

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Edgecore Networks Corporation	
Applicant Address	No.1 Creation Rd. III Hsinchu Science Park, Hsinchu, 30077 Taiwa	
FCC ID	YZKECW7211L	
Manufacturer's company	Accton Networks Corporation	
Manufacturer Address	No.1 Creation Rd. III Hsinchu Science Park, Hsinchu, 30077 Taiwan	

Product Name	802.11ac Cloud-based Indoor Dual Band Enterprise Acess Point
Brand Name	Edge-corE
Model No.	ECW7211-L
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Received Date	Nov. 18, 2014
Final Test Date	Jan. 15, 2015
Submission Type	Original Equipment

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01, KDB662911 D01 v02r01, KDB644545 D03 v01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. V	/ERIF	ICATION OF COMPLIANCE	1
2. S	UMN	MARY OF THE TEST RESULT	2
3. 6	ENE	RAL INFORMATION	3
3	3.1.	Product Details	3
3	3.2.	Accessories	4
3	3.3.	Table for Filed Antenna	5
3	3.4.	Table for Carrier Frequencies	6
3	3.5.	Table for Test Modes	7
3	3.6.	Table for Testing Locations	9
3	3.7.	Table for Supporting Units	9
3	3.8.	Table for Parameters of Test Software Setting	10
3	3.9.	EUT Operation during Test	10
3	3.10.	Duty Cycle	10
3	3.11.	Test Configurations	11
4. T	EST R	result	13
4	1.1.	AC Power Line Conducted Emissions Measurement	13
4	1.2.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	17
4	1.3.	6dB Spectrum Bandwidth Measurement	28
4	1.4.	Maximum Conducted Output Power Measurement	32
4	1.5.	Power Spectral Density Measurement	35
4	1.6.	Radiated Emissions Measurement	44
4	1.7.	Band Edge Emissions Measurement	69
4	1.8.	Frequency Stability Measurement	78
4	1.9.	Antenna Requirements	80
5. L	IST C	OF MEASURING EQUIPMENTS	81
6. N	/IEAS	UREMENT UNCERTAINTY	83
APP	END	IX A. TEST PHOTOS	~ A5
APP	END	IX B. MAXIMUM PERMISSIBLE EXPOSURE	~ B3
A DD	ENID	IV.C. DADIATED EMISSIONI CO LOCATIONI DEDODT	~ 2

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4D0491AB	Rev. 01	Initial issue of report	Feb. 10, 2015

Page No. : ii of ii Issued Date : Feb. 10, 2015

Project No: CB10401128

1. VERIFICATION OF COMPLIANCE

Product Name: 802.11ac Cloud-based Indoor Dual Band Enterprise Acess Point

Brand Name : Edge-corE

Model No. : ECW7211-L

Applicant: Edgecore Networks Corporation

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 18, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 83

Issued Date: Feb. 10, 2015

Page No.

: 2 of 83

Issued Date : Feb. 10, 2015

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	10.35 dB			
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-			
4.3	15.407(e)	6dB Spectrum Bandwidth	Complies	•			
4.4	15.407(a)	Maximum Conducted Output Power	Complies	4.13 dB			
4.5	15.407(a)	Power Spectral Density	Complies	0.27 dB			
4.6	15.407(b)	Radiated Emissions	Complies	3.27 dB			
4.7	15.407(b)	Band Edge Emissions	Complies	0.07 dB			
4.8	15.407(g)	Frequency Stability	Complies	-			
4.9	15.203	Antenna Requirements	Complies	-			

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	IEEE 802.11a/n/ac: WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	IEEE 802.11a: OFDM
	IEEE 802.11n/ac: see the below table
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n/ac: see the below table
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth
	2 for 80MHz bandwidth
Channel Band Width (99%)	Band 1:
	IEEE 802.11a: 17.16 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT20): 18.24 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT40): 37.40 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT80): 76.00 MHz
	Band 4:
	IEEE 802.11a: 17.40 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT20): 18.00 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT40): 37.60 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT80): 76.80 MHz
Maximum Conducted Output Power	Band 1:
	IEEE 802.11a: 25.87 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT20): 25.87 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT40): 25.05 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT80): 16.55 dBm
	Band 4:
	IEEE 802.11a: 23.62 dBm
	IEEE 802.11ac MC\$0/Nss1 (VHT20): 22.44 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT40): 24.02 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT80): 17.03 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Page No.

: 3 of 83

Issued Date : Feb. 10, 2015

Items	Description		
Communication Mode		☐ Frame Based	
Beamforming Function	☐ With beamforming		
Operating Mode	Outdoor access point		
	Fixed point-to-point access points		
	Mobile and portable client devices		

Antenna and Band width

Antenna	Three (TX)			
Band width Mode	20 MHz	40 MHz	80 MHz	
IEEE 802.11a	V	Х	Х	
IEEE 802.11n	V	V	Х	
IEEE 802.11ac	V	V	V	

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	3	MC\$ 0-23
802.11n (HT40)	3	MC\$ 0-23
802.11ac (VHT20)	3	MCS 0-9/Nss1-3
802.11ac (VHT40)	3	MCS 0-9/Nss1-3
802.11ac (VHT80)	3	MCS 0-9/Nss1-3

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

Power	Brand	Model	Rating
A damba y	ADD	WA 20010EU	INPUT: 100-240V~50-60Hz, 0.8A Max.
Adapter	APD	WA-30B12FU	OUTPUT: 12V, 2.5A
		Others	
Cradle*1			

Report Format Version: Rev. 01 Page No. : 4 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

3.3. Table for Filed Antenna

Ant.	Brand	Model Name An	Antenna Type	Connector	Gain (dBi)	
AIII.	ыша	Wodel Name	Ariierina iype	Connector	2.4GHz	5GHz
1	LYNwave	ALA130-051023	PCB Antenna	I-PEX	5.00	-
2	LYNwave	ALA130-051023	PCB Antenna	I-PEX	5.10	-
3	LYNwave	ALA130-051023	PCB Antenna	I-PEX	4.82	-
4	LYNwave	ALA120-091025	PCB Antenna	I-PEX	-	5.72
5	LYNwave	ALA120-091025	PCB Antenna	I-PEX	-	5.77
6	LYNwave	ALA120-091025	PCB Antenna	I-PEX	-	5.69

Note: The EUT has six antennas (3TX, 3RX).

For 2.4GHz

For IEEE 802.11b/g/n mode:

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

For 5GHz

For IEEE 802.11a/n/ac mode:

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

Chain 2 (Connect to Ant. 2 for 2.4G) Chain 5 (Connect to Ant. 5 for 5G)

Chain 3 (Connect to Ant. 3 for 2.4G)

Chain 1 (Connect to Ant. 1 for 2.4G)

Chain 4 (Connect to Ant. 4 for 5G)

Chain 6 (Connect to Ant. 6 for 5G)

Report Format Version: Rev. 01 FCC ID: YZKECW7211L

Page No. : 5 of 83

Issued Date : Feb. 10, 2015

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

For 80MHz bandwidth systems, use Channel 42, 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

Page No. : 6 of 83 Issued Date : Feb. 10, 2015

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Мо	de	Data Rate	Channel	Chain
AC Power Conducted Emission	CTX		-	-	-
Max. Conducted Output Power	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
Power Spectral Density	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
26dB Spectrum Bandwidth &	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	4+5+6
99% Occupied Bandwidth				57/165	
Measurement	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
6dB Spectrum Bandwidth	11a/BPSK	Band 4	6Mbps	149/157/165	4+5+6
Measurement	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	4+5+6
	11ac VHT40	Band 4	MCS0/Nss1	151/159	4+5+6
	11ac VHT80	Band 4	MCS0/Nss1	155	4+5+6
Radiated Emission Below 1GHz	CTX		-	-	-
Radiated Emission Above 1GHz	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
		•			•

Page No. : 7 of 83 Issued Date : Feb. 10, 2015

Band Edge Emission	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	4+5+6
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
Frequency Stability	Un-modulatio	Un-modulation		40	4+5+6

Note: The PoE is for measurement only, would not be marketed.

