Notations and Abbreviations

- Unless otherwise specified, vectors and matrices are emphasized using a **bold** font.
- Unless otherwise specified, any vector that appears in a mathematical operation (e.g., addition, subtraction, and multiplication) is a *column vector*.
- Random variables are assigned to letters from the last part of the alphabet (X, Y, Z, U, V, ...), while corresponding observations are assigned to lowercase letters (x, y, z, u, v, ...).
- Constants are assigned to letters from the first part of the alphabet (a, b, c, ...).
- The index t denote vector/matrix *transpose*. For example, $\begin{pmatrix} m_1 & \dots & m_d \end{pmatrix}^t = \begin{pmatrix} m_1 \\ \vdots \\ m_d \end{pmatrix}$.

- The symbol := indicates a *assignment*. For example, if x = 2 and we write x = y := 2, then it means that x and y are equal, as y is *defined* to be 2. The symbol \equiv denote *equivalence*, i.e. things that have exactly the same meaning. These symbols will only be used when they are really relevant to the understanding of a particular concept or situation, otherwise "=" will be used.
- The *probability density function* (pdf) of a continuous random variable/vector, or the *probability mass function* (pmf) of a discrete random variable/vector, will be simply referred to as a *probability distribution* (pd), and will be typically denoted f.
- rv/rve: Random variable(s)/Random vector(s).
- cdf: Cumulative distribution function; typically denoted by *F*.
- iid: Independent and identically distributed rv or rve.
- $X \perp \!\!\! \perp Y$: X and Y are independent of each other.
- log and ln will be used interchangeably to refer to the *natural logarithm*.
- Any integral sign \int , without limits, should be understood as $\int_{-\infty}^{\infty}$ in the univariate case and as $\int_{\mathbb{R}^d}$ in the multivariate case.
- The *indicator function* of a given set A is denoted by $I(x \in A)$. It takes the value 1 if $x \in A$, and 0 otherwise.

- $a = \arg\min_{x \in I} f(x)$ means that a is a value for which $x \mapsto f(x)$ reaches its minimum on I. The same applies to arg max.
- For a d-dimensional rve $X = (X_1, \ldots, X_d)^t$. $\mu = E(X)$ denote the vector of first moments (means), i.e. $\mu = (\mu_1, \ldots, \mu_d)^t$, with $\mu_j = E(X_j)$. The variance-covariance, or simply the variance, of X is the $d \times d$ symmetric matrix denoted by $Var(X) := E((X \mu)(X \mu)^t) = E(XX^t) \mu\mu^t$. The (j,k) element of this matrix is nothing but $Cov(X_j, X_k)$. Note that, if A and B are two constant, then E(A + BX) = A + BE(X), and $Var(A + BX) = BVar(X)B^t$.
- We will use the notation N_d to designate a multivariate normal distribution of dimension d, $d \ge 2$. For an univariate normal (d = 1), we simply write N (without any suffix).
- For scalar function $f(x): \mathbb{R} \to \mathbb{R}$, the first *derivative* at x = a is denoted $f'(a) = \frac{df(x)}{dx}\Big|_{x=a}$, and the second derivative is denoted by f''(a). For $k \ge 3$, the k-th order derivative is denoted by $f^{(k)}(a)$.
- For a multivariate function $f(\mathbf{x}) = f(x_1, \dots, x_d) : \mathbb{R}^d \to \mathbb{R}$:
 - The *partial derivative*, at x = a, with respect to x_i is denoted by $\partial_i f(a) = \partial_{x_i} f(a) = \frac{\partial f(x)}{\partial x_i}\Big|_{x=a}$. Similarly, we denote the second-order partial derivative by $\partial_{ij} f(a) = \partial_{x_i x_j} f(a) = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}\Big|_{x=a}$, and $\partial_i^2 f(a) = \partial_{x_i}^2 f(a) = \frac{\partial^2 f(x)}{\partial x_i^2}\Big|_{x=a}$.

- The *gradient*, at a point a, is the vector given by $\nabla f(a) = (\partial_1 f(a), \dots, \partial_d f(a))^t$.
- The *Hessian*, at a point a, is the matrix given by $Hess f(a) \equiv \nabla^2 f(a) = [\partial_{ij} f(a)]_{i,j=1,...,d}$.

For example, for
$$f(x_1, x_2) = x_1^2 + 2x_2^3 + x_1x_2$$
, $\nabla f(x_1, x_2) = (2x_1 + x_2, x_1 + 6x_2^2)^t$ and $\nabla^2 f(x_1, x_2) = \begin{pmatrix} 2 & 1 \\ 1 & 12x_2 \end{pmatrix}$.

• For a multivariate vector-valued function $f(x) = (f_1(x), \dots, f_p(x)) : \mathbb{R}^d \to \mathbb{R}^p$, where $f_i : \mathbb{R}^d \to \mathbb{R}$, $i = 1, \dots, p$, the *Jacobian* is the matrix $J_f(a) \equiv \dot{f}(a) = \left[\partial_j f_i(a)\right]_{i=1,\dots,p;j=1,\dots,d}$.

For example, for
$$f(x_1, x_2) = (x_1^3, x_1^2 + 2x_2^3 + x_1x_2, x_2^2)$$
, $\dot{f}(x_1, x_2) = \begin{pmatrix} 3x_1^2 & 0 \\ 2x_1 + x_2 & x_1 + 6x_2^2 \\ 0 & 2x_2 \end{pmatrix}$.