

Open Source, 3.3 V to 1.8 V, 100 mA Full Regulator

1 Features

- 100mA Output Current Capability.
- Standard Fixed Output Voltage of 1.8 V.
- Low Dropout Voltage: 650 mV at 100 mA
- Stable with Output Capacitor^a of 47 μF.
- Low Supply Current of 115 µA (No Load).
- Low Temperature Coefficient 125 ppm/°C.
- 0.016 V/V Line Regulation at 100 mA.
- 0.0083 mV/mA Load Regulation at 3.3 V.
- Power Supply Ripple Rejection of 38.9 dB.
- Startup time of 450 μs at rising time of 100 μs.

3 Description

The EF_LDOR01 is a positive low dropout regulator for output of 1.8 V. It is capable of supplying 100 mA of output current with a dropout voltage of 650 mV. Low operating quiescent current of 115 μA is consumed at no load current. Moreover, it provides a standard fixed output voltage of 1.8V which is a good choice for logic power supply. The EF_LDOR01 requires an output capacitance of 47 μF with a wide range of ESR (0.1 Ω to 0.5 Ω) for stability. Output capacitors of this size are typically included in most regulator designs.

2 Applications

3.3V to 1.8V Logic Power Supply

Figure 1. Functional Block Diagram

Pin Configuration and Functions

Pin's Name	I/O	Description		
VDD	Supply	Positive power supply voltage, 3.3 V.		
VSS	Supply	Ground.		
VOLDO	Analog Output	The output of the LDO at 1.8 V.		
BIAS1	Analog Input	It is connected to a resistor to VDD for 1st internal OTA		
BIAS2	Analog Input	It is connected to a resistor to VDD for 2nd internal OTA		
Trim [0:15]	Digital Input (3.3 V)	Trimming port		

Figure 2. Typical Application NOTE: Co is CAP ALUM 47UF 20% 35V SMD, ESR could be in range 0.1 Ω to 0.5 Ω . $R_{\mathrm{B}^{\dagger}}$ =450 K Ω , $R_{\mathrm{B}^{2}}$ =300 K Ω . Trim[6]=3.3V

4 Electrical Characteristics

The listed parameters are reported at room temperature (27°C), Co=47 μ F, ESR=0.1 Ω , R_{B1}=450 K Ω , R_{B2}=300 K Ω , Trim[6]=3.3 V.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
VDD	Power Supply			3.3		V
VOLDO	LDO's output			1.8		V
IL	Current Load				100	mA
IQ	Quiescent Current	IL=0		0.115		mA
	Line Regulation	IL=100 mA, VDD ranges from 1.1 VDD to 0.9 VDD		0.016		- V/V
	Line Regulation	IL=0.5mA, VDD ranges from 1.1 VDD to 0.9 VDD		0.0083		
	Load Regulation	VDD=3.3 V, IL range from 0.1 mA to 100mA		0.0489		mV/mA
	Voltage Dropout	IL=0.5 mA		9		mV
	Voltage Diopout	IL=100 mA		650		
	^a Temperature Range		0		70	0
TC	Temperature Coefficient	IL=1 mA		115		ppm/°C
	Temperature Coemcient	IL=100 mA		125		
		Rising time (tr)=1 μs, IL= 100 mA		335		μs
	Startup-time	Rising time (tr)=10 μs, IL= 100 mA		355		
	Startup-time	Rising time (tr)=50 μs, IL= 100 mA		400		
		Rising time (tr)=100 μs, IL= 100 mA		450		
PSRR	Dowar Cunnly Binnla Bajastian	$f_{ripple} = 120 \text{ Hz}, (V_{in} - V_{0}) = 1.5 \text{ V}, V_{ripple} = 0.5 \text{ V}_{P-P}, IL= 100 \text{ mA}$		38.9		- dB
	Power Supply Ripple Rejection	$f_{ripple} = 120 \text{ Hz}, (V_{in} - V_{0}) = 1.5 \text{ V}, V_{ripple} = 1 \text{ V}_{P-P}, \text{IL} = 100 \text{ mA}$		34		
	Output Deviation at Load Transient	IL transits from 1 mA to 100 mA, tr=tf=10 µs, VDD=3.3 V.		11.7		mV
	Output Deviation at Line Transient	VDD transits from 2.97 V to 3.63 V, tr=tf=10 µs, IL=100 mA.		52		mV
	Output Noise Spectral Density	IL=100 mA ,f=120 Hz		32		μV/√Hz
	Core Silicon Area	SKYWATER 130nm		315x118		μm ²

^a : Commercial Temperature Range.

5 Typical Performance Curves

5.1 Drop Output Voltage

Figure 3. (a) Output Voltage vs Input Voltage, (b) Dropout Voltage vs Load Current.

(b)

5.2 Linear Regulation

Figure 4. (a) Output Voltage vs Input Voltage, (b) Line Regulation vs Load Current.

5.3 Load Regulation

Figure 5. Output Voltage vs Load Resistance at VDD=3.3V

5.4 Startup time

Figure 6. Startup time at different rising time of input voltage II=100 mA.

5.5 Temperature Coefficient

(a) (b) Figure 7. Temperature Coefficient of the output voltage at (a) IL=100 mA, and (b) IL=1 mA

5.6 Power Supply Rejection (PSR)

Figure 8. (a) Ripple Voltage at Vp-p=0.5 V, (b) PSRR vs Frequency at IL=100 mA, (c) PSRR Vs Load current at fripple=120 Hz and Vp-p=0.5 V

5.7 Load Transient

Figure 9. Load Transient Response at VDD of 3.3 V (tr=tf=10µs).

5.8 Line Transient

Figure 10. Line Transient Response at IL of 100 mA and VDD transits from 2.97 V to 3.63 V.

5.9 Noise Analysis

Figure 11. Output Noise Spectrum

5.10 Core Silicon area

Figure 12. Full Regulator Layout

