

Math Foundations Team

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

Matrix decompositions

- We studied vectors and how to manipulate them in preceding lectures.
- Mappings and transformations of vectors can be conveniently described in terms of operations performed by matrices.
- In this lecture we shall study three aspects of matrices: how to summarize matrices, how matrices can be decomposed, and how the decompositions can be used for matrix approximations.

Characteristic polynomial

- For $\lambda \in \mathbb{R}$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ we can define $p_{\mathbf{A}}(\lambda) = \det(A \lambda \mathbf{I})$ and show that it can be written as $c_0 + c_1 \lambda + \dots + c_{n-1} \lambda^n + (-1)^n \lambda^n$ where $c_0, c_1 \dots c_{n-1} \in R$.
- lacksquare We can show that $c_0 = \det(\mathbf{A})$ and $c_{n-1} = (-1)^{n-1} tr(\mathbf{A})$
- ▶ To see that $c_0 = \det(\mathbf{A})$, set $\lambda = 0$ in $\det(\mathbf{A} \lambda \mathbf{I})$ to get $p_{\mathbf{A}}(0) = \det(\mathbf{A}) = c_0$
- ightharpoonup The formula for c_{n-1} takes a little bit of work let us expand a

$$3 \times 3$$
 determinant $\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix}$

Characteristic polynomial

- Expanding the determinant along the first row we see that the $(a_{11} \lambda)C_{11}$ term contains the product $\prod_{i=1}^{i=3}(a_{ii} \lambda)$ which contains the powers λ^3 and λ^2 . The other contributors to the determinant i.e $a_{12}C_{12}$ and $a_{12}C_{13}$ expand into terms where the maximum power of $\lambda = 1$.
- Carrying this analogy over to the general case of n>3 we see that expanding along the first row the first contributor to the determinant will have the term $\prod_{i=1}^{i=n}(a_{ii}-\lambda)$ and subsequent contributors will have a maximum power of λ^{n-2} as the minors for each such contributor will kill off a term containing λ in a given row and column.

Characteristic polynomial

- Thus in the determinant expansion to obtain the characteristic polynomial we see that coefficient to λ^{n-1} can only come from the expansion of $\prod_{i=1}^{i=n}(a_{ii}-\lambda)$ and can be seen to be seen to be $(-1)^{n-1}\sum_{i=1}^{i=n}a_{ii}=(-1)^{n-1}tr(\textbf{A})$.
- As a corollary to this argument we can see that the coefficient to λ^n in the characteristic polynomial is $(-1)^n$
- ► We will use the characteristic polynomial to compute eigenvalues and eigenvectors.

Eigenvalues and eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A and $x \in \mathbb{R}^n \setminus 0$ is the corresponding eigenvector of λ if $Ax = \lambda x$. This equation is called the eigenvalue equation.
- ► The following statements are equivalent:
 - $ightharpoonup \lambda$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$.
 - There exists an $\mathbf{x} \in \mathbb{R}^n \setminus 0$ with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, or equivalently, $(\mathbf{A} \lambda \mathbf{I}_n)\mathbf{x} = \mathbf{0}$ can be solved non-trivially, i.e., $\mathbf{x} \neq \mathbf{0}$.
 - $ightharpoonup \operatorname{rank}(\mathbf{A} \lambda \mathbf{I}_n) < n.$
- If x is an eigenvector corresponding to a particular eigenvalue λ , cx, $c \in \mathbb{R} \setminus 0$ is also an eigenvector.

Eigenvalues and eigenvectors - example

- Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. The characteristic polynomial $\det(\mathbf{A} \lambda \mathbf{I}) = (1 \lambda)^2 1$ and setting it to zero gives us the roots of the characetristic polynomial: $(1 \lambda)^2 1 = 0$ has roots $\lambda = 2, 0$.
- What are the eigenvectors? For $\lambda=0$ we solve for $\mathbf{A}\mathbf{x}=0\mathbf{x}$, so we find the nullspace of the matrix \mathbf{A} . Using Gaussian elimination we convert $\mathbf{A}\mathbf{x}=\mathbf{0}$ to $\mathbf{U}\mathbf{x}=\mathbf{0}$ where $\mathbf{U}=\begin{bmatrix}1&1\\0&0\end{bmatrix}$. Thus we discover the eigenvector $\begin{bmatrix}1\\-1\end{bmatrix}$ for $\lambda=0$.
- ▶ Similarly we discover the eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ for $\lambda = 2$.

Eigenvalues and eigenvectors - example

- ▶ The general procedure to find eigenvalues and eigenvectors is to first find the roots of the characteristic polynomials and then find the nullspaces of the matrices $\mathbf{A} \lambda \mathbf{I}$ for the different roots λ .
- ▶ Does every n × n matrix have a full set of eigenvectors, i.e n eigenvectors?
- ▶ Look at $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. What are its eigenvalues and eigenvectors?
- **Point to ponder** Looking at the equation $Ax = \lambda x$ it seems that the action of A on x is to preserve the direction of x but scale it up or down according to λ . Does this mean that a rotation matrix has no eigenvalues and eigenvectors?

