

S7076

Version 1.0

Copyright

Copyright © 2014 MiTAC International Corporation. All rights reserved. No part of this manual may be reproduced or translated without prior written consent from MiTAC International Corporation.

Trademark

All registered and unregistered trademarks and company names contained in this manual are property of their respective owners including, but not limited to the following.

TYAN® is a trademark of MiTAC International Corporation. Intel® is a trademark of Intel® Corporation.

AMI, AMI BIOS are trademarks of AMI Technologies.

Microsoft®, Windows® are trademarks of Microsoft Corporation.

Nuvoton® is a trademark of Nuvoton Technology Corporation.

Notice

Information contained in this document is furnished by MiTAC International Corporation and has been reviewed for accuracy and reliability prior to printing. MiTAC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TYAN® products including liability or warranties relating to fitness for a particular purpose or merchantability. MiTAC retains the right to make changes to product descriptions and/or specifications at any time, without notice. In no event will MiTAC be held liable for any direct or indirect, incidental or consequential damage, loss of use, loss of data or other malady resulting from errors or inaccuracies of information contained in this document.

Contents

Before you begin	4
Chapter 1: Instruction	5
1.1 Congratulations	5
1.2 Hardware Specifications	5
1.3 Software Specifications	7
Chapter 2: Board Installation	9
2.1 Board Image	10
2.2 Block Diagram	11
2.3 Mainboard Mechanical Drawing	12
2.4 Board Parts, Jumpers and Connectors	
2.5 LED Definitions	
2.6 Installing the Processor and Heat sink	
2.7 Thermal Interface Material	
2.8 Tips on Installing Motherboard in Chassis	
2.9 Installing the Memory	
2.10 Attaching Drive Cables	
2.11 Installing Add-In Cards	
2.12 Connecting External Devices	
2.13 Installing the Power Supply	
2.14 Finishing Up	
Chapter 3: BIOS Setup	
3.1 About the BIOS	47
3.2 Main Menu	
3.3 Advanced Menu	
3.4 Intel RC Setup	
3.5 Server Management (reserved for BB)	
3.6 Security	
3.7 Boot	
3.8 Save & Exit	
Chapter 4: Diagnostics	117
4.1 Flash Utility	117
4.2 AMIBIOS Post Code (Aptio)	
Appendix: Fan and Temp Sensors	125
Glossary	
Tochnical Support	135

Before you begin...

Check the box contents!

The retail motherboard package should contain the following:

	1 x S7076 Motherboard
	2 x SATA Cable
	1 x Mini-SAS to SATAx4 Cable
E.AA.	1 x Rear IO Shield
TOSIN (© Guide hystolisticon Guide Guide	1 x S7076 Quick reference guide
T)/AIN(®	1 x TYAN [®] Driver's and Utilities DVD

IMPORTANT NOTE:

Sales sample may not come with the accessory listed above. Please contact your sales representative to help order accessory for your evaluation.

Chapter 1: Instruction

1.1 Congratulations

You have purchased the powerful TYAN® S7076 motherboard, based on the Intel® C612 chipset. The S7076 is designed to support dual Intel® Xeon E5-2600 v3 series processors, and up to 2048GB LRDIMM 3DS/ 1024GB LRDIMM/ 512GB RDIMM DDR4 memory. Leveraging advanced technology from Intel®, the S7076 is capable of offering scalable 32 and 64-bit computing, high-bandwidth memory design, and lightning-fast PCI-E bus implementation.

The S7076 not only empowers you in today's demanding IT environment but also offers a smooth path for future application upgradeability. All of these rich feature sets provides the S7076 with the power and flexibility to meet demanding requirements for today's IT environments.

Remember to visit the TYAN[®] website at http://www.tyan.com. There you can find all the information on all TYAN[®] products as well as all the supporting documentation, FAQs, Drivers and BIOS upgrades.

1.2 Hardware Specifications

TYAN S7076 (S7076GM2NR)

	Supported CPU Series	Intel Xeon Processor E5-2600 v3 series
Processor	Socket Type / Q'ty	Socket-R3 (LGA2011) / (2)
	Thermal Design Power (TDP) wattage	Max up to 160W
System Bus		Up to 9.6/ 8.0/ 6.4 GT/s with Intel QuickPath Interconnect (QPI) support
Chipset	PCH	Intel C612
	Supported DIMM Qty	(8)+(8) DIMM slots
	DIMM Type / Speed	RDIMM DDR4 2133/1866/1600 / LRDIMM 3DS DDR4 2133/1600 / LRDIMM DDR4 2133/1600
Memory	Capacity	Up to 2048GB LRDIMM 3DS/ 1024GB LRDIMM/ 512GB RDIMM
	Memory channel	4 Channels per CPU
Memory voltage		1.2V
Evnencies	PCI-E	(2) PCI-E x8 Gen.3 slots
Slots Recommended TYAN Riser Card		M2091, PCI-E x16 1U riser card (left) / M2103-L8-1L, Proprietary PCI-E 1U riser (right)

	Recommended TYAN Mezzanine Card		M7062-B811-1T, PCI-E Gen3 x8 slot, Broadcom 10GbE Mezz Card / M7062-B810-2T, PCI-E Gen3 x8 slot, Broadcom 10GbE Mezz Card / M7076-IX540-2T, PCI-E Gen3 x8 slot, Intel 10GbE Mezz Card / M7076-12G-8I, PCI-E Gen3 x8 slot, LSI SAS 12G Mezz Card / M7094-6G-8I, PCI-E Gen3 x8 slot, LSI SAS 6G Mezz Card / M7076-6G-8I, PCI-E Gen3 x8 slot, LSI SAS 6G Mezz Card / Card Card			
	Note:		(1) OCP slot for Mezz Card; (1)Proprietary slot for SAS Mezz Card			
LAN	Port Q'	ty	(2) GbE ports (LAN1 shared with IPMI)			
LAN	Control	ler	Intel I350-AM2			
		Connector	(6) SATA* + SGPIO1 (J43) NOTE : SATA0~SATA3 (J41) , SATA 4 (J45), SATA5 (J46)			
	SATA	Controller	Intel C612			
		Speed	6.0 Gb/s			
Storage		RAID	RAID 0/1/10/5 (Intel RST)			
		Connector	(4) sSATA* + SGPIO2 (within J42) NOTE: sSATA0~SATA3 (J42)			
	sSATA	Controller	Intel C612			
		Speed	6.0 Gb/s			
		RAID	RAID 0/1/10/5 (Intel RST)			
	Connec	tor type	D-Sub 15-pin			
Graphic	Graphic Resolution		Up to 1920x1200			
	Chipset	t	Aspeed AST2400			
USB			(3) USB2.0 ports (2 via cable, 1 vertical type-A connector) / (4) USB3.0 ports (2 at rear, 2 via cable)			
	COM		(2) ports (COM1 at rear, COM2 via cable)			
	VGA		(1) D-Sub 15-pin VGA port			
Input /Output	RJ-45		Total (2) GbE ports, LAN1 shared with IPMI			
	Power		SSI 24-pin + 8-pin + 8-pin power connectors			
	PSMI		(1) 1x5-pin header			
	SATA		(2) SATA-III connectors + (2) Mini-SAS (4-in-1) connectors			
	Chipse	t	Aspeed AST2400			
Voltage)	Monitors voltage for CPU, memory, chipset & power supply			
	Fan		Total (7) 4-pin headers			
System	Temperature		Monitors temperature for CPU & system environment			
Monitoring LED			Over temperature warning indicator / Fan & PSU fail LED indicator NOTE: The LED signal is connected to the Front Par Header on the motherboard. This is the warning led o the front panel board preinstalled in the barebone.			

	Others	Watchdog timer support				
	Onboard Chipset	Onboard Aspeed AST2400				
Server Management	AST2400 IPMI Feature	IPMI 2.0 compliant baseboard management controller (BMC) / Supports storage over IP and remote platform-flash / USB 2.0 virtual hub				
	AST2400 iKVM Feature	24-bit high quality video compression / 10/100 Mb/s MAC interface				
	Brand / ROM size	AMI / 16MB				
BIOS	Feature	User-configurable H/W monitoring / SMBIOS 2.7/PnP/Wake on LAN / PXE boot support / ACPI 3.0/ACPI sleeping states S0,S4,S5				
Physical	Form Factor	EATX				
Dimension	Board Dimension	12"x13" (305x330mm)				
Operating System	OS supported list	Please refer to our Intel OS supported list.				
FCC (DoC)		Class A				
Regulation	CE (DoC)	Yes				
	Operating Temp.	10° C ~ 35° C (50° F~ 95° F)				
Operating Environment	Non-operating Temp.	- 40° C ~ 70° C (-40° F ~ 158° F)				
In/Non-operating Humidity		90%, non-condensing at 35° C				
RoHS	RoHS 6/6 Compliant	Yes				
D I	Motherboard	(1) S7076 Motherboard				
Package Contains	Manual	(1) Quick Installation Guide				
Contains	Installation CD	(1) TYAN installation CD				

1.3 Software Specifications

For OS (operation system) support, please check with TYAN® support for latest information.

NOTE

Chapter 2: Board Installation

You are now ready to install your motherboard.

How to install our products right... the first time

The first thing you should do is reading this user's manual. It contains important information that will make configuration and setup much easier. Here are some precautions you should take when installing your motherboard:

- (1) Ground yourself properly before removing your motherboard from the antistatic bag. Unplug the power from your computer power supply and then touch a safely grounded object to release static charge (i.e. power supply case). For the safest conditions, MiTAC recommends wearing a static safety wrist strap.
- (2) Hold the motherboard by its edges and do not touch the bottom of the board, or flex the board in any way.
- (3) Avoid touching the motherboard components, IC chips, connectors, memory modules, and leads.
- (4) Place the motherboard on a grounded antistatic surface or on the antistatic bag that the board was shipped in.
- (5) Inspect the board for damage.

The following pages include details on how to install your motherboard into your chassis, as well as installing the processor, memory, disk drives and cables.

NOTE: Do not apply power to the board if it has been damaged.

2.1 Board Image

S7076

This picture is representative of the latest board revision available at the time of publishing. The board you receive may not look exactly like the above picture.

2.2 Block Diagram

S7076 Block Diagram

2.3 Mainboard Mechanical Drawing

2.4 Board Parts, Jumpers and Connectors

This diagram is representative of the latest board revision available at the time of publishing. The board you receive may not look exactly like the above diagram. But for the DIMM number please refer to the above placement for memory installation. For the latest board revision, please visit our web site at http://www.tyan.com.

Jumpers & Connectors

Connector/Jumper					
1 LAN2 + USB 3.0 x 2	23 PCH PWROK LED (LED2)				
2 VGA / COM1	24 CAT Error LED (LED3)				
3 ID LED Button (SW3)	25 ID LED Button Header (J56)				
4 LAN1	26 Chassis Intrusion Header (J57)				
5 COM2 Header (J68)	27 CPU0 FAN (J28)				
6 SYS_FAN_4 (J31)	28 SSI 8-pin CPU0 Power Connector (PW1)				
7 BMC LED (LED1)	29 SYS_FAN_3 (J35)				
8 PSU Alert LED (LED10)	30 SYS_FAN_2 (J34)				
9 Clear CMOS Button (SW4)	31 CPU0 PWOK LED (LED8)				
10 Rear ID LED (LED7)	32 CPU0 Socket (U1)				
11 SYS_FAN_5 (J32)	33 CPU1 PWOK LED (LED9)				
12 7-pin Vertical SATA3.0 Connector (SATA5, J46)	34 CPU1 FAN (J30)				
13 Reset Button (SW2)	35 SYS_FAN_1 (J33)				
14 Power Button (SW1)	36 SSI 8-pin CPU1 Power Connector (PW3)				
15 SATA0~SATA3 (J41)	37 CPU1 Socket (U2)				
16 sSATA0~sSATA3 (J42)	38 Vertical Type-A USB2.0 Connector (J40)				
17 HOST SMBUS Header (J61)	39 IPMB Pin Header (J51)				
18 USB2.0 Header (J37)	40 Mini-SAS HD Connector (J20/J21/J22/J23)				
19 Front Panel Header (J50)	41 ATX 24-pin Main Power Connector (PW2)				
20 PCH SATA SGPIO Header for BB HD Board (J43)	42 TYAN Module Header (J48)				
21 USB3.0 Header (J36)	43 FAN Header for BB FAN Board (J29)				
22 7-pin Vertical SATA3.0 Connector (SATA4, J45)	44 PSMI Pin Header (J49)				
Jumpers	Slots				
a COM2 or COM5 Selected Jumper (J64)	A OCP Slot for OCP Mezz Card (J26)				
b COM2 or COM5 Selected Jumper (J63)	B PCI-E 3.0x8 Slot (x8 link, open-end type, #PCIe-6.5)				
c BMC Reset Header (J55)	C PCI-E 3.0x8 Slot (x8 link, open-end type, #PCIe-6)				
d BIOS Recovery Mode Jumper (J58)	D Proprietary Slot for SAS Mezz Card (J27)				

e NMI Jumper (J67)	E CPU0_DIMM_C0/C1
f ME Recovery Mode Jumper (J62)	F CPU0_DIMM_D0/D1
g ME Security Override Jumper (J60)	G CPU0_DIMM_B0/B1
	H CPU0_DIMM_A0/A1
	CPU1_DIMM_G0/G1
	J CPU1_DIMM_H0/H1
	K CPU1_DIMM_F0/F1
	L CPU1_DIMM_E0/E1

Jumper Legend

OPEN - Jumper OFF	Without jumper cover
CLOSED - Jumper ON	With jumper cover

J68: COM Port Header

	Signal	Pin	Pin	Signal
	COM2_DCD	1	2	COM2_DSR
2 10	COM2_RXD	3	4	COM2_RTS
1 9	COM2_TXD	5	6	COM2_CTS
	COM2_DTR	7	8	COM2_NRI
	GND	9	10	NC

J28/J30/J31/J32/J33/J34/J35: 4-pin FAN Connector

	Pin	1	2	3	4	
1	Signal	GND	VCC12	FAN_TACH	FAN_PWM	
4	Use this header to connect the cooling fan to your motherboard to keep the system stable and reliable.					
800	J28: CPU0 J32: SYS		0: CPU1 FAN 3: SYS FAN	_		
1	J35: SYS_	_				

J50: Front Panel Header

	Signal	Pin	Pin	Signal
	FP_PW_LED_PW	1	2	FP_PWR
	KEY	3	4	FP_ID_LED_PW
	PWR_LED-	5	6	FP_ID_LED_N
	HDD_LED+	7	8	LED_FAULT1
23 1	HDD_LED-	9	10	LED_FAULT2
	FP_PWRSW#	11	12	LAN0_ACT_P
24 2	GND	13	14	LAN0_LED1_ACT#
	FP_RSTSW#	15	16	FP_SMBDAT
	GND	17	18	FP_SMBCLK
	FP_IDLEDSW#	19	20	FP_INTRUSION#
	NC	21	22	LAN1_ACT_P
	FP_NMISW#	23	24	LAN1_LED1_ACT#

J56: Front Panel ID LED

PIN1 ■ ■	Signal	Pin	Pin	Signal
·····	FP_IDLEDSW#	1	2	GND

J57: Chassis Intrusion Header

PIN1 ■ ■	Signal	Pin	Pin	Signal
FINI B B	INTRUDER#	1	2	GND

J37: Front USB2.0 Header (blue)

	Signal	Pin	Pin	Signal
9 1	USB2_VCC_REAR_2	1	2	USB2_VCC_REAR_2
-Tolologo	USB2_N3_REAR_3_R	3	4	USB2_N4_REAR_2_R
	USB2_P3_REAR_3_R	5	6	USB2_P4_REAR_2_R
10 2	GND	7	9	GND
	KEY	9	10	OPEN

J45/J46: 7-pin Vertical SATA3.0 Connector

	PIN Define	Pin	
7 🔳	1	GND	Connects to the Serial
 	2	SATA_TXP_C	ATA ready drives via
	3	SATA_TXN_C	the Serial ATA cable.
	4	GND	
	5	SATA_RXN_C	J45: SATA4
1 -	6	SATA_RXP_C	J46: SATA5
	7	GND	

J36: USB3.0 Header

	Signal	Pin	Pin	Signal
	USB3_VCC_FPB_01	1	20	KEY
	USB3_N5_RX_FPB_N0	2	19	USB3_VCC_FPB_01
	USB3_P5_RX_FPB_P0	3	18	USB3_N6_RX_FPB_N1
	GND	4	17	USB3_P6_RX_FPB_P1
1	USB3_N5_TX_FPB_N0	5	16	GND
20 11	USB3_P5_TX_FPB_P0	6	15	USB3_N6_TX_FPB_N1
	GND	7	14	USB3_P6_TX_FPB_P1
	USB2_N12_FPB_N0_R	8	13	GND
	USB2_P12_FPB_P0_R	9	12	USB2_N11_FPB_N1_R
	OC_N	10	11	USB2_P11_FPB_P1_R

J48: TYAN Module Header

J40: Vertical Type-A USB Connector

Signal	Pin	Pin	Signal
USB_VCC_TYPE_A	1	2	USB_N2_TYPE_A1_R
USB_P2_TYPE_A1_R	3	4	GND

J49: PSMI Connector

	Signal	Pin	Pin	Signal
1	PSMI_5V_SMBCLK	1	2	PSMI_5V_SMBDATA
	PSU_ALERT_N	3	4	GND
	VCC3	5		

J51: IPMB Pin Header

1	Pin	1	2	3	4
1	Signal	IPMB DATA	GND	IPMB CLK	VCC

J29: Fan Connector Reserved for Barebone

J43: PCH SGPIO Pin Header

	Signal	Pin	Pin	Signal
	SATA4_5_SM_CLK	1	2	NC
PIN9 PIN1	SATA4_5_SM_DAT	3	4	SGPIO_SATA_DATAOUT0_R2
PIN10 ■ ■ ■ ■ PIN2	GND	5	6	SGPIO_SATA_LOAD_R2
,	KEY	7	8	SGPIO_SATA_CLK_R2
	VCC3_AUX	9	10	SATA_ERR_P

J55: BMC Reset Header

PIN1 ■ ■	Signal	Pin	Pin	Signal
PINI	BMC_JP_N	1	2	GND

SW3 (J56): ID LED Switch Button

Signal	Pin	Pin	Signal
FP_IDLED_BTN_N	1	2	GND
GND	3	4	GND

SW1: Power Switch Button

	Signal	Pin	Pin	Signal
	FP_PWR_BTN_N	1	2	FP_PWR_BTN_N
Normal (Default)	GND	3	4	GND

SW2: Reset Switch Button

	Signal	Pin	Pin	Signal
	FP_RST_BTN_N	1	2	FP_RST_BTN_N
Normal (Default)	GND	3	4	GND

SW4: Clear CMOS Reset Button

You can reset the CMOS settings by using this button, if you have forgotten your system/setup password or need to clear system BIOS setting.

- 1. Power off the system and disconnect power connectors from the motherboard.
- 2. Press the button (Clear CMOS).
- 3. Reconnect power & power on the system.

NOTE: After flashing new BIOS, do the following steps:

- a. Clear CMOS
- b. Enter BIOS setup menu and load Default Settings. Then do a Save and Exit from setup.

J61: HOST SMB Header

	Signal	Pin	Pin	Signal
PIN1	PCH_HOST_3V3STBY_ SMB_DAT	1	2	GND
	PCH_HOST_3V3STBY_ SMB_CLK	3		

J58: BIOS Recovery Mode Jumper

J63: COM2 or COM5 Selected Jumper

J64: COM2 or COM5 Selected Jumper

J62: ME Firmware Recovery Mode Jumper

J60: Flash Descriptor Security Override Header

J67: NMI Jumper

	Signal		Pin	Signal	
PIN1 ■ ■ PIN3	FP_NMI_BTN_N	1	2	FP_PIN23_N	
PIN1 B B PIN3	FP_HD_FAULT_LED	3			
	Pin1-2 closed: Normal (Default) Pin2-3 closed: Remove NMI Button Function				

2.5 LED Definitions

	I	Dia	Ciamal			
		Pin	Signal			
LED1 BMC Heart Beat LED		+	+3V_AUX GND			
		-				
	DMC Haard	State	Description			
		OFF	OFF	The LED shuts off when the BMC controller cannot be detected or properly initiated.		
		Blinking	Green	The LED blinks per second to indicate that the BMC controller is working normally		
		Pin	Signal			
LED2 PCH PWOK LED		+	+3V			
		-	GND			
	PCH PWOK	State	Description			
	LED	OFF	OFF	The LED shuts off when the power of PCH is abnormal.		
		ON	Amber	The amber LED lights up when the power of PCH is normal.		
		Pin	Signal			
		+	+3V			
		-	GND			
		State	Description			
LED3	CAT Error LED	OFF	OFF	The LED shuts off when System is running normally.		
		ON	Red	The LED lighted up when the system has experienced a fatal or catastrophic error and can not continue to operate.		
		Pin	Signal			
■ 1 – 137 – 1	Rear ID LED	+	+ VCC3_AUX			
		-	GND			
		State	Description			
		OFF	OFF	OFF		
		ON	Green	ON		
LED8	CPU0 PWOK LED	Pin	Signal			
		+	+3V			
		-	GND			
LEDO		State	Description			
		OFF	OFF	OFF		
		ON	Green	ON		

LED9	CPU1 PWOK LED	Pin	Signal		
		+	+ 3V		
		-	GND		
		State	Description		
		OFF	OFF	The LED shuts off when the power of CPU1 is abnormal.	
		ON	Green	The LED lights up when the power of CPU1 is normally.	
	PSU Alert LED	Pin	Signal		
		+	+ VCC3_AUX		
LED10		-	GND		
		State	Description		
		OFF	OFF	The LED shuts off when the PSU is normal.	
		ON	Green	The LED lights up when the PSU is abnormally.	

2.6 Installing the Processor and Heat sink

The S7076 supported Intel[®] processors are listed in section **1.2** *Hardware* Specifications on page 5. Check our website at http://www.tyan.com for latest processor support.

NOTE: MiTAC TYAN is not liable for damage as a result of operating an unsupported configuration.

Processor Installation for Socket-R3 (LGA2011)

Follow the steps below to install the processors and heat sinks.

Please note that the illustrations are based on a Socket-R3 (LGA2011) which may not look exactly like the motherboard you purchased. Therefore, the illustrations should be held for your reference only.

