CURSO DE CIÊNCIA DA COMPUTAÇÃO – TCC						
(X) PRÉ-PROJETO () PROJETO	ANO/SEMESTRE: 2017.1					

APLICAÇÃO PARA MONITORAMENTO VEICULAR E GEOLOCALIZAÇÃO EM TEMPO REAL

Maicon Machado Gerardi da Silva Prof. Miguel Alexandre Wisintainer – Orientador

1 INTRODUÇÃO

Nos sete primeiros meses de 2016 foram roubados/furtados em Santa Catarina 3.164 carros e pick-ups nacionais e importados com seguro (Odega, 2016). Conforme os dados da SUSEP (Superintendência de Seguros Privados), só no primeiro semestre de 2016 as seguradoras registraram 118 mil veículos roubados/furtados no Brasil (ODEGA, 2016). Odega (2016) cita os veículos com mais índices de roubo, são eles:

- a) Chevrolet Celta 1.0 com 6.055 ocorrências de um total de 170.524 veículos segurados.
- b) VW Volkswagen Gol 1.0 com 4.514 ocorrências de 253.594 veículos com seguro.
- c) Fiat Palio 1.0 com 4.127 ocorrências de um total de 219.654 com seguro.

No ano de 2017, o número de roubos a veículos aumentou 20% em Ribeirão Preto no estado de São Paulo. Segundo G1 Ribeirão e Franca (2017) "[...] 60 roubos de carros e motocicletas ocorreram durante janeiro de 2017. Ao todo, 50 casos ocorreram durante os primeiros trinta dias de 2016 [...]".

Entre janeiro e outubro de 2014 foram registrados pouco mais de meio milhão de veículos que ficaram parados nos mais de 6 mil quilômetros de rodovias do Programa de Concessões Rodoviárias do Estado de São Paulo por apresentarem problemas de manutenção, dentre os quais pneu furado e superaquecimento do motor (SOUZA, 2016). Essa estatística equivale à um pouco mais de 83 carros parados por quilômetro nesse período. Uma pesquisa realizada pelo Instituto Scaringella Trânsito aponta que a falta de manutenção preventiva no automóvel é relacionada com 30% dos acidentes rodoviários e urbanos no Brasil (CZERWONKA, 2016). Czerwonka (2016) também aponta que a manutenção preventiva do veículo não só beneficia a segurança no trânsito, mas também o bolso. Cuidar do carro antes que alguma peça apresente defeito custa, em média 30% a menos do que fazer somente a checagem de rotina.

Diante desse cenário, Baumgarten (2016) desenvolveu um dispositivo que possibilitasse o rastreamento veicular através de geolocalização e uma imagem capturada através de uma câmera acoplada neste dispositivo. Paralelamente à Baumgarten (2016), Staroski (2016) desenvolveu um protótipo de software embarcado em uma placa Raspberry Pi

para capturar dados da porta OBD (*On-Board Diagnostic*) de um veículos e disponibilizá-los em uma página *web*.

Com base nesses argumentos, propõe-se integrar a aplicação desenvolvida por Baumgarten (2016) e o protótipo de Starosky (2016) em uma única plataforma através de um software embarcado em uma placa Raspberry Pi para capturar a geolocalização de um veículo, imagens do veículo e os dados de sua porta OBD. Será desenvolvida uma aplicação *mobile* para disponibilizar os dados do software embarcado.

1.1 OBJETIVOS

O objetivo deste trabalho é o desenvolvimento de um software embarcado, para coletar a geolocalização, imagens e dados da porta OBD de um automóvel bem como uma aplicação *mobile* para capturar as informações desse software embarcado.

Os objetivos específicos são:

- a) desenvolver a integração entre Raspberry Pi e um módulo Global Positioning System (GPS), um módulo Bluetooth OBD e uma câmera;
- b) desenvolver um sistema servidor, que irá receber os dados coletados pelo Raspberry Pi e armazenar os mesmos;
- c) desenvolver um sistema mobile onde será possível verificar a localização atual, últimas localizações do veículo, capturar imagens e verificar informações da porta OBD do veículo;
- d) notificar o usuário sobre falhas no motor retornados pela porta OBD.

