1. Partial fitness function technical details

Algorithm 1 and Algorithm 2 show the partial fitness function calculation after node addition and removal, respectively.

Algorithm 1 Function RecalcNodeAdded

```
1: Input: S: solution; G = (V, Ef_1, f_2): problem instance; v: node to
    add; viol: number of nodes that have zero neighbors in S; objValue:
    objective function value of the solution S; external: list of sorted (by
    edge weights) sets of external edges w.r.t. S.
 2: viol_{new} \leftarrow viol
 3: objValue_{new} \leftarrow objValue + f_1(v)
                                                // add node weight
                                    //v had a neighbor in S
 4: if external[v] \neq \emptyset then
        objValue_{new} \leftarrow objValue_{new} - f_2(external[v][0])
 6: end if
 7: for e \in external[v] do
                                      // add internal weights
        objValue_{new} \leftarrow objValue_{new} + f_2(e)
 9: end for
10: for e = (v, v') \in external[v] do
11:
        weight \leftarrow f_2(e)
        if external[v'] \neq \emptyset then
12:
            viol_{new} \leftarrow viol_{new} - 1
13:
            if v' \notin S then
                                // internal already added, add only external
14:
                objValue_{new} \leftarrow objValue_{new} + weight
15:
            end if
16:
17:
        else
            prev_{min\_weight} \leftarrow f_2(external[v'][0])
18:
            if v' \notin S and prev_{min\_weight} < weight then
                                                                        //v is (v')'s
19:
    new nearest neighbor in S
                objValue_{new} \leftarrow objValue_{new} - prev_{min\_weight} + weight
20:
21:
            end if
        end if
22:
23: end for
24: Output: viol_{new} + \frac{objValue_{new}}{W_{tot}+1}
```

Algorithm 2 Function RecalcNodeRemoved

```
1: Input: S: solution; G = (V, E, f_1, f_2): problem instance; v: node to
   remove; viol: number of nodes that have zero neighbors in S; objValue:
   objective function value of S; external: list of sorted (by edge weights)
   sets of external edges.
 2: viol_{new} \leftarrow viol
 3: objValue_{new} \leftarrow objValue - f_1(v) // subtract node weight
 4: if external[v] \neq \emptyset then
                                        // if node had a neighbor in S, add its
    external edge weight
        objValue_{new} \leftarrow objValue_{new} + f_2(external[v][0])
 6: end if
 7: for e \in external[v] do
                                      // subtract internal edge weights
        objValue_{new} \leftarrow objValue_{new} - f_2(edge)
10: for e = (v, v') \in external[v] do
        weight \leftarrow f_2(e)
11:
        if |external[v']| = 1 then
                                             // set cardinality is 1
12:
13:
            viol_{new} \leftarrow viol_{new} + 1
           if v' \notin s then
                                     // internal edge weights are already sub-
14:
    tracted, now subtract only external
               objValue_{new} \leftarrow objValue_{new} - weight
15:
16:
            end if
        else
17:
           prev_{min\_edge} = (v', u) \leftarrow external[v'][0]
18:
           if v' \notin S and u = v then
                                               //v is not (v')'s nearest neighbor
   in S anymore
                                   \leftarrow objValue_{new} - f_2(prev_{min\_edge}) +
               objValue_{new}
20:
    f_2(external[v'][1])
           end if
21:
        end if
22:
23: end for
24: Output: viol_{new} + \frac{objValue_{new}}{W_{tot}+1}
```

2. Additional Results

Table 1: Detailed VNS comparison to ILP for $\mathtt{MA-20}$ instances.

