Caleb Stromberg.

Elementary Sieve Methods. BH 227. 3/11, 4pm.

Committee: Stephanie Treneer, David Hartenstine. Advisor: Hans Parshall.

Preliminaries. Throughout this material, n denotes a positive integer, p denotes a prime, x denotes a positive real number, and A denotes the set of positive integers less than or equal to x.

Definitions. We let $\mu(n)$ denote the Möbius function evaluated at n, defined by

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 p_2 \cdots p_k \text{ is squarefree} \\ 0 & \text{otherwise} \end{cases}$$

For a fixed prime p, we distinguish some number of congruence classes mod p and let \mathcal{A}_p denote the set of $n \leq x$ in one of these classes. For a squarefree integer d, we define $\mathcal{A}_d = \cap_{p|d} \mathcal{A}_p$. For a positive real number z, we define $\mathcal{P} = \{p \text{ prime} : p < z\}$ and $P(z) = \prod_{p \in \mathcal{P}} p$. We also define $S(\mathcal{A}, \mathcal{P}, z) = \#(\mathcal{A} \setminus \bigcup_{p|P(z)} \mathcal{A}_p)$.

For a function $f: \mathbb{R} \to \mathbb{R}$ we write f(x) = O(g(x)) if $g: \mathbb{R} \to \mathbb{R}^+$ and there is a positive constant A such that $|f(x)| \leq Ag(x)$ for all $x \in \mathbb{R}$.

Theorem 1. (The fundamental property of the Möbius function)

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2. (The Möbius inversion formula) Let f, g be real valued functions defined on \mathbb{N} .

$$f(n) = \sum_{d \mid n} g(d) \qquad \text{ if and only if } \qquad g(n) = \sum_{d \mid n} \mu(d) f(n/d)$$

Theorem 3. (Partial Summation) Let c_1, c_2, \ldots be a sequence of real numbers and set $S(x) := \sum_{n \leq x} c_n$. If $f : [1, \infty) \to \mathbb{R}$ has continuous derivative in $(1, \infty)$, then for positive integer x we have

$$\sum_{n \le x} c_n f(n) = S(x)f(x) - \int_1^x S(t)f'(t)dt$$

Theorem 4. (Selberg's Sieve) Let $f: \mathbb{N} \to \mathbb{R}$ be a multiplicative function and write $\#\mathcal{A}_d = \frac{x}{f(d)} + R_d$. For any sequence $\{\lambda_d\}$ of real numbers with $\lambda_1 = 1$,

$$S(\mathcal{A}, \mathcal{P}, z) \le x \sum_{\substack{d_1, d_2 \mid P(z) \\ d_1, d_2 \le z}} \frac{\lambda_{d_1} \lambda_{d_2}}{f([d_1, d_2])} + O\left(\sum_{\substack{d_1, d_2 \mid P(z) \\ d_1, d_2 \le z}} |\lambda_{d_1}| |\lambda_{d_2}| |R_{[d_1, d_2]}|\right)$$

Theorem 5. (Selberg's Sieve) With $\#A_d$ as in Theorem 4,

$$S(\mathcal{A}, \mathcal{P}, z) \le \frac{x}{V(z)} + O\left(\sum_{\substack{d_1, d_2 \mid P(z) \\ d_1, d_2 \le z}} |R_{[d_1, d_2]}|\right)$$

where $V(z) := \sum_{\substack{d \mid P(z) \\ d \le z}} \frac{\mu^2(d)}{f_1(d)}$ and f_1 is the Möbius inverse to f.

Lemma 6. With V(z) as in Theorem 5, $V(z) \ge \sum_{d \le z} \frac{1}{\tilde{f}(d)}$ where \tilde{f} is f extended completely multiplicatively.

Theorem 7. (Selberg's Sieve for Primes) Let $\pi(x)$ denote the number of primes less than x.

$$\pi(x) = O\left(\frac{x}{\log x}\right)$$

Lemma 8. Let $\tau(n)$ denote the number of positive divisors of an integer n. Then $\sum_{n \leq x} \tau(n) = x \log x + O(x)$.

Theorem 9. (Selberg's Sieve for Twin Primes) Let $\pi_2(x)$ denote the number of twin primes less than x.

$$\pi_2(x) = O\left(\frac{x}{\log^2(x)}\right)$$

Theorem 10. (Brun's Theorem) The sum $\sum_{\substack{p \ p \neq 2 \text{ prime}}} \frac{1}{p}$ converges.