19日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

m61 - 35556

@Int Cl.4

識別記号

庁内整理番号

❷❷公告 昭和61年(1986)10月16日

C 21 D 9/60

102

7371 - 4K

(全4頁)

強靱性細径鋼線の製造装置 ❷考案の名称

> 迎実 頤 昭60-81708

❸公 開 昭61-2445

田の 願 昭54(1979)12月14日 母昭61(1986)1月9日

前特許出願日接用

②考 案 者 村 西

岸和田市岡山町810-69 強

砂考 案 者 河 西

徹 宝塚市野上6丁目5番16-302

⑰考 案 者 原

忠 錴 箕面市如意谷6番地の51 ライオンズマンション箕面D棟

四考 案 者 藤 田 耕 \equiv · 尼崎市崇徳院3-45

①出 願 人 神鋼鋼線工業株式会社 尼崎市道意町7丁目2番地

悦司 弁理士 小谷 外1名 ②代 理 人 平 塚

審査官

龚

S6参考文献

特開 昭50-62809(JP,A)

特公 昭41-13363(JP, B1)

砂実用新案登録請求の範囲

細径鋼線の供給送出部と受取部との間に焼入用 高周波加熱コイルと、該コイルの直後に設けた均 熱炉と、焼入急冷部と、焼戻し用高周波加熱ユイ ルと、該コイルの直後に設けた均熱炉とを順次直 5 熱コイルの輪径が大きくなつて加熱効率が低くな 線状の鋼線移動経路に沿つて配置したことを特徴 とする強靭性細径銅線の製造装置。

考案の詳細な説明

(産業上の利用分野)

置に関するものである。

(従来技術)

鋼材の焼入れおよび焼戻しによる熱処理におい て、高周波加熱は急速加熱の手段として有用であ り、急速加熱は結晶粒を微細化して強度と靱性を 15 イトへの変態)に要する時間が充分に得られず、 髙める上に利点があることは知られている。そし て、特公昭41-13363号公報に見られるように、 れおよび焼戻しを高周波加熱により行うようにし た装置に従来においても知られている。この装置 20 られていたが、雰囲気炉では急速加熱が行えない は焼入れおよび焼戻しにおいてそれぞれ、単に高 周波加熱後に冷却するようにしているが、特に 6

うな問題が生じる。

すなわち、細径鋼線を高周波加熱しようとする 場合、加熱コイルの輸径を極端に小さくすること は製作技術的に難しいため、鋼線径の割りには加 る。また一般に鋼線径が細くなるとランニングコ スト等との関係で作業速度(鋼線の移動速度)が 速くなる一方、経済的な理由で加熱コイルをあま り長くすることはできないので、加熱時間が短く 本考案は高抗張力、強靱性の細径鋼線の製造装 10 なる。さらに細径鋼線は太径鋼線と比べて熱容量 が小さいで、大気中での冷却速度が速くなる。こ れらの原因により、上記従来装置で細径鋼線を熱 処理すると変態(パーライトからオーステナイト への変態、マルテンサイトから焼戻しマルテンサ 髙品質の製品を得ることが難しい。

2

このため一般に細径鋼線の焼入れおよび焼戻し は、高周波加熱によらず。雰囲気炉と鉛炉、鉛炉 と鉛炉、雰囲気炉と雰囲気炉等の組合わせが用い ので強靱性にすぐれた鋼線を得ることはできず、 また、鉛炉では鉛蒸気が発生して公害、衛生上に 大きな問題点であつた。

3

(考案の目的)

本考案はこれらの事情に鑑み、高周波誘導加熱 による急速加熱の利点を生かし、しかも焼入れお よび焼戻し時に変態時間をもたせることにより高 強度および強靱性を兼ね備えた高品質の細径鋼線 5 が得られ、かつこれらの処理を能率良く行なうこ とができる強靭性細径網線の製造装置を提供する ものである。

(考案の構成)

本考案は、細径鋼線の供給送出部と受取部との 10 間に焼入用高周波加熱コイルと、該コイルの直後 に設けた均熱炉と、焼入急冷部と、焼戻し用高周 波加熱コイルと、酸コイルの直後に設けた均熱炉 とを順次直線状の鋼線移動経路に沿つて配置した ものである。

(実施例)

第1図は本考案装置の一実施例を示し、周図に おいて、1は細径の被熱処理鋼線11を積載する サプライスタンド、2は案内ローラ、3…は矯正 状に送り出す供給送出部を構成している。上記案 内ローラ2および矯正ローラ3…は、被熱処理鋼 線の目的に応じて適宜ギヤプスタン等に置き換え てもよい。この鋼線供給送出部と後述する受取部 との間には、焼入れ用高周波加熱コイル4と、酸 25 コイル4の直後に設けた均熱炉5と、油、水、鉛 ソルト等の焼入れ剤を収容した焼入槽(焼入急冷 部) 6と、焼戻し用高周波加熱コイル7と、酸コ イル7の直後に設けた均熱炉8とをこの順に鋼線 上記各加熱コイル4,7はそれぞれ図外の高周波 電源装置に接続され、焼入れおよび焼戻しに必要 な温度に鋼線11を加熱するようにしてある。ま た上記各均熱炉5,8は、それぞれの直前に配置 1を均一加熱するようになつている。また、9は キャプスタン、10は巻取り装置で、これらは鋼 線移動径路終端部における引取部を構成する。上 記キャプスタン9はピンチローラ等に置き換えて もよい。

次に、この装置を用いて強靱性鋼線を製造する 方法の具体例を説明する。

先ず所定寸法に伸線されてサブライスタンド 1 に積載された被熱処理鋼線11は、案内ローラ

2、矯正ローラ3を通つて高周波加熱コイル4に 入る。該加熱コイル4に高周波電源装置から電圧 が印加されることにより鋼線内に誘導電流が生 じ、このときの鍛線横断面内を円周方向に流れる 誘導電流は、高周波特有の表皮効果によって鋼線 の表面層に集中し、その浸透深さるが次式で表わ されることは知られている。

$\delta = \sqrt{\rho / \pi f \mu}$

f:周波数、μ:透磁率、p:抵抗率

そして、この誘導過電流と鋼線固有抵抗の相乗 作用による電気抵抗熱で鋼線が急速加熱され、加 熱コイル4においては100°C/sec以上の加熱速 度でAc, 温度以上の830~950° C程度に加熱され る。続いて鋼線11は、均熱炉5により、上配加 15 熱コイル4による加熱温度と同程度の温度で、オ ーステナイトの結晶粒が粗大化せず、且つ鋼線が 均一なオーステナイト組織に変態するのに最適な 所定時間、具体的には5~30秒程度保持され、オ ーステナイト化が完了される。この場合、鋼線 1 ローラで、これらにより被熱処理鋼線11を直線 20 1が移動しながら均熱炉5で所定時間保温される ように、子め鋼線11の移動速度に応じて均熱炉 5の長さが定められている。均熱炉5を通過した 後、直ちに鋼線11は焼入槽6中にて急冷され

この焼入れ段階において、オーステナイト化の 際高周波の急速加熱によりオーステナイト結晶粒 の成長は行なわれず、その結果極めて微細なマル テンサイト組織を得ることが可能となる。また、 髙周波加熱だけでは前記の表皮効果により鋼線の 移動径路につて直線的に連続して配置している。30 表層に比べて中心部の方がどうしても温度が低く なるが、均熱炉5により温度の均一化が図られて 鋼線の温度上昇曲線が第2図に示すようになり、 均一な組織が得られる。さらに、均熱炉5にDX ガス、窒素ガス、AXガス等の非酸化性ガスを通 された加熱コイル4, 7と同程度の温度で鋼線1 35 気することにより、被熱処理鋼線を雰囲気ガス中 で加熱して酸化、脱炭の防止を図ることも可能で ある。

> 次いで被熱処理鋼線11は、焼戻し用高周波加 熱コイルにて100°C/sec以上の加熱速度でAc, 40 温度以下の450~550° C程度に再加熱され、統い て均熱炉9により同程度の温度で10~40秒保持さ れ、焼戻しされる。このように焼戻し時にも均熱 炉9で所定時間保温しているのは、本来的に細径 鋼線は冷却速度が速いので外気温等の影響を受け

易く、また特に低合金鋼で油焼入れされたものは 残留オーステナイトが安定していて分解に時間を 要するためである。従つてこの焼戻し時の均熱炉 9による保温も鉧線の品質向上に重要なものであ 組織が得られる。このようにして高強度および強 靱性を備えた鋼線が製造される。

ここで、本考案の装置により製造された強靱性 鋼線について効果を確認するため、当考案者が行 AISI9254 (SiーCr鋼) を用い、本考案の装置に よる場合と、高周波加熱を用いない従来の一般的*

*な装置による場合とについて、材料の機械的性質 を比較試験したもので、本考案については、3mm φの素線を高周波加熱により290°C/secの加熱 速度で890°Cに加熱し、同温度に保持した均熱 つて、これにより確実に均一な焼戻しソルバイト 5 炉中で18秒間保持した後油焼入れし、さらに連続 的に高周波加熱により150° C/secで470° Cに 加熱し、同温度に保持した均熱炉中にて30秒間保 持し、焼戻しを行なつた。これによる実験の結果 は次の表の通りである。尚、焼入れ時のオーステ なつた実験の結果を示す。この実験は鋼種 10 ナイト結晶粒度は、本考案装置によるものでは粒 度番号12, 5、従来品では粒度10~11である(粒 度番号はJIS.C0551による)。

	銷種線 径	引張強さ (kg/㎡)	0.05%弹性限 (kg/mi)	0.2%降伏点 (kg/㎡)	紋 り (断面積減少率)	中村式回転 曲げ疲労限 (kg/喊)
本考案	ΛISI9254 (3mm φ)	197, 1	184.3	193.2	56%	69.3
従来品	n	196.5	177.0	182.7	50~55%	62~65

て熱処理した鋼線は、結晶粒が極細粒になること により、高強度、強靭性が得られる上に耐遅れ破 **壊性が改善される。さらに加熱雰囲気を選択する** ことによつて脱炭の無い疲労特性のすぐれた鋼線 が得られる。

・また、第3図のグラフは本考案装置による場合 の焼入れ時のオーステナイト化温度と保持時間、 オーステナイト結晶粒度の関係を、鋼種 AISI9254を例にとつて示す。同グラフ中、№10 示し、8 消失として表わしたラインはセメンタイ ト消失の限界線を示すものである。この例におけ る鋼線はCO.55wt%, SiI.45wt%, Mn0.72wt %, Cr7.68wt%を含む。

ステナイト化温度に応じ、均熱炉による均温化保 持時間を適宜選定することにより、極微細粒組織 の強靱性鋼線が得られることが解る。

(考案の効果)

しに高周波加熱による急速加熱を用いて結晶の微 細化を図り、しかも、各高周波加熱コイルの直後 にそれぞれ均熱炉を設けることにより、焼入れ時

この表から明らかなように、本考案装置によつ 20 と焼戻し時とにおいてそれぞれ、高周波加熱後の 被熱処理鋼線が所定時間一定温度に保たれるよう にしているため、細径鋼線においても焼入れ時の パーライトからオーステナイトへの変態、および 焼戻し時のマルテンサイトから焼戻しソルバイト 25 の変態を達成するに充分な時間が得られる。従つ て、鋼線全体にわたり均一な極微細粒組織をも ち、高強度と強靱性を兼ね備え、機械的性質にす ぐれた細径鋼線を製造することができる。しか も、これらの処理を連続的に能率良く行うことが ~№ 13はJIS.GO551によるオーステナイト 粒度を 30 でき、高品質の細径鋼線を簡単に製造することが できるものである。

図面の簡単な説明

第1図は本考案装置の実施例を示す概略図、第 2 図は本考案装置における高周波加熱および均熱 このグラフからも高周波加熱による適正なオー 35 炉による鋼線の温度変化を示すグラフ、第3図は 焼入れ時の適正なオーステナイト化温度と均熱炉 による等温保持時間とオーステナイト結晶粒度の 関係を示すグラフである。

1, 2, 3…… 鋼線供給送出部、4…… 焼入れ 以上のように本考案の装置は焼入れおよび焼戻 40 用高周波加熱コイル、5 ……均熱炉、6 ……焼入 槽、7……焼戻し用高周波加熱コイル、8……均 熱炉、10,11……鋼線受取部。

第 / 図

