UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2022

QUIZ 2 FEBRUARY 7, 2022

PLEASE NOTE the following:

- This quiz must be completed and scanned within 15 minutes of the start-time!
- Your scanned **PDF** file must reach your TA within 3 minutes beyond the above-mentioned duration.
- **1.** Consider \mathbb{R}^n , where $n \in \mathbb{N} \setminus \{0\}$, and endow it with the metric

$$d(x,y) := \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} \quad \forall x, y \in \mathbb{R}^n,$$

where we write $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$. You can assume **without proof** that d as above is a metric on \mathbb{R}^n . Let G be a non-empty open set of \mathbb{R}^n endowed with the metric d. Show that every point in G is a limit point of G; please **justify** this fully.

Note. The above is closely related to Problem 7 of Homework 4.

Solution. Consider an arbitrary point $a = (a_1, \ldots, a_n)$. As a is an interior point, there exists $r_a > 0$ such that $B(a, r_a) \subseteq G$. Now, consider any R > 0, and write $r = \min\{r_a, R\}$. From the conclusion of a problem in Homework 3

$$\exists q \in \mathbb{Q} \text{ such that } a_1 < q < a_1 + r. \tag{1}$$

Write $x_R := (q, a_2, ..., a_n)$. Then, by (1):

$$d(a, x_R) = (q - a_1) \in (0, r).$$

Thus, $a \neq x_R$ and

$$x_R \in B(a,r) \subseteq B(a,R),$$

 $x_R \in B(a,r) \subseteq B(a,r_a) \subseteq G.$

Since an $x_R \neq a$ satisfying the last two relations can be found for each R > 0, a is by definition a limit point of G.

Remark. There are many other choices (clearly) for $x_R \neq a$ such that $x_R \in B(a,R) \cap G$, but the one presented above is the one where the arithmetic for showing that $x_R \in B(a,R) \cap G$ is the **simplest.** Furthermore, given the requirement for a full justification, (1) and the words preceding it are, at the very least, expected for full marks.