

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** (1988).

η MASS

Recent measurements resolve the obvious inconsistency in previous η mass measurements in favor of the higher value first reported by NA48 (LAI 02). We use only precise measurements consistent with this higher mass value for our η mass average.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT			
547.862±0.017 OUR AVERAGE								
$547.865 \pm 0.031 \pm 0.062$		NIKOLAEV	14		$\gamma p ightarrow p \eta$			
$547.873 \pm 0.005 \pm 0.027$	1M	GOSLAWSKI	12	SPEC	$d p ightarrow ^3$ He η			
$547.874 \pm 0.007 \pm 0.029$		AMBROSINO	07 B	KLOE	$e^+e^- o \phi o \eta \gamma$			
$547.785 \pm 0.017 \pm 0.057$	16k	MILLER	07	CLEO	$\psi(2S) ightarrow \; J/\psi \eta$			
$547.843 \pm 0.030 \pm 0.041$	1134	LAI	02	NA48	$\eta ightarrow 3\pi^0$			
• • • We do not use th	e following o	data for averages	, fits,	limits, e	etc. • • •			
$547.311 \pm 0.028 \pm 0.032$		^l ABDEL-BARY	05	SPEC	$dp ightarrow ^3$ He η			
$547.311 \pm 0.028 \pm 0.032$ $547.12 \pm 0.06 \pm 0.25$		^l ABDEL-BARY KRUSCHE			$dp \rightarrow {}^{3}$ He η $\gamma p \rightarrow \eta p$, threshold			
				SPEC				
$547.12 \pm 0.06 \pm 0.25$		KRUSCHE	95 D	SPEC SPEC	$\gamma p \rightarrow \eta p$, threshold			
547.12 ±0.06 ±0.25 547.30 ±0.15		KRUSCHE PLOUIN	95D 92	SPEC SPEC	$\begin{array}{ccc} \gamma p & \rightarrow & \eta p, \ {\sf threshold} \\ d p & \rightarrow & {\sf ^3He} \eta \end{array}$			
547.12 ±0.06 ±0.25 547.30 ±0.15 547.45 ±0.25	148	KRUSCHE PLOUIN DUANE	95D 92 74	SPEC SPEC	$\begin{array}{ccc} \gamma p & \rightarrow & \eta p, \ {\sf threshold} \\ d p & \rightarrow & {\sf ^3He} \eta \end{array}$			
547.12 ±0.06 ±0.25 547.30 ±0.15 547.45 ±0.25 548.2 ±0.65		KRUSCHE PLOUIN DUANE FOSTER	95D 92 74 65C	SPEC SPEC SPEC HBC	$\begin{array}{ccc} \gamma p & \rightarrow & \eta p, \ {\sf threshold} \\ d p & \rightarrow & {\sf ^3He} \eta \end{array}$			

¹ABDEL-BARY 05 disagrees significantly with recent measurements of similar or better precision. See comment in the header.

η WIDTH

This is the partial decay rate $\Gamma(\eta \to \gamma \gamma)$ divided by the fitted branching fraction for that mode. See the note at the start of the $\Gamma(2\gamma)$ data block, next below.

<u>VALUE (keV)</u> <u>DOCUMENT ID</u> **1.31±0.05 OUR FIT**

η DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
 Γ ₁	neutral modes	Neutral modes (72.12±0.34) %	S=1.2
Γ_2^-	2γ	$(39.41\pm0.20)\%$	S=1.1

HTTP://PDG.LBL.GOV Page 1 Created: 5/30/2017 17:22

Γ_3	$3\pi^0$	$(32.68\pm0.23)~\%$	S=1.1
Γ_4	π^{0} 2 γ	$(2.56\pm0.22)\times10^{-4}$	
Γ ₅	$2\pi^0 2\gamma$	$< 1.2 \times 10^{-3}$	CL=90%
Γ_6	4 γ	$< 2.8 \times 10^{-4}$	CL=90%
Γ ₇	invisible	$< 1.0 \times 10^{-4}$	CL=90%

Charged modes

		charges modes	
Γ ₈	charged modes	$(28.10\pm0.34)~\%$	S=1.2
Γ_9	$\pi^+\pi^-\pi^0$	$(22.92\pm0.28)~\%$	S=1.2
Γ_{10}	$\pi^+\pi^-\gamma$	(4.22±0.08) %	S=1.1
Γ_{11}	$e^+e^-\gamma$	$(6.9 \pm 0.4) \times 10^{-3}$	S=1.3
Γ_{12}	$\mu^+\mu^-\gamma$	$(3.1 \pm 0.4) \times 10^{-4}$	
Γ_{13}	e^+e^-	$< 2.3 \times 10^{-6}$	CL=90%
Γ_{14}	$\mu^+\mu^-$	$(5.8 \pm 0.8) \times 10^{-6}$	
Γ_{15}	$2e^{+}2e^{-}$	$(2.40\pm0.22)\times10^{-5}$	
Γ_{16}	$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$	$(2.68\pm0.11)\times10^{-4}$	
Γ_{17}	$e^+e^-\mu^+\mu^-$	$< 1.6 \times 10^{-4}$	CL=90%
Γ_{18}	$2\mu^{+}2\mu^{-}$	$< 3.6 \times 10^{-4}$	CL=90%
Γ_{19}	$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$	$< 3.6 \times 10^{-4}$	CL=90%
Γ_{20}	$\pi^+e^-\overline{\nu}_e+$ c.c.	$< 1.7 \times 10^{-4}$	CL=90%
Γ_{21}	$\pi^+\pi^-2\gamma$	$< 2.1 \times 10^{-3}$	
Γ_{22}	$\pi^+\pi^-\pi^0\gamma$	$< 5 \times 10^{-4}$	CL=90%
Γ_{23}	$\pi^0 \mu^+ \mu^- \gamma$	$< 3 \times 10^{-6}$	CL=90%

Charge conjugation (C), Parity (P), Charge conjugation \times Parity (CP), or Lepton Family number (LF) violating modes

	_opec		,			 	
	$\pi^{0} \gamma$	С		<	9	$\times 10^{-5}$	CL=90%
	$\pi^+\pi^-$	P,CP		<	1.3	$\times 10^{-5}$	CL=90%
Γ ₂₆		P,CP		<	3.5	$\times 10^{-4}$	CL=90%
Γ_{27}	$2\pi^0\gamma$	C		<	5	\times 10 ⁻⁴	CL=90%
Γ ₂₈	$3\pi^0\gamma$	C		<	6	\times 10 ⁻⁵	CL=90%
Γ_{29}	3γ	C		<	1.6	$\times 10^{-5}$	CL=90%
Γ ₃₀	$4\pi^0$	P,CP		<	6.9	\times 10 ⁻⁷	CL=90%
Γ_{31}	$\pi^0 e^+ e^-$	C	[a]	<	4	\times 10 ⁻⁵	CL=90%
Γ_{32}	$\pi^0\mu^+\mu^-$	C	[a]	<	5	\times 10 ⁻⁶	CL=90%
Γ ₃₃	$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF		<	6	\times 10 ⁻⁶	CL=90%

[a] C parity forbids this to occur as a single-photon process.

CONSTRAINED FIT INFORMATION

An overall fit to 2 decay rate and 19 branching ratios uses 50 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^2=43.8$ for 42 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (keV)	Scale factor
Γ_2	2γ	0.515 ± 0.018	_
	$3\pi^0$	$0.427\ \pm0.015$	
Γ_4	$\pi^0 2\gamma$	$(3.34 \pm 0.28) \times 10^{-4}$	
	$\pi^+\pi^-\pi^0$	$0.299\ \pm0.011$	
Γ_{10}	$\pi^+\pi^-\gamma$	0.0551 ± 0.0022	
Γ_{11}	$e^+e^-\gamma$	0.0090 ± 0.0006	1.2
	$\mu^+\mu^-\gamma$	$(4.1 \pm 0.5) \times 10^{-4}$	
Γ_{16}	$\pi^+\pi^-e^+e^-(\gamma)$	$(3.50 \pm 0.19) \times 10^{-4}$	

η DECAY RATES

Γ(2γ) See the table immediately above giving the fitted decay rates. Following the advice of NEFKENS 02, we have removed the Primakoff-effect measurement from the average. See also the "Note on the Decay Width $\Gamma(\eta \to \gamma \gamma)$," in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1451, for a discussion of the various measurements.

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT
0.515±0.018 OUR FIT					
0.516±0.018 OUR AV	ERAGE	DADUGGI	10.	1/1 OF	+ - + -
$0.520\pm0.020\pm0.013$		BABUSCI			$e^+e^- \rightarrow e^+e^-\eta$
$0.51 \pm 0.12 \pm 0.05$	36	BARU	90		$e^+e^- \rightarrow e^+e^-\eta$
$0.490 \pm 0.010 \pm 0.048$	2287	ROE	90		$e^+e^- \rightarrow e^+e^-\eta$
$0.514 \pm 0.017 \pm 0.035$	1295	WILLIAMS			$e^+e^- ightarrowe^+e^-\eta$
$0.53 \pm 0.04 \pm 0.04$		BARTEL	85E	JADE	$e^+e^- ightarrow~e^+e^-\eta$
HTTP://PDG.LBL	.GOV	Page 3		Crea	ted: 5/30/2017 17:22

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.476 ± 0.062		¹ RODRIGUES	80	CNTR	Reanalysis
$0.64 \pm 0.14 \pm 0.13$		AIHARA	86	TPC	$e^+e^- ightarrow e^+e^-\eta$
0.56 ± 0.16	56	WEINSTEIN	83	CBAL	$e^+e^- ightarrow e^+e^-\eta$
$0.324 \!\pm\! 0.046$		BROWMAN	74 B	CNTR	Primakoff effect
1.00 ± 0.22		² BEMPORAD	67	CNTR	Primakoff effect

¹RODRIGUES 08 uses a more sophisticated calculation for the inelastic background due to incoherent photoproduction to reanalyze the η photoproduction data on Be and Cu at 9 GeV from BROWMAN 74B. This brings the value of $\Gamma(\eta \to 2\gamma)$ in line with direct measurements of the width. The error here is only statistical.

 $^{^2}$ BEMPORAD 67 gives $\Gamma(2\gamma)=1.21\pm0.26$ keV assuming $\Gamma(2\gamma)/\Gamma(\text{total})=0.314.$ Bemporad private communication gives $\Gamma(2\gamma)^2/\Gamma(\text{total})=0.380\pm0.083.$ We evaluate this using $\Gamma(2\gamma)/\Gamma(\text{total})=0.38\pm0.01.$ Not included in average because the uncertainty resulting from the separation of the coulomb and nuclear amplitudes has apparently been underestimated.

$\Gamma(\pi^0 2\gamma)$						Γ4
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT	
0.334 ± 0.028 OUR FIT						
0.33 ± 0.03	1200	NEFKENS	14	CRYB	$\gamma p ightarrow \eta p$	

η BRANCHING RATIOS

Neutral modes ———

Γ(neutral	modes	$/\Gamma_{total}$
----	---------	-------	-------------------

 $\Gamma_1/\Gamma = (\Gamma_2 + \Gamma_3 + \Gamma_4)/\Gamma$

<u>VALUE</u>	<i>EVTS</i>	DOCUMENT ID)	TECN	COMMENT		
0.7212±0.0034 OUR FIT Error includes scale factor of 1.2.							
0.705 ± 0.008	16k	BASILE	71 D	CNTR	MM spectrometer		
• • • We do not use the following data for averages, fits, limits, etc. • •							
0.70 +0.08		RUNIATOV	67	OSDK			

 $\Gamma(2\gamma)/\Gamma_{\text{total}}$ Γ_2/Γ

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT39.41 \pm 0.20 OUR FITError includes scale factor of 1.1.39.49 \pm 0.17 \pm 0.3065kABEGG96SPEC $pd \rightarrow {}^{3}$ He η • • • We do not use the following data for averages, fits, limits, etc. • •38.45 \pm 0.40 \pm 0.3614kLOPEZ07CLEO $\psi(2S) \rightarrow J/\psi\eta$

$\Gamma(2\gamma)/\Gamma(\text{neutral modes})$

 $\Gamma_2/\Gamma_1 = \Gamma_2/(\Gamma_2+\Gamma_3+\Gamma_4)$

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT			
0.5465 ± 0.0019	OUR FIT							
0.548 ± 0.023	OUR AVERAGE	Error includes scale factor of 1.5.						
$0.535\ \pm0.018$		BUTTRAM	70	OSPK				
0.59 ± 0.033		BUNIATOV	67	OSPK				

 $^{^1}$ Not independent of other results listed for LOPEZ 07. Assuming decays of $\eta\to\gamma\gamma$, $3\pi^0,~\pi^+\pi^-\pi^0,~\pi^+\pi^-\gamma$, and $e^+e^-\gamma$ account for all η decays within a contribution of 0.3% to the systematic error.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

0.52	± 0.09	88	ABROSIMOV	80	HLBC	
0.60	± 0.14	113	KENDALL	74	OSPK	
0.57	± 0.09		STRUGALSKI	71	HLBC	
0.579	± 0.052		FELDMAN	67	OSPK	
0.416	± 0.044		DIGIUGNO	66	CNTR	Error doubled
0.44	± 0.07		GRUNHAUS	66	OSPK	
0.39	± 0.06		$^{ m 1}$ JONES	66	CNTR	

 $^{^{1}\}mbox{This}$ result from combining cross sections from two different experiments.

$\Gamma(3\pi^0)/\Gamma_{ m total}$						Γ ₃ /Γ
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
32.68±0.23 OUR FIT	Error inc	ludes scale factor o	of 1.1.			
• • • We do not use th	ne followin	g data for averages	s, fits	limits, e	etc. • • •	
$34.03 \pm 0.56 \pm 0.49$	1821	$^{ m 1}$ LOPEZ	07	CLEO	$\psi(2S) \rightarrow J/$	$^{\prime}\psi\eta$
¹ Not independent of	other res	ults listed for LOP	F7 0	7. Assur	ning decays of	$n \rightarrow \gamma \gamma$

 $^{^1}$ Not independent of other results listed for LOPEZ 07. Assuming decays of $\eta\to\gamma\gamma,$ $3\pi^0,$ $\pi^+\pi^-\pi^0,$ $\pi^+\pi^-\gamma,$ and $e^+e^-\gamma$ account for all η decays within a contribution of 0.3% to the systematic error.

Γ(3π	⁰)/Γ(neutral n	nodes)		Γ ₃ /	$\Gamma_1 = \Gamma_3/(\Gamma_2 + \Gamma_3 + \Gamma_4)$	
VALUE		_EVTS	DOCUMENT ID		TECN	COMMENT
0.453	1±0.0019 OUR I	FIT				
0.439	± 0.024		BUTTRAM	70	OSPK	
• • •	We do not use t	he following o	data for averages	s, fits,	limits, e	etc. • • •
0.44	± 0.08	75	ABROSIMOV	80	HLBC	
0.32	± 0.09		STRUGALSKI	71	HLBC	
0.41	± 0.033		BUNIATOV	67	OSPK	Not indep. of $\Gamma(2\gamma)/$
						$\Gamma(\text{neutral modes})$
0.177	±0.035		FELDMAN	67	OSPK	
0.209	± 0.054		DIGIUGNO	66	CNTR	Error doubled
0.29	± 0.10		GRUNHAUS	66	OSPK	
Γ(3π	$^0)/\Gamma(2\gamma)$					Γ_3/Γ_2
VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>
0.829±0.006 OUR FIT					
0.829 ± 0.007 OUR AVE	RAGE				
$0.884 \pm 0.022 \pm 0.019$	1821				$\psi(2S) ightarrow \ J/\psi \eta$
$0.817 \pm 0.012 \pm 0.032$	17.4k	$^{ m 1}$ AKHMETSHIN	l 05	CMD2	$e^+e^- o \phi o \eta \gamma$
0.826 ± 0.024		ACHASOV	00 D	SND	$e^+e^- o \phi o \eta \gamma$
$0.832 \pm 0.005 \pm 0.012$		KRUSCHE			$\gamma {\it p} ightarrow \eta {\it p}$, threshold
0.841 ± 0.034		AMSLER	93	CBAR	$\overline{p}p \rightarrow \pi^+\pi^-\eta$ at rest
$0.822 \!\pm\! 0.009$		ALDE	84	GAM2	
• • • We do not use the	ne following	g data for averages	s, fits,	limits, e	etc. • • •
$0.796 \pm 0.016 \pm 0.016$		ACHASOV	00	SND	See ACHASOV 00D

$0.796 \pm 0.016 \pm 0.016$	ACHASOV	00	SND	See ACHASOV 00D
0.91 ± 0.14	COX	70 B	HBC	
0.75 ± 0.09	DEVONS	70	OSPK	
0.88 ± 0.16	BALTAY	67 D	DBC	
1.1 ± 0.2	CENCE	67	OSPK	
1.25 ± 0.39	BACCI	63	CNTR	Inverse BR reported

 $^{^{1}\, \}text{Uses}$ result from AKHMETSHIN 01B.

