Lecture-14 PO Recabi Normal distribution $e^{-\frac{(3-1)^2}{25^2}}$ $\sqrt{2\pi}$ 5 ECXI = M } H.W. Var(x) = 52 if M=0 and $\delta=1$,
its called standard normal $\overline{f}(a) = \int_{-\infty}^{a} \frac{e^{-x^{2}/2}}{\sqrt{2\pi}} dx$

X: N(M, 52) What is the distribution is standard normal N(0,1) if x is normally distributed. Her so is ax +b. $\frac{x}{6} - \frac{u}{6}$ $a = \frac{1}{6}$ $b = \frac{u}{6}$ Mean for X-m is o act antb=1.u - u = 0Var for 1-1 is a = 1

Average for insem! 5=2,52=4 if x is your marks. Ner 1(8 LXP 2 12)- $\int_{0}^{2\pi} \frac{(3(-10))^{2}}{2\cdot 4} dx$ Convert this std. normal. X-m

P(8 L X C 12) P(8-m < X-m < 12-m) P(8-10 C (x-m) C 12-10) P(-1 2 2 1) = 9(1) - 9(-1)= 0.8413

1

更つ一更(一) ニ 夏(リー(1-夏(リ) = 2. \$ (1) 2 * 0.8413 1.6 826 -

= 0.6826

$$P(M \angle X \angle M + 6) \quad \bigcirc \bigcirc$$

$$= P(M - M \angle X \angle M + 6) \quad \bigcirc \bigcirc$$

$$= P(M - M \angle X \angle M + 6 - M)$$

$$= P(O \angle Z \angle I)$$

$$= P(O \angle Z \angle I)$$

$$= P(O - Z \angle I)$$

$$= 0.8413 - 0.5$$

$$= 0.3413 \times 322$$

$$P(M + 6 \angle X \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

$$= P(M + 6 - M \angle X - M \angle M + 26)$$

egi Grading on the curve Grade marks no. of Student more than 7 AA 4+6 to 4+20 AB n ton+ 6 110 BU QU-6 +0 M 110 BC 11-20 tom-0 CC M-36 tom-26 CD и-46 юм-36 DD M-50 tom-46 DF 10 len Ran F M-56

$$\frac{1}{2}(2) - \frac{1}{2}(1)$$

$$= 0.9772 - 0.8413$$

$$= 0.1359 + 322$$

$$= 44$$

$$P(2 < Z)$$

$$= P(2 < Z)$$

$$= 1 - 0.9772$$

$$= 0.0228 + 322$$

= 7

Communication Channel.

You receive R.

R L O.S, it is o

R > 0.5, its I

$$R = X + N$$
Sent $N(0,1)$

what is the probability
what is the probability
of error? P(x=0)=13

p = probability of essent (9) = P(error | 0 is sent) P(o issent)
+ Plemon I is sext) P(1 is sext)
243 Pleno Ois sent) R=X+N R = -2+N erra if R>0.5 -2+N >0.5 P(N>2.5)=1-\$(2.5) 1-0.9938
-0.0062

Plerror 1 is sent) X = +2error if R < 0.52+N < 0.5 P(NZ-1.5)= \$ (-1.5) = 1- £(1.5) = 1 - 0.9332= 0.0668

Normal approximation to Binomial De Moivre-Laplace theorem n is large of 3 high

e-g: A coin is tossed (1) 40 times. (oin is fair. X = no. of heads. $P(X=20) = {\binom{40}{20}} = {\binom{1}{2}}^{20} {\binom{1}{2}}^{20}$ $=\frac{40!}{20!20!20}=0.1254$ we approximate this as normal distribution. $u = n\beta = 20$ $\sigma = \sqrt{n \, \beta (1-p)}$ P(x=20)=0P(19.5 < X < 20.5) =

(on tinuity correction P(19.5 < X < 20.5) = P(19.5-20 L Z (20.5-20) = P(-0.158 LZ C0.158) = 2.P (0.158) - 1 - 0.1272 -> The book. Using

0.1254 + Binomial
distribution

Section 5.4 Normal Random Variables 205

TABLE 5.1: AREA $\Phi(x)$ UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF X

.9996
+-
.9992
.9989
.9985
3 .9979
.9971
0 .9961 .9962
.9948
.9931
.9909
3 .9881
.9846
3 .9803
1 9750
3 .9686
.9608
.9515
.9406
.9279
.9131
1 .8962
.8770
.8554
01
+
2 .7454
3 .7123
6 .6772
3 .6406
7 .6026
5
9
.06 .07