Шифрование с открытым ключом

АЛГОРИТМ RSA

Содержание

- Симметричный шифр
- Ассиметричный шифр
- Виды ассиметричных шифров
- <u>Алгоритм RSA</u>
 - о Теоретические основы алгоритма
 - о Практическая реализация и пример
- Заключение
- Список литературы

Симметричный шифр

- Симметричный шифр метод передачи шифрованной информации, в котором зашифровывающий и расшифровывающий ключи совпадают.
- Стороны, обменивающиеся зашифрованными данными, должны знать **общий секретный ключ.**

<

Симметричный шифр

Симметричный шифр

• Достоинства:

• Всего один зашифровывающий / расшифровывающий ключ

• Недостатки:

- Процесс обмена информацией о секретном ключе представляет собой брешь в безопасности.
- Для передачи секретного ключа необходим закрытый канал связи.

Ассиметричный шифр

- **Ассимметричный шифр** метод передачи шифрованной информации, в котором зашифровывающий и расшифровывающий **ключи не совпадают.**
- Ассиметричное шифрование является односторонним процессом.
- Данные шифруются только открытым ключом
- Расшифровываются только секретным
- Открытый и секретный ключ связаны между собой.

<

Ассиметричный шифр

Ассиметричный шифр

• Достоинства:

- Для передачи ключа не нужен закрытый канал связи.
- Открытый ключ может быть свободно распространен, это позволяет принимать данные от всех пользователей.

• Недостатки:

• Ресурсоемкий алгоритм шифрования / дешифрирования

< Виды ассиметричных шифров

RSA

o Rivest-Shamir-Adleman (Ривест-Шамир-Адлеман)

DSA

Digital Signature Algorithm (Алгоритм цифровой подписи)

• EGSA

o El-Gamal Signature Algorithm (Алгоритм ЭЦП Эль-Гамаля)

• ECC

o Elliptic Curve Cryptography (Криптография эллиптической кривой)

• ΓΟCT P 34.10-94

• Российский стандарт схожий с DSA

• ΓΟCT P 34.10-2001

о Российский стандарт схожий с ЕСС

Алгоритм RSA

- RSA (1977 г.) криптографическая система открытого ключа. Обеспечивает такие механизмы защиты как шифрование и цифровая подпись.
 - Цифровая подпись (ЭЦП) механизм аутентификации, позволяющий проверить принадлежность подписи электронного документа его владельцу.
- Алгоритм RSA используется в Internet, к примеру в:
 - S/MIME
 - IPSEC (Internet Protocol Security)
 - TLS (которым предполагается заменить SSL)
 - WAP WTLS.

Алгоритм RSA: Теория

- В основу асимметричных криптосистем кладётся одна из сложных математических проблем, которая позволяет строить односторонние функции и функциилазейки.
- В основе алгоритма RSA лежит вычислительная проблема разложения больших чисел на простые множители.

Алгоритм RSA: Теория

- Односторонняя функция функция, которая вычисляется только прямо, т.е. не обращается.
 - \circ Возможно найти f(x), зная x, но невозможно обратное.
- Односторонней функцией в RSA служит функция для шифрования.
- Лазейка некий секрет, зная который можно обратить одностороннюю функцию.
- Лазейкой в RSA является секретный ключ.

- Выбираются два случайных простых числа р и q заданного размера
 - p = 3
 - q = 11
- $\mathbf{2}$. Вычисляется модуль, \mathbf{n}
 - $n = p \cdot q = 33$
- 3. Вычисляется значение функции Эйлера $\varphi(n)$
 - $\varphi(n) = (p-1)\cdot(q-1) = 20$

- 4. Выбирается целое число $1 < e < \varphi(n)$ [1 < e < 20] взаимно простое со значением функции $\varphi(n) = 20$
 - e = 3
 - е открытая экспонента
- 5. Вычисляется число d, мультипликативно обратное к числу e, т.е. $d \cdot e \pmod{\varphi(n)} = 1$
 - d = 7
 - $oldsymbol{o}$ $oldsymbol{d}$ секретная экспонента
- 6. Открытый ключ $P = \{e, n\}$
- 7. Секретный ключ $S = \{d, n\}$

• Шифрование

- Формула для шифрования $b_i = a_i^e \pmod{n}$
- Возьмем к примеру сообщение $a = \{C, R, Y, P, T, O\}$
- Запишем его кодом в соответствии с алфавитом
 - $a = \{3,18,25,16,20,15\}$
- Результат: $b = \{27, 24, 16, 4, 14, 9\}$
- Пример: $16 = 25^3 + 473 \cdot 33$

$$27 = 3^3 \pmod{33}$$
 $4 = 16^3 \pmod{33}$

$$24 = 18^3 \pmod{33}$$
 $14 = 20^3 \pmod{33}$

$$16 = 25^3 \pmod{33}$$
 $9 = 15^3 \pmod{33}$

• Дешифрирование

- Формула для дешифрирования $a_i = b_i^d \pmod{n}$
- Шифрованное сообщение $b = \{27, 24, 16, 4, 14, 9\}$
- Результат: $a = \{3,18,25,16,20,15\}$
- В соответствии с алфавитом: $a = \{C, R, Y, P, T, O\}$
- Пример: $25 = 16^7 + 8134407 \cdot 33$

$$3 = 27^7 \pmod{33}$$
 $16 = 4^7 \pmod{33}$

$$18 = 24^7 \pmod{33}$$
 $20 = 14^7 \pmod{33}$

$$25 = 16^7 \pmod{33}$$
 $15 = 9^7 \pmod{33}$

Заключение

- Алгоритмы ассиметричного шифрования используют как вспомогательный инструмент для передачи небольших объемов информации, к примеру секретных ключей симметричного шифра.
- Такие гибридные системы получили широкое распространение и классический алгоритм RSA сейчас является частью множества других безопасных протоколов передачи данных.

Список литературы

- Венбо Мао Современная криптография. Теория и практика. — М.: Вильямс, 2005. — 768 с.
- Коутинхо С. Введение в теорию чисел. Алгоритм RSA. М.: Постмаркет, 2001. 328 стр.
- Фергюсон Н., Шнайер Б. Практическая криптография
 М.: «Диалектика», 2004. 432 с.
- Википедия [Электронный ресурс] Режим доступа: http://ru.wikipedia.org