IBR (Inverter-Based Resources) Model Verification

Using EMT (Electromagnetic Transient) Playback Simulation

Haoyuan Sun

The University of Tennessee, Knoxville ISO New England, Student Intern

Qiang "Frankie" Zhang, Xiaochuan Luo ISO New England

Main Idea

Use grid voltage measurements as input to the EMT model and compare the simulated current and power outputs with the measured ones.

Playback Simulation Approach

Playback Simulation Setup Possible Network

in between

Playback of Simulated Data

Field Recordings

 $3~\Phi~V~\&~I~at~Bus~2$

Advantages

IBR Model

to be Verified

- No need to simulate the whole system
- Results are straightforward to interpret
- Provides a solution for facility owners to verify their models

IBR Model Ramp-up Technique

Waveform Extension

Match the magnitude and phase angle with a given sine signal s.

$$A = \sqrt{2} \times RMS(s)$$

 $\theta = \arcsin(s[1]/A)$

Application on Real Event

Facility Information

PV generation facility near the event site.

Event Information

A bus near a power station tripped, causing a voltage dip in the neighborhood.

Playback Results

PV Output – Current

Result analysis: The original model provided by PV plant owner does not reflect the actual protection and control logics during this event.

Conclusions

- EMT playback simulation is efficient and effective as an IBR model verification solution.
- The subject IBR did not perform well during the minor voltage event like its EMT model did.