Some additional properties

- λ is an eigenvalue of \boldsymbol{A} if and only if λ is a root of the characteristic polynomial $p_{\boldsymbol{A}}(\lambda)$ of \boldsymbol{A} . This can be easily seen as a consequence of the definition of $p_{\boldsymbol{A}}(\lambda)$.
- For $A \in \mathbb{R}^{n \times n}$, the set of eigenvectors corresponding to an eigenvalue λ spans a subspace of \mathbb{R}^n called the Eigenspace of A with respect to λ and is denoted by E_{λ} .
- ► The set of all eigenvalues of A is called the spectrum of A.
- Look at the eigenvalues and eigenspace of the $n \times n$ identity matrix I_n . It has one eigenvalue $\lambda = 1$ and the eigenspace is \mathbb{R}^n . Every canonical vector is a basis vector for the eigenspace.

Some additional properties

- A matrix and its transpose have the same eigenvalues. To see this, first note that $\det(\mathbf{A}) = \det(\mathbf{A}^T)$. Then $\det(\mathbf{A} \lambda \mathbf{I}) = \det((\mathbf{A} \lambda \mathbf{I})^T) = \det(\mathbf{A}^T \lambda \mathbf{I}^T) = \det(\mathbf{A}^T \lambda \mathbf{I})$. The last expression in the chain of equalities is the characteristic polynomial for $p_{\mathbf{A}^T}(\lambda)$. Thus we have $p_{\mathbf{A}}(\lambda) = p_{\mathbf{A}^T}(\lambda)$ which means the characteristic polynomials are equal and so the roots of the polynomials or the eigenvalues must be equal.
- ▶ The eigenspace E_{λ} is the nullspace of $\mathbf{A} \lambda \mathbf{I}$.
- ➤ Symmetric, positive-definite matrices always have positive, real eigenvalues.

Some theorems

- The eigenvectors $x_1, x_2 ... x_n$ of a $n \times n$ matrix A with n distinct eigenvalues are linearly independent \rightarrow why?
- Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ we can show that $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric, positive-definite matrix when the rank of $\mathbf{A} = n$. Why is this true? Clearly $\mathbf{A}^T \mathbf{A}$ is a symmetric matrix and it is positive definite since $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = \|\mathbf{A} \mathbf{x}\|^2 > 0 \ \forall \mathbf{x} \in \mathbb{R}^n \setminus 0$ since the nullspaces of $\mathbf{A}^T \mathbf{A}$ and \mathbf{A} are the same, and \mathbf{A} is a full column rank matrix.
- The matrix A^T A is important in machine learning since it figures in the least-squares solution to a data matrix represented as A where n represents the number of features and m is the number of data vectors.

Theorem: If $A \in \mathbb{R}^{n \times n}$ is symmetric there exists an orthonormal basis of the corresponding vector space V consisting of the eigenvectors of A, and each eigenvalue is real.

Proof: We will not attempt a full proof of this theorem but provide some intuitions about why it is true. The theorem relies on the following three statements, shown in the next slide.

- ▶ All roots of the characteristic polynomial $p_A(\lambda)$ are real.
- For each eigenvalue λ we can compute an orthonormal basis for its eigenspace. We can string together the orthonormal bases for the different eigenvalues of \boldsymbol{A} to come up with the vectors $\boldsymbol{v}_1, \boldsymbol{v}_2...$
- ▶ The dimension of the eigenspace E_{λ} , called its geometric multiplicity, is the same as the algebraic multiplicity of λ which is the number of times λ appears as a root of the characteristic polynomial.
- All the basis vectors from the different Eigenspaces combine to provide an orthonormal basis for \mathbb{R}^n .

Complex vectors

- In the old formulation with real vectors, length-squared according to the Euclidean norm was $x_1^2 + x_2^2 + \dots x_n^2$. If the x_i are complex we should take length-squared to be $|x_1|^2 + |x_2|^2 + \dots |x_n|^2$ where |.| denotes modulus. For the complex number a + bi, the modulus is $\sqrt{(a+bi)(a-bi)} = \sqrt{a^2 + b^2}$
- For complex vectors we would like to preserve the idea as possible that $||x||^2 = x^T x$. If we keep the old definition of inner product for complex vectors we will not get a real number as length as shown in the next bullet.
- Let $\mathbf{x} = \begin{bmatrix} 1+i \\ 2+i \end{bmatrix}$. We have $\mathbf{x}^T \mathbf{x} = (1+i)^2 + (2+i)^2 = 1 + 2i + i^2 + 4 + 4i + i^2 = 6i + 3$.

