Búsqueda en Tablas Hash Distribuidas

Miguel Angel Astor Romero

16 de Noviembre de 2017

Implementación de una DHT

Definiciones

El problema consiste en conseguir la dirección del nodo p que puede resolver un elemento de datos con clave k.

Sucesor de k

Nodo con id >= k más pequeño.

Tabla Finger

$$FT_p[i] = succ((p+2^{i-1}) mod 2^m)$$

Predecesor de p

$$pred(p) = id_{p-1}$$

Búsqueda de k en el nodo p

$$q = FT_p[j] <= k < FT_p[j+1]$$

Consideraciones

- Las claves *k* y los identificadores *id* se generan en un espacio de m bits.
- Las tablas finger tendran *m* entradas.

Búsqueda en una DHT

Gestión de membresía

Inserción de un nodo P

- lacktriangle Inicializar la tabla finger FT_p
 - Buscar succ(i) para 1 <= i <= m
- Incializar pred(p)
 - buscar pred(succ(p))
- Asumir control de las claves correspondientes de succ(p)

Actualización de un nodo

- Periodicamente se ejecuta un proceso de fondo que contacta a pred(p + 1) en cada nodo p. Si pred(p + 1) falló, este se marca como desconocido.
- Si al hacer este procedimiento se detecta que pred(p + 1) es desconocido, se notifica a \$succ(p + 1) que p es su predecesor.

¿Preguntas?

