Multivariable Calculus (Lecture-5)

Department of Mathematics Bennett University India

26th October, 2018

Learning Outcome of this lecture

We learn

- Vector Valued Function of Real Variable $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$.
- Differentiation of $F:(a,b)\to\mathbb{R}^n$
- Integration of $F:[a,b] \to \mathbb{R}^n$
- Application of Differentiation and Integration of vector valued functions of real variable.

Vector Valued Functions of Real Variable

(Vector Functions)

 $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ (In particular, n = 2 and n = 3)

Example: Let $F : \mathbb{R} \to \mathbb{R}^2$ be defined by $F(t) = (t, t^2)$ for $t \in \mathbb{R}$.

Example: Let $F : \mathbb{R} \to \mathbb{R}^2$ be defined by $F(t) = (t, t^2)$ for $t \in \mathbb{R}$.

• If $\hat{i} = (1,0)$ and $\hat{j} = (0,1)$ are the standard basis vectors in \mathbb{R}^2 then $F(t) = t\hat{i} + t^2\hat{j}$ for $t \in \mathbb{R}$.

Example: Let $F : \mathbb{R} \to \mathbb{R}^2$ be defined by $F(t) = (t, t^2)$ for $t \in \mathbb{R}$.

• If $\hat{i} = (1,0)$ and $\hat{j} = (0,1)$ are the standard basis vectors in \mathbb{R}^2 then $F(t) = t\hat{i} + t^2\hat{j}$ for $t \in \mathbb{R}$.

Example: Let $F : \mathbb{R} \to \mathbb{R}^2$ be defined by $F(t) = (t, t^2)$ for $t \in \mathbb{R}$.

• If $\hat{i} = (1,0)$ and $\hat{j} = (0,1)$ are the standard basis vectors in \mathbb{R}^2 then $F(t) = t \hat{i} + t^2 \hat{j}$ for $t \in \mathbb{R}$.

Remark: We can depict a vector valued function $F : \mathbb{R} \to \mathbb{R}^2$, by drawing only its range in the 2D-plane. If we think F(t) as a point in the xy-plane, then as t increases, F(t) traces out a curve C in the plane, the arrow on the curve indicating the direction in which the curve is traced out as t increases.

Definition

A curve Γ in \mathbb{R}^n is a continuous function $F: I \subseteq \mathbb{R} \to \mathbb{R}^n$ where I is an interval in \mathbb{R}

Definition

A curve Γ in \mathbb{R}^n is a continuous function $F: I \subseteq \mathbb{R} \to \mathbb{R}^n$ where I is an interval in \mathbb{R}

In other words, we say that the curve Γ is parameterized by F(t).

Definition

A curve Γ in \mathbb{R}^n is a continuous function $F: I \subseteq \mathbb{R} \to \mathbb{R}^n$ where I is an interval in \mathbb{R}

In other words, we say that the curve Γ is parameterized by F(t).

• For a curve in \mathbb{R}^2 , the function F can be written as

$$F(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$$
 for $t \in I$.

Definition

A curve Γ in \mathbb{R}^n is a continuous function $F: I \subseteq \mathbb{R} \to \mathbb{R}^n$ where I is an interval in \mathbb{R}

In other words, we say that the curve Γ is parameterized by F(t).

• For a curve in \mathbb{R}^2 , the function F can be written as

$$F(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$$
 for $t \in I$.

• Rewrite it (in different notation) as

$$x = x(t) = f_1(t)$$
 and $y = y(t) = f_2(t)$, $t \in I$.

Definition

A curve Γ in \mathbb{R}^n is a continuous function $F:I\subseteq\mathbb{R}\to\mathbb{R}^n$ where I is an interval in \mathbb{R}

In other words, we say that the curve Γ is parameterized by F(t).

• For a curve in \mathbb{R}^2 , the function F can be written as

$$F(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$$
 for $t \in I$.

• Rewrite it (in different notation) as

$$x = x(t) = f_1(t)$$
 and $y = y(t) = f_2(t)$, $t \in I$.

• The set of equations (x = x(t), y = y(t)) for $t \in I$ where x(t) and y(t) are continuous functions on I) is called a parametric equation of the curve Γ .

A curve may have different parametrization

Example:

$$x(t) = t$$
 and $y(t) = t^2$, $t \in \mathbb{R}$.

is a parametric equation of the parabola $y = x^2$.

A curve may have different parametrization

Example:

$$x(t) = t$$
 and $y(t) = t^2$, $t \in \mathbb{R}$.

is a parametric equation of the parabola $y = x^2$.

Now,

$$x(t) = t - 1$$
 and $y(t) = (t - 1)^2$, $t \in \mathbb{R}$.

is also a parametric equation of the parabola $y = x^2$.

A curve may have different parametrization

Example:

$$x(t) = t$$
 and $y(t) = t^2$, $t \in \mathbb{R}$.

is a parametric equation of the parabola $y = x^2$.

Now,

$$x(t) = t - 1$$
 and $y(t) = (t - 1)^2$, $t \in \mathbb{R}$.

is also a parametric equation of the parabola $y = x^2$.

For each real constant c,

$$x(t) = t - c$$
 and $y(t) = (t - c)^2$, $t \in \mathbb{R}$.

is also a parametric equation of the parabola $y = x^2$.

Let $F: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be defined by

$$F(t) = (f_1(t), f_2(t), f_3(t))$$
 for $t \in I$.

Let $F: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be defined by

$$F(t) = (f_1(t), f_2(t), f_3(t))$$
 for $t \in I$.

• If $\hat{i} = (1,0,0)$, $\hat{j} = (0,1,0)$ and $\hat{k} = (0,0,1)$ are the standard basis vectors in \mathbb{R}^3 then

$$F(t) = f_1(t)\hat{i} + f_2(t)\hat{j} + f_3(t)\hat{k}$$
 for $t \in I$.

Let $F: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be defined by

$$F(t) = (f_1(t), f_2(t), f_3(t))$$
 for $t \in I$.

• If $\hat{i} = (1,0,0)$, $\hat{j} = (0,1,0)$ and $\hat{k} = (0,0,1)$ are the standard basis vectors in \mathbb{R}^3 then

$$F(t) = f_1(t)\hat{i} + f_2(t)\hat{j} + f_3(t)\hat{k}$$
 for $t \in I$.

• If F(t) is continuous in an interval I, then it traces out a curve in \mathbb{R}^3 as t varies over I.

Let $F: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be defined by

$$F(t) = (f_1(t), f_2(t), f_3(t))$$
 for $t \in I$.

• If $\hat{i} = (1,0,0)$, $\hat{j} = (0,1,0)$ and $\hat{k} = (0,0,1)$ are the standard basis vectors in \mathbb{R}^3 then

$$F(t) = f_1(t)\hat{i} + f_2(t)\hat{j} + f_3(t)\hat{k}$$
 for $t \in I$.

- If F(t) is continuous in an interval I, then it traces out a curve in \mathbb{R}^3 as t varies over I.
- We can rewrite it in parametric equations form as

$$x = f_1(t), y = f_2(t), z = f_3(t)$$
 for $t \in I$

Example of a Curve in \mathbb{R}^3

The parametric equations

$$x(t) = \cos t$$
, $y(t) = \sin t$, $z(t) = t$ for $t \in [0, 4\pi]$

trace out a circular helix in \mathbb{R}^3 .

Example of a Curve in \mathbb{R}^3

The parametric equations

$$x(t) = \cos t$$
, $y(t) = \sin t$, $z(t) = t$ for $t \in [0, 4\pi]$

trace out a circular helix in \mathbb{R}^3 .

