LIE ALGEBROIDS, POISSON MANIFOLDS AND JACOBI STRUCTURES

Based on mini-course by Carlos Zapata-Carratalá

by

Guillaume Trojani

Supervisor : Pr Richard Szabo

ABSTRACT: Mistakes almost certainly mine, thanks for course etc... A lot of material is taken from [1] in the first half of the course. Some things are missing but most everything written here is material I somewhat understand right now. Some proofs are missing and I will hopefully get around to it eventually.

Contents

1

	1.1	Poisson Algebra	1
	1.2	Poisson Manifolds	2
2	Lie Gr	oupoids	4
3	Lie Alg	gebroids	4
	3.1	Vector Bundles	4
4	Lecture 4: Differential Operators		5
	4.1	Derivations	5
	4.2	Differential operators	6
	4.3	From differential operators to Poisson algebras	8
	4.4	Weyl algebras	9
Bibliography			10

1 Lecture 1: Poisson and Presymplectic geometry

The first lecture is mostly based on section 2.4 of [1].

1.1 Poisson Algebra

Definition 1.1.1. A **Poisson Algebra** is a triple $(A, \cdot, \{,\})$ such that

- 1. (A,\cdot) is a commutative, associative and unital \mathbb{R} -algebra (or \mathbb{C} algebra maybe?)
- 2. $(A, \{,\})$ is a Lie \mathbb{R} -algebra, which means that the bracket follows the Jacobi identity:

$$\{\{a,b\},c\} + \{\{b,c\},a\} + \{\{c,a\},b\} = 0 \tag{1}$$

3. The Poisson bracket follows the Libeniz identity in the sense that for $a, b, c \in A$,

$$\{a, b \cdot c\} = \{a, b\} \cdot c + b \cdot \{a, c\} \tag{2}$$

$$:= \mathrm{ad}_a \left(b \cdot c \right) \tag{3}$$

where we have defined the adjoint map of the Lie algebra.

4. Equivalently to 3, the $\operatorname{ad}_{\{,\}}: A \to \operatorname{Der}(A, \cdot)$, which takes an element of the algebra to a derivation on the commutative algebra (A, \cdot) . We also see that the $\operatorname{ad}_{\{\}}$ induces a derivation on $(A, \{,\})$ using the Jacobi identity.

Therefore the adjoint map of a Lie Algebra is a morphism from A to $Der(A, \{,\})$, the derivations of both bilinear structures of a Poisson algebra.

Definition 1.1.2. A **Poisson derivation** is a derivation on both bilinear forms of a Poisson algebra, that is $X \in \text{Der}(A, \cdot) \cap \text{Der}(A, \{,\}) \subset \text{End}_{\mathbb{R}}(A)$. If a Poisson derivation is generated by the adjoint map, $X_a = \{a, \}$, we say that it is a **Hamiltonian derivation**.

Definition 1.1.3. A Poisson Algebra morphism is a linear map $\psi: A \to B$ such that $\psi: (A, \cdot) \to (B, \cdot)$ is an algebra morphism and $\psi: (A, \{,\}) \to (B, \{,\})$ is a Lie algebra morphism.

Definition 1.1.4. A subalgebra $I \subset A$ is **coisotrope** if

- $I \subset (A, \cdot)$ is a multiplicative ideal
- $I \subset (A, \{,\})$ is a Lie subalgebra

Proposition 1.1.1. Reduction of Poisson algebra

Suppose $I \subset A$ coisotrope and consider the Lie normaliser (or in ring theory the idealiser)

$$N(I) = \{ a \in A | \{ a, I \} \subset I \}, \tag{4}$$

which is the largest subalgebra of A that contains I as an ideal. We claim that $A' := {}^{N(I)} /_{I}$ inherits a Poisson algebra structure.

Lecture 1 2

Proof. Condition 1 is automatically satisfied as A' is a subalgebra of A, with a Lie algebra structure given by the same bracket. For $a', b', c' \in A'$, consider the adjoint action of a' on $b' \cdot c'$ and look at coset representative a, b, c of N(I). Using the fact that I is coisotrope, we see that

$$\{a+I, (b+I) \cdot (c+I)\} = \{a+I, b \cdot c + I\}$$
$$= \{a, b \cdot c\} + I$$

by linearity of the bracket and closure of elements in N(I) w.r.t I. The jacobi identity is checked by similar arguments.

Definition 1.1.5. The reduced Poisson structure is characterised by the projection map $p:(N(I),\cdot,\{,\})\to (A',\cdot',\{,\}')$, and by the above proposition, this is a Poisson Algebra morphism.

1.2 Poisson Manifolds

Definition 1.2.1. A **Poisson manifold** is a smooth manifold P whose commutative algebra of smooth functions has the structure of a Poisson algebra $(C^{\infty}(P), \cdot, \{,\})$.

Definition 1.2.2. A map $\phi: P_1 \to P_2$ is a **Poisson map** if $\phi^*: C^{\infty}(P_2) \to C^{\infty}(P_1)$ is a Poisson morphism of algebras.

Recall that derivations on smooth functions are isomorphic to vector fields:

$$Der(C^{\infty}(P)) \simeq \Gamma(TP),$$
 (5)

where the isomorphism is due to

$$\{f,g\} \mapsto X_{\{f,g\}} = [X_f, X_g]$$
 (6)

Definition 1.2.3. So following through definition definition 1.1.2, the Poisson derivations on a Poisson manifolds are called **Poisson vector fields**. And Hamiltonian derivations on Poisson manifolds are called **Hamiltonian vector fields**. Hamiltonian vector fields are generated by the adjoint map

ad :
$$C^{\infty}(P) \to \Gamma(TP)$$

 $f \mapsto X_f := \{f, \cdot\}$

Proposition 1.2.1. A manifold P; with a commutative algebra of smooth functions $(C^{\infty}(P), \cdot, \{,\})$, and a bivector $\Pi \in \Gamma(\bigwedge T^2P)$ defined as

$$\Pi(df, dg) = \{f, g\}; \tag{7}$$

is a Poisson manifold if and only if Π has vanishing Schouten bracket

$$\llbracket \Pi, \Pi \rrbracket = 0. \tag{8}$$

Before proving this statement, we recall facts about the Schouten-Nijenhius which forms a special case of a $Gerstenhaber\ algebra.$

Definition 1.2.4. Given a Poisson bivector Π , the musical map (sharp)

$$\Pi^{\sharp}: T^*P \to TP \tag{9}$$

$$df \mapsto \Pi(df, \cdot) := \{f, \cdot\} \tag{10}$$

¹CHECK THIS, will prove this later, after defining the Gerstenhaber algebra stuff.

Lecture 1 3

defines an **Hamiltonian distribution**. Equivalently, $X_{\cdot} = \Pi^{\sharp} \circ d : C^{\infty}(P) \to \Gamma(TP)$ is an *Hamiltonian map*. Note that the space of Hamiltonian distribution $\Pi^{\sharp}(T^*P)$ is involutive as it is a Lie algebra morphism.

Definition 1.2.5. A submanifold $C \subset (P,\Pi)$ is **coisotropic submanifold** if $TC \subset (TP,\Pi)$ is a coisotropic subspace, that is $TC \supset (TC)^0$ an isotropic (i.e. normal) subspace of TC with respect to the bivector:

$$\Pi(\alpha, \beta) = 0 \quad \forall \alpha \in (T^*C)^0, \beta \in T^*C$$
(11)

Consequently, the short exact sequence:

$$0 \to (T^*C)^0 \xrightarrow{\Pi^{\sharp}} TC \to C^{\infty}(C) \to 0^2$$
 (12)

Proposition 1.2.2. Let $\iota: C \hookrightarrow P$ be a closed submanifold of Poisson manifold (P,Π) , then the following are equivalent:

- C is coisotropic
- The vanishing ideal $I_C = \ker(\iota^*) := \{g \in C^{\infty}(P) \mid g|_C = 0\}$ is a coisotrope of the Poisson algebra $(C^{\infty}(P), \cdot, \{\cdot, \cdot\})$.
- Hamiltonian vector fields X_g generated by $g \in I_C$ are tangent to $C: X_g|_{C} \in \Gamma(TC)$

Proof. • (1) \Rightarrow (2): First (I_C, \cdot) is a multiplicative ideal of $(C^{\infty}(P), \cdot)$ by construction. And $(I_C, \{\cdot, \cdot\})$ is a Lie subalgebra because the Poisson bracket vanishes on $C \hookrightarrow P$.

