1 Декартовы произведения, тождества, многообразия

Определение 1.1 (Декартово произведение). Пусть $\mathcal{A}=(A,I),\ \mathcal{B}=(B,J)$ - алгебры одной сигнатуры Σ , декартово произведение $\mathcal{C}=\mathcal{A}\times\mathcal{B}$ - это

$$C = (C, K), C = A \times B = \{(a, b) : a \in A, b \in B\}$$

где определены операции $f^{(n)} \in \Sigma$

$$f^{\mathcal{C}}((a_1, b_1), ..., (a_n, b_n)) = (f^{\mathcal{A}}(a_1, ..., a_n), f^{\mathcal{B}}(b_1, ..., b_n))$$

Пример 1.2 (Пример декартова произведения).

Теорема 1.3. Пусть $C = A \times B$, $h_1(a,b) = a$, $h_2(a,b) = b$, тогда $h_1 : C \to A$ и $h_2 : C \to B$ - гомоморфизмы.

Доказательство.

$$h_1(f^{\varepsilon}((a_1, b_1), ..., (a_n, b_n))) = h_1(f^{\mathcal{A}}(a_1, ..., a_n), f^{\mathcal{B}}(b_1, ..., b_n))$$

= $f^{\mathcal{A}}(a_1, ..., a_n)$
= $f^{\mathcal{A}}(h_1(a_1, b_1), ..., h_1(a_n, b_n))$

Определение 1.4 (Тождество). Пусть Σ - сигнатура, t_1, t_2 - термы в Σ , тогда тождество - формула вида $t_1=t_2$.

В ${\cal A}$ выполнено $t_1=t_2,$ если оно выполнено для любых значений переменных.

Определение 1.5 (Многообразие). Пусть T - множество тождеств, многообразие задаваемое (определяемое) T - это класс всех алгебр, в котором выполнены все тождества из T.

$$\mathcal{A} \in M \Leftrightarrow$$
 в \mathcal{A} выполнены $t_1 = t_2 \in T$

Пример 1.6 (Пример многообразия).

Лемма 1.7. Пусть $\mathcal{C} = \mathcal{A} \times \mathcal{B}$. Тогда для любого терма $t(x_1,...,x_n)$:

$$t^{\mathcal{C}}((a_1, b_1), ..., (a_n, b_n)) = (t^{\mathcal{A}}(a_1, ..., a_n), t^{\mathcal{B}}(b_1, ..., b_n))$$

Доказательство. Индукция по построению t

1

1.
$$t = x$$
, $t^{\mathcal{C}}((a_1, b_1), ..., (a_n, b_n)) = (a_i, b_i)$, $(a_i, b_i) = (t^{\mathcal{A}}(a_1, ..., a_n), t^{\mathcal{B}}(b_1, ..., b_n))$

2.
$$t = d$$
 - константа, $t^{\mathcal{C}}((a_1, b_1), ..., (a_n, b_n)) = (d^{\mathcal{A}}, d^{\mathcal{B}}), (t^{\mathcal{A}}(a_1, ..., a_n), t^{\mathcal{B}}(b_1, ..., b_n)) = (d^{\mathcal{A}}, d^{\mathcal{B}})$

3. пусть $s_1,...,s_k$ - термы, $t=f(s_1,...,s_k)=(s_i^{\mathcal{A}}(a_1,...,a_n),s_i^{\mathcal{B}}(b_1,...,b_n)),$ тогда

$$\begin{split} t^{\mathcal{C}}((a_{1},b_{1}),...,(a_{n},b_{n})) &= \\ f^{\mathcal{C}}(s_{i}^{\mathcal{C}}((a_{1},b_{1}),...,(a_{n},b_{n})),...,s_{n}^{\mathcal{C}}((a_{1},b_{1}),...,(a_{n},b_{n}))) &= \\ f^{\mathcal{C}}((s_{i}^{\mathcal{A}}(a_{1},...,a_{n}),s_{i}^{\mathcal{B}}(b_{1},...,b_{n})),...,(s_{k}^{\mathcal{A}}(a_{1},...,a_{n}),s_{k}^{\mathcal{B}}(b_{1},...,b_{n}))) &= \\ (f^{\mathcal{A}}(s_{i}^{\mathcal{A}}(a_{1},...,a_{n}),...,s_{k}^{\mathcal{A}}(a_{1},...,a_{n})),f^{\mathcal{B}}(s_{i}^{\mathcal{B}}(b_{1},...,b_{n}),...,s_{k}^{\mathcal{B}}(b_{1},...,b_{n}))) &= \\ (t^{\mathcal{A}}(a_{1},...,a_{n}),t^{\mathcal{B}}(b_{1},...,b_{n})) \end{split}$$

Теорема 1.8 (Теорема Бишопа). Пусть M - многообразие, $\mathcal{A}, \mathcal{B} \in M$, тогда

- 1. $\mathcal{C} \subseteq \mathcal{A} \Rightarrow \mathcal{C} \in M$ (замкнутость относительно подалгебры)
- 2. \mathcal{C} гомоморфный образ $\mathcal{A}\Rightarrow\mathcal{C}\in M$ (замкнутость относительно гомоморфизма)
- 3. $\mathcal{C}=\mathcal{A}\times\mathcal{B}\Rightarrow\mathcal{C}\in M$ (замкнутость относительно декартовых произвелений)

Доказательство. Пусть $T=\{t_1(x_1,...,x_n)=t_2(x_1,...,x_n)\}$ - множество тождеств

1. пусть $c_1,...,c_n\in\mathcal{C}$ и $\mathcal{C}\subseteq\mathcal{A}$, тогда $c_1,...,c_n\in\mathcal{A}$ и

$$t_1^{\mathcal{C}}(c_1, ..., c_n) = t_1^{\mathcal{A}}(c_1, ..., c_n)$$
$$= t_2^{\mathcal{A}}(c_1, ..., c_n)$$
$$= t_2^{\mathcal{C}}(c_1, ..., c_n)$$

это и значит что $\mathcal{C} \in M$

2

2. пусть $c_1,...,c_n\in\mathcal{C}$ и $h:\mathcal{A}\to\mathcal{C},$ тогда $c_1=h(a_1),...,c_n=h(a_n),$ $a_1,...,a_n\in\mathcal{A}$ и

$$t_1^{\mathcal{C}}(c_1, ..., c_n) = t_1^{\mathcal{C}}(h(a_1), ..., h(a_n))$$

$$= h(t_1^{\mathcal{A}}(a_1, ..., a_n))$$

$$= h(t_2^{\mathcal{A}}(a_1, ..., a_n))$$

$$= t_2^{\mathcal{C}}(h(a_1), ..., h(a_n))$$

$$= t_2^{\mathcal{C}}(c_1, ..., c_n)$$

3. пусть $c_1,...,c_n\in\mathcal{C}$ и $\mathcal{C}=\mathcal{A}\times\mathcal{B},$ тогда $(a_1,b_1),...,(a_n,b_n)\in\mathcal{C}$ и

$$t_1^{\mathcal{C}}((a_1, b_1), ..., (a_n, b_n)) = (t_1^{\mathcal{A}}(a_1, ..., a_n), t_1^{\mathcal{B}}(b_1, ..., b_n))$$
$$= (t_2^{\mathcal{A}}(a_1, ..., a_n), t_2^{\mathcal{B}}(b_1, ..., b_n))$$
$$= t_2^{\mathcal{C}}((a_1, b_1), ..., (a_n, b_n))$$