```
In [3]:
```

```
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
iris=load_iris()
```

In [4]:

iris.feature_names

Out[4]:

```
['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)']
```

In [5]:

```
iris.target_names
```

Out[5]:

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>

In [10]:

df=pd.DataFrame(iris.data,columns=iris.feature_names)
df

Out[10]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [12]:

```
df['target']=iris.target
df
```

Out[12]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

```
In [13]:
```

```
df[df.target==1].head()
```

Out[13]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1
53	5.5	2.3	4.0	1.3	1
54	6.5	2.8	4.6	1.5	1

In [14]:

```
df[df.target==2].head()
```

Out[14]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
100	6.3	3.3	6.0	2.5	2
101	5.8	2.7	5.1	1.9	2
102	7.1	3.0	5.9	2.1	2
103	6.3	2.9	5.6	1.8	2
104	6.5	3.0	5.8	2.2	2

In [23]:

```
df['flower_name'] =df.target.apply(lambda x: iris.target_names[x])
df.head()
```

Out[23]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

In [24]:

```
df0 = df[:50]
df1 = df[50:100]
df2 = df[100:]
```

In [25]:

```
import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [26]:
```

```
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marker='+')
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker='.')
```

Out[26]:

<matplotlib.collections.PathCollection at 0x142cfa4bf40>

In [27]:

```
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="green",marker='+')
plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="blue",marker='.')
```

Out[27]:

<matplotlib.collections.PathCollection at 0x142cfaa4d90>

In [28]:

from sklearn.model_selection import train_test_split

In [29]:

```
X = df.drop(['target','flower_name'], axis='columns')
y = df.target
```

In [30]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
```

In [31]:

```
len(X_train)
```

Out[31]:

120

In [32]:

```
len(X_test)
```

Out[32]:

30

```
In [33]:
```

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X_train, y_train)
KNeighborsClassifier(n_neighbors=10)
knn.score(X_test, y_test)
```

Out[33]:

0.966666666666667

In [34]:

```
knn.predict(X_test)
```

Out[34]:

```
array([0, 1, 1, 0, 2, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 2, 1, 0, 0, 1, 2])
```

In [35]:

```
from sklearn.metrics import confusion_matrix
y_pred = knn.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
cm
```

Out[35]:

In [37]:

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0 1 2	1.00 1.00 0.86	1.00 0.92 1.00	1.00 0.96 0.92	11 13 6
accuracy macro avg weighted avg	0.95 0.97	0.97 0.97	0.97 0.96 0.97	30 30 30

In []: