

AD-A163 490

HOORING SYSTEM DESIGN AND TIME DOMAIN SIMULATION OF A
SEMISUBMERSIBLE BUOY(C) WATT (BRIAN) ASSOCIATES INC
HOUSTON TX SEP 83 N62477-84-D-0165

1/ 2

UNCLASSIFIED

F/G 13/2

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

AD-A163 490

D

MOORING SYSTEM DESIGN AND
TIME DOMAIN SIMULATION OF
A SEMISUBMERSIBLE BUOY

DTIC
SELECTED

JAN 24 1986

D

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

COPY

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

AD-A163490

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION AVAILABILITY OF REP.
Approved for public release;
distribution is unlimited

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER
BWA Project No. 210

5. MONITORING ORGANIZATION REPORT #
FPO 8368

6a. NAME OF PERFORM. ORG. 6b. OFFICE SYM
Brian Watt Associates

7a. NAME OF MONITORING ORGANIZATION
Ocean Engineering
& Construction
Project Office
CHESNAVFACENGCOM

6c. ADDRESS (City, State, and Zip Code)
2350 E. North Belt Drive, Suite 450
Houston, TX 77032

7b. ADDRESS (City, State, and Zip)
BLDG. 212, Washington Navy Yard
Washington, D.C. 20374-2121

8a. NAME OF FUNDING ORG. 8b. OFFICE SYM

9. PROCUREMENT INSTRUMENT IDENT #
N62477-83-D-0165

8c. ADDRESS (City, State & Zip)

10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT # # # ACCESS #

11. TITLE (Including Security Classification)
Mooring System Design and Time Domain Simulation of a Semisubmersible Buoy

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REP. (YYMMDD) 15. PAGES
FROM TO 83-09 144

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if nec.)
Mooring systems, Mooring design, Modeling

19. ABSTRACT (Continue on reverse if necessary & identify by block number)
The goal of this task is to determine the steady-state dynamic mooring forces
for a three-leg semisubmersible buoy, moored in water depths ranging from 100
to 400 feet, and being subjected to the survival wind, current, and wave for
the site. The dynamic response of the moored semisubmersible to the (Con't)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASS/UNLIMITED SAME AS RPT. DTIC

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE

Jacqueline B. Riley

202-433-3881

DD FORM 1473, 84MAR

22c. OFFICE SYMBOL
SECURITY CLASSIFICATION OF THIS PAGE

bwa

(1)

NAVAL FACILITIES ENGINEERING COMMAND

DTIC
ELECTED
JAN 24 1986
S D
D

MOORING SYSTEM DESIGN AND
TIME DOMAIN SIMULATION OF
A SEMISUBMERSIBLE BUOY

SEPTEMBER 1983

BRIAN WATT ASSOCIATES, INC.
Consulting Engineers

210/BWA

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

September 9, 1983

Brian Watt Associates, Inc.
Consulting Engineers
2350 E. North Belt Drive, Suite 450
Houston, Texas 77032
(713) 590-9955
Telex: 794350 BWA HOU

Commanding Officer
Chesapeake Division
Naval Facilities Engineering Command
Building 212, Washington Navy Yard
Washington, D.C. 20374

Attn: Code FPO-1

Gentlemen:

Re: Contract N62477-83-D-0165, Engineering Analysis of Ocean Engineering Projects,
Task 1

We enclose herein five (5) copies and one (1) reproducible copy of our final report for Task 1 of the referenced contract, with appendices.

We have enjoyed undertaking this project and look forward to working with you in the future.

Very truly yours,
BRIAN WATT ASSOCIATES, INC.

Robert C. Byrd
Vice President

210/RCB:tr

Enclosures

Accesion For	
NTIS	CRA&I
DTIC	TAB
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

TABLE OF CONTENTS

Table of Contents

List of Tables

List of Figures

	<u>ITEM</u>	<u>PAGE</u>
1.0	<u>INTRODUCTION</u>	1
1.1	Objectives	1
1.2	Scope of Work	1
1.3	Government Furnished Information	3
2.0	<u>ANALYSIS AND MODEL DETAILS</u>	
2.1	BWA Software	4
2.2	Analysis Methodology	5
2.3	Model Generation	5
2.4	Element Size Considerations	6
2.5	Added Mass and Drag Coefficients	7
2.6	ANSYS Modeling	8
2.7	Stream Function Analysis	8
2.8	Aerodynamic Loading	9
2.9	Mooring System	9
3.0	<u>RESULTS</u>	12
4.0	<u>CONCLUSIONS & RECOMMENDATIONS</u>	14
 Tables		
Figures		
 <u>APPENDIX A</u>		

LIST OF TABLES

- Table 1.1 Environment Specification.**
- Table 2.1 BWA Naval Architecture Software.**
- Table 2.2 Center of Gravity and Radii of Gyration.**
- Table 2.3 Stream Function Input Data.**
- Table 2.4 Wind Force Calculations.**
- Table 2.5 Chain Properties.**
- Table 2.6 Parametric Study of Chain Sizes for Depth = 412 ft.**
- Table 2.7 Parametric Study for Anchor Location (Pretension) for Depth = 412 ft.**
- Table 3.1 Parameters for Design Cases.**
- Table 3.2 Summary of Frequency Domain Results.**
- Table 3.3 Summary Results - Depth 412 ft.**
- Table 3.4 Summary Results - Depth 262 ft.**
- Table 3.5 Summary Results - Depth 162 ft.**
- Table 3.6 Summary Results - Depth 112 ft.**

LIST OF FIGURES

- Figure 1.1** Semisubmersible General Arrangement.
- Figure 1.2** Semisubmersible Structural Plan and Sections.
- Figure 1.3** Semisubmersible Structural Elevations and Sections.
- Figure 2.1** Simulation Cycle.
- Figure 2.2** Mean Force Analysis.
- Figure 2.3** Geometry Check - Entire Model.
- Figure 2.4** Geometry Check - Vertical Columns.
- Figure 2.5** Geometry Check - Horizontal Pontoons.
- Figure 2.6** Geometry Check - Lower Braces.
- Figure 2.7** Geometry Check - Lower Hull and Columns.
- Figure 2.8** Geometry Check - Upper Braces.
- Figure 2.9** Geometry Check - Deck Supports.
- Figure 2.10** Plan View and Coordinate System.
- Figure 2.11** Variation in C_D and C_M .
- Figure 2.12** Semisubmersible Projected Area.
- Figure 2.13** Basic Catenary Relationships.
- Figure 2.14** Assumed Scope - Water Depth Relationship.
- Figure 2.15** Estimated Starting Locations for Anchors.
- Figure 3.1** Mooring System Characteristics Depth 412 Ft.
- Figure 3.2** Mooring System Characteristics Depth 262 Ft.
- Figure 3.3** Mooring System Characteristics Depth 162 Ft.
- Figure 3.4** Peak Horizontal Force at Vessel Against Water Depth.

1.0**INTRODUCTION**

The following report presents the results of Task 1 of the open-end contract for Engineering Analysis of Ocean Engineering Projects for the Chesapeake Division, Naval Facilities Engineering Command.

This study has been conducted by Brian Watt Associates, Inc. (BWA) of Houston, Texas, and was performed under contract N62477-83-D-0165. It represents an effort of approximately 13 man-weeks. The study was performed as BWA Project No. 210.

1.1**Objectives**

The goal of this task is to determine the steady-state dynamic mooring forces for a three-leg semisubmersible buoy, moored in water depths ranging from 100 to 400 feet, and being subjected to the survival wind, current, and wave for the site. The dynamic response of the moored semisubmersible to the survival environment will be simulated using Computer-Aided Design techniques.

1.2**Scope of Work**

The scope of work as defined by the Department of Navy was as follows:

- Computer simulation of the dynamic response of the moored semisubmersible for the survival environment at water depths of 400, 250, 150 and 100 feet.
- Design of a mooring system for each water depth. The mooring will be composed of three equal lengths of ABS grade 2 stud link chain. This includes specifying the location of the mooring anchors, the length of the mooring chain, and the size of the mooring chain.
- The mooring will be designed such that the angle formed by the mooring leg, the anchor, and the ocean bottom does not exceed zero degrees and that the maximum tension does not

exceed 35 percent (\pm 5 percent) of the chain's proof load at any time during the simulation.

- The mooring will be orientated such that one mooring leg will be required to resist all environmentally applied loads.
- The ballasting of the semisubmersible will be adjusted to compensate for the vertical load on the semisubmersible from the mooring legs before performing the dynamic simulation. The dynamic simulation will be continued until the steady-state response can be determined.
- The computer model used must be able to simulate the rigid body motions of the semisubmersible as function of time when subjected to the following external forces:
 1. Hydrodynamic loading on the submerged portion of the structure due to a series of nonlinear near-breaking waves.
 2. Hydrodynamic loading on the submerged portion of the structure due to a uniform current.
 3. Aerodynamic loading on the exposed portion of the structure due to a uniform wind.
 4. Concentrated loading on the structure due to the nonlinear catenary behavior of the three mooring legs.
- The computer model used does not have to be able to simulate environmental loading on the mooring chains, the internal stresses or deflections of the semisubmersible's structural components, or the dragging of the mooring leg anchors when overloaded.

1.3 Government Furnished Information

The following information was provided by the government in performance of this task:

1. An engineering drawing of the semisubmersible. These have been included in this report as Figures 1.1, 1.2 and 1.3.
2. Table 1.1 gives the survival wind, current and wave for each of the four water depths as specified by the government.

2.0 ANALYSIS AND MODEL DETAILS

This section discusses the software used for this task, the details of the computer model, the stream function analysis and the mooring system design procedure.

2.1 BWA Software

The main program used for the simulation, titled SEMI, is a FORTRAN code developed by BWA. This program simulates the motions of tension leg platforms and semisubmersibles in the time domain.

The program SEMI has the following capabilities:

- Wind loading
- Current loading
- Airy wave loading
- Stream Function wave loading
- Catenary moorings
- Tension leg moorings

In addition, the following software has been used as part of the design cycle.

FREQ: A frequency domain program for motion analysis of tension leg and catenary moored semisubmersibles. The program uses Airy wave theory, iterates for a best fit linearizing of the viscous damping and conducts eigenvalue, eigenvector analysis.

DAMS: A program for the design and analysis of single and multi-component mooring systems. Clump weights or buoys can be placed on the mooring lines. Restoring forces on the vessel, high line tension and vessel excursion are printed out.

Apart from the above software which has been developed by BWA, a finite element package ANSYS was run to obtain the system mass, radii of gyration and center of gravity.

2.2 Analysis Methodology

The analysis methodology consisted of iterating in a design loop until a workable system was achieved. The design loop incorporated the evaluation of the moorings, and the evaluation of the entire system in both the frequency domain and the time domain. This simulation cycle is shown in Figure 2.1; related software is listed in Table 2.1.

The analysis began with the estimation of the mean quasi static forces due to wind, wave and current loading. This estimation was made using a time domain analysis with the semi moored by tension legs as shown in Figure 2.2. The extreme length of the tension legs limited out-of-plane forces.

Once the mean forces were known, the magnitude of the first order motions was assumed. The mooring program DAMS then evaluated the proposed mooring systems. After a satisfactory mooring system was found, the required ballast for the operating draft was calculated. The finite element program ANSYS was used to determine the vessel CG and radii of gyration.

A frequency domain analysis was made to determine the mooring loads, and the oscillatory wave forces and motions. Any refinements to the mooring system were made at this point.

After all modifications were completed, the system was analyzed in the time domain. The results of the time domain analysis determined the acceptability of the system.

No effort has been made here to optimize the mooring system. Based on these results a further refinement could be undertaken and additional time domain analyses performed.

2.3 Model Generation

The model generation consisted of defining the semisubmersible by a set of nodes and elements. Each node point is defined by its X, Y, and Z coordinates in three dimensional space. Each element is described by its nodal end

points, its equivalent circular diameter, and its drag and added mass coefficients.

The fluid model generated for this analysis contained 219 elements. The elements were grouped as shown below:

<u>Item</u>	<u>Quantity</u>	<u>No. of Elements</u>
Pontoons	3	3 x 30
Columns	3	3 x 22
Lower Braces	6	6 x 5
Upper Braces	3	3 x 5
Deck Supports	3	3 x 5
Triangular Dampers	3	<u>3 x 1</u>
		219

Plots of the fluid model are shown in Figures 2.3 through 2.9.

The mooring system was attached at a point 12 ft above the bottom of each column. Figure 2.10 shows a plan view of the semisubmersible and the coordinate system adopted. The origin was 27 ft above the bottom and Z is positive upwards.

2.4

Element Size Considerations

In order to properly model the semisubmersible the element sizes must be small enough to avoid numerically induced errors during the solution. There are two criteria for determining the size of major elements exposed to fluid loadings. First, the element length should be less than 10% of the wave length, about 70 feet in this case. Second, a member should be divided into at least twenty elements to enable the proper calculation of inertias and other moment like quantities.

For this particular model, the major elements were divided much finer than required to insure the accurate attainment of moment and inertia quantities.

2.5**Added Mass and Drag Coefficients**

The solution technique requires an added mass coefficient and a drag coefficient for flow normal to the element axis and for the exposed ends of the element.

There are two instances when the end of an element must be considered as exposed. The first and most obvious is when the end really is exposed. The second instance occurs at a connection (column to pontoon) where, for pressure equilibrium, a nonexposed end must be input as exposed.

The following values for the drag and added mass coefficients were used:

<u>Item</u>	<u>C_D</u> <u>Normal</u>	<u>C_A</u> <u>Normal</u>	<u>C_D</u> <u>End</u>	<u>C_A</u> <u>End</u>
Cylinders	.62	.90	0.4	1.0
Triangles	0.0	0.0	2.0	2.83

The following reference was used in obtaining these values "Mechanics of Wave Forces on Offshore Structures, Turgut Sarpkaya & Michael Isaacson, Van Nostrand Reinhold Company." Figures 3.20 and 3.21 from this reference give the variation of C_D and C_A and have been included as Figure 2.11 in this report. The values of Reynolds number and Keulegan-Carpenter number required to use these figures are shown below:

<u>Item</u>	<u>R_e</u>	<u>K</u>	<u>C_d</u>	<u>C_m</u>	<u>C_a</u>
Pontoons	1.93×10^{-5}	90.93	0.62	1.90	0.90
Columns	2.09×10^{-5}	84.00	0.62	1.90	0.90
and Braces					

The coefficients for the triangular dampers were obtained by direct computation.

2.6**ANSYS Modeling**

The basic fluid model of the semisubmersible was input into the finite element program ANSYS. This step was necessary to compute the system mass, center of gravity, and radii of gyration.

The ANSYS model differed from the fluid model in that it required dummy elements to connect the members of the fluid model.

The ANSYS element used to represent the structural members of the semisubmersible was the 3-D pipe element, STIF42. The appropriate values for Young's Modulus, Poisson's ratio, density, diameter and thickness were input. To model the ballast water, the STIF42 element was used again. The wall thickness was set equal to the radius, Young's Modulus was set equal to 1, and Poisson's ratio was set equal to zero.

The results from ANSYS giving the centers of gravity and the radii of gyration are shown in Table 2.2

2.7**Stream Function Analysis**

A stream function analysis was performed for the four design cases to obtain vertical and horizontal velocities, accelerations, and pressures. This data is output to a binary file which is read as input to the frequency and time domain programs.

The governing equation for stream function modeling is the Laplace equation. The formulation satisfies kinematic boundary conditions at the bottom and free surface, and the dynamic free surface boundary condition. The water particle kinematics are corrected by a vector addition of the current (Ref.: Dalrymple, R. A., "A Finite Amplitude Wave on a Linear Shear Current," J. Geophysical Research, Vol. 79, pp. 4498-4504, 1974). The bottom and surface currents are specified and a linear interpolation is undertaken. As the wave water particle velocities are corrected for the current, the external imposed current velocity for drag computation in the time domain analysis has been set to zero.

The stream function program used for this analysis was developed at Coastal and Offshore Inc. Input requirements include: wave height, wave period, water depth, bottom and surface currents, the order of the problem, number of computational points over 1/2 the wave, maximum number of solution iterations.

The actual input for the four cases is shown in Table 2.3.

2.8

Aerodynamic Loading

The wind loading was estimated based on section 3.5.2 of the "ABS Rules for Building and Classing Mobile Offshore Drilling Units - 1980". The total estimated wind force was 40 Kips acting at 29.4 ft above waterline. Table 2.4 gives the details of the computation and Figure 2.12 shows the semisubmersible projected area used in the calculations.

2.9

Mooring System

The mooring systems used in this study to restrain the semisubmersible were conventional, single-component spread moorings. The basic catenary relationships used for mooring system design are shown in Figure 2.13.

Table 2.5 gives the pertinent properties for various sizes of chain. The maximum chain size allowed was limited to 6 in. This is the largest size commercially produced at the present time without the need for extensive expansion of manufacturing facilities.

Figure 2.14 shows the relationship between scope and water depth used in this study. The scope-water depth curve is nonlinear and corresponds to a constant line length of 2,000 ft.

The coefficient of bottom friction used throughout the study was 0.80. The design of the mooring system at each depth followed the same general procedure:

- (1) Estimate the mean quasi-static force due to wind, wave, and current and the magnitude of 1st order motions using a time domain analysis of the semimoored by tension legs.
- (2) Estimate a starting anchor location based on the line length and water depth (see Figure 2.15).
- (3) Perform a series of mooring analysis varying the chain size. Evaluate systems with respect to high line tension and anchor forces when subjected to forces and motions established in Item 1 (see Table 2.6).
- (4) Select the candidate system based on a review of the results.
- (5) Perform another series of runs, this time varying the anchor location. Evaluate the system with respect to high line tension and anchor forces when subjected to the forces and motions established in Item 1 (see Table 2.7). Select final anchor location.
- (6) Adjust ballasting of semi to account for the vertical load arising from the vertical component of mooring line tension and calculate new CG and radii of gyration using ANSYS program.
- (7) Perform a frequency domain analysis of the trial mooring system to determine natural periods, R.A.O.'s, and phase angles of the system, and to obtain an estimate of the maximum line tensions and anchor loads.
- (8) Revise system based on results of frequency domain analysis, if required.

- (9) Perform time domain analysis of system.**
- (10) Review time domain results to determine system acceptability/rejection.**

3.0**RESULTS**

Appendix A to this report contains the frequency domain results and time history plots for each of the design cases.

Table 3.1 gives the parameters for each of the four design cases.

A time step of 0.25 seconds was selected in the time domain simulation. The simulation was carried until steady state was achieved. This corresponds to 400 time steps with a total span of 100 seconds.

The maximum chain size was limited to 6 in. This limit was based on the maximum chain size commercially available from present installations. It was felt that the economics of the problem would not permit any special arrangements for larger chain sizes.

A summary of the results from the frequency domain and time domain are included here.

Table 3.2 gives the results from the frequency domain analysis. The important quantities in this table are the natural periods, response amplitude operators and phase angle in surge, heave, and pitch.

Summary results from the time domain simulation are given in Tables 3.3 through 3.6. The results from this simulation are:

<u>Water Depth</u>	<u>Mooring Chain</u>	<u>Peak Tension (% Proof Read)</u>
412 ft	5 in.	30.84
262 ft	5 in.	31.26
162 ft	6 in.	59.8
112 ft	6 in.	114.8

Figures 3.1, 3.2, and 3.3 give the mooring system characteristics for water depths of 412 ft, 262 ft, and 162 ft. Figure 3.4 gives the variation of the peak horizontal dynamic force against water depth.

4.0**CONCLUSIONS & RECOMMENDATIONS**

Based on the preliminary study conducted here, a feasible mooring system, that satisfies all the design criteria defined by the U.S. Navy, has been designed for water depths of 400 ft and 250 ft. The designed mooring system consists of a 5 in. diameter, Grade 2 stud link chain. The length of chain was 2,000 ft for all depths.

No effort has been made under this task to optimize or refine the mooring system. Based on these results, the conclusion is that a 4½ in. diameter chain could be used. Also, the length of chain needs to be optimized and can be reduced in most cases.

All the evaluation in this task was for a survival environment. The response of the system to a design environment with operational constraints also needs to be examined.

A feasible solution was not found for the 150 ft and 100 ft depth. For the 150 ft depth the peak line tension is 59.8% with a 6 in. diameter chain. It is our opinion that an optimization exercise may yield a workable solution. For the 100 ft depth, the peak line tension is 114.8%.

The coupled response of surge, heave, and pitch plays a dominant role in the behavior of the mooring system. At water depths of 400 and 250 ft, the maximum surge displacement is coupled with a negative heave (downwards) and a positive pitch. This results in a slackening of the most loaded line and, thereby, reducing the tension to acceptable levels. At the 150 ft water depth, the maximum surge displacement is coupled with zero heave and a positive pitch. At the 100 ft water depth, the maximum surge displacement is coupled with a positive heave (upwards) and a sharp variation in the pitch response from negative 22 degrees to a positive 9 degrees within a very narrow band. The net result is to make the mooring chain taut, causing high line tensions.

In our opinion, further evaluation of the system needs to be conducted at the 150 ft water depth. A more thorough time domain simulation with irregular sea states, to alleviate the strong dependence on a particular wave frequency and the resulting phase relationship, is recommended to prove the system performance.

GFI for Contract 62477-83-D-0165

Survival Environment

• Wind 150 knots constant

Water Depth	100'	150'	250'	400'
Wave Height	61'	64'	72'	84'
Wave Period	13.6 sec	13.6 sec	14 sec	14.6 sec
Current				
Surface	2 kt	2 kt	2 kt	2 kt
Bottom	1 kt	1 kt	1 kt	1 kt
Storm Current				
Surface	1 kt	1 kt	1 kt	1 kt
Tide ±	7'	7'	7'	7'
Storm Surge +	5'	5'	5'	5'

TABLE 1.1 - ENVIRONMENT SPECIFICATION

BRIAN WATT ASSOCIATES, INC. CONSULTING ENGINEERS HOUSTON, TEXAS		CLIENT: U.S. NAVY PROJECT:	FILING CODE:
			JOB NO. 210 PAGE 2 OF 2
SYSTEM:			ORIGINATOR: F. Ry
CALCULATION FOR: SOFTWARE DESCRIPTION			DATE: 1/13 REVIEWER:
			DATE: REVISION:
			RESULTS:
<p><u>MAJOR PROGRAMS</u></p> <p>FREQ - frequency domain analysis of semisubmersibles TIME - time domain analysis of semisubmersibles</p> <p><u>MINOR PROGRAMS</u></p> <p>STREAM - stream function wave theory DAMS - dynamic analysis of mooring systems CAT - catenary mooring force/displacement matrix generator</p> <p><u>SUPPORTING PROGRAMS</u></p> <p>YGEN - model generation program VPLOT - plots vessel geometry FPLOTTI - RAO & phase plotting program (frequency) TPLOTTI - displacement, velocity plotting (time) LPLOT - mooring force plotting (time)</p>			
<p><u>TABLE 2.1 BWA NAVAL ARCHITECTURE</u></p> <p><u>SOFTWARE</u></p>			

CASE	CHASSIS SIZE (in)	CHASSIS WEIGHT (Tons)	CHASSIS WEIGHT (Tons)	TOTAL WEIGHT (Tons)	XCG (ft)	YCG (ft)	ZCG (ft)	Rxx (ft)	Ryy (ft)	Rzz (ft)
FREE FEATURES	-	186.3	-	251.4	0.0	0.0	-19.8	22.6	22.6	28.1
D = 112'	6	120.0	46.4	251.5	0.0	0.0	-18.4	24.5	24.5	30.3
D = 162'	6	119.9	69.4	254.4	0.0	0.0	-18.5	24.5	24.5	30.3
D = 162'	5	130.0	51.8	252.9	0.0	0.0	-18.8	24.1	24.1	30.0
D = 212'	6	59.6	128.9	253.6	0.0	0.0	-15.9	26.5	26.5	32.1
D = 212'	5	99.9	88.0	253.0	0.0	0.0	-17.9	25.2	25.2	31.1
D = 212'	5	23.7	141.2	253.0	0.0	0.0	-12.9	22.9	22.9	31.5

NOTE : SEMI + PAYLOAD = 25.1 Tons

TABLE 2.2 CENTER OF GRAVITY AND ROLL OF GEARBOX
(CONTINUED FROM ANSYS)

BRIAN WATT ASSOCIATES, INC. CONSULTING ENGINEERS HOUSTON, TEXAS				CLIENT: U S. NAVY	FILING CODE: 100-1000			
				PROJECT: STREAM FUNCTION DIRECT CURRENT	JOB NO. 100-1000			
SYSTEM:				PAGE OF 1	PAGE OF 1			
CALCULATION FOR:				ORIGINATOR: BRIAN WATT ASSOCIATES, INC.	ORIGINATOR: BRIAN WATT ASSOCIATES, INC.			
				DATE: 10/16/87	DATE: 10/16/87			
				REVIEWER: BRIAN WATT ASSOCIATES, INC.	REVIEWER: BRIAN WATT ASSOCIATES, INC.			
				DATE: 10/16/87	DATE: 10/16/87			
				REVISION: 1	REVISION: 1			
				RESULTS: 100'	RESULTS: 100'			
CASE	DEPTH	WAVE HEIGHT	WAVE PERIOD	SURFACE SLOPE	ORDERS	NT1475 MAX	NT1475 MAX	TRANSIENT
				REFLECTION	REFLECTION	REFLECTION	REFLECTION	REFLECTION
1	112'	61'	13.6 s	1.689 %	5.067 ft.	10	20	20
2	162'	64'	13.6 s	1.689 %	5.067 ft.	10	20	20
3	262'	72'	14.0 s	1.689 %	5.067 ft.	10	20	20
4	412'	84'	14.6 s	1.689 %	5.067 ft.	10	20	20

TABLE 2.3 STREAM FUNCTION INPUT DATA

FILING
CODE:

