Kursus 02402/02323 Introducerende Statistik

Forelæsning 7: Simuleringsbaseret statistik

Per Bruun Brockhoff

DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby – Danmark

e-mail: perbb@dtu.dk

er Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

Introduktion til simulation

Motivation

- Mange relevant beregningsstørrelser ("computed features") har komplicerede samplingfordelinger:
 - Et trimmed gennemsnit
 - Medianen
 - Fraktiler generelt, dvs. f.eks. også $IQR = Q_3 Q_1$
 - Variationkoefficienten
 - Enhver ikke-lineær function af en eller flere input variable
 - (Spredningen)
- Data/populations fordelingen kan være ikke-normal, hvilket komplicerer den statistiske teori for selv en simpel gennemsnitsberegning
- Vi kan HÅBE på the magic of CLT (Central Limit Theorem)
- MEN men: Vi kan aldrig være helt sikre på om det er godt nok simulering kan gøre os mere sikre!
- Kræver: Brug af computer R er et super værktøj til dette det men en super værktøj til dette det men en super værktøj til det til det en super værktøj til det en super

Oversigt

- Introduktion til simulation
 - Hvad er simulering egentlig?
 - Eksempel, Areal af plader
 - Feilophobningslove
- Parametric bootstrap
 - Introduction to bootstrap
 - ullet One-sample konfidensinterval for μ
 - One-sample konfidensinterval for en vilkårlig størrelse
 - Two-sample konfidensintervaller for en vilkårlig fordeling
- Ikke-parametrisk bootstrap
 - ullet One-sample konfidensinterval for μ
 - One-sample konfidensinterval for en vilkårlig størrelse
 - Two-sample konfidensintervaller

DTU Compute

Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

Introduktion til simulation

Hvad er simulering egentlig?

Hvad er simulering egentlig?

- (Pseudo)tilfældige tal genereret af en computer
- En tilfældighedsgenerator er en algoritme der kan generere x_{i+1} ud fra
- En sekvens af tal "ser tilfældige ud"
- Kræver en "start" kaldet "seed" .(Bruger typisk uret i computeren)
- Grundlæggende simuleres den uniforme fordeling, og så bruges:

Hvis $U \sim \mathsf{Uniform}(0,1)$ og F er en fordelingsfunktion for en eller anden sandsynlighedsfordeling, så vil $F^{-1}(U)$ følge fordelingen givet ved F

DTU Compute

Eksempel: Exponentialfordelingen med $\lambda = 0.5$:

$$F(x) = \int_0^x f(t)dt = 1 - e^{-0.5x}$$

DTU Compute

Exponentielle udfald

Foråret 2015

Introduktion til simulation

Eksempel, Areal af plader

Eksempel, Areal af plader

En virksomhed producerer rektangulære plader. Længden af pladerne (i meter), X, antages at kunne beskrives med en normalfordeling $N(2, 0.01^2)$ og bredden af pladerne (i meter), Y, antages at kunne beskrives med en normalfordeling $N(3,0.02^2)$. Man er interesseret i arealet, som jo så givet $\mathsf{ved}\ A = XY.$

- Hvad er middelarealet?
- Hvad er spredningen i arealet fra plade til plade?
- Hvor ofte sådanne plader har et areal, der afviger mere end $0.1m^2$ fra de $6m^2$?
- Sandsynligheden for andre mulige hændelser?
- Generelt: Hvad er sandsynlighedsfordelingen for A?

I praksis i R

De forskellige fordelinger er gjort klar til simulering:

rbinom	Binomialfordelingen
rpois	Poissonfordelingen
rhyper	Den hypergeometriske fordeling
rnorm	Normalfordelingen
rlnorm	Lognormalfordelingen
rexp	Eksponentialfordelingen
runif	Den uniforme(lige) fordeling
rt	t-fordelingen
rchisq	χ^2 -fordelingen
rf	F-fordelingen

DTU Compute

r Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Introduktion til simulation

