

10111110

数字逻辑基础

主讲:何宾

Email: hebin@mail.buct.edu.cn

2014.06

传播延迟不仅限制电路工作的速度,它们也会在输出端引起不期望的多余跳变。这些多余的跳变,称为"毛刺"。

- 这将导致当其中一个信号发生改变时,给信号提供了两条或更多的流过电路的路径,并且其中一条路径的延迟时间比其他路径长。
- 当信号路径在输出门重组时,这个在一条路径上增加的时间延迟会产生毛刺。

包含反相器会产生毛刺的组合逻辑结构

当一个输入信号通过两条路径或多条路径驱动的一个输出,其中一条路径有反相器而另外一条没有时,通常会出现非对称的延迟。

毛刺生成逻辑结构和时序分析

当一个输入用于两个积项(或者和之积方程式的两个和项),以及反相器在其中一项中有而另一项中没有时,将会产生毛刺。

在该卡诺图中,两个圆圈决定了最小逻辑表达式。 B·C独立于A。

当B变化时,两种不同的积项必须在输出时重组以保持输出为高,

这就是引起毛刺的原因。

Variable	X1	Х2								
V(a)	1	1		1	1		I		 	
V(b)	0	0					1			
V(c)	1	1								
D(n1)	1	1								
D(n2)	1	1					I I			-
D(n3)	0	0					ı			
D(y)	1	1		1	1					1
			•	,						
该	殳 讠	十亿	呆存在 \	eda_ver	ilog\glitch	「泵目	,	毛刺		

电路产生毛刺可以通过它原理图、卡诺图或者是逻辑等式验证。

- 在原理图中,输入后面有多条到达输出的路径,并且其中一条有反相器而其他路径没有就会产生毛刺。
- 在卡诺图中,假如画的圈是相邻的但不重叠,那么那些没有被 圈圈住的相邻项将有可能产生短时脉冲干扰。

30

毛刺产生及消除

对于毛刺的产生,一个逻辑电路必须对驱动所有输入到适当的水平的耦合变量"很敏感",这样就只有耦合变量可以影响输出。在一个SOP电路中,这意味着除了耦合输入外的所有的输入必须被驱动到"1",这样它们对第一级与门的输出就不会产生影响。

这种情况为逻辑电路消除毛刺提供了一个直观的方法:将所有多余的输入信号组合到一个新的第一级的逻辑输入(例如,SOP电路的与门),并将这个新增加的门添加到电路中。

逻辑表达式:

$$F = \overline{A} \cdot B + A \cdot C$$

耦合项是A,多余项可以组合成项的形式,将这项添加到电路组成方程式。

$$F = \overline{A} \cdot B + A \cdot C + B \cdot C$$

原等式是最小逻辑表达式,为了不产生毛刺,在最小逻辑表达式中添加了一个冗余项。

原始的SOP表达式画圈并没有重叠,这就是毛刺潜在的特点。

当增加了冗余项的圈时,每个圈至少重叠其他一项,那就不会产 生毛刺。

B	C			
A	00	01	11	10
0	0	0	1	1)
1	0	(1	1	0

该设计保存在\eda_verilog\glitch_remove目录下