L3 – 5.1/5.2 Graphing Trig Functions

MHF4U

Part 1: Remember the Unit Circle

The unit circle is a circle is a circle that is centered at the origin and has a radius of _____. On the unit circle, the sine and cosine functions take a simple form:

 $\sin \theta =$

 $\cos \theta =$

The value of $\sin \theta$ is the _____ of each point on the unit circle

The value of $\cos\theta$ is the _____ of each point on the unit circle

Part 2: Graphing Sine and Cosine

To graph sine and cosine, we will be using a Cartesian plane that has angles for x values.

Example 1: Complete the following table of values for the function $f(x) = \sin(x)$. Use special triangles, the unit circle, or a calculator to find values for the function at $30^{\circ} = \frac{\pi}{6}$ radian intervals.

x	sin x
0	
$\frac{\pi}{6}$	
$\frac{2\pi}{6} = \frac{\pi}{3}$	
$3\pi - \pi$	
$\frac{\frac{1}{6} - \frac{1}{2}}{\frac{4\pi}{6} = \frac{2\pi}{3}}$	
$\frac{5\pi}{6}$	
$\frac{6\pi}{6} = \pi$	
$\frac{7\pi}{6}$	
$\frac{8\pi}{6} = \frac{4\pi}{3}$	
$\frac{9\pi}{\pi} = \frac{3\pi}{\pi}$	
$\frac{6}{10\pi} = \frac{2}{5\pi}$	
$\frac{11\pi}{6}$	
$\frac{12\pi}{6} = 2\pi$	

Example 2: Complete the following table of values for the function $f(x) = \cos(x)$. Use special triangles, the unit circle, or a calculator to find values for the function at $30^{\circ} = \frac{\pi}{6}$ radian intervals.

cos x

Properties of both Sine and Cosine Functions							
omain:							
inge:							
eriod:							
mplitude:							
: the horizontal length of one cycle on a graph.							
: half the distance between the maximum and minimum values of a periodic function.							
ort 3: Graphing the Tangent Function							
ecall: $\tan \theta = \frac{\sin \theta}{\cos \theta}$							
Note: Since $\cos \theta$ is in the denominator, any time $\cos \theta = 0$, $\tan \theta$ will be undefined which will lead to a vertical asymptote.							
Since $\sin \theta$ is in the numerator, any time $\sin \theta = 0$, $\tan \theta$ will equal 0 which will be an x -intercept.							
ample 3: Complete the following table of values for the function $f(x) = \tan(x)$. Use the quotient find y -values.	identity						
x $\tan x$							
<u>π</u>							
$\frac{-\frac{\pi}{6}}{2\pi} = \frac{\pi}{-}$							
$\frac{6}{\frac{3\pi}{6}} = \frac{\pi}{2}$							
$\frac{4\pi}{6} = \frac{2\pi}{3}$							
6	3 3π/2 5π/3 11π/						
$\frac{6\pi}{6} = \pi$ 7π							
$\frac{6\pi}{6} = \frac{3\pi}{3}$ $\frac{9\pi}{6} = \frac{3\pi}{2}$							
$\frac{10\pi}{6} = \frac{5\pi}{3}$							

Properties of the Tangent Function

 11π

 $\frac{12\pi}{6} = 2\pi$

Domain: Range:

Part 4: Graphing Reciprocal Trig Functions

Reciprocal Identities					
	$csc \theta =$	$sec \theta =$	$cot \ heta =$		

The graph of a reciprocal trig function is related to the graph of its corresponding primary trig function in the following ways:

- Reciprocal has a vertical asymptote at each zero of its primary trig function
- Has the same positive/negative intervals but intervals of increasing/decreasing are reversed
- y-values of 1 and -1 do not change and therefore this is where the reciprocal and primary intersect
- Local min points of the primary become local max of the reciprocal and vice versa.

Example 4: Complete the following table of values for the function $f(x) = \csc(x)$. Use the reciprocal identity to find y-values.

x	csc x	1					1 1	ı	ı	Ι.	l I										
	65611									4											
0																					
$\frac{\pi}{6}$										3											
$\frac{2\pi}{6} = \frac{\pi}{3}$										2											
$\frac{3\pi}{6} = \frac{\pi}{2}$		l ———,								1											
$\frac{4\pi}{6} = \frac{2\pi}{3}$					1																
$\frac{5\pi}{6}$		<2π -11π/6	-5ti/3 -3t	п/2 -4т	π/3 -7π/6	-П	-5π/6 -2π/	3 -π/2	-π/3	-π/6 0	π/	5 π/3	π/2 2	TT/3 51	п/6 п	711	/6 4π	3 3π/2	2 5π/3	11π/6	,2
$\frac{6\pi}{6} = \pi$										-1											
$\frac{7\pi}{6}$										-2											
$\frac{8\pi}{6} = \frac{4\pi}{3}$										-3											
$\frac{9\pi}{6} = \frac{3\pi}{2}$										-4											
$\frac{10\pi}{6} = \frac{5\pi}{3}$						[
$\frac{11\pi}{6}$																					
$\frac{12\pi}{6} = 2\pi$																					

Properties of the Cosecant Function

Domain: Range:

Example 5: Complete the following table of values for the function $f(x) = \sec(x)$. Use the reciprocal identity to find y-values.

x	sec x
0	
$\frac{\pi}{6}$	
$\frac{2\pi}{6} = \frac{\pi}{3}$	
$\frac{3\pi}{6} = \frac{\pi}{2}$	
$\frac{4\pi}{6} = \frac{2\pi}{3}$	
$\frac{5\pi}{6}$	
$\frac{6\pi}{6} = \pi$	
$\frac{7\pi}{6}$	
$\frac{8\pi}{6} = \frac{4\pi}{3}$	
$\frac{9\pi}{6} = \frac{3\pi}{2}$	
$\frac{10\pi}{6} = \frac{5\pi}{3}$	
$\frac{11\pi}{6}$	
$\frac{12\pi}{6} = 2\pi$	
$\frac{12\pi}{2} - 2\pi$	

Properties of the Secant Function

Domain:	Range

Example 6: Complete the following table of values for the function $f(x) = \cot(x)$. Use the reciprocal identity to find y-values.

x	cot x
0	
$\frac{\pi}{6}$	
$\frac{2\pi}{6} = \frac{\pi}{3}$	
$\frac{3\pi}{6} = \frac{\pi}{2}$	
$\frac{4\pi}{6} = \frac{2\pi}{3}$	
$5\pi = 2\pi$	
$\frac{\frac{5\pi}{6} = \frac{2\pi}{3}}{\frac{6\pi}{6} = \pi}$	
$\frac{7\pi}{6}$	
$\frac{8\pi}{6} = \frac{4\pi}{3}$	
$\frac{9\pi}{6} = \frac{3\pi}{2}$	
$\frac{10\pi}{6} = \frac{5\pi}{3}$	
$\frac{11\pi}{6}$	
$\frac{12\pi}{6} = 2\pi$	

Properties of the Cotangent Function

Domain:	Range: