MODERN RELOADING

by: Richard Lee

This book is written and published by Richard Lee.

The type and layout are by Richard Lee using Microsoft Word 6 for Windows.

Photos are by Richard Lee, except as noted.

Cartridge drawings by Pat Klessig and Richard Lee

Cover layout by Markjohn Advertising

Load data was assembled from that published by suppliers of the powder with their permission. It has been reorganized into a more functional format while maintaining information required for assembling useful ammunition. The software for organizing and typesetting the data was written by Richard Lee and is available to primary powder suppliers.

Copyright © Richard Lee 1996

Reprinted 1997 and 2000

All rights reserved

Printed in the United States of America by Inland Press

Without limiting the rights under copyright reserved above, no part of this publication may be produced, stored or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of the copyright owner.

To my family

MODERN RELOADING

by: Richard Lee

Ammunition Reloading for the shooter, hunter and professional reloader, with detailed loading techniques for quality and quantity production.

Extensive information about special methods and tools so anyone can load more accurate ammunition.

It covers reloading for rifles, handguns and shotguns, bullet casting, powder selection and measuring methods.

Includes much information that was previously unavailable from any source, along with must have charts.

Comprehensive load data, compiled from all major powder suppliers published information, sorted in logical cartridge, bullet weight, and velocity order.

The first book to print starting loads that are suitable for volume measuring. Someday all load data will be presented in this original, logical format.

INTRODUCTION TO RELOADING THREE REASONS TO RELOAD YOUR AMMUNITION SELECTING A RELOADING TOOL FOR METALLIC CARTRIDGES RELOADING PRESSES RELOADER PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	FOREWORD	
INTRODUCTION TO RELOADING THREE REASONS TO RELOAD YOUR AMMUNITION SELECTING A RELOADING TOOL FOR METALLIC CARTRIDGES RELOADING PRESSES RELOADER PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
THREE REASONS TO RELOAD YOUR AMMUNITION SELECTING A RELOADING TOOL FOR METALLIC CARTRIDGES RELOADING PRESSES RELOADER PRESS RELOADER PRESS HAND PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	CHAPTER 1	8
THREE REASONS TO RELOAD YOUR AMMUNITION SELECTING A RELOADING TOOL FOR METALLIC CARTRIDGES RELOADING PRESSES RELOADER PRESS RELOADER PRESS HAND PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	INTRODUCTION TO RELOADING	
SELECTING A RELOADING TOOL FOR METALLIC CARTRIDGES RELOADING PRESSES RELOADER PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	THREE REASONS TO RELOAD YOUR AMMUNITION	
RELOADING PRESSES RELOADER PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	SELECTING A RELOADING TOOL FOR METALLIC CARTRIDGES	
RELOADER PRESS HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
HAND PRESS THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	Reloader Press	
THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN. CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	HAND PRESS	
CHALLENGER PRESS LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	THE LEE ANNIVERSARY KIT IS THE BEST BARGAIN.	
LEE TURRET PRESS PRO 1000 LOAD-MASTER CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	CHALLENGER PRESS	
CHAPTER 2 SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	LEE TURRET PRESS	
SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	Pro 1000	
SOME COMMON TERMS A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	Load-Master	
A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET. RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
RELOADING RIFLE CASES DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	A CARTRIDGE IS AN ASSEMBLED CASE, PRIMER, POWDER AND BULLET.	
DEPRIME AND SIZE EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
EXPAND THE NECK CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	DEPRIME AND SIZE	
CASE TRIMMING PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	EXPAND THE NECK	
PRIMING CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE	CASE TRIMMING	
CHARGING THE POWDER SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING CHAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
SELECTING THE BEST POWDER FOR THE CARTRIDGE. BULLET SEATING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
BULLET SEATING CRIMPING HAPTER 3 LOADING FOR BEST ACCURACY IN YOUR RIFLE		
CRIMPING		
LOADING FOR BEST ACCURACY IN YOUR RIFLE	Crimping	
D Y Y	CHAPTER 3	
D Y Y	LOADING FOR PEST ACCURACY IN VOUR PHELE	
POUNT OF IMPACT	POINT OF IMPACT	

MODERN RELOADING by Richard Lee

MODERN RELOADING by Remark 2ee		
CHAPTER 4		55
LOADING FOR HANDGUNS		55
CASE SIZING		. 50
CASE TRIMMING		58
Priming		58
EXPANDING AND POWDER CHARGING		59
BULLET SEATING AND CRIMPING		60
AMMUNITION THAT MUST WORK		62
Lee Bullet Feeder		63
CHAPTER 5		65
Priming		65
CHAPTER 6		71
CHAPTER 6		/ 1
ACT A CAUDANIC CAUNDON DED		71
MEASURING GUNPOWDER		- 71
SO WHY ARE POWDER CHARGES ALWAYS STATED BY WEIGHT?		- 72
An unfortunate misunderstanding.		73
CHAPTER 7		77
MECHANICAL POWDER MEASURES.		77
Auto-Disk Powder Measure		77
Deluxe Auto-Disk Powder Measure		78
Pro Auto-Disk Powder Measure	. 9	79
SAFETY DISK POWDER MEASURE	14.7	79
Drum type measures.		80
PERFECT POWDER MEASURE		80
Davis and Carrier		82
GRAIN, GRANULES AND CUBIC CENTIMETERS.		84
CHAPTER 8		85
GUNPOWDER SAFETY		85
REDUCED CHARGES		- 88
	9	94
GREATLY REDUCED CHARGES OR SQUIB LOADS		74

CHAPTER 9	95
ALL ABOUT PRESSURE	95
ALL ABOUT PRESSURE WHAT ARE THE CAUSES OF EXCESSIVE PRESSURE? SIGNS OF EXCESSIVE PRESSURE	98
SIGNS OF EXCESSIVE PRESSURE	102
AN EXTREMELY INTERESTING REPRINT	105
CHAPTER 10	111
*	
BULLET CASTING	111
HAZARDS OF LEAD	112
Lead Alloys	
SOURCES OF METAL	114
TO SUM UP THE IMPORTANT POINTS:	116
SETTING UP FOR BULLLET CASTING	119
BULLET CASTING PROBLEMS.	123
THE MOLD DOESN'T FILL OUT.	123
BULLET LUBRICATING AND SIZING	125
LUBRICATING THE BULLET	130
GAS CHECKS	132
CHAPTER 11	133
RELOADING SHOTGUN SHELLS	133
SHELLS	133
WADS	134
Primers	135
SHOT	
Drams Equivalent	137
LOADING SHOTGUN SHELLS	137
RELOADING STEEL SHOT	142
SHOTGUN SLUGS	144
ADDENDUM:	146
THESE INFORMATION PAGES PRECEED ALL	
LEE RELOADING TOOL INSTRUCTIONS:	147
LEE LOADER INSTRUCTIONS	150
LEE CHALLENGER PRESS INSTRUCTIONS	153

MODERN RELOADING by Richard Lee

Pictures
Figure 1 Cutaway of a Typical Rifle Cartridge.
Figure 2 The Famous Lee Loader 17
Figure 3 Reloading Doesn't Require Great Force. 19
Figure 4 A Good Press Need Not Be Expensive 19
Figure 5 Portable Reloading 20
Figure 6 Second only to the Lee Loader in lifetime popularity. 21
Figure 7 Most Convenient Press for Multiple Calibers 22
Figure 8 The picture is my son John in 1975 starting the first prototype press.
Photo by Dean Grennell.
Figure 9 This press never made it to market.
Figure 10 The most popular progessive press ever made. 25
Figure 11 Case Collater fills the case tubes in second.
Figure 12 The Load-Fast is for those who enjoy fine tools. 27
Figure 13 Assorted cartridges.
Figure 14 Cutaway of a Rifle Sizing Die. 31
Figure 15 Expander being withdrawn from case. 32
Figure 16 Robert Frey dramatically demonstrated the excellence of the Lee Collet Dies.
In sanctioned competition, he set a world record for the smallest group at 1000
yards. Photo supplied by Robert Frey 33
Figure 17 Case trimming. 35
Figure 18 Lee Auto-Prime 36
Figure 19 Perfect Powder Measure 38
Figure 20 Bullet Seating Die 42
Figure 21 Factory Crimp Die 44
Figure 22 Primer Pocket Cleaner 48
Figure 23 Lee Loader 49
Figure 24 Cutaway of The Lee Collet Die
Figure 25 A rare perfect slowfire score. 55
Figure 26 Cutaway of Carbida Sizina Dia
Figure 27 Cutaway of Powder Through Expanding Die 59
Figure 28 Cutaway of Bullet Seating Die 61
Figure 29 Automatic Bullet Feeder . 63
Figure 30 Improved Priming Tool Safe with any brand of primers.
Figure 31 This steel Explosion Shield was damaged by the blast of a tray full of Federal
primers. 67
Figure 32 Auto-Prime II on a Challenger Press 69
Figure 33 Auto-Disk Powder Measures 71
Figure 34 Micrometer adjustment for the Lee Perfect Powder Measure. 73
Figure 35 Powder Dipper Kit 74
Figure 36 Pro Auto-Disk Powder Measure 78
Figure 37 Adjustable Charge Bar for the Lee Auto-Disk Powder Measure. 79
Figure 38 Always empty your powder measure into the original container when finished
reloading80
Figure 39 Lee Safety Scale for measuring gunpowder. 82
Figure 40 Cast bullet shows rifling stripped.
Figure 41 Rifling in good condition at higher velocity.
Figure 42 A double charge in a Browning Auto-loader caused minor injuries to the
shooter98

Figure 43	Primer 1 is a light load. Number 2 is a normal NEVER EXCEED	load, Num-
ber 3	is a hot load. Can you see the difference?	99
Figure 44	Robert Lee, pretending he is making toy soldiers with his Uncle I	Bob's Gilbert
Toymo	aker (circa 1928)	111
Figure 45	The stuff bullets are made from.	114
Figure 46	Your bullet casting setup should look something like this.	119
Figure 47	Be sure to lube your mold.	121
Figure 48	Star lubricator and sizer. Bullets are pushed through the die and	drop out of
the bo	ttom	127
Figure 49	Lee Sizer mounted on a Reloader press.	129
	Tumble lubing bullets.	130
Figure 51	The bullet melts and the Alox lube clings to the hot bullet.	131
Figure 52	Load-All instructions	139
Figure 53	The new Lee Drive Key slug mold and slugs saves 70 to 80% over	r factory slug
loads.		144
Figure 54	Lee Loader instructions	149
Figure 55	Challenger Press instructions	153

Special thanks to:

Accurate Arms Company, Inc

Alliant Powder (Formerly Hercules Powder)

Hodgdon Powder Company

IMR Powder Company

Vihtavuori Oy

Winchester

Foreword

Reloaders are the nicest people on the face of the earth. They share many common quality traits. They hate waste and can't bear to throw away a perfectly good cartridge case simply because it's empty. Besides, it's impolite to leave a mess for someone else to pick up. They enjoy working with their hands, like to shoot, love the great outdoors and expect that what they buy should work as advertised. An unusual amount of reloaders are doctors, lawyers and business people. Persons reload because they like it, not because they can't afford to buy factory made ammunition. I'm proud to be a member of the fraternity.

A lifetime involvement in the reloading business and shooting sports has allowed me to communicate with thousands of reloaders and shooters throughout the world. Perhaps I have spoken to, or written to you. If so, I am grateful for the pleasure. Not many persons have had such a specialized background. It gives me the unique advantage of knowing what you want and need to know about reloading, tools, procedures and load tables. I am retired and to not share the benefits of my lifetime vocation and avocation would be a waste. I hate waste, so I wrote this book.

At Lee Precision, I had the time and means to evaluate the reloader's needs in every aspect. Wherever the need existed, I designed the best product for the job, at an affordable price. Good value for your buck. I have 29 United States patents and more are pending. Lee products are the most imitated reloading products in the world. In some foreign countries, where my patents don't apply, there are exact copies of Lee equipment. An enterprising individual has even registered the trademark "LEE" in a South American country so he can sell imitation Lee products.

A few important comments before we get into the meat of this book. This book is directed at users or potential users of Lee equipment. People interested in better understanding the use of Lee tools. There is very little reference to other brands of tools and equipment. It is both inappropriate and unnecessary for me to explain reloading, with pictures or descriptions of other brands of reloading equipment. Experience, with an earlier book, taught me that the vast majority of readers will be users of Lee products. Mention of other brands is sometimes

necessary to emphasize differences. An example is die adjustment. It could be dangerous if you use Lee rifle sizing die adjustment instruction with a certain other brand. Screw a Lee in until it contacts the shell holder and then one quarter to one third turn more. A different company instructs the die should be adjusted for the correct head-space and may not even contact the shell holder. Screwing the other brand dies in too far will create excessive head space, which can be dangerous.

There are products that are made stronger and cost more than Lee products. There are no comparable products that work as well and cost less than Lee products. A perfect example is the CH Champ press. It was at least 20 times stronger than needed. So strong that we use one for product production in our plant and it has served well through the years. The CH Champ is well fitted with a fair finish. The only problem was the cost to produce was so high that it was priced into extinction. Every part of all Lee presses is a minimum of 3 times stronger than needed. With a modicum of care they will last a lifetime. The price advantage allows us to sell more in one month than the total of all CH Champ presses produced during the years they were in business. You see, it's not that we cannot build a press 20 times stronger than needed. It's because there are not enough customers who would buy such a press. That's why we make and sell what you need and want. This simple principle enabled us to become the world's largest supplier of reloading equipment.

We, at Lee Precision, do not have to answer to corporate headquarters about profit, loss, or design considerations. We answer only to you our customers. It is your calls, letters and most importantly, your vote of confidence when you purchase our products, that makes our decisions for us. We fully understand the most important ingredient to any business is the customer. Without customers no business is possible. That's the reason you can write or call with problems or for assistance. We have technicians to help and it is always possible to communicate directly with John Lee, President, chief executive officer and major share holder of Lee Precision Inc. The products we make are your best buy. If it could be made better we would, because we know you would buy it.

CHAPTER 1

Introduction to Reloading

Figure 1 Cutaway of a Typical Rifle Cartridge.

Nothing you own, except perhaps your automobile, can compare to the awesome potential of a cartridge chambered in your favorite gun. An imperceptible movement of your finger against the trigger unleashes the explosive power with a bright flash and deafening roar. The bullet penetrates the target before you've recovered from the recoil.

Mentally examine a high powered cartridge. Visualize the power, complexity, precision and especially the mechanics. The primer ignites the powder. Fifty thousand pounds pressure per square inch, accelerates the bullet to 2000 miles per hour and starts it spinning at 200,000 revolutions per minute, all before it leaves the barrel of your rifle. The gunpowder and primer's energy are expended, half with the bullet and the rest as recoil. You still have the empty case, the most expensive part of a cartridge. You can't force yourself to throw it away and that is the reason you're reading this book. You will learn how to reload and how to create ammunition more accurate than the best money can buy. Handloaded ammunition is not only better than factory made; it costs 40 to 80 percent less.

Reloading or hand-loading your ammunition had early beginnings. Every muzzle loader is reloaded with the individual components before each firing. The invention of the cartridge made factory assembled ammunition possible. The first cartridges were no more than a conven-

ient package to hold the powder and bullet. Nothing more than a paper container with a measured powder charge and a bullet. The shooter emptied the powder into the muzzle, rammed the bullet home and primed the nipple.

After the invention of the breach-loader, brass case, and suitable primers, rapid fire became possible. The most expensive cartridge part is the brass case. Only the military could afford such luxuries, so not every muzzle loader became instant scrap iron. Most wanted the latest, but few could afford the fancy breach loading repeaters and those that could were unwilling to throw the brass cases away.

The gun companies overcame those obstacles by supplying a set of reloading tools to accompany the gun. Most were simple hand held multipurpose tools. Something to remove the spent primer and install a new one. Usually the case was filled with black powder. A device was supplied to seat the bullet and crimp it in place. Some of these tools even included a mold to cast bullets.

Eventually ammunition became very low priced and reloading lost its appeal. I suspect the many stories about blown up guns from the new fangled smokeless powder, which wasn't forgiving like the good old black powder, helped push reloading out of the mainstream. It never completely left the scene, though reloading was something done only by very few enthusiasts. The ammunition companies did all in their power to discourage reloading. They would not even sell components to the hand-loader. This proved to be a big mistake.

Enterprising individuals like Ray Speer started making bullets for the hand-loader. Bruce Hodgdon sold war surplus gunpowder by the keg for \$20. Fred Huntington made presses and dies to form bullet jackets from spent 22 rimfire cases. George Puth invented the Acme shot shell loader later to be taken over by MEC. I invented the Lee Loader. Lyman, Pacific, CH, Lachmiller, Redding, Bonanza, Bair, Hollywood, Herters, and many others, too numerous to mention, produced reloading equipment.

That short history takes you to today, where you have a selection of reloading tools and components as never before offered. An interesting observation is, the rate of change is so rapid that I've had to rewrite many portions of this book since it was started a few years ago. Lee Precision has many new products, in various stages of development.

They will make reloading better than ever, with ever improving savings, greater precision and convenience, and more fun. Reloading tools will cease to be considered a lifetime purchase. You may never actually throw away any tool you own. You will find that it will be economical and fun to update to suit your needs as your interest in the hobby grows.

There is a genuine pleasure making and shooting your personalized ammunition. It is one of the few hobbies that satisfies the personal pleasure of working with precision tools and dies. This book shows you how to prepare the bullet for the speedy flight to the target, which normally will last only a fraction of a second. This is what reloading is all about. The most unusual pastime one can imagine. Lucky for us it's allowed. We can best insure Second Amendment rights are secure, by encouraging others to become involved. Any venture that involves a large segment of the population remains legal regardless of the danger. Forty thousand plus automobile fatalities annually do not prompt law makers to ban the auto. While private flying has few, yet well publicized, accidents, it is almost regulated out of existence. Only because it affects few voters. Get others involved to protect your right to shoot and reload.

Three Reasons To Reload Your Ammunition

Save Money

The savings are significant, 40 to 75% and more. Most reloaders invest the savings in more components so they can reload more and shoot more. With most Lee equipment, you save enough to pay for the tools in the first hour or two of serious reloading.

The cartridge case is the most expensive part of a cartridge. To throw it away is expensive and wasteful. Because you're reading this, I'll bet you have saved most of your empty cases. It simply goes against most people's nature to throw those empties away.

No one has ever excelled at anything without practice. Practice may not make perfect, but it sure helps. If you're interested in becoming a better shot, reloading is a necessity for all but the rich.

Accuracy

Perhaps you're already a crack shot. Then you've found out that putting every shot in the same hole can't be done. Even if you have the best gun money can buy, factory ammunition simply isn't good enough. There is no way ammunition can be factory produced to give best accuracy in every gun under all circumstances. I don't know of a single serious competitor who uses factory ammunition. As a tailormade suit fits better than one off the rack, custom handgun grips improves your scores, reloading your own ammunition will give better accuracy. Lee Precision is the only company that guarantees it with every tool sold. It is a lot easier to load accurate ammunition than some of the scribes would have you believe. This book will show you how easy it is to better factory accuracy without much effort. With some serious effort and the basic knowledge in these pages, you will improve the accuracy of your ammunition dramatically, and have fun doing it. Which brings us to one of the best reasons for reloading your ammunition, the fun of doing it.

Fun

You're in for a big surprise. After reloading your first batch of ammunition, there is an exciting anticipation about firing the first round you personally reloaded. The experience of shooting your first handmade ammunition is something you'll never forget. Like your first kiss or whatever is noteworthy nowadays.

Reloading is a satisfying and enjoyable pastime. I'll always remember shooting my first reloads 40 years ago. It was doubly exciting, as it was also the day of my first invention, the Lee Loader. I impatiently fired all of my reloads to have empty cases to reload. Reloading is a very enjoyable pastime. It perfectly complements the great shooting sport.

It can be as simple or complicated as you desire. The Lee Loader is the least costly, under twenty dollars. No tool ever made gives you a better, more intimate feeling of total involvement with the reloading process. Or you can invest many hundreds of dollars. They all reload ammunition. Be cautioned that higher price does not necessarily mean better ammunition.

Selecting a Reloading Tool for Metallic Cartridges

No remarks on reloading equipment would be complete without mention of the famous Lee Loader. Well, over a million and a half have been sold worldwide. No other tool comes close to the popularity of this unique tool for reloading ammunition.

There are good reasons for The Lee Loader's early SUCcess. The Lee Loader provides everything you need to reload a single caliber except the components. Small enough to fit in your pocket, it will load a box of ammunition in less time than it takes to bolt a press to a reloading bench. It held the Guinness record for the world's smallest group for over seven years. When introduced in 1958 it

Figure 2 The Famous Lee Loader

cost only \$9.95, while other reloading setups where over ten times as much. Consider a new car back then was less than \$2000 and the average home under \$20,000 you can see the current \$19.98 price of a Lee Loader is still a great bargain.

A good friend the late Phil Pfeil, would ingratiate himself with Montana ranchers by loading their empties on the rear of his pickup truck using a Lee Loader. Another shooter was welcomed to hunt on an Indian Reservation by loading 30/30's on a tavern bar. I could fill the rest of the book with stories about the Lee Loader, but the Lee Loader is no longer popular. It's a bittersweet fact. The failing popularity is due to our highly successful reduction of the cost of reloading with our presses and dies.

The Lee Loader neck sizes only. This makes it undesirable for using in autoloaders and pumps. However, it is one of the reasons the ammuni-

tion is more accurate. A plastic mallet substitutes for a press. It is not slow as reported. I can and often have reloaded a round in 30 seconds. To this day no single station press can match that speed. I do sincerely recommend a Lee Loader if you're loading for a bolt action rifle in small quantities. It is a fun and educational tool to use.

Reloading Presses

Every currently produced reloading press will reload ammunition. Strength requirements are not great. Material, weight, fit and finish of the press has little relationship to the quality of ammunition produced. Your choice of presses and brands has been reduced through the years by the greatest of all equalizers, the competitive marketplace. Poorly made, badly designed, and costly presses are left by the wayside. Companies such as Bair, Bonanza, Belding & Mull, Eagle, Herter's, Herkner, Lachmiller, Ruhr-American, and Texan are brand names long gone.

More interesting are the discontinued models of presses of existing manufacturers. The following presses were introduced to the public with great fanfare and rave reviews by eager recipients of free samples: RCBS A-4, RCBS Junior, Reloader, Reloader 2, Reloader 3, Reloader 4, Green Machine and Big Max. The previous names are trademarks of RCBS or Blount Inc. and are no longer in production. Dillon's discontinued list includes the 350, 350A, 350B, 450, 450A, 450B, 450JR, 550, 550A, RL1000, and the original Square Deal. There are many other discontinued models from contemporary manufacturers. They were not bad presses. They were well made and aggressively promoted. For certain, they had shortcomings. The biggest defect was; they did not offer that which the consumer wanted. That could be many things, but the most important was the greatest value for the dollar. We have a firm rule on any decision affecting design or sales policy. Never assume the customer is stupid. Customers recognize value. Any manufacturer who whines, "People don't realize how good our product is," does not understand how smart shoppers are and their product is doomed to failure

I take special delight in my part to end a trend of the manufacturers advertising how strong their presses are. Their claims were true. One particular press was times stronger than need be to do the job. To point out how ridiculous it was. I turned down each of the support columns of a Lee Turret Press to 1/8 inch I then sized a large magnum case with these skinny columns. A picture of this in all shooting publications

Figure 3 Reloading Doesn't Require Great Force.

ended the "Mine is bigger than yours claims." The silly ads stopped.

In the Foreword, I explained there are stronger and costlier products than those made by Lee Precision. There are no comparable products that work as well and cost less than Lee products. This is espe-

Figure 4 A Good Press Need Not Be Expensive

Reloader Press

Don't spend a lot of money on your first press. Even if you move up to a faster or more convenient press in the future, a basic single station press is always useful for other tasks. Use it to deprime before case cleaning, post size and crimp, bullet sizing, priming or bullet seating. Certainly the best value is the Lee Reloader Press. It the lowest priced bench mounted press available today. Like all Lee presses, the Reloader Press has the compound linkage made famous by Fred Huntington.

cially true with reloading presses.

It makes sizing the largest magnum case very easy. A "C" frame design affords generous hand clearance, built in primer catcher and compact design makes this a true bargain. It's built plenty strong for all reloading needs, but can be abused to death by slamming the lever against the stop. Like all Lee products it's guaranteed two years unconditionally. That means even if the user misuses it it's replaced free. Replacement is half price for tools more than two years old.

Figure 5 Portable Reloading

Hand Press

Another consideration for press selection is where you expect to reload. If you reload at the range or kitchen table, the Lee Hand Press can't be beat. When finished you can put it all away in a small drawer or box on the shelf. It's available in kit form at a very attractive price. For load development, a Hand Press, set of dies, assortment of powders, primers, powder measure and pleasant weather can make for a very enjoyable day at the range. Loading and firing a single case in groups of three, five, or ten shots is interesting and educational. It eliminates case variables and allows the gun to cool between shots.

The Lee Anniversary Kit is the best bargain.

The Anniversary Kit and a set of dies is everything you need for a first class setup. For casual shooters it is the only equipment they will need for the rest of their life. It's such a good bargain that few persons buy the Challenger Press by itself. Most buy the complete kit. The Challenger press was introduced many years ago as the 2001 Challenger. It was guaranteed until the year 2001, which was almost 20 years in the future. We did this to place the buyer at ease about the durability of the press. At the time it was an unprecedented guarantee. We dropped the "2001" from the name years ago. The guarantee ceased to be spectacular as we approached the turn of the century.

Challenger Press

The Challenger press is an "O" frame design. This design makes the press very rigid while conserving material. Strong sections in the shape of an "I" beam and channel allows for a large opening at a 30 degree angle for easy access. All the strength you'll ever need for a lifetime of service. Of the hundreds of thousands sold, I know of only one returned to the factory with a broken frame. An impressive near perfect record.

Figure 7 Most Convenient Press for Multiple Calibers

Lee Turret Press

The Lee Turret Press design is a direct result of the experience I had with my first reloading press. It was the Lyman All American. The All American was a nice press purchased directly from Charles Lyman II at a trade show. He was a fine gentleman and gave me first class treatment in my early business years. He sold some reloading equipment to me for my use at a business courtesy discount. The Lyman All American press was a good machine with a few minor problems. It was a little pricey, but full value for the money. I wanted our first press to be better than anything available and yet affordable. These were achievable attributes with innovative design and material utilization. My satisfaction with the Lyman press influ-

enced my design decisions.

For the person who enjoys convenience and doesn't mind a little extra cost my recommendation is the Lee Turret Press. It cost significantly less than most other brands of single station presses and does so much more. You can change calibers in seconds. Lee Pacesetter die boxes are designed to hold the turret ring with the dies installed. You have the option of loading using the batch method or semi-progressive method of reloading.

The Lee Turret Press is the parent of a family of fine tools. The Turret Press with auto-index is a fine machine for those who load up to 200

rounds a week. It's trouble free and there is no learning curve as with progressive presses.

If I could own but one press, the Lee Turret Press would be my choice. It's far stronger than needed for any loading operations including bullet swaging. It's a press that's trouble free, durable and very convenient to use.

Figure 8 The picture is my son John in 1975 starting the first prototype press. That solid chunk of aluminum was converted into the attractive turnet press in the next picture. You can see the influence the All American had on my thinking. The finished press worked well, but was no better than the All American. The design was discarded. John was 16 at the time. He had already worked with me for two years. Photo is by Dean Grennell on one of his visits to our plant in Hartford.

In truth the Lee Turret Press was not my first ambition. I really wanted a good progressive press for my personal use. The Turret Press was designed with future upgrades in mind. At the time I deemed it too presumptuous to introduce a progressive press as our first press. We had become famous for the Lee Loader, which is strictly a hand loader.

With hindsight, had I introduced the Lee Pro 1000 first, there may have been one less competitor. Kidding aside, we welcome the competition from Mike Dillon. His uninhibited style, willingness to advertise and

promote reloading greatly helps increase interest in the hobby. So he goes overboard occasionally, that's what makes him so interesting. Contrary to popular belief, Mike and I don't hate each other. We even traded patent rights. We use his press patent and he uses our Auto-Disk powder measure patent. Dillon's tools use non-standard dies, cost almost twice as much factory direct, and they are not as fast nor user friendly as Lee tools. Who could complain about his kind of competition. The Lee Pro 1000 is the best, Dillon comes in second and all the other brands are also rans. I always urge people to find out how good the Lee Pro 1000 is by trying a Dillon 550B first. If you don't like it in the first 30 days, send it back for a refund. Don't try that with other brands. Only Lee and Dillon offer guaranteed satisfaction or money back.

Figure 9 This press never made it to market. (See comments at figure 8.)

Pro 1000

The Lee Pro 1000 is a true progressive press. Every pull of the lever produces a loaded round. Unique to this machine is that only three stations are needed to load a round, true KISS engineering... Keep It Simple Stupid. Optional accessories include a case collator that fills all 4 case feed tubes in a few seconds. The latest add on is a bullet feeder. This automatically snatches a bullet from the bottom of a stack and moves it into the mouth of the die. It's done during the press stroke so it speeds production by 50 to 100%.

The Lee Pro 1000 is the most widely used progressive reloading press of all time. If you're a handgunner shooting large amounts of ammunition, the Pro 1000 is your first choice. It was introduced in 1986 at \$199.98. Virtually unchanged, it remains the same price 10 years later. Minor improvements include the case sensor to feed a primer only if a case is present, and an improved spent primer catching system. The Pro Auto-Disk powder measure re-

Figure 10 The most popular progessive press ever made.

places Deluxe Auto-Disk measure. It has a pull back chain, which helps reduce the chance of a double charge due to operator error.

The press is really a reloading system. It comes complete ready to load one caliber. Changeover to another caliber is easy and requires only a few minutes. It uses the same turrets as the Lee Turret Press so you can leave your dies installed in the turret and change the whole turret. This is another original Lee innovation.

A very nice feature of the Pro 1000 is the priming system. It takes less than a minute to refill the primer feeder. Primers are dumped directly from the their carton into the tray. Shake the tray side to side a few times and they are all turned upright.

An extremely important feature to help guard against double charges, is the automatic index feature. After each press cycle, the charged case moves to the next station as the ram is lowered. The Pro Auto-Disk measure will not reset for another charge until the ram is fully retracted. You can see how it's highly unlikely, but not impossible, for a case to be double charged. A press without both of these features is not as safe as a press with only one or the other. An engineer, from a national testing laboratory, told me they have many blown up guns from clients and the only common connection is the use of a particular reloading tool. He refused to say what brand, but assured me the tool was not made by Lee.

Figure 11 Case Collater fills the case tubes in second.

Load-Master

Lee introduced the Load-Master progressive press in 1992 as "The new standard by which all other presses will be compared." We spared nothing to make this the finest progressive press of all time. Tooling alone cost a quarter million dollars. A million rounds were reloaded testing early preproduction samples. When finally introduced, it was an immediate success thousands sold world wide Then the complaints started. We made many repairs and replaced parts, but we were unable to find the problem's source for several months. By then the damage had been done and this truly great press has not yet reached its full potential.

The problem was due to the chrome plating on the ram. The pre-production samples were not plated. The hard chrome made the surface that clamps against the car-

Figure 12 The Load-Master is for those who enjoy fine tools.

rier too slippery. Rough handling would move the carrier and cause problems with alignment, priming and indexing. We corrected the problem with a knurl on the ends of the ram. We also updated all we could of those in use. Slowly the press is becoming accepted as the premium press that it is. This is a tool anyone would be proud to own. Five stations provides an exclusive station for priming and an additional station for the carbide post sizing and factory crimp die. It is a smooth operating press for all calibers. The indexing is lightning fast

and silky smooth. If you need to load great quantities of ammunition and enjoy quality tools, this is the press for you. If the cost is too steep you may be able to pick up a used one from an unhappy owner of an early production Load-Master. If you can rotate the carrier on the ram with a 15 pound push on the case feeder tang, send it back to the factory for a free repair. The Lee guarantee does not have a time limit on a factory defect. You'll be glad you did because it's a joy to use. To keep a clear conscience, tell the owner about the free fix beforehand and make sure he really wants to sell it.

The Load-Master uses five hole interchangeable turrets. These are diamond turned to a precision fit and locked with a knurled thumb screw. It accepts the Lee Case Collator for high speed case tube filling and the Lee Bullet Feeder. The Lee Load-Master comes completely set up for one caliber. Even a loaded round catcher is included. There is not a finer nor faster press at any price.

CHAPTER 2

Some Common Terms

A cartridge is an assembled case, primer, powder and bullet.

Let's get some definitions straight. It galls most shooters when the television news or newspapers refer to a cartridge as a bullet. Most important, it's necessary there be complete understanding in the terms while you read this book.

The *case*, sometimes called a shell, is the

Figure 13 Assorted cartridges.

container to hold the powder, primer and grasp a bullet in its neck. Brass is the most desirable material for cases. Aluminum cases are used only for cheap ammunition and cannot be reloaded. Steel cases were used in World War II when brass was in short supply. Steel cases are reloadable.

The *bullet* is the projectile fired from the gun to the target. Sometimes our customers refer to the bullet as the head. This may be a colloquialism. Bullet is the preferred name. Most bullets are lead or lead alloys. Plain lead bullets will deposit lead in the barrel of your gun, thus the phrase "lead the barrel". Lubricating them, eliminates or greatly reduces the leading. Use lubricated cast lead bullets for velocities up to 1400 feet per second. They are economical and shoot well. A small copper cap, called a gas check, can be attached to the base of the bullet. This permits cast lead bullets to be shot at velocities over 2000 fps. Use copper jacketed lead bullets for higher velocities. The copper jacket allows much higher velocities with no leading of the barrel. They do leave copper deposits, but at a much lower rate. Special purpose bul-

lets, for thick skinned dangerous game, are made from solid copper or brass and appropriately called "solids".

The *primer* is that little round device in the head of the case. When struck by the firing pin, the primer sends flame into the case through the flash hole and ignites the gun powder. Because it must be sensitive to impact, to function correctly, it is the most dangerous reloading component you must handle. It is small, and a single primer has limited capacity to inflict injury to you or anyone nearby. The potential for harm increases when you bunch several together in a priming tool. The section on priming explains this more fully.

Reloading Rifle Cases

To understand reloading better, let's go back to a millisecond after you squeezed the trigger on your last shot.

The sear lets the hammer slam the firing pin into the primer. This dents the primer cup, crushing the priming compound against the anvil exploding it, and moves the cartridge forward until stopped by the rim. belt or shoulder. The primer also sends flames through the flash hole to ignite the gunpowder. The burning powder builds pressure within Because of the bullet's inertia, fit and crimp, the bullet doesn't begin to move instantly. The pressure bulges the case out to the chamber walls forming a highly effective gas seal. The pressure pushes the primer out a tiny amount to contact the breach face. This is the headspace clearance, usually .007 of an inch or less. After the pressure builds to many hundreds of pounds, the bullet starts moving. The pressure rapidly builds, accelerating the bullet and stretches the case rearward to the breach, thus re-setting the primer. As the bullet travels a short distance down the barrel, pressure peaks, then begins to drop. After the bullet exits the bore, the pressure drops to one atmosphere. The case springs slightly from the chamber walls, making it easy to extract from the chamber.

The case did not spring back to its original size. This is both good and bad. The good part is, now you have a case fire-formed for a perfect fit to your gun's chamber. Unfortunately, chances are it may only fit your gun's chamber because chambers vary in size due to manufacturing tolerances. You must now make your first decision. Resize the entire case to reduce it to standard dimensions so it will freely fit in any stan-

dard chamber. Or you can size only the neck of the case small enough to hold a bullet firmly.

The choice is easy. If you must load to fit more than one gun or you're reloading for hunting, or loading for an auto loader, or loading handgun ammunition, then by all means full length size the case.

However, if you're looking for the best possible accuracy in your favorite bolt action or single shot rifle, then size only the neck of the case to hold the bullet. A reason reloads are more accurate than factory ammunition is, you have fire formed cases that perfectly fit your rifle. No one else can supply these custom cases. Full length sizing negates the fire formed advantage.

Deprime and Size

Figure 14 Cutaway of a Rifle Sizing Die.

Most sizing dies also have a decapper that ejects the spent primer, with a small pin that passes through the flash hole. This is a clever combining of operations to save time and effort. You deprime and size the case simultaneously. Some brands of dies have frail decappers held by complex and expensive devices. Lee dies have a sturdy pin, of SAE 51000 steel, hardened, precisely ground and polished to a very fine finish. It would cost you \$10 or more to have a local machine shop make just one of the same quality and precision. Because these pins are used in roller bearings by the millions, they are inexpensive. They are guaranteed unbreakable. An excellent example of how quality need not be expensive.

A quality die, such as Lee produces, will size the case .001 to .003 inch smaller than the smallest standard gun chamber. This insures your reloads will freely fit in any standard chamber without being excessively loose. Some die makers often use their die reamers long after they have worn too small to make the best dies. While the sized cases

are well within the generous tolerance of standard ammunition, they are too small for best accuracy and long case life. Most sizing dies have a depriming rod through the center. A small pin at the end passes through the flash hole to eject the spent primer. This is another clever combining of operations to save time and effort.

Expand the Neck

Another ingenious feature, is the addition of an enlarged portion on the depriming rod called the expander. The die sizes the case neck slightly too small while the expander is within the case. Withdrawing the expander from the case, sizes the neck for a proper press fit of the bullet. The neck should be .001 inch smaller than the bullet. The bullet stretches anything smaller to .001 under bullet diameter. So the grip on the bullet will still only be .001 inch. Because the bullet is not a good

Figure 15 Expander being withdrawn from case.

tool for neck expanding it is poor practice to leave the neck more than .001 inch under bullet diameter. An expander with a long surface makes the most accurate ammunition. The expanded portion of the neck, guides the expander through rest of the neck, which keeps the neck true to the body.

A perfectly logical question is "Why was the neck sized undersize?"

The reason is, case neck thickness varies. With a bullet in place, the outside diameter of a thin walled case is smaller than one with thick walls. To firmly hold the bullet, with the thinnest case you are likely to come across, the neck must be sized small enough. Therefore, every case with a thicker neck is sized smaller than desirable.

When withdrawing the expander, it expands the neck to the correct size. The negative to this simple solution, is the case neck is worked more. The excessive working of the metal causes it to harden and fatigue. The patented Lee Collet Die overcomes this fault.

Recall, a reason for handloads' superior accuracy is, only you have fire-formed cases which perfectly fit your gun's chamber. The Lee Collet Die sizes only the case neck and does it without excessive

Figure 16 Robert Frey dramatically demonstrated the excellence of the Lee Collet Dies. In sanctioned competition, he set a world record for the smallest group at 1000 yards.

working of the brass. This extends case life and reduces case stretching. The Lee Collet Die uses a different method to size the neck. A collet squeezes the case neck against a mandrel, of the proper diameter, for the correct press fit with the bullet. The case neck is worked the absolute minimum, and made axially parallel to the case by the mandrel. Cases actually last 10 times longer. The savings of the increased life of only 35 cases is greater than the cost of the dies. This is another reason Lee can guarantee accuracy and satisfaction, with complete confidence that you will be delighted with your purchase.

Case Trimming

Cartridge cases get longer with use. The added length is due to several factors, some of which the reloader can control. Headspace is the amount of lengthwise free space of the cartridge in the chamber. Normally headspace is a maximum of .007 inch and the minimum is .001 inch interference fit. These are the extremes for standard ammunition in any standard chamber. There are exceptions, but these are typical.

Recall, upon firing, the case swells to fit the gun's chamber perfectly. The firing pin slamming against the primer jams the case forward in the chamber. Internal pressure holds the case tightly in the chamber. If the pressure is high enough, and it normally is, the head of the case stretches rearward to contact the bolt face. This is the main reason cases get longer. You can keep this to a minimum by sizing only the case neck, because you have perfectly fitted fire-formed cases and want to keep them that way. The headspace is now at the minimum and case stretching is limited in subsequent firings.

High pressure also causes the cases to stretch. The high pressure causes the brass metal to flow forward, lengthening the case, and thickens the neck portion. You can limit this by keeping your loads less than maximum. This is not the biggest cause of case stretching anyway. Full length sizing is. That's why Lee dies size the very minimum that will allow a free fit in all standard chambers.

Full length sizing dies cause the case to grow in two ways. Squeezing the case to factory dimensions, causes the metal to move or more properly to flow. The case thickens and some metal flows forward to make the case longer. You can easily demonstrate this by taking a case fired from your gun. Try it in the gun's chamber to see how it fits. Now full length size the case with the die adjusted one eighth turn short of touching the shell holder. Try the case in your gun's chamber. You'll find that you can no longer close the bolt or it will close with difficulty. You lengthened the case by sizing the diameter. The case metal must go someplace because it can't be compressed. You must adjust Lee full length sizing dies to touch the shell holder plus one quarter to one third turn more. The extra quarter or third turn is to remove all play or spring in the press.

The above is not true with all brands of dies. Always follow the instructions that come with the dies. Some manufacturers make their dies to push the shoulder back too much and you must adjust the die to secure the proper headspace. This is a dangerous practice. Cartridges won't chamber if the die is adjusted out too far. Those dies adjusted in too far cause excessive headspace, shortened case life and risk of head separation.

Dragging the expander through the case neck stretches the case. While this contributes slightly to case lengthening, the amount is insignificant. The Lee Collet Die eliminates these last two problems.

It boils down to: cases do get longer and must be trimmed or they will pinch the bullet at the end of the gun's chamber. This will cause higher and possibly dangerous pressures.

Figure 17 Case trimming.

The easiest and fastest way to trim cases is the Lee Case Trimmer. Notice how it passes through the flash hole and stops against the lock stud.

The Lee Case Trimmer eliminates measuring or gauging, and every case is trimmed to the same and correct length. An added benefit is the mouth is perfectly square to the case.

After trimming, the case mouth will have a very sharp mouth, both inside and outside. There may even be a small burr. This must be removed with the Lee Chamfer Tool. It takes only one turn on the outside and another on the inside to finish the job. The split edge cutter is being copied and used on some very expensive equipment sold by competitors.

If you have to trim many cases, mount the Lee case trimmer Lock Stud in a power drill or electric screwdriver. After trimming, and while still in the electric drill, you can chamfer the inside and outside of the cases with the chamfer tool. If you like good looking ammunition, you can quickly polish the case with fine steel wool, or the new steel wool substitutes from the 3M corp. This is a better and safer method of case cleaning than the use of a case tumbler or vibrator.

If you use a case tumbler or vibrator, there are two areas of caution of which you should be aware. The first problem has been reported in magazine articles. Sometimes the media used to polish the cases becomes trapped inside the case. If you unknowingly load such a case it can be dangerous, because the reduced capacity increases the pressure. If you are already loading maximum loads your loads are then over maximum.

The other, more insidious problem, is lead poisoning. A shooting companion of my son John was diagnosed as having elevated lead in his system. Because he not only shot a great deal at an indoor range, and reloaded lead bullets that he cast, it took considerable detective work to find the cause. John supplied him with a lead detection kit for use around his casting equipment and it showed very little. On a hunch, he tested around his case vibrator and found extreme amounts of lead. He said the worst offender is a sifter used to separate the media from the cases. Great clouds of dust are released. The lead comes from the priming compound. Primer manufacturers are trying to get the lead out, but the old stuff will be with us for years to come.

Another quick way to trim your cases is to mount the cutter in a drill press. Simply hand hold the case and let the pin stop against the drill press table. Do not press too hard as you can wear a dent in your drill press table and your cases will be trimmed too short.

Priming

Primers are the most dangerous component you handle in the reloading process. For them to function they must be explosive. For this reason give them plenty of respect. The carton they come in is the only safe

Figure 18 Lee Auto-Prime

storage container. Primers come in four sizes, large rifle and small rifle, large pistol and small pistol. Large and small refers to their diameter. The important difference between pistol and rifle types is the metal thickness. Rifle primers are thicker to contain higher pressure. Primers also come in standard and magnum. The rule is always use standard unless the load data specifies magnum.

Always seat primers .001 inch to .004 inch below the surface of the

head. During the seating operation, the primer anvil imbeds into the priming compound, sort of priming the primer. If pushed in too far, the priming compound can be crushed, which will result in a misfire or

hang fire. Be certain to seat the primer at least flush with the case head. Otherwise you have the potential for a slam fire. That is, when slamming the case into the chamber, the gun could fire. This is of greatest concern with auto-loaders and slide action guns.

NEVER TRY TO SEAT THE PRIMER DEEPER AFTER THE POWDER HAS BEEN ADDED. Setting off the primer while seating it, is no big deal. I've done it many times. When the case is full of powder and the primer goes off, it's a whole new ball game. The case usually turns into shrapnel and the primer ejects at high velocity. Surprisingly, the bullet doesn't have very much energy. I should add, that the above observations of exploding cases were done under controlled conditions, with me on the other side of an oak door.

NEVER USE A PRIMER FEEDER THAT FEEDS FROM A TUBE. If one goes off they all explode. Those companies that make tube-fed priming devices, will tell you that the chances are very slight that you'll have an accident. It doesn't make any difference if your chances are one in a billion. It isn't worth the risk of being forever blind. Even the explosion shields, now provided on some equipment, can't keep you completely safe. You still must fill the tube one at a time and then transfer the tube to the loading machine. What would happen if you should drop a tube full of primers to the concrete floor between your feet? You may not be blinded, but could be forever a soprano.

The safest way to seat primers is one at a time. Transfer the primers from the original container to the priming tool and push the primer into the primer pocket. Many billions of primers have been and will be seated that way. Fortunately, there is another faster and almost as safe method. At least your chances of injury are less than standing on a step ladder to paint the ceiling and a lot more fun. The Lee Auto-Prime is by far the most popular hand held priming tool ever produced. There are some precautions you must observe.

Use only Winchester or CCI brand primers. No other brand is safe. If a tray of Winchester or CCI primers should go off, they will blow off the cover. Safety glasses will prevent any serious injury to the user. Other brands detonate with such force that it turns the tool into shrapnel. Federal brand primers are the most dangerous when used in the Lee tray fed priming systems. This is not to infer that they are inferior, they simply are dangerous when used in tray fed tools. Nor should you conclude Federal primers are more powerful. Tests show Federal rifle

and pistol primers have about the same energy as other brands. It's simply is too darn dangerous to use Federal primers in the Lee tray fed priming tools.

John Lee tested the RCBS Posi-Prime, and with a little misuse it exploded. It is not my intention to knock the competition's design. They copied the Lee Auto-Prime, so it's basically a good design. However, it's not foolproof. Someone can and will unwittingly use it wrong and it will explode. Use a little common sense. Handle the priming tool as a loaded gun. Don't point it at anyone and certainly not at your face.

CCI, a sister company of RCBS, recently introduced primers in a plastic strip. This could be a priming breakthrough if CCI allows use with any brand of tool. If this is only a way to hold up the user for overpriced RCBS priming tools it's doomed to failure.

Charging the Powder

Charging the case with gunpowder is one of the places you can get into trouble. Too much powder, the wrong kind of powder or the wrong weight bullet, can all lead to excessive pressure, meaning dangerous pressure. Surprisingly, under certain circumstances, too little powder may be dangerous.

It's appropriate to discuss gunpowder's characteristics here. While discussing gunpowder, we are only talking about smokeless powder, a propellant. As opposed to black powder, an explosive.

We are interested in the characteristics that affect our decisions on which powder to purchase for the task at hand. Available energy for most smokeless powders is similar for any given weight. The main difference between powders is the speed at

Figure 19 Perfect Powder Measure

which the energy is released. This is called "quickness". Gunpowders burn at different rates. Quickness is controlled by at least four methods and often a combination of methods. First, some powders are simply

faster burning than others. Second, smaller granules burn faster than larger chunks. Third, some powders have a deterrent coating to slow the burning rate. Fourth, gun powder burns from the surface only. Increasing the surface increases the burning rate. The most common example is Red Dot powder, which is a flake. Powders are also produced in tubular form for a more uniform burning rate. The hole through the powder tube, gets larger as the powder burns. The increased internal surface compensates for the reduced outside diameter. This century old system works well.

It's obvious that too much powder will cause too much pressure and be dangerous. What is not so obvious, too little powder, of a very slow burning variety, can sometimes cause too much pressure. Don't become obsessed with worry about this rare phenomenon. The conditions are quite limited.

These are the conditions and they all must be present:

- 1.) It only happens with very slow burning powders. The kind normally used in small caliber large capacity cases.
- 2.) The reduced charge must be 25 to 35% under normal.
- 3.) Something special must happen about which no one knows the details for certain.

Conjecture includes:

- a) Wave pulses.
- b) Bullet starts then stops then excessive pressure develops to restart the bullet.
- c) The powder wedges against the shoulder and compresses to form a stopper.

Laboratories have been unsuccessful in replicating the event, so scientific study is not possible.

Mention of the phenomenon is to encourage you to avoid greatly reduced charges of very slow burning powders. If you want a light load, use a medium burning powder. For an ultra light load, use a very quick powder (see Reduced Charges for details.) Be aware, when loading a very quick powder in a large case, a double, triple or other multiples of a charge are possible.

Invert each case before adding the powder to reduce the chance of a double charge.

It is always best to seat the bullet immediately after adding the powder. Some reloaders use a loading block. This is a block drilled to hold multiple cases for charging. Loading blocks can induce charging errors. If you charge all cases before proceeding to the next step, you could inadvertently add a second charge. If you choose to use a loading block, be sure to use a charge that fills more than half of the case. Then a second charge will overflow and the error will be obvious.

Selecting the best powder for the cartridge.

The load data section in this book makes powder selection very easy. The loads are sorted by bullet weight and velocity. The one at the top of the list, for any specified bullet, is the highest velocity and the one at the bottom being the lowest velocity. The loads at the top or near the top should be your first choice. All are acceptable. Factors for selecting any load may be as mundane as that's the only kind of powder available or it's the cheapest.

As a rule, a full case of the fastest powder that will yield maximum safe pressure gives the highest velocity. Simply stated, this means if you can find a powder that will fill the case, and pressures are near maximum safe pressure, you'll get the highest possible velocity. As opposed to a powder that gives the same pressure and the charge partially fills the case. To observe it, look at the load data. Check the velocities for each of the listed maximum loads and the one with the highest velocity will most often be the powder charge that comes closest to filling the case.

A good practice is to select a charge that fills more than half the case. Then you'll overflow the case should you accidentally try to add a second charge. Highest velocity and maximum pressure are unlikely to be the most accurate. I prefer shooting lighter loads, because guns maintain their accuracy longer, cases can be reloaded more times and usually groups are tighter. If you're punching a hole in a paper target, you can display a small group with pride. There is little satisfaction in shooting a 10 inch group knowing the only advantage was the bullet's travel time was slightly less.

Powder selection and charge amount are other variables the handloader controls to make ammunition more accurate than the factory can economically produce. Those folks who make factory ammunition, know a lot more about what makes accurate ammunition than most handloaders

combined. There are many individuals who have spent their entire working life producing ammunition. They experience more in a month than many hobby reloaders learn in a lifetime of reloading. They know how to make the most accurate ammunition, but they can't afford to do it. They have certain constraints that limit the accuracy they can build into the cartridge.

The most important limitation is cost. Let's face it, you wouldn't be reading this book if it weren't for the high price of store bought ammo. Consider the factory's decision on what powder to use. If 40 grains of one type of powder produces the specified velocity at safe pressure and 42 grains of another powder that gives slightly better accuracy, which powder do you think the money manager is going to insist upon? The accountant says 2 grains times 10,000,000 rounds equals 2857 pounds. If they buy it at half what we pay, that's still lots of bucks in a highly competitive business. Even if the factory was willing to pay for the most accurate powder, they have other constraints with which we handloaders don't have to contend. When you buy a box of factory ammunition, you not only expect it to go bang, but it darn well better operate your autoloader if it is gas operated or blow back action. It makes no difference if the gun is 30 years old or fresh from your gun store. The cartridge must not only provide the SAAMI specified velocity at a safe pressure, but the pressure curve must be suitable to operate the gas piston reliably and not excessively. It must do this in desert heat or artic cold. We handloaders can tailor our loads to our guns and conditions

Bullet Seating

Figure 20 Bullet Seating Die

Seating a bullet is usually the second last step in the reloading operation. A properly sized case neck will be .001 inch smaller than the bullet. A greater press fit will not result in a tighter bullet as the bullet itself sizes the case and the press fit will remain about .001 inch. Allowing the bullet to size the case results in excessive bullet run-out, because the bullet is a poor tool for case neck sizing.

You must decide how deep to seat the bullet. Consider the following factors while adjusting bullet depth.

The overall case length must be short enough to fit the gun's magazine and feed through the action.

Bullets seated deeper than normal will reduce case capacity and increase pressure. This is not too critical for large rifle cases, but extremely important for pistol loads. Good load data specifies bullet seating depth or overall case

length. Don't seat the bullet too deep. The Over All Length(OAL) must be at least as long as indicated in the load data.

Bullet seating depth can affect feeding in auto-loaders because the bullet nose rides up the feeding ramp. Remember this when loading for your 45 ACP.

Seat bullets that have a crimp groove or cannalure so most of the groove is inside the case neck for a proper crimp. Follow the instructions included with your die set. My preferred method of crimp adjustment is included in the seating die section for handgun cartridges.

Most rifle ammunition produces best accuracy with the bullet seated so it almost touches the rifling. Few people know the reason this works so well. It provides a uniform start pressure. Every one agrees, uniform bullet depth is most important. What works in one gun may not work in another. This is another variable you can experiment with, to custom tailor your ammunition to your gun for best accuracy.

Crimping

After seating the bullet, you have the option of crimping it in place. Only lead bullets or jacketed bullets with a crimp groove, can be crimped in place with standard dies. Crimping is normally done with the same die that seats the bullet. Follow the instructions supplied with your die set. Usually, the die is screwed in until it just touches the case mouth. Then turn in ½ turn for a light crimp and 1 turn for a heavy crimp. If your cases have not been trimmed to a uniform length, it's not possible to get a uniform crimp with regular dies. More loaded ammunition is ruined by attempting to apply too much crimp than for any other reason. The case either buckles or bulges so that it cannot be chambered. All of these problems are eliminated with the use of a Lee Factory Crimper, supplied with popular caliber Lee Pace Setter Rifle Dies.

Ammunition loaded for hunting should always have the bullets crimped in place. As should ammunition used in tubular magazine and auto-loading rifles. Hunting, auto-loaders, pumps and tube fed guns require ammunition that will stand up to rough handling. Only firmly crimped ammunition is suitable. It could ruin your hunt if a bullet wedged in the chamber or pushed back into the case.

Many rifle shooters believe best accuracy is achieved by not crimping the bullet. This is not without its problems. Usually the seated bullet must almost touch the rifling to provide uniform and sufficient start pressure. This requires careful checking of your gun's chamber and matching it to the bullets' ogive (the curve of the bullets' nose). The bullet seating die must be carefully adjusted and checked. An easy technique is to load a round with the bullet seated out too far. Then chamber the round so the rifling seats the bullet the rest of the way. Now with careful checking, you can seat all of your bullets to the same depth. Be careful with this technique so you don't leave the bullet stuck in the rifling. Seating the bullet .015 to .030 away from the rifling works the best for me. There is no universal agreement on this.

Special and costly tools are available to measure both the point at which the rifling starts and the corresponding point on the bullets ogive of the loaded round. The added cost of such devices is of little concern to those active in the bench rest sport. It represents but a small fraction of their equipment costs. You have a simpler solution.... the Lee Factory Crimp Die.

Factories can't load ammunition to custom requirements, so they use a simple and highly effective alternative. They provide a uniform shot start pressure by firmly crimping the bullet in place. George Frost in his excellent book Ammunition Making states:

"A necessary control in all metallic ammunition is that of bullet pull. The amount of force needed to pull the bullet from or push the bullet into the case has an effect on ignition, velocity, pressure, and accuracy from the ballistic side. On the user's side, bullet pull also has to do with good functioning."

He goes on to say,

"--,a .30 cal. bullet, diameter .3085 inch, bullet pull 100 lbs., starts to move as the chamber pressure moves past 1338 p.s.i."

Center-fire ammunition that has a bullet fully seated, but not crimped, will never reach the 100 lbs. bullet pull. A firm crimp is essential for all but those custom made loads for a specific rifle, in which the rounds are fed singly with care.

Just remember, those folks at the ammunition factories, whose very survival depends upon a quality product, always apply a firm crimp. Sometimes they even glue the bullets in place.

Lee Precision includes a Factory Crimp Die with all popular rifle die

sets. This tool duplicates the tight crimp found on most factory ammunition. It eliminates the factory advantage. It works so well that you can seat your bullet to any depth and it will form a cannalure in your bullet. It improves accuracy and your ammunition will function better.

The Lee Factory Crimp die is a reloading tool mile-

Figure 21 Factory Crimp Die

stone. It frightened the giant of the reloading industry, into spending more money on negative advertising than we spent on promoting it.

Their tactic backfired and Lee Precision became the largest die maker in the world.

There are hundreds of thousands of factory crimp dies in use world-wide. We get unsolicited targets and letters from happy customers showing and explaining how their groups have improved. Annually, we make hundreds of custom factory crimpers. Yet, the gun writers and editors refuse to accept the realization that crimping can improve a load. There are several reasons for this:

1) A perfect load cannot be improved. Any writer or bullet company that has tested our Factory Crimper always tested it on their pet load developed to be most accurate in the test gun. It's logical that a change of any variable in a highly developed load will most likely degrade the results.

The Lee Factory Crimper will usually enable you to achieve better accuracy with less effort and waste of components developing the perfect load. Your ammunition will be less sensitive to variation such as powder type and charge, primers, case and temperature.

- 2) Some persons have closed minds. Nothing different can be good if it is contrary to their long held beliefs. They are so positive that it won't work that they miss the benefits the factory crimp offers. They out of hand dismiss the idea and they refuse to try it.
- 3) We say, "A factory crimp improves accuracy and utility." They consider our modest statement to mean the ammunition will be better than the best ammunition they have ever loaded in their whole life.

It means what it says. It improves accuracy more often than not. It makes your ammunition resistant to rough handling such as imposed by the needs of a hunter. Your ammunition will be more factory like. It cannot transform ammunition carelessly assembled from inferior components into bench rest record breaking, gold medal winning, trophy bagging cartridges. Most important, it will never damage and render a cartridge useless, as a conventional roll crimper so often does.

4) There may be a concern about offending a large advertiser. I've seen one writer mention the speed of our progressive press. In a later issue, he apologetically explained it was not as fast as he had previously stated.

If you full length size your ammunition, install a firm crimp. This will give you best accuracy and utility.

Crimp bullets in all revolver ammunition. It's necessary to keep the bullet in place. A revolver's recoil causes the bullets to move out, sort of an inertial bullet puller. A more important reason for a firm crimp is to supply enough resistance to get the powder well ignited before it starts to move. A uniform start pressure is even more important with handgun ammunition.

Auto-loaders, such as the 45 ACP, usually have very little crimp, hardly more than enough to push the flare back against the bullet. You simply cannot crimp a jacketed bullet with a conventional die if it doesn't have a crimp groove. At best, the crimp die included with most die sets, will do little more than iron out the mouth flare. This helps for smooth chambering.

Taper crimp dies have a crimp angle of 5 to 12 degrees. Taper crimp dies were developed to correct problems of poorly designed bullet seating dies. A taper crimp is normally unneeded if you use Lee dies made after 1986. The last two digits stamped on the die is the date of Manufacture. Use the taper crimp die after the bullet is seated. Seat the bullet with the seating die adjusted to produce no crimp. Then as a separate operation, crimp the bullet in place with the taper crimp die. As usual, follow the instructions supplied with your die.

Bullets are held in place by the press fit and the crimp. All bullets should be a .001 inch press fit. Most bullets should also be crimped in place. If your cases have thin walls, the sizing die may not size the case small enough to hold the bullet. Either switch to thicker cases, or contact the die manufacturer. Undersize dies are available.

CHAPTER 3

Loading For Best Accuracy In Your Rifle

In the beginning of this, book I told you how easy it would be to load more accurate ammunition than the factory made variety. Below are the reasons you can reload more accurate ammunition:

- 1) Only you have fire formed cases that perfectly fit your rifle. No one else can supply these custom cases.
- 2) Powder type and charge can be varied for best accuracy in your rifle.
- 3) You can seat the bullet to the optimum depth for best accuracy.
- 4) You can precisely duplicate the factories best efforts for maximum accuracy including the factory style crimp.

There is no doubt the average person can, on their very first try, reload more accurate ammunition than they can buy. I have personally witnessed it many times and heard from hundreds of customers who have done it.

As stated previously, this is not because the ammunition manufacturer does not know how to make the most accurate ammunition. It is because they are under restraints from which the handloader is free. Factory ammunition must be completely interchangeable for every standard chamber even though the gun may be over 100 years old. Your reloads need fit only your gun. Your fired cases fit perfectly.

You can select the powder that best suits your gun. Lee load data helps greatly in your selection. More on that later.

You can seat the bullet to a depth that suits your gun. Usually, a bullet that almost touches the rifling yields the best accuracy. This is not a fixed rule. There is still a little black magic in the art of reloading. It is just this uncertainty and hope that makes reloading and shooting such an intriguing hobby and sport.

Besides the above, uniformity is the keyword to the best accuracy. This applies to every facet of reloading. Strive to make every round exactly the same as the last. I will list those things that serious reloaders do to

get the best possible accuracy. I do not normally do all when reloading, as most of my ammunition requirements are not that stringent. I only mention them so that you can set your goals. Doing all of these things in no way guarantee that you will have the best possible ammunition. All too often, others and I have put our best efforts and components together for the ultimate rounds and inexplicably find our rejects shoot better groups.

Start with the case. Keep your cases in batches so that they all have the same head stamp and preferably all from the same manufacturing lot. You may even wish to weigh and sort them into batches of the same weight. This insures they will all have the same capacity.

Clean the primer pockets so the new primer will seat fully into the pocket and not against the fouling from the previous firing.

Figure 22 Primer Pocket Cleaner

The Lee combination small and large primer pocket cleaner is as good as any, better than most and costs very little.

If you elect to clean your cases in a vibrator

or tumbler, be sure to remove all the tumbling media from the case. Cleaning media left inside the case reduces the capacity and raises the pressure. It tends to accumulate with successive cleanings because it burns in place. I have never found any evidence that clean cases shoot one bit better than dirty cases. If you believe they do, you had best clean your cases, as you must have confidence in your ammunition for it to shoot well.

Trim your cases often. It not only improves accuracy, it is essential for safety. Cases trimmed to a uniform length with a square mouth, help in seating the bullet straight and make consistent crimps the norm. This helps maintain a uniform start pressure. Remember, UNIFORMITY is the key to best accuracy.

Almost all case trimmers leave very sharp edges on the case mouth. Remove this with a chamfer tool. Always chamfer as little as possible. You do not want to chamfer so much that the end of the case becomes sharp, just enough to prevent the case from shaving the bullet.

It is possible to improve a flash hole with a tool called a "flash hole uniformer". It works through the case mouth to insure a round and uniform diameter flash hole and remove any burr that may have been left inside the case from the flash hole piercing operation. The value of such a tool is debatable, as there usually is no burr inside the case and the piercing punch makes very uniform holes. This tool was invented by an enterprising individual and is now being copied by others in the industry who are great at merchandising but short on innovation.

The most important thing you can do to your fired case is, size it as little as possible. You have a case that fits your chamber perfectly. Keep it that way. Size the neck only enough to hold the bullet.

Several years ago, Rick Taylor called my office to ask if we would modify his \$9.98 Lee Loader so that the neck would not size quite so much. I advised we would, but cautioned him that if modified, it may

not hold the bullet securely with brands of cases as some cases are thinner than others. He accepted that as his problem and we made the change.

Some time later, he dropped me a note advising that he had established a world Figure 23 Lee Loader

record for the smallest group at 1000 yards. He had used the modified Lee Loader to load the ammunition. His outstanding accomplishment was listed in The Guinness Book of Records for over seven years.

For those of you not familiar with the Lee Loader, it is a simple hand tool that neck sizes only. I mention this to emphasize the importance

of only neck sizing while pointing out expensive does not equate to best.

The object of a neck sizing tool is; to size only the case mouth enough to hold the bullet for the next firing. The most important objective is to size the neck perfectly concentric to the case axis. This is to insure the bullet will be aligned with the bore as nearly perfect as possible. At first, this would seem quite easy, but consider these problems. Nothing in this world is perfect and brass cases are no exception. One side of the case neck is likely to be slightly thicker and/or harder than the other. When sized, the thin or softer side is sized more than the hard or thick side. This almost guarantees the neck will be off center to the axis of the case.

Some reloaders attempt to eliminate the lack of case neck uniformity, by either reaming the inside or turning the outside of the neck. A good job will make the neck thickness uniform, but not insure uniform hardness or strength. If you're going to ream or turn your case necks, there are tools to do the job. When selecting a tool, be sure it makes the neck uniform in thickness and not just thinner. Simply making the neck thinner does virtually nothing to make the case more accurate. It could make things worse. If sizing occurs on one side of the neck for whatever reason, the concentricity will be off by one half the amount the neck is sized. For example: A neck sized .010 inch could be off center .005 inch after sizing if all of the sizing happened on one side. Whereas a neck sized .002 inch could be off center only .001 inch maximum. You see the importance of sizing the neck the absolute minimum.

At present, Lee does not produce equipment to ream or turn case necks. Many years ago, we produced the patented Lee Target Model Loader. It sized the neck and reamed the inside of the case mouth perfectly concentric to the outside. It provided a perfect fit for the bullet. The weakness in the design was the neck had a slight taper. This was necessary to prevent the case from spinning while reaming the neck. In spite of this minor handicap, it produced some very fine ammunition. We continue to get requests for it even though production ended many years ago and no more are available.

Another Lee neck sizing tool is the Lee collet Die. For neck sizing, this is the last word in die perfection. It is very difficult to imagine a method that would do a better job.

The beauty of the Lee Collet Die is the method used to size the case mouth. A collet squeezes the neck against a mandrel. Correct mandrel size for each bullet diameter was determined by experimenting with cases of different hardness. The supplied sizes are what we found to be the best diameter for a proper press fit consistent with minimum bullet run-out. This is subject to the opinion of the reloader. If you desire a greater press fit, it is quite simple to polish an extra .001 inch off the mandrel. No more than a .001 inch should ever be removed. It is not possible to have more than .001 inch press as the bullet will simply expand the case mouth the same as a conventional expander. Because a bullet is a very poor expander, bullet run-out will be excessive. We are so confident the Lee Collet Die will allow you to shoot the smallest groups, that we guarantee it or your money back.

Another method, to have case necks axially parallel to the case, is to have a custom rifle chamber with an undersize portion in the neck

Figure 24 Cutaway of The Lee Collet Die

area. You must also have cases neck turned to a close fit in this undersize chamber. With little room for neck expansion, little neck sizing is required. If sizing is minimized, then the sizing die will cause less misalignment, provided the die does not size more than the absolute minimum. At present, there are only two options for this type of sizing. One is custom made equipment and the other is the Lee Collet Die.

Custom undersize rifle chambers usually are so tight that only custom ammunition with necks thinned, will chamber in the gun. If one day you elect to go to an undersize chamber, you must be sure that the case necks never get so thick that they pinch the bullet in the chamber. However, to maximize accuracy, you must maintain the very minimum clearance between neck and chamber or it won't be any better than a standard chamber. Cases fired from these target guns need only the slightest sizing to hold the bullet. Such ammunition requires the utmost in care, inspection and skill when reloading, plus endless testing and experimenting.

Bench rest competition is beyond the scope of this book. The previous paragraphs make you aware of some of the possibilities available to serious competitors. It is interesting to know how far it is possible to go and then you can decide how much is enough for personal needs or satisfaction. It certainly would be foolish to worry about tiny group sizes for an offhand shot at a charging bull elephant. Whereas it is comforting to know your gun groups well if you are holding on a trophy bighorn at 350 yards.

There is little more to say about cases except that they wear out. Don't expect them to last forever and anticipate that every case may have already been reloaded for the last time. A split neck or body is no big deal, but a split head is certain to damage your gun and possibly injure you. A split head is highly unlikely and would only occur with new cases. It would be a defect in manufacture.

Also dangerous is head separation. The only external evidence is a shiny ring just above the head, the junction above the solid head where the wall thins to the body. You can best detect this type of flaw by inserting a wire with a small right angle bend into the case mouth. By rubbing the wire against the inside case wall just above the head, you can feel a groove inside the case. If you can feel it, do not reload that case. Flatten them with a hammer, accumulate and sell them to a recycler. Better, trade them to a recycler for some good bullet casting lead. Even if you don't cast bullets, other reloaders will be all too happy to trade or buy it from you.

A quality bullet is essential for best accuracy. The most important characteristic of a good target bullet is uniformity.

The bullets should all weigh the same and be the same diameter. These attributes are easily checked. What's not so easy to check for is an out of balance bullet, usually caused by the jacket being thicker on one side. Lead is denser than copper. If the jacket wall is uneven from side to side, then the bullet's center of gyration is not the same as the physical center of the bullet.

An out of balance bullet will wobble to the target much the same as a washing machine with an out of balance load of clothes will walk around the laundry room. We are at the mercy of the bullet maker unless we make our own.

Fortunately, bullet makers strive very hard to make better bullets than their competitors. Most modern bullets are of quite good quality and adequate for all but the serious bench rest competitor. Understand we are only concerned about target accuracy. When expansion, weight retention and penetration are of primary concern, it is then best to match your bullet to your cartridge for the distance you anticipate. I am honest in admitting that the occasional reloader would be better off buying factory ammunition for hunting needs. After all, how many rounds does the average hunter need for a year's supply? The serious reloader would not even consider buying ammunition, because he knows he already has the best. Certainly, all who take the time to read this book are serious shooters and reloaders.

Point of Impact

Sight in your rifle with the same ammunition that you hunt with. The velocity differences between different batches of ammunition can be minuscule and yet the point of impact may be significant.

The most dramatic example of this was on my 100 yard range by a shooting friend, Marty Fisher. Marty came to sight in his Winchester model 100 in 308 Caliber. He hung two bull's eye targets, one above the other. He then fired 5 rounds of 150 grain factory ammunition into about a 3 inch group nicely centered on the lower target. Then he fired 5 handloads with 180 grain bullets at the same target. All five grouped in about 2 ½ inches in the top target, 14 inches above the original group. Marty was delighted. He thought his very first reloads shot faster than factory ammunition with a heavier bullet.

I knew that wasn't the case and hated to burst his bubble. Trajectory differences, due to velocity variations, are not significant at 100 yards. With most high velocity loads, a speed change of two hundred feet per second alters mid range trajectory a tenth of an inch. To be certain he had not simply aimed at the wrong targets, I repeated the test with the same results. The 180 grain bullet impacted fourteen inches higher than the 150 grain bullet. The explanation is twofold.

Part of this is due to the heavier bullet being slower. This results in longer barrel time. The gun recoils rearword and the muzzle raises before the bullet exits the muzzle, causing heavier bullets to shoot higher. This condition is most pronounced in long barreled handguns.

The major cause of change of impact is barrel vibrations. That bullet accelerating with 50,000 pounds per square inch pressure causes the barrel to vibrate. Should the bullet exit the muzzle at precisely the upward swing with one load and on the downward swing with another load, the point of impact will vary greatly. Barrels don't necessarily vibrate only up and down. Group stringing can be in any direction. Barrel bedding plays a key factor in barrel vibrations. For this reason, never rest your barrel on anything when shooting.

The bullet weight also contributes to the point of impact. Usually a heavier bullet is fired at a lower velocity. This means the bullet will be in the barrel for a longer time. Consequently, the recoil of the gun causes the barrel to raise more before the bullet exits and will shoot higher. Even the firmness of your grip on the gun has an effect. While 14 inches is highly unusual, expected different loads will have different impact points.

Knowing that barrel vibrations have such a significant bearing on accuracy enables handloaders to try to minimize the problem with a custom tailored load. The technique is to load and shoot 5 or 10 round groups. Check the results and alter the charge up or down in small increments until the group gets smaller. At some point the group size will then get larger. By bracketing the best charges, you know what the best charge is for any given combination of components and bullet depth. Good record keeping is essential.

This procedure of developing an accurate load is one of the most enjoyable solo shooting pastimes. Seated at a shooting bench on a pleasant day, loading 5 rounds, then shooting 5 rounds, is a very pleasant pastime indeed.

CHAPTER 4

Loading for Handguns

Figure 25 A rare perfect slowfire score.

First perfect slow fire in Milwaukee Center Fire League with my S&W K38.

The principles are the same for reloading rifle or pistol ammunition. There are differences in the tools and techniques. Handgun ammunition cases are short and often straight sided as opposed to rifle cases that are bottle necked and longer. Most often handgunners use ammunition in much larger quantities, sometimes copious quantities. Most handgunners would agree that accuracy is desirable, quantity is necessary and quality is essential. The logic is, the competitive handgunner knows most ammunition in a quality gun shoots better than he can hold. Quantity is necessary for sufficient practice. Quality is essential to operate your gun with no jams or misfires. Nothing is more upsetting than to shoot a good score and lose points because of a jam or misfire. Whatever your needs, there is a suitable reloading tool. A higher priced

tool usually loads more rounds per hour and is more convenient. For more on this see the chapter on Press Selection.

Case Sizing

Adjust carbide and steel sizing dies to just touch the shell plate or shell holder. If loading for a bottle neck cartridge, turn the die in an extra one quarter to one third turn more. This removes all play and spring of the press, to set the shoulder back for the correct headspace. If using other than Lee dies, follow the instructions supplied with the dies.

An empty fired case enlarges to almost the size of the chamber from which it was fired. In the case of a revolver, it could be different sizes from the different chambers. The outside of the case must be full length sized so the loaded round will easily re-chamber and hold the bullet. When Lee started making dies in 1981, the vast majority of dies were steel. Today, the die material of choice is tungsten carbide. It's called carbide for short. A tungsten carbide die for the 9mm Luger offered by RCBS in 1986 cost over \$70 and plain steel was \$52. Lee carbide dies in 1996 list at \$36.98. The other companies have dropped their prices accordingly. Carbide dies will never wear out. It's so hard that diamond grit is used to grind and polish the dies. That's nice, but that's not the real reason carbide is preferred. Carbide dies usually eliminate the need to lubricate the cases. There are exceptions. If cases are excessively clean, some of the brass will rub off on the carbide. The dirt, soot, oxides and oil on the case keep the case from galling the carbide. None of the foreign matter on the brass case is hard enough to damage the carbide die. If you clean your cases in a vibrator with fresh media, you may need a slight amount of lube. Even a very light spray of furniture polish will work. Lubricating your cases with Lee sizing lube as it comes from the tube is gross overkill. Dilute it with 10 parts water or even better use rubbing alcohol. Apply this thin mixture with a spray bottle, available at most department stores.

Tapered cases such as the 9mm and 30 M1 Carbine need some lube. Usually lubricating an occasional case will leave enough lube in the die for a few without lube.

Lee dies and most others also deprime the case at the same time it is sized. Because most handgun ammunition have straight walls, the case has no room to hold the enlarged expander as with a bottle neck rifle case. Instead, expanding is done in the second die of a three die set.

It would be a disservice to you and unkind to Lee Precision Inc., if I

did not point out some of the exclusive features only Lee offers and tell an interesting little story about the company.

As a competitive handgunner and volume reloader of handgun ammunition, I invested in a carbide die for my favorite caliber many years ago. The die was poorly designed and shoddily made. I'll not mention the brand as it would serve no purpose. Being a journeyman tool and die maker, I reworked the die to suit my needs and standards. This little experience became very useful many years later. It greatly influenced the design of the first Lee die set. Nothing less than carbide is acceptable. Other criteria included a sturdy decapper, easy to adjust, set and forget lock rings, a floating bullet seater, seating depth adjustable without tools and most important it had to be affordable

Figure 26 Cutaway of Carbide Sizing Die

The design was completed and a prototype tested before we found the carbide insert alone, would cost more than our target wholesale selling price. I'm also a pilot, so I flew to a couple of carbide suppliers to find out what we could do to obtain a more affordable price. A few compromises and an initial order of what I was afraid would be several years supply, brought the price into a reasonable area. Those early dies were far from the best, not near today's quality, but they sold like beer at the ball game in July.

About then, my son John returned to the family business after his higher education and some work experience at Milwaukee Electric Tool. The youthful, "I can do anything" attitude, allowed him to convince me he could grind carbide to the exacting tolerance and shape to make the best dies at an affordable price. After much sweat and toil, he eventually developed a system to grind the inside of the die to the shape of a perfect segment of a parabola. It is a perfect blend. To the naked eye it looks like straight surface. If measured, you'll find it is

larger at both ends. There is no straight section and the surface is a continuously changing radius. There is a large chamfer at the open end for easy location when used in progressive presses. This shape eliminates the objectionable ring formed by all other brands of carbide dies. John did this at a fraction of the cost of the carbide inserts previously used. More important, the carbide is ground after it's locked into the steel die body, so concentricity is perfect. Because of these features and innovation, Lee is the world's largest die maker and the cost of reloading decreased dramatically.

Case Trimming

If you are going to trim your cases, this is the time to do it. Lee makes a complete selection of case trimmers for all handgun calibers. This is a product I resisted producing, because it did not pass my test. I always ask myself, "Would I buy one?" I would not buy a case trimmer for handgun cartridges for normal use. I never shoot maximum loads in my handguns and I never shoot magnum calibers. My cases wear out before they need trimming.

Customers demanded we supply case trimmers for handgun calibers. It was easier and more profitable to supply them than trying to convince people they usually don't need them. It's quite unpleasant to hear faithful customers say their next purchase will be from another company because we can't supply what they want. Case trimmers sell very well, so I must be wrong. I'm sure those that buy them are pleased, as we have almost no questions or complaints on case trimmers. If you shoot hot loads, it is prudent to check that the cases do not get too long. The bullet will be pinched in the end of the chamber and a maximum load will then be over maximum. Another good reason to trim handgun ammunition is to insure a uniform crimp.

Priming

Be certain to use only pistol primers for handgun cartridges. They are slightly shorter than rifle primers and made from thinner material because the pressures are considerably less. Pistol primers are either large or small. This refers to the diameter, small primers are .175 inch and large primers are .210 inch. Most handgun cases under 41 caliber accept small pistol primers. The difference in size is readily apparent to

the naked eye. Use magnum primers only when the load data specifies magnum primers.

Volume requirements usually dictate the type of priming tool to use. Often it is part of the press. Proper instructions accompany all Lee tools. If you load on a single station press, the first choice would be the Lee Auto-Prime. No matter what kind of tool you use, it is very important to seat the primer flush, like factory ammunition, or below the surface of the case head. Never allow the primer to protrude. Due to volume needs, and because most ammunition will shoot better than we can hold, few reloaders bother to clean the primer pockets. Should you find it desirable or necessary because primers are not seating fully, the Lee primer pocket cleaner works very well and costs little.

Expanding and powder charging

The sizing operation made the case a little too small for a perfect press fit of the bullet. Not all cases have the same wall thickness. The thicker ones have too much press fit for the bullet after the sizing operation. All the cases resist the entrance of the bullet because the sharp end catches on the soft lead bullet. If you force a lead bullet in it will shave lead from the bullet or collapse the case. All brands of dies provide an expanding die to enlarge the case neck .001" smaller than the bullet and flare the mouth for easy bullet entry. This flare is removed when the bullet is crimped in place in the next operation.

At this point, similarity to other brands of dies ends. Lee dies precisely control the flare angle and length. They work well with lead or jacketed bullets. You do not need so called 'M' dies that control the expansion because you cannot expand too much with the Lee expander. Lee dies had

Figure 27
Cutaway of Powder Through
Expanding Die

pand too much with the Lee expander. Lee dies have a patented moveable, hollow expander. The hole through the expander allows the powder to enter the case while it is being expanded. The case pushes the moveable expanding plug against the Auto-Disk powder measure to actuate the measure. Your case is expanded, flared and charged in one operation. Even if you don't use the Lee Auto-Disk powder measure,

the case can still be charged through a funnel inserted into the top of the die. Is it any wonder Lee became the number one seller with all of these features at a lower price?

Bullet Seating and Crimping

The bullet seating die has a crimping shoulder that wedges the case mouth into the cannelure or crimping groove of the bullet. Often users have problems adjusting the crimp die properly. The following is a precise technique that I use. It is not the same as the instructions that come with the Lee die set, because the instructions must be brief for clarity.

With a properly sized and flared case in the shell holder, move the ram all the way up to the solid stop.

Screw the die in until you feel it stop against the mouth of the shell. Be sure to hold the lever down while doing this, otherwise the die will move the ram down.

The die is now ½ turn from a light crimp and a full turn from a heavy crimp. Leave it where it is until the bullet seater is adjusted to the correct depth.

Back out the bullet seating adjusting screw until you see some threads.

Now start a bullet into the case and raise the ram to seat the bullet. Chances are it will be too far out of the case. It does not make any difference, because it's not yet crimped.

Adjust the bullet seating screw in some more and retry until the mouth of the case is at the base end of the crimp groove.

You see, now as you turn the entire die in for the final crimp; the bullet is also moved into the case the same amount.

The finished crimped case mouth should abut the nose side of the cannelure.

Figure 28 Cutaway of Bullet Seating Die

The above instructions are for all Lee dies produced after 1986. Before that time I made the mistake of making the crimp shoulder a steeper angle as on other brands. A very steep crimp angle of 45 degrees makes uniform case length too critical. A case longer than the rest will bulge from the excessive pressure. Cases shorter are not crimped.

After analyzing the mechanics of the crimp process it became apparent there is a logically correct crimp angle. The bullet's cannelure is about .055 inch long. The bullet moves into the case and the crimp is formed at the same time. A crimping shoulder longer than the cannelure width moves the case mouth into the cannelure and against the cannelure without fully crimping. Continued pressure will buckle the case. Attempting to initially leave the bullet farther out of the case causes the crimping shoulder to force the case mouth into the shank of the bullet below the

cannelure. Continued pressure will buckle the case.

The proper angle is that angle that the case mouth must bend within the width of the bullet's cannelure.

The geometry is: the crimp angle equals the angle formed by the hypotenuse to the vertical side of a right triangle, using brass thickness as the base and the cannelure width as the height.

Therefore, the proper crimp angle is a simple trigonometric problem. tangent = brass thickness/ cannelure width

Substituting numbers we find angle = tangent .218 = .012/.055

Pushing the [shift] [tan] button on my pocket calculator gives an angle of 12.3 degrees.

Now allow for variances in brass thickness, case length, bullet diameter, machining tolerance, shrink from heat treatment, mouth chamfer, spring back and some good old fashioned try then test until it's right, we find the correct crimp angle. The perfect angle is readily available by measuring that which is on every Lee die. It may vary with caliber. I have already said too much and will let the competition buy and measure some Lee dies to find the correct crimp angle. They have already

incorporated many of the Lee die features in their products. Floating bullet seaters, "O" ring friction adjustment, decapper held with a collet, roll formed threads and hollow expanders are all Lee innovations. When we introduced dies in 1981 our ads said, "Someday All Dies Will Be Made Like This." It was very prophetic.

The Lee bullet seater die has one additional exclusive feature. The end of the new die is .200 inch shorter and tapered 45 degrees. This modification allows the new automatic bullet feeder to be used.

Lee bullet seating dies greatly reduce the chance of a crimp bulge with our exclusive two angle crimp shoulder. One angle forms the crimp and the next lesser angle keeps the metal just below the crimp from bulging. It works so slick that sometimes reloaders don't believe the crimp has completely formed. They then adjust the die deeper for more crimp and bulge the case anyway. You can't run the loaded round into the sizing die because the bullet will be sized excessively. The bullet being softer than the brass will be loose in the case and accuracy very poor. There are two premium brands of dies that do that and they ruin the ammunition while charging extra for the product.

Ammunition that must work.

Most of our shooting needs are not a matter of life or death. If you need dependable ammunition for self defense or law enforcement, buy factory ammunition. You do not need much and it will look better to a jury. Otherwise, some lawyer will claim you devised deadly ammunition to inflict terrible wounds. This is no criticism of lawyers. That kind of courtroom tactic is only despicable if the lawyer is not your attorney.

Competitive shooters and hunters need ammunition that's dependable. The single operation in the reloading process that damages the most ammunition is the crimp operation. Attempting to crimp too much either buckles the case or forms a slight bulge just behind the crimp. Either way the round will not chamber.

The Lee Carbide Factory Crimp die overcomes these problems because it can't buldge the case and it post sizes the case just in case a oversize bullet or thick case wall makes the cartridge over maximum cartridge size. It requires an extra operation. If you're loading on the Lee Load-Master it's no problem, because there is a station for the Factory Crimp Die. This die allows unlimited crimp with never a chance of a bulged

case because it will be ironed out as it is extracted. The carbide sizer is slightly under minimum chamber dimension, so the rounds will fit any standard chamber but will not squeeze the bullet within the case. It's priced so low that it's unlikely anyone else will produce one like it.

Lee Bullet Feeder

Handgunners, like shotgunners, shoot humongous quantities of ammunition. Reloading becomes a necessity. We always look for ways to load more in less time.

The bullet feeder is one of the handiest attachments for volume reloading. It works well because bullets are always new and uniform. It works more dependably than a case feeder because cases are often used and deformed. It works better than most primer feed-

Figure 29 Automatic Bullet Feeder

ers because bullets weigh a lot more than primers and a speck of powder will not jam things. The Lee Bullet Feeder accurately positions the bullet into the center of the seating die. And it happens quick as a wink. With the multi-tube adapter, you can pre-load over a box of bullets at a time. It reduces your cyclic rate by 50 to 100%.

Support the National Rifle Association of America

The NRA is the foremost guardian of the traditional right to "keep and bear arms." This right, guaranteed by the Bill of Rights of the Constitution of the United States of America, is under constant attack.

The NRA is the lobby most feared by the extreme liberal politicians and media. I urge you, if not already a member, to call 1-800-672-3888 now, for membership information.

CHAPTER 5

Priming

Primers are either large or small and impossible to use one for the other. Primers are different for rifle and pistol and it is very important you select the correct one for your reloading. Never try to use rifle primers in handgun cartridges or visa versa. The results of such a switch will vary from unsatisfactory to dangerous. Always use standard primers unless the load data specifies magnum primers. Primers must be seated flush or slightly below the head of the cartridge.

Strange accidents happen with primers because of misuse. When I was young and more foolish, I laid a shotgun primer on my bench vise and smacked it with a claw hammer as I had often done with multiple caps from a toy cap pistol. Naturally, the primer exploded and left a ringing in my ears. It also left a metal fragment imbedded in my leather belt. Had the vise been lower, or I taller, it would have been both a painful and an embarrassing experience.

A reloader attempting to drive out a live primer with a Lee Loader decapper did it on his lap. The primer exploded and entered his leg to the bone. Curiosity prompted me to chronograph the velocity of a primer exiting the primer pocket. It checked an amazing 1412 fps! That's faster than a 22 rim fire and most handguns. It has to be the world's shortest gun as a primer pocket is only slightly more than an eighth of an inch deep.

Tony Saler from CH Tool gave me some good advise about primers. I don't remember the exact quote but the gist of it was reloading is pretty safe, until you handle the primers in quantity. Tony, a commercial reloader, visits others in the business. He says look at the ceiling above any powered reloading machine and you'll see holes above the priming station. Primers in a tube explode with a lot of force and unpleasant regularity.

Jim Hulbert, now retired from MEC, told me that they tested shotshell primers in a seamless tube. When the bottom primer was intentionally detonated, a 1x6 overhead looked like it had been hit with a 12 gauge shotgun at close range.

We at Lee Precision hear about accidental discharge of primers with our tools. When used according to the instructions, the only damage is to the tool. That's because there are two known brands of primers that are safer to use than all of the others. For this reason alone, we always recommend that only CCI or Winchester primers be used with Lee automatic priming

Figure 30
Improved Priming Tool... Safe with any brand of primers.

tools. The Lee tools such as the Ram Prime, primer arm on the turret press and Improved Priming tool use primers singly and any brand can be used.

To find out why some brand of primers explode violently, I talked to an expert, Dave Anderson now retired from CCI. He told me primers are charged with one of two types of priming compound. One is called basic and the other is normal. The primers which use "basic compound" must not be used in Lee priming tools because an accidental discharge is very violent. Whereas the "normal compound" appears to explode progressively and causes little damage to the tool and the user is easily protected with safety glasses. It is important to use only Winchester or CCI brand primers in any tray type primer feeder. Never use any type of primer feeder where the primers must be stacked in a tube. If one goes off, they all go off. A single primer can put your eye out, imagine what a tube full could do.

Some manufacturers have placed explosion tubes around their tube type feeders, but you still have the hazard of handling the tube to fill it. Accidently drop a tube full of primers to a concrete floor and you're going to have one heck of a bang. How much time do you save with an automatic primer feeder, if you have to put them in the tube one at a time? You will never see a primer tube on a Lee product.

Figure 31 This steel Explosion Shield was damaged by the blast of a tray full of Federal primers.

Lee spends many hours on the phone and thousands of dollars advertising and advising customers that the only safe primers to use with the Lee tray primer feeders are CCI or Winchester brand. We have been accused of playing favorites, taking handouts and simply being unreasonable. None of these are the case. We don't want anyone to get hurt.

We do not think that other brands are inferior or more powerful. They simply are not safe to use with the Lee Auto-Prime. In spite of our many warnings, we still get letters from lawyers advising that their client was injured with a Lee priming tool. After telling them the whole story, we usually never hear from the lawyer again. What I'm saying is if you don't take my advice and believe the instructions that come with the tool, you may get hurt. If it happens, it is no ones fault but your own. We care about your safety and want you to enjoy reloading. It's a very satisfying and enjoyable pastime.

Some shooters prefer Federal brand primers. Just as some drivers prefer Ford or Chevrolet. Federal brand primers must not be used with any Lee tray feeder automatic primer feeding device. A single exception; a primer explosion guard is available for the Lee Load-Master. Should you use primers other than CCI or Winchester brand, be sure that you feed them one at a time and, as with all primers, keep them in their original container until you use them. I have never found Federal primers to be better or worse than other brands.

The most important aspect about primers is not the brand but the precision in which they are installed. Most precision shooters, in fact most reloaders, prefer the Lee hand held priming tools. The Lee Auto-Prime

is by far the most popular priming tool ever made. You must learn to feel the primer bottom out and stop pushing. Excessive pressure will damage the priming propellant pellet and give erratic ignition. In the extreme cases, a crushed primer will cause misfires.

There are several reasons a quality priming tool is so very important. It begins with the priming manufacturing process itself. When you buy primers for metallic cartridges, the manufacturing process has not yet been completed. If you look closely at a primer, you'll notice the anvil is not flush with the primer cup. The manufacturer has left it protruding ever so slightly, presumably so that when we seat the primer we will place a slight strain on the priming pellet. I suspect this is done to compensate for the pellet shrink from drying. You see, primers are so dangerous that they are manufactured with the priming mixture wet. They are not dried until they are packed in the shipping trays. That's why it's very important to fully seat the primer and force the anvil into the cup and gently compress the priming pellet. It is even more important that you don't place excessive pressure on the primer and crush the propellant. This is the reason you need some "feel" in the primer seating operation.

While on the subject, let's straighten out one of those oft repeated errors about seating primers on your reloading press. Many manufacturers and gun writers caution you that seating primers on the press down stroke is not the best because you have so much mechanical advantage that you can't feel the primer being seated. They are right about not being be able to feel the primer being seated but the reason is wrong. The old style primer seating arm on most presses, other than Lee, seat the primer at the worst possible mechanical advantage, right in the middle of the stroke. This is where the press lever becomes a simple lever rather than a toggle. You have to push so hard that you can't possibly have any feel. You'll find those presses that prime near the end of the stroke give you a much better feel of the primer entering the

Many manufacturers now produce a priming tool that screws into the press in place of a die. These are generally referred to as ram priming tools. They provide excellent feel provided they are screwed into the press sufficiently to prevent it from toggling over center. If permitted to toggle over, you can crush the primer without knowing it. most advanced and convenient of this type is the Lee Auto-Prime II. The primers are fed from a tray for convenient and rapid priming. It must only be used with CCI or Winchester brand primers.

Figure 32 Auto-Prime II on a Challenger Press

Primers will change in the future because lead styphnate will be banned just as surely as lead has been banned from paint and gasoline. How this will affect their use with Lee tools is uncertain. You can be sure all involved will stay informed and advise you when information is available.

As a manufacturer, we are made aware of reloader's mistakes. Priming is an area that we see bent and broken tools for no good reason. The Lee Auto-Prime tool was originally designed to withstand over 2000 pounds of pressure. This is many times stronger than needed to seat primers. We continued to have problems with breakage until the tool was beefed up to hold more than 3500 pounds force. Eventually, we converted to a solid steel connecting link. This made it unbreakable but increased our cost and price to you. One wonders how well the ammunition loaded by these heavy handed persons performs.

I remember one six foot four 240 pound individual visiting my office complaining about misfires. He brought some samples of loaded ammunition. It was obvious the primers were mashed into the case. Trying to not put him on the defensive, I asked, "Did the primers require much pressure to seat?".

He unhesitatingly advised,

"They went in very easy, but it took both thumbs to completely close the lever."

Imagine the force exerted with both hands by a strong man against a toggle linkage. As tactfully as possible I explained that he should not close the lever fully. Stop pushing when resistance builds, the primer is seated and the extra pressure will crush the primer.

That's what we mean by "feeling the primer being seated." It is an unmistakable firm and solid stop. It requires considerable additional pressure to damage the primer. Learning to feel the primer bottom out with the Lee Auto-Prime, is just as natural as frogs in a pond.

CHAPTER 6

MEASURING GUNPOWDER

Figure 33 Auto-Disk Powder Measures

Lee Auto-Disk Powder Measures. The most popular mechanical powder measure ever made.

Dispensing a proper and uniform charge of gunpowder is essential to the production of safe, accurate ammunition. Powder companies usually list loads by weight. Some powder companies are kind enough to show the amount of each powder dispensed by various bushings, charge bars, disks, rotors and dippers. They are in effect giving their tacit approval to measuring their powder by volume rather than weight provided you check the charges on a scale.

Most reloading manufacturers supply volume measuring devices with meaningless identifiers such as 1,2,3,12A, etc. These numbers do not specify the volume of the unit. They are only an identifier.

This lack of a standard is unfortunate. We at Lee Precision label our measure by their volume in cubic centimeters and the shot shell bushings in cubic inches.

Why are powder charges always stated by weight?

The reasons seemingly are good and valid as the internal ballistician uses weight in the formula to calculate the energy of the charge. I asked Marty Liggins, from Accurate powder company, if that's how he gets the starting point for new loads. He told me that it is possible to calculate the powder charge by formula, but it really isn't necessary. When you work with gunpowder daily, it's quite easy to approximate a safe starting load. So the ballistician really doesn't need it for calculation.

So why are powder charges always stated by weight?

There are variations in the powder density. Some batches of powder are more dense than others of the same brand and type. This is normal so long as it is within density tolerance. This means that one volume measure of powder may weigh more or weigh less than another batch of the same brand and type. Winchester, in their loading data book, states that acceptable tolerance is plus or minus .025 gram per cubic centimeter. If we work out the arithmetic for say a 50 grain charge of Winchester 748 powder, we find that the grain weight of the charge could vary by 1.3 grains over or under. That's plus or minus 2.6%. You can see that by simply reducing your starting load by 5 or 10% you're in a safe range. Note: Winchester cautions against reduction of some powder, cartridge and bullet combinations. We have marked those loads in our data section and left out the volume equivalent.

Bob Hodgdon, of Hodgdon Powder Company, told me that powder quickness and density are equally important for a proper powder charge. And they work very hard at maintaining a proper relationship between the two. They feel a powder that may be on the dense side of the tolerance should then be on the slower side of the quickness tolerance. The logic being, the charge will be safe if either weighed or dispensed by volume. You see, if you weigh your charge, the pressure will be slightly on the low and safe side because the quickness is slower. If you use a volume measure, the charge weight would be greater than it should be according to the weight, and the pressure will be right where it belongs. I have no evidence that all powder manufacturers use this rationale. It would seem logical that they would, if only for product liability reasons. This little story clearly shows the powder manufacturer is keenly aware ammunition is loaded by volume. So they work at keeping it safe for us if we load by weight or volume.

So why are powder charges always stated by weight?

The answer is simple. Powder scales are very accurate. Until recently, the reloader had no precision, adjustable, instrument to measure by volume. So it would have been pointless to list data by volume as there was no need to do so. Other brands of powder measures have meaningless graduations. They are merely reference number graduations. Once you establish the setting by trial and error, you then make a note of the setting for that can of powder. Should you ever wish to duplicate that load you would refer to your notes.

The Lee Perfect Powder Measure changed that. It is calibrated in cubic centimeters. It is easily set to the nearest five thousandths of a cubic centimeter (.005cc). This is an extremely small volume. An adjustment this fine would not even register on most powder scales.

Figure 34 Micrometer adjustment for the Lee Perfect Powder Measure.

Because the powder manufacturers try very hard to maintain quickness and density within reasonable tolerances, it is entirely practical to measure powder accurately without the aid of a scale. All you need is a

reliable list showing the correct volume for a given charge and the means to meter that volume. This applies to all Lee powder measuring devices because they have a meaningful calibration. With any adjustable measure, it is prudent to double check it with a scale. It's always possible you did not adjust it correctly.

So let us hope, all future load data will be presented in both weight and volume. It's the right thing to do.

An unfortunate misunderstanding.

For half a century many writers gave this advice:

"Do not use a dipper to measure smokeless powder."

This statement originated when smokeless powder was introduced to the handloader. It was true at the time because black powder was commonly loaded with a dipper. The only dippers available were black powder dippers. Using a dipper designed to measure black powder for smokeless powder would usually blow up a gun. Those dippers were calibrated in drams of black powder. This is completely explained in the shotshell section.

What the statement should be is, "Do not use a black powder dipper to measure smokeless powder."

The safest way to measure gunpowder is with a calibrated dipper.

Here are some impressive numbers to support that statement. Every year, we sell about a half million dippers for measuring smokeless powder. In the 37 years of selling reloading tools with smokeless powder dippers, we have never heard of an accident because of an overcharge of the powder specified.

Dippers are inherently safe. They have a fixed capacity that cannot get out of adjustment. Lee dippers are made to exacting tolerances with regular inspections. Through experience, we found the best proportion for a precision dipper is the opening should be one half the depth. Even if you grossly misuse a dipper by heaping it, the charge will be only 7 to 12 percent too much. The pecentage depends upon the powder type. If you started 10% under maximum, you are probably still safe with a modestly heaped charge.

Lee powder dippers, as are all Lee measuring disks or bushings, calibrated and marked with meaningful measurements.

Figure 35 Powder Dipper Kit

I will never be able

to figure out why other manufacturers continue to mark their bushings with numbers that have meanings only to themselves. Originally, I made the same mistake. My first dippers, beautifully machined from solid aluminum stock, were marked 12, 16 and 20 gauge. At the time, those were meaningful markings because we only produced the Lee Loader for shotgun shells. They looked pretty silly when sold with a 30/06 reloader.

Our next batch of 13 dippers were injection molded and the capacity was carefully marked in cubic inches. Because a cubic inch of gunpowder is quite a large amount, it was necessary to carry the markings 3 places to the right of the decimal point. This was not an entirely satisfactory solution.

We usually do not get a second chance in life, but I received an opportunity to design another set of dippers from scratch. This happened when I was forced out of a business that I had started and had to begin anew. That's why some early Lee tools had the name Lee Custom Engineering. Now, only Lee Precision Inc. is in existence.

The present dipper kit is calibrated in cubic centimeters. This seemingly creates a paradox, metric volume calibration for avoirdupois weight measurement. Of course, this is not the case. The cubic centimeter is simply a universal standard of measurement for volume. The weight of the material that will fit into that volume depends upon the density of the material.

I remember the good old days, when Dean Grennell and I used to shoot on the back forty. It was early in Dean's writing career and early in my manufacturing career. Dean would get early production model guns for evaluation. (Talk about hog heaven.) We developed loads for the then new calibers such as the 221 Fireball, 350 Rem. Mag, 6.5 Rem. Mag, 256 Win and others. We always loaded by volume, using a Lee dipper kit. We would work up suitable loads by watching for signs of pressure and check velocity with my Herters counter chronograph. Dean would then go home and weigh the charges on his scale to report to his readers how many grains of powder to use for the different bullet weights and the resulting velocities. This was done because charges in grains of powder is the accepted standard method of reporting load data. Yet, all test rounds were loaded by volume using dippers or combination of dippers on the range. The point of this little vignette is; we have a great deal of confidence in measuring powder with the Lee dippers.

Dean always felt no one could dip a charge quite as precisely as he. He would, and I have little doubt to this day still does, use a special technique. He pushed the dipper bottom first into the powder and let the powder flow into the mouth of the dipper. Then strike it off with one of his business cards and consistently get charge uniformity of 1/10 grain. I'm not telling any secrets, as Dean has published this method several times.

Before leaving the subject of dippers, there is one very important added benefit to using a dipper for your loading. By using the same dipper for every bullet weight, and changing the powder to a proper quickness so pressures will remain in the safe range, you are maintaining the same loading density. If the load density is near the practical limit of the case capacity, these loads are less sensitive to slight variations and produces best accuracy with minimum of effort.

CHAPTER 7

Mechanical powder measures.

Volume measures are the tools of choice to measure powder for 99.99% of all ammunition. This includes that produced by ammunition factories as well as the reloader.

Mechanical powder measures come in various sizes and shapes. They are generally broken down into two categories, fixed or adjustable cavities.

Fixed cavity measures are preferred for large volume reloading. The main advantage is; they can never get out of adjustment. The big disadvantage, unless it's made by Lee, is the high cost of replacement bushings for different loads. The cost and inconvenience of buying and locating replacement bushings is enough to keep reloaders from trying a load that could be a better load, or worse, to try a load that should not be used. For these reasons, we have always supplied a complete set of bushings or disks with every measure we sell.

The Lee Load-All and Load-Fast comes with a charge bar and 24 replaceable bushings. Many will never be used, but at least you'll have them if you ever need them. Lee bushings are molded from an engineering plastic. Molders use this term to describe a material that molds well to close tolerance. Every set is like the next as they all come from the same mold. After 38 years in the business, I've never seen a plastic powder bushing worn out, rusted or mismarked. It's an example of choosing the right material for the job.

Supplying a set of 24 bushings for the Load All is not without its problems. That's 24 relatively small loose parts that must be included with each and every tool. Our conscientious employees do a great job, but it is not without extra cost and effort. Even though we supply a box to keep them in, some users lose them and need replacements. I decided the next fixed cavity measure could be better and the Auto-Disk measure was the result.

Auto-Disk Powder Measure

The Auto-Disk powder measure is the state of the art fixed cavity powder measure. It is a part of a system that has no equal. Instead of a

handful of loose bushings, the Auto-Disk powder measure comes with 4 disks and each disk has 6 cavities for a total of 24. Each of the cavities in the disk gets progressively larger by only 7%. This is less than the density tolerance of some powders, so you have a relatively fine adjustment and nothing extra to buy. These are significant advantages. Even more important is the automatic feature explained below.

As stated above, the Auto-Disk Powder Measure is part of a system. Every Lee pistol die set has a very special case mouth expander. It is free to travel, just a little over 3/8 of an inch, within the die. It is hollow so the powder can pass through it. The Auto-Disk powder measure screws into the top of the expanding die and the drop tube fits into the end of the hollow expanding plug. The case, while being expanded, pushes the expander up and this in turn operates the powder measure through a bell crank. *Voilà*, automatic case charging and mouth expanding simultaneously.

The Auto-Disk powder measure was a major breakthrough. A patent was granted in record time of 90 days. Not a single reference was cited. Tony Sailer of CH Tool called with his congratulations. He said that he had tried for years

Figure 36 Pro Auto-Disk Powder Measure

to develop such a device but was unsuccessful. The compliment was appreciated, because no one knows more about the history of reloading than Tony. He delights in pointing out that many of my products had similar counterparts years ago. Telling me, "Dick, there is nothing new under the sun."

Deluxe Auto-Disk Powder Measure

The Deluxe Auto-Disk powder measure is basically the same measure as the Auto-Disk measure with added features. It has machined metering surfaces for a better fit. The hopper is made from tough polycar-

bonate. The kind of stuff unbreakable windows and motorcycle windshields are made of. To finish it off, the casting is triple chrome plated. It costs more, but became the more popular measure.

Pro Auto-Disk Powder Measure

In spite of our best efforts to make the Deluxe Auto-Disk powder measure the best, we found a better way with the development of the Perfect Powder Measure, described later. Using that technology and some of the parts, we made the Pro Auto-Disk powder measure. An elastomer wiper virtually eliminates powder leakage. A shut off valve and removable hopper make it a joy to use. It's the best and now included with our progressive presses, the Pro 1000 and the Load-Master.

Safety Disk Powder Measure

The Safety Disk Powder Measure is a standard Auto-Disk powder measure mounted on a stand, with a lever to operate it. It serves well for those who prefer to load their pistol ammunition in a single station press.

The Auto-Disk powder measure prompted at least two other companies to produce an after market accessories. There is a desire for loads that fall between the available cavities.

Figure 37 Adjustable Charge Bar for the Lee Auto-Disk Powder Measure.

A customer suggested a Powder Measure. novel modification. The addition of a set screw, from the outside diameter, that projects into the cavity. This allows for sufficient adjustment to drop virtually any charge within the normal range of the disks. Should you elect to modify your disks, be sure to use cone pointed set screws. Leave the screw hole partially unthreaded so the screw fits tightly. This will keep it from loosening in use.

The Lee Adjustable charge bar is a better solution. It has a micrometer adjustment that reads in cubic centimeters and will not get out of adjustment. Like anything adjustable, it can be set incorrectly. For safety's, sake check your charge with a scale.

Flake powders meter poorly and give inconsistent charges in small cavities. Do not use flake powder in any cavity under .4cc.

Drum type measures.

For years and years I've wanted to make a drum type measure. I felt as unfulfilled as Romeo in a convent. Every other reloading company makes a drum measure, but they all leave so much to be desired. I could not think of a way to overcome all the problems. It was not until son, John, took over most of my day-to-day duties running Lee Precision that I had the time to solve the problems of a drum measure.

Most drum type measures have these or at least some of these problems: drum binding, erratic charges, powder cutting which leads to inconsistent charges, bridging, meaningless calibration, limited range, loses adjustment, inconvenient to change powder, no stand or costly stand and all are expensive.

Perfect Powder Measure

Understanding the problems made it quite easy to solve most of them, but at great cost. The problem was to do it at a price anyone could afford. The common mistake most reloading manufacturers make is avoiding the use of plastic. There is a mentality that would have you believe plastic is useless. That kind of thinking would have everything from telephones to toilet seats made from Swedish tool steel. They think the customer is not smart enough to recognize that for some applications the proper plastic is the best choice. We selected nylon

Figure 38 Always empty your powder measure into the original container when finished reloading.

because of its toughness and natural lubricity. The up front mold cost is very high. Considering that everyone in the sales chain often makes more on a product than the manufacturer, you can see it was quite a gamble for a new product.

After we completed testing the first pre-production sample from the mold, the gamble turned out to be a sure thing. I never used a measure that was as accurate or convenient. It is the smoothest operating, most versatile measure made. What is more important, it is also the least expensive. My comment to John, after testing it was, "It's perfect," thus the name, Lee Perfect Powder Measure. Once again it disproves the old saw, "You get what you pay for". Sometimes you get a lot less than you paid for, or in the case of the Perfect Powder Measure you get a genuine bargain.

The Lee Perfect Powder measure solved all the problems of conventional measures plus one more; it is convertible to automatic operation for progressive reloading.

Just after introduction of the Perfect Powder measure, Larry Potterfield from Midway Arms called. He advised that they like to give their customers more than just the color and manufacturer's propaganda when asked about a product. They frequently test products for information to pass on to their customers. When they compared the Perfect powder measure with the most expensive bench rest powder measure, the Lee won hands down. Larry advised that they found it desirable to coat the inside of the metering chamber with Midway Mica to significantly reduce charge variation. Extended use gives the same results. The graphite from the powder coats the parts. The powdered mica eliminates the need for break in and it's handy to have around.

There is one thing you can do to make the measure slightly better with certain powders. Sometimes a granule or two of powder does not empty from the metering tube. To make the measure usable in the automatic mode, it is necessary to limit the travel, so the link doesn't approach dead center. By cutting the stop away to allow the metering tube to point straight up, all of the powder empties everytime. You can do this with a sharp knife, hack saw blade or hand grinding tool. This modification makes the measure unusable in the automatic mode.

Powder Scales

While I can't prove it, I think powder scales have caused more mishaps than they have prevented. A misread or mis-set scale or a scale with hidden damage can and has resulted in dangerous and harmful reloads. People judge a scale's quality by its sensitivity and accuracy, both of which can degrade with age, use and abuse. Powder scales are excessively sensitive and accurate beyond need, including the Lee Safety Scale.

The above is possibly an over reaction to all I've read through the years about powder scales, written by well-meaning but misinformed writers. No, I don't hate scales. In fact, I hold a patent on a powder scale, for which I received a generous royalty for each and every Lee Powder Scale sold or even given away. We proffer that it is the best Powder Scale. Presumptuous as that may be, it is necessary to use superlatives to sell a product. It is not without supportive evidence that the Lee powder scale is more accurate and sensitive than other brands. The fact remains, it is better than it need be for safe and accurate reloading.

Lee Safety Scale with phenolic beam. Like a glass thermometer, if it isn't broken it's still accurate.

Figure 39 Lee Safety Scale for measuring gunpowder.

What about hidden damage to your scale? For some reason certain products are expected to be lifetime purchases. Binoculars, grandfather clocks, wrenches, most hand tools, guns, dies and a powder scale are all in the once in a lifetime purchase category. The list used to include such now disposable items such as watches, clocks, radios and even cameras. The point is, having a powder scale around for a lifetime will at sometime subject it to an abnormal abuse. You would be surprised at

what an 8 year old boy can do to a scale while dad is not around. If the cat knocks it off the shelf, you can't be 100% certain your better half will tell you. For these reasons, I invented a scale that almost eliminates the possibility of hidden damage. The Lee Safety Scale has a phenolic beam. This is the same material as used on kitchen counter tops. It's tough and it won't bend very far without breaking. The idea for our scale is, if it's not broken it is still accurate. Just like a glass thermometer.

The Lee Safety Scale, will register the weight of your name written on a piece of paper with a soft lead pencil. There is no evidence that powder charges checked with this degree of accuracy will perform better. The exact opposite is true. Most precision shooting is not done with weighed charges, but with volume measured charges. Most shooting records are held with ammunition loaded by volume charging. With minuscule exceptions, all commercially loaded ammunition is loaded with powder charges measured by volume. It would thus appear that only the uninformed novice or neurotic compulsive weighs each charge with a scale of laboratory quality.

Misreading or misadjusting a scale is always a possibility. We have tried to minimize this by making the graduations big. Ten grain adjustments require a poise movement of more than ¼ inch and it is impossible to position the poise part way. Some brands have poise movement of only .05 inch and the poise can be accidentally moved only part way. Another reason we call it the Lee Safety Scale.

Grain, Granules and Cubic Centimeters.

The grain, as used to measure gunpowder, should not be confused with a granule or kernel of gunpowder.

A grain was so named because it was the weight measure equal to one plump grain of wheat. A grain is the same in the avoirdupois, troy or apothecary's system of weights. Reloaders in America use the avoirdupois system in where 7000 grains equals one pound. This is a part of the English system of weights and measures.

The basic premise of the metric system was to have a standard of measurement that would always be with us. A meter is 1/10,000,000 the distance from the North Pole to the Equator when measured through Paris France. The standard is really a metal bar kept under controlled conditions in Paris.

The metric system is a base ten system and makes mathematical calculations very easy. The scientific community embraced the system because of the huge numbers involved in most calculations involving chemistry and physics.

A meter is 39.37 inches. There are 100 centimeter to a meter so a centimeter = .3937 inches. See how easy it is to divide by 100. Just move the decimal point 2 places.

A liter is 1000 cubic centimeters and holds 1 kilo of water.

A cubic centimeter of water weighs one gram.(1/1000 of a kilo)

grams x 15.432 = grains (notice that a grain is a very small amount)

grains /15.432 = grams

CHAPTER 8

Gunpowder Safety

With a little common sense, gunpowder is safe to handle. It is a propellant, not an explosive. It is highly flammable. Once ignited, it needs no oxygen to continue to burn, so it is impossible to extinguish by smothering it. Only a fool would smoke while reloading. Do not store large quantities. Do not assume that it cannot explode, because it can. Shock or impact can set it off. Conversations with folks from the powder companies confirm that accidents with gun powder do occur, but it is usually the results of some stupid series of events. Such as shooting into a can of powder, or a fire where too many pounds of powder are stored. These incidents give reloading a bad name and are preventable with just a little common sense. Eventually you are going to accumulate a quantity of powder. The suggestions below are excerpted from SAAMI smokeless recommendations.

Store in a cool dry place.

Do not store smokeless powder in the same area with solvents, flammable gases, or highly combustible materials.

Store only in Department of Transportation approved containers.

Do not smoke in areas where powder is stored or used.

Do not subject storage cabinets to close confinement.

Storage cabinets should be constructed of insulating materials and with weak walls, seams, or joints to provide an easy means of self-venting.

Do not keep old or salvaged powders.

Obey all regulations regarding quantity and methods of storing. Do not keep all of your powders in one place. If you can, maintain separate storage locations. Many small containers are safer than one or more large containers.

Keep your storage area clean.

Most importantly, keep gunpowder and primers away from children, just as you would your guns and ammunition. I learned very early in life that ammunition can be dangerous. Showing off with other 8 year

olds, I threw a 22 rimfire round to the pavement to show how it wouldn't explode. I was wrong, it went off with a bang that sent everyone running. No injuries except my status and pride.

The greatest danger of gunpowder concerning reloading, is using too much of the wrong kind. This can be fatal! Use reliable load data and follow the instructions exactly. Check and recheck and check it again.

Check the load data for a maximum velocity load with a given bullet weight. You'll find when you change to a lighter bullet, you'll have to either add more powder or change to a faster powder to increase the velocity while maintaining safe pressures. Conversely, if you change to a heavier bullet, you must reduce the powder charge to maintain safe pressure, or use a slower burning powder. Usually, the most accurate and highest velocity load for every bullet weight is a charge that fills or nearly fills the case and produces a high safe pressure.

It is perfectly acceptable to use one powder with a variety of bullet weights provided the charge is adjusted to suit. You do reach a point of diminishing returns if the powder is of the wrong quickness. When a slight decrease in bullet weight needs a large increase in powder charge, you can be sure the powder is too slow and you would do better with a quicker powder. The opposite is equally true. If a slight increase in either bullet weight or powder charge greatly increases the pressure, chances are the powder is too quick for the cartridge and bullet weight selected.

IMR Powder Company is the only powder maker that lists charges for each of their powders for every bullet weight. If you look at their data you'll see that they all generate nearly the same maximum pressure. While the pressure for a small charge of quick powder and a large charge of slow powder can be the same, the velocity of the bullet will not. The reason is the pressure curve is significantly different. The peak pressure of a quick powder in a large case and a small bore will be so short that it won't have enough duration to get the bullet up to a useful velocity.

Consider the significance a small charge of a powder that is too fast. Say it takes only 5 grains of powder to generate 50,000 psi for a safe but low velocity load. And it would require a 50 grain charge of the proper powder, that is slower, to produce the same pressure. You can see that if pressure increase had a percentage relationship to the charge,

a one grain difference in a five grain charge is 20% or 10,000 psi while 1 grain in 50 is only 2% or 1000 psi.

Notice I said "if" pressure had a direct percentage relationship. It does not! Near the peak working pressures, small increases in powder charges increase the pressure disproportionally. Just as smokeless powders in small quantities burn slowly, confined smokeless powders burn much faster. Carried to the extreme, they cease to burn progressively and they detonate. Therefore, that one grain error with a fast powder would probably produce significantly more pressure than a proof load. While a one grain increase with the correct powder may be enough to start to show signs of excessive pressure, it is unlikely your gun will suddenly disintegrate.

Use the starting loads. No one would ever consider running an auto wide open at all times nor should you always use maximum loads. A starting load, which is usually a 10% reduction in charge, reduces the pressure 20% and velocity only 8% or less. That is 8% velocity reduction of the maximum load fired from your gun, not the listed velocity. Most listed velocities are from a 24 inch and sometimes longer barrel. Starting loads are consistantly more accurate. Starting loads reduce wear on the gun, lengthen case life by a far greater amount than the 10% reduction in charge. Never, never use a heavier bullet than that which is specified. Feel free to substitute a slightly lighter bullet. The velocity will remain about the same and the pressure will be lower. The above conditions apply to full loads with normal working pressures. Reduced charges will be explained later.

A poor powder choice can easily be spotted from charge tables that list pressures with several variables of charge and bullet weights. If the charges or pressures vary widely with small changes in any component, chances are it is the wrong quickness. An even better clue to help find the best powder, is to look for maximum velocity for any bullet weight. This assumes all the listed loads are safe. You'll usually find the maximum velocity loads are the least affected by charge or component variations. This is very important because variations are inevitable. That's why a load less sensitive to variations has the best chance of being the most accurate.

It is even easier to select the best load with the load data listed in this book. Besides the usual information, we have also listed the volume of the powder charge. This is not available from any other source. The

volume listing is not only great for setting your powder measure or selecting the right dipper, but it gives you a good idea of what percentage of the case will be filled. Remember a full case, or nearly full, most likely gives the highest velocity and best accuracy, provided pressures are adequate.

Reduced Charges

It is often desirable to shoot reduced charges. Cast bullets in most large capacity cases require the charges be reduced to prevent leading. You can use your big game rifle for smaller game by loading a light bullet ahead of a smaller charge. Ultra light charges make little noise and almost no recoil. You can practice with your deer rifle in your basement without upsetting your neighbors. Substitute a single buckshot for an expensive jacketed bullet and your practice shooting becomes very economical.

The possible combinations are extensive. Rather than attempting to list a passel of loads, I'll give you some solid information on how to develop reduced charges; and show why powder selection is important. Reduced charges are an area of load development that's very low risk with one rule. Never greatly reduce powder charges of very slow burning powders in large cases (see chapter 2 Charging the Powder). Consider the powders numbered from 88 through 110 in the Gunpowder Burning Rate Chart (page 110) as those which should not be greatly reduced. Those near the end of the list are the most critical.

In the early seventies, a prominent reloading company published a cast bullet manual. Most of the new listed loads used very fast powders. I tried them and the results were dismal. To find out why, I conducted some bullet recovery tests in our swimming pool.

Son John, fourteen at the time, didn't have to be asked twice to shoot the 30/06 straight down into the water from the diving board. He also recovered them from the pool bottom. Bullets fired into water at low velocty remained in excellent condition. Watching from the side I could see the bullets slow after traveling a short distance in the water.

I reloaded with a variety of loads on site and recorded the results. The results were so dramatic I photographed the bullets and shared the information with Colonel Harrison from the American Rifleman. He

agreed with the evidence and used the pictures in an article about cast bullets. The two pictures below are worth 2000 words.

Figure 40 Cast bullet shows rifling stripped.

This bullet recoverd from water was loaded ahead of 12.5 grains of Red Dot, a very fast powder. Notice the surface of the shank was washed away and no rifling is evident. The gas even attacked the

bottom of the grease grooves. The nose is intact which indicates low velocity even though the pressure was more than the bullet could withstand.

Figure 41 Rifling in good condition at higher velocity.

The bullet in this picture is in good condition. Rifling from the two groove Spring-field is prominent. Almost no signs of gas cutting are present. Velocity was higher as evidenced by

the nose damage. Subsequent tests with even greater charges showed greater nose damage and yet the shank remained in good condition.

These photos clearly show a larger charge of a slower powder accelerates the bullet at a survivable rate. The benefits are higher velocity and greater accuracy.

Here is how you can easily calculate a safe, accurate cast bullet or reduced charge load. These comments only refer to the charges listed in this manual, because the loads are listed in descending velocity order. You'll find for every bullet weight there is a large selection of powders and charges. While it's possible to take a load from the top of the list and reduce it, it's not your best choice. The powders away from the head of the list are there because they are either too slow or too fast. Those that are too slow fill the case and are a poor choice for normal charges and worse for reduced charges.

These are the powders to AVOID for reduced charges for any given bullet weight for a specific cartridge:

- 1) Powders that fill the case and have below average velocity and pressure. These loads are already reduced as even a full case isn't enough to develop proper pressures.
- 2) Powders that produce low velocity with high pressure. They are too fast for reduced charges. (These are included in the data, only to fulfill my commitment to you, to supply all published data from the powder suppliers. They have little practical value.)

Here is where the mother lode lies for reduced charges.

Look to the middle of the list. Find a powder that yields high pressure and moderately reduced velocity. These are the powders that are a little too fast for the weight of this bullet to produce highest velocity.

Observation: If you would look for this powder under a lighter bullet, you'll find it near the head of the list. This powder moves down the list as the bullets get heavier. You just learned something many reloaders never understand, because load data has never before been presented in such a logical format.

The powders in the middle of the list are the powders that will give you the best accuracy and velocity for your reduced charge. Maybe your first choice won't be perfect, but somewhere in this area is a load that will work the best.

The formula was created from a rule of thumb which I've used for years. After writing it in the manuscript, I thought it best to support it with some actual firings and test results. It didn't check out close enough over a wide range so I added an "Enhancement Factor". That's a slick term I picked up from research material about computer modeling for Stirling engines. When the computer model does not fit the actual test they add an enhancement factor.

In my formula, the enhancement factor is the quad root of the percentage of decrease. The test results are extremely close to the calculated results. Test results are never more than 50 fps different from calculated values provided suitable powders are used. My tests were based on the actual velocity of the NEVER EXCEED load fired in my gun.

Listed velocities vary due to barrel length, temperature and component variations.

The formula works with any suitable powder. Powders that are not suitable are those which are too fast or too slow for the cartridge and bullet combination. Avoid any powder that produces velocities less than 90% of the highest velocity in that bullet group and the precision is remarkable.

Observation: A 10% powder reduction decreases velocity only 8 percent. For a small loss of velocity you improve accuracy, reduce gun wear, and increase your safety factor for extenuating circumstances. Things such as component variations, temperature, powder orientation, bullet depth, and crimp firmness will not likely increase pressures to a dangerous level.

Calculating a reduced load.

Let's start with cast bullets loads. The powders that are too fast with a safe maximum load, give good results with reduced charges. They reach their peak pressure too soon and too briefly with a full safe load. By reducing the charge, you limit the peak pressure and sustain it longer. This gives you a better pressure curve for reduced loads and cast bullets.

Go to the load data page and find the loads for the weight bullet you want to load. If the exact bullet weight is not listed, take the next heavier bullet. For best results, select a load with a velocity no less than 90% of the first on the list in that bullet weight.

Now reduce the suggested powder charge to a suitable charge for your cast bullets with this eighth grade arithmetic:

Divide the desired velocity by the listed velocity to get your percentage of reduction. Then multiply the results by the fourth root of the that number.

Note: Fourth root is simply the square root of the square root. In other words, on your calculator enter the number then hit the square root $\sqrt{}$ then equals = then square root $\sqrt{}$ and equals = again for the fourth root.

Then multiply that number by the NEVER EXCEED charge. If you did your arithmetic correctly, the charge will be smaller than the maximum charge.

It sounds far more complicated than it is. Let's try an actual reduced charge.

EXAMPLE:

We want to use a 150 grain cast bullet in a 30/06 at about 1900 fps.

Check the 30/06 load data and we find IMR 4320 fits our criteria nicely. The velocity is 93% of the highest velocity of the 150 grain bullet loads. It's near the middle of the 150 grain bullet list and pressure is normal high as measured in CUP Units. Always compare pressures with the same powder brand and units. There is no relationship between CUP, PSI, CIP measuring systems except within the same caliber. Then it's tenuous at best.

$$\frac{1900 \text{ fps Desired Vel.}}{2825 \text{ fps Listed Max. Vel.}} \times \sqrt[4]{\frac{1900 \text{ fps}}{2825 \text{ fps}}} \times 51 \text{ grains Max.} = 31 \text{ grain charge}$$

Actual velocity measured 1861 fps. with 31 grains of IMR4320. The 51 maximum load of IMR4320 checked 2773 fps out of a 22 inch barrel. This is 52 fps less than the listed velocity of 2825 from a 24 inch barrel. Considering the large reduction of almost one third, and the shorter barrel it is extremely close to the desired velocity.

What we did is:

- 1) Select a suitable powder for a reduced charge by choosing a slightly faster powder. A powder that is not the optimum for the listed bullet weight will work very well for a reduced charge.
- 2) Divide the desired velocity by the listed velocity of the never exceed charge.
- 3) Find the fourth root of the answer to step 2

 This is the enhancement factor, because reducing a charge does not reduce the velocity by an equal percentage, but a lesser amount. (see Vihtavuori reprint later in this book).
- 4) Multply the results of step 2 by the results of step 3.
- 5) Multiply the results of step 4 by the never exceed charge to get your reduced charge which will give you the desired velocity.

Below is a basic program should you like to add it to your computer.

'Reduced charge calculation

DEFINT A-Z

5 CLS

PRINT " CALCULATE REDUCED CHARGE FOR DESIRED VELOCITY"

PRINT: PRINT

INPUT " POWDER TYPE"; POWDER\$

INPUT " BULLET WEIGHT IN GRAINS"; BULLET

10 INPUT "MAXIMUM POWDER CHARGE IN GRAINS"; MX!

IF MX! = 0 THEN LOCATE CSRLIN - 1, 1: PRINT CHR\$(7): : GOTO 10

20 INPUT " ACTUAL or LISTED VELOCITY"; LV!

IF LV! = 0 THEN LOCATE CSRLIN - 1, 1: PRINT CHR\$(7); : GOTO 20

30 INPUT " DESIRED VELOCITY"; DV!

IF DV! = 0 THEN LOCATE CSRLIN - 1, 1: PRINT CHR\$(7); : GOTO 30

PRINT

PRINT

PRINT "POWDER"; TAB(20); "BULLET"; TAB(28); "CHARGE"; TAB(35);

PRINT "VELOCITY"

PRINT POWDER\$; TAB(20); BULLET; TAB(28);

PRINT USING "###.#"; SQR(SQR(DV! / LV!)) * (DV! / LV!) * MX!;

PRINT TAB(35); DV!

LOCATE 23, 40

PRINT "[Y] for another [E]nd ": R\$ = INPUT\$(1)

IF R\$ = "Y" THEN GOTO 5

SYSTEM

Older versions of basic may require line numbers. You can also use the EXP and LOG functions to extract the fourth root if available in your version of basic.

I kept the program short and simple for easy entry into your computor and demonstrate how simple it is. My personal version includes enhancements for printing the results and makes schedules of reduced charges in any increments desired. It also works the problem backwards. You can enter the charge or percentage charge reduction and it will show the velocity.

I'll be pleased to share my program with you for five dollars to cover the cost of the disk, postage and handling. Send your request to Lee Precision Inc., 4275 Hwy U, Hartford WI 53027. Ask for a catalog too.

Do not attempt to scale up a load. It is not a straight line increase. It's safe to go down because any error is on the side of safety.

Greatly reduced charges or squib loads

There is a need for very light loads. That's why 22CB's are sold. They are low velocity and make little noise. The same applies to greatly reduced charges for center fire rifles. It's fun shooting indoors because you can shoot more often. Think of the practice you can get with your high powered rifle. Shoot indoors at little cost and noise into a stack of old newspapers. I fired ten's of thousands of rounds in my basement from age 10 to the present with everything from a BB gun to a few 12 gauge 3" Magnums. I've even practiced with an air pistol at a target in the family room fireplace. It's safe if you are in the room alone.

How much a charge can be reduced is an interesting experiment. If the charge is reduced enough, the bullet will become stuck in the barrel. It's difficult driving a stuck bullet out of the bore. However, there is a perverse satisfaction firing a 30/06 with hardly a pop and watch the bullet travel but a few yards downrange. I never was able to get one to exit the bore and drop straight down or have only half the bullet stick out of the muzzle.

Interestingly, you can see bullets traveling at 2000 fps. I have fired a 30M1 carbine with the sun setting at my back and watched the bullets travel to the target.

Very light loads called squib loads, are always loaded with fast burning powders. The object is to use the lightest bullet with the smallest charge that moves the bullet completely free from the barrel. Light cast bullets or various sizes of buck shot can be used. It may be necessary to size the shot to fit. The Lee bullet sizing die works fine. A little Lee Case Sizing Lube or Lee Liquid Alox on the bullets, will keep your barrel lead free. The two hazards are, getting a bullet stuck in the barrel, and an excessive charge. Remember, that a little too much of the fast burning powders can be dangerous. Charges as small as one grain of Bullseye can be used.

CHAPTER 9

All About Pressure

Pressure, pressure curve, pressure peak, excessive pressure, and signs of pressure signs are the subjects of this segment.

It is an extremely uncomfortable feeling to fire a round that may be unsafe. I'll forever remember testing a 22-250 custom made gun. The loads were near the 4000 fps range when I noticed a gray streak trailing the bullet. That's lead leaking from the bullet due to air friction and high rotation. The case extracted easily and the primer looked okay. I thought a slight powder increase would cause the bullet to explode in mid air. It's something I have read about, but never witnessed. Curiosity motivated me to foolishly load a slightly heavier charge. I had second thoughts about the safety of that round. Not thinking about my hand, I ducked under the heavy shooting bench, reached up and fired the round into the ground ahead of the bench. That bullet exploded all right; on the windshield of my new Barracuda. I had parked the car at the base of the hill under my shooting bench. Only a tiny jacket fragment was found inside the car. The insurance agent thought the story was very funny as he rejected my claim for a new windshield.

Pressure is good. Without pressure there would be nothing to drive the bullet out of the barrel. Too much pressure and something will break. A perfect pressure curve is a rapid increase to maximum safe pressure, maintain that pressure until the bullet is near the muzzle, then drop to one atmosphere just before bullet exits. This would provide maximum velocity with zero muzzle blast. Unfortunately, this is an impossible situation.

We all know of how the fabled Kentucky rifle could shoot farther because the long barrel gives the powder a longer time to accelerate. Anything good carried to an extreme, becomes not so good. At some point, the barrel's excess length slows the bullet, because the powder cannot burn fast enough to keep up to the accelerating bullet. Experimenters have tried various schemes to improve the pressure curve.

A duplex charge is a concoction of fast and slow burning powders in an attempt to sustain peak pressure longer. It doesn't work, don't try it. It's very unpredictable and extremely dangerous. **Never mix powders.**

Early in the 20th century, a German gunsmith made a tapered bore, with the muzzle smaller than the breach. He used a special bullet that squeezed smaller as it moved down the tapered bore. It was an attempt to maintain peak pressure for a longer period. It didn't work.

Nineteenth century science fiction writer, Jules Verne envisioned a cannon to shoot a space capsule to the moon using a large cannon loaded with guncotton. As the capsule moved up the barrel, auxiliary charges were set off to maintain the pressure and acceleration. I would gladly pay to get a ride in space, but never volunteer to be a human cannon ball.

The schemes above are mentioned to point out that almost everything's been tried. Ammunition making is a well-developed art and there is little room for improvement. Stick to proven loads. There is a wealth of excellent load data available. This is not an area that experts can improve upon so there is little chance for amateurs to succeed.

A good load will rapidly build to maximum safe pressure, then gradually drop as the bullet moves down the barrel. Pressure is at maximum while the bullet is surprisingly close to the case. Maintaining peak pressure, only slightly longer, greatly increases the velocity. The only control we have over this is in the selection of the best powder for the job.

The reloader has no means to check the pressure curve directly. However, it is quite easy to select the best available pressure curve by selecting the load that produces the highest velocity. We have made the selection process easier by listing the loads in order of velocity. While this makes it is easy to pick out the fastest load, there is no guarantee it is the most accurate.

Our litigious society has made every manufacturer very wary about product liability. I've noticed that published loads became more conservative with each passing year until recently. Competition reversed the trend. The Finish powder company Vihtavuori Oy introduced their line of powders with load recommendations showing consistently higher velocities. Sales exploded, and I suspect so did some guns. They have since reduced their recommendation for some calibers, more in line with what we have been seeing elsewhere. It appears their success prompted some of our domestic powder suppliers to swing away from ever lighter charges. Newest data from most powder suppliers is be-

coming more realistic. This means there is less fudge factor and maximum loads must never be exceeded.

In a frank discussion with a major powder supplier, I asked if load data that they published ever caused an accident. He confirmed that under extreme circumstances it had, but the damage was limited to the gun and not the shooter. Lest the previous revelation lulls you into a false sense of security, I must tell you about a tragic loading accident where the shooter was not injured.

A first time reloader, loaded some ammunition for a lever action gun. A powder of the incorrect quickness was used in a quantity that amounted to a double charge. When he fired the very first round, the gun exploded. A part of the gun penetrated the chest of a young spectator, resulting in his death. The shooter was physically uninjured, but certainly mentally scarred for life. Don't take a chance. While accidents are rare, they are usually avoidable.

What are the causes of excessive pressure?

Temperature affects pressures. Ammunition companies regularly test their ammunition under temperature extremes from -40 to plus 140 degrees Fahrenheit. A load that you developed in winter may be way too hot next summer.

Primer type affects pressure. The rule is: Use regular primers unless the load data calls for magnum primers.

Powder position within the case has an effect. With less than a full case of powder it makes a difference if the gun is pointed up, down or level.

Powder orientation within the case has an effect. Accurate Powder Company supplied this information. It seems that some shooters were experiencing hot loads from what should have been quite safe. With much detective work, they found the problem occurred only when loading at the bench and immediately firing the round. Ammunition loaded away from the range worked fine. They discovered that the normal jostling of travel reduced the pressure to correct levels. Accurate recommends that ammunition loaded at the shooting bench be rolled back and forth a couple of times to rearrange the powder granules.

Figure 42 A double charge in a Browning Auto-loader caused minor injuries to the shooter.

The gun itself can cause greater pressure. This changes with the amount of use the gun has received. A new gun will often cause higher pressure because the tool marks create added friction to the bullet. Gun bores are smoothed with use. Used long enough, the hot gas will erode the bore near the chamber, to produce more freebore. (Freebore is the distance

the bullet moves before it engages the rifling. A common practice for large capacity cases such as 300 Weatherby is to bore out the rifling ahead of the chamber. Thus the name freebore.) This permits the bullet to get a running start before engaging the rifling, which keeps pressure safe. An op-

Figure 43 Primer 1 is a light load. Number 2 is a normal NEVER EXCEED load. Number 3 is a hot load. Can you see the difference?

posite condition is more likely if the gun has had many high pressure loads through it. The end of the chamber can become heat crazed. Tiny cracks form, which if magnified would appear as a dried out mud flat. These cracks cause extra grip on the bullet which in turn requires more pressure to get the bullet moving. This can increase the pressure significantly. Acquire the habit of checking the primer for signs of pressure. It could save your day.

Cases that are too long will pinch the bullet and cause excessive pressure. Just because the cartridge easily enters the chamber it doesn't mean the case is not too long. The clearance created by the crimp allows the case to chamber. However, when the bullet tries to open the case mouth it can't, because the mouth is beyond the end of the chamber into the start of the bore. BE SURE TO TRIM YOUR CASES.

The main and obvious reason some rounds are excessively hot, is the use of too much powder. There is the mentality that assumes if the load data lists 43 grains as maximum for the case and bullet combination, 44 grains can't hurt, 45 will be better and 50 grains ought to make it a real banger.

Quite frankly, there are serious reloaders who try hotter loads. Experienced shooters, writers and I experiment with slightly heavier loads. All are serious knowledgeable shooters and reloaders using guns of known quality, often custom made. We readily recognize signs of excessive pressure. Most importantly, we start with a known safe load and gradually increase the charge by small increments, shoot and observe. We are fully aware that a load which may be perfectly safe in a particular gun at certain temperatures, could be dangerous in another gun or under other conditions. Remember, should you elect to increase your loads beyond the suggested charges, you're in dangerous territory and totally on your own. The benefits are miniscule as compared to the risks.

Bullet depth is another factor. Load data sometimes states bullet depth or cartridge length. The theory is; bullets that are seated deeper reduce case capacity which in turn increases pressure. This may be a popular rule of thumb, but I doubt that it applies universally because of a test I conducted in 1966.

While doing of some load development for the 7.62 Russian, I noticed that pressures seemed to lower as the charge increased. I thought it might be due to compression of the powder. Even though the gun was in excellent condition, I felt more comfortable experimenting with a good old government issue 03 Springfield purchased for around \$17 through the NRA. Case capacity is almost the same as the 7.62 Russian.

Below are my notes on the test results.

Recommended load for the 30/06 using 3031 with 110 grain bullet is 52 grains. Tests indicate that this is a proper and reasonable load. Increasing the load above that amount had the following effects:

54 grains increased the head diameter .001 inch.

56 grains increased the head diameter an additional .0005 inch.

57 grains expanded the primer pocket, embossed the case head with the bolt face and the bolt opened hard.

The next test, the load was kept at 57 grains(last load listed above which blew the primer out) with a new case and the bullet was pushed into the case to compress the powder.

This load had no indications of excessive pressure.

58.5 grains with the bullet compressing the powder still indicated no excessive pressure.

59.5 grains with the powder compressed cause the head to enlarge .001 the same as 54 grains did with air space in the case.

The cause of the above is only an opinion. It would appear that the compression of the powder makes ignition more difficult thereby causing the powder to act as a slower powder and permitting a 10% increase in the charge.

Should you be tempted to do similar tests, the safe way to do it is by resting the rifle in an old tire. Insert the butt of the stock into the tire between the beads and rest the barrel on the tire. Attach a lanyard to the trigger so you can set it off from a safe area, preferably from behind a sturdy wall.

The lower pressure may be partially due to the bullet being seated deeper, which increases the freebore. However, a 110 grain bullet in a 30/06 already has much freebore. The reduced case capacity would most likely negate any advantage of freebore.

I wrote to Dr. Brownell, noted ballistician and writer, in hopes that he would either confirm my theory or offer an explanation. As I recall he thanked me for the information and published it in one of his many writings without comment.

This is an additional interesting observation to the above test. Back in 1966 the Dupont Powder Company recommended 52 grains of IMR 3031 in a 30/06 with 110 grain bullet seated .230 inch into the neck. This was supposed to produce 49400 pounds per square inch. Checking the latest IMR data, the recommended charge is 56 grains of 3031. That is a full 4 grains more than the old data and the chamber pressure is listed at 49300 copper units of pressure. I feel completely confident that both entries are correct. The difference is the powder itself. For those of you who have old powder, I would suggest that this is ample reason to use load data published around the time the powder was manufactured. At the very least, start with a load 10% under maximum and work up in five uniform increments. That is, divide the 10% reduction by 5 and use the results for each increment. Example: a 5 grain reduction would suggest working up 1 grain at a time.

Signs of Excessive Pressure

Most load data is accompanied with a caution similar to this:

Start with a charge 10% under maximum and work up .5 grain at a time. Watching for signs of excessive pressure, then back down 1 full grain. Then things start to get blurred.

What are the signs of excessive pressure?

- 1. If the report is louder and the recoil greater than normal it is your first indication. For many relatively low pressure loads this will be your only sign, as the remaining signs apply only to modern high pressure cartridges.
- 2. Difficult extraction is a sure sign that pressures are too high.
- 3. Make it a practice to examine the primers of your fired cases. An early indicator is well-flattened primers with almost all the corner radius gone. Primers that extrude around the firing pin may also be an indication the load is getting into the danger zone. Primer observations must be tempered with the knowledge that some primers may be made from a softer, thus weaker, alloy. These then give the appearance of near dangerous levels of pressure while the load is quite acceptable. Excessively large firing pin holes in the gun's breach will permit the primer to flow into the opening and give a false concern. Observe how the primers of factory loaded rounds look and let that be your guide.
- 4. Head enlargement is an excellent indicator. The problem is that you must carefully check the head before firing and then again after firing. This is a technique that has little value to the average reloader. However, it is invaluable for the wildcat experimenter.
- 5. The condition of the head itself tells a lot. Use a loop and good light. Look closely to see if you can see tool marks from the bolt face embossed into the head. Check to see if that portion where the bolt is milled out for the ejector to pass can be seen embossed on the cartridge. These are sure signs that pressure is on the hot side.
- 6. Loose primers are a positive sign of excessive pressure. If this occurs, reduce the charge at least 15% and pull the bullets on the rest of your ammunition.

7. The next pressure level causes gun damage and possible injury to the shooter.

It must be emphasized that these signs will not manifest themselves in old and low pressure rounds. These are signs of pressure in the plus 60,000 pound range. If you are loading for a gun designed to operate at 15,000 pounds pressure range, you'll most likely never find a loose primer because the gun would have blown up and spread the primer and gun parts over a wide area.

