Chapter 16 Greedy Algorithm

Dr. He Emil Huang Department of Network Engineering School of Computer Science and Technology Soochow University

E-mail: huangh@suda.edu.cn

home.ustc.edu.cn/~huang83/algorithm.html

贪婪, 我找不到一个更好的词来描述它, 它就是好! 它就是对! 它就是有效!

—美国演员迈克尔. 道格拉斯,影片《华尔街》

Greedy Algorithms

Main Topics in this chapter:

- Activity-selection problem Elements of the greedy strategy
- Fractional KnapsackHuffman coding
- · Matroid

Instances of Greedy Algorithms

- Scheduling
 - Activity Selection 活动选择 (Chap 16.1)
 - Minimizing time in system
 - ❖ Deadline scheduling 任务调度 (Chap 16.5)
- Graph Algorithms
 - **Minimum Spanning Trees (Chap 23)**
 - Dijkstra's (shortest path) Algorithm (Chap 24.3)
- Other Heuristics (what's the meaning of "Heuristics")
 - Huffman coding (Chap 16.3, can get optimal solution)
 - Coloring a graph
 - Traveling Salesman Problem (Chap 35.2)
 - Set-covering (Chap 35.3)
 - Subset-sum problem (Chap 35.5)

Instances of Greedy Algorithms

■ Heuristics algorithm definition

problems.

A heuristic algorithm is one that is designed to solve a problem in a faster and more efficient fashion than traditional methods by sacrificing optimality, accuracy, precision, or completeness for speed. Heuristic algorithms often times used to solve NPcomplete problems, a class of decision

Greedy Method

- For many optimization problem, Dynamic Programming (DP) is overkill. A greedy algorithm always make the choice that looks best at every step. That is, it makes local optimal solution in the hope that this choice will lead to a globally optimal one. (See the context of the first paragraph on page 237)
 - I make the shortest path to the target at each step. Sometime I win, sometime I lose.

Change-Making Problem

Given unlimited amounts of coins of denominations $d_1 > ... > d_m$,

give change for amount n with the least number of coins

Example: $d_1 = 25c$, $d_2 = 10c$, $d_3 = 5c$, $d_4 = 1c$ and n = 48c

DP solution:

https://www.youtube.com/watch?v=jgiZlGzXMBw

Greedy solution:

Greedy solution is

- Optimal for any amount and "normal" set of
- May not be optimal for arbitrary coin denominations

Chapter 16 GREEDY ALGORITHMS

人们一般都采取贪心算法找钱, i.e., 每一步都选出满足要求的最大面值的货币

Description of the Change-Making Alg.: 找零钱質法的形式化表述.

Function change (n) //用尽可能少的硬币找出n个单位的零钱 const C={100,25,10,5,1}

 $S{=}\Phi;\ s{=}0$ ///S为包含解的硬币集合,s为S中硬币面值之和 while s<n do

x=(max in C and s+x<=n) //检查候选对象x

if there is no such item then return "no solution found"

 $S=S \cup \{a \ coin \ of \ x\}$

s=s+x

return S

Greedy Technique

Constructs a solution to an *optimization problem* piece by piece through a sequence of choices that are:

- Feasible
- Locally optimal
- Irrevocable

For some problems, yields an optimal solution for every instances.

For most, does not but can be useful for fast approximations.

Chapter GREEDY ALGORITHMS

General Characteristics of Greedy Alg.

一般,贪婪算法可解的问题有如下特性:

- (1) 优化问题,有一个<mark>候选对象</mark>的集合,如硬币,边 (Kruskal),路径(Dijkstra),顶点(Prim)等;
- (2)随着算法的进行,累积形成<mark>两个集合</mark>,一个是<mark>已经</mark> 被选中的对象集合,另一个是被抛弃的对象集合;
- (3) 有一个函数(solution function),该函数用于检 查候选对象集合<mark>是否是(or 提供了)</mark>问题的解,该函数不 考虑此时的解决方法是否最优;

Chapter GREEDY ALGORITHMS

- (4) 还有一个函数,检查候选对象(candidate)是否可加入到当前解的对象集合中(i.e., feasible可行的),同样这一步骤不考虑解决方法的最优性;
- (5) 选择函数(selection function), 指出哪个剩余的候选对象(没有被选择过也没有被丢弃过)最有可能构成问题的解:
- (6) 目标函数(object function),给出解的值。如硬币个数,路径长度,顶点个数等。

Chapter 16 GREEDY ALGORITHMS

function greedy(C:set):set

{C是候选对象集合}

 $S=\Phi \{ 在 集合 S 中构造解 \}$

while C<>Φ and not solution(S) do x=select(C)

 $C=C\setminus\{x\}$

if feasible($S \cup \{x\}$) then $S=S \cup \{x\}$

if solution(S) then return S else return "No solution"

Chapter GREEDY ALGORITHMS

回到找钱问题上来,看看其一般特性:

- (1) 找最少硬币数, 候选对象集 {100,25,10,5,1}
- (2) 选到的硬币集和未被选的硬币集。
- (3) 判断解函数 (solution),检查目前已选的硬币集中的金额是否等于要找的钱数。
- (4) 如果集合中硬币钱数不超过应找金额,则该集合是可行的。
- (5)选择函数(selection),从未选硬币集合中找一个面值最大的硬币。
- (6) 目标函数 (object): 计算硬币数目。

Applications of the Greedy Strategy

Optimal solutions:

- Change-making for "normal" coin denominations
- ♦ Minimum spanning tree (MST)
- ♦ Single-source shortest paths (i.e. Dijkstra)
- Simple scheduling problems
- Huffman codes (Huffman Tree Construction)

Approximations:

- Traveling salesman problem (TSP)
- Knapsack problem
- Other combinatorial optimization problems

Ch16.贪心算法 (课本P237)

- ■求最优解的问题可看作是通过一系列步骤,每一步 有一个选择的集合,对于较简单的问题,动态规划 显得过于复杂,可用较简单有效的算法求解之。
- 贪心算法总是在当前步骤上选取最好的方案,即它 是一种<mark>局部最优</mark>的选择,并希望它导致一个全局最 优,但有时是(或者是大部分)不可能导致<mark>全局最优</mark>。
- 例:求v¸到v¸的一条最短路径,若从v¸搜索到邻点v¸最 短,未必是v¸到v¸最短。
- ■但是,仍有许多问题贪心法将产生全局最优解,如 <u>MST</u>,<u>单源最短路径</u>等。

16.1 活动选择问题

- **多个活动<u>竞争资源</u>的<u>调度</u>问题:尽可能多地选择互不** 冲突的活动
- 设有n个活动(activity) S={a₁, a₂,...,a_n}, 均要使用某资源(如教室), 该资源使用方式为<mark>独占式</mark>, 一次只供一个活动使用
 - ◆每个活动a,发生的时间为[s, f,), 0≤s,<f,<∞</p>
 - ◆ 两活动a_i, a_j相容 (compatible不冲突)是指: [s_i,f_i), [s_i,f_i)不重叠, 满足s_i ≥ f_j or s_j ≥ f_i。即: 一活动的开始时间大于等于另一活动的完成时间。
 - ◆活动选择问题:选择最多的互不冲突的活动,使相容活动集合最大。即:A⊆S,A中活动互不冲突且|A|最大。

16.1 活动选择问题

■ 例: (*按完成时间递增序排列)

i	1	2	3	4	5	6	7	8	9	10	11
							l				12
f _i	4	5	6	7	8	9	10	11	12	13	14

◆问题的解: A₁={a₃,aၝ,a₁₁}, A₂={a₁,a₄, a₆,a₁₁}
A₃={a₂,a₄,aၝ,a₁₁}

最优解: A₂和A₃

此问题可用迭代方法直接给出贪心算法,但为<mark>比较和动态规划之关系</mark>,下面先考虑动态规划解法。

1、活动选择问题的最优子结构

*子问题空间可描述为: $S_{ij} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$ S_{ii} 是S的子集,它包含那些(在活动 a_i 完成之后开始

 S_{ij} 是S的子集,它包含那些(在活动 a_i 完成之后开始) a_i 的活动 a_j 开始之前完成)的活动 a_k 。

亦即: S_{ij} 中所有活动 a_k 与活动 a_i 、 a_j 相容,<mark>不妨称 a_i 、 a_i 和子集 S_{ij} 相容,因此 a_k 也与所有不迟于 f_i 完成的活动以及与所有不早于 s_j 开始的活动相容。</mark>

Note: S_{ij}中可能有冲突的活动。

为方便处理,设有两个虚拟的活动 $\mathbf{a_0}$ 和 $\mathbf{a_{n+1}}$,并且假定 $f_0=0,s_{n+1}=\infty$

因此, $S = S_{0,n+1}, 0 \le i, j \le n+1$

16.1 活动选择问题

为了更严格定义i和j的范围,假定所有活动已<mark>按完</mark> 成时间的单调增有序进行排序:

$$f_0 < f_1 \le f_2 \le ... \le f_n < f_{n+1}$$
 16.1 \rightrightarrows

- $: S_{ii} = \phi$, 若 $i \ge j / /$ 易于用反证法证明
- : 只考虑 S_{ii} ,当i < j。因此i, i的范围是: $0 \le i < j \le n+1$

20

16.1 活动选择问题

❖如何分解问题?

设子问题 $S_{ij}\neq \phi, a_k\in S_{ij}, f_i\leq s_k< f_k\leq s_j$ 。若 S_{ij} 的解中选择了 a_k ,使用 a_k 产生 S_{ii} 的两个子问题:

 S_{ik} :包括在 a_i 完成之后开始,在 a_k 开始前完成的那些活动。 S_{iq} :包括在 a_k 完成之后开始,在 a_j 开始前完成的那些活动,均是 S_i 的子集,这两子集与 a_k 相容

 S_{ii} 的解显然是 S_{ik} 和 S_{ki} 解的并,再加上 a_k 。

■注意S_{ik}和S_{kj}已去掉了那些与a_k冲突的活动,而这些 活动原来可能在S_{ij}中。

16.1 活动选择问题

❖最优子结构

设 S_{ii} 的最优解是 A_{ii} , $a_k \in A_{ii}$,

则两子问题 S_{k} 和 S_{h} 的解 A_{k} 和 A_{h} 也必须是最优的易用反证法证明:

因为 A_{i} 和 A_{i} 是独立的,可用cut – and – paste证明

❖用子问题的最优解构造原问题的最优解

 $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$ (16.2式)

整个问题的最优解是 $S_{0,n+1}$ 的一个最优解

16.1 活动选择问题

2、一个递归解

设C[i,j]表示 S_{ij} 的最优解的值,即 S_{ij} 中相容活动最大子集的size:C[i,j]= $|A_{ij}|$

- 1) 当 $S_{ii} = \phi$ 时,C[i, j] = 0,此时 $i \ge j // :: A_{ii} \subseteq S_{ii}$, $A_{ii} = \phi$
- **2)** 当 $S_y \neq \Phi$ 时,假设 $a_k \in A_y$ 则可用 S_x 和 S_y 两子问题的最优解来构造 S_x 的最优解,由16.2式:

$$\begin{split} &C[i,j] = C[i,k] + C[k,j] + 1, i + 1 \leq k \leq j - 1, / / k 有 j - i - 1 选择 \\ &\left|A_{ij}\right| = \left|A_{ik}\right| + \left|\{a_k\}\right| + \left|A_{jj}\right| = \left|A_{ik}\right| + \left|A_{jj}\right| + 1 \end{split}$$

$$\begin{split} C[i,j] = \begin{cases} 0 & \stackrel{\mathcal{L}}{=} S_{ij} = \Phi \\ \max_{i < k < j} \{C[i,k] + C[k,j] + 1\} & \stackrel{\mathcal{L}}{=} S_{ij} \neq \Phi \end{cases} \end{split}$$

16.1 活动选择问题

■作业: Ex16.1-1

给出Activity Selection的DP算法

3、动态规划到贪心法的转化

到此可直接写出动态规划解, 留作练习

可通过下面的定理简化其解,该定理也说明<mark>贪心算法的正确性(i.e., 贪心选择的最优性</mark>)。

Th16.1 设 S_{ij} 是任一非空子问题, a_{m} 是 S_{ij} 中具有<mark>最早</mark> 完成时间的活动: f_{m} =min{ f_{k} : a_{k} \in S_{ii} } ,则:

- ①活动a_m必定被包含在S_{ii}的某个最优解中;
- $oldsymbol{arOmega}$ 子问题 S_{im} 是空集,使 S_{mj} 是唯一可能的非空集//选 a_m 的目的

pf: 先证第2部分:

假定 S_{im} 非空,则 $\exists a_k \in S_{im}$,使 $f_i \leq s_k < f_k \leq s_m$

 $:: a_k$ 的完成时间先于 a_m 且 $a_k \in S_m$

这与 a_{m} 是 S_{m} 的最早完成活动矛盾!

