КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ «ГРУБЫЕ ТРАЕКТОРИИ И РЕГУЛЯРНАЯ СТРУКТУРА»

ЛЕКЦИЯ 9

Геометрические грубые траектории

Пусть $\frac{1}{3}<\alpha<\frac{1}{2}$. Через $\mathfrak{C}_g^{0,\alpha}([0,T])$ обозначаем замыкание в пространстве грубых траекторий множества таких (X,\mathbb{X}) , что X_t — гладкая кривая и

$$\mathbb{X}_{st}^{ij} = \int_{\hat{a}}^{t} X_{su}^{i} dX_{u}^{j}.$$

Элементы множества $\mathfrak{C}_g^{0,\alpha}([0,T])$ называются геометрическими грубыми траекториями. Далее используем обозначение

$$\operatorname{Sym} \mathbb{X}_{st}^{ij} = \frac{1}{2} (\mathbb{X}_{st}^{ij} + \mathbb{X}_{st}^{ji}).$$

Предложение 1. Если X_t — гладкая кривая u

$$\mathbb{X}_{st}^{ij} = \int_{s}^{t} X_{su}^{i} dX_{u}^{j},$$

mo

$$\operatorname{Sym} \mathbb{X}_{st} = \frac{1}{2} X_{st} \otimes X_{st}.$$

Доказательство. Имеем

$$\mathbb{X}_{st}^{ij} + \mathbb{X}_{st}^{ji} = \int_{s}^{t} X_{su}^{i} dX_{u}^{j} + \int_{s}^{t} X_{su}^{j} dX_{u}^{i} = \int_{s}^{t} d(X_{su}^{i} X_{su}^{j}) = X_{st}^{i} X_{st}^{j}.$$

Грубые траектории $(X, \mathbb{X}) \in \mathfrak{C}^{\alpha}([0, T])$, для которых выполнено равенство

$$\operatorname{Sym} \mathbb{X}_{st} = \frac{1}{2} X_{st} \otimes X_{st},$$

называют слабо геометрическими грубыми траекториями, а их множество обозначают через $\mathfrak{C}^{\alpha}_{a}([0,T])$.

Теорема 1. (P.Friz, N.Victoir) Если $\frac{1}{3} < \alpha < \beta < \frac{1}{2}$, то

$$\mathfrak{C}_g^\beta([0,T])\subset\mathfrak{C}_g^{0,\alpha}([0,T])\subset\mathfrak{C}^\alpha([0,T]),$$

причем все включения строгие.

Мы не будем обсуждать доказательство теоремы, но разберем подробно утверждение, которое является важнейшей частью этого доказательства и частично объясняет данный результат.

Теорема 2. Пусть $(1, X, Y) \in T^{(2)}(\mathbb{R}^d)$ и $\operatorname{Sym} Y = \frac{1}{2}X \otimes X$, то найдется такая гладкая кривая $X_t \colon [0, 1] \to \mathbb{R}^d$, что $X_0 = 0$, $X = X_1 - X_0$ и

$$Y^{ij} = \int_0^1 X_t^i dX_t^j.$$

Предварим доказательство несколькими наблюдениями.

(A)

Множество $T_1^{(2)}(\mathbb{R}^d)$, состоящее из элементов $(1,b,c)\in T^{(2)}(\mathbb{R}^d)$, образуют группу с операцией

$$(1, b, c) \otimes (1, h, g) = (1, b + h, c + g + b \otimes h).$$

Напомним, что b, h — векторы, а c, q — матрицы. Элемент (1, 0, 0) является единицей группы, а обратный элемент к элементу (1, b, c) задается равенством

$$(1, b, c)^{-1} = (1, -b, -c + b \otimes b).$$

Mножество $G^{(2)}$, состоящее из элементов вида $(1,b,c+\frac{1}{2}b\otimes b)$, где $c^{ij}=-c^{ji}$, является подгруппой в $T_1^{(2)}(\mathbb{R}^d)$. Действительно, единица принадлежит $G^{(2)}$, верно равенство $(1, b, c + \frac{1}{2}b \otimes b) \otimes (1, h, g + \frac{1}{2}h \otimes h) = (1, b + h, c + g + \frac{1}{2}(b \otimes h - h \otimes b) + \frac{1}{2}(b + h) \otimes (b + h)).$

Если c, g — кососимметрические матрицы, то $c + g + \frac{1}{2}(b \otimes h - h \otimes b)$ — кососимметрическая матрица. Наконец заметим, что

$$(1, b, c + \frac{1}{2}b \otimes b)^{-1} = (1, -b, -c - \frac{1}{2}b \otimes b + b \otimes b) = (1, -b, -c + \frac{1}{2}b \otimes b).$$

(C)

