Recurrent Neural Networks

Sudong Lee

sudonglee@ulsan.ac.kr

https://dais.ulsan.ac.kr/

Contents

- Introduction to Sequential Data
- Vanilla Recurrent Neural Network
- LSTM (Long Short-Term Memory)

Introduction to Sequential Data

What is Sequential Data?

"Sequential data refer to data in which the order of instances matters."

Time Series

DNA sequencing

"I am a boy."

"Am I a boy?"

Natural language

Audio sampling

What is Sequential Data?

"Sequential data have the temporal dependency, so the order of instances matters."

- Notations
 - Non-sequential:

$$X^{T} = [x_{i,j}] \text{ for } i = 1, ..., n; j = 1, ..., p. \quad (n \times p)$$

Sequential:

$$\mathbf{X}^T = [x_i(t)]$$
 for $i = 1, ..., p; \ t = 1, ..., T$ $(T \times p)$
$$\mathbf{x}(t) = [x_1(t), ..., x_p(t)]^T$$

$$\mathbf{X} = [\mathbf{x}(1), ..., \mathbf{x}(T)]$$

Types of Sequential Data: Time Series

"Time series data is a sequence of data points collected or recorded at regular intervals."

Decomposition of a used car sales

Characteristics of Time Series Data

- Temporal ordering
 data points are arranged chronologically.
- Regular intervals
 collected at consistent time intervals (e.g., hourly, daily, ···)
- Dependency

 each data point is related to or influenced by previous points.

Types of Sequential Data: Signal

"Signal data imply a continuous or discrete series of measurements over time or space."

ECG (Electrocardiogram) signal data

Characteristics of Signal Data

- Time-varying
 represents how a quantity changes over time.
- Continuous or discrete

 continuous or discrete in nature.
- Amplitude and frequency
 characterized by their amplitude (strength) and frequency
 (rate of change).

Types of Sequential Data: Natural Language

"Natural language data expressed in human language are encoded as vectors."

Corpus: "you say goodbye and I say hello."

Word (text)	ID (label)	One-hot encoding			
you		(1, 0, 0, 0, 0, 0, 0)			
goodbye	2	(0, 0, 1, 0, 0, 0, 0)			

One-hot encoding of words using a bag-of-words

Inference: "you [?] goodbye and I say hello."

Context	Target		Context	Target		Context	Target
you, goodbye say, and goodbye, I and, say I, hello say, .	say goodbye and I say hello	ID →	[[0 2] [1 3] [2 4] [3 1] [4 5] [1 6]] (6, 2)	[1 2 3 4 1 5]	One-hot encoding	[[[1 0 0 0 0 0 0] [0 0 1 0 0 0 0]] [[0 1 0 0 0 0 0] [[0 0 0 1 0 0 0]] [[0 0 0 1 0 0 0] [[0 0 0 0 1 0 0]] [[0 0 0 0 1 0 0]] [[0 0 0 0 1 0]] [[0 0 0 0 1 0]] [[0 1 0 0 0 0 0]] [[0 1 0 0 0 0 0]]	[[0 1 0 0 0 0 0] [0 0 1 0 0 0 0] [0 0 0 1 0 0 0] [0 0 0 0 1 0 0] [0 1 0 0 0 0 0] [0 0 0 0 0 1 0]]
						(0, 2, 7)	

One-hot encoding of words using CBOW (continuous bag of words)

Types of Sequential Data: Natural Language

"Natural language data expressed in human language are encoded as vectors."

word2vec using CBOW

Word embeddings by word2vec

Vanilla Recurrent Neural Network

Representation of Sequential Data

"How can we effectively extract the representation of sequential data using deep learning?"

"I am a boy" \neq "am I a boy"

Representation of Sequential Data

"How can we effectively extract the representation of sequential data using deep learning?"

		_	
Order	Input		
1	What		
2	Time	\rightarrow	Sequential Data Processor
3	ls		
4	it?		¶ "I am a boy" ≠ "am I a

Limitation of Vanilla Neural Network for Sequential Data

"Independent nodes in the input layer are memoryless of the input sequence."

