EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Feb 2 2020

Randomized Linear Algebra Lecture 8: Randomized Least Squares Bias and Variance, Streaming Data

Least Squares Problems and Random Projection

▶ Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find the best linear fit $Ax \approx b$ according to

$$\min_{x \in \mathbb{R}^d} \|Ax - b\|_2^2$$

- ▶ no regularization, i.e., $\lambda = 0$
- ▶ If A is full column rank then

Faster Least Squares Optimization: Random Projection

▶ Left-sketching

Form SA and Sb where $S \in \mathbb{R}^{m \times n}$ is a random projection matrix

► Solve the smaller problem

$$\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

using any classical method.
 Direct method complexity md²

Approximation Result

- ▶ Suppose that $n \gg d$
- lackbox Let $S \in \mathbb{R}^{m imes d}$ be a Johnson-Lindenstrauss Embedding

$$x_{LS} = \arg\min_{x \in \mathbb{R}^d} \underbrace{\|Ax - b\|_2^2}_{f(x)}$$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- ▶ **Lemma** If $m \ge \text{constant} \times \frac{\text{rank}(A)}{\epsilon^2}$ then,
- $f(x_{LS}) \le f(\tilde{x}) \le (1 + \epsilon^2) f(x_{LS})$
- $\|A(x_{LS} \tilde{x})\|_2^2 \le \epsilon^2$ with high probability

Application: Streaming data

- ▶ Suppose that $n \gg d$
- Let $S \in \mathbb{R}^{m \times d}$ be a Johnson-Lindenstrauss Embedding

$$x_{LS} = \arg\min_{\mathbf{x} \in \mathbb{R}^d} \underbrace{\|A\mathbf{x} - b\|_2^2}_{f(\mathbf{x})}$$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

ightharpoonup A and b are dynamically updated and we need to find x_{LS} at any time

$$A_{t+1} = A_t + \Delta_t$$
 and $y_{t+1} = y_t + \Delta_t$
Can we form and update $A_t^T A_t \in \mathbb{R}^{d \times d}$?

Application: Streaming data

- ▶ Suppose that $n \gg d$
- Let $S \in \mathbb{R}^{m \times d}$ be a Johnson-Lindenstrauss Embedding

$$x_{LS} = \arg\min_{x \in \mathbb{R}^d} \underbrace{\|Ax - b\|_2^2}_{f(x)}$$

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

ightharpoonup A and b are dynamically updated and we need to find x_{LS} at any time

$$A_{t+1} = A_t + \Delta_t$$
 and $y_{t+1} = y_t + \Delta_t$
Can we form and update $A_t^T A_t \in \mathbb{R}^{d \times d}$?

Linear sketch can be updated on the fly $SA_{t+1} = SA_t + S\Delta_t$ and $Sy_{t+1} = Sy_t + S\Delta_t$

Gaussian Sketch

- ▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx Sb\|_2^2$
- ▶ Is $\mathbb{E}\left[\tilde{x}\right]$ equal to x_{LS} ?

Gaussian Sketch

- ▶ Let S be $\frac{1}{m} \times$ i.i.d. Gaussian. $\mathbb{E}[S^T S] = I$ $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx Sb\|_2^2$
- ▶ Is $\mathbb{E}\left[\tilde{x}\right]$ equal to x_{LS} ?
- Assuming $A^T S^T S A$ is invertible, we have

$$\tilde{x} = (A^T S^T S A)^{-1} A^T S^T S b$$
let $b = A x_{LS} + b^{\perp}$ where $b^{\perp} \perp Range(A)$

$$\tilde{x} = (A^T S^T S A)^{-1} A^T S^T S (A x_{LS} + b^{\perp})$$

$$= x_{LS} + (A^T S^T S A)^{-1} A^T S^T S b^{\perp}$$

▶ $\mathbb{E}(A^TS^TSA)^{-1}A^TS^TSb^{\perp} = 0$ since Sb^{\perp} and SA are uncorrelated zero mean Gaussian.

