Gaussian Processes for Inference with Implicit Likelihoods

Murali Haran

Department of Statistics

Pennsylvania State University

Microsoft Research Redmond, Washington January 2012

Complex Scientific Models

- Scientists are often interested in mechanisms underlying physical phenomena
- These models may be useful for predictions/projections
- Critical to work with the model provided by the scientists
- These scientific models may be
 - Numerical solutions of mathematical (deterministic) models or stochastic models that reflect scientific processes
 - Translated into computer code to study simulations of the physical processes for different parameters/conditions

Some Challenges Posed by Complex Models

- Computationally expensive simulations
- May not be possible to write closed-form expressions relating input/parameters to output.
- (When stochastic) The likelihood function may be expensive to evaluate: hard to optimize or use Monte Carlo methods
- Non-ignorable discrepancies between model and reality.

Likelihood is often implicit or has to be treated as such

Two Examples

- I Climate: An Earth System Model of Intermediate Complexity (EMIC) for projecting the behavior of global ocean circulation systems.
- II Disease Dynamics: A space-time model for the spread of infectious disease (measles).

The Meridional Overturning Circulation (MOC)

The Atlantic meridional overturning circulation (MOC) carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator.

Rahmstorf (Nature, 1997)

Climate Models: Learning About K_{ν}

"Collapse" of MOC may result in dramatic climate change.

 K_{ν} is a key climate model parameter that influences the MOC.

- ► K_v quantifies intensity of vertical mixing in ocean
- \triangleright K_{V} cannot be measured directly. Indirect information:
 - Observations of two ocean "tracers", both provide information about K_V: Carbon-14 (¹⁴C) and Trichlorofluoromethane (CFC11): Z₁, Z₂.
 - Climate model output of these two tracers at different values of K_V from the University of Victoria (UVic) Earth System Climate Model (Weaver et. al. 2001): Y₁(K_V), Y₂(K_V)

CFC-11 Example

- ► Bottom right: observations
- ► Remaining plots: climate model output at 3 settings of K_V

Deterministic Models and Emulation

Statistical interpolation

Green inputs/output = training data

Red = the input where predictions are desired

Input and output are typically multivariate

Computer Model Emulation

- ► Fit emulator to a training set from complex model
- Advantages:
 - Fast approximate simulator
 - Uncertainties associated with prediction: greater uncertainty where there is less training data
 "Without any quantification of uncertainty, it is easy to dismiss computer models." (A.O'Hagan)
 - This provides a probability model

Modeling with Gaussian Processes

- Gaussian processes (GPs) are useful models for dependent processes, e.g. time series, spatial data.
- Also useful for modeling complicated functions Key idea: dependence (spatial random effects) adjusts for non-linear relationships between input and output.

Gaussian Process Model Basics

- ▶ Process at location $\mathbf{s} \in D \subset \mathbb{R}^d$ is $Z(\mathbf{s}) = \mu_{\beta}(\mathbf{s}) + w(\mathbf{s})$. Location \mathbf{s} may be physical or from "input space".
- ▶ Model dependence among spatial random variables by modeling $\{w(\mathbf{s}) : \mathbf{s} \in D\}$ as a Gaussian process.
- ▶ Infinite-dimensional process. If $\mathbf{s}_1, \dots, \mathbf{s}_n \in D$, $\mathbf{w} = (w(\mathbf{s}_1), \dots, w(\mathbf{s}_n))^T$ is multivariate normal.
- ▶ Parametric covariance, e.g. $\operatorname{Cov}(Z(\mathbf{s}_i), Z(\mathbf{s}_j)) = \kappa \exp(-\|\mathbf{s}_i \mathbf{s}_j\|/\phi), \ \kappa > 0, \phi > 0.$ Here, $\Theta = (\kappa, \phi)$.
- ▶ Let $Z = (Z(s_1), ..., Z(s_n))^T$, so

$$\mathbf{Z}|\Theta, \boldsymbol{\beta} \sim \textit{N}(\mu_{\boldsymbol{\beta}}, \Sigma(\Theta)).$$

GP Linear Model Inference

- ▶ Inference and prediction can be done via ML or Bayes.
- ▶ ML: maximize likelihood with respect to Θ , β .
- ▶ Bayes: prior on Θ , β , and MCMC to learn about $\pi(\Theta, \beta \mid \mathbf{Z})$.

GP Linear Model Prediction

- Let the predictions at the new locations $\mathbf{s}_1^*, \dots, \mathbf{s}_m^* \in D$ be $\mathbf{Z}^* = (Z(\mathbf{s}_1^*), \dots, Z(\mathbf{s}_m^*))^T$.
- ▶ Under the GP assumption $(\mu_1, \mu_2, \Sigma$ depend on β, Θ)

$$\begin{bmatrix} \mathbf{Z} \\ \mathbf{Z}^* \end{bmatrix} \mid \Theta, \boldsymbol{\beta} \sim N \left(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \right)$$

ML: use above with ML estimates plugged-in.

Bayes: use above, while averaging over Θ , $\beta \mid \mathbf{Z}$. This is the *posterior predictive distribution*.

GP Model for Dependence: 1-D Example

Black: 1-D AR-1 process simulation. Green: independent error. (Red, blue): GP with (exponential, gaussian) covariances.

GP for Function Approximation: 1-D Example

Same GP model used for both:

$$y(x) = \mu + w(x), \{w(x), x \in (0, 20)\}$$

Real data: bivariate spatial process at each input

Summary of Inferential Problem

Let parameter of interest be θ (here $\theta = K_v$).

Statistical problem:

- ▶ Model output is a bivariate spatial process at each θ : $\mathbf{Y} = ((\mathbf{Y}_1(\psi_1), \mathbf{Y}_2(\psi_1)), (\mathbf{Y}_1(\psi_2), \mathbf{Y}_2(\psi_2)), \dots, (\mathbf{Y}_1(\psi_K), \mathbf{Y}_2(\psi_K)),$ where $\{\psi_1, \psi_2, \dots, \psi_K\}$ is a set of plausible θ values.
- ▶ Observations: $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2)$.
- What can we learn about *θ* given **Z**, **Y**?

Bayesian Approach

A Bayesian framework is useful:

- Usually real prior information about θ
- Likelihood surface for θ often multimodal; issues with identifiability. Nice to have access to the full posterior distribution
- If θ is multivariate, important to look at bivariate and marginal distributions: easier w/ sample-based approach.
- Amenable to hierarchical specification: we will exploit this for multivariate spatial process model

Kennedy and O'Hagan (2001); Bayarri et al. (2007, 2008).

Two-stage Approach to Inference

- 1. Find probability model for **Z** (data) using **Y** (simulations.)
 - Model relationship between $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2)$ and $\boldsymbol{\theta}$ via flexible emulator for model output $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2)$.
 - Add model discrepancy and measurement error:

$$\mathbf{Z} = \boldsymbol{\eta}(\mathbf{Y}, \boldsymbol{\theta}) + \boldsymbol{\delta}(\mathbf{Y}) + \boldsymbol{\epsilon}$$

where $\delta(\mathbf{Y}) = (\delta_1, \ \delta_2)^T$ is the model discrepancy, also modeled as a GP. $\epsilon = (\epsilon_1, \ \epsilon_2)^T$ is the observation error.

2. Posterior distribution $\pi(\theta \mid \mathbf{Y}, \mathbf{Z})$ derived from prior on θ and likelihood based on above model.

Inference with Multiple Spatial Fields: Step 1

Goals: (i) flexible model for relationship between \mathbf{Y}_1 and \mathbf{Y}_2 , (ii) computational tractability.

Model (Y₁, Y₂) as a hierarchical model: Y₁|Y₂ and Y₂ as Gaussian processes (cf. Royle and Berliner, 1999.)

$$\begin{split} \mathbf{Y}_1 \mid \mathbf{Y}_2, \boldsymbol{\beta}_1, \boldsymbol{\xi}_1, \boldsymbol{\gamma} &\sim \textit{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}_1}(\boldsymbol{\theta}) + \mathbf{B}(\boldsymbol{\gamma})\mathbf{Y}_2, \boldsymbol{\Sigma}_{1.2}(\boldsymbol{\xi}_1)) \\ \mathbf{Y}_2 \mid \boldsymbol{\beta}_2, \boldsymbol{\xi}_2 &\sim \textit{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}_2}(\boldsymbol{\theta}), \boldsymbol{\Sigma}_2(\boldsymbol{\xi}_2)) \end{split}$$

- ▶ $\mathbf{B}(\gamma)$ is a matrix relating \mathbf{Y}_1 and \mathbf{Y}_2 , with parameters γ .
- ▶ The covariances of the Gaussian processes depend on both **s** (spatial distance) and θ (distance in parameter space).
- ▶ $\beta_1, \beta_2, \xi_1, \xi_2$ are regression, covariance parameters.

Inference with Multiple Spatial Fields: Step 2

- Emulation: Fit GP via maximum likelihood, then obtain predictive distribution at locations of observations
- Add model discrepancy and measurement error
- Model discrepancy term can make crucial adjustment to θ
 estimates (Bayarri, Berger et al. 2007; Bhat et al., 2010).
- Separating stages: 'modularization' (e.g. Liu, Bayarri, Berger, 2009). Computational advantages + reduce identifiability issues.
- Use Markov chain Monte Carlo (MCMC) with slice sampler to estimate π(θ | Z, Y) (integrating out rest)

Computational Issues

- ▶ Matrix computations are $\mathcal{O}(N^3)$, where N is the number of observations. Here: $N \approx$ tens of thousands
- Markov chain mixes slowly so need long MCMC runs
- We use a reduced rank approach based on kernel mixing (Higdon, 1998): continuous process created by convolving a discrete white noise process with a kernel function.
- ▶ Special structure + Sherman-Woodbury-Morrison identity + Sylvester's Theorem used to reduce matrix computations: $\mathcal{O}(J^3)$ where J (\approx 300 here) is dimensionality of latent white noise process.

Kernel Mixing

- ▶ Model spatial dependence terms (w(s)) via kernel mixing of white noise process (Higdon, 1998, 2001).
- New process created by convolving a continuous white noise process with a kernel, k, which is a circular normal.

$$w(\mathbf{s}) = \int_{\Omega} k(\mathbf{u} - \mathbf{s}) z(\mathbf{u}) d\mathbf{u}.$$

▶ Replace original GP by a finite sum approximation z defined on a lattice u₁,..., u_J (knot locations).

$$w(\mathbf{s}) = \sum_{j=1}^{J} k(\mathbf{u}_j - s)z(\mathbf{u}_j) + \mu(\mathbf{s}),$$

► Flexible: easily allows for non-stationarity and nonseparability. e.g. if k varies in space, have non-stationary process.

Kernel Mixing: Toy Example

- ▶ Dimension reduction: Computation involves only the J random variables z_1, \ldots, z_J at the locations $\mathbf{u}_1, \ldots, \mathbf{u}_{J}$.
- ► Figures are for 4, 8, 12, and 16 knots.

Matrix Identities

- Can use kernel mixing to obtain special covariance structure
- Sherman-Woodbury-Morrison identity: Suppose matrix is of form A + UCV, where A is N × N, U is N × J, V is J × N, and C is J × J. Its inverse:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$

Inversions involve $J \times J$ rather than $N \times N$ matrices (our e.g. J = 190 versus N = 4,500.)

Results for K_{ν} Inference

posteriors: only CFC-11, only $\Delta^{14}C$, both CFC-11 & $\Delta^{14}C$. Result: K_V pdf suggests weakening of MOC in the future.

Summary of Climate Model Inference

Two-stage approach:

- Obtain a probability model connecting CFC-11, Δ¹⁴C tracer observations to K_V: hierarchical model using GPs + patterned covariances so flexible and computationally tractable.
- 2. Using above probability model, infer K_v from observations We can use inferred K_v in the climate model to project the MOC. We find that the MOC weakens over the next 50 years.

II. Infectious Disease Models

- Gravity-TSIR model: Space-time model for spread of measles. Here θ=parameters controlling the dynamics of the spread of this disease e.g. how disease spreads as a function of distance between locations.
- ► Thousands of latent variables e.g. number of immigrants moving from one location to another.
- Rich space-time data set from England and Wales. Time points × locations = 546 × 952 = 519,792.
 Potential for learning about parameters, but also poses computational challenges.

Measles Data

Notice: 952 cities of varying sizes and levels of infecteds Complicates likelihood-based inference

Inference for Gravity TSIR Model Parameters

- Stochastic model: expensive to evaluate likelihood
- ► ABC (approximate Bayesian computing) approaches (Pritchard et al., 1999): infeasible due to simulation time.
- We develop approximate grid-based Markov chain Monte Carlo approach that is computationally tractable.
- However, traditional likelihood-based/Bayesian inference even with tractable computing is problematic:
 - Does not fit scientifically relevant features of the data
 - Simulations reveal: do not recover θ

Traditional Likelihood-Based Approach

Simulations from fitted model (Bayes/ML) do not match the data for important characteristics of the process.

Inference for Gravity TSIR Model Parameters

- Likelihood-based approaches do not take into account features that are of scientific interest.
- Instead, fit GP to summary statistics of model runs where summaries are based on scientifically relevant features.
- ► Inference based on using this GP with the data results in improved inference.

