Review on Polychrony detection in biological and artificial raster plots

This manuscript (permalink) was automatically generated from SpikeAl/polychronies@a6bba29 on March 2, 2022.

Authors

- Camille Besnainou
 - · Camillebesnainou

Institut de Neurosciences de la Timone, CNRS / Aix-Marseille Université · Funded by Grant AgileNeuroBot

- Antoine Grimaldi
- Laurent U Perrinet · https://laurentperrinet.github.io/
 perrinet.github.io/
 perrinet.github.io/perrinet.github.io/perrinet.github.io/perrinet.github.io/<a hre

Institut de Neurosciences de la Timone, CNRS / Aix-Marseille Université \cdot Funded by Grant APROVIS3D; Grant AgileNeuroBot

Abstract

Why do neurons communicate through action potentials, or spikes? An action potential is a binary event —it can occur or not, without further details— and asynchronous, i.e. it can occur at any time. In the living world, neurons almost systematically use this so-called event-based representation, though we do not yet have a clear idea why. A better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the masses of recorded data. It is also an emerging challenge in computer science to allow the efficient exploitation of a new class of sensors and impulse computers, called neuromorphic, which could allow significant gains in computing time and energy consumption —a major societal challenge in the age of the digital economy and of global warming.

The response of a biological neuron depends largely on the precise timing of the sequence of presynaptic spikes as they reach the basal dendritic tree. This event-based representation present in the neuronal code is essential in understanding information processing in the brain but also applies to other fields, for instance to the output of an event-based camera. However, most neuronal models do not take advantage of this minute temporal dimension, especially in exploiting the variety of synaptic delays on the dendritic tree. Our goal here is to bring an interdisciplinary perspective on the computational advantage of time series representations for the brain and for information processing machines. In particular, we will formalize mathematically a representation in an assembly of neurons based on a set of patterns of different relative spike times. Following the terminology of [1], we will define such motifs of precise temporal patterns as polychronous groups and this manuscript reviews current litterature on polychrony detection in generic raster plots. It is work in progress, where anybody interested can openly join. This hypothesis is directly inspired by neurobiological observations in the hippocampus, and it expands the capabilities of analog representations based on the firing rate by considering a representation based on repetitions of these polychronous groups at precise times of occurrence. This formalization is particularly well suited to neuromorphic computing, and allows for supervised or self-supervised learning of polychronous groups in any event-driven data.

We will first review some biological and theoretical evidence for polychrony in the neural information processing. We will then present some models for the detection of such polychronous groups in arbitrary raster plots, synthetic, biological or artificial (notably from event-based cameras). Then, we will try to outline some possible strategies for learning these patterns and finally discuss possible perspectives.

Introduction: precise temporal patterns in the brain

Ultra fast neural codes for ultra fast vision

Let us start our review of the state of the art on the role of dynamics in vision by presenting some surprising results that have been obtained in neuroscience. Indeed, Simon Thorpe's group has shown that humans can categorize briefly presented images in a fraction of a second. This experiment consisted in asking subjects to categorize images that contain or do not contain animals [2]. The results showed that humans were able to perform this task very well (with a success rate of more than 95%) but above all that a differential activity for the two categories of images could be observed by electroencephalography, showing that this differentiation emerges at a very early latency in neuronal activity. These results have been extended to several species including primates but also extended to different experimental protocols and have shown for example that the response could be extremely fast of the order of 120 ms when the task was to perform a saccade [3].

This fast processing also explains the surprising experiments of fast serial detection which consists in presenting a fast succession of different images and to decode via the EEG if the observer can detect for example the presence of an animal. The performances decrease progressively as the frequency of presentation of the images increases. However, it has been shown in the macaque that a significant performance could be maintained with an image presentation time of only 14 ms per image [4].

This speed of the visual cortex, although surprising, is quite compatible with the latencies that are recorded at the neuro-physiological level. Indeed, when an image is presented on the retina, the visual information is rapidly propagated to the thalamus and then to the primary visual cortex takes about 55 ms in the macaque [5]. This functioning of visual processing as a forward pass is most prominent in fast processing but can be complemented with feedback loops from the higher areas to the sensory areas [6].

How timing encodes analogous profile

An important characteristic of neuronal information is that it consists mainly in the transfer of action potentials, or spikes, which consist of brief impulses that propagate along the axons of neurons. These have the particularity of being essentially binary in their amplitude (that is to say, they are prototypical, all or nothing). An important consequence of the speed of processing is that it implies that it is carried out using only very few spikes. Indeed, if we consider that a behavioral response in only 120 ms consists of about ten processing stages following the "forward" pathways of the visual system, then this imposes that the processing in a single area is performed with a reduced number of spikes.

At the level of dynamic processing of visual information, it has been shown that an encoding of the values of luminance imminence in the image instead of the retina [7]. Notably one can appreciate in figure 1 that the response of ganglion cells to visual gratings that are flashed onto the retina. The authors showed that the neuronal response could be encoded in the latency of the response and not only in the frequency of discharge as is often assumed. In figure 4 of the same article, these results are extended to natural images and show a qualitatively similar behavior. The conclusion of the authors is that the discharge latency of the neurons allows to encode spatial characteristics of the image.

