MATH 180 - Homework 2

Lixiao Yang - 1y364@drexel.edu

January 24, 2022

Question 1

Part a

f(3) = 3

Part b

n = 3 since f(3) = 3.

Part c

- \because Each element in the codomain is in the range
- ... The function is a suejection
- : Each element in the codomain is the image of at most one element of the domain
- ... The function is a injection
- ... The function is a bijection

Question 2

Part a

- : The element 6 in codomain is not in the range
- ... The function is not a surjection
- f(4) = f(6) = 1
- \therefore The function is not a injection
- \therefore The function is none of the above functions

Part b

: Each element in the codomain is in the range

 \therefore The function is a suejection

 \therefore Each element in the codomain is the image of at most one element of the domain

... The function is a injection

... The function is a bijection

Part c

The function can be rewritten as $f(x) = \begin{pmatrix} 1 & 2 & 3 & 4 & 6 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix}$

: Range is not equal to codomain

 \therefore The function is not a suejection

f(4)=f(6)=1

... The function is not a injection

... The function is none of the above functions

Question 3

$$f_1(x) = \begin{pmatrix} 1 & 2 \\ a & a \end{pmatrix}$$

$$f_2(x) = \begin{pmatrix} 1 & 2 \\ a & b \end{pmatrix}$$

$$f_3(x) = \begin{pmatrix} 1 & 2 \\ a & c \end{pmatrix}$$

$$f_4(x) = \begin{pmatrix} 1 & 2 \\ b & a \end{pmatrix}$$

$$f_5(x) = \begin{pmatrix} 1 & 2 \\ b & b \end{pmatrix}$$

$$f_6(x) = \begin{pmatrix} 1 & 2 \\ b & c \end{pmatrix}$$

$$f_7(x) = \begin{pmatrix} 1 & 2 \\ c & a \end{pmatrix}$$

$$f_8(x) = \begin{pmatrix} 1 & 2 \\ c & b \end{pmatrix}$$

$$f_9(x) = \begin{pmatrix} 1 & 2 \\ c & c \end{pmatrix}$$

There are 9 functions, in which 6 are injective, 0 are surjective, 0 are bijective.

Question 4

$$f(6) = 3f(5) = 9f(4) = 27f(3) = 81f(2) = 243f(1) = 729f(0) = 1458$$

Question 5

Part a

- \therefore There exists that $f:\{1\} \to \{1,2\}$
- ∴ It is possible

Part b

- \therefore There exists that $f: \{1,2\} \rightarrow \{1\}$
- ∴ It is possible

Part c

- \therefore There exists that $f: \mathbb{N} \to \mathbb{N}$ with f(x) = x + 1
- ∴ It is possible

Part d

- $\therefore \forall a \in Y$ is the image of at least one element from the domain
- $|X| \ge |Y|$ and when f is surjective, it must also be injective
- ∴ It is impossible

Part e

- \therefore If f is injective, range is equal to codomain
- \therefore with finite sets X, Y, when f is injective, it must also be surjective
- ∴ It is impossible

Part f

- \therefore If f is surjective, domain and codomain must be equal
- \therefore with finite sets X, Y, when f is surjective, it must also be injective
- ∴ It is impossible

Question 6

$$7 \times 5 \times 12 = 420$$

Question 7

Let A = watch The Office, B = watch Parks and Rec, C = watch SuperstoreThen $|A| = 30, |B| = 23, |C| = 18, |A \cap B| = 14, |B \cap C| = 12, |A \cap C| = 11, |A \cap B \cap C| = 7$ ∴ $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C| = 41$

Question 8

Let A = multiple of 2, B = multiple of 3, C = multiple of 5Then $|A| = 400, |B| = 266, |C| = 160, |A \cap B| = 133, |B \cap C| = 53, |A \cap C| = 80, |A \cap B \cap C| = 26$ $\therefore |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C| = 586$

Question 9

Part a

 $10^6 = 1000000$

Part b

 $10 \times 9 \times 8 \times 7 \times 6 \times 5 = 151200$

Part c

 $10^3 = 1000$

Part d

 $10^3 + 10^3 - 1 = 1999$

Part e

Words with no repeat: $10 \times 9 \times 8 \times 7 \times 6 \times 5 = 151200$ Words with no sub-word "hid": $7 \times 6 \times 5 \times 4 = 840$ 151200 - 840 = 150360

Question 10

- : The sum of the digits is even
- ... The number of the two digits are either odd or even

When digits are odd, let $A = \{1,3,5,7,9\}, B = \{1,3,5,7,9\}$, we can get the cartesian

product $A \times B = 25$

When digits are even, let $A=\{2,4,6,8\}, B=\{0,2,4,6,8\},$ we can get the cartesian product $A\times B=20$

... There are 45 possibilities.