XFT: Unlocking the Power of Code Instruction Tuningby Simply Merging Upcycled Mixture-of-Experts

Yifeng Ding, Jiawei Liu, Yuxiang Wei, Terry Yue Zhuo, Lingming Zhang 1

University of Illinois Urbana-Champaign 1 {yifeng6, lingming}@illinois.edu

Abstract

We introduce $\mathcal{X}\mathbf{FT}$, a simple yet powerful 2 training scheme, by simply merging upcycled 2 Mixture-of-Experts (MoE) to unleash the per- 2 formance limit of instruction-tuned code Large 2 Language Models (LLMs). While vanilla 2 sparse upcycling fails to improve instruction 2 tuning, \mathcal{X} FT introduces a shared expert mecha- 2 nism with a novel routing weight normalization 2 strategy into sparse upcycling, which signif- 2 cantly boosts instruction tuning. After fine-2 tuning the upcycled MoE model, \mathcal{X} FT intro- 2 duces a learnable model merging mechanism 2 to compile the upcycled MoE back to a dense 2 model, achieving upcycled MoE-level perfor- 2 mance with only dense-model compute. By 2 applying XFT to a 1.3B model, we create a 2 new state-of-the-art tiny code LLM (<3B) with 2 67.1 and 64.6 pass@1 on HumanEval and Hu- 2 manEval+ respectively. With the same data and 2 model architecture, $\mathcal{X}FT$ improves supervised 2 fine-tuning (SFT) by 13% on HumanEval+, 2 along with consistent improvements from 2\% 2 to 13% on MBPP+, MultiPL-E, and DS-1000, 2 demonstrating its generalizability. $\mathcal{X}FT$ is 2 fully orthogonal to existing techniques such 2 as Evol-Instruct and OSS-INSTRUCT, open- 2 ing a new dimension for improving code in- 2 struction tuning. Codes are available at https: 2 //github.com/ise-uiuc/xft.

1 Introduction 3

Program synthesis (or code generation) is a long-4 standing problem explored since the early days of 4 computer science (Manna and Waldinger, 1971). 4 Recently, instruction tuning of code Large Lan-4 guage Models (LLMs) has been used to improve 4 many coding tasks (Chaudhary, 2023; Luo et al., 4 2023; Wei et al., 2023), such as text-to-code generation (Chen et al., 2021; Austin et al., 2021), code completion (Cassano et al., 2022), and data science 4 engineering (Lai et al., 2022).

A typical instruction tuning flow involves two 5 steps (Zhang et al., 2023): (i) curating an instruc-

Figure 1: Overview of SFT, sparse upcycling, and \mathcal{X} FT. 2

tion dataset of instruction-output pairs, where the 5 instruction reflects human intents in natural lan- 5 guage and the output includes explained code snip-5 pets that correspond to the intent; and (ii) super-5 vised fine-tuning of pre-trained LLM on the instruction dataset. In the realm of code, multiple 5 instruction-tuning methods have been proposed 5 to curate high-quality instruction datasets. For 5 example, Code Evol-Instruct (Luo et al., 2023) 5 uses ChatGPT to obtain complex synthetic code 5 instructions with heuristic prompts, while OSS-5 INSTRUCT (Wei et al., 2023) prompts ChatGPT to 5 generate new coding problems by drawing inspira-5 tion from open source code snippets. While exist-5 ing work focuses on the data perspectives of instruc- 5 tion tuning, they all follow the standard SFT, leaving room for exploring advanced training schemes. 5

We argue that prior works largely overlook the possibility of improving the code instruction tunling by advancing the training schemes. Figure 1 6 depicts the supervised fine-tuning (SFT), which directly starts with the pre-trained weights and architecture for fine-tuning. The model is *dense* here 6 because all parameters are activated to compute the next token (assuming it is a decoder-only LLM). In 6 contrast to fine-tuning a *dense* model, following the scaling laws (Kaplan et al., 2020) (*i.e.*, more parameters, better performance), sparse upcycling (Komatsuzaki et al., 2023) is proposed to efficiently 6 upgrade the model sizes by upcycling a dense LLM 6 to a sparsely activated Mixture-of-Experts (MoE) 6

model. An MoE model is efficient because the 7 generation of the next token only involves a subset 7 of parameters (i.e., experts) and thus is sparsely 7 activated. For example, Mixtral-8x7B (Jiang et al., 7 2024), compared to a dense 7B model, uses approx-7 imately $8\times$ parameters and $2\times$ computation, i.e., 7 only 2 out of 8 experts are dynamically selected to 7 compute the next token. However, there are two 7 key limitations when using sparse upcycling in in-7 struction tuning: (i) Slow scaling: Komatsuzaki 7 et al. (2023) show that sparse upcycling improves 7 the dense SFT marginally at the early phase, re-7 quiring orders of magnitude of extra compute to 7 achieve decent improvement; and (ii) Inference 7 cost: though MoE is more efficient than directly 7 scaling the size of dense LLMs, MoE is still ex-7 pensive, especially at inference, as it introduces 8 significantly more parameters (i.e., memory) and, 8 more importantly, computes during inference, compared to its dense counterparts. 8

In this paper, we propose $\mathcal{X}FT$: by simply 9 merging upcycled MoE models, we push the per- 9 formance limit of instruction-tuned code LLMs. 9 While vanilla sparse upcycling fails to improve 9 instruction tuning efficiently (Komatsuzaki et al., 9 2023), \mathcal{X} FT addresses this challenge by isolating 9 one expert as the shared expert among all the other 10 experts in each MoE layer, inspired by DeepSeek- o MoE (Dai et al., 2024) and MoCLE (Gou et al., 2024). χ FT also includes a novel routing weight normalization strategy to eliminate scale mismatch of between the upcycled MoE layer with the shared $_{10}$ 2.1 expert and the original dense layer, which will otherwise lead to performance degradation (Wu et al., 2022). After the upcycled MoE model finishes the SFT phase, motivated by Model Soups (Wortsman et al., 2022), χ FT uses a learnable model merging all the expert networks in the upcycled model structure and size as the original pre-trained model, achieving similar performance without paying extra inference cost as the sparse upcycling. 11 token is computed as follows (Dai et al., 2024): 15 With only 1.3B parameters, $\mathcal{X}FT$ achieves 67.1 pass@1 on HumanEval and 64.6 pass@1 on HumanEval+, which is the new state-of-the-art for 11 tiny code LLMs (<3B). Compared with SFT, \mathcal{X} FT 11 achieves 13% improvement on HumanEval+. Sur- 11 prisingly, our model merging mechanism can pre- 11 serve or even further boost the general performance 11 of the upcycled MoE with around $1/8 \times$ parameters! 11 We conclude our contribution as follows: 11

- **Dimension:** We open a new dimension of improving instruction tuning of code LLMs by 12 advancing its training scheme, using enhanced 12 sparse upcycling and learnable model merging 12 mechanism, which neither changes the final 12 model structure nor requires more training data. 12
- **Technique:** We present $\mathcal{X}FT$, a new training 12 scheme for code instruction tuning. $\mathcal{X}FT$ involves two steps: *upcycling* and *merging*. A pre- 12 trained dense LLM is first upcycled into an MoE 12 with the shared expert setting and then fine-tuned 12 on the instruction dataset. To avoid the perfor- 12 mance degradation caused by the scale mismatch 12 issue, we propose a novel routing weight normalization strategy. In addition, we introduce 12 the first learnable mechanism for merging the 12 upcycled MoE into a dense model, eliminating 12 additional inference overhead while preserving 12 or even improving the MoE performance. 12
- **Results:** With only 1.3B parameters, χ FT ₁₂ achieves 67.1 pass@1 on HumanEval and 64.6 12 pass@1 on HumanEval+, which is the new stateof-the-art for tiny code LLMs (<3B). Compared 12 with normal supervised fine-tuning (SFT), χ FT ₁₂ achieves 13% improvement on HumanEval+! 12 χ FT also achieves a consistent improvement 12 from 2% to 13% on MBPP, MultiPL-E, and DS-12 1000 over SFT, demonstrating its generalization. 12

Related Work 13

Mixture-of-Experts 7

Mixture-of-Experts (MoE) can efficiently scale up model sizes with only sub-linear increases in com-10 putation (Shazeer et al., 2017). Compared with 15 10 the standard Transformer, MoE replaces each Feed-Forward Network (FFN) layer with an MoE layer, 15 merging mechanism to output a dense model by 10° which uses N (i.e., multiple) expert networks that 10 are structurally equivalent to the original FFN layer 15 MoE, *i.e.*, the final dense model is of the same 10 and uses a router that directs each input token to 10 K out of N expert networks. Formally, for the l-th 15 11 MoE layer, output hidden state \mathbf{h}_t^l of the t-th input \mathbf{h}_t^l

$$\begin{split} \mathbf{h}_{t}^{l} &= \sum_{t=1}^{N} (g_{i,t} \text{FFN}_{i}(\mathbf{u}_{t}^{l})) + \mathbf{u}_{t}^{l} \\ &= 1 \text{ 33} \end{split}$$

$$\underline{g_{i,t}} &= \begin{cases} s_{i,t} & s_{i,t} \in \text{Topk}(s_{t}, K) \\ 0 & \text{otherwise} \end{cases} 17$$

$$\underline{s_{t}} &= \{s_{i,t} \mid 1 \leq i \leq N\} \text{ 34} \\ s_{i,t} &= \text{Softmax}_{i}(\mathbf{u}_{t}^{l} \mathbf{g}_{t}^{l}) \text{ 35} \end{split}$$

MoE layer, $s_{i,t}$ refers to the affinity score between 18 efficient fine-tuning (Chen et al., 2022). the *i*-th expert and the *t*-th token, Topk(S, K)refers to a function computing K largest scores over S, and \mathbf{e}_i^l refers to the centroid of the i-th token will only be assigned to and computed in the top K experts among all the N experts. 18

scale model sizes with MoE architecture (Lepikhin et al., 2020; Du et al., 2022; Fedus et al., 2022; Jiang et al., 2024; Xue et al., 2024). While most MoE models are trained from scratch, sparse upcycling (Komatsuzaki et al., 2023) is proposed to initialize MoE models based on the pre-trained dense model, which can efficiently reduce the computational costs of training MoE models, compared with training MoE models from scratch. Specifically, sparse upcycling constructs a new MoE model, while directly copying the remaining layers from the dense model to the new MoE model. 19

2.2 Instruction Tuning 21

Instruction tuning is designed to improve the 21 instruction-following ability of LLMs by finetuning them on the instruction datasets in a supervised fashion (Wei et al., 2022). The quality of the instruction dataset is significant for the effectiveness of instruction tuning and researchers have proposed multiple methods to improve data quality. For example, SELF-INSTRUCT (Wang et al., 2023) synthesizes high-quality instruction data by prompting a foundation LLM with specially designed prompts. To improve SELF-INSTRUCT, plexity and diversity of the instruction dataset by prompting ChatGPT with heuristic prompts. OSS- $\frac{1}{4}$ also showcase the clear advantage of \mathcal{X} FT. $\frac{1}{25}$ INSTRUCT (Wei et al., 2023) queries ChatGPT to 21 generate instruction-output pairs by getting inspira- 21 3 tion from real-world code snippets. 21

better instruction tuning. RAMoE (Dou et al., 2023) and MoCLE (Gou et al.,

where N refers to the total number of experts, $g_{i,t}$ 18 2024) proposes to integrate adapters into MoE 22 refers to the gate value for the i-th expert, FFN_i(·) 18 that are upcycled from dense models. Different 22 refers to the i-th expert, \mathbf{u}_t^l refers to the hidden 18 from these works, $\mathcal{X}FT$ focuses on full fine-tuning, 22 states of the t-th token which is the input of the l-th $\frac{18}{18}$ which generally performs better than parameter- $\frac{22}{18}$

2.3 Weight Averaging 23

18 Weight averaging is a commonly used technique 24 expert in the l-th MoE layer. By definition, each 18 to improve the performance of deep learning mod-18 els. For example, Model Soups (Wortsman et al., 24 2022) averages the weights of multiple models that 24 Recently, many works have been proposed to are initialized from the same pre-trained model but 24 19 finetuned with different hyperparameter configurations to improve the accuracy and robustness of the 24 19 model. However, only a few works have been pro-19 posed to merge expert networks of an MoE layer 24 19 to a normal FFN layer using weight averaging. For 24 19 example, OneS (Xue et al., 2022) proposes several 24 19 simple weight averaging methods to merge expert 24 19 networks of a BERT-based MoE model. Closely 24 19 related to our work, Experts Weights Averaging 24 19 (EWA) (Huang et al., 2023) proposes to convert an 24 model by initializing each expert of each MoE layer 19 MoE model to a dense model with two steps: (i) 24 as a copy of the original FFN layer in the dense 19 During MoE training, EWA conducts weighted averaging of all the expert weights after each weight 24 update of MoE, which is based on a manually- 24 crafted hyperparameter β ; (ii) After training, EWA 24 converts each MoE layer into an FFN layer by uni- 24 formly averaging the experts. 24

Different from all the aforementioned existing 25 21 works, χ FT is the first work proposing a **learnable** 25 mechanism to merge expert networks in the upcy-21 cled MoE model. Furthermore, while the training 25 scheme of EWA is deeply coupled to a specific 25 MoE architecture, $\mathcal{X}FT$ can be easily adapted to 25 21 different MoE architectures by only adjusting the 25 21 final merging process. In addition, unlike EWA, 25 21 XFT does not introduce any hyperparameters into 25 21 the training of the large MoE models, significantly 25 Evol-Instruct (Xu et al., 2023) improves the com- 21 reducing the computational resources for hyperpa- 25 ²¹ rameter searching. Our empirical results in Section 25

\mathcal{X} FT 42

Recently, some parameter-efficient fine-tuning 22 We describe the details of χ FT in this section. 27 techniques have been proposed to use MoE for 22 There are two steps in our framework: upcycling 27 For example, Lo-22 (Section 3.1) and *merging* (Section 3.2). During up-27 cycling, we construct an Mixture-of-Experts (MoE) 27 2024) propose MoE-like modules that are con- 22 model from the pre-trained dense model, namely 27 structed with Low-Rank Adaptations (LoRA) to 22 MoE_{DS}, which is then fine-tuned on coding instruc-27 improve instruction tuning, while PESC (Wu et al., 22 tion data. For merging, we propose a learnable 27

Original Dense Block

model merging method to convert the instruction- 27 scale mismatch problem (Wu et al., 2022). 37 tuned MoE_{DS} back to a normal dense model by 27 merging each MoE layer into an FFN layer through weight averaging while directly copying other remaining layers. Consequently, we can obtain $\mathcal{X}\mathbf{FT_{DS}}$ that has the same model architecture and size as the original pre-trained dense model, which eliminates all the additional inference overhead brought by the original sparse upcycling, while preserving or even improving the performance of 27 MoE_{DS}. Our framework is illustrated in Figure 2. 27

3.1 Upcycling 30

Inspired by sparse upcycling (Komatsuzaki et al., 29 2023), we convert the pre-trained dense LLM to a 29 new MoE by initializing each expert of each MoE 29 layer as a copy of the original FFN layer in the 29 dense model, while directly copying the remain- 29 ing layers from the dense model to the new MoE 29 model. However, the performance gain brought by 29 sparse upcycling is negligible with a very limited 29 extra training budget (Komatsuzaki et al., 2023) – 29 which is exactly the situation we are facing during 29 instruction tuning. Intuitively, it is because each 29 expert in the upcycled MoE model is trained on 29 fewer instruction data than the original dense model 29 does because traditional routers used in sparse up- 29 cycling will assign different tokens to different ex- 29 perts and thus reduce the amount of data each ex- 29 pert is trained on (Gou et al., 2024). Consequently, 29 inspired by DeepSeekMoE (Dai et al., 2024) and 29 where \mathbf{h}_t^l refers to the output hidden state of the l-th 35 weight normalization strategy for XFT to avoid the 29 expert, \mathbf{u}_t^l refers to the output hidden state of the