$\Gamma(\pi^0 2\gamma)/\Gamma_{\text{tota}}$		mmarized	I in the review b	ω ΙΔΝ	INSRER	C 85	Γ_4/Γ
VALUE (units 10^{-4})			DOCUMENT ID	-	TECN	COMMENT	
2.56±0.22 OUR			DOCOMENT ID		TECH	COMMENT	
2.21±0.24±0.47		500	^l PRAKHOV	80	CRYB	$\pi^- p \rightarrow \eta n \approx$	threshold
• • • We do not	use the	following	g data for averag	ges, fit	s, limits,	etc. • • •	
$3.5 \pm 0.7 \pm 0.6$		1.6k ^{2,3}	³ PRAKHOV	05	CRYB	See PRAKHOV	08
<8.4	90	7	ACHASOV	01 D	SND	$e^+e^- ightarrow \phi ightarrow$	$\eta\gamma$
<30	90	0	DAVYDOV	81	GAM2	$\pi^- p \rightarrow \eta n$	
invariant-mas ² Normalized u ³ This measure	is spectring $\Gamma(\eta)$	um of the $ ho ightarrow 2\gamma)/c$ nd the ind	e two photons. $\Gamma = 0.3943 \pm 0$ ependent analys	0.0026 is of t	he same	using for the first data by KNECH $^{\circ}$ E 84 from $\Gamma(\pi^02^{\circ})$	Γ 04 both
$\Gamma(\pi^0 2\gamma)/\Gamma(2\gamma)$	y)						Γ_4/Γ_2
$VALUE$ (units 10^{-3})		EVTS	DOCUMENT II)	TECN	CHG COMMEN	T
0.65±0.06 OUR	FIT						
1.8 ±0.4	+b.	fallowing	ALDE	84 fit	GAM:		
• • • We do not	use the			-			· = 0.4
2.5 ±0.6	0.	70	BINON	82	GAM:	2 See ALD)E 84
$\Gamma(\pi^0 2\gamma)/\Gamma(3\pi$	r ⁰)						Γ_4/Γ_3
$VALUE$ (units 10^{-4})			DOCUMENT IL)	TECN	COMMENT	
7.8±0.7 OUR FI							
• • • We do not	use the	following				etc. • • •	
$8.3 \pm 2.8 \pm 1.4$			1 KNECHT	04	CRYE	$3 \pi^- p \rightarrow n\eta$	
¹ Independent	analysis	of same of	data as PRAKH	OV 05			
$\Gamma(2\pi^0 2\gamma)/\Gamma_{to}$	ŧal						Γ_5/Γ
VALUE		<u>L%_</u>	DOCUMENT ID		TECN	COMMENT	5,
$<1.2 \times 10^{-3}$	9		NEFKENS			$p(720 \text{ MeV/c}) \pi$	$- \rightarrow n\eta$
• • • We do not	use the	following	g data for averag			- (, ,	·
$< 4.0 \times 10^{-3}$	9	0	BLIK	07	GAM4	$\pi^- p \rightarrow \eta n$	
			d $\gamma\gamma$ energy ran				
			- / /6,	0			- /-
$\Gamma(4\gamma)/\Gamma_{\text{total}}$				_			Γ ₆ /Γ
<u>VALUE</u> <2.8 × 10 ^{−4}		<u>CL%</u>	DOCUMENT II			<u>COMMENT</u>	
<2.8 × 10		90	BLIK	07	GAM	$4 \pi^- p \rightarrow \eta n$	
$\Gamma(\text{invisible})/\Gamma($	(2γ)						Γ_7/Γ_2
VALUE		<u>CL%</u>	DOCUMENT II)	TECN	COMMENT	
$< 2.6 \times 10^{-4}$		90	$^{ m 1}$ ABLIKIM	13	BES3	$J/\psi ightarrow \phi \eta$	
• • • We do not	use the	following		ges, fit	s, limits,	etc. • • •	
$< 1.65 \times 10^{-3}$		90	² ABLIKIM	060	BES2	$J/\psi ightarrow \phi \eta$	
$\frac{1}{2}$ Based on 225	, ,	•					
² Based on 58N	M J/ψ d	lecays.					
HTTP://PDG	.LBL.G	OV	Page 6		Crea	ated: 5/30/201	7 17:22

— Charged modes ———

 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ Γ_{9}/Γ

<u>VALUE (units 10⁻²)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **22.92±0.28 OUR FIT** Error includes scale factor of 1.2.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

22.60 \pm 0.35 \pm 0.29 3915 ¹LOPEZ 07 CLEO $\psi(2S) \rightarrow J/\psi \eta$

$\Gamma(\text{neutral modes})/\Gamma(\pi^+\pi^-\pi^0)$

 $\Gamma_1/\Gamma_9 = (\Gamma_2 + \Gamma_3 + \Gamma_4)/\Gamma_9$

VALUEEVTSDOCUMENT IDTECN 3.15 ± 0.05 OUR FITError includes scale factor of 1.2. 3.26 ± 0.30 OUR AVERAGE 2.54 ± 1.89 74KENDALL74OSPK

2.54 ± 1.89	74	KENDALL	74	OSPK
3.4 ± 1.1	29	AGUILAR	72 B	HBC
2.83 ± 0.80	70	¹ BLOODWO	72 B	HBC
3.6 ± 0.6	244	FLATTE	67 B	HBC
2.89 ± 0.56		ALFF	66	HBC
3.6 ± 0.8	50	KRAEMER	64	DBC
3.8 ± 1.1		PAULI	64	DBC
_				

¹ Error increased from published value 0.5 by Bloodworth (private communication).

$\Gamma(2\gamma)/\Gamma(\pi^+\pi^-\pi^0)$

 Γ_2/Γ_0

(1)1 (,				2, 3
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.720 ± 0.028 OUR FI	T Error i	includes scale factor	of 1.2	2.	
1.70 ± 0.04 OUR AV	/ERAGE				
$1.704 \pm 0.032 \pm 0.026$	3915	$^{ m 1}$ LOPEZ	07	CLEO	$\psi(2S) ightarrow \; J/\psi \eta$
1.61 ± 0.14		ABLIKIM	06E	BES2	$e^+e^- o J/\psi o \eta \gamma$
$1.78 \pm 0.10 \pm 0.13$	1077	AMSLER	95	CBAR	$\overline{p}p \rightarrow \pi^+\pi^-\eta$ at rest
1.72 ± 0.25	401	BAGLIN	69	HLBC	
1.61 ± 0.39		FOSTER	65	HBC	
1 .		Δ			

 $^{^1}$ LOPEZ 07 reports $\Gamma(\eta\rightarrow~\pi^+\,\pi^-\,\pi^0)~/~\Gamma(\eta\rightarrow~2\gamma)=\Gamma_9/\Gamma_2=0.587\pm0.011\pm0.009$.

$\Gamma(3\pi^0)/\Gamma(\pi^+\pi^-\pi^0)$

 Γ_3/Γ_9

Created: 5/30/2017 17:22

VALUE EVTS DOCUMENT ID TECN COMMENT

1.426 ± 0.026 OUR FIT Error includes scale factor of 1.2.

1.48	± 0.05	OUR A	WERAGE				
1.46	± 0.03	± 0.09		ACHASOV			
1.52	± 0.04	± 0.08	23k	¹ AKHMETSHIN	101 B	CMD2	$e^+e^- \rightarrow \phi \rightarrow \eta \gamma$
1.44	± 0.09	±0.10	1627	AMSLER	95	CBAR	$\overline{p}p \rightarrow \pi^+\pi^-\eta$ at rest
1.50	+0.15		199	BAGLIN	69	HLBC	

• • • We do not use the following data for averages, fits, limits, etc. • • •

		-		
1.3	± 0.4	BAGLIN	67 B	HLBC
0.90	± 0.24	FOSTER	65	HBC
2.0	± 1.0	FOELSCHE	64	HBC
0 83	±0.32	CRAWEORD	63	HRC

 $^{^{}m 1}$ AKHMETSHIN 01B uses results from AKHMETSHIN 99F.

 $^{^1}$ Not independent of other results listed for LOPEZ 07. Assuming decays of $\eta\to\gamma\gamma$, $3\pi^0$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\gamma$, and $e^+e^-\gamma$ account for all η decays within a contribution of 0.3% to the systematic error.

```
\Gamma(\pi^+\pi^-\pi^0)/[\Gamma(2\gamma)+\Gamma(3\pi^0)]
0.318 \pm0.005 OUR FIT Error includes scale factor of 1.2.
0.304 \pm 0.012
                                           ACHASOV
                                                              00D SND
• • • We do not use the following data for averages, fits, limits, etc. •
0.3141 \pm 0.0081 \pm 0.0058
                                           ACHASOV
                                                                              See ACHASOV 00D
                                                              00B SND
\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\rm total}
                                                                                                  \Gamma_{10}/\Gamma
VALUE (units 10^{-2})
                             EVTS
                                           DOCUMENT ID
                                                                    TECN
4.22\pm0.08 OUR FIT Error includes scale factor of 1.1.

    • • We do not use the following data for averages, fits, limits, etc.

                                         <sup>1</sup>LOPEZ
3.96 \pm 0.14 \pm 0.14
                               859
                                                              07
                                                                    CLEO \psi(2S) \rightarrow J/\psi \eta
   <sup>1</sup> Not independent of other results listed for LOPEZ 07. Assuming decays of \eta \to \gamma \gamma,
    3\pi^0, \pi^+\pi^-\pi^0, \pi^+\pi^-\gamma, and e^+e^-\gamma account for all \eta decays within a contribution
    of 0.3% to the systematic error.
\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                \Gamma_{10}/\Gamma_{9}
0.1847\pm0.0030 OUR AVERAGE
                                        Error includes scale factor of 1.1.
                                                                      KLOE e^+e^- \rightarrow \phi \rightarrow \eta \gamma
0.1856 \pm 0.0005 \pm 0.0028
                               200k
                                              BABUSCI
                                             LOPEZ
                                 859
                                                                      CLEO \psi(2S) \rightarrow J/\psi \eta
0.175 \pm 0.007 \pm 0.006
                                                                07

    • • We do not use the following data for averages, fits, limits, etc.

                                                                      ASPK
0.209 \pm 0.004
                                 18k
                                              THALER
                                                                73
0.201 \pm 0.006
                               7250
                                             GORMLEY
                                                                70
                                                                      ASPK
0.28 \pm 0.04
                                             BALTAY
                                                                67B DBC
      \pm 0.035
0.25
                                             LITCHFIELD
                                                                      DBC
                                                                67
0.30 \pm 0.06
                                             CRAWFORD
                                                                66
                                                                      HBC
0.196 \pm 0.041
                                             FOSTER
                                                                65C HBC
\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}
                                                                                                  \Gamma_{11}/\Gamma
VALUE (units 10^{-3})
                              EVTS
                                            DOCUMENT ID
                                                                     TECN
                                                                               COMMENT
6.9 \pm 0.4 OUR FIT
                           Error includes scale factor of 1.3
6.7 \pm0.5 OUR AVERAGE Error includes scale factor of 1.2.
6.6 \pm 0.4 \pm 0.4
                              1345
                                            BERGHAUSER 11
                                                                     SPEC
                                                                               \gamma p \rightarrow p \eta
7.8 \pm 0.5 \pm 0.8
                                                                     WASA pd \rightarrow {}^{3}He \eta
                         435 \pm 31
                                            BERLOWSKI
                                                               80
                                                                               e^+e^- \rightarrow \phi \rightarrow \eta \gamma
5.15 \pm 0.62 \pm 0.74
                                283
                                            ACHASOV
                                                               01B SND
                                            AKHMETSHIN 01
                                                                     CMD2 e^+e^- \rightarrow \phi \rightarrow \eta \gamma
7.10 \pm 0.64 \pm 0.46
                                323
• • • We do not use the following data for averages, fits, limits, etc. •
                                          <sup>1</sup> LOPEZ
9.4 \pm 0.7 \pm 0.5
                                172
                                                               07
                                                                     CLEO \psi(2S) \rightarrow J/\psi \eta
   <sup>1</sup> Not independent of other results listed for LOPEZ 07. Assuming decays of \eta \to \gamma \gamma,
    3\pi^0, \pi^+\pi^-\pi^0, \pi^+\pi^-\gamma, and e^+e^-\gamma account for all \eta decays within a contribution
    of 0.3% to the systematic error.
\Gamma(e^+e^-\gamma)/\Gamma(\pi^+\pi^-\gamma)
                                                                                               \Gamma_{11}/\Gamma_{10}
                             EVTS
                                           DOCUMENT ID
                                                                    TECN COMMENT
0.163±0.011 OUR FIT
                              Error includes scale factor of 1.2.
0.237 \pm 0.021 \pm 0.015
                              172
                                           LOPEZ
                                                              07
                                                                    CLEO \psi(2S) \rightarrow J/\psi \eta
```