Order	Input							
1	What			x_1	h_1	y_1		
2	Time	\rightarrow					\rightarrow	"???? 🕡"
3	ls		i	:	1	; ;		
4	it?			(x_p)	h_k	y_m		
			ryless!	Input Layer	Hidden Layer(s)	Output Layer		

Memory System

"A sequential data processor is a memory system that can memorize the input order."

Recurrent Neural Network (RNN)

"A recurrent neural network recurrently applies a sequence processor using hidden states."

- x_t : the input vector at time t.
- h_t : the hidden state vector at time t.

Recurrent Neural Network (RNN)

"A recurrent neural network recurrently applies a sequence processor using hidden states."

- $\boldsymbol{h}_t = \tanh(\boldsymbol{h}_{t-1}^T \boldsymbol{W}_{hh} + \boldsymbol{x}_t \boldsymbol{W}_{xh} + \boldsymbol{b}_h)$
- $y_t = \tanh(h_t W_{hy} + b_y)$

Various Usage of RNN

Examples

- ① One-to-one: MLP
- ② One-to-many: description of an input image
- ③ Many-to-one: time series classification
- 4 Many-to-many: machine translation

Example: A Multi-layered LSTM for the Many-to-Many Problem

Understanding RNNs from a Tensor Perspective

Understanding RNNs from a Tensor Perspective

Understanding RNNs from a Tensor Perspective

BPTT: Backpropagation Through Time

"BPTT is an extension of the standard backpropagation algorithm adapted for the recurrent structure of RNN."

Challenges and Limitations of BPTT

Vanishing and exploding gradients:

As gradients are propagated back through many time steps, they can become very small (vanishing) or very large (exploding).

Computational complexity:

Computationally expensive, especially for long sequences, as it requires storing activations for all time steps.

In practice, BPTT is often truncated to a certain number of time steps to manage computational costs, which can limit the network's ability to learn long-term dependencies.

BPTT: Backpropagation Through Time

Truncated BPTT

Truncated BPTT

"Truncates the length of sequential data to a constant T length to reduce the size of the computation at once."

Truncated BPTT

"Truncates the length of sequential data to a constant T length to reduce the size of the computation at once."

Limitation of Vanilla RNNs

"Vanilla RNNs are limited in their ability to learn long-term memory due to computational cost and gradient issues."

"Tom was watching TV in his room. Mary came into the room. Mary said hi to [?]."

Causes of Gradient Vanishing and Exploding

"The structure of RNN inherently causes gradient problems."

Source ① tanh

1.0

0.5

-0.5

-1.0

tanh(x)
dy/dx

Source ② MatMul

How can we memorize the long-term dependency?

LSTM (Long Short-Term Memory)

Introduction to LSTM

"How can we memorize the long-term dependency?"

Friedrich Nietzsche

"Blessed are the forgetful for they get the better even of their blunders." 망각하는 자는 복이 있나니, 자신의 실수조차 잊기 때문이라.

Introduction to LSTM

"LSTM (Long Short-Term Memory) handles long-term dependencies in sequential data using the memory cell and gates."

• c_t : the (memory) cel/ state at time t.

Introduction to LSTM

"LSTM (Long Short-Term Memory) handles long-term dependencies in sequential data using the memory cell and gates."

LSTM at a Glance

"An LSTM unit consists of a memory cell, gates, and hidden state."

<u>States</u>

- (Memory) cell state (c): storing information over long periods.
- Hidden state (h): acts as short-term memory, similar to vanilla RNNs.

Gates

- Output gate (o): filters the updated cell state to produce the next hidden state.
- Forget gate (f): determines what information to discard from the previous state.
- Input gate (i): decides which new information (g) should be added to the cell state.

Output Gate

"An output gate filters the updated cell state to produce the next hidden state."