NOTE: Please save and replace the CPU protection cap when returning for service.

1. Open the socket levers.

2. Open the other socket lever.

Open the CPU socket cover.

http://www.tyan.com

4. Remove the CPU protection cap.

5. Install the processor and make sure the gold arrow is located in the right direction.

6. Remove the other CPU protection cap attached on the socket cover.

7. Close the CPU socket cover.

8. Close the socket levers.

9. Close the other socket lever.

Heat sink Installation

After installing the processor, you should proceed to install the heat sink. The CPU heat sink will ensure that the processor do not overheat and continue to operate at maximum performance for as long as you own them. The overheated processor is dangerous to the motherboard.

For the safest method of installation and information on choosing the appropriate heat sink, using heat sinks validated by Intel[®]. Please refer to the Intel[®] website: http://www.intel.com

The following diagram illustrates how to install the heat sink for the S7076.

1. Remove the protective sheet..

2. Install the CPU heatsink.

3. Secure the heat sink screws.

2.7 Thermal Interface Material

There are two types of thermal interface materials designed for use with the processors.

The most common material comes as a small pad attached to the heat sink at the time of purchase. There should be a protective cover over the material. Take care not to touch this material. Simply remove the protective cover and place the heat sink on the processor.

The second type of interface material is usually packaged separately. It is commonly referred to as 'thermal compound'. Simply apply a thin layer on to the CPU lid (applying too much will actually reduce the cooling).

NOTE: Always check with the manufacturer of the heat sink & processor to ensure that the thermal interface material is compatible with the processor and meets the manufacturer's warranty requirements.

2.8 Tips on Installing Motherboard in Chassis

Before installing your motherboard, make sure your chassis has the necessary motherboard support studs installed. These studs are usually metal and are gold in color. Usually, the chassis manufacturer will pre-install the support studs. If you are unsure of stud placement, simply lay the motherboard inside the chassis and align the screw holes of the motherboard to the studs inside the case. If there are any studs missing, you will know right away since the motherboard will not be able to be securely installed.

Some chassis include plastic studs instead of metal. Although the plastic studs are usable, MiTAC recommends using metal studs with screws that will fasten the motherboard more securely in place.

Below is a chart detailing what the most common motherboard studs look like and how they should be installed.

Mounting the Motherboard

2.9 Installing the Memory

Before installing memory, ensure that the memory you have is compatible with the motherboard and processor. Check the TYAN Web site at http://www.tyan.com for details of the type of memory recommended for your motherboard.

- Supports eight (4+4) 284-Pin DDR4 sockets, up to 2048GB LRDIMM 3DS/ 1024GB LRDIMM/ 512GB RDIMM
- Supports single/dual rank memory
- All installed memory will automatically be detected and no jumpers or settings need changing
- All memory must be of the same type and density

DIMM Location

DDR4 Memory POR for Haswell-EP

	Ranks Per			Speed (MT/s); Voltage (V); Slot Per Channel (SPC) and DIMM Per Channel (DPC)						
	DIMM and Data Width			1 Slot Per Channel	2 Slots Per Channel		3 Slots Per Channel			
	widen			1 DPC	1 DPC	2 DPC	1 DPC	2 DPC	3 DPC	
				1.2V	1.2V	1.2V	1.2V	1.2V	1.2V	
RDIMM	SRx4	8 GB	16 GB	2133	2133	1866	2133	1866	1600	
RDIMM	SRx8	4 GB	8 GB	2133	2133	1866	2133	1866	1600	
RDIMM	DRx8	8 GB	16 GB	2133	2133	1866	2133	1866	1600	
RDIMM	DRx4	16 GB	32 GB	2133	2133	1866	2133	1866	1600	
LRDIMM	QRx4	32 GB	64 GB	2133	2133	2133	2133	2133	1600	
LRDIMM 3DS [†]	8Rx4	64 GB	128 GB	2133	2133	2133	2133	2133	1600	

[†] Grantley intercept at platform refresh (Broadwell)

S7076 Recommended Memory Population Table

		Single CPU Installed (CPU0 only)				
Quantity of memory installed	1	2	3	4	6	8
CPU0_DIMM_A0	√	$\sqrt{}$	V	V	V	V
CPU0_DIMM_A1					V	V
CPU0_DIMM_B0		$\sqrt{}$	V	V	V	V
CPU0_DIMM_B1					V	V
CPU0_DIMM_C0				V	V	V
CPU0_DIMM_C1						V
CPU0_DIMM_D0			V	$\sqrt{}$	$\sqrt{}$	V
CPU0_DIMM_D1						√

NOTE:

- 1. $\sqrt{\text{indicates a populated DIMM slot.}}$
- 2. Use paired memory installation for max performance.
- 3. Populate the same DIMM type in each channel, specifically
 - Use the same DIMM size
 - Use the same # of ranks per DIMM

	Dual CPU installed (CPU0 and CPU1)									
Quantity of memory installed	2	3	4	5	6	7	8	10	12	16
CPU0_DIMM_A0	$\sqrt{}$	√	√	$\sqrt{}$	V	√	√	√	√	√
CPU0_DIMM_A1								√	√	√
CPU0_DIMM_B0		√	V	$\sqrt{}$	V	√	V	V	V	√
CPU0_DIMM_B1									V	√
CPU0_DIMM_C0							V	V	V	√
CPU0_DIMM_C1										√
CPU0_DIMM_D0				V	V	√	√	√	√	√
CPU0_DIMM_D1										√
CPU1_DIMM_E0	$\sqrt{}$	√	√	$\sqrt{}$	$\sqrt{}$	√	√	√	√	√
CPU1_DIMM_E1								√	√	√
CPU1_DIMM_F0					V	√	√	√	√	√
CPU1_DIMM_F1										√
CPU1_DIMM_G0			√	V	√	√	√	√	√	√
CPU1_DIMM_G1									√	√
CPU1_DIMM_H0						√	√	√	√	√
CPU1_DIMM_H1										√

Memory Installation Procedure

Follow these instructions to install memory modules into the S7076.

1. Unlock the clips as shown in the illustration.

Insert the memory module firmly into the socket by gently pressing down until it sits flush with the socket.

3. Lock the clips to secure the memory module into place.

2.10 Attaching Drive Cables

Attaching Serial ATA Cables

S7076 is equipped with six (6) Serial ATA (SATA) channel. Connections for the drives are very simple.

There is no need to set Master/Slave jumpers on SATA drives.

If you are in need of SATA/SAS cables or power adapters please contact your place of purchase.

The following pictures illustrate how to connect an SATA drive.

- 1. SATA drive cable connection
- 2. SATA drive power connection
- 3. SATA cable motherboard connector
- 4. SATA drive power adapter

2.11 Installing Add-In Cards

Before installing add-in cards, it's helpful to know if they are fully compatible with your motherboard. For this reason, we've provided the diagrams below, showing the slots that may appear on your motherboard.

OCP slot for OCP Mezz card (J26)

PCI-E 3.0x8 slot(x8link, open-end type) (#PCIe-6.5) (J18)

PCI-E 3.0x8 slot(x8link, open-end type) (#PCIe-6) (J19)

Proprietary slot for SAS Mezz card (J27)

Simply find the appropriate slot for your add-in card and insert the card firmly. Do not force any add-in cards into any slots if they do not seat in place. It is better to try another slot or return the faulty card rather than damaging both the motherboard and the add-in card.

TIP: It's a good practice to install add-in cards in a staggered manner rather than making them directly adjacent to each other. Doing so allows air to circulate within the chassis more easily, thus improving cooling for all installed devices.

NOTE: You must always unplug the power connector to the motherboard before performing system hardware changes to avoid damaging the board or expansion device.

2.12 Connecting External Devices

Connecting external devices to the motherboard is an easy task. The motherboard supports a number of different interfaces through connecting peripherals. See the following diagrams for the details.

NOTE: Peripheral devices can be plugged straight into any of these ports but software may be required to complete the installation.

Onboard LAN LED Color Definition

The two (2) onboard Ethernet ports have green and yellow LEDs to indicate LAN status. The chart below illustrates the different LED states.

10/100/1000 Mbps LAN Link/Activity LED Scheme							
LEFT	RIGHT	Left LED	Right LED				
10 Mhns	Link	Green	Off				
10 Mbps	Active	Blinking Green	Off				
400 Mhma	Link	Green	Solid Green				
100 Mbps	Active	Blinking Green	Solid Green				
4000 Mb	Link	Green	Solid Yellow				
1000 Mbps	Active	Blinking Green	Solid Yellow				
No	Link	Off	Off				

2.13 Installing the Power Supply

There are three (3) power connectors on your S7076 motherboard. The S7076 supports EPS 12V power supply.

PW2: ATX 24-pin Main Power Connector

PW1: SSI 8-pin CPU0 Power Connector

1 4	Signal	Pin	Pin	Signal
	GND	1	5	P0_P12V
	GND	2	6	P0_P12V
	GND	3	7	P0_MEM_P12V
5 8	GND	4	8	P0_MEM_P12V

PW3: SSI 8-pin CPU1 Power Connector

1 4	Signal	Pin	Pin	Signal
	GND	1	5	P1_P12V
8 8 8 8	GND	2	6	P1_P12V
	GND	3	7	P1_MEM_P12V
5 8	GND	4	8	P1_MEM_P12V

NOTE:

- You must unplug the power supply before plugging the power cables to motherboard connectors.
- 2. Apply 5Vsb power supply with current support below 2A.

2.14 Finishing Up

Congratulations on making it this far! You have finished setting up the hardware aspect of your computer. Before closing up your chassis, make sure that all cables and wires are connected properly, especially IDE cables and most importantly, jumpers. You may have difficulty powering on your system if the motherboard jumpers are not set correctly.

In the rare circumstance that you have experienced difficulty, you can find help by asking your vendor for assistance. If they are not available for assistance, please find setup information and documentation online at our website or by calling your vendor's support line.

Chapter 3: BIOS Setup

3.1 About the BIOS

The BIOS is the basic input/output system, the firmware on the motherboard that enables your hardware to interface with your software. The BIOS determines what a computer can do without accessing programs from a disk. The BIOS contains all the code required to control the keyboard, display screen, disk drives, serial communications, and a number of miscellaneous functions. This chapter describes the various BIOS settings that can be used to configure your system.

The BIOS section of this manual is subject to change without notice and is provided for reference purposes only. The settings and configurations of the BIOS are current at the time of print and are subject to change, and therefore may not match exactly what is displayed on screen.

This section describes the BIOS setup program. The setup program lets you modify basic configuration settings. The settings are then stored in a dedicated, battery-backed memory (called NVRAM) that retains the information even when the power is turned off.

To start the BIOS setup utility:

- 1. Turn on or reboot your system.
- Press < Del> or <F2> during POST (Del on remote console) to start the BIOS setup utility.

3.1.1 Setup Basics

The table below shows how to navigate in the setup program using the keyboard.

Key	Function			
Left/Right Arrow Keys	Change from one menu to the next			
Up/Down Arrow Keys	Move between selections			
Enter	Open highlighted section			
PgUp/PgDn Keys	Change pages			
+/-	Change options			
ESC	Exit			

3.1.2 Getting Help

Pressing [F1] will display a small help window that describes the appropriate keys to use and the possible selections for the highlighted item. To exit the Help Window, press [ESC] or the [Enter] key again.

