

Removing ammonium from process water in effluent water treatment units

Patentnummer:

DE4324410

Publiceringsdato:

1994-08-04

Opfinder:

FRYE ANDREAS DIPL ING (DE); KOLLBACH

JOCHEN DR ING (DE); DAHM WOLFGANG DR

ING (DE)

Ansøger:

ENVIRO CONSULT INGENIEURGESELL (DE)

Klassifikation:

- international:

C02F1/20; B01D3/14; C01C1/00; C02F11/12;

C02F3/30

- europæisk:

B01D3/38; C02F1/20; C02F1/58N

Ansøgnigsnummer:

DE19934324410 19930721

Prioritetsnummer/-numre: DE19934324410 19930721

Report a data error here

Sammendrag af DE4324410

Process comprises denitrification, nitrification and sludge treatment for excess sludge with dewatering of the sludge. The ammonium is removed as ammonia from the process water resulting from the sludge dewatering in a stripping column and the purified process water is recycled to the input to the biological effluent water purificn. unit. The ammonia is stripped with steam in the stripping column, the stripping vapours recovered from the top of the column are compressed and used as heating medium to generate the steam used in the stripping column, and the resulting stripping vapour condensate is led to a rectification column which has a concentrating part and a separating part, whereby ammonia water with an ammonia content of at least 20 wt.% is recovered from the top of the rectification column as useful prod. and a bottom prod. with a low ammonia content is withdrawn from the bottom of the rectification column and is recycled into the input stream to the stripping column.

Data fra esp@cenet databasen - Worldwide

BEST AVAILABLE COPY

(9) BUNDESREPUBLIK

DEUTSCHLAND

(51) Int. Cl.5:

C 02 F 1/20

B 01 D 3/14 C 01 C 1/00 // C02F 11/12,3/30

DEUTSCHES PATENTAMT Aktenzeichen:

P 43 24 410.6-43

Anmeldetag:

21. 7.93

Offenlegungstag:

Veröffentlichungstag der Patenterteilung:

4. 8.94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

73 Patentinhaber:

Enviro Consult Ingenieurgesellschaft für Umweltund Verfahrenstechnik mbH, 52072 Aachen, DE

(74) Vertreter:

Andrejewski, W., Dipl.-Phys. Dr.rer.nat.; Honke, M., Dipl.-Ing. Dr.-Ing.; Masch, K., Dipl.-Phys. Dr.rer.nat.; Albrecht, R., Dipl.-Ing. Dr.-Ing., Pat.-Anwälte, 45127

(72) Erfinder:

Frye, Andreas, Dipl.-Ing., 52134 Herzogenrath, DE; Kollbach, Jochen, Dr.-Ing., 52070 Aachen, DE; Dahm, Wolfgang, Dr.-Ing., 52072 Aachen, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

WLB Wasser, Luft und Boden (1990), S. 30 und 32; CAV, September 1985, S. 92;

Beschreibung

Die Erfindung betrifft ein Verfahren zum Entfernen von Ammonium aus dem Zentratwasser einer biologischen Abwasserreinigungsanlage, die eine Denitrifikationsstufe, eine Nitrifikationsstufe und eine Schlammbehandlungsstufe für Überschußschlamm mit Schlammentwässerung aufweist, wobei das Ammonium in einer Strippkolonne als Ammoniak aus dem bei der Schlammentwässerung anfallenden Zentratwasser ausgetrieben 10 und das gereinigte Zentratwasser dem Zulauf der biologischen Abwasserreinigungsanlage wieder zugeführt wird. Die Ammoniumelimination findet in kommunalen Kläranlagen in Nitrifikations- und Denitrifikationsstufen statt. Diese werden nicht nur mit dem zu reinigenden 15 Abwasser sondern auch mit dem bei der Schlammentwässerung des ausgefaulten Überschußschlammes anfallenden Zentratwassers beaufschlagt, welches eine erhebliche Schadstofffracht, insbesondere an Ammonium, mitführt. Obwohl die Flüssigkeitsmenge des Zentrat- 20 wassers bezogen auf die Abwassermenge vernachlässigbar klein ist, entfallen etwa 20% der Stickstoffbelastung in der Abwasserreinigungsanlage auf das in den Zulauf zurückgeführte Zentratwasser. Durch Entfernen von Ammonium aus dem Zentratwasser wird die Reini- 25 zeugung des in der Strippkolonne benötigten Wassergungsleistung der biologischen Abwasserreinigungsanlage verbessert. Drohende Kohlenstoffdosierung zur Anhebung des C/N-Verhältnisses wird vermieden. Damit verbunden ist auch eine Verbesserung des Denitrifikationsprozesses, der zu einer Verbesserung der Nach- 30 klärung führt.

