This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

11) Publication number: 0 495 674 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92300429.5

(22) Date of filing: 17.01.92

(51) Int. CI.5: C12N 15/12, C12P 21/02,

C07K 13/00, C12Q 1/68

30 Priority: 18.01.91 US 642991 10.01.92 US 816270

(43) Date of publication of application : 22.07.92 Bulletin 92/30

(A) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU NL PT

SE

(1) Applicant: Bristol-Myers Squibb Company 345 Park Avenue New York, N.Y. 10154 (US) (72) Inventor: Purchio, Anthony F. 801 33rd Avenue East Seattle, Washington 98112 (US) Inventor: Brunner, Amy M. 4345 32nd Avenue West No. 305 Seattle, Washington 98199 (US) Inventor: Chinn, Joyce 3107 25th Avenue South Seattle, Washington 98144 (US) Inventor: Neubauer, Michael G. 558 Highland Drive Seattle, Washington 98109 (US)

(74) Representative: Jones, Alan John et al CARPMAELS & RANSFORD 43 Bloomsbury Square London, WC1A 2RA (GB)

- (54) TGF-beta induced gene family.
- Fig. A new gene family induced by TGF-beta is disclosed. Two new genes, designated βIG-M1 and βIG-M2, are induced in response to TGF-β1 treatment of mouse embryo fibroblasts. These genes encode proteins containing about 345 to about 380 amino acid residues, with a molecular weight of about 37,000 to about 48,000 daltons and about 38 cysteine residues. The induced proteins share about 50% homology with each other and significant homology with a v-src induced protein in chicken embryo fibroblasts designated CEF-10. These proteins may be involved in producing some of the growth and differention modulating effects of TGF-β1.

BIG-M1	Cluatic Paccecatate and a second	
	CIVOTTSWSQCSKSCGTGISTRVINDNPECRL-VKETRICEVR	42
CEF12CS	CIVQTTSWSQCSKTCGTGISTRVTNDNPDCKL-IKETRICEVR	42
BIG-M2	CLYQTTEWSACSKTCGHGISTRYTNDNTFCRL-EKQSRLCHYR	42
PFALCIPACS	MSI-STEWSPCSVTCGNGIQVRIKPGSANKPKDELDYEN-DIEKKICKME	4A
PROPERDOSR	WSX-WSPWSPCSVTCSXGXQXXXRXRXCXXPAPXX-GXPCAGXAXXXXXQ	48
THROMBOCS	WSH-WSPWSSCSYTCGDGVITRIRLCMSPSPQHNGKPCECEARETK	45
PFALTRAPCS	CGV-WDEWSPCSVTCGKGTRSRKREILHEGCTSEIQEQ	37
C7COMPCS	WDF-YAPWSECH-GCTKTQTRRRSVAYYGQYGGQPCYGNAFETO	42
	** *, ,*,	-
		

region II of CS protein

PCGQPVYSSLKKGKKCSK	60
PCGQPSYASLXKGKKCTK	60
	60
KCSSVFN	55
ACXXXXPCPXX-G	60
ACKKDA-CPIN-G	56
	48
	58
	PCGQPSYASLKKGKKCTK PCEADLEENIKKGKKCIR KCSSVFN

TECHNICAL FIELD OF THE INVENTION

The present invention is directed to the induction of a new gene family in response to TGF-beta administration to target cells in culture. Two specifically induced genes were isolated and characterized.

BACKGROUND OF THE INVENTION

5

15

20

45

Transforming growth factor-β1 (TGF-β1) is a multifunctional regulator of cell growth and differentiation. !! is capable of causing diverse effects such as inhibition of the growth of monkey kidney cells, (Tucker, R.F., G.D. Shipley, H.L. Moses & R.W. Holley (1984) Science 226:705-707) inhibition of growth of several human cancer cell lines, (Roberts, A.B., M.A. Anzano, L.M. Wakefiled, N.S. Roches, D.F. Stem & M.B. Sporn (1985) Proc. Natl. Acad. Sci. USA 82:119-123; Ranchalis, J.E., L.E. Gentry, Y. Agawa, S.M. Seyedin, J. McPherson, A. Purchio & D.R. Twardzik (1987) Biochem. Biophys. Res. Commun. 148:783-789) inhibition of mouse keratinocytes, (Coffey, R.J., N.J. Sipes, C.C. Bascum, R. Gravesdeal, C. Pennington, B.E. Weissman & H.L. Moses (1988) Cancer Res. 48: 1596-1602; Reiss, M. & C.L. Dibble (1988) In Vitro Cell. Dev. Biol. 24:537-544) stimulation of growth of AKR-2B fibroblasts (Tucker, R.F., M.E. Olkenant, E.L. Branum & H.L. Moses (1988) Cancer Res. 43:1581-1586) and normal rat kidney fibroblasts, (Roberts, A.B., M.A. Anzano, L.C. Lamb, J.M. Smith & M.B. Sporn (1981) Proc. Natl. Acad. Sci. USA 78:5339-5343) stimulation of synthesis and secretion of fibronectin and collagen, (Ignotz, R. A. & J. Massague (1986) J. Biol. Chem. 261:4337-4345; Centrella, M., T.L. McCarthy & E. Canalis, (1987) J. Biol. Chem. 262:2869-2874) induction of cartilage-specific macromolecule production in muscle mesenchymal cells, (Seyedin, S. M., A. Y. Thompson, H. Bentz, D.M. Rosen, J. McPherson, A. Contin, N.R. Siegel, G.R. Galluppi & K.A. Piez (1986) J. Biol. Chem. 261:5693-5695) and growth inhibition of T and B lymphocytes. (Kehrl, J.H., L.M. Wakefiled, A.B. Roberts, S. Jakeoview, M. Alvarez-Mon, R. Derynck, M.B. Sporn & A.S. Fauci (1986) J. Exp. Med. 163:1037-1050; Kehrl, J.H., A.B. Roberts, L.M. Wakefield, S. Jakoview, M.B. Sporn & A.S. Fauci (1987) J. Immunol. 137:3855-3860; Kasid, A., G.I. Bell & E.P. Director, (1988) J. Immunol. 141:690-698; Wahl, S.M., D.A. Hunt, H.L. Wong, S. Dougherty, N. McCartney-Francis, L.M. Wahl, L. Ellingsworth, J.A. Schmidt, G. Hall, A.B. Roberts & M.B. Sporn (1988) J. Immunol. 140:3026-3032)

Recent investigations have indicad that TGF-β1 is a member of a family of closely related growth-modulating proteins including TGF-β2, (Seyedin, S.M., P.R. Segarini, D.M. Rosen, A.Y. Thompson, H. Bentz & J. Graycar (1987) J. Biol. Chem. 262:1946-1949; Cheifetz, S., J.A. Weatherbee, M.L.-S. Tsang, J.K. Anderson, J.E. Mole, R. Lucas & J. Massague (1987) Cell 48:409-415; Ikeda, T., M.M. Lioubin & H. Marquardt (1987) Biochemistry 26:2406-2410) TGF-β3, (TenDijke, P., P. Hansen, K. Iwata, C. Pieler & J.G. Foulkes (1988) Proc. Natl. Acad. Sci. USA 85:4715-4719; Derynck, R., P. Lindquist, A. Lee, D. Wen, J. Tamm, J.L. Graycar, L Rhee, A.J. Mason, D.A. Miller, R.J. Coffey, H.L. Moses & E.Y. Chen (1988) EMBO J. 7:3737-3743; Jakowlew, S.B., P.J. Dillard, P. Kondaiah, M.B. Spom & A.B. Roberts (1988) Mol. Endocrinology. 2: 747-755) TGF-β4, (Jakowlew, S. B., P. J. Dillard, M. B. Spom & A.B. Roberts (1988) Mol. Endocrinology. 2:1186-1195) Mullerian inhibitory substance, (Cate, R.L., R.J. Mattaliano, C. Hession, R. Tizard, N.M. Faber, A. Cheung, E.G. Ninfa, A.Z. Frey, D.J. Dash, E.P. Chow, R.A. Fisher, J.M. Bertonis, G. Torres, B.P. Wallner, K.L. Ramachandran, R.C. Ragin, T.F. Manganaro, D.T. Maclaughlin & P.K, Donahoe (1986) Cell 45:685-698) and the inhibins. (Mason, A. J., J.S. Hayflick, N. Ling, F. Esch, N. Ueno, S.-Y. Ying, R. Guillemin, H. Niall & P.H. Seeburg (1985) Nature 318:659-663)

TGF-β1 is a 24-kDa protein consisting of two identical disulfide-bonded 12 kD subunits. (Assoian, R.K., A. Komoriya, C.A. Meyers, D.M. Miller & M.B. Sporn (1983) J. Biol. Chem. 258:7155-7160; Frolik, C.A., L.L. Dart, C.A. Meyers, D.M. Miller & M.B. Sporn (1983) Proc. Natl. Acad. Sci. USA 80:3676-3680; Frolik, C.A., L.M. Wakefiled, D.M. Smith & M.B. Sporn (1984) J. Biol. Chem. 259:10995-11000) Analysis of cDNA clones coding for human, (Derynck, R., J.A. Jarrett, E.Y. Chem, D.H. Eaton, J.R. Bell, R.K. Assoian, A.B. Roberts, M.B. Sporn & D.V. Goeddel (1985) Nature 316:701-705) murine, (Derynck, R., J.A. Jarrett, E.Y. Chem, & D.V. Goeddel (1986) J. Biol. Chem. 261:4377-4379) and simian (Sharples, K., G.D. Plowman, T.M. Rose, D.R. Twardzik & A.F. Purchio (1987) DNA 6:239-244) TGF-β1 indicates that this protein is synthesized as a larger 390 amino acid pre-pro-TGF-β1 precursor; the carboxyl terminal 112 amino acid portion is then proteolytically cleaved to yield the TGF-β1 monomer.

The simian TGF-β1 cDNA clone has been expressed to high levels in Chinese hamster ovary (CHO) cells. Analysis of the proteins screted by these cells using sitespecific antipeptide antibodies, peptid mapping, and protein sequencing revealed that both mature and precursor forms of TGF-β were produced and were held together, in part, by a complex array of disulfide bonds. (Gentry, L.E., N.R. Webb, J. Lim, A. M. Brunner, J.E. Ranchalis, D.R. Twardzik, M.N. Lioubin, H. Marquardt & A.F. Purchio (1987) Mol. Cell Biol. 7:3418-3427; Gentry, L.E., M.N. Lioubin, A.F. Purchio & H. Marquardt (1988) Mol. Cell. Biol. 8:4162-4168) Upon purification away

from the 24kD mature rTGF-β1, the 90 to 110 kD pr cursor compl x was found to consist of thre species: pro-TGF-β1, the pro-region of the TGF-β1 precursor, and mature TGF-β1. (Gentry, L.E., N.R. Webb, J. Lim, A.M. Brunner, J.E. Ranchalis, D.R. Twardzik, M.N. Lioubin, H. Marquardt & A.F. Purchio (1987) Mol. C II Biol. 7:3418-3427; Gentry, L.E., M.N. Lioubin, A.F. Purchio & H. Marquardt (1988) Mol. Cell. Biol. 8:4162-4168) Detection of optimal biological activity required acidification before analysis, indicating that rTGF-β1 was secreted in a latent form.

