INTRODUCTION AU MACHINE LEARNING TD 1 - Corrigé

25/03/2020

Exercice 1

On observe $D_n=((X_1,Y_1),...,(X_n,Y_n))$ i.i.d de loi P avec $X_i\in 1,...,k$ et $Y_i\in 0,1$. On pose, pour $x\in\{1,...,k\},\,N_x=card(\{i:X_i=x\})$. On considère la définition de la fonction

$$\eta(x) = E(Y|X=x)$$

et on définit son estimateur:

$$\hat{\eta}(x) = \begin{cases} \frac{1}{N_x} \sum_{i: X_i = x} Y_i & \text{ si } N_x > 0 \\ 0 & \text{ sinon} \end{cases}$$

et on définit la règle de classification $\hat{f}(D_n,x)=\mathbb{1}_{\hat{\eta}(x)\geq 1/2}$.

1. Démontrer que, pour $x \in \{1, ..., k\}$ fixé:

$$E(|\hat{\eta}(x) - \eta(x)||X_1, ..., X_n) \le \frac{1}{\sqrt{N_x}} \mathbb{1}_{N_x > 0} + \mathbb{1}_{N_x = 0}$$

En déduire que

$$E[R(\hat{f}) - R^*] \le 2E\left[\frac{1}{\sqrt{N_x}} \mathbb{1}_{N_x > 0}\right] + P(N_X = 0).$$

Solution:

Par l'inegalité de Jensen on a que:

$$E(|\hat{\eta}(x) - \eta(x)||X_1, ..., X_n) \le \sqrt{E((\hat{\eta}(x) - \eta(x))^2|X_1, ..., X_n)})$$

Par ailleurs on remarque que comme $Y_i \in \{0,1\}$, alors $E(Y|X=x) = \eta(x) \le 1$. Ainsi:

• Si $N_x=0$: On a $\hat{\eta}(x)=0$, ainsi:

$$E((\hat{\eta}(x) - \eta(x))^2 | X_1, ..., X_n) = E(\eta(x)^2 | X_1, ..., X_n) \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le \frac{1}{\Lambda} | X_1, ..., X_n \le Var(Y | X = x) = \eta(x)(1 - \eta(x)) \le Var(Y | X = x)$$

et donc

$$E(|\hat{\eta}(x) - \eta(x)||X_1, ..., X_n) \le \frac{1}{2} \le 1$$

• Si Nx > 0:

On a $\hat{\eta}(x) = \frac{1}{N_x} \sum_{i:X_i=x} Y_i := \bar{Y}|X=x$. Donc $E(\hat{\eta}(x)) = E(\bar{Y}|X=x) = E(Y|X=x) = \eta(x)$, car la moyenne empirique est un estimateur non biaisé de l'espérance. On a donc:

$$\begin{split} E((\hat{\eta}(x) - \eta(x))^2 | X_1, ..., X_n) &= Var(\hat{\eta}(x) | X_1, ..., X_n) \\ &= \frac{1}{N_x^2} Var(\sum_{i: X_i = x} Y_i | X_1, ..., X_n) \\ &= \frac{1}{N_x^2} N_x Var(Y | X = x) \quad \text{car les } Y_i \text{ sont iid} \\ &= \frac{1}{N_x} \eta(x) (1 - \eta(x)) \quad \text{car les } Y_i \in \{0, 1\} \text{ et } E(Y | X = x) := \eta(x) \\ &\leq \frac{1}{N_x} \times \frac{1}{4} \\ &\leq \frac{1}{N_x} \end{split}$$

Et donc on a que pour $N_x > 0$:

$$E(|\hat{\eta}(x) - \eta(x)||X_1, ..., X_n) \le \sqrt{E((\hat{\eta}(x) - \eta(x))^2 | X_1, ..., X_n)}$$

$$\le \frac{1}{\sqrt{N_x}}$$

En tout, on a:

$$E(|\hat{\eta}(x) - \eta(x)||X_1, ..., X_n) \le \frac{1}{\sqrt{N_x}} \mathbb{1}_{N_x > 0} + \mathbb{1}_{N_x = 0}$$

Et on sait que pour l'excès de risque d'une une règle de classification par plug-in \hat{f} , associée à une règle de régression $\hat{\eta}$ (Slides Lecture 2, diapo 4):

$$R(\hat{f}) - R^* = R(\hat{f}) - R(f^*)$$

$$\leq 2E(|\hat{\eta}(x) - \eta(x)||X_1, ..., X_n)$$

$$\leq 2\left[\frac{1}{\sqrt{N_x}} + \frac{1}{2}\mathbb{1}_{N_x=0}\right]$$

$$= 2\frac{1}{\sqrt{N_x}} + \mathbb{1}_{N_x=0}$$

Et alors:

$$E[R(\hat{f}) - R^*] \le 2E\left[\frac{1}{\sqrt{N_x}}\mathbb{1}_{N_x > 0}\right] + P(N_X = 0)$$

2. Démontrer que pour tout x tel que $P(X_1 = x) > 0$ on a $N_x \to \infty$ p.s lorsque $n \to \infty$ puis en déduire que les deux termes du membre de droite dans l'inégalité ci-dessus tendent vers 0.

Solution:

• $N_x \xrightarrow[n \to \infty]{} \infty$ p.s. ?

En considérant les variables aléatoires $\mathbb{1}(X_i=x)$, on peut montrer par la loi des grands nombres que

$$\frac{N_x}{N} = \sum_{i=1}^N \frac{\mathbb{1}(X_i = X)}{N} \xrightarrow[n \to \infty]{} P(X_1 = x) \quad \text{p.s.}.$$

Or, $P(N_x \xrightarrow[n \to \infty]{} \infty) \ge P(N_x/N \xrightarrow[n \to \infty]{} P(X_1 = x)) = 1$, ce qui implique que $N_x \xrightarrow[n \to \infty]{} \infty$ p.s..

• Alors $2E[\frac{1}{\sqrt{N_x}}\mathbb{1}_{N_x>0}]\xrightarrow[n\to\infty]{}0$ et $P(N_X=0)\xrightarrow[n\to\infty]{}0$? Pour tout β positif,

$$E\left[\frac{1}{\sqrt{N_x}}\mathbb{1}_{N_x>0}\right] \le E\left[\frac{1}{\sqrt{N_x}}\right] \le 1 \times P(N_x \le \beta) + \frac{1}{\sqrt{\beta}} \times P(N_x \ge \beta) \le P(N_x \le \beta) + \frac{1}{\sqrt{\beta}}.$$

On a $N_x \xrightarrow[n \to \infty]{} \infty$ en probabilité, alors pour tout ϵ positif on peut trouver un β tel que $P(N_x \le \beta) \le \epsilon/2$ et $1/\sqrt{\beta} \le \epsilon/2$. On en déduit que pour tout ϵ positif, $E[\frac{1}{\sqrt{N_x}}\mathbb{1}_{N_x>0}] \le \epsilon$ et donc $2E[\frac{1}{\sqrt{N_x}}\mathbb{1}_{N_x>0}] \xrightarrow[n \to \infty]{} 0$.

D'ailleurs, $P(N_x = 0) = P(X_1 \neq x)^N$ ce qui converge vers 0 quand N tend vers l'infini.

3. Conclure: démontrer que \hat{f} est universellement consistante.

Solution:

On a

$$E[R(\hat{f}) - R^*] \le 2E\left[\frac{1}{\sqrt{N_x}} \mathbb{1}_{N_x > 0}\right] + P(N_X = 0)$$

$$\lim_{n \to \infty} E[R(\hat{f}) - R^*] \le \lim_{n \to 0} \left[2E\left[\frac{1}{\sqrt{N_x}} \mathbb{1}_{N_x > 0}\right] + P(N_X = 0)\right] = 0$$

et on sait que $R(\hat{f})-R^*=R(\hat{f})-R(f^*)\geq 0$ car $f^*=argmin_fR(f)$ par définition (optimal/Bayes predictor).

Ainsi

$$E[R(\hat{f}) - R^*] \xrightarrow[n \to \infty]{} 0$$

pour toute loi P sur $\mathcal{X} \times \mathcal{Y}$, et comme $R(\hat{f})$ converge en distribution vers un constant R^* , $R(\hat{f})$ converge également en probabilité vers R^* , ce qui montre que \hat{f} est universellement consistante.

Exercice 2

On considère une variable aléatoire X tirée selon une loi P_{θ} , où le paramètre réel θ suit quant à lui une distribution π . Pour estimer θ , on considère la fonction de perte:

$$L(\theta, a) = \begin{cases} k_2(\theta - a) & si \quad \theta > a \\ k_1(a - \theta) & sinon \end{cases}$$

Montrer que l'estimateur de Bayes est un fractile (à déterminer) de la loi de θ sachant X.

Solution:

Rappel: z est un fractile d'ordre k d'une loi de probabilité P_z , si P(Z < z) = k.

On a $X|\theta \sim P_{\theta}$, et $\theta \sim \pi$.

L'estimateur de Bayes est l'argument a qui minimise

$$E(L(\theta, a)|X) = \int_{\Theta} L(\theta, a) dP_{\theta|X=x}$$

On suppose que la loi de probabilité $P_{\theta|X=x}$ admet une densité $p(\theta|x)$ par rapport à la mesure de Lebesque. Ainsi:

$$\frac{\partial}{\partial a} \int_{\Theta} L(\theta, a) dP_{\theta|X=x} = 0$$

$$\iff \frac{\partial}{\partial a} \left[\int_{a}^{+\infty} k_2(\theta - a) dP_{\theta|X=x} + \int_{-\infty}^{a} k_1(a - \theta) dP_{\theta|X=x} \right] = 0$$

$$\iff \frac{\partial}{\partial a} \left[\int_{-\infty}^{+\infty} k_2(\theta - a) dP_{\theta|X=x} + \int_{-\infty}^{a} (k_1 + k_2)(a - \theta) dP_{\theta|X=x} \right] = 0$$

$$\iff \frac{\partial}{\partial a} \left[\int_{-\infty}^{a} (k_1 + k_2)(a - \theta) dP_{\theta|X=x} \right] = k_2$$

$$\iff \frac{\partial}{\partial a} \left[\int_{-\infty}^{a} (a - \theta) dP_{\theta|X=x} \right] = \frac{k_2}{k_1 + k_2}$$

$$\iff P_{\theta|X=x}(\theta < a) + a \frac{\partial}{\partial a} \int_{-\infty}^{a} p(\theta|x) d\theta - \frac{\partial}{\partial a} \int_{-\infty}^{a} \theta p(\theta|x) d\theta = \frac{k_2}{k_1 + k_2}$$

En supposant que $\int_{-\infty}^a \theta p(\theta|x) d\theta$ converge:

$$P_{\theta|X=x}(\theta < a) + ap(a|x) - ap(a|x) = \frac{k_2}{k_1 + k_2}$$

 $\iff P_{\theta|X=x}(\theta < a) = \frac{k_2}{k_1 + k_2}$

Donc l'estimateur de Bayes a est le fractile $\frac{k_2}{k_1+k_2}$ de la loi de $\theta|X$.

Exercice 3

On suppose que (X,Y) est un couple de la loi $\mathbb P$ déterminée par

- $Y \sim Be(p)$ est une Bernoulli
- pour $y \in \{0,1\}, X|Y=y$ a pour densité $f_y(.)$ par rapport à la mesure de Lebesgue sur $\mathbb R$
- **1.** Exprimer la fonction de régression $\eta(x)=\mathbb{P}\{Y=1|X=x\}$ en fonction de f_0,f_1 et p Solution :

$$\eta(x) = \mathbb{P}\{Y = 1 | X = x\} = \frac{f_{X|Y=1}(x)\mathbb{P}\{Y = 1\}}{f_X(x)}$$

$$= \frac{f_{X|Y=1}(x)\mathbb{P}\{Y = 1\}}{f_{X|Y=1}(x)\mathbb{P}\{Y = 1\} + f_{X|Y=0}(x)\mathbb{P}\{Y = 0\}}$$

$$= \frac{f_0(x)p}{f_0(x)p + f_1(x)(1-p)}$$

2. En déduire le classifieur optimal f^*

Solution : D'après le cours on sait que $f^*(x) = \mathbb{1}(\eta(x) \ge \frac{1}{2})$, et d'où

$$f^*(x) = \mathbb{1}(f_1(x)p \ge f_0(x)(1-p)).$$

3. Déterminer f^* et son risque $L^* = \mathbb{P}\{Y \neq f^*(X)\}$ dans les cas suivants

a)
$$f_0(x) = \frac{1}{\theta_0} \mathbb{1}\{x \in [0, \theta_0]\}$$
 et $f_1(x) = \frac{1}{\theta_1} \mathbb{1}\{x \in [0, \theta_1]\}$ pour $\theta_1 > \theta_0 > 0$

