Pushdown Automata PDAs

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

The States

stack

$$\underbrace{q_1} \xrightarrow{a, \lambda \to c} \underbrace{q_2}$$

stack

stack

A Possible Transition

A Bad Transition

No transition is allowed to be followed when the stack is empty

Allowed Transition (Not used in practice)

Non-Determinism

These are allowed transitions in a Non-deterministic PDA (NPDA)

NPDA: Non-Deterministic PDA

Example:

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA M

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Execution Example: Time 0

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

 $a, \lambda \rightarrow a$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

Input

Guess the middle of string

Stack

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$

$$\lambda, \lambda \rightarrow \lambda$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

Input

$$b, \lambda \rightarrow b$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Rejection Example: Time 0

Input

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Guess the middle of string

Stack

$$a, \lambda \rightarrow a$$
 $b, \lambda \rightarrow b$

$$\lambda, \lambda \rightarrow \lambda$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda$$
, $\$ \rightarrow \$$

Another computation on same string:

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

Input

No final state is reached

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

After executing all possible paths in NPDA, there is no computation that accepts string abbb.

$$abbb \notin L(M)$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

A string is rejected if there is no computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

Another NPDA example

$$L(M) = \{a^n b^m : n \ge m-1\}$$

Note: - Minimum no. of b's = 0

- Maximum no. of b's = no. of a's + 1

Execution Example: Time 0

Input

Pushing Strings

Example:

Another NPDA example

NPDA M

$$L(M) = \{w: n_a = n_b\}$$

Execution Example: Time 0

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$
 $a, 0 \to 00$ $b, 1 \to 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

current state

Input

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

Stack

Formal Definition

Non-Deterministic Pushdown Automaton NPDA

Transition function:

$$\delta(q_1,a,b) = \{(q_2,w), (q_3,w)\}$$

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 $a, \lambda \rightarrow a$

Stack

 \boldsymbol{a}

 $(q_0) \xrightarrow{\lambda, \lambda \to \lambda} q_1$

 $b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow q_2$

 $b, a \rightarrow \lambda$

Example:

Instantaneous Description

$$(q_2,bb,aa\$)$$

Time 5:

 $b, a \rightarrow \lambda$

Stack

 $a, \lambda \rightarrow a$

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4

Time 5

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Formal Definition

Language L(M) of NPDA M:

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
 Initial state Final state

$$L(M) = \{a^n b^n : n \ge 0\}$$

Since,
$$(q_0, a^n b^n, \$) \succ (q_3, \lambda, \$)$$

NPDA M:

NPDAs Accept Context-Free Languages

Theorem:

See proof in the text book

Deterministic PDA

DPDA

Deterministic PDA: DPDA

Allowed transitions:

Not allowed:

(non deterministic choices)

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

This language is deterministic context-free

Example of Non-DPDA (NPDA)

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Not allowed in DPDAs

NPDAS

Have More Power than

DPDAs

We will show that:

We will show that there exists a context-free language L which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- · L is context-free
- L is not deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda \qquad \{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts $\,L\,$)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists because of the determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove this at a later class using pumping lemma for context-free languages)

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a NPDA that accepts:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

The NPDA that accepts $\{a^nb^n\} \cup \{a^nb^{2n}\} \cup \{a^nb^nc^n\}$

Connect final states of M' with final states of M

Since $L \cup \{a^nb^nc^n\}$ is accepted by a NPDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

Not deterministic context free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

There is no DPDA that accepts

End of Proof