- (2) \Rightarrow (3): for a basis $g \in I_C$, the Hamiltonian vector fields $X_g = \{g, \cdot\}$ span the $Der(C^{\infty}(C))$ which is the space of tangent vector to C.
- $(3) \Rightarrow (1)$: $\iota^* \{g, f\} = 0$ for $g \in I_C$, $\forall f \in C^{\infty}(P)^3$

Definition 1.2.6. Consider 2 Poisson manifold (P_1, Π_1) and (P_2, Π_2) , the product Poisson manifold is $(P_1 \times P_2, \Pi_1 + \Pi_2)$, where the canonical isomorphism $T(P_1 \times P_2) \cong \operatorname{pr}_1^* T P_1 \oplus \operatorname{pr}_2^* T P_2$. ⁴ Also it's easy to see that pulling back onto either P_1, P_2 commutes with the bracket structure, with "cross-pulling" bracket vanishing

Definition 1.2.7. Given a Poisson manifold (P,Π) , opposite Poisson manifold is $\overline{P} = (P, -\Pi)$.

Proposition 1.2.3. Let two Poisson manifold $(P_1,\Pi_1),(P_2,\Pi_2)$ and a smooth map $\phi:P_1\to P_2$, then ϕ is a Poisson map if and only if

$$grph(\phi) := \{(p, \phi(p)) \mid \forall p \in P_1\} \subset P_1 \times \overline{P}_2$$

is a coisotropic submanifold.

²i think this is right, but not sure

³continue later

⁴This is the Whitney sum by the way

Proof. Consider the tangent bundle of the graph submanifold

 $Tgrph(\phi) = \{(X,Y) \mid \text{if } \exists Y \in TP_2 \text{ such that } X,Y \text{ are } \phi\text{-related: } \phi^*Y = \phi_*X\}.$

Full proof in [2] but they have a weird definition of Π^{\sharp} there. ⁵

Recall that a submersion is a differential map $\phi: M \to N$ such that

$$D\phi_p: T_pM \to T_{\phi_n}N$$
 (13)

for all $p \in M$. Dually, an *immersion* is a differential map $\phi: M \to N$ such that

$$D\phi_p: T_pM \hookrightarrow T_{\phi_n}M \tag{14}$$

for all $p \in M$.

Proposition 1.2.4. Let (P,Π) a Poisson manifold, and $\iota: C \hookrightarrow P$ a closed coisotropic submanifold. Suppose X_{I_C} , the Hamiltonian vector field tangent to C, or equivalently generated by the ideal $I_C = \ker(\iota^*)$ as in proposition 1.2.2; integrates to a regular foliation on C. Further assume that the leaf space is smooth $P' := C/\chi_C$ such that there is a surjective submersion (quotient map) q fitting in the diagram

$$C \xrightarrow{\iota} (P, \Pi)$$

$$\downarrow^{q} \qquad (15)$$

$$(P', \Pi')$$

Then inherits a Poisson bracket on functions $(C^{\infty}(P'), \{\cdot, \cdot\}')$ uniquely determined by the condition

$$\iota^* \{ F, G \} = q^* \{ f, g \}' \tag{16}$$

for all $f,g\in C^{\infty}(P')$ and $F,G\in C^{\infty}(P)$ such that F,G are the leaf-wise constant extensions of f,g, i.e

$$q^*f = \iota^* F$$
$$q^* g = \iota^* g$$

2 Lie Groupoids

3 Lie Algebroids

3.1 Vector Bundles

Let's first review facts about vector bundles, but with a more 'categorical' mindset.

Definition 3.1.1. A vector bundle $\pi: E \to M$ over a smooth manifold M is a fibre bundle whose fibre E_x is a vector space $V \in \mathbf{Vect} \ \forall x \in M$. The dimension of the typical fibre E_M is called the rank and $\dim(E_M) := \dim(E_x)$ for all x. A local trivialisation is a map φ such that on $U \subset M$ open, $\varphi: \pi^{-1}(U) \to U \times V$ is a diffeomorphism.

⁵continue one day

On overlaps $U_1 \cap U_2$, local trivialisations define GL(V)-valued transition functions. A basis of sections $\{e_i: U \to \pi^{-1}(U) | \pi \circ e_i = \mathrm{id}_U\}_{i=1}^{\mathrm{rk}(E)}$ defines a local trivialisations as well; if such sections are globally defined, the bundle is trivial (or trivialisable).