There is one primer indicator that is frequently confused as a sign of excessive pressure, when in fact it is a sign of reduced pressure. A primer that protrudes, indicates the load is so light that the case was not stretched back to the breach face.

This is not as little pressure as it may seem. A .223 case about ½ inch from the head measures .024 thick. If we multiply this by the circumference, we find that the cross-sectional metal area is .027 square inches. Referring to the Machinery's Handbook; the average minimum tensile strength of cartridge brass is 85,000 pounds. 85,000 times .027 is 2307 pounds pull to stretch the brass head to the bolt face after it has been driven forward by the firing pin.

In case your are wondering why it simply doesn't simply push back much the same as the bullet pushes out, it is because it is tightly clamped against the chamber wall by the internal pressure.

Now that we know that 2307 pounds is the minimum force needed to stretch the case, let's calculate how that relates to pounds per square inch. The inside diameter of the case is only .324 in diameter and that is only .082 of a square inch. Therefore, if we divide the 2307 pounds by .082 of a square inch, we find it will require at least 28,134 pounds per square inch to push the cartridge head against the bolt face. Because 85,000 pounds is the minimum tensile strength of cartridge brass, most likely the average case is stronger and it would hold more pressure before stretching the case head to the breach.

Twenty-eight thousand pounds per square inch is not to be taken lightly. You sure wouldn't want to try and hold it back with your thumb over the muzzle. That's twice the pressure of most handgun loads and three times the pressure of many shotshell loads.

One beautiful sunny day many years ago, I repeatedly loaded a 35 Remington case with an exceedingly light load to see just how far the primer would back out of the case. After each firing, the primer continued to extend just a little more than the last. It reached a point that the primer stopped its rearward travel when the primer extended a full 1/16 inch. I suspect that was where the firing pin could no longer drive the case deeper into the chamber. I could have carried the experiment further by making a longer firing pin, but that is not something one does on a beautiful sunny day in Wisconsin.

That particular case was flattened with a hammer as the headspace was now 1/16 inch instead of the normal maximum .007. A full load in that case could have caused the head to separate.

An Extremely Interesting Reprint

The following information is from the material supplied with Vihtavuori load data and is reprinted with their permission. There are some highly interesting facts within this data. That which is excellent and valuable knowledge for every reloader is printed in bold type. If you have a copy of the manual, you may have been turned off with presentations such as "i.e. $\Delta V_0 \cong -101 \, ft \, / \, s$ " and skipped over this section. The direct word meaning is, "that is, change in velocity is approximately minus 101 fps." In plain english "velocity is about 101 fps less" I substituted plain English wherever practical and it becomes very readable and highly informative. This in no way is criticism of the author, editor or publisher. It is easy to write in terms with which you use daily. Inversely, it's difficult to be a good communicator with those who speak and think in different terms. If you find that hard to believe say the next sentence in Finnish, the native language of the Vihtavuori handbook's author. I simply feel more people will read this enlightening work if it reads in conversational language rather than as an engineering treatise. There are metric to avoirdupois conversion errors and omissions in the Vihtavuori Reloading Guide from which this was taken. Most likely this happened in the translation. I've also added some comments in areas of importance. Perhaps my changes are academically gauche, but the information is the best I've seen in print. I feel the author and publisher will forgive my liberties, because the reloader gains a better understanding of the most important aspect of reloading, the powder charge.

MUZZLE ENERGY

To calculate muzzle energy for any load use this formula: velocity (in fps) x velocity (in fps) x bullet weight(grains) divided by 450436= muzzle energy in foot pounds.

By staying 5% below the maximum powder charge weight, pressures will be reduced by about 10% while velocities will be only about 3% lower than listed.

Caution: When loading handgun cartridges it is vital to maintain the minimum overall cartridge length listed in the tables. Shorter overall lengths can double chamber pressures. Longer lengths are permissible so long as the functioning of the handgun will not be impaired.

PRESSURE

There are numerous factors which can change the ballistic performance of a load even when the data is followed exactly. For example; the internal dimensions of a firearm can vary greatly even between two of the same make and model. Pressures can vary to extremes as different firearms are used. Each change in brand and even within different lots

of a specific brand component can cause notable ballistic changes. Too, changes in ambient temperature can also cause ballistic altering pressures. Not every bullet of a given diameter and weight will produce alike pressure. Changes in primer or case brand and/or lots can also affect ballistics. There are numerous other causes of varying pressure levels.

Therefore, it is essential that the reloader be well versed in the methods of carefully working up a reload powder charge in small increments.

Inner Ballistics Coefficients (Table 3)

change	change in Vel.	change in Pressure
+10%	-4%	+8%
+10%	8%	+20%
+50 F	+2%	+4%
+10%	-3%	-13%
	+10% +10% +50 F	+10% -4% +10% 8% +50 F +2%

An example of how to use the table: the following results have been obtained in firing test for a 308 WIN.

Bullet 147 grain Pressure 52213 psi Powder N140 44.9 grains Velocity 2827 fps

What is the pressure and the velocity if the powder quantity is dropped to 42.9 grains?

- the change in the powder charge is -4.5%
- the change in the velocity according to table 3 is -3.6% [about 101 fps less]
- the change in the pressure is correspondingly -9% [about 4,641 psi less]

What is the pressure and the velocity, if the bullet weight is increased to 169.8 grains?

- the change in the bullet weight is +15.8%
- thus the change in the velocity is -6.3% [about 177 fps less]
- and the change in the pressure is +12.6% [about 6,671 psi more]

What is the velocity and pressure if both changes are made simultaneously?

- in this case we simply add these changes together:
- velocity = (-102) + (-177) = -279 fps
- pressure = (-4641) + (6672) = 2,031 psi

Thus the final velocity is about 2,542 fps and the final pressure is about 54200 PSI In firing tests, we have obtained the following values for this

cartridge:

- powder type N140 42.9 grains.
- bullet weight 169.75 grains.
- velocity = 2608 fps.
- pressure= 52200 PSI

One reason for the divergence is the different bullet type, the effect of this is not taken into consideration in the formula.

VOLUME OF THE CARTRIDGE CASE

We have noticed that the inner volume of cartridge cases made by different manufacturers may vary considerably. This is primarily due to difference in the thickness of the case wall and bottom. The outer measures of the case are naturally the same. Though we have not been looking for any minimum and maximum values, we have, however, found differences of up to 5%. In fired cartridge cases the difference may be even bigger.

Variation in cartridge case volume has in the first place two effects:

- the maximum charge which fits in the case changes.
- pressure and velocity change.

The following shooting test was carried out in 308 Win using three different cartridge cases volumes.

The powder charge was the same in all three Volume of the Cartridge

Cases (cm3)	Pressure	Velocity fps
3.47	51600	2575
3.51	50000	2555
3.59	45000	2500

As you can see from the above results, the difference in pressure and velocity is noticeable and will certainly be manifested in the accuracy. In order to achieve good results, the reloader must keep different cartridge case lots separate. In this case only half of the difference noticed in the pressure and velocity can be arrived at by calculation according to the figures in table 3. Evidently, there must also have been other differences in the cases (e.g. tightness of the neck), which had an influence on the result.

SEATING DEPTH OF BULLET

The seating depth of a bullet should have an influence on the pressure and the velocity since it has an effect on the volume of the cartridge case too. The deeper the bullet is pressed the more cramped the space for powder and the faster the burning rate of the powder. This results

MODERN RELOADING by Richard Lee

in an increase of Pressure and Velocity. This effect is at its greatest in revolvers and pistols. An example of this:

Caliber 38 Special Powder N310 3.9 grains

Bullet 158grain Lead-RN Primer No. 22[Vithavori]

 Over All Length of cart.
 Pressure
 Velocity fps

 1.1417
 21756
 922

 1.535
 17839
 899

 1.732
 10877
 787

What a huge difference in the pressure! One cause of revolver breakage may be here. Another example:

Caliber 357 Mag Powder N110 13.3 grain Bullet 208grain lead cast Primer No. 22[Vithavori]

 Over All Length of cart.
 Pressure
 Velocity fps

 1.575
 52200
 1,385

 1.654
 42060
 1,332

 1.732
 26106
 1,207

The effect was in this case 6,523 PSI/fts! But for instance in 308 WIN the effect is smaller and it is not even linear.

Bullet 169grains Powder N140 42.9 Grains

 Over All Length of cart.
 Pressure
 Velocity fps

 2.677
 51300
 2,575

 2.834
 50000
 2,555

 2.929
 52000
 2,559

THE EFFECT OF THE CASE NOT BEING QUITE FULL

There has been much talk of the effect which an only partly filled case may have on the shooting results. In an only partly filled case, the powder evidently burns unevenly and in some extreme cases a pressure wave may be produced in the case, which may even damage the weapon. To our understanding, this is a problem especially with ball powder. With our powders however, we have not noticed anything alarming.

Even if there were no risk of an accident, an insufficiently filled case may cause increased dispersion. This is why we also in the first place recommend such a powder type and such a powder charge that fills up the case.

Here is an example of the shooting result in 38 Special. The powder charge was small, 3.66 grains, so there was free space in the case. Before shooting the powder was shaken over the bullet side of the case. The average values measured for the velocity and pressure were:

Powder on the primer side 18700 psi 882 fps

Powder on the bullet side 14500 psi 850 fps

In order to achieve uniform shooting results, the powder should always be distributed evenly in the cartridge. This happens automatically when the case is full of powder.

THE EFFECT OF TEMPERATURE

An increase in temperature raises both the pressure and the muzzle velocity.

Table No. 3 gives certain coeffcients, but the following list gives some authentic measurements:

Caliber	9mm L	uger	Powder N330 5.56 Grains
Bullet 116 grains FMJ			
Temperature(F)		Pressure	Velocity fps
-65.2		14200	1,046
69.8		25900	1,233
126.6		27700	1,249
Caliber 308 WIN			Powder N135 44.99 Grains
Bullet 147 Grains FMJ			
Temperature(F)		Pressu	re Velocity fps
-67		38,000	2,542
69.8		50,900	2,742
140		55,200	2808

If you are going to shoot for instance in a temperature of -4F and you are sure that you will be using all your cartridges in this temperature, it would be possible to load cartridges for the purpose with a slightly higher powder charge.

This is the end of the reprint.

Burning Rate Chart

Current Canister Grade Powders in order of approximate burning rate.

This is approximate only and not to be use for developing loads. Reprinted from VihtaVuori Oy Reloading Guide with permission from Kaltron Pettibone, Distributer.

- 1. Vihtavuori, N3SF
- 2. Norma, R-1
- 3. Vihtavuroi, N310
- 4. Alliant, Bullseye
- 5. Scot, Solo 1000
- 6. Accurate, No. 2
- 7. Alliant, Red Dot
- 8. Vihtavuori, N3SL
- 9. Hodgdon, Clays
- 10. Vihtavuori, N320 11. Scot, Royal Scot
- 12. Hodgdon, HP38
- 13. Winchester, 231
- 14. Scot, 453
- 15. Vihtavouri, N3SM
- 16. IMR, "Hi-Skor" 700X
- 17. Winschester, WST
- 18. Hodgdon,International
- 19. Alliant, Green Dot 20. Vihtavuori, N330
- 21. IMR. PB
- 22. Accurate, No. 5
- 23. Scot, Pearl Scot
- 24. Winchester, WSL
- 25. Hodgdon, Universal
- 26. Alliant, Unique
- 27. IMR. SR 7625
- 28. Winchester, WSF
- 29. Hodgdon, HS-6
- 30. Vihtavuori, N340 31. Winchester, 540
- 32. Alliant, Herco
- 33. IMR, SR 4756
- 34. Scot, Sol 1250
- 35. Vihtavuori, 3N37
- 36. IMR. "Hi-Skor" 800X
- 37. Vihtavouri, N3SH

- 38. Accurate, No. 7
- 39. Scot. Solo 1500
- 40. Vihtavouri, N350
- 41. Hodgdon, HS-7
- 41. Houguon, no-1
- 42. Alliant, Blue Dot
- 43. Vihtavouri, N105
- 44. Accurate, No. 9
- 45. Alliant, 2400
- 46. Vihtavuori, N110
- 47. Norma, R-123
- 48. Hodgdon, H110
- 49. Winchester, 296
- 50. IMR, SR 4759
- 51. Vihtavuori, N 120
- 52. IMR, IMR 4227 53. Hodgdon, H4227
- 54. Vihtavuori, N130
- 55. Accurate, 1680
- 56. Norma, N-200
- 57. Vihtavuori, N133 58. Scot, Brigadier 4197
- 59. Hodgdon, H4198
- 60. IMR, IMR 4198
- 61. Accurate 2015
- 62. Alliant, Reloder 7
- 63. IMR, IMR 3031
- 64. Norma N-201 65. Hodgdon, H322
- 66. Accurate, 2230
- 67. Scot, Brigadier, 3032
- 68. Winchester, 748
- 69. Hodgdon, Ball C(2)
- 70. Accurate, 2460
- 71. Hodgdon, H335
- 72. Hodgdon, H4895
- 73. Alliant, Reloder 12
- 74. IMR, IMR 4895

- 75. Vihtavuori, N135
- 76. IMR, IMR 4064
- 77. Scot, Brigadier 4065
- 78. Accurate, 2520
- 79. IMR, IMR 4320
- 80. Norma, N-202
- 81. Vihavuori, N540
- 82. Vihavuori, N140
- 83. Accurate, 2700
- 84. Alliant Reloder 15
- 85. Hodgdon, H380
- 86. Winchester 760
- 87. Hodgdon, H414
- 88. Vihtavuori, N550
- 89. Vihtavuori, N150
- 90. Accurate, 4350
- 91. IMR, IMR 4350
- 92. Hodgdon, H4350
- 93. Norma, N-204
- 94. Scot, Bridadier 4351 95. Alliant, Reloder 19
- 96. Vihtavuori, N160
- 96. Vintavuori, N160
- 97. Vihtavuori, N560
- 98. IMR, IMR 4831
- 99. Hodgdon, H4831 100. Accurate 3100
- 101. Norma, MRP
- 102. Vihtavuori, N165
- 103. Alliant, Reloder 22
- 104. IMR, IMR 7828
- 105. Accurate 870
- 106. Vihtavuori, 24N41
- 107. Hodgdon H1000 108. Hodgdon, H8700
- 109. Vihtavuori, N170
- 110. Vihtavuori, 20N29

CHAPTER 10

Bullet Casting

Operating a miniature foundry, best describes bullet casting. You melt a lead alloy and pour it into precision molds. It solidifies within seconds. Force the sprue plate aside to cut off the sprue. Then open the mold to release shiny silver colored bullets. Surprisingly, the part line, where the two mold halves join, is nearly invisible, a tribute to the skill of the mold maker.

Figure 44
Robert Lee, pretending he is making toy soldiers with his Uncle Bob's Gilbert Toymaker (circa 1928)

Not too many years ago, before our excessively protective society, good young boys were entrusted with equipment to make toy soldiers using molten metal. Dad probably had as much fun as the boy. If you were burned a little, it was just part of growing up. It's almost impossible to believe that was the case when you look at modern toys, which must be well rounded, soft, and too big to swallow. If you're old enough to remember, there is no need to tell you it was fun. If you haven't experienced it, you owe it to yourself to try it. You may feel

you're too old to cast toy soldiers, so have some fun casting your bullets and save a lot of money while doing it.

Bullet casting equipment need not cost very much. A heat source, pot to melt the lead, ladle, mold, stick and a rag to drop the soft bullets on is all that's needed. Cost can be less than 30 dollars. With the minimum equipment, the quality of your bullets will be every bit as good as bullets made with the most elaborate (spelled e-x-p-e-n-s-i-v-e) equipment available. My advice would be to buy a ten pound Lee Production Pot with the bottom pour spout. Use at least a two cavity mold. Buy a Lee Lead Ladle to stir and skim the molten metal. Don't get one of those ladles with the pour spout on the side. They were designed to pressure cast by holding the spout to the sprue plate then tipping the mold and ladle to the vertical position. This helps if you're using old fashioned iron molds, which are difficult to break in. When used with modern aluminum molds, a hot spot forms where the molten metal hits the side during the tilting process. The hot spot is the last portion of the bullet to solidify and causes a hollow due to metal shrinkage and makes an out of balance bullet. Continued use of a pour spout type ladle will damage the mold.

Hazards of Lead

Lead poisoning is a danger to anyone working with lead for an extended period. Lead poisoning is cumulative in the body. The body can get rid of lead only very slowly. Much more slowly than continued exposure will accumulate lead in the body. The good news is; simple precautions and common sense can reduce your risk to less than that of other hazards, such as taking a bath. Astronaut, now senator, John Glen was one of many persons seriously injured in a bathtub. The only person I know that suffered from lead poisoning was my Uncle Louie who was exposed while developing a new storage battery some 70 years ago.

Never eat after handling lead, without first washing your hands.

Melt lead in a ventilated area.

Be extremely careful with the material you skim off your molten lead. Most of this is lead oxide, which is most toxic and easily inhaled.

Don't accumulate this poison in your work area. Dispose of it after every casting session.

Keep your work area clean.

I hope you're now sufficiently frightened to be wary of lead poisoning so you will establish good casting habits. But not so scared that you miss the pleasure of making your bullets. I've been doing it for over 40 years with no ill effects.

If you don't normally wear glasses, be sure to use safety or shooting glasses. This goes for all phases of reloading and shooting. Gloves and a long sleeve shirt are recommended. A splash of 700 degree molten lead can cause a nasty and painful burn.

It may seem superfluous to give these next cautions, but they can and do happen all to frequently. Be very careful to not let a live round or primer find its way into the pot. It does happen. **Never get the slightest trace of moisture into your molten metal.** It will explode with an unbelievable violence. A metallurgist told me the amount of energy released is greater than just that of the water turning into steam. He was uncertain why it is so.

Lead Alloys

The late Len Weber introduced me to bullet casting in 1953. He supervised reloading for the Glendale Wisconsin police department. The best advice he gave me was to use any lead you can get your hands on and harder metal makes better bullets. He had a simple test for hardness. Using a ball peen hammer, he would smack the lead in question with the ball end of a hammer. By observing the size of the indentation, he could estimate the relative hardness and sort into batches. It was then quite simple to alloy for best results. I doubt he ever heard of the Brinnel hardness test, which uses a similar, but very precise system. His system worked very well. He was a thoroughly practical man and a great friend.

Dean Grennell, respected gun writer, and expert reloader, has more than once told me about his pot luck alloy. Dean, roughly quoted would say, "If it looks plumbous, I'm apt to make bullets out of it." Dean would be first to qualify the statement with advice that lack of bullet hardness may limit velocity.

You have probably guessed that my personal bullet alloy is not a scientific blend of precise amounts of virgin lead, tin and antimony. I, like most other bullet casters, have learned by experience what works. The most important property of an alloy is the hardness. The rule is, "Harder bullets are usually better than softer bullets." There is no lead alloy hard enough to damage the bore of your gun.

Exception to the hardness rule: Very low velocity mid range target loads are more accurate with a softer alloy. The soft alloy allows the base of the bullet to expand and seal the bore just like a hollow base bullet. In a perfect world there must be an ideal hardness for every load. For most of us it makes no difference because we can't hold that accurately anyway.

Figure 45 The stuff bullets are made from.

Sources of Metal

There are companies that sell bullet casting alloys. Your local reloading dealer may offer it for sale. Most reloaders are quite thrifty by nature, and usually pretty good scroungers. There are other good sources of lead at bargain prices. Wheel weights make great bullets. Check where you buy your tires. Usually they will have a good supply at the right price. Avoid shiny wheel weights as they may contain zinc. Check with the local shooting range. Those bullets can be recycled forever. Frequently range bullets have many 22 rimfire bullets and soft cores from jacketed bullets so the metal may be on the soft side. Son John tells me the range lead from the Hartford Conservation club was analyzed and it contained no tin. Some tin is needed to make casting easier.

If you're willing to buy larger quantities most salvage yards are happy to sell to a retail customer rather than sell to the smelter at wholesale. Keep your eyes open for linotype metal, it is a hard alloy of lead, antimony and tin. You can recognize it by its shape. Linotype metal is usually cast in 25 lb. ingots, about 2 feet long. It makes the best looking bullets and works well for maximum handgun loads. Straight typemetal is too hard for lighter loads. I usually blend it with other scrap lead for most of my shooting.

All bullet metal should have a little tin. Tin's most important attribute is its ability to make the alloy fill the mold better by reducing the surface tension of the alloy. Tin not only makes lead cast better, it makes it harder. It is a very soft metal. When alloyed with copper, another relatively soft metal, it makes bronze, which was the hardest metal available during the Bronze Age. Soldiers armed with bronze swords and bronze armor ruled the world until steel was discovered. The most ready source of tin is solder, which is available at every hardware store, but it is expensive. If you go to the salvage yard looking for tin, ask for "block tin". They'll know exactly what you mean. This is usually salvaged from beer coolers. It will look and feel like lead tubing. It's expensive, but it is pure tin, not a 40 to 60% alloy with lead as is solder. Solder used to sweat copper water pipes is mostly tin. Check the label to find the alloy. Pewter is also high in tin content. It's just not likely you'll find any at a bargain price.

Don't try to salvage lead from old storage batteries. Most of the lead is lead oxide that you can't easily reduce to lead. All new batteries have calcium added to make them maintenance free. This creates additional hazards of which I know nothing, but understand it is bad.

Muzzle loading guns require very soft bullets. They must be cast from pure lead. A simple test is to scratch the lead with your thumb nail. If you can easily scratch it, you can use it for your muzzle loader. Most hardware stores sell pure lead in the plumbing supply department. Old roof flashing, cable sheathing and lead pipe usually are pure lead. If in doubt, try scratching it with your thumbnail.

The other common alloy used to make lead hard is antimony. It has a melting point of 1167 degrees Fahrenheit. Much hotter than you should heat lead. Molten lead will dissolve antimony much the same way you would dissolve a hard candy in your mouth. Large pieces take considerable time to dissolve. Because antimony is usually not avail-

able to most of us in its pure form, it's not important to worry about how to alloy it anyway. The best source of antimony is that which is already alloyed, such as type metal or wheel weights.

A problem contaminant is zinc. Even a very small trace of zinc in your alloy can ruin its castability. Zinc increases the surface tension of lead causing the metal to try to ball up. This keeps it from filling into the corners of your mold and you don't get those nice sharp edges on your bullets. If you ever get a batch of metal that just won't make good bullets, you can be reasonably sure it has been contaminated with zinc. You can try to blend it away with other batches of alloy but you may waste more metal, because only one part of zinc in 10,000 parts of alloy is enough to cause problems.

To sum up the important points:

Hard bullets shoot better than soft bullets, because they are less likely to lead your bore.

Tin makes your bullet alloy more castable and harder, but it is expensive. Some tin, at least 1% is desirable.

Antimony makes bullets even harder, costs less than tin and is best acquired in type metal or wheel weights.

Zinc is bad! One part of zinc in 10000 parts of lead alloy will ruin its castability.

Just a few words about molds before we begin. As I told you in the beginning this book will mostly refer to Lee products because we believe those which we manufacture are the best buy for the money. We also have the same belief about molds. Most users must also believe it because we sell more molds than all the other manufacturers combined. Unfortunately, many bullet shapes and calibers are not available from Lee Precision. This forces the customer to buy another brand. The cast iron molds made by RCBS, Lyman, and Saeco are machined with a different process. The mold halves are moved into a rotating cutter called a cherry. The mold halves must be frequently opened to clear the chips and remove the part line burr. The quality of the mold depends upon the skill of the operator, condition of the cutter and the rigidity of the equipment. A good mold is usually produced. Size and finish will change as the cutter wears.

For years I've used Lyman molds and produced ten's of thousands of bullets with satisfaction. One evening, I was mulling over the characteristics of aluminum. The heat transfer rate is very high. Aluminum instantly surface oxidizes to form a protective film against further oxidation. This aluminum oxide is the same material of which grinding wheels are made. In its natural form it is called agate, ruby, sapphire or emerald depending on color and purity. Aluminum is easily machined. Even more important, aluminum weighs only one third that of iron. This was especially important to me at the time. I had recently helped the Glendale Police department cast bullets with a ten cavity Hensly Gibbs mold. That is a real load.

With all of this going for it, aluminum seemed a natural for a bullet mold. I quickly produced the first crude aluminum mold in my basement workshop. To my delight, it produced good bullets with less effort than I experienced with all commercial brands.

I used locating pins as with conventional molds. The locating holes soon elongated and the mold was useless. To overcome this obstacle a mold with perimeter alignment using "v" ribs and grooves was invented and a patent issued.

There are many good molds made from iron. These require a little different care and the instruction from the manufacturer must be followed to the letter. The biggest weakness with iron molds is the propensity to rust. I always stored them with a bullet in the cavity in hopes they would not rust. Unfortunately, they did finally succumb to rust and are now useless. The problem is; you just hate to oil the mold because the next casting session will require starting from scratch. The mold has to be "broken in" again.

Lee molds are all lathe bored. The mold halves are securely clamped together and rotated in a lathe type of machine. The cavity is completely machined with a series of drills, cutters and boring tools. There may be as many as six different tools working sequentially to make a single cavity. The benefits are many. The mold is perfectly round with an almost invisible part line. Size is easily adjusted for tool wear and the quality is unsurpassed. The process sounds complicated and is complicated. However, it happens very fast. The entire operation usually takes only 30 to 50 seconds per cavity.

The downside is the equipment and setup are costly and time consuming. It is very expensive to produce a single mold. In spite of this, some customers are so totally satisfied with Lee molds that they demand special custom made designs.

For these few who know what they want, we offer custom molds at the regular price plus a one time hundred dollar setup charge. Anyone interested in such a service should contact the factory for a design assistance sheet. This includes most information needed to design a bullet that can be made with our exclusive process. We do not encourage custom work as it returns little or no profit, especially if problems are encountered. It is not unusual to waste several mold blocks setting up a job. The scrapped blocks are collected in a 55 gallon drum for sale to a recycler. You can imagine my feelings walking past this scrap barrel knowing that if they were all good they would be worth twenty to fifty dollars each rather than 20 some odd cent per pound as scrap.

Setting up for Bulllet Casting

A sturdy table or workbench, glasses or safety glasses in a ventilated area, with an easily accessible electric outlet are the minimum safe working necessities. Gloves and a long sleeve shirt are desirable.

Figure 46 Your bullet casting setup should look something like this.

Natural fiber clothing is best as most synthetic fabrics melt when splashed with molten metal. Besides the above, you should have an ingot mold, bullet lube, lead ladle, ³/₄ to 1 inch by a foot long hardwood dowel, another rag and a shallow pan.

Place your melter back from the front edge 12 to 14 inches. This gives you a work area between you and the melter to empty your mold. Lay a cloth on the bench to cushion the bullets dropped from the mold, as they are still very soft. An old terry cloth bath towel is ideal.

Fill your melter with alloy and turn it to number 7 heat if it is a Lee melter. This setting will permit the melter to operate full blast until the metal has all melted. While waiting for your metal to melt, use this time to clean your brand new mold of cutting fluids left from the manufacturing process.

Dip a cotton swap in solvent and clean only the cavities. Any solvent seems to work. Mineral spirits, white gas, alcohol, spot remover, lighter fluid or even detergent will do the job nicely. Don't clean the sprue

plate or other steel parts. Let the rust proofing oil cook onto them. It provides a rust resistant coating. Sort of like seasoning a cast iron frying pan. This cleaning operation need be done the first time only. Place your mold on top of the melter and let it dry and preheat. Don't let the wood handles touch the melter as they will char.

Neatly fold a rag into a pad about 4 x 6 inches. Completely soak it with water and lay it in a shallow pan. Use this to cool your mold when it starts getting too hot for efficient casting.

By now your metal should have melted. However, you're not quite ready to start casting. It is assumed you're using a Lee aluminum mold and it must be lubricated or it will not only cast poor bullets, but it can be irreparably damaged. The mold should be hot from the preheating. If not, dip a corner of the mold in the molten metal for 8 to 20 seconds and let it get hot. Now lubricate the mold with a small sliver of Lee Alox beeswax bullet lube. Touch the "V" ribs, cross pin, and sprue plate bushing with the Alox lube. Don't let any lube get into the cavities or your cleaning job will have been wasted and it becomes 10 times harder to clean bullet lube from the cavities.

What ever you do, don't skip the lubing operation. Hot aluminum gets sticky. The mold halves won't close properly and your bullets will be out of round. The lube you put on the sprue plate bushing slowly works between the sprue plate and mold blocks to keep them from galling and it helps prevent the bullet from finning on the base.

The mold should also have a light coating of soot from a match. A butane lighter works better. Don't use a candle as it deposits an oily coating, which gasses off when it contacts the hot alloy. This keeps the mold from filling properly.

One last and very important operation before we start casting. The alloy must be fluxed. You will notice a

Figure 47 Be sure to lube your mold.

gray scum floating on the top. This is not waste. Most of it is your costly alloys. What happens is; the alloys tend to ball up into very tiny spheres. They don't want to join because of the surface tension. The flux breaks the barrier and the metals alloy. Many fluxes are available, but most are very corrosive to steel and they will badly rust your melter. Bees wax or Lee stick bullet lube works just fine as a flux and is not corrosive.

Place a lump about the size of a large pea into the pot and stir with your lead ladle. The smoke can be burned off with a match. A properly fluxed pot of alloy will have nothing but some dark gray powder floating on the top. Skim this off and dispose it. Do not let it accumulate as it is a deadly source of lead poisoning.

Now you are ready to start casting. Quickly fill all the cavities leaving a generous amount of lead mounded on the sprue plate. This is to maintain a molten puddle to feed the bullet as it shrinks from cooling. When the puddle starts to harden, open the sprue plate with a sharp rap with the wood dowel. If you're using a Lee six cavity mold, open the mold with the sprue plate lever. In either case, immediately open the mold and let the bullets fall on the soft cloth. This is important as the bullets are still very soft as they are still close to the melting temperature.

Most likely the bullets will stick in the mold. Use your wood dowel to tap the bolt on the mold clamp pivot. This should free the bullets. If you did everything correctly, you will have beautiful shiny bullets, completely filled out with nice sharp edges. This will also be highly unusual. Under the best of conditions it will take 2 or 3 tries to produce good bullets.

After each cast, quickly close the mold and immediately refill the mold. If you are using the Lee six cavity mold, be sure to close the sprue plate lever completely. The first few degrees of opening angle depend upon the lever to cam against the mold block to break the sprues.

If you haven't done everything exactly as instructed and you don't have a good alloy, good bullets may not be produced for many tries. This can be very discouraging. It is far better to spend your time up front preparing the mold, then you'll get good bullets very quickly. The mold preparation is a one time chore. With a mold that has been "broken in", good bullets come very quickly.

Bullet casting problems.

Best way to avoid problems is read and follow the instructions. The following are common problems we are most often asked to solve. If you know what kind of problems to expect the chances of having them are greatly reduced.

Out of round bullets, because the mold halves were not lined up, is the number one problem. It shouldn't be. The reason is aluminum becomes very sticky when it gets hot. The "V" ribs won't slide into the groove unless they have been lubricated. Lubricate the mold and you won't have the number one problem. It is explained 4 times in the instructions and yet it remains the biggest problem.

Another big reason for out of round bullets is a splash of lead between mold halves. Dropping bad bullets from the mold directly into the pot causes this problem. Remove any lead from the mold by picking it off with a small knife blade.

Sprue plate galling on the mold top is another problem solved simply by lubricating the sprue plate bushing with bullet lube.

The mold doesn't fill out.

This can be caused by a variety of things. The mold is not hot enough, the alloy not hot enough, the mold not cleaned and smoked or a bad alloy. You'll have to search out the reasons and eliminate them with the proper corrective action. Only a bad alloy is difficult to determine except by testing it in a mold that has worked well in the past. Reread the previous comments about bullet alloy to see if perhaps you can determine the problem.

Here is a last resort to try to make a mold fill. Use a propane torch and play the flame directly into the cavity to burn out any trace of oil and condition the surface. Be careful to not melt the aluminum. When the soot burns off from the smoking operation chances are it is hot enough.

I don't know what happens to the mold surface that changes it from new to broken in. A mold that is properly broken in and cared for is a joy to use. I've tried to artificially break in molds by baking them in a hot oven, acid, drain cleaner, silicone and other coatings. Nothing seems to work as well as simply using it. If you have a good mold that works well, good advice is, never lend it to anyone.

When a mold gets too hot it not only slows the casting process, but the bullets come out of the mold with a frosted appearance. I have never found this to adversely affect the quality of the bullet and it may actually make a better surface to which the lubricant can adhere. My opinion is, the frosted bullets are no problem, but the slower rate of production is a problem.

The solution is simple. When the mold gets too hot, cool it. That's the reason for the wet pad in a shallow pan. With bullets in the cavities lay the mold on the wet pad for just a second or two. The water turns to steam and takes many B.T.U.'s with it. As you get into it, you'll find touching to the wet pad becomes part of your rhythm. Depending upon how hot your metal is and the size of your bullets, you'll quickly learn to touch the pad every second to tenth cast. It is extremely important to never let any water get into your molten alloy as it will explode. The reason this method is so safe is any water that touches the mold turns to steam instantly. If not, your mold is too cool.

One last problem that comes up quite often is a dull spot on the side of the bullet. This is usually caused by casting with one of those ladles with a pour spout on the side. The user tips the mold against the spout and then tips the assembly letting the metal pressure feed into the mold. The problem is the molten alloy fills the mold by bouncing off one surface of the cavity. This superheats a spot in the cavity and is the last part of the bullet to solidify. All shrink is at that hot spot and you get an out of balance bullet. The shrinkage must be from the base of the bullet so the metal heaped on the sprue plate can make up the shrink.

This is a good time to explain a little more about sprue plates. This clever way of closing off the end of the mold is a more complicated device that first meets the eye. It is full of paradoxes. One would think that the tinniest possible through hole would make the best bullet because there would be only the smallest of nib to cut off. The problem is, when the hole gets too small the mold simply doesn't want to fill. Even if it does fill, the metal above the plate won't feed through the hole to take care of the cooling shrink.

A large sprue hole makes the best bullets. However, if the hole gets too big it becomes difficult to cut the sprue and the base of the bullet becomes uneven. The optimum hole size varies not only with the material from which the sprue plate is made, but also the thickness of the material, angle of chamfer, temperature and alloy. We have experimented

with a large variety of sizes and found that which works the best overall. That is the size supplied on our molds.

When we first started producing aluminum molds, it was mandatory to submit a sample to the American Rifleman for testing before they accepted advertising. The late Col. Harrison from the staff of the American Rifleman, was a noted expert on all phases of reloading and especially cast bullets. He called after testing the sample and said the mold wouldn't fill properly.

I asked if he had followed the instructions and smoked it.

He asked, "Smoked it?" and went on to apologize for not having read the instructions. The next day he called and said that it was the nicest casting mold he had ever used. He was so impressed with the aluminum mold that he took it a step further and had an aluminum sprue plate made for it. It impressed him enough to do a separate article on the benefits of aluminum sprue plates verses steel sprue plates.

It was because of his article that we produced our commercial quality 6 cavity mold with an anodized aluminum sprue plate. It works very well.

The only molds that I've ever seen which can compare to Lee molds, as to casting ease, are the aluminum ones made by Veral Smith of LBT industries. The sprue plate is very thin steel with a ridge to stiffen the plate and form a dam for the alloy. This combined with a rough surface between the mold halves and rinky sprue plate hold down make it look cheap, but it works very well. The rough surface at the part line makes a great vent and we do the same on some of the Lee molds with good results. That thin sprue plate works fine. I suspect the thin plate has a low capacity for heat as does the thicker aluminum we use on our six cavity molds. The sample I tested made good looking bullets right from the start. I think most LBT customers are pleased with the molds. Limited production keeps the price a little steep.

Bullet Lubricating and Sizing

All lead bullets must be lubricated. They must be sized only if they are too big. Bullets can be enlarged by squeezing the length, or "bumping", if they are too small. This is the long and short of it.

First, let's look at bullet sizing. Bullets do not require sizing if they are made correct in the first place. One of life's great frustrations is to receive a mold from a customer. The customer complains, "The sizing die barely touches the mold." Then requests we replace it with a larger one. The customer had a perfect mold and wants it replaced with an imperfect mold so that it will produce imperfect bullets. They will need sizing to make them not quite as good as the bullets he had in the first place. We oblige the customer and throw the perfect mold away, as a used mold can't be sold.

The mold maker must have some tolerance to make the mold. We can no more make every mold exact to the nearest .0001 of an inch, than you can consistently put every bullet in the same hole at 200 yards. With great pride, we at Lee Precision make molds with less tolerance than any other manufacturer. Our tolerance is smaller than the combined variances you can expect from the shrink difference of various alloys, alloy temperature and mold temperature. No other manufacturer will tell you what their tolerance is. Our bullets are not only guaranteed round to within .001 inch, but they also will be the stated size minus nothing, plus .003 inch. The tolerance is reversed for bullets intended to be used with black powder guns. The reason is an oversize bullet can more easily become stuck in the bore when loading from the muzzle. Too small is better, than too big with black powder guns.

A bullet, to shoot accurately, must fill the bore to both seal the high pressure gas pushing it out of the gun and engage the rifling to impart spin. A bullet that is too small will do neither of the above.

The problem of excessively large bullets is not exactly as one would expect. The oversize bullet does not present itself as a hazard that will raise pressures so much that the gun will explode. Basic engineering calculations assure us that the pressures needed to push a bullet into the bore and size it to bore diameter is approximately a few hundred pounds. That's a very small percentage of the peak pressure available.

Figure 48 Star lubricator and sizer. Bullets are pushed through the die and drop out of the bottom

The real problem is that an oversize bullet will enlarge the case too much to chamber in the gun. If forced into the chamber, the case will pinch the bullet. This raises the start pressure to an unacceptable level and will disrupt the pressure curve. An already hot load becomes a dangerously hot load. Of course, if you have been prudent in your load selection initially, the extra pressure, instead of moving into the dangerous area would only be near the high cautious side.

Cast bullets vary in size from the mold tolerance, alloy, casting temperature and molder's technique. Most cast bullets need to be sized to fit the bore. What not everyone agrees upon is, which is the best way to size the bullet. Lets look at the options.

The first option is to let the gun bore size the bullet. The bullet doesn't know

the difference if it is being squeezed down to size by a bullet sizing die or the taper leading from the chamber to the bore. Some proponents of this suggest that letting the gun size the bullet softens the lead less than a sizing die because it happens so fast. This is another advantage, because soft bullets tend to lead the bore more than hard bullets. Most guns shoot smaller groups with slightly larger bullets. The most convincing argument in favor of shooting unsized bullets is, that it saves an operation.

The single problem with letting the gun size the bullet is with bullets that are excessively large. Oversize bullet loaded in cases that have thick walls may be too large to freely chamber in your gun. If you are loading straight sided handgun ammunition the loaded round can be sized with a Lee Carbide Factory Crimp Die. This die sizes the loaded round and can install a firmer crimp than is possible with a conventional bullet seating die. The downside is it requires an extra operation.

The second option is to use a combination lubricator and sizer. This is a rather expensive device that sizes the bullet by pushing the bullet into a die and then injects lube into the grease grooves. Most models other than the Star require the bullet then be forced out of the die by the reverse stroke. This isn't so bad except that it requires you handle each bullet twice, put it in and take it out. Everytime you change nose shape or diameter, you must buy a rather costly die and or nose punch.

I have sized and lubed many thousands of bullets with a Lyman lubricator and sizer and it worked well. The bullets come out of the die sized with lube in all the grooves. Unfortunately, the lube is only in the grooves and none on the outside diameter where it is most needed. They also have an irritating defect. The lube is under pressure and shuts off with a plunger of bullet diameter. The bullet moves the plunger out of the way to expose the holes or undercut in the die so the lube will squirt into the lube grooves. All too often, the lube leaks between the bullet base and shut off plunger and it gets messy. This irritation can be avoided by drilling a hole lengthwise through the shutoff plunger. The lube will then harmlessly vent out of the bottom. Don't make the hole too big. A 3/16 hole will work for most 30 and larger calibers.

While the latter is only an irritation, there are some more serious

Figure 49 Lee Sizer mounted on a Reloader press.

drawbacks to combination lubricator sizers. Pushing the bullet through by the nose requires a closely fitted nose punch for every bullet shape and caliber. The accuracy of the sizer is dependent upon the alignment of the die and punch with the press. Because all the dimensions are cumulative, there is a possibility for considerable er-This offset between punch and die can be sufficient to size the bullet off center and make bad bullets out of good ones. Some sort of floating bullet punch would make the machine a hundred percent better.

When using a combination lubricator and sizer, you can

do a big favor for your local indoor shooting range. Lube only the end groove if you're shooting light loads. Reduced charges require very little lube. The excess simply messes up the range.

The last entrant to the bullet sizing derby was invented by Lee customers and it is rapidly becoming the most popular method by far. Years back, when the only product of Lee Precision was bullet molds and melters, we felt that there was a need for an economical method of lubricating and sizing bullets. If the only way to lube bullets was an expensive combination lubricator and sizer, it would be very difficult getting people interested in bullet casting. Our lubricator and sizer consisted of a stick of lube, pan, lube cutter and a bullet sizer and punch. The bullets are stood upright in the pan and melted lube poured around the bullets. The bullets are cut free of the lube with the cutter and then pounded through the sizer nose first with a punch and mallet. The qualities of bullets are second to none. The process is slow and messy.

Users continued to send sketches of how they modified the sizing die to fit their reloading presses. One even suggested a container to catch the bullets as they are pushed through the die. It wasn't until Ed Harris, noted and respected writer and shooter, told me about an excellent Alox bullet lubricant that it all came together. I made the drawings for the punch and die. Son John designed a storage and shipping box that doubled as a container to catch the bullets after sizing. It became the most popular sizer made.

The Lee sizer is popular not only because it is low priced and fast, but it makes the best bullets. Bullets are pushed through nose first with a flat punch. No special punches are needed. The bullet is guided into a long tapered opening by a floating punch mounted into the ram of the press. They are sized with minimum distortion and maximum precision. The best part is that the complete kit, with enough lube for thousands of bullets, costs less than only the die for the expensive combination lubricator sizers.

Lubricating the bullet

Lead bullets must be lubricated or they will lead the bore so badly as to make accuracy impossible and gun cleaning a nightmare. There are many ways to lubricate bullets. You may have noticed that even 22 rimfire ammunition has a waxy coating. Many formulas have been tried with varying success. Some commercial lead bullets have an inferior coating with resulting poor performance.

Figure 50 Tumble lubing bullets.

The method of applying the lube has varied. A lifetime ago, when I started casting bullets, the accepted best method was to make a bullet with one to a few grooves in the shank. Fill the grooves with lube. The grooves act as a reservoir to supply lube during the trip down the bore. This method remains popular today. Exotic new lube formulas are continually being concocted and tested by experimenters everywhere.

It was one such experiment by Ed Harris with a liquefied Alox that proved to be unusually successful. Ed was delighted with the results and offered it to one of the other big reloading tool companies. They weren't interested. I suspect they recognized that if this brown magic liquid got into the hands of bullet casters, not too many expensive lubricators and sizes could be sold.

Ed Harris called to see if we were interested in the Alox lube. His call could not have been more timely. I had been working trying to develop such a lube with little success. I was using concoctions containing Teflon trying to make it stick by etching the bullets. My experiments were going nowhere. I could not come up with a single lube that would work as well as the old standard Alox beeswax mix.

Dennis Marshall, contributing editor for the American Rifleman, taught me a clever method to test the effectiveness of a lubricant. The test consisted of weighing the barrel of a 45 automatic. Then firing 25 rounds of the ammunition to be tested. Lightly clean the barrel to remove loose fouling and weigh again. The difference in weight is the amount of lead deposited in the bore.

Test results appeared to be in error with my first batch of bullets treated with the liquid Alox. The barrel actually weighed less after firing the 25 rounds with the liquid Alox. I checked the scale and my previous test re-

Figure 51 The bullet melts and the Alox lube clings to the hot bullet.

sults. Everything checked. The liquid Alox bullets not only did not lead the bore under the same conditions, they removed some of the leading I hadn't been able to scrap out with the bronze cleaning brush. This stuff was good! We wasted no time getting it to market. It was the perfect complement to our customer invented lubricated and sizing kit.

The lubed bullets perform beautifully with little or no leading. The great thing about the lube is that it is on the outside of the bullet, exactly where needed. It dries to a soft varnish like finish and adheres almost as well. The lube thrives on heat. You can melt the bullet and the lube continues to stick to the bullet like tar to your shoes on a hot summer's day.

Gas Checks

Gas checks, as we know them today, are small precisely made copper cups that fit on the base of the bullet. Hornady Bullet Company makes all gas checks and are resold under different brand names. Gas checks are a method of enhancing bullet performance by sealing the base of the bullet against gas blow-by and shielding the lead from the high temperatures generated by the gunpowder.

Normally, plain base bullets can be fired at velocities up to around 1400 fps with good results provided the bullet is hard enough. A gas check attached to the bullet base, increases the high limit to over 2000 fps. Using heat treated bullets and special lubricants, some experimenters have achieved significantly higher velocities.

Many materials besides copper have been used as gas checks. Wax wads, zinc rings, Dacron, corn meal, kapok, and I've even tried the fluff from a milkweed pod with a fair amount of success. The copper gas check has become the most popular by far. They are low cost and readily available. Gas checks have an internal ridge that crimps onto the bullet base when the bullet is sized. Follow the instructions with your tool. The Lee sizer works the best because the gas check is pushed home and crimped automatically. It eliminates the need for a separate seating operation.

CHAPTER 11

Reloading Shotgun Shells

Shot shell reloading is similar to metallic cartridge reloading. The hull must be deprimed, reprimed and charged. A wad is inserted, the shot charge is added and then the shell is crimped. However, there are many aspects of shot shell reloading totally unlike metallic cartridge reloading.

The shell or hull or case, as commonly called, is usually plastic or paper. Pressures generally are modest compared to most rifle ammunition, usually only 8000 to 11000 pounds per square inch. Rifle cartridges can go over 60,000 pounds per square inch. This doesn't mean we can be any less careful in reloading shotshells because shotguns are working at maximum safe design pressure. The results of an overload can be every bit as dangerous as a rifle overload.

Shells

Shotshells have been made from metals such as brass and zinc. The lifetime metal cases used a cardboard disk in the mouth to retain the shot. This over the shot wad was held in place with brittle glue called waterglass. Before the invention of the star crimp, all paper shotgun shells were closed with an over the shot wad held in place with a roll crimp. Nowadays, we only see a roll crimp on slug loads. That's changing with new slugs for handloaders. (See Slug Loading)

Shotgun shells come in many colors, paper and different plastics, high and low brass, and some with no brass. Trap and skeet shells are the best shells for reloading. They reload easier and last longer than other hulls. A desirable feature is they usually have the greatest internal capacity and are usable for trap, field, magnum and slug loads. The length of the brass head has no effect. Its only function is sales appeal. I strongly suggest using trap and skeet shells for all of your shotshell reloading. Other types of cases can be loaded. If you have a supply use them, they work well but won't last as long and the crimp may not be as neat.

Wads

The use of a wad to separate the powder from the shot has little parallel in metallic reloading. While grease wads, gas checks, and fillers may sometimes be used for metallic reloading, the reasons are entirely different. The shotshell wad separates the powder from the shot. Its most important function is to seal the hot expanding gas behind the shot. Otherwise, most of the gas would blow through the shot. The seal on most modern wads is like a pump washer. They have a cup like bottom with a thin skirt to seal the gas.

Another function of the wad is to provide a cushion to absorb some of the shock of acceleration. Wads usually have a honeycombed or collapsible portion between the shot cup and the gas seal. Years ago felt wads cushioned the shot and filled the case.

Modern wads also have a shot cup. This helps protect the shot from damage during its high speed trip down the bore. When using steel shot, the cup helps protect the bore from the shot. Wads for steel shot are not the same as those for lead shot and visa versa. The shot cup is always split in several places. The resulting petals catch the wind and open up like a daisy. This slows the wad very quickly and lets the shot spread to a useful pattern.

Select wads not only by gauge, but also by length. A shotshell must be filled the exact amount to leave just enough tube to form a crimp. If filled too full, you won't be able to crimp the shell, or the crimp will bulge open in storage. Shells not filled enough will crimp too deeply and allow the shot to spill out of the opening. To make matters even more complicated, shells vary in internal capacity, Charges vary in volume and shot charges vary according to the weight you select to suit your needs. Shells have different internal depths and wall thickness.

It's not as bad as I made it sound. Ninety percent of all shotshell loading is for target shooting. Trap and skeet shells are, by design, made very reloadable. Wads are readily available for all usual combinations of loads. It is important to select the correct ones. Usually information, printed on the wad package, shows the cases and shot weights and wad type to use. Because wads have a portion that is collapsible, a slightly long wad can be compressed when loading. This makes wad length selection considerably easier. For much of your loading just two sizes of wads will normally suffice.

Primers

Shotshell primers have evolved into a complex, dependable, and inexpensive igniter. All American made shotshells use "battery cup primers". Within the battery cup is a metal anvil centrally positioned to pinch the primer pellet when the firing pin strikes. The flanged end of the battery cup accepts the cup like container, which contains the priming pellet. Most primers have a seal over the flash hole to keep the gunpowder from entering. Otherwise, the fine powders filter into the battery cup and give the appearance of excessive pressure.

All major brands of shotshell primers are top quality. There are some subtle differences that can be used to an advantage. CCI primers usually are slightly larger in diameter. This makes them desirable for loading well-used cases, which tend to have enlarged primer holes. Federal brand primers usually have a little more power. Load data acknowledges this. Loads with all components identical, except for the primer, will usually suggest a slightly reduced powder charge when using federal primers. A rule of thumb would be, "It is safe to substitute another brand of primers in place of Federal, because pressures will be less."

With the above rule in mind, it is easy to see how load data supplied with Lee shotshell loaders is not dangerous with a variety of components. The listed loads assume the user will be using components that will cause the highest pressure. The recommended powder charge is correct for those components that produce the highest pressures. Any change of components will give lower and safe pressures. Therefore, component substitution will produce lower pressure and velocity and a tighter pattern. Not a bad trade.

Shot

Select shot charges, first by weight and then by size. The smaller the shot number is, the larger the size becomes. They ran out of numbers for the larger sizes and substitute letters such as BB, BBB, T and TT. I have no idea why there is no "A" or what happened with "C" through "S". My shooting has been mostly limited to #8 for trap shooting. Next larger is the buckshot. This comes in 0, 00, 000, 0000 sizes.

It is most important to use the correct weight of shot for the load selected. Too much shot will raise pressures to the danger point. The

shot charge is the stopper in the tube that confines the gunpowder, to get it burning properly. A shotshell loaded with a slow burning gunpowder, and a wad without shot often doesn't have enough power to blow the wad out of the barrel. The gunpowder stops burning before the wad clears the bore. The opposite is equally true. Too much shot will cause the powder to burn faster because the shot can't accelerate fast enough to lower the pressure. The higher pressure increases the temperature and the powder burns faster. Compare it to a car trying to push a dump truck. It can be done on a level surface. It won't go faster with a running start.

Another characteristic of shot is its hardness. Chilled shot is hard shot. When lead is alloyed with antimony and quickly cooled, or chilled, it becomes harder than if cooled slowly. Hardness of the shot is desirable. Harder shot deforms less and gives better patterns. Some shot is copper plated to make it even harder. Now anything can be taken to an extreme and shot is no exception. Years ago someone tried steel ball bearings and found that the pattern didn't improve and it raised heck with the barrel. That's why modern steel shot is annealed to make it just as soft as possible. Most shooters feel steel shot is still too hard. More than one gun has been ruined with steel shot. Let's hope we never see the day that lead shot is outlawed.

When loading shotshells, shot is always measured by volume. Yet, all load data is given in weight, namely ounces. A normal physical property of little round shot spheres is, an equal volume of smaller spheres will weigh more than larger spheres. This means that a one ounce shot bushing will hold a greater weight of number 9 shot than number 2 shot. We, at Lee Precision, solve this conundrum by calibrating our bushings using number 6 shot. This is sort of the mid-point of the average shot used by most shooters. The single exception is the 1 1/8 oz. bushing is calibrated with number 8 shot. The logic behind this is, trap rules limit the charge to 1 1/8 oz. of shot no larger than 7 ½. This makes your loads legal should you ever be challenged.

An interesting observation about shot is the price. You'll find shot bagged in a nice heavy cloth bag costs less than an equal weight of lead in a hardware store. Next time you pick up a bag of shot at your favorite sporting goods store, thank the shopkeeper for helping keep your price of shooting down. It is a good bargain.

Drams Equivalent

Units of measure always seem to have an interesting little story of how they started. A yard was from the king's nose to the end of his outstretched arm and most certainly a foot must have been equal to the king's. Gauge is the shotgun's bore diameter that is equal to the number of equally sized lead balls that would total to one pound. In other words, a 12 gauge is the same diameter of a lead ball that weights 1/12 of a pound. A 20 gauge is the same diameter of a lead ball that weights 1/20 of a pound.

A dram is a contraction of the word drachm, pronounced dram. Webster's Dictionary says it is a unit of weight in Apothecaries and Troy and sometimes Avoirdupois. Referring to Machinery's Handbook, there are 8 drachms to one Apothecaries' ounce or 480 grains. However there are 16 drachms to one Avoirdupois ounce, 437.5 grains. Interestingly, a grain is a grain if you measure in Apothecaries', Avoirdupois or Troy. The grain is the least common denominator of all the above weighing systems.

Whatever measuring system is used, we continue to tie our present day calibration of shotshells' energy to the days of black powder. A 12 gauge 1 1/8 oz. 2 ¾ dram equivalent 2 ¾ inch shell means that the shot charge is 1 1/8 ounce. The velocity is equal to the same weight of shot in front of 2 ¾ drams of black powder. The 2 ¾ inch refers to the open length of the shot shell. It so happens that the standard mean velocity would be 1145 feet per second for the above shell. A 1 1/8 oz. 3 dram load would have a velocity of 1200 feet per second. As the variation can be plus or minus 40 feet per second, it's apparent that a 2 ¾ dram load can be faster than a 3 dram load and still be within tolerance. I mention the last to simply point out that we shouldn't become carried away seeking perfection. If you get a load that you can consistently break targets with, don't worry if the velocity varies from the standard. Velocity of factory ammunition varies. Yours may also vary and still be very good ammunition.

Loading Shotgun Shells

Assuming you have now gathered all of your components to load your shotshells, lets get started. Sort your empty cases by brand and type. Trying to load shotshells of different types is asking for trouble. Not only is the internal capacity different, but the construction is different.

Load data is not the same for all cases. Cases with a paper or fiber base wad require more powder for the same velocity. Inversely, a charge suitable for a shell with a fiber base wad will be dangerous in a one piece plastic case.

Almost without exception, shotshell reloading is done on a machine that does all the operations. Unlike metallic reloading, there is no die changing and almost no adjust-Always ments. follow the instructions that come with the machine. The Lee Load-All is a typical shotshell loader. We will use the actual instruction sheet to show the various steps.

Your Lee Load-All II is factory set and requires no adjustment

STATION 1

Slip the sizing die, grooved end up, over the shell. Place the shell in STATION 1 and pull down the handle. This will full length size and deprime the shell.

STATION 2

Place a primer in the

priming pocket at STATION 2.
Move the shell onto STATION 2; pull down the handle. The sizing die will automatically be pushed off at this station. Remove it completely from the shell.

STATION 3

Slip the shell into the wad guide at STATION 3.

STATION 3a

Lower the handle and slide charge bar to the right. This adds the powder.

STATION 3b

Raise the handle, insert the proper wad and lower the handle until it stops.

STATION 3c

Slide the charge bar to the left to add the shot. Raise the handle.

STATION 4

Place the shell under the proper crimp starter.
Keep an inward fold of the shell mouth toward the front for proper alignment with the segmented starter. Depress the handle to a full stop. Some shells may require a 2-second pause to set the plastic.

NOTE The 8 segment crimp starter is in the front on the 12 GAUGE only. the other gauges have the 6 segment starter in the front. Be sure you select the correct one.

STATION 5

Immediately move the shell into the shell holder at STATION 5 and complete the crimp. You should have a perfectly crimped shell with a nice, tapered end.

IMPORTANT

A good crimp can only be obtained if the wad is the correct length. After the shot is added, there

should be about 1/2" of shell above the shot on a 12 gauge, about 7/16" for the 20 gauge, and just slightly more for the 16 gauge. If the crimp is too deep with a hole in the center, use a longer wad. Mashed in crimp or crushed cases indicate the wad should be shorter.

Remember always follow the instructions supplied with your reloading machine.

Reloading shotshells saves money and is a rewarding pastime. Factory ammunition is usually good quality and we reloaders can normally only strive to match the quality at substantial savings. There are exceptions. Sometimes, we may want to make loads not otherwise available, such as reduced loads for junior training or spreader loads for a larger pattern in a tight choke. However, we mainly load shotshells for the savings and the fun of doing it.

Good components assembled correctly make good reloads. There is no reason your reloads can't be every bit as good as factory ammunition. After all, the same components are available to the reloader that the factory uses. For optimum results, follow the published load data exactly. A frayed split shotshell won't have as tight a crimp as a once fired case. It will be safe but may have less velocity. Use them for practice. Don't be surprised if they break more targets. It has been my experience that most shooters tend to shoot loads hotter than needed. A little velocity loss usually results in a tighter pattern and less recoil. Now that you are a reloader, you have the luxury of experimenting to find out for yourself how much the variables really do affect performance. Most important, you can now afford to shoot more and improve with practice.

Reloading Steel Shot

Because steel is lighter than lead, it is necessary to use a larger size shot to obtain similar exterior ballistics. We experimented with steel shot long before it was considered for environmental reasons. Tom Kissel, a friend and shooting companion, bought several bags of assorted sizes of steel shot of the type used for shot blasting. Anyone who knows anything about shot blasting will tell you that stuff is hard, very hard. The big attraction to steel shot was its price. I don't remember the numbers, but if steel would work we could have saved much money in a year's shooting.

Being quite young and totally ignorant on the subject, we rushed in with great enthusiasm. We were smart enough to start with light loads and work up. These were the days of the Lee Loader for shotgun shells. Any of you old enough to remember, it was a portable hand

tool. We tried a single shell and immediately tested it on a clay target. We would shoot and check the bore. After gingerly testing several loads, we were convinced that the power piston shot cup was protecting the bore from any damage as we could see no scratches. Well, we loaded and shot and changed shot size and powder charges and shot some more. It wasn't until we got home and cleaned the guns that we discovered the shot cup hadn't protected the bore as we thought. The bore, just in front of the chamber had multiple scratches and there were several farther down the bore.

In spite of the damage to the guns, we were encouraged enough to buy even larger sizes of shot for further testing. Finally, we determined our steel shot experiments would never produce ammunition as good as lead shot.

Modern steel shot is still many times harder than the hardest available lead shot. An equal charge by weight of steel shot will require more space in the shell. The space is available, but it comes at the expense of the wad cushion. This makes shot loads more sensitive to charge variations and powder types. The gun companies are going to have to provide longer chambers or larger bores to enable the shooter to approximate lead ballistics with steel shot. Perhaps steel shot loads should be labeled "ounces equivalent" when referring to the steel as a replacement for the lead. See how these standards start?

Components for steel shot are becoming available for the reloader. First and foremost, follow the instructions that accompany the components you buy. The problem of steel being lighter than lead cannot be completely solved if we limit ourselves to guns and ammunition designed for lead shot.

Always follow the instructions supplied by the makers of the components you buy. The Lee Load-All loads steel shot very nicely. Because steel shot fills the case more than lead, it may be necessary to raise the case while seating the wad. A couple steel washers taped in place to the base in the wad seating station works well. If more height under the wad guide is needed, raise the wad guide to the position for 3 inch shells.

SHOTGUN SI UGS

Figure 52 The new Lee Drive Key slug mold and slugs saves 70 to 80% over factory slug loads.

New techniques make shotgun slug reloading extremely attractive. Savings are huge and the resulting ammunition is better than produced by the factory.

Previously, slug loads were reloaded with the old fashioned roll crimp. Tools used to apply the roll crimp are hard to find and use. The roll crimp provided the shot start pressure for uniform ignition and velocities. Old style slugs need a sturdy nitro card wad under the slug to prevent the cushion wad from wedging into the base of the slug. At least one factory load uses a plastic insert to fill and support the wad.

All of these problems are ovecome with the new Lee Drive Key slug. The slug is slightly smaller in diameter to fit inside a standard shot cup wad. The type used for trap and skeet shooting. A support rib keeps the wad from wedging into the base of the slug. When fired, the wad bulges around the rib and locks to the slug while within the bore. The wad separates when it leaves the muzzle. If fired from a slug gun, the rifling engages the wad petals and insures the slug rotates for stability. The wad petals protect the bore from the lead slug. This eliminates lead fouling.

Accurate Powder Co. and Hodgdon Powder Co. did a great deal of testing to develop useful loads. These loads are for use only with the

modern star crimp and should not be used with rolled crimped rounds. The load data is included with the slug mold.

Like all great products, the Lee Drive Key slug overcomes all the problems in what appears to be obvious solutions. Those solutions are not so obvious until discovered. John Lee has applied for a patent on his invention. Consider these advantages. Slugs are easily and quickly cast from scrap lead. Use standard wads and very reloadable trap cases. Any shotshell reloading tool works fine. Simply substitute the slug for the shot. Be certain you follow the load data supplied with the mold.

Addendum:

The book is finished . After John Lee reviewed of the galley proofs he said,

"Great book dad, but it doesn't provide a step by step instruction of the reloading operations."

While writing the book I thought it was impractical to make step by step generic instruction, that cover all the Lee tools and other brands. Every Lee tool sold has detailed instruction for the use of that tool. Instructions improve through the years because customers call or write with questions and comments. To reduce the costly calls and letters the answers to most often ask questions are included in the next printing of the instructions. Theoretically the instructions become perfect after enough printings.

Upon reflection I realized that maybe some readers may not have Lee tools or possibly have a used tool without instructions. Usually any manufacturer will send an instruction sheet if you request one and include a self addressed envelope.

The next pages are excerpts from two of over one hundred of Lee instruction sheets. They are slightly modified to fit the pages of this book. I show the Lee Loader instructions first because its uncomplicated beauty best demonstrates the reloading process. The Challenger press instructions best demonstrate the typical single station press using 7/8-14 dies.

Remember, the reason to included these instructions are to show the reloading steps for better understanding of the process. Always follow the instructions supplied with your tool.

These information pages preceed all Lee reloading tool instructions

RELOADING SAFETY

- ▲ Keep powder away from heat and open flames don't smoke.
- Store powder and primers in their original containers in a cool, dry place.
- Read and follow instructions exactly.
- Be sure you have the correct powder, measure and bullet and of the correct weight; any mix-up can be dangerous.
- ▲ Exercise care and common sense at all times.
- ▲ Always wear safety glasses while reloading or shooting.

RELOADING IS QUITE A SIMPLE PROCESS

1

Case is sized to original dimensions and the spent primer is removed

2

Install a new primer

3

Add a charge of powder

4

Seat a new bullet and crimp if desired

IT IS YOUR RESPONSIBILITY TO ENSURE THE SAFETY OF YOUR LOADS

The following are factors that will increase pressures. Some will be dangerous.

- Do not use more powder than recommended.
- Do not use a heavier bullet than recommended.
- Do not seat the bullet deeper than normal.
- **Do not use** magnum primers unless using a slow burning ball powder.
- Greatly oversize bullets, excessively hard bullets or cases that are too long will cause higher pressures.
- High temperatures, or cartridges that were stored in a hot car or car trunk will produce higher pressures.

CASES

The easiest and best way of getting cases is to simply save those from your factory loaded rounds. New and used cases can also be purchased. Cases must be clean and safe. Do not use cases that have cracks or splits. If they have been used more than twice, they should be checked to see that none of them have become too long for safe use. The easiest way to trim them is with a Lee Case Trimmer. This automatically cuts them to the correct length and no gauging or measuring is needed. After trimming, be sure to chamfer both the inside and outside of the case. A Lee Chamfer Tool works best but it can be done with a pocket knife.

Straight sided cases, such as those used by most handguns, are loaded with a 3-die set.

MILITARY CASES

Used military cases are readily available at low cost. Usually these have primers that are crimped in place. This is to prevent the primer from coming loose in automatic weapons and jamming the action at an inopportune time. The crimp must be removed before repriming. This can done with a primer pocket reamer or swaging tool.

Even a Lee Chamfer Tool can be used to ream the crimp.

POWDER

Powder is usually classified as smokeless and black powder. There is also Pyrodex, which is a substitute for black powder. We will be using only smokeless powder for reloading.

Each set of Lee Dies is supplied with a powder measure and charge table with a generous selection of loads. Additional load data is available from all the powder manufacturers and bullet makers. This is excellent information and should be followed exactly.

Different powders are available to do different jobs. Bullets having a high sectional density (long length in relation to their diameter) require a slow burning powder. This permits sustained peak pressure to gain maximum acceleration within working pressure limits.

Short, light bullets use quicker burning powder for complete combustion within the barrel. A wide selection of powders is readily available.

Powder should always be stored in its original container. While smokeless powder is not an explosive and not as dangerous to handle as gasoline, it would be foolish to handle it carelessly and store excessive amounts. Follow the powder manufacturers' recommendations for storage and use.

PRIMERS

Rifle and pistol cartridges require different primers. Rifle primers have a thick and stronger cup to withstand the higher pressure. Pistol primers have a thinner cup for easy detonation with a lighter hammer blow. Both rifle and pistol primers are available in large or small size. They are also available in regular and magnum. Use regular for all loads except if the load data specifies magnum primers.

Primers must always be stored in their original containers. It is always a wise idea idea to wear safety or shooting glasses when shooting or reloading.

BULLETS

Commercial rifle bullets usually have a soft lead core with a copper jacket. Point shapes come in a variety of styles, but usually have some soft lead exposed to properly mushroom on impact.

The jacket serves a dual purpose: to control the bullet expansion and act as a bearing surface for its high speed travel down the bore. Some bullets have a crimping groove called a cannelure. This groove must be seated almost entirely in the case when crimping the case. The very end of the case mouth is turned into this groove by the bullet seating die. Firmly crimp the bullet in place on all ammunition that has been full length sized. This makes your ammunition more factory-like, and usually results in best accuracy and utility.

Cast bullets are very popular with the handloader. These are very economical to use and for all guns where the velocity is less than 2000 feet per second and can be as accurate as jacketed bullets. They do not normally expand as well as soft lead jacketed bullets on game. Therefore, it is poor economy to use them for hunting.

RIFLE LEE LOADER COMPLETE INSTRUCTIONS

GUARANTEE

LEE RELOADING PRODUCTS are guaranteed not to wear out or break from normal use for two full years or they will be repaired or replaced at no charge if returned to the factory. Any Lee product of current manufacture, regardless of age or condition, will be reconditioned to new, including a new guarantee, if returned to the factory with payment equal to half the current retail price.

1

Knock out the old primers. If your cases are not made in the USA, check to be sure they are not Berdan primed. Look inside the shell and you should see one flash hole. If there are two flash holes, you have Berdan cases and they cannot be loaded with this tool.

2

With a plastic mallet or piece of wood, drive the case into the tool flush with the end.

3

Insert a primer into the locating ring. Place the tool, with shell inside, on the priming chamber. Lightly tap on the priming rod several times until the primer is home.

NEVER TRY TO SEAT A PRIMER AFTER THE POWDER HAS BEEN ADDED.

4

Place the tool on the decapping chamber and tap the rod to free the case. LEAVETHE CASE in this position for the next three steps.

5

Add one [1] level measure of powder. BE SURE YOU HAVE THE CORRECT MEASURE AND POWDER. SEE THE CHARGE TABLE.

TO AVOID CONTACT with the primer and possible explosion, case must be free from die and resting in the decapping chamber.

TO AVOID CONTACT with the primer and possible explosion, case must be free from die and resting in the decapping

Insert the bullet seater and tap until it contacts the stop collar. The stop collar is adjustable so you can seat the bullet as required.

chamber.

TO AVOID CONTACT with the primer and possible explosion, case must be free from die and resting in the decapping chamber.

CRIMPING BULLETS

This is easily done in the opposite end of the loading tool. BE SURE to protect the primer with the decapping chamber when tapping on the case end. Use several light taps until the desired crimp is formed. Do not attempt to crimp bullets that do not have a crimping groove.

LEE CHALLENGER PRESS

CAUTION: WEAR SAFETY GLASSES

INSTALL shell holder

INSTALL sizing die. While holding the handle against the stop, screw the die in until it touches the shell holder, then release pressure from the handle and screw the die in an additional 1/4 to 1/3 of a turn maximum. Now while holding the die. tighten the lock ring. NOTE: Carbide dies should not be screwed in the additional 1/4 to 1/3 turn.

RIFLE DIES ONLY: Be sure to lube the inside of the case neck with a cotton swab.

Carbide dies need no lubrication.

3

PREPARE your cases. Inspect your cases while lubricating them. Discard all cases with split necks, indications of head separation, or other defects. Wipe on a thin film of Lee Case Lubricant with your fingers. Fingers are the best way of lubing a case as any grit that could damage the die is wiped away. With Lee Dies, you can lube the entire case including the neck and shoulder. The case may be immediately sized or you can let the lube dry.

4

PLACE the lubricated case in the shell holder and raise the ram until the handle comes to a stop. Lower the ram and remove case. Carbide dies need no lubrication.

5

PRIME your case with one of four optional priming tools. Follow the instructions included with the tool.

RAM PRIME safe with all brands of primers.

AUTO PRIME II (pictured right) fits in your press and uses the same shell holder used for reloading. Safe only with CCI or Winchester primers.

THIS step omitted on 2-die sets. The case mouth must be flared for ease of bullet installation. Raise the ram to expand the case neck. To increase the flare, screw the die in deeper. Always adjust to provide minimum flare needed to start the bullet. After proper adjustment, tighten the lock ring. Powder may be added through Lee Expanding Dies.

AUTO PRIME is hand held and requires special, but inexpensive shell holders. Safe only with CCI or Winchester brand primers.

CHARGE the case: Regardless of how you charge the case, be absolutely certain you have the correct amount and type of powder for the bullet you have selected.

Never try to seat the primer deeper after the powder has been added.

SCREW the bullet seating die in until you feel it touch the case mouth. If no crimp is desired, back the die out 1/2 turn. If a crimp is desired, turn the die in 1/4 turn.

10
IF LOADING maximum loads, it is a good practice to remove all-traces of case lubricant with detergent and water. This will reduce pressure against the bolt.

SEAT the bullet. Place a bullet on the case mouth and guide it into the die. Raise the ram to the top and withdraw. The knurled adjusting screw controls the bullet seating depth. Adjust to suit. Usually, seating to the same depth as a factory round works fine. If you desire to crimp, be sure the bullet crimp groove is almost completely inside the case. Then screw the die in just enough to apply a good crimp. Attempts to apply excessive crimp will crush the case. For proper crimp, all cases must be trimmed to the same length. For best utility and accuracy, consider the Lee Factory

Crimp Die.
You will
never crush
a case, no
crimp
groove is
required
and trim
length is
not critical.

MODERN RELOADING

by: Richard Lee

Part II

This section contains virtually all the load data published by the major powder suppliers in a most useful and logical format. Some day all published data will utilize this form, because the user will demand it. The data is supported with handy charts of measure capacities, volume measuring densities of powders and instructions for proper use of the load data. Be sure to read the warnings of the powder makers and author.

LOAD DATA INDEX	15
VOLUME MEACHDING DENGITY (VMD)	16
VOLUME MEASURING DENSITY (VMD)	— 16
LEE DIPPER CAPACITY CHART LEE DIPPER CAPACITY CHART	$-\frac{10}{16}$
LEE AUTO-DISK CAPACITY CHART	— 16
LEE AUTO-DISK CAPACITY CHART	16
LEE AUTO-DISK CAPACITY CHART	16
LEE AUTO-DISK CAPACITY CHART	16
WARNING:	17
VOILABE DESDONSIDLE FOR THE SAFETY OF VOLUDIOADS	17
YOU ARE RESPONSIBLE FOR THE SAFETY OF YOUR LOADSACCURATE ARMS COMPANY	
	-17
ALLIANT POWDER (FORMERLY HERCULES POWDER)	-17
HODGDON POWDER CO. INC. HODGDON DATA MANUAL 26 EDITION IMR POWDER COMPANY IMR HANDLOADER'S GUIDE FOR SMOKELESS POWDERS _	-17
VILITA VILORI OV VILITA VILORI OV DEL CA DERG CHIRE ATTI EDITION	-17
VIHTAVUORI OY VIHTAVUORI OY RELOADERS GUIDE 4TH EDITION	-17 17
RICHARD LEE MODERN RELOADING	-1/
HOW TO READ THE LOAD DATA	17:
CARTRIDGE DRAWING:	17:
POWDER TYPE:	17.
START GRAINS:	17.
VOLUME CC:	17.
AUTO-DISK:	174
LEE DIPPER:	17-
NEVER EXCEED:	174
VELOCITY FPS:	174
Presure:	174
MINIMUM OVER ALL LENGTH:	175
BULLET TYPE:	176
(XXX) GRAIN BULLET	17€
(XXX) GRAIN JACKETED	176
(XXX) Grain Lead	17€
(XXX) GRAIN WADCUTTER	176
(XXX) GRAIN SOLID	176
(XXX) BARNES X BULLET	176
GOOD THINGS TO KNOW	178
HOW TO SELECT THE BEST LOAD	178
CAST BULLET LOADS	178
PRIMERS	178

OAD DATA INDEX

artridges are list in the approximate order of bullet diameter and power. his enables you to select your caliber without reference to this index by aging to your selection as in a phone book.

7 REMINGTON	179
2 HORNET	
18 BEE	183
21 FIREBALL	
22 REMINGTON	
22 REMINGTON MAGNUM	191
23 REMINGTON	
2-250 REMINGTON	
20 SWIFT	205
mm PPC	208
43 WINCHESTER	
mm REMINGTON	215
44 REMINGTON	215
5 AUTOMATIC	220
5-20 WINCHESTER	221
5-35 WINCHESTER	
50 SAVAGE	
57 REMINGTON ROBERTS	229
5-06 REMINGTON	232
.5 CARCANO	
.5mm ARISAKA	238
.5x55 SWEDISH MAUSER	241
64 WINCHESTER MAGNUM	245
70 WINCHESTER	
70 WEATHERBY MAGNUM	
-30 WATERS	256
x57 MAUSER	258
mm-08 REMINGTON	263
x64 BRENNEKE	269
80 REMINGTON	
mm REMINGTON EXPRESS	
84 WINCHESTER	
mm REMINGTON MAGNUM	283
mm WEATHERBY MAGNUM	288
.5x55 SWISS	292

MODERN RELOADING by Richard Lee

30 MAUSER	29
7.62mm TOKAREV	29
30 LUGER	29
30 M1 CARBINE	29
7.62x39 RUSSIAN	29
303 SAVAGE	30
30-30 WINCHESTER	30
300 SAVAGE	31
30-40 KRAG	31
308 WINCHESTER	31
7.62x54R RUSSIAN	
30-06 SPRINGFIELD	
300 WINCHESTER MAGNUM	
300 HOLLAND & HOLLAND	
300 WEATHERBY MAGNUM	
7.65x53 MAUSER	
7.7mm JAPANESE ARISAKA	
303 BRITISH	
32 AUTO	
32 SMITH & WESSON	
32 SMITH & WESSON LONG	
32 H&R MAGNUM	
32-20 WINCHESTER	
32-20 WINCHESTER RIFLE	
32-40 WINCHESTER	
32 WINCHESTER SPECIAL	
8x57mm MAUSER	
8mm REMINGTON MAGNUM	
338 WINCHESTER MAGNUM	
348 WINCHESTER	
38 AUTOMATIC (38 AUTO 38ACP)	
9x18mm MAKAROV	
380 AUTO	
9mm KURTZ	
9mm LUGER (9mm PARABELLUM)	
38 SUPER AUTOMATIC	
357 SIG	
38 SMITH & WESSON	
38 SPECIAL	
357 MAGNUM	
357 REMINGTON MAXIMUM	
JJ KENINGTON	42

58 WINCHESTER	122
5 WHELEN	423
50 REMINGTON MAGNUM	423
8-55 WINCHESTER	
75 WINCHESTER	
75 HOLLAND & HOLLAND MAGNUM	434
8-40 WINCHESTER	
O SMITH & WESSON	
ACTION EXPRESS	442
REMINGTON MAGNUM	
16 REMINGTON MAGNUM	
4-40 WINCHESTER	
4 SPECIAL	
REMINGTON MAGNUM	
44 MARLIN	471
5 ACP - 45 AUTO	474
5 AUTO RIM	
WINCHESTER MAGNUM	486
COLT	
54 CASULL	
54 CASULL (Hard core Freedom Arms bullets)	
55 WEBLEY	496
3 SPANISH (11.15 x 58R)	498
5-70 U.S. GOVERNMENT	501
5-70 U.S. GOVERNMENT (MODERN RIFLES ONLY)	
WINCHESTED MACNIM	

Volume Measuring Density (VMD)

The VMD is the volume of one grain of powder in cubic centimeters. Multiply your charge in grains by the VMD to find the cubic centimeters of your charge. Use this to set your Lee Perfect Powder Measure. You may also use the closest smaller cavity Auto-Disk or Lee dipper.

VMD	POWDER	VMD	POWDER
.06800	BLACK FFG	.06910	RELODER12
.07190	BLACK FG	.07060	RELODER15
.06720	BLACKFFFFG	.07060	RELODER19
.13490	A NITRO100	.06970	RELODER22
.08380	ACCUR #2	.10920	UNIQUE
.06230	ACCUR #5	.06450	BL-C(2)
.06530	ACCUR #7	.14620	CLAYS
.06570	ACCUR #9	.11710	H TRAP100
.06550	ACCUR 1680	.08230	H-PYRODX P
.07300	ACCUR 2015BR	.08110	H-PYRDX RS
.06570	ACCUR 2230	.10145	PYRODEX CTG
.06560	ACCUR 2460	.07310	H-VARGET
.07484	ACCUR 2495BR	.07130	H1000
	ACCUR 2520	.06555	H110
.06847	ACCUR 2700	.07250	H322
.07480	ACCUR 3100	.06450	H335
.07550	ACCUR 4064	.06910	H380
.07400	ACCUR 4350		H414
.06880	ACCUR 8700	.07500	H4198
.13330	PEARL SCOT	.07690	H4227
.15870	ROYAL SCOT	.07251	H4350
.13307	SOLO 1000	.06530	H450
.12200	SOLO 1250	.07250	H4831
.10990	SOLO 1500	.07280	H4895
.07567	XMP 5744	.06860	H870
.13414	AMER-SELECT	.09260	HP38
.08650	BLUE DOT	.07120	HS6
.10640	BULLSEYE	.06800	HS7
.12620	GREEN DOT	.12660	INTERNATIONAL
.07420	HERC 2400	.10990	UNIVERSAL
	HERCO	.08470	TITEGROUP
.08889	POWER PISTOL ALLIANT STEEL	.13000	TITEWAD
.10630	ALLIANT STEEL	.13430	IMR 700X
			IMR 800X
.07280	RELODER 7	.12050	IMR PB

VMD	POWDER IMR3031 IMR4064 IMR4198 IMR4227 IMR4320 IMR4831 IMR4350 IMR4895 IMR7828 SR4756 SR4759 SR7625 AR2205 AR2206	VMD	POWDER
.07620	IMR3031	.08920	MP200
.07450	IMR4064	.10310	MS200
.07920	IMR4198	.06900	V-N560
.07690	IMR4227	.09130	v-3N37
.07160	IMR4320	.09000	v-N105
.07350	IMR4831	.08330	v-N110
.07350	IMR4350	.07760	v-N120
.07280	IMR4895	.07540	v-N130
.07250	IMR7828	.07700	v-N133
.11000	SR4756	.07770	v-N135
.09930	SR4759	.07330	v-N140
.10460	SR7625	.07460	v-N150
.07410	AR2205	.07340	v-N160
.07140	AR2206	.07120	v-N165
.07590	AR2207	.07133	v-N170
.07250	AR2208		v-N310
.07130	AR2209		v-N320
.06860	AR2213		v-N330
.12080	AS50		v-N340
.06770	NORMA 200		v-N350
.06910	NORMA 201		v-N540
.14340	NORMA 2010		v-N550
.12080	NORMA 2020		WIN 231
.06910	NORMA 203		WIN 296
.06770	NORMA 204		WIN 452AA
.06720	NORMA 205		WIN 473AA
.07120	NOB REV#1		WIN 540
.13660	NOBEL 60		WIN 571
.12230	NOBEL 62		WIN 630
.11540	NOBEL 64		WIN 680
	NOBEL 78		WIN 748
	NOBEL 80	.06660	WIN 760
	NOBEL 82	.12962	WIN AA PLUS
.08580	NOBELPIS 2	.08097	WIN ACTION PI
	NOBELPIS 3	.07181	WIN MAG RIFLE
	NOBELRIF 0	.08400	WIN AA PLUS WIN ACTION PI WIN MAG RIFLE wSUPER-FLD wSUPER-LIT
.07200	NOBELRIF 1	.08470	wSUPER-LIT
.07200	NOBELRIF 3	.12050	wSUPER-TAR

LEE DIPPER CAPACITY CHART

			LEF			N	72 88				AK	•			
POWDER	.3	.5	.7	1	1.3	1.6	1.9	2.2	2.5	2.8	3.1	3.4	3.7	4	4.3
BLACK FFFG	4.8	8.0	11.1	15.9	20.7	25.5	30.3	35.0	39.8	44.6	49.4	54.2	58.9	63.7	68.5
BLACK FFG	4.4	7.4	10.3	14.7	19.1	23.5	27.9	32.4	36.8	41.2	45.6	50.0	54.4	58.8	63.2
BLACK FG	4.2	7.0	9.7	13.9	18.1	22.3	26.4	30.6	34.8	39.0	43.1	47.3	51.5	55.7	59.8
BLACKFFFFG	4.5	7.4	10.4	14.9	19.4	23.8	28.3	32.8	37.2	41.7	46.2	50.6	55.1	59.6	64.0
A NITRO100	2.2	3.7	5.2	7.4	9.6	11.9	14.1	16.3	18.5	20.8	23.0	25.2	27.4	29.7	31.9
ACCUR #2 ACCUR #5	3.6 4.8	6.0 8.0	8.4 11.2	11.9 16.1	15.5 20.9	19.1 25.7	22.7 30.5	26.2 35.3	29.8 40.1	33.4 45.0	37.0 49.8	40.6 54.6	44.1 59.4	47.7 64.2	51.3 69.0
ACCUR #7	4.6	7.7	10.7	15.3	19.9	24.5	29.1	33.7	38.3	42.9	47.5	52.1	56.7	61.2	65.8
ACCUR #9	4.6	7.6	10.7	15.2	19.8	24.4	28.9	33.5	38.1	42.6	47.2	51.8	56.4	60.9	65.5
ACCUR 1680	4.6	7.6	10.7	15.3	19.8	24.4	29.0	33.6	38.2	42.7	47.3	51.9	56.5	61.0	65.6
ACCUR 2015BR	4.1	6.8	9.6	13.7	17.8	21.9	26.0	30.1	34.2	38.3	42.5	46.6	50.7	54.8	58.9
ACCUR 2200	4.3	7.2	10.1	14.4	18.7	23.1	27.4	31.7	36.0	40.4	44.7	49.0	53.3	57.7	62.0
ACCUR 2230	4.6	7.6	10.7	15.2	19.8	24.4	28.9	33.5	38.1	42.6	47.2	51.8	56.3	60.9	65.5
ACCUR 2460	4.6	7.6	10.7	15.2	19.8	24.4	28.9	33.5	38.1	42.7	47.2	51.8	56.4	60.9	65.5
ACCUR 2495BR	4.0	6.7	9.4	13.4	17.4	21.4	25.4	29.4	33.4	37.4	41.4	45.4	49.4	53.5	57.5
ACCUR 2520 ACCUR 2700	4.4	7.3 7.3	10.3 10.2	14.6 14.6	19.0 19.0	23.4	27.8 27.7	32.2	36.6 36.5	41.0	45.4 45.3	49.8 49.7	54.2 54.0	58.6 58.4	63.0 62.8
ACCUR 3100	4.4	6.7	9.4	13.4	17.4	21.4	25.4	29.4	33.4	37.4	41.4	45.4	49.4	53.5	57.5
ACCUR 4064	4.0	6.6	9.3	13.3	17.2	21.2	25.2	29.2	33.1	37.1	41.1	45.1	49.0	53.0	57.0
ACCUR 4350	4.1	6.8	9.5	13.5	17.6	21.6	25.7	29.7	33.8	37.8	41.9	46.0	50.0	54.1	58.1
ACCUR 8700	4.4	7.3	10.2	14.5	18.9	23.3	27.6	32.0	36.4	40.7	45.1	49.4	53.8	58.2	62.5
PEARL SCOT	2.3	3.8	5.3	7.5	9.8	12.0	14.3	16.5	18.8	21.0	23.3	25.5	27.8	30.0	32.3
ROYAL SCOT	1.9	3.2	4.4	6.3	8.2	10.1	12.0	13.9	15.8	17.6	19.5	21.4	23.3	25.2	27.1
SOLO 1000	2.3	3.8	5.3	7.5	9.8	12.0	14.3	16.5	18.8	21.0	23.3	25.6	27.8	30.1	32.3
SOLO 1250	2.5	4.1	5.7	8.2	10.7	13.1	15.6	18.0	20.5	23.0	25.4	27.9	30.3	32.8	35.3
SOLO 1500	2.7	4.6	6.4	9.1	11.8	14.6	17.3	20.0	22.8	25.5	28.2	30.9	33.7	36.4	39.1
XMP 5744 ALLIANT STEEL	4.0 2.8	6.6 4.7	9.3 6.6	13.2 9.4	17.2 12.2	21.1 15.1	25.1 17.9	29.1	33.0 23.5	37.0 26.3	41.0 29.2	44.9 32.0	48.9 34.8	52.9 37.6	56.8 40.5
AMER-SELECT	2.2	3.7	5.2	7.5	9.7	11.9	14.2	16.4	18.6	20.9	23.1	25.3	27.6	29.8	32.1
BLUE DOT	3.5	5.8	8.1	11.6	15.0	18.5	22.0	25.4	28.9	32.4	35.8	39.3	42.8	46.3	49.7
BULLSEYE	2.8	4.7	6.6	9.4	12.2	15.0	17.9	20.7	23.5	26.3	29.1	32.0	34.8	37.6	40.4
GREEN DOT	2.4	4.0	5.5	7.9	10.3	12.7	15.0	17.4	19.8	22.2	24.6	26.9	29.3	31.7	34.1
HERC 2400	4.0	6.7	9.4	13.5	17.5	21.6	25.6	29.7	33.7	37.8	41.8	45.9	49.9	53.9	58.0
HERCO	2.7	4.5	6.2	8.9	11.6	14.3	16.9	19.6	22.3	24.9	27.6	30.3	33.0	35.6	38.3
POWER PISTOL	3.4	5.6	7.9	11.2	14.6	18.0	21.4	24.7	28.1	31.5	34.9	38.2	41.6	45.0	48.4
RED DOT	2.1	3.5	5.0	7.1	9.2	11.3	13.5	15.6	17.7	19.8	21.9	24.1	26.2	28.3	30.4
RELODER 7 RELODER 12	4.1	6.9	9.6	13.7	17.8	22.0	26.1	30.2	34.3	38.4	42.6	46.7	50.8	54.9	59.0
RELODER 15	4.3	7.2 7.1	10.1 9.9	14.5 14.2	18.8 18.4	23.1 22.7	27.5 26.9	31.8	36.2 35.4	40.5 39.6	44.8	49.2	53.5	57.8	62.2
RELODER19	4.2	7.1	9.9	14.2	18.4	22.7	26.9	31.1	35.4	39.6	43.9	48.1	52.4 52.4	56.6 56.6	60.9
RELODER22	4.3	7.2	10.0	14.3	18.6	22.9	27.2	31.6	35.9	40.2	44.5	48.8	53.1	57.4	61.7
UNIQUE	2.7	4.6	6.4	9.2	11.9	14.6	17.4	20.1	22.9	25.6	28.4	31.1	33.9	36.6	39.4
BL-C(2)	4.7	7.8	10.8	15.5	20.1	24.8	29.4	34.1	38.8	43.4	48.0	52.7	57.4	62.0	66.7
CLAYS	2.1	3.4	4.8	6.8	8.9	10.9	13.0	15.0	17.1	19.2	21.2	23.3	25.3	27.4	29.4
H TRAP100	2.6	4.3	6.0	8.5	11.1	13.7	16.2	18.8	21.4	23.9	26.5	29.0	31.6	34.2	36.7
H-PYRDX RS	3.7	6.2	8.6	12.3	16.0	19.7	23.4	27.1	30.8	34.5	38.2	41.9	45.6	49.3	53.0
H-PYRODX P	3.6	6.1	8.5	12.1	15.8	19.4	23.1	26.7	30.4	34.0	37.6	41.3	44.9	48.6	52.2
H-VARGET H1000	4.1	6.8 7.0	9.6 9.8	13.7	17.8 18.2	21.9 22.5	26.0 26.7	30.1	34.2 35.1	38.3	42.4 43.5	46.5	50.6 51.9	54.7 56.1	58.8 60.4
H110	4.6	7.6	10.7	15.3	19.8	24.4	29.0	33.6	38.1	42.7	47.3	51.9	56.4	61.0	65.6
H322	4.1	6.9	9.7	13.8	17.9	22.1	26.2	30.3	34.5	38.6	42.8	46.9	51.0	55.2	59.3
H335	4.7	7.8	10.8	15.5	20.1	24.8	29.4	34.1	38.8	43.4	48.0	52.7	57.4	62.0	66.7
H380	4.3	7.2	10.1	14.5	18.8	23.1	27.5	31.8	36.2	40.5	44.8	49.2	53.5	57.9	62.2
H414	4.5	7.6	10.6	15.1	19.7	24.2	28.8	33.3	37.8	42.4	46.9	51.5	56.0	60.5	65.1
H4198	4.0	6.7	9.3	13.3	17.3	21.3	25.3	29.3	33.3	37.3	41.3	45.3	49.3	53.3	57.3
H4227	3.9	6.5	9.1	13.0	16.9	20.8	24.7	28.6	32.5	36.4	40.3	44.2	48.1	52.0	55.9
H4350 H450	4.1 4.6	6.9 7.7	9.7 10.7	13.8 15.3	17.9 19.9	22.1	26.2	30.3	34.5	38.6	42.8	46.9	51.0	55.2	59.3
H4831	4.0	6.9	9.7	13.8	17.9	22.1	29.1	33.7 30.3	38.3 34.5	42.9 38.6	47.5 42.8	52.1 46.9	56.7 51.0	61.3 55.2	65.9 59.3
H4895	4.1	6.9	9.6	13.7	17.8	22.0	26.1	30.3	34.3	38.4	42.6	46.7	50.8	54.9	59.0
H870	4.4	7.3	10.2	14.6	19.0	23.3	27.7	32.1	36.5	40.8	45.2	49.6	54.0	58.3	62.7
HP38	3.2	5.4	7.6	10.8	14.0	17.3	20.5	23.8	27.0	30.2	33.5	36.7	40.0	43.2	46.4
HS6	4.2	7.0	9.8	14.0	18.2	22.5	26.7	30.9	35.1	39.3	43.5	47.7	51.9	56.1	60.4
HS7	4.4	7.4	10.3	14.7	19.1	23.5	27.9	32.4				50.0	54.4	58.8	63.2
INTERNATIONAL	2.4	4.0	5.5	7.9	10.3	12.6	15.0	17.4	19.8	22.1	24.5	26.9	29.2	31.6	34.0
PYRODEX CTG	3.0	4.9	6.9	9.9	12.8	15.8	18.7	21.7	24.6	27.6	30.6	33.5	36.5		42.4
TITEGROUP	3.5	5.9	8.3	11.8	15.3	18.9	22.4	26.0	29.5	33.0	36.6	40.1	43.7	47.2	
UNIVERSAL	2.3	3.8 4.6	5.4 6.4	7.7 9.1	10.0 11.8	12.3 14.6	14.6 17.3	16.9 20.0	19.2 22.8	21.5 25.5	23.8 28.2	26.1 30.9	28.5 33.7	30.8 36.4	33.1 39.1
IMR 700X	2.2	3.7	5.2	7.4	9.7	11.9	14.1	16.4	18.6	20.8	23.1	25.3	27.5	29.8	32.0
IMR 800X	2.8	4.7	6.5	9.3	12.1	14.9	17.7	20.5	23.3	26.1	28.9	31.7	34.5	37.3	40.1
IMR PB	2.5	4.1	5.8	8.3	10.8	13.3	15.8	18.3	20.7	23.2	25.7	28.2	30.7	33.2	35.7
IMR3031	3.9	6.6	9.2	13.1	17.1	21.0	24.9	28.9	32.8	36.7	40.7	44.6	48.5	52.5	56.4
IMR4064	4.0	6.7	9.4	13.4	17.5	21.5	25.5	29.5	33.6	37.6	41.6	45.6	49.7	53.7	57.7

LEE DIPPER CAPACITY CHART

		_														
IMMR4198	POWDER	.3	.5	.7	1	1.3	1.6	1.9	2.2	2.5	2.8	3.1	3.4	3.7	4	4.3
IMBR4227																
IMRR4950																
IMBR4891																
IMBRP828																
SRAPTS9	IMR4895	4.1	6.9	9.6	13.7		22.0	26.1	30.2	34.3	38.4	42.6	46.7	50.8	54.9	59.0
SAR7625	IMR7828		6.9	9.7	13.8	17.9										
SAPGE5																
ARZ206																
ARZ206																
ARZ209																
AR220B																
ARZ2193																
NORMA 201			7.0	9.8	14.0	18.2	22.4	26.6	30.8	35.0	39.2	43.5	47.7	51.9	56.1	60.3
NORMA 2010																
NORMA 2010																
NORMA 2010																
NORMA 2020																
NORMA 203																
NORMA 204																
NOBEL NOBE																
NOBEL NOBE		4.5	7.4	10.4	14.9	19.4	23.8	28.3	32.8	37.2		46.2			59.6	64.0
NOBEL 62	NOB REV#1															
NOBELE 64																
NOBEL 78 2.0 3.3 4.6 6.6 8.6 10.6 12.6 14.6 16.5 18.5 20.6 22.6 24.5 26.5 28.5 NOBEL 82 2.2 3.7 5.2 7.4 9.6 11.8 14.0 16.2 18.4 20.6 22.8 25.1 27.3 29.5 31.7 NOBEL 91S 2 3.5 5.8 8.2 11.7 15.2 18.6 22.1 25.6 29.1 32.6 36.1 39.6 43.1 40.6 50.1 NOBEL 91S 2 3.5 5.8 8.2 11.7 15.2 18.6 22.1 25.6 29.1 32.6 36.1 39.6 43.1 40.6 50.1 NOBEL 91S 2 3.5 5.8 8.2 11.7 15.2 18.6 22.1 25.6 29.1 32.6 36.1 39.6 43.1 43.9 36.5 NOBEL 91S 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBEL 91S 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBEL 91S 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBEL 91S 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBEL 91S 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBEL 91S 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBEL 91S 2 4.2 4.2 4.3 4.3 4.1 4.3 4.1 4.3 4.1 4.3 4.1 4.3 4.1 4.3 4.1 4.3 4.1 4.3 4.1 4.3																
NOBEL 80																
NOBELPIS 2																
NOBELPIS 2 3.5 5.8 8.2 11.7 15.2 18.6 22.1 25.6 29.1 32.6 36.1 39.6 43.1 43.6 50.5 NOBELRIF 1 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 2 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 3 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 3 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 3 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 4 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 5 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 6 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 6 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 7 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 8 4.2 6.9 9.7 13.9 18.1 22.2 26.4 30.6 34.7 38.9 43.1 47.2 51.4 55.6 59.7 NOBELRIF 9 4.7 6.8 6.9 4.7 6.8 6.9 4.7 6.8 6.9 4.7 6.8 6.9 4.7 6.8																
NOBELRIF																
NOBELRIF	NOBELPIS 3	2.5		5.9	8.5	11.0	13.6	16.1	18.7					31.4		
NOBELRIF 2																
NOBELRIF 3																
MP200																
MS200																
V-3N37 3.3 5.5 7.7 11.0 14.2 17.5 20.8 24.1 27.4 30.0 37.2 40.5 68.8 62.3 V-N105 3.3 5.6 7.8 11.1 14.4 17.8 21.1 24.4 27.8 31.1 34.4 37.8 41.1 44.4 47.8 V-N1100 3.6 6.0 8.4 12.0 15.6 19.2 22.8 26.4 30.0 37.2 40.8 44.4 48.0 51.6 55.4 V-N1200 3.9 6.6 9.3 13.3 17.3 21.2 25.2 29.2 33.2 36.4 40.0 44.7 51.6 55.4 V-N1333 3.9 6.5 9.1 13.0 16.9 20.8 24.5 28.3 32.2 36.4 40.3 44.2 44.0 44.7 51.6 55.1 V-N1304 4.1 6.8 9.6 13.6 17.7 21.8 25.9 30.0																
v.N105 3.3 5.6 7.8 11.1 14.4 17.8 21.1 24.4 27.8 31.1 34.4 37.8 41.1 44.4 47.8 v.N1100 3.6 6.0 8.4 12.0 15.6 19.2 22.8 26.4 30.0 33.6 37.2 40.8 44.4 48.0 51.6 55.5 v.N130 4.0 6.6 9.3 13.3 17.3 21.2 25.2 29.2 33.2 31.2 41.1 45.1 49.1 53.1 57.1 v.N133 3.9 6.5 9.1 13.0 16.9 20.8 24.7 28.6 32.5 36.4 40.3 44.2 48.1 55.5 57.1 v.N130 4.0 6.7 9.4 13.4 17.7 21.8 25.9 30.0 34.1 38.2 42.6 65.5 57.7 v.N160 4.1 6.8 9.5 13.6 17.7 <t>21.8 25.9 30.0 <t< td=""><td>v-3N37</td><td>3.3</td><td>5.5</td><td>7.7</td><td>11.0</td><td>14.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></t>	v-3N37	3.3	5.5	7.7	11.0	14.2										
V.NITO 3.6 6.0 8.4 12.0 15.6 19.2 22.8 26.4 30.0 33.6 37.2 40.8 44.4 48.0 51.6 V.NI2O 3.9 6.4 9.0 12.9 16.8 20.6 24.5 28.4 32.2 36.1 40.0 43.8 47.7 51.6 55.7 V.NI33 3.9 6.5 9.1 13.0 16.9 20.8 24.7 28.6 32.5 36.4 40.3 44.2 48.1 52.0 55.9 V.N133 3.9 6.4 9.0 12.9 16.7 20.6 24.5 28.3 32.2 36.0 39.4 43.8 47.6 51.5 55.5 V.N150 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.1 32.2 46.0 55.6 58.7 V.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
V.N120 3.9 6.4 9.0 12.9 16.8 20.6 24.5 28.4 32.2 36.1 40.0 43.8 47.7 51.6 55.4 V.N130 4.0 6.6 9.3 13.3 17.3 21.2 25.2 29.2 33.2 32.2 32.5 34.4 40.1 45.1 49.1 53.1 57.0 55.9 V.N135 3.9 6.4 9.0 12.9 16.7 20.6 24.5 28.3 32.2 36.0 39.9 43.8 47.6 51.5 55.3 V.N160 4.1 6.8 9.6 13.6 17.7 21.8 25.9 30.0 34.0 38.1 42.2 46.3 50.6 55.6 55.7 V.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 38.1 42.2 46.3 49.6 53.6 57.7 V.N170 4.2 70.0 9.8 14.0 <																
v.N130 4.0 6.6 9.3 13.3 17.3 21.2 25.2 29.2 33.2 37.2 41.1 45.1 49.1 53.1 55.5 55.9 v.N133 3.9 6.4 9.0 12.9 16.7 20.6 24.5 28.3 32.5 36.4 40.3 44.2 48.1 52.0 55.5 v.N140 4.1 6.8 9.6 13.6 17.7 21.8 25.9 30.0 34.1 38.2 42.3 46.4 50.5 54.6 58.7 v.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 38.1 42.2 46.3 50.4 54.5 58.6 v.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 38.1 40.7 52.0 56.2 60.4 v.N170 4.2 7.0 9.8 14.0 18.2 22.1 26.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
V-N133 3.9 6.5 9.1 13.0 16.9 20.8 24.7 28.6 32.5 36.4 40.3 44.2 48.1 52.0 55.5 v.N136 4.1 6.8 9.6 13.6 17.7 21.8 25.9 30.0 34.1 38.2 42.3 46.4 50.5 54.6 58.7 v.N150 4.0 6.7 9.4 13.4 17.4 21.5 25.5 29.5 33.5 37.5 41.6 45.6 49.6 53.6 57.7 v.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 38.1 42.2 46.3 50.4 54.5 58.6 v.N170 4.2 7.0 9.8 14.0 18.2 22.4 26.6 30.8 35.1 39.3 43.5 47.7 52.0 56.2 60.4 v.N170 4.2 7.0 9.8 14.0 18.2 22.4 26.6 30.8 35.1 39.3 43.5 47.7 52.0 56.2 60.4 v.N310 2.5 41 5.8 8.2 10.7 13.2 15.6 18.1 20.6 23.1 25.5 28.0 30.5 32.9 35.4 v.N330 2.8 4.6 6.5 9.3 12.0 14.8 17.6 20.4 23.2 26.0 28.7 31.5 34.3 37.1 39.9 v.N340 2.8 4.6 6.5 9.3 12.0 14.8 17.6 20.4 23.2 26.0 28.7 31.5 34.3 37.1 39.9 v.N340 2.8 4.6 6.5 9.3 12.0 14.8 17.6 20.4 23.2 26.0 28.7 31.5 34.3 37.1 39.9 v.N340 4.3 7.1 10.0 14.3 18.5 22.8 27.1 31.4 35.7 39.9 44.2 48.5 52.8 57.0 61.3 v.N550 31. 32.7 11.0 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.0 61.3 v.N550 4.3 7.2 10.1 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.0 61.3 v.N550 4.3 7.2 10.1 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.0 61.3 v.N550 4.3 7.5 10.5 10.3 13.9 14.7 19.1 23.5 10.3 13.9 34.7 34.5 57.0 61.3 v.N550 4.3 7.5 10.5 10.3 13.9 14.7 19.1 23.5 20.5 26.6 28.7 31.5 34.3 37.9 41.0 44.0 WIN 231 32. 5 4.7 5.5 10.5 15.0 19.5 24.0 28.5 33.0 35.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 452AA 2.6 4.3 6.0 8.5 11.1 13.7 16.2 18.8 21.4 23.9 26.5 29.0 31.6 34.2 36.7 WIN 473AA 3.1 5.7 7.5 10.5 15.0 19.5 24.0 28.5 33.0 35.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4.5 7.5 10.5 15.0 19.5 24.0 28.5 33.0 35.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4.5 7.5 10.5 15.0 19.5 24.0 28.5 33.0 35.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4.5 7.5 10.5 15.0 19.5 24.0 28.5 33.0 35.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4.5 7.5 10.5 15.0 19.5 24.0 28.5 33.0 35.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 630 4																
v.N140 4.1 6.8 9.6 13.6 17.7 21.8 25.9 30.0 34.1 38.2 42.3 46.4 50.5 54.6 58.7 v.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.1 38.2 42.3 46.4 50.5 54.6 58.7 v.N165 4.2 7.0 9.8 14.0 18.3 22.5 26.7 30.9 35.1 39.3 43.5 47.7 51.0 56.2 60.4 v.N1700 4.2 7.0 9.8 14.0 18.2 22.4 26.6 30.8 35.1 39.3 43.5 47.7 51.9 56.1 60.4 v.N310 2.5 4.1 5.8 8.3 10.7 13.2 15.6 18.1 20.6 28.7 31.5 34.3 30.1 33.0 35.5 v.N330 2.8 4.6 6.5 9.3 12.0 14.8 17.6 <t></t>												40.3	44.2	48.1	52.0	55.9
v.N150 4.0 6.7 9.4 13.4 17.4 21.5 25.5 29.5 33.5 37.5 41.6 45.6 49.6 53.6 57.7 v.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 38.1 42.2 46.3 50.4 54.5 58.6 v.N170 4.2 7.0 9.8 14.0 18.2 22.2 26.6 30.8 35.1 39.3 43.5 47.7 51.9 56.1 60.3 v.N310 2.5 4.1 5.8 8.2 10.7 13.2 15.7 18.2 20.7 23.1 25.6 28.1 30.6 33.0 35.5 v.N330 2.8 4.6 6.5 9.3 12.0 14.8 17.6 20.4 23.2 26.0 28.3 30.6 33.0 35.5 40.3 37.1 39.9 v.N350 2.8 4.7 6.6 9.4 12.2 1	v-N135	3.9														
V.N160 4.1 6.8 9.5 13.6 17.7 21.8 25.9 30.0 34.0 38.1 42.2 46.3 50.4 54.5 58.6 V.N165 4.2 7.0 9.8 14.0 18.3 22.5 26.7 30.9 35.1 39.3 43.5 47.7 52.0 56.2 60.3 V.N310 2.5 4.1 5.8 8.2 10.7 13.2 15.6 18.1 20.6 23.1 25.5 28.0 30.5 32.9 35.4 V.N320 2.5 4.1 5.8 8.2 10.7 13.2 15.7 18.2 20.7 23.1 25.5 28.0 30.3 35.5 V.N340 2.8 4.6 6.5 9.3 12.0 14.8 17.6 20.6 23.5 26.3 29.1 31.9 34.7 37.5 40.4 V.N340 2.8 4.7 6.6 9.4 12.2 15.0 17.8 20.6 23																
V-N165																
V-N170 4.2 7.0 9.8 14.0 18.2 12.4 1.5 8.2 10.7 13.2 15.6 18.1 12.6 20.7 23.1 25.6 28.1 30.8 31.0 28.8 46 6.5 9.3 12.0 14.8 17.6 18.1 20.6 20.1 20.7 20.1 20.7 20.8 20.7 20.1 20.8 20.7 20.1 20.8 20.7 20.1 20.8 20.7 20.1 20.8 20.7 20.1 20.8 20.7 20.8 20.7 20.8 20.8 20.7 20.8 20.7 20.8 2																
V-N310 2.5 4.1 5.8 8.2 10.7 13.2 15.6 18.1 20.6 23.1 25.5 28.0 30.5 32.9 35.4 V-N3200 2.5 4.1 5.8 8.3 10.7 13.2 15.7 18.2 20.7 23.1 25.6 28.1 30.6 33.0 35.5 V-N340 2.8 4.6 6.6 9.4 12.2 15.0 17.8 20.6 23.5 26.3 29.1 31.9 34.7 37.5 40.4 V-N340 2.8 4.7 6.6 9.4 12.2 15.0 17.8 20.6 23.5 26.3 29.1 31.9 34.7 37.5 40.4 V-N540 4.3 7.1 10.0 14.3 18.5 22.8 27.1 31.4 35.7 39.9 44.2 24.5 22.8 25.2 25.6 28.7 31.7 34.8 37.9 41.0 44.9 43.8 24.9 33.6																
v.N320 2.5 4.1 5.8 8.3 10.7 13.2 15.7 18.2 20.7 23.1 25.6 28.1 30.6 33.0 35.5 v.N3300 2.8 4.6 6.5 9.3 12.0 14.8 17.6 20.4 23.2 26.0 28.7 31.5 34.3 37.1 39.9 v.N350 3.1 5.1 7.2 10.2 13.3 16.4 19.5 22.5 25.6 28.7 31.7 34.8 37.9 41.0 44.0 v.N550 4.3 7.1 10.0 14.3 18.5 22.8 27.1 31.4 35.7 34.8 37.9 41.0 44.0 v.N550 4.3 7.2 10.1 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.8 62.1 WIN 296 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1																
V-N3400 2.8 4.7 6.6 9.4 12.2 15.0 17.8 20.6 23.5 26.3 29.1 31.9 34.7 37.5 40.4 v.N3500 3.1 5.1 7.2 10.2 13.3 16.4 19.5 22.5 25.6 28.7 31.7 34.8 37.9 41.0 44.0 v.N5400 4.3 7.1 10.0 14.3 18.5 22.8 27.1 31.4 35.7 39.9 44.2 48.5 52.8 57.0 61.3 v.N550 43.7 12.2 10.1 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.8 62.1 WIN 231 32 5.4 7.5 10.7 14.0 17.2 20.4 23.6 26.8 30.1 33.3 36.5 39.7 43.0 46.2 WIN 296 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 452AA 2.6 4.3 6.0 8.5 11.1 13.7 16.2 18.8 21.4 23.9 26.5 29.0 31.6 34.2 36.7 WIN 473AA 3.1 5.1 7.2 10.3 13.3 16.4 19.5 22.6 25.6 28.7 31.8 34.9 37.9 41.0 44.1 WIN 540 4.4 7.3 10.3 14.6 19.0 23.4 27.8 32.2 36.6 41.0 45.4 49.8 54.2 58.6 63.0 WIN 6571 4.4 7.4 10.3 14.7 19.1 23.5 27.9 32.4 36.8 41.2 45.6 50.0 54.4 58.8 63.2 WIN 630 4.5 7.5 10.5 15.0 19.5 24.0 28.5 33.0 37.5 42.0 46.5 51.0 55.5 60.0 64.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.0 28.5 33.0 35.8 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.0 28.5 33.0 35.8 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.0 28.5 33.0 35.8 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.2 28.5 33.0 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.2 28.5 33.0 38.8 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.6 7.6 10.7 15.3 19.8 24.2 28.5 33.0 38.8 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 748 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0										20.7						
V-N350 V-	v-N330	2.8														
v-N5400 4.3 7.1 10.0 14.3 18.5 22.8 27.1 31.4 35.7 39.9 44.2 48.5 52.8 67.0 61.31 V-N550 4.3 7.2 10.1 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.8 62.3 WIN 296 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 452AA 2.6 4.3 6.0 8.5 11.1 13.7 16.2 18.8 21.4 23.9 26.5 29.0 31.6 34.2 29.0 31.6 34.2 29.0 31.6 34.2 29.0 31.6 34.2 29.0 31.6 34.2 29.0 31.6 34.2 29.0 31.6 34.2 47.3 51.9 56.6 63.0 44.1 44.1 44.1 44.1 44.																
v.N550 4.3 7.2 10.1 14.4 18.8 23.1 27.4 31.8 36.1 40.4 44.8 49.1 53.4 57.8 62.1 WIN 291 3.2 5.4 7.5 10.7 14.0 17.2 20.4 23.6 26.8 30.1 33.3 36.5 39.7 43.0 66.6 61.0 65.6 WIN 296 4.6 7.6 10.7 15.3 19.8 24.4 29.0 33.6 38.1 42.7 47.3 51.9 56.4 61.0 65.6 WIN 452AA 2.6 4.3 6.0 8.5 11.1 13.7 16.2 18.8 21.4 23.9 26.5 29.0 31.6 34.2 36.7 WIN 73AA 3.1 5.1 7.2 10.3 14.6 19.0 23.4 27.8 22.2 36.6 41.0 45.4 49.8 54.2 58.6 63.0 WIN 760 4.4 7.4 10.3 14.6																
WIN 231 3.2 5.4 7.5 10.7 14.0 17.2 20.4 23.6 26.8 30.1 33.3 36.5 39.7 43.0 46.2																
WIN 296																
WIN 473AA 3.1 5.1 7.2 10.3 13.3 16.4 19.5 22.6 25.6 28.7 31.8 34.9 37.9 41.0 44.1																
WIN 540	WIN 452AA	2.6	4.3	6.0	8.5	11.1	13.7	16.2	18.8	21.4	23.9	26.5	29.0	31.6	34.2	36.7
WIN 571																
WIN 630																
WIN 680																
WIN 748																
WIN 760																
WAA PLUS 2.3 3.9 5.4 7.7 10.0 12.3 14.7 17.0 19.3 21.6 23.9 26.2 28.5 30.9 33.2 WACTION PI 3.7 6.2 8.6 12.4 16.1 19.8 23.5 27.2 30.9 34.6 38.3 42.0 45.7 49.4 53.1 WMAG RIFLE 4.2 7.0 9.7 13.9 18.1 22.3 26.5 30.6 34.8 39.0 43.2 47.3 51.5 55.7 59.9 WSUPER-LIT 3.6 5.9 8.3 11.8 15.3 18.9 22.4 26.0 29.5 33.0 36.6 40.1 47.0 47.6 51.2 WSUPER-LIT 3.5 5.9 8.3 11.8 15.3 18.9 22.4 26.0 29.5 33.0 36.6 40.1 43.7 47.2 50.7					15.0		24.0	28.5	33.0	37.5	42.0	46.5	51.0	55.5	60.0	64.6
WMAG RIFLE 4.2 7.0 9.7 13.9 18.1 22.3 26.5 30.6 34.8 39.0 43.2 47.3 51.5 55.7 59.9 WSUPER-FLD 3.6 5.9 8.3 11.9 15.5 19.0 22.6 26.2 29.8 33.3 36.9 40.5 44.0 47.6 51.2 WSUPER-LIT 3.5 5.9 8.3 11.8 15.3 18.9 22.4 26.0 29.5 33.0 36.6 40.1 43.7 47.2 50.7	waa Plus	2.3	3.9	5.4				14.7								
WSUPER-FLD 3.6 5.9 8.3 11.9 15.5 19.0 22.6 26.2 29.8 33.3 36.9 40.5 44.0 47.6 51.2 WSUPER-LIT 3.5 5.9 8.3 11.8 15.3 18.9 22.4 26.0 29.5 33.0 36.6 40.1 43.7 47.2 50.7																
wSUPER-LIT 3.5 5.9 8.3 11.8 15.3 18.9 22.4 26.0 29.5 33.0 36.6 40.1 43.7 47.2 50.7																

_	9	_	~	0	6	0	10	6	6	0	00		00	~	00	7	_	+	7	7	+	0	2	2	1	
1.57	11.0	18.	25.	24.0	23.9	24.0	21.5	23.6	23.6	23.0	11.8	6.6	11.8	14.3	14.8	17.	=======================================	12.	18.	=======================================	14.4	14.0	21.2	21.6	22.	22 (
1.46	10.8	17.4	23.4	22.4	22.2	22.3	20.0	22.2	22.2	21.4	11.0	9.2	11.0	13.3	13.7	16.4	10.3	11.6	16.9	10.9	13.4	13.0	19.7	20.0	21.1	205
1.36	10.1	16.2	21.8	8.07	20.7	8.07	18.6	20.7	20.7	19.9	10.2	9.8	10.2	12.4	12.8	15.3	9.6	10.8	15.7	10.1	12.4	17.1	18.3	18.7	19.7	101
1.26	9.3	15.0	20.7	19.3	19.2	19.2	17.3	19.2	19.2	18.5	4.	6.7	5.6	11.5	11.8	14.2	8.9	0.01	14.6	4.0	11.5	11.2	17.0	17.3	18.2	77
.18						10000		-				-					-				10.8			. ,	•	100
.09											-									-	10.01					
.02	90													-						-	9.3 1					
95 1.														-				-			8.7 9.	-				
6. 88																					8.1 8.					
•											_		_			-	_	-		_	7.5 8.	-	-			-
6 .82			-																							
7.																				-	5 7.0					
.7.				-		-		_			-	-		-			-			-	6.5		-	-		10
99. 1							-				-				_		•	٠.	-		0.9 9	٠.	-	-	•	0 3
7 .61	2 4.													-							9.5 2	٠.				18
53 .5	9 4.			5.5			-				_		_		-			•	_	•	9 5.2				-	181
49 .5	6 3.		-	-	-	-		•••	•					4	٠,	_	.,	4	_	4	1.5 4.9	7				0 7
46 .4	_	5.5 5.	_	_	.0 7.	_		7.0.7	_			_		4	4	4,	.,		4,	.,	1.2 4.	4	_	_		2
43 .4	. ,	4,			1-	-	•			_				4	4	4,			4,		3.9 4	4	_	_	_	9 0
4.	3.0 3			_	_	300	5.5 5			_											3.7 3		4.	٠,		9 9 5
.37	2.7	4.4	5.9	5.7	9.9	9.9	5.1	9.9	2.6	5.4	2.8	2.3	2.8	3.4	3.5	4.2	5.6	2.9	4.3	2.8	3.4	3.3	2.0	5.1	5.4	65
.34	2.5	4.1	5.5	5.2	5.2	5.2	4.7			2.0	2.5	2.1	5.6	3.1	3.2	3.8	2.4	2.7	3.9	2.5	3.1	3.0	4.6	4.7	4.9	4 8
.32	2.4	3.6 3.8	5.1	4.9	4.9	4.9	4.4	4.9	4.9	4.7	2.4	2.0	2.4	5.9	3.0	3.6	2.3	2.5	3.7	2.4	2.9	5.9	4.3	4.4	4.6	45
ų.	2.2	3.6	8.4	4.6	4.6	4.6	4.1	4.6	4.6	4.4	2.3	1.9	2.3	2.7	2.8	3.4	2.1	2.4	3.5	2.2	2.7	2.7	4.0	4.1	4.3	42
	A NITRO100	ACCUR #2	ACCUR #5	ACCUR #7	ACCUR #9	ACCUR 1680	ACCUR 2015BR	ACCUR 2230	ACCUR 2460	ACCUR 2520	PEARL SCOT	ROYAL SCOT	SOLO 1000	SOLO 1500	BULLSEYE	POWER PISTOL	RED DOT	GREEN DOT	BLUE DOT	AMER-SELECT	UNIQUE	HERCO	HERC 2400	RELODER 7	RELODER12	9SH

																						200	2000	-	
POWDER	"	32	34	37	4	43	46	49	53	57 .0	61 .(_		82	88	.95	1.02	1.09	1.18	1.26	1.36	1.46	1.57	
HS7		47	20	4	5.9	-	8.8	7.2	8.8						12.1	12.9	14.0	15.0	16.0						
H110		4.0	20	26	6.1		_	7.5	3.1.8						12.5	13.4	14.5	15.6	16.6			-			_
H4227		2,7	4	8	5.2	5.6	2.0								10.7	11.4	12.3	13.3	14.2						
H4198		1 4	-	4.9	33	5.7	5.1	•							10.9	11.7	12.7	13.6	14.5						
HP38		3.5		4.0	43	4.6	5.0								6.8	9.5	10.3	11.0	11.8						fa
CLAVS	2.1	2.2	2.3	×	2.7	2.9	3.1	3.4	3.6	3.9 4	4.2 4	4.5 4	4.9	5.2	5.6	0.9	6.5	7.0	7.5	8.1	9.8	9.3	10.0	10.7	
INT-CLAYS		2.5		2.9	3.2	3.4	3.6								6.5	7.0	7.5	8.1	9.8						
UNIVERSAL		2.9		3.4	3.6	3.9	4.2								7.5	8.0	9.8	9.3	6.6						
H4895		4.4		5.1	5.5	5.9	6.3								11.3	12.1	13.0	14.0	15.0						_
BI -C(2)		5.0		5.7	6.2	6.7									12.7	13.6	14.7	15.8	16.9						
H335		5.0		5.7	6.2	6.7									12.7	13.6	14.7	15.8	16.9						_
H380		4.6		4.5	2.8	6.2									11.9	12.7	13.7	14.8	15.8						_
TMR 700X		2.4		2.8	3.0	3.2									6.1	9.9	7.1	9.7	8.1						_
TMR PR		2.7		3.1	3.3	3.6									8.9	7.3	7.9	8.5	9.0						
SR4756	2.7	2.9		3.4	3.6	3.9	4.2								7.5	8.0	9.8	9.3	6.6						
SR4759	3.0	3.2		3.7	4.0	4.3									8.3	8.9	9.6	10.3	11.0						
TMR4227	3.9	4.2		8.4	5.2	5.6									10.7	11.4	12.3	13.3	14.2						_
TMR4198	00	4.0		4.7	5.1	5.4									10.4	11.1	12.0	12.9	13.8						
TMR3031	3.9	4.2		4.9	5.2	5.6									10.8	11.5	12.5	13.4	14.3						
IMR4064	4.0	4.3	4	5.0	5.4	2.8									11.0	11.8	12.8	13.7	14.6						1
IMR4895	4.1	4.4	4.7	5.1	5.5	5.9		6.7	7.3						11.3	12.1	13.0	14.0	15.0						_
TMR4320	4.2	5.5	8.8	5.2	5.6	0.9		8.9	7.4	-					11.5	12.3	13.3	14.3	15.2						_
SB7625	2.9		33	3.5	3.8	4.1		4.7	5.1	5.5					7.8	8.4	9.1	8.6	10.4						
TMR 800X	2.8	3.0	3.2	3.5	3.7	4.0	4.3	4.6	6.4	5.3					7.7	8.2	8.9	9.5	10.2						_
AS50	2.5	2.6	2.8	3.1	3.3	3.6		4.1	4.4	4.7	- 1	- 1	- 1		8.9	7.3	7.9	8.4	9.0	- 1		- 1			
1							7.5		ę.																

													•										
		32	.34	37	4	43 .4	46 .49	9 .53	3 .57	19. 7	99.	.71	.76	.82	880	.95	1.02	1.09	1.18	1.26	1.36	1.46	157
	4.0 4	4.3	4.6	5.0	5.4 5	.8 6.	2 6.0		7.7	7 8.2	8	9.6					13.8	14.7	15.9	17.0	18.3	19.7	21.2
	4.2 4	1.5	4.8	5.2	9 9.9	.0 6.	4 6.	9.7.4				6.6					14.3	15.3	16.5	176	19.0	20.4	22.0
	4.0 4	1.2	4.5	1.9	5.3 5	.7 6.1	1 6.	5 7.0	7.5		8.7	9.4					13.4	14.4	15.6	16.6	17.9	19.2	20.7
	4.1 4	4.4	4.7	5.1			3 6.8	8 7.3				8.6					14.1	15.0	16.3	17.4	18.7	20.1	21.6
	4.2 4	1.5	4.8	5.2								10.0					14.3	15.3	16.5	17.7	19.1	20.5	22.0
	3.5 3	3.7	4.0	1.3								8.3					11.9	12.7	13.8	14.7	15.9	17.0	183
	2.5 2	7.7	5.9	3.1								0.9					8.7	9.3	10.0	10.7	11.5	12.4	13.3
	2.0 2	2.1	2.3	5.5		2.9 3.						4.7					8.9	7.2	7.8	8.4	9.0	9.7	10.4
	2.0 2	2.2	2.3	5.5	2.7 2							4.8					6.9	7.4	8.0	9.8	9.2	6.6	10.7
	2.2 2	4	2.5	7.7								5.2					7.5	8.0	8.7	9.3	10.0	10.8	11.6
	4.2 4	1.5	4.8	5.2								10.0					14.3	15.3	16.6	17.7	19.1	20.5	22.0
	2.8 3	3.0	3.2	3.5	110							6.7					9.6	10.3	11.1	11.9	12.8	13.8	14.8
` '	3.4 3	9.6	4									8.0					11.4	12.2	13.2	14.1	15.2	16.4	17.6
``	2.5 2	.6 2		3.0							-	5.8					8.4	0.6	7.6	10.4	11.2	12.0	12.9
	2.5 2	9.	(.,									5.9					8.4	0.6	7.6	10.4	11.2	12.1	13.0
	2.8 3	0.	(.)	_	-						-	9.9					9.5	10.1	10.9	11.7	12.6	13.5	14.6
	2.8 3	.0 3	4.1		-	170					_	6.7					9.6	10.2	11.1	11.8	12.8	13.7	14.7
.,	3.3 3	5.3	3.7 4	1.1	-	-					-	7.8					11.2	11.9	12.9	13.8	14.9	16.0	17.2
(.,	3.1 3		3.5 3	8.8		-					_	7.3					10.4	11.2	12.1	12.9	13.9	15.0	16.1
.,	3.6 3.	3.8	1.1	4.							•	8.5					12.2	13.1	14.2	15.1	16.3	17.5	000
.,	3.9 4	1.1	4.4	8.	4,	5.5 5.9			-			9.2					13.1	14.0	15.2	16.2	17.5	18.8	20.2
7	4.0 4	.2 4	1.5 4	.9 5	4,				-		••	9.4					13.5	14.5	15.7	16.7	18.0	19.4	20.8
.,	3.9 4	2. 4	4 4	8.	4,				-		•	9.2					13.3	14.2	15.3	16.4	17.7	19.0	204
4.1	3.9 4	1. 4	4 4	8	5.1 5.	٠,			-		•	9.1					13.1	14.0	15.2	16.2	175	18.8	200
"		3.4 3	7.7	.0 4	4	4	5.3	5.7	_	9.9		9.7	8.2	8.8	9.5	10.2	11.0	11.7	12.7	13.5	14.6	15.7	16.9
4,	WIN ACTION PI 3.7 4.	0.	.2 4	.6 4	.9 5.	3 5.7	6.1	6.5	7.0	7.5	8.2	8.8	9.4				12.6	13.5	14.6	15.6	16.8	18.0	19.4

												•													
POWDER	.3 .32	.32	.34	.37	4.	.43	.46	.49	.53	.57	.61	99.	.71	92.	.82	88.	.95	1.02	1.09	1.18	1.26	1.36	1.46	1.57	_
WIN AA PLUS	2.3	2.5	5.6	2.9	3.1	3.3	3.5	3.8	4.1	4.4	4.7	5.1	5.5	5.9	6.3	8.9	7.3	7.9	8.4	9.1	7.6	10.5	11.3	12.1	_
WIN 296	4.6	4.9	5.2	9.9	6.1	9.9	7.0	7.5	8.1	8.7	9.3	10.1	10.8	11.6	12.5	13.4	14.5	15.6	16.6	18.0	19.2	20.7	22.3	24.0	_
wSUPER-LIT	3.5	3.8	4.0	4.4	4.7	5.1	5.4	5.8	6.3	6.7	7.2	7.8	8.4	0.6	7.6	10.4	11.2	12.0		13.9	14.9	16.0	17.2	18.5	_
wSUPER-TAR	2.5	2.7	2.8	3.1	3.3	3.6	3.8	4.1	4.4	4.7	5.1	5.5	5.9	6.3	8.9	7.3	7.9		-	8.6		11.3	12.1	13.0	_
wSUPER-FLD	3.6	3.8	4.0	4.4	4.8	5.1	5.5	5.8	6.3	8.9	7.3	6.7	8.4	0.6	8.6	10.5	11.3			14.0		16.2	17.4	18.7	_
WIN 540	4.4	4.7	5.0	5.4	5.9	6.3	6.7	7.2	7.8	8.3	8.9	7.6	10.4	11.1	12.0	12.9	13.9	14.9		17.3		19.9	21.4	23.0	_
WIN 571	4.4	4.4 4.7	5.0	5.4	5.9	6.3	8.9	7.2	7.8	8.4	0.6	7.6	10.4	11.2		12.9	14.0			17.4		20.0	21.5	23.1	_
WIN 748	4.6	4.9	5.2	9.9	6.1	9.9	7.0	7.5	8.1	8.7	9.3	10.1	10.8	11.6		13.4	14.5			18.0	19.2	20.7	22.3	24.0	_
09L NIM	4.5	8.4	5.1	5.6	0.9	6.5	6.9	7.4	8.0	9.8	9.2	6.6	10.7	11.4		13.2				17.7	18.9	20.4	21.9	23.6	_

WARNING:

YOU ARE RESPONSIBLE FOR THE SAFETY OF YOUR LOADS.

The NEVER EXCEED loads are the maximum loads contained in the published data by the manufacturers and distributors of the brand name powders. To enable an orderly and meaningful listing, there have been slight modifications in the presentations. Below are the caveats from each of the powder companies. Read them and decide if you are willing to abide by the conditions set forth for each brand of powder. If not, then do not load with the brand of powder whose conditions you cannot accept.

Accurate Arms Company

Accurate Arms Company disclaims all possible liability for damages, including, incidental and consequential, resulting from reader usage of information or advice contained in this book.(Accurate Smokeless Powder Number one) Use data and advice at your at your own risk.

Alliant Powder(Formerly Hercules Powder)

Reloader's Guide for Alliant Smokeless Powders

- 1. Do not intermix cases of different manufacture, nor bullets, nor primers.
- 2. Be sure that each case is crackfree and completely empty.
- 3. Unless specifically recommended, use standard primers. Magnum primers are neither needed nor recommended for most calibers.
- 4. Do not exceed the powder weight shown, and guard against accidental multiple charges of powder.
- 5. Start with 10% less powder than shown. Work up gradually, watching for signs of high pressure.
- 6. Be sure that every completed cartridge is not shorter than the length listed.
- 7. Watch for signs of case head separation.

Hodgdon Powder Co. Inc. Hodgdon Data Manual 26 Edition

Ballistic data shown in this manual was obtained in Hodgdon's laboratory under strictly controlled conditions.

Your reloads must contain the exact combinations listed in this manual. **NEVER** EXCEED charge recommendations in this manual.

NEVER mix any two powders regardless of type, brand or source. **NEVER** substitute any smokeless powder for black Powder or for Pyrodex®.

IMR Powder Company IMR Handloader's Guide for Smokeless Powders

Velocity and pressure readings represent average values obtained under controlled conditions. The values shown may vary substantially with the components and the reloading techniques employed. We suggest the charge weights shown be reduced initially by 10% to compensate for possible variations from the published data. The loads may then be increased as pressure indications permit.

Vihtavuori Oy Vihtavuori Oy Reloaders guide 4Th Edition

The data in the loading tables were obtained at an ambient temperature of 68 degrees Fahrenheit and a relative humidity of 55%. The values obtained were under carefully controlled conditions and may vary from those obtained with your specific component lots, loading dimensions and loading procedures. The maximum charges must NEVER be exceeded. You MUST begin loading at charge weights 15% lower than the listed maximums. When loading cartridges for which the listed charge is 10 grains or less, after firing 10 rounds at the minimum weight (15% below maximum), increase charge weights by 0.2 grains and fire another 10 rounds. Repeat this procedure until you reach, but do not exceed the maximum listed charge. The same process is followed for heavier charges except that for charge weights from 11 to 25 grains use increments of 0.5 grains. For charges over 25 grains, increments of 1.0 grains will be correct.

If even a single test round shows signs of excessive pressure, discontinue the use of the load. Do not fire even a single additional cartridge. Seek qualified help before proceeding!

Richard Lee

Modern Reloading

Amen! All the above are good advice. Use the <u>starting loads</u> so painstakingly calculated for you. The starting loads are reduced 10% or less from the NEVER EXCEED loads. The largest loss of velocity will be only 8%, even less with the quick powders. (See the chapter on Reduced Loads.) Consider the peace of mind, and all the wear and tear on the gun you will save by always using starting loads. Best accuracy loads are seldom maximum loads. After you gain experience, and feel a genuine need to get that last little bit of velocity from your loads, work up to the Never Exceed loads in at least five increments.

HOW TO READ THE LOAD DATA

Cartridge drawing:

The drawing has maximum allowable dimensions. This insures it will fit any standard chamber. If the tolerance is not given it is usually plus nothing and minus .008 inch on most diameters. Chambers usually have another .002 inch tolerance. This allows the cartridge to rattle around with up to .010 clearance between the cartridge and chamber. That's why it is best to not full length size your rifle ammunition if best accuracy is important. It is also the reason Lee makes sizing dies near the high size, a closer fit helps accuracy.

Case length is the maximum allowed for a standard chamber. Most rifle case may be trimmed .010 to .020 inch shorter. Cases such as the 380 Auto and the 45 ACP headspace on the end of the case. They should be the stated length or no shorter than .010 inch less than the maximum length. Lee case trimmers are .007 nominal less than maximum for best accuracy.

The case neck is usually considerably undersize because it must be small enough to firmly hold the bullet. This dimension is the sum of the bullet diameter plus twice the case neck thickness.

Powder Type:

The powder names and numbers are specific powders. Powders with the same number are not the same powder. Accurate Arms has a powder called No.2. Nobel make a Nobel Pistol No. 2 and a Nobel Rifle No. 2. All are different powders with different quickness and density. Substituting one for another could be catastophic. IMR makes a powder called IMR4350. Hodgdon sells H4350 and Accurate sells 4350. These powders are very similar, yet our tests indicate a difference in VMD. Don't substitute one for another, it may be safe, but it is unnecessary as the load data is listed for all three types in this manual. Always be certain of the powder you select.

Start Grains:

This is the weight of powder you should use. If you feel your loads are safe you may increase to the Never Exceed loads in five increments. That is the recommendation of all the powder companies and it's good advice. My advice is to use the start grains for all your ammunition. They are usually more accurate, and velocity is rarely five or six percent less than maximum loads. Cases last longer, fouling is less and most important your safety factor is increased. There are variables which cause increases in pressure. Thicker cases, primer brand and type, bullet brand and type, seating depth,

crimp, temperature, barrel condition, and powder humidity all have an effect on the pressure. You can see that extra safety factor buys a lot of peace of mind.

Volume CC:

This is the volume of the Start Grains of powder. This is the setting for your Lee Perfect Powder Measure. Because powders have different densities this number will vary with each powder type of equal grain weight. It is always prudent to double check your setting with a quality powder scale to be certain there is no setting error.

Auto-Disk:

Use the Auto-Disk cavity shown in this column. The Auto-Disk is too small for most large rifle cases and a NA will appear for None Available. Sometimes two disks can be stacked with the Double Disk Kit. If that's possible you will see DBLD for DouBLe Disk. Follow the instructions with the kit.

Lee Dipper:

This column lists the proper Lee Dipper to use. Dippers are proven to be the safest and most convienent of all powder measuring systems. The dipper can never get out of adjustment and repeatability of one tenth grain is possible. Millions are in use with a perfect safety record. Some belittle the dipper, but they work well, are convienent and the safest way to measure powder.

NEVER EXCEED:

This is the maximum load in grains. Don't go beyond this charge unless you have pressure measuring equipment.

Velocity FPS:

Velocity is stated in Feet Per Second of the Never Exceed Load. Velocity for the start load will be 0% to 8% less, depending upon the pressure of the NEVER EXCEED load.

Pressure:

Pressure information is almost totally useless to the average reloader. Attempting to use this information for interpolation can get you into big time trouble. The numbers are meaningless without considering the next column Units. Pressure is measured in different ways. The oldest is the CUP

or Copper Units of Pressure. Pressure is measured by checking how much a solid copper cylinder is crushed by the pressure in the cartridge. Some of the gas works against a piston which crushes the copper cylinder. Up to 1969 the amount the copper cylinder is crushed was converted to pounds per square inch by reference to a tarage table.

It was long recognized that the number was not truly pounds per square inch, but did give useful and consistent information for safe ammunition standards. After 1969 PSI was changed to CUP for copper units of pressure to clear the way for the new electronic transducers. This is a more convenient method of measuring pressure and the readings are listed as PSI. There is no direct way to convert CUP to PSI as measured by the piezo electric transducer. Alliant Powder lists some CUP and PSI comparisons in their Reloader's Guide. They list 28,000 CUP and 28,000 PSI as being the same safe pressure for the 45-70 Government. For the 280 Remington and 30-06, they list 50,000 CUP as being the same as 60,000 PSI. The 308 Winchester shows 52,000 CUP is equal to 60,000 PSI. You can see it is not possible to convert one to the other.

The other measuring system is the CIP, which is an acronym for Commission International Permanente, European standard. The major difference is that the pressure is measured at the mouth of the case rather than near the center of the case. While the numbers may be different the actual pressure is the same.

The important point is; the pressures listed for the Never Exceed loads are considered Maximum safe operating pressures by each powder vendor. There is no way you can safely increase the charge for all conditions without pressure measuring equiptment.

Minimum Over All Length:

Over all length is important two ways. A cartridge that is too long may not fit the magazine or work through your gun or jam the bullet into The rifling. Cartridges too short can cause excessive pressure. This is well explained in the reprint from Vihtavuori's Reloading guide elsewhere in this book. It is a major consideration for handgun ammunition. Interestingly, Vihtavuori does not list OAL with the rifle data. I added that in this data by using the SAMMI minimum cartridge length in the data. There may be conditions where a very short bullet can be less than the stated length with no problem. To be safe use the starting loads.

Hodgdon Powder takes a practical and caring approach to overall length. They suggest seating the bullet to crimp groove and if no crimp groove then the SAMMI OAL should be a safe load. Hodgdon's ballistics department

told me they test every available bullet for their load data. They then use the data for the one which generates the highest safe pressure. The others will all have lower or equal pressure. Some Start Grains are the same as Never Exceed charges because the pressures are low. This usually occurs with compressed charges or target loads.

Bullet Type:

Bullets are listed by weight and often by type. Type of bullet often has great effect on the pressure. The types are as follows:

(XXX) Grain Bullet

This is common with Hodgdon powders. It means you can use any reasonable bullet. That would be lead, jacketed or solid. Lead would not be a reasonable bullet at high velocity such as over 1400 fps unless it has a gas check and then the velocity should be limited to around 2000 fps. Barnes X bullets made from pure copper may not be used in this catagory as they often require reduced charges.

(XXX) Grain Jacketed

As the name implies, these are loads for jacketed bullets. While some of the handgun velocities are in cast bullet territory, it is not safe to substitute a lead bullet with a Never Exceed load. This is especially true of modern high pressure loads.

(XXX) Grain Lead

This data is for swaged or cast lead bullets. It is not safe to substitute jacketed bullets for lead bullets with Never Exceed loads as they sometimes cause higher pressures.

(XXX) Grain Wadcutter

These are for target ammunition. The loads are lighter for lower recoil and to allow deeper seating depths. Wadcutters cut clean holes in the target and is the bullseye shooter's first choice.

(XXX) Grain Solid

These are the solid bullets used for thick skinned African game. They are designed to penetrate without expansion.

(XXX) Barnes X Bullet

The Barnes X bullet is made from pure copper and tends to cause significantly higher pressures. The copper is lighter than lead so the bullet is longer which adds to the bearing surface and friction. The pure copper is not as slippery as the guilding metal used on jacketed bullets. Never substitute a

Barnes X bullet for another type as the pressure can come close to proof loads. Barnes X bullets come with load data and some is included with this book. Barnes is working very hard to supply you with up to date load data. Any gun with a lot of rounds through it, may produce higher pressures because of the roughened bore just ahead of the chamber. Barnes X bullets are affected a greater amount by this and caution is important.

NEVER USE POINTED BULLETS IN A TUBULAR MAGAZINE.

In a tubular magazine the primer of each cartridge rests against the bullet of the round behind it. The recoil can and has set off all the cartridges in the tube.

GOOD THINGS TO KNOW

How to Select the Best Load

The loads are sorted by bullet weight and velocity. All listed loads are suitable, just as all professional athletes are good. Some are better than the rest. The best loads are at or near the top of the list for any selected bullet weight. Because some powder suppliers tend to be more cautious, the loads they list may not be at the top, but they will be near the top of the list if they are quality loads. Certainly any load in the top half will be a quality load. Those in the lowest half are serviceable but usually cannot be expected to be the best quality.

Cast Bullet Loads

Suitable loads for lead bullets are listed for all handgun ammunition.

Most lead bullets for rifles should be kept under 1500 fps. For velocities up to 2000 fps use hard lead and attach a gas check. Reduce the listed charges according to the formula in the chapter on Reduced Charges.

Primers

Use standard primers for all loads except with Winchester 296. Winchester suggests using magnum primers with 296 powder. Because Hodgdon H110 powder is almost identical to Winchester 296 it's probably a good idea to use magnum primers with H110 even though Hodgdon does not specifically recommend it.

Be sure to use rifle primers for rifle cartridges and pistol primers for handgun ammunition.

