IFT 615 – Intelligence artificielle

Traitement automatique de la langue naturelle

Hugo Larochelle

Département d'informatique

Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

Sujets couverts

- Classification de documents
- Modèles de langage
- Étiquetage syntaxique
- Extraction d'information

- Traitement automatique de la langue naturelle (TALN)
 - une composante fondamentale du test de Turing...

- Traitement automatique de la langue (TALN)
 - ... et des tonnes d'applications!

Recherche d'information

- Traitement automatique de la langue (TALN)
 - ... et des tonnes d'applications!

Reconnaissance de la parole

- Traitement automatique de la langue (TALN)
 - ... et des tonnes d'applications!

Traduction automatique

- Traitement automatique de la langue (TALN)
 - ... et des tonnes d'applications!

IFT 615

Système de réponse automatique

http://www.youtube.com/watch?v=yJptrlCVDHI&feature=related
Hugo Larochelle

7

Dans ce cours...

- On va se concentrer sur des tâches « simples »
 - classification de documents
 - modélisation de langage
 - étiquetage syntaxique
 - extraction d'information
- Ces tâches sont souvent des outils utilisés dans des systèmes plus grands et plus complexes de TALN

Définitions

- Document: une liste de mots
 - pourrait être tout un texte
 - pourrait être une seule phrase
 - pourrait être quelques mots
- Mots: un mot ou une ponctuation
 - on suppose que nos documents ont déjà été segmentés en mots
 - généralement facile à faire en anglais (on sépare en fonction des espaces et des ponctuations)
 - difficile en chinois ou en japonais (pas d'espaces entre les mots)

Classification de documents

Soit les deux documents (question d'examen) suivants:

« Dessinez la partie de l'espace d'états qui serait explorée par l'algorithme alpha-beta pruning, en supposant qu'il explore l'espace d'états de la gauche vers la droite. » « En utilisant l'algorithme d'apprentissage du perceptron et un pas d'apprentissage de 0.3, donnez la sortie et les poids des connexions à la fin de la deuxième itération. »

Laquelle est une question d'examen final, en IFT 615?

Classification de documents

Soit les deux documents (question d'examen) suivants:

« d'états d'états de qui explore qu'il explorée gauche l'algorithme pruning, l'espace par en Dessinez alpha-beta droite. la la supposant l'espace partie serait la de vers » « un pas de l'algorithme fin sortie de perceptron donnez la deuxième En à poids du et et des d'apprentissage connexions les itération. la la d'apprentissage utilisant 0.3, »

Laquelle est une question d'examen final, en IFT 615?

Classification de documents

- Les mots individuels sont très informatifs du sujet (catégorie) d'une document
- L'ordre des mots n'est souvent pas utile
 - l'ordre reflète surtout la syntaxe d'une langue
 - on suppose que la catégorie n'influence que la probabilité d'observer un mot dans un document
- Ignorer l'ordre des mots va permettre de simplifier le système, sans trop compromettre sa précision
- On va formaliser ces hypothèses à l'aide d'un réseau bayésien

Réseau bayésien: modèle bayésien naïf multinomial

Réseau bayésien: modèle bayésien naïf multinomial

Réseau bayésien: modèle bayésien naïf multinomial

somme à 1

somme à

Réseau bayésien: modèle bayésien naïf multinomial

 W_2 a **la même** une distribution conditionnelle multinomiale

C	intra	final
$P(W_2 = \text{``de "} C)$	0.01	0.01
$P(W_2 = \text{``qui ``} C)$	0.02	0.02
	•••	•••
$P(W_2 = \text{``perceptron'}) \mid C)$	10 ⁻⁶	0.002

Réseau bayésien: modèle bayésien naïf multinomial

• En général la **probabilité conjointe** d'un document $[W_1,...,W_d]$ ayant d mots et de sa catégorie C:

$$P([W_1,...,W_d], C) = P(C) \prod_i P(W_i \mid C)$$

Exemple:

C	intra	final
<i>P</i> (<i>C</i>)	0.5	0.5

С	intra	final
$P(W_i=\ll, \gg \mid C)$	0.01	0.01
$P(W_i= \ll un \gg C)$	0.02	0.02
$P(W_i = \ll d' \gg C)$	0.01	0.02
$P(W_i = \text{``Perceptron ``} C)$	10 ⁻⁶	0.002
$P(W_i=\text{``algorithme "} C)$	0.005	0.005
$P(W_i = \text{``apprentissage "} C)$	10 ⁻⁵	0.001
$P(W_i = «.» C)$	0.03	0.03