Similar results have been demonstrated through neurophysiological recordings in the primary visual cortex and show that different levels of visual activity will induce different levels of neuronal discharge latency in the primary visual area [8]. Many models have used these properties in temporal coding to build fast image categorization networks. These models take the form of artificial spiking neural networks (SNNs) and have been able to demonstrate their practical applications for image categorization [9]. This work has been extended to include unsupervised learning capabilities and we have recently developed a SNN architecture that allows to categorize images of different classes in only a few spikes [11]. This type of modeling is extremely important with respect to the development of a new generation of cameras called Silicon Cameras which, instead of using a basic frame-based representation, uses a representation similar to the one we have just described and which consists in representing the image by events [12]. This type of modeling often uses the classical architecture of image categorization developed in deep learning while adapting it to the specificity of the event-based representation [13]. Note also that timing is not entirely sensorial or internal but in [14], they found that "timing accuracy was improved when the environment afforded cues that rats can incorporate into motor routines. Timing, at least in animals, may thus be fundamentally embodied and situated."

TODO: synfire chains

In [15] corticonics: The book gradually leads the reader from the macroscopic cortical anatomy and standard electrophysiological properties of single neurons to neural network models and synfire chains

M. Diesmann, M. O. Gewaltig, A. Aertsen, Nature 402, 529 (1999).

synfire braids

sparse in time and space [2] AL Barth and JF Poulet Trends in Neurosciences 35.6 (2012), pp. 345-355. [3] CC Petersen and S Crochet, Neuron 78.1 (2013), pp. 28-48.

- [16]: from synfire chains to Synfire braids
- recent theories of binding by synchrony: Fries 2005 trends cog neuro with spikes arriving at peak susceptibility (top of a cycle) or down, van Rullen, Laura Dugué
- A notable exception is the polychronization model of Izhikevich [1], which combined the
 construction of a random recurrent model of spiking neurons including such delays and whose
 weights evolved with a Spike-Time Dependent Plasticity (STDP) learning rule. In this model, raster
 plot analysis showed repeated activation of Polychronous Groups (PGs), i.e., specific spike patterns
 with a specific sequence of activations.

link to traveling waves and synaptic delays

<u>17</u>]

Our approach would be distinct than these approaches from us and colleagues as we will directly deal with delays in the system at the presynaptic level. I have an extensive expertise in the domain of temporal delays in the nervous system, both at the neural [18] and behavioral [19] levels. Extending this knowledge to the optimization of delays in a SNN will provide a breakthrough in the efficiency of these networks. Our expertise in reproducing the HOTS network [doi:Grimaldi2022pami?] will be crucial in the swift realization of this project.

precise temporal patterns

Currently, few interdisciplinary research projects take full advantage of event-based representations in computational and biological neuroscience. Nevertheless, there is a substantial literature in neurobiology indicating that brain dynamics often organize into stereotyped sequences (like synfire chains (Ikegaya et al., 2004), packets (Luczak et al., 2007) or hippocampal sequences [Villette2015?] and on the role of such precise spike timing in downstream information transfer and coding [22]. In particular, one theoretical viewpoint considers synfire braids (Bienenstock, 1995), where a precise sequential motif of spikes will synchronize as it reaches the soma of a neuron for which synaptic delays are adequately tuned. In particular, computational modeling shows that at the scale of neurons, an efficient neural code can emerge where spike times are organized in prototypical, precise temporal motifs (Izhikevich, 2006) which he defined as polychronous groups.

Stereotyped sequences of neuronal activation have been particularly well described in the adult hippocampus and related to its function in mental travel in time and space [21]. These sequences can be internally generated [Villette2015?] and are formed by the chained activation of orthogonal assemblies, themselves organized as sequence packets (Malvache et al., 2016). Thus, hippocampal sequences are formed by the ordered activation of smaller sequence motifs. They are stereotyped and robust, since neurons can be activated in the same order across days (see Figure 1 of [23] below).

As a consequence, hippocampal sequences may rely on an internally hardwired structure and form the functional building blocks for encoding, storing and retrieving experience.

Mixed distance and duration representation in CA1. (A) Calcium fluorescence (heatmap) of CA1 neurons participating to run sequences in consecutive imaging sessions. Cells have been selected and ordered with respect to their activity in the first imaging session (Top). The black line represents speed of the mouse.

TODO: read [22] Luczak A, McNaughton BL, Harris KD. Packet-based communication in the cortex. Nat Rev Neurosci. 2015;16(12):745–55.

In [24], it was shown that attentional information from V4 or arousal can change the timings of groups of events in V1. They develop a HMM model for quantifying the transitions. "In this study, van Kempen et al. show that fluctuations in neural excitability are coordinated between visual areas with retinotopic precision. Top-down attention drives interareal coordination along the reverse cortical hierarchy, predicting better behavioral performance with increased coordination."

cortical songs [25]

- Ikegaya and colleagues worked on spontaneous activity in vitro and in vivo. They demonstrated that in cortical activity, we can find a repetition of several motifs. In PSCs, but also in spike activity. These sequences repeat after minutes and have a precise spatio temporal structure with a ms precision. They can be specific of a particular layer or colomn, are synchronized with network activity oscillation and can involve several cells. They also demonstated that these sequences can form supersequences: the cortical songs. It consist of the assembly of several sequences which repeat in a specific order with a compressed timing.
- "We find precise repetitions of spontaneous patterns of synaptic inputs in neocortical neurons in vivo and in vitro. These patterns repeat after minutes, maintaining millisecond accuracy."
- Precisely repeating motifs of spontaneous synaptic activity in slices: duration around 1s +/- .5 s.
 Some events in motifs are of similar size but sometimes absent better described by Bernouilli than SE (and covariance)
- in vivo spontaneous activity also reveals repeating sequences. About 3000 sequences, each involving 3-10 cells out of about 900, and last up to 3 seconds

- topography: "Sequences had specific topographic structures, in some cases involving only a particular layer or a vertical column of cells or cells located in a cluster (Fig. 4, A and B, and fig. S3B). (...) Therefore, repeating temporal patterns of activation (...) were associated with a structured spatial organization of the neurons that formed them."
- "Cortical songs: modular assemblies of repeated sequences": hierarchical detection.
- in cotical songs, there is a "compressing timing" which may be taken into account by a similar mechanism as maxpooling in CNNs for space, but in time. Or there may be a mechanism for controlling the replay speed (pulvinar, ..., ?)

