

The (discontinuous) Petrov-Galerkin method

Seminar on advanced Finite Element Methods

Tim van Beeck July 07, 2021

Institut für Numerische und Angewandte Mathematik

Contents

Introduction

Three angles of DPG

Optimal test spaces

References

Introduction

General Idea

Galerkin method:

Find $u \in X$ such that

$$b(u, v) = \ell(v) \quad \forall v \in X.$$

General Idea

Petrov-Galerkin method:

Find $u \in X$ such that

$$b(u, \mathbf{v}) = \ell(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{Y}.$$

• Inf-sup stability:

$$\exists c > 0 : c \|u_h\|_X \le \sup_{\mathbf{v}_h \in Y_h} \frac{b_h(u_h, \mathbf{v}_h)}{\|\mathbf{v}_h\|_Y} \qquad \forall u_h \in X_h$$

Error estimate:

$$||u-u_h||_X \lesssim \inf_{v_h \in X_h} ||u-v_h||_X$$

Three angles of DPG

Three angles of DPG

Notation

 Dual space: consists of all linear functionals on a vector space; denoted by V*:

$$||f||_{V^*} = \sup_{v \in V, v \neq 0} \frac{|f(v)|}{||v||_V}.$$

• Riesz map: $R_V:V o V^*$ s.t. :

$$(R_V v)(w) = (v, w)_V \quad \forall v, w \in V.$$

Operator generated by a bilinear form:

$$B: X \to Y^*$$
 s.t. $Bx(y) = b(x, y) \quad \forall x \in X, y \in Y$.

6

Ideal DPG method

Definition (iDPG method)

Given $X_h \subset X$: Find $x_h \in X_h$ such that

$$b(x_h, y_h) = \ell(y_h)$$
 $\forall y_h \in Y_h^{\text{opt}} := T(X_h),$

where $T: X \to Y$ is defined through

$$(Tw, y)_Y = b(w, y) \qquad \forall w \in X, y \in Y.$$

7

T is a supermizer of the inf-sup condition

- we can write $T = R_Y^{-1} \circ B$
- $||Tx||_Y = \sup_{\mathbf{y} \in \mathbf{Y}} \frac{b(x,\mathbf{y})}{||\mathbf{y}||_Y}$

$$(\leq): ||Tx||_{Y} = \frac{b(x, Tx)}{||Tx||_{Y}} \leq \sup_{y \in Y} \frac{b(x, y)}{||y||_{Y}}$$

$$(\geq): sup_{y \in Y} \frac{b(x, y)}{||y||_{Y}} = sup_{y \in Y} \frac{(Tx, y)_{Y}}{||y||_{Y}} \leq ||Tx||_{X}$$

- exact inf-sup condition ⇒ discrete inf-sup condition
- inf-sup constant is equal to 1

iDPG for Poisson equation

Example

Find $u \in H_0^1(\Omega)$ s.t.

$$\int_{\Omega} \nabla u \nabla v \, \mathrm{d} x = \int_{\Omega} f v \, \mathrm{d} x \quad \forall v \in H^1_0(\Omega).$$

$$X = {\mathbf{Y} \over \mathbf{Y}} = H_0^1(\Omega); \quad (v, y)_Y := \int_{\Omega} \nabla v \nabla y \, \mathrm{d}x;$$

$$(\cdot,\cdot)_Y=b(\cdot,\cdot)\Rightarrow T=\mathrm{id};$$

$$Y_h^{\text{opt}} = X_h$$
.

⇒ standard FEM is iDPG method

iDPG is not practically feasible

Q: Generally, can we compute Tx?

→ Not necessarily! $T = R_Y^{-1} \circ B$

Definition (pratical DPG method)

Given $X_h \subset X$ find $x_h^r \in X_h$ using $Y^r \subset Y$, Y^r finite dimensional s.t.

$$b(x_h^r, y) = \ell(y) \quad \forall y \in Y_h^{\text{opt}} = T^r(X_h),$$

where $T^r: X \to Y^r$ is defined through

$$(T^r w, \mathbf{y})_Y = b(w, \mathbf{y}) \quad \forall w \in X, \mathbf{y} \in \mathbf{Y}^r.$$

pDPG method

- T is approximated by T^r (finite rank)
- computation can be localized → DG spaces

$$\rightarrow Y = \prod_{T \in \mathcal{T}_h} Y(T).$$

L^2 -least squares is iDPG

Example

Given $f \in L^2(\Omega)$ and $A : X \to L^2(\Omega)$ a linear, continuous and bijective operator. Find $u \in X$ s.t.