The PoE information as below:

Power	Brand	Model	Rating
D. F.	MOTOROLA	70010	INPUT: 100-240V~50-60Hz, 0.8A
PoE	MOTOROLA	PD-7001G	OUTPUT: 55V, 0.570A

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. CTX-EUT + Adapter

For Radiated Emission test:

Mode 1. EUT laying + Adapter-2.4GHz function

Mode 2. EUT laying + Adapter-5GHz function

Mode 2 has been evaluated to be the worst case among Mode $1\sim2$, thus measurement for Mode 3 will follow this same test mode.

Mode 3. EUT standing + Adapter-5GHz function

Mode 3 has been evaluated to be the worst case among Mode $1\sim3$, thus measurement for Mode 4 will follow this same test mode.

Mode 4. EUT standing + PoE-5GHz function

For Radiated Emission test below 1GHz:

Mode 3 generated the worst test result, so it was recorded in this report.

For Radiated Emission test above 1 GHz:

Mode 3 generated the worst test result for Radiated emission below 1GHz test, thus the measurement for Radiated emission above 1GHz test will follow this same test configuration.

For Co-location MPE and Radiated Emission Co-location Test:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to Appendix B) and Radiated Emission Co-location (please refer to Appendix C) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

Report Format Version: Rev. 01 Page No. : 8 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

3.6. Table for Testing Locations

Test Site Location						
Address:	No.	8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.C	> .
TEL:	886	5-3-656-9065				
FAX:	886-3-656-9085					
Test Site N	О.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-0	СВ	SAC	Hsin Chu	262045	IC 4086D	-
CO01-C	В	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	3	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	DoC

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D420	E2KWM3945ABG

Report Format Version: Rev. 01 Page No. : 9 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version		Mtool 2.0.1.0						
	Test Frequency (MHz)							
Mode	NCB: 20MHz			20MHz				
	5180 MHz	5180 MHz 5200 MHz		5240 MHz	5745 MHz	5785 MHz		5825 MHz
802.11a	68	70		82	69	7	7	79
802.11ac MCS0/Nss1 VHT20	74	74 71		82	66	72		74
Mode				NCB: 4	40MHz			
802.11ac MCS0/Nss1 VHT40	5190 MHz 5		5	230 MHz	5755 MHz		5795 MHz	
SSZ. FIGS WISSS/NOOF VIII-45	60	60 82 56				82		
Mode	NCB: 80MHz							
802.11ac MCS0/Nss1 VHT80	5210 MHz			5775 MHz				
332.11dc W300/1001 VIII00		4	6		50			

3.9. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

3.10. Duty Cycle

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Mode	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.059	2.083	98.85%	0.05	0.01
802.11ac MCS0/Nss1 VHT20	1.924	1.946	98.84%	0.05	0.01
802.11ac MCS0/Nss1 VHT40	0.923	0.971	95.05%	0.22	1.08
802.11ac MCS0/Nss1 VHT80	0.462	0.487	94.74%	0.23	2.17

Report Format Version: Rev. 01 Page No. : 10 of 83 FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

: 11 of 83

3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

3.11.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length
1	RJ-45 cable	No	10m
2	Power cable	No	1.5m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 13 of 83

FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 01
 Page No.
 : 14 of 83

 FCC ID: YZKECW7211L
 Issued Date
 : Feb. 10, 2015

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	25°C	Humidity	54%
Test Engineer	Deven Huang	Phase	Line
Configuration	CTX		

		over	Limit	Kead	LISN	cable		
Freq	Level	Limit	Line	Level	Factor	Loss	Remark	Pol/Phase
MHz	dBuV	dB	dBuV	dBuV	dB	dB		
0.17034	44.96	-19.99	64.94	35.02	9.77	0.16	QP	LINE
0.17034	33.93	-21.02	54.94	23.99	9.77	0.16	AVERAGE	LINE
0.23162	38.26	-24.14	62.39	28.31	9.78	0.17	QP	LINE
0.23162	26.33	-26.07	52.39	16.38	9.78	0.17	AVERAGE	LINE
0.41705	33.46	-14.05	47.51	23.51	9.77	0.18	AVERAGE	LINE
0.41705	43.74	-13.77	57.51	33.79	9.77	0.18	QP	LINE
0.43281	43.69	-13.51	57.20	33.74	9.77	0.18	QP	LINE
0.43281	33.29	-13.91	47.20	23.34	9.77	0.18	AVERAGE	LINE
0.44679	42.94	-13.99	56.93	32.99	9.77	0.18	QP	LINE
0.44679	27.12	-19.81	46.93	17.17	9.77	0.18	AVERAGE	LINE
0.70096	34.28	-21.72	56.00	24.32	9.77	0.19	QP	LINE
0.70096	22.56	-23.44	46.00	12.60	9.77	0.19	AVERAGE	LINE
	MHz 0.17034 0.17034 0.23162 0.23162 0.41705 0.41705 0.43281 0.43281 0.44679 0.70096	MHz dBuV 0.17034 44.96 0.17034 33.93 0.23162 38.26 0.23162 26.33 0.41705 33.46 0.41705 43.74 0.43281 43.69 0.43281 33.29 0.44679 42.94 0.44679 27.12 0.70096 34.28	MHz dBuV dB 0.17034 44.96 -19.99 0.17034 33.93 -21.02 0.23162 38.26 -24.14 0.23162 26.33 -26.07 0.41705 33.46 -14.05 0.41705 43.74 -13.77 0.43281 43.69 -13.51 0.43281 33.29 -13.91 0.44679 42.94 -13.99 0.44679 27.12 -19.81 0.70096 34.28 -21.72	Freq Level Limit Line MHz dBuV dB dBuV 0.17034 44.96 -19.99 64.94 0.17034 33.93 -21.02 54.94 0.23162 38.26 -24.14 62.39 0.23162 26.33 -26.07 52.39 0.41705 33.46 -14.05 47.51 0.41705 43.74 -13.77 57.51 0.43281 43.69 -13.51 57.20 0.43281 33.29 -13.91 47.20 0.44679 42.94 -13.99 56.93 0.44679 27.12 -19.81 46.93 0.70096 34.28 -21.72 56.00	Freq Level Limit Line Level MHz dBuV dB dBuV dBuV 0.17034 44.96 -19.99 64.94 35.02 0.17034 33.93 -21.02 54.94 23.99 0.23162 38.26 -24.14 62.39 28.31 0.23162 26.33 -26.07 52.39 16.38 0.41705 33.46 -14.05 47.51 23.51 0.41705 43.74 -13.77 57.51 33.79 0.43281 43.69 -13.51 57.20 33.74 0.43281 33.29 -13.91 47.20 23.34 0.44679 42.94 -13.99 56.93 32.99 0.44679 27.12 -19.81 46.93 17.17 0.70096 34.28 -21.72 56.00 24.32	Freq Level Limit Line Level Factor MHz dBuV dB dBuV dBuV dB 0.17034 44.96 -19.99 64.94 35.02 9.77 0.17034 33.93 -21.02 54.94 23.99 9.77 0.23162 38.26 -24.14 62.39 28.31 9.78 0.41705 33.46 -14.05 47.51 23.51 9.77 0.41705 43.74 -13.77 57.51 33.79 9.77 0.43281 43.69 -13.51 57.20 33.74 9.77 0.43281 33.29 -13.91 47.20 23.34 9.77 0.44679 42.94 -13.99 56.93 32.99 9.77 0.70096 34.28 -21.72 56.00 24.32 9.77	Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.17034 44.96 -19.99 64.94 35.02 9.77 0.16 0.17034 33.93 -21.02 54.94 23.99 9.77 0.16 0.23162 38.26 -24.14 62.39 28.31 9.78 0.17 0.23162 26.33 -26.07 52.39 16.38 9.78 0.17 0.41705 33.46 -14.05 47.51 23.51 9.77 0.18 0.43281 43.69 -13.51 57.20 33.74 9.77 0.18 0.43281 33.29 -13.51 57.20 33.34 9.77 0.18 0.44679 42.94 -13.99 56.93 32.99 9.77 0.18 0.44679 27.12 -19.81 46.93 17.17 9.77 0.18 0.70096 34.28 -2	Freq Level Limit Line Level Factor Loss Remark MHz dBuV dB dBuV dB dB