2 TRABALHOS CORRELATOS

São apresentados três trabalhos correlatos que possuem características semelhantes à proposta deste trabalho. A seção 2.1 apresenta um trabalho de conclusão de curso da Universidade Federal de São Paulo denominado Monitoramento e Gestão de uma Frota de Veículos Utilizando Sistemas Embarcados desenvolvido por Pacheco (2016). A seção 2.2 trata de uma tese de mestrado desenvolvida no Instituto Superior de Engenharia do Porto por Pina (2015). Por fim, na seção 2.3 é apresentada uma aplicação denominada OnStar desenvolvida pela OnStar (2017) utilizada em automóveis da marca GM Chevrolet.

2.1 GESTÃO DE FROTA DE VEÍCULOS UTILIZANDO SISTEMAS EMBARCADOS

Segundo Pacheco (2016), o objetivo do trabalho é o desenvolvimento de um sistema embarcado para o monitoramento de veículos integrado à uma plataforma web para o

gerenciamento de frota de veículos. Foi desenvolvido um sistema embarcado construído para uma placa Raspberry Pi, um adaptador OBD e um módulo GPS. A placa Raspberry Pi é um computador que utiliza o sistema operacional Linux que ocupa o papel central do sistema. Através dela é possível coletar os dados do adaptador OBD e do módulo GPS. Além disso, ela transmite os dados ao servidor que hospeda a uma plataforma *web*.

Pacheco (2016) desenvolveu um sistema embarcado tal que, dentro do contexto de gestão de frotas, pudesse coletar informações através da porta OBD tais como: velocidade do veículo, rotação do motor, carga do motor, distância percorrida e geolocalização. Essas informações foram coletadas para analisar como o veículo é conduzido (conforme Figura 1). O monitoramento de velocidade pode indicar se os limites de velocidade são respeitados e se há acelerações e frenagens bruscas. Valores de rotação muito elevados também seriam detectados. A carga do motor está associada ao consumo de combustível. A distância percorrida para o agendamento sem a necessidade de consultar o odômetro, a Figura 1 mostra na parte de manutenções essas informações prévias de quilometragem para manutenção, troca de óleo e alinhamento do veículo. Por fim, utiliza a geolocalização para registrar os trajetos realizados.

Estes dados são coletados e armazenados no cartão de memória da placa Raspberry Pi. Para isso foi considerado um intervalo de amostragem para essa coleta. Após a coleta dos dados, eles são enviados à um servidor que hospeda a plataforma de gestão de frotas. O envio de dados é feita através de uma conexão Wi-Fi no momento que o veículo retorna à garagem.

Figura 1 – detalhes sobre o veículo

fonte: Pacheco (2016, p. 70)

Utilizou-se como linguagem de programação Python orientado à objetos por ser uma linguagem bastante versátil (Pacheco, 2016). Ele cita que Python é uma linguagem de programação que tem uma quantidade considerável de bibliotecas disponíveis e podem ser desenvolvidas aplicações tais como: aplicações web, cálculo científico e numérico, gráficos, Machine Learning, Data Science, visualização de dados, interfaces gráficas, entre outras. Foram utilizadas neste trabalho bibliotecas que permitissem a criação de threads, o acesso ao banco de dados SQLite, o uso de expressões regulares e o back-end de um servidor. Para o banco de dados, foi utilizado o SQLite por ser possível executar comandos SQL, salvar e fazer alterações em registros.

Para comandar o sistema embarcado, foi escolhida a placa Raspberry Pi 3 Model B que funciona com o sistema operacional Linux. Possui *bluetooth* e uma porta serial, podendo assim comunicar-se com o adaptador OBD e com o módulo GPS.

O adaptador OBD é o dispositivo utilizado para a comunicação com o computador de bordo do carro e é instalado diretamente na porta OBD do veículo. A troca de dados entre a Raspberry Pi é realizada através de Bluetooth. O adaptador utilizado é baseado no circuito integrado ELM327. O ELM327 é um interpretador multi-protocolo projetado para funcionar com todos os protocolos automotivos de veículos previstos na especificação OBD-II. Este dispositivo custa aproximadamente 30 reais. Foi utilizado também o módulo GPS GY-NEO6VM2 para determinar a posição dos veículos utilizando a porta serial para fazer a comunicação dele com a placa Raspberry Pi.

