ASSIGNMENT 12

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2024 JANUARY 30, SHIFT 2 1) Consider the system of linear equations x+y+z=5, $x+2y+\lambda^2z=9$, $x+3y+\lambda z=$

2) For $\alpha, \beta \in \left[0, \frac{\pi}{2}\right]$, let $3\sin\left(\alpha + \beta\right) = 2\sin\left(\alpha - \beta\right)$ and a real number k be such

3) Let $A(\alpha,0)$ and $B(0,\beta)$ be the points on the line 5x+7y=50. Let the point

c) $\frac{2}{3}$

d) 5

 μ where $\lambda, \mu \in \mathbb{R}$. Then, which of the following statement is NOT correct?

a) System has infinite number of solutions if $\lambda = 1$ and $\mu = 13$

b) System is inconsistent if λ = 1 and μ ≠ 13
c) System is consistent if λ ≠ 1 and μ = 13
d) System has unique solution if λ ≠ 1 and μ ≠ 13

b) -5

the value of g + c + h - f equals:

a) $-\frac{2}{3}$

that $\tan \alpha = k \tan \beta$. Then the value of k is equal to:

	directrix of the ellip	ose $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ar on the x-axis passe	in the ratio $7:3$. Leand the corresponding the sthrough P , then the	focus be S . If from	
	a) $\frac{25}{3}$	b) $\frac{32}{9}$	c) $\frac{25}{9}$	d) $\frac{32}{5}$	
4)	Let $\vec{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k}$ \vec{b} is $\frac{\pi}{4}$ and $\left \vec{b} \right = 6$.	$(\hat{k}, \alpha, \beta \in \mathbb{R})$. Let a vec If $\vec{a} \cdot \vec{b} = 3\sqrt{2}$, then t	tor \vec{b} be such that the he value of $(\alpha^2 + \beta^2)$	angle between \vec{a} and $ \vec{a} \times \vec{b} $ is equal to:	
	a) 90	b) 75	c) 95	d) 85	
5)) Let $f(x) = (x+3)(x-2)^3$, $x \in [-4,4]$. If M and m are the maximum and minimum values of f , respectively in $[-4,4]$, then the value of $M-m$ is:				
	a) 600	b) 392	c) 608	d) 108	
6)	b) Let a and b be two distinct positive real numbers. Let 11^{th} term of a GP, whose first term is a and third term is b , is equal to p^{th} term of another GP, whose first term is a and fifth term is b . Then p is equal to:				
	a) 20	b) 25	c) 21	d) 24	

7) If $x^2 - y^2 + 2hxy + 2gx + 2fy + c = 0$ is the locus of a point, which moves such that it is always equidistant from the lines x + 2y + 7 = 0 and 2x - y + 8 = 0, then

a) 14	b) 6	c) 8	d) 29			
8) Let \vec{a} and \vec{b} is equal to:	8) Let \vec{a} and \vec{b} be two vectors such that $\left \vec{b} \right = 1$ and $\left \vec{b} \times \vec{a} \right = 2$. Then $\left \left(\vec{b} \times \vec{a} \right) - \vec{b} \right ^2$ is equal to:					
a) 3	b) 5	c) 1	d) 4			
9) Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $y=f(x)$ at $(1,f(1))$ and $(3,f(3))$ make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive x-axis. If $27\int_1^3 \left((f'(t))^2 + 1 \right) f''(t) dt = \alpha + \beta \sqrt{3}$, where α,β are integers, then the value of $\alpha+\beta$ equals						
a) -14	b) 26	c) -16	d) 36			
10) Let P be a point on the hyperbola $H: \frac{x^2}{9} - \frac{y^2}{4} = 1$, in the first quadrant such that the area of triangle formed by P and the two foci of H is $2\sqrt{13}$. Then, the square of the distance of P from the origin is						
a) 18	b) 26	c) 22	d) 20			
11) Bag A contains 3 white, 7 red balls and bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from the bag A , if the ball drawn in white, is:						
a) $\frac{1}{4}$	b) $\frac{1}{9}$	c) $\frac{1}{3}$	d) $\frac{3}{10}$			
12) Let $f: \mathbb{R} \to \mathbb{R}$ be defined $f(x) = ae^{2x} + be^{x} + cx$. If $f(0) = -1$, $f'(0) = 1$, and $f''(0) = 0$, then the value of $\frac{b}{a}$ is equal to:						

a) -3 b) 2 c) -2 d) 3