Disciplina: Modelagem de processos em engenharia de reservatórios e poços

Professor: Paulo Couto

Nome : Vivian de Carvalho Rodrigues DRE: 121010011

Enunciado

 Para um padrão de injeção Five-Spot conforme mostrado na Figura 1, a seguinte solução em regime permanente é válida:

Utilizando os dados da Tabela 2 e a Eq. (1.4) obtenha graficamente o campo de pressões no regime permanente. Trunque os somatórios em 20 termos, ou seja, r variando de 1 até 20 c s variando de 1 até 20. Cemo vocé interpreta seus resultados?

Figura 1. Esquema de injeção/produção do padrão Five-spot.

Tabela 2. Dados para os problemas 3.

Parâmetr	Sistema de unidades									
0	API	SI								
φ	20 %	20%								
k	150 mD	148 × 10-15 m ²								
μ_{\circ}	0,33 cp	3,3 × 10 ⁻⁴ Pa.s								
C,	1,5 × 10-5 psi-1	2,18 × 10→ Pa-1								
q_{prod}	3000 STB/dia	518 × 10⁻ m³/seg								
B _o	1,5 bbl/STB	1,5 m³/ m³std								
P,	2.200 psi	15,17 × 106 Pa								
r _w	3,5 pol.	0,0889 m								
d	2.000 ft	609,6 m								
h	10 ft	3,048 m								

Resolução

Dados dos reservatórios: Geometria:

	[ft]	[m]	[cm]
d =	2000	609,6	60960,0
rw =	0,2916	0,0889	8,9
h =	10	3,048	304,8

Propriedades das rochas:	
k [Darcy]=	0,15
φ -	0.2

	[1/psi]	[1/atm]
ct =	0,0000150	0,0002204
	[m³ std/s]	[cm3 std/s]
a0=	0.00518	5180

	[psi]	[Pa]	[atm]
pi =	2200	15170000,00	149,7

Propriedades dos fluidos

	[cp]	[Pa.s]
μ[cp] =	0,33	0,00033

	[bbl/STB]	[m3/m3 std]
Bo=	1,5	1,5

(i) Constantes auxiliares

Vazão do poço qw:	
q0 x B0 [m ³ /s] =	0,00777
q0 x B0 [cm3/s] =	7770
C=	90,91781172
γ =	1,78108

(i) Determinação do valor de pressão P (x,y)

x [m] =	609,60
y [m] =	609,6

[cm]=	60960	r1	r2	r3	r4	r5	r6	r7	r8	r9	r10	r11	r12	r13	r14	r15	r16	r17	r18	r19	r20	i .
[cm]=	60960	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1
s1	1	0.0556	0.0294	0.0172	0.0111	0.0077	0.0056	0.0043	0.0034	0.0027	0.0022	0.0019	0.0016	0.0014	0.0012	0.0010	0.0009	0.0008	0.0007	0.0007	0.0006	1
s2	2	0,0294	0,0200	0,0135	0,0094	0,0068	0,0052	0,0040	0,0032	0,0026	0,0021	0,0018	0,0015	0,0013	0,0012	0,0010	0,0009	0,0008	0,0007	0,0006	0,0006	1
s3	3	0,0172	0,0135	0,0102	0,0077	0,0059	0,0046	0,0036	0,0030	0,0024	0,0020	0,0017	0,0015	0,0013	0,0011	0,0010	0,0009	0,0008	0,0007	0,0006	0,0006	l l
s4	4	0,0111	0,0094	0,0077	0,0062	0,0050	0,0040	0,0033	0,0027	0,0023	0,0019	0,0016	0,0014	0,0012	0,0011	0,0010	0,0009	0,0008	0,0007	0,0006	0,0006	l l
s5	5	0,0077	0,0068	0,0059	0,0050	0,0041	0,0034	0,0029	0,0024	0,0021	0,0018	0,0015	0,0013	0,0012	0,0010	0,0009	0,0008	0,0007	0,0007	0,0006	0,0006	1
s6	6	0,0056	0,0052	0,0046	0,0040	0,0034	0,0030	0,0025	0,0022	0,0019	0,0016	0,0014	0,0013	0,0011	0,0010	0,0009	0,0008	0,0007	0,0007	0,0006	0,0005	1
s7	7	0,0043	0,0040	0,0036	0,0033	0,0029	0,0025	0,0022	0,0019	0,0017	0,0015	0,0013	0,0012	0,0010	0,0009	0,0008	0,0008	0,0007	0,0006	0,0006	0,0005	1
s8	8	0,0034	0,0032	0,0030	0,0027	0,0024	0,0022	0,0019	0,0017	0,0015	0,0014	0,0012	0,0011	0,0010	0,0009	0,0008	0,0007	0,0007	0,0006	0,0006	0,0005	1
s9	9	0,0027	0,0026	0,0024	0,0023	0,0021	0,0019	0,0017	0,0015	0,0014	0,0012	0,0011	0,0010	0,0009	0,0008	0,0008	0,0007	0,0006	0,0006	0,0005	0,0005	1
s10	10	0,0022	0,0021	0,0020	0,0019	0,0018	0,0016	0,0015	0,0014	0,0012	0,0011	0,0010	0,0009	0,0009	0,0008	0,0007	0,0007	0,0006	0,0006	0,0005	0,0005	1
s11	11	0,0019	0,0018	0,0017	0,0016	0,0015	0,0014	0,0013	0,0012	0,0011	0,0010	0,0009	0,0009	0,0008	0,0007	0,0007	0,0006	0,0006	0,0005	0,0005	0,0005	1
s12	12	0,0016	0,0015	0,0015	0,0014	0,0013	0,0013	0,0012	0,0011	0,0010	0,0009	0,0009	0,0008	0,0007	0,0007	0,0006	0,0006	0,0005	0,0005	0,0005	0,0004	1
s13	13	0,0014	0,0013	0,0013	0,0012	0,0012	0,0011	0,0010	0,0010	0,0009	0,0009	0,0008	0,0007	0,0007	0,0006	0,0006	0,0006	0,0005	0,0005	0,0004	0,0004	1
s14	14	0,0012	0,0012	0,0011	0,0011	0,0010	0,0010	0,0009	0,0009	0,0008	0,0008	0,0007	0,0007	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0004	0,0004	1
s15	15	0,0010	0,0010	0,0010	0,0010	0,0009	0,0009	0,0008	0,0008	0,0008	0,0007	0,0007	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	1
s16	16	0,0009	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0007	0,0007	0,0007	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	1
s17	17	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007	0,0007	0,0007	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0003	1
s18	18	0,0007	0,0007	0,0007	0,0007	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0003	0,0003	2
s19	19	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003	0,0003	0,0003	1)
s20	20	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003	0,0003	0,0003	0,0003	ı =
	20																					
S=>"	β_i	0,1499	0,1068	0,0804	0,0633	0,0516	0,0430	0,0365	0,0314	0,0274	0,0241	0,0214	0,0191	0,0171	0,0155	0,0140	0,0128	0,0117	0,0107	0,0099	0,0091	

