g - code simulator 程式路徑解析

黃建傑

Cubiio 軸向定義

• 定義Cubiio的X、Y軸向,使操作者在程式編輯時有一參考依據。

Cubiio 準備機能(G)

• 下表為Cubiio常用的準備機能指令,後續的課程也會以這些指令為核心 進行加工路徑的模擬及操作。

G指令	組群	功能 ····································
G0	01	快速定位
G1	01	直線切削
G2	01	順時針圓弧切削
G3	01	逆時針圓弧切削
G4	00	暫停
G20	06	英制單位輸入設定
G21	06	公制單位輸入設定
G90	03	絕對座標系統設定
G91	03	相對座標系統設定

絕對或相對座標系統設定(G90、G91)

座標系統的設定在程式設計時非常重要,可視情況需要,不斷切換適合的座標系統。通常使用G90指令來設定使用絕對座標系統,或用G91指令來設定使用增量(或稱相對)座標系統。

• 指令格式: G□ X___Y__Z__

G□:可為G0、G1 G90 、G3或其他切削循環指令。
 G91

- G90:絕對座標系統設定。雷射運動的座標值是根據某一個固定點(一般 為程式原點)所量得。
- G91:相對(或稱增量)座標系統設定。雷射運動的座標值是以雷射目前所在的位置當作基準點所量得。其指令中的數值為雷射起點至終點所需移動的距離及方向,並依向量法判斷其正負號。

快速定位(G0)

- 指令格式:G0 X___ Y___
- X、Y:X軸、Y軸之終點座標,可用絕對座標(G90)或增量座標(G91)表示。
- 使用時機:當雷射不做切削,只要移動定位的時候,使用G0可節省位移的時間,例如在切削前快速移動到預備點,或切削完成時的退刀動作,都是使用G0的時機。

快速定位(G0)移動速率

• G0移動之速率是由機器的參數設定,如:Vx=5000mm/min Vy=6500mm/min,因各軸(X軸、Y軸)設定之快速移動速率不同,且移動的距離也不相同,故從位移起點至終點所花的時間亦不相同。

• tx、ty:各軸所需的位移時間。

ty=Ly/Vy

• Lx 、 Ly: 各軸移動的距離。

· Vx、Vy:各軸的進給率。

• 若機器在參數上已設定各軸的進給率為:Vx=Vy=5000mm/min,試求當執行程式G91 G0 X200, Y100,時,各軸位移所花的時間為多少?

- 解
 - -tx=Lx/Vx=200/5000=0.04min=2.4sec
 - ty=Ly/Vy=100/5000=0.02min=1.2sec
- 若將例題指令修改為G90 (絕對座標系統) G0 X200. Y100. · 則此題各軸 位移所花的時間為多少?

• 題目僅給予G90 G0 X200. Y100. 一個單節的指令,無法從題意分析雷射 起點或是上一切削指令的終點,故此題無解。

- 欲使其得解必須加上假設條件如:
 - 雷射由程式原點開始
 - 上一切削指令為 G□ X___Y___

直線切削(G1)

- 指令格式: G1 X___ Y___ F___
- X、Y:X軸、Y軸之終點座標,可用絕對座標(G90)或增量座標(G91)表示。
- F:表示雷射沿著切削路徑上的切削進給率。
- 使用時機:欲在起點與終點間切削出最短距離的路徑(直線)時使用之。

• 若程式為:G91 G1 X200. Y100. F200.時,試求執行此單節時,各運動軸的進給率為多少?

- Fx=FcosΘ=200cos26.57°=178.88mm/min
- Fy=FsinΘ=200sin26.57° =89.46mm/min

 如圖之切削路徑,分別使用絕對座標系統、相對座標系統來撰寫程式。 若雷射自程式原點(O點)出發,快速定位至A點,直線切削至B點、C點 D點、A點,最後再快速回到O點。

絕對座標(G90)範例

• G90 ---- 絕對座標系統設定

· G21 ---- 公制單位輸入設定

· G0 X-15. Y-15. ---- 點O快速定位至點A

• G1 X25. Y-5. ---- 點A直線切削至點B

國立陽明交通大學 NATIONAL YANG MING CHIAG TUNG UNIVERSITY

• G1 X15. Y15. ---- 點B直線切削至點C

• G1 X-25. Y5. ---- 點C直線切削至點D

· G1 X-15. Y-15. ---- 點D直線切削至點A

• G0 X0 Y0 ---- 點A快速定位回點O

相對座標(G91)範例

- **G91**
- G21
- G0 X-15. Y-15.
- G1 X40. Y10.

國立陽明交通大學 NATIONAL YANG MING CHIAO TUNG UNIVERSITY

- G1 X-10. Y20.
- G1 X-40. Y-10.
- G1 X10. Y-20.
- G0 X0 Y0

說明

- 因G90及G91指令同屬於03組群的G指令,該指令會持續有效,直到屬於同一組群的另一個指令出現才會被取代,所以不必每一個單節都指定只有在座標系統轉換時才需設定。
- 實際加工複雜工件時可依照需求中途切換座標系統,便於加工
- 雖G0與G1亦屬同一組群,但在操作時不建議省略,因程式指令檢查時 較難以核對(每次檢查需回到設定指令的單節確認此單節之動作。)

Code檢視

- 由於CNC加工時無法進行即時調整,若中途發現路徑錯誤只能待其加工 完成或強制中途停止才可修正。為降低加工中所產生的路徑錯誤,可以 先利用網頁g-code simulator 檢視其路徑。
- g-code simulator 只可檢視其加工路徑無法檢視基本參數設定(課程中 段會進行說明)。

g-code simulator

```
G91
     G21
     G0 X-15. Y-15.
     G1 X40. Y10.
     G1 X-10. Y20.
     G1 X-40. Y-10.
     G1 X10. Y-20.
     G0 X0 Y0
Simulate
          Load a bigger sample
```

將程式路徑輸入至其中,並按下Simulate

會出現路徑相對應的圖形

- 指令定義
 - G2:順時針切削(CW)圓弧切削
 - G3:逆時針切削(CCW)圓弧切削
- 圓弧切削方向的定義為:由與平面垂直的軸正向往負向看,順時針方向為G2,逆時針方向為G3。

以X、Y平面來看,假設出 紙面為Z的正向,此時由 外往內看可判斷順逆時針。

I、J正負號判斷

- I:由圓弧切削的起點向圓心作一向量,此向量在X軸方向的分量稱為I。(需考慮正負號)
- J:由圓弧切削的起點向圓心作一向量,此向量在Y軸方向的分量稱為J。
 (需考慮正負號)

圓弧切削

- 指令格式:G2/G3 X__ Y__ I__ J__
- X、Y為圓弧終點座標
- I、J如上述介紹
- 此種圓弧切削法加工時,必須確認圓心座標才可撰寫程式,使用上較不方便,在後面的課程會介紹另一種圓弧切削法(半徑加工法),只需知道圓弧半徑即可加工,使用上較為便利。
- Cubiio中G/M CODE只支援I、J、K法的圓弧切削,故前段課程還是以I J、K為主,請同學務必學會如何判斷其正負號。

程式編輯 例題2

如圖所示,請用程式指令完成下方圖形輪廓,假設雷射起點在程式原點上,點0的絕對座標為(-26,-20),分別利用絕對座標與相對座標完成圖形。

絕對座標範例

• **G90** ---- 絕對座標系統設定

· G21 ---- 公制單位輸入設定

G0 X-26. Y-20. ---- 快速定位至點0(-26,-20)

· G1 X-19. Y-20 . ---- 直線切削至點1(-19,-20)

· G3 X-1. Y-20. I9. ---- 逆時針切削至點2(-1,-20)

國立陽明交通大學 NATIONAL YANG MING CHIAG TUNG UNIVERSITY

• G1 X27. Y-20. ---

直線切削至點3(27,-20)

• G1 X27. Y3.

---- 直線切削至點4(27,3)

• G1 X21, Y3,

---- 直線切削至點5(21,3)

• G2 X11. Y3. I-5. ----

順時針切削至點6(11,3)

• G1 X5. Y3.

直線切削至點7(5,3)

- G1 X5. Y-2.
- G2 X1. Y-6. I-4. ----
- G1 X-6. Y-6.

- ---- 直線切削至點8(5,-2)
- 順時針切削至點9(1,-6)
- ---- 直線切削至點10(-6,-6)

• G1 X-26. Y12. ---- 直線切削至點11(-26,12)

• G1 X-26. Y-20. ---- 直線切削至點0(-26,-20)

· G0 X0 Y0 ---- 快速定位回程式原點

相對座標範例(自行練習)

- **G91**
- G21
- G0 X-26. Y-20.
- G1 X7.
- G3 X18. Y0. 19.
- G1 X28.
- G1 Y23.
- G1 X-6.
- G2 X-10. Y0. I-5.
- G1 X-6.
- G1 Y-5.

- G2 X-4. Y-4. I-4.
- G1 X-7.
- G1 X-20. Y18.
- G1 Y-32.
- G0 X0 Y0

利用絕對座標說明圓弧切削正負號

G3 X-1. Y-20. I9.

G2 X11. Y3. I-5.

G2 X1. Y-6. I-4.

程式編輯 例題3

 如圖所示,請用程式指令完成下方圖形輪廓,假設雷射原點在程式原點 (0,0),分別由點A(30,0)及點B(0,30)逆時針出發切削360°全圓。(請用絕 對座標系統G90)

絕對座標範例A點出發

• G90 ---- 絕對座標系統設定

· G21 ---- 公制單位輸入設定

· G0 X30. Y0. ---- 快速定位至點A(30,0)

· G03 X30. Y0. I-30. ---- 逆時針切削全圓

• G0 X0 Y0 ---- 快速定位回程式原點

絕對座標範例 B點出發

• G90 ---- 絕對座標系統設定

· G21 ---- 公制單位輸入設定

· G0 X0. Y30. ---- 快速定位至點B(0,30)

• G03 X0. Y30. J-30. ---- 逆時針切削全圓

• G0 X0 Y0 ---- 快速定位回程式原點

圓弧切削程式說明

- 因Cubiio G/M code並非如同一般CNC加工機完善,故操作時存在著一些限制,切削之圓弧圓心角大於180°且不是360°時較容易發生錯誤。
- 故建議使用者在加工上述情況時可以將兩個圓心角小於180°的圓弧拼凑 成適當的尺寸。
- 此加工法僅限於Cubiio等其他加工機能較不完善的小型加工機,並非正式加工法。由於此種拼湊法,會使得圓弧的真圓度大幅降低,故工業上不會採用此種方法加工。