Fig. 1. from [25] Repeated motifs of spontaneous synaptic activity in vitro and in vivo. (A) Repeated motifs of intracellular activity from layer 5 pyramidal neurons in slices. Panels show segments (red) of the same voltage-clamp recording from the same cell repeating seconds or minutes after the initial occurrence (blue). Arrows indicate timings of repeated PSCs. (i) Upper trace: low-temporal resolution display of spontaneous activity of a neuron. Lower traces: higher resolution display of the repeated motif at indicated regions of the trace (a to c). (ii) Example of a longer motif. (B) Three repetitions of a motif. The top traces show the motifs superimposed on each other (blue, green, and red), the middle traces show these same traces individually, and the bottom traces show temporally magnified regions of the motifs (a to c). (C) Repeated sequences of intracellular current-clamp recordings in vivo. Two (i) and three (ii) repetitions of motifs are shown. Shuffle tests were performed on traces (i), a to c, yielding significantly fewer repeats (fig. S2, P < 0.02). In (i), the blue trace is shifted –2.75 mV; in (ii), the blue trace is shifted –1.58 mV, and the green +0.79 mV.

It is interesting to make a parallel with the "Rapid Formation of Robust Auditory Memories" reported in [26] which uses noise patterns. They " used random waveforms to probe the formation of new memories for arbitrary complex sounds. A behavioral measure was designed, based on the detection of repetitions embedded in noises up to 4 s long." The task is to detect the repetition of the same (frozen) noise within a trial. " Unbeknownst to listeners, some noise samples reoccurred randomly throughout an experimental block." they showed that the "repeated exposure induced learning for otherwise totally unpredictable and meaningless sounds" by showing that the sensitivity increases in that case. Note that "acoustical analyses failed to reveal any obvious differences between good and bad noises" and that "Time reversal had no significant effect on the RefRN advantage" (quite surprising). The Learning is unsupervised (statistical, automatic), fast-acting (phase transition, "insight"), and long-lasting (memorization).

polychronization

outline

The approach which is currently most prominent in the Spiking Neural Networks community is to use existing algorithms from machine learning and to adapt them to the specificity of spiking architectures. One such example is to adapt the successes of deep learning algorithms and to transfer the back-propagation algorithm to SNNs, for instance with a surrogate gradient. This approach is quite successful, and SNNs approach in some case the performance of Deep Learning algorithms, for instance on the N-MNIST dataset for categorizing digits in a stream of events. However, most biological neural systems use spikes and are obviously more efficient than current state-of-the-art vision systems, both in terms of efficiency (accuracy), in speed (latency), and energy consumption. There is therefore an immense gap in the way we understand biology to translate it to the efficiency of SNNs. Our approach will be to focus on the temporal representation of information directly. In particular, our objective is to fully exploit the capacity of spiking neurons to detect synchronous patterns.

Remarkably, novel neuromorphic chips use a representation similar to that of real neurons [12]. For example, event-based cameras provide a stream of binary asynchronous events signaling detectable changes in luminance, and information is represented by these spike-based temporal motifs, hence their name "silicon retinas" (see Figure 1). For such devices, it is crucial to better understand the potential of using such event-based representations in order to devise novel algorithms.

A miniature, event-based ATIS sensor. Contrary to a classical frame-based camera for which a full dense image representation is given at discrete, regularly spaced timings, the event-based camera provides with events at the microsecond resolution. These are sparse as they represent luminance increments or decrements (ON and OFF events, respectively).

This section has provided evidence that polychronous groups are an important apsect of information representation in biology with important application in data analysis and neuromorphic engineering. The rest of this review paper is organized as follows.

First, we will review models for the detection of polychronous groups:

- A crucial advantage of Spiking Neural Networks (SNNs) architectures lies in its processing of temporal information. Yet, most SNNs encode the temporal signal as an analog signal and try to "cross-compile" classical Neural Network to a spiking architecture. To go beyond the state-of-the-art, we will review here on one core computation of a spiking neuron, that is, is its ability to switch from the classical integrator mode (summing analog currents on its synapses) to a synchrony detector where it emits a spike whenever presynaptic spiking inputs are synchronized. To overcome the diversity of input presynaptic patterns, we will explore different existing architectures to learn to detect stable "polychronous" events, that is, volleys of spikes which are stable up to certain synaptic delays. These models will be compared in light of neuroscientific and computational perspectives. We review theoretical and computational foundations of PG detection in models.
- Application to Image processing using sparse spiking representations: Using the core
 computational unit defined, extension of the computation to a topographic representation similar
 to that observed in the primary visual cortex of mammals. design of micro-circuits with specific
 lateral interactions will allow us to design efficient micro-circuits for the sparse representation of
 images.

Finally we will discuss future avenues for effective PG detection and learning in event streams.

Models of polychronization detection in models

Izhikevitch

- Reproducing Polychronization: A Guide to Maximizing the Reproducibility of Spiking Network Models https://www.frontiersin.org/articles/10.3389/fninf.2018.00046/full
 - comes with python code
- blog post by Paxon Frady https://epaxon.blogspot.com/2012/07/izhikevich-2006-polychronization.html

- dynamic networks & learning delays:
 - Huning H., Glunder H., and Palm G. (1998) Synaptic delay learning in pulse-coupled neurons.
 Neural Computation, 10:555–565. https://www.deepdyve.com/lp/mit-press/synaptic-delay-learning-in-pulse-coupled-neurons-DGMiNHxp0A
 - <u>Eurich C., Pawelzik K., Ernst U., Cowan J., and Milton J. (1999) Dynamics of self-organazed delay adaptation. Phys. Rev. Lett.</u>, 82:1594–1597.
 - The recent "multi-neuronal spike sequence detector" (MNSD) architecture integrates the weightand delay-adjustment methods by combining heterosynaptic plasticity with the neurocomputational feature spike latency: https://pubmed.ncbi.nlm.nih.gov/33679293/
 - o an extensive (graph-centric) review on <u>Synchronization in time-varying networks</u>
- related

spike distances

J. D. Victor and K. P. Purpura, "Nature and precision of temporal coding in visual cortex: a metric-space analysis," J. Neurophysiol., vol. 76, pp. 1310–1326, Aug. 1996.

M. C. W. van Rossum, "A novel spike distance," Neural Comput., vol. 13, no. 4, pp. 751–763, 2001. [21] D. Aronov and J. D. Victor, "Non-Euclidean properties of spike train metric spaces," Physical Rev. E (Statist., Nonlinear, Soft Matter Phys.), vol. 69, no. 6, 2004.

T. Kreuz, J. S. Haas, A. Morelli, H. D. I. Abarbanel, and A. Politi, "Measuring spike train synchrony," J. Neurosci. Methods, vol. 165, no. 1, pp. 151–161, 2007. [23] H.

Paper by [27] On Stability of Distance Measures for Event Sequences Induced by Level-Crossing Sampling

Weyl's discrepency measure [28] which may lead to the definition of a cross-correlation.

Robust computation with rhythmic spike patterns. Proceedings of the National Academy of Sciences of the United States of America 116(36), 18050 - 18059. https://dx.doi.org/10.1073/pnas.1902653116

Memory traces in dynamical systems [29] We address these issues by applying Fisher information theory to dynamical systems driven by time-dependent signals corrupted by noise. Memory capacity is constrained by architecture: "This limit can be realized by feedforward structures with divergent fan out that distributes the signal across neurons, thereby avoiding saturation."

Detecting patterns in biological raster plots

decoding neural activity

In generic linear non linear lnl models, the output is assumed to be poisson. As such a simple decoding strategy is to asscume it is to b inferned for a given tuning curves (Jayazeri) or simply by a simple regression [30]. This latter model assumes a Bernoulli model for the generation of spikes such that the decoding amounts to a single-layer logistic regression.

S. Grun, M. Diesmann, and A. Aertsen. Unitary event analysis. In Analysis of parallel spike trains, pages 191–220. Springer, 2010. + coincidence detection

Rastermap: decoding large-scale data

Rastermap re-arranges neurons in the raster plot based on similarity of activity

- https://www.janelia.org/lab/stringer-lab
- described in [31]
- <u>rastermap</u>
- deconvolution strategy
- based on a linear model

Stringer et al 2019, Nature [32]

- "A neuronal population encodes information most efficiently when its stimulus responses are highdimensional and uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of the encoding of natural images by large populations of neurons in the visual cortex of awake mice."
- Data availability: All of the processed deconvolved calcium traces are available on <u>figshare</u>, together with the image stimuli.
- Code availability: The code is available on <u>GitHub</u>.

Stringer et al 2019, Science [33]

- Stringer et al. analyzed spontaneous neuronal firing, finding that neurons in the primary visual cortex encoded both visual information and motor activity related to facial movements. The variability of neuronal responses to visual stimuli in the primary visual area is mainly related to arousal and reflects the encoding of latent behavioral states.
- see also the work showing that you can encode very precise orientation information by using many neurons: [34]

detecting structured temporal patterns

Paper by Grossberger, 2018 [35]

- Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an
 unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for
 their detection from high-dimensional neural ensembles. SPOTDisClust measures similarity
 between two ensemble spike patterns by determining the minimum transport cost of transforming
 their corresponding normalized cross-correlation matrices into each other (SPOTDis).
- Detecting these temporal patterns represents a major methodological challenge.
- Many approaches to this problem are supervised, that is, they take patterns occurring concurrently with a known event, such as the delivery of a stimulus for sensory neurons or the traversal of a running track for hippocampal place fields, as a "template" and then search for repetitions of the same template in spiking activity:
- Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci. 1999;19(21):9497–507. pmid:10531452
- Lee AK, Wilson MA. A combinatorial method for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative time order. J Neurophysiol. 2004;92(4):2555–73. pmid:15212425
- Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009;63(4):497–507. pmid:19709631
- only one spike per neuron: fig 1A = "For each pattern and each neuron, a random position was chosen for the activation pulse."

- t-SNE projection with HDBSCAN labels shows that our clustering method can retrieve all patterns from the data.
- data available @ https://doi.org/10.1371/journal.pcbi.1006283.s013

_	110136	□ at. 4	. •	1 at. 1	100	200	000	000	U	000
•	Pat. 1	Pat. 3	0	Pat. 5	Epo	och			Sample offse	et

Figure 1: Fig 1 of [35]: "Simulated example illustrating the steps in SPOTDisClust. A) Structure of five "ground-truth" patterns (...). For each pattern and each neuron, a random position was chosen for the activation pulse. B) Neuronal output is generated according to an inhomogeneous Poisson process, with rates dictated by the patterns in (A)." (© Authors under a CC licence)

• "However, SPOTDis has two principal weaknesses that we address here: (1) Its computational complexity, for comparing two time epochs, is O(N2), where N is the number of neurons. This becomes a major problem for computing an M□M dissimilarity matrix (for M time epochs) for thousands of neurons. (2) It relies exclusively on pairwise spike-timing relationships (i.e 2nd order correlations), because it does not solve the optimal transport problem for the entire spike pattern, but only for neuron pairs separately. Hence, it may not be sensitive to higher-order correlations in spiking patterns. Here, we develop a novel dissimilarity measure for multi-neuron spiking patterns called SpikeShip, which has linear computational complexity of O(N). We achieve this by (1) computing the minimum transport cost of spikes for each spike train separately, and (2) discounting a global translation term in the transport flow across neurons." https://doi.org/10.1101/2020.06.03.131573;

Paper by Russo et al 2017 [36]

- "Here we present such a unifying methodological and conceptual framework which detects assembly structure at many different time scales, levels of precision, and with arbitrary internal organization." by [36]
- sliding window as in [37] ("Numerous other statistical procedures for detecting assemblies or sequential patterns have been proposed previously") extended to multiple lags [38]
- based on a "non-stationarity-corrected parametric test statistic for assessing the independence of pairs" and "an agglomerative, heuristic clustering algorithm for fusing significant pairs into higherorder assemblies"

Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex [39]

- Stochastic sampling links perceptual uncertainty to neural response variability
- Model accounts for independent changes in strength and variability of responses
- Model predicts relationship between noise, signal, and spontaneous correlations
- Stimulus statistics dependence of response statistics is explained

FPGA

Dynamics of Delay-Coupled Excitable Neural Systems.

```
February 2009International Journal of Bifurcation and Chaos 19(02):745-753
DOI: 10.1142/S0218127409023111
```

V. Thanasoulis, B. Vogginger, J. Partzsch and C. Mayr, "Delay-Based Neural Computation: Pulse Routing Architecture and Benchmark Application in FPGA," 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2021, pp. 1-5, doi: 10.1109/ICECS53924.2021.9665468.

Learning to detect polychronous groups

Learning weights ... and delays

spike time coding in a neuron: We will describe the Spike-Time Dependent Plasticity (STDP) [40] rule which implement an unsupervised learning aiming at optimizing the detection of polychronous patterns, that is volleys of spikes which are synchronized, up to some stable pattern of pre-synaptic delays. This STDP rule will be based by the inversion of the generative model for spike formation and will therefore be derived by a Bayesian approach. This will decouple the active synapses (similarly to a logistic regression) from the values of possible synaptic delays.

[41]: coherence detection [42]: STDP

43

Bio-plausible Unsupervised Delay Learning for Extracting Temporal Features in Spiking Neural Networks Alireza Nadafian, Mohammad Ganjtabesh

The plasticity of the conduction delay between neurons plays a fundamental role in learning. However, the exact underlying mechanisms in the brain for this modulation is still an open problem. Understanding the precise adjustment of synaptic delays could help us in developing effective braininspired computational models in providing aligned insights with the experimental evidence. In this paper, we propose an unsupervised biologically plausible learning rule for adjusting the synaptic delays in spiking neural networks. Then, we provided some mathematical proofs to show that our learning rule gives a neuron the ability to learn repeating spatiotemporal patterns. Furthermore, the experimental results of applying an STDP-based spiking neural network equipped with our proposed delay learning rule on Random Dot Kinematogram indicate the efficacy of the proposed delay learning rule in extracting temporal features.

Learning sequences

In [44], authors present a model to "show a way by which the nervous system maintains precise, stereotyped behavior in the face of environmental and neural changes". It is shown in bridsong generation that "A precise, temporally sparse sequence from the premotor nucleus HVC is crucial to the performance of song in songbirds" [47] and this model shows how one could vary HVC activity using something similar to dropout in ML. Using such controlled variability, "behaviors are made more robust to environmental change by continually seeking subtly new ways of performing the same task". Not sure however how important it is that the HVC pattern should be sparse (and similar to PGs).

- in [26], there are "good" and "bad" noises show that some patterns are more easy to disentangle similar to bird songs and ecological niche.
- In Bellec [48], authors fit summary statistics of neural data with a differentiable spiking network simulator.
 - the loss function is the cross entropy (following Bernouilli hypothesis with a GLM where each unit is modelled with a SRM neuron [49] with recurrent dynamics)
 - sample and measure method to include latent / hidden neurons
 - o comes with code https://github.com/EPFL-LCN/pub-bellec-wang-2021-sample-and-measure

V1-dataset: The dataset we used was collected by Smith and Kohn [49] and is publicly available
at: http://crcns.org/data-sets/vc/pvc-11 - it is in a sense supervised with the input being the
movie and the output the spikes recorded.

TODO: more bib to read

Learning compositional sequences with multiple time scales through a hierarchical network of spiking neurons. Maes A, Barahona M, Clopath C.PLoS Comput Biol. 2021

Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning. Gillett M, Pereira U, Brunel N.Proc Natl Acad Sci U S A. 2020

Unsupervised Learning of Persistent and Sequential Activity. Pereira U, Brunel N.Front Comput Neurosci. 2020

From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks. Spreizer S, Aertsen A, Kumar A.PLoS Comput Biol. 2019

Fast and flexible sequence induction in spiking neural networks via rapid excitability changes. Pang R, Fairhall AL.Elife. 2019 May [50]

Emergence of spontaneous assembly activity in developing neural networks without afferent input. Triplett MA, Avitan L, Goodhill GJ.PLoS Comput Biol. 2018

Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity. Ocker GK, Doiron B.Cereb Cortex. 2019.

learning pattern detection on natural images / event-based cameras sparse coding on spatio-temporal data

HOTS

Grimaldi CBMI / PAMI

Discussion

dynamical models

Dumas and colleagues [51]: three levels / fourth paradigm [52] i.e., data exploration in which the scientific models are fit to the data by learning algorithms.

our model

Here, we develop a model for the efficient detection of such PGs based on the inversion of a probabilistic model defining the generation of the raster plot as a combination of such groups. We show that such an inference can be achieved by a neural-like computation that could itself be used as a spiking neuron, as can be implemented in a neuromorphic chip for instance. A first result is to show the efficiency of such a scheme in detecting different PGs occurring at specific times in synthetic data. The representational capacity of the PGs is particularly interesting compared to traditional models of neuronal encoding using spiking frequency. Our second result is to propose a novel learning method

for learning PGs in raster plots in a self-supervised manner. Finally we demonstrate the use of this algorithm to the output of an event-based camera and how this may separate independent components from the stream of events. This end-to-end event-based computational brick could help improve the performance of current Spiking Neural Network solution currently used in neuromorphic chips.

References

1. Polychronization: Computation with Spikes

Eugene M Izhikevich

Neural Computation (2006-02-01) https://doi.org/bgh4qv

DOI: 10.1162/089976606775093882 · PMID: 16378515

2. Speed of processing in the human visual system

Simon Thorpe, Denis Fize, Catherine Marlot

Nature (1996-06) https://doi.org/c4v35x

DOI: 10.1038/381520a0 · PMID: 8632824

3. Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited

Holle Kirchner, Simon J Thorpe

Vision Research (2006-05) https://doi.org/d8gpjg

DOI: <u>10.1016/j.visres.2005.10.002</u> · PMID: <u>16289663</u>

4. The Speed of Sight

C Keysers, D-K Xiao, P Földiák, DI Perrett

Journal of Cognitive Neuroscience (2001-01-01) https://doi.org/cfdjtg

DOI: <u>10.1162/089892901564199</u> · PMID: <u>11224911</u>

5. The Timing of Information Transfer in the Visual System

Lionel G Nowak, Jean Bullier

Extrastriate Cortex in Primates (1997) https://doi.org/gpb33s

DOI: 10.1007/978-1-4757-9625-4 5

6. The distinct modes of vision offered by feedforward and recurrent processing

Victor AF Lamme, Pieter R Roelfsema

Trends in Neurosciences (2000-11) https://doi.org/ccv3w2

DOI: 10.1016/s0166-2236(00)01657-x

7. Rapid Neural Coding in the Retina with Relative Spike Latencies

Tim Gollisch, Markus Meister

Science (2008-02-22) https://doi.org/c6czvj

DOI: <u>10.1126/science.1149639</u> · PMID: <u>18292344</u>

8. Dynamics of orientation coding in area V1 of the awake primate

Simona Celebrini, Simon Thorpe, Yves Trotter, Michel Imbert

Visual Neuroscience (1993-09) https://doi.org/dqt5cm

DOI: <u>10.1017/s0952523800006052</u> · PMID: <u>8217934</u>

9. Coding Static Natural Images Using Spiking Event Times: Do Neurons Cooperate?

L Perrinet, M Samuelides, S Thorpe

IEEE Transactions on Neural Networks (2004-09) https://doi.org/b3b9n9

DOI: 10.1109/tnn.2004.833303 · PMID: 15484892

10. A homeostatic gain control mechanism to improve event-driven object recognition

Antoine Grimaldi, Victor Boutin, Laurent Perrinet, Sio-Hoi leng, Ryad Benosman 2021 International Conference on Content-Based Multimedia Indexing (CBMI) (2021-06-28) https://doi.org/gkzcrv

DOI: <u>10.1109/cbmi50038.2021.9461901</u>

11. A robust event-driven approach to always-on object recognition

Antoine Grimaldi, Victor Boutin, Sio-Hoi leng, Ryad Benosman, Laurent Perrinet *Institute of Electrical and Electronics Engineers (IEEE)* (2022-01-13) https://doi.org/gn62xd DOI: 10.36227/techrxiv.18003077.v1

12. The Challenges Ahead for Bio-inspired Neuromorphic Event Processors: How Memristors Dynamic Properties Could Revolutionize Machine Learning

Marco Rasetto, Qingzhou Wan, Himanshu Akolkar, Bertram Shi, Feng Xiong, Ryad Benosman *arXiv* (2022-02-01) https://arxiv.org/abs/2201.12673

13. Fast and energy-efficient neuromorphic deep learning with first-spike times

Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Benjamin Cramer, Dominik Dold, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel, ... Mihai Alexandru Petrovici

arXiv(2021-05-18) https://arxiv.org/abs/1912.11443

14. Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment

Mostafa Safaie, Maria-Teresa Jurado-Parras, Stefania Sarno, Jordane Louis, Corane Karoutchi, Ludovic F Petit, Matthieu O Pasquet, Christophe Eloy, David Robbe *Proceedings of the National Academy of Sciences* (2020-05-20) https://doi.org/gnqsmh
DOI: 10.1073/pnas.1921226117 • PMID: 32434909 • PMCID: PMC7293717