$\Gamma(e^+e^-\gamma)/\Gamma(\pi^+\tau)$	$\tau^-\pi^0$)				Γ_{11}/Γ_{9}
<u>VALUE (units 10⁻²)</u> 3.00±0.19 OUR FIT	EVTS	DOCUMENT ID		TECN	COMMENT
	Error inclu	des scale factor of	1.3.		
2.1 ± 0.5	80	JANE	75 B	OSPK	See the erratum
$\Gamma(\text{neutral modes})/$					
VALUE	EVTS	1/(' 9+' 10+' 11 <u>DOCUMENT ID</u>			$+\Gamma_4$)/($\Gamma_9+\Gamma_{10}+\Gamma_{11}$)
2.59±0.04 OUR FIT				TLCIV	
2.64±0.23	Error mera	BALTAY		DBC	
• • • We do not use	the followin			_	etc. • • •
4.5 ±1.0		¹ JAMES	66	НВС	
3.20 ± 1.26		¹ BASTIEN		_	
2.5 ± 1.0		¹ PICKUP	62	HBC	
_	are not u	and in the average		hov do	not separate clearly η $ ightarrow$
$\pi^+\pi^-\pi^0$ and η	$\rightarrow \pi^+\pi^-$	γ from each other of $\eta ightarrow \pi^+\pi^-\gamma$	r. T	he repor	ted values thus probably
$\Gamma(2\gamma)/[\Gamma(\pi^+\pi^-\pi$	$^{0})+\Gamma(\pi^{+}$	$^{+}\pi^{-}\gamma)+\Gamma(e^{+}\epsilon$	$e^{-\gamma}$	[($\Gamma_2/(\Gamma_9+\Gamma_{10}+\Gamma_{11})$
VALUE 1.417±0.023 OUR FI		cludes scale factor	of 1.2	2.	
1.1 ± 0.4 OUR AV					
1.51 ± 0.93	75	KENDALL		OSPK	
0.99 ± 0.48		CRAWFORD	63	HBC	
$\Gamma(\mu^+\mu^-\gamma)/\Gamma_{ m total}$					Γ ₁₂ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
3.1±0.4 OUR FIT					
3.1±0.4		DZHELYADIN			· · · · · · · · · · · · · · · · · · ·
• • • We do not use	the following	g data for averages	, fits,		
1.5 ± 0.75	100	BUSHNIN	78	SPEC	See DZHELYADIN 80
$\Gamma(e^+e^-)/\Gamma_{ m total}$					Γ ₁₃ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT
$<2.3 \times 10^{-6}$	90	AGAKISHIEV			$pp \rightarrow \eta + X$
• • • We do not use	the followin		, fits,	limits, e	etc. • • •
$< 5.6 \times 10^{-6}$	90	$^{ m 1}$ AGAKISHIEV	12A	SPEC	$pp \rightarrow \eta + X$
$< 2.7 \times 10^{-5}$	90	BERLOWSKI	80		$pd ightarrow^3$ He η
$< 0.77 \times 10^{-4}$	90	BROWDER	97 B	CLE2	$e^+e^-\simeq 10.5~{ m GeV}$
$< 2 \times 10^{-4}$	90	WHITE	96	SPEC	$pd ightarrow \eta^3$ He
$< 3 \times 10^{-4}$	90	DAVIES	74	RVUE	Uses ESTEN 67
1 A C A K I C L II E V 12 A		lf 2 F C-			sallisiana an limiid bir

 $^{^{1}}$ AGAKISHIEV 12A uses a data sample of 3.5 GeV proton beam collisions on liquid hydrogen target collected by the HADES detector.

$\Gamma(\mu^+\mu^-)/\Gamma_{ m tot}$	tal						Γ ₁₄ /Γ
$VALUE$ (units 10^{-6})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT	
5.8±0.8 OUR A						0	
$5.7 \pm 0.7 \pm 0.5$		114	ABEGG				
6.5 ± 2.1		27	5 = = =			•	
● ● ● We do not	use the	e following	data for averages	s, fits,	, limits, e	etc. • • •	
$5.6^{igoplus 0.6}_{-0.7}\!\pm\!0.5$		100	KESSLER	93	SPEC	See ABEGG 94	1
< 20	95	0	WEHMANN	68	OSPK		
$\Gamma(\mu^+\mu^-)/\Gamma(2$	$2\gamma)$						Γ_{14}/Γ_2
VALUE (units 10^{-5})			DOCUMENT ID		TECN		
• • • We do not	use the	following	data for averages	s, fits,	limits, e	etc. • • •	
5.9 ± 2.2			HYAMS	69	OSPK		
$\Gamma(2e^+2e^-)/\Gamma$							Γ ₁₅ /Γ
	CL%	EVTS	DOCUMENT ID				
$2.4 \pm 0.2 \pm 0.1$		362	¹ AMBROSINO			·	\rightarrow $\eta\gamma$
• • • We do not	use the	following	data for averages				
<9.7	90		BERLOWSKI				
<6.9	90					$e^+e^- o \phi$	$ ightarrow$ $\eta\gamma$
¹ This measure	ment is	fully inclu	usive (includes "26	+ 2 <i>e</i>	$^-\gamma$ " cha	nnel).	
$\Gamma(\pi^+\pi^-e^+e^-$	$^{-}(\gamma))/$	$\Gamma_{ ext{total}}$					Γ ₁₆ /Γ
$VALUE$ (units 10^{-4})		<u>EVTS</u>	DOCUMENT IL)	TECN	COMMENT	
2.68±0.11 OUR			1				
2.68±0.09±0.07 • • • We do not			1 AMBROSING data for averages			,	$\rightarrow \eta \gamma$
$4.3 \begin{array}{c} +2.0 \\ -1.6 \end{array} \pm 0.4$			BERLOWSK)
-1.6 ± 0.1 -1.6 ± 0.4 -1.6 ± 0.4			BARGHOLT				
						2 $e^+e^- \rightarrow \phi$	
$3.7 \begin{array}{c} +2.5 \\ -1.8 \end{array} \pm 0.3$		4				$e \cdot e \rightarrow \varphi$	$\gamma \rightarrow \eta \gamma$
¹ This AMBRC	SINO (9B value	includes radiative	event	S.		
$\Gamma(e^+e^-\mu^+\mu^-$	-)/Γ _{tot}	tal					Γ_{17}/Γ
<u>VALUE</u> <1.6 × 10 ^{−4}		<u>CL%</u> 90	DOCUMENT ID				
$<1.6 \times 10^{-4}$		90	BERLOWSKI	80	WASA	$pd o {}^3{\sf He}\;\eta$	
$\Gamma(2\mu^+2\mu^-)/\Gamma$	- total						Γ ₁₈ /Γ
<u>VALUE</u> <3.6 × 10 ^{−4}		CL%	DOCUMENT ID				
$<3.6 \times 10^{-4}$		90	BERLOWSKI	80	WASA	$pd ightarrow {}^3 ext{He}\ \eta$	
$\Gamma(\mu^+\mu^-\pi^+\pi^-)$	-)/Γ _{to}	tal					Γ ₁₉ /Γ
<u>VALUE</u> <3.6 × 10 ^{−4}			DOCUMENT ID				
$< 3.6 \times 10^{-4}$		90	BERLOWSKI	80	WASA	$pd ightarrow 3$ He η	

