

Page: 1/29

## **CUSTOMER APPROVAL SHEET**

| Company Name         |                                                   |
|----------------------|---------------------------------------------------|
| MODEL                | A070PAN01.0                                       |
| CUSTOMER             |                                                   |
| APPROVED             |                                                   |
| ☐ APPROVAL FOR SPECI | FICATIONS ONLY(Spec. Ver. 1.1)                    |
| ☐ APPROVAL FOR SPECI | FICATIONS AND ES SAMPLE ( <u>Spec. Ver. 1.1</u> ) |
| ☐ APPROVAL FOR SPECI | FICATIONS AND CS SAMPLE ( <u>Spec. Ver. 1.1</u> ) |

AUO PM : ValiaHsu P/N : 97.07A25.000

**CUSTOMER REMARK:** 

Comment:

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C. Tel: +886-3-500-8899 Fax: +886-3-577-2730



Page: 2/29

 Doc. version :
 1.1

 Total pages :
 29

 Date :
 2012/10/16

# Product Specification 7.0 INCH COLOR TFT-LCD MODULE

Model Name: A070PAN01.0

Planned Lifetime: From 2012/Aug To 2013/Jul
Phase-out Control: From 2013/Jan To 2013/Jul
EOL Schedule: 2013/Jul

<■> Preliminary Specification

< >> Final Specification

Note: The contents of this specification are subject to change without further notice.

© 2012 AU Optronics All Rights Reserved, Do Not Copy.



Page: 3/29

#### Record of Revision

| Version | Revise Date | Page | Content                                                                |
|---------|-------------|------|------------------------------------------------------------------------|
|         |             |      |                                                                        |
| 0.0     | 2012/Mar/13 | All  | First Draft                                                            |
| 0.1     | 2012/Jun/29 | 5    | 10. Panel Surface Treatment: Hard coat                                 |
|         |             | 5    | 12. Panel Power Consumption: 0.425 W                                   |
|         |             | 5    | 3. Thickness: 2.102mm                                                  |
|         |             | 6    | B. Outline dimension drawing                                           |
|         |             | 22   | White chromacity                                                       |
| 1.0     | 2012/Jul/12 | 5    | 11. Weight: 55g                                                        |
|         |             | 5    | 12. Panel Power Consumption: 0.4W                                      |
|         |             | 19   | Input timing setting                                                   |
|         |             | 20   | Recommanded power On/Off sequence                                      |
| 1.1     | 2012/Oct/16 | 20   | White chromacity(0.313+/-0.04, 0.329+/-0.04à 0.306±0.034, 0.328±0.036) |
|         |             | 25   | packing form (4cps/tray, 92pcs/box à 3cps/tray, 72pcs/box)             |
|         |             |      |                                                                        |
|         |             |      |                                                                        |
|         |             | //   |                                                                        |
|         |             |      |                                                                        |
|         |             |      |                                                                        |
|         |             |      |                                                                        |
|         |             | b    |                                                                        |
|         |             |      |                                                                        |
|         |             |      |                                                                        |
|         |             |      |                                                                        |
|         |             |      |                                                                        |
|         |             |      |                                                                        |



Page: 4/29

1.1

## **Contents**

| A. | Gen   | eral Information                   | 5  |
|----|-------|------------------------------------|----|
| В. | Outl  | ine Dimension                      | 6  |
|    | 1.    | TFT-LCD Module 2D Drawing          | 6  |
|    | 2.    | TFT-LCD Module                     | 7  |
| C. | Elec  | trical Specifications              | 8  |
|    | 1.    | TFT LCD Panel Pin Assignment       | 8  |
|    | 2.    |                                    | 9  |
|    | 3.    | Absolute Maximum Ratings           | 10 |
|    | (a)   | Absolute Ratings of TFT LCD Module | 10 |
|    | (b)   | Absolute Ratings of Environment    | 10 |
|    | 4.    | Electrical DC Characteristics      | 11 |
|    | (a)   |                                    | 11 |
|    | (b)   | Backlight Driving Conditions       | 12 |
|    | 5.    | MIPI DC Characteristics            | 13 |
|    | (a)   | DC Characteristic                  | 13 |
|    | (b)   | Input Timing Setting               | 19 |
|    | (c)   | Recommended Power On/OFF Sequence  | 19 |
| D. | Opti  | cal Specification                  |    |
| E. | Relia | ability Test Items                 | 23 |
| F. | Pack  | king and Marking                   | 25 |
|    | 1.    | Packing Form                       | 25 |
|    | 2.    | Module/Panel Label Information     | 26 |
|    | 3.    |                                    | 26 |
| G. | Prec  | autions                            | 27 |