Eksempel, Areal af plader

Eksempel, Løsning ved simulering

```
set.seed(345)
k = 10000 # Number of simulations
X = rnorm(k, 2, 0.01)
Y = rnorm(k, 3, 0.02)
A = X*Y
```

```
mean(A)
## [1] 5.9995
sd(A)
## [1] 0.049575
mean(abs(A-6)>0.1)
Per Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7
                                                                       Foråret 2015
```

Feilophobningslove

Har brug for at finde:

$$\sigma^2_{f(X_1,\dots,X_n)} = \mathsf{Var}(f(X_1,\dots,X_n))$$

Vi kender allerede:

$$\sigma_{f(X_1,...,X_n)}^2 = \sum_{i=1}^n a_i^2 \sigma_i^2$$
, if $f(X_1,...,X_n) = \sum_{i=1}^n a_i X_i$

Method 4.6: for ikke-lineære funktioner:

$$\sigma_{f(X_1,\dots,X_n)}^2 \approx \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_i^2$$

(perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

10 / 43

Introduktion til simulation Fejlophobningslove

Eksempel, fortsat

Vi har allerede brugt simulerings-metoden i første del af eksemplet. To konkrete målinger for X og Y, er givet: x = 2.05m og y = 2.99m. Hvad er "fejlen" på $A=2.00\times3.00=6.00$ fundet ved den ikke-lineære feilophobningslov?

Feilophobning - ved simulering

Method 4.7: Error propagation by simulation

Assume we have actual measurements x_1, \ldots, x_n with known/assumed error variances $\sigma_1^2, \ldots, \sigma_n^2$

- lacktriangle Simulate k outcomes of all n measurements from assumed error distributions, e.g. $N(x_i, \sigma_i^2)$: $X_i^{(j)}$, $j = 1 \dots, k$
- 2 Calculate the standard deviation directly as the observed standard deviation of the k simulated values of f:

$$s_{f(X_1,...,X_n)}^{\text{sim}} = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (f_i - \bar{f})^2}$$

where

$$f_j = f(X_1^{(j)}, \dots, X_n^{(j)})$$

Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

Introduktion til simulation

Fejlophobningslove

Eksempel, fortsat

Varianserne er:

$$\sigma_1^2 = Var(X) = 0.01^2 \text{ og } \sigma_2^2 = Var(Y) = 0.02^2$$

Funktionen og de afledede er:

$$f(x,y) = xy, \ \frac{\partial f}{\partial x} = y, \ \frac{\partial f}{\partial y} = x$$

Så resultatet bliver:

$$Var(A) \approx \left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{1}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{2}^{2}$$

$$= y^{2} \sigma_{1}^{2} + x^{2} \sigma_{2}^{2}$$

$$= 3.00^{2} \cdot 0.01^{2} + 2.00^{2} \cdot 0.02^{2}$$

$$= 0.0025$$

Eksempel 1, fortsat

Faktisk kan man finde variansen for A = XY teoretisk:

$$\begin{split} \mathsf{Var}(XY) &= \mathsf{E}\left[(XY)^2\right] - \left[\mathsf{E}(XY)\right]^2 \\ &= \mathsf{E}(X^2)\mathsf{E}(Y^2) - \mathsf{E}(X)^2\mathsf{E}(Y)^2 \\ &= \left[\mathsf{Var}(X) + \mathsf{E}(X)^2\right]\left[\mathsf{Var}(Y) + \mathsf{E}(Y)^2\right] - \mathsf{E}(X)^2\mathsf{E}(Y)^2 \\ &= \mathsf{Var}(X)\mathsf{Var}(Y) + \mathsf{Var}(X)\mathsf{E}(Y)^2 + \mathsf{Var}(Y)\mathsf{E}(X)^2 \\ &= 0.01^2 \times 0.02^2 + 0.01^2 \times 3^2 + 0.02^2 \times 2^2 \\ &= 0.00000004 + 0.0009 + 0.0016 \\ &= 0.00250004 \end{split}$$

r Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

14 / 43

Parametric bootstrap

Introduction to bootstrap

Bootstrapping

Bootstrapping findes i to versioner:

- 1 Parametrisk bootstrap: Simuler gentagne samples fra den antagede (og estimerede) fordeling.
- 2 Ikke-parametrisk bootstrap: Simuler gentagne samples direkte fra data.

Areal-eksempel – et summary

Tre forskellige approaches:

- Simuleringsbaseret
- 2 Teoretisk udledning
- 3 Den analytiske, men approksimative, error propagation metode

The simulation approach has a number of crucial advantages:

- 1 It offers a simple tool to compute many other quantities than just the standard deviation (the theoretical derivations of such other quantities could be much more complicated than what was shown for the variance here)
- 2 It offers a simple tool to use any other distribution than the normal, if we believe such better reflect reality.
- 3 It does not rely on any linear approximations of the true non-linear relations.

Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Parametric bootstrap One-sample konfidensinterval for μ

Eksempel: Konfidensinterval for middelværdien i en eksponentialfordeling

Antag at vi har observeret følgende 10 opkaldsventetider (i sekunder) i et call center.

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

Vi estimerer fra data:

 $\hat{\mu} = \bar{x} = 26.08$ og dermed er raten: $\hat{\lambda} = 1/26.08 = 0.03834356$

Vores fordelingsantagelse:

Ventetiderne kommer fra en eksponentialfordeling

Hvad er konfidensintervallet for μ ?

Baseret på tidligere indhold i dette kursus: Det ved vi ikke!

Eksempel: Konfidensinterval for middelværdien i en eksponentialfordeling

```
## Set the number of simulations:
k <- 100000
## 1. Simulate 10 exponentials with the right mean k times:
set.seed(9876.543)
simsamples <- replicate(k, rexp(10, 1/26.08))
## 2. Compute the mean of the 10 simulated observations k times:
simmeans <- apply(simsamples, 2, mean)</pre>
## 3. Find the two relevant quantiles of the k simulated means:
quantile(simmeans, c(0.025, 0.975))
   2.5% 97.5%
## 12.587 44.627
```

Per Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

19 / 43

Parametric bootstrap One-sample konfidensinterval for en vilkårlig størrelse

Eksempel: Konfidensinterval for medianen i en eksponentialfordeling

Antag at vi har observeret følgende 10 opkaldsventetider (i sekunder) i et call center:

32.6, 1.6, 42.1, 29.2, 53.4, 79.3, 2.3, 4.7, 13.6, 2.0

Vi estimerer fra data:

Median = 21.4 og $\hat{\mu} = \bar{x} = 26.08$

Vores fordelingsantagelse:

Ventetiderne kommer fra en eksponentialfordeling

Hvad er konfidensintervallet for medianen?

Baseret på tidligere indhold i dette kursus: Det ved vi ikke!

Example: Konfidensinterval for middelværdien i en eksponentialfordeling

hist(simmeans, col="blue", nclass=30)

Parametric bootstrap

One-sample konfidensinterval for en vilkårlig størrelse

Eksempel: Konfidensinterval for medianen i en eksponentialfordeling

```
## Set the number of simulations:
k <- 100000
## 1. Simulate 10 exponentials with the right mean k times:
set.seed(9876.543)
simsamples <- replicate(k, rexp(10, 1/26.08))</pre>
## 2. Compute the median of the n=10 simulated observations k times:
simmedians <- apply(simsamples, 2, median)</pre>
## 3. Find the two relevant quantiles of the k simulated medians:
quantile(simmedians, c(0.025, 0.975))
    2.5% 97.5%
## 7.038 38.465
```

Eksempel: Konfidensinterval for medianen i en eksponentialfordeling

hist(simmedians, col="blue", nclass=30)

Histogram of simmedians

Introduktion til Statistik, Forelæsning 7

Foråret 2015 23 / 43

Parametric bootstrap One-sample konfidensinterval for en vilkårlig størrelse

Et andet eksempel: 99% konfidensinterval for Q_3 for en normalfordeling

```
## Read in the heights data:
x \leftarrow c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
n <- length(x)</pre>
## Define a Q3-function:
Q3 <- function(x){ quantile(x, 0.75)}
 ## Set the number of simulations:
k <- 100000
## 1. Simulate k samples of n=10 normals with the right mean and variance:
set.seed(9876.543)
simsamples <- replicate(k, rnorm(n, mean(x), sd(x)))</pre>
## 2. Compute the Q3 of the n=10 simulated observations k times:
simQ3s <- apply(simsamples, 2, Q3)</pre>
## 3. Find the two relevant quantiles of the k simulated medians:
quantile(simQ3s, c(0.005, 0.995))
    0.5% 99.5%
## 172.82 198.00
```

Konfidensinterval for en vilkårlig beregningsstørrelse

Method 4.10: Confidence interval for any feature θ by parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n and assume that they stem from some probability distribution with density f.

- \bullet Simulate k samples of n observations from the assumed distribution f where the mean a is set to \bar{x} .
- 2 Calculate the statistic $\hat{\theta}$ in each of the k samples $\hat{\theta}_1^*, \dots, \hat{\theta}_k^*$.
- § Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ quantiles for these, $q^*_{100(\alpha/2)\%}$ and $q^*_{100(1-\alpha/2)\%}$ as the $100(1-\alpha)\%$ confidence interval: $\left|q_{100(\alpha/2)\%}^*, q_{100(1-\alpha/2)\%}^*\right|$

^aAnd otherwise chosen to match the data as good as possible: Some distributions have more than just a single mean related parameter, e.g. the normal or the log-normal. For these one should use a distribution with a variance that matches the sample variance of the data. Even more generally the approach would be to match the chosen distribution to the data by the so-called maximum likelihood approach

Per Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Parametric bootstrap Two-sample konfidensintervaller for en vilkårlig fordeling

Two-sample konfidensinterval for en vilkårlig feature sammenligning $\theta_1 - \theta_2$ (inkl. $\mu_1 - \mu_2$)

Method 4.13: Two-sample confidence interval for any feature comparison $\theta_1 - \theta_2$ by parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n and y_1, \ldots, y_n and assume that they stem from some probability distributions with density f_1 and f_2 .

- Simulate k sets of 2 samples of n_1 and n_2 observations from the assumed distributions setting the means a to $\hat{\mu}_{1} = \bar{x}$ and $\hat{\mu}_{2} = \bar{y}$, respectively.
- $\hat{\theta}_{r1}^* - \hat{\theta}_{v1}^*, \dots, \hat{\theta}_{rk}^* - \hat{\theta}_{vk}^*.$
- **3** Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ guantiles for these, $q^*_{100(\alpha/2)\%}$ and $q^*_{100(1-\alpha/2)\%}$ as the $100(1-\alpha)\%$ confidence interval: $\left[q_{100(\alpha/2)\%}^*, q_{100(1-\alpha/2)\%}^*\right]$

Eksempel: Konfidensinterval for the forskellen mellem to exponentielle middelværdier

```
## Day 1 data:
x \leftarrow c(32.6, 1.6, 42.1, 29.2, 53.4, 79.3,
       2.3 , 4.7 , 13.6 , 2.0)
## Day 2 data:
y \leftarrow c(9.6, 22.2, 52.5, 12.6, 33.0, 15.2,
       76.6, 36.3, 110.2, 18.0, 62.4, 10.3)
n1 <- length(x)
n2 <- length(y)
```

er Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015 27 / 43

Parametric bootstrap Two-sample konfidensintervaller for en vilkårlig fordeling

Parametrisk bootstrap - et overblik

Vi antager en eller anden fordeling!

To konfidensinterval-metodeboxe blev givet:

	One-sample	Two-sample
For any feature	Method 4.10	Method 4.13

Eksempel: Konfidensinterval for the forskellen mellem to exponentielle middelværdier

```
## Set the number of simulations:
k <- 100000
## 1. Simulate k samples of each n1=10 and n2=12
## exponentials with the right means:
set.seed(9876.543)
simXsamples <- replicate(k, rexp(n1, 1/mean(x)))</pre>
simYsamples <- replicate(k, rexp(n2, 1/mean(y)))</pre>
## 2. Compute the difference between the simulated
## means k times:
simDifmeans <- apply(simXsamples, 2, mean) -</pre>
                    apply(simYsamples, 2, mean)
## 3. Find the two relevant quantiles of the
## k simulated differences of means:
quantile(simDifmeans, c(0.025, 0.975))
      2.5% 97.5%
## -40.735 14.117
```

Per Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Ikke-parametrisk bootstrap

Ikke-parametrisk bootstrap - et overblik

Vi antager IKKE noget om nogen fordelinger!

