Separating regular languages by piecewise testable and unambiguous languages

Thomas Place, Lorijn van Rooijen, Marc Zeitoun

LaBRI · Univ. Bordeaux · CNRS

September, 2013 · Highlights of Logic, Games and Automata

S is a fixed class of languages.

In this talk,
$$S = \mathcal{B}\Sigma_1(<)$$
, $FO^2(<)$.

• S is a fixed class of languages.

In this talk,
$$S = \mathcal{B}\Sigma_1(<)$$
, $FO^2(<)$.

• L_1 , $L_2 \in \mathsf{Reg}$ are S-separable iff there exists $K \in \mathsf{S}$ such that

• S is a fixed class of languages.

In this talk,
$$S = \mathcal{B}\Sigma_1(<)$$
, $FO^2(<)$.

• L_1 , $L_2 \in \mathsf{Reg}$ are S-separable iff there exists $K \in \mathsf{S}$ such that

• Decision problem: Given L_1 , $L_2 \in \text{Reg}$, are they S-separable?

- Decision problem: Given L_1 , $L_2 \in \text{Reg}$, are they S-separable?
- Can we compute a separator?

- Decision problem: Given L_1 , $L_2 \in \text{Reg}$, are they S-separable?
- Can we compute a separator?
- What is the complexity of the decision problem?
 And of computing a separator?

• Captures discriminative power of logics

- Captures discriminative power of logics
- Generalization of membership problem

- Captures discriminative power of logics
- Generalization of membership problem

- Captures discriminative power of logics
- Generalization of membership problem

Classes of separators

- Piecewise testable languages: definable by $\mathcal{B}\Sigma_1(<)$ formulas (recall previous talk).
- Unambiguous languages: definable by $FO^2(<)$ formulas.

Classes of separators

- Piecewise testable languages: definable by $\mathcal{B}\Sigma_1(<)$ formulas (recall previous talk).
- Unambiguous languages: definable by $FO^2(<)$ formulas.

Membership is decidable for both $\mathcal{B}\Sigma_1(<)$ and $\mathsf{FO}^2(<)$ languages.

Simon '75 Schützenberger '76, Thérien, Wilke '98

Stratification of S

- In general, there is no smallest separator in S.
 - \rightarrow Restriction of S to quantifier depth k: S[k].

Stratification of S

- In general, there is no smallest separator in S.
 - \rightarrow Restriction of S to quantifier depth k: S[k].
- If two languages are S[k]-separable, there is a smallest separator in S[k].

Stratification of S

- In general, there is no smallest separator in S.
 - \rightarrow Restriction of S to quantifier depth k: S[k].
- If two languages are S[k]-separable, there is a smallest separator in S[k].
- Eg. $(a^2)^*$ and $b(b^2)^*$ have no smallest $\mathcal{B}\Sigma_1(<)$ -separator, while $a^*\setminus\{a,a^3,a^5\}$ is the smallest $\mathcal{B}\Sigma_1(<)$ [6]-separator.

Quantifier depth provides indexed equivalence relations for $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ languages:

Quantifier depth provides indexed equivalence relations for $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ languages:

```
w_1 \sim_k w_2 \iff w_1 \text{ and } w_2 \text{ satisfy the same } \mathcal{B}\Sigma_1(<) resp. \mathsf{FO}^2(<) formulas up to depth k.
```

Quantifier depth provides indexed equivalence relations for $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ languages:

$$w_1 \sim_k w_2 \iff w_1 \text{ and } w_2 \text{ satisfy the same } \mathcal{B}\Sigma_1(<)$$
 resp. $\mathsf{FO}^2(<)$ formulas up to depth k .

$$L$$
 is a $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ language \Leftrightarrow

L is a union of \sim_k -classes for some $k \in \mathbb{N}$.

Increasing k refines the smallest potential separator:

Refining $[L]_{\sim_k}$ gives a semi-algorithm for separability.

Increasing k refines the smallest potential separator:

Refining $[L]_{\sim_k}$ gives a semi-algorithm for separability.

From which level of refinement can we conclude non-separability?

A pair of words $w_1 \in L_1, w_2 \in L_2$ is a k-witness of non-separability provided

 $w_1 \sim_{\mathbf{k}} w_2$.

A pair of words $w_1 \in L_1, w_2 \in L_2$ is a k-witness of non-separability provided

$$w_1 \sim_k w_2$$
.

Abstraction: tuples
$$(i_1,f_1,i_2,f_2)$$
 \mathcal{A}_1 $\xrightarrow{i_1}$ $\xrightarrow{\sim_k}$ \mathcal{A}_2 $\xrightarrow{\downarrow_2}$ $\xrightarrow{\sim_k}$ f_2

A pair of words $w_1 \in L_1, w_2 \in L_2$ is a k-witness of non-separability provided

$$w_1 \sim_{\mathbf{k}} w_2$$
.

Abstraction: tuples
$$(i_1,f_1,i_2,f_2)$$
 \mathcal{A}_1 $\xrightarrow{i_1}$ $\xrightarrow{\sim_k}$ \mathcal{A}_2 $\xrightarrow{\downarrow_2}$ $\xrightarrow{\sim_k}$ f_2

- L_1, L_2 are k-separable $\Leftrightarrow \{k$ -witnesses $\} = \emptyset$.
- $\{k+1\text{-witnesses}\}\subseteq \{k\text{-witnesses}\}.$

A pair of words $w_1 \in L_1, w_2 \in L_2$ is a k-witness of non-separability provided

$$w_1 \sim_{\mathbf{k}} w_2$$
.

Abstraction: tuples
$$(i_1,f_1,i_2,f_2)$$
 \mathcal{A}_1 $\xrightarrow{i_1}$ $\xrightarrow{\sim_k}$ \mathcal{A}_2 $\xrightarrow{\downarrow_2}$ $\xrightarrow{\sim_k}$ f_2

- L_1, L_2 are k-separable $\Leftrightarrow \{k$ -witnesses $\} = \emptyset$.
- $\{k + 1\text{-witnesses}\} \subseteq \{k\text{-witnesses}\}.$
- Limit behaviour?

A pair of words $w_1 \in L_1, w_2 \in L_2$ is a k-witness of non-separability provided

$$w_1 \sim_{\mathbf{k}} w_2$$
.

Abstraction: tuples
$$(i_1,f_1,i_2,f_2)$$
 \mathcal{A}_1 $\xrightarrow{(i_1)}$ $\xrightarrow{\sim_k}$ \mathcal{A}_2 $\xrightarrow{(i_2)}$ $\xrightarrow{\sim_k}$ f_2

- L_1, L_2 are k-separable $\Leftrightarrow \{k$ -witnesses $\} = \emptyset$.
- $\{k+1\text{-witnesses}\}\subseteq \{k\text{-witnesses}\}.$
- Limit behaviour?

We can compute K such that

$$\mathsf{limit} = \varnothing \quad \Leftrightarrow \quad \{ \textit{K}\text{-witnesses} \} = \varnothing$$

- Verify that the languages are not separable by any language of a sufficient, computable, index K.
- ② Find a pattern in the automata producing k-witnesses for arbitrarily large k. (For $\mathcal{B}\Sigma_1(<)$: same as in previous talk)

- Verify that the languages are not separable by any language of a sufficient, computable, index K.
- ② Find a pattern in the automata producing k-witnesses for arbitrarily large k. (For $\mathcal{B}\Sigma_1(<)$: same as in previous talk)

Patterns in the automata, independently of the bound K, provide

- Better complexity
- A yes/no answer for separability
- But no separator

Main result

Theorem

For S = $\mathcal{B}\Sigma_1(<)$, FO $^2(<)$, we can compute $K\in\mathbb{N}$ such that TFAE

- i. L_1, L_2 are S-separable.
- ii. L_1, L_2 are S[K]-separable.
- iii. $[L_1]_{\sim_K}$ separates L_1 from L_2 .
- iv. A_1, A_2 do not contain a pattern witnessing non-separability.

