TitleSubtitle (Work in progress)

Edited by: [Editor]

Contributors: Contributor 1, Contributor 2

Version -2019-12-21

Copyright 2019 by the contributors listed on the title page.

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

https://creativecommons.org/

This license allows everyone to remix, tweak, and build upon this work, even for commercial purposes, ... as long as they license their new creations under identical terms ...

1

... and if they credit the copyright holders.

This work aligns with the mission of UNESCO Open Educational Resources.

https://en.unesco.org/themes/ building-knowledge-societies/oer

ETEX

The source code of this book is available.

https://github.com/open-optimization/

https://en.wikipedia.org/wiki/Open_educational_resources#/media/File:Global_Open_Educational_
Resources_Logo.svg

Preface

Chapter 1

Preface

6

Contents

_	Preface 1.1 Notation	1 7
Ι	Introduction to Optimization	9
2	Mathematical Programming	11
	2.1 Liner Programming	11
	2.3 Models	11
3	Algorithms and Complexity	13

8 CONTENTS

Introduction

1.1 Notation

- 1 a vector of all ones (the size of the vector depends on context)
- \forall for all
- \exists there exists
- $\bullet \in \text{- in}$
- :: therefore
- \Rightarrow implies
- s.t. such that (or sometimes "subject to".... from context?)
- $\{0,1\}$ the set of numbers 0 and 1
- \mathbb{Z} the set of integers (e.g. 1,2,3,-1,-2,-3,...)
- Q the set of rational numbers (numbers that can be written as p/q for $p,q \in \mathbb{Z}$ (e.g. 1,1/6,27/2)
- \mathbb{R} the set of all real numbers (e.g. 1, 1.5, π , e, -11/5)
- \ setminus, (e.g. $\{0,1,2,3\} \setminus \{0,3\} = \{1,2\}$)
- \cup union (e.g. $\{1,2\} \cup \{3,5\} = \{1,2,3,5\}$
- \cap intersection (e.g. $\{1,2,3,4\} \cap \{3,4,5,6\} = \{3,4\}$)
- $\{0,1\}^4$ the set of 4 dimensional vectors taking values 0 or 1, (e.g. [0,0,1,0] or [1,1,1,1])
- \mathbb{Z}^4 the set of 4 dimensional vectors taking integer values (e.g., [1, -5, 17, 3] or [6, 2, -3, -11])
- \mathbb{Q}^4 the set of 4 dimensional vectors taking rational values (e.g. [1.5, 3.4, -2.4, 2])
- \mathbb{R}^4 the set of 4 dimensional vectors taking real values (e.g. $[3,\pi,-e,\sqrt{2}]$)
- $\sum_{i=1}^{4} i = 1 + 2 + 3 + 4$
- $\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^4$

10 CONTENTS

- $\bullet \ \sum_{i=1}^4 x_i = x_1 + x_2 + x_3 + x_4$
- \bullet \square this is a typical Q.E.D. symbol that you put at the end of a proof meaning "I proved it."
- For $x, y \in \mathbb{R}^3$, the following are equivalent (note, in other contexts, these notations can mean different things)
 - $x^{T}y$ matrix multiplication
 - $-x \cdot y$ dot product
 - $\langle x, y \rangle$ inner product

and evaluate to $\sum_{i=1}^{3} x_i y_i = x_1 y_1 + x_2 y_2 + x_3 y_3$.

A sample sentence:

$$\forall x \in \mathbb{Q}^n \ \exists y \in \mathbb{Z}^n \setminus \{0\}^n s.t. x^\top y \in \{0,1\}$$

"For all non-zero rational vectors x in n-dimensions, there exists a non-zero n-dimensional integer vector y such that the dot product of x with y evaluates to either 0 or 1."

Part I Introduction to Optimization

Chapter 2

Mathematical Programming

Mathematical programming is great...

2.1 Liner Programming

Linear programming is great...

2.2 Integer Programming

Integer programming is great...

2.3 Models

Chapter 3

Algorithms and Complexity

Algorithms are great....