Imunidade na Gravidez: Diferenças entre Populações Tsimane e Estadounidense

Jonatan Andres Gomez Parada

1. Introdução

Entre os mamíferos placentários, a reprodução feminina exige que o organismo da mãe tolere a presença de um feto geneticamente diferente durante toda a gestação, sem rejeitá-lo. Em humanos, esse processo é particularmente desafiador devido à natureza invasiva da placenta e exige mudanças no sistema imunológico da mãe, o que pode alterar sua suscetibilidade a infecções e doenças autoimunes.

Até hoje, a maior parte dos estudos sobre tolerância fetal foi feita em países industrializados e de alta renda, onde a exposição a microrganismos ao longo da vida é muito menor. Essa privação microbiana reduz a mortalidade por doenças infecciosas, mas também compromete o desenvolvimento equilibrado do sistema imunológico, podendo levar a uma maior sensibilidade a estímulos inofensivos e ao surgimento de doenças inflamatórias crônicas, como alergias e artrite reumatoide.

Este estudo compara os efeitos da gravidez na imunidade materna em dois grupos muito diferentes: mulheres da comunidade Tsimane, que vivem em um ambiente com alta carga de patógenos e têm fertilidade natural, e mulheres nos EUA.

Os Tsimane habitam os neotrópicos da Bolívia, um ambiente rico em biodiversidade e repleto de inúmeros agentes infecciosos. Devido à exposição variada e crônica, as infecções (principalmente respiratórias e gastrointestinais) são as principais causas de morbidade e mortalidade entre os Tsimane, enquanto alergias, atopia e doenças autoimunes são raras.

Serão considerados os seguintes tipos de células:

- Leucócitos totais: Também conhecido como contagem de glóbulos brancos (WBC).
- Linfócitos: Responsáveis pela imunidade específica contra antígenos.
- Neutrófilos: Combatem infecções extracelulares e fúngicas, ativam a resposta adaptativa e promovem inflamação.
- Monócitos: Semelhantes aos neutrófilos, porém menos numerosos e com vida mais curta.
 Migram para locais de infecção e se transformam em macrófagos especializados nos tecidos.
- Eosinófilos: Granulócitos envolvidos na resposta a parasitas e alergias.
- Basófilos: Tipo raro de granulócito envolvido em inflamações.

2. Informações gerais do conjunto de dados e análise exploratória dos dados.

O conjunto de dados é formado pela união de duas fontes. A primeira delas referente ao *Tsimane Health and Life History Project* (THLHP) correspondente a dados de mulheres Tsimane. A segunda fonte de dados corresponde a dados de mulheres morando nos Estados Unidos, e são referentes ao National Health and Nutrition Examination Survey (NHANES, 2003–2016). A idade das mulheres das duas fontes de dados varia entre 18 e 45 anos.

2.1 Descrição dos dados

O dataset inicial contém 6 grupos de variáveis no conjunto de dados distribuídos da seguinte forma:

- Contagem Leucocitária (células/µL)
 - WBC: Leucócitos totais
 - NEU: Neutrófilos
 - LYM: Linfócitos
 - MON: Monócitos
 - EOS: Eosinófilos
 - BAS: Basófilos
- Proporções Leucocitárias (%)
 - o neu pct: % de neutrófilos
 - lym_pct: % de linfócitos
 - o mon pct: % de monócitos
 - o eos pct: % de eosinófilos
 - o bas pct: % de basófilos
- Marcadores Inflamatórios
 - o crp: Proteína C-reativa (mg/L)
- Dados Antropométricos
 - BMI: Índice de massa corporal (kg/m²)
 - o Age: Idade em anos
- Dados Reprodutivos
 - NumPartos: Número de partos
 - RepStatus: Status reprodutivo (Cycling: N\u00e3o gr\u00e1vida. T1, T2, T3: Trimestre da gravidez)
- Metadados e Controle
 - o pid: Identificador único do participante
 - Population: Origem populacional (THLHP:Tsimane, NHANES: Mulheres EUA)
 - o Repeats: Número de repetições
 - REF: Indicador de medidas repetidas (0=não, 1=sim)

Inicialmente o dataset contém dados de 2330 mulheres, sendo 935 mulheres Tsimane e 1395 mulheres dos EUA, das quais 256 Tsimane são grávidas e dos EUA temos 277 grávidas.

