```
!wget -0 "butterfly_classification_ai_challenge-dataset.zip" "https://dockship-job-models.s3.
     --2020-10-06 02:54:22-- https://dockship-job-models.s3.ap-south-1.amazonaws.com/d937cfa
    Resolving dockship-job-models.s3.ap-south-1.amazonaws.com (dockship-job-models.s3.ap-sou
    Connecting to dockship-job-models.s3.ap-south-1.amazonaws.com (dockship-job-models.s3.ap
    HTTP request sent, awaiting response... 200 OK
    Length: 509734503 (486M) [binary/octet-stream]
    Saving to: 'butterfly classification ai challenge-dataset.zip'
    butterfly_classific 100%[========>] 486.12M 13.0MB/s
                                                                         in 40s
    2020-10-06 02:55:02 (12.2 MB/s) - 'butterfly_classification_ai_challenge-dataset.zip' sa
#unzip file
! unzip -q "butterfly_classification_ai_challenge-dataset.zip"
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, Dense, Conv2D, Flatten, Dropout, MaxPool2D, Flatten, Acti
from tensorflow.keras.applications.inception v3 import InceptionV3
from tensorflow.keras.applications.inception v3 import preprocess input
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator,load img
from tensorflow.keras.models import Model
from tensorflow.keras.applications import InceptionResNetV2
from keras.preprocessing.image import load img, img to array
from glob import glob
import pandas as pd
import numpy as np
import os
import seaborn as sns
import matplotlib.pyplot as plt
train path='/content/DATA/TRAIN'
test_path='/content/DATA/TEST'
folders = glob('DATA/TRAIN/*')
len(folders)
     50
print("Train dataset size: ", len(os.listdir(train_path)))
print("Test datsest size: ", len(os.listdir(test_path)))
    Train dataset size:
                         50
    Test datsest size:
                        500
```

class mode = 'categorical')

Found 4479 images belonging to 50 classes.

```
from tensorflow.keras.callbacks import EarlyStopping,ReduceLROnPlateau
early_stopping=EarlyStopping(patience=4,verbose=1,restore_best_weights=True)
reduce_lr=ReduceLROnPlateau(factor=0.1,patience=3,verbose=1)

callbacks = [early_stopping, reduce_lr]
```

```
preds_df=pd.DataFrame(columns=['Filename']+list(folders))
preds_df['Filename']=[path for path in os.listdir(test_path)]
preds df.head()
```

	Filename	DATA/TRAIN/sixspot burnet	DATA/TRAIN/orange oakleaf	DATA/TRAIN/yellow swallow tail	DATA/TRAIN/strai qu
0	104.jpg	NaN	NaN	NaN	1
1	436.jpg	NaN	NaN	NaN	l
2	480.jpg	NaN	NaN	NaN	ľ
3	272.jpg	NaN	NaN	NaN	ľ
4	222.jpg	NaN	NaN	NaN	l

import os

```
directory=test_path,
x_col='Filename',
y_col=None,
class_mode=None,
target_size=(224, 224),
batch_size=1)
```

Found 500 validated image filenames.

InceptionV3

model.summary()

conv2d_401 (Conv2D)	(None,	25,	25,	96)	82944	activation_400[0][0]
conv2d_402 (Conv2D)	(None,	25,	25,	32)	6144	average_pooling2d_19
batch_normalization_396 (BatchN	(None,	25,	25,	64)	192	conv2d_396[0][0]
batch_normalization_398 (BatchN	(None,	25,	25,	64)	192	conv2d_398[0][0]
batch_normalization_401 (BatchN	(None,	25,	25,	96)	288	conv2d_401[0][0]
batch_normalization_402 (BatchN	(None,	25,	25,	32)	96	conv2d_402[0][0]
activation_396 (Activation)	(None,	25,	25,	64)	0	batch_normalization_
activation_398 (Activation)	(None,	25,	25,	64)	0	batch_normalization_
activation_401 (Activation)	(None,	25,	25,	96)	0	batch_normalization_4

activation_402 (Activation)	(None,	25,	25,	32)	0	batch_normalization_4
mixed0 (Concatenate)	(None,	25,	25,	256)	0	activation_396[0][0] activation_398[0][0] activation_401[0][0] activation_402[0][0]
conv2d_406 (Conv2D)	(None,	25,	25,	64)	16384	mixed0[0][0]
batch_normalization_406 (BatchN	(None,	25,	25,	64)	192	conv2d_406[0][0]
activation_406 (Activation)	(None,	25,	25,	64)	0	batch_normalization_4
conv2d_404 (Conv2D)	(None,	25,	25,	48)	12288	mixed0[0][0]
conv2d_407 (Conv2D)	(None,	25,	25,	96)	55296	activation_406[0][0]
batch_normalization_404 (BatchN	(None,	25,	25,	48)	144	conv2d_404[0][0]
batch_normalization_407 (BatchN	(None,	25,	25,	96)	288	conv2d_407[0][0]
activation_404 (Activation)	(None,	25,	25,	48)	0	batch_normalization_
activation_407 (Activation)	(None,	25,	25,	96)	0	batch_normalization_
average_pooling2d_20 (AveragePo	(None,	25,	25,	256)	0	mixed0[0][0]
conv2d_403 (Conv2D)	(None,	25,	25,	64)	16384	mixed0[0][0]
conv2d_405 (Conv2D)	(None,	25,	25,	64)	76800	activation_404[0][0]
conv2d_408 (Conv2D)	(None,	25,	25,	96)	82944	activation_407[0][0]
conv2d_409 (Conv2D)	(None,	25,	25,	64)	16384	average_pooling2d_20
batch_normalization_403 (BatchN	(None,	25,	25,	64)	192	conv2d_403[0][0]
batch_normalization_405 (BatchN	(None,	25,	25,	64)	192	conv2d_405[0][0]
batch_normalization_408 (BatchN	(None,	25,	25,	96)	288	conv2d_408[0][0]
◆						+

model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

```
r = model.fit_generator(
   training_set,
   validation_data=test_generator,
   epochs=2,
   steps_per_epoch=len(training_set),
   validation_steps=len(test_generator)
)

Epoch 1/2
```

```
Epoch 2/2
35/35 [===========] - 73s 2s/step - loss: 0.5017 - accuracy: 0.9420 ·

v3_test_predictions = model.predict_generator(test_generator, steps = test_generator.n, verbo

1/500 [............] - ETA: 0sWARNING:tensorflow:Callbacks method `c
500/500 [=============] - 11s 23ms/step
```

submission file

```
v3_test_predictions
     array([[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00,
             2.9075730e-36, 0.0000000e+00],
            [5.1007542e-27, 7.5714494e-13, 1.4100356e-33, ..., 2.5536914e-19,
             1.3688479e-21, 3.4606312e-23],
            [5.2913056e-15, 1.9073778e-14, 1.8785876e-29, ..., 8.8718500e-24,
             5.0662476e-15, 2.0063254e-21],
            [1.2412645e-34, 9.9999964e-01, 1.3642745e-30, ..., 1.6526193e-29,
             6.2130085e-21, 1.1586156e-19],
            [0.0000000e+00, 2.2499756e-10, 0.0000000e+00, ..., 1.1738620e-34,
             5.8283043e-22, 6.7173495e-15],
            [1.6037635e-24, 3.0241080e-22, 0.0000000e+00, ..., 2.3457098e-29,
             1.8951321e-08, 3.3070011e-19]], dtype=float32)
result v=np.argmax(v3 test predictions,axis=1)
result v=pd.Series(result v,name='Label')
result v
     0
            20
     1
             8
     2
            45
     3
            35
     4
             8
     495
             7
     496
            46
     497
             1
     498
            13
     499
     Name: Label, Length: 500, dtype: int64
output=pd.DataFrame()
output['Filename'] = [path for path in os.listdir(test_path)]
output.head()
```

Filename 104.jpg 436.jpg 480.jpg 272.jpg 222.jpg

output=pd.concat([output['Filename'],result_v],axis=1)
output.head()

