

Formação Inteligência Artificial

Programação Paralela em GPU

Programação Para Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fd Para Science Academy CUDA - Parte 3

Programação Paralela em CUDA - Parte 3

- Estrutura de Programação Paralela em GPU
- Revisão
- Padrões de Programação Paralela
- Gerenciamento de Memória da GPU
- Sincronismo de Threads

A evolução das GPUs é muito mais rápida que a evolução das CPUs

CPU x GPU

	Intel Xeon E5-2699v4 (Broadwell-EP)	NVIDIA Tesla K80 (Kepler)	NVIDIA Tesla M60 (Kepler)	NVIDIA Tesla P100 (Pascal)	NVIDIA Jetson TX2 (Pascal)
Processing Cores	22	4992	4096	3584	8 ARM + 256 Pascal
Clock Frequency	2.2-3.6GHz	0.562-0.875GHz	0.900-1.180GHz	1.328-1.48GHz	0.854 – 1.465GHz
Memory Bandwidth	76.8 GB/s / socket	480GB/s	320GB/s	720GB/s	58.4GB/s
Peak Tflops (single)	1.83 @ 2.6GHz	8.74 @ 0.875GHz	9.68 @ 1.180GHz	10.6 @ 1.48GHz	0.75@1.465GHz
Peak Tflops (double)	0.915 @ 2.6GHz	2.91 @ 0.875GHz	0.30 @ 1.180GHz	5.3 @ 1.48GHz	0.023@1.465GHz
Gflops/Watt (single)	12.62	29.1	32.2	35.3	50
Total Memory	>>24GB	24GB	16GB	16GB	8GB

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Estrutura de Programação Paralela em GPU

Compute Capability

Architecture	Compute Capability	GPUs	Example Features	
Tesla	1.0	GeForce 8800, Tesla C870	Base Functionality	
Fermi	2.0	GeForce GTX 480, Tesla C2050 Fast Double Precision, Memory		
	3.0	GeForce GTX 680, Tesla K10	Warp Shuffle Functions	
Kepler	3.5	GeForce GTX Titan Black, Tesla K40	Dynamic Parallelism	
	3.7	Tesla K80	More Registers / Shared Memory	
Maxwell	5.0	GeForce GTX 750 Ti, Tegra X1	Power Efficient Architecture	
Maxwell	5.2	Tesla M40, Tesla M60	More Shared Memory	
	6.0	Tesla P100	Half Precision (FP16)	
Pascal	6.1	Titan Xp	Int8	
	6.2	Tegra P1	Int8 + FP16	

Programação para a GPU

- CUDA C/C++
- CUDA Fortran
- Matlab
- Mathematica
- Python (NumbaPro, PyCUDA)

Operações independentes são ótimas candidatas para programação paralela em GPU

Operações independentes
Perfeito para execução em paralelo

Operações dependentes

Ruim para execução em paralelo

Paralelismo portanto é ótimo para operações com matrizes, tarefas típicas em Deep Learning.

O controle e fluxo simplificado da GPU, facilita o paralelismo

CUDA é um modelo de programação paralelo heterogêneo para ambos host (CPU) e device (GPU)

CUDA é um modelo de programação paralelo heterogêneo para ambos host (CPU) e device (GPU)

- O código executado no device é chamado de kernel
- Kernels são funções C/C++ com algumas restrições e extensões
- Somente um kernel pode ser executado por vez
- Cada kernel é executado por várias threads

CUDA Thread

- Cada thread realiza as mesmas operações em subsets da estrutura de dados
- Threads executam de forma independente
- CUDA Threads executam sempre o mesmo kernel (uma Thread não pode executar 2 kernels ao mesmo tempo)
- Com programas escritos na plataforma CUDA podemos executar milhares de Threads

