

https://seasawher.github.io/kitamado/

@seasawher

## 1 Some basics of algebraic number theory

#### Lemma 1.3

**quotation.** Recall that  $(,)_{\text{Tr}_{K/\mathbb{Q}}}$  is non-degenerate if the Gramm matrix with respect to one (and hence any) basis of L over F is invertible.

*Proof.* Almost trivial. Try to prove it.

## **Proposition 1.4**

**quotation.** Let  $\{\beta_1, \dots, \beta_n\}$  be the dual basis of  $\{\alpha_1, \dots, \alpha_n\}$  with respect to  $(, )_{\operatorname{Tr}_{K/\mathbb{Q}}}$ . Then, for any  $x \in O_K$ , we have  $x = (x, \alpha_1)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_1 + \dots + (x, \alpha_n)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_n$ .

*Proof.* Since the trace form  $(\ ,\ )_{\operatorname{Tr}_{K/\mathbb{Q}}}$  is nondegenerate,  $K \to K^*$  s.t.  $x \mapsto (\cdot, x)_{\operatorname{Tr}_{K/\mathbb{Q}}}$  is a isomorphism. Let  $p_i \colon K \to \mathbb{Q}$  be a projection map such that  $p_i(x_1\alpha_1 + \cdots + x_n\alpha_n) = x_i$ . Then, we set  $\beta_j$  the preimage of  $p_j$ .

### Lemma 1.7

**quotation.** To see this, we take  $t \in P(O_K)_P$  with  $t \notin P^2(O_K)_P$ .

remark. From Nakayama's lemma.

#### Adjacent to Lemma 1.8

**quotation.** For a nonzero prime ideal P of  $O_K$ , we set  $P \cap \mathbb{Z} = (p)$ , where p is a prime of Z. Because  $O_K$  is a free Z-module of rank  $[K : \mathbb{Q}]$ ,  $O_K/P$  is a finite extension of  $\mathbb{Z}/(p)$  with degree at most  $[K : \mathbb{Q}]$ .

Proof. There is a canonical surjection  $O_K/pO_K \to O_K/P$ , so we get  $\#(O_K/P) \le \#(O_K/pO_K)$ . But we obtain  $O_K/pO_K \cong O_K \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ . Since  $O_K$  is a free  $\mathbb{Z}$ -module of rank  $n = [K : \mathbb{Q}]$ , we conclude  $O_K/pO_K \cong (\mathbb{Z}/p\mathbb{Z})^n$ . So,  $\#(O_K/P) \le \#(O_K/pO_K) = p^n$ .

#### Lemma 1.8

quotation.

$$\bigoplus_{i=1}^r O_K/P_i^{e_i} = \bigoplus_{i=1}^r (O_K/P_i^{e_i})_{P_i}$$

*Proof.* Because  $O_K/P_i^{e_i}$  is a local ring with maximal ideal  $P_i/P_i^{e_i}$ .

## Adjacent to Theorem 1.9

**quotation.** we consider the value  $\sqrt{\det(\langle e_i, e_j \rangle)}$ .

**remark.** Why we get  $\det(\langle e_i, e_j \rangle)$ ? Apply Gram-Schmidt orthonormalization.

## Adjacent to Theorem 1.9

**quotation.** Then  $\operatorname{vol}(M, \langle, \rangle)$  is equal to the volume of the *n*-dimensional parallelpiped  $\Pi$  spanned by  $e_1, \dots, e_n$ ,

*Proof.* Let  $F:(V,\langle,\rangle)\to\mathbb{R}^n$  be an isometric isomorphism. Then, we generate

$$vol(M, \langle, \rangle)^{2} = \det(\langle e_{i}, e_{j} \rangle)$$
$$= \det(\langle Fe_{i}, Fe_{j} \rangle)$$

We set  $E = (Ee_1, \dots, Fe_n)$ .  $E \in M_n(\mathbb{R})$ . Then we get  $(\langle Fe_i, Fe_j \rangle)_{i,j} = {}^t EE$ , and  $vol(M, \langle, \rangle) = |\det E|$ . From Yukie[3] Theorem 4.9.1,  $|\det E| = vol(\Pi)$ .