再证第1部分:

设 A_{ij} 是 S_{ij} 的某个最优解,假设 A_{ij} 中的活动已按 完成时间单调增排过序, a_{ij} 是其中第一个活动。

26

 $: a_k \in A_{ii} \subseteq S_{ii}$ $A_{ii} \not = S_{ii}$ 的某个最优解

 $\therefore f_m \leq f_k$

又 $: a_k \neq A_{ii}$ 中最早完成的任务, $a_m \bowtie a_k$ 更早完成

- $:: A_{i}$ 中的活动互不冲突,也即 A_{i} 是 S_{i} 的一个解
- $\therefore \left| A_{ij} \right| = \left| A_{ij} \right|$
- $:: A_{ii}$ 亦是 S_{ii} 的一个最优解,它包含 a_{im}

16.1 活动选择问题

- ◆该定理的价值<u>可简化</u>问题的解
 - ❖在动态规划求解时,原问题 S_{ij} 可分解为两个子问题 S_{ik} 和 S_{ki} 求解,且这种分解有 \mathbf{j} - \mathbf{i} - \mathbf{i} - \mathbf{j} 中可能
 - ❖定理16.1将其简化为:
 - $m{0}$ 求 S_{ij} 的最优解时只用到一个子问题,另一个子问题为空;
 - 2只须考虑一种选择:即选 S_{ii} 中最早完成的活动
 - ◆该定理带来的另一个好处是:
 - ◆能以自顶向下的方式解每一个子问题:

28

16.1 活动选择问题

- $oldsymbol{1}$ 对原问题 $S=S_{0,n+1}$,选其中最早完成的活动 $oldsymbol{a_{m1}}$
- ∵S中的活动已按完成时间单调增有序
- ∴m1=1。下一子问题应是S_{m1, n+1} //已去掉与a_{m1}冲突的活动
- ②选S_{m1,n+1}中最早完成的活动a_{m2}
 - \cdots 须将S中与 a_{m1} 冲突的活动删除才能得到 $S_{m1,n+1}$
 - :. m2未必为2
- ❸一般形式,当选择a_{mi}加到解集中之后,需解的子问题 变为S_{mine},
 - 显然,所选活动是按完成时间单调增有序的(m1<m2<...<mi<a.)

16.1 活动选择问题

- ❖贪心选择
- 当某个a_m加入解集合后,我们总是在剩余的活动中 选择第一个不与a_m冲突的活动加入解集合,该活动 是能够<mark>最早完成</mark>且与a_m相容的。
- 这种选择为剩余活动的调度留下了尽可能多的机会。 即:留出尽可能多的时间给剩余的尚未调度的活动, 以使解集合中包含的活动最多
- ■每次选一个最早完成并与刚加入解集元素相容的活动

- 4、递归的贪心算法
 - ◆輸入:向量s和f,并假定已按f单调增有序 子问题S_{ii}的下标
 - ❖输出:S_{ij}的最优解
 - ❖算法:

31

16.1 活动选择问题

■ 时间

- ◆若要排序,则时间为 Θ(nlg n)
- ◆若已排序,则RecursiveActivitySelector(s,f,0,n+1) 的时间为 Θ(n)

在所有的调用里,每个活动被检查一次,请注意每次循环检查时,活动序号只增加不减少,从RAS(s,f,i,j)调用到RAS(s,f,m,j)时,必有i<m。j始终为n+1

33

16.1 活动选择问题

5、迭代的贪心算法

上述递归很接近于<mark>尾递归</mark>,只是结束前多了一个 Union操作,很易转换为迭代算法:

- **①** j始终不变,j=n+1
- ②当一个活动a_i加入解集合之后,我们只要从a_i 依次往后找到第一个不与a_i冲突的活动a_m,由 于活动<mark>事先按完成时间单调增有序</mark>,故a_m是最 早完成且与a_i相容的活动,它也是S_{ij}中的第一 个活动

34

```
GreedyActivitySelector(s,f){// f 单调增有序 n \leftarrow length[s]; A \leftarrow \{a_i\};// A为解集合 i \leftarrow 1;// i是最近加入解集合 A的活动 a的下标 for m \leftarrow 2 to n do// tS_{i,n+1}中最早完成的活动 a_m if (f_i \leq s_m)then{ /i < m, a_m = a_i A 和容且完成时间 //最早的活动 i \leftarrow m; //i仍记录最近加入A的活动 a的下标 }//endif return A;
```

16.1 活动选择问题

注意,若直接给出迭代算法,一般要证A确实为最优解。 这一点由递归算法得以保证,亦可用归纳法直接证明:

- ①总是存在一个最优解,第一步是贪心的选择,即选择 活动a₁;
- ②在已做的选择数目上做归纳法证明

- ❖ 算法要点
 - ❖i始终表示最近加入A的活动的下标
 - ::活动已按完成时间有序
 - $\therefore f_i$ 总是当前A中所有活动的最大完成时间: $f_i = \max\{f_k : a_k \in A\}$

当 a_m 加入A时,: $s_m \ge f_i$,: s_m 也大于A中所有活动的完成时间,即 a_m 与A中所有活动相容.

❖时间: O(n) //已排序

活动选择问题

■作业: Ex16.1-3

16.2贪心策略要点

- 贪心算法是通过做一系列选择来获得最优解,在算法里的每一个决策点上,都力图选择最好的方案,这种<u>启发</u> 式策略并非总能产生最优解。
- ■上节介绍的贪心算法的步骤
 - ❖确定问题的最优子结构
 - ❖给出递归解(指递归方程)
 - ❖证明在递归的每一步,<mark>有一个</mark>最优的选择是<mark>贪心</mark>的 选择,因此做出这种选择是安全的。
 - ❖证明除了贪心选择导出的子问题外,<mark>其余子问题</mark>都 是空集合
 - ❖根据贪心策略写出递归算法
 - ◆将递归算法转换为迭代算法

16.2 贪心策略要点

上述步骤是以动态规划为基础的。实际上可改进它,重 点关注贪心选择。例如,活动选择问题可改进为(直接 写出递归解):

- ❖首先定义子问题S_{ii},i,j均可变
- ❖如果我们总是做贪心选择,则 $S_{ij} \Rightarrow S_{i,n+1}$ \therefore n+1不变,可省略,子问题变为:

 $S_i = \{a_k \in S : f_i \le s_k\} / /S_i$ 表示 a_i 完成后开始的任务集

❖证明一个贪心的选择(即选S,中第一个完成的活动a_m) ,和剩余子问题S_m(与a_m相容)的最优解结合,能产生 S_i的最优解。

16.2 贪心策略要点

- ■贪心算法的一般设计步骤
 - 1 将优化问题分解为做出一种选择及留下一个 待解的子问题
 - 证明对于原问题总是存在一个最优解会做出 贪心选择,从而保证贪心选择是安全的
 - ③ 验证当做出贪心选择之后,它和剩余的一个 子问题的最优解组合在一起,构成了原问题 的最优解
- 没有一个一般的方法告诉我们一个贪心算法是否 会解决一个特殊的最优问题,但是有两个要素有 助于使用贪心算法:

贪心选择性质, 最优子结构

16.2 贪心策略要点

- 1、贪心选择性质 *** 贪心选择性质
 - ❖ 贪心选择性质:一个全局最优解能够通过局部最优(贪心)选择达到
 - 贪心法总是在当前步骤上选择最优决策,然后解由此产生的子问题
 - 贪心选择只依赖了目前所做的选择,但不依赖于 将来的选择及子问题的解
 - ◆ 自顶向下,每做一次贪心选择,就将子问题变得 更小
 - - 1 对输入做预处理
 - ②使用合适的数据结构(如优先队列)

16.2 贪心策略要点

- 2、最优子结构
- ◆和动态规划一样,该性质也是贪心法的一个关键要素 例如,活动选择问题的动态规划解中:
 - S_{ii} 的最优解 $A_{ii} \rightarrow \Xi a_k \in A_{ii}$,则 A_{ii} 包含 S_{ik} 和 S_{ki} 的最优解
- ◆对贪心算法更直接

原问题的最优解 ⇒ 贪心选择 +子问题的最优解 通常可使用归纳法证明在每一步上做贪心选择 可产生最优解,由此可导出最优子结构

16.2 贪心策略要点

- 3、贪心法与动态规划的比较
 - ▶ 相同点:两种方法都利用了最优子结构特征
 - ❖ 易错误处:
 - 当贪心算法满足全局最优时,可能我们试图使用动态规划求解,但前者更有效
 - ② 当事实上只有动态规划才能求解时,错误地使 用了贪心法

为了说明两种技术的细微区别,请看一个古典优化问题的两个变种:

背包问题: n个物品重 $w_1, w_2, ..., w_n$,背包可放入重量W,问能否从n件物品中选择若干件放入背包,使重量和正好等于W。

16.2 贪心策略要点

■ 0-1背包问题和分数背包问题

物品件数: n; 第i件物品价值 $\mathbf{S}v$, 重量 \mathbf{w} ,磅,v,和 \mathbf{w} ,为整数,背包载重量: \mathbf{W} 磅(整数) 怎样选物品装包使得包内含有价值最大,且总重量 $\leq \mathbf{W}$ 不允许一物品多次装包,可理解为n个物品互不相同

- ❖ 0-1背包:某物品拿与不拿(1,0的选择)
- 分数背包:某物品可取部分装包

想象:小偷偷东西,包容量有限,想尽可能使偷走的东西总价值最大,0-1背包偷走的是金条之类物品,分数背包偷走的是金粉之类物品。

16.2 贪心策略要点

- ■两个背包问题都具有最优子结构!!
 - ❖0-1背包问题 (0-1 knapsack problem)

原问题的最优解:设背包中装有重量至多为W磅的最有价值的物品(取自n件物品);

子问题的最优解:从原问题的最优解中去掉某物品j,则包中剩余物品应是除j外,取自gn-1件物品中最有价值,且总重不超过W- w_j 的若干物品。

显然,原问题分解为子问题时,原问题的最优解 也要求子问题的解最优

16.2 贪心策略要点

❖分数背包 (fractional knapsack problem)

子问题:从背包中去掉物品j(Note: part of),重量为w(该物品剩余 w_j -w),则包中剩余物品应是除j之外,取自原n-1件物品以及物品j的 w_j -w部分中最有价值且总重至多为W-w的若干物品

显然,原问题解最优亦要求子问题的解最优

16.2 贪心策略要点

- ■两个背包问题的不同解法
 - **❖**求解0-1背包量优解只能用动态规划求解
 - ▶按每磅价值 (v; / w;) 排序
 - ▶贪心选择策略:取单位价值最大者装包,若装不下,考虑下一单位价值最大的物品,直至包装满或所有物品都考虑过为止
 - >实际上,装入当前每磅价值最大者只能保证当前最优(局部最优),然而放弃它可能使得后续选择更优。所以在装包前,应将某物品装包的子问题的解和放弃它的子问题的解进行比较,这将导致许多重叠子问题,这正是动态规划的特点。

16.3 Huffman编码

■略

上机题:背包问题

51

16.4 贪心算法的理论基础

■ 该理论<u>可用来确定贪心算法何时能产生最优解</u>,它用到了一种组合结构: Matroid(拟阵)。该结构是Whitney于1935年在研究矩阵中线性无关结构时抽象出来的,由Korte于80年代初将该理论发展为贪心算法理论。该理论覆盖了许多贪心法的应用实例(Kruskal, 匈牙利算法等),但并未覆盖所有情况(如活动选择问题),但它仍在发展。

16.4.1 拟阵

- Def: 一个拟阵是满足下列条件的有序对 M = (S, I)
 - ① S是一有穷非空集
 - ② I是S的一个非空子集(称为S的独立子集)簇,使得若B∈I且A⊆B,则A∈I (集合A,B均独立)。满足此性质的I是遗传的,即B独立(指B∈I),则B的子集也独立。注意Φ∈I。
 - ③ 若A∈I,B∈I且|A|<|B|,则存在某个元素 $x \in B-A$ 使得 $A \cup \{x\} \in I$ 。称M满足<mark>交换</mark>性质。

如何证明有序对具有拟阵性质?

16.4.1 拟阵

- 1. S满足有穷非空
- 2. 集合簇I满足遗传性 (某子集独立,则该独立子集的子集亦独立)
- 3. 拟阵M满足交换性(即<u>可扩展</u>)

16.4.1拟阵

■ 例子

惠特尼35年研究矩阵拟阵时引入。一个矩阵拟阵 是指:S的元素是矩阵的行,若行的子集线性无 关则该子集独立,易证这种结构是拟阵。

❖ 圂的拟篮

 $M_G = (S_G, I_G)$ 是在无向图G = (V, E)基础上定义的:

- $\bullet S_G = E$
- $\exists A \subseteq E$,则: $A \in I_G \Leftrightarrow A$ 无回路。

即: 边集A独立 \Leftrightarrow 子图 $G_A = (V, A)$ 是森林

 M_G 与MST问题紧密相关

16.4.1拟阵

■ Th16.5 若G是无向图,则 M_G =(S_G , I_G)是一个拟阵 nf

- 1. $S_G = E$ 是一有穷(非空)集
- 2. 证 I_G 是遗传的 若 $B \in I_G$,且 $A \subseteq B$,意味着A是森林B的子集,它仍为森林不可能有回路,所以 $A \in I_G$
- 3. M_{G} 的交换性 设 $G_{A}=(V,A)$ 和 $G_{B}=(V,B)$ 为森林,且|B|>|A|, B包含的边多于A 现要证 $\exists e \in B-A$ 使 **扩**充 到A后仍不产生回路

可利用ThB.2: 具有k条边的森林包含 |V| - k棵树由该定理可知, G_A 有 |V| - |A|棵树, G_B 有 |V| - |B|棵树 $: G_B$ 中树的数目 $< G_A$ 中的树的数目,因为 |B| > |A| $: G_B$ 中必存在某棵树 T,它的顶点属于森林 G_A 中两棵不同的树(否则若 G_B 中任何树的顶点必在 G_A 的同一棵树中,这与 G_A 中树数目大于 G_B 矛盾): T是连通的,必存在一条边 $e = (u,v) \in T$,使得 u,v在 G_A 的两不同树中

 \therefore 将e加入 G_A 后不会产生回路,即 $A \cup \{e\} \in I_G$,满足交换性。

综合1,2,3知 M_G 是一个拟阵

16.4.1拟阵

■最大独立集

❖独立子集的扩张

在拟阵M=(S,I)中,若 $A \in I$, $x \notin A$, $A \cup \{x\} \in I$,则元素x称为A的一个扩张,即元素x扩充到独立子集A后仍保持独立性

例:在图的拟阵 \mathbf{M}_{G} 中,若 \mathbf{A} 是一个独立子集,则 \mathbf{e} 是 \mathbf{A} 的扩张是指加入 \mathbf{e} 后仍不产生环

❖拟阵的最大独立子集

若A是拟阵M的独立子集,且无法进行任何扩张,则A称为M的最大独立子集,即在M中没有更大的独立子集能包含A

16.4.1拟阵

❖Th16.6 拟阵中所有最大独立子集的大小(势)相同

pf:[反证法]

设A是M的最大独立子集,且存在另一更大的 最大独立子集B。

由交换性知: $\exists x \in B - A$, 使 $A \cup \{x\} \in I$, 即A是可扩张的,与A是最大独立子集矛盾。

例:在M_G中,每个最大独立子集是一棵生成树, 有|v|-1条边

16.4.1拟阵

■加权拟阵

若对∀x∈S,为x指派一个正的权值w(x),则称 M=(S,I)是加权拟阵。S的子集(独立子集)的权可定义为:

$$w(A) = \sum_{x \in A} w(x)$$
 for any $A \subseteq S$

例: M_C 中,可定义w(e)为边e的长度(权重),w(A)为A中所有边的长度(权重)之和

16.4.2 加权拟阵上的贪心算法

■ 加权拟阵的最大独立子集可描述某些问题的最优解(加 权拟阵的最优子集)

可用贪心算法求出最优解的许多问题($(Q \land Z \leq x)$)可形式化为一加权拟阵中找到一个权值最大的独立子集。即:给定加权拟阵 $M=(S,\ I)$,希望找到I的一个独立子集A,使W(A)最大。

❖拟阵的最优子集: 拟阵中权值最大的独立子集

它也一定是拟阵中的一个最大独立子集(子集<mark>体积</mark>最大),反之不然。

Pf: $\forall x \in S$, w(x)>0, \therefore 若权值最大的独立子集A 不是最大独立子集,可将其扩张至最大独立子集,后者的权更大,使A的权非最大

16.4.2 加权拟阵上的贪心算法

- *例 求连通无向图 G = (V, E) 的 MST问题 \Rightarrow 加权拟阵中求权最大的独立子集问题。即:求拟阵的最优子集设 G的权函数 w定义为边的长度,且 w(e) > 0 加权拟阵 M_e 的权 w定义为: $w'(e) = w_0 w(e)$ w_0 大于各边的最大长度。在 M_e 中, $\forall e \in E$ w'(e) > 0 故 M_G 的每个最优子集 A是 G的一棵 MST
 - :: A是拟阵的最大独立子集
 - :它是一棵生成树,它的权为 $w'(A) = (|V|-1)w_0 w(A)$
 - :: A是权最大的独立子集
 - ∴ w'(A)最大必有 w(A)最小,即 A是 C的一棵 MST ∞

16.4.2 加权拟阵上的贪心算法

- ■加权拟阵的贪心算法
 - ◆适用于任何加权拟阵求最优子集A
 - ❖贪心之处:尽可能选权值最大的元素扩充到A

```
Greedy(M,w){
//輸入拟阵M = (S,I), w表示正的权函数
A \leftarrow \Phi;
按权w单调递减对S[M]排序
for 每个x \in S[M], 按w(x)单调递减 do
    if (A \cup \{x\} \in I[M]) then //独立性检测
    A \leftarrow A \cup \{x\};//扩充x未破坏A的独立性
    //否则放弃x
return A;
```

16.4.2 加权拟阵上的贪心算法

时间分析:

设|S| = n, 排序 $O(n \lg n)$ for循环n次,

每次检验 $A \cup \{x\}$ 是否独立,

设检查时间为O(f(n)),

总时间为 $O(n \lg n + nf(n))$

16.4.2 加权拟阵上的贪心算法

■Greedy算法返回1个最优子集

A是独立子集易从Φ独立开始用归纳法证明

❖Lemma16.7 (拟阵呈现贪心选择性质)

设M=(S,I)是加权拟阵,权函数为w,且S已按权值的单调递减有序,设x是S的第一个使{x}独立的元素(若这样的x存在)。若x存在,则存在S的一个最优子集A包含x。(即说明第一步贪心选择正确)

Pf: 1) 若无这样的x存在,则唯一的独立子集是Φ

2) 否则设B为S的任一非空最优子集,若x \in B, 则令 A=B,证毕

16.4.2 加权拟阵上的贪心算法

 $\exists x \notin B$,则可从B构造一个最优子集A使其包含x 为此需证 $w(A) \ge w(B)$

i) 先证 $\forall y \in B$,有 $w(x) \ge w(y)$

 $y \in B$ $\therefore \{y\} \subseteq B$

由于B是S的最优子集,故B也是独立子集,由I的遗传性知 $\{v\}$ 亦是独立子集

∵{*x*}是*S*的第一个独立子集, 而*S*中元素已按单调减有序,

 $\therefore w(x) \ge w(y)$

ii)构造集A, 使其包含x且A最优

开始令 $A = \{x\}$,显然A是独立,

利用交换性质,重复地在B中找新的元素扩充到A使A独立,直至|A|=|B|。于是有:

 $A = B - \{y\} \cup \{x\}$ 对某个y成立

由i)立即知道:

 $w(A) = w(B) - w(y) + w(x) \ge w(B)$ 由B是最优子集即可知A亦是最优子集,

且它包括x。

16.4.2 加权拟阵上的贪心算法

下面的引理和推论说明:若一元素开始未被选中,则此后亦不可能被选中

◆Lemma16.8 设M=(S,I)是任一拟阵,若S的一个元素 x是S的某个独立子集A的一个扩张,则x亦是Φ的一个扩张

pf :

:: x是A的扩张

 $A \cup \{x\} \in I$

由I的遗传性知, $\{x\}$ 是独立的,它是 ϕ 的一个扩张

16.4.2 加权拟阵上的贪心算法

◆推论16.9 设M=(S,I)是任一拟阵,若S的一个元素x不 是Φ的扩张,则x也不是S的任何独立子集A的一个扩 张

pf: 由引理16.8易证

❖ 该推论告诉我们,若一开始某元素没被选中,此后亦 不会选中,保证Greedy算法开始的正确性

16.4.2 加权拟阵上的贪心算法

❖引理16.10 (拟阵具有最优子结构性质)

对于加权拟阵M=(S,I),设x是Greedy算法选中的第一个元素,找一个包含x的权最大的独立子集的剩余问题可归结为找加权拟阵M'=(S',I')的一个权值最大的独立子集,这里:

 $S' = \{ y \in S : \{x, y\} \in I \}$

 $//即S'由S中可扩张至{x}中的元素构成$

 $I' = \{B \subseteq S - \{x\} : B \cup \{x\} \in I\}$

//即I'是由S的不包含x的独立子集构成

且M'的权函数是M的权函数,但只限于S'。我们称M'是由元素x引起的M的收缩,它是M的子问题。

pf:

 $E_{A}E_{M}$ 的任一包含x的最优子集(即权最大的独立子集),则由I的定义可知:

 $A' = A - \{x\}$ 是M'的一个独立子集, 反之,M'的任一独立子集A'产生M的一个独立子集: $A = A' \cup \{x\}$

- :: 两种情况下,均有w(A) = w(A') + w(x)
- .. 包含x的A是M中权最大的独立子集,保证了w(A')须最大,即A'是M'的最优子集,反之亦然即:A是原问题M的最优解要求A'是子问题M的最优解;反之, $\{x\} \cup A'$ 构成原问题的最优解A

16.4.2 加权拟阵上的贪心算法

❖Th16.11 (拟阵的贪心算法的正确性)

若 M=(S,I) 是 权 函 数 为 w 的 加 权 拟 阵 , 则 调 用 Greedy(M,w)将返回一个最优子集

рf

- ①由推论16.9知,一开始被忽略的元素可以放弃,因为它们不是Φ的扩张意味着此后也不会是任何独立 子集的扩张。
- ②一旦一个元素x被选中,引理16.7保证了算法将其 扩充到A中是正确的,因为存在一个最优子集包含 x。

16.4.2 加权拟阵上的贪心算法

- ③引理16.10蕴含着剩余子问题是在M'中找一最优子集。在Greedy将A置为{x}之后,剩下的各步骤可解释为是在拟阵M'中进行的,因为∀B∈I', B在M'中独立等价于B∪{x}在M中独立。因此,Greedy的后续操作将找出M'的一个最优子集(可用归纳法), Greedy的全部操作可以找到M的最优子集
- 若一应用问题能抽象为加权拟阵,则一定能用贪心法 求出其最优解

16.5 一个任务调度问题

■问题描述

在单处理器上对单位时间任务进行最优调度

- ❖输入
 - ▶任务集: S={a₁,a₂,...,a_n},每个任务在单位时间内 完成,总时间为n
 - >截止期:∀a¡∈S,a¡的截止期d¡为整数,且1≤d¡≤n ,即a;须在d,或d;时刻之前完成
 - >权(罚款):∀a_i∈S,a_i的权w_i≥0,表示a_i没有在d_i 或d_i之前完成所导致的罚款,但提前完成或按时完 成的任务没有罚款
- ❖输出: 求出S的一个调度, 使总罚款最小

显然S的任意枚举都是一个调度方案,在总时间n内肯定完成, 但我们力图使延期完成的任务权值和最小

16.5 一个任务调度问题

- <mark>■</mark> 将问题抽象为加权拟<u>阵</u>
 - ◆早任务:在给定的调度中,能按期或提前完成的任务(即在deadline之前完成任务)
 - ❖迟任务:在给定的调度中,在截止期之后完成的任务
 - **❖早任务优先形式:将早任务排在迟任务之前的调度**
 - ❖任何调度均可安排成早任务优先形式

