

Systematization of Value Extraction

- Assume that extraction is inevitable as validators are rational agents
- But some validators have more capability than others
- Systematically give every validator access to the most profitable block possible
- Proposer Builder Separation (PBS)

 Often the profits to validators come at the expense of ordinary users, leaving ordinary users vulnerable to systematic extraction

Systematization of Value Extraction

Systematization of Value Extraction

- Widespread in industry
- Validation of the rational model

Fair Ordering

- Temporal Fair Ordering
 - (Receive Order Fairness) "If sufficiently many (at least γ -fraction) nodes receive a transaction tx1 before another transaction tx2, then all honest nodes must output tx1 before tx2" [KZGJ20]
- Blind Ordering
 - Ordering policy does not consider transaction contents (except transaction fees). Can be enforced through threshold encryption, Trusted Execution Environments (TEEs)
- A large body of academic literature
- Protection for users
- Why would a rational validator opt in, unless protocol is revamped?

Fair Ordering

A practical question

Can users get protection against the most pernicious forms of MEV while accounting for rational validators?

PROF: Protected Order Flow in a Profit-Seeking World

Simple

PROF Mechanism

Backward Compatible

Protects Users without service degradation

Accounts for Rational Validators

PROF Design Summary

Validator's perspective

Which block does the validator choose?

Block B^* Reward $R^* = R + \varepsilon$

User's perspective

Which path does the user choose?

Proposer Builder Separation (PBS)

PROF Key Insight

Learn practically nothing about PROF transactions if you leave-it

Why should relays adopt PROF?

Relays compete to have their blocks accepted

 All else equal, a PROF-enhanced relay is more competitive than a regular relay

Workflow for builders remains unchanged

PBS Workflow

PROF Design Details

PROF Timeline

Latency Penalty in PBS Auction

10,000 randomly selected historical auction slots (between 1/3/24 and 4/11/24)

Percentiles of slots for a particular latency and penalty

Example: If auction were ended 85ms earlier, 90% of slots would give ~0.003 ETH less

Inclusion Likelihood

Relationship between α , g, γ

Inclusion Likelihood

Takeaway:

High Inclusion Likelihood of PROF for minimal fee

A Step Further: Redistribution of MEV to Users

Exchange B

ETH/USD \$100

A Step Further: Redistribution of MEV to Users

A Step Further: Redistribution of MEV to Users

Share \$X with Alice, \$20-X divided up between validator and arbitrageur

PROF-Share: A Step Further

- Redistribute any MEV opportunity created by PROF users back to them
- For instance, arbitrage from backrunning of DEX trades

Related Redistribution Mechanisms

- MEV-Share and MEV-Blocker
- Attempts to prevent frontrunning through a trusted intermediary
- Yet, needs to leak hints about transaction contents for attracting and facilitating backrunning and redistribution
- Widespread in industry: Revenue to the validator from MEV-Share and MEV-Blocker is pivotal in deciding the winner of a majority of auctions!

Other benefits of PROF-Share

- PROF-Share transactions are completely private until the validator commits to including them, and then are completely released for backrunning
- As a result:
- More efficient backrunning compared to backrunning based on hints (gas savings as state is known offchain)
- PROF-Share users get to keep *almost all* of the backrunning profits rather than sharing it with validators (as in MEV-Share)
- Organic backrunning between transactions of a PROF bundle one PROF user could be a "backrunner" of another user if they trade in opposite directions

Economic Utility Analysis

- Compare different protection mechanisms
- PROF v/s PROF-Share v/s MEV-Share
- Model:
 - DEX : A constant product AMM
 - An external infinite liquidity market for arbitragers (Centralized Exchanges)
 - constant price P
 - Start out with AMM price of P
 - Each user trades a unit quantity in randomly either direction
 - Demand Ratio (informally): A maximum cap on how much volume of trades are in one direction compared to a baseline of net 0 buy and 0 sell

Economic Utility Analysis

- Takeaway1 : PROF-Share always delivers the highest value of users
- Takeaway2: In times of low net demand, PROF delivers higher value even without redistribution benefits (MEV-Share), thanks to organic backrunning

Flexibility in PROF

- Multiple Sequencers
- PROF Sequencer here is a black-box
 - Centralized / Decentralized
 - PROF supports any ordering policy

Conclusion

- PROF: A simple backward-compatible system designed for protecting users from harmful MEV extraction, while accounting for the profitmaximizing nature of validators
- PROF Endgame Thesis: Transactions that want top of the priority can go through the gauntlet of MEV auctions*. All other transactions should go through PROF to enjoy protection from MEV

^{*}nullifies the externality of latency racing in fair and blind ordering

- Visit the website: prof-project.github.io (FAQs)
 - Watch the demo of PROF-enriched blocks landing at validators
- Uniswap RFP: \$50k for maturing PROF implementation
- Announcements @PROF_MEV ×
- Contact: babel@cs.cornell.edu
- PROF paper just released!

PROF: Protected Order Flow in a Profit-Seeking World

Kushal Babel^{†§}, Nerla Jean-Louis^{‡§}, Yan Ji^{†§}, Ujval Misra^{||§}, Mahimna Kelkar^{†§}, Kosala Yapa Mudiyanselage[¶], Andrew Miller^{‡§}, Ari Juels^{†§}

[†]Cornell Tech, [‡]UIUC, ^{||}UC Berkeley, [§]IC3, [¶]Fidelity Center for Applied Technology

Appendix

Execution Perf

An Entire Supply Chain (PBS)

