SYED KUMAIL HAIDER

CEO OF AI CADMEY

SUPERVISOR:

ZAIN UL ABIDEEN

Space safety and Risk assessment

CosmicRisk: Space Safety and Risk Assessment is an advanced system designed to monitor and <u>assess potential risks in space. By</u> analyzing space debris, satellite collisions, and asteroid impact probabilities, the project provides comprehensive insights into space threats. Utilizing advanced <u>simulations and real-time data,</u> CosmicRisk helps ensure the safety of both spacecraft and Earth by identifying and visualizing <u>high-risk events in space, allowing</u>

<u>for proactive risk mitigation and</u> <u>improved space mission planning.</u> **Space Debris Collision Risk**:

- Orbital Mechanics:
 - Understanding how objects in space, like debris, move in their orbits.
- Relative Position and Velocity: Calculating how the relative position and velocity of debris compare to satellites or spacecraft.
- Collision Risk: Calculating the likelihood of debris colliding with satellites or spacecraft.

Asteroid Impact Probability:

- Orbital Simulations: Using Kepler's laws to simulate asteroid orbits and their interaction with Earth's orbit.
- Monte Carlo Simulations: To simulate various random scenarios and calculate the likelihood of asteroid impacts.
- Close Approach Analysis:
 Checking for potential close approaches between Earth and asteroids over long periods.

General Risk Model:

- Risk Assessment
 Algorithms: Developing
 algorithms that combine multiple
 factors (size, speed, proximity)
 to calculate the overall risk.
- Risk Thresholds: Defining thresholds to categorize risk levels (e.g., low, medium, high).

Key Calculation Libraries:

To implement the necessary calculations, you will likely need several libraries in Python. Here are the most useful ones for your project:

1. NumPy:

- For mathematical calculations, including distance, velocity, and vector operations (relative positions and velocities).
- Useful for matrix operations, which are often needed for modeling trajectories and calculating probabilities.
- pythonCopyimport numpy as np

3. **SciPy**:

 For more complex mathematical functions, especially if you're solving differential equations or need additional optimizations in simulations (e.g., orbit propagation).

pythonCopyfrom scipy.integrateimport odeint

4

5. Matplotlib/Plotly:

 For visualizing both the orbital trajectories and the results of the simulations in 2D or 3D.

```
pythonCopyimportmatplotlib.pyplot asplt
```

import plotly.graph_objects as go

6.

7. AstroPy:

 Specifically useful for orbital mechanics, if you want to incorporate real astronomical data (e.g., planetary positions, asteroid trajectories).

python
 Copy
 from astropy import
 coordinates as coords

from astropy.timeimport Time

8.

9. Pandas:

 For handling and storing data, especially if you are dealing with large datasets of asteroid positions, debris information, or simulation results.

10. python
Copy

import pandas as p

Tautology (Methodology):

The *tautology* for the project refers to the underlying principles and logical steps used to assess risk. Here's how we can break it down:

1. Risk Identification:

 The first step is identifying potential space threats, which include both space debris and asteroid impacts.

2. Risk Calculation:

 Using orbital mechanics and physical properties of objects, calculate how these threats might interact with spacecraft or Earth's orbit.

3. Risk Categorization:

 Classify the risk level (low, medium, high) based on the probability of a collision or impact event.

4. Visualization and Simulation:

 Visualize the paths of the objects (debris, satellites, asteroids) and simulate their future movements using numerical methods (Monte Carlo or N-body simulations).

5. Proactive Mitigation:

 Based on the risk levels, recommend actions for space agencies to take, such as maneuvering satellites, tracking objects, or preparing for potential asteroid impacts.