Quantities of one kind are said to be *inversely proportional* to quantities of another kind, if the ratio of any two of the first kind is equal to the inverse ratio of the corresponding two of the other kind.

If 6 men can do a piece of work in 4 days, then 8 men can do it in 3 days, or 6:8 equals the inverse ratio of 4:3, *i.e.* 3:4. Hence the number of men required to do some work, and the time necessary to do it, are inversely proportional.

181. In any proportion the product of the means is equal to the product of the extremes.

Let
$$a:b=c:d$$
, or
$$\frac{a}{b}=\frac{c}{d}$$
. Clearing of fractions, $ad=bc$.

182. The mean proportional between two numbers is equal to the square root of their product.

Let the proportion be
$$a:b=b:c$$
.
Then $b^2=ac$. (§ 181.)
Hence $b=\sqrt{ac}$.

183. If the product of two numbers is equal to the product of two other numbers, either pair may be made the means, and the other pair the extremes, of a proportion. (Converse of § 181.)

If mn = pq, and we divide both members by nq, we have

$$\frac{m}{q} = \frac{p}{n}$$
.

Ex. 1. Find x, if 6: x = 12:7.

12
$$x = 42$$
. (§ 181.)
 $x = \frac{42}{3} = 3\frac{1}{3}$.

Hence

Ex. 2. Determine whether the following proportion is correct or not: $8:5=7:4\frac{3}{5}$.

 $8 \times 4\frac{3}{8} = 35$, and $5 \times 7 = 35$; hence the proportion is correct.