GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA Transferencia de Calor

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo Semestre	170803	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al participante los conocimientos para enfrentar problemas industriales que involucren fenómenos termodinámicos e hidrodinámicos dentro de la ingeniería eléctrica, química, mecánica, etc.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Relación de la transferencia de calor con la termodinámica.
- 1.2 Leyes básicas de la transferencia de calor.
- 1.3 Analogía entre el flujo de calor y el flujo eléctrico.

2. Conducción de calor en estado estable

- 2.1 Métodos de análisis.
- 2.2 Obtención de la ecuación de conducción de calor.
- 2.3 Solución analítica.
- 2.4 Métodos analógicos.
- 2.5 Métodos numéricos de relajación.

3. Conducción de calor en estado inestable

- 3.1 Flujo de calor transitorio y periódico.
- 3.2 Flujo de calor en una placa infinita.
- 3.3 Método grafico.
- 3.4 Método numérico.

4. Transferencia de calor por radiación

- 4.1 Absorción, reflexión y transmisión de radiación.
- 4.2 Ley de Kirchhoff y cuerpo negro.
- 4.3 Intercambio de calor por radiación entre superficies negras.
- 4.4 Flujo de calor entre superficies grises.
- 4.5 Radiación combinada con conveccion y conducción.
- 4.6 Radiación debida a gases, vapores y flamas.
- 4.7 Origen de la Radiación solar.
- 4.8 Interacción de la radiación solar con la atmósfera.
- 4.9 Factor de visión.
- 4.10 Intercambio de calor en recintos cerrados.
- 4.11 Datos empíricos para la absorción y emisión de radiaciones por gases no luminosos.

5. Convección Libre

- 5.1 Parámetros de similitud para convección libre.
- 5.2 Cálculo de coeficientes de calor por convección.
- 5.3 Mecanismo de transporte de energía y flujo de fluidos.
- 5.4 Calculo de la conductancia por unidad de superficie.
- 5.5 Convección libre causada por fuerzas centrifugas.
- 5.6 Convección originada por discos, conos, esferas y cilindros g

COORDINACIÓN
GENERAL DE EDUCACIÓN
MEDIA SUPERIOR Y SUPERIOR

6. Convección forzada

- 6.1 Analogía entre transferencia de calor y transferencia de cantidad de movimiento.
- 6.2 Convección forzada dentro de tubos y ductos.
- 6.3 Coeficiente de transferencia de calor para flujo turbulento.
- 6.4 Convección forzada en flujo laminar.
- 6.5 Convección forzada sobre superficies exteriores.
- 6.6 Flujo transversal en haces de tubos.

7. Cambiadores de calor

- 7.1 Flujo transversal en haces de tubos.
- 7.2 Diseño y selección de cambiadores de calor.
- 7.3 Tipos básicos de cambiadores de calor.
- 7.4 Corrección de DML para cambiadores de flujo cruzado.
- 7.5 Eficiencia de los cambiadores de calor
- 7.6 Factores de incrustación.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Transferencia de calor, Necati Ozisik, Mc Graw Hill.
- 2. Procesos de transferencia de calor, -Kern D. Q., CECSA 1992.
- 3. Problemas de transferencia de calor, Valiente, B. A. Limusa 1988.
- 4. Transferencia de calor, c Manrique, J. A. Ed. HARLA.

Libros de consulta:

- 1. Principios de transferencia de calor, Frank Kreith, M. S. Bohn, Ed. Thompson 2001, 6ª edición.
- 2. Transferencia de calor, J. P. Holman, 8 ed. McGrall Hill, 1998.
- 3. Fundamentos de transferencia de calor, F. P. Incropera, Dewitt, 4 edición Prentice Hall, 1999.
- 4. Transferencia de calor, A. F. Mills, McGraw Hill, 1997.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Mecánico con Maestría o Doctorado en Energía, Maestría ó Doctorado en Física.

