Computer Graphics

P. Healy

CS1-08 Computer Science Bldg. tel: 202727 patrick.healy@ul.ie

Spring 2021-2022

Outline

Olipping Algorithms; §8-5 (contd.)

Announcements

• Mid-term: ?

- Liang-Barsky algorithm is a better approach by avoiding repeated shortening of segment s-e; like C-S also works for 3-D clipping regions
- Idea is to return to parametric form of line (see prev. lecture)

$$x = x_s + u\Delta x$$

$$y = y_s + u\Delta y, \qquad 0 \le u \le 1$$

where

$$\Delta X = X_e - X_s,$$
$$\Delta y = y_e - y_s$$

- Liang-Barsky algorithm is a better approach by avoiding repeated shortening of segment s – e; like C-S also works for 3-D clipping regions
- Idea is to return to parametric form of line (see prev. lecture)

$$x = x_s + u\Delta x$$

$$y = y_s + u\Delta y, \qquad 0 \le u \le 1$$

where

$$\Delta x = x_e - x_s,$$

$$\Delta y = y_e - y_s$$

Applying "window" test

$$x_{bl} \le x_s + u\Delta x \le x_{ur}$$

 $y_{bl} \le y_s + u\Delta y \le y_{ur}$

• We break this in to four inequalities of the form $u_k p_k \le q_k$

$$p_1 = -\Delta x,$$
 $q_1 = x_s - x_{bl}$ (left border)
 $p_2 = \Delta x,$ $q_2 = x_{ur} - x_s$ (right border)
 $p_3 = -\Delta y,$ $q_3 = y_s - y_{bl}$ (bot border)
 $p_4 = \Delta y,$ $q_4 = y_{ur} - y_s$ (top border)

- We can now evaluate the four u_k s with $u_k = q_k/p_k$
- Liang-Barsky: it's all about finding the 4 u_k s

- We want to find the points where line segment crosses borders
- Extension of line segment will cross all four borders somewhere!

• We do this by working with the u_k s

- We want to find the points where line segment crosses borders
- Extension of line segment will cross all four borders somewhere!

• We do this by working with the u_k s

- We want to find the points where line segment crosses borders
- Extension of line segment will cross all four borders somewhere!

• We do this by working with the u_k s

Liang-Barsky Line Clipper (contd.)

- If line is parallel to window border then either $\Delta x = 0$ or $\Delta y = 0$; so, two of p_i s will be 0, also (either p_1, p_2 or p_3, p_4)
 - For each p_i that is 0, if $q_i < 0$ then line is entirely outside that clipping boundary; o/w, $q_i \ge 0$ and line is inside
- Proceeding from $u = -\infty$ to $u = +\infty$ the infinite extension of **every** non-parallel (to borders) line will cut 2 borders from outside to inside and 2 borders from inside to out
- If p_k < 0, with respect to that border, the infinite extension of the line moves from outside to inside; p_k > 0 means the line proceeds from inside to outside
- So two p_is will be positive and two negative
- The value of $u_k = q_k/p_k$ tells us critical information about the line

Liang-Barsky Line Clipper (contd.)

- Instead of maintaining four u_i s, we only maintain 2:
 - t_1 for the "outside to inside cases" ($p_k < 0$)
 - t_2 for the "inside to outside cases" ($p_k > 0$)
- t_1 is initialised to 0 (corresponds to s) and is taken to be the **larger** of the two cases where $p_k < 0$
- t_2 is initialised to 1 (corresponds to e) and is taken to be the **smaller** of the two cases where $p_k > 0$

Liang-Barsky Line Clipper (contd.)

- if t₁ > t₂ line is completely outside the clipping region and it can be discarded
- Over Cohen-Sutherland, Liang-Barsky has been found to run 36% faster for 2-D lines and 40% faster for 3-D lines
- Note: alg doesn't depend on any "ordering" of start and end points of line
- See tutorial here