The pro-region of the TGF-β1 precursor was found to be glycosylated at three sites (Asn 82, Asn 136, and Asn 176) and the first two of these (Asn 82 and Asn 136) contain mannose-6-phosphate residues. (Brunner, A.M., L.E. Gentry, J.A. Cooper & A.F. Purchio (1988) Mcl. Cell Bioi. 8:2229-2232; Purchio, A.F., J.A. Cooper, A.M. Brunner, M.N. Lioubin, L.E. Gentry, K.S. Kovacina, R.A. Roth & H. Marquardt. (1988) J. Biol. Chem. 263:14211-14215) In addition, the rTGF-β1 precursor is capable of binding to the mannose-6-phosphate receptor and may imply a mechanism for delivery to lysomes where proteolytic processing can occur. (Kornfeld, S. (1986) J. Clin. Ivest. 77:1-6)

TGF-β2 is also a 24-kD homodimer of identical disulfide-bonded 112 amino acid subunits (Marquardt, H., M.N. Lioubin & T. Ikeda (1987) J. Biol. Chem. <u>262</u>:12127-12131). Analysis of cDNA clones coding for human (Madisen, L., N. R. Webb, T.M. Rose, H. Marquardt, T. Ikeda, D. Twardzik, S. Seyedin & A.F. Purchio. (1988) DNA <u>7</u>:1-8; DeMartin, R., B. Plaendler, R. Hoefer-Warbinek, H. Gaugitsch, M. Wrann, H. Schlusener, J.M. Seifert, S. Bodmer, A. Fontana & E. Hoefer. EMBO J. <u>6</u>:3673-3677) and simian (Hanks, S.K., R. Armour, J.H. Baldwin, F. Maldonado, J. Spiess & R.W. Holley (1988) Proc. Natl. Acad. Sci. USA <u>85</u>:79-82) TGF-β2 showed that it, too, is synthesized as a larger precursor protein. The mature regions of TGF-β1 and TGF-β2 show 70% homology, whereas 30% homology occurs in the proregion of the precursor. In the case of simian and human TGF-β2 precursor proteins differing by a 28 amino acid insertion in the pro-region; mRNA coding for these two proteins is thought to occur via differential splicing (Webb, N.R., L. Madisen, T.M. Rose & A.F. Purchio (1988) DNA 7:493-497).

25 SUMMARY OF THE INVENTION

15

20

30

45

55

The present invention is directed to the induction in mammalian cells of a new family of genes in response to TGF-beta administration. The induced genes encode a class of similar proteins containing about 345 to about 380 amino acid residues, having a molecular weight of about 37,000 daltons to about 45,000 daltons and containing about 38 cysteine residues. The cysteine residues are substantially conserved and these proteins share about 50% homology with each other. The induced gene products further share extensive homology with a protein induced by v-src in chicken embryo fibroblasts.

The present invention specifically discloses the induction by TGF-beta in mouse embryo cells of a gene family encoding proteins designated as β IG-M1 and β IG-M2 (beta-induced gene-mouse 1 and 2, respectively) that share about 80% and 50% homology, respectively with the CEF-10 protein induced by v-src in chicken embryo fibroblasts. The nucleotide sequences for β IG-M1 and β IG-M2 were elucidated and compared. The induction of the genes of the present invention by TGF-beta had not been previously reported or envisioned.

40 DESCRIPTION OF THE FIGURES

In the drawings:

FIGURE 1 illustrates the nucleotide and deduced amino acid sequences of βIG-M1, and corresponds to Sequence I.D. No. 1.

FIGURE 2 illustrates the nucleotide and deduced amino acid sequences of βIG-M2, and corresponds to Sequence I.D. No. 3.

FIGURE 3 illustrates Northern Blot Analysis of βIG-M1 and βIG-M2 RNA. Total RNA was extracted from AKR-2B cells (Purchio and Fareed (1979) J. Virol. 29:763-769), fractionated on a 1% agarose-formaldehyde gel (Lehrach et al., (1977) Biochemistry 16:4743-4751) and hybridized to [32P]-labelled βIG-M1 (A) or βIG-M2 (C) probes. Lane 1, AKR-2B; Lane 2, AKR-2B and TGF-β1; Lane 3, AKR-2B and cyclohexamide; Lane 4, AKR-2B and cyclohexamide and TGF-β1. The gels shown in panels A and C were stained with methylene blue and photographed (B and D) to show equal loading of RNAs.

FIGURE 4 illustrates the alignment of amino acid residue sequences for βIG-M1 and CEF-10 proteins. Residues that are identical in both sequences are indicated by (:).

FIGURE 5 illustrates the alignment of amino acid residu sequences for βIG-M2 and CEF-10 proteins. Residues that are identical in both sequences are indicated by (:).

FIGURE 6 illustrates the alignment of amino acid residue sequences for β IG-M2 and β IG-M1 proteins. R sidues that are id intical in both sequences are indicated by (:).

FIGURE 7 illustrates the multiple sequenc alignment of region II of CS protein. The alignment shown is between 8 prot in sequences. An asterisk (*) indicated the positions where alignment is perfectly conserved, and a dot (.) indicates those positions that are will conserved.

The aligned regions represented ar:

- . βIG-M1: amino acid residues 227-286 (60 residues)
- . CEF12CS (CEF10): amino acid residues 224-283 (60 residues)
- . ßIG-M2: amino acid residues 198-257 (60 residues)
- . PFALCIPACS (P. Falciparum CS protein region II): amino acid residues 340-395 (55 residues)
- PROPERDCSR (Properdin): consensus of 6 repots (60 residues)
- . THROMBOCS (Trombospondin): repeat region, amino acid residues 420-476 (56 residues)
- . PFALTRAPCS (P. Falciparum TRAP): amino acid residues 244-291 (48 residues)
- C7COMPCS (C7 terminal complement motif): amino acid residues 8-63 (56 residues)

FIGURE 8 illustrates a Southern blot analysis of mouse genomic DNA with pβIG-M2. High molecular weight DNA was extracted from mouse kidneys, digested with Bam HI (lane 1), Eco RI (lane 2), Hind III (lane 3) or Sstl (lane 4) and analyzed by Southern blotting with [32P]-labeled pβIG-M2 (panel A) or [32P]-labeled pβIG-M1 (panel B).

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is directed to the induction of a gene family by TGF-beta administration to target cells. The genes encode a family of proteins having about 345 to about 380 amino acid residues, having a molecular weight of about 37,000 daltons to about 45,000 daltons and containing about 38 cysteine residues.

TGF-β1 is known to regulate the transcription of several genes, such as the genes encoding c-myc, c-sis, the receptor for platelet derived growth factor (PDGF) and TGF-betal. The proteins encoded by the TGF-betal induced genes are likely involved in mediation of the biological effects of TGF-betal relating to cell growh and differentiation.

All amino acid residues identified herein are in the natural of L-configuration. In keeping with standard polypeptide nomenclature, abbreviations for amino acid residues are as follows:

30

5

10

15

20

35

40

45

50

EP 0 495 674 A2

		SYN	1BOL
	AMINO ACID	3-Letter	1-Letter
5	Alanine	Ala	Α
	Arginine	Arg	R
	Asparagine	Asn	N
	Aspartic acid	Asp	D
10	Aspartic acid or Asparagine	Asx	В
	Cysteine	Cys	С
	Glutamine	Gln	Q
	Glutamic acid	Glu	E
15	Glycine	Gly	G
	Glutamic acid or Glutamine	Glx	Z
	Histidine	His	Н
	Isoleucine	Ile	I
20	Leucine	Leu	L
20	Lysine	Lýs	K
	Methionine	Met	M
	Phenylalanine	Phe	F
	Proline	Pro	P
25	Serine	Ser	S
	Threonine	Thr	T
	Tryptophan	Trp	w
	Tyrosine	Tyr	Y
30	Valine	Val	V

In the present invention it was found that when cells are treated with TGF-betal, at least one new class of genes was transcriptionally activated. This class of genes was established by isolating the RNA from the treated cells, processing it, and then preparing cDNA from the RNA. The cDNA was further cloned and a library of genes prepared.

35

As used herein, the term "library" refers to a large random collection of cloned DNA fragments obtained from the transcription system of interest. The gene library was then screened with labelled cDNA probes obtained from TGF-beta treated and untreated cells. This approach led to the detection of TGF-betal induced genes.

In a preferred embodiment, mouse AKR-2B cells (obtained from Dr. H. Moses, Vanderbilt University, Nashville, TN.) were treated with TGF-beta1, and two new genes, designated βIG-M1 and βIG-M2, respectively, were elucidated. The coding sequences for these genes were obtained by cDNA cloning of the polyadeny-lated RNA isolated from the AKR-2B cells. The entire coding region was sequenced and then compared to known published sequences. The deduced amino acid sequences of the βIG-M1 and βIG-M2 gene products demonstrated about 80% and 50% homology, respectively, with CEF-10, a gene induced by v-src in chicken embryo fibroblasts (Simmons et al. (1989) Proc. Natl.. Acad. Sci. USA. 86:1178). Comparison and alignment of the amino acid sequences of CEF-10 with βIG-M1 and βIG-M2 are shown in FIGURES 1 and 2, respectively. It is readily seen that significant homology exists between these proteins and that 38 of the 39 cysteine residues are conserved. When βIG-M1 and βIG-M2 are compared with each other, approximately 50% homology is seen between the two sequences. (FIGURE 3)

Upon further investigation it was found that the C-terminal cysteine rich domain of CEF-10, βIG-M1, and βIG-M2 contain an amino acid sequence motif with strong homology (9 of 12 amino acids) to a motif found near the C-terminal of the malarial circumsporozoite (CS) protein. (FIGURE 7) This region of th CS prot in, d signated 'r gion II', is highly conserved (10 of 12 amino acids) among all sp cies of malarial parasit s sequenc d to date (Robson, K.J.H., et al. (1988) Nature 335:79; Rich, K.A., et al. (1990) Science 249:1574). The CS protein is expressed on the surface of plasmodium species during the sporozoite phase and may b involved in recognition and ntry into hepatocytes (Aley, S.B., et al. (1986) J. Exp. Med. 164:1915).

The rol of th region II motif in cell adhesion has been demonstrated by using peptide fragments of <u>P.vivax</u> CS protein to promote T-cell and myeloid cell line attachment to microtit r plates (Rich, K. A., et al. (1990) Science <u>249</u>:1574). Furthermore, only peptides overlapping region II were able to inhibit T-cell and myeloid c II lines from binding to the CS protein.

The region II CS protein motif (CS motif is also found in other proteins which may have cell adhesive properties that mediate cell-cell and cell-extracellular matrix interactions, such as properdin, thrombospondin; thrombospondon related anonymous protein (TRAP) and various complement components.

Properdin has 6 repeats containing the CS motif. Properdin is involved in stabilizing the 'alternate' pathway of complement which involves the binding of C3b to the <u>surfaces of foreign</u> organisms (Goundis, D. and Reid, K.B.M. (1988) Nature 335:82).

Thrombospondin has 3 repeats of the CS motif. Data suggest it is a member of a class of adhesive proteins secreted by activated platelets and tissue culture cells, associating with the platelet membrane and becoming incorporated in fibrin clots and extracellular matrix (Lawler, J. and Hynes, R.O. (1986) J. Cell Bio. 103:1635).

TRAP is a surface antigen expressed during the blood stage of <u>P. falciparum</u> and may be involved in attachment to erythrocytes (possibly via C3b) prior to invasion (Robson, K.J.H., et al. (1988) Nature 335:79).

