Lecture 08 - Classification Models

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Topics

- Discussion of Lecture #07
 - Image Descriptors
- Classification Models
 - K-NN, Logistic Regression, Decision Trees Naïve Bayes, SVM and MLP
- Evaluation Metrics
 - Accuracy, Precision, Recall and F1-Score
- Practice

So far, we have extracted features from data to compute the feature space.

How discriminating are features?

Input Space

Computer Vision - Prof. André Hochuli

Lecture 08

How to compute the decision boundary?

- Hyperplane
 - 2-D, 3-D ... N-D (or N-Features)

Binary Classification vs Multi-Class Classification

Binary vs Multi-Class

Classification Models KNN

- Computes the similarity in a feature space (Euclidian Distance, Manhattan....)
- The K-Nearest Neighbors determines the class (Majority Vote)
- There is no training step. Compute the distance of the test sample to each training sample

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Computer Vision - Prof. André Hochuli

Lecture 08

Classification Models K-Means

- Computes the distance between k-cluster
- The clusters are defined in training step

Classification Models Naïve Bayes

- Bayes Theorem
- A priori vs Posteriori Probabilities

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Classification Models Logistic Regression

Linear vs Logistic

Classification Models Logistic Regression (LR)

Logistic Boundary

Classification Models Logistic Regression (LR)

Logistic Boundary

Classification Models Decision Tree

Creates decision rules from the data features

Decision surface of a decision tree using paired features

Classification Models Decision Tree

The support vectors determine the decision boundary

The support vectors determine the decision boundary

Kernels

RBF

Kernel Trick

Classification Models Multi-Layer Perceptron

Perceptron

Classification Models Multi-Layer Perceptron

Multi-Layer Perceptron (MLP)

Evaluation Metrics

- Accuracy:
 - Correctly classified instances over total instances

$$Accuracy = \frac{TN + TP}{TN + FP + TP + FN}$$

• (55 + 30)/(55 + 5 + 30 + 10) = 0.850

	NEGATIVE	POSITIVE
	55 TRUE NEGATIVE	5 FALSE POSITIVE
POSITIVE	10 FALSE NEGATIVE	30 TRUE POSITIVE

PREDICTED LABEL

- What is the problem with accuracy?
 - Imbalanced Data

• Acc: 90% (90/100)

• Error TP: 100% (10/10)

Computer Vision - Prof. André Hochuli

Lecture 08

Evaluation Metrics

Precision:

Correctly positive classified instances of positive predictions

$$Precision = \frac{TP}{TP + FP}$$

• 30/(30+5) = 0.857

PR	FDI	CT	FD	I A	BEL
Γ	ᄓ	. .	$ \nu$	ᆫᄉ	ᅜᆫᆫ

Recall

- Correctly positive classified instances
- over positive instances
- (A.K.A Sensitivity or TP Rate)

$$Recall = \frac{TP}{TP + FN}$$

• 30/(30+10) = 0.750

PREDICTED LABEL

Computer Vision - Prof. André Hochuli

Lecture 08

Evaluation Metrics

F1-SCORE:

Harmonic Mean(*) of precision and recall rat

$$F1\ Score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

• 2*(0.857*0.75)/(0.857+0.75) = 0.799

PREDICTED LABEL

- Final Remarks
 - Accuracy: 0.850
 - F1-Score: 0.799
 - Precision: 0.857
 - Recall: 0.750

The harmonic mean is a method that gives less weightage to larger single values and more weightage to smaller values

Let's Code!

<u>Lecture 08 - Image Classification.ipynb [LINK]</u>