

# **Machine Learning Basics**

Datta Lab presentation @ Princeton University

2023-06-29

Martin Lellep martin.lellep@gmail.com

## Purpose of this talk

Teach you the very basic idea behind Machine Learning (ML)

## Course materials are available!



http://lellep.xyz/blog/datta-lab-ml-course.html

## Questions

- 1) Who has **heard** of ML?
- 2) Who has **used** ML in some way?

## Questions

?

Feel free to ask questions!

#### What is ML?

"ML is concerned with computer programs that automatically improve their performance through experience."

- Herbert Simon



Herbert Simon (Turing Award & Nobel Prize)

## What is ML?



# ML in daily life

- Most online services
  - Facebook
  - Google
  - Amazon
- Everywhere in daily life
  - Social media
  - Phones
  - Cars



# ML in daily life



Very popular and in operation for ages already: Spam filters

# Advantages of ML

- ML can adapt to data
- ML can solve problems too hard to formulate a traditional algorithm for

Note: There also exist plenty of downsides, too!

## ML and Al: Not to be mixed up



# Concept of ML

"Learning" - Improving w.r.t. some task with experience

• Improve over task T

• With respect to performance measure P

• Based on experience E

Often called "training"

## Concept of ML example

- Spam filter
- Here:
  - Task: Identify spam emails
  - Performance: accuracy and errors
  - Experience: Database of emails

Labour-intensive and expensive!

Also: Labels of these emails if they were spam or not

## Data: Training, validation and test

- Experience = data that is shown to ML algorithm
  - Might come in a database ...
  - ... or in a stream of incoming data

Not used for training but to inform decisions

- Data is then partitioned
  - Training data: Used to train the ML algorithm
  - Validation data: Check ML algorithm's performance
  - Test data: Task you care about as user

## Samples and features

- Typical setting:
  - Data consists of samples
  - Samples consist of input-output pairs
- Input is sometimes called features



# Types of ML



# Supervised learning

- Given: Training data
  - Input values
  - Desired output
- Goal: For similar input values, generate reasonable output
- Typically: Interpolation, not extrapolation!

## Modi of ML

- 2 major classes:
  - Classification and
  - Regression

- Classification: predict classes of input data
- Regression: predict numerical values of input data
- Multiple classes and numerical values possible

# Modi of ML example

## 2 major classes:

- Classification and
- Regression

#### Classification:

- Identify handwritten zip codes
- Make them machine readable



# Modi of ML example

## 2 major classes:

- Classification and
- Regression

### Regression:

- Given: House ...
  - ... location
  - ... living area
  - ... age
- Predict: Its price

... but wait: doesn't that sound like interpolation? Yes, it does!

# Live demo: phyphox

- Educational app
- Allows access to all your phone's sensors



# Live demo: ML with phyphox

[Live demo – Part 1 - Preparations]

## Support Vector Machines

- Classical ML algorithm
- Can be used for *classification* and *regression*
- Here: Use it for classification
- Purpose for here:
  - Learn a linear decision boundary of data
  - ... in multi-dimensional space
  - ... learn an optimal one (in some sense)

## Support Vector Machines



Descision boundary:

$$w \cdot x - b = 0$$

 Place decision boundary so that margin is maximal

Note: I show here the linear version. But it also works with non-linear features!

# Example: ML with **phyphox**

[Live demo – Part 2 – ML ]

# ML pipelines

- ML application consists of multiple steps
- Certain steps repeat for most ML algorithms
- These steps called "pipeline"

## ML pipelines



## Frameworks

- Most of the heavy lifting is done by Python packages
- Examples:
  - sklearn
  - Tensorflow
  - PyTorch
  - ... many others!

#### Frameworks: Sklearn

- Many ML models available
- Lots of utility functions
- Example: Different classifiers



#### Sources

#### ML:

- https://de.slideshare.net/liorrokach/introduction-to-machine-learning-13809045
- https://medium.com/fintechexplained/machine-learning-algorithm-comparison-f14ce372b855
- https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
- https://towardsdatascience.com/spam-detection-with-logistic-regression-23e3709e522

#### SVM:

- https://en.wikipedia.org/wiki/Support-vector\_machine
- http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
- https://blog.aylien.com/support-vector-machines-for-dummies-a-simple/
- https://en.wikipedia.org/wiki/Support-vector\_machine

#### Sklearn:

https://scikit-learn.org/stable/auto\_examples/classification/plot\_classifier\_comparison.html

#### Get in contact

E-Mail: martin.lellep@gmail.com



Tech Blog:

http://lellep.xyz/blog



LinkedIn:

https://www.linkedin.com/in/martin-lellep-858600152/

#### Questions



Feel free to ask questions!

#### Next session

Neural networks & deep learning

# Backup slides

# Unsupervised learning

### Examples:

- K-means clustering
- PCA
- Autoencoders
- Generative Neural Networks

# Reinforcement learning

#### Examples:

- Q-learning
- State Action Reward State Action (SARSA)