HOL4-Beagle, from higher-order to first-order

Thibault Gauthier

May 17, 2014

Deux types de prouveurs

	HOL4	Beagle
Туре	Interactive	Automatic
Expressivité	Higher-order	First-order
Soundness	Small kernel (LCF)	Long optimized code
Family	HOL Light, Proof- Power, Isabelle/HOL	Spass + T

Énoncé du problème

Problem Here are two HOL4 internal provers.

- Metis: first-order

Cooper: arithmetic

Énoncé du problème

Problem Here are two HOL4 internal provers.

- Metis: first-order

- Cooper: arithmetic

Solution An external prover.

- Beagle: first-order and arithmetic

Schéma d'interaction

- Introduction
 - Deux types de prouveurs
 - Énoncé du problème
 - Schéma d'interaction
- 2 Traduction vers le premier ordre
 - Monomorphisation
 - λ -lifting
 - Défonctionnalisation
- 3 Conclusion
 - Qualités et limites

Ordre de la traduction vers le premier ordre

- Monomorphisation
- 2 Négation de la conclusion
- Mise en forme normale conjonctive
- \bullet λ -lifting
- Élimination des booléens
- Mise sous forme d'un ensemble de clauses
- Défonctionnalisation

Monomorphisation

Instanciation des types polymorphes (a,...) par des types monomorphes (int,bool,...).

Problème

Thm 1: $\forall x : a. D \times 0$ Thm 2: $C = \lambda x : a. D \times 0$

Conjecture : C 2

Monomorphisation

Instanciation des types polymorphes (a,...) par des types monomorphes (int,bool,...).

Problème

```
Thm 1: \forall x : a. D \times 0 Thm 2: C = \lambda x : a. D \times 0
```

Conjecture: C 2

Unification de $C: a \rightarrow int \rightarrow bool$ et de $C: int \rightarrow int \rightarrow bool$

```
Thm 1: \forall x : a. D \times 0 Thm 2: C = \lambda x : int. D \times 0
```

Conjecture: C 2

Monomorphisation

Instanciation des types polymorphes (a,...) par des types monomorphes (int,bool,...).

Problème

Thm 1: $\forall x : a. D \times 0$ Thm 2: $C = \lambda x : a. D \times 0$

Conjecture : C 2

Unification de $C: a \rightarrow int \rightarrow bool$ et de $C: int \rightarrow int \rightarrow bool$

Thm 1: $\forall x : a. D \times 0$ Thm 2: $C = \lambda x : int. D \times 0$

Conjecture: C 2

Unification de $D: a \rightarrow int \rightarrow bool$ et de $D: int \rightarrow int \rightarrow bool$

Thm 1: $\forall x : int. D \times 0$ Thm 2: $C = \lambda x : int. D \times 0$

Conjecture: C 2

λ -lifting

Problème

Thm 1: $\forall x. \ D \ x \ 0$ Thm 2: $C = \lambda x. \ D \ x \ 0$

Conjecture: C 2

Négation de la conclusion

$$\{ \forall x. \ D \ x \ 0 \ , \ C = \lambda x. \ D \ x \ 0 \ , \ \neg (C \ 2) \}$$

λ -lifting

Problème

Thm 1: $\forall x. D \times 0$ Thm 2: $C = \lambda x. D \times 0$

Conjecture: C 2

Négation de la conclusion

$$\{\forall x. \ D \ x \ 0 \ , \ C = \lambda x. \ D \ x \ 0 \ , \ \neg(C \ 2)\}$$

 λ -lifting :

$$C = \lambda x. D \times 0 \implies \exists f. (\forall x. f \times D \times 0) \land C = f$$

Mise sous forme d'un ensemble de clauses

$$\{ \forall x. \ D \ x \ 0 \ , \ \forall x. \ f \ x = D \ x \ 0 \ , \ C = f \ , \ \neg(C \ 2) \}$$

Défonctionnalisation

Soit App vérifiant App f x = f x. On effectue une défonctionnalisation lorsqu'une fonction non-arithmétique :

- est quantifiée universellement
 !h. h x y → !h. App (App h x) y
- a le même type qu'une fonction quantifiée universellement
- a un nombre d'arguments auxquelles la fonction est appliquée qui varie

$$\{h \times y \ z \ , \ h \times = j\} \rightarrow \{App (App (h \times x) \ y) \ z \ , \ h \times = j\}$$

Défonctionnalisation

Soit App vérifiant App f x = f x. On effectue une défonctionnalisation lorsqu'une fonction non-arithmétique :

- est quantifiée universellement
 !h. h x y → !h. App (App h x) y
- a le même type qu'une fonction quantifiée universellement
- a un nombre d'arguments auxquelles la fonction est appliquée qui varie

$$\{h \times y \ z \ , \ h \times = j\} \rightarrow \{App (App (h \times) y) \ z \ , \ h \times = j\}$$

Défonctionnalisation

$$\{ \forall x. \ D \ x \ 0 \ , \ \forall x. \ f \ x = D \ x \ 0 \ , \ C = f \ , \ \neg(C \ 2) \}$$

 $\{ \forall x. \ D \ x \ 0 \ , \ \forall x. \ App \ f \ x = D \ x \ 0 \ , \ C = f \ , \ \neg(C \ 2) \}$

Qualités et limites de l'interaction HOL4-Beagle

Qualités:

- est correcte (préserve la satisfaisabilité)
- prouve 80% des conjectures prouvées par Metis auxquelles on a enlevé les lemmes arithmétiques
- utilise un format de communication répandu

Limites:

- est incomplète et (ne préserve pas l'insatisfaisabilité)
- ne cherche pas automatiquement des théorèmes aidant à prouver la conjecture
- ne rejoue pas (encore) la preuve