		II	ĹΡ		VNS						
instance	best	obj	ind.	t	obj	pg%	ind.				
MA-20-0.2-5-5-1	63	63	opt	2.4	63	0	opt				
$\mathtt{MA-}20\text{-}0.2\text{-}5\text{-}5\text{-}2$	58	58	opt	1.5	58	0	opt				
$\mathtt{MA-}20\text{-}0.2\text{-}5\text{-}5\text{-}3$	58	58	opt	1.4	58	0	opt				
$\mathtt{MA-}20\text{-}0.2\text{-}5\text{-}5\text{-}4$	51	51	opt	1.5	51	0	opt				
$\mathtt{MA-}20\text{-}0.2\text{-}5\text{-}5$	55	55	opt	1.4	55	0	opt				
$\mathtt{MA-}20\text{-}0.5\text{-}5\text{-}5\text{-}1$	44	44	opt	1.7	44	0	opt				
$\mathtt{MA-}20\text{-}0.5\text{-}5\text{-}5\text{-}2$	47	47	opt	1.6	47	0	opt				
$\mathtt{MA-}20\text{-}0.5\text{-}5\text{-}5\text{-}3$	46	46	opt	1.6	46	0	opt				
$\mathtt{MA-}20\text{-}0.5\text{-}5\text{-}5\text{-}4$	40	40	opt	1.5	40	0	opt				
$\mathtt{MA-}20\text{-}0.5\text{-}5\text{-}5$	41	41	opt	1.5	41	0	opt				
$\mathtt{MA-}20\text{-}0.8\text{-}5\text{-}5\text{-}1$	37	37	opt	1.4	37	0	opt				
$\mathtt{MA-}20\text{-}0.8\text{-}5\text{-}5\text{-}2$	35	35	opt	1.7	35	0	opt				
$\mathtt{MA-}20\text{-}0.8\text{-}5\text{-}5\text{-}3$	40	40	opt	1.6	40	0	opt				
$\mathtt{MA-}20\text{-}0.8\text{-}5\text{-}5\text{-}4$	34	34	opt	1.4	34	0	opt				
MA-20-0.8-5-5-5	34	34	opt	1.8	34	0	opt				

Table 2: Detailed VNS comparison to ILP for $\mathtt{MA-}50$ instances.

		II	LΡ	VNS						
instance	best	obj	ind.	t	obj	pg%	ind.			
MA-50-0.2-5-5-1	111	111	opt	5.8	111	0	opt			
$\mathtt{MA-}50\text{-}0.2\text{-}5\text{-}5\text{-}2$	106	106	opt	4.5	106	0	opt			
MA-50-0.2-5-5-3	111	111	opt	4.5	111	0	opt			
$\mathtt{MA-}50\text{-}0.2\text{-}5\text{-}5\text{-}4$	101	101	opt	4.6	101	0	opt			
$\mathtt{MA-}50\text{-}0.2\text{-}5\text{-}5$	108	108	opt	4.7	108	0	opt			
$\mathtt{MA-}50\text{-}0.5\text{-}5\text{-}5\text{-}1$	82	82	opt	5.1	82	0	opt			
$\mathtt{MA-}50\text{-}0.5\text{-}5\text{-}5\text{-}2$	85	85	opt	4.8	85	0	opt			
$\mathtt{MA-}50\text{-}0.5\text{-}5\text{-}5\text{-}3$	84	84	opt	5.5	84	0	opt			
$\mathtt{MA-}50\text{-}0.5\text{-}5\text{-}5\text{-}4$	82	82	opt	5.4	82	0	opt			
$\mathtt{MA-}50\text{-}0.5\text{-}5\text{-}5$	82	82	opt	5.4	82	0	opt			
$\mathtt{MA-}50\text{-}0.8\text{-}5\text{-}5\text{-}1$	77	77	opt	5.7	77	0	opt			
$\mathtt{MA-}50\text{-}0.8\text{-}5\text{-}5\text{-}2$	72	72	opt	5.7	72	0	opt			
$\mathtt{MA-}50\text{-}0.8\text{-}5\text{-}5\text{-}3$	74	74	opt	5.7	74	0	opt			
$\mathtt{MA-}50\text{-}0.8\text{-}5\text{-}5\text{-}4$	76	76	opt	5.5	76	0	opt			
MA-50-0.8-5-5-5	79	79	opt	5.7	79	0	opt			

Table 3: Detailed VNS comparison to ILP for MA-100 instances.

		11	ıΡ		VNS						
	٠.						. ,				
instance	best	obj	ind.	t	obj	pg%	ind.				
MA-100-0.2-5-5-1	175	175	opt	16.3	175	0	opt				
$\mathtt{MA-}100\text{-}0.2\text{-}5\text{-}5\text{-}2$	174	174	opt	15.4	174	0	opt				
$\mathtt{MA-}100\text{-}0.2\text{-}5\text{-}5\text{-}3$	177	177	opt	15.2	177	0	opt				
$\mathtt{MA-}100\text{-}0.2\text{-}5\text{-}5\text{-}4$	169	169	opt	15.6	169	0	opt				
$\mathtt{MA-}100\text{-}0.2\text{-}5\text{-}5$	167	167	opt	15.5	167	0	opt				
$\mathtt{MA-}100\text{-}0.5\text{-}5\text{-}5\text{-}1$	147	147	opt	18.9	147	0	opt				
$\mathtt{MA-}100\text{-}0.5\text{-}5\text{-}5\text{-}2$	144	144	opt	19.8	144	0	opt				
$\mathtt{MA-}100\text{-}0.5\text{-}5\text{-}5\text{-}3$	147	147	opt	19.5	147	0	opt				
$\mathtt{MA-}100\text{-}0.5\text{-}5\text{-}5\text{-}4$	146	146	opt	20.5	146	0	opt				
$\mathtt{MA-}100\text{-}0.5\text{-}5\text{-}5$	139	139	opt	20.9	139	0	opt				
$\mathtt{MA-}100\text{-}0.8\text{-}5\text{-}5\text{-}1$	136	136	opt	23.5	136	0	opt				
$\mathtt{MA-}100\text{-}0.8\text{-}5\text{-}5\text{-}2$	140	140	opt	21	140	0	opt				
$\mathtt{MA-}100\text{-}0.8\text{-}5\text{-}5\text{-}3$	141	141	opt	22.5	141	0	opt				
$\mathtt{MA-}100\text{-}0.8\text{-}5\text{-}5\text{-}4$	141	141	opt	22.9	141	0	opt				
$\mathtt{MA-}100\text{-}0.8\text{-}5\text{-}5\text{-}5$	134	134	opt	22.2	134	0	opt				

Table 4: Detailed VNS comparison to GRASP and GRASP+GA for AMS-75 instances.															
		II	ЪP	VNS				G	RASP		Grasp+Ga				
instance	best	obj	ind.	t	obj	pg%	ind.	t	obj	pg%	ind.	t	obj	pg%	ind.
AMS-75-0.2-10-50-1	686	686	opt	10.9	686	0	opt	1	769	12.1		5	686	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}10\text{-}50\text{-}2$	770	770	opt	10	770	0	opt	1	871	13.12		6	794	3.12	
$\mathtt{AMS-}75\text{-}0.2\text{-}10\text{-}50\text{-}3$	661	661	opt	10.1	661	0	opt	1	765	15.73		6	661	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}10\text{-}50\text{-}4$	703	703	opt	10.7	703	0	opt	1	762	8.39		7	740	5.26	
$\mathtt{AMS-}75\text{-}0.2\text{-}10\text{-}50\text{-}5$	758	758	opt	9.8	758	0	opt	1	857	13.06		6	779	2.77	
$\mathtt{AMS-}75\text{-}0.2\text{-}25\text{-}25\text{-}1$	498	498	opt	10.2	498	0	opt	1	556	11.65		6	504	1.2	
$\mathtt{AMS-}75\text{-}0.2\text{-}25\text{-}25\text{-}2$	546	546	opt	9.6	546	0	opt	1	607	11.17		6	546	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}25\text{-}25\text{-}3$	518	518	opt	9.5	518	0	opt	1	603	16.41		5	518	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}25\text{-}25\text{-}4$	498	498	opt	9.7	498	0	opt	1	521	4.62		6	498	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}25\text{-}25\text{-}5$	513	513	opt	9.9	513	0	opt	1	526	2.53		6	513	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}50\text{-}10\text{-}1$	339	339	opt	9.1	339	0	opt	1	340	0.29		6	339	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}50\text{-}10\text{-}2$	382	382	opt	8.3	382	0	opt	1	414	8.38		5	382	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}50\text{-}10\text{-}3$	335	335	opt	9.1	335	0	opt	1	341	1.79		5	341	1.79	
$\mathtt{AMS-}75\text{-}0.2\text{-}50\text{-}10\text{-}4$	333	333	opt	8.8	333	0	opt	1	338	1.5		6	333	0	opt
$\mathtt{AMS-}75\text{-}0.2\text{-}50\text{-}10\text{-}5$	347	347	opt	9	347	0	opt	1	353	1.73		6	347	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}10\text{-}50\text{-}1$	581	581	opt	13.1	581	0	opt	1	590	1.55		13	581	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}10\text{-}50\text{-}2$	602	602	opt	12.1	602	0	opt	1	641	6.48		11	602	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}10\text{-}50\text{-}3$	545	545	opt	13.3	545	0	opt	1	545	0	opt	10	545	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}10\text{-}50\text{-}4$	540	540	opt	12.7	540	0	opt	1	580	7.41		10	540	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}10\text{-}50\text{-}5$	519	519	opt	12.7	519	0	opt	1	551	6.17		10	519	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}25\text{-}25\text{-}1$	387	387	opt	12.2	387	0	opt	1	402	3.88		10	387	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}25\text{-}25\text{-}2$	384	384	opt	11.5	384	0	opt	1	413	7.55		10	384	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}25\text{-}25\text{-}3$	362	362	opt	11.6	362	0	opt	1	380	4.97		10	362	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}25\text{-}25\text{-}4$	366	366	opt	11.3	366	0	opt	1	371	1.37		9	371	1.37	
$\mathtt{AMS-}75\text{-}0.5\text{-}25\text{-}25\text{-}5$	331	331	opt	12.2	331	0	opt	1	331	0	opt	10	331	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}50\text{-}10\text{-}1$	240	240	opt	10.5	240	0	opt	1	244	1.67		9	240	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}50\text{-}10\text{-}2$	238	238	opt	10.5	238	0	opt	1	245	2.94		9	238	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}50\text{-}10\text{-}3$	215	215	opt	10.5	215	0	opt	1	215	0	opt	9	215	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}50\text{-}10\text{-}4$	235	235	opt	10.6	235	0	opt	1	235	0	opt	9	235	0	opt
$\mathtt{AMS-}75\text{-}0.5\text{-}50\text{-}10\text{-}5$	206	206	opt	11	206	0	opt	1	206	0	opt	8	206	0	opt
$\mathtt{AMS-}75\text{-}0.8\text{-}10\text{-}50\text{-}1$	571	571	opt	13.8	571	0	opt	2	613	7.36		16	571	0	opt
AMS-75-0.8-10-50-2	520	520	opt	14.2	520	0	opt	2	520	0	opt	15	520	0	opt
AMS-75-0.8-10-50-3	543	543	opt	14.4	543	0	opt	2	543	0	opt	15	543	0	opt
$\mathtt{AMS-}75\text{-}0.8\text{-}10\text{-}50\text{-}4$	571	571	opt	13.9	571	0	opt	2	571	0	opt	15	571	0	opt
AMS-75-0.8-10-50-5	509	509	opt	14.4	509	0	opt	2	509	0	opt	17	509	0	opt
AMS-75-0.8-25-25-1	357	357	opt	13.3	357	0	opt	2	360	0.84		15	357	0	opt
AMS-75-0.8-25-25-2	338	338	opt	13.2	338	0	opt	2	356	5.33		15	338	0	opt
$\mathtt{AMS-}75\text{-}0.8\text{-}25\text{-}25\text{-}3$	323	323	opt	13	323	0	opt	2	323	0	opt	13	323	0	opt
AMS-75-0.8-25-25-4	345	345	opt	13.7	345	0	opt	2	345	0	opt	13	345	0	opt
$\mathtt{AMS-}75\text{-}0.8\text{-}25\text{-}25\text{-}5$	311	311	opt	13.5	311	0	opt	2	311	0	opt	15	311	0	opt
AMS-75-0.8-50-10-1	182	182	opt	12.5	182	0	opt	2	182	0	opt	14	182	0	opt
AMS-75-0.8-50-10-2	188	188	opt	12.3	188	0	opt	2	188	0	opt	11	188	0	opt
AMS-75-0.8-50-10-3	191	191	opt	12	191	0	opt	2	191	0	opt	11	191	0	opt
AMS-75-0.8-50-10-4	196	196	opt	12.1	196	0	opt	2	196	0	opt	12	196	0	opt
AMS-75-0.8-50-10-5	192	192	opt	12.2	192	0	opt	2	192	0	opt	15	192	0	opt