CUDA Thread

- As Threads são agrupadas em blocos
- Os blocos são agrupados em uma Grid

CUDA Thread Hierarquia

- Thread Blocks e Grids podem ser 1D, 2D ou 3D
- A dimensão é definida quando começa a execução do kernel
- Thread Blocks e Grids não precisam ter a mesma dimensionalidade. Por exemplo: podemos ter um Grid 1D de Blocos 2D de Threads

Data Science Academy

Estrutura de Programação Paralela em GPU

Modelo de Programação CUDA

- O host dispara os kernels
- O host executa código sequencial entre as execuções dos kernels no device
- Dados são transferidos entre CPU/GPU (host/device)

CUDA APIs

- CUDA usa CUDA C (Runtime API) e low-level Driver API
- Driver API requer gerenciamento explícito de recursos e código para interação direto com o hardware
- CUDA C foi construído sobre o Driver API
- Atenção com a documentação
 - cuFunctionName() Driver API
 - cudaFunctionName() Runtime API

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Estrutura de Programação Paralela em GPU

CUDA kernel

Iniciar um CUDA Kernel é como iniciar uma função em C, usando uma sintaxe modificada: kernelName <<< dimGrid, dimBlock >>> (...)

		Compute Capability		
		2.x (Fermi)	3.x (Kepler) 5.x (Maxwell)	6.x (Pascal)
Total Threads per Block		1024	1024	1024
Grid Size	dGrid.x	65535	2 ³¹ -1	2 ³¹ -1
	dGrid.y	65535	65535	65535
	dGrid.z	65535	65535	65535
Block Size	dBlock.x	1024	1024	1024
	dBlock.y	1024	1024	1024
	dBlock.z	64	64	64

CUDA kernel

- Um kernel é indicado pelo qualificador __global___
- Chamado pelo host, executado no device
- CUDA kernels não tem acesso a memória do host (memória RAM)

```
__global__ void SimpleKernel(float* a, float b)
{
   a[0] = b;
}
```


CUDA kernel

- Precisam retornar void
- Não tem acesso às funções do host
- Ponteiros para device memory

```
__global__ void SimpleKernel(float* a, float b)
{
   a[0] = b;
}
```


CUDA kernel

- Kernels possuem variáveis built-in como: blockldx, blockDim, threadldx
- O tamanho de blocos e grids não variam durante a execução

```
__global__ void SimpleKernel(float* a, float b)
{
   a[0] = b;
}
```


CUDA kernel - Sintaxe

As variáveis built-in são normalmente usadas para identificar de forma única as threads, mapeando o ID de uma thread ao global array index

Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30 Estrutura de Programação Paralela em GPU

CUDA Suporte a C++

Suportado

- Classes
- Herança
- Precisamos adicionar qualificadores__device__ quando executando código apenas na GPU
- **Templates**
- C++11 features incluindo funções auto e lambda

Não suportado

- C++ Standard Library
- Run time type information (RTTI)
- Exception handling
- Classes com funções virtuais não são compatíveis binariamente entre o host e o device

Data Science Academy

Estrutura de Programação Paralela em GPU

Funções definidas pelo usuário para o device

```
__device__ float myDeviceFunction(int i)
{
    ...
}

__global__ void myKernel(float* a)
{
    int idx = blockIdx.x*blockDim.x+threadIdx.x;
    a[idx] = myDeviceFunction(idx);
}
```

Funções declaradas com amb<mark>os qualificadores ___device___ e__host___</mark>
serão compilados para ambos CPU e GPU

