第六章 数值积分与数值微分

6.2-6.4 复化积分的误差自动控制, Romberg积分, 重积分, Gauss积分

中国科学技术大学 数学学院

chenxjin@ustc.edu.cn

例: $\varepsilon = \frac{1}{2} \times 10^{-4}$,分别用复化梯形和复化Simpson积分公式计算 $I(f) = \int_0^1 e^x dx$. 求 n 使得

$$|I(f) - T_n(f)| < \varepsilon,$$
 $|I(f) - S_n(f)| < \varepsilon$

例: $\varepsilon = \frac{1}{2} \times 10^{-4}$,分别用复化梯形和复化Simpson积分公式计算 $I(f) = \int_0^1 e^x dx$. 求 n 使得

$$|I(f) - T_n(f)| < \varepsilon,$$
 $|I(f) - S_n(f)| < \varepsilon$

解: 复化梯形积分误差为

$$\left|E_n^{(1)}(f)\right| = \left|-\frac{(b-a)^3}{12n^2}f''(\xi_1)\right| \le \frac{e}{12n^2} < \frac{1}{2} \times 10^{-4}$$

$$\implies$$
 $n \ge 68$.

例: $\varepsilon = \frac{1}{2} \times 10^{-4}$,分别用复化梯形和复化Simpson积分公式计算 $I(f) = \int_0^1 e^x dx$. 求 n 使得

$$|I(f) - T_n(f)| < \varepsilon,$$
 $|I(f) - S_n(f)| < \varepsilon$

解:复化梯形积分误差为

$$\left|E_n^{(1)}(f)\right| = \left|-\frac{(b-a)^3}{12n^2}f''(\xi_1)\right| \le \frac{e}{12n^2} < \frac{1}{2} \times 10^{-4}$$

 \implies $n \ge 68$.

复化Simpson积分误差为(n = 2m)

$$|E_n^{(2)}(f)| = \left| -\frac{(b-a)^5}{2880m^4} f^{(4)}(\xi_2) \right| \le \frac{e}{2880m^4} < \frac{1}{2} \times 10^{-4}$$

例: $\varepsilon = \frac{1}{2} \times 10^{-4}$,分别用复化梯形和复化Simpson积分公式计算 $I(f) = \int_0^1 e^x dx$. 求 n 使得

$$|I(f) - T_n(f)| < \varepsilon,$$
 $|I(f) - S_n(f)| < \varepsilon$

解: 复化梯形积分误差为

$$\left|E_n^{(1)}(f)\right| = \left|-\frac{(b-a)^3}{12n^2}f''(\xi_1)\right| \le \frac{e}{12n^2} < \frac{1}{2} \times 10^{-4}$$

 \implies $n \ge 68$.

复化Simpson积分误差为(n = 2m)

$$|E_n^{(2)}(f)| = \left| -\frac{(b-a)^5}{2880m^4} f^{(4)}(\xi_2) \right| \le \frac{e}{2880m^4} < \frac{1}{2} \times 10^{-4}$$

$$\implies m \geq \lceil \frac{3}{2} \rceil + 1 = 3 \text{ or } n = 2m \geq 6.$$

随着n增大,复化的梯形或Simpson积分公式都能收敛 到 $I(f) = \int_a^b f(x) dx$.

由误差公式,只需知道f''或 $f^{(4)}$ 的上界,就可取适当的n,使得数值积分满足任意给定的精度要求.

若上界较大或不易估计,

随着n增大,复化的梯形或Simpson积分公式都能收敛 到 $I(f) = \int_a^b f(x) dx$.

由误差公式,只需知道f''或 $f^{(4)}$ 的上界,就可取适当的n,使得数值积分满足任意给定的精度要求.

若上界较大或不易估计, 常采用自动控制误差算法.

复化梯形积分公式误差

$$\begin{cases} I(f) - T_n(f) = -\frac{(b-a)^3}{12n^2} f''(\xi) \\ I(f) - T_{2n}(f) = -\frac{(b-a)^3}{12n^2} f''(\eta) \cdot \frac{1}{4} \end{cases}$$

其中
$$f''(\xi) = \frac{1}{n} \sum_{i=0}^{n-1} f''(\xi_i),$$
 $f''(\eta) = \frac{1}{2n} \sum_{i=0}^{2n-1} f''(\eta_i)$ 都近似为 $f''(x)$ 在[a,b]上的 "平均值",故 $f''(\xi) \approx f''(\eta)$.

复化梯形积分公式误差

$$\begin{cases} I(f) - T_n(f) = -\frac{(b-a)^3}{12n^2} f''(\xi) \\ I(f) - T_{2n}(f) = -\frac{(b-a)^3}{12n^2} f''(\eta) \cdot \frac{1}{4} \end{cases}$$

其中 $f''(\xi) = \frac{1}{n} \sum_{i=0}^{n-1} f''(\xi_i),$ $f''(\eta) = \frac{1}{2n} \sum_{i=0}^{2n-1} f''(\eta_i)$ 都近似为f''(x)在[a,b]上的 "平均值",故 $f''(\xi) \approx f''(\eta)$. 故有

$$I(f) - T_n(f) \approx 4 \left(I(f) - T_{2n}(f) \right) \implies T_{2n}(f) - T_n(f) \approx 3(I(f) - T_{2n}(f))$$
$$\implies I(f) - T_{2n}(f) \approx \frac{1}{3} \left(T_{2n}(f) - T_n(f) \right)$$

故对给定的 $\varepsilon > 0$,只需 $\left| T_{2n}(f) - T_n(f) \right| < 3\varepsilon$,则 $I(f) - T_{2n}(f) < \varepsilon$, $T_{2n}(f)$ 为满足要求的结果;否则 若 $\geq 3\varepsilon$,则加密一倍,看 $\left| T_{4n}(f) - T_{2n}(f) \right| < 3\varepsilon$ 是否成立 \cdots .