Bei dem aus "WLB Wasser, Luft und Boden" 6 (1990), Seiten 30 bis 32 bekannten Verfahren, von dem die Erfindung ausgeht, wird das Zentratwasser einer Strippkolonne zugeführt, die mit Strippluft arbeitet. Die Stripp- 35 luft wird im Gegenstrom zur Flüssigkeit geführt und nimmt das in der Flüssigkeit gelöste Ammoniak auf. Die ammoniakbeladene Strippluft wird anschließend in einem Waschturm mit Schwefelsäure gewaschen, wobei das Ammoniak in Ammoniumsulfat gebunden und ab-geschieden wird. Das Ammoniumsulfat wird deponiert, sofern es nicht als minderwertiger Dünger in der Landwirtschaft untergebracht werden kann.

Es ist ferner bekannt, ammoniakhaltiges Destillat, welches bei der Verdampfung von Deponiesickerwas- 45 ser anfällt, in einer aus Abtriebsteil und Verstärkungsteil bestehenden Rektifikationskolonne durch Dampfstrippung zu reinigen und das abgetrennte Ammoniak im Verstärkungsteil der Rektifikationskolonne zu Ammoniakwasser aufzukonzentrieren (Tagung "Deponiewas- 50 serreinigung" in München, 16. April 1991). Das Ammoniakwasser kann in Rauchgasentstickungsanlagen von Kohlekraftwerken eingesetzt werden, die selektiv katalytisch in den Rauchgasen enthaltene Stickstoffoxide reduzieren (SCR-Verfahren). Ferner besteht die Möglich- 55 keit, Ammoniakwasser zur Konditionierung des Wasser-Dampf-Kreislaufes von Kohlekraftwerken zu nutzen. Die Dampfstrippung ist jedoch mit einem hohen Energiebedarf für die Dampferzeugung verbunden. Au-Berdem müssen für die Kondensation des beladenen 60 Strippdampfes erhebliche Kühlwassermengen zur Verfügung stehen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art zum Entfernen von Ammonium aus dem Zentratwasser einer biologi- 65 schen Abwasserreinigungsanlage anzugeben, dessen Energiebedarf klein ist und welches konzentriertes Ammoniakwasser als Wertstoff liefert.

Zur Lösung dieser Aufgabe lehrt die Erfindung, daß das Ammoniak in der Strippkolonne mit Wasserdampf ausgestrippt wird, daß der am Kopf der Strippkolonne abgezogene Strippdampf verdichtet und als Heizdampf eingesetzt wird, um den in der Strippkolonne benötigten Wasserdampf zu erzeugen, und daß das anfallende Strippdampfkondensat einer Rektifikationskolonne zugeführt wird, die einen Verstärkungsteil und einen Abtriebsteil aufweist, wobei am Kopf der Rektifikationskolonne Ammoniakwasser mit einem Ammoniakgehalt von mindestens 20 Gew.-% als Werkstoff abgezogen wird und wobei aus der Rektifikationskolonne ein Sumpfprodukt mit geringem Ammoniakgehalt in den Zulauf zur Strippkolonne zurückgeführt wird. — Das erfindungsgemäße Verfahren arbeitet zweistufig. In der ersten Stufe erfolgt die Reinigung des Zentratwassers durch Dampfstrippung. Das Zentratwasser fließt als gereinigte Flüssigkeit aus der ersten Stufe wieder ab. Die erste Stufe ist mit einem Brüdenverdichter ausgerüstet. Dieser verdichtet den am Kopf der Strippkolonne abgezogenen beladenen Strippdampf so weit, daß die Kondensationstemperatur oberhalb der Siedetemperatur liegt, welche für die Heizdampferzeugung benötigt wird. Dadurch kann die Kondensationswärme zur Erdampfes genutzt werden. Der Ammoniakgehalt im Strippdampf entspricht dem Dampf/Flüssigkeits-Gleichgewicht bezogen auf die Ammoniak-Zulaufkonzentration im Zentratwasser. Die Ammoniakkonzentration des Strippdampfes ist verhältnismäßig klein und unabhängig von der Produktendkonzentration des nach dem erfindungsgemäßen Verfahren hergestellten Ammoniakwassers. Das hat den Vorteil, daß die Dampfdruckabsenkung durch Ammoniakanteile im Strippdampf gering und die erforderliche Verdichtung des Strippdampfes technisch leicht beherrschbar ist. Es können einstufige Radialverdichter als Brüdenverdichter eingesetzt werden. In der zweiten Stufe des erfindungsgemäßen Verfahrens erfolgt eine Aufkonzentrierung des anfallenden Stippdampfkondensates in einer Rektifikationskolonne. Im Verstärkungsteil der Rektifikationskolonne erfolgt eine Ammoniakaufkonzentration, wobei am Kopf der Kolonne Ammoniakwasser mit einem Ammoniakgehalt von mindestens 20 Gew.-%, falls gewünscht, auch technisch reines Ammoniak, abgezogen wird. Da der Zulauf zur Rektifikationskolonne annähernd Siedetemperatur aufweist und bei ausreichender Stufenzahl der Rektifikationskolonne mit kleinen Rücklaufverhältnissen gearbeitet werden kann, ist der Energiebedarf für den Betrieb der Rektifikationskolonne klein.

