Integer numbers

Decomposition of integers

We will deal with sets of natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

and integer numbers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

An integer number can be decomposed into a product of other (smaller) integers. Example:

$$24 = 6 \times 4 = 3 \times 2^3 \times 1$$

How can we do it in a general case?

Divisibility of integers

Integer numbers

Theorem (division algorithm): Let $a,b\in\mathbb{N},\ b\neq 0$. Then $\exists! q,r\in\mathbb{N}$ such that

$$a = bq + r$$
, $0 \le r < b$

Def.: We say that $b \in \mathbb{N} \setminus \{0\}$ divides $a \in \mathbb{N}$ if $\exists q \in \mathbb{N}$ such that a = qb. We will denote it as $b \mid a$.

Def.: We say that $p \in \mathbb{N} \setminus \{0,1\}$ is a prime number if p is divisible by 1 and p only.

Def.: We will call the greatest common divisor of $a, b \in \mathbb{N} \setminus \{0\}$ the number

$$d = \gcd(a, b)$$
 if $d|a, d|b$

and if c divides a and b, then c < d.

Def.: We will call the minimal common multiple of $a,b\in\mathbb{N}\backslash\{0\}$ the number

$$m = lcm(a, b)$$
 if $a|m$, $b|m$

and if n is divided by a and b, then $n \ge m$.

Theorem: $\forall n \in \mathbb{N} \setminus \{0,1\}$ there exists a prime number p, s.t. p|n.

Lema of Bezout: $\forall a, b \in \mathbb{N} \setminus \{0\}$ there exists another couple $u, v \in \mathbb{Z}$, s.t.

$$\gcd(a,b) = ua + vb$$

Theorem (fundamental of arithmetics): Any number $a \in \mathbb{N} \setminus \{0, 1\}$ can be represented as a product of prime numbers.

Any $a, b \in \mathbb{N} \setminus \{0\}$ can be represented in the form

$$a = p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}, \quad b = p_1^{s_1} p_2^{s_2} \cdots p_n^{s_n}$$

Then

$$\gcd(a,b) = p_1^{\min\{r_1,s_1\}} p_2^{\min\{r_2,s_2\}} \cdots p_n^{\min\{r_n,s_n\}}$$
$$\operatorname{lcm}(a,b) = p_1^{\max\{r_1,s_1\}} p_2^{\max\{r_2,s_2\}} \cdots p_n^{\max\{r_n,s_n\}}$$

Corollary:

$$ab = \gcd(a, b) \operatorname{lcm}(a, b)$$

Euclides' algorithm

Integer numbers

Lema: Let $a, b \in \mathbb{N} \setminus \{0\}$, s.t. a = qb + r, 0 < r < b. Then

$$\gcd(a,b) = \gcd(b,r)$$

Poof: Let $d \in \mathbb{N}$ s.t. d|a and d|b. Then

$$a = md = qb + r = qnd + r \Rightarrow r = (m - qn)d \Rightarrow d|r$$

Thus, the common divisors of a and b are also divisors of b and r and hence maximal of them is the gcd.

Theorem: Given $a, b \in \mathbb{N} \setminus \{0\}$ we define the sequence

$$b = r_1 > r_2 > r_3 > \cdots > r_n > r_{n+1} = 0$$

obtained by $r_{i-1} = q_i r_i + r_{i+1}$, with $r_0 = a$ (e.g. $a = q_1 b + r_2$).

Then $gcd(a, b) = r_n$.

Problem 5.1a: Find gcd for 10672 and 4147.

i	0	1	2	3	4	5	6	7	8
r_i	10672	4147	2378	1769	609	551	58	29	0
q_i	_	2	1	1	2	1	9	2	

Thus, gcd(10672, 4147) = 29

Integer numbers

Let's find the Bezout's identity. We use $r_{i-1} = q_i r_i + r_{i+1}$ and go backwards to get gcd(a, b) = ua + vb.

$$\gcd(a, b) = 29 = r_7 = r_5 - 9r_6 = r_5 - 9(r_4 - r_5) = 10(r_3 - 2r_4) - 9r_4 = 10r_3 - 29(r_2 - r_3) = 39(r_1 - r_2) - 29r_2 = -68(r_0 - 2r_1) + 39r_1 = -68a + 175b = -68 * 10672 + 175 * 4147 = 29$$

