Lecture 12 Reproducible research

Chao Song

College of Ecology Lanzhou University

November 24, 2022

What is reproducible research?

- Reproducibility: results obtained by a study can be achieved again with a high degree of reliability when the study is replicated.
- Reproducibility is the cornerstone of science. It is why science is credible and useful.

(Peng 2011, Science)

What is reproducible research?

- Reproducibility contains many aspects:
 - Methods reproducibility: provide enough detail so the procedures could be exactly repeated.
 - Results reproducibility: obtain similar results from an independent study with same procedures as original experiment.
 - Inferential reproducibility: draw the same conclusions from either an independent replication or a reanalysis of the original experiment.
- Reproducibility is often used in the narrow sense of "computational reproducibility": obtaining the same results given original data, code, and documentation.

Benefits of reproducible research

- Reproducible research benefits you:
 - helps you remember how and why you performed specific analyses
 - enables you to quickly and simply modify analyses and figures
 - enables quick reconfiguration of previously conducted research tasks for new research
 - is a strong indicator to fellow researchers of rigor, trustworthiness, and transparency
- Reproducible research benefits the research community:
 - Allows others to learn from your work
 - Help others understand your work
 - Allows others to protect from your mistakes

Reproducibility crisis

 Reproducibility is threatened by many questionable practices in the scientific research process.

(Munafò et al 2017, Nature Human Behavior)

"P-hacking"

 "P-hacking" occurs when researchers try out several statistical analyses and/or data eligibility specifications and then selectively report those that produce significant results

(Head et al 2015, PLOS Biology)

"Fishing expedition"

 "Fishing expedition" occurs when researchers indiscriminately examine associations between different combinations of variables not with the intention of testing a priori hypotheses but with the hope of finding something statistically significant.

Relationship between two unrelated variables

```
#Response sampled from standard normal distribution#
response <- rnorm(20,0,1)
#Vector to store p-values#
p <- numeric(length=1000)

for(i in 1:1000){
    #Predictor sampled from standard normal distribution#
    predictor <- rnorm(20,0,1)
    #Linear regression between response and preidictor#
    mod <- lm(response~predictor)
    #Extract p-value from regression testing slope=0#
    p[[i]] <- summary(mod)$coefficients[4]
}</pre>
```

Reproducibility crisis

- Perceived reproducibility varies among fields.
- Many factors contribute to irreproducible research.

(Baker 2016, Nature)

Reproducibility crisis

- Many publications missing critical information in the methods.
- Example: in a systematic review of the impacts of agricultural management on soil organic carbon, 13% of studies per year did not report sample size.

(Haddaway and Verhoeven 2015, Ecology and Evolution)

Recommendations on methods reporting

- Experimental setting
- Study dates and duration
- Sample selection and treatment allocation
- Level of true replication
- Level of subsampling
- Sampling precision
- Study spatial scale
- Study design (before—after, blocking, etc)
- Outcome measurements method and equipment
- Description of any data manipulation, modeling and statistical analysis

Improve computational reproducibility

- The key to improving computational reproducibility is to be open and transparent about your data and analysis;
- Lots of efforts in the research community were spent on facilitating data and code availability;
- We should strive to make data and code available and well documented so that it is accessible to the broad scientific community.

Tools for computational reproducibility

- Version control using git: this allows you to go back and forth between versions, and allows for each collaboration.
- Version control can be integrated with online services like <u>GitHub</u> or <u>Gitee</u>.

Tools for computational reproducibility

- Writing dynamic documents using R Markdown, Sweave, Jupyter Notebook or similar tools.
- They allow you to combine text and programing code in a single document.

Recommended practice

- Make data and code available
 - Submit data as supplementary information of a paper
 - Use data repository: <u>Dryad</u>, <u>figshare</u>, <u>Zenodo</u>, <u>Open Science</u>
 <u>Framework</u>
- Share research
 - Preprint server: <u>ArXiv</u>, <u>bioRxiv</u>, <u>EcoEvoRxiv</u>
- Document data and code well
 - Follow good coding style (R coding style)
 - Always provide metadata
- Make data and code accessible
 - Use non-proprietary file format
 - Ensure consistent appearance (embed font, use PDF)

A manifesto for reproducible science

Theme	Proposal	Examples of initiatives/potential solutions (extent of current adoption)	Stakeholder(s)
Methods	Protecting against cognitive biases	All of the initiatives listed below (* to ****) Blinding (**)	J, F
	Improving methodological training	Rigorous training in statistics and research methods for future researchers (*) Rigorous continuing education in statistics and methods for researchers (*)	I, F
	Independent methodological support	Involvement of methodologists in research (**) Independent oversight (*)	F
	Collaboration and team science	Multi-site studies/distributed data collection (*) Team-science consortia (*)	I, F
Reporting and dissemination	Promoting study pre-registration	Registered Reports (*) Open Science Framework (*)	J, F
	Improving the quality of reporting	Use of reporting checklists (**) Protocol checklists (*)	J
	Protecting against conflicts of interest	Disclosure of conflicts of interest (***) Exclusion/containment of financial and non-financial conflicts of interest (*)	J
Reproducibility	Encouraging transparency and open science	Open data, materials, software and so on (* to **) Pre-registration (**** for clinical trials, * for other studies)	J, F, R
Evaluation	Diversifying peer review	Preprints (* in biomedical/behavioural sciences, **** in physical sciences) Pre- and post-publication peer review, for example, Publons, PubMed Commons (*)	J
Incentives	Rewarding open and reproducible practices	Badges (*) Registered Reports (*) Transparency and Openness Promotion guidelines (*) Funding replication studies (*) Open science practices in hiring and promotion (*)	J, I, F

(Munafò et al 2017, Nature Human Behavior)