Turing vence a von Neumann

Agustín Curto

FaMAF - UNC

2017

Introduciendo notación

Notación

Dados $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$, con $n, m \in \omega$, usaremos:

$$\|x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m\|$$

para denotar el estado

$$((x_1,\ldots,x_n,0,\ldots),(\alpha_1,\ldots,\alpha_m,\varepsilon,\ldots))$$

Nótese que por ejemplo:

$$\|x\| = ((x,0,\ldots),(\varepsilon,\ldots))$$
 Para $n=1,m=0$
 $\|\diamondsuit\| = ((0,\ldots),(\varepsilon,\ldots))$ Para $n=m=0$

Además es claro que:

$$\|x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m\| = \|x_1,\ldots,x_n,\overbrace{0,\ldots,0}^i,\alpha_1,\ldots,\alpha_m,\overbrace{\varepsilon,\ldots,\varepsilon}^j\|$$

cualesquiera sean $i, j \in \omega$.

Toda función Σ -computable es Σ -Turing computable

Probaremos

Si f es una función Σ -mixta que es computada por un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, entonces existe una máquina de Turing determinística con unit M la cual computa a f.

Definición

Dado $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, definamos:

$$N(\mathcal{P}) = \text{menor } k \in \mathbb{N} \text{ tal que las variables que ocurren en } \mathcal{P}$$
 están todas en la lista $N1, \ldots, N\bar{k}, P1, \ldots, P\bar{k}$

Ejemplo: Sea $\Sigma = \{\&, \#\}$, si \mathcal{P} es el siguiente programa:

L1 N4
$$\leftarrow$$
 N4 + 1
P1 \leftarrow P1.&
IF N1 \neq 0 GOTO L1

entonces tenemos $N(\mathcal{P}) = 4$

Sea $\mathcal P$ un programa y sea k fijo y $k \leq N(\mathcal P)$. Describiremos como puede construirse una máquina de Turing la cual simulará a $\mathcal P$. La construcción de la máquina simuladora dependerá de $\mathcal P$ y de k.

Nótese que cuando ${\mathcal P}$ se corre desde algún estado de la forma

$$\|x_1,\ldots,x_k,\alpha_1,\ldots,\alpha_k\|$$

los sucesivos estados por los que va pasando son todos de la forma

$$||y_1,\ldots,y_k,\beta_1,\ldots,\beta_k||$$

es decir, en todos ellos las variables con índice mayor que k valen 0 o ε . La razon es simple, ya que en $\mathcal P$ no figuran las variables

$$N\overline{k+1}, N\overline{k+2}, \dots$$

 $P\overline{k+1}, P\overline{k+2}, \dots$

estas variables quedan con valores 0 y ε , respectivamente a lo largo de toda la computación.

Necesitaremos tener alguna manera de representar en la cinta los diferentes estados por los cuales se va pasando, a medida que corremos a \mathcal{P} . Esto lo haremos de la siguiente forma, al estado

$$\|x_1,\ldots,x_k,\alpha_1,\ldots,\alpha_k\|$$

lo representaremos en la cinta de la siguiente manera

$$B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_k BBBB \dots$$

Ejemplo: consideremos el programa \mathcal{P} mostrado recién y fijemos k=6, entonces al estado

$$||3, 2, 5, 0, 4, 2, \&, \&\&, \varepsilon, \#\&, \#, \#\#\#||$$

lo representaremos en la cinta de la siguiente manera

$$B \coprod B \coprod B \coprod BB \coprod BB \coprod B \coprod BBBBB \dots$$

Definición

A lo que que da entre dos blancos consecutivos, es decir que no hay ningún blanco entre el los, lo llamaremos bloque.

Ejemplo: en la cinta de arriba tenemos que los primeros 12 bloques son

III II IIII ε IIII II & && ε #& # ###

luego, los bloques siguientes, son todos iguales a ε .

Observación

Es que esta forma de representación de estados en la cinta depende del k elejido, es decir, si tomaramos otro k, por ejemplo k=9, entonces el estado anterior se representaría de otra forma en la cinta.

- Armaremos la máquina simuladora como concatenación de máquinas. Para esto, a continuación describiremos, para los distintos tipos de instrucciones posibles de \mathcal{P} , sus respectivas máquinas asociadas.
- Asumiremos que en \mathcal{P} no hay instrucciones de la forma $GOTO L\bar{m}$, ni de la forma $L\bar{n} GOTO L\bar{m}$.
- En esta etapa solo describiremos que propiedades tendrá que tener cada máquina simuladora de cada tipo posible de instrucción, y más adelante mostraremos como pueden ser construídas efectivamente dichas máquinas.
- Todas las máquinas descriptas tendrán:
 - I como unit
 - B como blanco
 - \bullet Σ como su alfabeto terminal
 - su alfabeto mayor será $\Gamma = \Sigma \cup \{B, I\} \cup \{\tilde{a} : a \in \Sigma \cup \{I\}\}.$
 - uno o dos estados finales con la siguiente propiedad:

Si q es un estado final $\Rightarrow \delta(q, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$

Instrucción $N\bar{\imath} \leftarrow N\bar{\imath} + 1$

Para $1 \leq i \leq k$, sea $M_{i,k}^+$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n\in\omega$ y $\alpha_1,\ldots,\alpha_m\in\Sigma^*$

Instrucción $N\bar{\imath} \leftarrow N\bar{\imath}-1$

Para $1 \leq i \leq k$, sea $M_{i,k}^-$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n \in \omega$ y $\alpha_1,\ldots,\alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow P\bar{\imath}.a$

Para $1 \leq i \leq k$ y $a \in \Sigma$, sea $M^a_{i,k}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow^{\curvearrowright} P\bar{\imath}$

Para $1 \leq i \leq k$, sea $M_{i,k}^{\cap}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción $N\bar{\imath} \leftarrow N\bar{j}$

Para $1 \leq i,j \leq k$, sea $M^{\#,k}_{i \leftarrow j}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n \in \omega$ y $\alpha_1,\ldots,\alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow P\bar{j}$

Para $1 \leq i,j \leq k$, sea $M^{*,k}_{i \leftarrow j}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n \in \omega$ y $\alpha_1,\ldots,\alpha_m \in \Sigma^*$

Instrucción $N\bar{\imath} \leftarrow 0$

Para $1 \le i \le k$, sea $M_{i \leftarrow 0}^k$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow \varepsilon$

Para $1 \le i \le k$, sea $M_{i \leftarrow \varepsilon}^k$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción SKIP

Sea

$$\textit{M}_{\text{SKIP}} = \big(\{\textit{q}_0,\textit{q}_f\}, \Gamma, \Sigma, \delta, \textit{q}_0,\textit{B}, I, \{\textit{q}_f\}\big)$$

con $\delta(q_0, B) = \{(q_f, B, K)\}\$ y $\delta = \emptyset$ en cualquier otro caso.

Instrucción IF $N\bar{j} \neq 0$ GOTO $L\bar{m}$

Para $1 \leq j \leq k$, sea $IF_{j,k}$ una máquina con estado inicial q_0 y dos estados finales q_{si} y q_{no} tal que cualesquiera sean $x_1,\ldots,x_n\in\omega$ y $\alpha_1,\ldots,\alpha_m\in\Sigma^*$

• Si $x_j \neq 0$, entonces

• Si $x_i = 0$, entonces

Instrucción IF $P\bar{j}$ BEGINS a GOTO $L\bar{m}$

Para $1 \leq j \leq k$, sea $IF_{j,k}^a$ una máquina con estado inicial q_0 y dos estados finales q_{si} y q_{no} tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

• Si α_i comienza con a_i entonces

Caso contrario

Example

Sea $\Sigma = \{\&, \#\}$ y sea ${\mathcal P}$ el siguiente programa:

L3 N4
$$\leftarrow$$
 N4 + 1
P1 \leftarrow $^{\sim}$ P1
IF P1 BEGINS & GOTO L3
P3 \leftarrow P3.#

Tomemos k = 5, es claro que $k \ge N(\mathcal{P}) = 4$. A la máquina que simulará a \mathcal{P} respecto de k, la llamaremos M_{sim} y será la siguiente:

Veamos con un ejemplo como M_{sim} simula a \mathcal{P} . Supongamos que corremos \mathcal{P} desde el estado

$$\|2,1,0,5,3,\#\&\#\#,\varepsilon,\&\&,\#\&,\#\|$$

Tendremos entonces la siguiente sucesión de descripciones instantaneas:

$$(1, \|2, 1, 0, 5, 3, \#\&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

 $(2, \|2, 1, 0, 6, 3, \#\&\#\#, \varepsilon, \&\&, \#\&, \#\|)$

$$(3, \|2, 1, 0, 6, 3, \&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(1, \|2, 1, 0, 6, 3, \&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(2, \|2, 1, 0, 7, 3, \&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(3, \|2, 1, 0, 7, 3, \#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(4, \|2, 1, 0, 7, 3, \#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(5, \|2, 1, 0, 7, 3, \#\#, \varepsilon, \&\&\#, \#\&, \#\|)$$

Si hacemos funcionar a M_{sim} desde:

$$q_0B$$
 $|^2$ B $|$ BB $|^5$ B $|^3$ $B#&##BB&&B#&B#B</math></math></p>$

obtendremos una sucesión de descripciones instantaneas dentro de las cuales estará la siguiente subsucesión

$$q_0B + ^2B + ^BB + ^5B + ^3B + ^4BB + ^4BB$$

$$q_1B + {}^2B + BB + {}^6B + {}^3B + {}^4\& \# BB \& \& B \# \& B \# B$$

$$q_2B + ^2B + ^BB + ^6B + ^3B \# \& \# \# BB \& \& B \# \& B \# B$$

$$q_3B + ^2B + ^BB + ^6B + ^3B \& \# \#BB \& \& B \# \& B \#B$$

$$q_4B + ^2B + ^BB + ^6B + ^3B + ^4BB + ^4B + ^$$

$$q_{si}B + {}^{2}B + BB + {}^{6}B + {}^{3}B + {}^{4}BB + {}^{4}BB$$

$$q_0B + {}^2B + BB + {}^6B + {}^3B + {}^4BB + {$$

$$q_1B$$
 | 2B | BB | 7B | $^3B\&\#\#BB\&\&B\#\&B\#B$
 q_2B | 2B | BB | 7B | $^3B\&\#\#BB\&\&B\#\&B\#B$

$$q_3B$$
 | 2B | BB | 7B | $^3B\#\#BB\&\&B\#\&B\#B$
 q_4B | 2B | BB | 7B | $^3B\#\#BB\&\&B\#\&B\#B$

$$q_{no}B + {}^{2}B + BB + {}^{7}B + {}^{3}B \# BB \& B\# \& B\# B$$

 $q_{5}B + {}^{2}B + BB + {}^{7}B + {}^{3}B \# BB \& \& B\# \& B\# B$

$$q_6B + ^2B + ^BB + ^7B + ^3B \# \#BB \& \#B \# \& B \#B$$

Supongamos que $\mathcal{P} = I_1, \ldots, I_n$. Para cada $i = 1, \ldots, n$, llamaremos M_i a la máquina que simulará el efecto que produce la instrucción I_i , es decir tomemos:

-
$$M_i = M_{j,k}^+$$
, si $\mathit{Bas}(I_i) = \mathrm{N}\bar{j} \leftarrow \mathrm{N}\bar{j} + 1$

-
$$M_i = M_{j,k}^{\dot{-}}$$
, si $Bas(I_i) = \mathrm{N}\bar{j} \leftarrow \mathrm{N}\bar{j}\dot{-}1$

-
$$M_i = M_{j,k}^a$$
, si $Bas(I_i) = \mathrm{P}\bar{j} \leftarrow \mathrm{P}\bar{j}.a$

-
$$M_i = M_{j,k}^{\curvearrowright}$$
, si $Bas(I_i) = \mathrm{P}\bar{j} \leftarrow {}^{\curvearrowright}\mathrm{P}\bar{j}$

-
$$M_i = M_{j \leftarrow m}^{\#,k}$$
, si $Bas(I_i) = \mathrm{N}\bar{j} \leftarrow \mathrm{N}\bar{m}$

-
$$M_i = M_{i \leftarrow m}^{*,k}$$
, si $Bas(I_i) = \mathrm{P}\bar{j} \leftarrow \mathrm{P}\bar{m}$

-
$$M_i = M_{i \leftarrow 0}^k$$
, si $Bas(I_i) = N\bar{j} \leftarrow 0$

-
$$M_i = M_{j \leftarrow \varepsilon}^k$$
, si $Bas(I_i) = P\bar{j} \leftarrow \varepsilon$

-
$$M_i = M_{\mathrm{SKIP}}$$
, si $Bas(I_i) = \mathrm{SKIP}$

-
$$M_i = IF_{i,k}$$
, si $Bas(I_i) = \mathrm{IF} \ \mathrm{N}\bar{j} \neq 0 \ \mathrm{GOTO} \ \mathrm{L}\bar{m}$, para algún m

-
$$M_i = IF_{i,k}^a$$
, si $Bas(I_i) = \text{IF P}\bar{j} \text{ BEGINS a GOTO L}\bar{m}$, para algún m