

Universidade do Minh

DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

Analise Matemática B

FICHA 3A MIECOM

Funções vectoriais

- **1.** Considere a função vectorial de variável real definida por $\overrightarrow{r}(t) = \overrightarrow{u} + t\overrightarrow{v}$, $t \in \mathbb{R}$, onde $\overrightarrow{u} = a\overrightarrow{e_1} + b\overrightarrow{e_2} + c\overrightarrow{e_3}$ e $\overrightarrow{v} = l\overrightarrow{e_1} + m\overrightarrow{e_2} + n\overrightarrow{e_3}$, com $a, b, c, l, m, n \in \mathbb{R}$ e fixos.
- (a) Determine as funções componentes de \overrightarrow{r} .
- (b) Verifique que $\frac{d\overrightarrow{r}}{dt}(t) = \overrightarrow{v}$.
- **2.** Considere a função vectorial de variável real definida por $\overrightarrow{r}(t) = \overrightarrow{u} + \overrightarrow{v} \cos t + \overrightarrow{w} \sin t$, $t \in \mathbb{R}$, onde $\overrightarrow{u} = 2\overrightarrow{e_1} + \overrightarrow{e_2}$, $\overrightarrow{v} = \overrightarrow{e_2} \overrightarrow{e_3}$ e $\overrightarrow{w} = \overrightarrow{e_2} + \overrightarrow{e_3}$. Calcule $\overrightarrow{r}'(t)$ e $\overrightarrow{r}''(t)$.
- **3.** Determine uma equação da recta s, tangente à curva de equação vectorial $\overrightarrow{r}(t) = \cos t \overrightarrow{e_1} + \sin t \overrightarrow{e_2} + t \overrightarrow{e_3}$ no ponto onde $t = \frac{\pi}{4}$.
- **4.** Determine o comprimento do arco da curva dado por $\overrightarrow{r}(t) = 2\cos t\overrightarrow{e_1} + 2\sin t\overrightarrow{e_2} + t\overrightarrow{e_3}$, no intervalo $[t_0, t_1]$.
- **5.** Uma partícula move-se no espaço e no instante t=1, está na posição associada ao vector $\overrightarrow{r}(1)=e\overrightarrow{e_3}$. Nesse mesmo instante, o vector velocidade é dado por $\overrightarrow{r}'(1)=3\overrightarrow{e_1}+4\overrightarrow{e_2}+e\overrightarrow{e_3}$. Sabendo que o vector aceleração é, em cada instante t, dado por $\overrightarrow{a}(t)=t\overrightarrow{e_1}+t^2\overrightarrow{e_2}+e^t\overrightarrow{e_3}$, **determine** a posição inicial (t=0) da partícula e a função vectorial $\overrightarrow{r}(t)$ associada à sua trajectória.