

The Geno-PanPipe Software Package

Daniel Ortiz Martínez

Mathematics and Computer Science Department
University of Barcelona

Table of Contents

- 1. Introduction
- 2. Package Overview
- 3. Main Tools and File Formats
- 4. Whole Pipeline Example

Introduction

Introduction

- Execution of bam file pipelines entails many difficulties:
 - Downloading of very large files
 - Combination of tools with different input requirements
 - Existence of dependencies between tools
 - Tools may need to be added or removed
 - Each tool has specific computational requirements
 - Pipeline may need to be executed for hundreds of files
 - Parallelism should be exploited when possible
 - ..
- Geno-PanPipe provides a PanPipe module as well as a set of utilities to tackle these problems

Package Overview

Package Dependencies

- Shell Bash
- Python
- Conda
- PanPipe (https://daormar.github.io/panpipe/)
- Database download clients
- Slurm Workload Manager (optional)

Package Installation

• Obtain the package using git:

```
git clone https://daormar.github.io/geno-panpipe/
```

Change to the directory with the package's source code and type:

```
./reconf
./configure --with-panpipe=<DIR>
make
make install
```

NOTE 1: argument of --with-panpipe option is used to indicate the directory where PanPipe was built

NOTE 2: use --prefix option of configure to install the package in a custom directory

Additional configure Options

- --with-panpipe=<DIR>: sets location PanPipe of package
- --with-icgcscor=<DIR>: sets location of ICGC's score client
- --with-aspera=<DIR>: enables Aspera Connect download client
- --with-egadecrypt=<DIR>: location of EGA decryptor tool

Functionality

- Execution of pipelines processing normal-tumor bam files
- Automate processing of all of the samples of a dataset
- Handle file downloading as part of pipeline execution

Supported Databases and Download Clients

- Databases
 - EGA
 - ICGC
- Download clients
 - aspc
 - score-client
 - Amazon cloud
 - Collaboratory cloud
 - pyega3

- bam file downloading:
 - download_ega_{norm|tum}_bam
 - download_ega_asp_{norm|tum}_bam
 - download_aws_{norm|tum}_bam
 - download_collab_{norm|tum}_bam
- bam file manipulation:
 - sort_{norm|tum}_bam
 - index_{norm|tum}_bam
 - delete_bam_files

- Small Indels and Single Nucleotide Variant Callers:
 - manta_germline
 - manta_somatic
 - platypus_germline
 - strelka_germline
 - strelka_somatic

- Copy Number Variant Callers:
 - cnvkit
 - facets
 - sequenza
 - wisecondorx

- Structural Variant Callers:
 - delly, parallel_delly
 - lumpy, parallel_lumpy
 - parallel_svtyper
- MSI Analyzers:
 - msisensor

Main Tools and File Formats

Main Tools

- query_ega_metadata
- query_icgc_metadata
- analyze_dataset

query_ega_metadata

- Extracts information from EGA metadata
- Main input parameters:
 - -s <string>: file with sample information
 - -a <string>: file with analysis information
 - -t <string>: file with study information
 - -p <string>: file listing Aspera box content
 - -f <int>: output format

query_icgc_metadata

- Extracts information from ICGC metadata
- Main input parameters:
 - -d <string>: file with donor information
 - -a <string>: file with aws manifest
 - -t <string>: table file in json format
 - -f <int>: output format:

analyze_dataset

- Uses metadata information to automate analysis of a whole dataset
- Main input parameters:
 - -pfile <string>: file with pipeline steps to be performed
 - -r <string>: file with reference genome
 - -m <string>: file with metadata, one entry per line

The bam_analysis.sh Module

- Implements a PanPipe module for analyzing bam files
- Functions can be classified in 3 groups:
 - Download of bam files
 - Manipulation of bam files
 - Bioinformatics analysis (SNV, CNV and SV callers, MSI analyzers)

Additional Tools

- Reference genome operations:
 - filter_contig_from_genref
 - gen_bed_for_genome
- Data preparation for analysis steps:
 - convert_snppos_to_snpgcc
 - create_snv_pos_ascat
 - gen_wisecondorx_ref

File Formats

- EGA/ICGC metadata: information regarding a whole dataset that is typically spread out in a set of files
- Analysis metadata: file providing all the information of a given dataset that is relevant to automate its analysis
- Analysis automation script: file with a sequence of commands automating the analysis of a dataset

EGA Metadata

- Sample information (Sample_File.map)
 - contains file name info
- Analysis information (Analisys_Sample_meta_info.map)
 - contains donor and phenotype information
- Study information (Study_analysis_sample.map)
 - contains EGA id information
- Aspera box content (dbox_content)

ICGC Metadata

- Donor information (donor.<study_name>.tsv)
 - contains gender information
- AWS manifest (manifest.aws-virginia.<code>.tsv)
 - contains object id, file name and donor id information
- JSON table file (icgc_table.json)
 - contains phenotype information

Analysis Metadata (EGA)