Report Format Version: Rev. 01
FCC ID: YZKECW7211L

Page No. : 15 of 83 Issued Date : Feb. 10, 2015

Temperature	25°C	Humidity	54%
Test Engineer	Deven Huang	Phase	Neutral
Configuration	СТХ		

			Over	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.17125	39.76	-15.14	54.90	29.68	9.92	0.16	AVERAGE	NEUTRAL
2	0.17125	50.44	-14.46	64.90	40.36	9.92	0.16	QP	NEUTRAL
3 @	0.17584	44.33	-10.35	54.68	34.25	9.92	0.16	AVERAGE	NEUTRAL
4	0.17584	51.28	-13.40	64.68	41.20	9.92	0.16	QP	NEUTRAL
5	0.19039	49.92	-14.10	64.02	39.84	9.92	0.16	QP	NEUTRAL
6	0.19039	40.32	-13.70	54.02	30.24	9.92	0.16	AVERAGE	NEUTRAL
7	0.19654	28.71	-25.04	53.76	18.63	9.92	0.16	AVERAGE	NEUTRAL
8	0.19654	44.69	-19.06	63.76	34.61	9.92	0.16	QP	NEUTRAL
9	0.23910	30.39	-21.74	52.13	20.30	9.92	0.17	AVERAGE	NEUTRAL
10	0.23910	39.82	-22.31	62.13	29.73	9.92	0.17	QP	NEUTRAL
11	0.34830	43.10	-15.90	59.00	33.01	9.91	0.18	QP	NEUTRAL
12	0.34830	33.31	-15.69	49.00	23.22	9.91	0.18	AVERAGE	NEUTRAL
13	0.40831	44.96	-12.72	57.68	34.87	9.91	0.18	QP	NEUTRAL
14	0.40831	35.28	-12.40	47.68	25.19	9.91	0.18	AVERAGE	NEUTRAL
15	0.42373	46.21	-11.16	57.37	36.12	9.91	0.18	QP	NEUTRAL
16	0.42373	35.96	-11.41	47.37	25.87	9.91	0.18	AVERAGE	NEUTRAL
17	0.43742	45.73	-11.38	57.11	35.64	9.91	0.18	QP	NEUTRAL
18	0.43742	34.44	-12.67	47.11	24.35	9.91	0.18	AVERAGE	NEUTRAL
19	0.45155	43.14	-13.70	56.85	33.05	9.91	0.18	QP	NEUTRAL
20	0.45155	25.10	-21.74	46.85	15.01	9.91	0.18	AVERAGE	NEUTRAL
21	0.51278	27.58	-18.42	46.00	17.48	9.91	0.19	AVERAGE	NEUTRAL
22	0.51278	40.86	-15.14	56.00	30.76	9.91	0.19	QP	NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss.

Issued Date : Feb. 10, 2015

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency	> 26dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW > RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth			
Spectrum Parameters	Setting			
Span	1.5 times to 5.0 times the OBW			
RBW	1 % to 5 % of the OBW			
VBW	≥ 3 x RBW			
Detector	Peak			
Trace	Max Hold			

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
 Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.6.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 17 of 83

 FCC ID: YZKECW7211L
 Issued Date : Feb. 10, 2015

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	26°C	Humidity	63%
Test Engineer	Mars Lin		

Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5180 MHz	19.92	17.04
	5200 MHz	19.92	17.04
802.11a	5240 MHz	24.12	17.16
602.11d	5745 MHz	19.80	17.04
	5785 MHz	22.80	17.28
	5825 MHz	23.88	17.40
	5180 MHz	20.40	18.00
	5200 MHz	20.64	18.00
802.11ac	5240 MHz	26.16	18.24
MCS0/Nss1 VHT20	5745 MHz	20.28	18.00
	5785 MHz	23.88	18.00
	5825 MHz	24.96	18.00
	5190 MHz	41.00	37.00
802.11ac	5230 MHz	70.00	37.40
MCS0/Nss1 VHT40	5755 MHz	41.00	37.00
	5795 MHz	71.20	37.60
802.11ac	5210 MHz	81.60	76.00
MCS0/Nss1 VHT80	5775 MHz	81.60	76.80

Page No. : 18 of 83 Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5180 MHz

Date: 8.JAN.2015 09:01:43

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

Date: 8.JAN.2015 09:05:42

Report Format Version: Rev. 01 FCC ID: YZKECW7211L

Page No. : 19 of 83

Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

Date: 8.JAN.2015 09:07:00

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5745 MHz

Date: 8.JAN.2015 09:08:24

Report Format Version: Rev. 01 FCC ID: YZKECW7211L

Page No. : 20 of 83 Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a /Chain 4 + Chain 5 + Chain 6 / 5785 MHz

Date: 8.JAN.2015 09:09:09

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5825 MHz

Date: 8.JAN.2015 09:09:55

Report Format Version: Rev. 01 FCC ID: YZKECW7211L

Page No. : 21 of 83

Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5180 MHz

Date: 8.JAN.2015 09:12:37

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

Date: 8.JAN.2015 09:17:39

Report Format Version: Rev. 01
FCC ID: YZKECW7211L

Page No. : 22 of 83 Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

Date: 8.JAN.2015 09:18:27

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5745 MHz

Date: 8.JAN.2015 09:19:50

Report Format Version: Rev. 01 Page No. : 23 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5785 MHz

Date: 8.JAN.2015 09:21:13

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5825 MHz

Date: 8.JAN.2015 09:22:04

Report Format Version: Rev. 01 Page No. : 24 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5190 MHz

Date: 8.JAN.2015 09:26:29

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5230 MHz

Date: 8.JAN.2015 09:28:07

Report Format Version: Rev. 01 Page No. : 25 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5755 MHz

Date: 8.JAN.2015 09:29:39

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5795 MHz

Date: 8.JAN.2015 09:30:20

Report Format Version: Rev. 01 Page
FCC ID: YZKECW7211L Issue:

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Date: 8.JAN.2015 09:31:58

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5775 MHz

Date: 8.JAN.2015 09:33:17

Report Format Version: Rev. 01 Page No. : 27 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.3. 6dB Spectrum Bandwidth Measurement

4.3.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

undryzer.			
6dB Spectrum Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 6dB Bandwidth		
RBW	approximately 1% of the emission bandwidth		
VBW	VBW > RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

4.3.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (C) Emission Bandwidth.
- 3. Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.6.4.