Como pontos positivos a solução mostrou-se eficiente na coleta de dados pois, irá trabalhar com informações atualizadas lidas direto dos sensores do veículo, bem como elimina a necessidade da leitura constante do odômetro do veículo. O esforço das empresas que possuem um número elevado de veículos diminui pelo fato do sistema executar a leitura dos sensores e também melhora a capacidade de detecção para manutenção da frota.

Como pontos à melhorar, Pacheco (2016) sugere que sejam implementados soluções para veículos pesados, pois a solução abrange somente veículos de passeio, pois a interface do sistema OBD é diferente da implementada por ele. Também destaca a necessidade da portabilidade da plataforma web para um sistema mobile. Sugere também uma redução de custo da placa, utilizando ao invés da placa Raspberry Pi 3 (que custa 35 dólares aproximadamente) por uma placa Raspberry Pi Zero (que custa 5 dólares) que atende a especificação e ainda consome menos energia.

2.2 SISTEMA DE LOCALIZAÇÃO DE VEÍCULOS PARA SMARTPHONE ANDROID

Pina (2015) cita que o trabalho consistem no desenvolvimento de um sistema de localização de veículos para *smartphone* Android. E para isso foram desenvolvidas duas aplicações: uma aplicação de localização Android e uma aplicação *web* para monitoramento.

A aplicação de localização permite capturar dados de localização de GPS e estabelecer uma rede *piconet* Bluetooth, admitindo assim uma comunicação com uma unidade de controle do carro (ECU) através de um adaptador OBDII e com até sete sendores/dispositivos Bluetooth que podem ser instalados no veículo. Os dados adquiridos pela aplicação Android são enviados periodicamente para um servidor *web*.

A aplicação *web* desenvolvida por Pina (2015) permite a o gestor da frota efetuar o monitoramento dos veículos em circulação registrados no sistema, podendo visualizar a posição geográfica dos mesmos em um mapa interativo (Google Maps), bem como dados do veículo (OBDII) e sensores/dispositivos Bluetooth para cada localização enviada pela aplicação Android.

A Figura 2 exemplifica a arquitetura geral do sistema desenvolvido por Pina (2015), ele idealiza o sistema em quatro principais componentes:

- a) aplicação Android de localização;
- b) aplicação web de monitoramento;
- c) adaptadores OBDII/Bluetooth;
- d) dispositivos/sensores Bluetooth.

Aplicação WEB de monitorização

Rede do operador de relecomunicações

Sensores Bluetooth (máximo de 7)

Figura 2 – Arquitetura geral do sistema

fonte: Pina (2015, p. 79)

A aplicação Android desenvolvida é responsável por gerir a comunicação com o adaptador OBDII/Bluetooth, possíveis sensores Bluetooth adicionais, posição geográfica e transmitir esses dados para o servidor *web*. Para essa aplicação utilizou-se JAVA com Android e para a persistência de dados no aparelho, utilizou-se o banco de dados SQLite.

Já a aplicação *web* foi desenvolvida para verificar onde está cada veículo geograficamente e as informações capturadas das portas OBDII e sensores Bluetooth. Na Figura 3, pode ser visualizado a funcionalidade de ver as informações geográficas em um mapa. Essa aplicação *web* foi desenvolvida utilizando as tecnologias PHP juntamente com o banco de dados MySQL para persistência.

Figura 3 – Página Vehicle location history

fonte: Pina (2015, p. 115)

As conclusões que Pina (2015) tira do trabalho desenvolvido é que o sistema desenvolvido é completamente funcional e teve alguma complexidade com o desenvolvimento na plataforma Android, mas que possui uma documentação bem completa. Cita também que teve facilidade em integrar os dispositivos devido à facilidade de instalação e portabilidade. A possibilidade de interação com o adaptador OBDII, Bluetooth e com até 7 dispositivos Bluetooth simultaneamente torna o sistema extremamente versátil e que se aplica à inúmeras aplicações, até mesmo fora do contexto de veículos como foi aplicado.

Há algumas melhorias à serem desenvolvidas, Pina (2015) diz que uma das desvantagens foi a fragilidade do adaptador OBDII/Bluetooth, sugere que seja utilizado outro de maior qualidade. O sistema pode ser aumentado a quantidade de funcionalidades

disponíveis, tais como a leitura de mais parâmetros da porta OBDII e melhoras no layout da aplicação e também um sistema de mensagens entre gestor e utilizador da aplicação.