Solution: De manière générale, nous avons

$$L^* = \mathbb{P}\{Y \neq f^*(X)\} = \mathbb{E}[\mathbb{1}\{Y \neq f^*(x)\}] = \mathbb{E}[\mathbb{E}[\mathbb{1}\{Y \neq f^*(x)\}|X]],$$

et d'ailleurs

$$\mathbb{P}\{Y \neq f^*(X)|X\} = \mathbb{P}\{Y = 0, f^*(X) = 1|X\} + \mathbb{P}\{Y = 1, f^*(X) = 0|X\}
= \mathbb{1}\{f^*(x) = 1\}\mathbb{P}\{Y = 0|X\} + \mathbb{1}\{f^*(x) = 0\}\mathbb{P}\{Y = 1|X\}
= \mathbb{1}\{f^*(x) = 1\}(1 - \eta(x)) + \mathbb{1}\{f^*(x) = 0\}\eta(x).$$

Enfin

$$\mathbb{P}\{Y \neq f^{*}(X)\} = \mathbb{E}\left[\mathbb{1}\{f^{*}(x) = 1\}(1 - \eta(x)) + \mathbb{1}\{f^{*}(x) = 0\}\eta(x)\right] \\
= \mathbb{E}\left[\min\left(\eta(x), 1 - \eta(x)\right)\right] \\
= \int \min\left(\left(\eta(x), 1 - \eta(x)\right)f_{X}(x)dx \\
= \int \min\left(\frac{f_{0}(x)p}{f_{X}(x)}, \frac{f_{1}(x)(1 - p)}{f_{X}(x)}\right)f_{X}(x)dx \\
= \int \min\left(f_{0}(x)p, f_{1}(x)(1 - p)\right)dx.$$

En l'appliquant sur (a) on obtient

$$L^* = \int_0^{\theta_1} \min \left(f_0(x) p, f_1(x) (1-p) \right) dx$$

$$= \int_0^{\theta_1} \min \left(\frac{p}{\theta_0}, \frac{1-p}{\theta_1} \right) dx$$

$$= \int_0^{\theta_0} \min \left(\frac{p}{\theta_0}, \frac{1-p}{\theta_1} \right) dx + \int_{\theta_0}^{\theta_1} \min \left(0, \frac{1-p}{\theta_1} \right) dx$$

$$= \int_0^{\theta_0} \min \left(\frac{p}{\theta_0}, \frac{1-p}{\theta_1} \right) dx$$

$$= \theta_0 \min \left(\frac{p}{\theta_0}, \frac{1-p}{\theta_1} \right)$$

$$= \min(p, (\theta_0/\theta_1)(1-p)).$$

b) $f_0(x) = \frac{1}{\theta_0} \mathbb{1} \left\{ x \in [0, \theta_0] \right\}$ et $f_1(x) = \frac{1}{\theta_1 - \theta_0} \mathbb{1} \left\{ x \in [\theta_0, \theta_1] \right\}$ pour $\theta_1 > \theta_0 > 0$

Solution:

$$L^* = \int_0^{\theta_1} \min \left(f_0(x)p, f_1(x)(1-p) \right) dx$$
$$= \int_0^{\theta_0} \min \left(\frac{p}{\theta_0}, 0 \right) dx + \int_{\theta_0}^{\theta_1} \min \left(0, \frac{1-p}{\theta_1 - \theta_0} \right) dx$$
$$= 0.$$

c)
$$f_0(x) = \theta_0 e^{-\theta_0 x} \mathbb{1}\{x \in \mathbb{R}_+\} \text{ et } f_1(x) = \theta_1 e^{-\theta_1 x} \mathbb{1}\{x \in \mathbb{R}_+\} \text{ pour } \theta_1 > \theta_0 > 0$$

Solution: On peut montrer qu'on a $f_0(x)p>f_1(x)(1-p)$ ssi $x>\frac{\log\left((1-p)\theta_1/p\theta_0\right)}{\theta_1-\theta_0}$. Alors en posant $a=\frac{\log\left((1-p)\theta_1/p\theta_0\right)}{\theta_1-\theta_0}$, on obtient

$$L^* = \int_0^a f_0(x)pdx + \int_a^\infty f_1(x)(1-p)dx$$

= $p - pe^{-a\theta_0} + (1-p)e^{-a\theta_1}$.

d)
$$f_0(x) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{(x-\theta_0)^2}{2\sigma_0^2}}$$
 et $f_1(x) = \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(x-\theta_1)^2}{2\sigma_1^2}}$ pour $\theta_1 > \theta_0 > 0$ et $\sigma_0, \sigma_1 > 0$

Solution: