COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

Last day to turn in HW3

HW4 due Oct 27

Previously on COS 433...

Number Theory and Crypto

(Handout on course website with basic number theory primer)

Number-theory Constructions

Goal: base security on hard problems of interest to mathematicians

- Wider set of people trying to solve problem
- Longer history
- Ultimately, new applications

Number Theory

 $\mathbb{Z}_{\mathbf{N}}$: integers mod \mathbf{N} that are relatively prime to \mathbf{N}

- $x \in \mathbb{Z}_N^*$ iff **x** has an "inverse" **y** s.t. **xy mod N = 1** $\Rightarrow \mathbb{Z}_N^*$ is a multiplicative group
- For prime N, $\mathbb{Z}_N^* = \mathbb{Z}_N \setminus \{0\} = \{1,...,N-1\}$ $\Rightarrow \mathbb{Z}_N$ for prime N is a field

Totient function: $\Phi(N) := |\mathbb{Z}_N^*|$

Euler's theorem: for any $x \in \mathbb{Z}_N^*$, $x^{\Phi(N)}$ mod N = 1

Today

Number theory continued

Cyclic Groups

For prime
$$\mathbf{p}$$
, $\mathbb{Z}_{\mathbf{p}}^*$ is cyclic, meaning $\exists \mathbf{g} \mathbf{s}.\mathbf{t}. \mathbb{Z}_{\mathbf{p}}^* = \{1,\mathbf{g},\mathbf{g}^2, ..., \mathbf{g}^{\mathbf{p}-2}\}$ (we call such a \mathbf{g} a generator)

However, not all **g** are generators

- If g_0 is a generator, then $g=g_0^2$ is not: $g_0^{(p-1)/2} = g^{p-1} = 1$, so $|\{1,g,...\}| \le (p-1)/2$
- How to test for generator?

Discrete Log

Discrete Log

Let **p** be a large number (usually prime)

Given $g \in \mathbb{Z}_p^*$, $a \in \mathbb{Z}$, "easy" to compute $g^a \mod p$

- Time poly(log a, log p)
- How?

However, no known efficient ways to recover $a \pmod{\Phi(p)=p-1}$ from g and $g^a \mod p$

Hardness of DLog

For prime **p**, best know algorithms:

- Brute force: O(p)
- Better algs based on birthday paradox: O(p^{1/2})
- Even better heuristic algorithms:

$$\exp(C(\log p)^{1/3}(\log \log p)^{2/3})$$

(super polynomial in **log p**)

For non-prime **p**, some cases are easy

Sampling Large Random Primes

Prime Number Theorem: A random λ -bit number is prime with probability $\approx 1/\lambda$

Primality Testing: It is possible in polynomial time to decide if an integer is prime

Fermat Primality Test (randomized, some false positives):

- Choose a random integer a ∈ {0,...,N-1}
- Test if a^N = a mod N
- Repeat many times

Discrete Log Assumption: For any discrete log algorithm $\frac{\epsilon}{\epsilon}$ running in time polynomial time, there exists negligible ϵ such that:

Pr[
$$a \leftarrow \mathcal{V}$$
 (p,g,g^a mod p):
 $p \leftarrow \text{random } \lambda\text{-bit prime}$
 $g \leftarrow \text{random generator of } \mathbb{Z}_p^*$,
 $a \leftarrow \mathbb{Z}_{p-1}$] $\leq \epsilon(\lambda)$

Collision Resistance from DLog

Let **p** be a prime

- Key space = \mathbb{Z}_p^2 Domain: \mathbb{Z}_{p-1}^2
- Range: $\mathbb{Z}_{\mathbf{p}}$
- H((g,h), (x,y)) = $g^x h^y$

To generate key, choose random \mathbf{p} , \mathbf{g} , $\mathbf{h} \in \mathbb{Z}_{\mathbf{p}}^*$

