Planar Maximal Covering with Ellipses

Danilo F. Tedeschi

Instituto de Ciências Matemáticas e Computação

April 25, 2019

Contents

- Introdução
- 2 Preliminaries
- Maximal Covering by Disks
 - Maximum Weight Clique Problem
- 4 Cobertura Maximal por Ellipses
- Trabalhos Futuros

Introdução

- Covering problems
 - Set Cover Problem
 - Maximal Covering Problem
- Maximal Covering Location Problem (MCLP)
- Planar Maximal Covering Location Problem (PMCLP)
 - One disk: $\mathcal{O}(n^2)$ and $\mathcal{O}(n^2 \log n)$ algorithms
 - m disks: $\mathcal{O}(n^{2m-1} \log n)$ algorithm
- Goals
 - Develop a $\mathcal{O}(n^2 \log n)$ algorithm for the one disk case
 - Adapt it for the *m* ellipses case

Preliminaries

Norms

Let $u \in \mathbb{R}^2$ and Q a 2 by 2 positive definite matrix

Euclidean

$$||u||_2 = \sqrt{u^T u}$$

Elliptical

$$||u||_Q = \sqrt{u^T Q u}$$

Preliminaries

Ellipse

Given a center $c \in \mathbb{R}^2$ and a p.d. matrix Q, an ellipse is the set of points that satisfy

$$||u-c||_Q=1$$

with \leq representing the set of covered points

Axis-parallel ellipse

Any 2 by 2 diagonal d.p. matrix determines an axis-parallel ellipse, which can also be described by

$$\frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} = 1$$

Preliminaries

Figure: Three curves representing the points that have distance equal to one.

Maximal Covering by Disks

One disk

 $MCD(\mathcal{P}, 1)$ is the problem of placing one disk on the plane to cover a subset of a demand set \mathcal{P} maximizing the weights of the covered points.

$$\max_{q} w(\mathscr{P} \cap D(q)),$$

- $\mathscr{P} = \{p_1, \dots, p_n\}$ is the demand set with weights $w(p_i) > 0$
- w(A), with $A \subset \mathscr{P}$ is the sum of weights of the points in A
- D(q) is a disk with radius one with center at point q
- We will introduce an equivalent problem...

Maximum Weight Clique Problem

Let $\mathscr{D} = \{D_1, \dots, D_n\}$ be a set of n unit disks with weights $w_i > 0$. The maximum weight clique is defined as

$$\max_{q} \sum_{D_k \cap q \neq \emptyset} w_k,$$

- The disks are fixed at $\mathscr{P} = \{p_1, \dots, p_n\}$ with $w_k = w(p_k)$
- A clique is a non-empty intersection area of a subset of disks
- An optimal solution for the maximum weight clique is an optimal solution for $MCD(\mathcal{P}, 1)$.

Cobertura Maximal por Ellipses

 $content...\ trabalhos\ passados$

Cobertura Maximal por Ellipses

m elipses

content... algoritmo

Trabalhos Futuros