

Object-detection Algorithm Training/Evaluation Tool

Developer/Presenter: RM-Team-Koala

PRESENTATION OUTLINE

01

02

03

04

05

06

INTRODUCTION

What you need to know about this project

FINAL SCOPE

What we accomplished in this project

DEMO SESSION

To see is to believe

PRODUCT QUALITY

How we tested our software

HANDOVER

Our final delivery package

FEEDBACK TIME

MEET THE DEV TEAM

SEJIN KIM

Position: Team Lead

Duty:UI Development
Support

Confluence Maintenance

JIA YIN

Position: UX designer

Duty:

UI Development Lead

Diagram and Model

CHE-HAO CHANG

Position: Product Owner

Duty:Algorithm
Development
Lead

External Communication

ISAAC PEDROZA

Position:Scrum Master

Duty:UI Development
Support

Git Management

AKHTAR KURNIAWAN

Position:Quality Assurance

Duty: Algorithm Development Support

Software Tester

What is RoboMaster Al Challenge?

- 2 on 2 robotic battle within an 8m x 4.5m arena.
- Rover-like omni-directional robot with sensors and a gun turret.
- Projectiles that land on armour pads will deduct HP (Hit Points). Once HP is down to zero, the robot is out.
- Robots have different armour pads. While being attacked, different HP deduction will be applied.

ABOUT THE PROJECT

- Developing a computer vision algorithm that can help the battle robots in the competition.
- 2. Developing a visualisation tool that can help our client evaluate the performance of the algorithm.

PROJECT SPECIFICATION

Task 1 – Armour Localisation

Position the armour pads in the image and return the coordination of it, so the robot can arrange attacks.

Task 2 – Armour Identification

Identify the the armour type for best attacking strategy.

Real-time object-detection YOLOv4-tiny:

- Came out May 2020
- SOTA performance on speed and accuracy
- Popular Many available frameworks
- Smaller size Faster inference

CHOICE OF ALGORITHM

Tech Stack

— Darknet: Neural Network Framework

— CVAT: Image Labelling Tool

— Python:

OpenCV: Algorithm

Tkinter: GUI

DELIVERED

- User Story 1 & 2:
 - Core Algorithm Implementation
- User Story 3:
 - Visualisation tool GUI
- User Story 4:
 - Algorithms Integration
- User Story 7 & 8:
 - ___ Advanced functions

NOT DELIVERED

- User Story 5 & 6:
 - Implement Second Algorithm

NOT COMMITTED

- User Story 1:
 - Image Preprocessing
 - Training Sample Augmentation

FINAL SCOPE

User Story	Importance	Story Points	Sprint	Status	
1	Must	39	Sprint1	C/D	
2	Must	30	Sprint1	C/D	
3	Desirable	36	Sprint1/2	C/D	
4	Desirable	16	Sprint2	C/D	
5	Optional	24	Sprint2	С	
6	Optional	24	Sprint2	С	
7	Optional	30	Sprint2	C/D	
8	Optional	30	Sprint2	C/D	

Localisation ☐ Identification ☐

Localisation ☐ Identification ☐

ALGORITHM PERFORMANCE TEST

Parameter	Acceptance Criteria	Achieved
Localisation Accuracy	≥ 70%	90%
Identification Accuracy	≥ 70%	85%
Processing time per image	≤ 100 ms	~5 ms (w/ Google Colab GPU)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

One Robot and One Image.

One Robot and Multiple Images.

No Robot.

Multiple Robots and One Image.

SOFTWARE QUALITY TEST CASE

Test Case	User Story	What is Tested	Expected Outcome	lmage
TC001-2	1	Correct localisation	70% accuracy, 0.1 s processing time/image	blue_2_ 3 de 0.982
TC003-4	2	Correct identification	70% accuracy, 0.1 s processing time/image	100 100 100 100 100 100 100 100 100 100
TC005	3	Uploading image(s)	Image is displayed on GUI frame.User can navigate using next/prev buttons	Menu Upload Images Upload weight, name and config files as a zip export
TC006	3	Uploading weight, name, and config files	The zip file is only accepted if it contains all the required files.	Menu Upload Images Upload weight, name and config files as a zip export
TC007	3	Run button	 Bounding box and label are drawn on each robot's nearest armour. Output board displays the prediction output. 	Algorithm YOLO-v4-tiny

SOFTWARE QUALITY TEST CASE (2)

Test Case	User Story	What is Tested	Expected Outcome	lmage
TC008	3	Slider	Displayed images change accordingly as user drags the slider.	1
TC009	3	Export button	Image annotations are saved as txt files.	Menu Upload Images Upload weight, name and config files as a zip export
TC010	4	Consistency between armour localisation and identification	The located armour should be correctly labelled.	
TC011	7	Localisation on multiple robots	Bounding box is drawn on each robot's nearest armour.	red 7_front 0.998
TC012	8	Identification on multiple robots	Label is shown on each robot's bounding box.	

Training Notebook

Trains without GPU hardware.

Detailed instruction to train a

new model is included.

Trained Model

A readily trained model that proven to perform well.

HANDOVER PACKAGE

Works with the the trained model. Client can start evaluating right away.

GUI Software with Manual

All-in-one resource hub included all the aforementioned items.

GitHub Repository

GitHub Repo Link:

https://github.com/cchia790411/rm ai challenge 2020s2 koala

