EQUATIONS. TRIGONOMETRIC

$$\alpha \in \left[-\frac{\pi}{2} \mid \frac{\pi}{2} \right]$$

$$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

2 Sm20 = 1-60520

$$1 - \cos 20 = 1 - \cos 20$$
.

$$\alpha \in \left[0, \frac{\pi}{2}\right]$$

2 Cos20 = 1+6520

$$I \qquad \alpha \in \left[0, \frac{\pi}{2}\right]$$

Step 1

sahefyng 0 < 0 < 27

Add 2nx to sol in step 1 to get general solution.

$$0 = 2nx + \frac{7x}{6}$$

$$\frac{a}{\sqrt{a^{2}+b^{2}}} \cos a + \frac{b}{\sqrt{a^{2}+b^{2}}} \sin a = \frac{c}{\sqrt{a^{2}+b^{2}}}$$

Smaloso + (osasmo =
$$\frac{C}{\sqrt{a^2+b^2}}$$

Sm(0+d) = $\frac{C}{\sqrt{a^2+b^2}}$

$$d = \frac{1}{4}$$

$$-1 \le \frac{C}{\sqrt{a^2 + b^2}} \le 1$$

$$-\sqrt{a^2 + b^2} \le C \le \sqrt{a^2 + b^2}$$

$$\frac{a (oso + bsmo = C)}{\sqrt{a^{2}+b^{2}}} \frac{b}{\sqrt{a^{2}+b^{2}}} \frac{b}{\sqrt{a^{$$

Sind
$$= \frac{1}{2}$$
 $\alpha = 30^{\circ} = \frac{\pi}{6}$
Sind Sind $+ (osd (os0 = \frac{1}{\sqrt{2}}))$
 $(os(0-\alpha)) = \frac{1}{\sqrt{2}} = (os(\frac{\pi}{4}))$
 $(os(-\alpha)) = \frac{1}{\sqrt{2}} = (os(\frac{\pi}{4}))$
 $(os(-\alpha)) = \frac{\pi}{4}$
 $(os(-\alpha)) = \frac{\pi}{4}$
 $= (2\pi\pi + \frac{\pi}{4}) + \frac{\pi}{4}$
If $(os(-\alpha)) + (os(-\alpha)) = (os(-\alpha))$
 $(os(-\alpha)) + (os(-\alpha)) + (os(-\alpha))$

fund $3^{8}d$ angle C.

If $0 < x < \frac{\pi}{2}$ 2 Sim $(x+28^{\circ}) = (65(3x-78^{\circ})$ fund x?

@2

$$S_{1m20} = \frac{2 + a_{m0}}{1 + t_{om20}}$$

$$Cos 20 = \frac{1 - t_{om20}}{1 + t_{om20}}$$

$$tan 20 = \frac{2 + a_{m0}}{1 - t_{om20}}$$

$$S_{1m20} = \frac{2 \cdot S_{1m0} \cdot Cos \cdot O \cdot (S_{oc20})}{(S_{oc20})}$$

$$= \frac{2 \cdot S_{1m0}}{cos \cdot O}$$

P.T.

$$= \frac{2 \frac{\text{Sino}}{\cos \theta}}{1 + \tan^2 \theta}$$

$$= \frac{2 + \tan \theta}{1 + \tan^2 \theta}$$

$$= \frac{(\cos^2 \theta - \sin^2 \theta)}{1 + \tan^2 \theta}$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

tan C = b/a

C = X+B

Sin 2c | Cos2e | tan 2c.
=
$$\frac{2 \tan c}{1 + \tan^2 c} = \frac{1 - \tan^2 c}{1 + \tan^2 c} = \frac{2 \tan c}{1 - \tan^2 c}$$

= $\frac{2 \frac{b}{a}}{1 + \frac{b^2}{a^2}} = \frac{1 - \left(\frac{b}{a}\right)^2}{1 + \left(\frac{b}{a}\right)^2} = \frac{2 \frac{b}{a}}{a^2 + b^2} = \frac{2ab}{a^2 - b^2}$

Angle
$$C = \pi - (4+B)$$
 $C = \pi - (4+B)$
 $C = \pi - (4+B)$

A+B =
$$30^{\circ} | 150^{\circ}$$

 $C = 150^{\circ} | 30^{\circ}$
If $C = 150^{\circ}$
A $\angle 30^{\circ}$ $= 3 \times 1 + 40^{\circ}$
 $B = 0^{\circ}$ $= 3 \times 1 + 40^{\circ}$
 $= 3 \times 1 + 4$

Ans3

$$62^{\circ} - \chi = 360^{\circ} (\pi) - (3\chi - 78^{\circ})$$

 $2\chi = 360^{\circ} (\pi) + 16^{\circ}$
 $\chi = 380^{\circ} (\pi) + 8^{\circ} | m = 0$

& K

$$f(x) \leq k$$

$$g(x) \geq k$$

$$S_{100}6x = 1$$
.
2 $1 + los^43x = 1$

$$Sin^2x = 1.$$

$$Sin^2x = 1.$$

$$1 - (\omega s^2 x = 1)$$

$$(\omega s^2 x = 0 = (\omega s^2 \frac{\pi}{2})$$

$$x = n\pi \pm \frac{\pi}{2} \sqrt{n \in I}$$

$$\Rightarrow \frac{\pi}{2} \left(\frac{2\pi \pm 1}{\sqrt{2}} \right) = \frac{\pi}{2} \left(\frac{\pi}{2} \right) \frac{3\pi}{2}$$

1+
$$(os^{4}3x = 4)$$

 $(os^{2}3x = 0)$
 $(os^{2}3x = 0 = (os^{2}x/2)$
 $3x = n\pi \pm \pi/2$
 $x = \frac{\pi}{3} \pm \frac{\pi}{6}$; $n \in I$.
 $x = \frac{\pi}{6}(2n \pm 1)$ $(\frac{\pi}{3}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{3})$
 $n = \frac{\pi}{2}(2n + 1)$ Solm.

$$y = n$$
 $y = 3n$
 $y = 3n$
 $y = 3n$

Q
$$S_{1}n^{2}x + (os^{2}y = 2 Soc^{2}z)$$

L. H. S ≤ 2
R. H. S ≥ 2
 $S_{1}n^{2}x + (os^{2}y = 2)$ $2 Sec^{2}z = 2$
 $S_{1}n^{2}x = 1 \Rightarrow S_{1}n^{2}x = S_{1}n^{2}n/2$ $Sec^{2}z = 1$
 $S_{1}n^{2}x = 1 \Rightarrow S_{1}n^{2}x = S_{1}n^{2}n/2$ $Sec^{2}z = 1$
 $S_{1}n^{2}x = 1 \Rightarrow S_{1}n^{2}x = S_{1}n^{2}n/2$ $Sec^{2}z = 1$
 $S_{1}n^{2}x = 1 \Rightarrow S_{1}n^{2}x = S_{1}n^{2}n/2$ $Sec^{2}z = 1$
 $S_{1}n^{2}x = 1 \Rightarrow S_{1}n^{2}x = S_{1}n^{2}n/2$ $Sec^{2}z = 1$
 $S_{1}n^{2}x = 1 \Rightarrow S_{1}n^{2}x = S_{1$