JOB # 210 DATE : 8/10/83

WIND FORCES ON SEMISUBMERSIBLE BUOY

ITEM	C_h	C_s	QUANTITY	AREA (FT ²)	$C_h C_s A$	Centroid Above WL
External Columns	1.0	0.5	2	215.0	107.5	8.5'
Center Column	1.0	0.5	1	95.0	47.5	7.5'
Braces	1.0	0.5	2	70.8	35.4	8'
Deck Frame	1.0	1.0	1	117.3	117.3	16'
Deck House	1.0	1.0	1	48.0	48.0	21'
Mast	1.1	1.5	1	41.7	68.8	50'
Top Dome	1.1	1.0	1	50.3	55.3	75'
Bottom Dome	1.1	1.0	1	50.3	55.3	67'

From section 3.5.2 "A.B.S. Rules for
Building and Classing mobile offshore
Drilling units - 1980"

$$F_w = 0.00338 V_k^2 \times \sum C_h C_s A \text{ lbs}$$

$$F_w = 40 \text{ kips}$$

Centroid = 29.4 ft above waterline

TABLE 2.4 WIND FORCE CALCULATIONS

CHAIN SIZE (in)	A/I/R WEIGHT (lb/ft)	A/B/S GRADE 2	
		Poor Load (lbs)	Break Load (lbs)
2 1/2	62.0	346,000	484,000
2 3/4	75.4	413,000	578,000
3	90.2	485,000	679,000
3 1/4	106.0	562,000	787,000
3 1/2	123.4	643,000	900,000
3 3/4	140.7	728,000	1,019,000
4	159.2	816,000	1,113,000
4 1/4	182.3	908,000	1,272,000
4 1/2	205.3	1,004,000	1,465,000
4 3/4	225.1	1,102,000	1,543,000
5	253.0	1,203,000	1,685,000
* 5 3/8	293.0	1,357,000	1,903,000
* 5 5/8	318.7	1,466,000	2,052,000
5 1/4	333.9	1,570,000	2,128,000
6	361.9	1,629,000	2,280,000

* 5 1/4 & 5 1/2 in. sizes not listed, next size manufactured shown

$$A = 2(\pi D^2/4) = \pi D^2/2$$

$$E_{chain} = 29,000,000 \text{ psi}$$

TABLE 2.5 CHAIN PROPERTIES

EFFECTIVE WATER DEPTH = 412'

Access Location: 1775.0'

LENGTH OF LINE : 2000.0'

LENGTH OF LINE : 2000.0'

ABS Grade: 2

	11.6	11.1	21.3	21.1	11.8	30.3	—	161.1	411	—	88.3	400	318	—
A'_2	100.0	107.7	233	23.2	10c7	—	—	149.7	187	43.5	59.5	331	—	—
A'_3	111.7	112	221	21.1	112	—	—	161	162	1	121	222	—	—
A'_4	111.7	112	221	21.1	112	—	—	161	162	1	121	222	—	—
A'_5	111.7	112	221	21.1	112	—	—	161	162	1	121	222	—	—

CHAN S/N (A)	LINE POSITION	QUASI - STATIC FORCES AND				DYNAMIC - STATIC + STATION VARIANCE								
		OFFSET	MAG. LINE TENSION	MAG. LO	FORCED LOAD	OFFSET	MAG. LINE TENSION	MAG. LO	FORCED LOAD					
		% RMS	% RMS	% RMS	% RMS	% RMS	% RMS	% RMS	% RMS					
4	11.6	9.5	119.7	2/3	26.1	970	50.5	-	161.7	477	58.5	402	378	-
4 ¹	100.0	101.7	233	23.2	1027	-	-	-	149.7	487	48.5	595	351	-
5	123.2	10.2	98.3	254	21.1	1132	-	-	140.3	489	40.6	732	272	-
5 ⁵	155.4	10.4	87.3	283	19.3	1194	-	-	129.3	506	34.5	870	203	-
6	176.4	10.8	82.0	302	18.5	1224	-	-	124.0	514	31.5	934	154	-

MEAN QUASI STATIC FORCE = 150.0'

Mr. 1st year Mottots : Sweet = 92.0'
Smart = —
Honest = —

MIN. LB = MINIMUM LENGTH OF CHAIN ON BOTTOM

TABLE 2.4 PARAMETRIC STUDY OF CHAIN SIZES FOR $D = 1/2$

~~EFFECTIVE NUMBER OF
VOTERS~~ = 1215

Chart Size: 5" Abs. Comp: 2 Poor Loss: 203^K C.B.S.: 185^K Live Loss: 2000'

Mem Quast State Forest - 150 ²

Mr. 1st year Maths : Sweet = 12'

— — — — —

MIN. LB = MINIMUM LENGTH OF CHAIN ON BOTTOM

TABLE 2.7 *Planchette Slips on Present Location (Provision)* For D = 412'

WATER DEPTH (FT)	112'	162'	262'	412'
WAVE HEIGHT (FT)	61'	64'	72'	84'
WAVE PERIOD (SEC)	13.6	13.6	14.0	14.6
WIND SPEED (KN)	150	150	150	150
CURRENT (FT/SEC)				
BOTTOM	1.69	1.69	1.69	1.69
SURFACE	5.07	5.07	5.07	5.07

TABLE 3.1 PARAMETERS FOR DESIGN CASES

WATER DEPTH (FT)	112	162	262	262	412
WAVE HEIGHT (FT)	61	64	72	72	84
WAVE PERIOD (SECS)	13.60	13.60	14.00	14.00	14.60
CHAIN SIZE (IN)	6	6	6	5	5
EST. STATIC OFFSET (FT)	30.0		121.4	133.2	121.2
NATURAL PERIOD					
SURGE	24.71	100.30	36.46	45.10	30.94
HEAVE	10.51	11.45	10.20	11.17	9.70
PITCH	8.68	10.10	10.49	10.23	12.62
SURGE RAO	1.2142	1.0506	0.9804	0.9668	0.9331
PHASE ANGLE	72.50	36.52	46.94	43.02	56.74
HEAVE RAO	0.6635	0.7925	0.8288	0.8364	0.8516
PHASE ANGLE	-152.50	-163.05	-159.97	-163.25	-158.85
PITCH RAO	0.7688	0.184	0.1245	0.1339	0.1249
PHASE ANGLE	-158.32	-59.57	-92.58	-78.28	-126.94

* BASED ON HORIZONTAL STATIC FORCE = 150 KIPS

TABLE 3.2 SUMMARY OF FREQUENCY DOMAIN ANALYTICAL RESULTS

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 412 FT

DESIGN WAVE HEIGHT (FT) = 84.0

WAVE PERIOD (SEC) = 14.6

MAX CREST ELEVATION (FT) = +47.41

MIN TROUGH ELEVATION (FT) = -36.34

MEAN ELEVATION (FT) = +5.54

MAX/MIN SURGE OFFSET (FT) = -147.8/-71.4

MEAN SURGE OFFSET (FT) = -109.6

MAX 1ST ORDER MOTIONS (FT) = ± 38.2

MAX/MIN HEAVE OFFSET (FT) = -33.5/24.5

MEAN HEAVE OFFSET (FT) = -4.5

MAX 1ST ORDER MOTION (FT) = ± 29.5

MAX/MIN PITCH ANGLE (DEG) = 12.5/8.6

MEAN PITCH ANGLE (DEG) = 2.0

MAX 1ST ORDER MOTION (DEG) = ± 10.5

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 285

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 58

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 171.5

MAX VERTICAL FORCE @ VESSEL (KIPS) = 237

MIN VERTICAL FORCE @ VESSEL (KIPS) = 126

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 181.5

MAX TENSION @ VESSEL (KIPS) = 371

MIN TENSION @ VESSEL (KIPS) = 139

MEAN TENSION @ VESSEL (KIPS) = 255

MAX HORZ. FORCE @ ANCHOR (KIPS) = 138

MIN HORZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = -

MIN VERTICAL FORCE @ ANCHOR (KIPS) = -

CHAIN DIAMETER (IN) = 5.0

LENGTH OF CHAIN (FT) = 2,000

LOCATION OF ANCHOR (FT) = 1,750

PROOF LOAD (KIPS) = 1,203

(PEAK TENSION / PROOF LOAD) × 100 = 30.84 %

TABLE 3.3 SUMMARY RESULTS - DEPTH 412 FT.

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 262 FT

DESIGN WAVE HEIGHT (FT) = 72.0

WAVE PERIOD (SEC) = 14.0

MAX CREST ELEVATION (FT) = +42.03

MIN TROUGH ELEVATION (FT) = -29.85

MEAN ELEVATION (FT) = +6.08

MAX/MIN SURGE OFFSET (FT) = -149.28/-74.65

MEAN SURGE OFFSET (FT) = -112.0

MAX 1ST ORDER MOTIONS (FT) = ± 37.3

MAX/MIN HEAVE OFFSET (FT) = -35.14/23.90

MEAN HEAVE OFFSET (FT) = -5.62

MAX 1ST ORDER MOTION (FT) = ± 29.5

MAX/MIN PITCH ANGLE (DEG) = 11.87/-23.55

MEAN PITCH ANGLE (DEG) = -5.84

MAX 1ST ORDER MOTION (DEG) = ± 17.7

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 325

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 31

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 178

MAX VERTICAL FORCE @ VESSEL (KIPS) = 188

MIN VERTICAL FORCE @ VESSEL (KIPS) = 80

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 134

MAX TENSION @ VESSEL (KIPS) = 376

MIN TENSION @ VESSEL (KIPS) = 80

MEAN TENSION @ VESSEL (KIPS) = 228

MAX HORZ. FORCE @ ANCHOR (KIPS) = 175

MIN HORZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = 0

MIN VERTICAL FORCE @ ANCHOR (KIPS) = 0

CHAIN DIAMETER (IN) = 5.0

LENGTH OF CHAIN (FT) = 2,000

LOCATION OF ANCHOR (FT) = 1,800

PROOF LOAD (KIPS) = 1,203

(PEAK TENSION / PROOF LOAD) × 100 = 31.26 %

TABLE-3.4 SUMMARY RESULTS - DEPTH 262FT

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 162 FT

DESIGN WAVE HEIGHT (FT) = 64.0

WAVE PERIOD (SEC) = 13.6

MAX CREST ELEVATION (FT) = 40.58

MIN TROUGH ELEVATION (FT) = -23.17

MEAN ELEVATION (FT) = +8.71

MAX/MIN SURGE OFFSET (FT) = 1.32/-125.9

MEAN SURGE OFFSET (FT) = -87.3

MAX 1ST ORDER MOTIONS (FT) = ± 38.6

MAX/MIN HEAVE OFFSET (FT) = 18.69/-24.70

MEAN HEAVE OFFSET (FT) = -3.01

MAX 1ST ORDER MOTION (FT) = ± 21.7

MAX/MIN PITCH ANGLE (DEG) = 18.3/-24.8

MEAN PITCH ANGLE (DEG) = -5.4

MAX 1ST ORDER MOTION (DEG) = ± 19.4

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 939

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 0

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 470

MAX VERTICAL FORCE @ VESSEL (KIPS) = 264

MIN VERTICAL FORCE @ VESSEL (KIPS) = 57

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 160.5

MAX TENSION @ VESSEL (KIPS) = 974

MIN TENSION @ VESSEL (KIPS) = 50

MEAN TENSION @ VESSEL (KIPS) = 512

MAX HORIZ. FORCE @ ANCHOR (KIPS) = 652

MIN HORIZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = 0

MIN VERTICAL FORCE @ ANCHOR (KIPS) = 0

CHAIN DIAMETER (IN) = 6.0

LENGTH OF CHAIN (FT) = 3,000

LOCATION OF ANCHOR (FT) = 2,850

PROOF LOAD (KIPS) = 2,280

(PEAK TENSION / PROOF LOAD) × 100 = 59.8 %

TABLE-3.5 SUMMARY RESULTS- DEPTH 162 FT

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 112 FT

DESIGN WAVE HEIGHT (FT) = 61.0

WAVE PERIOD (SEC) = 13.6

MAX CREST ELEVATION (FT) = 43.65

MIN TROUGH ELEVATION (FT) = -16.85

MEAN ELEVATION (FT) = +13.40

MAX/MIN SURGE OFFSET (FT) = -43.62/18.35

MEAN SURGE OFFSET (FT) = -12.63

MAX 1ST ORDER MOTIONS (FT) = ± 31.0

MAX/MIN HEAVE OFFSET (FT) = 17.18/-15.13

MEAN HEAVE OFFSET (FT) = +1.03

MAX 1ST ORDER MOTION (FT) = ± 16.15

MAX/MIN PITCH ANGLE (DEG) = 9.94/-22.48

MEAN PITCH ANGLE (DEG) = -6.27

MAX 1ST ORDER MOTION (DEG) = ± 16.2

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 1843

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 0

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 927

MAX VERTICAL FORCE @ VESSEL (KIPS) = 322

MIN VERTICAL FORCE @ VESSEL (KIPS) = 0

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 161

MAX TENSION @ VESSEL (KIPS) = 1871

MIN TENSION @ VESSEL (KIPS) = 0

MEAN TENSION @ VESSEL (KIPS) = 935.5

MAX HORIZ. FORCE @ ANCHOR (KIPS) = 1597

MIN HORIZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = 0

MIN VERTICAL FORCE @ ANCHOR (KIPS) = 0

CHAIN DIAMETER (IN) = 6

LENGTH OF CHAIN (FT) = 2,000

LOCATION OF ANCHOR (FT) = 1,950

PROOF LOAD (KIPS) = 1629

(PEAK TENSION / PROOF LOAD) × 100 = 114.8%.

