

Big Data Analytics Project

Table of contents

Problem and Data 01
Architecture 02
Experimental Setting 03
Results 04

Problem and Data

Objective

Predict number of people in a room through sensor data.

Problem Type

- Multilabel Classification
- Timeseries Data

The Dataset

18 Features

- 2 Temporal Features
- 16 Sensor Features

Number of people in the room ranging from 0 to 3

The Features

Temporal

- Date
- Time

Temperature

4 sensors measuring continuous values in °C

Light

4 Sensors measuring continuous values in Lux

Sound

4 sensors measuring continuous values in Volts

CO2

- 1 sensor measuring continuous values in parts per millions
- Slope of CO2 values taken in a sliding window of 25 CO2 points

PIR

2 sensors measuring in binary values whether motion is detected or not in the room

The Label

Count of people in the room at the given time in a categorical range

Features Correlation

Temperature Sensors Distribution

Light Sensors Distribution

Sound Sensors Distribution

Label Distribution through Time

Architecture

Resources

Experiment tested on both:

- Local Cluster
- Google Colab

Tested the correct functionality of the local cluster.

Actual experiment and result obtained by colab

- Faster
- More access to memory

Local Cluster Setup

Master Node

4096 MB

IP: 192.168.33.10

Worker Node

4096 MB

IP: 192.168.33.11

Tested Models

Gradient Boosted Tree

Logistic Regression

Multilayer Perceptron

Naive Bayes

Random Forest

Support Vector Machine

Gradient Boosted Tree

Fixed Parameters

- Seed: 42
- Subset Strategy: *sqrt*
- Impurity: variance
- Loss type: logistic

- Step Size
- Validation Tolerance

Logistic Regression /

Fixed Parameters

• Family: *multinomial*

- Max Iterations
- ElasticNet Parameter:
 - O = L2 PENALITY
 - 1 = L1 PENALITY
 - \circ (0, 1) = COMBINATION OF BOTH
- Regularization Parameter

Multilayer Perceptron

Fixed Parameters

• Seed: 42

- Solver
- Max Iterations
- Step Size:
- Hidden Layers (Size= (|input features| + |output features|) / 2)
 - 1 HIDDEN LAYER
 - 2 HIDDEN LAYERS

Naive Bayes

- Smoothing
- Model Type
 - MULTONOMIAL
 - GAUSSIAN

Random Forest

Fixed Parameters

- Seed: 42
- Subset Strategy: sqrt

- Impurity
 - GINI
 - ENTROPY
- Number of Trees
- Maximum Depth
- Minimum Info Gain

Support Vector Machine

- Regularization Parameter
- Fit Intercept
- Tolerance

Handling Multilabel Classification

Multilabel Classification natively implemented for most architecture in Sparks

One Vs Rest Binary Classification for each label adopted for:

- Gradient Boosted Tree
- Support Vector Machine

03 Experimental Setting

Train and Test Split

Train and Test Label Distribution

Training Pipeline

Data Processing

Feature Selection Standardization

- All sensor data
- Time features excluded
- R-Formula to vectorize data

Standard scaling applied for:

- Logistic Regression
- Multilayer Perceptron
- Support Vector Machine

Feature Shifting

Naive Bayes using multinomial distribution accepts non-negative values

 CO2 Slope values were shifted by 20

Grid Search

Grid Search on the selected combination of hyperparameters validating on **F1** score

Class sampling* with instance weight inversely proportional to their label distribution in order to account for class unbalance and insist on under-represented features

weight(x) =
$$\frac{|\mathcal{D}|}{|\mathcal{C}| \cdot |\mathcal{D}_c|}$$

Where:

- x is an instance
- c is the label of α
- \bullet **\mathcal{D}** is the training dataset
- $m{\ell}$ is the set of labels
- \mathcal{D}_c is the subset of the training dataset with class c

* Not applied for Multilayer Perceptron

Cross Validation

10-Fold Cross Validation on the training set

- Stratification for equal class distribution on each fold
- Selected contiguous instances for each label in each fold to preserve time independency

Re-train the model on the whole train set with the best found hyperparameters according to grid search and cross validation scores

Threshold Selection*

Select for **each label** the **threshold** that maximizes its **average F1 score** for each validation fold.

The selected threshold t for a class c changes for each instance α the **probability** score p of it being an instance of class c such that:

$$p_c(x) = \frac{p_c(x)}{t}$$

Threshold Selection

Example of threshold/F1 curves for the Random Forest Classifier

04

Results

Best Hyperparameters

Gradient Boosted Tree

- Step Size: 0.1
- Validation Tolerance: 0.1

Logistic Regression

- Maximum Iterations: 50
- ElasticNet Parameter: 0 (L2 Penality)
- Regulation Parameter: 0.0001

Multilayer Perceptron

- Solver: *l-bfgs*
- Maximum Iterations: 100
- Step Size: 0.3
- Hidden Layers: 1

Naive Bayes

- Smoothing: 1.0
- Model Type: gaussian

Random Forest

- Impurity: *entropy*
- Number of Trees: 100
- Maximum Depth: 10
- Minimum Info Gain: 0.2

Support Vector Machine

- Regulation Parameter: 0.0001
- Fit Intercept: False
- Tolerance: 0.001

Average Validation Results

Threshold Selection Test Results

Test Results

F1 scores:

• **Label 0:** 0.999

• **Label 1:** 0.831

• Label 2: 0.372

• Label 3: 0.009

F1 Macro: 0.553 **Accuracy:** 0.866

F1 scores:

• Label 0: 1.000

• **Label 1:** 0.996

• **Label 2:** 0.996

• **Label 3:** 1.000

F1 Macro: 0.998 **Accuracy:** 1.000

F1 scores:

• **Label 0:** 0.997

• **Label 1:** 0.938

• Label 2: 0.900

• **Label 3:** 0.952

F1 Macro: 0.947 **Accuracy**: 0.983

Naive Bayes

F1 scores:

• **Label 0:** 0.982

• **Label 1:** 0.942

• Label 2: 0.270

• **Label 3:** 0.563

F1 Macro: 0.689 **Accuracy:** 0.884

Random Forest

F1 scores:

• **Label 0:** 0.996

• **Label 1:** 0.920

• Label 2: 0.866

• Label 3: 0.933

F1 Macro: 0.929 **Accuracy:** 0.977

Label 0: 0.999Label 1: 0.996

• Label 2: 0.700

• **Label 3:** 0.719

F1 Macro: 0.854 **Accuracy:** 0.950

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

