(A Constituent College of the Somaiya Vidyavihar University)

Hall Effect

Name : Hardik Shah Roll No. : 16010221025

Branch : ETRX Batch : D2

Aim: To calculate the carrier concentration by fixed hall current and plotting a graph of hall voltage and magnetic field.

Apparatus: Two solenoids, Constant current supply, four probe, Digital gauss meter, Hall effect apparatus (which consist of Constant Current Generator (CCG), digital milli voltmeter and Hall probe).

Diagram:

(A Constituent College of the Somaiya Vidyavihar University)

Observation Table:

Material: Germanium

Magnetic field B = 0.447 gauss = $\underline{44.7 * 10^{-6}}$ tesla

Thickness t = 0.4 mm		Thickness t = 0.8 mm	
I _H mA	V _H mV	I _H mA	V _H mV
1	0.1482	1	21.567
1.5	0.2223	1.5	32.350
2	0.2964	2	43.133
2.5	0.3706	2.5	53.917
4	0.4447	4	64.700
3.5	0.5188	3.5	75.484
4	0.5929	4	86.267
4.5	0.6670	4.5	97.050
5	0.7411	5	107.834

K J SOMAIYA COLLEGE OF ENGINEERING (A Constituent College of the Somaiya Vidyavihar University)

Graph:Plot Hall voltage (Y-axis) v/s Hall current (X-axis) for different thicknesses

(A Constituent College of the Somaiya Vidyavihar University)

Formula: carrier concentration $n = \frac{B}{q \times t \times slope}$

Calculations:

$$(2, 9, 9)$$
 (0.1482, 21.567)
 $(22, 92)$ (0.7411, 107.834).
 $\frac{(107.834 - 21.567) \times 10^{-3}}{(0.7411 - 0.1482) \times 10^{-4}} = Slope.$
 $\frac{(0.7411 - 0.1482) \times 10^{-4}}{(0.7411 - 0.1482) \times 10^{-3}} = \frac{3 \times 10^{-3}}{9 \times 10^{-3} \times$

Home Assignment:

Keep Hall current (I_H) fixed at 3 mA. Vary Magnet current in steps of 0.5 A and note Hall voltage. Plot graph of Hall voltage (Y-axis) v/s Magnetic field* for any one thickness. Calculate carrier concentration using the formula: $n = \frac{I_H}{\sigma \times t \times slope}$

^{*}Find magnetic field for different magnet currents by selecting "Magnetic field v/s Current" from the "Select Procedure" drop-down menu of the simulator.

(A Constituent College of the Somaiya Vidyavihar University)

Observation table for Home Assignment:

Material: Germanium

Hall current: 3 mA

Thickness t = 0.4 OR 0.8 mm			
I ampere (magnet current)	B gauss	V _H mV	
1	0.1482	21.567	
1.5	0.2223	32.350	
2	0.2964	43.133	
2.5	0.3706	53.917	
4	0.4447	64.700	
3.5	0.5188	75.484	
4	0.5929	86.267	
4.5	0.6670	97.050	
5	0.7411	107.834	