## **BIG DIVE**

#### **TECH. CUSTOM EDITION**

A project by TOP-IX designed for Intesa Sanpaolo





#### Recap



- Data-analytic thinking
- Data quality
- Descriptive statistics
- Correlation & causation
- Bias
- Regression
- Comparison between groups



## Probability -basic concepts



$$P(A) = \text{Area of A}$$



$$P(A \text{ or } B) = P(A) + P(B)$$



## Probability –basic concepts



$$P(A) = \text{Area of A}$$

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$



$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Bayes Theorem

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$
  
 $P(A \text{ and } B) = \text{overlap of A and B}$ 





#### Screening test



Your doctor thinks you might have a rare disease that affects **1 person in 10,000**. A test that is **99%** accurate comes out **positive**. What's the probability of you having the disease?

Bayes Theorem: 
$$P(disease|positive|test) = \frac{P(positive|test|disease)P(disease)}{P(positive|test)}$$

Finally: 
$$P(disease|positive \ test) = 0.0098$$

#### Screening test



Consider a population of 1,000,000 individuals. The numbers we should expect in the **contingency** 

| matrix are: | Marginals |
|-------------|-----------|
|             |           |

|    |            | disease | no disease | <b>V</b>  |
|----|------------|---------|------------|-----------|
|    | positive   | 99      | 9,999      | 10,098    |
|    | negative   | 1       | 989,901    | 989,902   |
| Ma | rginals——— | 100     | 999,900    | 1,000,000 |

$$\begin{split} P\left(disease|positive\ test\right) &= \frac{TP}{TP + FP} = 0.0098 \\ P\left(no\ disease|negative\ test\right) &= \frac{TN}{TN + FN} = 0.99999 \end{split}$$



#### Screening test



Consider a population of 1,000,000 individuals. The numbers we should expect in the **contingency** 

Marginals

matrix are:

|     |            | disease | no disease | •         |
|-----|------------|---------|------------|-----------|
|     | positive   | 99      | 9,999      | 10,098    |
|     | negative   |         | 989,901    | 989,902   |
| Mai | rginals——— | 100     | 999,900    | 1,000,000 |

$$P\left(disease|positive\ test\right) = \frac{TP}{TP + FP} = 0.0098$$
 
$$P\left(no\ disease|negative\ test\right) = \frac{TN}{TN + FN} = 0.99999$$

Type I error (false positive)



Type II error (false negative)





## Consider a second screening



Bayes Theorem still looks the same:  $P\left(disease|positive\ test\right) = \frac{P\left(positive\ test|disease\right)P\left(disease\right)}{P\left(positive\ test\right)}$ 

but now the probability that we have the disease has been updated:  $P^{\dagger} \left( disease 
ight) = 0.0098$ 

So this time we find:  $P^{\dagger}$  (disease|positive test) = 0.4949

Each test is providing **new evidence**, and Bayes theorem is simply telling us how to use it to **update our beliefs**.



#### Confusion Matrix





| Testure  | positive | negative |
|----------|----------|----------|
| positive | TP       | FP       |
| negative | FN       | TN       |



$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$specificity = \frac{TN}{FP + TN} \bigcirc$$



$$\bigcirc sensitivity = \frac{TP}{TP + FN}$$



$$F1 = \frac{2TP}{2TP + FP + FN}$$



#### Confusion Matrix - ROC curve



| Feature<br>Test | positive | negative |
|-----------------|----------|----------|
| positive        | TP       | FP       |
| negative        | FN       | TN       |

$$sensitivity = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{FP + TN}$$



#### Confusion Matrix - ROC curve



| Feature<br>Test | positive | negative |
|-----------------|----------|----------|
| positive        | TP       | FP       |
| negative        | FN       | TN       |

$$sensitivity = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{FP + TN}$$





#### Confusion Matrix - ROC curve



| Feature<br>Test | positive | negative |
|-----------------|----------|----------|
| positive        | TP       | FP       |
| negative        | FN       | TN       |

$$sensitivity = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{FP + TN}$$





#### An introduction to ROC analysis

#### Tom Fawcett

Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306, USA

Available online 19 December 2005

Pattern Recognition Letters

www.elsevier.com/locate/patree





# Q & A

#### Cosa NON abbiamo trattato



- Regressioni (per predizioni) → Modulo Machine Learning
- Riduzione dimensionalità (PCA, ICA...)
- Analisi di serie storiche
- Analisi di sopravvivenza
- Network Bayesiani
- •

