Conceptos de Sistemas Operativos Practica 4

Ramiro Cabral

October 15, 2023

Contents

1	\mathbf{Pro}	ocesos
	1.1	PCB (Process Control Block)
	1.2	Tiempos de los procesos
2	Sch	edulers/Planificadores
	2.1	Tipos de Schedulers
	2.2	Apropiacion vs No apropiacion
3	Alg	oritmos de planificacion
	3.1	FCFS (First Come First Served)
	3.2	SJF (Shortest Job First)
	3.3	SRTF (Shortest Remaining Time First)
	3.4	RR (Round Robin)
		3.4.1 Timer Variable
		3.4.2 Timer Fijo
	3.5	Prioridades
	3.6	CPU + I/O
	3.7	Criterios de desempate
4	Colas Multinivel	
5	Pla	nificacion con multiples procesadores.
	5.1	Clasificaciones
	5.2	

1 Procesos

- Programa en ejecucion.
- Segun su historial de ejecucion, podemos clasificarlos en:
 - CPU bound (ligados a la CPU).
 - I/O bound (ligados a la E/S).

1.1 PCB (Process Control Block)

- Una por proceso.
- Contiene informacion del proceso.
- Es lo primero que se crea cuando se realiza un fork y lo utlimo que se desaloca cuando termina.

1.2 Tiempos de los procesos

- Retorno: Tiempo que transcurre entre que el proceso llega al sistema hasta que completa su ejeucion.
- Espera: Tiempo que el proceso se encuentra en el sistema esperando, es decir el tiempo que pasa sin ejecutarse. (Tiempo de retorno Tiempo de CPU)
- Promedios: Tiempos promedio de los anteriores.

2 Schedulers/Planificadores

- Es la clave de la multiprogramacion.
- Esta diseñado para cumplir con los siguientes objetivos:
 - Menor tiempo de respuesta.
 - Mayor rendimiento.
 - Uso eficiente del procesador.

2.1 Tipos de Schedulers

• Long term scheduler: Admite nuevos procesos a memoria (controla el grado de multipfogramacion).

- Medium term scheduler: Realiza el swapping (intercambio) entre el disco y la memoria cuando el SO lo determina.
- Short term scheduler: Determina que proceso pasara a ejecutarse.

Suspend Medium-term scheduling (1)

2.2 Apropiacion vs No apropiacion

- Nonpreemptive: Una vez que un proceso esta en estado de ejecucion, continua hasta que termina o se bloquea por algun evento (por ejemplo, I/O).
- **Preemptive:** El proceso en ejecucion puede ser interrumpido y llevado a la cola de ready
 - Mayor overhead pero mejor servicio.
 - Un proceso no monopoliza el procesador.

3 Algoritmos de planificacion

3.1 FCFS (First Come First Served)

- Nonpreemptive.
- Cuando hay que elegir un proceso para ejecutar, se selecciona el mas viejo.
- No favorece a ningun tipo de procesos, pero en principio podriamos decir que los CPU Bound terminan al comenzar su primer rafaga, mientras que los I/O Bound no.

3.2 SJF (Shortest Job First)

- Nonpreemptive.
- Politica que selecciona el proceso con la rafaga de CPU mas corta.
- Calculo basado en la ejecucion previa.
- Procesos cortos se colocan delante de procesos largos.
- Los procesos largos pueden sufrir starvation.

3.3 SRTF (Shortest Remaining Time First)

- Version **preemptive** de SJF.
- Selecciona el proceso al cual le resta menos tiempo de ejecucion en su siguiente rafaga.
- Favorece al los procesos I/O Bound.

3.4 RR (Round Robin)

- Politica basada en un reloj.
- Quantum (Q): medida que determina cuanto tiempo podra usar el procesador cada proceso:
- Cuando un proceso es expulsado de la CPU es colocado al final de la Ready Queue y se selecciona otro (FIFO circular).
- Existe un contador que indica las unidades de CPU en las que el proceso se ejecuto. Cuando el mismo llega a 0 el proceso es expulsado.
- El contador puede ser global o local (PCB de cada proceso).
- Existen dos variantes con respecto al valor inicial del contador cuano un proceso es asignado a la CPU:
 - Timer Variable.
 - Timer Fijo.

3.4.1 Timer Variable

- El contador se inicializa en Q cada vez que un proceso es asignado a la CPU.
- Es el mas utilizado.

3.4.2 Timer Fijo

- El contador se inicializa en Q cuando su valor es cero
- Se puede ver como un valor de Q compartido entre los procesos.

3.5 Prioridades

- Cada proceso tiene un valor que representa su prioridad.
- Se seleccina el proceso de mayor prioridad de los que se encuentran en la Ready Queue.
- Existe una Ready Queue para cada nivel de prioridad.
- Procesos de baja prioridad pueden sufrir starvation.
 - Solucion: permitir a un proceso cambiar su prioridad durante su ciclo de vida (Aging o Penalty).
- Puede ser un algoritmo preemptive o no.

$3.6 \quad \text{CPU} + \text{I/O}$

- Ciclo de vida de un proceso: uso de CPU + operaciones de I/O.
- Cada dispositivo tiene su cola de procesos en espera, un scheduler por cada cola.
- Se considera I/O independiente de la CPU (DMA, PCI, etc). Tenemos uso de CPU y operaciones de I/O en simultaneo.

3.7 Criterios de desempate

- 1. Orden de llegada de los procesos.
- 2. PID de los procesos(el de menor PID se ejecuta primero).

4 Colas Multinivel

- La ready queue es dividida en varias colas (similar a prioridades).
- Los procesos se colocan en las colas segun una clasificación que realice el sistema operativo.
- Cada cola posee su propio algoritmo de planificación (planificador horizontal).
- A su vez existe un algoritmo que planifica las colas (planificador vertical).
- Retroalimentacion: un proceso puede cambiar de una cola a otra.

5 Planificacion con multiples procesadores.

- Planificacion temporal: que proceso y durante cuanto.
- Planificacion espacial: en que procesador ejecutar:
 - Huella: estado que el proceso va dejando en la cache de un procesador.
 - Afinidad: preferencia de un proceso para ejecutar en un procesador.
- La asignación de procesos a un procesador puede ser:
 - Estatica: existe una afinidad de un proceso a una CPU.
 - **Dinamica:** la carga se comparte, se da un balancdeo de carga.
- La politica puede ser:

- Tiempo compartido: se puede considerar una cola global o una cola local a cada procesador.
- Espacio compartido:
 - * Grupos (threads).
 - * Particiones.

5.1 Clasificaciones

- Procesadores homogeneos: todas las CPUs son iguales. No existe ventajas fisicas sobre el resto.
- **Procesadores heterogeneos:** cada procesador tiene su propia cola, su propio clock y su propio algoritmo de planificacion.

5.2 Otra clasificacion:

- Procesadores debilmente acoplados: cada CPU tiene su propia memoria principal y canales.
- Procesadores fuertemente acoplados: comparten memoria y canales.
- Procesadores especializados: uno o mas procesadores principales de uso general y uno o mas procesadores de uso específico.