Dueling Bandit Review

Bowen Xu

Sep 2022

Outline

- Review of Multi Bandits Algorithm
- Introduction of Dueling Bandits
- Self-Sparring Algorithm
 - Independent Self Sparring Algorithm
 - Kernel Self Sparring Algorithm

Multi-Armed Bandit (MAB) Problem

- K arms (actions)
- Each arms has an average reward: µ
 - Unknown to agent
 - Assume μ_1 (reward of arms 1) is the largest among K arms
- Procedure: For t = 1,....,T:
 - Algorithm chooses arm a(t) = i
 - Receive random reward y(t) from the chosen arm i
 - Expectation reward $\mu_{a(t)}$
- Objective: minimize total regret
 - Regret: $T\mu_1 (\mu_{a(1)} + \dots + \mu_{a(T)})$

Example of MAB Problem

Time	1	2	3	4	5	6	7	8	9	10
Left arm	\$1	\$0			\$1	\$1	\$0			
Right arm			\$1	\$0						

Example of MAB Problem

- Average reward in first 7 slots:
 - Left arm: 4/7
 - Right arm: 1/2
 - Conclustion: $\mu_{left} > \mu_{right}$ in first 7 slots
- Regret: $R(7) = 7 * \mu_{left} (4 * \mu_{left} + 3 * \mu_{right})$

Example of MAB Problem

Time	1	2	3	4	5	6	7	8	9	10
Left arm	\$1	\$0			\$1	\$1	\$0			
Right arm			\$1	\$0						

- Exploit and Exploration Trade-off:
 - At 8th slots:
 - Exploration: pull righ arms (less reward but less chosen times)
 - Exploitation: pull left arms (more reward in former slots)

Thompson Sampling

- ullet θ_k : an action's success probability or mean reward
 - Prior of each θ_k satisfied Beta distribution Beta (α_k, β_k)
- x_t : the actions selected at time t
 - $x_t \leftarrow argmax_k \theta_k$
- r_t : the corresponding reward of action x_t , r_t satisfies Bern(θ_k), if x=k
- Each action's posterior distribution is also Beta with parameters updated as follows:

•
$$(\alpha_k, \beta_k) \leftarrow \begin{cases} (\alpha_k, \beta_k) & \text{if } x_t \neq k \\ (\alpha_k, \beta_k) + (r_t, 1 - r_t) & \text{if } x_t = k \end{cases}$$

Drawback of Conventional MAB problem:

• When payoff is a **relative comparison** result rather than an absolute value, it is difficult to apply conventional MAB Algorithm.

Introduction of Dueling Bandits

- Motivation
 - Solve the problem with only binary feedback about the relative reward of two chosen strategies is available
- Suitable application scenarios:
 - Search engine
 - Online advertising

Applications of Dueling Bandits

(a) search engine

(c) recommend system

ment

Introduction of Dueling Bandits

- K arms (actions)
 - For each pair of arms A and B, they have a probability to beat each other
 - i.e. P(A > B) means the probability of A beating B. P(B > A) means the probability of B beating A.
 - P(A > B) 0.5 = 0.5 P(B > A)
 - P(A > B) 0.5 generally written as Δ_{AB} (distinguishability), so we have $\Delta_{AB} = -\Delta_{BA}$.
 - Suppose there exists an optimal arm b^* which can beats all other arms (Condorcet winner)

Introduction of Dueling Bandits

- Procedure: for For t = 1,....,T:
 - Choose two arms b and b' and compare
 - Observe the outcome
 - e.g. arm b_t beats b'_t at slot t.
- Objective: minimize total regret and find the Condorcet winner
 - Regret: $R_T = \sum_{t=1}^{T} (P(b^* > b_t) + P(b^* > b'_t)) 1$

- Suppose we have 3 page lists: A,B,C
 - We need to find the optimal one for user
 - Interleave the two lists and let user find their favourite page.
 - If the favourite page ranks highest in lists A, then A beats the other lists.

