

Lab 11 (solution)

FTP MachLe MSE HS 2024

Machine Learning

I Learning: Clustering WÜRC

Unsupervised Learning: Clustering

After this unit, ...

Lernziele/Kompetenzen

- you know the *three* clustering algorithms: k-means, dbscan and aagglomerative clustering (using average, complete or Ward linkage).
- you are able to explain the working principle of k-means, dbscan and agglomerative clustering, their advantages and disadvantages and to apply them to data using scikit-tlearn in Python.
- you are able to plot the inertia and to determine the elbow point of this curve to find an optimum number of clusters as *hyperparameter*.
- you know the way how to evaluate a cluster algorithm using metrics, namely using ARI (adjusted rand index), NMI (normalized mutual information), SC (silhouette score) and inertia.
- you are able to correctly *scale* the data before clustering is applied especially (MinMax, StandardScaler, RobustScaler) or to meaningfully transform the data (eg. using PCA, t-SNE or NMF) before a clustering algorithm is applied.
- you know what a *Gaussian Mixture Model GMM* is and how the *expectation maximization algorithm* (EM algorithm) works. You are able to interpret the kMeans algorithm as a form of an EM algorithm with an E-step and and M-Step.
- your are able to apply clustering on the faces dataset (agglomerative, k-means and dbscan) to detect and *group* similar faces.
- your are able to apply a hierarchical cluster analysis on a voting dataset.

1. Clustering Algorithms [M,I]

This clustering algorithm initially assumes that each data instance represents a single cluster.

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) agglomerative clustering	•	0
b) t-SNE	0	•
c) k-means clustering	0	•
d) expectation maximization	0	•

2. Elbow Curve and sklearn.cluster.KMeans [A,I]

The solution Juypter notebook can be found on moodle: Lab11_A2_MakeBlobs_kMeans.ipynb

3. k-Means, Gaussian Mixture Models and the EM algorithm [A,II]

The solution Juypter notebook can be found on moodle: Lab11_A3_EM_KMeans_MixtureModels.ipynb

4. Image compression using kMeans [A, II]

The solution Juypter notebook can be found on moodle: Lab11_A4_ImageCompressionUsingKMeans.ipynb

5. Detecting similar faces using DBSCAN [A,II]

The solution Juypter notebook can be found on moodle: Lab11_A5_DBSCAN_DetectSimilarFaces.ipynb