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 28 of 83

FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.3.7. Test Result of 6dB Spectrum Bandwidth

Temperature	26°C	Humidity	63%
Test Engineer	Mars Lin		

Mode	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	5745 MHz	15.76	500	Complies
802.11a	5785 MHz	16.00	500	Complies
	5825 MHz	15.68	500	Complies
802.11ac	5745 MHz	16.72	500	Complies
MCS0/Nss1 VHT20	5785 MHz	16.64	500	Complies
	5825 MHz	17.28	500	Complies
802.11ac	5755 MHz	27.20	500	Complies
MCS0/Nss1 VHT40	5795 MHz	35.84	500	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	75.20	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Page No. : 29 of 83 Issued Date : Feb. 10, 2015

6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5825 MHz

Date: 15.JAN.2015 02:16:24

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5785 MHz

Date: 15.JAN.2015 02:04:38

Report Format Version: Rev. 01 Page No. : 30 of 83 FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5755MHz

Date: 15.JAN.2015 02:28:46

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5775 MHz

Date: 15.JAN.2015 02:30:48

Report Format Version: Rev. 01 FCC ID: YZKECW7211L

Page No. : 31 of 83 Issued Date : Feb. 10, 2015

4.4. Maximum Conducted Output Power Measurement

4.4.1. Limit

	Frequency Band	Limit
5.18	5~5.25 GHz	
Ope	erating Mode	
	Outdoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	Indoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	Fixed point-to-point access points	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
	Mobile and portable client devices	The maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

\square	5.725~5.85 GHz	The maximum conducted output power over the
	3.723° 3.03 GHZ	
		frequency band of operation shall not exceed 1 W
		(30dBm). If transmitting antennas of directional gain
		greater than 6 dBi are used, both the maximum
		conducted output power and the maximum power
		spectral density shall be reduced by the amount in dB
		that the directional gain of the antenna exceeds 6 dBi.
		However, fixed point-to-point U-NII devices operating in
		this band may employ transmitting antennas with
		directional gain greater than 6 dBi without any
		corresponding reduction in transmitter conducted
		power.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions
 Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 33 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.4.7. Test Result of Maximum Conducted Output Power

Temperature	26°C	Humidity	63%
Test Engineer	Mars Lin	Test Date	Jan. 07, 2015

Mada	F	Conducted Power (dBm)				Max. Limit	Desuit
Mode	Frequency	Chain 4	Chain 5	Chain 6	Total	(dBm)	Result
	5180 MHz	16.90	16.45	16.68	21.45	30.00	Complies
	5200 MHz	17.40	17.01	17.03	21.92	30.00	Complies
802.11a	5240 MHz	20.64	21.80	20.77	25.87	30.00	Complies
602.11G	5745 MHz	16.70	15.70	16.65	21.14	30.00	Complies
	5785 MHz	18.66	17.69	18.70	23.15	30.00	Complies
	5825 MHz	19.09	18.17	19.21	23.62	30.00	Complies
	5180 MHz	18.43	17.84	18.03	22.88	30.00	Complies
000 11 00	5200 MHz	17.72	17.12	17.66	22.28	30.00	Complies
802.11ac	5240 MHz	20.53	21.61	21.10	25.87	30.00	Complies
MCS0/Nss1 VHT20	5745 MHz	15.88	14.96	16.10	20.45	30.00	Complies
VIIIZU	5785 MHz	17.34	16.36	17.50	21.87	30.00	Complies
	5825 MHz	17.90	17.01	18.04	22.44	30.00	Complies
000 11 22	5190 MHz	14.66	14.31	14.41	19.23	30.00	Complies
802.11ac	5230 MHz	20.30	20.17	20.35	25.05	30.00	Complies
MCS0/Nss1 VHT40	5755 MHz	12.29	11.47	12.51	16.88	30.00	Complies
	5795 MHz	19.40	18.55	19.71	24.02	30.00	Complies
802.11ac	5210 MHz	11.97	11.59	11.77	16.55	30.00	Complies
MCS0/Nss1 VHT80	5775 MHz	12.47	11.47	12.73	17.03	30.00	Complies

Page No. : 34 of 83 Issued Date : Feb. 10, 2015

4.5. Power Spectral Density Measurement

4.5.1. Limit

The following table is power spectral density limits and decrease power density limit rule refer to section 4.4.1.

		Frequency Band	Limit
\boxtimes	5.18	5~5.25 GHz	
	Ope	erating Mode	
		Outdoor access point	17 dBm/MHz
	\boxtimes	Indoor access point	17 dBm/MHz
		Fixed point-to-point access points	17 dBm/MHz
		Mobile and portable client devices	11 dBm/MHz
\boxtimes	5.72	25~5.85 GHz	30 dBm/500kHz

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

For 5.15~5.25 GHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

Report Format Version: Rev. 01 Page No. : 35 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

For 5.725~5.85 GHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	RBW ≥ 1/T
VBW	VBW ≥ 3 RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

4.5.3. Test Procedures

For 5.15~5.25 GHz

- The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

For 5.725~5.85 GHz

- Test procedures refer KDB662911 D01 v02r01 section In-Band Power Spectral Density (PSD)
 Measurements option (b) Measure and sum spectral maximal across the outputs.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The measured result of PSD level must add 10log(500kHz/RBW) and the final result should ≤ 30 dBm.