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
25 Grain Jacketed											
ACCUR 2700	24.7	1.69	DBLD	1.6	27.0 4083	49900	CUP 2.170				
ACCUR 2495BR	20.5	1.54	1.46	NA	23.0 4056	51100	CUP 2.170				
v-N135	20.5	1.59	DBLD	NA	22.8 4040	52214	CIP 2.140				
IMR3031	20.1	1.53	1.46	NA	22.5 4015	51700	CUP 2.100				
IMR4064	21.9	1.63	DBLD	1.6	24.0 4005	50700	CUP 2.100				
IMR4895	21.1	1.54	1.46	NA	23.5 3995	51400	CUP 2.100				
ACCUR 2520	20.1	1.37	1.36	1.3	22.7 3973	51600	CUP 2.170				
ACCUR 2460	20.2	1.33	1.26	1.3	22.0 3965	49600	CUP 2.170				
IMR4320	22.5	1.61	DBLD	1.6	25.0 3965	51300	CUP 2.100				
RELODER15	20.5	1.45	1.36	1.3	22.8 3915	50200	CUP 2.140				
ACCUR 2015BR	18.8	1.38	1.36	1.3	20.0 3911	48400	CUP 2.170				
ACCUR 2230	20.5	1.34	1.26	1.3	21.5 3877	47900	CUP 2.170				
H414	22.9	1.52	1.46	NA	25.5 3845	NA	NA 2.100				
IMR4198	17.7	1.40	1.36	1.3	19.5 3840	51000	CUP 2.100				
H450	24.7	1.62	DBLD	1.6	27.5 3794	NA	NA 2.100				
BL-C(2)	19.8	1.28	1.26	NA	22.0 3772	NA	NA 2.100				
RELODER12	19.6	1.36	1.36	1.3	21.8 3750	50100	CUP 2.140				
H335	19.3	1.25	1.18	NA	21.5 3749	NA	NA 2.100				
H380	21.6	1.49	1.46	NA	24.0 3744	NA	NA 2.100				
H4895	19.3	1.41	1.36	1.3	21.5 3719	NA	NA 2.100				
IMR4227	15.1	1.16	1.09	NA	16.5 3600	50500	CUP 2.100				
IMR4350	25.0	1.84	DBLD	NA	25.0 3570	39000	CUP 2.100				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

17 REMINGTON (Continued)

	ST/	ARTING	LOA	DS						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
25 Grain Jacketed (Continued)										
SR4759	14.8	1.46	1.46	1.3	16.0	3505	50100	CUP 2.100		
IMR4831	25.0	1.84	DBLD	NA	25.0	3330	33500	CUP 2.100		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	M Units	imimum OAL
40 Grain Bullet									7000
H110	NA	NA	NA	NA	11.0	2845	NA	NA	1.710
ACCUR 1680	12.2	.80	.76	NA	14.0	2785	43000	CUP	1.715
RELODER 7	11.0	.80	.76	NA	11.0	2665	19800	CUP	1.710
H4227	9.4	.73	.71	.7	10.5	2653	NA	NA	1.710
H4198	10.3	.78	.76	.7	11.5	2462	NA	NA	1.710
HERC 2400	6.8	.51	.49	.5	7.5	2250	41000	CUP	1.710
ACCUR 2015BR	12.5	.91	.88	NA	12.5	2002	26900	CUP	1.715

STARTING LOADS

45 Grain Bullet							
H110	NA	NA	NA	NA	10.0 2623	NA	NA 1.710
WIN 680	10.4	.68	.66	NA	11.6 2590	40000	CUP 1.710
v-N110	8.6	.72	.71	.7	9.6 2530	37710	CIP 1.710
IMR4227	10.3	.80	.76	NA	11.5 2515	38900	CUP 1.720
H4227	9.0	.69	.66	NA	10.0 2494	NA	NA 1.710
ACCUR 1680	11.3	.74	.71	.7	12.3 2493	40700	CUP 1.720
H4198	10.3	.78	.76	.7	11.5 2402	NA	NA 1.710
RELODER 7	10.6	.77	.76	.7	10.6 2170	20300	CUP 1.710
ACCUR 2015BR	12.5	.91	.88	NA	12.5 2078	32100	CUP 1.720
HERC 2400	6.4	.48	.46	NA	7.1 2065	41300	CUP 1.710
IMR4198	10.5	.83	.82	NA	10.5 2010	20100	CUP 1.720
SR4759	8.0	.79	.76	.7	8.0 2000	24700	CUP 1.710
IMR4895	12.0	.87	.82	NA	12.0 1735	15500	CUP 1.720
IMR3031	11.0	.84	.82	NA	11.0 1675	14100	CUP 1.720
IMR4320	12.0	.86	.82	NA	12.0 1650	14900	CUP 1.720

22 HORNET (Continued)

and the second s	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mi Units	mimum OAL
45 Grain Bulle	t (Conti	nued)							
IMR4064	11.0	.82	.82	NA	11.0	1545	13100	CUP '	1.720
IMR4350	11.5	.85	.82	NA	11.5	1280	11700	CUP '	1.720
IMR4831	11.5	.85	.82	NA	11.5	1085	10700	CUP '	1.720

50 Grain Bullet

H4198	10.3	.78	.76	.7	11.5 2461	NA	NA 1.710
H110	NA	NA	NA	NA	9.5 2430	NA	NA 1.710
ACCUR 1680	10.2	.67	.66	NA	11.5 2392	42400	CUP 1.780
H4227	8.5	.66	.66	NA	9.5 2366	NA	NA 1.710
RELODER 7	10.5	.76	.76	.7	10.5 2115	21500	CUP 1.710
ACCUR 2015BR	12.0	.88	.88	NA	12.0 2023	35000	CUP 1.780
HERC 2400	6.3	.47	.46	NA	7.0 1945	41700	CUP 1.710

53 Grain Bullet

	9.0 2316 9.0 2278	
		ΝΔ / / / / / / / / / / / / / / / / / / /
		.71 .7 11.0 2219 NA

55 Grain Bullet

Jo Grain Dune							
H4198	9.9	.74	.71	.7	11.0 2250	NA	NA 1.710
					8.5 2188		
H4227	7.6	.59	.57	NA	8.5 2168	NA	NA 1.710

....STARTING LOADS... Start Volume Auto- Lee

NA

H110

NA

NA

Powaer Type	Grains	LL.	DISK	Dihhei	EVCEED	ILO	Fiessure	OIIII	UAL	
40 Grain Jacketed										
ACCUR 1680	14.9	.98	.95	NA	15.0	2799	34700	CUP	1.760	
H4198	12.6	.95	.95	NA	14.0	2792	NA	NA	1.655	
H4227	10.8	.83	.82	NA	12.0	2760	NA	NA	1.655	
45 Grain Jack	eted									
H4198	12.6	.95	.95	NA	14.0	2779	NA	NA	1.655	
ACCUR 1680	12.2	.80	.76	NA	14.0	2670	39800	CUP	1.610	

50 Grain Jack							
					13.5 2582		
ACCUR 1680	12.3	.80	.76	NA	13.0 2460	36600	CUP 1.780
H4227	9.9	76	.76	.7	11.0 2414	NA	NA 1.655

NA

55 Grain Jack							
H4198	12.1	.91	.88	NA	13.5 2567	NA	NA 1.655

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-14-1996

Mimimum

9.0 2294 38800 CUP 1.655

Powder Type		Volume CC				lelocity FPS	Pressure	M Units	limimum OAL
40 Grain Jacke									
H4227	15.3	1.18	1.18	NA	17.0	3033	NA	NA	1.810
H110	NA	NA	NA	NA	14.0	2933	NA	NA	1.810
HERC 2400	13.7	1.02	1.02	1.0	15.5	2700	46500	CUP	1.800

45 Grain Jacke	eted						
ACCUR 1680	16.3	1.07	1.02	1.0	18.3 2947	51300	CUP 1.765
ACCUR 2015BR	19.4	1.42	1.36	1.3	20.0 2750	47100	CUP 1.765
ACCUR 2230	19.4	1.28	1.26	NA	21.0 2719	49500	CUP 1.765
H110	NA	NA	NA	NA	14.0 2714	NA	NA 1.810
H4227	14.4	1.11	1.09	1.0	16.0 2697	NA	NA 1.810
H4198	15.3	1.15	1.09	NA	17.0 2632	NA	NA 1.810
IMR4198	17.7	1.40	1.36	1.3	17.7 2575	44500	CUP 1.800
IMR4227	13.2	1.02	1.02	1.0	14.9 2535	52000	CUP 1.800
IMR 800X	8.4	.90	.88	NA	9.4 2370	51600	CUP 1.800
SR4759	13.2	1.31	1.26	1.3	13.2 2235	36200	CUP 1.800
SR4756	7.4	.81	.76	NA	8.3 2105	52000	CUP 1.800
IMR4895	18.6	1.35	1.26	1.3	18.6 2055	28600	CUP 1.800
IMR3031	17.8	1.36	1.36	1.3	17.8 2015	26800	CUP 1.800
SR7625	7.0	.73	.71	.7	7.8 2010	51700	CUP 1.800
IMR PB	7.1	.86	.82	NA	7.8 1990	50600	CUP 1.800
IMR 700X	5.8	.78	.76	.7	6.5 1950	51800	CUP 1.800
IMR4064	18.0	1.34	1.26	1.3	18.0 1905	25700	CUP 1.800

IMR3031

SR4756

IMR4064

SR7625

16.8

6.4

17.0

5.9

1.28

.71

1.27

.62

		ARTING			NEVED Volceity	Mimimum
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS Pressure	Mimimum Units OAL
50 Grain Jacke	eted					
ACCUR 1680	15.8	1.04	1.02	1.0	17.8 2813 51500	CUP 1.825
ACCUR 2230	19.4	1.28	1.26	NA	21.0 2673 49500	CUP 1.825
H4227	14.4	1.11	1.09	1.0	16.0 2672 NA	NA 1.810
ACCUR 2015BR	19.5	1.42	1.36	1.3	19.5 2644 45600	CUP 1.825
H110	NA	NA	NA	NA	13.5 2637 NA	NA 1.810
H4198	14.8	1.11	1.09	1.0	16.5 2539 NA	NA 1.810
HERC 2400	13.1	.97	.95	NA	13.8 2410 43500	CUP 1.825
IMR4227	13.2	1.02	1.02	1.0	14.7 2390 51400	CUP 1.800
IMR4198	16.7	1.32	1.26	1.3	16.7 2380 44000	CUP 1.825
IMR 800X	8.1	.87	.82	NA		CUP 1.825
SR4759	12.7	1.26	1.26	NA	12.7 2105 38000	CUP 1.825
IMR4895	18.1	1.32	1.26	1.3		CUP 1.825
IMR3031	17.3	1.32	1.26	1.3	17.3 1960 28200	CUP 1.825
SR4756	6.9	.76	.76	.7	7.7 1925 51200	CUP 1.825
SR7625	6.3	.66	.66	NA		CUP 1.825
IMR PB	6.3	.76	.76	.7	7.1 1835 51800	CUP 1.825
IMR4064	17.5	1.30	1.26	1.3	17.5 1835 27500	CUP 1.825
IMR 700X	5.4	.72	.71	.7	6.0 1775 51700	CUP 1.825
53 Grain Jacke	eted					
H110	NA	NA	NA	NA	13.0 2619 NA	NA 1.810
H4227	14.4	1.11	1.09	1.0	16.0 2603 NA	NA 1.810
H4198	14.8	1.11	1.09	1.0	16.5 2537 NA	NA 1.810
HERC 2400	12.7	.95	.95	NA	13.5 2320 43600	CUP 1.825
		1				
55 Grain Jacke	hate					
ACCUR 1680	15.0	.98	.95	NA	17.0 2700 52000	CUP 1.825
ACCUR 2230	17.7	1.17	1.09	NA	20.0 2551 51600	CUP 1.825
H4227	13.9	1.07	1.02	1.0	15.5 2503 NA	NA 1.810
H4198	14.4	1.08	1.02	1.0	16.0 2441 NA	NA 1.810
IMR4198	16.4	1.30	1.26	1.3	16.4 2315 45900	CUP 1.825
IMR4227	12.9	.99	.95	NA	14.4 2315 51700	CUP 1.825
IMR 800X	8.1	.87	.82	NA	8.9 2135 50700	CUP 1.825
SR4759	12.2	1.21	1.18	NA	12.2 2000 37700	CUP 1.825
IMR4895	17.5	1.27	1.26	NA	17.5 1905 28700	CUP 1.825
			1 00		100 1000 00000	01104 005

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

NA

.7

NA

NA

6.6

1710

1.26

.71

1.26

.61

16.8 1900 28000 CUP 1.825

7.2 1790 51600 CUP 1.825

17.0 1740 26300 CUP 1.825

51500 CUP 1.825

		ARTING		DS							
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	Pressure	Mimimum Units OAL				
55 Grain Jacketed (Continued)											
IMR PB	5.9	.71	.71	.7	6.6 1700	51800	CUP 1.825				
IMR 700X	5.2	.70	.66	.7	5.8 1655	51300	CUP 1.825				
60 Grain Jacketed											
IMR4227	12.6	.97	.95	NA	14.1 2315	51800	CUP 1.825				
RELODER 7	18.1	1.32	1.26	1.3	18.1 2250	34000	CUP 1.825				
HERC 2400	11.8	.88	.88	NA	13.3 2200	46300	CUP 1.825				
IMR4198	15.7	1.24	1.18	NA	15.7 2145	37100	CUP 1.825				
IMR 800X	7.6	.82	.82	NA	8.6 2025	52000	CUP 1.825				
SR4759	11.7	1.16	1.09	NA	11.7 1915	38000	CUP 1.825				
IMR4895	16.8	1.22	1.18	NA	16.8 1845	28400	CUP 1.825				
IMR3031	16.1	1.23	1.18	NA	16.1 1770	23600	CUP 1.825				
SR4756	6.6	.73	.71	.7	7.3 1745	50900	CUP 1.825				
IMR4064	16.3	1.21	1.18	NA	16.3 1710	22800	CUP 1.825				
IMR PB	6.0	.73	.71	.7	6.7 1685	51200	CUP 1.825				
SR7625	6.0	.62	.61	NA	6.7 1675	51900	CUP 1.825				
IMR 700X	5.4	.72	.71	.7	5.9 1635	50800	CUP 1.825				
63 Grain Jacke	eted										
H4227	13.5	1.04	1.02	1.0	15.0 2414	NA	NA 1.810				
H4198	14.4	1.08	1.02	1.0	16.0 2399	NA	NA 1.810				
70 Grain Jacketed											
IMR4198	14.7	1.16	1.09	NA	14.7 2045	43200	CUP 1.740				
IMR4227	11.2	.86	.82	NA	12.5 2015	51500	CUP 1.740				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996 NA = None Available

IMR 800X

IMR4895

SR4759

IMR3031

SR4756

IMR4064

IMR PB

SR7625

IMR 700X

7.0

15.5

10.8

14.7

6.3

15.0

5.7

5.6

5.1

.75

1.13

1.07

1.12

.70

1.12

.68

.58

.69

.71

1.09

1.02

1.09

.66

1.09

.66

.57

.66

.7

1.0

1.0

1.0

1.0

NA

NA

NA

.7

7.9 1790

15.5 1725

1510

6.3

6.2

5.6

52000 CUP 1.740

29100 CUP 1.740

51500 CUP 1.740

1490 51300 CUP 1.740

1455 50700 CUP 1.740

10.8 1715 37900 CUP 1.740

14.7 1685 25900 CUP 1.740

7.0 1580 51100 CUP 1.740

15.0 1575 24200 CUP 1.740

222 REMINGTON

ALTERNATION OF THE PROPERTY OF		AKTING	LUA	DS	NEVED	Verlande		N/	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	EXCEED	Velocity FPS	Pressure	Units	imimum OAL
40 Grain Jacke	eted					0			
H322	21.5	1.56	DBLD	NA	24.0	3488	48900	CUP	2.040
v-N130	21.9	1.65	DBLD	1.6	23.2	3435	44962	CIP	2.040
BL-C(2)	23.4	1.51	1.46	NA	25.0	3411	46700	CUP	2.040
v-N120	19.4	1.50	1.46	NA	20.8	3373	45542	CIP	2.040
H335	23.0	1.48	1.46	NA	24.0	3315	45600	CUP	2.040
H4895	22.7	1.65	DBLD	1.6	24.0	3292	46300	CUP	2.040
v-N133	23.9	1.84	DBLD	NA	23.9	3284	38435	CIP	2.040
H4227	13.5	1.04	1.02	1.0	14.5	3019	47100	CUP	2.040
H380	26.5	1.83	DBLD	NA	26.5	3000	38200	CUP	2.040

CTARTING LOADS

45 Grain Jacketed										
H4198	17.9	1.34	1.26	1.3	20.5 3452 50200 CUP 2.040					
ACCUR 2230	24.7	1.62	DBLD	1.6	27.0 3447 47400 PSI 2.065					
ACCUR 2460	25.5	1.67	DBLD	1.6	27.0 3405 45900 PSI 2.065					
ACCUR 2015BR	21.6	1.57	DBLD	NA	24.5 3384 49300 PSI 2.065					
v-N130	21.9	1.65	DBLD	1.6	23.2 3340 44962 CIP 2.040					
H322	20.8	1.51	1.46	NA	23.0 3329 48400 CUP 2.040					
IMR4198	19.1	1.51	1.46	NA	21.5 3315 45000 CUP 2.130					
BL-C(2)	23.3	1.51	1.46	NA	24.5 3305 45900 CUP 2.040					
ACCUR 1680	18.8	1.23	1.18	NA	21.0 3297 48500 PSI 2.065					
RELODER12	22.9	1.58	DBLD	NA	25.0 3290 46200 PSI 2.090					
v-N133	22.9	1.76	DBLD	1.6	23.9 3284 44236 CIP 2.040					
v-N120	18.1	1.40	1.36	1.3	19.8 3260 46412 CIP 2.040					
RELODER 7	17.6	1.28	1.26	NA	19.8 3225 47500 PSI 2.090					

	STA	ARTING	LOA	DS						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
45 Grain Jacketed (Continued)										
WIN 748	22.2	1.45	1.36	1.3	25.5	3210	41000	CUP 2.040		
H335	22.8	1.47	1.46	1.3	23.5	3189	45000	CUP 2.040		
IMR4895	25.5	1.86	DBLD	NA	25.5	3165	39500	CUP 2.130		
ACCUR 2520	25.0	1.71	DBLD	1.6	25.0	3156	34200	PSI 2.065		
ACCUR 2495BR	24.0	1.80	DBLD	1.6	24.0	3154	39900	PSI 2.065		
H4895	22.8	1.66	DBLD	1.6	23.5	3140	45100	CUP 2.040		
IMR4320	26.0	1.86	DBLD	NA	26.0	3115	39700	CUP 2.130		
IMR3031	24.0	1.83	DBLD	NA	24.0	3065	33100	CUP 2.130		
IMR4227	15.9	1.22	1.18	NA	17.5	3055	44000	CUP 2.130		
SR4759	15.0	1.49	1.46	NA	16.5	2925	44000	CUP 2.130		
IMR4064	24.0	1.79	DBLD	1.6	24.0	2910	31700	CUP 2.130		
H4227	13.3	1.02	1.02	1.0	14.5	2901	47600	CUP 2.040		
H380	26.0	1.80	DBLD	1.6	26.0	2850	37500	CUP 2.040		
IMR4350	25.0	1.84	DBLD	NA	25.0	2545	24700	CUP 2.130		
IMR4831	25.0	1.84	DBLD	NA	25.0	2375	22300	CUP 2.130		

En	Crain	1	141

50 Grain Jack	eted						
H4198	17.4	1.31	1.26	1.3	20.0 3306	50200	CUP 2.040
v-N120	16.9	1.31	1.26	1.3	19.3 3250	48412	CIP 2.100
ACCUR 2230	22.1	1.45	1.36	1.3	24.5 3227	48200	PSI 2.150
v-N133	21.5	1.65	DBLD	1.6	23.5 3220	46412	CIP 2.100
ACCUR 2015BR	22.3	1.63	DBLD	1.6	23.5 3208	45800	PSI 2.150
BL-C(2)	21.2	1.36	1.36	1.3	24.0 3206	49600	CUP 2.040
ACCUR 2460	23.1	1.52	1.46	NA	24.5 3204	46000	PSI 2.150
H322	19.4	1.41	1.36	1.3	22.5 3177	50700	CUP 2.040
v-N130	20.8	1.57	DBLD	NA	22.1 3142	44962	CIP 2.100
IMR4198	18.4	1.46	1.46	1.3	20.5 3130	44500	CUP 2.130
RELODER12	22.9	1.58	DBLD	NA	24.0 3120	44300	PSI 2.130
RELODER 7	17.9	1.30	1.26	1.3	20.0 3115	47400	PSI 2.130
IMR4895	24.2	1.76	DBLD	1.6	25.0 3085	41300	CUP 2.130
ACCUR 2520	25.0	1.71	DBLD	1.6	25.0 3081	38300	PSI 2.150
H335	22.1	1.42	1.36	1.3	23.0 3072	45600	CUP 2.040
IMR4320	25.4	1.82	DBLD	NA	26.0 3065	40800	CUP 2.130
IMR3031	23.5	1.79	DBLD	1.6	23.5 3045	38400	CUP 2.130
H4895	22.7	1.65	DBLD	1.6	23.0 3043	44400	CUP 2.040
ACCUR 2495BR	24.0	1.80	DBLD	1.6	24.0 3043	41100	PSI 2.150
ACCUR 1680	16.1	1.05	1.02	1.0	18.5 3009	50000	PSI 2.150
WIN 748	22.5	1.48	1.46	1.3	24.0 2980	38000	CUP 2.040
IMR4227	15.4	1.18	1.18	NA	17.5 2965	45500	CUP 2.130
IMR4064	23.5	1.75	DBLD	1.6	23.5 2875	34200	CUP 2.130
H380	25.0	1.73	DBLD	1.6	25.0 2855	40300	CUP 2.040
SR4759	14.6	1.45	1.36	1.3	16.5 2845	45000	CUP 2.130

	STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dinner	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL				
50 Grain Jacke	-			o ippoi								
H4227	14.0	1.08	1.02	1.0	14.0	2689	43300	CUP 2.040				
IMR4350	24.5	1.80	DBLD	1.6	0.000000	2495		CUP 2.130				
IMR4831	24.5	1.80	DBLD	1.6		2320	21500	CUP 2.130				
111111111111111111111111111111111111111	21.0	1.00	DDLD	110				00. 20				
53 Grain Jacketed												
ACCUR 2015BR	20.4	1.49	1.46	NA	23.5	3194	50000	PSI 2.190				
ACCUR 2230	22.9	1.51	1.46	NA		3120		PSI 2.190				
H4198	17.0	1.27	1.26	NA		3115		CUP 2.040				
ACCUR 2460	23.4	1.53	1.46	NA	-	3111	45500					
ACCUR 2520	25.0	1.71	DBLD	1.6		3082		PSI 2.190				
BL-C(2)	21.6	1.39	1.36	1.3		3075		CUP 2.040				
ACCUR 2495BR	22.5	1.68	DBLD	1.6		3071		PSI 2.190				
H322	20.0	1.45	1.36	1.3		3059		CUP 2.040				
H335	21.7	1.40	1.36	1.3		3042		CUP 2.040				
H4895	21.6	1.57	DBLD	NA		3020		CUP 2.040				
ACCUR 1680	17.4	1.14	1.09	NA	19.0	2943	47400	PSI 2.190				
WIN 748	22.7	1.49	1.46	NA	22.9	2855		CUP 2.040				
VIII 7-10												
EE Oute India	4-4											
55 Grain Jacke	21.6	1.49	1.46	NA	24.0	3190	47900	CUP 2.130				
RELODER 12	21.9	1.54	DBLD	NA		3120		CUP 2.130				
	23.0		1.46	NA		3106		PSI 2.155				
ACCUR 2230 ACCUR 2460	23.6	1.51 1.55	DBLD	NA		3091	45000					
IMR4895	21.7	1.58	DBLD			3085		CUP 2.130				
H4198	17.1	1.28	1.26	NA		3051		CUP 2.040				
v-N133	20.5	1.57	DBLD	NA		3050		CIP 2.100				
ACCUR 2015BR	21.2	1.55	DBLD			3047		PSI 2.155				
v-N130	20.2	1.52	1.46	NA		3025		CIP 2.100				
H322	19.8	1.44	1.36	1.3		3010		CUP 2.040				
BL-C(2)	21.9	1.41	1.36	1.3		3004		CUP 2.040				
IMR4198	18.7	1.48	1.46	NA		2990		CUP 2.130				
IMR4320	23.4	1.68	DBLD	1.6		2985		CUP 2.130				
v-N120	16.9	1.31	1.26	1.3	18.5	2970	46412	CIP 2.100				
ACCUR 2520	24.5	1.67	DBLD	1.6	24.5	2962	36300	PSI 2.155				
H335	21.6	1.39	1.36	1.3		2960	45600	CUP 2.040				
IMR3031	23.0	1.75	DBLD	1.6	23.0	2945	38300	CUP 2.130				
H4895	21.0	1.53	1.46	NA	22.5	2940	46800	CUP 2.040				
ACCUR 2495BR	23.5	1.76	DBLD	1.6	23.5	2920	42100	PSI 2.155				
WIN 748	22.5	1.48	1.46	1.3	24.0	2900		CUP 2.040				
ACCUR 1680	18.7	1.22	1.18	NA	19.0	2896	44200	PSI 2.155				
	440	4 4 4	4 00	BIA	17.0	2025	45000	CLID 2 120				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

NA

17.0 2835

1.09

1.14

14.8

IMR4227

45800 CUP 2.130

STARTING LOADS...

Powder Type	Grains	CC	Disk	Dipper	EXCEED	FPS	Pressure	Units	OAL
55 Grain Jacke	ted (Co	ontinue	ed)						
IMR4064	23.5	1.75	DBLD	1.6	23.5	2825	35100	CUP	2.130
H380	24.5	1.69	DBLD	1.6	24.5	2766	41800	CUP	2.040
SR4759	14.0	1.39	1.36	1.3	15.5	2665	44200	CUP	2.130
IMR4350	24.5	1.80	DBLD	1.6	24.5	2475	26800	CUP	2.130
IMR4350	24.5	1.80	DBLD	1.6	24.5	2475	26800	CUP	2.130
IMR4831	24.5	1.80	DBLD	1.6	24.5	2300	24100	CUP	2.130
60 Grain Jacke	ted								
v-N135	21.1	1.64	DBLD	1.6	23.1	3100	46412	CIP	2.100
ACCUR 2230	21.7	1.42	1.36	1.3	24.0	2945	48100	PSI	2.200
ACCUR 2015BR	20.2	1.47	1.46	1.3	22.2	2941	47800	PSI	2.200
ACCUR 2460	22.5	1.48	1.46	1.3	23.9	2939	46100	PSI	2.200
ACCUR 2520	24.2	1.65	DBLD	1.6	24.5	2935	43900	PSI	2.200
ACCUR 2495BR	20.6	1.55	DBLD	NA	23.5	2934	49400	PSI	2.200
RELODER15	20.1	1.42	1.36	1.3	22.5	2915	47500	PSI	2.130
v-N130	19.9	1.50	1.46	NA	21.1	2877	44962	CIP	2.100
v-N133	19.9	1.53	1.46	NA	21.8	2850	46412	CIP	2.100
ACCUR 1680	16.5	1.08	1.02	1.0	19.0	2803	50000	PSI	2.200

Volume Auto- Lee NEVER Velocity

64	Grain	Jack	eted

OT Grain backe	teu						
BL-C(2)	21.1	1.36	1.36	1.3	22.0 2856	45600	CUP 2.040
H4198	16.7	1.25	1.18	NA	18.5 2843	48500	CUP 2.040
H322	19.1	1.39	1.36	1.3	20.5 2805	46900	CUP 2.040
H335	20.8	1.34	1.26	1.3	21.0 2720	44200	CUP 2.040
H4895	21.0	1.53	1.46	NA	21.0 2713	43700	CUP 2.040
H380	24.0	1.66	DBLD	1.6	24.0 2671	43500	CUP 2.040
H4350	24.5	1.78	DBLD	1.6	24.5 2670	35500	CUP 2.040
H4831	24.5	1.78	DBLD	1.6	24.5 2639	34000	CUP 2.040

70 Grain Jacketed

H380	22.2	1.53	1.46	NA	23.0 2646 45300 CUP 2.040
v-N130	18.4	1.39	1.36	1.3	19.5 2641 44962 CIP 2.100
BL-C(2)	20.5	1.33	1.26	1.3	21.0 2623 44700 CUP 2.040
H322	18.2	1.32	1.26	1.3	19.5 2621 46900 CUP 2.040
H335	20.3	1.31	1.26	1.3	20.5 2577 44200 CUP 2.040
H4895	19.6	1.43	1.36	1.3	20.5 2573 45700 CUP 2.040
H4350	23.5	1.70	DBLD	1.6	23.5 2472 37200 CUP 2.040
H4198	16.1	1.21	1.18	NA	16.5 2380 44700 CUP 2.040

222 REMINGTON MAGNUM

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
40 Grain Jacketed										
BL-C(2)	26.8	1.73	DBLD	1.6				CUP 2.220		
H335	27.6	1.78	DBLD	1.6	30.0	3803	47800	CUP 2.220		
H4198	21.9	1.64	DBLD	1.6	24.5	3760	49100	CUP 2.220		
H322	24.5	1.78	DBLD	1.6	27.0	3622	48400	CUP 2.220		
H4895	28.2	2.05	DBLD	1.9	29.0	3490	45200	CUP 2.220		
H380	31.0	2.14	DBLD	1.9	31.0	3270	37800	CUP 2.220		
H414	31.0	2.05	DBLD	1.9	31.0	3142	28000	CUP 2.220		
H4227	17.0	1.31	1.26	1.3	17.0	3062	36600	CUP 2.220		

45 Grain Jacke	ted					_
BL-C(2)	24.6	1.58	DBLD	NA	28.0 3664 50100 CUP 2.22	0
NOBELRIF 3	22.9	1.65	DBLD	1.6	25.5 3650 NA NA 2.22	0
H335	24.8	1.60	DBLD	1.6	28.0 3647 49600 CUP 2.22	
H4198	21.0	1.58	DBLD	NA	24.0 3641 50200 CUP 2.22	0
ACCUR 2460	26.9	1.77	DBLD	1.6	29.3 3579 49400 PSI 2.22	0
ACCUR 2230	27.5	1.80	DBLD	1.6	28.7 3548 47500 PSI 2.22	
H322	23.2	1.68	DBLD	1.6	26.5 3532 50300 CUP 2.22	0
ACCUR 2015BR	26.0	1.90	DBLD	1.9	27.0 3521 47200 PSI 2.22	0
NOBELRIF 2	23.4	1.68	DBLD	1.6	26.0 3500 NA NA 2.22	0
ACCUR 2520	29.0	1.98	DBLD	1.9	29.0 3474 43900 PSI 2.22	0
H4895	25.6	1.87	DBLD	NA	29.0 3442 49700 CUP 2.22	0
IMR4895	25.5	1.86	DBLD	NA	28.0 3425 49000 CUP 2.28	0
IMR4198	20.5	1.63	DBLD	1.6	23.0 3420 50000 CUP 2.28	0
RELODER 7	20.5	1.49	1.46	NA	23.0 3400 46500 CUP 2.28	0

222 REMINGTON MAGNUM (Continued)

	STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL			
45 Grain Jacketed (Continued)										
IMR3031	26.5	2.02	DBLD	1.9	26.5 3375	43800	CUP 2.280			
IMR4320	25.0	1.79	DBLD	1.6	28.0 3340	50000	CUP 2.280			
IMR4064	27.0	2.01	DBLD	1.9	27.0 3245	41600	CUP 2.280			
H414	31.0	2.05	DBLD	1.9	31.0 3199	33000	CUP 2.220			
H380	31.0	2.14	DBLD	1.9	31.0 3172	42300	CUP 2.220			
ACCUR 2700	29.0	1.99	DBLD	1.9	29.0 3109	33900	PSI 2.220			
IMR4227	15.9	1.23	1.18	NA	17.5 3065	49000	CUP 2.280			
SR4759	15.4	1.53	1.46	NA	17.0 3010	49200	CUP 2.280			
IMR4350	27.5	2.02	DBLD	1.9	27.5 2875	34600	CUP 2.280			
IMR4831	27.5	2.02	DBLD	1.9	27.5 2645	31000	CUP 2.280			

50 Grain Jacketed

50 Grain Jacke	eted						
NOBELRIF 3	22.0	1.59	DBLD	NA	24.5 3500	NA	NA 2.220
H335	24.6	1.59	DBLD	NA	27.0 3476	48200	CUP 2.220
ACCUR 2230	24.8	1.63	DBLD	1.6	28.2 3462	51700	PSI 2.320
ACCUR 2460	25.4	1.67	DBLD	1.6	28.3 3445	50600	PSI 2.320
BL-C(2)	25.1	1.62	DBLD	1.6	27.0 3433	47300	CUP 2.220
ACCUR 2520	28.1	1.92	DBLD	1.9	29.0 3402	46900	PSI 2.320
NOBELRIF 2	22.9	1.65	DBLD	1.6	25.5 3400	NA	NA 2.220
ACCUR 2015BR	24.5	1.79	DBLD	1.6	26.5 3399	49100	PSI 2.320
H322	23.2	1.68	DBLD	1.6	26.0 3385	49300	CUP 2.220
H4198	22.8	1.71	DBLD	1.6	23.5 3379	45400	CUP 2.220
IMR3031	23.7	1.80	DBLD	1.6	26.0 3350	49000	CUP 2.280
IMR4064	24.4	1.82	DBLD	NA	27.0 3320	49300	CUP 2.280
IMR4895	24.3	1.77	DBLD	1.6	27.0 3310	49500	CUP 2.280
H4895	27.3	1.99	DBLD	1.9	28.5 3306	45900	CUP 2.280
IMR4320	24.7	1.77	DBLD	1.6	27.5 3260	49700	CUP 2.280
IMR4198	19.4	1.54	1.46	NA	21.5 3255	49500	CUP 2.280
RELODER 7	20.5	1.50	1.46	NA	22.5 3250	45400	CUP 2.280
WIN 748	25.5	1.67	DBLD	1.6	27.2 3220	43000	CUP 2.220
H380	30.0	2.07	DBLD	1.9	31.0 3171	45400	CUP 2.220
H414	31.0	2.05	DBLD	1.9	31.0 3123	34800	CUP 2.220
ACCUR 2700	29.0	1.99	DBLD	1.9	29.0 3036	35900	PSI 2.320
IMR4227	15.2	1.17	1.09	NA	17.0 2975	50000	CUP 2.280
SR4759	15.3	1.52	1.46	NA	17.0 2935	49700	CUP 2.280
IMR4350	27.5	2.02	DBLD	1.9	27.5 2855	36000	CUP 2.280
IMR4831	27.5	2.02	DBLD	1.9	27.5 2640	31800	CUP 2.280

52 Grain Jacketed

om ordin odon	otou						
ACCUR 2460	25.7	1.69	DBLD	1.6	28.3 3389	50000 PSI	2.295
ACCUR 2230	24.0	1.58	DBLD	NA	27.7 3388	52400 PSI	2.295

222 REMINGTON MAGNUM (Continued)

	STARTING LOADS										
Start Volume Auto- Lee NEVER Velocity Mimimum											
Powder Type				Dipper	EXCEED	FPS	Pressure	Units OAL			
52 Grain Jacke				1.0	05.0	0040	10000	DCI 2 20E			
ACCUR 2015BR	23.5	1.71	DBLD	1.6		3343	49900				
WIN 748	24.1	1.58	DBLD	NA		3270	1 17 17 17 17	CUP 2.220			
ACCUR 2520	29.0	1.98	DBLD	1.9		3037		PSI 2.295			
ACCUR 2700	29.0	1.99	DBLD	1.9	29.0	2950	35200	PSI 2.295			
53 Grain Jacke	eted										
H335	24.9	1.61	DBLD	1.6		3340		CUP 2.220			
BL-C(2)	24.8	1.60	DBLD	1.6	27.0	3313	47800	CUP 2.220			
H322	22.1	1.60	DBLD	1.6		3285	49800				
H4198	22.0	1.65	DBLD	1.6		3282		CUP 2.220			
H4895	25.4	1.85	DBLD	NA		3272		CUP 2.220			
WIN 748	24.1	1.58	DBLD	NA	-	3270		CUP 2.220			
H380	29.5	2.04	DBLD	1.9		3181		CUP 2.220			
H414	31.0	2.05	DBLD	1.9		3155		CUP 2.220			
RELODER 7	20.5	1.49	1.46	NA	22.0	3120	44500	CUP 2.280			
55 Grain Jacke	eted										
NOBELRIF 3	21.6	1.56	DBLD	NA	24.0	3370	NA	NA 2.220			
H335	23.8	1.53	1.46	NA	26.0	3294	48100	CUP 2.220			
ACCUR 2460	24.7	1.62	DBLD	1.6	27.7	3291	50900	PSI 2.310			
NOBELRIF 2	22.5	1.62	DBLD	1.6	25.0	3290	NA	NA 2.220			
ACCUR 2520	27.9	1.90	DBLD	1.9	28.7	3277	46800	PSI 2.310			
H4895	25.2	1.83	DBLD	NA	28.0	3257	48900	CUP 2.220			
ACCUR 2230	24.9	1.64	DBLD	1.6	27.0	3251	49200	PSI 2.310			
BL-C(2)	24.9	1.61	DBLD	1.6	26.5	3240	46800	CUP 2.220			
H4198	21.8	1.64	DBLD	1.6	23.0	3222	46300	CUP 2.220			
ACCUR 2015BR	24.5	1.79	DBLD	1.6	25.5	3219	47200	PSI 2.310			
WIN 748	25.8	1.69	DBLD	1.6	27.2	3215	42500	CUP 2.220			
WIN 748	24.7	1.62	DBLD	1.6	27.0	3215	44000	CUP 2.220			
IMR3031	22.8	1.74	DBLD	1.6	25.5	3215	49900	CUP 2.280			
H414	30.5	2.02	DBLD	1.9	31.0	3209		CUP 2.220			
H322	21.8	1.58	DBLD	NA	24.5	3191	49300	CUP 2.220			
IMR4064	23.7	1.76	DBLD	1.6	26.5	3180	50000	CUP 2.280			
H380	30.3	2.10	DBLD	1.9	31.0	3136	44900	CUP 2.220			
IMR4895	23.4	1.70	DBLD	1.6	26.0	3115		CUP 2.280			
RELODER 7	19.8	1.44	1.36	1.3	22.0	3100	46000				
IMR4320	24.0	1.72	DBLD	1.6	27.0	3095		CUP 2.280			
IMR4198	18.3	1.45	1.36	1.3		3090		CUP 2.280			
ACCUR 2700	29.0	1.99	DBLD	1.9	29.0	2951		PSI 2.310			
IMR4350	27.5	2.02	DBLD	1.9	27.5	2785		CUP 2.280			
IMR4227	14.4	1.11	1.09	1.0	16.0	2740	49600	CUP 2.280			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996 NA = None Available

222 REMINGTON MAGNUM (Continued)

Start Volume Auto-Grains CC Disk

55 Grain Jacketed (Continued)

Powder Type

STARTING LOADS....

Lee NEVER Velocity Dipper EXCEED FPS

Mimimum ts OAL

Units

Pressure

29.0 2864 47400 CUP 2.220

28.0 2811 46900 CUP 2.220

24.5 2785 49800 CUP 2.220

23.5 2744 48600 CUP 2.220

24.0 2734 46900 CUP 2.220

27.0 2570 42000 CUP 2.220

48400 CUP 2.220

22.5 2753

OO GIGIII OGOKO									
SR4759	14.3	1.42	1.36	1.3	16.0	2685	50000	CUP	2.280
IMR4831	27.5	2.02	DBLD	1.9	27.5	2610	32400	CUP	2.280
60 Grain Jacke	heted								
ACCUR 2520	25.8	1.76	DBLD	1.6	27.7	3150	48800	PSI	2 330
ACCUR 2460	24.7	1.62	DBLD	1.6		3127	49100		
ACCUR 2230	24.0	1.57	The second second		200000000000000000000000000000000000000	3088	49300		2.330
ACCUR 2015BR	22.8	1.67	DBLD		-	3086	48800		2.330
ACCUR 2700	28.0	1.92	DBLD	1.9			37700		2.330
							0.700		2.000
63 Grain Jacke	*****								
NOBELRIF 3	21.1	1.52	1.46	NA	22.5	2150	ALA	N.1.A	0.000
NOBELRIF 2	21.6					3150	NA		2.220
H414		1.56	DBLD	NA	1	3100	NA		2.220
BL-C(2)	29.0	1.92	DBLD	1.9		3085	45400		2.220
	23.0	1.49	1.46	NA		3078	49600		2.220
ACCUR 2015BR	22.4	1.64	DBLD	1.6		3068	50300		2.280
H335	22.8	1.47	1.46	1.3		3057	49100		
H4895	24.1	1.75	DBLD	1.6		3046	48400		2.220
H4198	18.8	1.41	1.36	1.3	20.5	3019	47800	CUP	2.220
ACCUR 2520	26.9	1.84	DBLD	NA		3007	45600		
ACCUR 2460	24.7	1.62	DBLD	1.6	25.5	3005	47000	PSI	2.280
H380	29.2	2.02	DBLD	1.9	30.0	2977	45200	CUP	2.220
ACCUR 2230	23.3	1.53	1.46	NA	25.0	2961	48700	PSI	2.280
H322	21.1	1.53	1.46	NA	23.5	2934	48900	CUP	2.220
ACCUR 2700	28.0	1.92	DBLD	1.9	28.0	2786	38600	PSI	2.280
H4350	28.0	2.03	DBLD	1.9	28.0	2679	38600		
H4831	28.0	2.03	DBLD	1.9		2660			2.220

27.0 1.96 DBLD 1.9 27.0 2359 33300 CUP 2.220 CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996

DBLD 1.6

DBLD 1.6

DBLD NA

NA

1.3

1.3

1.9

1.46

1.36

1.36

DBLD

1.78

1.81

1.57

1.48

1.37

1.45

1.96

26.9

26.2

21.6

20.4

21.3

22.5

27.0

70 Grain Jacketed

H414

H380

H4895

H322

H335

BL-C(2)

H4350

H4831

223 REMINGTON

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	V Units	limimum OAL		
40 Grain Jacke	40 Grain Jacketed										
v-N130	24.0	1.81	DBLD	1.6	26.3	3685	52214	CIP	2.165		
v-N120	21.6	1.67	DBLD	1.6	23.0	3609	50763	CIP	2.165		
H4895	26.0	1.89	DBLD	NA	26.0	3174	31200	CUP	2.165		
H380	29.0	2.00	DBLD	1.9	29.0	3120	34200	CUP	2.165		
H322	23.9	1.74	DBLD	1.6	25.5	2574	48000	CUP	2.165		

45 Grain Jacke	tod				
RELODER15	25.4	1.79	DBLD	1.6	28.5 3635 53500 PSI 2.210
BL-C(2)	26.7	1.73	DBLD	1.6	28.5 3559 48000 CUP 2.165
ACCUR 2015BR	23.8	1.74	DBLD	1.6	26.0 3546 49100 CUP 2.115
v-N130	23.3	1.76	DBLD	1.6	25.6 3511 52214 CIP 2.165
ACCUR 2460	25.1	1.65	DBLD	1.6	27.5 3476 49300 CUP 2.115
H4198	20.2	1.51	1.46	NA	22.0 3472 49100 CUP 2.165
RELODER12	25.3	1.75	DBLD	1.6	28.0 3470 52800 PSI 2.210
H335	23.1	1.49	1.46	NA	26.2 3456 51000 CUP 2.165
ACCUR 2230	24.1	1.58	DBLD	NA	27.0 3456 50500 CUP 2.115
ACCUR 2495BR	25.4	1.90	DBLD	1.9	26.5 3435 47000 CUP 2.115
v-N133	23.7	1.83	DBLD	NA	25.3 3428 50763 CIP 2.165
H322	23.8	1.72	DBLD	1.6	25.0 3424 47400 CUP 2.165
ACCUR 2520	28.5	1.95	DBLD	1.9	28.5 3424 42000 CUP 2.115
v-N120	20.7	1.61	DBLD	1.6	22.1 3379 50763 CIP 2.165
RELODER 7	19.5	1.42	1.36	1.3	21.8 3375 53200 PSI 2.210
IMR4198	19.8	1.57	DBLD	NA	22.0 3360 50300 CUP 2.190
ACCUR 1680	19.2	1.25	1.18	NA	20.5 3302 48200 CUP 2.115

		ARTING	LOA				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	y Pressure	Mimimum Units OAL
45 Grain Jacke	ted (C	ontinue	d)	Name of the last			
IMR3031	25.5	1.94	DBLD	1.9	25.5 3300	42200	CUP 2.190
IMR4895	26.2	1.91	DBLD	1.9	26.5 3280	45900	CUP 2.190
H4895	26.0	1.89	DBLD	NA	26.0 3219	37800	CUP 2.165
IMR4320	27.5	1.97	DBLD	1.9	27.5 3200	45100	CUP 2.190
H414	29.0	1.92	DBLD	1.9	29.0 3181	35400	CUP 2.165
IMR4064	25.5	1.90	DBLD	1.9	25.5 3180	42500	CUP 2.190
H380	29.0	2.00	DBLD	1.9	29.0 3121	34800	CUP 2.165
IMR4227	15.4	1.19	1.18	NA	17.5 3085	51400	CUP 2.190
SR4759	15.6	1.55	DBLD	NA	17.5 3040	51000	CUP 2.190
HERC 2400	14.3	1.06	1.02	1.0	14.9 3030	49600	PSI 2.210
IMR4350	26.0	1.91	DBLD	1.9	26.0 2675	30500	CUP 2.190
IMR4831	26.0	1.91	DBLD	1.9	26.0 2475	26800	CUP 2.190

50	Grain	lackatad	١

50 Grain Jack	etea				
BL-C(2)	26.8	1.73	DBLD	1.6	28.0 3428 47100 CUP 2.165
H335	22.7	1.46	1.46	1.3	26.0 3393 51700 CUP 2.165
ACCUR 2015BR	24.7	1.81	DBLD	1.6	25.5 3387 46400 CUP 2.235
H-VARGET	27.5	2.01	DBLD	1.9	27.5 3383 44800 CUP 2.165
v-N130	22.7	1.71	DBLD	1.6	24.9 3368 52214 CIP 2.165
v-N133	23.6	1.82	DBLD	1.6	25.9 3350 52214 CIP 2.165
ACCUR 2520	28.5	1.95	DBLD	1.9	28.5 3346 42200 CUP 2.235
ACCUR 2230	23.5	1.54	DBLD	NA	26.0 3342 49800 CUP 2.235
RELODER12	24.6	1.70	DBLD	1.6	27.0 3335 52300 PSI 2.250
ACCUR 2460	24.9	1.63	DBLD	1.6	26.0 3329 47100 CUP 2.235
H322	21.9	1.59	DBLD	NA	24.0 3301 49300 CUP 2.165
ACCUR 2495BR	26.5	1.98	DBLD	1.9	26.5 3282 44400 CUP 2.235
v-N120	20.1	1.56	DBLD	NA	22.1 3280 52214 CIP 2.165
IMR4198	19.2	1.52	1.46	NA	22.0 3270 51900 CUP 2.260
IMR4895	24.6	1.79	DBLD	1.6	26.5 3270 48800 CUP 2.260
IMR3031	25.5	1.94	DBLD	1.9	25.5 3225 45300 CUP 2.260
H4198	21.1	1.58	DBLD	NA	21.5 3223 45900 CUP 2.165
WIN 748	24.8	1.62	DBLD	1.6	26.0 3200 40000 CUP 2.165
IMR4320	25.8	1.85	DBLD	NA	27.5 3200 48300 CUP 2.260
RELODER 7	19.3	1.41	1.36	1.3	21.5 3195 53000 PSI 2.250
H4895	26.0	1.89	DBLD	NA	26.0 3174 40800 CUP 2.165
H414	29.0	1.92	DBLD	1.9	29.0 3153 36600 CUP 2.165
IMR4064	25.5	1.90	DBLD	1.9	25.5 3150 44200 CUP 2.260
ACCUR 1680	19.3	1.26	1.26	NA	20.5 3146 47900 CUP 2.235
H380	29.0	2.00	DBLD	1.9	29.0 3111 35400 CUP 2.165
IMR4227	15.3	1.17	1.09	NA	17.5 2975 52000 CUP 2.260
SR4759	15.3	1.52	1.46	NA	17.5 2935 51900 CUP 2.260
HERC 2400	14.2	1.06	1.02	1.0	14.5 2795 48500 PSI 2.250

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M Units	imimum OAL
50 Grain Jacke				- ''					199
IMR4350	26.0	1.91	DBLD	1.9	26.0	2650	31000	CUP	2.260
IMR4831	26.0	1.91	DBLD	1.9	26.0	2475	27400	CUP	2.260
52 Grain Jacke		1.70	DDI D	1.6	20.2	3440	53100	DCI	2 250
RELODER15	25.4	1.79	DBLD	10.000		3310	52700		2.250
RELODER12	24.9	1.72	DBLD						
RELODER 7	18.7	1.36	1.36	1.3		3165 3160			2.250 2.165
WIN 748	24.0	1.57	DBLD	NA	25.5	3160	40500	CUP	2.105
53 Grain Jacke	eted 26.5	1.71	DBLD	1.6	28.0	3328	47600	CUP	2.165
BL-C(2)	22.5	1.45	1.36	1.3		3300	52000		
H335	23.1	1.68	DBLD			3268	47800		2.225
ACCUR 2015BR ACCUR 2495BR	24.0	1.80	DBLD		-	3266	48800		
ACCUR 2230	23.5	1.54	DBLD	0.000		3252	49900		
ACCUR 2520	27.5	1.88	DBLD			3235	43200		
ACCUR 2460	24.3	1.59	DBLD			3234	47300		
WIN 748	22.8	1.49	1.46	NA	26.0	3200	43500		
H4198	20.7	1.56	DBLD			3188	46700	CUP	2.165
H322	21.7	1.57	DBLD		23.5	3183	48900	CUP	2.165
H380	28.5	1.97	DBLD	1.9	28.5	3133	37200	CUP	2.165
H414	28.5	1.88	DBLD	NA	28.5	3131	38400	CUP	2.165
H4895	26.0	1.89	DBLD	NA	26.0	3123	41400	CUP	2.165
ACCUR 1680	18.2	1.19	1.18	NA	20.0	3047	49600	CUP	2.225
55 Grain Jack	eted								
RELODER15	24.9	1.76	DBLD	1.6	28.0	3390			2.215
H-VARGET	24.9	1.82	DBLD	NA	27.5	3384			
BL-C(2)	25.5	1.65	DBLD	1.6	27.5	3313			2.165
ACCUR 2015BR	22.6	1.65	DBLD	1.6		3281			2.230
ACCUID 240EPP	22 1	1 72	DRIF	16	26 2	3271	51100	CUF	2.230

55 Grain Jacke	eted						
RELODER15	24.9	1.76	DBLD	1.6	28.0 3390	53600	PSI 2.215
H-VARGET	24.9	1.82	DBLD	NA	27.5 3384	49700	CUP 2.165
BL-C(2)	25.5	1.65	DBLD	1.6	27.5 3313		CUP 2.165
ACCUR 2015BR	22.6	1.65	DBLD	1.6	25.0 3281	49800	CUP 2.230
ACCUR 2495BR	23.1	1.73	DBLD	1.6	26.2 3271	51100	CUP 2.230
RELODER12	25.1	1.73	DBLD	1.6	27.5 3255		PSI 2.215
ACCUR 2460	24.3	1.59	DBLD	NA	26.5 3231	49200	CUP 2.230
ACCUR 2520	27.5	1.88	DBLD	NA	27.5 3224	43300	CUP 2.230
v-N133	22.6	1.74	DBLD	1.6	24.8 3220	52214	CIP 2.165
v-N130	22.0	1.66	DBLD	1.6	24.1 3217	52214	CIP 2.165
ACCUR 2230	23.3	1.53	1.46	NA	26.0 3216	50300	CUP 2.230
H335	23.1	1.49	1.46	NA	25.3 3203		CUP 2.165
v-N135	24.1	1.87	DBLD	NA	26.4 3180	52214	CIP 2.165
WIN 748	24.4	1.60	DBLD	1.6	26.2 3170	41000	CUP 2.165

STARTING LOADS								
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL	
55 Grain Jack	eted (C	ontinue	ed)					
IMR3031	22.3	1.70	DBLD	1.6	25.0 3165	50900	CUP 2.260	
H4198	19.9	1.49	1.46	NA	21.0 3150	47600	CUP 2.165	
v-N120	19.4	1.51	1.46	NA	21.3 3130	52214	CIP 2.165	
H414	28.5	1.88	DBLD	NA	28.5 3123	40800	CUP 2.165	
IMR4895	23.1	1.68	DBLD	1.6	26.0 3120	51100	CUP 2.260	
H322	21.2	1.54	1.46	NA	23.0 3106	48900	CUP 2.165	
IMR4198	18.8	1.49	1.46	NA	21.5 3100	52000	CUP 2.260	
H4895	25.2	1.84	DBLD	NA	26.0 3099	46400	CUP 2.165	
IMR4064	23.5	1.75	DBLD	1.6	25.5 3090	49200	CUP 2.260	
H380	28.5	1.97	DBLD	1.9	28.5 3082	37800	CUP 2.165	
RELODER 7	18.6	1.36	1.36	1.3	20.5 3080	52400	PSI 2.215	
IMR4320	24.4	1.74	DBLD	1.6	27.0 3075	50300	CUP 2.260	
ACCUR 1680	18.5	1.21	1.18	NA	20.5 3058	50000	CUP 2.230	
IMR4227	15.1	1.16	1.09	NA	17.0 2810	51200	CUP 2.260	
SR4759	14.9	1.48	1.46	NA	16.5 2745	50100	CUP 2.260	
HERC 2400	13.4	.99	.95	NA	14.0 2685	49900	PSI 2.215	
IMR4350	26.0	1.91	DBLD	1.9	26.0 2605	34800	CUP 2.260	
IMR4831	26.0	1.91	DBLD	1.9	26.0 2415	31300	CUP 2.260	

60	Grain	lac	katad
\mathbf{o}	Giaili	Jac	Ketea

O GIGIN OUCK	200				
RELODER15	23.8	1.68	DBLD	1.6	26.5 3240 53000 PSI 2.250
ACCUR 2520	27.2	1.85	DBLD	NA	27.5 3154 45600 CUP 2.235
ACCUR 2015BR	22.0	1.61	DBLD	1.6	24.0 3127 49100 CUP 2.235
ACCUR 2230	22.4	1.47	1.46	1.3	24.5 3087 49200 CUP 2.235
ACCUR 2460	23.0	1.51	1.46	NA	25.2 3075 49400 CUP 2.235
RELODER12	22.8	1.58	DBLD	NA	25.5 3070 53300 PSI 2.250
v-N135	23.2	1.80	DBLD	1.6	25.8 3070 52939 CIP 2.165
v-N130	21.6	1.63	DBLD	1.6	23.7 3063 52214 CIP 2.165
v-N133	21.7	1.67	DBLD	1.6	24.5 3050 53644 CIP 2.165
ACCUR 2495BR	24.0	1.80	DBLD	1.6	24.7 3046 46300 CUP 2.235

63 Grain Jacketed

23.5	1.71	DBLD	1.6	26.4 3199	50700	CUP 2.200
23.0	1.67	DBLD	1.6			
22.5	1.45	1.36	1.3	25.0 3051	50000	CUP 2.165
28.0	1.85	DBLD	NA			
28.0	1.93	DBLD	1.9			
20.5	1.48	1.46	NA			
20.0	1.50	1.46	NA			
	23.0 25.3 22.5 28.0 28.0 20.5	23.0 1.67 25.3 1.63 22.5 1.45 28.0 1.85 28.0 1.93 20.5 1.48	23.0 1.67 DBLD 25.3 1.63 DBLD 22.5 1.45 1.36 28.0 1.85 DBLD 28.0 1.93 DBLD 20.5 1.48 1.46	23.5 1.71 DBLD 1.6 23.0 1.67 DBLD 1.6 25.3 1.63 DBLD 1.6 22.5 1.45 1.36 1.3 28.0 1.85 DBLD NA 28.0 1.93 DBLD 1.9 20.5 1.48 1.46 NA 20.0 1.50 1.46 NA	23.0 1.67 DBLD 1.6 25.5 3078 25.3 1.63 DBLD 1.6 26.0 3054 22.5 1.45 1.36 1.3 25.0 3051 28.0 1.85 DBLD NA 28.0 3045 28.0 1.93 DBLD 1.9 28.0 2983 20.5 1.48 1.46 NA 22.0 2862	23.0 1.67 DBLD 1.6 25.5 3078 50000 25.3 1.63 DBLD 1.6 26.0 3054 46300 22.5 1.45 1.36 1.3 25.0 3051 50000 28.0 1.85 DBLD NA 28.0 3045 43300 28.0 1.93 DBLD 1.9 28.0 2983 38400 20.5 1.48 1.46 NA 22.0 2862 48400

....STARTING LOADS....
Start Volume Auto Lee

Powder Type	Grains	CC	DISK L	upper	EXCEED	rra	riessure	OIIICo	UNL
63 Grain Jacke	ted (Co	ntinue	ed)						
H4350	26.5	1.92		1.9	26.5		37800		
H4831	26.5	1.92	DBLD	1.9	26.5	2625	31600	CUP	2.165
68 Grain Jacketed									
RELODER15	23.1	1.63	DBLD	1.6	25.6	3030	52800		2.260
RELODER12	22.7	1.57	DBLD	NA	25.0	2925	52400	PSI	2.260
69 Grain Jacke	eted								
ACCUR 2520	25.2	1.72	DBLD	1.6	27.0	3044	48200		2.250
H-VARGET	24.1	1.76	DBLD	1.6	25.5	2993	47700		2.200
ACCUR 2460	21.5	1.41	1.36	1.3		2991	51800		2.250
ACCUR 2495BR	22.6	1.69	DBLD	1.6		2964	49800		2.250
ACCUR 2230	21.5	1.41	1.36	1.3		2929	51300		2.250
ACCUR 2015BR	21.4	1.56	DBLD	NA	23.0	2917	48400	CUF	2.250
property (
70 Grain Jack	eted								
H335	20.4	1.32	1.26	1.3	23.5	2825	51900		2.165
BL-C(2)	21.9	1.41	1.36	1.3	23.5	2753	48400		2.165
H380	27.0	1.87	DBLD	NA	27.0	2742	41800		2.165
H4895	21.2	1.54	DBLD	NA	23.0	2679	48900		2.165
H414	28.0	1.85	DBLD	NA	28.0	2674			P 2.165
11-7-1-7					04.0	0070	40000	CIII	02 165

ed						
21.9	1.60	DBLD	1.6			
22.6	1.55	DBLD	NA			
				24.0 2788	49500	CUP 2.450
				23.5 2754	49100	CUP 2.450
	22.6 21.8 20.5 21.6	21.9 1.60 22.6 1.55 21.8 1.43 20.5 1.53 21.6 1.42	21.9 1.60 DBLD 22.6 1.55 DBLD 21.8 1.43 1.36 20.5 1.53 1.46 21.6 1.42 1.36		21.9 1.60 DBLD 1.6 25.0 2869 22.6 1.55 DBLD NA 25.0 2796 21.8 1.43 1.36 1.3 24.0 2788 20.5 1.53 1.46 NA 23.5 2788 21.6 1.42 1.36 1.3 23.5 2754	21.9 1.60 DBLD 1.6 25.0 2869 51500 22.6 1.55 DBLD NA 25.0 2796 49700 21.8 1.43 1.36 1.3 24.0 2788 49500 20.5 1.53 1.46 NA 23.5 2788 51600 21.6 1.42 1.36 1.3 23.5 2754 49100

1.3

1.36

1.88 DBLD NA

DBLD NA

1.40

1.89

19.3

26.0

26.0

H322

H4350

H4831

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996

21.0 2673 48900 CUP 2.165

26.0 2432 38200 CUP 2.165

26.0 2297 32000 CUP 2.165

22-250 REMINGTON

STARTING LOADS....

Start Volume Auto- Lee NEVER Velocity Pressul

Grains CC Disk Dipper EXCEED FPS Pressul

GRAD 2.23 DBLD 2.2 38.0 4091 6160

40 Grain Jack	eted							
ACCUR 2460	33.9	2.23	DBLD	2.2	38.0 4091	61600	PSI	2.260
H4895	34.0	2.48	DBLD	2.2	37.0 4060			
ACCUR 2230	33.9	2.23	DBLD	2.2	37.0 4045			
ACCUR 2520	36.2	2.47	DBLD	2.2	38.5 4040			
H380		2.51	DBLD	2.5	39.5 3984			
ACCUR 2015BR	32.9	2.40	DBLD	2.2	34.5 3971			
H414	39.0	2.57	DBLD	2.5	41.0 3933			
ACCUR 4350	40.0	2.96	DBLD	2.8	40.0 3501			
ACCUR 3100	40.0	2.99	DBLD	2.8	40.0 3055			

45 Grain Jacketed

Powder Type

TO Grain back	teu							
BL-C(2)	31.9	2.06	DBLD	1.9	35.0 3928 4	19100	CUP	2.315
H4895	33.7	2.45	DBLD	2.2	37.0 3918 4			
H335	31.8	2.05	DBLD	1.9	34.5 3908 4			
H414	38.5	2.55	DBLD	2.5	41.0 3899 4			
ACCUR 2700	38.7	2.65	DBLD	2.5	42.5 3894 6			
ACCUR 2520	35.1	2.39	DBLD	2.2	37.5 3877 5			
ACCUR 2230	32.7	2.15	DBLD	1.9	35.5 3875 5			
H380	36.1	2.49	DBLD	2.2	39.0 3856 4			
ACCUR 2460	33.7	2.21	DBLD	2.2	36.0 3854 5			
ACCUR 2015BR	31.0	2.27	DBLD	2.2	33.0 3811 5			
RELODER12	31.8	2.20	DBLD	2.2		9400		
H322	30.0	2.17	DBLD	NA	32.5 3720 4			
CALITION, WISH NEVED	EVALER					0000	001 2	2.010

22-250 REMINGTON (Continued)

....STARTING LOADS....

ARTHUR DESIGNATION AND THE	Start	Volume	Auto-	Lee	NEVER	Velocity		N	limimum
Powder Type	Start Grains			Dipper	EXCEE	Velocity FPS	Pressure	Units	OAL
45 Grain Jacke									
ACCUR 4350	40.0		DBLD				45500		2.305
ACCUR 3100	40.0	2.99	DBLD	2.8	40.0	3104	33900	PSI	2.305
46 Grain Jacke	eted								
WIN 760	37.3	2.48	DBLD	2.2	41.0	3850	49000	CUP	2.315
WIN 748	32.8	2.15	DBLD	1.9	36.8	3815	50000	CUP	2.315
50 Grain Jacke	tod								
v-N135	34.0	2.64	DBLD	2.5	35.8	3840	53664	CIP	2 260
ACCUR 2460	32.4	2.13	DBLD			3831	61900		
H4895	32.5	2.37	DBLD			3827	50200		
ACCUR 2520	32.3	2.20	DBLD			3819	63100		
ACCUR 2230	32.2	2.12	DBLD			3800	61400		2.350
ACCUR 2015BR	30.8	2.25	DBLD			3790			
IMR3031	31.1	2.37	DBLD			3785	52700		
v-N140	35.2	2.58	DBLD		37.0	3770	53664		
H414	36.8	2.43	DBLD	2.2	40.0	3765	48600	CUP	2.315
IMR4895	32.0	2.33	DBLD		36.0	3755	52700	CUP	2.315
H335	31.7	2.04	DBLD	1.9	34.5	3753	48700	CUP	2.315
IMR4064	32.4	2.41	DBLD	2.2	36.0	3745	52100	CUP	2.350
BL-C(2)	31.9	2.06	DBLD	1.9	34.5	3740	48400	CUP	2.315
H380	34.8	2.40	DBLD	2.2	38.0	3719	48900	CUP	2.315
IMR4320	32.7	2.34	DBLD	2.2	37.0	3700	53000	CUP	2.315
WIN 760	35.8	2.38	DBLD	2.2	39.5	3700	49200	CUP	2.315
ACCUR 2700	40.3	2.76	DBLD	2.5	41.0	3682	56000	PSI	2.350
WIN 748	31.2	2.04	DBLD	1.9	35.0	3660			
H322	28.5	2.06	DBLD			3628	50300		
H4350	38.4	2.79	DBLD	2.5	42.0	3579			
RELODER12	31.0	2.14	DBLD	1.9		3575	58900		
IMR4198	25.2	2.00	DBLD			3565	53000		
IMR4350	39.9	2.93	DBLD			3565	47000		
H450	42.4	2.77	DBLD			3552			
ACCUR 4350	40.0	2.96	DBLD		200	3531	49200		
H4831	42.0	3.04	DBLD			3473	41000		
IMR4831	40.0	2.94	DBLD			3390			
SR4759	20.5	2.04	DBLD			3205	52500		2.350
ACCUR 3100	40.0	2.99	DBLD			3169	37100		
IMR4227	20.4	1.57	DBLD	NA	21.5	3140	49300	CUP	2.350

22-250 REMINGTON (Continued)

	STARTING LOADS								
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL		
53 Grain Jacke	eted								
H4895	32.0	2.33	DBLD	2.2	35.5 3729	49600	CUP 2.315		
H380	33.9	2.35	DBLD	2.2	38.0 3709	50100	CUP 2.315		
BL-C(2)	30.6	1.97	DBLD	1.9	34.0 3702	49700	CUP 2.315		
H414	36.6	2.42	DBLD	2.2	40.0 3692	48900	CUP 2.315		
ACCUR 2015BR	30.1	2.20	DBLD	2.2	33.5 3659	61200	PSI 2.380		
H335	30.5	1.97	DBLD	1.9	33.5 3657	49200	CUP 2.315		
ACCUR 2460	32.9	2.16	DBLD	1.9	35.0 3629	58600	PSI 2.380		
ACCUR 2700	38.0	2.60	DBLD	2.5	41.0 3621	59300	PSI 2.380		
ACCUR 2520	34.6	2.36	DBLD	2.2	35.5 3599	56400	PSI 2.380		
WIN 760	37.0	2.46	DBLD	2.2	38.6 3595	46500	CUP 2.315		
ACCUR 2230	31.6	2.08	DBLD	1.9	34.0 3584	59200	PSI 2.380		
H450	40.4	2.64	DBLD	2.5	43.0 3559	47600	CUP 2.315		
H4350	37.1	2.69	DBLD	2.5	41.0 3557	49400	CUP 2.315		
ACCUR 4350	40.0	2.96	DBLD	2.8	40.0 3505	51600	PSI 2.380		
H322	28.9	2.10	DBLD	1.9	31.0 3498	48000	CUP 2.315		
H4831	42.0	3.04	DBLD	2.8	42.0 3486	42600	CUP 2.315		
ACCUR 3100	40.0	2.99	DBLD	2.8	40.0 3112	37900	PSI 2.380		

55	Grain	.lac	keter	۱

OO GIGIII OGOKO					
WIN 760	35.5	2.36	DBLD	2.2	39.0 3675 49000 CUP 2.315
H4895	32.2	2.35	DBLD	2.2	35.5 3670 49300 CUP 2.315
ACCUR 2460	31.8	2.09	DBLD	1.9	36.0 3670 62300 PSI 2.370
ACCUR 2700	36.2	2.48	DBLD	2.2	40.0 3655 60700 PSI 2.370
H380	32.9	2.27	DBLD	2.2	37.0 3654 50400 CUP 2.315
IMR4895	31.4	2.29	DBLD	2.2	35.5 3645 53000 CUP 2.350
IMR3031	30.1	2.29	DBLD	2.2	34.0 3640 53000 CUP 2.350
v-N140	34.6	2.54	DBLD	2.5	36.4 3630 53664 CIP 2.260
RELODER15	31.6	2.23	DBLD	2.2	35.3 3625 59400 PSI 2.350
IMR4064	31.7	2.36	DBLD	2.2	35.5 3625 52500 CUP 2.350
v-N135	33.5	2.60	DBLD	2.5	35.2 3610 53664 CIP 2.260
v-N150	31.8	2.37	DBLD	2.2	36.5 3610 58500 CIP 2.260
ACCUR 2230	32.2	2.12	DBLD	1.9	35.0 3609 59700 PSI 2.370
BL-C(2)	30.7	1.98	DBLD	1.9	34.0 3606 49600 CUP 2.315
ACCUR 2520	33.2	2.26	DBLD	2.2	36.0 3605 59700 PSI 2.370
ACCUR 2015BR	30.5	2.22	DBLD	2.2	33.0 3598 59600 PSI 2.370
H335	28.9	1.86	DBLD	NA	33.0 3589 51100 CUP 2.315
H414	37.4	2.47	DBLD	2.2	39.0 3582 46700 CUP 2.315
IMR4320	32.8	2.35	DBLD	2.2	36.0 3540 51500 CUP 2.350
H450	40.0	2.61	DBLD	2.5	42.5 3521 47600 CUP 2.315
v-N160	42.4	3.11	DBLD	3.1	42.4 3510 50763 CIP 2.260
WIN 748	31.3	2.05	DBLD	1.9	34.8 3500 49500 CUP 2.315
IMR4350	38.8	2.85	DBLD	2.8	39.5 3495 47700 CUP 2.350

		ARTING							
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	Mimimum OAL
55 Grain Jacketed (Continued)									
H4350	36.5	2.65	DBLD	2.5	39.0	3490	47800	CUP	2.315
H322	27.0	1.95	DBLD	1.9	30.0	3480	49800	CUP	2.315
H4831	42.0	3.04	DBLD	2.8	42.0	3472	43500	CUP	2.315
ACCUR 4350	40.0	2.96	DBLD	2.8	40.0	3466	51500	PSI	2.370
RELODER12	30.0	2.07	DBLD	1.9	33.3	3425	59200	PSI	2.350
H4350	36.4	2.64	DBLD	2.5	39.0	3391	48000	CUP	2.315
IMR4198	24.7	1.96	DBLD	1.9	27.5	3375	52200	CUP	2.350
IMR4831	39.5	2.90	DBLD	2.8	39.5	3320	42500	CUP	2.350
SR4759	19.5	1.93	DBLD	1.9	22.0	3100	53000	CUP	2.350
ACCUR 3100	40.0	2.99	DBLD	2.8	40.0	3067	37400	PSI	2.370
IMR4227	19.3	1.48	1.46	NA	21.5	3030	52300	CUP	2.350
60 Grain Jacke	eted								
v-N150	30.9	2.30	DBLD	2.2	36.0	3520	59500	CIP	2.260
ACCUR 2520	31.8	2.17	DBLD	NA	36.0	3512	62300	PSI	2.400
RELODER19	37.8	2.67	DBLD	2.5	41.0	3510	57800	PSI	2.350
ACCUR 2460	32.0	2.10	DBLD	1.9	35.0	3499	60100	PSI	2.400
ACCUR 2015BR	29.5	2.15	DBLD	1.9	33.0	3497	61500	PSI	2.400
RELODER15	31.1	2.20	DBLD	2.2	34.7	3485	59400	PSI	2.350
ACCUR 2700	34.2	2.34	DBLD	2.2	38.0	3478	61100	PSI	2.400
ACCUR 2230	32.5	2.13	DBLD	1.9	34.0	3425	57600	PSI	2.400
v-N140	33.6	2.46	DBLD	2.2	35.3	3410	53664	CIP	2.260
ACCUR 4350	40.0	2.96	DBLD	2.8	40.0	3395	53200	PSI	2.400

63	Grain	Jacke	eted

RELODER12

ACCUR 3100

v-N160

ACCUR 2700	33.9	2.32	DBLD	2.2	37.5 3408	60900 P	SI 2.325
ACCUR 4350	37.8	2.80	DBLD	2.8	40.0 3406	58200 P	SI 2.325
ACCUR 2015BR	29.0	2.12	DBLD	1.9	32.0 3363	60700 P	SI 2.325
ACCUR 2230	30.7	2.01	DBLD	1.9	33.0 3334	59200 P	SI 2.325
ACCUR 2520	32.1	2.19	DBLD	NA	34.0 3332	58300 P	SI 2.325
ACCUR 2460	31.6	2.07	DBLD	1.9	33.0 3309	57400 P	SI 2.325
ACCUR 3100	40.0	2.99	DBLD	2.8	40.0 3009	39700 P	SI 2.325

29.6 2.04 DBLD 1.9

2.99

40.1

40.0

2.94 DBLD 2.8

DBLD 2.8

64	Grain	Jacketed
64	Grain	Jacketed

					34.0 3486		
H4831	38.1	2.77	DBLD	2.5	41.0 3441	48100	CUP 2.315
H414	36.1	2.39	DBLD	2.2	38.0 3432	47100	CUP 2.315

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

32.5 3290 58500 CUP 2.350

40.1 3260 47862 CIP 2.260

40.0 2981 37500 PSI 2.400

22-250 REMINGTON (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
64 Grain Jacke	eted (C	ontinue	ed)	go. Colored to			
H380	32.9	2.27	DBLD	2.2	36.0 3418	49000	CUP 2.315
H450	38.7	2.53	DBLD	2.5	41.5 3397	48000	CUP 2.315
H4350	35.4	2.57	DBLD	2.5	38.0 3391	48000	CUP 2.315
70 Grain Jacke	eted						
ACCUR 4350	35.1	2.60	DBLD	2.5	38.0 3244	59500	PSI 2.325
H4831	33.8	2.45	DBLD	2.2	38.0 3189	50300	CUP 2.315
H1000	35.8	2.55	DBLD	2.5	38.0 3187	47500	CUP 2.315
ACCUR 2520	29.3	2.00	DBLD	1.9	32.5 3144	61000	PSI 2.325
H4350	32.5	2.36	DBLD	2.2	36.0 3129	49600	CUP 2.315
ACCUR 2015BR	28.0	2.05	DBLD	1.9	30.0 3126	58900	PSI 2.325
ACCUR 2700	32.2	2.21	DBLD	2.2	34.5 3121	58900	PSI 2.325
H450	36.4	2.37	DBLD	2.2	39.0 3118	48000	CUP 2.315
H414	30.8	2.04	DBLD	1.9	34.0 3117	49400	CUP 2.315
ACCUR 2230	29.2	1.92	DBLD	1.9	31.0 3091	58400	PSI 2.325
ACCUR 2460	29.7	1.95	DBLD	1.9	31.0 3077	57500	PSI 2.325
v-N140	29.5	2.16	DBLD	NA	31.0 2990	53664	CIP 2.260
ACCUR 3100	38.0	2.84	DBLD	2.8	38.0 2947	45700	PSI 2.325
v-N135	26.5	2.06	DBLD	1.9	27.9 2820	53664	CIP 2.260

80	Grain	Jac	keted
----	-------	-----	-------

ACCUR 4350	34.0	2.51	DBLD	2.5	37.0 3163	59900	PSI	2.610
ACCUR 2700	31.9	2.19	DBLD	NA	34.0 2983	58600	PSI	2.610

Start Volume Auto- Lee NEVER Velocity Mimimum Powder Type Grains CC Disk Dipper EXCEED FPS Pressure Units OAL									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	EXCEED NEVER V	elocity FPS	Pressure	Units	OAL
40 Grain Jacke	eted								
H4895	36.3	2.64	DBLD	2.5	40.0	4126	52000	CUP 2	2.650
H380	41.5	2.87	DBLD	2.8			50000		
H4831	46.5	3.37	NA	3.1	46.5	3690	40300	CUP 2	2.650

45 Grain Jacketed								
H414	41.0	2.71	DBLD	2.5	45.0 4100 51700 CUP 2.650			
H380	39.6	2.74	DBLD	2.5	44.0 4041 52400 CUP 2.650			
RELODER15	35.2	2.48	DBLD	2.2	39.0 4010 50300 CUP 2.645			
H4895	35.7	2.60	DBLD	2.5	39.5 3996 52100 CUP 2.650			
H335	35.9	2.32	DBLD	2.2	39.0 3969 51200 CUP 2.650			
RELODER12	33.1	2.29	DBLD	2.2	36.6 3760 50100 CUP 2.645			
H450	41.7	2.73	DBLD	2.5	44.0 3755 49700 CUP 2.650			
H4831	46.5	3.37	NA	3.1	46.5 3681 42500 CUP 2.650			

50 Grain Jacke	eted				
ACCUR 2700	40.4	2.76	DBLD	2.5	45.0 4035 62500 PSI 2.700
H380	38.1	2.63	DBLD	2.5	43.5 3947 53800 CUP 2.650
ACCUR 4350	43.5	3.22	DBLD	3.1	44.0 3940 56700 PSI 2.700
v-N140	38.2	2.80	DBLD	2.8	38.6 3900 53664 CIP 2.650
ACCUR 2495BR	35.9	2.69	DBLD	2.5	37.5 3891 58500 PSI 2.700
BL-C(2)	35.1	2.27	DBLD	2.2	38.0 3888 51000 CUP 2.650
H335	34.4	2.22	DBLD	2.2	38.0 3860 52000 CUP 2.650
RELODER15	35.2	2.48	DBLD	2.2	38.6 3850 49800 CUP 2.660

Sign to real property and the second	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mi Units	mimum OAL		
50 Grain Jacketed (Continued)											
H4895	35.0	2.55	DBLD	2.5	38.0	3840	51200	CUP 2	2.650		
v-N150	34.1	2.55	DBLD	2.5	39.0	3840	60700	CIP 2	2.650		
H414	41.8	2.76	DBLD	2.5	44.0	3826	49600	CUP 2	2.650		
H450	40.8	2.67	DBLD	2.5	43.5	3703	50200	CUP	2.650		
RELODER12	32.4	2.24	DBLD	2.2	36.1	3675	50500	CUP	2.660		
RELODER19	39.6	2.80	DBLD	2.8	44.0	3650	50400	CUP	2.660		
H4831	46.5	3.37	NA	3.1	46.5	3647	46300				
ACCUR 3100	44.0	3.29	DBLD	3.1	44.0	3589	45100	PSI 2	2.700		

55 Grain Jack	eted						
ACCUR 4350	41.6	3.08	DBLD	2.8	44.0 3896	59300	PSI 2.680
H380	37.6	2.60	DBLD	2.5	42.5 3839		CUP 2.650
H414	38.6	2.55	DBLD	2.5	44.0 3833		CUP 2.650
ACCUR 2700	42.8	2.93	DBLD	2.8	43.5 3832		PSI 2.680
ACCUR 2495BR	31.9	2.39	DBLD	2.2	36.0 3823	63200	PSI 2.680
RELODER15	34.1	2.41	DBLD	2.2	38.0 3775		CUP 2.630
v-N160	43.1	3.16	DBLD	3.1	43.1 3710		CIP 2.650
H4895	33.5	2.44	DBLD	2.2	37.0 3698		CUP 2.650
H335	33.7	2.17	DBLD	NA	36.0 3696		CUP 2.650
BL-C(2)	34.0	2.19	DBLD	NA	36.0 3682		CUP 2.650
H450	40.6	2.65	DBLD	2.5	42.5 3627	49300	CUP 2.650
H4831	46.0	3.33	NA	3.1	46.0 3616		CUP 2.650
RELODER19	39.4	2.78	DBLD	2.5	43.9 3610		CUP 2.630

DBLD 3.1

DBLD 2.5

DBLD 2.5

44.0 3588 49000 PSI 2.680

37.0 3580 58600 CIP 2.650

53664 CIP 2.650

37.0 3250

3.29

2.50

2.69

44.0

33.6

36.6

60 Grain Jacke	eted							
ACCUR 4350	38.7	2.86	DBLD	2.8	44.0 3820 6	3800	PSI	2.700
ACCUR 2700	39.5	2.70	DBLD	2.5	the same and the s	9700		
ACCUR 2495BR	32.2	2.41	DBLD	2.2	34.5 3601 6	0000	PSI	2.680
H414	38.0	2.51	DBLD	2.5	42.0 3595 5	2100	CUP	2.650
H4831	41.7	3.02	DBLD	2.8	46.0 3586 5	2000	CUP	2.650
H380	37.2	2.57	DBLD	2.5	41.0 3580 5	1900	CUP	2.650
RELODER19	38.7	2.73	DBLD	2.5	43.0 3575 5	0400	CUP	2.680
v-N160	37.8	2.78	DBLD	2.5	43.0 3570 6	0400	CIP	2.650
RELODER22	39.1	2.72	DBLD	2.5	43.0 3565 4	9900	CUP	2.680
RELODER15	32.2	2.27	DBLD	2.2		0400		
ACCUR 3100	44.0	3.29	DBLD	3.1	44.0 3528 5	0900	PSI	2.700
H450	41.3	2.70	DBLD	2.5	and the first later of	9100		
CAUTION: With NEVER	EVCEED	LOADE -						

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

ACCUR 3100

v-N150

v-N140

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	OAL		
60 Grain Jacke	60 Grain Jacketed (Continued)										
H4895	32.8	2.39	DBLD	2.2	35.5	3484	51000	CUP	2.650		
H870	49.0	3.36	NA	3.1	49.0	3035	36000	CUP	2.650		
63 Grain Jacke	eted										
ACCUR 2700	36.3	2.48	DBLD	2.2	41.0	3717	63400	PSI	2.660		
ACCUR 4350	39.7	2.94	DBLD	2.8	41.5	3646	58600	PSI	2.660		
ACCUR 3100	43.8	3.28	DBLD	3.1	44.0	3582	56300	PSI	2.660		
70 Grain Jacke	eted										
ACCUR 4350	36.2	2.68	DBLD	2.5	41.5	3486	64200	PSI	2.660		
ACCUR 2700	34.2	2.34	DBLD	2.2	39.0	3435	64000	PSI	2.660		
ACCUR 3100	41.8	3.13	DBLD	3.1	44.0	3412	59000	PSI	2.660		
H4831	37.6	2.73	DBLD	2.5	42.0	3359	52600	CUP	2.650		
H450	39.4	2.57	DBLD	2.5	42.0	3301	50300	CUP	2.650		
H414	34.7	2.29	DBLD	2.2	37.0	3148	50300	CUP	2.650		

STARTING LOADS....

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996

The second secon	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
60 Grain Jacke	ted					N. Carlo					
H4895	26.6	1.93	DBLD	1.9	29.0 3218	48500	CUP 2.000				
H335	25.4	1.64	DBLD	1.6	28.0 3201	49000	CUP 2.000				
ACCUR 2460	27.2	1.79	DBLD	1.6	30.0 3200	48800	PSI 2.050				
ACCUR 2230	26.4	1.74	DBLD	1.6	29.5 3175	49500	PSI 2.050				
ACCUR 2495BR	25.3	1.89	DBLD	NA	28.5 3175	50000	PSI 2.050				
H322	25.5	1.85	DBLD	NA	27.0 3165	47000	CUP 2.000				
ACCUR 2015BR	24.5	1.79	DBLD	1.6	27.2 3163	49200	PSI 2.050				
BL-C(2)	30.1	1.94	DBLD	1.9	31.5 3041	46500	CUP 2.000				
H4198	20.7	1.55	DBLD	NA	23.0 2973	49500	CUP 2.000				

70 Grain Jacke	eted						
H322	23.6	1.71	DBLD	1.6	26.5 3068	50000	CUP 2.000
H4895	26.8	1.95	DBLD	1.9	28.0 3034	46500	CUP 2.000
H335	25.2	1.63	DBLD	1.6	27.5 3033	48500	CUP 2.000
ACCUR 2495BR	25.9	1.94	DBLD	1.9	28.5 3021	48700	PSI 2.080
BL-C(2)	29.0	1.87	DBLD	NA	31.0 3012	47500	CUP 2.000
ACCUR 2460	28.1	1.84	DBLD	NA	29.5 2981	46600	PSI 2.080
ACCUR 2015BR	26.0	1.90	DBLD	1.9	27.0 2957	46000	PSI 2.080
ACCUR 2230	25.8	1.69	DBLD	1.6	28.5 2924	49000	PSI 2.080
H4198	19.4	1.46	1.46	1.3	22.0 2839	50400	CUP 2.000

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimun Units OAL	
75 Grain Jacke	eted								
H335	24.5	1.58	DBLD	NA	27.0	2990	49000	CUP 2.000	
H4895	25.2	1.83	DBLD	NA				CUP 2.000	
BL-C(2)	28.4	1.83	DBLD	NA				CUP 2.000	
H322	23.3	1.69	DBLD	1.6	26.0	2974	49500	CUP 2.000	
H4198	19.1	1.43	1.36	1.3	21.0	2780	49000	CUP 2.000	

80	Grain	Jac	keted
----	-------	-----	-------

BL-C(2)					30.0 2904		
H4895	25.3	1.84	DBLD	NA	27.0 2904	47500	CUP 2.000
H322	23.9	1.73	DBLD	1.6	25.5 2866	47500	CUP 2.000
H335	23.8	1.54	1.46	NA	26.0 2822	48500	CUP 2.000
H4198	18.9	1.41	1.36	1.3	21.0 2641	49500	CUP 2.000

85 Grain Jacketed

OJ Grain Jac	LOLOG						
BL-C(2)					29.0 2818		
H322					25.0 2794		
H4895					26.0 2782		
H335	23.4	1.51	1.46	NA	25.0 2739	47500	CUP 2.000

90 Grain Jacketed

0 47500 CUP 2.000
9 48500 CUP 2.000
9 49000 CUP 2.000
8 48000 CUP 2.00

100 Grain Jacketed

100 Grain Jac	KCLCG						
BL-C(2)	25.9	1.67	DBLD	1.6	28.0 2602	48000	CUP 2.000
H4895	21.3	1.55	DBLD	NA	24.0 2554	50000	CUP 2.000
H335	22.2	1.43	1.36	1.3	24.0 2529	48000	CUP 2.000
H322	20.9	1.51	1.46	NA	23.0 2494	49000	CUP 2.000

243 WINCHESTER

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
60 Grain Jacke	eted						OILLO OILL
H4895	39.3	2.86	DBLD	2.8	42.0 3701	48200	CUP 2.540
ACCUR 2230	35.8	2.35	DBLD	2.2	40.0 3700		CUP 2.580
ACCUR 2460	36.0	2.36	DBLD	2.2	40.0 3687	50500	CUP 2.580
ACCUR 2015BR	34.2	2.49	DBLD	2.2	38.0 3686	50600	CUP 2.580
BL-C(2)	38.3	2.47	DBLD	2.2	41.5 3677	48900	CUP 2.540
ACCUR 2495BR	35.3	2.64	DBLD	2.5	40.0 3673	51500	CUP 2.580
ACCUR 2700	41.6	2.85	DBLD	2.8	46.5 3665	50800	CUP 2.580
ACCUR 4350	45.2	3.35	NA	3.1	48.0 3632	48300	CUP 2.580
H380	42.7	2.95	DBLD	2.8	44.5 3599	47000	CUP 2.540
ACCUR 2520	36.5	2.49	DBLD	2.2	40.0 3591	49900	CUP 2.580
H4350	46.1	3.35	NA	3.1	47.0 3520	46000	CUP 2.540
H322	33.5	2.43	DBLD	2.2	37.0 3513	49800	CUP 2.540
RELODER12	35.1	2.43	DBLD	2.2	38.5 3450	56400	PSI 2.550
RELODER 7	28.4	2.07	DBLD	1.9	30.2 3320	54800	PSI 2.550
ACCUR 3100	48.0	3.59	NA	3.4	48.0 3313	43400	CUP 2.580

....STARTING LOADS....

eted						
43.2	2.86	DBLD	2.8	47.5 3613	49600	CUP 2.540
45.9	3.40	NA	3.4	48.0 3531	47600	CUP 2.650
	2.80	DBLD	2.8	45.0 3498	50100	CUP 2.650
35.6	2.66	DBLD	2.5			
36.9	2.38	DBLD	2.2	40.0 3451	49000	CUP 2.540
35.2	2.31	DBLD	2.2	39.0 3440	50400	CUP 2.650
36.9	2.38	DBLD	2.2			
	45.9 40.9 35.6 36.9 35.2	43.22.8645.93.4040.92.8035.62.6636.92.3835.22.31	43.22.86DBLD45.93.40NA40.92.80DBLD35.62.66DBLD36.92.38DBLD35.22.31DBLD	43.22.86DBLD2.845.93.40NA3.440.92.80DBLD2.835.62.66DBLD2.536.92.38DBLD2.235.22.31DBLD2.2	43.2 2.86 DBLD 2.8 47.5 3613 45.9 3.40 NA 3.4 48.0 3531 40.9 2.80 DBLD 2.8 45.0 3498 35.6 2.66 DBLD 2.5 39.0 3489 36.9 2.38 DBLD 2.2 40.0 3451 35.2 2.31 DBLD 2.2 39.0 3440	43.2 2.86 DBLD 2.8 47.5 3613 49600 45.9 3.40 NA 3.4 48.0 3531 47600 40.9 2.80 DBLD 2.8 45.0 3498 50100 35.6 2.66 DBLD 2.5 39.0 3489 49900 36.9 2.38 DBLD 2.2 40.0 3451 49000 35.2 2.31 DBLD 2.2 39.0 3440 50400

Powder Type	Grains	CC			ĔXČĒËD	A CONTRACTOR OF THE PARTY OF TH	Pressure	Units OAL
70 Grain Jacke				0.0	00 F	0.400	F0000	CLID 2 CE
ACCUR 2230	34.9	2.29	DBLD	2.2		3430		CUP 2.650
H380	41.6	2.87	DBLD	2.8		3422	47800	CUP 2.540
H4350	45.3	3.29	DBLD	3.1	47.0		46800	CUP 2.540
H4895	36.8	2.68	DBLD	2.5		3414	49100	CUP 2.540
ACCUR 2015BR	35.5	2.59	DBLD	2.5		3395	46800	CUP 2.650
ACCUR 2520	36.8	2.51	DBLD	2.5		3365	48200	CUP 2.650
H450	50.0	3.27	DBLD	3.1	10000000	3324	42000	CUP 2.540
H322	33.9	2.46	DBLD	2.2		3280	48000	CUP 2.54
ACCUR 3100	48.0	3.59	NA	3.4	48.0	3216	42200	CUP 2.65
75 Grain Jack		3.48	NA	3.4	48.0	3159	36600	CUP 2.54
75 Grain Jack H414	eted 42.9	2.83	DBLD	2.8	47.0	3159 3534 3410	49500	CUP 2.54 CUP 2.54
75 Grain Jack H414 H380	eted 42.9 40.4	2.83 2.79	DBLD DBLD	2.8	47.0 43.0	3534	49500	CUP 2.54 CUP 2.54
H414 H380 H4895	eted 42.9	2.83	DBLD	2.8 2.5	47.0 43.0 39.0	3534 3410	49500 48100	CUP 2.54 CUP 2.54 CUP 2.54
75 Grain Jacko H414 H380 H4895 v-N160	42.9 40.4 35.1 40.0	2.83 2.79 2.56	DBLD DBLD DBLD	2.8 2.5 2.5	47.0 43.0 39.0 45.0	3534 3410 3406	49500 48100 50100	CUP 2.54 CUP 2.54 CUP 2.54
75 Grain Jacke H414 H380 H4895 v-N160 H4350	42.9 40.4 35.1 40.0 44.0	2.83 2.79 2.56 2.94	DBLD DBLD DBLD	2.8 2.5 2.5 2.8	47.0 43.0 39.0 45.0 47.0	3534 3410 3406 3340	49500 48100 50100 57000	CUP 2.54 CUP 2.54 CUP 2.54 CIP 2.54 CUP 2.54 CUP 2.54
75 Grain Jacke H414 H380 H4895 v-N160 H4350 H450	42.9 40.4 35.1 40.0	2.83 2.79 2.56 2.94 3.19	DBLD DBLD DBLD DBLD	2.8 2.5 2.5 2.8 3.1	47.0 43.0 39.0 45.0 47.0 49.5	3534 3410 3406 3340 3339	49500 48100 50100 57000 48200	CUP 2.54 CUP 2.54 CUP 2.54 CIP 2.54 CUP 2.54 CUP 2.54
75 Grain Jacke H414 H380 H4895 v-N160 H4350 H450 WIN 760	42.9 40.4 35.1 40.0 44.0 48.9	2.83 2.79 2.56 2.94 3.19 3.19	DBLD DBLD DBLD DBLD DBLD DBLD	2.8 2.5 2.5 2.8 3.1 3.1	47.0 43.0 39.0 45.0 47.0 49.5 43.0	3534 3410 3406 3340 3339 3335	49500 48100 50100 57000 48200 45700	CUP 2.54 CUP 2.54 CUP 2.54 CIP 2.54 CUP 2.54 CUP 2.54 CUP 2.54
75 Grain Jack H414 H380 H4895 v-N160 H4350 H450 WIN 760 H335	42.9 40.4 35.1 40.0 44.0 48.9 39.8	2.83 2.79 2.56 2.94 3.19 3.19 2.65	DBLD DBLD DBLD DBLD DBLD DBLD	2.8 2.5 2.5 2.8 3.1 3.1 2.5	47.0 43.0 39.0 45.0 47.0 49.5 43.0 37.0	3534 3410 3406 3340 3339 3335 3320	49500 48100 50100 57000 48200 45700 49000 47800 47500	CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54
75 Grain Jack H414 H380 H4895 v-N160 H4350 H450 WIN 760 H335 BL-C(2)	42.9 40.4 35.1 40.0 44.0 48.9 39.8 34.9	2.83 2.79 2.56 2.94 3.19 3.19 2.65 2.25	DBLD DBLD DBLD DBLD DBLD DBLD DBLD DBLD	2.8 2.5 2.5 2.8 3.1 3.1 2.5 2.2	47.0 43.0 39.0 45.0 47.0 49.5 43.0 37.0	3534 3410 3406 3340 3339 3335 3320 3225	49500 48100 50100 57000 48200 45700 49000 47800	CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54
75 Grain Jacke H414 H380 H4895 v-N160 H4350 H450	42.9 40.4 35.1 40.0 44.0 48.9 39.8 34.9 35.2	2.83 2.79 2.56 2.94 3.19 3.19 2.65 2.25 2.27	DBLD DBLD DBLD DBLD DBLD DBLD DBLD DBLD	2.8 2.5 2.5 2.8 3.1 3.1 2.5 2.2	47.0 43.0 39.0 45.0 47.0 49.5 43.0 37.0 35.0	3534 3410 3406 3340 3339 3335 3320 3225 3210	49500 48100 50100 57000 48200 45700 49000 47800 47500	CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54 CUP 2.54
75 Grain Jacks H414 H380 H4895 v-N160 H4350 H450 WIN 760 H335 BL-C(2)	42.9 40.4 35.1 40.0 44.0 48.9 39.8 34.9 35.2 31.7	2.83 2.79 2.56 2.94 3.19 3.19 2.65 2.25 2.27 2.30	DBLD DBLD DBLD DBLD DBLD DBLD DBLD DBLD	2.8 2.5 2.5 2.8 3.1 3.1 2.5 2.2 2.2	47.0 43.0 39.0 45.0 47.0 49.5 43.0 37.0 35.0 48.0	3534 3410 3406 3340 3339 3335 3320 3225 3210 3205	49500 48100 50100 57000 48200 45700 49000 47800 47500 49800	CUP 2.54 CUP 2.54

80 Grain Jacke	ted						
H414	42.2	2.79	DBLD	2.5	46.0 3453	49200	CUP 2.540
IMR4064	37.9	2.83	DBLD	2.8	42.5 3360	52000	CUP 2.640
H380	40.3	2.78	DBLD	2.5	43.0 3354		CUP 2.540
IMR4350	43.1	3.17	DBLD	3.1	48.0 3345		CUP 2.640
H4895	35.1	2.55	DBLD	2.5	38.0 3323	48900	CUP 2.540
ACCUR 4350	41.8	3.09	DBLD	2.8	44.0 3316		CUP 2.700
IMR4895	36.6	2.66	DBLD	2.5	41.0 3305	52000	CUP 2.640
H450	48.2	3.15	DBLD	3.1	49.0 3303	45900	CUP 2.540
H335	33.1	2.14	DBLD	1.9	37.0 3298	50400	CUP 2.540
IMR4320	38.2	2.73	DBLD	2.5	42.5 3280	51700	CUP 2.640
H4350	42.5	3.08	DBLD	2.8	46.0 3280	48900	CUP 2.540
WIN 760	38.6	2.57	DBLD	2.5	43.5 3280	51000	CUP 2.540
ACCUR 3100	43.6	3.26	DBLD	3.1	47.0 3271	49000	CUP 2.700
RELODER19	39.8	2.81	DBLD	2.8	44.5 3270	57500	PSI 2.685
v-N160	40.3	2.96	DBLD	2.8	44.9 3270	56500	CIP 2.540

	ST/	ARTING	LOA									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL					
80 Grain Jacke	80 Grain Jacketed (Continued)											
IMR4831	48.0	3.53	NA	3.4	48.5 3265	46900	CUP 2.640					
IMR3031	35.9	2.73	DBLD	2.5	39.5 3260	51100	CUP 2.640					
WIN MAG RIFLE	43.8	3.14	DBLD	3.1	47.5 3250	54700	PSI 2.540					
BL-C(2)	35.3	2.28	DBLD	2.2	38.5 3248	49200	CUP 2.540					
ACCUR 2700	37.9	2.60	DBLD	2.5	42.0 3233	50400	CUP 2.700					
ACCUR 2495BR	32.2	2.41	DBLD	2.2	36.0 3230	50900	CUP 2.700					
H4831	48.0	3.48	NA	3.4	48.0 3156	42700	CUP 2.540					
RELODER15	32.7	2.31	DBLD	2.2	36.5 3145	57500	PSI 2.685					
ACCUR 2015BR	31.6	2.31	DBLD	2.2	33.5 3121	48200	CUP 2.700					
RELODER12	30.7	2.12	DBLD	1.9	34.0 3060	57000	PSI 2.685					
H322	32.0	2.32	DBLD	2.2	34.0 3042	48000	CUP 2.540					
IMR4198	28.9	2.29	DBLD	2.2	32.0 3035	51300	CUP 2.640					
ACCUR 2520	32.4	2.21	DBLD	2.2	34.0 3011	47800	CUP 2.700					
SR4759	23.1	2.29	DBLD	2.2	25.5 2710	51300	CUP 2.640					
IMR4227	22.7	1.75	DBLD	1.6	25.0 2695	51000	CUP 2.640					

85	Grain	Jac	keted

ob Grain Jack	eted						
H414	41.3	2.73	DBLD	2.5	45.0 3307	49200	CUP 2.540
ACCUR 4350	40.2	2.97	DBLD	2.8			CUP 2.660
H4350	41.3	2.99	DBLD	2.8			CUP 2.540
H4895	33.7	2.45	DBLD	2.2	37.0 3229		CUP 2.540
H450	45.9	3.00	DBLD	2.8	48.0 3215	47200	CUP 2.540
H380	37.4	2.58	DBLD	2.5			CUP 2.540
H4831	48.0	3.48	NA	3.4			CUP 2.540
WIN 760	37.4	2.49	DBLD	2.2	40.5 3150	49000	CUP 2.540
BL-C(2)	32.2	2.08	DBLD	1.9	36.5 3142	51200	CUP 2.540
ACCUR 2700	37.9	2.60	DBLD	2.5	41.0 3140		
ACCUR 3100	44.7	3.35	NA	3.1	46.0 3132		
H335	31.8	2.05	DBLD	1.9	35.5 3110	50400	CUP 2.540
ACCUR 2495BR	32.7	2.45	DBLD	2.2	35.0 3072		CUP 2.660

90 Grain Jacketed

H414	41.1	2.72	DBLD	2.5	44.0 3237	48300	CUP 2.540
H450	47.3	3.09	DBLD	2.8	48.0 3222		
H4350	39.7	2.88	DBLD	2.8	44.0 3180	50100	CUP 2.540
v-N160	44.3	3.25	DBLD	3.1	45.6 3150		
H4831	48.0	3.48	NA	3.4	48.0 3122	45100	CUP 2.540
H4895	34.7	2.52	DBLD	2.5	37.0 3107	48200	CUP 2.540
H380	34.7	2.40	DBLD	2.2	40.0 3073		

			LOAD)S	NEVED	/alasiau		Mimimun
Powder Type	Start Grains	Volume CC	Auto- Disk I	Lee Dipper	NEVER '	FPS	Pressure	Mimimun Units OAL
90 Grain Jacke	A STATE OF THE PARTY OF THE PAR	A STATE OF THE PARTY OF THE PAR	100					
BL-C(2)	32.3	2.08	DBLD	1.9	36.0	3069	50400	CUP 2.540
H335	32.3	2.08	DBLD	1.9	35.0	3004	49000	CUP 2.540
11000	02.0							
95 Grain Jacke	35.9	2.66	DBLD	2.5	40.0	3046	50700	CUP 2.700
ACCUR 4350	40.6	3.04	DBLD	2.8		3010	49300	CUP 2.700
ACCUR 3100	35.7	2.44	DBLD	2.2		2915	49700	CUP 2.700
ACCUR 2700 ACCUR 2495BR	29.2	2.19	DBLD	NA	33.0		51400	CUP 2.700
ACCUR 2495Bh	25.2	2.13	DDLD	IVA	00.0	2001	01.00	
100 Grain Jac		0 E1	DBLD	2.5	12.0	3087	51100	CUP 2.540
H414	38.0	2.51	DBLD	3.1	100	3071		CUP 2.540
H4831	43.8	3.18				3050		CUP 2.710
IMR7828	45.5	3.30	NA DBLD	3.1		3045		CUP 2.540
H1000	44.8	3.19		2.8		3010	51800	
IMR4831	41.2	3.03	DBLD			3004	49000	
H450	41.5	2.71	DBLD	2.5		3000		PSI 2.65
WIN MAG RIFLE	40.6	2.92		2.5		2994		CUP 2.540
H4350	37.9	2.75	DBLD					CUP 2.70
ACCUR 4350	34.3	2.54	DBLD	2.5		2981 2980	51300	
IMR4350	39.4	2.89	DBLD			2980		CIP 2.54
v-N160	37.2	2.73	DBLD	2.5		2966		CUP 2.70
ACCUR 3100	37.7	2.82	DBLD			2950	52000	CUP 2.71
IMR4320	35.3	2.52	DBLD			2950		PSI 2.70
RELODER22	37.3	2.60	DBLD			2940		
H380	34.0	2.35	DBLD			2938	47000	
H4895	34.6	2.52	DBLD		950 950000	2925		PSI 2.70
RELODER19	37.0	2.09	DBLD		7467 176000000000	2914		
H335	32.4	2.58	DBLD			2910		
IMR4064		2.40	DBLD			2910		
IMR4895	33.0		DBLD			2825		
IMR3031 ACCUR 2700	32.1	2.45	DBLD			2753		
		2.19	DBLD			2750		
IMR4198	27.7		DBLD			2653		CUP 2.70
ACCUR 2495BR	27.1	2.03	DBLD	1.9				CUIP 2 71

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

DBLD 2.2

1.72 DBLD 1.6

22.3

22.2

2.21

IMR4227

SR4759

25.0 2450 52000 CUP 2.710

24.5 2430 51200 CUP 2.710

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	y Pressure	Mimimum Units OAL				
105 Grain Jac	keted		1,120,111								
H1000	44.0	3.14	DBLD	3.1	48.0 3019	49200	CUP 2.540				
H414	37.7	2.49	DBLD	2.2	42.0 3002	50300	CUP 2.540				
H450	40.6	2.65	DBLD	2.5	44.5 2957	49500	CUP 2.540				
H4831	44.3	3.21	DBLD	3.1	45.0 2940		CUP 2.540				
WIN MAG RIFLE	39.0	2.80	DBLD	2.8	43.7 2890	56500	PSI 2.650				
H380	33.8	2.34	DBLD	2.2	37.0 2839	49400	CUP 2.540				
H4895	34.2	2.49	DBLD	2.2	36.0 2830	47500	CUP 2.540				
H335	31.9	2.06	DBLD	1.9	33.5 2791	47400	CUP 2.540				
H870	52.0	3.57	NA	3.4	52.0 2788	38800	CUP 2.540				
H4350	37.3	2.70	DBLD	2.5	42.0 2614	50900	CUP 2.540				

117 Grain Jacketed

H1000	40.8	2.91	DBLD	2.8	45.5 2802	50400	CUP 2.540
H870	46.0	3.16	DBLD	3.1	48.0 2715	47100	CUP 2.540

6MM & 244 REMINGTON

	317	ARTING	LUA	D3					*****
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	limimum OAL
60 Grain Jacke	ted								
RELODER15	39.3	2.77	DBLD	2.5	43.6	3820	62700	PSI	2.760
ACCUR 2495BR	39.4	2.95	DBLD	2.8	44.0	3794	63300	PSI	2.750
ACCUR 2015BR	37.8	2.76	DBLD	2.5	42.1	3769	63200	PSI	2.750
BL-C(2)	38.5	2.48	DBLD	2.2	42.0	3747	49100	CUP	2.730
ACCUR 2700	47.5	3.25	DBLD	3.1	50.5	3744	60300	PSI	2.750
H335	38.4	2.48	DBLD	2.2	42.0	3694	49200	CUP	2.730
H4895	37.8	2.75	DBLD	2.5	42.0	3674	50000	CUP	2.730
H414	44.1	2.91	DBLD	2.8	48.0	3671	49000	CUP	2.730
RELODER12	37.6	2.60	DBLD	2.5	41.8	3665	62800	PSI	2.760
H380	41.7	2.88	DBLD	2.8	46.0	3638	49600	CUP	2.730
H4350	45.1	3.27	DBLD	3.1	48.0	3554	47900	CUP	2.730
ACCUR 4350	50.0	3.70	NA	3.7	50.0	3524	48300	PSI	2.750
H450	49.4	3.22	DBLD	3.1	51.0	3519	46500	CUP	2.730
H322	35.0	2.54	DBLD	2.5	38.0	3399	48900	CUF	2.730
H4831	50.0	3.63	NA	3.4	51.0	3391	45900	CUF	2.730
ACCUR 3100	51.0	3.81	NA	3.7	51.0	3226	36700	PSI	2.750

STARTING LOADS

70			
70	Grain	Jacketed	

44.5	3.04	DBLD	2.8	49.0 3574	62500	PSI 2.775
38.5	2.88	DBLD	2.8	ATTENDED NO WO AND		
43.9	2.90	DBLD	2.8			
40.7	2.81	DBLD	2.8	44.0 3544	48700	CUP 2.730
37.3	2.40	DBLD	2.2	42.0 3482	50700	CUP 2.730
	38.5 43.9 40.7 37.6	38.5 2.88 43.9 2.90 40.7 2.81 37.6 2.75	38.5 2.88 DBLD43.9 2.90 DBLD40.7 2.81 DBLD37.6 2.75 DBLD	44.5 3.04 DBLD 2.8 38.5 2.88 DBLD 2.8 43.9 2.90 DBLD 2.8 40.7 2.81 DBLD 2.8 37.6 2.75 DBLD 2.5 37.3 2.40 DBLD 2.2	38.5 2.88 DBLD 2.8 42.0 3568 43.9 2.90 DBLD 2.8 47.5 3549 40.7 2.81 DBLD 2.8 44.0 3544 37.6 2.75 DBLD 2.5 40.8 3501	38.5 2.88 DBLD 2.8 42.0 3568 61800 43.9 2.90 DBLD 2.8 47.5 3549 48700 40.7 2.81 DBLD 2.8 44.0 3544 48700

6MM & 244 REMINGTON (Continued)

	STA	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL	
70 Grain Jacke	70 Grain Jacketed (Continued)								
H4350	45.0	3.26	DBLD	3.1	47.0	3430	47000	CUP 2.730	
ACCUR 4350	50.0	3.70	NA	3.7	50.0	3428	51900	PSI 2.775	
BL-C(2)	39.4	2.54	DBLD	2.5	42.0	3419	48000	CUP 2.730	
H450	48.0	3.14	DBLD	3.1	51.0	3368	47800	CUP 2.730	
H4831	49.6	3.59	NA	3.4	50.0	3321	45400	CUP 2.730	
H4895	38.8	2.82	DBLD	2.8	41.0	3300		CUP 2.730	
H322	33.5	2.43	DBLD	2.2	36.0	3259		CUP 2.730	
ACCUR 3100	51.0	3.81	NA	3.7	51.0	3187		PSI 2.775	

75	Grain	Jacketed

/5 Grain Jack	eted						
IMR3031	36.2	2.76	DBLD	2.5	40.5 3490	52000	CUP 2.740
IMR4064	37.6	2.80	DBLD	2.8	41.5 3480		CUP 2.740
BL-C(2)	39.1	2.52	DBLD	2.5	42.0 3467	48400	CUP 2.730
IMR4350	42.4	3.12	DBLD	3.1	46.5 3455		
IMR4831	44.1	3.24	DBLD	3.1	48.5 3450	51200	CUP 2.740
H414	42.3	2.80	DBLD	2.8	46.0 3448		CUP 2.730
H335	37.7	2.43	DBLD	2.2	42.0 3448	50100	CUP 2.730
H380	39.3	2.72	DBLD	2.5	43.0 3428	49200	CUP 2.730
IMR4320	38.0	2.72	DBLD	2.5	42.5 3425		CUP 2.740
RELODER15	36.8	2.60	DBLD	2.5	40.6 3410	62300	
H4350	43.0	3.12	DBLD	3.1	47.0 3410	49200	CUP 2.730
H4831	46.2	3.35	NA	3.1	50.0 3369	48700	CUP 2.730
IMR4895	34.9	2.54	DBLD	2.5	39.0 3365		CUP 2.740
RELODER12	35.4	2.45	DBLD	2.2	39.0 3340		PSI 2.790
H4895	35.6	2.59	DBLD	2.5	40.0 3300	50600	CUP 2.730
H450	46.0	3.00	DBLD	2.8	48.0 3281	47000	CUP 2.730
IMR4198	29.1	2.30	DBLD	2.2	32.0 3175	51200	CUP 2.740
H322	32.2	2.34	DBLD	2.2	36.0 3151		CUP 2.730
IMR4227	23.0	1.77	DBLD	1.6	25.5 2850	51500	CUP 2.740
SR4759	23.0	2.29	DBLD	2.2	25.5 2835	51500	CUP 2.740

80 Grain Jacketed

RELODER19	45.3	3.20	DBLD	3.1	49.5 3435	61700	PSI 2.790
ACCUR 2700	43.3	2.96	DBLD	2.8	48.0 3416	62900	PSI 2.825
H414	40.4	2.67	DBLD	2.5	46.0 3416		
ACCUR 4350	45.4	3.36	NA	3.1	49.5 3406	61800	PSI 2.825
H4831	44.5	3.22	DBLD	3.1	49.0 3343	49600	CUP 2.730
RELODER15	36.3	2.56	DBLD	2.5	40.5 3340	63000	PSI 2.790
H380	39.0	2.70	DBLD	2.5	43.0 3332		
H335	35.4	2.28	DBLD	2.2	39.0 3331		
H4350	40.8	2.96	DBLD	2.8	45.0 3320		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

ORLD = Double Disk. see instructions with your Auto-Disk powder measure.

NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996

6MM & 244 REMINGTON (Continued)

	STA	ARTING	STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimun Units OAL						
80 Grain Jacke	eted (Co	ontinue	d)					11111111						
IMR4350	41.2	3.03	DBLD	2.8	46.0	3310	52000	CUP 2.790						
H4895	35.8	2.61	DBLD	2.5	40.0	3301	50300	CUP 2.730						
IMR4831	48.0	3.53	NA	3.4	48.0	3300	21900	CUP 2.790						
IMR4064	36.7	2.73	DBLD	2.5	41.0	3295	52000	CUP 2.790						
ACCUR 2495BR	38.6	2.89	DBLD	2.8	40.0	3280	58800	PSI 2.825						
ACCUR 2015BR	33.9	2.47	DBLD	2.2	38.8	3276	65000	PSI 2.825						
IMR3031	35.4	2.69	DBLD	2.5	39.5	3275	52000	CUP 2.790						
BL-C(2)	36.8	2.37	DBLD	2.2	38.0	3255	46500	CUP 2.730						
H450	45.8	2.99	DBLD	2.8	48.0	3249	47200	CUP 2.730						
RELODER12	34.4	2.38	DBLD	2.2	38.0	3205	62300	PSI 2.790						
ACCUR 3100	51.0	3.81	NA	3.7	51.0	3186	49400	PSI 2.825						
IMR4320	35.8	2.56	DBLD	2.5	40.0	3180	52000	CUP 2.790						
IMR4895	33.1	2.41	DBLD	2.2	36.5	3105	51300	CUP 2.790						
IMR4198	28.5	2.25	DBLD	2.2	31.5	3015	51500	CUP 2.790						
IMR4227	22.7	1.75	DBLD	1.6	24.5	2650	50200	CUP 2.790						
SR4759	22.5	2.24	DBLD	2.2	24.5	2640	50600	CUP 2.790						

85 Grain Jacke	eted						
H414	41.7	2.75	DBLD	2.5	45.0 3308	48600	CUP 2.730
H4831	42.8	3.10	DBLD	3.1	48.0 3231	50500	CUP 2.730
H450	45.0	2.94	DBLD	2.8	48.0 3229		
H4895	34.8	2.53	DBLD	2.5	39.0 3229	50500	CUP 2.730
H380	37.5	2.59	DBLD	2.5	41.0 3203		
H335	34.1	2.20	DBLD	2.2	38.0 3162		
H4350	38.6	2.80	DBLD	2.8	43.0 3151		
BL-C(2)	33.8	2.18	DBLD	NA	37.0 3129	49200	CUP 2.730

87 Grain Jacke	eted							
ACCUR 4350	44.4	3.28	DBLD	3.1	48.5 3272	62000	PSI	2.810
ACCUR 2700			DBLD					
ACCUR 3100					51.0 3210			
ACCUR 2495BR								
ACCUR 2015BR	35.4	2.58	DBLD	2.5	38.5 3120	61700	PSI	2.810

90 Grain Jacke	eted						
H414	40.3	2.67	DBLD	2.5	44.0 3224	49100	CUP 2.730
H4895	34.3	2.50	DBLD	2.5	38.0 3160		
H4350	38.6	2.80	DBLD	2.8	43.0 3151	50100	CUP 2.730
H450	45.5	2.97	DBLD	2.8	47.5 3129	47000	CUP 2.730
H4831	43.9	3.18	DBLD	3.1	47.0 3117	48200	CUP 2.730

6MM & 244 REMINGTON (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
90 Grain Jacke	eted (C	ontinue	d)	7, 1			
H380	37.0	2.55	DBLD	2.5	40.0 3068	48700	CUP 2.730
H335	32.9	2.12	DBLD	1.9	36.0 2997	49200	CUP 2.730
BL-C(2)	34.5	2.23	DBLD	2.2	35.0 2980	45600	CUP 2.730
					•		17 1 191
100 Grain Jac	keted						
RELODER22	43.4	3.02	DBLD	2.8	48.0 3205	62500	PSI 2.800
RELODER19	41.5	2.93	DBLD	2.8	46.0 3145	62500	PSI 2.800
H1000	48.3	3.45	NA	3.4	51.0 3111	47500	CUP 2.730
IMR4831	40.7	2.99	DBLD	2.8	45.5 3095	52000	
H4831	41.7	3.03	DBLD	2.8	46.0 3074	49600	CUP 2.730
H450	43.1	2.81	DBLD	2.8	47.5 3061	49600	CUP 2.730
ACCUR 2700	42.0	2.88	DBLD	2.8	45.5 3059	61400	PSI 2.825
IMR4350	38.9	2.86	DBLD	2.8	43.5 3055	52000	CUP 2.735
H414	39.3	2.60	DBLD	2.5	43.0 3054	49200	CUP 2.730
ACCUR 4350	42.4	3.14	DBLD	3.1	45.6 3041	61000	PSI 2.825
IMR7828	46.5	3.37	NA	3.1	48.0 3040	48000	CUP 2.735
H4350	37.8	2.74	DBLD	2.5	42.0 2997	50000	CUP 2.730
ACCUR 3100	48.0	3.59	NA	3.4	48.0 2981	55300	PSI 2.825
IMR4064	34.7	2.58	DBLD	2.5	38.0 2945	51000	CUP 2.735
IMR3031	32.7	2.49	DBLD	2.2	36.5 2925	52000	CUP 2.735
ACCUR 2015BR	32.7	2.39	DBLD	2.2	36.5 2896	63300	PSI 2.825
H4895	32.7	2.38	DBLD	2.2	36.0 2888	49600	CUP 2.730
IMR4895	32.0	2.33	DBLD	2.2	35.5 2880	51600	CUP 2.735
IMR4320	33.6	2.40	DBLD	2.2	37.0 2875	51300	CUP 2.735
H380	34.8	2.41	DBLD	2.2	37.0 2828	47800	CUP 2.730
BL-C(2)	29.8	1.92	DBLD	1.9	33.0 2791	49800	CUP 2.730
H335	29.9	1.93	DBLD	1.9	33.0 2772	49600	CUP 2.730
IMR4198	26.0	2.06	DBLD	1.9	29.0 2660	52000	CUP 2.735
		and the second second	40.736				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

3.4

NA

DBLD 1.9

DBLD 1.6

51.0 2539 34000 PSI 2.825

23.5 2400 51600 CUP 2.735

23.5 2395 51500 CUP 2.735

51.0 3.51

2.10

1.63

21.2

21.2

ACCUR 8700

SR4759

IMR4227

6MM & 244 REMINGTON (Continued)

	STA	ARTING	LOA				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
105 Grain Jack	keted						
H4831	41.0	2.97	DBLD	2.8	46.0 3056	50500	CUP 2.730
H1000	46.9	3.34	NA	3.1	50.0 2995	48000	CUP 2.730
H414	38.9	2.57	DBLD	2.5	43.0 2976	49800	CUP 2.730
ACCUR 2700	41.4	2.84	DBLD	2.8	44.5 2960	60900	PSI 2.825
H450	43.2	2.82	DBLD	2.8	45.0 2927	46900	CUP 2.730
ACCUR 4350	42.2	3.12	DBLD	3.1	44.0 2912	59200	PSI 2.825
H4350	37.1	2.69	DBLD	2.5	41.0 2909	49800	CUP 2.730
ACCUR 3100	47.0	3.52	NA	3.4	47.0 2840	51400	PSI 2.825
H380	34.6	2.39	DBLD	2.2	37.0 2788	48200	CUP 2.730
ACCUR 8700	51.0	3.51	NA	3.4	51.0 2526	35400	PSI 2.825

115 Grain Jac	keted						
H1000	43.4	3.09	DBLD	2.8	48.0 2898		
ACCUR 3100	44.3	3.31	NA	3.1	47.0 2844		
ACCUR 4350	39.9	2.95	DBLD	2.8	44.0 2839		
H870	46.5	3.19	DBLD	3.1	49.0 2724		
H4831	38.3	2.78	DBLD		40.0 2614		
ACCUR 8700	51.0	3.51	NA	3.4	51.0 2537	40600	PSI 2.825

STARTING LOADS.. Start Grains Volume Auto-Disk Lee Mimimum **Powder Type** 50 Grain Bullet **HP38** 1.3 .12 .12 NA NA NA 0.875 1.4 848 v-N310 1.0 .12 .12 NA 1.1 804 18855 CIP 0.875 **GREEN DOT** 1.3 .15 .16 NA 1.4 785 15400 PSI 0.875 BULLSEYE 1.2 .13 .12 NA 1.3 760 15000 **PSI** 0.875 **RED DOT** 1.0 .14 NA NA 1.1 740 15500 PSI 0.875 **HERCO** 1.5 .17 .15 .17 1.7 735 15600 PSI 0.875 ACCUR #2 1.4 .12 .12 NA 717 1.6 13900 CUP 0.900

25-20 WINCHESTERUse only in guns that are safe with smokeless powder.

....STARTING LOADS...

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Mimimum Units OAL
60 Grain Bullet								
H110	NA	NA	NA	NA	8.5	1827	19500	CUP 1.590
					4			
60 Grain Jacke	eted							
ACCUR 1680	13.3	.87	.82	NA	14.0	2249	25800	CUP 1.592
ACCUR #9	7.5	.49	.49	NA	8.5	1961	27700	CUP 1.592
ACCUR 2015BR	15.6	1.14	1.09	NA	16.0	1956	25100	CUP 1.592
65 Grain Lead			7.0		10.0	0100	20000	CUD 1 502
ACCUR 1680	11.6	.76	.76	.7	13.3	2138		CUP 1.592
ACCUR 2015BR	14.9	1.09	1.09	1.0	15.0	1898		CUP 1.592
ACCUR #9	7.4	.49	.49	NA	8.0	1825	26500	CUP 1.592
75 Grain Jacke	eted							
ACCUR 1680	11.1	.73	.71	.7	12.5	1983	27600	
ACCUR 2015BR	13.8	1.01	.95	1.0	14.5	1846	25700	
ACCUR #9	7.2	.48	.46	NA	8.0	1716	27100	CUP 1.585

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 05-08-1997

25-20 WINCHESTER (Continued) Use only in guns that are safe with smokeless powder.

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M Units	limimum OAL		
86 Grain Bullet						AND THE					
H4227	7.7	.60	.57	NA	8.6	1550	NA	NA	1.592		
H110	NA	NA	NA	NA	8.0	1444	NA	NA	1.590		
HS6	4.9	.35	.34	NA	5.5	1362	NA	NA	1.590		

86 Grain Jacketed

RELODER 7	11.5	.84	.82	NA	11.5	1460	15000	CUP 1.590
HERC 2400	6.9	.51	.49	.5				CUP 1.590

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = Copyright 05-08-1997 NA = None Available

25-35 WINCHESTER

6.5x52R Do not use pointed bullets in a tubular magazine.

		ALL HAC	LUA	DO					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
60 Grain Jacke	ted								
ACCUR 2520	29.2	1.99	DBLD	1.9	32.0	3039	35000	CUP	2.300
ACCUR 2495BR	30.5	2.28	DBLD	2.2	30.5	2826	29800	CUP	2.300
H335	27.0	1.74	DBLD	1.6	30.0	2792	NA	NA	2.300
BL-C(2)	27.0	1.74	DBLD	1.6	30.0	2786	NA	NA	2.300
H4895	27.0	1.97	DBLD	1.9	30.0	2729	NA	NA	2.300
ACCUR 2700	30.2	2.07	DBLD	1.9	32.0	2722	33800	CUP	2.300
H4198	21.6	1.62	DBLD	1.6	24.0	2717	NA	NA	2.300
ACCUR 4350	30.0	2.22	DBLD	2.2	30.0	2193	22300	CUP	2.300

70 Grain Jacke								
v-N120	21.5	1.67	DBLD	1.6	23.5 2950	38435	CIP	2.300

75 Grain Jacketed ACCUR 2520 27.7 1.89 DBLD NA 29.0 2696 33400 CUP 2.310										
ACCUR 2495BR	28.1	2.10	DBLD	1.9	29.0 2666	32900	CUP 2.310			
ACCUR 2700	27.6	1.89	DBLD		32.0 2645					
ACCUR 4350	30.0	2.22	DBLD	2.2	30.0 2195	27500	CUP 2.310			

86 Grain Jack	eted						-		
v-N120	20.4	1.58	DBLD	NA	22.7	2590	39160	CIP	2.300

25-35 WINCHESTER (Continued) 6.5x52R Do not use pointed bullets in a tubular magazine.

....STARTING LOADS....

25.2 1.63 DBLD 1.6

1.36

1.3

1.42

18.9

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimum OAL
87 Grain Jack	eted					The Ve			3777
H4895	26.1	1.90	DBLD	1.9	29.0	2683	NA	NA	2.300
H335	26.1	1.68	DBLD	1.6	29.0	2679	NA	NA	2.300
BL-C(2)	26.1	1.68	DBLD	1.6	29.0	2666	NA	NA	2.300
H4198	19.8	1.49	1.46	NA	22.0	2437	NA	NA	2.300
93 Grain Jack	eted								
v-N110	13.7	1.14	1.09	NA	15.3	2200	39160	CIP	2.300
100 Grain Jac	keted								
H4895	25.2	1.83	DBLD	NA	28.0	2386	NA	NA	2.300
H335	25.2	1.63	DBLD	1.6	28.0	2380	NA	NA	2.300

28.0 2364

21.0 2142

NA

NA

NA 2.300

NA 2.300

117 Grain Jackstod

BL-C(2)

H4198

I I / Grain Jac	keted						
v-N140	24.4	1.79	DBLD	1.6	27.2 2360	39160	CIP 2.300
ACCUR 2520	23.5	1.61	DBLD	1.6	25.0 2218	33900	CUP 2.545
H4895	24.3	1.77	DBLD	1.6	27.0 2207	NA	NA 2.300
WIN 760	25.6	1.71	DBLD	1.6	28.5 2200	35999	CUP 2.300
H335	24.3	1.57	DBLD	NA	27.0 2199	NA	NA 2.300
BL-C(2)	24.3	1.57	DBLD	NA	27.0 2188	NA	NA 2.300
ACCUR 4350	28.5	2.11	DBLD	1.9	30.0 2187	33600	CUP 2.545
ACCUR 2495BR	24.7	1.85	DBLD	NA	25.0 2181	32300	CUP 2.545
ACCUR 2700	23.3	1.59	DBLD	NA	27.0 2114	37000	CUP 2.545
H4198	18.0	1.35	1.26	1.3		NA	NA 2.300

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

NA = None Available Copyright 08-14-1996

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M Units	limimum OAL
60 Grain Jack	eted								
H4895	36.0	2.62	DBLD	2.5	40.0	3667	NA	NA	2.320
H322	32.4	2.35	DBLD	2.2	36.0	3647	NA	NA	2.320
BL-C(2)	36.0	2.32	DBLD	2.2	40.0	3626	NA	NA	2.320
H335	35.1	2.26	DBLD	2.2	39.0	3609	NA	NA	2.320
H414	39.6	2.62	DBLD	2.5	44.0	3565	NA	NA	2.320
H380	38.7	2.67	DBLD	2.5	43.0	3533	NA	NA	2.320
H4198	29.7	2.23	DBLD	2.2	33.0	3515	NA	NA	2.320
WIN 748	38.6	2.53	DBLD	2.5	40.8	3470	40500	CUP	2.320
H4350	37.8	2.74	DBLD	2.5	42.0	3394	NA	NA	2.320
WIN 760	43.2	2.88	DBLD	2.8	44.0	3330	39000	CUP	2.320

75 Grain Jacke	ted						
H414	39.6	2.62	DBLD	2.5	44.0 3460	NA	NA 2.320
H380	37.8	2.61	DBLD	2.5	42.0 3393	NA	NA 2.320
H4895	34.2	2.49	DBLD	2.2	38.0 3380	NA	NA 2.320
RELODER15	34.4	2.43	DBLD	2.2	38.3 3350	43700	CUP 2.400
BL-C(2)	34.2	2.21	DBLD	2.2	38.0 3299	NA	NA 2.320
H335	33.3	2.15	DBLD	1.9	37.0 3258	NA	NA 2.320
RELODER12	33.9	2.34	DBLD	2.2	37.8 3250	43800	CUP 2.400
H4350	37.8	2.74	DBLD	2.5	42.0 3222	NA	NA 2.320
H322	30.6	2.22	DBLD	2.2	34.0 3194	NA	NA 2.320
ACCUR 2460	30.1	1.98	DBLD	1.9	34.0 3179	44300	CUP 2.465
H4198	27.0	2.03	DBLD	1.9	30.0 3169	NA	NA 2.320
ACCUR 2495BR	31.3	2.35	DBLD	2.2	34.0 3169	42600	CUP 2.465

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
75 Grain Jack	eted (C	ontinu	ed)								
ACCUR 2520	32.3	2.21	DBLD	2.2	34.0 3121	41300	CUP 2.465				
ACCUR 2015BR	29.9	2.18	DBLD	NA	31.5 3115	41400	CUP 2.465				
ACCUR 2230	30.0	1.97	DBLD	1.9	33.5 3114	43800	CUP 2.465				
ACCUR 2700	34.2	2.34	DBLD	2.2	37.5 3041	43100	CUP 2.465				
ACCUR 4350	36.9	2.73	DBLD	2.5	41.0 3034	43600	CUP 2.465				
ACCUR 3100	41.0	3.07	DBLD	2.8	41.0 2735	36500	CUP 2.465				
87 Grain Jack	eted										
RELODER15	32.3	2.28	DBLD	2.2	36.0 3135	43800	CUP 2.450				
IMR4064	31.4	2.34	DBLD	2.2	35.5 3075	45000	CUP 2.515				
IMR3031	30.7	2.34	DBLD	2.2	34.0 3055	44200	CUP 2.515				
IMR4895	30.6	2.23	DBLD	2.2	34.5 3000	44900	CUP 2.515				
WIN 760	34.8	2.32	DBLD	2.2	39.5 2985	43500	CUP 2.320				
IMR4320	31.4	2.25	DBLD	2.2	35.5 2975	45000	CUP 2.515				
RELODER19	37.6	2.66	DBLD	2.5	41.0 2940	42800	CUP 2.450				
WIN 748	33.6	2.20	DBLD	2.2	36.0 2940	41000	CUP 2.320				
IMR4350	39.0	2.87	DBLD	2.8	39.0 2905	39500	CUP 2.515				
IMR4198	25.0	1.98	DBLD	1.9	27.5 2875	43900	CUP 2.515				
IMR4831	39.0	2.87	DBLD	2.8	39.0 2740	35400	CUP 2.515				
IMR4227	19.0	1.46	1.46	1.3	21.5 2570		CUP 2.515				
SR4759	18.3	1.82	DBLD	1.6	20.5 2515	44700	CUP 2.515				
90 Grain Jacke	eted										
H414	37.8	2.50	DBLD	2.5	42.0 3297	NA	NA 2.320				
H380	36.9	2.55	DBLD	2.5	41.0 3210	NA	NA 2.320				
H4895	33.3	2.42	DBLD	2.2	37.0 3208	NA	NA 2.320				
BL -C(2)	32 4	2 00	DRID	1 0	26 0 2114	NIA	NIA 2.000				

JO Grain Jack	etea						
H414	37.8	2.50	DBLD	2.5	42.0 3297	NA	NA 2.320
H380	36.9	2.55	DBLD	2.5	41.0 3210	NA	NA 2.320
H4895	33.3	2.42	DBLD	2.2	37.0 3208	NA	NA 2.320
BL-C(2)	32.4	2.09	DBLD	1.9	36.0 3114	NA	NA 2.320
H335	31.5	2.03	DBLD	1.9	35.0 3075	NA	NA 2.320
H4350	36.9	2.68	DBLD	2.5	41.0 3063	NA	NA 2.320
H322	28.8	2.09	DBLD	1.9	32.0 3044	NA	NA 2.320
ACCUR 2495BR	30.0	2.25	DBLD	2.2	32.5 2952	42500	CUP 2.460
ACCUR 4350	35.1	2.59	DBLD	2.5	40.0 2931	44800	CUP 2.460
ACCUR 2015BR	28.9	2.11	DBLD	1.9	30.5 2929	41400	CUP 2.460
ACCUR 2230	30.7	2.01	DBLD	1.9	32.0 2905	41000	CUP 2.460
ACCUR 2520	31.0	2.11	DBLD	1.9	32.5 2902		CUP 2.460
ACCUR 2460	30.5	2.00	DBLD	1.9	32.0 2897		CUP 2.460
H450	37.8	2.47	DBLD	2.2	42.0 2857	NA	NA 2.320
ACCUR 2700	32.3	2.21	DBLD	2.2	36.0 2851	43800	CUP 2.460
ACCUR 3100	38.4	2.87	DBLD	2.8	41.0 2731	41900	CUP 2.460

250 SAVAGE (Continued)

	STA	RTING	LOA	DS	NEVER	w 1		N	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
100 Grain Jack				The same of		N. C. Service	er a Cr. militarion		
H414	36.0	2.38	DBLD	2.2	40.0	3102	NA	NA	2.320
H380	34.2	2.36	DBLD	2.2	38.0	2998	NA	NA	2.320
H4895	31.5	2.29	DBLD	2.2	35.0	2988	NA	NA	2.320
H335	30.6	1.97	DBLD	1.9	34.0	2921	NA		2.320
BL-C(2)	30.6	1.97	DBLD	1.9	34.0	2900	NA	NA	2.320
H4831	37.8	2.74	DBLD	2.5	42.0	2890	NA	NA	
H4350	36.0	2.61	DBLD	2.5	40.0	2881	NA		2.320
IMR4064	31.2	2.32	DBLD	2.2	34.5	2875	44100		2.515
IMR3031	29.6	2.25	DBLD	2.2	33.0	2865	44500		2.515
RELODER19	36.2	2.56	DBLD	2.5	40.0	2855	43400		2.500
IMR4895	30.1	2.19	DBLD	NA	34.0	2845	45000		2.515
WIN 748	31.6	2.07	DBLD			2820	43500		2.320
WIN 760	35.4	2.36	DBLD	2.2		2820	42000		2.320
ACCUR 2015BR	27.3	2.00	DBLD	1.9	00.0	2792	43100		2.500
IMR4320	30.6	2.19	DBLD			2785	45000		2.515
ACCUR 4350	36.0	2.67	DBLD			2781	42500		2.500
IMR4350	37.1	2.72	DBLD			2780	41400		2.515
ACCUR 2495BR	28.8	2.16	DBLD			2767	43600		2.500
ACCUR 2520	29.7	2.03	DBLD			2760	42300		2.500
H450	36.0	2.35	DBLD		1	2727	NA	2 22 2	2.320
ACCUR 2700	32.7	2.24	DBLD			2712			2.500
H322	26.1	1.89	DBLD			2709			2.320
ACCUR 2460	31.0	2.03	DBLD	1.9		2687	38700		2.500
IMR4198	23.9	1.89	DBLD			2685	45000		2.515
ACCUR 3100	39.7	2.97	DBLD			2667	40600		2.500
ACCUR 2230	29.2	1.92	DBLD		30.0				2.500
IMR4831	38.5	2.83	DBLD		38.5				2.515
IMR4227	19.4	1.49	1.46	NA	21.0				2.515
SR4759	18.2	1.81	DBLD		20.0				2.515
H4198	16.2	1.22	1.18	NA	18.0	1862	NA	NA	2.320

250 SAVAGE (Continued)

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
117 Grain Jac	keted										
H4831	37.8	2.74	DBLD	2.5	42.0 2789	NA	NA 2.320				
H414	33.3	2.20	DBLD	2.2	37.0 2719	NA	NA 2.320				
H380	31.5	2.18	DBLD	NA	35.0 2718	NA	NA 2.320				
ACCUR 3100	36.8	2.76	DBLD	2.5	41.0 2652	43700	CUP 2.515				
ACCUR 4350	34.4	2.54	DBLD	2.5	37.0 2626	42300	CUP 2.515				
ACCUR 2015BR	24.9	1.82	DBLD	1.6	28.5 2571	45000	CUP 2.515				
ACCUR 2495BR	26.2	1.96	DBLD	1.9	30.0 2567	45000	CUP 2.515				
ACCUR 2520	26.6	1.82	DBLD	1.6	30.0 2528	44300	CUP 2.515				
H450	35.5	2.32	DBLD	2.2	39.5 2516	NA	NA 2.320				
ACCUR 2230	26.5	1.74	DBLD	1.6	29.0 2509	43000	CUP 2.515				
ACCUR 2460	28.4	1.86	DBLD	NA	29.5 2498	40800	CUP 2.515				
ACCUR 2700	31.5	2.16	DBLD	1.9	33.0 2489	41100	CUP 2.515				

120 Grain Jacketed

RELODER22	36.0	2.51	DBLD	2.5	40.0 2680	43600	CUP 2.510
H4350	34.2	2.48	DBLD	2.2	38.0 2654	NA	NA 2.320

125 Grain Jacketed

	· odokotod ·					
H4831	36.9	2.68	DBLD 2.5	41.0 2736	NA	NA 2.320
H414	32.4	2.14	DBLD 1.9	36.0 2672	NA	NA 2.320
H380				34.0 2660		
H4350	33.3	2.41	DBLD 2.2	37.0 2619	NA	NA 2.320

257 ROBERTS

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL	
60 Grain Jack	ceted									
H335	43.2	2.79	DBLD	2.5	48.0	3885	46400	CUP	2.620	
BL-C(2)	43.7	2.82	DBLD	2.8	48.0	3834	45900	CUP	2.620	
H414	51.5	3.41	NA	3.4	54.0	3818	43800	CUP	2.620	
H4895	42.7	3.11	DBLD	3.1	46.0	3805	45000	CUP:	2.620	
H380	44.3	3.06	DBLD	2.8	49.0	3752	46200	CUP	2.620	
H4350	47.7	3.46	NA	3.4		3612				
H4831	53.0	3.84	NA	3.7	53.0	3382	33600	CUP	2.620	

75 Grain Jacke	ted				
H380	44.0	3.04	DBLD	2.8	48.0 3563 45600 CUP 2.620
H4895	38.9	2.83	DBLD	2.8	44.0 3561 47300 CUP 2.620
H414	48.0	3.17	DBLD	3.1	52.0 3555 45300 CUP 2.620
H335	42.7	2.76	DBLD	2.5	46.0 3548 45000 CUP 2.620
BL-C(2)	41.2	2.66	DBLD	2.5	46.0 3531 46700 CUP 2.620
H4350	47.5	3.44	NA	3.4	50.0 3422 44000 CUP 2.620
RELODER15	38.0	2.68	DBLD	2.5	41.8 3340 42700 CUP 2.775
H4831	53.0	3.84	NA	3.7	53.0 3307 37500 CUP 2.620
ACCUR 4350	42.4	3.14	DBLD	3.1	47.0 3257 43600 PSI 2.745
ACCUR 2700	40.4	2.77	DBLD	2.5	46.0 3243 44800 PSI 2.745
ACCUR 2520	36.9	2.52	DBLD	2.5	39.5 3169 42100 PSI 2.745
ACCUR 3100	51.0	3.81	NA	3.7	51.0 3163 38100 PSI 2.745
RELODER12	35.4	2.45	DBLD	2.2	39.0 3160 42800 CUP 2.775

...STARTING LOADS....