TABLE - 3.6 SUMMARY RESULTS - DEPTH 112 FT

FIGURE 1.1

FIGURE 1.2

SECTION 2.6

Figure 2.1 Simulation Cycle

BRIAN WATT ASSOCIATES, INC.
CONSULTING ENGINEERS
HOUSTON, TEXAS

CLIENT:

PROJECT:

SYSTEM:

CALCULATION FOR :

FILING CODE:

JOB NO. 210

PAGE OF

ORIGINATOR:

DATE: 5-7-83

REVIEWER:

DATE:

REVISION:

RESULTS:

$$K = 10,000 \text{ lb/ft}$$

FIGURE 2.2 - MEAN FORCE ANALYSIS

CHESDIV SEMI GEOMETRY
FINE MODEL
ENTIRE MODEL

FIGURE 2.3

CHESDIV SEMI GEOMETRY
FINE MODEL
VERTICAL COLUMNS

NUMBERS SHOWN ARE NODES

FIGURE 2.4

FIGURE 2.5

CHE60IV SEMI GEOMETRY
FINE MODEL
LOWER BRACES

FIGURE 2.6

CHESDIV SEMI GEOMETRY
FINE MODEL
LOWER HULL W/ COLUMNS

FIGURE 2.7

CHESDIV SEMI GEOMETRY
FINE MODEL
UPPER BRACES

FIGURE 2.8

FIGURE 2.9

FIGURE 2.10 PLAN VIEW AND CO-ORDINATE SYSTEM

98 MECHANICS OF WAVE FORCES

Fig. 3.20. C_d versus K for various values of the Reynolds number and the frequency parameter (Sarpkaya 1976a).

Fig. 3.21. C_d versus Reynolds number for various values of K (Sarpkaya 1976a).

REF. "MECHANICS OF WAVE FORCES ON
OFFSHORE STRUCTURES" - TURGUT
SARPKAYA, MICHAEL ISAACSON.

FIGURE 2-11 VARIATION IN C_d & C_m

BRIAN WATT ASSOCIATES, INC.
CONSULTING ENGINEERS
HOUSTON, TEXAS

CLIENT:

U. S. NAVY

FILING CODE:

JOB NO. 210

PAGE 1 OF 3

ORIGINATOR:

R. Ay

DATE: 8/83

REVIEWER:

DATE:

REVISION:

RESULTS:

SYSTEM:

SEMI-SUBMERSIBLE INSTRUMENT PLATFORM

CALCULATION FOR:

WIND FORCES

$$\rho_{air} = 0.0024 \frac{\text{slugs}}{\text{ft}^3} @ 60^\circ\text{F}$$

FIGURE 2.12 SEMI-SUBMERSIBLE PROJECTED AREA

FILING
CODE:

$$(Y+P_h/W)^2 = s^2 + (P_h/W)^2$$

$$Y = (P_h/W) \cosh(WX/P_h) - 1$$

$$s = (P_h/W) \sinh(WX/P_h)$$

FIG. 2.13 BASIC CATENARY RELATIONSHIPS

FIGURE 2.14 ASSUMED SCOPE - WATER DEPTH RELATIONSHIP

- ① TOTALLY SLACK CONDITION : $x_1 = x_{\min}$
- ② TOTALLY TIGHT CONDITION : $x_2 = x_{\max}$
- ③ TRIAL LOCATION FOR SIZE SELECTION : x_3

$D = 112'$	
X	y
1903	97
1997.6	97
1950.3	97

$D = 162'$	
X	y
1853	147
1994.6	147
1923.8	147

$D = 262'$	
X	y
1753	247
1984.7	247
1868.8	247

$D = 412'$	
X	y
1653	3-7
1852	3-7
1781.6	3-7

FIGURE 2.15 DTA vs DEPTH

FIGURE 3-1 MOORING SYSTEM CHARACTERISTICS AT $D = 412 \text{ ft}$

FIGURE 3.2 MOORING SYSTEM CHARACTERISTICS AT $D = 262 \text{ ft}$

FIGURE 3.3 MOORING SYSTEM CHARACTERISTICS AT $D = 16^{\circ}$ FT

FIGURE 3-4 PEAK HORIZONTAL FORCE @ VESSEL
AGAINST WATER DEPTH

ENGINEERING ANALYSIS OF OCEAN
ENGINEERING PROJECTS

TASK 1 MOORING SYSTEM DESIGN AND TIME DOMAIN SIMULATION
OF A SEMISUBMERSIBLE BUOY

APPENDIX A

- FREQUENCY DOMAIN RESULTS
- TIME HISTORY PLOTS
- SUMMARY OF RESULTS
- PROPOSED MOORING SYSTEM

APPENDIX A.1

WATER DEPTH = 400 FT
EFFECTIVE DEPTH = 412 FT
WAVE HEIGHT = 84 FT
WAVE PERIOD = 14.6 SEC
CURRENT = 3 KN
WIND = 150 KN
MOORING CHAIN = 5 IN

ITEM	WEIGHT (S. TONS)
SEISMISUBMERSIBLE + PAYLOAD	65.1
MOORING SYSTEM	
VERTICAL COMPONENT	164.2
BALLAST	23.7
TOTAL DISPLACEMENT	253.0

SEMISUBMERSIBLE WEIGHT DISTRIBUTION

DEPTH = 412 FT

*** CALCULATED DISPLACEMENT PROPERTIES ***

DISPLACEMENT	=	0.49987E 06
CENTER OF BUOYANCY ALONG X-AXIS	=	0.00
CENTER OF BUOYANCY ALONG Y-AXIS	=	0.00
CENTER OF BUOYANCY ALONG Z-AXIS	=	-19.89

UNITS : LBS, FEET

*** STRUCTURAL INPUT PROPERTIES ***

STRUCTURAL WEIGHT	=	0.17768E 06
ROLL RADIUS OF GYRATION	=	26.90
PITCH RADIUS OF GYRATION	=	26.90
YAW RADIUS OF GYRATION	=	31.50
CENTER OF GRAVITY ALONG X-AXIS	=	0.00
CENTER OF GRAVITY ALONG Y-AXIS	=	0.00
CENTER OF GRAVITY ALONG Z-AXIS	=	-12.90

*** WATER INPUT PROPERTIES ***

MASS DENSITY OF WATER	=	1.99
ACCELERATION OF GRAVITY	=	32.17
WAVE HEIGHT	=	84.00
WAVE PERIOD	=	14.60
WATER DEPTH	=	412.00
ANGLE OF ATTACK IN DEGREES	=	180.00

*** CALCULATED WATERPLANE PROPERTIES ***

WATERPLANE AREA	=	94.51
CENTER OF AREA ALONG X-AXIS	=	0.00
CENTER OF AREA ALONG Y-AXIS	=	-0.00
WATERPLANE INERTIA ABOUT X-AXIS	=	0.66787E 05
WATERPLANE INERTIA ABOUT Y-AXIS	=	0.66783E 05
METACENTRIC HEIGHT IN ROLL	=	1.57
METACENTRIC HEIGHT IN PITCH	=	1.57

*** CENTERS ARE IN ORIGINAL SYSTEM ***

*** INERTIAS ARE ABOUT AXES THRU CG ***

BODY MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.39224716E-04	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
SWAY	0.0000000E-00	0.39224716E-04	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
HEAVE	0.0000000E-00	0.0000000E-00	0.3924716E-04	0.0000000E-00	0.0000000E-00	0.0000000E-00
ROLL	0.0000000E-00	0.0000000E-00	0.3924716E-04	0.39461156E-07	0.0000000E-00	0.0000000E-00
PITCH	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.39961156E-07	0.0000000E-00
YAW	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.54796724E-07

ADDED MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.619193757E-04	-0.20929747E-09	-0.64601498E-11	-0.22882887E-08	-0.48943719E-03	0.24675936E-01
SWAY	-0.20929747E-09	0.96179464E-04	0.48927994E-03	0.22973834E-08	0.22230983E-02	0.13967224E-09
HEAVE	-0.64601498E-11	-0.31106031E-11	0.12226623E-09	0.24879590E-01	-0.31666512E-02	0.5402375E-02
ROLL	-0.22882887E-08	0.48927994E-03	0.24879590E-01	0.50137260E-07	-0.69180543E-00	0.5402375E-02
PITCH	-0.48943719E-03	-0.22973834E-08	-0.31146512E-02	-0.69180543E-00	0.50131609E-07	-0.27619344E-00
YAW	0.24675936E-01	0.22230983E-02	-0.13967224E-09	0.54602375E-02	-0.27819346E-00	0.95184844E-07

HYDROSTATIC STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
SWAY	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
HEAVE	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
ROLL	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.78289207E-06	-0.19332313E-11	0.0000000E-00
PITCH	0.0000000E-00	0.0000000E-00	-0.20175172E-02	-0.15332313E-11	0.78289210E-04	0.0000000E-00
YAW	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00

LOADING STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.88941201E-03	-0.45474735E-12	0.22149101E-03	-0.29103930E-10	0.20888981E-03	0.43639744E-10
SWAY	-0.45474735E-12	0.23322535E-03	-0.45474735E-12	-0.10178742E-03	-0.72759574E-11	0.76902283E-04
HEAVE	0.22149101E-03	-0.45474735E-12	0.39840010E-04	-0.58207641E-10	-0.49645977E-03	0.72759574E-10
ROLL	-0.29103930E-10	-0.10178742E-03	-0.58207641E-10	0.11059539E-07	-0.37252903E-08	-0.4176163E-04
PITCH	0.20888981E-03	-0.72759574E-11	-0.46959579E-03	-0.37252903E-08	0.10575759E-07	0.0000000E-00
YAW	0.43639744E-10	0.79902283E-04	0.72759574E-10	-0.4176163E-04	0.0000000E-00	0.3844304E-06

NODE SHAPE MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.99429602E-00	-0.33134545E-08	0.47078384E-01	-0.19694272E-09	0.99473481E-00	0.13194027E-06
SWAY	-0.45114535E-07	0.89974382E-00	0.308423141E-07	-0.99942727E-00	-0.71327175E-00	0.9989902E-00
HEAVE	-0.34120187E-01	0.10865334E-09	0.99889019E-00	0.360245151E-06	-0.99170685E-01	-0.26348131E-08
ROLL	-0.12853671E-06	-0.59739223E-03	-0.59739223E-03	0.10730723E-04	0.18327151E-04	0.22206393E-01
PITCH	-0.15597364E-01	0.30422113E-10	0.79902045E-03	-0.1611018E-06	0.8364516E-01	-0.15200463E-07
YAW	-0.43334171E-08	-0.22628540E-01	0.39349394E-09	-0.21684317E-01	-0.47570135E-01	

NATURAL PERIOD IN SURGE = 0.30942089E-02
 NATURAL PERIOD IN SWAY = 0.105056722E-03
 NATURAL PERIOD IN HEAVE = 0.96979036E-01
 NATURAL PERIOD IN ROLL = 0.13011623E-02
 NATURAL PERIOD IN PITCH = 0.12620198E-02
 NATURAL PERIOD IN YAW = 0.39448139E-02

PERIOD	LENGTH	SURGE	PHASE	SWAY	PHASE	HEAVE	PHASE	ROLL	PHASE	PITCH	PHASE	YAW	PHASE
14.60	1074.06	0.9331	56.74	0.0000	-94.44	0.8914	-138.83	0.0000	96.09	0.12430	-126.94	0.0000	-46.06

WAVE PERIOD= 14.60

INERTIAL FORCES

VISCOS DRAG FORCES

	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT
SURGE	0.67791267E 03	0. 91409416E 02	0. 10646730E 06	0. 90080291E 02	0. 41203798E 06	-0. 17889870E 03
SWAY	0. 75054505E-03	-0. 76933207E 01	0. 83393115E-03	-0. 76936417E 01	0. 47955827E-02	0. 81587735E 02
HEAVE	0. 82284033E 03	-0. 17999990E 03	0. 16633086E 06	0. 32214386E-01	0. 64520503E 04	-0. 89216013E 02
ROLL	0. 15925629E 00	0. 17099448E 03	0. 17693184E 00	0. 17099448E 03	0. 58628841E 00	-0. 10232316E 03
PITCH	0. 48451023E 06	-0. 88169424E 02	0. 88702257E 05	0. 97556102E 02	0. 28829626E 07	-0. 11456898E 02
YAW	0. 17086936E 00	0. 793883861E 02	0. 18989463E 00	0. 79384087E 02	0. 10310228E 01	0. 16838210E 03

DAMPING MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0. 25217961E 09	-0. 94328161E-05	-0. 27365266E 03	0. 27298316E-03	-0. 10318426E 06	0. 64591203E-01
SWAY	-0. 94328161E-09	0. 22582778E 05	-0. 12630303E-04	0. 78843596E 03	0. 15740938E-03	0. 17441896E 05
HEAVE	-0. 27365266E 03	-0. 12630303E-04	0. 40971738E 05	0. 40472737E-01	0. 45655006E 05	-0. 43040392E-03
ROLL	0. 27298316E-03	0. 78843596E 03	0. 40472737E-01	0. 16132895E 08	-0. 13943393E 01	0. 20268899E 06
PITCH	-0. 10318426E 06	0. 15740938E-03	0. 43655006E 05	-0. 13943394E 01	0. 14374054E 08	-0. 73644863E 00
YAW	0. 64591203E-01	0. 17441896E 05	-0. 43040392E-03	0. 20268899E 06	-0. 73644867E 00	0. 21721920E 08

CATENARY MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0. 99005932E 03	-0. 45474735E-12	0. 22151984E 03	-0. 58207661E-10	0. 20889345E 05	0. 436593746E-10
SWAY	-0. 45474735E-12	0. 23190413E 03	-0. 45474735E-12	-0. 10170338E 03	-0. 72759576E-11	0. 77007049E 04
HEAVE	0. 22151984E 03	-0. 45474735E-12	0. 13884000E 04	-0. 17462298E-09	-0. 46964873E 03	0. 43655746E-10
ROLL	-0. 58207661E-10	-0. 10170338E 03	-0. 17462298E-09	0. 11058839E 07	-0. 37252903E-08	-0. 41754427E 06
PITCH	0. 20889345E 09	-0. 72759576E-11	-0. 46964873E 03	-0. 37252903E-08	0. 10575672E 07	0. 00000000E 00
YAW	0. 436593746E-10	0. 77007045E 04	0. 436593746E-10	-0. 41754427E 06	0. 00000000E 00	0. 38401132E 06

MOORING SYSTEM USED : 5" GRADE 2 CHAIN

LENGTH = 2000FT

LOCATION OF ANCHOR = 1750 FT

FORCES IN Catenary Lines

PERIOD	ELEMENT	MIN HOR FOR AT SHP		MIN TEN AT SHP		MIN HOR FOR AT SHP		MIN TEN AT SHP		MIN HOR FOR AT BOT		MIN TEN AT BOT		MIN VER FOR AT BOT		MIN VER FOR AT BOT	
		MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MIN VER FOR AT SHP	MAX VER FOR AT SHP	MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MIN VER FOR AT SHP	MAX VER FOR AT SHP	MIN HOR FOR AT BOT	MAX HOR FOR AT BOT	MIN VER FOR AT BOT	MAX VER FOR AT BOT	MIN HOR FOR AT BOT	MAX HOR FOR AT BOT	MIN VER FOR AT BOT	MAX VER FOR AT BOT
14.60	1	0.65430474E 05	0.13050363E 06	0.14605236E 06	0.26121349E 06	0.41781020E 06	0.81297260E 05	0.99738919E 05	0.99616816E 05	0.81297260E 05	0.18821018E 06	0.32608722E 06	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00	
14.60	2	0.19725398E 04	0.38869451E 04	0.81272135E 05	0.99616816E 05	0.99738919E 05	0.99616816E 05	0.99738919E 05	0.99616815E 05	0.99738919E 05	0.99738919E 05	0.99738919E 05	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00	
14.60	3	0.19725399E 04	0.39869441E 04	0.99869441E 04	0.99616815E 05	0.99738919E 05	0.99616815E 05	0.99738919E 05	0.99616815E 05	0.99738919E 05	0.99738919E 05	0.99738919E 05	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00	

FORCES AT ANCHOR

FORCES IN LBS.

BRIAN WATT ASSOCIATES, INC.

CHESDIV SEMI
D-412 5' CHAIN
WAVE HEIGHT VS. TIME

BRIAN WATT ASSOCIATES, INC.

CHE60IV SEMI
CHAIN
SURGE VS. TIME

BRIAN WATT ASSOCIATES, INC.

CHE60IV SEMI
0-412 5° CHAIN
HEAVE VS. TIME

BRIAN WATT ASSOCIATES, INC.

CHESDITV SEMI
4412 5" CHAIN
PITCH ANGLE VS. TIME

BRIAN WATT ASSOCIATES, INC.

CHESOIV SEMI
D-412 5° CHAIN
HORZ FORC AT ANCH CBL #1

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 412 FT

DESIGN WAVE HEIGHT (FT) = 84.0

WAVE PERIOD (SEC) = 14.6

MAX CREST ELEVATION (FT) = +47.41

MIN TROUGH ELEVATION (FT) = -36.34

MEAN ELEVATION (FT) = +5.54

MAX/MIN SURGE OFFSET (FT) = -147.8/-71.4

MEAN SURGE OFFSET (FT) = -109.6

MAX 1ST ORDER MOTIONS (FT) = ± 38.2

MAX/MIN HEAVE OFFSET (FT) = -33.5/24.5

MEAN HEAVE OFFSET (FT) = -4.5

MAX 1ST ORDER MOTION (FT) = ± 29.5

MAX/MIN PITCH ANGLE (DEG) = 12.5/8.6

MEAN PITCH ANGLE (DEG) = 2.0

MAX 1ST ORDER MOTION (DEG) = ± 10.5

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 285

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 58

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 171.5

MAX VERTICAL FORCE @ VESSEL (KIPS) = 237

MIN VERTICAL FORCE @ VESSEL (KIPS) = 126

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 181.5

MAX TENSION @ VESSEL (KIPS) = 371

MIN TENSION @ VESSEL (KIPS) = 139

MEAN TENSION @ VESSEL (KIPS) = 255

MAX HORIZ. FORCE @ ANCHOR (KIPS) = 138

MIN HORIZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = -

MIN VERTICAL FORCE @ ANCHOR (KIPS) = -

CHAIN DIAMETER (IN) = 5.0

LENGTH OF CHAIN (FT) = 2,000

LOCATION OF ANCHOR (FT) = 1,750

PROOF LOAD (KIPS) = 1,203

(PEAK TENSION / PROOF LOAD) × 100 = 30.84 %

APPENDIX A.2

WATER DEPTH	= 250 FT
EFFECTIVE WATER DEPTH	= 262 FT
WAVE HEIGHT	= 72 FT
WAVE PERIOD	= 14.0 SEC
CURRENT	= 3 KN
WIND	= 150 KN
MOORING CHAIN	= 5 IN

<u>ITEM</u>	<u>WEIGHT (S. TONS)</u>
SEMISUBMERSIBLE + PAYLOAD	65.1
MOORING SYSTEM	
VERTICAL COMPONENT	88.0
BALLAST	99.9
TOTAL DISPLACEMENT	253.0

SEMISUBMERSIBLE WEIGHT DISTRIBUTION
DEPTH = 262 FT

**** CALCULATED DISPLACEMENT PROPERTIES ****

DISPLACEMENT	=	0. 49987E 06
CENTER OF BUOYANCY ALONG X-AXIS	=	0. 00
CENTER OF BUOYANCY ALONG Y-AXIS	=	0. 00
CENTER OF BUOYANCY ALONG Z-AXIS	=	-19. 89

**** STRUCTURAL INPUT PROPERTIES ****

STRUCTURAL WEIGHT	=	0. 33000E 06
ROLL RADIUS OF GYRATION	=	25. 20
PITCH RADIUS OF GYRATION	=	25. 20
YAW RADIUS OF GYRATION	=	31. 10
CENTER OF GRAVITY ALONG X-AXIS	=	0. 00
CENTER OF GRAVITY ALONG Y-AXIS	=	0. 00
CENTER OF GRAVITY ALONG Z-AXIS	=	-17. 90

**** WATER INPUT PROPERTIES ****

MASS DENSITY OF WATER	=	1. 99
ACCELERATION OF GRAVITY	=	32. 17
WAVE HEIGHT	=	72. 00
WAVE PERIOD	=	14. 00
WATER DEPTH	=	262. 00
ANGLE OF ATTACK IN DEGREES	=	180. 00

**** CALCULATED WATERPLANE PROPERTIES ****

WATERPLANE AREA	=	94. 51
CENTER OF AREA ALONG X-AXIS	=	0. 00
CENTER OF AREA ALONG Y-AXIS	=	-0. 00
WATERPLANE INERTIA ABOUT X-AXIS	=	0. 66787E 05
WATERPLANE INERTIA ABOUT Y-AXIS	=	0. 66783E 05
METACENTRIC HEIGHT IN ROLL	=	6. 57
METACENTRIC HEIGHT IN PITCH	=	6. 57

**** CENTERS ARE IN ORIGINAL SYSTEM ****

**** INERTIAS ARE ABOUT AXES THRU CG ***

FREQUENCY DOMAIN RESULTS

UNITS: LBS, FEET

**** CALCULATED DISPLACEMENT PROPERTIES ****

DISPLACEMENT	=	0.49987E 06
CENTER OF BUOYANCY ALONG X-AXIS	=	0.00
CENTER OF BUOYANCY ALONG Y-AXIS	=	0.00
CENTER OF BUOYANCY ALONG Z-AXIS	=	-19.89

**** STRUCTURAL INPUT PROPERTIES ****

STRUCTURAL WEIGHT	=	0.33000E 06
ROLL RADIUS OF GYRATION	=	25.20
PITCH RADIUS OF GYRATION	=	25.20
YAW RADIUS OF GYRATION	=	31.10
CENTER OF GRAVITY ALONG X-AXIS	=	0.00
CENTER OF GRAVITY ALONG Y-AXIS	=	0.00
CENTER OF GRAVITY ALONG Z-AXIS	=	-17.90

**** WATER INPUT PROPERTIES ****

MASS DENSITY OF WATER	=	1.99
ACCELERATION OF GRAVITY	=	32.17
WAVE HEIGHT	=	72.00
WAVE PERIOD	=	14.00
WATER DEPTH	=	262.00
ANGLE OF ATTACK IN DEGREES	=	180.00

**** CALCULATED WATERPLANE PROPERTIES ****

WATERPLANE AREA	=	94.51
CENTER OF AREA ALONG X-AXIS	=	0.00
CENTER OF AREA ALONG Y-AXIS	=	-0.00
WATERPLANE INERTIA ABOUT X-AXIS	=	0.66787E 05
WATERPLANE INERTIA ABOUT Y-AXIS	=	0.66783E 05
METACENTRIC HEIGHT IN ROLL	=	6.57
METACENTRIC HEIGHT IN PITCH	=	6.57

**** CENTERS ARE IN ORIGINAL SYSTEM ****

**** INERTIAS ARE ABOUT AXES THRU CG ***

FREQUENCY DOMAIN RESULTS

UNITS: LBS, FEET

BODY MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.10236727E-09	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
SWAY	0.0000000E-00	0.10236729E-05	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
HEAVE	0.0000000E-00	0.0000000E-00	0.10236729E-05	0.0000000E-00	0.0000000E-00	0.0000000E-00
ROLL	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.6513432E-07	0.0000000E-00	0.0000000E-00
PITCH	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.6513432E-07	0.0000000E-00
YAW	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.99204109E-07

ADDED MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.96193727E-04	-0.20929747E-09	-0.44801498E-11	-0.12514647E-08	-0.844683652E-03	0.24875956E-01
SWAY	0.20929747E-09	0.96193729E-04	0.310206051E-11	0.83816110E-03	-0.12494457E-08	0.22230983E-02
HEAVE	-0.44801498E-11	-0.310206051E-11	0.122266235E-09	0.248759530E-01	-0.31666512E-02	-0.13096724E-04
ROLL	-0.12514647E-08	0.83816110E-03	0.248759530E-01	0.47648952E-07	-0.69180543E-00	0.56552540E-02
PITCH	-0.844683652E-03	-0.12494457E-08	-0.31666512E-02	-0.69180543E-00	0.47642081E-07	-0.13381561E-00
YAW	0.248759530E-01	0.22230983E-02	-0.13096724E-09	-0.36355294E-02	-0.15361562E-00	0.93184866E-07

HYDROSTATIC STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
SWAY	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
HEAVE	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00
ROLL	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.32822065E-07	-0.13532313E-11	0.0000000E-00
PITCH	0.0000000E-00	0.0000000E-00	0.0000000E-00	-0.15332313E-11	0.32819356E-07	0.0000000E-00
YAW	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00	0.0000000E-00

HOUSING STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.42436121E-03	-0.22237368E-12	0.92147124E-02	-0.22237368E-12	-0.18917490E-09	0.12507398E-03
SWAY	-0.22237368E-03	0.42436121E-03	0.10585900E-04	-0.29103830E-10	-0.14591915E-10	-0.33997662E-04
HEAVE	0.105864437E-09	-0.39023210E-04	-0.29103830E-10	0.90763849E-06	-0.46546129E-06	0.36379788E-10
ROLL	0.18917490E-09	-0.14591915E-03	0.31226512E-03	-0.46546129E-08	-0.9347928E-06	-0.22274273E-06
PITCH	0.12507398E-03	0.33997682E-04	0.34379798E-10	-0.22274273E-06	-0.23283044E-07	0.1916392E-03
YAW	0.14591915E-10	-0.22274273E-06	-0.50442638E-09	-0.74703782E-01	-0.74069693E-07	0.42614396E-01

