Natural Language Processing & Word Embeddings | Coursera

Natural Language Processing & Word Embeddings

TOTAL POINTS 10

1.Question 1

Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.

True

False
1 point

2.Question 2

What is t-SNE?

A linear transformation that allows us to solve analogies on word vectors

A non-linear dimensionality reduction technique

A supervised learning algorithm for learning word embeddings

An open-source sequence modeling library

1 point

3.Question 3

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of

recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y = 1.

True	
False	
1 point	

4.Question 4

1 point

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} \approx e_{brother} - e_{sister}$$
 $e_{boy} - e_{girl} \approx e_{sister} - e_{brother}$
 $e_{boy} - e_{brother} \approx e_{girl} - e_{sister}$
 $e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$

5.Question 5

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E * o_{1234}$ in Python?
It is computationally wasteful.
The correct formula is $E^T * o_{1234}$.
This doesn't handle unknown words (<unk>).</unk>
None of the above: calling the Python snippet as described above is fine. 1 point
6.Question 6
When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$ okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True
False 1 point
7.Question 7
In the word2vec algorithm, you estimate $P(t \mid c)$ where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t .
$oldsymbol{c}$ is the sequence of all the words in the sentence before t .
igcap c is the one word that comes immediately before t .
\bigcirc c and t are chosen to be nearby words.
1 point
8.Question 8

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

- $igsim heta_t$ and $oldsymbol{e}_c$ are both 500 dimensional vectors.

 θ_t and θ_c are both trained with an optimization algorithm such as Adam or gradient descent.

After training, we should expect $heta_t$ to be very close to $heta_c$ when t and c are the same word.

1 point

9.Question 9

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j - \log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- θ_i and θ_j should be initialized to 0 at the beginning of training.
- θ_i and e_j should be initialized randomly at the beginning of training.
- X_{ij} is the number of times word j appears in the context of word i.
- The weighting function f(.) must satisfy f(0) = 0.

 1 point

10.Question 10

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

I, **Zhuo Chen**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.