Ministerul Educației, Cercetării și Tineretului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa finală – Timișoara, 30 aprilie 2008

CLASA A XI-A - SOLUŢII

Subiectul 1. Fie $x, y \in \mathbb{Q}_+^*$ cu x < y, atunci există $m, n \in \mathbb{N}^*$ cu m < n şi $p \in \mathbb{N}^*$ astfel ca $x = \frac{m}{p}$ şi $y = \frac{n}{p}$. Din enunţ, şirul $(f(n \cdot \frac{1}{p}))_{n \in \mathbb{N}^*}$ este crescător, de unde $f(x) \leq f(y)$ şi în consecinţă f este crescătoare pe \mathbb{Q}_+^* 3 puncte Pentru $x, y \in (0, \infty)$ cu x < y există şirurile $(r_n)_{n \in \mathbb{N}^*}$, $(r'_n)_{n \in \mathbb{N}^*}$ din \mathbb{Q}_+^* astfel încât $x < r_n < r'_n < y$ şi $\lim_{n \to \infty} r_n = x$, $\lim_{n \to \infty} r'_n = y$ 2 puncte Cum f este crescătoare pe \mathbb{Q}_+^* şi continuă pe \mathbb{R}_+^* deducem că $f(x) \leq f(y)$ ceea ce implică monotonia funcției pe \mathbb{R}_+^* 2 puncte

Subiectul 2. Dacă $A = B^{-1} \cdot \overline{B}$ atunci

$$A \cdot \overline{A} = B^{-1} \cdot \overline{B} \cdot \overline{(B^{-1})} \cdot B = B^{-1} \cdot \overline{B} (\overline{B})^{-1} \cdot B = I_n,$$

$$A = B^{-1} \cdot \overline{B} \Leftrightarrow B \cdot A = \overline{B} \Leftrightarrow (\alpha \cdot \overline{A} + \beta \cdot I_n) \cdot A = \overline{\alpha} \cdot A + \overline{\beta} \cdot I_n$$

$$\Leftrightarrow \alpha \cdot \overline{A} \cdot A + \beta \cdot A = \overline{\alpha} \cdot A + \overline{\beta} \cdot I_n \Leftrightarrow \alpha \cdot I_n + \beta \cdot A = \overline{\alpha} \cdot A + \overline{\beta} \cdot I_n.$$

$$\det B = \det(\alpha \overline{A} + \overline{\alpha} I_n) = \alpha^n \det\left(\overline{A} + \frac{\overline{\alpha}}{\alpha} I_n\right).$$