Строим d МНК линейных регрессий: $R_i=b_i+w_ix_i$, $\overline{R}=(R_1,\ldots,R_d)$, $P(\overline{c},\overline{R})=\sum_{i=1}^d c_iR_i$ Хотим c^* : $\forall \overline{c}=(c_1,\ldots,c_d): \sum_{i=1}^d c_i=1, c_i\geq 0 \Rightarrow \rho(P(\overline{c}^*,\overline{R}),y)\geq \rho(P(\overline{c},\overline{R}),y),$

Фиксируем множество индексов $I = \{1, ..., l\}$, решаем:

$$\rho(Y, P(\overline{c}, \overline{R})) = \frac{\sum_{i=1}^{l} c_i \mathbb{D} R_i}{\sqrt{\mathbb{D} Y} \sqrt{\sum_{i=1}^{l} c_i \mathbb{D} R_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} c_i c_j \varrho(R_i, R_j)}} = \frac{\theta}{\sqrt{\mathbb{D} Y} \sqrt{\theta - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} c_i c_j \varrho(R_i, R_j)}} \rightarrow \max_{\theta} \frac{\theta}{\sqrt{\mathbb{D} Y} \sqrt{\theta - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} c_i c_j \varrho(R_i, R_j)}}$$

Ищем несократимые и нерасширяемые комбинации $\forall \{i_1,i_2\}$

 $\exists l \in \{2, \dots, d\}$: полученная комбинация несократима и нерасширяема Ищем несократимые и нерасширяемые комбинации $\forall \{i_1, i_2\}$

Длина комбинации

Модель	r^2	Корреляция
		Пирсона
$\mathrm{B\Pi K_{cp}}$	0.8993	0.9489
$\mathrm{B\Pi K_{\kappa \mathrm{op}}}$	0.8815	0.9389
$\mathrm{B\Pi K}_{\scriptscriptstyle\mathrm{ЛИН}}$	0.9613	0.9814
Ridge	0.9611	0.9810
Lasso	0.9492	0.9750
ElasticNet	0.9527	0.9766
ARD	0.9627	0.9822
Байесовская	0.9624	0.9821