Unsupervised Learning: Linear Dimension Reduction

Unsupervised Learning

• Clustering & Dimension Reduction (化繁為簡)

• Generation (無中生有)

Clustering & Dimension Reduction in these slides

Clustering

Cluster 3

Open question: how many clusters do we need?

Cluster 1

Cluster 2

K-means

- Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
- Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
- Repeat
 - For all x^n in X: $b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$

• Updating all
$$c^i$$
: $c^i = \sum_{x^n} b_i^n x^n / \sum_{x^n} b_i^n$

Clustering

Hierarchical Agglomerative Clustering (HAC)

Distributed Representation

 Clustering: an object must belong to one cluster

小傑是強化系

Distributed representation

Dimension Reduction

小傑是

強化系	0.70
放出系	0.25
變化系	0.05
操作系	0.00
具現化系	0.00
特質系	0.00

特質系

Dimension Reduction

http://reuter.mit.edu/blue/images/research/manifold.png http://archive.cnx.org/resources/51a9b2052ae167db310fda5600b89badea85eae5/isomapCNXtrue1.png

Dimension Reduction

- In MNIST, a digit is 28 x 28 dims.
 - Most 28 x 28 dim vectors are not digits

Dimension Reduction

The dimension of z would be smaller than x

Feature selection

Principle component analysis (PCA)
 [Bishop, Chapter 12]

$$z = Wx$$

Principle Component Analysis (PCA)

PCA

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \sum_{z} (z_1 - \overline{z_1})^2 \quad ||w^1||_2 = 1$$

PCA

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

$$z_2 = w^2 \cdot x$$

$$W = \begin{bmatrix} (w^1)^T \\ (w^2)^T \\ \vdots \end{bmatrix}$$

Orthogonal matrix

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \sum_{z_1} (z_1 - \overline{z_1})^2 \quad ||w^1||_2 = 1$$

We want the variance of z_2 as large as possible

$$Var(z_2) = \sum_{z_2} (z_2 - \overline{z_2})^2 \quad ||w^2||_2 = 1$$

$$w^1 \cdot w^2 = 0$$

Warning of Math

$$z_1 = w^1 \cdot x$$

$$\bar{z_1} = \frac{1}{N} \sum z_1 = \frac{1}{N} \sum w^1 \cdot x = w^1 \cdot \frac{1}{N} \sum x = w^1 \cdot \bar{x}$$

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2$$

$$=\frac{1}{N}\sum_{x}(w^1\cdot x-w^1\cdot \bar{x})^2$$

$$=\frac{1}{N}\sum \left(w^1\cdot (x-\bar{x})\right)^2$$

$$= \frac{1}{N} \sum_{x} (w^1)^T (x - \bar{x}) (x - \bar{x})^T w^1$$

$$= (w^1)^T \frac{1}{N} \sum_{i} (x - \bar{x})(x - \bar{x})^T w^1$$

$$= (w^1)^T Cov(x) w^1 \quad S = Cov(x)$$

$$S = Cov(x)$$

$$(a \cdot b)^2 = (a^T b)^2 = a^T b a^T b$$

$$= a^T b (a^T b)^T = a^T b b^T a$$

Find w^1 maximizing

$$(w^1)^T S w^1$$

$$||w^1||_2 = (w^1)^T w^1 = 1$$

Find
$$w^1$$
 maximizing $(w^1)^T S w^1$ $(w^1)^T w^1 = 1$

$$S = Cov(x)$$
 Symmetric positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier [Bishop, Appendix E]

$$g(w^{1}) = (w^{1})^{T}Sw^{1} - \alpha((w^{1})^{T}w^{1} - 1)$$

$$\partial g(w^{1})/\partial w_{1}^{1} = 0$$

$$\partial g(w^{1})/\partial w_{2}^{1} = 0$$

$$\vdots$$

$$Sw^{1} - \alpha w^{1} = 0$$

$$Sw^{1} = \alpha w^{1} \quad w^{1} : \text{eigenvector}$$

$$(w^{1})^{T}Sw^{1} = \alpha(w^{1})^{T}w^{1}$$

$$= \alpha \quad \text{Choose the maximum one}$$

 w^1 is the eigenvector of the covariance matrix S Corresponding to the largest eigenvalue λ_1

Find
$$w^2$$
 maximizing $(w^2)^T S w^2$ $(w^2)^T w^2 = 1$ $(w^2)^T w^1 = 0$

$$g(w^2) = (w^2)^T S w^2 - \alpha ((w^2)^T w^2 - 1) - \beta ((w^2)^T w^1 - 0)$$

$$\partial g(w^2) / \partial w_1^2 = 0$$

$$\partial g(w^2) / \partial w_2^2 = 0$$

$$\vdots$$

$$= ((w^1)^T S w^2)^T = (w^2)^T S^T w^1$$

$$= (w^2)^T S w^1 = \lambda_1 (w^2)^T w^1 = 0$$

$$\beta = 0$$
: $Sw^2 - \alpha w^2 = 0$ $Sw^2 = \alpha w^2$

 w^2 is the eigenvector of the covariance matrix S $$\operatorname{Corresponding}$ to the $2^{\rm nd}$ largest eigenvalue λ_2

PCA - decorrelation

$$z = Wx$$
$$Cov(z) = D$$

Diagonal matrix

$$Cov(z) = \frac{1}{N} \sum (z - \bar{z})(z - \bar{z})^T = WSW^T \qquad S = Cov(x)$$

$$= WS[w^1 \quad \cdots \quad w^K] = W[Sw^1 \quad \cdots \quad Sw^K]$$

$$= W[\lambda_1 w^1 \quad \cdots \quad \lambda_K w^K] = [\lambda_1 Ww^1 \quad \cdots \quad \lambda_K Ww^K]$$

$$= [\lambda_1 e_1 \quad \cdots \quad \lambda_K e_K] = D \qquad \text{Diagonal matrix}$$

End of Warning

PCA – Another Point of View

Basic Component:

PCA – Another Point of View

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:

$$\|(x-\bar{x})-\hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

$$L = \min_{\{u^1, ..., u^K\}} \sum_{k=1}^{\infty} \left\| (x - \bar{x}) - \left(\sum_{k=1}^K c_k u^k \right) \right\|_{2}$$

PCA: z = Wx

$$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_K \end{bmatrix} = \begin{bmatrix} (w_1)^T \\ (w_2)^T \\ \vdots \\ (w_K)^T \end{bmatrix} x \begin{cases} \{w^1, w^2, \dots w^K\} \text{ is the component} \\ \{u^1, u^2, \dots u^K\} \text{ minimizing L} \end{cases}$$
Proof in [Bishop, Chapter 12.1.2]

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:

$$\|(x-\bar{x})-\hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

K columns of U: a set of orthonormal eigen vectors corresponding to the k largest eigenvalues of XX^T

This is the solution of PCA

SVD:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/LA_2016/Lecture/SVD.pdf

PCA looks like a neural network with one hidden layer (linear activation function)

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

To minimize reconstruction error:

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

 $c_k = (x - \bar{x}) \cdot w^k$ orthonormal

PCA looks like a neural network with one hidden layer (linear activation function)

Autoencoder

If $\{w^1, w^2, \dots w^K\}$ is the component $\{u^1, u^2, \dots u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

To minimize reconstruction error:

$$c_k = (x - \bar{x}) \cdot w^k$$

Weakness of PCA

Unsupervised

• Linear

Non-linear dimension reduction in the following lectures

http://www.astroml.org/book_figures/chapter7/fig_S_manifold_PCA.html

PCA - Pokémon

- Inspired from: https://www.kaggle.com/strakul5/d/abcsds/pokemon/principal-component-analysis-of-pokemon-data
- 800 Pokemons, 6 features for each (HP, Atk, Def, Sp Atk, Sp Def, Speed)
- How many principle components? $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6}$

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
ratio	0.45	0.18	0.13	0.12	0.07	0.04

Using 4 components is good enough

PCA - Pokémon

PCA - Pokémon

	HP	Atk	Def	Sp Atk	Sp Def	Speed	
PC1	0.4	0.4	0.4	0.5	0.4	0.3	
PC2	0.1	0.0	0.6	-0.3	0.2	-0.7	
PC3	-0.5	-0.6	0.1	0.3	0.6	特殊防禦	
生命力強	0.7	-0.4	-0.4	0.1	0.2	攻擊和生	命)

PCA - MNIST

$$= a_1 \underline{w}^1 + a_2 \underline{w}^2 + \cdots$$

30 components:

images

Eigen-digits

PCA - Face

30 components:

http://www.cs.unc.edu/~lazebnik/research/spring08/assignment3.html

Eigen-face

What happens to PCA?

