Optical Fiber Exp. 1 (Not sure yet)

Created by	B Borhan
 Last edited time	@May 7, 2025 11:05 PM
:≘ Tag	Year 3 Term 2

Design of the System : Bit Sequence Generator \rightarrow NRZ Pulse Generator \rightarrow MZM \rightarrow CW Laser \rightarrow Optical Fiber (SMF) \rightarrow PIN Photodetector \rightarrow LPF \rightarrow BER Analyzer/Oscilloscope.

(LPF is optional)

Red - Reference Signal

Blue → Electrical Signal

Cyan → Optical Signal

ট্রান্সমিশন মিডিয়ামের বামে Transmitter part আর ডানে Receiver পার্ট ।

Part Name	Section	Explanation
Bit Sequence Generator	Transmitter	ডেটা জেনারেট করে (০ ও ১ বিট)
NRZ (Non return to zero) Pulse Generator	Transmitter	বিটগুলিকে পালস আকারে রূপান্তর করে/ Converts bits into electrical pulses
Mach-Zehnder Modulator (MZM)	Transmitter	পালস দিয়ে অপটিক্যাল সিগন্যাল মডুলেট করে/Typically, a Mach-Zehnder Modulator (MZM) to encode the electrical pulse onto the optical signal./It is needed for synchronization when the data rate is very high
CW Laser	Transmitter	ধারাবাহিক আলো (continuous leaser beam) তৈরি করে যেটা মডুলেশনের জন্য দরকার
Optical Fiber (Single Mode)	Transmission Medium	আলো পরিবহন করে দূরে, আমরা length ১০ কিমি use korechi
Photodetector (PIN Diode)	Receiver	অপটিক্যাল সিগন্যালকে ইলেকট্রিক সিগন্যাল এ রূপান্তর করে (Converts the received optical signal back to electrical)

Part Name	Section	Explanation
BER Analyzer / Oscilloscope	Receiver	ডেটা বিশ্লেষণ করে: BER, Eye Diagram, Q-factor মাপে/Compares the received and transmitted signals to measure signal quality
Low Pass Filter	Receiver	Removes high-frequency noise from the received electrical signal

🛑 লাল লাইন (Red Line) কী বোঝায়?

এই লাল লাইনটি হলো মূলত প্রেরিত ইনপুট বিট সিগন্যাল, যেটা Pseudo-Random Bit Sequence Generator এবং NRZ Pulse Generator থেকে এসেছে। এই সিগন্যালকে ব্যবহার করে BER Analyzer রেফারেন্স বা আদর্শ সিগন্যাল হিসেবে ধরে নেয়।

💗 কালো Eye Diagram (Black lines) কী বোঝায়?

এটি হলো আউটপুট সিগন্যাল, অর্থাৎ যে সিগন্যালটি ফাইবার অপটিক মাধ্যমে (CW Laser \rightarrow Mach-Zehnder Modulator \rightarrow Optical Fiber \rightarrow PIN Detector \rightarrow Filter) যাবার পর পাওয়া গেছে।

"ম্যাম, এই গ্রাফে লাল লাইনটা হচ্ছে আমি যে বিট ইনপুট দিয়েছি, সেই রেফারেন্স সিগন্যাল। আর কালো সিগন্যালগুলো হচ্ছে সিস্টেমের মাধ্যমে যাবার পর যে সিগন্যাল পেয়েছি, সেটা। BER Analyzer এই দুইটার মধ্যে তুলনা করে বের করছে কতগুলো ভুল বিট এসেছে, অর্থাৎ Bit Error Rate (BER)।"

🐆 আরও সহজভাবে বলতে চাইলে:

"লাল লাইন আসলে আমাদের পাঠানো সিগন্যাল আর কালো অংশ হলো সেটা ফাইবার হয়ে আসার পরে কেমন দেখাচ্ছে। এই দুইটার তুলনা করে প্রোগ্রাম বলছে, ঠিকমতো গেছে কিনা, আর কতটা ভালো গেছে – যেটা আমরা Q-Factor আর BER দিয়ে বুঝতে পারি।"

Parameter	বাংলা ব্যাখ্যা	
Q Factor	এটি সিগন্যালের মানের একটি পরিমাপ। যত বেশি Q-factor, তত পরিষ্কার (কম নয়েজযুক্ত) সিগন্যাল। Q-factor বেশি মানে কম বিট–এরর হবে। একে আমরা অপটিক্যাল সিগন্যালের "Quality Factor" বলি।	
Min BER	Bit Error Rate-এর সর্বনিম্ন মান। এটা দেখায় কতটা কম বিট ভুল হয়েছে। খুব ছোট মান (যেমন 1e-12) মানে খুব ভালো transmission হয়েছে।	
Threshold	এটা সেই voltage/amplitude মান, যেটার উপরে সিগন্যালকে "1" আর নিচে হলে "0" ধরা হয়। ভুল threshold মানলে বেশি error হতে পারে।	
Height (Eye Height)	Eye Diagram-এ উপরের আর নিচের সিগন্যালের মাঝে যে খোলা জায়গা (opening) থাকে, সেটার vertical মান। যত বড় height, তত ভালো সিগন্যাল ডিসটিংশন। কম height মানে বেশি নয়েজ।	
BER Pattern	এখানে দেখায় কোন ধরণের বিট প্যাটার্নে কতটা BER হয়েছে। যেমন Pattern 1, Pattern 2 ইত্যাদি বিভিন্ন data pattern-এর জন্য BER কেমন হয়েছে তা বোঝায়।	

- Q Factor → সিগন্যালের গুণমান
- Min BER → বিট ভুলের সর্বনিম্ন হার
- Threshold → ০ আর ১ চিনতে যে সীমা নির্ধারণ করা হয়
- Eye Height → সিগন্যাল কতটা পরিষ্কার বোঝা যায়
- BER Pattern → কোন বিট প্যাটার্নে কত ভুল হয়েছে

Metric	Value	Explanation
Max. Q-Factor	13.089	Excellent. A Q > 6 is typically very good. It shows low noise and high signal quality.
Min. BER	1.48098e-039	Extremely low BER (Bit Error Rate). Indicates almost no errors in transmission.
Eye Height	0.000533014	Vertical distance between signal levels for '1' and '0'. Larger is better.
Threshold	0.000114226	Decision voltage level. Signals above are decoded as '1', below as '0'.
Decision Inst.	0.625	Bit decision time instant (ideally near the middle of the bit period).

References:

- 1. https://optiwave.com/wp-content/uploads/2016/03/OptiSystem_Introductory_Tutorials.pdf
- 2. https://www.youtube.com/watch?v=rwFehc-MAGA (Implementation)
- 3. https://www.youtube.com/watch?v=a96OD3THVd4 (Have some good explanations)