Differentiation

of

Vector Valued Functions of Real Variable

(Vector Functions)

$$F: S \subseteq \mathbb{R} \to \mathbb{R}^n$$
 (In particular, $n = 2$ and $n = 3$)

Derivative of Vector Valued Function of One Variable

Definition

Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ where S is an open set in \mathbb{R} . Let $t_0 \in S$. The function F is said to be differentiable at the point t_0 if

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} \quad \text{exists.}$$

Derivative of Vector Valued Function of One Variable

Definition

Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ where S is an open set in \mathbb{R} . Let $t_0 \in S$. The function F is said to be differentiable at the point t_0 if

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} \quad \text{exists.}$$

In this case, we say that F has the derivative at t_0 and we write,

$$F'(t_0) = \lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0}$$

Derivative of Vector Valued Function of One Variable

Definition

Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ where S is an open set in \mathbb{R} . Let $t_0 \in S$. The function F is said to be differentiable at the point t_0 if

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} \quad \text{exists.}$$

In this case, we say that F has the derivative at t_0 and we write,

$$F'(t_0) = \lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0}$$

Note: An open set S in \mathbb{R} will be an open interval or a union of finite/countable number of disjoint open intervals.

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{(t, 2, t^2) - (t_0, 2, t_0^2)}{t - t_0}$$

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{(t, 2, t^2) - (t_0, 2, t_0^2)}{t - t_0}$$

$$= \lim_{t \to t_0} \frac{((t - t_0, 2 - 2, t^2 - t_0^2))}{t - t_0}$$

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{(t, 2, t^2) - (t_0, 2, t_0^2)}{t - t_0}$$

$$= \lim_{t \to t_0} \frac{((t - t_0, 2 - 2, t^2 - t_0^2))}{t - t_0}$$

$$= \lim_{t \to t_0} \left(\frac{t - t_0}{t - t_0}, \frac{2 - 2}{t - t_0}, \frac{t^2 - t_0^2}{t - t_0}\right)$$

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{(t, 2, t^2) - (t_0, 2, t_0^2)}{t - t_0}$$

$$= \lim_{t \to t_0} \frac{((t - t_0, 2 - 2, t^2 - t_0^2))}{t - t_0}$$

$$= \lim_{t \to t_0} \left(\frac{t - t_0}{t - t_0}, \frac{2 - 2}{t - t_0}, \frac{t^2 - t_0^2}{t - t_0}\right)$$

$$= \left(\lim_{t \to t_0} \frac{t - t_0}{t - t_0}, \lim_{t \to t_0} \frac{2 - 2}{t - t_0}, \lim_{t \to t_0} \frac{t^2 - t_0^2}{t - t_0}\right)$$

$$\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{(t, 2, t^2) - (t_0, 2, t_0^2)}{t - t_0}$$

$$= \lim_{t \to t_0} \frac{((t - t_0, 2 - 2, t^2 - t_0^2))}{t - t_0}$$

$$= \lim_{t \to t_0} \left(\frac{t - t_0}{t - t_0}, \frac{2 - 2}{t - t_0}, \frac{t^2 - t_0^2}{t - t_0}\right)$$

$$= \left(\lim_{t \to t_0} \frac{t - t_0}{t - t_0}, \lim_{t \to t_0} \frac{2 - 2}{t - t_0}, \lim_{t \to t_0} \frac{t^2 - t_0^2}{t - t_0}\right)$$

$$F'(t_0) = (1, 0, 2t_0).$$

Relation Between Derivative of F and Derivatives of its Component Functions

Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ where S is an open set in \mathbb{R} . Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in S$

Let $t_0 \in S$.

Relation Between Derivative of F and Derivatives of its Component Functions

Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ where *S* is an open set in \mathbb{R} . Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in S$

Let $t_0 \in S$.

Theorem

F is differentiable at t_0 if and only if

Each Component function f_i , $1 \le i \le n$ is differentiable at t_0 .

Relation Between Derivative of F and Derivatives of its Component Functions

Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^n$ where *S* is an open set in \mathbb{R} . Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in S$

Let $t_0 \in S$.

Theorem

F is differentiable at t_0

if and only if

Each Component function f_i , $1 \le i \le n$ is differentiable at t_0 .