Page: 5/29

#### A. General Information

This product is for Consumer Electronic Brand Tablet application.

| NO. | Item                        | Unit | Specification       | Remark |
|-----|-----------------------------|------|---------------------|--------|
| 1   | Screen Size                 | inch | 7(Diagonal)         |        |
| 2   | Display Resolution          | dot  | 900RGB(W)x1440(H)   |        |
| 3   | Overall Dimension           | mm   | 104.53x163.64x2.1   | Note 1 |
| 4   | Active Area                 | mm   | 94.23(W)x150.768(H) |        |
| 5   | Pixel Pitch                 | mm   | 0.1047(W)x0.1047(H) |        |
| 6   | Color Configuration         |      | R. G. B. Stripe     | Note 2 |
| 7   | Color Depth                 |      | 16.7M Colors        | Note 3 |
| 8   | NTSC Ratio                  | %    | 50                  | /      |
| 9   | Display Mode                |      | Normally Black      |        |
| 10  | Panel Surface Treatment     |      | Hard Coat           |        |
| 11  | Weight                      | g    | 55                  |        |
| 12  | Panel Power Consumption     | W    | 0.4                 | Note 4 |
| 13  | Backlight Power Consumption | W    | 1.2                 |        |
| 14  | Viewing direction           |      | AHVA                |        |

Note 1: Not include blacklight cables, FPC and PCB. Refer to the next page for further information.

Note 2: Below drawing shows dot stripe arrangement.

Note 3: Refer to the Electrical Specification chapter on page 8.

Note 4: Refer to the pattern on page 25.





Page: 6/29

1.1

## B. Outline Dimension

1. TFT-LCD Module 2D Drawing





Page: 7/29

1.1

#### 2. TFT-LCD Module





Page: 8/29

## C. Electrical Specifications

## 1. TFT LCD Panel Pin Assignment

Recommended connector: JAE/WHIP040WA1

| PIN | FUNCTION       | Name       | PIN | SYMBOL  | FUNCTION                |
|-----|----------------|------------|-----|---------|-------------------------|
| 1   | Ground         | GND        | 2   | VDD     | Input Power (3.3V)      |
| 3   | DSI Lane 0 Neg | MIPI_DO_N  | 4   | VDD     | Input Power (3.3V)      |
| 5   | DSI Lane 0 Pos | MIPI_DO_P  | 6   | VDD     | Input Power (3.3V)      |
| 7   | Ground         | GND        | 8   | GND     | Ground                  |
| 9   | DSI Lane 1 Neg | MIPI_D1_N  | 10  | GND     | Ground                  |
| 11  | DSI Lane 1 Pos | MIPI_D1_P  | 12  | GND     | Ground                  |
| 13  | Ground         | GND        | 14  | CABC_EN | CABC Enable             |
| 15  | DSI CLK Neg    | MIPI_CLK_N | 16  | PWM_IN  | BL PWM Input to LCM     |
| 17  | DSI CLK Pos    | MIPI_CLK_P | 18  | PWM_OUT | BL PWM Output from LCM  |
| 19  | Ground         | GND        | 20  | GND     | Ground                  |
| 21  | DSI Lane 2 Neg | MIPI_D2_N  | 22  | AIE_EN  | AIE Enable              |
| 23  | DSI Lane 2 Pos | MIPI_D2_P  | 24  | LED_A   | BL LED Anode            |
| 25  | Ground         | GND        | 26  | LED_A   | BL LED Anode            |
| 27  | DSI Lane 3 Neg | MIPI_D3_N  | 28  | LED_A   | BL LED Anode            |
| 29  | DSI Lane 3 Pos | MIPI_D3_P  | 30  | NC      | NC                      |
| 31  | Ground         | GND        | 32  | LED_C1  | BL LED Cathode String 1 |
| 33  | CM Enable      | CM_EN      | 34  | LED_C2  | BL LED Cathode String 2 |
| 35  | Self-test      | AGMODE     | 36  | LED_C3  | BL LED Cathode String 3 |
| 37  | SCL            | I2C Clock  | 38  | LED_C4  | BL LED Cathode String 4 |
| 39  | SDA            | I2C Data   | 40  | NC      | NC                      |