(Skipping lots of details, computational issues etc. ...)

GP-based Inference Using Key Summaries

Simulations from fitted model match data well

Simulations show: can recover θ using this approach

Summary

- Gaussian processes are a powerful tool when likelihood is implicit and simulating from the model is expensive
- GPs are useful for deterministic and stochastic models
- Can perform inference based on scientifically important features of the data
 - Computationally expedient
 - May improve inference and prediction

Collaborators

- K. Sham Bhat, Los Alamos National Laboratories
- Roman Olson, Geosciences, Penn State University
- Klaus Keller, Geosciences, Penn State University
- Roman Jandarov, Statistics, Penn State University
- Ottar Bjørnstad, Center for Infectious Disease Dynamics,
 Penn State University

Support:

- Bill & Melinda Gates Foundation
- U.S. Geological Survey
- National Science Foundation (NSF-HSD)

References

- ► Grenfell, B.T., Bjørnstad, O. N. and Kappey, J. (2001), "Traveling waves and spatial hierarchies in measles epidemics." *Nature*.
- Bhat, K.S., Haran, M., Tonkonojenkov, R., and Keller, K. (2011), "Inferring likelihoods and climate system characteristics from climate models and multiple tracers."
- Bhat, K.S., Haran, M. and Goes, M. (2010) "Computer model calibration with multivariate spatial output,"
- Jandarov, R., Haran, M., Bjornstad, O.N. and Grenfell, B. (2011) "Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease."

II. Infectious Disease Models

- Infectious disease models are useful for investigating key questions in biology. They are of practical use in the management and control of infectious diseases, including immunization and epidemic control strategies.
- Here: focus on statistical inference for the Gravity-TSIR model, which models spatiotemporal dynamics. This model presents several inferential and computational challenges.

Simple SIR models

Basic SIR models classify individuals as one of **susceptible** (S), **infected** (I) or **recovered** (R).

- Individuals are born into the susceptible class.
- Susceptible individuals have never come into contact with the disease and are able to catch the disease, after which they move into the infected class.
- Infected individuals spread the disease to susceptibles, and remain in the infected class (the infected period) before moving into the recovered class.
- Individuals in the recovered class are assumed to be immune for life.

Gravity T-SIR model

Extension of the discrete time-series SIR (T-SIR) model (Bjornstad et al.2002; Grenfell et al. 2002) with explicit formulation of the spatial transmission between different host communities.

Notation:

- ▶ $I_{k,t}$ number of **infected** individuals in city k at time t.
- ▶ $S_{k,t}$ number of **susceptible** individuals in city k at time t.
- $d_{k,i}$ **distance** between cities k and j.
- ▶ $N_{k,t}$ **population** of city k at time t.
- ▶ $B_{k,t}$ local number of new hosts (**births**) in city k at time t.
- L_{k,t} number of infected people moved (**immigrants**) to city k at time t.
- ▶ *T* cities, *K* time points.

Modeling incidences

Following Xia, Bjornstad and Grenfell (2004):

▶ Number of incidences of a disease at time t + 1 for city k,

$$I_{k,t+1} = \mathsf{Poisson}(\lambda_{k,t+1})$$
, where $\lambda_{k,t+1} = \beta_t \mathcal{S}_{k,t} (I_{k,t} + L_{k,t})^{\alpha}$.

• α , $\{\beta_t\}$ are local transmission parameters.

Modeling susceptibles

Number of susceptible individuals at time t + 1 for city k is then modeled via balance equation (Bartlett, 1957):

$$S_{k,t+1} = S_{k,t} + B_{k,t} - I_{k,t+1}$$

► Finally, unobserved number of infected immigrants moved to city *k* at time *t* is modeled as:

$$L_{k,t} = \text{Gamma}(m_{k,t}, 1),$$

where

$$m_{k,t} = \theta N_{k,t}^{\tau_1} \sum_{i=1, i \neq k}^{K} \frac{(J_{jt})^{\tau_2}}{d_{k,j}^{\rho}}, \quad \theta, \tau_1, \tau_2, \rho > 0.$$

Statistical inference for measles

Measles data

- The UK Registrar General's data for 952 cities in England and Wales for years 1944-1966 of biweekly incidences of measles. Very rich spatio-temporal data.
- Data for number of susceptibles from standard susceptible reconstruction algorithms (cf. Fine and Clarkson, 1982)

Parameters of the model:

- ▶ Reliable estimates of local transmission parameters α and $\{\beta_t\}$ are assumed known from previous work (Bjornstad et al. 2001).
- ▶ **Goal**: Infer unknown gravity parameters: θ , τ_1 , τ_2 , ρ .