Definition 3.1.2. A smooth map F between 2 vector bundles $F: E_1 \to E_2$ is a bundle **vector bundle** morphism if there exists smooth map $\phi \in C^{\infty}(M_1, M_2)$ between the bases such that

$$E_{1} \xrightarrow{F} E_{2}$$

$$\downarrow^{\pi_{1}} \qquad \downarrow^{\pi_{2}}$$

$$M_{1} \xrightarrow{\phi} M_{2}$$

$$(17)$$

commutes. We say that F is a covering for ϕ . Equivalently, F restricts to a linear map on the fibre $F_x: (E_1)_x \to (E_2)_{\phi(x)}$.

Definition 3.1.3. Vector bundles over smooth manifolds with vector bundle morphism forms the category of vector bundles denoted $\mathbf{Vect}_{\mathrm{Man}}$.

Remark 3.1.1 (Categorification). Fixing a base manifold M, the point-wise construction of fibre bundles over M restricts us to the subcategory of vector bundles over M denoted \mathbf{Vect}_M . This subcategory has objects the vector bundles over M and morphisms F covering the identity morphism. Further, point-wise constructions are symmetric abelian products $\otimes : \mathbf{Vect}_M \times \mathbf{Vect}_M \to \mathbf{Vect}_M$ such that \otimes is a **binary functor** (or bifunctor). By that we mean for morphisms $F, G, H \in \mathrm{Mor}(\mathbf{Vect}_M)$, we have

$$(F \circ G) \otimes H = (F \otimes H) \circ (G \otimes H) \tag{18}$$

and so on. So the point-wise construction of vector bundle over base manifold M forms a **abelian** symmetric monoidal category. ⁶

4 Lecture 4: Differential Operators

4.1 Derivations

Let A be a associative commutative unital \mathbb{C} -algebra, a vector space over \mathbb{C} such that for any pair $a, b \in A$, the product $ab \in A$ is bilinear and associative.

Definition 4.1.1. A derivation $\partial \in \operatorname{Der}_{\mathbb{C}}(A)$ is a \mathbb{C} -linear map $\partial : A \to A$ such that the Leibniz identity is satisfied,

$$\partial(ab) = \partial(a)b + a\partial(b) \tag{19}$$

for $a, b \in A$. Clearly, $Der_{\mathbb{C}}(A) \subseteq End_{\mathbb{C}}(A)$

Definition 4.1.2. More generally, if B is a commutative ring, A is a B-algebra and M an A-bimodule then $\operatorname{Der}_B(A, M) = \{ \partial \in \operatorname{Hom}_B(A, M) | \forall a, b \in A, \partial(ab) = a\partial(b) + \partial(a)b \}.$

Proposition 4.1.1. If $\partial \in \operatorname{End}_{\mathbb{C}}(A)$ is a derivation $\Leftrightarrow \partial(\mathbb{C}) = 0$ and for all $a \in A$, $\partial a - a \partial \in A$.

Proof. Let $b \in A$, then the Leibniz identity is equivalent to

$$(\partial a - a\partial)(b) = \partial(ab) - a\partial(b)$$
$$= \partial(a)b.$$

⁶expand on this please

• \Rightarrow Assuming ∂ is a derivation, then the argument above shows that $\partial a - a\partial \in A \subseteq \operatorname{End}_{\mathbb{C}}(A)$, where left multiplication by this operator is the endomorphism map induced. Furthermore, since ∂ is \mathbb{C} -linear, and considering \mathbb{C} as a \mathbb{C} -vector space over itself, the Leibniz identity implies

$$\partial(1z) = \partial(1)z + 1\partial(z)$$

 $\Rightarrow \partial(1) = 0.$

Therefore $\partial(\mathbb{C}) = 0$.

• \Leftarrow Suppose $a\partial - a\partial = c$ for some $c \in A$ and $\partial(\mathbb{C}) = 0$, then

$$(\partial a - a\partial)(1) = c(1)$$
$$\partial(a) = c$$

therefore ∂ follows Leibniz identity.

