Chapter 1: Review of Calculus, Errors and Rounding

Review of Calculus

Continuity

A function f(x) is continuous on [a,b] if $f(x) \in C[a,b]$ and $f(x) \in C[a,b]$, that is, f(x) and its derivative are continuous on [a,b].

In laymans terms, a function is continous over [a,b] if there are no points where there are problems, such as division by zero, or the function is not a piecewise function that does not cover every point in [a,b]

Increasing and Decreasing Functions

A function is classified as increasing or decreasing depending on its derivative.

- if f(x) > 0 then the function is increasing
- if f(x) < 0 then the function is decreasing

if f(x) = 0, then that is called an inflection or critical point.

if f(x) is continuous on [a,b] then f has an absolute upper bound = M and an absolute lower bound = m, such that :

$$m \le f(x) \le M \forall x \in [a, b]$$

Initial Value Theorem

Lets say that $f \in [a,b]$, L is between $f(a),f(b) \exists c \in [a,b]$ such that f(c) = L

Bolzano Theorem

let us assume that :

- 1. $f \in C[a,b]$
- 2. f(a).f(b) < 0

Then \exists c in (a,b) such that f(c) = 0.

x = c is a root(a zero) for f(x), and x = c is a solution for the equasion.

Mean Value Theorem

if $f \in C[a,b]$ and $f \in C(a,b)$, then $\exists \ c \in (a,b)$ such that :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

alternatively, this can be expressed as

$$|f(b) - f(a)| = |f'(c)||(b-a)|$$

Recall that:

$$|x\pm y|\leq |x|+|y|$$

Rolle's Theorem

Rolle's Theorem is a special case of the MVT, which states:

If f is continuos and differentiable on (a,b) and if f(a) \leq f(b) , then \exists c \in (a,b) such that f(c) = 0 .

In simple terms, if f is generally decreasing on an open interval, then there is a critical point in that interval.

Taylor Series

The Taylor Series/ Taylor Expansion is a way to express a function that isn't very "nice" as a series of polynomials that can be used to express the function. In more technical terms, the taylor series can be formally defined as follows:

Given f(x) and a center x = a, then the taylor expantion series for f(x) about x = a is given by :

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)}{2!} + \ldots + \frac{f^n(a)(x - a)^n}{n!}$$

Which is used to approximate f(x) when x is close to a.

The error of this approximation is given by:

$$E(x) = rac{f^{n+1}(c)(x-a)^{n+1}}{(n+1)!}$$

where \boldsymbol{c} is a number between \boldsymbol{x} and a.

Errors and Rounding

Significant Digits

A digit is said to be significant when a change in its value changes the number. To find out the number of significant digits in a number, start counting from the the first non-zero number on the left. For example,

0.0012341

has 5 significant digits, and

1200

has 4 significant digits.

Sources of Errors

There are 2 sources of errors:

- 1. Round-off Error: an error when a number is approximated by another number.
- 2. Truncation Error: an error when a function is approximated by another function.

The reason we have round-off error is because computers use **finite digit arithematic**. There are only a finite number of digits a computer can handle at a time. Numbers in computers are represented in **floating point representation**. Normalized floating point representation is a special form of this, where all the **significant digits** are to the right of the decimal point.

Floating Point Representation

FPR is a way of representing numbers such that we reduce the number of uneeded digits/zeros. Basically, lets say we have the number

0.0023141

then we can represent this as

2.3141 * 10⁻³

It is called floating point because we are moving the decimal point around. Normalized floating point is simply rewriting the number as

0.dddddddd * 10^n

where the first digit is non-zero.

Round-off

There are 2 types of round-off:

- 1. Chopping --> simple cut off after a certain amount of significant digits.
- 2. Rounding --> estimating using the last significant digit, such that if it is ≥ 5 , then we add one, otherwise, we add zero.

Propagation of Error

given that

 $p = \hat{p} + E_p$

and

 $q = \hat{q} + E_q$

then

$$p + q = \hat{p} + \hat{q} + E_p + E_q$$

That is to say, error may be increased in operations.

Order Of Approximation

Let us say that we are approximating eh using the taylor expantion :

$$e^h=1+h+\frac{h^2}{2}$$

Then we know that the error is given by

$$E=rac{f^3(c)h^3}{6}
ightarrow rac{e^ch^3}{6}$$

so we can say

$$E \approx ch^3$$

we can express this error by saying :

$$O(h^3)$$

That is to say, the error is about some constant between 0 and h times h³.

Formally, we say:

$$f(h) = p(h) + O(h^n)$$

then

$$f(h) \approx p(h)$$

Determening The Order Of Approximation In Operations.

Say that we have

$$f(h) = p(h) + O(h^n)$$

$$g(h) = k(h) + O(h^m)$$

Then

$$f(h) + g(h) = p(h) + k(h) + O(h^r)$$

where

- 1. r = min [n,m]
- 2. $h^l + O(h^r) = O(h^r)$, if $l \ge r$