• Require **g** a generator

Collision Resistance from Discrete Log

$$H((g,h),(x,y)) = g^xh^y$$

Theorem: If discrete log assumption holds, then **H** is collision resistant

Collision Resistance from Discrete Log

Proof idea:

- Input to H is equation for a line line(a)=ay+x
- H(line) = $g^{line(a)}$ (evaluation "in the exponent")
- A collision is two different lines that intersect at a
- Use equations for two lines to solve for a:

$$a = -(x_1-x_0)/(y_1-y_0) \pmod{p-1}$$

Problem

For **p>2**, **p-1** is not a prime, so has some factors

Therefore, (y_1-y_0) not necessarily invertible mod p-1

However, possible to show that if this is the case, either:

- (y_1-y_0) and (x_1-x_0) have common factor, so can remove factor and try again, or
- g is not a generator (which isn't allowed)

Blum-Micali PRG

Let **p** be a prime

Let
$$g \in \mathbb{Z}_p^*$$

Let
$$h: \mathbb{Z}_p^* \to \{0,1\}$$
 be $h(x) = 1$ if $0 < x < (p-1)/2$

Seed space: $\mathbb{Z}_{\mathbf{p}}^*$

Algorithm:

- Let x_0 be seed
- For **i=0,...**
 - Let $x_{i+1} = g^{x_i} \mod p$
 - Output h(x_i)

Theorem: If the discrete log assumption holds on \mathbb{Z}_p^* , then the Blum-Micali generator is a secure PRG

We will prove this eventually (if time)

Another PRG

p a primeLet **g** be a generator

Seed space: \mathbb{Z}_{p-1}^2

Range: \mathbb{Z}_{p}^{3}

 $PRG(a,b) = (g^a,g^b,g^{ab})$

Don't know how to prove security from DLog

Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:

• Given (g,g^a,g^b) , compute g^{ab}

Decisional Diffie-Hellman:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

DLog:

• Given (g,ga), compute a

CDH:

• Given (g,g^a,g^b) , compute g^{ab}

DDH:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Computational Diffie Hellman: For any algorithm running in polynomial time, there exists negligible ε such that:

```
Pr[g^{ab} \leftarrow \mathcal{V}(p,g,g^a,g^b):

p \leftarrow \text{random } \lambda\text{-bit prime}

g \leftarrow \text{random generator of } \mathbb{Z}_p^*,

a,b \leftarrow \mathbb{Z}_{p-1}

] \leq \epsilon(\lambda)
```


Hardness of DDH

Need to be careful about DDH

Turns out that DDH as described is usually easy:

- For prime p>2, $\Phi(p)=p-1$ will have small factors
- Can essentially reduce solving DDH to solving DDH over a small factor

Fixing DDH

Let \mathbf{g}_0 be a generator

Suppose p-1 = qr for prime q, integer r

Let **g=g₀^r**

gq mod p = 1, but gq' mod p ≠ 1 for any q'<q
 So g has "order" q

Let $G = \{1, g, g^2, ...\}$ be group "generated by" g

Generalizing Cryptographic Groups

Replace fixed family of groups with "group generator" algorithm

Decisional Diffie Hellman for GrGen:

For any algorithm $\frac{r}{r}$ running in polynomial time, there exists negligible ϵ such that:

|
$$Pr[1\leftarrow \begin{subarray}{l} (g,g^a,g^b,g^{ab}): \\ (G,g,q)\leftarrow GrGen(\lambda), \ a,b\leftarrow \begin{subarray}{l} (g,g^a,g^b,g^c): \\ (G,g,q)\leftarrow GrGen(\lambda), \ a,b,c\leftarrow \begin{subarray}{l} (g,g^a,q)\leftarrow \begin{subarray}{l} (G,g,q)\leftarrow \begin{subarra$$

Back to our PRG

Seed space: **Z**_q²

Range: **G**³

 $PRG(a,b) = (g^a,g^b,g^{ab})$

Security almost immediately follows from DDH

Generalizing Cryptographic Groups

Can also define Dlog, CDH relative to general GrGen

In many cases, problems turns out easy

Ex:
$$G = Z_q$$
, where $g \otimes h = g + h \mod q$

- What is exponentiation in **G**?
- What is discrete log in G?