A comparison of the amino acid residue sequences of these proteins is shown in FIGURE 7, and demonstrates a high degree to conservation of the region II sequence.

The N-terminus and the C-terminus of complement components C7, C8α, and C8β, and the N-terminus of C9 contain motifs that have weak homology to the CS motif (Goundis, D. and Reid, K.B.M. (1988) Nature 335:82).

Libraries of cDNA were generated in the present invention as a means to detect the induction of new genes by TGF-beta1. Double stranded cDNA containing EcoR1 cohesive termini was ligated into the unique EcoI cloning site present in λ gt 10 DNA. The recombinant DNA was then packaged into viable phage particles and plated on appropriate hosts (<u>E. coli</u> strain C₈₀₀ rK⁻mK⁺hFI) for amplification and screening.

 λ gt 10 is an insertion vector with a cloning capacity of up to 7 kb. The unique EcoR1 cloning site is located in the λ repressor (cl) gene. Insertion of foreign DNA at this restriction site interrupts the cl coding sequence and causes the phenotype of the phage to change from cl⁺ (wild type) to cl⁻. Since cl⁻ phage are unable to lysogenize the host, clear plaques are produced by the recombinants. When plated on mutant bacteria which produce lysogeny, or bacteriophage integration, at a high frequency, only recombinant cl⁻ phage produce plaques. Nonrecombinants, such as λ gt 10 without an insert, are effectively suppressed from plaque formation. This has served in the present invention as the basis for the biological selection for recombinant phage during λ gt 10 library amplification.

Selection of the cloned sequences of interest in the present invention was carried out by screening the library with nucleic acid sequences derived from TGF- β 1 treated and untreated cells. This screening is dependent upon molecular hybridization by annealing of single-stranded nucleic acid molecules to form duplex structures that are stabilized by sequence-specific hydrogen bonds. Only nucleic acids of related sequence organization will base pair, or hybridize, with each other.

Northern blot analysis as carried out in the present invention allows the detection of rare RNA molecules in a cell. In this technique, total cellular RNA is prepared and then resolved into different size classes electrophoretically. The resolved RNA is then transferred and probed with radiolabelled DNA, followed by radioautographic detection of DNA-RNA hybrid duplexes.

The Northern blot technology was used in the present invention to further characterize \(\textit{\textit{BIG-M1}} \) and \(\textit{\textit{BIG-M2}} \). The present invention is further described by the following Examples which are intended to be illustrative and not limiting.

EXAMPLE 1

10

15

20

40

45

55

Isolation of BIG-M1 and BIG-M2

AKR-2B mouse cells, (obtained from Dr. H. Moses, Vanderbilt University, Nashville, TN.) were grown to confluency in McCoy's media (GIBCO BRL, Gaithersburg, MD) plus 5% fetal bovine serum (FBS). The cells were then treated with cyclohexamide (10 ug/ml) for 15 minutes.

TGF-beta1 (10 ng/ml) was then added to the cells and the cells maintained for 6 hours at about 37°C with cyclohexamide and TGF-beta1.

The RNA was extracted from th cills. Polyad nylated RNA (polyA-RNA) was isolated by passage of the extracted RNA through an oligo-dT cellulose column. The polyA-RNA was then used to prepare cDNA by use of reverse transcriptase. The cDNA was cloned into λ gt 10 phage by using an EcoRI bridger according to the method of Webb, N.R. tal., 1987, DNA 6:71-79.

A DNA library was prepared and was then screened using two 32P-labelled cDNA prob s. The 32P-labelled cDNA probes w re prepared, respectiv ly, from untreated AKR-2B mRNA and AKR-2B mRNA from c lls tr ated with cyclohexamide and TGF-beta1. Hybridization of the prob s with th DNA library to elicit plaques was carried out. Those plaqu s that had hybridized strongly with the probe from treated cells were isolated and further purified. The DNA from the tertiary plaques were cut with EcoR1 and then cloned into plasmid pEMBL18. Two clones (βIG-M1 and βIG-M2) were then sequenced. The sequences are shown in FIGURE 1 and 2 (Sequence I.D. Nos. 1 and 3, respectively).

Northern blot analysis of the mRNA from treated and untreated cells are shown in FIGURE 3. BIG-M1 (Figure 3A, lane 2) and βIG-M2 (Figure 3C, lane 2) RNAs were significantly increased in AKR-2B cells after a 6 hour treatment with TGF-81. These RNA were barely detectable in untreated cells (Figures 3A and 3C, lane 1). Both BIG-M1 and BIG-M2 RNAs were increased by treatment with cyclohexamide alone (FIGURES 3A and 3C, lane 3) and were even further induced by treatment with the combination of cyclohexaminde and TGF-β1. (FIGURES 3A and 3C, lane 4). TGF-β1 treatment in the presence of cyclohexamide increased βIG-M2 RNA to a much higher extent (15 fold) than βIG-M1 RNA (3 fold) over those values observed after cyclohexamide treatment alone.

Southern blot analysis was carried out using mouse kidney DNA and clearly demonstrated that the two probes hybridized to different restriction fragments (FIGURE 8A and B) indicating that βIG-M1 and βIG-M2 are encoded by different genes. It is readily seen that the administration of TGF-β1 in the presence of cyclohexamide significantly induces the production of mRNA for both \(\beta\)IG-M1 and \(\beta\)IG-M2 (FIGURE 3). A small amount of constitutive synthesis of these mRNAs is seen in the cyclohexamide treated cells.

EXAMPLE 2

15

20

25

30

Characterization of βIG-M1 and βIG-M2

The amino acid residue sequences for βIG-M1 and βIG-M2 (sequence I.D. No. 2 and 4, respectively) were determined and compared. As shown in FIGURE 6 when the two protein sequences are aligned there is a 47.7% homology between the sequences with conservation of 38 of the 39 cysteine residues.

Comparison of the protein sequence with the v-src-induced gene product CEF-10 (Sequence I.D. No. 6) shows homology of about 80% with β IG-M1 (Sequence I.D. No. 2) as seen in FIGURE 4, and of about 50% with βIG-M2 (Sequence I.D. No. 4) as seen in FIGURE 5.

DNA sequence analysis of pBIG-M1 indicated that it contained a single open reading frame coding for a 379 amino acid polypeptide. As stated above, this protein is about 80% homologous to CEF-10. It was further determined that βIG-M1 protein is identical to the protein encoded by cyr61, as described in O'Brien et al. (1990) Mol. Cell Biol. 10:3569-3577, an immediate early response gene induced in quiescent BALB 3T3 cells by serum treatment.

DNA sequence analysis of pBIG-M2 (FIGURE 2) indicates a single open reading frame encoding a 348 amino acid protein. The amino terminal portion of \$IG-M2 contains a hydrophobic stretch which could function as a signal peptide. Beginning at amino acid residue 52 in FIGURE 2, βIG-M2 contains the sequence Gly-Cys-Gly-Cys-Cys-Arg-Val-Cys which conforms to the Gly-Cys-Gly-Cys-Cys-X-X-Cys motif reported in the amino half of insulin-like growth factor (IGF) binding proteins. (Binkert et al. (1988) EMBO J. 8:2497-2502; Albiston et al. (1990) Biochem. Biophys. Res. Commun. 16:892-897; Brinkman et al. (1988) EMBO J. 7:2417-2423). This motif is also present in βIG-M1 at amino acid residues 49 - 56 in Figure 1.

The foregoing description and Examples are intended as illustrative of the present invention, but not as limiting. Numerous variations and modifications may be effected without departing from the true spirit and scope of the present invention.

50

45

SEQUENCE LISTING

5	(1) GENE	RAL INFORMATION:
10	(i)	APPLICANT: BRISTOL-MYERS SQUIBB COMPANY 345 Park Avenue New York, New York 10154 United States of America
	(ii)	TITLE OF INVENTION: TGF-BETA INDUCED GENE FAMILY
15	(iii)	NUMBER OF SEQUENCES: 6
	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Joseph M. Sorrentino (B) STREET: 3005 First Avenue (C) CITY: Seattle
20		(D) STATE: Washington (E) COUNTRY: USA (F) ZIP: 98121
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.24
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US unassigned (B) FILING DATE: 18-JAN-1991 (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Sorrentino, Joseph M. (B) REGISTRATION NUMBER: 32,598 (C) REFERENCE/DOCKET NUMBER: ON0081-
40	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (206)728-4800 (B) TELEFAX: (206)448-4775
45	(2) INFO	RMATION FOR SEQ ID NO:1:
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2028 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: cDNA
55	(iii)	HYPOTHETICAL: N

		(i	v) P	NTI	-SE	NSE:	N										
5		(v:	i) ((A) (G)	ORC CE	GANI LL 1	SM:	Mu:	ibro	bla							
10	(vii:	i) F		TIOI UN				E:								,
15		`	•	(A) (B) (D) FEAT (A)	URE NAI LOC OTI URE NAI	ME/F CATI HER : ME/F	ON: INF	18 ORM ma	61 ATIC t_pe	N: epti	de						·
20					OT										•		
20		/ 50	:\ c	ידי	EMO	E D.	2000	T 50 m		25							
					ENC						_						
	GACC	GTG	AGC (GAGAC	GCCC	CA G	GAA	CGCC	TGO	CAATO	CTCT	GCG	CTCC:	rcc (CCA	GCACCT	60
25	CGAC	AGAI	AGG #	ACACO	CCGC	CG CC	CTCG	CCC	CGC	CTC	ACCG	CAC	rccg	GC (CAT	TTGATC	120
	cccc	CTGC1	CG (CGGG	CTTG	TT GO	TTC	GTG	r cgo	cccc	CTC	GCC	ccgg:	TC (CTCC	rgcgcg	180
30	CCAC										eu Al				TC AC		227
															GCC		275
35	Leu 15	Leu	His	Leu	Thr	Arg 20	Leu	Ala	Leu	Ser	Thr 25	Сув	Pro	Ala	Ala	Сув 30	
	CAC	TGC	ССТ	CTG	GAG	GCA	ccc	AAG	TGC	GCC	CCG	GGA	GTC	GGG	TTG	GTC.	323
	His	Сув	Pro	Leu	Glu 35	Ala	Pro	Lys	СЛя	Ala 40	Pro	Gly	Val	Gly	Leu 45	Val	323
40															AAC		371
	Arg	Asp	Gly	Сув 50	Gly	Сув	Сув	Lys	Val 55	Cys	Ala	Lys	Gln	Leu 60	Asn	Glu	
															GAA		419
45	Asp	Сув	Ser 65	Lys	Thr	Gln	Pro	Сув 70	Asp	His	Thr	Lys	Gly 75	Leu	Glu	Сув	
	AAT	TTC	GGC	GCC	AGC	TCC	ACC	GCT	CTG	AAA	GGG	ATC	TGC	AGA	GCT	CAG	467
50															Ala		
															AAC		515
		Glu	Gly	Arg	Pro		Glu	Tyr	Asn	Ser		Ile	Tyr	Gln	Asn	Gly	
	95					100					105					110	

5					CCC Pro 115										563
10	_	_	_		ATT Ile										611
					AAC Asn										659
15					TGT Cys										707
20					CTC Leu										755
25					ATC Ile 195										803
					ACC Thr										851
30					TGC Cyb										899
35					ACT Thr								CCA Pro		947
40		Сув			GTG Val										995
										Gly			AAG Lys	:	1043
45					Pro				Phe				TCC Ser		1091
50				Lys				Tyr					GGC		1139
			Сув				Thr				Met		CGA Arg		1187

