[7]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	7
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	5
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	1
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	3
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	2
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	3
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	
	891 r	ows × 12 colu	ımns								

1 # Reading first 5 rows In [8]: ▶ 2 titanic.head()

	Ticket	Parch	SibSp	Age	Sex	Name	Pclass	Survived	Passengerld	
7.	A/5 21171	0	1	22.0	male	Braund, Mr. Owen Harris	3	0	1	0
71.:	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1
7.9	STON/O2. 3101282	0	0	26.0	female	Heikkinen, Miss. Laina	3	1	3	2
53.	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3
8.0	373450	0	0	35.0	male	Allen, Mr. William Henry	3	0	5	4
•										4

In [9]: ▶

1 # Reading Last 5 rows

2 titanic.tail()

Out[9]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4!
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7!
	4 6										•

In [10]: ▶ 1 # Showing no. of rows and columns of dataset

2 titanic.shape

3

Out[10]: (891, 12)

```
In [11]:
          H
               1
                 # checking for columns
               2 titanic.columns
   Out[11]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Sib
             Sp',
                     'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
                   dtype='object')
                 # Checking for data types
In [12]:
          H
               1
               2
                 titanic.dtypes
   Out[12]: PassengerId
                              int64
             Survived
                              int64
             Pclass
                              int64
             Name
                             object
             Sex
                             object
             Age
                            float64
             SibSp
                              int64
             Parch
                              int64
             Ticket
                             object
             Fare
                            float64
             Cabin
                             object
                             object
             Embarked
             dtype: object
                 # checking for duplicated values
In [13]:
               1
               2 titanic.duplicated().sum()
   Out[13]: 0
          H
               1 # checking for null values
In [14]:
               2 nv = titanic.isna().sum().sort_values(ascending=False)
                 nv = nv[nv>0]
               3
               4
                 nν
   Out[14]: Cabin
                         687
             Age
                         177
             Embarked
                           2
             dtype: int64
                 # Cheecking what percentage column contain missing values
In [15]:
          H
                 titanic.isnull().sum().sort_values(ascending=False)*100/len(titanic
               3
   Out[15]: Cabin
                            77.104377
             Age
                            19.865320
             Embarked
                             0.224467
             PassengerId
                             0.000000
             Survived
                             0.000000
             Pclass
                             0.000000
             Name
                             0.000000
             Sex
                             0.000000
             SibSp
                             0.000000
             Parch
                             0.000000
             Ticket
                             0.000000
             Fare
                             0.000000
             dtype: float64
```

```
In [16]:
          H
                 # Since Cabin Column has more than 75 % null values .So , we will d
              2 titanic.drop(columns = 'Cabin', axis = 1, inplace = True)
               3 titanic.columns
   Out[16]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Sib
             Sp',
                    'Parch', 'Ticket', 'Fare', 'Embarked'],
                   dtype='object')
In [17]:
                 # Filling Null Values in Age column with mean values of age column
          M
              2 titanic['Age'].fillna(titanic['Age'].mean(),inplace=True)
              3
                 # filling null values in Embarked Column with mode values of embark
              4
               5 titanic['Embarked'].fillna(titanic['Embarked'].mode()[0],inplace=Tr
              1 # checking for null values
In [18]:
          H
               2 titanic.isna().sum()
   Out[18]: PassengerId
                            0
             Survived
                            0
             Pclass
                            0
                            0
             Name
             Sex
                            0
                            0
             Age
             SibSp
                            0
             Parch
                            0
             Ticket
                            0
                            0
             Fare
             Embarked
                            0
             dtype: int64
In [19]:
          M
              1
                 # Finding no. of unique values in each column of dataset
                 titanic[['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age',
                         'Parch', 'Ticket', 'Fare', 'Embarked']].nunique().sort_value
               3
   Out[19]: Survived
                              2
             Sex
                              2
                              3
             Pclass
             Embarked
                              3
                              7
             SibSp
                              7
             Parch
                             89
             Age
             Fare
                            248
             Ticket
                            681
                            891
             PassengerId
             Name
                            891
             dtype: int64
              1 titanic['Survived'].unique()
In [20]:
   Out[20]: array([0, 1], dtype=int64)
              1 | titanic['Sex'].unique()
In [21]:
          M
   Out[21]: array(['male', 'female'], dtype=object)
```

```
1 titanic['Pclass'].unique()
In [22]:
   Out[22]: array([3, 1, 2], dtype=int64)
In [23]:
          titanic['SibSp'].unique()
   Out[23]: array([1, 0, 3, 4, 2, 5, 8], dtype=int64)
In [24]:
          M
              1 titanic['Parch'].unique()
   Out[24]: array([0, 1, 2, 5, 3, 4, 6], dtype=int64)
In [25]:
          M
              1 titanic['Embarked'].unique()
   Out[25]: array(['S', 'C', 'Q'], dtype=object)
                 titanic.drop(columns=['PassengerId','Name','Ticket'],axis=1,inplace
In [26]:
          H
              1
                 titanic.columns
   Out[26]: Index(['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare',
                    'Embarked'],
                   dtype='object')
In [27]:
                 # Showing inforamation about the dataset
          H
                 titanic.info()
              2
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 891 entries, 0 to 890
             Data columns (total 8 columns):
              #
                  Column
                            Non-Null Count Dtype
             ---
                  Survived 891 non-null
              0
                                            int64
                            891 non-null
                                            int64
              1
                  Pclass
              2
                  Sex
                            891 non-null
                                            object
              3
                  Age
                            891 non-null
                                            float64
              4
                  SibSp
                            891 non-null
                                            int64
              5
                  Parch
                            891 non-null
                                            int64
              6
                  Fare
                            891 non-null
                                            float64
                  Embarked 891 non-null
              7
                                            object
             dtypes: float64(2), int64(4), object(2)
             memory usage: 55.8+ KB
```

In [28]:

1 # showing info. about numerical columns

2 titanic.describe()

Out[28]:

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [29]: ▶

1 # showing info. about categorical columns

2 titanic.describe(include='0')

Out[29]:

	Sex	Embarked
count	891	891
unique	2	3
top	male	S
freq	577	646

In [30]: ▶

1 d1 = titanic['Sex'].value_counts() 2 d1

Out[30]: male

577 female 314

Name: Sex, dtype: int64


```
In [37]:  # Showing Distribution of Pclass Sex wise
2  sns.countplot(x=titanic['Pclass'], hue=titanic['Sex'])
3  plt.show()
```


0 5491 342

Name: Survived, dtype: int64

M

2 titanic.hist(figsize=(10,10))

3 plt.show()

In [45]:

- Ы
- 1 # showing Correlation
- 2 titanic.corr()

Out[45]:

	Survived	Pclass	Age	SibSp	Parch	Fare
Survived	1.000000	-0.338481	-0.069809	-0.035322	0.081629	0.257307
Pclass	-0.338481	1.000000	-0.331339	0.083081	0.018443	-0.549500
Age	-0.069809	-0.331339	1.000000	-0.232625	-0.179191	0.091566
SibSp	-0.035322	0.083081	-0.232625	1.000000	0.414838	0.159651
Parch	0.081629	0.018443	-0.179191	0.414838	1.000000	0.216225
Fare	0.257307	-0.549500	0.091566	0.159651	0.216225	1.000000

Out[48]: 0 549 1 342

Name: Survived, dtype: int64

1

0.00 0.25 0.50 0.75 1.00 1.0 Survived


```
In [50]:
                 from sklearn.preprocessing import LabelEncoder
               2
                 # Create an instance of LabelEncoder
               3 le = LabelEncoder()
               4
               5
                 # Apply label encoding to each categorical column
               6
                 for column in ['Sex', 'Embarked']:
               7
                     titanic[column] = le.fit_transform(titanic[column])
               8
               9
                 titanic.head()
             10
             11
                 # Sex Column
             12
             13 # 0 represents female
                 # 1 represents Male
             14
             15
             16
                 # Embarked Column
             17
             18 # 0 represents C
             19 # 1 represents Q
             20
                 # 2 represents S
```

Out[50]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	1	22.0	1	0	7.2500	2
	1	1	1	0	38.0	1	0	71.2833	0
	2	1	3	0	26.0	0	0	7.9250	2
	3	1	1	0	35.0	1	0	53.1000	2
	4	0	3	1	35.0	0	0	8.0500	2

```
H
In [51]:
               1
                 # importing libraries
               2
               3
                 from sklearn.model_selection import train_test_split
                 from sklearn.ensemble import RandomForestClassifier
                 from sklearn.tree import DecisionTreeClassifier
               6 from sklearn.neighbors import KNeighborsClassifier
               7
                 from sklearn.svm import SVC
                 from sklearn.linear_model import LogisticRegression
               8
               9
                 from sklearn.ensemble import AdaBoostClassifier
              10 from sklearn.metrics import confusion matrix, classification report,
                 cols = ['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']
In [52]:
          M
               2
                 x = titanic[cols]
               3 y = titanic['Survived']
               4 print(x.shape)
                 print(y.shape)
                 print(type(x)) # DataFrame
                  print(type(y)) # Series
             (891, 7)
             (891,)
             <class 'pandas.core.frame.DataFrame'>
             <class 'pandas.core.series.Series'>
In [53]:
          H
                 x.head()
   Out[53]:
                Pclass Sex Age SibSp Parch
                                               Fare Embarked
                     3
                         1 22.0
              0
                                    1
                                          0
                                             7.2500
                                                           2
                                                           0
              1
                     1
                         0 38.0
                                    1
                                          0 71.2833
              2
                     3
                         0 26.0
                                    0
                                             7.9250
                                                           2
              3
                     1
                         0 35.0
                                    1
                                          0 53.1000
                                                           2
                     3
                         1 35.0
                                    0
                                             8.0500
                                                           2
In [54]:
                 y.head()
   Out[54]:
             0
                  0
             1
                  1
             2
                  1
             3
                  1
             4
             Name: Survived, dtype: int64
In [55]:
                  print(891*0.10)
```

89.10000000000001

```
In [56]:
         H
              1 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.10
              2 print(x_train.shape)
              3 print(x_test.shape)
              4 print(y_train.shape)
                print(y test.shape)
            (801, 7)
            (90, 7)
            (801,)
            (90,)
                def cls_eval(ytest,ypred):
         H
In [57]:
              1
              2
                    cm = confusion_matrix(ytest,ypred)
              3
                    print('Confusion Matrix\n',cm)
              4
                    print('Classification Report\n',classification_report(ytest,ypr
              5
              6
                def mscore(model):
              7
                    print('Training Score', model.score(x_train, y_train)) # Trainin
                    print('Testing Score', model.score(x test, y test))
              8
                                                                        # Testing
              1 # Building the Logistic Regression Model
In [58]:
         H
              2 | lr = LogisticRegression(max_iter=1000, solver='liblinear')
              3 | lr.fit(x_train,y_train)
   Out[58]: LogisticRegression(max_iter=1000, solver='liblinear')
In [59]:
          H
                # Computing Training and Testing score
              1
              2
                mscore(lr)
            Training Score 0.8052434456928839
            Testing Score 0.766666666666667
In [60]:
                # Generating Prediction
              2 ypred_lr = lr.predict(x_test)
              3 print(ypred_lr)
            [1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 0
            0 0
             1010010000100001]
```

```
M
            1 # Evaluate the model - confusion matrix, classification Report, Acc
In [61]:
            2 cls_eval(y_test,ypred_lr)
            3 | acc_lr = accuracy_score(y_test,ypred_lr)
            4 print('Accuracy Score',acc_lr)
           Confusion Matrix
            [[46 7]
            [14 23]]
           Classification Report
                        precision
                                  recall f1-score
                                                   support
                                   0.87
                    0
                           0.77
                                            0.81
                                                      53
                                                      37
                    1
                           0.77
                                   0.62
                                            0.69
                                            0.77
                                                      90
              accuracy
                                                      90
             macro avg
                           0.77
                                   0.74
                                            0.75
                                            0.76
                                                      90
           weighted avg
                           0.77
                                   0.77
           Accuracy Score 0.766666666666667
              # Building the knnClassifier Model
In [62]:
        H
            2 knn=KNeighborsClassifier(n_neighbors=8)
              knn.fit(x_train,y_train)
   Out[62]: KNeighborsClassifier(n neighbors=8)
In [63]:
              # Computing Training and Testing score
        M
              mscore(knn)
           Training Score 0.7752808988764045
           Testing Score 0.6777777777778
In [64]:
        H
              # Generating Prediction
            2 ypred_knn = knn.predict(x_test)
            3 print(ypred_knn)
           0 1
```

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

```
1 # Evaluate the model - confusion matrix, classification Report, Acc
In [65]:
            2 cls_eval(y_test,ypred_knn)
            3 acc_knn = accuracy_score(y_test,ypred_knn)
            4 print('Accuracy Score',acc_knn)
           Confusion Matrix
            [[47 6]
            [23 14]]
           Classification Report
                        precision
                                   recall f1-score
                                                   support
                                    0.89
                                            0.76
                    0
                           0.67
                                                       53
                                                       37
                    1
                           0.70
                                    0.38
                                            0.49
                                            0.68
                                                      90
              accuracy
                                                      90
             macro avg
                           0.69
                                    0.63
                                            0.63
                                            0.65
                                                      90
           weighted avg
                           0.68
                                    0.68
           Accuracy Score 0.677777777778
            1 # Building Support Vector Classifier Model
In [66]:
        H
            2 \text{ svc} = \text{SVC}(C=1.0)
            3 svc.fit(x_train, y_train)
   Out[66]: SVC()
In [67]:
              # Computing Training and Testing score
        H
              mscore(svc)
           Training Score 0.6891385767790262
           Testing Score 0.6333333333333333
In [68]:
        H
            1 # Generating Prediction
            2 ypred_svc = svc.predict(x_test)
            3 print(ypred_svc)
           0 0
```

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

```
1 | # Evaluate the model - confusion matrix, classification Report, Acc
In [69]:
         H
             2 cls_eval(y_test,ypred_svc)
             3 acc_svc = accuracy_score(y_test,ypred_svc)
             4 print('Accuracy Score',acc_svc)
            Confusion Matrix
             [[48 5]
             [28 9]]
            Classification Report
                          precision
                                     recall f1-score
                                                       support
                                      0.91
                                                0.74
                      0
                             0.63
                                                           53
                                                           37
                      1
                             0.64
                                      0.24
                                                0.35
                                                0.63
                                                           90
               accuracy
                                                           90
              macro avg
                             0.64
                                      0.57
                                                0.55
                                                0.58
                                                           90
            weighted avg
                             0.64
                                      0.63
            In [75]:
         H
             1 # Building the RandomForest Classifier Model
             2 rfc=RandomForestClassifier(n_estimators=80,criterion='entropy',min_
               rfc.fit(x_train,y_train)
   Out[75]: RandomForestClassifier(criterion='entropy', max depth=10, min samples
            split=5,
                                 n_estimators=80)
In [76]:
               # Computing Training and Testing score
             1
         M
             2
                mscore(rfc)
            Training Score 0.920099875156055
            Testing Score 0.7555555555555555
In [77]:
         1 # Generating Prediction
             2 ypred_rfc = rfc.predict(x_test)
             3 print(ypred_rfc)
            [1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0
            0 1
```

1010010000100001

```
1 | # Evaluate the model - confusion matrix, classification Report, Acc
In [81]:
          H
              2 cls_eval(y_test,ypred_rfc)
              3 acc_rfc = accuracy_score(y_test,ypred_rfc)
              4 print('Accuracy Score',acc_rfc)
             Confusion Matrix
              [[47 6]
              [16 21]]
             Classification Report
                           precision
                                        recall f1-score
                                                           support
                                         0.89
                       0
                               0.75
                                                   0.81
                                                               53
                                                               37
                       1
                               0.78
                                         0.57
                                                   0.66
                                                   0.76
                                                               90
                 accuracy
                                                               90
               macro avg
                               0.76
                                         0.73
                                                   0.73
                                                   0.75
                                                               90
             weighted avg
                               0.76
                                         0.76
             1 # Building the DecisionTree Classifier Model
In [79]:
          H
              2 dt = DecisionTreeClassifier(max_depth=5,criterion='entropy',min_sam
              3 | dt.fit(x_train, y_train)
   Out[79]: DecisionTreeClassifier(criterion='entropy', max depth=5, min samples s
             plit=10)
                # Computing Training and Testing score
In [80]:
              1
              2
                mscore(dt)
             Training Score 0.8526841448189763
             Testing Score 0.777777777778
In [82]:
          H
                # Generating Prediction
              1
              2 ypred_dt = dt.predict(x_test)
              3 print(ypred_dt)
             [1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 0
             0 1
```

1010010000100001

```
1 | # Evaluate the model - confusion matrix, classification Report, Acc
In [83]:
          H
              2 cls_eval(y_test,ypred_dt)
              3 | acc_dt = accuracy_score(y_test,ypred_dt)
              4 print('Accuracy Score',acc_dt)
             Confusion Matrix
              [[46 7]
              [13 24]]
             Classification Report
                            precision
                                         recall f1-score
                                                            support
                                          0.87
                        0
                                0.78
                                                    0.82
                                                                53
                        1
                                0.77
                                          0.65
                                                    0.71
                                                                37
                                                    0.78
                                                                90
                 accuracy
                                                                90
                macro avg
                                0.78
                                          0.76
                                                    0.76
                                                    0.77
                                                                90
             weighted avg
                                0.78
                                          0.78
             Accuracy Score 0.777777777778
In [84]:
                # Builing the Adaboost model
              2 ada_boost = AdaBoostClassifier(n_estimators=80)
                 ada_boost.fit(x_train,y_train)
   Out[84]: AdaBoostClassifier(n estimators=80)
In [85]:
                 # Computing the Training and Testing Score
          M
                 mscore(ada boost)
             Training Score 0.8564294631710362
             Testing Score 0.766666666666667
In [86]:
          H
                 # Generating the predictions
                ypred_ada_boost = ada_boost.predict(x_test)
In [87]:
          H
              1 | # Evaluate the model - confusion matrix, classification Report, Acc
              2 cls_eval(y_test,ypred_ada_boost)
              3 acc adab = accuracy score(y test,ypred ada boost)
              4 print('Accuracy Score',acc_adab)
             Confusion Matrix
              [[45 8]
              [13 24]]
             Classification Report
                            precision
                                         recall f1-score
                                                            support
                        0
                                          0.85
                                                    0.81
                                                                53
                                0.78
                        1
                                0.75
                                          0.65
                                                    0.70
                                                                37
                                                    0.77
                                                                90
                 accuracy
                                                                90
                                          0.75
                                                    0.75
                macro avg
                                0.76
             weighted avg
                                0.77
                                          0.77
                                                    0.76
                                                                90
```

Accuracy Score 0.766666666666667

```
In [88]:
           H
                   models = pd.DataFrame({
                1
                2
                        'Model': ['Logistic Regression', 'knn', 'SVC', 'Random Forest Clas
                3
                        'Score': [acc_lr,acc_knn,acc_svc,acc_rfc,acc_dt,acc_adab]})
                4
                   models.sort_values(by = 'Score', ascending = False)
                5
    Out[88]:
                                 Model
                                          Score
                   Decision Tree Classifier 0.777778
               0
                       Logistic Regression 0.766667
               5
                      Ada Boost Classifier 0.766667
                  Random Forest Classifier 0.755556
               1
                                   knn 0.677778
               2
                                  SVC 0.633333
                   colors = ["blue", "green", "red", "yellow", "orange", "purple"]
In [91]:
           H
                1
                2
                3
                   sns.set_style("whitegrid")
                   plt.figure(figsize=(15,5))
                4
                5
                   plt.ylabel("Accuracy %")
                   plt.xlabel("Algorithms")
                   sns.lineplot(x=models['Model'],y=models['Score'], palette=colors )
                7
                   plt.show()
                0.76
                0.74
               <sub>%</sub> 0.72
               0.70
                0.68
                0.64
```

Decision Tree Classifier

Ada Boost Classifier

Logistic Regression