To find the minimal common multiple: ab = lcm(a, b) gcd(a, b). Thus

$$lcm(a, b) = 10672 \frac{4147}{29} = 1526096$$

Extended Euclides' algorithm

As before we will use rows r and q, but we will add two new rows α and β

$$r_{i} = r_{i-2} - q_{i-1}r_{i-1}$$

$$\alpha_{i} = \alpha_{i-2} - q_{i-1}\alpha_{i-1}$$

$$\beta_{i} = \beta_{i-2} - q_{i-1}\beta_{i-1}$$

with $\alpha_0 = 1$, $\alpha_1 = 0$, $\beta_0 = 0$, $\beta_1 = 1$.

Problem 5.1e: 322 and 406

ri	406	322	84	70	14	0
q_i		1	3	1	5	
α_i	1	0	1	-3	4	
β_i	0	1	-1	4	-5	

Thus, gcd(406, 322) = 14. Besides we get immediately the Bezout's identity (using the last values of α and β):

$$gcd(406, 322) = 14 = 4 \times 406 - 5 \times 322$$

The minimal common multiple:

$$lcm(406, 322) = \frac{406}{14}322 = 9338$$

Problem 5.2 Let $a, b \in \mathbb{N} \setminus \{0\}$ and $d = \gcd(a, b)$. Prove that $d \mid (na + mb), \forall n, m \in \mathbb{Z}$.

Since $d=\gcd(a,b)$ then d|a and d|b and hence $a=dq_a$ and $b=dq_b$. Now

$$na + mb = nq_ad + mq_bd = (nq_a + mq_b)d$$

Thus, $d \mid (na + mb)$.

Integer numbers

Euler function

Problem 5.3 Prove that $\forall n \in \mathbb{Z} \gcd(n, n+1) = 1$.

Let n > 0 and $d = \gcd(n, n + 1)$ then $n = q_1 d$. We thus have

$$n+1=q_1d+1=q_2d \ \Rightarrow \ (q_2-q_1)d=1, \ q_2-q_1\geq 1$$

Therefore d|1 and we conclude that d=1.

2. What are the possible values of gcd(n, n + 2)?

Let
$$d = \gcd(n, n+2)$$
. Then $n = q_1 d$, $n + 2 = q_2 d$

$$n+2=q_2d=q_1d+2, \Rightarrow (q_2-q_1)d=2 (q_2>q_1)$$

Thus $d \in \{1, 2\}$.

Congruences

Let's remind: given $m \in \mathbb{N} \setminus \{0\}$, $\forall a \in \mathbb{Z}$ there exist a unique $r \in \mathbb{N}$ s.t.

$$a = qm + r$$
, $0 \le r < m$

Thus, there exist m classes of numbers or m classes of congruences.

Example: m = 2. Then we have

а	equation	class
0	$0=0\times 2+0$	0
1	$1 = 0 \times 2 + 1$	1
2	$2=1\times 2+0$	0
3	$3=1\times 2+1$	1
:	i :	:

Thus, we get classes of even (r = 0) and odd (r = 1) numbers.

Def.: We say that $a, b \in \mathbb{Z}$ are congruent by module m if $\exists q_1, q_2 \in \mathbb{Z} \text{ s.t.}$

$$a = q_1 m + r$$
, $b = q_2 m + r$ $(0 \le r < m)$

We then write

$$a \equiv b \mod m$$

$$a \equiv b \mod m$$
 iff $m | (a - b)$

Problem 5.5 Given that $a \equiv b \mod m$ and $a \equiv b \mod n$, prove $a \equiv b$ mod lcm(n, m).

Let's assume that n and m are coprimes. Then from the one side $\operatorname{lcm}(n,m) = nm$ and $\gcd(n,m) = 1 = t_1n + t_2m$. From the other side we have

$$a \equiv b \mod n \Rightarrow a - b = q_1 n$$

 $a \equiv b \mod m \Rightarrow a - b = q_2 m$

Thus $q_1 n = q_2 m$ by multiplying by t_2 we get

$$q_1t_2n = q_2t_2m = q_2(1-t_1n) \Rightarrow q_2 = (q_1t_2+q_2t_1)n \Rightarrow n|q_2|$$

Therefore, $a - b = q_2 m = q_3 nm$ and hence $a \equiv b \mod nm$.