3.1.3 In Case of Problems

If you have trouble booting your computer after making and saving the changes with the BIOS setup program, you can restart the computer by holding the power button down until the computer shuts off (usually within 4 seconds); resetting by pressing CTRL-ALT-DEL; or clearing the CMOS.

The best advice is to only alter settings that you thoroughly understand. In particular, do not change settings in the Chipset section unless you are absolutely sure of what you are doing. The Chipset defaults have been carefully chosen either by MiTAC or your system manufacturer for best performance and reliability. Even a seemingly small change to the Chipset setup options may cause the system to become unstable or unusable.

3.1.4 Setup Variations

Not all systems have the same BIOS setup layout or options. While the basic look and function of the BIOS setup remains more or less the same for most systems, the appearance of your Setup screen may differ from the charts shown in this section. Each system design and chipset combination requires a custom configuration. In addition, the final appearance of the Setup program depends on the system designer. Your system designer may decide that certain items should not be available for user configuration, and remove them from the BIOS setup program.

NOTE: The following pages provide the details of BIOS menu. Please be noticed that the BIOS menu are continually changing due to the BIOS updating. The BIOS menu provided are the most updated ones when this manual is written. Please visit TYAN's website at http://www.tyan.com for the information of BIOS updating.

3.2 Main Menu

In this section, you can alter general features such as the date and time. Note that the options listed below are for options that can directly be changed within the Main Setup screen.

BIOS Information

It displays BIOS related information.

Memory Information

This displays the total memory size.

System Date

Adjust the system date.

MM (Months): DD (Days): YYYY (Years)

System Time

Adjust the system clock.

HH (24 hours format): MM (Minutes): SS (Seconds)

Access Level

Read only.

3.3 Advanced Menu

This section facilitates configuring advanced BIOS options for your system.

S7076GM2NR (AST2400)

S7076G2NR-AKA (AST1400)

ACPI Settings

System ACPI Parameters.

Hardware Health Configuration / H/W Monitor

Hardware health Configuration Parameters.

Onboard Device Configuration

Onboard Device Configuration.

PCle Slot Configuration

Onboard PCIe Slot Configuration.

WatchDog Timer Configuration

WatchDog Configuration.

ASPEED Super IO Configuration

System Super IO Chip Parameters.

S5 RTC Wake Settings

Enable system to wake from S5 using RTC alarm.

Serial Port Console Redirection

Serial Port Console Redirection.

PCI Subsystem Settings

PCI, PCI-X and PCI Express Settings.

CSM Configuration

CSM configuration: Enable/Disable, Option ROM execution settings, etc.

Trusted Computing

Trusted Computing Settings.

USB Configuration

USB Configuration Parameters.

3.3.1 ACPI Settings

Enable ACPI Auto Configuration

Enables or Disables BIOS ACPI Auto Configuration.

Disabled / Enabled

Enable Hibernation

Enable or disable System ability to Hibernate (OS/S4 Sleep State). This option may not be effective with some OS.

Disabled / Enabled

3.3.2 Hardware Health Configuration / H/W Monitor

S7076GM2NR (AST2400)

Aptio Setup Utility - Advanced	Copyright (C) 2014 Americar	n Megatrends, Inc.
Hardware Health Event Monitoring		Auto Fan Control Help
Auto Fan Control PWM Minimal Duty Cycle BMC Alert Beep	[Enabled] [30% Duty Cycle] [On]	
PSU Status Monitor PMBus Support	[Disabled]	
Hardware Health Event Monitoring		
▶ Sensor Data Register Monitoring		
		##: Select Screen f1: Select Item Enter: Select +/-: Change Opt. f1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit
Version 2.17.1245. C	opyright (C) 2014 American N	Megatrends, Inc.

S7076G2NR-AKA (AST1400)

Aptio Setup Utility - Copyright (C) 2014 American Megatrends, Inc. Advanced Hardware Health Event Monitoring Auto Fan Control Help Hardware Health Event Monitoring ▶ Sensor Data Register Monitoring ++: Select Screen ↑↓: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit Version 2.17.1245. Copyright (C) 2014 American Megatrends, Inc.

Auto Fan Control

Auto Fan Control Help.

Enabled / Disabled

NOTE: PWM Minimal Duty Cycle will appear when Auto Fan Control is set to [Enabled].

PWM Minimal Duty Cycle

PWM Minimal Duty Cycle.

30% Duty Cycle / 45% Duty Cycle / 60% Duty Cycle

BMC Alert Beep

Enable/Disable BMC Alert Beep.

On / Off

PM Bus Support

PM Bus support.

Disabled / Enabled

3.3.2.1 Sensor Data Register Monitoring

Read only.

3.3.3 Onboard Device Configuration

NOTE: The BIOS will automatically read the onboard LAN controller.

Onboard LAN#1

Enable/Disable Onboard Network Controller.

Enabled / Disabled

Load Onboard LAN 1 Option ROM

Enable/Disable Load Option ROM for OnBoard Network Controller.

Disabled / Enabled with PXE

Load Onboard LAN 2 Option ROM

Enable/Disable Load Option ROM for OnBoard Network Controller.

Disabled / Enabled with PXE / Enabled with iSCSI

Chassis Intrusion detect

Enabled: When a chassis open event is detected, the BIOS will record the event.

Disabled / Enabled

NMI Button

Enable or Disable NMI button.

Disabled / Enabled

Wait for "ESC" If Error

Enable or Disable Wait ESC key Function. When Chassis Intrusion, CMOS Clear or BMC not response.

Enabled / Disabled

3.3.4 PCle Slot Configuration

PCIe Slot1 OPTIROM

Onboard PCIe Slot Configuration.

Enabled / Disabled

PCIe Slot2 OPTIROM

Enable/Disable Load OPTROM for PCIe Slot devices.

Enabled / Disabled

PCIe Slot1 Link Speed / PCIe Slot2 Link Speed

OnBoard PCIe Slot Link Speed Configuration.

Auto / Gen 1 (2.5GT/s) / Gen 2 (5GT/s) / Gen 3 (8GT/s)

3.3.5 Watch Dog Timer Configuration

Watch Dog Mode

Watch Dog Mode Help.

Disabled / POST / OS / PowerON

NOTE: Watch Dog Timer will not appear when Watch Dog Mode is set to [Disabled].

Watch Dog Timer

Watch Dog Timer Help.

2 MINS / 4 MINS / 6 MINS / 8 MINS / 10 MINS

3.3.6 ASPEED Super IO Configuration

Super IO Chip

Read only.

3.3.6.1 Serial Port 1 Configuration

Serial PortGSIO200

Enable or disable Serial Port (COM).

Enabled / Disabled

Device Settings

Read only.

Change SettingsGSIO600

Select an optimal setting for Super IO Device.

```
Auto / IO=3F8h; IRQ=4;

/ IO=3F8h, IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;

/ IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;

/ IO=3E8h, IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;

/ IO=2E8h, IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;
```

3.3.6.2 Serial Port 2 Configuration

Serial PortGSIO200

Enable or disable Serial Port (COM).

Enabled / Disabled

Device Settings

Read only.

Change SettingsGSIO600

Select an optimal setting for Super IO Device.

```
Auto / IO=3F8h; IRQ=4;

/ IO=3F8h, IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;

/ IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;

/ IO=3E8h, IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;

/ IO=2E8h, IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12;
```

3.3.7 S5 RTC Wake Settings

Wake system from S5

Enable or disable System wake on alarm event. Select Fixed Time, system will wake on the hr:min:sec specified. Select Dynamic Time, system will wake on the current time + increase minute(s).

Disabled / Fixed Time / Dynamic Time

3.3.8 Serial Port Console Redirection

COM1/COM2/ Serial Port for Out-Of-Band Management/Windows Emergency Services (EMS)

Console Redirection

Console redirection enable or disable.

Disabled / Enabled

COM1/COM2/ Serial Port for Out-Of-Band Management/Windows Emergency Services (EMS)

Console Redirection Settings

The settings specify how the host computer (which the user is using) will exchange data. Both computers should have the same or compatible settings.

Legacy Console Redirection Settings

Legacy Console redirection settings.

3.3.8.1 Console Redirection Settings

Terminal Type

Emulation: ANSI: Extended ASCII char set. VT100: ASCII char set.

VT100+: Extends VT100 to support color, function keys, etc.

VT-UTF8: Uses UTF8 encoding to map Unicode chars onto 1 or more bytes.

VT100+ / VT100 / VT-UTF8 / ANSI

Bits per Second

Select serial port transmission speed. The speed must be matched on the other side. Long or noisy lines may require lower speeds.

38400 / 9600 / 19200 / 57600 / 115200

Data Bits

8/7

Parity

A parity bit can be sent with the data bits to detect some transmission errors. Even: parity bit is 0 if the num of 1's in the data bits is even. Odd: parity bit is 0 if the num of 1's in the data bits is odd. Mark: parity bit is always 1. Space: parity bit is always 0. Mark and Space parity do not allow for error detection.

None / Even / Odd / Mark / Space

Stop Bits

Stop bits indicate the end of a serial data packet. (A start bit indicates the beginning). The standard setting is 1 stop bit. Communication with slow devices may require more than 1 stop bit.

1/2

Flow Control

Flow Control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a 'stop' signal can be sent to stop the data flow. Once the buffers are empty, a 'start' signal can be sent to restart the flow. Hardware flow control uses two wires to send start/stop signal.

None / Hardware RTS/CTS

VT-UTF8 Combo Key Support

Enable VT-UTF8 Combination Key Support for ANSI/VT100 terminals.

Enabled / Disabled

Recorder Mode

On this mode enabled only text will be sent. This is to capture Terminal data. **Disabled** / Enabled

Resolution 100x31

Enable or disable extended terminal resolution.

Disabled / Enabled

Legacy OS Redirection Resolution

On Legacy OS, the number of rows and columns supported redirection. **80x24** / 80x25

Putty KeyPad

Select FunctionKey and KeyPad on Putty.

VT100 / LINUX / XTERMR6 / SCO / ESCN / VT400

Redirection after BIOS POST

The settings specify if BootLoader is selected than Legacy console redirection is disabled before booting to Legacy OS. Default value is Always Enable which means Legacy Console Redirection is enabled for Legacy OS.

Always Enable / BootLoader

3.3.8.2 Legacy Console Redirection Settings

Legacy Serial Redirection Port

Select a COM port to display redirection of Legacy OS and Legacy OPROM Messages.

COM1 / COM2

3.3.8.3 Serial Port for Out-Of-Band Management/Windows Emergency Services (EMS) Console Redirection Settings

Out-of-Band Mgmt Port

Microsoft Windows Emergency Management Services (EMS) allows for remote management of a Windows Server OS through a serial port.

COM0 / COM1

Terminal Type

VT-UTF8 is the preferred terminal type for out-of-band management. The next best choice is VT100+ and then VT100. See above, in Console Redirection Settings page, for more Help with Terminal Type/Emulation.

VT-UTF8 / VT100 / VT100+ / ANSI

Bits per Second

Select serial port transmission speed. The speed must be matched on the other side. Long or noisy lines may require lower speeds.

115200 / 9600 / 19200 / 57600

Flow Control

Flow Control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a 'stop' signal can be sent to stop the data flow. Once the buffers are empty, a 'start' signal can be sent to restart the flow. Hardware flow control uses two wires to send start/stop signal.