	517	ARIIN	G LUA	DS			and the same of			
Powder Type	Start Grains	Volum CC	e Auto- Disk	Lee Dipper	NEVER EXCEE	Velocit D FPS	y Pressure	Unit	Mimimu s OAL	m
85 Grain Jack	eted		The second second	- 19401	LNOLL	110	1 1033416	Unit	JUAL	100
ACCUR 4350	40.7	3.01	DBLD	2.8	46.0	3100	44500	PSI	2.77	0
ACCUR 2700	38.4	2.63				3051			2.77	
ACCUR 3100	48.3	3.61	NA	3.4	The second second	3031			2.77	
ACCUR 2520	33.5	2.29		2.2	-	2980			2.77	
									,,,	
87 Grain Jack	eted									
RELODER15	36.9	2.60	DBLD	2.5	41.0	3185	43200	CLIE	2 77	5
RELODER12	32.7	2.26		2.2	0.000	2930				
					_ 00.0	2000	+0000	COI	2.77	,
90 Grain Jack	eted									
H4895	36.9	2.68	DBLD	2.5	42 0	3372	47600	CLIE	2 620	
H414	47.1	3.11	DBLD	3.1	CONTRACTOR CONTRACTOR	3368				
H380	43.3	2.99	DBLD	2.8		3364				
H335	40.5	2.61	DBLD	2.5		3300				
H4831	52.0	3.77	NA	3.7	165720	3236				
BL-C(2)	40.4	2.61	DBLD	2.5		3231	45000			
H450	50.0	3.27	DBLD	3.1	-	3146	41700	CUP	2.620	5
ACCUR 3100	44.7	3.34	NA	3.1		3056	44000			
H4350	44.0	3.19	DBLD			3040	43700			
ACCUR 4350	42.1	3.11	DBLD	3.1	_	3001	42100			
ACCUR 2700	38.7	2.65	DBLD	2.5		2989	42700			
ACCUR 2520	33.5	2.28	DBLD	2.2		2947	43500		2.735	
							.0000	1 01	/50	
100 Grain Jac	keted									
H380	39.5	2.73	DBLD	2.5	44.0	3108	46600	CLIP	2 620	
H414	42.3	2.79		2.5		3098	44500			
H335	34.1	2.20	DBLD	2.2		3042				
H4831	46.4	3.37	NA	3.1		3010	44100			
H4895	34.4	2.51	DBLD	2.5	100000000000000000000000000000000000000	2990	46100			
H4350	41.4	3.00		2.8		2970	45400			
BL-C(2)	35.9	2.32		2.2		2958	45400			
IMR4831	42.4	3.11	DBLD	3.1		2950	44300			
H450	46.5	3.04		2.8		2946	41500			
IMR4064	35.6	2.65		2.5		2945	44800			
IMR3031	34.5	2.63	DBLD	2.5		2935	44440			
RELODER19	40.3	2.84	DBLD	2.8		2930	43100			
IMR4350	40.3	2.96	DBLD			2930	44600			
IMR4320	34.5	2.47	DBLD	2.2	38.5	2860	45000			
IMR4895	32.7	2.38	DBLD	2.2	36.5	2850	45000			- 1
ACCUR 4350	37.8	2.80	DBLD	2.8	41.0		42700			
CALITION, WISH NEVED	EVOFED I						The state of the s			_

.STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
100 Grain Jack	keted (Continu	ued)					
IMR4198	27.3	2.17	DBLD	NA	30.5	2720	45000	CUP 2.775
ACCUR 3100	46.0	3.44	NA	3.4	46.0	2706	37800	PSI 2.760
ACCUR 2700	35.9	2.46	DBLD	2.2	39.0	2683	42700	PSI 2.760
ACCUR 2520	31.3	2.14	DBLD	1.9	34.0	2641	42700	PSI 2.760
117 Grain Jacl	keted							
ACCUR 3100	43.2	3.23	DBLD	3.1	48.0	2736	43700	PSI 2.775
ACCUR 4350	38.4	2.84	DBLD	2.8	43.0	2700	44100	PSI 2.775
ACCUR 2700	35.5	2.43	DBLD	2.2	39.0	2619	43200	PSI 2.775
ACCUR 2520	31.3	2.14	DBLD	1.9	34.0	2555	42700	PSI 2.775
120 Grain Jac	keted							
IMR4831	39.5	2.90	DBLD	2.8	44.0	2810	45000	CUP 2.775
RELODER22	39.7	2.77	DBLD	2.5	44.0	2785	43000	
IMR4350	37.2	2.74	DBLD	2.5		2780		
H4350	40.5	2.93	DBLD	2.8	43.0	2777	44400	CUP 2.700
H4831	41.8	3.03	DBLD	2.8		2760	46000	
H380	36.4	2.52	DBLD	2.5		2754		
IMR7828	43.2	3.13	DBLD	3.1	47.0	2745	43900	CUP 2.775
H414	40.7	2.69	DBLD	2.5		2720		
H450	45.5	2.97	DBLD	2.8		2706		
H4895	33.4	2.43	DBL	2.2		2702		
IMR4064	32.6	2.43	DBL	2.2		2695		
BL-C(2)	31.9	2.06	DBL			2673		
IMR3031	30.1	2.30	DBL		33.0			
IMR4895	30.0	2.19	DBL		33.5			
IMR4320	31.1	2.22	DBL		34.5			
IMR4198	24.7	1.95	DBL	1.9	27.5	2440	45000	CUP 2.775

125 Grain Jac	keted						
H414					42.0 2681		
H4350	38.6	2.80	DBLD	2.8	43.0 2680	46600	CUP 2.700
H4831	40.7	2.95	DBLD	2.8	45.0 2677	46200	CUP 2.700
H380	34.9	2.41	DBLD	2.2	39.0 2670	46700	CUP 2.700

25-06 REMINGTON

		ARTING		DS					
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimum OAL
75 Grain Jacke	eted								
ACCUR 4350	52.1	3.85	NA	3.7	57.0	3690	60900	PSI	3.065
H414	50.9	3.36	NA	3.1			48300		
RELODER12	43.8	3.03	DBLD	2.8			59900		
H380	49.0	3.38	NA	3.1			47400		
ACCUR 3100	60.0	4.49	NA	4.3			52500		
ACCUR 2700	47.7	3.27	DBLD	3.1			58300		
H4831	54.7	3.96	NA	3.7			49100		
H450	53.3	3.48	NA	3.4	57.0	3502	48700	CUP	3.010

87 Grain Jack	eted					
IMR4831	53.6	3.94	NA	3.7	59.0 3560	52200 CUP 3.100
RELODER19	52.4	3.70	NA	3.7	57.3 3525	59800 PSI 3.090
IMR3031	43.0	3.27	DBLD	3.1	48.0 3500	53000 CUP 3.100
IMR4064	45.2	3.36	NA	3.1	49.5 3500	52000 CUP 3.100
IMR4350	48.9	3.59	NA	3.4	56.0 3495	52100 CUP 3.100
RELODER15	42.3	2.99	DBLD	2.8	47.2 3425	61000 PSI 3.090
IMR4320	43.9	3.14	DBLD	3.1		53000 CUP 3.100
v-N165	55.0	3.92	NA	3.7	62.0 3410	53660 PSI 3.010
IMR4895	41.2	3.00	DBLD	2.8	46.0 3395	53000 CUP 3.100
v-N160	52.8	3.88	NA	3.7	56.3 3360	50763 PSI 3.010
RELODER12	40.9	2.83	DBLD	2.8	44.5 3290	59500 PSI 3.090
v-N140	44.6	3.27	DBLD	3.1	47.5 3260	50763 PSI 3.010
IMR4198	33.1	2.62	DBLD	2.5	37.0 3135	53000 CUP 3.100

25-06 REMINGTON (Continued)

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL						
87 Grain Jacke		The state of the s									
SR4759	29.5	2.93	DBLD	2.8	32.0 2935 51500 CUP 3.100						
IMR4227	28.0	2.15	DBLD	1.9	30.5 2895 51700 CUP 3.100						
90 Grain Jacketed											
H414	46.2	3.06	DBLD	2.8	51.0 3470 50200 CUP 3.010						
H4831	53.0	3.84	NA	3.7	58.0 3414 49800 CUP 3.010						
H380	44.6	3.08	DBLD	2.8	49.0 3411 50000 CUP3.010						
H4350	47.7	3.46	NA	3.4	54.0 3393 51500 CUP 3.010						
WIN MAG RIFLE	57.7	4.14	NA	4.0	58.1 3340 52700 PSI 3.100						
H1000	61.3	4.37	NA	4.3	62.0 3335 46000 CUP 3.010						
H870	63.2	4.34	NA	4.3	65.0 3230 46800 CUP3.010						
H450	52.2	3.41	NA	3.4	55.0 3134 47900 CUP3.010						
100 Grain Jac	kotod										
RELODER22	50.0	3.49	NA	3.4	55.9 3355 61100 PSI 3.200						
IMR4831	50.1	3.68	NA	3.4	56.0 3335 53000 CUP3.090						
RELODER19	48.7	3.44	NA	3.4	54.3 3320 61000 PSI 3.200						
H4350	45.9	3.33	NA	3.1	52.0 3296 51500 CUP 3.010						
H4831	50.3	3.64	NA	3.4	55.0 3294 49800 CUP 3.010						
IMR4350	48.0	3.53	NA	3.4	53.5 3290 52900 CUP 3.090						
WIN MAG RIFLE	54.7	3.93	NA	3.7	58.1 3280 55600 PSI 3.100						
H1000	55.0	3.92	NA	3.7	61.0 3245 50500 CUP3.010						
ACCUR 3100	50.5	3.78	NA	3.7	57.0 3242 62800 PSI 3.140						
IMR4064	42.7	3.18	DBLD	3.1	47.5 3240 52800 CUP 3.090						
H870	63.2	4.34	NA	4.3	65.0 3235 46800 CUP 3.010						
IMR3031	40.7	3.10	DBLD	3.1	45.5 3215 53000 CUP3.090						
v-N165	52.0	3.70	NA	3.7	58.6 3212 53660 PSI 3.010						
ACCUR 4350	47.8	3.53	NA	3.4	51.5 3192 60000 PSI 3.140						
RELODER15	40.3	2.84	DBLD	2.8	44.9 3190 61000 PSI 3.200						
H450	50.3	3.29	DBLD	3.1	53.0 3134 47900 CUP3.010						
IMR4320	41.2	2.95	DBLD	2.8	45.5 3125 52400 CUP 3.090						
IMR4895	38.9	2.83		2.8	43.0 3110 52400 CUP3.090						
H414	42.4	2.80	DBLD	2.8	47.0 3093 50500 CUP3.010						
ACCUR 2700	45.7	3.13	DBLD	3.1	49.0 3084 59600 PSI 3.140						
IMR4198	32.3	2.56	DBLD	2.5	36.0 2905 52800 CUP 3.090						
ACCUR 8700	64.0	4.40	NA	4.3	64.0 2897 50300 PSI 3.140						
SR4759	27.3	2.71	DBLD	2.5	30.0 2660 52100 CUP 3.090						

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

2.03 DBLD 1.9

26.5

IMR4227

29.5 2645 52900 CUP 3.090

25-06 REMINGTON (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimu Units OAL	m
115 Grain Jac	keted							
ACCUR 3100	50.4	3.77	NA	3.7	57.0 3196	62800	PSI 3.19	5
ACCUR 4350	48.0	3.56	NA	3.4	51.0 3056	59000	PSI 3.19	5
ACCUR 2700	40.6	2.78	DBLD	2.5	46.0 2926	62900	PSI 3.19	5
ACCUR 8700	62.0	4.27	NA	4.0	62.0 2747	40000	PSI 3.19	5
117 Grain Jac	keted							
H4831	48.2	3.49	NA	3.4	52.0 3076	49100	CUP 3.01	0
H870	64.0	4.39	NA	4.3	64.0 3032	44400	CUP 3.01	0
H450	48.9	3.19	DBLD	3.1	52.0 2981	48400	CUP 3.01	0
120 Grain Jac	keted							
ACCUR 3100	50.3	3.76	NA	3.7	57.0 3125	63000	PSI 3.12	0
IMR7828	49.4	3.58	NA	3.4	55.0 3105	52800	CUP 3.10	0
RELODER22	47.5	3.31	NA	3.1	52.5 3080	60400	PSI 3.22	5
WIN MAG RIFLE	47.3	3.39	NA	3.1	54.3 3055	60100	PSI 3.20	0
ACCUR 4350	46.5	3.44	NA	3.4	52.0 3048	62100	PSI 3.120	0
H4831	47.0	3.41	NA	3.4	51.0 3040	49400	CUP 3.010	0
RELODER19	45.7	3.23	DBLD	3.1	50.5 3025	60400	PSI 3.22	5
H870	60.7	4.16	NA	4.0	64.0 3024	48000	CUP 3.010	0
H1000	50.2	3.58	NA	3.4	57.0 3007	51700	CUP 3.010	0
H450	47.3	3.09	DBLD	2.8	50.0 2995	48100	CUP 3.010	0
ACCUR 2700	43.7	2.99	DBLD	2.8	49.0 2955	62300	PSI 3.120	0
IMR4350	44.7	3.28	DBLD	3.1	48.5 2950	51500	CUP 3.100	0
IMR4831	45.6	3.35	NA	3.1	50.0 2945	52000	CUP 3.100	0
v-N160	46.2	3.39	NA	3.1	49.2 2890	50763	PSI 3.010	0
IMR4064	39.5	2.94	DBLD	2.8	43.5 2885	52300	CUP 3.100	C
IMR4320	39.5	2.82	DBLD	2.8	43.0 2850	51700	CUP 3.100	0
v-N165	45.7	3.26	DBLD	3.1	51.5 2833	53660	PSI 3.010	0
IMR4895	36.5	2.66	DBLD	2.5	40.5 2805	52600	CUP 3.100	0
IMR3031	36.9	2.82	DBLD	2.8	40.5 2800	52000	CUP 3.100	
ACCUR 8700	62.0	4.27	NA	4.0	62.0 2649	40100	PSI 3.120	0
IMR4198	31.4	2.48	DBLD	2.2	34.0 2615	51400	CUP 3.100	_
IMR4227	25.1	1.93	DBLD	1.9	28.0 2370	53000	CUP 3.100	-
SR4759	25.1	2.49	DBLD	2.2	27.5 2315	52000	CUP 3.100)

25-06 REMINGTON (Continued)

	ST/	ARTING	LOA	DS					Total State of State
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
125 Grain Jac	keted								
H870	57.9	3.97	NA	3.7			50300		
H4831	45.1	3.27	DBLD	3.1			49400		
H1000	56.0	3.99	NA	3.7	56.0	2315	2894	CUP	3.010

		ARTING							
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
100 Grain Jac	keted								
H450	39.6	2.59	DBLD	2.5	44.0	2474	NA	NA	2.890
H380	32.4	2.24	DBLD	2.2	36.0	2451	NA	NA	2.890
H4831	38.7	2.81	DBLD	2.8	43.0	2414	NA	NA	2.890
H4895	29.7	2.16	DBLD	NA	33.0	2394	NA	NA	2.890
H335	29.7	1.92	DBLD	1.9	33.0	2369	NA	NA	2.890
BL-C(2)	29.7	1.92	DBLD	1.9	33.0	2357	NA	NA	2.890

120 Grain Jac	keted						
H450	36.9	2.41	DBLD	2.2	41.0 2272	NA	NA 2.890
H4831	36.9	2.68	DBLD	2.5	41.0 2224	NA	NA 2.890
BL-C(2)	27.9	1.80	DBLD	1.6	31.0 2207	NA	NA 2.890
H335	27.9	1.80	DBLD	1.6	31.0 2204	NA	NA 2.890
H380	29.7	2.05	DBLD	1.9	33.0 2192	NA	NA 2.890
H4895	27.0	1.97	DBLD	1.9	30.0 2147	NA	NA 2.890

6.5 CARCANO (Continued)

H4895

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	limimum OAL
140 Grain Jack	keted								
H4831	36.0	2.61	DBLD	2.5	40.0	2192	NA	NA	2.890
H450	35.1	2.29	DBLD	2.2	39.0	2154	NA		2.890
H380	28.8	1.99	DBLD	1.9	32.0	2127	NA		2.890
H335	27.0	1.74	DBLD	1.6	30.0	2109	NA		2.890
BL-C(2)	27.0	1.74	DBLD	1.6	30.0	2097	NA	NA	2.890
H4895	27.0	1.97	DBLD	1.9	30.0	2089	NA	NA	2.890
165 Grain Jac	keted								
H4831	35.1	2.54	DBLD	2.5	39.0	2086	NA		2.890
H335	27.0	1.74	DBLD	1.6	30.0	2060	NA	NA	2.890
BL-C(2)	27.0	1.74	DBLD	1.6	30.0	2047	NA		2.890
H450	34.2	2.23	DBLD	2.2	38.0	2011	NA		2.890
H380	27.9	1.93	DBLD	1.9	31.0	2009	NA	NA	2.890

....STARTING LOADS....

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996 NA = None Available

27.0 1.97 DBLD 1.9

30.0 1992

NA

NA 2.890

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	N Units	limimun OAL
85 Grain Jacke	eted		The Fall and						
ACCUR 2700	36.0	2.46	DBLD	2.2	36.0	2720	33600	PSI	2.625
ACCUR 2495BR	34.0	2.54	DBLD	2.5	1		28900		
ACCUR 4350	40.0	2.96	DBLD	2.8	40.0	2667	31300	PSI	2.625
ACCUR 3100	40.0	2.99	DBLD	2.8			24000		

O/ Grain Jack	etea						
NOBELRIF 1	32.4	2.33	DBLD	2.2	36.0 3050	NA	NA 2.902
NOBELRIF 0	34.2	2.46	DBLD	2.2	38.0 2980	NA	
NOBELRIF 2	29.7	2.14	DBLD	1.9	33.0 2850	NA	

100 Grain Jac	keted							
NOBELRIF 1	31.5	2.27	DBLD	2.2	35.0 2840	NA	NA	2.902
NOBELRIF 0	33.3	2.40	DBLD	2.2	37.0 2750	NA	NA	2.902
H4895	33.3	2.42	DBLD	2.2	37.0 2717	NA	NA	2.902
H380	37.8	2.61	DBLD	2.5	42.0 2686	NA	NA	2.902
NOBELRIF 2	28.8	2.07	DBLD	1.9	32.0 2680	NA	NA	2.902
H335	34.2	2.21	DBLD	2.2	38.0 2670	NA	NA	2.902
BL-C(2)	34.2	2.21	DBLD	2.2	38.0 2642	NA	NA	2.902
ACCUR 2495BR	31.8	2.38	DBLD	2.2	33.0 2628	34900	PSI	2.700
ACCUR 4350	35.3	2.61	DBLD	2.5	39.0 2626	37200	PSI	2.700
ACCUR 2700	32.4	2.22	DBLD	2.2	35.0 2576	36300	PSI	2.700
H450	36.9	2.41	DBLD	2.2	41.0 2451	NA	NA	2.902

6.5mm ARISAKA (Continued)

STARTING LOADS Start Volume Auto: Lee NEVER Velocity Mimimum										
Powder Type	Start Grains	Volume CC	Auto- Disk [Lee Dipper	EXCE	R Velocity D FPS	Pressure	Units	OAL	
100 Grain Jack		Continu						15		
H4831	36.9	2.68	DBLD	2.5	41.0	0 2424	NA	NA	2.902	
ACCUR 3100	40.0	2.99	DBLD	2.8	40.0	0 2397	27600	PSI	2.700	
7.000.1.01										
120 Grain Jack	ceted									
NOBELRIF 1	30.6	2.20	DBLD	2.2	34.	0 2730	NA	NA	2.902	
NOBELRIF 0	32.4	2.33	DBLD	2.2	36.	0 2630	NA	NA	2.902	
NOBELRIF 2	27.9	2.01	DBLD	1.9	31.	0 2620	NA	NA	2.902	
H335	33.3	2.15	DBLD	1.9		0 2597	NA	NA	2.902	
H380	36.9	2.55	DBLD		41.	0 2595	NA	NA	2.902	
BL-C(2)	33.3	2.15		1.9	37.	0 2566	NA	NA	2.902	
H4895	31.5	2.29	DBLD	2.2		0 2505	NA	NA	2.902	
H4831	36.9	2.68	DBLD	2.5	41.	0 2429	NA	NA	2.902	
H450	36.9	2.41	DBLD	2.2	41.	0 2404	NA	NA	2.902	
11100										
120 0	المممما									
129 Grain Jac ACCUR 4350	32.0	2.37	DBLD	2.2	36	0 2343	37800	PSI	2.770	
ACCUR 2495BR	26.8	2.00	DBLD	1.9	-	0 2274	37700		2.770	
ACCUR 2700	29.1	1.99	DBLD	1.9		0 2267	38100		2.770	
ACCUR 3100	38.0	2.84	DBLD	2.8		0 2219	31500	PSI	2.770	
ACCON 3100	30.0	2.01	DBLB	2.0						
120 0 ! !	ادمهما									
130 Grain Jac	29.7	2.14	DBLD	1.9	33	0 2570	NA	NA	2.902	
NOBELRIF 1	31.5	2.14	DBLD	2.2		0 2520	NA		2.902	
NOBELRIF 0		1.94	DBLD	1.9		0 2450	NA		2.902	
NOBELRIF 2	27.0	1.94	DBLD	1.5	30.	0 2430	IVA	14/4	2.002	
140 Grain Jac		0.07	DDLD	1.0	22	0 2540	NA	NΙΛ	2.902	
NOBELRIF 1	28.8	2.07	DBLD	1.9		0 2540			2.902	
NOBELRIF 0	30.6	2.20	DBLD						2.902	
H335	31.5	2.03	DBLD	1.9		.0 2414 .0 2410			2.902	
NOBELRIF 2	26.1	1.88	DBLD	NA				1,5 1,5 1	2.902	
H4895	30.6	2.23	DBLD			. 0 2407			2.902	
H380	35.1	2.43	DBLD			.0 2396 .0 2392			2.902	
H4831	36.9	2.68	DBLD			. 0 2392 . 0 2388			2.902	
BL-C(2)	31.5	2.03	DBLD			0 3 15 75	01.000 101	2 22	2.902	
H450	36.0	2.35	DBLD			. 0 2360 . 0 2250				
ACCUR 4350	32.4	2.40	DBLD		-					
ACCUR 3100	35.2	2.63	DBLD			.0 2242				
ACCUR 2700	29.2	2.00	DBLD	1.9	32	.0 2176	36800	P51	2.850	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996 NA = None Available

6.5mm ARISAKA (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEEL	Velocity FPS	Pressure	Unit	Mimimum s OAL
140 Grain Jac	keted (Continu					· · · · · · · · · · · · · · · · · · ·	Oille	ONE
ACCUR 2495BR	26.2	1.96	DBLD	1.9	28.0	2165	35900	PSI	2.850
ACCUR 8700	43.0	2.96	DBLD	2.8	43.0	1814	26400		2.850
156 Grain Jac	keted								
NOBELRIF 1	27.0	1.94	DBLD	1.9	30.0	2200	NA	NA	2.902
NOBELRIF 2	25.2	1.81	DBLD	1.6	28.0	2155	NA		2.902
NOBELRIF 0	29.7	2.14	DBLD	1.9	33.0	2030	NA	NA	
160 Grain Jac	keted								
H450	34.2	2.23	DBLD	2.2	38.0	2403	NA	NA	2.902
H4831	34.2	2.48	DBLD	2.2	38.0	2393	NA		2.902
H380	31.5	2.18	DBLD	NA	35.0	2366	NA	NA	
H335	29.7	1.92	DBLD	1.9	33.0	2341	NA	NA	2.902
BL-C(2)	29.7	1.92	DBLD	1.9	33.0	2337	NA	NA	2.902
H4895	28.8	2.10	DBLD	1.9	32.0	2334	NA	NA	2.902
ACCUR 3100	34.9	2.61	DBLD	2.5	38.0	2156	36600	PSI	2.795
ACCUR 4350	31.9	2.36	DBLD	2.2	34.0	2119	35900	PSI	2.795
ACCUR 2495BR	26.1	1.95	DBLD	1.9	30.0	2110	38700	PSI	2.795
ACCUR 2700	28.5	1.95	DBLD	1.9	32.0	2062	37800	PSI	2.795
ACCUR 8700	43.0	2.96	DBLD	2.8	43.0	1779	27800	PSI	2.795
ACCUR 8700	43.0	2.96	DBLD	2.8	43.0	1779	27800	PSI	2.795
CAUTION: With NEVER	EXCEED I	OADS m	aintain N	/linimum	Over All	Longth	or low		

6.5x55 SWEDISH MAUSER

	ST/	ARTING	LOA	DS				N	liminaum.
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
70 Grain Jack	eted	1					40440	OID	2 025
v-N150	42.6	3.18	DBLD	3.1	47.5	3416	46412	CIP	3.025

77 Grain Ja	cketed						010	0.005
v-N140	41.8	3.06	DBLD	2.8	45.1 3400	44962	CIP	3.025
v-N133	39.3	3.02	DBLD	2.8	42.4 3380	44962	CIP	3.025
v-N135	40.8	3.17	DBLD	3.1	44.1 3380	44962	CIP	3.025

80 Grain Jack	eted							
v-N140	41.1	3.01	DBLD	2.8	44.4 3280	44962	CIP	3.025

85 Grain Jack	eted								
v-N150	41.4	3.09	DBLD	2.8	46.1	3252	46412	CIP	3.025

100 Grain Jac	keted							
H4895	38.4	2.80	DBLD	2.8	42.0 3098	NA		3.025
ACCUR 2700	42.5	2.91	DBLD	2.8	48.0 3093	50100	PSI	2.975
H380	41.2	2.85	DBLD	2.8	45.0 3091	NA		3.025
H335		2.51	DBLD	2.5	42.5 3090	NA	NA	3.025
H450	46.7	3.05	DBLD	2.8	51.0 3073	NA	NA	3.025
	45.9	3.33	NA	3.1	49.0 3033	NA	NA	3.025
H4350	45.6	3.34	NA	3.1	51.0 3024	46612	CIP	3.025
v-N160	45.0	3.54	IVA	0.1	01.0 002			

6.5x55 SWEDISH MAUSER (Continued)

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	/limimum S OAL		
100 Grain Jac	keted (Contin	ued)					J.III.	ONE		
BL-C(2)	40.3	2.60	DBLD	2.5	44.0	2995	NA	NA	3.025		
ACCUR 2520	37.9	2.59	DBLD	2.5	41.0	2965	47900		2.975		
v-N150	37.6	2.80	DBLD	2.8	41.9	2931	46412	CIP	3.025		
ACCUR 4350	48.0	3.55	NA	3.4	48.0	2929	41900	PSI			
H4831	46.8	3.40	NA	3.4	50.0	2911	NA		3.025		
ACCUR 2495BR	32.6	2.44	DBLD	2.2	37.0	2898	50300	PSI	2.975		
ACCUR 3100	49.0	3.67	NA	3.4	49.0	2724	34100	PSI	2.975		
108 Grain Jac	keted										
v-N165	45.9	3.27	DBLD	3.1	51.2	3000	46412	CIP	2 025		

v-N165	45.0	0 07						
V-IV 105	45.9	3.27	DBLD	3.1	51.2 300	0 46412	CIP	3 025
NI400						0 10112	CII	3.023
v-N160	44.2	3.25	DBLD	3.1	49.3 296	3 46412	CID	2 025
NIATO		100 LO 10		0	10.0 200	5 70412	CIL	3.025
v-N150	37.8	2.82	DRI D	28	42.1 289	0 46412	CID	2 025
			DULU	2.0	72.1 203	0 40412	CIP	3.025

120 Grain Jacketed

H4350	44.0	3.19	DBLD	3.1	47.0 3080	NA	NA	3.025
H414	42.1	2.78	DBLD	2.5	46.0 3018	NA		3.025
H450	45.8	2.99	DBLD	2.8	50.0 2946	NA		3.025
H4895	37.5	2.73	DBLD	2.5	41.0 2945	NA		3.025
H380	40.3	2.78	DBLD	2.5	44.0 2925	NA		3.025
H4831	45.9	3.33	NA	3.1	49.0 2870	NA		3.025
H1000	49.9	3.56	NA	3.4	52.0 2787	NA		3.025
v-N150	32.6	2.43	DBLD	2.2	36.3 2579	46412		

129 Grain Jacketed

or and out	NOLUG							
H4350	43.1	3.12	DBLD	3.1	46.0 2944	NA	ΝΔ	3.025
H450	44.9	2.93	DBLD	2.8	49.0 2896	NA		3.025
H414	41.2	2.72	DBLD		45.0 2868	NA		3.025
H4831	45.0	3.26	DBLD		48.0 2863	NA		3.025
H4895	36.6	2.67	DBLD	2.5	40.0 2834	NA		3.025
H380	39.4	2.72	DBLD	2.5	43.0 2824	NA		3.025
RELODER19	43.1	3.04	DBLD	2.8		44500		
ACCUR 4350	40.5	3.00	DBLD	2.8		50300		The second second
ACCUR 3100	45.7	3.42	NA	3.4		47500		3.025
H1000	49.9	3.56	NA	3.4	52.0 2707	NA		3.025
ACCUR 2700	37.9	2.59	DBLD	2.5				3.025
RELODER15	34.9	2.46	DBLD	2.2		14400		
ACCUR 2520	33.8	2.31	DBLD			19200		
ACCUR 2495BR	34.6	2.59		2.5		16100		3.025
CALITION MELL MENTE					55.5 2520 5	100	101	3.025

6.5x55 SWEDISH MAUSER (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
129 Grain Jack	keted (Continu	ued)						
RELODER12	33.0	2.28	DBLD	2.2	36.7		44400		
RELODER 7	23.6	1.72	DBLD	1.6	25.8	2130	43600	CUP	2.935
139 Grain Jac	keted	e e					10557	OID	2.100
v-N165	42.8	3.05	DBLD	2.8		2659	46557		
v-N160	41.2	3.03	DBLD	2.8	46.1	2623			
v-N140	35.8	2.63	DBLD	2.5	38.7	2580	44962	CIP	3.100
v-N135	32.1	2.50	DBLD	2.5	34.7	2530	44962	CIP	3.100
v-N150	32.8	2.44	DBLD	2.2	36.5	2412	46412	CIP	3.100

1/10	Grain	lac	katad
141	Grain	Jac	Keleu

ceted								
43.9	2.87	DBLD	2.8	48.0	2797	NA		3.025
40.3	2.66	DBLD	2.5	44.0	2797	NA		3.025
38.4	2.66	DBLD	2.5	42.0	2754	NA		3.025
44.0	3.19	DBLD	3.1	47.0	2712	NA		3.025
42.1	3.06	DBLD	2.8	45.0	2708	NA		Company of the Company
34.8	2.53	DBLD	2.5	38.0	2701	NA		3.025
43.2	3.01	DBLD	2.8	48.1	2700	44400	CUP	3.000
48.9	3.49	NA	3.4	51.0	2694	NA	NA	3.025
41.7	2.95	DBLD	2.8	46.0	2650	44000	CUP	3.000
41.5	3.07	DBLD	2.8	45.0	2629	48100	PSI	3.000
41.8	2.98	DBLD	2.8	46.9	2626	46702	CIP	3.100
36.9	2.53	DBLD	2.5	42.0	2570	50400	PSI	3.000
39.5	2.90	DBLD	2.8	44.0	2546	46412	CIP	3.100
47.0	3.52	NA	3.4	47.0	2524	41400	PSI	3.000
32.5	2.22	DBLD	2.2	37.0	2502	50400		
33.0	2.33	DBLD	2.2	36.6	2480	44200		3.000
30.4	2.28	DBLD	2.2	34.0	2439	49500	PSI	3.000
31.4	2.17	DBLD	NA	35.0	2395	44500	CUF	3.000
31.2	2.33	DBLD	2.2	34.8	2362	46412	CIP	3.100
53.0	3.65	NA	3.4	53.0	2193	32600	PSI	3.000
	43.9 40.3 38.4 44.0 42.1 34.8 43.2 48.9 41.7 41.5 41.8 36.9 39.5 47.0 32.5 33.0 30.4 31.4	43.92.8740.32.6638.42.6644.03.1942.13.0634.82.5343.23.0148.93.4941.72.9541.53.0741.82.9836.92.5339.52.9047.03.5232.52.2233.02.3330.42.2831.42.1731.22.33	43.9 2.87 DBLD 40.3 2.66 DBLD 44.0 3.19 DBLD 42.1 3.06 DBLD 34.8 2.53 DBLD 48.9 3.49 NA 41.7 2.95 DBLD 41.8 2.98 DBLD 36.9 2.53 DBLD 47.0 3.52 NA 32.5 2.22 DBLD 30.4 2.28 DBLD 31.4 2.17 DBLD 31.2 2.33 DBLD	43.9 2.87 DBLD 2.8 40.3 2.66 DBLD 2.5 38.4 2.66 DBLD 2.5 44.0 3.19 DBLD 3.1 42.1 3.06 DBLD 2.8 34.8 2.53 DBLD 2.5 43.2 3.01 DBLD 2.8 48.9 3.49 NA 3.4 41.7 2.95 DBLD 2.8 41.8 2.98 DBLD 2.8 41.8 2.98 DBLD 2.5 39.5 2.90 DBLD 2.5 47.0 3.52 NA 3.4 32.5 2.22 DBLD 2.2 33.0 2.33 DBLD 2.2 30.4 2.28 DBLD 2.2 31.4 2.17 DBLD NA 31.2 2.33 DBLD 2.2	43.9 2.87 DBLD 2.8 48.0 40.3 2.66 DBLD 2.5 44.0 38.4 2.66 DBLD 2.5 42.0 44.0 3.19 DBLD 3.1 47.0 42.1 3.06 DBLD 2.8 45.0 34.8 2.53 DBLD 2.5 38.0 43.2 3.01 DBLD 2.8 48.1 48.9 3.49 NA 3.4 51.0 41.7 2.95 DBLD 2.8 46.0 41.8 2.98 DBLD 2.8 46.9 36.9 2.53 DBLD 2.8 46.9 39.5 2.90 DBLD 2.8 44.0 47.0 3.52 NA 3.4 47.0 32.5 2.22 DBLD 2.2 37.0 30.4 2.23 DBLD 2.2 36.6 30.4 2.28 DBLD 2.2 34.0	43.9 2.87 DBLD 2.8 48.0 2797 40.3 2.66 DBLD 2.5 44.0 2797 38.4 2.66 DBLD 2.5 42.0 2754 44.0 3.19 DBLD 3.1 47.0 2712 42.1 3.06 DBLD 2.8 45.0 2708 34.8 2.53 DBLD 2.5 38.0 2701 43.2 3.01 DBLD 2.8 48.1 2700 48.9 3.49 NA 3.4 51.0 2694 41.7 2.95 DBLD 2.8 46.0 2650 41.5 3.07 DBLD 2.8 46.9 2629 41.8 2.98 DBLD 2.8 46.9 2626 36.9 2.53 DBLD 2.5 42.0 2570 39.5 2.90 DBLD 2.8 44.0 2546 47.0 3.52 NA 3.4	43.9 2.87 DBLD 2.8 48.0 2797 NA 40.3 2.66 DBLD 2.5 44.0 2797 NA 38.4 2.66 DBLD 2.5 42.0 2754 NA 44.0 3.19 DBLD 2.5 42.0 2712 NA 42.1 3.06 DBLD 2.8 45.0 2708 NA 34.8 2.53 DBLD 2.5 38.0 2701 NA 43.2 3.01 DBLD 2.8 48.1 2700 44400 48.9 3.49 NA 3.4 51.0 2694 NA 41.7 2.95 DBLD 2.8 46.0 2650 44000 41.8 2.98 DBLD 2.8 46.9 2626 46702 36.9 2.53 DBLD 2.8 44.0 2546 46412 47.0 3.52 NA 3.4 47.0 2524 41400	43.9 2.87 DBLD 2.8 48.0 2797 NA NA 40.3 2.66 DBLD 2.5 44.0 2797 NA NA 38.4 2.66 DBLD 2.5 42.0 2754 NA NA 44.0 3.19 DBLD 2.5 42.0 2712 NA NA 44.0 3.19 DBLD 2.8 45.0 2708 NA NA 34.8 2.53 DBLD 2.5 38.0 2701 NA NA 43.2 3.01 DBLD 2.8 48.1 2700 44400 CUP 48.9 3.49 NA 3.4 51.0 2694 NA NA 41.7 2.95 DBLD 2.8 46.0 2650 44000 CUP 41.8 2.98 DBLD 2.8 46.9 2626 46702 CIP 36.9 2.53 DBLD 2.8 44.0 2546

1/1/1	Grain	lacketer	1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						10110	OID	0 100
v-N165	40.7	2.90	DBLD	2.8	45.4 2543	46412	CIP	3.100
v-N160	39.3	2.89	DBLD	2.8	44.1 2522	46702	CIP	3.100
v-N140			DBLD	2.5	34.7 2440	42061	CIP	3.100
v-N150	31.0	2.32	DBLD	2.2	34.6 2338	46412	CIP	3.100

6.5x55 SWEDISH MAUSER (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Unit	Mimimum s OAL
150 Grain Ja	acketed						TTCSSUIC	Oilit	3 UAL
H414	39.4	2.60	DBLD	2.5	43.0	2663	NA	NA	3.025
H450	42.1	2.75	DBLD	2.5	46.0	2644	NA		3.025
H4831	43.1	3.12	DBLD	3.1	46.0	2619	NA		3.025
H4350	41.2	2.99	DBLD	2.8		2618	NA		3.025
H380	37.5	2.59	DBLD	2.5	41.0	2614	NA		3.025
H4895	32.4	2.36	DBLD	2.2	37.0	2560	NA		3.025
H1000	47.9	3.42	NA	3.4	50.0		NA	NA	
156 Grain Ja	cketed								
v-N160	41.9	3.07	DBLD	2.8	45.2	2660	44962	CIP	3.100
								011	0.100
160 Grain Ja	cketed								
RELODER22	42.6	2 97	DRID	2.8	17.0	2525	11000	01.10	0.077

RELODER22	42.6	2.97	DBLD	2.8	47.0 2535	44000	CUP 2.975
H450	41.2	2.69	DBLD	2.5	45.0 2518		
v-N160			DBLD		44.9 2510		
H414	37.5	2.48	DBLD	2.2	41.0 2506	NA	NA 3.025
RELODER19	40.5	2.86	DBLD	2.8	45.0 2500		
H1000	47.0	3.35	NA	3.1	49.0 2492		
H4831	42.1	3.06	DBLD	2.8	45.0 2454	NA	NA 3.025
H4350	40.3	2.92	DBLD	2.8	43.0 2450	NA	NA 3.025
RELODER15	32.3	2.28	DBLD	2.2	35.6 2325		

35.6 2325 44000 CUP 2.975

35.2 2225 44200 CUP 2.975

25.0 1940 44000 CUP 2.975

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996

2.20 DBLD 2.2

1.65 DBLD 1.6

31.8

22.7

RELODER12

RELODER 7

264 WINCHESTER MAGNUM

STARTING LUADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL		
77 Grain Jacke	eted								
H4831	65.8	4.77	NA	4.3	73.0 3899	52600	CUP 3.160		
H414	58.8	3.89	NA	3.7			CUP 3.160		
Н380	55.7	3.85	NA	3.7			CUP 3.160		
H4895	49.5	3.60	NA	3.4	55.0 3712	52700	CUP 3.160		
H870	80.0	5.49	NA	NA	80.0 3568	43900	CUP 3.160		

87 Grain Jacke	eted						
H450	67.0	4.37	NA	4.3	72.0 3834	51000	CUP 3.160
H4831	64.0	4.64	NA	4.3	73.0 3812	54100	CUP 3.160
H4350	55.2	4.00	NA	4.0	61.0 3669	52400	CUP 3.160
H414	56.3	3.72	NA	3.7	62.0 3633	52200	CUP 3.160
H4895	49.3	3.59	NA	3.4	55.0 3625	52900	CUP 3.160
H380	54.4	3.76	NA	3.7	58.0 3612	50600	CUP 3.160
H870	80.0	5.49	NA	NA	80.0 3557		CUP 3.160
H1000	77 1	5.50	NA	NA	78.0 3480	48000	CUP 3.160
ПТООО	, , , ,	0.00	, .				

100 Grain Jac	keted						
H4831	62.5	4.53	NA	4.3	71.0 3680		
H450	64.8	4.23	NA	4.0	70.0 3642		
H4350	53.2	3.86	NA	3.7	59.0 3570	52600	CUP 3.160
ACCUR 4350	60.6	4.48	NA	4.3	67.0 3523	62900	PSI 3.220
ACCUR 3100	66.2	4.95	NA	NA	72.0 3471	61900	PSI 3.220
H1000	76.9	5 48	NA	NA	77.0 3428	47500	CUP 3.160
птооо	70.0	0.10					

264 WINCHESTER MAGNUM (Continued)

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
100 Grain Jacketed (Continued)											
H4895	46.4	3.38	NA	3.1	53.0 3405	54200	CUP 3.160				
H414	53.2	3.52	NA	3.4	59.0 3389		CUP 3.160				
IMR4350	54.0	3.97	NA	3.7	60.0 3385		CUP 3.100				
H380	52.1	3.60	NA	3.4	56.0 3374	51000	CUP 3.160				
IMR4831	55.6	4.09	NA	4.0	61.5 3360	53600	CUP 3.100				
IMR4320	48.5	3.47	NA	3.4	54.0 3325	54000	CUP 3.100				
H870	78.0	5.35	NA	NA	78.0 3325		CUP 3.160				
IMR4895	46.4	3.38	NA	3.1	51.5 3295	53800	CUP 3.100				
IMR4064	47.2	3.52	NA	3.4	51.5 3250	52900	CUP 3.100				
IMR3031	43.1	3.28	DBLD	3.1	48.0 3150						
ACCUR 8700	83.0	5.71	NA	NA	83.0 3105	40800	PSI 3.220				
IMR4198	39.1	3.10	DBLD	3.1	43.5 3100	53900	CUP 3.100				
SR4759	32.8	3.26	DBLD	3.1	36.5 2845	53900	CUP 3.100				
IMR4227	33.0	2.54	DBLD	2.5	36.5 2835	53600	CUP 3.100				

120 Grain Jacketed

Orani c	deketeu						
H450	60.5	3.95	NA	3.7	66.5 3391	52100	CUP 3.160
H870	67.6	4.64			76.0 3389		
H4831	59.2	4.29	NA		65.0 3369		
H4350	51.1	3.71	NA	3.7	57.0 3190	52900	CUP 3.160
H1000	69.7	4.97	NA		72.0 3185		

125 Grain Jacketed

. = o orani ouc								
ACCUR 8700	68.4	4.71	NA	4.3	77.0 3142	64000	PSI	3.265
ACCUR 3100	53.8	4.03	NA	4.0	58.0 2880	61300	PSI	3 265
ACCUR 4350	50.5	3.74	NA	3.7	54.0 2843	60800	PSI	3 265
						0000	1 01	0.200

129 Grain Jacketed

H4831	60.9	4.42	NA	4.3	65.0 3206	50600	CUP 3.160
H1000	66.8	4.76	NA		71.0 3187		
H4350	51.3	3.72	NA		56.0 3177		
H870	73.4	5.04	NA		76.0 3170		
RELODER19	51.2	3.62	NA		57.0 3070		
H4350	47.1	3.41	NA		53.0 2965		
						00100	3.100

140 Grain Jacketed

H870	62.0	4 20	BIA	4.0			
11070	03.9	4.38	NA	4.3	73.0 3163	54200	CUP 3 160
H450	E7.0	0.70				0 1200	001 0.100
11450	57.9	3.78	NA	3.7	63.0 3119	51600	CUP 3 160
H4831	FF 0	4 00				0.000	001 0.100
П403 I	55.6	4.03	NA	4.0	61.0 3065	52000	CUP 3 160
Name of the second seco						02000	3.100

264 WINCHESTER MAGNUM (Continued)

Adams and a second	STA	ARTING	LOA	os	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL										
140 Grain Jacketed (Continued)															
H1000	62.6	4.47	NA	4.3	68.0 3019 51500 CUP 3.160										
H4350	47.1	3.41	NA	3.4	53.0 2965 53400 CUP 3.160										
RELODER22	51.7	3.61	NA	3.4	57.0 2960 51300 CUP 3.340										
RELODER19	50.3	3.55	NA	3.4	56.0 2945 51800 CUP 3.340										
ACCUR 8700	65.3	4.49	NA	4.3	72.0 2908 62700 PSI 3.265										
IMR4831	49.3	3.62	NA	3.4	54.5 2875 53600 CUP 3.230										
IMR4350	47.4	3.48	NA	3.4	52.5 2850 53700 CUP 3.230										
IMR4320	42.7	3.06	DBLD	2.8	47.5 2745 53900 CUP 3.230										
ACCUR 4350	47.1	3.49	NA	3.4	53.0 2743 64000 PSI 3.265										
ACCUR 3100	51.7	3.87	NA	3.7	56.0 2729 61600 PSI 3.265										
IMR4895	41.2	3.00	DBLD	2.8	45.5 2715 53600 CUP 3.230										
IMR4064	41.6	3.10	DBLD		46.0 2710 53600 CUP 3.230										
IMR3031	39.7	3.03	DBLD	2.8	44.0 2665 53700 CUP 3.230										
IMR4198	35.5	2.81	DBLD	2.8	39.5 2580 54000 CUP 3.230										
IMR4227	31.0	2.38	DBLD	2.2	34.5 2420 54000 CUP 3.230										
SR4759	30.5	3.03	DBLD	2.8	34.0 2400 54000 CUP 3.230										
150 Grain Jac	keted														
H1000	62.0	4.42	NA	4.3	66.0 2922 50500 CUP3.160										
160 Grain Jac	katad														
H4831	51.6	3.74	NA	3.7	57.0 2886 52400 CUP 3.160										
H870	62.9	4.31	NA	4.3	68.0 2868 51300 CUP3.160										
H1000	61.8	4.41	NA	4.3	65.0 2860 49900 CUP 3.160										
H450	53.2	3.47	NA	3.4	58.0 2852 51700 CUP 3.160										
H450	F4.2	2.57	5 55 5	2.1	57 0 2780 51800 CUP 3.315										

100 Grain Jac	Keleu						
H4831	51.6	3.74	NA		57.0 2886		
H870	62.9	4.31	NA	4.3	68.0 2868	51300	CUP 3.160
H1000	61.8		NA	4.3	65.0 2860	49900	CUP 3.160
H450	53.2		NA	3.4	58.0 2852	51700	CUP 3.160
			NA				
RELODER22	51.2			100			
H4350	46.3	3.36	NA	3.1	50.0 2686	51200	CUP 3. 160

165 Grain Ja	acketed						
H1000	56.9	4.06			63.0 2844		
H4831	50.8	3.68			55.0 2830		
H870	61.4	4.21	NA	4.0	66.0 2809	51000	CUP 3.160
H4350	44.7	3.24	DBLD	3.1	48.0 2626	50900	CUP 3.160

270 WINCHESTER

100 Grain Jacketed

	517	ARTING	LUA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	y Pressure	Mimimum Units OAL
90 Grain Jacke	eted		CONTRACTOR OF THE PARTY OF THE				
H4895	51.5	3.75	NA	3.7	54.5 3594	49300	CUP 3.065
H335	46.3	2.98	DBLD	2.8	51.0 3564	51400	CUP 3.065
H380	50.9	3.52	NA	3.4	56.0 3558	51300	CUP 3.065
BL-C(2)	45.9	2.96	DBLD	2.8			CUP 3.065
ACCUR 4350	56.0	4.14	NA	4.0	61.0 3484	49900	CUP 3.090
ACCUR 2700	50.2	3.44	NA	3.4	57.0 3452	52000	CUP 3.090
H450	62.0	4.05	NA	4.0	66.0 3448	49600	CUP 3.065
H4831	64.0	4.64	NA	4.3	64.0 3317	42000	CUP 3.065
ACCUR 3100	61.0	4.56	NA	4.3	61.0 3127	44100	CUP 3.090

RELODER 19	57.5	4.06	NA	4.0	64.0 3510	61800	PSI 3.150
RELODER15	48.2	3.40	NA	3.4			PSI 3.150
H4895	49.1	3.57	NA	3.4	52.0 3426	49400	CUP 3.065
H414	55.2	3.65	NA	3.4	57.0 3397		
H380	49.3	3.40	NA	3.4	54.0 3387	51100	CUP 3.065
H4350	51.9	3.76	NA	3.7	60.0 3372	53900	CUP 3.065
IMR4350	53.8	3.95	NA		60.0 3365		

	01.0	0.70	IVA	3.7	00.0 33/2	53900	CUP 3.065			
IMR4350	53.8	3.95	NA	3.7	60.0 3365	53900	CUP 3.075			
ACCUR 4350	56.4	4.18	NA	4.0			CUP 3.175			
RELODER12	47.2	3.26	DBLD	3.1	52.5 3355	61800	PSI 3.150			
IMR4064	46.2	3.44	NA	3.4			CUP 3.075			
BL-C(2)	44.8	2.89	DBLD	2.8	49.0 3340					
ACCUR 2700	49.3	3.38	NA	3.1			CUP 3.175			
WIN 760	51.5	3.43	NA	3.4			CUP 3.065			
CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer										

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL		
100 Grain Jacketed (Continued)											
H335	44.7	2.88	DBLD	2.8	48.0	3326	50100	CUP	3.065		
H450	58.9	3.84	NA	3.7	63.0	3314	49900	CUP:	3.065		
IMR3031	44.3	3.38	NA	3.1	49.0	3300	53400	CUP	3.075		
v-N165	64.6	4.60	NA	4.3	64.8	3297	49310	CIP	3.065		
IMR4895	44.3	3.22	DBLD	3.1	49.5	3260	54000	CUP	3.075		
IMR4831	58.2	4.28	NA	4.0	60.0	3245	49800	CUP	3.075		
IMR4320	45.2	3.23	DBLD	3.1	50.5	3230	54000	CUP	3.075		
H4831	62.0	4.49	NA	4.3	62.0	3159	42600	CUP	3.065		
WIN MAG RIFLE	59.5	4.27	NA	4.0	59.5	3120	45500	PSI	3.100		
ACCUR 3100	61.0	4.56	NA	4.3	61.0	3100	44200	CUP	3.175		
v-N140	46.5	3.41	NA	3.4	49.4	3050	52214	CIP	3.065		
IMR4198	33.9	2.68	DBLD	2.5	37.5	3025	53500	CUP	3.075		
SR4759	29.5	2.93	DBLD	2.8	33.0	2755	54000	CUP	3.075		
IMR4227	27.2	2.09	DBLD	1.9	30.0	2710	53300	CUP	3.075		

110 Grain Jac	keted						
ACCUR 4350	56.4	4.18	NA	4.0	60.0 3356	48700	CUP 3.175
H414	53.7	3.55	NA	3.4	57.0 3323	49500	CUP 3.065
H450	57.8	3.78	NA	3.7	63.0 3317		CUP 3.065
H4350	51.0	3.70	NA	3.7	57.0 3243	52100	CUP 3.065
ACCUR 2700	48.4	3.32	NA	3.1	55.0 3232	52000	CUP 3.240
H380	49.1	3.39	NA	3.1	52.0 3211		CUP 3.065
H4831	60.1	4.36	NA	4.3	62.0 3201	48100	CUP 3.065
H4895	46.1	3.35	NA	3.1	49.0 3196	49600	CUP 3.065
ACCUR 3100	59.2	4.43	NA	4.3	61.0 3128	47200	CUP 3.240
BL-C(2)	43.8	2.82	DBLD	2.8	46.0 3111	49000	CUP 3.065
H335	43.1	2.78	DBLD	2.5	45.0 3093	48700	CUP 3.065
H1000	64.0	4.56	NA	4.3	64.0 2913	36000	CUP 3.065

130 Grain Jac	keted				
RELODER22	54.2	3.78	NA	3.7	60.0 3160 61500 PSI 3.250
H450	57.4	3.75	NA	3.7	60.0 3150 48700 CUP3.065
H4831	57.7	4.18	NA	4.0	60.0 3113 48500 CUP 3.065
IMR4831	53.2	3.91	NA	3.7	59.0 3110 53600 CUP 3.250
RELODER19	51.9	3.66	NA	3.4	57.5 3110 61600 PSI 3.250
H4350	48.9	3.55	NA	3.4	55.0 3109 52400 CUP 3.065
H414	50.0	3.31	NA	3.1	54.0 3100 50300 CUP3.065
ACCUR 3100	54.3	4.06	NA	4.0	61.0 3065 51500 CUP3.330
H380	47.7	3.30	DBLD	3.1	52.0 3054 50800 CUP 3.065
IMR4350	50.0	3.68	NA	3.4	55.0 3035 53100 CUP 3.250
v-N160	51.6	3.78	NA	3.7	54.8 3030 52214 CIP 3.065

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
130 Grain Jacketed (Continued)											
ACCUR 4350	48.4	3.59	NA	3.4	55.0 3020	52000	CUP 3.330				
WIN MAG RIFLE	56.8	4.08	NA	4.0	58.9 3000	53500	PSI 3.300				
IMR4064	44.3	3.30	NA	3.1	49.0 2995	53400	CUP 3.250				
WIN 760	46.4	3.09	DBLD	2.8	52.0 2990	49500	CUP 3.100				
v-N165	55.8	3.97	NA	3.7	59.3 2975	52210	CIP 3.065				
H4895	42.8	3.12	DBLD	3.1	46.0 2970	50100	CUP 3.065				
ACCUR 2700	45.8	3.14	DBLD	3.1	52.0 2954	52000	CUP 3.330				
H1000	64.0	4.56	NA	4.3	64.0 2929	43600	CUP 3.065				
IMR3031	41.9	3.19	DBLD	3.1	46.0 2915	53000	CUP 3.250				
RELODER12	42.6	2.94	DBLD	2.8	47.5 2865	62000	PSI 3.250				
IMR4320	41.1	2.95	DBLD	2.8	46.0 2860	54000	CUP 3.250				
v-N140	42.8	3.14	DBLD	3.1	45.5 2850	52214	CIP 3.065				
H870	65.0	4.46	NA	4.3	65.0 2840	43900	CUP 3.065				
RELODER15	47.3	3.34	NA	3.1	47.3 2840	48280	PSI 3.250				
IMR4895	39.7	2.89	DBLD	2.8	44.0 2825	53600	CUP 3.250				
IMR4198	32.2	2.55	DBLD	2.5	36.0 2630	54000	CUP 3.250				
SR4759	27.6	2.74	DBLD	2.5	30.5 2390	53400	CUP 3.250				
IMR4227	25.7	1.98	DBLD	1.9	28.5 2305	53500	CUP 3.250				
140 Grain Jack	keted										
H4831	53.2	3.86	NA	3.7	58.0 3051	50800	CUP 3.065				
ACCUR 4350	49.3	3.65	NA	3.4	56.0 2988	52000	CUP 3.330				
ACCUR 3100	55.7	4.17	NA	4.0	60.0 2962	49300	CUP 3.330				
H450	54.0	3.52	NA	3.4	58.0 2960	50100	CUP 3.065				
v-N165	50.5	3.60	NA	3.4	58.4 2960	56800	CIP 3.065				
DELODEDOO											

140 Grain Jac	keted						
H4831	53.2	3.86	NA	3.7	58.0 3051	50800	CUP 3.065
ACCUR 4350	49.3	3.65	NA	3.4	56.0 2988		CUP 3.330
ACCUR 3100	55.7	4.17	NA	4.0	60.0 2962		CUP 3.330
H450	54.0	3.52	NA	3.4	58.0 2960		CUP 3.065
v-N165	50.5	3.60	NA	3.4	58.4 2960		CIP 3.065
RELODER22	56.1	3.91	NA	3.7	60.0 2930	59400	
WIN MAG RIFLE	51.4	3.69	NA	3.4	57.6 2930		PSI 3.300
H414	47.7	3.15	DBLD	3.1	52.0 2927		CUP 3.065
H4350	47.6	3.45	NA	3.4	53.0 2924		CUP 3.065
RELODER19	51.5	3.64	NA	3.4	57.0 2910	61500	PSI 3.280
H380	45.3	3.13	DBLD	3.1	50.0 2909	51400	CUP 3.065
ACCUR 2700	46.2	3.16	DBLD	3.1	52.0 2893		CUP 3.330
H4895	39.6	2.88	DBLD	2.8	44.0 2814		CUP 3.065
H1000	63.0	4.49	NA	4.3	63.0 2807		CUP 3.065
H870	64.0	4.39	NA	4.3	64.0 2792	43400	CUP 3.065
RELODER15	42.4	2.99	DBLD	2.8	47.0 2770	61600	PSI 3.280
RELODER12	41.9	2.90	DBLD	2.8	46.2 2695	61200	PSI 3.280
ACCUR 8700	64.0	4.40	NA	4.3	64.0 2453	43700	CUP 3.330

STARTING LOADS										
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
150 Grain Jacketed										
H4831	51.4	3.73	NA	3.7	58.0 3015 52600 CUP 3.065					
RELODER22	52.6	3.67	NA	3.4	58.5 3010 61800 PSI 3.320					
IMR4831	51.1	3.75	NA	3.7	57.0 2980 53900 CUP 3.220					
RELODER19	50.2	3.55	NA	3.4	55.5 2945 61400 PSI 3.320					
IMR4350	48.8	3.59	NA	3.4	54.0 2930 53400 CUP 3.220					
ACCUR 3100	51.1	3.82	NA	3.7	58.0 2894 52000 CUP 3.300					
ACCUR 4350	46.7	3.45	NA	3.4	53.0 2880 52000 CUP 3.300					
H380	44.3	3.06	DBLD	2.8	50.0 2878 52600 CUP 3.065					
H450	53.4	3.49	NA	3.4	57.5 2876 50200 CUP 3.065					
H4350	47.2	3.42	NA	3.4	52.0 2870 51400 CUP 3.065					
IMR7828	53.9	3.91	NA	3.7	56.5 2860 50600 CUP 3.220					
WIN MAG RIFLE	51.0	3.66	NA	3.4	57.5 2850 58200 PSI 3.300					
IMR4064	43.6	3.25	DBLD	3.1	47.5 2830 52600 CUP 3.220					
H414	45.9	3.03	DBLD	2.8	50.0 2800 50800 CUP 3.065					
H1000	63.0	4.49	NA	4.3	63.0 2783 45800 CUP 3.065					
H870	63.0	4.32	NA	4.3	63.0 2769 43200 CUP 3.065					
ACCUR 2700	44.0	3.02	DBLD	2.8	50.0 2738 52000 CUP 3.300					
WIN 760	44.6	2.97	DBLD	2.8	49.0 2725 48500 CUP 3.100					
v-N160	48.1	3.53	NA	3.4	51.1 2710 52214 CIP 3.065					
H4895	38.3	2.79	DBLD	2.5	43.0 2704 52300 CUP 3.065					
IMR3031	38.5	2.93	DBLD	2.8	43.0 2690 54000 CUP 3.220					
IMR4320	40.1	2.87	DBLD	2.8	44.0 2680 53000 CUP 3.220					
IMR4895	38.3	2.79	DBLD		42.5 2675 53600 CUP 3.220					
v-N165	50.1	3.56	NA	3.4	53.2 2650 52210 CIP 3.065					
ACCUR 8700	61.1	4.21	NA	4.0	63.0 2532 47200 CUP 3.300					
IMR4198	31.5	2.49	DBLD	2.2	35.0 2450 53700 CUP 3.220					
SR4759	26.9	2.67	DBLD		30.0 2225 53900 CUP 3.220					
IMR4227	24.9	1.91	DBLD	1.9	27.5 2115 53400 CUP 3.220					

155 Grain Ja	acketed							
v-N160	48.9	3.59	NA	3.4	52.0 2760	52214	CIP	3.065

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL			
160 Grain Jac	keted		TOO TOOL	1-0-1-1						
H4831	52.3	3.79	NA	3.7	57.0 2912	50800	CUP 3.065			
H450	52.5	3.43	NA	3.4	57.0 2866	50600	CUP 3.065			
H414	44.4	2.93	DBLD	2.8	48.0 2777	50400	CUP 3.065			
ACCUR 3100	51.1	3.82	NA	3.7	58.0 2775		CUP 3.335			
H1000	61.0	4.35	NA	4.3	62.0 2709	47400	CUP 3.065			
ACCUR 4350	46.2	3.42	NA	3.4	52.5 2705		CUP 3.335			
H4350	45.7	3.31	NA	3.1	50.0 2696		CUP 3.065			
H870	62.0	4.25	NA	4.0	62.0 2660		CUP 3.065			
H380	42.8	2.96	DBLD	2.8	47.0 2646		CUP 3.065			
v-N165	50.0	3.56	NA	3.4	53.1 2634	52210	CIP 3.065			
ACCUR 2700	44.0	3.02	DBLD	2.8	50.0 2630	52000	CUP 3.335			
ACCUR 8700	64.0	4.40	NA	4.3	64.0 2429		CUP 3.335			
							3.000			

180 Grain Jacketed

100 diam	Jacketeu						
H1000	55.6	3.96	NA	3.7	60.0 2614	50300	CUP 3.065
H4831	48.4	3.51	NA	3.4	54.0 2581	52000	CUP 3.065
H870					62.0 2543		
H4350	44.7	3.24	DBLD	3.1	48.0 2387	50100	CUP 3.065

270 WEATHERBY MAGNUM

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
90 Grain Jacke	eted								
H450	73.1	4.78	NA	4.3	79.0	3799	NA	NA	3.160
H4895	62.0	4.52	NA	4.3	67.0	3647	NA	NA	3.160
H4831	68.4	4.96	NA	NA	78.0	3631	NA	NA	3.160
H4350	64.8	4.70	NA	4.3	70.0	3631	NA	NA	3.160
H414	62.9	4.16	NA	4.0	68.0	3592	NA	NA	3.160
H1000	74.8	5.33	NA	NA	81.0	3269	NA	NA	3.160

100 Grain Jac	keted						
RELODER19	69.2	4.89	NA	NA	76.8 3755	53400	CUP 3.160
H450	72.2	4.71	NA	4.3	78.0 3685	NA	NA 3.160
H4831	71.3	5.17	NA	NA	77.0 3666	NA	NA 3.160
IMR7828	77.4	5.61	NA	NA	78.5 3645	48200	CUP 3.250
H4895	61.1	4.45	NA	4.3	66.0 3597	NA	NA 3.160
H4350	63.9	4.63	NA	4.3	69.0 3509	NA	NA 3.160
H414	62.9	4.16	NA	4.0	68.0 3450	NA	NA 3.160
H1000	75.0	5.35	NA	NA	81.0 3287	NA	NA 3.160
H1000	75.0	5.35	NA	NA	81.0 3242	NA	NA 3.160

110 Grain Jac	keted							
H450	70.4	4.59	NA	4.3	76.0 3541	NA	NA	3.160
ACCUR 4350	63.5	4.70	NA		69.0 3528			
H4831	70.4	5.10	NA		76.0 3482			
H4350	62.9	4.56	NA	4.3	68.0 3477	NA	NA	3.160

270 WEATHERBY MAGNUM (Continued)

	ST	ARTING					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
110 Grain Jac	keted	Contin	ued)				
ACCUR 3100	66.0	4.93	NA	NA	75.0 3386	69000	PSI 3.285
H414	61.1	4.04	NA	4.0	66.0 3334	NA	NA 3.160
H1000	75.0	5.35	NA	NA	81.0 3242	NA	NA 3.160
ACCUR 8700	89.0	6.12	NA	NA	89.0 3217	47900	PSI 3.285
H870	81.0	5.56	NA	NA	81.0 3200	NA	NA 3.160
130 Grain Jac	keted						
IMR7828	68.1	4.94	NA	NA	76.0 3500	53000	CUP 3.250
RELODER22	66.4	4.63	NA	4.3	73.8 3400	53500	CUP 3.260
RELODER19	63.4	4.48	NA	4.3	70.5 3340	53500	CUP 3.260
H4350	61.1	4.43	NA	4.3	66.0 3262	NA	NA 3.160
H1000	75.0	5.35	NA	NA	81.0 3259	NA	NA 3.160
H870	80.0	5.49	NA	NA	80.0 3214	NA	NA 3.160
H4831	64.8	4.70	NA	4.3	70.0 3205	NA	NA 3.160
H450	63.9	4.17	NA	4.0	69.0 3144	NA	NA 3.160
					•		
130 Grain Bar	nes X F	Bullet					
ACCUR 3100	65.7	4.91	NA	NA	72.5 3338	67000	PSI 3.295
ACCUR 4350	63.7	4.71	NA	4.3	66.0 3227	62900	
ACCUR 8700	88.0	6.05	NA	NA	88.0 3189	55000	
			147 (1471	00.0 0100	33000	131 3.295
140 Grain Jac	المحجما						
IMR7828	65.9	4.78	NA	4.3	73.5 3325	F2000	OLID O COT
RELODER22	63.9	4.45	NA	4.3		53000	CUP 3.295
ACCUR 3100	62.8	4.45	NA	100,000	71.0 3280	53500	
RELODER19	61.3	4.70	NA	4.3	70.5 3242		PSI 3.295
H1000	74.1	5.28	NA	NA	68.1 3240	53500	CUP 3.275
H4350	59.2	4.30	NA		80.0 3145	NA	NA 3.160
ACCUR 4350	59.5	4.40	NA	4.3	64.0 3140 64.0 3137	NA	NA 3.160
ACCUR 8700	88.0	6.05	NA	NA	88.0 3135	65300	PSI 3.295
H4831	62.9	4.56	NA	4.3		54500	PSI 3.295
H450	62.9	4.11	NA	4.0	68.0 3112 68.0 3066	NA NA	NA 3.160
H870	79.0	5.42	NA	NA			NA 3.160
11070	73.0	0.42	IVA	IVA	79.0 2890	NA	NA 3.160

270 WEATHERBY MAGNUM (Continued)

3.93

4.09

60.2

56.5

NA

NA

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL		
150 Grain Jack	keted								
IMR7828	63.8	4.63	NA	4.3	72.0 3215	53600	CUP 3.295		
ACCUR 3100	61.7	4.62	NA	4.3	70.0 3161	68800	PSI 3.295		
ACCUR 8700	88.0	6.05	NA	NA	88.0 3155	57700	PSI 3.295		
RELODER22	61.9	4.32	NA	4.3	68.8 3145	53500	CUP 3.285		
H1000	73.1	5.21	NA	NA	79.0 3132	NA	NA 3.160		
ACCUR 4350	57.1	4.23	NA	4.0	64.0 3091	68000	PSI 3.295		
RELODER19	58.0	4.09	NA	4.0	64.4 3075	53500	CUP 3.285		
H4831	62.9	4.56	NA	4.3	68.0 3057	NA	NA 3.160		
H4350	58.3	4.23	NA	4.0	63.0 2986	NA	NA 3.160		
H870	79.0	5.42	NA	NA	79.0 2943	NA	NA 3.160		
H450	62.9	4.11	NA	4.0	68.0 2902	NA	NA 3.160		
160 Grain Jacketed									
H1000	72.2	5.15	NA	NA	78.0 3051	NA	NA 3.160		
H4831	60.2	4.36	NA	4.3	65.0 2901	NA	NA 3.160		
H870	78.0	5.35	NA	NA	78.0 2899	NA	NA 3.160		

120	Grain	Jacketed	

H450

H4350

100 Grain J	acketeu						
H1000	69.4	4.95	NA	NA	75.0 2852	NA	NA 3.160
H870	70.4	4.83	NA	4.3	76.0 2808	NA	NA 3.160
H4831	58.3	4.23	NA	4.0	63.0 2669	NA	NA 3.160

3.7

4.0

65.0 2870

61.0 2738

NA

NA

NA 3.160

NA 3.160

and the same of the same of		ARTINO		DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloc EXCEED FP	ity S Pressure	Mimimum Units OAL
120 Grain Jac	keted					ricosurc	OIIILS OAL
H414	37.8	2.50	DBLD	2.5	42.0 275	7 NA	NA 2.550
H380	36.9	2.55	DBLD	2.5	41.0 273	5 NA	NA 2.550
ACCUR 2520	32.9	2.24	DBLD	2.2	37.0 273	4 39400	
H4895	30.6	2.23	DBLD	2.2	34.0 273	3 NA	NA 2.550
RELODER15	32.6	2.30	DBLD	2.2	36.3 272	5 39000	CUP 2.640
H4350	36.9	2.68	DBLD	2.5	41.0 272	4 NA	NA 2.550
BL-C(2)	33.3	2.15	DBLD	1.9	37.0 270	1 NA	NA 2.550
ACCUR 2495BR	36.9	2.76	DBLD	2.5	37.0 269	6 35100	CUP 2.530
ACCUR 2015BR	30.7	2.24	DBLD	2.2	33.0 268	7 37600	CUP 2.530
H322	28.8	2.09	DBLD	1.9	32.0 268	7 NA	NA 2.550
H335	30.6	1.97	DBLD	1.9	34.0 268	3 NA	NA 2.550
ACCUR 2230	30.7	2.02	DBLD	1.9	34.0 264	6 38800	CUP 2.530
RELODER12	33.0	2.28	DBLD	2.2	36.5 264	5 38700	CUP 2.640
ACCUR 2460	33.2	2.18	DBLD	NA	34.0 261	4 35800	CUP 2.530
H4831	36.9	2.68	DBLD	2.5	41.0 256	1 NA	NA 2.550
ACCUR 2700	38.1	2.61	DBLD	2.5	39.5 254	6 36300	CUP 2.530
RELODER 7	24.8	1.80	DBLD	1.6	27.3 247	38600	CUP 2.640

	139	Grain	Jacketed
--	-----	-------	----------

ACCUR 2460	30.7	2.02	DBLD	1.9	34.5 2548	39300	CLID 2 E20
ACCUR 2230					34.0 2542		
RELODER15	31 3	2 21	DBLD	2.2	34.0 2542 34.7 2540	40000	CUP 2.665
ACCUR 2495BR	32.6	2.21	DBLD				
						38100	CUP 2.530
ACCUR 2520	33.5	2.29	DBLD	2.2	34.5 2472	36000	CUP 2.530

7-30 WATERS (Continued)

	STA	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure		imimum OAL
139 Grain Jack	keted (Continu	ued)						
H4895	27.9	2.03	DBLD	1.9	31.0	2458	NA		2.550
H414	34.2	2.26	DBLD	2.2	38.0	2442	NA	NA	2.550
H335	28.8	1.86	DBLD	NA	32.0	2430	NA	NA	2.550
ACCUR 2700	34.8	2.38	DBLD	2.2	38.0	2422	38200	CUP	2.530
H4350	34.2	2.48	DBLD	2.2	38.0	2418	NA	NA	2.550
RELODER12	30.3	2.10	DBLD	1.9	33.8	2405	39000		2.650
ACCUR 2015BR	27.9	2.04	DBLD	1.9	31.0	2403	38900	CUP	2.665
H380	32.4	2.24	DBLD	2.2	36.0	2396	NA	NA	2.550
H4831	35.1	2.54	DBLD	2.5	39.0	2384	NA	NA	2.550
BL-C(2)	31.5	2.03	DBLD	1.9	35.0	2373	NA	NA	2.550
H322	26.1	1.89	DBLD	NA	29.0	2342	NA	NA	2.550

154 Grain	Jacketed						
H414	33.3	2.20	DBLD	2.2	37.0 2347	NA	NA 2.550
BL-C(2)	29.7	1.92	DBLD	1.9	33.0 2320	NA	NA 2.550
H380	31.5	2.18	DBLD	NA	35.0 2310	NA	NA 2.550
H4350	33.3		DBLD	2.2	37.0 2308	NA	NA 2.550
H335	26.1	1.68	DBLD	1.6	29.0 2300	NA	NA 2.550
H4895	27.0	1.97	DBLD	1.9	30.0 2253	NA	NA 2.550
H4831	33.3	2.41	DBLD	1.0	37.0 2161	NA	NA 2.550
П4031	33.3	2.71	DDLD				

Powder Type Start Volume Grains CC Disk Dipper EXCEED FPS Pressure Units DAL

79 Grain Jacketed

v-N110 24.8 2.06 DBLD 1.9 27.8 2950 49313 CIP 2.940

100	Grain	Jacketed
IUU	Grain	Jacketed

100 Grain Jac	Keted						
H380	50.8	3.51	NA	3.4	53.0 3209	45000	CUP 2.940
BL-C(2)	45.1	2.91	DBLD		48.5 3202		
H4895	42.8	3.12	DBLD		46.0 3149		
H4350	54.0	3.92	NA		54.0 2967		
H450	55.0	3.59	NA	3.4	55.0 2940		
H4831	54.0	3.91	NA	3.7	54.0 2886		

120 Grain Jacketed

TEO Grain oac	Keteu						
RELODER19	48.6	3.43	NA	3.4	54.0 3030	48000	CUP 2.965
H414	48.3	3.19	DBLD	3.1	53.0 3025		
H380	45.0	3.11	DBLD	3.1	50.0 3006		
BL-C(2)	42.8	2.76	DBLD	2.5	47.0 3002		
RELODER15	40.3	2.84	DBLD	2.8	45.0 2995		The state of the s
H4350	52.7	3.82	NA	3.7	53.0 2952		
ACCUR 2700	44.7	3.06	DBLD	2.8	50.0 2924		
H450	55.0	3.59	NA	3.4	55.0 2919		
ACCUR 2495BR	41.6	3.12	DBLD	3.1	44.0 2919		
RELODER12	38.5	2.66	DBLD	2.5	43.0 2895		
ACCUR 4350	50.5	3.74	NA	3.7	51.0 2887		CUP 2.900
v-N150	42.7	3.19	DBLD	3.1	46.6 2880		CIP 2.940
And the second s							

7x57 MAUSER (Continued)

STARTING LOADS											
Davidos Tuno	Start Grains	Volume	Auto- Disk	Lee	NEVER Velocity Mimimu EXCEED FPS Pressure Units OAL						
Powder Type	A STATE OF THE PARTY OF THE PAR	Continu		nihhei	EXOLED ITO TRESSURE SINCE SALE						
120 Grain Jac v-N140	42.3	3.10	DBLD	3.1	46.1 2873 47900 CIP 2.940						
		2.88	DBLD	2.8	43.0 2870 46900 CUP 2.940						
H4895	39.6		NA	3.7	54.0 2844 43100 CUP 2.940						
H4831	54.0 39.8	3.91	DBLD	2.8	43.4 2826 47900 CIP 2.940						
v-N135		3.81	NA		51.0 2572 34000 CUP 2.900						
ACCUR 3100	51.0	3.81	IVA	3.7	51.0 2572 34000 COI 2.500						
125 Grain Jacketed											
WIN 760	43.8	2.92	DBLD	2.8	48.7 2885 43500 CUP 2.94						
130 Grain Jac	keted										
H414	46.4	3.07	DBLD	2.8	52.0 2949 48400 CUP 2.94						
H380	44.1	3.04	DBLD	2.8	49.0 2887 48000 CUP 2.94						
H4350	49.5	3.59	NA	3.4	53.0 2886 46200 CUP 2.94						
H450	50.5	3.30	DBLD	3.1	55.0 2869 47000 CUP 2.94						
BL-C(2)	40.0	2.58	DBLD	2.5	45.0 2839 48500 CUP 2.94						
H4831	52.0	3.77	NA	3.7	53.0 2763 44000 CUP 2.94						
IMR4831	44.8	3.29	DBLD	3.1	50.0 2750 46000 CUP 2.96						
H4895	37.4	2.72	DBLD	2.5	42.0 2749 48500 CUP 2.94						
IMR4350	42.5	3.13	DBLD	3.1	47.0 2710 45500 CUP 2.96						
IMR4064	37.6	2.80	DBLD	2.8	41.0 2675 44900 CUP 2.96						
IMR3031	34.4	2.62	DBLD	2.5	38.0 2640 45500 CUP 2.96						
IMR4895	33.2	2.42	DBLD	2.2	36.5 2540 45300 CUP 2.96						
IMR4320	33.6	2.40	DBLD	2.2	37.5 2540 46000 CUP 2.96						
IMR4198	26.5	2.10	DBLD	1.9	29.0 2365 45100 CUP 2.96						
IMR4227	20.9	1.61	DBLD	1.6	22.5 2080 44300 CUP 2.96						
SR4759	21.0	2.09	DBLD	1.9	23.5 2055 46000 CUP 2.96						
139 Grain Jac	katad										
RELODER19	46.2	3.26	DBLD	3.1	51.8 2835 49000 PSI 3.01						
H4350	46.8	3.39	NA	3.1	52.0 2807 48000 CUP 2.94						
H4350	40.6		DBID	-	48 0 2805 48800 CUP 2.94						

139 Grain Jac	keted					139 Grain Jacketed									
RELODER19	46.2	3.26	DBLD	3.1	51.8 2835 49	3000 PSI 3	3.015								
H4350	46.8	3.39	NA	3.1	52.0 2807 48	3000 CUP 2	2.940								
H414	42.5	2.81	DBLD	2.8	48.0 2805 48	3800 CUP 2	2.940								
H450	49.2	3.21	DBLD	3.1	54.0 2794 47	7400 CUP 2	2.940								
H4831	47.2	3.42	NA	3.4	53.0 2792 48	3500 CUP 2	2.940								
RELODER22	50.8	3.54	NA	3.4	0010 -100	5600 PSI 3									
H380	41.9	2.90	DBLD	2.8	47.0 2743 48	3400 CUP 2	2.940								
RELODER15	37.5	2.65	DBLD	2.5	41.5 2700 48	3400 PSI 3	3.015								
RELODER12	36.3	2.51	DBLD	2.5	40.5 2660 48	8800 PSI 3	3.015								
BL-C(2)	37.8	2.44	DBLD	2.2	42.0 2646 48	8000 CUP 2	2.940								

7x57 MAUSER (Continued)

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	y Pressure	Mimimum Units OAL				
140 Grain Jac	keted										
ACCUR 4350	46.5	3.44	NA	3.4	51.0 2836	43900	CUP 3.025				
ACCUR 2495BR	38.7	2.90	DBLD	2.8	42.0 2745	43400	CUP 3.025				
ACCUR 2700	44.4	3.04	DBLD	2.8	47.5 2742	42800	CUP 3.025				
v-N150	40.0	2.98	DBLD	2.8	43.6 2599	47900	CIP 2.940				
v-N140	39.0	2.86	DBLD	2.8	42.5 2568	47900	CIP 2.940				
ACCUR 3100	51.0	3.81	NA	3.7	51.0 2561	34200	CUP 3.025				
145 Grain Jac	keted										
RELODER22	43.6	3.04	DBLD	2.8	48.8 2720	49000	PSI 3.040				
RELODER19	42.4	2.99	DBLD	2.8	47.3 2680	48800	PSI 3.040				
IMR4350	42.1	3.09	DBLD	2.8	47.0 2650	46000	CUP 3.065				
IMR4831	43.0	3.16	DBLD	3.1	48.0 2625	46000	CUP 3.065				
IMR4064	36.4	2.71	DBLD	2.5	40.0 2555	45300	CUP 3.065				
RELODER15	34.7	2.45	DBLD	2.2	38.5 2550	48500	PSI 3.040				
IMR3031	34.0	2.59	DBLD	2.5	38.0 2530	46000	CUP 3.065				
RELODER12	33.2	2.29	DBLD	2.2	37.0 2520		PSI 3.040				
IMR4895	31.3	2.28	DBLD	2.2	35.0 2475		CUP 3.065				
IMR4320	32.9	2.35	DBLD	2.2	36.0 2365	45100	CUP 3.065				
IMR4198	26.1	2.07	DBLD	1.9	29.0 2260	45800	CUP 3.065				
IMR4227	20.9	1.60	DBLD	1.6	22.5 1840	44400	CUP 3.065				
SR4759	21.0	2.09	DBLD	1.9	23.0 1835	45100	CUP 3.065				
							22. 3.000				
150 Grain Jacl	reted										
H4350	46.2	3.35	NA	3.1	51.0 2748	17600	CUD2 040				
111000	10.2	0.00	INM	J. I	31.0 2/48	47600	CUP 2.940				

H4350	46.2	3.35	NA	3.1	51.0 2748 47600 CUP 2.940
H450	47.7	3.11	DBLD	3.1	53.0 2736 48000 CUP 2.940
H414	43.2	2.85	DBLD	2.8	47.0 2724 47000 CUP 2.940
ACCUR 4350	44.6	3.30	DBLD	3.1	49.0 2722 44000 CUP 3.060
H380	40.9	2.83	DBLD	2.8	46.0 2694 48500 CUP 2.940
H4831	47.3	3.43	NA	3.4	52.0 2662 47400 CUP 2.940
WIN 760	41.8	2.79	DBLD	2.5	46.5 2660 43500 CUP 2.940
ACCUR 2700	42.6	2.92	DBLD	2.8	46.0 2626 43200 CUP 3.060
ACCUR 3100	51.0	3.81	NA	3.7	51.0 2581 38200 CUP 3.060
ACCUR 2495BR	36.1	2.70	DBLD	2.5	40.0 2578 44400 CUP 3.060

155 Grain Jacketed

v-N160	43.3	3.18	DBLD	3.1	48.6	2710	49313	CIP	2 9/10
						2110	70010	CII	2.340

STARTING LOADS NEVER Velocity Mimimum									
Powder Type	Start Grains	Volume CC	Auto- Disk I	Lee Dipper	INC. TO THE OWNER OF THE OWNER OF THE OWNER OWNE				
160 Grain Jack	ceted								
RELODER22	45.3	3.16	DBLD	3.1	50.0 2690 48300 PSI 3.040				
RELODER19	47.1	3.33	NA	3.1	49.0 2665 45500 PSI 3.040				
ACCUR 4350	42.5	3.15	DBLD	3.1	48.0 2623 45100 CUP 3.020				
H4831	45.8	3.32	NA	3.1	50.0 2597 47100 CUP 2.940				
H414	40.0	2.65	DBLD	2.5	45.0 2594 48500 CUP 2.940				
H4350	43.6	3.16	DBLD	3.1	49.0 2592 48500 CUP 2.940				
H450	47.0	3.07	DBLD	2.8	51.0 2588 46800 CUP 2.940				
ACCUR 3100	51.0	3.81	NA	3.7	51.0 2543 39000 CUP 3.020				
IMR4831	42.9	3.15	DBLD	3.1	47.5 2540 45600 CUP 3.065				
v-N160	45.3	3.32	NA	3.1	49.4 2539 47900 CIP 2.940				
IMR4350	40.5	2.97	DBLD	2.8	45.0 2510 45800 CUP 3.065				
H380	38.5	2.66	DBLD	2.5	43.0 2497 48200 CUP 2.940				
IMR4064	35.8	2.67	DBLD	2.5	40.0 2480 46000 CUP 3.065				
IMR3031	34.2	2.60	DBLD	2.5	38.0 2430 45800 CUP 3.065				
ACCUR 2495BR	33.0	2.47	DBLD	2.2	38.0 2420 46000 CUP 3.020				
v-N150	37.9	2.83	DBLD	2.8	41.4 2414 47900 CIP 2.940				
ACCUR 2700	43.0	2.94	DBLD	2.8	43.0 2399 39700 CUP 3.020				
IMR4895	31.5	2.29	DBLD	2.2	35.0 2325 45800 CUP 3.065				
IMR4320	32.8	2.35	DBLD	2.2	36.0 2295 45200 CUP 3.065				
IMR4198	26.1	2.07	DBLD	1.9	28.5 2135 44900 CUP 3.065				
IMR4227	20.1	1.55	DBLD		22.5 1890 46000 CUP 3.065				
SR4759	20.3	2.01	DBLD	1.9	22.5 1855 45700 CUP 3.065				
162 Grain Jac	keted								
H-VARGET	36.2	2.65	DBLD	2.5	38.0 2502 45300 CUP 3.000				

162 Grain Jac	keted						
H-VARGET	36.2	2.65	DBLD	2.5	38.0 2502	45300	CUP 3.000
II VAIIGE!					•		

168 Grain Jac	keted						01100000
H4831	43.2	3.14	DBLD	3.1	49.0 2563		
H4350	42.7	3.10	DBLD	3.1	48.0 2540		
H1000	70-00-00	3.92		3.7	55.0 2534	43100	CUP 2.940
H450			DBLD	2.8	50.0 2518		
H414			DBLD		44.0 2496	47400	CUP 2.940
H-VARGET		2.60			37.5 2404	45500	CUP 3.000
H-VARGET	33.0	2.00	DDLD				

170 Grain Jac	cketed							
v-N160	40.5	2 97	DBLD	2.8	45.5 249	0 49313	CIP	2.940
V-14 1 0 U	40.0	2.07	0000					

7x57 MAUSER (Continued)

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	elocity FPS	Pressure	Units	limimum OAL		
175 Grain Jac	keted										
ACCUR 4350	41.8	3.09	DBLD	2.8	47.0 2	2507	45000	CUP	3 040		
H450	44.6	2.91	DBLD	2.8	49.0 2		47400				
H4350	43.7	3.17	DBLD	3.1	49.0 2	449	48400				
H4831	44.1	3.20	DBLD	3.1	48.0 2		47000		and the second second		
ACCUR 3100	50.0	3.74	NA	3.7	50.0 2	442	38400				
H1000	53.0	3.78	NA	3.7	53.0 2		41400				
ACCUR 2700	38.7	2.65	DBLD	2.5	43.0 2	401	44500				
H414	39.2	2.59	DBLD	2.5	44.0 2	400	48400				
v-N165	45.4	3.23	DBLD	3.1	49.5 2	357	47900		2.940		
v-N160	42.1	3.09	DBLD	2.8	45.9 2	319	47900		2.940		
ACCUR 2495BR	33.5	2.51	DBLD	2.5	38.0 2	302					
									10		

	1	95	Grain	Jacketed
--	---	----	-------	----------

H1000	47.6	2 10	NIA	2 4	FO 0 0004	45000	
	47.0	3.40	IVA	3.4	50.0 2331	45300	CUP 2.940
H450	42.1	2.75	DBLD	2.5	47.0 2294	48200	CUP 2 940
H4831	40.9	2 97	DDID	20	40.0 0000	10200	COT 2.340
	40.5	2.37	DBLD	2.8	46.0 2289	48500	CUP 2.940
H4350	39.2	2.84	DBLD	2.8	44.0 2288	48500	CUP 2 940

7mm-08 REMINGTON

	STA	RTING	LOA	DS				N/I	i
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
100 Grain Jack	ceted								0.500
ACCUR 2460	38.7	2.54	DBLD	2.5	43.0	3171	NA		2.530
ACCUR 2520	41.7	2.84	DBLD	2.8	44.5	3161	48400		2.665
ACCUR 2230	38.7	2.54	DBLD	2.5	42.5	3159	49800		2.665
ACCUR 2015BR	37.4	2.73	DBLD	2.5	40.0	3124	48500		2.665
ACCUR 2495BR	39.7	2.97	DBLD	2.8	42.5	3113	48500	CUP	2.665
ACCUR 2700	42.9	2.94	DBLD	2.8	48.0	3041	50700		2.665
H414	45.0	2.97	DBLD	2.8	50.0	3040	NA	NA	2.530
H4895	39.6	2.88	DBLD	2.8	44.0	3021	NA	NA	2.530
H380	43.2	2.99	DBLD	2.8	48.0	2997	NA	NA	2.530
BL-C(2)	40.5	2.61	DBLD	2.5	45.0	2967	NA	NA	2.530
H335	39.6	2.55	DBLD	2.5	44.0	2954	NA	NA	2.530
ACCUR 4350	47.5	3.52	NA	3.4	47.5	2876	44200	CUP	2.665
H450	46.8	3.06	DBLD	2.8	52.0	2826	NA	NA	2.530
H4350	45.0	3.26	DBLD		50.0	2814	NA	NA	2.530
H4831	45.0	3.26	DBLD	3.1	50.0	2669	NA	NA	2.530
ACCUR 3100	47.5	3.55	NA	3.4	47.5		40600	CUF	2.665
ACCOR 3100	47.5	0.00	1471	0.1					

120 Grain Jac	120 Grain Jacketed										
RELODER15	40.9	2.89	DBLD	2.8	45.5 3070	58700	PSI	2.750			
H4895	38 7	2.82	DBLD	2.8	43.0 2973	NA	NA	2.530			
v-N150			DBLD		46.9 2967	50500	CIP	2.530			
V-N 150 H414			DBLD		50.0 2959						
	40.7		DBLD		45.2 2950						
RELODER12					45.4 2941						
v-N140	40.9	3.00	DBLD	2.8	45.4 2941	30300	OII	2.000			

		ARTIN					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	Pressure	Mimimum Units OAL
120 Grain Jac	keted (Contin	ued)				JIIILO ONE
v-N140	40.9	3.00	DBLD	2.8	45.4 2941	50500	CIP 2.530
ACCUR 2495BR	37.0	2.77	DBLD	2.5	40.0 2928	49000	CUP 2.765
ACCUR 2460	37.8	2.48	DBLD	2.2	40.7 2922	48800	CUP 2.765
H335	39.6	2.55	DBLD	2.5	44.0 2917	NA	NA 2.530
v-N135	38.4	2.99	DBLD	2.8	42.7 2893	50500	CIP 2.530
BL-C(2)	39.6	2.55	DBLD	2.5	44.0 2891	NA	NA 2.530
ACCUR 2015BR	35.3	2.58	DBLD	2.5	38.2 2887	49000	CUP 2.765
ACCUR 2230	37.4	2.45	DBLD	2.2	40.3 2887	48900	CUP 2.765
H380	42.3	2.92	DBLD	2.8	47.0 2880	NA	NA 2.530
ACCUR 2520	39.3	2.69	DBLD	2.5	41.4 2874	47700	CUP 2.765
ACCUR 2700	42.8	2.93	DBLD	2.8	46.5 2871	49200	CUP 2.765
ACCUR 4350	47.3	3.50	NA	3.4	47.5 2794	45500	CUP 2.765
H450	46.8	3.06	DBLD	2.8	52.0 2792	NA	NA 2.530
RELODER 7	32.8	2.38	DBLD	2.2	35.5 2775	57200	PSI 2.750
H4350	44.1	3.20	DBLD	3.1	49.0 2760	NA	NA 2.530
H4831	45.0	3.26	DBLD	3.1	50.0 2614	NA	NA 2.530
ACCUR 3100	47.5	3.55	NA	3.4	47.5 2498	41500	CUP 2.765

1	30	Grain	Jackete	Ч

44.1	2.92	DBLD	2.8	49.0 28	86 NA	NA 2.600
38.7	2.50	DBLD	2.5			NA 2.600
44.3	3.28	DBLD	3.1	1		CUP 2.770
34.7	2.28	DBLD	2.2			
34.4	2.26	DBLD	2.2	39.3 280	04 51800	
42.3	2.92	DBLD	2.8	47.0 279	95 NA	NA 2.600
46.8	3.06	DBLD	2.8			NA 2.600
35.5	2.66	DBLD	2.5	39.0 277	79 49800	
40.4	2.77	DBLD	2.5	45.0 277		
37.8	2.75	DBLD	2.5	42.0 277	74 NA	NA 2.600
44.1	3.20	DBLD	3.1	49.0 276	69 NA	NA 2.530
38.7	2.50	DBLD	2.5	43.0 275	55 NA	NA 2.600
34.9	2.38	DBLD	2.2	39.6 275	3 51400	CUP 2.770
45.0	3.26	DBLD	3.1	50.0 259		NA 2.600
47.5	3.55	NA	3.4	47.5 255	3 42000	CUP 2.770
	44.3 34.7 34.4 42.3 46.8 35.5 40.4 37.8 44.1 38.7 34.9 45.0	38.7 2.50 44.3 3.28 34.7 2.28 34.4 2.26 42.3 2.92 46.8 3.06 35.5 2.66 40.4 2.77 37.8 2.75 44.1 3.20 38.7 2.50 34.9 2.38 45.0 3.26	38.7 2.50 DBLD 44.3 3.28 DBLD 34.7 2.28 DBLD 34.4 2.26 DBLD 42.3 2.92 DBLD 35.5 2.66 DBLD 40.4 2.77 DBLD 37.8 2.75 DBLD 44.1 3.20 DBLD 34.9 2.38 DBLD 45.0 3.26 DBLD 45.0 3.26 DBLD	38.7 2.50 DBLD 2.5 44.3 3.28 DBLD 3.1 34.7 2.28 DBLD 2.2 34.4 2.26 DBLD 2.2 42.3 2.92 DBLD 2.8 46.8 3.06 DBLD 2.5 40.4 2.77 DBLD 2.5 44.1 3.20 DBLD 2.5 44.1 3.20 DBLD 2.5 34.9 2.38 DBLD 2.2 45.0 3.26 DBLD 3.1	38.7 2.50 DBLD 2.5 43.0 28.4 44.3 3.28 DBLD 3.1 47.5 28.8 34.7 2.28 DBLD 2.2 39.8 28.2 34.4 2.26 DBLD 2.2 39.3 28.6 42.3 2.92 DBLD 2.8 47.0 27.6 46.8 3.06 DBLD 2.8 52.0 27.6 35.5 2.66 DBLD 2.5 39.0 27.7 40.4 2.77 DBLD 2.5 45.0 27.7 37.8 2.75 DBLD 2.5 42.0 27.7 44.1 3.20 DBLD 3.1 49.0 27.6 34.9 2.38 DBLD 2.5 43.0 27.5 45.0 3.26 DBLD 3.1 50.0 25.5	38.7 2.50 DBLD 2.5 43.0 2843 NA 44.3 3.28 DBLD 3.1 47.5 2838 48600 34.7 2.28 DBLD 2.2 39.8 2821 52000 34.4 2.26 DBLD 2.2 39.3 2804 51800 42.3 2.92 DBLD 2.8 47.0 2795 NA 46.8 3.06 DBLD 2.8 52.0 2781 NA 35.5 2.66 DBLD 2.5 39.0 2779 49800 40.4 2.77 DBLD 2.5 45.0 2779 50500 37.8 2.75 DBLD 2.5 42.0 2774 NA 44.1 3.20 DBLD 2.5 43.0 2755 NA 38.7 2.50 DBLD 2.5 43.0 2755 NA 34.9 2.38 DBLD 2.2 39.6 2753 51400 </th

139 Grain Jacketed

47.4	3.35	NA	3.1	52.0 2850	57900	PSI 2 800
38.0	2.83	DBI D	28	42 5 2835	E1200	CUD 2.000
39 5	2.72	DDLD	2.0	42.0 2000	51300	CUP 2.800
36.5	2.72	DRLD	2.5	43.0 2830	59000	PSI 2.800
					51900	CUP 2.800
37.8	2.71	DBLD	2.5	41.5 2800	50400	CUP 2 800
	38.0 38.5 35.8	38.0 2.83 38.5 2.72 35.8 2.73	38.0 2.83 DBLD 38.5 2.72 DBLD 35.8 2.73 DBLD	38.0 2.83 DBLD 2.8 38.5 2.72 DBLD 2.5 35.8 2.73 DBLD 2.5	38.0 2.83 DBLD 2.8 42.5 2835 38.5 2.72 DBLD 2.5 43.0 2830 35.8 2.73 DBLD 2.5 40.5 2830	47.4 3.35 NA 3.1 52.0 2850 57900 38.0 2.83 DBLD 2.8 42.5 2835 51300 38.5 2.72 DBLD 2.5 43.0 2830 59000 35.8 2.73 DBLD 2.5 40.5 2830 51900 37.8 2.71 DBLD 2.5 41.5 2800 50400

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dinner	NEVER EXCEED	Velocity FPS	Pressure	M Units	imimum OAL
139 Grain Jack				Pibbei	LAGEED	110	110000110		
IMR4895	36.4	2.65	DBLD	2.5	40.5	2790	51000	CUP	2.800
IMR4350	46.0	3.38	NA	3.1	1	2750	44200		
RELODER12	38.0	2.63		2.5		2735	59000		S 100 100 100
IMR4831	46.0	3.38	NA	3.1		2645	38800		
RELODER 7	31.3	2.28	DBLD	2.2	1	2555	57300		
NELODER /	01.0	2.20	JULU					w 1955	
140 Grain Jacl	roto d								
H414	43.2	2.86	DBLD	2.8	48.0	2807	NA	NA	2.650
ACCUR 4350	43.2	3.20	DBLD			2803	49800		
H380	43.2	2.86	DBLD			2770	NA		2.650
ACCUR 2460	34.9	2.29	DBLD			2768	51900		
H335	36.9	2.38	DBLD			2736	NA		2.650
H335 H450	46.8	3.06	DBLD			2729	NA		2.650
BL-C(2)	37.8	2.44	DBLD			2715	NA		2.650
ACCUR 2230	35.6	2.34	DBLD			2711	49600	CUP	2.800
H4895	36.9	2.69	DBLD			2705	NA		2.650
ACCUR 2495BR	35.5	2.65	DBLD			2703	49200		2.800
ACCUR 2520	35.2	2.41	DBLD			2700	50800	CUP	2.800
ACCUR 2700	40.7	2.79	DBLD			2700	49500		
ACCUR 2015BR	34.0	2.48	DBLD			2699	49300		2.800
H4350	43.2	3.13	DBLD			2690	NA	NA	2.600
H4831	45.0	3.26	DBLD			2672	NA	NA	2.650
v-N140	38.4	2.82	DBLD			2657	50500	CIP	2.530
v-N150	39.2	2.93	DBLD	2.8	43.6	2652	50500	CIP	2.530
v-N135	35.2	2.73	DBLD		39.1	2564	50500		2.530
ACCUR 3100	47.5	3.55	NA	3.4	47.5	2535	42800	CUP	2.800
145 Grain Jac	keted								
RELODER19	44.2	3.12	DBLD	3.1	49.3	2785	58900		2.800
RELODER15	36.7	2.59	DBLD		41.0	2700			2.800
RELODER12	35.4	2.45	DBLD			2580		PSI	2.800
RELODER 7	29.2	2.12	DBLD		31.8	2405	57500	PSI	2.800
150 Grain Jac	keted								
H414	41.4	2.74	DBLD	2.5	46.0	2787			2.600
RELODER19	44.1	3.11	DBLD	3.1	49.0	2760	58700		2.800
H4350	42.3	3.07	DBLD			2752		NA	2.600
ACCUR 4350	41.2	3.05			46.5	2731	51100	CUF	2.800
H335	35.1	2.26				2707		NA	2.600
H380	39.6	2.74			44.0	2704	NA	NA	2.600
CAUTION: With NEVER					ım Over A	\II Length	or longer.		Available

		ARTING	LOA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimu Units OAL
150 Grain Jac	keted (Continu	ued)				
H450	45.0	2.94	DBLD	2.8	50.0 2699	NA	NA 2.600
H4831	44.1	3.20	DBLD	3.1	49.0 2686	NA	NA 2.600
RELODER15	36.8	2.60	DBLD	2.5	40.9 2685	58600	PSI 2.800
H4895	35.1	2.56	DBLD	2.5	39.0 2680	NA	NA 2.600
BL-C(2)	36.0	2.32	DBLD	2.2	40.0 2660	NA	NA 2.600
ACCUR 2700	38.0	2.60	DBLD	2.5	43.5 2635	51900	CUP 2.800
ACCUR 2460	34.6	2.27	DBLD	2.2	38.3 2625	50200	CUP 2.800
ACCUR 2230	33.8	2.22	DBLD	2.2	38.0 2620	51000	CUP 2.800
ACCUR 2520	34.3	2.34	DBLD	2.2	39.0 2612	51600	CUP 2.800
ACCUR 2495BR	33.6	2.52	DBLD	2.5	37.3 2606	50300	CUP 2.800
RELODER12	36.2	2.50	DBLD	2.5	40.1 2590	58500	PSI 2.800
ACCUR 3100	47.0	3.52	NA	3.4	47.0 2494		
RELODER 7	29.8	2.17	DBLD	NA	32.3 2410	57300	PSI 2.800

1	60	Grain	Jacketed	1
111	υo	Grain	Jacketed	1

RELODER19	45.4	3.20	DBLD	3.1	48.5 2675	56400	PSI 2.800
v-N160	45.2	3.32	NA	3.1	50.2 2667		CIP 2.600
ACCUR 4350	42.2	3.12	DBLD	3.1	46.0 2630		CUP 2.800
RELODER15	36.2	2.56	DBLD	2.5	40.5 2620		
RELODER12	35.8	2.48	DBLD	2.2	40.0 2535		
v-N140	36.3	2.66	DBLD	2.5	40.3 2472		
ACCUR 2700	41.7	2.86	DBLD	2.8	42.0 2458		
ACCUR 2520	35.5	2.42	DBLD	2.2	38.0 2455		
ACCUR 2460	34.6	2.27	DBLD	2.2	37.0 2452		
ACCUR 3100	47.0	3.52	NA	3.4	47.0 2452		
ACCUR 2495BR	32.7	2.45	DBLD	2.2	36.0 2450		
v-N150	36.6	2.73	DBLD	2.5	40.7 2449		
ACCUR 2015BR	32.7	2.39	DBLD	2.2	35.0 2440		CUP 2.800
ACCUR 2230	35.0	2.30	DBLD	2.2	36.5 2435		CUP 2.800

162 Grain Jacketed

H-VARGET	36.1	2.64	DBLD	2.5	40.0 2650	49700	CUP 2.530
IMR4320	35.6	2.55	DBLD	2.5			CUP 2.800
IMR4895	34.0	2.47	DBLD	2.2			CUP 2.800
IMR3031	34.1	2.60	DBLD	2.5			CUP 2.800
H4350	40.5	2.94	DBLD	2.8	45.0 2575		NA 2.600
H450	44.1	2.88	DBLD	2.8	49.0 2565		NA 2.600
IMR4064	38.5	2.87	DBLD	2.8	39.0 2535	46500	
H414	40.5	2.68	DBLD	2.5	45.0 2534	NA	NA 2.600
H4831	43.2	3.13	DBLD	3.1	48.0 2506	NA	NA 2.600
H380	38.7	2.67	DBLD	2.5	43.0 2486	NA	NA 2.600

STARTING LOADS										
Powder Type		Volume CC	Auto-	100	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL	
162 Grain Jack	-			o ippo.						
H4895	34.2	2.49	DBLD	2.2	38.0	2476	NA	NA	2.600	
BL-C(2)	35.1	2.26	DBLD	2.2	39.0	2470	NA	NA	2.600	
H335	34.2	2.21	DBLD	2.2	38.0	2443	NA		2.600	
IMR4350	41.5	3.05	DBLD	2.8	41.5	2440	40800		2.800	
IMR4831	41.5	3.05	DBLD	2.8	41.5	2355	35900		2.800	
WIN MAG RIFLE	39.4	2.83	DBLD	2.8	43.8	2290	40400	PSI	2.530	
168 Grain Jac	keted									
H-VARGET	35.5	2.60	DBLD	2.5	39.5	2601	49900	CUP	2.530	
ACCUR 4350	41.4	3.06	DBLD	2.8	46.0	2596	50400	CUP	2.800	
IMR4320	35.4	2.54	DBLD	2.5	40.0	2590	51800		2.800	
IMR4895	33.9	2.47	DBLD	2.2	38.0	2535	51400		2.800	
IMR3031	33.6	2.56	DBLD	2.5	37.0	2515	50500	CUP	2.800	
ACCUR 2495BR	33.1	2.48	DBLD	2.2	38.0	2502	52000		2.800	
H414	38.7	2.56	DBLD	2.5	43.0	2486	NA		2.600	
IMR4064	37.9	2.82	DBLD	2.8	38.0	2475	46000		2.800	
H4350	38.7	2.81	DBLD	2.8		2459	NA		2.600	
ACCUR 2460	33.5	2.20	DBLD	2.2	37.0	2453			2.800	
ACCUR 2700	40.2	2.76	DBLD	2.5		2450			2.800	
H450	42.3	2.76	DBLD	2.5		2446			2.600	
H4831	42.3	3.07	DBLD			2420			2.600	
ACCUR 2015BR	32.2	2.35	DBLD		35.0				2.800	
ACCUR 2230	33.9	2.23	DBLD			2413			2.800	
ACCUR 2520	33.9	2.32	DBLD		37.0				2.800	
H380	36.9	2.55	DBLD		41.0				2.600	
ACCUR 3100	47.0	3.52	NA	3.4	47.0	2389			2.800	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure. Copyright 08-14-1996

DBLD 2.8

2.36 DBLD 2.2

2.94 DBLD 2.8

2.94

40.0

32.4

40.0

IMR4350

IMR4831

H4895

40.0 2365 39800 CUP 2.800

NA

36.0 2365

40.0 2255

NA 2.600

34200 CUP 2.800

		ARTINO	LOA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	y Pressure	Mimimum Units OAL
175 Grain Jac	keted	PETNIK					
ACCUR 4350	41.7	3.09	DBLD	2.8	45.5 2501	49400	CUP 2.795
ACCUR 2700	40.2	2.75	DBLD	2.5	42.0 2387	47400	CUP 2.795
ACCUR 2230	33.8	2.22	DBLD	2.2	37.0 2373	49600	
ACCUR 2460	33.7	2.21	DBLD	2.2	37.0 2366	49800	CUP 2.795
ACCUR 2520	33.6	2.30	DBLD	2.2	38.0 2364	51200	
ACCUR 2495BR	36.0	2.69	DBLD	2.5	38.0 2354	47900	CUP 2.795
ACCUR 8700	47.0	3.23	DBLD	3.1	47.0 2352		CUP 2.795
ACCUR 2015BR	33.3	2.43	DBLD	2.2	35.0 2316	47700	CUP 2.795
v-N160	38.8	2.85	DBLD	2.8	43.1 2298	50500	CIP 2.600
H414	36.9	2.44	DBLD	2.2	41.0 2259	NA	NA 2.600
H4350	36.9	2.68	DBLD	2.5	41.0 2249	NA	NA 2.600
H4831	40.5	2.94	DBLD	2.8	45.0 2249	NA	NA 2.600
H450	40.5	2.64	DBLD	2.5	45.0 2239	NA	NA 2.600
H4895	31.5	2.29	DBLD	2.2	35.0 2219	NA	NA 2.600
H380	35.1	2.43	DBLD	2.2	39.0 2214	NA	NA 2.600
v-N140	32.6	2.39	DBLD	2.2	36.2 2195	50500	CIP 2.600
v-N150	31.7	2.36	DBLD	2.2	35.2 2123	50500	CIP 2.600

195 Grain Jacketed

1110=0							
H4350	34.2	2.48	DBLD	2.2	38.0 2169	NA	NA 2 700
H414	04.0	0 00					1471 2.700
H414	34.2	2.26	DRFD	2.2	38.0 2157	NA	NA 2 700

7x64 BRENNEKE

These are 280 Remington loads reduced 5% for your safety.

STARTING LOADS

	ST/	ARTING	LOA	<u>DS</u>			Mississ	244122
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloci EXCEED FPS	Pressure	Mimin Units 0 <i>A</i>	L"
100 Grain Jacl	keted					4 114	NIA 2 1	ΕO
H4895	43.2	3.15	DBLD	3.1	48.4 332		NA 3.1	
BL-C(2)	46.2	2.98	DBLD	2.8	51.2 330	4 NA	NA 3.1	
H4350	53.3	3.86	NA	3.7	57.9 330	2 NA	NA 3.1	
H414	47.4	3.13	DBLD	3.1	53.1 325	9 NA	NA 3.1	50
The state of the s	52.5	3.81	NA	3.7	58.8 325	5 NA	NA 3.1	50
H4831	52.7	3.90	NA	3.7	56.0 325	O NA	NA 3.1	50
ACCUR 4350	48.0	3.32	NA	3.1	52.2 320	2 NA	NA 3.1	50
H380		3.60	NA	3.4	53.1 318		NA 3.1	50
ACCUR 2700	52.5		(*0.00.0)		57.9 315	M	NA 3.1	50
H450	55.6	3.63	NA	3.4	56.9 296	•	NA 3.1	
ACCUR 3100	56.9	4.26	NA	4.0	50.9 290	/ IVA	NA U.I	00

120 Grain Jack	keted						
H4350	49.6	3.60	NA	3.4	55.0 3094	NA	NA 3.150
111111111111111111111111111111111111111	46.2	3.05	DBLD	2.8	52.2 3092	NA	NA 3.150
H414				3.7	56.9 3066	NA	NA 3.150
H4831	51.3	3.72	NA				NA 3.310
RELODER19	49.8	3.51	NA	3.4	55.0 3053	NA	10 -0.00 10 1 -0.000 10 11 - 110
ACCUR 4350	49.3	3.65	NA	3.4	54.1 3050	NA	NA 3.200
		3.20	DBLD	3.1	50.3 3047	NA	NA 3.150
H380	46.3					NA	NA 3.150
H450	54.6	3.57	NA	3.4	56.9 3028	1000	
H4895	40.6	2.96	DBLD	2.8	44.6 3010	NA	NA 3.150
	41.4	2.93	DBLD	2.8	45.5 3004	NA	NA 3.310
RELODER15	-				56.9 2965	NA	NA 3.200
ACCUR 3100	56.1	4.20	NA	4.0			
ACCUR 2700	45.9	3.14	DBLD	3.1	49.8 2941	NA	NA 3.200

7x64 BRENNEKE (Continued)
These are 280 Remington loads reduced 5% for your safety.

Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	N Units	limimum OAI
keted (Continu	ied)						
			2.5	44.7	2925	NA	ΝΔ	3.310
39.3	2.54	DBLD	2.5					3.150
58.0	4.14	NA	4.0					
60.5	4.15	NA	4.0					3.150
	keted (40.2 39.3 58.0	keted (Continued 40.2 2.78 39.3 2.54 58.0 4.14	Keted (Continued) 40.2 2.78 DBLD 39.3 2.54 DBLD 58.0 4.14 NA	Start Volume Auto Lee Disk Dipper	Start Grains Volume Grains CC Disk Dipper EXCEED	Start Grains Volume CC Auto-Disk Lee Dipper NEVER Velocity keted (Continued) 40.2 2.78 DBLD 2.5 44.7 2925 39.3 2.54 DBLD 2.5 43.6 2907 58.0 4.14 NA 4.0 59.8 2836	40.2 2.78 DBLD 2.5 44.7 2925 NA 39.3 2.54 DBLD 2.5 43.6 2907 NA 58.0 4.14 NA 4.0 59.8 2836 NA	Start Volume Grains CC Disk Dipper EXCEED FPS Pressure Units

125 Grain Jacketed	125	Grain	Jacketed
--------------------	-----	-------	----------

IMR4831	52.4	3.85	NA	3.7	56.9 3053	NA	NA 3.250
IMR4064	43.9	3.27	DBLD	3.1	47.4 2994	NA	NA 3.250
IMR4350	50.8	3.73	NA	3.7	53.6 2994	NA	NA 3.250
IMR3031	42.0	3.20	DBLD	3.1	44.6 2916	NA	NA 3.250
IMR4320	40.7	2.91	DBLD	2.8	44.1 2822	NA	NA 3.250
IMR4895	39.1	2.85	DBLD	2.8	41.7 2788	NA	NA 3.250
IMR4198	31.4	2.49	DBLD	2.2	34.1 2626	NA	NA 3.250
SR4759	26.3	2.61	DBLD	2.5	28.4 2396	NA	NA 3.250
IMR4227	25.7	1.98	DBLD	1.9	27.0 2328	NA	NA 3.250
IIVIK4227	25.7	1.98	DBLD	1.9	27.0 2328	NA	NA 3.2

130 Grain Jacketed

. o o oralli ouc	KCLCU						
H4831	49.5	3.59	NA	3.4	56.0 3005	NA	NA 3.150
H450	51.5	3.37	NA	3.1	56.0 2985	NA	NA 3.150
H4350	48.9	3.54	NA	3.4	53 .1 2965	NA	NA 3.150
H4895	40.6	2.96	DBLD	2.8	45.5 2933	NA	NA 3.150
H1000	55.7	3.97	NA	3.7	59.8 2922	NA	NA 3.150
H414	44.5	2.94	DBLD	2.8	49.3 2919	NA	NA 3.150
H380	43.7	3.02	DBLD	2.8	48.4 2906	NA	NA 3.150
H870	59.2	4.06	NA	4.0	61.7 2655	NA	NA 3.150

139 Grain Jacketed

- 11	RELODER22	E1 2	2 57	ALA	0 1			
- ['	ILLODENZZ	51.2	3.5/	NA	3.4	56.5 2940	NΔ	NA 3.320
- 11	RELODER19	40.0	0 40			20.0	14/7	NA 3.320
- [1	RELUDER 19	48.6	3.43	NA	3.4	54.1 2911	NA	NA 2 220
111	DEL ODED4E	00.0				0 2011	IVA	NA 3.320
L	NELUDER 15	39.8	2.81	DBLD	2.8	44 1 2803	NA	NIA 2 220
- 11	RELODED 12	20.4	0.00			1111 2000	IVA	NA 3.320
L	NELODEN 12	38.1	2.63	DRLD	2.5	41.7 2646	NA	NA 3 320
1	RELODER15	39.8	2.81	DBLD	2.8	54.1 2911 44.1 2803 41.7 2646	NA	NA 3.320 NA 3.320

140 Grain Jacketed

IMR4831	48.4	3.56	NA	3.4	53.6 2950	NA	NA 3.230
H4831	47.8	3.47			54.1 2916	NA	
IMR4350					50.8 2916		NA 3.150
H450	48.8	3.19	DBLD		54.1 2890	NA NA	NA 3.230
H4350	47.1				51.2 2879		NA 3.150
		0.72	IVA	5.4	31.2 28/9	NA	NA 3.150

7x64 BRENNEKE (Continued)
These are 280 Remington loads reduced 5% for your safety.

111000 010 1101	OT A	DTINIC	LOAD	16						
	Start	Volume	LOAD Auto-	Lee	NEVER V	Velocity		Mi	imimum	
Powder Type	Start Grains	Volume CC	Auto- Disk E	Dipper	EXCEED	FPS '	Pressure	Units	OAL	
140 Grain Jack	ceted (C	Continu							0.000	
IMR4064	40.3	3.01	DBLD	2.8	44.6		NA		3.230	
H1000	54.1	3.86	NA	3.7		2832	NA		3.150	
H4895	39.3	2.86	DBLD	2.8		2804	NA		3.150	
IMR3031	37.4	2.85	DBLD	2.8		2803	NA		3.230	
H414	43.6	2.88	DBLD	2.8		2785	NA	5 55 5	3.150	
IMR4895	36.9	2.68	DBLD	2.5		2749	NA		3.230	
IMR4320	36.1	2.59	DBLD	2.5		2724	NA		3.230	
H870	58.0	3.98	NA	3.7	61.7	2666	NA	NA	3.150	
140 Grain Barnes X Bullet										
ACCUR 3100	50.0	3.74	NA	3.7		2782	NA		3.310	
ACCUR 4350	45.5	3.37	NA	3.1	48.4	2720	NA		3.310	
ACCUR 2700	43.7	2.99	DBLD	2.8	46.0	2656	NA	NA	3.310	
145 Grain Jac		. 70		0.7	FC 0	2072	NA	NΙΛ	3.250	
ACCUR 3100	49.9	3.73	NA	3.7		2873			3.150	
WIN MAG RIFLE	54.0	3.87	NA	3.7		2871	NA		3.320	
RELODER22	47.7	3.32	NA	3.1		2808	NA		3.320	
ACCUR 4350	44.2	3.27	DBLD	3.1		2805	NA			
RELODER19	45.3	3.20	DBLD			2759			3.320	
ACCUR 2700	41.9	2.87	DBLD			2655			3.250	
RELODER15	37.2	2.63	DBLD		1	2577				
RELODER12	36.3	2.51	DBLD	2.5	40.3	2528	NA	NA	3.320	
150 Grain Jac	_			0.4	F4.1	2871	NA	NIA	3.325	
IMR4831	49.8	3.66	NA	3.4		2837			3.325	
IMR4350	48.1	3.53	NA	3.4		2837	1900		3.150	
H4831	46.6	3.38	NA	3.1		2795			3.150	
H4350	45.4	3.29	DBLD			2772			3.150	
H450	46.2	3.02	DBLD			2754			3.325	
IMR4064	41.9	3.12	DBLD			2754			3.150	
H414	43.7	2.89	DBLD			2691			3.150	
H4895	37.2	2.71	DBLD			2690			3.325	
IMR3031	40.8	3.11	DBLD	3.1		2674			3.150	
H1000	52.8	3.76	NA			2602			3.325	
IMR4320	38.9	2.78				2582			3.325	
IMR4895	37.6	2.74				2582			3.150	
H870	56.2	3.85		3.7					3.325	
IMR4198	30.6	2.42	DBLD	2.2	32.1	2328	AVI	IVA	3.323	

7x64 BRENNEKE (Continued)
These are 280 Remington loads reduced 5% for your safety.

STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	M Units	limimum OAL
150 Grain Jac	cketed (Contin					Omto	UNL
SR4759	25.8	2.56	DBLD	2.5	28.0 2156	NA	NA	3.325
IMR4227	24.3	1.87	DBLD	NA	26.1 2073	NA		3.325
								0.020
154 Grain Jac	keted							
IMR4831	45.7	3.36	NA	3.1	51.2 2822	NA	NA	3.320
IMR4350	43.6	3.21	DBLD	3.1	48.9 2773	NA	NA	3.320
ACCUR 4350	45.1	3.34	NA	3.1	51.2 2769	NA		3.330
ACCUR 3100	53.0	3.97	NA	3.7	55.0 2736	NA		3.330
IMR4064	38.3	2.85	DBLD	2.8	42.7 2671	NA	NA	3.320
ACCUR 2700	40.7	2.79	DBLD	2.5	46.5 2664	NA		3.330
IMR3031	36.8	2.80	DBLD	2.8	40.8 2651	NA		3.320
IMR4895	36.5	2.66	DBLD	2.5	40.8 2631	NA		3.320
IMR4320	36.3	2.60	DBLD	2.5	40.3 2607	NA	NA :	3.320
160 Grain Jac	keted							
RELODER22	47.5	3.31	NA	3.1	52.9 2739	NA	NΔ	3.325
WIN MAG RIFLE	48.7	3.50	NA	3.4	54.9 2739	NA		3.150
ACCUR 3100	51.1	3.83	NA	3.7	54.6 2720	NA	0.00.0	3.300
RELODER19	45.5	3.21	DBLD	3.1	50.7 2695	NA		3.325
H4831	46.6	3.38	NA	3.1	51.2 2694	NA		3.150
ACCUR 4350	44.5	3.29	DBLD	3.1	49.3 2687	NA		3.300
H4350	45.4	3.29	DBLD	3.1	50.3 2685	NA	SCHOOL SELECTION	3.150
H450	47.1	3.08	DBLD	2.8	51.2 2666	NA		3.150
H414	43.6	2.88	DBLD	2.8	47.4 2652	NA		3.150
ACCUR 2700	40.3	2.76	DBLD	2.5	46.0 2610	NA		3.300
H1000	54.6	3.89	NA	3.7	56.9 2538	NA		3.150
H870	56.8	3.89	NA	3.7	57.9 2492	NA		3.150
165 Grain Jac	keted							
IMR4831	48.5	3.57	NA	3.4	52.7 2720	NA	NA 3	3.325
IMR4350	47.2	3.47	NA	3.4	50.8 2695	NA		3.325
IMR4064	41.6		DBLD	3.1	44.1 2587	NA		3.325
IMR3031	39.1	2.98	DBLD	2.8	42.2 2563	NA	NA 3	
IMR4320	38.5		DBLD	2.5	41.7 2499	NA	NA 3	
				0	, 2433	INM	IVA 3	.323

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996

DBLD 2.2

39.8 2475

31.8 2249

NA

NA

NA 3.325

NA 3.325

2.70 DBLD 2.5

2.35

IMR4895

IMR4198

37.1

29.6

7x64 BRENNEKE (Continued)

44.8

46.3

56.2

43.4

42.9

3.31

3.36

3.85

2.97

Powder Type

H4831

H870

ACCUR 4350

ACCUR 2700

ACCUR 2700

These are 280 Remington loads reduced 5% for your safety.

Volume Auto-

STARTING LOADS....

1 Ottaor . Jpo			FAILURE STREET									
165 Grain Jacketed (Continued)												
SR4759	25.3	2.51	DBLD	2.5	27.5 2107	NA	NA 3.325					
IMR4227	23.6	1.81	DBLD	1.6	25.6 2009	NA	NA 3.325					
HVIII 1227												
168 Grain Jac	keted				-1.1.0000	A L A	NA 3.300					
ACCUR 3100	50.5	3.78	NA	3.7	54.1 2669	NA	100000 17 G					
H450	44.5	2.90	DBLD	2.8	50.3 2634	NA	NA 3.150					
H1000	50.3	3.59	NA	3.4	56.9 2627	NA	NA 3.150					
				3.1	48.4 2626	NA	NA 3.150					
H4350	43.7	3.17	DBLD	3.1	40.4 2020	147	1471 01100					

3.1

3.1

3.7

NA

NA

NA

DBLD 2.8

Lee

175 Grain Jack	keted						
ACCUR 3100	48.3	3.61	NA	3.4	54.1 2627	NA	NA 3.300
IMR4831	42.9	3.15	DBLD	3.1	48.4 2597	NA	NA 3.310
No Discourse Charles	41.2	3.03	DBLD	2.8	46.5 2573	NA	NA 3.310
IMR4350		3.44	NA	3.4	48.9 2531	NA	NA 3.300
ACCUR 4350	46.5			100		NA	NA 3.150
H4831	42.8	3.10	DBLD	3.1	48.4 2529		
H1000	52.2	3.72	NA	3.7	55.0 2492	NA	NA 3.150
H450	42.8	2.79	DBLD	2.5	48.4 2489	NA	NA 3.150
		3.73	NA	3.7	57.9 2487	NA	NA 3.150
H870	54.4					NA	NA 3.310
IMR4064	36.6	2.72	DBLD		41.3 2484		
H4350	42.8	3.10	DBLD	3.1	46.5 2478	NA	NA 3.150
IMR4320	35.0	2.50	DBLD	2.5	39.4 2455	NA	NA 3.310
		2.58	DBLD	_	39.4 2450	NA	NA 3.310
IMR4895	35.5				38.4 2411	NA	NA 3.310
IMB3031	34.9	2.66	DBLD	2.5	30.4 2411	147	11/1 0.010

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996 NA = None Available

2.94 DBLD 2.8 43.6 2379

Mimimum

Units OAL

NA 3.300

NA 3.150

NA 3.150

NA 3.300

NA 3.300

NA

NA

NA

NA

NA

48.9 2617

50.3 2616

57.9 2536

45.5 2525

280 REMINGTON 7mm REMINGTON EXPRESS

NAME OF TAXABLE PARTY.		ARTING		DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
100 Grain Jac	keted					- rooduro	OIIICS OAL
H4895	45.5	3.32	NA	3.1	51.0 3389	50500	CUP 3.150
BL-C(2)	48.7	3.14	DBLD	3.1			
H4350	56.1	4.07	NA	4.0			
	50.0	3.31	NA	3.1	56.0 3325		
H4831	55.4	4.01	NA	4.0	62.0 3321		
ACCUR 4350	55.6	4.11	NA	4.0			
H380	50.6	3.50	NA	3.4	55.0 3267		
ACCUR 2700	55.4	3.79	NA	3.7	56.0 3252		
H450	58.5	3.82	NA	3.7			
ACCUR 3100	60.0	4.49	NA	4.3	60.0 3028	44900	
H4350 H414 H4831 ACCUR 4350 H380 ACCUR 2700	56.1 50.0 55.4 55.6 50.6 55.4 58.5	3.14 4.07 3.31 4.01 4.11 3.50 3.79 3.82	DBLD NA NA NA NA NA NA NA	3.1 4.0 3.1 4.0 4.0 3.4 3.7 3.7	54.0 3371 61.0 3369 56.0 3325 62.0 3321 59.0 3316 55.0 3267 56.0 3252 61.0 3218	50000 49000 50500 50500 55800 49000 53100 47000	CUP 3.15 CUP 3.15 CUP 3.15 CUP 3.15 PSI 3.15 CUP 3.15 PSI 3.15 CUP 3.15

1	20	Grain	Jacketed

or and	NC LC U				
H4350	52.3	3.79	NA	3.7	58.0 3157 50000 CUP3.150
H414	48.6	3.21	DBLD	3.1	55.0 3155 51000 CUP3.150
H4831	54.1	3.92	NA	3.7	
RELODER19					60.0 3129 50000 CUP 3.150
	52.5	3.70	NA	3.7	58.0 3115 48000 CUP 3.310
ACCUR 4350	51.9	3.84	NA	3.7	57.0 3112 57700 PSI 3.200
H380	48.8	3.37	NA	3.1	53.0 3109 49000 CUP3.150
H450	57.6	3.76	NA	3.7	60.0 3090 47000 CUP 3.150
H4895	42.8	3.12	DBLD	,	
BEL ODED45			Page Street Street	5.1	47.0 3071 49500 CUP 3.150
RELODER15	43.7	3.09	DBLD	2.8	48.0 3065 47666 CUP 3.310
ACCUR 3100	59.1	4.42	NA	4.3	60.0 3025 53300 PSI 3.200
ACCUR 2700	48.4	3.31	NA		
CAUTION, MEL NEW		3.31	NA	3.1	52.5 3001 57000 PSI 3.200

33.2

27.8

27.1

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
120 Grain Jac	keted (Continu	ued)	,						
RELODER12	42.4	2.93	DBLD	2.8	47.1	2985	48249	CUP 3.310		
BL-C(2)	41.5	2.68	DBLD	2.5	46.0	2966	50000	CUP 3.150		
H1000	61.1	4.36	NA	4.3	63.0	2894		CUP 3.150		
H870	63.7	4.37	NA	4.3	65.0	2744	46000	CUP 3.150		
125 Grain Jac	keted									
IMR4831	55.3	4.06	NA	4.0	60.0	3115	50000	CUP 3.250		
IMR4064	46.3	3.45	NA	3.4	50.0	3055	49700	CUP 3.250		
IMR4350	53.5	3.93	NA	3.7	56.5	3055	48600	CUP 3.250		
IMR3031	44.3	3.37	NA	3.1	47.0	2975	48900	CUP 3.250		
IMR4320	42.9	3.07	DBLD	2.8	46.5	2880	49900	CUP 3.250		
IMR4895	41.3	3.00	DBLD	2.8	44.0	2845	49100	CUP 3.250		

2.63 DBLD 2.5

2.76 DBLD 2.5

2.09 DBLD 1.9

36.0 2680 50000 CUP 3.250

30.0 2445 49700 CUP 3.250

28.5 2375 48400 CUP 3.250

120 Crain Jackstod

IMR4198

SR4759

IMR4227

130 Grain Jac	ketea						
H4831	52.2	3.78	NA	3.7	59.0 3066	51000	CUP 3.150
H450	54.3	3.55	NA	3.4	59.0 3046	49000	CUP 3.150
H4350	51.5	3.74	NA	3.7	56.0 3026		
H4895	42.9	3.12	DBLD	3.1	48.0 2993	50500	CUP 3.150
H1000	58.7	4.19	NA	4.0	63.0 2982	48400	CUP 3.150
H414	46.9	3.10	DBLD	3.1	52.0 2979		
H380	46.0	3.18	DBLD	3.1	51.0 2965	50000	CUP 3.150
H870	62.4	4.28	NA	4.0	65.0 2709	47000	CUP 3.150

139 Grain Jacketed

139 Grain Jac	Keteu						
RELODER22	53.9	3.76	NA	3.7	59.5 3000	47916	CUP 3.320
RELODER19	51.2	3.62	NA	3.4	57.0 2970	48333	CUP 3.320
RELODER15	42.0	2.96	DBLD	2.8	46.5 2860	48083	CUP 3.320
RELODER12	40.1	2.77	DBLD	2.5	44.0 2700	47583	CUP 3.320

140 Grain Jacksted

140 Grain Jac	Keleu						
IMR4831	51.0	3.75	NA	1000	56.5 3010		
H4831	50.4	3.65	NA	3.4	57.0 2976	51000	CUP 3.150
IMR4350	48.0	3.53	NA	3.4	53.5 2975	51300	CUP 3.230
H450	51.4	3.36	NA	3.1	57.0 2949	50000	CUP 3.150
H4350		3.60	NA	3.4	54.0 2938	49000	CUP 3.150
117330	10.7	0.00	, .				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

ONLY - Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-14-1996

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimu Units OAL			
140 Grain Jac	keted (Contin	ued)							
IMR4064	42.5	3.17	DBLD	3.1	47.0 2905	50900	CUP 3.23			
H1000	57.1	4.07	NA	4.0	62.0 2890	49000	CUP 3.15			
H4895	41.5	3.02	DBLD	2.8	46.0 2861	50000	CUP 3.15			
IMR3031	39.5	3.01	DBLD	2.8	44.5 2860	51900	CUP 3.23			
H414	46.0	3.04	DBLD	2.8	50.0 2842	49000	CUP 3.15			
IMR4895	38.8	2.83	DBLD	2.8	43.5 2805	51600	CUP 3.23			
IMR4320	38.1	2.73	DBLD	2.5	43.0 2780	52000	CUP 3.23			
H870	61.1	4.19	NA	4.0	65.0 2720	48000	CUP 3.15			
1.10										
140 Grain Bar										
ACCUR 3100	52.7	3.94	NA	3.7	57.0 2839	56800	PSI 3.310			
ACCUR 4350	47.9	3.55	NA	3.4	51.0 2776	55900	PSI 3.310			
ACCUR 2700	46.1	3.16	DBLD	3.1	48.5 2710	55300	PSI 3.310			
145 Grain Jac	keted									
ACCUR 3100	52.5	3.93	NA	3.7	59.0 2932	59000	PSI 3.250			
WIN MAG RIFLE	56.9	4.08	NA	4.0	60.4 2930	53500	PSI 3.150			
RELODER22	50.3	3.51	NA	3.4	56.0 2865	48333	CUP 3.320			
ACCUR 4350	46.6	3.45	NA	3.4	53.0 2862	59800	PSI 3.250			
RELODER19	47.8	3.37	NA	3.1	53.0 2815	48166	CUP 3.320			
ACCUR 2700	44.2	3.03	DBLD	2.8	48.0 2709	57000	PSI 3.250			

1	50	Grain	Jacketed

39.2

38.2

RELODER15

RELODER12

150 Grain Jac	Keted						
IMR4831	52.5	3.86	NA	3.7	57.0 2930	50000	CUP 3.325
IMR4350	50.7	3.72	NA	3.7	55.0 2895	50000	CUP 3.325
H4831	49.1	3.56	NA	3.4	55.0 2871		CUP 3.150
H4350	47.8	3.47	NA	3.4	53.0 2852	50000	CUP 3.150
H450	48.7	3.18	DBLD	3.1	54.0 2829	50000	CUP 3.150
IMR4064	44.2	3.29	DBLD	3.1	48.0 2810	50000	CUP 3.325
H414	46.0	3.04	DBLD	2.8	51.0 2783		CUP 3.150
H4895	39.3	2.86	DBLD	2.8	44.0 2746	50500	CUP 3.150
IMR3031	42.9	3.27	DBLD	3.1	45.5 2745	48800	CUP 3.325
H1000	55.6	3.96	NA	3.7	61.0 2729	49500	CUP 3.150
IMR4320	41.0	2.93	DBLD	2.8	44.5 2655	50000	CUP 3.325
IMR4895	39.7	2.89	DBLD	2.8	42.5 2635	49300	CUP 3.325
H870	59.2	4.06	NA	4.0	61.0 2568	46500	CUP 3.150
IMR4198	32.3	2.56	DBLD	2.5	34.5 2375	49200	CUP 3.325
CALITION, WISH NEVED	EVOEED !						

2.77 DBLD 2.5

2.64 DBLD 2.5

43.0 2630 47583 CUP 3.320

42.5 2580 48250 CUP 3.320

	STA	ARTING	LOA	DS						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL	
150 Grain Jacketed (Continued)										
SR4759	27.2	2.70	DBLD	2.5	29.5	2200	50000	CUP 3	3.325	
IMR4227	25.6	1.97	DBLD	1.9	27.5	2115	49500	CUP 3	3.325	

154 Grain Jac	154 Grain Jacketed										
IMR4831	48.2	3.54	NA	3.4	54.0 2880 51600 CUP 3.320						
IMR4350	46.0	3.38	NA	3.1	51.5 2830 51600 CUP 3.320						
ACCUR 4350	47.6	3.52	NA	3.4	54.0 2825 59600 PSI 3.330						
ACCUR 3100	55.9	4.18	NA	4.0	58.0 2792 54500 PSI 3.330						
IMR4064	40.3	3.00	DBLD	2.8	45.0 2725 51400 CUP 3.320						
ACCUR 2700	42.9	2.94	DBLD	2.8	49.0 2718 60000 PSI 3.330						
IMR3031	38.7	2.95	DBLD	2.8	43.0 2705 51100 CUP 3.320						
IMR4895	38.4	2.80	DBLD	2.8	43.0 2685 51500 CUP 3.320						
IMR4320	38.3	2.74	DBLD	2.5	42.5 2660 51100 CUP 3.320						

160 Grain Jac	keted				160 Grain Jacketed										
RELODER22	50.0	3.49	NA	3.4	55.7 2795 48333 CUP 3.325										
WIN MAG RIFLE	51.3	3.68	NA	3.4	57.8 2795 56800 PSI 3.150										
ACCUR 3100	53.9	4.03	NA	4.0	57.5 2775 56100 PSI 3.300										
RELODER19	47.9	3.38	NA	3.1	53.4 2750 48416 CUP 3.325										
H4831	49.2	3.57	NA	3.4	54.0 2749 49500 CUP 3.150										
ACCUR 4350	46.9	3.47	NA	3.4	52.0 2742 58200 PSI 3.300										
H4350	47.8	3.47	NA	3.4	53.0 2740 50000 CUP 3.150										
H450	49.7	3.25	DBLD	3.1	54.0 2720 49000 CUP 3.150										
H414	46.0	3.04	DBLD	2.8	50.0 2706 49000 CUP 3.150										
ACCUR 2700	42.5	2.91	DBLD	2.8	48.5 2663 60000 PSI 3.300										
H1000	57.6	4.10	NA	4.0	60.0 2590 47000 CUP 3.150										
H870	59.8	4.10	NA	4.0	61.0 2543 46000 CUP 3.150										

165 Grain Jac	keted						
IMR4831	51.1	3.76	NA	3.7	55.5 2775		
IMR4350	49.7	3.65	NA	3.4	53.5 2750	49600	CUP 3.325
IMR4064	43.9	3.27	DBLD	3.1	46.5 2640	48800	CUP 3.325
IMR3031	41.2	3.14	DBLD	3.1	44.5 2615	49700	CUP 3.325
IMR4320	40.6	2.91	DBLD	2.8	44.0 2550	49900	CUP 3.325
IMR4895	39.1	2.85	DBLD	2.8	42.0 2525		
IMR4198	31.2	2.47	DBLD	2.2	33.5 2295	49400	CUP 3.325

59.2

45.8

4.06

3.13

NA

DBLD 3.1

	STARTING LOADS												
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloc EXCEED FPS	ressure	Mimimum Units OAL						
165 Grain Jacketed (Continued)													
SR4759	26.7	2.65	DBLD	2.5	29.0 215	0 50000	CUP 3.325						
IMR4227	24.9	1.91	DBLD	1.9	27.0 205	0 50000	CUP 3.325						
168 Grain Jac	keted												
ACCUR 3100	53.2	3.98	NA	3.7	57.0 272	3 56300	PSI 3.300						
H450	46.9	3.06	DBLD	2.8	53.0 268		CUP 3.150						
H1000	53.1	3.78	NA	3.7	60.0 268		CUP 3.150						
H4350	46.0	3.34	NA	3.1	51.0 2680	50000	CUP 3.150						
ACCUR 4350	47.1	3.49	NA	3.4	51.5 2670	57400	PSI 3.300						
H4831	48.8	3.54	NA	3.4	53.0 2669		CUP 3.150						
11070													

4.0

61.0 2588 46500 CUP 3.150

48.0 2577 55100 PSI 3.300

175 Grain Jacketed

H870

ACCUR 2700

175 Grain Jac	Ketea						
ACCUR 3100	50.8	3.80	NA	3.7	57.0 2681	58900	PSI 3.300
IMR4831	45.2	3.32	NA	3.1	51.0 2650		CUP 3.310
IMR4350	43.4	3.19	DBLD	3.1	49.0 2625		CUP 3.310
ACCUR 4350	48.9	3.62	NA	3.4	51.5 2583		PSI 3.300
H4831	45.1	3.27	DBLD	3.1	51.0 2581		CUP 3.150
H1000	55.1	3.93	NA	3.7	58.0 2543	47500	CUP 3.150
H450	45.1	2.94	DBLD	2.8	51.0 2540		CUP 3.150
H870	57.3	3.93	NA	3.7	61.0 2538		CUP 3.150
IMR4064	38.5	2.87	DBLD	2.8			CUP 3.310
H4350	45.1	3.27	DBLD	3.1			CUP 3.150
IMR4320	36.8	2.64	DBLD	2.5			CUP 3.310
IMR4895	37.4	2.72	DBLD	2.5			CUP 3.310
IMR3031	36.8	2.80	DBLD	2.8			CUP 3.310
ACCUR 2700	45.3	3.10	DBLD	3.1	46.0 2428	53400	PSI 3.300

284 WINCHESTER

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	N Units	Aimimum 6 OAL	
100 Grain Jacketed										
ACCUR 4350	50.2	3.71	NA	3.7	56.5	3175	53800	PSI	2.800	
ACCUR 2700	47.5	3.25	DBLD	3.1	50.5	3048	50800	PSI	2.800	
ACCUR 3100	59.0	4.41	NA	4.3	59.0	2975	45700	PSI	2.800	

110 Grain Jac	keted						
H4895	47.0	3.42	NA	3.4	52.0 3288	NA	NA 2.765
H4831	55.1	4.00	NA	4.0	61.0 3181	NA	NA 2.765
H4350	51.5	3.74	NA	3.7	57.0 3169	NA	NA 2.765
H335	46.1	2.97	DBLD	2.8	51.0 3159	NA	NA 2.765
H414	51.5	3.41	NA	3.4	57.0 3148	NA	NA 2.765
H380	48.8	3.37	NA	3.1	54.0 3138	NA	NA 2.765
BL-C(2)	45.2	2.91	DBLD	2.8	50.0 3103	NA	NA 2.765

120 Grain Jac	keted							
RELODER19	54.3	3.83	NA	3.7	60.5 3265	53600	PSI	2.800
RELODER15	45.6	3.22	DBLD	3.1	51.5 3235	54300	PSI	2.800
H4895	42.5	3.09	DBLD	2.8	47.0 3104	NA	NA	2.765
H4350	50.6	3.67	NA	3.4	56.0 3090	NA	NA	2.765
H4831	53.3	3.87	NA	3.7	59.0 3036	NA	NA	2.765
H380	46.1	3.18	DBLD	3.1	51.0 3023	NA	NA	2.765
ACCUR 4350	48.0	3.55	NA	3.4	54.5 2968	54300	PSI	2.800
ACCUR 3100	52.2	3.91	NA	3.7	59.0 2940	54000	PSI	2.800
H335	42.5	2.74	DBLD	2.5	47.0 2922	NA	NA	2.765

284 WINCHESTER (Continued)

			LOA		NEVED V	-70		
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velo	ocity PS Pressure	Units	imimum OAL
120 Grain Jac	keted (ued)					
BL-C(2)	43.4	2.80	DBLD	2.8	48.0 28	74 NA	NA	2.765
ACCUR 2700	45.3	3.10	DBLD	3.1	48.5 28	08 51200	PSI	2.800
125 Grain Jac	keted							
WIN 760	51.0	3.40	NA	3.4	57.0 31	80 50000	CUP	2.765
WIN 748	45.5	2.98	DBLD	2.8	50.8 30	75 50000	CUP	2.765
130 Grain Jac	keted							
IMR4350	50.8	3.73	NA	3.7	57.0 31	30 53600	CUP	2.800
IMR4831	55.7	4.09	NA	4.0	59.0 31	00 50600	CUP	2.800
IMR4064	44.2	3.29	DBLD	3.1	50.0 30	85 54000	CUP	2.800
IMR3031	42.4	3.23	DBLD	3.1	48.0 30	55 54000	CUP	2.800
H4350	49.7	3.60	NA	3.4	55.0 30	30 NA	NA	2.765
H4831	52.4	3.80	NA	3.7	58.0 30	13 NA	NA	2.765
BL-C(2)	44.8	2.89	DBLD	2.8	49.0 30	13 45800	CUP	2.765
H414	49.7	3.29	DBLD	3.1	55.0 29	76 NA	NA	2.765
H380	44.3	3.06	DBLD	2.8	49.0 29	71 NA	NA .	2.765
H450	51.7	3.37	NA	3.1	57.0 29	13 46200	CUP	2.765
IMR4895	40.7	2.96	DBLD	2.8	45.0 29	05 52800	CUP	2.800
H4895	41.6	3.03	DBLD	2.8	46.0 28		NA :	2.765
IMR4320	42.0	3.01	DBLD	2.8	46.0 28	90 52300	CUP	2.800
H335	42.5	2.74	DBLD	2.5	47.0 28	75 NA	NA :	2.765
IMR4198	34.6	2.74	DBLD	2.5	38.0 27		CUP	2.800
IMR4227	27.4	2.11	DBLD	1.9	30.0 24	60 52300	CUP:	2.800
SR4759	27.6	2.74	DBLD	2.5	30.0 24	25 51900	CUP:	2.800
139 Grain Jac	keted							
RELODER19	51.2	3.62	NA	3.4	57.0 30	75 53500	PSI :	2.800
RELODER22	57.4	4.00	NA	4.0	58.5 30	30 49000	PSI :	2.800
RELODER15	42.2	2.98	DBLD	2.8	48.0 29	75 54700	PSI :	2.800
ACCUR 4350	47.6	3.52	NA	3.4	54.0 28	45 54200	PSI :	2.800
ACCUR 3100	53.2	3.98	NA	3.7	59.0 28	35 53000	PSI :	2.800
ACCUR 2700	44.9	3.08	DBLD	2.8	47.0 26	29 50000	PSI :	2.800
							100	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

3.4

3.7

2.5

3.1

54.0 2957

58.0 2954

48.0 2914

57.0 2894

NA

NA

NA

NA

NA 2.765

NA 2.765

NA 2.765

NA 2.765

NA

NA

DBLD

NA

H4350

H4831

BL-C(2)

H450

140 Grain Jacketed

48.8

52.4

43.0

51.1

3.54

3.80

2.77

3.34

284 WINCHESTER (Continued)

284 WINC	HES	TER	(Conti	nued)					
	ST	ARTING	LOA						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER	Velocity FPS	Pressure	Units	Aimimum S OAL
140 Grain Jac				o.ppo.				and the later	
H335	41.6	2.68	DBLD	2.5	46.0	2869	NA	NA	2.765
H380	43.4	3.00	DBLD	2.8	48.0	2856	NA	NA	2.765
H4895	40.7	2.96	DBLD	2.8	45.0	2847	NA	NA	2.765
145 Grain Jac	katad								
RELODER19	50.4	3.56	NA	3.4	55.0	2940	52400	PSI	2.800
RELODER22	53.7	3.75	NA	3.7		2900	49200		
TILLODETILL	00.7	0.70		0.7			.0200		
150 Grain Jac	katad								
RELODER19	49.4	3.49	NA	3.4	55.0	2940	53500	PSI	2.800
H4831	51.5	3.73	NA	3.7		2893	NA		2.765
WIN 760	49.3	3.29	DBLD	3.1		2890	49000		2.765
H4350	47.9	3.47	NA	3.4		2869	NA		2.765
RELODER22	55.0	3.83	NA	3.7	55.0	2840	46300	PSI	2.800
H414	47.9	3.17	DBLD	3.1	53.0	2833	NA	NA	2.765
WIN 748	44.3	2.90	DBLD	2.8	48.5	2770	49000	CUF	2.765
ACCUR 4350	46.5	3.44	NA	3.4	52.0	2764	53400	PSI	2.800
ACCUR 3100	52.0	3.89	NA	3.7	57.0	2754	52400	PSI	2.800
ACCUR 2700	42.8	2.93	DBLD	2.8	45.0	2534	50300	PSI	2.800
160 Grain Jac	keted								
RELODER19	47.5	3.36	NA	3.1	54.0	2885	54600	PSI	2.800
H4831	51.5	3.73	NA	3.7	57.0	2803	NA	NA	2.765
H414	45.2	2.99	DBLD	2.8	50.0	2794	NA		2.765
H450	52.4	3.42	NA	3.4		2793	NA		2.765
IMR4064	41.8	3.11	DBLD	3.1		2760	53700		2.800
BL-C(2)	42.0	2.71	DBLD	2.5		2754	NA		2.765
H4350	47.0	3.41	NA	3.4		2754	NA	0.000	2.765
IMR4350	52.0	3.82	NA	3.7		2720	47700		2.800
H335	39.8	2.56	DBLD	2.5		2686	NA 42700		2.765
RELODER22	52.0	3.62	NA	3.4		2680			2.765
H380	41.6	2.87	DBLD	2.8		2675 2660	NA 52700		2.765
IMR3031 H4895	40.8	2.76	DBLD DBLD	2.5		2641	NA		2.765
IMR4320	38.5	2.76	DBLD	2.5		2635	53900		2.800
IMR4831	52.0	3.82	NA	3.7		2635	43800		2.800
IMR4895	36.6	2.66	DBLD	2.5		2584	53500		2.800
H870	56.9	3.91	NA	3.7	15 5 5 5	2560	NA		2.765
	55.5	0.0.							