复化Simpson积分的自动控制误差

复化Simpson积分公式误差为

$$\begin{cases} I(f) - S_n(f) = -\frac{(b-a)^5}{2880n^4} f^{(4)}(\xi) \\ I(f) - S_{2n}(f) = -\frac{(b-a)^5}{2880n^4} f^{(4)}(\eta) \cdot \frac{1}{16} \end{cases}$$

其中
$$f^{(4)}(\xi) = \frac{1}{n} \sum_{i=0}^{n-1} f^{(4)}(\xi_i), \qquad f^{(4)}(\eta) = \frac{1}{2n} \sum_{i=0}^{2n-1} f^{(4)}(\eta_i)$$
 都近似为 $f^{(4)}(x)$ 在 $[a,b]$ 上的"平均值",可视为 $f^{(4)}(\xi) \approx f^{(4)}(\eta)$.

复化Simpson积分的自动控制误差

复化Simpson积分公式误差为

$$\begin{cases} I(f) - S_n(f) = -\frac{(b-a)^5}{2880n^4} f^{(4)}(\xi) \\ I(f) - S_{2n}(f) = -\frac{(b-a)^5}{2880n^4} f^{(4)}(\eta) \cdot \frac{1}{16} \end{cases}$$

其中 $f^{(4)}(\xi) = \frac{1}{n} \sum_{i=0}^{n-1} f^{(4)}(\xi_i), \qquad f^{(4)}(\eta) = \frac{1}{2n} \sum_{i=0}^{2n-1} f^{(4)}(\eta_i)$ 都近似为 $f^{(4)}(x)$ 在[a, b]上的"平均值",可视为 $f^{(4)}(\xi) \approx f^{(4)}(\eta)$. 故有

$$I(f) - S_n(f) \approx 16 \left(I(f) - S_{2n}(f) \right)$$

 $\implies I(f) - S_{2n}(f) \approx \frac{1}{15} \left(S_{2n}(f) - S_n(f) \right).$

对给定的 $\varepsilon > 0$,只需 $\left|S_{2n}(f) - S_n(f)\right| < 15\varepsilon$,则 $\left|I(f) - S_{2n}(f)\right| < \varepsilon$, $S_{2n}(f)$ 为满足要求的结果;若 $\geq 15\varepsilon$,则加密一倍,看 $\left|S_{4n}(f) - S_{2n}(f)\right| < 15\varepsilon$ 是否成立….

Romberg积分 (算法)

在复化梯形积分的自动控制误差算法中有

$$I(t)-T_{2n}(t)\approx \frac{1}{3}\bigg(T_{2n}(t)-T_{n}(t)\bigg)$$

考虑将误差加到 $T_{2n}(f)$ 上作为新的近似值,即:

$$I(f) \approx T_{2n}(f) + \frac{1}{3} \left(T_{2n}(f) - T_n(f) \right) = \frac{4}{3} T_{2n}(f) - \frac{1}{3} T_n(f) = S_n(f)$$

Romberg积分 (算法)

在复化梯形积分的自动控制误差算法中有

$$I(f)-T_{2n}(f)\approx \frac{1}{3}\bigg(T_{2n}(f)-T_{n}(f)\bigg)$$

考虑将误差加到 $T_{2n}(f)$ 上作为新的近似值,即:

$$I(f) \approx T_{2n}(f) + \frac{1}{3} \left(T_{2n}(f) - T_n(f) \right) = \frac{4}{3} T_{2n}(f) - \frac{1}{3} T_n(f) = S_n(f)$$

得到复化Simpson积分公式 $S_n(f)$,其截断误差为 $O(h^4)$ 或 $O(\frac{1}{n^4})$.

Romberg积分 (算法)

在复化梯形积分的自动控制误差算法中有

$$I(f)-T_{2n}(f)\approx \frac{1}{3}\bigg(T_{2n}(f)-T_{n}(f)\bigg)$$

考虑将误差加到 $T_{2n}(f)$ 上作为新的近似值,即:

$$I(f) \approx T_{2n}(f) + \frac{1}{3} \left(T_{2n}(f) - T_n(f) \right) = \frac{4}{3} T_{2n}(f) - \frac{1}{3} T_n(f) = S_n(f)$$

得到复化Simpson积分公式 $S_n(f)$,其截断误差为 $O(h^4)$ 或 $O(\frac{1}{n^4})$.

在复化Simpson积分的自动控制误差算法中有

$$I(f)-S_{2n}(f)pprox rac{1}{15}igg(S_{2n}(f)-S_n(f)igg)$$

同理考虑将误差加到 $S_{2n}(f)$ 上作为新的近似值,即:

$$I(f) \approx S_{2n}(f) + \frac{1}{15} \left(S_{2n}(f) - S_n(f) \right) = \frac{16}{15} S_{2n}(f) - \frac{1}{15} S_n(f) = C_n(f)$$

Romberg积分(算法)

在复化梯形积分的自动控制误差算法中有

$$I(f)-T_{2n}(f)\approx \frac{1}{3}\bigg(T_{2n}(f)-T_{n}(f)\bigg)$$

考虑将误差加到 $T_{2n}(f)$ 上作为新的近似值,即:

$$I(f) \approx T_{2n}(f) + \frac{1}{3} \left(T_{2n}(f) - T_n(f) \right) = \frac{4}{3} T_{2n}(f) - \frac{1}{3} T_n(f) = S_n(f)$$

得到复化Simpson积分公式 $S_n(f)$, 其截断误差为 $O(h^4)$ 或 $O(\frac{1}{n^4})$.

在复化Simpson积分的自动控制误差算法中有

$$I(f)-S_{2n}(f)pprox rac{1}{15}\bigg(S_{2n}(f)-S_n(f)\bigg)$$

同理考虑将误差加到 $S_{2n}(f)$ 上作为新的近似值,即:

$$I(f) \approx S_{2n}(f) + \frac{1}{15} \left(S_{2n}(f) - S_n(f) \right) = \frac{16}{15} S_{2n}(f) - \frac{1}{15} S_n(f) = C_n(f)$$

得到复化Cote's积分公式 $C_n(f)$,其截断误差为 $O(h^6)$ 或 $O(\frac{1}{h^6})$

Romberg令式

同理,对Cote's积分公式进行类似线性组合,可得 Romberg公式

$$R_n(f) = \frac{64}{63}C_{2n}(f) - \frac{1}{63}C_n(f)$$

其截断误差为

Romberg公式

同理,对Cote's积分公式进行类似线性组合,可得 Romberg公式

$$R_n(f) = \frac{64}{63}C_{2n}(f) - \frac{1}{63}C_n(f)$$

其截断误差为O(h8)

类似地,还可对 $R_n(f)$ 继续做下去。

外推法

● 外推法: 用低阶方法(或公式)去(线性)组合成高阶方法 (或公式)的方法。外推法是计算方法中的一种常用算法。

外推法

外推法: 用低阶方法(或公式)去(线性)组合成高阶方法 (或公式)的方法。外推法是计算方法中的一种常用算法。

设
$$\left\{ \begin{array}{l} I-I(h)=c\cdot h^m+o(h^m) \\ I-I(\frac{h}{2})=\frac{c}{2^m}\cdot h^m+o(h^m) \end{array} \right., \ c\neq 0 \mbox{5 h无关}.$$

外推法

外推法: 用低阶方法(或公式)去(线性)组合成高阶方法 (或公式)的方法。外推法是计算方法中的一种常用算法。

设
$$\left\{ \begin{array}{l} I-I(h)=c\cdot h^m+o(h^m) \\ I-I(\frac{h}{2})=\frac{c}{2^m}\cdot h^m+o(h^m) \end{array} \right.$$
, $c\neq 0$ 与 h 无关.

$$\implies I - I(\frac{h}{2}) = \frac{c}{2^m} \cdot h^m + o(h^m) = \frac{I(\frac{h}{2}) - I(h)}{2^m - 1} + o(h^m)$$
$$I^{(1)} \triangleq I(\frac{h}{2}) + \frac{I(\frac{h}{2}) - I(h)}{2^m - 1}$$

则 $I - I^{(1)} = o(h^m)$, 显然, 新公式 $I^{(1)}$ 具有更高的误差(收敛)阶。

复化梯形	复化Simpson	复化Cote's	Romberg	
$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$	
$R_{11}=T_n$				

复化梯形 <i>O</i> (<i>h</i> ²)	复化Simpson $O(h^4)$	复化Cote's <i>O</i> (<i>h</i> ⁶)	Romberg $O(h^8)$	
$R_{11}=T_n$				
$B_{01} - T_{0n}$	'	'	'	

复化梯形 <i>O</i> (<i>h</i> ²)	复化Simpson $O(h^4)$	复化Cote's <i>O</i> (<i>h</i> ⁶)	Romberg $O(h^8)$	
$R_{11} = T_n$				
$R_{21}=T_{2n}$	$R_{22}=S_n$			

复化梯形 <i>O</i> (<i>h</i> ²)	复化Simpson O(h ⁴)	复化Cote's <i>O</i> (<i>h</i> ⁶)	Romberg $O(h^8)$	•••	
$R_{11}=T_n$					
$R_{21}=T_{2n}$	$R_{22}=S_n$				
$R_{31}=T_{4n}$		•	•		

复化梯形	复化Simpson	复化Cote's	Romberg		
$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$		
$R_{11} = T_n$					
$R_{21}=T_{2n}$	$R_{22}=S_n$				
$R_{31}=T_{4n}$	$R_{32}=S_{2n}$,	,

复化梯形	复化Simpson	复化Cote's	Romberg	
$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$	
$R_{11}=T_n$				
$R_{21}=T_{2n}$	$R_{22}=S_n$			
$R_{31}=T_{4n}$	$R_{32}=S_{2n}$	$R_{33}=C_n$		

复化梯形	复化Simpson	复化Cote's	Romberg	
$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$	
$R_{11}=T_n$				
$R_{21}=T_{2n}$	$R_{22}=S_n$			
$R_{31}=T_{4n}$	$R_{32}=S_{2n}$	$R_{33}=C_n$		
$R_{41}=T_{8n}$	$R_{42}=S_{4n}$	$R_{43}=C_{2n}$	$R_{44}=R_n$	
			•	

复化梯形	复化Simpson	复化Cote's	Romberg		
$O(h^2)$	$O(h^4)$	$O(h^6)$	<i>O</i> (<i>h</i> ⁸)		
$R_{11} = T_n$					
$R_{21}=T_{2n}$	$R_{22}=S_n$				
$R_{31}=T_{4n}$	$R_{32}=S_{2n}$	$R_{33}=C_n$			
$R_{41}=T_{8n}$	$R_{42}=S_{4n}$	$R_{43}=C_{2n}$	$R_{44}=R_n$		
$R_{51}=T_{16n}$	$R_{52}=S_{8n}$	$R_{53}=C_{4n}$	$R_{54}=R_{2n}$		
:	:	:	:	٠	:
$R_{m1}=T_{2^{m-1}n}$	$R_{m2}=S_{2^{m-2}n}$	$R_{m3}=C_{2^{m-3}n}$	$R_{m4}=R_{2^{m-4}n}$		R_{mm}

复化梯形	复化Simpson	复化Cote's	Romberg		
$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$		
$R_{11}=T_n$					
$R_{21}=T_{2n}$	$R_{22}=S_n$				
$R_{31}=T_{4n}$	$R_{32}=S_{2n}$	$R_{33}=C_n$			
$R_{41}=T_{8n}$	$R_{42}=S_{4n}$	$R_{43}=C_{2n}$	$R_{44}=R_n$		
$R_{51} = T_{16n}$	$R_{52}=S_{8n}$	$R_{53}=C_{4n}$	$R_{54} = R_{2n}$		
:	:	:	<u> </u>	٠	:
$R_{m1}=T_{2^{m-1}n}$	$R_{m2}=S_{2^{m-2}n}$	$R_{m3}=C_{2^{m-3}n}$	$R_{m4} = R_{2^{m-4}n}$		R _{mm}

Romberg计算公式:
$$R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}, k = 2, 3, \cdots$$

重积分

简化起见,仅讨论矩形区域*D*上的二重积分. 对非矩形区域的积分,可以(近似)变化为矩形区域上的积分.

设 a, b, c, d 为常数, $f \in D = [a, b] \times [c, d]$ 上连续, 变为累次积分

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

重积分

简化起见,仅讨论矩形区域*D*上的二重积分. 对非矩形区域的积分,可以(近似)变化为矩形区域上的积分.

设 a, b, c, d 为常数, $f \in D = [a, b] \times [c, d]$ 上连续, 变为累次积分

$$\int_a^b \int_c^d f(x,y) dx dy = \int_a^b \left(\int_c^d f(x,y) dy \right) dx = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

重积分的复化梯形积分公式

将[a, b]和[c, d]等距分割: $h = \frac{b-a}{m}$, $k = \frac{d-c}{n}$, 先计算 $\int_{c}^{d} f(x, y) dy$. 将x看成常数,由复化梯形积分公式有:

$$\int_{c}^{d} f(x,y)dy \approx \frac{k}{2} \left(f(x,y_{0}) + 2 \sum_{j=1}^{n-1} f(x,y_{j}) + f(x,y_{n}) \right)$$

 y_i 为常数,在x方向,计算上式的每一项的积分.

$$\int_{a}^{b} f(x, y_{j}) dx \approx \frac{h}{2} \left(f(x_{0}, y_{j}) + 2 \sum_{i=1}^{m-1} f(x_{i}, y_{j}) + f(x_{m}, y_{j}) \right)$$

$$\implies \int_a^b \int_c^d f(x,y) dx dy \approx hk \sum_{j=0}^n \sum_{i=0}^m c_{i,j} f(x_i,y_j), c_{ij} = \begin{cases} \frac{1}{4}, & \text{角点}; \\ \frac{1}{2}, & \text{边点}; \\ 1, & \text{内点}. \end{cases}$$

误差为:
$$E(f) = -\frac{(d-c)(b-a)}{12} \left(h^2 \frac{\partial^2}{\partial x^2} f(\eta, \mu) + k^2 \frac{\partial^2}{\partial y^2} f(\bar{\eta}, \bar{\mu}) \right)$$

P29

重积分的复化Simpson积分公式

同理,在累次积分中可采用复化Simpson积分.

将[a, b]和[c, d]等距分割: $h = \frac{b-a}{m}, k = \frac{d-c}{n}(m, n)$ 偶数), 类似可得:

$$\int_a^b \int_c^d f(x,y) dy dx \approx hk \sum_{i=0}^m \sum_{j=0}^n \omega_{i,j} f(x_i,y_j)$$

其中 $\omega_{i,j} = \mathbf{u}_i \cdot \mathbf{v}_i$, $\mathbf{u}_i, \mathbf{v}_i$ 如下:

$$\{u_0, u_1, \cdots, u_m\} = \left\{\frac{1}{3}, \frac{4}{3}, \frac{2}{3}, \frac{4}{3}, \cdots, \frac{2}{3}, \frac{4}{3}, \frac{1}{3}\right\}$$
$$\{v_0, v_1, \cdots, v_n\} = \left\{\frac{1}{3}, \frac{4}{3}, \frac{2}{3}, \frac{4}{3}, \cdots, \frac{2}{3}, \frac{4}{3}, \frac{1}{3}\right\}$$

误差为:
$$E(f) = -\frac{(d-c)(b-a)}{180} \left(h^4 \frac{\partial^4}{\partial x^4} f(\eta,\mu) + k^4 \frac{\partial^4}{\partial y^4} f(\bar{\eta},\bar{\mu}) \right)$$

P30

Gauss型积分

Gauss型积分

为方便起见,本节的积分节点个数用n而不是n+1,分别记为 x_1, x_2, \dots, x_n .

为方便起见,本节的积分节点个数用n而不是n+1,分别记为 x_1, x_2, \dots, x_n .

● 我们知道,对*m*个积分节点的插值型数值积分公式,一般至少可达到*m* – 1阶代数精度,

为方便起见,本节的积分节点个数用n而不是n+1,分别记为 x_1, x_2, \dots, x_n .

• 我们知道,对m个积分节点的插值型数值积分公式,一般至少可达到m-1阶代数精度,例如:Newton-Cote's积分公式中的区间个数m为奇数时,其m+1个节点的数值积分公式有m 阶代数精度; 当区间个数m 为偶数时,其m+1个节点的数值积分公式有m+1阶代数精度。

为方便起见,本节的积分节点个数用n而不是n+1,分别记为 x_1, x_2, \dots, x_n .

- 我们知道,对m + 1个积分节点的插值型数值积分公式,一般至少可达到m 阶代数精度,
 - 例如:Newton-Cote's积分公式中的区间个数m为奇数时,其m+1个节点的数值积分公式有m 阶代数精度; 当区间个数m 为偶数时,其m+1个节点的数值积分公式有m+1阶代数精度。
- 对固定的积分节点个数(比如,2个或3个),是否有更高阶代数精度的数值积分公式呢?

为方便起见,本节的积分节点个数用n而不是n+1,分别记为 x_1, x_2, \dots, x_n .

- 我们知道,对m个积分节点的插值型数值积分公式,一般至少可达到m-1阶代数精度,
 - 例如:Newton-Cote's积分公式中的区间个数m为奇数时,其m+1个节点的数值积分公式有m 阶代数精度; 当区间个数m 为偶数时,其m+1个节点的数值积分公式有m+1阶代数精度。
- 对固定的积分节点个数(比如,2个或3个),是否有更高阶代数精度的数值积分公式呢?换言之,n个积分节点的数值积分公式,最高可达到多少阶代数精度?