None / Hardware RTS/CTS / Software Xon/Xoff

Data Bits / Parity / Stop Bits Read only.

3.3.9 PCI Subsystem Settings

Above 4G Decoding

Enables or Disables 64bit capable Devices to be Decoded in Above 4G Address Space (Only if System Supports 64 bit PCI Decoding).

Disabled / Enabled

SR-IOV Support

If system has SR-IOV capable PCIe Devices, this option enables or disables Single Root IO Virtualization Support.

Disabled / Enabled

3.3.9.1 PCI Express Settings

Maximum Payload

Set Maximum Payload of PCI Express Device or allow System BIOS to select the value.

Auto / 128 Bytes / 256 Bytes / 512 Bytes / 1024 Bytes / 2048 Bytes / 4096 Bytes

3.3.9.2 PCI Express GEN2 Settings

ARI Forwarding

If supported by hardware and set to "Enabled", the Downstream Port disables its traditional Device Number field being 0 enforcement when turning a Type1 Configuration Request into a Type0 Configuration Request, permitting access to Extended Functions in an ARI Device immediately below the Port.

Disabled / Enabled

3.3.10 CSM Configuration

CSM Support

Enable/Disable CSM Support.

Enabled / Disabled

Option ROM Messages

Set display mode for Option ROM

Force BIOS / Keep Current

Network

Controls the execution of IEFI and Legacy PXE OpROM.

Legacy / Do not launch / UEFI

Storage

Controls the execution of UEFI and Legacy Storage OpROM.

Legacy / Do not launch / UEFI

Video

Controls the execution of UEFI and Legacy Video OpROM

Legacy / Do not launch / UEFI

Other PCI Devices

Determines OpROM execution policy for devices other than Network, Storage, or Video.

Legacy / Do not launch / UEFI

3.3.11 Trusted Computing

Security Device Support

Enables or Disables BIOS support for security device. O.S. will not show Security Device. TCG EFI protocol and INT1a interface will not be available.

Disabled / Enabled

3.3.11 USB Configuration

USB Module Version / USB Devices

Read only.

Legacy USB Support

Enable USB legacy support. AUTO option disables legacy support if no USB devices are connected. DISABLE option will keep USB devices available only for EFI applications.

Enabled / Disabled / Auto

XHCI Hand-off

This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.

Disabled / Enabled

EHCI Hand-off

This is a workaround for OSes without EHCl hand-off support. The EHCl ownership change should be claimed by EHCl driver.

Disabled / Enabled

USB Mass Storage Driver Support

Enable/Disable USB Mass Storage Driver Support.

Enabled / Disabled

Port 60/64 Emulation

Enables I/O Port 60h/64h emulation support. This should be enabled for the complete USB keyboard legacy support for non-USB aware OSes.

Enabled / Disabled

USB transfer time-out

The time-out value for Control, Bulk and Interrupt transfers.

20 sec / 1 sec / 5 sec / 10 sec

Device reset time-out

USB mass storage device Start Unit command time-out.

20 sec / 10 sec / 30 sec / 40 sec

Device power-up delay

Maximum time the device will take before it properly reports itself to the Host Controller. AUTO uses default value: for a Root port it is 100 ms, for a Hub port the delay is taken from Hub descriptor.

Auto / Manual

3.4 Intel RC Setup

Processor Configuration

Displays and provides option to change the Processor Settings.

Advanced Power Management Configuration

Displays and provides option to change the Power Management Settings.

Common RefCode Configuration

Displays and provides option to change the Common RefCode Settings.

QPI Configuration

Displays and provides option to change teh QPI Settings.

Memory Configuration

Displays and provides option to change the Memory Settings.

IIO configuration

Displays and provides option to change the IIO Settings.

PCH configuration

Displays and provides option to change the PCH Settings.

Miscellaneous Configuration

Displays and provides option to change the Miscellaneous Settings.

3.4.1 Processor Configuration

Processor Configuration

Processor related information. Read only.

Hyper-Threading [All]

Enables Hyper Threading (Software Method) to Enable/Disable Logical Processor threads.

Enable / Disable

Execute Disable Bit

When disabled, forces the XD feature flag to always return 0.

Enable / Disable

VMX

Enables the vanderpool Technology, takes effect after reboot.

Enable / Disable

Enable SMX

Enables Safer Mode Extensions.

Disable / Enable

3.4.1.1 Per-Socket Configuration

3.4.1.1.1 CPU Socket 0 / Socket 1 Configuration

Cores Enabled

Number of Cores to Enable. 0 means all cores. 12 Cores available.

3.4.2 Advanced Power Management Configuration

Power Technology

Enable the power management features.

Energy Efficient / Disabled / Custom

NOTE: CPU P State Control and **CPU C State Control** submenu can be modified in user mode when **Power Technology** is set to [Custom].

3.4.2.1 CPU P State Control

EIST (P-states)

When eneabled, OS sets CPU frequency according load. When disabled, CPU frequency is set at max non-turbo.

Enabled / Disabled

Turbo Mode

Turbo mode allows a CPU logical processor to execute a higher frequency when enough power is available not exceed CPU defined limits.

Enabled / Disabled

3.4.2.2 CPU C State Control

Package C State limit

Package C State limit.

C0/C1 state / C2 state / C6 (non Retention) state / C6 (Retention) state

CPU C3 report

Enable/Disable CPU C3 (ACPI C2) report to OS. Recommended to be disabled.

Disabled / Enabled

CPU C6 report

Enable/Disable CPU C6 (ACPI C2) report to OS. Recommended to be enabled.

Disabled / **Enabled**

3.4.3 Common RefCode Configuration

MMIOHBase

MMIOH Base [63:32] must be between 4032-4078.

56T / 48T / 24T

MMIO High Size

Select MMIO High Size.

256G / 128G / 512G / 1024G

Numa

Enable or Disable Non uniform Memory Access (NUMA).

Enable / Disable

3.4.4 QPI Configuration

QPI General Configuration

Displays and provides option to change the QPI General Settings.

3.4.4.1 QPI General Configuration

Link Speed Mode

Select the QPI link speed as either the POR speed (Fast) or default speed (Slow). Fast / Slow

Link Frequency Select

Allows for selecting the QPI Link Frequency.

Auto / 6.4GB/s / 8.0GB/s / 9.6GB/s / Auto Limited

Link L0p Enable

Link L0p Enable: Disable, Enable (default)

Disabled / Enabled

Link L1p Enable

Link L1p Enable: Disable, Enable (default)

Disabled / Enabled

3.4.4.1.1 QPI Status

QPI Status

Read only.

3.4.5 Memory Configuration

Enforce POR

Enable to enforce POR restrictions for DDR4 frequency and voltage programming. **Auto** / Enforce POR / Disabled / Enforce Stretch Goals

Memory Frequency

Maximum Memory Frequency Selections in Mhz. Do not select Reserved. **Auto** / 1333 / 1400 / 1600 / 1800 / 1867 / 2000 / 2133 / 2200 / 2400 / 2600 / 2667 / Reserved

ECC Support

Enable/disable DDR ECC Support.

Auto / Disable / Enable

Memory Type

Selects the Memory type supported by this platform.

RDIMMs only / UDIMMs and RDIMMs

Data Scrambling

Enables data scrambling.

Auto / Disabled / Enabled

3.4.5.1 Memory Topology

This submenu can't be modified in user mode. Read only.

3.4.5.2 Memory Thermal

Set Throttling Mode

Configure Thermal Throttling Mode. Select OLTT or CLTT mode. Disabled / OLTT / CLTT

3.4.5.3 Memory Map

Channel Interleaving

Select Channel Interleaving setting.

Auto / 1-way Interleave / 2-way Interleave / 3-way Interleave / 4-way Interleave

Rank Interleaving

Select Rank Interleaving setting.

Auto / 1-way Interleave / 2-way Interleave / 4-way Interleave / 8-way Interleave

3.4.5.4 Memory RAS Configuration

RAS Mode

Enable/Disable RAS modes. Enabling Sparing and Mirroring is not supported. In case if enabled, Sparing will be selected.

Disable / Mirror / Lockstep Mode

Lockstep x4 DIMMs

Enable/Disasle Lockstep for x4 DIMMs. **Auto** / Disabled / Enabled

Memory Rank Sparing

Enable/Disable Memory Rank Sparing.

Disabled / Enabled

Device Tagging

Enable/Disable Device Tagging **Disable** / Enable

3.4.6 IIO Configuration

IOAT Configuration

All IOAT configuration options.

Intel VT for Directed I/O (VT-d)

Press <Enter> to bring up the Intel VT for Directed I/O (VT-d) Configuration menu.

3.4.6.1 IOAT Configuration

Enable IOAT Control to enable/disable IOAT devices. Disable / Enable

3.4.6.2 Intel VT for Directed I/O (VT-d)

Intel VT for Directed I/O (VT-d)

Enable/Disable Intel Virtualization Technology for Directed I/O (VT-d) by reporting the I/O device assignment to VMM through DMAR ACPI Tables.

Enable / Disable

3.4.7 PCH Configuration

PCH Devices

Enable/Disable Intel® IO Controller Hub devices

PCH sSATA Configuration

sSATA devices and settings.

PCH SATA Configuration

SATA devices and settings.

USB Configuration

USB Configuration Settings.

3.4.7.1 PCH Devices

S7076GM2NR (AST2400)

S7076G2NR-AKA (AST1400)

DeepSx Power Policies

Configure the DeepSx Mode configuration.

Disabled / Enabled in S5 / Enabled in S4-S5 / Enabled in S3-S4-S5

PCH state after G3

Select S0/S5 for ACPI state after a G3.

S5 / S0 / Last State

3.4.7.2 PCH sSATA Configuration

sSATA Controller

Enable or Disable SATA Controller.

Enabled / Disabled

Configure sSATA as

Idedntify the SATA port is connected to Solid State Drive or Hard Disk Drive.

IDF / AHCI / RAID

Support Aggressive Link Power Management

Enable/Disable SALP.

Enabled / Disabled

sSATA Port 0/1/2/3

Read only.

Port 0/1/2/3

Enable or Disable SATA Port

Enabled / Disabled

Hot Plug

Designates this port as Hot Pluggable.

Disabled / Enabled

Spin Up Device

If enabled for any of ports Staggered Spin Up will be performed and only the drives which have this option enabled will spin up at boot. Otherwise all drives spin up at boot.

Disabled / Enabled

sSATA Device Type

Identify the SATA port is connected to Solid State Drive or Hard Disk Drive.

Hard Disk Drive / Solid State Drive

3.4.7.3 PCH SATA Configuration

SATA Controller

Enable or Disable SATA Controller.

Enabled / Disabled

Configure SATA as

Idedntify the SATA port is connected to Solid State Drive or Hard Disk Drive. IDE / AHCI / RAID

Support Aggressive Link Power Management

Enable/Disable SALP.

Enabled / Disabled

SATA Port 0/1/2/3

Read only.

Software Preserve

Read only.

Port 0/1/2/3

Enable or Disable SATA Port

Enabled / Disabled

Hot Plug

Designates this port as Hot Pluggable.

Disabled / Enabled

Configured as eSATA

Read only.

Spin Up Device

If enabled for any of ports Staggered Spin Up will be performed and only the drives which have this option enabled will spin up at boot. Otherwise all drives spin up at boot.

Disabled / Enabled

SATA Device Type

Identify the SATA port is connected to Solid State Drive or Hard Disk Drive.

Hard Disk Drive / Solid State Drive

3.4.7.4 USB Configuration

XHCI Mode

Mode of operation of XHCI controller.

Smart Auto / Auto / Enabled / Disabled / Manual

3.4.8 Miscellaneous Configuration

Active Video

Select active Video type.

Offboard Device / Onboard Device

3.5 Server Management (reserved for BB)

System Event Log

Press <Enter> to change the SEL event log configuration.

BMC network configuration

Configure BMC network parameters.

3.5.1 System Event Log

SEL Components

Change this to enable or disable all features of System Event Logging during boot.

Enabled / Disabled

Erase SEL

Choose options for erasing SEL.

No / Yes, on next reset / No, on every reset

When SEL is Full

Choose options for reactions to a full SEL.

Do Nothing / Erase Immediately

Log EFI Status Codes

Disable the logging of EFI Status Codes or log only error code or only progress code or both.

Both / Disabled / Error Code / Progress Code

3.5.2 BMC Network Configuration

Configuration IP Source

Select to configure LAN channel parameters statically or dynamically (by BIOS or BMC). "Current setting" option will not modify any BMC network parameters during BIOS phase.

Current setting / Static / DHCP

IP Address Source / Station IP address / Subnet mask / Station MAC address / Router IP address / Router MAC address Read only.

3.6 Security

Administrator Password

Set administrator password in the *Create New Password* window. After you key in the password, the *Confirm New Password* window will pop out to ask for confirmation.

User Password

Set user password in the *Create New Password* window. After you key in the password, the *Confirm New Password* window will pop out to ask for confirmation.

3.6.1 Secure Flash Update

Read only.

3.7 Boot

Setup Prompt Timeout

Number of seconds to wait for setup activation key. 65535 (0xFFF) means indefinite waiting.

1

Bootup NumLock State

Select the keyboard NumLock state.

On / Off

Quiet Boot

Enable or disable Quiet Boot option.

Disabled / Enabled

Endless Boot

Enable or disable Endless Boot option.

Disabled / Enabled

Boot Option #1

Set the system boot order.

UEFI: SanDisk (Device name) / Disabled

113

http://www.tyan.com

3.7.1 Delete Boot Option

Delete Boot Option

Remove an EFI boot option from the boot order.

Select one to Delete / UEFI: Built-in EFI Shell / UEFI: SanDisk

3.8 Save & Exit

Save Changes and Exit

Exit system setup after saving the changes.

Discard Changes and Exit

Exit system setup without saving any changes.

Save Changes and Reset

Reset the system after saving the changes.

Discard Changes and Reset

Reset system setup without saving any changes.

Save Options

Read only.

Save Changes

Save changes done so far to any of the setup options.

Discard Changes

Discard changes done so far to any of the setup options.

Restore Defaults

Restore/Load Default values for all the setup options.

Save as User Defaults

Save the changes done so far as User Defaults.

Restore User Defaults

Restore the User Defaults to all the setup options.

Chapter 4: Diagnostics

NOTE: if you experience problems with setting up your system, always check the following things in the following order:

Memory, Video, CPU

By checking these items, you will most likely find out what the problem might have been when setting up your system. For more information on troubleshooting, check the TYAN website at http://www.tyan.com.

4.1 Flash Utility

Every BIOS file is unique for the motherboard it was designed for. For Flash Utilities, BIOS downloads, and information on how to properly use the Flash Utility with your motherboard, please check the TYAN web site at http://www.tyan.com

NOTE: Please be aware that by flashing your BIOS, you agree that in the event of a BIOS flash failure, you must contact your dealer for a replacement BIOS. There are no exceptions. TYAN does not have a policy for replacing BIOS chips directly with end users. In no event will TYAN be held responsible for damages done by the end user.

4.2 AMIBIOS Post Code (Aptio)

The POST code checkpoints are the largest set of checkpoints during the BIOS preboot process. The following table describes the type of checkpoints that may occur during the POST portion of the BIOS:

Checkpoint Ranges

Status Code Range	Description
0x01 – 0x0B	SEC execution
0x0C - 0x0F	SEC errors
0x10 - 0x2F	PEI execution up to and including memory detection
0x30 - 0x4F	PEI execution after memory detection
0x50 - 0x5F	PEI errors
0x60 - 0x8F	DXE execution up to BDS
0x90 - 0xCF	BDS execution
0xD0 - 0xDF	DXE errors
0xE0 - 0xE8	S3 Resume (PEI)
0xE9 - 0xEF	S3 Resume errors (PEI)
0xF0 - 0xF8	Recovery (PEI)
0xF9 - 0xFF	Recovery errors (PEI)

Standard Checkpoints

SEC Phase

Status Code	Description	
0x00	Not used	
Progress Cod	Progress Codes	
0x01	Power on. Reset type detection (soft/hard).	
0x02	AP initialization before microcode loading	
0x03	North Bridge initialization before microcode loading	
0x04	South Bridge initialization before microcode loading	
0x05	OEM initialization before microcode loading	
0x06	Microcode loading	
0x07	AP initialization after microcode loading	
0x08	North Bridge initialization after microcode loading	
0x09	South Bridge initialization after microcode loading	
0x0A	OEM initialization after microcode loading	
0x0B	Cache initialization	

SEC Error Codes	
0x0C - 0x0D	Reserved for future AMI SEC error codes
0x0E	Microcode not found
0x0F	Microcode not found

SEC Beep Codes None

PEI Phase

Status Code	Description
Progress Codes	
0x10	PEI Core is started
0x11	Pre-memory CPU initialization is started
0x12	Pre-memory CPU initialization (CPU module specific)
0x13	Pre-memory CPU initialization (CPU module specific)
0x14	Pre-memory CPU initialization (CPU module specific)
0x15	Pre-memory North Bridge initialization is started
0x16	Pre-Memory North Bridge initialization (North Bridge module specific)
0x17	Pre-memory North Bridge initialization (North Bridge module specific)
0x18	Pre-Memory North Bridge initialization (North Bridge module specific)
0x19	Pre-memory South Bridge initialization is started
0x1A	Pre-Memory South Bridge initialization (South Bridge module specific)
0x1B	Pre-memory South Bridge initialization (South Bridge module specific)
0x1C	Pre-Memory South Bridge initialization (South Bridge module specific)
0x1D - 0x2A	OEM pre-memory initialization codes
0x2B	Memory initialization. Serial Presence Detect (SPD) data reading
0x2C	Memory initialization. Memory presence detection
0x2D	Memory initialization. Programming memory timing information
0x2E	Memory initialization. Configuring memory
0x2F	Memory initialization (other)
0x30	Reserved for ASL (see ASL Status Codes section below)
0x31	Memory Installed
0x32	CPU post-memory initialization is started
0x33	CPU post-memory initialization. Cache initialization
0x34	CPU post-memory initialization. Application Processor(s) (AP) initialization
0x35	CPU post-memory initialization. Boot Strap Processor (BSP) selection
0x36	CPU post-memory initialization. System Management Mode(SMM) initialization
0x37	Post-Memory North Bridge initialization is started

Status Code	Description
0x38	Post-Memory North Bridge initialization (North Bridge module specific)
0x39	Post-Memory North Bridge initialization (North Bridge module specific)
0x3A	Post-Memory North Bridge initialization (North Bridge module specific)
0x3B	Post-Memory South Bridge initialization (North Bridge module specific)
0x3C	
-	Post-Memory South Bridge initialization (South Bridge module specific)
0x3D	Post-Memory South Bridge initialization (South Bridge module specific)
0x3E	Post-Memory South Bridge initialization (South Bridge module specific)
0x3F - 0x4E	OEM post memory initialization codes
0x4F	DXE IPL is started
PCI Error Cod	
0x50	Memory initialization error. Invalid memory type or incompatible memory speed
0x51	Memory initialization error. SPD reading has failed
0x52	Memory initialization error. Invalid memory size or memory modules do not match
0x53	Memory initialization error. No usable memory detected
0x54	Unspecified memory initialization error
0x55	Memory not installed
0x56	Invalid CPU type or speed
0x57	CPU mismatch
0x58	CPU self test failed or possible CPU cache error
0x59	CPU microcode is not found or microcode update is failed
0x5A	Internal CPU error
0x5B	Reset PPI is not available
0x5C - 0x5F	Reserved for future AMI error codes
S3 Resume Pi	rogress Codes
0xE0	S3 Resume is started (S3 Resume PPI is called by the DXE IPL)
0xE1	S3 Boot Script execution
0xE2	Video repost
0xE3	OS S3 wake vector call
0xE4 - 0xE7	Reserved for future AMI progress codes
S3 Resume Er	rror Codes
0xE8	S3 Resume Failed
0xE9	S3 Resume PPI not Found
0xEA	S3 Resume Boot Script Error
0xEB	S3 OS Wake Error
0xEC - 0xEF	Reserved for future AMI error codes

Recovery Progress Codes		
0xF0	Recovery condition triggered by firmware (Auto recovery)	
0xF1	Recovery condition triggered by user (Forced recovery)	
0xF2	Recovery process started	
0xF3	Recovery firmware image is found	
0xF4	Recovery firmware image is loaded	
0xF5 – 0xF7	Reserved for future AMI progress codes	
Recovery Erro	Recovery Error Codes	
0xF8	Recovery PPI is not available	
0xF9	Recovery capsule is not found	
0xFA	Invalid recovery capsule	
0xFB – 0xFF	Reserved for future AMI error codes	

PEI Beep Codes

# of Beeps	Description
1 (repeatedly)	Memory not installed
1	Memory was installed twice (InstallPEIMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
4	Recovery failed
4	S3 Resume failed
7	Reset PPI is not available

DXE Phase

Status Code	Description
0x60	DXE Core is started
0x61	NVRAM initialization
0x62	Installation of the South Bridge Runtime Services
0x63	CPU DXE initialization is started
0x64	CPU DXE initialization (CPU module specific)
0x65	CPU DXE initialization (CPU module specific)
0x66	CPU DXE initialization (CPU module specific)
0x67	CPU DXE initialization (CPU module specific)
0x68	PCI host bridge initialization
0x69	North Bridge DXE initialization is started
0x6A	North Bridge DXE SMM initialization is started
0x6B	North Bridge DXE initialization (North Bridge module specific)

Status Code	Description
0x6C	North Bridge DXE initialization (North Bridge module specific)
0x6D	North Bridge DXE initialization (North Bridge module specific)
0x6E	North Bridge DXE initialization (North Bridge module specific)
0x6F	North Bridge DXE initialization (North Bridge module specific)
0x70	South Bridge DXE initialization is started
0x71	South Bridge DXE SMM initialization is started
0x72	South Bridge devices initialization
0x73	South Bridge DXE initialization (South Bridge module specific)
0x74	South Bridge DXE initialization (South Bridge module specific)
0x75	South Bridge DXE initialization (South Bridge module specific)
0x76	South Bridge DXE initialization (South Bridge module specific)
0x77	South Bridge DXE initialization (South Bridge module specific)
0x78	ACPI module initialization
0x79	CSM initialization
0x7A - 0x7F	Reserved for future AMI DXE codes
0x80 – 0x8F	OEM DXE initialization codes
0x90	Boot Device Selection (BDS) phase is started
0x91	Driver connecting is started
0x92	PCI Bus initialization is started
0x93	PCI Bus Hot Plug Controller initialization
0x94	PCI Bus Enumeration
0x95	PCI BUS Request Resources
0x96	PCI Bus Assign Resources
0x97	Console Output devices connect
0x98	Console Input devices connect
0x99	Super IO initialization
0x9A	USB initialization is started
0x9B	USB Reset
0x9C	USB Detect
0x9D	USB Enable
0x9E -0x9F	Reserved for future AMI codes
0xA0	IDE initialization is started
0xA1	IDE Reset
0xA2	IDE Detect
0xA3	IDE Enable
0xA4	SCSI initialization is started

Status Code	Description	
0xA5	SCSI Reset	
0xA6	SCSI Detect	
0xA7	SCSI Enable	
0xA8	Setup Verifying Password	
0xA9	Start of Setup	
0xAA	Reserved for ASL (see ASL Status Codes section below)	
0xAB	Setup Input Wait	
0xAC	Reserved for ASL (see ASL Status Codes section below)	
0xAD	Ready To Boot event	
0xAE	Legacy Boot event	
0xAF	Exit Boot Services event	
0xB0	Runtime Set Virtual Address MAP Begin	
0xB1	Runtime Set Virtual Address MAP End	
0xB2	Legacy Option ROM initialization	
0xB3	System Reset	
0xB4	USB hot plug	
0xB5	PCI bus hot plug	
0xB6	Clean-up of NVRAM	
0xB7	Configuration Reset (reset of NVRAM settings)	
0xB8 - 0xBF	Reserved for future AMI codes	
0xC0 - 0xCF	OEM BDS initialization codes	
DXE Error Codes		
0xD0	CPU initialization error	
0xD1	North Bridge initialization error	
0xD2	South Bridge initialization error	
0xD3	Some of the Architectural Protocols are not available	
0xD4	PCI resource allocation error. Out of Resources	
0xD5	No Space for Legacy Option ROM	
0xD6	No Console Output Devices are found	
0xD7	No Console Input Devices are found	
0xD8	Invalid password	
0xD9	Error loading Boot Option (LoadImage returned error)	
0xDA	Boot Option is failed (StartImage returned error)	
0xDB	Flash update is failed	
0xDC	Reset protocol is not available	

DXE Beep Codes

# of Beeps	Description
1	Invalid password
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

ACPI/ASL Checkpoints

Status Code	Description
0x01	System is entering S1 sleep state
0x02	System is entering S2 sleep state
0x03	System is entering S3 sleep state
0x04	System is entering S4 sleep state
0x05	System is entering S5 sleep state
0x10	System is waking up from the S1 sleep state
0x20	System is waking up from the S2 sleep state
0x30	System is waking up from the S3 sleep state
0x40	System is waking up from the S4 sleep state
0xAC	System has transitioned into ACPI mode. Interrupt controller is in PIC mode.
0xAA	System has transitioned into ACPI mode. Interrupt controller is in APIC mode.

Appendix: Fan and Temp Sensors

This section aims to help readers identify the locations of some specific FAN and Temp Sensors on the motherboard. A table of BIOS Temp sensor name explanation is also included for readers' reference.

NOTE: The red mark indicates the sensor.

Fan and Temp Sensor Location:

- Fan Sensor: It is located in the third pin of the fan connector, which detects the fan speed (rpm)
- Temp Sensor: PCH Temp. Temp sensor detects the system temperature around.

NOTE: The system temperature is measured in a scale defined by **Intel**, not in Fahrenheit or Celsius.

BIOS Temp Sensor Name Explanation:

13 PVCCP_CPU1		1.8424	V	OK	4
11 PVDDQ_CPUO_ABCD	:	1.2544	V	OK	
12 PVPP_DDR_CD		2.5345	V	OK	
14 PVDDQ_CPU1_EF	:	1.2544	V	OK	
15 PVDDQ_CPU1_GH	:	1.2544	V	OK	
16 PVCCIO			V	OK	
17 VCC12	:	12.096	V	OK	
18 VCC5	:	5.103	V	OK	
19 VCC3	:	3.366	V	OK	
1A VCC5_STBY	:	5.103	V	OK	
1E VCC3_STBY	:	3.474	٧	OK	
1D P1V05_PCH	:	1.0780	V	OK	
1C P1V5_PCH	:	1.5386	V	OK	
1B V_RTC_BAT	:	3.074	٧	OK	→+: Select Screen
30 CPUO_FAN	:	N/A	RPM	OK	↑↓: Select Item
31 CPU1_FAN	:	N/A	RPM	OK	Enter: Select
32 SYS_FAN_1	:	3330	RPM	OK	+/-: Change Opt.
33 SYS_FAN_2	:	N/A	RPM	OK	F1: General Help
34 SYS_FAN_3	:	N/A	RPM	OK	F2: Previous Values
35 SYS_FAN_4	:	N/A	RPM	OK	F3: Optimized Defaults
36 SYS_FAN_5	:	N/A	RPM	OK	F4: Save & Exit
37 SYS_FAN_6	:	N/A	RPM	OK	ESC: Exit
38 SYS_FAN_7	:	N/A	RPM	OK	
39 SYS_FAN_8		N/A	RPM	OK	
3A SYS_FAN_9	:	N/A	RPM	OK	v

Aptio Setup Utility - Copyright (C) 2014 American Megatrends, Inc.

Advanced

SB SYS_FAN_10 : N/A RPM DK
3C SYS_FAN_11 : N/A RPM DK
3D SYS_FAN_12 : N/A RPM DK

#+: Select Screen
11: Select Item
Enter: Select
+/-: Change Opt.
F1: General Help
F2: Previous Values
F3: Optimized Defaults
F4: Save & Exit
ESC: Exit

Version 2.17.1245. Copyright (C) 2014 American Megatrends, Inc.

BIOS Temp	Name Explanation	
Sensor		
CPU0_DTS_Temp	Temperature of the CPU0 Digital Temperature Sensor	
CPU1_DTS_Temp	Temperature of the CPU1 Digital Temperature Sensor	
CPU0_	Temperature value of the CPU0 Platform Environment Control	
PECI_Value	Interface (PECI)	
CPU1_	Temperature value of the CPU1 Platform Environment Control	
PECI_Value	Interface (PECI)	
PCH_Area_Temp	Temperature of the PCH Area	
CPU0_DIMM_A0	Temperature of CPU0 DIMM A0 Slot	
CPU0_DIMM_A1	Temperature of CPU0 DIMM A1 Slot	
CPU0_DIMM_B0	Temperature of CPU0 DIMM B0 Slot	
CPU0_DIMM_B1	Temperature of CPU0 DIMM B1 Slot	
CPU0_DIMM_C0	Temperature of CPU0 DIMM C0 Slot	
CPU0_DIMM_C1	Temperature of CPU0 DIMM C1 Slot	
CPU0_DIMM_D0	Temperature of CPU0 DIMM D0 Slot	
CPU0_DIMM_D1	Temperature of CPU0 DIMM D1 Slot	
CPU1_DIMM_A0	Temperature of CPU1 DIMM A0 Slot	
CPU1_DIMM_A1	Temperature of CPU1 DIMM A1 Slot	
CPU1_DIMM_B0	Temperature of CPU1 DIMM B0 Slot	
CPU1_DIMM_B1	Temperature of CPU1 DIMM B1 Slot	
CPU1_DIMM_C0	Temperature of CPU1 DIMM C0 Slot	
CPU1_DIMM_C1	Temperature of CPU1 DIMM C1 Slot	
CPU1_DIMM_D0	Temperature of CPU1 DIMM D0 Slot	
CPU1_DIMM_D1	Temperature of CPU1 DIMM D1 Slot	
CPU0_FAN	Fan Speed of CPU0_Fan	
CPU1_FAN	Fan Speed of CPU1_Fan	
SYS_FAN_1	Fan Speed of SYS_FAN_1	
SYS_FAN_2	Fan Speed of SYS_FAN_2	
SYS_FAN_3	Fan Speed of SYS_FAN_3	
SYS_FAN_4	Fan Speed of SYS_FAN_4	
SYS_FAN_5	Fan Speed of SYS_FAN_5	
SYS_FAN_6	Fan Speed of SYS_FAN_6	
SYS_FAN_7	Fan Speed of SYS_FAN_7	
SYS_FAN_8	Fan Speed of SYS_FAN_8	
SYS_FAN_9	Fan Speed of SYS_FAN_9	
SYS_FAN_10	Fan Speed of SYS_FAN_10	
SYS_FAN_11	Fan Speed of SYS_FAN_11	
SYS_FAN_12	Fan Speed of SYS_FAN_12	

Glossary

ACPI (Advanced Configuration and Power Interface): a power management specification that allows the operating system to control the amount of power distributed to the computer's devices. Devices not in use can be turned off, reducing unnecessary power expenditure.

AGP (Accelerated Graphics Port): a PCI-based interface which was designed specifically for demands of 3D graphics applications. The 32-bit AGP channel directly links the graphics controller to the main memory. While the channel runs only at 66 MHz, it supports data transmission during both the rising and falling ends of the clock cycle, yielding an effective speed of 133 MHz.

ATAPI (AT Attachment Packet Interface): also known as IDE or ATA; a drive implementation that includes the disk controller on the device itself. It allows CD-ROMs and tape drives to be configured as master or slave devices, just like HDDs.

ATX: the form factor designed to replace the AT form factor. It improves on the AT design by rotating the board 90 degrees, so that the IDE connectors are closer to the drive bays, and the CPU is closer to the power supply and cooling fan. The keyboard, mouse, USB, serial, and parallel ports are built-in.

Bandwidth: refers to carrying capacity. The greater the bandwidth, the more data the bus, phone line, or other electrical path can carry. Greater bandwidth results in greater speed.

BBS (BIOS Boot Specification): a feature within the BIOS that creates, prioritizes, and maintains a list of all Initial Program Load (IPL) devices, and then stores that list in NVRAM. IPL devices have the ability to load and execute an OS, as well as provide the ability to return to the BIOS if the OS load process fails. At that point, the next IPL device is called upon to attempt loading of the OS.

BIOS (Basic Input/Output System): the program that resides in the ROM chip, which provides the basic instructions for controlling your computer's hardware. Both the operating system and application software use BIOS routines to ensure compatibility.

Buffer: a portion of RAM which is used to temporarily store data; usually from an application though it is also used when printing and in most keyboard drivers. The CPU can manipulate data in a buffer before copying it to a disk drive. While this improves system performance (reading to or writing from a disk drive a single time is much faster than doing so repeatedly) there is the possibility of losing your data should the system crash. Information in a buffer is temporarily stored, not permanently saved.

Bus: a data pathway. The term is used especially to refer to the connection between the processor and system memory, and between the processor and PCI or ISA local buses.

Bus mastering: allows peripheral devices and IDEs to access the system memory without going through the CPU (similar to DMA channels).

Cache: a temporary storage area for data that will be needed often by an application. Using a cache lowers data access times since the information is stored in SRAM instead of slower DRAM. Note that the cache is also much smaller than your regular memory: a typical cache size is 512KB, while you may have as much as 4GB of regular memory.

Closed and open jumpers: jumpers and jumper pins are active when they are "on" or "closed", and inactive when they are "off" or "open".

CMOS (Complementary Metal-Oxide Semiconductors): chips that hold the basic startup information for the BIOS.

COM port: another name for the serial port, which is called as such because it transmits the eight bits of a byte of data along one wire, and receives data on another single wire (that is, the data is transmitted in serial form, one bit after another). Parallel ports transmit the bits of a byte on eight different wires at the same time (that is, in parallel form, eight bits at the same time).

DDR (Double Data Rate): a technology designed to double the clock speed of the memory. It activates output on both the rising and falling edge of the system clock rather than on just the rising edge, potentially doubling output.

DIMM (Dual In-line Memory Module): faster and more capacious form of RAM than SIMMs, and do not need to be installed in pairs.

DIMM bank: sometimes called DIMM socket because the physical slot and the logical unit are the same. That is, one DIMM module fits into one DIMM socket, which is capable of acting as a memory bank.

DMA (Direct Memory Access): channels that are similar to IRQs. DMA channels allow hardware devices (like soundcards or keyboards) to access the main memory without involving the CPU. This frees up CPU resources for other tasks. As with IRQs, it is vital that you do not double up devices on a single line. Plug-n-Play devices will take care of this for you.

DRAM (Dynamic RAM): widely available, very affordable form of RAM which looses data if it is not recharged regularly (every few milliseconds). This refresh requirement makes DRAM three to ten times slower than non-recharged RAM such as SRAM.

ECC (Error Correction Code or Error Checking and Correcting): allows data to be checked for errors during run-time. Errors can subsequently be corrected at the same time that they're found.

EEPROM (Electrically Erasable Programmable ROM): also called Flash BIOS, it is a ROM chip which can, unlike normal ROM, be updated. This allows you to keep up with changes in the BIOS programs without having to buy a new chip. TYAN[©]'s BIOS updates can be found at http://www.tyan.com

ESCD (Extended System Configuration Data): a format for storing information about Plug-n-Play devices in the system BIOS. This information helps properly configure the system each time it boots.

Firmware: low-level software that controls the system hardware.

Form factor: an industry term for the size, shape, power supply type, and external connector type of the Personal Computer Board (PCB) or motherboard. The standard form factors are the AT and ATX.

Global timer: onboard hardware timer, such as the Real-Time Clock (RTC).

HDD: stands for Hard Disk Drive, a type of fixed drive.

H-SYNC: controls the horizontal synchronization/properties of the monitor.

HyperTransport[™]: a high speed, low latency, scalable point-to-point link for interconnecting ICs on boards. It can be significantly faster than a PCI bus for an equivalent number of pins. It provides the bandwidth and flexibility critical for today's networking and computing platforms while retaining the fundamental programming model of PCI.

IC (Integrated Circuit): the formal name for the computer chip.

IDE (Integrated Device/Drive Electronics): a simple, self-contained HDD interface. It can handle drives up to 8.4 GB in size. Almost all IDEs sold now are in fact Enhanced IDEs (EIDEs), with maximum capacity determined by the hardware controller.

IDE INT (IDE Interrupt): Hardware interrupt signal that goes to the IDE.

I/O (Input/Output): the connection between your computer and another piece of hardware (mouse, keyboard, etc.)

IRQ (Interrupt Request): an electronic request that runs from a hardware device to the CPU. The interrupt controller assigns priorities to incoming requests and delivers them to the CPU. It is important that there is only one device hooked up to each IRQ line; doubling up devices on IRQ lines can lock up your system. Plug-n-Play operating systems can take care of these details for you.

Latency: the amount of time that one part of a system spends waiting for another part to catch up. This occurs most commonly when the system sends data out to a peripheral device and has to wait for the peripheral to spread (peripherals tend to be slower than onboard system components).

NVRAM: ROM and EEPROM are both examples of Non-Volatile RAM, memory that holds its data without power. DRAM, in contrast, is volatile.

Parallel port: transmits the bits of a byte on eight different wires at the same time.

PCI (Peripheral Component Interconnect): a 32 or 64-bit local bus (data pathway) which is faster than the ISA bus. Local buses are those which operate within a single system (as opposed to a network bus, which connects multiple systems).

PCI PIO (PCI Programmable Input/Output) modes: the data transfer modes used by IDE drives. These modes use the CPU for data transfer (in contrast, DMA channels do not). PCI refers to the type of bus used by these modes to communicate with the CPU.

PCI-to-PCI Bridge: allows you to connect multiple PCI devices onto one PCI slot.

Pipeline burst SRAM: a fast secondary cache. It is used as a secondary cache because SRAM is slower than SDRAM, but usually larger. Data is cached first to the faster primary cache, and then, when the primary cache is full, to the slower secondary cache.

PnP (Plug-n-Play): a design standard that has become ascendant in the industry. Plug-n-Play devices require little set-up to use. Devices and operating systems that are not Plug-n-Play require you to reconfigure your system each time you add or change any part of your hardware.

PXE (**Preboot Execution Environment**): one of four components that together make up the Wired for Management 2.0 baseline specification. PXE was designed to define a standard set of preboot protocol services within a client with the goal of allowing networked-based booting to boot using industry standard protocols.

RAID (Redundant Array of Independent Disks): a way for the same data to be stored in different places on many hard drives. By using this method, the data is stored redundantly and multiple hard drives will appear as a single drive to the operating system. RAID level 0 is known as striping, where data is striped (or overlapped) across multiple hard drives, but offers no fault-tolerance. RAID level 1 is known as mirroring, which stores the data within at least two hard drives, but does not stripe. RAID level 1 also allows for faster access time and fault-tolerance, since either hard drive can be read at the same time. RAID level 0+1 is striping and mirroring, providing fault-tolerance, striping, and faster access all at the same time.

RAIDIOS: RAID I/O Steering (Intel)

RAM (Random Access Memory): technically refers to a type of memory where any byte can be accessed without touching the adjacent data and is often referred to the system's main memory. This memory is available to any program running on the computer.

ROM (Read-Only Memory): a storage chip which contains the BIOS; the basic instructions required to boot the computer and start up the operating system.

SDRAM (Synchronous Dynamic RAM): called as such because it can keep two sets of memory addresses open simultaneously. By transferring data alternately from one set of addresses and then the other, SDRAM cuts down on the delays associated with non-synchronous RAM, which must close one address bank before opening the next.

Serial port: called as such because it transmits the eight bits of a byte of data along one wire, and receives data on another single wire (that is, the data is transmitted in serial form, one bit after another).

SCSI Interrupt Steering Logic (SISL): Architecture that allows a RAID controller, such as AcceleRAID 150, 200 or 250, to implement RAID on a system board-embedded SCSI bus or a set of SCSI busses. SISL: SCSI Interrupt Steering Logic (LSI) (only on LSI SCSI boards)

Sleep/Suspend mode: in this mode, all devices except the CPU shut down.

SDRAM (Static RAM): unlike DRAM, this type of RAM does not need to be refreshed in order to prevent data loss. Thus, it is faster and more expensive.

SLI (Scalable Link Interface): NVIDIA SLI technology links two graphics cards together to provide scalability and increased performance. NVIDIA SLI takes advantage of the increased bandwidth of the PCI Express bus architecture, and features hardware and software innovations within NVIDIA GPUs (graphics processing units) and NVIDIA MCPs (media and communications processors). Depending on the application, NVIDIA SLI can deliver as much as two times the performance of a single GPU configuration.

Standby mode: in this mode, the video and hard drives shut down; all other devices continue to operate normally.

UltraDMA-33/66/100: a fast version of the old DMA channel. UltraDMA is also called UltraATA. Without a proper UltraDMA controller, your system cannot take advantage of higher data transfer rates of the new UltraDMA/UltraATA hard drives.

USB (Universal Serial Bus): a versatile port. This one port type can function as a serial, parallel, mouse, keyboard or joystick port. It is fast enough to support video transfer, and is capable of supporting up to 127 daisy-chained peripheral devices.

VGA (Video Graphics Array): the PC video display standard

V-SYNC: controls the vertical scanning properties of the monitor.

ZCR (Zero Channel RAID): PCI card that allows a RAID card to use the onboard SCSI chip, thus lowering cost of RAID solution

ZIF Socket (Zero Insertion Force socket): these sockets make it possible to insert CPUs without damaging the sensitive CPU pins. The CPU is lightly placed in an open ZIF socket, and a lever is pulled down. This shifts the processor over and down, guiding it into the board and locking it into place.

Technical Support

If a problem arises with your system, you should first turn to your dealer for direct support. Your system has most likely been configured or designed by them and they should have the best idea of what hardware and software your system contains. Hence, they should be of the most assistance for you. Furthermore, if you purchased your system from a dealer near you, take the system to them directly to have it serviced instead of attempting to do so yourself (which can have expensive consequences).

If these options are not available for you then TYAN can help. Besides designing innovative and quality products for over a decade, TYAN has continuously offered customers service beyond their expectations. TYAN's website (www.tyan.com) provides easy-to-access FAQ searches and online Trouble Ticket creation as well as Instant Chat capabilities with our Support Agents. TYAN also provides easy-to-access resources such as in-depth Linux Online Support sections with downloadable Linux drivers and comprehensive compatibility reports for chassis, memory and much more. With all these convenient resources just a few keystrokes away, users can easily find the latest software and operating system components to keep their systems running as powerful and productive as possible. TYAN also ranks high for its commitment to fast and friendly customer support through email. By offering plenty of options for users, TYAN serves multiple market segments with the industry's most competitive services to support them.

"TYAN's tech support is some of the most impressive we've seen, with great response time and exceptional organization in general" - Anandtech.com

Help Resources:

- 1. See the beep codes section of this manual.
- 2. See the TYAN website for FAQ's, bulletins, driver updates, and other information: http://www.tyan.com
- 3. Contact your dealer for help BEFORE calling TYAN.
- 4. Check the TYAN user group: alt.comp.periphs.mainboard.TYAN

Returning Merchandise for Service

During the warranty period, contact your distributor or system vendor FIRST for any product problems. This warranty only covers normal customer use and does not cover damages incurred during shipping or failure due to the alteration, misuse, abuse, or improper maintenance of products.

NOTE:

A receipt or copy of your invoice marked with the date of purchase is required before any warranty service can be rendered. You may obtain service by calling the manufacturer for a Return Merchandise Authorization (RMA) number. The RMA number Should be prominently displayed on the outside of the shipping carton and the package should be mailed prepaid. TYAN will pay to have the board shipped back to you.

Notice for the USA

Compliance Information Statement (Declaration of Conformity Procedure) DoC FCC Part 15: This device complies with part 15 of the FCC Rules

Operation is subject to the following conditions:

This device may not cause harmful interference, and this device must accept any interference received including interference that may cause undesired operation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try one or more of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and the receiver.

Plug the equipment into an outlet on a circuit different from that of the receiver.

Consult the dealer on an experienced radio/television technician for help.

Notice for Canada

This apparatus complies with the Class B limits for radio interference as specified in the Canadian Department of Communications Radio Interference Regulations. (Cet appareil est conforme aux norms de Classe B d'interference radio tel que specifie par le Ministere Canadien des Communications dans les reglements d'ineteference radio.)

CAUTION: Lithium battery included with this board. Do not puncture, mutilate, or dispose of battery in fire. There is danger of an explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by manufacturer. Dispose of used battery according to manufacturer instructions and in accordance with your local regulations.

Document #: D2280-100