OPENPROJECT

INSTALACIÓN DE DOCKER

Instalé Docker en Linux (ordenador de clase) y en Windows (mi portátil personal para trabajar desde casa), de esta forma puedo trabajar tranquilamente desde clase o casa. En el caso de Windows tuve que añadir WSL2 para que funcionara. Me ha sido útil probarlo en los dos sistemas operativos así he aprendido a utilizarlo en 2 sistemas operativos diferentes y descubierto otras formas de utilizarlo.

Aquí dejo el enlace para mi repositorio de GitHub:

https://github.com/Sergiob06/proyectoAutis

¿Para qué sirve OpenProject?

OpenProject es una plataforma **de gestión de proyectos colaborativa**, especialmente útil en entornos formativos y profesionales. Su propósito principal es permitir a los equipos:

- Planificar proyectos.
- Asignar y hacer seguimiento a tareas (denominadas work packages).
- Gestionar tiempos de trabajo (registro de horas).
- Colaborar en equipo, facilitando la comunicación y la supervisión del progreso.
- Crear informes y dashboards para visualizar el estado y rendimiento de los proyectos.

En el contexto educativo (como en ciclos formativos de DAW/DAM), se utiliza para que los estudiantes aprendan a desplegar aplicaciones reales, acceder a datos vía API o base de datos, y desarrollar soluciones propias que se integren con una herramienta profesional.

Funcionamiento general de la plataforma

OpenProject funciona como una aplicación web, accesible desde el navegador, que puede instalarse localmente usando contenedores Docker. Su funcionamiento general se puede resumir en:

1. Despliegue (instalación):

- a. Se instala en un servidor o PC con Docker.
- b. Puede ejecutarse en local (por ejemplo, en http://localhost:8080).
- c. Se accede con un usuario administrador, el cual luego puede crear proyectos, tareas y usuarios.

2. Interfaz web:

- a. Desde la web se pueden gestionar proyectos, asignar tareas, registrar tiempos, adjuntar archivos, etc.
- b. El entorno es modular y se puede configurar según las necesidades (roles, permisos, módulos activos...).

3. Estructura de datos:

- a. La información se almacena en una base de datos PostgreSQL.
- b. Los principales elementos son: proyectos, tareas (work packages), usuarios y registros de tiempo.

4. Acceso externo a datos:

- a. API REST oficial: Para acceder a los datos desde otras aplicaciones, usando autenticación por API Key.
- b. **Acceso directo a la base de datos:** Para realizar consultas SQL dentro del contenedor, útil para entender la estructura y hacer informes personalizados.

5. Personalización:

- a. Se pueden desarrollar integraciones, dashboards o visualizaciones externas usando datos de OpenProject.
- b. Esto se hace conectando con la API o la base de datos, desde frontends o backends propios.

CONFIGURACIÓN DE CONTENEDORES Y ENTORNO

He seguido los pasos indicados en el documento para hacer esta parte.

Creo las carpetas

serbontre@lliurex-client:~\$ sudo mkdir -p /var/lib/openproject/{pgdata,assets}

Luego he crado la cadena aleatoria. En este caso la tuve que hacer con powershell porque con cmd me daba erro y tuve que cambiar un poco el formato porque no era el mismo que Linux.

serbontre@lliurex-client:~\$ head /dev/urandom | tr -dc A-Za-z0-9 | head -c 32

Una vez creadas las carpetas y las variables definidas, creo el contenedor.

Entonces ingreso a OpenProject en Linux poniendo dos comandos y después el localhost

```
serbontre@lliurex-client:~$ sudo systemctl start docker
[sudo] contraseña para serbontre:
serbontre@lliurex-client:~$ sudo docker start 2d
2d
serbontre@lliurex-client:~$ ■
```


Acceso a datos mediante la API REST oficial

Aquí utilicé el comando curl –u y puse el token que había creado antes más la dirección. Me lo muestra todo en JSON

```
serbontre@lliurex-client:~$ curl -u apikey:672d2e8fb1f18a844c18445096e578ed113980fbb9b98dfcc1180c80f70d915 ht tp://localhost:8080/api/v3/projects {"_tpe":"Collection", "total":2,"count":2,"pageSize":20, "offset":1, "_embedded":{"elements":[{"_type":"Project", "id":2,"identifier":"your-scrum-project", "name":"Scrum project", "active":true, "public":true, "description":{"format":"markdown", "raw":"This is a short summary of the goals of this demo Scrum project. "html":"cp class=\"op-uc-p\">This is a short summary of the goals of this demo Scrum project. "html":"cp class=\"op-uc-p\">This is a short summary of the goals of this demo Scrum project.", "html":"cp class=\"op-uc-p\">This is a short summary of the goals of this demo Scrum project.", "html":"cp class=\"op-uc-p\">This is a short summary of the goals of this demo Scrum project.", "reatedAt":"2025-05-15T18:37:50.7002", "statusExplanation":{"format":"markdown", "raw":"All tasks are on schedule. The people involved know their tasks. The system is completely set up. ","html":"cp class=\"op-uc-p\">All tasks are on schedule. The people involved know their tasks. The system is completely set up. ","htmf":"/api/v3/projects/2/work_packages";("href":"/api/v3/projects/2/work_packages";("href":"/api/v3/projects/2/work_packages";("href":"/api/v3/projects/2/work_packages";("href":"/api/v3/projects/2/work_packages"), "storages":[], "categories";("href":"/api/v3/projects/2/categories"), "versions":{"href":"/api/v3/projects/2/vorsions"}, "memberships":{"href":"/api/v3/projects/2/work_packages";("href":"/api/v3/projects/2/categories"), "versions":{"href":"/api/v3/projects/2/vorsions"}, "method":"patch"}, "delete":{"href":"/api/v3/projects/2/vorsions"}, "method":"patch"}, "delete":{"href":"/api/v3/projects/2/vorsions"}, "method":"patch"}, "delete":{"href":"/api/v3/projects/2/vorsions"}, "method":"patch"}, "delete":{"href":"/api/v3/projects/2/vorsions"}, "method":"patch"}, "delete":{"href":"/api/v3/projects/2/vorsions"}, "method":"patch"}, "delete":{"href":"/api/v3/projects/2/
```

Luego visualicé todo este código en JSON