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

31.4 2.48 DBLD 2.2

IMR4198

34.5 2440 52500 CUP 2.800

284 WINCHESTER (Continued)

			G LOA			Acres de la companya del companya de la companya del companya de la companya de l	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
160 Grain Jac	keted (Contin	ued)				
IMR4227	25.6	1.97	DBLD	1.9	28.0 2170	52200	CUP 2.800
SR4759	24.5	2.44	DBLD	2.2	27.5 2105	53500	CUP 2.800
							224.0
168 Grain Jac	keted						
H4350	46.1	3.34	NA	3.1	51.0 2692	NA	NA 2.765
H4831	48.8	3.54	NA	3.4	54.0 2690	NA	NA 2.765
H414	42.5	2.81	DBLD	2.8	47.0 2543	NA	NA 2.765
		140					
175 Grain Jac	keted						
H450	48.8	3.18	DBLD	3.1	54.5 2679	46800	CUP 2.765
H4831	48.8	3.54	NA	3.4	54.0 2630	NA	NA 2.765
H4350	45.2	3.28	DBLD	3.1	50.0 2597	NA	NA 2.765
H380	40.7	2.81	DBLD	2.8	45.0 2549	NA	NA 2.765
H870	56.9	3.91	NA	3.7	63.0 2528	NA	NA 2.765
H4895	36.2	2.63	DBLD	2.5	40.0 2520	NA	NA 2.765
H414	42.5	2.81	DBLD	2.8	47.0 2506	NA	NA 2.765
BL-C(2)	34.9	2.25	DBLD	2.2	39.0 2457	NA	NA 2.765
H335	34.3	2.22	DBLD	2.2	38.0 2409	NA	NA 2.765
							· SECTION
195 Grain Jac	keted						
H4831	45.2	3.28	DBLD	3.1	50.0 2414	NA	NA 2.765
H4350	41.6	3.01	DBLD	2.8	46.0 2380	NA	NA 2.765
H414	40.7	2.69	DBLD	2.5	45.0 2330	NA	NA 2.765
H870	55.1	3.78	NA	3.7	61.0 2320	NA	NA 2.765

7mm REMINGTON MAGNUM

Powder Type		Volume CC			NEVER EXCEED	Velocity FPS	Pressure	N Units	limimum OAL
79 Grain Jacke	ted								
v-N160	71.5	5.25	NA	NA	76.4	3710	55114	CIP	3.185

1	100	Grain	Jacketed	
		Giaiii	Jacketeu	

100 Grain Se							
H4831	66.3	4.81	NA	4.3	74.0 3610	54000	CUP 3.185
H450	64.8	4.23	NA	4.0	72.0 3544	53800	CUP 3.185
H414					63.0 3530		
H4350	59.6	4.32	NA	4.3	64.0 3460	52000	CUP 3.185

115 Grain Jacketed

i i o diani odo	ROLOG						
ACCUR 3100	65.8	4.92	NA	NA	72.5 3368	58800 PSI	3.280
ACCUR 4350	59.3	4.39	NA	4.3	67.0 3345	60300 PSI	3.280
ACCUR 2700	56.8	3.89	NA	3.7	62.5 3241	58700 PSI	3.280
ACCUR 8700	79.0	5.44	NA	NA	79.0 2913	39100 PSI	3.280

120 Grain Jacketed

H4831	65.1	4.72	NA	4.3	73.0 3536	54300	CUP 3.185
RELODER22	65.9	4.59	NA	4.3	73.0 3490	58600	PSI 3.275
RELODER19	62.3	4.40	NA	4.3	69.0 3465	58600	PSI 3.275
H414	54.7	3.61	NA	3.4	62.0 3462	54900	CUP 3.185
H450	62.4	4.07	NA	4.0	71.0 3394	55100	CUP 3.185
IMR4831	62.1	4.57	NA	4.3	68.5 3335	51400	CUP 3.290
ACCUR 3100	63.5	4.75	NA	4.3	71.3 3325	59900	PSI 3.260

	ST/	ARTING	J LOA	DS	NEVED V I '				
Powder Type	Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS Pre	Mimimu ssure Units OAL			
120 Grain Jac	keted (Contin	ued)						
IMR4350	58.9	4.33	NA	4.3	65.0 3300 51	400 CUP 3.29			
RELODER12	52.8	3.65	NA	3.4	58.0 3275 58	100 PSI 3.27			
IMR4064	50.5	3.76	NA	3.7	55.5 3245 51	200 CUP 3.29			
H4350	58.8	4.27	NA	4.0	62.0 3234 51	000 CUP 3.18			
IMR4895	48.9	3.56	NA	3.4	54.5 3215 52	000 CUP 3.29			
ACCUR 4350	58.2	4.30	NA	4.3	63.0 3215 57	800 PSI 3.26			
RELODER15	49.9	3.52	NA	3.4	55.0 3200 58	300 PSI 3.27			
IMR4320	50.3	3.60	NA	3.4	55.5 3185 51	400 CUP 3.29			
IMR3031	47.8	3.64	NA	3.4	52.5 3180 51	200 CUP 3.29			
ACCUR 2700	55.9	3.83	NA	3.7	61.5 3174 58	700 PSI 3.26			
ACCUR 8700	79.0	5.44	NA	NA	79.0 2982 46	000 PSI 3.26			
IMR4198	40.2	3.19	DBLD	3.1	44.0 2980 51	000 CUP 3.29			
IMR4227	33.6	2.59	DBLD	2.5	37.0 2705 51	300 CUP 3.29			
SR4759	32.8	3.26	DBLD	3.1	36.5 2695 51	900 CUP 3.29			
130 Grain Jac H4831	keted 62.1	4.51	NA	4.3	71.0 3437 55	300 CUP 3.18			
H1000	78.0	5.56	NA	NA		000 CUP 3.18			
H450	58.6	3.83	NA	3.7		300 CUP 3.18			
H4350	57.1	4.14	NA	4.0		700 CUP 3.18			
ACCUR 3100	61.3	4.59	NA	4.3		000 PSI 3.24			
ACCUR 4350	56.7	4.19	NA	4.0		400 PSI 3.24			
ACCUR 8700	79.0	5.44	NA	NA		900 PSI 3.24			
ACCUR 2700	56.0	3.83	NA	3.7		200 PSI 3.24			
139 Grain Jac	keted								
RELODER22	63.8	4.45	NA	4.3		000 PSI 3.27			
RELODER19	61.4	4.34	NA	4.3	67.5 3260 58	100 PSI 3.27			
RELODER15	49.8	3.52	NA	3.4		000 PSI 3.27			
v-N165	55.8	3.98	NA	3.7		600 CIP 3.18			
RELODER12	51.1	3.53	NA	3.4	57.0 3035 59	000 PSI 3.27			
140 Grain Jacketed									
H1000	70.7	5.04	NA	NA	76.0 3166 52	000 CUP 3.18			
11070									

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

H870

H4831

H450

ACCUR 3100

ACCUR 4350

ACCUR 2700

79.0

62.8

62.4

57.8

59.3

57.5

5.42

4.56

4.66

3.77

4.39

3.94

NA

NA

NA

NA

NA

NA

NA

4.3

4.3

3.7

4.3

3.7

68.0 3092

79.0 3153 46800 CUP 3.185

67.0 3114 51600 CUP 3.185

66.0 3049 55300 CUP 3.185

61.0 3028 54900 PSI 3.270

59.5 2995 55200 PSI

58200 PSI 3.270

Powder Type

H4350

140 Grain Jacketed (Continued)

56.0 4.06

Copyright 08-14-1996

....STARTING LOADS.... Start Volume Auto- Lee NEVER Velocity Grains CC Disk Dipper EXCEED FPS

4.0

Mimimum Pressure Units OAL

60.0 2930 51900 CUP 3.185

ACCUR 8700	80.0	5.50	NA	NA	80.0	2777	41500	PSI	3.270
145 Grain Jac	keted								
RELODER22	58.2	4.06	NA	4.0		3150	58600		3.280
RELODER19	55.9	3.94	NA	3.7		3090	58400		3.280
RELODER15	42.8	3.02	DBLD	2.8		2780	58700		3.280
RELODER12	43.1	2.98	DBLD	2.8	48.0	2765	58900	PSI	3.280
150 Grain Jac									
H1000	70.7	5.04	NA	NA		3159	52000		
v-N160	66.8	4.90	NA	NA		3130	52939		
H870	74.0	5.07	NA	NA		3080	51700		
IMR4831	59.6	4.38	NA	4.3		3055	52000		
IMR4350	56.8	4.17	NA	4.0		3010	51700		
ACCUR 3100	58.5	4.38	NA	4.3		3003	60200		
v-N140	56.0	4.10	NA	4.0		3000	53664		3.185
H4831	58.9	4.27	NA	4.0		2997	53400		
ACCUR 4350	53.4	3.95	NA	3.7		2968	61000		
H450	56.2	3.67	NA	3.4		2964	55100		
ACCUR 8700	79.0	5.44	NA	NA	79.0	2951	50900		
IMR4064	48.8	3.63	NA	3.4		2935	51600		
ACCUR 2700	51.5	3.53	NA	3.4	57.5	2900	59600		
IMR4320	49.1	3.51	NA	3.4	54.0	2895	51300		1300 1001 100
IMR4895	47.1	3.43	NA	3.4		2880	51500		
IMR3031	45.7	3.48	NA	3.4	51.0	2850	52000	CUP	3.290
H4350	55.8	4.04	NA	4.0	59.0	2841	51200	CUP	3.185
IMR4198	38.5	3.05	DBLD	2.8	43.0	2705	52000		
IMR4227	32.9	2.53	DBLD	2.5	36.0	2455	51000		
SR4759	31.7	3.15	DBLD	3.1	35.0	2420	51500	CUP	3.290
155 Grain Jac	keted								
v-N160	64.5	4.73	NA	4.3	67.1	3080	53664	CIP	3.185
160 Grain Jac	keted								
RELODER22	58.7	4.09	NA	4.0	65.0	3075	58600		3.285
v-N160	60.9	4.47	NA	4.3		3050	55114		3.185
RELODER19	56.0	3.96	NA	3.7	-	3020	58500		3.285
ACCUR 8700	78.4	5.39	NA	NA	79.0	2933	53800	PSI	3.280
CAUTION: With NEVER DBLD = Double Disk, s	ee instruc	ctions wit	th your A	/linimun uto-Disk	n Over A	l Length measure	or longer. . NA =	None	Available
C	opyright (8-14-19	96						

	ST	ARTINO	Auto	DS	NEVED Volceit		Minimum
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
160 Grain Jac	keted (Contin					
ACCUR 3100	57.4	4.30	NA	4.3	63.5 2855	59000	PSI 3.280
ACCUR 2700	52.5	3.59	NA	3.4	57.5 2781	58500	PSI 3.280
ACCUR 4350	52.2	3.86	NA	3.7	57.0 2768	58300	PSI 3.280
							15 10 10 10 10
162 Grain Jac	keted						
H870	76.9	5.28	NA	NA	79.0 3099	49700	CUP 3.185
v-N160	60.9	4.47	NA	4.3	65.1 3050	55114	CIP 3.185
H1000	67.5	4.81	NA	4.3	72.5 3038	52000	CUP 3.185
H4831	63.1	4.58	NA	4.3	66.0 3028	50600	CUP 3.185
H450	62.0	4.05	NA	4.0	64.0 2997	50000	CUP 3.185
H4350	55.0	3.99	NA	3.7	58.0 2727	51000	CUP 3.185
168 Grain Jac	keted						
H1000	67.0	4.78	NA	4.3	72.0 3015	52000	CUP 3.185
H870	75.6	5.19	NA	NA	77.0 2963	49300	CUP 3.185
H4831	58.0	4.20	NA	4.0	63.0 2927	52600	CUP 3.185
ACCUR 8700	78.0	5.37	NA	NA	78.0 2864		PSI 3.280
ACCUR 4350	50.7	3.76	NA	3.7	58.0 2782	61000	PSI 3.280
ACCUR 3100	57.2	4.28	NA	4.0	62.0 2775	57900	PSI 3.280
H450	58.2	3.80	NA	3.7	62.0 2762	51600	CUP 3.185
ACCUR 2700	51.2	3.50	NA	3.4	56.0 2713	58400	PSI 3.280
H4350	53.7	3.89	NA	3.7	57.0 2672	51400	CUP 3.185
*							
170 Grain Jac	keted						
v-N160	59.1	4.34	NA	4.3	63.1 3070	55114	CIP 3.185
175 Grain Jac	keted						
H1000	63.4	4.52	NA	4.3	72.0 2949	55000	CUP 3.185
H870	76.7	5.26	NA	NA	77.0 2918		CUP 3.185
IMR7828	59.2	4.29	NA	4.0	66.0 2910		CUP 3.290
RELODER22	55.5	3.87	NA	3.7	61.3 2900		PSI 3.285
H4831	56.7	4.11	NA	4.0	63.0 2869		CUP 3.185
v-N160	56.4	4.14	NA	4.0	60.2 2810		CIP 3.185
IMR4831	56.5	4.15	NA	4.0	63.0 2790		CUP 3.290
IMR4350	53.5	3.94	NA	3.7	59.5 2765	51800	CUP 3.290
ACCUR 8700	75.0	5.16	NA	NA	75.0 2754	51800	PSI 3.275
H450	57.5	3.75	NA	3.7	62.0 2719	52200	CUP 3.185
ACCUR 3100	54.1	4.05	NA	4.0	60.5 2700	59700	PSI 3.275
IMR4320	45.3	3.24	DBLD	3.1	50.5 2665	52000	CUP 3.290
CALITION WITH NEVER				20 2	0 4111 11		

	ST/	ARTING					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimu Units OAL
175 Grain Jac	keted (Contin	ued)				
ACCUR 4350	50.9	3.77	NA	3.7	56.0 2653	58700	PSI 3.28
IMR4064	46.2	3.44	NA	3.4	51.0 2645	51500	CUP 3.29
IMR4895	44.8	3.26	DBLD	3.1	50.0 2645	52000	CUP 3.29
H4350	52.3	3.79	NA	3.7	55.0 2617	50900	CUP 3.18
ACCUR 2700	47.3	3.24	DBLD	3.1	53.0 2581	59800	PSI 3.27
IMR3031	43.7	3.33	NA	3.1	47.5 2555	50700	CUP 3.29
IMR4198	37.2	2.95	DBLD	2.8	41.5 2440	52000	CUP 3.29
IMR4227	31.9	2.46	DBLD	2.2	35.5 2240	51800	CUP 3.29
SR4759	31.0	3.07	DBLD	2.8	34.0 2220	51200	CUP 3.29

195 Grain Jacketed									
H1000	59.3	4.23	NA	4.0	67.5 2737	55100	CUP	2.250	
H870	65.6	4.50	NA	4.3	72.0 2719	53100	CUP	3.250	
ACCUR 8700	77.0	5.30	NA	NA	77.0 2708	51600	PSI	3.275	
ACCUR 3100	52.2	3.90	NA	3.7	58.5 2538	59800	PSI	3.275	
ACCUR 4350	49.7	3.68	NA	3.4	52.6 2440	56500	PSI	3.275	
ACCUR 2700	46.6	3.19	DBLD	3.1	51.0 2407	58400	PSI	3.275	

7mm WEATHERBY MAGNUM

	Start	Volume	Auto- Disk		NEVER Velo	city S Pressure	N	limimum
Powder Type	Grains	CC	Disk	Dipper	EXCEED FP	S Pressure	Units	OAL
100 Grain Jac	keted							
H4831	70.2	5.09	NA	NA	78.0 35:	29 NA	NA	3.100
H4350	64.8	4.70	NA	4.3	72.0 34	77 NA	NA	3.100
H1000	72.0	5.13	NA	NA	80.0 34	14 NA	NA	3.100
H414	61.2	4.05	NA	4.0	68.0 33	03 NA	NA	3.100
H870	73.8	5.06	NA	NA	82.0 31	51 NA	NA	3.100

120 Grain Jac	keted						
ACCUR 4350	63.6	4.70	NA	4.3	71.0 3484	63300	PSI 3.285
ACCUR 3100	72.9	5.45	NA	NA	76.0 3477	59100	PSI 3.285
H4831	69.3	5.02	NA	NA	77.0 3475	NA	NA 3.150
H450	69.3	4.53	NA	4.3	77.0 3461	NA	NA 3.150
H4350	63.9	4.63	NA	4.3	71.0 3434	NA	NA 3.150
RELODER15	55.1	3.89	NA	3.7	61.3 3370	52500	CUP 3.200
H1000	72.0	5.13	NA	NA	80.0 3369	NA	NA 3.150
H414	60.3	3.99	NA	3.7	67.0 3225	NA	NA 3.150
H870	73.8	5.06	NA	NA	82.0 3085	NA	NA 3.150
ACCUR 8700	86.0	5.92	NA	NA	86.0 3073	42100	PSI 3.285

120 Grain Barnes X Bullet											
ACCUR 3100	69.3	5.18	NA	NA	76.0 3470	62200	PSI	3.310			

7mm WEATHERBY MAGNUM (Continued)

Powder Type		STA			DS					
120 Grain Barnes X Bullet (Continued) ACCUR 4350 62.3 4.61 NA 4.3 69.0 3420 62800 PSI 3.310 ACCUR 8700 85.0 5.85 NA NA 85.0 3052 43800 PSI 3.310	Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	limimum SOAL
ACCUR 4350 ACCUR 8700 B5.0 B5.0 B5.85 NA NA B5.0 B5.0 B5.85 NA NA B5.0 B5.0 B5.0 B5.85 NA NA B5.0 B5.0 B5.0 B5.0 B5.0 B5.0 B5.85 NA NA B5.0 B5.0 B5.0 B5.0 B5.0 B5.0 B5.0 B5.0	The second secon		ullet (0	ALCOHOL: NAME OF TAXABLE PARTY.						
130 Grain Jacketed						69.0	3420	62800	PSI	3.310
H4350 H4831 H4831 H557 H4870 H	ACCUR 8700	85.0	5.85	NA	NA	85.0	3052	43800	PSI	3.310
H4350 H4831 H4831 H557 H4870 H	1.0									
H4350 H4831 H4831 H557 H4870 H	130 Grain Jac	keted								
H4831			4.57	NA	4.3	70.0	3292	NA	NA	3.150
H450		65.7	4.76	NA	4.3	73.0	3263	NA	NA	3.150
H450 65.7 4.29 NA 4.0 73.0 3202 NA NA 3.150 H1000 71.1 5.07 NA NA 79.0 3194 NA NA 3.150 139 Grain Jacketed RELODER22 67.5 4.71 NA 4.3 74.8 3355 52300 CUP 3.280 RELODER19 63.7 4.50 NA 4.3 70.9 3315 52500 CUP 3.280 ACCUR 3100 67.7 5.06 NA NA 74.0 3313 62000 PSI 3.340 ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H450 62.1 4.50 NA 4.3 69.0 3222 NA NA 3.200 H450 65.7 4.29 NA 4.0 73.0 3217 NA NA <td>H870</td> <td>73.8</td> <td>5.06</td> <td>NA</td> <td>NA</td> <td>82.0</td> <td>3230</td> <td>NA</td> <td>NA</td> <td>3.150</td>	H870	73.8	5.06	NA	NA	82.0	3230	NA	NA	3.150
Tag Grain Jacketed RELODER22 67.5 4.71 NA 4.3 74.8 3355 52300 CUP 3.280		65.7	4.29	NA	4.0	73.0	3202	NA	NA	3.150
RELODER22 67.5 4.71 NA 4.3 74.8 3355 52300 CUP 3.280 RELODER19 63.7 4.50 NA 4.3 70.9 3315 52500 CUP 3.280 ACCUR 3100 67.7 5.06 NA NA 74.0 3313 62000 PSI 3.340 ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H4550 62.1 4.50 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.240 ACCUR 8700 82.0 5.64 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41	H1000	71.1	5.07	NA	NA	79.0	3194	NA	NA	3.150
RELODER22 67.5 4.71 NA 4.3 74.8 3355 52300 CUP 3.280 RELODER19 63.7 4.50 NA 4.3 70.9 3315 52500 CUP 3.280 ACCUR 3100 67.7 5.06 NA NA 74.0 3313 62000 PSI 3.340 ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H4550 62.1 4.50 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.240 ACCUR 8700 82.0 5.64 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41										
RELODER22 67.5 4.71 NA 4.3 74.8 3355 52300 CUP 3.280 RELODER19 63.7 4.50 NA 4.3 70.9 3315 52500 CUP 3.280 ACCUR 3100 67.7 5.06 NA NA 74.0 3313 62000 PSI 3.340 ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H4550 62.1 4.50 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.240 ACCUR 8700 82.0 5.64 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41	139 Grain Jac	keted								
RELODER19 63.7 4.50 NA 4.3 70.9 3315 52500 CUP 3.280 ACCUR 3100 67.7 5.06 NA NA 74.0 3313 62000 PSI 3.340 ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H4350 62.1 4.50 NA 4.3 69.0 3222 NA NA 3.200 H450 65.7 4.29 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 82.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 8700 82.0 5.64 NA			4.71	NA	4.3	74.8	3355	52300	CUP	3.280
ACCUR 3100 67.7 5.06 NA NA 74.0 3313 62000 PSI 3.340 ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H4350 62.1 4.50 NA 4.3 69.0 3222 NA NA 3.200 H450 65.7 4.29 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 82.0 5.64 NA NA 82.0 2929 41200 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 3202 5200 CUP 3.240 145 Grain Jacketed RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	the second secon		4.50	NA	4.3	70.9	3315	52500	CUP	3.280
ACCUR 4350 62.7 4.64 NA 4.3 69.0 3293 62400 PSI 3.340 H4831 65.7 4.76 NA 4.3 73.0 3232 NA NA 3.200 H4350 62.1 4.50 NA 4.3 69.0 3222 NA NA 3.200 H450 65.7 4.29 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 82.0 5.64 NA NA 82.0 2929 41200 PSI 3.340 ACCUR 3100 67.0 5.01 NA NA 82.0 2929 41200 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 ACCUR 8700 82.0 5.64		67.7	5.06	NA	NA	74.0	3313	62000	PSI	3.340
H4350 62.1 4.50 NA 4.3 69.0 3222 NA NA 3.200 H450 65.7 4.29 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 82.0 5.64 NA NA 82.0 2929 41200 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER19 61.5 4.34 NA 4.3 72.4 3245 52500 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400	ACCUR 4350	62.7	4.64	NA	4.3	69.0	3293	62400	PSI	3.340
H450 H450 65.7 4.29 NA 4.0 73.0 3217 NA NA 3.200 H1000 70.2 5.01 NA NA 78.0 3190 NA NA 3.200 H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 82.0 5.64 NA NA 82.0 2929 41200 PSI 3.340 140 Grain Barnes X Bullet ACCUR 3100 67.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER22 65.1 4.54 NA NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	H4831	65.7	4.76	NA	4.3	73.0	3232	NA	NA	3.200
H1000 H370 T2.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 RCCUR 8700 RCCUR 3100 ACCUR 3100 ACCUR 4350 ACCUR 4350 ACCUR 8700 RCCUR 8700 RCCUR 8700 RCCUR 8700 RCCUR 4350 ACCUR 4350 RCCUR	H4350	62.1	4.50	NA	4.3	69.0	3222	NA	NA	3.200
H870 72.9 5.00 NA NA 81.0 3037 NA NA 3.200 ACCUR 8700 82.0 5.64 NA NA 82.0 2929 41200 PSI 3.340 140 Grain Barnes X Bullet ACCUR 3100 67.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER19 61.5 4.34 NA 4.3 72.4 3245 52500 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	H450	65.7	4.29	NA	4.0	73.0	3217	NA		
ACCUR 8700 82.0 5.64 NA NA 82.0 2929 41200 PSI 3.340 140 Grain Barnes X Bullet ACCUR 3100 67.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	H1000	70.2	5.01	NA	NA	78.0	3190	NA		
140 Grain Barnes X Bullet ACCUR 3100 67.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250		72.9	5.00					150,550		
ACCUR 3100 67.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER19 61.5 4.34 NA 4.3 72.4 3245 52500 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	ACCUR 8700	82.0	5.64	NA	NA	82.0	2929	41200	PSI	3.340
ACCUR 3100 67.0 5.01 NA NA 72.0 3214 60900 PSI 3.345 ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER19 61.5 4.34 NA 4.3 72.4 3245 52500 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250										
ACCUR 4350 59.6 4.41 NA 4.3 66.0 3161 62800 PSI 3.345 ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	140 Grain Bar	nes X E	Bullet							
ACCUR 8700 82.0 5.64 NA NA 82.0 2922 44300 PSI 3.345 145 Grain Jacketed RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	ACCUR 3100	67.0	5.01	NA	NA	72.0	3214	60900	PSI	3.345
145 Grain Jacketed RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 T50 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	ACCUR 4350	59.6	4.41	NA	4.3	66.0	3161	62800	PSI	3.345
RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	ACCUR 8700	82.0	5.64	NA	NA	82.0	2922	44300	PSI	3.345
RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250										
RELODER22 65.1 4.54 NA 4.3 72.4 3245 52500 CUP 3.240 RELODER19 61.5 4.34 NA 4.3 68.0 3165 52200 CUP 3.240 150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	145 Grain Jac	keted								
150 Grain Jacketed RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250			4.54	NA	4.3	72.4	3245	52500	CUF	3.240
RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	RELODER19	61.5	4.34	NA	4.3	68.0	3165	52200	CUF	3.240
RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250										
RELODER22 64.9 4.52 NA 4.3 72.0 3220 52400 CUP 3.250	150 Grain Jac	keted								
TILE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			4.52	NA	4.3	72.0	3220	52400	CUF	3.250
TH483T 103.9 4.03 NA 4.3 / 1.0 320 / NA NA 3.200	H4831	63.9	4.63	NA	4.3	71.0	3207	NA	NA	3.200
ACCUR 3100 64.6 4.83 NA 4.3 72.0 3199 63200 PSI 3.350				000000000000000000000000000000000000000		72.0	3199	63200	PSI	3.350
H1000 69.3 4.94 NA NA 77.0 3180 NA NA 3.200				NA	NA	77.0	3180	NA	150,750,100	
H4350 61.2 4.44 NA 4.3 68.0 3159 NA NA 3.200	H4350	61.2	4.44	NA	4.3	68.0	3159	NA	NA	3.200
RELODER19 60.5 4.27 NA 4.0 67.3 3145 52500 CUP 3.250	RELODER19	60.5	4.27	NA	4.0	67.3	3145	52500	CUF	3.250

7mm WEATHERBY MAGNUM (Continued)

	ST/	ARTING		\DS				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Units	Aimimur S OAL
150 Grain Jac	keted (Continu	ued)					
H450	63.0	4.11	NA	4.0	70.0 3092	NA	NA	3.200
ACCUR 4350	58.8	4.35	NA	4.3	65.0 3090	62700	PSI	3.350
H870	72.9	5.00	NA	NA	81.0 3008	NA	NA	3.200
ACCUR 8700	82.0	5.64	NA	NA	82.0 2902	43200	PSI	3.350
								100
160 Grain Jac	keted							0.000
RELODER22	63.6	4.43	NA	4.3	70.7 3110	52500	CUP	3.240
ACCUR 3100	65.1	4.87	NA	4.3	70.5 3106	61400	PSI	3.355
RELODER19	58.5	4.13	NA	4.0	64.8 3045	52300	CUP	3.240
ACCUR 4350	58.4	4.32	NA	4.3	65.0 3039	63100	PSI	3.355
ACCUR 8700	81.0	5.57	NA	NA	81.0 2892	45000	PSI	3.355
160 Grain Barı	nes X E	Bullet						
ACCUR 3100	63.9	4.78	NA	4.3	71.0 3055	63000	PSI	3.340
ACCUR 4350	58.2	4.31	NA	4.3	64.0 2957	62300		3.340
ACCUR 8700	81.0	5.57	NA	NA	81.0 1784	43200	PSI	3.340
					19			100
162 Grain Jac	keted							2.00
H450	65.7	4.29	NA	4.0	73.0 3171	NA	NA	3.200
H4831	64.8	4.70	NA	4.3	72.0 3119	NA	NA	3.200
H1000	69.3	4.94	NA	NA	77.0 3082	NA	NA	3.200
H4350	58.5	4.24	NA	4.0	65.0 3013	NA		3.200
H870	72.0	4.94	NA	NA	80.0 2952	NA	NA	3.200
								77
168 Grain Jac	keted							
H1000	69.3	4.94	NA	NA	77.0 3169	NA	NA	3.300
H450	64.8	4.23	NA	4.0	72.0 3150	NA		3.300
H4831	64.8	4.70	NA	4.3	72.0 3143	NA		3.300
H870	72.0	4.94	NA	NA	80.0 3030	NA		3.300
H4350	57.6	4.18	NA	4.0	64.0 2932	NA		3.300
								THE RESERVE

7mm WEATHERBY MAGNUM (Continued)

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
175 Grain Jac	keted								
ACCUR 3100	61.4	4.59	NA	4.3	69.0	2976	63700	PSI	3.360
RELODER22	60.6	4.22	NA	4.0	67.4	2965	52500	CUP	3.245
H1000	67.5	4.81	NA	4.3	75.0	2946	NA	NA	3.300
H870	71.1	4.88	NA	4.3	79.0	2929	NA	NA	3.300
H450	63.0	4.11	NA	4.0	70.0	2925	NA	NA	3.300
H4831	63.0	4.57	NA	4.3	70.0	2904	NA	NA	3.300
ACCUR 4350	58.3	4.32	NA	4.3	63.0	2894	61200	PSI	3.360
RELODER19	54.7	3.86	NA	3.7	60.5	2850	52200	CUP	3.245
H4350	56.7	4.11	NA	4.0	63.0	2801	NA	NA	3.300
ACCUR 8700	80.0	5.50	NA	NA	80.0	2775	42700	PSI	3.360

 195 Grain Jacketed

 H1000
 63.0
 4.49
 NA
 4.3
 70.0
 2804
 NA
 NA
 3.300

 H870
 67.5
 4.63
 NA
 4.3
 75.0
 2770
 NA
 NA
 3.300

H870 67.5 4.63 NA 4.3 75.0 2770 NA NA 3.300 H4831 59.4 4.31 NA 4.3 66.0 2710 NA NA 3.300

7.5 X 55 SWISS

Do Not Use in Schmidt-Rubin Model 1889.

The state of the s	517	ARTING		DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimum SOAL
125 Grain Jac	keted								
H4350	45.9	3.33	NA	3.1	51.0	2839	NA	NA	3.001
H414	43.2	2.86	DBLD	2.8	48.0	2829	NA	NA	3.001
H4831	46.8	3.39	NA	3.1	52.0	2811	NA	NA	3.001
H450	47.7	3.11	DBLD	3.1	53.0	2809	NA	NA	3.001
H380	41.4	2.86	DBLD	2.8	46.0	2797	NA	NA	3.001
H4895	38.7	2.82	DBLD	2.8	43.0	2762	NA	NA	3.001
BL-C(2)	38.7	2.50	DBLD	2.5	43.0	2739	NA	NA	3.001
H335	37.8	2.44	DBLD	2.2	42.0	2692	NA	NA	3.001

150 Grain Jac	keted						
H414	41.4	2.74	DBLD	2.5	46.0 2689	NA	NA 3.001
H450	46.8	3.06	DBLD	2.8	52.0 2664	NA	NA 3.001
H380	39.6	2.74	DBLD	2.5	44.0 2661	NA	NA 3.001
H4831	45.9	3.33	NA	3.1	51.0 2659	NA	NA 3.001
H4350	44.1	3.20	DBLD	3.1	49.0 2610	NA	NA 3.001
H4895	37.8	2.75	DBLD	2.5	42.0 2578	NA	NA 3.001
BL-C(2)	37.8	2.44	DBLD	2.2	42.0 2559	NA	NA 3.001
H335	37.8	2.44	DBLD	2.2	42.0 2541	NA	NA 3.001

7.5 X 55 SWISS (Continued) Do Not Use in Schmidt-Rubin Model 1889.

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL	
168 Grain Jac	keted							r.S.		
H4831	44.1	3.20	DBLD	3.1	49.0	2578	NA	NA	3.001	
H450	44.1	2.88	DBLD	2.8	49.0	2549	NA	NA	3.001	
H4350	43.2	3.13	DBLD	3.1	48.0	2524	NA	NA	3.001	
H414	39.6	2.62	DBLD	2.5	44.0	2519	NA	NA	3.001	
H380	38.7	2.67	DBLD	2.5	43.0	2502	NA	NA	3.001	
H4895	36.9	2.69	DBLD	2.5	41.0	2432	NA	NA	3.001	
BL-C(2)	36.9	2.38	DBLD	2.2	41.0	2404	NA	NA	3.001	
H335	36.9	2.38	DBLD	2.2	41.0	2399	NA	NA	3.001	

180 Grain Jac	keted						
H4350	41.4	3.00	DBLD	2.8	46.0 2566	NA	NA 3.001
H4831	42.3	3.07	DBLD	2.8	47.0 2424	NA	NA 3.001
H450	42.3	2.76	DBLD	2.5	47.0 2409	NA	NA 3.001
H414	37.8	2.50	DBLD	2.5	42.0 2355	NA	NA 3.001
H380	36.0	2.49	DBLD	2.2	40.0 2323	NA	NA 3.001
H4895	35.1	2.56	DBLD	2.5	39.0 2296	NA	NA 3.001
BL-C(2)	35.1	2.26	DBLD	2.2	39.0 2284	NA	NA 3.001
H335	35.1	2.26	DBLD	2.2	39.0 2263	NA	NA 3.001

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
86 Grain Bullet		u = 2								
ACCUR #7	7.1	.47	.46	NA	7.7	1421	24400	CUP 1.325		
ACCUR #5	5.8	.36	.34	NA	6.3	1385	24600	CUP 1.325		
ACCUR #2	4.2	.35	.34	NA	4.7	1330	25100	CUP 1.325		
								1 1 1 1		
93 Grain Bullet										
ACCUR #7	6.8	.45	.43	NA	7.5	1363	24800	CUP 1.325		
ACCUR #5	5.5	.34	.34	NA	6.2	1343	25400	CUP 1.325		
ACCUR #2	4.2	.36	.34	NA	4.7	1265	25000	CUP 1.325		

ACCUR #2	4.2	.36	.34	NA	4.7	1265	25000	CUP	1.325
BULLSEYE	3.2	.34	.34	NA	3.6	1173	NA	NA	1.130
WIN 231	3.8	.35	.34	NA	4.2	1085	25500	CUP	1.130
HP38	3.5						NA		

100 Grain Bu	llet							
ACCUR #7	6.7	.44	.43	NA	7.2	1302	24300	CUP 1.325
ACCUR #5	5.3	.33	.32	.3	5.8	1268	24700	CUP 1.325
ACCUR #2	4.0	.33	.32	.3	4.4	1200	25100	CUP 1.325

7.62mm TOKAREV

hese are the same as 30 Mauser loads.

	ST/	ARTING	LOA	<u> </u>					_
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
86 Grain Bullet									
ACCUR #7	7.1	.47	.46	NA			24400		
ACCUR #5	5.8	.36	.34	NA			24600		
ACCUR #2	4.2	.35	.34	NA	4.7	1330	25100	CUP	1.325

93 Grain Bullet								
ACCUR #7	6.8	.45	.43	NA	7.5	1363	24800	CUP 1.325
ACCUR #5	5.5	.34	.34	NA	6.2	1343	25400	CUP 1.325
ACCUR #2	4.2	.36	.34	NA	4.7	1265	25000	CUP 1.325
BULLSEYE	3.2	.34	.34	NA		1173		NA 1.130
WIN 231	3.8	.35	.34	NA	4.2	1085	25500	CUP 1.130
HP38	3.5	.33	.32	.3	3.9	1070	NA	NA 1.130

100 Grain Bull	et							
ACCUR #7	6.7	.44	.43	NA	7.2	1302	24300	CUP 1.325
ACCUR #5	5.3	.33	.32	.3	5.8	1268	24700	CUP 1.325
ACCUR #2	4.0	.33	.32	.3	4.4	1200	25100	CUP 1.325

	STA	ARTING		ADS				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
86 Grain Jac	keted							
ACCUR #7	7.0	.46	.46	NA	7.6	1417	26800	CUP 1.175
ACCUR #5	5.5	.34	.34	.3				CUP 1.175
ACCUR #2	4.0	.33	.32	.3				CUP 1.175

HP38 3.	5 .33	.32	.3	3.9 1070	NA	NA 1.130

93 Grain Jac	keted							
ACCUR #7	6.7	.44	.43	NA	7.2	1338	26400	CUP 1.170
ACCUR #5	5.4	.34						CUP 1.170
WIN 231	3.8	.35	.34	NA	4.2	1085	25500	CUP 1.170

100 Grain Ja	cketed							
ACCUR #7	6.5	.42	.40	NA	6.9	1294	26200	CUP 1.180
ACCUR #5	5.1							CUP 1.180
ACCUR #2	4.0	.33						CUP 1.180

30 M1 CARBINE

		ARTING							
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Y EXCEED	Velocity FPS	Pressure	M Units	limimum OAL
85 Grain Jacke	eted								
H110	NA	NA	NA	NA	16.0	2356	NA	NA	1.625

93 Grain	Jacketed						
H110	NΔ	ΝΔ	NA	ΝΔ	15 5 2221	NA	NA 1 625

	100	Grain	Jac	keted	
:					

ACCUR #9	11.8	.78	.76	.7	13.3 2015	39000	CUP 1.675
H110	NA	NA	NA	NA	14.5 2013	NA	NA 1.625
IMR4227	14.4	1.11	1.09	1.0	16.0 2005	40000	CUP 1.670
H4227	13.0	1.00	.95	1.0	14.5 1897	NA	NA 1.625
ACCUR 1680	17.0	1.11	1.09	1.0	17.0 1842	24200	CUP 1.675
HERC 2400	11.4	.84	.82	NA	12.3 1815	34500	CUP 1.625
SR4759	11.0	1.09	1.09	1.0	11.0 1575	23700	CUP 1.670
IMR4198	14.5	1.15	1.09	NA	14.5 1530	20700	CUP 1.670

110 Grain Jacketed

WIN 296	NA	NA	NA	NA	15.0 1980	36000	CUP 1.625
WIN 680	14.3	.93	.88	NA	16.0 1970	37500	CUP 1.625
H4227	13.0	1.00	.95	1.0	14.5 1935	NA	NA 1.625
H110	NA	NA	NA	NA	14.0 1906	32400	CUP 1.625
IMR4227	13.5	1.04	1.02	1.0	15.0 1900	40000	CUP 1.680
ACCUR #9	11.0	.72	.71	.7	12.6 1893	39800	CUP 1.670

30 M1 CARBINE (Continued)

....STARTING LOADS...

		AULIAC		(D3					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
110 Grain Jac	keted (Continu	ued)						
ACCUR 1680	16.0	1.05	1.02	1.0	16.0	1765	26800	CUP	1.670
SR4759	11.0	1.09	1.09	1.0	11.0	1545	26100	CUP	1.680
IMR4198	14.5	1.15	1.09	NA	14.5	1495	20900	CUP	1.680
						4			
112 Grain Lea	d			*					
HERC 2400	9.2	.68	.66	NA	10.3	1590	35700	CUP	1.625
115 Grain Lea	d								
H4227	11.7	.90	.88	NA	13.0	1837	NA	NA	1.625
H110	NA	NA	NA	NA	13.0	1580	NA	NA	1.625
HS7	7.4	.50	.49	.5	8.2	1221	NA	NA	1.625
HS6	6.7	.48	.46	NA	7.5	1189	NA	NA	1.625
								1/91	
120 Grain Lea	d								
ACCUR #9	10.5	.69	.66	NA	11.0	1769	36400	CUP	1.705
ACCUR 1680	15.0	.98	.95	NA	15.0	1756	33600	CUP	1.705
130 Grain Lea	d								
H110	NA	NA	NA	NA	11.5	1753	NA	NA	1.625
H4227	10.3	.80	.76	NA	11.5	1649	NA	NA	1.625
HS7	6.3	.43	.43	NA	7.0	1194	NA	NA	1.625

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

NA

1113

NA

NA 1.625

6.5

.40

.42

5.8

HS6

7.62x39 RUSSIAN SOME U.S. MADE GUNS USE .308 BULLETS

	STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mi Units	mimum OAL			
100 Grain Jack	keted											
ACCUR 1680	26.2	1.72	DBLD	1.6	28.5	2642	47100	CUP '	1.950			
ACCUR 2015BR	28.5	2.08	DBLD	1.9	28.5	2266	39400	CUP '	1.950			
ACCUR 2230	29.5	1.94	DBLD	1.9	29.5	2266	42400	CUP'	1.950			
ACCUR 2460	29.5	1.94	DBLD	1.9	29.5	2184	42600	CUP'	1.950			

110 Grain Jac	keted						
ACCUR 1680	24.7	1.62	DBLD	1.6	27.5 2547	48300	CUP 2.115
RELODER 7	26.5	1.93	DBLD	1.9	26.5 2330	38300	CUP 2.055
ACCUR 2015BR	28.5	2.08	DBLD	1.9	28.5 2271	41500	CUP 2.115
ACCUR 2230	28.2	1.85	DBLD	NA	29.5 2225	45400	CUP 2.115
ACCUR 2460	28.2	1.85	DBLD	NA	29.5 2194	45400	CUP 2.115
HERC 2400	14.3	1.06	1.02	1.0	16.0 2115	44800	CUP 2.055

123 Grain Jac							
RELODER 7	22.6	1.65	DBLD	1.6	25.5 2330	45000	CUP 2.155
v-N130	23.6	1.78	DBLD	1.6	26.4 2330	43200	CIP 1.950
v-N120	22.2	1.72	DBLD	1.6	24.0 2270	41780	CIP 1.950
HERC 2400	13.6	1.01	.95	1.0	15.3 1915	44900	CUP 2.155

7.62x39 RUSSIAN (Continued) SOME U.S. MADE GUNS USE .308 BULLETS

	STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Vel EXCEED F	ocity PS	Pressure		nimum OAL			
125 Grain Jac				- ' '								
H335	28.5	1.84	DBLD	NA	31.5 24	804	40900	CUP 2	170			
H4198	24.3	1.82	DBLD	NA	26.5 23	378	40400	CUP 2	170			
ACCUR 1680	22.8	1.49	1.46	NA	25.5 23	368	48500	CUP 2	195			
BL-C(2)	30.1	1.94	DBLD	1.9	31.5 23	349	38800	CUP 2	170			
H322	29.0	2.10	DBLD	1.9	29.0 23	323	35400	CUP 2	170			
ACCUR 2015BR	25.9	1.89	DBLD	NA	28.5 23	309	47700	CUP 2	195			
IMR4198	22.4	1.77	DBLD	1.6	24.0 22	250	42500	CUP 2	180			
H4895	29.0	2.11	DBLD	1.9	29.0 22	249	33600	CUP 2	170			
ACCUR 2230	25.7	1.69	DBLD	1.6	29.5 22	802	49800	CUP 2	195			
ACCUR 2460	27.5	1.80	DBLD	1.6	29.5 21	76	46600	CUP 2	195			
IMR4227	16.6	1.28	1.26	NA	18.5 19	95	44100	CUP 2	180			
130 Grain Jac	keted											
ACCUR 1680	22.6	1.48	1.46	NA	25.0 22	296	47900	CUP 2	180			
ACCUR 2015BR	26.8	1.96	DBLD	1.9	28.0 22	213	45300	CUP 2	180			
ACCUR 2460	26.8	1.76	DBLD	1.6	29.0 21	20	47000	CUP 2	180			
ACCUR 2230	25.8	1.70	DBLD	1.6	28.0 20	94	47000	CUP 2.	180			
150 Grain Jac	keted											
H322	26.1	1.89	DBLD	NA	28.5 21	92	40400	CUP 2.	170			
H4895	26.4	1.92	DBLD	1.9	28.0 21	54	39300	CUP 2.	170			
RELODER 7	22.2	1.62	DBLD	1.6	24.8 21	45	44600	CUP 2.	000			
H335	25.3	1.63	DBLD	1.6	29.0 21	32	42500	CUP 2.	170			
H4198	22.8	1.71	DBLD	1.6	24.5 21	22	39800	CUP 2.	170			
BL-C(2)	27.0	1.74	DBLD	1.6	29.5 20	90	40400	CUP 2.	170			
ACCUR 2015BR	24.3	1.77	DBLD	1.6	26.0 20	72	46500	CUP 2.	180			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996

DBLD 1.6

DBLD 1.6

1.3

NA

NA

NA

1.26

1.18

.95

DBLD

22.5 2070 43600 CUP 2.210

22.5 2055 49000 CUP 2.180

27.0 1956 47600 CUP 2.180

18.0 1885 44400 CUP 2.210

49500 CUP 2.180

45000 CUP 2.000

27.0 1976

14.8 1800

IMR4198

IMR4227

HERC 2400

ACCUR 1680

ACCUR 2230

ACCUR 2460

20.4

19.9

23.7

24.6

16.1

13.1

1.62

1.30

1.55

1.61

1.24

.97

303 SAVAGE

These are 30-30 loads reduced 10% for your safety.

100 Grain Jac	keted					100	
ACCUR 2015BR	30.7	2.24	DBLD	2.2	33.7 2649 35	5910 PSI	2.500
ACCUR 2230	32.2	2.12	DBLD	1.9	35.0 2628 35	5550 PSI	2.500
ACCUR 2460	34.2	2.24	DBLD	2.2	35.0 2591 33	3480 PSI	2.500
ACCUR 2495BR	33.2	2.48	DBLD	2.2	33.2 2467 31	1320 PSI	2.500
ACCUR 2520	34.1	2.33	DBLD	2.2	34.1 2466 27	7540 PSI	2.500
H4895	33.2	2.42	DBLD	2.2	33.2 2440 27	7000 CUP	2.500
H335	34.1	2.20	DBLD	2.2	34.1 2432 28	3620 CUP	2.500
H322	31.4	2.28	DBLD	2.2	31.4 2422 27	7000 CUP	2.500
BL-C(2)	34.1	2.20	DBLD	2.2	34.1 2409 27	7540 CUP	2.500
H380	36.8	2.54	DBLD	2.5	36.8 2365 27	7540 CUP	2.500
ACCUR 2700	35.9	2.46	DBLD	2.2	35.9 2365 27	7630 PSI	2.500
H414	36.8	2.43	DBLD	2.2	36.8 2257 24	4300 CUP	2.500
H450	36.8	2.40	DBLD	2.2	36.8 1981 20	0070 CUP	2.500
H4350	35.9	2.60	DBLD	2.5	35.9 1942 25	5650 CUP	2.500
H4227	16.1	1.24	1.18	NA	16.1 1911 23	3670 CUP	2.500
H4831	35.9	2.60	DBLD	2.5	35.9 1897 22	2950 CUP	2.500

303 SAVAGE (Continued)
These are 30-30 loads reduced 10% for your safety.

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	elocity FPS	Pressure	N Units	limimum OAL		
110 Grain Jac	keted		DOMESTIC AND ADDRESS.								
ACCUR 2015BR	28.4	2.07	DBLD	1.9	31.9	2507	36810	PSI	2.500		
ACCUR 2495BR	29.4	2.20	DBLD	2.2	33.2	2483	36900	PSI	2.500		
ACCUR 2460	32.3	2.12	DBLD	1.9	33.2	2477	33660	PSI	2.500		
ACCUR 2520	34.1	2.33	DBLD	2.2	34.1	2474	32130	PSI	2.500		
ACCUR 2230	31.7	2.09	DBLD	1.9	32.3	2446	33300	PSI	2.500		
WIN 748	31.5	2.07	DBLD	1.9	33.1	2387	29700	CUP	2.500		
ACCUR 2700	35.9	2.46	DBLD	2.2	35.9	2340	29970	PSI	2.500		
WIN 680	15.6	1.02	1.02	1.0	17.9	2024	32400	CUP	2.500		
WIN 296	NA	NA	NA	NA	16.8	1983	32400	CUP	2.500		

125 Grain Bullet

123 Grain Buil	et				
H322	31.6	2.29	DBLD	2.2	33.2 2450 33840 CUP 2.500
H335	34.1	2.20	DBLD	2.2	34.1 2432 31860 CUP 2.500
H4895	33.0	2.41	DBLD	2.2	33.2 2409 32400 CUP 2.500
BL-C(2)	34.1	2.20	DBLD	2.2	34.1 2398 31320 CUP 2.500
H4198	26.5	1.99	DBLD	1.9	27.8 2382 33840 CUP 2.500
H380	35.0	2.42	DBLD	2.2	35.0 2267 29700 CUP 2.500
H414	35.9	2.37	DBLD	2.2	35.9 2137 28080 CUP 2.500
H4227	18.5	1.42	1.36	1.3	19.7 1994 34380 CUP 2.500
H450	35.9	2.34	DBLD	2.2	35.9 1922 22320 CUP 2.500
H4350	34.1	2.47	DBLD	2.2	34.1 1890 28440 CUP 2.500
H4831	34.1	2.47	DBLD	2.2	34.1 1869 27540 CUP 2.500

125 Grain Jacketed

RELODER 7	24.4	1.77	DBLD	1.6	26.9 2420	30690	CUP	2.500
RELODER12	30.3	2.09	DBLD	1.9	33.2 2351	35910	PSI	2.500

150 Grain Bullet

H4895	26.7	1.94	DBLD	1.9	30.5 2216	36810	CUP 2.500
H335	29.1	1.87	DBLD	NA	31.4 2214	34830	CUP 2.500
BL-C(2)	29.9	1.93	DBLD	1.9	31.4 2193	33840	CUP 2.500
H322	27.0	1.96	DBLD	1.9	29.6 2177	35370	CUP 2.500
H414	32.8	2.17	DBLD	NA	35.0 2141	34380	CUP 2.500
H4198	22.0	1.65	DBLD	1.6	25.1 2132	36810	CUP 2.500
H380	32.5	2.25	DBLD	2.2	34.1 2120	33840	CUP 2.500
H4350	34.1	2.47	DBLD	2.2	34.1 1878	32040	CUP 2.500

303 SAVAGE (Continued)

These are 30-30 loads reduced 10% for your safety.

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
150 Grain Bull	et (Cor	tinued))						
H4831	34.1	2.47	DBLD	2.2	34.1	1808	28080	CUP	2.500
H4227	15.7	1.21	1.18	NA	17.0	1731	34830	CUP	2.500
150 Grain Jac	keted								
RELODER15	29.0	2.04	DBLD	1.9	32.3	2254	36540	PSI	2.500
IMR3031	28.8	2.19	DBLD	NA	31.9	2180	33930	CUP	2.500
IMR4064	30.3	2.26	DBLD	2.2	33.7	2162	34020	CUP	2.500
ACCUR 2520	29.7	2.03	DBLD	1.9	30.1	2139	33120	PSI	2.500
RELODER12	27.1	1.87	DBLD	NA	30.1	2134	36360	PSI	2.500
IMR4895	28.6	2.08	DBLD	1.9	31.9	2130	34200	CUP	2.500
WIN 748	27.1	1.77	DBLD	1.6	31.0	2125	32400	CUP	2.500
ACCUR 2460	26.4	1.73	DBLD	1.6	29.2	2107	36180	PSI	2.500
ACCUR 2230	25.1	1.65	DBLD	1.6	28.5	2091	37170	PSI	2.500

DBLD 1.9

DBLD 1.9

DBLD NA

DBLD 1.6

DBLD 1.6

DBLD 1.6

DBLD 1.9

DBLD 2.5

DBLD 2.5

NA

1.18

1.59 DBLD NA

33.2 2084

25.1 2033

32.3 1923

34.6 1771

1	50	Grain	ī	and

ACCUR 2700

ACCUR 2495BR

ACCUR 2015BR

IMR4320

IMR4198

WIN 760

IMR4350

IMR4831

IMR4227

SR4759

RELODER 7

30.7

29.5

24.5

22.9

24.6

22.6

32.3

34.6

34.6

16.2

16.0

2.10

2.11

1.84

1.81

1.80

1.64

2.15

2.54

2.54

1.25

150 Grain Lead							
ACCUR 2700	30.5	2.09	DBLD	1.9	30.5 1892	25290 PSI	2.500
ACCUR 2495BR	25.6	1.92	DBLD	1.9	25.6 1885	25560 PSI	2.500
ACCUR 2520	24.7	1.69	DBLD	1.6	24.7 1844	23130 PSI	2.500
ACCUR 2460	24.2	1.59	DBLD	NA	24.2 1834	23760 PSI	2.500
ACCUR 2015BR	22.9	1.67	DBLD	1.6	22.9 1828	24930 PSI	2.500
ACCUR 2230	23.3	1.53	1.46	NA	23.3 1815	25020 PSI	2.500

155 Grain Jac									
v-N140	25.8	1.89	DBLD	NA	28.7	1960	35244	CIP	2.500

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-14-1996

35370 PSI 2.500

33570 CUP 2.500

27000 CUP 2.500

21690 CUP 2.500

32.3 2061 33570 CUP 2.500

27.4 2049 36540 PSI 2.500

26.0 2017 34560 PSI 2.500

24.7 2015 30420 CUP 2.500

34.6 1914 26640 CUP 2.500

17.9 1753 33750 CUP 2.500

17.5 1693 33570 CUP 2.500

303 SAVAGE (Continued)

These are 30-30 loads reduced 10% for your safety.

STARTING LOADS

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloc EXCEED FPS	ity Pressure	Mimimum Units OAL		
170 Grain Bull	et								
H414	31.8	2.10	DBLD	1.9	33.2 207	8 33660	CUP 2.500		
H335	25.6	1.65	DBLD	1.6	29.6 204	2 37350	CUP 2.500		
H4895	25.1	1.83	DBLD	NA	28.7 203	5 36810	CUP 2.500		
H380	30.8	2.13	DBLD	1.9	32.3 200	7 33840	CUP 2.500		
H322	23.6	1.71	DBLD	1.6	26.9 192	8 36810	CUP 2.500		
H4350	32.9	2.39	DBLD	2.2	34.1 186	8 33390	CUP 2.500		
H4198	21.2	1.59	DBLD	NA	23.3 186	5 35370	CUP 2.500		
H450	34.1	2.23	DBLD	2.2	34.1 184	3 29700	CUP 2.500		
H4831	34.1	2.47	DBLD	2.2	34.1 183	2 31320	CUP 2.500		
H4227	15.2	1.17	1.09	NA	15.2 152	3 29700	CUP 2.500		
170 Grain Jac		1				100	er.		
RELODER15	27.5	1.94	DBLD	1.9	30.6 214	4 36450	PSI 2.500		
RELODER12	26.1	1.80	DBLD	1.6	28.7 198	7 36090	PSI 2.500		
WIN 748	25.1	1.64	DBLD	1.6	28.7 197	3 32400	CUP 2.500		
IMR4064	27.3	2.04	DBLD	1.9	30.5 196	0 34200	CUP 2.500		
ACCUR 2520	26.8	1.83	DBLD	NA	28.3 195	9 34560	PSI 2.500		
ACCUR 2230	23.3	1.53	1.46	NA	26.9 195	4 37800	PSI 2.500		
IMR3031	25.9	1.97	DBLD	1.9	28.7 195	33930	CUP 2.500		
ACCUR 2460	24.7	1.62	DBLD	1.6	27.1 194	9 35910	PSI 2.500		
ACCUR 2700	28.8	1.97	DBLD	1.9	31.4 193	35730	PSI 2.500		
ACCUR 2495BR	24.0	1.79	DBLD	1.6	26.5 192	7 36180	PSI 2.500		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

DBLD 1.9

DBLD NA

DBLD 1.6

DBLD NA

DBLD 1.9

DBLD 2.2

DBLD NA

1.3

2.2

NA

1.3

1.36

DBLD

1.18

1.46

30.1 1886 33570 CUP 2.500

16.1 1477 33570 CUP 2.500

34200 CUP 2.500

34740 PSI 2.500

35244 CIP 2.500

27000 CUP 2.500

27180 CUP 2.500

34200 CUP 2.500

31050 CUP 2.500

22590 CUP 2.500

33930 CUP 2.500

28.3 1881

24.2 1875

28.3 1858

30.2 1817

32.8 1780

22.0 1762

21.5 1757

32.8 1651

17.0 1513

IMR4320

IMR4895

v-N140

WIN 760

IMR4350

IMR4198

IMR4831

IMR4227

SR4759

RELODER 7

ACCUR 2015BR

27.5

25.3

22.8

25.5

30.2

32.8

19.7

19.2

32.8

15.3

14.7

1.97

1.85

1.66

1.87

2.01

2.41

1.56

1.40

2.41

1.18

1.46

303 SAVAGE (Continued)
These are 30-30 loads reduced 10% for your safety.

C7 to 05 mm	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
170 Grain Lead	d								
ACCUR 2520	25.6	1.75	DBLD	1.6			26370		
ACCUR 2460	24.7	1.62	DBLD	1.6	24.7	1856	25470	PSI	2.500
ACCUR 2495BR	24.7	1.85	DBLD	NA			31590		
ACCUR 2700	29.6	2.03	DBLD	1.9	29.6	1839	29520	PSI	2.500
ACCUR 2015BR	23.3	1.70	DBLD	1.6	23.3	1829	26100	PSI	2.500
ACCUR 2230	23.3	1.53	1.46	NA	23.3	1798	24660	PSI	2.500

30-30 WINCHESTER

Volume Auto-

rowaer Type	Grains	եե	DISK	Dipper	EXCEED	FPS	Pressure	Units	OAL
93 Grain Jack	eted								
v-N120	28.2	2.19	DBLD	NA	31.3	2970	39160	CIP	2.345
100 Grain Jac	keted								
ACCUR 2015BR	34.2	2.50	DBLD	2.5	37.5	2879	39900	PSI	2.345
ACCUR 2230	35.9	2.36	DBLD	2.2	39.0	2857	39500		
ACCUR 2460	38.1	2.50	DBLD	2.5	39.0	2816	37200	PSI	2.345
ACCUR 2495BR	37.0	2.77	DBLD	2.5	37.0	2681	34800		2.345
ACCUR 2520	38.0	2.59	DBLD	2.5	38.0	2680	30600	PSI	2.345
H4895	37.0	2.69	DBLD	2.5	37.0	2652			
H335	38.0	2.45	DBLD	2.2	38.0	2644	31800		
H322	35.0	2.54	DBLD	2.5	35.0	2633	30000	CUP	2.480
BL-C(2)	38.0	2.45	DBLD	2.2	38.0	2619	30600	CUP	2.480
H380	41.0	2.83	DBLD	2.8	41.0	2571	30600	CUP	2.480
ACCUR 2700	40.0	2.74	DBLD	2.5	40.0	2571	30700	PSI	2.345
H414	41.0	2.71	DBLD	2.5	41.0	2453	27000		

Mimimum

22300 CUP 2.480

28500 CUP 2.480

25500 CUP 2.480

18.0 2077 26300 CUP 2.480

110 Grain	Jacketed
-----------	----------

41.0

40.0

18.0

40.0

ACCUR 2015BR	31.6	2.30	DBLD	2.2	35.5 2725	40900	PSI	2.440
ACCUR 2495BR	32.8	2.46	DBLD	2.2	37.0 2699	41000	PSI	2.440

41.0 2153

40.0 2111

40.0 2062

2.68 DBLD 2.5

1.36

DBLD

DBLD 2.8

1.3

2.8

2.90

1.38

2.90

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available
Copyright 08-14-1996

H450

H4350

H4227

H4831

DO DO VIIIOTILO I LIT (contanued)									
	STA	ARTING	LOA	DS					
Powder Type	Start	Volume CC	Auto- Disk	Lee	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
		Contract of the last		Dibbei	LAGELD	110	11033410	Onito	ONL
110 Grain Jac ACCUR 2460	36.0	2.36	DBLD	2.2	27.0	2692	37400	DCI	2 440
					Service 10 150	2689	35700		
ACCUR 2520	38.0	2.59	DBLD				37000		
ACCUR 2230	35.4	2.32	DBLD			2659 2595	33000		
WIN 748	35.1	2.30	DBLD				33300		
ACCUR 2700	40.0	2.74	DBLD			2544			
WIN 680	17.5	1.14	1.09	NA		2200	36000		
WIN 296	NA	NA	NA	NA	18.7	2155	36000	CUP	2.480
125 Grain Bull	et								
H322	35.3	2.56	DBLD	2.5	37.0	2663	37600		
H335	38.0	2.45	DBLD	2.2	38.0	2643	35400		
H4895	36.8	2.68	DBLD	2.5	37.0	2618	36000		
BL-C(2)	38.0	2.45	DBLD	2.2	38.0	2606	34800		
H4198	29.5	2.22	DBLD	2.2	31.0	2589	37600	CUP	2.480
H380	39.0	2.69	DBLD	2.5	39.0	2464	33000	CUP	2.480
H414	40.0	2.64	DBLD	2.5	40.0	2323	31200	CUP	2.480
H4227	20.6	1.59	DBLD	NA	22.0	2167	38200	CUP	2.480
H450	40.0	2.61	DBLD	2.5	40.0	2089	24800	CUP	2.480
H4350	38.0	2.76	DBLD	2.5	38.0	2054	31600	CUP	2.480
H4831	38.0	2.75	DBLD	2.5	38.0	2031	30600	CUP	2.480
125 Grain Jac	katad								
RELODER 7	27.2	1.98	DBLD	1.9	30.0	2630	34100	CUP	2.470
RELODER 7	33.8	2.33	DBLD			2555	39900		
NELODEN 12	33.0	2.55	DULU	2.2	07.0	2000	00000	1 01	
150 Grain Bull					1		40000	01.15	0.400
H4895	29.8	2.17	DBLD			2409			2.480
H335	32.4	2.09	DBLD		See See Vin Sol	2406	38700		
BL-C(2)	33.3	2.15	DBLD			2384	37600		
H322	30.1	2.18	DBLD			2366	39300		
H414	36.6	2.42	DBLD			2327			2.480
H4198	24.5	1.84	DBLD			2317			2.480
H380	36.2	2.50	DBLD	2.5		2304	37600		2.480
H4350	38.0	2.76	DBLD	2.5		2041			2.480
H4831	38.0	2.75	DBLD	2.5		1965			2.480
	4= 0	4 0 5	4 00	4 0	100	1001	20700	CLIE	2 400

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

1.3

1.26

H4227

17.6

1.35

19.0 1881 38700 CUP 2.480

	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimun OAL
150 Grain Jac	keted								
RELODER15	32.3	2.28	DBLD	2.2	36.0	2450	40600	PSI	2.525
IMR3031	32.1	2.44	DBLD	2.2	35.5	2370	37700	CUP	2.550
IMR4064	33.8	2.52	DBLD	2.5	37.5	2350	37800	CUP	2.550
ACCUR 2520	33.1	2.26	DBLD	2.2	33.5	2325	36800	PSI	2.540
RELODER12	30.2	2.09	DBLD	1.9	33.5	2320	40400	PSI	2.525
IMR4895	31.8	2.31	DBLD	2.2	35.5	2315	38000	CUP	2.550
WIN 748	30.1	1.97	DBLD	1.9	34.5	2310	36000	CUP	2.480
ACCUR 2460	29.4	1.93	DBLD	1.9	32.5	2290	40200	PSI	2.540
ACCUR 2230	27.9	1.83	DBLD	NA	31.7	2273	41300	PSI	2.540
ACCUR 2700	34.2	2.34	DBLD	2.2	37.0	2265	39300	PSI	2.540
IMR4320	32.8	2.35	DBLD	2.2	36.0	2240	37300	CUP	2.550
ACCUR 2495BR	27.3	2.04	DBLD	1.9	30.5	2227	40600	PSI	2.540
IMR4198	25.5	2.02	DBLD	1.9	28.0	2210	37300	CUP	2.550
ACCUR 2015BR	27.5	2.00	DBLD	1.9	29.0	2192	38400	PSI	2.540
RELODER 7	25.1	1.83	DBLD	NA	27.5	2190	33800	CUP	2.525
WIN 760	35.9	2.39	DBLD	2.2	35.9	2090	30000	CUP	2.480
IMR4350	38.5	2.83	DBLD	2.8	38.5	2080	29600	CUP	2.550
IMR4831	38.5	2.83	DBLD	2.8	38.5	1925	24100	CUP	2.550
IMR4227	18.2	1.40	1.36	1.3	20.0	1905	37500	CUP	2.550
SR4759	17.8	1.77	DBLD	1.6	19.5	1840	37300		2.550

150 Grain Lead

. O O GIGIN ECG	u							
ACCUR 2700	34.0	2.33	DBLD	2.2	34.0 2056	28100	PSI	2.450
ACCUR 2495BR			DBLD					
ACCUR 2520	27.5	1.88	DBLD	NA	27.5 2004			
ACCUR 2460	27.0	1.77	DBLD	1.6	27.0 1994	26400	PSI	2.450
ACCUR 2015BR			DBLD		25.5 1987			
ACCUR 2230	26.0	1.71	DBLD		26.0 1973			

155 Grain Jacketed

BIAAO	00 =			_			
v-N140	28.7	2.10	DRID 1 9	31.9 2130	20160	CID	2 400
	20.7	2.10	DDLD 1.3	31.3 2130	39100	CIP	2.480

170 Grain Bullet

The state of the s							
H414	35.4	2.34	DBLD	2.2	37.0 2259	37400	CUP 2.480
H335			DBLD		33.0 2220		
H4895	28.0	2.04	DBLD	1.9	32.0 2212		
H380	34.3	2.37	DBLD	2.2	36.0 2182		
H322	26.3	1.91	DBLD	1.9	30.0 2096		
H4350	36.7	2.66	DBLD	2.5	38.0 2030	37100	CUP 2.480
H4198	23.7	1.78	DBLD	1.6	26.0 2027		

STARTING LOADS

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
170 Grain Bull	et (Con	tinued)						
H450	38.0	2.48	DBLD	2.2	38.0	2003	33000	CUP	2.480
H4831	38.0	2.75	DBLD	2.5	38.0	1991	34800	CUP	2.480
H4227	17.0	1.31	1.26	1.3	17.0	1655	33000	CUP	2.480
170 Grain Jac	keted								
RELODER15	30.7	2.16	DBLD	NA	34.1	2330	40500	PSI	2.525
RELODER12	29.1	2.01	DBLD	1.9	32.0	2160	40100	PSI	2.525
WIN 748	27.9	1.83	DBLD	NA	32.0	2145	36000	CUP	2.480
IMR4064	30.5	2.27	DBLD	2.2	34.0	2130	38000	CUP	2.520
ACCUR 2520	29.8	2.04	DBLD	1.9	31.5	2129	38400	PSI	2.545
ACCUR 2230	26.0	1.71	DBLD	1.6	30.0	2124	42000	PSI	2.545
IMR3031	28.9	2.20	DBLD	2.2	32.0	2120	37700	CUP	2.520
ACCUR 2460	27.5	1.81	DBLD	1.6	30.2	2118	39900	PSI	2.545
ACCUR 2700	32.1	2.20	DBLD	2.2		2098	39700	PSI	2.545
ACCUR 2495BR	26.7	2.00	DBLD	1.9	29.5	2095	40200	PSI	2.545
IMR4320	30.6	2.19	DBLD	NA	33.5	2050	37300	CUP	2.520
IMR4895	28.2	2.05	DBLD	1.9	31.5	2045	38000		2.520
ACCUR 2015BR	25.4	1.86	DBLD	NA	27.0	2038	38600	PSI	2.545
v-N140	28.3	2.08	DBLD	1.9	31.5	2020	39160	CIP	2.480
WIN 760	33.6	2.24	DBLD	2.2	33.6	1975	30000		2.480
IMR4350	36.5	2.68	DBLD	2.5	36.5	1935	30200		2.520
IMR4198	21.9	1.74	DBLD	1.6	24.5	1915	38000	CUP	2.520
RELODER 7	21.5	1.56	DBLD	NA	24.0	1910	34500		2.545
IMR4831	36.5	2.68	DBLD	2.5	36.5	1795	25100		2.520
IMR4227	17.2	1.32	1.26	1.3	19.0	1645	37700	CUP	2.520
SR4759	16.4	1.63	DBLD	1.6	18.0	1605	37300	CUP	2.520

170 Grain Lead	d							
ACCUR 2520	28.5	1.95	DBLD	1.9	28.5 2053	29300	PSI	2.550
ACCUR 2460	27.5	1.80	DBLD	1.6	27.5 2017	28300	PSI	2.550
ACCUR 2495BR	27.5	2.06	DBLD	1.9	27.5 2013	35100	PSI	2.550
ACCUR 2700	33.0	2.26	DBLD	2.2	33.0 1999	32800	PSI	2.550
ACCUR 2015BR	26.0	1.90	DBLD	1.9	26.0 1988	29000	PSI	2.550
ACCUR 2230	26.0	1.71	DBLD	1.6	26.0 1954	27400	PSI	2.550

STARTING LOADS. Volume CC Start Grains Auto-Disk Lee Mimimum Units OAL **Powder Type** Dipper Pressure 100 Grain Jacketed H4198 33.3 2.50 **DBLD 2.5 37.0** 3103 NA NA 2.500 H4895 38.7 2.82 **DBLD 2.8** 43.0 3002 NA NA 2.500 BL-C(2) 38.7 2.50 **DBLD 2.5** 43.0 2959 NA NA 2.500 H335 38.7 2.50 DBLD 2.5 43.0 2952 NA NA 2.500

11	10	Grain	Jacketed
----	----	-------	-----------------

	- a o it o t o u							
H4198	33.3	2.50	DBLD	2.5	37.0 2978	NA	NA	2.500
H335	38.7	2.50	DBLD	2.5	43.0 2947	NA	NA	2.500
H4895	38.7	2.82	DBLD	2.8	43.0 2944	NA	NA	2.500
BL-C(2)	38.7	2.50	DBLD	2.5	43.0 2940	NA	NA	2.500
WIN 748	41.5	2.72	DBLD	2.5	45.2 2930	41500	CUP	2.500

125 Grain Jacketed

RELODER12	40.4	2.79	DBLD	2.5	46.0 2920	44300	CUP 2 600
					.0.0 -0-0		001 2.000

130 Grain Jacketed

H4198	32.4	2.43	DBLD	2.2	36.0 2837	NA	NA 2.500
H4895	38.7	2.82	DBLD	2.8	43.0 2698	NA	NA 2.500
BL-C(2)	36.9	2.38	DBLD	2.2	41.0 2634	NA	NA 2.500
H335					41.0 2631		NA 2.500

DOU OAVA			LOAI	os							
Powder Type	Start	Volume CC	Auto- Disk	Lee	NEVER EXCEED	Velocity	Pressure	Mimimu Units OAL			
150 Grain Jac		UU	DISK	nihhei	LAGELL	113	Ticssuic	Ollits OAL			
ACCUR 2520	38.7	2.64	DBLD	2.5	42.5	2765	43400	CUP 2.60	0		
ACCUR 2015BR	34.9	2.55	DBLD	2.5		2742	43600				
ACCUR 2495BR	41.5	3.10	DBLD	3.1		2733	40000		0		
ACCUR 2460	36.6	2.40	DBLD	2.2		2702	43200	CUP 2.60			
ACCUR 2230	35.6	2.34	DBLD	2.2	5 6 6 6 6 6 6	2665	43500	CUP 2.60			
RELODER12	40.4	2.79	DBLD	2.5		2635	41400	CUP 2.60	0		
WIN 748	39.0	2.56	DBLD	2.5		2600	41000	CUP 2.50	00		
WIN 760	41.3	2.75	DBLD	2.5	45.5	2580	42000	CUP 2.50	0		
IMR3031	35.2	2.68	DBLD	2.5	38.5	2575	44500	CUP 2.60	00		
BL-C(2)	35.1	2.26	DBLD	2.2	39.0	2574	48700	CUP 2.50	0		
IMR4895	35.5	2.58	DBLD	2.5	40.0	2570	45900	CUP 2.60	0		
IMR4064	35.9	2.67	DBLD	2.5	40.0	2565	45400	CUP 2.60	00		
ACCUR 2700	40.5	2.77	DBLD	2.5		2562	42900	CUP 2.60	0		
IMR4320	36.7	2.63	DBLD	2.5	41.5	2555	46000	CUP 2.60	0		
H335	35.1	2.26	DBLD	2.2	39.0	2545	NA	NA 2.50			
ACCUR 4350	44.0	3.26	DBLD	3.1	44.0	2418	35100	CUP 2.60	0		
IMR4350	44.0	3.23	DBLD	3.1	44.0	2415	39800	CUP 2.60	0		
H4895	36.0	2.62	DBLD	2.5	40.0	2408	NA	NA 2.50	0		
IMR4198	27.7	2.19	DBLD	NA	30.0	2365	44100	CUP 2.60	0		
IMR4831	44.0	3.23	DBLD	3.1	44.0	2260	36200	CUP 2.60	0		
IMR4227	21.8	1.68	DBLD	1.6		2105	44800	CUP 2.60	_		
SR4759	21.0	2.09	DBLD	1.9	23.5	2095	45500	CUP 2.60	0		
165 Grain Jac	keted				,						
ACCUR 2495BR	36.8	2.75	DBLD	2.5	41.0	2676	44000	CUP 2.58			
ACCUR 2520	37.9	2.58	DBLD	2.5	42.0	2649	43800	CUP 2.58			
ACCUR 2230	34.7	2.28	DBLD	2.2		2593	45000	CUP 2.58			
ACCUR 2460	35.7	2.34	DBLD	2.2	100000000000000000000000000000000000000	2591	44200	CUP 2.58			
ACCUR 2015BR	35.3	2.58	DBLD	2.5	100000	2569	41900	CUP 2.58			
RELODER12	39.1	2.70	DBLD	2.5		2485	40800	CUP 2.60			
ACCUR 2700	39.4	2.70	DBLD	2.5		2414	43600	CUP 2.58			
ACCUR 4350	44.0	3.26	DBLD	3.1		2351	36400				
H4895	34.2	2.49	DBLD	2.2		2341	NA	NA 2.50			
BL-C(2)	33.3	2.15	DBLD	1.9		2249	NA	NA 2.50			
H335	33.3	2.15	DBLD	1.9	37.0	2240	NA	NA 2.50)0		
180 Grain Jac				0.0	00.0	0500	45000	CUD 2 FC	20		
ACCUR 2520	34.2	2.34	DBLD					CUP 2.59			
ACCUR 2495BR	37.0	2.77	DBLD					CUP 2.59			
ACCUR 2015BR	32.0	2.34	DBLD					CUP 2.59			
ACCUR 2460	36.3	2.38	DBLD			2428		CUP 2.58	JU		
DBLD = Double Disk, s	ee instruc	ctions wi	CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 02-13-1997								

300 SAVAGE (Continued)

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Mimimur Units OAL			
180 Grain Jac	keted (Continu	ued)								
ACCUR 2230	33.4	2.20	DBLD	2.2	37.0	2425	43700	CUP 2.590			
WIN 760	41.4	2.76	DBLD	2.5	44.5	2410	41000	CUP 2.500			
IMR4064	34.2	2.54	DBLD	2.5	38.5	2395	45900	CUP 2.600			
IMR3031	32.8	2.50	DBLD	2.5	37.0	2390	45900	CUP 2.600			
IMR4895	34.3	2.50	DBLD	2.5	38.5	2390	45700	CUP 2.600			
IMR4320	35.4	2.54	DBLD	2.5	40.0	2390	46000	CUP 2.600			
WIN 748	35.5	2.32	DBLD	2.2	40.0	2375	43000	CUP 2.500			
IMR4350	42.8	3.14	DBLD	3.1	44.0	2350	41900	CUP 2.600			
ACCUR 2700	37.2	2.54	DBLD	2.5	41.5	2344	44100	CUP 2.590			
ACCUR 4350	42.7	3.16	DBLD	3.1	43.0	2326	39800	CUP 2.590			
IMR4831	44.0	3.23	DBLD	3.1	44.0	2240	39300	CUP 2.600			
IMR4198	26.6	2.10	DBLD	1.9	29.5	2190	45200	CUP 2.600			
H4895	33.3	2.42	DBLD	2.2	37.0	2130	NA	NA 2.500			
H335	31.5	2.03	DBLD	1.9	35.0	2074	NA	NA 2.500			
BL-C(2)	31.5	2.03	DBLD	1.9	35.0	2069	NA	NA 2.500			
IMR4227	20.9	1.61	DBLD	1.6	23.0	1925	44800	CUP 2.600			
SR4759	20.1	2.00	DBLD	1.9	22.5	1910	45500	CUP 2.600			

200 Grain Jacketed

200 Grain Sac	Keteu						
H4895	31.5	2.29	DBLD	2.2	35.0 2089	NA	NA 2.500
H335	30.6	1.97	DBLD	1.9	34.0 2047	NA	NA 2.500

30-40 KRAG

Powder Type	Start Grains	Volume	Auto- Disk	Lee Dinner	NEVER	Velocity FPS	Pressure	N Units	limimum OAI
100 Grain Bull		00	DISK	Біррсі	LNOLLD	110	11000010	Omto	ONL
H322	38.7	2.81	DBLD	2.8	43.0	2898	NA	NA	2.780
BL-C(2)	39.6	2.55	DBLD	2.5	44.0	2894	NA	NA	2.780
H4198	30.6	2.30	DBLD	2.2	34.0	2886	NA	NA	2.780
H335	39.6	2.55	DBLD	2.5	44.0	2881	NA	NA	2.780
H4895	39.6	2.88	DBLD	2.8	44.0	2835	NA	NA	2.780
H4227	14.4	1.11	1.09	1.0	16.0	1706	NA	NA	2.780

110 Grain Bu	llet						
H322	38.7	2.81	DBLD	2.8	43.0 2841	NA	NA 2.780
H4198	30.6	2.30	DBLD	2.2	34.0 2807	NA	NA 2.780
H335	38.7	2.50	DBLD	2.5	43.0 2806	NA	NA 2.780
H414	45.0	2.97	DBLD	2.8	50.0 2773	NA	NA 2.780
H4350	45.9	3.33	NA	3.1	51.0 2492	NA	NA 2.780

130 Grain	Bullet						
H414	44.1	2.92	DBLD	2.8	49.0 2746	NA	NA 2.800
H335	37.8	2.44	DBLD	2.2	42.0 2717	NA	NA 2.800
H322	37.8	2.74	DBLD	2.5	42.0 2698	NA	NA 2.800
H4198	29.7	2.23	DBLD	2.2	33.0 2565	NA	NA 2.800
H4350	45.9	3.33	NA	3.1	51.0 2535	NA	NA 2.800

		ontina		E.					
	ST	ARTIN	G LOA		NEVER	V 1	4		
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEEI	Velocity FPS	Pressure	Units	/limimu SOAL
150 Grain Bul				рро.			Trobburo	Oilita	OAL
H4895	37.8	2.75	DBLD	2.5	42.0	2575	NA	ΝΔ	2.800
H414	42.3	2.80	DBLD	2.8		2531	NA		2.800
H322	36.0	2.61	DBLD	2.5		2518	NA		2.800
H335	33.3	2.15	DBLD	1.9		2508	NA		2.800
BL-C(2)	33.3	2.15	DBLD	1.9		2491	NA		2.800
H380	39.6	2.74	DBLD	2.5		2489	NA		2.800
H4350	44.1	3.20	DBLD	3.1		2388	NA		2.800
H4198	28.8	2.16	DBLD	NA	200 200 200	2366	NA		2.800
H4831	44.1	3.20	DBLD	3.1	a contract traction	2306	NA		2.800
		0.20	DDLD	0.1	45.0	2000	IVA	IVA	2.000
1500									
150 Grain Jac		0.00	D D I D	0.0					
IMR4064	39.7	2.96	DBLD	2.8		2695			3.000
IMR3031	37.3	2.85	DBLD	2.8	-	2695	39600		3.000
IMR4350	47.0	3.46	NA	3.4		2615	36300		3.000
ACCUR 4350	45.0	3.33	NA	3.1		2566	36800		3.045
IMR4895	31.9	2.32	DBLD	2.2		2435	39700	CUP	3.000
IMR4831	48.5	3.56	NA	3.4		2430	29800		3.000
IMR4320	32.8	2.35	DBLD	2.2		2420	39700	CUP	3.000
WIN 760	39.8	2.65	DBLD	2.5		2380	37000	CUP	2.800
ACCUR 3100	48.7	3.65	NA	3.4		2367	34700	CUP	3.045
IMR4198	27.7	2.20	DBLD	2.2		2355	38100	CUP	3.000
IMR4227	21.9	1.69	DBLD	1.6	23.5	2090	37700	CUP	3.000
SR4759	23.1	2.30	DBLD	2.2	24.5	2080	37300	CUP	3.000
ACCUR 8700	53.0	3.65	NA	3.4	53.0	1835	29300	CUP	3.045
165 Grain Bull	et								
H322	35.1	2.54	DBLD	2.5	39.0	2402	NA	NA	2.800
H335	32.4	2.09	DBLD	1.9		2364	NA		2.800
H4350	43.2	3.13	DBLD	3.1		2242	NA		2.800
165 Grain Jac	kotod								
ACCUR 4350	44.5	3.29	DBLD	3.1	17 E	2490	26100	CLID	2 005
ACCUR 3100	47.9	3.58	NA	3.4		2489	36100		3.085
ACCUR 8700	53.0	3.65	NA			2363	35300	-	3.085
AUUN 8/00	55.0	3.05	IVA	3.4	53.0	1865	32000	CUP	3.085
400									
180 Grain Bull									
H414	38.7	2.56	DBLD			2276	NA	NA	2.800
H4895	34.2	2.49	DBLD	2.2	38.0	2265	NA	NA	2.800
H322	33.3	2.41	DBLD		37.0		NA	NA	2.800
OBLD = Double Disk, so	AUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. BLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-14-1996								

ACCUR 8700

30-40 KRA	AG (C	ontinue	ed)						
and the second second	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	N Units	Mimimum OAL
180 Grain Bull	and the same and the			- iphoi			. 1000010	Jiiik	J.1.2
H380	36.0	2.49	DBLD	2.2	40.0	2182	NA	NA	2.800
H4831	43.2	3.13	DBLD		100000000000000000000000000000000000000	2176	NA	NA	2.800
H4350	41.4	3.00		2.8		2110	NA		2.800
H335	30.6	1.97	DBLD	1.9		2049	NA		2.800
BL-C(2)	29.7	1.92	DBLD	1.9	33.0	2006	NA	NA	2.800
180 Grain Jac	keted								
IMR4350	46.0	3.38	NA	3.1	46.0	2445	3870	CUP	3.000
IMR4064	37.0	2.76	DBLD	2.5	41.0	2435	39000	CUP	3.000
IMR4831	48.1	3.53	NA	3.4	49.0	2425	35900	CUP	3.000
IMR3031	34.0	2.59	DBLD	2.5	38.0	2375	39300	CUP	3.000
ACCUR 4350	41.8	3.09	DBLD	2.8	46.0	2360	37200	CUP	3.090
ACCUR 3100	46.1	3.45	NA	3.4	50.0	2328	36700	CUP	3.090
IMR4895	32.2	2.35	DBLD	2.2	35.5	2270	38800	CUP	3.000
IMR4320	32.8	2.35	DBLD	2.2	35.5	2210	38100	CUP	3.000
IMR4198	26.1	2.07	DBLD	1.9		2150	39800		3.000
SR4759	21.6	2.15	DBLD	1.9	24.0	1940	39100	CUP	3.000
IMR4227	21.4	1.65	DBLD	1.6	23.0	1900	37800	CUP	3.000
ACCUR 8700	53.0	3.65	NA	3.4	53.0	1813	32300	CUP	3.090
200 Grain Bull	et								
H414	36.0	2.38	DBLD	2.2	40.0	2151	NA	NA	2.900
H335	29.7	1.92	DBLD	1.9	33.0	2106	NA	NA	2.900
H322	31.5	2.28	DBLD	2.2	35.0	2075	NA	NA	2.900
H4350	39.6	2.87	DBLD	2.8	44.0	2018	NA	NA	2.900
220 Grain Bull	et								
H335	29.7	1.92	DBLD	1.9	33.0	1974	NA	NA	3.000
H322	29.7	2.15	DBLD	1.9	33.0	1969	NA	NA	3.000
H4350	37.8	2.74	DBLD	2.5	42.0	1947	NA	NA	3.000
220 Grain Jac	keted								
ACCUR 3100	41.2	3.08	DBLD	2.8	48.0	2168	39400	CUP	3.005
ACCUR 4350	38.1	2.82	DBLD		10,100	2104	38200	CUP	3.005
WIN 760	37.2	2.48	DBLD	2.2	40.5	2070	36000		
100110 0700	E4.0	0.50	A 1 A	0.4	F0.0	1710	24000	CLID	2 005

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

3.4

51.8 3.56 NA

53.0 1743 34600 CUP 3.005

308 WINCHESTER

STARTING LOADS Auto-Disk Start Grains Volume CC Lee Mimimum **Powder Type Pressure** Units 100 Grain Jacketed v-N130 39.7 2.99 **DBLD 2.8** 43.3 3241 50763 CIP 2.530 H322 41.0 2.97 **DBLD 2.8** 41.0 2831 34000 CUP 2.530

1	10	Grain	lac	katad
	IU	Grain	Jac	Keren

WIN 748	50.8	3.33	NA	3.1	53.2 3300 46000 CU	JP 2.530				
H4895	44.4	3.23	DBLD	3.1	49.0 3239 49500 CU	P 2.530				
H322	40.7	2.95	DBLD	2.8	46.0 3229 50700 CU	P 2.530				
v-N135	45.9	3.56	NA	3.4	48.6 3220 49313 CII	2.530				
ACCUR 2460	43.5	2.85	DBLD	2.8	48.5 3193 49300 CU	P 2.595				
ACCUR 2015BR	41.4	3.02	DBLD	2.8	45.0 3189 48100 CL	P 2.595				
BL-C(2)	46.8	3.02	DBLD	2.8	52.0 3181 49800 CU	P 2.530				
v-N133	41.3	3.18	DBLD	3.1	46.3 3180 52214 CI	2.530				
ACCUR 2230	42.6	2.80	DBLD	2.8	47.5 3171 49300 CU	P 2.595				
H4198	36.1	2.71	DBLD	2.5	40.0 3168 49600 CU	P 2.530				
H380	50.8	3.51	NA	3.4	53.0 3145 46800 CU	P 2.530				
RELODER 7	40.0	2.91	DBLD	2.8	42.5 3130 47200 CU	P2.600				
IMR4895	45.9	3.34	NA	3.1	49.0 3130 49200 CU	P2.600				
v-N130	39.0	2.94	DBLD	2.8	42.5 3074 50763 CIF	2.530				
v-N120	36.7	2.84	DBLD	2.8	40.0 3069 50800 CIF	2.530				
ACCUR 2495BR	47.0	3.52	NA	3.4	47.0 3022 42700 CU	P 2.595				
ACCUR 2520	47.5	3.24	DBLD	3.1	47.5 3020 41500 CU	P 2.595				
IMR4198	34.7	2.75	DBLD	2.5	38.5 3015 51100 CU	P2.600				
IMR4320	47.5	3.40	NA	3.4	49.0 3010 47600 CU	P2.600				
H414	53.8	3.55	NA	3.4	54.0 2990 45000 CU	P2.530				
CALITION, With NEVER	EVCEED	AUTION: With NEVED EVCEED LOADS are into in Minimum Company								

	STARTING LOADS								
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloci EXCEED FPS	ty Pressure	Mimimum Units OAL		
110 Grain Jacketed (Continued)									
IMR3031	45.0	3.43	NA	3.4	45.0 2990	42200	CUP 2.600		
IMR4064	47.0	3.50	NA	3.4	47.0 295!	43300	CUP 2.600		
IMR4227	28.4	2.19	DBLD	NA	32.0 283	51900	CUP 2.600		
SR4759	27.7	2.75	DBLD	2.5	31.0 2710	51600	CUP 2.600		
H4350	47.0	3.41	NA	3.4	47.0 252	32000	CUP 2.530		
H4831	50.0	3.62	NA	3.4	50.0 2509	29400	CUP 2.530		
IMR4350	47.0	3.45	NA	3.4	47.0 2500	32000	CUP 2.600		
IMR4831	47.0	3.45	NA	3.4	47.0 2330	29200	CUP 2.600		
125 Grain Jac	keted								
WIN 748	45.7	2.99	DBLD	2.8	52.0 317	50000	CUP 2.530		
v-N140	44.6	3.27	DBLD	3.1	48.6 3150	50763	CIP 2.530		
v-N135	42.1	3.27	DBLD	3.1	47.2 3048	52214	CIP 2.530		
RELODER12	43.7	3.02	DBLD	2.8	49.0 3040	49746	CUP 2.700		
v-N133	39.8	3.06	DBLD	2.8	44.6 3020	52214	CIP 2.530		
ACCUR 2015BR	38.7	2.83	DBLD	2.8	43.5 3018	3 49700	CUP 2.780		
ACCUR 2230	41.7	2.74	DBLD	2.5	47.0 3017	49800	CUP 2.780		
ACCUR 2460	42.8	2.81	DBLD	2.8	47.0 3014	48600	CUP 2.780		
v-N130	38.2	2.88	DBLD	2.8	41.7 297	50800	CIP 2.530		
ACCUR 2520	46.6	3.18	DBLD	3.1	47.5 295	45100	CUP 2.780		

130	Grain	.lacketed

ACCUR 2495BR

RELODER 7

100 Grain Sac	KCLCU					
BL-C(2)	44.6	2.87	DBLD	2.8	51.0 3109 51300 CUR	2.530
H4895	41.1	2.99	DBLD	2.8	47.0 3075 51300 CUI	2.530
H335	42.6	2.75	DBLD	2.5	47.0 3064 49400 CUI	2.530
v-N140	42.6	3.12	DBLD	3.1	47.8 3020 52214 CIP	2.530
v-N135	40.6	3.15	DBLD	3.1	45.5 3000 52214 CIP	2.530
H380	47.4	3.27	DBLD	3.1	52.0 2986 49200 CUI	2.530
H322	38.5	2.79	DBLD	2.5	44.0 2945 51200 CUI	2.530
H4198	34.8	2.61	DBLD	2.5	39.0 2936 50200 CUI	2.530
H414	48.3	3.19	DBLD	3.1	52.0 2914 48300 CUI	2.530
v-N133	38.8	2.99	DBLD	2.8	43.5 2900 52214 CIP	2.530
v-N130	37.2	2.81	DBLD	2.8	40.6 2832 50763 CIP	2.530
H4350	47.0	3.41	NA	3.4	47.0 2589 34800 CUI	2.530
H4831	50.0	3.62	NA	3.4	50.0 2510 30600 CUI	2.530

3.4

47.0 2931 45200 CUP 2.780

40.0 2920 47100 CUP 2.700

46.0 3.44 NA

37.7 2.75 DBLD 2.5

	ST	ARTING	G LOA	DS	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL
150 Grain Jac					
RELODER15	41.4	2.92	DBLD	2.8	46.3 2880 49659 CUP 2.600
H380	44.4	3.07	DBLD	2.8	51.0 2876 51500 CUP 2.530
WIN 748	44.4	2.91	DBLD	2.8	48.5 2865 48000 CUP 2.530
v-N140	41.3	3.03	DBLD	2.8	46.3 2840 52214 CIP 2.600
BL-C(2)	44.0	2.84	DBLD	2.8	49.5 2835 50400 CUP 2.530
H4895	40.2	2.93	DBLD	2.8	44.0 2830 49000 CUP 2.530
IMR3031	39.9	3.04	DBLD	2.8	45.0 2830 52000 CUP 2.700
H335	40.8	2.63	DBLD	2.5	45.0 2818 49400 CUP 2.530
v-N135	39.9	3.10	DBLD	3.1	44.8 2810 52214 CIP 2.600
ACCUR 2520	42.2	2.88	DBLD	2.8	46.5 2809 48700 CUP 2.745
ACCUR 2495BR	42.5	3.18	DBLD	3.1	46.0 2806 47900 CUP 2.745
IMR4064	41.2	3.07	DBLD	2.8	46.0 2800 51500 CUP 2.700
v-N150	46.8	3.49	NA	3.4	48.2 2790 47900 CIP 2.600
IMR4895	39.5	2.87	DBLD	2.8	44.5 2780 52000 CUP 2.700
ACCUR 2460	41.0	2.69	DBLD	2.5	45.0 2765 48500 CUP 2.745
ACCUR 2015BR	36.9	2.70	DBLD	2.5	41.5 2764 49700 CUP 2.745
H414	47.6	3.15	DBLD	3.1	51.0 2760 48000 CUP 2.530
RELODER12	40.4	2.79	DBLD	2.5	45.0 2755 49482 CUP 2.600
RELODER 7	36.9	2.69	DBLD	2.5	39.0 2750 46900 CUP 2.600
v-N133	38.5	2.96	DBLD	2.8	42.0 2730 50800 CIP 2.600
ACCUR 2230	39.7	2.61	DBLD	2.5	43.5 2712 48400 CUP 2.745
IMR4320	39.9	2.86	DBLD	2.8	45.0 2710 52000 CUP 2.700
WIN 760	50.1	3.34	NA	3.1	50.1 2700 40500 CUP 2.530
H322	38.0	2.75	DBLD	2.5	41.0 2667 48400 CUP 2.530
IMR4198	31.9	2.53	DBLD	2.5	35.5 2595 51300 CUP 2.700
v-N130	33.9	2.56	DBLD	2.5	37.0 2544 50763 CIP 2.600
H4831	50.0	3.62	NA	3.4	50.0 2525 37200 CUP 2.530
ACCUR 2700	46.7	3.20	DBLD	3.1	48.5 2506 45900 CUP 2.745
H4350	47.0	3.41	NA	3.4	47.0 2504 37400 CUP 2.530
H450	52.5	3.43	NA	3.4	52.5 2487 43600 CUP 2.530
IMR4350	46.0	3.38	NA	3.1	46.0 2415 36600 CUP 2.700
SR4759	24.6	2.44	DBLD	2.2	27.5 2325 51500 CUP 2.700
IMR4831	46.0	3.38	NA	3.1	46.0 2265 32600 CUP 2.700
IMR4227	23.5	1.80	DBLD	1.6	26.0 2260 51100 CUP 2.700
HERC 2400	25.0	1.85	DBLD	NA	25.0 2215 36700 CUP 2.600

165 Grain Jacket	ted
------------------	-----

H380	42.8	2.96	DBLD	2.8	48.0 2704	50300	CUP 2.530
BL-C(2)	41.3	2.66	DBLD	2.5	46.0 2703	49900	CUP 2.530
v-N150	42.4	3.16	DBLD	3.1	46.3 2681	50800	CIP 2.600
H4895					42.0 2679		
RELODER15	39.1	2.76	DBLD	2.5	43.5 2675	49396	CUP 2.750

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	N Units	limimum OAL
165 Grain Jac	165 Grain Jacketed (Continued)								
H335	38.3	2.47	DBLD	2.2	42.0	2666	49100	CUP	2.530
RELODER12	39.4	2.72	DBLD	2.5	44.0	2650	49569	CUP	2.700
H414	44.0	2.91	DBLD	2.8	49.0	2645	49900	CUP	2.530
v-N135	39.1	3.04	DBLD	2.8	42.7	2627	50800	CIP	2.600
v-N140	37.4	2.74	DBLD	2.5	42.0	2610	52214	CIP	2.600
v-N133	37.3	2.87	DBLD	2.8	40.7	2583	50800	CIP	2.600
H322	36.9	2.67	DBLD	2.5	39.0	2534	47400	CUP	2.530
H4350	47.0	3.41	NA	3.4	47.0	2490	37800	CUP	2.530
H4831	50.0	3.62	NA	3.4	50.0	2469	39000	CUP	2.530
v-N130	33.0	2.49	DBLD	2.2	36.0	2401	50763	CIP	2.600
H450	50.0	3.27	DBLD	3.1	50.0	2350	40100	CUP	2.530

168 Grain Jacketed

100 Grain Jac	Keteu						
ACCUR 2520	39.6	2.71	DBLD	2.5	45.0 2712	50200	CUP 2.800
RELODER15	38.8	2.74	DBLD	2.5	42.8 2665	49049	CUP 2.700
ACCUR 2495BR	41.1	3.07	DBLD	2.8	44.5 2654	47900	CUP 2.800
ACCUR 2015BR	35.0	2.56	DBLD	2.5	40.0 2642	50500	CUP 2.800
v-N140	40.3	2.96	DBLD	2.8	44.0 2641	50763	CIP 2.700
ACCUR 2230	37.5	2.47	DBLD	2.2	42.0 2610	49500	CUP 2.800
RELODER12	38.5	2.66	DBLD	2.5	43.0 2605	49569	CUP 2.700
ACCUR 2460	38.7	2.54	DBLD	2.5	42.5 2601	48600	CUP 2.800
v-N150	40.9	3.05	DBLD	2.8	44.6 2598	50763	CIP 2.700
ACCUR 2700	42.6	2.92	DBLD	2.8	47.0 2493	48800	CUP 2.800

180 Grain Winchester Fail Safe

WIN 748	37.2 2.43	3 DBLD 2.2	41.3 2420	54900 PSI	2.530

180 Grain Jacketed

100 Grain odo						
RELODER15	39.2	2.77	DBLD	2.5	44.0 2645 49829 C	UP 2.750
H380	42.0	2.90	DBLD	2.8	47.0 2624 50200 C	UP 2.530
v-N150	39.6	2.95	DBLD	2.8	44.4 2620 52214 C	IP 2.750
ACCUR 2520	40.0	2.73	DBLD	2.5	44.5 2616 49200 C	UP 2.800
WIN 748	39.6	2.59	DBLD	2.5	45.5 2600 50500 C	UP 2.530
ACCUR 2495BR	37.4	2.80	DBLD	2.8	43.0 2592 50800 C	UP 2.800
v-N140	36.5	2.67	DBLD	2.5	40.9 2590 52214 C	IP 2.750
WIN 760	48.0	3.20	DBLD	3.1	48.0 2580 43000 C	UP 2.530
IMR4064	38.8	2.89	DBLD	2.8	43.5 2580 51700 C	UP 2.725
BL-C(2)	39.2	2.53	DBLD	2.5	45.0 2559 51400 C	UP 2.530
IMR3031	37.0	2.82	DBLD	2.8	41.5 2550 51700 C	UP 2.725
IMR4320	39.5	2.82	DBLD	2.8	44.5 2550 52000 C	UP 2.725

STARTING LOADS

	517	AKIINC	LOA		NEVER				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL	
180 Grain Jacketed (Continued)									
H4895	36.7	2.67	DBLD	2.5	40.0	2540	48900	CUP 2.530	
IMR4895	38.5	2.80	DBLD	2.8	42.5	2540	50900	CUP 2.725	
H414	43.3	2.86	DBLD	2.8	47.0	2523	48700	CUP 2.530	
H335	35.9	2.32	DBLD	2.2	40.0	2520	49900	CUP 2.530	
ACCUR 2460	37.1	2.43	DBLD	2.2	41.5	2474	49500	CUP 2.800	
ACCUR 2700	47.0	3.22	DBLD	3.1	47.0	2470	40000	CUP 2.800	
H4350	47.0	3.41	NA	3.4	47.0	2460	42000	CUP 2.530	
H4831	49.0	3.55	NA	3.4	49.0	2455	43200	CUP 2.530	
ACCUR 2230	36.2	2.38	DBLD	2.2		2439	48800	CUP 2.800	
H322	35.4	2.56	DBLD	2.5	37.0	2388	46900	CUP 2.530	
IMR4350	46.0	3.38	NA	3.1	46.0	2365	38900	CUP 2.725	
IMR4198	29.9	2.37	DBLD	2.2	33.5	2350	51600	CUP 2.725	
H450	48.5	3.17	DBLD	3.1	48.5	2282	43300	CUP 2.530	
IMR4831	46.0	3.38	NA	3.1	46.0	2225	36900	CUP 2.725	
IMR4227	23.9	1.84	DBLD	NA		2110	52000	CUP 2.725	
SR4759	23.9	2.37	DBLD	2.2	26.5	2085	51200	CUP 2.725	
190 Grain Jac	keted								
WIN 748	37.6	2.46	DBLD	2.2	42.0	2445	49000	CUP 2.530	
ACCUR 2520	39.0	2.66	DBLD	2.5	41.5	2418	47100	CUP 2.800	
ACCUR 2495BR	39.0	2.92	DBLD	2.8	40.0	2395	45300		
ACCUR 2230	35.7	2.34	DBLD	2.2	38.5	2368	47700	CUP 2.800	
ACCUR 2460	37.2	2.44	DBLD	2.2	39.0	2367	46400	CUP 2.800	
ACCUR 2700	43.3	2.96	DBLD	2.8	45.0	2312	46000	CUP 2.800	
200 Grain Jac	keted								
H380	39.7	2.74	DBLD	2.5	45.0	2468	50800	CUP 2.530	
v-N140	35.7	2.61	DBLD	2.5	40.0	2440	52214	CIP 2.800	
WIN 748	37.8	2.47	DBLD	2.2	43.0	2435	50000	CUP 2.530	
WIN 760	43.1	2.87	DBLD	2.8		2430	46500	CUP 2.530	
H4895	35.9	2.61	DBLD	2.5	39.0	2398	48700	CUP 2.530	
					1000				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

DBLD 2.8

DBLD 2.2

DBLD 2.2

DBLD 2.5

DBLD 2.5

DBLD 2.2

DBLD 2.2

DBLD 2.5

3.1

3.4

48.0 2361

40.0 2356

38.0 2277

38.0 2261

NA

NA

45.0 2392 46200 CUP 2.530

38.0 2387 48400 CUP 2.530

46.0 2375 44300 CUP 2.530

40.3 2319 45500 CUP 2.800

38.5 2286 47100 CUP 2.800

40.4 2259 50800 CIP 2.800

44500 CUP 2.530

48000 CUP 2.530

46500 CUP 2.800

43900 CUP 2.800

H414

H335

H4350

H4831

BL-C(2)

v-N150

ACCUR 2520

ACCUR 2230

ACCUR 2460

ACCUR 2495BR

43.7

35.2

46.0

48.0

37.3

39.2

36.1

36.1

38.0

37.0

2.89

2.27

3.34

3.48

2.41

2.67

2.71

2.37

2.49

2.76

200 Grain Jacketed (Continued)

Powder Type

H4350

ACCUR 2700

STARTING LOADS....

Lee Dipper

41.8 2.86 DBLD 2.8 44.0 2229 46600 CUP 2.800

Start Volume Auto-Grains CC Disk

ACCUR 2700	41.0	2.00	DPLD	2.0	44.0	2225	40000	COF 2.000			
H450	48.0	3.13	DBLD	3.1	48.0	2195	42900	CUP 2.530			
220 0-1- 1-1-1-4											
220 Grain Jacketed ACCUR 2495BR 36.0 2.69 DBLD 2.5 38.5 2226 47300 CUP 2.800											
								THE RESERVE OF THE RE			
ACCUR 2460	35.4	2.32	DBLD	2.2	07.0	2172	46200	CUP 2.800			
ACCUR 2700	38.5	2.63	DBLD	2.5	42.0	2159	48300	CUP 2.800			
ACCUR 2520	37.4	2.55	DBLD	2.5	38.0	2154	44900	CUP 2.800			
ACCUR 2230	35.1	2.31	DBLD	2.2	36.0	2140	45300	CUP 2.800			
225 0 1	4										
225 Grain Jack		2.26	DDLD	2 1	46.0	2369	45900	CUP 2.530			
H4350	44.9	3.26	DBLD	3.1							
H414	42.7	2.82	DBLD	2.8	44.0		46200	CUP 2.530			
H4831	46.1	3.34	NA	3.1	47.0	2286	45700	CUP 2.530			
H380	40.7	2.82	DBLD	2.8	43.0	2286	47300	CUP 2.530			
BL-C(2)	33.9	2.19	DBLD	NA	38.0	2240	50200	CUP 2.530			
H4895	34.3	2.49	DBLD	2.2	37.0	2224	48400	CUP 2.530			
H335	32.9	2.12	DBLD	1.9	36.0	2216	49100	CUP 2.530			
H450	48.0	3.13	DBLD	3.1	48.0	2203	42400	CUP 2.530			
250 Grain Jac							10000	01100 500			
H414	39.3	2.60	DBLD	2.5	43.0	2142	49000	CUP 2.530			
H4831	42.9	3.11	DBLD	3.1	45.0	2099	47000	CUP 2.530			
H380	36.6	2.53	DBLD	2.5	41.0	2088	50200	CUP 2.530			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

DBLD 2.8

2.97

40.9

Mimimum Pressure Units OAL

43.0 2083 47100 CUP 2.530

7.62x54R RUSSIAN

These are reduced loads from a near same size cartridge.

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloci EXCEED FPS	ty Pressure	Mimimum Units OAL			
110 Grain Jacketed										
WIN 748	46.1	3.02	DBLD	2.8	50.5 316	4 NA	NA 2.757			
v-N135	42.0	3.27	DBLD	3.1	46.1 308	7 NA	NA 2.757			
H4895	40.9	2.98	DBLD	2.8	45.0 302	B NA	NA 2.757			
ACCUR 2520	43.0	2.93	DBLD	2.8	47.5 3020	AN C	NA 2.822			
H380	45.1	3.12	DBLD	3.1	50.3 301!	5 NA	NA 2.757			
ACCUR 2015BR	38.1	2.78	DBLD	2.5	41.8 300	6 NA	NA 2.822			
v-N133	38.7	2.98	DBLD	2.8	43.0 2998	B NA	NA 2.757			
ACCUR 2495BR	41.8	3.13	DBLD	3.1	46.5 299	7 NA	NA 2.822			
H322	37.9	2.75	DBLD	2.5	41.8 2993	3 NA	NA 2.757			
ACCUR 2460	40.6	2.66	DBLD	2.5	44.6 298	5 NA	NA 2.822			
RELODER 7	36.3	2.64	DBLD	2.5	39.9 2976	6 NA	NA 2.827			
BL-C(2)	43.1	2.78	DBLD	2.5	47.8 2974	1 NA	NA 2.757			
IMR3031	40.2	3.06	DBLD	2.8	44.5 296	5 NA	NA 2.827			
IMR4064	41.4	3.09	DBLD	2.8	46.0 2906	6 NA	NA 2.827			
H414	47.3	3.12	DBLD	3.1	51.8 289	l NA	NA 2.757			
IMR4320	41.2	2.95	DBLD	2.8	46.0 2862	2 NA	NA 2.827			

125 Grain Jac	keted						
WIN 748	42.9	2.81	DBLD	2.8	47.8 2968	NA	NA 2.757
v-N135	39.5	3.07	DBLD	2.8	43.8 2873	NA	NA 2.757
ACCUR 2520	41.5	2.83	DBLD	2.8	45.5 2857	NA	NA 3.007
v-N133	37.3	2.87	DBLD	2.8	41.4 2847	NA	NA 2.757
RELODER12	40.7	2.81	DBLD	2.8	45.0 2842	NA	NA 2.927

7.62x54R RUSSIAN (Continued)

These are reduced loads from a near same size cartridge.

	ST	ARTINO	LOA	DS				
D 1 T	Start	Volume CC	Auto-	Lee	NEVER EXCEED	Velocity	D	Mimimum
Powder Type	Grains			Dipper	EXCEEL	FPS	Pressure	Units OAL
125 Grain Jac				0.5	40.7	2041	NIA	NIA 2 007
ACCUR 2460	39.4	2.59	DBLD	2.5		2841	NA	NA 3.007
ACCUR 2495BR	40.9	3.06	DBLD	2.8		2834	NA	NA 3.007
v-N130	35.4	2.67	DBLD	2.5		2830	NA	NA 2.757
ACCUR 2015BR	36.1	2.64	DBLD	2.5	40.0	2821	NA	NA 3.007
130 Grain Jac	keted							
BL-C(2)	41.5	2.68	DBLD	2.5	46.4	2882	NA	NA 2.757
H335	39.3	2.53	DBLD	2.5	43.2	2864	NA	NA 2.757
H4895	38.3	2.79	DBLD	2.5	42.7	2850	NA	NA 2.757
v-N140	40.0	2.93	DBLD	2.8	44.4	2847	NA	NA 2.757
H380	43.6	3.02	DBLD	2.8	47.8	2791	NA	NA 2.757
H414	43.9	2.90	DBLD	2.8	48.3	2747	NA	NA 2.757
150 Grain Jac	katad							
WIN 748	40.7	2.67	DBLD	2.5	45.5	2724	NA	NA 2.757
v-N150	41.9	3.13	DBLD	3.1		2720	NA	NA 2.827
WIN 760	46.5	3.09	DBLD	2.8		2700	NA	NA 2.757
RELODER15	38.5	2.72	DBLD	2.5		2692	NA	NA 2.827
v-N140	38.7	2.84	DBLD	2.8		2677	NA	NA 2.827
H4895	36.6	2.67	DBLD			2668	NA	NA 2.757
ACCUR 2495BR	38.7	2.90	DBLD	2.8		2668	NA	NA 2.972
v-N135	37.5	2.91	DBLD			2649	NA	NA 2.827
ACCUR 2520	38.9	2.66		2.5		2648	NA	NA 2.972
H380	41.9	2.89	DBLD	2.8		2644	NA	NA 2.757
RELODER 7	33.1	2.41	DBLD			2637	NA	NA 2.827
H335	37.6	2.43	DBLD			2634	NA	NA 2.757
BL-C(2)	41.0	2.65	DBLD	2.5		2628	NA	NA 2.757
H414	42.8	2.83	DBLD	2.8		2624	NA	NA 2.757
ACCUR 2460	37.8	2.48	DBLD			2607	NA	NA 2.972
IMR3031	36.3	2.77	DBLD	2.5		2601	NA	NA 2.927
ACCUR 2015BR	34.5	2.52	DBLD	2.5		2584	NA	NA 2.972
RELODER12	37.6	2.60	DBLD	2.5		2575	NA	NA 2.827
IMR4064	37.5	2.79	DBLD	2.5		2574	NA	NA 2.927
IMR4895	35.9	2.61	DBLD	2.5		2555	NA	NA 2.927
	30.0	2.01	3525					
105.0								
165 Grain Jac		2.02	DBLD	2.8	12 E	2549	NA	NA 2.827
v-N150	39.3	2.93						NA 2.827 NA 2.757
BL-C(2)	38.1	2.45	DBLD	2.2	42.3	2527	NA	NA 2.757

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

39.0 2513

NA

34.9 2.25 DBLD 2.2

H335

NA 2.757

7.62x54R RUSSIAN (Continued) These are reduced loads from a near same size cartridge.

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velo EXCEED FP	city S Pressure	Mimimum Units OAL				
165 Grain Jacketed (Continued)											
H380	39.9	2.75	DBLD	2.5	43.7 250	06 NA	NA 2.757				
H4895	35.2	2.57	DBLD	2.5	38.6 250		NA 2.757				
RELODER15	36.4	2.57	DBLD	2.5	40.0 250	01 NA	NA 2.977				
v-N135	36.3	2.82	DBLD	2.8	40.1 24		NA 2.827				
H4350	46.7	3.39	NA	3.1	47.0 24	90 NA	NA 2.757				
RELODER12	36.7	2.53	DBLD	2.5	40.4 24	77 NA	NA 2.927				
H414	40.5	2.68	DBLD	2.5	45.0 24	73 NA	NA 2.757				
168 Grain Jac	keted						Case.				
ACCUR 2520	37.0	2.52	DBLD	2.5	41.4 253	35 NA	NA 3.027				
ACCUR 2495BR	37.4	2.80	DBLD	2.8	41.8 252		NA 3.027				
RELODER15	35.6	2.51	DBLD	2.5	39.8 25		NA 2.927				
v-N150	37.9	2.83	DBLD	2.8	41.9 24		NA 2.927				
ACCUR 2460	35.7	2.34	DBLD	2.2	39.5 24	52 NA	NA 3.027				
RELODER12	35.8	2.48	DBLD	2.2	39.5 243	35 NA	NA 2.927				
180 Grain Jac	keted										
WIN 760	42.9	2.86	DBLD	2.8	47.0 253	37 NA	NA 2.757				
RELODER15	36.5	2.57	DBLD	2.5	40.4 247		NA 2.977				
v-N150	37.1	2.77	DBLD	2.5	41.2 247		NA 2.977				
ACCUR 2700	44.1	3.02	DBLD	2.8	47.0 247		NA 3.027				
H4350	42.0	3.05	DBLD	2.8	47.0 246		NA 2.757				
H380	38.7	2.67	DBLD	2.5	43.2 245		NA 2.757				
ACCUR 2520	37.3	2.55	DBLD	2.5	40.9 244		NA 3.027				
v-N140	34.2	2.51	DBLD	2.5	38.0 244	12 NA	NA 2.977				
H4831	43.6	3.16	DBLD	3.1	48.0 241	14 NA	NA 2.757				
WIN 748	37.6	2.46	DBLD	2.2	41.4 241	10 NA	NA 2.757				
ACCUR 2495BR	35.3	2.64	DBLD	2.5	39.1 240	D3 NA	NA 3.027				
H4895	33.4	2.43	DBLD	2.2	37.2 239	94 NA	NA 2.757				
H414	39.4	2.60	DBLD	2.5	43.7 237		NA 2.757				
IMR4064	35.3	2.63	DBLD	2.5	39.1 237		NA 2.952				
IMR4350	44.1	3.24	DBLD	3.1	46.0 236		NA 2.952				
H335	33.1	2.13	DBLD	1.9	36.8 235		NA 2.757				
IMR4895	34.6	2.52	DBLD	2.5	38.7 235		NA 2.952				
IMR3031	33.7	2.57	DBLD	2.5	37.3 234		NA 2.952				
ACCUR 2460	34.6	2.27	DBLD	2.2	38.1 231	I3 NA	NA 3.027				

7.62x54R RUSSIAN (Continued) These are reduced loads from a near same size cartridge.

STARTING LOADS												
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimum OAL			
190 Grain Jack	keted											
ACCUR 2495BR	34.8	2.60	DBLD	2.5	38.3	2316	NA	NA	3.027			
WIN 748	35.0	2.29	DBLD	2.2	39.0	2305	NA	NA	2.757			
ACCUR 2520	35.5	2.42	DBLD	2.2	39.0	2299	NA	NA	3.027			
ACCUR 2460	33.5	2.20	DBLD	2.2	37.0	2269	NA	NA	3.027			
ACCUR 2230	32.5	2.14	DBLD	1.9		2251	NA	NA	3.027			
ACCUR 2700	39.0	2.67	DBLD	2.5	42.7	2217	NA	NA	3.027			
200 Grain Jacketed												
WIN 760	39.1	2.61	DBLD	2.5		2330	NA		2.757			
H4350	40.4	2.93	DBLD	2.8		2316	NA		2.757			
H4831	42.0	3.04	DBLD	2.8		2302	NA		2.757			
v-N140	33.5	2.45	DBLD			2300	NA		3.027			
H414	38.8	2.57	DBLD			2293	NA		2.757			
H380	37.0	2.56	DBLD	2.5		2288	NA		2.757			
WIN 748	35.5	2.32	DBLD			2276	NA		2.757			
H4895	32.7	2.38	DBLD			2261	NA		2.757			
H335	32.0	2.07	DBLD	1.9		2250	NA		2.757			
ACCUR 2520	34.9	2.38	DBLD	2.2	38.6	2242	NA	NA	3.027			
220 Grain Jac					00.4	0110	N1.A	NI A	0.007			
ACCUR 2495BR	32.8	2.45	DBLD	2.2		2116	NA		3.027			
ACCUR 2520	32.9	2.25	DBLD		200000000000000000000000000000000000000	2100	NA		3.027			
ACCUR 2460	31.9	2.09	DBLD	1.9	100000000000000000000000000000000000000	2082	NA		3.027			
ACCUR 2230	31.3	2.06	DBLD	1.9		2069			3.027			
ACCUR 2700	35.5	2.43	DBLD	2.2	39.0	2035	NA	NA	3.027			
225 Grain Jac		0.00	DDLD	2.0	44.4	2200	NIA	NIA	2.757			
H4350	39.5	2.86	DBLD		44.1	2290			2.757			
H4831	40.5	2.94	DBLD			2210						
H414	38.0	2.51	DBLD			2195			2.757			
H450	43.0	2.81	DBLD			2185 2173			2.757			
H380	36.7	2.53	DBLD						2.757			
H4895	31.2	2.27	DBLD			2097			2.757			
BL-C(2)	31.3	2.02	DBLD	100	200				2.757			
H335	29.9	1.93	DBLD	1.9	33.4	2089	IVA	NA	2.757			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

30-06 SPRINGFIELD

	ST/	ARTIN	G LOA	DS	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL
110 Grain Jac	A REAL PROPERTY.				THE PRODUCT OF STATE
RELODER15	52.1	3.68	NA	3.4	58.6 3465 58100 PSI 3.100
ACCUR 2495BR	51.4	3.85	NA	3.7	58.0 3446 59600 PSI 2.900
ACCUR 2520	52.9	3.61	NA	3.4	60.0 3436 60000 PSI 2.900
H-VARGET	53.2	3.89	NA	3.7	59.0 3432 49500 CUP 2.900
ACCUR 2460	54.2	3.56	NA	3.4	58.5 3421 57000 PSI 2.900
H335	47.7	3.08	DBLD	2.8	53.0 3416 49600 CUP 2.970
ACCUR 2230	54.1	3.55	NA	3.4	57.0 3385 55700 PSI 2.900
ACCUR 2015BR	50.1	3.66	NA	3.4	53.5 3374 56400 PSI 2.900
IMR3031	50.6	3.86	NA	3.7	56.0 3365 49300 CUP3.130
BL-C(2)	51.0	3.29	DBLD	3.1	56.0 3349 49000 CUP 2.970
H4895	50.6	3.69	NA	3.4	54.0 3343 47600 CUP 2.970
v-N140	51.0	3.74	NA	3.7	56.9 3330 50763 CIP 2.940
IMR4064	52.3	3.90	NA	3.7	58.0 3320 49400 CUP 3.130
H380	53.1	3.67	NA	3.4	58.0 3311 48700 CUP 2.970
v-N135	48.4	3.76	NA	3.7	54.0 3300 50763 CIP 2.940
H414	58.7	3.88	NA	3.7	61.0 3299 46400 CUP 2.970
v-N150	56.2	4.19	NA	4.0	60.8 3286 49300 CIP 2.940
ACCUR 2700	61.4	4.20	NA	4.0	62.0 3280 53400 PSI 2.900
RELODER12	50.5	3.49	NA	3.4	57.0 3280 58300 PSI 3.100
v-N133	46.6	3.59	NA	3.4	52.0 3280 50763 CIP 2.940
IMR4895	49.0	3.56	NA	3.4	54.5 3265 49600 CUP 3.130
IMR4320	52.2	3.74	NA	3.7	57.5 3255 49100 CUP 3.130
WIN 748	48.1	3.15	DBLD	3.1	52.7 3230 47000 CUP 2.970
WIN 760	55.6	3.70	NA	3.7	59.0 3210 45500 CUP 2.970
H322	43.6	3.16	DBLD	3.1	50.0 3204 51200 CUP 2.970

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

STARTING LOADS										
Davider Tune	Start	Volume CC	Auto- Disk I	Lee	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
Powder Type	Grains			yihhei	EXCLED ITO TRESSURE SINCE SALE					
110 Grain Jack	41.2	3.00	DBLD	2.8	45.0 3145 56400 PSI 3.100					
RELODER 7	66.0	4.31	NA	4.3	66.0 3016 43600 CUP 2.970					
H450	35.6	2.82	DBLD	2.8	39.5 2980 49400 CUP 3.130					
IMR4198 IMR4350	59.0	4.34	NA	4.3	59.0 2960 36900 CUP 3.130					
H4350	59.0	4.28	NA	4.0	59.0 2942 37000 CUP 2.970					
SR4759	31.4	3.12	DBLD	3.1	35.0 2820 49700 CUP 3.130					
IMR4831	59.0	4.34	NA	4.3	59.0 2780 32500 CUP 3.130					
H4831	61.0	4.42	NA	4.3	61.0 2778 33400 CUP 2.970					
IMR4227	28.9	2.22	DBLD	2.2	32.0 2730 49400 CUP 3.130					
HERC 2400	28.6	2.12	DBLD	1.9	30.9 2715 55900 PSI 3.100					
125 Grain Jac	keted 50.2	3.54	NA	3.4	56.8 3275 58500 PSI 3.120					
	51.6	3.77	NA	3.7	57.2 3267 49500 CUP 3.000					
H-VARGET		3.77	NA	3.7	54.0 3220 56700 PSI 3.150					
ACCUR 2495BR ACCUR 2700	50.3 58.2	3.77	NA	3.7	62.0 3195 56300 PSI 3.150					
ACCUR 2015BR	48.9	3.57	NA	3.4	52.0 3189 56200 PSI 3.150					
ACCUR 2230	48.4	3.18	DBLD	3.1	53.3 3172 58200 PSI 3.150					
RELODER12	49.0	3.39	NA	3.1	55.3 3170 58300 PSI 3.120					
v-N150	54.2	4.04	NA	4.0	58.7 3169 49300 CIP 2.940					
ACCUR 2520	51.1	3.49	NA	3.4	54.0 3126 55800 PSI 3.150					
WIN 760	55.1	3.67	NA	3.4	57.8 3125 45000 CUP 2.970					
ACCUR 2460	50.2	3.29	DBLD	3.1	53.5 3125 56300 PSI 3.150					
v-N140	47.9	3.51	NA	3.4	51.9 3120 49313 CIP 2.940					
v-N135	45.9	3.57	NA	3.4	51.2 3080 50763 CIP 2.940					
WIN 748	47.5	3.11	DBLD	3.1	51.0 3060 46000 CUP 2.970					
RELODER19	65.5	4.62	NA	4.3	65.5 2995 47300 PSI 3.120					
RELODER 7	38.4	2.79	DBLD	2.5	42.0 2915 56600 PSI 3.120					
ACCUR 4350	60.0	4.44	NA	4.3	60.0 2892 39400 PSI 3.150					
HERC 2400	28.1	2.09	DBLD	1.9	30.0 2575 55100 PSI 3.120					

130 Grain Jac	keted						-
H335	48.3	3.11	DBLD	3.1	53.0 3187		
H414	55.6	3.67	NA	3.4	60.0 3176	48200	CUP 2.970
H4895	47.5	3.46	NA	3.4	53.0 3176		
ACCUR 2495BR	46.8	3.51	NA	3.4	53.0 3170	59800	PSI 3.150
H380	50.5	3.49	NA	3.4	56.0 3151	49500	CUP 2.970
ACCUR 2015BR	49.2	3.59	NA	3.4	51.5 3140		
ACCUR 2700	58.1	3.98	NA	3.7	61.0 3125		
ACCUR 2230	48.3	3.17	DBLD	3.1	52.7 3111	57700	PSI 3.150
ACCUR 2520	49.3	3.36	NA	3.1	54.0 3104	57900	PSI 3.150

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

STARTING LOADS											
Powder Type	Start Grain	Volum s CC	Disk	Lee Dipper	NEVER Velocit EXCEED FPS	Pressure Units OAL					
130 Grain Ja	cketed	(Contin	nued)			Onto One					
ACCUR 2460	48.7		DBLD	3.1	53.3 3094	57900 PSI 3.150					
v-N140	47.4	3.47	NA	3.4	52.8 3080						
BL-C(2)	53.8	3.47	NA	3.4	55.0 3064						
v-N135	44.9	3.48	NA	3.4	50.0 3050						
H4350	59.0	4.28	NA	4.0	59.0 2934						
H322	42.3	3.06	DBLD	2.8	48.0 2933						
H450	64.0	4.18	NA	4.0	64.0 2906						
ACCUR 4350	60.0	4.44	NA	4.3	60.0 2866						
H4831	61.5	4.46	NA	4.3	61.5 2846						
147 Grain Jacketed											
v-N140	46.4	3.40	NA	3.4	51.7 2950	50763 CIP 2.940					
v-N135	43.6	3.39	NA	3.1	48.6 2890						
150 Grain Jac	keted 53.1	3.51	NA	3.4	EQ 0 2042	40700 0000					
RELODER15	47.4	3.34	NA	3.1	58.0 3043	48700 CUP 2.970					
H-VARGET	46.3	3.39			53.6 3005	58500 PSI 3.210					
RELODER12	47.4	3.28	NA DBLD	3.1	51.5 2980	49600 CUP 3.100					
H4895	42.9	3.12		3.1	53.6 2960	58400 PSI 3.210					
ACCUR 2700	56.8	3.89	DBLD	3.1	49.0 2932	51000 CUP 2.970					
H4350	55.8	4.04	NA NA	3.7	59.0 2932	54900 PSI 3.250					
H380	47.7	3.30	DBLD	4.0	59.0 2926	47200 CUP 2.970					
ACCUR 2495BR	46.7			3.1	54.0 2921	50500 CUP 2.970					
WIN 760	48.2	3.49	NA DBLD	3.4	51.5 2907	58300 PSI 3.250					
v-N140	45.7	3.35	NA	3.1	54.0 2900	48000 CUP 2.970					
RELODER19	63.5	4.48	NA		50.9 2900	50763 CIP 2.970					
IMR4064	46.3	3.45	NA	4.3 3.4	63.5 2895 52.0 2885	50900 PSI 3.210					
ACCUR 2015BR	43.4	3.17	DBLD	3.1	48.0 2881	50000 CUP 3.200 58400 PSI 3.250					
v-N150	51.1	3.81	NA	3.7	55.3 2877						
ACCUR 2520	46.5	3.17	DBLD	3.1	51.2 2870	49300 CIP 2.970 58200 PSI 3.250					
ACCUR 2230	45.1	2.96	DBLD	2.8	49.4 2865	58200 PSI 3.250 57900 PSI 3.250					
ACCUR 2460	44.7	2.93	DBLD	2.8	49.5 2862	58500 PSI 3.250					
BL-C(2)	46.3	2.98	DBLD	2.8	51.0 2857	49200 CUP 2.970					
IMR3031	44.3	3.38	NA	3.1	49.5 2850	49800 CUP 3.200					
v-N135	43.5	3.38	NA	3.1	48.5 2850	50763 CIP 2.970					
IMR4895	44.1	3.21	DBLD	3.1	49.5 2845	50000 CUP 3.200					
H335	46.1	2.97		2.8	50.0 2839	48400 CUP 2.970					
H4831	61.0	4.42		4.3	61.0 2825	43400 CUP 2.970					
H450	59.0	3.86	NA	3.7	63.5 2825	48000 CUP 2.970					
IMR4320	45.5	3.25		3.1	51.0 2825	50000 CUP 3.200					
CALITION MEN AND MEN				5.1	01.0 2020	55500 COF 3.200					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

Continued)										
	ST	ARTIN	G LOA							
Powder Type	Start Grains	CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
150 Grain Jac	keted (Contin	ued)							
IMR4350	55.0	4.04	NA	4.0	59.0 2825 47800 CUP 3.200					
ACCUR 4350	59.0	4.37	NA	4.3	59.0 2815 50300 PSI 3.250					
RELODER22	63.0	4.39	NA	4.3	63.0 2815 46000 PSI 3.210					
WIN 748	44.7	2.93	DBLD	2.8	48.0 2810 46000 CUP 2.970					
v-N160	53.7	3.94	NA	3.7	59.9 2810 50763 CIP 2.970					
RELODER 7	39.7	2.89	DBLD	2.8	43.8 2780 57000 PSI 3.210					
H322	40.5	2.94	DBLD	2.8	46.0 2720 50700 CUP 2.970					
IMR4831	59.0	4.34	NA	4.3	59.0 2715 42900 CUP 3.200					
ACCUR 3100	59.0	4.41	NA	4.3	59.0 2610 41000 PSI 3.250					
IMR4198	33.9	2.68	DBLD	2.5	38.0 2600 50000 CUP 3.200					
SR4759	27.8	2.76	DBLD	2.5	31.0 2365 49700 CUP3.200					
HERC 2400	27.1	2.01	DBLD	1.9	29.4 2330 56000 PSI 3.210					
IMR4227	26.7	2.06	DBLD	1.9	30.0 2310 50000 CUP3.200					
150 Grain Bar	nes X E	Bullet								
RELODER19	57.7	4.08	NA	4.0	63.0 2950 56400 PSI 3.220					
RELODER15	44.7	3.16	DBLD	3.1	50.6 2910 58500 PSI 3.220					
ACCUR 2700	52.0	3.56	NA	3.4	57.0 2891 57900 PSI 3.285					
ACCUR 4350	55.7	4.12	NA	4.0	57.0 2859 54100 PSI 3.285					
RELODER22	62.0	4.32	NA	4.3	62.0 2845 50600 PSI 3.220					
ACCUR 2495BR	42.3	3.16	DBLD	3.1	47.5 2818 59400 PSI 3.285					
ACCUR 2520	45.7	3.12	DBLD	3.1	50.0 2817 57800 PSI 3.285					
ACCUR 2015BR	40.7	2.97	DBLD	2.8	45.0 2805 58400 PSI 3.285					
ACCUR 2460	44.9	2.94	DBLD	2.8	48.5 2798 57100 PSI 3.285					
ACCUR 2230	45.5	2.99	DBLD	2.8	48.5 2796 56400 PSI 3.285					
ACCUR 3100	59.0	4.41	NA	4.3	59.0 2674 46900 PSI 3.285					
155 Grain Jac	keted									
v-N140	43.1	3.16	DBLD	3.1	48.1 2900 50763 CIP 3.150					
v-N160	53.2	3.90	NA	3.7	59.3 2810 50763 CIP 3.150					
v-N135	40.8	3.17	DBLD	3.1	45.5 2720 50763 CIP 3.150					
11100	10.0	0.17	DDLD	0.1	40.0 2720 00700 OH 0.100					
165.0	looke d									
165 Grain Jac H414	51.3	3.39	NA	3.1	56.0 2899 48700 CUP 2.970					
RELODER19	54.9	3.87	NA	3.7	62.1 2890 58500 PSI 3.220					
H-VARGET H4350	45.3 52.3	3.31	NA NA	3.1	50.5 2873 49700 CUP 3.100 57.0 2818 48600 CUP 2.970					
RELODER15	44.0	3.11	DBLD	3.1	49.8 2815 58500 PSI 3.250					
H4895	42.3	3.08	DBLD	2.8	48.0 2813 50600 CUP 2.970					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

3.23 DBLD 3.1

46.8

H380

52.0 2792 49600 CUP 2.970

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL			
165 Grain Jacketed (Continued)										
RELODER12	45.6	3.15	DBLD	3.1	51.1 2785	57900	PSI 3.250			
H4831	60.9	4.42	NA	4.3	61.0 2770	44700	CUP 2.970			
v-N160	53.3	3.91	NA	3.7	58.6 2770	50038	CIP 3.200			
RELODER22	60.0	4.18	NA	4.0	60.0 2755	51300	PSI 3.220			
H335	42.9	2.77	DBLD	2.5	47.0 2738	48900	CUP 2.970			
BL-C(2)	44.9	2.90	DBLD	2.8	49.0 2698	48700	CUP 2.970			
H450	60.0	3.92	NA	3.7	60.0 2643	43700	CUP 2.970			
RELODER 7	36.9	2.68	DBLD	2.5	40.5 2610	56800	PSI 3.250			
H322	40.9	2.97	DBLD	2.8	44.0 2546	48000	CUP 2.970			
HERC 2400	27.2	2.02	DBLD	1.9	29.2 2295	55400	PSI 3.250			

1	165	Grain	Barnes	V	Rullat
	00	Grain	barnes	А	bullet

ACCUR 4350	53.5	3.96	NA	3.7	57.0 2759	56300 PS	3.245
ACCUR 2700	48.8	3.34	NA	3.1	54.0 2707	58500 PS	3.245
ACCUR 2520	41.8	2.86	DBLD	2.8	47.5 2667	60000 PS	3.245
ACCUR 2495BR	41.1	3.08	DBLD	2.8	45.5 2645	58500 PS	3.245
ACCUR 2015BR	38.8	2.83	DBLD	2.8	43.0 2618	58600 PS	3.245
ACCUR 2460	39.6	2.60	DBLD	2.5	45.0 2582	60000 PS	3.245
ACCUR 3100	59.0	4.41	NA	4.3	59.0 2577	46300 PS	3.245
ACCUR 2230	40.2	2.64	DBLD	2.5	44.0 2542	57800 PS	3.245

168 Grain Jacketed

100 Grain ouc	ROLOG								
ACCUR 4350	55.5	4.11	NA	4.0	59.0 2	825	56200	PSI	3.295
v-N160	52.7	3.87	NA	3.7	58.8 2	810	50763	CIP	3.200
ACCUR 2700	49.5	3.39	NA	3.1	54.0 2	732	57700	PSI	3.295
ACCUR 2015BR	40.8	2.98	DBLD	2.8	45.5 2	710	59000	PSI	3.295
ACCUR 2495BR	43.4	3.24	DBLD	3.1	47.0 2	707	57300	PSI	3.295
v-N140	42.9	3.14	DBLD	3.1	47.8 2	690	50763	CIP	3.200
ACCUR 2520	43.3	2.95	DBLD	2.8	47.5 2	681	58000	PSI	3.295
WIN 760	47.9	3.19	DBLD	3.1	52.5 2	665	47000	CUP	2.970
ACCUR 2230	41.3	2.72	DBLD	2.5	46.0 2	663	58800	PSI	3.295
ACCUR 2460	42.0	2.75	DBLD	2.5	46.7 2	659	58800	PSI	3.295
v-N150	46.7	3.49	NA	3.4	50.6 2	625	49313	CIP	3.200
ACCUR 3100	59.0	4.41	NA	4.3	59.0 2	614	48800	PSI	3.295

180 Grain Winchester Fail Safe

100 Grain II	1110110010		Juic				
RELODER19	53.5	3.77	NA	3.7	57.2 2685	55300 PS	SI 3.200
RELODER22	58.7	4.09	NA	4.0	59.0 2670	52000 PS	3.200
WIN 760	44.2	2.95	DBLD	2.8	51.4 2625	57100 PS	SI 3.250

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

	ST/	ARTING	G LOA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
180 Grain Win							
RELODER15	43.0	3.04	DBLD		47.0 2600	56500	PSI 3.200
RELODER12	41.2	2.85	DBLD	2.8	45.3 2515	56800	PSI 3.200
180 Grain Jac	keted						
RELODER19	54.4	3.84	NA	3.7	60.0 2800	57000	PSI 3.250
IMR4350	51.1	3.76	NA	3.7	57.0 2750	49700	CUP 3.200
H4831	57.5	4.17	NA	4.0	60.0 2737	46600	CUP 2.970
H4350	51.2	3.71	NA	3.7	56.0 2733	48800	CUP 2.970
ACCUR 4350	53.4	3.95	NA	3.7	57.0 2715	56400	PSI 3.290
RELODER22	60.0	4.18	NA	4.0	60.0 2710	51500	PSI 3.250
v-N160	51.2	3.76	NA	3.7	57.1 2710	50763	CIP 3.200
H380	45.9	3.17	DBLD	3.1	51.0 2702	49600	CUP 2.970
H414	50.6	3.35	NA	3.1	54.0 2700	47600	CUP 2.970
IMR4831	59.0	4.34	NA	4.3	59.0 2700	44200	CUP 3.200
WIN 760	46.4	3.09	DBLD	2.8	52.5 2700	48500	CUP 2.970
H-VARGET	43.9	3.21	DBLD	3.1	49.0 2700		CUP 3.150
IMR4064	44.8	3.34	NA	3.1	49.5 2670	49200	CUP 3.200
RELODER15	42.7	3.01	DBLD	2.8	48.3 2660	58500	PSI 3.250
ACCUR 2700	50.0	3.42	NA	3.4	53.0 2646	56000	
v-N140	41.5	3.04	DBLD	2.8	46.3 2620	50763	CIP 3.200
ACCUR 3100	58.5	4.38	NA	4.3	59.0 2611	53300	THE RESIDENCE CONTRACTOR OF THE PARTY OF THE
H450	54.6	3.57	NA	3.4	59.0 2604		CUP 2.970
H4895	39.3	2.86	DBLD	2.8	44.0 2600	50000	CUP 2.970
IMR4320	43.9	3.15	DBLD	3.1	49.0 2595		CUP 3.200
ACCUR 2495BR	40.4	3.02	DBLD	2.8	45.5 2595		PSI 3.290
ACCUR 2015BR	39.7	2.90	DBLD	2.8	44.5 2588	59300	PSI 3.290
ACCUR 2520	43.4	2.96	DBLD		46.8 2585	57000	
ACCUR 2230	38.8	2.55	DBLD	2.5	44.0 2568	60000	PSI 3.290
H1000	64.0	4.56	NA	4.3	64.0 2564	38200	CUP 2.970
ACCUR 2460	43.4 43.1	2.85	DBLD	2.8	45.8 2563 47.5 2550	49200	PSI 3.290 CUP 2.970
BL-C(2) IMR3031	39.8	2.78 3.03	DBLD DBLD	2.8	44.5 2540	49800	CUP 3.200
H335	41.5	2.68	DBLD	2.5	45.0 2530		CUP 2.970
WIN 748	40.1	2.63	DBLD	2.5	44.0 2530	47000	CUP 2.970
IMR4895	38.8	2.82	DBLD	2.8	43.5 2520	50000	CUP 3.200
RELODER12	41.2	2.85		2.8	45.3 2515	56800	
RELODER 7	36.2	2.63	DBLD	2.5	39.8 2505	56900	PSI 3.250
H870	64.0	4.39	NA	4.3	64.0 2424	36600	CUP 2.970
H322	38.7	2.81	DBLD	2.8	42.0 2399	48400	CUP 2.970
IMR4198	32.2	2.55	DBLD	2.5	36.0 2350	49800	CUP 3.200
HERC 2400	26.3	1.95	DBLD	1.9	28.2 2210	55400	PSI 3.250
						55.00	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-14-1996

STARTING LOADS...

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER VEX EXCEED	Velocity FPS	Pressure	N Units	limimum OAL
180 Grain Jac	keted (Contin	ued)		P. The			i British	TAY I
SR4759	26.3	2.61	DBLD	2.5	29.5	2135	50000	CUP	3.200
IMR4227	25.5	1.96	DBLD	1.9	28.5	2045	49800	CUP	3.200
180 Grain Barı	nes X B								
ACCUR 4350	48.9	3.62	NA	3.4	55.5	2678	60000	PSI	3.320
ACCUR 2700	48.8	3.34	NA	3.1	54.0	2647	58500	PSI	3.320
ACCUR 3100	59.0	4.41	NA	4.3	59.0	2592	51400	PSI	3.320
ACCUR 2520	41.3	2.82	DBLD	2.8	46.0	2558	58900	PSI	3.320
ACCUR 2495BR	40.1	3.00	DBLD	2.8	45.0	2543	59300	PSI	3.320
ACCUR 2460	39.9	2.62	DBLD	2.5	44.5	2521	59000	PSI	3.320
ACCUR 2230	39.7	2.61	DBLD	2.5	43.5	2476	57900	PSI	3.320
ACCUR 2015BR	37.3	2.72	DBLD	2.5	41.0	2473	58100	PSI	3.320
190 Grain Jac	keted	9							
RELODER22	54.8	3.82	NA	3.7	60.0	2755	56600	PSI	3.300
RELODER19	51.6	3.64	NA	3.4	58.0	2720	58100	PSI	3.300
H4831	54.6	3.96	NA	3.7	59.0	2710	48200	CUP	2.970
H4350	49.7	3.60	NA	3.4	55.0	2680	49400	CUP	2.970
ACCUR 4350	48.9	3.62	NA	3.4	55.5	2663	60000	PSI	3.325
H-VARGET	41.8	3.05	DBLD	2.8	46.5	2608	49700	CUP	3.200
WIN 760	46.9	3.13	DBLD	3.1	52.0	2605	47500	CUP	2.970
RELODER15	41.8	2.95	DBLD	2.8	47.3	2600	58500	PSI	3.300
H414	49.5	3.27	DBLD	3.1	53.0	2589	47800	CUP	2.970
H380	43.8	3.03	DBLD	2.8	49.0	2577	49900	CUP	2.970
ACCUR 3100	58.6	4.38	NA	4.3	59.0	2574	53200	PSI	3.325
H450	53.4	3.49	NA	3.4	57.0	2560	47600	CUP	2.970
ACCUR 2460	41.2	2.70	DBLD	2.5	45.5	2537	58400	PSI	3.325
RELODER12	40.8	2.82	DBLD	2.8	46.0	2520	58300	PSI	3.300
ACCUR 2700	51.2	3.50	NA	3.4	52.0	2519	53700	PSI	3.325
ACCUR 2520	41.2	2.81	DBLD	2.8	45.5	2514	58400	PSI	3.325
ACCUR 2015BR	37.9	2.77	DBLD	2.5	43.0	2492	60000	PSI	3.325
ACCUR 2495BR	39.3	2.94	DBLD	2.8	44.0	2492	59100		
H4895	38.4	2.79	DBLD	2.5	43.0		50000	CUP	2.970
ACCUR 2230	41.1	2.70	DBLD	2.5	44.0	2477	56600	PSI	3.325
H1000	63.0	4.49	NA	4.3	63.0	2465	37600	CUP	2.970
BL-C(2)	42.4	2.74	DBLD	2.5	46.0	2443	48400	CUP	2.970
H335	38.6	2.49	DBLD	2.2	42.0	2430	48600	CUP	2.970
H870	64.0	4.39	NA	4.3	64.0	2419	39600	CUP	2.970

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

DBLD 2.2

37.4 2340

57400 PSI

3.300

RELODER 7

33.7

2.45

STAPTING LOADS

STARTING LOADS Start Volume Auto- Lee NEVER Velocity Mimimum											
Powder Type	Start Grains	Volume CC	Disk I	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL						
190 Grain Jack	keted (Continu	ued)								
ACCUR 8700	62.0	4.27	NA	4.0	62.0 2173 31400 PSI 3.325						
HERC 2400	24.2	1.79	DBLD	1.6	26.0 2075 55600 PSI 3.300						
200 Grain Jac	200 Grain Jacketed										
H4831	53.7	3.90	NA	3.7	59.0 2690 49000 CUP 2.970						
RELODER22	51.7	3.60	NA	3.4	58.4 2680 58400 PSI 3.300						
IMR4831	51.8	3.81	NA	3.7	58.0 2660 49900 CUP 3.440						
IMR4350	49.1	3.61	NA	3.4	55.0 2635 49900 CUP 3.440						
H4350	49.1	3.56	NA	3.4	55.0 2635 50000 CUP 2.970						
RELODER19	49.3	3.48	NA	3.4	55.8 2630 58500 PSI 3.300						
ACCUR 4350	49.4	3.66	NA	3.4	55.0 2569 58800 PSI 3.295						
ACCUR 3100	52.9	3.96	NA	3.7	59.0 2561 58900 PSI 3.295						
H380	42.6	2.94	DBLD	2.8	48.0 2533 50300 CUP 2.970						
IMR4064	43.0	3.21	DBLD	3.1	47.5 2530 49200 CUP 3.440						
RELODER15	40.6	2.87	DBLD	2.8	46.0 2505 58500 PSI 3.300						
v-N160	47.7	3.50	NA	3.4	53.2 2490 50763 CIP 3.250						
H414	50.0	3.31	NA	3.1	52.0 2483 46400 CUP 2.970						
WIN 760	45.7	3.04	DBLD	2.8	49.0 2470 46000 CUP 2.970						
H1000	62.0	4.42	NA	4.3	62.0 2468 39800 CUP 2.970						
H450	53.4	3.49	NA	3.4	56.0 2455 46800 CUP 2.970						
IMR3031	39.9	3.04	DBLD	2.8	44.5 2450 49700 CUP 3.440						
IMR4895	38.6	2.81	DBLD	2.8	43.0 2445 49700 CUP 3.440						
IMR4320	42.0	3.01	DBLD	2.8	46.0 2445 48800 CUP 3.440						
ACCUR 2700	50.5	3.46	NA	3.4	51.5 2441 53900 PSI 3.295						
RELODER12	39.7	2.74	DBLD	2.5	44.8 2440 58300 PSI 3.300						
WIN MAG RIFLE	55.7	4.00	NA	4.0	55.7 2435 48200 PSI 3.200						
ACCUR 2520	40.4	2.76	DBLD	2.5	45.0 2432 58900 PSI 3.295						
H4895	37.7	2.74	DBLD	2.5	43.0 2431 50900 CUP 2.970						
ACCUR 2460	40.2	2.64	DBLD	2.5	44.5 2429 58500 PSI 3.295						
H870	64.0	4.39	NA	4.3	64.0 2401 41200 CUP 2.970						
ACCUR 2230	40.1	2.64	DBLD	2.5	43.5 2386 57300 PSI 3.295						
IMR7828	55.0	3.99	NA	3.7	55.0 2385 44100 CUP 3.440						
ACCUR 2495BR	37.9	2.84	DBLD	2.8	43.0 2379 59900 PSI 3.295						
v-N150	43.9	3.27	DBLD		47.5 2374 49300 CIP 3.250						
ACCUR 2015BR	40.5	2.96	DBLD		42.0 2343 54800 PSI 3.295						
IMR4198	33.1	2.63	DBLD	2.5	36.0 2285 48400 CUP 3.440						
ACCUR 8700	62.0	4.27	NA	4.0	62.0 2187 34800 PSI 3.295						
IMR4227	25.4	1.95	DBLD	1.9	28.5 2045 50000 CUP 3.440						
SR4759	25.5	2.53	DBLD	2.5	28.5 2000 49800 CUP 3.440						

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
220 Grain Jac	keted				THE SHAPE OF THE SALE					
IMR4831	50.4	3.71	NA	3.7	56.0 2490 49500 CUP 3.185					
IMR4350	47.7	3.50	NA	3.4	53.5 2470 50000 CUP 3.185					
ACCUR 3100	52.1	3.89	NA	3.7	59.0 2470 59900 PSI 3.200					
ACCUR 4350	48.9	3.62	NA	3.4	55.0 2467 59400 PSI 3.200					
v-N160	47.2	3.46	NA	3.4	52.6 2410 50763 CIP 3.250					
v-N165	50.5	3.60	NA	3.4	56.3 2410 50763 CIP 3.250					
WIN MAG RIFLE	53.6	3.85	NA	3.7	55.7 2380 51100 PSI 3.200					
IMR4064	41.0	3.05	DBLD	2.8	46.0 2370 50000 CUP3.185					
WIN 760	43.8	2.92	DBLD	2.8	49.0 2370 48000 CUP 2.970					
ACCUR 2700	45.0	3.08	DBLD	2.8	49.5 2327 58200 PSI 3.200					
IMR3031	38.7	2.95	DBLD	2.8	42.5 2300 49000 CUP3.185					
IMR4320	39.6	2.84	DBLD	2.8	44.0 2295 49500 CUP 3.185					
ACCUR 2520	39.4	2.69	DBLD	2.5	44.0 2288 59000 PSI 3.200					
IMR7828	55.0	3.99	NA	3.7	55.0 2285 41900 CUP 3.185					
ACCUR 2460	38.8	2.54	DBLD	2.5	43.0 2268 58600 PSI 3.200					
ACCUR 2015BR	37.3	2.72	DBLD	2.5	42.0 2253 59500 PSI 3.200					
ACCUR 2230	38.5	2.53	DBLD	2.5	42.5 2248 58400 PSI 3.200					
IMR4895	36.1	2.63	DBLD	2.5	40.5 2230 50000 CUP3.185					
ACCUR 2495BR	39.5	2.95	DBLD	2.8	42.5 2222 56900 PSI 3.200					
ACCUR 8700	62.0	4.27	NA	4.0	62.0 2168 38700 PSI 3.200					
IMR4198	30.1	2.39	DBLD	2.2	33.0 2055 48800 CUP 3.185					
IMR4227	24.1	1.85	DBLD	NA	27.0 1850 50000 CUP 3.185					
SR4759	24.1	2.39	DBLD	2.2	27.0 1835 50000 CUP3.185					

225	Grain	.lacl	ceted
220	Grain	Jaci	cetea

	GUONGLUU				
H4831	50.1	3.63	NA	3.4	57.0 2526 50800 CUP 2.970
H4350	48.5	3.51			53.0 2464 48800 CUP 2.970
H450	51.1	3.34	NA		57.0 2423 49800 CUP 2.970
H1000	61.0	4.35			61.0 2407 42000 CUP 0.000
H414	46.0	3.04	DBLD		
H870	63.0	4.32	NA		63.0 2348 42300 CUP 2.970

250 Grain Jacketed

111000	F0.0						
H1000	58.0	4.14	NA	4.0	58.0 2234	42000	CUP 2 970
H4831	E0 2	2 64	A L A				
114031	50.2	3.64	NA	3.4	54.0 2180	48000	CUP 2.970
H4350	48.0	3 18	NIA		50.0 2131		
H870	60.9	4.18	NA	4.0	61.0 2117	44700	CHIP 2 070
					01.0 211/	TT/00	2.3/0

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-14-1996

300 WINCHESTER MAGNUM

Powder Type	Start Grains	Volume CC	Auto- Disk		NEVER Vel EXCEED F	ocity PS	Pressure	N Units	limimum OAL
110 Grain Jac		00	DISK	Dippoi	LKOLLD .				
ACCUR 2700	68.2	4.67	NA	4.3	78.5 36	656	64000	PSI	3.170
H380	72.0	4.98	NA	NA	72.0 3	638	47400	CUP	3.300
H4831	84.0	6.09	NA	NA	84.0 36	621	47400	CUP	3.300
H4350	73.9	5.36	NA	NA	79.0 30	610	51700	CUP	3.300
H414	73.8	4.88	NA	4.3	76.0 3	597	49800	CUP	3.300
ACCUR 4350	79.5	5.88	NA	NA	79.5 3	541	55600		3.170
BL-C(2)	57.4	3.70	NA	3.7	61.0 3!	531	51400	CUP	3.300
ACCUR 2520	63.8	4.36	NA	4.3	67.0 3	512	58400	PSI	3.170
H4895	66.0	4.81	NA	4.3	68.0 34	494	49800	CUP	3.300
ACCUR 3100	82.0	6.13	NA	NA	82.0 34	419	51900	PSI	3.170
H1000	85.0	6.06	NA	NA	85.0 3:	211	33600	CUP	3.300

125 Grain Jac	keted							
ACCUR 2700	65.7	4.50	NA		74.5 3478			
ACCUR 4350	75.0	5.55	NA	NA	78.5 3462	58200	PSI	3.250
v-N160	72.9	5.35	NA		78.7 3410			
ACCUR 3100	79.3	5.93	NA	NA	82.0 3373	57500	PSI	3.250
ACCUR 2520	59.3	4.04	NA	4.0	65.0 3343	61000	PSI	3.250

130 Grain Jac	keted						
H450	80.0	5.22	NA	NA	80.0 3426	47600	CUP 3.300
H414	72.6	4.80	NA	4.3	74.0 3409	49300	CUP 3.300
H380	66.5	4.60	NA	4.3	71.0 3403	51600	CUP 3.300

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

000 111110					Olvi (Continued)					
	Start	ARTING Volume	G LO/	ADS	NEVER Valority					
Powder Type	Grains	s CC	Disk	Dipper	NEVER Velocity Mimim EXCEED FPS Pressure Units OA					
130 Grain Jacketed (Continued)										
H4350	70.4	5.10	NA	NA	76.0 3390 52200 CUP 3.30					
ACCUR 2700	64.7	4.43	NA	4.3	73.5 3386 63200 PSI 3.30					
ACCUR 3100	76.6	5.73	NA	NA	82.0 3378 59500 PSI 3.30					
ACCUR 4350	71.4	5.28	NA	NA	77.0 3378 60000 PSI 3.30					
H4831	75.0	5.44	NA	NA	81.0 3347 52200 CUP3.30					
H4895	61.2	4.46	NA	4.3	66.0 3309 52100 CUP3.30					
ACCUR 2520	59.6	4.07	NA	4.0	63.0 3237 58800 PSI 3.30					
H1000	85.0	6.06	NA	NA	85.0 3228 39300 CUP 3.30					
147 Grain Jac	keted									
v-N160	70.1	5.14	NA	NA	75.6 3280 56565 CIP 3.28					
					The second of th					
150 Grain Jac	keted									
IMR4831	71.7	5.27	NA	NA	80.0 3365 54000 CUP3.34					
IMR4350	68.2	5.02	NA	NA	76.0 3335 53900 CUP3.34					
v-N160	69.8	5.12	NA	NA	75.3 3310 56565 CIP 3.28					
H380	63.0	4.35	NA	4.3	71.0 3303 54500 CUP 3.30					
RELODER22	73.5	5.12	NA	NA	81.5 3275 60400 PSI 3.34					
H4895	58.0	4.22	NA	4.0	66.0 3259 55000 CUP 3.30					
H450	72.8	4.75	NA	4.3	78.0 3253 51800 CUP 3.30					
H4831	72.4	5.25	NA	NA	80.0 3252 53400 CUP 3.30					
H4350	67.5	4.90	NA	NA	74.0 3244 53000 CUP 3.30					
IMR4064	59.0	4.40	NA	4.3	65.5 3240 53700 CUP 3.34					
H1000	85.0	6.06	NA	NA	85.0 3240 45300 CUP 3.30					
IMR4320	59.9	4.29	NA	4.0	66.5 3230 53700 CUP 3.34					
RELODER19	68.4	4.83	NA	4.3	76.7 3225 61000 PSI 3.34					
IMR4895	58.4	4.25	NA	4.0	64.0 3210 53000 CUP 3.34					
H414	68.9	4.56	NA	4.3	71.0 3202 49800 CUP 3.30					
IMR3031	56.6	4.31	NA	4.3	63.0 3200 53900 CUP 3.340					
RELODER15	58.3	4.11	NA	4.0	65.3 3180 61000 PSI 3.340					
ACCUR 2700	62.0	4.25	NA	4.0	69.5 3177 62300 PSI 3.380					
ACCUID 42E0	60.2		ALA	NIA	70.0 01// 02000 101 3.30					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

ACCUR 4350

ACCUR 3100

RELODER12

ACCUR 2520

H870

v-N165

IMR4198

68.3

71.8

52.5

87.0

75.9

55.1

44.2

5.06

5.37

3.63

5.97

5.40

3.76

3.50

NA

NA

NA

NA

NA

NA

NA

NA

NA

3.4

NA

NA

3.7

3.4

73.0 3144 59400 PSI 3.380

76.0 3108 58900 PSI 3.380

61200 PSI 3.340

48200 CUP 3.300

54600 CIP 3.280

58500 PSI 3.380

53600 CUP 3.340

59.0 3105

87.0 3050

79.0 2990

58.0 2959

49.0 2900

Start Volume Auto- Lee NEVER Velocity Minimum											
Powder Type	Grains	CC	Disk	Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL						
150 Grain Jack	keted (Continu	ued)								
SR4759	37.6	3.74	NA	3.7	41.5 2660 53400 CUP 3.340						
IMR4227	36.5	2.81	DBLD	2.8	39.5 2590 52400 CUP 3.340						
155 Grain Jacketed											
v-N160	69.3	5.09	NA	NA	74.8 3260 56565 CIP 3.280						
11100											
165 Grain Jacketed											
IMR7828	69.9	5.06	NA	NA	77.5 3210 53700 CUP 3.340						
H1000	79.0	5.63	NA	NA	84.0 3207 51400 CUP 3.300						
	67.0	4.86	NA	4.3	73.0 3188 52700 CUP 3.300						
H4350 H4831	70.8	5.13	NA	NA	78.0 3180 53300 CUP 3.300						
H4831 H450	69.3	4.53	NA	4.3	76.0 3169 53000 CUP 3.300						
		5.17	NA	NA	74.1 3150 55114 CIP 3.280						
v-N160 RELODER22	70.5	4.95	NA	NA	79.4 3135 60800 PSI 3.340						
	73.3	5.22	NA	NA	78.0 3080 55800 CIP 3.280						
v-N165		4.06	NA	4.0	64.0 3076 55500 CUP 3.300						
H4895	55.8 67.2	4.75	NA	4.3	74.6 3070 60400 PSI 3.340						
RELODER19			NA	4.3	68.0 3036 48400 CUP 3.300						
H414	67.9	4.49		NA	76.0 3010 53800 PSI 3.200						
WIN MAG RIFLE	75.5	5.42	NA NA	4.0	67.0 2997 53000 CUP 3.300						
H380	61.1		NA	4.0	62.6 2980 60100 PSI 3.340						
RELODER15	56.7	4.00		NA	89.0 2971 51200 CUP 3.300						
H870	84.0	5.77	NA	IVA	89.0 2971 31200 601 3.300						
168 Grain Jac	keted										
ACCUR 4350	63.4	4.69	NA	4.3	72.0 3060 63200 PSI 3.475						
ACCUR 2700	60.2	4.12	NA	4.0	67.0 2959 61900 PSI 3.475						
ACCUR 3100	71.5	5.35	NA	NA	73.5 2945 57200 PSI 3.475						
180 Grain Wir	cheste	r Fail S	Safe								
RELODER22	75.9	5.29	NA	NA	76.0 2870 54500 PSI 3.340						
RELODER19	70.7	4.99	NA	NA	72.3 2850 55700 PSI 3.340						
11220221110											
100 0	المممما										
180 Grain Jac	78.8	5.62	NA	NA	83.0 3121 50900 CUP3.300						
H1000	68.0	5.00	NA	NA	75.5 3105 53700 CUP 3.250						
IMR4831		4.71	NA	4.3	71.5 3100 54000 CUP 3.250						
IMR4350 H4831	64.1	5.04	NA	NA	76.0 3088 52900 CUP 3.300						
NATION AND ADDRESS OF THE PARTY	63.9	4.64	NA	4.3	71.0 3079 53700 CUP 3.300						
H4350					7110 0070 00111						
DBLD = Double Disk, s	see instru	ctions w	ith your A	uto-Dis	m Over All Length or longer. k powder measure. NA = None Available						
C	opyright (08-15-19	996								

	ST	ARTING		DS								
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL					
180 Grain Jac	180 Grain Jacketed (Continued)											
H450	69.5	4.54	NA	4.3	75.0 3064	52200	CUP 3.300					
IMR7828	66.4	4.82	NA	4.3	74.0 3050	53900	CUP 3.250					
RELODER22	69.4	4.84	NA	4.3	76.9 3030	60300	PSI 3.340					
IMR4064	56.2	4.19	NA	4.0	62.5 2995	53800	CUP 3.340					
RELODER19	64.5	4.56	NA	4.3	72.3 2990	61000	PSI 3.340					
v-N160	69.4	5.10	NA	NA	73.0 2990	55114	CIP 3.280					
H870	78.5	5.38	NA	NA	86.0 2982	53000	CUP 3.300					
v-N165	66.0	4.70	NA	4.3	75.5 2980	60000	CIP 3.280					
WIN MAG RIFLE	65.6	4.71	NA	4.3	74.0 2960	60300	PSI 3.200					
IMR4895	53.4	3.89	NA	3.7	59.5 2950	53900	CUP 3.250					
H414	60.0	3.97	NA	3.7	67.0 2928	54000	CUP 3.300					
IMR4320	54.5	3.90	NA	3.7	60.5 2920	53700	CUP 3.250					
IMR3031	52.7	4.02	NA	4.0	58.5 2900	53700	CUP 3.250					
ACCUR 3100	68.7	5.14	NA	NA	72.0 2899	58300	PSI 3.450					
ACCUR 4350	61.7	4.57	NA	4.3	69.0 2894	62200	PSI 3.450					
ACCUR 2700	58.4	4.00	NA	4.0	66.0 2879	62800	PSI 3.450					
ACCUR 8700	86.0	5.92	NA	NA	86.0 2813	45100	PSI 3.450					
IMR4198	42.1	3.34	NA	3.1	47.0 2690	54000	CUP 3.250					
SR4759	34.7	3.45	NA	3.4	38.5 2435	53700	CUP 3.250					
IMR4227	34.0	2.61	DBLD	2.5	37.5 2390	53400	CUP 3.250					

1	8	5	Gr	ain	Ja	cke	ted

v-N160	67.2	4.93	NA	NA	72.5	2920	56565	CIP	3.280
--------	------	------	----	----	------	------	-------	-----	-------

190 Grain Jacketed

H1000	74.1	5.28	NA	NA	82.0 3101	53500	CUP 3.300
H450	66.6	4.35	NA	4.3	73.0 2950		
H4831	65.8	4.77	NA	4.3	74.0 2937	54400	CUP 3.300
H870	78.4	5.38	NA	NA	85.0 2924		
WIN MAG RIFLE	66.5	4.77	NA	4.3	74.0 2920	59500	PSI 3.200
H4350	62.8	4.56	NA	4.3	69.0 2914	53100	CUP 3.300
v-N165	64.7	4.61	NA	4.3	73.4 2890	59500	CIP 3.280
ACCUR 4350	59.7	4.42	NA	4.3	68.0 2861	63300	PSI 3.450
ACCUR 8700	86.0	5.92	NA	NA	86.0 2813	49300	PSI 3.450
ACCUR 3100	65.4	4.89	NA	NA	70.0 2803		
ACCUR 2700	58.3	3.99	NA	3.7	63.5 2778	60600	PSI 3.450

200 Grain Jacketed

H1000	72.8	5.19	NA	NA	80.0 2984	53100	CUP 3.300
IMR7828	63.9	4.63	NA		71.0 2900		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

300 VVIII CIILS I LIT IVIA GIVOIVI (continueu)										
	STA	RTING	LOA	os	NEVED Valacity Minimum					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
200 Grain Jacl	keted (Continu	ıed)							
H870	78.0	5.35	NA	NA	84.0 2897 52100 CUP 3.300					
H450	67.1	4.38	NA	4.3	72.0 2895 51900 CUP 3.300					
v-N160	66.9	4.91	NA	NA	72.2 2890 56565 CIP 3.280					
RELODER22	66.3	4.62	NA	4.3	73.4 2875 60300 PSI 3.300					
H4831	65.4	4.74	NA	4.3	73.0 2814 54000 CUP 3.300					
RELODER19	61.4	4.33	NA	4.3	68.0 2810 60300 PSI 3.340					
H4350	61.3	4.45	NA	4.3	68.0 2807 53600 CUP 3.300					
WIN MAG RIFLE	62.5	4.49	NA	4.3	69.0 2750 59000 PSI 3.200					
ACCUR 8700	86.0	5.92	NA	NA	86.0 2747 53800 PSI 3.340					
ACCUR 3100	66.0	4.94	NA	NA	69.0 2703 58100 PSI 3.340					
ACCUR 2700	55.8	3.82	NA	3.7	62.0 2697 61800 PSI 3.340					
ACCUR 4350	57.7	4.27	NA	4.0	64.0 2696 61700 PSI 3.340					
220 Grain Jac IMR7828	keted 63.9	4.63	NA	4.3	70.0 2750 53000 CUP 3.340					
IMR4831	63.8	4.69	NA	4.3	70.0 2730 53100 CUP 3.340					
ACCUR 8700	86.0	5.92	NA	NA	86.0 2694 53300 PSI 3.300					
IMR4350	59.5	4.37	NA	4.3	66.0 2690 53700 CUP 3.340					
v-N160	67.5	4.96	NA	NA	71.0 2690 55114 CIP 3.280					
WIN MAG RIFLE	61.0	4.38	NA	4.3	68.2 2665 59800 PSI 3.200					
ACCUR 4350	58.7	4.34	NA	4.3	65.0 2600 61600 PSI 3.300					
IMR4064	52.5	3.91	NA	3.7	57.5 2575 53000 CUP 3.340					
ACCUR 3100	62.3	4.66	NA	4.3	67.0 2560 59800 PSI 3.300					
IMR4895	48.4	3.52	NA	3.4	53.5 2525 53500 CUP 3.340					
IMR4320	49.1	3.52	NA	3.4	54.0 2520 53200 CUP 3.340					
IMR3031	47.1	3.59	NA	3.4	52.5 2505 54000 CUP 3.340					
ACCUR 2700	58.3	3.99	NA	3.7	59.5 2445 56800 PSI 3.300					
IMR4198	39.7	3.15	DBLD		43.5 2310 53000 CUP 3.340					
SR4759	33.5	3.32	NA	3.1	36.5 2115 52800 CUP3.340					
IMR4227	32.3	2.48	DBLD	2.2	36.0 2090 54000 CUP 3.340					
225 Grain Jac	keted									
H1000	68.3	4.87	NA	4.3	77.0 2881 54500 CUP 3.300					
H870	77.8	5.34	NA	NA	83.0 2777 51600 CUP 3.300					
H4350	59.1	4.28	NA	4.0	66.0 2694 54000 CUP 3.300					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

NA

H4831

66.2

4.80

4.3

72.0 2693 52600 CUP 3.300

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
250 Grain Jac	keted									
H1000	66.0	4.70	NA	4.3	73.0	2670	53500	CUP 3.300		
H870	74.5	5.11	NA	NA	81.0	2656	52600	CUP 3.300		
H4831	64.5	4.68	NA	4.3	69.0	2569	51700	CUP 3.300		
H4350	60.9	4.42	NA	4.3	64.0	2460	50800	CUP 3.300		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

300 Holland & Holland Magnum

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL				
110 Grain Jacketed											
H4831	74.7	5.42	NA	NA	83.0 3611	NA	NA 3.420				
H4350	65.7	4.76	NA	4.3	73.0 3550	NA	NA 3.420				
H414	63.0	4.16	NA	4.0	70.0 3534	NA	NA 3.420				
H450	71.3	4.65	NA	4.3	75.0 3458	46500	CUP 3.420				

125 Grain Jacke	ted
-----------------	-----

120 Giaili Jac	Keteu						
v-N160	72.9	5.35	NA	NA	77.2 3610	53664	CIP 3.420
ACCUR 2700	63.8	4.37	NA	4.3	72.5 3504	53700	CUP 3.585
ACCUR 4350	76.3	5.65	NA		78.0 3484		
ACCUR 3100	78.0	5.83	NA	NA	78.0 3198	43200	CUP 3.585

130 Grain Jacketed

130 Grain Sac	ROLOG					E 10 100	
H4350					72.0 3394		
					81.0 3362		
H450	73.3	4.79	NA	4.3	76.5 3336	46100	CUP 3.420
H414	60.3	3.99	NA	3.7	67.0 3301	NA	NA 3.420

150 Grain Jacketed

H4831	70.2	5.09	NA		78.0 3313		
ACCUR 4350	69.0	5.10	NA	NA	75.0 3313	51400	CUP 3.555
RELODER19	67.4	4.76	NA		75.0 3275		
RELODER15	57.3	4.05	NA	4.0	63.8 3270	52500	CUP 3.570

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996

300 Holland & Holland Magnum (Continued)

	ST		G LOA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
150 Grain Jac	keted (Contin	ued)				
H414	58.5	3.87	NA	3.7	65.0 3247	NA	NA 3.420
IMR4350	65.7	4.83	NA	4.3	73.0 3215	53600	CUP 3.550
H4350	63.9	4.63	NA	4.3	71.0 3202	NA	NA 3.420
IMR4831	68.6	5.04	NA	NA	75.5 3200	53100	CUP 3.550
ACCUR 2700	64.2	4.39	NA	4.3	69.5 3194	51200	CUP 3.555
v-N160	67.7	4.97	NA	NA	75.6 3180	56565	CIP 3.420
IMR4064	57.4	4.28	NA	4.0	64.0 3170	53800	CUP 3.550
NOBELRIF 2	50.4	3.63	NA	3.4	56.0 3165	NA	NA 3.420
ACCUR 3100	78.0	5.83	NA	NA	78.0 3157	45700	CUP 3.555
NOBELRIF 0	62.1	4.47	NA	4.3	69.0 3150	NA	NA 3.420
NOBELRIF 1	54.0	3.89	NA	3.7	60.0 3125	NA	NA 3.420
H450	70.1	4.58	NA	4.3	72.0 3110	45400	CUP 3.420
IMR3031	53.6	4.09	NA	4.0	60.0 3100	54000	CUP 3.550
IMR4320	52.1	3.73	NA	3.7	58.0 2970	53700	CUP 3.550
IMR4895	49.1	3.58	NA	3.4	55.0 2960	54000	CUP 3.550
IMR4198	39.7	3.14	DBLD	3.1	44.0 2715	53500	CUP 3.550
IMR4227	33.1	2.54	DBLD	2.5	37.0 2515	54000	CUP 3.550
SR4759	36.0	3.58	NA	3.4	40.0 2455	53600	CUP 3.550

1	5	5	Gra	in	Ja	ck	ete	d
	_	_				_		

v-N160	65.2	4.79	NA	4.3	72.8 3070	56565	CIP	3.420
--------	------	------	----	-----	------------------	-------	-----	-------

165 Grain Jacketed

	OROLOG						
H4350	62.1	4.50	NA	4.3	69.0 3164	NA	NA 3.500
RELODER19	65.3	4.61	NA	4.3	72.7 3150	52500	CUP 3.555
H450	63.9	4.17	NA	4.0	73.0 3113	50500	CUP 3.500
H4831	69.3	5.02	NA		77.0 3099		
RELODER15	54.7	3.86	NA	3.7	60.9 3065	52500	CUP 3.555
H414	56.7	3.75	NA	3.7	63.0 3046	NA	NA 3.500
v-N160	63.4	4.65	NA	4.3	70.7 2970		

165 Grain Barnes X Bullet

ACCUR 4350	63.0	4.66	NA	4.3	72.0 3139	54000	CUP 3.600
ACCUR 3100	74.3	5.56	NA	NA	78.0 3117	49600	CUP 3.600
	60.6				68.0 3052		

180 Grain Jacketed

ACCUR 3100	68.8	5.15	NA	NA	78.0 3074	53600	CUP 3.600
RELODER19	62.7	4.43	NA	4.3	69.8 3055	52500	CUP 3.575

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

300 Holland & Holland Magnum (Continued)

New Normal
180 Grain Jacketed (Continued) RELODER22 64.3 4.48 NA 4.3 71.0 3040 52100 CUP 3.535 IMR4831 65.8 4.84 NA 4.3 73.0 3035 53500 CUP 3.520 H4831 67.5 4.89 NA NA 75.0 3013 NA NA 3.500 ACCUR 4350 64.5 4.77 NA 4.3 70.5 2999 51700 CUP 3.600 IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA </th
180 Grain Jacketed (Continued) RELODER22 64.3 4.48 NA 4.3 71.0 3040 52100 CUP 3.535 IMR4831 65.8 4.84 NA 4.3 73.0 3035 53500 CUP 3.520 H4831 67.5 4.89 NA NA 75.0 3013 NA NA 3.500 ACCUR 4350 64.5 4.77 NA 4.3 70.5 2999 51700 CUP 3.600 IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA </th
RELODER22 64.3 4.48 NA 4.3 71.0 3040 52100 CUP 3.535 IMR4831 65.8 4.84 NA 4.3 73.0 3035 53500 CUP 3.520 H4831 67.5 4.89 NA NA 75.0 3013 NA NA 3.500 ACCUR 4350 64.5 4.77 NA 4.3 70.5 2999 51700 CUP 3.600 IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.520 <tr< th=""></tr<>
IMR4831 65.8 4.84 NA 4.3 73.0 3035 53500 CUP 3.520 H4831 67.5 4.89 NA NA 75.0 3013 NA NA 3.500 ACCUR 4350 64.5 4.77 NA 4.3 70.5 2999 51700 CUP 3.600 IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
H4831 67.5 4.89 NA NA 75.0 3013 NA NA 3.500 ACCUR 4350 64.5 4.77 NA 4.3 70.5 2999 51700 CUP 3.600 IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
ACCUR 4350 64.5 4.77 NA 4.3 70.5 2999 51700 CUP 3.600 IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 V-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
IMR4350 61.7 4.53 NA 4.3 69.0 2990 54000 CUP 3.520 NOBELRIF 0 58.5 4.21 NA 4.0 65.0 2960 NA NA 3.500 v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
v-N160 61.1 4.49 NA 4.3 68.2 2920 56565 CIP 3.500 ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
ACCUR 2700 59.8 4.09 NA 4.0 65.0 2903 51400 CUP 3.600 H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
H414 52.1 3.45 NA 3.4 59.0 2891 49999 CUP 3.500 IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
IMR4064 54.2 4.04 NA 4.0 60.0 2875 53400 CUP 3.520
DEL ODERALE E4 0 2 60 NA 2 4 E6 7 2050 52400 CUP2 575
RELODER15 51.0 3.60 NA 3.4 56.7 2850 52400 CUP 3.575
NOBELRIF 1 50.4 3.63 NA 3.4 56.0 2835 NA NA 3.500
IMR3031 51.5 3.92 NA 3.7 57.0 2815 53400 CUP 3.500
NOBELRIF 2 46.8 3.37 NA 3.1 52.0 2795 NA NA 3.500
IMR4320 51.6 3.69 NA 3.4 57.5 2795 53800 CUP 3.520
IMR4895 48.9 3.56 NA 3.4 54.5 2760 53800 CUP 3.520
ACCUR 8700 85.0 5.85 NA NA 85.0 2604 43000 CUP 3.600
IMR4198 39.1 3.10 DBLD 3.1 43.0 2515 53000 CUP 3.520
SR4759 34.0 3.37 NA 3.1 38.0 2330 54000 CUP 3.520
IMR4227 32.2 2.47 DBLD 2.2 36.0 2300 54000 CUP 3.520
187 Grain Jacketed
NOBELRIF 0 57.6 4.15 NA 4.0 64.0 2780 NA NA 3.500
NOBELRIF 1 49.5 3.56 NA 3.4 55.0 2750 NA NA 3.500
NOBELRIF 2 45.0 3.24 DBLD 3.1 50.0 2710 NA NA 3.500
200 Grain Jacketed
RELODER22 62.4 4.35 NA 4.3 69.0 2935 52200 CUP 3.590
H4831 64.8 4.70 NA 4.3 72.0 2932 NA NA 3.500
ACCUR 3100 65.2 4.88 NA 4.3 73.0 2912 52900 CUP 3.665
RELODER19 60.7 4.28 NA 4.0 67.0 2910 52100 CUP 3.590
H4350 59.4 4.31 NA 4.3 66.0 2909 NA NA 3.500
ACCUR 4350 60.2 4.46 NA 4.3 65.0 2817 51000 CUP 3.665
H870 74.7 5.12 NA NA 83.0 2779 NA NA 3.500
ACCUR 2700 53.4 3.66 NA 3.4 61.0 2739 54000 CUP 3.665
RELODER15 49.8 3.52 NA 3.4 55.0 2725 52100 CUP 3.590

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

NA

3.1

56.0 2649

NA

NA

ACCUR 8700

H414

84.8

50.4

5.83

3.33

NA 3.500

85.0 2668 47400 CUP 3.665

NA

300 Holland & Holland Magnum (Continued)

		ARTING			TARREST TO SE							
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL					
220 Grain Jac	220 Grain Jacketed											
ACCUR 3100	64.6	4.83	NA	4.3	73.0 2785	53400	CUP 3.590					
H4350	57.6	4.18	NA	4.0	64.0 2717	NA	NA 3.500					
H4831	63.0	4.57	NA	4.3	70.0 2714	NA	NA 3.500					
IMR4831	59.9	4.40	NA	4.3	67.0 2710	54000	CUP 3.575					
H870	73.8	5.06	NA	NA	82.0 2706	NA	NA 3.500					
IMR4350	58.1	4.27	NA	4.0	65.0 2695	54000	CUP 3.575					
ACCUR 4350	60.4	4.47	NA	4.3	65.0 2676	50900	CUP 3.590					
NOBELRIF 0	54.9	3.95	NA	3.7	61.0 2635	NA	NA 3.500					
NOBELRIF 1	47.7	3.43	NA	3.4	53.0 2620	NA	NA 3.500					
v-N160	58.6	4.30	NA	4.3	65.4 2590	56565	CIP 3.500					
ACCUR 2700	55.0	3.77	NA	3.7	60.5 2588	52000	CUP 3.590					
ACCUR 8700	85.0	5.85	NA	NA	85.0 2571	44600	CUP 3.590					
IMR4064	51.2	3.81	NA	3.7	56.5 2565	53300	CUP 3.575					
IMR4320	49.2	3.52	NA	3.4	54.0 2495	53000	CUP 3.575					
IMR3031	52.5	4.00	NA	4.0	52.5 2485	43300	CUP 3.575					
IMR4895	46.6	3.39	NA	3.1	51.5 2465	53300	CUP 3.575					
IMR4198	38.5	3.05	DBLD	2.8	42.0 2240	52600	CUP 3.575					
SR4759	32.6	3.24	DBLD	3.1	36.5 2030	54000	CUP 3.575					
IMR4227	32.0	2.46	DBLD	2.2	35.5 2015	53600	CUP 3.575					

250 Grain Jacketed

250 Grain	Jacketed						
H870	71.1	4.88	NA	4.3	79.0 2616	NA	NA 3.500
H4831							NA 3.500
H4350							NA 3.500

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

300 WEATHERBY MAGNUM

		ANTING	LUF	(D3	NEVED V-I	-		DA:	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Vel EXCEED F	OCITY PS	Pressure	Units	mimum OAL
110 Grain Jac	keted								
H4895	67.6	4.92	NA	NA	76.0 38	329	54500	CUP 3	3.390
H414	76.7	5.07	NA	NA	82.0 37	787	51800	CUP:	3.390
H4350	78.0	5.66	NA	NA	85.0 37	779	52800	CUP 3	3.390
H450	85.9	5.61	NA	NA	90.0 37	753	50800	CUP 3	3.390
H380	73.8	5.10	NA	NA	78.0 37	752	51200	CUP:	3.390
H4831	92.0	6.67	NA	NA	92.0 37	720	48200	CUP:	3.390

125 Grain Jacketed												
ACCUR 4350	75.7	5.60	NA	NA	83.0 3642	63000	PSI	3.560				
					85.0 3392							
ACCUR 8700	93.0	6.40	NA	NA	93.0 2954	33700	PSI	3.560				

130 Grain Jac	cketed						
H4831	82.3	5.97	NA	NA	89.0 3590	52400	CUP 3.390
H4350	73.9	5.36	NA	NA	81.0 3545	53100	CUP 3.390
H450	80.5	5.26	NA	NA	87.0 3536	52400	CUP 3.390
H414	72.5	4.79	NA	4.3	79.0 3509	52800	CUP 3.390
H380	68.2	4.71	NA	4.3	75.0 3501	53300	CUP 3.390
H4895	63.2	4.60	NA	4.3	71.0 3478	54500	CUP 3.390

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 09-16-1996

300 WEATHERBY MAGNUM (Continued)

	ST	ARTING	LOA	ADS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
150 Grain Jac	U. B. Brand Phone						
RELODER22	79.1	5.51	NA	NA	88.0 3460	53300	CUP 3.540
IMR7828	83.4	6.04	NA	NA	89.0 3425	49900	CUP 3.560
RELODER19	75.3	5.32	NA	NA	82.5 3375	52500	CUP 3.540
H4350	71.3	5.17	NA	NA	79.0 3369	53700	CUP 3.390
H4831	85.3	6.18	NA	NA	86.0 3369	48900	CUP 3.390
H450	77.4	5.06	NA	NA	84.0 3350		CUP 3.390
ACCUR 4350	71.4	5.28	NA	NA	79.0 3333	63600	PSI 3.535
H4895	61.7	4.49	NA	4.3	69.0 3325		CUP 3.390
H380	63.8	4.41	NA	4.3	72.0 3323		CUP 3.390
ACCUR 3100	84.5	6.32	NA	NA	85.0 3313		PSI 3.535
H414	67.3	4.45	NA	4.3	74.0 3262		CUP 3.390
RELODER15	63.1	4.45	NA	4.3	69.5 3255		CUP 3.540
ACCUR 8700	93.0	6.40	NA	NA	93.0 2950	43700	PSI 3.535
150 Grain Bar	nes X E	Bullet	-11				
ACCUR 3100	80.8	6.05	NA	NA	85.0 3308	60400	
ACCUR 4350	71.1	5.26	NA	NA	78.0 3293	63000	PSI 3.560
ACCUR 8700	93.0	6.40	NA	NA	93.0 2926	44900	PSI 3.560
165 Grain Jac	keted						
RELODER22	76.5	5.33	NA	NA	85.0 3305	53400	PSI 3.510
RELODER19	72.5	5.12	NA	NA	80.5 3250	53200	CUP 3.510
ACCUR 3100	80.8	6.05	NA	NA	85.0 3225	60400	PSI 3.560
ACCUR 4350	72.3	5.35	NA	NA	77.0 3164	61200	PSI 3.560
RELODER15	59.0	4.16	NA	4.0	65.0 3060	52800	CUP 3.510
ACCUR 8700	93.0	6.40	NA	NA	93.0 2865	43000	PSI 3.560
							- He-1
165 Grain Bar	nes X E	Bullet					
ACCUR 3100	76.7	5.73	NA	NA	85.0 3233	63700	PSI 3.555
ACCUR 4350	69.9	5.17	NA	NA	76.5 3171	62900	
ACCUR 8700	94.0	6.47	NA	NA	94.0 2860	44500	PSI 3.555
168 Grain Jac	keted						
H4831	77.1	5.59	NA	NA	84.0 3339	52800	CUP 3.390
H1000	86.5	6.17	NA	NA	93.0 3224		CUP 3.390
H450	73.3	4.78	NA	4.3	81.0 3171		CUP 3.390
H4350	69.9	5.07	NA	NA	76.0 3171		CUP 3.390
H4895	59.9	4.36	NA	4.3	66.0 3110		CUP 3.390
	00.0				30.0 0110	30 100	00.000

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996

300 WEATHERBY MAGNUM (Continued)

					100111111111111111111111111111111111111
		ARTING			NEVED Volocity Minimum
Powder Type	Start Grains	Volume CC	Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL
168 Grain Jac	keted (Continu	ued)		
H380	61.4	4.24	NA	4.0	68.0 3066 53700 CUP 3.390
H414	63.5	4.20	NA	4.0	70.0 3038 53400 CUP 3.390
					- N
180 Grain Jac	katad				
IMR7828	76.6	5.55	NA	NA	86.0 3240 52500 CUP 3.560
H1000	84.8	6.05	NA	NA	91.0 3152 52000 CUP3.390
ACCUR 3100	73.3	5.48	NA	NA	82.0 3137 64300 PSI 3.560
H4831	71.3	5.17	NA	NA	81.0 3127 55100 CUP 3.390
RELODER22	71.9	5.01	NA	NA	80.0 3115 53300 CUP3.530
RELODER19	68.6	4.85	NA	4.3	76.5 3070 53400 CUP3.530
ACCUR 4350	67.8	5.02	NA	NA	74.5 3059 63100 PSI 3.560
H4350	66.8	4.84	NA	4.3	74.0 2990 53700 CUP 3.390
H450	67.8	4.43	NA	4.3	76.0 2988 54300 CUP 3.390
H870	92.0	6.31	NA	NA	92.0 2949 47100 CUP 3.390
H380	57.1	3.95	NA	3.7	64.0 2900 54300 CUP 3.390
ACCUR 8700	93.0	6.40	NA	NA	93.0 2865 43000 PSI 3.560
180 Grain Barı	nes X F	Rullet			
ACCUR 3100	73.6	5.50	NA	NA	83.0 3142 64800 PSI 3.560
ACCUR 4350	68.3	5.06	NA	NA	73.5 3003 61800 PSI 3.560
ACCUR 8700	94.0	6.47	NA	NA	94.0 2864 48900 PSI 3.560
ACCON CICC	0				
100 Cusin Iss	leatad				
190 Grain Jac H1000	78.5	5.60	NA	NA	86.0 3052 53100 CUP 3.390
H870	90.3	6.19	NA	NA	92.0 3040 49400 CUP 3.390
H4831	71.5	5.18	NA	NA	78.0 2924 52900 CUP 3.390
H450	70.1	4.58	NA	4.3	74.0 2860 51200 CUP 3.390
11430	70.1	1.00	147 (1.0	7 110 2000 01200 001 01000
200 0					
200 Grain Jac		6.00	NA	NA	92.0 3094 50300 CUP 3.390
H870	88.7	6.08		NA	83.0 3065 50600 CUP 3.560
IMR7828	76.7	5.56	NA	SORR E	80.0 2987 63800 PSI 3.555
ACCUR 3100	72.0	5.39 4.91	NA NA	NA NA	78.0 2970 53000 CUP 3.550
RELODER22		2020	NA	4.3	74.0 2955 53300 CUP 3.550
RELODER19	66.5	4.70	NA	4.3	73.0 2942 65000 PSI 3.555
ACCUR 4350 H1000	64.5 72.7	4.77 5.18	NA NA	4.3 NA	81.0 2897 54000 CUP 3.390
	70.2	5.18	NA	NA	75.0 2880 51800 CUP 3.390
H4831	70.2	5.09	IVA	IVA	75.0 2000 51000 COF 3.390

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

ACCUR 8700

93.0 6.40 NA NA 93.0 2787 47500 PSI 3.555

300 WEATHERBY MAGNUM (Continued)

....STARTING LOADS.... Start Volume Auto- Lee Grains CC Disk Dipper

Powder Type

200 Grain Jacketed (Continued)

H4350	62.6	4.54	NA	4.3	71.0 2770	55000	CUP 3.390
H450	64.1	4.19	NA	4.0	70.0 2744	52900	CUP 3.390
		61					
220 Grain Jac	keted						
IMR7828	72.2	5.24	NA	NA	81.0 2940	52400	CUP 3.560
ACCUR 3100	69.2	5.18	NA	NA	77.0 2810	63900	PSI 3.530
ACCUR 8700	93.0	6.40	NA	NA	93.0 2761	49700	PSI 3.530
ACCUR 4350	63.4	4.69	NA	4.3	69.0 2703	62500	PSI 3.530
							18
225 Grain Jac	keted						
H870	84.8	5.82	NA	NA	92.0 3008	52600	CUP 3.390
H1000	73.7	5.26	NA	NA	80.0 2717	52600	CUP 3.390
H4831	74.0	5.36	NA	NA	74.0 2707	5200	CUP 3.390
250 Grain Jac	keted						
H1000	69.1	4.93	NA	NA	77.0 2571	54000	CUP 3.390
H4831	65.9	4.78	NA	4.3	71.0 2507	52200	CUP 3.390

Lee Dipper

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

7.65x53 MAUSER

7.65 ARGENTINE MAUSER

Mimimum Start Volume Auto-Disk Pressure **Powder Type** Grains Dipper Units OAL 150 Grain Jacketed 48800 PSI 47.5 2768 2.850 ACCUR 2495BR 43.6 3.26 DRID 3.1 **46.5** 2763 50300 PSI 2.850 2.83 **DBLD 2.8 ACCUR 2520** 41.4 **45.0** 2740 48200 PSI 2.850 **ACCUR 2230** 41.8 2.75 **DBLD 2.5** 48600 PSI 2.850 2.72 DBLD 2.5 **45.0** 2701 **ACCUR 2460** 41.5 51.5 2697 46400 PSI 2.850 ACCUR 2700 49.7 3.40 NA 3.4 ACCUR 2015BR 38.8 2.83 DBLD 2.8 41.5 2690 47900 PSI 2.850 38.7 2.50 DBLD 2.5 43.0 2650 NA NA 2.750 BL-C(2) H414 44.1 2.92 **DBLD 2.8** 49.0 2648 NA NA 2.750 2.50 **DBLD 2.5** 43.0 2639 NA NA 2.750 38.7 H335 44.1 3.20 DBLD 3.1 49.0 2614 NA NA 2.750 H4350 **DBLD 2.8** 43.0 2597 NA NA 2.750 38.7 2.82 H4895 46.0 2585 NA NA 2.750 DBLD 2.8 H380 41.4 2.86 48.0 2326 30600 PSI 2.850 **ACCUR 4350** 48.0 3.55 NA 3.4

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

7.65x53 MAUSER (Continued) 7.65 ARGENTINE MAUSER

STARTING LOADS										
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER VE EXCEED	elocity FPS	Pressure	N Units	limimum OAL	
175 Grain Jacketed										
H4831	47.7	3.46	NA	3.4	53.0 2	456	NA	NA	2.750	
H4350	42.3	3.07	DBLD	2.8	47.0 2	454	NA	NA	2.750	
H414	42.3	2.80	DBLD	2.8	47.0 2	452	NA	NA	2.750	
H380	40.5	2.80	DBLD	2.8	45.0 2	447	NA	NA	2.750	
BL-C(2)	36.0	2.32	DBLD	2.2	40.0 2	375	NA	NA	2.750	
H335	36.0	2.32	DBLD	2.2	40.0 2	372	NA	NA	2.750	
H4895	36.0	2.62	DBLD	2.5	40.0 2	351	NA	NA	2.750	

180 Grain Jac	keted							
ACCUR 2520	39.5	2.69	DBLD	2.5	45.0 2570	51100	PSI	2.850
ACCUR 2495BR	43.4	3.25	DBLD	3.1	46.0 2542	47500	PSI	2.850
ACCUR 2460	38.8	2.54	DBLD	2.5	43.0 2519	49700	PSI	2.850
ACCUR 2230	38.6	2.54	DBLD	2.5	42.5 2503	49300	PSI	2.850
ACCUR 2015BR	36.8	2.69	DBLD	2.5	40.0 2468	48700	PSI	2.850
ACCUR 2700	47.7	3.27	DBLD	3.1	48.0 2463	45100	PSI	2.850
ACCUR 4350	47.0	3.48	NA	3.4	47.0 2243	32700	PSI	2.850
CALITION: Wish NEVED	EVOLED	10400			0 4111 11	1.		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 09-16-1996

7.7mm JAPANESE ARISAKA

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimum OAL
150 Grain Jac	keted								
ACCUR 2700	44.5	3.04	DBLD	2.8	51.0	2768	46400	PSI	3.175
ACCUR 4350	52.0	3.85	NA	3.7	52.0	2666	39500	PSI	3.175
H4895	39.6	2.88	DBLD	2.8	44.0	2529	NA	NA	2.800
H4350	45.9	3.33	NA	3.1	51.0	2514	NA	NA	2.800
H335	39.6	2.55	DBLD	2.5	44.0	2499	NA	NA	2.800
BL-C(2)	39.6	2.55	DBLD	2.5	44.0	2487	NA	NA	2.800
H380	42.3	2.92	DBLD	2.8	47.0	2461	NA	NA	2.800
H4831	49.5	3.59	NA	3.4	55.0	2445	NA	NA	2.800
H414	43.2	2.86	DBLD	2.8	48.0	2424	NA	NA	2.800
ACCUR 3100	52.0	3.89	NA	3.7	52.0	2423	31000	PSI	3.175
H450	49.5	3.23	DBLD	3.1	55.0	2420	NA	NA	2.800

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 02-13-1997

7.7mm JAPANESE ARISAKA (Continued)

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Aimimun SOAL	
180 Grain Jac	keted									
ACCUR 4350	49.7	3.68	NA	3.4	52.0	2545	42300	PSI	3.150	
ACCUR 2700	41.2	2.82	DBLD	2.8	46.5	2466	45700	PSI	3.150	
H4350	42.3	3.07	DBLD	2.8	47.0	2309	NA	NA	2.800	
ACCUR 3100	52.0	3.89	NA	3.7	52.0	2300	31900	PSI	3.150	
H380	40.5	2.80	DBLD	2.8	45.0	2257	NA	NA	2.800	
H450	45.0	2.94	DBLD	2.8	50.0	2247	NA	NA	2.800	
H414	41.4	2.74	DBLD	2.5	46.0	2234	NA	NA	2.800	
H4831	45.0	3.26	DBLD	3.1	50.0	2233	NA	NA	2.800	
H4895	36.0	2.62	DBLD	2.5	40.0	2230	NA	NA	2.800	
H335	36.0	2.32	DBLD	2.2	40.0	2202	NA	NA	2.800	
BL-C(2)	36.0	2.32	DBLD	2.2	40.0	2191	NA	NA	2.800	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 09-16-1996

		VIII III	LOT				/		
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units M	imimum OAL
100 Grain Jac	keted								
H380	43.1	2.98	DBLD	2.8	48.0	2759	NA	NA :	2.915
H4895	40.4	2.94	DBLD	2.8	45.0	2750	NA	NA :	2.915
BL-C(2)	41.3	2.66	DBLD	2.5	46.0	2705	NA	NA :	2.915
H335	40.4	2.61	DBLD	2.5	45.0	2680	NA	NA :	2.915
H4350	43.1	3.12	DBLD	3.1	48.0	2333	NA	NA :	2.915
H4831	43.1	3.12	DBLD	3.1	48.0	2157	NA	NA :	2.915
H4227	15.3	1.17	1.09	NA	17.0	1666	NA	NA .	2.915

123 Grain Jac							
RELODER15					49.8 3015		
RELODER12	42.9	2.96	DBLD	2.8	48.0 2915	43000	CUP 2.915
RELODER 7	34.3	2.50	DBLD	2.5	38.6 2750	43200	CUP 2.915

125 Grain Jacketed									
ACCUR 2015BR	41.4	3.02	DBLD	2.8	46.0 3075	44200	CUP 2.870		
ACCUR 2520	42.1	2.88	DBLD	2.8	47.5 3019	44800	CUP 2.870		
ACCUR 2460	43.0	2.82	DBLD	2.8	46.0 2979	42500	CUP 2.870		
ACCUR 2230	41.0	2.70	DBLD	2.5	44.0 2910	42600	CUP 2.870		
ACCUR 2495BR	48.0	3.59	NA	3.4	48.0 2887	35900	CUP 2.870		
ACCUR 2700	45.8	3.14	DBLD	3.1	50.0 2749	43400	CUP 2.870		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

	ST	ARTIN	G LOA	DS	NEVER					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEE	Velocit FPS	y Pressure	Unit	Mimimu s OAL	
130 Grain Jac	keted									
H335	44.0	2.84	DBLD	2.8	49.0	2890	NA	NA	2.91	
BL-C(2)	50.0	3.22	DBLD	3.1	50.0	2886	NA	NA	2.91	
NOBELRIF 3	37.8	2.72	DBLD	2.5	42.0	2855	NA	NA	2.91	
NOBELRIF 2	38.7	2.79	DBLD	2.5	43.0	2840	NA	NA	2.91	
H4895	38.6	2.81	DBLD	2.8	43.0	2650	NA	NA	2.91	
H414	44.0	2.91	DBLD	2.8	49.0	2617	NA	NA	2.91	
H4350	43.1	3.12	DBLD	3.1	48.0	2430	NA	NA	2.91	
RELODER19	48.3	3.41	NA	3.4	50.0	2415	39800	CUF	2.91	
150 Grain Jacketed										
NOBELRIF 3	37.8	2.72	DBLD	2.5	42.0	2790	NA	NA	2.91	
BL-C(2)	43.1	2.78	DBLD	2.5	48.0	2783	NA		2.91	
ACCUR 2520	40.6	2.77	DBLD	2.5	200000000000000000000000000000000000000	2769	45000			
RELODER15	41.1	2.90	DBLD			2755	43200			
H335	43.1	2.78	DBLD	2.5	48.0	2729	NA		2.91	
ACCUR 2460	40.8	2.67	DBLD	2.5		2728			3.01	
ACCUR 2495BR	43.0	3.22	DBLD	3.1		2727	42500		3.01	
NOBELRIF 2	38.7	2.79	DBLD	2.5	43.0	2720	NA		2.91	
ACCUR 2015BR	38.5	2.81	DBLD	2.8	100000000000000000000000000000000000000	2714	42300	2 22 2	3.01	
ACCUR 2230	39.2	2.58	DBLD	2.5	43.0	2704	43600		3.01	
RELODER12	40.3	2.79	DBLD	2.5	45.0	2700	42900	CUP	2.91	
ACCUR 2700	44.2	3.02	DBLD	2.8	48.0	2560	43200		3.01	
H4350	43.1	3.12	DBLD	3.1		2501	NA		2.91	
NOBELRIF 1	38.7	2.79	DBLD	2.5	43.0	2500	NA	NA	2.91	
H414	43.1	2.85	DBLD	2.8	48.0	2482	NA	NA	2.91	
H4895	37.7	2.74	DBLD	2.5	42.0	2479	NA		2.91	
H380	39.5	2.73	DBLD	2.5	44.0	2443	NA	NA	2.91	
RELODER 7	28.9	2.10	DBLD	1.9	31.0	2400	41200	CUP	2.91	
H450	44.9	2.93	DBLD	2.8	50.0	2306	NA		2.915	
H4831	44.0	3.19	DBLD	3.1	49.0	2295	NA	NA	2.915	
ACCUR 4350	46.0	3.40	NA	3.4	46.0	2254	30100	CUP	3.010	
174 Grain Jac	keted									
NOBELRIF 2	36.0	2.59	DBLD	2.5	40.0	2500	NA	NA	2.915	
NOBELRIF 3	34.6	2.49	DBLD	2.2	38.5	2500	NA	NA	2.915	
NOBELRIF 1	36.0	2.59	DBLD	2.5	40.0	2310	NA		2.915	
180 Grain Jacketed										
ACCUR 2520	38.9	2.65	DBLD	2.5	44.0	2568	45000	CUP	3.000	
v-N140	37.5	2.75	DBLD	2.5	41.7	2540	46412	CIP	2.800	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

0.000	STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure		imum DAL	
180 Grain Jac	keted (Continu	ued)							
RELODER15	38.9	2.74	DBLD	2.5	43.7	2515	43200	CUP 2.	915	
ACCUR 2495BR	41.0	3.06	DBLD	2.8	44.0	2478	42700	CUP 3.	000	
ACCUR 2230	36.3	2.38	DBLD	2.2	40.0	2472	43800	CUP 3.	000	
ACCUR 2460	38.8	2.54	DBLD	2.5	40.5	2442	41500	CUP 3.	000	
ACCUR 2700	41.5	2.84	DBLD	2.8	46.0	2428	44100	CUP 3.	000	
ACCUR 2015BR	35.7	2.61	DBLD	2.5	38.0	2420	42300	CUP 3.	000	
RELODER12	36.1	2.49	DBLD	2.2	40.0	2340	42600	CUP 2.	915	
H4350	41.3	2.99	DBLD	2.8	46.0	2333	NA	NA 2.	915	
H335	36.8	2.37	DBLD	2.2	41.0	2323	NA	NA 2.	915	
H414	41.3	2.73	DBLD	2.5	46.0	2304	NA	NA 2.	915	
H4895	35.9	2.61	DBLD	2.5	40.0	2295	NA	NA 2.	915	
H450	44.9	2.93	DBLD	2.8	50.0	2281	NA	NA 2.	915	
ACCUR 4350	46.0	3.40	NA	3.4	46.0	2280	35800	CUP 3.	000	
H380	37.7	2.60	DBLD	2.5	42.0	2276	NA	NA 2.	915	
H4831	42.2	3.06	DBLD	2.8	47.0	2238	NA	NA 2.	915	
RELODER 7	29.1	2.12	DBLD	1.9	30.0	2050	39600	CUP 2.	915	
ACCUR 3100	46.0	3.44	NA	3.4	46.0	2042	30800	CUP 3.	000	

21	-	Grain	1		
	2	(irain	.lac	keted	

NOBELRIF 3	33.3	2.40	DBLD	2.2	37.0 2250	NA	NA 2.915
NOBELRIF 2	34.2	2.46	DBLD	2.2	38.0 2230	NA	NA 2.915
NOBELRIF 1	36.0	2.59	DBLD	2.5	40.0 2200	NA	NA 2.915
H414	38.6	2.55	DBLD	2.5	43.0 2114	NA	NA 2.915
H4350	38.6	2.80	DBLD	2.8	43.0 2090	NA	NA 2.915
H335	35.0	2.26	DBLD	2.2	39.0 2047	NA	NA 2.915
H4831	40.4	2.93	DBLD	2.8	45.0 2001	NA	NA 2.915

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

Powder Type

Also known as 32 ACP and 7.65mm BROWING

STARTING LOADS.

71 Grain Bull	et	AT 17 TO							
HP38	2.2	.21	.21	NA	2.5	860	NA	NA	0.940
									111/4
71 Grain Jac	keted								
HERCO	2.8	.31	.30	.3	3.2	880	13500	PSI	0.984
WIN 231	2.2	.21	.21	NA	2.5	865	14000	CUP	0.940
BULLSEYE	2.1	.22	.21	NA	2.2	835	12500	PSI	0.984
UNIQUE	2.5	.27	.27	NA	2.5	820	11200	PSI	0.984
GREEN DOT	2.3	.28	.27	NA	2.3	810	11900	PSI	0.984
RED DOT	1.9	.27	.27	NA	2.1	805	12900	PSI	0.984
ACCUR #5	2.9	.18	.18	.17	3.2	703	19700	PSI	0.955
ACCUR #2	2.0	.17	.15	.17	2.2	650	19300	PSI	0.955
72 Grain Jac	keted								
	1								

Lee

NOBELPIS 2	3.1	.27	.27	NA	3.5	960	NA	NA 0.955
NOBELPIS 3								

/5 Grain Lead	d								
NOBELPIS 2	3.1	.26	.24	NA	3.4	930	NA	NA	0.955

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

32 AUTO (Continued)
Also known as 32 ACP and 7.65mm BROWING

	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	Velocity FPS	Pressure	Units	limimum OAL
84 Grain Lead									
ACCUR #2	1.7	.14	NA	NA	1.8	772	19000	PSI	0.950
ACCUR #5	2.0	.12	.12	NA	2.2	762	19800	PSI	0.950

85 Grain Jack									
ACCUR #5	2.2	.14	NA	NA	2.4	699	19100	PSI	0.940
ACCUR #2	1.7	.14	NA	NA	1.8	695	18800	PSI	0.940

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

32 SMITH & WESSON

STARTING LOADS. Lee **Powder Type** 85 Grain Lead **HP38** .12 1.3 .12 NA 1.4 680 NA NA 0.880 **NOBELPIS 3** 1.3 .15 .15 NA 1.4 650 NA NA 0.880 **WIN 231** 1.3 .12 .12 NA 1.4 595 9500 CUP 0.880

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available
Copyright 08-15-1996

32 SMITH & WESSON LONG 32 COLT NEW POLICE

STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	/elocity FPS	Pressure	Units	limimum OAL
83 Grain Wad	Cutter	de mai familia							
v-N310	1.5	.19	.18	.17	1.7	856	14300	CIP	0.930
v-N310	1.5	.18	.18	.17	1.5	767	10700	CIP	0.930
85 Grain Jacke	eted								
ACCUR #5	3.2	.20	.18	NA	3.6	930	12000		1.175
ACCUR #2	2.0	.17	.15	.17	2.3	875	12000	CUP	1.175
90 Grain Jacke ACCUR #2 ACCUR #5	2.2 3.2	.18	.18	.17 NA	2.5 3.4	886 863	12000 11200		1.190 1.190
90 Grain Lead			10	47	-	000	10000	CLIE	1 100
ACCUR #5	3.0	.19	.18	.17	3.4	922			1.190
ACCUR #2	2.3	.19	.18	.17	2.3	842	10800	CUF	1.190
90 Grain Wad	Cutter								
ACCUR #5	2.9	.18	.18	.17	3.0	880	11100		0.930
ACCUR #2	2.0	.17	.15	.17	2.0	786	10000	CUF	0.930

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

32 SMITH & WESSON LONG (Continued) 32 COLT NEW POLICE

		ARTING		DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocit FPS	y Pressure	Units	Mimimu S OAL
98 Grain Bulle	t					110	ricosurc	Unit	UAL
HP38	2.2	.21	.21	NA	2.5	780	NA	NA	0.93
							2.22.2		
98 Grain Jack	eted								
WIN 231	2.2	.20	.18	NA	2.4	765	11000	CLIE	1.23
	•					, 00	11000	001	1.20
98 Grain Lead									
v-N310	2.0	.24	.24	NA	2.2	916	14300	CIP	1.16
NOBELPIS 3	2.1	.24	.24	NA	2.3	800	NA		1.16
NOBELPIS 2	3.1	.27	.27	NA	3.5	750	NA		1.16
GREEN DOT	2.0	.25	.24	NA	2.2	725	10100		1.26
HERCO	2.5	.28	.27	NA	2.7	720	9900		1.26
RED DOT	1.8	.26	.24	NA	2.0	715	9900		1.26
UNIQUE	2.5	.27	.27	NA	2.7	715	9700		1.26
BULLSEYE	1.6	.17	NA	.17	1.8	700	10100		1.265
•									18/19
98 Grain Wad	Cutter								
v-N310	1.2	.14	NA	NA	1.3	691	14300	CIP	0.969
		4954		15.76.4	ALING RELE			OII	0.000
100 Grain Jac	keted								
ACCUR #5	2.8	.18	.18	.17	3.2	778	12000	CLIP	1.160
ACCUR #2	1.9	.16	.15	NA	2.1	700	12000		
						, 00	12000	COL	1.100
105 Grain Lead	4								
NOBELPIS 3	1.9	.22	.21	NA	2.1	745	NA	NIA	1 105
NOBELPIS 2	2.6	.22	.21	NA	2.9	685	NA		1.165 1.165
			1	14/1	2.0	000	IVA	IVA	1.105

.22 685 NA 1.165 CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA =

Copyright 08-15-1996 NA = None Available

STARTING LOADS												
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEEI	Velocity FPS	Pressure	Mimimun Units OAL				
85 Grain Jacke	ted											
ACCUR #7	6.0	.39	.37	NA	6.5	1364	20300	CUP 1.325				
ACCUR #5	4.9	.31	.30	.3	5.3	1336	20100	CUP 1.325				
ACCUR #2	3.6	.30	.30	.3	4.0	1269	20800	CUP 1.325				
A NITRO100	3.3	.44	.43	NA	3.5	1229	19800	CUP 1.325				
H4227	8.4	.64	.61	NA	9.5	1151	21000	CUP 1.300				
HS6	5.1	.37	.37	NA	5.6	1146	20200	CUP 1.300				
UNIVERSAL CLA	4.2	.46	.46	NA	4.3	1123	19000	CUP 1.300				
BLUE DOT	6.3	.54	.53	.5	6.6	1100	19000	PSI 1.320				
HS7	5.9	.40	.40	NA	6.6	1095	20900	CUP 1.300				
HERCO	4.4	.49	.49	NA	4.6	1060	18900	PSI 1.320				
UNIQUE	3.9	.43	.43	NA	4.1	1050	18700	PSI 1.320				
GREEN DOT	3.2	.41	.40	NA	3.5	1035	19500	PSI 1.320				
RED DOT	3.2	.45	.43	NA	3.4	1030	19200	PSI 1.320				
BULLSEYE	3.3	.35	.34	NA	3.4	1020	18700	PSI 1.320				
HP38	3.4	.32	.32	.3	3.8	1003	20700	CUP 1.300				

UNIVERSAL CLA 3		41	40	ΝΔ	4.0	1072	20000	CIIP 1 300
-----------------	--	----	----	----	-----	------	-------	------------

90 Grain Lead								
ACCUR #7	5.9	.39	.37	NA	6.3	1306	19800	CUP 1.340
ACCUR #5	4.9	.31	.30	.3	5.3	1292	20000	CUP 1.340
ACCUR #2	3.5	.30	.30	.3	4.0	1245	21000	CUP 1.340

32 H&R MAGNUM (Continued)

		ARTING	LOA	ADS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEEI	Velocity D FPS	Pressure	Units	imimum OAL
90 Grain Lead	(Contin	nued)							
A NITRO100	3.2	.43	.43	NA	3.5	1202	20300	CUP	1.340
BLUE DOT	4.5	.39	.37	NA	5.1	1150	20300	PSI	1.180
HERC 2400	5.5	.41	.40	NA	6.2	1150	20400	PSI	1.180
UNIQUE	3.3	.36	.34	NA	3.7	1110	20300	PSI	1.180
HERCO	3.5	.40	.40	NA.	4.0	1070	20400	PSI	1.180
BULLSEYE	3.0	.32	.32	.3	3.3	1060	19600	PSI	1.180
GREEN DOT	2.9	.37	.37	NA	3.3	1050	20400	PSI	1.180
RED DOT	2.8	.39	.37	NA	3.1	1020	20000	PSI	1.180
UNIVERSAL CLA	3.2	.35	.34	NA	3.2	908	11500	CUP	1.300
95 Grain Lead					1				1
H4227	8.0	.61	.61	NA.	9.0	1043	20900	CUP	1.300
HS7	5.4	.37	.37	NA	5.9	1017	20100	CUP	1.300
HS6	4.8	.34	.34	.3	5.0	982	19500	CUP	1.300
HP38	3.4	.31	.30	.3	3.6	956	19700	CUP	1.300
98 Grain Lead						40,17			
BULLSEYE	3.1	.33	.32	.3	3.4	1020	19500	PSI '	1.320
GREEN DOT	3.2	.41	.40	NA	3.5	1010	19600	PSI '	1.320
UNIQUE	3.8	.41	.40	NA	4.0	1000	19000	PSI '	1.320
RED DOT	2.8	.40	.40	NA	3.1	980	19700	PSI '	1.320
100 Grain Jack	eted								
ACCUR #5	4.4	.28	.27	NA	5.0	1224	21000	CUP'	1.335
ACCUR #7	5.5	.36	.34	NA	6.0	1222	20200	CUP '	1.335
A NITRO100	3.0	.41	.40	NA	3.3	1119	20200	CUP '	1.335
ACCUR #2	3.3	.28	.27	NA	3.7	1119	20700		1.335

32-20 WINCHESTERVelocities will be 10 to 15% higher in rifles.

STARTING LOADS Start Grains **Powder Type** Units 74 Grain Jacketed 3.6 .38 .37 NA 4.0 1145 14999 CUP 1.540 BULLSEYE

80 Grain Jacketed UNIQUE 5.3 .58 .57 NA 5.9 1220 14999 CUP 1.540

95 Grain Jacketed

OJ Glalli Jac	Reteu						The second second second	CONTRACTOR DE LA CONTRA	ALS Burkers American
HS7	7.2	.49	.49	NA	8.0	1205	NA	NA	1.540
HS6	6.3	.45	.43	NA	7.0	1182	NA	NA	1.540
UNIQUE	5.2	.57	.57	NA	5.8	1160	14999	CUP	1.540
BULLSEYE	3.2	.34	.34	NA	3.6	1060	14999	CUP	1.540
HP38	4.0	.38	.37	NA	4.5	1050	NA	NA	1.540

90 Grain Jacketed

HS7	7.0	.48	.46	NA	7.8	1172	NA	NA	1.540
HS6	6.1	.44	.43	NA	6.8	1081	NA	NA	1.540
ACCUR 1680	14.4	.94	.88	NA	14.4	1039	13700	CUP	1.565
HP38	3.9	.36	.34	NA	4.3	1023	NA	NA	1.540
ACCUR #9	7.3	.48	.46	NA	7.3	986	13600	CUP	1.565
ACCUR #7	6.1	.40	.40	NA	6.1	937	13400	CUP	1.565

32-20 WINCHESTER (Continued) Velocities will be 10 to 15% higher in rifles.

SIA	ARTING	i LOA	DS							
Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER V EXCEED	/elocity FPS	Pressure	Mimimum Units OAL			
90 Grain Jacketed (Continued)										
4.9			.3	5.0	906	14200	CUP 1.565			
15.0	1.09	1.09	1.0							
	Start Grains ed (Co 4.9	Start Volume Grains CC ed (Continue 4.9 .30	Start Volume Auto- Grains CC Disk ed (Continued) 4.9 .30 .30	Start Volume Auto- Lee Grains CC Disk Dipper ed (Continued)	ed (Continued) 4.9 .30 .30 .3 5.0	Start Volume Auto- Lee NEVER Velocity Grains CC Disk Dipper EXCEED FPS ed (Continued) 4.9 .30 .30 .3 5.0 906	Start Volume Auto- Lee NEVER Velocity Pressure ed (Continued) 4.9 .30 .30 .3 5.0 906 14200			

100 Grain Jac	keted							
WIN 630	6.7	.45	.43	NA	7.5	1215	14500	CUP 1.540
UNIQUE	4.9	.54	.53	.5	5.5	1065	NA	NA 1.540
HS7	6.8	.47	.46	NA	7.6	993	NA	NA 1.540
HS6	5.9	.42	.40	NA	6.6	992	NA	NA 1.540
HP38	3.7	.34	.34	NA	4.1	992	NA	NA 1.540
ACCUR 1680	11.1	.72	.71	.7	12.5	975	15600	CUP 1.565
BULLSEYE	3.1	.33	.32	.3	3.4	955	NA	NA 1.540
ACCUR #9	6.2	.41	.40	NA	7.0	927	15500	CUP 1.565
ACCUR #7	5.4	.35	.34	NA	5.8	887		CUP 1.565
ACCUR 2015BR	12.1	.88	.88	NA	14.0	846		CUP 1.565
ACCUR #5	4.3	.27	.27	NA	4.7	844		CUP 1.565

110 Grain	Jacketed							
HS7	6.7	.46	.46	NA	7.5	998	NA	NA 1.540
HS6	5.8						NA	
HP38	3.6			.3			NA	NA 1.540

115 Grain J	acketed							
UNIQUE	4.0	.44	.43	NA	4.5	925	14999	CUP 1.540
BULLSEYE	2.8	.30	.30					CUP 1.540

150 Grain Ja	cketed							
UNIQUE	4.0	.43	.43	NA	4.4	890	NA	NA 1.540
BULLSEYE	2.7		.27		3.0			NA 1 540

32-20 WINCHESTER RIFLE For model 92 Winchester or stronger rifles.

	ST/	ARTING	i LOA	<u> DS</u>					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
85 Grain Jacke	eted								
H110	NA	NA	NA	NA	17.5	1910	NA	NA	1.540
H4227	15.3	1.18	1.18	NA	17.0	1890	NA	NA	1.540

90 Grain Jacke	ted						
ACCUR 1680	15.7	1.03	1.02	1.0	16.5 1909	21700	CUP 1.565
H110	NA	NA	NA	NA	17.1 1850	NA	NA 1.540
H4227	14.9	1.15	1.09	NA	16.6 1800		NA 1.540
ACCUR 2015BR	18.0	1.31	1.26	1.3	18.0 1750	20000	CUP 1.565
ACCUR #9	8.7	.57	.57	NA	9.2 1668	22000	CUP 1.565
ACCUR #7	7.3	.48	.46	NA	7.0		CUP 1.565
ACCUR #5	6.1	.38	.37	NA	6.2 1471	21100	CUP 1.565

32-20 WINCHESTER RIFLE (Continued) For model 92 Winchester or stronger rifles.

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	/ Pressure	Mi Units	imimum OAI	
100 Grain Jac	keted							Omto	OAL	
ACCUR 1680	13.6	.89	.88	NA	15.5	1849	23600	CUP '	1.585	
ACCUR 2015BR	16.5	1.20	1.18	NA	17.5	1758				
H110	NA	NA	NA	NA	16.5	1730	NA		1.540	
H4227	14.4	1.11	1.09	1.0	16.0	1640	NA		1.540	
HERC 2400	9.9	.73	.71	.7	11.0	1600	NA	NA 1	1.540	
ACCUR #9	8.0	.52	.49	.5	8.8	1580	22800	CUP 1		
ACCUR #7	6.7	.44	.43	NA	7.4	1489	22700			
ACCUR #5	5.2	.32	.32	.3	6.0	1417	23800			

110 Grain Jacketed

H110	NA	NA	NA	NA	16.2 1660	NA	NA 1 540
H4227	13.9	1.07	1.02	1.0	15.5 1570	NA	NA 1.540

115 Grain Jacketed

IMR4227	10.6	.82	.82	NA	11.8 1600	NA	NA 1 540
HERC 2400	9.7	.72	.71	.7	10.8 1475	NA	NA 1.540

32-40 WINCHESTER

These loads are only for guns that are safe with smokeless powder.

	ST/	ARTING	LOA	DS				DA:	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
125 Grain Lea	d								
HERC 2400	14.8	1.10	1.09	1.0	16.4	2020	25000	CUP	2.460

165 Grain Jacketed

165 Grain Jac	keted						01100 500
RELODER 7	23.4	1.70	DBLD	1.6	26.0 2025	25000	CUP 2.590
HERC 2400	13.6	1.01	.95	1.0	15.1 1600	25000	CUP 2.590
TILITO 2400	10.0						

170 Grain Bullet

170 Grain Bail							114 0 400
H335	20.7	1.34	1.26	1.3	23.0 1891	NA	NA 2.460
H4895	19.8	1.44	1.36	1.3	22.0 1864	NA	NA 2.460
H322	18.9	1.37	1.36	1.3	21.0 1837	NA	NA 2.460
BL-C(2)	22.5	1.45	1.36	1.3	25.0 1806	24999	CUP 2.460
H4198	17.1	1.28	1.26	NA	19.0 1760	NA	NA 2.460
H110	NA	NA	NA	NA	14.0 1594	NA	NA 2.460
H4227	12.6	.97	.95	NA	14.0 1511	NA	NA 2.460

32-40 WINCHESTER (Continued)
These loads are only for guns that are safe with smokeless powder.

	ST/	ARTING		DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Veloc EXCEED FPS	ity Pressure	Mimimum Units OAL
170 Grain Jac	keted						OME OME
ACCUR 2495BR	30.2	2.26	DBLD	2.2	31.5 207	4 27100	CUP 2.575
ACCUR 2015BR	24.0	1.75	DBLD	1.6			CUP 2.575
ACCUR 2520	28.1	1.92	DBLD	1.9			CUP 2.575
ACCUR 2460	26.2	1.72	DBLD	1.6			CUP 2.575
ACCUR 2230	24.3	1.60	DBLD	1.6			CUP 2.575
RELODER 7	22.9	1.67	DBLD	1.6	25.5 193	O NA	NA 2.590

32 WINCHESTER SPECIAL

Start Volume Auto Lee NEVER Velocity Mimimum Powder Type Grains CC Disk Dipper EXCEED FPS Pressure Units OAL										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL	
170 Grain Bull	et									
WIN 748	32.6	2.13	DBLD	1.9	36.2	2240	32500			
H4198	24.3	1.82	DBLD	NA	27.0	2168	NA		2.500	
RELODER 7	24.3	1.77	DBLD	1.6	27.0	2080	NA		2.500	
BL-C(2)	28.8	1.86	DBLD	NA	32.0	1964	NA		2.500	
H335	28.8	1.86	DBLD	NA	32.0	1960	NA	NA	2.500	
H4895	29.7	2.16	DBLD	NA	33.0	1941	NA	NA	2.500	

8x57mm MAUSER

Use .323 bullets only if rifle has .323 grooves.

STARTING LOADS. Start Grains Volume Auto-Mimimum ts OAL **Powder Type** ĔXČĒĒD Dipper Pressure Units 125 Grain Jacketed H4198 37.7 2.83 DRI D 2.8 42.0 3054 NA NA 2.815 H380 49.4 3.42 NA 3.4 55.0 2909 NA NA 2.815 H414 52.1 3.45 NA 3.4 58.0 2893 NA NA 2.815 H335 45.8 2.96 DBLD 2.8 **51.0** 2891 NA NA 2.815 H322 42.2 3.06 DBLD 2.8 47.0 2840 NA NA 2.815 H4895 45.8 3.34 NA 3.1 51.0 2796 NA NA 2.815 BL-C(2) 2.90 44.9 DBLD 2.8 50.0 2789 NA NA 2.815 RELODER15 41.9 2.96 **DBLD 2.8** 46.8 2760 36000 CUP 2.820 RELODER12 40.9 2.82 **DBLD 2.8** 45.0 2720 35500 CUP 2.820 H450 50.3 3.29 DBLD 3.1 56.0 2509 NA NA 2.815 H4350 48.5 3.52 NA 3 4 54.0 2480 NA NA 2.815 **ACCUR 4350** 53.0 3.92 NA 3.7 53.0 2418 25200 PSI 2.890 **ACCUR 3100** 53.0 3.96 NA 3.7 53.0 2185 20400 PSI 2.890 **ACCUR 8700** 54.5 3.75 NA 3.7 54.5 1788 18400 PSI 2.890

150 Grain Jac	keted						
H4198	36.8	2.76	DBLD	2.5	41.0 2848	NA	NA 2.815
H380	48.5	3.35	NA	3.1	54.0 2778	NA	NA 2.815
H414	50.3	3.33	NA	3.1	56.0 2773	NA	NA 2.815
H4895	44.9	3.27	DBLD	3.1	50.0 2747	NA	NA 2.815
H335	44.0	2.84	DBLD	2.8	49.0 2744	NA	NA 2.815
H322	41.3	3.00	DBLD	2.8	46.0 2726	NA	NA 2.815
RELODER15	39.4	2.78	DBLD	2.5	44.0 2560	36000	

Bx57mm MAUSER (Continued) Use .323 bullets only if rifle has .323 grooves.

	STA	ARTING	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Mimimum Units OAL					
150 Grain Jacl	keted (Continu	ued)					0.045					
BL-C(2)	45.7	2.94	DBLD	2.8	46.0	2553	NA	NA 2.815					
H4350	48.5	3.52	NA	3.4	54.0	2552	NA	NA 2.815					
RELODER12	39.7	2.74	DBLD	2.5	43.0	2455	34900	CUP 2.975					
H4831	51.2	3.71	NA	3.7	57.0	2452	NA	NA 2.815					
ACCUR 4350	44.4	3.29	DBLD	3.1	50.0	2394	32500	PSI 2.950					
IMR3031	31.0	2.36	DBLD	2.2	34.5	2335	37000	CUP 2.945					
IMR4831	42.4	3.12	DBLD	3.1	47.0	2325	36800	CUP 2.945					
IMR4350	38.8	2.85	DBLD	2.8	43.0	2315	36800	CUP 2.945					
IMR4895	32.3	2.35	DBLD	2.2	36.0	2310	37000	CUP 2.945					
IMR4064	32.3	2.41	DBLD	2.2	36.0	2305	37000	CUP 2.945					
H450	48.3	3.15	DBLD	3.1	53.0	2285	35900	CUP 2.815					
IMR4320	32.4	2.32	DBLD	2.2	36.0	2270	36900	CUP 2.945					
ACCUR 3100	53.0	3.96	NA	3.7	53.0	2228	27100	PSI 2.950					
IMR4198	25.6	2.03	DBLD	1.9	28.5	2225	37000						
IMR4227	20.4	1.57	DBLD	NA	22.5	2015	36700	CUP 2.945					
SR4759	19.3	1.92	DBLD	1.9	21.5	1960	37000	CUP 2.945					
ACCUR 8700	54.5	3.75	NA	3.7	54.5	1730	21200	PSI 2.950					

170 Grain Jacl	ceted							245
H414	47.6	3.15	DBLD	3.1	53.0 2586	NA	NA 2	
H322	39.5	2.87	DBLD	2.8	44.0 2555	NA		.815
H380	44.0	3.04	DBLD	2.8	49.0 2509	NA		.815
H4350	48.5	3.52	NA	3.4	54.0 2507	NA	NA 2	
H4895	41.3	3.01	DBLD	2.8	46.0 2501	NA	NA 2	- 1
H335	41.3	2.67	DBLD	2.5	46.0 2470	NA		.815
BL-C(2)	40.4	2.61	DBLD	2.5	45.0 2421	NA	NA 2	
H4831	51.2	3.71	NA	3.7	57.0 2418	NA	NA 2	
WIN 748	40.0	2.62	DBLD	2.5	46.0 2410	37000		.815
RELODER15	37.1	2.62	DBLD	2.5	41.4 2400	36000	CUP 3	
RELODER12	36.5	2.52	DBLD	2.5	40.0 2280	35300	CUP 3	
ACCUR 4350	41.3	3.05	DBLD	2.8	48.0 2262	33600		.840
IMR4831	41.3	3.04	DBLD	2.8	46.0 2255	37000	CUP 2	
WIN 760	43.2	2.88	DBLD	2.8	48.0 2240	32000	CUP 2	
ACCUR 3100	50.3	3.77	NA	3.7	53.0 2181	30400	PSI 2	
IMR4350	37.7	2.77	DBLD	2.5	42.0 2180	37000	CUP 2	
IMR4064	31.5	2.35	DBLD	2.2	35.0 2175	36900	CUP 2	
IMR4895	30.1	2.19	DBLD	NA	33.5 2145	37000	CUP 2	
H450	43.9	2.87	DBLD	2.8	49.0 2138	36500	CUP 2	
IMR3031	29.9	2.28	DBLD	2.2	32.5 2105	36100		
IMR4320	31.7	2.27	DBLD	2.2	34.5 2105	36200		
IMR4198	24.7	1.96	DBLD	1.9	27.5 2075	37000	CUP 2	2.840

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

371

8x57mm MAUSER (Continued) Use .323 bullets only if rifle has .323 grooves.

	ST	ARTIN	G LOA	DS					
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity	Pressure	lleis	Mimimur
170 Grain Jac	keted (Contin		Dippor	LKOLLD	113	riessure	Unit	s OAL
IMR4227	19.5	1.50	1.46	NA	21.5	1860	36600	CUI	2.840
SR4759	18.4	1.83	DBLD	NA	The second second	1855	37000		2.840
ACCUR 8700	54.5	3.75	NA	3.7	54.5	1731	25400		2.840
200 Grain Jac	keted								45.0
ACCUR 4350	40.7	3.01	DBLD	2.8	44.0	2039	31200	PSI	2.970
ACCUR 3100	49.0	3.67	NA	3.4		1980	28100	PSI	2.970
ACCUR 8700	54.5	3.75	NA	3.7	54.5	1692	26600	PSI	2.970
220 Grain Jac	keted								
ACCUR 3100	46.0	3.44	NA	3.4	49.2	1946	30900	PSI	2.990
ACCUR 4350	39.4	2.91	DBLD	2.8	42.0		30800	PSI	2.990
ACCUR 8700	51.5	3.54	NA	3.4	51.5		23900	PSI	2.990
225 Grain Jac	keted								
H4831	51.2	3.71	NA	3.7	57.0 2	2346	NA	NΔ	2.815
H414	44.9	2.97	DBLD	2.8	50.0 2		NA		2.815
H380	41.3	2.86	DBLD	2.8	46.0 2		NA		2.815
H4350	41.3	3.00	DBLD	2.8		2221	NA		2.815
H450	44.0	2.88	DBLD	2.8		2145	NA		2.815

Bmm REMINGTON MAGNUM

	ST/	ARTING	LOA	\DS			NA:
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	Y Pressure	Units OAL
125 Grain J	lacketed						0 450
H4895	63.9	4.65	NA	4.3	71.0 3463	NA NA	NA 3.450
H380	68.4	4.73	NA	4.3	76.0 3392	NA NA	NA 3.450
H4350	74.7	5.42	NA	NA	83.0 2488	NA NA	NA 3.450

150 Grain Jacl	keted							
ACCUR 3100	83.9	6.28	NA	NA	89.0 3439	58400	PSI	3.565
ACCUR 4350	75.1	5.56	NA	NA	82.0 3424	60100	PSI	3.565
H414	71.1	4.70	NA	4.3	79.0 3320	NA	NA	3.450
H4831	76.5	5.55	NA	NA	85.0 3290	NA	NA	3.450
H4350	71.1	5.16	NA	NA	79.0 3272	NA	NA	3.450
H450	76.5	5.00	NA	NA	85.0 3270	NA	NA	3.450
H380	65.7	4.54	NA	4.3	73.0 3185	NA	NA	3.450
H4895	60.3	4.39	NA	4.3	67.0 3172	NA	NA	3.450
H870	83.7	5.74	NA	NA	93.0 3029	NA	NA	3.450
ACCUR 8700	98.0	6.74	NA	NA	98.0 3017	44700	PSI	3.565

170 Grain Jac								
RELODER22	78.4	5.46	NA	NA	87.2 3350	61700	PSI	3.500
RELODER19	74.4	5.26	NA	NA	82.8 3315	61700	PSI	3.500

8mm REMINGTON MAGNUM (Continued)

		ARTING	LOA						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimun OAL
175 Grain Jac	keted								ONE
ACCUR 3100	79.1	5.92	NA	NA	87.5	3256	60900	PSI	3.565
ACCUR 4350	73.2	5.42	NA	NA	79.0	3219	59400		3.565
H4831	73.8	5.35	NA	NA	82.0	3144	NA		3.500
H4350	69.3	5.03	NA	NA	77.0	3128	NA	-	3.500
H450	73.8	4.82	NA	4.3	82.0	3103	NA		3.500
H414	67.5	4.46	NA	4.3	75.0	3076	NA		3.500
H870	82.8	5.68	NA	NA	92.0	2967	NA		3.500
ACCUR 8700	97.0	6.67	NA	NA	97.0	2813	40000		3.565

185 Grain	Jacketed
-----------	----------

Too Grain Jac	keted						
IMR4831	72.4	5.32	NA	NA	79.5 3095	52900	CUP 3.560
IMR4350	70.3	5.16	NA	NA	77.5 3090		
H4831	72.0	5.22	NA	NA	80.0 3024	NA	NA 3.500
H4350	67.5	4.89	NA	NA	75.0 3007	NA	NA 3.500
H450	71.1	4.64	NA	4.3	79.0 2987	NA	NA 3.500
IMR4064	59.3	4.42	NA	4.3	66.5 2975	54000	CUP 3.560
H870	81.9	5.62	NA	NA	91.0 2939	NA	NA 3.500
IMR3031	56.7	4.32	NA	4.3	62.5 2895	53100	CUP 3.560
IMR4895	55.1	4.01	NA	4.0	61.0 2855		CUP 3.560
IMR4320	56.3	4.03	NA	4.0	62.0 2850		CUP 3.560
IMR4198	46.5	3.68	NA	3.4	51.0 2660		CUP 3.560
SR4759	41.2	4.09	NA	4.0	45.0 2480		CUP 3.560
IMR4227	37.9	2.91	DBLD	2.8	42.5 2420		CUP 3.560

200 Grain Jacketed

RELODER22	72.9	5.08	NA	NA	81.0 3090	61600	PSI	3.525
ACCUR 3100	73.4	5.49	NA	NA	83.0 3072			
RELODER19	70.0	4.94	NA	NA	77.7 3050			
H4831	71.1	5.15	NA	NA	79.0 2932	NA		3.500
H4350	65.7	4.76	NA	4.3	73.0 2919	NA		3.500
H870	81.0	5.56	NA	NA	90.0 2914	NA		3.500
ACCUR 4350	66.7	4.94	NA	NA	72.0 2878	59400		
ACCUR 8700	96.0	6.60	NA	NA	96.0 2859			
								0.000

220 Grain Jacketed

urani ou	ONCICU							
RELODER22	69.7	4.86	NA	4.3	77.0 2910	61300	PSI	3.600
RELODER19	67.5	4.77	NA		75.0 2885			
ACCUR 3100	72.0	5.38	NA		80.5 2884			
IMR4831	68.0	5.00	NA	NA	76.0 2845	53800	CUP	3.560
IMR4350	65.4	4.81	NA		72.0 2795			

Bmm REMINGTON MAGNUM (Continued)

	STA	ARTING	LOA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
220 Grain Jac	keted						
RELODER22	69.7	4.86	NA	4.3	77.0 2910	61300	PSI 3.600
RELODER19	67.5	4.77	NA	4.3	75.0 2885	61600	PSI 3.600
ACCUR 3100	72.0	5.38	NA	NA	80.5 2884	61600	PSI 3.595
IMR4831	68.0	5.00	NA	NA	76.0 2845	53800	CUP 3.560
IMR4350	65.4	4.81	NA	4.3	72.0 2795	53000	CUP 3.560
ACCUR 8700	94.0	6.47	NA	NA	94.0 2753	48500	PSI 3.595
ACCUR 4350	66.4	4.91	NA	NA	70.5 2745	58500	PSI 3.595
IMR4064	55.9	4.17	NA	4.0	62.5 2700	53800	CUP 3.560
IMR3031	53.6	4.08	NA	4.0	59.0 2620	53000	CUP 3.560
IMR4895	55.4	4.03	NA	4.0	59.0 2615	51300	CUP 3.560
IMR4320	56.0	4.01	NA	4.0	59.5 2595	51200	CUP 3.560
IMR4198	42.9	3.40	NA	3.4	47.5 2400	53300	CUP 3.560
IMR4227	36.8	2.83	DBLD	2.8	39.5 2185	51700	CUP 3.560
SR4759	37.4	3.72	NA	3.7	42.0 2180	54000	CUP 3.560

225 Grain Jacketed NA 3.500 **78.0** 2871 NA NA NA 70.2 5.09 H4831 NA NA 3.500 NA NA 90.0 2856 5.56 H870 81.0 NA 3.500 4.3 76.0 2822 NA 68.4 4.47 NA

H450

250 Grain Jacketed NA 3.500 76.0 2776 NA NA NA 4.96 68.4 H4831 86.0 2764 NA NA 3.500 NA 77.4 5.31 NA H870

338 WINCHESTER MAGNUM

STARTING LOADS.... Start Grains Volume CC Auto-Disk Lee Mimimum **Powder Type** Dipper **Pressure** Units 175 Grain Jacketed H4350 68.6 4.98 NA NA **77.0** 3187 53000 CUP 3.280 H4895 59.7 4.35 NA 4.3 **67.0** 3166 53000 CUP 3.280 H414 65.1 4.30 NA 4.3 **73.0** 3139 53000 CUP 3.280 H4831 72.2 5.23 NA NA 81.0 3092 53000 CUP 3.280 H450 74.8 4.89 NA NA 80.0 3039 50500 CUP 3.280 H380 64.8 4.48 NA 4.3 72.0 2985 52500 CUP 3.280

200 Grain Jac	keted						
H4350	68.6	4.98	NA	NA	77.0 3054	53000	CUP 3.280
IMR4350	65.0	4.78	NA	4.3	73.0 3030		CUP 3.330
IMR4831	71.5	5.26	NA	NA	76.0 3020	51000	CUP 3.330
RELODER19	68.0	4.80	NA	4.3	78.0 3020	52400	
H4895	59.7	4.35	NA	4.3	67.0 3011	53000	CUP 3.280
H414	65.4	4.32	NA	4.3	72.0 2968		CUP 3.280
ACCUR 4350	65.4	4.84	NA	4.3	73.0 2950	62200	
v-N165	74.1	5.28	NA	NA	82.6 2950	55114	CIP 3.280
H4831	70.2	5.09	NA	NA	78.0 2949	52500	CUP 3.280
H450	78.6	5.13	NA	NA	79.0 2942		CUP 3.280
RELODER15	57.9	4.09	NA	4.0	65.0 2935	51300	CUP 3.660
IMR4064	56.9	4.24	NA	4.0	64.0 2920		CUP 3.330
v-N160	67.8	4.98	NA	NA	75.6 2920	55114	CIP 3.280
WIN 760	63.3	4.22	NA	4.0	70.0 2900	51000	CUP 3.280
ACCUR 2700	64.2	4.40	NA	4.3	70.5 2898	61200	PSI 3.335
IMR4895	54.5	3.97	NA	3.7	61.0 2880	53700	CUP 3.330

338 WINCHESTER MAGNUM (Continued)

	STA	RTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V	elocity FPS	Pressure	Units	mimum OAL
200 Grain Jack	The second second	The second second					1933		
H380	64.5	4.46	NA	4.3	71.0 2	2877	52000	CUP:	3.280
IMR4320	56.0	4.01	NA	4.0	63.0 2	2875	54000		
RELODER22	78.0	5.44	NA	NA	78.0 2		43200		
IMR3031	54.2	4.13	NA	4.0	61.0 2	2860	54000	CUP:	3.330
ACCUR 2520	59.5	4.06	NA	4.0	62.5 2	2843	58600		
ACCUR 3100	76.0	5.68	NA	NA	76.0 2		55200		
ACCUR 2495BR	51.1	3.82	NA	3.7	57.0 2		62200		3.335
WIN MAG RIFLE	71.7	5.15	NA	NA	71.7 2		43400		
IMR4198	42.6	3.38	NA	3.1	47.5 2		53500		
SR4759	35.1	3.49	NA	3.4	39.5 2		54000		
ACCUR 8700	80.0	5.50	NA	NA	80.0 2		34200		
IMR4227	34.1	2.62	DBLD	2.5	38.0 2	2300	53500	CUP	3.330
210 Grain Jac		4.10	NI A	4.0	70.0 2	2020	52500	CLID	3.280
H414	63.0	4.16	NA	4.0					3.280
H4350	64.5	4.67	NA	4.3	73.0		53500		
H450	73.3	4.78	NA	4.3	76.0		49000 52000		3.330
RELODER19	65.0	4.59	NA	4.3	74.0		50500		
H4831	70.2	5.09	NA	NA	75.0 2 76.0 2		46200		
RELODER22	75.2	5.24	NA	NA 1.0	62.0		53000		3.280
H4895	55.3	4.02	NA	4.0	67.0		53000		
H380	59.7	4.13	NA	4.0	67.0	2700	53000	COI	3.200
220 Grain Jac						2010	44000	DOL	2 200
WIN MAG RIFLE	72.2	5.18	NA	NA	72.2	2640	41800	PSI	3.280
225 Grain Jac						2020	55114	CID	2 200
v-N165	71.9	5.12	NA	NA	80.2		63000		
ACCUR 4350	62.4	4.62	NA	4.3	70.5				
H4350	67.3	4.88	NA	4.3	72.0		50500		3.280
RELODER22	72.2	5.03	NA	NA 1.0			51500		
H414	62.4	4.12	NA	4.0	68.0				3.280
H4831	68.1	4.94	NA	NA	75.0 72.0		52000		3.280
RELODER19	64.6	4.56	NA	4.3	100 100 100 100 100 100 100 100 100 100		49500		3.280
H450	71.6	4.67	NA	4.3	75.0				
v-N160	63.0	4.62	NA	4.3	70.2			CIP	3 280
H4895	56.5	4.11	NA	4.0		2/10	51000		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

NA

NA

NA

ACCUR 2700

ACCUR 3100

H380

59.5

72.8

59.4

4.07

5.45

4.10

4.0

NA

4.0

66.0 2703 61900 PSI 3.340

73.0 2682 55900 PSI 3.340

66.0 2657

52500 CUP 3.280

338 WINCHESTER MAGNUM (Continued)

	ст	ARTING	2 10/	ADC.			
NAME OF TAXABLE PARTY.	Start Grains	Volume CC	Auto-	Lee	NEVER Velocity EXCEED FPS		Mimimum
Powder Type				Dipper	EXCEED FPS	Pressure	Units OAL
225 Grain Jac							
RELODER15	50.0	3.53	NA	3.4	56.5 2590	51600	CUP 3.335
ACCUR 2495BR	51.3	3.84	NA	3.7	54.0 2585	58700	PSI 3.340
ACCUR 2520	51.4	3.51	NA	3.4	56.0 2579	60700	PSI 3.340
ACCUR 8700	79.0	5.44	NA	NA	79.0 2247	35400	PSI 3.340
							3 10
230 Grain Jac	keted						
WIN MAG RIFLE	65.7	4.72	NA	4.3	66.8 2450	44900	PSI 3.280
					00.0 2.00	11000	1 01 0.200
250.0							
250 Grain Jac		4.50	NIA	4.0	70.0.0705	F0000	01100000
RELODER19	63.8	4.50	NA	4.3	73.0 2735		CUP 3.330
v-N165	67.1	4.78	NA	4.3	74.8 2710		CIP 3.280
H4350	63.3	4.59	NA	4.3	71.0 2709		CUP 3.280
H450	68.8	4.49	NA	4.3	75.0 2708		
H414	59.7	3.95	NA	3.7	67.0 2683		CUP 3.280
H4831	66.0	4.78	NA	4.3	74.0 2679		CUP 3.280
v-N160	60.9	4.47	NA	4.3	67.9 2670		CIP 3.280
RELODER22	73.0	5.09	NA	NA	73.0 2620	45300	CUP 3.330
ACCUR 3100	67.0	5.01	NA	NA	71.0 2607	59100	PSI 3.340
H1000	78.9	5.63	NA	NA	81.0 2606	48500	CUP 3.280
ACCUR 4350	59.7	4.42	NA	4.3	65.0 2586	60700	PSI 3.340
IMR7828	74.0	5.36	NA	NA	74.0 2565	44400	CUP 3.340
WIN MAG RIFLE	61.6	4.42	NA	4.3	72.0 2550	51600	PSI 3.280
ACCUR 2700	55.9	3.83	NA	3.7	63.0 2547	62800	PSI 3.340
WIN 760	57.7	3.84	NA	3.7	63.2 2545	50500	CUP 3.280
ACCUR 2520	53.0	3.62	NA	3.4	56.0 2474		PSI 3.340
ACCUR 2495BR	46.4	3.47	NA	3.4	52.0 2445	62500	PSI 3.340
ACCUR 8700	81.0	5.57	NA	NA	81.0 2338	40100	PSI 3.340
275 Grain Jack	katad						
H1000	71.1	5.07	NA	NA	79.0 2577	52500	CUP 3.280
H450	61.2	4.00	NA	4.0	68.0 2529		The second secon
v-N165	70.5	5.02			74.4 2488		CUP 3.280
H414	55.8	3.69	NA	NA 2.4	62.0 2485		CIP 3.280
H4350	59.6	4.32	NA NA	3.4 4.3	65.0 2461		CUP 3.280
ACCUR 4350							CUP 3.280
H4831	56.5	4.18	NA	4.0	64.0 2459	63200 E1E00	CUD 2 222
ACCUR 2700	61.5 56.3	4.46	NA	4.3	67.0 2454		
ACCUR 3100		3.85	NA	3.7	63.5 2451		PSI 3.330
IMR7828	63.2	4.73	NA	4.3	68.0 2432		PSI 3.330
	71.0	5.15	NA	NA	71.0 2430		CUP 3.340
v-N160	58.4	4.29	NA	4.0	65.1 2430		CIP 3.280
CAUTION: With NEVER DBLD = Double Disk, se	e instruc	LOADS m	naintain n your A	Minimum uto-Disk	Over All Length powder measure.	or longer. NA =	None Available

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

338 WINCHESTER MAGNUM (Continued)

STARTING LOADS										
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Aimimum OAL	
275 Grain Jac	keted (Contin					1-194		7 7 7 7 7 2	
H870	79.0	5.42	NA	NA	79.0	2416	43000	CUP	3.280	
WIN MAG RIFLE	58.3	4.19	NA	4.0	67.1	2390	50800	PSI	3.280	
ACCUR 8700	78.0	5.37	NA	NA	78.0	2297	37900	PSI	3.330	
ACCUR 2520	46.9	3.20	DBLD	3.1	53.0	2296	63000	PSI	3.330	
ACCUR 2495BR	45.3	3.39	NA	3.1	50.0	2242	61500	PSI	3.330	
300 Grain Jac	keted									
IMR4831	60.9	4.48	NA	4.3	68.5	2480	54000	CUP	3.330	
H450	61.5	4.01	NA	4.0	67.0	2447	51500	CUP	3.280	
IMR4350	57.6	4.23	NA	4.0	64.5	2410	53800	CUP	3.330	
H1000	72.5	5.17	NA	NA	76.0	2403	49500	CUP	3.280	
H4350	59.3	4.30	NA	4.3	64.0	2378	51000	CUP	3.280	
H4831	62.0	4.50	NA	4.3	65.0	2366	49500	CUP	3.280	
H870	77.0	5.28	NA	NA	77.0	2308	42500	CUP	3.280	
IMR4064	50.0	3.72	NA	3.7	56.0	2305	53800	CUP	3.330	
WIN 760	53.6	3.57	NA	3.4	59.8	2285	51500		3.280	
IMR4320	48.7	3.49	NA	3.4	54.5	2275	53700		3.330	
IMR4895	46.7	3.40	NA	3.4	52.5	2265	54000	CUP	3.330	
IMR3031	47.7	3.64	NA	3.4	53.5	2260	53800		3.330	
IMR4198	38.1	3.02	DBLD	2.8	42.5	2050	53500		3.330	
IMR4227	30.5	2.34	DBLD	2.2	34.0	1800	53600		3.330	
SR4759	30.7	3.05	DBLD	2.8	34.5	1795	54000	CUP	3.330	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

348 WINCHESTER

	STA	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mi Units	mimum OAL
150 Grain Jac		MISS TO SERVE			(7/15/75/5				
RELODER 7	44.0	3.21	DBLD	3.1	48.0	2750	34900	CUP 2	2.790

1	80	Grain	Jacketed

BL-C(2)	41.6	2.68	DBLD	2.5	44.5 2381	31900	CUP 2.770
H450					56.5 2338		

200 Grain Jacketed

Loo Grain out	ROLOG							
ACCUR 4350	59.9	4.44	NA	4.3	62.0 2526	24600	PSI	2.810
H4831	61.2	4.44	NA	4.3	68.0 2510	NA	NA	2.770
ACCUR 2700	49.9	3.42	NA	3.4	56.0 2481	26700	PSI	2.810
ACCUR 3100	60.6	4.53	NA	4.3	68.0 2475	26700	PSI	2.810
RELODER 7	40.2	2.93	DBLD	2.8	45.0 2330	35800	CUP	2.790
H450	56.3	3.68	NA	3.4	62.0 2319	32800	CUP	2.770

220 Grain Jacketed

H4831	58.5	4.24	NA	4.0	65.0 2472	NA	NA	2.770
ACCUR 4350		4.17			59.0 2402			
ACCUR 3100	59.9	4.48	NA	4.3	64.0 2381	25400	PSI	2.750
ACCUR 2700	48.9	3.35	NA	3.1	53.0 2314	25800	PSI	2.750
H450	50.7	3.31	NA	3.1	57.0 2214	33500	CUP	2.770

348 WINCHESTER (Continued)

The second secon	ST/	ARTING	i LOA	DS						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL	
250 Grain Jacketed										
ACCUR 3100	54.4	4.07	NA	4.0	62.0	2297	27100	PSI	2.800	
ACCUR 4350	49.7	3.68	NA	3.4	55.0	2243	26300	PSI	2.800	
ACCUR 2700	45.2	3.10	DBLD	3.1	50.0	2147	26300	PSI	2.800	
H4895	42.3	3.08	DBLD	2.8	47.0	2066	NA	NA	2.770	

250 Grain Lea	d							
ACCUR 4350	55.0	4.07	NA	4.0	55.0 2212	23700	PSI	2.800
ACCUR 3100	60.0	4.49	NA	4.3	60.0 2130	20000	PSI	2.800

38 AUTOMATIC 38 AUTO / 38 ACP

The second secon		ARTING	LOA					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
115 Grain Jac	keted	-						
ACCUR #7	7.4	.48	.46	NA	8.2	1125	23000	CUP 1.225
ACCUR #5	6.0	.37	.37	NA	6.5			CUP 1.225
ACCUR #2	4.3	.36	.34	NA	4.8	1030	23000	CUP 1.225
IMR 800X	5.5	.59	.57	NA	5.9			CUP 1.265
SR4756	4.8	.53	.53	.5	5.2	965	21800	CUP 1.265
IMR 700X	3.5	.48	.46	NA	4.0	955	22900	CUP 1.265
IMR PB	3.6	.43	.43	NA	4.0	955		CUP 1.265
SR7625	4.2	.44	.43	NA	4.5	955	21800	CUP 1.265

124 Grain Ja	cketed							
ACCUR #7	7.2	.47	.46	NA	8.0	1103	23000	CUP 1.265
ACCUR #5	5.7	.35						CUP 1.265
ACCUR #2	4.3		.34					CUP 1.265

38 AUTOMATIC (Continued) 38 AUTO / 38 ACP

STARTING LOADS Start, Volume Auto- Lee NEVER Velocity Mimimum Powder Type Grains CC Disk Dipper EXCEED FPS Pressure Units OAL										
Powder Type	Start. Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	mimum OAL	
130 Grain Jack	keted			1.						
ACCUR #7	7.2	.47	.46	NA	8.0	1066	23000	CUP 1	1.300	
ACCUR #5	5.7	.35	.34	NA	6.1	1014	22200	CUP 1	1.300	
BLUE DOT	6.7	.58	.57	NA	7.5	1000	19400			
ACCUR #2	4.0	.34	.34	.3	4.5	995	23000	CUP '	1.300	
UNIQUE	4.9	.54	.53	.5	5.3	945	18800	CUP '	1.260	
HERCO	4.7	.53	.53	.5	5.3	945	19600	CUP'	1.260	
BULLSEYE	3.8	.41	.40	NA	4.0	935	18100	CUP '	1.260	
RED DOT	3.6	.51	.49	.5	4.0	910	19400	CUP'	1.260	
GREEN DOT	3.8	.49	.49	NA	4.2	910	19000	CUP '	1.260	
WIN 231	4.0	.37	.37	NA	4.4	875	20000	CUP '	1.260	

9x18mm MAKAROV

STARTING LOADS...

Powder Type	Grains	CC	Disk	Lee Dipper	EXCEED	Velocity FPS	Pressure	Units	limimum OAL
95 Grain Jacke	eted								
ACCUR #5	5.0	.31	.30	.3	5.6	1064	19000	CUP	0.965
ACCUR #2	3.6	.30	.30	.3	4.2	1043	19500	CUP	0.965
ACCUR #7	6.7	.44	.43	NA	7.2	1040	18100	CUP	0.965
v-N320	2.9	.35	.34	NA	3.2	990	23500	CIP	0.940
BULLSEYE	3.3	.35	.34	NA	3.6	970	21200	PSI	0.965
v-N310	2.5	.30	.30	.3	2.7	970	23000	CIP	0.940
95 Grain Lead									
ACCUR #5	5.1	.32	.32	.3	5.2	1058	17200	CUP	0.955
ACCUR #7	7.2	.47	.46	NA	7.2	1047	16300	CUP	0.955
ACCUR #2	3.9	.33	.32	.3	4.0	1023	17200		
100 Grain Jack	ceted								
ACCUR #7	6.6	.43	.43	NA	7.2	1031	18500	CUP	0.965
ACCUR #2	3.7	.31	.30	.3	4.1	987	18800	CUP	0.965
ACCUR #5	5.2	.32	.32	.3	5.2	969	16600	CUP	0.965
BULLSEYE	3.3	.35	.34	NA	3.6	960	21100	PSI	0.965
GREEN DOT	3.2	.40	.40	NA	3.5	925	21300	PSI	0.965
RED DOT	2.8	.40	.40	NA	3.1	905	21300	PSI	0.965

9x18mm MAKAROV (Continued)

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER \	lelocity FPS	Pressure	Units	limimum OAL	
100 Grain Lea	d									
UNIQUE	4.0	.43	.43	NA	4.3	985	20900	PSI	0.965	
BULLSEYE	2.9	.31	.30	.3	3.2	920	21000	PSI	0.965	
GREEN DOT	2.9	.36	.34	NA	3.2	910	21600	PSI	0.965	
RED DOT	2.4	.35	.34	NA	2.7	865	21300	PSI	0.965	

STARTING LOADS....

Powder Type	Grains	CC	Disk	Dipper Dipper	EXCEED	Velocity FPS	Pressure	Units	∕limimun SOAL
88 Grain Jacke	eted								
BLUE DOT	6.0	.52	.49	.5	6.0	1000	14700	PSI	0.960
HERCO	4.1	.46	.46	NA	4.1	995	14900	PSI	0.960
BULLSEYE	3.2	.34	.34	.3	3.2	980	14300	PSI	0.960
RED DOT	3.1	.44	.43	NA	3.1	965	14600	PSI	0.960
GREEN DOT	3.4	.43	.43	NA	3.4	940	14600	PSI	0.960
UNIQUE	4.0	.44	.43	NA	4.0	920	13600	PSI	0.960
90 Grain Bullet									
HP38	3.2	.30	.30	.3	3.5	957	15400	CUP	0.950
UNIVERSAL CLA	3.3	.36	.34	NA	3.6	955	15700		0.950
90 Grain Jacke	ted								
BLUE DOT	6.0	.52	.49	.5	6.0	980	14800	PSI	0.960
v-N320	2.8	.34	.34	NA	3.0	980			0.955
HERCO	4.0	.45	.43	NA	4.0	960	14800		0.960
v-N310	2.4	.29	.27	NA	2.5	950			0.955
UNIQUE	4.0	.44	.43	NA	4.0	940	14000		0.960
RED DOT	3.1	.44	.43	NA	3.1	940	14300	PSI	0.960
BULLSEYE	3.0	.32	.32	.3	3.0	940		PSI	0.960
ACCUR #2	3.3	.27	.27	NA	3.7	930	17000	CUP	0.950
ACCUR #5	4.3	.27	.27	NA	4.8	920			0.960
IMR 700X	2.6	.35	.34	NA	2.9	895	15900	CUP	0.970

380 AUTO (Continued) mm KURTZ

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
90 Grain Jacke	eted (Co	ntinue	ed)					A STATE OF		
GREEN DOT	3.2	.40	.40	NA	3.2	890	12800	PSI 0.960		
IMR PB	2.7	.32	.32	.3	3.0	890	15700	CUP 0.970		
SR7625	3.1	.32	.32	.3	3.2	880	14700	CUP 0.970		
SR4756	3.3	.36	.34	NA	3.6	880	15500	CUP 0.970		
IMR 800X	3.7	.40	.40	NA	4.1	870	15500	CUP 0.970		
95 Grain Bullet										
UNIVERSAL CLA	3.2	.35	.34	NA	3.5	901	15500	CUP 0.950		
HP38	3.0	.27	.27	NA	3.2	884	15400	CUP 0.950		
95 Grain Jacke v-N320	eted 3.3	.40	.40	NA	3.7	1089	20400	CIP 0.980		
v-N320 v-N310	2.7	.32	.32	.3	3.0	1003	20400	CIP 0.980		
ACCUR #2	3.7	.31	.30	.3	3.7	934	14600	CUP 0.945		
UNIQUE	4.2	.46	.46	NA	4.2	910	14600	PSI 0.975		
HERCO	4.4	.49	.49	NA	4.4	910	14600	PSI 0.975		
BLUE DOT	6.5	.56	.53	.5	6.5	910	14200	PSI 0.975		
BULLSEYE	3.2	.34	.34	.3	3.2	900	14700	PSI 0.975		
ACCUR #5	4.8	.30	.30	.3	4.8	891	14000	CUP 0.945		
GREEN DOT	3.5	.44	.43	NA	3.5	890	14700	PSI 0.975		
RED DOT	3.1	.44	.43	NA	3.1	885	14900	PSI 0.975		
WIN 231	2.9	.27	.27	NA	3.2	860	15000	CUP 0.975		
100 Grain Bull										
UNIVERSAL CLA	3.0	.33	.32	.3	3.4	889	16100			
HP38	2.9	.27	.27	NA	3.1	843	15400	CUP 0.950		

CTARTING LOADS

380 AUTO (Continued) 9mm KURTZ

	ST/	ARTING		\DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimu S OAL
100 Grain Jac	keted			-			Troobuito	Omic	OAL
v-N320	3.0	.37	.37	NA	3.4	1031	20400	CIP	0.980
UNIQUE	4.0	.43	.43	NA	4.3	1005	19500		0.97
BULLSEYE	3.0	.31	.30	.3	3.3	985	20100	PSI	0.97
GREEN DOT	2.8	.35	.34	NA	3.1	955	20000	PSI	0.975
v-N310	2.3	.28	.27	NA	2.6	936	20400	CIP	0.980
RED DOT	2.5	.36	.34	NA	2.8	920	19900	PSI	0.975
ACCUR #5	4.3	.27	.27	NA	4.9	895	17000	CUP	0.975
SR4756	3.1	.34	.34	NA	3.5	875	15900		0.980
SR7625	2.7	.29	.27	NA	3.0	855	15500		0.980
IMR 800X	3.8	.41	.40	NA	4.0	840	14700		0.980
IMR 700X	2.5	.34	.34	.3	2.7	840	15200	CUP	0.980
IMR PB	2.6	.31	.30	.3	2.8	835	15400		0.980
ACCUR #2	3.1	.26	.24	NA	3.4	793	16300		0.975
100 Grain Lea	d								
ACCUR #2	3.2	.27	.27	NA	3.6	943	17000	CUP	0.950
ACCUR #5	4.0	.25	.24	NA	4.5	922	16900		0.975
						*1			
115 Grain Jac	keted								
HP38	2.4	.23	.21	NA	2.7	778	NA	NA	0.950
									1 3-12
124 Grain Jacl	keted								
HP38	2.2	.20	.18	NA	2.4	714	NA	NA	0.950
CALITION: With NEVER	EVOLED	0.00				171311			

mm PARABELLUM

STARTING LOADS

	STANTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL		
90 Grain Jacke	ted										
v-3N37	6.6	.60	.57	NA	7.3	1518	33300	•	1.063		
v-N340	5.7	.60	.57	NA	6.3	1495	33300	CIP	1.063		
v-N330	5.5	.59	.57	NA	6.1	1444	33300	CIP	1.063		
HS6	7.9	.57	.57	.5	8.2	1419	28900	CUP	1.095		
v-N320	4.9	.59	.57	NA	5.4	1384	33300	CIP	1.063		
ACCUR #5	6.6	.41	.40	NA	7.5	1374					
HP38	5.4	.50	.49	.5	5.8	1349	30100	CUP	1.095		
ACCUR #7	8.8	.57	.57	NA	9.5	1316	31200	CUP	1.095		
ACCUR #2	4.6	.39	.37	NA	5.3	1287	33000				
UNIVERSAL CLA	5.1	.56	.53	.5	5.5	1266	30100	CUP	1.080		
v-N310	3.9	.47	.46	NA	4.3	1262	33300	CIP	1.063		

95 Grain Jacke	tod								
		.54	.53	.5	5.5	1295	31400	PSI	1.055
BULLSEYE	5.0								The state of the s
WIN 571	7.5	.51	.49	.5	8.3	1290	33200	PSI	1.095
RED DOT	4.7	.67	.66	NA	5.3		32100	1 01	1.055
WIN ACTION PI	5.8	.47	.46	NA	6.4	1285	33000	PSI	1.095
ACCUR #2	4.6	.39	.37	NA	5.3	1261	33000	CUP	1.080
ACCUR #5	6.8	.42	.40	NA	7.2	1261	30700		
UNIQUE	6.5	.71	.71	.7	6.5	1250	26400	PSI	1.055
ACCUR #7	9.0	.59	.57	NA	9.1	1246	29100	CUP	1.080
WIN 540	6.4	.44	.43	NA	7.1	1245	33100	PSI	1.095
GREEN DOT	5.5	.69	.66	NA	5.5	1240	25500	PSI	1.055

	ST	ARTIN	G LO	ADS				
Powder Type	Start Grains	Volume	e Auto- Disk	Lee Dipper	NEVER	Velocit D FPS	y Pressure	Mimimur Units OAL
95 Grain Jack				Dipper	LAGEL	ט ורט	riessure	Units OAL
WIN 231	4.7	.43	.43	NA	5.1	1235	32600	PSI 1.095
HERCO	6.8	.76	.76	.7	6.8			
wSUPER-LIT	4.4	.37	.37	NA	4.8			
		,	.07	1473	1 4.0	1133	32700	FSI 1.095
100 Grain Jac	keted							
v-3N37	6.7	.62	.61	NA	7.5	1444	33300	CIP 1.083
v-N340	5.9	.63	.61	NA	6.6	1428		
v-N330	5.4	.58	.57	NA	6.0	1380		The state of the s
v-N320	4.7	.57	.57	.5	5.2	1322		CIP 1.083
HS6	7.3	.52	.49	.5	7.5	1313		CUP 1.095
HP38	5.4	.50	.49	.5	5.5	1282		CUP 1.095
ACCUR #7	8.7	.57	.57	NA	9.0	1253		CUP 1.095
ACCUR #5	6.8	.42	.40	NA	7.0	1240		CUP 1.095
ACCUR #2	4.7	.40	.40	NA	5.4	1213		CUP 1.095
UNIVERSAL CLA	4.7	.52	.49	.5	5.3	1212	31500	CUP 1.100
						0	-	197 - 1980
114 Grain Lea	d							
WIN ACTION PI	5.1	.41	.40	NA	5.7	1160	33200	PSI 1.110
WIN 540	5.6	.38	.37	NA	6.2	1125	33000	
WIN 231	3.9	.36	.34	NA	4.2	1115	32500	
wSUPER-LIT	3.7	.32	.32	.3	4.1	1050	32700	PSI 1.110
115 Grain Jac	keted							Store
v-3N37	6.2	.57	.57	.5	6.9	1322	33300	CIP 1.142
v-N340	5.5	.59	.57	NA	6.1	1321	33300	CHORNE TOTAL STREET
v-N350	5.8	.57	.57	NA	6.5	1313	33300	
v-N330	4.9	.53	.53	.5	5.5	1266	33300	
HS6	6.7	.47	.46	NA	7.0	1234		CUP 1.095
v-N320	4.3	.52	.49	.5	4.8	1211	33300	
ACCUR #7	8.6	.56	.53	.5	8.8	1196		CUP 1.095
ACCUR #5	6.4	.40	.40	NA	7.0	1192		CUP 1.095
BLUE DOT	7.9	.68	.66	NA	8.0	1190	29200	
UNIQUE	5.8	.64	.61	NA	6.1	1185	30100	
BULLSEYE	4.6	.49	.49	NA	5.0	1180	31000	the second secon
WIN 571	6.9	.47	.46	NA	7.6	1180	33000	The second secon
HERCO	6.2	.70	.66	.7	6.2	1180		PSI 1.120
SR4756	6.0	.66	.66	NA	6.3	1175	30600	CUP 1.110
HP38	5.1	.47	.46	NA	5.1			CUP 1.095

UGER (Continued)

mm PARABELLUM										
	STA	RTING	LOAI	os						
B 1 T		Volume CC	Auto- Disk	Lee	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
Powder Type		The state of the s		nihhei	ENGLED IT O TIGODATO CINTO					
115 Grain Jack	5.3	.45	.43	NA	5.7 1165 32100 PSI 1.095					
	6.2	.67	.66	NA	6.5 1150 30300 CUP1.110					
IMR 800X GREEN DOT	4.5	.57	.57	.5	4.7 1150 30000 PSI 1.120					
WIN ACTION PI	5.2	.42	.40	NA	5.8 1150 33200 PSI 1.095					
UNIVERSAL CLA	4.5	.49	.49	NA	5.0 1149 31200 CUP1.100					
IMR 700X	4.2	.56	.53	.5	4.7 1130 32600 CUP1.110					
WIN 540	5.9	.40	.40	NA	6.6 1130 33400 PSI 1.095					
WIN 231	4.5	.42	.40	NA	4.8 1120 32100 PSI 1.095					
IMR 800X	6.5	.70	.66	.7	6.5 1115 28600 CUP1.135					
wSUPER-LIT	4.0	.34	.34	.3	4.5 1105 33600 PSI 1.095					
SR7625	4.6	.48	.46	NA	5.1 1095 32400 CUP1.110					
CLAYS	3.4	.49	.49	NA	3.9 1095 32600 CUP 1.100					
ACCUR #2	4.3	.36	.34	NA	4.4 1092 29900 CUP 1.100					
IMR PB	4.3	.52	.49	.5	4.8 1075 32500 CUP 1.110					
IMR4227	8.8	.68	.66	NA	8.8 820 14500 CUP 1.110					
115 Cusin Loss	4									
115 Grain Lead	7.6	.50	.49	.5	8.7 1225 33000 CUP 1.100					
ACCUR #5	5.5	.34	.34	NA	6.3 1182 33000 CUP 1.100					
ACCUR #2	4.3	.36	.34	NA	4.9 1146 32900 CUP 1.100					
ACCON #2	4.5	.00	.01							
124 Grain Jac		F 4	F.2		6.6 1248 33300 CIP 1.142					
v-3N37	5.9	.54	.53	.5 .5	6.1 1228 33300 CIP 1.142					
v-N350	5.5	.54	.53	.5 .5	5.7 1227 33300 CIP 1.142					
v-N340	5.1	.55 .35	.53	NA	6.4 1200 33000 CUP 1.095					
ACCUR #5	5.6	.51	.49	.5	5.3 1192 33300 CIP 1.142					
v-N330	4.8	.48	.46	NA	6.8 1169 27100 CUP 1.100					
HS6	7.8	.51	.49	.5	8.0 1166 29800 CUP 1.095					
ACCUR #7	5.7	.62	.61	NA	6.3 1160 32400 CUP1.135					
SR4756	4.2	.51	.49	.5	4.7 1140 33300 CIP 1.142					
v-N320 WIN 571	6.8	.46	.46	NA	7.5 1125 32900 PSI 1.135					
UNIVERSAL CLA		.49	.49	NA	4.9 1118 30600 CUP 1.100					
IMR 800X	6.5	.70	.66	.7	6.5 1115 28600 CUP 1.135					
wSUPER-FLD	4.8	.41	.40	NA	5.3 1115 32700 PSI 1.095					
IMR 700X	4.3	.58	.57	NA	4.8 1110 32600 CUP1.135					
WIN ACTION PI	5.0	.41	.40	NA	5.6 1105 33300 PSI 1.095					
HP38	4.7	.43	.43	NA	4.8 1088 28800 CUP 1.100					
WIN 540	5.5	.38	.37	NA	6.1 1065 32900 PSI 1.095					
WIII 0-40	4.4	20	27	NΙΛ	4 5 1060 32700 PSI 1.095					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

NA

.37

.38

4.1

WIN 231

4.5 1060 32700 PSI 1.095

	ST	ARTIN	G LO	ADS	NEVE		,		
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	EXCEE	Velocit D FPS	y Pressure	e Unit	Mimimur s OAL
124 Grain Ja	cketed	(Contin	ued)					0	O OAL
ACCUR #2	4.0	.34	.34	.3	4.1	1057	29500	CUI	P 1.095
CLAYS	3.2	.47	.46	NA	3.7	1056			P 1.100
IMR PB	4.4	.53	.53	.5	4.9				1.135
SR7625	4.4	.46	.46	NA	4.9				1.135
wSUPER-LIT	3.8	.32	.32	.3	4.1	1025			1.095
IMR4227	8.8	.68	.66	NA	8.8				1.135
								001	11100
124 Grain Lea	he								
v-3N37	5.4	.49	.49	NA	6.0	1230	33300	CID	1 1 1 1 2
v-N340	4.7	.50	.49	.5	5.2				
v-N350	4.9	.48	.46	NA	5.5	1201	33300		1.142
v-N330	4.4	.48	.46	NA	4.9	1183			1.142
v-N320	3.9	.47	.46	NA	4.3	1136			1.142 1.142
wSUPER-FLD	4.8	.41	.40	NA	5.3	1115	32700		
WIN ACTION PI	4.6	.37	.37	NA	5.1	1080			1.095
wSUPER-FLD	4.7	.39	.37	NA	4.7	1065	27300		1.095
wSUPER-LIT	3.4	.29	.27	NA	3.8	985	33500		1.095
					0.0	000	33300	1 31	1.095
125 Grain Jac	kotod								
BLUE DOT	7.9	.69	.66	NA	0.2	1100	20700	DOL	4 4
UNIQUE	5.7	.62	.61	NA	8.2	1190	29700		1.150
HS6	6.8	.48	.46		6.2	1170			
GREEN DOT	4.7	.59	.57	NA NA	6.8 5.2	1169	27100		
HP38	4.7	.43	.43	NA	4.8	1150	32100		1.150
•	7.7	.43	.43	IVA	4.0	1088	28800	CUP	1.095
125 0									
125 Grain Lea BULLSEYE		47	4.0						
HERCO	4.4 6.2	.47	.46	NA	4.9	1165	32100		1.150
ACCUR #7	150000000000000000000000000000000000000	.70	.66	.7	6.2	1165	25500		
RED DOT	7.4 4.0	.48	.46	NA	8.3	1156	32500		
ACCUR #5	5.5	.57 .34	.57	NA	4.5	1145	32000		
ACCUR #2	4.3	.36	.34 .34	.3	6.2	1133	32800		
7,000H #Z	4.3	.30	.34	NA	4.5	1063	30100	CUP	1.100
100 -									
130 Grain Jack							lu e		
ACCUR #7	7.4	.49	.49	NA	8.1	1140	31500	CUP	1.095
HS6	6.6	.47	.46	NA	6.6	1090	26900	CUP	1.095
ACCUR #5	5.2	.32	.32	.3	5.9	1060	33000	CUP	1.095
UNIVERSAL CLA	43	10	16	AIA	47	1000	00400	0110	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

NA

4.7

1058 30400 CUP 1.100

.46

UNIVERSAL CLA

4.3

.48

9mm PARABELLU	M								
	STA	RTING	LOA	DS					
Powder Type	Start Grains	Volume	Auto- Disk	Lee	NEVER.	Velocity	Pressure	Mi Units	imimum OAL
	A STATE OF THE PARTY OF THE PAR	00	The state of the s	Dihhei	LAGLLL	113	i icasuic	Units	UNL
130 Grain Jack	100	.43	.43	NA	4.6	1032	27100	CLIP	1 005
HP38	4.6	101 10 100		200.000	4.7	1032	30900		
ACCUR #2	4.4	.37	.37	NA	4.7	1029	30900	CUF	1.095
130 Grain Lead									
ACCUR #7	7.2	.47	.46	NA	8.2	1170	33000		2.000
ACCUR #5	5.3	.33	.32	.3	6.0	1157	33000		
ACCUR #2	3.7	.31	.30	.3	4.0	1017	31100	CUP.	1.095
135 Grain Jack	keted								
ACCUR #5	5.3	.33	.32	.3	6.1	1110	33000	CUP '	1.095
ACCUR #7	7.0	.46	.46	NA	7.5	1089	31000		
ACCUR #2	4.4	.37	.37	NA	4.4	975	27500		
ACCOIT #2	4.4	.07	.07	1473					
145 Grain Lea		- 10	10		7.0	1050	20500	CLID	1 110
ACCUR #7	7.1	.46	.46	NA	7.2	1052	29500		
ACCUR #5	5.1	.32	.32	.3	5.1	984	26800		
ACCUR #2	3.7	.31	.30	.3	3.7	893	24100	CUP	1.140
147 Grain Jac	keted								
v-N350	4.6	.45	.43	NA	5.1	1084	33300	CIP	1.142
v-3N37	4.7	.43	.43	NA	5.2	1066	33300	CIP	1.142
BLUE DOT	5.9	.51	.49	.5	6.2	1050	30200	PSI	1.140
ACCUR #7	6.5	.43	.43	NA	7.2	1047	31900	CUP	1.095
v-N330	4.0	.43	.43	NA	4.4	1044	33300	CIP	1.142
v-N340	4.0	.42	.40	NA	4.4	1027	33300	CIP	1.142
IMR 800X	4.7	.50	.49	.5	5.3	1025	32900	CUP	1.130
BULLSEYE	3.7	.39	.37	NA	4.2	1010	32900	PSI	1.140
HERCO	4.6	.52	.49	.5	4.9	1010	30500	PSI	1.140
UNIQUE	3.9	.42	.40	NA	4.4	1010	32700	PSI	1.140
ACCUR #5	5.0	.31	.30	.3	5.3	991	30900	CUP	1.095
HS6	5.1	.37	.37	NA	6.0	973	32700		
wSUPER-FLD	4.0	.33	.32	.3	4.3	950	32300		
SR4756	3.9	.43	.43	NA	4.4	950	32700	CUP	1.130
SR7625	3.8	.40	.40	NA	4.3	950	32900	CUP	1.130
IMR PB	3.6	.43	.43	NA	4.0	950	32800		
WIN 571	5.3	.36	.34	NA	5.8	935	32800	PSI	1.095
IMR 700X	3.4	.45	.43	NA	3.7	935	32100	CUP	1.130
CONTRACTOR CONTRACTOR TO	_								

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996

NA

.40

3.3

GREEN DOT

.42

3.7

930

1.140

32200 PSI

5.4

3.7

4.6

.37

.31

.31

WIN 571

WIN 540

WIN 231

wSUPER-FLD

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V	lelocity FPS	Pressure	Units	imimum OAL		
147 Grain Jacketed (Continued)											
WIN ACTION PI	3.9	.32	.32	.3	4.4	920	33300	PSI	1.095		
RED DOT	3.0	.43	.43	NA	3.4	895	32400	PSI	1.140		
ACCUR #2	4.0	.33	.32	.3	4.0	888	29200	CUP	1.095		
WIN 540	4.3	.29	.27	NA	4.8	885	33300	PSI	1.095		
UNIVERSAL CLA	3.7	.41	.40	NA	3.7	851	26000	CUP	1.100		
147 Grain Lead											
WIN ACTION PI	4.2	.34	.34	NA	4.7	985	33100	PSI	1.095		

NA

.3

.3

5.9

4.1

5.0

970

965

925

32700 PSI 1.095

32800 PSI 1.095

32500 PSI 1.095

3.3 .30 .30 .3 3.5 905 32100 PSI 1.135 CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

.37

.30

.30

38 SUPER AUTOMATIC

DO NOT use these loads in 38 ACP or 38 Automatic.

