Segundo Certamen Introducción a la Informática Teórica

26 de noviembre de 2011

- 1. Determine cuáles de los siguientes conjuntos sobre $\Sigma = \{a, b, c\}$ son de contexto libre, y cuáles son regulares. Justifique sus respuestas.
 - a) $\{a^m b^n a^{m^2 + n^2} : 1 \le n, m \le 100\}$
 - $b) \ \{a^{3i}b^{2j}c^i: i,j\geq 1\}$
 - c) $\{a^k b^{k^2} : k \ge 1\}$

(30 puntos)

- 2. En clase se vió la forma normal de Chomsky para gramáticas de contexto libre. Otra forma normal es la de Greibach, en la cual las producciones sólo toman la forma $A \to a\alpha$, donde $A \in N$, $a \in \Sigma$ y $\alpha \in N^*$. Suponga un lenguaje de contexto libre \mathscr{L} , con gramáticas G_1 en la forma normal de Chomsky y G_2 en la forma normal de Greibach. Para $\sigma \in \mathscr{L}$, donde $|\sigma| = n$, determine:
 - a) Cuántos pasos se requieren en G_1 para derivar σ
 - b) Cuántos pasos se requieren en G_2 para derivar σ

(25 puntos)

3. Diseñe un autómata apilador que reconoce el lenguaje $\mathcal{L} = \{ab^nc^n : n \geq 1\}$ sobre $\Sigma = \{a, b, c\}$. Expréselo en nuestra notación gráfica, y explique su diseño.

(20 puntos)

- 4. Responda las siguientes:
 - a) Defina reducci'on polinomial, problema en \mathscr{NP} , problema \mathscr{NP} -duro y problema \mathscr{NP} -completo.
 - b) Dados un problema P que se sabe en \mathscr{NP} y un problema \mathscr{NP} -completo P_c , explique lo que puede concluir de una reducción polinomial de P_c a P.
 - c) Con los mismos problemas anteriores, indique lo que concluye de una reducción de P a P_c .

(30 puntos)

5. Esboze cómo puede usarse la no decibilidad del problema de detectar "Hola, mundo" para demostrar que el determinar si alguna vez se asigna un valor a la variable a en un programa en C no es decidible.

(20 puntos)