Key Logical Equivalences

• De Morgan's Laws $\neg (p \wedge q) \equiv \neg p \vee \neg q$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

- Identity Laws: $p \wedge T \equiv p$ $p \vee F \equiv p$
- Domination Laws: $p \lor T \equiv T$ $p \land F \equiv F$ • Idempotent laws: $p \lor p \equiv p$ $p \land p \equiv p$
- Double Negation Law: $\neg(\neg p) \equiv p$
- Negation Laws: $p \lor \neg p \equiv T$ $p \land \neg p \equiv F$
- Commutative Laws: $p \lor q \equiv q \lor p$

$$p \wedge q \equiv q \wedge p$$

• Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

• Distributive Laws: $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$

$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$$

• Absorption Laws: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

		1000		
	$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens	
	$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens	
	$p \to q$ $\frac{q \to r}{p \to r}$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism	
	$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism	
	$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition	
	$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification	
	$ \begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction	