

| RULE-13 IF $(S_{12})$ Heat exchanger is ineffective  AND $(T_{13})$ Temperature reading of SW at exit of heat exchanger is low  THEN $(S_{13})$ Fouled heat exchanger and hence poor heat transfer is responsible for overheat | RULE-18 IF $(S_{17})$ Loss of coolant occurs in SW loop with pump operating AND $(T_{18})$ Pressure gauge reading of SW is high THEN $(S_{18})$ SW discharge valve is closed                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RULE-14 IF $(S_{12})$ Heat exchanger is ineffective AND $(T_{14})$ Temperature reading of SW at exit of heat exchanger is high THEN $(S_{14})$ Loss of coolant occurs in SW loop                                               | RULE-19 IF $(S_{17})$ Loss of coolant occurs in SW loop with pump operating AND $(T_{19})$ Pressure gauge reading at suction valve of SW coolant pump is low THEN $(S_{19})$ Blocked strainer or closed suction valve of SW coolant pump is responsible for overheat                                   |
| RULE-15 IF $(S_{14})$ Loss of coolant occurs in SW loop AND $(T_{15})$ SW control valve is closed THEN $(S_{15})$ Closed SW control valve is responsible for overheat                                                          | RULE-20 IF $(S_{17})$ Loss of coolant occurs in SW loop with pump operating AND $(T_{20})$ Pressure gauge reading at delivery valve of SW coolant pump is high THEN $(S_{20})$ Closed delivery valve of SW coolant pump is responsible for overheat                                                    |
| RULE-16 IF $(S_{14})$ Loss of coolant occurs in SW loop AND $(T_{16})$ SW coolant pump is not operating THEN $(S_{16})$ Stoppage in SW coolant pump is responsible for overheat                                                | RULE-21  IF $(S_{17})$ Loss of Coolant occurs in SW loop with pump operating  AND $(T_{21})$ Ampere meter reading of motor of SW coolant pump is abnormal  THEN $(S_{21})$ Power decrease of motor of SW coolant pump is responsible for overheat  RULE-22  IF $(S_{17})$ Loss of coolant occurs in SW |

loop

AND  $(T_{17})$  SW coolant pump is operat-

THEN  $(S_{17})$  Loss of coolant occurs in

SW loop with pump operating

AND  $(T_{22.1})$  Pressure gauge reading at delivery valve of SW coolant pump is low

AND  $(T_{22.2})$  Pressure gauge reading at

THEN  $(S_{22})$  Impeller damage in SW

coolant pump is responsible for overheat

suction valve of SW coolant pump is nor-