Audio Clip Tagging

Everyday Sound Classification with CNN and Transfer Learning

Background

- Extensive research has been done before deep learning
 - Preprocessing methods
- Similarity between audio and image classification
 - Robust models for transfer learning
- Multiple Applications:
 - Voice/Sound recognition
 - Noisy environment information extraction

Dataset

Based on Kaggle Competition Freesound Audio Tagging 2019

Two sources for data:

- Noisy web audio data from Flickr videos taken from the YFCC dataset (Yahoo Flickr Creative Common)
- Curated (manually tagged) audio clips from FSD (Freesound Dataset)

Properties:

- 19815 noisy clips, 4970 curated clips
- Different length (0.2 to 30s)
- High sampling rates (44.1kHz)
- Large frequency range (10-22kHz)

Data Preprocessing

- Trimming
- Padding
- Mel-spectrogram (filter banks)
- MFCC

CNN - architecture

CNN - results

400+ Epochs

Categorical accuracy: 0.62; Score: 0.731

Competition Leaderboard:

Max:0.762 mean: 0.548 median: 0.61

Transfer Learning

- VGG19 trained on ImageNet (Image classification model)
- Train customed fully connected layers only

Transfer Learning - results

200 Epochs; Categorical accuracy: 0.65; Score: 0.79

Doodle Recognition

Image Classification with Sequential Models

Background

Abundant deep learning CNN based models for image recognition

Sequential properties of doodle image data

Handwriting analysis applications

Dataset and Preprocessing

Dataset:

Google Al "Quick! Draw" Dataset

340 categories 50M drawings

(For this project, 32 categories, 3M drawings)

Example: Microwave

Preprocessing:

Strokes -> Sequences

Connect without losing information

Example: Crab

LSTM Structures

- Vanilla stacked LSTM
- Conv1D LSTM
- Performance under different class sizes (scalability)

32 Class Vanilla LSTM vs. Conv LSTM

Conv LSTM Performance on Variable Amounts of Classes.

LSTM Structures - Examples

True/Classified label = camel

True/Classified label = onion

True label = crown; Classified as drill

LSTM vs CNN

	Vanilla CNN	Inception CNN	Vanilla LSTM	Conv LSTM
8 Classes	86.7%	92.5%	93.9%	94.2%
16 Classes	78.4%	86.8%	91.9%	91.4%
32 Classes	75.2%	83.6%	91.8%	90.9%