Linear regression

Regression

• The word "regression" comes from the phrase

"regression towards the mean".

- A phenomenon people observed when studying relation of two related quantities.
- Example:
 - father's height (X) versus
 - son's height (Y).

- Suppose genetically, the father and son has the same expected height (expected to be on the Y=X line).
- Both father and son depart from this theoretical height due to random factors such as diet, exercise, etc.

Simple linear regression for quantitative variables

- X variable
 - Explanatory variable
 - Independent variable
- Y variable
 - Response
 - Dependent variable

$$Y = \beta_0 + \beta_1 X + error$$

Fit a line to a scatterplot

Evaluate the "fit"

- Data: $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$
- A candidate regression line

$$Y = a + bX$$

- How do we evaluate the fit?
- For any given value of X, the regression line suggests a "predicted value" for Y.

$$\widehat{Y_i} = a + bX_i$$

Prediction error

$$e_i = Y_i - \widehat{Y}_i$$

Least-square regression

 For X and Y, among all possible linear regression models between X and Y, the "best" regression line is the *minimizer* of

$$\sum_{i=1}^{n} (Y_i - a - bX_i)^2$$

• It is the "closest" fit to the observed points.

Regression estimates

• The estimated least square regression line

$$\widehat{Y} = b_0 + b_1 X$$

- b_0 is the intercept, predicted Y value at X=0.
- b_1 is the slope, which estimates the increment of Y when X increases one unit.
- For example, price of Apartment (Y)

$$\hat{Y} = 100,000 + 200 (sqrt ft)$$

Analysis of variance

Analysis of variance

- Sum of squares
 - $SSE = \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$
 - $SSR = \sum_{i=1}^{n} (\widehat{Y}_i \overline{Y})^2$
 - $SSTO = SSE + SSR = \sum_{i=1}^{n} (Y_i \overline{Y})^2$
- $R^2 = SSR/SSTO$ measures the fraction of variation in Y can be explained by X.
- Still not necessarily causation.

Normal Error Regression Model

- A probability model for linear regression
- $Y = \beta_0 + \beta_1 X + \varepsilon$
- Here ε is a random error that follows normal distribution with a constant variance.
- Under this model, least square regression estimates also maximize the "likelihood" function.
 - Likelihood is the probability for the observed data under a specified model—a function for models given observed data.

Manhattan Condo Prices

- From NYC Open Data
- Year 2009
- Condo building with elevator
- 4656 apartments

Manhattan Condo Prices

Correlation = 0.79

Square Feet

Manhattan Condo Prices

Sampling variability in regression estimates

Sampling variability in regression estimates

Sampling variability in regression estimates

- The confidence band centers at the sample estimate.
- It represents interval estimate for the regression line.
- Other inference on regression estimates can also be carried out.

Prediction

- Given a value of X
- The predicted value is $\widehat{Y} = b_0 + b_1 X$
- It is an estimate for the mean (average)
 value for Y given the X value.
- Most of the time, prediction is different from what is actually observed.
 - $Y mean \ of \ Y$ (random variation)
 - $mean\ of\ Y\ -\widehat{Y}$ (estimation error)

Prediction

• Extrapolation happens when one tries to give prediction on values of X outside the data range.

Multiple regression

- Y: response
- Multiple X variables
- $\hat{Y} = -546944 3265 \, Age + 1770 \, SQFT$

Multiple regression

- Y: response
- Multiple X variables
- $\hat{Y} = -546944 3265 Age + 1770 SQFT$
- Consider interaction
- $\hat{Y} = -753800 + 3173 Age + 1992 SQFT 5.223 Age \times SQFT$
- $\widehat{Y} = (-753800 + 3173 \, Age) + (1992 5.223 \, Age) \, SQFT$

Multiple regression

Other considerations in regression analysis

- Outliers and influential observations.
- Model evaluation and comparison
- Model selection
- Hidden extrapolation
- Multiple testing or Multiple comparison

Extending linear regression

- Linear regression can be extended to nonlinear regression using transformed variables such as X^2 , log Y , etc.
- Generalized linear models (GLM) are linear regression models for non-Gaussian Y variables such as categorical variables.
- Local regression applies linear regression using observations close to individual X values.
- Regression models have also been extended to more complex types of Y variables.

Concluding remarks

- Association patterns are everywhere.
- They represent information we can utilize
 - To explain
 - To estimate
 - To predict
- Association does not equal causation.
- Using a single set of data and search for various association patterns among a large number of variables is dangerous.
- Models, when used correctly, can be very useful.

Context Module

Lauren Hannah
Descriptive analytics of text

Statistical Thinking for Data Science and Analytics

Week 1: Introduction

Lecture Modules

Context Modules

Week 2

Statistics and Probability I

Observational health studies

Week 3

Statistics and Probability II

Descriptive analytics of text

Week 4

Exploratory Data Analysis and Visualization

EDAV case studies

Week 5

Introduction to Bayesian Modeling

Bayesian modeling in Marketing