Table 5: Detailed VNS comparison to GRASP and GRASP+GA for AMS-100 instances.																
		I]	ILP VNS						G	RASP		Grasp+Ga				
instance	best	obj	ind.	t	obj	pg%	ind.	t	obj	pg%	ind.	t	obj	pg%	ind.	
AMS-100-0.2-10-50-1	873	873	opt	19.3	873	0	opt	1	930	6.53		12	873	0	opt	
$\mathtt{AMS-}100\text{-}0.2\text{-}10\text{-}50\text{-}2$	944	944	opt	17.7	944	0	opt	1	983	4.13		13	944	0	opt	
${\tt AMS-}100\text{-}0.2\text{-}10\text{-}50\text{-}3$	878	878	opt	18	878	0	opt	1	905	3.08		11	878	0	opt	
${\tt AMS-}100\text{-}0.2\text{-}10\text{-}50\text{-}4$	837	837	opt	18.3	837	0	opt	1	879	5.02		11	837	0	opt	
AMS-100-0.2-10-50-5	840	840	opt	17.8	840	0	opt	1	907	7.98		12	870	3.57		
AMS-100-0.2-25-25-1	591	591	opt	18.2	591	0	opt	1	591	0	opt	12	591	0	opt	
AMS-100-0.2-25-25-2	653	653	opt	15.8	653	0	opt	1	687	5.21	-	11	655	0.31	•	
AMS-100-0.2-25-25-3	612	612	opt	16.5	615	0.49	-	1	648	5.88		12	616	0.65		
AMS-100-0.2-25-25-4	552	552	opt	15.9	552	0	opt	1	602	9.06		11	552	0	opt	
AMS-100-0.2-25-25-5	606	606	opt	16.8	606	0	opt	1	646	6.6		12	607	0.17	1	
AMS-100-0.2-50-10-1	418	418	opt	15.2	418	0	opt	1	422	0.96		12	420	0.48		
AMS-100-0.2-50-10-2	447	447	opt	14.3	447	0	opt	1	472	5.59		11	456	2.01		
AMS-100-0.2-50-10-3	419	419	opt	15.2	419	0	opt	1	427	1.91		11	419	0	opt	
AMS-100-0.2-50-10-4	403	403	opt	15	403	0	opt	1	418	3.72		12	410	1.74		
AMS-100-0.2-50-10-5	375	375	opt	15.7	375	0	opt	1	379	1.07		13	379	1.07		
AMS-100-0.5-10-50-1	743	743	opt	22.4	743	0	opt	2	749	0.81		26	749	0.81		
AMS-100-0.5-10-50-2	698	698	opt	21.5	698	0	opt	3	705	1		25	700	0.29		
AMS-100-0.5-10-50-3	699	699	opt	22.1	699	0	opt	3	730	4.43		24	718	2.72		
AMS-100-0.5-10-50-4	726	726	opt	22.2	726	0	opt	2	775	6.75		26	726	0	opt	
AMS-100-0.5-10-50-5	702	702	opt	22.4	702	0	opt	2	743	5.84		25	702	0	opt	
AMS-100-0.5-25-25-1	461	461	opt	20.3	461	0	opt	3	461	0	opt	25	461	0	opt	
AMS-100-0.5-25-25-2	437	437	opt	21.3	437	0	opt	2	448	2.52	- 1	19	437	0	opt	
AMS-100-0.5-25-25-3	434	434	opt	22.2	434	0	opt	3	443	2.07		22	434	0	opt	
AMS-100-0.5-25-25-4	482	482	opt	20.5	482	0	opt	2	489	1.45		25	482	0	opt	
AMS-100-0.5-25-25-5	456	456	opt	20.4	456	0	opt	3	470	3.07		23	457	0.22		
AMS-100-0.5-50-10-1	260	260	opt	18.2	260	0	opt	2	260	0	opt	22	260	0	opt	
AMS-100-0.5-50-10-2	271	271	opt	18.9	271	0	opt	2	271	0	opt	21	271	0	opt	
AMS-100-0.5-50-10-3	283	283	opt	20.6	283	0	opt	3	283	0	opt	21	283	0	opt	
AMS-100-0.5-50-10-4	291	291	opt	18.3	291	0	opt	2	296	1.72	1	22	291	0	opt	
AMS-100-0.5-50-10-5	269	269	opt	18.5	269	0	opt	2	269	0	opt	21	269	0	opt	
AMS-100-0.8-10-50-1	730	730	$\overline{\mathrm{TL}}$	25.2	730	0	best	4	730	0	best	39	730	0	best	
${\tt AMS-}100\text{-}0.8\text{-}10\text{-}50\text{-}2$	683	683	opt	23.5	683	0	opt	4	688	0.73		37	683	0	opt	
AMS-100-0.8-10-50-3	718	718	opt	24.8	718	0	opt	4	718	0	opt	37	718	0	opt	
${\tt AMS-}100\text{-}0.8\text{-}10\text{-}50\text{-}4$	709	709	opt	28.1	709	0	opt	4	709	0	opt	41	709	0	opt	
AMS-100-0.8-10-50-5	700	700	opt	26.2	700	0	opt	4	710	1.43	-	39	704	0.57	•	
${\tt AMS-}100\text{-}0.8\text{-}25\text{-}25\text{-}1$	442	442	opt	22.5	442	0	opt	5	452	2.26		40	442	0	opt	
$\mathtt{AMS-}100\text{-}0.8\text{-}25\text{-}25\text{-}2$	430	430	opt	23.4	430	0	opt	4	430	0	opt	32	430	0	opt	
${\tt AMS-}100\text{-}0.8\text{-}25\text{-}25\text{-}3$	426	426	opt	23.3	426	0	opt	4	426	0	opt	36	426	0	opt	
${\tt AMS-}100\text{-}0.8\text{-}25\text{-}25\text{-}4$	428	428	opt	22.7	428	0	opt	4	428	0	opt	35	428	0	opt	
$\mathtt{AMS}\text{-}100\text{-}0.8\text{-}25\text{-}25\text{-}5$	432	432	opt	23	432	0	opt	4	432	0	opt	42	432	0	opt	
${\tt AMS-}100\text{-}0.8\text{-}50\text{-}10\text{-}1$	259	259	opt	21	259	0	opt	4	259	0	opt	32	259	0	opt	
$\mathtt{AMS-}100\text{-}0.8\text{-}50\text{-}10\text{-}2$	246	246	opt	20.6	246	0	opt	4	246	0	opt	9	246	0	opt	
$\mathtt{AMS-}100\text{-}0.8\text{-}50\text{-}10\text{-}3$	238	238	opt	21.6	238	0	opt	4	238	0	opt	34	238	0	opt	
${\tt AMS-}100\text{-}0.8\text{-}50\text{-}10\text{-}4$	253	253	opt	22.2	253	0	opt	4	258	1.98		34	253	0	opt	
AMS-100-0.8-50-10-5	248	248	opt	22.8	248	0	opt	5	250	0.81		31	248	0	opt	

3. Additional statistical analysis and discussion

Figure 1: CD plot for the results of the instances from AMS-125.

By Figure 1 a statistical analysis for the four approaches on benchmark set AMS-125 is given by means of a CD plot. One could see that ILP and VNS are best according to the ranking and much better than VNS. However, the statistical difference between these three approaches is not statistical in terms of solution quality. Significant difference exists between them and the GRASP approach.

Figure 2: CD plot for the results of the instances from New-250.

Statistical comparisons w.r.t. solution quality of the four algorithms is shown in Figure 2. We conclude that the results of VNS and GRASP+VNS are significantly better than the results of the other two competitors. Average rankings of the results of VNS are better than that of the GRASP+VNS. However, difference is not significant.

Figure 3: CD plot for the results of the instances from New-500.

Statistical comparison of the four approaches by means of a CD plot is shown in Figure 3. One can see that VNS and GRASP+GA delivers statistically better results than the other two competitors. Although the average ranking is in favour of VNS, there is no statistical difference between the results of this approach and GRASP+GA.

Figure 4: CD plot for the results of the instances from New-1000.

Statistical comparison of the four approaches on the 45 instances is presented by means of a CD plot given by Figure 4. One can see that the differences between the results delivered by VNS and GRASP+GA are statistically significant in favour of VNS approach.