

Toward General-Purpose Computational Quantum Electromagnetics Modeling

Elmore Family School of Electrical and Computer Engineering

Members - Felipe Sandoval (EE), Georgia Griffin (CmpE), Ben Eng (APMA), Victoria Chen (MASI), Nicholas Helushka (EE), Naren S. Rachapalli (CS) Mentors - Samuel Elkin, Soomin Moon, Thomas E. Roth (Faculty PI)

INTRODUCTION

Developing efficient numerical methods for quantum electromagnetic (QEM)
 technologies is needed to successfully scale them to useful sizes [1]

- We are developing a custom QEM simulation tool that incorporates these steps:
- **Finite element electromagnetic (EM) eigensolver** to characterize the 3D fields in a device
- Data from the EM eigensolver is then used to discretize a Hamiltonian that describes the quantum interactions between EM fields and transmon quantum bits (qubits) [2]
- A suite of **ordinary differential equation (ODE) solvers** can then time evolve the quantum states to calculate the quantum dynamics
- **Semester Goal:** build an initial capability for each step in parallel before merging into a single tool

FINITE ELEMENT METHOD BASICS

- The finite element method (FEM) is a flexible discretization technique that can analyze complex and arbitrary geometries with high accuracy
- For an arbitrary linear partial differential equation

Differential Operator
$$\longrightarrow \mathscr{L} \underline{\phi} = f \longleftarrow$$
 Source Function

Unknown Solution

• The unknown solution is expanded using a set of basis functions, then the equation is integrated with a weighting function over the solution domain Ω

 By making the basis and weighting function sets identical, the resulting formulation is called Galerkin's method

$$\sum_{i=1}^{N} S_{ij} c_j = b_i i = 1, 2, ..., N$$

 This leads to a square matrix system where the expansion coefficients can be solved for after applying the corresponding boundary conditions

Formulation from [3]

FINITE ELEMENT METHOD FORMULATION

 We have implemented a 2D FEM eigensolver for analyzing the EM fields that can propagate in a homogeneous waveguide, allowing for preliminary understanding of the FEM process

 Applying FEM to the Helmholtz equation of the transverse component of the electric field results in an eigenvalue problem

$$\nabla_t^2 E_z + k_c^2 E_z = 0$$

$$\downarrow \text{FEM} \qquad E_z = 0 \qquad \text{On Conducting Walls}$$

$$[A]\{E_z\} = k_c^2 [B]\{E_z\}$$
 Nearby Node Interactions

- Solving the eigenvalue problem yields the cutoff wavenumber and the corresponding field distribution for the transverse magnetic eigenmode
- The same process applies for the transverse electric eigenmodes by
 applying the Neumann boundary condition on the conducting walls

Analysis from [3]

FINITE ELEMENT METHOD RESULTS

 We calculated the eigenmodes for transverse magnetic (TM) and transverse electric (TE) propagating waves

FEM exhibits excellent accuracy when compared to analytical solutions

HAMILTONIAN MATRIX GENERATION

Hamiltonian operator characterizes the way that QEM fields can interact with the transmon qubits

$$\hat{H} = \underbrace{\sum_{k} \hbar \omega_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}}_{k} + \underbrace{\sum_{j} \hbar \omega_{j} |j\rangle \langle j|}_{j} + \underbrace{\sum_{k,j} \left(\hbar g_{k,j} \hat{a}_{k}^{\dagger} |j\rangle \langle j+1| + \hbar g_{k,j}^{*} \hat{a}_{k}^{\dagger} |j+1\rangle \langle j| \right)}_{\text{Electromagnetic Field}} \text{ Transmon Qubit} \qquad \text{Transmon Qubit and Electromagnetic Field Interactions}$$

- Parameters in the Hamiltonian operator can be found from various FEM eigensolvers
 - EM field eigenvalue ω_k from EM eigensolver
 - Transmon energy eigenvalue ω_j from qubit eigensolver
 - Interaction rate $g_{k,j}$ depends on eigenvectors from EM and qubit eigensolvers
- The Hamiltonian matrix form is evaluated using the operator and initial and final basis states

$$\begin{bmatrix} \langle f_0|\hat{H}|i_0\rangle & \cdots & \langle f_0|\hat{H}|i_j\rangle \\ \vdots & \ddots & \vdots \\ \langle f_j|\hat{H}|i_0\rangle & \cdots & \langle f_j|\hat{H}|i_j\rangle \end{bmatrix} \qquad |i\rangle = |q_0k_0k_1\cdots k_n\rangle \longleftarrow \text{ initial states}$$

$$\langle f| = \langle q'_0k'_0k'_1\cdots k'_n| \longleftarrow \text{ final states}$$

ORDINARY DIFFERENTIAL EQUATIONS SOLVERS

• Once the Hamiltonian is known, the quantum dynamics of the system can be analyzed by solving the Schrödinger equation numerically

$$H\psi = i\hbar\partial_t\psi$$

- Various numerical solvers are being implemented and analyzed for efficiency and accuracy
 - Finite difference method
 - Runge-Kutta
 - Fixed time-step
 - Adaptive time-step
 - Bulirsch-Stoer
- Methods are being tested for their tradeoffs between accuracy and efficiency for both stiff and non stiff problems

CONCLUSIONS & FUTURE DEVELOPMENT

- Developed effective implementation of FEM for 2D waveguide demonstrating its versatility
- Initial Hamiltonian matrix generation code is functioning
- Under development:
 - Efforts are aimed towards producing 3D FEM that will be used to analyze complex QEM devices
 - Document comparison of numerical ordinary differential equation solvers
- A custom eigensolver will be implemented
- Finished FEM will include adaptive mesh refinement to obtain more accurate solutions

REFERENCES

[1] Z. K. Minev, Z. Leghtas, S. O. Mundhada, *et al.*, "Energy-participation quantization of Josephson circuits," *npj Quantum Information* 7, 131, 2021. [2] T. E. Roth and W. C. Chew, "Macroscopic circuit quantum electrodynamics: A new look toward developing full-wave numerical models," *IEEE Journal on Multiscale and Multiphysics Computational Techniques*, vol. 6, pp. 109–124, 2021.

[3] J.-M. Jin, Theory and Computation of Electromagnetic Fields, John Wiley & Sons, 2010.