Билет 11 Модель персептрона Розенблатта. Теорема Новикова.

В 1943 г. учеными Маккалоком и Питтсом была предложена формальная модель нейрона - живая клетка, которая, различая по заряду цитоплазмы, находится в одном из двух состояний: покоя или возбуждения(Рис. 1). Аксоны одних клеток соединены с денритами других. Состояние нейрона зависит от состояния аксонов, соединенных с другими клетками и чувствительности дендритов.

Рис. 1: Общая схема строения биологического нейрона

Эта модель послужила основой для модели персептрона - первой искусственной сети, способной к восприятию (перцепции) стимула и формированию реакции, предложенной в 1957 г. ученым Розенблаттом.

Физическое устройство персептрона (Рис. 2) состоит из 3 слоев:

- рецепторный слой 20х20 фотоэлементов
- \bullet передающий слой 512 нейронов, каждый из которых имеет 10 входов, случайно соединенных с элементами рецепторного слоя, причем для каждого $j=1,\,2,\ldots,\,512$ верно, что

$$y_j = \begin{cases} 1, & \sum_{i=1}^{10} x_{ji} \geqslant 5\\ 0, & \text{иначе} \end{cases}$$

где x_{ji} входы j-ого элемента передающего слоя

• решающий элемент, принимающий значение

$$z = F(y_1, y_2, \dots, y_{512}) = \begin{cases} 1, & \bar{a} \cdot \bar{y} > c \\ 0, & \text{иначе} \end{cases}$$
 (0.1)

где \bar{a} - весовой вектор решающего элемента, с - пороговое число.

Рис. 2: Персептрон Розенблатта

В процессе обучения персептрона не меняется схема соединения нейронов, может поменяться только весовой вектор \bar{a} и пороговое число с.

На рецепторный слой подается образ. Так как все элементы рецепторного слоя жестко связаны с элементами принимающего слоя, то на входе

решающего элемента образ кодируется вектором $\bar{y} = (y_1, y_2, \dots, y_{512})$, который называется вектором признаков.

Образы, который подаются на вход персептрона, принадлежат одному из 2 классов. Необходимо, чтобы для элементов I класса персептрон решающий элемент возвращал 0, а для элементов II класса - 1. Для этого нужно корректно подобрать весовой вектор. Настройка весового вектора происходит с помощью обучающего алгоритма, в ходе которого на вход персептрона подается обучающая последовательность образов, о каждом из которых известно, какому классу они принадлежат. В зависимости от правильности значения, которое возвращает решающий элемент, схема меняет весовой вектор.

Очевидно, что распознавание классов возможно, если в признаковом пространстве их можно отделить друг от друга гиперплоскостью. Теорема Новикова позволяет ответить на вопрос существования обучающего алгоритма персептрона.

Теорема Новикова.

Пусть \mathbb{R}^k - признаковое пространство, $M_i \subseteq \mathbb{R}^k, M_i \neq \emptyset$ $\mathbf{i}=1,2,$ $M_1 \cap M_2 = \emptyset$. Множества M_1 и M_2 строго строго линейно отделимы точно тогда, когда существуют $\bar{a} \in \mathbb{R}c \in \mathbb{R}$, что для любых $\bar{x}_1 \in M_1$ и $\bar{x}_2 \in M_2$ выполнено $\bar{a} \cdot \bar{x}_1 > c, \bar{a} \cdot \bar{x}_2 < c$.

Множества $M_1, M_2 \subseteq \mathbb{R}^k$ строго 0-отделимы точно тогда, когда существуют $\bar{a} \in \mathbb{R}^k$, что для любых $\bar{x}_1 \in M_1$ и $\bar{x}_2 \in M_2$ выполнено $\bar{a} \cdot \bar{x}_1 > 0, \bar{a} \cdot \bar{x}_2 < 0$.

Множество $M\subseteq \mathbb{R}^k$ строго линейно отделимо от нуля точно тогда, когда существуют $\bar{a}\in \mathbb{R}^k$, что для любых $\bar{x}\in M$ выполнено $\bar{a}\cdot \bar{x}>0$.

Утверждение 1. Если $M_1, M_2 \in \mathbb{R}^k$ и

$$\widetilde{M}_i = \{(x_1, x_2, \dots, x_k, 1) : (x_1, \dots, x_k) \in M_i\}, i = 1, 2,$$

то M_1 и M_2 строго линейно отделимы тогда и только тогда, когда \widetilde{M}_1 и \widetilde{M}_2 строго 0-отделимы.