$$Au = f$$

$$Y = L^2(\Omega), \quad b(x, y) = (Ax, y)_Y, \quad \ell(y) = (f, y)_Y;$$

 $\Rightarrow (Tw, y)_Y = (Aw, y)_Y \Rightarrow T = A;$
 $\Rightarrow Y_h^{opt} = AX_h.$

Hence, the iDPG equations become:

$$(Ax_h, Aw_h)_Y = (f, Aw_h)_Y \quad \forall w_h \in X_h$$

Each DPG method is a least squares method

Theorem

The following statements are equivalent:

- 1. $x_h \in X_h$ is the unique solution to the iDPG method
- 2. x_h is the best approximation to x in X_h in the energy norm $\|z\|_X := \|Tz\|_Y$:

$$|||x - x_h||_X = \inf_{z_h \in X_h} |||x - z_h||_X$$

3. x_h minimizes a residual in the following sense:

$$x_h = \operatorname{argmin}_{z_h \in X_h} \|\ell - Bz_h\|_{Y^*}$$

Each DPG method is a least squares method

Proof.

 $(i) \Leftrightarrow (ii)$:

$$b(x - x_h, y_h) = 0 \forall y_h \in Y_h^{\text{opt}} \Leftrightarrow b(x - x_h, Tz_h) = 0 \forall z_h \in X_h$$
$$\Leftrightarrow (T(x - x_h), Tz_h)_Y = 0 \forall z_h \in X_h$$

 $(ii) \Leftrightarrow (iii)$:

$$|||x - z_h|||_X = ||T(x - z_h)||_Y = ||R_Y^{-1}B(x - z_h)||_Y$$
$$= ||B(x - z_h)||_{Y^*} = ||\ell - Bz_h||_{Y^*}$$

14

DPG methods allow for easy preconditioning

- Arising matrices are symmetric positive definite: $\operatorname{argmin}_{z_h \in X_h} \|\ell Bz_h\|_{Y^*} = \operatorname{argmin}_{z_h \in X_h} \frac{1}{2} \|\ell Bz_h\|_{Y^*}^2$
- → Derivative in direction $r_h \in X_h$:

$$\underbrace{(Bz_h, Br_h)_{Y^*}}_{\text{coercive bilinear form}} -(Br_h, \ell)_{Y^*} = 0$$

- Alternatively: $b(e_j, t_i) = (Te_j, Te_i)_Y = (Te_i, Te_j)_Y = b(e_i, t_j)$
- can use conjugate gradients!

iDPG vs. pDPG in the least-squares sense

• **iDPG**: Find $x_h \in X_h$ such that

$$x_h = \operatorname{argmin}_{z_h \in X_h} \underbrace{\|\ell - Bz_h\|_{Y^*}}_{\text{hard to compute!}}$$

• **pDPG:** Find $x_h^r \in X_h$ using $Y^r \subset Y$ such that

$$x_h = \operatorname{argmin}_{z_h \in X_h} \underbrace{\|\ell - Bz_h\|_{(Y^r)^*}}_{\text{finite dimensional } o \text{computable!}}$$

"Built-in" a-posteriori error estimation

• Compute the error without knowing the exact solution:

$$|||x - x_h|||_X = ||T(x - x_h)||_Y = ||R_Y^{-1}B(x - x_h)||_Y$$

- \rightarrow error representation function $\epsilon^r := R_{Y^r}^{-1}(\ell Bx_h)$
- can be practically computed by

$$(\epsilon^r, \mathbf{y})_Y = \ell(\mathbf{y}) - b(x_h, \mathbf{y}) \quad \forall \mathbf{y} \in \mathbf{Y}^r.$$

DPG is predestined for adpative mesh refinements

Error estimator: $\eta = \|\epsilon^r\|_Y$

DPG methods can be viewed as mixed Galerkin methods

Include the error representation function and reinterpret the problem as a saddle-point problem:

Theorem

The following statements are equivalent:

- 1. $x_h \in X_h$ solves the pDPG method,
- 2. $x_h \in X_h$ and $\epsilon^r \in Y^r$ solve the mixed formulation

$$(\epsilon^r, \mathbf{y})_Y + b(x_h, \mathbf{y}) = \ell(\mathbf{y}) \quad \forall \mathbf{y} \in \mathbf{Y}^r,$$

$$b(z_h, \epsilon^r) = 0 \quad \forall z_h \in X_h.$$

DPG methods can be viewed as mixed Galerkin methods

Proof.