2.3 ONSTAR

Onstar é um aplicativo exclusivo para clientes Chevrolet. Conforme Figura 4, o aplicativo mantem-se conectado remotamente permitindo comandar diversas funcionalidades do veículo à distância através do aplicativo instalado em um smartphone (Onstar, 2017). Este aplicativo é uma espécie de "assistente pessoal", como a Siri nos aparelhos Apple, nele há funcionalidades para monitorar o seu veículo à distância, travar ou destravar as portas, reservar restaurantes, marcar reuniões e até saber horóscopo (Paixão, 2015).

Este recurso é totalmente novo. O próprio OnStar existe à 21 anos nos Estados Unidos mas sem esse serviço de assistente pessoal. Outras marcas como Volvo e BMW oferecem serviços parecidos (Paixão, 2015).

Figura 4 – Aplicativo OnStar Para Android

fonte: OnStar, 2017

O princípio do funcionamento do OnStar é todo baseado no espelho interno do veículo. Existem três botões. Um serve para atender ligações da central, outro serve para solicitar serviços de assistência e outro é para emergência. De acordo com a GM, há um chip instalado na base do espelho, porém, não há custos extras com ligações para os usuários. Além do espelho, o motorista pode acessar as funcionalidades por um aplicativo (Figura 4) ou através de um website (Paixão, 2015).

Paixão (2015) destaca os pontos fortes do aplicativo, são eles:

- a) a solução é a mais completa que a dos concorrentes;
- b) chega com modelos generalistas e bem mais baratos do que qualquer modelo BMW ou Volvo.

3 FERRAMENTAS ATUAIS

Nesta seção serão apresentados dois trabalhos, ambos desenvolvidos pelo curso de Ciência da Computação na Universidade Regional de Blumenau. A seção 3.1 trata de um trabalho denominado Findcar desenvolvido por Baumgarten (2016). Por fim, a seção 3.2 apresenta o trabalho desenvolvido por Starosky (2016), o OBD-JRP.

3.1 FINDCAR

Baumgarten (2016) desenvolveu um dispositivo que possibilitasse o rastreamento veicular através de geolocalização e uma imagem capturada através de uma câmera acoplada neste dispositivo. Os objetivos cumpridos no trabalho foram:

- a) realizou-se a integração entre OpenWRT e um modem 3rd Generation (3G), um módulo Global Positioning System (GPS) e uma câmera;
- b) desenvolveu uma plataforma- web para verificar a localização atual, ultimas localizações do veículo, capturar imagens e configurar o envio de notificações por e-mail;
- c) tornou o rastreador o próprio servidor onde a aplicação executa.

Para este rastreador veicular, Baumgarten (2016) utilizou uma placa WRTnode de modelo MT7620 com OpenWRT que é uma distribuição customizável do Linux para sistemas embarcados. Utilizou também, um módulo de GPS Ublox GY-NEO6MV2 para capturar a geolocalização, uma webcam Logitech C270 para capturar as imagens do veículo. Todas as informações são disponibilizadas através de um modem 3G/4G Huawei E3272. O esquema de conexões pode ser observado na Figura 5.

Câmera Modem 3G GPS USB/serial PL-2303

Standard Shield

WRTnode

Figura 5 – Diagrama esquemático de conexões

fonte: Baumgarten (2016, p. 26)

Para desenvolver a aplicação *web*, Baumgarten (2016) utilizou para interface gráfica HTML5, CSS3 e Bootstrap3. Para a comunicação com o servidor foi utilizado PHP e a persistência de dados foi feita através do banco de dados MySQL. Utilizou também Google Maps Javascript Api para mostrar as coordenadas capturadas pelo GPS no mapa conforme Figura 6.

Figura 6 – Tela de captura em tempo real

fonte: Baumgarten (2016, p. 39)

Baumgarten (2016) ressalta que o objetivo do trabalho foi atingido adequadamente. O uso da linguagem PHP supriu as necessidades do sistema. Ele enfatiza o uso do banco de dados MySQL que foi facilmente integrado e manipulado com o OpenWRT.

3.2 OBD-JRP

Staroski (2016) desenvolveu um protótipo de software embarcado em uma placa Raspberry Pi para capturar dados da porta OBD de um veículos e disponibilizá-los em uma página *web*. Ele enumerou e concluiu alguns objetivos específicos que foram atendidos, são eles:

- a) desenvolver o firmware, que irá monitorar a porta OBD2 do carro, coletar dados e os enviar para um servidor;
- b) desenvolver o software servidor, que irá receber os dados coletados pelo firmware e armazenar os mesmos;
- c) desenvolver uma página web para consultar o histórico dos dados.