Eine bevorzugte Ausführung des erfindungsgemäßen Verfahrens sieht vor, daß in einem der Strippkolonne vorgeschalteten Riesler Kohlendioxid aus dem Zentratwasser entfernt wird. Für den Strippvorgang ist erforderlich, daß Ammonium als flüchtiges molekulares NH3 im Zentratwasser vorliegt. Gemäß dem Dissoziationsgleichgewicht wird der pH-Wert des Zentratwassers vor Eintritt in die Strippkolonne durch Alkalidosierung im basischem Bereich eingestellt. Das Dissoziationsgleichgewicht ist temperaturabhängig und verschiebt sich mit ansteigender Temperatur in Richtung auf kleinere pH-Werte. Unter Berücksichtigung der in der Strippkolonne herrschenden Temperaturen ist ein pH-Wert von 9 ausreichend. Zweckmäßig kann es ferner sein, die Rektifikationskolonne mit gegenüber atmosphärischem Druck erhöhtem Druck zu betreiben.

Im folgenden wird die Erfindung anhand einer ledig-

4

lich ein Ausführungsbeispiel darstellenden Zeichnung ausführlich erläutert. Es zeigen

Fig. 1 das stark vereinfachte Blockschema einer biologischen Abwasserreinigungsanlage mit einer Zentratwasserbehandlungsanlage zum Entfernen von Ammonitum.

Fig. 2 das Anlagenschema der Zentratwasserbehandlungsanlage.

Die in Fig. 1 dargestellte Abwasserreinigungsanlage umfaßt in ihrem grundsätzlichen Aufbau eine Denitrifi- 10 kationsstufe 1, eine Nitrifikationsstufe 2 und eine Schlammbehandlungsstufe 3 für Überschußschlamm mit Schlammentwässerung 4. Der aus der Schlammentwässerung 4 abgezogene Schlamm 5 wird im allgemeinen deponiert oder verbrannt. Die in der Schlamment- 15 wässerung anfallende Flüssigkeit wird als Zentratwasser 6 bezeichnet. Das Zentratwasser enthält eine beachtliche Schadstofffracht, insbesondere Ammonium. Das Zentratwasser 6 wird in einer Zentratwasserbehandlungsanlage 7 gereinigt und anschließend dem Zu- 20 lauf 8 der biologischen Abwasserreinigungsanlage wieder zugeführt. Als Wertstoff fällt in der Zentratwasserbehandlungsanlage 7 Ammoniakwasser 9 mit einem Ammoniakgehalt von mehr als 20 Gew.-% an. Das Ammoniakwasser 9 kann in Rauchgasentstickungsanlagen 25 von Kohlekraftwerken eingesetzt werden, die selektiv

Ferner besteht die Möglichkeit, das Ammoniakwasser zur Konditionierung des Wasser-Dampf-Kreislaufes 30 von Kohlekraftwerken zu nutzen.

katalytisch die in den Rauchgasen enthaltenen Stick-

stoffoxide reduzieren (SCR-Verfahren).