Essentially only two groups where Dlog/CDH/DDH is conjectured to be hard:

- $\mathbb{Z}_{\mathbf{p}}^*$ and its subgroups
- "Elliptic curve" groups

Parameter Size in Practice?

- **G** = subgroup of \mathbb{Z}_p^* of order **q**, where **q** $\mid p-1$
- In practice, best algorithms require **p** ≥ 2¹⁰²⁴ or so

- **G** = "elliptic curve" group
- Can set **p** ≈ 2²⁵⁶ to have security
 - \Rightarrow best attacks run in time 2¹²⁸

Therefore, elliptic curve groups tend to be much more efficient \Rightarrow preferred in practice

Naor-Reingold PRF

Domain: **{0,1}**ⁿ

Key space: \mathbb{Z}_{q}^{n+1}

Range: **G**

$$F((a,b_1,b_2,...,b_n), x) = g^{ab_1^{x_1}b_2^{x_2}}...b_n^{x_n}$$

Theorem: If DDH assumption holds on **G**, then the Naor-Reingold PRF is secure

Proof by Hybrids

Hybrids 0:
$$H(x) = g^{a b_1^{x1} b_2^{x2}} ... b_n^{xn}$$

Hybrid i:
$$H(x) = H_i(x_{[1,i]})^{b_{i+1}^{x_{i+1}}} \dots b_n^{x_n}$$

• H_i is a random function from $\{0,1\}^i \rightarrow G$

Hybrid \mathbf{n} : $\mathbf{H}(\mathbf{x})$ is truly random

Proof

Suppose adversary can distinguish Hybrid **i-1** from Hybrid **i** for some **i**

Easy to construct adversary that distinguishes:

$$x \to H_i(x)$$
 from $x \to H_{i-1}(x_{[1,i-1]})^{b^{x_i}}$

Proof

Suppose adversary makes **2r** queries

Assume wlog that queries are in pairs x||0, x||1

What does the adversary see?

- H_i(x): 2r random elements in G
- $H_{i-1}(x_{[1,i-1]})^{b_i^{x_i}}$: r random elements in G, $h_1,...,h_q$ as well as h_1^b , ..., h_q^b

Lemma: Assuming the DDH assumption on **G**, for any polynomial **r**, the following distributions are indistinguishable:

$$(g,g^{x1},g^{y1},...,g^{xq},g^{yq})$$
 and $(g,g^{x1},g^{b},x^{1},...,g^{xq},g^{b},x^{q})$

Suffices to finish proof of NR-PRF

Proof of Lemma

Hybrids O: $(g,g^{x1},g^{b})^{x1}$, ..., g^{xr},g^{b}

Hybrid i:
$$(g,g^{x1},g^{y1},...,g^{xi},g^{yi},g^{xi+1},g^{b})$$

Hybrid q: $(g,g^{x1},g^{y1},...,g^{xr},g^{yr})$

Proof of Lemma

Suppose adversary distinguishes Hybrid **i-1** from Hybrid **i**

Use adversary to break DDH:

Proof of Lemma

$$(g,g^{x_1},g^{y_1},...,g^{x_{i-1}},g^{y_{i-1}},u,v, g^{x_{i+1}},h^{x_{i+1}}, ...g^{x_r},h^{x_r})$$

If $(g,h,u,v) = (g,g^b,g^{x_i},g^b)$, then Hybrid $i-1$

If $(g,h,u,v) = (g,g^b,g^{x_i},g^{y_i})$, then Hybrid i

Therefore, ** sadvantage is the same as ** (s

Further Applications

From NR-PRF can construct:

- CPA-secure encryption
- Block Ciphers
- MACs
- Authenticated Encryption

Announcements/Reminders

Last day to turn in HW3

HW4 due Oct 27