ACÁMICA

Agenda

Repaso: Máscaras, tipos de datasets, bitácora y challenge.

Explicación: Probabilidad y distribución

Break

Hands-on training

Bonus Track: Relación entre Probabilidad y Estadística.

Cierre.

TEMA DEL DÍA

Probabilidad

Seguimos en el mundo de la Probabilidad y Estadística. Hoy, dos conceptos muy importantes: Distribución de Probabilidad y Correlación.

REPASO

Repaso del encuentro pasado

Máscaras - Filtros Booleanos

17, 18, 19])

```
[67]: mask = arreglo2d < 20</pre>
     [66]: arreglo2d = np.arange(30).reshape(6,5)
          arreglo2d
                                                                            mask
                                                    Creamos la
     [66]: array([[0, 1, 2, 3, 4],
                                                     máscara
                                                                      [67]: array([[ True, True, True, True, True],
                 [5, 6, 7, 8, 9],
                                                                                   [ True, True, True, True, True],
                [10, 11, 12, 13, 14],
                                                                                   [ True, True, True, True, True],
                [15, 16, 17, 18, 19],
                                                                                   [ True, True, True, True, True],
                 [20, 21, 22, 23, 24],
                                                                                   [False, False, False, False, False],
                 [25, 26, 27, 28, 29]])
                                                                                   [False, False, False, False, False]])
                                                                                         Y seleccionamos aquellos
                                                                                         elementos que cumplen la
                                                                                         condición que representa
                                                                                         la máscara
[68]: arreglo2d[mask]
[68]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
```

DATASET

Es el conjunto de datos que utilizaremos en el workflow de data science. Los podemos generar, obtener de terceros o simular.

datasets **estructurados**

similar a planilla de cálculo. Información pre-procesada. Suelen venir en .txt, .csv, .xlsx, .json, etc.

audio, imágenes, texto en crudo humanos / redes neuronales

REPASO

EJERCICIO DEL ENCUENTRO PASADO

¡Muéstranos qué hiciste!

¿Qué cosas te costaron más del ejercicio? ¿Cómo las resolviste?

¿Cuál el principal aprendizaje que te llevas?

Si tuvieras que hacerle alguna recomendación a alguien que va a hacer el ejercicio por primera vez, ¿qué le dirías?

REPASO

EJERCICIO DEL ENCUENTRO PASADO

¿Alguien hizo algo diferente que quiera mostrar?

Repaso de la bitácora

REPASO

TEMAS BITÁCORA

Probabilidad y distribución

Probabilidad: Variables aleatorias

PROBABILIDAD

Variables discretas

- Son aquellas que se cuentan
- Pueden estar acotadas o no

Ejemplo: cantidad de países, número de hijos, cantidad de dormitorios en una casa, etc.

Variables continuas

- Son aquellas que se *miden*
- Pueden estar acotadas o no

Ejemplo: altura de una persona, temperaturas, edades (medidas en tiempo transcurrido desde el nacimiento), etc.

La edad: ¿es una variable discreta o continua?

La edad: ¿es una variable discreta o continua?

DEPENDE

Veámoslo gráficamente:

Edad contada en años (variable **discreta**):

Edades: [1, 2, 3, 4, 5]

Edad contada en tiempo transcurrido (variable **continua**):

Edades: [1 a 5]

DISTRIBUCIONES

Variables discretas: Distribución

La distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable la probabilidad de que dicho suceso ocurra.

Fuente: Wikipedia

Variables discretas: Distribución uniforme

La distribución de probabilidad **uniforme** asigna la misma probabilidad para todo un rango de valores.

$$X_{moneda}$$
: {cara, ceca}
P(X = cara, ceca) = 1/2

Variables discretas: Distribución uniforme

La distribución de probabilidad **uniforme** asigna la misma probabilidad para todo un rango de valores.

Ejemplos: moneda, dado.

$$X_{dado}$$
: {1,2,3,4,5,6}
P(X = 1,2,3,4,5,6) = 1/6

Para variables continuas...
¿qué concepto de probabilidad usamos?

Para variables continuas, jusamos el concepto de densidad de probabilidad!

Probabilidad: Densidad normal o Gaussiana

¡La más famosa de las distribuciones!

$$f(x \left[\!\left(\mu,\sigma^2
ight)\!
ight) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Parámetros:

 μ : valor medio

 σ : desviación estándar

Fuente: Wikipedia

REPASO

CHALLENGE BITÁCORA

- 1. ¿Qué es la asimetría estadística?
- 2. ¿Resolviste el challenge del notebook?

¿Qué es la asimetría estadística (skewness)?

Tarea

Asimetría Estadística: Skewness

REPASO

CHALLENGE BITÁCORA

¿Alguien hizo algo diferente que quiera mostrar?