NODE SHAPE MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.99953053E-09	-0.8435053E-01	0.16828353E-01	-0.12038993E-07	-0.62921107E-00	0.64515291E-00
SWAY	-0.24732278E-07	0.99971271E-00	-0.99971271E-00	-0.72644265E-09	0.17408936E-00	-0.94916987E-09
HEAVE	-0.16138121E-01	0.12899046E-10	0.99953053E-01	0.126335227E-07	0.77384178E-00	0.36881190E-02
ROLL	-0.16016922E-09	-0.38803210E-04	0.126335227E-07	0.78218132E-03	-0.39414825E-03	-0.2368941E-09
PITCH	0.31226512E-02	0.29529777E-11	-0.78218132E-03	-0.50442638E-09	-0.47398306E-00	-0.42614396E-01
YAW	-0.23953053E-08	-0.23953053E-01	-0.50442638E-09	-0.74703782E-01	-0.74069693E-07	0.42614396E-01

NATURAL PERIOD IN BURGE = 0.45104884E-02
 NATURAL PERIOD IN SWAY = 0.27437149E-03
 NATURAL PERIOD IN HEAVE = 0.11171033E-02
 NATURAL PERIOD IN ROLL = 0.10294208E-02
 NATURAL PERIOD IN PITCH = 0.10234046E-02
 NATURAL PERIOD IN YAW = 0.601577619E-02

PERIOD	LENGTH	SURGE	PHASE	SWAY	PHASE	HEAVE	PHASE	ROLL	PHASE	PITCH	ROLL	PHASE	YAW	PHASE
14.00	944.08	0.9848	43.02	0.0000	-34.97	0.8364	-163.29	0.00000	103.71	0.13394	-78.28	0.00000	-39.21	

INERTIAL FORCES

	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT
SURGE	0.45386880E 03	0. 91607001E 02	0. 10264269E 04	0. 90096270E 02	0. 33424287E 06	-0. 17892448E 03		
SWAY	0. 8234324E-03	-0. 87523173E 01	0. 91491890E-03	-0. 87528012E 01	0. 45094041E-02	0. 90313927E 02		
HEAVE	0. 74476960E 09	-0. 17999912E 03	0. 13624738E 06	0. 49261786E-01	0. 49322482E 06	-0. 89155603E 02		
ROLL	0. 14676634E 00	0. 16933335E 03	0. 16307394E 00	0. 16933334E 03	0. 50737212E 00	-0. 10321560E 03		
PITCH	0. 14958717E 02	-0. 87224197E 02	0. 97884416E 06	0. 84926449E 02	0. 72762380E 06	-0. 21596116E 02		
YAW	0. 16471731E 00	0. 77420268E 02	0. 18301906E 00	0. 77920379E 02	0. 86831002E 00	0. 16701561E 03		

FROUDE-KRILDOV FORCES

	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT
SURGE	0.45386880E 03	0. 91607001E 02	0. 10264269E 04	0. 90096270E 02	0. 33424287E 06	-0. 17892448E 03		
SWAY	0. 8234324E-03	-0. 87523173E 01	0. 91491890E-03	-0. 87528012E 01	0. 45094041E-02	0. 90313927E 02		
HEAVE	0. 74476960E 09	-0. 17999912E 03	0. 13624738E 06	0. 49261786E-01	0. 49322482E 06	-0. 89155603E 02		
ROLL	0. 14676634E 00	0. 16933335E 03	0. 16307394E 00	0. 16933334E 03	0. 50737212E 00	-0. 10321560E 03		
PITCH	0. 14958717E 02	-0. 87224197E 02	0. 97884416E 06	0. 84926449E 02	0. 72762380E 06	-0. 21596116E 02		
YAW	0. 16471731E 00	0. 77420268E 02	0. 18301906E 00	0. 77920379E 02	0. 86831002E 00	0. 16701561E 03		

DAMPING MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0. 22124103E 03	0. 46399454E-04	-0. 303994266E 03	0. 94985021E-03	0. 21754951E 03	0. 98782482E-01
SWAY	0. 46399454E-04	0. 19980304E 05	-0. 10785721E-04	-0. 29261823E 05	-0. 22646361E-03	0. 23494204E 05
HEAVE	-0. 303944266E 03	-0. 10785721E-04	0. 36028746E 05	0. 39060927E-01	0. 25507146E 05	-0. 323339353E-03
ROLL	0. 94985021E-03	-0. 29281823E 05	0. 39060927E-01	0. 13842372E 08	-0. 12414624E 10	0. 93044142E 05
PITCH	0. 21754951E 05	-0. 22646361E-03	0. 25507146E 05	-0. 12414624E 01	0. 14208982E 08	-0. 36982804E 00
YAW	0. 38782682E-01	0. 23494204E 05	-0. 323339353E-03	0. 93049142E 05	-0. 36982804E 00	0. 19148023E 08

CATENARY MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0. 42493813E 03	-0. 34106091E-12	0. 10870243E 03	-0. 58207661E-10	0. 12507974E 05	0. 00000000E 00
SWAY	-0. 34106091E-12	0. 91407820E 02	-0. 22737368E-12	-0. 54925599E 04	-0. 72759576E-11	0. 34058265E 04
HEAVE	0. 10870243E 03	-0. 22737368E-12	0. 10595900E 04	-0. 87311491E-10	0. 31124051E 03	0. 14551915E-10
ROLL	-0. 58207861E-10	-0. 94255997E 04	-0. 87311491E-10	0. 90798507E 06	-0. 27939677E-08	-0. 22261688E 06
PITCH	0. 1250774E 03	-0. 72759576E-11	0. 31124051E 03	-0. 27939677E-08	0. 94549970E 04	0. 11641932E 09
YAW	0. 00000000E 00	0. 34058265E 04	-0. 14551915E-10	-0. 22261688E 06	0. 11641932E-09	0. 15135162E 06

MOORING SYSTEM USED : 5" GRADE 2 CHAIN

LENGTH OF CHAIN: 2000 FT

LOCATION OF ANCHOR: 1800 FT

FORCES IN Catenary Lines

PERIOD	ELEMENT	MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MIN VER FOR AT SHP	MAX VER FOR AT SHP	MIN TEN AT SHP	MAX TEN AT SHP	MIN HOR FOR AT BOT	MAX HOR FOR AT BOT	MIN VER FOR AT BOT	MAX VER FOR AT BOT
14.00	1	0.44303098E 05	0.57257443E 06	0.79778290E 05	0.26851215E 06	0.91293286E 05	0.63240831E 06	0.0000000E 00	0.44063340E 06	0.0000000E 00	0.0000000E 00
14.00	2	0.1000000E-05	0.15006640E 02	0.47692598E 05	0.60527223E 05	0.47692598E 05	0.60527223E 05	0.0000000E 00	0.0000000E 00	0.0000000E 00	0.0000000E 00
14.00	3	0.1000000E-05	0.150066427E 02	0.47692598E 05	0.60527223E 05	0.47692598E 05	0.60527223E 05	0.0000000E 00	0.0000000E 00	0.0000000E 00	0.0000000E 00

FORCES AT ANCHOR

FORCES IN LBS.

BRIAN MATT ASSOCIATES, INC.

CHESDIV SEMI
D-262 5 CHAIN
WAVE HEIGHT VS. TIME

BRIAN WATT ASSOCIATES, INC.

BRIAN WATT ASSOCIATES, INC.

CHEROTIV SEMI
-262 5° CHAIN
HERVE VS. TIME

BRIAN WATT ASSOCIATES, INC.

BRIAN WATT ASSOCIATES, INC.

AD-A163 498 MOORING SYSTEM DESIGN AND TIME DOMAIN SIMULATION OF A
SEMISSUBMERSIBLE BUOY(U) MATT (BRIAN) ASSOCIATES INC
HOUSTON TX SEP 83 N62477-84-D-0165

2/ 2

UNCLASSIFIED

F/G 13/2

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

CHESDIV SEMI
F-262 5 CHAIN
VERT FORC AT ANCH CBL #1

CHESDIV SEMI
122 5' CHAIN
HORZ FORC AT ANCH CBL #2

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 262 FT

DESIGN WAVE HEIGHT (FT) = 72.0

WAVE PERIOD (SEC) = 14.0

MAX CREST ELEVATION (FT) = +42.03

MIN TROUGH ELEVATION (FT) = -29.85

MEAN ELEVATION (FT) = +6.08

MAX/MIN SURGE OFFSET (FT) = -149.28/-74.65

MEAN SURGE OFFSET (FT) = -112.0

MAX 1ST ORDER MOTIONS (FT) = ± 37.3

MAX/MIN HEAVE OFFSET (FT) = -35.14/23.90

MEAN HEAVE OFFSET (FT) = -5.62

MAX 1ST ORDER MOTION (FT) = ± 29.5

MAX/MIN PITCH ANGLE (DEG) = 11.87/-23.55

MEAN PITCH ANGLE (DEG) = -5.84

MAX 1ST ORDER MOTION (DEG) = ± 17.7

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 325

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 31

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 178

MAX VERTICAL FORCE @ VESSEL (KIPS) = 188

MIN VERTICAL FORCE @ VESSEL (KIPS) = 80

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 134

MAX TENSION @ VESSEL (KIPS) = 376

MIN TENSION @ VESSEL (KIPS) = 80

MEAN TENSION @ VESSEL (KIPS) = 228

MAX HORZ. FORCE @ ANCHOR (KIPS) = 175

MIN HORZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = 0

MIN VERTICAL FORCE @ ANCHOR (KIPS) = 0

CHAIN DIAMETER (IN) = 5.0

LENGTH OF CHAIN (FT) = 2,000

LOCATION OF ANCHOR (FT) = 1,800

PROOF LOAD (KIPS) = 1,203

(PEAK TENSION / PROOF LOAD) × 100 = 31.26 %

APPENDIX A.3

WATER DEPTH	= 150 FT
EFFECTIVE DEPTH	= 162 FT
WAVE HEIGHT	= 64 FT
WAVE PERIOD	= 13.6 SEC
CURRENT	= 3 KN
WIND	= 150 KN
MOORING CHAIN	= 5 IN

<u>ITEM</u>	<u>WEIGHT (S.TONS)</u>
SEMISUBMERSIBLE + PAYLOAD	65.1
MOORING SYSTEM	
VERTICAL COMPONENT	69.4
<u>BALLAST</u>	<u>119.9</u>
TOTAL DISPLACEMENT	254.4

SEMISUBMERSIBLE WEIGHT DISTRIBUTION

DEPTH = 162 FT

***** CALCULATED DISPLACEMENT PROPERTIES *****

DISPLACEMENT	=	0.49987E 06
CENTER OF BUOYANCY ALONG X-AXIS	=	0.00
CENTER OF BUOYANCY ALONG Y-AXIS	=	0.00
CENTER OF BUOYANCY ALONG Z-AXIS	=	-19.89

**** STRUCTURAL INPUT PROPERTIES ****

STRUCTURAL WEIGHT	=	0.37039E 06
ROLL RADIUS OF GYRATION	=	24.50
PITCH RADIUS OF GYRATION	=	24.50
YAW RADIUS OF GYRATION	=	30.30
CENTER OF GRAVITY ALONG X-AXIS	=	0.00
CENTER OF GRAVITY ALONG Y-AXIS	=	0.00
CENTER OF GRAVITY ALONG Z-AXIS	=	-18.50

**** WATER INPUT PROPERTIES ****

MASS DENSITY OF WATER	=	1.99
ACCELERATION OF GRAVITY	=	32.17
WAVE HEIGHT	=	64.00
HAVE PERIOD	=	13.60
WATER DEPTH	=	162.00
ANGLE OF ATTACK IN DEGREES	=	180.00

**** CALCULATED WATERPLANE PROPERTIES ****

WATERPLANE AREA	=	94.51
CENTER OF AREA ALONG X-AXIS	=	0.00
CENTER OF AREA ALONG Y-AXIS	=	-0.00
WATERPLANE INERTIA ABOUT X-AXIS	=	0.66787E 05
WATERPLANE INERTIA ABOUT Y-AXIS	=	0.66783E 05
METACENTRIC HEIGHT IN ROLL	=	7.17
METACENTRIC HEIGHT IN PITCH	=	7.17

**** CENTERS ARE IN ORIGINAL SYSTEM ****

**** INERTIAS ARE ABOUT AXES THRU CG ***

FREQUENCY DOMAIN RESULTS
UNITS : LBS, FEET

ADDED MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.11912091E-05	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00
SWAY	0.00000000E-00	0.11512091E-05	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00
HEAVE	0.00000000E-00	0.00000000E-00	0.11512091E-05	0.00000000E-00	0.00000000E-00	0.00000000E-00
ROLL	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.69101323E-07	0.00000000E-00	0.00000000E-00
PITCH	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.69101323E-07	0.00000000E-00
YAW	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.10569135E-08

HYDROSTATIC STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00
SWAY	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00
HEAVE	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00
ROLL	0.00000000E-00	0.00000000E-00	0.46396940E-09	0.35821314E-07	0.15532313E-11	0.00000000E-00
PITCH	0.00000000E-00	0.00000000E-00	-0.20175172E-02	-0.15532313E-11	0.35818814E-07	0.00000000E-00
YAW	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00	0.00000000E-00