- P(« Perceptron, un algorithme d'apprentissage. », C = intra) = $0.5 * 10^{-6} * 0.01 * 0.02 * 0.005 * 0.01 * <math>10^{-5} * 0.03 = 1.5 * 10^{-21}$
- P(« Perceptron, un algorithme d'apprentissage. », C = final) = $0.5 * 0.002 * 0.01 * 0.02 * 0.005 * 0.001 * 0.03 = 6 * <math>10^{-16}$

Décision de la catégorie d'un document

• Pour classifier un document contenant les mots $[w_1,...,w_d]$, on choisit la classe c ayant la plus grande **probabilité a posteriori** $P(C=c \mid [w_1,...,w_d])$

Décision de la catégorie d'un document

- Pour classifier un document fait des mots $[w_1,...,w_d]$, on choisit la classe cayant la plus grande **probabilité a posteriori** $P(C=c \mid [w_1,...,w_d])$
- Exemple:

Apprentissage du modèle

- Comment obtient-on les distributions P(C) et $P(W_i \mid C)$?
 - on les obtient à partir de vraies données
 - \diamond on choisit P(C) et $P(W_i \mid C)$ pour quelles reflètent les statistiques de ces données
- Soit un **corpus**, c.-à-d. un ensemble de T documents $\{D_t, C_t\}$
 - chaque document D_t est une liste de mots $[w_1^t,...,w_d^t]$ de taille variable
 - ◆ C_t est la catégorie de D_t

$$P(C=c)$$
 = (nb. de documents de la catégorie c) / (nb. de documents total) = $|\{t \mid C_t = c\}|$ / T

$$P(W_i = w \mid C = c) = \frac{\text{nb. de fois que } w \text{ apparaît dans les documents de la catégorie } c}{\text{nb. de mots total dans les documents de la catégorie } c}$$
$$= \frac{\sum_{t \mid Ct = c} \text{ freq(w, } D_t)}{\sum_{t \mid Ct = c} |D_t|}$$

Lissage du modèle

- Selon la formule pour P(W_i = w | C=c), un mot w aura une probabilité de 0 s'il n'apparaît jamais dans notre corpus
- Si un seul des $P(W_i = w \mid C = c) = 0$, alors tout $P(C = c, [w_1, ..., w_d]) = 0!$
 - \diamond les mots rares vont beaucoup faire varier $P(C=c,[w_1,...,w_d])$ en général
- Pour éviter cette instabilité, deux trucs afin de lisser la distribution P(w|c)
 - on détermine un vocabulaire V de taille fixe, et on associe les mots qui ne sont pas dans ce vocabulaire au symbole OOV (out of vocabulary)
 - \diamond lissage δ: on ajoute une constante δ au numérateur, pour chaque mot

$$P(W_{i} = w \mid C = c) = \frac{\delta + \sum_{t \mid Ct = c} freq(w, D_{t})}{\delta (|V| + 1) + \sum_{t \mid Ct = c} |D_{t}|}$$

Lissage du modèle

- Exemple: soit le vocabulaire
 V = { « Perceptron », « , », « un », « apprentissage »}
- La phrase

« Perceptron, un algorithme d'apprentissage. »

sera représentée par la liste de mots

```
[ « Perceptron », « , », « un », « OOV », « OOV », « apprentissage », « OOV » ]
w_1 \qquad w_2 \qquad w_3 \qquad w_4 \qquad w_5 \qquad w_6 \qquad w_7
```

- Les statistiques sont calculées à partir de cette représentation
 - on pourrait aussi enlever les mots « OOV » et les ignorer

Prétraitement des données

- Si, parmi tous les intra des années dernières (corpus de 426 mots)
 - « Perceptron » apparaît 0 fois
 - « , » apparaît 15 fois
 - « un » apparaît 10 fois
 - « apprentissage » apparaît 1 fois
 - « OOV » (tous les autres mots) apparaissent 400 fois
- Si on utilisait $\delta = 1$, alors

```
\bullet P(« Perceptron » | C=intra ) = (1 + 0) / (1 (4+1) + 426) = 1 / 431
```

$$\bullet$$
 $P(\text{``}, \text{``} \mid C = intra') = (1 + 15) / (1 (4+1) + 426) = 16 / 431$