STARTING LOADS. Start Grains Volume Auto-Disk Lee Mimimum Pressure **Powder Type** Dipper Units 88 Grain Jacketed 33000 CUP 1.195 1557 8.5 .53 .53 .5 ACCUR #5 11.3 1504 31800 CUP 1.195 ACCUR #7 10.4 .68 .66 NA 5.8 1379 33000 CUP 1.195 ACCUR #2 5.1 .43 .43 NA

90 Grain Jacke								
HP38	6.2	.57	.57	NA	7.0	1448	34600	CUP 1.220
UNIVERSAL CLA	6.7	.74	.71	.7	7.0	1379	32000	CUP 1.220

95 Grain Jac								
ACCUR #7	10.5	.69	.66	NA	11.4	1470	31700	CUP 1.225
ACCUR #5	8.5	.53	.53	.5	9.1	1434	31500	CUP 1.225
ACCUR #2	5.1	.42	.40	NA	5.7	1323	33000	CUP 1.225

100 Grain Jac	keted						
ACCUR #7	9.8	.64	.61	NA	11.0 1450	33000	CUP 1.240
ACCUR #9	13.5	.89	.88	NA	13.5 1427	29300	CUP 1.240
ACCUR #5	7.7	.48	.46	NA	8.7 1423	33000	CUP 1.240
HP38	6.3	.58	.57	NA	6.6 1374	32300	CUP 1.220

38 SUPER AUTOMATIC (Continued) DO NOT use these loads in 38 ACP or 38 Automatic.

	STA	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M Units	imimum OAL
100 Grain Jac		Continu	ied)						
UNIVERSAL CLA	6.1	.67	.66	NA	6.6	1342	33000	CUP	1.220
ACCUR #2	5.2	.44	.43	NA	5.9	1300	33000	CUP	1.240
115 Grain Jack	keted								
v-3N37	7.2	.66	.66	NA	8.0	1436	34700	CIP	1.240
v-N340	6.3	.67	.66	NA	7.0	1401	34700	CIP	1.240

1 15 Grain Jac	Ketea				
v-3N37	7.2	.66	.66	NA	8.0 1436 34700 CIP 1.240
v-N340	6.3	.67	.66	NA	7.0 1401 34700 CIP 1.240
ACCUR #9	11.6	.76	.76	.7	13.0 1395 32800 CUP 1.240
v-N350	6.5	.63	.61	NA	7.2 1368 34700 CIP 1.240
BLUE DOT	9.4	.81	.76	NA	10.2 1360 33000 PSI 1.255
ACCUR #7	9.1	.60	.57	NA	10.3 1340 33000 CUP 1.240
WIN ACTION PI	7.1	.57	.57	NA	7.8 1340 34300 PSI 1.220
ACCUR #5	7.4	.46	.46	NA	8.3 1321 33000 CUP 1.240
v-N320	5.3	.64	.61	NA	5.9 1321 34700 CIP 1.240
WIN 540	7.7	.53	.53	.5	8.5 1320 34300 PSI 1.220
wSUPER-FLD	6.4	.54	.53	.5	7.1 1320 34400 PSI 1.220
UNIQUE	5.9	.65	.61	NA	6.6 1265 33800 PSI 1.255
HERCO	6.1	.68	.66	NA	6.8 1260 34000 PSI 1.255
wSUPER-LIT	5.3	.45	.43	NA	5.9 1260 34500 PSI 1.220
BULLSEYE	4.9	.53	.53	.5	5.5 1240 33900 PSI 1.255
WIN 231	5.4	.50	.49	.5	5.9 1230 34200 PSI 1.240
UNIVERSAL CLA	5.6	.62	.61	NA	6.0 1229 32800 CUP 1.220
GREEN DOT	5.1	.65	.61	NA	5.7 1225 33800 PSI 1.255
HP38	5.5	.51	.49	.5	6.1 1213 34000 CUP 1.220
HS6	8.1	.57	.57	NA	8.5 1207 32300 CUP 1.220
ACCUR #2	5.2	.43	.43	NA	5.7 1200 32200 CUP 1.240
RED DOT	4.3	.60	.57	NA	4.7 1155 33500 PSI 1.255

		1	1	5	Grain	Lead
--	--	---	---	---	-------	------

	ouu							
ACCUR #9	11.3	.74	.71	.7	12.5 1	1374	32400	CUP 1.285
ACCUR #7	8.7	.57			1			CUP 1.285
ACCUR #5	6.8	.43	.43	NA	1			CUP 1.285
ACCUR #2	4.3	.36	.34	NA				CUP 1.285

124 Grain	Jacketed
-----------	----------

v-3N37	7.2	.66	.66	NA	8.0	1411	34700	CIP	1.260
v-N340	6.4	.68					34700		
v-N350	6.7	.66	.66		1		34700		
ACCUR #9	11.1	.73	.71	.7			33000		
WIN ACTION PI	6.6	.54	.53	.5			34300		

DO NOT use these loads in 38 ACP or 38 Automatic.										
	STA	RTING	LOA	DS						
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
124 Grain Jack		Continu								
ACCUR #7	8.9	.58	.57	NA	9.6 1263 31700 CUP 1.245					
WIN 540	7.5	.51	.49	.5	8.3 1260 34600 PSI 1.220					
wSUPER-FLD	6.0	.50	.49	.5	6.6 1245 34600 PSI 1.220					
HS6	7.3	.52	.49	.5	8.2 1237 34400 CUP 1.220					
ACCUR #5	6.7	.42	.40	NA	7.6 1230 33000 CUP 1.245					
wSUPER-LIT	5.1	.43	.43	NA	5.6 1210 34200 PSI 1.220					
WIN 231	5.1	.48	.46	NA	5.7 1185 34600 PSI 1.240					
UNIVERSAL CLA	5.5	.60	.57	NA	5.7 1177 31800 CUP 1.220					
ACCUR #2	4.9	.41	.40	NA	5.4 1163 32200 CUP 1.245					
HP38	5.4	.50	.49	.5	5.6 1109 31600 CUP 1.220					
125 Grain Lead	4									
ACCUR #9	11.3	.74	.71	.7	12.0 1338 31200 CUP 1.220					
ACCUR #7	8.5	.56	.53	.5	9.6 1287 33000 CUP 1.220					
ACCUR #5	6.4	.40	.40	NA	7.2 1260 33000 CUP 1.220					
ACCUR #2	4.5	.38	.37	NA	5.1 1171 33000 CUP 1.220					
ACCON #2										
400 0 1 1										
130 Grain Jac	10.6	.69	.66	NA	11.9 1305 33000 CUP 1.250					
ACCUR #9	8.5	.74	.71	.7	9.1 1265 32500 PSI 1.260					
BLUE DOT			.53	.5	7.3 1250 34600 PSI 1.240					
WIN ACTION PI	6.6 7.2	.53	.49	NA	8.0 1225 34600 PSI 1.240					
WIN 540	8.2	.53	.53	.5	9.2 1209 33000 CUP 1.250					
ACCUR #7	6.5	.40	.40	NA	7.3 1201 33000 CUP 1.250					
ACCUR #5	5.6	.61	.61	NA	6.2 1200 34000 PSI 1.260					
UNIQUE wSUPER-FLD	5.7	.48	.46	NA	6.3 1200 34400 PSI 1.240					
	5.7	.64	.61	NA	6.3 1180 33500 PSI 1.260					
HERCO BULLSEYE	4.6	.49	.49	NA	5.1 1170 33600 PSI 1.260					
	6.5	.46	.46	NA	7.1 1169 33600 CUP1.220					
HS6	5.1	.43	.43	NA	5.6 1160 34100 PSI 1.240					
WSUPER-LIT WIN 231	5.0	.47	.46	NA	5.6 1145 34800 PSI 1.240					
UNIVERSAL CLA		.57	.57	NA	5.5 1142 32400 CUP 1.220					
GREEN DOT	4.7	.59	.57	NA	5.2 1135 33600 PSI 1.260					
ACCUR #2	4.7	.39	.37	NA	5.2 1116 33000 CUP 1.250					
RED DOT	4.0	.57	.57	NA	4.5 1095 33900 PSI 1.260					
KED DOT	4.0	.57	.57	NIA	F.3 1004 22200 CUP1 220					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

NA

.46

5.0

HP38

.47

5.3 1004 32300 CUP 1.220

20 110 1 400 1110					Automatic.
	ST	ARTIN	G LO	ADS	
Powder Type	Start Grains	Volum CC	e Auto Disk	Lee Dippe	NEVER Velocity Mimimum r EXCEED FPS Pressure Units OAL
130 Grain Le					. LASELD ITS TIESSUIE UIITS UAL
ACCUR #9	11.5	.76	.76	.7	11.5 1257 29100 CUP1.220
ACCUR #7	8.2	.54	.53	.5	9.0 1244 32000 CUP 1.220
ACCUR #5	6.4	.40	.40	NA	7.0 1185 31900 CUP 1.220
ACCUR #2	3.9	.33	.32	.3	4.4 1102 33000 CUP 1.220
					111 1102 00000 001 1.220
135 Grain Ja	okotod				
ACCUR #9	10.7	.70	.66	.7	10.7 1100 07100 01101
ACCUR #7	8.0	.52	.49	.5	10.7 1199 27100 CUP 1.250
ACCUR #2	4.6	.39	.37		9.0 1190 33000 CUP 1.250
ACCUR #5	6.5	.41	.40	NA NA	5.2 1140 33000 CUP 1.250
	0.0	.41	.40	NA	7.0 1140 31400 CUP 1.250
140					
140 Grain Lea					
ACCUR #9	10.6	.70	.66	.7	11.0 1226 30400 CUP 1.340
ACCUR #7	7.7	.50	.49	.5	8.7 1180 33000 CUP 1.340
ACCUR #5	6.1	.38	.37	NA	6.9 1158 33000 CUP 1.340
ACCUR #2	4.3	.36	.34	NA	4.8 1077 32500 CUP 1.340
145 Grain Lea	ad				
v-3N37	5.7	.52	.49	.5	6.3 1211 34700 CIP 1.260
ACCUR #9	10.0	.66	.66	NA	10.5 1207 30700 CUP 1.250
v-N350	5.4	.53	.53	.5	6.0 1180 34700 CIP 1.260
ACCUR #5	5.8	.36	.34	NA	6.5 1168 33000 CUP 1.250
ACCUR #7	7.9	.52	.49	.5	8.5 1165 31400 CUP 1.250
ACCUR #2	4.3	.36	.34	NA	4.8 1077 32500 CUP 1.250
					1.0 1077 32300 COF 1.290
147 Grain Bul	lot				
HS7	7.5	.51	.49	.5	0.1.1111.00000.000
HS6	6.6	.47	.46		8.1 1114 33000 CUP 1.220
HP38	4.5	.42	.40	NA	7.0 1040 32700 CUP 1.220
111 00	4.5	.42	.40	NA	5.0 967 33800 CUP 1.220
147					
147 Grain Jac					and the second s
v-3N37	6.2	.57	.57	.5	6.9 1224 34700 CIP 1.260
BLUE DOT	7.7	.67	.66	NA	8.6 1220 33900 PSI 1.275
HERC 2400	9.9	.73	.71	.7	10.9 1215 33600 PSI 1.275
v-N350	5.9	.58	.57	NA	6.6 1197 34700 CIP 1.260
ACCUR #9	10.2	.67	.66	NA	10.2 1175 29400 CUP 1.230
ACCUR #7	8.1	.53	.53	.5	8.7 1146 31500 CUP 1.230
CAUTION: With NEVED	EVCEED	0400	-1		

		RTING		DS	NEVER	v . ·.		NA::
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
147 Grain Jack	eted (Continu	ued)					
HERCO	5.8	.65	.61	NA	6.4	1135	33800	330 1.275
WIN 540	6.6	.45	.43	NA	7.2	1115	34000	PSI 1.250
WIN ACTION PI	5.7	.46	.46	NA	6.3	1110	34500	
UNIQUE	5.2	.57	.57	.5	5.8	1105	34000	
ACCUR #5	6.0	.38	.37	NA	6.8	1100	33000	CUP 1.230
BULLSEYE	4.5	.48	.46	NA	5.0	1095	33600	
wSUPER-FLD	5.1	.43	.43	NA	5.6	1070	34400	PSI 1.250
GREEN DOT	4.3	.54	.53	.5	4.7	1045	33500	PSI 1.275
ACCUR #2	4.3	.36	.34	NA	4.9	1038	33000	CUP 1.230
RED DOT	4.0	.57	.57	NA	4.5	1035	34000	PSI 1.275
wSUPER-LIT	4.4	.37	.37	NA	4.8	1020	34400	PSI 1.250
WIN 231	4.4	.41	.40	NA	4.9	1010	34900	PSI 1.240
UNIVERSAL CLA	4.5	.49	.49	NA	4.5	961	28800	CUP 1.220
150 Grain Jack	7.6	.50	.49	.5	8.5	1148		CUP 1.250
ACCUR #9	9.7	.64	.61	NA	9.7	1111	27900	CUP 1.250
ACCUR #5	6.3	.39	.37	NA	6.5	1075	30100	
ACCUR #2	4.4	.36	.34	NA	4.8	1038	32300	CUP 1.250
158 Grain Jac	keted 9.2	.60	.57	NA	9.7	1121	31000	CUP 1.250
ACCUR #9		.49	.49	NA	8.0	1064		CUP 1.250
ACCUR #7	7.6			NA	6.2	1026		CUP 1.250
ACCUR #5	5.8 3.8	.36	.34	.3	4.3	970		CUP 1.250
ACCUR #2		.45	.43	NA	4.1	811	27400	
UNIVERSAL CLA	d							
BLUE DOT	7.5	.64	.61	NA	8.3	1190	33900	
UNIQUE	5.3	.58	.57	NA	5.9	1085	33800	
HERCO	5.5	.62	.61	NA	6.0	1080	33100	
BULLSEYE	4.2	.44	.43	NA	4.6	1030		
GREEN DOT	4.4	.56	.53	.5	4.9	1025	33900	
RED DOT	3.6	.51	.49	.5	4.0	985	34000	
UNIVERSAL CLA	4.1	.45	.43	NA	4.1	906	25400	CUP 1.220

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Min Units	nimum OAL	
160 Grain Lea	d					The state of			and taken on the last	
ACCUR #9	9.4	.62	.61	NA	9.5	1116	29500	CUP 1	280	
ACCUR #7	7.1	.47	.46	NA	8.0	1115	32800			
HS7	6.3	.43	.43	NA	7.2	1083	35100			
HS6	5.6	.40	.40	NA	6.2	1064	34200			
ACCUR #5	5.3	.33	.32	.3	6.0	1048	33000			
WIN ACTION PI	5.0	.41	.40	NA	5.5	1035	34200		250	
WIN 540	5.5	.37	.37	NA	6.0	1030	34300		250	
ACCUR #2	4.1	.34	.34	.3	4.5	1025	32500	CUP 1.	250	
wSUPER-FLD	4.4	.37	.37	NA	4.9	1010	34600		250	
wSUPER-LIT	3.8	.32	.32	.3	4.2	975			250	
WIN 231	3.8	.35	.34	NA	4.2	955	34400	PSI 1.	250	
HP38	4.1	.38	.37	NA	4.5	904	34000	CUP 1.	220	

	ST	ARTING	LUP	<u> </u>				IV.	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
88 Grain Jack	eted								
ACCUR #5	10.0	.63	.61	NA			39000		
ACCUR #7	11.8	.77	.76	.7			39300		
ACCUR #2	7.1	.60	.57	NA	7.9	1545	39100	PSI	1.130

95 Grain Jack	ceted				_		
ACCUR #5	9.9	.62	.61	NA	11.0 1572	39200 PSI	1.135
ACCUR #7	11.8	.77	.76	.7	13.0 1562	38900 PSI	1.135
ACCUR #2	7.2	.61	.61	NA	7.6 1467	37100 PSI	1.135

100 Grain Ja	cketed			19			
ACCUR #5	9.5	.59	.57	NA	10.5 1496	38800 PSI	1.140
ACCUR #7	11.2	.73	.71	.7	12.2 1490	38500 PSI	1.140
ACCUR #2	6.6	.56	.53	.5	7.3 1414	38800 PSI	1.140

115 Grain Jac	keted						
ACCUR #7		.67	.66	NA	11.3 1385	39100 PSI	1.140
ACCUR #5	8.7	.54	.53	.5	9.4 1354	37900 PSI	1.140
ACCUR #2	5.8	.49	.49	NA	6.4 1276	38600 PSI	1.140

STARTING LOADS										
Powder Type	Start Grains	Volume	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	y Pressure	Mimimu Units OAL			
115 Grain Lea				Dippoi	EXOLED III	1 1635ule	OIIILS UAL			
ACCUR #7	10.3	.67	.66	NA	11.0 1344	37800	PSI 1.140			
ACCUR #5	8.2	.51	.49	.5	9.0 1319		PSI 1.140			
ACCUR #2	5.7	.48	.46	NA	6.2 1249	38200	PSI 1.140			
122 Grain Lea	d									
ACCUR #7	10.0	.65	.61	NA	10.7 1321	37900	PSI 1.140			
ACCUR #5	8.4	.52	.49	.5	8.8 1300	37100	PSI 1.140			
ACCUR #2	5.4	.45	.43	NA	5.8 1217	38100	PSI 1.140			
124 Grain Jac	keted									
ACCUR #5	8.2	.51	.49	.5	9.2 1325	39600	PSI 1.140			
ACCUR #7	10.5	.68	.66	NA	11.0 1320		PSI 1.140			
ACCUR #2	5.4	.46	.46	NA	6.0 1212	38900	PSI 1.140			
							2,3,5,22,889			
130 Grain Jacl	keted									
ACCUR #7	9.3	.61	.61	NA	10.4 1278	39300	PSI 1.135			
ACCUR #5	8.1	.50	.49	.5	8.8 1253		PSI 1.135			
ACCUR #2	5.5	.46	.46	NA	6.0 1179		PSI 1.135			
147 Grain Jack	ceted									
ACCUR #7	8.4	.55	.53	.5	9.2 1160	38600	PSI 1.140			
ACCUR #5	7.3	.45	.43	NA	7.9 1159		PSI 1.140			
ACCUR #2	4.7	.39	.37	NA	5.3 1061		PSI 1.140			

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	/elocity FPS	Pressure	Units Units	imum OAL	
145 Grain Lead	d									
WIN 231	2.3	.22	.21	NA	2.6	675	11500	CUP 1.	160	
GREEN DOT	2.2	.28	.27	NA	2.5	665	10960	CUP 1.	160	
UNIQUE	2.9	.31	.30	.3	3.1	650		CUP 1.		
RED DOT	2.2	.31	.30	.3	2.4	645	10600	CUP 1	.160	
HERCO	3.0	.33	.32	.3	3.2	640	10400	CUP 1	.160	
HP38	2.2	.21	.21	NA	2.5	630	NA	NA 1		
BULLSEYE	2.1	.22	.21	NA	2.2	630	10200	CUP 1	.160	

146 Grain Lea	d								
v-N340	3.1	.34	.34	.3	3.5	754	13700	CIP	1.181

158 Grain Lea	d							
ACCUR #5	3.4	.21	.21	NA	3.7	767	10100	CUP 1.120
ACCUR #2	2.4	.20	NA	NA	2.8	754	10700	CUP 1.120
A NITRO100	2.3	.31	.30	.3	2.3	722	9300	CUP 1.120

	ST	ARTING	LOA	ADS				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
90 Grain Jac	keted			The state of the s			rrossarc	OIIILS OAL
HS6	9.8	.70	.66	.7	10.0	1305	15000	CUP 1.425
HP38	5.7	.53	.53	.5	5.7	1201		CUP 1.425
95 Grain Jac	keted 7.1	7.0	7.0					
		.76	.76	. /	7.8	1195	15700	CUP 1.470
IMR4227	10.7	.82	.82	NA	11.9	1090	15900	CUP 1.470
SR4756	5.8	.64	.61	NA	6.5	1080		CUP 1.470
SR7625	5.1	.53	.53	.5	5.6	1065		CUP 1.470
IMR PB	4.7	.56	.53	.5	5.1	1055		CUP 1.470
IRAD TOOM		-					. 5500	00. 1.470

.5

4.6 1025 15600 CUP 1.470

							7777		PEMI
110 Grain Jack	keted								
v-N350	6.3	.62	.61	NA	7.0	1216	16200	CIP	1.437
v-3N37	6.8	.62	.61	NA	7.6	1210	16200		
HS6	8.0	.57	.57	NA	8.5	1180	15700		
v-N340	5.8	.62	.61	NA	6.5	1177	16200		
v-N320	5.1	.62	.61	NA	5.7	1174	16200		
BLUE DOT	7.1	.61	.61	NA	7.8	1170	15700		
UNIVERSAL CLA	4.9	.54	.53	.5	5.6	1143	16700		
IMR 800X	6.5	.70	.66	7	7.2	1095	15800		
UNIQUE	5.2	.56	.53	.5	5.6 1	1090	15400		1.430
HERCO	5.0	.57	.57	.5	5.6 1	1090	15800		1.430
ACCUR #5	6.6	.41	.40	NA	7.3 1	1090			1.435

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

IMR 700X

4.2

.56

.53

	STA	RTING	LOA	DS	NEVED 1	lalacity		M	mimum
Powder Type	Start Grains	Volume CC	Auto- Disk	Dipper	NEVER V Exceed	FPS	Pressure	Units	OAL
110 Grain Jack		Continu	ied)						
BULLSEYE	4.3	.46	.46	NA	4.5	1085	14900	PSI	1.430
ACCUR #2	5.0	.42	.40	NA	5.6	1083	16800		1.435
CLAYS	3.6	.52	.49	.5	4.2	1073	17300		
SR7625	5.1	.53	.53	.5	5.5	1060	15400		
GREEN DOT	4.1	.52	.49	.5	4.6	1050	16000		
HP38	5.2	.48	.46	NA	5.2	1043	14800		
SR4756	5.7	.62	.61	NA	6.2	1040	15600		
IMR4227	10.0	.77	.76	.7	11.1	1020	15800		
RED DOT	3.6	.51	.49	.5	4.0	1000	15800		
IMR PB	4.5	.54	.53	.5	4.8	990	15200		
IMR 700X	3.9	.52	.49	.5	4.2	970	15400	CUP	1.460
A									
124 Grain Lead	d						4		
v-N350	5.7	.55	.53	.5	6.3	1141	16200		1.437
v-3N37	5.8	.53	.53	.5	6.5	1124	16200		1.437
v-N340	5.3	.57	.57	.5	5.9	1113		CIP	1.437
v-N320	4.3	.52	.49	.5	4.8	1067	16200	CIP	1.437
125 Grain Jac	katad								
HS6	7.3	.52	.49	.5	7.8	1169	15800	CUP	1.425
v-N340	5.8	.62							
v-N350			.61	NA	6.5	1137	16200	CIP	1.437
	6.2			NA NA	6.5	1137 1117	16200 16200		1.437 1.437
	6.2	.61	.61					CIP	
v-3N37	6.4	.61	.61	NA	6.9	1117	16200	CIP	1.437
v-3N37 HERCO	6.4 4.9	.61 .58 .55	.61 .57 .53	NA NA	6.9 7.1	1117 1101	16200 16200	CIP CIP PSI	1.437 1.437
v-3N37 HERCO BLUE DOT	6.4	.61 .58 .55	.61	NA NA .5	6.9 7.1 5.5	1117 1101 1040	16200 16200 16000 15600 16200	CIP CIP PSI PSI CIP	1.437 1.437 1.440 1.440 1.437
v-3N37 HERCO BLUE DOT v-N320	6.4 4.9 6.7 4.7	.61 .58 .55 .58	.61 .57 .53 .57	NA NA .5 NA	6.9 7.1 5.5 7.3	1117 1101 1040 1035	16200 16200 16000 15600	CIP CIP PSI PSI CIP	1.437 1.437 1.440 1.440 1.437
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA	6.4 4.9 6.7 4.7 4.5	.61 .58 .55 .58 .57	.61 .57 .53 .57	NA NA .5 NA	6.9 7.1 5.5 7.3 5.2	1117 1101 1040 1035 1031	16200 16200 16000 15600 16200	CIP PSI PSI CIP CUP	1.437 1.437 1.440 1.440 1.437 1.425 1.440
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE	6.4 4.9 6.7 4.7	.61 .58 .55 .58	.61 .57 .53 .57 .57	NA NA .5 NA .5	6.9 7.1 5.5 7.3 5.2 5.2	1117 1101 1040 1035 1031 1019	16200 16200 16000 15600 16200 17000 16000 15300	CIP CIP PSI PSI CIP CUP PSI PSI	1.437 1.437 1.440 1.440 1.437 1.425 1.440
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE	6.4 4.9 6.7 4.7 4.5 4.7	.61 .58 .55 .58 .57 .50 .51	.61 .57 .53 .57 .57 .49	NA NA .5 NA .5 .5	6.9 7.1 5.5 7.3 5.2 5.2 5.3	1117 1101 1040 1035 1031 1019 1015	16200 16200 16000 15600 16200 17000 16000	CIP CIP PSI PSI CIP CUP PSI PSI	1.437 1.437 1.440 1.440 1.437 1.425
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2	6.4 4.9 6.7 4.7 4.5 4.7	.61 .58 .55 .58 .57 .50	.61 .57 .53 .57 .57 .49 .49	NA NA .5 NA .5 .5 .5	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4	1117 1101 1040 1035 1031 1019 1015 1000 990 985	16200 16200 16000 15600 16200 17000 16000 15300	CIP CIP PSI PSI CUP PSI PSI PSI PSI	1.437 1.440 1.440 1.437 1.425 1.440 1.440 1.445
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2 GREEN DOT	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7 3.8	.61 .58 .55 .58 .57 .50 .51 .43	.61 .57 .53 .57 .57 .49 .49 .43	NA NA .5 NA .5 .5 .5 .5 NA NA	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3	1117 1101 1040 1035 1031 1019 1015 1000 990	16200 16200 16000 15600 16200 17000 16000 15300 16800 15900	CIP CIP PSI PSI CUP PSI PSI PSI PSI CUP	1.437 1.440 1.440 1.437 1.425 1.440 1.440
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7	.61 .58 .55 .58 .57 .50 .51 .43 .40	.61 .57 .53 .57 .57 .49 .49 .43	NA NA .5 NA .5 .5 .5 NA NA NA	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3 4.3	1117 1101 1040 1035 1031 1019 1015 1000 990 985	16200 16200 16000 15600 17000 16000 15300 16800 15500 15600	CIP PSI PSI CUP PSI PSI PSI PSI PSI PSI	1.437 1.440 1.440 1.437 1.425 1.440 1.440 1.445 1.440 1.525 1.440
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2 GREEN DOT IMR 800X RED DOT	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7 3.8 6.4	.61 .58 .55 .58 .57 .50 .51 .43 .40 .49	.61 .57 .53 .57 .57 .49 .49 .43 .40 .49	NA NA .5 NA .5 .5 .5 NA NA NA	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3 4.3 6.9	1117 1101 1040 1035 1031 1019 1015 1000 990 985 980 950 937	16200 16200 16000 15600 17000 16000 15300 16800 15900 15600 16100	CIP CIP PSI CIP CUP PSI PSI PSI PSI CUP PSI CUP	1.437 1.440 1.440 1.437 1.425 1.440 1.445 1.440 1.525 1.440 1.142
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2 GREEN DOT IMR 800X	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7 3.8 6.4 3.6	.61 .58 .55 .58 .57 .50 .51 .43 .40 .49	.61 .57 .53 .57 .57 .49 .49 .43 .40 .49	NA NA .5 NA .5 .5 .5 NA NA NA NA	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3 4.3 6.9 3.9	1117 1101 1040 1035 1031 1019 1015 1000 990 985 980 950 937	16200 16200 16000 15600 17000 16000 15300 16800 15900 15600 16100 15900	CIP CIP PSI PSI CUP PSI PSI CUP CUP CUP CUP CUP	1.437 1.440 1.440 1.437 1.425 1.440 1.445 1.440 1.525 1.440 2.1.525
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2 GREEN DOT IMR 800X RED DOT CLAYS	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7 3.8 6.4 3.6 3.6	.61 .58 .55 .58 .57 .50 .51 .43 .40 .49 .68 .50	.61 .57 .53 .57 .57 .49 .49 .40 .49 .66 .49	NA NA .5 NA .5 .5 .5 NA NA NA NA S	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3 4.3 6.9 3.9 3.9	1117 1101 1040 1035 1031 1019 1015 1000 990 985 980 950 937	16200 16200 16000 15600 17000 16000 15300 16800 15900 15600 16100	CIP CIP PSI PSI CUP PSI PSI CUP PSI CUF CUF CUF CUF CUF	1.437 1.440 1.440 1.425 1.440 1.440 1.440 1.440 1.440 1.440 1.425 1.425 1.425 1.525 1.525
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2 GREEN DOT IMR 800X RED DOT CLAYS SR7625 IMR4227	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7 3.8 6.4 3.6 4.8	.61 .58 .55 .58 .57 .50 .51 .43 .40 .49 .68 .50 .52	.61 .57 .53 .57 .49 .49 .43 .40 .49 .66 .49 .49	NA NA .5 NA .5 .5 .5 NA NA NA NA .5 .5	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3 4.3 6.9 3.9 3.9 5.3	1117 1101 1040 1035 1031 1019 1015 1000 990 985 980 950 937	16200 16200 16000 15600 17000 16000 15300 15900 15600 16100 16000 15900	CIP CIP PSI PSI CUP PSI PSI CUF PSI CUF CUF CUF CUF CUF CUF	1.437 1.440 1.440 1.425 1.440 1.440 1.440 1.440 1.440 1.440 1.425 1.425 1.425 1.425 1.525 1.525 1.525
v-3N37 HERCO BLUE DOT v-N320 UNIVERSAL CLA UNIQUE BULLSEYE ACCUR #2 GREEN DOT IMR 800X RED DOT CLAYS SR7625	6.4 4.9 6.7 4.7 4.5 4.7 4.1 4.7 3.8 6.4 3.6 4.8 9.6	.61 .58 .55 .58 .57 .50 .51 .43 .40 .49 .68 .50 .52	.61 .57 .53 .57 .49 .49 .43 .40 .49 .66 .49 .49	NA NA .5 NA .5 .5 .5 NA NA NA NA .5 .5 .7	6.9 7.1 5.5 7.3 5.2 5.2 5.3 4.4 5.3 4.3 6.9 3.9 3.9 5.3 10.8	1117 1101 1040 1035 1031 1019 1015 1000 990 985 980 950 937 935 930	16200 16200 16000 15600 17000 16000 15300 15900 15500 16100 16900	CIP CIP PSI PSI PSI PSI PSI CUP PSI CUF CUF CUF CUF CUF CUF CUF CUF	1.437 1.440 1.440 1.425 1.440 1.440 1.440 1.440 1.440 1.440 1.425 1.425 1.425 1.525 1.525 1.525 1.525

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

Powder Type

Start Grains

STARTING LOADS... art Volume Auto- Lee rains CC Disk Dippo

Mimimu Units OAL

125 Grain Jac	keted	(Conti	auod)					. 0111	to UA
ACCUR #5	6.3	.39	.37	NA	6.8	860	16200	DO	4 4 4
IMR 700X	3.7	.50	.49				16300		
,	3.7	.50	.43	.5	4.1	840	15600	CU	P 1.52
120 0									
130 Grain Jac HS6									
HP38	7.1	.51	.49	.5	7.2	1077			
пРЗ8	4.4	.41	.40	NA	4.5	900	15000	CU	P 1.42
									1 0 7 1 3
140 Grain Jac	keted								
v-3N37	5.8	.53	.53	.5	6.5	993	16200	CIP	1.43
v-N350	5.7	.55	.53	.5	6.3	988	16200		
HS6	6.5	.47	.46	NA	7.0	969	15800		
v-N340	5.1	.55	.53	.5	5.7	967	16200		
UNIVERSAL CLA	4.6	.51	.49	.5	4.8	939	15400		
v-N320	4.4	.53	.53	.5	4.9	938	16200		
ACCUR #2	4.2	.35	.34	NA	4.7	888	16700		
CLAYS	3.3	.48	.46	NA.	3.7	869	16700		
HP38	3.9	.36	.34	NA	4.0	862	15100		
ACCUR #5	5.7	.36	.34	NA	6.4	860	16700		
IMR 800X	5.5	.58	.57	NA	6.0	830	15700		
IMR4227	9.4	.72	.71	.7	10.3	800	15600		
SR7625	4.2	.43	.43	NA	4.6	780	15800		
SR4756	5.0	.55	.53	.5	5.6	765	16000		
IMR PB	3.8	.46	.46	NA	4.2	735	15700		
IMR 700X	3.3	.45	.43	NA	3.7	730	15900		1.45
					300	133		001	1.400
145 Grain Lead	4								
v-N350	5.1	.50	.49	.5	5.7	1031	16200	CID	4 474
v-N340	4.8	.51	.49	.5	5.3	1022			1.476
v-3N37	5.0	.46	.46	NA	5.6	990	16200		1.476
v-N320	3.6	.44	.43	NA	4.0	929	16200	CIP	1.476
			. 10	1474	4.0	323	10200	CIP	1.476
146 Grain Jack									
v-N350	4.9	10	16	NIA I		000			MAG
/-3N37		.48	.46	NA	5.5	920	16200		
/-N340	5.1	.47	.46	NA	5.7	917	16200		
MR4227	4.4	.47	.46	NA	4.9	909	16200		
SR4756	9.4	.72	.71	.7	10.3	880	15700		
	4.8	.52	.49	.5	5.2	840	15600		
MR 800X SR7625	5.4	.58	.57	NA	5.8	805	15400	CUP	1.395
n/020	3.8	.40	.40	NA	4.2	740	15600	CLID	1 20E

Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

IMR4227

IMR PB

.STARTING LOADS...

Start Volume Auto-

Powder Type	Grains	CC	Disk	Dipper	EXCEED	rr3	Pressure	OIII172	UAL
146 Grain Jacketed (Continued)									
MR PB	3.5	.43	.43	NA	3.9	725	15700		
MR 700X	3.1	.42	.40	NA	3.5	725	15900	CUP 1.	395
148 Grain Wad	Cutter								
CLAYS	3.0	.44	.43	NA	3.2	950	15800	CUP 1.	150
UNIVERSAL CLA		.39	.37	NA	3.8	940	15600	CUP 1.	150
HS6	6.0	.43	.43	NA	6.0	924	14400	CUP 1.	150
IMR 800X	4.9	.53	.53	.5	5.5	905	15900	CUP 1	295
v-N350	3.9	.38	.37	NA	4.3	882	16200	CIP 1	.181
HP38	3.8	.35	.34	NA	3.8	879	14800		
SR7625	3.7	.39	.37	NA	4.2	875	16000		
IMR PB	3.4	.41	.40	NA	3.8	855	15800		
v-N340	3.5	.37	.37	NA	3.9	853	16200		
IMR 700X	3.1	.42	.40	NA	3.5	850	16000		
v-N330	3.2	.35	.34	NA	3.6	828	16200		
HERCO	3.1	.35	.34	NA	3.5	820	16000		.180
BULLSEYE	2.5	.27	.27	NA	2.8	815	15900		.180
BLUE DOT	5.3	.46	.46	NA	5.3	810	13600		.180
v-N320	2.9	.35	.34	NA	3.2	810	16200		.181
ACCUR #5	3.7	.23	.21	NA	4.0	807	16200		.152
GREEN DOT	2.6	.33	.32	.3	2.9	800	15900		.180
WIN 540	4.7	.32	.32	.3	5.2	785	16300		.180
UNIQUE	3.2	.35	.34	NA	3.2	775	14100		.180
WIN 231	3.0	.28	.27	NA	3.4	760	16400		.180
RED DOT	2.3	.32	.32	.3	2.5	750	15500		.180
ACCUR #2	2.8	.24	.24	NA	2.9	720	15500		.152
wSUPER-TAR	2.4	.29	.27	NA	2.7	700	16300	PSI 1	.180
150 Grain Jac	keted								
HS6	6.9	.49	.49	NA	7.0	1011	14900	CUP 1	.42
H4227	10.0	.77	.76		10.5	909		CUP 1	
HP38	3.7	.35	.34	NA	3.8	856		CUP 1	.42
ACCUR #2	4.1	.35	.34		4.7	853			.450
ACCUR #5	5.9	.37	.37		6.5	813	16600	PSI 1	.450
IMR 800X	5.2	.56	.53		5.7	795		CUP1	.44
SR7625	3.9	.41	.40		4.3	770		CUP 1	
011/020	0.0								

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

NA

NA

10.0

4.0

770

765

.66

.43

.69

.43

9.0

3.6

15900 CUP 1.445

15900 CUP 1.445

Mimimum Units OAI

STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEE	Velocit D FPS	y Pressure	Mimimu Units OAL
150 Grain Jac	keted (JIIILO ONL
SR4756	4.8	.53	.53	.5	5.4	765	16000	CUP 1.44
IMR 700X	3.1	.42	.40	NA	3.5	755	15900	CUP 1.44
					1			001 1111
158 Grain Jac								
v-N350	5.2	.51	.49	.5	5.8	912	16200	CIP 1.43
CLAYS	3.1	.46	.46	NA	3.5	911	16400	CUP 1.42
v-N340	4.6	.49	.49	NA	5.1	862		CIP 1.43
HERC 2400	6.8	.50	.49	.5	7.6	850	15900	
ACCUR #5	5.3	.33	.32	.3	5.8	841	16500	PSI 1.45
HP38	3.7	.34	.34	NA	3.7	834		CUP 1.42
v-N320	3.7	.45	.43	NA	4.1	780		CIP 1.43
UNIVERSAL CLA	4.0	.44	.43	NA	4.4	778		CUP 1.42
ACCUR #2	3.6	.30	.30	.3	4.0	756		PSI 1.45
IMR4227	8.7	.67	.66	NA	9.7	705		CUP 1.46
SR4756	4.8	.53	.53	.5	5.2	705		CUP 1.46
IMR 800X	5.1	.55	.53	.5	5.5	695		CUP 1.46
SR7625	3.9	.41	.40	NA	4.3	660		CUP 1.46
IMR PB	3.5	.42	.40	NA	3.9	620		CUP 1.46
IMR 700X	3.2	.43	.43	NA	3.4	585	15300	CUP 1.46
158 Grain Lea								
HERC 2400	6.9	.51	.49	.5	7.5	990	15500	PSI 1.420
UNIVERSAL CLA		.44	.43	NA	4.5	974	16700	CUP 1.425
HS6	6.5	.46	.46	NA	6.5	966	14400	CUP 1.425
H4227	9.5	.73	.71	.7	10.0	956		CUP 1.425
BLUE DOT	5.6	.48	.46	NA	6.1	955	15600	PSI 1.420
ACCUR #5	5.5	.34	.34	NA	5.9	940	16100	
HERCO	4.0	.45	.43	NA	4.5	930	15800	
UNIQUE	3.8	.42	.40	NA	4.3	920	16000	PSI 1.420
BULLSEYE	3.3	.35	.34	NA	3.6	910	15500	
WIN 540	6.2	.43	.43	NA	6.8	880	15900	
WIN 571	6.8	.46	.46	NA	7.4	875	16000	
MR 800X	5.1	.54	.53	.5	5.7	875		CUP 1.520
GREEN DOT	3.2	.40	.40	NA	3.5	870		PSI 1.420
ACCUR #2	4.0	.34	.34	.3	4.0	868	14100	
RED DOT	2.8	.39	.37	NA	3.1	835	15800	
WIN 231	4.2	.39	.37	NA	4.5	830	15800	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

.5

NA

NA

NA

5.2

9.5

3.6

4.3

825

825

790

790

15800 CUP 1.520

15700 CUP 1.520

15800 CUP 1.520

15200 CUP 1.520

.49

.66

.43

.40

.52

.66

.44

.42

4.7

8.6

3.3

4.0

SR4756

IMR4227

SR7625

IMR 700X

STARTING LOADS									
A SERVICE AND LOCAL	Start	Volume	Auto-	Lee	NEVER	Velocit	/_	N	limimum
Powder Type	Grains	CC	Disk	Dipper	EXCEED	FPS	Pressure	Units	OAL
158 Grain Lea									
IMR PB	3.7	.44	.43	NA	4.0	775	15500		1.520
wSUPER-TAR	3.4	.41	.40	NA	3.7	770	15700	PSI	1.450
160 Grain Jac	keted								
H4227	9.5	.73	.71	.7	10.0	956	15600	CUP	1.425
HS6	6.5	.46	.46	NA	6.5	914	14600	CUP	1.425
BLUE DOT	5.6	.48	.46	NA	6.2	845	15800		1.435
HP38	3.7	.34	.34	.3	3.7	819	14900		1.425
HERCO	3.9	.44	.43	NA	4.4	805	16000	PSI	1.435
BULLSEYE	3.2	.34	.34	.3	3.5	804	15600		1.435
UNIQUE	3.8	.42	.40	NA	4.2	800	15600		1.435
GREEN DOT	3.1	.39	.37	NA	3.4	750	15800		1.435
RED DOT	2.9	.41	.40	NA	3.2	715	15700	PSI	1.435
160 Grain Lea	d								
v-N340	4.8	.51	.49	.5	5.3	1021	16200	CIP	1.476
v-N350	5.1	.50	.49	.5	5.7	1003	16200	CIP	1.476
v-3N37	5.0	.46	.46	NA	5.6	963	16200	CIP	1.476
CLAYS	3.1	.46	.46	NA	3.5	911	16400	CUP	1.425
HP38	3.7	.34	.34	NA	3.7	834	14600	CUP	1.425
170 Grain Bul	lot								
H4227	8.8	.68	.66	NA	9.3	859	15600	CUF	1.425
HS7	6.6	.45	.43	NA	7.0	840	15600		
HS6	5.8	.42	.40	NA	6.1	836	15400		1.425
HP38	3.5	.33	.32	.3	3.6	802	15100		1.425
111 30	3.3	.00	.02	.0	0.0	002			-
173 Grain Lea						070	10500	DCI	1 515
ACCUR #5	4.9	.31	.30	.3	5.4	870	16500	-	1.515
ACCUR #2	3.7	.31	.30	.3	4.0	819	16300	PSI	1.515

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

38 SPECIAL (Continued)

STARTING LOADS								
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V	lelocity FPS	Pressure	Mimimun Units OAL
200 Grain Lead	d				73.51146	Die Pro	20162	
HERC 2400	6.3	.47	.46	NA	7.0	870	15800	PSI 1.540
IMR4227	8.3	.63	.61	NA	9.2	870	15900	CUP 1.500
BLUE DOT	4.7	.41	.40	NA	5.3	850	16000	PSI 1.540
H4227	7.9	.61	.61	NA	8.5	819	15900	CUP 1.425
HS6	4.6	.33	.32	.3	5.0	794	15900	CUP 1.425
HERCO	3.5	.39	.37	NA	3.8	785	15500	PSI 1.540
UNIQUE	3.3	.36	.34	NA	3.6	780	15700	PSI 1.540
IMR PB	3.1	.37	.37	NA	3.4	760	15800	CUP 1.500
BULLSEYE	2.8	.30	.30	.3	3.0	760	15100	PSI 1.540
SR7625	3.2	.33	.32	.3	3.5	755	15800	CUP 1.500
GREEN DOT	2.8	.36	.34	NA	3.1	750	15500	PSI 1.540
SR4756	3.9	.43	.43	NA	4.3	740	15700	CUP 1.500
IMR 700X	2.9	.38	.37	NA	3.0	725	15000	CUP 1.500
RED DOT	2.6	.37	.37	NA	2.8	725	15100	PSI 1.540
IMR 800X	4.2	.45	.43	NA	4.6	725	15500	CUP 1.500
HP38	3.2	.29	.27	NA	3.2	681	14900	CUP 1.425

	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	mimum OAL
90 Grain Jac	keted								
HS6	11.5	.82	.82	NA	11.5	1855	32400	CUP '	1.540
HP38	8.4	.78	.76	.7	8.4	1668	27100	CUP'	1.540

	1	1	U	Grain	Jack	eted	ı
-	_		_				=

I IU Grain Jaci	Keteu						
BLUE DOT	14.4	1.25	1.18	NA	16.0 2040		1.560
v-N110	16.0	1.33	1.26	1.3	17.6 1910	32400 CIP	1.570
HERCO	11.9	1.33	1.26	1.3	13.0 1885	00000	1.560
H4227	19.5	1.50	1.46	NA	19.5 1816	34200 CUP	1.540
UNIQUE	8.9	.98	.95	NA	10.0 1735	34100 PSI	1.560
BULLSEYE	8.6	.92	.88	NA	9.0 1690	31700 PSI	1.560
POWER PISTOL	8.7	.77	.76	.7	9.7 1690	34000 PSI	1.565
GREEN DOT	9.7	1.23	1.18	NA	10.0 1660	31300 PSI	1.550
HS7	13.0	.88	.88	NA	13.0 1646	29800 CUP	1.540
HS6	10.6	.75	.71	.7	10.6 1612	31800 CUP	1.540
v-3N37	8.3	.76	.76	.7	9.1 1600	32200 CIP	1.570
RED DOT	6.9	.97	.95	NA	7.7 1580	01000 101	1.560
WIN 231	7.8	.72	.71	.7	8.8 1575	42500 CUP	1.540
IMR4227	19.0	1.46	1.46	1.3	21.0 1510	35600 CUP	1.590
v-N340	6.5	.69	.66	NA	7.1 1500	32100 CIP	
IMR 800X	10.4	1.12	1.09	1.0	10.9 1475		1.590
ACCUR #7	11.8	.77	.76	.7	. 13.0 1424		1.575
HP38	7.9	.73	.71	.7	7.9 1414		1.540
ACCUR #5	9.7	.60	.57	NA			1.575
SR4756	8.5	.94	.88	NA	9.5 1330	35800 CUP	1.590

	ST	ARTING		DS				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL			
110 Grain Jac	keted (Contin	ued)					
ACCUR #2	7.9	.66	.66	NA	8.8 1324 34400 PSI 1.575			
v-N320	5.7	.69	.66	NA	6.0 1300 31200 CIP 1.570			
SR7625	7.1	.75	.71	.7	7.9 1230 35600 CUP 1.590			
IMR PB	6.8	.82	.82	NA	7.6 1195 36000 CUP 1.590			
IMR 700X	6.0	.80	.76	NA	6.6 1165 35600 CUP 1.590			
125 Grain Jacketed								
H110	NA	NA	NA	NA	19.0 1822 34200 CUP 1.540			
HERC 2400	16.9	1.25	1.18	NA	17.6 1810 31800 PSI 1.570			
WIN 296	NA	NA	NA	NA	18.5 1800 32500 CUP 1.540			
BLUE DOT	13.0	1.12	1.09	1.0	14.5 1795 34000 PSI 1.570			
v-N110	14.7	1.23	1.18	NA	16.0 1750 32000 CIP 1.570			
H4227	17.8	1.37	1.36	1.3	17.8 1683 34600 CUP 1.540			
v-N120	18.3	1.42	1.36	1.3	20.0 1645 32100 CIP 1.570			
HS7	12.5	.85	.82	NA	12.5 1604 31500 CUP 1.540			
HERCO	8.9	1.00	.95	1.0	9.8 1590 33600 PSI 1.570			
UNIQUE	8.6	.94	.88	NA	9.6 1585 33800 PSI 1.570			
POWER PISTOL	8.4	.74	.71	.7	9.2 1555 33500 PSI 1.570			
BULLSEYE	7.8	.83	.82	NA	8.4 1550 32800 PSI 1.570			
HS6	10.0	.71	.71	.7	10.0 1542 34800 CUP 1.540			
WIN 231	7.2	.67	.66	NA	8.1 1460 42500 CUP 1.540			
UNIVERSAL CLA	7.6	.84	.82	NA	8.8 1435 43700 CUP 1.540			
v-3N37	7.9	.72	.71	.7	8.4 1420 31500 CIP 1.570			
GREEN DOT	6.6	.84	.82	NA	7.3 1415 33500 PSI 1.570			
RED DOT	6.3	.89	.88	NA	7.0 1410 34000 PSI 1.570			
IMR 800X	9.3	1.00	.95	1.0	10.2 1360 35300 CUP 1.580			
IMR4227	16.8	1.29	1.26	NA	18.5 1325 35400 CUP 1.580			
v-N340	6.6	.70	.66	.7	6.9 1325 31000 CIP 1.570			
ACCUR #5	9.0	.56	.53	.5	10.1 1322 35000 PSI 1.570			
HP38	7.0	.65	.61	NA	7.0 1319 27200 CUP 1.540			
ACCUR #2	7.4	.62	.61	NA	8.2 1312 34400 PSI 1.570			
ACCUR #7	11.1	.73	.71	.7	12.0 1236 33400 PSI 1.570			
SR4756	7.7	.85	.82	NA	8.6 1180 35800 CUP 1.580			
SR7625	6.7	.70	.66	.7	7.4 1100 35800 CUP 1.580			
IMR 700X	5.5	.74	.71	.7	6.2 1075 36000 CUP 1.580			
IMR PB	6.1	.74	.71	.7	6.8 1060 35800 CUP 1.580			

130 Grain Jacke	eted
-----------------	------

H110	NA	NA	NA	NA	18.5 1759	33600	CLIP 1 540
H4227		1.35	1.26	1.3	17.5 1648	33600	CUP 1 540
HS7	12.0	.82	.82	NA	12.0 1579	30800	CUP 1 540

Powder Type	Grains	CC	Disk	Dipper	EXCEED	FPS '	Pressure	Units	OAL
130 Grain Jack	eted (Continu	ied)				- and the second		
HS6	9.8	.70	.66	.7	9.8	1503	33600	CUP	1.540
HP38	6.8	.63	.61	NA	6.8	1267	28800	CUP	1.540

140 Grain Jack	keted						
H110	NA	NA	NA	NA	17.0 1687	33600	CUP 1.540
H4227	16.0	1.23	1.18	NA	16.0 1574	34600	CUP 1.540
v-N110	13.3	1.11	1.09	1.0	14.0 1560	31000	CIP 1.570
v-N120	16.4	1.27	1.26	NA	18.3 1525	32900	CIP 1.570
UNIVERSAL CLA	7.3	.81	.76	NA	8.5 1487	43800	CUP 1.540
HS7	11.0	.75	.71	.7	11.0 1465	32200	CUP 1.540
HS6	9.6	.68	.66	NA	9.6 1404	32400	CUP 1.540
ACCUR #9	13.3	.87	.82	NA	14.4 1349	33600	CUP 1.575
IMR 800X	8.9	.95	.95	NA	9.7 1230	35200	CUP 1.590
HP38	6.4	.59	.57	NA	6.4 1219	29200	CUP 1.540
ACCUR #7	10.7	.70	.66	.7	11.6 1215	33600	CUP 1.575
IMR4227	15.5	1.19	1.18	NA	17.2 1210	35700	CUP 1.590
ACCUR #5	8.6	.54	.53	.5	9.7 1205	34900	CUP 1.575
ACCUR #2	7.0	.59	.57	NA	7.8 1199	34400	CUP 1.575
SR4756	7.4	.82	.82	NA	8.2 1025	35500	CUP 1.590
IMR 700X	5.4	.73	.71	.7	6.0 960	35700	CUP 1.590
SR7625	6.3	.66	.66	NA	7.0 955	36000	CUP 1.590
IMR PB	5.7	.69	.66	NA	6.4 910	36000	CUP 1.590

146 Grain Jacl	ceted							2 J1 E
UNIVERSAL CLA	6.8	.74	.71	.7	I			CUP 1.540
IMR 800X	8.2	.88	.88	NA	9.2	1215	36000	CUP 1.500
IMR4227	13.6	1.04	1.02	1.0				CUP 1.500
SR4756	7.1	.78	.76	.7	7.9	1060	36000	CUP 1.500
SR7625	5.6	.59	.57	NA	6.2	945	35600	CUP 1.500
IMR 700X	4.7	.63	.61	NA	5.2	915		CUP 1.500
IMR PB	5.0	.60	.57	NA	5.6	885	36000	CUP 1.500

148 Grain Wa	d Cutte	r							
HERC 2400	11.0	.82	.82	NA	12.2	1675	33800	PSI	1.330
BLUE DOT	9.0	.78	.76	.7	10.0	1625	33800	PSI	1.330
HERCO	6.0	.68	.66	NA	6.7	1510	33900	PSI	1.330
BULLSEYE	5.1	.54	.53	.5	5.7	1475	34000	PSI	1.330
UNIQUE	5.8	.63	.61	NA	6.4	1465	33800	PSI	1.330
GREEN DOT	4.6	.58	.57	NA			34000		
RED DOT	4.2	.59	.57	NA	4.6	1300	33600	PSI	1.330

357 MAGNUM (Continued)

		ANTINE		1D3					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimur OAL
148 Grain Wa	d Cutte	r (Con	tinue			731.7			
SR4756	7.7	.85	.82	NA	8.5	1215	35600	CUP	1.420
IMR4227	14.8	1.14	1.09	1.0	15.0	1185	32700		1.420
SR7625	5.4	.57	.57	.5	6.0	1030	35600	CUP	1.420
IMR PB	5.2	.62	.61	NA	5.7	1010	35400		1.420
UNIVERSAL CLA	4.0	.44	.43	NA	4.0	989	17700	CUP	1.330
IMR 700X	4.7	.63	.61	NA	5.1	980	34800	CUP	1.420
HP38	4.3	.40	.40	NA	4.3	962	18800		1.330
WIN 231	3.4	.32	.32	.3	3.4	880	19500	CUP	1.330
BULLSEYE	2.8	.30	.30	.3	2.8	780	10000	PSI	1.330
RED DOT	2.7	.38	.37	NA	2.7	775	12400	PSI	1.330
ACCUR #2	3.0	.25	.24	NA	3.0	746	15000	PSI	1.370
IMR 800X	4.5	.48	.46	NA	4.5	715	14100	CUP	1.325
IMR 700X	3.0	.40	.40	NA	3.0	705	14900	CUP	1.325
									. 610
150 Grain Jac	keted								
H110	NA	NA	NA	NA	15.5	1517	33000	CUP	1.540
H4227	15.0	1.15	1.09	NA	15.0	1382			1.540
HS7	10.5	.71	.71	.7		1359			1.540
ACCUR #9	12.9	.85	.82	NA		1298			1.590

STARTING LOADS

HP38	5.9	.55	.53	.5	5.9	1130	27100	CUF	1.540
ACCUR #2	6.0	.50	.49	.5			26800		
ACCUR #5	8.4	.52	.49	.5			34000		
150 Grain Le	ead								

.64

.57

.68

.61

.57

.66

NA

NA

NA

11.1 1171

13.9 1298 33400 PSI 1.590

9.0 1247 28200 CUP 1.540

7.5 1182 34200 PSI 1.590

33300 PSI 1.590

9.0

6.8

10.3

1 30 Grain Lea	au				
WIN 296	NA	NA	NA	NA	14.0 1510 32000 CUP 1.540
ACCUR #9	12.0	.79	.76	.7	13.2 1343 34100 PSI 1.595
WIN 231	6.2	.57	.57	NA	6.9 1305 42000 CUP 1.540
ACCUR #7	9.5	.62	.61	NA	10.6 1298 34500 PSI 1.595
ACCUR #5	7.6	.47	.46	NA	8.4 1248 34300 PSI 1.595
IMR 800X	8.2	.88	.88	NA	9.0 1135 35300 CUP 1.590
SR4756	7.0	.77	.76	.7	7.8 975 35800 CUP 1.590
SR7625	5.8	.61	.61	NA	6.4 925 35600 CUP 1.590
IMR 700X	5.0	.67	.66	NA	5.6 905 35900 CUP 1.590
IMR PB	5.3	.64	.61	NA	5.9 875 35700 CUP 1.590

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

HS₆

LD20

ACCUR #2

ACCUR #7

1		RTING		DS	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL
158 Grain Jack	A STATE OF THE PARTY OF THE PAR				
H4227	14.5	1.12	1.09	1.0	14.5 1677 34100 CUP 1.540
HERC 2400	14.0	1.04	1.02	1.0	15.2 1535 33100 PSI 1.580
H110	NA	NA	NA	NA	14.5 1456 35400 CUP1.540
v-N110	11.3	.94	.88	NA	12.8 1450 33300 CIP 1.570
BLUE DOT	9.8	.85	.82	NA	10.7 1420 33300 PSI 1.580
v-N120	14.5	1.13	1.09	1.0	16.3 1390 33000 CIP 1.570
HERCO	7.3	.82	.82	NA	8.2 1305 34000 PSI 1.580
POWER PISTOL	7.2	.64	.61	NA	8.0 1305 33800 PSI 1.574
HS7	10.0	.68	.66	NA	10.0 1304 29300 CUP 1.540
UNIVERSAL CLA	6.9	.76	.76	.7	7.5 1299 41100 CUP 1.540
UNIQUE	7.2	.78	.76	.7	7.8 1280 33200 PSI 1.580
ACCUR #9	11.9	.78	.76	.7	13.0 1261 34000 PSI 1.580
BULLSEYE	6.3	.67	.66	NA	6.8 1250 33100 PSI 1.580
HS6	9.0	.64	.61	NA	9.0 1240 29000 CUP 1.540
GREEN DOT	6.3	.79	.76	.7	7.0 1215 34000 PSI 1.580
RED DOT	5.5	.77	.76	.7	6.0 1160 33400 PSI 1.580
ACCUR #7	9.6	.62	.61	NA	10.5 1139 34100 PSI 1.580
ACCUR #2	6.4	.54	.53	.5	6.9 1088 33500 PSI 1.580
IMR 800X	7.8	.84	.82	NA	8.6 1080 35400 CUP 1.580
ACCUR #5	8.1	.51	.49	.5	8.6 1080 32900 PSI 1.580
IMR4227	13.7	1.05	1.02	1.0	15.3 1075 36000 CUP 1.580
HP38	5.4	.50	.49	.5	5.4 1020 28000 CUP 1.540
SR4756	6.8	.74	.71	.7	7.5 940 35700 CUP 1.580
IMR 700X	4.7	.63	.61	NA	5.2 885 35800 CUP 1.580
IMR PB	5.1	.61	.61	NA	5.7 875 36000 CUP 1.580
SR7625	5.6	.59	.57	NA	6.2 855 35700 CUP 1.580

158 Grain Lead	d				, <u>, , , , , , , , , , , , , , , , , , </u>
HERC 2400	13.7	1.02	1.02	1.0	15.3 1620 34000 PSI 1.580
WIN 296	NA	NA	NA	NA	14.5 1560 38000 CUP 1.540
BLUE DOT	9.3	.81	.76	NA	10.3 1490 33600 PSI 1.580
HERCO	7.1	.80	.76	NA	7.9 1365 33900 PSI 1.580
BULLSEYE	5.8	.62	.61	NA	6.5 1320 33900 PSI 1.580
UNIVERSAL CLA	6.7	.74	.71	.7	6.7 1297 34600 CUP 1.540
UNIQUE	6.1	.67	.66	NA	6.8 1295 33900 PSI 1.580
ACCUR #9	11.7	.77	.76	.7	12.2 1280 32400 PSI 1.580
WIN 231	5.9	.55	.53	.5	6.7 1275 42500 CUP 1.540
GREEN DOT	5.4	.68	.66	NA	6.0 1240 34000 PSI 1.580
ACCUR #5	7.5	.47	.46	NA	8.2 1239 33800 PSI 1.580
ACCUR #7	9.5	.62	.61	NA	10.5 1239 34400 PSI 1.580

357 MAGNUM (Continued)

	ST	ARTIN	G LOA	ADS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEE	Velocity D FPS	/ Pressure	Units	Mimimum s OAL
158 Grain Lea	d (Con	tinued)					rocours	Onne	ONL
RED DOT	4.9	.70	.66	.7	5.5	1215	34000	PSI	1.580
ACCUR #2	5.8	.49	.49	NA	5.8	1074	26200	PSI	1.580
170 Grain Bul	let								
H110	NA	NA	NA	NA	13.5	1349	34800	CLIE	1 540
HS7	9.2	.63	.61	NA	9.2	1139	32400		
HS6	7.5	.53	.53	.5	7.5	1084	28400		
HP38	5.2	.48	.46	NA	5.2	1030	27900		
170 Grain Jac	keted								
WIN 296	NA	NA	NA	NA	14.3	1390	42000	CUP	1 540
HERC 2400	11.0	.81	.76	NA	12.1	1365	33600		1.585
BLUE DOT	8.7	.76	.76	.7	9.7	1310	33800		1.585
H4227	12.8	.99	.95	NA	13.5	1283	39800		
POWER PISTOL	7.3	.65	.61	NA	8.0	1195	33300		1.585
BULLSEYE	5.6	.59	.57	NA	6.2	1175	33900		1.585
ACCUR #9	11.2	.74	.71	.7	12.2	1170	33700	PSI	1.565
GREEN DOT	5.5	.70	.66	.7	6.1	1090	33700	PSI	1.585
ACCUR #2	6.0	.50	.49	.5	6.4	1059	33200	PSI	1.565
ACCUR #5	7.4	.46	.46	NA	8.0	1057	33700	PSI	1.565
ACCUR #7	9.1	.59	.57	NA	9.6	1041	32800	PSI	1.565
IMR 800X	7.5	.81	.76	NA	8.3	1030	35500		
RED DOT	4.9	.69	.66	NA	5.4	1025	33600	PSI	1.585
IMR4227	12.4	.96	.95	NA	13.7	985	35500	CUP	1.580
SR4756	6.4	.71	.71	.7	7.1	885	35600		
SR7625	5.1	.53	.53	.5	5.6	815	35600		
IMR 700X	4.3	.58	.57	NA	4.8	795	35600	CUP	1.580
IMR PB	4.6	.56	.53	.5	5.1	785	35600	CUP	1.580
Na a S									
180 Grain Bull									
H110	NA	NA	NA	NA	13.5	1304	37600	CUP	1.540
H4227	13.0	1.00	.95	1.0	13.0	1240	37200	CUP	1.540
180 Grain Jack	keted								
HERC 2400	11.6	.86	.82	NA	12.5	1300	32700	PSI	1.580
BLUE DOT	8.9	.77	.76	.7	9.7	1260	33300		1.580
v-N110	10.2	.85	.82	NA	11.1	1250	32000		1.570
v-N120	12.6	.98	.95	NA	14.1	1200	33000		1.570
POWER PISTOL	6.3	.56	.53	.5	7.0	1145	33800		1.580
CAUTION: With NEVER OBLD = Double Disk, se	EXCEED L	OADS m	naintain N	Vinimum uto-Disk	Over All	Length o	or longer.	None A	vailable

357 MAGNUM (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
180 Grain Jac	keted (Continu	ied)			7777			
ACCUR #9	10.4	.68	.66	NA	11.7	1140	35000	PSI	1.575
BULLSEYE	5.6	.60	.57	NA	6.3	1135	34000	PSI	1.580
ACCUR #7	8.4	.55	.53	.5	9.4	1023	34900	PSI	1.575
GREEN DOT	5.4	.68	.66	NA	6.0	1010	34000	PSI	1.580
RED DOT	4.9	.69	.66	NA	5.3	930	33200	PSI	1.580
200 Grain Lea	d								4.540
WIN 296	NA	NA	NA	NA	1	1335	35000		1.540
HERC 2400	9.3	.69	.66	NA	10.0	1245	32800	PSI	1.575
BLUE DOT	7.4	.64	.61	NA	8.2	1225	33900	PSI	1.575
H110	NA	NA	NA	NA	11.5		31200		1.540
H4227	12.0	.92	.88	NA	12.0	1174			1.540
HS7	8.5	.58	.57	NA	8.5	1142			1.540
UNIQUE	5.4	.59	.57	NA	6.0	1105	33900	PSI	1.575
BULLSEYE	4.8	.51	.49	.5	5.3	1085			1.575
HS6	6.8	.48	.46	NA	6.8	1073			1.540
WIN 231	4.9	.45	.43	NA	5.5	1060			1.540
GREEN DOT	4.5	.57	.57	.5	5.0	1015			1.575
IMR 800X	6.7	.72	.71	.7	7.5	995	36000		1.590
RED DOT	4.2	.59	.57	NA	4.6	990	33600		1.575
IMR4227	11.3	.87	.82	NA	12.5		35500		1.590
SR4756	5.6	.61	.61	NA	6.2	885	35900		1.590
HP38	4.2	.39	.37	NA	4.2	821	28100		1.540
SR7625	5.1	.53	.53	.5	5.6	815	35600		1.580
IMR 700X	3.9	.52	.49	.5	4.3	795	35800		1.590
IMR PB	4.2	.50	.49	.5	4.6	780	35700	CUI	² 1.590

357 REMINGTON MAXIMUM

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit	y Pressure	Mimimum Units OAL		
110 Grain Bul	let						Onito One		
H4227	25.2	1.94	DBLD	1.9	28.0 2314	NA	NA 1.940		
H110	NA	NA	NA	NA	30.0 2242	NA	NA 1.940		
							140 17141		
125 Grain Bull	let								
H110	NA	NA	NA	NA	28.5 2163	NA	NA 1.940		
H4227	24.3	1.87	DBLD	NA	27.0 2126	NA	NA 1.940		
140 Grain Bull	et								
H110	NA	NA	NA	NA	26.0 2001	NA	NA 1.940		
H4227	21.6	1.66	DBLD	1.6	24.0 1985	NA	NA 1.940		
							all I leave		
150 Grain Bull	et								
H110	NA	NA	NA	NA	25.0 1947	NA	NA 1.940		
H4227	20.7	1.59	DBLD	NA	23.0 1923	NA	NA 1.940		
158 Grain Jac	keted								
ACCUR 1680	24.1	1.58	DBLD	NA	25.3 1998	38300	CUP 1.905		
v-N110	17.2	1.43	1.36	1.3	19.1 1861	38000	CIP 1.890		
ACCUR 2230	26.5	1.74	DBLD	1.6	26.5 1580	29200	CUP 1.905		
ACCUR 2015BR	25.0	1.82	DBLD	NA	25.0 1541	22200	CUP 1.905		
AUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer									

357 REMINGTON MAXIMUM (Continued)

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL	
158 Grain Jack		Continu								
v-3N37	10.0	.91	.88	NA	11.1	1539	38000	CIP	1.890	
v-N350	9.3	.91	.88	NA	10.3	1496	38000	CIP	1.890	
160 Grain Bullet										
H110	NA	NA	NA	NA	24.0	1886	NA	NA	1.940	
H4227	20.2	1.56	DBLD	NA	22.5	1814	NA	NA	1.940	
160 Grain Lead										
v-3N37	9.5	.87	.82	NA	10.6	1552	38000	CIP	1.890	
v-N350	9.4	.91	.88	NA	10.4	1530	38000	CIP	1.890	
							_			
170 Grain Bullet										
H110	NA	NA	NA	NA	22.0	1784	NA	NA	1.940	
H4227	18.9	1.45	1.36	1.3	21.0	1748	NA	NA	1.940	
170 Grain Jac	katad									
ACCUR 1680	22.3	1.46	1.46	1.3	23.5	1962	38400	CUF	1.875	
ACCUR 2015BR	25.0	1.82	DBLD	NA	25.0	1550	24800	CUF	1.875	
ACCUR 2230	26.5	1.74	DBLD	1.6	26.5	1548	31600	CUF	1.875	
180 Grain Bull	et									
H110	NA	NA	NA	NA	21.0	1694	NA	NA	1.940	
H4227	18.0	1.38	1.36	1.3	20.0	1645	NA	NA	1.940	
180 Grain Jac	katad									
v-N120	19.9	1.54	DBLD	NA	22.1	1727	38000	CIP	1.894	
v-N110	15.3	1.27	1.26	NA		1672	38000	CIP	1.894	
WIN 296	NA	NA	NA	NA	19.0	1670	46900	CUF	1.940	
200 Grain Bull	et									
H110	NA	NA	NA	NA	20.0	1604	NA	NA	1.940	
H4227	16.2	1.25	1.18	NA	18.0	1440	NA	NA	1.940	
		12/12/2011	5 5 5 5							

357 REMINGTON MAXIMUM (Continued)

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M Units	mimu OAL		
200 Grain Jac	keted										
ACCUR 1680	18.7	1.22	1.18	NA	21.5	1675	41900	CUP	1.990		
v-N120	18.4	1.43	1.36	1.3	20.5	1542	38000	CIP :	2.000		
ACCUR 2015BR	24.0	1.75	DBLD	1.6	24.0	1531	35500	CUP	1.990		
v-N110	14.1	1.18	1.18	NA	15.7	1475	38000	CIP :	2.000		
ACCUR 2230	22.5	1.48	1.46	NA	25.5	1459	41300	CUP	1.990		

35 REMINGTON

STAPTING LOADS

the street with the street was a second or	517	AKIING	LUA	<u> </u>					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	mimum OAL
150 Grain Jac	keted								
IMR3031	38.2	2.91	DBLD	2.8	42.0	2390	34200	CUP 2	2.500
IMR4895	38.2	2.78	DBLD	2.5	42.5	2340	34600	CUP 2	2.500
IMR4064	40.5	3.02	DBLD	2.8	43.0	2320	33000	CUP 2	2.500
IMR4320	38.1	2.73	DBLD	2.5	42.5	2295	34700	CUP 2	2.500
RELODER 7	28.7	2.09	DBLD	1.9	32.0	2290	30700	CUP:	2.485
IMR4198	25.8	2.04	DBLD	1.9	29.0	2190	35000	CUP:	2.500
SR4759	20.4	2.03	DBLD	1.9	23.0	1985	35000	CUP:	2.500
IMR4350	43.5	3.20	DBLD	3.1	43.5	1985	24100	CUP:	2.500
IMR4227	20.4	1.57	DBLD	NA	22.0	1935	33600	CUP:	2.500
IMR4831	43.5	3.20	DBLD	3.1	43.5	1850	21300	CUP	2.500

158 Grain Lead	d						
RELODER 7	25.8	1.88	DBLD	NA	28.0 2200	29800	CUP 2.485

180 Grain Bull	let						
BL-C(2)	37.8	2.44	DBLD	2.2	42.0 2290	NA	NA 2.490
H335	37.8	2.44	DBLD	2.2	42.0 2286	NA	NA 2.490
H4198	31.5	2.36	DBLD	2.2	35.0 2202	NA	NA 2.490
H414	41.4	2.74	DBLD	2.5	46.0 2106	NA	NA 2.490
H380	39.6	2.74	DBLD	2.5	44.0 2075	NA	NA 2.490
H4895	36.0	2.62	DBLD	2.5	40.0 2068	NA	NA 2.490

35 REMINGTON (Continued)

	ST	ARTIN	G LOA	De			14 14 14		
Powder Type	Start Grains	Volume	Auto-	Lee	NEVER	Velocit	y		Mimimur
180 Grain Jac	-11 - 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	CC	Disk	Dipper	EXCEEL	J FPS	Pressure	Unit	s OAL
ACCUR 2520	38.6	2.64	DBLD	2.5	20.0	2122	07100	DOL	0.405
ACCUR 2015BR		2.54	DBLD			2122 2099	27100	PSI	2.465
ACCUR 2460	35.1	2.30	DBLD			2099	27800		2.465
ACCUR 2230	33.9	2.23	DBLD			2069	28300	PSI PSI	2.465 2.465
	00.0	2.20	DDLD	2.2	30.3	2001	20300	FSI	2.465
200 Grain Bul	lot								
H4895	35.1	2.56	DBLD	2.5	30.0	2069	NA	NIA	2 400
H335	35.1	2.26	DBLD	2.3		2009	NA		2.490 2.490
H4198	26.1	1.96	DBLD	1.9		1914	NA		2.490
		1.00	DULU	1.5	23.0	1314	IVA	NA	2.490
200 Grain Jac	kotod								
WIN 748	35.1	2.30	DBLD	2.2	30.0	2130	22000	CLID	2 400
RELODER 7	27.8	2.02	DBLD	1.9		2115	33000		2.490
IMR3031	33.6	2.56	DBLD	2.5		2110	30700		2.485
IMR4064	35.9	2.68	DBLD	2.5		2080	34700		2.500
ACCUR 2520	37.6	2.57	DBLD	2.5		2071	27800		2.500
ACCUR 2015BR	30.3	2.21	DBLD	2.2	35.0		31000		
IMR4895	32.5	2.37	DBLD	2.2		2030	34900		2.500
ACCUR 2460	36.5	2.39	DBLD	2.2	37.0		27200		
IMR4320	34.2	2.45	DBLD	2.2	38.5		35000		2.500
ACCUR 2230	30.4	2.00	DBLD	1.9	35.0		30900		2.470
IMR4198	25.1	1.99	DBLD	1.9	27.0	1915	33500		2.500
IMR4350	43.0	3.16	DBLD	3.1	43.0	1915	29200	CUP	2.500
IMR4831	43.0	3.16	DBLD	3.1	43.0	1780			2.500
SR4759	18.2	1.81	DBLD	1.6	20.5	1770	35000	CUP	2.500
IMR4227	18.7	1.43	1.36	1.3	21.0	1760	35000	CUP	2.500
220 Grain Bull	et								
H335	32.4	2.09	DBLD	1.9	36.0	1910	NA	NA	2.490
BL-C(2)	32.4	2.09	DBLD	1.9	36.0	1908	NA		2.490
H380	35.1	2.43	DBLD	2.2	39.0	1878	NA		2.490
H414	36.9	2.44	DBLD	2.2	41.0	1862	NA		2.490

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

2.29 DBLD 2.2

1.69 DBLD 1.6

31.5

22.5

35.0 1747

25.0 1558

NA

NA

NA 2.490

NA 0.249

H4895

H4198

358 WINCHESTER

	ST/	ARTING	LOA	<u>DS</u>				N/	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
180 Grain Ja	cketed								0.700
H4198	38.7	2.90	DBLD	2.8	43.0	2711	NA	NA	2.730

200 Grain Jack	keted				
IMR3031	43.6	3.32	NA	3.1	49.0 2630 51800 CUP 2.765
ACCUR 2520	46.2	3.15	DBLD	3.1	49.5 2568 48900 CUP 2.640
IMR4895	44.5	3.24	DBLD	3.1	49.0 2565 50800 CUP 2.765
IMR4320	45.5	3.26	DBLD	3.1	51.0 2545 51700 CUP 2.765
H4198	36.9	2.77	DBLD	2.5	41.0 2532 NA NA 2.730
IMR4064	48.9	3.64	NA	3.4	49.0 2525 46200 CUP 2.765
ACCUR 2015BR	38.8	2.83	DBLD	2.8	42.0 2520 49400 CUP 2.640
ACCUR 2460	40.8	2.68	DBLD	2.5	46.0 2507 51400 CUP 2.640
WIN 748	45.9	3.01	DBLD	2.8	50.6 2500 50000 CUP 2.730
IMR4198	35.5	2.81	DBLD	2.8	40.0 2495 52000 CUP 2.765
RELODER12	46.5	3.21	DBLD	3.1	50.0 2455 44100 CUP 2.780
ACCUR 2230	39.0	2.56	DBLD	2.5	44.0 2454 51400 CUP 2.640
RELODER 7	33.8	2.46	DBLD	2.2	38.0 2420 46100 CUP 2.780
ACCUR 2495BR	46.0	3.44	NA	3.4	46.0 2414 40700 CUP 2.640
ACCUR 2700	50.0	3.42	NA	3.4	50.0 2302 45500 CUP 2.640
IMR4350	51.0	3.75	NA	3.7	51.0 2270 37600 CUP 2.765
SR4759	26.2	2.60	DBLD	2.5	29.5 2170 52000 CUP 2.765
IMR4227	25.9	1.99	DBLD	1.9	28.5 2130 50800 CUP 2.765
IMR4831	51.0	3.75	NA	3.7	51.0 2115 32300 CUP 2.765

358 WINCHESTER (Continued)

STARTING LOADS											
Powder Type	Start Grains	Volum CC	e Auto- Disk	Lee Dipper	NEVER	Velocit D FPS	y Pressure	Mimimur Units OAL			
220 Grain Jac						to the second	110000116	OIIILS UAL			
H4198	36.9	2.77	DBLD	2.5	41.0	2502	NA	NA 2.730			
H335	43.2	2.79	DBLD	2.5		2464		NA 2.730			
BL-C(2)	43.3	2.79	DBLD			2461	52000				
							02000	201 2.730			
225 Grain Jac	keted										
ACCUR 2520	44.7	3.05	DBLD	2.8	48.0	2462	49000	CUP 2.740			
ACCUR 2495BR	43.9	3.28	DBLD			2405	47800				
ACCUR 2015BR	37.9	2.77	DBLD			2397	49300				
ACCUR 2460	39.3	2.58	DBLD			2375	51000	00. E.7 10			
ACCUR 2230	38.6	2.54	DBLD			2343	50800	CUP 2.740			
ACCUR 2700	47.9	3.28	DBLD	3.1		2248	47600	CUP 2.740			
							7,000	2.740			
250 Grain Jac	keted										
ACCUR 2520	44.0	3.01	DBLD	2.8	48 0	2390	49700	CUP 2.745			
BL-C(2)	43.2	2.78	DBLD	2.5		2374		CUP 2.745			
ACCUR 2460	38.6	2.53	DBLD	2.5		2310					
ACCUR 2495BR	46.0	3.44	NA	3.4		2303		CUP 2.745			
H335	41.4	2.67	DBLD	2.5		2299	NA	NA 2.730			
ACCUR 2015BR	36.8	2.68	DBLD	2.5		2288					
ACCUR 2230	37.7	2.48	DBLD	2.2		2271		CUP 2.745			
IMR4064	39.0	2.91	DBLD	2.8		2270		CUP 2.780			
IMR3031	38.1	2.91	DBLD	2.8		2260		CUP 2.780			
WIN 748	41.5	2.72	DBLD	2.5		2250		CUP 2.730			
IMR4895	38.7	2.82	DBLD	2.8		2235		CUP 2.780			
ACCUR 2700	45.8	3.13	DBLD	3.1		2214		CUP 2.745			
IMR4320	39.9	2.86	DBLD	2.8		2210		CUP 2.780			
IMR4350	47.0	3.45	NA	3.4		2115		CUP 2.780			
RELODER 7	31.6	2.30	DBLD	2.2		2075		CUP 2.780			
IMR4198	29.0	2.30	DBLD	2.2		2045		CUP 2.780			
IMR4831	47.0	3.45	NA	3.4	47.0	1975		CUP 2.780			
IMR4227	23.5	1.81	DBLD	1.6	26.5	1860		CUP 2.780			
SR4759	23.3	2.32		2.2	26.0	1845		CUP 2.780			
H450	48.0	3.13	DBLD	3.1	48.0	1837		CUP 2.730			

275 Grain Jacketed

H4198	33.3	2 50	DDID	2 5	07.0	0070			
111100	33.3	2.50	DBLD	2.5	37.0	20/9	NA	NA	2.730

	ST/	ARTING	LOA	DS			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	Pressure	Mimimun Units OAL
180 Grain Jack	keted					1 111	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ACCUR 2015BR	51.2	3.74	NA	3.7	56.5 2963	51900	PSI 3.035
ACCUR 2495BR	54.0	4.04	NA	4.0	59.5 2937	51800	PSI 3.035
ACCUR 2520	58.6	4.00	NA	4.0	60.5 2914	48500	PSI 3.035
H335	53.1	3.42	NA	3.4	60.0 2870	50000	CUP 2.970
ACCUR 2460	59.0	3.87	NA	3.7	59.0 2861	45000	PSI 3.035
BL-C(2)	59.3	3.82	NA	3.7	65.0 2860	48500	CUP 2.970
H322	52.9	3.83	NA	3.7	58.0 2829	48500	CUP 2.970
ACCUR 2230	57.0	3.74	NA	3.7	57.0 2820	44600	PSI 3.035
H4895	56.7	4.13	NA	4.0	60.0 2798	3 46800	CUP 2.970
ACCUR 2700	66.0	4.52	NA	4.3	66.0 2776	43400	PSI 3.035
ACCUR 4350	65.0	4.81	NA	4.3	65.0 2559	31200	PSI 3.035
ACCUR 3100	65.0	4.86	NA	4.3	65.0 2279	24400	PSI 3.035

200 Grain Jac	keted				
BL-C(2)	56.9	3.67	NA	3.4	63.0 2807 49000 CUP 3.000
ACCUR 2015BR	48.5	3.54	NA	3.4	54.0 2798 52400 PSI 3.140
ACCUR 2495BR	53.4	4.00	NA	4.0	57.0 2793 50200 PSI 3.140
ACCUR 2520	57.4	3.92	NA	3.7	58.5 2755 47900 PSI 3.140
ACCUR 2700	63.0	4.31	NA	4.3	65.0 2744 48500 PSI 3.140
ACCUR 2460	53.8	3.53	NA	3.4	57.0 2728 49800 PSI 3.140
ACCUR 2230	51.0	3.35	NA	3.1	55.0 2703 50700 PSI 3.140
H322	51.1	3.70	NA	3.7	56.0 2691 48500 CUP 3.000
H4895	51.4	3.74	NA	3.7	57.0 2689 49000 CUP 3.000
H335	48.6	3.14	DBLD	3.1	55.0 2684 50000 CUP 3.000

	ST/	ARTING	LOA	DS						
Powder Type	Start Grains					Velocity FPS	Pressure	Units	limimum OAL	
200 Grain Jacketed (Continued)										
RELODER15	59.2	4.18	NA	4.0	60.0	2675	44800	CUP	3.125	
RELODER 7	45.2	3.29	DBLD	3.1	51.5	2630	50300	CUP	3.125	
H380	59.9	4.14	NA	4.0	61.0	2602	45000	CUP	3.000	
RELODER12	60.0	4.15	NA	4.0	60.0					
ACCUR 4350	59.0	4.37	NA	4.3	59.0	2357	29500	PSI	3.140	
ACCUR 3100	60.0	4.49	NA	4.3			24100			

200 Grain Barnes X Bullet										
ACCUR 2460	54.5	3.58	NA	3.4	56.0 2750	48300	PSI	3.225		
ACCUR 2230	54.5	3.58	NA	3.4	54.5 2702	46500	PSI	3.225		
ACCUR 2520	56.5	3.86	NA	3.7	56.5 2698	46200	PSI	3.225		
ACCUR 2015BR	51.0	3.72	NA	3.7	51.0 2681	46900	PSI	3.225		
ACCUR 2495BR	54.5	4.08	NA	4.0	54.5 2632	46600	PSI	3.225		
ACCUR 2700	60.5	4.14	NA	4.0	60.5 2577	42300	PSI	3.225		
ACCUR 4350	60.0	4.44	NA	4.3	60.0 2310	29800	PSI	3.225		
ACCUR 3100	60.0	4.49	NA	4.3	60.0 2042	24500	PSI	3.225		

220 Grain	Jacketed						
BL-C(2)	55.0	3.55	NA	3.4	61.0 2636	49000	CUP 3.000
H4895	48.6				55.0 2588		
H322	48.2	3.50			54.0 2566		
H335	47.3	3.05	DBLD	2.8	53.0 2519	49500	CUP 3.000
H380	59.2	4.09	NA	4.0	60.0 2490	44800	CUP 3 000

225 Grain Jac	keted							
ACCUR 2460	48.9	3.21	DBLD	3.1	54.0 2613	51900	PSI	3.280
ACCUR 2700	56.5	3.87	NA	3.7	61.5 2601	51200	PSI	3.280
ACCUR 2520	50.6	3.45	NA	3.4	55.0 2599	51100	PSI	3.280
ACCUR 2230	50.2	3.30	DBLD	3.1	52.5 2573	49200	PSI	3.280
ACCUR 2015BR	45.0	3.28	DBLD	3.1	49.0 2554	51200	PSI	3.280
ACCUR 2495BR	45.4	3.39	NA	3.1	49.5 2508	51300	PSI	3.280
ACCUR 4350	59.0	4.37	NA	4.3	59.0 2410	38100	PSI	3.280
ACCUR 3100	60.0	4.49	NA	4.3	60.0 2165	28800	PSI	3.280
ACCUR 3100	59.0	4.41	NA	4.3	59.0 2010	26100	PSI	3.250

ACCUR 3100	59.0	4.41	NA	4.3	59.0	2010	26100	PSI	3.250
									Maria Sa
225 Grain Bar	nes X E	Bullet							
ACCUR 2460	48.5	3.18	DBLD	3.1	52.0	2569	50400	PSI	3.220
ACCUR 2230	47.7	3.13	DBLD	3.1	1		51300		
ACCUR 2520	51.4	3.51	NA	3.4			48900		

Powder Type

Start Vo Grains

225 Grain Barnes X Bullet (Continued)

STARTING LOADS.... Volume Auto-CC Disk

Lee

Dipper

225 Grain Barr												
ACCUR 2015BR	44.6	3.26	DBLD	3.1	48.0 2498 50600 PSI 3.220							
ACCUR 2495BR	51.1	3.82	NA	3.7	53.0 2470 48800 PSI 3.220							
ACCUR 2700	59.0	4.04	NA	4.0	59.0 2452 43700 PSI 3.220							
ACCUR 4350	59.0	4.37	NA	4.3	59.0 2303 35100 PSI 3.220							
ACCUR 3100	59.0	4.41	NA	4.3	59.0 2053 27500 PSI 3.220							
250 Grain Jacketed												
RELODER15	54.3	3.84	NA	3.7	59.5 2550 48400 CUP 3.225							
RELODER12	53.3	3.69	NA	3.4	60.0 2505 49700 CUP 3.225							
BL-C(2)	53.4	3.44	NA	3.4	59.0 2503 48900 CUP3.100							
H4895	46.9	3.41	NA	3.4	53.0 2455 50000 CUP 3.100							
ACCUR 2520	45.0	3.07	DBLD	2.8	51.0 2439 53300 PSI 3.255							
ACCUR 2700	55.5	3.80	NA	3.7	58.0 2430 49100 PSI 3.255							
H380	58.6	4.05	NA	4.0	59.0 2416 44500 CUP 3.100							
ACCUR 2495BR	42.3	3.16	DBLD	3.1	49.0 2416 54500 PSI 3.255							
H335	46.0	2.97	DBLD	2.8	52.0 2404 50000 CUP 3.100							
ACCUR 2460	43.5	2.85	DBLD	2.8	49.0 2399 53000 PSI 3.255							
H322	47.4	3.44	NA	3.4	52.0 2398 48500 CUP 3.100							
ACCUR 2230	43.8	2.88	DBLD	2.8	48.5 2377 52100 PSI 3.255							
ACCUR 4350	58.0	4.29	NA	4.0	58.0 2363 41100 PSI 3.255							
ACCUR 2015BR	41.6	3.04	DBLD	2.8	45.0 2343 50800 PSI 3.255							
RELODER 7	41.7	3.04	DBLD	2.8	47.6 2330 50400 CUP 3.225							
ACCUR 3100	58.0	4.34	NA	4.3	58.0 2111 30100 PSI 3.255							
250 Grain Bar	nes X F	Bullet										
ACCUR 2460	43.9	2.88	DBLD	2.8	49.0 2412 52500 PSI 3.220							
ACCUR 2230	43.6	2.87	DBLD	2.8	49.0 2405 52800 PSI 3.220							
ACCUR 2520	46.6	3.18	DBLD		51.0 2397 51500 PSI 3.220							
ACCUR 2700	55.2	3.78	NA	3.7	58.0 2396 49400 PSI 3.220							
ACCUR 2015BR	43.6	3.18	DBLD	3.1	47.5 2393 51200 PSI 3.220							
ACCUR 2495BR	46.1	3.45	NA	3.4	52.5 2368 53500 PSI 3.220							
ACCUR 4350	58.0	4.29	NA	4.0	58.0 2210 34700 PSI 3.220							
ACCUR 3100	58.0	4.34	NA	4.3	58.0 1933 26200 PSI 3.220							

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

ONLY - Double Disk see instructions with your Auto-Disk powder measure.

NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996

Mimimum

Units

Pressure

35 WHELEN (Continued)

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mir Units	nimum OAL
275 Grain Jac						18 18 18		70.70	
BL-C(2)	50.9	3.28	DBLD	3.1	57.0	2390	49500	CUP 3	.200
H380	57.4	3.96	NA	3.7	58.0	2336	44700	CUP 3	.200
H4895	46.5	3.39	NA	3.1	51.0	2313	48500	CUP 3	.200
H335	47.0	3.03	DBLD	2.8	51.0	2292	48000	CUP 3	.200
H322	45.6	3.31	NA	3.1	49.0	2241	47500	CUP 3	.200

300	Grain	lac	hatas

BL-C(2)	48.7	3.14	DBLD	3.1	54.0 2260	49000	CUP 3.300
H380	53.8	3.72	NA	3.7	56.0 2206	46000	CUP 3.300
H4895	44.2	3.22	DBLD	3.1	48.0 2134	48000	CUP 3.300
H322					47.0 2105		
H335	42.0	2.71	DBLD	2.5	47.0 2099	49500	CUP 3.300

350 REMINGTON MAGNUM

	ST/	ARTING	LOA	<u> </u>					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
150 Grain Ja	cketed								1
RELODER 7	50.9	3.71	NA	3.7	55.0	3075	47500	CUP	2.800

180 Grain J	acketed						
H4895	54.0	3.93	NA		61.0 3015		
H335	56.7	3.66	NA	3.4	62.0 3006	50600	CUP 2.730
BL-C(2)	57.0	3.68	NA		62.0 2992		
H322	53.3	3.87	NA		58.0 2894		
H4198	49.1	3.69	NA				
H4831	62.0	4.49	NA	4.3	62.0 2254	21000	CUP 2.730

200 Grain Jacl	ceted						
ACCUR 2520	54.7	3.74	NA	3.7	60.0 3008	51800	CUP 2.800
ACCUR 2230	54.3	3.57	NA	3.4	59.0 2846	51300	CUP 2.800
ACCUR 2460	55.4	3.64	NA	3.4	59.5 2840	50700	CUP 2.800
IMR3031	55.9	4.26	NA	4.0	60.0 2835	50700	CUP 2.765
H4895	52.4	3.81	NA	3.7	59.0 2822	52100	CUP 2.730
IMR4320	58.4	4.18	NA	4.0	64.5 2820	52100	CUP 2.765
IMR4895	56.0	4.07	NA	4.0	62.0 2815	52300	CUP 2.765
BL-C(2)	55.4	3.57	NA	3.4	60.0 2808	50100	CUP 2.730
IMR4064	55.6	4.14	NA	4.0	61.5 2800	52200	CUP 2.765
H335	53.7	3.46	NA	3.4	58.0 2794	50000	CUP 2.730
ACCUR 2015BR	50.3	3.67	NA	3.4	54.0 2778	50700	CUP 2.800
ACCUR 2495BR	53.9	4.03	NA	4.0	59.0 2774	51700	CUP 2.800

350 REMINGTON MAGNUM (Continued)

Powder Type	Start Grains	ARTING Volume CC	Auto.	DS Lee Dipper	NEVER V EXCEED	lelocity FPS	Pressure	Mimimum Units OAL	
200 Grain Jacketed (Continued)									
H380	64.0	4.42	NA	4.3	64.0	2753	45900	CUP 2.730	
IMR4198	44.5	3.53	NA	3.4	50.0	2690	53000	CUP 2.765	
H322	51.6	3.74	NA	3.7	55.0	2684	49300	CUP 2.730	
RELODER 7	43.5	3.17	DBLD	3.1	48.0	2550		CUP 2.800	
H4198	48.0	3.60	NA	3.4	48.0	2512	44100	CUP 2.730	
IMR4350	63.5	4.67	NA	4.3	63.5	2475		CUP 2.765	
IMR4227	34.4	2.65	DBLD	2.5	38.5	2420	52800	CUP 2.765	
SR4759	34.7	3.45	NA	3.4	39.0	2405	53000	CUP 2.765	
IMR4831	63.5	4.67	NA	4.3	63.5	2320		CUP 2.765	
H4831	61.0	4.42	NA	4.3	61.0	2144		CUP 2.730	
220 0						,	2.300	00. 2.700	

220 G	rain 、	Jacketed
-------	--------	----------

	HO LOG				
H4895	50.6	3.68	NA	3.4	56.0 2651 51200 CUP 2.730
H335	48.4	3.12	DBLD	3.1	54.0 2640 51600 CUP 2.730
BL-C(2)	50.8	3.28	DBLD	3.1	56.0 2640 51000 CUP 2.730
H380	59.7	4.12	NA	4.0	61.0 2569 47300 CUP 2.730
H322	48.8	3.54	NA	3.4	52.0 2473 49300 CUP 2.730
H4198	43.9	3.29	DBLD	3.1	46.0 2423 48500 CUP 2.730
H4831	60.0	4.35	NA	4.3	60.0 2141 30000 CUP 2.730

225	Grain	Jacketed
220	Grain	Jacketed

ACCUR 2230	51.4	3.38	NA	3.1	57.0 2718	52400	CUP 2.800
ACCUR 2460	51.7	3.39	NA	3.1	57.5 2709	52500	CUP 2.800
ACCUR 2520		3.53		3.4	57.5 2690	52500	CUP 2.800
ACCUR 2015BR			5 550 5	3.4	52.5 2657	52600	CUP 2.800
ACCUR 2495BR	49.1	3.68	NA	3.4	54.5 2578	52400	CUP 2.800

250	Grain	Jacketed
-----	-------	----------

	110104				
ACCUR 2460	49.9	3.27	DBLD	3.1	56.0 2576 53000 CUP 2.800
ACCUR 2230	51.4	3.38	NA	3.1	54.0 2519 49600 CUP 2.800
ACCUR 2520	50.4	3.44	NA	3.4	56.5 2515 53000 CUP 2.800
ACCUR 2015BR	45.8	3.34	NA	3.1	51.0 2500 52600 CUP 2.800
H4895	47.0	3.42	NA	3.4	54.0 2497 53200 CUP 2.730
IMR4895	50.3	3.67	NA	3.4	56.0 2485 52500 CUP 2.730
BL-C(2)	47.1	3.04	DBLD	2.8	53.0 2464 52100 CUP 2.730
H335	45.5	2.94	DBLD	2.8	51.0 2457 51800 CUP 2.730
ACCUR 2495BR	48.1	3.60	NA	3.4	54.0 2433 53000 CUP 2.800
H380	57.7	3.99	NA	3.7	59.0 2410 47300 CUP 2.730
IMR3031	52.3	3.99	NA	3.7	53.0 2410 47800 CUP 2.730
IMR4320	52.7	3.77	NA	3.7	56.0 2400 50200 CUP 2.730
CALITION: With NEVER	EVOCED	0400			2.51

350 REMINGTON MAGNUM (Continued)

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL			
250 Grain Jacketed (Continued)										
H322	43.9	3.18	DBLD	3.1	49.0 2333	51600	CUP 2.730			
IMR4064	53.0	3.95	NA	3.7	53.0 2310	41400	CUP 2.730			
IMR4198	39.3	3.11	DBLD	3.1	43.5 2290	52300	CUP 2.730			
RELODER 7	38.4	2.79	DBLD	2.5	43.0 2230	49300	CUP 2.800			
H4198	42.0	3.15	DBLD	3.1	42.0 2190	45900	CUP 2.730			
H4831	59.0	4.28	NA	4.0	59.0 2125	32400	CUP 2.730			
IMR4350	55.0	4.04	NA	4.0	55.0 2070	29600	CUP 2.730			
IMR4227	30.3	2.33	DBLD	2.2	34.0 2045	53000	CUP 2.730			
SR4759	30.1	2.98	DBLD	2.8	33.5 2040	52600	CUP 2.730			
IMR4831	55.0	4.04	NA	4.0	55.0 1925	24900	CUP 2.730			
					·					

27	75	Grain	.lac	keted

56.6	3.91	NA				
48.5	3.13	DBLD				
48.0	3.09					
50.5	3.68	NA	3.4	52.0 2269	47600	CUP 2.730
59.0	4.28	NA	4.0	59.0 2100	34800	CUP 2.730
43.2	3.13	DBLD	3.1	47.0 2079	50300	CUP 2.730
	48.5 48.0 50.5 59.0	48.5 3.13 48.0 3.09 50.5 3.68 59.0 4.28	48.5 3.13 DBLD 48.0 3.09 DBLD 50.5 3.68 NA 59.0 4.28 NA	48.5 3.13 DBLD 3.1 48.0 3.09 DBLD 2.8 50.5 3.68 NA 3.4 59.0 4.28 NA 4.0	48.5 3.13 DBLD 3.1 52.0 2311 48.0 3.09 DBLD 2.8 50.0 2303 50.5 3.68 NA 3.4 52.0 2269 59.0 4.28 NA 4.0 59.0 2100	48.5 3.13 DBLD 3.1 52.0 2311 49600 48.0 3.09 DBLD 2.8 50.0 2303 48200 50.5 3.68 NA 3.4 52.0 2269 47600

300 Grain Jacketed

Joo Grain Gao	1000						
H335	46.3	2.98	DBLD	2.8	50.0 2171	50000	CUP 2.730
BL-C(2)	47.5	3.06	DBLD	2.8	51.0 2142	49700	CUP 2.730
H4895	46.3	3.37	NA	3.1	50.0 2131	49900	CUP 2.730

38-55 WINCHESTER

Use only in guns that are safe with smokeless powder.

· orraci i /po	Granis	UU	DISK	nihhei	EVPEED	гго	Pressure	Units	UAL
200 Grain Jac	keted		THE A						
ACCUR 2015BR	31.2	2.28	DBLD	2.2	36.0	2132	27900	CUP 2	2.590
ACCUR 2495BR	40.0	2.99	DBLD	2.8			22800		
220 Grain Jac									
ACCUR 2495BR	35.8	2.68	DBLD	2.5	38.0	2045	25700	CUP	2.580
ACCUR 2015BR	30.7	2.24	DBLD	2.2			25200		
								1,0}	
240 Grain Lea	d								
ACCUR 2495BR	36.5	2.73	DBLD	2.5	38.0	2020	25200	CUP 2	2.510

STARTING LOADS.

ACCUR 2015BR	27.2	1.99	DBLD	1.9	31.5 1943	28000	CUP 2.510
255 Grain Bull	et						
H4895	31.5	2.29	DBLD	2.2	35.0 1729	NA	NA 2.530
H335	33.3	2.15	DBLD	1.9	37.0 1679	NA	NA 2.530
BL-C(2)	34.2	2.21	DBLD	2.2	38.0 1666	NA	NA 2.530
H322	29.7	2.15	DBLD	1.9	33.0 1640	NA	NA 2.530
H4198	21.6	1.62	DBLD	1.6	24.0 1415	NA	NA 2.530

38-55 WINCHESTER (Continued) Jse only in guns that are safe with smokeless powder.

The second second second	ST/	ARTING	LOA	DS				P.4.	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL
255 Grain Jac	keted								
RELODER 7	23.3	1.69	DBLD				26000		
HERC 2400	17.5	1.30	1.26	1.3	18.0	1410	23500	CUP 2	2.530

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

NA = None Available DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996

375 WINCHESTER

	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum 0 A I
200 Grain Bull	et							Jiiito	ONL
H4198	29.7	2.23	DBLD	2.2	33.0	2137	NA	NA	2.530
H4895	36.9	2.69	DBLD	2.5	41.0	2044			2.530
H322	36.0	2.61	DBLD	2.5		2033			2.530
H335	38.7	2.50	DBLD	2.5		2027			2.530
BL-C(2)	39.6	2.55	DBLD	2.5		2018			2.530

200 Grain Jac	keted							
ACCUR 1680	37.5	2.46	DBLD	2.2	40.0 2	2512	41500	CUP 2 525
ACCUR 2015BR	40.0	2.92	DBLD	2.8	40.0 2	2251	35800	CUP 2.525

220 Grain	Bullet					
H4198	27.9	2.09	DBLD 1.	9 31.0 1988	NA	NA 2.530
H322	34.2	2.48	DBLD 2.	2 38.0 1955	NA	NA 2.530
H4895				5 39.0 1924		NA 2.530
BL-C(2)				2 42.0 1919	NA	NA 2.530
H335	36.9	2.38	DBLD 2.	2 41.0 1907	NA	NA 2.530

375 WINCHESTER (Continued)

	ST/	ARTING	LOA					D.O.	
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
220 Grain Jack	ceted							0115	0.500
ACCUR 1680	33.0	2.16	DBLD	NA	38.0	2372	44800		
RELODER 7	32.1	2.34	DBLD	2.2	36.0	2260	45500		2.555
ACCUR 2015BR	39.4	2.87	DBLD	2.8	40.0	2213	39500		2.530
HERC 2400	21.7	1.61	DBLD	1.6	23.5	1900	44000	CUP	2.555
250 Grain Lea	d		1965						- 100
ACCUR 2015BR	30.6	2.23	DBLD	2.2	32.0	1902	40700	CUP	2.400
ACCUR 1680	28.0	1.83	DBLD	NA	28.0	1845	33600	CUP	2.400
255 Grain Bull	et								
H322	32.4	2.35	DBLD	2.2	36.0	1858	NA	NA	2.530
H4198	27.0	2.03	DBLD	1.9	30.0	1848	NA	NA	2.530
H4895	33.3	2.42	DBLD	2.2	37.0	1845	NA	NA	2.530
H335	36.0	2.32	DBLD	2.2	40.0	1839	NA	NA	2.530
BL-C(2)	36.0	2.32	DBLD	2.2	40.0	1820	NA	NA	2.530

375 HOLLAND & HOLLAND MAGNUM

STARTING LOADS Volume CC Auto-Disk Lee **Powder Type** Mimimum **Pressure** Units 220 Grain Jacketed RELODER15 69.1 4.88 NA 4.3 77.0 2980 50000 CUP 3.360 RELODER12 67.9 4.69 NA 4.3 75.0 2835 49500 CUP 3.360

235 Grain Jacke	ted
-----------------	-----

Ketea							
76.9	5.54	NA	NA	85.5 2950	NA	NA	3.540
67.6	5.06	NA	NA	74.0 2909	57000		3.540
78.0	5.73	NA	NA				3.400
67.9	4.89	NA	NA	75.5 2890	NA		3.540
68.8	5.04	NA	NA	76.4 2890	55114		
73.6	5.04	NA	NA	80.0 2879			3.540
64.8	4.43	NA	4.3	71.0 2875			3.540
64.3	4.63	NA	4.3	71.5 2860	NA	NA	3.540
86.0	6.36	NA	NA	86.0 2835	46700		3.540
72.9	5.29	NA	NA	81.0 2759	NA		3.540
72.9	4.82	NA	4.3	81.0 2742	NA		3.540
76.5	5.55	NA	NA	85.0 2656	NA	NA	3.540
78.3	5.11	NA	NA	87.0 2649	NA		3.540
63.0	4.59	NA	4.3	70.0 2649	NA		3.540
86.0	6.43	NA	NA	86.0 2567	33300		3.540
	76.9 67.6 78.0 67.9 68.8 73.6 64.8 64.3 86.0 72.9 72.9 76.5 78.3 63.0	76.9 5.54 67.6 5.06 78.0 5.73 67.9 4.89 68.8 5.04 73.6 5.04 64.8 4.43 64.3 4.63 86.0 6.36 72.9 5.29 72.9 4.82 76.5 5.55 78.3 5.11 63.0 4.59	76.9 5.54 NA 67.6 5.06 NA 78.0 5.73 NA 67.9 4.89 NA 68.8 5.04 NA 73.6 5.04 NA 64.8 4.43 NA 64.3 4.63 NA 86.0 6.36 NA 72.9 5.29 NA 72.9 4.82 NA 76.5 5.55 NA 78.3 5.11 NA 63.0 4.59 NA	76.9 5.54 NA NA 67.6 5.06 NA NA 78.0 5.73 NA NA 67.9 4.89 NA NA 68.8 5.04 NA NA 73.6 5.04 NA NA 64.8 4.43 NA 4.3 64.3 4.63 NA 4.3 86.0 6.36 NA NA 72.9 5.29 NA NA 72.9 4.82 NA 4.3 76.5 5.55 NA NA 78.3 5.11 NA NA 63.0 4.59 NA 4.3	76.9 5.54 NA NA 85.5 2950 67.6 5.06 NA NA 74.0 2909 78.0 5.73 NA NA 86.7 2900 67.9 4.89 NA NA 75.5 2890 68.8 5.04 NA NA 76.4 2890 73.6 5.04 NA NA 80.0 2879 64.8 4.43 NA 4.3 71.0 2875 64.3 4.63 NA 4.3 71.5 2860 86.0 6.36 NA NA 86.0 2835 72.9 5.29 NA NA 81.0 2759 72.9 4.82 NA 4.3 81.0 2742 76.5 5.55 NA NA 87.0 2649 78.3 5.11 NA NA 87.0 2649 63.0 4.59 NA 4.3 70.0 26	76.9 5.54 NA NA 85.5 2950 NA 67.6 5.06 NA NA 74.0 2909 57000 78.0 5.73 NA NA 86.7 2900 55114 67.9 4.89 NA NA 75.5 2890 NA 68.8 5.04 NA NA 76.4 2890 55114 73.6 5.04 NA NA 80.0 2879 56600 64.8 4.43 NA 4.3 71.0 2875 57000 64.3 4.63 NA 4.3 71.5 2860 NA 86.0 6.36 NA NA 86.0 2835 46700 72.9 5.29 NA NA 81.0 2759 NA 76.5 5.55 NA NA 85.0 2656 NA 78.3 5.11 NA NA 87.0 2649 NA <th< td=""><td>76.9 5.54 NA NA 85.5 2950 NA NA 67.6 5.06 NA NA 74.0 2909 57000 PSI 78.0 5.73 NA NA 86.7 2900 55114 CIP 67.9 4.89 NA NA 75.5 2890 NA NA 68.8 5.04 NA NA 76.4 2890 55114 CIP 73.6 5.04 NA NA 80.0 2879 56600 PSI 64.8 4.43 NA 4.3 71.0 2875 57000 PSI 64.3 4.63 NA 4.3 71.5 2860 NA NA 86.0 6.36 NA NA 86.0 2835 46700 PSI 72.9 5.29 NA NA 81.0 2742 NA NA 76.5 5.55 NA NA 85.0 2656 <th< td=""></th<></td></th<>	76.9 5.54 NA NA 85.5 2950 NA NA 67.6 5.06 NA NA 74.0 2909 57000 PSI 78.0 5.73 NA NA 86.7 2900 55114 CIP 67.9 4.89 NA NA 75.5 2890 NA NA 68.8 5.04 NA NA 76.4 2890 55114 CIP 73.6 5.04 NA NA 80.0 2879 56600 PSI 64.8 4.43 NA 4.3 71.0 2875 57000 PSI 64.3 4.63 NA 4.3 71.5 2860 NA NA 86.0 6.36 NA NA 86.0 2835 46700 PSI 72.9 5.29 NA NA 81.0 2742 NA NA 76.5 5.55 NA NA 85.0 2656 <th< td=""></th<>

250 Grain Jacketed

NOBELRIF 0	75.6	5.44	NA	NA	84.0 2850	NA	NΔ	3.540
ACCUR 2700	69.6	4.77	NA	4.3	80.0 2813	59800	PSI	3.585

375 HOLLAND & HOLLAND MAGNUM (Continued)

J/O HOLL	07/	DTINIC	101	DC				-	
	Start	ARTING Volume	Auto-	Lee	NEVER EXCEED	Velocity	Estate At	N	limimum
Powder Type	Grains	CC	Disk	Dipper	EXCEED	FPS	Pressure	Units	OAL
250 Grain Jack								N 1 A	0.540
NOBELRIF 1	66.6	4.80	NA	4.3	74.0	2800	NA	NA	3.540
ACCUR 4350	84.0	6.22	NA	NA	84.0	2763	48900	PSI	3.585
H4350	71.1	5.16	NA	NA		2759	NA	NA	3.540
H414	72.9	4.82	NA	4.3	81.0	2742	NA	NA	3.540
ACCUR 2495BR	58.6	4.38	NA	4.3	67.5	2738	60000	PSI	3.585
NOBELRIF 2	61.2	4.41	NA	4.3	68.0	2720	NA	NA	3.540
H4831	76.5	5.55	NA	NA	85.0	2656	NA	NA	3.540
H450	75.6	4.94	NA	NA	84.0	2649	NA	NA	3.540
H4895	63.0	4.59	NA	4.3	70.0	2649	NA	NA	3.540
ACCUR 3100	86.0	6.43	NA	NA	86.0	2537	36800	PSI	3.585
14									
250 Grain Barı	nes X F	Bullet							
ACCUR 2700	76.0	5.20	NA	NA	79.0	2701	54100	PSI	3.550
ACCUR 4350	82.5	6.11	NA	NA	82.5	2650	45500	PSI	3.550
ACCUR 2495BR	57.6	4.31	NA	4.3	60.0	2492	54200	PSI	3.550
ACCUR 3100	84.0	6.28	NA	NA	84.0	2401	32800	PSI	3.550
					•				
270 Crain las	katad								
270 Grain Jac	75.7	5.56	NA	NA	84.1	2790	55114	CIP	3.400
v-N160		5.38	NA	NA	83.0		NA	NA	
NOBELRIF 0	74.7	5.38	NA	IVA	03.0	2,00	14/	. 47 (0.010

270 Grain Jack	ceted						
v-N160	75.7	5.56	NA	NA	84.1 2790	55114	CIP 3.400
NOBELRIF 0	74.7	5.38	NA	NA	83.0 2780	NA	NA 3.540
v-N140	66.0	4.84	NA	4.3	73.3 2760	55114	CIP 3.400
NOBELRIF 1	65.7	4.73	NA	4.3	73.0 2720	NA	NA 3.540
ACCUR 4350	84.0	6.22	NA	NA	84.0 2711	50300	PSI 3.605
IMR4350	70.1	5.15	NA	NA	78.5 2710	53000	CUP 3.600
H4350	70.2	5.09	NA	NA	78.0 2704	NA	NA 3.540
H414	72.9	4.82	NA	4.3	81.0 2700	NA	NA 3.540
ACCUR 2700	74.6	5.11	NA	NA	80.0 2691	55800	PSI 3.570
IMR4831	77.0	5.66	NA	NA	82.5 2690	50700	CUP 3.600
RELODER15	66.5	4.69	NA	4.3	73.4 2685	49500	CUP 3.545
NOBELRIF 2	60.3	4.34	NA	4.3	67.0 2680	NA	NA 3.540
ACCUR 2495BR	62.2	4.65	NA	4.3	70.5 2666	59000	PSI 3.570
WIN 760	70.3	4.68	NA	4.3	77.5 2660	51000	PSI 3.540
IMR4064	62.2	4.63	NA	4.3	69.0 2655	52500	CUP 3.600
H450	76.5	5.00	NA	NA	85.0 2627	NA	NA 3.540
IMR3031	58.5	4.46	NA	4.3	65.5 2610	53000	CUP 3.600
H4831	76.5	5.55	NA	NA	85.0 2609	NA	NA 3.540
H4895	62.1	4.52	NA	4.3	69.0 2609	NA	NA 3.540
IMR4895	58.0	4.23	NA	4.0	65.0 2565	53000	CUP 3.600
IMR4320	60.5	4.33	NA	4.3	66.5 2545	52000	CUP 3.600

375 HOLLAND & HOLLAND MAGNUM (Continue

STARTING LOADS

Powder Type		51	ARTING	i LO	ADS	NEVER V		
### RELODER12 66.3 4.58 NA 4.3 73.5 2540 49700 CUP 3.54 ### ACCUR 3100 86.0 6.43 NA NA 86.0 2519 38700 PSI 3.61 ### 285 Grain Jacketed	Powder Type	Start Grains	CC	Auto- Disk		NEVER Velocit EXCEED FPS	y Pressure	Mimimu Units OAL
ACCUR 3100 86.0 6.43 NA NA 86.0 2519 38700 PSI 3.61	270 Grain Jac	cketed	Continu	ued)				
ACCUR 3100		66.3	4.58	NA	4.3	73.5 2540	49700	CUP 3.54
NOBELRIF 0	ACCUR 3100	86.0	6.43	NA	NA	86.0 2519	38700	
NOBELRIF 0						•		
NOBELRIF 0	285 Grain Jac	keted						
NOBELRIF 1			5.28	NA	NA	81.5 2680	NA	NA 3.540
NOBELRIF 2 59.4 4.28 NA 4.0 66.0 2635 NA NA 3.54	NOBELRIF 1	64.3	4.63	NA	4.3	71.5 2650	NA	
MR4350	NOBELRIF 2	59.4	4.28	NA	4.0			NA 3.540
IMR4350							,	
IMR4350	300 Grain Jac	keted						
NOBELRIF 0 72.0 5.18 NA NA 80.0 2570 NA NA 3.54 IMR4831 78.4 5.76 NA NA 80.0 2560 48300 CUP 3.60 WIN 760 69.6 4.63 NA 4.3 77.5 2560 51500 PSI 3.54 v-N160 73.6 5.40 NA NA 81.8 2560 55114 CIP 3.40 ACCUR 2700 69.0 4.72 NA 4.3 75.0 2550 56600 PSI 3.58 ACCUR 4350 79.0 5.85 NA NA 79.0 2547 51500 PSI 3.58 H4350 69.3 5.03 NA NA 77.0 2545 NA NA 3.540 RELODER19 71.4 5.04 NA NA 84.0 2539 NA NA 3.540 V-N140 62.6 4.59 NA 4.3 69.6 2530<			5.15	NA	NA	78.0 2620	52700	CUP 3.600
MR4831	NOBELRIF 0	72.0	5.18	NA	NA			NA 3.540
WIN 760 69.6 4.63 NA 4.3 77.5 2560 51500 PSI 3.54 v-N160 73.6 5.40 NA NA 81.8 2560 55114 CIP 3.40 ACCUR 2700 69.0 4.72 NA 4.3 75.0 2550 56600 PSI 3.58 ACCUR 4350 79.0 5.85 NA NA 79.0 2547 51500 PSI 3.58 H4350 69.3 5.03 NA NA 77.0 2545 NA NA 3.540 RELODER19 71.4 5.04 NA NA 79.0 2540 49600 CUP 3.550 H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 V-N140 62.6 4.59 NA 4.3 67.0 2525 52500 CUP 3.600 H450 75.6 4.94 NA NA 84.0 2516 NA	IMR4831	78.4	5.76	NA	NA	80.0 2560		
v-N160 73.6 5.40 NA NA 81.8 2560 55114 CIP 3.40 ACCUR 2700 69.0 4.72 NA 4.3 75.0 2550 56600 PSI 3.58 ACCUR 4350 79.0 5.85 NA NA 79.0 2547 51500 PSI 3.58 H4350 69.3 5.03 NA NA 77.0 2545 NA NA 3.54 RELODER19 71.4 5.04 NA NA 79.0 2540 49600 CUP 3.55 H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H414 68.4 4.52 NA 4.3 76.0 2513 NA	WIN 760	69.6	4.63	NA	4.3	77.5 2560		
ACCUR 2700 69.0 4.72 NA 4.3 75.0 2550 56600 PSI 3.58 ACCUR 4350 79.0 5.85 NA NA 79.0 2547 51500 PSI 3.58 H4350 69.3 5.03 NA NA 77.0 2545 NA NA 3.54 RELODER19 71.4 5.04 NA NA 79.0 2540 49600 CUP 3.550 H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H4414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 NOBELRIF 1 63.0 4.54 NA 4.3 63.0 2465 52500	v-N160	73.6	5.40	NA	NA	81.8 2560	55114	
ACCUR 4350 79.0 5.85 NA NA 79.0 2547 51500 PSI 3.58 H4350 69.3 5.03 NA NA 77.0 2545 NA NA 3.540 RELODER19 71.4 5.04 NA NA 79.0 2540 49600 CUP 3.550 H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H450 75.6 4.94 NA NA 84.0 2516 NA NA 3.540 H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3		69.0	4.72	NA	4.3	75.0 2550	56600	
H4350 69.3 5.03 NA NA 77.0 2545 NA NA 3.540 RELODER19 71.4 5.04 NA NA NA 79.0 2540 49600 CUP 3.550 H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H450 75.6 4.94 NA NA 84.0 2516 NA NA 3.540 H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.600 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 C		79.0	5.85	NA	NA			
RELODER19 71.4 5.04 NA NA 79.0 2540 49600 CUP 3.550 H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H450 75.6 4.94 NA NA 84.0 2516 NA NA 3.540 H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 NOBELRIF 1 63.0 4.54 NA 4.3 70.0 2495 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.550 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.580		69.3	5.03	NA	NA	77.0 2545	NA	NA 3.540
H4831 75.6 5.48 NA NA 84.0 2539 NA NA 3.540 v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H450 75.6 4.94 NA NA 84.0 2516 NA NA 3.540 H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 NOBELRIF 1 63.0 4.54 NA 4.3 70.0 2495 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.600 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.550 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.585 H4895			5.04	NA	NA	79.0 2540	49600	
v-N140 62.6 4.59 NA 4.3 69.6 2530 55114 CIP 3.400 IMR4064 60.4 4.50 NA 4.3 67.0 2525 52500 CUP 3.600 H450 75.6 4.94 NA NA 84.0 2516 NA NA 3.540 H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 NOBELRIF 1 63.0 4.54 NA 4.3 70.0 2495 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.600 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.500 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.580 ACUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.580 NOBELRIF 2 <	H4831	75.6	5.48	NA	NA	84.0 2539		NA 3.540
H450 75.6 4.94 NA NA 84.0 2516 NA NA 3.540 H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 NOBELRIF 1 63.0 4.54 NA 4.3 70.0 2495 NA NA 3.540 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.550 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.585 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.585 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540 NOBELRIF 2		62.6	4.59	NA	4.3	69.6 2530	55114	
H414 68.4 4.52 NA 4.3 76.0 2513 NA NA 3.540 NOBELRIF 1 63.0 4.54 NA 4.3 70.0 2495 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.600 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.550 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.585 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.585 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540		60.4	4.50	NA	4.3	67.0 2525	52500	CUP 3.600
NOBELRIF 1 63.0 4.54 NA 4.3 70.0 2495 NA NA 3.540 IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.600 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.550 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.585 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.585 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540		75.6	4.94	NA	NA	84.0 2516	NA	NA 3.540
IMR3031 56.8 4.33 NA 4.3 63.0 2465 52500 CUP 3.600 RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.550 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.585 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.585 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540 NA NA NA 3.540 NA NA 3.540 NA NA 3.540 NA NA NA 3.540 NA N	TOTAL CONTRACTOR OF THE PARTY O	68.4	4.52	NA	4.3	76.0 2513	NA	NA 3.540
RELODER15 60.1 4.24 NA 4.0 66.5 2455 49600 CUP 3.550 ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.585 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.585 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA NA 3.540				NA	4.3	70.0 2495	NA	NA 3.540
ACCUR 3100 83.0 6.21 NA NA 83.0 2453 43200 PSI 3.588 ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.588 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540				NA	4.3	63.0 2465	52500	CUP 3.600
ACCUR 2495BR 55.5 4.15 NA 4.0 62.5 2441 58600 PSI 3.588 H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540					4.0	66.5 2455	49600	CUP 3.550
H4895 60.3 4.39 NA 4.3 67.0 2440 NA NA 3.540 NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540					NA		43200	PSI 3.585
NOBELRIF 2 58.9 4.24 NA 4.0 65.5 2430 NA NA 3.540			0.21.2			62.5 2441	58600	PSI 3.585
IMPA222					4.3		NA	NA 3.540
IMR4320 56.3 4.03 NA 4.0 63.0 2405 53000 CUP3 600							NA	NA 3.540
	the court of the c						53000	CUP 3.600
IMR4895 54.7 3.98 NA 3.7 61.0 2400 52800 CUP 3.600	IMR4895	54.7	3.98	NA	3.7	61.0 2400	52800	CUP 3.600

375 HOLLAND & HOLLAND MAGNUM (Continued)

Editor at the second	ST/	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
350 Grain Jack	keted								
H414	63.9	4.22	NA	4.0	71.0	2461	NA	NA	3.540
H4831	68.4	4.96	NA	NA	76.0	2452	NA	NA	3.540
H4350	64.8	4.70	NA	4.3	72.0	2432	NA	NA	3.540
H380	60.3	4.17	NA	4.0	67.0	2414	NA	NA	3.540
ACCUR 4350	71.2	5.27	NA	NA	75.0	2355	54800	PSI	3.560
ACCUR 2700	61.6	4.22	NA	4.0	67.0	2259	56600	PSI	3.560
ACCUR 3100	73.0	5.46	NA	NA	73.0	2106	36600	PSI	3.560
ACCUR 2495BR	48.1	3.60	NA	3.4	55.0	2103	56100	3.5	3.560

38-40 WINCHESTER

These loads are for rifles and handguns.

5.8

STARTING LOADS. Start Auto-Disk Volume Lee Mimimum ts OAL **Powder Type** Grains Dipper **Pressure** Units 150 Grain Jacketed **ACCUR 1680** 26.1 1.71 DBI D 1.6 27.5 1246 13200 CUP 1.575 ACCUR 2015BR 27.0 1.97 DBLD 1.9 30.0 1130 13900 CUP 1.575 **BLUE DOT** .93 10.7 .88 NA 11.8 1020 13100 PSI 1.585 **HERCO** 8.3 .94 .88 NA 9.2 995 13100 PSI 1.585 UNIQUE 7.4 .81 .76 NA 8.2 990 13200 PSI 1.585 **HERC 2400** 12.8 .95 .95 NA 14.1 970 13100 PSI 1.585 BULLSEYE 6.4 .68 .66 NA 6.5 960 12000 PSI 1.585 **GREEN DOT** 6.4 .80 .76 NA 6.8 950 12700 PSI 1.585

NA

6.2

910

12800 PSI

1.585

.76

.81

180 Grain Jac	keted								
ACCUR 1680	22.4	1.46	1.46	1.3	25.0	1196	14000	CUF	1.585
ACCUR 2015BR	24.1	1.76	DBLD	1.6	27.0	982	14000	CUF	1.585
HERC 2400	11.5	.86	.82	NA	13.0	875	13400	PSI	1.585
BLUE DOT	9.3	.80	.76	NA	10.3	875	13200	PSI	1.585
BULLSEYE	5.5	.58	.57	NA	5.6	820	12200	PSI	1.585
UNIQUE	6.2	.68	.66	NA	6.9	815	13200	PSI	1.585
HERCO	6.6	.74	.71	.7	7.3	795	13100	PSI	1.585
GREEN DOT	5.2	.66	.66	NA	5.6	745	12700	PSI	1.585
RED DOT	4.8	.68	.66	NA	5.1	740	12500	PSI	1.585

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

RED DOT

38-40 WINCHESTER (Continued) These loads are for rifles and handguns.

STARTING LOADS

	317	4U I IIAO	LUA	D3			THE PERSON NAMED IN		Property and the second
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure		imimum OAL
185 Grain Lead	d							0110	4 500
ACCUR 1680	21.0	1.38	1.36	1.3	23.5	1095	14000		
ACCUR 2015BR	22.7	1.66	DBLD	1.6	25.0	933	13800	CUP	1.580
200 Grain Jac	keted						10500	DOL	4 505
BLUE DOT	8.7	.75	.71	.7	9.9	840	13500	PSI	1.585
HERC 2400	11.2	.83	.82	NA	12.7	830	13500	PSI	1.585
HERCO	6.5	.73	.71	.7	7.3	785	13300	PSI	1.585
UNIQUE	6.1	.66	.66	NA	6.7	765	13100	PSI	1.585
BULLSEYE	5.1	.54	.53	.5	5.3	750	12400	PSI	1.585
GREEN DOT	5.2	.66	.66	NA	5.5	730	12500	PSI	1.585
RED DOT	4.6	.65	.61	NA	4.8	685	12400	PSI	1.585

40 SMITH & WESSON

These loads are suitable for the 41 Action Express

Do not use reloads in Glock or similar guns with chambers that do not fully support the cartridge due to the intrusion of the feed ramp.

STARTING LOADS Powder Type Dipper Pressure Units 135 Grain Jacketed UNIVERSAL CLA 7.0 .77 .76 .7 1324 7.5 32500 CUP 1.100 CLAYS 4.2 .61 .61 NA 4.5 1071 32900 CUP 1.100

145 Grain Lead ACCUR #5 7.1 .44 .43 NA 8.0 1179 34900 PSI 1.115 ACCUR #7 9.2 .60 .57 NA 10.0 1171 33700 PSI

1.115 ACCUR #2 6.1 .51 .49 .5 6.6 1155 33400 PSI 1.115 ACCUR #9 12.0 .79 .76 .7 12.0 1123 29200 PSI 1.115

150 Grain Jacketed	1	50	Grain	Jacketed
--------------------	---	----	-------	----------

DILLE DOT											
BLUE DOT	10.3	.89	.88	NA	11.5	1285	34000	PSI	1.105		
UNIQUE	7.2	.78	.76	.7			34000				
WIN 571	9.3	.63	.61	NA	10.4	1230	33200	PSI	1.100		
BULLSEYE	6.0	.64	.61	NA	6.7	1225	34000	PSI	1.105		
HERCO	7.4	.83	.82	NA	8.2	1215	33900	PSI	1.105		
WIN 540	8.4	.57	.57	NA	9.4	1210	33200	PSI	1.100		
wSUPER-FLD	6.9	.58	.57	NA	7.7		33200				
GREEN DOT	5.6	.71	.71	.7	2000		33800				
ACCUR #5	7.4	.46	.46	NA	8.3	1170	35000	PSI	1.120		
RED DOT	5.3	.75	.71	.7			34000				
ACCUR #2	6.4	.53	.53	.5	7.0		34200		1.120		
WIN 231	5.6	.52	.49	.5	6.3	1150	33200	PSI	1.100		
CAUTION: With NEVER	CAUTION: With NEVER EXCEED LOADS maintain Minimum Co. All Loads										

	STA		LOA	DS	15150 V 1					
Powder Type	Start Grains	/olume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
STREET, SQUARE, SQUARE	150 Grain Jacketed (Continued)									
wSUPER-LIT	5.2	.44	.43	NA	5.8 1140 33200 PSI 1.100					
ACCUR #7	9.2	.60	.57	NA	10.2 1136 34300 PSI 1.120					
wSUPER-TAR	6.3	.76	.76	.7	6.3 1050 27100 PSI 1.100					
155 Grain Jack	ceted									
v-3N37	7.2	.66	.66	NA	8.0 1267 33300 PSI 1.126					
v-N350	6.7	.66	.66	NA	7.5 1247 33300 PSI 1.126					
v-N340	6.1	.65	.61	NA	6.8 1231 33300 PSI 1.126					
v-N330	5.9	.64	.61	NA	6.6 1220 33300 PSI 1.126					
UNIVERSAL CLA	6.0	.66	.66	NA	6.6 1186 33200 CUP1.085					
WIN 571	8.9	.61	.61	NA	10.0 1180 33200 PSI 1.100					
HS7	9.2	.63	.61	NA	10.0 1180 33000 CUP1.085					
wSUPER-FLD	6.5	.55	.53	.5	7.3 1180 33200 PSI 1.100					
v-N320	5.2	.63	.61	NA	5.8 1178 33300 PSI 1.126					
HS6	8.1	.57	.57	NA	8.8 1165 33200 CUP1.100					
WIN 540	7.8	.54	.53	.5	8.8 1160 33200 PSI 1.100					
HP38	5.5	.51	.49	.5	6.0 1105 33000 CUP 1.085					
WIN 231	5.3	.50	.49	.5	6.0 1100 33200 PSI 1.100					
wSUPER-TAR	6.0	.72	.71	.7	6.0 1040 27900 PSI 1.100					
wSUPER-LIT	5.0	.42	.40	NA	5.6 1000 33200 PSI 1.100					
CLAYS	3.9	.57	.57	NA	4.0 937 30900 CUP 1.085					
155 Grain Lead										
ACCUR #5	6.7	.41	.40	NA	7.5 1158 35000 PSI 1.130					
ACCUR #7	8.7	.57	.57	NA	9.7 1146 34600 PSI 1.130					
ACCUR #9	11.6	.76	.76	.7	12.0 1142 32100 PSI 1.130					
ACCUR #2	5.7	.48	.46	NA	6.3 1116 34100 PSI 1.130					
170 Grain Jac	keted									
BLUE DOT	8.8	.76	.76	.7	9.8 1170 33900 PSI 1.124					
v-3N37	6.1	.56	.53	.5	6.8 1148 33300 PSI 1.126					
v-N350	5.9	.58	.57	NA	6.6 1145 33300 PSI 1.126					
HERCO	6.6	.75	.71	.7	7.4 1125 34000 PSI 1.124					
v-N340	5.4	.58	.57	NA	6.0 1118 33300 PSI 1.126					
HERC 2400	11.0	.82	.82	NA	12.1 1110 33600 PSI 1.124					
HS6	7.1	.51	.49	.5	8.0 1097 33999 CUP 1.085					
HS7	7.6	.52	.49	.5	8.5 1094 33999 CUP 1.085					
WIN 540	7.4	.51	.49	.5	8.3 1080 33200 PSI 1.115					
WIN 571	7.8	.53	.53	.5	8.8 1080 33200 PSI 1.115					

STARTING LOADS									
Powder Type	Start Grains	Volume	e Auto- Disk	Lee Dipper	NEVER VE	elocity FPS	Pressure	Unit	Mimimur s OAL
170 Grain Jac	keted (Contir					Tooduro	Oilit	ONL
wSUPER-FLD	5.8	.49	.49	NA	6.5 1	080	33200	PSI	1.115
UNIQUE	6.0	.66	.66	NA	6.7 1	075	33800		1.124
ACCUR #7	8.4	.55	.53	.5		049	34400		1.125
GREEN DOT	5.1	.64	.61	NA		045	33700		1.124
ACCUR #2	5.5	.46	.46	NA	6.2 1	041	35000		1.125
ACCUR #5	6.6	.41	.40	NA	7.2 1	035	34000		1.125
ACCUR #9	11.3	.74	.71	.7	11.3 1	025	30800		1.125
BULLSEYE	5.0	.53	.53	.5	5.5 1	015	33500	PSI	1.124
WIN 231	4.7	.44	.43	NA	5.3 1	000	33200	PSI	1.115
wSUPER-LIT	4.5	.38	.37	NA	5.0 1	000	33200		1.115
RED DOT	4.6	.65	.61	NA	5.1	985	34000	PSI	1.124
wSUPER-TAR	5.4	.65	.61	NA	5.5	70	30100		1.115
HP38	4.8	.45	.43	NA	5.4	963	33999		1.085
170 Grain Lea	d								
WIN 540	7.0	.48	.46	NA	7.9 1	100	33200	PSI	1.100
wSUPER-FLD	5.5	.46	.46	NA	6.2 1	090	33200	PSI	1.100
WIN 571	7.5	.51	.49	.5	8.4 1	070	33200	PSI	1.100
wSUPER-LIT	4.3	.36	.34	NA	4.8 1	030	33200		1.100
WIN 231	4.6	.43	.43	NA	5.2 10	030	33200	PSI	1.100
wSUPER-TAR	4.9	.59	.57	NA	5.0 9	70	30000	PSI	1.100
175 Grain Lea	d								
ACCUR #7	7.5	.49	.49	NA	8.4 10	014	35000	PSI	1.115
ACCUR #9	9.1	.60	.57	NA	10.2 9	98	34900	PSI	1.115
ACCUR #5	5.4	.34	.34	.3		86	35000	PSI	1.115
ACCUR #2	4.8	.40	.40	NA	5.3 9	75	34200	PSI	1.115
180 Grain Jack							1		
IMR 800X	7.3	.78	.76	.7	8.2 11	160	34700	PSI	1.125
v-N350	5.9	.58	.57	NA	6.6 11	126	33300	PSI	1.126
v-3N37	6.0	.55	.53	.5	6.7 10	97	33300		1.126
v-N340	5.4	.58	.57	NA	6.0 10	93	33300		1.126
UNIQUE	5.8	.63	.61	NA	6.4 10	065	33800	PSI	1.125
BLUE DOT	7.9	.68	.66	NA	8.8 10	065	34000		1.125
UNIVERSAL CLA	5.3	.58	.57	NA)46	33400	CUP	1.085
HERCO	6.3	.70	.66	.7	7.0 10)45	34000	PSI	1.125
wSUPER-FLD	5.5	.46	.46	NA)40	33200	PSI	1.100
HERC 2400	9.8	.73	.71	.7	10.9 10	25	33900	PSI	1.125

Tiese loads are suitable for the 41 Action Express									
	STA	RTING	LOA	DS	NEVED	Valentine		N	limina
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
180 Grain Jack	The second second second	and the second second	The second second						
ACCUR #9	9.8	.64	.61	NA	11.0	1019	35000	PSI	1.135
BULLSEYE	5.0	.53	.53	.5	5.5	1015	33900	PSI	1.125
WIN 571	7.4	.50	.49	.5	8.3	1015	33200	PSI	1.125
GREEN DOT	4.8	.61	.61	NA	5.3	1010	33600		1.125
HS7	7.6	.52	.49	.5	8.3	1000	33000	CUP	1.085
WIN 540	6.7	.46	.46	NA	7.5	1000	33200		1.100
SR4756	5.6	.61	.61	NA	6.0	1000	33100		1.125
HS6	6.8	.48	.46	NA	7.4	997	33200		1.085
SR7625	5.3	.55	.53	.5	5.7	990	33300		1.125
RED DOT	4.5	.63	.61	NA	5.0	980	34000		1.125
ACCUR #7	7.6	.50	.49	.5	8.5	978	34600		1.135
IMR PB	4.6	.55	.53	.5	5.1	975	34400		1.125
IMR 700X	4.1	.55	.53	.5	4.6	970	34600		1.125
ACCUR #2	5.0	.42	.40	NA	5.6	967	35000		1.135
ACCUR #5	6.3	.39	.37	NA	6.6	965	32500		1.135
WIN 231	4.5	.41	.40	NA	5.0	950	33200		1.100
HP38	4.6	.43	.43	NA	5.0	950	33000		
wSUPER-LIT	4.3	.36	.34	NA	4.8	950	33200		1.125
wSUPER-TAR	5.0	.60	.57	NA	5.0	900	28100		1.100
CLAYS	3.1	.45	.43	NA	3.5	847	34300	CUF	1.085
185 Grain Lea	d								
ACCUR #7	7.3	.47	.46	NA	8.2	990	35000	PSI	1.120
ACCUR #5	5.3	.33	.32	.3	6.0	975	35000	PSI	1.120
ACCUR #9	9.0	.59	.57	NA	9.7	956	33500		1.120
ACCUR #2	4.8	.40	.40	NA	5.1	942	33000	PSI	1.120
190 Grain Jac	keted								
BLUE DOT	7.9	.68	.66	NA	8.7	1040	33800	PSI	1.130
UNIQUE	5.5	.60	.57	NA	6.1	1010	34000	PSI	1.130
HERCO	6.0	.68	.66	NA	6.7	1000	33800	PSI	1.130
ACCUR #9	10.4	.69	.66	NA	11.0	997	32700	PSI	1.125
HERC 2400	9.6	.71	.71	.7	10.6	975	33600	PSI	1.130
ACCUR #7	7.8	.51	.49	.5	8.6	964	34300	PSI	1.125
BULLSEYE	4.8	.52	.49	.5	5.4	955	34000		1.130
GREEN DOT	4.6	.58	.57	NA	5.1	955	33600		1.130
ACCUR #5	5.9	.37	.37	NA	6.7	950	35000	PSI	1.125

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

	ST	ARTIN	G LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee	NEVER EXCEE	Velocity	Pressure	Unit	Mimimur s OAL
190 Grain Jac				Біррої	LNOLLI	, ,,,	1 1033416	Oilit	3 UAL
ACCUR #2	5.4	.46	.46	NA	5.6	931	32000	PSI	1.125
RED DOT	4.5	.63	.61	NA	4.9	895	33600		
					1.0	000	00000	1 01	1.130
195 Grain Lea	d								43
ACCUR #9	8.0	.52	.49	.5	9.0	923	35000	DCI	1.110
ACCUR #5	4.7	.29	.27	NA	5.3	907	35000		1.110
ACCUR #7	6.1	.40	.40	NA	6.8	883	34800		1.110
ACCUR #2	4.1	.34	.34	NA	4.6	880	34900		1.110
					1.0	000	04000	1 01	1.110
200 Grain Jac	keted								
IMR 800X	6.7	.72	.71	.7	7.0	1000	32000	PSI	1.125
v-N350	5.3	.52	.49	.5	5.9	974	33300		1.126
v-3N37	5.2	.48	.46	NA	5.8	969	33300		1.126
v-N340	4.8	.51	.49	.5	5.3	961	33300		1.126
BLUE DOT	7.1	.62	.61	NA	7.9	960	33800		1.130
UNIQUE	4.8	.52	.49	.5	5.3	955	33900		1.130
HERCO	5.2	.58	.57	NA	5.8	955	34000		1.130
BULLSEYE	4.2	.44	.43	NA	4.6	945	33600		1.130
wSUPER-FLD	5.1	.43	.43	NA	5.7	930	33200		1.130
HERC 2400	7.7	.57	.57	NA	8.5	925	33600		1.130
WIN 540	6.2	.42	.40	NA	6.9	910	33200		1.130
WIN 571	6.7	.45	.43	NA	7.5	910	33200		1.130
HS7	6.8	.46	.46	NA	7.4	907	33100		
SR4756	5.0	.56	.53	.5	5.6	906	34200		
UNIVERSAL CLA	4.2	.47	.46	NA	4.7	903	33600		
HS6	6.1	.44	.43	NA	6.8	902	33600		
RED DOT	3.7	.53	.53	.5	4.1	890	33500		1.130
GREEN DOT	3.9	.49	.49	NA	4.3	890	33600		1.130
SR7625	4.7	.49	.49	NA	5.2	885	34100		1.125
ACCUR #9	8.2	.54	.53	.5	9.2	863	35000	PSI	1.130
ACCUR #7	6.6	.43	.43	NA	7.4	850	35000	PSI	1.130
WIN 231	4.2	.39	.37	NA	4.7	850	33200		1.130
wSUPER-LIT	3.9	.33	.32	.3	4.4	850	33200	PSI	1.130
HP38	4.3	.40	.40	NA	4.7	850	33000		The state of the s
IMR PB	4.1	.49	.49	NA	4.5	845	33900		1.125
IMR 700X	3.9	.53	.53	.5	4.3	840	33800	PSI	1.125
ACCUR #5	5.1	.32	.32	.3	5.5	828	33500	PSI	1.130
CAUTION: With NEVER	EXCEED I	OADS m	aintain N	/linimum					

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	N Units	Aimimum SOAL
200 Grain Jac	keted (Continu	ied)						
ACCUR #2	4.4	.37	.37	NA	4.7	815	33500	PSI	1.130
wSUPER-TAR	4.5	.54	.53	.5	4.5	810	29900	PSI	1.130
200 Grain Lea	d								
wSUPER-FLD	4.5	.37	.37	NA	5.0	920	33200	PSI	1.100
WIN 540	5.3	.37	.37	NA	6.0	900	33200	PSI	1.100
WIN 571	5.8	.39	.37	NA	6.5	900	33200	PSI	1.130
wSUPER-LIT	3.5	.29	.27	NA	3.9	860	33200	PSI	1.100
WIN 231	3.6	.33	.32	.3	4.0	850	33200	PSI	1.100
wSUPER-TAR	3.5	.42	.40	NA	3.5	760	25200	PSI	1.100
	•								
205 Grain Lea	ıd								
ACCUR #9	7.7	.51	.49	.5	8.7	880	35000	PSI	1.110
ACCUR #7	6.1	.40	.40	NA	6.6	845	33700	PSI	1.110
ACCUR #2	4.1	.35	.34	NA	4.3	838	32400	PSI	1.110
ACCUR #5	4.8	.30	.30	.3	5.0	836	32600	PSI	1.110
					0 4		or longer		

STARTING LOADS. Start Volume Auto- Lee

Powder Type	Grains	CC	Disk	Dipper	EXCEED	FPS	Pressure	Unit	s OAL
135 Grain Jac	keted								The Sa
IMR 800X	13.8	1.48	1.46	NA	14.5	1670	33100	PSI	1.250
ACCUR #9	17.5	1.15	1.09	NA	17.5	1507	29200	PSI	1.250
ACCUR #5	10.2	.63	.61	NA	11.4	1503	36900	PSI	1.250
SR4756	10.2	1.13	1.09	1.0	10.7	1495	33000	PSI	1.250
ACCUR #7	12.8	.84	.82	NA	13.6	1476	34900	PSI	1.250
SR7625	8.5	.89	.88	NA	9.2	1450	34000	PSI	1.250
ACCUR #2	8.3	.69	.66	NA	9.1	1444	36300	PSI	1.250
IMR 700X	7.1	.95	.95	NA	7.7	1395	34200	PSI	1.250
IMR PB	7.6	.92	.88	NA	8.3	1390	34300	PSI	1.250
145 Grain Lea	d								
ACCUR #9	15.0	.99	.95	NA	15.0	1422	32500	PSI	1.250
ACCUR #7	11.7	.77	.76	.7	12.0	1367	33700		1.250
ACCUR #5	9.6	.60	.57	NA	9.7	1352	33400		1.250
ACCUR #2	7.5	.63	.61	NA	7.5	1293	32200	PSI	1.250

Mimimum

150 Grain Jac	keted						
ACCUR #9	16.7	1.10	1.09	1.0	16.7 1459	33000 PSI	1.245
ACCUR #7	11.8	.77	.76	.7	13.0 1405	36400 PSI	1.245
ACCUR #5	9.5	.59	.57	NA		36900 PSI	
WIN ACTION PI	8.8	.71	.71	.7		35500 PSI	
ACCUR #2	7.5	.63	.61	NA	8.4 1343	36700 PSI	1.245
WIN 540	9.5	.65	.61	NA	10.6 1330	35600 PSI	1.240

150 Grain Jacketed (Continued)

Powder Type

Start Grains

STARTING LOADS....

