In [21]:

```
#importing libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [6]:

df=pd.read_csv(r"C:\Users\91949\Downloads\USA_Housing.csv")
df

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Micha∈ 674\nLaı
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Joh Suite Katl
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	912 Stravenue\nl
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barne
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Rayr
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Will AP (
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PS(8489\nAPC
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tr Suite 076\n.
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallac
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 Gec Apt. 509\ı

5000 rows × 7 columns

In [7]:

df.head()

Out[7]:

А	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael F€ 674\nLaurat	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnso Suite 07! Kathlee	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 E Stravenue∖nDan WI (1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nI	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymon AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
•							4

In [8]:

df.tail()

Out[8]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Add
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	Williams\r AP 30153-
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258 8489\nAP 42991-
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Garden 076\nJoshua VA
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	Wallace\r AE 7
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 Ge Ridge: 509\nEast N
4							•

In [9]:

```
df.describe()
```

Out[9]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [10]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [12]:

```
df=df[['Avg. Area Income','Price']]
df.columns=['avg','cost']
```

In [13]:

sns.lmplot(x='avg',y='cost',data=df,order=2,ci=None)

Out[13]:

<seaborn.axisgrid.FacetGrid at 0x215c36b7250>

In [14]:

```
df.fillna(method='ffill')
```

Out[14]:

	avg	cost
0	79545.458574	1.059034e+06
1	79248.642455	1.505891e+06
2	61287.067179	1.058988e+06
3	63345.240046	1.260617e+06
4	59982.197226	6.309435e+05
4995	60567.944140	1.060194e+06
4996	78491.275435	1.482618e+06
4997	63390.686886	1.030730e+06
4998	68001.331235	1.198657e+06
4999	65510.581804	1.298950e+06

In [15]:

df.dropna()

5000 rows × 2 columns

Out[15]:

	avg	cost
0	79545.458574	1.059034e+06
1	79248.642455	1.505891e+06
2	61287.067179	1.058988e+06
3	63345.240046	1.260617e+06
4	59982.197226	6.309435e+05
4995	60567.944140	1.060194e+06
4996	78491.275435	1.482618e+06
4997	63390.686886	1.030730e+06
4998	68001.331235	1.198657e+06
4999	65510.581804	1.298950e+06

5000 rows × 2 columns

In [19]:

```
x=np.array(df['avg']).reshape(-1,1)
y=np.array(df['cost']).reshape(-1,1)
```

In [22]:

```
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression: ",regr.score(x_test,y_test))
```

Regression: 0.4158919191035203

In [23]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [24]:

```
df100=df[:][:100]
sns.lmplot(x='avg',y='cost',data=df100,order=1,ci=None)
```

Out[24]:

<seaborn.axisgrid.FacetGrid at 0x215c6156ad0>

In [25]:

```
df100.fillna(method='ffill',inplace=True)
x = np.array(df100['avg']).reshape(-1,1)
y = np.array(df100['cost']).reshape(-1,1)
df100.dropna(inplace=True)
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.25)
regr = LinearRegression()
regr.fit(x_train,y_train)
print("regression: ",regr.score(x_test,y_test))
y_pred = regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='b')
plt.show()
```

regression: 0.5431385856434479

In [8]:

sns.pairplot(df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x20ebe3f2a10>

In [9]:

sns.displot(df['Price'])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x20ed3826f90>

In [10]:

sns.displot(df['Area Population'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x20ed4b5d710>

In [11]:

sns.pairplot(df, x_vars=['Avg. Area Income','Avg. Area House Age','Avg. Area Number of F

Out[11]:

<seaborn.axisgrid.PairGrid at 0x20ed42dba50>

In [28]:

```
sns.heatmap(df.corr(),annot=True)
```

Out[28]:

<Axes: >

In [26]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model =LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2_Score: ",r2)
```

R2 Score: 0.5431385856434479

Conclusion:

In this dataset having minimal amount of data so LinearRegression is same for both Normal data and Minimal amount of data