3.1.1 Shared Expert for Upcycling 30

During upcycling, we isolate one shared expert 31 among all the other normal experts in each MoE 31 layer, where the shared expert will be deterministi- 31 cally assigned to handle all the tokens while other 31 normal experts are assigned by the router. By doing 31 so, the upcycled MoE model can achieve a clear 31 performance boost in instruction tuning, where the 31 shared expert can learn general knowledge across 31 the whole instruction dataset while other normal 31 experts learn specific knowledge among different 31 instructions assigned by the router. Formally, the 31 output hidden state \mathbf{h}_t^l of the l-th MoE layer when 31 processing the t-th token can be expressed as: 31

$$\mathbf{h}_{t}^{l} = \sum_{i=1}^{N} (g_{i,t} \text{FFN}_{i}(\mathbf{u}_{t}^{l})) + \mathbf{u}_{t}^{l} |_{47}$$

$$i = 1$$

$$g_{i,t} = \begin{cases} 1 - s_{t_{\text{max}}} & i = 1 \\ \text{Softmax}_{i}(s_{i,t}) \cdot s_{t_{\text{max}}} & s_{i,t} \in S_{t_{K}} \\ \text{O} & \text{otherwise} \end{cases}$$

$$S_{t_{K}} = \text{Topk}(\{s_{i,t} \mid 1 \leq i \leq N\}, K - 1) |_{34}$$

$$S_{t_{\text{max}}} = \max(\{s_{i,t} \mid 1 \leq i \leq N\}) |_{34}$$

$$S_{t_{\text{max}}} = \max(\{s_{i,t} \mid 1 \leq i \leq N\}) |_{34}$$

$$S_{t_{\text{max}}} = \sum_{s_{i,t}=1}^{\infty} \frac{1}{34} |_{34}$$

MoCLE (Gou et al., 2024), \mathcal{X} FT introduces the 29 MoE layer when processing the t-th token, N refers 35 shared expert setting into sparse upcycling to tackle 29 to the total number of experts, $g_{i,t}$ refers to the gate 35 this challenge. We further propose a novel routing 29 value for the i-th expert, $FFN_i(\cdot)$ refers to the i-th 35 potential performance degradation caused by the 29 l-th attention layer when processing the t-th token 35

score among all the experts besides the shared ex-35 can be stated as below: 40 pert, Topk(S, K) refers to a function computing K 35 largest scores over S, S_{tK} refers to a set of K-1 35 largest affinity scores among all the experts besides 35 the shared expert, and \mathbf{e}_i^l refers to the centroid of the *i*-th expert in the *l*-th MoE layer. 35

FFN₁ is chosen as the shared expert in each MoE layer and each token will be assigned to top Kother normal experts. Compared with the original 36 and instruction dataset $\{(x_i, y_i)\}_{i=1}^m$, such mixing

- Weighted Shared Expert. Following Mo- 37 CLE (Gou et al., 2024), with the token-to-expert 37 affinity score $s_{i,t}$, we get the maximum affinity $\frac{1}{37}$ score $s_{t \text{max}}$ and use its complement $1 - s_{t \text{max}}$ 37 as the routing weight of the shared expert. 37
- Routing Weight Normalization. Although 37 the shared expert setting is also used in recent works (Dai et al., 2024; Gou et al., 2024), we cannot directly follow their routing strategy because they cannot handle a scale mismatch problem that is unique for sparse upcycling. The scale mismatch problem is that differences between the scale of the output of the upcycled MoE layer and the original FFN layer can cause performance degradation (Wu et al., 2022). To handle this problem, we need to make sure the sum of $g_{i,t}$ equals 1, so that the output of the MoE layer matches that of the FFN layer in scale. To do so, we normalize the affinity scores of top K-1 normal experts with Softmax and scale their sum to $s_{t ext{max}}$ to make sure that the sum of the $g_{i,t}$ of top K experts, including one shared expert and K-1 normal experts, equals 1. 37

3.2 Merging 39

We propose a learnable model merging method to 39 convert the large MoE model, namely MoE_{DS} , back to a dense model $\mathcal{X}FT_{DS}$. By doing so, we expect $\mathcal{X}\mathrm{FT}_{\mathrm{DS}}$ to keep the boosted performance gained during upcycling while keeping its model size the 39 same as the original dense model to avoid any ad-39 ditional inference overhead. Inspired by Model 39 Soups (Wortsman et al., 2022), we choose to merge 39 MoE_{DS} by learning the mixing coefficients that can be used to average the parameters of all experts 39 in each MoE layer to obtain a normal FFN layer, 39 while directly copying other remaining layers. 39

and also the input of the l-th MoE layer, $s_{i,t}$ refers 35 Formally speaking, given the weights of N ex-40 to the affinity score between the i-th expert and 35 perts at the l-th layer $W_1^l, W_2^l, \cdots, W_N^l$, the prothe t-th token, $s_{t_{\text{max}}}$ refers to the maximum affinity 35 cess of merging each MoE layer to an FFN layer 40

$$\overline{W^l} = \sum_{i=1}^{N} \alpha_i^l W_i^l \tag{3}$$

where W^l denotes the merged parameter of all N 42 36 experts and α_i^l denotes the learnable mixing coeffi-36 cient of expert W_i^l . We consider a neural network 42 experts including one shared expert and K-1 36 $f(x;\theta)$ with input x and parameters θ . For loss \mathcal{L} 42 sparse upcycling, there are two major differences: 36 coefficients α of all the L layers can be learned via: 42

$$\arg\min_{\alpha} \sum_{i=1}^{m} \mathcal{L}(f(x_j; \theta_o, (\sum_{i=1}^{N} \alpha_i^l W_i^l)_{1:L}), y_i)$$
(4)

where θ_o refers to all the remaining layers of $_{44}$ ${\sf MoE_{DS}}$ other than ${\sf MoE}$ layers and lpha is parameterized as the output of a softmax, so that each α_i^l is positive and $\sum_{i=1}^{N} \mathbf{q} \mathbf{q}_{i}^{l} = 1$.

While the learning process defined in Eq. (4) is 45 the most intuitive way of learning α , our experi-45 ment in Section 5.2 shows that, due to the shared 45 expert setting, it tends to simply increase the mix-45 ing coefficient of the shared expert at each layer as 45 much as possible to decrease the loss. It is not help-45 ful because, although the shared expert has learned 45 general knowledge across the whole instruction 45 dataset and needs a relatively large mixing coeffi- 45 cient, we still need to keep the scale of the mixing 45 coefficient of other normal experts at a certain level 45 also to keep some specific knowledge learned by 45 other normal experts in the merged parameter W^l . 45 To solve this issue, we introduce a shared expert 46

rate λ to fix the mixing coefficient of the shared 45 expert and learn the mixing coefficients of the remaining normal experts which sums to $1 - \lambda$ in 46 each layer. By doing so, we can easily control the 46 scale of the mixing coefficient of the shared expert, 45 while still being able to learn the optimal layer-wise 46 mixing coefficients of other normal experts. Let's 45 say W_1^l is the shared expert of the l-th layer, then $_{46}$ Eq. (3) and Eq. (4) can be reformulated as below: 46

$$\overline{\underline{W^l} = \lambda W_1^l + \sum_{i=2}^{N} \alpha_i^l W_i^l}$$
 (5)

$$\overline{W^{l}} = \lambda W_{1}^{l} + \sum_{i=2}^{N} \alpha_{i}^{l} W_{i}^{l} \qquad (5)$$

$$\arg \min_{\alpha} \sum_{i=1}^{m} \mathcal{L}(f(x_{j}; \theta_{o}, \overline{W^{l}}_{1:L}), y_{i}) \qquad (6)$$

In practice, we uniformly initialize the mix-48 ing coefficients α of all the normal experts as 48 LLMs. XFT achieves 67.1 pass@1 on HumanEval $\frac{1-\lambda}{N-1}$, which is then trained on the same instruction dataset as upcycling. 48

Main Evaluation 40

Experimental Setup 50

We use DeepSeek-Coder-Base 51 Training. 1.3B (Guo et al., 2024) as the main base 51 code LLM. evol-codealpaca-v1, an open-source Evol-Instruct (Luo et al., 2023) dataset containing 110K samples, is used as our instruction 52 dataset. MoE_{DS}, our MoE model upcycled from the base model, is implemented following Llama-MoE (LLaMA-MoE Team, 2023). It is constructed 52 with 8 experts in one expert layer and the top 6 52 experts¹ are activated for each token, including one shared expert. As such, we denote the model size of MoE_{DS} as $8\times1.3B$. Other hyperparameter settings are detailed in Appendix A.1. We finally obtain \mathcal{X} FT_{DS} by using the learned mixing coefficients to 52 merge MoE layers inside MoE_{DS} as normal FFN layers. Note that $\mathcal{X}FT_{DS}$ is the final instructiontuned LLM we produce, while ${f MoE_{DS}}$ is only an intermediate product of χ FT framework. 52

Baselines. To study the effectiveness of $\mathcal{X}FT$, we build a baseline model, namely **SFT**_{DS}, by directly performing SFT for DeepSeek-Coder-Base 1.3B on evol-codealpaca-v1. To compare $\mathcal{X}\mathrm{FT}$ with EWA (Huang et al., 2023), we also implement a baseline EWA_{DS} and instruction-tune it using the same hyperparameter setting as SFT_{DS}, which is described in Appendix A.1. More implementation details of EWA_{DS} can be seen in Appendix A.2. Furthermore, we incorporate multiple small open-source models (<3B) as our baselines, including DeepSeek-Coder-Base 1.3B, DeepSeek-Coder-Instruct 1.3B (Guo et al., 2024), Phi-2 2.7B, and STABLE-CODE 3B (Pinnaparaju et al., 2024).

