CMPSC 138 SUMMER 2018

Homework II: Due Wednesday, August 15, during the discussion session.

- 1. Suppose Σ is an alphabet with k letters and n > 0 is an integer. How many words are there in the language $L = \{w \in \Sigma^* \mid |w| = n\}$?
- 2. Define the languages

$$L_1 = \{ u \in \Sigma^* \mid u^R = u \}, \quad L_2 = \{ uv \in \Sigma^* \mid u = v^R \}.$$

- (a) Prove that $L_2 \subseteq L_1$. (Hint: Section 1.2, Problems 3 and 4).
- (b) Prove that L_2 is a proper subset of L_1 .
- 3. Consider the definitions of the star-closure L^* and the positive closure L^+ of a language L given on p. 20. When do we have
 - (a) $\lambda \in L^*$?
 - (b) $\lambda \in L^+$?
 - (c) $L^* = L^+$?
- 4. Prove that $(\mathcal{L}_1^*\mathcal{L}_2^*)^* = (\mathcal{L}_1 \cup \mathcal{L}_2)^*$.
- 5. Determine the following languages:
 - (a) $(ab)^*/b$,
 - (b) $(ab)^*/a*$,
 - (c) $(ab)^*/a^+$.
- 6. Prove or disprove the following claims:
 - (a) $(L_1 \cup L_2)^R = L_1^R \cup L_2^R$ for all languages L_1 and L_2 .
 - (b) $(L^R)^* = (L^*)^R$ for all languages L.
- 7. Find grammars for $\Sigma = \{a, b\}$ that generate the sets of
 - (a) all strings with exactly one a.
 - (b) all strings with at least one a.
 - (c) all strings with no more tha three a's.
 - (d) all strings with at least three a's.
- 8. Let $\Sigma = \{a, b\}$. Prove that if $w \in a \Sigma^* b$ then the number of occurrences of ab in w plus the number of occurrences of ba in w is always an odd number.
- 9. Let Σ be an alphabet and $w \in \Sigma^*$. Show that $x = w^2$ is the unique solution to the equation

$$x^2 = w x w$$

over Σ^* (Note that this is an equation in which the unknown x is a word over Σ).

10. Design a transducer (serial adder) which takes as input two ternary (base 3) n-digit numbers and and calculates the n digits of their sum as in Example 1.17, pp. 33-34 of the text. You can assume a similar left-to-right representation of the digits.