MID OF TERM III EXAMS 2024

S.5 BIO P530/1

TIME: 2HRS 30 MINTUES

NAM	ESIGN	•••••
INST	RUCTIONS TO SEMI-CANDIDATES	
\checkmark	Answer all questions in both sections A and B	
	Write the letter to the correct answer in the corresponding box. Each question in thi section carries one mark	S
✓	No additional sheets of paper should be inserted in this booklet.	
SECT	TION A	
1.	A cell has 46 chromosomes at the beginning of meiosis, then at anaphase I there we be a total of	ould
	A. 23 chromatids	
	B. 23 chromosomes	
	C. 46 chromosomes	
	D. 92 chromosomes	
2.	Let A and a represent two alleles for one gene and B and b represent two alleles for second gene. If for a particular individual, A and B were on one chromosome and a were on a second chromosome, then all of the following are true EXCEPT :	
	A. The two genes are linked.	
	B. The two chromosomes are homologous	
	C. All gametes would be either AB or ab.	
	D. The genotype of this individual is AaBb.	
	E. An offspring of this individual could have the genotype AABB.	
M is 7	Four genes, J, K, L, and M, reside on the same chromosome. Given that the crossovency between K and J is 3, between K and L is 8 between J and M is 12, and between J, what is the order of the genes on the chromosome? J K L M	
В.	J K M L	

D	. KJML	
E.	KLJM	
4. All	of the following statements are true EXCEPT :	
	A. Spindle fibers are composed largely of microtubules.	
	3. Centrioles consist of nine triplets of microtubules arranged in a circle.	
	2. All eukaryotic cells have centrioles.	
	O. All eukaryotic cells have a spindle apparatus.	
	E. Many of the microtubules in a spindle apparatus attach to kinetochores of chromo	some
5. A	property of water that makes it a suitable component of a hydrostatic skeleton is its	
	A. High density	
	B. High surface tension	
	C. Low viscosity	
	D. Incompressibility	
5. In s	short day plants, flowering is induced by	
	A. Auxins	
	B. Abscisic Acid	
	C. Gibberellins	
	D. Ethene	
7.	Aquatic organisms survive under solidified water bodies because	
	A. Water solidifies from bottom to top of lakes	
	B. Ice is less dense than water a 4°C.	
	C. Cold water is more dense than hot water and falls to the bottom	
	D. Warm water floats on top of cold water.	
8.	The following would have a normal phenotype for are sex linked disorder? Expec	t
	A. Homozygote male	
	B. Heterozygote Male	
	C. Homozygote female	
	D. Heterozygote Female	
9.	Large steroid molecules diffuse quickly through cell surface membranes suggesting	g that
	the membranes	
	A. Consist of non-polar molecules	
	B. Are semi-permeable	
	C. Are freely permeable	
	D. Are made of polysaccharides.	

 $C.\ K\,J\,L\,M$

10. Lysosomes are A. involved in the production of fats B. involved in the production of proteins C. involved in the production of polysaccharides D. involved in the degradation of cellular substances	
11. The two strands of a DNA molecule are connected by	
A. hydrogen bonds between the codons and anticodons B. hydrogen bonds between the bases of one strand and the bases of the second strand C. hydrogen bonds between deoxyribose sugar molecules of one strand and deoxyribose molecules of the second strand D. covalent bonds between phosphate groups	
12. In fruit flies, dumpy wings are shorter and broader than normal wings. The allele for normal wings (D) is dominant to the allele for dumpy wings (d). Two normal-winged flies were mated and produced 300 normal-winged and 100 dumpy-winged flies. The parents were probably A. DD and DD B. DD and Dd C. Dd and Dd D. Dd and dd E. dd and dd	
13. Suppose that in sheep, a dominant allele (B) produces black hair and a recessive allele produces white hair. If you saw a black sheep, you would be able to identify A. its phenotype for hair color B. its genotype for hair color C. the genotypes for only one of its parents D. the genotypes for both of its parents E. the phenotypes for both of its parents	
14. Which of the following would most likely cause a mutation with the greatest deleterious effect? A. An insertion of a nucleotide triplet into a DNA strand that codes for an mRNA B. A deletion of a nucleotide triplet from a DNA strand that codes for an mRNA C. A single substitution of a nucleotide in a DNA strand that, when transcribed, results in a change in the nucleotide occupying the third codon position in an mRNA	

a change in the nucleotide occupying the first codon position in an mRNA	
E. A single addition of a nucleotide in a DNA strand that codes for an mRNA	
15. Which of the following describes the turn-over number of an enzyme?	
A. Number of molecules affected by the enzyme	
B. Number of substrate molecules turned into its products per minute	
C. Number of product molecules formed.	
D. Number of substrate molecules catalyzed per minute.	
16. The epithelial type lining the trachea walls is	
A. Columnar	
B. Cuboid	
C. Stratified	
D. Squamous	
17. Which of the following is true?	
A. A messenger RNA molecule has the form of a double helix.	
B. Ribosomes contain RNA nucleotides and amino acids.	
C. The uracil nucleotide consists of the uracil nitrogen base, a deoxyribose sugar, and	
phosphate group.	
D. When tRNA attaches to mRNA during translation, cytosine nucleotides base-pair	
with guanine nucleotides, and adenine nucleotides base-pair with thymine nucleotides.	
17. Which one of the following is not correct about cells of a tissue? They	
A. Have similar function	
B. Are of same origin	
C. Are of one type	
D. Have physical linkage	
18. Which of the following generates the formation of adaptations?	
A. Genetic drift	
B. Mutations	
C. Gene flow	
D. Sexual reproduction	
E. Natural selection	
19The B blood-type allele probably originated in Asia and subsequently spread to Europe	
and other regions of the world. This is an example of	
A. artificial selection	

