Microelectronic Systems

DLX PROJECT

2015/2016

Overview

TOP-DOWN design of DLX – RISC processor

- RTL VHDL / SIMULATION
- BENCHMARKING
- SYNTHESIS / PHYSICAL DESING
- DOCUMENTATION

- A) Two possible versions:
 - DLX-basic (max project eval 28/30)
 - DLX-pro (max project eval. 33/30)

B)

C) MANDATORY: all design files + commented benchmark + **DETTAILED REPORT**

D)

E) Deadline: suggested July 31th, Max: October 30th

Project setup and description

- A file will be available MS-DLX.zip containing
 - 1) The DLX_Project.pdf file with:
 - 1) Specification of DLX and Documentation
 - 2) Instructions on how to set-up the tools
 - 3) Deployment and documentation guideline
 - 2) This presentation: DLX_Project_15-16.pdf
 - 3) Some VHDL files and utilities in the folder: DLX.project/
 - A short manual on how to use the new TestBench:
 DLX TestBench.pdf

 TEST BENCH: TB_TOP_DLX.vhd (given) OLD TestBench

DLX top: DLX.vhd (given but to be completed)

DLX top: DLX.vhd (given but to be completed)

Input ASM programs: simple compiler given

DLX PJ ASM

compiler

Your program

j 16add r1,r2,r3addi r1,r2,#5

beqz 32

for IRAM

080000c

00430820

20410005

1040fff0

DLX Fully Synthesizable

- IRAM is not synthesizable
- In order to obtain a more realistic DLX DRAM and IRAM should be moved in the testbench.
- In folder DLX_vhd_fully_synthesizable there is a complex version with the tho memory already placed in the testbench.
- The comunication protocol is summarized in DLX_TestBench.pdf

DLX ASM Instruction Set

In instruction file DLX_Project.pdf are contained:

- ASM mnemonics and description
- INSTRUCTION SET coding

DLX PJ structure again

GENERIC MUXES FROM LAB1

GENERIC REGS FROM LAB1

BEHAV ALU FROM LAB1

STRUCTURAL ADD, MUL FROM LAB2

REGISTER FILE (and memory) FROM LAB3

DLX PJ structure again

DLX PJ control unit: box given CU.vhd

DLX Control Unit: implemented in CU.vhd

Can be implemented in three possible versions (you choose):

- FSM
- Microprogrammed
- Hardwired

Structures are given: File DLX_Project.pdf explain the organization DLX Control Unit (LAB4 is organized in the same way for a simple exercise)

TEST DRIVEN DEPLOYMENT

- 1) Understand how to generate assembler files
- 2) Run a basic simulation of the given structure
- 3)Try to add the management of a new ASM instruction (follow file) of the CU
- 4) **Build** a very simple **DATA PATH** by connecting all the elementary blocks already used in labs 1-2-3-4
- 5) Connect simple DATA PATH to simple CU e and check the correct behavior

(things will be more clear along with the lab experiences!!!!)

DLX Basic requirements

- Prepare a few ASM files <u>COMMENTED</u> to test part of instructions.
- Organize and fill your DP and CU to execute an instructions subset given (DLX_Projet.pdf) essential instructions.
- Synthesize the DLX: synthesize first block by block (exploits scripts from previous labs).
- Analyze timing, power, area.
- Execute physical design (LAB5), report post layout timing, power, area, IR drop, EM.
- Write the Report (<u>follow the guideline</u>).

DLX Pro requirements

- As for the Basic:
 - Prepare <u>commented</u> ASM files.
 - Fill your DP and CU
- ADD WHATEVER you want to your PERSONAL DLX!!!
- Synthesize the DLX: synthesize first block by block (exploits scripts from previous labs).
- Analyze timing, power, area. (optimize synthesis by using more complex instructions)
- Execute physical design (LAB5), report post layout timing, power, area, IR drop, EM.
- Write the Report (<u>follow the guideline</u>).

Technical Report Structure

- First page
 - TITLE
 - Authors
 - Date of Writing
- SUMMARY
- INDEX OF CONTENTS, FIGURE and TABLE
- BODY
 - 1. INTRODUCTION (SPECIFICATION and FUNCTIONALITY)
 - 2. FUNCTIONAL SCHEMA (Block diagrams)
 - 3. **IMPLENTATION** (Technology, synthesis, optimization)
 - 4. DISCUSSION and CONCLUSIONS (Result from the BenchMark, timing, area)
- REFERENCES
- APPENDICES

Project Groups

Lab groups and Project groups can differ

The basic vs. pro choice is individual

If you split and reorganize you MUST communicate the variation

Submission/evaluation/discussion

- There will be some exam sessions in July 2016 and September 2016, in which there is a possibility for final project discussion for whom submitted their final project at least "3 DAYS" before each available session
- Projects must be submitted through the course website with a clear file name.
 - E.g. BLX-basic-GRXX.zip

Submission/evaluation/discussion

- The discussion is individual: each of you MUST know the project
- The discussion consists in
 - showing the structure
 - demonstrating the correct behavior using parts of asm programs execution, some of your invention and others given
 - Being ready to execute AT RUN TIME some random asm programs proposed to check the correct DECLARED behavior
 - Showing the synthesis and physical design results

HAPPY DLXING IIIIIII

