

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	SWTID1720075414
Project Title	Panic Disorder Detection
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks): (Not mandatory for this project)

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre>param_grid = { 'criterion': ['gini', 'entropy'], 'max_depth': [None, 5,10,15], 'min_samples_split': [2,3,10], 'min_samples_leaf': [1,2,3], 'max_features': [None, 'sqrt', 'log2'] } #creating a decision tree classifier dt_classifier = DecisionTreeClassifier(random_state=1234) #Create GridSearchCV object grid_search = GridSearchCV(dt_classifier, param_grid, cv=5, verbose = 1, n_jobs=-1) #Fit the data to perform grid search grid_search.fit(x_res_train[fts], y_res_train)</pre>	#Print the best hyperparameteers print("Best Hyperparameters:", grid_search.best_params_) print("Best Score", grid_search.best_score_) Fitting 5 folds for each of 216 candidates, totalling 1880 Best Hyperparameters: {'criterion': 'gini', 'max_depth': N Best Score 0.9914015567048008
Random Forest	<pre>param_grid = { 'n_estimators': [50,100,200], 'max_depth': [None, 5,10], 'min_samples_split': [2,5,10], 'min_samples_leaf': [1,2,4], 'max_features': ['sqrt', 'log2'] } #creating a Ramdom Forest Classifier rf_classifier = RandomForestClassifier(random_state=1234) #Create GridSearchCV object grid_search = GridSearchCV(rf_classifier, param_grid=param_grid, cv=5, verbose = 1, n_jobs=4) #Fit the data to perform grid search grid_search.fit(x_res_train[fts], y_res_train)</pre>	<pre>#Print the best hyperparameteers print("Best Hyperparameters:", grid_search.best_params_) print("Best Score", grid_search.best_score_) Fitting 5 folds for each of 162 candidates, totalling 810 Best Hyperparameters: {'max_depth': None, 'max_features': Best Score 0.9909784255341378</pre>

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric						
	<pre>y_pred = grid_search.best_estimatorpredict(x_test[fts]) print(confusion_matrix(y_test,y_pred)) print(classification_report(y_test,y_pred)) print("SCORE:",grid_search.best_estimatorscore(x_test[fts],y_test))</pre>						
Decision Tree	[4 8	0 1	cision 1.00 0.76	0.99 1.00	0.86 0.99	support 19159 841 20000 20000	
	weighted av		0.99	0.99	0.99	20000	

Random Forest	print(confu print(class print("SCOF	usion_massificat. RE:",gr: 311] 827]] pre 0 1 cy vg	atrix(y_t ion_repor	est,y_prot(y_test)	ed)) ,y_pred))	(x_test[fts core(x_test support 19159 841 20000 20000 20000	[fts],y_test))
KNN	y_pred=gric print(confu print(class print("SCOF [[13375 57 [565 22 accurac macro as weighted as SCORE: 0.68	usion_ma sificat: RE:",gr: 784] 276]] pred 0 1	atrix(y_t ion_repor	recall 0.70 0.33	ed)) y_pred)) imatorsc f1-score 0.81 0.08 0.68		fts],y_test))
XGBoost	[[16546 2	usion_m. sificat RE:",fi 613] 834]] pre 0 1 cy vg	atrix(y_t ion_repor tmodel.be	est,y_protocest(y_test est_estim	ed)) ,y_pred))	e(x_test[ft	s],y_test))

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Decision Tree	Decision Tree Model was chosen because it displayed an incredible amount of accuracy when run through hyperparameter tuning. It was able to reduce overfitting very well, which fits the project perfectly, making it the perfect for selecting it as the final model for this project.