微积分

Ivan Chien

Contents

I 函数 极限 连续	. 1
I.i 函数	. 1
I.i.1 初等函数	. 1
I.i.1-a 反三角函数	. 1
I.ii 极限	
I.ii.1 两个重要极限	. 2
I.ii.2 数列的极限	. 2
I.ii.3 函数的极限	. 2
I.ii.3-a 自变量趋于无穷大时函数的极限	. 2
I.ii.3-b 自变量趋于有限值时函数的极限	. 2
I.ii.4 极限的性质	. 3
I.ii.5 函数极限与数列极限的关系	. 3
I.ii.6 无穷小量与无穷大量	. 3
I.ii.6-a 无穷小量	. 3
I.ii.6-b 无穷大量	. 4
I.ii.7 极限的计算	. 5
I.ii.7-a 第一重要极限	. 5
I.ii.7-b 第二重要极限	. 6
I.ii.7-c 等价无穷小替换	. 6
I.ii.7-d 洛必达法则	. 7
I.ii.7-e 夹逼准则	. 7
I.ii.7-f 泰勒公式	. 7
I.iii 连续性	. 8
I.iii.1 运算	. 8
I.iii.2 初等函数的连续性	. 9
I.iii.3 间断点	. 9
I.iii.4 闭区间上连续函数的性质	. 9
II 一元函数微分学	. 9
II.i 导数	. 9

I 函数 极限 连续

I.i 函数

I.i.1 初等函数

I.i.1-a 反三角函数

- 1. $\arcsin x$ 和 $\arccos x$ 的定义域为 [-1,1]
- 2. $\arcsin x$ 的值域为 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 3. $\arccos x$ 的值域为 $\left[0, \pi\right]$

I.ii 极限

I.ii.1 两个重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

I.ii.2 数列的极限

定义 对于 $\forall \varepsilon > 0$, 总 \exists 正整数 N, 当 n > N 时, 恒有

$$|x_n - a| < \varepsilon$$

成立,则称常数 a 为数列 $\{x_n\}$ 当 n 趋于无穷时的**极限**,记为

$$\lim_{n \to \infty} x_n = a$$

I.ii.3 函数的极限

I.ii.3-a 自变量趋于无穷大时函数的极限

定义 对 $\forall \varepsilon > 0$, 总 $\exists X > 0$, 当 x > X 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 当 $x \to +\infty$ 时的极限,记为

$$\lim_{x \to +\infty} f(x) = A$$

定义 对 $\forall \varepsilon > 0$, 总 $\exists X > 0$, 当 x < -X 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 当 $x \to -\infty$ 时的**极限**,记为

$$\lim_{x \to +\infty} f(x) = A$$

定义 对 $\forall \varepsilon > 0$, 总 $\exists X > 0$, 当 |x| > X 时, 恒有 $|f(x) - A| < \varepsilon$, 则称常数 A 为 f(x) 当 $x \to \infty$ 时的极限、记为

$$\lim_{x \to \infty} f(x) = A$$

I.ii.3-b 自变量趋于有限值时函数的极限

定义 对 $\forall \varepsilon > 0$, 总 $\exists \delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 当 $x \to +\infty$ 时的极限,记为

$$\lim_{x \to x_0} f(x) = A$$

注:

- 1. ε 用来刻画 f(x) 与 A 的接近程度, δ 用来刻画 $x \to x_0$ 的极限过程
- 2. 该极限与 f(x) 在 $x=x_0$ 处有无定义、值是多少无关, f(x) 必须在 $x=x_0$ 的某去心邻域 $\mathring{U}(x,\delta)$ 处处有定义

这里的 |f(x) - A| 比任意的 ε 都要小, ε 可以小到非常小,所以说 ε 是用来刻画两者的接近程度的;f(x) 在某个去心邻域(会存在)中无限趋近于 A, δ 具体等于多少也无所谓,它也可以无限小。

定义 对 $\forall \varepsilon > 0$, 总 $\exists \delta > 0$, 当 $x_0 - \delta < x < x_0$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为函数 f(x) 当 $x \to x_0$ 时的左极限,记为

$$\lim_{x \to x_0^-} f(x) = A$$

定义 对 $\forall \varepsilon > 0$, 总 $\exists \delta > 0$, 当 $x_0 < x < x_0 + \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为函数 f(x) 当 $x \to x_0$ 时的右极限,记为

$$\lim_{x\to x_0^+} f(x) = A$$

定理 $\lim_{x\to x_0} f(x) = A$ 当且仅当 $\lim_{x\to x_0^-} f(x) = A \wedge \lim_{x\to x_0^+} f(x) = A$