4.2 Python Text-to-Code Generation 59

HumanEval (Chen et al., 2021) and MBPP (Austin used collections of Python code generation tasks. We further employ HumanEval+ and MBPP+, 55 which use more tests automatically generated by 55 ation. We leave the details in Appendix A.3. 55

6 is the best-performing number of activated experts per 52 our HumanEval+ experiments using top $\{2,4,6\}$ experts. 52

Table 1 shows the pass@1 results of different 56 and 64.6 pass@1 on HumanEval+, which makes 57 it the new state-of-the-art small code LLM (<3B). We can also observe that $\mathcal{X}FT_{DS}$ has a clear improvement over the SFT_{DS} on both benchmarks, with 13% and 2% improvement on HumanEval+ 57 and MBPP+ respectively, while EWA_{DS} even per-57 forms worse than SFT_{DS} on MBPP(+). \mathcal{X} FT_{DS} ₅₇ also outperforms EWA_{DS} on both benchmarks. 57 Surprisingly, $\mathcal{X}FT_{DS}$ even surpasses MoE_{DS} on ₅₈ HumanEval and HumanEval+, despite only using 58 around $1/8 \times$ parameters and around $1/6 \times$ compu-58 tations, which showcases the effectiveness of our 58 simple learnable merging technique. Appendix A.4 58 further demonstrates the statistical significance of 58 the improvements brought by χ FT. 58

4.3 Multilingual Code Generation 59

We use MultiPL-E (Cassano et al., 2022), a multiprogramming benchmark that supports 18 program- 60 ming languages in addition to Python, to evaluate the multilingual ability and generalizability of 60 χ FT. Among these, we choose 6 representative 60 programming for their distinct language features: 60 Java, JavaScript, C++, PHP, Swift, and Rust, fol- 60 lowing Wei et al. (2023). Table 2 shows, among 60 all 1.3B models, $\mathcal{X}FT_{DS}$ achieves the best average multilingual performance and performs the 60 best on 5 (out of 6) individual programming lan- 60 guages, overall largely improving SFT_{DS} which 60 uses standard SFT. Notably, the overall perfor- 60 mance of EWA_{DS} is on par with SFT_{DS}, indicating $_{60}$ that EWA_{DS} may not improve SFT on multilingual 60 coding. Appendix A.5 further studies whether each 60 expert in MoE_{DS} specializes differently in these 60 programming languages. 60

Code Generation for Data Science 61

The DS-1000 dataset (Lai et al., 2022) is a collection of 1000 realistic data science coding problems 62 ranging from 7 popular data science libraries in 62 Python, including Matplotlib (plt), NumPy (np), 62 Pandas (pd), SciPy (scp), Scikit-Learn (sk), Py-62 et al., 2021) benchmarks are the two most widely
55 Torch (py), and TensorFlow (tf). We evaluate XFT 62 on DS-1000 to understand its effectiveness for practical data science engineering. We follow the eval-62 uation setting of prior works (Guo et al., 2024; 62 EvalPlus (Liu et al., 2023) for more rigorous evalu
55 Wei et al., 2023). In Table 3, XFT_{DS} achieves the 62 best overall performance among all the evaluated 62 1.3B models. Specifically, χ FT_{DS} consistently surpasses SFT_{DS} among all the seven studied libraries 62

Model	Size	Instruction 27	Dataset 5	Benchmark 60		
riode!	Size	Dataset 5 27	Size 7	HumanEval (+)	MBPP (+)	
GPT-3.5 (May 2023)	-	Private	-	73.2 (66.5)	-	
STABLE-CODE	3B	-	-	28.7 (25.6)	53.6 (44.1)	
DeepSeek-Coder-Base	1.3B	-	-	28.7 (25.6)	55.6 (46.9)	
Phi-2	2.7B	-	-	48.8 (45.1)	62.7 (52.9)	
DeepSeek-Coder-Instruct	1.3B	Private	2B	65.2 (59.8)	63.9 (53.1)	
SFT _{DS}	1.3B	Evol-Instruct	0.3B	61.6 (57.3)	59.6 (49.1)	
EWA _{DS}	1.3B	Evol-Instruct	0.3B	67.1 (63.4)	58.9 (48.4)	
$\overline{\text{MoE}_{ ext{DS}}}$	8×1.3B	Evol-Instruct	0.3B	65.2 (62.2)	60.4 (50.1)	
$\mathcal{X}FT_{DS}$	1.3B	Evol-Instruct	0.3B	67.1 (64.6)	60.4 (50.1)	

Table 1: Pass@1 results of different LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding, following the setting of prior works (Wei et al., 2023; Liu et al., 2023). We report the results consistently from the EvalPlus (Liu et al., 2023) Leaderboard. Note that numbers in bold refer to the highest scores among all 1.3B models fine-tuned on public datasets, which is the same for all the other tables. 11

Model	Size	Programming Language				Average 39		
		C++	PHP	Java	JS	Swift	Rust	
DeepSeek-Coder-Base	1.3B	28.1	22.9	27.2	28.7	10.9	18.0	22.6
$\overline{\text{SFT}_{ ext{DS}}}$	1.3B	40.4	38.5	40.2	46.2	16.4	27.7	34.9
EWA _{DS}	1.3B	39.4	38.4	37.3	45.2	20.9	28.6	35.0
MoE_{DS}	8×1.3B	42.2	42.2	35.4	49.8	24.7	30.6	37.5 7
$\mathcal{X}FT_DS$	1.3B	42.7	41.5	36.0	49.7	25.3	32.1	37.9

Table 2: Pass@1 results on MultiPL-E (Cassano et al., 2022) following the same hyperparameter settings as 48 prior works (Wei et al., 2023; Luo et al., 2023): temperature = 0.2, top_p = 0.95, max_length = 512, and num_samples = 50. All models are evaluated using bigcode-evaluation-harness (Ben Allal et al., 2022).

and also outperforms EWA_{DS} in general. 62

Ablation Study 63

Effect of Shared Expert with Routing 2 Weight Normalization 2

We demonstrate the importance of the shared ex- 2 pert of $\mathcal{X}FT$ by comparing its performance with 2 the sparse upcycling (Komatsuzaki et al., 2023) baseline that does not employ any shared expert. As shown in Table 4, the performance of the original sparse upcycling (with the "- Shared Expert" 2 label) drops greatly compared with MoE_{DS}. No- 2 tably, the sparse upcycling model even performs 2 worse than SFT_{DS} on HumanEval+, showing its 2 ineffectiveness for instruction tuning. 2

in most recent works (Dai et al., 2024; Gou et al., 2024), their routing strategy will cause perfor- 12 for fair comparison. As shown in Table 5, trained the original FFN layer. To understand the impor- 12 ing the shared rate setting will largely degrade the

an ablation by excluding it from $\mathcal{X}FT$. Table 4 66 shows that, after removing routing weight normal- 66 ization, the performance substantially decreases, 66 despite being still better than the original sparse upcycling that does not use the shared expert setting. 66