To konfidensinterval-metodeboxe bliver givet:

	One-sample	Two-sample
For any feature	Method 4.18	Method 4.20

Eksempel: Kvinders cigaretforbrug

I et studie undersøgte man kvinders cigaretforbrug før og efter fødsel. Man fik følgende observationer af antal cigaretter pr. dag:

før	efter	før	efter
8	5	13	15
24	11	15	19
7	0	11	12
20	15	22	0
6	0	15	6
20	20		

Sammenlign før og efter! Er der sket nogen ændring i gennemsnitsforbruget!

Per Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015 32 / 43

Ikke-parametrisk bootstrap One-sample konfidensinterval for μ

Eksempel: Kvinders cigaretforbrug - bootstrapping

```
t(replicate(5, sample(dif, replace = TRUE)))
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## [1,]
## [2,]
## [3,]
## [4.]
## [5.]
        13 0
```

Eksempel: Kvinders cigaretforbrug

Et parret t-test setup, MEN med tydeligvis ikke-normale data!

```
x1 \leftarrow c(8, 24, 7, 20, 6, 20, 13, 15, 11, 22, 15)
x2 \leftarrow c(5, 11, 0, 15, 0, 20, 15, 19, 12, 0, 6)
dif <- x1-x2
dif
## [1] 3 13 7 5 6 0 -2 -4 -1 22 9
mean(dif)
## [1] 5.2727
```

Per Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015 33 / 43

Ikke-parametrisk bootstrap One-sample konfidensinterval for μ

Eksempel: Kvinders cigaretforbrug - de ikke-parametrisk bootstrap resultater:

```
k = 100000
simsamples = replicate(k, sample(dif, replace = TRUE))
simmeans = apply(simsamples, 2, mean)
quantile(simmeans, c(0.025, 0.975))
## 2.5% 97.5%
## 1.3636 9.8182
```

One-sample konfidensinterval for en vilkårlig feature θ (inkl. μ)

Method 4.18: Confidence interval for any feature θ by non-parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n .

- lacktriangle Simulate k samples of size n by randomly sampling among the available data (with replacement)
- **2** Calculate the statistic $\hat{\theta}$ in each of the k samples $\hat{\theta}_1^*, \dots, \hat{\theta}_k^*$.
- § Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ guantiles for these, $q^*_{100(\alpha/2)\%}$ and $q^*_{100(1-\alpha/2)\%}$ as the $100(1-\alpha)\%$ confidence interval: $|q_{100(\alpha/2)\%}^*, q_{100(1-\alpha/2)\%}^*|$

er Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

Ikke-parametrisk bootstrap Two-sample konfidensintervaller

Eksempel: Tandsundhed og flaskebrug

I et studie ville man undersøge, om børn der havde fået mælk fra flaske som barn havde dårligere eller bedre tænder end dem, der ikke havde fået mælk fra flaske. Fra 19 tilfældigt udvalgte børn registrerede man hvornår de havde haft deres første tilfælde af karies.

flaske	alder	flaske	alder	flaske	alder
nej	9	nej	10	ja	16
ja	14	nej	8	ja	14
ja	15	nej	6	ja	9
nej	10	ja	12	nej	12
nej	12	ja	13	ja	12
nej	6	nej	20		
ja	19	ja	13		

Find konfidensintervallet for forskellen!

