Statistics 350 Help Card

Summary Measures

Sample Mean

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum x_i}{n}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x_i^2 - n\overline{x}^2}{n - 1}}$$

Probability Rules

• Complement rule

$$P(A^C) = 1 - P(A)$$

• Addition rule

General: P(A or B) = P(A) + P(B) - P(A and B)

For independent events:

$$P(A \text{ or } B) = P(A) + P(B) - P(A)P(B)$$

For mutually exclusive events: P(A or B) = P(A) + P(B)

• Multiplication rule

General: $P(A \text{ and } B) = P(A)P(B \mid A)$

For independent events: P(A and B) = P(A)P(B)

For mutually exclusive events: P(A and B) = 0

• Conditional Probability

General: $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

For independent events: $P(A \mid B) = P(A)$

For mutually exclusive events: $P(A \mid B) = 0$

Discrete Random Variables

Mean

$$E(X) = \mu = \sum x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_k p_k$$

Standard Deviation

$$s.d.(X) = \sigma = \sqrt{\sum (x_i - \mu)^2 p_i} = \sqrt{\sum (x_i^2 p_i) - \mu^2}$$

Binomial Random Variables

$$P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Mean

$$E(X) = \mu_X = np$$

Standard Deviation

$$s.d.(X) = \sigma_X = \sqrt{np(1-p)}$$

Normal Random Variables

• $z - \text{score} = \frac{\text{observation} - \text{mean}}{\text{standard deviation}} = \frac{x - \mu}{\sigma}$

• Percentile: $x = z\sigma + \mu$

• If X has the $N(\mu, \sigma)$ distribution, then the variable

$$Z = \frac{X - \mu}{\sigma}$$
 has the $N(0,1)$ distribution.

Normal Approximation to the Binomial Distribution

If *X* has the B(n, p) distribution and the sample size *n* is large enough (namely $np \ge 10$ and $n(1-p) \ge 10$),

then X is approximately $N(np, \sqrt{np(1-p)})$.

Sample Proportions

$$\hat{p} = \frac{x}{n}$$

Mean

$$E(\hat{p}) = \mu_{\hat{p}} = p$$

Standard Deviation

$$\text{s.d.}(\hat{p}) = \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Sampling Distribution of \hat{p}

If the sample size n is large enough (namely, $np \ge 10$ and $n(1-p) \ge 10$)

then \hat{p} is approximately $N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$.

Sample Means

Mean

$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

Standard Deviation

$$s.d.(\overline{X}) = \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Sampling Distribution of \overline{X}

If *X* has the $N(\mu, \sigma)$ distribution, then \overline{X} is

$$N(\mu_{\overline{X}}, \sigma_{\overline{X}}) \Leftrightarrow N(\mu, \frac{\sigma}{\sqrt{n}}).$$

If *X* follows *any* distribution with mean μ and standard deviation σ and *n* is large,

then
$$\overline{X}$$
 is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

This last result is Central Limit Theorem

Population Proportion	Two Population Proportions	Population Mean
Parameter p	Parameter $p_1 - p_2$	Parameter μ
Statistic \hat{p}	Statistic $\hat{p}_1 - \hat{p}_2$	Statistic \bar{x}
Standard Error	Standard Error	Standard Error
$\text{s.e.}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	s.e. $(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$s.e.(\overline{x}) = \frac{s}{\sqrt{n}}$
Confidence Interval	Confidence Interval	Confidence Interval
$\hat{p} \pm z^*$ s.e. (\hat{p})	$(\hat{p}_1 - \hat{p}_2) \pm z^* \text{s.e.} (\hat{p}_1 - \hat{p}_2)$	$\overline{x} \pm t^*$ s.e. (\overline{x}) df = $n-1$
Conservative Confidence Interval		
* z*		Paired Confidence Interval
$\hat{p} \pm \frac{z}{2\sqrt{n}}$		$\overline{d} \pm t^* \text{s.e.}(\overline{d})$ df = $n-1$
Large-Sample z-Test	Large-Sample z-Test	One-Sample t-Test
$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$t = \frac{\overline{x} - \mu_0}{\text{s.e.}(\overline{x})} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \qquad \text{df} = n - 1$
Sample Size	where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$	Paired t-Test
$n = \left(\frac{z^*}{2m}\right)^2$	where $p = \frac{1}{n_1 + n_2}$	$t = \frac{\overline{d} - 0}{\text{s.e.}(\overline{d})} = \frac{\overline{d}}{s_d / \sqrt{n}} \qquad \text{df} = n - 1$

Two Popula	ition Means
General	Pooled
Parameter $\mu_1 - \mu_2$	Parameter $\mu_1 - \mu_2$
Statistic $\overline{x}_1 - \overline{x}_2$	Statistic $\overline{x}_1 - \overline{x}_2$
Standard Error	Standard Error
s.e. $(\overline{x}_1 - \overline{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	pooled s.e. $(\bar{x}_1 - \bar{x}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
Confidence Interval	Confidence Interval
$\left(\overline{x}_1 - \overline{x}_2\right) \pm t^* \left(\text{s.e.}(\overline{x}_1 - \overline{x}_2)\right) \qquad \text{df} = \min(n_1 - 1, n_2 - 1)$	$(\overline{x}_1 - \overline{x}_2) \pm t^* \text{(pooled s.e.}(\overline{x}_1 - \overline{x}_2))$ df = $n_1 + n_2 - 2$
Two-Sample t-Test	Pooled Two-Sample t-Test
$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\text{s.e.}(\overline{x}_1 - \overline{x}_2)} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad \text{df} = \min(n_1 - 1, n_2 - 1)$	$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\text{pooled s.e.}(\overline{x}_1 - \overline{x}_2)} = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{df} = n_1 + n_2 - 2$

	One-Way ANOVA								
SS Groups = SSG = $\sum_{\text{groups}} n_i (\overline{x}_i - \overline{x})^2$	$MS Groups = MSG = \frac{SSG}{k-1}$	A	NOVA Tal	ble					
$\mathbf{G}\mathbf{G} = \mathbf{\nabla} (\mathbf{G}\mathbf{F} + \mathbf{\nabla} \mathbf{G}\mathbf{G}\mathbf{F})^{2}$		1	Source	SS	DF	MS	F		
SS Error = SSE = $\sum_{\text{groups}} (n_i - 1) s_i^2$	$MS Error = MSE = s_p^2 = \frac{SSE}{N - k}$		Groups Error		k-1 $N-k$	MS Groups MS Error	F		
SS Total = SSTO = $\sum_{\text{values}} (x_{ij} - \overline{x})^2$	$F = \frac{\text{MS Groups}}{\text{MS Error}}$		Total	SSTO	<i>N</i> – 1				
Confidence Interval $\bar{x}_i \pm t^* \frac{s_p}{\sqrt{n_i}}$	= df = N - k		Und			ollows distribution.			

Regre	ession
Linear Regression Model	Standard Error of the Sample Slope
Population Version: Mean: $\mu_Y(x) = E(Y) = \beta_0 + \beta_1 x$ Individual: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ where ε_i is $N(0, \sigma)$	s.e. $(b_1) = \frac{s}{\sqrt{S_{XX}}} = \frac{s}{\sqrt{\sum (x - \bar{x})^2}}$ Confidence Interval for β_1 $b_1 \pm t^*$ s.e. (b_1)
Sample Version: Mean: $\hat{y} = b_0 + b_1 x$ Individual: $y_i = b_0 + b_1 x_i + e_i$	$b_1 \pm t \text{ s.e.}(b_1)$ df = $n - 2$ $t\text{-Test for } \beta_1$ To test $H_0: \beta_1 = 0$
	$t = \frac{b_1 - 0}{\text{s.e.}(b_1)}$ $\text{or } F = \frac{MSREG}{MSE}$ $\text{df} = n - 2$
Parameter Estimators	Confidence Interval for the Mean Response
$b_{1} = \frac{S_{XY}}{S_{XX}} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^{2}} = \frac{\sum (x - \overline{x})y}{\sum (x - \overline{x})^{2}}$ $b_{0} = \overline{y} - b_{1}\overline{x}$	$\hat{y} \pm t^*$ s.e.(fit) $ df = n - 2 $ where s.e.(fit) = $s\sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{XX}}} $
Residuals	Prediction Interval for an Individual Response
$e = y - \hat{y} = \text{observed } y - \text{predicted } y$	$\hat{y} \pm t^*$ s.e.(pred) $df = n - 2$ where s.e.(pred) = $\sqrt{s^2 + (\text{s.e.(fit)})^2}$
Correlation and its square	Standard Error of the Sample Intercept
$r = \frac{S_{XY}}{\sqrt{S_{XX} S_{YY}}}$	s.e. $(b_0) = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}}$
$r^2 = \frac{SSTO - SSE}{SSTO} = \frac{SSREG}{SSTO}$	Confidence Interval for β_0
where $SSTO = S_{YY} = \sum (y - \overline{y})^2$	$b_0 \pm t^* \text{s.e.}(b_0) \qquad \text{df} = n - 2$
Estimate of σ $s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}} \text{where } SSE = \sum (y - \hat{y})^2 = \sum e^2$	t-Test for β_0 To test $H_0: \beta_0 = 0$ $t = \frac{b_0 - 0}{\text{s.e.}(b_0)}$ $\text{df} = n - 2$

