Data set:

Wages data 1 (https://vincentarelbundock.github.io/Rdatasets/doc/plm/Wages.html)

Insight will provide here:

1) Highlight three descriptive facts from the data with supporting analysis and graphs.

library(RCurl)

#When reading data from github, we should pass in the raw version of the data in read.csv(),

#We should get the URL for the raw version by clicking on the Raw button displayed above the data.

x <- getURL("https://raw.githubusercontent.com/jazzsun000/how-to-build-statistical-distribution-analysis-on-wage-data/master/Wages.csv")

Wages <- read.csv(text = x)

summary(Wages)

Χ	exp	wks	bluecol	ind	south
Min. : 1	Min. : 1.00	Min. : 5.00	no :2036 Mir	n. :0.0000	no:2956
1st Qu.:1042	1st Qu.:11.00	1st Qu.:46.00	yes:2129 1st	Qu.:0.0000	yes:1209
Median :2083	Median :18.00	Median:48.00	Med	dian :0.0000	
Mean :2083	Mean :19.85	Mean :46.81	Med	an :0.3954	
3rd Qu.:3124	3rd Qu.:29.00	3rd Qu.:50.00	3rd	d Qu.:1.0000	
Max. :4165	Max. :51.00	Max. :52.00	Max	c. :1.0000	
smsa mar	ried sex	union	ed	black	lwage
no :1442 no	: 773 female:	469 no :2649	Min. : 4.00	no:3864	Min. :4.605
yes:2723 yes	::3392 male :3	696 yes:1516	1st Qu.:12.00	yes: 301	1st Qu.:6.395
		<u>-</u>	Median :12.00	_	Median :6.685
			Mean :12.85		Mean :6.676
			3rd Qu.:16.00		3rd Ou.:6.953
			Max. :17.00		Max. :8.537

> mean(Waaes\$exp)

Histogram of Wages\$exp

From desity histogram of years of full-time work experience data, we can find there are some descriptive facts here.

Overall, over 30% of the working experience fall under 5 to 15 years.

Histogram of Wages\$wks

As for weeks worked, around **70%** of people weeks they worked fall under **45 to 50** weeks.

Histogram of Wages\$ed

If we take a look on their years of education, 11 to 12 years is the most. It account for 35%.

- 2) Pick a continuous variable of interest, what is the distribution of this variable?
- 3) Continuing from above, how would you examine and clean outlier?

#clean outlier

#For a given continuous variable, outliers are those observations that lie outside 1.5 * IQR, where IQR, the 'Inter Quartile Range' is the difference between 75th and 25th quartiles. Look at the points outside the whiskers in below box plot outlier_values <- boxplot.stats(Wages\$lwage)\$out # outlier values. boxplot(Wages\$lwage, main="logarithm of wage.", boxwex=0.1) mtext(paste("Outliers: ", paste(outlier_values, collapse=", ")), cex=0.6) here are outliers

logarithm of wage.

x<-Wages\$lwage
result = x[!x %in% boxplot.stats(x)\$out]
hist(x, breaks=12, col="red")
hist(result, breaks=12, col="blue")</pre>

Histogram of x

library(fitdistrplus) plot(result, pch=20)

plotdist(result, histo = TRUE, demp = TRUE)

Empirical density

Cumulative distribution

descdist(result, discrete=FALSE, boot=500)

Cullen and Frey graph

#Say, in the previous eg, we chose the weibull, gamma and log-normal to fit:

fit w <- fitdist(result, "weibull")

fit_g <- fitdist(result, "gamma")</pre>

fit In <- fitdist(result, "Inorm")

summary(fit In)

#we can plot the results:

par(mfrow=c(2,2))

plot.legend <- c("weibull", "lognormal", "gamma")

denscomp(list(fit_w, fit_g, fit_ln), legendtext = plot.legend)

cdfcomp (list(fit w, fit g, fit ln), legendtext = plot.legend)

qqcomp (list(fit_w, fit_g, fit_ln), legendtext = plot.legend)

ppcomp (list(fit w, fit g, fit ln), legendtext = plot.legend)

As a result ,we need to test which distribution it belong to? weibull?lognormal?or gamma?

From plot above, it look like more close to gamma distribution

install.packages(flexsurv)
library(flexsurv) # on CRAN

qqcomp(list(fit_g, fit_ln, fit_w, gengammafit),legendtext=c("gamma", "lnorm", "weibull", "gengamma"))

But if take a further more look on above plot.

None of the distributions fit very well in the right (upper) tail, but the generalized gamma is best

```
> gengammafit$aic

[1] 4511.414

> fit_w$aic

[1] 4795.813

> fit_g$aic

[1] 4544.802

> fit_In$aic
```

[1] 4565.646

#A good model is the one that has minimum AIC among all the other models. #And if we take a look from AIC, generalized gamma distribution show better than the other model.