# Assignment 3 MATH223

# Mihail Anghelici 260928404

#### 1 Problem 1

We need to find a linear transformation such that the following equality holds

$$T(x+y) = T(x) + T(y)$$
  $\forall x, y \in \mathbb{R}$ 

Let T: ln(x), indeed ln's propriety of addition makes the transformation linear

$$\ln x + y = \ln xy$$
$$= \ln x + \ln y \qquad \forall x, y \in \mathbb{R}$$

We now prove that T is bijective. Let u and  $w \in V$ , then

$$\ln(u) = \ln(w)$$
 ,Act e on both sides  $e^{\ln(u)} = e^{\ln(w)} \rightarrow u = w$ 

Then we can prove that T is also surjective Let u and w be  $\in V$  and  $k \in \mathbb{R}$ , then

$$\ln(u)^k = k \ln(u)$$
 by proprieties of  $\ln(x)$ 

since k is an arbitrary constant,  $\forall v \in \mathbb{R} \ \exists u \in U \ \text{such that} \ T(u) = v$ . T as defined is then surjective and injective ,consequently it's isomorphic.

### 2 Problem 2

### 2.1 a)

Let  $a \in Im(T - I)$  then  $\exists \ v \in V$  such that

$$(T-I)(v) = a$$
  
since  $(T^2 - I) = (T-I)(T+I)$   
then  $(T+I)(a) = (T-I)(T+I)(v)$   
 $= (T^2 - I)(v)$   
 $= 0 \times v = 0$ 

Therefore a  $\in$  Ker(T + I) and consequently, Im(T - I)  $\subseteq$  Ker(T + I) Similarly,

Let Let  $b \in Im(T + I)$  then  $\exists y \in V$  such that

$$(T+I)(y) = b$$
  
since  $(T^2 - I) = (T-I)(T+I)$   
then  $(T-I)(b) = (T-I)(T+I)(y)$   
 $= (T^2 - I)(y)$   
 $= 0 \times y = 0$ 

Therefore  $b \in Ker(T - I)$  and consequently,  $Im(T + I) \subseteq Ker(T - I)$ 

## 2.2 b)

Let  $u\in Ker(T\text{-}I)\cap Ker(T\text{+}I)$  , then by definition of the intersection ,  $u\in Ker(T\text{-}I)$  and  $u\in Ker(T\text{+}I).$ 

$$\begin{split} (T-I)(u) &= 0 & (T+I)(u) = 0 \\ T(u) - I(u) &= 0 & (T)(u) + I(u) = 0 \\ T(u) &= I(u) & T(u) = -I(u) \\ &= u & = -(u) & \text{,By definition of Id(u)} \end{split}$$

Thus if  $u=-(u) \to u=0$  and so  $Ker(T-I) \cap Ker(T+I) = 0$ . Then since dim(V) = dim(Ker(T-I)) + dim(Ker(T+I)),  $V = Ker(T-I) \oplus Ker(T+I)$ 

## 2.3 c)

Since  $(T^2-I)=0$ , that implies that (T-I)(T+I)=0 which has solutions 1 and -1, resulting in two eigenvectors for T. Then the two eigenvalues are respectively -1 and 1, giving

$$[T]_{\mathbb{B}} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

#### 3 Problem 3

### 3.1 a)



Let  $x, y \in T^{-1}(F)$  then  $\exists u, v \in V$  such that

$$T(x) = u$$
  $T(y) = v$ 

Since 
$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$
  
 $= \alpha u + \beta v \qquad \forall \alpha, \beta \in \mathbb{R} \& u, v \in V$   
then  $(\alpha x + \beta y) \in T^{-1}(F)$   
since  $\alpha x + \beta y \in V$   
then  $T^{-1}(F) \subseteq V$   
Moreover,  $T^{-1}(F)$  is a subspace of  $V$ 

For the second part, Since  $T^{-1}(F)$  is a subspace of V and T: V  $\rightarrow$  W, then

$$\dim(T^{-1}(F)) = \dim(\ker(T) \cap T^{-1}(F)) + \dim(\operatorname{Im}(T) \cap T(T^{-1}(F)))$$

Since  $Ker(T) \subseteq T^{-1}(F)$ , then

$$\operatorname{Ker}(T) \cap T^{-1}(F) = \operatorname{Ker}(T)$$

Moreover,  $T(T^{-1}(F)) = I_{dv}(F) = F$  by definition of the identity map. So we have shown that  $\dim(T^{-1}(F)) = \dim(\operatorname{Ker}(T)) + \dim(F \cap \operatorname{Im}(T))$ 

### 3.2 b)



Let  $x, y \in T(E)$  then  $\exists u, v \in W$  such that

$$T(x)=u \qquad T(y)=v$$
 Since  $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$  
$$=\alpha u+\beta v \qquad \forall \alpha,\beta\in\mathbb{R} \&\ u,v\in$$
 then  $(\alpha x+\beta y)\in T(E)$  since  $\alpha x+\beta y\in W$  then  $T(E)\subseteq W$  Moreover,  $T(E)$  is a subspace of  $W$ 

For the second part, we'll use the rank-nullity theorem

$$\dim(E) = \dim(\operatorname{Ker}(\widetilde{T})) + \dim(\operatorname{Im}(\widetilde{T}))$$

Where  $\dim(\operatorname{Ker}(\widetilde{T})) = \dim(\operatorname{Ker}(T) \cap T(T^{-1}(E))) = \dim(\operatorname{Ker}(T) \cap I_{dv}(E)) = \dim(\operatorname{Ker}(T) \cap E)$  By definition of the identity map.

Moreover,  $\dim(\operatorname{Im}(\widetilde{T})) = \operatorname{Im}(T) \cap T(E)$ .

Since Im(T) = W,  $W \cap T(E) = T(E)$ , by definition of intersection.

Thus, we obtain the following final result

$$\dim(E) = \dim(\operatorname{Ker}(T) \cap E) + \dim(T(E))$$

#### 4 Problem 4

### 4.1 a)

Let  $\mathcal{B} = \{x^2, x, 1\}$  be a basis of  $\mathcal{P}_2$ . Then

$$[T(p_1)]_{\mathcal{B}} \to T(p_1)(x) = x2(x) + 2x = 2x^2 + 2x$$
  
 $[T(p_2)]_{\mathcal{B}} \to T(p_1)(x) = x(1) + 1 = x + 1$   
 $[T(p_3)]_{\mathcal{B}} \to T(p_3)(x) = x(0) + 0 = 0$ 

So then

$$[T]_{\mathcal{B}} = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

### 4.2 b)

Let  $S = \{x^2 - x, x+1, x-1\}$  be a basis of  $\mathcal{P}_2$ . Then

$$[T(p_1)]_{\mathcal{B}} \to T(p_1)(x) = x(2x-1) + 2x - 1 = 2x^2 + x - 1$$
  
 $[T(p_2)]_{\mathcal{B}} \to T(p_1)(x) = x(1+0) + 1 + 0 = x + 1$   
 $[T(p_3)]_{\mathcal{B}} \to T(p_3)(x) = x(1+0) + 1 = x + 1$ 

So then

$$[T]_{\mathcal{S}} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

# 4.3 c)

Let  $S = \{x^2, x, 1\}$  be a basis of  $\mathcal{P}_2$ . Then let us diagonalize this matrix. The characteristic polynominal is

$$p(\lambda) = \det([T]_{s} - \lambda I_{3})$$

$$= \det \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 2 & 1 - \lambda & 1 \\ 0 & 1 & 0 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)((1 - \lambda)(-\lambda)) = 0$$

$$= -\lambda(\lambda^{2} - 3\lambda + 2) = -\lambda(\lambda - 1)(\lambda - 2)$$

Multiplicity is one and the corresponding eigenvalues are 0,1 and 2. The resulting diagonal matrix is