	Filename	Label
0	104.jpg	20
1	436.jpg	8
2	480.jpg	45
3	272.jpg	35
4	222.jpg	8

```
class_dict = training_set.class_indices
class_dict
```

```
{'adonis': 0,
  'american snoot': 1,
  'an 88': 2,
  'banded peacock': 3,
  'beckers white': 4,
  'black hairstreak': 5,
  'cabbage white': 6,
  'chestnut': 7,
  'clodius parnassian': 8,
  'clouded sulphur': 9,
  'copper tail': 10,
  'crecent': 11,
  'crimson patch': 12,
  'eastern coma': 13,
  'gold banded': 14,
  'great eggfly': 15,
  'grey hairstreak': 16,
  'indra swallow': 17,
  'julia': 18,
  'large marble': 19,
  'malachite': 20,
  'mangrove skipper': 21,
  'metalmark': 22,
  'monarch': 23,
```

```
'morning cloak': 24,
      'orange oakleaf': 25,
      'orange tip': 26,
      'orchard swallow': 27,
      'painted lady': 28,
      'paper kite': 29,
      'peacock': 30,
      'pine white': 31,
      'pipevine swallow': 32,
      'purple hairstreak': 33,
      'question mark': 34,
      'red admiral': 35,
      'red spotted purple': 36,
      'scarce swallow': 37,
      'silver spot skipper': 38,
      'sixspot burnet': 39,
      'skipper': 40,
      'sootywing': 41,
      'southern dogface': 42,
      'straited queen': 43,
      'two barred flasher': 44,
      'ulyses': 45,
      'viceroy': 46,
      'wood satyr': 47,
      'yellow swallow tail': 48,
      'zebra long wing': 49}
output['Label']=output['Label'].replace(1, 'american snoot')
output['Label']=output['Label'].replace(0, 'adonis')
output['Label']=output['Label'].replace(2,'an 88')
output['Label']=output['Label'].replace(3,'banded peacock')
output['Label']=output['Label'].replace(4,'beckers white')
output['Label']=output['Label'].replace(5,'black hairstreak')
output['Label']=output['Label'].replace(6,'cabbage white')
output['Label']=output['Label'].replace(7,'chestnut')
output['Label']=output['Label'].replace(8,'clodius parnassian')
output['Label']=output['Label'].replace(9,'clouded sulphur')
output['Label']=output['Label'].replace(10,'copper tail')
output['Label']=output['Label'].replace(11,'crecent')
output['Label']=output['Label'].replace(12,'crimson patch')
output['Label']=output['Label'].replace(13, 'eastern coma')
output['Label']=output['Label'].replace(14,'gold banded')
output['Label']=output['Label'].replace(15, 'great eggfly')
output['Label']=output['Label'].replace(16,'grey hairstreak')
output['Label']=output['Label'].replace(17, 'indra swallow')
output['Label']=output['Label'].replace(18,'julia')
output['Label']=output['Label'].replace(19,'large marble')
output['Label']=output['Label'].replace(20, 'malachite')
output['Label']=output['Label'].replace(21, 'mangrove skipper')
output['Label']=output['Label'].replace(22, 'metalmark')
output['Label']=output['Label'].replace(23, 'monarch')
output['Label']=output['Label'].replace(24, 'morning cloak')
output['Label']=output['Label'].replace(25,'orange oakleaf')
outnut['label'l=outnut['label'l.renlace(26.'orange tin')
```

```
4 CL 140CT 1.1 CPT4CC(20, 01 4118C CTP /
output['Label']=output['Label'].replace(27,'orchard swallow')
output['Label']=output['Label'].replace(28,'painted lady')
output['Label']=output['Label'].replace(29, 'paper kite')
output['Label']=output['Label'].replace(30,'peacock')
output['Label']=output['Label'].replace(31,'pine white')
output['Label']=output['Label'].replace(32,'pipevine swallow')
output['Label']=output['Label'].replace(33,'purple hairstreak')
output['Label']=output['Label'].replace(34, 'question mark')
output['Label']=output['Label'].replace(35,'red admiral')
output['Label']=output['Label'].replace(36, 'red spotted purple')
output['Label']=output['Label'].replace(37,'scarce swallow')
output['Label']=output['Label'].replace(38,'silver spot skipper')
output['Label']=output['Label'].replace(39,'sixspot burnet')
output['Label']=output['Label'].replace(40,'skipper')
output['Label']=output['Label'].replace(41, 'sootywing')
output['Label']=output['Label'].replace(42, 'southern dogface')
output['Label']=output['Label'].replace(43,'straited queen')
output['Label']=output['Label'].replace(44,'two barred flasher')
output['Label']=output['Label'].replace(45, 'ulyses')
output['Label']=output['Label'].replace(46,'viceroy')
output['Label']=output['Label'].replace(47,'wood satyr')
output['Label']=output['Label'].replace(48,'yellow swallow tail')
output['Label']=output['Label'].replace(49,'zebra long wing')
```

output

	Filename	Label
0	104.jpg	malachite
1	436.jpg	clodius parnassian
2	480.jpg	ulyses
3	272.jpg	red admiral
4	222.jpg	clodius parnassian
495	303.jpg	chestnut
496	447.jpg	viceroy
497	090.jpg	american snoot
498	258.jpg	eastern coma
499	179.jpg	morning cloak

500 rows × 2 columns

submission=output

submission.to_csv('output_butterfly_final7.csv',index=False)