Lee Dipper

Volume CC

VIN 571	10.2	.69	.66	NA	11.4 1330 35600 PSI 1.240					
vSUPER-FLD	7.2	.61	.61	NA	8.1 1310 35600 PSI 1.240					
VIN 231	6.3	.58	.57	NA	7.0 1210 35600 PSI 1.240					
wSUPER-LIT	5.6	.48	.46	NA	6.3 1210 35600 PSI 1.240					
wSUPER-TAR	6.6	.79	.76	.7	7.0 1190 34000 PSI 1.240					
155 Grain Jacketed										
MR 800X	11.1	1.19	1.18	NA	11.6 1475 32900 PSI 1.250					
ACCUR #9	15.9	1.04	1.02	1.0	15.9 1414 32700 PSI 1.250					
ACCUR #7	11.2	.73	.71	.7	12.7 1379 37500 PSI 1.250					
WIN 540	9.7	.66	.66	NA	10.8 1355 35400 PSI 1.240					
WIN ACTION PI	8.7	.71	.71	.7	9.7 1355 35400 PSI 1.240					
HS7	10.8	.73	.71	.7	12.0 1350 36200 PSI 1.240					
HS6	10.2	.73	.71	.7	11.0 1350 35000 PSI 1.240					
WIN 571	10.8	.74	.71	.7	12.0 1350 35300 PSI 1.240					
BLUE DOT	10.7	.93	.88	NA	11.5 1340 34100 PSI 1.250					
ACCUR #5	9.3	.58	.57	NA	10.0 1334 35300 PSI 1.250					
v-N350	7.7	.76	.76	.7	8.6 1331 35700 PSI 1.256					
v-3N37	7.9	.72	.71	.7	8.8 1330 35700 PSI 1.256					
wSUPER-FLD	7.5	.63	.61	NA	8.4 1320 35600 PSI 1.240					
SR4756	7.8	.86	.82	NA	8.5 1310 34400 PSI 1.250					
v-N340	6.9	.74	.71	.7	7.7 1299 35700 PSI 1.256					
ACCUR #2	7.4	.62	.61	NA	8.0 1296 35700 PSI 1.250					
UNIVERSAL CLA	6.9	.76	.76	.7	7.5 1279 35200 PSI 1.240					
SR7625	7.2	.75	.71	.7	7.8 1275 34300 PSI 1.250					
HERC 2400	12.9	.95	.95	NA	13.6 1270 33600 PSI 1.250					
HP38	6.7	.62	.61	NA	7.3 1253 35700 PSI 1.240					
WIN 231	6.5	.61	.61	NA	7.3 1250 35600 PSI 1.240					
wSUPER-LIT	6.2	.52	.49	.5	6.9 1250 35600 PSI 1.240					
IMR PB	6.5	.78	.76	.7	7.2 1235 35000 PSI 1.250					
HERCO	7.7	.86	.82	NA	8.2 1230 33800 PSI 1.250					
IMR 700X	5.9	.79	.76	.7	6.4 1220 34300 PSI 1.250					
UNIQUE	7.0	.77	.76	.7	7.5 1200 33800 PSI 1.250					
BULLSEYE	6.3	.67	.66	NA	6.7 1190 34000 PSI 1.250					
165 Grain Lead										
ACCUR #9	14.0	.92	.88	NA	14.0 1334 32900 PSI 1.250					
ACCUR #7	10.2	.67	.66	NA	11.0 1273 35500 PSI 1.250					
A00011 # 7		,								

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

Mimimum

Units

Pressure

11 4 1220 25600 PSI 1 240

	STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Unit	Mimimu s OAL		
165 Grain Lea	d (Cont	inued)							777		
ACCUR #5	8.7	.54	.53	.5	8.7	1233	31800	PSI	1.25		
ACCUR #2	6.5	.54	.53	.5	7.1	1230	36000	PSI	1.25		
170 Grain Jacketed											
ACCUR #9	14.5	.95	.95	NA	15.0	1341	34100	PSI	1.25		
ACCUR #7	10.5	.69	.66	NA	12.0	1305	37500	PSI	1.25		
WIN ACTION PI	8.4	.68	.66	NA	9.1	1285	34600	PSI	1.24		
ACCUR #5	8.8	.55	.53	.5	9.7	1275	36200	PSI	1.25		
WIN 540	8.9	.61	.61	NA	9.9	1265	35500	PSI	1.24		
HS6	9.2	.66	.66	NA	9.9	1246	35000	PSI	1.24		
WIN 571	9.7	.66	.66	NA	10.8	1240	35600	PSI	1.24		
HS7	9.9	.67	.66	NA	10.8	1235	35500	PSI	1.24		
ACCUR #2	7.0	.58	.57	NA	7.7	1220	36400	PSI	1.25		
wSUPER-FLD	6.7	.56	.53	.5	7.5	1210	35600	PSI	1.24		
HERC 2400	11.8	.88	.88	NA	12.6	1190	33800	PSI	1.25		
UNIVERSAL CLA	6.0	.66	.66	NA	6.7	1187	36100	PSI	1.24		
BLUE DOT	9.6	.83	.82	NA	10.1	1180	33500	PSI	1.25		
HERCO	7.1	.80	.76	NA	7.5	1145	33600	PSI	1.250		
BULLSEYE	5.8	.62	.61	NA	6.2	1135	34000	PSI	1.250		
UNIQUE	6.4	.70	.66	.7	6.9	1135	34100	PSI	1.250		
wSUPER-LIT	5.4	.45	.43	NA	6.0	1130	35600	PSI	1.240		
WIN 231	5.6	.52	.49	.5	6.3	1120	35600	PSI	1.240		
HP38	5.7	.53	.53	.5	6.3	1119	35900	PSI	1.240		
wSUPER-TAR	5.5	.66	.66	NA	5.5	1020	29500	PSI	1.240		
					1				1111		
170 Grain Lead	d										

1	7	0	Grain	Lead

WIN ACTION PI	7.6	.61	.61	NA	8.4	1270	35300	PSI	1.240
WIN 571	9.4	.64	.61	NA			35600		
WIN 540	8.8	.60	.57	NA	9.5	1240	34400	PSI	1.240
wSUPER-FLD	5.9	.50	.49	.5			35600		
WIN 231	5.0	.47	.46	NA	5.6	1100	35600	PSI	1.240
wSUPER-LIT	4.7	.39	.37	NA	5.2	1100	35600	PSI	1.240
wSUPER-TAR	5.0	.60	.57	NA	5.0	1020	32100	PSI	1.240

175 Grain Lead

ACCUR #9	100	0.4	0.0				
ACCOR #9	12.8	.84	.82	NA	13.6 1285	34900 PSI	1.245
ACCUR #7					10.4 1199		

				COLUMN					
	STA	RTING	LOA	DS	NEVED 1	lalacity		N	limimum
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	Velocity FPS	Pressure	Units	OAL
175 Grain Lead		nued)							1 11
CCUR #2	6.3	.52	.49	.5	6.7	1167	35300	PSI	1.245
CCUR #5	8.3	.52	.49	.5	8.3	1166	31500	PSI	1.245
180 Grain Jack	rotod								
MR 800X	8.9	.96	.95	NA	9.7	1320	34200	PSI	1.250
ACCUR #9	13.0	.86	.82	NA	13.5	1242	34100	PSI	1.250
BLUE DOT	9.2	.80	.76	NA	18 525136 103	1220	35800		1.250
/-3N37	7.1	.65	.61	NA	7.9	1212	35700	PSI	1.256
HERC 2400	11.4	.84	.82	NA	12.9	1210	36000	PSI	1.250
WIN ACTION PI	7.8	.63	.61	NA	8.4	1210	34400	PSI	1.240
ACCUR #5	7.8	.49	.49	NA	8.7	1197	36800	PSI	1.250
v-N350	6.7	.65	.61	NA	7.4	1195	35700	PSI	1.256
WIN 540	8.3	.57	.57	NA	9.3	1190	35500		1.240
ACCUR #7	10.0	.65	.61	NA	10.7	1183	35300	PSI	1.250
HS6	8.5	.61	.61	NA	9.4	1177	35800	PSI	1.240
WIN 571	9.1	.62	.61	NA	_	1170	35600		1.240
HS7	9.3	.63	.61	NA	10.2	1168	35600		1.240
v-N340	6.2	.66	.66	NA	6.9	1167	35700		1.256
SR4756	7.0	.77	.76	.7	7.6	1155	34400		1.250
wSUPER-FLD	6.4	.53	.53	.5	7.1	1150	35600		1.240
HERCO	6.7	.75	.71	.7	7.5	1140	35800		1.250
SR7625	6.3	.66	.66	NA	7.0	1140	35100		1.250
BULLSEYE	5.7	.60	.57	NA	6.4	1125	35900		1.250
UNIQUE	6.2	.68	.66	NA	7.0	1125	35700		1.250
UNIVERSAL CLA	6.4	.70	.66	.7	6.4	1122	32200		1.240
ACCUR #2	6.5	.55	.53	.5	6.8	1120	34400		1.250
IMR 700X	5.5	.74	.71	.7	6.0	1105	122 121 121 21 2		1.250
IMR PB	5.8	.70	.66	.7 .5	6.4 5.8	1105 1061	34900 34900	PSI	1.240
HP38	5.4	.50	.49		5.6	1060	35600		1.240
wSUPER-LIT	5.0	.42	.40	NA	5.8	1050	35600		1.240
WIN 231	5.2	.48	.46	NA NA	5.8	1010	35200		1.240
wSUPER-TAR	5.0	NA	NA	NA	12.6	990	22400		1.240
WIN 296	NA	IVA	IVA	IVA	12.0	330	22400	1 01	1.240
185 Grain Lea					100	1040	0.4700	DOL	1 245
ACCUR #9	12.3	.81	.76	NA	13.0	1248			1.245 1.245
ACCUR #7	9.7	.64	.61	NA		1173			
ACCUR #5	7.6	.48	.46	NA	8.3	1170			1.245 1.245
ACCUR #2	6.1	.51	.49	.5	6.6	1136	35900	F 51	1.245

Powder Type

Start Grains

STARTING LOADS... art Volume Auto- Lee rains CC Disk Dippe

Lee Dipper

Mimimi Pressure Units OAI

190 Grain Jac	cketed				
ACCUR #9	13.1	.86	.82	NA	14.2 1267 35800 PSI 1.25
ACCUR #7	10.2	.67	.66	NA	11.2 1198 36000 PSI 1.25
HERC 2400	11.1	.82	.82	NA	12.5 1195 35800 PSI 1.25
ACCUR #5	8.1	.51	.49	.5	9.1 1186 36800 PSI 1.25
BLUE DOT	8.8	.76	.76	.7	10.0 1185 36000 PSI 1.25
WIN ACTION PI	7.6	.62	.61	NA	8.3 1185 34700 PSI 1.24
WIN 540	8.4	.57	.57	NA	9.3 1175 35400 PSI 1.24
WIN 571	9.0	.61	.61	NA	10.1 1140 35600 PSI 1.24
ACCUR #2	6.9	.58	.57	NA	7.2 1126 34400 PSI 1.25
wSUPER-FLD	6.4	.53	.53	.5	7.1 1120 35600 PSI 1.24
BULLSEYE	5.6	.60	.57	NA	6.3 1050 35500 PSI 1.250
HERCO	6.4	.72	.71	.7	7.2 1050 35800 PSI 1.250
wSUPER-LIT	5.1	.43	.43	NA	5.7 1040 35600 PSI 1.240
WIN 231	5.3	.49	.49	NA	5.9 1030 35600 PSI 1.240
UNIQUE	6.0	.65	.61	NA	6.7 1025 35500 PSI 1.250
WIN 296	NA	NA	NA	NA	12.6 970 22200 PSI 1.240
wSUPER-TAR	4.5	.54	.53	.5	4.5 850 26700 PSI 1.240
195 Grain Lea	d 11.0	.72	.71	.7	11.9 1193 35600 PSI 1.245
ACCUR #7	8.8	.58	.57	NA	9.5 1134 35400 PSI 1.245
ACCUR #5	6.9	.43	.43	NA	7.3 1097 34900 PSI 1.245
ACCUR #2	5.4	.45	.43	NA	5.8 1055 35500 PSI 1.245
200 Grain Jac		0.4	00		74 1 375453
ACCUR #9	7.8	.84	.82	NA	8.4 1190 33900 PSI 1.250
HERC 2400	10.8	.71	.71	.7	12.5 1170 38000 PSI 1.250
BLUE DOT	10.4	.77	.76	.7	11.2 1115 34100 PSI 1.260
ACCUR #7	8.4 8.8	.72	.71	.7	8.9 1110 33800 PSI 1.260
WIN 540		.58	.57	NA	9.8 1091 36500 PSI 1.250
HS6	7.7	.53	.53	.5 .5	8.6 1090 35600 PSI 1.240
v-3N37	6.2	.57	.53	.5	8.6 1089 35900 PSI 1.240
HS7	8.5	.58	.57	.s NA	6.9 1084 35700 PSI 1.256
WIN 571	8.3	.57	.57	.5	9.3 1082 35700 PSI 1.240
ACCUR #5	7.3	.46	.46	NA	9.3 1070 35600 PSI 1.240
v-N350	5.8	.56	.53	.5	7.8 1066 35100 PSI 1.250
SR4756	5.8	.64	.61	AN	6.4 1059 35700 PSI 1.256 6.6 1045 35800 PSI 1.250
ACCUR #2	5.7	.47	.46	NA	
SR7625	5.5	.57	.57	NA NA	101 101 11200
v-N340	5.2	.56	.53	.5	6.2 1040 35700 PSI 1.250 5.8 1027 35700 PSI 1.256
					5.8 1027 35700 PSI 1.256 Over All Length or longer

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
200 Grain Jack	eted (Continu	ied)						
vSUPER-FLD	5.5	.47	.46	NA	6.2	1020	35600	PSI	1.240
JNIVERSAL CLA	5.2	.57	.57	NA	5.9	1015	36900	PSI	1.240
1P38	5.1	.47	.46	NA	5.6	1011	35700	PSI	1.240
VIN 231	5.0	.47	.46	NA	5.6	1000	35600	PSI	1.240
MR 700X	4.9	.66	.66	NA	5.3	995	34000	PSI	1.250
MR PB	5.1	.61	.61	NA	5.5	970	34300	PSI	1.250
HERCO	6.2	.69	.66	NA	6.5	965	33500	PSI	1.260
wSUPER-LIT	4.5	.38	.37	NA	5.0	960	35600	PSI	1.240
WIN 296	NA	NA	NA	NA	11.6	940	23600	PSI	1.240
UNIQUE	5.5	.60	.57	NA	5.8	940	33700	PSI	1.260
BULLSEYE	5.0	.53	.53	.5	5.3	940	33600	PSI	1.260
wSUPER-TAR	4.1	.50	.49	.5	4.6	890	35600	PSI	1.240
200 Grain Lead	d								
WIN 571	8.1	.55	.53	.5	9.0	1110	35600	PSI	1.240
WIN 540	6.8	.46	.46	NA	7.6	1085	35600	PSI	1.240
wSUPER-FLD	5.6	.47	.46	NA	6.3	1080	35600	PSI	1.240
WIN ACTION PI	6.2	.51	.49	.5	6.9	1080	35200	PSI	1.240
WIN 231	4.9	.46	.46	NA	5.5	1030	35600	PSI	1.240

205 Grain Lea	d								
ACCUR #9	10.7	.71	.71	.7	11.8	1157	36200	PSI	1.250
ACCUR #7	8.5	.56	.53	.5			35900		
ACCUR #5	6.5	.40	.40	NA			35700		
ACCUR #2	5.1	.42	.40	NA	5.2	979	33800	PSI	1.250

NA

NA

.37

.59

4.4

4.9

wSUPER-LIT

wSUPER-TAR

.37

.57

4.9

5.0

990

940

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

35600 PSI 1.240

1.240

32400 PSI

41 REMINGTON MAGNUM

STARTING LOADS. Start Grains Volume C.C. Auto-Disk Lee Mimimum **Powder Type** Dipper Pressure Units 170 Grain Jacketed **IMR 800X** 13.2 1.41 1.36 1.3 14.6 1760 39200 CUP 1.575 ACCUR #9 18.5 1.21 1.18 NA 19.7 1705 37800 CUP 1.565 SR4756 13.1 1.44 1.36 1.3 14.6 1650 39600 CUP 1.575 **IMR4227** 23.0 1.77 DBLD 1.6 23.0 1605 32900 CUP 1.575 ACCUR #7 14.9 .97 .95 NA **15.5** 1555 37000 CUP 1.565 ACCUR #5 11.2 .70 .66 .7 12.0 1493 37900 CUP 1.565 SR7625 9.7 1.02 1.02 1.0 10.8 1485 39400 CUP 1.575 H110 NA NA NA NA 24.0 1466 NA NA 1.540 **IMR PB** 10.0 1.21 1.18 NA 40000 CUP 1.575 11.3 1460 ACCUR #2 9.0 .75 .71 .7 10.0 1451 39600 CUP 1.565 H4227 20.7 1.59 DBLD NA 23.0 1437 NA NA 1.540 **IMR 700X** 7.5 1.00 .95 1.0 39800 CUP 1.575 8.4 1375 HS7 13.0 .89 .88 NA 14.5 1269 NA NA 1.540 HS₆ 11.2 .80 .76 NA 12.5 1065 NA NA 1.540 **HP38** 6.7 .62 .61 NA 7.4 929 NA NA 1.540

200 Grain Ja	cketed							
BLUE DOT	12.4	1.08	1.02	1.0	14.0 1470	36000	PSI	1.580
HERC 2400	16.1	1.20	1.18	NA	17.5 1420	34700	PSI	1.580
HERCO			.95		10.1 1320			
UNIQUE	8.9	.97	.95		10.0 1280			
BULLSEYE	7.2	.76	.76	.7	8.0 1235	35700	PSI	1.580

	Start Volume Auto- Lee NEVER Velocity Mimimum Powder Type Grains CC Disk Dipper EXCEED FPS Pressure Units OAL									
Powder Type	Grains	Volume CC	Disk I	Dipper	ĔXČĒĖD	FPS 1	Pressure	Units	OAL	
200 Grain Jack	ceted (C	Continu	ied)							
RED DOT	7.2	1.02	1.02	1.0	7.5	1200	33400		1.580	
REEN DOT	7.6	.96	.95	NA	8.3	1170	35000	PSI	1.580	
210 Grain Jack	210 Grain Jacketed									
ACCUR #9	16.0	1.05	1.02	1.0	18.0	1521	40000	CUP	1.570	
MR 800X	10.7	1.14	1.09	NA	12.0	1480	39900	CUP	1.590	
WIN 296	NA	NA	NA	NA	20.4	1460	24000	-	1.540	
SR4756	11.4	1.26	1.26	NA	12.8	1455	39700	CUP	1.590	
H110	NA	NA	NA	NA	21.0	1448	NA.	NA	1.540	
BLUE DOT	12.8	1.11	1.09	1.0	13.5	1425	33800		1.575	
HERC 2400	16.5	1.23	1.18	NA	17.5	1425	33900	PSI	1.575	
IMR4227	20.5	1.58	DBLD	NA	20.5	1395	30000	CUP	1.590	
ACCUR #7	12.7	.83	.82	NA	14.2	1379	39600		1.570	
ACCUR #5	10.4	.65	.61	NA	11.5	1322	39200		1.570	
HERCO	9.5	1.06	1.02	1.0	10.3	1320	34800	PSI	1.575	
UNIQUE	9.1	1.00	.95	1.0	10.1	1265	35400		1.575	
IMR PB	8.6	1.04	1.02	1.0	9.7	1265	40000		1.590	
BULLSEYE	7.7	.82	.82	NA	8.3	1245	34300			
ACCUR #2	8.4	.71	.71	.7	9.5	1245	40000			
SR7625	8.1	.85	.82	NA	9.1	1245	39700	1000	1.590	
RED DOT	7.7	1.08	1.02	1.0	8.2	1225	34300			
WIN 231	7.9	.74	.71	.7	8.8	1220	38000		1.540	
HS7	12.1	.83	.82	NA	13.5	1217	NA		1.540	
IMR 700X	6.9	.93	.88	NA	7.6	1185	39000		1.590	
GREEN DOT	7.8	.98	.95	NA	8.7	1165	35800		1.575	
HS6	10.3	.74	.71	.7	11.5	1084	NA			
HP38	6.2	.58	.57	NA	6.9	903	NA	NA	1.540	
210 Grain Lead										
ACCUR #9	16.5	1.09	1.09	1.0	18.0	1582	38600	CUF	1.675	
IMR4227	20.5	1.58			20.5	1480	33400	CUF	1.590	
IMR 800X	10.5	1.13		1.0		1475		CUF	1.590	
IIVIN OUUX	10.0	0.10	00	NIA			37000			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

NA

.7

NA

NA

NA

NA

.88

.71

1.09

.66

.95

.82

13.9

12.1

10.4

8.2

8.1

8.1

ACCUR #7

ACCUR #5

ACCUR #2

SR4756

IMR PB

SR7625

.91

.75

1.14

.68

.97

.85

14.5 1442

1315

1255

9.2

9.0

9.0

37000 CUP 1.675

40000 CUP 1.675

39500 CUP 1.590

1250 39300 CUP 1.590

12.5 1436 36700 CUP 1.675

11.7 1420 40000 CUP 1.590

41 REMINGTON MAGNUM (Continued) STARTING LOADS

DESCRIPTION OF THE PERSON NAMED IN COLUMN 1	ST			ADS	STARTING LOADS									
Powder Type	Start Grains	Volum s CC	e Auto- Disk	Lee Dipper	NEVER Velocit EXCEED FPS	y Pressure	Mimimu Units OAL							
210 Grain Lea	ad (Con	ntinued)											
IMR 700X	6.7	.90	.88	NA	7.4 1180	39100	CUP 1.590							
WIN 231	7.4	.69	.66	NA	7.4 1125	28000								
220 Grain Jac	keted													
ACCUR #9	16.9	1.11	1.09	1.0	18.0 1496	37700	CUP 1.560							
H110	NA	NA	NA	NA	20.0 1401	NA	NA 1.540							
BLUE DOT	11.2	.97	.95	NA	12.5 1365									
HERC 2400	15.3	1.14	1.09	1.0	16.4 1365									
ACCUR #7	12.8	.83	.82	NA	14.2 1364									
ACCUR #5	10.4	.65	.61	NA	11.5 1310		CUP 1.560							
H4227	18.0	1.38	1.36	1.3	20.0 1293	NA	NA 1.540							
ACCUR #2	8.2	.68	.66	NA	9.2 1228	151.56 15	CUP 1.560							
HERCO	8.3	.93	.88	NA	9.3 1220	35800	PSI 1.575							
UNIQUE	8.4	.92	.88	NA	9.3 1215	35300	PSI 1.575							
HS7	11.7	.80	.76	NA	13.0 1185	NA	NA 1.540							
BULLSEYE	6.7	.71	.71	.7	7.5 1150	35800	PSI 1.575							
GREEN DOT	7.1	.89	.88	NA	7.9 1140	35800	PSI 1.575							
RED DOT	6.6	.93	.88	NA	7.4 1125	35900	PSI 1.575							
HS6	9.9	.70	.66	.7	11.0 1069	NA	NA 1.540							
HP38	6.2	.58	.57	NA	6.9 887	NA	NA 1.540							
		101				14/1	11.040							
240 Grain Lea	d													
ACCUR #9	15.5	1.02	1.02	1.0	17.2 1483	20200	CUP 1.710							
ACCUR #7	13.1	.86	.82	NA	14.0 1360									
ACCUR #5	10.6	.66	.66	NA	12.0 1357		CUP 1.710							
ACCUR #2	7.3	.61	.61	NA	8.2 1190	39700	CUP 1.710							
	7.0	.01	.01	IVA	6.2 1190	39700	CUP 1.710							
250 Grain Lead	ч													
H110	NA	NA	NA	NA	20.5 1342	NIA	NIA 4 540							
H4227	18.0	1.38	1.36	1.3	20.0 1255	NA	NA 1.540							
	10.0	1.50	1.30	1.3	20.0 1255	NA	NA 1.540							
200 0														
300 Grain Lead		NI A	NI A	ALC T	40.0									
H110 H4227	NA	NA	NA	NA	19.0 1267	NA	NA 1.540							
	16.6	1.28	1.26	NA	18.5 1201	NA	NA 1.540							
AUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. BLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available														

Copyright 08-15-1996

416 REMINGTON MAGNUM

STARTING LOADS Start Volume Auto- Lee NEVER Velocity Mimimum Powder Type Grains CC Disk Dipper EXCEED FPS Pressure Units OAL											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	MIMUM OAL		
300 Grain Jacketed											
H4895	76.6	5.57	NA	NA			53000				
BL-C(2)	91.5	5.90	NA	NA			49000				
H380	91.6	6.33	NA	NA	100.0	2820	51500	CUP:	3.350		
H335	83.8	5.40	NA	NA	87.0	2767	49000	CUP:	3.350		
H322	76.1	5.51	NA	NA	83.0	2727	51500	CUP:	3.350		

300 Grain Bar	nes X E	Bullet					
RELODER15	81.2	5.73	NA	NA	90.5 2890	52400	CUP 3.600
RELODER12	81.2	5.61	NA	NA	90.0 2790	52100	CUP 3.600

350 Grain	Jacketed						
BL-C(2)	84.2	5.43	NA		91.0 2684		
H4895	71.4	5.20	NA		81.0 2640		
H380	83.7	5.78	NA		94.0 2610		
H335	71.0	4.58	NA		79.0 2561		
H322	68.8	4.99	NA	NA	78.0 2490	53500	CUP 3.350

350 Grain Barr	nes X B	Bullet					
ACCUR 2230	68.9	4.52	NA	4.3	79.0 2645	53000	CUP 3.680
ACCUR 2015BR			NA	NA	75.0 2618	51400	CUP 3.680
ACCUR 2460	71.6	4.69	NA		79.0 2611		
RELODER15	76.2	5.38	NA	NA	85.0 2610	52400	CUP 3.600

5.41

5.08

78.3

69.8

69.2 4.46

NA

NA

NA

83.0 2340 50000 CUP 3.400

74.0 2333 50000 CUP 3.400

77.0 2296 52500 CUP 3.400

NA

NA

4.3

....STARTING LOADS....

Powder Type	Start Grains		Auto- Disk		NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAL
350 Grain Bar	nes X E	Bullet (C	ontin				
ACCUR 2520	74.1	5.06	NA	NA	78.0 2563	48600	CUP 3.680
ACCUR 2700	84.5	5.79	NA	NA	86.0 2536	47000	CUP 3.680
ACCUR 2495BR	81.5	6.10	NA	NA	82.0 2530	46500	
RELODER12	76.2	5.27	NA	NA	85.0 2525	52400	CUP 3.600
ACCUR 4350	80.0	5.92	NA	NA	80.0 2221	32600	
400 Grain Jac	keted						
ACCUR 4350	87.0	6.44	NA	NA	87.0 2449	43900	CUP 3.580
ACCUR 2495BR	73.9	5.53	NA	NA	80.0 2448		CUP 3.580
ACCUR 2700	78.8	5.40	NA	NA	85.0 2442		CUP 3.580
H4350	87.6	6.35	NA	NA	90.0 2437		CUP 3.400
H414	77.1	5.10	NA	NA	85.0 2429		CUP 3.400
ACCUR 2015BR	61.9	4.52	NA	4.3	70.0 2391		CUP 3.580
ACCUR 2520	66.8	4.56	NA	4.3	75.0 2385		CUP 3.580
ACCUR 2460	68.0	4.46	NA	4.3	74.0 2383		CUP 3.580
ACCUR 2230	67.6	4.44	NA	4.3	73.0 2380		CUP 3.580
HOOD	700						

400 Grain Solid

H380

H4895

BL-C(2)

	u						
RELODER15	74.8	5.28	NA	NA	81.0 2455	50900	CUP 3.600
RELODER12	72.6	5.02	NA	NA	81.0 2410	52400	CUP 3 600
RELODER19	82.0	5.79	NA	NA	82.0 2130	35600	CUP 3.600

400 Grain Barnes X Bullet

DEL ODED15	745	F 00					
RELODER15	74.5	5.26	NA	NA	82.0 2445	51700	CUP 3.565
RELODER12	74.1	5.12			82.0 2390		
RELODER19	83.0	5.86	NA		83.0 2140		

	ST	ARTING	i LOA	<u> </u>	0				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M Units	imimum OAL
200 Grain Bu	llet								
HS6	8.1	.58	.57	NA	9.0	1292	NA	NA	1.580
HP38	5.8	.54	.53	.5	6.5	1140	NA	NA	1.580

200 Grain Jac	keted							
HERC 2400	13.0	.96	.95	NA	14.5 1	230	12500	CUP 1.590
BLUE DOT	10.8	.93	.88	NA	12.0 1	225	12500	CUP 1.590
HERCO	7.6	.85	.82	NA	8.5 1	100	12500	CUP 1.590
UNIQUE	7.2	.79	.76	.7	8.0 1	090	12400	CUP 1.590
BULLSEYE	6.0	.64	.61	NA	6.6 1	070	12300	CUP 1.590
GREEN DOT	6.1	.76	.76	.7	6.6	990	12200	CUP 1.590
RED DOT	5.3	.75	.71	.7	5.9	920	12400	CUP 1.590

200 Grain Lea									
WIN 231	6.0	.56	.53	.5	6.7	1100	12000	PSI	1.580

44-40 WINCHESTER (Continued)

	ST	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mir Units	nimum OAL
240 Grain Lea	d		3.8 636			FY.			
HERC 2400	10.8	.80	.76	NA	12.0	1130	12500	CUP 1	.580
BLUE DOT	8.9	.77	.76	.7	9.9	1125	12500	CUP 1	.580
HERCO	6.4	.72	.71	.7	7.1	955	12400	CUP 1	.580
UNIQUE	6.0	.66	.66	NA	6.7	950	12500	CUP 1	.580
GREEN DOT	5.0	.64	.61	NA	5.5	850	12200	CUP 1	.580
BULLSEYE	4.6	.49	.49	NA	5.0	850	12200	CUP 1	.580
RED DOT	4.3	.60	.57	NA	4.7	800	12300	CUP 1	.580

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
180 Grain Jack	keted	7.					10100	OLID	1 500
H4227	18.3	1.41	1.36	1.3	18.5	1285	16100		1.560
HS6	11.5	.82	.82	NA	11.5	1264	15900		1.560
v-N350	9.6	.94	.88	NA	10.7	1173	14700	CIP	1.469
v-N340	8.7	.93	.88	NA	9.7	1168	14700	CIP	1.469
v-N330	7.9	.85	.82	NA	8.8	1130	14700	CIP	1.469
v-N320	6.9	.84	.82	NA	7.7	1054	14700	CIP	1.469
BLUE DOT	12.6	1.09	1.09	1.0	13.5	1020	11900		1.600
HERCO	8.6	.97	.95	NA	9.8	1000	12600		1.600
ACCUR #5	7.8	.49	.49	NA	8.7	1000	14000		1.485
ACCUR #7	9.4	.62	.61	NA	10.5	1000	14000		1.485
UNIQUE	8.0	.87	.82	NA	9.0	985	12500	CUP	1.600
HERC 2400	15.5	1.15	1.09	NA	16.0	950	11400		1.600
HP38	6.6	.61	.61	NA	6.6	941	14200	CUP	1.560
GREEN DOT	6.0	.75	.71	.7	6.7	925	12400	CUP	1.600
A NITRO100	4.7	.63	.61	NA	5.2	920	14000	CUP	1.485
ACCUR #2	5.3	.44	.43	NA	5.9	911	14000	CUF	1.485
BULLSEYE	6.0	.64	.61	NA	6.5	910	12000	CUF	1.600
RED DOT	5.9	.83	.82	NA	6.4	885	12100	CUF	1.600

200 Grain	Jacketed								
v-N350	9.1	.89	.88				14700		
v-N340	8.3	.88	.88	NA	9.2	1091	14700	CIP	1.469
	7.7	.84	.82	NA	8.6	1056	14700	CIP	1.469
v-N330	7.7	.04	.76	7	7 1	983	14700	CIP	1.469
v-N320	6.4	.//	./0	. /	7.1	500	11700		

44 SPECI	AL (Co	ontinue	ed)				1344		
	ST	ARTIN	G LO	ADS					
Powder Type	Start Grains	Volum CC	e Auto Disk	- Lee Dipper	NEVER EXCEE	Veloci D FPS	ty Pressure	Mi Units	mimu OAL
200 Grain Ja	acketed	(Conti	nued)				· · · · · · · · · · · · · · · · · · ·	Oilles	UNL
ACCUR #7	9.1	.60	.57	NA	10.0	938	13800	CUP'	1.49
ACCUR #5	7.7	.48	.46	NA	8.0	871		CUP'	
A NITRO100	4.5	.61	.61	NA	5.0	840			
ACCUR #2	4.9	.41	.40	NA	5.4	805	14000		
200 Grain Le	ead								
ACCUR #9	10.4	.68	.66	NA	11.5	1020	13900	CUP 1	1.461
ACCUR #7	8.5	.56	.53	.5	9.5	992		CUP 1	
ACCUR #5	6.6	.41	.40	NA	7.4	959	14000		
A NITRO100	4.3	.58	.57	NA	4.8	914	14000		
ACCUR #2	4.7	.39	.37	NA	5.2	905		CUP 1	and the same of
210 Grain Ja H4227	cketed 16.5	1.27	1.26	NA	16 E	1140	15000	OUD	
HS6	10.5	.75	.71	.7		1142		CUP 1	
HP38	6.2	.57	.57	NA	6.2	1086 909	15600	CUP 1	
215 Grain Le	17.0	1.31	1.26	1 2	17.0	1151	1 1000	OLUB 4	
HS6				1.3		1151	14900		
ACCUR #9	10.0	.71	.71	.7		1100	14400		
ACCUR #5	7.0	.68	.66	NA	11.4	988	13800	CUP 1	.535
ACCUR #7	8.5	.44	.43	NA	7.8	959	14000		
ACCUR #2	4.8	.56	.53	.5	9.5	953	14000		
A NITRO100	4.8	.40	.40	NA	5.3	900	14000	CUP 1	
HP38	5.8	.54	.53	NA .5	4.8 5.8	890	14000	CUP 1	
	0.0	.04	.55	.5	5.8	879	14100	CUP 1.	560
225 Grain Jac									
H4227	13.0	1.00	.95	1.0	15.0	1148	18400	CUP 1.	560
HP38	5.5	.51	.49	.5	5.5	827	15800	CUP 1.	560
240 Grain Jac	keted								
14227	12.0	.92	.88	NA	14.0	1002	18600	CUP 1.	560
ACCUR #9	9.0	.59	.57	NA	10.0	811	14000		
HP38	5.2	.48	.46	NA	5.2	790	13800		
ACCUR #7	7.2	.47	.46	NA	8.0	745	14000		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-15-1996

NA

6.5

730

14000 CUP 1.485

.34

.36

ACCUR #5

STARTING LOADS Start Volume Auto: Lee NEVER Velocity Mimimum											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V Exceed	FPS	Pressure		AL		
240 Grain Jack	keted (Continu						100			
A NITRO 100	4.0	.53	.53	.5	4.4	659	14000				
ACCUR #2	4.1	.34	.34	NA	4.5	604	13900	CUP 1.	485		
240 Grain Lead											
MR4227	13.1	1.00	.95	1.0	14.3	790	13700	CUP 1.	470		
SR7625	5.6	.59	.57	NA	6.2	770	13800	CUP 1.	470		
SR4756	6.9	.76	.76	.7	7.5	760	13600	CUP 1.	470		
IMR PB	5.1	.61	.61	NA	5.7	750	14000	CUP 1.			
IMR 700X	4.4	.59	.57	NA	4.9	740	13900	CUP 1.	470		
IMR 800X	6.2	.67	.66	NA	6.9	695	13900	CUP 1.	470		
IIVIII OOOX	0.2										
0.45											
245 Grain Lea		6.4	.61	NA	10.8	930	14000	CUP 1	600		
ACCUR #9	9.7	.64			8.7	900	14000				
ACCUR #7	7.8	.51	.49	.5		860		CUP 1.			
ACCUR #5	6.1	.38	.37	NA	6.8 4.7	819	14000				
ACCUR #2	4.2	.35	.34	NA		_		CUP 1			
A NITRO100	3.9	.52	.49	.5	4.3	818	14000	COFT	.000		
246 Grain Lea	ad						4				
BLUE DOT	8.3	.72	.71	.7	9.2	845		CUP 1			
IMR4227	12.7	.98	.95	NA	14.2	815		CUP 1			
HERCO	7.0	.79	.76	.7	7.7	805		CUP 1			
HERC 2400	10.9	.81	.76	NA	11.3	805	11500				
UNIQUE	5.7	.62	.61	NA	6.0	800		CUP 1			
WIN 231	4.9	.45	.43	NA	5.4	795		CUP 1			
GREEN DOT	4.7	.59	.57	NA	5.0	785		CUP 1			
SR7625	5.5	.58	.57	NA	6.2	780		CUP 1			
SR4756	7.0	.77	.76	.7	7.7	775		CUP 1			
BULLSEYE	4.3	.45	.43	NA	4.5	765	11700				
IMR PB	5.2	.62	.61	NA	5.6	745	13600				
RED DOT	4.0	.57	.57	.5	4.3	740	11900	CUP 1			
IMR 700X	4.4	.59	.57	NA	4.8	740					
IMR 800X	6.5	.69	.66	NA	7.2	730	13900	CUP 1	.570		
IIVIII GOOX	0.0		-								

44 SPECIAL (Continued)

	ST	ARTING	3 104	ADS						
Powder Type	Start Grains	Volume	Auto- Disk	Lee	NEVER EXCEE	Velocit D FPS	y Pressure	Unit	Mimim	ım
250 Grain Jac	keted		Dion	отррог	LAULL	, 110	I I Cooule	UIIII	s OAI	
HS6	8.5	.61	.61	NA	8.5	992	14400	CII	P 1.56	0
H4227	12.1	.93	.88	NA	13.5	952	17700	-	1.56	_
HP38	5.0	.46	.46	NA	5.0	788	14200		1.56	
								001	1.00	_
250 Grain Lea	ıd									
H4227	14.9	1.15	1.09	NA	16.5	1109	17600	CHI	1.56	0
HS6	9.0	.64	.61	NA	9.0	1011	13100		1.56	
ACCUR #9	10.3	.68	.66	NA	11.5	946	14000		1.57	
ACCUR #7	8.1	.53	.53	.5	9.0	885	14000		1.57	
ACCUR #5	6.3	.39	.37	NA	7.0	864	14000		1.57	
ACCUR #2	4.5	.38	.37	NA	5.0	808	13900		1.57	
A NITRO100	4.0	.53	.53	.5	4.4	800	14000		1.57	_
HP38	4.9	.45	.43	NA	4.9	775	13900		1.56	
			7					001	11.00	
265 Grain Jac	keted									
H4227	13.0	1.00	.95	1.0	13.0	929	15700	CLIE	1.560	-
HS6	7.0	.50	.49	.5	7.0	833	14700		1.560	
						000	14700	COI	1.500	_
267 Grain Lead	d									
v-N350	7.4	.72	.71	.7	8.2	942	14700	CIP	1.539	
v-N330	6.5	.70	.66	.7	7.2	937		CIP		
v-N340	6.6	.70	.66	.7	7.3	926		CIP	1.539	
v-N320	5.5	.66	.66	NA	6.1	874		CIP	1.539	_
				79.07		071	14700	CII	1.555	
275 Grain Jack	ceted									
H4227	11.2	.87	.82	NA	12.5	852	17700	CLIP	1.560	
300 Grain Jack					. 2.10	302	17700	COF	1.500	

H4227

9.8

.76

.70

11.5

752

18600

CUP 1.560

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available

Copyright 11-13-1999

4 REMINGTON MAGNUM

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Units OAL			
180 Grain Jack	eted						OUD 4 FOF			
H110	NA	NA	NA	NA	29.0 1873	33000	CUP 1.535			
v-N110	25.6	2.13	DBLD	1.9	28.4 1837	34200	CIP 1.602			
HERC 2400	21.6	1.61	DBLD	1.6	23.3 1760	33700	PSI 1.585			
BLUE DOT	17.5	1.51	1.46	NA	19.0 1725	34000	PSI 1.585			
ACCUR #7	18.1	1.18	1.18	NA	20.5 1707	40000	CUP 1.560			
H4227	28.0	2.15	DBLD	1.9	28.0 1701	30600	CUP 1.535			
HS7	19.0	1.29	1.26	NA	19.0 1694	29000	CUP 1.535			
HS6	15.7	1.12	1.09	1.0	16.5 1663	35200	CUP 1.535			
ACCUR #5	15.2	.95	.95	NA	16.4 1615	38100	CUP 1.560			
HERCO	12.2	1.37	1.36	1.3	13.6 1560	34900	PSI 1.585			
UNIQUE	11.6	1.27	1.26	NA	13.0 1550	35000				
v-N350	13.3	1.30	1.26	1.3	14.8 1539	34200	CIP 1.602			
BULLSEYE	10.8	1.15	1.09	NA	11.5 1520	33400				
v-N340	12.3	1.31	1.26	1.3	13.7 1509	34200				
GREEN DOT	10.2	1.29	1.26	NA	11.3 1470	34600				
ACCUR #2	10.8	.90	.88	NA	11.1 1444	36500				
RED DOT	9.0	1.28	1.26	NA	10.0 1410	34600				
v-N320	10.3	1.24	1.18	NA	11.4 1398	34200				
HP38	10.0	.93	.88	NA	10.0 1307	26200	CUP 1.535			

200 Grain Jac	keted					0.1000	OID	1 000
v-N110	23.1	1.93	DBLD	1.9	25.7 1698	34200	CIP	1.602
ACCUR #9	23.4	1.54	1.46	NA	25.0 1676	37800	CUP	1.595
HERC 2400	21.2	1.57	DBLD	NA	23.2 1665	34300	PSI	1.575

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocit	y Pressure	Mimimu Units OAL				
200 Grain Jac	keted (Contin	ued)	Name of Street, or other Designation of the Owner, where the Owner, which is the Owner, where the Owner, which is the			OIIILO OAL				
IMR 800X	13.8	1.48	1.46	NA	15.5 1600	39800	CUP 1.61				
BLUE DOT	15.9	1.38	1.36	1.3	17.0 1565	33400	PSI 1.57				
ACCUR #7	17.6	1.15	1.09	NA	18.7 1538	37500	CUP 1.59!				
ACCUR #5	14.0	.87	.82	NA	15.8 1532	40000	CUP 1.59!				
IMR4227	27.0	2.08	DBLD	1.9	27.0 1520	33800	CUP 1.610				
v-3N37	13.2	1.21	1.18	NA	14.7 1483	34200	CIP 1.602				
SR4756	13.0	1.43	1.36	1.3	14.6 1475	39800	CUP 1.610				
UNIQUE	11.8	1.29	1.26	NA	13.0 1475	34400	PSI 1.575				
HERCO	11.8	1.32	1.26	1.3	13.0 1455	34500	PSI 1.575				
v-N350	12.6	1.23	1.18	NA	14.0 1444	34200	CIP 1.602				
BULLSEYE	10.1	1.08	1.02	1.0	11.0 1420	34000	PSI 1.575				
v-N340	11.3	1.21	1.18	NA	12.6 1403	34200	CIP 1.602				
GREEN DOT	9.7	1.23	1.18	NA	10.7 1370	34500	PSI 1.575				
SR7625	10.8	1.13	1.09	1.0	12.1 1350	39700	CUP 1.610				
ACCUR #2	9.8	.83	.82	NA	11.0 1342		CUP 1.595				
IMR PB	10.7	1.29	1.26	NA	12.0 1340		CUP 1.610				
RED DOT	8.7	1.23	1.18	NA	9.7 1320		PSI 1.575				
v-N320	9.8	1.19	1.18	NA	10.9 1308		CIP 1.602				
IMR 700X	9.0	1.20	1.18	NA	10.1 1300		CUP 1.610				

210 Grain Jacketed

E 10 Grain	Jacketeu				
H110	NA	NA	NA	NA	27.0 1848 36000 CUP 1.535
H4227	25.6	1.97	DBLD	1.9	27.0 1648 35400 CUP 1.535
HS7		1.16	1.09	NA	17.0 1582 29800 CUP 1 535
HS6	15.5	1.10	1.09	1.0	15.5 1516 32400 CUP 1.535
WIN 231	10.5	.98	.95	NA	11.7 1385 38000 CUP 1.535
HP38	9.4	.87	.82	NA	9.4 1220 24200 CUP 1.535

215 Grain Lead

ACCUR #9	20.9	1.37	1.36	1.3	23.6.1	1655	40000	CUP 1.560
H110	NA	NA	NA	NA				CUP 1.535
H4227	25.3	1.94	DBLD	1.9				CUP 1.535
HS7	17.0	1.16	1.09	NA	17.0 1	541	24400	CUP 1.535
ACCUR #7	16.2	1.06	1.02	1.0				CUP 1.560
ACCUR #5	13.5	.84	.82	NA				CUP 1.560
ACCUR #2	9.2	.77	.76	.7	10.2 1	313	39300	CUP 1.560
HS6	13.0	.93	.88	NA	13.0 1	240	20200	CUP 1.535
HP38	6.9	.64	.61	NA				CUP 1.535

STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL			
225 Grain Jack	keted					316					
H110	NA	NA	NA	NA	24.0	1596	39200	CUP 1.535			
14227	22.2	1.71	DBLD	1.6	24.0	1529	36300	CUP 1.535			
MR 800X	13.7	1.47	1.46	1.3	15.4	1525	39800	CUP 1.585			
HERC 2400	18.7	1.38	1.36	1.3	20.5	1510	34400	PSI 1.575			
BLUE DOT	13.6	1.18	1.18	NA	15.2	1445	34900	PSI 1.575			
SR4756	13.0	1.43	1.36	1.3	14.5	1390	39600	CUP 1.585			
IMR4227	23.0	1.77	DBLD	1.6	23.0	1295	30700	CUP 1.585			
UNIQUE	9.6	1.05	1.02	1.0	10.7	1290	34800	PSI 1.575			
HERCO	9.9	1.11	1.09	1.0	11.0	1285	34700	PSI 1.575			
HS7	14.5	.99	.95	NA	14.5	1282	28800	CUP 1.535			
BULLSEYE	8.6	.91	.88	NA	9.5	1270	34600	PSI 1.575			
SR7625	10.4	1.09	1.09	1.0	11.7	1260	39900	CUP 1.585			
IMR PB	10.0	1.20	1.18	NA	11.2	1245	39900	CUP 1.585			
HS6	13.5	.96	.95	NA	13.5	1239	27900	CUP 1.535			
IMR 700X	8.7	1.17	1.09	NA	9.8	1235	40000	CUP 1.585			
GREEN DOT	8.3	1.05	1.02	1.0	9.2	1220	34700	PSI 1.575			
RED DOT	7.4	1.05	1.02	1.0	8.2	1185	34600				
HP38	8.4	.78	.76	.7	8.4	1090	24400	CUP 1.535			

240 Grain Jack	keted				
H110	NA	NA	NA	NA	24.0 1548 39300 CUP 1.535
ACCUR #9	18.8	1.24	1.18	NA	21.3 1500 40000 CUP 1.560
v-N110	19.3	1.61	DBLD	1.6	21.5 1500 34200 CIP 1.602
H4227	21.8	1.68	DBLD	1.6	24.0 1444 36900 CUP 1.535
HERC 2400	16.8	1.25	1.18	NA	18.7 1440 34800 PSI 1.585
WIN 296	NA	NA	NA	NA	24.0 1430 38000 CUP 1.535
ACCUR #7	15.3	1.00	.95	1.0	17.3 1415 40000 CUP 1.560
IMR 800X	12.7	1.36	1.36	1.3	14.2 1415 39600 CUP 1.590
ACCUR #5	12.8	.80	.76	NA	14.4 1383 39800 CUP 1.560
v-3N37	11.6	1.06	1.02	1.0	12.9 1284 34200 CIP 1.602
WIN 231	10.1	.94	.88	NA	11.2 1280 38000 CUP 1.535
v-N350	11.2	1.09	1.09	1.0	12.4 1279 34200 CIP 1.602
IMR4227	22.0	1.69	DBLD	1.6	22.0 1275 32600 CUP 1.590
SR4756	11.9	1.30	1.26	1.3	13.3 1260 39800 CUP 1.590
UNIQUE	9.2	1.01	.95	1.0	10.3 1250 34900 PSI 1.585
ACCUR #2	9.2	.77	.76	.7	10.0 1250 38600 CUP 1.560
HERCO	9.5	1.06	1.02	1.0	10.5 1245 34700 PSI 1.585
HS7	13.0	.88	.88	NA	13.0 1223 28000 CUP 1.535
v-N340	10.0	1.06	1.02	1.0	11.1 1221 34200 CIP 1.602
HS6	12.0	.85	.82	NA	12.0 1211 26600 CUP 1.535
IMR 700X	9.3	1.25	1.18	NA	10.3 1200 39400 CUP 1.590
SR7625	10.3	1.08	1.02	1.0	11.6 1190 39900 CUP 1.590

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEE	Velocit D FPS	y Pressure	Units	Mimimu OAL
240 Grain Jac	keted (Contin	ued)					Onico	UNL
GREEN DOT	7.8	.98	.95	NA	8.7	1190	35000	PSI	1.58
IMR PB	9.9	1.19	1.18	NA	11.1	1185	39800		1.59
BULLSEYE	8.9	.95	.95	NA	9.3	1170	32600		1.53
v-N320	8.5	1.03	1.02	1.0	9.5	1135	34200		1.60
RED DOT	6.9	.97	.95	NA	7.7	1090	35000	PSI	1.58
HP38	7.4	.69	.66	NA	7.4	1032	23400		1.53
240 Grain Lea									
WIN 296	NA	NA	NA	NA	25.0	1560	37500	CUP	1.53
ACCUR #9	19.4	1.27	1.26	NA	21.7	1550	39600	CUP	1.560
HERC 2400	18.6	1.38	1.36	1.3	20.6	1510	34700		1.600
BLUE DOT	15.0	1.30	1.26	1.3	16.6	1475	34700		1.600
ACCUR #7	15.6	1.02	1.02	1.0	17.5	1458	39700	CUP	1.560
IMR 800X	12.0	1.29	1.26	NA	13.4	1395	39600	CUP	
HERCO	11.6	1.30	1.26	1.3	12.5	1330	33800		1.600
SR4756	11.9	1.31	1.26	1.3	13.3	1320	39700	CUP	1.585
IMR4227	22.0	1.69	DBLD	1.6	22.0	1310	33300	CUP	1.585
WIN 231	9.9	.92	.88	NA	11.0	1285	38000		1.535
ACCUR #2	8.8	.74	.71	.7	10.0	1280	40000	CUP	1.560
UNIQUE	10.6	1.15	1.09	NA	11.8	1255	35000	PSI '	
SR7625	9.6	1.00	.95	1.0	10.7	1190		CUP '	
IMR 700X	8.4	1.13	1.09	1.0	9.5	1185		CUP '	
BULLSEYE	8.9	.95	.95	NA	9.8	1175			1.600
GREEN DOT	8.5	1.08	1.02	1.0	9.5	1170			1.600
250 Crain In al									

250 Grain Jacketed

ACCUR #9	18.9	1.24	1.18	NA	21.0 1449	39200	CUP 1.600
ACCUR #5	12.9	.80	.76	NA	14.5 1361	39700	CUP 1 600
ACCUR #7	15.1	.99	.95	NA	17.0 1330	39700	CLIP 1 600
ACCUR #2	9.7	.81	.76	NA	10.5 1231	38400	CUP 1 600
						00	00. 1.000

250 Grain Lead

11440							
H110	NA	NA	NA	NA	23.0 1602	35000	CUP 1 535
H4227	23.1	1.78	DBLD	1.6	24.0 1476	34800	CUP 1 535
HS7	13.0	.88	88	NIA.	12.0 1970	27000	CUP 1.535
HS6	12.0		.00	NIA	13.0 1237	2/800	CUP 1.535
HP38	1.2.0	.85	.82	NA	12.0 1176	24000	CUP 1.535
HP38	6.4	.59	.57	NA	6.4 881	16900	CUP 1.535

4 REMINGTON MAGNUM (Continued)

TILLIVING	3101									
STARTING LOADS Start Volume Auto, Lee NEVER Velocity Mimimum										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity Mimimum EXCEED FPS Pressure Units OAL					
265 Grain Jack										
1110	NA	NA	NA	NA	22.0 1507 34200 CUP 1.535					
14227	20.9	1.60	DBLD	1.6	22.0 1368 35400 CUP 1.535					
HERC 2400	15.4	1.14	1.09	NA	17.0 1300 34600 PSI 1.620					
HS7	14.0	.95	.95	NA	14.0 1295 31900 CUP 1.535					
HS6	13.5	.96	.95	NA	13.5 1287 33600 CUP 1.535					
BLUE DOT	11.5	.99	.95	NA	12.7 1250 34600 PSI 1.620					
HERCO	8.6	.96	.95	NA	9.5 1125 34700 PSI 1.620					
UNIQUE	8.4	.92	.88	NA	9.3 1125 34600 PSI 1.620					
BULLSEYE	7.5	.79	.76	.7	8.3 1110 34800 PSI 1.620					
GREEN DOT	7.0	.88	.88	NA	7.8 1045 35000 PSI 1.620					
RED DOT	6.4	.90	.88	NA	7.1 1000 34800 PSI 1.620					
267 Grain Lea	d									
v-N110	19.1	1.59	DBLD	NA	21.2 1443 34200 CIP 1.681					
v-3N37	11.4	1.04	1.02	1.0	12.7 1254 34200 CIP 1.681					
v-N350	11.0	1.07	1.02	1.0	12.2 1233 34200 CIP 1.681					
v-N340	10.1	1.07	1.02	1.0	11.2 1211 34200 CIP 1.681					
275 Grain Jac	keted									
H110	NA	NA	NA	NA	20.5 1341 34800 CUP 1.535					
H4227	18.2	1.40	1.36	1.3	20.5 1311 37700 CUP 1.535					
11-1227										
200 0	leated									
280 Grain Jac ACCUR #9	16.8	1.10	1.09	1.0	19.0 1350 40000 CUP 1.695					
ACCUR #7	15.5	1.01	.95	1.0	15.5 1277 34800 CUP 1.695					
ACCUR #5	11.8	.74	.71	.7	11.8 1151 29400 CUP 1.695					
ACCUR #3	9.2	.77	.76	.7	9.5 1139 36500 CUP 1.695					
ACCON #2	0.2									
200 0 : 1	-lo-A-d									
300 Grain Jac		NA	NA	NA	20.0 1303 34800 CUP1.535					
H110	16.3	1.07	1.02	1.0	17.7 1274 38320 CUP 1.595					
ACCUR #9	16.3	1.39	1.36	1.3	18.6 1271 34200 CIP 1.717					
v-N110	18.2			1.3	20.0 1244 36800 CUP 1.535					
H4227	11.8		.71	.7	13.0 1220 39000 CUP 1.595					
ACCUR #5			.88	NA	14.5 1190 38000 CUP 1.595					
ACCUR #7	13.5 8.9	.74	.71	.7	9.7 1060 38700 CUP 1.735					
ACCUR #2		.89	.88	NA	10.8 1057 34200 CIP 1.717					
v-3N37	9.7	.69	.00	IVA	10.0 1007 01200 011 11717					

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

44 REMINGTON MAGNUM (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Unit	Mimimu s OAL
300 Grain Jac	keted (Contin	ued)					Jiiit	OAL
v-N350	9.5	.93	.88	NA	10.6	1036	34200	CIP	1.71
v-N340	8.9	.95	.95	NA	9.9	1019	34200		1.71
300 Grain Lea	d								1.73
ACCUR #9	16.4	1.07	1.02	1.0	18.5	1320	40000	CUF	1.720
ACCUR #7	15.0	.98	.95	NA	15.0	1245	34000		1.720
ACCUR #5	11.6	.72	.71	.7	11.6	1140	32300		1.720
ACCUR #2	8.7	.73	.71	.7	9.5	1138	38800		1.720
									100
310 Grain Lea	d								1.0
HERC 2400	12.2	.91	.88	NA	13.5	1150	34600	PSI	1.600
BLUE DOT	9.6	.83	.82	NA	10.7	1110	34900		1.600
HERCO	7.2	.80	.76	NA	8.0	1005	35000	PSI	1.600
BULLSEYE	6.1	.65	.61	NA	6.8	975	35000	PSI	1.600
UNIQUE	6.5	.71	.71	.7	7.2	965		PSI	1.600
GREEN DOT	5.6	.71	.71	.7	6.2	895	34600	PSI	1.600
RED DOT	5.2	.74	.71	.7	5.8	885	34900	PSI	1.600
CALITION: With NEVER	EVOLED								

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

44 MARLIN

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	imimum OAL
200 Grain Jack	keted								
v-N120	49.9	3.87	NA	3.7			43500		
ACCUR 1680	53.7	3.52	NA	3.4	57.0	2730	41300		
ACCUR 2015BR	54.7	3.99	NA	3.7	60.0	2563			
v-N110	40.5	3.37	NA	3.1	45.0	2531	43500		
ACCUR 2460	56.4	3.70	NA	3.7	62.0	2487	42800		
ACCUR 2230	55.6	3.65	NA	3.4	61.0	2474	42700	CUP	2.520

225 Grain Bull	et						
H4198	44.8	3.36	NA		50.0 2480		
BL-C(2)	61.0	3.93	NA	3.7	61.0 2358	33600	CUP 2.500
H335	61.0	3.93	NA		61.0 2340		
H322	54.8	3.97	NA	3.7	55.0 2325	34000	CUP 2.500
H4895	56.0	4.08	NA	4.0	56.0 2301	33000	CUP 2.500
H4227	33.0	2.54	DBLD	2.5	33.0 2099	33300	CUP 2.500

240 Grain Bull	et						
H4198	43.2	3.24	DBLD	3.1	49.0 2407	38400	CUP 2.500
H335	60.0	3.87	NA		60.0 2309		
BL-C(2)	60.0	3.87	NA		60.0 2302		
H4895	56.0	4.08	NA	4.0	56.0 2265	33800	CUP 2.500

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

444 MARLIN (Continued)

....STARTING LOADS

See See See See	Start	Volum		DS	MEVED Volce:		N4: .
Powder Type	Grains	CC	Disk	Lee Dipper	NEVER Veloci EXCEED FPS	ressure Pressure	Mimimu Units OAL
240 Grain Bul		ntinue	d)				
H322	53.8	3.90	NA	3.7	55.0 2249	34600	CUP 2.50
H4227	30.6	2.35	DBLD	2.2	32.0 2061	35400	CUP 2.50
240 Grain Jac	keted						
v-N130	49.0	3.69	NA	3.4	54.4 2468	43500	CIP 2.50
v-N120	45.3	3.51	NA	3.4	50.3 2455		CIP 2.50
RELODER 7	45.2	3.29	DBLD		51.0 2400		
ACCUR 2015BR	49.8	3.64	NA	3.4	55.0 2359		
IMR4198	40.6	3.22	DBLD	3.1	47.0 2335		CUP 2.570
ACCUR 2230	50.4	3.31	NA	3.1	57.0 2320		CUP 2.520
ACCUR 2460	52.0	3.41	NA	3.4	57.0 2274		CUP 2.520
IMR4895	55.2	4.02	NA	4.0	56.0 2200		
IMR3031	54.5	4.15	NA	4.0	54.5 2175		
IMR4320	56.0	4.01	NA	4.0	56.0 2125		CUP 2.570
SR4759	28.8	2.86	DBLD	2.8	33.0 2055		CUP 2.570
IMR4064	54.5	4.06	NA	4.0	54.5 2055		CUP 2.570
IMR4227	28.1	2.16	DBLD	NA	32.5 2030		CUP 2.570
IMR4350	55.5	4.08	NA	4.0	55.5 1775		CUP 2.570
HERC 2400	25.0	1.85	DBLD	NA	25.0 1730		CUP 2.500
240 Grain Lea	d						
RELODER 7	42.5	3.09	DBLD	2.8	42.5 2080	28900	CUP 2.500
HERC 2400	22.0	1.63	DBLD	1.6	22.0 1725	27900	CUP 2.500
						27000	2.300
250 Grain Bull	et						
H4198	40.9	3.07	DBLD	2.8	47.0 2322	20000	CLID 2 FAA
BL-C(2)	59.0	3.81	NA	3.7	59.0 2322		CUP 2.500
H335	59.0	3.81	NA	3.7	59.0 2292 59.0 2290		CUP 2.500
H4895	55.0	4.00	NA	4.0	55.0 2221		CUP 2.500 CUP 2.500
H322	53.2	3.85	NA	3.7	54.0 2211		CUP 2.500
	30.2	3.00	11/1	5.7	J-1.0 ZZII	34400	CUP 2.500
265 Croin Bull	-4						
265 Grain Bulle	51.8	3.76	NIA	2 7	F4.0.0045	0.000	- 1724
H4198	41.9		NA	3.7	54.0 2248		CUP 2.500
114130	41.9	3.14	DBLD	3.1	46.0 2242	37200	CUP 2.500
CALITION MELL NIEVE							-17,126

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
265 Grain Jacketed									
v-N130	46.2	3.48	NA	3.4	51.3	2320	43500	CIP	2.500
v-N120	43.3	3.36	NA	3.1	48.1	2320	43500	CIP	2.500
ACCUR 2015BR	48.8	3.56	NA	3.4	52.0	2221	41500		
ACCUR 2460	49.9	3.27	DBLD	3.1	56.0	2217	43700	CUP	2.570
RELODER 7	44.3	3.23	DBLD	3.1	47.0	2215	35800	CUP	2.500
ACCUR 2230	48.7	3.20	DBLD	3.1	55.0	2206			
ACCUR 2520	54.5	3.72	NA	3.7		2166			
HERC 2400	25.0	1.85	DBLD	NA	25.0	1715	22100	CUP	2.500

300 Grain Bull	et						
H335	48.7	3.14	DBLD	3.1	57.0 2152		
H322	51.5	3.73	NA	3.7	52.0 2089	34200	CUP 2.500
H4895	53.0	3.86	NA	3.7	53.0 2039		
H4198	34.8	2.61	DBLD	2.5	41.0 1938		
BL-C(2)	58.0	3.74	NA	3.7	58.0 1904	31000	CUP 2.500

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

		ARTING	LOA	\DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	N Units	limimum OAL
154 Grain Lea	d								
v-N340	7.6	.82	.82	NA	8.5	1276	20000	CIP	1.240
v-N320	6.0	.73	.71	.7	1		20000		
WIN ACTION PI	8.2	.67	.66	NA	1		19700		
wSUPER-LIT	5.8	.49	.49	NA			19900		
WIN 540	8.7	.60	.57	NA	9.6	1060	19800	PSI	1.200

1	55	Grain	Lead

	u						
ACCUR #7	11.9	.78	.76	.7	13.3 1223	20200 PSI	1.240
ACCUR #2	6.6	.55	.53	.5		20600 PSI	
UNIQUE	6.9	.76	.76	.7		19200 PSI	
ACCUR #5	9.8	.61	.61	NA		18500 PSI	
HERCO	7.6	.85	.82	NA	8.5 1185	19100 PSI	1.270
BULLSEYE	6.1	.65	.61	NA	6.9 1175	19400 PSI	1.270
GREEN DOT	5.8	.74	.71	.7		19300 PSI	
RED DOT	5.3	.74	.71	.7	5.8 1155	18800 PSI	1.270
A NITRO100	6.5	.88	.88	NA		17600 PSI	

160 Grain Bullet

HP38	6.7	.62	.61	NA	8.0	1179	19900	CUP 1.190
------	-----	-----	-----	----	-----	------	-------	-----------

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

45 ACP - 45 AUTO (Continued)

....STARTING LOADS....

Powder Type
ACCUR #7 ACCUR #2 6.1 .51 .49 .5 6.5 1079 19400 PSI 1.130 ACCUR #5 9.0 .56 .53 .5 9.0 1074 17800 PSI 1.130 ACCUR #5 A NITRO100 5.6 .75 .71 .7 6.0 1072 19400 PSI 1.130 180 Grain Lead v-N340 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI V-N5 .61 .61 NA WSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT SULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
ACCUR #2 ACCUR #5 9.0 .56 .53 .5 9.0 1074 17800 PSI 1.130 A NITRO100 5.6 .75 .71 .7 6.0 1072 19400 PSI 1.130 180 Grain Lead v-N340 7.0 .75 .71 .7 7.8 1167 20000 CIP 1.244 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 wSUPER-LIT 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
ACCUR #5 9.0 .56 .53 .5 9.0 1074 17800 PSI 1.130 A NITRO100 5.6 .75 .71 .7 6.0 1072 19400 PSI 1.130 180 Grain Lead v-N340 7.0 .75 .71 .7 7.8 1167 20000 CIP 1.244 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
A NITRO100 5.6 .75 .71 .7 6.0 1072 19400 PSI 1.130 180 Grain Lead v-N340 7.0 .75 .71 .7 7.8 1167 20000 CIP 1.244 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
180 Grain Lead v-N340 7.0 .75 .71 .7 7.8 1167 20000 CIP 1.244 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 1980 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
v-N340 7.0 .75 .71 .7 7.8 1167 20000 CIP 1.244 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0
v-N340 7.0 .75 .71 .7 7.8 1167 20000 CIP 1.244 v-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0
V-N320 5.8 .70 .66 .7 6.4 1116 20000 CIP 1.244 wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
wSUPER-FLD 6.7 .56 .53 .5 7.4 1060 20000 PSI 1.190 WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
WIN ACTION PI 7.5 .61 .61 NA 8.3 1055 20000 PSI 1.190 WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
WIN 231 5.7 .53 .53 .5 6.3 1020 20000 PSI 1.190 wSUPER-TAR 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
wsuper-tar 4.9 .59 .57 NA 5.4 1000 20000 PSI 1.190 wsuper-lit 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
wSUPER-LIT 5.4 .45 .43 NA 5.9 990 19800 PSI 1.190 BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
BULLSEYE 5.4 .57 .57 NA 5.4 985 15800 PSI 1.190 WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
WIN 540 8.0 .55 .53 .5 9.0 980 20300 PSI 1.190
HERCO 6.7 .75 .71 .7 6.7 950 15800 PSI 1.190
BLUE DOT 9.0 .78 .76 .7 9.0 920 13600 PSI 1.190
GREEN DOT 5.3 .67 .66 NA 5.3 910 14500 PSI 1.190
RED DOT 4.8 .68 .66 NA 4.8 900 14100 PSI 1.190
UNIQUE 6.0 .66 .66 NA 6.0 875 13400 PSI 1.190
UNIQUE 0.0 .00 100 III O
10E o in Industrial
185 Grain Jacketed v-N340 7.3 .78 .76 .7 8.1 1149 20000 CIP 1.268
7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6
ACCOR #3
ACCUR #7 10.5 .69 .66 NA 12.0 1066 20600 PSI 1.135 v-N320 5.8 .71 .71 .7 6.5 1047 20000 CIP 1.268
WIN 571 10.5 .71 .71 .7 11.3 1045 19400 PSI 1.190
UNIQUE 7.4 .81 .76 NA 8.2 1030 18900 PSI 1.275
WIN ACTION PI 7.3 .59 .57 NA 8.1 1000 20000 PSI 1.190
ACCUR #2 6.3 .53 .53 .5 6.5 996 18700 PSI 1.135
A NITRO100 5.3 .72 .71 .7 5.8 995 19600 PSI 1.135
BULLSEYE 5.9 .63 .61 NA 6.7 995 19400 PSI 1.275
HERCO 7.6 .85 .82 NA 8.2 990 18500 PSI 1.275
GREEN DOT 6.0 .76 .76 .7 6.8 990 19300 PSI 1.275
IMR 800X 7.5 .80 .76 NA 8.2 980 17700 CUP 1.150
CLAYS 4.7 .68 .66 NA 4.9 974 17400 CUP1.190
WIN 540 8.1 .55 .53 .5 9.0 950 20000 PSI 1.190
wSUPER-FLD 7.0 .59 .57 NA 7.0 950 17600 PSI 1.190
IMR 700X 4.9 .66 .66 NA 5.5 950 17900 CUP 1.150
RED DOT 5.2 .73 .71 .7 5.9 940 19500 PSI 1.275
SR4756 7.5 .83 .82 NA 8.4 940 17900 CUP 1.150

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

45 ACP - 45 AUTO (Continued)

....STARTING LOADS....

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEE	Velocity D FPS	y Pressure	Unit	Mimimui s OAL
185 Grain Jac			ued)						
wSUPER-LIT	5.3	.45	.43	NA	5.9	935	20000	PSI	1.190
WIN 231	5.9	.55	.53	.5	6.1	920	18600		
HS6	8.6	.61	.61	NA	8.6	917	15100		
HP38	5.9	.55	.53	.5	5.9	906	15800		
SR7625	5.9	.62	.61	NA	6.5	895	17700		
wSUPER-TAR	5.0	.61	.61	NA	5.3	890	19000		
IMR PB	5.3	.64	.61	NA	5.9	890	17900		1.150
200 0	L			,	÷				
200 Grain Jac v-N350	7.1	60	66	N.I.A.	7.0	4057	00000		
ACCUR #5	8.5	.69 .53	.66	NA	7.9	1057	20000		
v-N340			.53	.5	9.7	1050	20600		1.225
ACCUR #7	6.4 11.3	.68	.66	NA	7.1	1048	20000		1.240
BLUE DOT	ISS SAUCEOPIA	.74	.71	.7	12.0	1036	19200		1.225
v-N320	9.3	.80	.76	NA	10.6	1000	19500		1.175
UNIQUE	5.2	.63	.61	NA	5.8	983	20000		1.240
wSUPER-FLD	6.2	.68	.66	NA	7.1	975	19500		1.175
WIN ACTION PI	6.6	.55	.53	.5	7.1	970	19500		1.190
ACCUR #2	6.9	.56	.53	.5	7.7	965	20100		1.190
BULLSEYE	6.0	.50	.49	.5	6.5	963	19700		1.225
HERCO	5.3	.56	.53	.5	6.0	960	19400		1.175
WIN 571	6.8	.76	.76	.7	7.7	955	19300		1.175
IMR 800X	8.8	.60	.57	NA	9.8	945	20000		1.190
	7.4	.79	.76	.7	8.3	940	18000		1.170
A NITRO100 GREEN DOT	6.0	.81	.76	NA	6.0	940	17500		1.225
Maria de la companya del la companya de la companya	5.3	.67	.66	NA	5.9	915	18900		1.175
WIN 231	5.4	.50	.49	.5	5.8	905	19500		1.190
WIN 540 RED DOT	7.7	.53	.53	.5	8.5	895	19900		1.190
wSUPER-TAR	4.6	.65	.61	NA	5.2	890	19200		1.175
SR4756	4.7	.57	.57	.5	5.2	885	19900		1.190
wSUPER-LIT	7.3	.81	.76	NA	8.1	880	17770		
SR7625	5.0	.42	.40	NA	5.4	875	19600		
A STATE OF THE PARTY OF THE PAR	6.0	.63	.61	NA	6.4	825	17200		
IMR PB IMR 700X	5.6	.68	.66	NA	6.0	825	17200		
IIVIN /UUX	4.7	.63	.61	NA	5.1	815	17500	CUP	1.170
200 0									

	200	Grain	Lead
--	-----	-------	------

v-N340	6.3	.67	.66	NA	7.0	1095	20000	CIP	1 240
ACCUR #5	8.1	.50	.49	5			19400		
ACCUR #7	11.1	.73		.5					
v-N320		.,,	.71	./			18700		
	4.9	.60	.57	NA	5.5		20000		
wSUPER-FLD	6.2	.52	.49	.5	6.7	970	19400	PSI	1.190

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

13 AUI		010			,				
	STA	RTING	LOA	DS	NEVER 1	Alocity	La Participa Sin	M	imimum
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER \ EXCEED	FPS	Pressure	Units	OAL
200 Grain Lea		nued)						1 3	
WIN ACTION PI	7.0	.56	.53	.5	7.6	970	19700	PSI	1.190
A NITRO100	5.5	.74	.71	.7	5.5	952	18100		1.190
IMR 800X	7.1	.76	.76	.7	7.9	950	18000		1.170
WIN 571	8.8	.60	.57	NA	9.5	945	19500		1.190
ACCUR #2	5.8	.49	.49	NA	5.8	939	17400	PSI	1.190
SR4756	7.4	.81	.76	NA	8.2	930	17900		
IMR 700X	5.0	.67	.66	NA	5.5	930	17700		
WIN 540	7.5	.51	.49	.5	8.3	925	20000		
HP38	5.5	.51	.49	.5	5.6	914	16900		
WIN 231	5.1	.47	.46	NA	5.5	910	19600		1.190
wSUPER-LIT	4.9	.42	.40	NA	5.4	910	19800	PSI	1.190
HS6	8.4	.60	.57	NA	8.4	907	16300		
SR7625	5.8	.61	.61	NA	6.5	900	18000		1.170
wSUPER-TAR	4.6	.56	.53	.5	5.1	885	19900	PSI	1.190
IMR PB	5.3	.64	.61	NA	5.9	885	17900	CUP	1.170
UNIQUE	5.1	.56	.53	.5	5.1	810	9600	PSI	1.190
RED DOT	4.0	.57	.57	.5	4.0	805	9400	PSI	1.190
GREEN DOT	4.3	.54	.53	.5	4.3	805	9900	PSI	1.190
BULLSEYE	4.0	.43	.43	NA	4.0	790	9800	PSI	1.190
220 0									
220 Grain Lea	5.4	.50	.49	.5	5.4	886	16400	CUP	1.190
HS6	8.3	.59	.57	NA	8.3	885	16400		
ПЗО	0.5	.00	.07	147 (0.0				15.00
230 Grain Jac	keted							OID	1 000
v-N350	6.8	.67	.66	NA	7.6	987	20000		1.260
v-N340	6.1	.65	.61	NA	6.8	974	20000		1.260
ACCUR #5	8.1	.51	.49	.5	8.7	927	19300	-	1.250
ACCUR #7	11.0	.72	.71	.7	11.0	922	17800		1.250
GREEN DOT	5.4	.68	.66	NA	5.4	920	15800		1.190
RED DOT	5.0	.71	.71	.7	5.0	910	16200		1.190
BULLSEYE	5.0	.53	.53	.5	5.0	905	16200		1.190
BLUE DOT	8.5	.74	.71	.7	8.5	900	16200		1.190
v-N320	4.9	.60	.57	NA	5.5	898	20000		1.260
UNIQUE	6.0	.66	.66	NA	6.0	895	16000		1.190
HERCO	6.2	.70	.66	.7	6.2	890	16200		1.190
A NITRO100	5.3	.71	.71	.7	5.6	885	19100		1.250
CLAYS	4.5	.66	.66	NA	4.7	874	17400		1.190
ACCUR #2	5.7	.48	.46	NA	6.1	874	19200		1.250
wSUPER-FLD	5.6	.47	.46	NA	6.1	850	19600	PSI	1.190

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

.5

.53

WIN 571

8.1

.55

8.9

845

1.190

19900 PSI

STARTING LOADS

	51	ARTING	LU	4D5					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEE	Velocit D FPS	Pressure	Unit	Mimimu s OAL
230 Grain Jac			ied)	Name and Advanced			. 10000010	Oiiit	OAL
IMR 800X	6.6	.71	.71	.7	7.3	840	17800	CUF	1.26
WIN ACTION PI	5.9	.48	.46	NA	6.6	835	20200		
HP38	5.2	.49	.49	NA	5.3	832	16800		
HS6	8.2	.58	.57	NA	8.2	825	15400		
WIN 540	6.9	.47	.46	NA	7.6	800	19900		
wSUPER-TAR	4.4	.53	.53	.5	4.9	800	19900		
SR4756	6.8	.74	.71	.7	7.4	795	17600		
WIN 231	4.6	.43	.43	NA	5.1	785	20000		
IMR 700X	4.5	.61	.61	NA	5.0	770	17700		
wSUPER-LIT	4.3	.37	.37	NA	4.8	770	19900		1.190
IMR PB	4.9	.60	.57	NA	5.5	750	17900		
SR7625	5.5	.58	.57	NA	6.0	745	17400		
230 Grain Lea		07						1 1/2	
ACCUR #5	10.2	.67	.66	NA	11.0	979	19400		1.230
	7.8	.48	.46	NA	8.5	968	19800	-	1.230
WIN ACTION PI wSUPER-FLD	6.7	.54	.53	.5	7.3	915	19600		1.190
A NITRO100	5.7 5.1	.48	.46	NA	6.2	910	19600		1.190
WIN 571		.69	.66	NA	5.3	898	18800		1.230
WIN 231	7.9 4.6	.54	.53	.5	8.7	890	19800		1.190
ACCUR #2	5.6	.43 .47	.43	NA	5.1	870	19800		1.190
WIN 540			.46	NA	5.6	870	17200		1.230
SR4756	7.0 6.8	.47	.46	NA	7.6	860	19700		1.190
IMR 800X	6.4	.69	.71	.7	7.5	860			1.270
wSUPER-LIT	4.4	.37		NA	7.2	860	18000		
SR7625	5.6	.59	.37	NA NA	4.8	840	19800		
HERCO	5.2		.57		6.2	825	17700		
IMR PB	4.9			NA	5.2	815	13600		1.190
RED DOT	4.9		.57	NA .5	5.5	810	17900		
BULLSEYE	4.0		.43	.5 NA	4.0	810	12800		1.190
wSUPER-TAR	4.0		.43	1916	4.0	810	13900		1.190
GREEN DOT	4.0		.53	NA .5	4.5	805	20100		1.190
UNIQUE	5.0		.53	.5	4.3	805	13200		1.190
IMR 700X	4.3		.53 .57	NA	5.0	790	11800		1.190
/ 00/	7.3	.57	.57	NA	4.7	775	17700 (JUP	1.270

240 Grain Jacketed

	aonotoa								
ACCUR #7	9.4	.62	.61	NA	10.5	901	20100	PSI	1.215
ACCUR #9	12.4	.82	.82	NA	12.5	879	18200	PSI	1.215
ACCUR #5	7.4	.46	.46	NA	8.3	874	20300	PSI	1 215
BLUE DOT	7.3	.64		NA	8.3	865	19300	PSI	1.210

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

45 ACP - 45 AUTO (Continued)

TO ACI	TJ A	UIC	(001	ıtınueu	1				
	STA	RTING	LOA	DS	NEVER	/ 1 - 2-			A::
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER '	Velocity FPS	Pressure	Units	Mimimum 6 OAL
240 Grain Jack	keted (0	Contin	ued)						
A NITRO100	5.0	.67	.66	NA	5.4	832	19600	PSI	1.215
HERCO	5.8	.65	.61	NA	6.5	820	19200	PSI	1.210
UNIQUE	5.2	.57	.57	NA	5.9	820	19200	PSI	1.210
ACCUR #2	5.3	.44	.43	NA	5.7	811	19600	PSI	1.215
BULLSEYE	4.5	.48	.46	NA	5.0	810	18900		1.210
GREEN DOT	4.4	.56	.53	.5	5.0	790	19300		1.210
RED DOT	4.0	.57	.57	.5	4.5	770	19200	PSI	1.210
250 Grain Jac	keted								
ACCUR #7	9.1	.59	.57	NA	10.5	898	20900	PSI	1.230
ACCUR #9	10.9	.71	.71	.7	12.5	886	20800		1.230
ACCUR #5	7.6	.47	.46	NA	8.0	854	19100		1.230
A NITRO100	4.8	.64	.61	NA	5.4	801	20500	PSI	1.230
ACCUR #2	5.2	.43	.43	NA	5.7	792	20000	PSI	1.230
250 Grain Lea	d								
ACCUR #9	10.5	.69	.66	NA	12.0	870	20600	PSI	1.260
ACCUR #7	9.5	.62	.61	NA	9.5	832	17100	PSI	1.260
ACCUR #5	7.0	.44	.43	NA	7.1	820	18300	PSI	1.260
ACCUR #2	4.8	.41	.40	NA	5.2	808	19400	PSI	1.260
A NITRO100	4.7	.63	.61	NA	4.8	806	18600	PSI	1.260
						P.			
260 Grain Bull	lot								
HS7	9.3	.63	.61	NA	9.3	853	15900	CUF	1.190
HS6	7.9	.56	.53	.5	8.0	849	16800		
HP38	5.1	.47	.46	NA	5.1	800	16400		
пгэо	5.1	. 7 /	.+0	INA	0.1	-			
000 0									
260 Grain Jac		G.F.	61	NIA	8.3	780	19000	DCI	1.210
BLUE DOT	7.5	.65	.61	NA	5.4	760	19400		1.210
UNIQUE	4.8	.52	.49	.5			18600		1.210
HERCO	5.4	.61	.61	NA	5.9	750	18000	P31	1.21

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

NA

.40

4.5

725

.42

4.0

BULLSEYE

1.210

19400 PSI

	ST	ARTING	LOA	DS					المستعاد
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	Mimimum
154 Grain Lea	d		ania a				. roodaro	Oilita	UAL
v-N340	6.8	.73	.71	.7	7.6	1174	16000	CIP	1 240
v-N320	5.4	.65	.61	NA			16000		
WIN ACTION PI	7.3	.59	.57	NA			15760		
wSUPER-LIT	5.2	.44	.43	NA	5.7	998	15920		
WIN 540	7.8	.53	.53	.5	8.6	975	15840		The second second

155 Grain Lea	d								
ACCUR #7	10.6	.70	.66	.7	11.9	1125	16160	PSI	1 240
ACCUR #2	5.9	.49	.49	NA			16480		
UNIQUE	6.2	.68	.66	NA			15360		
ACCUR #5	8.7	.54	.53	.5			14800		
HERCO	6.8	.76	.76	.7			15280		
BULLSEYE	5.5	.58	.57	NA		1081	15520		
GREEN DOT	5.2	.66	.66	NA	5.9	1072	15440		
RED DOT	4.7	.67	.66	NA	400				
A NITRO100	5.8	.78	.76	.7	5.8	1056	14080		1.240

160 Grain	Bullet							
HP38	5.9	.55	.53	.5	7.1	1085	15920	CUP 1.190

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-15-1996

-5 AUTORIM (Continued)

	STA	RTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER '	Velocity FPS	Pressure	Units	imimum OAL
170 Grain Lead									
ACCUR #7	9.7	.64	.61	NA	11.2	1078	16640	PSI	1.130
ACCUR #2	5.4	.45	.43	NA	5.8	993	15520	PSI	1.130
ACCUR #5	8.0	.50	.49	.5	8.0	988	14240	PSI	1.130
A NITRO100	4.9	.67	.66	NA	5.3	986	15520	PSI	1.130
180 Grain Lea					7.0	1074	16000	CIP	1.244
v-N340	6.3	.67	.66	NA	7.0	1074	16000		1.244
v-N320	5.1	.62	.61	NA	5.7	1027	16000		
wSUPER-FLD	5.9	.50	.49	.5	6.6	975	16000	PSI	1.190
WIN ACTION PI	6.7	.54	.53	.5	7.4	971			1.190
WIN 231	5.0	.47	.46	NA	5.6	938	16000		1.190
wSUPER-TAR	4.3	.52	.49	.5	4.8	920	16000	PSI	1.190
wSUPER-LIT	4.8	.41	.40	NA	5.3	911	15840		
BULLSEYE	4.8	.51	.49	.5	4.8	906	12640		1.190
WIN 540	7.1	.48	.46	NA	8.0	902	16240	PSI	1.190
HERCO	6.0	.67	.66	NA	6.0	874	12640	PSI	1.190
BLUE DOT	8.0	.69	.66	NA	8.0	846	10880		1.190
GREEN DOT	4.7	.59	.57	NA	4.7	837	11600		1.190
RED DOT	4.3	.61	.61	NA	4.3	828	11280		1.190
UNIQUE	5.3	.58	.57	NA	5.3	805	10720	PSI	1.190
185 Grain Jac	keted 6.5	.69	.66	NA	7.2	1057	16000	CIP	1.268
v-N340		.47	.46	NA	8.5	995	16400		1.135
ACCUR #5	7.5	(5) (6)(5)			10.7	981	16480		1.135
ACCUR #7	9.4	.61	.61	NA NA	5.8	963	16000		1.268
v-N320	5.2	.64	.61	NA	10.1	961	15520		1.190
WIN 571	9.4		.71	.7	7.3	948	15120		1.275
UNIQUE	6.6	.72 .53	.53	.5	7.2	920	16000		1.190
WIN ACTION PI	6.5	.47	.46	NA	5.8	916	14960		1.135
ACCUR #2	5.6			NA	5.2	915	15680		1.135
A NITRO100	4.8	.65 .56	.61	.5	6.0	915	15520		1.275
BULLSEYE	5.3 6.7	.76	.76	.7	7.3	911	14800		1.275
HERCO		.68	.66	NA	6.1	911	15440		1.275
GREEN DOT	5.4 6.6	.71	.71	.7	7.3	902			1.150
IMR 800X	4.2	.62	.61	NA	4.4	896			1.190
CLAYS	7.2	.49	.49	NA	8.0	874	16000		
WIN 540	6.2	.52	.49	.5	6.2	874	14080		
wSUPER-FLD		.52	.57	NA	4.9	874	14320		P 1.150
IMR 700X	4.4		.66	NA	5.3		15600		
RED DOT	4.6	.66	.71	.7	7.5		14320		P 1.150
SR4756	6.7	./4	. / 1	. /			h or longer	- 55	

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

	STA			DS				
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocit FPS	y Pressure	Mimimu Units OAL
185 Grain Jac		Contin					110000010	OIIILS OAL
wSUPER-LIT	4.8	.40	.40	NA	5.3	860	16000	PSI 1.190
WIN 231	5.2	.49	.49	NA	5.4	846	14880	
HS6	7.7	.55	.53	.5	7.7	844		CUP 1.190
HP38	5.3	.49	.49	NA	5.3	834	12640	
SR7625	5.3	.55	.53	.5	5.8	823		CUP 1.150
wSUPER-TAR	4.5	.54	.53	.5	4.7	819	15200	
IMR PB	4.8	.57	.57	NA	5.3	819	14320	CUP 1.150
200 0								r i Lin
200 Grain Jac v-N350		00	0.1	NIA	7.4	070		
ACCUR #5	6.4	.62	.61	NA	7.1	972	16000	
	7.6	.48	.46	NA	8.7	966	16480	
v-N340 ACCUR #7	5.7	.60	.57	NA	6.3	964	16000	
The state of the s	10.1	.66	.66	NA	10.7	953	15360	
BLUE DOT	8.3	.72	.71	.7	9.5	920	15600	
v-N320 UNIQUE	4.7	.57	.57	.5	5.2	904	16000	
wSUPER-FLD	5.5	.60	.57	NA	6.3	897	15600	
WIN ACTION PI	5.8	.49	.49	NA	6.3	892	15600	
ACCUR #2	6.2 5.3	.50	.49	.5	6.9	888	16080	
BULLSEYE			.43	NA	5.8	886	15760	
HERCO	4.7	.50	.49	.5	5.3	883	15520	
WIN 571	6.1 7.9	.68	.66	NA	6.9	87.9	15440	
IMR 800X			.53	.5	8.8	869	16000	
A NITRO 100	6.6	.71	.71	.7	7.4	865		CUP 1.170
GREEN DOT	5.3 4.8	.71	.71	.7	5.3	865	14000	
WIN 231	4.8			NA	5.3	842	15120	
WIN 540	6.9	.45	.43	NA	5.2	833	15600	
RED DOT	4.1	.47	.46 .57	NA	7.6	823	15920	
wSUPER-TAR	4.2	.50	.49	NA .5	4.6	819	15360	
SR4756	6.5	.72	.71	.7	4.6	814	15920	
wSUPER-LIT	4.4	.37	.37	NA		810	15680	CUP 1.170
SR7625	5.3	.56	.53	.5	5.7	759		
IMR PB	5.0	.60	.57	NA		759		CUP 1.170
IMR 700X	4.1	.56	.53	.5	4.5	750		CUP 1.170 CUP 1.170
				.0	7.0	, 50	14000	COF 1.170

200 Grain Lead	200	Grain	Lead
----------------	-----	-------	------

200 Grain Le	au								
v-N340	5.6	.59	.57	NA	6.2	1007	16000	CIP	1.240
ACCUR #5	7.3	.45	.43				15520		
ACCUR #7	10.0	.65	.61	NA			14960		
v-N320	4.4	.53	.53	.5			16000		
wSUPER-FLD	5.6	.47	.46	NA			15520		A Comment of the Comment

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

0 / 10 1 0 11	101								
	STA	RTING	LOA	Lee	NEVER V	/elocity		Mi	mimum
Powder Type	Start Grains	Volume CC	Auto- Disk	Dipper	NEVER V Exceed	FPS '	Pressure	Units	OAL
200 Grain Lea		nued)							
VIN ACTION PI	6.2	.50	.49	.5	6.8	892	15760		1.190
NITRO100	4.9	.66	.66	NA	4.9	876	14480		1.190
MR 800X	6.3	.68	.66	NA	7.1	874	14400		
VIN 571	7.9	.53	.53	.5	8.5	869	15600	PSI	1.190
ACCUR #2	5.2	.44	.43	NA	5.2	864	13920		1.190
SR4756	6.6	.72	.71	.7	7.3	856	14320		
MR 700X	4.5	.60	.57	NA	4.9	856	14160		1.170
WIN 540	6.7	.46	.46	NA T	7.4	851	16000		1.190
HP38	4.9	.46	.46	NA	5.0	841	13520		1.190
WIN 231	4.5	.42	.40	NA	4.9	837	15680		1.190
wSUPER-LIT	4.4	.37	.37	NA	4.8	837	15840	PSI	1.190
HS6	7.5	.53	.53	.5	7.5	834	13040		1.190
SR7625	5.2	.54	.53	.5	5.8	828	14400		1.170
wSUPER-TAR	4.1	.49	.49	NA	4.5	814	15920	PSI	1.190
IMR PB	4.8	.57	.57	NA	5.3	814	14320		1.170
UNIQUE	4.5	.49	.49	NA	4.5	745	7680	PSI	1.190
RED DOT	3.5	.49	.49	NA	3.5	741	7520	PSI	1.190
GREEN DOT	3.8	.48	.46	NA	3.8	741	7920	PSI	1.190
BULLSEYE	3.5	.37	.37	NA	3.5	727	7840	PSI	1.190
220 Grain Lea	_		40	NIA	10	815	13120	CLIP	1 190
HP38	4.8	.44	.43	NA	4.8	814	13120		
HS6	7.4	.53	.53	.5	7.4	014	13120	COI	1.150
230 Grain Jac	cketed						10000	CID	1.260
v-N350	6.1	.60	.57	NA	6.8	908	16000		1.260
v-N340	5.5	.59	.57	NA	6.1	896	16000		
ACCUR #5	7.3	.45	.43	NA	7.8	853	15440		1.250
ACCUR #7	9.8	.64	.61	NA	9.8	848			
GREEN DOT	4.8	.61	.61	NA	4.8	846			1.190
RED DOT	4.4	.62	.61	NA	4.4	837		PSI	1.190
BULLSEYE	4.4	.47	.46	NA	4.4	833			1.190
BLUE DOT	7.6	.66	.66	NĄ	7.6	828			1.190
v-N320	4.4	.53	.53	.5	4.9	826			1.260
UNIQUE	5.3	.58	.57	NA	5.3	823			1.190
HERCO	5.5	.62	.61	NA	5.5	819			1.190
A NITRO100	4.7	.64	.61	NA	5.0	814			1.250
CLAYS	4.0	.59	.57	NA	4.2	804			1.190
ACCUR #2	5.1	.43	.43	NA	5.4	804			1.250
wSUPER-FLD	5.0	.42	.40	NA	5.4				1.190
WIN 571	7.2	.49	.49	NA	8.0	777	15920) PSI	1.190

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available STARTING LOADS...

Powder Type	Start Grains	Volume CC	Disk	Lee Dipper	NEVER EXCEE	Velocit D FPS	Pressure	Mimim Units OA
230 Grain Jac	keted (Continu	ued)					
IMR 800X	5.9	.63	.61	NA	6.5	773	14240	CUP 1.26
WIN ACTION PI	5.3	.43	.43	NA	5.9	768		PSI 1.19
HP38	4.7	.43	.43	NA	4.7	765		CUP 1.19
HS6	7.3	.52	.49	.5	7.3	759		CUP 1.19
WIN 540	6.2	.42	.40	NA	6.8		15920	
wSUPER-TAR	4.0	.48	.46	NA	4.4	736	15920	
SR4756	6.0	.66	.66	NA	6.6	731		CUP 1.26
WIN 231	4.1	.38	.37	NA	4.5	722		PSI 1.19
IMR 700X	4.0	.54	.53	.5	4.4	708		CUP 1.26
wSUPER-LIT	3.9	.33	.32	.3	4.3	708	15920	
IMR PB	4.4	.53	.53	.5	4.9	690		CUP 1.26
SR7625	4.9	.51	.49	.5	5.3	685		CUP 1.26
230 Grain Lea								
ACCUR #7	9.1	.60	.57	NA	9.8	901	15520	PSI 1.23
ACCUR #5	6.9	.43	.43	NA	7.6	891	15840	
WIN ACTION PI	6.0	.48	.46	NA	6.5	842	15680	
wSUPER-FLD	5.1	.42	.40	NA	5.5	837	15680	
A NITRO 100	4.5	.61	.61	NA	4.7	826	15040	
WIN 571	7.1	.48	.46	NA	7.8	819	15840	
WIN 231	4.1	.38	.37	NA	4.5	800	15840	
ACCUR #2	5.0	.42	.40	NA	5.0	800	13760	
WIN 540	6.2	.42	.40	NA	6.8	791	15760	
SR4756	6.1	.67	.66	NA	6.7	791		CUP 1.27
MR 800X	5.7	.61	.61	NA	6.4	791		CUP 1.27
wSUPER-LIT	3.9	.33	.32	.3	4.3	773	15840	
SR7625	5.0	.52	.49	.5	5.5	759		CUP 1.27
HERCO	4.6	.52	.49	.5	4.6	750		PSI 1.19
MR PB	4.4	.53	.53	.5	4.9	745		CUP 1.27
RED DOT	3.5	.49	.49	NA	3.5	745	10240	
BULLSEYE	3.5	.37	.37	NA	3.5	745	11120	
wSUPER-TAR	3.6	.43	.43	NA	4.0	741	16080	
GREEN DOT	3.8	.48	.46	NA	3.8	741	10560	
JNIQUE	4.4	.48	.46	NA	4.4	727		PSI 1.190
MR 700X	3.8	.51	.49	.5	4.2	713		CUP 1.270

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available
Copyright 08-15-1996

.5

.7

NA

.5

9.4

11.2

7.4

7.4

829

809

804

796

16080 PSI

14560 PSI 1.215

16240 PSI 1.215

15440 PSI 1.210

.53

.71

.40

.57

ACCUR #7

ACCUR #9

ACCUR #5

BLUE DOT

8.5

11.1

6.6

6.5

.55

.73

.41

.57

15 AUTORIM (Continued)

TO ACTO	IIIAI (C	ontinu	eu/						
and the same of the		RTING		DS					
Powder Type		Volume CC		Lee Dipper	NEVER_\	/elocity FPS	Pressure		Mimimum OAL
240 Grain Jac	The second second	Continu	ued)						
A NITRO100	4.4	.60	.57	NA	4.8	765	15680		1.215
HERCO	5.2	.58	.57	NA	5.8	754	15360	PSI	1.210
UNIQUE	4.7	.51	.49	.5	5.3	754	15360	PSI	1.210
ACCUR #2	4.7	.39	.37	NA	5.1	746	15680	PSI	1.215
BULLSEYE	4.0	.42	.40	NA	4.4	745	15120		1.210
GREEN DOT	3.9	.49	.49	NA	4.4	727	15440	PSI	1.210
RED DOT	3.6	.50	.49	.5	4.0	708	15360	PSI	1.210
4			3						
250 Grain Ja	cketed								
ACCUR #7	8.1	.53	.53	.5	9.4	826	16720		1.230
ACCUR #9	9.7	.64	.61	NA	11.2	815	16640		1.230
ACCUR #5	6.7	.42	.40	NA	7.1	786	15280		1.230
A NITRO100	4.2	.57	.57	NA	4.8	737	16400		1.230
ACCUR #2	4.6	.39	.37	NA	5.1	729	16000	PSI	1.230
250 Grain Le	ad								-
ACCUR #9	9.4	.62	.61	NA	10.7	800	16480		1.260
ACCUR #7	8.5	.56	.53	.5	8.5	765	13680		1.260
ACCUR #5	6.2	.39	.37	NA	6.3	754	14640		1.260
ACCUR #2	4.3	.36	.34	NA	4.6	743	15520		1.260
A NITRO100	4.2	.56	.53	.5	4.3	742	14880	PSI	1.260
6									
260 Grain Bu	ullet							1886	
HS7	8.3	.56	.53	.5	8.3	785			P 0.000
HS6	7.0	.50	.49	.5	7.1	781			P 1.190
HP38	4.5	.42	.40	NA	4.5	736	13120	CU	P 1.190
			4						
260 Grain Ja	acketed								
BLUE DOT	6.6	.58	.57	NA	7.4	718	15200	PSI	1.210
UNIQUE	4.2	.46	.46		4.8	699	15520	PSI	1.210
HERCO	4.9	.55	.53	.5	5.3	690	14880	PSI	1.210
TILITOO	7.5	27	27	NΙΛ	4.0	667	15520	PSI	1 210

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

NA

.37

.37

3.5

BULLSEYE

667

4.0

15520 PSI

1.210

45 WINCHESTER MAGNUM

	ST	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mi Units	mimum OAI
185 Grain J	acketed								
ACCUR #9	29.9	1.96	DBLD	1.9	30.0	1889	35200	CUP '	1.555
v-3N37	17.0	1.55	DBLD	NA			42061		
ACCUR #7	20.6	1.34	1.26	1.3			35800		
ACCUR #2	13.0	1.09	1.09	1.0			37800		
ACCUR #5	16.5	1.03	1.02	1.0			36200		

200	Grain	Jacketed
200	Giaiii	Jacketed

v-N110	26.2	2.18	DBLD	NA	26.2 1864 36840 CIP 1.570
ACCUR #9	26.9	1.77	DBLD	1.6	29.5 1854 38400 CUP 1.570
v-3N37	15.9	1.45	1.36	1.3	17.9 1745 42061 CIP 0.000
ACCUR #7	20.5	1.34	1.26	1.3	20.5 1595 34700 CUP 1.570
ACCUR #5		1.01			17.0 1586 36600 CUP 1.570
ACCUR #2	11.8	.99			13.5 1514 40000 CUP 1.570

230 Grain Jacketed

	2110104						
v-N110	22.7	1.89	DBLD	NA	25.5 1778	42061	CIP 1.570
ACCUR #9	24.9	1.64	DBLD		27.5 1738		
v-3N37	14.7	1.34	1.26		16.5 1601		
ACCUR #7	19.0	1.24	1.18	NA			
ACCUR #5	15.4	.96	.95	NA	15.5 1430		
ACCUR #2	11.5	.96	.95	NA	12.5 1357		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

15 WINCHESTER MAGNUM (Continued)

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
240 Grain Jack	keted							21124 400		
ACCUR #9	21.0	1.38	1.36	1.3	24.0	1606		CUP 1.490		
ACCUR #7	19.0	1.24	1.18	NA	19.0	1448	34800	CUP 1.490		
ACCUR #5	12.7	.79	.76	.7	14.5	1400	40000			
ACCUR #2	10.0	.84	.82	NA	11.0	1205	38500	CUP 1.490		
250 Grain Jac	keted				04.5	1500	40000	CUP 1.480		
ACCUR #9	18.8	1.24	1.18	NA		1500		The second secon		
ACCUR #7	16.6	1.09	1.09	1.0	18.8			CUP 1.480		
ACCUR #5	13.0	.81	.76	NA	14.5		39000			
ACCUR #2	8.8	.73	.71	.7	10.0	1103	40000	CUP 1.480		
260 Grain Jacketed										
ACCUR #7	17.3	1.13	1.09	1.0	19.0	1441	38500	CUP 1.515		

260 Grain Jac	keted						01104 545
ACCUR #7	17.3	1.13	1.09	1.0	19.0 1441	38500	CUP 1.515
ACCUR 1680	30.0	1.96	DBLD	1.9	30.0 1374	31300	CUP 1.515
ACCUR #5	13.1	.82	82	NA	14.5 1295	38800	CUP 1.515
	9.9	.83	.82	NA	11.0 1136	39100	CUP 1.515
ACCUR #2	3.3	.03	.02	14/1	11.0		

300 Grain Jac	keted						
ACCUR #9	19.9	1.31	1.26	1.3	21.5 1402	37900	CUP 1.565
ACCUR 1680	24.6	1.61	DBLD	1.6	28.0 1323	39900	CUP 1.565
ACCUR #7	16.1	1.05	1.02	1.0	17.5 1261	38200	CUP 1.565
ACCUR #5	12.2		.76		13.5 1142	38800	CUP 1.565
ACCUR #2	9.4	.79	.76	_	10.0 970	37400	CUP 1.565

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-15-1996

45 COLT
Sometimes called 45 LONG COLT

STA	ARTING	LOA	DS					
Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	/limimum
ad						ricocarc	Omita	UAL
11.0	1.07	1.02	1.0	12.2	1247	13300	CIP	1 594
9.9	1.06	1.02	1.0					
9.4	1.02	1.02	1.0					
8.0	.97	.95	NA					
5.9	.71	.71	.7					
	Start Grains ad 11.0 9.9 9.4 8.0	Start Volume CC ad 11.0 1.07 9.9 1.06 9.4 1.02 8.0 .97	Start Volume Auto- Disk CC Disk CC CC CC CC CC CC CC	Start Volume Auto- Lee Disk Dipper	Start Volume Auto- Lee Disk Dipper EXCEED	Start Volume Auto- Lee NEVER Velocity	11.0 1.07 1.02 1.0 12.2 1247 13300 9.9 1.06 1.02 1.0 11.0 1233 13300 9.4 1.02 1.02 1.0 10.5 1229 13300 8.0 .97 .95 NA 8.9 1158 13300	Start Grains Volume Grains CC Disk Dipper EXCEED FPS Pressure Units

185 Grain	Bullet							
HP38		.74	.71	.7	8.5	979	13000	CUP 1.550
HS6	12.0	.85	.82	NA	12.0	949	12000	CUP 1.550

185 Grain Ja	cketed							
v-N320	8.2	.99	.95	NA	9.1	1137	13300	CIP 1.594
ACCUR #5	12.0	.75	.71					CUP 1.575
A NITRO100	6.8	.91	.88	NA	7.6	1073	14000	CUP 1.575

Bullet							
11.7	.83	.82	NA	12.0	810	12600	CUP 1 550
8.0	.74						
	11.7	11.7 .83	11.7 .83 .82	11.7 .83 .82 NA	11.7 .83 .82 NA 12.0	11.7 .83 .82 NA 12.0 810	11.7 .83 .82 NA 12.0 810 12600

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-15-1996

45 COLT (Continued)

Sometimes called 45 LONG COLT

Jan and Break and a second	STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	imimum OAL			
200 Grain Jac	keted											
v-N320	7.6	.93	.88	NA	8.5	1079	13300	CIP	1.594			
ACCUR #5	10.7	.67	.66	NA	11.5	1032	13400	CUP	1.595			
A NITRO100	6.4	.86	.82	NA	7.1	998	13900					
GREEN DOT	7.1	.90	.88	NA	8.0	940	12500					
BLUE DOT	12.3	1.06	1.02	1.0	13.0	925	11800	CUP	1.550			
RED DOT	6.2	.88	.88	NA	7.0	915	12600					
UNIQUE	8.7	.95	.95	NA	9.0	895	11600					
BULLSEYE	5.7	.60	.57	NA	6.0	870	11800	CUP	1.550			
200 Grain Lea	200 Grain Lead											
v-N340	10.1	1.07	1.02	1.0	11.2	1156	13300	-	1.594			
v-N320	8.1	.98	.95	NA	9.0	1102	13300	CIP	1.594			
210 Grain Lea v-N320 v-N310	6.2 4.9	.74	.71 .57	.7 NA	6.5 5.5	970 930	12700 13400	-	1.525			
215 Grain Lea								The Control				
ACCUR #5	12.1	.75	.71	.7	12.1	1027	12500					
A NITRO100	6.2	.84	.82	NA	7.0	961	14000	CUP	1.575			
225 Grain Lea	d	-					1	3				
ACCUR #5	10.9	.68	.66	NA	12.1	1033	13800		1.620			
A NITRO100	6.3	.85	.82	NA	6.9	933	13600	CUP	1.620			
230 Grain Bull								OUID	4.550			
HS7	13.1	.89	.88	NA	15.0	887	14000		the second part of the second			
HS6	11.4	.81	.76	NA	12.0	777	12900					
HP38	7.5	.69	.66	NA	7.5	744	12000	CUP	1.550			
230 Grain Jac	keted											
v-N340	9.0	.96	.95	NA	10.0	1032	13300	CIP	1.594			
v-N320	7.1	.86	.82	NA	7.9	970	13300	CIP	1.594			
			200 12 500									

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 09-16-1996

45 COLT (Continued) Sometimes called 45 LONG COLT

	ST		Auto	Lac		Walasia		DA:			
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	FPS	Pressure	Mimim Units OA			
230 Grain Ja	cketed	Contin	ued)		7 7 8 7 9						
ACCUR #5	9.8	.61	.61	NA	11.0	969	14000	CUP 1.59			
A NITRO100	6.0	.82	.82	NA	6.8	901	14000	CUP 1.59			
240 Grain Ja	cketed										
ACCUR #5	9.3	.58	.57	NA	10.5	970	14000	CUP 1.59			
A NITRO100	6.0	.80	.76	NA	6.7	880	14000	CUP 1.59			
240 Grain Lead											
ACCUR #5	10.1	.63	.61	NA	11.3	988	14000	CUP 1.57			
A NITRO100	5.9	.79	.76	.7	6.6	908		CUP 1.57			
250 0			4.								
<u>250 Grain Bu</u> HS7	11.1	.75	.71	.7	12.0	000	11100	OUD 4 FF			
15 <i>7</i> 1S6					13.0	822	14400	CUP 1.55			
HP38	11.5 6.9	.82 .64	.82 .61	NA NA	7.0	744		CUP 1.55			
250.0							8				
250 Grain Ja ACCUR #5	9.8	.61	.61	NA	11.0	800	14000	CUP 1.57			
A NITRO100			0.000	NA		700					
A MILLIO TOO	6.0	.80	.76	INM	6.7	/ 00	14000	CUP 1.57			
		.80	.76	IVA	6.7	700	14000	CUP 1.57			
250 Grain Le	ad										
250 Grain Le MR 800X	ad 8.6	.92	.88	NA	9.5	915	13700	CUP 1.60			
250 Grain Le MR 800X HERCO	ad 8.6 8.0	.92	.88	NA NA	9.5 9.0	915 910	13700 12600	CUP 1.60 CUP 1.55			
250 Grain Le MR 800X HERCO SR7625	8.6 8.0 7.8	.92 .89	.88 .88 .76	NA NA NA	9.5 9.0 8.7	915 910 895	13700 12600 13900	CUP 1.60 CUP 1.55 CUP 1.60			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT	8.6 8.0 7.8 10.5	.92 .89 .81	.88 .88 .76	NA NA NA	9.5 9.0 8.7 11.5	915 910 895 890	13700 12600 13900 12200	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.55			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT SR4756	ad 8.6 8.0 7.8 10.5 9.2	.92 .89 .81 .91	.88 .88 .76 .88	NA NA NA NA	9.5 9.0 8.7 11.5 10.0	915 910 895 890 885	13700 12600 13900 12200 13500	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.55 CUP 1.60			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT SR4756 GREEN DOT	8.6 8.0 7.8 10.5 9.2 6.2	.92 .89 .81 .91 1.01 .78	.88 .88 .76 .88 .95	NA NA NA 1.0	9.5 9.0 8.7 11.5 10.0 6.8	915 910 895 890 885 855	13700 12600 13900 12200 13500 12300	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.55			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT SR4756 GREEN DOT JNIQUE	8.6 8.0 7.8 10.5 9.2 6.2 7.6	.92 .89 .81 .91 1.01 .78	.88 .88 .76 .88 .95 .76	NA NA NA 1.0	9.5 9.0 8.7 11.5 10.0 6.8 8.0	915 910 895 890 885 855 850	13700 12600 13900 12200 13500 12300 11800	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.55 CUP 1.55 CUP 1.55			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT SR4756 GREEN DOT JNIQUE RED DOT	8.6 8.0 7.8 10.5 9.2 6.2 7.6 5.6	.92 .89 .81 .91 1.01 .78 .83	.88 .76 .88 .95 .76	NA NA NA 1.0 .7 NA	9.5 9.0 8.7 11.5 10.0 6.8 8.0 6.0	915 910 895 890 885 855 850 830	13700 12600 13900 12200 13500 12300 11800 12000	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.60 CUP 1.55 CUP 1.55 CUP 1.55			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT SR4756 GREEN DOT JNIQUE RED DOT	8.6 8.0 7.8 10.5 9.2 6.2 7.6 5.6 6.6	.92 .89 .81 .91 1.01 .78 .83 .79	.88 .76 .88 .95 .76 .82 .76	NA NA NA 1.0 .7 NA .7	9.5 9.0 8.7 11.5 10.0 6.8 8.0 6.0 7.2	915 910 895 890 885 855 850 830 830	13700 12600 13900 12200 13500 12300 11800 12000 13600	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.60 CUP 1.55 CUP 1.55 CUP 1.55 CUP 1.60			
250 Grain Le MR 800X HERCO SR7625 BLUE DOT SR4756 GREEN DOT JNIQUE RED DOT	8.6 8.0 7.8 10.5 9.2 6.2 7.6 5.6	.92 .89 .81 .91 1.01 .78 .83	.88 .76 .88 .95 .76	NA NA NA 1.0 .7 NA	9.5 9.0 8.7 11.5 10.0 6.8 8.0 6.0	915 910 895 890 885 855 850 830	13700 12600 13900 12200 13500 12300 11800 12000 13600 13700	CUP 1.60 CUP 1.55 CUP 1.60 CUP 1.60 CUP 1.55 CUP 1.55 CUP 1.55			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

NA

.7

10.4

7.8

961

920

13400 CUP 1.600

13600 CUP 1.600

.57

.71

255 Grain Lead

9.7

6.9

.60

.74

ACCUR #5

v-N340

	STARTING LOADS											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	Velocity FPS	Pressure	Mimimum Units OAL				
255 Grain Lead	and the second second		Dion	Бірроі								
A NITRO100	5.8	.78	.76	.7	6.2	886	13400	CUP 1.600				
WIN 231	6.4	.59	.57	NA	7.1	875	13000	CUP 1.550				
v-N320	5.6	.68	.66	NA	6.1	870	13100	CUP 1.600				
v-N310	4.7	.57	.57	NA	5.2	830	13300	CUP 1.600				
260 Grain Bullet												
HS7	10.8	.73	.71	.7	12.5	788	14200	CUP 1.550				
HS6	11.0	.78	.76	.7	11.0	709	11700	CUP 1.550				
HP38	6.0	.56	.53	.5	6.0	697	11600	CUP 1.550				
260 Grain Jac	keted											
ACCUR #5	9.3	.58	.57	NA	10.5	762	14000					
A NITRO100	6.1	.82	.82	NA	6.5	679	13300	CUP 1.600				
275 Grain Bull	et											
HS7	10.5	.71	.71	.7	12.0	749	14000	CUP 1.550				
HS6	10.4	.74	.71	.7	10.5	666	12400					
HP38	6.0	.56	.53	.5	6.0	639	12000	CUP 1.550				
300 Grain Bull	et											
HS7	9.4	.64	.61	NA	11.0	694		CUP 1.550				
HS6	8.4	.60	.57	NA	9.0	632	13100	CUP 1.550				
300 Grain Jac	keted											
HERC 2400	11.4	.85	.82	NA	12.5	735	12200	CUP 1.580				
BLUE DOT	9.1	.79	.76	.7	10.0	730	12300	CUP 1.580				
UNIQUE	6.0	.66	.66	NA	6.8	690	12600					
HERCO	6.4	.72	.71	.7	7.2	670	12500					
GREEN DOT	5.1	.64	.61	NA	5.7	645	12500					
BULLSEYE	4.5	.48	.46	NA	5.0	605	12400					
RED DOT	4.4	.62	.61	NA	4.8	550	12200	CUP 1.580				

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 09-16-1996

454 CASULLFor regular Lead and Jacketed Bullets.

USE RIFLE PRIMERS

STARTING LOADS

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mim Units (imum DAL
185 Grain Bu	ullet	1000							
HP38	10.0	.93	.88	NA	10.0	945	21400	CUP 1.	600

200 Grain Bullet

= o o orani	Danot				
H110	NA	NA	NA	NA	37.5 2042 39400 CUP 1.650
H4227	32.0	2.46	DBLD	2.2	32.0 1670 31100 CUP 1.650
HS7	21.0	1.43	1.36	1.3	21.0 1519 34400 CUP 1.650
HS6					19.0 1489 34700 CUP 1.650
HP38	10.0	.93	.88	NA	10.0 924 23600 CUP 1.650
	10.0	.00	.00	IVA	10.0 324 23000 COP 1.0

230 Grain Bullet

H110	NA	NA	NA	NA	37.0	1928	41400	CUP 1.700
H4227	30.0	2.31						CUP 1.700
HS6								CUP 1.700
HS7								CUP 1.700
HP38	9.0		.82					CUP 1.700

240 Grain Jacketed

ACCUR #9	26.4	1.73	DBLD	1.6	28.0 1753	39800	CUP 1.705
ACCUR 1680	32.0	2.09	DBLD	1.9	36.0 1702	42200	CUP 1.705

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 08-15-1996

454 CASULL (Continued) For regular Lead and Jacketed Bullets.

	ST/	ARTING	LOA	DS				NA: :
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
250 Grain Bull	et							
H110	NA	NA	NA	NA				CUP 1.700
H4227	29.0	2.23	DBLD	2.2				CUP 1.700
HS7	18.0	1.22	1.18	NA				CUP 1.700
HS6	17.0	1.21	1.18	NA	17.0	1240	35400	CUP 1.700
HP38	9.0	.83	.82	NA	9.0	840	28200	CUP 1.700

250 Grain Jac	keted						
v-N110	25.3	2.11	DBLD	1.9	25.3 1610	28720	CUP 1.695
v-N350	14.8	1.45	1.36	1.3	16.4 1525	48600	CUP 1.695
v-N340	13.0	1.39	1.36	1.3	14.5 1461	48960	CUP 1.695
v-N320	11.0	1.33	1.26	1.3	11.0 1262	38440	CUP 1.695

260 Grain Jac	keted						
ACCUR #9	26.0	1.71	DBLD	1.6	26.8 1657	38600	CUP 1.710
ACCUR 1680	30.9	2.02	DBLD	1.9	35.0 1646	42500	CUP 1.710
ACCON 1000	00.0	2.02					

300 Grain Ja	cketed						01104 700
v-N110	24.2	2.02	DBLD	1.9	26.5 1631	48080	CUP 1.760
v-N350	13.7	1.34	1.26	1.3	15.2 1342	48600	CUP 1.760
v-N340	12.1	1.29	1.26	NA	13.5 1281	48980	CUP 1.760

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 09-16-1996 NA = None Available

454 CASULL USE ONLY HARD CORE FREEDOM ARMS BULLETS

USE RIFLE PRIMERS

		ARTING					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER Velocity EXCEED FPS	Pressure	Mimimum Units OAI
240 Grain Har	d Core	Freedo	m Arn	ns Bull	et		JIII OAL
H110	NA	NA	NA	NA		54100	CUP 1.700
ACCUR #9	27.3	1.79	DBLD	1.6	31.0 1916		
v-N110	28.2	2.35	DBLD	2.2	31.0 1877		CUP 1.760
H4227	34.0	2.61	DBLD	2.5	34.0 1792		
ACCUR 1680	38.0	2.49	DBLD	2.2	38.0 1769		
HS7	24.0	1.63	DBLD	1.6	25.5 1746		
HS6	21.5	1.53	1.46	NA	21.5 1641		CUP 1.700
v-N350	15.4	1.51	1.46	NA	17.2 1564	48660	CUP 1.760
HP38	13.5	1.25	1.18	NA	13.5 1421		CUP 1.700

260 Grain Hard Core Freedom Arms Bullet

NA	NA	NA	NA	37.0 2005 53800 CUP 1.700
1				30.0 1835 52800 CUP 1.765
				30.4 1816 48820 CUP 1.760
				38.5 1780 50800 CUP 1.765
33.0	2.54	DBLD	2.5	33.0 1759 46000 CUP 1.700
				24.0 1701 51700 CUP 1.700
20.5	1.46	1.46	1.3	20.5 1562 44200 CUP 1.700
12.5	1.16	1.09	NA	12.5 1248 36600 CUP 1.700
	27.1 27.2 36.1 33.0 21.9 20.5	27.1 1.78 27.2 2.27 36.1 2.36 33.0 2.54 21.9 1.49 20.5 1.46	27.1 1.78 DBLD 27.2 2.27 DBLD 36.1 2.36 DBLD 33.0 2.54 DBLD 21.9 1.49 1.46	27.1 1.78 DBLD 1.6 27.2 2.27 DBLD 2.2 36.1 2.36 DBLD 2.2 33.0 2.54 DBLD 2.5 21.9 1.49 1.46 NA 20.5 1.46 1.46 1.3

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

454 CASULL (Continued)
USE ONLY HARD CORE FREEDOM ARMS BULLETS

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL		
300 Grain Hard	Core	Freedo	m Arn	ns Bull	et					
H110	NA	NA	NA	NA	31.5	1780		CUP 1.700		
H4227	26.4	2.03	DBLD	1.9	30.0	1634	53700	CUP 1.700		
v-N110	23.5	1.96	DBLD	1.9	26.6	1634	49380	CUP 1.760		
ACCUR 1680	30.2	1.98	DBLD	1.9	34.5	1622	54500	CUP 1.755		
ACCUR #9	24.1	1.58	DBLD	NA	25.0	1575	49500	CUP 1.755		
HS7	20.7	1.41	1.36	1.3	22.0	1501	50200	CUP 1.700		
v-N120	31.0	2.40	DBLD	2.2	31.0	1491	43760	CUP 1.760		
HS6	19.0	1.35	1.26	1.3	19.0	1450	46200	CUP 1.700		
HP38	11.5	1.06	1.02	1.0	11.5	1076	43200	CUP 1.700		
HP38	11.5	1.06	1.02	1.0	11.5	1076	43200	CUP 1.700		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

..STARTING LOADS...

Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	/elocit FPS	y Pressure	V Units	limimum OAL
190 Grain Bul	let	The state of the s							The second second
NOBELPIS 2	5.4	.46	.46	NA	6.0	795	NA	NA	1.000
NOBELPIS 3	3.7	.43	.43	NA	4.1	780	NA		1.000

220 Grain Bullet

Ordin Dui	101							
UNIQUE	4.0	.43	.43	NA	4.4	800	12600	CUP 1.000
HERCO	4.3	.48	.46	NA	1			CUP 1.000
BULLSEYE	3.3	.35	.34	NA				CUP 1.000
GREEN DOT	3.2	.41	.40	NA				CUP 1.000
RED DOT	3.1	.44	.43	NA				CUP 1.000

235 Grain Bullet

NOBELPIS 2	5.2	.45	.43	NA	5.8	790	NA	NA 1.100
NOBELPIS 3	3.6	.42	.40	NA	4.0	765	NA	NA 1.100

250 Grain Bullet

NOBELPIS 3	3.6	.42	.40	NA	4.0	745	NA	NA 1.100
								NA 1.100

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

155 WEBLEY (Continued)

Powder Type	Grains	CC	Disk	Dipper	EXCEED	rra	riessuie	Ullita	UNL
260 Grain Bulle	et								
NOBELPIS 3	3.7	.43	.43	NA	4.1	715	NA		1.100
NOBELPIS 2	4.9	.42	.40	NA	5.4	665	NA	NA	1.100
205 0 : 5 !!									
265 Grain Bull			= 0		0.0	770	12600	CLID	1 2/15
BLUE DOT	6.1	.53	.53	.5	6.8	770			
BULLSEYE	3.4	.36	.34	NA	3.8	750	12600		
HERCO	4.4	.49	.49	NA	4.9	735	12700		
UNIQUE	3.9	.42	.40	NA	4.3	710	12600	CUP	1.245
GREEN DOT	3.3	.42	.40	NA	3.6	690	12400	CUP	1.245
RED DOT	3.1	.44	.43	NA	3.4	685	12300	CUP	1.245
	4.9	.42	.40	NA	5.4	630	NA	NA	1.245
NOBELPIS 2	2 4 5			8 88 8		630	NA	NA	1.245
NOBELPIS 3	3.0	.35	.34	NA	3.3	030	IVA	IVA	1.270

....STARTING LOADS.... Start Volume Auto- Lee

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available
Copyright 09-16-1996

43 SPANISH (11.15 x 58R) These are 45-70 loads reduced 10% for your safety.

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum 0 A I	
300 Grain Bull	et						1.000010	Oiiits	UAL	
H4198	26.6	2.00	DBLD	1.9	29.6	1419	NA	NA	2.675	
300 Grain Jac	keted									
RELODER 7	27.2	1.98	DBLD	1.9	30.5	1334	14760	CUP	2.675	
HERC 2400	19.9	1.47	1.46	1.3	22.4		14850			
BLUE DOT	13.5	1.16	1.09	NA	14.8	1012	14490			
340 Grain Lead	t									

ACCUR 3100	A CANADA STATE OF THE STATE OF	4.03		4.0	53.9 131.	2 13590	PSI	2.720
ACCUR 8700	53.9	3.71	NA	3.7	53.9 110	7 9360	PSI	2.720
350 Grain Bul	let							

ACCUR 3100 53.9 4.03

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 07-14-1997 NA = None Available 3 SPANISH (11.15 x 58R) (Continued)

hese are 45-70 loads	reduced	10%	for	your	safety.
----------------------	---------	-----	-----	------	---------

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk [Lee Dipper	NEVER Y EXCEED	Velocity FPS	Pressure	Units	imimum OAL	
378 Grain Lead	C SHOW NO WAY									
ACCUR 2495BR	44.3	3.31	NA	3.1	44.9	1547	13050	PSI	2.765	
ACCUR 4350	45.1	3.33	NA	3.1	48.5	1317	13860	PSI	2.765	
	50.3	3.76	NA	3.7	50.3	1212	12510	PSI	2.765	
ACCUR 3100 ACCUR 8700	53.9	3.71	NA	3.7	53.9	1061	7470	PSI	2.765	
ACCUR 8700	55.5	5.71	147	017						
385 Grain Lead				1.0	04.4	1001	14670	CLID	2.775	
RELODER 7	28.2	2.05	DBLD	1.9		1334			2.775	
HERC 2400	15.8	1.17	1.09	NA	17.0	984	14193			
BLUE DOT	13.4	1.16	1.09	NA	13.4	957	7380	CUP	2.775	
405 Grain Bull	ot									
H4198	24.2	1.82	DBLD	1.6	26.9	1108	NA	NA	2.760	
	28.3	1.82	DBLD	NA	31.4	1096	15840	CUP	2.760	
BL-C(2)	20.5	1.02	DDLD							
405 Grain Jac				1.0	00.5	1000	14220	CLIP	2.900	
RELODER 7	28.3	2.06	DBLD	1.9	30.5				2.900	
HERC 2400	17.1	1.27	1.26	NA	17.9	920	13770	CUP	2.900	
420 Grain Lea	d									
ACCUR 4350	44.4	3.29	DBLD	3.1	50.3	1356	14580	PSI	2.800	
ACCUR 8700	53.9	3.71	NA	3.7	53.9	1072	10530	PSI	2.800	
ACCOR 8700	00.0	0.71								
475 Grain Lea	T	0.70	DDI 5	2.5	40.4	1440	14400	PSI	2.880	
ACCUR 2495BR	1	2.70	DBLD		40.4				2.880	
ACCUR 4350	35.9		DBLD		40.4				2.880	
ACCUR 3100	38.6		DBLD		44.0	11 11 11			2.880	
ACCUR 8700	48.5		NA	3.1	53.9		14310	1 151	2.000	
CALITION, With NEVEL	EXCEE	LOADS	maintain	Minimu	um Over /	All Lengt	n or longer.			

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 07-14-1997

Support the National Rifle Association of America

The NRA is the foremost guardian of the traditional right to "keep and bear arms." This right, guaranteed by the Bill of Rights of the Constitution of the United States of America, is under constant attack.

The NRA is the lobby most feared by the extreme liberal politicians and media. I urge you, if not already a member, to call 1-800-672-3888 now, for membership information.

F-70 U.S. GOVERNMENT OR ALL GUNS IN GOOD CONDITION

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL	
300 Grain Bulle	et					. =		B I A	0.475	
H4198	29.7	2.23	DBLD	2.2	33.0	1542	NA	NA	2.475	
300 Grain Jack	ceted						10100	CLID	2 475	
RELODER 7	30.3	2.21	DBLD	2.2	0		16400			
HERC 2400	22.2	1.65	DBLD	1.6	25.0	1410	16500			
BLUE DOT	15.0	1.30	1.26	1.3	16.5	1100	16100	CUP	2.475	
340 Grain Lea	d								0.500	
ACCUR 2495BR	49.9	3.73	NA	3.7	57.0	1850	18000	PSI	2.520	
ACCUR 4350	51.9	3.84	NA	3.7	59.0	1573	17900	PSI	2.520	
ACCUR 3100	60.0	4.49	NA	4.3	60.0	1426	15100	PSI	2.520	
ACCUR 8700	60.0	4.13	NA	4.0	60.0	1203	10400	PSI	2.520	
ACCON 6700	00.0	1.10	, .							

350 Grain Bu	ullet						0 475
H4198	28.8	2.16	DBLD	NA	32.0 1387	NA	NA 2.475
H4130	20.0						

378 Grain Lead	d							
ACCUR 2495BR	EO O	2 7/	ΝΔ	3 7	50.0 1681	14500	PSI	2.565
ACCUR 2495BR	50.0	3.74	INA	0.7	E4 0 1 4 0 1	15400	DCI	2 565
ACCUR 4350	54.0	4.00	NA	4.0	54.0 1431	15400	FSI	2.505
700011 1000								

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

45-70 U.S. GOVERNMENT (Continued) FOR ALL GUNS IN GOOD CONDITION

STARTING LOADS										
Powder Type	Start Grain:	Volum CC	e Auto- Disk	Lee Dippe	NEVER '	Velocit FPS	y Pressure	Unit	Mimimu	
378 Grain Lea	ad (Con	tinued		рро	LNOLLD	11.0	i icasule	UIII	s OAL	
ACCUR 3100	56.0	4.19		4.0	56.0	1317	13900	PSI	2.56	
ACCUR 8700	60.0	4.13	NA	4.0	60.0	1153	8300	PSI	2.565	
				-				. 01	2.000	
385 Grain Lea	ad									
RELODER 7	31.4	2.29	DBLD	2.2	35.0	1450	16300	CHE	2.575	
HERC 2400	17.6	1.31	1.26	1.3	19.0		15770		2.575	
BLUE DOT	15.0	1.30	1.26	1.3	200 2000 200	1040	8200		2.575	
							0200	001	2.375	
405 Grain Bul	let									
H4198	27.0	2.03	DBLD	1.9	30.0	1204	NA	NΙΛ	2.560	
BL-C(2)	31.5	2.03	DBLD	1.9	1	1191	17600		2.560	
					100.0	1101	17000	COI	2.560	
_ 405 Grain Jac	keted									
RELODER 7	31.5	2.29	DBLD	2.2	34.0	1395	15800	CLIE	2.700	
HERC 2400	19.1	1.42	1.36	1.3		1000	15300		2.700	
						. 000	10000	COI	2.700	
420 Grain Lea	d									
ACCUR 2495BR	44.5	3.33	NA	3.1	50.0 1	656	17700	PSI	2.600	
ACCUR 4350	54.5	4.03	NA	4.0		474		PSI	2.600	
ACCUR 3100	51.9	3.89	NA	3.7		422		PSI		
ACCUR 8700	60.0	4.13	NA	4.0		165		PSI	2.600	
					30.0	. 00	. 1700	1 01	2.000	
475 Grain Lead	d									
ACCUR 2495BR	44.3	3.32	NA	3.1	45.0 1	565	16000	DCI	2 600	
ACCUR 4350	44.0	3.26	DBLD	3.1		258			2.680	
ACCUR 3100	47.4	3.54	NA	3.4		221			2.680	
ACCUR 8700	59.5	4.09	NA	4.0					2.680 2.680	
						0.0	10000	OI.	2.000	

500 Grain							
BL-C(2)	31.5	2.03	DBLD	1.9	35.0 1191	17600	CLIP 2 700
H4198	25.2	1.89	DBLD	NA	28.0 1082	NA	NA 2.700

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

F-70 U.S. GOVERNMENT (Continued) OR ALL GUNS IN GOOD CONDITION

Start Volume Auto- Lee NEVER Velocity Mimimum Powder Type Grains CC Disk Dipper EXCEED FPS Pressure Units OAL											
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	OAL		
500 Grain Lead	d							DOI	0.005		
ACCUR 2495BR	37.7	2.82	DBLD	2.8			18400				
ACCUR 4350	40.7	3.01	DBLD	2.8	42.0	1175	16300				
ACCUR 3100	43.0	3.22	DBLD	3.1	45.0	1138	16500				
ACCUR 8700	55.0	3.78	NA	3.7	55.0	957	9800	PSI	2.635		
ACCOR 6700	00.0	0170									
530 Grain Lea					10.0	1.100	11600	PSI	2.830		
	400	2 11	NIA	2 1	46 0	1406	11000		2.000		

530 Grain Lead	d					11000	DOL	2 020
ACCUR 2495BR	46.0	3.44	NA	3.4	46.0 1406	11600	PSI	2.830
ACCUR 3100	51 4	3 84	NA	3.7	55.0 1359	16900	PSI	2.830
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					48.0 1326	16600	PSI	2.830
ACCUR 4350	45.6			3.1	40.0 1320	15000	DCI	2 930
ACCUR 8700	64.9	4.47	NA	4.3	65.0 1059	15800	P51	2.030
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 09-16-1996

45-70 MODERN RIFLES HIGH PRESSURE LOADS FOR MODERN GUNS

STARTING LOADS										
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	M	limimum	
300 Grain Bull	et			NAME OF STREET			110000110	Ollita	UAL	
H322	53.9	3.91	NA	3.7	60.0	1965	NA	ΝΔ	2.475	
H4227					40.0				2.475	
									L. 170	

300 Grain Jacketed v-N133	2.550
v-N133 54.0 4.16 NA 4.0 60.0 2187 28137 CIP 2	2.550
4.0 00.0 2187 28137 CIP 2	2.550
	2.550
100 NA NA NA 2/15 2/100 PSI 2	
ACCUR 2015BR 56.6 4.13 NA 4.0 59.0 2164 25100 PSI 2	2.550
V-N135 55.5 4.31 NA 4.3 61.7 2134 28137 CIP 2	
V-N130 46.9 3.54 NA 3.4 52.1 2090 28137 CIP 2	
RELODER 7 45.8 3.33 NA 3.1 50.0 2075 24700 CUP 2	
V-N120 40.5 3.14 DBLD 3.1 45.0 2029 28137 CIP 2	
ACCUR 2700 62.1 4.25 NA 4.0 65.0 1939 25200 PSI 2	
ACCUR 4350 70.0 5.18 NA NA 70.0 1815 20100 PSI 2	
ACCUR 3100 70.0 5.24 NA NA 70.0 1705 18300 PSI 2	
HERC 2400 29.5 2.19 DBLD NA 30.0 1650 23000 CUP 2	

330 Grain Lead

ACCUR 2495BR	59.0	4.42	NA	4.3	59.0 1975	19200	PSI	2 520
ACCUR 2015BR	45.0	3.28	DBLD	3.1	50.0 1928			2.520

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

Copyright 08-15-1996 NA = None Available

5-70 MODERN RIFLES (Continued)

IGH PRESSURE L	OADS	FOR N	10DER	N GUI	VS				
	STA	RTING	LOAD	S	WEVER.			D.0	
Powder Type	Start Grains	Volume CC	Auto- Disk I	Lee Dipper	NEVER Exceed	Velocity FPS	Pressure	Units	limimum OAL
330 Grain Lead		inued)	11						
ACCUR 2700	53.5	3.66	NA	3.4	58.0	1849	26100	PSI	2.520
ACCUR 4350	59.0	4.37	NA	4.3	59.0	1573	17900	PSI	2.520
100									
350 Grain Bulle	et								
H4895	53.9	3.93	NA	3.7	60.0	1894	NA		2.475
H322	52.1	3.78	NA	3.7	58.0	1858	NA		2.475
H4198	41.4	3.10	DBLD	3.1		1841	NA		2.475
H4227	33.3	2.56	DBLD	2.5	37.0	1800	NA	NA	2.475
350 Grain Jack	ceted							-	
ACCUR 2520	51.6	3.52	NA	3.4	60.0	2086	28000		
ACCUR 2495BR	54.2	4.05	NA	4.0	61.0	2057	27100		
ACCUR 2460	54.2	3.56	NA	3.4		1986	26200		2.550
ACCUR 2015BR	50.2	3.67	NA	3.4	53.0	1932	25400		2.550
ACCUR 2230	49.6	3.26	DBLD	3.1		1873	26200		2.550
ACCUR 2700	54.6	3.74	NA	3.7		1794	26900		2.550
ACCUR 4350	65.0	4.81	NA	4.3	1	1735	22700		2.550
ACCUR 3100	65.0	4.86	NA	4.3	65.0	1590	21600	PSI	2.550
378 Grain Lea	d								
ACCUR 2495BR	55.0	4.12	NA	4.0	55.0	1935	23800		2.565
ACCUR 2015BR	49.0	3.58	NA	3.4	49.0	1821	23400		2.565
ACCUR 2700	53.6	3.67	NA	3.4	57.0	1733	25600		2.565
ACCUR 4350	60.0	4.44	NA	4.3	60.0	1622	21500		2.565
ACCUR 3100	60.0	4.49	NA	4.3	60.0	1485	19800	PSI	2.565
- 1									
385 Grain Lea	d								
RELODER 7	40.5	2.95	DBLD	2.8	45.0	1810			2.575
HERC 2400	25.0	1.85	DBLD	NA	25.0	1340	21300	CUI	2.575
400 Grain Jac	keted								
ACCUR 2460	49.0	3.21	DBLD	3.1	57.0	1926	28000) PSI	
v-N133	46.3	3.56	NA	3.4	51.4	1854			
ACCUR 2520	54.0	3.69	NA	3.4		1848			
ACCUR 2495BR	55.0	4.12	NA	4.0		1836			
v-N135	46.4	3.61	NA	3.4		1783			2.490
		0 50	BIA	0 4	40 /	1761	24000	DCI	2 560

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = Copyright 08-15-1996 NA = None Available

3.4

NA

3.58

49.0

ACCUR 2015BR

49.0 1761 24000 PSI 2.560

45-70 MODERN RIFLES (Continued) HIGH PRESSURE LOADS FOR MODERN GUNS

	ST	ARTIN	G LOA	DS				de la secono
Powder Type	Start Grains	Volume CC		Lee Dipper	NEVER Velocit	y Pressure	Heir	Mimimu
400 Grain Jac				Diphe	LACLED IF3	Fressure	Unit	s OAL
ACCUR 2230	49.0	3.22	DBLD	3.1	49.0 1741	23100	PSI	2 56
RELODER12	46.8	3.23	DBLD		54.0 1710			2.70
ACCUR 2700	51.1	3.50	NA	3.4	55.0 1608			
v-N120	32.2	2.50	DBLD		35.8 1604			
RELODER 7	36.3	2.64	DBLD	2.5	40.0 1580			2.70
ACCUR 4350	60.0	4.44	NA	4.3	60.0 1570			
ACCUR 3100	60.0	4.49	NA	4.3	60.0 1452			2.56
HERC 2400	23.6	1.75	DBLD	1.6	25.0 1260			2.70
405 Croix D.	II-a				,			
405 Grain Bul H322		2.52	NIA	0.4	F4.0.1050			
H4895	48.6	3.52	NA	3.4	54.0 1852	0.00		2.56
H4198	50.4	3.67	NA	3.4	56.0 1850	2 22 2		2.56
BL-C(2)	39.6 52.1	2.97	DBLD		44.0 1788	NA		2.56
H335	52.1		NA	3.1	58.0 1786	NA		2.560
H4227	32.4	3.36 2.49	NA	3.1	58.0 1780	NA		2.560
117227	32.4	2.49	DBLD	2.2	36.0 1631	NA	NA	2.560
405 Grain Jac	keted							
IMR3031	46.5	3.54	NA	3.4	51.5 1795	27000	CLIP	2.560
IMR4895	47.6	3.46	NA	3.4	52.5 1785	26900		2.560
IMR4064	50.2	3.74	NA	3.7	55.0 1780	26700		2.560
IMR4320	47.8	3.42	NA	3.4	53.5 1720	27300		2.560
H4895	46.6	3.39	NA	3.1	50.0 1622	NA		2.560
IMR4350	56.0	4.12	NA	4.0	56.0 1555	20000		2.560
SR4759	26.3	2.61	DBLD	2.5	29.0 1500	26900		2.560
IMR4227	27.6	2.12	DBLD	1.9	30.0 1465	26500		2.560
IMR4831	56.0	4.12	NA	4.0	56.0 1390			2.560
40E 0						.,,500	501	
405 Grain Lea		1.04	NI A	4.0	F4.0 ::::			
And the second second in	54.0	4.04	NA	4.0	54.0 1801	22200		2.550
ACCUR 2700	48.5	3.32	NA	3.1	54.0 1665	26800		2.550
ACCUR 2015BR ACCUR 4350	48.5	3.54	NA	3.4	54.0 1665	26800		2.550
ACCUR 4350	56.0	4.14	NA	4.0	56.0 1477	16200	PSI	2.550

47	5	Grain	Lead

60.0

4.49

ACCUR 3100

ACCUR 2495BR	49.5	3.71	NA	3.7	50.0 1748	24300	PSI	2.725
ACCUR 2015BR	40.3	2.94	DBLD	2.8	44.0 1660	26300	PSI	2.725

4.3

NA

60.0 1422 18200 PSI 2.550

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer. DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 08-15-1996

45-70 MODERN RIFLES (Continued) HIGH PRESSURE LOADS FOR MODERN GUNS

	ST	ARTING	LOA	DS					
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Units	limimum OAL
475 Grain Lea	d (Con	tinued)							
ACCUR 4350	53.1	3.93	NA	3.7	58.0	1619	26300	PSI	2.725
ACCUR 3100	56.2	4.20	NA	4.0	60.0	1513	25700	PSI	2.725
ACCUR 2700	43.8	3.00	DBLD	2.8	49.0	1488	26900	PSI	2.725
ACCON 2700	43.0	3.00	DULU	2.0	40.0	1 100	20000		

500 Grain Bull	et						
H4895	46.8	3.40	NA	3.4	52.0 1679	NA	NA 2.700
H322	45.0	3.26	DBLD	3.1	50.0 1667	NA	NA 2.700
H335	47.7	3.07	DBLD	2.8	53.0 1638	NA	NA 2.700
BL-C(2)	47.7	3.07	DBLD	2.8	53.0 1623	NA	NA 2.700
H4198	36.9	2.76	DBLD	2.5	41.0 1549	NA	NA 2.700
H4227	30.6	2.35	DBLD	2.2	34.0 1468	NA	NA 2.700
H4831	60.0	4.35	NA	4.3	60.0 1383	NA	NA 2.700

500 Grain Jacl	keted							
ACCUR 4350	55.2	4.08	NA	4.0	58.0 1602	25300	PSI	2.825
ACCUR 2495BR	41.9	3.14	DBLD	3.1	46.0 1538			
ACCUR 2460	41.7	2.73	DBLD	2.5	44.0 1509			
ACCUR 2230	38.9	2.55	DBLD	2.5	42.0 1462	26000	PSI	2.580
ACCUR 3100	54.7	4.09	NA	4.0	60.0 1441	26400	PSI	2.825
ACCUR 2520	37.8	2.58	DBLD	2.5	44.0 1434			
ACCUR 2015BR	40.0	2.92	DBLD	2.8	40.0 1422	23800	PSI	2.580
ACCUR 2700	46.0	3.15	DBLD	3.1	46.0 1327	23600	PSI	2.580

500 Grain Lead	d							
ACCUR 2495BR	48.3	3.62	NA	3.4	49.0 1670	24400	PSI	2.550
ACCUR 4350	57.7	4.27	NA	4.0	58.0 1582	24200	PSI	2.795
ACCUR 2015BR	39.0	2.85	DBLD	2.8	42.0 1567	25900	PSI	2.550
ACCUR 3100	57.8	4.32	NA	4.3	60.0 1493	25000	PSI	2.795
ACCUR 2700	43.7	2.99	DBLD	2.8	47.0 1414	25900	PSI	2.550

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 09-16-1996

458 WINCHESTER MAGNUM

STARTING LOADS. Start Grains Volume CC Auto-Disk Lee Mimimum **Powder Type** Dipper Pressure Units 300 Grain Jacketed ACCUR 2015BR 76.0 5.55 NA NA **76.0** 2606 35500 CUP 2.940 v-N120 63.0 4.89 NA NA 70.0 2599 52214 CIP 3.280 **RELODER 7** 68.9 5.01 NA NA 70.0 2555 41400 CUP 2.950 **ACCUR 2230** 78.0 5.12 NA NA 78.0 2554 33500 CUP 2.940 **ACCUR 2460** 78.0 5.12 NA NA 78.0 2506 30800 CUP 2.940 H4198 56.7 4.25 NA 4.0 63.0 2410 NA NA 2.950 **HERC 2400** 35.0 2.60 **DBLD** 2.5 35.0 1590 13500 CUP 2.950

3	5	0	Gr	ain	Jac	keted
_						

ACCUR 2015BR	71.8	5.24	NA	NA	75.0 2557	44600	CUP 2.965
v-N130		5.00			73.7 2518		
ACCUR 2230	73.8	4.85	NA	4.3	78.0 2512	45100	CUP 2.965
ACCUR 2460	78.0	5.12	NA	NA	78.0 2487	42300	CUP 2.965
H4198		4.59			68.0 2469		
v-N120	62.2	4.83	NA		69.1 2462		

385 Grain Lead

RELODER 7	62.9	4.58	NA	4.3	65.0 2285	42100	CUP 3.000
HERC 2400	30.0	2.23			30.0 1290		

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available

Copyright 08-15-1996

158 WINCHESTER MAGNUM (Continued)

	STA	RTING	LOAD	S				
Douglas Tuna	Start Grains	Volume CC	Auto-	Lee Dipper	NEVER EXCEED	Velocity FPS	Pressure	Mimimum Units OAL
Powder Type 400 Grain Jack	The same of the sa	UU	DISK L	rippor	LNOLLD			
ACCUR 2015BR	66.5	4.85	NA	4.3	76.0	2468	48800	CUP 3.140
ACCUR 2230	75.0	4.93	NA	NA		2457	45500	CUP 3.140
ACCUR 2460	76.4	5.01	NA	NA		2452	44700	CUP 3.140
ACCOR 2460	70.4	5.01	IVA	IVA	00.0	2102	11700	30. 0
1								
405 Grain Jack		4.40	B I A	4.0	66.0	2242	NA	NA 3.000
H4198	59.4	4.46	NA	4.3	66.0	2242	IVA	NA 3.000
500 Grain Jac	keted							
ACCUR 2460	70.5	4.62	NA	4.3		2192	44800	CUP 3.305
ACCUR 2230	67.4	4.43	NA	4.3		2159	45600	CUP 3.305
H4895	66.6	4.85	NA	4.3		2156	NA	NA 3.300
ACCUR 2015BR	59.0	4.31	NA	4.3		2149	49200	CUP 3.305
H335	67.5	4.35	NA	4.3		2129	NA	NA 3.300
BL-C(2)	69.3	4.47	NA	4.3		2117	43800	CUP 3.300
v-N140	67.0	4.91	NA	NA	ES 6 2 CO	2100	52214	CIP 3.280
H4198	57.6	4.32	NA	4.3	64.0	2072	NA	NA 3.300
v-N135	63.4	4.92	NA	NA		2060	52214	
WIN 748	68.2	4.47	NA	4.3		2040	39000	CUP 3.300
RELODER 7	55.5	4.04	NA	4.0	64.0	2000	47000	CUP 3.280
HERC 2400	35.0	2.60	DBLD	2.5	35.0	1415	32600	CUP 3.280
500 Grain Soli	d							
v-N135	65.2	5.07	NA	NA	72.5	2053	52214	CIP 3.280
V 14 100	00.1							
F10 0 : 1	6 - 2 - J							
510 Grain Jac	64.0	4.66	NA	4.3	72 5	2100	53000	CUP 3.340
IMR4895			NA	4.3		2070	51500	
IMR4320	67.2	4.81 4.37	NA	4.3		2065	41000	. Annual community of the community
WIN 748	66.7 69.0	5.26	NA	NA		2030		
IMR3031		5.29	NA	NA	71.0		41300	
IMR4064	71.0		NA	4.0	58.0		52500	
IMR4198	51.7	4.09 5.29	NA	NA	72.0		30300	
IMR4350	72.0		NA	NA	72.0			
IMR4831	72.0	5.29			45.0			
IMR4227	40.0	3.07	DBLD NA	2.8	44.5		52400	
SR4759	39.7	3.95	IVA	3.7	44.0	1045	32400	001 0.040

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure.

NA = None Available Copyright 08-15-1996

458 WINCHESTER MAGNUM (Continued)

STARTING LOADS									
Powder Type	Start Grains	Volume CC	Auto- Disk	Lee Dipper	NEVER V EXCEED	/elocity FPS	Pressure	Units	limimui OAL
600 Grain Jacketed									
H335	61.2	3.95	NA	3.7	68.0	1939	NA	NA	3.300
BL-C(2)	63.0	4.06	NA	4.0	70.0	1924	NA	NA	3.300
H4895	60.3	4.39	NA	4.3	67.0	1920	NA	NA	3.300

CAUTION: With NEVER EXCEED LOADS maintain Minimum Over All Length or longer.

DBLD = Double Disk, see instructions with your Auto-Disk powder measure. NA = None Available Copyright 09-16-1996

not You... Then Who?

ou are a member of the elite group called reloaders. We represent ss than 3% of the population. We are virtually invisible to the ass media and have little lawmaking influence except through the RA. Because reloading makes it economically possible, we noot far more centerfire ammunition per individual than any other ector of the shooting public.

omeone must start the next generation of shooters and hunters or nore than just the shooting sports will die. At risk is a way of life, un ownership, shooting, hunting, and the good life of outdoor ports.

You understand reloading is a simple process. To others it remains deep dark mysterious process fraught with imagined dangers. Show someone how to reload so they can enjoy this great hobby. Better yet, get someone started in the hobby, preferably a young dult or responsible teenager. As you remember who showed you now to reload, you will be forever remembered by those who you each. If each of us shows one other person how to reload and they show another, we will be of sufficient numbers to have a voice that the lawmakers must acknowledge.

Join me in a very special way to promote shooting by promoting reloading. I especially encourage all reloading tool manufactures to offer similar reloading promotional programs as Lee Precision Inc. is offering on the next page.

Each order must be accompanied with the coupon on the next page. Copies are not allowed.

For the latest catalog send your request to Lee Precision Inc. 4275 Hwy. U, Hartford WI 53027 or call 1-414-673-3075. Be sure to say Dick Lee said to send it FREE.

(continued from previous page)

Every company has products that are not saleable. These included customer returns, shipping damaged products, paint defects an many other production nicks and dings. No one will pay full price for damaged goods. Some companies have factory outlet stores to dispose of this otherwise useful merchandise. Reloading manufacturers are too small to do that, so these good and useful products are scrapped.

I have made arrangements to help you to get someone started reloading and shooting more. John Lee, President of Lee Precision has agreed to offer this imperfect merchandise at distressed prices Items will NOT be packaged for sale and MUST NOT BE RESOLD. All products will be dimensionally perfect and Lee guarantee's of accuracy, satisfaction and durability apply.

Here are the rules: To receive 60% discount off catalog list prices.

The purchase must be for someone else who is not already a reloader.

Shipments will be on an as available basis. Expect shipping delays on some items. If Lee Precision thinks it will be more than 30 days your money will be returned at once unless you check the box.

Name		Include
Address		payment with order.
City	State	Zip
I agree the reloading equipment will be used to of reloading.	get a new pers	son into great hobby
Signature		
Please be fair and don't abuse this offer.		
Hold my ord Lee Precision reserves the right to deny shipment for	ler for as long a or any reason an	as it takes ad return your money.