

## Graph Convolutional Network

The Goal: learn a function of signals/features on a graph G = (V, E)

#### Input:

- A feature description  $x_i$  for every node i; summarized in a  $N \times D$ feature matrix X (N: number of nodes, D: number of input feature)
- A representative description of the graph structure in matrix form; typically, in the form of an adjacency matrix A (or some function thereof)

Output is a node-level Z (an  $N \times F$  feature matrix, where F is the number of output features per node)



(a) Graph Convolutional Network

## Graph Convolutional Network

Every neural network layer can there be written as a non-linear function

$$H^{(l+1)} = f(H^{(l)}, A)$$

with  $H^{(0)} = X$  and  $H^{(L)} = Z$  (or z for graph-level outputs), L being the number of layers. The specific models then differ only in how  $f(\cdot,\cdot)$ is chosen and parameterized.



Cora t-SNE visualization

## **Loss Function**

- Using a graph Laplacian regularization term in the loss function  $\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{reg}, \text{ with } \mathcal{L}_{reg} = \sum_{i,j} A_{ij} \left| \left| f(X_i) f(X_j) \right| \right|^2 = f(X)^T \Delta f(X).$
- $\triangleright$   $\mathcal{L}_0$  denotes the supervised loss with respect to the labelled part of the graph
- $f(\cdot)$  can be a neural network-like differentiable function
- $\triangleright$   $\lambda$  is a weighing factor
- $\triangleright$  X is a matrix of node features vectors  $X_i$ .
- ▶  $\Delta = D A$  denotes the unnormalized graph Laplacian of an undirected graph G = (V, E) with N nodes  $v_i \in V$ , edges  $(v_i, v_j) \in E$ , adjacency matrix  $A \in R^{N \times N}$  (binary or weighted) and a degree matrix  $D_{ii} = \sum_j A_{ij}$ .

# Fast Approximate Convolutions on Graphs

$$H^{(l+1)} = \sigma^{\left(\widehat{D}^{-\frac{1}{2}}\widehat{A}\widehat{D}^{-\frac{1}{2}}H^{l}W^{l}\right)}$$

- $\hat{A} = A + I_N$  is the adjacency matrix of the undirected graph G with added self-connections.
- $ightharpoonup I_N$  is the identity matrix
- $D_{ii} = \sum_{j} \hat{A}_{ij}$
- $W^{(l)}$  is a layer-specific trainable weight matrix
- ►  $H^{(l)} \in \mathbb{R}^{N \times D}$  is the matrix of activations in the  $l^{th}$  layer
- $H^{(0)} = X$

## Spectral Graph Convolutions

$$g_{\theta} \star x = U g_{\theta} U^T x,$$

- Filter  $g_{\theta} = diag(\theta)$  parameterized by  $\theta \in \mathbb{R}^N$
- ullet U is the matrix of eigenvectors of the normalized graph Laplacian  $L = I_N D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^T$ , with a diagonal matrix of its eigenvalues Λ
- $igwedge U^T x$  being the graph Fourier transform x.
- However! Evaluating this is computationally expensive, multiplication with the eigenvector matrix U is  $O(N^2)$  and computing the eigen decomposition of L in the first place can be expensive for large graphs.

## Chebyshev Polynomial Approximation

$$g_{\theta'}(\Lambda) \approx \sum_{k=0}^{K} \theta'_k T_k(\widehat{\Lambda}),$$

Rescaled 
$$\widehat{\Lambda} = \frac{2}{\lambda_{max}} \Lambda - I_N$$
.

 $\lambda_{max}$  denotes the largest eigenvalue of  $L. \theta' \in R^K$  is now a vector of Chebyshev coefficients.

The Chebyshev polynomials are recursively defined as

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$
, with  $T_0(x) = 1$  and  $T_1(x) = x$ .



## Chebyshev Polynomial Approximation

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\hat{\mathbf{L}}) x$$
,

Where 
$$\hat{L} = \frac{2}{\lambda_{max}} L - I_N$$

can be verified by  $(U\Lambda U^T)^k = U\Lambda^k U^T$ .

Note that this expression is now K-localized since it is a  $K^{th}$ -order polynomial in the Laplacian, i.e., it depends only on nodes that are at maximum K steps away from the central node ( $K^{th}$ -order neighborhood).

The complexity of evaluating this is O(|E|), i.e., linear in the number of edges.

Stacking multiple convolutional layers of this form, each layer followed by a pointwise non-linearity.

Limit the layer-wise convolution operation to K=1, i.e., a function that is linear with respect to L and therefore a linear function on the graph Laplacian spectrum.

# Further Approx.

Further approximate  $\lambda_{max}=2$ , since neural network parameters will adapt to this change in scale during training, the above equation simplifies to

$$g_{\theta'}\star x\approx \theta'_0x+\theta'_1(L-I_N)x=\theta'_0x-\theta'_1D^{-\frac{1}{2}}AD^{-\frac{1}{2}}x,$$
 with two free parameters  $\theta'_0$  and  $\theta'_1$ . The filter parameters can be shared over the whole graph.

Successive application of filters of this form then effectively convolve the  $k^{th}$ order neighborhood of a node, where k is the number of successive filtering
operations or convolutional layers in the neural network model

# Further Approx.

$$g_{\theta} \star x \approx \theta \left( I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

- with a single parameter  $\theta = \theta_0' = -\theta_1'$
- ►  $L = I_N D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$  now has eigenvalues in the range [0,2] that suggest a renormalization trick, to address numerical instabilities, and/or vanishing/exploding gradients

$$I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \to \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}$$

$$\tilde{A} = A + I_N$$
 and  $\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$ 



# Output

We can generalize the above to a signal  $X \in \mathbb{R}^{N \times C}$  with C input channels (i.e., a C-dimensional feature vector for every node) and F filters or feature as follows:

$$Z = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} X \Theta,$$

where  $\Theta \in R^{C \times F}$  is now a matrix of filter parameters and  $Z \in R^{\wedge}(N \times F)$  is the convolved signal matrix. This filtering operation has complexity O(|E|FC)

# Semi-Supervised Node Classification

The forward model is then:

$$Z = f(X, A) = softmax(\hat{A}ReLU(\hat{A}XW^{(0)})W^{(1)})$$

where they first compute in pre-processing:

$$\hat{A} = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}}$$

## Semi-Supervised Node Classification

$$Z = f(X, A) = softmax(\hat{A}ReLU(\hat{A}XW^{(0)})W^{(1)})$$

Here,  $W^{(0)} \in R^{C \times H}$  is an input-to-hidden weight matrix for a hidden layer with H feature maps.  $W^{(1)} \in R^{H \times F}$  is a hidden-to-output weight matrix

For semi-supervised multi-class classification, they evaluate the cross-entropy error over all labelled examples as:

$$\mathcal{L} = -\sum_{l \in \gamma_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf},$$

where  $\gamma_L$  is the set of node indices that have labels.

# Semi-Supervised Node Classification for graphs

### Setting:

Some node are labeled (black circle) All other nodes are unlabeled

#### Task:

Predict nodes label of unlabeled nodes

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \gamma_L} \sum_{f=1}^{F} Y_{lf} ln Z_{lf},$$

 $\gamma_L$  set of labeled node indices

Y label matrix

Z GCN output (after softmax)



# Experimental Set Up

| Dataset  | Type             | Nodes  | Edges   | Classes | Features | Label rate |
|----------|------------------|--------|---------|---------|----------|------------|
| Citeseer | Citation network | 3,327  | 4,732   | 6       | 3,703    | 0.036      |
| Cora     | Citation network | 2,708  | 5,429   | 7       | 1,433    | 0.052      |
| Pubmed   | Citation network | 19,717 | 44,338  | 3       | 500      | 0.003      |
| NELL     | Knowledge graph  | 65,755 | 266,144 | 210     | 5,414    | 0.001      |

We have used Cora and Pubmed datasets.

# Results

| Test Accuracy    | CORA   | PUBMED |
|------------------|--------|--------|
| 200 - iterations | 80.30% | 78.70% |



Pubmed t-SNE visualization



Cora t-SNE visualization

### Model depth experiment



# Results



# Results

### Label Propagation







Label Propagation

```
classifier = Classifier(X[:140], [one_hot[labels[i]] for i in range(140)], 10)
y_lp = classifier.get_pred("lpml", sigma=0.22)

100 - error_rate(y_lp, labels.tolist())
... 99.9996307237814
```

## **Work Distribution**

- Aman Atman and Kirthi Vignan Reddy
  - Writing the code for the label propagation algorithm and GCN from scratch.
  - ▶ Implementation of layer-wise linear model based on graph convolution developed.

- Yash Motwani and Rishav Goenka
  - Implementation of spectral graph convolutions.
  - Experiments on model depth i.e., Influence of number of layers on accuracy of proposed model.

## Limitations

- Memory grows linearly with data
- Only works with undirected graph
- Assumption of locality
- Assumption of equal importance of self-connections vs. edges to neighboring node

$$\hat{A} = A + \lambda I$$

where  $\lambda$  is a learnable parameter.