P (x,y) = 80,99012191 atm

(ii) Campo de pressões [atm]

ii, campo ac pressoes (ac																		
	y [m]																	
y10	609,6	218,41	181,12	161,07	150,85	146,52	139,38	140,55	144,59	149,70	154,81	158,85	160,02	152,88	148,55	138,33	118,29	80,99
y9.3	594,36	181,12	172,62	161,06	153,66	148,88	141,93	142,47	145,60	149,70	153,80	156,93	157,48	150,53	145,74	138,34	126,79	118,29
y9.2	579,12	161,07	161,06	157,86	154,01	150,83	145,17	145,04	146,99	149,70	152,41	154,36	154,23	148,57	145,39	141,54	138,34	138,33
y9.1	563,88	150,85	153,66	154,01	152,94	151,37	147,65	147,17	148,16	149,70	151,25	152,24	151,75	148,03	146,47	145,39	145,74	148,55
у9	548,64	146,52	148,88	150,83	151,37	151,18	149,47	148,87	149,12	149,70	150,29	150,53	149,94	148,22	148,03	148,57	150,53	152,88
y8	487,68	139,38	141,93	145,17	147,65	149,47	152,61	152,52	151,31	149,70	148,10	146,88	146,80	149,94	151,75	154,23	157,48	160,02
у7	426,72	140,55	142,47	145,04	147,17	148,87	152,52	152,87	151,61	149,70	147,80	146,53	146,88	150,53	152,24	154,36	156,93	158,85
y6	365,76	144,59	145,60	146,99	148,16	149,12	151,31	151,61	150,87	149,70	148,53	147,80	148,10	150,29	151,25	152,41	153,80	154,81
y5	304,8	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70	149,70
y4	243,84	154,81	153,80	152,41	151,25	150,29	148,10	147,80	148,53	149,70	150,87	151,61	151,31	149,12	148,16	146,99	145,60	144,59
у3	182,88	158,85	156,93	154,36	152,24	150,53	146,88	146,53	147,80	149,70	151,61	152,87	152,52	148,87	147,17	145,04	142,47	140,55
y2	121,92	160,02	157,48	154,23	151,75	149,94	146,80	146,88	148,10	149,70	151,31	152,52	152,61	149,47	147,65	145,17	141,93	139,38
y1	60,96	152,88	150,53	148,57	148,03	148,22	149,94	150,53	150,29	149,70	149,12	148,87	149,47	151,18	151,37	150,83	148,88	146,52
y1.3	45,72	148,55	145,74	145,39	146,47	148,03	151,75	152,24	151,25	149,70	148,16	147,17	147,65	151,37	152,94	154,01	153,66	150,85
y1.2	30,48	138,33	138,34	141,54	145,39	148,57	154,23	154,36	152,41	149,70	146,99	145,04	145,17	150,83	154,01	157,86	161,06	161,07
y1.1	15,24	118,29	126,79	138,34	145,74	150,53	157,48	156,93	153,80	149,70	145,60	142,47	141,93	148,88	153,66	161,06	172,62	181,12
y0	0	80,99	118,29	138,33	148,55	152,88	160,02	158,85	154,81	149,70	144,59	140,55	139,38	146,52	150,85	161,07	181,12	218,41
	•	0	15,24	30,48	45,72	60,96	121,92	182,88	243,84	304,8	365,76	426,72	487,68	548,64	563,88	579,12	594,36	609,6
		x0	x1.1	x1.2	x1.3	x1	x2	х3	x4	x5	x6	x7	x8	х9	x9.1	x9.2	x9.3	x10

Problema 3 CPC777_Lista1_VivianCRodrígues.xism Página 2

P (0,0) = P (609,6; 609,6) = 81 atm (proço produtor) P (0; 609,6) = P (609,6; 0) = 218,41 atm (poço injetor)