Após análise das colunas correspondentes à contagem Leucocitária, considerando distribuição e outliers, foram mantidos os dados satisfazendo as sequintes condições:

- WBC: Leucócitos totais < 22000 células/µL
- NEU: Neutrófilos < 15000 células/μL
- LYM: Linfócitos < 8000 células/µL
- MON: Monócitos < 1250 células/µL
- EOS: Eosinófilos < 5000 células/μL
- BAS: Basófilos < 400 células/µL

No total foram removidas 106 linhas, onde 86 linhas correspondem a valores NaN em todas as colunas de contagem leucocitária. Logo, foram removidas 20 linhas de dados que não satisfaziam as condições acima mencionadas. Além disso, a coluna referente a variável crp apresentava 64% de valores NaN, essa coluna foi desconsiderada, assim como as colunas pid, Repeats e REF. As colunas sobre Proporções Leucocitárias foram desconsideradas, uma vez que a sua informação é obtida a partir das respectivas colunas de contagem leucocitárias e a contagem leucocitária total,

além do fato de, neste estudo, termos principal interesse na contagem total e não nas porcentagem das células leucocitárias.

Também foi realizado o seguinte procedimento: Foram criadas duas colunas a partir da coluna RepStatus chamadas RepStatus_cat e RepStatus_bin. RepStatus_bin assume valores 0 e 1, onde 0 corresponde a mulheres não grávidas e 1 a mulheres grávidas. Enquanto RepStatus_cat assume valores 0, 1, 2 e 3, sendo 0 para não grávidas, e para grávidas assume valores 1, 2 ou 3 a depender do trimestre da gravidez.

	Conjunto inicial de dados		Relação de dados após tratamento	
	Tsimane	EUA	Tsimane	EUA
Grávidas 1 trimestre	71	53	70	52
Grávidas 2 trimestre	94	113	93	104
Grávidas 3 trimestre	91	111	91	106
Não Grávidas	679	1118	653	1055
Total	935	1395	907	1317

A seguinte imagem mostra a distribuição das diferentes contagem leucocitária no conjunto de dados final, agrupando pelo tipo de população e estado da gravidez (ou não gradivez).

Note-se que temos maior diferenciais nos valores correspondentes a os Monócitos, Basófilos e Eosinófilos.

3. Análises Estatísticas

Temos especial interesse em conhecer se existe uma diferença na média das contagens das células leucocitárias, quando consideramos o tipo de população e estado da gravidez. Para isto, consideramos Testes Mann-Whitney U, para testar hipóteses de um dos grupos populacionais ter menores valores em cada uma das contagens. Na seguinte tabela são apresentadas as interpretações dos resultados dos testes Mann-Whitney U, indicando qual dos grupos populacionais têm menor contagem por tipo de célula.

	Leucócitos	Neutrófilos	Linfócitos	Monócitos	Basófilos	Eosinófilos
Não Grávida	NHANES	NHANES	NHANES	THLHP	THLHP	NHANES
T1	NHANES	Iguais	NHANES	THLHP	THLHP	NHANES
T2	Iguais	THLHP	NHANES	THLHP	THLHP	NHANES
Т3	Iguais	THLHP	NHANES	THLHP	THLHP	NHANES

Chamamos principalmente a atenção à contagem total de Leucócitos, a qual não tem resultado menor para o grupo dos EUA em não grávidas e grávidas no primeiro trimestre, mas que não representa diferença significativa nos dois últimos trimestres, assim como para a classe dos Neutrófilos que também apresenta variação entre não grávidas até grávidas no terceiro trimestre.

4. Agrupamento K-Means

Na Análise estatística pode ser vista a diferença existente na contagem dos diferentes tipos de células entre os dois tipos de população nas diferentes classificações da gravides.

A seguir, com o propósito de determinar uma possível diferença considerando um conjunto maior das variáveis, consideramos a implementação de um modelo K-Means, com dois clusters, excluindo a variável Population, e fazemos uma comparação da distribuição de cada um dos dois tipos de população nos agrupamentos fornecidos pelo modelo K-Means.

As variáveis consideradas no modelo foram: WBC, NEU, LYM, MON, BAS, EOS, lym_pct, neu_pct, eos_pct, mon_pct, bas_pct, BMI, Age, NumPartos, RepStatus_bin, RepStatus_cat.

A distribuição obtida é apresentada na seguinte tabela:

População	NHANES THLHP	
Cluster		
0	1314	39
1	3	868

Pode-se considerar que existe sim a nível geral das variáveis uma diferença entre as duas diferentes populações no estudo. Agora, para apreciação gráfica consideramos uma Análise de Componentes Principais (PCA) para redução da dimensionalidade, e obtemos o seguinte gráfico apresentando a distribuição dos tipos de populações nos agrupamentos do K-Means.

5. Modelo de regressão para estimativa da contagem de neutrófilos.

Nas análises prévias, foi identificado que há diferenças estatisticamente significativas na contagem de células sanguíneas entre duas populações distintas. Dentre essas, a temos interesse na contagem de neutrófilos (NEU) por seu papel central na resposta imune inata e sua relevância clínica no contexto de infecções, inflamação e alterações fisiológicas como a gestação.

A proposta de utilizar um modelo de regressão para estimar os níveis de NEU a partir de outras variáveis hematológicas, clínicas e demográficas é fundamentada tanto em aspectos biológicos quanto práticos:

- Os neutrófilos constituem normalmente a fração mais abundante dos leucócitos.
 Variações em WBC tendem a refletir proporcionalmente alterações nos níveis de NEU.
- O Índice de Massa Corporal e a Idade são variáveis que podem influenciar na distribuição de células imunológicas. Por exemplo, estados de sobrepeso/obesidade estão associados a inflamação crônica de baixo grau, o que pode elevar contagens de neutrófilos.
- O Número de Partos e as variáveis RepStatus_cat (estado gestacional) e RepStatus_bin (gestante/não gestante) permitem capturar o histórico reprodutivo e o estado hormonal atual da mulhe.
- Population_bin, representando o grupo populacional de origem (NHANES ou THLHP), é fundamental para considerar possíveis diferenças genéticas, ambientais ou nutricionais que possam influenciar os parâmetros hematológicos.

Do ponto de vista operacional, muitas dessas variáveis podem ser obtidas de forma simples e acessível: idade, número de partos e estado gestacional são dados autodeclarados ou extraídos de prontuário, enquanto WBC e BMI são medidas de baixo custo e rotineiramente disponíveis em exames laboratoriais e avaliações clínicas básicas. Já a contagem

diferencial de leucócitos (incluindo NEU), embora mais informativa, pode ser inviável em contextos com infraestrutura laboratorial limitada.

Portanto, desenvolver um modelo que permita estimar NEU com base em WBC e outras variáveis clínicas acessíveis representa uma solução custo-efetiva, com potencial aplicação em triagens rápidas, monitoramento de populações vulneráveis e ampliação do acesso à informação clínica, mesmo em cenários de recursos restritos.

5.1 Escolha do modelo

Para estimar a contagem de neutrófilos (NEU) com base em variáveis clínicas e demográficas, diferentes modelos de regressão foram testados, incluindo modelos lineares e não lineares, a fim de identificar aqueles com melhor desempenho preditivo.

