1. Introduction

Longitudinal study

In a longitudinal study, each subject is measured multiple times often over a considerable time interval, as opposed to <u>cross-sectional</u> data where a single outcome is measured for each individual.

Examples

- 1. Orthodontic measurements
- 2. Multicenter AIDS Cohort Study (MACS)
- 3. Indonesian Children's Health Study (ICHS)
- 4. Analgesic crossover trial (Crossover trial)
- 5. Epileptic seizures

Longitudinal vs. Cross-sectional Studies

 A cross-sectional study found that older people smoke more.

Possible explanations:

- People tend to smoke more as they get older.
- Older people grew up in an environment where the harm of smoking was less widely accepted.
- Longitudinal studies can distinguish between the effect due to 'age' at measurement and birth date (cohort). Together they determine the date of measurement (period).

Advantage of Longitudinal Studies

- Increased power, by repeated measurements, and separating measurement errors and sampling (in time) errors.
- Reducing bias. e.g., length-bias sampling.
- Investigation of individual-level changes.

Correlated Data

In a regression analysis, we model the mean of a response (Y_1, \cdots, Y_n) as a function of covariates (x_1, \cdots, x_n) , where the subscripts $1, \cdots, n$ denote study units. We assume that

$$P(Y_1, \cdots, Y_n | x_1, \cdots, x_n, \beta) = P(Y_1 | x_1, \beta) \cdots P(Y_n | x_n, \beta).$$

i.e., the Y's are conditionally independent given covariates x.

However, the Y's are not independent marginally (i.e., $P(Y_2|Y_1) \neq P(Y_2)$). Longitudinal data is a special case of correlated data where $Y|X,\beta$ are not independently distributed.

Examples of correlated data

- Clustered data: multi-center studies, kids in the same classroom. Subjects in the same cluster are correlated.
- Split-plot design: nested factors.

- Familial data and social networks: complex correlation patterns.
- Time-series data: typically a few subjects with many observations over a long period of time. The emphasis is typically on prediction (i.e., using past time-course pattern to predict the future).
- Spatial data: There is in essence only one subject (the earth). Similar to time-series, only with a higher dimension (2D or 3D) and without the directionality.
- Recurrent-event data: the observation times are random and are typically the variables of interest.
 For survival data, the event can only happen once.

Characteristic of Longitudinal Data

- Small number of observations per subject but relatively large number of subjects.
- The emphasis is on <u>inference</u> in comparing subjects or subject groups.

- Longitudinal data can also arise from clustered, familial or spatial data.
- Longitudinal data often require (allow) the most elaborate modeling of the correlation structure.
- The variability can be divided into three components:
 - 1. Heterogeneity between individuals (random effects).
 - 2. Serial correlation, measurements closely spaced are more similar.
 - 3. Measurement error.

By virtual of replication, in subject and in time, it is possible to distinguish between them.

What if we ignore the correlation?

There are at least three consequences:

• Incorrect inferences about regression coefficients β .

- Inefficient estimates of β (i.e., less precise than possible).
- Sub-optimal protection against biases causes by missing data.

Sources of Correlation

Random effects/latent variable

$$Y_{ij} = x_{ij}\beta + u_i + \epsilon_{ij}$$

where $u_i = \text{unobserved}$.

Serial correlation

Notations We will mostly follow the notation in our textbook.

• Vectors: x, Y, β For example,

$$x = (x_1, \cdots, x_n)^T = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

- ullet Matrices (uppercase): X, Σ
- Parameters are represented by Greek letters.
- For scalars and vectors, random variables are uppercased: Y_i , Y.
- For scalars and vectors, observed (non-random) variables are lowercased: x_i , y.
- Let $i=1,\cdots,m$ index subjects.

- For each subject i, we have n_i observations at time t_{ij} , $j=1,\cdots,n_i$.
- x_{ij} is a p-vector that are the covariates for observation j of subject i. X_i is a $n_i \times p$ matrix of all the covariates for i and X is all the covariates.
- The outcome for subject i is denoted by the n_i -vector $Y_i = (Y_{i1}, \cdots, Y_{in_i})^T$ with mean μ_i and $n_i \times n_i$ covariance matrix V_i where $v_{ijk} = cov(Y_{ij}, Y_{ik})$. The correlation matrix is R_i .
- $Y = (Y_1^T, \cdots, Y_m^T)^T$ is an N-vector with $N = \sum_{i=1}^m n_i$.

Review of Linear Model Theory

A classic linear model can be written as

$$E(Y|X) = \mu = X\beta, \tag{1}$$

$$var(Y|X) = \Sigma = \sigma^2 I,$$
 (2)

where Y is a m-vector, β is a p-vector (p is the number of regression parameters) and X is a $m \times p$ design matrix, I is the identity matrix.

• The method of least squares aims to minimize the quadratic loss function (sum of squared errors):

$$(Y - X\beta)^T (Y - X\beta).$$

• The OLS (ordinary least squares) solution is

$$\hat{\beta} = (X^T X)^{-1} X^T Y.$$

ullet It is also the MLE of eta if we assume Y has a multivariate normal distribution

$$Y|X \sim N(X\beta, \sigma^2 I).$$

ullet It follows then that \hat{eta} is also multivariate normal with mean eta and variance $\sigma^2(X^TX)^{-1}$.

• An unbiased estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{RSS}{m-p} = \frac{1}{m-p} (Y - X\hat{\beta})^T (Y - X\hat{\beta}).$$

Note that it is not the MLE.

Analysis of Longitudinal Data

Several possible approaches to analyze longitudinal data. The main challenge involves how to take into account the correlation structure.

- Summary statistics based on approach: calculate a univariate summary statistic for the multiple measurements which can be used in the second step of the analysis.
 - Simple and especially useful for exploratory analysis.
 - Lost of information, underestimation of uncertainty.
 - Cannot deal with time-dependent covariates.

Marginal approach: models the marginal mean responses

$$E(Y_i) = X_i \beta, \tag{3}$$

$$var(Y_i) = V_i(\alpha), \tag{4}$$

where both β and α must be estimated, and V_i may also depend on some covariates.

 Conditional approach (random effect model, hierachical model, multi-level model): assumes correlation arises because of heterogeneity in subjects. i.e.,

$$Y_i|b_i \sim N(X_i\beta + Z_ib_i, \sigma^2 I),$$
 (5)

$$b_i \sim N(0, \tau^2 I). \tag{6}$$

• Transition model:

$$E(Y_{ij}|Y_{ij-1}, x_{ij}) = x_{ij}^T \beta + \alpha Y_{ij-1}.$$
 (7)

Bias of Naive Analysis

For longitudinal data, if we ignore the correlation we can have a model of the form

$$Y_{ij} = \beta_0 + \beta_c x_{ij} + \epsilon_{ij}, \quad j = 1, \dots, n; \quad i = 1, \dots, m,$$

where β_c represents the difference in average Y across two subpopulations which differ by one unit in x.

Model (8) can also be written as

$$Y_{ij} = \beta_0 + \beta_c x_{i1} + \beta_c (x_{ij} - x_{i1}) + \epsilon_{ij}. \tag{8}$$

Note that this model assumes that the baseline effect is the same as the longitudinal effect. To relax this assumption, we have different parameters for the two effects

$$Y_{ij} = \beta_0 + \beta_c x_{i1} + \beta_L (x_{ij} - x_{i1}) + \epsilon_{ij}. \tag{9}$$

ullet When j=1, the two models (8) and (9) are equivalent.

- Using (9) we can estimate β_c from the longitudinal data.
- ullet eta_c retains the same cross-sectional interpretation.
- ullet We can also estimate eta_L and interpret it from

$$E(Y_{ij} - Y_{i1}) = \beta_L(x_{ij} - x_{i1}),$$

where β_L represents the expected change in Y over time per unit change in x for a subject.

The OLS estimate of β_c from model (8) is

$$\hat{\beta}_c = \frac{\sum_i \sum_j (x_{ij} - \bar{x})(y_{ij} - \bar{y})}{\sum_i \sum_j (x_{ij} - \bar{x})^2}.$$
 (10)

If model (9) is true, then

$$E(y_{ij} - \bar{y}) = \beta_L(x_{ij} - \bar{x}) + (\beta_c - \beta_L)(x_{i1} - \bar{x}_1).$$

In (10),

$$E(\hat{\beta}_c) = \beta_L + (\beta_c - \beta_L) \frac{\sum_i (\bar{x}_{i.} - \bar{x})(x_{i1} - \bar{x}_{.1})}{\sum_i \sum_j (x_{ij} - \bar{x})^2},$$

where $\bar{x}_{i.} = \sum_{j} x_{ij}/n$ and $\bar{x}_{.1} = \sum_{i} x_{i1}/n$.

- If $\beta_c = \beta_L$ or $\{x_{i1}\}$ and $\{\bar{x}_{i\cdot}\}$ are orthogonal to (independent of) each other, $\hat{\beta}_c$ (based on model (8)) is unbiased.
- In general $\hat{\beta}_c$ is biased for β_L by an amount depending on the correlation between x_{i1} and $\bar{x}_{i..}$

Exploratory Data Analysis

Gaols of EDA

- Relationship between mean response and covariates (including time).
- Variance, correlation structure, individual-level heterogeneity.

Guidelines for graphical displays of longitudinal data

- Show relevant raw data, not just summaries.
- Highlight aggregate patterns of scientific interest.
- Identify both cross-sectional and longitudinal patterns.
- Identify unusual individuals and observations.

General Techniques

- Scatter plots, use connected lines to reveal individual profiles.
 - Displays of the responses against time
 - Displays of the responses against a covariate (with/without time trend)
- Use smooth curves to reveal mean response profile at the population level.
 - Kernel estimation
 - Smooth spline
 - Lowess
- Variograms for checking variance/covariance structure