

UNIVERSITETET I BERGEN

EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD

27.05. kl. 9 - 12

Alle oppgavene teller like mye. Innenfor hver oppgave teller del-oppgavene like mye

Oppgave 1 Grafer og trær

- a) Hva er en Euler-graf
- b) Hva er en Hamilton-graf
- c) Avgjør om den følgende grafen er en Euler- og/eller Hamilton-graf.

d) Lag et binært søketre ved å sette inn følgende tall i den gitte rekkefølgen.

9, 15, 6, 21, 3, 12, 4, 7, 10, 18, 25, 20

Oppgave 2 Mengder, relasjoner og funksjoner

Ta utgangspunkt i følgende mengder: $A = \{1,2,3\}, B = \{2,3,4,5\}, C=\{3,6\}$

- a) Hva er
 - 1. $A \cup B$
 - 2. A∩B
 - 3. A×B
 - 4. A-B
 - 5. (A-C) ∩ (B-C)
 - 6. (C-A) ∩ (C-B)
 - 7. $(A \cup C)$ - $((B \cap C) \cup (A-C))$
 - 8. $(A\times C) \cap (C\times B)$
 - 9. $\wp(C)$
 - 10. | 6 (A)|

b)

Sant eller galt?

- 1. A∈ ℘ (A)
- 2. A⊆ ℘(A)
- 3. A∈A×A
- 4. A<u></u>A×A
- 5. Ø∈A
- 6. ∅⊆A
- 7. ∅∈ ℘(A)
- 8. Ø⊆ ℘(A)
- $9. \varnothing \in A \times A$
- 10. $\varnothing\subseteq A\times A$
- c) Vis ved hjelp av mengdealgebra at følgende likhet holder for vilkårlige mengder A og B.

$$(B \cup (B \cap A)) \cap ((A \cap B) \cup A) = (A \cap B)$$

Oppgave 3 Logikk

- a) Hva er en tautologi?
- b) Bevis ved selvmotsigelse at det følgende er en tautologi:

$$(A \Rightarrow (C \text{ or } (not B))) \Rightarrow (B \Rightarrow ((not A) \text{ or } C))$$

c) Relasjonen *liker* \subseteq *Personer* \times *Personer* er definert ved at *liker*(x,y) er sant hviss personen x liker personen y.

Oversett det følgende til predikatlogikk:

- 1. Per liker noen.
- 2. Alle liker Per
- 3. Per liker ikke noen som Pål liker.
- 4. Pål liker bare seg selv.
- d) Bevis at sannhetsverditabellen til et utsagn med n utsagnsvariable har 2^n rekker (utenom overskriften).

Vedlegg til eksamen INFO102

Mengde algebra (Gitt en universell mengde U)

Assosiative lover

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Kommutative lover

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Identitetslover

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cup U = U$$

$$A \cap U = A$$

Idempotente lover

$$A \cup A = A$$

$$A \cap A = A$$

Distributive lover

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Komplement lover

$$A \cup \sim A = U$$

$$\sim$$
(\sim A) = A

$$A \cap \sim A = \emptyset$$

De Morgans lover

Boole'sk algebra

Kommutative lover

```
(P \text{ and } Q) \equiv (Q \text{ and } P)
(P \text{ or } Q) \equiv (Q \text{ or } P)
```

Assosiative lover

$$(P \text{ and } (Q \text{ and } R)) \equiv ((P \text{ and } Q) \text{ and } R)$$

 $(P \text{ or } (Q \text{ or } R)) \equiv ((P \text{ or } Q) \text{ or } R)$

Distributive lover

$$(P \text{ and } (Q \text{ or } R)) \equiv ((P \text{ and } Q) \text{ or } (P \text{ and } R))$$

 $(P \text{ or } (Q \text{ and } R)) \equiv ((P \text{ or } Q) \text{ and } (P \text{ or } R))$

Idempotente lover

$$(P \text{ and } P) \equiv P$$

 $(P \text{ or } P) \equiv P$

Absorbsjonslover

$$(P \text{ and } (P \text{ or } Q)) \equiv P$$

 $(P \text{ or } (P \text{ and } Q)) \equiv P$

De Morgans lover

not (P and Q)
$$\equiv$$
 ((not P) or (not Q))
not (P or Q) \equiv ((not P) and (not Q))

Dobbel negasjon

$$(not (not P)) \equiv P$$