Qualify Exam. August 10, 2012

Problem from STAT5010

1. Let μ and Σ be the mean and covariance matrix from a bi-variate normal distribution. Let X_1, X_2, \dots, X_n be an i.i.d. sample from a truncated bi-variate normal distribution, or for $\mathbf{x} \in \mathbb{R}^2$, the density function of X_1 is

$$f(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\gamma}) = \begin{cases} C\frac{1}{\sqrt{\det(\boldsymbol{\Sigma})}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}, & \text{for } (\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \leq \boldsymbol{\gamma}^2 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find constant C and show that C only depends on γ .
- (b) Find minimum sufficient statistic for (μ, Σ) if γ is known.
- (c) Find minimum sufficient statistic for γ if (μ, Σ) is known.
- (d) Find UMVUE for (μ, Σ) if γ is known and prove your answer.
- (e) Find UMVUE for γ if (μ, Σ) is known and prove your answer.
- (f) If all μ, Σ and γ are unknown, how do you estimate all three parameters?
- 2. Suppose that X_1, \dots, X_{n_1} and Y_1, \dots, Y_{n_2} are two samples from the population $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$. Assume σ^2 is unknown.
 - (a) Show that the α -level likelihood ratio test for

 $H_o: \mu_2 \leq \mu_1 \;\; \mathrm{VS.} \;\; H_a: \mu_2 > \mu_1 \;\; \mathrm{is \; the \; usual \; two \; sample \; t-test.}$

(b) Can you show that the test is an uniformly most powerful test?