

Pronóstico: ARFIMA

Minería de datos Zavala Roman Irvin Eduardo 1270771

Series de tiempo

- Tendencia: Movimiento vertical de los datos en tiempos largos
- Estacionalidad: Indican comportamientos que suceden en lapsos regulares
- Irregularidad: Comportamiento que no pertenece a los 2 anteriores
- **Cíclico**: Oscilaciones que duran más de un año, puede no ser periodico
- **Estacionario**: Tiene las mismas propiedades estadísticas en todo el tiempo (promedio, varianza y covarianza constantes)

Series de tiempo

Autoregressive Model (AR)

Dice que los valores anteriores afectan los valores actuales.

$$\hat{y}_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \epsilon_t$$

$$y_t = a_0 + \sum_{n=1}^p a_n y_{t-n} + \epsilon_t$$

Moving Average Model (MA)

Dice que el valor de la variable dependiente actual depende de los términos de error de los días anteriores.

$$y_t = \varepsilon_t + \alpha_1 \varepsilon_{t-1} + \alpha_2 \varepsilon_{t-2} + \dots + \alpha_q \varepsilon_{t-q}$$

$$r_t = b_0 + \sum_{n=1}^{q} b_n r_{t-n} + \epsilon_t$$
$$r_t = \hat{y}_t - y_t$$

Auto Regressive Moving Average (ARMA)

Combina los modelos AR y MA.

$$y_t = \beta_1 y_{t-1} + \beta_2 y_{t-2} + \beta_3 y_{t-3} + \dots + \beta_p y_{t-p} +$$

$$\varepsilon_t + \alpha_1 \varepsilon_{t-1} + \alpha_2 \varepsilon_{t-2} + \dots + \alpha_q \varepsilon_{t-q}$$

Integrated (I)

Fuerza la estacionalidad de la serie de tiempo por medio de un proceso de "diferenciación".

 $By_t = y_{t-1}$ where B is called a backshift operator

Thus, a first order difference is written as

$$y'_t = y_t - y_{t-1} = (1 - B)y_t$$

In general, a d th-order difference can be written as

$$y_t' = (1 - B)^d y_t$$


```
1.0858000000
     0.9824800000
     0.8889800000
     0.8043800000
1195 0.9211900000
1196 0.9514500000
1197 0.9716200000
1198 0.9828300000
1199 0.9864000000
[1200 rows x 1 columns]
               NaN
     -0.1142000000
     -0.1033200000
     -0.0935000000
     -0.0846000000
      0.0411800000
      0.0302600000
      0.0201700000
     0.0112100000
     0.0035700000
[1200 rows x 1 columns]
```

AutoRegressive Integrated Moving Average (ARIMA)

Junta todo lo anterior, generalmente tiene 3 parámetros:

p: Número de términos autorregresivos (AR)

d: Número de diferencias no estacionarias (I)

q: Número de términos de moving-average (MA)

AutoRegressive Fractional Integrated Moving Average (ARFIMA)

Agrega diferenciación fraccionaria a para ser utilizado en series de tiempo donde se necesita predecir a largo plazo.

ARFIMA en Python

En Python no existe la implementación de ARFIMA con ninguna librería, pero lo que se puede hacer es aplicar la parte de "Fractional" de ARFIMA antes y teniendo el dataset diferenciado mandarlo al ARIMA de sklearn con el parámetro de diferenciación en 0.

ARFIMA en Python

```
"""Computes fractionally differenced series

Args:

d: A float representing the differencing factor (any positive fractional)

series: A pandas dataframe with one or more columns of time-series values to be differenced

threshold: Threshold value past which we ignore weights

(cutoff weight for window)

Returns:

diff_series: A numpy array of differenced series by d.

"""

def fracDiff(series, d, threshold = 1e-5):
```

Ejemplo de uso:

```
df_result = fracDiff(test_series, 3.9, 1e-5)
model = ARIMA(df_train, order=(2,0,1))
```

Créditos: hongwai1920/<u>Using-ARIMA-model-to-forecast-returns</u>

Probando ARFIMA

Original dataset Bitcoin Price

Después de diferenciación fraccionaria (0.02)

(Las fechas no corresponden al dataset)

