Example. A company needs to hire people for 5 different positions P_1, \ldots, P_5 . There are 7 candidates C_1, \ldots, C_7 who interviewed for these positions. The table below shows the interview score (higher is better) how each person is qualified for each position. Blank entries indicate the score of 0 (i.e. a candidate is either not suitable or not interested in the corresponding position).

	C_1	C_2	C_3	C_4	C_5	C_6	C_7
P_1	70	90		75	55		60
P_2	40	95	85			80	
P_3	50		75		70		65
P_4			60	80		35	
P_5		75		70		35	20

Which candidate should be offered which position so that the sum of scores of the assignment is the largest possible?

Definition

A graph (or a network) is a pair G = (V, E) where:

- *V* is the set of *vertices* (or *nodes*);
- *E* is the set of *edges*;
- each edge connects two vertices.

Example.

Definition

A bipartite graph is a graph G = (V, E) such the set of nodes is a union of two disjoint subsets $V = V_1 \cup V_2$ and that every edge connects some node in V_1 with some node in V_2 .

Example.

Definition

The edge incidence matrix of a graph G = (V, E) is a matrix A such that:

- ullet rows of A are labeled by vertices of G
- ullet columns of A are labeled by edges of G
- the entry in the row of a vertex \mathbf{v} and the column of an edge \mathbf{e} is 1 if the edge \mathbf{e} is attached to \mathbf{v} ; otherwise it is 0.

Example.

Goal: All basic feasible solutions of an assignment problem consist of integers.