D. A single substitution of a nucleotide in a DNA strand that, when transcribed, results in

B. natural selection	
C. genetic drift	
D. gene flow	
E. sexual reproduction	
20. The appearance of a new mutation is	
A. a random event	
B. the result of natural selection	
C. the result of artificial selection	
D. the result of sexual reproduction	
21. Which of the following is an example of sexual selection?	
A. Dark-colored peppered moths in London at the beginning of the inc B. The mane of a lion	lustrial revolution
C. Insecticide resistance in insects	
D. Darwin's finches in the Galapagos Islands	
E. The ability of certain insects to avoid harm	
22. A population consists of 9% white sheep and 91% black sheep. What the black-wool allele if the black-wool allele is dominant and the whit recessive? A. 0.09 B. 0.3 C. 0.42 D. 0.49 E. 0.7	
23. Which one of the following is correct about the extra cellular matrix o made-up of	f the cell? It is
A. Polysaccharides only	
B. Phospholipids only	
C. Polysaccharides and glycoproteins e	
D. Phospholipids and glycoproteins	
24. How is C4 photosynthesis different from C3 photosynthesis?A. C4 plants require more water for photosynthesis than do C3 plantsB. C4 plants can photosynthesize better in lower levels of light than c	
C. C4 plants are more efficient CO2 fixers than are C3 plants.	

D. In C4 plants, emorophyn Poso is more emcient than it is in C5 plants.	
25. Which one of the following is likely to occur if a photosynthesizing plant was suddenly removed from light?A. Reduction in PGA	
B. Accumulation of PGAL	
C. Accumulation of PGA	
D. No change in amount of PGAL.	
26. In poultry, feather colour is controlled by two sets of allele's W (white) dominant over w (coloured) and B (black) dominant over b (Brown). A fowl heterozygous for both alleles (WwBb) is white. This is an example of	
A. Gene complementarity	
B. Epistastis	
C. PleiotrophyD. Incomplete dorminance	
D. Incomplete dominiance	
27. The unwinding of DNA double helix during transcription process requires the enzymes called	
A. DNA Ligase	
B. DNA polymerase	
C. Helicase	
D. Grana RNA polymarese	
28. Compared to carbohydrates, fats have higher energy value because fats	
A. Have long chains of fatty acids	
B. Have a higher proportion of hydrogen	
C. Are more compact in structure	
D. Have a high proportion of oxygen	
29. Which of the following structures is found in both xylem and phloem tissues of higher plants?	
A. Sieved tracheids.	
B. Parenchyma cells	
C. Companion cells	
D. Hollow vessels.	
2. 1201011 1000010.	
30. In what aspect are the photosynthesis adaptations of C4 plants and CAM plants similar	
A. In both the stomata close during day	

		In both, an enzyme of Both types of plants			rst step in Carbon fixati	on
		Neither C4 nor CAM		_	f	
	υ.	Treatmen e i non en min	piants nave grana i	in their emorophase	•	
31.	Wł	nich of the following h	ave a sole function	of offering suppor	rt to the plant?	
	A.	Sclerenchyma and ve	ssel elements.			
	B.	Vessel elements and	tracheids.			
	C.	Sclerenchyma and co	llenchymas.			
	D.	Parenchyma and cole	nchyma.			
32.	If c	earbon-dioxide contain	ning radio-active car	rbon was added to	a suspension of	
			•		ounds would the radio-	
	-	ive carbon show first?		C I		
	A.	Glucose				
	B.	Phosphoglyceric acid				
		Ribulose biphosphate				
		Triose phosphate.				
		1 1				
33.		seque		-	to change a nucleo abnormal) alleles is	otide
	A.					
	B.					
	C.					
	D.	4				
34.	Wł	nich of the following a	nimal tissue is mos	t highly specialize	d?	
		Blood		·87		
		Nervous				
		Epithelial				
		Bone				
35.		e internal solute conce	•			
	_	=	necessary to suspen	d the cells in exter	nal solution with solute	
		ncentration of				
	A.	0.0 M	B. O.4M	C. O.8M	D.1.0M	
36.	Wł	nich one of the followi	ng is correct about	translation? One tl	RNA molecule	
		Pairs with one molec	•			
	B.	Pairs with more than	one codon			
	C.	Codes with only one	codon			
		-				

	D. Binds with more than one amino acid	
37.	The process of ripening in Unripe fruits is enhanced when they are enclosed with ripe ones because	
	A. IAA is produced by the ripe fruits to initiate ripening to others	
	B. Ripe fruits produce ethane, which facilitates ripening of the others.	
	C. Ripening fruits increase the temperature, which enhances ripening	
	D. The unripe fruits absorb moisture from ripe fruits which speed up ripening	
38.	Which one of the following processes would continue to take place in a living plant cell who's Golgi apparatus has been destroyed?	
	A. Formation of polypeptides	
	B. Autolysis of reluctant organelles	
	C. Formation of primary cell wall	
	D. Production of extra cellular enzymes	
39.	Which one of the following is the correct about a plant cell that has been immersed in pure water for several hours?	
	A. Osmotic potential equals to the water potential of the cell	
	B. Wall pressure is equal to the osmotic pressure plus turgor pressure	
	C. Wall pressue equals turgor pressure of the cell	L
	D. Wall pressure becomes zero	
40.	Some amino acids are known as essential because they are	
	A. More important in the body metabolism than others	
	B. Not made by the body	
	C. Contained in first class proteins	
	D. Required in larger amounts than others.	

SECTION B (60 MARKS)

41 a) Distinguish between photophosphorylation and photorespiration. (02marks)

	• • • • • • • • • • • • • • • • • • • •
(b) State the differences between cyclic and non-cyclic photophosphorylation. (03 m	arks)
c) i) Describe two evidences that show that oxygen produced during Photosynthesis i	s from
splitting of water.	(2marks)
	• • • • • • • • • • • • • • • • • • • •
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	viration? (3marks)
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
(ii) Why are C3 plants generally more abundant than C4 plants despite the photoresp	
	(3marks)
(ii) Why are C3 plants generally more abundant than C4 plants despite the photorespectation of t	
	(3marks)
	(3marks)

(b) Explain how endocytosis occurs across the plasma membrane.	(3 marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • •
c) Discuss the various ways in which the plasma membrane permits Interactions with	th the outside
environment	(4 marks)
42 Discuss each of the following as they lead to enciption. Use relevant examples	
43 Discuss each of the following as they lead to speciation. Use relevant examples	(2 1)
a) Adaptive radiation	(3marks)
	• • • • • • • • • • • • • • • • • • • •
b) Polyploidy	(4marks)
b) Toryprolay	(4marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
c) Sexual selection	(3marks)
,	()

• • •	• • •	• •	• • •	• •	• • •	 • • •	• •	• • •	• •	 • •	• • •	 • •	• •	• • •	 	• • •	• •	• •	• •	• • •	• •	• •	• • •	• • •	• • •	• • •	• •	• •	• • •	• •	 • •	• • •	• •	• • •	• •	• • •	• •	• • •	• •	• • •	• • •	• • •
						 				 		 		• • •	 		٠.														 											
																																										• • •
		• •			• • •	 • • •	• •			 ٠.		 	• •	• • •	 		٠.	• •			• •		• • •				• •				 • •									• • •	• • •	• • •

44. The figure below shows results of an experiment to demonstrate the effect of short day and long day illumination on the percentage germination of the seed sample from a short day plant

) State four differences in the effect of short and long day illumination on percentage													
germination of the seed samples	(4 marks)												
	• • • • • • • • • • • • • • • • • • • •												
	germination of the seed samples												

b)	Explain the effect of varying the illumination cycles onset on germination of the long day illuminated seed sample (3marks)
c)	State three other external factors that may influence the onset of germination of the above seed sample (3marks)
	what is genetic variation? (1mark)
i) Ide n whic	ntical twins share the same genotype. Explain the circumstances under which and aspects ch such twins may show some variation? (2marks)

(b) Night blind - people have difficulty seeing in dim light. The allele for night blindness, n, is recessive to the allele for normal vision, N. These alleles are autosomal. The diagram shows part of a family tree showing inheritance of night blindness.

1)	What evidence from the diagram above confirms that night blinds	(1mark)
Genotype:	s the most likely genotype of individual No.11? Support your answers;	(2marks)
Reasons;		
with night	out the probability that the next child born by individual No. 10 and t blindness?	(3marks)

iv) Individual No. 12 is not a sufferer from night blindness. Across between individuals No. and No. 14 would represent a marriage between first cousins. With evidence from the above	
iv) Individual No. 12 is not a sufferer from night blindness. Across between individuals No. 12 and No. 14 would represent a marriage between first cousins. With evidence from the above diagram explain why a marriage between close relatives may be risky (2marks	
	•••••
(a) Explain how the molecular structure of starch and cellulose relate to these functional	
(c) Describe why water is an ideal medium for living things. (3mark)	
END	· • • • • • •

DO NOT GIVE UP

BIOLOGY P530/1 MARKING GUIDE SECTION A 2024 PAPER 1

1	С	11	В	20	A	30	В			
2	С	12	С	21	В	31	С			
3	С	13	A	22	E	32	В			
4	С	14	E	23	С	33	A			
5	D	15	В	24	С	34	В			
6	С	16	A	25	С	35	D			
7	В	17	В	26	В	36	A			
8	D	17	В	27	D	37	В			
9	В	18	Free	28	A	38	A			
10	D	19	D	29	В	39	A			