Interleave A vs B

	Left wins	Right wins
A vs B	0	1
A vs C	0	0
B vs C	0	0

Interleave A vs C

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	0

Interleave B vs C

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	1

Interleave A vs C

	Left wins	Right wins
A vs B	0	1
A vs C	1	1
B vs C	0	1

- From the first 4 users:
 - lists C wins more times than A and B
 - lists C is the optimal for the time being
- Trade-off for the 5th user:
 - Exploitation: interleave C with itself (C wins the most times)
 - Explore: compare B vs A (B and A compare the fewer times than C)

More Complex Dueling Bandit Algorithms

- How to choose the two arms to compare at each slot?
- What if the arms are dependent?

Self-Sparring

- Idea:
 - Applying the conventional MAB algorithms to solve dueling bandit problem
 - View the dueling bandit as the dueling of two arms with different MAB strategies

Self-Sparring

- Instantiate 2 conventional MAB algorithms: $P_1 \& P_2$
- For t = 1,
 - P_1 chooses a_1
 - P_2 chooses a_2
 - Duel $a_1 vs a_2$
 - Provide feedback

Ind-Self-Sparring

- For independent arms cases, we can choose some conventional MAP algorithms as P_1 and P_2 . e.g. Thompson Sampling, UCB.
- Generally, we use Thompson Sampling in Self-Sparring
 - choose arms:
 - $\theta_k \sim Beta(\alpha_k, \beta_k)$
 - $x_t \leftarrow argmax_k \theta_k$
 - Provide feedback:
 - pairwise feedback matrix: $R = \{r_{ij} \in \{0,1,\emptyset\}\}_{K \times K}$
 - $(\alpha_k, \beta_k) \leftarrow \begin{cases} (\alpha_k, \beta_k) & \text{if } x_t \neq k \\ (\alpha_k, \beta_k) + (r_t, 1 r_t) & \text{if } x_t = k \end{cases}$

• Initialization:

	α	β
Α	5	5
В	5	5
С	5	5

Interleave A vs B

	α	β
А	5	6
В	6	5
С	5	5

$$\theta_A \sim Beta(5,6)$$

$$\theta_B \sim Beta(6,5)$$

$$\theta_C \sim Beta(5,5)$$

	Left wins	Right wins
A vs B	0	1
A vs C	0	0
B vs C	0	0

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	0

	α	β
А	5	7
В	6	5
С	6	5

$$\theta_A \sim Beta(5,7)$$

$$\theta_B \sim Beta(6,5)$$

$$\theta_C \sim Beta(6,5)$$

Interleave B vs C

	α	β
А	5	7
В	6	6
С	7	5

$$\theta_A \sim Beta(5,7)$$

$$\theta_B \sim Beta(6,6)$$

$$\theta_C \sim Beta(7,5)$$

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	1

Interleave A vs C

	Left wins	Right wins
A vs B	0	1
A vs C	1	1
D.v.c.C	0	1

	α	β
А	6	7
В	6	6
С	7	6

$$\theta_A \sim Beta(6,7)$$

$$\theta_B \sim Beta(6,6)$$

$$\theta_C \sim Beta(7,6)$$

What about Dependent Arms Cases?

- Generally, we use **covariance** to describe the dependency
- K arms can be modeled to a collection of r.v. with characteristics below:
 - multivariate Gaussian distribution
 - reward mean
 - covariance function

Gaussian Process

Kernel-Self-Sparring

- For dependent arms cases, we use Gaussian Process to describe the dependency
- Gaussian Process:
 - use covariance between arms to model the dependency
 - Covariance Matrix $C = (c_{ij})_{K \times K}$
 - posterior inference updates the mean reward vector μ and the covariance matrix σ

Kernel-Self-Sparring

- Operation in Kernel-Self-Sparring
 - choose arms:
 - $\theta_k \sim GP(\mu_{t-1}, \sigma_{t-1})$
 - (sample from Gaussian Process: by marginal distribution
 - https://peterroelants.github.io/posts/gaussian-process-tutorial/
 - https://blog.csdn.net/shenxiaolu1984/article/details/50386518)
 - $x_t \leftarrow argmax_k \theta_k$
 - Provide feedback:
 - pairwise feedback matrix: $R = \{r_{ij} \in \{0,1,\emptyset\}\}_{K \times K}$
 - Beyesian update using R to obtain (μ_t, σ_t)

