

B. E.(with Credits)-Regular-Semester 2012-Electronics Engineering Sem. - IV **EN 402 Digital Circuits & Fundamentals of Microprocessor**

P. Pages: 2

Time : Three Hours Max. Marks : 80

Notes:

- 1. All questions carry as indicated marks.
- 2. Assume suitable data wherever necessary.
- 3. Illustrate your answers wherever necessary with the help of neat sketches.
- **1.** a) Simplify the following using k-map.

8

- i) $f(A, B, C, D, E) = \Sigma m (0, 3, 4, 6, 8, 20, 21) + d(7, 9, 10, 25, 27, 31)$
- ii) $f(A, B, C, D) = A\overline{B}CD + \overline{A}BC + AC\overline{D} + B\overline{C}\overline{D} + \overline{C}D$
- b) Design a BCD to excess-3 code converter. Assume 4-bit input arrive at its input terminal.

OR

- **2.** a) Design a combinational circuit that will accept 4-bits at binary and generate an output y. Y = 1 when inputs are even number and Y = 0 for otherwise.
 - b) Draw the block diagram of full-adder with the help of truth table obtain the logic equations for each output of the full adder. Draw the logic diagram with the help of logic equations.
- **3.** a) Design a combinational circuit for 2-bit magnitude comparator. **8**
 - b) With the help of suitable Multiplexer implement the following function $f(A, B, C, D_1) = \sum m(0, 1, 3, 6, 8, 9, 11, 13)$ consider D as a input line and A, B and C as a selection lines to the MUX.

OR

4.	a)	What is parity generator? Design a 3-bit even parity generator and checker.	8
	b)	Design a priority encoder such that D_1 having highest priority followed by D_0, D_2 and D_3 .	8
5.	a)	What is race around condition of the flip-flop? How will you overcome from this condition? Explain.	8
	b)	Convert JK flip-flop to SR flip-flop.	8
6.		OR Design a 3-bit Gray code up-down counter. Consider M as a control signal. If $M=1$, counter acts as upcounter and if $M=0$, counter acts as downcounter.	16
7.	a)	Explain different addressing modes of microprocessor 8085A. Explain all with suitable example.	8
	b)	Draw and explain the timing diagram of ADI 08H	8
		OR	
8.	a)	Explain the flag register of μp 8085. With the aid of suitable example explain how the flip-flops of flag-register are set/reset.	8
	b)	Explain the following instructions of μp 8085. i) XCHG ii) ANA. R iii) INX H iv) MOV C, M.	8
9.	a)	Explain the interrupts of µp 8085 in detail.	8
	b)	Explain the block diagram of 8255 PPI.	8
		OR	
10.	a)	Write and explain the complete format of I/O mode of 8255 PPI and Hence write an assembly language program for the following. P_A as I/P port P_B as O/P port with handshake PC_U as O/P port P_L as I/P port	8
	b)	Write the format of BSR mode of 8255 PPI and Hence write an assembly language Program to blink LEDs on PC4	8