4.5.4. Test Setup Layout

For 5.15~5.25 GHz

For 5.725~5.85 GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page No. : 37 of 83 Issued Date : Feb. 10, 2015

4.5.7. Test Result of Power Spectral Density

Temperature	26 ℃	Humidity	63%
Test Engineer	Mars Lin		

Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	7.57	12.50	Complies
40	5200 MHz	8.25	12.50	Complies
48	5240 MHz	12.20	12.50	Complies

Note: $_{DirectionalGaim = 10 \cdot 10g} \left[\sum_{\substack{z=1 \ x_{j,k} \ x_{j,k}} \right] = 10.50dBi > 6dBi, So PSD Limit = 17-(10.50-6) = 12.50dBm/MHz$

Channel	Frequency	Power Density (dBm/MHz)	10log (500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Limit	Result
149	5745 MHz	6.69	-3.01	3.68	25.50	Complies
157	5785 MHz	9.01	-3.01	6.00	25.50	Complies
165	5825 MHz	9.72	-3.01	6.71	25.50	Complies

Note: Directional Gain = 10-log = 10-log = 10.50dBi >6dBi, So PSD Limit = 30-(10.50-6)=25.50dBm/MHz

Configuration IEEE 802.11ac MCSO/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	9.20	12.50	Complies
40	5200 MHz	8.59	12.50	Complies
48	5240 MHz	12.23	12.50	Complies

Note: Directional Gain = 10 - log = 10 - log = 10.50dBi > 6dBi, So PSD Limit = 17-(10.50-6) = 12.50dBm/MHz

Channel	Frequency	Power Density (dBm/MHz)	10log (500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Limit	Result
149	5745 MHz	5.67	-3.01	2.66	25.50	Complies
157	5785 MHz	7.46	-3.01	4.45	25.50	Complies
165	5825 MHz	8.12	-3.01	5.11	25.50	Complies

Note: Directional Gain = 10 · log () = 10.50dBi > 6dBi, So PSD Limit = 30-(10.50-6) = 25.50dBm/MHz

Report Format Version: Rev. 01 Page No. : 38 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	2.70	12.50	Complies
46	5230 MHz	8.86	12.50	Complies

Note: Directional Gain = 10 · log = 10 · log

Channel	Frequency	Power Density (dBm/MHz)	10log (500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Limit	Result
151	5755 MHz	-0.42	-3.01	-3.43	25.50	Complies
159	5795 MHz	6.59	-3.01	3.58	25.50	Complies

Note: Directional Gain = 10 · log (\$\frac{\sum_{start}}{\sum_{arr}}\$\] = 10.50dBi > 6dBi, So PSD Limit = 30-(10.50-6) = 25.50dBm/MHz

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result	
42	5210 MHz	-2.49	12.50	Complies	

Note: $\sum_{Directional Gain = 10 \cdot 10g} \left[\sum_{j=1}^{\infty} \left\{ \sum_{j=1}^{\infty} g_{j,k} \right\}^{2} \right] = 10.50 dBi > 6 dBi, So PSD Limit = 17-(10.50-6) = 12.50 dBm/MHz$

Channel	Frequency	Power Density (dBm/MHz)	10log (500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Limit	Result
155	5775 MHz	-3.94	-3.01	-6.95	25.50	Complies

Note: Directional Gain = 10-10s = 10-10s = 10.50dBi > 6dBi, So PSD Limit = 30-(10.50-6) = 25.50dBm/MHz

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 39 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

Power Density Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5825 MHz

Page No. : 40 of 83 Issued Date : Feb. 10, 2015

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5825 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5795 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5775 MHz

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 44 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.6.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 45 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.6.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 47 of 83

 FCC ID: YZKECW7211L
 Issued Date : Feb. 10, 2015

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	СТХ
Test Date	Jan. 10, 2015		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: Rev. 01 Page No. : 48 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	CTX

Horizontal

			Limit	Over	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	30.97	27.71	40.00	-12.29	40.34	0.42	32.43	19.38	HORIZONTAL	121	100	QP
2	103.72	24.35	43.50	-19.15	44.53	0.73	32.47	11.56	HORIZONTAL	270	300	QP
3	381.14	30.92	46.00	-15.08	45.72	1.39	32.26	16.07	HORIZONTAL	197	100	QP
4	547.01	29.11	46.00	-16.89	41.28	1.68	32.40	18.55	HORIZONTAL	223	100	QP
5	807.94	36.05	46.00	-9.95	45.66	2.04	32.33	20.68	HORIZONTAL	159	100	QP
6	889.42	33.64	46.00	-12.36	41.92	2.15	31.93	21.50	HORIZONTAL	124	150	QP

Report Format Version: Rev. 01 Page No. : 49 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

Vertical

			Limit	0ver	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	30.97	34.99	40.00	-5.01	47.60	0.42	32.43	19.40	VERTICAL	112	100	QP
2	35.82	36.73	40.00	-3.27	52.31	0.43	32.43	16.42	VERTICAL	341	100	QP
3	45.52	32.75	40.00	-7.25	53.86	0.49	32.43	10.83	VERTICAL	360	125	QP
4	500.45	29.66	46.00	-16.34	42.67	1.60	32.41	17.80	VERTICAL	100	125	QP
5	807.94	32.63	46.00	-13.37	42.24	2.04	32.33	20.68	VERTICAL	103	125	QP
6	933.07	33.64	46.00	-12.36	40.98	2.28	31.42	21.80	VERTICAL	112	100	QP

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	26°C	Humidity	68%		
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 36 /		
Test Engineer	reier wu	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	Dec. 27, 2014				

Horizontal

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15533.11	58.22	74.00	-15.78	43.87	10.72	34.72	38.35	HORIZONTAL	306	168	Peak
2	15549.74	44.87	54.00	-9.13	30.55	10.72	34.73	38.33	HORIZONTAL	306	168	Average

		Limit Over Read Cable PreampAntenna		T/Pos	A/Pos							
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15534.04	57.71	74.00	-16.29	43.37	10.72	34.72	38.34	VERTICAL	360	147	Peak
2	15538.04	44.69	54.00	-9.31	30.35	10.72	34.72	38.34	VERTICAL	360	147	Average

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 40 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL	229 229		Peak Average

Vertical

1

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15590.54									202		Average

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 48 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
	15711.83	44.35	54.00	-9.65	30.24	10.80	34.79	38.10	HORIZONTAL	82	137	Average
)	15724.10	57.94	74.00	-16.06	43.86	10.80	34.80	38.08	HORIZONTAL	82	137	Peak

Vertical

1 2

Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
15723.72									26 26		Average Peak

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 149 /
lesi Engineei	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL			Average Peak

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11486.38	57.92	74.00	-16.08	43.98	9.07	35.03	39.90	VERTICAL	234	197	Peak
2	11489.81	44.93	54.00	-9.07	30.99	9.07	35.03	39.90	VERTICAL	234	197	Average

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 157 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

Freq	Level						Antenna Factor	Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
								HORIZONTAL HORIZONTAL	164 164		Average Peak

Vertical

1 2

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
	11568.59									119	144	Peak
2	11568.97	44.87	54.00	-9.13	31.03	9.10	35.03	39.77	VERTICAL	119	144	Average

Temperature	26°C	Humidity	68%
Tost Engineer	Peter Wu	Configurations	IEEE 802.11a CH 165/
Test Engineer	relei wu	Cornigurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11646.25	45.39	54.00	-8.61	31.71	9.12	35.04	39.60	HORIZONTAL	334	100	Average

Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
11645.90 11646.03									257 257		Peak Average

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 36 /
Test Engineer	reier wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

Freq	Level					•		Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL	255 255		Peak Average

Vertical

Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
15538.53 15540.29									321 321		Peak Average

Page No. : 57 of 83 Issued Date : Feb. 10, 2015

Temperature	26°C	Humidity	68%			
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 40 /			
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6			
Test Date	Dec. 27, 2014					

Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL			Average Peak

Vertical

Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	CM	
15596.86 15607.66									165 165		Average Peak

Page No. : 58 of 83 Issued Date : Feb. 10, 2015

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 48 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15718.49	57.08	74.00	-16.92	42.99	10.80	34.80	38.09	HORIZONTAL	184	151	Peak
2	15720.22	43.89	54.00	-10.11	29.80	10.80	34.80	38.09	HORIZONTAL	184	151	Average