Chi-Squ	uare Tests			
Test of Independence & Test of Homogeneity	Test for Goodness of Fit			
Expected Count	Expected Count			
$E = \text{expected} = \frac{\text{row total} \times \text{column total}}{\text{total } n}$	$E_i = $ expected $= np_{i0}$			
Test Statistic	Test Statistic			
$X^{2} = \sum \frac{(O-E)^{2}}{E} = \sum \frac{\text{(observed -expected)}^{2}}{\text{expected}}$ $df = (r-1)(c-1)$	$X^{2} = \sum \frac{(O-E)^{2}}{E} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$ $df = k - 1$			
, ,,				

If Y follows a $\chi^2(df)$ distribution, then E(Y) = df and Var(Y) = 2(df).

999999999

99999999

666666

9999

999

.000000000

.00000000

.0000000

.000001

.0001

.00

Probability

Table entry for z is the area to the left of	or z is the area to the left of	to the	area	the	z is	for	entry	Table
--	---------------------------------	--------	------	-----	------	-----	-------	-------

l l			iabie	entry it	or z is ui	e area w	the lest	UL Z				- 1 2300E		
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09				ł
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002	* ~~ «			İ
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	` .0004	.0003				9009
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005				_
-3.1°	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007				
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010				
-2.9	.0019	.0018	.0018	.0017	.0016 .0023	.0016 .0022	.0015 .0021	.0015 .0021	.0014	.0014				5.61
-2.8 -2.7	.0026 .0035	.0025 .0034	.0024 .0033	.0023 .0032	.0031	.0030	.0027	.0021	.0027	.0026				",
-2.7 -2.6	.0033	.0034	.0033	.0032	.0041	.0040	.0039	.0038	.0037	.0036	•			
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048			1	
-2.4	.0082	.0800.	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064				5.20
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084	1.00		l	
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110	N ₁		İ	
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154 .0197	.0150 .0192	.0146 .0188	.0143 .0183				4.75
-2.0 1.0	.0228	.0222	.0217 .0274	.0212	.0207	.0202	.0250	.0244	.0239	.0233				4.
−1.9 −1.8	.0287 .0359	.0261	.0274	.0336	.0329	.0322	.0314	.0307	.0301	.0294				
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367				
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455		-		4.26
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559			1	
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	-			
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823 .0985				3.72
-1.2	.1151	.1131	.1112	.1093	.1075	.1056 .1251	.1038 .1230	.1020 .1210	.1003 .1190	.1170				
-1.1	.1357 .1587	.1335 .1562	.1314 .1539	.1292 .1515	.1271 .1492	.1469	.1446	.1423	.1401	.1379			1	.g.
−1.0 −0.9	.1841	.1814	.1788	.1762	1736	.1711	.1685	.1660	.1635	.1611			ŀ	3.09
-0.8	,2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867				.
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148			1	_ -
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451		-		-6.00
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776 .3121			Į	!
-0.4	.3446	.3409	.3372	.3336	.3300	.3264 .3632	.3228 .3594	.3192 .3557	.3156 .3520	.3483				
-0.3	.3821	.3783	.3745	.3707 .4090	.3669 .4052	.3632	.3974	.3936	.3320	.3859			. [
-0.2 -0.1	.4207 .4602	.4168 .4562	.4129 .4522	.4483	.4443	.4404	.4364	.4325	.4286	4247		•		-5.61
-0.1 -0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641				T
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359				
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753			1	
0.2	.5793	5832	.5871	.5910	5948	.5987	.6026	.6064	.6103	.6141				-5.20
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480 .6844	.6517 .6879			l	'
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772 .7123	.6808 .7157	.7190	.7224			•	.
0.5	.6915 .7257	.6950 . 72 91	.6985 .7324	.7019 .7357	.7054 .7389	.7088 .7422	.7454	.7486	.7517	.7549				75
0.6 0.7	.7580	.7611	.7642	.7673	.7704	,7734	.7764	.7794	.7823	.7852				-4.75
0.8	.7881	7910	7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133				i
0.9	.8159	.8186	.8212	.8238	8264	.8289	.8315	.8340	.8365	.8389				မ
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621				-4.26
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830 .9015				
1.2	.8849	.8869	.8888.	.8907	.8925	.8944	.8962 .9131	.8980 .9147	.8997 .9162	.9177			•	1 . 1
1.3	.9032	`.9049 .9207	.9066 .9222	.9082 .9236	.9099 .9251	.9115 .9265	.9279	.9292	.9306	.9319				-3.72
1.4 1.5	.9192 .9332		.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441			ļ	
1.6	.9452	.9463	.9474	.9484	9495	.9505	.9515	.9525	.9535	.9545	4			
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633				-3.09
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706				
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	-		<u>a</u>	
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812 .9854	.9817 .9857			In the Extreme	1 1
2.1	.9821	.9826	.9830	.9834	.9838 .9875	.9842 .9878	.9846 .9881	.9850 .9884	.9887	.9890			Z	7
2.2	.9861 .9893	.9864 .9896	.9868 .9898	.9871 .9901	.9904	.9906	.9909	.9911	.9913	.9916			<u>a</u>	
2.3 2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936			=	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	,9949	.9951	.9952	-			
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964				
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974				
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	9979	.9980	.9981				
2.9	.9981	.9982	.9982	,9983	.9984	.9984	.9985	.9985,	.9986	.9986	-			
3.0	.9987	.9987	.9987	.9988	.9988	.9989 .9992	.9989 .9992	.9989	.9993	.9993				
3.1 3.2	.9990 .9993	.9991 .9993	.9991 .9994	.9991 .9994	.9992 .9994	.9992 ,9994	.9994	.9995	.9995	.9995				
3.2 3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997				
3.3 3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	9997	.9997	.9998	•			

.9996 .9997

.9997

.9997

3.4

.9997

.9997

.9997

.9997

Table A.2 t* Multipliers for Confidence Intervals and Rejection Region Critical Values

			Co	onfidence Lev	el		
df	.80	.90	.95	.98	.99	.998	.999
1	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	1.89	2:92	4.30	6.96	9.92	22.33	31.60
3	1,64	2.35	3.18	4.54	5.84	10.21	12.92
4	1.53	2.13	2.78	3.75	4.60	7.17	8,61
5	1.48	2.02	2.57 -	3.36	4.03	5.89	6.87
6	1.44	1.94	2.45	3.14	3.71	5.21	5.96
7	1.41	1.89	2.36	3.00	3.50	4.79	5.41
В	1.40	1.86	2.31	2.90	3.36	4.50	5.04
9	1.38	1.83	2.26	2.82	3.25	4.30	4.78
10	1.37	1.81	2.23	2.76	3.17	4.14	4.59
11	1.36	1.80	2,20	2.72	3.11	4.02	4.44
12	1.36	1.78	2.18	2.68	3.05	3,93	4.32
13	1.35	1.77	2.16	2.65	3.01	3.85	4.22
14	1.35	1.76	2.14	2.62	2.98	3.79	4,14
15	1.34	1.75	2.13	2.60	2.95	3.73	4.07
16	1.34	1.75	2.12	2.58	2.92	3.69	4.01
17	1.33	1.74	2.11	2.57	2.90	3.65	3.97
18	1,33	1.73	2.10	2,55	2.88	3,61	3.92
19	1.33	1.73	2.09	2.54	2.86	3.58	3.88
20	1.33	1,72	2.09	2.53	2.85	3.55	3.85
21	1.32	1.72	2.08	2.52	2.83	3.53	3,82
22	1.32	1.72	2.07	2.51	2.82	3.50	3.79
23	1.32	1.71	2.07	2.50	2.81	3.48	3.77
24	1.32	1.71	2.06	2.49	2.80	3.47	3.75
25	1.32	1.71	2.06	2.49	2.79	3.45	3.73
26	1.31	1.71	2.06	2.48	2.78	3.43	3.71
27	1,31	1.70	2.05	2.47	2.77	3.42	3.69
- 28	1.31	1.70	2.05	2.47	2.76	3,41	3.67
29	1.31	1.70	2.05	2.46	2.76	3.40	3.66
30	1.31	1.70	2.04	2.46	2.75	3.39	3.65
40	1.30	1.68	2.02	2.42	2.70	. 3,31	3.55
50	1,30	1.68	2.01	2.40	2.68	3,26	3.50
60	1.30	1.67	2.00	2.39	2.66	3.23	3.46
70	1.29	1.67	1.99	2.38	2.65	3.21	3,44
80	1.29	1.66	1.99	2.37	2.64	3.20	3.42
90	1.29	1.66	1.99	2.37	2,63	3.18	3.40
100	1.29	1.66	1.98	2.36	2.63	3.17	3.39
1000	1.282	1.646	1.962	2,330	2.581	3.098	3.300
Infinite	1.281	1.645	1.960	2.326	2.576	3.090	3.291
lwo-tailed α	.20	.10	.05	.02	.01	.002	.001
One-tailed $lpha$,10	.05	.025	.01	.005	.001	.0005
	1						

Note that the Adistribution with infinite of is the standard normal distribution

TABLE A.3 M One-Sided p-Values for Significance Tests Based on a t-Statistic

A p-value in the table is the area to the right of t.

• Double the value if the alternative hypothesis is two-sided (not equal).

Absolute Value of t-Statistic								
df	1.28	1.50	1.65	1.80	2.00	2.33	2.58	3.00
1	0.211	0.187	0.173	0.161	0.148	0.129	0.118	0.102
2	D.164	0.136	0.120	0.107	0.092	0.073	0.062	0.048
3	0.145	0.115	0.099	0.085	0.070	0.051	0.041	0.029
4.	0.135	0.104	0.087	0.073	0.058	0.040	0.031	0.020
5	0.128	0.097	0.080	0.066	0.051	0.034	0.025	0.015
6	0.124	0.092	0.075	0.061	0.046	0.029	0.021	0.012
7	0.121	0.089	0.071	0.057	0.043	0.026	0.018	0.010
8	0.118	0.086	0.069	0.055	0.040	0.024	0.016	0.009
9	0.116	0.084	0.067	0.053	0.038	0.022	0.015	0.007
10	0.115	0.082	0.065	0.051	0.037	0.021	0.014	0.007
11	0.113	0.081	0.064	0.050	0.035	0.020	0.013	0.006
12	0.112	0.080	0.062	0.049	0.034	0.019	0.012	0.006
13	0.111	0.079	0.061	0.048	0.033	0.018	0.011	0.005
14	0.111	0.078	0.061	0.047	0.033	0.018	0.011	0.005
15	0.110	0.077	0.060	0.046	0.032	0.017	0.010	0.004
16	0.109	0.077	0.059	0.045	0.031	0.017	0.010	0.004
17 ·	0.109	0.076	0.059	0.045	0.031	0.016	0.010	0.004
18	0.108	0.075	0.058	0.044	0.030	0.016	0.009	0.004
19	0.108	0.075	0.058	0.044	0.030	0.015	0.009	0.004
20	0.108	0.075	0.057	0.043	0.030	0.015	0.009	0.004
21	0.107	0.074	0.057	0.043	0.029	0.015	0.009	0.003
22	0.107	0.074	0.057	0.043	0.029	0.015	0.009	0.003
23	0.107	0.074	0.056	0.042	0.029	0.014	0.008	0.003
24	0.106	0.073	0.056	0.042	0.028	0.014	0.008	0.003
25	0.106	0.073	0.056	0.042	0.028	0.014	800.0	0.003
26	0.106	0.073	0.055	0.042	0.028	0.014	0.008	0.003
27	0.106	0.073	0.055	0.042	0.028	0.014	0.008	0.003
28	0.106	0.072	0.055	0.041	0.028	0.014	0.008	0.003
29	0.105	0.072	0.055	0.041	0.027	0.013	0.008	0.003
30	0.105	0.072	0.055	0.041	0.027	0.013	0.008	0,003
40	0.104	0.071	0.053	0.040	0.026	0.012	0.007	0.002
50	0.103	0.070	0,053	0.039	0.025	0.012	0.006	0.002
60	0.103	0.069	0.052	0.038	0.025	0.012	0.006	0.002
70	0.102	0.069	0.052	0.038	0.025	0.011	0.006	0.002
80	0.102	0.069	0.051	0.038	0.024	0.011	0.006	0.002
90	0.102	0.069	0.051	0.038	0.024	0.011	0.006	0.002
100	0.102	0.068	0.051	0.037	0.024	0.011	0.006	0.002
1000	0.100	0.067	0.050	0.036	0.023	0.010	0.005	0.001
Infinite	0.1003	0.0668	0.0495	0.0359	0.0228	0.0099	0.0049	0.0013