ACF y PACF

Predicción

```
from statsmodels.tsa.arima.model import ARIMA
model = ARIMA(df_train, order=(1,0,1))
model_fit = model.fit()
print(model_fit.summary())
perc = 40
from statsmodels.graphics.tsaplots import plot_predict
fig, ax = plt.subplots()
s = pd.DataFrame(list(range(len(df))))
ax = df.loc[:].plot(ax=ax)

plot_predict(model_fit, len(df)-round(len(df) * perc/100), len(df), ax=ax)
plt.show()
```


Nota! En ARIMA al dar argumento en *d* se aplica la diferenciación y luego se deshace para aplicar el modelo al dataset original, en este caso no supe cómo revertir este método :(

ARFIMA con MG dataset

df result = fracDiff(test series, 1.99, 1e-5)

ARFIMA con MG dataset


```
anteriores = list(df['data'][:800])
y_true = []
y_pred = []
print(anteriores)
for nuevo in df['data'][800:]:
    model = ARIMA(anteriores, order=(1,0,1))
    model_fit = model.fit()
    forecast = model_fit.forecast(alpha=0.05)[0]

    y_true.append(nuevo)
    y_pred.append(forecast)
    anteriores.append(nuevo)
```


SSE 0.0015276978127738456 MSE 3.9475395678910735e-06 RMSE 0.001986841606140528 MAE 0.0015451718698812444 R2 0.9289024206687991

Pronóstico ventanas

TIEMPO	T1	T2	T3	T4	T5	T6	T7	T8	T9		TN
VENTANA 1	T-3		T-1	T+1							
VENTANA 2	T-5	T-4		T-2	T-1	T+1			Bi	tcoin	
VENTANA 3	T-3		T-1	T+1	T+2						
VENTANA 4	T-5	T-4		T-2	T-1	T+1	T+2				
TIEMPO	T1	T2	T3	T4	T5	Т6	T7	T8	Т9		TN
TIEMPO VENTANA 1	T1	T2	Т3	T4 T+1	T5	T6	T7	T8	Т9	•••	TN
	T-3		T3		T-1	T6	T7	Т8	Т9	 MG	TN
VENTANA 1	T-3 T-5			T+1			T7	Т8	Т9		TN

Implementación ventanas

Solo devuelve
el dataset
creado
dependiendo
de la ventana

```
def predict uno 2(dataset):
   ventana = 3
    predict size = 1
   df = pd.DataFrame(dataset)
   cols = list()
    1.1.1
    La tabla tiene (t-n) ... (t-1) | (t) ... (t+n)
   tabla = [list() for i in range(ventana-1+predict size)]
   for i in range(ventana, len(df)-predict size+1):
       tabla[0].append(df['data'][i-ventana])
       tabla[1].append(df['data'][i-1])
       tabla[2].append(df['data'][i])
   for array in tabla:
       cols.append(pd.Series(array))
   df = pd.concat(cols, axis=1)
   print(df)
   return df
```

Predicción Bitcoin: 2 entradas/1 salida 50% train

SSE [4.35365862e+11] MSE [2.93373223e+08] RMSE [17128.14124989] MAE [10208.27335948] R2 0.08315962115372233

	0	1	2
а	465.864014	424.102997	394.673004
1	456.859985	394.673004	408.084991
2	424.102997	408.084991	399.100006
3	394.673004	399.100006	402.092010
4	408.084991	402.092010	435.751007
2963	20287.957030	20817.982420	20633.695310
2964	20595.103520	20633.695310	20494.898440
2965	20817.982420	20494.898440	20482.958980
2966	20633.695310	20482.958980	20162.689450
2967	20494.898440	20162.689450	20208.769530

Predicción Bitcoin: 2 entradas/1 salida 80% train

SSE [6.63582433e+09] MSE [11171421.43703903] RMSE [3342.36763942] MAE [2501.04320549] R2 0.937012889532168

	0	1	2
0	465.864014	424.102997	394.673004
1	456.859985	394.673004	408.084991
2	424.102997	408.084991	399.100006
3	394.673004	399.100006	402.092010
4	408.084991	402.092010	435.751007
2963	20287.957030	20817.982420	20633.695310
2964	20595.103520	20633.695310	20494.898440
2965	20817.982420	20494.898440	20482.958980
2966	20633.695310	20482.958980	20162.689450
2967	20494.898440	20162.689450	20208.769530