TGC GAA GAT GGA GAG ATG TTT TCC AAG AAT GTC ATG ATG ATC CAG TCC

	Cys Glu Asp Gly Glu Met Phe Ser Lys Asn Val Met Met Ile Gln Ser 335 340 345 350	
10	TGC AAA TGT AAC TAC AAC TGC CCG CAT CCC AAC GAG GCA TCG TTC CGA Cys Lys Cys Asn Tyr Asn Cys Pro His Pro Asn Glu Ala Ser Phe Arg 355 360 365 .	1283
	CTG TAC AGC CTA TTC AAT GAC ATC CAC AAG TTC AGG GAC TAAGTGCCTC Leu Tyr Ser Leu Phe Asn Asp Ile His Lys Phe Arg Asp 370 375	1332
15	CAGGGTTCCT AGTGTGGGCT GGACAGAGGA GAAGCGCAAG CATCATGGAG ACGTGGGTGG	1392
	GCGGAGGATG AATGGTGCCT TGCTCATTCT TGAGTAGCAT TAGGGTATTT CAAAACTGCC	1452
	AAGGGGCTGA TGTGGACGGA CAGCAGCGCA GCCGCAGTTG GAGAATGCCA AGGGGCTGAT	1512
20	GTGGACGGAC AGCAGCGCAG CCGCAGTTGG AGAAGACTTC GCTTCATAGT ACTGGAGCGG	1572
	GCATTATTGC TCCATATTGG AGCATGTTTA CGGATGACGT TCTGTTTTCT GTTTGTAAAT	1632
ne.	TATTTGCTAA GTGTATTTTT TTGCTCCAGA CCCCCCCCC CCCTTTCTTG GTTCTACAAT	1692
25	TGTAATAGAG ACAAAATAAG ATTAGTTGGG CCAAGTGAAA GCCCTGCTTG TCCTTTGACA	1752
	GAAGTAAATG AAAGCGCCTC TCATTCCTTC CCGAGCGGAG GGGGGACACT CTGTGAGTGT	1812
30	CCTTGGGGCA GCTACCTGCA CTCTAAAACT GCAAACAGAA ACCAGGTGTT TTAAGATTGA	1872
	ATGTTTTTTT ATTTATCAAA GTGTAGCTTT TGGGGAGGGA GGGGAAATGT AATACTGGAA	1932
	TAATTTGTAA ATGATTTTAA TTTTATATCA GTGAAGAGAA TTTATTTATA AAATTAATCA	1992
35	TTTAATAAAG AAATATTTAC CTAAAAAAAA AAAAAA	2028
	(2) INFORMATION FOR SEQ ID NO:2:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 379 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	Met Ser Ser Ser Thr Phe Arg Thr Leu Ala Val Ala Val Thr I 1 5 10	Leu Leu 15
60	His Leu Thr Arg Leu Ala Leu Ser Thr Cys Pro Ala Ala Cys F 20 25 30	lis Cys
	Pro Leu Glu Ala Pro Lys Cys Ala Pro Gly Val Gly Leu Val 7	Arg Ası

5	Gly	Cys 50	Gly	Cys	Cys	Lys	Val 55	Cys	Ala	Lys	Gln	Leu 60	Asn	Glu	Asp	Cys
	Ser 65	Lys	Thr	Gln	Pro	Cys 70	Asp	His	Thr	Lys	Gly 75	Leu	Glu	Cys	Asn	Phe 80
10	Gly	Ala	Ser	Ser	Thr 85	Ala	Leu	Lys	Gly	Ile 90	Сув	Arg	Ala	Gln	Ser 95	Glu
15	Gly	Arg	Pro	Cys 100	Glu	Tyr	Asn	Ser	Arg 105	Ile	Tyr	Gln	Asn	Gly 110	Glu	Ser
	Phe	Gln	Pro 115	Asn	Cys	Lys	His	Gln 120	Cys	Thr	Cys	Ile	Asp 125	Gly	Ala	Val
20	Gly	Cys 130	Ile	Pro	Leu	Cys	Pro 135	Gln	Glu	Leu	Ser	Leu 140	Pro	Asn	Leu	Gly
	Cys 145	Pro	Asn	Pro	Arg	Leu 150	Val	Lys	Val	Ser	Gly 155	Gln	Cys	Cys	Glu	Glu 160
25	Trp	Val	Cys	Asp	Glu 165	Asp	Ser	Ile	Lys	Asp 170		Leu	Asp	Asp	Gln 175	Asp
	Asp	Leu	Leu	Gly 180	Leu	Asp	Ala	Ser	Glu 185	Val	Glu	Leu	Thr	Arg 190	Asn	Asn
30	Glu	Leu	Ile 195	Ala	Ile	Gly	Lys	Gly 200	Ser	Ser	Leu	Lys	Arg 205	Leu	Pro	Val
	Phe	Gly 210	Thr	Glu	Pro	Arg	Val 215	Leu	Phe	Asn	Pro	Leu 220	His	Ala	His	Gly
35	Gln 225	Lys	Cys	Ile	Val	Gln 230	Thr	Thr	Ser	Trp	Ser 235	Gln	Cys	Ser	Lys	Ser 240
	Cys	Gly	Thr	Gly	11e 245	Ser	Thr	Arg	Val	Thr 250	Asn	Asp	Asn	Pro	Glu 255	Cys
4 0	Arg	Leu	Val	Lys 260	Glu	Thr	Arg	Ile	Cys 265		Val	Arg	Pro	Cys 270	Gly	Gln
	Pro	Val	Tyr 275	Ser	Ser	Leu	Lys	Lys 280	_	Lys	Lys	Cys	Ser 285	Lys	Thr	Lys
45	Lys	Ser 290		Glu	Pro	Val	Arg 295		Thr	туг	Ala	Gly 300	Cys	Ser	Ser	Val
	Lys 305		Tyr	Arg	Pro	Lys 310		Cys	Gly	Ser	Cys 315		Asp	Gly	Arg	Cys 320
50	Cys	Thr	Pro	Leu	Gln 325		Arg	Thr	Val	Lys 330		Arg	Phe	Arg	Cys 335	Glu

	Asp	Gly	Glu	Met 340	Phe	Ser	Lys	Asn	Val 345	Met	Met	Ile	Gln	Ser- 350	Cys	Lys
5	Cys	Asn	Tyr 355	Asn	Сув	Pro	His	Pro 360	Asn	Glu	Ala	Ser	Phe 365	Arg	Leu	Tyr
10	Ser	Leu 370	Phe	Asn	Asp	Ile	His 375	Ĺys	Phe	Ārg	ĀSP					
10	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	мо: 3	:							
15		(i)	(1 (1 (1	A) Li B) Ti C) Si	CE CI ENGTI YPE: TRANI OPOLO	H: 2: nuc DEDN	330 : leic ESS:	base acidoul	pai: d	rs						
20					LE T			A								
		•			ETIC <i>i</i> ENSE		N									
25		(vi	, (:	A) 0: G) C	AL SORGANI ELL ' ELL '	ISM: TYPE	Mus : Fi	brob		s						
30	(viii			ON II NITS			:								
35		•	((() FE (B) L D) O ATUR A) N B) L	AME/: OCAT THER	ION: INF KEY: ION:	204 ORMA mat 204	12 TION _pep 12	: tide 47							
40		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:3:					
	AGACT	CAGC	C AGA	TCCAC	TC CA	GCTC	CGAC (CCCAG	GAGAC	CGAC	CTCCT	C CAC	BACGG	CAG	6	0
45	CAGCO	CCAG	CCA	GCCGA	CA AC	CCCAC	GACG (CCACC	GCCTG	GAGC	GTCC	G AC	ACCAA	CCT	12	0
	CCGCC	CCTG	r ccg	AATCC	AG GC	TCCAC	GCCG	CGCCT	CTCGT	CGCC	TCTGC	CA CC	CTGCT	GTG	18	0
50	CATC	CTCCT	A CCG	CGTCC	CG AT	Met						CCC Pro			23	0

5					CTC Leu 15									278
10					CAA Gln									326
10					AGC Ser									374
15					CTG Leu									422
20					CTC Leu									470
					ACT Thr 95									518
25					AGC Ser									566
30					GAT Asp									614
35					CCC Pro									662
		Pro			TGC Cys									710
40	Arg												GAC Asp 185	758
45					Pro				Ala				Gln	806
50				Ser				Thr				Ile	TCC Ser	854
			Thr				Phe				Lys		AGC Ser	902

5				ATG Met													950
			_	AAA Lys													998
10				CTT Leu													1046
15				GTG Val 285													1094
20				CCA Pro													1142
				ATG Met													1190
25				GAC Asp													1238
30			GCG Ala	TAAJ	AGCC	AGG I	AAGT	AAGG	GA C	ACGAI	ACTC	A TT	AGAC'	ATA			1287
35																TTAATT	1347 1407
33	CATO	GCC	ATA '	CAAG'	TAGT	CT G	rcaa(CCTC	A GA	CACT	G TT	TCG	AGAC.	AGT '	TTAC	ACTTGA	1467
	CAG	TGT:	TCA '	TTAG	CGCA	CA G	rgcc	AGAA	c cc	ACAC'	TGAG	GTG	AGTC	TCC	TGGA	ACAGTG	1527
40	GAG	ATGC	CAG	GAGA	AAGA	AA G	ACAG	GTAC	T AG	CTGA	GGTT	ATT	TTAA	AAG	CAGC	AGTGTG	1587
	CCT	ACTT'	TTT	GGAG'	TGTA	AC C	GGGG.	AGGG:	A AA	TTAT	AGCA	TGC	TTGC	AGA	CAGA	CCTGCT	1647
45	CTAC	GCGA	GAG	CTGA	GCAT	GT G	TCCT	CCAC	T AG	ATGA	GGCT	GAG	TCCA	GCT	GTTC	TTTAAG	1707
	AAC	AGCA	GTT	TCAG	CTCT	GA C	CATT	CTGA	T TC	CAGT	GACA	CTT	GTCA	GGA	GTCA	GAGCCT	1767
	TGT	CTGT'	TAG	ACTG	GACA	GC T	TGTG	GCAA	G TA	AGTT	TGCC	TGT	AACA	AGC	CAGA	TTTTTA	1827
50								•								TATCTA	
																ATAGCC	•
55	ı ÇA.	HACT	CCA	AACA	CCAT	AG G	TAGG	ACAC	G AA	GCTT	ATCT	GTG	ATTC	AAA	ACAA	AGGAGA	2007

MARK.

