Topic and contents

UNSW, School of Mathematics and Statistics

MATH2089 - Numerical Methods

Week 8 - Ordinary Differential Equations II

- Numerical methods
- Frrors
- Runge-Kutta methods

- Step-Size control
- Multi-step methods
- Stiff Problems
- Boundary Value Problems

- MATLAB M-files
 - eulerf.m
 - heun.m
 - rk4.m

- ivpmain.m
- bvpex1.m

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019

1 / 20

ODEs Numerical methods

Implicit Euler and Heun Methods

- IVP: y' = f(t, y). $y(t_0) = y_0$
- Explicit Euler $y_{n+1} = y_n + hf(t_n, y_n)$
 - MATLAB function eulerf.m
- Implicit Euler's method
 - Approximation $f(t,y) \approx f(t_{n+1},y_{n+1})$ on $[t_n,t_{n+1}]$

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}), \quad n = 0, 1, \dots, N-1$$

ODEs Numerical methods

- Implicit \iff require solution of (nonlinear) equation to get y_{n+1}
- Heun's method: For $n = 0, 1, \dots, N-1$

$$y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))]$$

- Example of a predictor-corrector method
- Prediction $\bar{y}_{n+1} = y_n + hf(t_n, y_n)$
- Correction $y_{n+1} = \frac{h}{2} \left[f(t_n, y_n) + f(t_{n+1}, \bar{y}_{n+1}) \right]$ uses prediction
- MATLAB function heunf.m

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019

2 / 20

ODEs Errors

Local vs Global Error

Local Truncation Error

$$T(t) = \frac{y(t+h) - y(t)}{h} - f(t, y(t))$$

- Truncation error at t_n is $T_n = T(t_n)$
- Euler's method $T_n = O(h)$
- MATLAB ivpmain.m, Example 2
- Global error

$$E_n(h) = y(t_n) - y_n$$

Convergence

$$\lim_{h \to 0} \max_{n} |E_n(h)| = 0$$

• Euler's method $E_n = O(h)$ slow

3 / 20

• A is strictly lower triangular, eg $A_{ij} = 0$ for $j \ge i$

• RK nodes $\mathbf{c} = (c_1, c_2, \dots, c_{\nu})^T \in \mathbb{R}^{\nu}, \quad c_1 = 0$

• Parameters A, b, c displayed in RK tableau

• RK weights $\mathbf{b} = (b_1, b_2, \dots, b_{\nu})^T \in \mathbb{R}^{\nu}$

Explicit Runge-Kutta methods

Definition (Explicit Runge-Kutta (ERK) Methods)

A ν -stage explicit Runge-Kutta method with parameters a_{ij} , b_j , c_j is

$$\xi_1 = y_n
\xi_2 = y_n + ha_{2,1}f(t_n + c_1h, \xi_1)
\xi_3 = y_n + ha_{3,1}f(t_n + c_1h, \xi_1) + ha_{3,2}f(t_n + c_2h, \xi_2)
\vdots
\xi_{\nu} = y_n + h\sum_{i=1}^{\nu-1} a_{\nu,i}f(t_n + c_ih, \xi_i)$$

Then

$$y_{n+1} = y_n + h \sum_{j=1}^{\nu} b_j f(t_n + c_j h, \xi_j)$$

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

ODEs Runge-Kutta methods

T2 2019

WK 8 - Ordinary Differential Equations II

• Two stage RK methods, $E_n = O(h^2)$, (Heun is third)

T2 2019

Runge-Kutta Parameters

• RK matrix $A \in \mathbb{R}^{\nu \times \nu}$

 $\begin{array}{c|c} \mathbf{c} & A \\ \hline & \mathbf{h}^T \end{array}$

ODEs Runge-Kutta methods

Three and four stage Runge-Kutta Methods

• Three stage RK methods, $E_n = O(h^3)$ (Classical RK method, Nyström)

• Four stage RK method $E_n = O(h^4)$ (RK4)

MATLAB function rk4.m

Runge-Kutta Method – Example

Example

Write down the formulae for the Runge-Kutta method with the RK tableau

$$\begin{array}{c|cccc}
0 & & \\
\frac{2}{3} & \frac{2}{3} & \\
& & \frac{1}{4} & \frac{3}{4}
\end{array}$$

Use this method with h=0.25 to estimate y(1.5) for the IVP

$$y' = 1 + \frac{y}{t}, \qquad y(1) = 2$$

Solution

RK tableau gives

$$\xi_1 = y_n$$

$$\xi_2 = y_n + \frac{2}{3}hf(t_n, \xi_1)$$

$$y_{n+1} = y_n + h\left[\frac{1}{4}f(t_n, \xi_1) + \frac{3}{4}f(t_n + \frac{2}{3}h, \xi_2)\right]$$

Runge-Kutta Method – Example

Solution

• $f(t,y) = 1 + \frac{y}{t}$, $t_0 = 1$, $y_0 = 2$, h = 0.25

n	t_n	$\xi_1 = y_n$	$f(t_n, \xi_1)$	ξ_2	$f(t_n + \frac{2}{3}h, \xi_2)$
0	1	2	3	2.5	3.1429
1	1.25	2.7768	3.2214	3.3137	3.3391
2	1.5	3.6042		•	3.1429 3.3391

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019

10 / 20

ODEs Step-Size control

Step Size Control

- Adjust step-size to keep local error estimate within tolerance
- Interval halving: at t_n , y_n
 - Use one step of h to get $y_{n+1}(h)$
 - Use two steps of h/2 to get $y_{n+1}(h/2)$
 - Local truncation error of method gives estimate of T_{n+1}
 - Reduce step until error estimate within desired tolerance
 - $T(h) = O(h^5) \Longrightarrow$ halving h reduces error by $1/2^5 = 1/32$
 - To reduce error by 10 need to reduce h by $10^{1/5} \approx 1.58$
- Runge-Kutta-Fehlberg Method
 - Use difference between different order RK methods to give estimate of local truncation error
 - Runge-Kutta-Fehlberg Method uses fourth and fifth order methods
 - Fewer function evaluations than interval halving
 - MATLAB function ode23, ode45

ODEs Step-Size control

Step-Size Control - ODE45

• y' = -30y, $y(0) = \frac{1}{3}$, using MATLAB ode45

Multi-Step Methods

Definition

A multi-step method uses r previous values y_k for $k \le n$ to determine

$$y_{n+1} = y_n + h \sum_{j=-1}^{r} b_j f(t_{n-j}, y_{n-j}), \quad n \ge r$$

- $b_{-1} = 0 \Longrightarrow \text{explicit method}$
- $b_{-1} \neq 0 \Longrightarrow \text{implicit}$ method $(y_{n+1} \text{ on both sides, solve equation})$
- $b_r \neq 0 \Longrightarrow r+1$ step method using $y_{n-r}, y_{n-r+1}, \dots, y_n$
- Need r starting values y_1, \ldots, y_r (eg from RK method)
- r = 0 one-step methods

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019

13 / 20

ODEs Stiff Problems

Stiff Problems

An IVP is stiff when very small step sizes may be required for an explicit method to get an accurate solution.

Example (Stiff IVP)

Consider the IVP y' = -30y for $t \ge 0$ with initial value y(0) = 1/3. Solve on [0,2]

- Solution $y(t) = \frac{1}{3}e^{-30t}$
- As $t \to \infty$, $y(t) \to 0$
- ullet Explicit methods only have this behaviour for small h
- Implicit methods much better for stiff problems
- MATLAB ivpmain.m, Example 6 with Euler, Heun, RK4

ODEs Multi-step methods

Predictor-Corrector Methods

- Notation $f_n = f(t_n, y_n), f_{n+1} = f(t_{n+1}, y_{n+1}), \text{ etc.}$
- Adams-Bashforth Predictor (AB4)

$$y_{n+1} = y_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right)$$

- Local truncation error $O(h^5)$, Global truncation error $O(h^4)$
- Adams-Moulton Corrector (AM4)

$$y_{n+1} = y_n + \frac{h}{24} \left(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2} \right)$$

- y_{n+1} from predictor to get f_{n+1}
- Local truncation error $O(h^5)$, Global truncation error $O(h^4)$

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019 14 / 20

ODEs Stiff Problems

Stiff Problem - Euler's Method

- Euler's method for N = 20, 25, 30, 40
- Corresponding h = 0.1, 0.08, 0.06666, 0.05

Euler's Method – Stability

Example

Test problem y' = cy with y(0) = a

- Solution $y(t) = ae^{ct}$
- $c < 0 \Longrightarrow y(t) \to 0$ as $t \to \infty$
- Euler:

$$y_n = y_{n-1} + hf(t_{n-1}, y_{n-1})$$

$$= y_{n-1} + hcy_{n-1} = (1 + ch)y_{n-1}$$

$$= (1 + ch)^2 y_{n-2}$$

$$\vdots$$

$$= (1 + ch)^n y_0$$

- $y_n = (1+ch)^n y_0$ diverges unless |1+ch| < 1
 - $c < 0 \Longrightarrow h < \frac{2}{|c|}$
 - Example $c = -30 \implies h < 1/15 = 0.0666$

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

ODEs Boundary Value Problems

T2 2019

17 / 20

Boundary Value Problems (BVP)

• Second order differential equation y'' = g(t, y, y') for $t \in [a, b]$

ODEs Boundary Value Problems

- Two-dimensional first-order system: state vector $\mathbf{x} = [y, y']^T$
- Initial value problem $\mathbf{x}(a) = (y(a), y'(a))^T$
- Boundary value problem $y(a) = y_a$ and $y(b) = y_b$

Example

BVP
$$y'' + \frac{1}{t}y' + 2.5 = 0$$
, on $[0.5, 1.5]$ with $y(0.5) = 0$ and $y(1.5) = 0$

- $\mathbf{x} = [y, y']^T$
- $\mathbf{x}' = [y', \ a(t, y, y')]^T$
- $g(t, y, y') = -\frac{1}{4}y' 2.5$

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019 18 / 20

ODEs Boundary Value Problems

BVP - Shooting Methods

- Shooting Methods
 - First order system

$$\mathbf{x} = \begin{bmatrix} y \\ y' \end{bmatrix}, \quad \mathbf{x}' = \begin{bmatrix} y' \\ g(x, y, y') \end{bmatrix}, \quad \mathbf{x}(a) = \begin{bmatrix} y_a \\ \eta \end{bmatrix}$$

- Initial conditions with a parameter $\eta \in \mathbb{R}$
- Solve IVP to get $y(b; \eta)$
- Choose parameter η : $y(b;\eta) = y_b \iff \psi(\eta) = y(b;\eta) y_b = 0$
- Solve $\psi(\eta) = 0$
 - Iterative method (fixed point iteration, Newton, Secant)
 - $\bullet \implies$ new estimate of η
 - Re-solve IVP with new initial conditions
 - MATLAB bvpex1.m

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019

19 / 20

(Numerical Methods)

WK 8 - Ordinary Differential Equations II

T2 2019