Das Anlagenschema der Zentratwasserbehandlungsanlage 7 ist in Fig. 2 dargestellt. Zum Aufbau der Anlage gehören eine Strippkolonne 10 mit Brüdenverdichter 11 und Verdampfer/Kondensator-Einheit 12 sowie eine 35 Rektifikationskolonne 13 mit Verdampfer 14 und Kondensator 15. Die Zentratwasserführung besteht aus einem an die Strippkolonne 10 angeschlossenen Zulauf 16, einem an den Sumpf der Strippkolonne 10 angeschlossenen Ablauf 17 für gereinigtes Wasser sowie Wärme- 40 tauschern 18 zur Vorwärmung des der Strippkolonne 10 zugeführten Zentratwassers. In der Strippkolonne 10 wird Ammoniak mit Wasserdampf aus dem Zentratwasser ausgestrippt. Der am Kopf der Strippkolonne 10 abgezogene Strippdampf wird mittels des Mittels des 45 Brüdenverdichters 11 verdichtet und in der Verdampfer/Kondensator-Einheit 12 als Heizdampf eingesetzt, um den in der Strippkolonne 10 benötigten Wasserdampf zu erzeugen. Das in der Verdampfer/Kondensator-Einheit anfallende Strippdampfkondensat 19 wird 50 der Rektifikationskolonne 13 zugeführt, die einen Verstärkungsteil 20 und einen Abtriebsteil 21 aufweist. Am Kopf der Rektifikationskolonne 13 wird Ammoniakwasser mit einem Ammoniakgehalt von mindestens 20 Gew.-% als Wertstoff abgezogen. Ferner wird aus der 55 Rektifikationskolonne 10 ein Sumpfprodukt mit geringem Ammoniakgehalt abgeführt und über die Rückführleitung 22 in den Zulauf zur Strippkolonne 10 zurückgeführt.

Das Zentratwasser wird vorbehandelt, bevor es der 60 Strippkolonne 10 zugeführt wird. Die Vorbehandlung umfaßt vorzugsweise einen der Strippkolonne 10 vorgeschalteten Riesler, in dem Kohlendioxid aus dem Zentratwasser entfernt wird. Außerdem wird der pH-Wert des Zentratwassers vor Eintritt in die Strippkolonne 10 65 durch Alkalidosierung im basischen Bereich eingestellt.

Patentansprüche

1. Verfahren zum Entfernen von Ammonium aus dem Zentratwasser einer biologischen Abwasserreinigungsanlage, die eine Denitrifikationsstufe, eine Nitrifikationsstufe und eine Schlammbehandlungsstufe für Überschußschlamm mit Schlammentwässerung aufweist, wobei das Ammonium in einer Strippkolonne als Ammoniak aus dem bei der Schlammentwässerung anfallenden Zentratwasser ausgetrieben und das gereinigte Zentratwasser dem Zulauf der biologischen Abwasserreinigungsanlage wieder zugeführt wird, dadurch gekennzeichnet, daß das Ammoniak in der Strippkolonne mit Wasserdampf ausgestrippt wird, daß der am Kopf der Strippkolonne abgezogene Strippdampf verdichtet und als Heizdampf eingesetzt wird, um den in der Strippkolonne benötigten Wasserdampf zu erzeugen, und daß das anfallende Strippdampfkondensat einer Rektifikationskolonne zugeführt wird, die einen Verstärkungsteil und einen Abtriebsteil aufweist, wobei am Kopf der Rektifikationskolonne Ammoniakwasser mit einem Ammoniakgehalt von mindestens 20 Gew.-% als Wertstoff abgezogen wird und wobei aus der Rektifikationskolonne ein Sumpfprodukt mit geringem Ammoniakgehalt in den Zulauf zur Strippkolonne zurückgeführt wird.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in einem der Strippkolonne vorgeschalteten Riesler Kohlendioxid aus dem Zentratwasser entfernt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der pH-Wert des Zentratwassers vor Eintritt in die Strippkolonne durch Alkalidosierung im basischem Bereich eingestellt wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Rektifikationskolonne mit einem gegenüber atmosphärischem Druck erhöhten Druck betrieben wird.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁵: DE 43 24 410 C1 C 02 F 1/20

Int. Cl.⁵: C 02 F 1/20 Veröffentlichungstag: 4. August 1994

BEST AVAILABLE COPY

Veröffentlichungstag: 4. August 1994