O conjunto de dados foi dividido em subconjuntos de treino (80%) e teste (20%), com padronização das variáveis explicativas para garantir comparabilidade entre modelos sensíveis à escala.

Os modelos avaliados (nos hiperparâmetros default) foram:

- LinearRegression (regressão linear)
- Ridge (regressão linear com regularização L2)
- Lasso (regressão linear com regularização L1)
- SVR (máquina de vetor de suporte)
- RandomForestRegressor
- GradientBoostingRegressor

Os critérios utilizados para a comparação foram: O MAE (Erro médio absoluto), o R² (Coeficiente de Determinação), e o R² ajustado.

Entre os modelos testados, o Gradient Boosting Regressor apresentou o melhor desempenho global, com: MAE: 616.03, R²: 0.802, e R² ajustado: 0.799.

O Gradient Boosting combina múltiplos modelos (árvores de decisão) de forma sequencial, corrigindo os erros anteriores a cada etapa.

5.1.1 Comentários sobre o desempenho do modelo

Embora o modelo Gradient Boosting tenha apresentado um erro absoluto médio (MAE) de aproximadamente 616 unidades, esse valor deve ser interpretado à luz do contexto clínico e da distribuição dos valores de neutrófilos na base de dados. Esse erro representa o 12.56% da média dos valores da variável alvo usados no teste (média NEU_teste: 4905.4). Vale ressaltar que: O R² ajustado de 0,799 indica que o modelo consegue explicar cerca de 80% da variância total da variável NEU, o que é um desempenho considerado elevado para dados clínicos reais, geralmente marcados por variabilidade biológica e ruído. Além disso, o objetivo do modelo não é substituir a medição direta com precisão exata, mas sim fornecer uma estimativa confiável e acessível em contextos onde a contagem diferencial não está disponível. Podendo-se considerar como uma ferramenta de triagem ou apoio à decisão, e não como diagnóstico definitivo.

A seguinte imagem mostra o comportamento do modelo no conjunto de teste.

O impacto de cada variável no modelo pode ser apreciado no seguinte gráfico.

6. Conclusões.

A partir dos conjunto de dados usado neste trabalho, pode se concluir que:

- Os dois tipos de populações apresentam diferentes contagens de células leucocitárias, o qual é esperado considerando os entornos sociais e ambientais nos quais vivem.
- Alguns tipos de células leucocitárias podem apresentar variações de na contagem ao longo da gravidez.
- Modelos de aprendizado de máquina considerando variáveis imunológicas e variáveis antropométricas, reprodutivas e populacionais, podem ajudar a entender a interação entre comportamentos biológicos e entornos de moradia.
- Uma melhor descrição da população na amostra dos EUA pode ser útil para entender melhor a diferença entre as duas populações.

Recomendações para Pesquisas Futuras

- Ampliação da amostra: Incluir outras populações para análise comparativa
- Dados adicionais: Coletar informações sobre dieta, atividade física e exposição ambiental
- Modelagem avançada: Explorar técnicas de deep learning para padrões mais complexos
- Estudo longitudinal: Acompanhar as variações nos parâmetros ao longo do tempo

7. Documentação.

O estudo foi realizado usando a linguagem Python 3.12.3

Bibliotecas usadas com a respetiva versão: pandas 2.2.3 matplotlib 3.10.3 numpy 2.2.6 seaborn 0.13.2 scikit-learn 1.7.0 scipy 1.15.3

O conjunto de dados corresponde aos dados usados como referência no artigo Immune function during pregnancy varies between ecologically distinct populations, (https://doi.org/10.1093/emph/eoaa022)

O conjunto de dados considerados no trabalho pode ser achado em: https://datadryad.org/dataset/doi:10.25349/D94C77#citations

Dados gerais referentes ao National Health and Nutrition Examination Survey se encontram em: https://wwwn.cdc.gov/nchs/nhanes/

Informações sobre o The Tsimane Health and Life History Project sem encontram em: https://tsimane.anth.ucsb.edu/index.html