极限存在当且仅当左右极限都存在且相等。

I.ii.4 极限的性质

有界性 (数列)如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界。

(函数)若 $\lim_{x\to x_0} f(x)$ 存在,则 f(x) 在 x_0 的某去心邻域有界(局部有界性)。

保号性 (数列) 设 $\lim_{n\to\infty} x_n = A$

- (1) 如果 A > 0 (A < 0), 则 $\exists N > 0$, 当 n > N 时, $x_n > 0$ ($x_n < 0$).
- (2) 如果 $\exists N > 0$, 当 n > N 时, $x_n \ge 0 (x_n \le 0)$, 则 $A \ge 0 (A \le 0)$ 。
- (函数)设 $\lim_{x\to x_0} x_n = A$
- (1) 如果 A > 0 (A < 0), 则 $\exists \delta > 0$, 当 $x \in \mathring{U}(x_0, \delta)$ 时, f(x) > 0 (f(x) < 0).
- (2) 如果 $\exists \delta > 0$, 当 $x \in \mathring{U}(x, \delta)$ 时, $f(x) \ge 0 (f(x) \le 0)$,则 $A \ge 0 (A \le 0)$ (局部保号性)。

注意这里的等于号。

I.ii.5 函数极限与数列极限的关系

海因定理 若 $\lim_{x\to x_0} f(x) = A$,则对任意数列 $\{x_n\}$, $\lim_{n\to\infty} x_n = x_0$,且 $x_n \neq x_0$,都有 $\lim_{n\to\infty} f(x_n) = A$ 。

I.ii.6 无穷小量与无穷大量

I.ii.6-a 无穷小量

无穷小量 若函数 f(x) 当 $x \to x_0$ 或 $x \to \infty$ 时的极限为零,则称 f(x) 为此时的无穷小量。

性质:

- 1. 有限个无穷小的和仍是无穷小
- 2. 有限个无穷小的积仍是无穷小
- 3. 无穷小量与有界量的积仍是无穷小

所以很多极限才可能通过简单的算术运算就得出结果啊。

比较:

- 1. 若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 0$, 则 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$
- 2. 若 $\lim_{\beta \to \infty} \frac{\alpha}{\beta} = \infty$, 则 β 是比 α 低阶的无穷小
- 3. 若 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$,则 β 和 α 是同阶无穷小
- 4. 若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 1$,则 β 和 α 是等价无穷小,记作 $\alpha \sim \beta$
- 5. 若 $\lim_{\alpha \to 0}^{\alpha \over \beta} = c \neq 0$, 则 $\beta \neq \alpha$ 的k 阶无穷小

等价无穷小:

当 $x \to 0$ 时,有:

- $\cdot \sin x \sim x$
- $\ln(1+x)\sim x$
- $e^x 1 \sim x$
- $1 \cos x \sim \frac{1}{2}x^2$
- $\sqrt[n]{1+x}-1\sim\frac{1}{n}x$

极限值与无穷小之间的关系:

$$\lim f(x) = A \Leftrightarrow f(x) = A + \alpha(x)$$

其中 $\lim \alpha(x) = 0_{\circ}$

I.ii.6-b 无穷大量

无穷大量 若对于 $\forall M > 0$,总 $\exists \delta > 0$,当 $0 < |x - x_0| < \delta$ 时,恒有 |f(x)| > M,则称 f(x) 为 $x \to x_0$ 时的**无穷大量**,记为 $\lim_{x \to x_0} f(x) = \infty$ 。

性质:

- 1. 两个无穷大量的积仍为无穷大量
- 2. 无穷大量与有界变量之和仍为无穷大量
- 3. 无穷大量与非零常数乘积仍为无穷大量

和不一定,比如 $y_1 = \frac{1}{x}$ 和 $y_2 = -\frac{1}{x}$ 。

与无界变量的关系:

- 1. 数列 $\{x_n\}$ 是无穷大量: $\forall M > 0, \exists N > 0, \ \exists \ n > N$ 时,恒有 $|x_n| > N$ 。
- 2. 数列 $\{x_n\}$ 是无界变量: $\forall M > 0, \exists N > 0$, 使 $|x_N| > M$ 。

无穷大量必无界, 无界变量不一定无穷大。

举一个无界的例子:

$$\lim_{x \to 0} \frac{1}{x^2} \sin\left(\frac{1}{x}\right)$$

使用海因定理,构造两个数列:

$$x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$$

$$y_n = \frac{1}{2n\pi}$$

它们在 $x \to \infty$ 的极限都为 0,可带入函数极限中,但得到的结果分别为:

$$\lim_{n\to\infty}\frac{1}{\left(x_n\right)^2}\sin\!\left(\frac{1}{x_n}\right)=+\infty$$

$$\lim_{n \to \infty} \frac{1}{(y_n)^2} \sin\left(\frac{1}{y_n}\right) = 0$$

故这个函数极限的值不是无穷大,只是无界。

I.ii.7 极限的计算

若 $\lim f(x) = a$, $\lim g(x) = b$, 则:

