النواس الثقلى

دوره M دوره الخاص ثقلي بسيط من كرة صغيرة نعدّها نقطة مادية كتلتها M، معلّقة بخيط مهمل الكتلة لا يمتط طوله M، دوره الخاص في حالة السعات الزاوية الصغيرة M ، نجعل طول الخيط ربع ما كان عليه ، فيصبح الدور الخاص الجديد M

<u> </u>	<i></i>	<u> </u>	,	-, 0, - 0 + 1 0	·	ا عي ١١٠٠ ، ١٥٥٠٠ ، عر	<u></u>
$\frac{1}{2}T_0$	d	2 <i>T</i> ₀	c	T_0	b	4T ₀	a

 $heta_{max} > 0.24 rad$ الزاوية الكبيرة المركب في السعات الزاوية الكبيرة $heta_{max} > 0.24 rad$

اهتزازية توافقية	d	اهتزازية غير توافقية	c	جيبية غير دورانية	b	جيبية دورانية	a

T- يتألف نواس ثقلي بسيط من كرة صغيرة نعدّها نقطة مادية كتلتها m، معلّقة بخيط مهمل الكتلة لا يمتط طوله T، دوره الخاص في حالة السعات الزاوية الصغيرة T ، نستبدل بالكرة كرة جديدة كتلتها 2m ، فيصبح الدور الخاص الجديد T

- 0 * * •	<u> </u>	. ==== •		• • • • • • • • • • • • • • • • • • • •		<u> </u>	
$\frac{1}{2}T_0$	d	$2T_0$	c	T_0	b	$4T_0$	a

المسألة الأولى: يتألف نواس ثقلي بسيط من خيط مهمل الكتلة لا يمتط طوله $\ell=100~cm$ يحمل في نهايته كرة نعدَها نقطة ماديّة كتلتها m=100~g المطلوب:

ا ـ يحرف الخيط عن وضع التوازن الشاقولي بسعة زاوية كبيرة $heta_{max} = \frac{\pi}{3} rad$ وتترك الكرة من دون سرعة ابتدائية فتكون سرعتها لحظة مرورها بالشاقول v، استنتج قيمة الزاوية v ثم احسب قيمتها.

٢- استنتج بالرموز العلاقة المحددة لتوتر خيط النواس لحظة مروره بوضع توازنه الشاقولي، ثم احسب قيمته.

٣- احسب دور النواس ٤- احسب أقصى ارتفاع تصل إليه الكرة بالنسبة لوضع التوازن الشاقولي

المسألة الثانية: يتألف نواس ثقلي بسيط من كرة صغيرة نعدها نقطة مادية كتلتها m=300g معلقة بخيط خفيف لا يمتط طوله L، دوره في السعات الزاوية الصغيرة $T_0=2.4\,\mathrm{s}$ والمطلوب:

ا - احسب طول خیط النواس θ_{max} و ترك دون θ_{max} و ترك دون θ_{max} ا - اخسب طول خیط النواس عن وضع التوازن بزاویة

 $heta_{max}$ سرعة ابتدائية فتكون السرعة الخطية $v=rac{12}{\pi}m$. s^{-1} عند الشاقول، احسب

 $(g=10m.\,s^{-2},\pi^2=10)$ استنتج بالرموز علاقة توتر الخيط عند الشاقول واحسب قيمتها.

المسألة الثالثة: يتألف نواس ثقلي مركب من ساق شاقولية مهملة الكتلة طولها m وتحمل في نهايتها العلوية كتلة نقطية $m_1=300$ ، تهتز الساق حول محور أفقي عمودي على مستويها، مار من منتصفها، المطلوب:

١- احسب الدور الخاص لهذا النواس في حالة السعات الزاوية الصغيرة.

٢ - احسب طول النواس الثقلي البسيط المواقت لهذا النواس.

 $heta_{max}=60^{\circ}$. ويتركها دون سرعة ابتدائية، استنتج العلاقة المحددة للسرعة البندائية، استنتج العلاقة المحددة للسرعة الزاوية للجملة لحظة مرورها بشاقول محور التعليق، ثم احسب قيمتها

المسالة الرابعة: يتالف نواس ثقلي مركب من قرص متجانس كتلته m نصف قطره r ، يمكنه أن ينوس في مستو شاقولي حول محور أفقى مار بنقطة من محيطه، المطلوب:

- ا ـ استنتج بالرّموز العلاقة المحددة للدور الخاص للنواس بدلالة نصف قطره r انطلاقاً من علاقة الدور الخاص للنواس الثقلي في السعات الزاوية الصغيرة. ثم احسب نصف قطر القرص إذا كانت قيمة الدور الخاص في حالة السعات الزاوية الصغيرة $T_0 = 1$.
 - ٣- احسب طول النواس الثقلى البسيط المواقت لهذا النواس.
- ئـ نزيح القرص عن وضع توازنه الشاقولي بسعة زاوية $\omega_{max}>0.24~rad$ ونتركه دون سرعة ابتدائية، فتكون السرعة الزاوية للقرص لحظة المرور بالشاقول $\omega=2\pi~rad.~s^{-1}$ المطلوب:
- θ_{max} احسب السرعة الخطية لمركز عطالة النواس لحظة مروره بالشاقول (b) استنتج قيمة السرعة الزاوية θ_{max} المسألة الخامسة : يتألّف نوَّاس ثقليّ مركّب من ساق متجانسة طولها θ_{max} كتلتها θ_{max} نجعلها شاقولية ونعلقها من محور أفقي ثابت عمودي على مستويها الشاقولي ومار من منتصفها ونثبت في طرفها السفلي كتلة نقطية θ_{max} نامطلوب:
 - آ- احسب دور النواس في السعات الزاوية الصغيرة ٢- احسب طول النواس الثقلي البسيط المواقت لهذا النواس.

 $\theta_{max} = 60^{\circ}$ نزيح الجملة السابقة عن وضع توازنها الشاقولي بسعة زاوية $\theta_{max} = 60^{\circ}$ ونتركها دون سرعة ابتدائية. استنتج بالرموز العلاقة المحددة للسرعة الزاوية للجملة لحظة مرورها بشاقول محور التعليق، ثم احسب قيمتها.

 $({
m g}=10{
m m.\,s^{-2}}$, $\pi^2=10$, $I_{\Delta/c}=rac{M.\ell^2}{12}$: عزم عطالة الساق حول محور عمودي عليها ومار من منتصفها $I_{\Delta/c}=\frac{M.\ell^2}{12}$

الأستاذ يــاسر نادر هـ 0932528305