Solving Recurrences

Prepared by Dr. Sifat Momen

Recurrences	Examples	Solution
$T(n) = \begin{cases} \Theta(1) & n=1 \\ 2T(\frac{n}{2}) + \Theta(n) & n > 1 \end{cases}$	Merge Sort, Randomized quicksort (best case), counting inversions	O(nlgn)
$T(\eta) = \begin{cases} \Theta(1), & n=1\\ T(\frac{\eta}{a}) + \Theta(1), & n > 1 \end{cases}$	Binary Search	⊖(dgn)
$T(n) = \begin{cases} \Theta(1), & n = 0 \\ T(n-1) + \Theta(1), & n > 0 \end{cases}$	Factorial	Θ(η)
$T(n) = \begin{cases} \Theta(1), & n = 1 \\ T(n-1) + \Theta(n), & n > 1 \end{cases}$	Naive Quicksort (Worst case)	0(17)
$T(n) = \begin{cases} O(i), & n=1\\ 2T(n-i)+O(i), & n>1 \end{cases}$	Tower of Hanoi	$\Theta\left(\mathcal{J}_{\omega}\right)$