 \to G_U \times_U V$  given by  $(g, v) \mapsto (g, gv)$ . Since this latter map is an isomorphism, it follows that  $\psi$  is an isomorphism, whence the result follows.

#### References

- Armand Borel, Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, 1991.
- [2] Pierre Deligne and J.S. Milne, *Tannakian categories*, Hodge cycles, motives, and Shimura varieties, 1982.
- [3] Michel Demazure and Alexander Grothendieck, Schémas en groupes I-III, Lecture Notes in Mathematics, vol. 151–153, Springer-Verlag, 1970.
- [4] Alexander Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960).
- [5] \_\_\_\_\_\_, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, 1962.
- [6] \_\_\_\_\_, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Institut des Hautes Études Scientifiques. Publications Mathématiques 20, 24, 28, 32 (1965).
- [7] Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39, Springer-Verlag, 2000.
- [8] Max Lieblich, Remarks on the stack of coherent algebras, International Mathematics Research Notices (2006).
- [9] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1998.
- [10] Madhav Nori, On the representations of the fundamental group, Compositio Mathematica 33 (1976), no. 1, 29–41.
- [11] Martin Olsson, <u>Hom</u>-stacks and restriction of scalars, Duke Mathematical Journal **134** (2006), no. 1.
- [12] Michel Raynaud and Laurent Gruson, Critères de platitude et projectivité: Techniques de "platification" d'un module, Inventiones Mathematicae 13 (1971), 1–89.

- [13] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, vol. 265, Springer-Verlag, 1972.
- [14] Jean-Pierre Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Institut des Hautes Études Scientifiques. Publications Mathématiques **34** (1968), 37–52.
- [15] Christoph Sorger, Lectures on moduli of principal G-bundles over algebraic curves, School on Algebraic Geometry (Trieste, 1999), 2000, pp. 1–57.
- [16] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, 1979.
- [17] Torsten Wedhorn, On Tannakian duality over valuation rings, Journal of Algebra 282 (2004), no. 2, 575–609.

Wellesley College, Department of Mathematics, 106 Central St, Wellesley, MA  $02481\,$ 

 $E\text{-}mail\ address{:}\ \texttt{mbroshi@wellesley.edu}$