Hermitian matrices

- We modify the inner product between two complex vectors \mathbf{x} and \mathbf{y} to $\mathbf{x}^H \mathbf{y}$, where $\mathbf{x}^H = \overline{\mathbf{x}}^T$.
- Now $\mathbf{x}^H \mathbf{x} = \overline{x_1} x_1 + \dots \overline{x_n} x_n = ||\mathbf{x}||^2$ according to the new definition of length.
- A Hermitian matrix is a generalization of a symmetric matrix.
- Instead of requiring $\mathbf{A}^T = \mathbf{A}$, we say a matrix is Hermitian if it is equal to its conjugate-transpose, ie \mathbf{A} is a Hermitian matrix if $\mathbf{A}^H = \mathbf{A}$ or $\overline{\mathbf{A}}^T = \mathbf{A}$
- As an example consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 3-i \\ 3+i & 4 \end{bmatrix}$. It is a Hermitian matrix since $\mathbf{A}^H = \begin{bmatrix} 1 & 3-i \\ 3+i & 4 \end{bmatrix} = \mathbf{A}$.

We shall now show that all eigenvalues for a symmetric matrix are real. Let $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. Then premultiplying with \mathbf{x}^H on both sides we have $\mathbf{x}^H\mathbf{A}\mathbf{x} = \lambda\mathbf{x}^H\mathbf{x}$

Now $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is a 1×1 matrix. Taking the Hermitian of this matrix we have $(\mathbf{x}^H \mathbf{A} \mathbf{x})^H = \mathbf{x}^H \mathbf{A}^H \mathbf{x} = \mathbf{x}^H \mathbf{A} \mathbf{x}$, so the Hermitian of the matrix is itself which means that the matrix is real.

On the right hand side we note that $x^H x$ is real, so this means that λ must be real.

Let us show that eigenvectors belonging to different eigenvalues are orthogonal. Let $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ and $\mathbf{A}\mathbf{y} = \mu \mathbf{y}$. Then we have

$$y^H A x = \lambda y^H x$$

 $x^H A y = \mu x^H y$

But $\mathbf{x}^H \mathbf{A} \mathbf{y} = (\mathbf{y}^H \mathbf{A}^H \mathbf{x})^H = (\mathbf{y}^H \mathbf{A} \mathbf{x})^H = \lambda \mathbf{x}^H \mathbf{y}$. We already know that $\mathbf{x}^H \mathbf{A} \mathbf{y} = \mu \mathbf{x}^H \mathbf{y}$. This means $\lambda \mathbf{x}^H \mathbf{y} = \mu \mathbf{x}^H \mathbf{y}$. Since $\lambda \neq \mu$, this must mean $\mathbf{x}^H \mathbf{y} = 0$.

This shows that eigenvectors corresponding to different eigenvalues are orthogonal.

- So we see that the eigenvalues of a symmetric matrix are real and eigenvectors belonging to different eigenvalues are orthogonal.
- ▶ This suggests that one can string together all the orthonormal bases for the different eigenvalues and get an orthonormal basis for \mathbb{R}^n .
- ▶ But who is to say that when we string together the basis vectors for all the eigenvalues, we will have enough vectors to describe \mathbb{R}^n ? We need n basis vectors and might end up having fewer than n vectors.
- ▶ If the eigenvalues are all different, we can see that we will indeed have enough basis vectors. But what about when there are repeating eignevalues?

- ▶ We need one more piece to complete the puzzle and show that we will have enough eigenvectors to complete the orthonormal basis - this part we shall not prove!
- As a consequence of the spectral theorem we can write a real symmetric matrix \mathbf{A} as $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^T$ where \mathbf{Q} is an orthonormal basis (think orthonormal basis vectors for example), and Λ is a diagonal matrix consisting of non-zero entries only along the diagonal.
- The spectral theorem can be used in a machine learning context since we can take the data matrix A and create a symmetric matrix out of it A^TA and AA^T which are both used in Singular-Value Decomposition and PCA.

Trace and eigenvalues

- We can show that the sum of the eigenvalues of a matrix is equal to the trace of the matrix, i.e $\sum_{i=1}^{i=n} \lambda_i = \sum_{i=1}^{i=n} a_{ii}$. To see why this is true, note that the characteristic polynomial $p_{\mathbf{A}}(\lambda)$ can be written as $\prod_{i=1}^{i=n} (\lambda_i \lambda)$. The coefficient to λ^{n-1} in this expansion is $(-1)^{n-1} \sum_{i=1}^{i=n} \lambda_i$. Early on in this lecture we showed from a direct expansion of the determinant that the coefficient of λ^{n-1} is $(-1)^{n-1} \sum_{i=1}^{i=n} a_{ii}$. Thus we have our result.
- The product of all eigenvalues is the determinant of the matrix, i.e $\det(\mathbf{A}) = \prod_{i=1}^{i=n} \lambda_i$. To see why this is true, let us once again look at the factorisation of $p_{\mathbf{A}}(\lambda)$ as $\det(\mathbf{A} \lambda \mathbf{I}) = p_{\mathbf{A}}(\lambda) = \prod_{i=1}^{i=n} (\lambda_i \lambda)$. Setting $\lambda = 0$ in this equation gives the result.