Para o desenvolvimento do trabalho Starosky (2016) utilizou o ambiente de desenvolvimento Java com a biblioteca BlueCove para realizar a comunicação com a interface ELM327 Bluetooth. Para o desenvolvimento do servidor foi utilizado a biblioteca Google Charts para criar gráficos com a linguagem Javascript. Foi utilizado a placa Raspberry Pi 3 Model B com o sistema operacional Raspian GNU/Linux 8 que é disponibilizada com a versão 1.8 do Java. Os dispositivos citados e utilizados podem ser visualizados na Figura 7. Além desses dispositivos, para concluir a comunicação com o servidor, foi utilizado um modem 3G/4G da marca Huawei.

Figura 7 - Instalação no Volkswagen SpaceFox 2009

fonte: Starosky (2016, p. 73)

É possível visualizar os dados lidos da OBD através da aplicação *web* demonstrada na Figura 8. São dados como PID de leitura, Bytes e a descrição do PID lido. Ao clicar no *link*, é demonstrado um gráfico com as leituras efetuadas pelo dispositivo instalado ao carro.

Figura 8 - Página com leituras em tempo real

fonte: Starosky (2016, p. 74)

A aplicação foi testada em três veículos, sendo eles: GM Corsa Seda 2003, Volkswagen Gol 2010 e um Volkswagen SpaceFox 2009. Todos possuíam o conector OBD2, porém o Corsa Sedam 2003 não implementava nenhum protocolo OBD2 apesar de possuir a porta. O protótipo atendeu os objetivos propostos e o Raspberry Pi atendeu as exigências computacionais desenvolvidas.

4 PROPOSTA DA APLICAÇÃO

Este capítulo tem como objetivo apresentar a justificativa para elaboração deste trabalho, assim como os requisitos e metodologia de desenvolvimento.

4.1 JUSTIFICATIVA

No Quadro 1 é apresentado de forma comparativa as principais diferenças entre os trabalhos correlatos apresentados. Observa-se primeiramente que nenhum trabalho apresentado desenvolveu uma notificação quando ocorrer alguma falha no veículo. Também, Pacheco (2016) implementou uma ferramenta que não é acessível através de dispositivos móveis como smartphones.

Correlatos	Pacheco	Pina	OnStar
Características	(2016)	(2015)	(2017)
Hardware do sistema embarcado	Raspberry Pi	Smarthphone Android	Próprio
Notificação de falhas no veículo	Não	Não	Não
Leitura da porta OBD	Sim	Sim	Não informado
Utilização em dispositivos móveis	Não	Sim	Sim
Linguagens	Python	PHP, Java e Android	Não informada
Marcas de carro suportadas	Todas	Todas	Somente
_			Chevrolet

Quadro 1 – Comparativo entre os trabalhos correlatos

fonte: elaborado pelo autor.

O instituto de pesquisa Gartner divulgou um *ranking* de sistemas operacionais móveis mais utilizados em 2016, quem lidera esse *ranking* é o sistema operacional Android (82,2%) e o IOS (12,9%) (Pavão, 2016). Segundo o Quadro 1, Pina (2016) e OnStar (2017) construíram as aplicações que são também acessáveis por dispositivos móveis. Porém, Pina (2015) implementou o recurso como um software embarcado no aparelho Android, sendo assim, longe do veículo a aplicação no dispositivo móvel ficaria inoperante. Além da aplicação de Pina (2015) funcionar somente com aparelhos que tenham o sistema operacional Android. Já a aplicação OnStar (2017) funciona com dispositivos móveis, porém, opera somente com carros da marca Chevrolet. O trabalho implementará a funcionalidade para dispositivos móveis com o sistema operacional Android e IOS independentes do software embarcado e também funcionará para todas as marcas de automóveis que disponibilizarem portas OBD e implementam os protocolos suportados.

No meio social, a aplicação pode auxiliar na prevenção aos danos causados pela emissão de gases, resultado na melhor qualidade do ar (*Resolução...*, 2004). Além, de auxiliar e alertar os condutores de veículos sobre falhas em seus automóveis. Na área profissional o trabalho é relevante por propor aspectos da especificação OBD2, bem como por utilizar GPS que podem servir de base para possíveis soluções comerciais.

4.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

A aplicação descrita neste trabalho deverá:

- a) disponibilizar informações da geolocalização do veículo (Requisito Funcional -RF);
- b) capturar uma foto do veículo através de uma webcam (RF);
- c) disponibilizar dados dos sensores do automóvel através da porta OBD (RF);
- d) permitir receber notificação caso ocorram falhas na porta OBD do veículo (RF);

- e) utilizar a placa Raspberry PI 3 (Requisito Não Funcional RNF);
- f) integrar placa Raspberry PI 3 com a porta OBD do veículo via bluetooth (RNF);
- g) integrar a placa Raspberry PI 3 com um módulo GPS (RNF);
- h) utilizar a linguagem de programação JAVA (RNF);
- i) utilizar o banco de dados PostgresSQL para persistir dados (RNF);
- j) utilizar a *framework* Ionic para desenvolver a aplicação cliente (RNF).

4.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas:

- a) levantamento bibliográfico: fazer levantamentos bibliográficos sobre OBD2,
 Raspberry Pi e Ionic Framework.
- b) elicitação de requisitos: baseando-se no levantamento bibliográfico, reavaliar os requisitos e, se caso necessário, elaborar mais requisitos;
- c) especificação: utilizar a ferramenta Enterprise Architect (EA) para elaborar os diagramas de casos de uso, diagramas de classes, diagrama de pacotes e fluxograma para explicitar a integração entre os sistemas mobile e embarcado;
- d) implementação: à partir da especificação, desenvolver o software embarcado utilizando a linguagem de programação JAVA, desenvolver o sistema *mobile* com a Ionic Framework e persistir os dados utilizando PostgreSQL;
- e) testes: paralelamente à implementação, realizar testes de comunicação entre os hardwares da placa embarcada Raspberry Pi, o módulo GPS, o módulo *bluetooth* OBD, realizar testes de integração entre os sistemas embarcados e *mobile* para verificar se a comunicação se dá de forma adequada, testar o envio de sms e e-mal.

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Quadro 2 - Cronograma

	2017									
	ago.		set.		out.		nov.		dez.	
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2
levantamento bibliográfico										
elicitação dos requisitos										
especificação										
implementação										
testes										

Fonte: elaborado pelo autor.

5 REVISÃO BIBLIOGRÁFICA

Este capítulo descreve brevemente os assuntos que fundamentarão o estudo a ser realizado: OBD2, Raspberry Pi e Ionic Framework.

Segundo Santos (2016) OBD é uma sigla do inglês (*On-Board Diagnostic*) e designa um sistema de autodiagnostico disponível na maioria dos veículos e a ligação ao sistema ocorre por meio de um conector padronizado que foi sancionado como obrigatório na Europa e nos Estados Unidos à partir de 1996. No Brasil foi sancionado como obrigatório somente à partir de 2010 com o padrão de segunda geração OBD2. Santos (2016) cita que "A medida tem a finalidade de fiscalizar a emissão de gases poluentes na atmosfera, dado que, alguns países possuem acordos mundiais em que se comprometem com a preservação ambiental, como o protocolo de Kyoto.".

Raspberry Pi é um computador do tamanho de um cartão de crédito que se conecta a um monitor ou uma TV, usa um teclado e mouse padrão, ele foi desenvolvido no Reino Unido pela Fundação Raspberry Pi. Todo o hardware é integrado à uma única placa. O principal objetivo é promover o ensino da ciência da computação básica em escolas (Raspberry Pi Foundation, 2017, tradução nossa).

Ionic é uma framework *free* e *open source* para criar aplicativos híbridos com HTML5, CSS e Javascript para as versões iOS 6 ou superiores e Android 4.0 ou superiores. O Ionic foi criado com base no AngularJS e possui vários componentes e ferramentas que facilitam o desenvolvimento e não prejudicam a performance do seu aplicativo (FRANCO, 2016).

REFERÊNCIAS

BAUMGARTEN, Nykolas E. A., **FINDCAR**: RASTREADOR VEICULAR UTILIZANDO OPENWRT. 2016, 56 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.

CZERWONKA, Mariana, **Falta de manutenção triplica risco de acidentes**. [Goiás?], 2016. Disponível em http://portaldotransito.com.br/noticias/falta-de-manutencao-triplica-risco-de-acidentes>. Acesso em: 20 mar 2017.

FRANCO, Felipe. **Como criar aplicativos com Ionic Framework**. 2016. Disponível em: http://www.fabricadecodigo.com/como-criar-aplicativos-com-ionic-framework/. Acesso em: 01 abr. 2017.

G1 Ribeirão e Franca, **Estatística divulgada pela SSP mostra aumento da violência em Ribeirão**, [São Paulo], 2017. Disponivel em: http://g1.globo.com/sp/ribeirao-preto-franca/noticia/2017/02/estatistica-divulgada-pela-ssp-mostra-aumento-da-violencia-em-ribeirao.html>. Acesso em: 20 mar 2017.

- ODEGA, Alessandra, Confira os modelos de veículos mais roubados e quanto custa o seguro de cada um deles. Santa Catarina, 2016. Disponível em:
- http://ndonline.com.br/florianopolis/coluna/alessandra-ogeda/confira-os-modelos-de-veiculos-mais-roubados-e-quanto-custa-o-seguro-de-cada-um-deles. Acesso em: 20 mar 2017.
- ONSTAR, **OnStar Br**. [São Paulo?], 2017. Disponível em
- . Acesso em: 31 mar 2017.">https://play.google.com/store/apps/details?id=com.roadtrack.onstar&hl=pt_BR>. Acesso em: 31 mar 2017.
- PACHECO, Lucas V., **Monitoramento e gestão de uma frota de veículos utilizando sistemas embarcados**. 2016, 76 f. Trabalho de Conclusão de Curso (Curso de Engenharia Elétrica) Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo.
- PAIXÃO, André, **Veja como funciona o OnStar, 'assistente pessoal' da Chevrolet**. São Paulo, 2016. Disponível em: < http://g1.globo.com/carros/noticia/2015/10/veja-comofunciona-o-onstar-assistente-pessoal-da-chevrolet.html>. Acesso em: 31 mai 2017.
- PAVÃO, Felipe. **Os 5 sistemas operacionais mobile mais vendidos de 2016**. 2016. Disponível em: https://www.tecmundo.com.br/mercado/108748-5-sistemas-operacionais-mobile-vendidos-2016.htm>. Acesso em: 31 mar. 2017.
- PINA, Afonso L. P., **SISTEMA DE LOCALIZAÇÃO DE VEÍCULOS PARA SMARTPHONE ANDROID**. 2015, 136p, Tese/Dissertação de Mestrado (Engenharia Eletrotécnica e de Computadores) Departamento de Engenharia Eletrotécnica, Instituto Superior de Engenharia do Porto, Porto Portugal.
- RASPBERRY PI FOUNDATION, **FAQS.** [2017?]. Disponível em: https://www.raspberrypi.org/help/faqs/>. Acesso em: 01 abr. 2017.
- RESOLUÇÃO CONAMA nº 354, de 13 de dezembro de 2004. Publicada no D.O.U. nº 239, de 14 de dezembro de 2004, Seção 1, p. 62-63. Disponível em:

http://www.mma.gov.br/port/conama/legislacao/CONAMA_RES_CONS_2004_354.pdf. Acesso em: 01 abr. 2017.

- SANTOS, Arthur Luis V., **Economia de combustível com o uso de telemetria para veículos de passeio**. 2016, 82 f. Trabalho de Conclusão de Curso (Engenharia de Computação) Instituto de Informática, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul.
- SOUZA, Beatriz, **Quatro em cada dez veículos de carga apresentam falha mecânica**. [Santa Catarina?], 2016. Disponível em: http://www.perkons.com.br/noticia/1694/quatro-em-cada-dez-veiculos-de-carga-apresentam-falha-mecanica. Acesso em: 20 mar 2017.
- STAROSKY, Ricardo A., **OBD-JRP**: monitoramento veicular com java e raspberry pi. 2016, 87 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.

