Lecture 5: IEEE 802.11

Hung-Yu Wei National Taiwan University

IEEE 802.11

Outline: 802.11

- · 802.11 network terminologies
- PHY
- · MAC
- Management functions
 - Registration
 - Handoff
 - Power management
 - Security

802.11 Network Terminologies

- · BSS
- · BSA
- ESS
- · IBSS

BSS

- basic service set (BSS): A set of stations controlled by a single coordination function
 - [concept] A cell with 1 AP and some MSs

BSA (basic service area): cell

IBSS

- Independent basic service set (IBSS): stand-alone BSS
 - [concept] Ad hoc network

ESS

- Extended service set (ESS): A set of one or more interconnected basic service sets (BSSs) and integrated local area networks (LANs)
 - [concept] Cellular system with multiple cells and multiple BSs

Identifier

- ESSID: network name
- BSSID: MAC address of AP
- Several BSSID with 1 ESSID

ESS

- Two topologies
 - No overlap
 - With overlap

Layered Protocol Architecture

High Level Requirements

- Single MAC to support multiple PHY layers
 - DSSS, FHSS, IR
 - 802.11-1999, 802.11b
 - OFDM (2.4GHz, 5GHz)
 - 802.11a, 802.11g
- Mechanism to allow multiple overlapping networks
- Provision to handle inference from other users of the ISM band
- Support for co-existence (relatively new) of other radios in the ISM band such as 802.15 (Blue Tooth)
- Mechanisms for hidden terminals
- Options to support bounded delay services
- Provisions for privacy and access control

IEEE 802.11 Protocol Stack

Layered Protocol

802.11 Protocol Stack Overview

802.11 Protocol Stack Overview

- Data Link Layer (L2)
 - Logical Link Control (LLC)
 - · Shared LLC protocol within 802 protocol family
 - 802.11 MAC
 - · Common 802.11 MAC for contention resolution
- Physical Layer (L1)
 - PMD (physical medium dependence) sublayer
 - Different PHY technologies
 - DSSS, FHSS, IR
 - PLCP (physical layer convergence procedure) sublayer
 - Insulate MAC from different PMDs

Logical Link Control (LLC)

- In 802 family of protocols, the LLC layer is the same
 - Insulate higher layers from various lower-layer standards
 - · L3 uses the same way to request L2 service
 - LLC could ensure a reliable L2 data stream between source and destination
 - Flow control

LLC frame structure

- DSAP (destination service access point)
 - SAP at destination node
- SSAP (source service access point)
 - SAP at source node

Control/response information (e.g. seq #)

802.11: L2/L1 Protocol Stack

802.11 PHY

The "PHY" Layer

- Multiple physical layers
 - First offering:
 - 2.4 GHz 802.11 Frequency Hopping Spread Spectrum (FHSS) for 1-2 Mbps
 - 2.4 GHz 802.11 Direct Sequence Spread Spectrum (DSSS) for 1, 2, 5.5 and 11 Mbps widely used
 - Emerging High Speed WLAN exciting future:
 - 5 GHz 802.11 uses Orthogonal Frequency Division Multiplexing (OFDM) \rightarrow 802.11a
 - 2.4 GHz uses OFDM → 802.11g
- Not widely used:
 - 802.11 Diffused Infrared (DFIR)
- Note, same MAC layer but all 802.11, 802.11a and 802.11b all are incompatible at the physical layer!
 - Multi-mode backward compatibility in the integrated wireless NICs

Overlapping Frequency channels for the 2.4GHz DSSS

DSSS PLCP PDU (long preamble)

- Sync: fixed pattern for synchronization
 - Alternating 1 and 0
- · SFD: define the beginning of PLCP
 - 1111001110100000
- Signal: data rate
- · Service: reserved
- Length: in microseconds
- FCS: CRC code

DSSS PLCP PDU (short preamble)

- Short preamble PLCP
 - Reduce preamble transmission time
 - · Shorter (56 bits) SYNC
 - · 2 Mbps for the 4 other fields

802.11 MAC: contention resolution

802.11: Random Backoff

- Backoff Time = random() * Slot_Time
 - Slot_Time is a PHY layer parameter
 - (e.g. 20 μ s in 802.11-1999 DSSS PHY)
 - random() is a random integer number drawn uniformly from [0,CW]
 - · CW is the contention window size
 - CWmin≤CW ≤CWmax
 - CWmin and CWmax are PHY-dependent parameters
 - · E.g. 802.11-1999 DSSS PHY
 - CWmin=31; CWmax=1023

802.11: Contention Window

- Increment of CW
 - In 802.11, $CW=2^{n}-1$
 - Initialization, CW=CWmin
 - CW increase with every retry
 - CW increases up to CWmax
- (truncated) binary exponential backoff

MAC Layer Functionality

- MAC Sublayer
 - Format of messages (data and control)
 - Access control/mechanisms
 - contention mode
 - For access to the channel by multiple contending devices
 - contention-free schemes
 - RTS/CTS, DATA and PCF for time bounded access
- MAC layer management sublayer
 - Roaming support in the ESS, power management and security
- After transmission of a packet all mobiles wait for one of three devices IFS (inter-frame spacings) according to the level of priority of their packet
 - DCF-IFS (DIFS) used for contention, lowest priority, longest delay
 - Short-IFS (SIFS) used for high priority such as ACKs, CTS, etc. has the lowest duration time
 - PCF-IFS (PCF) has second priority rate with duration between DIFS and SIFS

RTS/CTS/data/ACK

RTS and CTS frames

The duration RTS calculation (in ms) is determined by adding the times to transmit:

- 1. The information frame itself.
- 2. 1 CTS frame.
- 3. 1 ACK frame.
- 4. 3 SIFS frames.

The duration CTS calculation (in ms) is determined by taking the duration frame transmission time and subtracting:

- 1. 1 CTS frame.
- 2. 1 SIFS frame.

RTS/CTS/data/ACK, SIFS, and NAV

RTS/CTS/data/ACK and DIFS

CSMA/CA Backoff

Backoff = random_time(x)

0≤ random_time(x) ≤ collision window

Prioritize IFSs

- interframe spacing (IFS)
 - SIFS: short IFS
 - PIFS: point (coordinated function) IFS
 - · PCF IFS
 - DIFS: distributed (coordinated function) IFS
 - · DCF IFS
 - EIFS: extended IFS
- SIFS < PIFS < DIFS < DIFS DIFS

RTS (20 Bytes) /CTS (16 Bytes) Mechanism

- Toggling the NAV
 - Hear an RTS
 - Switch NAV on
 - · CTS
 - · DATA
- Hear the ACK
 - Switch NAV off
- This provides contention free transmission

MAC State Diagram

CSMA/CA with ACK in an Infrastructure Network

- RTS/CTS could be turned off
 - Only CSMA/CA

802.11 MAC frame structure

MAC Frame structure

Type/Subtype

Management Type (00)

- Assoc. request/response
- Reassoc. request/response
- Probe-request/response
- Beacon
- Announcement traffic indication (used for sleep mode operations)
- Authentication/Deauthentication

• Control Type (01)

- Power save poll
- RTS/CTS
- Ack
- CF end and CF end with ACK

Data Type (10)

- Data/ Data with CF ACK
- Data Poll with CF/ Data Poll with CF and ACK
- CF poll/CF poll CK

Example: Type/Subtype in frame control field (within MAC header)

Type (2 bits)	Type Description	Subtype (4 bits)	Message Description
00	Management	0000	Association request
00	Management	0001	Association response
01	Control	1011	RTS
01	Control	1100	CTS
01	Control	1101	ACK
10	Data	0000	Data

Control message format

RTS

- FCS frame check sequence = 32-bit CRC
- RA: receiver address
 - Data/RTS receiver
- TA: transmitter address
 - Data/RTS transmitter
- Duration
 - Microseconds
 - Round up to the higher integer
 - T=data_tim+CTS_time+ACK_time+SIFS *3

Do you know why?

CTS

- FCS frame check sequence = 32-bit CRC
- · RA: receiver address
 - CTS receiver (i.e. data transmitter)
 - Copy from TA in RTS message
- Duration
 - Microseconds
 - Round up to the higher integer
 - T=data_tim+ACK_time+SIFS *2
 - = (Duration in RTS) SIFS CTS_time

ACK

- · RA: receiver address
 - ACK receiver (i.e. data transmitter)
- Duration
 - Microseconds
 - Round up to the higher integer
 - T=ACK_time+SIFS

802.11 Coordinated Functions: DCF and PCF

802.11: Coordinated Functions

- · 2 types of coordinated functions
 - DCF: distributed coordinated function
 - PCF: point Coordination Function
 - Built upon DCF
 - Optional
 - Not always implemented in products
 - · Centralized coordination
 - More like cellular BS

PCF on top of DCF

PCF (Point Coordination Function) Mode

Built of top of DCF

- Supports contention-free, time bounded and asynchronous transmission operations
- Optional MAC function/feature not widely available in products
- Mostly available as part of infrastructure mode with an AP, which can be set up as a central coordinator (like BS in cellular)

Operation in PCF mode

- AP polls devices periodically
- Sets up contention-free period (CFP)
- Coordinates time bounded data to be transmitted in each CFP
- During that period when a device is transmitting data PCF sets all the NAV signals ON at all other stations
- Length of PCF period is variable and only occupies a potion of the CFP
- The remainder of the CFP is used for contention and DCF packets
- If DCF has not completed before the start of the next CFP period,
 the starting time of the CFP is deferred but NAV is turned ON

PCF: pollable stations

- Pollable station
 - Able to respond to CF-Poll in PCF mode
 - A node in PCF mode that has MSDU (MAC SDU) to transmit in contention-free period
 - Set More Data field = 1 to notify the point coordinator
- · Piggyback control messages are allowed
 - CF-ACK and CF-Poll could be piggybacked after data transmission. For example,
 - Data+CF-Poll
 - Data+CF-ACK
 - Data+CF-ACK+CF-Poll

PCF time frames

- Two periods
 - Contention free interval
 - Contention interval

MAC Timing: PCF Operation

Alternation of Contention-Free and contention periods under PCF control from the AP

802.11: other functions

MAC Management Sublayer Functions

- Registration
- Handoff
- Power Management
- Security

Registration

- Beacons sent periodically (every 100ms) by AP to establish time sync. (TSF) and maintain connectivity or associations
 - contains BSS-ID used to identify the AP and network, traffic indication map (for sleep mode), power management, roaming
 - RSS measurements are based on the beacon message
- AP and mobile devices form "associations", mobile device "registers" with AP.
- Mobiles send "requests" and APs "responses"
- Only after registering can mobiles send/receive DATA

Association Procedure

- 1. Association Request
- 2. Association Response
- 3. Traffic

Re-association with old AP

Roaming between APs

- · IAPP (Inter Access-Point Protocol)
 - 802.11f
- Layer-2 handoff in 802.11 networks
 - Topic of research
 - Reduce L2 handoff latency
 - Integrate with L3 handoff to improve overall handoff performance
 - Issues
 - · Security: authentication
 - · Scanning channels (multiple possible channels)

Layer-2 Handoff

Power Management Overview

Why power management?

- Most of the time mobile devices receive data in burst and then are idle for the rest of the time.
- Can exploit that by going into a power saving idle mode "powering off". However, need to maintain on-going sessions

Basic idea

- Mobile sleeps, AP buffers downlink data, and sends the data when the mobile device is awakened
- Using the Timing Sync Function all mobiles are synchronized and they will wake up at the same time to listen to the beacon.
 - Check the beacon to see if the mobile needs to wake up

Compare to cellular network power control

 In comparison to the continuous power control in cellular networks this power conservation is geared towards burst data

Power Management in 802.11

- MS has 2 modes
 - Active mode (AM)
 - power-save (PS) mode
- · MS enters power-save (PS) mode
 - Notify AP with "Power Management bit" in Frame Control field
 - PS mode MSs listen for beacons periodically
- MS enters active mode
 - The MS sends a power-save poll (PS-Poll) frame to the AP and goes active

Power Management in 802.11

- AP operations (when MS is in PS mode)
 - Does not arbitrarily sends MSDU to MS in PS mode
 - Buffer MSDUs at AP until MS "wake up"
 - MSs with buffered MPDUS at AP are identified with traffic indication map (TIM).
 - TIM is included in periodic beacons
 - MS learns that it has data buffered by checking the beacon/TIM
- AP operations when MS goes into active mode
 - The AP then sends the buffered data to the mobile in active mode

Concept: Paging and Sleep mode

- · Sleep mode (dormant mode)
 - Save power
- Wake up mechanism
 - Paging
- Combine with location management mechanism (in cellular networks not in 802.11)
 - Paging area V.S. location area
 - Frequency of location area update
 - Savings
 - Power consumption
 - · Signaling overhead
- Paging + IP → IP Paging

Listening to the beacon for power management

Security: Two schemes supported

- Open system authentication is default
 - AP and mobile use a shared key that they exchange as a request/response
 - Sends the "key" using a 40-bit secret code that is shared by the AP and mobile
- Wired Equivalent Privacy (WEP)
 - Pseudo random generator is used along with a 40-bit secret key to create a key sequence that is simply XOR-ed with the message
 - Susceptible to attacks

802.11i: Security Enhancement

- WEP security is weak
- 802.11i standard for better security
 - Authentication
 - Authentication protocol
 - EAP (Extensible Authentication Protocol)
 - Authentication Server
 - RADIUS (Remote Authentication Dial-In Service) server
 - Data privacy (encryption)
 - · 128-bit AES keys
 - 104-bit RC4 keys
 - WEP uses 40-bit RC4
- Wi-Fi Protected Access (WPA)

802.11i service flow

QoS Enhancement for 802.11

- IEEE 802.11e
 - Enhanced DCF (EDCF), to provide service differentiation
 - Traffic Classes (TC)
 - Give priorities to different TCs
 - Multiple prioritized queues
 - Assign different CWmin values to different traffic classes
 - Assign an Arbitration IFS (AIFS) instead of DIFS, to different traffic classes, resulting in smaller AIFS values for high priority classes
 - Transmit Opportunity (TXOP)
 - "time" window to send as many packets as possible
 - Avoid low-rate nodes use excessive amount of resources
 - Wi-Fi Multimedia (WMM) certified products
 - Hybrid coordination function (HCF) to replace PCF.

Access Categories

IFS

Different AIFS for different traffic classes

Some other interesting 802.11 standards

- IEEE 802.11i Enhanced security
- IEEE 802.11n Higher throughput
 - High-rate PHY
 - · MIMO
- IEEE 802.11s ESS Mesh Networking
 - L2 WLAN mesh