$\Gamma(\pi^+e^-\overline{\nu}_e+c)$.c.)/Г	$(\pi^+\pi^-\pi^0)$	0)				Γ_{20}/Γ_{9}
•	,	•	DOCUMENT ID		TECN	COMMENT	
<i>VALUE</i> <7.3 × 10 ^{−4}		90	ABLIKIM	13 G	BES3	$J/\psi ightarrow \phi \eta$	
$\Gamma(\pi^+\pi^-2\gamma)/\Gamma$	$\pi^+\pi$	$-\pi^{0}$)					Γ_{21}/Γ_{9}
<u>VALUE</u>	*	,	DOCUMENT ID		TECN		, _
$<9\times10^{-3}$			PRICE	67	HBC		
ullet $ullet$ We do not	use the	e following o	data for averages	s, fits,	limits, e	etc. • • •	
$< 16 \times 10^{-3}$		95	BALTAY	67 B	DBC		
$\Gamma(\pi^+\pi^-\pi^0\gamma)$	$/\Gamma(\pi^+$	$\pi^{-}\pi^{0}$					Γ_{22}/Γ_{9}
			DOCUMENT ID		TECN		•
VALUE <0.24 × 10 ^{−2}	90	0	THALER	73	ASPK		
ullet $ullet$ We do not	use the	e following o	data for averages	s, fits,	limits, e	etc. • • •	
$<1.7 \times 10^{-2}$	90		ARNOLD	68	HLBC		
$<1.6 \times 10^{-2}$	95		BALTAY	67 B	DBC		
$< 7.0 \times 10^{-2}$			FLATTE	67			
$< 0.9 \times 10^{-2}$			PRICE	67	HBC		
$\Gamma(\pi^0\mu^+\mu^-\gamma)$	/Г						Γ ₂₃ /Γ
VALUE	· total	CL%	DOCUMENT ID		TECN	COMMENT	. 52/ .
$<3 \times 10^{-6}$		90	DZHELYADIN				
						. ,	
	•		Forbidden mod	des -		_	
			um conservation OOCUMENT ID		ECN (OMMENT	Γ ₂₄ /Γ
<9 × 10 ⁻⁵	<u>C</u>		NEFKENS 0				
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{tot}}$		ıd <i>CP</i> invari	ance.				Γ_{25}/Γ
VALUE	<u>CL%</u>		DOCUMENT ID				
< 1.3 × 10 ⁻⁵	90		AMBROSINO			·	\rightarrow $\eta\gamma$
• • • We do not $< 1.6 \times 10^{-5}$							
$< 1.6 \times 10^{-3}$ $< 3.9 \times 10^{-4}$	90 90	25M 225M	AAIJ ABLIKIM			in $D \rightarrow \pi \pi \pi$ $e^+e^- \rightarrow J/e$	
$< 3.3 \times 10^{-4}$	90	223101	AKHMETSHIN				
$< 9 \times 10^{-4}$	90		AKHMETSHIN				
$<15 \times 10^{-4}$		0	THALER	73			2HIN 998
			THATELIX	13	ASPK		2HIN 99 B
$\Gamma(2\pi^0)/\Gamma_{ ext{total}}$	oy <i>P</i> an	d <i>CP</i> invari		13	ASPK		Γ ₂₆ /Γ
	-	d <i>CP</i> invari <u>EVTS</u>				COMMENT	
Forbidden b	-		ance.		<u>TECN</u>	$\frac{\textit{COMMENT}}{\pi^- \rho \rightarrow \eta n}$	
Forbidden b <u>VALUE</u>	<i>CL%</i> 90	<u>EVTS</u>	ance. <u>DOCUMENT ID</u> BLIK	07	<u>TECN</u> GAM4	$\pi^- p \rightarrow \eta n$	
Forbidden b <u>VALUE</u> <3.5 × 10⁻⁴	90 use the	EVTS e following o	ance. <u>DOCUMENT ID</u> BLIK	07 s, fits,	TECN GAM4 limits, 6	$\pi^- p \rightarrow \eta n$	Γ ₂₆ /Γ
Forbidden by $VALUE$ $<3.5 \times 10^{-4}$ • • • We do not	90 use the	EVTS e following o	ance. <u>DOCUMENT ID</u> BLIK data for averages ABLIKIM AKHMETSHIN	07 s, fits, 11G J 99C	TECN GAM4 limits, 6 BES3 CMD2	$\pi^- p \rightarrow \eta n$ etc. $\bullet \bullet \bullet$ $e^+ e^- \rightarrow J/e$ $e^+ e^- \rightarrow \phi = 0$	Γ_{26}/Γ $\psi \to \eta \gamma$ $\to \eta \gamma$
Forbidden by VALUE $<3.5 \times 10^{-4}$ • • • We do not $<6.9 \times 10^{-4}$	90 use the	EVTS e following o	ance. <u>DOCUMENT ID</u> BLIK data for averages ABLIKIM	07 s, fits, 11G J 99C	TECN GAM4 limits, 6 BES3 CMD2	$\pi^- p \rightarrow \eta n$ etc. $\bullet \bullet \bullet$ $e^+ e^- \rightarrow J/e$ $e^+ e^- \rightarrow \phi = 0$	Γ_{26}/Γ $\psi \to \eta \gamma$ $\to \eta \gamma$

 1 ACHASOV 98 observes one event in a $\pm 3\sigma$ region around the η mass, while a Monte Carlo calculation gives 10 \pm 5 events. The limit here is the Poisson upper limit for one observed event and no background.

$\Gamma(2\pi^0\gamma)/\Gamma_{\text{tot}}$	al by <i>C</i> invarianc	e.				Γ ₂₇ /Γ
VALUE		OCUMENT ID	TECN	<u>CHG</u>	COMMENT	
< 5 x 10 ⁻⁴ • • • We do not					p(720 MeV/c) , etc. • • •	$\pi^- \rightarrow n\eta$
$<\!17\times10^{-4}$	90 BL	IK (07 GAM4		$\pi^- p \rightarrow \eta n$	
$\Gamma(3\pi^0\gamma)/\Gamma_{\text{total}}$	al by <i>C</i> invarianc	e				Γ ₂₈ /Γ
VALUE		OCUMENT ID	TECN	<u>CHG</u>	COMMENT	
_		EFKENS (p(720 MeV/c)	$\pi^- \rightarrow n\eta$
• • • We do not	t use the follow	ving data for a			, ,	,
$<\!24\times10^{-5}$	90 BL	IK (07 GAM4		$\pi^- p \rightarrow \eta n$	
	by <i>C</i> invarianc					Γ ₂₉ /Γ
VALUE					COMMENT	
• • • We do not	t use the follov	ving data for a	verages, fits,	limits	, etc. • • •	
$<16 \times 10^{-5}$	90	BLIK	07	SAM4	$\pi^- p \rightarrow \eta n$	
$< 4 \times 10^{-5}$	90	NEFKENS	6 05A C	RYB	p(720 MeV/c)	$\pi^- \rightarrow n\eta$
$\Gamma(3\gamma)/\Gamma(2\gamma)$	<u>CL%</u>	DOCUME	ENT ID	TECN	CHG	Γ_{29}/Γ_2
$\frac{VALUE}{<1.2\times10^{-3}}$	95	ALDE	84			
$\Gamma(3\gamma)/\Gamma(3\pi^0)$			•		_ •	Γ_{29}/Γ_{3}
	CL%	DOCUME	NT ID	TFCN	<u>COMMENT</u>	- 29/ - 3
<i>VALUE</i> <4.9 × 10 ^{−5}	90	ALOISI			$ \begin{array}{ccc} \hline \phi \rightarrow \eta \gamma \end{array} $	
	by P and CP i		T.10		COMMENT	Γ ₃₀ /Γ
<u>VALUE</u> < 6.9 × 10 ^{−7}		<u>DOCUMENT</u>				00.14.1//
• • • We do not					$\pi^- p \rightarrow n\eta, 7$, etc. \bullet \bullet	20 MeV/ <i>c</i>
$< 200 \times 10^{-7}$	90	BLIK	07	SAM4	$\pi^- p \rightarrow \eta n$	
$\Gamma(\pi^0 e^+ e^-)/I$ C parity for	total orbids this to o	ccur as a singl	e-photon pro	cess.		Γ ₃₁ /Γ
•	<u>CL%</u>	_	NT ID		<u></u>	
• • • We do not	t use the follow	ving data for a	verages, fits,	limits	, etc. • • •	
$< 1.6 \times 10^{-4}$	90	MARTY	NOV 76	HLB	C	
$< 8.4 \times 10^{-4}$	90	BAZIN	68	DBC		
<70 × 10 ⁻⁴		RITTEN	NBERG 65	HBC		

$\Gamma(\pi^0 e^+ e^-) / \Gamma(\pi^+ \pi^- \pi^0)$

C parity forbids this to occur as a single-photon process.

VALUE	CL% EVIS	DOCUMENT ID		TECN
$< 1.9 \times 10^{-4}$	90	JANE	75	OSPK
• • • We do not u	ise the following d	ata for averages	fits,	limits, etc. ●

 $< 42 \times 10^{-4}$ BAGLIN 67 HLBC

 $< 16 \times 10^{-4}$ **BILLING** 67 HLBC $< 77 \times 10^{-4}$ FOSTER 65B HBC $<110 \times 10^{-4}$ **PRICE** 65 HBC

 $\Gamma(\pi^0\mu^+\mu^-\big)/\Gamma_{\rm total}$ Γ_{32}/Γ

C parity forbids this to occur as a single-photon process.

CL% DOCUMENT ID <u>TECN</u> <u>COMMENT</u> $< 5 \times 10^{-6}$ DZHELYADIN 81 SPEC $\pi^- p \rightarrow \eta n$ 90

• • We do not use the following data for averages, fits, limits, etc.

 $< 500 \times 10^{-6}$ WEHMANN OSPK

 $\left[\Gamma(\mu^+e^-) + \Gamma(\mu^-e^+)\right]/\Gamma_{\text{total}}$

 Γ_{33}/Γ

 Γ_{31}/Γ_{9}

Forbidden by lepton family number conservation.

