ShipinskyKS 28122024-101709

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r+mf_{\Pi \Psi}|$ Какой комбинацией $\{n;m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 3?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{5;1\} \quad 2) \ \{8;-20\} \quad 3) \ \{14;-6\} \quad 4) \ \{17;-55\} \quad 5) \ \{14;-27\} \quad 6) \ \{11;15\} \quad 7) \ \{14;-20\}$$

8) $\{14; -20\}$ 9) $\{17; -69\}$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 2.7 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 21 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 12.1 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 9.8 дБ 2) 10.4 дБ 3) 11 дБ 4) 11.6 дБ 5) 12.2 дБ 6) 12.8 дБ 7) 13.4 дБ 8) 14 дБ
- 9) 14.6 дБ

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 302 МГц, частота ПЧ 26 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 276 MΓ_Ц
- 2) 354 МГц
- 932 ΜΓ
- 4) 1208 MΓ_{II}.

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 21 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 50 МГц?

Варианты ОТВЕТА:

1) $43.8 \text{ } \pi\Phi$ 2) $69.7 \text{ } \pi\Phi$ 3) $92.6 \text{ } \pi\Phi$ 4) $59.4 \text{ } \pi\Phi$

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.21503 - 0.21227i, \ s_{31} = 0.21312 + 0.21589i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -40 дБн 2) -42 дБн 3) -44 дБн 4) -46 дБн 5) -48 дБн 6) -50 дБн 7) -52 дБн 8) -54 дБн 9) 0 дБн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1170 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 9 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 269 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3790 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1388 МГц до 1438 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -73 дБм 2) -76 дБм 3) -79 дБм 4) -82 дБм 5) -85 дБм 6) -88 дБм 7) -91 дБм 8) -94 дБм 9) -97 дБм