NOTES 10: SAMPLING DISTRIBUTIONS

Stat 120 | Fall 2025 Prof Amanda Luby

"Big picture" picture:

Quantity Statistic Parameter

Mean
Proportion
Standard Deviation
Correlation
Regression Coefficient

Carleton publishes an "at a glance" page with some facts and figures about the student body: https://www.carleton.edu/about/carleton-at-a-glance/

Some highlights:

- Geographic distribution:
 - Midwest 36.7%
 - West 21.7%
 - East 17.3%
 - South 10.9%
 - International 11.8%
 - Other 1.6%
- 34% BIPOC
- 12% are among the first generation in their families to attend college
- 61% graduated in the top 10% of their high school class

In a moment, we're going to see one of these quantities for our class. Before we do, what is your *best guess* for each of these quantities?

Example: In this set-up, what is the:

- Population
- Sample
- Parameter

Statistic

We know that our class will likely not have **exactly** 36.7% from the Midwest, but we probably wouldn't expect it to be 0% or 90%.

```
Sampling variability
```

We might start to ask ourselves, what if a *different* set of 32 students enrolled in this course? First, we create a population.

```
# A tibble: 2,007 x 2
   student_id midwest
        <int> <chr>
           72 Yes
 1
 2
         1327 No
 3
         1100 No
 4
          244 Yes
 5
          308 Yes
 6
          152 Yes
 7
          676 Yes
         1397 No
 8
9
          518 Yes
10
         1247 No
# i 1,997 more rows
```

Then, we take a random sample:

```
set.seed(100424)
sample1 <- carls |>
    sample_n(32)
sample1
```

```
# A tibble: 32 x 2
   student_id midwest
        <int> <chr>
 1
         1826 No
 2
         1997 No
 3
          279 Yes
 4
         1505 No
 5
          770 No
 6
         1111 No
 7
         1309 No
         1912 No
```

```
9 1302 No
10 1959 No
# i 22 more rows
```

and calculate the proportion of "yes" responses:

```
sample1 |>
  group_by(midwest) |>
  summarize(
   n = n()
) |>
  mutate(p_hat = n/sum(n))
```

This isn't *super* useful, but if we do it a bunch of times, we can start to see what a range of possible samples could look like. (*Note:* this code requires the {infer} package)

```
many_samples <- carls |>
  rep_sample_n(35, reps = 1000, replace = TRUE) |>
  group_by(replicate, midwest) |>
  summarize(
    n = n()
    ) |>
  mutate(p_hat = n/sum(n)) |>
  filter(midwest == "Yes")
many_samples
```

```
# A tibble: 1,000 x 4
# Groups: replicate [1,000]
   replicate midwest
                         n p_hat
       <int> <chr> <int> <dbl>
1
           1 Yes
                        9 0.257
 2
           2 Yes
                        7 0.2
 3
          3 Yes
                        11 0.314
 4
          4 Yes
                        15 0.429
 5
           5 Yes
                       18 0.514
 6
          6 Yes
                        7 0.2
 7
          7 Yes
                       18 0.514
 8
           8 Yes
                       14 0.4
9
          9 Yes
                       17 0.486
```

10 10 Yes 15 0.429 # i 990 more rows

Looking at this first few rows, we can start to get a sense of the range of possible sample proportions, but there are 990 rows that we can't see. Let's make a graph!

Example: Carleton Mission Statement

In your own words: provide explanations for:

Population distribution

Sample distribution

Sampling distribution