Exercises: Number Systems

Exercise 1

This exercise practices the basic skills you need to solve the subsequent exercises in number systems.

1.1 Powers

Determine the values below:

a. 10^0

d. 2^0

g. 16^0

b. 10^1

e. 2^3

h. 16^2

c. 10^4

f. 2^7

i. 16^4

1.2 Remainders

The remainder of a after division by b is written as $\mathbf{rem}(a, b)$. For example, the remainder of 35 after division by 16 is $\mathbf{rem}(35,16) = 3$.

Find the remainders below:

a. rem(16, 2)

d. $rem(10, 2^2)$

g. rem(54, 16)

b. rem(25, 2)

e. $rem(18, 2^4)$

h. $rem(54, 16^2)$

c. rem(1, 2)

f. $rem(100, 2^6)$

i. $rem(508, 16^2)$

Exercise 2

Convert the following binary numbers into decimal numbers.

a. 10_2

c. 1101_2

e. 11101111100_2

b. 1000000_2

 $d. 00110_2$

 $f.\ \ 1001101110110_2$

Exercise 3

Convert the following decimal numbers into binary numbers.

a. 1

c. 3

e. 49

b. 2

d. 10

f. 212

Exercise 4

Convert the following hexadecimal numbers into decimal numbers.

a. 10_{16}

c. $5C_{16}$

e. $1A9_{16}$

b. B_{16}

d. $37D_{16}$

f. 5091₁₆

Exercise 5

Convert the following decimal numbers into hexadecimal numbers.

a. 1

c. 16

e. 1024

b. 7

d. 142

f. 5091

Exercise 6

Add the following numbers in binary.

a. $1110_2 + 11_2$

c. $11101_2 + 11001_2$

b. $11101_2 + 1010_2$

 $\mathrm{d.}\ 10101101_2 + 1011101_2$

Exercise 7

Multiply the following numbers in binary.

a. $10_2 \cdot 10_2$

c. $1110_2 \cdot 1001_2$

b. $1110_2 \cdot 11_2$

d. $101101011_2 \cdot 101011110_2$

Exercise 8

Calculate the exponentiations below. Do you notice a pattern?

a. 10^2

c. $(10_2)^2$

e. $(10_{16})^2$

b. 10^5

d. $(10_2)^5$

f. $(10_{16})^5$

Exercise 9

Solve the "crossbins" below. The clues are in hexadecimal, the answers are in binary. Note: if your number is too short, but zeros in front!

Across	Down
[1]: 2	[1]: 11
[3]: 5	[2]: A
[4]: 22	[3]: A
[5]: 14	

Across	Down
[1]: 8	[1]: 5F
[3]: 4	[2]: 60
[4]: 44	[3]: BE
[5]: 3C	[6]: 10
[7]: 1B	[7]: C
[9]: C	[8]: 1 D
[A]: 7F	[A]: E
[C]: E	[B]: 1
[D]: 1D	
[E]: A0A	
[F]: 36	

Exercise 10

The example below shows how black-and-white pictures can be represented compactly using hexadecimal and binary numbers, with 0 and 1 representing black and white pixels, respectively.

	Binary	Нех
	0000000	00
	00011100	1c
	00100010	22
	01000001	41
	01001001	49
	01000001	41
	00100010	22
	00011100	1c

Decode the bitmap below by converting from hexadecimal to binary, and coloring the pixels.

Create your own bitmap by drawing a pictures on the left and translating the pixel values first to binary and then to hexadecimal.

					Binary						Hex				
												_			
												_			
												-			
												-			
												_			
												-			
												-			
												-			