Page: 9/29

#### 2. The Input Data Format

Input Pixel Stream Format (1920RGB in 4 Lanes with RGB 8-8-8 format)

|        |     |     | 1 byte<br>0 7        | 1 byte<br>0 7 | 1 byte<br>0 7 | 1 byte<br>0 7 |   | 1 byte<br>0 7 | 1 byte<br>0 7 | 1 byte<br>0 7 | 1 byte<br>0 7      |     |     |
|--------|-----|-----|----------------------|---------------|---------------|---------------|---|---------------|---------------|---------------|--------------------|-----|-----|
| LANE 0 | LPS | SoT | Data ID              | R1            | G2            | B3            |   | R1917         | G1918         | B1919         | Checksum<br>(0~7)  | EoT | LPS |
|        |     |     |                      |               |               |               | • |               |               | •             |                    |     |     |
| LANE 1 | LPS | SoT | Word Count<br>(0~7)  | 61            | B2            | R4            |   | G1917         | B1918         | R1920         | Checksum<br>(8~15) | EoT | LPS |
|        |     |     |                      |               |               |               | • |               |               |               |                    |     |     |
| LANE 2 | LPS | SoT | Word Count<br>(8~15) | B1            | 83            | G4            |   | B1917         | R1919         | G1920         | EoT                | LPS | 3   |
|        |     |     |                      |               |               |               |   |               |               |               |                    |     |     |
| LANE 3 | LPS | SoT | ECC                  | 22            | 8             | B4            |   | R1918         | G1919         | B1920         | EoT                | LPS | S   |

LPS: Low Power State
SoT: Start of Transmission
EoT: End of Transmission
ECC: Error-Correcting Code



1.1

Page:

10/29

#### 3. Absolute Maximum Ratings

#### (a) Absolute Ratings of TFT LCD Module

| Item                    | Symbol | Min  | Max  | Unit   |
|-------------------------|--------|------|------|--------|
| Logic/LCD drive Voltage | Vin    | -0.3 | +4.0 | [Volt] |

#### (b) Absolute Ratings of Environment

| Item                  | Symbol | Min | Max | Unit  |
|-----------------------|--------|-----|-----|-------|
| Operating Temperature | TOP    | -10 | +50 | [°C]  |
| Operation Humidity    | HOP    | 5   | 90  | [%RH] |
| Storage Temperature   | TST    | -20 | +60 | [°C]  |
| Storage Humidity      | HST    | 5   | 90  | [%RH] |

Note: Maximum Wet-Bulb should be 39 °C and no condensation.



Note 1: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Note 2: Functional operation should be restricted under ambient temperature (25 $^{\circ}$ C).



Page: 11/29

#### 4. Electrical DC Characteristics

(a) DC Charateristics

| Symbol | Parameter                                | Min | Тур | Max | Units       | Remark                                     |
|--------|------------------------------------------|-----|-----|-----|-------------|--------------------------------------------|
| VDD    | Logic/LCD Drive Voltage                  | 3.0 | 3.3 | 3.6 | [Volt]      |                                            |
| IDD    | VDD Current                              | -   | 121 | -   | [mA]        | 10x10 Chess Pattern<br>(VDD=3.3V, at 60Hz) |
| Irush  | LCD Inrush Current                       | -   | -   | 1.5 | [A]         | Note 1                                     |
| PDD    | VDD Power                                | -   | 0.4 | -   | [Watt]      | 10x10 Chess Pattern<br>(VDD=3.3V, at 60Hz) |
| VDDrp  | Allowable Logic/LCD Drive Ripple Voltage | -   | -   | 100 | [mV]<br>p-p | All white Pattern<br>(VDD=3.3V, at 60Hz)   |

Note 1: Measurement condition:



VDD rising time



Page: 12/29

#### (b) Backlight Driving Conditions

| Parameter            | Symbol | Min. | Тур. | Max. | Unit | Remark |
|----------------------|--------|------|------|------|------|--------|
| LED Lightbar current | ΙL     | -    | 80   | -    | mA   | Note 1 |
| LED Forward Voltage  | Vf     |      | 15   |      | V    |        |
| Power consumption    | Р      |      | 1.2  | -    | W    |        |

Note 1: LED backlight is LED lightbar type(20 pcs of LED).