•
$$o = \sigma(x_t W_x^{(o)} + h_{t-1} W_h^{(o)} + b^{(o)})$$

•
$$h_t = o \otimes \tanh(c_t)$$

where \odot is elementwise product
(a.k.a., Hadamard product).

Forget Gate

"A forget gate determines what information to discard from the previous state."

•
$$f = \sigma(x_t W_x^{(f)} + h_{t-1} W_h^{(f)} + b^{(f)})$$

• $c_t = f \odot c_{t-1}$

•
$$c_t = f \odot c_{t-1}$$

Input Gate

"An input gate decides which new information (g) should be added to the cell state."

•
$$g = \tanh(x_t W_x^{(g)} + h_{t-1} W_h^{(g)} + b^{(g)})$$

•
$$i = \sigma(x_t W_x^{(i)} + h_{t-1} W_h^{(i)} + b^{(i)})$$

•
$$c_t = f \odot c_{t-1} + g \odot i$$

Recap: LSTM at a Glance

"An LSTM unit consists of a memory cell, gates, and hidden state."

•
$$f = \sigma(x_t W_x^{(f)} + h_{t-1} W_h^{(f)} + b^{(f)})$$

•
$$g = \tanh(x_t W_x^{(g)} + h_{t-1} W_h^{(g)} + b^{(g)})$$

•
$$i = \sigma(x_t W_x^{(i)} + h_{t-1} W_h^{(i)} + b^{(i)})$$

•
$$o = \sigma(x_t W_x^{(o)} + h_{t-1} W_h^{(o)} + b^{(o)})$$

•
$$c_t = f \odot c_{t-1} + g \odot i$$

•
$$h_t = o \odot \tanh(c_t)$$

tanh and Sigmoid in LSTM

Why do we use tanh in LSTM?

- Bounded output range
 - tanh squishes values between -1 and 1, which helps prevent exploding gradients during training.
 - tanh provides the normalization effect during the recursive processing of past values.
- Zero-centered output

Unlike *sigmoid*, which outputs between 0 and 1, *tanh* can output both positive and negative values that allow the hidden state values to increase or decrease, providing more flexibility in modeling sequential data.

Why do we use sigmoid in LSTM?

Gating mechanism

Its output range for 0 to 1 makes it ideal for the gates, as it allows them to control the flow of information.

The Gradient Flow in LSTM

"LSTM addresses the gradient problems by the backpropagation through the memory cells."

"Only + and \times operations on the path.":

- +: no change in gradients.
- ×: independent elementwise products instead of recursive matrix multiplications.

Takeaways

Recurrent Neural Network (RNN)

"A recurrent neural network recurrently applies a sequence processor using hidden states."

- $\boldsymbol{h}_t = \tanh(\boldsymbol{h}_{t-1}^T \boldsymbol{W}_{hh} + \boldsymbol{x}_t \boldsymbol{W}_{xh} + \boldsymbol{b}_h)$
- $y_t = \tanh(h_t W_{hy} + b_y)$

Limitation of Vanilla RNNs

"Vanilla RNNs are limited in their ability to learn long-term memory due to computational cost and gradient issues."

"Tom was watching TV in his room. Mary came into the room. Mary said hi to [?]."

Recap: LSTM at a Glance

"An LSTM unit consists of a memory cell, gates, and hidden state."

•
$$f = \sigma(x_t W_x^{(f)} + h_{t-1} W_h^{(f)} + b^{(f)})$$

•
$$g = \tanh(x_t W_x^{(g)} + h_{t-1} W_h^{(g)} + b^{(g)})$$

•
$$i = \sigma(x_t W_x^{(i)} + h_{t-1} W_h^{(i)} + b^{(i)})$$

•
$$o = \sigma(x_t W_x^{(o)} + h_{t-1} W_h^{(o)} + b^{(o)})$$

•
$$c_t = f \odot c_{t-1} + g \odot i$$

•
$$h_t = o \odot \tanh(c_t)$$

Thank you! 🙂

