Summary: Limits and asymptotics

Curve Sketching

General Strategy

- 1. Plot
 - discontinuities (especially infinite ones)
 - end points (or $x \to \pm \infty$)
 - easy points (x = 0, or y = 0) (This is optional.)
- 2. Plot critical points and values. (Solve f'(x) = 0 or undefined.)
- 3. Decide whether f' < 0 or f' > 0 on each interval between endpoints, critical points, and discontinuities. (Must be consistent with steps 1 and 2.)
- 4. Identify where f'' < 0 and f'' > 0 (concave down and concave up). Identify inflection points.
- 5. Combine into graph.

l'Hôpital's Rule

l'Hôpital's Rule Version 1: Indeterminate form $\frac{0}{0}$

If

$$f(x) \to 0$$

 $g(x) \to 0$ as $x \to a$,

and the functions f and g are differentiable near the point x = a, then limit

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \tag{1}$$

provided that the right hand limit exists or is $\pm \infty$.

l'Hôpital's Rule Version 2: Indeterminate form $\frac{\infty}{\infty}$

If

$$f(x) \to \pm \infty$$
 as $x \to a$,

and the functions f and g are differentiable near the point x = a, then limit

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \tag{2}$$

provided that the right hand limit exists or is $\pm \infty$.

Note that

- We can replace a with a^+ or a^- and the results (versions 1 and 2) still hold.
- We can replace a with $\pm \infty$, and the results (versions 1 and 2) still hold.

Other indeterminate forms

Other indeterminate forms $0 \cdot \infty$, $\infty - \infty$, 0^0 , 1^∞ , and ∞^0 should be rearranged to be of the form 0/0 or ∞/∞ in order to apply l'Hôpital's rule.