Causalidad y Correlación.

Correlación, Causalidad e Independencia estadística

Hoy hablaremos de correlación (y un poco de Causalidad)

¡No podía faltar!

¿Correlación implica causalidad?

La edad de Miss USA

está correlacionada con

Asesinatos usando vapor hirviendo como arma letal

Correlación: 87.01% (r=0.870127)

Data sources: Wikipedia and Centers for Disease Control & Prevention

Llamamos probabilidad de X,
P(X) a un número entre 0 y 1
que le asignamos a cada
posible valor que puede
tomar esa variable aleatoria

Llamamos probabilidad de X,
P(X) a un número entre 0 y 1
que le asignamos a cada
posible valor que puede
tomar esa variable aleatoria

También dijimos que la **mejor descripción** de P(X) está dada por la distribución **(densidad) de probabilidades.**

Hasta ahora, consideramos una sola variable aleatoria X...

- Resultados obtenidos al tirar una moneda
- Resultados obtenidos al tirar un dado
- Altura de una persona
- Etc.

¿Pero qué ocurre si tengo más de una variable aleatoria?

¿Pero qué ocurre si tengo más de una variable aleatoria?

2 variables

Peso y altura de una persona

Temperatura y humedad

3 variables

Temperatura, humedad y velocidad del viento

4 variables

Iris Dataset: ancho y largo del sépalo y pétalo

Podemos pensar a un Dataset como una "colección" de variables aleatorias

Dadas dos variables aleatorias X e Y

- P(X) es la distribución (o densidad) de probabilidades de X
- P(Y) es la distribución (o densidad) de probabilidades de Y
- **P(X,Y)** es la probabilidad CONJUNTA de X y de Y

P(X,Y) es la probabilidad CONJUNTA de X y de Y

Es la distribución de probabilidad de los pares (x,y), es decir, todos los posibles valores que pueden tomar las dos variables.

P(X,Y) es la probabilidad CONJUNTA de X y de Y

Es la distribución de probabilidad de los pares (x,y), es decir, todos los posibles valores que pueden tomar las dos variables.

P(X,Y) es la probabilidad CONJUNTA de X y de Y

¡Veamos un ejemplo!

Medimos para muchas personas su peso y altura. Cada par (peso, altura) es una "muestra" de la distribución conjunta P(X,Y).

Correlación, Causalidad e Independencia estadística

- Tres conceptos que tratan sobre la relación entre dos variables aleatorias.
- Muy fácil confundirlos entre ellos
- En su uso cotidiano tienen un significado un poco más "laxo" que en su uso estadístico

Hands-on training

Hands-on training

DS_Bitácora_05_Probabilidad.ipynb

Sección 2 y 3

Relación entre Probabilidad y Estadística

Probabilidad y Estadística

PROBABILIDAD

Qué espero ver.

Modelos sobre la naturaleza o nuestro problema

ESTADÍSTICA

Lo que vi. **Preguntas**: ¿tiene sentido con mi modelo?¿Qué puedo aprender? (Lo que mido en el laboratorio)

Población y Muestra

Si conozco la distribución de probabilidad (o densidad de probabilidad) con las fórmulas que mostramos, podemos calcular su esperanza, varianza y más.

Pero en general no conocemos las distribuciones, sino que tenemos datos.

Ahí es donde entra la **Estadística**.

Relación entre estadísticos y parámetros

$$f(x|\mu,\sigma^2)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Parámetros:

μ: valor medio

Fuente: Wikipedia

σ: desviación estándar

52

Relación entre estadísticos y parámetros

$$f(x|\mu,\sigma^2)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Parámetros:

 μ : valor medio

σ: desviación estándar

Si nuestros datos tienen una distribución Gaussiana

Parámetro	Estadístico
μ	Promedio de los datos
σ	Desviación Estándar Calculada de los datos

53

Recursos

Probabilidad y Estadística

- Correlaciones Espurias Visita obligada y divertida.
- <u>Statistics is the Grammar of Data Science</u> Serie de cinco artículos sobre sobre Probabilidad y Estadística. Recomendamos particularmente leer el cuarto artículo sobre correlación.

Para la próxima

- Termina el notebook de hoy
- Lee la bitácora 06 y carga las dudas que tengas al Trello
- Resuelve el Challenge.

En el encuentro que viene uno/a de ustedes será seleccionado/a para mostrar cómo resolvió el challenge de la bitácora. De esta manera, ¡aprendemos todos/as de (y con) todas/as, así que vengan preparados/as.

Sabemos que el encuentro de hoy puede haber sido un poco pesado o intenso, ¡pero no te sientas abrumado!

Los próximos encuentros tendrán un poco menos de carga. Intenta no atrasarte con la ejercitación.

ACÁMICA