Linear Algebra

Prof. Gerhard Jäger, winter term 2023/2024

Assignment 01

1. (3 points) Describe geometrically (line, plane, or all of \mathbb{R}^3) all linear combinations of

(a)
$$\begin{pmatrix} -1\\4\\3 \end{pmatrix}$$
 and $\begin{pmatrix} -3\\12\\9 \end{pmatrix}$

(b)
$$\begin{pmatrix} -1\\0\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\0\\9 \end{pmatrix}$

(c)
$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$

2. (4 points) Let

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\mathbf{v} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

- (a) What is $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$?
- (b) Draw \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$, $\mathbf{u} \mathbf{v}$ on a plane.
- 3. (2 points) How many solutions has the following system of equations?

$$2x + 3y - z = 1$$
$$4x + 6y - 2z = 2$$
$$x + y + z = 0$$

4. (2 points) How many solutions has the following system of equations?

$$2x + 3y - z = 1$$
$$4x + 6y - 2z = 1$$
$$x + y + z = 0$$