Challenges with likelihood-based inference

- ▶ Dimensions of the data (*TK*): 546*952 = 519,792.
- ▶ Number of infected immigrants $\{L_{k,t}\}$ are unobserved.
- ► The likelihood function is complicated:
 - Involves integrating over 519,792 latent variables.
 - Very expensive calculations per iteration.
- Approximate Bayesian computation (ABC) approaches are infeasible since simulating draws from this model is computationally expensive.

A simplified model and gridded MCMC

Simplify the model by fixing the number of immigrants (latent variables) at their means.

- Likelihood evaluations are still very expensive.
- Studying likelihood surface, learning about variability of estimates is computationally infeasible.

Gridded Metropolis-Hastings:

- We evaluate expensive parts of the likelihood on a grid of parameter values (can use parallel processors for this) and store these in a look-up table.
- M-H algorithm on discretized parameter space (on grid).
 M-H ratio evaluation is now much faster.

Results

- ► The gridded MCMC algorithm produces posterior distributions similar to a non-gridded MCMC algorithm, but much faster.
- Conclusions based on a simulation study:
 - Serious identifiability issues. Can only infer 2 of the 4 parameters.
 - In simulation studies: posterior (and likelihood) surface is peaked away from the true parameter values. There's a significant shift (bias) in parameter estimates.

Alternative approach

- Instead of likelihood-based approach, focus on important biological 'signatures' of the process. E.g. proportion of zeros (# of times no disease incidences in a city).
- ► Borrow ideas from computer model emulation, calibration (cf. Sacks et al., 1989.)
 - Simulate realizations from the gravity model at different parameter values.
 - 2. Use the signatures to define summary statistics.
 - 3. Find distance between summary statistics for the simulated process and the observations.
 - 4. Fit a Gaussian process to this distance, as a function of the parameters.
 - Can obtain a likelihood and perform Bayesian inference for the gravity model parameters using the observations.

Inferential approach outline

- Gravity parameters, $\Theta = (\theta, \tau_1, \tau_2, \rho)$.
- ► Summary statistics (distance to observations) based on simulations at Θ_i , i = 1, ..., n parameter settings, $\mathbf{Y} = (\mathbf{Y}(\Theta_1), ..., \mathbf{Y}(\Theta_n))$.
- ▶ Model stochastic model output **Y** using a Gaussian process: **Y** | β , ξ ~ $N(\mu_{\beta}(\Theta), \Sigma(\xi, \Theta))$. Infer β , ξ : regression, covariance parameters.
- ► Model summary statistic for real data set **Z**:
- ▶ **Z** = η (**Y**, θ) + δ _Ψ(**Y**, Θ) + ϵ _{σ 2}(**Y**) where η is a random variable with predictive distribution derived above. δ is a discrepancy function, modeled as Gaussian process, and ϵ is a vector of i.i.d. errors.
- ▶ Infer posterior $\pi(\Theta, \Psi, \sigma^2 \mid \mathbf{Z}, \mathbf{Y})$ using MCMC.

Conclusions

- Our GP-based emulation approach appears to produce unbiased estimates of the parameters.
- ► With estimated parameters, the model is able to reproduce well the signatures of the disease process.
- This is the first statistically rigorous approach to this problem: estimates of uncertainty, joint distributions of parameters, predictions/variability from fitted model.

Caveats and future work:

- Our statistical approach unearths serious identifiability issues: can still only learn about 2 parameters at most.
- Computational concerns only allow for a limited number of model forward runs.

Key references

- Xia, Y. C., Bjørnstad, O. N. and Grenfell, B. T. (2004), Measles Metapopulation Dynamics: A gravity model for epidemiological coupling and dynamics, *American* Naturalist.
- Bjørnstad, O. N., Finkenstädt, B. and Grenfell, B. T.(2001), Dynamics of measles epidemics. I. estimating scaling of transmission rates using a time series SIR model, *Ecological Monographs*.
- Bhat, K.S., Haran, M., Tonkonojenkov, R., and Keller, K. (2011), Inferring likelihoods and climate system characteristics from climate models and multiple tracers.
- ▶ Bhat, K.S., Haran, M., and Goes, M. (2010),

Acknowledgment: Support from Bill and Melinda Gates