为方便起见,本节的积分节点个数用n而不是n+1,分别记为 x_1, x_2, \dots, x_n .

- 我们知道,对m个积分节点的插值型数值积分公式,一般至少可达到m-1阶代数精度,
 - 例如:Newton-Cote's积分公式中的区间个数m为奇数时,其m+1个节点的数值积分公式有m 阶代数精度; 当区间个数m 为偶数时,其m+1个节点的数值积分公式有m+1阶代数精度。
- 对固定的积分节点个数(比如,2个或3个),是否有更高阶代数精度的数值积分公式呢?换言之,n个积分节点的数值积分公式,最高可达到多少阶代数精度?
 - 答案: 2n-1阶,Gauss积分公式是(在相同的积分节点个数下)代数精度最高的数值积分公式.

例: $\mathcal{G}[a,b] = [-1,1]$, 考虑两点数值积分公式

$$I(f) = \int_{2}^{b} f(x)dx \approx G_{2}(f) = \alpha_{0}f(x_{0}) + \alpha_{1}f(x_{1})$$

例: 设[a, b] = [-1, 1], 考虑两点数值积分公式

$$I(f) = \int_a^b f(x) dx \approx G_2(f) = \alpha_0 f(x_0) + \alpha_1 f(x_1)$$

把积分节点与系数作为未知量,可以列出4个方程:

$$\begin{cases} \alpha_0 \cdot 1 + \alpha_1 \cdot 1 = \int_{-1}^1 1 dx = 2 \\ \alpha_0 \cdot x_0 + \alpha_1 \cdot x_1 = \int_{-1}^1 x dx = 0 \\ \alpha_0 \cdot x_0^2 + \alpha_1 \cdot x_1^2 = \int_{-1}^1 x^2 dx = \frac{2}{3} \\ \alpha_0 \cdot x_0^3 + \alpha_1 \cdot x_1^3 = \int_{-1}^1 x^3 dx = 0 \end{cases}$$

例: 设[a, b] = [-1, 1], 考虑两点数值积分公式

$$I(f) = \int_a^b f(x) dx \approx G_2(f) = \alpha_0 f(x_0) + \alpha_1 f(x_1)$$

把积分节点与系数作为未知量,可以列出4个方程:

$$\begin{cases} \alpha_0 \cdot 1 + \alpha_1 \cdot 1 = \int_{-1}^1 1 dx = 2 \\ \alpha_0 \cdot x_0 + \alpha_1 \cdot x_1 = \int_{-1}^1 x dx = 0 \\ \alpha_0 \cdot x_0^2 + \alpha_1 \cdot x_1^2 = \int_{-1}^1 x^2 dx = \frac{2}{3} \\ \alpha_0 \cdot x_0^3 + \alpha_1 \cdot x_1^3 = \int_{-1}^1 x^3 dx = 0 \end{cases}$$

可解出:

$$\alpha_0 = 1, \ \alpha_1 = 1, x_0 = -\frac{1}{\sqrt{3}}, x_1 = \frac{1}{\sqrt{3}}$$

故数值积分公式 $G_2(f) = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) \approx \int_{-1}^1 f(x) dx$ 可以达到三阶代数精度. P39

带权函数的积分

定义积分

$$I(f) = \int_{a}^{b} W(x)f(x)dx, \qquad W(x) \rightleftharpoons 0$$

其中, 权函数 $W(x) \in C[a,b], W(x) \ge 0 \ (\forall x \in [a,b]).$

定理 1: [a, b]上权为W(x),具有n个积分节点的数值积分公式,代数精度不会超过2n-1阶.

带权函数的积分

定义积分

$$I(f) = \int_a^b W(x)f(x)dx,$$

其中, 权函数 $W(x) \in C[a,b], W(x) \ge 0 \ (\forall x \in [a,b]).$

定理 1: [a, b]上权为W(x),具有n个积分节点的数值积分公式,代数精度不会超过2n-1阶.

Pf: (反证法) 设数值积分公式 $I_n(f) = \sum_{i=1}^n \alpha_i f(x_i), \quad \alpha_i = \int_a^b W(x) I_i(x) dx$ 有2n阶 代数精度,则对 $f \in \mathbb{P}_{2n}$ 有

$$\sum_{i=1}^{n} \alpha_{i} f(x_{i}) = \int_{a}^{b} W(x) f(x) dx$$

取 $f(x) = (x - x_1)^2 (x - x_2)^2 \cdots (x - x_n)^2 = \omega_n^2(x) \in \mathbb{P}_{2n}$ 代入上式,左边= 0,右边> 0,矛盾.

内积

在多项式函数构成的线性空间上可定义关于V 函数V(x) 的内积为:

$$(f,g) \triangleq \int_{a}^{b} W(x)f(x)g(x)dx \quad (: f(x)\perp g(x) \Leftrightarrow (f,g) = 0)$$

内积

在多项式函数构成的线性空间上可定义关于权函数W(x)的内积为:

$$(f,g) \triangleq \int_a^b W(x)f(x)g(x)dx \quad (注: f(x)\perp g(x) \Leftrightarrow (f,g)=0)$$

利用Gram-Schmidt正交化过程

$$\begin{cases} p_0(x) = f_0(x) \\ \vdots \\ p_n(x) = f_n(x) - \sum_{i=0}^{n-1} \frac{(f_n(x), p_i(x))}{(p_i(x), p_i(x))} p_i(x) \end{cases}$$

可由 \mathbb{P}_n 的一组基 $\{1, x, \dots, x^n\}$ (即 $\mathbb{P}_n = \text{span}\{1, x, \dots, x^n\}$), 求得其正交基

$$\left\{ p_0(x), p_1(x), \cdots, p_n(x) \right\}, \ (i.e., p_i(x) \bot p_j(x) \Leftrightarrow (p_i, p_j) = 0, \forall i \neq j)$$