Note that the t-distribution with infinite df is the standard normal distribution.

TABLE A.5 M Chi-square Distribution

p = Area to Right of Chi-square Value										
df	0.50	0.25	0.10	0.075	0.05	0.025	0.01	0.005	0.001	
1	0.45	1.32	2.71	3.17	3.84	5.02	6.63	7.88	10.83	
2	1.39	2.77	4.61	5.18	5.99	7.38	9.21	10.60	13.82	
3	2.37	4.11	6.25	6.90	7.81	9.35	11.34	12.84	16.27	
4	3.36	5.39	7.78	8.50	9.49	11.14	13.28	14.86	18.47	
5	4.35	6.63	9.24	10.01	11.07	12.83	15.09	16.75	20.51	
6	5.35	7.84	10.64	11.47	12.59	14.45	16.81	18.55	22.46	
7	6.35	9.04	12.02	12.88	14.07	16.01	18.48	20.28	24.32	
8	7.34	10.22	13.36	14.27	15.51	17.53	20.09	21.95	26.12	
9	8.34	11.39	14.68	15.63	16.92	19.02	21.67	23.59	27.88	
10	9.34	12.55	15.99	16.97	18.31	20.48	23.21	25.19	29.59	
11	10.34	13.70	17.28	18.29	19.68	21.92	24.73	26.76	31.26	
12	11.34	14.85	18.55	19.60	21.03	23.34	26.22	28.30	32.91	
13	12.34	15.98	19.81	20.90	22.36	24.74	27.69	29.82	34.53	
14	13.34	17.12	21.06	22.18	23.68	26.12	29.14	31.32	36.12	
15	14.34	18.25	22.31	23.45	25.00	27.49	30.58	32.80	37.70	
16	15.34	19.37	23.54	24.72	26.30	28.85	32.00	34.27	39.25	
17	16.34	20.49	24.77	25.97	27.59	30.19	33.41	35.72	40.79	
18	17.34	21.60	25.99	27.22	28.87	31.53	34.81	37.16	42.31	
19	18.34	22.72	27.20	28.46	30.14	32.85	36.19	38.58	43.82	
20	19.34	23.83	28.41	29.69	31.41	34.17	37.57	40.00	45.31	
21	20.34	24.93	29.62	30.92	32.67	35.48	38.93	41.40	46.80	
22	21.34	26.04	30.81	32.14	33.92	36.78	40.29	42.80	48.27	
23	22.34	27.14	32.01	33.36	35.17	38.08	41.64	44.18	49.73	
24	23.34	28.24	33.20	34.57	36.42	39.36	42.98	45.56	51.18	
25	24.34	29.34	34.38	35.78	37.65	40.65	44.31	46.93	52.62	
26	25.34	30.43	35.56	36.98	38.89.	41.92	45.64	48.29	54.05	
27	26.34	31.53	36.74	38.18	40.11	43.19	46.96	49.65	55.48	
28	27.34	32.62	37.92	39.38	41.34	44.46	48.28	50.99	56.89	
29	28.34	33.71	39.09	40.57	42.56	45.72	49.59	52.34	58.30	
30	29.34	34.80	40.26	41.76	43,77	46.98	50.89	53.67	59.70	
	^* ·								-	

