SCS 2212: Automata Theory

Tutorial 3: Non-Deterministic Finite Automata

1. Consider the following NFA as shown below.

Find a DFA that accepts the complement of the language defined by the above NFA.

- 2. Consider the following automatons.
 - a. Find the ε -closure of the following functions, δ^* (q₀,1011), δ^* (q₁,01), δ^* (q₀, 1010) and δ^* (q₁,00).

b. Find the ε -closure of the following functions δ^* (q₀, a) and δ^* (q₁, λ).

3. Design an NFA with no more than five states for the set {abab^n: n > 0} \cup {aba^n: $n \ge 0$ }.

- 4. Construct an NFA with three states that accepts the language {ab,abc}*.
- 5. Find an NFA with three states that accepts the language

$$L = \{a^n : n \ge 1\} \cup \{b^m a^k : m \ge 0, k \ge 0\}$$

- 6. Find an NFA that accepts { a}* and is such that if in its transition graph a single edge is removed (without any other changes), the resulting automaton accepts {a}.
- 7. An NFA in which (a) there are no λ -transitions, and (b) for all $q \in Q$ and all $a \in \Sigma$, δ (q,a)contains at most one element, is sometimes called an incomplete DFA. This is reasonable since the conditions make it such that there is never any choice of moves.

For $\Sigma = \{a,b\}$, convert the incomplete DFA below into a standard DFA.

8. Find an NFA with three states for $L = \{a^n : n \ge 0\} \cup \{b^n a : n \ge 1\}$.

Submission Instructions

- 1. Solutions with written explanations and diagrams need to be typeset and should be clear, readable.
- 2. Please compile your solutions to a PDF where the name of the PDF should be **T3_indexno.pdf**. Any other formats will have a penalty of -5.
- 3. There will be a penalty for late submissions (1 day late -5%, 2 days late -10%). Submissions that are later more than 2 days will not be graded.