ASSINATURAS

(Atenção: todas as folhas devem estar rubricadas)

Assinatura do(a) Aluno(a):
Assinatura do(a) Orientador(a):
Assinatura do(a) Coorientador(a) (se houver):
Observações do orientador em relação a itens não atendidos do pré-projeto (se houver):

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR TCC I

Лι	iuciii	ico(a)			
Ava	aliad	or(a):			
		ASPECTOS AVALIADOS ¹	atende	atende parcialmente	não atende
	1.	INTRODUÇÃO O tema de pesquisa está devidamente contextualizado/delimitado?			
		O problema está claramente formulado?			
	2.	OBJETIVOS			
		O objetivo principal está claramente definido e é passível de ser alcançado?			
		Os objetivos específicos são coerentes com o objetivo principal?			
ASPECTOS TÉCNICOS	3.	TRABALHOS CORRELATOS São apresentados trabalhos correlatos, bem como descritas as principais funcionalidades e os pontos fortes e fracos?			
	4.	JUSTIFICATIVA Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais funcionalidades com a proposta apresentada?			
S		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?			
TO		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?			
EC	5.	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO			
SP		Os requisitos funcionais e não funcionais foram claramente descritos?			
A	6.	METODOLOGIA Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?			
		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?			
	7.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e pré- projeto) Os assuntos apresentados são suficientes e têm relação com o tema do TCC?			
		As referências contemplam adequadamente os assuntos abordados (são indicadas obras atualizadas e as mais importantes da área)?			
ASPECTOS METODOLÓGICOS	8.	LINGUAGEM USADA (redação) O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?			
		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?			
	9.	ORGANIZAÇÃO E APRESENTAÇÃO GRÁFICA DO TEXTO A organização e apresentação dos capítulos, seções, subseções e parágrafos estão de acordo com o modelo estabelecido?			
	10.	ILUSTRAÇÕES (figuras, quadros, tabelas) As ilustrações são legíveis e obedecem às normas da ABNT?			
OS	11.	REFERÊNCIAS E CITAÇÕES			
Ŝ		As referências obedecem às normas da ABNT?			
ASPE		As citações obedecem às normas da ABNT?			
		Todos os documentos citados foram referenciados e vice-versa, isto é, as citações e referências são consistentes?			

PARECER – PROFESSOR DE TCC I OU COORDENADOR DE TCC (PREENCHER APENAS NO PROJETO):

(PREE	INC	HER APENAS NO	PROJETO):	
O projeto de TCC será reprovado se:				
• qualquer um dos itens tiver resposta l				
• pelo menos 4 (quatro) itens dos ASI				
• pelo menos 4 (quatro) itens dos ASI	EC	TOS METODOLÓGICOS	tiverem resposta A'	TENDE PARCIALMENTE.
PARECER:	() APROVADO	() REPROVADO
Assinatura:			Data:	

¹ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR AVALIADOR

Acadêmico(a):								
Avalia	dor(a):						
		ASPECTOS AVALIADOS ¹	atende	atende parcialmente	não atende			
	1.	INTRODUÇÃO						
		O tema de pesquisa está devidamente contextualizado/delimitado?						
		O problema está claramente formulado?						
	2.	OBJETIVOS						
		O objetivo principal está claramente definido e é passível de ser alcançado?						
		Os objetivos específicos são coerentes com o objetivo principal?						
50	3.	TRABALHOS CORRELATOS São apresentados trabalhos correlatos, bem como descritas as principais funcionalidades e os pontos fortes e fracos?						
ASPECTOS TÉCNICOS	4.	JUSTIFICATIVA Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais funcionalidades com a proposta apresentada?						
OS TÉC		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?						
CT(São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?						
ASPEC	5.	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO Os requisitos funcionais e não funcionais foram claramente descritos?						
	6.	METODOLOGIA						
		Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?						
		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?						
	7.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e préprojeto)						
		Os assuntos apresentados são suficientes e têm relação com o tema do TCC?						
		As referências contemplam adequadamente os assuntos abordados (são indicadas obras atualizadas e as mais importantes da área)?						
ASPECTOS METODOLÓ GICOS	8.	LINGUAGEM USADA (redação) O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?						
ASP MET GJ		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?						
PARECER – PROFESSOR AVALIADOR: (PREENCHER APENAS NO PROJETO)								
• qu	alqu	e TCC ser deverá ser revisado, isto é, necessita de complementação, se: er um dos itens tiver resposta NÃO ATENDE; enos 5 (cinco) tiverem resposta ATENDE PARCIALMENTE.						
PARECER: () APROVADO () REPROVADO								
Assina	tura	: Data:						

 $^{^1}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.