Sem. 1–3 Sept 2010

CRYPTOGRAPHIE

- ✓ Réalisation d'une interface pédagogique sur le codage/décodage de messages avec clés RSA
 - Sous Processing
 - Utilisation de la librairie ControlP5 pour le rendu de l'interface
 - Scénario: on imagine qu'il puisse se faire par l'intermédiaire d'un serveur web local, afin de permettre les actions séparées de deux protagonistes, Alice et Bob.
 - 1. Alice est chargée de générer les clés publique et privée en suivant les différentes étapes: 1) génération de deux entiers premiers P et Q; 2) Calcul de N=PxQ; 3)

Générer E tel que E soit premier avec (P-1)*(Q-1); 4) Calculer D selon: Il existe un relatif entier M, tel que E \times D + M \times (P - 1)(Q - 1) = 1

-> (N,E) est la clé publique; D est la clé privée

Alice divulgue la clé publique et garde précieusement la clé privée.

- 2. Bob reçoit la clé publique. Il écrit son message secret, il le traduit en chiffres. Il encrypte ensuite le résultat grâce à la clé publique. Il envoit le message encrypté à Alice.
- 3. Alice reçoit le message encrypté. Elle le décrypte grâce à sa clé privée. Elle obtient une suite de chiffres qu'elle traduit en lettres et aboutit au message secret de Bob.
 - x A FAIRE: action supplémentaire: demande d'authentification de Bob vers Alice.
- **x** A FAIRE: Nettoyer le code de telle sorte que les fonctions relatives à l'interface et au calcul/manipulation des clés soient séparées.

LE SON

- Réalisation d'une interface pédagogique sur les notions de contenu sonore et perception
 - Sous Processing
 - Utilisation des librairies: ControlP5 pour le rendu de l'interface, Minim pour l'input et output audio.
 - Un analyseur permet de visualiser le contenu fréquentiel du son en temps réel (par transformation de Fourier FFT) : quand je parle, et/ou fait tout bruit quelconque, les sons que je produit sont analyser en temps réel
 - Une interface de manipulation permet d'émettre une sinusoïde ou de charger un extrait sonore de son choix, musical ou davantage assimilable à du bruit.
 - Par la fenêtre de l'analyseur, on visualise les signaux en temporel et en fréquentiel.
 - La position de la souris sur la fenêtre de l'analyseur permet d'ajuster le volume de la sinusoide et de l'extrait sonore (haut/bas), et la fréquence de la sinusoide (gauche/droite)
 - Un filtre passe-bas peut être appliqué sur l'extrait sonore. Son résultat peut être perçu auditivement mais aussi est visualisé en temporel et en fréquentiel.

X	A FAIRE: Nettoyer	le code de telle	sorte que le	s fonctions	relatives à	l'interface et au	calcul/
mani	pulation des signai	ux soient séparé	és				

Entrevue avec Philippe, auteur de Javascool V3:

- √ Accord pour la mise en place de deux phases dans le processus pédagogique:
- 1. Manipulation d'une interface réalisée sous Processing qui aborde un sujet à 'consonance' informatique, par example la cryptographie, ou acoustique, etc. Une interface avec plusieurs boutons d'intéractions, cette première phase est celle de l'exploration du sujet.
 - x A FAIRE: L'interface sera proposée sous forme d'API
- 2. On profite du contexte, de l'exploration d'un sujet pour coder: accès aux commandes clés du programme de l'interface manipulée lors de la phase 1, ajustement/modification de certaines commandes.
 - **x** A FAIRE: La phase 1 met donc en place la liste des commandes qui seront accessibles lors de la phase 2 ('play sinusoid', 'encode message', etc..).

Entrevue avec Julien Holtzler, membre actif de POBOT, association de robotique sur Sophia:

- ✓ Idées:
 - une réalisation de Pobot en prêt pour l'espace muséal de l'Inria.
 - une rencontre prochaine pour découvrir une partie de leurs réalisations
 - une intervention/collaboration pour intervenir en milieu scolaire?

Sem. 6-10 Sept 2010	

LE SON

- ✓ Réalisation d'une interface pédagogique sur la synthèse sonore, ou comment à partir de sons isolés numériques, synthétiques ou 'naturels', compose une phrasé pseudo-musical, mais surtout qui prend une dimension autre que les sons pris isolément. Il s'agit d'un sonar qui balaye des sources provoquant leur déclenchement.
 - Sous Processing
 - Utilisation de la librairie Minim pour l'input et output audio.
 - Sons: enregistrement en temps réel, chargement d'extrait sonore.
 - **x** A FAIRE: pouvoir déclencher une sinusoïde ajustable en fréquence et amortissement.
 - Les sources sonores sont symbolisées par des balises carrés. Les balises peuvent déplacées sur le sonar, impliquant un enchainement/rhythme différent. La position de la balise par rapport au centre du centre détermine l'amplitude sonore donnée à la source: plus la balise est proche du centre, plus son amplitude sera importante.
 - La vitesse de balayage est ajustable en temps réel, par < >, on peut aussi aboutir a des valeurs négatives et donc le sonar change de sens de balayage. La vitesse est inscrite comme indication sur l'interface.
 - Chaque source peut être sélectionnée tour à tour; pour accéder à une en particulier, on utilise: ^ v . Elle apparait alors avec un contour blanc plus prononcé. La source sélectionnée peut être déplacée, ou encore supprimée. Le volume sonore de la source sélectionnée est inscrite sur l'interface.
 - Le sonar peut être arrêté, stoppant l'émission de l'enchainement sonore.
 - x A FAIRE: des effets sur les sources sonores (pan, filtre)?? des liens entre les sources enchainées?? (le balayage du sonar détermine l'enchainement non?)
 - x A FAIRE: problème à résoudre: spasme lors du déclenchement de la source sonore; solution: déclencher en fonction de la congruence avec frameCount et non pas en fonction de la position du balayage!

LES GRAPHES

- Idées:
 - Une voiture sur un terrain en 3D qui doit sortir d'un labyrinthe (algo de Pledge)
 - La voiture génère des petits doit parcourir une distance d'un point de départ à un point d'arrivée (algo du plus court chemin).
 - Une source: la thèse de Léa Cartier, en cours de lecture.
 - x A FAIRE: tout
- Rencontre en perspective avec Philippe Luc le 21/09 pour discuter du programme des TES autour de ce sujet.

INFO / ROBOTIQUE

- Rencontre en perspective avec Laurent Brunetto autour de l'info/robotique, ce qu'il a en tête:
 - Présentation de l'ordinateur et des grandes fonctions/périphériques
 - Histoire de l'info et découvertes
 - Recherches des élèves pour exposés sur ces thématiques
 - Initiation à la programmation Java/Basic
 - Application à la programmation des micro-controleurs PicAxe :
 - http://www.rev-ed.co.uk/docs/AXE020.pdf
 - Initiation à quelques capteurs simple
 - Réalisation de modules simplifiés
 - Réalisation d'un mini robot détecteur d'obstacle/suiveur de ligne.

Sam. 12. 17 Sant 2010	
Sem. 13-17 Sept 2010	

• INTEGRATION applet processing dans javascool

- 1. Le fichier .pde principal de la papplet processing est exporté afin de générer les différents fichiers java nécessaires à l'intégration
- 2. Grâce au makefile construit par Thierry, les différentes routines sont appelées automatiquement lors du chargement de javascool pour permettre l'intégration, visualisation et intéraction, des applis initialement générées en processing.
- 3. Pour permettre une intégration adéquate, on doit rajouter dans le fichier principal .pde:
 - frame = nex Frame()
 - getInterface()
- Nouvelle arborescence dans GForge: Sketchbook au-dessus de proglets
 - ExplorationSonore et CryptageRSA
- Commit: copier fichiers nvx puis "make svn" au plus haut niveau pr commiter

• Le problème d'usage de controlP5? Pour tester, construction de deux fenêtres indépendantes sans controlP5, à tester dans javascool pour voir si l'intégration est plus adéquate.

LE SON

- Interface pédagogique sur les notions de contenu sonore et perception:
 - résolution des problèmes de tailles de fenêtre pour l'intégration dans javascool
 - dissociation des parties de code concernant l'interface (boutons, apparence, etc...) et les fonctions (émet une sinusoide, lance un enregistrement, etc...)
 - création de deux classes: enregistrement et sinusoide (est-ce nécessaire?)
 - résolution des messages de warning
 - résolution du problème d'analyse et traçage du signal de sortie: on peut à présent imaginer un setup avec écoute au casque!!
 - x A FAIRE: à continuer, en fonction des problèmes rencontrés,
- Interface pédagogique sur la synthèse sonore:
 - x A FAIRE: déclencher les sons en fonction de la congruence avec frameCount et non pas en fonction de la position du balayage!
 - difficile avec la configuration actuelle de radar sonore, essai avec une autre configuraion davantage linéaire, compo sonore, à étendre.

CRYPTOGRAPHIE

- Interface pédagogique sur le codage/décodage de messages avec clés RSA:
 - dissociation des parties de code concernant l'interface (boutons, apparence, etc...) et les fonctions (émet une sinusoide, lance un enregistrement, etc...)
 - résolution des messages de warning

LES GRAPHES

- Théorie, plus court chemin
 - site de référence: http://www.imathematics.fr/ !! (David Marec contacté), aucune réponse à ce jr
 - ID:
 - créer graphe 2D
 - à chaque noeud, la voiture se clone et chaque clone garde en lui le chemin deja parcouru;
 - la première arrivée lance un signal, la première à parcourir tous les noeuds lance un signal.
 - Pré-illustration avec une petite voiture se baladant dans un environnement 3D, qui devrait optimiser son chemin, ; des etapes à atteindre représentront les noeuds du graphe 2D
 - x A FAIRE: TOUT

Sem. 20-24 Sept 2010