Predicción Bitcoin: 4 entradas/1 salida 50% train

SSE [4.35365794e+11]
MSE [2.93571001e+08]
RMSE [17133.9137552]
MAE [10219.60313943]
R2 0.08263389822819689

	0	1	2	3	4
0	465.864014	456.859985	394.673004	408.084991	399.100006
1	456.859985	424.102997	408.084991	399.100006	402.092010
2	424.102997	394.673004	399.100006	402.092010	435.751007
3	394.673004	408.084991	402.092010	435.751007	423.156006
4	408.084991	399.100006	435.751007	423.156006	411.428986
			11111111111111		
2961	20092.236330	20772.802730	20595.103520	20817.982420	20633.695310
2962	20772.802730	20287.957030	20817.982420	20633.695310	20494.898440
2963	20287.957030	20595.103520	20633.695310	20494.898440	20482.958980
2964	20595.103520	20817.982420	20494.898440	20482.958980	20162.689450
2965	20817.982420	20633.695310	20482.958980	20162.689450	20208.769530

Predicción Bitcoin: 4 entradas/1 salida 80% train

SSE [8.17872952e+09]
MSE [13792123.97263254]
RMSE [3713.77489526]
MAE [2862.30439012]
R2 0.9220936294015181

	0	1	2	3	4
0	465.864014	456.859985	394.673004	408.084991	399.100006
1	456.859985	424.102997	408.084991	399.100006	402.092010
2	424.102997	394.673004	399.100006	402.092010	435.751007
3	394.673004	408.084991	402.092010	435.751007	423.156006
4	408.084991	399.100006	435.751007	423.156006	411.428986
2961	20092.236330	20772.802730	20595.103520	20817.982420	20633.695310
2962	20772.802730	20287.957030	20817.982420	20633.695310	20494.898440
2963	20287.957030	20595.103520	20633.695310	20494.898440	20482.958980
2964	20595.103520	20817.982420	20494.898440	20482.958980	20162.689450
2965	20817.982420	20633.695310	20482.958980	20162.689450	20208.769530

Predicción Bitcoin: 2 entradas/2 salidas 80% dataset

SSE 16823619228.14617 MSE 28370352.82992609 RMSE 5326.382715307462 MAE 5879.370046290042 R2 0.9198771904482907

	0	1	2	3
0	465.864014	424.102997	394.673004	408.084991
1	456.859985	394.673004	408.084991	399.100006
2	424.102997	408.084991	399.100006	402.092010
3	394.673004	399.100006	402.092010	435.751007
4	408.084991	402.092010	435.751007	423.156006
	134.44			
2962	20772.802730	20595.103520	20817.982420	20633.695310
2963	20287.957030	20817.982420	20633.695310	20494.898440
2964	20595.103520	20633.695310	20494.898440	20482.958980
2965	20817.982420	20494.898440	20482.958980	20162.689450
2966	20633.695310	20482.958980	20162.689450	20208.769530

Predicción Bitcoin: 4 entradas/2 salidas 80% train

SSE 17019592511.656761 MSE 28700830.54242287 RMSE 5357.315609745507 MAE 5906.161006104553 R2 0.9189444614679174

	0	1	2	3	4	1
0	465.864014	456.859985	394.673004	408.084991	399.100006	
1	456.859985	424.102997	408.084991	399.100006	402.092010	
2	424.102997	394.673004	399.100006	402.092010	435.751007	
3	394.673004	408.084991	402.092010	435.751007	423.156006	
4	408.084991	399.100006	435.751007	423.156006	411.428986	
2960	19344.964840	20092.236330	20287.957030	20595.103520	20817.982420	
2961	20092.236330	20772.802730	20595.103520	20817.982420	20633.695310	
2962	20772.802730	20287.957030	20817.982420	20633.695310	20494.898440	
2963	20287.957030	20595.103520	20633.695310	20494.898440	20482.958980	
2964	20595.103520	20817.982420	20494.898440	20482.958980	20162.689450	
	5					
0	402.092010					
1	435.751007					
2	423.156006					
3	411.428986					
4	403.556000					
2960	20633.695310					
2961	20494.898440					
2962	20482.958980					
2963	20162.689450					
2964	20208.769530					

Predicción MG: 2 entradas/1 salida

SSE [0.17424055] MSE [0.00072904] RMSE [0.02700074] MAE [0.01921778] R2 0.9872111979967401

	0	1	2
0	1.20000	1.08580	0.88898
1	1.08580	0.98248	0.80438
2	0.98248	0.88898	0.72784
3	0.88898	0.80438	0.65857
4	0.80438	0.72784	0.59590
1191	0.69324	0.76448	0.88001
1192	0.76448	0.82756	0.92119
1193	0.82756	0.88001	0.95145
1194	0.88001	0.92119	0.97162
1195	0.92119	0.95145	0.98283

Predicción MG: 4 entradas/1 salida

Mejor resultado para MG dataset!