Page: 13/29

#### 5. MIPI DC Characteristics

(a) DC Characteristic

Input signals should be low or high-impedance state when VDD is off.

#### (1) MIPI DC/AC Characteristics are as follows.

|                       | HS Receiver DC Specifications                    |            |            |             |     |      |
|-----------------------|--------------------------------------------------|------------|------------|-------------|-----|------|
| Symbol                | Parameter                                        | Conditions | Min        | Тур         | Max | Unit |
| VDDA                  | MIPI                                             |            | 2.25       |             | 3.6 | V    |
| V <sub>NOZ</sub>      | Supply Noise Voltage                             |            | -50        | -           | 50  | mV   |
| V <sub>CMRX(DC)</sub> | Differential common-mode range                   |            | 70         | <i>(-</i> \ | 330 | mV   |
| V <sub>IDTH</sub>     | Differential input high threshold                |            | <i>(</i> - | 3           | 70  | mV   |
| V <sub>IDTL</sub>     | Differential Input Low Threshold                 |            | -70        | / -         |     | mV   |
| V <sub>IHHS</sub>     | Single-ended input high voltage                  | (7)        | -          | -           | 460 | mV   |
| V <sub>ILHS</sub>     | Single-ended input low voltage                   |            | -40        | -           | 1   | mV   |
| V <sub>TERM-EN</sub>  | Single-ended threshold for HS termination enable |            | -          | -           | 450 | mV   |
| Z <sub>ID</sub>       | Differential input impedance                     |            | 80         | 100         | 125 | Ω    |

|                   | LP Receiver DC Specification | S          |     |     |     |      |
|-------------------|------------------------------|------------|-----|-----|-----|------|
| Symbol            | Parameter                    | Conditions | Min | Тур | Max | Unit |
| V <sub>IH</sub>   | Logic 1 input voltage        |            | 880 | -   | -   | mV   |
| V <sub>IL</sub>   | Logic 0 input voltage        |            | -   | -   | 550 | mV   |
| V <sub>HYST</sub> | Input hysteresis             |            | 25  | -   | -   | mV   |

| Contention Detector (LP-CD) DC Specifications |                              |            |     |     |     |      |  |  |  |
|-----------------------------------------------|------------------------------|------------|-----|-----|-----|------|--|--|--|
| Symbol                                        | Parameter                    | Conditions | Min | Тур | Max | Unit |  |  |  |
| V <sub>IHCD</sub>                             | Logic 1 contention threshold |            | 450 | -   | -   | mV   |  |  |  |
| V <sub>ILCD</sub>                             | Logic 0 contention threshold |            | -   | -   | 200 | mV   |  |  |  |



Page: 14/29

#### (2) Signaling and Contention Voltage Levels



|                       | ***                                     | - 33       |     |     |      |      |  |  |  |
|-----------------------|-----------------------------------------|------------|-----|-----|------|------|--|--|--|
|                       | HS Receiver AC Specifications           |            |     |     |      |      |  |  |  |
| Symbol                | Parameter                               | Conditions | Min | Тур | Max  | Unit |  |  |  |
| $\Delta V_{CMRX(HF)}$ | Common-mode interference beyond 450MHz  |            | -   | -   | 100  | mV   |  |  |  |
| $\Delta V_{CMRX(LF)}$ | Common-mode interference 50MHz ~ 450MHz |            | -50 | -   | 50   | mV   |  |  |  |
| C <sub>CM</sub>       | Common-mode termination                 |            | -   | -   | 60   | pF   |  |  |  |
| 111                   | Ill instantaneous                       | HF=0       | 2   |     | 12.5 | ns   |  |  |  |
| UI <sub>INST</sub>    | UI instantaneous                        | HF=1       | 1   |     | 2    | ns   |  |  |  |



Page: 15/29

#### (3) HS RX Scheme



| Symbol                 | Parameter                                   |  |       | Тур | Max  | Unit               | Notes |
|------------------------|---------------------------------------------|--|-------|-----|------|--------------------|-------|
| T <sub>SKEW[TX]</sub>  | Data to Clock Skew (mesured at transmitter) |  | -0.15 |     | 0.15 | UI <sub>INST</sub> | 1     |
| T <sub>SETUP[RX]</sub> | Data to Clock Setup Time (receiver)         |  | 0.15  |     |      | UI <sub>INST</sub> | 2     |
| $T_{HOLD[RX]}$         | Data to Clock Hold Time (receiver)          |  | 0.15  |     |      | UI <sub>INST</sub> | 2     |

