Técnicas Fundamentales

Algoritmos codiciosos II

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Recordatorio: Problema de almacenamiento

Sea Σ un alfabeto.

Una Σ -codificación es una función $\tau: \Sigma \to \{0,1\}^*$ tal que $\tau(a) \neq \epsilon$ para todo $a \in \Sigma$.

La extensión $\hat{\tau}$ de una Σ -codificación τ a todas las palabras $w \in \Sigma^*$ se define como:

$$\hat{\tau}(w) = \begin{cases} \varepsilon & w = \varepsilon \\ \tau(a_1) \cdots \tau(a_n) & w = a_1 \cdots a_n \text{ con } n \geq 1 \end{cases}$$

Nos interesa que:

- 1. $\hat{\tau}$ sea inyectiva.
- 2. τ sea de largo variable.

Recordatorio: Codificación libre de prefijos

Lema

Si existen $w_1, w_2 \in \Sigma^*$ tales que $w_1 \neq w_2$ y $\hat{\tau}(w_1) = \hat{\tau}(w_2)$, entonces existen $a, b \in \Sigma$ tales que $a \neq b$ y $\tau(a)$ es un prefijo de $\tau(b)$

Decimos que una Σ -codificación τ es libre de prefijos si para cada $a, b \in \Sigma$ tales que $a \neq b$ se tiene que $\tau(a)$ no es un prefijo de $\tau(b)$.

Corolario

Si au es una codificación libre de prefijos, entonces $\hat{ au}$ es una función inyectiva.

Recordatorio: Frecuencias relativas de los símbolos

Fije $w \in \Sigma^*$.

Para $a \in \Sigma$ definimos fr_w(a) como la frecuencia relativa de a en w, vale decir

$$fr_w(a) = \frac{\# \text{ de apariciones de } a \text{ en } w}{|w|}$$

Para una Σ -codificación τ definimos el largo promedio para w como:

$$\operatorname{Ip}_w(au) = \sum_{a \in \Sigma} \operatorname{fr}_w(a) \cdot |\tau(a)|$$

Problema de optimización a resolver

Dado $w \in \Sigma^*$, encontrar una Σ -codificación τ libre de prefijos que minimice el valor $\operatorname{Ip}_w(\tau)$

Recordatorio: Frecuencias relativas de los símbolos

Fije $w \in \Sigma^*$.

Para $a \in \Sigma$ definimos fr_w(a) como la frecuencia relativa de a en w, vale decir

$$fr_w(a) = \frac{\# \text{ de apariciones de } a \text{ en } w}{|w|}$$

Para una Σ -codificación τ definimos el largo promedio para w como:

$$\operatorname{Ip}_w(au) = \sum_{a \in \Sigma} \operatorname{fr}_w(a) \cdot |\tau(a)|$$

Problema de optimización a resolver

Dado $w \in \Sigma^*$, encontrar una Σ -codificación τ libre de prefijos que minimice el valor $\operatorname{Ip}_w(\tau)$

Recordatorio: Frecuencias relativas de los símbolos

Decimos que $f:\Sigma \to (0,1)$ es una función de frecuencias relativas para Σ si se cumple que $\sum_{a\in \Sigma} f(a)=1$

Dada una función f de frecuencias relativas para Σ y una Σ -codificación τ , el largo promedio de τ para f se define como:

$$\operatorname{Ip}_f(\tau) = \sum_{a \in \Sigma} f(a) \cdot |\tau(a)|$$

Problema (correcto) de optimización a resolver Dado f una función de frecuencias relativas para Σ , encontrar una Σ -codificación τ libre de prefijos que minimice el valor $\operatorname{Ip}_f(\tau)$

Outline

Algoritmos codiciosos: Codificaciones (cont.)

Outline

Algoritmos codiciosos: Codificaciones (cont.)

Un ingrediente fundamental: codificaciones como árboles

Representamos la codificación $\tau(a)=0,\ \tau(b)=10,\ \tau(c)=11$ como un árbol binario:

Un ingrediente fundamental: codificaciones como árboles

Si una Σ -codificación τ es **libre de prefijos**, entonces el árbol que la representa satisface las siguientes propiedades.

- Cada hoja tiene como etiqueta un elemento de Σ, y estos son los únicos nodos con etiquetas
- Cada símbolo de Σ es usado exactamente una vez como etiqueta
- Cada arco tiene etiqueta 0 ó 1
- Si una hoja tiene etiqueta e y las etiquetas de los arcos del camino desde la raíz hasta esta hoja forman una palabra $w \in \{0,1\}^*$, entonces $\tau(e) = w$

Codificaciones como árboles y las frecuencias relativas

Podemos agregar al árbol binario que representa una codificación τ la información sobre las **frecuencias relativas** dadas por una función f:

Llamamos a este árbol $abf(\tau, f)$.

Alguna propiedades importantes

Ejercicios

Sea f una función de frecuencias relativas para Σ y τ una Σ -codificación libre de prefijos que minimiza la función $\operatorname{Ip}_f(x)$.

- 1. Sean u y v dos hojas en $abf(\tau, f)$ con etiquetas a y b, respectivamente. Demuestre que si el camino de la raíz a u es más corto que el camino de la raíz a v, entonces $f(a) \ge f(b)$
- 2. Demuestre que cada nodo interno en abf (τ, f) tiene dos hijos
- 3. Sean $a,b \in \Sigma$ tales que $a \neq b$, $f(a) \leq f(b)$ y $f(b) \leq f(e)$ para todo $e \in (\Sigma \setminus \{a,b\})$. Demuestre que existe una Σ -codificación τ' libre de prefijos tal que $\operatorname{lp}_f(\tau') = \operatorname{lp}_f(\tau)$ y las hojas con etiquetas a y b en $\operatorname{abf}(\tau',f)$ son hermanas
 - Vale decir, existe $w \in \{0,1\}^*$ tal que $\tau'(a) = w0$ y $\tau'(b) = w1$

Calculando el mínimo de $lp_f(x)$

Vamos a ver un **algoritmo codicioso** para calcular una Σ -codificación τ libre de prefijos que minimiza $\operatorname{Ip}_f(x)$

■ El algoritmo calcula la codificación de Huffman.

El algoritmo tiene los ingredientes mencionados de un algoritmo codicioso.

- 1. Función objetivo a minimizar: $lp_f(x)$
- 2. Función de selección: elige los dos símbolos de Σ con menor frecuencia relativa, los coloca como hermanos en el árbol binario que representa la Σ -codificación óptima, y continua la construcción con el resto de los símbolos de Σ

Será necesario realizar una demostración para probar que el algoritmo es correcto.

Algoritmo de Huffman

Sea $f: \Sigma \to (0,1)$ una función de frecuencias relativas. Supongamos que:

- 1. Representamos a las funciones como conjuntos de pares ordenados
- 2. f tiene al menos dos elementos en el dominio.

El siguiente algoritmo obtiene la Σ -codificación τ de Huffman (la que minimiza $\operatorname{Ip}_f(\tau)$).

Algoritmo de Huffman

```
CalcularCodificaciónHuffman(f)
Sea \Sigma el dominio de la función f
if \Sigma = \{a, b\} then return \{(a, 0), (b, 1)\}
else
     Sean a, b \in \Sigma tales que a \neq b, f(a) < f(b) y
                      f(b) < f(e) para todo e \in (\Sigma \setminus \{a, b\})
     Sea c un símbolo que no aparece en \Sigma
     g := (f \setminus \{(a, f(a)), (b, f(b))\}) \cup \{(c, f(a) + f(b))\}
     \tau^{\star} := CalcularCodificaciónHuffman(g)
     w := \tau^*(c)
     \tau := (\tau^* \setminus \{(c, w)\}) \cup \{(a, w0), (b, w1)\}
     return \tau
```

La correctitud de CalcularCodificaciónHuffman

Teorema

Si f es una función de frecuencias relativas, Σ es el dominio de f y $\tau = \mathbf{CalcularCodificaciónHuffman}(f)$, entonces τ es una Σ -codificación libre de prefijos que minimiza la función $\mathrm{lp}_f(x)$.

Demostración

Vamos a realizar la demostración por inducción en $|\Sigma|$.

Si $|\Sigma| = 2$, entonces la propiedad se cumple trivialmente.

■ ¿Por qué?

Suponga entonces que la propiedad se cumple para un valor $n \ge 2$, y suponga que $|\Sigma| = n + 1$.

La demostración del teorema

Demostración

Sean a, b, c, g, τ^* y τ definidos como en el código de la llamada **CalcularCodificaciónHuffman**(f), y sea Γ el dominio de g

Como $|\Gamma|=n$ y $\tau^*=$ Calcular Codificación Huffman(g), por hipótesis de inducción tenemos que τ^* es una Γ -codificación libre de prefijos que minimiza la función $\operatorname{Ip}_g(x)$

Dada la definición de au es simple verificar las siguientes propiedades:

- au es una codificación libre de prefijos
- lacksquare Para cada $e \in (\Sigma \smallsetminus \{a,b\})$ se tiene que $au(e) = au^\star(e)$
- $|\tau(a)| = |\tau(b)| = |\tau^*(c)| + 1$

La demostración del teorema

Demostración

Por contradicción suponga que au NO minimiza el valor de la función $\operatorname{lp}_f(x)$

■ Vale decir, existe una Σ -codificación τ' libre de prefijos tal que τ' minimiza la función $\operatorname{Ip}_f(x)$ y $\operatorname{Ip}_f(\tau') < \operatorname{Ip}_f(\tau)$

Por la definición de a, b y los ejercicios anteriores podemos suponer que existe $w \in \{0,1\}^*$ tal que $\tau'(a) = w \cdot 0$ y $\tau'(b) = w \cdot 1$.

Nótese que $w \neq \varepsilon$ puesto que $|\Sigma| > 3$.

A partir de τ' defina la siguiente Γ -codificación τ'' :

$$\tau'' = (\tau' \setminus \{(a, \tau'(a)), (b, \tau'(b))\}) \cup \{(c, w)\}$$

Tenemos que τ'' es una Γ -codificación libre de prefijos.

■ ¿Por qué?

La relación entre $lp_g(\tau^*)$ y $lp_f(\tau)$

$$\begin{split} \mathsf{lp}_g(\tau^\star) &= \sum_{e \in \Gamma} g(e) \cdot |\tau^\star(e)| \\ &= \left(\sum_{e \in (\Gamma \setminus \{c\})} g(e) \cdot |\tau^\star(e)|\right) + g(c) \cdot |\tau^\star(c)| \\ &= \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + (f(a) + f(b)) \cdot |\tau^\star(c)| \\ &= \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + f(a) \cdot |\tau^\star(c)| + f(b) \cdot |\tau^\star(c)| \\ &= \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + f(a) \cdot (|\tau(a)| - 1) + f(b) \cdot (|\tau(b)| - 1) \\ &= \left(\sum_{e \in \Sigma} f(e) \cdot |\tau(e)|\right) - (f(a) + f(b)) \\ &= \mathsf{lp}_f(\tau) - (f(a) + f(b)) \end{split}$$

La relación entre $\operatorname{Ip}_{g}(\tau'')$ y $\operatorname{Ip}_{f}(\tau')$

$$\begin{split} \mathsf{Ip}_g(\tau'') &= \sum_{e \in \Gamma} g(e) \cdot |\tau''(e)| \\ &= \left(\sum_{e \in (\Gamma \setminus \{c\})} g(e) \cdot |\tau''(e)| \right) + g(c) \cdot |\tau''(c)| \\ &= \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)| \right) + (f(a) + f(b)) \cdot |\tau''(c)| \\ &= \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)| \right) + f(a) \cdot |\tau''(c)| + f(b) \cdot |\tau''(c)| \\ &= \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)| \right) + f(a) \cdot (|\tau'(a)| - 1) + f(b) \cdot (|\tau'(b)| - 1) \\ &= \left(\sum_{e \in \Sigma} f(e) \cdot |\tau'(e)| \right) - (f(a) + f(b)) \\ &= \mathsf{Ip}_{\ell}(\tau') - (f(a) + f(b)) \end{split}$$

Obteniendo una contradicción

Demostración

Tenemos entonces que

$$\begin{aligned} \mathsf{lp}_{g}(\tau'') &=& \mathsf{lp}_{f}(\tau') - (f(a) + f(b)) \\ &<& \mathsf{lp}_{f}(\tau) - (f(a) + f(b)) \\ &=& \mathsf{lp}_{g}(\tau^{\star}) \end{aligned}$$

Concluimos entonces que τ^* NO minimiza la función $lp_g(x)$, lo cual contradice la hipótesis de inducción.

Dos comentarios finales

La siguiente función calcula la **codificación de Huffman** teniendo como entrada una palabra *w*:

```
\begin{aligned} \textbf{CalcularCodificaciónHuffman}(w) \\ & \textbf{if } w = \varepsilon \textbf{ then return } \emptyset \\ & \textbf{else} \\ & \Sigma := \textbf{conjunto de símbolos mencionados en } w \\ & \textbf{if } \Sigma = \{a\} \textbf{ then return } \{(a,0)\} \\ & \textbf{else return CalcularCodificaciónHuffman}(\textbf{fr}_w) \end{aligned}
```

¿Cuál es la complejidad de CalcularCodificaciónHuffman(f)?

R: $\mathcal{O}(n \log n)$ (considerando que $|f| \in \Theta(|\Sigma|)$).