IN GENIERIA

Diagramas de Flujo

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	Alejandro Pimentel	
Asignatura:	Fundamentos de Programación	
Grupo:	135	
No de Práctica(s):	4	
Integrante(s):	Lorena Basurto Amezcua	
No. de Equipo de cómputo empleado:	Suiza45	
No. de Lista o	2858	
Semestre:	2020-1	
Fecha de entrega:	Septiembre 9, 2019.	
Observaciones:		
	CALIFICACIÓN:	

Objetivo:

Elaborar diagramas de flujo que representen soluciones algorítmicas vistas como una serie de acciones que comprendan un proceso.

Desarrollo:

<u>Algoritmo</u>: conjunto de instrucciones o reglas definidas y no-ambiguas, ordenadas y finitas que permite, típicamente, solucionar un problema, realizar un cómputo, procesar datos y llevar a cabo otras tareas o actividades.

<u>Diagrama de flujo</u>: representación gráfica de un algoritmo o proceso.

Simbología y significado:

- Óvalo o Elipse: Inicio y Final (Abre y cierra el diagrama).
- <u>Rectángulo</u>: Actividad (Representa la ejecución de una o más actividades o procedimientos).
- Rombo: Decisión (Formula una pregunta o cuestión).
- <u>Círculo</u>: Conector (Representa el enlace de actividades con otra dentro de un procedimiento).
- <u>Triángulo</u> boca abajo: Archivo definitivo (Guarda un documento en forma permanente).
- Triángulo boca arriba: Archivo temporal (Proporciona un tiempo para el almacenamiento del documento).

Actividad 1

 Diagrama de flujo que reciba un número del 1 al 7, y que indique a qué día de la semana corresponde

Actividad 2

• Diagrama de flujo que reciba tres números y verifique si son válidos como los ángulos de un triángulo.

Actividad 3

 Diagrama de flujo que reciba tres números como los lados de un triángulo, y que responda si se trata de un triángulo equilátero, isósceles, o escaleno.

Actividad 4

 Diagrama de flujo que reciba tres números como los lados de un triángulo, y que responda si se puede formar un triángulo con lados de esa longitud, o no.

Actividad 5

Verificar las actividades anteriorres con los datos:

- Números a días: 3,7,-2,0,9,"Lunes"
- Ángulos de triángulo:
 - 30,30,120
 - -90,90,180
 - 0,30,150
 - 270,60,30
- Tipos de triángulos:
 - 45,50,80
 - 20,20,20
 - 10,100,10
 - 0,4,20
- Triángulo aceptable:
 - 20,40,20
 - 60,100,200
 - -3,6,12
 - 4,5,9

Resultados:

• Días de la semana

Entrada	Salida
x = 3	MIÉRCOLES
x = 7	DOMINGO
x = -2	NINGÚN DÍA DE LA SEMANA
x = 0	NINGÚN DÍA DE LA SEMANA
x = 9	NINGÚN DÍA DE LA SEMANA

• Ángulos de triángulo

Entrada	Salida
A = 30, B = 30, C = 120	Los valores sí son válidos como ángulos de un triángulo
A = -90, B = 90, C = 180	Error (no cumple las precondiciones)
A = 0, B = 30, C = 150	Los valores no son válidos como ángulos de un triángulo
A = 270, B = 60, C = 30	Los valores no son válidos como ángulos de un triángulo

• Tipos de triángulos

Entrada	Salida
a = 45, b = 50, c = 80	Escaleno
a = 20, b = 20, c = 20	Equilátero
a = 10, b = 100, c = 10	Error (no cumple las precondiciones)
a = 0, b = 4, c = 20	Error (no cumple las precondiciones)

• Triángulo aceptable

Entrada	Salida
a = 20, b = 40, c = 20	Los valores no son válidos
a = 60, b = 100, c = 200	Los valores no son válidos
a = -3, b = 6, c = 12	Error (no cumple las precondiciones)
a = 4, b = 5, c = 9	Los valores no son válidos

Conclusión:

Un diagrama de flujo nos permite diseñar y desarrollar un algoritmo que funcione y sea eficiente, haciéndolo visual y fácil de comprender y de probar. También, utilizar valores diferentes para probar nuestros algoritmos es una buena manera de comprobar que funcionan para cualquier valor que permitamos como entrada o en las precondiciones de nuestro diagrama.