Доказательство. Пусть M_1 и M_2 строго линейно отделимы гиперплоскостью $l: \bar{a} \cdot \bar{x} = c$. Определим $\bar{b} \in \mathbb{R}^{k+1}, \bar{b} = (a_1, \dots, a_k, -c)$. Тогда для всех $\bar{x}' \in \widetilde{M}_1, \bar{x}' = (\bar{x}, 1)$, выполнено $\bar{b} \cdot \bar{x}' = \bar{a} \cdot \bar{x} - 1 \cdot c > 0$. И для всех $\bar{x}' \in \widetilde{M}_2, \bar{x}' = (\bar{x}, 1)$, выполнено $\bar{b} \cdot \bar{x}' = \bar{a} \cdot \bar{x} - 1 \cdot c < 0$. То есть множетства \widetilde{M}_1 и \widetilde{M}_2 строго 0-отделимы гиперплоскостью $l': \bar{b} \cdot \bar{x}' = 0$.

Обратно, пусть множества \widetilde{M}_1 и \widetilde{M}_2 строго 0-отделимы гиперплоскостью $l': \bar{b}\cdot \bar{x}'=0$. Положим $c=-b_{k+1}, \bar{a}=(b_1,\ldots,b_k)$. Тогда M_1 и M_2 строго линейно отделимы гиперплоскостью $l: \bar{a}\cdot \bar{x}=c$.

Утверждение 2. Если $M_1, M_2 \subseteq \mathbb{R}^k, M' = M_1 \cup \{-\bar{x} : \bar{x} \in M_2\},$ Тогда M_1, M_2 строго 0-отделимы тогда и только тогда, когда M' строго линейно отделимо от 0.

Доказательство. Пусть М' строго отделимо от 0, тогда существует \bar{a} , что для любого $\bar{x}' \in M' : \bar{a} \cdot \bar{x}' > 0$, значит для $\forall \bar{x} \in M_1 : \bar{a} \cdot \bar{x} > 0$, и для любого $\bar{x} \in M_2 : \bar{a} \cdot \bar{x} < 0$, значит M_1, M_2 строго 0-отделимы.

Пусть M_1, M_2 строго 0-отделимы гиперплоскостью l: $\bar{a} \cdot \bar{x} = 0$, значит $\bar{a} \cdot \bar{x}' > 0$ для любого $\bar{x}' \in M'$.

Пусть множества $M_1, M_2 \subset R^{n-1}$ - строго линейно отделимы, множество $M' = M_1 \cup \{-\bar{x} : \bar{x} \in M_2\}$. Тогда согласно утверждениям 1, 2 множество $M = \{(x_1, x_2, \dots, x_{n-1}, 1) : (x_1, \dots, x_n) \in M'\} \subset R^n$ строго линейно отделимо от 0.

Рассмотрим следующий алгоритм A, который для строго линейно отделимого от нуля множества M позволяет находить нормаль отделяющей гиперплоскости. На вход алгоритма поступает бесконечная последовательность $\bar{y}_1, \bar{y}_2, \ldots$ такая, что для любого $i=1,2,\ldots$ выполнено $\bar{y}_i \in M$. Эта последовательность называется обучающей последовательностью. Алгоритм A состоит в итеративном уточнении нормали \bar{a} отделяющей гиперплоскости, называемой весовым вектором, по следующей схеме:

Шаг 0.
$$\bar{a}_0 := (0, \dots, 0)$$
.

Шаг
$$i(i > 0)$$
. Если $\bar{y}_i \cdot \bar{a}_{i-1} \leq 0$, то $\bar{a}_i = \bar{a}_{i-1} + \bar{y}_i$, иначе $\bar{a}_i = \bar{a}_{i-1}$.

Для вектора \bar{y} через $||\bar{y}||$ обозначим его длину.

Для конечного $M=\{\bar{y}_1,...,\bar{y}_s\}$ из \mathbb{R}^n введем обозначения: $D(M)=\max_{\bar{y}\in M}||\bar{y}||,$ $V(M)=\{\sum_{i=1}^s a_i\bar{y}_i:\sum_{i=1}^s a_i=1,a_i\geqslant 0,1,\ldots,s\}$ выпуклая оболочка множества M, $\rho(M)=\min_{\bar{y}\in V(M)}||\bar{y}||.$

Для вещественного a через [a] обозначим наибольшее целое, не большее a.

Теорема Новикова. Пусть $M \subset \mathbb{R}^n$ строго линейно отделимо от 0, $|M| < \infty$. Пусть $\bar{y}_1, \bar{y}_2, \ldots$ обучающая последовательность такая, что для всех $i=1,2,\ldots$ верно, что $\bar{y}_i \in M$, и каждый элемент \bar{y} из M встречается в обучающей последовательности бесконечное число раз. Пусть $\bar{a}_1, \bar{a}_2, \ldots$ - последовательность весовых векторов, полученных в результате применения алгоритма A к обучающей последовательности. Тогда существует натуральное число N такое, что для любого i>N верно $\bar{a}_i=\bar{a}_N$, при этом для любого $\bar{y}\in M\bar{a}_N\cdot\bar{y}>0$, и для числа изменений s в последовательности $\bar{a}_1,\bar{a}_2,\ldots$ выполнено $s<[\frac{D^2(M)}{\rho^2(M)}]$.

