```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

loading the dataset to a Pandas DataFrame
credit card data = pd.read csv('/content/creditcard.csv')

first 5 rows of the dataset
credit_card_data.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	V21
0	0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307
1	0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775
2	1	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998
3	1	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300
4	2	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431

5 rows × 31 columns

credit_card_data.tail()

Tim	v1	V2	V3	V4	V 5	V6	V7	V8	V9	• • •	V21
2580	- 0.769852	2.704375	-2.083145	1.018899	1.083598	-1.255315	1.242032	-0.525902	1.466585		-0.448296
2580	- 0.897475	0.963371	0.997351	0.329928	0.998766	-1.287190	0.713085	0.019353	-0.859152		0.118559
2580	-0.377066	0.984515	0.988848	-0.261443	0.563332	0.197124	0.489867	0.281753	-0.543286		-0.234987
2581	-0.353184	0.311241	1.586426	-1.515835	-0.636334	-0.836015	0.441214	-0.188933	1.218595		0.049963
2581	0.827638	-0.539202	1.108173	1.532278	-0.950308	0.344304	-0.467828	0.217786	0.858742		NaN

× 31 columns

dataset informations credit_card_data.info()

```
V5
           14595 non-null float64
    ۷6
           14595 non-null float64
           14595 non-null float64
7
    V7
           14595 non-null float64
8
    V8
9
    V9
           14595 non-null float64
10 V10
           14595 non-null float64
11 V11
           14595 non-null float64
12 V12
           14595 non-null float64
13 V13
           14595 non-null float64
14 V14
           14595 non-null float64
15 V15
           14595 non-null float64
    V16
           14595 non-null float64
16
17 V17
           14595 non-null float64
18 V18
           14595 non-null float64
19 V19
            14595 non-null float64
20 V20
           14595 non-null float64
           14594 non-null float64
21 V21
22 V22
           14594 non-null float64
           14594 non-null float64
23 V23
24 V24
           14594 non-null float64
25 V25
           14594 non-null float64
26 V26
           14594 non-null float64
27 V27
           14594 non-null float64
28 V28
           14594 non-null float64
29 Amount 14594 non-null float64
30 Class 14594 non-null float64
dtypes: float64(30), int64(1)
memory usage: 3.5 MB
```

checking the number of missing values in each column
credit_card_data.isnull().sum()

```
V1
          0
V2
          0
V3
V4
V5
۷6
V7
V8
V9
V10
V11
V12
          0
V13
V14
          0
V15
V16
V17
V18
V19
V20
V21
V22
V23
          1
V24
          1
V25
          1
V26
          1
V27
          1
V28
          1
Amount
          1
Class
dtype: int64
```

Time

0

distribution of legit transactions & fraudulent transactions
credit card data['Class'].value counts()

```
14533
    0.0
    1.0
              61
    Name: Class, dtype: int64
This Dataset is highly unblanced
0 --> Normal Transaction
1 --> fraudulent transaction
# separating the data for analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
print(legit.shape)
print(fraud.shape)
     (14533, 31)
     (61, 31)
# statistical measures of the data
legit.Amount.describe()
     count
             14533.000000
    mean
                64.065668
               176.589083
     std
    min
                 0.000000
     25%
                 5.550000
     50%
                15.950000
    75%
                52.990000
    max
              7712.430000
    Name: Amount, dtype: float64
fraud.Amount.describe()
               61.000000
     count
               88.402295
    mean
     std
              297.522823
                0.000000
     25%
                1.000000
     50%
                1.000000
     75%
                3.790000
             1809.680000
     {\sf max}
    Name: Amount, dtype: float64
# compare the values for both transactions
credit_card_data.groupby('Class').mean()
                    Time
                                ٧1
                                         ٧2
                                                   ٧3
                                                            V4
```

```
Time V1 V2 V3 V4 V5 V6 V7 V8 V9 ...

Class

0.0 10777.717402 -0.215448 0.262816 0.879788 0.274916 -0.106953 0.136946 -0.128751 -0.019781 0.974505

1.0 13325.934426 -5.118440 4.839489 -9.563219 6.621692 -3.266514 -2.089348 -6.722938 1.489551 -2.929718

2 rows × 30 columns
```

Under-Sampling

Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions --> 492

legit sample = legit.sample(n=492)

Concatenating two DataFrames

new_dataset = pd.concat([legit_sample, fraud], axis=0)

new dataset.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	
511°	4784	1.374105	-0.253948	0.113605	0.069158	-0.052759	0.404988	-0.408880	-0.164304	0.450830		-0.6
777	10823	0.625403	-1.140300	0.322045	0.473485	-0.836196	0.153164	-0.164060	0.058232	1.930849		-0.0
611	7001	0.771466	- 0.598544	2.246886	3.139235	- 1.127466	2.269853	-1.620516	0.885450	2.449515		0.0
1318	5 23170	- 3.743846	-3.265379	0.995384	3.041958	0.965919	- 0.587442	1.862605	-0.117721	-0.399114		0.0
1009	0 15324	-3.690755	3.414470	0.714492	-1.985861	-0.543478	-1.366884	1.123768	-0.849273	5.116339		-0.9

5 rows × 31 columns

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •
14104	25095	1.192396	1.338974	-0.678876	3.123672	0.643245	- 1.184323	0.397586	-0.253499	0.411135	
14170	25198	-15.903635	10.393917	-19.133602	6.185969	-12.538021	- 4.027030	-13.897827	10.662252	-2.844954	
14197	25231	-16.598665	10.541751	-19.818982	6.017295	-13.025901	- 4.128779	-14.118865	11.161144	-4.099551	
14211	25254	-17.275191	10.819665	-20.363886	6.046612	-13.465033	- 4.166647	-14.409448	11.580797	-4.073856	
14338	25426	1.125336	1.130146	-0.962975	2.675688	0.990075	-0.243318	0.316192	0.122960	-1.143343	

5 rows × 31 columns

new_dataset['Class'].value_counts()

0.0 492

1.0 61

Name: Class, dtype: int64

new_dataset.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	
Class											
0.0	10255.290650	-0.228924	0.404879	0.835122	0.248904	-0.041809	0.170144	-0.116762	-0.053026	0.923775	
1.0	13325.934426	-5.118440	4.839489	-9.563219	6.621692	-3.266514	-2.089348	-6.722938	1.489551	-2.929718	

2 rows × 30 columns

Splitting the data into Features & Targets

```
X = new_dataset.drop(columns='Class', axis=1)
Y = new dataset['Class']
print(X)
            Time
                       V1
                                  V2
                                            V٦
                                                     V4
                                                                V5
                                                                         V<sub>6</sub>
    5111
            4784 1.374105 -0.253948 0.113605 0.069158 -0.052759 0.404988
    7770
          10823 0.625403 -1.140300 0.322045 0.473485 -0.836196 0.153164
    6116
           13185 23170 -3.743846 -3.265379 0.995384 3.041958 0.965919 -0.587442
    10090 15324 -3.690755 3.414470 0.714492 -1.985861 -0.543478 -1.366884
                                . . .
    14104 25095 1.192396 1.338974 -0.678876 3.123672
                                                        0.643245 -1.184323
    14170 25198 -15.903635 10.393917 -19.133602 6.185969 -12.538021 -4.027030
    14197 25231 -16.598665 10.541751 -19.818982 6.017295 -13.025901 -4.128779
    14211 25254 -17.275191 10.819665 -20.363886 6.046612 -13.465033 -4.166647
                 1.125336 1.130146 -0.962975 2.675688
                                                         0.990075 -0.243318
    14338 25426
                 V7
                           ٧8
                                     V9
                                                  V20
                                                           V21
                                                                     V22
                                        . . . .
    5111
           -0.408880 -0.164304 0.450830 ... -0.455944 -0.688367 -0.964160
    7770
           -0.164060
                     0.058232 1.930849 ... 0.360946 -0.025609 -0.280835
           -1.620516
                     0.885450 2.449515 ... -0.242193 0.043859 0.629459
           1.862605 -0.117721 -0.399114 ... 2.299492 0.055303 -1.963346
    13185
    10090
          1.123768 -0.849273 5.116339 ... 2.370351 -0.965167 -0.590039
                          . . .
                                        . . .
                                                  . . .
    14104
           0.397586 -0.253499 0.411135
                                        ... -0.185455 -0.377503 -0.889597
    14170 -13.897827 10.662252 -2.844954 ... 1.501565 1.577548 -1.280137
    14197 -14.118865 11.161144 -4.099551 ... 1.534920 1.725853 -1.151606
    14211 -14.409448 11.580797 -4.073856 ... 1.544970 1.729804 -1.208096
    14338
          0.316192
                    0.122960 -1.143343 ... -0.138814 -0.166737 -0.521934
               V23
                         V24
                                  V25
                                           V26
                                                    V27
                                                              V28 Amount
    5111 -0.087617 -0.971928 0.565894 0.418575 -0.006715 -0.002836
    7770 -0.269747 0.043434 0.176311 1.058848 -0.141906 0.027320
    6116 -0.097964 -0.327014 0.179940 0.251557 0.070432 0.025485
    13185 2.270957 -0.387028 0.510184 -0.487578 -0.377596 0.173759 788.77
    10090 0.046301 0.623774 0.368253 0.566924 0.708040 -0.355509
    14104 -0.074208  0.035446  0.550578 -0.027171 -0.024921  0.073605
                                                                    3.12
                                                                  99.99
    14170 -0.601295 0.040404 0.995502 -0.273743 1.688136 0.527831
    14197 -0.680052 0.108176 1.066878 -0.233720 1.707521 0.511423 99.99
    14211 -0.726839 0.112540 1.119193 -0.233189 1.684063 0.503740 99.99
    14338 -0.112376 -0.592077 0.520791 0.043354 0.015159 0.063612
                                                                    3.76
    [553 rows x 30 columns]
print(Y)
    5111
            0.0
    7770
            0.0
    6116
            0.0
    13185
            0.0
    10090
            0.0
    14104
            1.0
    14170
            1.0
    14197
            1.0
    14211
            1.0
    14338
            1.0
    Name: Class, Length: 553, dtype: float64
```

Split the data into Training data & Testing Data

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X train.shape, X test.shape)
            (553, 30) (442, 30) (111, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
          l/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to convergenceWarning: lbfgs failed
          AL NO. of ITERATIONS REACHED LIMIT.
          the number of iterations (max_iter) or scale the data as shown in:
          ://scikit-learn.org/stable/modules/preprocessing.html
          so refer to the documentation for alternative solver options:
          ://scikit-learn.org/stable/modules/linear model.html#logistic-regression
          i = _check_optimize_result(
          .cRegression
          Regression()
Model Evaluation
Accuracy Score
# accuracy on training data
X train prediction = model.predict(X train)
training data accuracy = accuracy score(X train prediction, Y train)
print('Accuracy on Training data : ', training data accuracy)
           Accuracy on Training data: 0.9909502262443439
# accuracy on test data
X_test_prediction = model.predict(X_test)
test data accuracy = accuracy score(X test prediction, Y test)
print('Accuracy score on Test Data : ', test_data_accuracy)
           Accuracy score on Test Data : 0.972972972973
```