CLAIMS

What is claimed:

a magnetic memory element.

2

1	1.	A thin film device comprising:	
2		at least one patterned thin film layer;	
3		a heater material coupled to at least one of the patterned thin film layers for	
4	provid	ding thermal assistance thereto; and	
5		a conductor coupled to the heater material to supply energy to the heater material.	
1	2.	The device of claim 1 wherein the thin film device comprises a magnetic random	
2	acces	s memory device.	
1	3.	The device of claim 1 wherein the thin film device comprises a sensor.	
1	4.	The device of claim 1 wherein the at least one patterned thin film layer is formed	
2	on th	on the heater material.	
٠			
1	5.	The device of claim 1 wherein the conductor is a split conductor and the heater	
2	mate	material is connected between the split conductor.	
1	6.	The device of claim 1 wherein the energy comprise radio frequency energy.	
1	7.	The device of claim 2 wherein the at least one patterned thin film layer comprises	

8. The device of claim 4 wherein the heater material comprises at least one of 1 2 amorphous silicon and amorphous carbon. 9. The device of claim 4 wherein the heater material comprises a metal. 1 The device of claim 5 wherein the conductor comprises a conductive sidewall 10. 1 material comprising at least one of Cu, Au, Ag, Pt, Al. 2 The device of claim 6 wherein the magnetic memory element comprises at least 11. 1 one of a spin dependent tunnel junction and a giant magnetoresistive device. 2 The device of claim 6 wherein the magnetic memory element includes a free 12. 1 layer and the heater material provides thermal assistance in switching a magnetic 2 orientation of the free layer. 3 The device of claim 6 wherein the at least one patterned thin film layer is formed 13. 1 over a dielectric material and the dielectric material is in contact with the heater material. 2 The device of claim 10 wherein the conductive side wall material is coupled to a 14. 1 power source. 2 The device of claim 14 wherein the conductive side wall material is coupled to 15. 1

the power source via a decoder.

2

1	16.	A method of providing thermal assistance in a thin film device comprising:	
2		heating at least one of a plurality of patterned thin film layers by selectively	
3	exposing the at least one of the patterned thin film layers to energy from a power source;		
4	and		
5		performing an operation with the selectively exposed at least one of the plurality	
6	of pat	terned thin film layers.	
1	17.	The method of claim 16 wherein the thin film device comprises a magnetic	
2	random access memory device.		
1	18.	The method of claim 16 wherein each of the plurality of magnetic memory	
2	eleme	ents comprises a spin dependent tunnel junction.	
1	19.	The method of claim 18 wherein each of the plurality of patterned thin film layers	
2	comprises a magnetic memory element.		
1	20.	The method of claim 19 wherein each of the magnetic memory elements are	
2	form	ed with the following process:	
3		depositing a heater material over a dielectric material;	
4		forming a plurality of trenches in a dielectric material; and	
5		forming sidewall material on each of the plurality of trenches wherein the	
6	side	wall material is coupled to the heater material; and	
7		forming each of the plurality of magnetic memory elements in contact with the	
8	heat	er material.	

- 1 21. The method of claim 20 wherein the sidewall material comprises at least one of Cu, Au, Ag, Pt, Al.
- 1 22. The method of claim 20 wherein the power source comprises a radio frequency
 2 power source.
- 1 23. The method of claim 20 wherein the heater material comprises at least one of 2 amorphous silicon and amorphous carbon.
- 1 24. The method of claim 20 wherein the heater material comprises a metal.
- The method of claim 20 wherein each of the plurality of magnetic memory
 elements includes a free layer and performing an operation with the selectively exposed
 at least one of the plurality of magnetic memory elements further comprises switching a
 magnetic orientation of the free layer of the selectively exposed at least one of the
 plurality of magnetic memory elements.
- 1 26. The method of claim 20 wherein forming sidewall material on each of the plurality of trenches further comprises:
- depositing a conductive material over the plurality of trenches; and performing an anisotropic etch on the conductive material.
- The method of claim 26 wherein the conductive material comprises at least one of Cu, Au, Ag, Pt, Al.

l	28.	The method of claim 27 wherein heating at least one of the plurality of magnetic	
2	memor	y elements by selectively exposing the at least one of the plurality of magnetic	
3	memor	y elements to energy from a power source further comprises:	
4		applying energy to the sidewall material whereby energy is transferred to the free	
5	layer tl	nrough the heater material.	
1	29.	The method of claim 28 wherein applying energy to the sidewall material	
2	include	es applying the energy to the magnetic memory elements prior to switching the	
3	magnetic orientation of the free layer.		
1	30.	The method of claim 28 wherein applying energy to the sidewall material	
2	includes applying the energy to the magnetic memory elements simultaneous to		
3	switch	ning the magnetic orientation of the free layer.	
1	31.	A computer system comprising:	
2		a processor;	
3		an interface module coupled to the processor; and	
4		a magnetic random access memory device coupled to the interface module	
5	wherein the magnetic random access memory device includes a plurality of magnetic		
6	memo	ory elements, a heater material coupled to at least one of the plurality of magnetic	
7	mem	ory elements for providing thermal assistance in switching a magnetic orientation of	
8	the at	least one of the plurality of magnetic memory elements and a conductor coupled to	
9	the h	eater material for supplying energy to the heater material.	

1	32.	The computer system of claim 31 wherein each of the plurality of magnetic	
2	memor	ry elements comprises a spin dependent tunneling junction.	
7			
1	33.	The computer system of claim 31 wherein each of the plurality of magnetic	
2	memor	ry elements is formed on the heater material.	
1	34.	The computer system of claim 33 wherein the heater material comprises	
2	amorphous carbon.		
1	35.	The computer system of claim 33 wherein the heater material comprises	
2	amorphous silicon.		
1	36.	The computer system of claim 33 wherein the heater material is coupled to a	
2	conductive sidewall material wherein the conductive sidewall material comprises at least		
3	one of Cu, Au, Ag, Pt, Al.		
1	37.	The computer system of claim 36 wherein the heater material is formed in	
2	betwe	en the conductive sidewall material.	
1	38.	A magnetic random access memory device comprising:	
2		a plurality of magnetic memory elements;	
3		a heater material coupled to at least one of the plurality of magnetic memory	
4	eleme	ents:	

a decoder coupled to the heater material; and

a radio frequency power source coupled to the decoder for providing heat to the
heater material to thermally assist in switching a magnetic orientation of the at least one
of the plurality of magnetic memory elements.