AKLT model and Matrix product states

July 16, 2025

Julieta Dominique Padilla Fernandez and Javid Kiamehr

Content

Introduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglement

Result Using TeNPy DMRG

Search of 1st excited state Correlation length Entanglement entropy

Results using TEBD

Correlation length Entropy Ground state energy convergence

Computational cost

References

ntroduction

Energy and symmetries Boundary conditions

MPS and SVE

Entanglen

Result Using TeNPy

DMRG Search of 1st excited state

Entanglement entropy

Results using TEBD

Correlation length

Entropy

round state energy onvergence

Computational cost

References

Introduction

► AKLT Hamiltonian (spin-1 chain):

$$H = \sum_{i=1}^{L-1} \left[\mathbf{S}_i \cdot \mathbf{S}_{i+1} - \frac{1}{3} (\mathbf{S}_i \cdot \mathbf{S}_{i+1})^2 \right]$$

where $S_i = (S_i^x, S_i^y, S_i^z)$ is the collection of operators at site *i*.

Explicit matrix representation:

$$S^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S^y = \frac{-i}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad S^z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

MPS were studied in the work by Affleck, Kennedy, Lieb and Tasaki (AKLT) where it was proven that the exact ground state of the spin-1 chain with the AKLT hamiltonian can be parametrized exactly by MPS

Introduction

Energy and symmetrie Boundary conditions

MPS and SVD

Entangleme

Result Using TeNPy

earch of 1st excited state

Entanglement entropy

esults using TEB

Correlation length

Ground state energ

Computational cost

References

AKLT Chain: A Valence Bond Solid

- ▶ The AKLT hamiltonian is made of spin-1 sites which can be modeled as two spin1/2 particles symmetrized. We can build the full Hilbert space using the tensor product as $\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$
- ► Each site shares one of its virtual spin-1/2's with a neighboring site. These two virtual spins form a singlet state (spin-0), which creates the entangled valence bonds between sites.

The AKLT ground state is constructed by locally projecting the two virtual spin-1/2 particles at each site onto the physical spin-1 subspace via the projector [4]:

subspace via the projector [4]:
$$P = |-1\rangle(\frac{\langle 00| - \langle 11|}{\sqrt{2}}) + |0\rangle(\frac{\langle 01| + \langle 10|}{\sqrt{2}}) + |1\rangle(\frac{\langle 00| + \langle 11|}{\sqrt{2}})$$

▶ Where $\{|-1\rangle, |0\rangle, |1\rangle\}$ form the physical spin-1 basis at each site

Introduction

Energy and symmetries Boundary conditions

MPS and SVI

Entangleme

Result Using TeNPy

earch of 1st excited state

Entanglement entropy

Correlation length

Entropy

Ground state energe convergence

Computational cost

References

Energy Spectrum and Symmetries

We constructed the full Hamiltonian matrix explicitly using the np.kron:

$$S_i^{\alpha}S_{i+1}^{\alpha} \Rightarrow \mathbb{I}_1 \otimes \cdots \otimes \mathbb{I}_{i-1} \otimes S^{\alpha} \otimes S^{\alpha} \otimes \mathbb{I}_{i+2} \otimes \cdots \otimes \mathbb{I}_N$$

and similarly for S^y , S^z

- Scalar product: $\mathbf{S}_i \cdot \mathbf{S}_{i+1} = S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + S_i^z S_{i+1}^z$ The previous for each term and summing into the Hamiltonian for the $(\mathbf{S}_i \cdot \mathbf{S}_{i+1})^2$ term we just did the matrix multiplication with the previously built term $\mathbf{S}_i \cdot \mathbf{S}_{i+1}$
- AKLT Hamiltonian commutes with: $(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$

$$S_{\mathsf{tot}}^z = \sum_i S_i^z$$
 and $\mathbf{S}_{\mathsf{tot}}^2 = \left(\sum_i \mathbf{S}_i\right)^2$

► Hilbert space block-decomposes into spin sectors: $\mathcal{H}_{AKLT} = \bigoplus_{S \in S^z} \mathcal{H}_{S,S^z}$

troduction

Energy and symmetries Boundary conditions

MPS and SVD

Result Using TeNPy

Search of 1st excited state

Entanglement entropy

Correlation length Entropy

Ground state energy convergence

Computational cos

References

Energy Spectrum and symmetries

It also allows to classify eigenstates according to the spin operators S_{tot}^z and $\mathbf{S}_{\text{tot}}^2$ by contructing the operators and the diagonalizing the full matrix then we compute the expectation values for each state vector with each operator as $\langle \psi | S_{\text{tot}}^z | \psi \rangle$ and $\langle \psi | \mathbf{S}_{\text{tot}}^2 | \psi \rangle$

Figures reproduced based on [1]

ntroduction

Energy and symmetries Boundary conditions

IPS and SVD

Pocult Heing ToNPs

DMRG

Correlation length
Entanglement entropy

Results using TEBD

Correlation length

Ground state energy convergence

Computational cost

References

Reference:

Boundary conditions

When the chain has open boudary conditions the spin-1/2 particles at the two ends remain unpaired, forming free edge spins. Each can be in either $|\uparrow\rangle$ or $|\downarrow\rangle$, leading to a fourfold ground state degeneracy: $|\downarrow\rangle$, $|\uparrow\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, |

For periodic Boundary conditions, the chain forms a closed loop. All spin-1/2 particles pair into singlets, leaving no unpaired edge spins.

ntroduction

Energy and symmetries

Boundary conditions

IPS and SVD

Entanglemer

Result Using TeNPy

Search of 1st excited state

Entanglement entropy Results using TERI

Correlation length

Entropy

Ground state energy convergence

Computational cost

References

Matrix Product States (MPS) and SVD

An arbitrary quantum state on a lattice of L sites with local Hilbert space of dimension d (spanned by basis states $\{|\sigma_i\rangle\}$) can be written as:

$$|\psi\rangle = \sum_{\sigma_1, \dots, \sigma_L} c_{\sigma_1 \dots \sigma_L} |\sigma_1, \dots, \sigma_L\rangle.$$

By successively applying Singular Value Decomposition (SVD), we can factorize the tensor $c_{\sigma_1...\sigma_L}$ into Matrix Product State (MPS) representation. This process:

- Encodes the state in a form that emphasizes its local structure.
- Preserves non-local quantum correlations via the singular values.

ntroduction

Energy and symmetries

Boundary conditions

VIPS and SVD

December 1

DMRG

rrelation length

Entanglement entropy

Results using TEBD

Correlation length

Ground state energ

Computational cost

References

MPS and SVD

Step 1: Reshape the state vector (with d^L components) into a matrix Ψ of shape (d, d^{L-1}) :

$$\Psi_{\sigma_1,(\sigma_2...\sigma_L)} = c_{\sigma_1...\sigma_L}.$$

Step 2: Perform SVD on Ψ :

$$\Psi = U\Sigma V^{\dagger}.$$

where: U is a $d \times d$ unitary matrix, Σ is a diagonal matrix with singular values, V^{\dagger} is a $d^{L-1} \times d^{L-1}$ unitary matrix.

Step 3: Absorb Σ into V^{\dagger} and reshape again into a vector, then U is reshaped into the a tensor $A_{q_1}^{\sigma_1} = U_{\sigma_1,q_2}$

Repeat this procedure recursively to build the full MPS

$$|\psi\rangle = \sum_{\sigma_1...\sigma_L} A^{\sigma_1} A^{\sigma_2} ... A^{\sigma_L} |\sigma_1,...,\sigma_L\rangle.$$

Computational cost: For the full tensor it was $\mathcal{O}(d^L)$ for the MPS with bond dimension m then $\mathcal{O}(Ldm^2)$

troduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglemen

Result Using TeNPy

earch of 1st excited state

Entanglement entropy

Correlation length

ntropy

Ground state energy

omputational cost

References

Entanglement

The AKLT Hamiltonian structure naturally leads to a Matrix Product State (MPS) representation with finite bond dimension D=2. Since each internal bond cuts one singlet, the entanglement entropy across any internal cut is equal to the maximal entropy of a singlet pair, which corresponds to $\log 2$.

