HAUST 2016

ÞÝÐENDUR T-603-THYD

Homework 1

Nemandi:

Steinn Elliði Pétursson

Kennitala:

250594-2759

19. september 2016

Kennari:

Friðjón Guðjohnsen

1

Write Regular expressions describing the following languages over the alphabet $\Sigma = a, b$

a)

All non-empty strings that start and end with the same symbol.

Solution.

$$(a[ab]^*a)|(b[ab]^*b)|a|b$$

b)

All strings that do not have bbb as substring (ϵ included)

Solution.

$$((?!bbb)[ab])$$
*\$

c)

All strings of even length that have aa as a substring.

Solution.

$$(ab|ba|bb|aa)^*(aa)^+(ab|ba|bb|aa)^*$$

d)

Problem. All strings that contain at least one a and at least one b.

Solution.

$$[ab]^*(ab|ba)[ab]^*$$

$\mathbf{2}$

Use Algorithm 3.23 in the textbook (on page 159) to transform the regular expression $a((aa)^*|b)^*b$ into a nondeterministic finite automation (NFA). Draw the NFA and show all the intermediate steps in your construction.

Solution. Following are the steps taken to generate an NFA from the above regular expression.

2.1

a

2.2

b

2.3

aa

2.4

 $(aa)^*$

2.5

 $(aa)^*|b$

2.6

 $((aa)^*|b)^*$

2.7

 $a((aa)^*|b)^*$

 ${\bf 2.8}$ $a((aa)^*|b)^*b \mbox{ The fully constructed NFA}$

Use algorithm 3.20 in the textbook (on page 153) to transform the NFA you constructed in Exercise 3 into a DFA. Draw the DFA and show all intermediate steps.

Solution.

```
Let's start by finding the start state of the DFA: \epsilon - closure(0) = A = \{0\}. Next let's find the transitions for a and b: Dtran[A,a] = \epsilon - closure(move(A,a))move(A,a) = \{1\}\epsilon - closure(\{1\}) = \{1,2,3,4,7,8,10,11\}Let us call this set BDtran[A,b] = \epsilon - closure(move(A,b))move(A,b) = \{\}\epsilon - closure(\{\}) = \{\}
```

This results in an invalid state which shall be called F. The invalid state can only redirect to itself since there is no way to end up with a valid solution if we end up in the invalid state.

After the above transition we have the following transition table.

NFA State	DFA State	a	b
{0}	A	В	F
{1,2,3,4,7,8,10,11}	В	?	?
{}	F	F	F

Now let us apply the algorithm on set B:

$$Dtran[B, a] = \epsilon - closure(move(B, a))$$
$$move(B, a) = \{5\}$$

$$\epsilon - closure(\{5\}) = \{5\}$$

This gives us $Dtran[B, a] = \{5\}$ let's call this set C

$$Dtran[B, b] = \epsilon - closure(move(B, b))$$

$$move(B, b) = \{9, 12\}$$

$$\epsilon - closure(\{9, 12\}) = \{2, 3, 4, 7, 8, 9, 10, 11, 12\}$$

This gives us $Dtran[B, a] = \{2, 3, 4, 7, 8, 9, 10, 11, 12\}$ let's call this set D.

Now we have the following transition table:

NFA State	DFA State	a	b
{0}	A	В	F
{1,2,3,4,7,8,10,11}	В	С	D
{5}	С	?	?
{2,3,4,7,8,9,10,11,12}	D	?	?
{}	F	F	F

Let's next apply the algorithm on set C:

$$Dtran[C, a] = \epsilon - closure(move(C, a))$$

$$move(C, a) = \{6\}$$

$$\epsilon - closure(\{6\}) = \{2, 3, 4, 6, 7, 8, 10, 11\}$$

This gives us $Dtran[B, a] = \{2, 3, 4, 6, 7, 8, 10, 11\}$ let's call this set E

 $Dtran[C,b] = \epsilon - closure(move(C,b))$

 $move(C, b) = \{\}$

 $\epsilon - closure(\{\}) = \{\}$

This results in the invalid state F

Now we have the following transition table:

NFA State	DFA State	a	b
{0}	A	В	F
{1,2,3,4,7,8,10,11}	В	С	D
{5}	С	E	F
{2,3,4,7,8,9,10,11,12}	D	?	?
{2,3,4,6,7,8,10,11}	Е	?	?
{}	F	F	F

Applying the same methods on sets D and E we get the following results:

 $Dtran[D, a] = \{5\}$ which is equal to the set C.

 $Dtran[D, b] = \{2, 3, 4, 7, 8, 9, 10, 11, 12\}$ which is equal to D itself.

 $Dtran[E, a] = \{5\}$ which is equal to the set C.

 $Dtran[E, b] = \{2, 3, 4, 7, 8, 9, 10, 11, 12\}$ which is equal to D.

This gives us the complete transition table for the NFA:

NFA State	DFA State	a	b
{0}	A	В	F
{1,2,3,4,7,8,10,11}	В	С	D
{5}	С	E	F
{2,3,4,7,8,9,10,11,12}	D	С	D
{2,3,4,6,7,8,10,11}	Е	C	D
{}	F	F	F

Following is the DFA constructed from the transition table:

4

Simplify the DFA created in the previous exercise into an equivalent DFA consisting of as few states as possible.

Solution.

5

Do the following pairs of regular expressions describe the same language?

a)

```
\epsilon |a(a|b)^*b and (a(a|b)^*b)^*
```

Solution.

- i) Let's call the former regular expression A (A = $\epsilon |a(a|b)^*b$) and the latter B (B = $(a(a|b)^*b)^*$)
- ii) Let's begin by observing that both regular expressions accept ϵ . ϵ is a part of the definition of A but it is also allowed in B because of the kleene star.
- iii) Now except for the empty string A has the only constraint that it accepts strings over the language $\{a, b\}$ which start with a and end with b.
- iv) Observe that the exact same constraints happen to apply to B if we leave out the outer kleene star: $a(a|b)^*b$. So assuming that the outer kleene star will have the value 1 $(a(a|b)^*b\{1\})$ the pairs do describe the same language.
- v) If the outer kleene star has a value > 1 then we will still have a regular expression which accepts strings over the language $\{a,b\}$ that start with a and end with b since that is a concatenation of the case where the kleene star has a value of 1.
- vi) Any additional constraints that might exist when the kleene star has a value > 1 are therefore irrelevant since although the concatenation might not accept all strings over the language {a,b} that start with a and end with b all the strings it does accept do start with a and end with b and are therefore a subset of the special case when the outer kleene star has a value of 1.

From i - vi above we can see that both regular expression do in fact describe the same language which is: The empty string or a string that starts with a and ends with b.

b)

```
a^* and (aaa)^*(a|aa)
```

Solution.

These regular expressions do not describe the same language since the former regular expression accepts ϵ but the latter does not.

6

Give a regular definition for the language consisting of all strings over the alphabet $\Sigma = \{a, b, c, d\}$ with no repeated letters.

Solution.

Let's begin by defining some regular expression which will help with the final definition.

AInFront = a?b?c?d?|a?b?d?c?|a?c?b?d?|a?c?d?b?|a?d?b?c?|a?d?c?b?

CInFront = c?b?a?d?|c?b?d?a?|c?a?b?d?|c?a?d?b?|c?d?b?a?|c?d?a?b?

DInFront = d?b?c?a?|d?b?a?c?|d?c?b?a?|d?c?a?b?|d?a?b?c?|d?a?c?b?

With these definitions in place the final definition will be:

NoRepeat = AInFront|BInFront|CInFront|DInFront