Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Отчет

по лабораторной работе №2 по дисциплине «Введение в машинное обучение»

Выполнила Студентка гр. 5130904/10101

Никифорова Е. А.

Руководитель

Селин И. А

1. Постройте нейронную сеть из одного нейрона и обучите её на датасетах nn_0.csv и nn_1.csv. Насколько отличается результат обучения и почему? Сколько потребовалось эпох для обучения? Попробуйте различные функции активации и оптимизаторы.

Pucyнок 2 nn_.csv

Pucyнoк 1 nn .csv

Была построена нейронная сеть с использованием библиотек Tensorflow и Keras.

Были рассмотрены различные функции активации и оптимизаторы: tanh, relu, sigmoid, linear и оптимизаторы adam, rmsprop, adagrad. Для первого датасета были выбраны активатор relu, оптимизатор adam и функция потерь categorical crossentropy.

Получены результаты:

Датасет nn 0

• Обучение остановлено на эпохе 827, loss: 0.0011, accuracy = 1.0

Датасет nn_1

• Обучение остановлено на эпохе 20, loss: 0.9876, accuracy = 0.6338261365890503

Таким образом, параметры подходят для первого датасета, но не для второго.

Параметры позволили достичь точности близкой к 1 на первом датасете, в то время как на втором точность ниже практически в 2 раза.

Датасет nn 0: два класса можно разделить прямой

Датасет nn 1: два класса разделить одной прямой нельзя

Количество

2. Модифицируйте нейронную сеть из пункта 1, чтобы достичь минимальной ошибки на датасете nn 1.csv. Почему были выбраны именно такие гиперпараметы?

Для минимизации ошибки на датасете $nn_1.csv$ была подобрана комбинация слоев и количества нейронов: на первом слое 8 нейронов activation='relu', на втором 4 activation='relu', на третьем 1 activation='tanh'.

Точность = 1 была достигнута после 3 эпохе, loss: 0.0013

3. Создайте классификатор на базе нейронной сети для набора данных MNIST (так же можно загрузить с помощью torchvision.datasets.MNIST, tensorflow.keras.datasets.mnist.load_data и пр.). Оцените качество классификации.

Создан классификатор с использованием активатора relu на первом слое и 128 нейронами, активатор softmax и 10 нейронов. Оптимизатор adam и функции потерь categorical crossentropy.

Были получены результаты:

Epoch 1/100

1875/1875 — 9s 4ms/step - accuracy: 0.8741 - loss: 0.4380 - val_accuracy: 0.9610 - val_loss: 0.1311

Epoch 2/100

1875/1875 ——7s 4ms/step - accuracy: 0.9652 - loss: 0.1229 - val_accuracy: 0.9718 - val_loss: 0.0966

Epoch 3/100

1875/1875 ——7s 3ms/step - accuracy: 0.9768 - loss: 0.0787 - val_accuracy: 0.9714 - val_loss: 0.0864

Epoch 4/100

1875/1875 ——7s 4ms/step - accuracy: 0.9839 - loss: 0.0544 - val accuracy: 0.9771 - val loss: 0.0766

Epoch 16/100

1875/1875 ———11s 6ms/step - accuracy: 0.9971 - loss: 0.0086 - val_accuracy: 0.9758 - val_loss: 0.0998

Epoch 17/100

1875/1875 ———11s 6ms/step - accuracy: 0.9978 - loss: 0.0066 - val_accuracy: 0.9781 - val_loss: 0.1014

313/313 — 1s 4ms/step - accuracy: 0.9743 - loss: 0.1212

Loss: 0.10136160254478455, Accuracy: 0.9781000018119812

Нейросеть позволила получить высокую точность результатов и маленькую ошибку.