Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 5

виконав студент	пт-13 Вальчишен Ярослав Олександрович
-	(шифр, прізвище, ім'я, по батькові)
т.	
Перевірив	
	(прізвише, ім'я, по батькові)

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 6.

Обчислити суму 6 елементів геометричної прогресії, що зростає: початкове значення -2, крок -2

1. Постановка задачі

Результатом розв'язку ϵ сума перших 6 елементів геометричної прогресії, що зроста ϵ

2. Побудова математичної моделі

Таблиця змінних

Змінна	Тип	Ім'я	Призначення
Перший член	Дійсний	firstMember	Початкове дане
прогресії			
Знаменник	Натуральний	q	Початкове дане
прогресії			
Кількість членів	Натуральний	n	Початкове дане
Сума прогресії	Дійсний	sum	Вихідні дані

Таблиця функцій

	10	
Назва	Синтаксис	Призначення
Піднесення до	pow(a, b)	Піднесення а в
степеню		степінь в

Таким чином математичне формулювання задачі зводиться до реалізації рекурсивного алгоритму, описаного в постановці задачі.

Рекурсивна функція повинна буде приймати 1 параметр: Progression(i = 1), де currentSum — це лічильник рекурсії.

3. Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію оголошення змінних

Крок 3. Деталізуємо дію виконання рекурсії

Псевдокод

```
Крок 1
Функція Progression(i = 1)
      Реалізація рекурсії
Все функція
початок
      Оголошення змінних
      Виклик функції Progression()
      Виведення sum
кінець
Крок 2
Функція Progression(i = 1)
      Реалізація рекурсії
Все функція
початок
      firstMember := 2
      q := 2
      n := 6
      Виклик функції Progression()
      Виведення sum
кінець
Крок 3
Функція Progression(currentSum)
      якщо n >= i
             TO
                   sum := sum + firstMember * pow(q, i - 1)
                   Progression(i + 1)
             інакше
      все якщо
Все функція
початок
      firstMember := 2
      q := 2
      n := 6
      Виклик функції Progression(sum)
      Виведення sum
кінець
```

Блок-схема

Код програми

Випробування алгоритму

Блок	Дія
	Початок
1	i := 1;
	sum := sum + 2 * pow(2, 1 - 1);
	sum := 2
2	i := 2;
	sum := sum + 2 * pow(2, 2 - 1);
	sum := 6
3	i := 3;
	sum := sum + 2 * pow(2, 3 - 1);
	sum := 14
4	i := 4;
	sum := sum + 2 * pow(2, 4 - 1);
	sum := 30
5	i := 5;
	sum := sum + 2 * pow(2, 5 - 1);
	sum := 62
5	i := 6;
	sum := sum + 2 * pow(2, 6 - 1);
	sum := 126
7	Виведення sum
	Кінець

Висновок

Виконуючи лабораторну роботу, я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під час складання програмних специфікацій.