获得的答案

Given state diagram for the machine M_1 is

Formal definition of a finite automata is

A finite automaton is a 5-tupel $\left(Q, \Sigma, \delta, q_{\scriptscriptstyle 0}, F\right)$

Where

- 1. Q is a finite set called states
- 2. Σ is a finite set called alphabet
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states.

Now we can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{a, b\}$
- 3. δ is described as

	а	b	
q_1	q_{2}	$q_{_1}$	
q_2	q_3	q_3	
q_3	q_{2}	q_3	

- 4. $q_{\rm I}$ is the start state
- 5. Set of accept states $F = \{q_2\}$.

Given state diagram for the machine $\,M_{2}^{}\,$ is

Now we can describe ${\it M}_{\rm 2}$ formally by writing

$$M_2 = (Q, \Sigma, \delta, q_1, F)$$
, where

- 1. Set of states $Q = \{q_1, q_2, q_3, q_4\}$
- 2. Set of alphabet $\Sigma = \{a, b\}$
- 3. δ is described as

а	b	
$q_{\scriptscriptstyle 1}$	q_2	
q_3	q_4	
q_2	$q_{_1}$	
q_3	q_4	
	$egin{array}{c} q_1 \ q_3 \ q_2 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

4. $q_{\rm I}$ is the start state

浙ICP备16034203号-2

5. Set of accept states $F = \{q_1, q_4\}$