15. Corticonics: neural circuits of the cerebral cortex

Moshe Abeles

Cambridge University Press (1991)

ISBN: 9780521374767

16. A model of neocortex

Elie Bienenstock

Network: Computation in Neural Systems (1995-01) https://doi.org/gm6nn3

DOI: 10.1088/0954-898x 6 2 004

17. Spontaneous traveling waves naturally emerge from horizontal fiber time delays and travel through locally asynchronous-irregular states

Zachary W Davis, Gabriel B Benigno, Charlee Fletterman, Theo Desbordes, Christopher Steward, Terrence J Sejnowski, John H. Reynolds, Lyle Muller

Nature Communications (2021-10-18) https://doi.org/gm79hh

DOI: <u>10.1038/s41467-021-26175-1</u> · PMID: <u>34663796</u> · PMCID: <u>PMC8523565</u>

18. Active inference, eye movements and oculomotor delays

Laurent U Perrinet, Rick A Adams, Karl J Friston

Biological Cybernetics (2014-08-16) https://doi.org/f6skjg

DOI: <u>10.1007/s00422-014-0620-8</u> · PMID: <u>25128318</u> · PMCID: <u>PMC4250571</u>

19. The Flash-Lag Effect as a Motion-Based Predictive Shift

Mina A Khoei, Guillaume S Masson, Laurent U Perrinet

PLOS Computational Biology (2017-01-26) https://doi.org/b2t5

DOI: 10.1371/journal.pcbi.1005068 · PMID: 28125585 · PMCID: PMC5268412

20. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons

Tiago Branco, Beverley A Clark, Michael Häusser

Science (2010-09-24) https://doi.org/dqx4n4

DOI: 10.1126/science.1189664 · PMID: 20705816 · PMCID: PMC6354899

21. Space and Time: The Hippocampus as a Sequence Generator

György Buzsáki, David Tingley

Trends in Cognitive Sciences (2018-10) https://doi.org/gfcr76

DOI: 10.1016/j.tics.2018.07.006 · PMID: 30266146 · PMCID: PMC6166479

22. Packet-based communication in the cortex.

Artur Luczak, Bruce L McNaughton, Kenneth D Harris

Nature reviews. Neuroscience (2015-10-28) https://www.ncbi.nlm.nih.gov/pubmed/26507295

DOI: 10.1038/nrn4026 · PMID: 26507295

23. Internal representation of hippocampal neuronal population spans a time-distance continuum

Caroline Haimerl, David Angulo-Garcia, Vincent Villette, Susanne Reichinnek, Alessandro Torcini, Rosa Cossart, Arnaud Malvache

Proceedings of the National Academy of Sciences (2019-03-25) https://doi.org/ghpbm3

DOI: 10.1073/pnas.1718518116 · PMID: 30910984 · PMCID: PMC6462106

24. Top-down coordination of local cortical state during selective attention

Jochem van Kempen, Marc A Gieselmann, Michael Boyd, Nicholas A Steinmetz, Tirin Moore, Tatiana A Engel, Alexander Thiele

Neuron (2021-03) https://doi.org/ghvj3k

DOI: <u>10.1016/j.neuron.2020.12.013</u> · PMID: <u>33406410</u> · PMCID: <u>PMC7927916</u>

25. Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity

Yuji Ikegaya, Gloster Aaron, Rosa Cossart, Dmitriy Aronov, Ilan Lampl, David Ferster, Rafael Yuste

Science (2004-04-23) https://doi.org/djckcn

DOI: 10.1126/science.1093173 · PMID: 15105494

26. Rapid Formation of Robust Auditory Memories: Insights from Noise

Trevor R Agus, Simon J Thorpe, Daniel Pressnitzer

Neuron (2010-05) https://doi.org/dc3r2d

DOI: 10.1016/j.neuron.2010.04.014 · PMID: 20510864

27. On Stability of Distance Measures for Event Sequences Induced by Level-Crossing Sampling

Bernhard A Moser, Thomas Natschlager

IEEE Transactions on Signal Processing (2014-04) https://doi.org/gnpb7w

DOI: 10.1109/tsp.2014.2305642

28. �ber die Gleichverteilung von Zahlen mod. Eins

Hermann Weyl

Mathematische Annalen (1916-09) https://doi.org/crprvc

DOI: 10.1007/bf01475864

29. **DOI Name 10.1073 Values** https://doi.org/10.1073

DOI: <u>10.1073</u>

30. A Fast and Simple Population Code for Orientation in Primate V1

P Berens, AS Ecker, RJ Cotton, WJ Ma, M Bethge, AS Tolias

Journal of Neuroscience (2012-08-01) https://doi.org/f365rn

DOI: 10.1523/jneurosci.1335-12.2012 · PMID: 22855811 · PMCID: PMC3506189

31. Robustness of Spike Deconvolution for Neuronal Calcium Imaging

Marius Pachitariu, Carsen Stringer, Kenneth D Harris

The Journal of Neuroscience (2018-08-06) https://doi.org/gd9mcx

DOI: 10.1523/jneurosci.3339-17.2018 · PMID: 30082416 · PMCID: PMC6136155

32. High-dimensional geometry of population responses in visual cortex

Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, Kenneth D Harris *Nature* (2019-06-26) https://doi.org/gf4cfj

