

DIGITAL COMMUNICATION

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

POWER SPECTRUM OF A DISCRETE PAM SIGNAL

Bipolar NRZ Spectrum

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

Finding S_A(f): Bipolar NRZ

ii NRZ Bipolar

Let b_k indicate the k^{th} bit. We assume that 0 and 1 occur with equal probability. (Same as before)

To find $R_A(0)$:

$$b_k$$
 A_k P_r
0 0 1/2
1 a 1/4
-a 1/4

The above table has been obtained from equation (??)

$$\therefore R_A(0) = E[A_k^2] = 0^2 \frac{1}{2} + a^2 \frac{1}{4} + (-a)^2 \cdot \frac{1}{4} = \frac{a^2}{2}$$

Finding S_A(f): Bipolar NRZ

To find $R_A(1)$:

$$\therefore R_A(1) = E[A_k.A_{k-1}] = \frac{1}{4}(0+0+0)\frac{1}{8}(-a^2-a^2) = \frac{-a^2}{4}$$

Finding $S_A(f)$: Bipolar NRZ

PES UNIVERSITY

To find $R_A(2)$:

$$\therefore R_{A}(2) = E[A_{k}.A_{k-2}] = \frac{1}{4}(0+0+0) \underset{\frac{a^{2}}{4}}{+} \frac{1}{16}(a^{2}-a^{2}-a^{2}+a^{2}) = 0$$

$$\therefore R_{A}(n) = \begin{cases} \frac{1}{2} \frac{1}{16}(a^{2}-a^{2}-a^{2}+a^{2}) = 0 \\ \frac{-a^{2}}{4} & n = \pm 1 \\ 0 & Elsewhere \end{cases}$$
(3)

Finding $S_A(f)$: Bipolar NRZ

$$S_{X}(f) = T_{b} sinc^{2}(fT_{b}) \left[\frac{a^{2}}{2} + \left(\frac{-a^{2}}{4} \right) \left\{ e^{j2\pi fnT_{b}} + e^{-j2\pi fnT_{b}} \right\} \right]$$

$$= \frac{a^{2}T_{b}}{2} sinc^{2}(fT_{b})[1 - cos2\pi fT_{b}] = \frac{a^{2}T_{b}}{2} sinc^{2}(fT_{b}).2sin^{2}\pi fT_{b}$$

$$\therefore S_{X}(f) = a^{2}T_{b} sinc^{2}(fT_{b}).sin^{2}(\pi fT_{b})$$
(4)

Equation (4) is the power spectral density for the Bipolar pulse shape and it's plot is as shown in Figure (2)

Finding S_A(f): Bipolar NRZ

Figure: Power Spectral Density of Bipolar Function

THANK YOU

Bharathi V Kalghatgi

Department of Electronics and Communication Engineering

BharathiV.Kalghatgi@pes.edu