	TACTGCAGTG GGAATTGTGA CCTGAGTGAC TCTCTGTCAG AACAAACAAA TGCTGTGCAG	
5	GTGATAAAGC TATGTATTGG AAGTCAGATT TCTAGTAGGA AATGTGGTCA AATCCCTGTT	
3	GGTGAACAAA TGGCCTTTAT TAAGAAATGG CTGGCTCAGG GTAAGGTCCG ATTCCTACCA	
	GGAAGTGCTT GCTGCTTCTT TGATTATGAC TGGTTTGGGG TGGGGGGCAG TTTATTTGTT	
10	GAGAGTGTGA CCAAAAGTTA CATGTTTGCA CTTTCTAGTT GAAAATAAAG TATATATATA	
	TTTTTATATG AAAAAAAAA AAA	
15	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 348 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
25	Met Leu Ala Ser Val Ala Gly Pro Ile Ser Leu Ala Leu Val Leu Leu 1 5 10 15	
	Ala Leu Cys Thr Arg Pro Ala Thr Gly Gln Asp Cys Ser Ala Gln Cys 20 25 30	
30	Gln Cys Ala Ala Glu Ala Ala Pro His Cys Pro Ala Gly Val Ser Leu 35 40 45	
35	Val Leu Asp Gly Cys Gly Cys Cys Arg Val Cys Ala Lys Gln Leu Gly 50 55 60	
	Glu Leu Cys Thr Glu Arg Asp Pro Cys Asp Pro His Lys Gly Leu Phe 65 70 75 80	
4 0	Cys Asp Phe Gly Ser Pro Ala Asn Arg Lys Ile Gly Val Cys Thr Ala 85 90 95	
	Lys Asp Gly Ala Pro Cys Val Phe Gly Gly Ser Val Tyr Arg Ser Gly 100 105 110	
45	Glu Ser Phe Gln Ser Ser Cys Lys Tyr Gln Cys Thr Cys Leu Asp Gly 115 120	
50	Ala Val Gly Cys Val Pro Leu Cys Ser Met Asp Val Arg Leu Pro Ser 130 135 140	
~	Pro Asp Cys Pro Phe Pro Arg Arg Val Lys Leu Pro Gly Lys Cys 145 150 155 160	
55	Glu Glu Trp Val Cys Asp Glu Pro Lys Asp Arg Thr Ala Val Gly Pro 165 170 175	
55		

	Ala Leu Ala	Ala Tyr Aro	J Leu Glu	Asp Thr Phe 185	e Gly Pro	Asp Pro Thr 190
5	Met Met Arc		Leu Val 200	Gln Thr Th	r Glu Trp 205	Ser Ala Cys
	Ser Lys Thi	Çya Gly Met	Gly Ile 215	Ser Thr Arc	y Val Thr 220	Asn Asp Asn
10	Thr Phe Cys	a Arg Leu Glu 230		Ser Arg Le		Val Arg Pro 240
15	Cys Glu Ala	Asp Leu Glu 245	ı Glu Asn	Ile Lys Ly 250	s Gly Lys	Lys Cys Ile 255
	Arg Thr Pro	Lys Ile Ala 260	a Lys Pro	Val Lys Ph 265	e Glu Leu	Ser Gly Cys 270
20	Thr Ser Va	_	r Arg Ala 280		в Gly Val 285	Cys Thr Asp
	Gly Arg Cy 290	8 Cys Thr Pr	o His Arg 295	Thr Thr Th	r Leu Pro 300	Val Glu Phe
25	Lys Cys Pr 305	o Asp Gly Gl 31		Lys Lys As		Phe Ile Lys
30	Thr Cys Al	а Сув Нів Ту 325	r Asn Cys	Pro Gly As	p Asn Asp	Ile Phe Glu 335
30	Ser Leu Ty	r Tyr Arg Ly 340	s Met Tyr	Gly Asp Me	t Ala	
35	(2) INFO	RMATION FO	R SEQ II) NO:5:		
40	(i)	(A) LENG (B) TYPE (C) STRA	TH: 1804 : nucle:	l base pai ic acid 5: double	.rs	
	(ii)	MOLECULE	TYPE: cl	ANC		
45	(iii)	нуротнеті	CAL: N			
	•	ANTI-SENS				
50	(vi)	ORIGINAL (A) ORGA (G) CELL (H) CELL	NISM: G	allus dome Fibroblas CEF10	esticus t	
55	(viii)	POSITION (C) UNIT		ME:		

	(ix)	FEATURE:	
		(A) NAME/KEY: CDS (B) LOCATION: 531177	•
5		(D) OTHER INFORMATION:	
J	(ix)	FEATURE:	
		(A) NAME/KEY: mat_peptid	e
		(B) LOCATION: 1191177	
	(34)	(D) OTHER INFORMATION:	
10	(1X)	FEATURE: (A) NAME/KEY: sig peptid	A
		(B) LOCATION: 53118	_
		(D) OTHER INFORMATION:	
		n	
15	(x)	PUBLICATION INFORMATION:	amial T
		(A) AUTHORS: Simmons , D Levy, Daniel	
		Yannoni, Yvon	
		Erikson, R L	
20		(B) TITLE: Identificatio	n of a phorbal ester-
	repressi		~~~
		v-src-inducible (C) JOURNAL: Proc. Natl.	
		(D) VOLUME: 86	nodd. Bell U.B.A.
		(F) PAGES: 1178-1182	
25		(G) DATE: February-1989	
	1804	(K) RELEVANT RESIDUES IN	SEQ ID NO:5: FROM 1 TO
	1004		
	(xi)	SEQUENCE DESCRIPTION: SEQ	ID NO:5:
30			
	CCCGCTTCGC GA	TEGEGIET EGAGETEEGE TETEGETEEG EGEEGETAAG AG	v ·
			Met -22
35	GGC TCT GCG G	GA GCT CGC CCC GCG CTG GCG GCC GCC CTG CTC	TGC CTG 103
		iy Ala Arg Pro Ala Leu Ala Ala Ala Leu Leu (Cys Leu
	-20	-15 -10	
	GCC CGC CTG G	CT CTC GGC TCT CCG TGC CCC GCC GTC TGC CAG	rgc ccg 151
40		la Leu Gly Ser Pro Cys Pro Ala Val Cys Gln	
	-5	1 5	10
		CG CAG TGC GCC CCG GGC GTG GGG CTG GTG CCG	
	Ala Ala Ala P	ro Gln Cys Ala Pro Gly Val Gly Leu Val Pro . 15 20 25	Asp Gly
1 5		15 20 25	
	TGC GGC TGC T	GC AAG GTC TGC GCC AAG CAG CTG AAC GAG GAC	TGC AGC 247
	Cys Gly Cys C	ys Lys Val Cys Ala Lys Gln Leu Asn Glu Asp	Cys Ser
	30	35 40	
50	CGG ACG CAG C	CC TGC GAC CAC ACC AAG GGG CTG GAG TGC AAC	770 ccc 205
		ro Cys Asp His Thr Lys Gly Leu Glu Cys Asn	
	MIS IN GINT		
	45	50 55	

	GCC /	AGC	CCC	GCC	GCC .	ACC	AAC (GGC A	ATC 1	rgc /	AGA	GCA	CAG	TCT	GAG	GC	GG	343
	Ala	Ser	Pro	Ala.	Ala		Asn (Gly I	ile (ys /		Ala	Gln	Ser	Glu		ly 75	
5	60					65					70					•		
•	AGA																	391
	Arg	Pro	Cys	Glu	Tyr 60	Asn	Ser 1	Lys	ile '	7yr 85	Gln	Asn	Gly	Glu	Ser 90		he	
10	CAG																	439
	Gln	Pro	Asn	Cys 95	Lys	His	Gln		Thr 100	Cys	Ile	Asp	Gly	Ala 105		G	ly	
			ccg													_		487
15	Cys	lle	Pro 110	Leu	Cys	Pro		Glu 115	Leu	Ser	Leu	Pro	120		i Gly	/ C	ys	
			ccc													_		535
20	Pro	Ser 125	Pro	Arg	Leu	Val	130	Val	Pro	Gly	GLM	135	Cys	GIL	. GU		г р	
	GTC	TGC	GAT	GAG	AGC	AAG	GAT	GCG	CTG	GAG	GAG	CTG	GAG	GG	: 11	СТ	тс	583
	Val 140	Cys	Asp	Glu	Ser	Lys 145	Asp	Ala	Leu	Glu	Glu 150	Leu	Glu	ı Gly	y Ph		he 155	
25	AGC	AAG	GAG	TTT	GGT	CTG	GAC	GCT	TCT	GAG	GGC	GAA	CTC	AC	c cg	G #	LAC	631
	Ser	Lys	Glu	Phe	Gly 160		Asp	Ala	Ser	Glu 165	Gly	Glu	ı Leu	ιTh	r Ar 17		lsn	
3 <i>0</i>			CTG															679
	Asn	Glu	leu	175	Ala	Ile	Val	Lys	Gly 180	Gly	Leu	Lys	s Me	18		· O ·	val	
			TCC															727
35	Phe	: Gly	/ Ser 190		ı Pro	Gln) Ser	195	Ala	Phe	GII	I ASI	20		's C)	/S	ite	
			A ACA															775
40	Val	. Glr 209	n Thi	r Thi	· Ser	· Tr¢	210		tys	Ser	. LA:	21 21	_	5 GI	.у п	11	uly	
40	ATO	C TCI	C AC	C AG	A GTO	ACC	: AAC	GAC	AAT	cco	GA	C TG	C AA	G C1	C A	TC	***	823
	1 l e 220		r Th	r Ar	y Vai	225) Asp	Asn	Pro	23 23		s Ly	's Lo	eu I	le	Lys 235	
45			C AG															871
	Gli	u Th	r Ar	gIl	e Cy: 24		u Val	l Arg	Pro	24!		y Gl	n Pr	o S		уг 50	Ala	
			G AA															919
50	Se	r Le	u Ly	rs Ly 25		y Ly	s Ly:	s Cy:	261		s (ក	ir L)	rs Ly	_	er P 65	1'0	SEL	
			A AG															967
								_ ^!	y Cy					40	ve '	~	Arc	

CCC AAG TAC TGT GGG TCT TGC GTG GAT GGC AGG TGC TGT ACT CCC CAG

	Pro Lys Tyr Cys Gly Ser Cys Val Asp Gly Arg Cys Cys Thr Pro Gln 285 290 295	
5	CAG ACC AGG ACT GTC AAG ATC CGT TTC CGC TGC GAT GAT GGA GAA ACC Gln Thr Arg Thr Val Lys Ile Arg Phe Arg Cys Asp Asp Gly Glu Thr 300 305 310 315	1063
10	TTC ACC AAG AGT GTC ATG ATG ATC CAG TCC TGC CGC TGC AAC TAC AAC Phe Thr Lys Ser Val Met Met Ile Gln Ser Cys Arg Cys Asn Tyr Asn 320 325 330	1111
15	TGT CCG CAT GCA AAC GAA GCT TAT CCC TTC TAC AGA CTG GTC AAT GAC Cys Pro His Ala Asn Glu Ala Tyr Pro Phe Tyr Arg Leu Val Asn Asp 335 340 345	1159
20	ATC CAC AAA TTT AGG GAC TAAGTGGTAT TTGGGGTGGG ATGTTAAACA 1le His Lys Phe Arg Asp 350	1207
	GAATTCTGAA GTAACCAGCC ATGGAGAAAG GACCTCTGAT GGAAGTGGTG CCTTGCCCCA	1267
	TTTGAGGGCA ATATGAGATA TTACAGGAGT GCACTGTGCA ACTGGACACT AATGCGACAG	1327
25	AGATITAAGC ATACTTAAAG CTTCATAGTA CTGGAGCAAC CTTACTGCTT CTTTTTGGAG	1387
	CACCITIATC TIACACTGTT TICTGTTTGT AAGTGATCTG ATGTTTTGTT CCGGTTATGA	1447
30	AAGCTCTTCC TCTCCCGTTC AGTTTAACAC TACGCTTTTC CCCTCCCCTC	1507
30	CCTACTCTCC CAACCAAGTT GGAAGTTACA TTCCTTCCTG AGGTGGGCAC TTGTGGGGTG	1567
	TTCACAGTGG CAGCTATTAT GTACCAACTG TAGTTTAATG GCAAACAGAA ATCAGTTGTT	1627
35	TIAAAGCTGA GTATTITATI TATCAAACTG TAGCTCTTTT GTTTTCTTTT TYTTTTTTT	1687
	TAACCCCTTC CAACCCCTGT AATACTGGAA TAAGTTGTAA ATGATTTAA TTTTATATTC	1747
40	GATGAATTAA AAGAATTTAT ITATGGAATT AATCATTTAA TAAAGAAATA TITACCT	1804
	(2) INFORMATION FOR SEQ ID NO:6:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 375 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID 1	NO:6:
	Met Gly Ser Ala Gly Ala Arg Pro Ala Leu Ala Ala A	Ala Leu Leu Cys -10
55		

	Leu	Ala -5	Arg	Leu	Ala	Leu	Gly 1	Ser	Pro	Сув	Pro 5	Ala	Val	Сув	Gln	Сув 10
5	Pro	Ala	Ala	Ala	Pro 15	Gln	Сув	Ala	Pro	Gly 20	Val	Gly	Leu	Val	Pro 25	Asp
	Gly	Сув	Gly	Сув 30	Сув	Lys	Val	Сув	Ala 35	Lys	Gln	Leu	Asn	Glu 40	Asp	Сув
10	Ser	Arg	Thr 45	Gln	Pro	Сув	Авр	His 50	Thr	Lys	Gly	Leu	Glu 55	Сув	Asn	Phe
	Gly	Ala 60	Ser	Pro	Ala	Ala	Thr 65	Asn	Gly	Ile	Сув	Arg 70	Ala	Gln	Ser	Glu
15	Gly 75	Arg	Pro	Сув	Glu	Tyr 80	Asn	Ser	Lys	Ile	Tyr 85	Gln	Asn	Gly	Glu	Ser 90
20	Phe	Gln	Pro	Asn	Сув 95	Lys	His	Gln	Сув	Thr 100	Сув	Ile	Asp	Gly	Ala 105	Val
	Gly	Сув	Ile	Pro 110	Leu	Сув	Pro	Gln	Glu 115	Leu	Ser	Leu	Pro	As n 120	Leu	Gly
25	Сув	Pro	Ser 125	Pro	Arg	Leu	Val	Lys 130	Val	Pro	Gly	Gln	Cys 135	Сув	Glu	Glu
	Trp	Val 140		Asp	Glu	Ser	Lys 145	Asp	Ala	Leu	Glu	Glu 150	Leu	Glu	Gly	Phe
30	Phe 155		Lys	Glu	Phe	Gly 160		Asp	Ala	Ser	Glu 165	Gly	Glu	Leu	Thr	Arg 170
35	Asn	Asn	Glu	Leu	Ile 175		Ile	Val	Lys	Gly 180		Leu	Lys	Met	Leu 185	Pro
	Val	Phe	Gly	Ser 190		Pro	Gln	Ser	Arg 195		Phe	Glu	Asn	Pro 200		Сув
40	Ile	val	. Glr 205		Thr	Ser	Trp	Ser 210		Cys	Ser	Lys	215		Gly	Thr
	Gly	7 Ile 220		Thr	Arg	Val	225		Ast) Asr	Pro	230		. Lye	Leu	Ile
45	Lys 235		ı Thi	r Arg	, Ile	240		ı Val	Arg	g Pro	245		Glr	n Pro	Ser	Tyr 250
S O	Ala	a Se	c Le	ı Lye	255		у Гу	ı Lya	з Суя	3 Thi		3 Thi	Ly:	B Lys	Ser 265	Pro
50	Se	r Pro	o Va	l Ard		∋ Th:	r Ty	r Ala	a Gl		s Se	s Sei	r Va	l Lys 280		Tyr

	Arg	Pro	Lys 285	Tyr	Сув	Gly	Ser	Сув 290	Val	Asp	Gly	Arg	Сув 295	Сув	Thr	Pro
5	Gln	Gln 300	Thr	Arg	Thr	Val	Lys 305	Ile	Arg	Phe	Arg	Cys 310	Asp	Aap	Gly	Glu
	Thr 315	Phe	Thr	Lys	Ser	Val 320	Met	Met	Ile	Gln	Ser 325	Сув	Arg	Слв	Asn	Tyr 330
10	Asn	Cys	Pro	His	Ala 335	Asn	Glu	Aļa	Tyr	Pro 340	Phe	Tyr	Arg	Leu	Val 345	Asn
15	Asp	Ile	His	Lys 350	Phe	Arg	Авр									

Claims

20

35

40

- A substantially purified protein comprising about 345 to about 380 amino acid residues, having a molecular weight of about 37,000 daltons to about 45,000 daltons and containing about 38 cysteine residues, said protein being induced by TGF-beta administration to mammalian cells.
- 25 2. The protein according to Claim 1, wherein the protein has an amino acid residue sequence substantially corresponding to the sequence depicted in FIGURE 1 designated as βIG-M1 and having Sequence I.D. No. 2.
- The protein according to Claim 1, wherein the protein has an amino acid residue sequence substantially corresponding to the sequence depicted in FIGURE 2 designated as βIG-M2 and having Sequence I.D. No. 4.
 - 4. The protein according to Claim 2 encoded by a nucleotide sequence substantially corresponding to the sequence of FIGURE 1 and having Sequence I.D. No. 1.
 - The protein according to Claim 3 encoded by a nucleotide sequence substantially corresponding to the sequence of FIGURE 2 and having Sequence I.D. No. 3.
 - A nucleotide sequence encoding a TGF-beta induced protein substantially corresponding to the nucleotide sequence depicted in FIGURE 1 and having Sequence I.D. No. 1.
 - 7. A nucleotide sequence encoding a TGF-beta-induced protein substantially corresponding to the nucleotide sequence depicted in FIGURE 2 and having Sequence I.D. No. 3.
- 8. A gene family induced by TGF-beta wherein the induced genes encode a protein comprising about 345 to about 380 amino acid residues, having a molecular weight of about 37,000 daltons to about 45,000 daltons and containing about 38 cysteine residues.
- 9. The gene family according to Claim 8 wherein an induced gene encodes a protein having an amino acid residue sequence substantially corresponding to the sequence depicted in FIGS 1 and having Sequence I.D. No. 2.
 - 10. The gene family according to Claim 8 wherein an induced gene encodes a protein having an amino acid residu sequence substantially corresponding to the sequence depict d in FIGS 2 and having Sequence I.D. No. 4.
 - 11. The gen family according to Claim 8 wh rein an induced g ne has a nucleotide s quenc substantially corresponding to the sequence depicted in FIGURE 1 and having Sequence I.D. No. 1.

- 12. The gen family according to Claim 8 wherein an induced gene has a nucleotid sequ nc substantially corresponding to the squence depicted in FIGURE 2 and having Sequence I.D. No. 3.
- 13. A method for the determination of a TGF- β induced g ne comprising the steps of:
 - (1) treating a mammalian cell with an effective amount of an inhibitor of mRNA translation for a time period sufficient to inhibit protein synthesis;
 - (2) further treating said mammalian cell with an effective amount of TGF-β for a time period sufficient to induce mRNA synthesis from TGF-β inducible genes;
 - (3) preparing a cDNA library from mRNA isolated from the cell treated according to steps (1) and (2);
 - (4) probing the cDNA library with cDNA isolated from the untreated mammalian cell of step (1);
 - (5) probing the cDNA library with cDNA isolated from the mammalian cell treated according to steps
 - (1) and (2):

5

10

15

20

25

30

35

40

45

50

55

- (6) selecting a cDNA detectted in step (4) but not in step (5); and
- (7) sequencing the DNA selected in step (6).
- 14. A method for the production of a protein according to any one of claims 1 to 5 comprising the steps of:
 - (1) inserting a nucleic acid coding sequence encoding the protein into an expression vector;
 - (2) transforming or transfecting a mammalian cell with the expression vector,
 - (3) culturing the mammalian cell to express the protein; and
- (4) isolating the protein.

BIG-H1 CONSENSUS 112790

•											•					
GA	CCGT	SAGC	GAG	AGGC(CCA (GAGA	\GCG(C TO	CAA	гстст	T GC	GCTC	стсс	GCCA	CACCT	60
CG/	AGAGA	VAGG	ACAC	CCGC	cce (CCTC	GCCC	T C	SCCTO	CACCO	G ÇA	CTCC	GGGC	GCATT	TTGATC	120
CCG	CTG	TCG	CCG	CTTG	itt (GTTC	TGTG	T C	SCCG(CGCTC	GC	CCCG	GTTC	стсст	GCGCG	180
CCA	CA A	TG A	IGC T	CC A	IGC A	ACC 1	TC A	IGG A	CG (CTC 6	SCT (STC (SCC (STC AC	c	227
	,	1	er S	er 2	er 1	hr F	he A	rg 1	hr l	.eu A	lla 1 10	/al /	Ala I	al Th	r	
CTT	СТС	CAC	TTG	ACC	AGA	CTG	GCG	стс	TCC	ACC	TGO	cco	GCC	GCC		272
15	Leu	His	Leu	Thr	Arg 20	Leu	Ala	Leu	Ser	Thr 25	· Cys	Pro	A1a	Ala		
TGC	CAC	TGC	ССТ	CTG	GAG	GCA	ccc	AAG	TGC	GCC	cce	GG/	GTC	GGG		317
30	U 1 2	Cys	Pro	Leu	G1u 35	Ala	Pro	Lys	Cys	A1a 40	Pro	(1)	/ Val	Gly		
TTG	GTC	CGG	GAC	GGC	TGC	GGC	TGC	TGT	AAG	GTC	TGC	GCT	. AAA	CAA		362
45	101	Arg	Asp	Gly	Cys 50	Gly	Cys	Cys	Lys	Va1 55	Cys	Ala	Lys	Gln		
CTC	AAC	GAG	GAC	TGC	AGC	AAA	ACT	CAG	ccc	TGC	GAC	CAC	ACC	AAG		407
60	ASN	GIU	ASP	Cys	Ser 65	Lys	Thr	Gln	Pro	Cys 70		His	Thr	Lys		
GGG	TTG	GAA	TGC	AAT	TTC	GGC	GCC	AGC	TCC	ACC	GCT	CTG	AAA	GGG		452
75	Leu	GIU	Cys	Asn	Phe 80	Gly	Ala	Ser	Ser	Thr 85	Ala	Leu	Lys	Gly		
ATC	TGC	AGA	GCT	CAG	TCA	GAA	GGC	AGA	ccc	TGT	GAA	TAT	AAC	TCC		497
90	cys	Arg	Ala	Gln	5er 95	Glu	Gly	Arg	Pro	Cys 100	G] u	Туг	Asn	Ser		
IGA	ATC	TAC	CAA	AAC	GGG	GAA	AGC	ттс	CAG	ccc	AAC	TGT	AAA	CAC		542
105	116	ıyr	Gln	Asn	Gly 110	Glu	Ser	Phe	Gln	Pro 115	Asn	Cys	Lys	His		
AG	TGC	ACA	TGT	ATT	GAT	GGC	GCC	GTG	GGC	TGC	ATT	CCT	CTG	TGT	,	587
il n .20	Cys	Thr	Cys	Ile	Asp 125	Gly	Ala	Val	Gly	Cys 130	He	Pro	Leu	Cys	•	

CC Pr 13		A GA n Gl	Ä CT	G TC1 u Ser	7 CT6 7 Let 140	PIC	AAT Asr	T CTC	ē GG u G1	Č TG1 y Cy: 14!	s Pņ	C AAI O Asi	C CCC	C CGG		632
CT(Lei	G GTO	S AAJ I Lys	A GTO	AGC Ser	GG6 Gly 155	GIN	TGC Cys	TG1 Cys	GAA Glu	GAG Glu 160	ı Trj	G GT1 Val	TG1 Cys	GAT Asp		677
GAA Glu 165	ASP	AGC Ser	ATT Ile	AAG Lys	GAC Asp 170	TCC Ser	CTG Leu	GAC As p	GAC Asp	CAG Gln 175	GAT Asp	GAC Asp	CTC Leu	CTC Leu	;	722
GGA Gly 180	Leu	GAT Asp	GCC Ala	TCG Ser	GAG Glu 185	GTG Val	GAG Glu	TTA Leu	ACG Thr	AGA Arg 190	AAC Asn	AAT Asn	GAG Glu	TTA Leu	7	767
ATC Ile 195	AIA	ATT Ile	GGA Gly	AAA Lys	GGC G1 y 200	AGC Ser	TCA Ser	CTG Leu	AAG Lys	AGG Arg 205	CTT Leu	CCT Pro	GTC Val	TTT Phe	ε	312
GGC Gly 210	inr	GAA Glu	CCG Pro	CGA Arg	GTT Val 215	CTT Leu	TTC Phe	AAC Asn	CCT Pro	CTG Leu 220	CAC His	GCC Ala	CAT His	GGC Gly	8	357
CAG Gln 225	AAA Lys	TGC Cys	ATC Ile	GTT Val	CAG Gln 230	ACC Thr	ACG Thr	TCT Ser	TGG Trp	TCC Ser 235	CAG Gln	TGC Cys	TCC Ser	AAG Lys	9	02
AGC Ser 240	TGC Cys	GGA Gly	ACT Thr	GGC Gly	ATC Ile 245	TCC Ser	ACA Thr	CGA Arg	GTT Val	ACC Thr 250	AAT Asn	GAC Asp	AAC Asn	CCA Pro	9	47
GAG Glu 255	TGC Cys	CGC Arg	CTG Leu	GTG Val	AAA Lys 260	GAG Glu	ACC Thr	CGG Arg	ATC Ile	TGT Cys 265	GAA G]u	GTG Val	CGT Arg	CCT Pro	9	92
TGT Cys 270	GGA Gly	CAA G1n	CCA Pro	GTG Val	TAC Tyr 275	AGC . Ser	AGC Ser	CTA Leu	Lys	AAG Lys 280	GGC G1y	AAG Lys	AAA Lys	TGC Cys	10	37
AGC Ser 285	AAG Lys	ACC Thr	AAG Lys	AAA Lys	TCC Ser 290	CCA Pro	GAA Glu	CCA Pro	Val	AGA Arg	TTT Phe	ACT Thr	TAT .	GCA Ala	100	82

FIGURE 1 (Cont.)

GGA TGC TCC AGT GTC AAG AAA TAC CGG CCC AAA TAC TGC GGC TCC Gly Cys Ser Ser Val Lys Lys Tyr Arg Pro Lys Tyr Cys Gly Ser 300 305 310	1127
TGC GTA GAT GGC CGG TGC TGC ACA CCT CTG CAG ACC AGA ACT GTG Cys Val Asp Gly Arg Cys Cys Thr Pro Leu Gln Thr Arg Thr Val 315 320 325	1172
AAG ATG CGG TTC CGA TGC GAA GAT GGA GAG ATG TTT TCC AAG AAT Lys Met Arg Phe Arg Cys Glu Asp Gly Glu Met Phe Ser Lys Asn 330 335 340	1217
GTC ATG ATG ATC CAG TCC TGC AAA TGT AAC TAC AAC TGC CCG CAT Val Met Met Ile Gln Ser Cys Lys Cys Asn Tyr Asn Cys Pro His 345 350 355	1262
CCC AAC GAG GCA TCG TTC CGA CTG TAC AGC CTA TTC AAT GAC ATC Pro Asn Glu Ala Ser Phe Arg Leu Tyr Ser Leu Phe Asn Asp Ile 360 365 370	307
CAC AAG TTC AGG GAC TAAGTGCCTC CAGGGTTCCT AGTGTGGGCT GGACAGAGGA 1: His Lys Phe Arg Asp 375	362
GAAGCGCAAG CATCATGGAG ACGTGGGTGG GCGGAGGATG AATGGTGCCT TGCTCATTCT	1422
TGAGTAGCAT TAGGGTATTT CAAAACTGCC AAGGGGCTGA TGTGGACGGA CAGCAGCGCA 1	1482
GCCGCAGTTG GAGAATGCCA AGGGGCTGAT GTGGACGGAC AGCAGCGCAG CCGCAGTTGG 1	1542
AGAAGACTTC GCTTCATAGT ACTGGAGCGG GCATTATTGC TCCATATTGG AGCATGTTTA 1	602
CGGATGACGT TCTGTTTTCT GTTTGTAAAT TATTTGCTAA GTGTATTTTT TTGCTCCAGA 1	662
CCCCCCCCC CCCTTTCTTG GTTCTACAAT TGTAATAGAG ACAAAATAAG ATTAGTTGGG 1	722
CCAAGTGAAA GCCCTGCTTG TCCTTTGACA GAAGTAAATG AAAGCGCCTC TCATTCCTTC 1	782
CCGAGCGGAG GGGGGACACT CTGTGAGTGT CCTTGGGGCA GCTACCTGCA CTCTAAAACT 1	
GCAAACAGAA ACCAGGTGTT TTAAGATTGA ATGTTTTTTT ATTTATCAAA GTGTAGCTTT 1	
TGGGGAGGGA GGGGAAATGT AATACTGGAA TAATTTGTAA ATGATTITAA TTTTATATCA 1	
GTGAAGAGAA TITATTTATA AAATTAATCA TTTAATAAAG AAATATTTAC CTAAAAAAAA 20	
AAAAA FIGURE 1 (Cook)	028

BIG-M2 CONSENSUS 112790 AGACTCAGCC AGATCCACTC CAGCTCCGAC CCCAGGAGAC CGACCTCCTC CAGACGGCAG 60 CAGCCCCAGC CCAGCCGACA ACCCCAGACG CCACCGCCTG GAGCGTCCAG ACACCAACCT 120 CCGCCCCTGT CCGAATCCAG GCTCCAGCCG CGCCTCTCGT CGCCTCTGCA CCCTGCTGTG 180 CATCCTCCTA CCGCGTCCCG ATC ATG CTC GCC TCC GTC GCA GGT CCC 227 Met Leu Ala Ser Val Ala Gly Pro ATC AGC CTC GCC TTG GTG CTC CTC GCC CTC TGC ACC CGG CCT GCT Ile Ser Leu Ala Leu Val Leu Leu Ala Leu Cys Thr Arg Pro Ala 272 15 ACG GGC CAG GAC TGC AGC GCG CAA TGT CAG TGC GCA GCC GAA GCA 317 Thr Gly Gln Asp Cys Ser Ala Gln Cys Gln Cys Ala Ala Glu Ala 30 GCG CCG CAC TGC CCC GCC GGC GTG AGC CTG GTG CTG GAC GGC TGC 362 Ala Pro His Cys Pro Ala Gly Val Ser Leu Val Leu Asp Gly Cys 45 GGC TGC TGC CGC GTC TGC GCC AAG CAG CTG GGA GAA CTG TGT ACG 407 Gly Cys Cys Arg Val Cys Ala Lys Gln Leu Gly Glu Leu Cys Thr 55 GAG CGT GAC CCC TGC GAC CCA CAC AAG GGC CTC TTC TGC GAT TTC 452 Glu Arg Asp Pro Cys Asp Pro His Lys Gly Leu Phe Cys Asp Phe 70 75 GGC TCC CCC GCC AAC CGC AAG ATT GGA GTG TGC ACT GCC AAA GAT 497 Gly Ser Pro Ala Asn Arg Lys Ile Gly Val Cys Thr Ala Lys Asp 85 90 GGT GCA CCC TGT GTC TTC GGT GGG TCG GTG TAC CGC AGC GGT GAG Gly Ala Pro-Cys Val Phe Gly Gly Ser Val Tyr Arg Ser Gly Glu 542 100 105 TCC TTC CAA AGC AGC TGC AAA TAC CAA TGC ACT TGC CTG GAT GGG 587 Ser Phe Gln Ser Ser Cys Lys Tyr Gln Cys Thr Cys Leu Asp Gly 115 120 GCC GTG GGC TGC GTG CCC CTA TGC AGC ATG GAC GTG CGC CTG CCC Ala Val Gly Cys Val Pro Leu Cys Ser Net Asp Val Arg Leu Pro 632

FIGURE 2

AGC Ser	Pro 145	,,,,,	C TGC Cys	CCC Pro	TTC Phe	CCG P ro 150	ĀÏŢ	AGG Arg	GTC Vai	AAG Lys	CTG Leu 155	Pro	GG Giy	AAA Lys	677
TGC Cys	TGC Cys 160	610	GAG Glu	TGG Trp	GTG Val	TGT Cys 165	GAC Asp	GAG Glu	CCC Pro	Lys	GAC Asp 170	CGC Arg	ACA Thr	GCA Ala	722
GTT Val	GGC Gly 175	CCT Pro	GCC Ala	CTA Leu	GCT Ala	GCC Ala 180	TAC Tyr	CGA Arg	CTG Leu	GAA Glu	GAC Asp 185	ACA Thr	TTT Phe	GGC Gly	767
PTO	190	PTO	ACT Thr	Met	Met	Arg 195	Ala	Asn	Cys	Leu	Va1 200	Gln	Thr	Thr	812
GIŲ	205	Ser	GCC Ala	Cys	Ser	Lys 210	Thr	Cys	Gly	Met	G1y 215	Ile	Ser	Thr	857
Arg	220	INT	AAT Asn	Asp	Asn	Thr 225	Phe	Cys	Arg	Leu	G1 u 230	Lys	Gln	Ser	902
Arg	235	cys	ATG Met	Val	Arg	Pro 240	Cys	Glu	Ala	Asp	Leu 245	Glu	G1 u	Asn	947
ile	250	Lys	GGC Gly	Lys	Lys	Cys 255	Ile.	Arg	Thr	Pro	Lys 260	Ile	Ala	Lys	992
•	Va 1 265	Lys	Phe	Glu	Leu :	Ser (270	Gly (Cys	Thr	Ser	Va1 275	Lys	Thr	Tyr	1037
	280	Lys	Phe	Cys	Gly 1	Val (285	Cys '	Thr /	Asp (Gly i	Arg (290	Cys	Cys	Thr	1082
	295	Arg	ihr	Thr	Thr i	.eu f 800	Pro 1	Val (Slu (Phe (Lys (305	Cys	Pro .	Asp	1127
GGC (SAG / Slu : Blo	ATC Ile	ATG A	AAA /	Lys /	lsn f 315	ITG / let /	iet i	he :	ile !	Lys 1 320	icc T	rgt (Cys /	SCC Ala	1172