SSE [0.05452576] MSE [0.00022814] RMSE [0.01510435] MAE [0.01091619] R2 0.9959979516151715

	0	1	2	3	4
0	1.20000	0.98248	0.88898	0.80438	0.72784
1	1.08580	0.88898	0.80438	0.72784	0.65857
2	0.98248	0.80438	0.72784	0.65857	0.59590
3	0.88898	0.72784	0.65857	0.59590	0.53919
4	0.80438	0.65857	0.59590	0.53919	0.48788
1189	0.54945	0.69324	0.76448	0.82756	0.88001
1190	0.61897	0.76448	0.82756	0.88001	0.92119
1191	0.69324	0.82756	0.88001	0.92119	0.95145
1192	0.76448	0.88001	0.92119	0.95145	0.97162
1193	0.82756	0.92119	0.95145	0.97162	0.98283

Predicción MG: 2 entradas/2 salidas

SSE 0.5242577047999997 MSE 0.0021935468820083667 RMSE 0.046835316610527644 MAE 0.046925439330543973 R2 0.9808206975185996

	0	1	2	3
0	1.20000	1.08580	0.88898	0.80438
1	1.08580	0.98248	0.80438	0.72784
2	0.98248	0.88898	0.72784	0.65857
3	0.88898	0.80438	0.65857	0.59590
4	0.80438	0.72784	0.59590	0.53919
1190	0.61897	0.69324	0.82756	0.88001
1191	0.69324	0.76448	0.88001	0.92119
1192	0.76448	0.82756	0.92119	0.95145
1193	0.82756	0.88001	0.95145	0.97162
1194	0.88001	0.92119	0.97162	0.98283

Predicción MG: 4 entradas/2 salidas

SSE 0.2717791786 MSE 0.0011371513748953976 RMSE 0.03372167514960367 MAE 0.0314919665271967 R2 0.9900516731271898

	0	1	2	3	4	5
0	1.20000	0.98248	0.88898	0.80438	0.72784	0.65857
1	1.08580	0.88898	0.80438	0.72784	0.65857	0.59590
2	0.98248	0.80438	0.72784	0.65857	0.59590	0.53919
3	0.88898	0.72784	0.65857	0.59590	0.53919	0.48788
4	0.80438	0.65857	0.59590	0.53919	0.48788	0.44145

1188	0.49305	0.61897	0.69324	0.76448	0.82756	0.88001
1189	0.54945	0.69324	0.76448	0.82756	0.88001	0.92119
1190	0.61897	0.76448	0.82756	0.88001	0.92119	0.95145
1191	0.69324	0.82756	0.88001	0.92119	0.95145	0.97162
1192	0.76448	0.88001	0.92119	0.95145	0.97162	0.98283

Predicciones después del dataset

Con las configuraciones de 2 y 4 entradas no es suficiente para hacer un modelo que prediga más allá, por lo que para predecir a futuro se amplió la ventana en ambos dataset.

Predicciones después del dataset

Bitcoin dataset con 5 entradas y 1 salida

Referencias

- Bora, N. (2021). *Understanding ARIMA models for machine learning*. Capital One. https://www.capitalone.com/tech/machine-learning/understanding-arima-models/
- Fernandez, J. (2022). *Creating an ARIMA model for time series forecasting*. Towards Data Science. https://towardsdatascience.com/creating-an-arima-model-for-time-series-forecasting-ff3b619b848d
- Liu, K., Chen, Y., & Zhang, X. (2017). An evaluation of ARFIMA (autoregressive fractional integral moving average) programs. *Axioms*, *6*(4), 16. https://doi.org/10.3390/axioms6020016
- Maklin, C. (2019). *ARIMA model Python example time series forecasting*. Towards Data Science. https://towardsdatascience.com/machine-learning-part-19-time-series-and-autoregressive-integrated-moving-average-model-arima-c1005347b0d7
- Simplilearn. (2021). *Understanding time series analysis in python*. Simplilearn.com; Simplilearn. https://www.simplilearn.com/tutorials/python-tutorial/time-series-analysis-in-python Dataset bitcoin:

https://finance.yahoo.com/quote/BTC-USD/history?period1=1410825600&period2=1667692800&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true