Example 4.1.1. On polynomial rings, we have $\mathrm{Der}_{\mathbb{C}}(\mathbb{C}[x]) = \mathbb{C}(x) \frac{d}{dx}$. Clearly, the inclusion $\mathbb{C}[x] \frac{d}{dx} \subseteq \mathrm{Der}_{\mathbb{C}}(\mathbb{C}[x])$ is trivial by just checking that it satisfies Leibniz identity. However, for the reverse inclusion, consider a derivation $\partial \in \mathrm{Der}_{\mathbb{C}}(\mathbb{C}[x])$, then we claim that a basis is given by

$$\partial := \partial(x) \frac{d}{dx}.\tag{20}$$

Easy to check that acting on the unit $1 \in \mathbb{C}$ and x, these definitions agree. Therefore, by \mathbb{C} -linearity and Leibniz property, they agree on $\mathbb{C}[x]$.

More generally,

$$\operatorname{Der}_{\mathbb{C}}(\mathbb{C}[x_1,\ldots,c_n]) = \bigoplus_{i=1}^n \mathbb{C}[x_1,\ldots,x_n] \frac{\partial}{\partial x^i}$$
(21)

Example 4.1.2. If $A = C^{\infty}(M)$, the algebra of smooth functions on M, then

$$\operatorname{Der}_{\mathbb{R}}(C^{\infty}(M)) = \mathcal{X}(M) \tag{22}$$

4.2 Differential operators

In this section we define the more general concept of a differential operator, which are **not** necessarily derivations. There are two different ways to define them.

Definition 4.2.1 (First definition). The ring D(A) of \mathbb{C} -linear **differential operators** on A is the subalgebra of $\operatorname{End}_{\mathbb{C}}(A)$ generated by A and $\operatorname{Der}_{\mathbb{C}}(A)$. Let $\theta \in D(A)$, it has order p if it is the sum of products on at most p derivations.

products on at most
$$p$$
 derivations.
e.g: $\frac{d^2}{dx^2} + 1 = \left(\frac{d}{dx}\right)^2 + 1$ has order 2.

We can generalise this definition a little.

Definition 4.2.2 (Second definition). A **regular** differential operator of order p is an element of $D^p(A) = \{\theta \in \operatorname{End}_{\mathbb{C}}(A) | \theta a - a\theta = \theta(a) \in D^{p-1}(A) \quad \forall a \in A\}$, with $D^0(A) = A$. The ring of **regular differential operators** is $D(A) = \bigcup D^p(A)$ and it is easy to see that

$$D^{p}(A)D^{r}(A) \subseteq D^{p+r}(A). \tag{23}$$

and $D^{p+1}(A) \supseteq D^p(A)$ so this defines a filtration.

We relate the two definitions in the following sense. Suppose $\theta \in D^1(A)$, then

$$\theta = (\theta - \theta(1)) + \theta(1) \tag{24}$$

implying that $D^1(A) \cong \operatorname{Der}_{\mathbb{C}}(A) \oplus A$. So we can generate the ring of differential operators on A and clearly $\operatorname{def} 1 \subset \operatorname{def} 2$.

Theorem 4.2.1 (Grothendieck). The two definitions are equivalent if and only if $X = \operatorname{Spec}_A$ is non-singular. In this case, the ring of differential has the simple expression

$$D(A) = T_A(\operatorname{Der}_{\mathbb{C}}(A)) / \theta \otimes \theta' - \theta' \otimes \theta - [\theta, \theta']$$
(25)

where T_A is the tensor algebra. Recall that the *spectrum* of a ring Spec(R) is the set of all prime ideals of R with the Zariski topology. [3]

Example 4.2.1. Consider the ring $A = \mathbb{C}[x]$ of rational functions over \mathbb{C} , then the algebra of derivations over this ring

$$\operatorname{Der}_{\mathbb{C}}(A) = \mathbb{C}[x] \frac{d}{dx} := W$$
 (26)

is called the Witt algebra. However, the ring D(A) of differential operators on A can also be viewed as the polynomial ring constructed by quotienting the free \mathbb{C} -algebra on x, ∂ by the ideal

$$D(A) = \frac{\mathbb{C}\langle x, \partial = \frac{d}{dx} \rangle}{x\partial - \partial x - 1}.$$
 (27)

This is called a Weyl algebra.

As noted earlier, the second definition is more general. Here is an example where the equality fails.

