Symbolic Logic

 Deals with the representation and technique of algebra that separates the meaning of factual statements and from proofs of their consistency and their truth values

Binary Operators

Common Operators

OR

•
$$Y = A + B$$

A	B	Y
0	0	0
0	0	0
1	0	1
1	1	1

NOT

$$ullet$$
 $Y=\overline{A}$

A	Y
0	1
1	0

BUF

$$\bullet \ Y = A$$

A	Y
0	0
1	1

AND

$$\bullet Y = AB$$

A	B	Y
0	0	0
0	0	0
1	0	0
1	1	1

XOR

$$ullet$$
 $Y=A\oplus B$

A	B	Y
0	0	0
0	0	1
1	0	1
1	1	0

NAND

•
$$Y = \overline{AB}$$

A	B	Y
0	0	1
0	0	1
1	0	1
1	1	0

NOR

•
$$Y = \overline{A + B}$$

A	B	Y
0	0	1
0	0	0
1	0	0

A	B	Y
1	1	0

XNOR

 $\bullet \quad Y = \overline{A \oplus B}$

A	B	Y
0	0	
0	0	
1	0	
1	1	

Precedence

- Parenthesis
- NOT
- AND (AND, NAND)
- OR (OR, NOR, XOR)

Truth Tables

- Consider a Boolean function N containing n Boolean variables $a_0, a_1, \ldots, a_{n-1}$
- A truth table may be constructed containing 2^n rows which gives the value of N for every combination of truth values of the variables $a_0, a_1, \ldots, a_{n-1}$

Evaluating Logical Expressions

~

- Negation
- Ex. \sim (AB) is the negation of A andB

 \rightarrow

- Implication
- ullet Ex. A o B
 - True except when *A* is true but *B* is false

Tautology

• A logical expression that is true for every combination of truth values of its variables