The rule $b \equiv a \mod m$ defines the equivalence classes on \mathbb{Z} . For example, the numbers

form a class for m=3, i.e. they are related (4 $\equiv 1 \mod 3$; 7 $\equiv 1 \mod 3$, etc.)

Every integer congruent with $x \mod m$ enters to its equivalence class $x + \mathbb{Z}_m$

Def.: Let $m \in \mathbb{N} \setminus \{0\}$ and $a \in \mathbb{Z}$. We will denote

$$[a]_m = \{x \in \mathbb{Z} : x = qm + a, q \in \mathbb{Z}\}$$

the equivalence class of a (this is a set of numbers).

Def.: We denote by \mathbb{Z}_m the set generated by the equivalence classes

$$\mathbb{Z}_m = \{[0]_m, [1]_m, \dots, [m-1]_m\}$$

Operations on \mathbb{Z}_m

Integer numbers

Example : $\mathbb{Z}_2 = \{[0]_2, [1]_2\}$ where

$$[0]_2 = \{\ldots, -4, -2, 0, 2, 4, \ldots\}, \quad [1]_2 = \{\ldots, -3, -1, 1, 3, \ldots\}$$

define the classes of odd and even numbers.

Note:
$$[0]_2 \cap [1]_2 = \emptyset$$
, $[0]_2 \cup [1]_2 = \mathbb{Z}$

Def.: We define the addition of congruences as the following map:

$$+: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m$$

$$([a]_m, [b]_m) \to [a]_m + [b]_m = [a+b]_m$$

Def.: We define the multiplication of congruences by:

$$imes: \mathbb{Z}_m imes \mathbb{Z}_m o \mathbb{Z}_m \ ([a]_m, [b]_m) o [a]_m [b]_m = [ab]_m$$

Addition and multiplication tables

Let's consider \mathbb{Z}_4 , i.e. m=4. Then we have the tables

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[0]

Example of addition: Evaluate 233 - 350 in \mathbb{Z}_4 .

1:
$$233 = 58 \times 4 + 1$$
, hence $233 \equiv 1 \mod 4$. $-350 \equiv 2 \mod 4$.

$$233 + (-350) \equiv 1 + 2 \equiv 3 \mod 4$$

2: Another way:
$$233 - 350 = -117 = -30 \times 4 + 3 \equiv 3 \mod 4$$

From the tables we note that [0] and [1] are neutral elements for addition and multiplication, respectively.

Def.: We call the inverse of $[n] \in \mathbb{Z}_m$ in respect to addition, a congruence $[k] \in \mathbb{Z}_m$ s.t. [n] + [k] = [0]. Example: $[2]_3 + [1]_3 = [0]_3$, thus, $[2]_3$ is the inverse of $[1]_3$ and vice versa.

Def.: We call the inverse of $[n] \in \mathbb{Z}_m$ in resect to multiplication a congruence $[k] \in \mathbb{Z}_m$ s.t. [n][k] = 1. We then denote the inverse by $[n]^{-1}$.

Problem 5.6: Prove that $[n]^{-1} \in \mathbb{Z}_m$ exists iff gcd(n, m) = 1.

1. If gcd(n, m) = 1 then by the Bezout's lemma

$$1 = um + vn \Rightarrow vn = -um + 1 \Rightarrow [v][n] = 1$$

Thus $\exists v \in \mathbb{Z}_m$ s.t. [v][n] = 1

2. If
$$\gcd(n,m)=r>1$$
 then $n=q_1r$ and $m=q_2r$ $(1\leq q_{1,2}\leq m)$. Then

$$[nq_2] = [q_1q_2r] = [q_1m] = 0 (1)$$

Now assume that there exists $[n]^{-1}$, i.e. $[n]^{-1}[n] = 1$. Then multiplying (1) by $[n]^{-1}$ we get

$$[n]^{-1}[n][q_2] = q_2 = [n]^{-1}[q_1][m] = [n]^{-1} \times 0 = 0$$

Thus $q_2 = 0$ that contradicts the initial assumption.

If m is a prime number then $\forall [a]_m \in \mathbb{Z}_m \setminus \{[0]_m\}$ there exists its inverse. This property will be important for theory of groups.

Problem 5.7: Find the inverse of the following congruences (a) 6 in \mathbb{Z}_{17} .

17 is a prime, hence the inverse exists. We apply the Euclides' algorithm

Using r_3 , α_3 and β_3 we can write the Bezout's identity

$$\gcd(17,6) = 1 = -1 \times 17 + 3 \times 6 \implies [1]_{17} = [-17]_{17} + [3]_{17} \times [6]_{17} \implies$$
$$\Rightarrow [1]_{17} = [3]_{17} \times [6]_{17}$$

Thus, $[6]^{-1} = [3]$.

Problem 5.10d $35x \equiv 119 \mod 139$

To solve, we find $[35]^{-1}$ and multiply both sides of the equation:

$$x = [35]_{139}^{-1} \times [119]_{139}$$

r_i	139	35	34	1	0
qi		3	1	34	
α_i	1	0	1	-1	
β_i	0	1	-3	4	

Thus,
$$[1]_{139} = [-139]_{139} + [4 \times 35]_{139}$$
 and hence $[35]_{139}^{-1} = [4]_{139}$ Now

$$x = [4]_{139} \times [119]_{139} = [476]_{139} = [59]_{139}$$

Chinese remainder theorem

Consider the following k equations in congruences

$$x \equiv a_i \mod n_i, \quad i = 1, 2, \dots, k$$

where $a_i \in \mathbb{Z}$, $n_i \in \mathbb{N} \setminus \{0\}$. If n_i are pairwise co-primes $(\gcd(n_i, n_i) = 1, \forall i \neq i)$, then the system has a solution. Moreover, if x and y are two solutions then

$$x \equiv y \mod \operatorname{lcm}(n1, \ldots, n_k) = n_1 n_2 \cdots n_k$$

Proof: The idea is to search for a solution in the form

$$x = c_1 a_1 + c_2 a_2 + \cdots + c_k a_k$$

Then the constants $\{c_i\}$ must satisfy the condition

$$c_i \equiv \left\{ \begin{array}{ll} 1 \mod n_j & \quad j = i \\ 0 \mod n_j & \quad j \neq i \end{array} \right.$$

Then when substituting to the i-th equation we get:

$$\sum (c_j a_j \mod n_i) \equiv a_i = a_i$$

Now we select c_i in the appropriate way.

Let $n = n_1 n_2 \cdots n_k$ and

$$q_i = \frac{n}{n_i}, \quad i = 1, \dots, k$$

Since $gcd(q_i, n_i) = 1$, there exists the inverse of q_i in \mathbb{Z}_{n_i} :

$$c_i = q_i r_i \equiv 1 \mod n_i, \quad (q_i r_i \equiv 0 \mod n_j)$$

Now we define

Integer numbers

$$x = \sum_{i=1}^{\kappa} q_i r_i a_i$$

Let us now check that x is a solution. Since $n_i|q_j$ for $i \neq j$ we have

$$x = \sum_{m \neq j} a_m q_m r_m \mod n_i + a_i q_i r_i \mod n_i = a_i q_i r_i \mod n_i$$

Since $q_i r_i = 1 \mod n_i$ we get $x = a_i \mod n_i$.

Now let $y = a_i \mod n_i$ be another solution. Since $[x]_{n_i} = [y]_{n_i}$.

Then $n_i|(x-y)$ for $i=1,\ldots,k$, which implies

$$x = y \mod \operatorname{lcm}(n1, \dots, n_k) = n_1 n_2 \cdots n_k.$$

Problem 5.11a: Solve the system $x \equiv 2 \mod 4$, $x \equiv 4 \mod 5$.

$$lcm(4,5) = 20$$
, $q_1 = 5$, $q_2 = 4$. Now we find $r_{1,2}$

$$r_1 = [q_1]_{n_1}^{-1} = [5]_4^{-1} = [1]_4^{-1} = 1$$

 $r_2 = [4]_5^{-1} \implies 4 \times 4 - 3 \times 5 = 1 \implies r_2 = 4$

Thus
$$x = (2 \times 1 \times 5 + 4 \times 4 \times 4) \mod 20 = [14]_{20}$$

Problem 5.11f

$$2x \equiv 3 \mod 7$$

$$5x \equiv 4 \mod 9$$

$$3x \equiv 1 \mod 10$$

7,9, and 10 are coprimes, thus there exists a solution.

1: Rewrite in the standard form (multiplying by the corresponding inverses). $[2]_7^{-1} = [4]_7$; $[5]_9^{-1} = [2]_9$; and $[3]_{10}^{-1} = [7]_{10}$. Therefore

$$x \equiv 12 \mod 7 = 5 \mod 7$$

 $x \equiv 8 \mod 9$
 $x \equiv 7 \mod 10$

Now $n = 7 \times 9 \times 10 = 630$, $q_1 = 90$, $q_2 = 70$, $q_3 = 63$. Let's find the inverses (construct the corresponding Euclides' tables)

$$r_1 = [q_1]_{n_1}^{-1} = [90]_7^{-1} = [6]_7^{-1} = 6; \quad r_2 = [70]_9^{-1} = 4; \quad r_3 = [63]_{10}^{-1} = 7.$$

Thus the solution is:

$$x = (5 \times 90 \times 6 + 8 \times 70 \times 4 + 7 \times 63 \times 7) \mod 630 = [467]_{630}$$

Linear Diophantine equations

The equation of the form:

$$ax + by = c$$
, $a, b, c, x, y \in \mathbb{Z}$

in respect to unknown x and y is called Diophantine equation.

The diophantine equation has a solution iff c is a multiple of gcd(a, b).

To solve it we note that c = ax + by is equivalent to represent c as

$$[c]_b = [ax + by]_b \implies c \equiv ax \mod b$$

Then we can solve such an equation for x and use it to find y.

Problem 5.12b Find solutions 54x + 21y = 906, $x, y \in \mathbb{Z}$.

First we note that gcd(54, 21) = 3 and 906 is a multiple of 3. Thus, we reduce the equation (divide by 3):

$$18x + 7y = 302$$

We then rewrite it

$$18x \equiv 302 \mod 7$$

and observe $[18]_7^{-1} = [2]_7$. We now obtain x

$$x = 2 \times 302 \mod 7 = [2]_7 \implies x_k = 2 + 7k$$

$$y_k = \frac{302 - 18(2 + 7k)}{7} = 38 - 18k, \ \forall k \in \mathbb{Z}$$

Problem 5.13 Find natural numbers satisfying

$$84x + 990y = c$$
, $10 < c < 20$

First we find gcd(84, 990) = 6. Thus c must be multiple of 6. There are two possibilities c = 12 and c = 18. Then we can use the standard procedure for these cases separately.

Problem 5.14: Let x and y be the amount in dollars and cents of the check. He received r = 100y + x then spent 68 cents and get double amount:

$$100y + x - 68 = 2(100x + y)$$

Thus, we have to solve

$$98y - 199x = 68, x, y \in \mathbb{N}$$

Problem 5.16: Calculate i) $(a+b)^2$ in \mathbb{Z}_2 ; ii) $(a+b)^3$ in \mathbb{Z}_3

Besides
$$(a + b)^2 \mod 2 = a^2 + 2ab + b^2 \mod 2 = a^2 + b^2$$
.
 $(a + b)^3 \mod 3 = a^3 + 3a^2b + 3ab^2 + b^3 \mod 3 = a^3 + b^3 \mod 3$
iii)

$$\begin{pmatrix} p \\ k \end{pmatrix} = \frac{p!}{k!(p-k)!} = \frac{(p-1)!}{k!(p-k)!}p$$

Since p is prime, it is not divisible by the denominator and hence the binomial coefficient is divisible by p. Thus

$$(a+b)^p \mod p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k \mod p = a^p + b^p \mod p$$

Integer numbers

Euler function

Problem 5.17: Find the multiples of 28, s.t. the last two digits would be equal to 16.

$$x = 28q$$
, $x = 16 \mod 100$

Thus, we have the following diophantine equation:

$$28q = 16 + 100n, n \in \mathbb{N}$$

We then have gcd(28, 100) = 4 and reduce the diophantine equation:

$$7q = 4 + 25n \Rightarrow [7]_{25}[q]_{25} = [4]_{25}$$

Multiplying it by $[7]_{25}^{-1} = [18]_{25}$ we get

$$q = [18 \times 4]_{25} = [22]_{25} \implies x = 28(22 + 25n) = 616 + 700n$$

Examples: x = 616, 1316, 2016, etc.

Problem 5.18: Show that $n^3 - 7n + 7$ and n - 1 are comprimes.