ntroduction

Energy and symmetries Boundary conditions

MPS and SV

Entanglement Result Using TeN

lesult Using TeNPy MRG

earch of 1st excited state orrelation length

Entanglement entropy

Correlation length

Correlation lengt

Ground state energy

Computational cost

References

TeNPy library

TeNPy (Tensor Network Python) is a Python library for the simulation of strongly correlated quantum systems with tensor networks. We used:

- ► From tenpy.models the AKLT model
- ► From tenpy.networks.mps we use the MPS and the MPO
- ▶ From tenpy.algorithms we use the TEBD and the DMRG

Philosophy of the library: good readability and usability for newcomers, and at the same time powerful algorithms and fast development of new algorithms for experts. [2]

Figure: iDMRG and DMRG diagram from [3]

ntroduction

Energy and symmetries Boundary conditions

MPS and SVI

Entanglement Result Using TeNPv

DMRG Search of 1st excited state

Correlation length
Entanglement entropy

Results using TEBI

Correlation length

Entropy

convergence Computational cost

oforoncos

DMRG using MPS with TeNPy

With TeNPy: Not required to build finite DMRG from iDMRG

- 1. Start from a random MPS: Defined a chain of products as
 psi = [0.0] * L, got the MPS using
 MPS.from_product_state(), evolved randomly the
 state using RandomUnitaryEvolution()
- 2. Model definition: Constructed with AKLTChain({'L':
 L, 'bc_MPS': 'finite'})
- 3. Initialize the DMRG parameters
- 4. We used the Two site DMRG model

ntroduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglement

Result Using TeNPy

earch of 1st excited stati Correlation length

Entanglement entropy Results using TERI

Correlation length

Entropy

Ground state energy convergence

Computational cost

Rafarancas

Search of 1st excited state

Start from a biased initial state: end spins random and bulk are 0

```
biased states = [i]+["0.0"] * (L - 2)+[i]
```

- Run the DMRG with initial state using the biased MPS to find low-energy states.
 - If the resulting state has energy close to the expected ground state energy, we store it as a ground state candidate and keep looking while asking for orthogonality
 - Eventually, DMRG is forced to find a state orthogonal to all known ground states. DMRG always sees to minimize energy, but under the orthogonality constraint, it converges to the lowest excited state
- ▶ Some results: with open boundary conditions (OBC) the ground state energy is $-\frac{2}{3} \cdot (L-1)$ for the 1st excited state is GS + 0.7, which is exactly what we found for the gap energy

Energy and symmetries Boundary conditions

Search of 1st excited state

Correlation length Entanglement entropy

Correlation length

Computational cost

Correlation length

► Calculated using the correlation function $\langle S_i^z, S_j^z \rangle$ from the middle to the outside end of the chain

► Getting the transfer matrix for each of the MPS matrices

ntroduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglement

DIVING

Correlation length

Correlation length

Entropy

Computational cost

Doforonooo

Poforonco

Entanglement entropy

ntroduction

Energy and symmetries Boundary conditions

MPS and SVD

Entangler

Result Using TeNPy

Search of 1st excited state Correlation length

14 Entanglement entropy

Results using TEBD

Correlation length

Entropy Ground state energy convergence

Computational cost

Rafarancas

Time evolving block decimation (TEBD)

Steps:

- 1. Initialization: start from a random normalized MPS with shapes $(1,d,\chi)...(\chi,d,\chi)...(\chi,d,1)$ where d is the site dimension and χ the bond dimension
- 2. Evolve: Uses the methods:
 - ▶ time evolution operator which builds $U(t) = \exp(-Ht)$
 - ▶ Trotter-Suzuki Decomposition: Second order Trotter-Suzuki decomposition $e^{(V+W)\delta} = e^{V\delta/2}e^{W\delta}e^{V\delta/2} + \mathcal{O}(\delta^3)$. This method applied the decomposition to each bond using the Update method
 - Update: For each bond the U(t) operator is applied to two contracted neighboring sites (A and B). Then SVD is applied, then truncation (max bond dimension =2), and then we update the evolved A and B

NOTE: The AKLT Hamiltonian applies the same projector on each bond — it's uniform and translationally invariant no even/odd splitting needed. NOTE: We use imaginary-time evolution (non-unitary), so the canonical form is not preserved \Rightarrow re-canonicalize at every step.

troduction

Energy and symmetries Boundary conditions

MPS and SVI

Entangleme

Result Using TeNPy

Search of 1st excited state Correlation length Entanglement entropy

15 Results using TEBD

Correlation length Entropy Ground state energy

Computational cost

eferences

Correlation length

▶ Calculated using the correlation function $\langle S_i^z, S_j^z \rangle$ from the middle to the outside end of the chain

Getting the transfer matrix for each of the MPS matrices

troduction

Energy and symmetries Boundary conditions

MPS and SVD

Entangleme

Result Using TeNPy

Search of 1st excited stat Correlation length

Entanglement entropy

Correlation length

Correlation length

Ground state energy convergence

Computational cost

References

Entropy

troduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglen

Result Using TeNP

Search of 1st excited state Correlation length

Entanglement entropy Results using TEBD

Correlation length

Entropy

Ground state energy

Computational cost

Rafarancas

Poforoncos

Ground state energy convergence

ntroduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglement

Result Using TeNPy

Search of 1st excited state Correlation length

Entanglement entropy Results using TEBE

Correlation length

Ground state energy convergence

Computational cost

References

Computational cost

- ▶ The computational cost of the DMRG scales as $\mathcal{O}(ND^3)$, where N is the number of sites in the system and D is the bond dimension of the MPS.
- For the TEBD applied to a finite system, the computational cost per time step similarly scales as 𝒪(ND³), assuming nearest-neighbor interactions and a second-order Trotter decomposition.

ntroduction

Energy and symmetries Boundary conditions

Entanglement

Result Using TeNPy

MRG Search of 1st excited sta

Correlation length
Entanglement entropy

Results using TEBD Correlation length

Entropy
Ground state energ

19 Computational cost

References

References

- [1] A. Akhtar and N. Regnault. A Practical Introduction to Quantum Many-Body Simulation and Matrix Product States.
- [2] J. Hauschild, J. Unfried, S. Anand, and et al. Tensor network Python (TeNPy) version 1. SciPost Physics Codebases, Nov. 2024. Publisher: Stichting SciPost.
- [3] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states. *Annals of Physics*, 326(1):96–192, Jan. 2011. arXiv:1008.3477 [cond-mat].
- [4] F. Verstraete, J. I. Cirac, and V. Murg. Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems. *Advances in Physics*, 57(2):143–224, Mar. 2008. arXiv:0907.2796 [quant-ph].

introduction

Energy and symmetries Boundary conditions

IPS and SVD

Entangleme

Result Using TeNPy

earch of 1st excited stat

Entanglement entropy

esults using TEBD

Correlation length

Correlation length

Correlation length

Ground state ene

Ground state energence

Computational cost

Backup slides (complexity)

- There are two main reasons for not seeing the scaling with the bond dimension.
- The singular values are constantly being discarded and bond dimension reduced.
- ▶ Higher bond dimensions allow for better cpu utilization.

Introduction

Energy and symmetries Boundary conditions

MPS and SVI

Entangleme

Result Using TeNPy

Correlation length

Entanglement entropy

Correlation length

Entropy Ground state er

Computational cost

Backup slides (complexity)

ntroduction

Energy and symmetries Boundary conditions

MPS and SVD

Entanglement

Result Using TeNPy

Search of 1st excited state Correlation length

Entanglement entropy Results using TERC

Correlation length

Entropy Ground state energy

convergence

Computational cost

Backup slides (1st excited)

► The energy gap between the ground state and the first excited state was found to be around 0.7, varying with the total number of sites

Introduction

Energy and symmetries Boundary conditions

MPS and SVD

Entangleme

Result Using TeNPy

Search of 1st excited state Correlation length

Entanglement entropy

Correlation length

Entropy Ground state energ

Computational cost

References