Introduction to Azure Networking

Introduction

- 1. Overview of data center networks
- 2. Details of VL2 switch

Overview of Azure Data Center Networks

- 1. Applications desire layer-2 semantics for server-server communication
 - Communication latency and throughput bound by the network interface speeds of the source and destination
- 2. Applications need elasticity of resource allocation
 - Grow and shrink computational resources based on need
 - Do not suffer network performance loss for such flexibility in resource allocation
- 3. Agility of data center
 - Ability to allocate resources on demand to meet the dynamic application needs
 - Ensure network performance scaling in the presence of such dynamic allocation
- 4. Limitations to agility in data centers
 - Insufficient network capacity for connecting the servers
 - Conventional network architectures
 - Tree topology using high-cost hardware (links over-subscribed as we reach higher levels of the tree)
 - Fragments server pool (network congestion and server hotspots)
 - Network flooding of one service affects others
 - Prevents easy relocation of services when IP addresses are statically bound to servers
- 5. VL2 Solution
 - Illusion of Virtual Layer 2
 - Appears as though all servers for a given service connected to one another via non-interfering Ethernet switch
 - Scaling up or down of servers for a service maintains this illusion in tact
- 6. VL2 Objectives
 - Uniform Capacity
 - Independent of topology, server-server communication limited only by NICs connected to the servers
 - Assigning servers to services independent of network topology
 - Performance Isolation
 - Traffic of one service does not affect others
 - Flexible assignment of IP addresses to Ethernet ports to support server mobility commensurate with service requirements

Azure VL2 Switch

- 1. Tenets of Cloud-Service Data Center
 - Agility: Assign any servers to any services
 - Boosts cloud utilization
 - Scaling out: Use large pools of commodities
 - Achieves reliability, performance, low cost
- 2. What is VL2?
 - VL2 is the first data center network that enables agility in a scaled-out fashion
 - Why is agility important?
 - Today's data center network inhibits the deployment of other technical advances toward agility
 - With VL2, cloud data centers can enjoy agility in full
- 3. Status Quo: Conventional Data Center Network

Conventional Data Center Network

- 4. Conventional Data Center Network Problems
 - Dependence on high-cost proprietary routers
 - Extremely limited server-to-server capacity
 - Two servers on different subnets will experience significantly worse communication overhead compared to servers that are colocated
 - Applications can interfere with each other due to traffic patterns
 - Resource fragmentation significantly lowers cloud utilization and cost efficiency

Data Center Networks Challenges and Opportunities

- 1. Challenges
 - Instrumented a large cluster used for data mining and identified distinctive traffic patterns
 - Traffic patterns are highly volatile
 - A large number of distinctive patterns even in a day
 - Traffic patterns are unpredictable
 - Correlation between patterns very weak
 - Optimization should be done frequently and rapidly
- 2. Opportunities
 - Data center controller knows everything about hosts
 - Host OS's are easily customizable
 - Probabilistic flow distribution would work well enough, because...
 - Flows are numerous and not huge no elephants
 - Commodity switch-to-switch links are substantially thicker (~10x) than the maximum thickness of a flow
 - Data center network can be made simple

Switch Details

- 1. All we need is a huge L2 switch, or an abstraction of one
 - Should provide the following:

- L2 semantics
- Uniform high capacity
- Performance isolation
- 2. Specific Objectives and Solutions
 - L2 semantics
 - Approach: Employ flat addressing
 - Solution: Name-location separation and resolution service
 - Uniform high capacity between servers
 - Approach: Guarantee bandwidth for hose-model traffic
 - Solution: Flow-based random traffic indirection (Valiant load balancing)
 - Performance isolation
 - Approach: Enforce hose model using existing mechanisms only
 - Solution: TCP

VL2 Addressing and Routing

- 1. Name-Location Separation
 - Cope with host churns with very little overhead
 - Switches run link-state routing and maintain only switch-level topology
 - Allows data centers to use low-cost switches
 - Protects network and hosts from host-state churn
 - Obviates host and switch reconfiguration
 - Directory service maintains server/switch mapping
- 2. Example Topology: Clos Network
 - Offer huge aggregate capacity and multiple paths at modest cost

Addressing and Routing

VL2 Traffic Forwarding

- 1. Traffic Forwarding: Random Indirection
 - Cope with arbitrary traffic flows with very little overhead

- Designate higher-level switches randomly to prevent congestion
- ECMP + IP Anycast
 - Harness huge bisection bandwidth
 - Obviate esoteric traffic engineering or optimization
 - Ensure robustness to failures
 - Work with switch mechanisms available today
- 2. Does VL2 Ensure Uniform High Capacity?
 - How "high" and "uniform" can it get?
 - Performed all-to-all data shuffle tests, then measured aggregate and per-flow goodput
 - Goodput efficiency: 94%
 - Fairness between flows: 0.995
- 3. VL2 Conclusion
 - VL2 achieves agility at scale via
 - L2 semantics
 - Uniform high capacity between servers
 - Performance isolation between services
 - Lessons
 - Randomization can tame volatility
 - Add functionality where you have control

Conclusion

- 1. VL2 switch design is the foundation for how Azure's data center network is architected today
 - Talk from co-author of paper available as supplemental material