We divide $n^3 - 7n + 7$ by n - 1 we get

$$\frac{n^3 - 7n + 7}{n - 1} = n^2 + n - 6 + \frac{1}{n - 1}$$

Thus

$$(n^3 - 7n + 7) - (n^2 + n - 6)(n - 1) = 1$$

therefore these numbers have $\gcd = 1$

Fast operations

Integer numbers

The idea: Instead of working in high dimensions, i.e. in \mathbb{Z}_m when m is high. We can introduce its decomposition into a cartesian product $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \cdots \mathbb{Z}_{m_k}$ and apply operations in this new space and then do the inverse transformation.

Let us illustrate it in the following problem:

Problem 5.19: a) Let define the map

$$f: \mathbb{Z}_{140} \to \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_7$$
$$[n]_{140} \mapsto ([n]_4, [n]_5, [n]_7)$$

Prove that f is bijective.

1. f is injective (if $[n] \neq [m]$ then $f([n]) \neq f([m])$).

Assume that $([n]_4, [n]_5, [n]_7) = ([m]_4, [m]_5, [m]_7)$. Then n and m satisfy to

$$n \equiv m \mod 4$$

 $n \equiv m \mod 5$
 $n \equiv m \mod 7$

Since 4, 5, and 7 are coprimes, then by Problem 5.5 $n \equiv m \mod \text{lcm}(4,5,7)$, i.e., $n \equiv m \mod 140$ and hence $[n]_{140} = [m]_{140}$, which is a contradiction.

2.
$$f$$
 is surjective $(\forall y \ \exists [n] \ \text{s.t.} \ f([n]) = y)$. Let consider
$$([a_1]_4, [a_2]_5, [a_3]_7) \in \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_7$$

We should prove that there exists its pre-image $x \in \mathbb{Z}_{140}$. This is equivalent to

$$x \equiv a_1 \mod 4$$
; $x \equiv a_2 \mod 5$; $x \equiv a_3 \mod 7$

Integer numbers

Euler function

Since 4, 5, and 7 are coprimes, then by the Chinese theorem there exists a solution.

Thus f is bijective on finite sets. This means that there is its inverse f^{-1} and $f^{-1}(f(y)) = y$.

Evaluate: $f^{-1}(f(35) + f(56))$

By the previous part we know that this is $[35]_{140} + [56]_{140} = [91]_{140}$. But let's see how it works in lower dimensions.

1. Mapping to the cartesian product:

$$[35]_{140} \mapsto ([35]_4, [35]_5, [35]_7) = ([3]_4, [0]_5, [0]_7)$$

$$[56]_{140} \mapsto ([56]_4, [56]_5, [56]_7) = ([0]_4, [1]_5, [0]_7)$$

2. Addition in the cartesian space:

$$f([35]) + f([56]) = ([3]_4, [1]_5, [0]_7)$$

3. Inverse operation:

$$x \equiv 3 \mod 4$$

 $x \equiv 1 \mod 5$
 $x \equiv 0 \mod 7$

By the Chinese theorem: n = 140, $q_1 = 35$, $q_2 = 28$. Then

$$-35 + 9 \times 4 = 0 \Rightarrow r_1 = -1$$

2 × 28 + 11 × 5 = 0 $\Rightarrow r_2 = 2$

Finally

$$x = [3 \times (-35) + 2 \times 28]_{140} = [-49]_{140} = [91]_{140}$$

Euler function

Integer numbers

Def.: We define the Euler function by

$$\phi: \mathbb{N}\backslash\{0\} \to \mathbb{N}\backslash\{0\}$$

$$n \mapsto \operatorname{card}\{k \in \mathbb{N}\backslash\{0\}: k < n, \gcd(k, n) = 1\}$$

In other words, $\phi(n)$ is the number of natural numbers k < n coprimes with n.

