

第12讲单管放大电路组态和分析

炼江 2023.10.30

放大: 套路和思路

- ① 敏感器件
- ② 敏感状态
- ③ 输入通道
- ④ 输出通道
- ⑤ 功率增大

- 使器件静止时位于 Q
- 为放大过程提供能量

辅助电源

输入通道

- 导入扰动
- 但不影响 Q

敏感的 非线性 放大器件

输出通道

- 导出应变
- 但不影响 Q

敏感器件

- **小扰动引起大变动**
- 需位于敏感区域
- 譬如 Q 附近

耦合:问题症结和设计要求

- 1 信号通行基本无碍
- 2 不至影响偏置状态
- 3 简单易行

耦合: 电容

- 1 信号通行基本无碍
- 2 不至影响偏置状态
- 3 简单易行

- 図 电阻分去电压!
- 図 电阻分去电压!
- 図 外加电源代价大!

$$V_C = Q/C$$

$$V_C'=I/C$$

若C非常大

 $V_{c}' \approx 0$

Vc为常数

若 V_{in}=0 则 V_G=5V

$$V_{C}=5$$

$$V_G = 5 + V_{in}$$

耦合: 电容

- **②**输出端情形类似? 是的
- ② 电容类何时充电? 开机时 Q变化时
- ② 正好充那么多电? 多退少补, 直至平衡

- 1 信号通行基本无碍
- 2 不至影响偏置状态
- 3 简单易行

2 电容不大则如何?

V_c 变化 → 产生误差 不同频率 → 不同误差

? 信号缓变则如何?

传输损失较大 → 不同误差

? 源非理想呢?

传输产生亏损 呈简单分压关系

② 负载非理想呢?

传输产生亏损 呈简单分压关系

耦合: 其它

- 1 信号通行基本无碍
- 2 不至影响偏置状态
- 3 简单易行

? 相对优势?

变压器: 电气隔离

光电: 电气隔离+单向性

4 相对劣势?

变压器: 笨重+昂贵

光电:尺寸+非线性

耦合: 直接耦合

- 1 信号通行基本无碍
- 2 不至影响偏置状态
- 3 简单易行

2 若前后级工作点正好可以相同?

可以直接连接 ·

→ 直接耦合 (直流耦合)

2 直耦的优势?

可传递任意频率的信号 其它方式均为交流耦合 ② 直耦的劣势?

设计分析都比较麻烦各级工作点相互影响

组态:可用

电压跟随

电流放大

组 态 2

组 态 3

组 态 1

$$V_{GS} = V_{in} - V_{RL}$$

$$V_{RL} = R_{L}I_{D}$$

$$= R_{L}g_{m}(V_{in}-V_{RL})$$

$$V_{GS} = -V_{in}$$
 $V_{RL} = -R_{L}I_{D}$
 $= R_{L}g_{m}V_{in}$

组态: 弃用

组 态 1

 $I_G \equiv 0$ $V_{RL} \equiv 0$

I_G≡0 V_{RL}≡0

假设 V_{GS}>0

反之亦然

组态:命名

微扰模型

组 态 3

典型: 组态+晶体管+偏置+耦合

共源 V_{in} C S I R_L

电压放大电流放大

①敏感器件 ☑

②敏感状态 ☑

③输入通道 ☑

④输出通道 ☑

⑤功率增大区

典型: 组态+晶体管+偏置+耦合

② 哪些 V 有变? 直流电压

直流电流

2 组态呢?

完全相同

放大器的分析: 思路

估算作图 非线性 静态分析

前提条件

- ① 敏感器件
- ② 敏感状态
- ③ 输入通道
- ④ 输出通道
- ⑤ 功率增大

性能指标 动态分析 近似线性 各种工具

微扰分析:准备工作:静态分析(直流分析)

假设1: BJT为放大状态

假设2: I_B 相对很小

 $V_{BE} \approx 0.7V$

 $V_C > V_B$

 $I_C = \beta I_B$

求: 各处电压、电流

目的1: 确定 Q点 OK

目的2: Q→部分动态参数

目的3: 功耗、动态范围

- 做法: 画出直流通道
- 1. 交流源置零
- 2. 电容→断; 电感→短
- 3. 非线性器件 → 估算

微扰分析: 性能分析: 动态分析(交流分析)

性能: 求各种指标

常见计算: A R_i R_o f_H ... 作图、仿真、等效、估算

- 交流通道+微扰等效
- 1. 直流源 → 零
- 2. 大C→短; 大L→断
- 3. 放大器件 → 微扰模型
- 4. 求解线性电路

微扰分析: 性能分析: 动态分析(交流分析)

$$I_{E} = I_{B} + \frac{100}{1}_{B} = 101 \cdot I_{B}$$

$$V_{X} = 101 \cdot I_{B} \cdot (1.3K + \frac{26}{2})$$

$$V_{X} + I_{B} \cdot \frac{200}{2} = V_{S}$$

$$I_{B} \approx V_{S} / 134K$$

$$I_{c} = 100 \cdot I_{B} \approx 100 V_{s} / 134 K$$

$$V_{RL} = -I_{C} \cdot (2.5K//5K) \approx -1.24 V_{S}$$

性能: 求各种指标

常见计算: A R_i R_o f_H ... 作图、仿真、等效、估算

- 交流通道+微扰等效
- 1. 直流源 → 零
- 2. 大C→短; 大L→断
- 3. 放大器件 → 微扰模型
- 4. 求解线性电路

阻抗: 输入端

- \blacksquare 增益计算式一般包含源内阻 R_S : R_S 变化 \to A 变化
- 放大器和负载的等效电路: R_{in} 一般随 R_L 而变
- 计算方法 (之一)

算出 V_{in} 和 I_{in} ,相除即可

与 R_s 无关 \rightarrow 计算时是否令 $R_s=0$ 均可

阻抗: 输出端

- 增益计算式中一般包含负载 R_L: R_L变化 → A 变化
- 源和放大器的等效电路: 戴文宁定理: U_A 串联 R_O
- 计算方法 (之一)
- 令 R_L=∞ 时,计算 V_{RL} 即为 V_A 令 R_L=0,计算 I_{RL},则 R_o= V_A/I_{RL}
- 计算方法 (之二)

阻抗

阻抗: 极速估算

均假设: 其它端接地!

否则,需做少许代换

阻 抗

阻抗: FET 三端电阻

FET 小信号模型

- r_d: 100KΩ 数量级
- 若外部 R 较小 → r_d ≈ ∞

$$I_G \equiv 0$$
 $R_{GEQ} = V_x / I_X \approx \infty$

$$V_{GS} \equiv 0 \Rightarrow I_{D} \equiv 0$$
 $R_{DEQ} = V_{x} / I_{X} \approx \infty$

阻抗: BJT 三端电阻

BJT 小信号模型 (T形)

- r_c: 100KΩ 数量级
- 若外部 R 较小 → r_c ≈ ∞

均假设: 其它端接地!

$$\approx r_b + (1+\beta)r_e$$

$$\Rightarrow r_e + \frac{r_b}{1+\beta}$$

$$I_{E} = (1+\beta)I_{X}$$

$$V_{X} = V_{rb} + V_{re}$$

$$= I_{x}r_{b} + (1+\beta)I_{x}r_{e}$$

$$I_E = (1+\beta)I_B$$
 但 I_B 和 I_E 方向反向 $I_B = I_E \equiv 0 \implies I_c \equiv 0$

阻抗:示例1

- ① 经过C: 直通
- ② 遇岔路: 分头计算
- ③ 下: 经R₂ 到地
- ④ 上: 经R₁ 到交流地
- ⑤ 右: BJT 基极
- ⑥ 射极外: 经 R4 到地

$$R_i = 0 + R_{\parallel} R_{\parallel} / R_{\parallel} / R_{\parallel} + (1+\beta)(r_e + R_{\parallel})$$

阻抗:示例1

- ① 经过C: 直通
- ② 遇岔路: 分头计算
- ③上: 经R₃到交流地
- ④ 下: BJT 集电极

$$R_o = 0 + R_{\text{sep}}$$

阻抗:示例2

$$R_i = 0 + R_5 // R_1 // \{r_{b1} + [r_{e1} + (R_6 // 0)] \cdot (1 + \beta)\}$$

$$R_o = 0 + R_9 / (r_{e3} + [r_{b3} + (R_8 / R_4 / (R_7 / \infty))] / (1 + \beta))$$