Let S be i.i.d. Gaussian

$$ilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2 = x_{LS} + (A^T S^T SA)^{-1} A^T S^T Sb^{\perp}$$

$$= x_{LS} + (SA)^{\dagger} Sb^{\perp}$$

- Analyzing the variance $\mathbb{E}\|A\tilde{x} x_{LS}\|_2^2$
- ▶ **Lemma (a)** Conditioned on the matrix *SA*

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m}(A^T S^T S A)^{-1}\right)$$

Let S be i.i.d. Gaussian

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2 = x_{LS} + (A^T S^T SA)^{-1} A^T S^T Sb^{\perp}$$
$$= x_{LS} + (SA)^{\dagger} Sb^{\perp}$$

- Analyzing the variance $\mathbb{E}\|A\tilde{x} x_{LS}\|_2^2$
- Lemma (a) Conditioned on the matrix SA

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m}(A^T S^T S A)^{-1}\right)$$

- $\mathbb{E}(\tilde{x} x_{LS})(\tilde{x} x_{LS})^T = (SA)^{\dagger}((SA)^{\dagger})^T = (A^T S^T SA)^{-1} \frac{\|b^{\perp}\|_2^2}{m}$

▶ Let S be i.i.d. Gaussian

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- Analyzing the variance $\mathbb{E}\|A\tilde{x} x_{LS}\|_2^2$
- Lemma (a) Conditioned on the matrix SA

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m} (A^T S^T S A)^{-1}\right)$$
$$A(\tilde{x} - x_{LS}) \sim N\left(0, \frac{f(x_{LS})}{m} A (A^T S^T S A)^{-1} A\right)$$

▶ Let S be i.i.d. Gaussian

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- ► Analyzing the variance $\mathbb{E}\|A\tilde{x} x_{LS}\|_2^2$
- Lemma (a) Conditioned on the matrix SA

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m} (A^T S^T S A)^{-1}\right)$$
$$A(\tilde{x} - x_{LS}) \sim N\left(0, \frac{f(x_{LS})}{m} A (A^T S^T S A)^{-1} A\right)$$

Lemma (b) (removing conditioning) for m > d + 1

$$\mathbb{E}[(A^{T}S^{T}SA)^{-1}] = (A^{T}A)^{-1}\frac{m}{m-d-1}$$

▶ Let *S* be i.i.d. Gaussian

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2$$

- ▶ Analyzing the variance $\mathbb{E}||A\tilde{x} x_{LS}||_2^2$
- **Lemma (a)** Conditioned on the matrix *SA*

$$\tilde{x} \sim N\left(x_{LS}, \frac{f(x_{LS})}{m} (A^T S^T S A)^{-1}\right)$$

$$A(\tilde{x} - x_{LS}) \sim N\left(0, \frac{f(x_{LS})}{m} A (A^T S^T S A)^{-1} A\right)$$

Lemma (b) (removing conditioning) for m > d + 1

$$\mathbb{E}[(A^T S^T S A)^{-1}] = (A^T A)^{-1} \frac{m}{m-d-1}$$

- $\mathbb{E}\|A(\tilde{x}-x_{LS})\|_2^2 = \mathbb{E}\frac{f(x_{LS})}{m}trA(A^TS^TSA)^{-1}A$
- $\mathbb{E}||A(\tilde{x}-x_{LS})||_{2}^{2} = \frac{f(x_{LS})}{m-d-1}trA(A^{T}A)^{-1}A = f(x_{LS})\frac{d}{m-d-1}$

Expected Inverse of a Random Matrix

Where does the formula

$$\mathbb{E}[(A^{T}S^{T}SA)^{-1}] = (A^{T}A)^{-1} \frac{m}{m-d-1}$$

come from?

Which sketching matrices are good?

- We need to find conditions to guarantee approximate optimality
- ▶ Let $A = U\Sigma V^T$ SVD in compact form

some deterministic options

- \triangleright $S = U^T$ is $d \times n$
- \triangleright $S = A^T$

For random S matrices $A^T S^T S A$ needs to be invertible we want it to be close to $A^T A$

Questions?