5장. 딥러닝 - Ⅱ

인공지능: 튜링 테스트에서 딥러닝까지

5.2 컨볼루션 신경망

- 5.2.1 컨볼루션
- 5.2.2 풀링
- 5.2.3 컨볼루션 신경망의 구조
- 5.2.4 컨볼루션 신경망의 학습
- 5.2.5 대표적인 컨볼루션 신경망 모델
- 5.2.6 딥러닝 신경망의 전이 학습

컨볼루션 신경망

- ❖ 컨볼루션 신경망(convolutional neural network, CNN)
 - 동물의 **시각피질**(visual cortex, 視覺皮質)의 구조에서 영감을 받아 만들어진 딥러닝 신경망 모델
 - 시각피질의 신경세포
 - 시야 내의 특정 영역에 대한 자극만 수용» 수용장(receptive field, 受容場)
 - 해당 영역의 특정 특징에 대해서만 반응
 - 시각 자극이 1차 시각피질을 통해서 처리된 다음, 2차 시각피질을 경유하여, 3차 시각피질 등 여러 영역을 통과하여 계층적인 정보처리
 - 정보가 계층적으로 처리되어 가면서 점차 추상적인 특징이 추출되어 시각 인식
 - 동물의 계층적 특징 추출과 시각인식 체계를 참조하여 만들어진 모델

컨볼루션 신경망

- ❖ 컨볼루션 신경망(Convolutional Neural Network, CNN)
 - 전반부 : 컨볼루션 연산을 수행하여 **특징 추출**
 - 후반부 : 특징을 이용하여 **분류**
 - 영상분류, 문자 인식 등 인식문제에 높은 성능

5.2.1 컨볼루션

❖ 컨볼루션(covolution)

■ 일정 영역의 값들에 대해 가중치를 적용하여 하나의 값을 만드는 연사

x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
<i>x</i> ₄₁	x_{42}	x_{43}	x_{44}	x_{45}
x_{51}	x_{52}	x_{53}	x_{54}	x_{55}

w_{11}	w_{12}	w_{13}
w_{21}	w_{22}	w_{23}
w_{31}	w_{32}	w_{33}

y_{11}	y_{12}	y_{13}
<i>y</i> ₂₁	<i>y</i> ₂₂	y_{23}
<i>y</i> ₃₁	<i>y</i> ₃₂	y_{33}

입력

컨볼루션 필터 커널 마스크

컨볼루션 결과

$$\begin{array}{c} y_{11} = w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} \\ \\ + w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} \\ \\ + w_{31}x_{31} + w_{32}x_{32} + w_{33}x_{33} \\ \\ + w_{0} \end{array}$$

❖ 컨볼루션

11	10	10	00	01
00	10	10	10	00
00	00	10	10	10
00	00	10	10	00
01	10	10	00	01

입력

1	0	1
0	1	0
1	0	1

컨볼루션 필터 커널 마스크

컨볼루션 결과

$$\begin{array}{c} y_{11} = w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} \\ \\ + w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} \\ \\ + w_{31}x_{31} + w_{32}x_{32} + w_{33}x_{33} \\ \\ + w_{0} \end{array}$$

- **❖ 스트라이드**(stride, 보폭)
 - 커널을 다음 컨볼루션 연산을 위해 이동시키는 칸 수
- ❖ 패딩(padding)
 - 컨볼루션 결과의 크기를 조정하기 위해 입력 배열의 둘레를 확장하고
 0으로 채우는 연산

스트라이드: 1

패딩: 2 스트라이드: 1

패딩: 1

스트라이드: 2

- ❖ 칼러 영상의 컨볼루션
 - 칼러 영상의 다차원 행렬 표현

■ 칼러영상의 컨볼루션

- ❖ 특징지도(feature map)
 - 컨볼루션 필터의 적용 결과로 만들어지는 2차원 행렬
 - 특징지도의 원소값
 - 컨볼루션 필터에 표현된 특징을 대응되는 위치에 포함하고 있는 정도
 - k개의 컨볼루션 필터를 적용하면 k의 2차원 특징지도 생성

5.2.2 풀링

- ❖ 풀링(pooling)
 - 일정 크기의 블록을 통합하여 하나의 대푯값으로 대체하는 연산
 - 최대값 풀링 (max pooling)
 - 지정된 블록 내의 원소들 중에서 최대값을 대푯값으로 선택

1	1	2	3		
4	6	6	8	6	8
3	1	1	0	3	4
1	2	2	4		

- **평균값 풀링**(average pooling)
 - 블록 내의 원소들의 평균값을 대푯값으로 사용

1	1	2.	3		
				33	4.75
4	6	6	8		
3	1	1	0	1.75	1.75
1	2	2	4		

풀링

- 확률적 풀링(stochastic pooling)
 - 블록 내의 각 원소가 원소값의 크기에 비례하는 선택 확률을 갖도록 하고, 이 확률에 따라 원소 하나를 선택

1	1	2	3	1	1	1		
4	6	6	8	$\frac{1}{12}$	$\frac{1}{12}$		6	6
3	1	1	0	4	6		2	1
1	2	2	4	12	12		3	4

• 학습시: 확률적 풀링

$$p_i = \dfrac{a_i}{\displaystyle\sum_{k \in R_j}} \qquad \qquad p_i : 블록 R_j$$
에서 원소 a_i 가 선택될 확률

• 추론시 : 확류적 가중합 사용

$$s_j = \sum_{i \in R_j} p_i a_i$$

풀링

❖ 풀링 연산의 역할

- 중간 연산 과정에서 만들어지는 특징지도들의 크기 축소
 - 다음 단계에서 사용될 메모리 크기와 계산량 감소
- 일정 영역 내에 나타나는 특징들을 결합하거나, 위치 변화에 강건한 특징 선택

5.2.3 컨볼루션 신경망의 구조

❖ 컨볼루션 신경망의 구조

- **특징 추출**을 위한 **컨볼루션 부분**
 - 컨볼루션 연산을 하는 Conv층
 - ReLU 연산을 하는 ReLU
 - 풀링 연산 Pool(선택)]

- 추출된 특징을 사용하여 분류 또는 회귀를 수행하는 **다층 퍼셉트론 부분**
 - 전방향으로 전체 연결된(fully connected) FC층 반복
 - 분류의 경우 마지막 층에 소프트맥스(softmax)을 하는 SM 연산 추가
 - 소프트맥스 연산 : 출력의 값이 0이상이면서 합은 1로 만듦
- 컨볼루션 신경망 구조의 예
 - Conv-ReLU-Pool-Conv-ReLU-Pool-Conv-ReLU-Pool-FC-SM
 - Conv-Pool-Conv-FC-FC-SM
 - Conv-Pool-Conv-Pool-Conv-Conv-Pool-FC-FC-SM
 - Conv-ReLU-Pool-Conv-ReLU-Pool-Conv-ReLU-Pool-FC-FC-SM

컨볼루션 신경망의 구조

❖ 컨볼루션 신경망의 구조 예

Conv:1-Pool:1-Conv:2-Pool:2-Conv:3-Conv:4-Conv:5-Pool:4-FC:6-FC:7-FC:8

컨볼루션 신경망의 구조

❖ 컨볼루션 신경망의 학습대상 가중치 개수와 메모리 요구량

층	필터/블록 크기	필터 개수	스트라 이드	패딩	노드개수 (출력 크기)	학습대상 가중치 개수
입력					224×224×3 (=150,528)	
Conv:1	11×11x3	96	4	3	55x55x96 (=290,400)	(11×11×3+1)x96 (=34,944)
Pool:1	3×3		2		27×27×96 (=69,984)	
Conv:2	5×5×96	256	1	2	27×27×256 (=186,624)	(5×5×96+1)×256 (=614,656)
Pool:2	3×3		2		13×13×256 (=43,264)	
Conv:3	3×3×256	384	1	1	13×13×384 (=64,896)	(3×3×256+1)×384 (=885,120)
Conv:4	3×3×384	384	1	1	13×13×384 (=64,896)	(3×3×384+1)×384 (=1,327,488)
Conv:5	3×3×384	256	1	1	13×13×256 (=43,264)	(3×3×384+1)×256 (=884,992)
Pool:5	3×3	256	2		6×6×256 (=9,216)	
FC:6					4096	6×6×256×4096 (=37,748,736)
FC:7					4096	4096×4096 (=16,777,216)
FC:8					1000	4096×1000 (=4,096,000)

• 가중치

개수: 58,621,952 메모리 요구량: 4바이트 float 사용시 249,476,608 바이트

(≈ 237MB)

계산 결과저장노드 개수: 781,736

메모리 요구량: ≈ 3MB

5.2.4 컨볼루션 신경망의 학습

- ❖ 컨볼루션 신경망의 학습을 위한 목적함수
 - 부류 문제
 - 교차 엔트로피(cross entropy)
 - 학습 데이터 출력 : t_{ik}
 - 컨볼루션 신경망 출력 : $y_k(x_i, \mathbf{w})$

$$E(\boldsymbol{w}) = -\log \sum_{i=1}^{N} \sum_{k=1}^{K} t_{ik} \log y_k(\boldsymbol{x}_i, \boldsymbol{w})$$

■ 회귀 문제

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{K} (t_{ik} - y_k(\mathbf{x}_i, \mathbf{w}))^2$$

- ❖ 적용 가능 학습 알고리즘
 - 경사 하강법
 - 경사 하강법의 변형

❖ 경사 하강법(Gradient descent method)

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \frac{\partial E(\boldsymbol{w}^{(t)})}{\partial \boldsymbol{w}}$$

❖ 모멘텀을 고려한 경사 하강법

$$\Delta^{(t)} = \alpha \Delta^{(t-1)} + \eta \frac{\partial E(\boldsymbol{w}^{(t)})}{\partial \boldsymbol{w}}$$
$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \Delta^{(t)}$$

❖ NAG(Nesterov accelerated gradient) 방법

$$\begin{split} \boldsymbol{\Delta}^{(t)} &= \alpha \boldsymbol{\Delta}^{(t-1)} + \eta \frac{\partial E(\boldsymbol{w}^{(t)} - \alpha \boldsymbol{\Delta}^{(t-1)})}{\partial \boldsymbol{w}} \\ \boldsymbol{w}^{(t+1)} &= \boldsymbol{w}^{(t)} - \boldsymbol{\Delta}^{(t)} \end{split}$$

❖ AdaGrad 방법

- 가중치별로 별도의 학습율 사용
- 이미 많이 움직였던 가중치에는 작은 학습율 사용

$$g_i^{(t)} = \frac{\partial E(\mathbf{w}^{(t)})}{\partial w_i}$$
 $G_i^{(t)} = G_i^{(t-1)} + (g_i^{(t)})^2$

$$w_i^{(t+1)} = w_i^{(t)} - \frac{\eta}{\sqrt{G_i^{(t)} + \epsilon}} g_i^{(t)}$$

❖ AdaDelta 방법

- Adagrad의 변형
- 과거 그레디언트의 영향을 점점 축소

$$\begin{split} E[g_i^2]_t &= \gamma E[g_i^2]_{t-1} + (1-\gamma) \left(g_i^{(t)}\right)^2 & RMS[g_i]^{(t)} &= \sqrt{E[g_i^2] + \epsilon} \\ E[w_i^2]_t &= \gamma E[w_i^2]_{t-1} + (1-\gamma) \left(\frac{\eta}{RMS[g_i]^{(t)}} g_i^{(t)}\right)^2 & RMS[w_i]^{(t)} &= \sqrt{E[w_i^2] + \epsilon} \end{split}$$

$$w_i^{(t+1)} = w_i^{(t)} - \frac{RMS[w_i]^{(t-1)}}{RMS[g_i]^{(t)}} g_i^{(t)}$$

❖ RMSprop 방법

- 가중치별로 별도의 학습율 사용
- 학습율을 가중치별 누적합의 제곱근으로 나누어서 조정

$$\begin{split} E[g_i^2]_t &= \gamma E[g_i^2]_{t-1} + (1-\gamma) \left(g_i^{(t)}\right)^2 \\ w_i^{(t+1)} &= w_i^{(t)} - \frac{\eta}{\sqrt{E[g_i^2]^{(t)} + \epsilon}} g_i^{(t)} \end{split}$$

❖ ADAM 방법

- 가중치별로 별도의 학습율 사용
- 그레디언트의 1차 및 2차 모멘텀 사용

$$\begin{split} m^{(t)} &= \beta_1 m^{(t-1)} + (1-\beta_1) g_i^{(t)} \\ v^{(t)} &= \beta_2 v^{(t-1)} + (1-\beta_2) \big(g_i^{(t)} \big)^2 \\ w_i^{(t+1)} &= w_i^{(t)} - \frac{\eta}{\sqrt{\hat{v}^{(t)} + \epsilon}} \hat{m}^{(t)} \end{split} \qquad \hat{m}^{(t)} &= \frac{m^{(t)}}{1 - \beta_1^{(t)}} \\ \hat{v}^{(t)} &= \frac{v^{(t)}}{1 - \beta_2^{(t)}} \end{split}$$

❖ 경사 하강법 및 변형 방법에 따른 학습 형태의 예

5.2.5 대표적인 컨볼루션 신경망 모델

❖ 컨볼루션 신경망 모델

- LeNet
- AlexNet
- VGGNet
- GoogleNet
- ResNet
- ResNeXt
- DenseNet
- DPN (Dual Path Network)

대표적인 컨볼루션 신경망 모델

❖ ILSVRC 대회

■ ImageNet 데이터베이스

• 영어 단어 ontology인 WordNet의 계층구조에 따라 정리된 영상

데이터베이스

■ 분류 경쟁 부분

- 1,000개의 부류
- 1,200,000 개의 영상 데이터
- 상위-5 오류(top-5 error rate) 평가

대표적인 컨볼루션 신경망 모델

❖ ILSVRC 대회

그림 5.19 ILSVRC 주요 우수팀의 성적 가로축은 연도, 괄호 안에는 팀 이름이나 모델 이름을 나타냄

LeNet 모델

❖ LeNet 모델

- Yann LeCun 등의 제안(1998)
- LeNet5 모델
 - 5 계층 구조: Conv-Pool-Conv- Pool-Conv-FC-FC(SM)
- 입력 : 32x32 필기체 숫자 영상 (MNIST 데이터)

- 풀링 : 가중치x(2x2블록의 합) + 편차항
- 시그모이드 활성화 함수 사용
- 성능: 오차율 0.95%(정확도: 99.05%)

AlexNet 모델

❖ AlexNet

- 토론토 대학 Geoffrey E. Hinton 팀이 제안
- ILSVRC에서 2012년 우승
- **상위-5 오류율**: 16.43%
 - 직전 년도 대비 9.4% 정확도 향상

AlexNet 모델

- ❖ AlexNet cont.
 - 8 계층의 구조
 - Conv-Pool-Norm-Conv-Pool-Norm-Conv- Conv-Conv-Pool-FC-FC-FC(SM)

- ReLU 함수를 사용한 첫 모델
- FC 층에 드롭아웃(dropout) 기법 사용
- 최대값 풀링(max pooling) 사용

AlexNet 모델

- ❖ AlexNet cont.
 - Norm: 국소 반응 정규화 연산 층
 - 인접한 여러 층의 출력값들을 이용하여 출력값 조정

$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2 \right)^{\beta}$$
 위치 (x,y) 에 커널 i 를 적용하여 계산한 값

■ 마지막층

- 완전연결층(FC층)
- 소프트맥스(SM) 사용
- 1,000개의 부류를 나타내기 위해 1,000개의 노드

VGGNet 모델

❖ VGGNet

- 사이머니언와 지서만이 제안(2014년)
- VGG-16 모델(16개 층)
- VGG-19 모델(19개 층)
- 2014년 ILSVRC에서 2등 차지 (상위-5 오류율: 7.32%)
- 단순한 구조

VGGNet 모델

- ❖ VGGNet cont.
 - 모든 층에서 **3x3 필터** 사용
 - 3x3 필터 2회 적용 🗌 5x5 필터 적용 효과
 - 3x3 필터 3회 적용 🗌 7x7 필터 적용 효과

27 가중치 49

ReLU 3회 적용 □ 복좗한 결정경계 표현 가능

그림 5.23 2개 층의 3×3 컨볼루션에 의한 5×5 컨볼루션 구현

GoogleNet

- 구글의 체게디 등이 개발
- 2014년 ILSVRC에서 우승(상위-5 오류율 : 6.67%)
- 22개 층의 구조
 - Conv-MPool-Conv-Incept-Incept-MPool Incept-Ince
 - MPool : 최대값 풀링
 - Apool: 평균값 풀링
 - Incept : 인셉션(Inception)모듈

- ❖ GoogleNet cont.
 - 인셉션(Inception) 모듈
 - 직전 층의 처리결과에 1×1 컨볼루션, 3×3 컨볼루션, 5×5 컨볼루션을 적용
 - 이들 크기의 수용장에 있는 특징들을 동시에 추출

그림 5.25 GoogleNet에서 사용되는 인셉션(Inception) 모듈

- ❖ GoogleNet cont.
 - 1x1 컨볼루션
 - 동일한 위치 의 특징지도의 값을 필터의 가중치와 선형결합
 - 1×1 컨볼루션 필터의 개수를 조정하여 출력되는 특징지도의 개수를 조정
 - $224x224x500 \Rightarrow (1x1x500)@120 \Rightarrow 224x224x120$

- ❖ GoogleNet cont.
 - 마지막 계층: 소프트맥스
 - 22개 층 모델이지만, AlexNet 모델에 비해 가중치 개수는 10% 증가
 - **기울기 소멸 문제** 완화 장치
 - 4번째, 7번째 계층에 **보조 분류기** 추가
 - 보조 분류기를 통해 그레디언트 정보 제공