DOI: 10.1038/s41586-019-1346-5 · PMID: 31243367 · PMCID: PMC6642054

33. Spontaneous behaviors drive multidimensional, brainwide activity

Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, Kenneth D Harris

Science (2019-04-19) https://doi.org/gfz6mh

DOI: 10.1126/science.aav7893 · PMID: 31000656 · PMCID: PMC6525101

34. High-precision coding in visual cortex

Carsen Stringer, Michalis Michaelos, Dmitri Tsyboulski, Sarah E Lindo, Marius Pachitariu *Cell* (2021-05) https://doi.org/gigbjd

DOI: 10.1016/j.cell.2021.03.042 · PMID: 33857423

35. Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure

Lukas Grossberger, Francesco P Battaglia, Martin Vinck

PLOS Computational Biology (2018-07-06) https://doi.org/gdvbsx

DOI: <u>10.1371/journal.pcbi.1006283</u> · PMID: <u>29979681</u> · PMCID: <u>PMC6051652</u>

36. Cell assemblies at multiple time scales with arbitrary lag constellations

Eleonora Russo, Daniel Durstewitz

eLife (2017-01-11) https://doi.org/f9kxd8

DOI: <u>10.7554/elife.19428</u> · PMID: <u>28074777</u> · PMCID: <u>PMC5226654</u>

37. Unitary Events in Multiple Single-Neuron Spiking Activity: II. Nonstationary Data

Sonja Grün, Markus Diesmann, Ad Aertsen

Neural Computation (2002-01-01) https://doi.org/ffvbkp

DOI: <u>10.1162/089976602753284464</u> · PMID: <u>11747535</u>

38. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

Emiliano Torre, Carlos Canova, Michael Denker, George Gerstein, Moritz Helias, Sonja Grün *PLOS Computational Biology* (2016-07-15) https://doi.org/gnpx4g

DOI: <u>10.1371/journal.pcbi.1004939</u> · PMID: <u>27420734</u> · PMCID: <u>PMC4946788</u>

39. Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex

Gergő Orbán, Pietro Berkes, József Fiser, Máté Lengyel

Neuron (2016-10) https://doi.org/f88725

DOI: 10.1016/j.neuron.2016.09.038 · PMID: 27764674 · PMCID: PMC5077700

40. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs

Henry Markram, Joachim Lübke, Michael Frotscher, Bert Sakmann

Science (1997-01-10) https://doi.org/ftvvd8

DOI: 10.1126/science.275.5297.213 · PMID: 8985014

41. Coherence detection in a spiking neuron via Hebbian learning

L Perrinet, M Samuelides

Neurocomputing (2002-06) https://doi.org/fsk9mk

DOI: 10.1016/s0925-2312(02)00374-0

42. Networks of integrate-and-fire neuron using rank order coding A: How to implement spike time dependent Hebbian plasticity

L Perrinet, A Delorme, M Samuelides, SJ Thorpe

Neurocomputing (2001-06) https://doi.org/d5p6b2

DOI: <u>10.1016/s0925-2312(01)00460-x</u>

43. Bio-plausible Unsupervised Delay Learning for Extracting Temporal Features in Spiking Neural Networks

Alireza Nadafian, Mohammad Ganjtabesh *arXiv* (2020-11-19) https://arxiv.org/abs/2011.09380

44. Variation in sequence dynamics improves maintenance of stereotyped behavior in an example from bird song

Alison Duffy, Elliott Abe, David J Perkel, Adrienne L Fairhall *Proceedings of the National Academy of Sciences* (2019-04-23) https://doi.org/gpfjm6
DOI: 10.1073/pnas.1815910116 · PMID: 31015294 · PMCID: PMC6511032

45. Motor control of birdsong.

Roderick A Suthers, Daniel Margoliash

Current opinion in neurobiology (2002-12) https://www.ncbi.nlm.nih.gov/pubmed/12490259
DOI: 10.1016/s0959-4388(02)00386-0 · PMID: 12490259

46. Descending projections of the songbird nucleus robustus archistriatalis.

IM Wild

The Journal of comparative neurology (1993-12-08) https://www.ncbi.nlm.nih.gov/pubmed/8308169
DOI: 10.1002/cne.903380207 · PMID: 8308169

47. Temporal hierarchical control of singing in birds.

AC Yu, D Margoliash

Science (New York, N.Y.) (1996-09-27) https://www.ncbi.nlm.nih.gov/pubmed/8791594
DOI: 10.1126/science.273.5283.1871 · PMID: 8791594

48. **Fitting summary statistics of neural data with a differentiable spiking network simulator** Guillaume Bellec, Shuqi Wang, Alireza Modirshanechi, Johanni Brea, Wulfram Gerstner *arXiv* (2021-11-16) https://arxiv.org/abs/2106.10064

49. Time structure of the activity in neural network models

Wulfram Gerstner

Physical Review E (1995-01-01) https://doi.org/cwcn9d

DOI: 10.1103/physreve.51.738 · PMID: 9962697

50. Abstract

eLife Sciences Publications, Ltd

https://doi.org/gpb34v

DOI: <u>10.7554/elife.44324.001</u>

51. Generative Models of Brain Dynamics -- A review

Mahta Ramezanian Panahi, Germán Abrevaya, Jean-Christophe Gagnon-Audet, Vikram Voleti, Irina Rish, Guillaume Dumas arXiv (2021-12-24) https://arxiv.org/abs/2112.12147

52. The Fourth Paradigm: Data-Intensive Scientific Discovery [Point of View]

Kristin M Tolle, DStewart W Tansley, Anthony JG Hey *Proceedings of the IEEE* (2011-08) https://doi.org/dfggjc

DOI: 10.1109/jproc.2011.2155130