## **Proposition 1.11**

**quotation.** The form  $\langle , \rangle_K$  is an inner product on V.

**remark.**  $\langle , \rangle_K$  is trivially an inner product on K. Why should we show this?

Let S be a  $\mathbb{Q}$  vector space and  $\langle,\rangle$  a inner product on S. Then, bilinear form extended to  $S \otimes_{\mathbb{Q}} \mathbb{R}$  may not be an inner product. For example, set  $S = \mathbb{Q}[\sqrt{2}]$  and  $\langle x, y \rangle = xy$ .

#### **Lemma 1.12**

**quotation.**  $\#(O_K/I)$  is finite. Then I is a free  $\mathbb{Z}$ -module of rank n.

*Proof.*  $I \subset O_K$  is a free  $\mathbb{Z}$ -module. Since  $\#(O_K/I)$  is finite, we get  $\forall x \in K \exists n \in \mathbb{Z}$  s.t.  $nx \in I$ . So we obtain  $I \otimes_{\mathbb{Z}} \mathbb{Q} = K$ . The rank of I is n.

## Lemma 1.16

**quotation.** We have  $[K':K] = e_1 f_1 + \cdots + e_r f_r$ .

*Proof.* See the proof of Prop 1.4. We obtain  $O_{K'} \subset O_K \beta_1 \oplus \cdots \oplus O_K \beta_n$  for some  $\beta_i \in K'$ . That implies there is an injection such that  $O_{K'} \to \bigoplus_i O_K$ . Because localization is a flat module, we get  $(O_{K'})_P \subset (O_K)_P \beta_1 \oplus \cdots \oplus (O_K)_P \beta_n$ . Since  $(O_K)_P$  is a PID,  $(O_{K'})_P$  is a free  $(O_K)_P$ -module. The rank is [K':K] because

$$(O_{K'})_P \otimes_{(O_K)_P} K = (O_{K'} \otimes_{O_K} (O_K)_P) \otimes_{(O_K)_P} K = O_{K'} \otimes_{O_K} K = K'.$$

Thus, as a  $O_K/P$  module,

$$O_{K'}/PO_{K'} \cong O_K/P \otimes_{O_K} O_{K'}$$

$$\cong (O_K/P \otimes_{O_K} (O_K)_P \otimes_{(O_K)_P} (O_K)_P) \otimes_{O_K} O_{K'}$$

$$\cong (O_K/P \otimes_{O_K} (O_K)_P) \otimes_{(O_K)_P} (O_{K'})_P$$

$$\cong \bigoplus_{[K':K]} (O_K/P \otimes_{O_K} (O_K)_P)$$

$$\cong \bigoplus_{[K':K]} O_K/P.$$

Then it follows that

$$\#(O_K/P)^{[K':K]} = \#(O_{K'}/PO_{K'})$$

$$= \prod_i \#(O_{K'}/P_i^{e_i})$$

$$= \prod_i \#(O_{K'}/P_i')^{e_i}$$

$$= \prod_i \#(O_K/P)^{e_i f_i}.$$

Thus  $[K':K] = \sum_i e_i f_i$ .

#### Adjacent to Lemma 1.17

**quotation.** We take a integral basis  $\{\omega_1, \dots, \omega_n\}$  of  $O_K$ , we denote by  $\{\beta_1, \dots, \beta_n\}$  the dual basis with respect to  $(\ ,\ )_{\operatorname{Tr}_{K/\mathbb{Q}}}$ . Then we have  $\mathcal{M} = \mathbb{Z}\beta_1 + \dots + \mathbb{Z}\beta_n$ .

Proof. See the note of Prop 1.4.

#### **Lemma 1.17**

**quotation.** Indeed, because  $\#(O_K/\mathcal{D}_K) = \#(\mathcal{M}/O_K)$ ,

Proof. See Yukie[1] Proposition 1.8.6.

#### Theorem 1.18

quotation. Then we have

$$|D_{K/\mathbb{Q}}| \le \prod_{p \in S} p^{n-1+n\log_p(n)}.$$

*Proof.* We may assume that  $S = \{p \in \mathbb{Z} \mid p \text{ is ramified}\}$ . Set  $B = O_K$  and  $I = D_K$ .

