Performance measure

Performance metrics

- Sensitivity/specificity
- Precision/Recall, <u>F1 score</u>
- ROC curve, <u>AUC</u>

SENSITIVITY & SPECIFICITY

Performance measure

- For a test data X, measure of closeness between true label Y_{true} and predicted Y_{pred}
 - Rather than how fast it takes to classify or learn the classifier, scalability, etc.
- Confusion matrix

Binary Classification

1100 test images

Classifier 1

	Predicted '2'	Predicted 'Not 2'
True '2'	70	30
True 'Not 2'	140	860

Classifier 2

	Predicted '2' Predicted	
True '2'	20	80
True 'Not 2'	50	950

Which classifier is better?

Performance measure

- The class of interest is known as the positive class
- All the others are known as negative
- True Positive (TP): Correctly classified as the class of interest
- False Negative (FN): Incorrectly classified as not the class of interest
- False Positive (FP): Incorrectly classified as the class of interest
- True Negative (TN): Correctly classified as not the class of interest

	Predicted class		
		Class=1	Class=0
Actual class	Class=1	TP	FN
ciass	Class=0	FP	TN

Actual class	Predicted class
1	0
0	0
0	0
1	1
1	0
0	0
0	0
0	1

X
0
0
0
X
0
0
X

FN
TN
TN
TP
FN
TN
TN
FP
· · · · · · · · · · · · · · · · · · ·

$$Accuracy = \frac{5}{8} = 62.5\%$$

Metrics for Performance Evaluation

	Predicted class		
		Class=1	Class=0
Actual class	Class=1	А	В
	Class=0	С	D

Widely-used metric:

$$Accuracy = \frac{A+D}{A+B+C+D} = \frac{TP+TN}{TP+TN+FP+FN}$$

Num. correctly classified / total num. of test data

Errror = 1 - Accuracy

Limitation of Accuracy

- In binary classification
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If a classifier predicts everything to be class 0, accuracy is:
 - Accuracy is misleading because the classifier does not detect any Class 1 example

	Predicted class		
		Class=1	Class=0
Actual class	Class=1		
	Class=0		

Sensitivity & Specificity

	Predicted class		
		Class=1	Class=0
Actual class	Class=1	TP	FN
	Class=0	FP	TN

$$Sensitivity = rac{TP}{TP + FN}$$
 True Positive rate

$$Specificity = rac{TN}{FP + TN}$$
 True Negative rate

Example

Confusion matrix

	Predicted class		
		Class=1	Class=0
Actual class	Class=1	4	1
	Class=0	2	3

- Accuracy=
- Misclassification error=1-Accuracy=
- Sensitivity (true positive, recall) =
- Specificity (true negative)=

$$Sensitivity = \frac{TP}{TP + FN} \quad \text{True Positive rate}$$

$$Specificity = \frac{TN}{FP + TN} \quad \text{True Negative rate}$$

- High sensitivity = Few false negatives
- High specificity = Few false positives

Tradeoff

e.g. airport alarm system

PRECISION AND RECALL

Precision & Recall

	Predicted class		
		Class=1	Class=0
Actual class	Class=1	TP	FN
	Class=0	FP	TN

$$Precision = rac{TP}{TP + FP}$$

$$Recall = rac{TP}{TP + FN} \qquad \mbox{(= Sensitivity)}$$

Precision

Precision

$$Precision = \frac{TP}{TP + FP}$$

- In a document retrieval example
 - the ratio between the documents that match the user expectation and the total number of documents returned by the system.
 - A system can cheat the precision score up to 100% by only returning documents about which it is extremely confident. By doing this, the amount of returned documents is severely reduced
 - → Consider Recall together with Precision

Recall

- The ratio between the documents that match the user expectation and the total number of expected documents from the user.
- How much good information that a system really misses

(* Precision: how much good information in the search result the user can use)

F1 score

Harmonic mean of precision and recall

$$F1\ score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Between 0 and 1

Classification Performances

Confusion matrix

	Predicted class		
		Class=1	Class=0
Actual class	Class=1	4	1
	Class=0	2	3

- Precision =
- Recall =
- F1 score =

Performance metrics

Predicted class P NSensitivity True False Recall Positives Negatives (TP) (FN) Actual Class False True Positives Negatives Specificity (TN) Precision

Which one to use

- Depends on the problem domain, e.g.
 - Search or information retrieval domain
 - precision & recall
 - Medical predictive system
 - Precision, recall, and specificity

ROC CURVE

• What if you change a threshold, or a hyperparameter to your algorithm?