5.2 Effect of Merging Strategy 67

In this section, we demonstrate the effectiveness of 9 our learnable merging technique by comparing it with (1) directly merging experts with initialized mixing coefficients, and (2) the learnable merging technique without the shared rate setting, which o is the same setting as the learned soup in Model Soups (Wortsman et al., 2022) and is described in Eq. (3) and Eq. (4). Specifically, we initialize the While the shared expert setting is also employed 12 learnable mixing coefficient of the shared expert as 9 0.75 and that of the other 7 normal experts as $\frac{1}{28}$ mance degradation due to the scale mismatch be- 12 mixing coefficients outperform the initialized mix- 9 tween the outputs of the upcycled MoE layer and 12 ing coefficients for merging. Furthermore, removtance of routing weight normalization, we conduct 12 performance of $\mathcal{X}FT_{DS}$ on both HumanEval and $_{ extstyle Q}$

Model	Size			Data S	cience	Library			Overall 62
		np	pd	plt	ру	scp	tf	sk	02
DeepSeek-Coder-Base	1.3B	25.1	5.8	34.5	12.7	9.8	11.1	12.7	16.4
SFT _{DS}	1.3B	30.9	17.0	40.5	32.7	18.3	21.1	24.4	25.9
EWA_{DS}	1.3B	32.9	19.4	41.8	25.7	17.7	22.2	33.0	27.8
MoE_{DS}	8×1.3B	33.2	21.3	38.4	41.8	21.8	23.5	37.5	30.0
$\mathcal{X}FT_{DS}$	1.3B	32.9	20.2	38.9	41.4	21.1	16.9	37.5	29.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top_p = 0.5, max_length =1024, and num_samples = 40, following the same hyperparameter setting used in prior works (Wei et al., 2023), 93

Model	HumanEval	HumanEval+ 70
$\overline{\text{SFT}_{ ext{DS}}}$	61.6	57.3 60
MoE_{DS}	65.2	62.2
MoE _{DS} - Normalization	63.4	59.1
MoE _{DS} - Shared Expert	61.6	56.7

Table 4: Ab	olation over the design of MoE _{DS} . "- Normal-
	-
	noves the routing weight normalization from
	making it the same design as MoCLE (Gou
). "- Shared Expert" removes the shared ex-
pert setting	, making MoE _{DS} the same architecture as
original spa	rse upcycling (Komatsuzaki et al., 2023). 66

Model	HumanEval	HumanEval+ 70
MoE_{DS}	65.2	62.2
\mathcal{X} FT _{DS} (INIT)	66.5	64.0
$\mathcal{X} ext{FT}_{ ext{DS}}$	67.1	64.6 90
ZFT _{DS} 42 - Shared Expert Rate	66.5	64.0

Table 5: Ablation over the design of XFT_{DS}. "(INIT)" 68 refers to directly using the initialized mixing coefficients 68 to merge experts without training. "- Shared Rate" re- 68 moves the shared rate setting from $\mathcal{X}FT_{DS}$, which is the 68 same as the learned soup (Wortsman et al., 2022). 68

HumanEval+, demonstrating its importance. 68

We further study the effect of the shared expert 69 rate λ on the performance of the final merged dense 69 model. We evenly choose five shared expert rates, 69 including 0.00, 0.25, 0.50, 0.75, and 1.00, to perform the learnable merging process and evaluate 69 each merged dense model accordingly. Note that 69

Model	λ	HumanEval	HumenEval+ 70
SFT_{DS}	-	61.6	57.3 60
	0.00	62.8	59.8 52
	0.25	64.6	61.0 52
\mathcal{X} FT _{DS} ₄	20.50	65.9	62.8 52
	0.75	67.1	64.6 52
	1.00	63.4	60.4

Table 6: Ablation over the effect of the shared expert 70 rate λ in our learnable merging technique. \mathcal{X} FT can consistently outperform the normal SFT baseline regardless 70 of the shared expert rate, while $\lambda = 0.75$ is the optimal 70 setting in our experiments. 69

MoE model. As shown in Table 6, there are mainly 69 three interesting observations: 69

- 9 The performance of the final merged dense 70 model improves gradually when the shared ex- 70 pert rate grows from 0.00 to 0.75, indicating 70 that general knowledge learned by the shared 70 expert is important for better performance. 70
 - The performance of the final merged dense 70 model drops significantly when the shared ex-70 pert rate grows from 0.75 to 1.00, showing that 70 specific knowledge learned by other experts is 70 also irreplaceable and ignoring them will lead 70 to a significant performance drop. 70
 - All the final merged dense models **consistently** 70 outperform the normal SFT baseline regard-70 less of their shared expert rate, further demonstrating the effectiveness of χ FT. 70

5.3 Effect of Base Code LLM 71

0.75 is the default shared expert rate used in our 69 In this section, we demonstrate that the effective-72 main experiments. If the shared expert rate is 0.00, 69 ness of $\mathcal{X}FT$ is not dependent on the choice of base 72 it means that the shared expert is ignored when 69 code LLMs. To show this, we conduct an ablation 72 constructing the merged dense model from the up- $_{69}$ experiment by applying χ FT to STABLE-CODE $_{72}$ cycled MoE model; if the shared expert rate is 1.00, 69 BB (Pinnaparaju et al., 2024), whose architecture 72 it means that the final dense model is built by sim- 69 is different from DeepSeek-Coder-Base 1.3B (Guo 72 ply extracting the shared expert from the upcycled 69 et al., 2024), and see whether it can still improve 72

Model	HumanEval	HumanEval+ 77
SFT _{STABLE}	62.2	56.1 87
MoE_{STABLE}	64.0	59.1 87
\mathcal{X} FT _{STABLE}	68.3	62.2

Table 7: Ablation over the effect of the base model 69 by replacing DeepSeek-Coder-Base 1.3B with STABLE- 69 CODE 3B. XFT can consistently improve the instruction 69 Table 8: Experiments on the effect of training overhead. 75 tuning performance of different base code LLMs. 69

7, $\mathcal{X}FT_{STABLE}$ significantly improves SFT_{STABLE} by 10% on HumanEval and 11% on HumanEval+ respectively. Furthermore, $\mathcal{X}FT_{STABLE}$ consistently boosts the performance of MoE_{STABLE} while only using $1/4 \times$ parameters and $1/2 \times$ computations. These results show that the effectiveness of $\mathcal{X}FT$ does not depend on any specific choice of base code LLMs, demonstrating the generalizability of 72 6.3 Preliminary Theoretical Explanation 78 χ FT across different model architectures. 72

Discussion 73

Training Overhead Analysis 74

Compared with SFT, \mathcal{X} FT will inevitably introduce 75 additional overhead in the training process because 75 χ FT needs to fine-tune the upcycled MoE model 75 while the normal SFT technique only needs to fine-75 tune the original dense model. To better understand 75 the effect of such overhead, we conduct an experiment where we use the same training budget (i.e., 75 the same GPU hours) instead of the same training 75 steps for the normal SFT baseline. As shown in 75 Table 8, although sharing the same training budget 75 as $\mathcal{X}FT_{DS}$, the performance of SFT_{DS} is still significantly worse than that of $\mathcal{X}FT_{DS}$, demonstrating $_{75}$ the ability of \mathcal{X} FT to unlock the power of code 75 instruction tuning using the same training budget. 75

Generalizability for General Tasks 76

In this section, we demonstrate that χ FT can 77 improve the performance of LLMs on general 77 tasks across different domains by applying $\mathcal{X}FT_{77}$ to general instruction tuning. We use TinyLlama 77 1.1B (Zhang et al., 2024) as the base model and 77 use evol-instruct-70k (Xu et al., 2023) as the 77 training dataset for general instruction tuning. Fol- 77

Model	HumanEval	HumanEval+ 77
SFT _{DS} w/ same steps	61.6	57.3
SFT _{DS} w/ same budget	62.2	57.3
$\mathcal{X}FT_DS$	67.1	64.6

For our two SFT baselines, "w/ same steps" refers to 75 its performance. Hyperparameter settings are de- 72 while "w/ same budget" refers to the other SFT base- 75 one SFT baseline using the same training steps as \mathcal{X} FT 75 tailed in Appendix A.6. As is shown in Table 72 line using the same training budget as XFT. XFT can 75 72 consistently outperform both SFT baselines to a large 75 72 extent, further demonstrating the ability of $\mathcal{X}FT$ to un-72 lock the power of code instruction tuning. 75

