Using BERT for Name Entity Recognition

CONTENTS

- Introduction
- Data Loading and Preprocessing
- Tokenization
- Dataset Creation
- Model Architecture
- Training and Evaluation
- Conclusion

INTRODUCTION

What is Named Entity Recognition (NER)?

NER identifies and classifies named entities (people, places, organizations, etc.) in text, enabling computers to understand key information.

DATA LOADING AND PREPROCESSING

	Sentence #	Word	POS	Tag
0	Sentence: 1	Thousands	NNS	0
1	NaN	of	IN	O
2	NaN	demonstrators	NNS	0
3	NaN	have	VBP	О
4	NaN	marched	VBN	О
5	NaN	through	IN	О
6	NaN	London	NNP	B-geo

Getting the dataset ready for training your model

- Read dataset using Pandas
- Fill missing sentence identifiers using forward fill
- Group sentences by their IDs
- Map NER labels and POS tags to integers

TOKENIZATION

Using BertTokenizer

- BERT uses the WordPiece Tokenizer
- WordPiece breaks word to subwords
- Nedd for alingment of NER labels and POS tags with subword tokens
- Pad sequences to fixed length

DATASET CREATION

```
class NERDatasetWithPOS(Dataset):
   def __init__(self, input_ids, attention_masks, labels, pos_tags):
        self.input ids = input ids
       self.attention masks = attention masks
       self.labels = labels
        self.pos_tags = pos_tags
   def len (self):
        return len(self.input ids)
   def __getitem__(self, idx):
        return {
            'input_ids': torch.tensor(self.input_ids[idx]),
            'attention_mask': torch.tensor(self.attention_masks[idx]),
            'labels': torch.tensor(self.labels[idx]),
            'pos tags': torch.tensor(self.pos tags[idx])
```

Defining a custom PyTorch Dataset class

- After completing all the necessary steps we store input IDs, attention masks, labels, and POS tags
- Prepare data for model training using a DataLoader

MODEL ARCHITECTURE

BERT Embeddings

 Input sentence goes through BERT Base Model and creates contextual word embeddings

POS Embeddings

POS tags are converted into dense vectors

MODEL ARCHITECTURE

```
BERTNERWithPOS(
  (bert): BertModel(
    (embeddings): BertEmbeddings(
      (word_embeddings): Embedding(28996, 768, padding_idx=0)
      (position_embeddings): Embedding(512, 768)
      (token_type_embeddings): Embedding(2, 768)
      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
  (pos_embedding): Embedding(26, 768)
  (dropout): Dropout(p=0.2, inplace=False)
  (classifier): Linear(in_features=1536, out features=11, bias=True)
```

Concatenation

 The two embeddings are concatenated along the last dimension

Dropout

 Dropout layer is applied to the combined embeddings to prevent overfitting.

Classification Layer

- Linear layer reduces the dimension
 from 1536 → num_of_labels (11 classes)
- Final logits predict the NER tag for each token.

MODEL ARCHITECTURE

Input Sentence → Tokenization → Dataset → DataLoader → BERTNERWithPOS Model **Forward Pass Loss Calculation Backpropagation (Gradient Descent) Model Weights Update** Repeat for each Epoch

Loss Function

- Uses CrossEntropyLoss
- Special tokens like subwords, [PAD] or [CLS] are ignored from calculation by setting their labels to -100

Optimizer and Learning Rate Scheduler

- Optimizer: AdamW
- Linear Warmup Scheduler gradually increases the learning rate in the first few steps and then decays it.

TRAINING AND EVALUATION

	precision	recall	f1-score	support
geo	0.85	0.91	0.88	7664
gpe	0.95	0.95	0.95	3175
org	0.74	0.70	0.72	3913
per	0.78	0.79	0.78	3389
tim	0.88	0.87	0.87	4049
micro avg	0.84	0.85	0.85	22190
macro avg	0.84	0.84	0.84	22190
weighted avg	0.84	0.85	0.84	22190

F1-score: 0.8445392317033534 Precision: 0.8396905841557749

Recall: 0.851194231635872

CONCLUSION

Limitations

- Computational Cost
- Limited variety of Label Tags

Future Improvements

- Expand the dataset to include more labels
- The POS impact wasn't significant but can be improved by using pre-trained-embeddings
- Try more combinations during hyperparameter tuning

Thank you!