BEFORE WE BEGIN

- Homework files found on github
 - https://github.com/mcc-robotics/enr161-exercises
- Homework is due by midnight of day on schedule
- All homework is submitted via github

Programs should include the following header:

```
/* ProgramName
   *
   * Details about the program
   *
   * Author: Geoff Berl
   * Assisted by:
   * Date: 3/1/2019
   */
```

GETTING STARTED WITH ARDUINO

Lesson 1

How to Write and Compile a Program

WHAT IS AN ARDUINO?

AN ARDUINO IS A BOARD WITH AN INTEGRATED MICROCONTROLLER FOR PROCESSING CODE

LESSON OBJECTIVE

Write and compile a program for the Arduino

- 1. Quick primer on IDEs
- 2. Fundamental elements of programming
- 3. Software Requirements
- 4. Creating an outline
- 5. Writing the program
- 6. Compile and Upload

INTEGRATED DEVELOPMENT ENVIRONMENT

GETTING STARTED WITH AN IDE

What is an Integrated Development Environment?

Write code with added features

- Syntax highlighting
- Menu option for compiling and/or running
- Error checking
- Formatting and other code-related features

SETUP YOUR ENVIRONMENT

Three steps to setting up environment

1. Select the right board

2. Select the right port

3. Select the right programmer

PROGRAMMING FUNDAMENTALS

PROGRAMMING LANGUAGE FUNDAMENTALS

Arduino Programming Structure

- Comments
- Functions
- Statements

Noteworthy Extras

- Syntax
- Libraries
- Code formatting

COMMENTS

The most highly underutilized element in code Comments are free, use them and use them often

Examples // This is a single line comment

```
/*
 * This is a comment block
 * Comment blocks are used when your comment
 * takes up more than one line although
 * it is not necessary.
 */
```

FUNCTIONS

Elements of a function

- Return type
- Name
- Parameters

Defining a function

• Parameters are optional

Calling a function

• Only the name and arguments

return name(Parameters)

void loop()

loop()

Use the <u>Arduino Reference</u> to find help with common functions

STATEMENTS

Statements can include

- Function calls
- Variable declarations
- Variable mutations (arithmetic)

```
Examples
loop();
int someInteger = 4;
someInteger = someInteger + 6;
```

SYNTAX

Set of rules that defines the combinations of symbols that are considered to be a correctly structured document or fragment in that language

- Syntax Aids
 - Color coding for known "elements"
 - Use indentation
 - Tools → Auto Format (or Ctrl+t)
- Common syntactical errors
 - Forgetting semicolon
 - Forgetting parenthesis
 - Forgetting curly braces
 - Improper case

SOFTWARE REQUIREMENTS

The program shall

- Blink an LED
 - The LED shall be off for one second
 - The LED shall be on for one second
- Utilize variables and constants
 - The constant LED_BUILTIN shall be used for referencing the LED pin
 - The time for the LED delay shall be stored in a variable

WRITING SOFTWARE

CREATE AN OUTLINE

- Define your ultimate goal
- 2. Break into sub goals if necessary
- 3. Break each goal/subgoal into a set of instructions

- 1. Enable LED pin for output
- 2. Turn the LED pin off
- Wait for one second
- 4. Turn the LED pin on
- 5. Wait for one second
- 6. <u>Repeat step 2 through 5</u>

DEFINE GLOBAL VARIABLES Power On


```
// Number of milliseconds to hold the LED on and off
int ledDelayMS = 1000;
int ledPin = 13;  // The LED pin
```

THE 'SETUP()'

```
Power On Define Global Variables Setup() loop()
```

```
/*
 * setup()
 * Called one time, used for initializing program elements
 */
void setup() {
    // Enable LED pin for output
    pinMode(LED_BUILTIN, OUTPUT);
}
```

- If this was pinMode(13, 1) would that make sense?
- Other options
 - a. pinMode(ledPin, OUTPUT); // Using our own variableb. pinMode(LED_PIN, OUTPUT); // Using our own constant

THE 'LOOP()'


```
/*
 * loop()
 * Represents the main program,
 * Blink an LED using the global variable time delay
 */
void loop() {
    // Turn the LED pin off
    digitalWrite(LED BUILTIN, LOW);
    // Wait for ledDelayMS milliseconds
    delay(ledDelayMS);
    // Turn the LED pin on
    digitalWrite(LED_BUILTIN, HIGH);
    // Wait for ledDelayMS milliseconds
    delay(ledDelayMS);
```

VERIFY, COMPILE, AND UPLOAD

Verify/Compile

- Compiles the code
- Checks for errors
- Can be done without a board

Upload

- Ready for deployment
- Compiles the code
- Uploads the compiled code to the microcontroller

PARTING THOUGHTS

- 1. Mind your cases, 'LOW' is not the same as 'low'.
- 2. Lines of code end with a semicolon ';'
- 3. Functions are encapsulated with curly braces '{' and '}'
- 4. Most typos are due to odd parenthesis, odd curly braces or missing semicolons.
- 5. Reference the Arduino website to learn more

Arduino Programming Cheat Sheet

Geoff Berl | October 18, 2018

Structure

/* Every arduino program must contain

Comments

Control Structures

// do this; start at i=0 and while i < 100

// Runs once at the beginning

the following */

void setup() {

void loop() {

/* Multi line

if (x < 5) {

while(x < 6) {

} else {

// If x < 5. do this

// Otherwise, do this

for (int i = 0; i < 100; i++) {

comment */

// Runs continuously

// Single line comment

Math Operators

// assignment

// addition

// subtraction // multiplication

// division // modulus

// Increment // Decrement += // Compound addition

// Compound subtraction

Logical Operators

!= // not equal to // less than // greater than

== // equal to

// less than or equal to >= // greater than or equal to

&& // boolean AND // boolean OR

// boolean NOT

Math Functions

pin 0-->1023 and outputting to PWM

// Limit a value within a range

char result = constrain(val, min, max); /* Change from one range to another, this example changes a value within 0-->1023

// while x < 6, do this 0-->255) */ char result = map(val, 0, 1023, 0, 255);

Digital I/O

// Sets the mode of a pin to an input or output

pinMode(pin, INPUT/OUTPUT): // Write a HIGH or LOW value to a digital pin

digitalWrite(pin, HIGH/LOW); // Read the HIGH or LOW value of a digital pin

boolean value = digitalRead(pin);

Analog I/O // Sets the mode of a pin to an input or output

pinMode(pin, INPUT/OUTPUT); // Write a HIGH or LOW value to a analog pin analogWrite(pin, 0-->255); // Read the 0-->1023 value of an analog pin

Data Types

0. 1. false, true 'a' OR -128 --> 127 unsigned char 0 --> 255 -32,768 --> 32,767

unsigned int 0 --> 65.535 long -2,147,483,648 --> 2,147,483,647 unsigned long 0 --> 4,294,967,295 float -3.4028235E+38 --> 3.4028235E+38

delay(msDelay);

int value = analogRead(pin);

void

char

boolean

Time // Pause the program for msDelay milliseconds

// Pause the program for usDelay microseconds delayMicroseconds(usDelay); to 0-->255. (Useful for reading an analog // Obtain the number of ms since the board turned on long currentMSTime = millis(): // Obtain the number of us since the board turned on

long currentUSTime = micros();

Constants

INPUT / OUTPUT

LED BUILTIN true / false

HIGH / LOW

HOMEWORK

Homework examples will consist of examples from

- The Arduino IDE
- Various Libraries (Also the IDE)
- Github https://github.com/mcc-robotics/enr161-exercises
 - Easiest method is to download if you are using your own PC Clone or download

QUESTIONS?