$$ightharpoonup P(\text{w un } > | C = intra) = (1 + 10) / (1 (4+1) + 426) = 11 / 431$$

$$\bullet$$
 P(« apprentissage » | C=intra) = (1 + 1) / (1 (4+1) + 426) = 2 / 431

$$\bullet$$
 P(« OOV » | C=intra) = (1 + 400) / (1 (4+1) + 426) = 401 / 431

somme à 1

Prétraitement des données

- Comment choisir V
 - ne garder que les mots les plus fréquents (ex.: apparaissent au moins 10 fois)
 - ne pas garder les mots trop communs
 - » ne pas inclure la ponctuation
 - » ne pas inclure les déterminants (« un », « des », etc.)
 - » ne pas inclure les conjonction (« mais », « ou », etc.)
 - » ne pas inclure les pronoms (« je », « tu », etc.)
 - » ne pas inclure les verbes communs (« être », « avoir », « faire », etc.)
 - » etc.
 - utiliser une forme normalisée des mots (fusion de mots différents en un seul)
 - » enlever les majuscules (« Perceptron » → « perceptron »)
- Il n'y a pas de recette universelle, le meilleure choix de V varie d'une application à l'autre

Modèle de langage

Dans le modèle de bayes naïf multinomial, on peut distinguer deux parties

- Un modèle de langage est une distribution sur du texte, c.-à-d. sur des séquences de mots
 - \diamond étant donné un texte $[w_1,...,w_d]$, lui assigne une probabilité $P([w_1,...,w_d])$
- Dans modèle de bayes naïf multinomial, le modèle de langage est très (trop?) simple
 - les mots sont générés indépendamment les uns des autres (étant donnée la catégorie C)

 Un meilleur modèle générerait le i^e mot d'une phrase au moins à partir des quelques mots précédents dans la phrase

$$P([W_1,...,W_d]) = \prod_i P(W_i \mid W_{i-n+1},...,W_{i-1})$$

n-1 mots précédents

- On appelle de tels modèles de langage des modèles n-gramme
 - un *n*-gramme est une sous-séquence de *n* mots, extraite d'un corpus
 - on les appelle modèles n-gramme parce qu'ils sont estimés à partir des fréquences de tous les n-grammes d'un corpus
- Ces modèles sont en fait des modèles (chaînes) de Markov d'ordre n

Exemple: dans le document

« Perceptron , un OOV OOV apprentissage OOV »

il y a:

◆ 7 **unigrammes** (*n*=1) dont 5 différents

```
« Perceptron »
« , »
« un »
« OOV »
« OOV »
« apprentissage »
« OOV »
```

Exemple: dans le document

« Perceptron , un OOV OOV apprentissage OOV »

il y a:

◆ 6 **bigrammes** (*n*=2), tous différents

```
(« Perceptron », « , »)
(« , », « un »)
(« un », « OOV »)
(« OOV », « OOV »)
(« OOV », « apprentissage »)
(« apprentissage », « OOV »)
```

Exemple: dans le document

« Perceptron , un OOV OOV apprentissage OOV »

il y a:

etc.

◆ 5 **trigrammes** (*n*=3), tous différents

```
(« Perceptron », « , », « un »)
(« , », « un », « OOV »)
(« un », « OOV », « OOV »)
(« OOV », « OOV », « apprentissage »)
(« OOV », « apprentissage », « OOV »)
```

Tendance historique des n-grammes: http://books.google.com/ngrams

Apprentissage de modèle n-gramme

• On peut apprendre un modèle n-gramme à partir des fréquences de n-grammes dans un corpus de documents D_t

$$P(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1}) = \text{nb. de fois que } w \text{ suit les mots } w_{i-n+1}, \dots, w_{i-1}$$

$$\text{nb. de fois que } w_{i-n+1}, \dots, w_{i-1} \text{ est suivi d'un mot}$$

$$= \underbrace{\sum_{t} \text{freq}((w_{i-n+1}, \dots, w_{i-1}, w), D_{t})}_{\sum_{t} \text{freq}((w_{i-n+1}, \dots, w_{i-1}, *), D_{t})}$$

$$\text{mot quelconque}$$

Apprentissage de modèle n-gramme

Exemple: soit les fréquences totales suivantes

<i>n</i> -gramme	freq(n-gramme, D)	
(« modèle », « de », « Bayes »)	5	
(« modèle », « de », « Markov »)	25	L.
(« modèle », « de », « langage »)	10	
	•••	\sum
(« modèle », « de », *)	200	

Alors le modèle trigramme assignerait les probabilités:

$$P(W_i = \text{w Bayes }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = 5/200$$

 $P(W_i = \text{w Markov }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = 25/200$
 $P(W_i = \text{w langage }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = 10/200$

Lissage de modèle n-gramme

- On peut également lisser les modèles n-gramme en général
 - encore plus important, puisque plus un n-gramme est long, moins il sera fréquent
 - la plupart des n-grammes imaginable auront une fréquence de zéro, pour n grand
- Première approche: lissage δ

$$P(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1}) = \frac{\delta + \sum_{t} freq((w_{i-n+1}, \dots, w_{i-1}, w), D_{t})}{\delta(|V|+1) + \sum_{t} freq((w_{i-n+1}, \dots, w_{i-1}, *), D_{t})}$$

Lissage δ

Exemple: soit les fréquences totales suivantes

<i>n</i> -gramme	freq(<i>n</i> -gramme, <i>D</i>)	
(« modèle », « de », « Bayes »)	5	
(« modèle », « de », « langage »)	10	
(« modèle », « de », « langue »)	0	
		\sum
(« modèle », « de », *)	200	J

• Trigramme avec lissage $\delta = 0.1$ et un vocabulaire de taille |V| = 999

$$P(W_i = \text{w Bayes }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = (0.1+5)/(100+200) = 5.1/300$$

 $P(W_i = \text{w langage }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = (0.1+10)/(100+200) = 10.1/300$
 $P(W_i = \text{w langue }) \mid W_{i-2} = \text{w modèle }), W_{i-1} = \text{w de }) = (0.1+0)/(100+200) = 0.1/300$

. ...

Lissage par interpolation linéaire

- Deuxième approche: lissage par interpolation linéaire
 - faire la moyenne (pondérée) de modèles unigrammes, bigrammes, trigrammes, ... jusqu'à n-gramme

$$P_{\lambda}(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1}) = \lambda_{1} P(W_{i} = w) + \\ \lambda_{2} P(W_{i} = w \mid w_{i-1}) + \\ \lambda_{3} P(W_{i} = w \mid w_{i-2}, w_{i-1}) + \dots + \\ \lambda_{n} P(W_{i} = w \mid w_{i-n+1}, \dots, w_{i-1})$$
 où $\sum_{i} \lambda_{1} = 1$

- Exemple:
 - le trigramme (« modèle », « de », « langue ») a une fréquence de 0
 - le bigramme (« de », « langue ») est présent dans le corpus
 - \bullet alors $P_{\lambda}(W_i = w \mid w_{i-n+1}, \dots, w_{i-1}) > 0$, en autant que λ_2 ou $\lambda_1 > 0$

Application des modèles n-gramme

- Identification de la langue
 - étant donné un document, identifier dans quelle langue (anglais, français, etc.)
 il est écrit
- On détermine d'abord un vocabulaire commun V pour toutes les langues
- Pour chaque langue / que l'on souhaite détecter
 - on collecte un corpus de documents dans cette langue
 - ◆ on assigne une probabilité a priori P(L=I) de la langue
 - on apprend un modèle *n*-gramme $P(W_i = w \mid w_{i-n+1}, ..., w_{i-1}, L=I)$ sur ce corpus
- Étant donné un nouveau document, on lui assigne la langue la plus probable

$$\operatorname{argmax} P(L=I \mid [w_1, ..., w_d]) = \operatorname{argmax} \log P(L=I, [w_1, ..., w_d])$$

$$= \operatorname{argmax} \log P(L=I) + \sum_i \log P(W_i = w_i \mid w_{i-n+1}, ..., w_{i-1}, L=I)$$

Application des modèles n-gramme

- Classification de documents plus puissante
 - l'identification de la langue peut être vue comme de la classification de documents
 - équivaut à remplacer le modèle unigramme du modèle de bayes naïf par un modèle de langage possiblement plus puissant
 - nécessaire si l'ordre des mots est important (« maison blanche » vs. « blanche maison »)
- Et plusieurs autres
 - → réaccentuation de texte (« modele bayesien » → « modèle bayésien »)
 - traduction automatique
 - reconnaissance de la parole