例:a_j.....a_i...... →a_j......a_j...... 迟 早 早 迟

交换位置不影响a_i和a_i的早迟特性,即总罚款不变

16.5 一个任务调度问题

❖调度的规范形式

早任务在前、迟任务在后(即先将其按早任务优先 形式调度);并且将所有早任务按deadline单调增 次序调度(迟任务可按任意次序调度)。

◆规范形式的调度不改变任务的早迟特性,因此任何调度均可安排成该形式而保持总罚款不变例:

16.5 一个任务调度问题

任务顺序	早任务	迟任务		
原调度次序	a _i a _j			
完成时刻	kk+s			
deadlines	d _i >d _j			

这里s≥1。在规范形式下, a,应和a,交换:

1.a_i交换后,其完成时间由k+s提前至k,仍是早 任务

2. 交换前 a_i 是早任务,即 k+s \leq d_i ,由 d_i < d_i 知 k+s < d_i ,故 a_i 交换到k+s 时刻完成,它仍是早任务

16.5 一个任务调度问题

❖最优调度的规范次序

因为任一调度都有一规范形式,所以最优调度也 存在规范形式

- ●在最优调度S中找出早任务集A
- ②将A中任务按deadlines递增序排列
- ③迟任务集S-A可按任意序排列

因为早任务不导致罚款,迟任务的次序也不改变罚款的多少(权的大小),所以上述安排不改变最优调度的权值

16.5 一个任务调度问题

❖ 独立任务集

若存在一个调度使得任务集A中没有迟任务,则称 A是独立的。

下面的引理可判定一给定任务集A是否独立,为此 先给出一个定义。

ightharpoonup Def : 对 t=1,2,...,n, 设 N_t(A) 表 示 集 合 A 中 deadline 小于等于t的任务数目,N₀(A)=0 for any A。

 ${\sf IDN}_t(A)$ 表示A中想要在t及t时刻之前完成的任务 个数,显然 ${\sf N}_t(A)$ \leq |A|,0 \leq t \leq n

16.5 一个任务调度问题

- ❖引理16.12 对任意的任务集。下列命题等价:
 - (1)集合A独立
 - (2)对t=0,1,...,n, 有N_t(A) ≤t
 - (3)若对A中的任务按deadline单调增序进行调度,则 A中无迟任务

Pf: (1)→(2) (反证法)

若(1)成立,则存在一个调度,使A中无迟任务

若存在t使N_t(A)>t,则A中有多于t个任务要在t及t之前完成,因此找不到一个调度使A中任务均在t及t之前完成,即任何调度均使A中至少有一个迟任务,与A独立矛盾。

16.5 一个任务调度问题

(2) →(3)

实际上只要 "1≤t≤|A|, 有N_t(A) ≤t" 即可

因为t>|A|时, N_t(A) ≤|A|<t

若(2)成立,说明A是某个调度的早任务集,他的规范 次序不会改变A的早任务性质。

- ∵∀i∈[0,n],在i及i之前要完成的任务至多为i个
- ∴对A中任务按deadline增序调度时A中无迟任务

(3) →(1)

按(3)调度A中无迟任务,所以A独立

16.5 一个任务调度问题

❖ 使迟任务罚款和最小等价于使早任务罚款和最大(即权 最大的独立子集)

下面的定理保证贪心法可求出最大总罚款的独立任务 集A,即把该问题抽象为加权拟阵,从而由Th16.11保 证贪心法可求出具有最大权值的独立任务集A

Pf:(1) S有穷, 非空

(2) I的遗传性: : 独立的任务集是指对某调度而言 没有迟任务的集合, : 独立任务集的任一子集必是独 立的

16.5 一个任务调度问题

(3)M的交换性

设A、B∈I且|B|>|A|,设k是使N_t(B)≤N_t(A)成立的最大的t.

N_n(B)=|B|, N_n(A)=|A|(注意|S|=n, |A|≤n, |B|≤n,1≤d_i≤n, 在n前所有任务可完成)

但是|B|>|A|⇔N_n(B)>N_n(A), 所以k≠n, 即k<n

- ①当t≤k时有: N_t(B)≤N_t(A)(这样t一定存在,因为N₀(B)=N₀(A) =0)
- ②当k+1≤t≤n有N_t(B)>N_t(A)(注意N_t(B)和N_t(A)均为单调 增for t) 。。

16.5 一个任务调度问题

∴B中deadline为k+1的任务多于A,故可设a¡∈B-A且d=k+1.

设A'=A∪{a_i},只要证A'独立即可

下面用引理16.12性质2来证A'独立, 即要证

$$\forall t \in [0, n], \overline{\eta} N_t(A') \leq t$$

①对1≤t≤k

显然 $N_t(A')=N_t(A)(因为A'中的a_i截止期为k+1)$

又因为A独立,由引理16.12性质2知:

 $N_t(A') = N_t(A) \le t$, $1 \le t \le k < 式1>$

16.5 一个任务调度问题

②对k+1≤t≤n

- \therefore N_t(A)<N_t(B), |A'|=|A|+1
- $\therefore N_t(A') \leq N_t(B)$

又∵B独立,由引理16.12性质2知:

 $N_t(A') \le N_t(B) \le t$, k+1 $\le t \le n$ 。 <式2>

综合<式1>和<式2>可得:

对1≤t≤n,有N_t(A')≤t

由性质2知A'独立

16.5 一个任务调度问题

- 利用加权拟阵的Greedy算法求最优调度
 - ❖ 通过Th16.11,可使用Greedy算法找权最大的 独立任务集A,A是早任务集。
 - 💠 时间

$$T(n) = O(n \lg n + nf(n))$$

= $O(n \lg n + n \cdot n) = O(n^2)$

注意到独立性检查时间为O(n)(实际上可减小到O(|A|))

16.5 一个任务调度问题

❖ 例子

a _i	1	2	3	4	5	6	7
d _i	4	2	4	3	1	4	6
W _i	70	60	50	40	30	20	10

贪心法求出的最优子集A={1,2,3,4,7},S-A={5,6}(迟任务集)

规范形式的最优调度<a₂,a₄,a₁,a₃,a₇,a₅,a₆>

总罚款w₅+w₆=50

EX.