(i) \Rightarrow (ii): first equation is just the definition of ϵ^r . Further

$$b(z_h, \epsilon^r) = (T^r z_h, \epsilon^r)_Y = (T^r z_h, R_{Y^r}^{-1} (\ell - B x_h))_Y$$
$$= (T^r z_h, T^r (x - x_h))_Y$$
$$= b(x - x_h, T^r z_h)$$
$$= 0$$

(ii) \Rightarrow (i): Analogous.

In conclusion the three angles yield

Optimal test spaces

δ -proximal spaces

Definition

For $\delta \in (0,1)$, a subspace $Y_h^{\delta} \subset Y$ with dim $Y_h^{\delta} = N(h) = \dim X_h$ is called δ -proximal if

$$\forall 0 \neq y_h \in Y_h^{\text{opt}} \quad \exists \tilde{y}_h \in Y_h^{\delta} \text{ s.t. } \|y_h - \tilde{y}_h\|_Y \leq \delta \|y_h\|_Y$$

$\overline{\delta}$ -proximal spaces are inf-sup stable

Lemma

For any $X_h \subset X$ and any δ -proximal $Y_h^{\delta} \subset Y$ the bilinear form $b(\cdot, \cdot)$ satisfies

$$\inf_{z_h \in X_h} \sup_{\boldsymbol{y_h} \in \boldsymbol{Y_h^\delta}} \frac{b(z_h, \boldsymbol{y_h})}{\|z_h\|_X \, \|\boldsymbol{y_h}\|_Y} \geq \frac{1-\delta}{1+\delta},$$

i.e. for any $\delta < 1$ the pair X_h , Y_h^{δ} satisfies a discrete inf-sup condition uniformly in h > 0.

Error estimate

Theorem

If Y_h^{δ} is δ -proximal for X_h , the solution $x_{h,\delta} \in X_h$ to

$$b(x_{h,\delta}, y_h) = \ell(y_h) \quad \forall y_h \in Y_h^{\delta}$$

satisfies

$$\|x - x_{h,\delta}\|_X \le \frac{2}{1-\delta} \inf_{z_h \in X_h} \|x - z_h\|_X$$

Example: Y-orthogonal projection

- $X = X^* = L^2(\Omega) \Rightarrow T = B$
- Let Z_h ⊂ Y be finite dimensional auxillary space, dim Z_h ≥ dim X_h
- Define the Y-orthogonal projection $P_h: Y \to Z_h$ through

$$(P_h \mathbf{y}, z_h)_Y = (\mathbf{y}, z_h)_Y \quad \forall z_h \in Z_h.$$

• Natural candidate for δ -proximal subspace for X_h :

$$\widetilde{Y}_h := P_h(\underline{Y}_h^{\text{opt}}) = P_h(BX_h) \subset Z_h \subset \underline{Y}.$$

Outlook: transport equation

DPG methods are practically applied for transport equations:

$$\beta \cdot \nabla u + \alpha(x)u = f \text{ in } \Omega,$$

 $u = g \text{ on } \partial \Omega_{\text{in}}.$

Conclusion

References

References

- Wolfgang Dahmen, Chunyan Huang, Christoph Schwab, Gerrit Welper, Adaptive Petrov-Galerkin methods for first order transport equations, January 24,2011.
- Leszek Demkowicz, Jay Gopalakrishnan A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation, January 22,2010.
- Leszek Demkowicz, Jay Gopalakrishnan *An Overview of the DPG Method*, January,2013.
- Jay Gopalakrishnan, A priori and a posteriori analyses of DPG methods, Spring,2014, https://icerm.brown.edu/video_archive/?play=387.