Доказательство. Из строгой линейной отделимости множества М от 0 следует, что $\rho(M)>0$. Тем самым последние отношения в формулировке теоремы корректно. Пусть i_1,i_2,\ldots последовательность всех индексов, для которых $\bar{y}_{i_j}\cdot \bar{a}_{i_{j-1}}\leqslant 0, j=1,2,\ldots$, т.е. это последовательность индексов, в которых последовательность $\bar{a}_1,\bar{a}_2,\ldots$ изменяется. Обозначим $\widetilde{y}_j=\bar{y}_{i_j},\widetilde{a}_0=\bar{a}_0,\widetilde{a}_j=\bar{a}_{i_j},j=1,2,\ldots$

Пусть \bar{x} - ближайшая точка к 0 из V(M), т.е. $||\bar{x}|| = \rho(M)$. Обозначим $\bar{e} = \frac{\bar{x}}{||\bar{x}||}$. Рассмотрим гиперплоскость H, задаваемую уравнением $\bar{e} \cdot \bar{y} = ||\bar{x}||$.

Легко показать, что все точки из V(M) лежат не ниже, чем гиперплоскость H, т.е. для любой точки $\bar{y} \in V(M)$ выполнено $\bar{e} \cdot \bar{y} \geqslant ||\bar{x}||$. В самом деле, предположим, что существует точка $\bar{y} \in V(M)$ такая, что $\bar{e} \cdot \bar{y} \leqslant ||\bar{x}||$. Проведем через 3 точки \bar{x}, \bar{y} и точку 0 плоскость L. На рисунке 3 изображены эти точки на плоскости L. Здесь прямая (l, \bar{x}) есть прямая пересечения плоскости L и гиперплоскости H, т.е. прямая (l,\bar{x}) перпендикулярна отрезку $[0,\bar{x}]$. Так как $\bar{e}\cdot\bar{y}\leqslant ||\bar{x}||$, то угол $\angle 0\bar{x}\bar{y}-$ острый. Из точки 0 опустим на отрезок $[\bar{x},\bar{y}]$ перпендикуляр $[\bar{x},\bar{y}]$. Так как $\bar{y}\in V(M)$ и $\bar{x}\in V(M)$, то и $\bar{z}\in V(M)$. Так как угол $\angle 0\bar{x}\bar{y}$ острый, рассмотрим 2 случая. Если \bar{z} находится между точками \bar{x} и \bar{y} , то из остроты угла $\angle 0\bar{x}\bar{y}$ следует, что $||\bar{z}||<||\bar{x}||$, что противоречит минимальности $||\bar{x}||$, если точка \bar{y} оказывается между точками \bar{z} и \bar{x} , тогда $||\bar{y}||<||\bar{x}||$, и мы снова приходим к противречию минимальности \bar{x} .

Рис. 3: Доказательство

Так как для любого допустимого индекса k справедливо $\widetilde{a_k}=\widetilde{a}_{k-1}+\widetilde{y}_k,$ то

$$||\widetilde{a}_k|| \geqslant \widetilde{a}_k \cdot \overline{e} \geqslant \widetilde{a}_{k-1} \cdot \overline{e} + \widetilde{y}_k \cdot \overline{e} \geqslant \widetilde{a}_{k-1} \cdot \overline{e} + \rho(M) \geqslant \widetilde{a}_0 \cdot \overline{e} + k\rho(M) = k\rho(M).$$

С другой стороны

$$\widetilde{a}_k \cdot \widetilde{a}_k = \widetilde{a}_{k-1} \cdot \widetilde{a}_{k-1} + \widetilde{y}_k \cdot \widetilde{y}_k + 2\widetilde{a}_{k-1} \cdot \widetilde{y}_k.$$

Но
$$\widetilde{y}_k \cdot \widetilde{y}_k \leqslant D^2(M)$$
 и $\widetilde{a}_{k-1} \cdot 2\widetilde{y}_k \leqslant 0$ и значит,
$$||\bar{a}_k||^2 \leqslant ||\bar{a}_{k-1}||^2 + D^2(M) \leqslant ||\bar{a}_0||^2 + kD^2(M) \leqslant kD^2(M).$$

Следовательно, $k^2\rho^2(M)\leqslant kD^2(M)$ и $k\leqslant [D^2(M)/\rho^2(M)]$ для любого допустимого индекса k. Откуда сразу следует, что для числа s изменений весовых векторов верно

$$\frac{D^2(M)}{\rho^2(M)}.$$

Возьмем $N=i_s$. Тогда для любого индекса $j\geqslant N$ справедливо $\bar{a}_j=\bar{a}_N$, а так как в последовательности $\bar{y}_N,\bar{y}_{N+1},\dots$ встречаются все элементы множества M, то для любого $\bar{y}\in M$ справедливо $\bar{a}_N\cdot\bar{y}>0$.

Теорема доказана.