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

We now compute the corresponding eigenvectors. For  $\lambda=0,\,([T]_{\mathscr{B}}-0I_3)$  yields

$$\begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The reduced echelon form gives a = b = 0 and c can take any value, therefore the corresponding eigenvector for  $v_1$  is [0,0,1]

For  $\lambda = 1$ ,  $([T]_{\mathcal{B}} - 1I_3)$  yields

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The reduced echelon form gives a=0 and b=c, therefore the corresponding eigenvector for  $v_2$  is [0,1,1] For  $\lambda=2$ ,  $([T]_{\mathscr{B}}-2I_3)$  yields

$$\begin{bmatrix} 0 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The reduced echelon form gives a = c and b = 2c, therefore the corresponding eigenvector for  $v_3$  is [1, 2, 1] In summary, the eigenvectors are

$$v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \rightarrow P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

Given  $S = \{x^2, x, 1\}$  and P found above, we compute  $\mathcal{B} = \{1, x^2 + x, x^2 + 2x + 1\}$  is a basis of  $\mathcal{P}_2$  such that  $[T]_{\mathcal{B}}$  is diagonal.

#### 5 Problem 5

Let  $S = \{u,v,w\}$  be a basis of V. Then, since T(u)=v+w, T(v)=u+w and T(w)=u+v,

$$[T]_{\mathcal{S}} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

The characteristic polynominal of this matrix is

$$p(\lambda) = \det \begin{vmatrix} 0 - \lambda & 1 & 1 \\ 1 & 0 - \lambda & 1 \\ 1 & 1 & 0 - \lambda \end{vmatrix}$$
$$= -\lambda(\lambda^2 - 1) + \lambda + 1 + 1 + \lambda$$
$$= -\lambda^3 + 3\lambda + 2 = 0$$

This equation has solutions  $\lambda=$  -1 and  $\lambda=2$ . Since  $\dim(V)=3$ , we have 2 distinct eigenvalues but we need 3 for diagonalization. Therefore, we can't find a basis  $\mathcal B$  such that  $[T]_{\mathcal B}$  is diagonalizable.

#### 6 Problem 6

#### 6.1 a)

Let  $V = \mathbb{R}$ ,  $S : V \to V$  and  $T : V \to V$  be both isomorphic.

Let S be defined as  $f_1(x) = x$  and T as  $f_2(x) = -x$ . Both have their corresponding inverse 1/x and -1/x

respectively, hence they're surjective.

$$f_1(x+x) = f_1(2x) = 2x$$
  $f_1(x) + f_1(x) = x + x = 2x$   
 $f_2(x+x) = f_2(2x) = -2x$   $f_2(x) + f_2(x) = -x + -x = -2x$ 

Both have elements uniquely mapped, thus they're injective as well. Since S and T are bijective, they're indeed isomorphisms.

Now we verify if their addition is isomorphic between V as well.

$$(f_1+f_2)(x+x)=f_1(x)+f_2(x)$$
 By proprieties of linear transformations 
$$=x-x$$
 
$$=0$$

Therefore, S+T is not an isomorphism from V into V since it's range is not  $\mathbb R$  .And so the statement is  $\overline{\text{FALSE}}$ 

## 6.2 b)

Let V=R, then  $\dim(V)=n=1$ . We'll show that the statement is false, i.e  $\operatorname{rank}(S)+\operatorname{rank}(T)\neq 1$ . Let  $S:V\to V$  and  $T:V\to V$  be two linear transformations defined as:

$$S(u) = u' \quad \forall u \in \mathbb{R}$$
  
 $T(u) = 0 \quad \forall u \in \mathbb{R}$ 

then, 
$$(S \circ T)(u) = S(T(u)) = S(0) = 0' = 0$$
  
thus, the condition  $S \circ T = 0$  is satisfied

Since the rank of a linear transformation is by definition the dimension of it's image,

$$rank(S) = rank(T) = dim(Im(S)) = dim(Im(T)) = 0$$

Consequently,  $rank(S) + rank(T) = 0 + 0 \ge 1$ . And so the statement is <u>FALSE</u>