			AAC Asn												•	1217
		Arg	AAG Lys							TAN	AGCCA	AGG /	M GT.	AAGGGA	;	1267
CAC	SAACT	ГСА	TTAG	ACTA	TA AC	TTG	ACTG	AG	TTGC	ATCT	CATT	TTC	LLC .	TGTAAA	AACA	1327
ATTA	ACAG1	ΓAG	CACA	TTAA"	TT T	LAA T	CTGTG	TT	TTTA	ACTA	CCG	rggg	AGG	AACTAT	CCCA	1387
CCAA	LAGT	GAG	AACG	TTAT	ST C	ATGG	CCATA	CA	AGTA	STCT	GTC	ACC:	ГСА	GACACT	GGTT	1447
TCGA	\GAC#	AGT	TTAC	ACTTO	GA CA	AGTT	STTCA	TT	AGCG	CACA	GTG	CAG	AC I	GCACAC	TGAG	1507
GTGA	AGTCT	rcc	TGGA	ACAG"	rg g/	AGAT	GCCAG	GA	SAAAC	SAAA	GACA	AGGTA	ACT .	AGCTGA	GGTT	1567
ATTI	TAAA	V AG	CAGC	AGTG"	rg co	CTAC	TTTT	GG	AGTG	TAAC	CGGC	GAG	GA .	AATTAT	AGCA	1627
TGCT	TGC	AGA	CAGA	CTG	CT CT	TAGC	GAGAG	сто	SAGC	ATGT	GTC	TCC	ACT .	AGATGA	GGCT	1687
GAGT	CCAG	CT	GTTC	TTA	AG A	ACAG	CAGTT	TC	AGCT	TGA	CCAT	гтсто	TAE	TCCAGT	GACA	1747
стт	TCAG	GA	GTCA	SAGC	CT T(STCT	GTTAG	ACT	TGGA	CAGC	TTGT	rggc	AAG '	TAAGTT	TGCC	1807
TGTA	WCA/	AGC	CAGAT	TTT	TA T	rgat/	ATTGT	•	ATATI	rgtg	GATA	TATA	ATA '	TATATA	TATA	1867
TATA	ATTTO	ATE	CAGT	TATC	TA AC	STTA	ATTTA	. AA	GTCAT	TTTG	TTT	TGT	י דד	AAGTGC	TTTT	1927
GGGA	ודדו	FAA	ACTG	ATAG	CC TO	CAAA	CTCCA	AAG	CACCA	ATAĞ	GTAG	GACA	CG .	AAGCTT	ATCT	1987
GTG/	ATTCA	AA.	ACAA	AGGA	SA TA	ACTG	CAGTG	GG	MTT	STGA	CETO	SAGTO	SAC '	тстстс	: TCAG	2047
AACA	WACA	AA	TGCT	STGC	AG G	[GAT	MAGC	TAT	TGTAT	TTGG	AAGT	CAG/	ATT '	TCTAGT	AGGA	2107
AATO	TGGT	rca	AATC	CTG	TT GO	TGA	ACAAA	TG	CCT	TAT	TAAG	AAA	rgg (CTGGCT	CAGG	2167
GTA	AGGTO	CCG	ATTC	CTAC	CA GO	SAAG	rgCTT	GC	TGCTT	гстт	TGAT	TATO	SAC	TGGTTT	SGGG	2227
TGG	GGGG	CAG	TTTA	TTG	rt GJ	AGAG	TGTGA	CC	4444	STTA	CATO	TTT	SCA (стттсти	AGTT	2287
GAAA	WTA/	W G	TATA	TATA'	TA T	ттт	ATATG	AA	AAAA.	444	444					2330

FIGURE 2 (Cont.)

Figure 3

CEF10	- MGSAGARP-ALAAALLCLARLALGSPCPAVCQCPAAAPQCAPGVGLVPDG	-49
βIG-M1	- MSSSTFRTLAVAVTLLHLTRLAL-STCPAACHCPLEAPKCAPGVGLVRDG	-49
CEF10	- CGCCKVCAKQLNEDCSRTQPCDHTKGLECNFGASPAATNGICRAQSEGRP	-99
βIG-M1	- CGCCKVCAKQLNEDCSKTQPCDHTKGLECNFGASSTALKGICRAQSEGRP	-99
CEF10	- CEYNSKIYQNGESFQPNCKHQCTCIDGAVGCIPLCPQELSLPNLGCPSPR	-149
βIG-M1	- CEYNSRIYQNGESFQPNCKHQCTCIDGAVGCIPLCPQELSLPNLGCPNPR	-149
CEF10	- LYKYPGQCCEEWYCDESKDALEELEGFFSKEFGLDASEGELTRNNELI	
βIG-M1	- LYKYSGQCCEEWYCDEDSIKDSLDDQDDLLGLDASEVELTRNNELI	-195
CEF10	- AIVKGG-LKMLPVFGSEPQSRAFENPKCIVQTTSWSQCSKTCGT	-240
βIG-M1	- AIGKGSSLKRLPVFGTEPRVLFNPLHAHGQKCIVQTTSWSQCSKSCGT	-243
CEF10	- GISTRYTHDHPDCKLIKETRICEYRPCGQPSYASLKKGKKCTKTKKSPSP	-290
βIG-M1	- GISTRYTNDNPECRLYKETRICEYRPCGQPYYSSLKKGKKCSKTKKSPEP	-293
CEF10	- VRFTYAGCSSYKKYRPKYCGSCYDGRCCTPQQTRTVKIRFRCDDGETFTK	-340
βIG-M1	- VRFTYAGCSSVKKYRPKYCGSCVDGRCCTPLQTRTVKMRFRCEDGEMFSK	-343
·CEF10	- SYMMIQSCRCNYNCPHANEA-YPFYRLYNDIHKFRD -375	
βIG-M1	- NYMMIQSCKCNYNCPHPNEASFRLYSLFNDIHKFRD -379	

CEF10	- MGSAGARP-ALAAALLCL-ARLALGSPCPAVCQCPA-AAPQCAPGYGLVP	-47
βIG-M2	- MLASVAGPISLALVLLALCTRPATGQDCSAQCQCAAEAAPHCPAGVSLVL	-50
CEF10	- DGCGCCKVCAKQLNEDCSRTQPCDHTKGLECNFGASPAATNGICRAQSEG	-97
βIG-M2	- DGCGCCRVCAKQLGELCTERDPCDPHKGLFCDFGSPANRKIGVCTAK-DG	-99
CEF10	- RPCEYNSKIYQNGESFQPNCKHQCTCIDGAVGCIPLCPQELSLPNLGCPS	-147
βIG-M2	- APCVFGGSVYRSGESFQSSCKYQCTCLDGAVGCVPLCSMDVRLPSPDCPF	-149
CEF10	- PRLVKVPGQCCEEWVCDESKDALEELEGFFSKEFGLDASEGELTRNNELI	
βIG-M2	PRRYKLPGKCCEEWYCDEPKDRTAYGP	-176
CEF10	- AIYKGGLKMLPVFGSEPQSRAFENPKCIYQTTSWSQCSKTCGTGISTRYT	-247
βIG-M2	- ALAAYRLEDTFGPDPTMMRANCLVQTTEWSACSKTCGMGISTRYT	-221
CEF10	- NDNPDCKLIKETRICEVRPCGQPSYASLKKGKKCTKTKKSPSPYRFTYAG	-297
βIG-M2	- NDNTFCRLEKQSRLCMYRPCEADLEENIKKGKKCIRTPKIAKPYKFELSG	-271
CEF10	- CSSYKKYRPKYCGSCYDGRCCTPQQTRTVKIRFRCDDGETFTKSYMHIQS	-347
βIG-M2	- CTSVKTYRAKFCGVCTDGRCCTPHRTTTLPVEFKCPDGEIMKKNMMFIKT	-321
CEF10	- CRCNYNCPHANEAYPFYRLYNDIHKFRD -375	
βIG-M2	- CACHYNCPGDNDIFESLYYRKMYGDMA -348	

βIG-M1	- MSSSTFRTLAVAVTLLHL-TRLALST-CPAACHCPLEA-PKCAPGVGLVR	-47
₿IG-M2	- MLASVAGPISLALVLLALCTRPATGQDCSAQCQCAAEAAPHCPAGVSLVL	-50
βIG-M1	- DGCGCCKVCAKQLNEDCSKTQPCDHTKGLECNFGASSTALKGICRAQSEG	-97
β1G-M2	- DGCGCCRYCAKQLGELCTERDPCDPHKGLFCDFGSPANRKIGYCTAK-DG	-99
βIG-M1	- RPCEYNSRIYQNGESFQPNCKHQCTCIDGAVGCIPLCPQELSLPNLGCPN	-147
βIG-M2	- APCVFGGSVYRSGESFQSSCKYQCTCLDGAVGCVPLCSHDVRLPSPDCPF	-149
βIG-H1	- PRLYKYSGQCCEEWYCDEDSIKDSLDDQDDLLGLDASEYELTRNNELIAI	
βIG-M2	:: ::. : ::::::: : : : : : : :	-186
βIG-M1	- GKGSSLKRLPVFGTEPRVLFNPLHAHGQKCIVQTTSWSQCSKSCGTGIST	
βIG-M2	:: .: .: ::::: ::::: ::::: ::::: :::::::	-218
βIG-H1	- RYTHDHPECRLVKETRICEVRPCGQPVYSSLKKGKKCSKTKKSPEPVRFT	-297
βIG-M2	- RVTNDNTFCRLEKQSRLCHVRPCEADLEENIKKGKKCIRTPKIAKPVKFE	-268
βIG-M1	- YAGCSSYKKYRPKYCGSCYDGRCCTPLQTRTYKMRFRCEDGEMFSKNYMM	-347
βIG-M2	- LSGCTSVKTYRAKFCGVCTDGRCCTPHRTTTLPVEFKCPDGEIMKKNMMF	-318
βIG-M1	- IQSCKCNYNCPHPNEASFRLYSLFNDIHKFRD -379	
β1G-M2	- IKTCACHYNCPGDNDIFESLYYRKNYGDMA -348	

β1G-M1	CIVQTTSWSQCSKSCGTGISTRVTNDNPECRL-VKETRICEVR	42
CEF12CS	CIVQTTSWSQCSKTCGTGISTRYTNDNPDCKL-IKETRICEVR	42
βIG-M2	CLYQTTEWSACSKTCGMGISTRYTNDNTFCRL-EKQSRLCMYR	42
PFALCIPACS	NSI-STEWSPCSVTCGNGIQVRIKPGSANKPKDELDYEN-DIEKKICKME	48
PROPERDOSR	WSX-WSPWSPCSVTCSXGXQXXXRXRXCXXPAPXX-GXPCAGXAXXXXXQ	48
THROMBOCS	WSH-WSPWSSCSVTCGDGVITRIRLCNSPSPQMNGKPCECEARETK	45
PFALTRAPCS	CGV-WDEWSPCSVTCGKGTRSRKREILHEGCTSEIQEQ	37
C7COMPCS	WDF-YAPWSECN-GCTKTQTRRRSVAYYGQYGGQPCVGNAFETQ	42
	. ** **	
	L	
	region II of CS protein	

β1G-M1	PCGQPVYSSLKKGKKCSK	60
CEF12CS	PCGQPSYASLKKGKKCTK	60
βIG-M2	PCEADLEENIKKGKKCIR	60
PFALCIPACS	KCSSVFN	55
PROPERDOSR	ACXXXXPCPXX-G	60
THROMBOCS	ACKKDA-CPIN-G	56
PFALTRAPCS	-CE-EERCPPKWE	48
C7COMPCS	SCEPTRGCPTEEGC	56

Figure 8