Note:1. Total silicon and package delay budget of 0.3\*UI<sub>INST</sub> 2. Total setup and hold window for receiver of 0.3\*UI<sub>INST</sub>



|                     | LP Receiver AC Specifications |            |     |     |     |        |  |  |  |
|---------------------|-------------------------------|------------|-----|-----|-----|--------|--|--|--|
| Symbol              | Parameter                     | Conditions | Min | Тур | Max | Unit   |  |  |  |
| e <sub>SPIKE</sub>  | Input pulse rejection         |            | -   | -   | 300 | V · ps |  |  |  |
| T <sub>MIN-RX</sub> | Minimum pulse width response  |            | 20  | -   | -   | ns     |  |  |  |
| V <sub>INT</sub>    | Peak interference amplitude   |            | -   | -   | 200 | mV     |  |  |  |
| f <sub>INT</sub>    | Interference frequency        |            | 450 | -   | -   | MHz    |  |  |  |



Page: 16/29

#### (5) Input Glitch Rejection of Low-Power Receivers



For MIPI data transmission from TX to TCON works properly in video mode, it is suggested that all of MIPI lanes status follow the scheme showed in below. When power is turned on, all lanes (include clock lane) are into LP-11 status first. When TX wants to start transmitting data to TCON, the clock lane is into HS and start toggling. Then data lanes are into HS and data are transmitted. After data transmissions are finished (ex. H-blanking, V-blanking), the data lanes are returned to LP-11, then clock lane, too. The transmission start from LP-11 and stop in LP-11 on all lanes (include clock lane) are the recommended proper operation sequence for MIPI video mode.



#### (6) The timing definitions are listed in below,

| Parameter    | Description                                                                                                                                                                                                       | Min     | Тур | Max | Unit |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|------|
| TCLK-MISS    | Timeout for receiver to detect absence of Clock transitions and disable the Clock Lane HS-RX.                                                                                                                     |         |     | 60  | ns   |
| TCLK-POST    | Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of THS-TRAIL to the beginning of TCLK-TRAIL. | 60 ns + |     |     | ns   |
| TCLK-PRE     | Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.                                                                          |         |     |     | UI   |
| TCLK-PREPARE | Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.                                                                             |         |     | 95  | ns   |
| TCLK-SETTLE  | Time interval during which the HS receiver shall ignore any Clock Lane HS transitions, starting from the beginning of TCLK-PREPARE.                                                                               |         |     | 300 | ns   |



Page: 17/29

| TCLK-TERM-EN                | Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIL,MAX.                                                                                       |          |        | 38                | ns |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------|----|
| TCLK-TRAIL                  | Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.                                                                                                    | 60       |        |                   | ns |
| TCLK-PREPARE<br>+ TCLK-ZERO | TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock.                                                                                                                     | 300      |        |                   | ns |
| TD-TERM-EN                  | Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIL,MAX.                                                                                        |          |        | 35 ns + 4*UI      | ns |
| TEOT                        | Transmitted time interval from the start of THS-TRAIL or TCLK-TRAIL, to the start of the LP-11 state following a HS burst.                                                                                      |          |        | 105 ns +<br>12*UI | ns |
| THS-EXIT                    | Time that the transmitter drives LP-11 following a HS burst.                                                                                                                                                    | 100      |        |                   | ns |
| THS-SYNC                    | HS Sync-Sequence '00011101' period                                                                                                                                                                              |          | 8      |                   | UI |
| THS-PREPARE                 | Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission                                                                             | ,0000    | 7      | 85 ns + 6*UI      | ns |
| THS-PREPARE                 | THS-PREPARE + time that the transmitter drives the                                                                                                                                                              | 145 ns + | ***    |                   |    |
| + THS-ZERO                  | HS-0 state prior to transmitting the Sync sequence.                                                                                                                                                             | 10*UI    |        |                   | ns |
| THS-SETTLE                  | Time interval during which the HS receiver shall ignore any Data Lane HS transitions, starting from the beginning of THS-PREPARE.                                                                               |          |        | 145 ns +<br>10*UI | ns |
| THS-SKIP                    | Time interval during which the HS-RX should ignore any transitions on the Data Lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst. | 40       |        | 55 ns + 4*UI      | ns |
| THS-TRAIL                   | Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst                                                                                          |          |        |                   | ns |
| TLPX                        | Transmitted length of any Low-Power state period                                                                                                                                                                | 50       |        |                   | ns |
| Ratio TLPX                  | Ratio of TLPX(MASTER)/TLPX(SLAVE) between Master and Slave side                                                                                                                                                 | 2/3      |        | 3/2               |    |
| TTA-GET                     | Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround.                                                                                                 |          | 5*TLPX |                   | ns |
| TTA-GO                      | Time that the transmitter drives the Bridge state (LP-00) before releasing control during a Link Turnaround.                                                                                                    |          | 4*TLPX |                   | ns |
| TTA-SURE                    | Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.                                                                                |          |        | 2*TLPX            | ns |

#### Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.



Page: 18/29

#### (7) High-Speed Data Transmission in Bursts



(8) Switching the Clock Lane between Clock Transmission and Low-Power Mode



#### (9) Turnaround Procedure





Page: 19/29

#### (b) Input Timing Setting

| Signal              |          | Symbol                | Min. | Тур. | Max. | Unit               |
|---------------------|----------|-----------------------|------|------|------|--------------------|
| Clock Freq          | uency    | 1/ T <sub>Clock</sub> | 91.3 | 92.9 | 94.4 | MHz                |
|                     | Period   | $T_V$                 | 1458 | 1460 | 1462 |                    |
| Vertical<br>Section | Active   | $T_VD$                | 1440 | 1440 | 1440 | $T_{Line}$         |
|                     | Blanking | $T_{VB}$              | 18   | 20   | 22   |                    |
| Horizontal          | Period   | Тн                    | 1044 | 1060 | 1076 |                    |
| Section             | Active   | $T_{HD}$              | 900  | 900  | 900  | T <sub>Clock</sub> |
|                     | Blanking | $T_{HB}$              | 144  | 160  | 176  |                    |
| Frame R             | ate      | F                     |      | 60   |      | Hz                 |

Note: DE mode

### (c) Recommended Power On/OFF Sequence



| Parameter  |      | Units |      |      |
|------------|------|-------|------|------|
| 1 drameter | Min. | Тур.  | Max. |      |
| T1         | 0.5  | -     | 10   | [ms] |
| T2         | 200  |       |      | [ms] |
| Т3         | 50   |       |      | [ms] |
| T4         | 110  |       | 1    | [ms] |
| T5         | 0    | 16    | 50   | [ms] |
| Т6         | -    | -     | 10   | [ms] |
| T7         | 1000 | -     | -    | [ms] |



Page: 20/29

## D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

| Item                |        | Symbol          | Condition                  | Min.  | Тур.  | Max.  | Unit              | Remark |
|---------------------|--------|-----------------|----------------------------|-------|-------|-------|-------------------|--------|
| Response            | Γime   |                 |                            |       |       |       |                   |        |
| Rise                |        | Tr              | 0.00                       |       | 18    | 30    |                   | N O    |
| Fall                |        | Tf              | θ=0°                       |       | 12    | 20    | ms                | Note 3 |
| Contrast ra         | atio   | CR              | At optimized viewing angle |       | 900   |       |                   | Note 4 |
|                     | Тор    |                 |                            | 70    | 85    |       |                   | *      |
| Viewing Angle       | Bottom |                 | CR≧10                      | 70    | 85    |       | deg.              | Note 5 |
| viewing Angle       | Left   |                 | CR≦ IU                     | 70    | 85    |       | ueg.              | Note 5 |
|                     | Right  |                 |                            | 70    | 85    |       | 8                 |        |
| Brightne            | SS     | $Y_L$           | V <sub>L</sub> = 12V       | 360   | 450   | 2-    | cd/m <sup>2</sup> | Note 6 |
|                     | \      | X               | θ=0°                       | 0.272 | 0.306 | 0.340 |                   |        |
|                     | White  | Y               | θ=0°                       | 0.292 | 0.328 | 0.364 |                   |        |
|                     | Red    | X               | θ=0°                       | 0.54  | 0.59  | 0.64  |                   |        |
| Chromaticity        | Reu    | Y               | θ=0°                       | 0.293 | 0.343 | 0.393 |                   |        |
| Cilionialicity      | Croon  | X               | θ=0°                       | 0.276 | 0.326 | 0.376 |                   |        |
|                     | Green  | Y               | θ=0°                       | 0.536 | 0.586 | 0.636 |                   |        |
|                     | Dlue   | X               | θ=0°                       | 0.105 | 0.155 | 0.205 |                   |        |
|                     | Blue   | Y               | θ=0°                       | 0.09  | 0.14  | 0.19  |                   |        |
| Uniformity 5 Points |        | $\Delta Y_L$    | %                          | 80    |       |       | %                 | Note 7 |
| Uniformity 13       | Points | ΔY <sub>L</sub> | %                          | 70    |       |       | %                 | Note 8 |

