

H-SATS- Simple Hierarchical Time Synchronization Algorithm for WSNs

Outline

- 1. Motivation
- 2. Existing synchronization schemes
- 3. H-SATS
- 4. Experimental Setup
- 5. Results
- 6. Discussion

Motivation

- 1. Time Synchronization Protocols (TSPs) give a common reference of time for a distributed network like WSN
- 2. Essential for data-fusion, TDMA based communication, power management protocols
- 3. Different levels of Time-synchronization
- Cannot do it using GPS or standard protocols like NTP used for traditional networks

Motivation...

- 1. Clustering technique is an important and energy-efficient technique especially for data-gathering, fusion, etc.
- 2. Most of the TSPs are simulation based works
- 3. Effectiveness for practical WSNs questionable
- 4. cannot give a complete picture
- make many assumptions at a high level of abstraction, do not consider packet loss and its effect on synchronization accuracy
- 6. Also do not state the Line-of-Sight (LOS) conditions in which the experiments are performed
- 7. LOS conditions can have significant effect on the performance of TSP

Existing schemes for clustered WSN...

- SLTP, L-Synch- Regression based schemes low accuracy, simulation based works, do not account for deterministic and non-deterministic delays
- 2. PC-Avg-takes average poor synchronization accuracy
- 3. CCTS, CMTS- high accuracy, but high overhead

H-SATS

EEE G627: Networked Embedded Applications (Dr. Vinay Chamola, BITS-Pilani)

H-SATS

Mathematical Basis

1. Clock Model

offset
$$C_i(t) = \alpha_i \ t + \beta_i,$$

$$C_{ih}(t) = \alpha_{ih} C_h + \beta_{ih},$$

2. For a two-way exchange we can write

Child Cluster $T_{2,1}$ $T_{3,1}$ Clock skew $T_{1,1}$ $T_{1,1}$

$$T_{2,k} = \alpha_{ih}(T_{1,k} + t_f + r_k) + \beta_{ih}$$

$$T_{3,k} = \alpha_{ih}(T_{4,k} - t_f - s_k) + \beta_{ih},$$
 Non-deterministic delay

$$T_{2,k} = \alpha_{ih} T_{1,k} + \beta_{ih} + \alpha_{ih} (t_f + r_k)$$
$$T_{3,k} = \alpha_{ih} T_{4,k} + \beta_{ih} - \alpha_{ih} (t_f + s_k).$$

H-SATS

Algorithm Complexity for additions and multiplications

Algorithm	Additions	Multiplications
Regression	O(N)	O(N)
method		
SATS	O(N)	1

Experimental Setup

Experimental Setup

Base Station collecting the data

Base Station collecting the data

Results-LOS

Results-mixed-LOS

References

Chalapathi, G.S.S., Manekar, R., Chamola, V., Anupama, K.R. and Gurunarayanan, S., 2016, November. Hardware validated efficient and simple Time Synchronization protocol for clustered WSN. In *Region 10 Conference (TENCON), 2016 IEEE* (pp. 2162-2166). IEEE.

Other works are submitted to Journals for publication