Stetigkeit

Def Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$. f heißt stetig in x_0 , falls für alle Folgen $(x_n)_{n \in \mathbb{N}}$ in D gilt

$$x_n \to x_0 \implies f(x_n) \to f(x_0).$$

(Andere Schreibwese: $\lim_{n\to\infty} x_n = x_0 \Rightarrow \lim_{n\to\infty} f(x_n) = f(x_0)$)

f heißt stetig auf D, wenn f in jedem Punkt $x_0 \in D$ stetig ist.

Def Sei $D \subset \mathbb{R}$, $f, g \colon D \to \mathbb{R}$ und $\lambda \in \mathbb{R}$. Man definiert die Funktionen

$$f + g: D \to \mathbb{R}, \qquad (f + g)(x) := f(x) + g(x)$$

$$f \cdot g: D \to \mathbb{R}, \qquad (f \cdot g)(x) := f(x) \cdot g(x)$$

$$\lambda f: D \to \mathbb{R}, \qquad (\lambda f)(x) := \lambda f(x)$$

$$\frac{f}{g}: D' \to \mathbb{R}, \qquad \left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}, x \in D',$$

wobei $D' := \{x \in D : g(x) \neq 0\}.$

Satz 4.4 Seien $D \subset \mathbb{R}$, $x_0 \in D$ und $f, g \colon D \to \mathbb{R}$ stetige Funktionen in x_0 . Dann gilt:

- 1) Die Funktionen f + g und fg sind stetig in x_0 .
- 2) Ist $g(x_0) \neq 0$, dann ist die Funktion $\frac{f}{g} \colon D' \to \mathbb{R}$ in x_0 stetig. Dabei ist $D' := \{x \in D \colon g(x) \neq 0\}.$

Satz 4.5 Seien $D, D' \subset \mathbb{R}$ und $f: D \to \mathbb{R}$, $g: D' \to \mathbb{R}$ mit $f(D) \subset D'$. Sei $x_0 \in D$. Dann gilt: Wenn f in x_0 und g in $f(x_0)$ stetig sind, so ist $g \circ f$ in x_0 stetig.

Satz 4.6 Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$.

- 1) Wenn x_0 Häufungspunkt von D ist, gilt: f ist genau dann stetig in x_0 , wenn $\lim_{x\to x_0} f(x) = f(x_0)$.
- 2) Wenn x_0 nicht Häufungspunkt von D ist (d.h. x_0 ist ein isolierter Punkt von D), so ist f stetig in x_0 .

Satz 4.7 (Äquivalente Definition der Stetigkeit)

Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$. Dann gilt:

f ist stetig in $x_0 \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 \forall x \in D : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$