

集成运算放大器构成的电压比较器 实验报告

实验名称:	集成运放构成的电压比较器	
系 别: _	计算机科学与技术	
实验者姓名:	陈 瑾	
学号:	37220222203552	
实验日期:	2023年12月13日	
实验报告完成	、日期: <u>2023</u> 年 <u>12</u> 月 <u>19</u>	E

一、 实验目的

- 1、掌握电压比较器的模型及工作原理;
- 2、掌握电压比较器的应用;

二、实验原理

1、集成运放构成的单限电压比较器

集成运放构成的单限电压比较器电路如图 1(a) 所示。图 1(b) 为其电压传输特性曲线。

由于理想集成运放在开环应用时,

$$Av \rightarrow \infty$$
, $Ri \rightarrow \infty$, $Ro \rightarrow 0$;

则当 Vi 〈 ER时,

Vo=VOH:

反之,当 Vi > ER时, Vo=VoL;

由于输出与输入反相,故称为反相单限电压比较器;通过改变 ER 值,即可改变转换电平 VT (VT≈ER);当 ER=0 时,电路称为"过零比较器"。同理,将 Vi 与 ER对调连接,则电路为同相单限电压比较器。图 1(c)为反相单限电压比较器的应用— 波形变换应用。

2、集成运放构成的施密特电压比较器

集成运放构成的施密特电压比较器电路如图 2(a) 所示。图 2(b) 为其电压传输特性曲线。

当 V_{OH} 时, $V_{+1}=V_{T}^{+}=\frac{R2}{R2+R3}V_{OH}+\frac{R3}{R2+R3}E_{R}$; V_{T}^{+} 称为上触发电平; 当 V_{OL} 时, $V_{+2}=V_{T}^{-}=\frac{R2}{R2+R3}V_{OL}+\frac{R3}{R2+R3}E_{R}$; V_{T}^{-} 称为下触发电平;

回差电平: $\Delta VT = VT + -VT -$

当 Vi 从足够低往上升,若 Vi> VT + 时,则 Vo 由 VOH翻转为 VOL; 当 Vi 从足够高往下降,若 Vi< VT - 时,则 Vo 由 VOL翻转为 VOH;

由于 VT + 、VT - 不相等,故称为双限电压比较器,而其电压传输特性曲线具有迟滞回线形状,由称为迟滞比较器;由于输入足够低时,输出为高;输入足够高时,输出为低;故称为反相施密特电压比较器;通过改变 ER值,即可改变上、下触发电平 VT + 、VT - ;同理,将 Vi 与 ER 对调连接,则电路为同相施密特电压比较器。图 2(c)为反相施密特电压比较器的应用一波形变换应用。

三、 实验仪器

1、示波器1 台2、函数信号发生器1 台3、数字万用表1 台4、多功能电路实验箱1 台

四、 实验内容

1、单限电压比较器

1)按图搭接电路,ER由实验箱可变直流电源提供。用直流电压表测量参考电压ER值,调节Rw(ER),观察并定量画出ER = 1V(或最大)时的单限电压比较器的电压传输特性曲线 $Vi^{\sim}Vo$;

2) 电压传输特性曲线测量方法: 用缓慢变化信号(正弦、三角)作Vi(Vi=1 0V, 200Hz)将Vi接示波器X(CH1)输入, Vo接Y(CH2)输入, 令示波器工作在外扫描方式(X-Y);

观察并定量画出电压传输特性曲线。

3)当VT = 1V时,令示波器工作在内扫描方式(Y-T),同时观察并画出Vi、Vo波形,用示波器测量Vi的转换电平VT值。

$$V_{T} = -2.33V$$

思考: ER与VT的关系? ER与VT成正相关。

2、施密特电压比较器

1)调节Rw(ER),用直流电压表测量ER值,当ER=1V,调节R2电位器,观察 Δ VT 变化情况,发现 Δ VT 会随R2增大而增大,减小而减小;当 Δ VT = 4V,定量记录电压传输特性曲线;

2) 令示波器工作在内扫描方式(Y-T),观察并画出Vi、Vo波形,

用示波器测量Vi的转换电平

VT+=-333mV

VT = -4.33V;

3)调节Rw(ER),观察电压传输特性曲线的变化情况,当ER=OV时,测得

VT += 1.17V

VT = -2.67V

改变ER, 观察Vo的正脉宽tu+的变化情况。

思考: ER变化对输出波形的影响?

ER增大,波形正脉宽增大; ER减小,波形正脉宽减小。

R2变化对输出波形的影响?

R2增大,波形正脉宽增大; R2减小,波形正脉宽减小。

五、实验小结

通过本次实验,我们成功使用集成运算放大器构建了电压比较器,并对一些数据进行了测试,观察了输入输出波形。掌握了电压比较器的模型及工作原理和应用,特别是对单限电压比较器和施密特电压比较器有了更深一步的了解。本次实验不仅加深了我们对集成运放和电压比较器的理解,还提高了我们的实验技能和实践能力。