Aritmética Modular

Faculdade de Informática - PUCRS Prof. Dr. Avelino Francisco Zorzo

Pano de fundo

- Teoria dos números é usada para:
 - Protocolos de troca de chaves
 - Assinaturas digitais
 - Criptografia pública

Mais informações: http://shoup.net/ntb/ntb-v2.pdf

Notação

- N representa um número positivo inteiro.
- p representa um número primo.
- Notação: $Z_N = \{0, 1, 2, ..., N-1\}$
- Podemos fazer soma e multiplicação com módulo N?

Aritmética modular

■ Exemplos: Seja N = 12

9 + 8 = 5 em Z_{12}

 $5 \times 7 = 11$ em Z_{12}

 $5-7 = 10 \text{ em } Z_{12}$

■ Aritmética em Z_N funciona como esperado,

-e.g. $x \cdot (y+z) = x \cdot y + x \cdot z \text{ em } Z_N$

Maior Divisor Comum

- <u>Def</u>: Para inteiros x,y: <u>mdc(x, y)</u> é o <u>maior</u> divisor comum de x,y
 - Exemplo: mdc(12, 18) = 6
- **<u>Fato</u>**: para todos inteiros x,y existem inteiros a,b tal que $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = \mathbf{mdc}(\mathbf{x}, \mathbf{y})$
 - Exemplo: 2.12 1.18 = 6
- a,b podem ser encontrados eficientemente usando o algoritmo estendido de Euclides.
- Se mdc(x,y)=1 dizemos que x e y são <u>primos</u> relativos

Inverso modular

- Nos números racionais, o inverso de 2 é ½.
- Como fica em Z_N ?
- **<u>Def</u>**: O **inverso** de x em Z_N é um elemento y em Z_N tal que x.y = 1 em Z_N
 - y é representado por x^{-1} .
- ■Exemplo:
 - $-Z_7 = \{0,1,2,3,4,5,6\} \Rightarrow 3^{-1} = 5 \text{ em } Z_7 \text{ pois } 3x5 = 1 \text{ em } Z_7$
 - Seja N um inteiro ímpar.
 - -O inverso de 2 em \mathbb{Z}_N é (N+1)/2.

$$2.((N+1)/2) = N+1 = 1 \text{ em } Z_N$$

Inverso modular

- Quais elementos tem um inversos em \mathbb{Z}_{N} ?
- **Lema**: $x \text{ em } Z_N \text{ tem um inverso se e somente}$ se mdc(x,N) = 1 (x é um primo relativo de N)
- Prova:
 - $-\operatorname{mdc}(x,N) = 1 \Rightarrow \exists \ a,b: \ a \cdot x + b \cdot N = 1 \text{ em } Z_N$ $\Rightarrow a \cdot x = 1 \text{ em } Z_N \Rightarrow x^{-1} = a \text{ em } Z_N$
 - $\operatorname{mdc}(x,N) > 1 \Rightarrow \forall a: \operatorname{mdc}(a \cdot x, N) > 1 \Rightarrow a \cdot x \neq 1 \text{ em } Z_N$
 - Exemplo:
 - $\rightarrow mdc(x,N)=2 \Rightarrow \forall a: a.x \in par \Rightarrow a.x (par) \neq b.N (par) + 1 em Z_N$

Mais notações

- Def: $Z_N^* = \text{(conjunto de elementos invertíveis em } Z_N^*$ = $\{x \in Z_N : mdc(x,N) = 1\}$
- Exemplos:
 - 1. Para p primo, $Z_p^* = Z_p \{0\} = \{1, 2, ..., p-1\}$
 - 2. $Z_{12}^* = \{1, 5, 7, 11\}$
- Para x em Z_N^* , podemos encontrar x^{-1} usando o algoritmo estendido de Euclides.

Resolvendo equações lineares

- Resolva: $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ em $\mathbf{Z}_{\mathbf{N}}$
- Solução: $x = -b \cdot a^{-1}$ em Z_N
- lacktriangle Encontre $a^{\text{-}1}$ em Z_N usando o algoritmo estendido de Euclides.
- Tempo de execução: O(log² N)

Teorema de Fermat (1640)

■ Teorema: Seja p um número primo

$$\forall x \in (\mathbb{Z}_p)^* : x^{p-1} = 1 \text{ em } \mathbb{Z}_p$$

- Exemplo: p = 5. $3^4 = 81 = 1$ em \mathbb{Z}_5
- Assim:

$$x \in (Z_p)^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2} \text{ em } Z_p$$

■ Outra forma de calcular inversos, mas menos eficiente que Euclides

Aplicação: gerar aleatoriamente primos

■ Suponha que queiramos gerar aleatoriamente um grande primo com 1024 bits (i.e. $p \approx 2^{1024}$)

-Passo 1: escolha um inteiro aleatório

$$p \in [2^{1024}, 2^{1025}-1]$$

-Passo 2: teste se $2^{p-1} = 1$ em \mathbb{Z}_p

Se sim, imprima p e pare. Senão, vá para o Passo 1.

- Algoritmo simples (não o melhor).
- Probabilidade[p não primo] < 2⁻⁶⁰

A estrutura de $(Z_p)^*$

■ Teorema (Euler):

(Z_p)* é um grupo cíclico, ou seja

$$\exists g \in (Z_p)^* \text{ tal que } \{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_p)^*$$

- g é chamado um **gerador** de $(Z_p)^*$
- Exemplo:

$$-p=7$$

$$-\{1,3,3^2,3^3,3^4,3^5\} = \{1,3,2,6,4,5\} = (\mathbb{Z}_7)^*$$

■ Nem todo elemento é um gerador:

$$-\{1,2,2^2,2^3,2^4,2^5\} = \{1,2,4\}$$

Ordem

- Para g ∈ $(Z_p)^*$ o conjunto $\{1, g, g^2, g^3, ...\}$ é chamado de **grupo gerado por g**, ou < g>
- **Def**: a ordem de $g \in (Z_p)^*$ é o tamanho de $\langle g \rangle$
 - $\text{ ord}_{p}(g) = |\langle g \rangle| = (\text{menor a} > 0 \text{ t.q. } g^{a} = 1 \text{ em } Z_{p})$
- Exemplos:
 - $-\operatorname{ord}_{7}(3) = 6$; ord $_{7}(2) = 3$; ord $_{7}(1) = 1$
- **Thm** (Lagrange): $\forall g \in (Z_p)^*$: ord_p(g) divide p-1

Euler: generalização de Fermat

- **<u>Def</u>**: Para um inteiro N defina $\phi(N) = |(Z_N)^*|$ (Função ϕ de Euler)
- Exemplos:

```
-\phi(12) = |\{1,5,7,11\}| = 4; \phi(p) = p-1
```

- Para N=p · q: $\phi(N) = N-p-q+1 = (p-1)(q-1)$
- Thm (Euler): $\forall x \in (\mathbf{Z}_N)^*$: $\mathbf{x}^{\phi(N)} = 1$ em \mathbf{Z}_N - Exemplo: $5^{\phi(12)} = 5^4 = 625 = 1$ em \mathbf{Z}_{12}
- Generalização de Fermat. Base do RSA.

MDC

```
mdc(a,b) {
   if (b == 0) return a
   else
    return gcd(b, a mod b);
}

mdc(a,b) {
   while (a != b)
    if (a > b)
       a = a - b
    else b = b - a;
   return a;
```

..

Algoritmo estendido de Euclides

```
/* retorna (d,a,b) onde:
    d = mdc(x,y) e d == x*a + y*b */

ExtendedEuclid (x,y) {
    if (y == 0) return (x,1,0);
    (d1,a1,b1) = ExtendedEuclid(y, x mod y);
    d = d1;
    a = b1;
    b = a1 - (x div y) * b1;
    return (d,a,b);
}
```