- 1. Perform the following steps:
 - (a) Calculate the SHA-256 hash h of the string s = "Your Full Name HW3" (substitute your full name as in the scores table, without quotes, with all spaces, encoded in UTF-8). Convert hash h to a 256-bit binary string b (prepend leading zeros if necessary). Cut the binary string b into eight 32-bit slices r_1, \ldots, r_8 , e.g., $r_2 = b_{33..64}$. Xor all slices into a 32-bit string $d = r_1 \oplus \cdots \oplus r_8$.
 - (b) Draw the Karnaugh map (use a template below) for a function f(A, B, C, D, E) defined by the truth table d (MSB corresponds to \mathbb{O} , LSB to \mathbb{I}). Use it to find the number of prime implicants¹.

			E		D		E		1	
AB	$O_{\mathcal{E}}$	000	001	011		110	111	101	100	1
	00									
	01									
A	11									B
	10									_
							(C		İ

2. For each given function f_i of 4 arguments, draw the Karnaugh map and use it to find BCF, minimal DNF, and minimal CNF. Additionally, construct ANF (Zhegalkin polynomial) using either the tabular ("triangle") method or the Pascal method — use each method at least once.

Note:WolframAlpha interprets the query "n-th Boolean function of k variables" in a reverse manner. In order to employ WolframAlpha properly, manually flip the truth table beforehand, e.g., the correct query for $f_{10}^{(2)}$ is "5th Boolean function of 2 variables" which gives $f_{10}^{(2)} = \neg x_2$, since rev $(1010_2) = 0101_2 = 5_{10}$.

(a)
$$f_1 = f_{47541}^{(4)}$$

(b)
$$f_2 = \sum m(1, 4, 5, 6, 8, 12, 13)$$

(c)
$$f_3 = f_{51011}^{(4)} \oplus f_{40389}^{(4)}$$

(d)
$$f_4 = A\overline{B}D + \overline{A}\overline{C}D + \overline{B}C\overline{D} + A\overline{C}D$$

3. Convert the following formulae to CNF.

(a)
$$X \leftrightarrow (A \land B)$$

(b)
$$Z \leftrightarrow \bigvee_i C_i$$

(c)
$$D_1 \oplus \cdots \oplus D_n$$

(d) majority
$$(X_1, X_2, X_3)^2$$

(e)
$$R \to (S \to (T \to \bigwedge_i F_i))$$

(f)
$$M \to (H \leftrightarrow \bigvee_i D_i)$$

4. Compute the truth table for the function $f: \mathbb{B}^3 \to \mathbb{B}^2$ (with the semantics $\langle A, B, C \rangle \mapsto \langle f_{(1)}, f_{(2)} \rangle$) represented with the following circuit.

¹ Here, consider only implicants represented as product terms.

² Majority function is a Boolean function that is 1 iff the majority (more than half) of the inputs are 1.

- 5. Show without using Post's criterion that the Zhegalkin basis $\{\oplus, \land, 1\}$ is functionally complete.
- 6. For each given system of functions F_i , determine whether it is functionally complete. For each basis F_i , use it to rewrite the function $g(A, B, C) = A \rightarrow ((\neg A \oplus B) \land \neg C)$. Draw a schema (Boolean circuit) for each resulting formula.
 - (a) $F_1 = \{ \land, \lor, \neg \}$

(c) $F_3 = \{ \rightarrow, \not\rightarrow \}$

(b) $F_2 = \{f_{14}^{(2)}\}$

- (d) $F_4 = \{1, \leftrightarrow, \land\}$
- 7. Construct a minimal (in terms of the number of gates) Boolean circuit that implements the conversion of 4-bit binary numbers to Gray code , *i.e.* the function $f: \mathbb{B}^4 \to \mathbb{B}^4$ with the semantics $(b_3, b_2, b_1, b_0) \mapsto (g_3, g_2, g_1, g_0)$, *e.g.*, $0000_2 \mapsto 0000_{\text{Gray}}$, and $1001_2 \mapsto 1101_{\text{Gray}}$. Use only NAND and NOR logic gates.
- 8. Consider a Boolean function $f: \mathbb{B}^3 \to \mathbb{B}$ defined as follows: $f(x, y, z) = \begin{cases} x & \text{if } z = 0 \\ y & \text{if } z = 1 \end{cases}$. Construct a formula for it using the standard Boolean basis $\{\land, \lor, \lnot\}$.
- 9. Binary Decision Diagram is a representation of a Boolean function as a directed acyclic graph, which consists of *decision* nodes and two *terminal* nodes (0 and 1). Each decision node is labeled by a Boolean variable x_i and has two child nodes called *low* and *high*. The edge from node to a low (high) child represents an assignment of the value FALSE (TRUE, respectively) to variable x_i . A path from the root node to the 1-terminal (0-terminal) represents an assignment for which the represented Boolean function is true (false, respectively).

BDD is called *ordered* if different variables appear in the same order on all paths from the root. For example, if the natural order $x_1 < x_2 < \cdots < x_n$ is used, the root is marked with the variable x_1 , its children with x_2 , *etc*. Note that some variables in the order can be skipped, if necessary.

For each given function f_i , construct an Ordered Binary Decision Diagram using the natural order. Determine whether the OBDD can be reduced by using a different variable order—if so, draw it.

(a)
$$f_1 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$$

(c)
$$f_3 = \sum m(1, 2, 5, 12, 15)$$

(b)
$$f_2 = majority(x_1, ..., x_5)$$

(d)
$$f_4 = x_1x_4 + x_2x_5 + x_3x_6$$