Example 4.2.2. Consider $A = \mathbb{C}[t^2, t^3]$. Then $\operatorname{Spec}(A)$ is the space of proper prime ideals

$$\operatorname{Spec}(A) = \left\{ \langle t^2 - a, t^3 - b \rangle, (a, b) \in \mathbb{C}^2 \right\} \bigcup \left\{ \langle f(t^2, t^3) \rangle, \text{f is irreducible} \right\} \cup \left\{ \langle 0 \rangle \right\}$$
 (28)

This space has a singular point and somehow this implies that there exists differential operators at that point that are not generated by sum-products of derivations. EXPAND ON THIS

Lemma 4.2.1. Let $\theta \in D^p(A)$ and $\theta' \in D^r(A)$ then

$$[\theta, \theta'] := \theta \cdot \theta' - \theta' \cdot \theta \in D^{p+r-1}(A)$$
(29)

In particular, $D^1(A)$ and $Der_{\mathbb{C}}(A)$ are *Lie algebras*. Not true for higher order as it doesn't close. But below we will see a way to make it into a Lie algebra.

Question. Given algebras A, B with respective spectrum $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B)$. If $D(A) \cong D(B)$, does that mean that $X \cong Y$? This turns out to be **false** if the algebraic varieties are allowed to be singular.

4.3 From differential operators to Poisson algebras

We have seen in lemma 4.2.1 that $[D^p(A), D^r(A)] \subseteq D^{p+r-1}(A)$. In particular, for Lie subalgebra $\mathrm{Der}_{\mathbb{C}}(A) \subseteq D(A)$, if $\delta, \delta' \in \mathrm{Der}_{\mathbb{C}}(A)$ then $[\delta, \delta'] \in \mathrm{Der}_{\mathbb{C}}(A)$,

$$\begin{aligned} [\delta, \delta'](ab) &= \delta \delta'(ab) - \delta' \delta(ab) \\ &= \delta(\delta'(a)b + a\delta'(b)) - \delta'(\delta(a)b + a\delta(b)) \\ &= \delta \delta'(a)b + a\delta \delta'(b) - \delta' \delta(a)b - a\delta' \delta(b) \\ &= [\delta, \delta'](a)b + a[\delta, \delta'](b) \end{aligned}$$

Definition 4.3.1. Given the filtration of regular differential operators D(A) on algebra A, we define its grading gr D(A) as

$$\operatorname{gr} D(A) = \bigoplus_{p} D^{p}(A) / D^{p-1}(A)$$
(30)

Proposition 4.3.1. The grading of differential operators on A is a commutative ring under composition and a Poisson algebra with bracket generated by the commutator $[\cdot, \cdot]$.

Proof. • Let $\pi \in D^p(A)$ and $\rho \in D^r(A)$, then $\pi \rho, \rho \pi \in D^{p+r}(A)$ while $[\pi, \rho] \in D^{p+r-1}(A)$. So

$$\pi \rho \sim \rho \pi + D^{p+r-1}(A) \tag{31}$$

but as elements $\operatorname{gr}(\pi\rho), \operatorname{gr}(\rho\pi) \in \operatorname{gr}D(A)$, we have $\operatorname{gr}(\pi\rho) = \operatorname{gr}(\rho\pi)$

• $(\operatorname{gr} D(A), \{\cdot, \cdot\})$ is a Lie algebra. Taking the bracket on differential operators, we induce the Lie bracket $\{\cdot, \cdot\}$: $\operatorname{gr} D(A) \times \operatorname{gr} D(A) \to \operatorname{gr} D(A)$ by

$$\{\operatorname{gr} \rho, \operatorname{gr} \pi\} := \operatorname{gr} [\rho, \pi]$$
$$= [\rho, \pi] + D^{p+r-2}(A)$$

for $\pi \in D^p(A)$, $\rho \in D^r(A)$. Given that $[\cdot, \cdot]$ is a Lie bracket on $D^1(A)$, we extend it to gr D(A) so that $\{\cdot, \cdot\}$ is a bracket up to an element of the quotient.

• The adjoint action is a derivation. This is shown SOMEDAY.