- 1. $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = a \pm b$
- 2. $\lim[f(x)g(x)] = \lim f(x) \cdot \lim g(x) = a \cdot b$ 3. $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{a}{b}(b \neq 0)$

常用结论:

- 1. $\lim f(x) = A \neq 0 \Rightarrow \lim f(x)g(x) = A \lim g(x)$, 极限非零的因子的极限可以先求出来
- 1. $\lim_{x \to 0} f(x) = A \neq 0 \Rightarrow \lim_{x \to 0} f(x) = 0$ 2. $\lim_{x \to 0} \frac{f(x)}{g(x)}$ $\not = A \neq 0$, $\lim_{x \to 0} f(x) = 0$ 3. $\lim_{x \to 0} \frac{f(x)}{g(x)} = A \neq 0$, $\lim_{x \to 0} f(x) = 0 \Rightarrow \lim_{x \to 0} g(x) = 0$ 4. $\lim_{x \to 0} \frac{a^x 1}{x} = \ln a$ 5. $\lim_{n \to \infty} \sqrt[n]{n} = 1$, $\lim_{n \to \infty} \sqrt[n]{a} = 1$ (a > 0)

各种未定式的求法考虑以下:

- 1. 有理化
- 2. 通分
- 3. 化为第两重要极限(主要是 1∞型)

其实是废话?

I.ii.7-a 第一重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

这里其实还告诉你了可以用无穷小比阶来算某些 $\frac{0}{0}$ 形的结果。所以像 $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$ 这 种也是成立的。

I.ii.7-b 第二重要极限

这里同样可以将 (a) 式中的 x 换成无穷小量。

$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$$

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx+c} = e^{ab}$$

第一重要极限是 $\frac{0}{0}$ 型,第二重要极限是 1^{∞} 型。

求幂指函数 $f(x)^{g(x)}$ 的极限,常用以下方法:

- 1. 利用 $f(x)^{g(x)} = e^{g(x)\ln f(x)}$
- 2. 若为 1[∞] 型,可利用第二重要极限
- 3. 若 $\lim f(x) = A > 0$, $\lim g(x) = B$, 则 $\lim f(x)^{g(x)} = A^B$

I.ii.7-c 等价无穷小替换

等价无穷小替换定理 设 $f_1(x) \sim f_2(x), g_1(x) \sim g_2(x)$,且 $\lim \frac{f_2(x)}{g_2(x)}$ 存在,则

$$\lim \frac{f_1(x)}{g_1(x)} = \lim \frac{f_2(x)}{g_2(x)}$$

注意没有在加减里做等价无穷小替换的定理。

但有推论:

- · 若 $\alpha \sim \alpha_1, \beta \sim \beta_1$, 且 $\lim \frac{\alpha_1}{\beta_1} = A \neq 1$, 则 $\alpha \beta \sim \alpha_1 \beta_1$ · 若 $\alpha \sim \alpha_1, \beta \sim \beta_1$, 且 $\lim \frac{\alpha_1}{\beta_1} = A \neq -1$, 则 $\alpha + \beta \sim \alpha_1 + \beta_1$

即两个函数相减,能对这两个函数分别做无穷小替换,当且仅当这两个函数互相不是等价 无穷小。比如 $x - \sin x$ 就不能换成 x - x = 0,因为很显然 x 和 $\sin x$ 是等价无穷小。 最好还是别用。

常用等价无穷小:

当 $x \to 0$ 时:

- 1. $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$
- 2. $1 \cos x \sim \frac{1}{2}x^2$
- 3. $\ln(1+x)\sim x, e^x 1\sim x, a^x 1\sim x \ln a$
- 4. $(1+x)^{\alpha} 1 \sim \alpha x (\alpha \neq 0) (\alpha) \frac{1}{n}$ 做开方时一样有效)
- 5. $\sqrt{1+x} \sqrt{1-x} \sim x$

这里的 x 都换成无穷小量 $\alpha(x)$ 一样成立。

I.ii.7-d 洛必达法则

洛必达法则 若

- (1) $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ 或
- (2) f(x) 和 g(x) 在 x_0 的某去心邻域内可导,且 $g'(x) \neq 0$ (3) $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 存在(或 ∞)
- 则:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

洛必达限制条件还挺多的。

给出求七种未定式的方法:

- $1. \frac{0}{0}, \frac{\infty}{\infty}$ 型,用洛必达
- 2. 0 · ∞, 化为商, 变成情况 1
- 3. ∞ ± ∞, 通分或有理化, 变成情况 1
- $4. 1^{\infty}, \infty^{0}, 0^{0}$,拆成 e^{\ln} 指数化为 $0 \cdot \infty$,变成情况 2

I.ii.7-e 夹逼准则

夹逼准则 若函数 f(x), g(x), h(x) 满足:

- $(1) g(x) \le f(x) \le h(x)$
- (2) $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A$

则
$$\lim_{x\to x_0} f(x) = A_\circ$$

I.ii.7-f 泰勒公式

(带皮亚诺余项的泰勒公式)设 f(x) 在 $x = x_0$ 处 n 阶可导,则

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(x - x_0)^n$$

特别的, 当 $x_0 = 0$ 时, 有:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

常用的泰勒公式:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha+1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

I.iii 连续性

定义 设 y = f(x) 在点 x_0 的某邻域内有定义,若:

$$\lim_{\Delta x \rightarrow 0} \Delta y = \lim_{\Delta x \rightarrow 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

则称 y = f(x) **在点** x_0 **处连续**, 并称 x_0 为 f(x) 的连续点。

定义 设 y = f(x) 在点 x_0 的某邻域内有定义,若 $\lim_{x \to x_0} f(x) = f(x_0)$,则称 y = f(x) 在点 x_0 处连续, x_0 为 f(x) 的连续点。

用人话讲就是:

- 1. f(x) 在 $x = x_0$ 处要有定义
- 2. f(x) 在 $x \to x_0$ 的极限要存在
- 3. 而且这两个值要相等

这三条与连续互为充要。

另外,连续是可以推极限存在的。 连续也分左连续和右连续,充要也跟左右极限相仿。

连续可以推出极限值和函数值相等。

定义 在开闭区间内的连续, 非常 make sense, 就不写了。

I.iii.1 运算

四则运算 若函数 f(x) 和 g(x) 在 x_0 处都连续,则四则运算后的结果在 x_0 处也连续。

复合函数连续性 如果函数 $u=\varphi(x)$ 在点 $x=x_0$ 处连续, $\varphi(x_0)=u$ 。 而函数 y=f(u) 在点 $u=u_0$ 处连续,则复合函数 $y=f[\varphi(x)]$ 在 $x=x_0$ 处连续。

复合函数的连续性能带来下面的效果:

对于良定义下的 f 和 φ , 有:

$$\lim_{x\to x_0} f[\varphi(x)] = f\biggl[\lim_{x\to x_0} \varphi(x)\biggr] = f(u_0)$$

即当 f 连续时,才可以交换 f 和极限的次序。

反函数连续 设函数 y = f(x) 在某区间上连续,且单调增加(减少),则它的反函数 $y = f^{-1}(x)$ 在对应区间上连续,且**单调性相同**。

I.iii.2 初等函数的连续性

基本初等函数在其定义域内都连续。

初等函数在其定义区间内都连续。

这里说定义区间是要考虑比如初等函数组成的分段函数。

结合上面说的举例一个函数: y=|f(x)| (讨论 $x=x_0$ 处),因为 $y=|f(x)|=\sqrt{f^2(x)}$,首先基本初等函数在定义域上都连续,然后复合函数又能连续,所以 y=|f(x)| 在连续。

再讨论一个命题:

命题 若 f(x) 在 x_0 处连续, $f(x_0) \neq 0$,且 f(x)g(x) 在 x_0 处连续,则 g(x) 在 x_0 处连续。这是一个真命题,构选 $g(x) = \frac{f(x)g(x)}{f(x)}$ 即可。

I.iii.3 间断点

定义 间断点其实就是不连续。 左右极限都存在的间断点被称为**第一类间断点**,其它的就是**第** 二**类间断点**。

I.iii.4 闭区间上连续函数的性质

最值定理 f(x) 在闭区间上连续,那在这个区间内必有最大最小值。

有界性定理 同上。

介值定理 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \neq f(b)$,则对于任意介于 f(a) 与 f(b) 之间的数 C,至少存在一点 $\xi \in (a,b)$,使得 $f(\xi) = C$ 。

零点定理 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$,则至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = 0$ 。

这部分主要跟证明相关, 暂时略过。

II 一元函数微分学

II.i 导数

导数 设函数 y = f(x) 在 x_0 在某邻域内有定义,如果极限

$$\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称 f(x) **在点** x_0 **处可导**,并称此极限值为 f(x) **在** x_0 **处的导数**,记为 $f'(x_0)$,或 $y'|_{x-x_0}$,或 $\frac{dy}{dx}|_{x=x_0}$;如果上述极限不存在,则称 f(x) 在点 x_0 处不可导。

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

导数也分左右, make sense。