MOORING STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.85795176E-02	-0.11368684E-12	0.11557187E-00	-0.29103830E-10	0.35933618E-04	0.71054274E-14
SWAY	-0.11368684E-12	0.85643698E-02	0.00000000E-00	-0.35930892E-04	-0.14551915E-10	-0.30693722E-01
HEAVE	0.11557187E-00	0.00000000E-00	0.10958036E-04	-0.24156179E-08	-0.11916092E-02	0.00000000E-00
ROLL	-0.29103830E-10	-0.35930892E-04	-0.24156179E-08	0.93317932E-06	-0.49360096E-07	-0.16293887E-02
PITCH	0.35933618E-04	-0.14551915E-10	-0.11916092E-02	-0.49360096E-07	0.93305849E-06	0.42351647E-21
YAW	0.71054274E-14	-0.50693722E-01	0.00000000E-00	-0.16293887E-02	0.42351647E-21	0.57955442E-00

MODE SHAPE MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.9979976E-00	-0.3247703E-07	0.23984519E-04	0.34871196E-03	0.20446762E-00	0.40041409E-11
SWAY	0.32458959E-07	0.99999968E-00	-0.23146422E-08	-0.2040443E-00	0.54757864E-03	0.61277104E-01
HEAVE	-0.20004639E-04	0.11693253E-10	0.10000000E-01	-0.30268747E-04	-0.955222780E-02	-0.57342084E-16
ROLL	0.26434629E-10	0.79957808E-03	0.74889658E-08	0.97894752E-00	-0.26269066E-02	0.52363478E-04
PITCH	-0.79971892E-03	0.25495184E-10	0.22528948E-04	0.26269066E-02	0.978822304E-00	-0.35950114E-14
YAW	-0.12460390E-08	-0.65681742E-04	0.13437180E-12	0.17117015E-03	0.19224755E-08	0.99812079E-00

NATURAL PERIOD IN SURGE = 0.100229301E-03

NATURAL PERIOD IN SWAY = 0.10038061E-03

NATURAL PERIOD IN HEAVE = 0.11449999E-02

NATURAL PERIOD IN ROLL = 0.10104011E-02

NATURAL PERIOD IN PITCH = 0.10104122E-02

NATURAL PERIOD IN YAW = 0.54450248E-05

PERIOD LENGTH SURGE PHASE SWAY PHASE HEAVE PHASE ROLL PHASE PITCH PHASE YAW PHASE

WAVE PERIOD = 13.60

INERTIAL FORCES

	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT
SURGE	0. 67453286E 03	0. 91897717E 02	0. 10590168E 06	0. 90121152E 02	0. 31368204E 06	-0. 17874524E 03
SWAY	0. 99707856E-03	-0. 10244432E 02	0. 11078571E-02	-0. 10244705E 02	0. 49305847E-02	0. 91026244E 02
HEAVE	0. 66292380E 03	-0. 17999808E 03	0. 11909699E 06	0. 80431734E-01	0. 38106549E 06	-0. 88946012E 02
ROLL	0. 12971892E 00	0. 16749820E 03	0. 14413230E 00	0. 16749817E 03	0. 36574366E 00	-0. 10684382E 03
PITCH	0. 11545768E 06	-0. 86390239E 02	0. 66011221E 06	0. 84626680E 02	0. 39134236E 06	-0. 20983178E 02
YAW	0. 17029844E 00	0. 75856810E 02	0. 18922030E 00	0. 75856918E 02	0. 82875876E 00	0. 16514467E 03

DAMPING MATRIX

	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0. 20708204E 03	0. 63942283E-04	-0. 32216599E 03	0. 58581700E-03	0. 35945622E 05
SWAY	0. 63942283E-04	0. 18631578E 03	-0. 81068802E-05	-0. 41497101E 03	0. 28042091E-03
HEAVE	-0. 32216599E 03	-0. 81068802E-05	0. 32061945E 03	0. 32989153E-01	0. 19207304E 05
ROLL	0. 58581700E-03	-0. 41497101E 03	0. 32989153E-01	0. 12344226E 08	-0. 30540205E-03
PITCH	0. 35945622E 03	-0. 28042091E-03	0. 19207304E 03	-0. 11208218E 01	0. 65172077E 05
YAW	0. 99845663E-01	0. 28016142E 05	-0. 30540205E-03	0. 12880071E 08	-0. 31283529E 00
			0. 65172077E 05	-0. 31283530E 00	0. 18136669E 08

CATEGORICAL MATRIX

	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0. 10430518E 03	-0. 22737368E-12	-0. 713779521E 01	-0. 21827873E-10	0. 39293320E 04
SWAY	-0. 22737368E-12	0. 85443949E 02	0. 00000000E 00	-0. 35663B23E 04	-0. 72759576E-11
HEAVE	-0. 713779521E 01	0. 00000000E 00	0. 10958036E 04	-0. 14551915E-09	0. 12309055E 00
ROLL	-0. 21827873E-10	-0. 35663B23E 04	-0. 14551915E-09	0. 93127633E 06	-0. 45927706E-11
PITCH	0. 39293320E 04	-0. 72759576E-11	-0. 12141379E 02	-0. 37252903E-08	-0. 14513919E 02
YAW	-0. 346788926E-11	0. 12309055E 00	-0. 45927706E-11	0. 93310905E 06	-0. 14169643E-09
			-0. 14513919E 02	-0. 14169643E-09	0. 16242830E-02

MOORING SYSTEM

USED : 6" GRADE 2 CHAIN

LENGTH OF CHAIN = 3,000 FT
LOCATION OF ANCHOR = 2,850 FT

FORCES IN CATENARY LINES

PERIOD	ELEMENT	MIN HOR FOR AT SHP		MIN TEN FOR AT SHP		MIN HOR FOR AT SHP		MIN TEN FOR AT SHP		MIN HOR FOR AT SHP		MIN TEN FOR AT SHP	
		MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MIN VER FOR AT SHP	MAX VER FOR AT SHP	MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MIN VER FOR AT SHP	MAX VER FOR AT SHP	MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MIN VER FOR AT SHP	MAX VER FOR AT SHP
13.60	1	0.79447407E 04	0.45053420E 05	0.29462757E 06	0.10606725E 07	0.38395587E 05	0.93411883E 05	0.45764226E 05	0.10606725E 06	0.74225204E 06	0.29462757E 07	0.0000000E 00	0.0000000E 00
13.60	2	0.10189311E 07	0.10000000E-05	0.38395587E 05	0.38395587E 05	0.38395587E 05	0.38395586E 05	0.0000000E 00	0.0000000E 00				
13.60	3	0.10000000E-05	0.10000000E-05	0.53411883E 05	0.53411883E 05	0.53411883E 05	0.53411882E 05	0.0000000E 00	0.0000000E 00				

FORCES AT ANCHOR

FORCES IN LBS.

BRIAN WATT ASSOCIATES, INC.

SINGLE LEGS, ALL CHAIN
6IN CHAIN SURVIVAL
WAVE HEIGHT VS. TIME

BRIAN WATT ASSOCIATES, INC.

SINGLE LEGS. ALL CHAIN
IN CHAIN SURVIVAL
SURGE VS. TIME

BRIAN WATT ASSOCIATES, INC.

BRIAN WATT ASSOCIATES, INC.

SINGLE LEGS, ALL CHAIN
6IN CHAIN SURVIVAL
PITCH ANGLE VS. TIME

SINGLE LEGS, ALL CHAIN
6 IN CHAIN, SURVIVAL
HORZ FORC AT SHIP CBL #1

SINGLE LEGS, ALL CHAIN
6 IN CHAIN, SURVIVAL
VERT FORC AT SHIP CBL #1

SINGLE LEGS, ALL CHAIN
6 IN CHAIN, SURVIVAL
TENS FORC AT SHIP CBL #1

SINGLE LEGS. ALL CHAIN
IN CHAIN. SURVIVAL
HORZ FORC AT ANCH CBL #1

66 SINGLE LEGS, ALL CHAIN
IN CHAIN, SURVIVAL
VERT FORC AT ANCH CBL #1

CHESDIV SEMI.D-162
SINGLE LEG. 6 IN CHAIN
HORZ FORC AT SHIP CBL #2

CHESDIV SEMI.D-162'
SINGLE LEG, 6 IN CHAIN
VERT FORC AT SHIP CBL #2

CHEGOIV SEMI.D-162'
SINGLE LEG. 6 IN CHAIN
TENS FORC AT SHIP CBL #2

CHESDIV SEMI. D=162'
SINGLE LEG. 6 IN CHAIN
HORZ FORC AT ANCH CBL #2

CHESDIV SEMI-D-162'
SINGLE LEG, 6 IN CHAIN
VERT FORC AT ANCH CBL #2

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 162 FT

DESIGN WAVE HEIGHT (FT) = 64.0

WAVE PERIOD (SEC) = 13.6

MAX CREST ELEVATION (FT) = 40.58

MIN TROUGH ELEVATION (FT) = -23.17

MEAN ELEVATION (FT) = +8.71

MAX/MIN SURGE OFFSET (FT) = 1.32/-125.9

MEAN SURGE OFFSET (FT) = -87.3

MAX 1ST ORDER MOTIONS (FT) = ± 38.6

MAX/MIN HEAVE OFFSET (FT) = 18.69/-24.70

MEAN HEAVE OFFSET (FT) = -3.01

MAX 1ST ORDER MOTION (FT) = ± 21.7

MAX/MIN PITCH ANGLE (DEG) = 18.3/-24.8

MEAN PITCH ANGLE (DEG) = -5.4

MAX 1ST ORDER MOTION (DEG) = ± 19.4

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 939

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 0

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 470

MAX VERTICAL FORCE @ VESSEL (KIPS) = 264

MIN VERTICAL FORCE @ VESSEL (KIPS) = 57

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 160.5

MAX TENSION @ VESSEL (KIPS) = 974

MIN TENSION @ VESSEL (KIPS) = 50

MEAN TENSION @ VESSEL (KIPS) = 512

MAX HORIZ. FORCE @ ANCHOR (KIPS) = 652

MIN HORIZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = 0

MIN VERTICAL FORCE @ ANCHOR (KIPS) = 0

CHAIN DIAMETER (IN) = 6.0

LENGTH OF CHAIN (FT) = 3,000

LOCATION OF ANCHOR (FT) = 2,850

PROOF LOAD (KIPS) = 2,280

(PEAK TENSION / PROOF LOAD) × 100 = 42.7 %

TABLE-3.5 SUMMARY RESULTS- DEPTH 162 FT

APPENDIX A.4

WATER DEPTH	=	100 FT
EFFECTIVE DEPTH	=	112 FT
WAVE HEIGHT	=	61 FT
WAVE PERIOD	=	13.6 SEC
CURRENT	=	3 KN
WIND	=	150 KN
MOORING CHAIN	=	6 IN

<u>ITEM</u>	<u>WEIGHT (5.TONS)</u>
SEMISUBMERSIBLE + PAYLOAD	65.1
MOORING SYSTEM	
VERTICAL COMPONENT	66.4
 BALLAST	 120.0
 TOTAL DISPLACEMENT	 251.5

SEMISUBMERSIBLE WEIGHT DISTRIBUTION
DEPTH = 112 FT

*** INFLUENCE COORDINATES ***
DISPLACEMENT = 0.4998E 06
CENTER OF BUOYANCY ALONG X-AXIS = 0.00
CENTER OF BUOYANCY ALONG Y-AXIS = 0.00
CENTER OF BUOYANCY ALONG Z-AXIS = -19.89

*** STRUCTURAL INPUT PROPERTIES ***

STRUCTURAL WEIGHT	=	0.37040E 06
ROLL RADIUS OF GYRATION	=	24.30
PITCH RADIUS OF GYRATION	=	24.30
YAW RADIUS OF GYRATION	=	30.30
CENTER OF GRAVITY ALONG X-AXIS	=	0.00
CENTER OF GRAVITY ALONG Y-AXIS	=	0.00
CENTER OF GRAVITY ALONG Z-AXIS	=	-18.40

*** WATER INPUT PROPERTIES ***

MASS DENSITY OF WATER	=	1.99
ACCELERATION OF GRAVITY	=	32.17
WAVE HEIGHT	=	61.00
WAVE PERIOD	=	13.60
WATER DEPTH	=	112.00
ANGLE OF ATTACK IN DEGREES	=	180.00

*** CALCULATED WATERPLANE PROPERTIES ***

WATERPLANE AREA	=	94.91
CENTER OF AREA ALONG X-AXIS	=	0.00
CENTER OF AREA ALONG Y-AXIS	=	-0.00
WATERPLANE INERTIA ABOUT X-AXIS	=	0.6678E 05
WATERPLANE INERTIA ABOUT Y-AXIS	=	0.6678E 05
METACENTRIC HEIGHT IN ROLL	=	7.07
METACENTRIC HEIGHT IN PITCH	=	7.07

