第四章 级数

复数项级数 4.1

作业 1. 单选题: (2021 年 A 卷) 下列级数中发散的是(

(A)
$$\sum_{n=1}^{\infty} \frac{i^n}{n}$$

(B)
$$\sum_{n=1}^{\infty} \left[\frac{1}{\ln(in)} \right]^n \qquad \text{(C) } \sum_{n=0}^{\infty} \frac{(1+i)^n}{5^n} \qquad \text{(D) } \sum_{n=0}^{\infty} \frac{\cos(in)}{2^n}$$

(C)
$$\sum_{n=0}^{\infty} \frac{(1+i)^n}{5^n}$$

(D)
$$\sum_{n=0}^{\infty} \frac{\cos(in)}{2^n}$$

作业 2. 单选题: (2021 年 B 卷) 级数 $\sum_{n=1}^{\infty} \left[\frac{1}{n} + \frac{(-1)^n i}{\sqrt{n}} \right]$ 的敛散性是 ().

(A) 无法判断

(B) 条件收敛

(C) 绝对收敛

(D) 发散

作业 3. 判断下列级数的绝对收敛性与收敛性: $(1) \sum_{n=0}^{\infty} \frac{i^n}{\ln n}; \qquad (2) \sum_{n=0}^{\infty} \frac{(6+5i)^n}{8^n}; \qquad (3) \sum_{n=0}^{\infty} \frac{n^2}{5^n} (1+2i)^n.$

$$(1) \sum_{n=2}^{\infty} \frac{i^n}{\ln n};$$

(2)
$$\sum_{n=0}^{\infty} \frac{(6+5i)^n}{8^n};$$

(3)
$$\sum_{n=2}^{\infty} \frac{n^2}{5^n} (1+2i)^n.$$

幂级数 4.2

作业 4. 单选题: $(2022 \ \text{F A \ } \&)$ 幂级数 $\sum_{i=1}^{\infty} (iz)^n$ 的收敛半径是 ().

(A) i

(B) -i

(C) 1

作业 5. 填空题: (2020 年 B 卷) 如果级数 $\sum_{n=0}^{\infty} a_n (z-1)^n$ 在点 z=3 发散,则 ().

(A) 在点 z=-1 收敛

(B) 在点 z = -3 发散

(C) 在点 z=2 收敛

(D) 以上都不对

作业 6. 填空题: (2020 年 A 卷) 幂级数 $\sum_{n=0}^{\infty} (1+i)^n z^n$ 的收敛半径为______.

作业 7. 填空题: (2020 年 B 卷) 幂级数 $\sum_{n=1}^{\infty} \frac{1}{n} (z-1)^n$ 的收敛半径为_____.

作业 8. 填空题: (2021 年 B 卷) 幂级数 $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$ 的收敛半径为______.

作业 9. 判断题:

- (1) 每一个幂级数在它的收敛圆周上处处收敛.()
- (2) 每一个幂级数的和函数在收敛圆周内可能有奇点. (
- (3) 每一个在 z_0 可导的函数一定可以在 z_0 的邻域内展开成泰勒级数. ()

作业 10. 求下列幂级数的收敛半径:

作业 11. 证明: 如果 $\lim_{n\to\infty}\frac{c_{n+1}}{c_n}$ 存在 $(\neq \infty)$, 下列三个幂级数有相同的收敛半径

$$\sum c_n z^n; \quad \sum \frac{c_n}{n+1} z^{n+1}; \quad \sum n c_n z^{n-1}.$$

4.3 泰勒级数

作业 12. 函数 $f(z) = \frac{e^{1/z}}{z+1}$ 在 $z_0 = 0$ 处的泰勒展开成立的最大圆域是 $|z| = ______$

作业 13. 把下列各函数展开成
$$z$$
 的幂级数, 并指出它们的收敛半径:
$$(1) \ \frac{1}{(1+z^2)^2}; \qquad \qquad (2) \ \frac{1}{(z-1)(z-2)}; \qquad \qquad (3) \ e^z \cos z.$$