In fact, if $X = \operatorname{Spec}(A)$ is non-singular,

$$\operatorname{gr} D(A) = \operatorname{gr} \left(\frac{T_A(\operatorname{Der}_{\mathbb{C}}(A))}{\delta \otimes \delta' - \delta' \otimes \delta - [\delta, \delta']} \right)$$
$$= \frac{T_A(\operatorname{Der}_{\mathbb{C}}(A))}{\delta \otimes \delta' - \delta' \otimes \delta}.$$

So in this case, $\operatorname{gr} D(A) = \operatorname{Sym}_A(\operatorname{Der}_{\mathbb{C}}(A))$, and since we can identify the derivations with category of vector fields on X,

$$\operatorname{Der}_{\mathbb{C}}(A) = \mathbb{V}ect(X) = \mathbb{C}[T^*X]$$
 (32)

Possible connection with L_{∞} -algebras. see [4]

4.4 Weyl algebras

Let $A = \mathbb{C}[x_1, \dots, x_n]$ then the ring of differential operator on A is constructed akin to example 4.2.1 as the free algebra in $\{x_i, y_i = -\partial_i\}$ variables

$$D(A) \cong \frac{\mathbb{C}\langle x_1, \dots, x_n, y_1, \dots, y_n \rangle}{[x_i, y_j] = \delta_{ij}, \text{ rest commutes}}.$$
(33)

This is the n^{th} Weyl Algebra D(A) which is a simple ring (i.e. it does not have a proper 2-sided ideal). Its grading is the Poisson simple algebra

$$\operatorname{gr} D(A) = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]$$
(34)

with Poisson brackets

$$\{x_i, y_j\} = \delta_{ij} \qquad \{x_i, x_j\} = 0 = \{y_i, y_j\}$$
 (35)

This is sometimes called the first example.

Remark 4.4.1. $D(\mathbb{C}[x])$ has no non-trivial finite dimensional modules. This is because, assuming V is a $D(\mathbb{C}[x])$ -module of complex dimension d. Then $D(\mathbb{C}[x])$ acts on V as an endomorphism. Let $X, Y \in \operatorname{Mat}_{d \times d}(\mathbb{C})$ such that $[X, Y] = \mathbb{1}_d$, then $\operatorname{tr}([X, Y]) = 0 \neq d$, which is a contradiction.

Proposition 4.4.1. Let I be a right ideal of D(A). Then J = gr(I) is an ideal of gr(D(A)) and it is involutive/coisotrope

$$\{J,J\} \subseteq J \tag{36}$$

Proof. Let $\theta, \eta \in I$ then $[\theta, \eta] \in I$ since it is a right ideal. Taking the grading, $\operatorname{gr}[\theta, \eta] \equiv \{\operatorname{gr}\theta, \operatorname{gr}\eta\} \subseteq J$

Theorem 4.4.1 (Gabber). If J = gr(I) is coisotrope for some right ideal I of D(A), then the radical $\sqrt{J} := \{\theta | \exists k, \text{ s.t } \theta^k \in J\}$ is also coisotrope.

Corollary 4.4.1 (Bernstein's inequality). Using Gabber's theorem and Hilbert Nullstellensatz $\sqrt{J} = I(V(J))$, we see that

$$\dim(V(J) \subseteq \mathbb{C}^{2n}) \ge n \tag{37}$$

Example 4.4.1. Let $A = \mathbb{C}[x,y]$ with $\{x,y\} = 1$. Consider the coisotrope subring $J = \langle x^2, xy, y^2 \rangle$. It has radical $\sqrt{J} = \langle x,y \rangle$, but the radical is *not* coisotrope. Therefore J is **not** the grading of some right ideal of $D(\mathbb{C}[x,y])$.

Bibliography

- [1] Carlos Zapata-Carratala. A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science. 2019. URL http://arxiv.org/abs/1910.08469.
- [2] Rui Loja Fernandes. Rui Loja Fernandes and Ioan M^{*} arcut, Lectures on Poisson Geometry. 2015. URL http://www.math.illinois.edu/{~}ruiloja/Math595/book.pdf.
- [3] S. C. Coutinho. A Primer of Algebraic D-Modules. Cambridge University Press, may 1995. ISBN 9780521551199. doi: 10.1017/CBO9780511623653. URL /core/books/primer-of-algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473https: //www.cambridge.org/core/product/identifier/9780511623653/type/book.
- [4] Christopher Braun and Andrey Lazarev. Homotopy BV algebras in Poisson geometry. apr 2013. doi: 10.1090/S0077-1554-2014-00216-8. URL http://arxiv.org/abs/1304.6373http://dx.doi.org/ 10.1090/S0077-1554-2014-00216-8.