Main result

Condition iv. yields the following complexity results:

Theorem

Given NFAs A_1,A_2 , one can determine whether the languages $L(A_1)$ and $L(A_2)$ are

- $\mathcal{B}\Sigma_1(<)$ -separable in **PTIME**,
- $FO^2(<)$ -separable in **EXPTIME**,

with respect to $|Q_1|, |Q_2|, |A|$.

Future work

• Obtain tight bounds on the size of $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ -separators

Future work

- Obtain tight bounds on the size of $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ -separators
- Efficient computation of the separators

Future work

- Obtain tight bounds on the size of $\mathcal{B}\Sigma_1(<)$ resp. $\mathsf{FO}^2(<)$ -separators
- Efficient computation of the separators
- Consider other classes S

Thank you

$$L(\mathcal{A}_1)$$
 and $L(\mathcal{A}_2)$ are not $\mathcal{B}\Sigma_1(<)$ -separable iff both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u}, \vec{B}) -path:

 $L(\mathcal{A}_1)$ and $L(\mathcal{A}_2)$ are not $\mathcal{B}\Sigma_1(<)$ -separable iff both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u}, \vec{B}) -path:

 $L(\mathcal{A}_1)$ and $L(\mathcal{A}_2)$ are not $\mathcal{B}\Sigma_1(<)$ -separable iff both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u}, \vec{B}) -path:

$$L(\mathcal{A}_1)$$
 and $L(\mathcal{A}_2)$ are not $\mathcal{B}\Sigma_1(<)$ -separable iff both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u}, \vec{B}) -path:

This can be determined in $PTIME(|Q_1|, |Q_2|, |A|)$.

One can determine in $\mathsf{PTIME}(|Q_1|,|Q_2|,|A|)$ whether $\exists \ (\vec{u},\vec{B})$ such that both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u},\vec{B}) -path.

One can determine in $\mathsf{PTIME}(|Q_1|,|Q_2|,|A|)$ whether $\exists~(\vec{u},\vec{B})$ such that both \mathcal{A}_1 and \mathcal{A}_2 have a $(\vec{u},\vec{B})\text{-path}.$

• By adding meta-transitions in A_i , finding a (\vec{u}, \vec{B}) -witness reduces to:

Given states p_i, q_i, r_i of A_i , is there $B \subseteq A$ st. the paths

occur in A_1 resp. A_2 ?

One can determine in $\mathsf{PTIME}(|Q_1|,|Q_2|,|A|)$ whether $\exists~(\vec{u},\vec{B})$ such that both \mathcal{A}_1 and \mathcal{A}_2 have a (\vec{u},\vec{B}) -path.

• By adding meta-transitions in A_i , finding a (\vec{u}, \vec{B}) -witness reduces to:

Given states p_i, q_i, r_i of \mathcal{A}_i , is there $B \subseteq A$ st. the paths

$$= B$$

$$p_1 \subseteq B \qquad p_2 \subseteq B$$

occur in A_1 resp. A_2 ?

• This is in PTIME: iteratively use Tarjan's algorithm.

- If B exists, $B \subseteq C_1 \stackrel{\mathsf{def}}{=} \mathsf{alph_scc}(q_1, \mathcal{A}_1) \cap \mathsf{alph_scc}(q_2, \mathcal{A}_2)$ (LINEAR)
- Restrict the automata to alphabet C_1 , and repeat the process:

$$C_{i+1} \stackrel{\mathsf{def}}{=} \mathsf{alph_scc}(q_1, \mathcal{A}_1 \upharpoonright_{C_i}) \cap \mathsf{alph_scc}(q_2, \mathcal{A}_2 \upharpoonright_{C_i}).$$

- After $n \leq |A|$ iterations, $C_n = C_{n+1}$.
 - If $C_n = \emptyset$, the answer is no.
 - If $C_n \neq \emptyset$, it is the maximal possible B with (=B)-loops around q_1, q_2 .
- Then, determine the remaining paths. (LINEAR)
- Overall LINEAR algorithm.