*** CENTERS ARE IN ORIGINAL SYSTEM ***

*** INERTIAS ARE ABOUT AXES THRU CO ***

*** FREQUENCY DOMAIN RESULTS

UNITS : LBS, FEET

BODY MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
SWAY	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
HEAVE	0.00000000E+00	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00
ROLL	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00
PITCH	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.11512013E-05	0.00000000E+00
YAW	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.10569421E-08

ADDED MASS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.961973737E-04	-0.20920747E-09	-0.64801479E-11	-0.13715160E-08	0.376275013E-04	0.2487545E-04
SWAY	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.10168191E-04	0.00000000E+00
HEAVE	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.23705923E-04	0.22230683E-04
ROLL	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.2487545E-04	0.13646512E-02	0.13676724E-04
PITCH	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.69180542E-02	0.00000000E+00
YAW	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.1437762E-07	0.00000000E+00

HYDROSTATIC STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
SWAY	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
HEAVE	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
ROLL	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
PITCH	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
YAW	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00

HOUDING STIFFNESS MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
SWAY	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
HEAVE	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
ROLL	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
PITCH	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
YAW	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00

NODE SHAPE MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
SWAY	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
HEAVE	0.00000000E+00	0.00000000E+00	0.11512013E-05	0.00000000E+00	0.00000000E+00	0.00000000E+00
ROLL	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
PITCH	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00
YAW	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00

NODE SHAPE MATRIX

	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
SURGE	0.99993532E-00	-0.34644745E-00	-0.39797738E-02	0.16994248E-02	0.98290023E-03	0.3139447E-07
SWAY	0.32194477E-00	0.64944507E-00	-0.36383910E-07	-0.76259749E-02	0.1933419E-03	0.37998882E-01
HEAVE	0.99993531E-00	-0.46944744E-00	-0.128095043E-09	-0.22095014E-02	0.1071148E-10	0.14619891E-09
ROLL	0.40765328E-00	-0.32122836E-00	-0.220505032E-07	0.2325967E-07	0.2012044E-03	0.36522143E-03
PITCH	0.50752917E-00	-0.32028282E-00	-0.36304028E-07	0.23325967E-07	0.1338773E-07	0.33604680E-03
YAW	0.81331349E-11	-0.13765171E-00	-0.1380773E-07	0.47952081E-09	0.9992771E-00	0.9992771E-00

NATURAL PERIOD IN SURGE = 0.1532384E-03

NATURAL PERIOD IN SWAY = 0.24602647E-02

NATURAL PERIOD IN HEAVE = 0.10507103E-02

NATURAL PERIOD IN ROLL = 0.86761191E-01

NATURAL PERIOD IN PITCH = 0.17546755E-03

NATURAL PERIOD IN YAW = 0.1532384E-03

PERIOD	LENGTH	SURGE	PHASE	SWAY	PHASE	HEAVE	PHASE	ROLL	PHASE	PITCH	PHASE	YAW	PHASE
13.60	714.98	1.2142	72.90	0.0000	-25.71	0.4635	-152.50	0.0000	137.57	0.74883	-158.32	0.0000	-50.92

WAVE PERIOD= 13.60

INERTIAL FORCES			FROUDE-KRYLOV FORCES			VISCOS DRAG FORCES		
AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	AMPLITUDE	PHASE SHIFT	
SURGE 0. 72479771E 05	0. 92161355E 02	0. 11389990E 04	0. 90145372E 02	0. 38007571E 06	-0. 17720427E 03			
SWAY 0. 12193173E -02	0. 11596863E 02	0. 13503446E -02	-0. 11597094E 02	0. 60406664E -02	0. 75931545E 02			
HEAVE 0. 58734569E 05	-0. 17999813E 03	0. 11731640E 04	0. 11325988E 00	0. 31804846E 06	-0. 87936554E 02			
ROLL 0. 12970395E 00	0. 16585334E 03	0. 12552277E 00	0. 16385331E 03	0. 20828209E 00	-0. 10784911E 03			
PITCH 0. 12021922E 04	-0. 85423775E 02	0. 71085923E 04	0. 83881615E 02	0. 10817936E 07	-0. 81052236E 02			
YAW 0. 18388993E 00	0. 74040419E 02	0. 20432128E 00	0. 74040320E 02	0. 78409388E 00	0. 15932872E 03			

DAMPING MATRIX

SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
0. 23275247E 05	-0. 21728779E -04	-0. 79976926E 02	0. 29314123E -03	0. 35628622E 05	0. 46481098E -01
SWAY -0. 21728779E -04	0. 19473069E 05	-0. 26484267E -04	-0. 39742934E 03	0. 42269012E -04	-0. 14343489E 04
HEAVE -0. 79976926E 02	-0. 26484267E -04	0. 29951629E 03	0. 22812994E -01	0. 11119204E 06	-0. 33611551E -03
ROLL 0. 2327514123E -03	-0. 55742734E 03	0. 22812947E -01	0. 12624822E 08	-0. 71832019E 00	0. 12693448E 04
PITCH 0. 35280832E 05	0. 42769012E -04	0. 11119204E 04	-0. 71832013E 00	0. 11399707E 08	-0. 33305976E 00
YAW 0. 48481098E -01	-0. 14343489E 04	-0. 33611551E -03	0. 12693448E 06	-0. 33305977E 00	0. 20353338E 08

CATENARY MATRIX

SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
0. 49188889E 04	-0. 90493470E -12	-0. 4624510E 03	-0. 17462298E -07	0. 79478433E 05	-0. 24956397E -10
SWAY -0. 90493470E -12	0. 16331482E 04	-0. 18189894E -11	-0. 48627850E 09	-0. 58207661E -10	0. 50723253E 01
HEAVE -0. 45244110E 03	-0. 18189894E -11	0. 24361130E 04	-0. 29103830E -09	-0. 89882468E 02	0. 46021853E -10
ROLL -0. 17462298E -07	-0. 48627850E 05	-0. 29103830E -09	0. 23291140E 07	-0. 11115871E -07	-0. 19182868E 03
PITCH 0. 79478433E 05	-0. 58207661E -10	-0. 89882468E 02	-0. 11175871E -07	0. 23473946E 07	0. 56570570E -09
YAW -0. 24956397E -10	0. 30723253E 01	0. 46021853E -10	-0. 19182868E 03	0. 56570570E -09	0. 33591484E 03

MOORING SYSTEM USED : 6" GRADE 2 CHAIN

LENGTH = 2,000 FT

LOCATION OF ANCHOR = 1,950 FT

FORCES IN Catenary Lines

PERIOD	ELEMENT	MIN HOR FOR AT SHP		MIN VER FOR AT SHP		MIN TEN AT SHP		MIN HOR FOR AT BOT		MIN VER FOR AT BOT	
		MIN HOR FOR AT SHP	MAX HOR FOR AT SHP	MAX VER FOR AT SHP	MIN VER FOR AT SHP	MAX TEN AT SHP	MIN HOR FOR AT BOT	MAX HOR FOR AT BOT	MIN VER FOR AT BOT	MAX VER FOR AT BOT	
13.60	1	0.10422028E 05	0.38274347E 05	0.17927428E 06	0.54759104E 06	0.394677926E 05	0.00000000E 00	0.20081168E 06	0.00000000E 00	0.00000000E 00	0.00000000E 00
13.60	2	0.91741349E 06	0.15075332E 04	0.2346827791E 05	0.52256706E 05	0.23767714E 05	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00
13.60	3	0.18020477E 05	0.150793329E 04	0.2346827792E 05	0.52256703E 05	0.23767717E 05	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00	0.00000000E 00

FORCES AT ANCHOR

FORCES IN LBS.

BRIAN WATT ASSOCIATES, INC.

CHEGOTIV SEMI
D-112' 6' CHAIN
WAVE HEIGHT VS. TIME

BRIAN WATT ASSOCIATES, INC.

CHESDIV SEMI
D-112, 6" CHAIN
SURGE VS. TIME

BRIAN WATT ASSOCIATES, INC.

CHESDIV SEMI
LINK 6 CHAIN
HEAVE VS. TIME

BRIAN WATT ASSOCIATES, INC.

BRIAN WATT ASSOCIATES, INC.

TIME (SEC)

0.00 0.44 0.88 1.32 1.76 2.20 2.64 3.08 3.52 3.96 4.40 4.84 5.28 5.72 6.16 6.60 7.04 7.48 7.92 8.36 8.80 9.24 9.68 10.12 10.56 11.00 11.44 11.88 12.32 12.76 13.20 13.64 14.08 14.52 14.96 15.40 15.84 16.28 16.72 17.16 17.60 18.04 18.48 18.92 19.36 19.80 20.24 20.68 21.12 21.56 22.00 22.44 22.88 23.32 23.76 24.20 24.64 25.08 25.52 25.96 26.40 26.84 27.28 27.72 28.16 28.60 29.04 29.48 29.92 30.36 30.80 31.24 31.68 32.12 32.56 33.00 33.44 33.88 34.32 34.76 35.20 35.64 36.08 36.52 36.96 37.40 37.84 38.28 38.72 39.16 39.60 40.04 40.48 40.92 41.36 41.80 42.24 42.68 43.12 43.56 44.00 44.44 44.88 45.32 45.76 46.20 46.64 47.08 47.52 47.96 48.40 48.84 49.28 49.72 50.16 50.60 51.04 51.48 51.92 52.36 52.80 53.24 53.68 54.12 54.56 55.00 55.44 55.88 56.32 56.76 57.20 57.64 58.08 58.52 58.96 59.40 59.84 60.28 60.72 61.16 61.60 62.04 62.48 62.92 63.36 63.80 64.24 64.68 65.12 65.56 66.00 66.44 66.88 67.32 67.76 68.20 68.64 69.08 69.52 69.96 70.40 70.84 71.28 71.72 72.16 72.60 73.04 73.48 73.92 74.36 74.80 75.24 75.68 76.12 76.56 77.00 77.44 77.88 78.32 78.76 79.20 79.64 79.96 80.40 80.84 81.28 81.72 82.16 82.60 83.04 83.48 83.92 84.36 84.80 85.24 85.68 86.12 86.56 87.00 87.44 87.88 88.32 88.76 89.20 89.64 89.96 90.40 90.84 91.28 91.72 92.16 92.60 93.04 93.48 93.92 94.36 94.80 95.24 95.68 96.12 96.56 97.00 97.44 97.88 98.32 98.76 99.20 99.64 100.00

CHESDIV SEMI
P-1112 6" CHAIN
TENS FORC AT SHIP CBL #1

HORZ FORC AT ANCH (10⁵ LBs)

CHE6DIV SEMI
P-112' 6" CHAIN
HORZ FORC AT ANCH CBL #1

HCRZ FORCE AT ANCH (10⁵ LBS)

CHESDIV SEMI
PT112 6 CHAIN
HORZ FORCE AT ANCH CBL #2

100 90 80 70 60 50 40 30 20 10 0

VERT FORCE AT ANCH (10⁵ LBS)

CHESDIV SEMI
0-112 6' CHAIN
VERT FORCE AT ANCH CBL #2

SUMMARY OF RESULTS

EFFECTIVE WATER DEPTH = 112 FT

DESIGN WAVE HEIGHT (FT) = 61.0

WAVE PERIOD (SEC) = 13.6

MAX CREST ELEVATION (FT) = 43.65

MIN TROUGH ELEVATION (FT) = -16.85

MEAN ELEVATION (FT) = +13.40

MAX/MIN SURGE OFFSET (FT) = -43.62/18.35

MEAN SURGE OFFSET (FT) = -12.63

MAX 1ST ORDER MOTIONS (FT) = ± 31.0

MAX/MIN HEAVE OFFSET (FT) = 17.18/-15.13

MEAN HEAVE OFFSET (FT) = +1.03

MAX 1ST ORDER MOTION (FT) = ± 16.15

MAX/MIN PITCH ANGLE (DEG) = 9.94/-22.48

MEAN PITCH ANGLE (DEG) = -6.27

MAX 1ST ORDER MOTION (DEG) = ± 16.2

MAX HORIZONTAL FORCE @ VESSEL (KIPS) = 1843

MIN HORIZONTAL FORCE @ VESSEL (KIPS) = 0

MEAN HORIZONTAL FORCE @ VESSEL (KIPS) = 927

MAX VERTICAL FORCE @ VESSEL (KIPS) = 322

MIN VERTICAL FORCE @ VESSEL (KIPS) = 0

MEAN VERTICAL FORCE @ VESSEL (KIPS) = 161

MAX TENSION @ VESSEL (KIPS) = 1871

MIN TENSION @ VESSEL (KIPS) = 0

MEAN TENSION @ VESSEL (KIPS) = 935.5

MAX HORIZ. FORCE @ ANCHOR (KIPS) = 1597

MIN HORIZ. FORCE @ ANCHOR (KIPS) = 0

MAX VERTICAL FORCE @ ANCHOR (KIPS) = 0

MIN VERTICAL FORCE @ ANCHOR (KIPS) = 0

CHAIN DIAMETER (IN) = 6

LENGTH OF CHAIN (FT) = 2,000

LOCATION OF ANCHOR (FT) = 1,950

PROOF LOAD (KIPS) = 1,629

(PEAK TENSION / PROOF LOAD) × 100 = 114.8%

卷之三

END

FILMED

3 - 86

DTIC