- Created with the query_ega_metadata tool
- Example entries:

```
EGAF00001664282 phenotype=Blood|Normal_blood gender=male ; EGAF00001664327 phenotype=Skin|
    Tumour_metastasis_to_local_lymph_node gender=male ; EGAF00001664289 phenotype=Skin|
    Tumour_metastasis_to_local_lymph_node gender=male ; EGAF00001664289 phenotype=Skin|
    Tumour_metastasis_to_local_lymph_node gender=male

EGAF00001664356 phenotype=Skin|Tumour_metastasis_to_distant_location gender=male ; EGAF00001670533
    phenotype=Blood|Normal_blood gender=male ; EGAF00001661538 phenotype=Skin|
    Tumour_metastasis_to_local_lymph_node gender=male ...
```

Analysis Metadata (EGA Aspera)

- Created with the query_ega_metadata tool
- Example entries:
- EGAD00001003388/PART_2/EGAZ00001300436_20170516_AWS_MELA_3c3ed66c-1505-4614-ac9d-575a6713b06a.bam.crypt phenotype=Blood|Normal_blood gender=male; EGAD00001003388/PART_3/ EGAZ00001300354_20170516_AWS_MELA_daf1ffd8-0a0f-4869-abc8-5be0b4fc1a21.bam.crypt phenotype=Skin| Tumour_metastasis_to_local_lymph_node_gender=male
- EGAD00001003388/PART_3/EGAZ00001303407_20170516_AWS_MELA_a197619e-f3e2-41f6-aef7-d1fadf3c1f5b.bam.crypt phenotype=Blood|Normal_blood gender=male; EGAD00001003388/PART_2/ EGAZ00001300389_20170516_AWS_MELA_3a9bf676-1a7b-4718-8396-fb36cc89b688.bam.crypt phenotype=Skin| Tumour_metastasis_to_local_lymph_node_gender=male
- EGAD00001003388/PART_3/EGAZ00001300416_20170516_AWS_MELA_f64eba46-d8a1-46f2-ba66-1b509e16c946.bam.crypt phenotype=Skin|Tumour_metastasis_to_distant_location gender=male ; EGAD00001003388/PART_3/EGAZ00001303394_20170516_AWS_MELA_7bb66858-7533-4f96-9cd4-41aae2fe18b2.bam.crypt phenotype=Blood|Normal_blood gender=male

. .

Analysis Metadata (ICGC)

- Created with the query_icgc_metadata tool
- Example entries:

```
34fa2369-424f-5886-9d23-6d19f8f15278 tumor female; d759d07f-330c-5d0c-bd28-af72147dfb17 normal female 284f1424-d250-59cf-b105-da277b061e4a normal female; e7e69d23-fb0d-5d3d-9027-ebf355053dbf tumor female c42fffad-4ffd-59ba-93f1-2c573547369c normal female; 3a33ef20-dfd0-50b0-afc2-38de9a5ba32 tumor female 37f076d6-fa64-5b5d-a0d0-b5cd7428d4a2 normal female; 2c34270b-98d2-54b9-bdd3-068c6a9d858f tumor female ...
```

Pipeline Automation Script

- Created with the analyze_dataset tool (-p option)
- At each entry (one per line), PanPipe's pipe_exec tool is used to analyze a normal-tumor bam file pair
- Entry example:

/home/dortiz/bio/software/bam-utils/bin/pipe_exec --pfile /home/dortiz/bio/software/bam-utils/share/bam
-utils/examples/basic_test.ppl --outdir /mmt/raid/dortiz/bio/tasks/bam_analysis_testing_pipeline/
d759d07f-330c-5d0c-bd28-af72147dfb17_34fa2369-424f-5886-9d23-6d19f8f15278 --sched SLURM -r /home/
dortiz/bio/data/genome_references/refseq_hg19_filt.fa -extn d759d07f-330c-5d0c-bd28-af72147dfb17
-extt 34fa2369-424f-5886-9d23-6d19f8f15278 -cr /home/dortiz/bio/data/genome_references/
refseq_hg19_filt.fa.bed -egastr 50 -egacred /home/dortiz/bio/software/ega-download-client-python/
dortiz_cred.json

Extending Package Functionality

- Focus on bam_analysis.sh module
- Two mechanisms:
 - Add new functions directly in bam_analysis.sh
 - Define a complementary module and import it in addition to bam_analysis.sh

Whole Pipeline Example

Pipeline File

```
#import bam_analysis

#
download_ega_norm_bam cpus=1 mem=2048 time=10:00:00 stepdeps=none
download_ega_tum_bam cpus=1 mem=2048 time=10:00:00 stepdeps=none
index_norm_bam cpus=1 mem=1G time=4:00:00 stepdeps=afterok:download_ega_norm_bam
index_tum_bam cpus=1 mem=1G time=4:00:00 stepdeps=afterok:download_ega_tum_bam
manta_somatic cpus=8 mem=3G time=6:00:00 stepdeps=afterok:index_norm_bam,afterok:index_tum_bam
strelka_somatic cpus=8 mem=6G time=6:00:00 stepdeps=afterok:index_norm_bam,afterok:index_tum_bam,
afterok:manta_somatic
msisensor cpus=8 mem=6G time=5:00:00 stepdeps=afterok:index_norm_bam,afterok:index_tum_bam
delete_bam_files cpus=1 mem=1G time=0:10:00 stepdeps=afterok:manta_somatic,afterok:strelka_somatic,
afterok:msisensor
```

Pipeline Representation

