

EN.600.475 Machine Learning

Regression

Raman Arora Lecture 3 February 6, 2017

- Supervised Learning
- Linear regression

Formal setup

- ullet Input data space ${\mathcal X}$
- ullet Output (label, target) space ${\cal Y}$
- ullet Unknown function $f:\mathcal{X} o\mathcal{Y}$
- We are given a set of labeled examples (\mathbf{x}_i, y_i) , i = 1, ..., N, with $\mathbf{x}_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$.
- Goal: any for future \mathbf{x} , accurately predict y in other words: learn a mapping $f: \mathcal{X} \to \mathcal{Y}$

Types of supervised problems

- ullet Goal: learn $f:\mathcal{X} o\mathcal{Y}$
- ullet We will consider two sorts of f, based on nature of ${\mathcal Y}$:

regression:
$$\mathcal{Y} = \mathbb{R}$$

classification:
$$\mathcal{Y} = \{1, \dots, C\}$$

Types of supervised problems

- ullet Goal: learn $f:\mathcal{X} o\mathcal{Y}$
- ullet We will consider two sorts of f, based on nature of ${\mathcal Y}$:

regression:
$$\mathcal{Y} = \mathbb{R}$$
 learn a (continuous) function f

classification:
$$\mathcal{Y} = \{1, \dots, C\}$$

Types of supervised problems

- ullet Goal: learn $f:\mathcal{X} o\mathcal{Y}$
- ullet We will consider two sorts of f, based on nature of ${\mathcal Y}$:

regression:
$$\mathcal{Y} = \mathbb{R}$$
 learn a (continuous) function f

classification:
$$\mathcal{Y} = \{1, \dots, C\}$$

learn a separator between classes

Regression

• We are given a set of N observations (\mathbf{x}_i, y_i) , $i = 1, \dots, N$, with $y_i \in \mathbb{R}$.

 $\bullet \ \, {\sf Example:} \ \, {\sf predict} \ \, {\sf car} \ \, {\sf MPG} \ \, y \\ {\sf from \ engine} \ \, {\sf horsepower} \ \, x \\$

• Does it make sense to use learning here?

Attempt 1: rote learning

ullet Memorize the observed (\mathbf{x},y) pairs

Attempt 1: rote learning

- ullet Memorize the observed (\mathbf{x},y) pairs
- \bullet What do we do when a new ${\bf x}$ comes along? mpg

Attempt 1: rote learning

- ullet Memorize the observed (\mathbf{x},y) pairs
- $\bullet \ \mbox{What do we do when a new \mathbf{x} comes along?} \\ \mbox{mpg}$

• Is this really learning?

Attempt 2: lazy learning

- Memorize the observed values
- For a new \mathbf{x}_0 , find two nearest neighbors, that is, two observed \mathbf{x}_i closest to it, and predict $\widehat{y}(\mathbf{x}_0)$ as the average of the nearest neighbors' y_i s

Attempt 2: lazy learning

- Memorize the observed values
- For a new \mathbf{x}_0 , find two nearest neighbors, that is, two observed \mathbf{x}_i closest to it, and predict $\widehat{y}(\mathbf{x}_0)$ as the average of the nearest neighbors' y_i s

Attempt 2: lazy learning

- Memorize the observed values
- For a new \mathbf{x}_0 , find two nearest neighbors, that is, two observed \mathbf{x}_i closest to it, and predict $\widehat{y}(\mathbf{x}_0)$ as the average of the nearest neighbors' y_i s
- This is k-nearest neighbors regression (k=2)

- Explain the data (traditional statistics)
- Make predictions (emphasized in machine learning)
- We will proceed in two steps:
 - 1 Choose a *model class* of functions

- Explain the data (traditional statistics)
- Make predictions (emphasized in machine learning)
- We will proceed in two steps:
 - 1 Choose a *model class* of functions
 - 2 Design a fitting criterion, to guide selection of a function from the class.

- Explain the data (traditional statistics)
- Make predictions (emphasized in machine learning)
- We will proceed in two steps:
 - 1 Choose a *model class* of functions
 - 2 Design a fitting criterion, to guide selection of a function from the class.
- Simplest model class: constant functions

- Explain the data (traditional statistics)
- Make predictions (emphasized in machine learning)
- We will proceed in two steps:
 - 1 Choose a *model class* of functions
 - 2 Design a fitting criterion, to guide selection of a function from the class.
- Simplest model class: constant functions

- Explain the data (traditional statistics)
- Make predictions (emphasized in machine learning)
- We will proceed in two steps:
 - 1 Choose a *model class* of functions
 - 2 Design a fitting criterion, to guide selection of a function from the class.
- Simplest model class: constant functions
- Second simplest: linear functions

- We want to fit a linear function to an observed set of points $X = [x_1, \dots, x_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.

- We want to fit a linear function to an observed set of points $X = [x_1, \dots, x_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.

19

- We want to fit a linear function to an observed set of points $X = [x_1, \dots, x_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.
- Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

20

- We want to fit a linear function to an observed set of points $X = [x_1, \dots, x_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.
- Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances between actual *y*s in the training set and predicted ones.

distances along y, not orthogonal to line!

- We want to fit a linear function to an observed set of points $X = [x_1, \dots, x_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.
- Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

distances along y, not orthogonal to line!

- We want to fit a linear function to an observed set of points $X = [x_1, \dots, x_N]$ with associated labels $Y = [y_1, \dots, y_N]$.
 - Once we fit the function, we want to use it to predict the y for new x.
- Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances between actual *y*s in the training set and predicted ones.

distances along y, not orthogonal to line! The fitted line is used as a predictor; it

summarizes the information x provides about y, according to the model

Multiple input variables

- ullet Can consider additional features; e.g., x_1 horsepower and x_2 vehicle weight.
- We now have mapping from $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ to y

24

colorbar: one possible way to convey multi-dimensional plots

