1. a, b, c) siehe ML - mögliche Klauswaufgabe (free Punkte)

2. a) a · b + b
= \bar{a} + \bar{b} + b

De Morpan: $\overline{x \cdot g} = \overline{x} + \overline{g}$ Komplomentargesets: $x + \overline{x} = \Lambda$ Extremalgesets: $x + \Lambda = \Lambda$ "=" beseichet die logische Agenialung (d.h. (ints und meets haben den selben helprheitsvert für alle Betzugen). Formal also genauer als '=' In ERA aber eig. egal:)

 $\begin{array}{ccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

De Morgan (angen) Involution: a = a

= y - linke Seile

Kombination: (a+b). (a+b) = b wil a.a das and see O accepted winder

 $(\overline{x} + g) \cdot (\overline{x} + \overline{g})$ $= \overline{x} \rightarrow \operatorname{rechk} \operatorname{Scik} \operatorname{Kanbinstion}$

Linke Seite + rechk Seik > nicht äquiralunt

c) $\overline{(\overline{a} \cdot b) + \overline{b}}$ $\overline{(\overline{a} \cdot b)} \cdot \overline{\overline{b}}$

De Morgan

= (a + 2) · P

Involution De Morgan

= (a +b) ·b = a.b +b·b Involution

Distribution (x+q) z = x z + g · z

= a.b + 0

Komplumentargeseta: x.x =0

= a.b - link Sik

 $\frac{\overline{a} + (\underline{b} + (\overline{a} + \overline{a} \cdot \overline{b})}{\overline{a} + (\overline{b} + \overline{a})}$

Absorption: $x + (x \cdot y) \stackrel{!}{=} x$

\$ a (1+a)

De Morgan Involution

= a · (b+a)
= a · b + a · a

Distributivität

= a.b + 0

Komp lumentargesets

= a.b → redik Seik

Linha Seik = rechte Seik → againalent /

3. Sei M eine Mange an boolschen Fenktionen fi. M ist funktional vollständig gdw. Sich jede boolsche Fenktion als Komposition (Nachinanderaesfehreng) von fi's durstelle (ässt.

Aus der VL wisson wir, dass {1,7} (AVD und Negation) femhtional vollständig ist. D.h.

falls wir Funktionen finden wit denen wir 1 cmol 1 "nachbannen" (2 ghicke Wahrhitstadelle)

komen, dann sind diese auch funktional vollständig.

· NOR (Negation von OR):

۵	Ы	a Nor 5	7: Wir wisen, das	s NOR die Napation von	OP ist and mach olm later potens	sents
		1			+x = x NOR (x,x) enter	
		0	9	The state of the s	doss NOR die cryelahik AND-hi	
ノ	0	0			ORG, N), NOR(30)) · NOR(\$\overline{\sigma}, \overline{\sigma} : \overline{\sigma} + \overline{\sigma} =	
		n	'	7 0	(1) 307	J

- => NOR ist also furthinal volletimaliq
- · XOR (⊕): nickt fuhlional vollationaly, Beneis siele ML
- · 1-, ←3: We wise does ← (XNOR) der Negation von XOR catspricht so nicht funktional vollständig
- · {7, → 1: Aus DS sollke die Umformeng der Implikation bekannt sein: x → g = x + g

abasb 7: Bereits in dr M	ieuge gesten
00 1 1: Negien mir die	Implikation exhalten wir x + y. Wir inertieren
	each De Moyan alles posst:
$ \land \circ \qquad \neg (x \to \overline{5}) = (\overline{x} + \overline{5}) $	= $\hat{\vec{x}} \cdot \hat{\vec{q}} = x \cdot \vec{q}$
11 1 = ist furtional vollstand	

4. siehe Webseite