CL% DOCUMENT ID TECN COMMENT $< 6 \times 10^{-6}$ SPEC $pd \rightarrow \eta^3 He$ 90 WHITE

η C-NONCONSERVING DECAY PARAMETERS

$\pi^+\pi^-\pi^0$ LEFT-RIGHT ASYMMETRY PARAMETER

Measurements with an error $> 1.0 \times 10^{-2}$ have been omitted.

VALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	
$0.09^{f +0.11}_{f -0.12}$ OUR AV	ERAGE				
$+0.09\!\pm\!0.10\!+\!0.09 \\ -0.14$	1.34M	AMBROSINO	08 D	KLOE	
0.28 ± 0.26	165k	JANE	74	OSPK	
$-0.05\!\pm\!0.22$	220k	LAYTER	72	ASPK	
• • • We do not use t	he following	g data for averages	s, fits,	limits, etc.	• • •

¹ GORMLEY 37k 68C ASPK

$\pi^+\pi^-\pi^0$ SEXTANT ASYMMETRY PARAMETER

Measurements with an error $> 2.0 \times 10^{-2}$ have been omitted.

VALUE (units 10 2)	<u> EV15</u>	DOCUMENT ID		IECN
$0.12^{+0.10}_{-0.11}$ OUR A	/ERAGE			
$+0.08\!\pm\!0.10\!+\!0.08\atop-0.13$	1.34M	AMBROSINO	08 D	KLOE
0.20 ± 0.25	165k	JANE	74	OSPK
0.10 ± 0.22	220k	LAYTER	72	ASPK
0.5 ± 0.5	37k	GORMLEY	68 C	WIRE

 $^{^1}$ The GORMLEY 68C asymmetry is probably due to unmeasured (${f E} imes {f B}$) spark chamber effects. New experiments with $(\mathbf{E} \times \mathbf{B})$ controls don't observe an asymmetry.

$\pi^+\pi^-\pi^0$ QUADRANT ASYMMETRY PARAMETER

VALUE (units 10^{-2})	EVTS	DOCUMENT ID	DOCUMENT ID				
-0.09±0.09 OUR AVE	RAGE						
$-0.05\!\pm\!0.10^{+0.03}_{-0.05}$	1.34M	AMBROSINO	08 D	KLOE			
-0.30 ± 0.25	165k	JANE	74	OSPK			
-0.07 ± 0.22	220k	LAYTER	72	ASPK			

$\pi^+\pi^-\gamma$ LEFT-RIGHT ASYMMETRY PARAMETER Measurements with an error $>~2.0\times10^{-2}$ have been omitted.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN
0.9 ± 0.4 OUR AVER	AGE			
1.2 ± 0.6	35k	JANE	74 B	OSPK
0.5 ± 0.6	36k	THALER	72	ASPK
1.22 ± 1.56	7257	GORMLEY	70	ASPK

$\pi^+\pi^-\gamma$ PARAMETER β (D-wave)

Sensitive to a *D*-wave contribution: $dN/d\cos\theta = \sin^2\theta \ (1 + \beta \ \cos^2\theta)$.

<i>VALUE</i>	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>
-0.02 ± 0.07 OUR	AVERAGE	Error includes so	ale fac	tor of 1.3.
0.11 ± 0.11	35k	JANE	74 B	OSPK
-0.060 ± 0.065	7250	GORMLEY	70	WIRE
• • • We do not use	the following	g data for average	es, fits,	limits, etc. • • •
$0.12\ \pm0.06$		$^{ m 1}$ THALER	72	ASPK

 $^{^{1}}$ The authors don't believe this indicates \emph{D} -wave because the dependence of eta on the γ energy is inconsistent with the theoretical prediction. A $\cos^2\theta$ dependence can also come from P- and F-wave interference.

η *CP*-NONCONSERVING DECAY PARAMETER

$\pi^+\pi^-e^+e^-$ DECAY-PLANE ASYMMETRY PARAMETER A_{ϕ}

In the η rest frame, the total momentum of the e^+e^- pair is equal and opposite to that of the $\pi^+\pi^-$ pair. Let \hat{z} be the unit vector along the momentum of the $e^+e^$ pair; let \hat{n}_{ee} and $\hat{n}_{\pi\pi}$ be the unit vectors normal to the e^+e^- and $\pi^+\pi^-$ planes; and let ϕ be the angle between the two normals. Then

$$\sin\phi\,\cos\phi = \left[(\hat{n}_{ee} \times \hat{n}_{\pi\pi}) \cdot \hat{z} \right] \left(\hat{n}_{ee} \cdot \hat{n}_{\pi\pi} \right) \,,$$

$$N_{\text{contracts}} = N_{\text{contracts}} \,,$$

 $A_{\phi} \equiv \frac{N_{\sin\phi\cos\phi>0} - N_{\sin\phi\cos\phi<0}}{N_{\sin\phi\cos\phi>0} + N_{\sin\phi\cos\phi<0}}.$

and

ENERGY DEPENDENCE OF $\eta \to 3\pi$ DALITZ PLOTS

PARAMETERS FOR $\eta \rightarrow \pi^+\pi^-\pi^0$

See the "Note on $\hat{\eta}$ Decay Parameters," page 1454, in our 1994 edition (Physical Review **D50** 1173 (1994)). The following experiments fit to one or more of the coefficients a, b, c, d, e, f or g for $|\text{matrix element}|^2 = 1 + ay + by^2 + cx + dx^2 + exy + fy^3 + gx^2y$.

VALUE YALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	ne following	data for averages	s, fits,	limits, e	etc. • • •
	4.7M	¹ ANASTASI	16A	KLOE	$e^+e^- ightarrow \phi ightarrow \eta \gamma$
	79k	ABLIKIM			$e^+e^- \rightarrow J/\psi \rightarrow \gamma\eta$
	174k	ADLARSON	14A	WASA	$pd \rightarrow \eta^3$ He
	1.34M	AMBROSINO	08 D	KLOE	
	3230	² ABELE	98 D	CBAR	$\overline{p} p \to \pi^0 \pi^0 \eta$ at rest
	1077	³ AMSLER	95	CBAR	$\overline{p}p \rightarrow \pi^+\pi^-\eta$ at rest
	81k	LAYTER	73	ASPK	
	220k	LAYTER	72	ASPK	
	1138	CARPENTER	70	HBC	
	349	DANBURG	70	DBC	
	7250	GORMLEY	70	WIRE	
	526	BAGLIN	69	HLBC	
	7170	CNOPS	68	OSPK	
	37k	GORMLEY	68 C	WIRE	
	1300	CLPWY	66	HBC	
	705	LARRIBE	66	HBC	

¹ ANASTASI 16A measure the Dalitz parameters a, b, d, f, and g. This is the first measurement of g.

α PARAMETER FOR $\eta \to 3\pi^0$

HTTP://PDG.LBL.GOV

See the "Note on η Decay Parameters" in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1454. The value here is of α in $|\text{matrix element}|^2 = 1 + 2\alpha z$.

1994, Part I, p. 1434.	i ne va	the fiere is of α in	matr	ix eleme	$\operatorname{ent}_{ } = 1 + 2\alpha z$.
VALUE	EVTS	DOCUMENT ID	•	TECN	COMMENT
-0.0318 ± 0.0015 OUR AV	ERAGE				
$-0.055 \pm 0.014 \pm 0.004$	33k	ABLIKIM	15 G	BES3	$e^+e^- o J/\psi o \gamma\eta$
$-0.0301\!\pm\!0.0035\!+\!0.0022\\-0.0035$	512k	AMBROSINO	10A	KLOE	$e^+e^- ightarrow \phi ightarrow \eta \gamma$
$-0.027\ \pm0.008\ \pm0.005$	120k	¹ ADOLPH	09	WASA	$pp ightarrow pp\eta$
$-0.0322\!\pm\!0.0012\!\pm\!0.0022$	3M	² PRAKHOV	09	CRYB	$\gamma p ightarrow p \eta$
$-0.032 \pm 0.002 \pm 0.002$	1.8M	² UNVERZAGT	09	CRYB	$\gamma p ightarrow p \eta$
$-0.026 \pm 0.010 \pm 0.010$	75k	BASHKANOV	07	WASA	$pp ightarrow pp\eta$
$-0.010\ \pm0.021\ \pm0.010$	12k	ACHASOV	010	SND	$e^+e^- ightarrow \phi ightarrow \eta \gamma$
-0.031 ± 0.004	1M	TIPPENS	01	CRYB	$\pi^- p \rightarrow n \eta$, 720 MeV
$-0.052\ \pm0.017\ \pm0.010$	98k	ABELE	98 C	CBAR	$\overline{p}p \rightarrow 5\pi^0$
-0.022 ± 0.023	50k	ALDE	84	GAM2	
• • • We do not use the fo	ollowing	data for averages,	fits, l	imits, et	.c. • • •
$\begin{array}{ccccc} -0.038 & \pm 0.003 & +0.012 \\ -0.008 & & -0.008 \end{array}$	1.34M	³ AMBROSINO	08 D	KLOE	
-0.32 ± 0.37	192	BAGLIN	70	HLBC	

Page 15

 $^{^2}$ ABELE 98D obtains $a=-1.22\pm0.07$ and $b=0.22\pm0.11$ when c (or d) is fixed at 0.06

³ AMSLER 95 fits to $(1+ay+by^2)$ and obtains $a=-0.94\pm0.15$ and $b=0.11\pm0.27$.