■写出任务调度的贪心算法

16.6 最优装载

有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为W_i。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。

■算法描述

最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。具体算法描述如下页。

16.6 最优装载

■贪心选择性质

可以证明最优装载问题具有贪心选择性质。

■最优子结构性质

<u>最优装载问题</u>具有最优子结构性质。

由最优装载问题的贪心选择性质和最优子结构 性质,容易证明算法loading的正确性。

算法loading的主要计算量在于将集装箱依其重量从小到大排序,故算法所需的计算时间为

O(nlogn).

16.7单源最短路径

给定带权有向图G =(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其它各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。

■算法基本思想

Dijkstra算法是解单源最短路径问题的贪心算法

۰

16.7单源最短路径

其基本思想是,设置顶点集合S并不断地作<mark>贪心</mark> 选择来扩充这个集合。一个顶点属于集合S当且仅当 从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

16.7单源最短路径

例如,对右图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下页的表中。

16.7单源最短路径

Dijkstra算法的迭代过程:

迭代	S	u	dist[2]	dist[3]	dist[4]	dist[5]
初始	{1}	-	10	maxint	30	100
1	{1, 2}	2	10	60	30	100
2	{1, 2, 4}	4	10	50	30	90
3	{1, 2, 4, 3}	3	10	50	30	60
4	{1, 2, 4, 3, 5}	5	10	50	30	60

16.7单源最短路径

- **■**算法的正确性和计算复杂性
 - ◆贪心选择性质
 - ❖最优子结构性质
 - ◆计算复杂性

对于具有n个顶点和e条边的带权有向图,如果用带权邻接矩阵表示这个图,那么Dijkstra算法的主循环体需要O(n)时间。这个循环需要执行n-1次,所以完成循环需要 $O(n^2)$ 时间。算法的其余部分所需要时间不超过 $O(n^2)$ 。

16.8 最小生成树

设G =(V,E)是无向连通带权图,即一个网络。E 中每条边(v,w)的权为c[v][w]。如果G的子图G'是一 棵包含G的所有顶点的树,则称G'为G的生成树。生 成树上各边权的总和称为该生成树的<mark>耗费</mark>。在G的所 有生成树中,耗费最小的生成树称为G的最小生成树

网络的最小生成树在实际中有广泛应用。例如 ,在设计通信网络时,用图的顶点表示城市,用边 (v,w)的权c[v][w]表示建立城市v和城市w之间的通信 线路所需的费用,则最小生成树就给出了建立通信网 络的最经济的方案。

16.8 最小生成树

■最小生成树性质

用贪心算法设计策略可以设计出构造最小生成树的有效算法。本节介绍的构造最小生成树的Prim算法和Kruskal算法都可以看作是应用贪心算法设计策略的例子。尽管这2个算法做贪心选择的方式不同,它们都利用了下面的最小生成树性质:

设G=(V,E)是连通带权图,U是V的真子集。如果 $(u,v) \in E$,且 $u \in U$, $v \in V - U$,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,它以(u,v)为其中一条边。这个性质有时也称为 MST性质。

16.8 最小生成树

■Prim算法

设G=(V,E)是连通带权图, V={1,2,...,n}。

构造G的最小生成树的Prim算法的基本思想是: 首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件ieS,jeV-S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S=V时为止。

在这个过程中选取到的所有边恰好构成G的一棵 最小生成树。

16.8 最小生成树

利用最小生成树性质和数学归纳法容易证明,上述算法中的边集合T始终包含G的某棵最小生成树中的边。因此,在算法结束时,T中的所有边构成G的一棵最小生成树。

例如,对于右图中的 带权图,按<mark>Prim算法</mark>选取 边的过程如下页图<u>所示。</u>

16.8 最小生成树

16.8 最小生成树

■最小生成树性质

在上述Prim算法中,还应当考虑如何有效地找出 满足条件ieS,jeV-S,且权c[i][j]最小的边(i,j)。实现 这个目的的较简单的办法是设置2个数组closest和 lowcost。

在Prim算法执行过程中,先找出V-S中使 lowcost值最小的顶点j,然后根据数组closest选取边 (j,closest[j]),最后将j添加到S中,并对closest和 lowcost作必要的修改。

用这个办法实现的Prim算法所需的<mark>计算时间</mark>为*O(n²)*-

16.8 最小生成树

■Kruskal算法

Kruskal算法构造G的最小生成树的基本思想是,首先将G的n个顶点看成n个孤立的连通分支。将所有的边按权从小到大排序。然后从第一条边开始,依边权递增的顺序查看每一条边,并按下述方法连接2个不同的连通分支:当查看到第k条边(v,w)时,如果端点v和w分别是当前2个不同的连通分支T1和T2中的顶点时,就用边(v,w)将T1和T2连接成一个连通分支,然后继续查看第k+1条边;如果端点v和w在当前的同一个连通分支中,就直接再查看第k+1条边。这个过程一直进行到只剩下一个连通分支时为止。

16.8 最小生成树

例如,对前面的连通带权图,按Kruskal算法顺序得到的最小生成树上的边如下图所示。

16.8 最小生成树

关于集合的一些基本运算可用于实现Kruskal算法。

按权的递增顺序查看等价于对<mark>优先队列</mark>执行 removeMin运算。可以用<mark>堆</mark>实现这个优先队列。

对一个由连通分支组成的集合不断进行修改,需要用到抽象数据类型并查集UnionFind所支持的基本运算。

当图的边数为e时,Kruskal算法所需的<mark>计算时</mark>间是O(eloge)。当 $e=Ω(n^2)$ 时,Kruskal算法比Prim算法差,但当 $e=o(n^2)$ 时,Kruskal算法却比Prim算法好得多。

16.9 多机调度问题

多机调度问题要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。

约定,每个作业均可在任何一台机器上加工处理 ,但未完工前不允许中断处理。作业不能拆分成更小 的子作业。

这个问题是NP完全问题,到目前为止还没有有效的解法。对于这一类问题,用贪心选择策略有时可以设计出较好的近似算法。

16.9 多机调度问题

采用<mark>最长处理时间作业优先</mark>的贪心选择策略可以 设计出解多机调度问题的较好的近似算法。

按此策略,当 $n \le m$ 时,只要将机器i的[0, ti]时间区间分配给作业i即可,算法只需要O(1)时间。

当*n>m*时,首先将n个作业依其所需的处理时间 从大到小排序。然后依此顺序将作业分配给空闲的处 理机。算法所需的计算时间为<mark>O(nlogn</mark>)。