Vertical

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15710.03	56.68	74.00	-17.32	42.59	10.80	34.79	38.08	VERTICAL	149	133	Peak
2	15718.81	43.75	54.00	-10.25	29.67	10.80	34.80	38.08	VERTICAL	149	133	Average

Page No. : 59 of 83

Issued Date : Feb. 10, 2015

Temperature	26°C	Humidity	68%		
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 /		
lesi Engineei	reiei wu	Cornigulations	Chain 4 + Chain 5 + Chain 6		
Test Date	Dec. 27, 2014				

	Freq	Level					•		Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11482.15	57.30	74.00	-16.70	43.35	9.07	35.03	39.91	HORIZONTAL	281	172	Peak
2	11491.31	44.70	54.00	-9.30	30.75	9.07	35.03	39.91	HORIZONTAL	281	172	Average

Vertical

MHz dBuV/m dBuV/m dB dBuV dB dB dB/m deg	cm
	32 Average 32 Peak

Page No. : 60 of 83

Issued Date : Feb. 10, 2015

Temperature	26℃	Humidity	68%		
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 157 /		
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	Dec. 27, 2014				

Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL			Average Peak

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11576.83									288		Average Peak

Temperature	26°C	Humidity	68%		
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165 /		
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	Dec. 27, 2014				

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11655.32	56.74	74.00	-17.26	43.08	9.12	35.04	39.58	HORIZONTAL	110	174	Peak
2	11656.44	44.16	54.00	-9.84	30.50	9.12	35.04	39.58	HORIZONTAL	110	174	Average

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11644.97	56.36	74.00	-17.64	42.65	9.12	35.04	39.63	VERTICAL	34	113	Peak
2	11652.40	43.82	54.00	-10.18	30.17	9.12	35.04	39.57	VERTICAL	34	113	Average

Temperature	26℃	Humidity	68%				
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 38 /				
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6				
Test Date	Dec. 27, 2014						

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15562.02	57.41	74.00	-16.59	43.11	10.72	34.73	38.31	HORIZONTAL	360	157	Peak
2	15579.01	44.04	54.00	-9.96	29.77	10.72	34.74	38.29	HORIZONTAL	360	157	Average

Vertical

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
	15561.06									102		Average
2	15564.84	56.80	74.00	-17.20	42.54	10.72	34.73	38.27	VERTICAL	102	203	Peak

Page No. : 63 of 83 Issued Date : Feb. 10, 2015

Temperature	26°C	Humidity	68%
Toot Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 46 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	15689.74	57.76	74.00	-16.24	43.62	10.80	34.79	38.13	HORIZONTAL	265	181	Peak
2	15694.97	44.16	54.00	-9.84	30.03	10.80	34.79	38.12	HORIZONTAL	265	181	Average

	Freq	Level					•		Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
	15683.81									192		Peak
2	15695.61	43.92	54.00	-10.08	29.83	10.80	34.79	38.08	VERTICAL	192	168	Average

Temperature	26°C	Humidity	68%
Tost Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
_	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1 13	500.45	56.79	74.00	-17.21	42.85	9.07	35.03	39.90	HORIZONTAL	173	121	Peak

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
	11500.35									214		Average
2	11506.79	57.43	74.00	-16.57	43.49	9.07	35.03	39.90	VERTICAL	214	178	Peak

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
									HORIZONTAL			Peak
2	11583.24	43.48	54.00	-10.52	29.68	9.10	35.03	39.73	HORIZONTAL	132	168	Average

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1 2	11591.51 11597.37									167 167		Average Peak

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 42 / Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

Freq	Level		Over Limit			•		Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL			Peak Average

Vertical

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
	15633.27									209	197	Peak
2	15635.99	41.62	54.00	-12.38	27.41	10.76	34.76	38.21	VERTICAL	209	197	Average

Page No. : 67 of 83 Issued Date : Feb. 10, 2015

Temperature	26℃	Humidity	68%			
Tost Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /			
Test Engineer	reiei wu	Configurations	Chain 4 + Chain 5 + Chain 6			
Test Date	Dec. 27, 2014					

Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL			Average Peak

Vertical

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11543.59	43.95	54.00	-10.05	30.05	9.10	35.03	39.83	VERTICAL	162	160	Average
2	11555.35	56.58	74.00	-17.42	42.74	9.10	35.03	39.77	VERTICAL	162	160	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 68 of 83

Issued Date : Feb. 10, 2015

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around band edges.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

Report Format Version: Rev. 01 Page No. : 69 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 70 of 83

 FCC ID: YZKECW7211L
 Issued Date : Feb. 10, 2015

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11a CH 36, 40, 48 /
Test Engineer	relei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 26, 2014 ~ Jan. 6	06, 2015	

Channel 36

	Freq	Level			Read Level				Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1 2 3 4		64.52 113.49	74.00		60.74	5.90 5.95	33.60 33.57	31.48 31.55	VERTICAL VERTICAL VERTICAL VERTICAL	359 359 359 359	157 157	Average Peak Peak Average

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5122.28	53.72	54.00	-0.28	49.89	5.92	33.59	31.50	VERTICAL	41	208	Average
2	5122.28	64.66	74.00	-9.34	60.83	5.92	33.59	31.50	VERTICAL	41	208	Peak
3	5202.40	104.00			100.02	5.97	33.56	31.57	VERTICAL	41	208	Average
4	5202.40	114.23			110.25	5.97	33.56	31.57	VERTICAL	41	208	Peak

Item 3, 4 are the fundamental frequency at 5200 MHz.

	Freq	Level	Limit Line					Antenna Factor	Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5082.95	49.56	54.00	-4.44	45.82	5.88	33.61	31.47	VERTICAL	346	155	Average
2	5082.95	60.47	74.00	-13.53	56.73	5.88	33.61	31.47	VERTICAL	346	155	Peak
3	5242.40	106.88			102.85	5.99	33.55	31.59	VERTICAL	346	155	Average
4	5242.50	111.91			107.88	5.99	33.55	31.59	VERTICAL	346	155	Peak
5	5402.66	53.01	54.00	-0.99	48.67	6.10	33.49	31.73	VERTICAL	346	155	Average
6	5402.66	67.25	74.00	-6.75	62.91	6.10	33.49	31.73	VERTICAL	346	155	Peak

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	26°C	Humidity	68%
Tost Engineer	Peter Wu	Configurations	IEEE 802.11a CH 149, 157, 165/
Test Engineer	relei wu	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 26, 2014		

			Limit	Over	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5663.27	66.56	68.20	-1.64	61.71	6.24	33.39	32.00	VERTICAL	346	158	Peak
2	5725.00	78.13	78.20	-0.07	73.14	6.28	33.37	32.08	VERTICAL	346	158	Peak
3	5743.40	103.49			98.48	6.28	33.37	32.10	VERTICAL	346	158	Average
4	5743.40	113.18			108.17	6.28	33.37	32.10	VERTICAL	346	158	Peak
5	5854.01	56.15	78.20	-22.05	50.93	6.33	33.33	32.22	VERTICAL	346	158	Peak
6	5902.85	61.71	68.20	-6.49	56.37	6.37	33.31	32.28	VERTICAL	346	158	Peak

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

			Limit		Read					T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5704.07	68.05	68.20	-0.15	63.13	6.26	33.38	32.04	VERTICAL	346	150	Peak
2	5715.39	56.38	78.20	-21.82	51.42	6.28	33.38	32.06	VERTICAL	346	150	Peak
3	5782.60	115.34			110.25	6.30	33.35	32.14	VERTICAL	346	150	Peak
4	5783.40	105.43			100.33	6.31	33.35	32.14	VERTICAL	346	150	Average
5	5859.62	62.68	78.20	-15.52	57.42	6.35	33.33	32.24	VERTICAL	346	150	Peak
6	5863.53	67.65	68.20	-0.55	62.39	6.35	33.33	32.24	VERTICAL	346	150	Peak

Item 3, 4 are the fundamental frequency at 5785 MHz.

			Limit	Over	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5663.14	64.21	68.20	-3.99	59.36	6.24	33.39	32.00	VERTICAL	348	156	Peak
2	5721.00	56.14	78.20	-22.06	51.17	6.28	33.37	32.06	VERTICAL	348	156	Peak
3	5823.40	106.73			101.54	6.33	33.34	32.20	VERTICAL	348	156	Average
4	5823.40	117.46			112.27	6.33	33.34	32.20	VERTICAL	348	156	Peak
5	5851.60	73.18	78.20	-5.02	67.96	6.33	33.33	32.22	VERTICAL	348	156	Peak
6	5902.72	67.92	68.20	-0.28	62.58	6.37	33.31	32.28	VERTICAL	348	156	Peak

Item 3, 4 are the fundamental frequency at 5825 MHz.

Temperature	26°C	Humidity	68%
Tost Engineer	Peter Wu	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 36, 40,
Test Engineer	relei wu	Configurations	48 / Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 26, 2014		

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1									VERTICAL	11		Peak
2				-0.38					VERTICAL	11		Average
3	5176.15				111.03				VERTICAL	11		Peak
4	5181.28	103.81			99.88	5.95	33.57	31.55	VERTICAL	11	203	Average

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5120.51	53.92	54.00	-0.08	50.11	5.90	33.59	31.50	VERTICAL	313	168	Average
2	5124.68	65.60	74.00	-8.40	61.77	5.92	33.59	31.50	VERTICAL	313	168	Peak
3	5200.96	103.53			99.56	5.97	33.56	31.56	VERTICAL	313	168	Average
4	5200.96	114.64			110.67	5.97	33.56	31.56	VERTICAL	313	168	Peak

Item 3, 4 are the fundamental frequency at 5200 MHz.

			Limit	Over	Read	Cable	Preamp	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5082.31	49.28	54.00	-4.72	45.55	5.88	33.61	31.46	VERTICAL	50	196	Average
2	5087.44	60.62	74.00	-13.38	56.88	5.88	33.61	31.47	VERTICAL	50	196	Peak
3	5237.44	106.16			102.13	5.99	33.55	31.59	VERTICAL	50	196	Average
4	5238.08	117.44			113.41	5.99	33.55	31.59	VERTICAL	50	196	Peak
5	5398.33	52.10	54.00	-1.90	47.77	6.10	33.49	31.72	VERTICAL	50	196	Average
6	5398.33	63.44	74.00	-10.56	59.11	6.10	33.49	31.72	VERTICAL	50	196	Peak

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	26°C	Humidity	68%
Tost Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149,
Test Engineer	relei wu	Configurations	157, 165 / Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 26, 2014 ~ [Dec. 27, 2014	

			Limit	Over	Read	Cable	Preamp	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5658.46	66.82	68.20	-1.38	61.98	6.24	33.40	32.00	VERTICAL	49	192	Peak
2	5725.00	78.04	78.20	-0.16	73.05	6.28	33.37	32.08	VERTICAL	49	192	Peak
3	5743.40	103.42			98.41	6.28	33.37	32.10	VERTICAL	49	192	Average
4	5743.40	114.35			109.34	6.28	33.37	32.10	VERTICAL	49	192	Peak
5	5857.21	56.84	78.20	-21.36	51.60	6.33	33.33	32.24	VERTICAL	49	192	Peak
6	5904.46	61.95	68.20	-6.25	56.61	6.37	33.31	32.28	VERTICAL	49	192	Peak

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

			Limit	Over	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5704.07	68.00	68.20	-0.20	63.08	6.26	33.38	32.04	VERTICAL	48	177	Peak
2	5716.19	57.26	78.20	-20.94	52.30	6.28	33.38	32.06	VERTICAL	48	177	Peak
3	5784.20	104.63			99.53	6.31	33.35	32.14	VERTICAL	48	177	Average
4	5784.20	115.25			110.15	6.31	33.35	32.14	VERTICAL	48	177	Peak
5	5859.62	67.27	78.20	-10.93	62.01	6.35	33.33	32.24	VERTICAL	48	177	Peak
6	5864.33	67.41	68.20	-0.79	62.15	6.35	33.33	32.24	VERTICAL	48	177	Peak

Item 3, 4 are the fundamental frequency at 5785 MHz.

			Limit	Over	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5659.94	61.84	68.20	-6.36	57.00	6.24	33.40	32.00	VERTICAL	352	190	Peak
2	5722.60	57.12	78.20	-21.08	52.13	6.28	33.37	32.08	VERTICAL	352	190	Peak
3	5824.20	103.97			98.78	6.33	33.34	32.20	VERTICAL	352	190	Average
4	5824.20	115.41			110.22	6.33	33.34	32.20	VERTICAL	352	190	Peak
5	5850.00	77.96	78.20	-0.24	72.74	6.33	33.33	32.22	VERTICAL	352	190	Peak
6	5909.94	67.40	68.20	-0.80	62.04	6.37	33.31	32.30	VERTICAL	352	190	Peak

Item 3, 4 are the fundamental frequency at 5825 MHz.

Temperature	26°C	Humidity	68%
Tost Engineer	r Peter Wu Configurations		IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	reiei wu	Configurations	CH 38, 46 / Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

										T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5144.81	68.98	74.00	-5.02	65.12	5.92	33.58	31.52	VERTICAL	355	200	Peak
2	5150.00	53.45	54.00	-0.55	49.59	5.92	33.58	31.52	VERTICAL	355	200	Average
3	5195.13	96.36			92.39	5.97	33.56	31.56	VERTICAL	355	200	Average
4	5195.13	109.13			105.16	5.97	33.56	31.56	VERTICAL	355	200	Peak

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

			Limit	Over	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5145.06	53.59	54.00	-0.41	49.73	5.92	33.58	31.52	VERTICAL	357	196	Average
2	5145.06	65.69	74.00	-8.31	61.83	5.92	33.58	31.52	VERTICAL	357	196	Peak
3	5234.49	115.25			111.22	5.99	33.55	31.59	VERTICAL	357	196	Peak
4	5235.13	102.44			98.41	5.99	33.55	31.59	VERTICAL	357	196	Average

Item 3, 4 are the fundamental frequency at 5230 MHz.

Page No. : 75 of 83 Issued Date : Feb. 10, 2015

Temperature	26°C	Humidity	68%
Test Engineer	Peter Wu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151,
Test Engineer	reiei wu	Configurations	159 / Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level	Limit Line		Read Level				Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5714.14	67.89	68.20	-0.31	62.93	6.28	33.38	32.06	VERTICAL	351	173	Peak
2	5723.40	70.45	78.20	-7.75	65.46	6.28	33.37	32.08	VERTICAL	351	173	Peak
3	5759.01	95.16			90.10	6.30	33.36	32.12	VERTICAL	351	173	Average
4	5759.81	108.01			102.95	6.30	33.36	32.12	VERTICAL	351	173	Peak
5	5850.00	59.47	78.20	-18.73	54.25	6.33	33.33	32.22	VERTICAL	351	173	Peak
6	5929.68	59.47	68.20	-8.73	54.08	6.37	33.30	32.32	VERTICAL	351	173	Peak

Item 3, 4 are the fundamental frequency at 5755 MHz.

Channel 159

			Limit	Over	Read	Cable	Preamp	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5710.87	63.56	68.20	-4.64	58.60	6.28	33.38	32.06	HORIZONTAL	32	165	Peak
2	5719.68	64.87	78.20	-13.33	59.89	6.28	33.37	32.07	HORIZONTAL	32	165	Peak
3	5791.80	99.17			94.05	6.31	33.35	32.16	HORIZONTAL	32	165	Average
4	5801.41	110.96			105.83	6.31	33.35	32.17	HORIZONTAL	32	165	Peak
5	5851.89	69.69	78.20	-8.51	64.46	6.33	33.33	32.23	HORIZONTAL	32	165	Peak
6	5862.31	66.65	68.20	-1.55	61.39	6.35	33.33	32.24	HORIZONTAL	32	165	Peak

Item 3, 4 are the fundamental frequency at 5795 MHz.

Page No. : 76 of 83 Issued Date : Feb. 10, 2015

Temperature	26°C	Humidity	68%
Tost Engineer	Peter Wu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT80
Test Engineer	reiei wu	Configurations	CH 42, 155 / Chain 4 + Chain 5 + Chain 6
Test Date	Dec. 27, 2014		

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5145.26	65.22	74.00	-8.78	61.36	5.92	33.58	31.52	VERTICAL	356	204	Peak
2	5150.00	53.85	54.00	-0.15	49.99	5.92	33.58	31.52	VERTICAL	356	204	Average
3	5220.26	93.56			89.56	5.97	33.55	31.58	VERTICAL	356	204	Average
4	5220.90	103.17			99.15	5.99	33.55	31.58	VERTICAL	356	204	Peak

Item 3, 4 are the fundamental frequency at 5210 MHz.

Channel 155

			Limit	0ver	Read	Cable	Preamp/	Antenna		T/Pos	A/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Pol/Phase			Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	5712.50	67.96	68.20	-0.24	63.00	6.28	33.38	32.06	VERTICAL	337	184	Peak
2	5722.92	69.87	78.20	-8.33	64.88	6.28	33.37	32.08	VERTICAL	337	184	Peak
3	5787.82	93.32			88.22	6.31	33.35	32.14	VERTICAL	337	184	Average
4	5787.82	103.71			98.61	6.31	33.35	32.14	VERTICAL	337	184	Peak
5	5852.72	63.83	78.20	-14.37	58.61	6.33	33.33	32.22	VERTICAL	337	184	Peak
6	5860.00	64.16	68.20	-4.04	58.90	6.35	33.33	32.24	VERTICAL	337	184	Peak

Item 3, 4 are the fundamental frequency at 5775 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 77 of 83 Issued Date : Feb. 10, 2015

4.8. Frequency Stability Measurement

4.8.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	Entire absence of modulation emissions bandwidth		
RBW	10 kHz		
VBW	10 kHz		
Sweep Time	Auto		

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -30°C~50°C.

4.8.4. Test Setup Layout

Report Format Version: Rev. 01 Page No. : 78 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Temperature	26°C	Humidity	63%
Test Engineer	Mars Lin	Test Date	Jan. 07, 2015

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)			
(V)	5200 MHz	5785 MHz		
126.50	5199.9386	5784.9292		
110.00	5199.9370	5784.9286		
93.50	5199.9364	5784.9282		
Max. Deviation (MHz)	0.063600	0.071800		
Max. Deviation (ppm)	12.23	12.41		

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)			
(°C)	5200 MHz	5785 MHz		
-30	5199.9386	5784.9300		
-20	5199.9384	5784.9298		
-10	5199.9382	5784.9296		
0	5199.9378	5784.9292		
10	5199.9374	5784.9290		
20	5199.9370	5784.9286		
30	5199.9366	5784.9282		
40	5199.9364	5784.9280		
50	5199.9362	5784.9278		
Max. Deviation (MHz)	0.063800	0.072200		
Max. Deviation (ppm)	12.27	12.4806		

Report Format Version: Rev. 01 Page No. : 79 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 80 of 83
FCC ID: YZKECW7211L Issued Date : Feb. 10, 2015

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 23, 2014	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Nov. 17, 2014	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 17, 2014	Conduction
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	Dec. 04, 2014	(CO01-CB) Conduction
Software	Audix	E3	5.410e		N.C.R.	(CO01-CB) Conduction
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 26, 2014	(CO01-CB) Radiation
Loop Antenna	Rohde & chwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jul. 28, 2014	(03CH01-CB) Radiation
LOOP Amerina	Rondo d onwaiz		100010	7 KHZ 00 WHZ	541. 25, 2514	(03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Oct. 28, 2014	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02009	1GHz ~ 26.5GHz	Dec. 17, 2014	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 25, 2014	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100080	9kHz ~ 40GHz	Oct. 15, 2014	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESR26	101289	9kHz~26GHz	Aug. 22, 2014	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec.12, 2014	Conducted
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 03, 2014	(TH01-CB) Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 15, 2014	Conducted (TH01-CB)

Page No.

: 81 of 83

Issued Date : Feb. 10, 2015

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted
Kr Cable-High	woken					(TH01-CB)
RF Cable-high	Wakan	High Cable 9		1 GHz – 26.5 GHz	Nov. 15, 0014	Conducted
KF Cable-High	Woken	nigh Cable-6	igh Cable-8 - 1 GHz		Nov. 15, 2014	(TH01-CB)
RF Cable-high	Woken	High Cable-9		1 CU- 24 E CU-	Nov. 15. 2014	Conducted
Ki Cable-High	woken	night Cable-9	- 1 GHz – 26.5 GHz		NOV. 15, 2014	(TH01-CB)
RF Cable-high	Woken	High Cable-10		1 GHz – 26.5 GHz	Nov. 15. 2014	Conducted
Kr Cable-High	woken	nigii Cable-10	- 1 GHz - 20.5 GHz		1100. 15, 2014	(TH01-CB)
RF Cable-high	Wakan	High Cable 11	- 1 GHz – 26.5 GHz Nov. 15. 201	Nov. 15, 2014	Conducted	
Kr Cable-High	Woken	High Cable-11	•	1 GHZ - 20.5 GHZ	Nov. 15, 2014	(TH01-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Oct. 06, 2014	Conducted
rower sensor	Aillisu	IVIA2411D	1120203 300WHZ~40GHZ Oct. 00		OC1. 00, 2014	(TH01-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Oct. 06, 2014	Conducted
rowei Meier	Aillisu	IVILZ495A	1210004			(TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Page No. : 82 of 83

Issued Date : Feb. 10, 2015

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%