

# **American International University- Bangladesh**

# Software Project Management Plan for Doctor's Assistant

### Submitted to

### Mohammad Mahmudul Hasan

**Course:** Software Development Project Management

**Section:** B

| Student Name      | Student Id |
|-------------------|------------|
| Sayed Mehedi      | 17-34364-1 |
| Md. Mahbub Alam   | 17-34338-1 |
| Ferdous Jahan     | 16-32718-3 |
| Islam, Md Sameull | 17-33950-1 |
| Hossain, Md Mir   | 17-33232-1 |

## **Table of Contents**

| Contents                  | Page no. |
|---------------------------|----------|
| Introduction              | 03       |
| UML Diagram               | 05       |
| Effort estimation         | 09       |
| Work break down structure | 11       |
| Activity planning         | 13       |
| Resource analysis         | 13       |
| Risk analysis             | 15       |

Project name: Doctor's assistant

Technology: Desktop and mobile-based application

### The problem:

Nowadays, in country like Bangladesh, India and Pakistan doctors checkup 2/3 patients at a time. When doctors observing patients their disease symptoms can be ambiguous. Doctors might forget about previous diseases. In addition, a doctor sometimes made medical error and doctor's prescription might be harmful for patients. Sometimes doctor face a new disease symptoms then doctor might be prescribe from guessing the disease. However, it's can cost patients life. Sometimes patients cannot remember to carry or can lost their previous disease records. Then doctor's prescription without knowing previous records can harm more than good.

### How provide solution:

Our system will be doctors assistant. It will help doctor when doctor prescribe the patient about disease, suggesting medicine, suggesting test, suggesting admit to the hospital situation or not. It will records patient's previous medical history. Suggest the doctor about patient's previous history when prescribing the patient. When a doctor facing a new problem/diseases symptoms doctor can communicate with another doctors by posting the symptoms status. Doctor can accept system suggestions about disease or not because doctor is the superior being in that environment. Patient can see their prescription from home or workplace.

### **System users:**

**Admin** - Government or hospital authority who will hire or assign doctor in the system, can appoint receptionist to a doctor.

**Doctor** - Prescribed patient, communicate with another doctors, see appointment list.

**Patient** - Can login, see prescription and see doctor's information.

**Receptionist** - Make appointment, provide patients account, collect patient's previous medical history from patient and input in the system and take payment from patient.

### **Feasibility study:**

A feasibility study is an assessment of the practicality of a proposed project a system.

### Economic feasibility

Analysis of a project's costs and revenues in an effort to determine whether it or not it is logical and possible to complete.

### Technical feasibility

Technical feasibility helps organizations determine whether the technical resources meet capacity and the team is capable to build the system. Technical feasibility also involves evaluation of the hardware, software, and other technical requirements of the proposed system.

### Operational feasibility

Operational Feasibility, we consider whether the current system become implemented using existing human resource or not. To find functional feasibility we determine whether the proposed solution can participate in existing operations and whether the right information in the right time is, provide to end users. Operational feasibility of our proposed system is modularized.

# **UML Diagram:**

# **❖** Use case Diagram



# **❖** Sequence Diagram



### Class Diagram



# **&** ER Diagram



# > Data Dictionary

# • Hospital

| No. | Attribute | Data Type   | Type        |
|-----|-----------|-------------|-------------|
| 01  | hid       | int(10)     | Primary key |
| 02  | hname     | Varchar(30) |             |
| 03  | location  | Varchar(30) |             |

### • Doctor

| No. | Attribute | Data Type   | Type        |
|-----|-----------|-------------|-------------|
| 01  | did       | Int(10)     | Primary key |
| 02  | dname     | Varchar(30) |             |
| 03  | dphone    | Varchar(30) |             |
| 04  | dage      | Varchar(30) |             |
| 05  | daddress  | Varchar(30) |             |
| 06  | dgender   | Varchar(30) |             |
| 07  | djoindate | Varchar(30) |             |

# • Receptionist

| No. | Attribute | Data Type | Type        |
|-----|-----------|-----------|-------------|
| 01  | rid       | Int(10)   | Primary key |

| 02 | rname     | Varchar(30) |  |
|----|-----------|-------------|--|
| 03 | rgender   | Varchar(30) |  |
| 04 | rphone    | Varchar(30) |  |
| 05 | rjoindate | Varchar(30) |  |

### Patient

| No. | Attribute | Data Type   | Type        |
|-----|-----------|-------------|-------------|
| 01  | pid       | Int(10)     | Primary key |
| 02  | pname     | Varchar(30) |             |
| 03  | page      | Varchar(30) |             |
| 04  | pphone    | Varchar(30) |             |
| 05  | paddress  | Varchar(30) |             |
| 06  | pgender   | Varchar(30) |             |

### Records

| No. | Attribute  | Data Type   | Type        |
|-----|------------|-------------|-------------|
| 01  | rc_id      | Int(10)     | Primary key |
| 02  | rc_date    | Varchar(30) |             |
| 03  | rc_descrip | Varchar(30) |             |

### **Effort estimation:**

For effort estimation, we are going to use the Cost Constructive Model (COCOMO).

Based on SLOC characteristics, it operates according to these equations

- 1) Effort = PM = Coefficient <Effort Factor> \* (SLOC/1000) ^ P
- 2) Development time = DM =  $2.50 * (PM) ^ T$
- 3) Required number of people = ST = PM / DM

Here,

PM- Person-months needed for project (labor working hours)

SLOC- Source lines of code

P- Project complexity (1.04-1.24)

DM- Duration time in months for project (week days)

T- SLOC-dependent coefficient (0.32-0.38)

ST- Average staffing necessary

| Software Project Type | Coefficient <effort factor=""></effort> | P    | Т    |
|-----------------------|-----------------------------------------|------|------|
| Organic               | 2.4                                     | 1.05 | 0.38 |
| Semi-detached         | 3.0                                     | 1.12 | 0.35 |
| Embedded              | 3.6                                     | 1.20 | 0.32 |

According to the definition, our system is an organic type of project

A software development project can considered of organic type, if the project deals with developing a well understood application program. In organic type, the size of the development team is reasonably small, and the team are experienced in developing similar types of projects.

$$80k$$
,  $P=1.05$ ] = 239.032

2) Development time = DM =  $2.50 * (PM) ^ T$ 

3) Required number of people = ST = PM / DM

$$ST = 239.032/20.033$$
 [As PM= 239.032, DM= 20.033] = 11.932

### Work break down structure:



## **Scheduling:**

| Label | Task                         | Week                             | Duration(Weeks) | Precedence |
|-------|------------------------------|----------------------------------|-----------------|------------|
| A     | Field study                  | 1 <sup>st</sup> -2 <sup>nd</sup> | 2               |            |
| В     | Prepare requirement scenario | 2 <sup>nd</sup> -3 <sup>rd</sup> | 1               | A          |
| С     | Identify user requirements   | 3 <sup>rd</sup>                  | 1               | В          |
| D     | Design Use case diagram      | $4^{th}-6^{th}$                  | 3               | С          |
| Е     | Design Activity diagram      | $6^{th}-7^{th}$                  | 2               | С          |
| F     | Design ER diagram            | 7 <sup>th</sup>                  | 1               | С          |
| G     | Design Class diagram         | $8^{th} - 9^{th}$                | 2               | С          |

| Н | Coding              | 9 <sup>th</sup> -20 <sup>th</sup>  | 1 1 | D,E,F,G |
|---|---------------------|------------------------------------|-----|---------|
| I | Construct Test plan | 21st -22nd                         | 2   | Н       |
| J | Testing software    | $23^{rd}-27^{th}$                  | 4   | I       |
| K | Deployment          | 28 <sup>th</sup>                   | 1   | J       |
| L | Documentation       | 27 <sup>th</sup> -30 <sup>th</sup> | 4   | J       |

Total project time: 30 weeks

# **Activity Planning:**



# **Resource Analysis:**

| SL | Name                | Category       | Quantity | Time (Week)                       |
|----|---------------------|----------------|----------|-----------------------------------|
| 01 | Project manager     | Human Resource | 1        | 1 <sup>st</sup> -30 <sup>th</sup> |
| 02 | System Analyst      | Human Resource | 1        | 1 <sup>st</sup> -27 <sup>th</sup> |
| 03 | Designer            | Human Resource | 2        | 4 <sup>th</sup> -20 <sup>th</sup> |
| 04 | Requirement analyst | Human Resource | 1        | $1^{st}-20^{th}$                  |