- PCA involves adding up and subtracting some components (images)
 - Then the components may not be "parts of digits"
- Non-negative matrix factorization (NMF)
 - Forcing a_1 , a_2 be non-negative
 - additive combination
 - Forcing w^1 , w^2 be non-negative
 - More like "parts of digits"
- Ref: Daniel D. Lee and H. Sebastian Seung. "Algorithms for non-negative matrix factorization." *Advances in neural information processing systems*. 2001.

NMF on MNIST

NMF on Face

Matrix Factorization

Matrix Factorization

Number in table: number of figures a person has

There are some common *factors* behind otakus and characters.

http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/

Matrix Factorization

The factors are latent.

No. of Otaku = M No. of characters = N No. of latent factor = K

	r^j	r^1	r^2	r^3	r^4
r^i			(19/19)	9-0-0-0	
				9-9-6	
r^A	А	$5 n_{A1}$	3	5	1
r^B	В	4	3	?	1
r^{C}	С	1	1	?	5
r^D	D	1	?	4	4
r^E	E	?	1	5	4

$$r^{A} \cdot r^{1} \approx 5$$

 $r^{B} \cdot r^{1} \approx 4$
 $r^{C} \cdot r^{1} \approx 1$
:

Minimizing

Only considering the defined value

$$L = \sum_{(i,j)} (r^i \cdot r^j - n_{ij})^2$$

Find r^i and r^j by gradient descent

Assume the dimensions of r are all 2 (there are two factors)

А	0.2 2.1		
В	0.2	1.8	
С	1.3	0.7	
D	1.9	0.2	
E	2.2	0.0	

1(春日)	0.0	2.2
2 (炮姐)	0.1	1.5
3 (姐寺)	1.9	-0.3
4 (小唯)	2.2	0.5

More about Matrix Factorization

Considering the induvial characteristics

$$r^A \cdot r^1 \approx 5$$

$$r^A \cdot r^1 + b_A + b_1 \approx 5$$

 b_A : otakus A likes to buy figures

 b_1 : how popular character 1 is

Minimizing
$$L = \sum_{(i,j)} (r^i \cdot r^j + b_i + b_j - n_{ij})^2$$

Find r^i , r^j , b_i , b_j by gradient descent (can add regularization)

 Ref: Matrix Factorization Techniques For Recommender Systems

Matrix Factorization for Topic analysis

Latent semantic analysis (LSA)

	Doc 1	Doc 2	Doc 3	Doc 4
投資	5	3	0	1
股票	4	0	0	1
總統	1	1	0	5
選舉	1	0	0	4
立委	0	1	5	4

character→document, otakus→word

Number in Table:

Term frequency (weighted by inverse document frequency)

Latent factors are topics (財經、政治)

- Probability latent semantic analysis (PLSA)
 - Thomas Hofmann, Probabilistic Latent Semantic Indexing, SIGIR, 1999
- latent Dirichlet allocation (LDA)
 - Blei, David M.; Ng, Andrew Y.; Jordan, Michael I (January 2003). Lafferty, John, ed. "Latent Dirichlet Allocation". Journal of Machine Learning Research. 3 (4–5): pp. 993–1022.

More Related Approaches Not Introduced

- Multidimensional Scaling (MDS) [Alpaydin, Chapter 6.7]
 - Only need distance between objects
- Probabilistic PCA [Bishop, Chapter 12.2]
- Kernel PCA [Bishop, Chapter 12.3]
 - non-linear version of PCA
- Canonical Correlation Analysis (CCA) [Alpaydin, Chapter 6.9]
- Independent Component Analysis (ICA)
 - Ref: http://cis.legacy.ics.tkk.fi/aapo/papers/IJCNN99_tutorialweb/
- Linear Discriminant Analysis (LDA) [Alpaydin, Chapter 6.8]
 - Supervised

Acknowledgement

- 感謝 彭冲 同學發現引用資料的錯誤
- 感謝 Hsiang-Chih Cheng 同學發現投影片上的錯誤