Évaluation d'un modèle de langage

- Afin de choisir n, δ ou les λ_i (des hyper-paramètres) on a besoin de définir une notion de performance
 - on choisirait les valeurs qui optimisent cette performance sur un corpus de validation, autre que le corpus d'entraînement et de test
- Si on sait dans quel système sera utilisé le modèle de langage, on utilise la performance de ce système
 - ex.: taux de succès d'un système de classification de documents
- Sinon, on peut calculer la perplexité (perplexité basse= bonne performance)

Perp([
$$w_1,...,w_d$$
]) = ($P([w_1,...,w_d])$)^{-1/d} = $\prod_i (P(W_i = w_i \mid w_{i-n+1},...,w_{i-1}))^{-1/d}$
= exp((-1/d) $\sum_i \log P(W_i = w_i \mid w_{i-n+1},...,w_{i-1})$)

Échantillonner d'un modèle n-gramme

- Pour avoir une idée de la qualité d'un modèle de langage appris, on peut aussi échantillonner de nouveaux documents
 - on laisse la machine parler d'elle-même
- Voici des échantillons de modèles unigramme, bigramme et trigramme, appris à partir du livre de référence

unigramme: « logical are as are confusion a may right tries agent goal the was... »

bigramme: « systems are very similar computational approach would be represented... »

trigramme: « planning and scheduling are integrated the success of naive bayes model is... »

Étiquetage syntaxique

- En plus de l'identité des mots, il peut être utile de connaître l'étiquette syntaxique de chacun de ces mots
 - ◆ « une visite à la ferme » → « ferme » est un nom
 - ◆ « Jean ferme la porte » → « ferme » est un verbe
- Connaître la catégorie grammaticale d'un mot peut faciliter une autre tâche
 - ex.: traduction automatique
 - » si « ferme » est un nom → « farm »
 - » si « ferme » est un verbe \rightarrow « close »

Étiquetage syntaxique

 On suppose qu'on a accès à T corpus étiquetés D_t (pour simplifier: un document = une phrase)

w_{t}	\boldsymbol{e}_{t}
Jean	Nom
ferme	Verbe
la	Article
porte	Nom
•	•

$$D_{t} = [(w_{1}^{t}, e_{1}^{t}), ..., (w_{d}^{t}, e_{d}^{t})]$$

 $mots(D_{t}) = [w_{1}^{t}, ..., w_{d}^{t}]$
 $étiqettes(D_{t}) = [e_{1}^{t}, ..., e_{d}^{t}]$

- On pourrait prendre une approche similaire à la classification de documents
 - définir un réseau bayésien sur les mots et les étiquettes
 - apprendre le réseau sur notre corpus étiqueté
 - pour faire des prédictions, faire de l'inférence dans le réseau bayésien

On va utiliser un modèle de Markov caché (HMM)

On va utiliser un modèle de Markov caché (HMM)

- De notre corpus d'entraînement, on peut extraire des statistiques
 - sur la première étiquette d'une phrase (P(H₁))
 - \diamond sur la relation entre un mot et sa classe syntaxique ($P(S_k | H_k)$)
 - » ex.: « ferme » peut être un nom, un verbe, mais pas un article
 - \diamond sur la relation entre les étiquettes syntaxiques adjacentes ($P(H_{k+1}|H_k)$)
 - » ex.: on ne peut avoir deux articles qui se suivent

On apprend le HMM à partir de ces statistiques (fréquences)

$$P(H_{k+1} = a \mid H_k = b) = \frac{\sum_{t} \text{freq((b,a), \'etiquettes}(D_t))}{\sum_{t} \text{freq((b,*), \'etiquettes}(D_t))} \qquad P(S_k = w \mid H_k = b) = \frac{\sum_{t} \text{freq((w,b), } D_t)}{\sum_{t} \text{freq((*,b), } D_t)}$$

$$P(S_{k} = w | H_{k} = b) = \frac{\sum_{t} freq((w,b), D_{t})}{\sum_{t} freq((*,b), D_{t})}$$

$$P(H_1 = a) = \sum_{t} freq(e_1^t = a, D_t)$$

• Pour étiqueter une nouvelle phrase [$w_1, ..., w_d$]

- On calcule l'explication la plus plausible h*_{1:d}
 - c.-à-d. $h_{1:d}^*$ qui maximise $P(S_{1:d} = [w_1, ..., w_d], H_{1:d} = h_{1:d}^*)$
 - \diamond on utilise le programme dynamique de α^* (cours sur réseaux bayésiens dynamiques)

- Nous avons vu comment catégoriser des documents
- Nous avons vu comment les étiqueter automatiquement
- Une fois un document trouvé, comment y extraire l'information désirée automatiquement?
- Exemple: extraire l'information d'une annonce de séminaire
 - le nom du présentateur
 - la date de la présentation

« There will be a seminar by Dr. Andrew McCallum on Friday »

Présentateur: Dr. Andrew McCallum

Date: *Friday* (vendredi)

- On peut aussi formuler comme un problème d'étiquetage de mots!
 - il y a 4 étiquettes
 - » PRE : préambule de l'information cherchée
 - » TARGET: l'information à extraire
 - » **POST**: fin de l'information
 - -: autres mots

```
Text: There will be a seminar by Dr. Andrew McCallum on Friday

Speaker: - - - PRE PRE TARGET TARGET TARGET POST -

Date: - - - - - PRE TARGET
```

- On entraînerait un HMM par information recherchée
 - HMM « présentateur »
 - HMM « date »

- On peut aussi formuler comme un problème d'étiquetage de mots!
 - il y a 4 étiquettes

```
» PRE : préambule de l'information cherchée
```

» TARGET: l'information à extraire

» POST : fin de l'information

-: autres mots

```
Text: There will be a seminar by Dr. Andrew McCallum on Friday

Speaker: - - - PRE PRE TARGET TARGET TARGET POST -

Date: - - - - - - PRE TARGET
```

Pour le HMM « présentateur », le corpus d'entraînement contiendrait

```
[ (« There », -), (« will », -), (« be », -), (« a », -), (« seminar », PRE), (« by », PRE),

(« Dr. », TARGET), (« Andrew », TARGET), (« McCallum », TARGET), (« on », POST), ( « Friday », -) ]
```

- On peut aussi formuler comme un problème d'étiquetage de mots!
 - il y a 4 étiquettes

```
» PRE : préambule de l'information cherchée
```

» TARGET: l'information à extraire

» POST : fin de l'information

-: autres mots

```
Text: There will be a seminar by Dr. Andrew McCallum on Friday

Speaker: - - - PRE PRE TARGET TARGET TARGET POST -

Date: - - - - - PRE TARGET
```

Pour le HMM « présentateur », le corpus d'entraînement contiendrait

```
[ (« There », -), (« will », -), (« be », -), (« a », -), (« seminar », -), (« by », -), (« Dr. », -), (« Andrew », -), (« McCallum », -), (« on », PRE), ( « Friday », TARGET) ]
```

- On peut aussi formuler comme un problème d'étiquetage de mots!
 - il y a 4 étiquettes
 - » PRE : préambule de l'information cherchée
 - » TARGET: l'information à extraire
 - » POST : fin de l'information
 - » -: autres mots

Text:	There	will	be	a	seminar	by	Dr.	Andrew	McCallun	on	Friday
Speaker:	-	-	-	-	PRE	PRE	TARGET	TARGET	TARGET	POST	-
Date:	=	700		-	<u></u>	7	-	4	-	PRE	TARGET

- Étant donnée une nouvelle phrase
 - l'explication la plus plausible calculée à partir du HMM « présentateur » permettrait d'isoler l'information sur le présentateur
 - l'explication la plus plausible calculée à partir du HMM « date » permettrait d'isoler l'information sur la date de présentation

Conclusion

- Le traitement automatique de la langue est un des domaines piliers en IA
- Les approches probabilistes et d'apprentissage automatique sont actuellement les outils les plus souvent employés
 - ex.: on aurait aussi pu utiliser les algorithmes de classification vus dans le cours d'apprentissage automatique
- L'état de l'art est très bon pour modéliser les relations syntaxiques entre les mots (particulièrement en anglais)
- Modéliser les relations sémantiques entre les mots reste un défi...
- Voir aussi IFT 501 Recherche d'information et forage de données
 - PageRank: l'algorithme au coeur de la première version de l'engin de recherche de Google

Objectifs du cours

Vous devriez être capable de...

- Classification de documents
 - simuler la classification à l'aide du modèle bayésien naïf multinomial
 - comprendre les hypothèses faites par ce modèle
 - comprendre l'impact du prétraitement des données
- Modèle de langage
 - savoir ce qu'est un modèle de langage
 - savoir ce qu'est un modèle n-gramme
 - connaître les techniques de lissage et à quoi elles servent
 - savoir à quoi peut servir un modèle de langage
- Étiquetage syntaxique et extraction d'information
 - pouvoir décrire les étapes pour résoudre ces tâches