ROC (Receiver Operating Characteristic) CUrve

 ROC curve plots (1-specificity) (or FP rate) on the x-axis against sensitivity (or TP rate) on the y-axis

AUC: area under the curve

ROC (Receiver Operating Characteristic) CUrve

 ROC curve plots (1-specificity) (or FP rate) on the x-axis against sensitivity (or TP rate) on the y-axis

AUC: area under the curve

How to construct an ROC curve

+1	Instance	P(+ A)	True Class
+	1	0.95	+
+	2	0.93	+
+	3	0.87	2-
+	4	0.85	n=
+	5	0.85	ro =
_	6	0.85	+
	7	0.76	=
	8	0.53	+
	9	0.43	-
	10	0.25	+

Use classifier that produces
posterior probability for each test
instance P(+|A)

 Sort the instances according to P(+|A) in decreasing order

 Apply threshold at each unique value of P(+|A)

- Count TP,FP,TN,FN at each threshold
- Compute TP rate, FP rate

How to construct an ROC curve

Instance	Sorted	True Class
1	28.9	1
2	23.4	0
3	23.2	1
4	21.7	1
5	21.6	1
6	21.5	0
7	19.9	1
8	15.7	0
9	10	0
10	8.9	0
	1 2 3 4 5 6 7 8 9	1 28.9 2 23.4 3 23.2 4 21.7 5 21.6 6 21.5 7 19.9 8 15.7 9 10

TP	FN	TN	FP	Sensitivity	Specificity
1	4	5	0	0.2	1
1	4	4	1	0.2	0.8

	Class	+		+				+		+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	8.0	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	8.0	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC Curve:

Example

ROC curves

• Typically,

- AUC value between 0 and 1
 - Random guessing: 0.5
 - Perfect classification: 1

Precision-recall curve

MULTICLASS CLASSIFICATION

Multi-class Classification: MNIST

Scoring metrics

 Averaging methods to score multiclass problems via one-vs.all classification

- Micro-average
- Macro-average

Micro-averaging

 Calculated from the individual TPs, TNs, FPs, and FNs

Micro-precision =
$$(TP_1 + ... TP_k)/(TP_1 + ... TP_k + FP_1 + ... FP_k)$$

Useful if we want to weight each sample equally

Macro-averaging

 Calculated as the average scores of the k different classes (or systems)

Macro-precision = $(Pre_1 + ... Pre_k)/k$

Weights all classes equally to evaluate the overall performance

Micro-F1: Example

Predicted

True

	Cat	Fish	Hen
Cat	4	1	1
Fish	6	2	2
Hen	3	0	6

• Looking at all classes together:

4+2+6 = 12 correctly predicted sample (TP = 12)

FP=6+3+1+0+1+2=13

Micro-precision = 12/(12+13)=48.0

Micro-recall = ?

Macro-F1: Example

Predicted

True

	Cat	Fish	Hen
Cat	4	1	1
Fish	6	2	2
Hen	3	0	6

Class-wise result

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

F1-score(Cat) = $2 \times (30.8\% \times 66.7\%) / (30.8\% + 66.7\%) = 42.1\%$

Macro-F1: Example

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

Macro-F1 =
$$(42.1\% + 30.8\% + 66.7\%) / 3 = 46.5\%$$

Macro-precision =
$$(31\% + 67\% + 67\%) / 3 = 54.7\%$$

Macro-recall =
$$(67\% + 20\% + 67\%) / 3 = 51.1\%$$

Weighted macro-average

- Calculated by weighting the score of each class by the number of true instances
- Useful when dealing with class imbalances

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

Weighted-precision= $(6 \times 30.8\% + 10 \times 66.7\% + 9 \times 66.7\%)/25 = 58.1\%$ Weighted-recall = $(6 \times 66.7\% + 10 \times 20.0\% + 9 \times 66.7\%)/25 = 48.0\%$

Weighted-F1 = $(6 \times 42.1\% + 10 \times 30.8\% + 9 \times 66.7\%) / 25 = 46.4\%$

Class imbalance problem

- One or multiple classes are over-represented (have much more samples than others)
- Common problem when working with realworld data
 - Spam filtering, fraud detection, disease screening

Dealing with class imbalances

- Assign a larger penalty to wrong predictions on the minority class
- Upsampling the minority class, downsampling the majority class, or generation of synthetic training examples
- No universal best solution
 - Try different methods, evaluate, and choose the best one for your own application