Note 1 : To be measured in the dark room temperature =25  $^{\circ}$ C, and LED lightbar current I<sub>L</sub> = 80mA.

Note 2 : To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-5A or SR-3, after 15 minutes operation.





Page: 21/29

#### Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.



Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) =  $\frac{\text{Photo detector output when LCD is at "White" status}}{\text{Photo detector output when LCD is at "Black" status}}$ 

Note 5. Definition of viewing angle,  $\theta$ , Refer to figure as below.



Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.



Page: 22/29

Note 7: Luminance Uniformity of these 5 points is defined as below:



Uniformity =  $\frac{\text{minimum luminance in 5 points (1-5)}}{\text{maximum luminance in 5 points (1-5)}}$ 

Note 8: Luminance Uniformity of these 13 points is defined as below:



Uniformity =  $\frac{\text{minimum luminance in 13 points (1-13)}}{\text{maximum luminance in 13 points (1-13)}}$ 



Page: 23/29

## E. Reliability Test Items

| No. | Test items                                                               | Conditions                                                                              | 3                                                      | Remark                                      |  |
|-----|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|--|
| 1   | High Temperature Storage                                                 | Ta= 60°C                                                                                | 240Hrs                                                 |                                             |  |
| 2   | Low Temperature Storage                                                  | Ta= -20°ℂ                                                                               | 240Hrs                                                 |                                             |  |
| 3   | High Ttemperature Operation                                              | Tp= 50°C                                                                                | 240Hrs                                                 |                                             |  |
| 4   | Low Temperature Operation                                                | Ta=-10°C                                                                                | 240Hrs                                                 |                                             |  |
| 5   | High Temperature & High Humidity                                         | Tp= 50°C. 80% RH                                                                        | 240Hrs                                                 | Operation                                   |  |
| 6   | Heat Shock                                                               | -20°C ~60°C, 50 cycle,                                                                  | 2Hrs/cycle                                             | Non-operation                               |  |
| 7   | Electrostatic Discharge  Contact = ± 4 kV, class B  Air = ± 8kV, class B |                                                                                         | //40,                                                  |                                             |  |
| 8   | Image Sticking                                                           | Image Sticking 25°C, 2hrs                                                               |                                                        | Note 5                                      |  |
| 9   | Vibration                                                                | Frequency range : 10~ Stoke : 1.5r Sweep : 10 - 2 hours for each direct (6 hours for to | Non-operation JIS C7021, A-10 condition A : 15 minutes |                                             |  |
| 10  | Mechanical Shock                                                         | 100G . 6ms, ±X,±Y,±Z<br>3 times for each direction                                      |                                                        | Non-operation  JIS C7021,  A-7  condition C |  |
| 11  | Vibration (With Carton)                                                  | Random vibrat<br>0.015G <sup>2</sup> /Hz from 5<br>–6dB/Octave from 20                  | ~200Hz                                                 | IEC 68-34                                   |  |
| 12  | Drop (With Carton)                                                       | Height: 60cr<br>1 corner, 3 edges, 6                                                    |                                                        |                                             |  |

Note 1 Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Note4 : All test techniques follow IEC6100-4-2 standard.



Page: 24/29



Note 5: Operate with 5×5 chess board pattern as figure and lasting time and temperature as the conditions. Then judge with 127 gray level after waiting 30 min, the mura is less than ND 5%.







Page: 25/29

1.1

## F. Packing and Marking

## 1. Packing Form





Page:

26/29

1.1

#### 2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 39/128 with the following definition:

#### ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

LAUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

-Week Code, the production week when the product is finished at its production process

#### 3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

#### ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton Date from 01 to 31

 $\mathsf{L}$  Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

− A.D. γear, ranging from 1~9 and 0. The single digit code reprents the last number of the γear

Refer to the drawing of packing format for the location and size of the carton label.



Page: 27/29

#### G. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.