Intelligent Agents and Decision Making

Winter 2025

OREGON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

Instructor: Sandhya Saisubramanian Submitted by: Manogna Challoju

Total points: 100 Mini Project 1 Due date: Feb 10, 2025

1. Part A: Exact Methods for Solving MDPs (55 points)

1. (15 points) Environment Setup

The environment is a 4x4 Gridworld where the agent starts at (0,0) and aims to reach the goal at (3,3). There are water cells at (1,1) and (2,2) getting a reward of -5, and wildfire cells at (0,3) and (3,0) gets a reward of -10. All other cells give a reward of -1, except the goal which gives +100. Transition dynamics include an 80% chance of moving in the intended direction and 10% chance of sliding to a neighboring cell.

2. (25 points) Value Iteration Implementation

Value iteration was implemented with discount factors $\gamma=0.3$ and $\gamma=0.95$. The results are: For $\gamma=0.3$:

• Policy:

down	up	down	down
left	down	right	down
right	down	down	down
right	right	right	G

• Value Function:

$$\begin{bmatrix} -1.42 & -1.41 & -0.92 & 2.84 \\ -1.41 & 0.01 & 3.9 & 19.51 \\ -0.92 & 3.9 & 21.4 & 82.52 \\ 2.84 & 19.51 & 82.52 & 0 \end{bmatrix}$$

For $\gamma = 0.95$:

• Policy:

down	right	down	down	
down	down	right	down	
right	down	down	down	
right	right	right	G	

• Value Function:

Observation: With a higher discount factor ($\gamma = 0.95$), the agent prioritizes long-term rewards and avoids high-penalty cells more effectively compared to $\gamma = 0.3$.

3. (15 points) Policy Iteration Implementation

Policy iteration was executed with $\gamma=0.95$. The policy and value function are similar to the value iteration with $\gamma=0.95$:

Policy:

down	right	down	down	
down	down	right	down	
right	down	down	down	
right	right	right	G	

Value Function:

$$\begin{bmatrix} 64.1 & 69.02 & 74.58 & 80.55 \\ 69.02 & 75.61 & 81.93 & 89.1 \\ 74.58 & 81.93 & 89.86 & 97.17 \\ 80.55 & 89.1 & 97.17 & 0 \end{bmatrix}$$

Observation: The equivalence of results confirms that both methods converge to the same optimal policy and value function for $\gamma=0.95$.

2. Part B: Imitation Learning (45 points)

1. (15 points) Policy Simulation

An episode generated using the optimal policy is:

```
State: (0, 0), Action: right, Reward: -1
State: (0, 1), Action: right, Reward: -1
State: (0, 2), Action: right, Reward: -5
State: (0, 3), Action: down, Reward: -1
State: (1, 3), Action: down, Reward: -1
State: (2, 3), Action: down, Reward: 100
State: (3, 3), Action: None, Reward: 100
```

Due to stochastic transitions, episodes vary in length and rewards.

2. (30 points) DAgger Algorithm Implementation

The DAgger algorithm was implemented using a Decision Tree classifier. I experimented with $N = \{5, 10, 20, 30, 40, 50\}$ iterations and calculated the accuracy based on the proportion of actions matching the expert policy.

Observation:

- Varies for every iteration because of random value. For one example shown the accuracy increased rapidly from N=5 to N=30, reaching approximately 94%.
- After N=30, accuracy plateaued, indicating the model had sufficiently learned the expert policy.
- The increase in accuracy with N is due to more diverse and comprehensive datasets collected over iterations, helping the classifier to better approximate the expert's behavior.