PARAMETER Λ IN $\eta \rightarrow \mu^{+}\mu^{-}\gamma$ DECAY

In the pole approximation the electromagnetic transition form factor for a resonance of mass M is given by the expression: $|F|^2=(1-M_{\mu\mu}^2/\Lambda^2)^{-2},$ where for the parameter Λ vector dominance predicts $\Lambda~\approx~0.770$ GeV.

$VALUE (GeV/c^2)$	EVTS		DOCUMENT ID		TECN	COMMENT
0.719 ±0.014	OUR AVERAGE					
0.7191 ± 0.012	5 ± 0.0093			16	NA60	400 GeV p-A collisions
0.716 ± 0.031	± 0.009	2	ARNALDI	09	NA60	158A In-In collisions
0.72 ± 0.09	600		DZHELYADIN	80	SPEC	$\pi^- p \rightarrow \eta n$
¹ ARNALDI	16 reports $\Lambda^{-2}(\eta)$	= 1.	$.934 \pm 0.067 \pm 0$.050	(GeV/c ²	$)^{-2}$ which we converted

to the quoted Λ value.

η REFERENCES

AAIJ	17D	PL B764 233	R. Aaij et al.	(LHCb Collab.)
ANASTASI	16A	JHEP 1605 019	A. Anastasi <i>et al.</i>	(KLOE-2 Collab.)
ARNALDI	16	PL B757 437	R. Arnaldi et al.	(NA60 Collab.)
ABLIKIM	15G	PR D92 012014	M. Ablikim <i>et al.</i>	(BES III Collab.)
ADLARSON	14A	PR C90 045207	P. Adlarson et al.	(WASA-at-COSY Collab.)
AGAKISHIEV	14	PL B731 265	G. Agakishiev et al.	(HADES Collab.)
NEFKENS	14	PR C90 025206	B.M.K. Nefkens <i>et al.</i>	(A2 Collab. at MAMI)
NIKOLAEV	14	EPJ A50 58	A. Nikolaev et al.	(MAMI-B, MAINZ, BONN)
ABLIKIM	13	PR D87 012009	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	13G	PR D87 032006	M. Ablikim et al.	(BES III Collab.)
BABUSCI	13	PL B718 910	D. Babusci et al.	(KLOE/KLOE-2 Collab.)
BABUSCI	13A	JHEP 1301 119	D. Babusci et al.	(KLOE-2 Collab.)
AGAKISHIEV	12A	EPJ A48 64	G. Agakishiev et al.	(HADES Collab.)
GOSLAWSKI	12	PR D85 112011	P. Goslawski <i>et al.</i>	(COSÝ-ANKE Collab.)
ABLIKIM	11G	PR D84 032006	M. Ablikim et al.	` (BES III Collab.)
AMBROSINO	11B	PL B702 324	F. Ambrosino et al.	`(KLOE Collab.)
BERGHAUSER	11	PL B701 562	H. Berghauser et al.	(GIES, UCLA, GUTE)
AMBROSINO	10A	PL B694 16	F. Ambrosino et al.	` (KLOE Collab.)
ADOLPH	09	PL B677 24	C. Adolph et al.	(WASA at COSY Collab.)
AMBROSINO	09B	PL B675 283	F. Ambrosino et al.	(KLOE Collab.)
ARNALDI	09	PL B677 260	R. Arnaldi et al.	(NA60 Collab.)
PRAKHOV	09	PR C79 035204	S. Prakhov et al.	(MAMI-C Crystal Ball Collab.)
UNVERZAGT	09	EPJ A39 169	M. Unverzagt et al.	(MAMI-B Crystal Ball Collab.)
AMBROSINO	08D	JHEP 0805 006	F. Ambrosino et al.	(DAPHNE KLOE Collab.)
BERLOWSKI	80	PR D77 032004	M. Berlowski et al.	(CELSIUS/WASA Collab.)
PRAKHOV	80	PR C78 015206	S. Prakhov et al.	(BNL Crystal Ball Collab.)
RODRIGUES	80	PRL 101 012301	T.E. Rodrigues et al.	(USP, FESP, UNESP+)
AMBROSINO	07B	JHEP 0712 073	F. Ambrosino et al.	(KLOE Collab.)
BARGHOLTZ	07	PL B644 299	Chr. Bargholtz et al.	(CELSIUS/WASA Collab.)
BASHKANOV	07	PR C76 048201	M. Bashkanov et al.	(CELSIUS/WASA Collab.)
BLIK	07	PAN 70 693	A.M. Blik et al.	(GAMS Collab.)
		Translated from YAF 70		(0. = 0. 0. 11. 1.)
LOPEZ	07	PRL 99 122001	A. Lopez <i>et al.</i>	(CLEO Collab.)
MILLER	07	PRL 99 122002	D.H. Miller et al.	(CLEO Collab.)
ABLIKIM	06E	PR D73 052008	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06Q	PRL 97 202002	M. Ablikim <i>et al.</i>	(BES Collab.)
ACHASOV	06A	PR D74 014016	M.N. Achasov <i>et al.</i>	(SND Collab.)
ABDEL-BARY	05	PL B619 281	M. Abdel-Bary <i>et al.</i>	(GEM Collab.)
AKHMETSHIN	05	PL B605 26	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)

 $^{^{}m 1}$ This ADOLPH 09 result is independent of the BASHKANOV 07 result.

² The PRAKHOV 09 and UNVERZAGT 09 results are independent.

³This AMBROSINO 08D value is an indirect result using $\eta \to \pi^+ \pi^0 \pi^-$ events and a rescattering matrix that mixes isospin decay amplitudes.

² ARNALDI 09 reports $\Lambda^{-2}(\eta)=1.95\pm0.17\pm0.05~(\text{GeV/c}^2)^{-2}$ which we converted to the quoted Λ value.

AMBROSINO	05A	PL B606 276	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
NEFKENS	05	PRL 94 041601	B.M.K. Nefkens et al.	(BNL Crystal Ball Collab.)
NEFKENS	05A	PR C72 035212	B.M.K. Nefkens <i>et al.</i>	(BNL Crystal Ball Collab.)
PRAKHOV ALOISIO	05 04	PR C72 025201 PL B591 49	S. Prakhov <i>et al.</i> A. Aloisio <i>et al.</i>	(BNL Crystal Ball Collab.) (KLOE Collab.)
KNECHT	04	PL B589 14	N. Knecht <i>et al.</i>	(NEOE Collab.)
LAI	02	PL B533 196	A. Lai <i>et al.</i>	(CERN NA48 Collab.)
NEFKENS	02	PS T99 114	B.M.K. Nefkens, J.W. Price	` (UCLA)
ACHASOV	01B	PL B504 275	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
ACHASOV	01C	JETPL 73 451 Translated from ZETFP	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	01D	NP B600 3	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
AKHMETSHIN	01	PL B501 191	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B509 217	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
TIPPENS	01	PRL 87 192001	W.B. Tippens et al.	(BNL Crystal Ball Collab.)
ACHASOV ACHASOV	00 00B	EPJ C12 25 JETP 90 17	M.N. Achasov <i>et al.</i> M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.) (Novosibirsk SND Collab.)
ACHASOV	UUD	Translated from ZETF 1		(NOVOSIBIISK SIND CONAD.)
ACHASOV	00D	JETPL 72 282	M.N. Achasov et al.	(Novosibirsk SND Collab.)
DD AKLIOV	00	Translated from ZETFP		(DNII C I D II C II I)
PRAKHOV AKHMETSHIN	00 99B	PRL 84 4802 PL B462 371	S. Prakhov <i>et al.</i> R.R. Akhmetshin <i>et al.</i>	(BNL Crystal Ball Collab.) (Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B462 380	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B460 242	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
ABELE	98C	PL B417 193	A. Abele <i>et al.</i>	` (Crystal Barrel Collab.)
ABELE	98D	PL B417 197	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACHASOV	98	PL B425 388	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN	97C 97B	PL B415 452	R.R. Akhmetshin <i>et al.</i> T.E. Browder <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
BROWDER ABEGG	97 B	PR D56 5359 PR D53 11	R. Abegg <i>et al.</i>	(CLEO Collab.) (Saturne SPES2 Collab.)
WHITE	96	PR D53 6658	D.B. White <i>et al.</i>	(Saturne SPES2 Collab.)
AMSLER	95	PL B346 203	C. Amsler et al.	(Crystal Barrel Collab.)
KRUSCHE	95D	ZPHY A351 237	B. Krusche et al.	(TAPS + A2 Collab.)
ABEGG	94	PR D50 92	R. Abegg et al.	(Saturne SPES2 Collab.)
PDG	94	PR D50 1173	L. Montanet <i>et al.</i>	(CERN, LBL, BOST+)
AMSLER KESSLER	93 93	ZPHY C58 175 PRL 70 892	C. Amsler <i>et al.</i> R.S. Kessler <i>et al.</i>	(Crystal Barrel Collab.) (Saturne SPES2 Collab.)
PLOUIN	92	PL B276 526	F. Plouin <i>et al.</i>	(Saturne SPES4 Collab.)
BARU	90	ZPHY C48 581	S.E. Baru <i>et al.</i>	(MD-1 Collab.)
ROE	90	PR D41 17	N.A. Roe et al.	(ASP Collab.)
WILLIAMS	88	PR D38 1365	D.A. Williams et al.	(Crystal Ball Collab.)
AIHARA	86 85E	PR D33 844 PL 160B 421	H. Aihara <i>et al.</i> W. Bartel <i>et al.</i>	(TPC-2 γ Collab.)
BARTEL LANDSBERG	85	PRPL 128 301	L.G. Landsberg	(JADE Collab.) (SERP)
ALDE	84	ZPHY C25 225	D.M. Alde <i>et al.</i>	(SERP. BELG. LAPP)
Also		SJNP 40 918	D.M. Alde et al.	(SERP, BELG, LAPP)
VA/EINICTEINI	00	Translated from YAF 40		(6
WEINSTEIN BINON	83 82	PR D28 2896 SJNP 36 391	A.J. Weinstein <i>et al.</i> F.G. Binon <i>et al.</i>	(Crystal Ball Collab.) (SERP, BELG, LAPP+)
DINON	02	Translated from YAF 36		(SEM, BELG, LAIT+)
Also		NC 71A 497	F.G. Binon et al.	(SERP, BELG, LAPP+)
DAVYDOV	81	LNC 32 45	V.A. Davydov et al.	(SERP, BELG, LAPP+)
Also		SJNP 33 825 Translated from YAF 33	V.A. Davydov <i>et al.</i>	(SERP, BELG, LAPP+)
DZHELYADIN	81	PL 105B 239	R.I. Dzhelyadin <i>et al.</i>	(SERP)
Also	01	SJNP 33 822	R.I. Dzhelyadin <i>et al.</i>	(SERP)
		Translated from YAF 33		(
ABROSIMOV	80	SJNP 31 195 Translated from YAF 31	A.T. Abrosimov <i>et al.</i>	(JINR)
DZHELYADIN	80	PL 94B 548	R.I. Dzhelyadin <i>et al.</i>	(SERP)
Also		SJNP 32 516	R.I. Dzhelyadin <i>et al.</i>	(SERP)
D71151) (4 D1N1	000	Translated from YAF 32		(6500)
DZHELYADIN	80B	PL 97B 471	R.I. Dzhelyadin <i>et al.</i>	(SERP)
Also		SJNP 32 518 Translated from YAF 32	R.I. Dzhelyadin <i>et al.</i> 1002.	(SERP)
BUSHNIN	78	PL 79B 147	Y.B. Bushnin et al.	(SERP)
Also		SJNP 28 775	Y.B. Bushnin et al.	(SERP)
MARTYNOV	76	Translated from YAF 28 SJNP 23 48		(JINR)
MARTINOV	10	Translated from YAF 23	A.S. Martynov <i>et al.</i> 93.	(711115)

