Resumiendo, si un límite lo podemos expresar como la suma de Riemann de una función, podemos calcular dicho límite si sabemos el valor de dicha integral.

10.5 EJERCICIOS

Ejercicio 10.1. Prueba, usando directamente alguna descripción de la integral, que

$$\int_0^1 x^p dx = \frac{1}{p+1} , \quad (p \in \mathbb{N} \cup \{0\}).$$

Ejercicio 10.2. Justifica las siguientes desigualdades

1)
$$\frac{1}{6} < \int_0^2 \frac{dx}{10 + x} < \frac{1}{5}$$

2)
$$\frac{1}{110} < \int_0^1 \frac{x^9}{10 + x} dx < \frac{1}{10}$$
.

Ejercicio 10.3. Sea $f: [a,b] \to \mathbb{R}$ integrable. Supongamos que para cualesquiera a < c < d < b existe un punto $x \in]c$, d[tal que f(x) = 0. Prueba que $\int_a^b f = 0$.

Ejercicio 10.4. Sea $f: [a,b] \to \mathbb{R}$ una función continua verificando que $f(x) \ge 0$ para todo $x \in [a,b]$. Demuestra que si existe $x_0 \in [a,b]$ tal que $f(x_0) > 0$, entonces $\int_a^b f(x) dx > 0$.

Ejercicio 10.5. Sean a, $b \in \mathbb{R}$ con a < b y sea $f: [a,b] \to \mathbb{R}$ una función continua. Prueba que, para $\lambda \in \mathbb{R}$, se verifica

$$\lambda = \int_a^b f(x) \, dx \iff \lambda \in \Sigma(f,\dot{P}), \quad \forall \, \dot{P} \in \dot{\mathcal{P}}[a,b].$$

Ejercicio 10.6. Calcula los límites de las siguientes sucesiones expresándolas como sumas integrales

1)
$$x_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 4} + \dots + \frac{n}{n^2 + n^2}$$

2)
$$x_n = \frac{1}{\sqrt{n(n+1)}} + \frac{1}{\sqrt{n(n+2)}} + \dots + \frac{1}{\sqrt{n(n+n)}}$$

3)
$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

4)
$$x_n = \frac{n+1}{n^2+1} + \frac{n+2}{n^2+4} + \dots + \frac{n+n}{n^2+n^2}$$

Ejercicio 10.7. Sea f: $[0,1] \to \mathbb{R}^+_0$ una función continua. Calcula

$$\lim_{n\to\infty} \sqrt[n]{f\left(\frac{1}{n}\right)f\left(\frac{2}{n}\right)\dots f\left(\frac{n}{n}\right)}.$$