Step 1 Let  $p \in \mathbb{Z}$  be a prime number. Then  $B_p$  and  $I_p$  are free  $\mathbb{Z}_p$ -module of rank n. So there is a matrix  $C \in M_n(\mathbb{Z}_p) \cap GL_n(\mathbb{Q}_p)$  such that the following diagram

$$I_p \longrightarrow B_p$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_p^n \stackrel{C}{\longrightarrow} \mathbb{Z}_p^n$$

commute. Then

$$\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \#(\operatorname{Coker} C)$$

$$= \#(\mathbb{Z}_p/(\det C)\mathbb{Z}_p)$$

$$= \#(\widehat{\mathbb{Z}}_p/(\det C)\widehat{\mathbb{Z}}_p)$$

$$= \#(B/I \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p).$$
 (See Yukie[1] Proposition 1.2.13)

Step 2 It follows that

$$B/I \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_{p} \cong B/I \otimes_{B} B \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_{p}$$

$$\cong B/I \otimes_{B} \bigoplus_{i} \widehat{B}_{P_{i}} \qquad \text{(See Yukie[1] Theorem 1.3.23 )}$$

$$\cong \bigoplus_{i} \widehat{B}_{P_{i}}/P_{i}^{\operatorname{ord}_{P_{i}}(I)} \widehat{B}_{P_{i}}$$

$$\cong \bigoplus_{i} B/P_{i}^{\operatorname{ord}_{P_{i}}(I)}$$

Step 3 Set  $J = I \cap \mathbb{Z}$ . Because B/I is finitely generated  $\mathbb{Z}$ -module, we get

$$\operatorname{Supp}_{\mathbb{Z}}(B/I) = V(\operatorname{ann}_{\mathbb{Z}}(B/I)) = V(J).$$

See Matsumura[4] adjacent to Theorem 4.4 if you do not understand the first equation. And for any prime number  $p \in \mathbb{Z}$ , then we obtain

$$\begin{split} p \not \in \operatorname{Supp}_{\mathbb{Z}}(B/I) &\iff B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p = 0 \\ &\iff \#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = 1 \\ &\iff \forall i \ \#(B/P_i^{\operatorname{ord}_{P_i}(I)}) = 1 \\ &\iff \operatorname{ord}_{P_i}(I) = 0 \\ &\iff p \text{ is unramified} \end{split}$$

Thus we conclude  $V(J) = \operatorname{Supp}_{\mathbb{Z}}(B/I) = S$ .

Step 4 Then we get

$$\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \prod_i \#(B/P_i^{\operatorname{ord}_{P_i}(I)})$$

$$= \prod_i \#(B/P_i)^{\operatorname{ord}_{P_i}(I)}$$

$$= \prod_i \#(\mathbb{Z}/p)^{f_i \operatorname{ord}_{P_i}(I)}.$$

So we conclude  $\log_p(\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p)) \leq n - 1 + n \log_p(n)$ .

Step 5 Recall that  $J = \operatorname{ann}_{\mathbb{Z}}(B/I)$ . Then we get

$$B/I \cong (B/I)/J(B/I)$$

$$\cong \bigoplus_{p \in S} (B/I)/p^e(B/I) \qquad (e \text{ depends on } p)$$

$$\cong \bigoplus_{p \in S} B/(p^eB+I)$$

$$\cong \bigoplus_{p \in S} B/(p^eB+I) \otimes_{\mathbb{Z}} \mathbb{Z}_p$$

$$\cong \bigoplus_{p \in S} B_p/(p^eB_p+I_p)$$

$$\cong \bigoplus_{p \in S} B_p/(JB_p+I_p)$$

$$\cong \bigoplus_{p \in S} B_p/I_p$$

Now we conclude that

$$|D_{K/\mathbb{Q}}| = \#(B/I) = \prod_{p \in S} \#(B_p/I_p) \le \prod_{p \in S} p^{n-1+n\log_p(n)}.$$

# 2 Theory of heights

## **Proposition 2.8**

```
quotation. If \phi_1^*(O_{\mathbb{P}^{m_1}}(1)) \cong \phi_2^*(O_{\mathbb{P}^{m_2}}(1)),
```

remark. What is a  $O_{\mathbb{P}^{m_1}}(1)$ ? I think it is a Serre's twisted sheaf. See Bosch[2] 9.2/Definition 3. It remains to be learned.

# 参考文献

- [1] 雪江明彦『整数論 2 代数的整数論の基礎』(日本評論社, 2013)
- [2] Siegfried Bosch 『Algebraic Geometry and Commutative Algebra』 (Springer, 2013)
- [3] 雪江明彦『線形代数学概説』(培風館, 2006)
- [4] 松村英之『可換環論』(共立出版, 1980)