作业 14. 求下列各函数在指定点
$$z_0$$
 处的泰勒展开式, 并指出它们的收敛半径:
 $(1) \frac{z}{(z+1)(z+2)}, z_0=2; \quad (2) \frac{1}{z^2}, z_0=-1;$
 $(3) \arctan z, z_0=0.$

4.4 洛朗级数

作业 15.
$$(2020$$
 年 A 卷) 将函数 $f(z) = \frac{z+1}{z^2(z-1)}$ 分别在下列区域内展开成洛朗级数 (1) $0 < |z| < 1;$ (2) $1 < |z| < +\infty.$

作业 16. (2020 年 B 卷) 将函数 $f(z) = \frac{1}{(1-z)(z-2)}$ 分别在下列区域内展开成洛朗级数 (1) 0 < |z-1| < 1: (2) $2 < |z| < +\infty$.

作业 17. (2021 年 A 卷) 将函数
$$f(z) = \frac{1}{z^2 + z - 2}$$
 分别在下列区域内展开成洛朗级数 (1) $1 < |z| < 2$; (2) $0 < |z - 1| < 1$.

作业 18. (2021 年 B 卷) 将函数
$$f(z) = \frac{1}{z^2 + z}$$
 分别在下列区域内展开成洛朗级数 (1) $1 < |z| < 2;$ (2) $0 < |z+1| < 1.$

4.4 洛朗级数 3

作业 19. 将 $f(z) = \frac{1}{z(z-2)}$ 在 2 的去心邻域内展开成洛朗级数.

作业 20. 将函数 $e^{\frac{1}{1-z}}$ 在圆环域 $1<|z|<+\infty$ 内展开成洛朗级数.

作业 21. 将 $z^3 \exp\left(\frac{1}{z}\right)$ 在圆环域 $0 < |z| < +\infty$ 内展开成洛朗级数.

作业 22. 下列结论是否正确? 用长除法得

$$\frac{z}{1-z} = z + z^2 + z^3 + z^4 + \cdots,$$
$$\frac{z}{z-1} = 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots,$$

因为 $\frac{z}{1-z} + \frac{z}{z-1} = 0$, 所以

$$\cdots + \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + z^3 + z^4 + \cdots = 0.$$

作业 23. 如果 C 为正向圆周 |z|=3,求积分 $\int_C f(z) dz$ 的值,其中 f(z) 为: (1) $\frac{1}{z(z+2)}$; (2) $\frac{z}{(z+1)(z+2)}$.

扩展阅读

该部分作业不需要交,有兴趣的同学可以做完后交到本人邮箱.

作业 24. 设解析函数 f(z) 满足 $f(\zeta z) = \zeta^k f(z)$, 其中 $\zeta = e^{2\pi i/m}$ 是 m 次单位根.

- (1) 归纳证明 $f^{(n)}(\zeta z) = \zeta^{k-n} f^{(n)}(z)$.
- (2) 证明 f(z) 的麦克劳林展开只有 ml + k 次项, $l \in \mathbb{Z}$.

作业 25. 设 $f(z) = \ln z$, $z_0 = -3 + 4i$.

- (1) 求 f(z) 在 z_0 处的泰勒展开, 并说明它成立的圆域半径是 4?
- (2) 证明上述幂级数的收敛半径是 5? 为什么比 4 大?

作业 26. 设 $P(z) = \frac{f(z)}{g(z)}$ 是有理函数, 且其 (既约) 分母为

$$g(z) = (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m},$$

其中 $|\lambda_1| \leqslant |\lambda_2| \leqslant \cdots \leqslant |\lambda_m|$.

设 $r = |\lambda_k| < R = |\lambda_{k+1}|$. 证明 P(z) 在圆环域 r < |z| < R 内的洛朗展开形如

$$h(z) + \sum_{n \ge 0} \left[\frac{\alpha_1(n)}{\lambda_1^n} + \dots + \frac{\alpha_k(n)}{\lambda_k^n} \right] z^n + \sum_{n \le 0} \left[\frac{\alpha_{k+1}(n)}{\lambda_{k+1}^n} + \dots + \frac{\alpha_m(n)}{\lambda_m^n} \right] z^n,$$

其中 h(z) 是只有有限多项的双边幂级数, $\alpha_t(n)$ 是 n 的多项式, 次数为 d_t .