| 05 | Senior Developer    | Human Resource   | 2           | $4^{th}-30^{th}$                  |
|----|---------------------|------------------|-------------|-----------------------------------|
| 06 | Junior Developer    | Human Resource 5 |             | $4^{th}-30^{th}$                  |
| 07 | Tester              | Human Resource 3 |             | $21^{st}-27^{th}$                 |
| 08 | Office Space        | Space 1          |             | 1 <sup>st</sup> -30 <sup>th</sup> |
| 09 | PCs                 | Equipment        | 17          | 1 <sup>st</sup> -30 <sup>th</sup> |
| 10 | Desks               | Equipment        | 17          | 1 <sup>st</sup> -30 <sup>th</sup> |
| 11 | Software            | Equipment        | As required | 1 <sup>st</sup> -30 <sup>th</sup> |
| 12 | Pen Drives          | Materials        | 10          | 1 <sup>st</sup> -30 <sup>th</sup> |
| 13 | Internet Connection | Services         | As required | 1 <sup>st</sup> -30 <sup>th</sup> |
| 14 | Utilities           | Services         | As required | 1 <sup>st</sup> -30 <sup>th</sup> |

# **Budget:**

| Items            | Category   | Staffs   | Total    |
|------------------|------------|----------|----------|
|                  |            |          | (Items)  |
|                  |            |          | (BDT)    |
| Project Manager  | Staff Cost | 1        | 3,00,000 |
| Analyst          | Staff Cost | 2        | 4,00,000 |
| Designer         | Staff Cost | 2        | 3,00,000 |
| Developers       | Staff Cost | 7        | 4,00,000 |
| Hardware Devices | Overheads  | As       | 1,00,000 |
|                  |            | required |          |
| Tools            | Overheads  | As       | 50,000   |
|                  |            | required |          |
| Tester           | Staff Cost | 3        | 2,00,000 |
| Rent             | Overheads  | As       | 1,50,000 |
|                  |            | required |          |
| Utility          | Usage      | As       | 1,00,000 |
|                  | Charges    | required |          |

**Total Cost= 20,00,000 BDT** 

### **Risk Analysis:**

Risk Check List- These are the types of risks associated with project development

- Product size (PS) risks associated with the overall size of the software to be built or modified
- Business impact (BU) risks associated with constraints imposed by management or the marketplace
- Customer characteristics (CU) risks associated with the sophistication of the customer and the developer's ability to communicate with the customer in a timely manner
- Process definition (PR) risks associated with the degree to which the software process has been defined and is followed by the development organization [autopilot performance fixing with XP]
- Development environment (DE) risks associated with the availability and quality of the tools to be used to build the product [resource allocation plan]
- Technology to be built (TE) risks associated with the complexity of the system to be built and the "newness" of the technology that is packaged by the system
- Staff size and experience (ST) risks associated with the overall technical and project experience of the software engineers who will do the work

#### **Risk Table:**

| Risk                         | Category | Probability | Impact | RMMM                       |
|------------------------------|----------|-------------|--------|----------------------------|
| Misunderstood requirements   | PS       | 30%         | 2      | Requirement engineering    |
| Customer will change         | PS       | 40%         | 2      | Change control process     |
| requirements                 |          |             |        |                            |
| Less reuse than planned      | PS       | 50%         | 2      | Proper management          |
| Delivery deadline will be    | BU       | 40%         | 2      | Float should be proper use |
| tightened                    |          |             |        |                            |
| Funding will be lost         | CU       | 30%         | 1      | Seek additional funding    |
| Staff unexperienced          | ST       | 10%         | 2      | Training                   |
| Project can go over budget   | CU       | 35%         | 1      | Historical data, estimate  |
|                              |          |             |        | using multiple techniques, |
|                              |          |             |        | standardization of methods |
| New technology               | TE       | 30%         | 3      | Training                   |
| High staff turnover          | ST       | 40%         | 3      | Increase job satisfaction  |
| Too difficult to develop     | DE       | 25%         | 3      | Technical analysis         |
| Lack of externally supplied  | DE       | 40%         | 3      | Formal specification,      |
| components                   |          |             |        | contractual agreement      |
| Product fails to deliver the | BU       | 40%         | 1      | Market research            |
| business objective           |          |             |        |                            |

| Performance issues         | BU | 60% | 3 | Improve quality            |
|----------------------------|----|-----|---|----------------------------|
| Lack of users' involvement | CU | 60% | 3 | Involve user in            |
|                            |    |     |   | development, feedback      |
| Lack of communication      | ST | 40% | 4 | Project charter, plan      |
|                            |    |     |   | meetings                   |
| Lack of interoperability   | BU | 20% | 3 | Improve quality attributes |

RMMM- Risk Mitigation, Monitoring & Management Plan

# **Impact Values-**

- ✓ (1)- Catastrophic
- ✓ (2)- Critical
- ✓ (3)- Marginal
- ✓ (4)- Negligible