Eksempel: Kvinders cigaretforbrug

Lad os finde 95% konfidensintervallet for ændringen af median cigaretforbruget

```
k = 100000
simsamples = replicate(k, sample(dif, replace = TRUE))
simmedians = apply(simsamples, 2, median)
quantile(simmedians, c(0.025,0.975))
## 2.5% 97.5%
```

DTU Compute

Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

37 / 43

Foråret 2015

Ikke-parametrisk bootstrap Two-sample konfidensintervaller

Eksempel: Tandsundhed og flaskebrug - et 95%konfidensinterval for $\mu_1 - \mu_2$

```
## Reading in no group:
 x \leftarrow c(9, 10, 12, 6, 10, 8, 6, 20, 12)
## Reading in yes group:
 v \leftarrow c(14,15,19,12,13,13,16,14,9,12)
k <- 100000
simxsamples <- replicate(k, sample(x, replace = TRUE))</pre>
simysamples <- replicate(k, sample(y, replace = TRUE))</pre>
simmeandifs <- apply(simxsamples, 2, mean)-
                             apply(simysamples, 2, mean)
quantile(simmeandifs, c(0.025,0.975))
       2.5%
                97.5%
## -6.23333 -0.14444
```

Ikke-parametrisk bootstrap Two-sample konfidensintervaller

Two-sample konfidensinterval for $\theta_1 - \theta_2$ (inkl. $\mu_1 - \mu_2$) med ikke-parametrisk bootstrap

Method 4.20: Two-sample confidence interval for $\theta_1 - \theta_2$ by non-parametric bootstrap

Assume we have actual observations x_1, \ldots, x_n and y_1, \ldots, y_n .

- **1** Simulate k sets of 2 samples of n_1 and n_2 observations from the respective groups (with replacement)
- 2 Calculate the difference between the features in each of the k samples $\hat{\theta}_{x1}^* - \hat{\theta}_{u1}^*, \dots, \hat{\theta}_{xk}^* - \hat{\theta}_{uk}^*.$
- § Find the $100(\alpha/2)\%$ and $100(1-\alpha/2)\%$ quantiles for these, $q^*_{100(\alpha/2)\%}$ and $q^*_{100(1-\alpha/2)\%}$ as the $100(1-\alpha)\%$ confidence interval: $|q_{100(\alpha/2)\%}^*, q_{100(1-\alpha/2)\%}^*|$

DTU Compute

er Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

40 / 43

Ikke-parametrisk bootstrap

Two-sample konfidensintervaller

Bootstrapping - et overblik

Vi har fået 4 ikke så forskellige metode-bokse

- Med eller uden fordeling (parametrisk eller ikke-parametrisk)
- 2 For one- eller two-sample analyse (en eller to grupper)

Bemærk:

Middelværdier(means) er inkluderet i vilkårlige beregningsstørrelser (other features). Eller: Disse metoder kan også anvendes for andre analyser end for means!

Hypotesetest også muligt

Vi kan udføre hypotese test ved at kigge på konfidensintervallerne!

Ikke-parametrisk bootstrap Two-sample konfidensintervaller

Eksempel: Tandsundhed og flaskebrug - et 99% confidence interval for median-forskellen

```
k <- 100000
simxsamples <- replicate(k, sample(x, replace = TRUE))</pre>
simysamples <- replicate(k, sample(y, replace = TRUE))</pre>
simmediandifs <- apply(simxsamples, 2, median)-</pre>
                          apply(simysamples, 2, median)
quantile(simmediandifs, c(0.005,0.995))
## 0.5% 99.5%
      -8
```

DTU Compute

r Bruun Brockhoff (perbb@dtu.dk) Introduktion til Statistik, Forelæsning 7

Foråret 2015

41 / 43

Ikke-parametrisk bootstrap

Two-sample konfidensintervaller

Oversigt

- Introduktion til simulation
 - Hvad er simulering egentlig?
 - Eksempel, Areal af plader
 - Feilophobningslove
- Parametric bootstrap
 - Introduction to bootstrap
 - ullet One-sample konfidensinterval for μ
 - One-sample konfidensinterval for en vilkårlig størrelse
 - Two-sample konfidensintervaller for en vilkårlig fordeling
- Ikke-parametrisk bootstrap
 - One-sample konfidensinterval for μ
 - One-sample konfidensinterval for en vilkårlig størrelse
 - Two-sample konfidensintervaller

DTU Compute

43 / 43