- ResNet (Residual Net)
 - 카이밍 허 등이 개발
 - 2015년 ILSVRC에서 우승(상위-5 오류율: 3.75%)
 - 152개 층의 모델
 - Conv-Mpool
 - [Conv-ReLU-Conv-ReLU-Conv-ReLU] x 3
 - [Conv-ReLU-Conv-ReLU-Conv-ReLU] x8
 - [Conv-ReLU-Conv-ReLU] x 36
 - [Conv-ReLU-Conv-ReLU-Conv-ReLU] x 3
 - -APool-FC-SM

- ❖ ResNet cont.
 - 다수의 층 사용
 - 상위 계층에서 의미있는 특징 추출 가능
 - 다수 계층 사용시 기울기 소멸 문제 발생
 - 잔차 모듈(residual module)

$$y = H(x)$$

ResNet의 잔차 모듈

$$F(\boldsymbol{x}) = \boldsymbol{y} - \boldsymbol{x} \qquad \boldsymbol{y} = F(\boldsymbol{x}) + \boldsymbol{x}$$

- - 잔차 모듈

잔차 모듈 F(x)의 학습

$$\boldsymbol{y} = F(\boldsymbol{x}) + \boldsymbol{x} = W_2 \rho(W_1 \boldsymbol{x}) + \boldsymbol{x}$$

❖ 잔차 모듈의 특징

- 기대하는 출력과 유사한 입력이 들어오면 영벡터에 가까운 값을 학습
 - □ 입력의 작은 변화에 민감 **□ 잔차학습**
- 다양한 경로를 통해 복합적인 특징 추출
 - 필요한 출력이 얻어지면 컨볼루션 층을 건너뛸 수 있음
 - 다양한 조합의 특징 추출 가능

DenseNet 모델

DenseNet

- 가오 후앙(Gao Huang) 등이 개발 (2016)
- 각 층은 모든 앞 단계에서 올 수 있는 지름질 연결 구성

$$\boldsymbol{x}_i = \boldsymbol{H}_i([\boldsymbol{x}_0, \boldsymbol{x}_1, \dots, \boldsymbol{x}_{i-1}])$$

배치 정규화, ReLU, 컨볼루션 연산

DenseNet 모델

- - 노드의 연산: *H_i*
 - 배치 정규화(BN)-ReLU-(3x3 컨볼루션)
 - 각 층은 입력 특징지도와 같은 차원의 특징지도 생성

- 병목층
 - 1x1 컨볼루션
 - 출력되는 특징지도의 채널 수 축소
- 병목층이 있는 층
 - BN-ReLU-(1x1 컨볼루션)-BN-ReLU-(3x3 컨볼루션)

DenseNet 모델

- ❖ DenseNet cont.
 - 특징지도의 크기를 줄이기 위해 풀링 연산 적용 필요
 - 밀집 블록(dense block)과 전이층(transition layer)으로 구성
 - 전이층 : 1x1 컨볼루션과 평균값 풀링(APool)으로 구성

그림 5.35 밀집 블록으로 구성된 DenseNet

DPN 모델

DPN (Dual Path Network)

- ResNet과 DenseNet을 결합한 모델
- ResNet
 - 이전 단계의 동일한 특징 정보가 각 단계에 전달되어 이들 특징을 재사용하도록 하는 경향
 - 상대적으로 이전 단계의 특징들로부터 새로운 특징을 만드는 것에는 소극적

DenseNet

- 새로운 특징이 추출될 가능성이 높음
- 이전에 추출된 특징이 다시 추출될 가능성도 높음

DPN 모델

- ❖ DPN cont.
 - 마이크로 블록에서 DenseNet과 ResNet의 특징 결합

5.2.6 딥러닝 신경망의 전이 학습

- ❖ 전이 학습(transfer learning)
 - 큰 규모의 딥러닝 신경망을 학습시킬 때는, 많은 학습 데이터와 상당한 학습 시간이 필요
 - 대규모 영상 데이터베이스인 ImageNet 데이터를 학습한 여러 컨볼루션 신경망 모델 공개
 - 공개된 모델을 가져다가 누구나 자신의 문제가 적용해 볼 수도 있고, 모델의 일부 활용 가능
 - 학습된 컨볼루션 신경망의 컨볼루션 층들을 가져오고 뒤 단계에서 분류하는 다층 퍼셉트론 모델을 붙여서 학습