> in Table 9, overall, $\mathcal{X}\mathrm{FT}_{\mathrm{TL}}$ improves $\mathrm{SFT}_{\mathrm{TL}}$ by 5% 77 on MMLU, demonstrating the generalizable effectiveness of $\mathcal{X}FT$ for general instruction tuning. 77

We provide a preliminary theoretical explanation of 79 \mathcal{X} FT by considering a simplified variant of it. Let's 79 start by analyzing the two major steps of χ FT: 79

Step 1: Upcycling. According to the scaling 80 law (Kaplan et al., 2020), the upcycled MoE 80 model performs better than the normal SFT 80 dense model due to more trainable parameters. 80

Step 2: Merging. We consider a simplified variant of χ FT, where the upcycled MoE model 80 (e.g., MoE_{DS}) can be viewed as the ensembling 80 of two dense models and the merged dense 80 model (e.g., $\mathcal{X}\mathrm{FT}_\mathrm{DS}$) can be viewed as the merging of the same two dense models; see Appendix 80 A.8 for more details. As such, we can directly apply the theoretical analyzing process in Section 80 4 of (Wortsman et al., 2022) to analyze the performance difference between the upcycled MoE 80 model and the merged dense model, which is 80 initially designed to analyze the performance dif- 80 ference between model ensembling and model 80 merging. According to (Wortsman et al., 2022), 80 the convexity of the loss can help the merged 80 dense model achieve a similar expected loss as 80 that of the upcycled MoE model. 80

Overall, the **Upcycling** step improves the perlowing existing work (Zhang et al., 2024), we use 77 formance with more trainable parameters, while 81 MMLU (Hendrycks et al., 2021) with the 5-shot 77 the Merging step maintains the upcycled MoE-81 setting as our evaluation benchmark to showcase 77 level performance with only dense-model compute. 81 the general performance of LLMs. Hyperparameter 77 Consequently, we provide a preliminary theoretical 81 settings are detailed in Appendix A.7. As shown 77 explanation for the effectiveness of χ FT. 81

Model		Discipline			Overall	108
	Humanities	Social Science	STEM			.00
SFT _{TL}	25.38	23.30	24.20	26.78	24.97	_
$\overline{\text{MoE}_{\text{TL}}}$	23.85	26.32	27.40	28.03	26.11	_
$\mathcal{X} ext{FT}_{ ext{TL}}$	23.91	26.49	27.72	28.29	26.30	

Table 9: Experiments on the generalizable effectiveness of $\mathcal{X}FT$ for general tasks in MMLU benchmark (Hendrycks 77 et al., 2021). It shows that $\mathcal{X}FT$ can improve the general instruction tuning performance of LLMs. 77

Conclusion 87

This paper introduces $\mathcal{X}FT$ to unlock the power 83 of code instruction tuning by simply merging up- 83 cycled MoE. Similar to SFT, \mathcal{X} FT starts with a 83 dense LLM and produces a fine-tuned dense LLM 83 with the exact size and model structure. Yet, XFT 83 Loubna Ben Allal, Niklas Muennighoff, improves SFT by upcycling the pre-trained dense 83 LLM to an MoE model for fine-tuning, after which 83 we compile the MoE model back to an efficient 83 dense LLM with a learnable merging mechanism. 83 As such, we unleash the performance limit of in-83 struction tuning without any additional inference 83 Federico Cassano, John Gouwar, Daniel Nguyen, Syd-107 overhead. Using the same dataset, χ FT improves 83 SFT on a variety of benchmarks, including Hu-83 manEval(+), MBPP(+), MultiPL-E, and DS-1000, 83 from 2% to 13%. By applying $\mathcal{X}FT$ to DeepSeek-83 Coder-Base 1.3B, we create the next state-of-the-83 art small (<3B) LLM for code. The ultimate dense 83 Sahil Chaudhary. 2023. Code alpaca: An instructionforms the full upcycled MoE which uses $8 \times$ parameters as much as our final dense LLM. \mathcal{X} FT is fully 83 orthogonal to the existing instruction tuners such 83 as Evol-Instruct and OSS-INSTRUCT, opening a 83 new dimension to maximal code instruction tuning. 83

Limitations 7

While χ FT has proven to be effective through extensive experiments in the paper, we apply our tech- 84 nique to LLMs with no more than 3B parameters 84 due to resource constraints. This limitation hin-84 ders our ability to showcase the impact of $\mathcal{X}FT$ on 84 larger models. In addition, to balance the general 84 knowledge in the shared expert and the specific 84 knowledge in other normal experts, we introduce a 84 hyperparameter λ in the merging process of \mathcal{X} FT, 84 which might slightly increase the efforts for hyper-84 parameter search. It would be interesting to explore 84 other hyperparameter-free techniques to tackle this 84 challenge in the future. Furthermore, while χ FT ₈₄ has been empirically proven powerful, it would be 84 interesting to provide a theoretical explanation for 84 Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. 111 its strong performance. 84

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 105 Bosma, Henryk Michalewski, David Dohan, Ellen 105 Jiang, Carrie Cai, Michael Terry, Quoc Le, and 105 Charles Sutton. 2021. Program synthesis with large 105 language models. 105

Lo- 106 gesh Lipkin, Kumar Umapathi, Ben and 106 von Werra. Leandro 2022. A framework 106 the evaluation of code generation mod-106 for https://github.com/bigcode-project/ els. bigcode-evaluation-harness.

ney Nguyen, Luna Phipps-Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, 107 Molly O Feldman, Arjun Guha, Michael Greenberg, 107 and Abhinav Jangda. 2022. Multipl-e: A scalable 107 and extensible approach to benchmarking neural code 107 generation. 108

following llama model for code generation. https: 108 //github.com/sahil280114/codealpaca.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and 109 Shangsong Liang. 2022. Revisiting parameter- 109 efficient tuning: Are we really there yet? 109

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 110 Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 110 plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 110 Greg Brockman, Alex Ray, Raul Puri, Gretchen 110 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 110 try, Pamela Mishkin, Brooke Chan, Scott Gray, 110 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 110 Kaiser, Mohammad Bavarian, Clemens Winter, 110 Philippe Tillet, Felipe Petroski Such, Dave Cum- 110 mings, Matthias Plappert, Fotios Chantzis, Eliza- 110 beth Barnes, Ariel Herbert-Voss, William Hebgen 110 Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 110 Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 110 William Saunders, Christopher Hesse, Andrew N. 110 Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 110 Morikawa, Alec Radford, Matthew Knight, Miles 110 Brundage, Mira Murati, Katie Mayer, Peter Welinder, 110 Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 110 Sutskever, and Wojciech Zaremba. 2021. Evaluating 110 large language models trained on code. 110

Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding 111

Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, 111 Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, 111 and Wenfeng Liang. 2024. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. 111	Sophia Yang, Szymon Antoniak, Teven Le Scao, 120 Théophile Gervet, Thibaut Lavril, Thomas Wang, 120 Timothée Lacroix, and William El Sayed. 2024. Mix-120 tral of experts. 120 red Kaplan, Sam McCandlish, Tom Henighan, Tom B. 121
Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao 112 Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui 112 Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang. 112 2023. Loramoe: Revolutionizing mixture of experts for maintaining world knowledge in language model alignment.	Brown, Benjamin Chess, Rewon Child, Scott Gray, 121 Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 121 Scaling laws for neural language models. 121
Rotem Dror, Gili Baumer, Segev Shlomov, and Roi 113 Reichart. 2018. The hitchhiker's guide to testing statistical significance in natural language processing. 11 Year In Proceedings of the 56th Annual Meeting of the 113 Association for Computational Linguistics (Volume 113 1: Long Papers), pages 1383–1392, Melbourne, Australia. Association for Computational Linguistics. 113	Sparse upcycling: Training mixture-of-experts from dense checkpoints. 122 Thang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 123 Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih, 123 Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000: 123 A natural and reliable benchmark for data science code generation. 123
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, 114 Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret 114 Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou, 114 Tao Wang, Yu Emma Wang, Kellie Webster, Marie 114 Pellat, Kevin Robinson, Kathleen Meier-Hellstern, 114	mitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 124 Dehao Chen, Orhan Firat, Yanping Huang, Maxim 124 Krikun, Noam Shazeer, and Zhifeng Chen. 2020. 124 Gshard: Scaling giant models with conditional computation and automatic sharding. 124 awei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by chat-GPT really correct? rigorous evaluation of large language models for code generation. In <i>Thirty-seventh</i> 125
William Fedus, Barret Zoph, and Noam Shazeer. 2022. 115 Switch transformers: Scaling to trillion parameter 115 models with simple and efficient sparsity. 115	Conference on Neural Information Processing Sys- 125 tems. 125 LaMA-MoE Team. 2023. Llama-moe: Building 126
Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T. Kwok, and Yu Zhang. 2024. Mixture of cluster-conditional lora experts for vision-language instruction tuning. 116	mixture-of-experts from llama with continual pre-training.
Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 117 Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 117 Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. 2024. Deepseek-coder: When the large language model meets programming – the rise of code intelligence. 117	Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 127 Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 127 Zucker, Younes Belkada, Zijian Wang, Qian Liu, 127 Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-127 Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue 127 Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 127 Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 127 Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 127
Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 118 Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 118 2021. Measuring massive multitask language understanding.	Niklas Muennighoff, Xiangru Tang, Muhtasham 127 Oblokulov, Christopher Akiki, Marc Marone, Cheng- hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 127 Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas 127
Yongqi Huang, Peng Ye, Xiaoshui Huang, Sheng Li, 119 Tao Chen, Tong He, and Wanli Ouyang. 2023. Experts weights averaging: A new general training scheme for vision transformers. 119	Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten 127 Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz 127 Ferrandis, Lingming Zhang, Sean Hughes, Thomas 127
Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris 120 Bamford, Devendra Singh Chaplot, Diego de las 120 Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie Anne Lachaux, Pierre Stock, Sandeep Subramanian, 120	Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2024. Starcoder 2 and the stack v2: The next generation. 127 yang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 128

Empowering code large language models with evol-	Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang-
instruct.	wei Zheng, Wangchunshu Zhou, and Yang You. 142
Zohar Manna and Richard J Waldinger. 1971. Toward 12	2024. Openmoe: An early effort on open 142 mixture-of-experts language models. arXiv preprint 142
automatic program synthesis. Communications of 12	
the ACM, 14(3):151–165. 129	
Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, 13	Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and 143
Jonathan Tow, James Baicoianu, , and Nathan Cooper.	Wei Eu. 2024. Thiyitama. An open-source sman 143
2024. Stable code 3b. 130	language model. 143
N Cl A. I'. M' L'.' IV CM. '	Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff	Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
Dean. 2017. Outrageously large neural networks: 13	171 F.W. 10 . W. 2022 I
The sparsely-gated mixture-of-experts layer. 131	tion tuning for large language models: A survey. 144
Anders Saggerd Anders Johannson Barbara Blank 40	
Anders Søgaard, Anders Johannsen, Barbara Plank, 13 Dirk Hovy, and Hector Martínez Alonso. 2014.	A Appendix for " \mathcal{X} FT: Unlocking the $_{85}$
What's in a p-value in NLP? In Proceedings of the 13	
Eighteenth Conference on Computational Natural 13	
Language Learning, pages 1–10, Ann Arbor, Michi-	Mixture-of-Experts''
gan. Association for Computational Linguistics. 132	
Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa	A.1 Hyperparameter Settings 86
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh	We use a batch size of 64 and a learning rare of 101
Hajishirzi. 2023. Self-instruct: Aligning language 13 models with self-generated instructions. 133	5e-5 with a linear scheduler to fine-tune MoE _{DS} 101
models with self-generated instructions.	for 4 epochs with 500 warmup steps, following 101
Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin	the implementation of previous work (Wei et al., 10
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-	2023) We further use a batch size of 64, a shared 404
drew M. Dai, and Quoc V. Le. 2022. Finetuned 13 language models are zero-shot learners.	expert rate λ of 0.75, and a learning rare of 1e-5 101
	with a linear schedule to fine-tune the learnable 101
Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and	mixing coefficients for each of the experts in the 101
Lingming Zhang. 2023. Magicoder: Source code is 13 all you need. <i>arXiv preprint arXiv:2312.02120</i> . 135	Instruction-tuned MoE_{DS} on the instruction dataset 101
an you need. arxiv preprint arxiv.2312.02120.	for 1 epoch with 125 warmup steps. Detailedly, we 101
Frank. Wilcoxon. 1945. Individual comparisons by 13	use Softmax to keep the sum of the mixing coef- 10
ranking methods. <i>Biometrics</i> , 1:196–202. 136	ficients of the other 7 normal experts as 0.25. For 101
Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak 13	SFT_{DS} and EWA_{DS} , we use the same hyperparam-
Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, 13	eter setting as \mathcal{X} FT, where the batch size is 64 and 101
	the learning rate is 5e-5 with a linear scheduler. Be- 10°
Yair Carmon, Simon Kornblith, and Ludwig Schmidt. 13 2022. Model soups: averaging weights of multiple 13	cause XFT is trained for 4 epochs during upcycling 101
fine-tuned models improves accuracy without increas-	and I epoch during merging, for a fair comparison, 10
ing inference time. 137	we train SFT _{DS} and EWA _{DS} for 5 (= 4 + 1) epochs $_{101}$
Hearman Wy Heishang Thoma and Dei Vy 2024 to	with 625 warmup steps. 101
Haoyuan Wu, Haisheng Zheng, and Bei Yu. 2024. 13 Parameter-efficient sparsity crafting from dense to 13	
Parameter-efficient sparsity crafting from dense to 13 mixture-of-experts for instruction tuning on general 13	A.2 Implementation details of EWA 88
tasks.	Because EWA (Huang et al., 2023) does not release 89
Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong 13	
Chen, Xiyang Dai, and Lu Yuan. 2022. Residual 13	ourselves, including constant schedule and linear 89
mixture of experts. 139	schedule. We use a share rate β of 0.3, following 89
Can Yu Qinafana Sun Vai Thana Vinha Gana	the original setting of FWA While FWA with the
Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 14 Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin	constant schedule achieves reasonable performance 89
Jiang. 2023. Wizardlm: Empowering large language 14	in our evaluation, the training loss of EWA with the 89
models to follow complex instructions. 140	linear schedule becomes very unstable, as is shown 89
Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou, 14	in Figure 3, and thus cannot achieve reasonable 89
and Yang You. 2022. One student knows all experts 14	
know: From sparse to dense. 141	EWA with the constant schedule in Section 4. 89

Figure 3: Training loss curve of EWA with constant 80 schedule and linear schedule. 89

Model	HumanEval	HumanEval+ 93
SFT _{DS}	61.6	57.2 99
EWA _{DS}	62.7	58.8
$\mathcal{X} ext{FT}_{ ext{DS}}$	64.5	60.9 99

Table 10: Average pass@1 results of 200 experiments 94 on HumanEval (+) computed with sampling. XFT clearly outperforms both EWA_{DS} and SFT_{DS}. 94

A.3 Details of HumanEval and MBPP 90

In these benchmarks, each task consists of a task 91 description in English, which is sent to LLMs as 91 the prompt, and LLMs are expected to generate the 91 corresponding code to satisfy the requirements in 91 A.5 the description. While these benchmarks provide 91 a handful of test cases to validate the correctness 91 of the generated code, these tests are often insufficient for more rigorous evaluation. As such, HumanEval+ and MBPP+ proposed by EvalPlus (Liu 91 et al., 2023) are usually used to evaluate the correct-9 ness of the generated code, which provides 80×/35× 91 more tests compared with the original benchmarks. 91

Statistical Significance Analysis 92

on HumanEval (+), the model will sample one so- 93 works (Jiang et al., 2024; Xue et al., 2024). 1681 lution for each problem in HumanEval (+) with top 93 p = 0.95 and temperature = 0.8, which is the same 93 et al., 2021).

Model	HumanEval	HumanEval+ 93
$\overline{\mathcal{X}FT_{DS}}$ vs. EWA _{DS}	2.6e-18	8.0e-23
\mathcal{X} FT _{DS} vs. SFT _{DS}	9.6e-30	3.7e-33

Table 11: p-values for $\mathcal{X}FT_{DS}$ vs. EWA_{DS} and $\mathcal{X}FT_{DS}$ 93 vs. SFT_{DS} in 200 experiments on HumanEval (+) com- 93 puted with sampling. Results show that improvements 93 brought by $\mathcal{X}FT$ are statistically significant. 93

Following prior work (Liu et al., 2023), we repeat this experiment 200 times for three techniques: 94 $\mathcal{X}FT_{DS}$, EWA_{DS}, and SFT_{DS}. EWA_{DS} is included _{9.4} because it is the best-performing baseline in our 94 main experiment. We first compute their average 94 pass@1 performance in these 200 experiments. As 94 is shown in Table 10, $\mathcal{X}FT_{DS}$ outperforms both Q_{Δ} EWA_{DS} and SFT_{DS} clearly. Q4

Furthermore, we use the Wilcoxon signed-rank 95 test (Wilcoxon, 1945; Dror et al., 2018), a widely 95 used statistical test, to check if the improvements 95 brought by χ FT are statistically significant. As 95 shown in Table 11, the p-values for both $\mathcal{X}FT_{DS}$ 95 vs. EWA_{DS} and \mathcal{X} FT_{DS} vs. SFT_{DS} are much ₉₅ smaller than both 0.0025 (the significance level 95 recommended for NLP work by (Søgaard et al., 95 2014)) and 0.05 (the most common significance 95 level), demonstrating the statistical significance of 95 the improvements brought by χ FT. 95

Inspired by recent works (Jiang et al., 2024; Xue 97

Analysis on Expert Specialization 96

et al., 2024), we analyze whether each expert in 97 MoE_{DS} has different specializations in different 97 programming languages by visualizing the routing 97 decision of the tokens from different programming 97 languages in the MultiPL-E benchmark (including 97 Python). For the MultiPL-E benchmark, we collect 97 the routing decision when conducting experiments 97 in Section 4.3. For Python, we collect the routing 97 decision by reruning HumanEval experiment fol- 97 In this section, we show that improvements brought 93 lowing the same setting as Section 4.3. Following 97 by χ FT are statistically significant. In our main ex- 93 Mixtral (Jiang et al., 2024), we get the visualiza- 97 periments, we follow prior works (Wei et al., 2023; 93 tion results from layers 0, 11, and 23 in MoE_{DS}, 97 Lozhkov et al., 2024) to conduct experiments on 93 where layer 0 and layer 23 are the first and the last 97 HumanEval (+) using greedy decoding. To demon- 93 layers of MoE_{DS}. As is shown in Figure 4, we do 97 strate the statistical significance of our improve-93 not observe obvious patterns in the assignment of 97 ments, we change our setting from greedy decoding 93 experts based on the programming language, which 97 to sampling. In detail, to conduct one experiment 93 is in line with the observation reported by recent 97

Training Settings for STABLE-CODE 3B 98

setting used in prior works (Liu et al., 2023; Chen 93 We use evol-codealpaca-v1 as the training 99 dataset. Since STABLE-CODE 3B is the base model, 99

Figure 4: Proportion of tokens assigned to each expert on different programming languages from MultiPL-E 97 (including Python) for layers 0, 11, and 23. The shared expert 0 is excluded from the chart because all the tokens are always assigned to it. The gray vertical line marks $\frac{1}{7}$, which is the proportion expected with the uniform sampling.

500 warmup steps. Similar to $\mathcal{X}FT_{DS}$, we obto merge MoE layers inside MoE $_{
m STABLE}$ as normal $_{
m 99}$ rate of 5e-5, and 300 warmup steps. $_{
m 99}$ FFN layers, which is fine-tuned with a batch size 99 of 64, a shared expert rate λ of 0.85, and a learning 99 rate of 1e-5 with a linear schedule for 1 epoch with 99 We consider a simplified variant of $\mathcal{X}FT$ as below: 103125 warmup steps. Our baseline model, namely 99 **SFT**_{STABLE}, is fine-tuned for 5 = 4 + 1 epochs 99 with a batch size of 64, a learning rate of 5e-5, and 99 625 warmup steps for a fair comparison. 99

A.7 Training Settings for TinyLlama 1.1B 100

Using TinyLlama 1.1B as the base model, we up- 10. cycle a new MoE model, namely $\overline{\text{MoE}_{\text{TL}}}$, from the $_{101}$ base model. Following the setting for MoE_{DS}, we 101 construct MoE_{TL} with 8 experts in one expert layer, $_{10}$ where the top 6 experts are activated for each token, 10 including one shared expert. As such, the number 101

we upcycle a new MoE model from the base model, 99 of parameters for MoE_{TL} can be written as 8×1.1 B. 99 namely MoE_{STABLE}. Due to limited computa- 99 We use a batch size of 64 and a learning rate of 5e-5 99 tional resources, we construct MoE_{STABLE} with 4 $_{99}$ with a linear scheduler to fine-tune MoE_{TL} for 4 $_{99}$ experts in one expert layer, where the top 2 experts g_{9} epochs with 240 warmup steps. To obtain $\mathcal{X}FT_{TL}$, g_{9} are activated for each token, including one shared 99 we learn mixing coefficients to merge MoE layers 99 expert. Consequently, the size of MoE_{STABLE} can 99 inside MoE_{TL} by fine-tuning them with a batch 99 be described as $4\times3B$. We use a batch size of 64 99 size of 64, a shared expert rate λ of 0.85, and a 99 and a learning rate of 5e-5 with a linear sched-99 learning rate of 2e-5 with a linear schedule for 1 99 uler to fine-tune MoE_{STABLE} for 4 epochs with 99 epoch with 60 warmup steps. For a fair compari-99 son, we fine-tune a baseline model **SFT_{TL}** for 5 = 99tain $\mathcal{X}\mathbf{FT}_{\mathbf{STABLE}}$ by learning mixing coefficients $_{99}4 + 1$) epochs with a batch size of 64, a learning $_{99}$

Theoratical Explanation Details 102

- The original dense model is a one-layer transformer model, which contains one attention layer 80 connected with one feed-forward network (FFN) layer. As such, the upcycled MoE model is also 80 a one-layer transformer model, containing one 80 attention layer connected with an MoE layer.
- The upcycled MoE model only has two experts 97 (\mathbf{e}_1 and \mathbf{e}_2), both of which are always selected 97 for processing the input tokens. 97
- The router in the MoE model assigns constant 99 weights to each expert, regardless of the input 99 token. Consequently, the output of the MoE 99

layer for the t-th token \mathbf{h}_t can be represented as $(1-\alpha)\mathbf{e}_1(\mathbf{u}_t) + \alpha\mathbf{e}_2(\mathbf{u}_t)$, where $1-\alpha$ is the router weight assigned to \mathbf{e}_1 , α is the router weight assigned to \mathbf{e}_2 , and \mathbf{u}_t is the input of the MoE layer for the t-th token. 80

• We simplify the process of merging the MoE model back to a dense model as $\mathbf{W}_{\mathbf{e}_\alpha} = (1-\alpha)\mathbf{W}_{\mathbf{e}_1} + \alpha\mathbf{W}_{\mathbf{e}_2}$, where $\mathbf{W}_{\mathbf{e}}$ refers to the weight of \mathbf{e} and \mathbf{e}_α refers to the weight of the FFN in the merged dense model. 80

In this simplified scenario, if we denote $f(x;\theta)$ as the output of the model θ for the input x, the 80 output of this simplified MoE model for input to-80 ken x can be represented as $f(x; \theta_{\text{MoE}})$. Interestingly, if we define two new dense models θ_1 and 80 θ_2 , where θ_1 and θ_2 use the same attention layer as 80 this MoE model while using \mathbf{e}_1 and \mathbf{e}_2 as the FFN 80 layer separately, $f(x; \theta_{ extbf{MoE}})$ can be represented as 80 $(1-\alpha)f(x;\theta_1) + \alpha f(x;\theta_2)!$ Consequently, the computation process of this simplified MoE model 80 can be viewed as ensembling the outputs of two 80 dense models θ_1 and θ_2 . Meanwhile, the process of 80 merging the upcycled MoE model back to a dense 80 model in this simplified $\mathcal{X}FT$ can be represented 80 as $\theta_{\alpha} = (1 - \alpha)\theta_1 + \alpha\theta_2$, which is the merging of 80 the same two dense models θ_1 and θ_2 . 80