Introducción a la Física Relativista II: Otras Representaciones DEL GRUPO DE LORENTZ

Mario I. Caicedo

4 de febrero de 2021

Información

Este repositorio contiene un cuaderno jupyter (puede correrlo en colab) muy relevante para esta clase.

En la representación fundamental ó vectorial $(\mathbf{4}_{v})$ los vecotres contravariantes y covariantes transforman como

$$\begin{array}{c}
A'^{\mu} = \Lambda^{\mu}_{\ \nu} A^{\nu} \\
B'_{\nu} = \Lambda^{\mu}_{\ \nu} B_{\mu} ,
\end{array} \tag{1}$$

DEFINICIÓN

Esta representación proviene del producto $\mathbf{4}_{\nu}\otimes\mathbf{4}_{\nu}$, los objetos contravariantes y covariantes de esta representación se transforman en la forma

$$A'^{\alpha\beta} = \Lambda^{\alpha}_{\ \rho} \Lambda^{\beta}_{\ \sigma} A^{\rho\sigma}$$
$$A'_{\alpha\beta} = \Lambda^{\rho}_{\ \alpha} \Lambda^{\sigma}_{\ \beta} A_{\rho\sigma}$$

Esta representación, es altamente reducibe. En efecto, y solo para emprezar, un tensor covariante puede descomponerse en un tensor simétrico y uno antisimétrico

$$A_{lphaeta}=rac{1}{2}\left(A_{lphaeta}+A_{etalpha}
ight)+rac{1}{2}\left(A_{lphaeta}-A_{etalpha}
ight)$$

y estos a su vez pueden reducirse aún más

DESCOMPOSICIÓN DEL TENSOR SIMÉTRICO DE DOS ÍNDICES

Si $S_{\alpha\beta}$ es simétrico, podemos poner

$$S_{\alpha\beta} = (\text{simétrico sin traza}) \oplus \text{traza}$$

donde

Por traza entendemos (representación 1 o escalar)

$$heta_{lphaeta}\equivrac{1}{4}\eta_{lphaeta}S^{\mu}_{\,\,\,\mu}$$

Componente sin traza:

$$\mathcal{S}^{st}_{lphaeta}\equiv\mathcal{S}_{lphaeta}-rac{1}{4}\eta_{lphaeta}\mathcal{S}^{\mu}_{\;\;\mu}\,,$$

representación 9

イロト イ御ト イヨト イヨト

En dimensión 4 el dual de un tensor de dos índices, es también un tensor de dos índices. Eso permite la siguiente descomposición, dado $A_{\alpha\beta}$ antisimétrico, ocurre que

$$A_{lphaeta} = A_{lphaeta}^{(autodual)} + A_{lphaeta}^{(antiautodual)}$$

donde, las componentes autodual y antiautodual satisfacen,

$$A_{lphaeta}^{(ext{autodual})} = rac{1}{2} \eta_{lpha\mu} \eta_{eta
u} \epsilon^{\mu
u\sigma
ho} A_{lphaeta} \ A_{lphaeta}^{(ext{autodual})} = -rac{1}{2} \eta_{lpha\mu} \eta_{eta
u} \epsilon^{\mu
u\sigma
ho} A_{lphaeta}$$

- No es dificil contar las dimensionalidades de las componentes irreducibles de la representación tensorial de dos índices (ejercicio)
- En términos de las dimensionalidades, la representación que estamos discutiendo se descompone como

$$A_{\alpha\beta} = 9 + 1 + 3 + 3$$

- La descomposición en representaciones irreducibles es dificil de genralizar (recuerde la descomposición de Clebsch-Gordan para la suma de momenta angulares en mecánica cuántica)
- En el caso del grupo de Lorentz, la descomposición $so(1,3) \approx su(2) \oplus su(2)$ y el uso de los operadores de Casimir adecuados facilita un poco las cosas.
- En el caso de la descomposición del producto $(4_v \otimes 4_v)$, se obtiene

$$(\frac{1}{2}, \frac{1}{2}) \otimes (\frac{1}{2}, \frac{1}{2}) = (1 \oplus 0, 1 \oplus 0) = (0, 0) \oplus (1, 0) \oplus (0, 1) \oplus (1, 1)$$

(ℓ_{a},ℓ_{b})	Dimensión	Nombre
(0,0)	1	Escalar
$(\frac{1}{2},0)$	2	Espinorial de Weyl Izquierda
$(0,\frac{1}{2})$	2	Espinorial de Weyl Derecha
(1,0)	3	Tensorial Autodual.
(0,1)	3	Tensorial Antiautodual.
$\left(\frac{1}{2},\frac{1}{2}\right)$	4	Vectorial
(1,1)	9	Tensorial Símétrica sin Traza

CUADRO: Algunas representaciones Irreducibles de Irreducible de so(1,3)

- ¿Por qué no aparecen los espinores de Dirac en el cuadro 1
- Considere *SO*(3)
 - Construya los objetos de su representación tensorial de dos indices $(3 \otimes 3)$.
 - ② Descomponga los objetos anteriores en sus componentes irreducibles, ¿qué dimensionalidades tienen?
 - O Podría identificar estas representacines irreducilbes con sus correspondientes en la teoría de momentum angular en mecánica cuántica
 - ¡Se le ocure alguna aplicación?