JANE	75	PL 59B 99	M.R. Jane et al. (RHEL, LOWC)
JANE	75B	PL 59B 103	M.R. Jane et al. (RHEL, LOWC)
Also		PL 73B 503	M.R. Jane
		e communication.	
BROWMAN	74B	PRL 32 1067	A. Browman et al. (CORN, BING)
DAVIES	74 74	NC 24A 324	J.D. Davies, J.G. Guy, R.K.P. Zia (BIRM, RHEL+)
DUANE JANE	74 74	PRL 32 425 PL 48B 260	A. Duane <i>et al.</i> (LOIC, SHMP) M.R. Jane <i>et al.</i> (RHEL, LOWC, SUSS)
JANE	74B	PL 48B 265	M.R. Jane et al. (RHEL, LOWC, SUSS)
KENDALL	74	NC 21A 387	B.N. Kendall <i>et al.</i> (BROW, BARI, MIT)
LAYTER	73	PR D7 2565	J.G. Layter <i>et al.</i> (COLU)
THALER	73	PR D7 2569	J.J. Thaler <i>et al.</i> (COLU)
AGUILAR	72B	PR D6 29	M. Aguilar-Benitez et al. (BNL)
BLOODWO	72B	NP B39 525	I.J. Bloodworth <i>et al.</i> (TNTO)
LAYTER THALER	72 72	PRL 29 316 PRL 29 313	J.G. Layter <i>et al.</i> (COLU) J.J. Thaler <i>et al.</i> (COLU)
BASILE	71D	NC 3A 796	M. Basile <i>et al.</i> (CERN, BGNA, STRB)
STRUGALSKI	71	NP B27 429	Z.S. Strugalski <i>et al.</i> (JINR)
BAGLIN	70	NP B22 66	C. Baglin et al. (EPOL, MADR, STRB)
BUTTRAM	70	PRL 25 1358	M.T. Buttram, M.N. Kreisler, R.E. Mischke (PRIN)
CARPENTER	70	PR D1 1303	D.W. Carpenter et al. (DUKE)
COX	70B	PRL 24 534	B. Cox, L. Fortney, J.P. Golson (DUKE)
DANBURG DEVONS	70 70	PR D2 2564 PR D1 1936	J.S. Danburg <i>et al.</i> (LRL) S. Devons <i>et al.</i> (COLU, SYRA)
GORMLEY	70	PR D2 501	M. Gormley et al. (COLU, BNL)
Also	10	Thesis Nevis 181	M. Gormley (COLU)
BAGLIN	69	PL 29B 445	C. Baglin et al. (EPOL, UCB, MADR, STRB)
Also		NP B22 66	C. Baglin et al. (EPOL, MADR, STRB)
HYAMS	69	PL 29B 128	B.D. Hyams et al. (CERN, MPIM)
ARNOLD	68	PL 27B 466	R.G. Arnold <i>et al.</i> (STRB, MADR, EPOL+)
BAZIN BULLOCK	68 68	PRL 20 895 PL 27B 402	M.J. Bazin <i>et al.</i> (PRIN, QUKI) F.W. Bullock <i>et al.</i> (LOUC)
CNOPS	68	PRL 21 1609	A.M. Cnops <i>et al.</i> (BNL, ORNL, UCND+)
GORMLEY	68C	PRL 21 402	M. Gormley et al. (COLU, BNL)
WEHMANN	68	PRL 20 748	A.W. Wehmann et al. (HARV, CASE, SLAC+)
BAGLIN	67	PL 24B 637	C. Baglin <i>et al.</i> (EPOL, UCB)
BAGLIN	67B	BAPS 12 567	C. Baglin <i>et al.</i> (EPOL, UCB)
BALTAY BALTAY	67B 67D	PRL 19 1498 PRL 19 1495	C. Baltay et al. (COLU, STON)
BEMPORAD	67	PKL 19 1495 PL 25B 380	C. Baltay et al. (COLU, BRAN) C. Bemporad et al. (PISA, BONN)
Also	01	Private Comm.	I. Ion
BILLING	67	PL 25B 435	K.D. Billing et al. (LOUC, OXF)
BUNIATOV	67	PL 25B 560	S.A. Bunyatov et al. (CERN, KARL)
CENCE	67	PRL 19 1393	R.J. Cence et al. (HAWA, LRL)
ESTEN	67	PL 24B 115	M.J. Esten <i>et al.</i> (LOUC, OXF)
FELDMAN FLATTE	67 67	PRL 18 868 PRL 18 976	M. Feldman <i>et al.</i> (PENN) S.M. Flatte (LRL)
FLATTE	67B	PR 163 1441	S.M. Flatte (LRL) S.M. Flatte, C.G. Wohl (LRL)
LITCHFIELD	67	PL 24B 486	P.J. Litchfield <i>et al.</i> (RHEL, SACL)
PRICE	67	PRL 18 1207	L.R. Price, F.S. Crawford (LRL)
ALFF	66	PR 145 1072	C. Alff-Steinberger <i>et al.</i> (COLU, RUTG)
CLPWY	66	PR 149 1044	C. Baltay (SCUC, LRL, PURD, WISC, YALE)
CRAWFORD	66 66	PRL 16 333	F.S. Crawford, L.R. Price (LRL)
DIGIUGNO GRUNHAUS	66 66	PRL 16 767 Thesis	G. di Giugno <i>et al.</i> (NAPL, TRST, FRAS) J. Grunhaus (COLU)
JAMES	66	PR 142 896	F.E. James, H.L. Kraybill (YALE, BNL)
JONES	66	PL 23 597	W.G. Jones <i>et al.</i> (LOIC, RHEL)
LARRIBE	66	PL 23 600	A. Larribe et al. (SACL, RHEL)
FOSTER	65	PR 138 B652	M. Foster <i>et al.</i> (WISC, PURD)
FOSTER	65B	Athens Conf.	M. Foster, M. Good, M. Meer (WISC)
FOSTER	65C	Thesis	M. Foster (WISC)
PRICE RITTENBERG	65 65	PRL 15 123 PRL 15 556	L.R. Price, F.S. Crawford (LRL) A. Rittenberg, G.R. Kalbfleisch (LRL, BNL)
FOELSCHE	64	PR 134 B1138	H.W.J. Foelsche, H.L. Kraybill (YALE)
KRAEMER	64	PR 136 B496	R.W. Kraemer et al. (JHU, NWES, WOOD)
PAULI	64	PL 13 351	E. Pauli, A. Muller (SACL)
BACCI	63	PRL 11 37	C. Bacci et al. (ROMA, FRAS)
CRAWFORD	63	PRL 10 546	F.S.Jr. Crawford, L.J. Lloyd, E.C. Fowler (LRL+)
Also ALFF	62	PRL 16 907 PRL 9 322	F.S. Crawford, L.J. Lloyd, E.C. Fowler C. Alff-Steinberger <i>et al.</i> (COLU, RUTG)
		5 522	(COLO, NOTO)

BASTIEN 62 PRL 8 114 P.L. Bastien et al. PICKUP 62 PRL 8 329

E. Pickup, D.K. Robinson, E.O. Salant

(LRL) (CNRC+)