Further,

$$F'(t_0) = (f_1'(t_0), f_2'(t_0), \dots, f_n'(t_0)).$$

Application of Theorem in Previous Slide

Let $F(t) = (t, 2, t^2)$ for $t \in R$. Find F'(t).

Application of Theorem in Previous Slide

Let
$$F(t) = (t, 2, t^2)$$
 for $t \in R$. Find $F'(t)$.

• First Component Function of F: $f_1(t) = t$ for $t \in \mathbb{R}$. So $f_1'(t) = 1$ for $t \in \mathbb{R}$

Application of Theorem in Previous Slide

Let
$$F(t) = (t, 2, t^2)$$
 for $t \in R$. Find $F'(t)$.

- First Component Function of F: $f_1(t) = t$ for $t \in \mathbb{R}$. So $f_1'(t) = 1$ for $t \in \mathbb{R}$
- Second Component Function of F: $f_2(t) = 2$ for $t \in \mathbb{R}$. So $f_2'(t) = 0$ for $t \in \mathbb{R}$

Application of Theorem in Previous Slide

Let
$$F(t) = (t, 2, t^2)$$
 for $t \in R$. Find $F'(t)$.

- First Component Function of F: $f_1(t) = t$ for $t \in \mathbb{R}$. So $f_1'(t) = 1$ for $t \in \mathbb{R}$
- Second Component Function of F: $f_2(t) = 2$ for $t \in \mathbb{R}$. So $f_2'(t) = 0$ for $t \in \mathbb{R}$
- Third Component Function of F: $f_3(t) = t^2$ for $t \in \mathbb{R}$. So $f_3'(t) = 2t$ for $t \in \mathbb{R}$.

Application of Theorem in Previous Slide

Let
$$F(t) = (t, 2, t^2)$$
 for $t \in R$. Find $F'(t)$.

- First Component Function of F: $f_1(t) = t$ for $t \in \mathbb{R}$. So $f_1'(t) = 1$ for $t \in \mathbb{R}$
- Second Component Function of F: $f_2(t) = 2$ for $t \in \mathbb{R}$. So $f_2'(t) = 0$ for $t \in \mathbb{R}$
- Third Component Function of F: $f_3(t) = t^2$ for $t \in \mathbb{R}$. So $f_3'(t) = 2t$ for $t \in \mathbb{R}$.

By the Theorem mentioned in previous slide, we have

$$F'(t) = (f_1'(t), f_2'(t), f_3'(t)) = (1, 0, 2t)$$
 for $t \in \mathbb{R}$.

Let $F(t) = (|t|, 2, t^2)$ for $t \in \mathbb{R}$. Examine the differentiability of F on \mathbb{R} .

Let $F(t) = (|t|, 2, t^2)$ for $t \in \mathbb{R}$. Examine the differentiability of F on \mathbb{R} .

• Since $f_1(t) = |t|$ is not differentiable at t = 0, we conclude that F(t) is not differentiable at t = 0.

Let $F(t) = (|t|, 2, t^2)$ for $t \in \mathbb{R}$. Examine the differentiability of F on \mathbb{R} .

- Since $f_1(t) = |t|$ is not differentiable at t = 0, we conclude that F(t) is not differentiable at t = 0.
- But F is differentiable in $\mathbb{R} \setminus \{0\}$.

$$F'(t) = (1, 0, 2t)$$
 for $t > 0$

$$F'(t) = (-1, 0, 2t)$$
 for $t < 0$

Let $G(t) = (1, 2, t^2)$ for $t \in \mathbb{Q}$ and $G(t) = (0, 2, t^2)$ for $t \in \mathbb{R} \setminus \mathbb{Q}$. Examine the differentiability of G(t) on \mathbb{R} .

Let $G(t) = (1, 2, t^2)$ for $t \in \mathbb{Q}$ and $G(t) = (0, 2, t^2)$ for $t \in \mathbb{R} \setminus \mathbb{Q}$. Examine the differentiability of G(t) on \mathbb{R} .

• Since the first component function $g_1(t)$ of G(t) is not differentiable at each point of \mathbb{R} ,

Let $G(t) = (1, 2, t^2)$ for $t \in \mathbb{Q}$ and $G(t) = (0, 2, t^2)$ for $t \in \mathbb{R} \setminus \mathbb{Q}$. Examine the differentiability of G(t) on \mathbb{R} .

• Since the first component function $g_1(t)$ of G(t) is not differentiable at each point of \mathbb{R} ,

we conclude that G(t) is not differentiable at each point of \mathbb{R} .

(Reimann) Integration of Vector Valued Functions of Real Variable (Vector Functions)

$$F:[a,b]\subseteq\mathbb{R}
ightarrow\mathbb{R}^n$$
 (In particular, $n=2$ and $n=3$)

Definition

Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}^n$ be a bounded function. Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in [a, b]$.

Definition

Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}^n$ be a bounded function. Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in [a, b]$.

The function F is said to be (Riemann) integrable over [a, b] if

Definition

Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}^n$ be a bounded function. Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in [a, b]$.

The function F is said to be (Riemann) integrable over [a,b] if each component function $f_i:[a,b]\to R,\ 1\le i\le n$ of F is (Riemann) integrable over [a,b].

Definition

Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}^n$ be a bounded function. Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in [a, b]$.

The function F is said to be (Riemann) integrable over [a,b] if each component function $f_i:[a,b]\to R,\ 1\le i\le n$ of F is (Riemann) integrable over [a,b].

Further

$$\int_a^b F(t)dt = \left(\int_a^b f_1(t)dt, \int_a^b f_2(t)dt, \dots, \int_a^b f_n(t)dt\right).$$

Definition

Let $F : [a, b] \subseteq \mathbb{R} \to \mathbb{R}^n$ be a bounded function. Then

$$F(t) = (f_1(t), f_2(t), \dots, f_n(t))$$
 for $t \in [a, b]$.

The function F is said to be (Riemann) integrable over [a,b] if each component function $f_i:[a,b]\to R,\ 1\le i\le n$ of F is (Riemann) integrable over [a,b].

Further

$$\int_a^b F(t)dt = \left(\int_a^b f_1(t)dt, \int_a^b f_2(t)dt, \dots, \int_a^b f_n(t)dt\right).$$

Note that the value of the integral $\int_a^b F(t)dt$ is an element in \mathbb{R}^n .

Let
$$F(t) = \cos t \hat{i} + \hat{j} + 2t \hat{k}$$
 for $t \in [0, \frac{\pi}{2}]$. Compute $\int_a^b F(t)$.

Let
$$F(t) = \cos t\hat{i} + \hat{j} + 2t\hat{k}$$
 for $t \in [0, \frac{\pi}{2}]$. Compute $\int_a^b F(t)$.

• First Component Function of F: $f_1(t) = \cos t$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_1(t) dt = 1$.

Let
$$F(t) = \cos t\hat{i} + \hat{j} + 2t\hat{k}$$
 for $t \in [0, \frac{\pi}{2}]$. Compute $\int_a^b F(t)$.

- First Component Function of F: $f_1(t) = \cos t$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_1(t) dt = 1$.
- Second Component Function of F: $f_2(t) = 1$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_2(t) dt = \frac{\pi}{2}$.

Let
$$F(t) = \cos t\hat{i} + \hat{j} + 2t\hat{k}$$
 for $t \in [0, \frac{\pi}{2}]$. Compute $\int_a^b F(t)$.

- First Component Function of F: $f_1(t) = \cos t$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_1(t) dt = 1$.
- Second Component Function of F: $f_2(t) = 1$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_2(t) dt = \frac{\pi}{2}$.
- Third Component Function of F: $f_3(t) = 2t$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_3(t) dt = \frac{\pi^2}{4}$.

Let
$$F(t) = \cos t\hat{i} + \hat{j} + 2t\hat{k}$$
 for $t \in [0, \frac{\pi}{2}]$. Compute $\int_a^b F(t)$.

- First Component Function of F: $f_1(t) = \cos t$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_1(t) dt = 1$.
- Second Component Function of F: $f_2(t) = 1$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_2(t) dt = \frac{\pi}{2}$.
- Third Component Function of F: $f_3(t) = 2t$ for $t \in [0, \frac{\pi}{2}]$. So $\int_0^{\frac{\pi}{2}} f_3(t) dt = \frac{\pi^2}{4}$.

By the Theorem mentioned in previous slide, we have

$$\int_0^{\frac{\pi}{2}} F(t)dt = \left(\int_0^{\frac{\pi}{2}} f_1(t)dt, \int_0^{\frac{\pi}{2}} f_2(t)dt, \int_0^{\frac{\pi}{2}} f_3(t)dt\right) = (1, \frac{\pi}{2}, \frac{\pi^2}{4}).$$

Application of Differentiation and Integration of Vector Valued Functions of Real Variable (Vector Functions)

$$F:\subseteq\mathbb{R}\to\mathbb{R}^n$$
 (In particular, $n=2$ and $n=3$)

Suppose we do not know the path of a hang glider, but only its acceleration vector $\mathbf{a}(t) = -3\cos t\hat{i} - 3\sin t\hat{j} + 2\hat{k}$. We also know that initially (at time t = 0) the glider departed from the point (3,0,0) with velocity $\mathbf{v}(0) = 3\hat{j}$. Find the glider's position as a function of t.

Suppose we do not know the path of a hang glider, but only its acceleration vector $\mathbf{a}(t) = -3\cos t\hat{i} - 3\sin t\hat{j} + 2\hat{k}$. We also know that initially (at time t = 0) the glider departed from the point (3, 0, 0) with velocity $\mathbf{v}(0) = 3\hat{j}$. Find the glider's position as a function of t. **Solution:** Our goal is to find $\mathbf{r}(\mathbf{t})$ knowing:

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}(\mathbf{t})}{dt^2} = -3\cos t\hat{i} - 3\sin t\hat{j} + 2\hat{k}.$$

Suppose we do not know the path of a hang glider, but only its acceleration vector $\mathbf{a}(t) = -3\cos t\hat{i} - 3\sin t\hat{j} + 2\hat{k}$. We also know that initially (at time t = 0) the glider departed from the point (3, 0, 0) with velocity $\mathbf{v}(0) = 3\hat{j}$. Find the glider's position as a function of t.

Solution: Our goal is to find $\mathbf{r}(t)$ knowing:

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}(\mathbf{t})}{dt^2} = -3\cos t\hat{\mathbf{i}} - 3\sin t\hat{\mathbf{j}} + 2\hat{\mathbf{k}}.$$

With the initial conditions:

$$\mathbf{v}(0) = 3\hat{j}$$
 and $\mathbf{r}(0) = 3\hat{i} + 0\hat{j} + 0\hat{k}$.

Suppose we do not know the path of a hang glider, but only its acceleration vector $\mathbf{a}(t) = -3\cos t\hat{i} - 3\sin t\hat{j} + 2\hat{k}$. We also know that initially (at time t = 0) the glider departed from the point (3, 0, 0) with velocity $\mathbf{v}(0) = 3\hat{j}$. Find the glider's position as a function of t. **Solution:** Our goal is to find $\mathbf{r}(\mathbf{t})$ knowing:

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}(\mathbf{t})}{dt^2} = -3\cos t\hat{\mathbf{i}} - 3\sin t\hat{\mathbf{j}} + 2\hat{\mathbf{k}}.$$

With the initial conditions:

$$\mathbf{v}(0) = 3\hat{j}$$
 and $\mathbf{r}(0) = 3\hat{i} + 0\hat{j} + 0\hat{k}$.

The glider's position is given by

$$\mathbf{r}(\mathbf{t}) = 3\cos t\hat{i} + 3\sin t\hat{j} + t^2\hat{k}.$$