- Initialization:
 - mean reward and covariance matrix

	μ
А	$(\mu_{A})_0$
В	$(\mu_{B})_0$
С	$(\mu_{C})_0$

Cov	Α	В	С
А	$(\sigma_A)_0$	$(\sigma_{AB})_0$	$(\sigma_{AC})_0$
В	$(\sigma_{BA})_0$	$(\sigma_B)_0$	$(\sigma_{BC})_0$
С	$(\sigma_{CA})_0$	$(\sigma_{CB})_0$	$(\sigma_C)_0$

- Bayesian Update:
 - Prior distribution $(\mu_{t-1}, \sigma_{t-1})$ to Posterior distribution (μ_t, σ_t)
 - Conjugate distribution of Multivariate Gaussian distribution

	μ
А	$(\mu_{A})_0$
В	$(\mu_{B})_0$
С	$(\mu_{C})_0$

Cov	Α	В	С
А	$(\sigma_A)_0$	$(\sigma_{AB})_0$	$(\sigma_{AC})_0$
В	$(\sigma_{BA})_0$	$(\sigma_B)_0$	$(\sigma_{BC})_0$
С	$(\sigma_{CA})_0$	$(\sigma_{CB})_0$	$(\sigma_C)_0$

Interleave A vs B

	Left wins	Right wins
A vs B	0	1
A vs C	0	0
B vs C	0	0

	μ
А	$(\mu_{A})_1$
В	$(\mu_{B})_1$
С	$(\mu_{C})_1$

Cov	A	В	С
А	$(\sigma_A)_1$	$(\sigma_{AB})_1$	$(\sigma_{AC})_1$
В	$(\sigma_{BA})_1$	$(\sigma_B)_1$	$(\sigma_{BC})_1$
С	$(\sigma_{CA})_1$	$(\sigma_{CB})_1$	$(\sigma_C)_1$

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	0

	μ
Α	$(\mu_{A})_2$
В	$(\mu_{\rm B})_{2}$
С	$(\mu_{C})_2$

Cov	Α	В	С
А	$(\sigma_A)_2$	$(\sigma_{AB})_2$	$(\sigma_{AC})_2$
В	$(\sigma_{BA})_2$	$(\sigma_B)_2$	$(\sigma_{BC})_2$
С	$(\sigma_{CA})_2$	$(\sigma_{CB})_2$	$(\sigma_C)_2$

	Left wins	Right wins
A vs B	0	1
A vs C	0	1
B vs C	0	1

	μ
А	$(\mu_{A})_3$
В	$(\mu_{B})_3$
С	$(\mu_{\rm C})_{\rm 3}$

Cov	A	В	С
Α	$(\sigma_A)_3$	$(\sigma_{AB})_3$	$(\sigma_{AC})_3$
В	$(\sigma_{BA})_3$	$(\sigma_B)_3$	$(\sigma_{BC})_3$
С	$(\sigma_{CA})_3$	$(\sigma_{CB})_3$	$(\sigma_C)_3$

Interleave A vs C

	Left wins	Right wins
A vs B	0	1
A vs C	1	1
B vs C	0	1

	μ
Α	$(\mu_{A})_{4}$
В	$(\mu_{B})_{4}$
С	$(\mu_{\sf C})_{\sf 4}$

Cov	A	В	С
А	$(\sigma_A)_4$	$(\sigma_{AB})_4$	$(\sigma_{AC})_4$
В	$(\sigma_{BA})_4$	$(\sigma_B)_4$	$(\sigma_{BC})_4$
С	$(\sigma_{CA})_4$	$(\sigma_{CB})_4$	$(\sigma_C)_4$

Theoretical Analysis

- Regret bound: $O(K/\epsilon \log T)$
 - K:# of Arms
 - T: time horizon
 - Distinguishability between the best 2 arms: Δ_{12}