Teorema 5.4.2

Un conjunto de *n* vectores en \mathbb{R}^m es siempre linealmente dependiente si n > m.

Sean $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, n$ vectores en \mathbb{R}^m e intentemos encontrar constantes c_1, c_2, \dots, c_n no todos cero tales que

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = \mathbf{0}$$
 (5.4.7)

Sea
$$\mathbf{v}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}$, ..., $\mathbf{v}_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$. Entonces la ecuación (5.4.7) se convierte en

$$a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n = 0$$

$$a_{21}c_1 + a_{22}c_2 + \dots + a_{2n}c_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}c_1 + a_{m2}c_2 + \dots + a_{mn}c_n = 0$$
(5.4.8)

Pero el sistema (5.4.8) es el sistema (1.4.1), según el teorema 1.4.1, tiene un número infinito de soluciones si n > m. De esta forma, existen escalares c_1, c_2, \ldots, c_n no todos cero, que satisfacen (5.4.8) y, por lo tanto, los vectores $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ son linealmente dependientes.

EJEMPLO 5.4.5 Cuatro vectores en \mathbb{R}^3 que son linealmente dependientes

Los vectores $\begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 7 \\ -6 \end{pmatrix}$, $\begin{pmatrix} 18 \\ -11 \\ 4 \end{pmatrix}$ y $\begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}$ son linealmente dependientes ya que constituyen un

conjunto de cuatro vectores de tres elementos.

Existe un corolario importante (y obvio) del teorema 5.4.2.

(C)

Corolario 5.4.1

Un conjunto de vectores linealmente independientes en \mathbb{R}^n contiene a lo sumo n vectores.

Del sistema (5.4.8) se puede hacer otra observación importante cuya prueba se deja como ejercicio (refiérase al problema 32 de la presente sección).

Nota

El corolario se puede expresar de otra forma. Si se tienen *n* vectores de dimensión *n* linealmente independientes, no se pueden incluir más vectores sin convertir el conjunto en uno linealmente dependiente.

Teorema 5.4.3

Sea
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$