Primera convocatòria, 15 de juny de 2009

- 1.— Considereu la corba parametritzada $\alpha(t) = (e^t \cos t, e^t \sin t, \sqrt{2}e^t)$. Trobeu-ne la curvatura $\kappa(t)$, la torsió $\tau(t)$, i el seu triedre de Frenet $\mathbf{t}(t)$, $\mathbf{n}(t)$, $\mathbf{b}(t)$.
- **2.** Sigui $\alpha(u)$ amb $u \in I$ una corba regular parametritzada per l'arc, amb torsió igual a 1 i $r < \min\{1/\kappa(u), u \in I\}$, on $\kappa(u)$ és la curvatura de $\alpha(u)$. Sigui

$$\beta(u) = \alpha(u) + r(\cos u \, \mathbf{n}(u) + \sin u \, \mathbf{b}(u)).$$

- a) Proveu que la condició sobre r implica que β és una parametrització regular
- b) Proveu que la longitud L_{β} de β és igual a

$$L_{\alpha} - r \int_{I} \kappa(u) \cos u \, du.$$

c) Proveu que la curvatura de β és

$$\kappa_{\beta}(u) = \frac{\kappa(u)}{1 - r\kappa(u)\cos u}$$

Solució: Utilitzant que α és unitària i que $\tau=1$ es veu fàcilment que $\beta'(u)=(1-r\kappa\cos(u))\mathbf{t}(u)$ on $\alpha'(u)=\mathbf{t}(u)$. La condició sobre r implica, quan r>0, que β és regular. De fet tenim que $1-r\kappa\cos(u)>0$. Per calcular la longitud fem

$$L_{\beta} = \int_{I} |\beta'(u)| du = \int_{I} (1 - r\kappa \cos(u)) du = L_{\alpha} - r \int_{I} \kappa(u) \cos(u) du.$$

La curvatura κ_{β} de β serà

$$\kappa_{\beta} = \frac{|\beta' \times \beta''|}{|\beta'|^3}.$$

Com que $\beta'(u) = (1 - r\kappa \cos(u))\mathbf{t}(u)$ tenim que $\beta' \times \beta'' = \kappa(1 - r\kappa \cos(u))^2\mathbf{n}(u)$. D'aquí deduïm l'expressió de la curvatura.

- 3.— Sigui $\alpha(u)$ una corba regular continguda en un superfície Σ amb vector normal unitari \mathbf{N} .
 - a) Digueu quina condició ha de satisfer $\alpha'(u)$ per que α sigui una línia de curvatura de Σ .
 - b) Considerem la superfície S parametritzada per $\mathbf{x}(u,v) = \alpha(u) + v\mathbf{N}(\alpha(u))$. Proveu que α és línia de curvatura de Σ si i només si la curvatura de Gauss de S és zero.
- **4.** Considerem una superfície parametritzada de manera que la primera forma fonamental es pot escriure $ds^2 = \lambda(u, v)(du^2 + dv^2)$ amb $\lambda > 0$ (coordenades isotermals).
 - a) Trobeu l'equació de les geodèsiques i doneu l'expressió dels símbols de Christoffel.
 - b) Proveu que la curvatura de Gauss és igual a

$$K = \frac{-1}{2\lambda} \Delta \log \lambda,$$

on $\Delta = \partial^2/\partial u^2 + \partial^2/\partial v^2$ és l'operador de Laplace al pla.

Solució: Trobem les equacions de les geodèsiques a partir de les equacions d'Euler-Lagrange associades a la Lagrangiana $L(u, v, u', v') = \lambda(u, v)(u'^2 + v'^2)$. Les equacions són $(L_{u'})' = L_u$ i $(L_{v'})' = L_v$. Tenim llavors

$$2(\lambda_u(u')^2 + \lambda u'') = \lambda_u(u'^2 + v'^2), \qquad 2(\lambda_v(v')^2 + \lambda v'') = \lambda_v(u'^2 + v'^2).$$

Reordenant tenim que les equcions de les geodèsiques són

$$u'' + \frac{\lambda_u}{2\lambda}(u')^2 + \frac{\lambda_v}{\lambda}u'v' - \frac{\lambda_u}{2\lambda}(v')^2 = 0$$

i

$$v'' - \frac{\lambda_v}{2\lambda}(u')^2 + \frac{\lambda_u}{\lambda}u'v' + \frac{\lambda_v}{2\lambda}(v')^2 = 0.$$

D'aquí deduïm que $\Gamma^1_{11} = \frac{\lambda_u}{2\lambda}$, $\Gamma^2_{11} = \frac{-\lambda_v}{2\lambda}$, $\Gamma^1_{22} = \frac{-\lambda_u}{2\lambda}$, $\Gamma^2_{22} = \frac{\lambda_v}{2\lambda}$, $\Gamma^1_{12} = \Gamma^1_{21} = \frac{\lambda_v}{2\lambda}$, $\Gamma^2_{12} = \Gamma^2_{21} = \frac{\lambda_u}{2\lambda}$.

Sabem que la curvatura de Gauss K es pot obtenir a partir de la primera forma fonamental i les seves derivades. Un mètode simple per calcular K, és fer servir una referència mòbil $\{e_1, e_2\}$ ortonormal. Aleshores si ω_i són les formes duals i ω_{12} la forma de connexió, tindrem que $d\omega_{12} = K\omega_1 \wedge \omega_2$. Prenem $e_1 = \partial_u/\sqrt{\lambda}$ i $e_2 = \partial_v/\sqrt{\lambda}$. Aleshores $\omega_1 = \sqrt{\lambda} du$ i $\omega_2 = \sqrt{\lambda} dv$. Les equacions d'estructura diuen que $d\omega_1 = -\omega_{12} \wedge \omega_2$ i $d\omega_2 = -\omega_{21} \wedge \omega_1$. Posem $\omega_{12} = a\omega_1 + b\omega_2$. Substituïm a les equacions d'estructura i trobem que $\omega_{12} = (\lambda_v \omega_1 - \lambda_u \omega_2)/2\lambda\sqrt{\lambda}$. Fem $d\omega_{12}$ i obtenim

$$d\omega_{12} = -\frac{1}{\lambda} \left[\left(\frac{\lambda_u}{2\lambda} \right)_u + \left(\frac{\lambda_v}{2\lambda} \right)_v \right] \omega_1 \wedge \omega_2 = K\omega_1 \wedge \omega_2.$$

Desenvolupant $\frac{-1}{2\lambda}\Delta \log \lambda$ es comprova que és igual a la K que acabem de calcular.

5.— Calculeu la circul·lació del camp $\mathbf{F}(x,y,z)=(y^2,z^2,0)$ al llarg de la corba intersecció de $x^2+y^2=9$ i 3y+4z=5 amb l'orientació que trieu.

Solució: Sabem que la circul·lació d'un camp sobre una corba tancada és igual al flux del rotacional del camp a través d'una superfície que tingui aquesta corba com a vora. En el nostre cas el rotacional és (-2z,0,-2y). Com a superfície que té aquesta corba com a vora podem considerar $(x,y) \to (x,y,(5-3y)/4)$ amb (x,y) en el disc D de radi 3 centrat a l'origen. El normal unitari de la superfície és proporcional al vector (0,3,4) llavors el flux és proporcional a la integral $\int_D \langle (-2z,0,-2y),(0,3,4)\rangle dx\ dy = -8\int_D y dx\ dy = 0$. Llavors la circul·lació és nul·la.

- **6.** Considereu el camp vectorial $\mathbf{F}(x,y,z) = (x,y,z)/r^{\nu}$ a $\mathbb{R}^3 \setminus \{0\}$, amb $r^2 = x^2 + y^2 + z^2$ i $\nu \in \mathbb{R}$.
 - a) Calculeu la divergència de **F**.
 - b) Si S és la vora d'un domini compacte Ω de $\mathbb{R}^3 \setminus \{0\}$ amb l'orientació induïda i $\Phi := \int_S \mathbf{F} \cdot d\mathbf{S}$ és el flux de \mathbf{F} a través de S, digueu raonadament quines de les següents afirmacions són certes:
 - i) Φ és sempre positiu;
 - ii) Φ és sempre zero;
 - iii) Φ només depèn de ν ;
 - iv) Φ depèn de ν i de S.

7.— Sigui

$$\omega = z dx \wedge dy + \frac{\partial f}{\partial x} dx \wedge dz + \left(\frac{\partial f}{\partial y} - f\right) dy \wedge dz.$$

- a) Caracteritzeu les funcions f(x,y,z) diferenciables a tot \mathbb{R}^3 tal que la forma ω és tancada.
- b) Demostreu que la forma ω restringida a l'esfera unitat S^2 és tancada per a qualsevol funció f.

8.— Formes en varietats

- a) Proveu que tota forma de grau màxim mai nul·la en una varietat diferenciable M compacte i sense vora no pot ser exacta.
- b) Sigui $\varphi:[0,2\pi]\times[0,2\pi]\to\mathbb{R}^3$ la parametrització del tor $\{(\sqrt{x^2+y^2}-a)^2+z^2=b^2\}$, 0< b< a, donada per

$$\varphi(u, v) = ((a + b\cos u)\cos v, (a + b\cos u)\sin v, b\sin u).$$

Siguin $\omega_1 = xdx \wedge dz + ydy \wedge dz$ i $\omega_2 = ydx \wedge dz - xdy \wedge dz$ 2-formes a \mathbb{R}^3 .

- i) Proveu $\omega_1 = d\alpha$ per a una certa 1-forma α de \mathbb{R}^3 .
- ii) Proveu que $\varphi^*\omega_1=0$.
- iii) Calculeu $\varphi^*\omega_2$ i proveu que és exacta. Contradiu això la primera part del problema? Per què?