Data Science Academy

Estrutura de Programação Paralela em GPU

```
void VectorAdd(float* aH, float* bH, float* cH, int N)
                                                                   This code assumes N
    float* aD, *bD, *cD;
                                                                    is a multiple of 512
    int N BYTES = N * sizeof(float);
    dim3 blockSize, gridSize;
    cudaMalloc((void**)&aD, N BYTES);
                                               Allocate memory on
    cudaMalloc((void**)&bD, N_BYTES);
                                                      GPU
    cudaMalloc((void**)&cD, N BYTES);
                                                                        Transfer input
    cudaMemcpy(aD, aH, N_BYTES, cudaMemcpyHostToDevice);
                                                                        arrays to GPU
    cudaMemcpy(bD, bH, N BYTES, cudaMemcpyHostToDevice);
    blockSize.x = 512;
    gridSize.x = N / blockSize.x;
                                                                         Launch kernel
    VectorAddKernel<<<gridSize, blockSize>>>(aD, bD, cD);
                                                                   Transfer output
    cudaMemcpy(cH, cD, N BYTES, cudaMemcpyDeviceToHost);
                                                                   array to CPU
```


Desvantagens Das GPUs

- Arquitetura não é tão flexível quanto das CPUs
- Os algoritmos precisam ser reescritos para rodar em paralelo
- A velocidade da GPU pode ser limitada pela conexão com a CPU, via PCIe
- Memória limitada 8 a 24 GB

Como Executar Aplicações em Paralelo?

Computadores em Cluster

Múltiplas Threads em CPU

GPU

Diferentes Tipos de Memória

- Shared vs. Private
- Velocidade de Acesso

Dados em Arrays

- CUDA não oferece estruturas de dados para execução em paralelo
- O compilador CUDA não oferece suporte a "auto-parallelization/vectorization"
- Sem equivalente a CPU-type SIMD

Restrições do Compilador

NVCC não suporta padrão C++11

Padrões de Programação Paralela Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Padrões de Programação Paralela

Padrões de Programação Paralela

Map

Aplicar uma função a um array e replicar a função sobre cada elemento do array

Padrões de Programação Paralela Data Science Academy raphaelbsfontenelle@gmail.com 615c1fdde32fc361b30c9ec2 Padrões de Programação Paralela

Gather

Aplicar uma função a uma seleção arbitrária dos valores de entrada para obter um valor de saída

Scatter

Oposto do Gather. Calcular diversos valores a partir de um valor.

Reduce de forma sequencial

Reduce

Operação pair-wise para cada elemento do array. Muito usada para soma de elementos de forma paralela.

Reduce de forma paralela

Reduce

Operação pair-wise para cada elemento do array. Muito usada para soma de elementos de forma paralela.

Scan

Cada output é calculado como uma função envolvendo todos os inputs dos valores anteriores.

Cada GPU é composta de um ou mais Streaming Multiprocessors (SMs)

- Cada SM possui uma coleção de recursos computacionais:
 - Processadores (cores)
 - o Registradores
 - Memória especializada

Streaming Multiprocessors na GPU

Number of SMs
15
2 x 13
56
8

- Os blocos são distribuídos através dos SMs.
- Não temos controle sobre como será a distribuição.
- Um bloco vai ser executado em um único SM.

- Muitos tipos de memória estão disponíveis na GPU, com diferentes níveis de performance.
- Os dados precisam ser mapeados para o tipo de memória correto:
 - Shared Memory
 - Registradores
 - Constant Cache
 - Device Memory
 - o Read-only Cache

- Muitos tipos de memória estão disponíveis na GPU, com diferentes níveis de performance.
- Os dados precisam ser mapeados para o tipo de memória correto:
 - Shared Memory
 - Registradores
 - Constant Cache
 - Device Memory
 - o Read-only Cache

Device Memory (Global Memory):

- Disponível a todas as threads.
- Dados nesta memória persistem entre execuções de kernels.
- Precisamos explicitamente alocar a memória usando cudaMalloc e cudaFree.

Memória por Thread (Registradores):

- O compilador controla onde as variáveis são armazenadas na memória física.
- Podem ser de 2 tipos:
 - Registradores (on-chip) tipo mais rápido de memória existem na GPU.
 - Local Memory (off-chip) o compilador aloca parte da Device Memory, quando o número de registradores não for mais suficiente.

Shared Memory:

- Memória de alta performance.
- Performance superior a Device Memory.
- Somente visível para threads dentro de um mesmo bloco.
- Semelhantes as benefícios de se usar o cache da CPU.
- Precisa ser explicitamente gerenciada pelo desenvolvedor.

Device Memory

CUDA Syntax - Shared Memory

```
Static shared memory syntax
#define BLOCK SIZE 256
global void kernel(float* a)
  __shared__ float sData[BLOCK_SIZE];
  int i:
  i = blockIdx.x * blockDim.x + threadIdx.x;
  sData[threadIdx.x] = a[i];
  syncthreads();
  a[i] = sData[blockDim.x - 1 - threadIdx.x];
int main(void)
  kernel<<<nBlocks, BLOCK_SIZE>>>(...);
```

- O qualificador __shared__ é usado para declarar variáveis/arrays na shared memory.
- A shared memory não é visível para o host.
- As threads podem ler/escrever na shared memory.

Memory

Constant Memory:

- Região especial no Device Memory.
- Read-only para o kernel.
- Read-write para o host.
- Constantes são declaradas no escopo do arquivo.
- 64 KB.
- cudaMemcpyToSymbol para o cache dos valores constantes dentro do SM.

CUDA Syntax - Constant Memory

- O qualificador __constant__ é usado para declarar variáveis/arrays como constantes residentes na memória.
- Variáveis constantes podem ser lidas/escritas pelo host, mas são read-only para o kernel.

```
constant float staticCoeff = 1.0f;
__constant__ float runtimeCoeff;
constant_ float runtimeArray[5];
global void kernel(float *array)
     array[threadIdx.x] += staticCoeff;
    array[threadIdx.x] *= runtimeCoeff;
     array[threadIdx.x] = runtimeArray[0];
int main(void)
  float val = calculateCoefficient();
  cudaMemcpyToSymbol(runtimeCoeff, &val,
                     sizeof(val));
  cudaMemcpyToSymbol(runtimeArray,
                      hostArray,
                     5*sizeof(float));
  kernel<<<gSize,bSize>>>(_);
```


Read-only Cache:

- Usada originalmente como Texture Cache.
- Aloca e gerencia a Device Memory.
- Para ser usada o desenvolvedor deve especificar o qualificador const __restrict__ na variável.
- 12 a 48 KB.

Comunicação entre threads é possível em CUDA?

Processamento concorrente oferece riscos devido a ordem com que as tarefas são executadas.

Possíveis problemas: race condition, deadlocks, starvation.

Modelo de Memória CUDA

Memory Space	Managed by	Physical Implementation	Scope on GPU	Scope on CPU	Lifetime
Registers	Compiler	On-chip	Per Thread	Not visible	Lifetime of a thread
Local	Compiler	Device Memory	Per Thread	Not visible	
Shared	Programmer	On-chip	Block	Not visible	Block lifetime
Global	Programmer	Device Memory	All threads	Read/Write	Application or until explicitly freed
Constant	Programmer	Device Memory	All threads Read-only	Read/Write	

Sincronização de Threads

- Threads podem levar diferentes quantidades de tempo para completar uma parte de uma computação.
- Às vezes, você quer que todos as threads atinjam um ponto particular antes de continuar seu trabalho.
- CUDA fornece uma função de barreira de thread chamada __syncthreads().

Sincronização de Threads

 __syncthreads() somente sincroniza threads dentro de um bloco

Problemas gerados pela concorrência de tarefas, são eliminados ou evitados, através de sincronização.

Possíveis problemas gerados pela concorrência:

- Tentativa de comunicação entre blocos resulta em comportamento indefinido.
- Comunicação entre threads no mesmo bloco, via shared memory ou global memory geram riscos na concorrência de tarefas.
- Usamos void __syncthreads();
 - Sincroniza todas as threads em um bloco
 - Nenhuma thread prossegue até que todas tenham atingido uma barreira

Obrigado