Property: If p is a prime, then $\phi(p) = p - 1$

Problem 5.20a: Let \mathbb{Z}_m^* be the set of elements of \mathbb{Z}_m that have an inverse. Prove that $\phi(m) = \operatorname{card} \mathbb{Z}_m^*$

For a given k (k = 1, 2, ..., m - 1) let gcd(m, k) = 1 then $[k]_m \in \mathbb{Z}_m^*$. Besides, if gcd(m, k) > 1, then $[k]_m \notin \mathbb{Z}_m^*$. Thus, $\phi(m) = \operatorname{card} \mathbb{Z}_m^*$

Euler function

Problem 5.20b: Evaluate:

- 1. $\phi(11)$. $\phi(11) = \operatorname{card} \mathbb{Z}_{11}^*$. Since 11 is a prime, then $\mathbb{Z}_{11}^* = \mathbb{Z}_{11} \backslash [0]_{11}$. Thus $\phi(11) = 10$.
- 2. $\phi(16)$. gcd(16, k) = 1, then:

$$\{1, 3, 5, 7, 9, 11, 13, 15\}$$

Thus $\phi(16) = 8$.

Integer numbers

- 3. $\phi(17)$. 17 is prime. $\phi(17) = 16$.
- 4. $\phi(25)$. $\phi(25) = \phi(5^2)$. 5 is a prime number.

General property: $\gcd(p^2, m) \in \{1, p, p^2\}$. This can be seen from (Fund. Th. Arithmetics) $m = p_1 p_2 \cdots p_k$. Thus $m \mid p^2$ iff m contains p. Now $m < p^2$ thus the only way (bad case) $\gcd(p^2, m) = p$. Then m = kp with $k = 1, 2, \ldots, p - 1$.

Thus there exist p-1 numbers s.t. $\gcd(p^2,m)>1$. To compute $\phi(p^2)$: we have p^2 numbers, we exclude p-1 with $\gcd>1$ and also 0. Thus

$$\phi(p^2) = p^2 - (p-1) - 1 = p^2 \left(1 - \frac{1}{p}\right)$$

In general:

$$\phi(p^k) = p^k \left(1 - \frac{1}{p}\right)$$

$$\phi(25) = \phi(5^2) = 25 - 5 = 20.$$

By using fast operations we can show that if gcd(n, m) = 1:

$$\phi(nm) = \phi(n)\phi(m)$$

5.
$$\phi(100) = \phi(4 \times 25) = \phi(2^2)\phi(5^2) = (4-2) + (25-5) = 22.$$

Fermat's little theorem

Integer numbers

If
$$gcd(a, n) = 1$$
 then

$$a^{\phi(n)} \equiv 1 \mod n$$

Problem 21: Find the last digit of 2³³³.

The last digit is the remainder after dividing 2^{333} by 10. Thus

$$x = 2^{333} \mod 10 \text{ or } x = [2^{233}]_{10}$$

Since gcd(2,10) = 2 we cannot do it directly. From the fast calculations we can use

$$f: \mathbb{Z}_{10} \to \mathbb{Z}_5 \times \mathbb{Z}_2$$

Thus we find $([2^{333}]_5, [2^{333}]_2)$

Since gcd(2,5) = 1 we have $[2^{\phi(5)}]_5 = [1]_5$. $\phi(5) = 4$, i.e. $[2^4]_5 = 1$. Thus we get

$$[2^{333}]_5 = [2^{4\times 83}\times 2]_5 = [2^{4\times 83}]_5\times [2]_5 = [2]_5$$

Then we note $[2^{333}]_2 = [2]_2 \times [2]_2 \times \cdots \times [2]_2 = [0]_2$. Therefore $([2^{333}]_5, [2^{333}]_2) = ([2]_5, [0]_2)$

We now apply the inverse transform

$$x \equiv 2 \mod 5, \quad x \equiv 0 \mod 2$$

$$n = 10$$
, $q_1 = 2$, $q_2 = 5$. Inverse $r_1 = [2]_5^{-1} = [3]_5$, $r_2 = [5]_2^{-1} = [1]_2$. Finally

$$x = [2 \times 2 \times 3 + 0]_{10} = [12]_{10} = [2]_{10}$$

Problem 22a (Worksheet 5)

Cesar's code

```
L = 'abcdefghijklmnnopgrstuvwxvz'; % alphabet
key = 6;
                             % codding key
Mess = 'gggeuaskkjñygubk'; % codded message
disp('****** Codded message ********)
disp(Mess)
% decoding
for n = 1:length(Mess)
  1 = strfind(L, Mess(n))-1; % chargeter number
  1 = mod(1-key, 27); % 1 - k mod 27
  Mess(n) = L(1+1);
end
disp('****** Decodded message ******')
disp(Mess)
```

