Trabajo Práctico: Modelos

Ejercicio 1:

Para los siguiente procesos:

(I) Respiración de la levadura Saccharomyces cerevisiae:

$$k_1 S + k_2 N + k_3 C \xrightarrow{r_X} X \tag{1}$$

donde S es la FCE, N es la FN, C es el oxígeno disuelto y X la biomasa.

(II) Producción bacterial de bioplástico PHB (polihidroxibutirato)

$$k_{S1}S + k_N N \xrightarrow{r_x} X + k_{P1}P$$

$$k_{S2}S \xrightarrow{r_p} P$$
(2)

donde S es la FCE, N es la FN, X la biomasa y P es el PHB. En este caso hay producción asociada al crecimiento y producción no asociada al crecimiento.

(III) Digestión anaeróbica

$$k_1 S_1 \xrightarrow{r_1} X_1 + k_2 S_2 + k_4 CO_2$$

$$k_2 S_2 \xrightarrow{r_2} X_2 + k_5 CO_2 + k_6 CH_4$$
(3)

donde S_1 es la materia orgánica (COD), S_2 son ácidos grasos, X_1 son las bacterias acidogénicas y X_2 las bacterias metanogénicas.

- (a) Tomando como variables de estado a las concentraciones de cada compuesto, obtener las ecuaciones diferenciales de cada proceso y su expresión matricial. Considerar caudales de alimentación y de extracción de medio no nulos. Considere concertaciones de alimentación no nulas, excepto para la biomasa.
- (b) Para los dos primero procesos, encontrar las ecuaciones tomando como variables de estado a las masas de cada compuesto. Considerar operación Fed-Batch (caudal de entrada no nulo, caudal de salida nulo).

Ejercicio 2: Para el modelo del proceso I:

- (a) Simule la operación batch. Verifique el crecimento exponencial y el correspondiente decremento de la FCE. Verifique también si $\mu(t)$ es constante y máxima.
- **(b)** Simule la operación batch con n(0) = 1g/l. ¿Qué puede decir de la validez del modelo en esta condición?.
- (c) Simule la operación fed-batch con $F_{in} = cte$. Verifique el crecimiento lineal y que no haya acumulación de sustrato. Compare X(t) con x(t). ¿Qué valores toma mu(t)?
- (d) Simule la operación continua, evaluando diversos valores de *D*. Verifique si los puntos de equilibrio alcanzados son los predichos con el modelo.

Considere el siguiente modelo cinético:

$$r_x = \mu(s)x \longrightarrow \mu(s) = \mu_{max} \frac{s}{K_s + s},$$
 (4)

y los parámetros listados en la Tabla 1

P	arámetro	S	Condiciones iniciales batch					
k_1	1/0.45	[g/g]	<i>x</i> (0)	1	[g/l]			
k_2	0.108	[g/g]	<i>s</i> (0)	50	[g/l]			
k_3	1.34	[g/g]	n(0)	10	[g/l]			
s_{in}	50	[g/l]						
n_{in}	5	[g/l]						
μ_{max}	0.5	$[h^{-1}]$						
K_s	0.5	[g/l]						

Tabla 1: Parámetros proceso I

Ejercicio 3:

Para el modelo del proceso II:

- (a) Simule la operación batch y verifique los perfiles temporales de los estados, en particular el crecimiento. ¿Cómo es la formación de producto? ¿Es $\mu(t)$ constante y máximo?
- (b) Simule la operación fed-batch a partir del momento en que n(t) = 0g/l. Verifique que no se produzca crecimiento, pero si producto. ¿Por qué el producto no se genera exponencialmente?
- (c) Simular la operación continua, evaluando diversos valores de D. Utilice $n_{in} = 5g/l$ ¿Existen condiciones iniciales que hacen que el sistema sea inestable?

Utilice los modelos cinéticos:

$$r_x = \mu(s, n)x \longrightarrow \mu(s, n) = \mu_{max} \frac{s}{K_s + s + \frac{s^2}{K_{is}}} \frac{n}{K_n + n}$$

$$r_p = q_p(s, n)x \longrightarrow q_p(s, n) = q_{p_{max}} \frac{s}{K_{ps} + s + \frac{s^2}{K_{ips}}} \frac{K_{ipn}}{K_{ipn} + n}$$

y los parámetros de la Tabla 2.

Parámetros		Parámetros			Condiciones iniciales batch			
k_{S1}	1/0.48	[g/g]	μ_{max}	0.46	[1/h]	<i>x</i> (0)	1	[g/l]
k_{S2}	1/0.3	[g/g]	K_s	1.2	[g/l]	<i>s</i> (0)	50	[g/l]
k_N	1/8.9	[g/g]	K_{is}	16.728	[g/l]	n(0)	5	[g/l]
k_{P1}	0.0657	[g/l]	K_n	0.254	[g/l]	p(0)	0	[g/l]
s_{in}	25	[g/l]	K_{in}	1.5	[g/l]			
n_{in}	0	[g/l]	$q_{p_{max}}$	0.126	[1/h]			
			K_{ps}	4.1	[g/l]			
			K_{ips}	80	[g/l]			
			K_{ipn}	0.262	[g/l]			

Tabla 2: Parámetros proceso II

Tener en cuenta que para un modelo Haldane la tasa específica óptima se da para una concentración de $\sqrt{K_s K_i}$.

Ejercicio 4:

Para el modelo del proceso III, simular la operación continua:

- (a) Utilice diversos valores de D (D«0,74 h^{-1} , D > 0,74 h^{-1} , etc.). Verifique la supervivencia de ambas especies de microorganismos.
- (b) Verifique el efecto cualitativo de D sobre las concentrationes de estado estacionario de todos los estados, sin que se produzca wash-out de microorganismos.

Utilice los modelos cinéticos:

$$r_{1} = \mu_{1}(s_{1})x_{1} \longrightarrow \mu_{1}(s_{1}) = \mu_{1max} \frac{s_{1}}{K_{s1} + s_{1}}$$

$$r_{2} = \mu_{2}(s_{2})x_{2} \longrightarrow \mu_{2}(s_{2}) = \mu_{2max} \frac{s_{2}}{K_{s2} + s + \frac{s_{2}^{2}}{K_{i2}}}$$

y los parámetros de la Tabla 3

Parámetros		Parámetros			Condiciones iniciales batch			
k_1	42.14	gg^{-1}	μ_{1max}	1.2	d^{-1}	$x_1(0)$	1	gL^{-1}
k_2		$\rm mmolg^{-1}$	K_{s1}	7.1	gL^{-1}	$x_2(0)$	0.1	gL^{-1}
k_3	268	$\mathrm{mmol}\mathrm{g}^{-1}$	μ_{2max}	0.74	d^{-1}	$s_1(0)$	2	gL^{-1}
			K_{s2}	9.28	$\mathrm{mmol}\mathrm{L}^{-1}$	$s_2(0)$	4	$\mathrm{mmol}\mathrm{L}^{-1}$
s_{1in}	10	gL^{-1}	K_{i2}	256	$\operatorname{mmol} L^{-1}$			
s_{2in}	100	$\mathrm{mmol}\mathrm{L}^{-1}$						

Tabla 3: Parámetros proceso III