则有 $p_n \perp \mathbb{P}_{n-1}$ ($\mathbb{P}_{n-1} = \text{span}\{1, x, \dots, x^{n-1}\}$);

内积

在多项式函数构成的线性空间上可定义关于V 函数V(x) 的内积为:

利用Gram-Schmidt正交化过程

$$\begin{cases} p_0(x) = f_0(x) \\ \vdots \\ p_n(x) = f_n(x) - \sum_{i=0}^{n-1} \frac{(f_n(x), p_i(x))}{(p_i(x), p_i(x))} p_i(x) \end{cases}$$

可由 \mathbb{P}_n 的一组基 $\{1, x, \dots, x^n\}$ (即 $\mathbb{P}_n = \text{span}\{1, x, \dots, x^n\}$), 求得其正交基

$$\{p_0(x),p_1(x),\cdots,p_n(x)\}\,,\;(i.e.,p_i(x)\perp p_j(x)\Leftrightarrow (p_i,p_j)=0,\forall i\neq j)$$

则有 $p_n \perp \mathbb{P}_{n-1}$ ($\mathbb{P}_{n-1} = \text{span}\{1, x, \dots, x^{n-1}\}$); 例如: 当 $W(x) \equiv 1$ 时, $p_n(x)$ 其实就是 n次Legendre(勒让德)多项式.

定义: 以多项式 p_n 的 n 个零点 x_1, \dots, x_n 为积分节点,

以 $\alpha_i = \int_a^b W(x) l_i(x) dx \quad (i = 1, ..., n)$ 为积分系数的数值积分公式

 $G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$ 称为**Gauss积分公式**. 这里, $I_i(x)$ 是以 p_n 的 n 个零

点 x_1, \dots, x_n 为节点的Lagrange插值基函数。

定理 2: Gauss积分 $G_n(f)$ 具有2n-1阶代数精度.

定义: 以多项式 p_n 的 n 个零点 x_1, \dots, x_n 为积分节点,

以 $\alpha_i = \int_a^b W(x) l_i(x) dx \quad (i = 1, ..., n)$ 为积分系数的数值积分公式

 $G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$ 称为**Gauss积分公式**. 这里, $I_i(x)$ 是以 p_n 的 n 个零

点 x_1, \dots, x_n 为节点的Lagrange插值基函数。

定理 2: Gauss积分 $G_n(f)$ 具有2n-1阶代数精度.

Pf: 以 p_n 的 n 个零点为节点构造一个 n-1 次Lagrange插值多项式,记为

 $L_{n-1}(x)$,则Gauss数值积分公式的误差为

$$E(f) = I(f) - G_n(f) = I(f) - I(L_{n-1}(x)) + G_n(L_{n-1}(x)) - G_n(f)$$

$$= I(f) - I(L_{n-1}(x)) = \int_a^b W(x) f[x_1, \dots, x_n, x](x - x_1) \dots (x - x_n) dx$$

对任意 $f \in \mathbb{P}_{2n-1}$, 由 $f[x_1, \dots, x_n, x] \prod_{i=1}^n (x - x_i) \in \mathbb{P}_{2n-1}$,

定义: 以多项式 p_n 的 n 个零点 x_1, \dots, x_n 为积分节点,

以 $\alpha_i = \int_a^b W(x) l_i(x) dx \quad (i = 1, ..., n)$ 为积分系数的数值积分公式

 $G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$ 称为Gauss积分公式. 这里, $I_i(x)$ 是以 p_n 的 n 个零

点 x_1, \dots, x_n 为节点的Lagrange插值基函数。

定理 2: Gauss积分 $G_n(f)$ 具有2n-1阶代数精度.

Pf: 以 p_n 的 n 个零点为节点构造一个 n-1 次Lagrange插值多项式,记为

 $L_{n-1}(x)$,则Gauss数值积分公式的误差为

$$E(f) = I(f) - G_n(f) = I(f) - I(L_{n-1}(x)) + G_n(L_{n-1}(x)) - G_n(f)$$

$$= I(f) - I(L_{n-1}(x)) = \int_a^b W(x) f[x_1, \dots, x_n, x](x - x_1) \dots (x - x_n) dx$$

对任意 $f \in \mathbb{P}_{2n-1}$, 由 $f[x_1, \dots, x_n, x] \prod_{i=1}^n (x - x_i) \in \mathbb{P}_{2n-1}$,

知 $f[x_1, \dots, x_n, x] \in \mathbb{P}_{n-1}$.

而多项式 $\prod_{i=1}^{n} (x - x_i)$ 仅与 p_n 相差一常数倍且 $p_n \perp \mathbb{P}_{n-1}$,故有

$$\prod_{i=1}^{n}(x-x_i)\perp \mathbb{P}_{n-1}\Longrightarrow E(f)=0$$

定义: 以多项式 p_n 的 n 个零点 x_1, \dots, x_n 为积分节点,

以 $\alpha_i = \int_a^b W(x) l_i(x) dx \quad (i = 1, ..., n)$ 为积分系数的数值积分公式

 $G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$ 称为**Gauss积分公式**. 这里, $I_i(x)$ 是以 p_n 的 n 个零

点 x_1, \dots, x_n 为节点的Lagrange插值基函数。

定理 2: Gauss积分 $G_n(f)$ 具有2n-1阶代数精度.

Pf: 以 p_n 的 n 个零点为节点构造一个 n-1 次Lagrange插值多项式,记为

 $L_{n-1}(x)$,则Gauss数值积分公式的误差为

$$E(f) = I(f) - G_n(f) = I(f) - I(L_{n-1}(x)) + G_n(L_{n-1}(x)) - G_n(f)$$

$$= I(f) - I(L_{n-1}(x)) = \int_a^b W(x) f[x_1, \dots, x_n, x](x - x_1) \dots (x - x_n) dx$$

对任意 $f \in \mathbb{P}_{2n-1}$, 由 $f[x_1, \dots, x_n, x] \prod_{i=1}^n (x - x_i) \in \mathbb{P}_{2n-1}$,

知 $f[x_1, \dots, x_n, x] \in \mathbb{P}_{n-1}$.

而多项式 $\prod_{i=1}^{n} (x - x_i)$ 仅与 p_n 相差一常数倍且 $p_n \perp \mathbb{P}_{n-1}$,故有

$$\prod_{i=1}^{n} (x - x_i) \perp \mathbb{P}_{n-1} \Longrightarrow E(f) = 0 \Longrightarrow G_n(f)$$
有 2n-1 阶代数精度.

◆ロト ◆部 → ◆注 → ◆注 → 注 り Q G

Gauss积分的性质与误差

- 1. Gauss公式 $G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$ 中积分系数 $\alpha_i > 0$ 且 $\sum_{i=1}^n \alpha_i = \int_a^b W(x) dx$. Pf: $\alpha_i = \int_a^b W(x) l_i(x) dx = G_n(l_i) = G_n(l_i^2) = I(l_i^2) = \int_a^b W(x) l_i^2(x) dx > 0$
- 2. $f \in C[a, b]$, 则 $\lim_{n \to \infty} G_n(f) = I(f)$. 这是其他插值型数值积分所不具备的.
- 3. $f \in C^{2n}[a,b]$,则[a,b]上权为W(x)的Gauss积分误差为:

$$E_{n}(f) = I(f) - G_{n}(f)$$

$$= \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{b} W(x) \omega_{n}^{2}(x) dx, \quad \xi \in [a, b]$$

其中
$$\omega_n(x) = (x - x_1) \cdots (x - x_n)$$
.

Gauss积分的性质与误差

- 1. Gauss公式 $G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$ 中积分系数 $\alpha_i > 0$ 且 $\sum_{i=1}^n \alpha_i = \int_a^b W(x) dx$. Pf: $\alpha_i = \int_a^b W(x) l_i(x) dx = G_n(l_i) = G_n(l_i^2) = I(l_i^2) = \int_a^b W(x) l_i^2(x) dx > 0$
- 2. $f \in C[a, b]$, 则 $\lim_{n \to \infty} G_n(f) = I(f)$. 这是其他插值型数值积分所不具备的.
- 3. $f \in C^{2n}[a,b]$,则[a,b]上权为W(x)的Gauss积分误差为:

$$E_{n}(f) = I(f) - G_{n}(f)$$

$$= \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{b} W(x) \omega_{n}^{2}(x) dx, \quad \xi \in [a, b]$$

其中
$$\omega_n(x) = (x - x_1) \cdots (x - x_n)$$
.

Pf: 考虑f关于 $\{x_1, \dots, x_n\}$ 的二重密切Hermite插值 H_{2n-1} ,其积分等

$$\mp I(H_{2n-1}) = G_n(H_{2n-1}) = G_n(f).$$

P50

Gauss积分构造方法

- (1)求出区间[a, b]上权函数为W(x)的正交多项式 $p_n(x) \perp \mathbb{P}_{n-1}$.
- (2)求出 $p_n(x)$ 的n个零点 $\{x_1, x_2, \cdots, x_n\}$ 即为Gauss积分节点.
- (3)计算积分系数 $\alpha_i = \int_a^b W(x) l_i(x) dx$. Gauss积分公式即为

$$G_n(f) = \sum_{i=1}^n \alpha_i f(x_i)$$

P51

Gauss积分构造方法

例: 求积分 $\int_{-1}^{1} x^2 f(x) dx$ 的2点Gauss公式. 其中, x^2 为权函数

Gauss积分构造方法

例: 求积分 $\int_{-1}^{1} x^2 f(x) dx$ 的2点Gauss公式. 其中, X^2 为权函数

解:利用Gram-Schmidt正交化,依次求出正交多项式序列:

$$\begin{cases} p_0(x) = 1, & p_1(x) = x - \frac{(x, p_0(x))}{(p_0(x), p_0(x))} p_0(x) = x \\ p_2(x) = x^2 - \frac{(x^2, p_0(x))}{(p_0(x), p_0(x))} p_0(x) - \frac{(x^2, p_1(x))}{(p_1(x), p_1(x))} p_1(x) = x^2 - \frac{3}{5} \end{cases}$$

$$p_2(x)$$
的两个零点为 $x_1 = -\sqrt{\frac{3}{5}}, x_2 = \sqrt{\frac{3}{5}}$ 积分系数为

$$A_1 = \int_{-1}^{1} x^2 I_1(x) dx = \int_{-1}^{1} x^2 \frac{x - x_2}{x_1 - x_2} dx = \frac{1}{3}$$

$$A_2 = \int_{-1}^{1} x^2 I_2(x) dx = \int_{-1}^{1} x^2 \frac{x - x_1}{x_2 - x_1} dx = \frac{1}{3}$$

故两点Gauss公式为
$$\int_{-1}^{1} x^2 f(x) dx \approx G_2(f) = \frac{1}{3} \left(f(-\sqrt{\frac{3}{5}}) + f(\sqrt{\frac{3}{5}}) \right)$$

Gauss-Legendre积分

区间[-1, 1]上权 W(x) = 1的Gauss型积分称为Gauss-Legendre积分,其积分节点为Legendre(勒让德)多项式 $L_n(x)$ 的零点;其中

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

Gauss-Legendre积分

区间[-1,1]上权 W(x) = 1的Gauss型积分称为Gauss-Legendre积分,其积分节点为Legendre(勒让德)多项式 $L_n(x)$ 的零点;其中

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

对于 $[a, b] \neq [-1, 1]$,可以通过变元代换 $x = \frac{(a+b)+(b-a)t}{2}$ 将积分区间变成[-1, 1].

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{a+b}{2} + \frac{b-a}{2}t)dt$$

通常,积分零点与系数会存于表中,以便直接使用.

Gauss积分系数(点)表

因此, [a,b]区间上、权函数W(x)=1时的Gauss型积分公式为

$$\int_{a}^{b} f(x) dx \approx \frac{b - a}{2} \sum_{i=1}^{n} A_{i} f(\frac{a + b}{2} + \frac{b - a}{2} x_{i})$$

n	x_i	A_i		n	x_i	A_i
1	0	2			± 0.9324695142	0.1713244924
2	± 0.5773502692	1	1	6	± 0.6612093865	0.3607615730
	± 0.7745966692	0.555555556			± 0.2386191861	0.4679139346
3	0	0.888888889			± 0.9491079123	0.1294849662
	1.0.0611262116			7	± 0.7415311856	0.2797053915
1 .	± 0.8611363116	0.3478548451	'	± 0.4058451514	0.3818300505	
4	± 0.3399810436	0.6521451549			0	0.4179591837
	1 0 00 61 500 450	0.00000051			± 0.9602898565	0.1012285363
1 _	± 0.9061798459	0.2369268851		8	± 0.7966664774	0.2223810345
5	± 0.5384693101	0.4786286705		U	± 0.5255324099	0.3137066459
	0	0.5688888889			± 0.1834346425	0.3626837834

例 用Gauss-Legendre求积公式(n=2,3)计算积分 $I = \int_0^1 x^2 e^x dx$

例 用Gauss-Legendre求积公式(n=2,3)计算积分 $I = \int_0^1 x^2 e^x dx$

解 由于区间为[0,1], 所以先作变量替换x=(1+t)/2,得

$$I = \int_0^1 x^2 e^x dx = \frac{1}{8} \int_{-1}^1 (t+1)^2 e^{(1+t)/2} dt$$

令 $f(t)=(1+t)^2e^{(1+t)/2}$ 对于n=2,由两点Gauss-Legendre公式有

$$I \approx \frac{1}{8} \left[f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) \right] \approx 0.71194774$$

对于n=3,由三点Gauss-Legendre公式有

$$I \approx \frac{1}{8} \left[\frac{5}{9} f \left(-\frac{\sqrt{15}}{5} \right) + \frac{8}{9} f \left(0 \right) + \frac{5}{9} f \left(\frac{\sqrt{15}}{5} \right) \right] = 0.718251799$$

容易求出定积分的精确值为 $I = e-2 \approx 0.718281828$,由此可见, n=2时的实际误差为0.0063340054,n=3时的实际误差为0.000030049。

其他常见Gauss型积分

● 区间 $[0, +\infty)$ 上权函数 $W(x) = e^{-x}$ 的Gauss型积分,称为Gauss-Laguerre积分. 其积分节点为 Laguerre多项式

$$L_n(x) = e^x \frac{d^n}{dx^n} (e^{-x} x^n)$$

的零点.

其他常见Gauss型积分

● 区间[$0, +\infty$)上权函数 $W(x) = e^{-x}$ 的Gauss型积分,称为Gauss-Laguerre积分. 其积分节点为 Laguerre多项式

$$L_n(x) = e^x \frac{d^n}{dx^n} (e^{-x} x^n)$$

的零点.

● 区间 $(-\infty, +\infty)$ 上权函数 $W(x) = e^{-x^2}$ 的Gauss积分,称为Gauss-Hermite积分. 其积分节点为 Hermite多项式

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

的零点。

Gauss-Laguerre积分系数(点)表

类似地,对 $[0,+\infty)$ 上权函数W(x)=1的积分,可构造Gauss-Laguerre

求积公式:

$$\left| \int_0^\infty f(x) dx \approx \sum_{i=1}^n A_i e^{x_i} f(x_i) \right|$$

n	x_i	A_i	n	x_i	A_i	
2	0.5858864376 3.4142135623	0.8535533905 0.1464466094		0.2635603197 1.4134030591 3.5964257710	0.5217556105 0.3986668110 0.0759424497	
3	0.4157745567 2.2942803602 602899450829	0.7110930099 0.2785177335 0.0103892565	5	7.0858100058 12.6408008442	0.0036117587 0.0000233700	
4	0.3225476896 1.7457611011 4.5366202969 9.3950709123	0.6031541043 0.3574186924 0.0388879085 0.0005392947	6	0.2228466041 1.1889321016 2.9927363260 5.7751435691 9.8374674183 15.9828739806	0.4589646793 0.4170008307 0.1133733820 0.0103991975 0.0002610172 0.0000008985	

Gauss-Hermite积分系数(点)表

● *Gauss-Hermite*求积公式 $\Box (-\infty, +\infty)$ 上权函数 $W(x) = e^{-x^2}$ 的*Gauss*型求积公式, 称为

Gauss-Hermite求积公式,其Gauss点为Hermite多项式的零点.

公式中的Gauss积分点和求积系数可在下表中查到 .

Gauss-Hermite积分系数(点)表

● Gauss-Hermite求积公式

区间 $(-\infty, +\infty)$ 上权函数 $W(x)=e^{-x^2}$ 的Gauss型求积公式,称为

Gauss-Hermite求积公式, 其Gauss点为Hermite多项式的零点.

公式中的Gauss积分点和求积系数可在下表中查到.

n	x_i	A_i	n	x_i	A_i
2	\pm 0.7071067811	0.8862269254		±0.4360774119	0.7246295952
3	±1.2247448713	0.2954089751	6	±1.3358490704	0.1570673203
	0	1.8163590006		±2.3506049736	0.0045300099
4	±0.5246476232	0.8049140900		±0.8162878828	0.4256072526
	\pm 1.6506801238	0.0813128354		±1.6735516287	0.0545155828
_	±0.9585724646	0.3936193231	7	±2.6519613563	0.0009717812
5	±2.0201828704 0	0.0199532421 0.9453087204		0	0.8102646175