 Γ руппа $G^{(2)}$ является гладкой поверхностью в $\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d^2}$ и отображения $(g_1,g_2) \to$ $g_1\otimes g_2$ и $g\to g^{-1}$ являются гладкими, то есть $G^{(2)}$ — группа Ли. Отображение $\varphi\colon \mathbb{R}^d\times\mathbb{R}^{d^2}\to\mathbb{R}\times\mathbb{R}^d\times\mathbb{R}^{d^2}$, заданное равенством

$$\varphi(b,c) = (1, b, c + \frac{1}{2}b \otimes b),$$

является инъективным и гладким отображением максимального ранга $d+d^2$, причем дифференциал

$$d\varphi(\xi,\eta) = (0,\xi,\eta + \frac{1}{2}(\xi \otimes b + b \otimes \xi)).$$

По определению $G^{(2)}=\varphi(\Pi)$, где $\Pi=\{(\xi,\eta)\colon \eta^{ij}=-\eta^{ji}\}$. Элементы $(\xi,\eta)\in\Pi$ естественно принять за локальные координаты. Пусть $g_1=(1,\xi,\eta+\frac{1}{2}\xi\otimes\xi)$ и $g_1=$ $(1,b,c+\frac{1}{2}b\otimes b)$. Тогда произведению $g_1\otimes g_2$ соответствуют локальные координаты $(\xi+b,\eta+c+\frac{1}{2}(\xi\otimes b-b\otimes\xi))$. Хорошо видно, что зависимость от координат (ξ,η) и (b,c) является бесконечно гладким отображением. Если $g=(1,\xi,\eta+\frac{1}{2}\xi\otimes\xi)$, то элементу g^{-1} соответствуют локальные координаты $(-\xi,-\eta)$ и отображение $g\to g^{-1}$ является бесконечно гладким.

(D)

Касательное пространство $T_1G^{(2)}$, где 1=(1,0,0), равно $d\varphi(\Pi)$ и состоит из элементов вида $(0, \xi, \eta)$, где $\eta^{ij} = -\eta^{ji}$. Важную роль в теории групп Ли играет экспоненциальное отображение, которое строится следующим образом. Вектору $v \in T_1G^{(2)}$ сопоставляется такая гладкая кривая γ , что $\gamma(0)=1,\ \dot{\gamma}(0)=v,\ \gamma(t)\in G^{(2)}$ и $\gamma(t+s)=\gamma(t)\otimes\gamma(s)$. По определению $\exp v=\gamma(1)$. Из свойств γ следует, что $\dot{\gamma}=\gamma\otimes v$. Пусть $v = (0, \xi, \eta)$. В локальных координатах (b, c) это уравнение имеет вид

$$\dot{b} = \xi, \quad \dot{c} + \frac{1}{2}(b \otimes \xi - \xi \otimes b) = \eta,$$

из которого с учетом условий b(0) = 0, c(0) = 0, выводим $b(t) = t\xi$, $c(t) = t\eta$. Таким образом, верно равенство

$$\exp((0,\xi,\eta)) = (1,\xi,\eta + \frac{1}{2}\xi \otimes \xi),$$

то есть $G^{(2)} = \exp(T_1 G^{(2)})$. В рассматриваемой ситуации экспоненциальное отображение устанавливает диффеоморфизм между касательным пространством в единице и группой Ли (чего в общем случае может и не быть).

Пусть $g \in G^{(2)}$. Рассмотрим отображение $L_g(h) = g \otimes h$. Это линейное отображение $\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d^2} \to \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^{d^2}$ и его дифференциал равен $dL_g(v) = g \otimes v$. Ограничение

этого отображения на $G^{(2)}$ задает гладкий диффеоморфизм $G^{(2)} \to G^{(2)}$. Дифференциал dL_g устанавливает линейный изоморфизм $T_1G^{(2)} \to T_gG^{(2)}$ и для всякого $v \in T_1G^{(2)}$ дифференциал dL_g задает гладкое векторное поле $V(g) = dL_g(v)$.

Пусть M — гладкое многообразие, а V и W — гладкие векторные поля на M. Каждому векторному полю соответствует дифференцирование первого порядка на пространстве гладких функций, а именно $Vf(p)=\frac{d}{dt}|_{t=0}f(X_t(p))$, где $X_t(p)$ — фазовый поток, порождаемый векторным полем V. Верно и обратное, что всякому оператору дифференцирования первого порядка соответствует векторное поле. Коммутатор [W,V] определяется равенством

$$[W, V]f = W(V(f)) - V(W(f))$$

и появляется в разложении по Тейлору:

$$f(Y_s(X_t(p))) - f(X_t(Y_s(p))) = st[W, V]f(p) + o(s^2 + t^2),$$

где $X_t(p)$ – фазовый поток векторного поля V, а $Y_t(p)$ – фазовый поток векторного поля W. В касательном пространстве T_pM отображение $(W(p),V(p))\to [W,V](p)$ задает скобку Ли и структуру алгебры Ли.

Рассмотрим теперь поверхность $G^{(2)}$. Пусть $u,v\in T_1G^{(2)}$ и $U(g)=dL_g(u),\ V(g)=dL_g(v)$. Найдем [u,v]:=[U(g),V(g)]. Пусть $g=(1,b,c+\frac{1}{2}b\otimes b),\ u=(0,\xi,\eta)$ и $v=(0,\alpha,\beta)$. Запишем U(g) и V(g) в локальных координатах:

$$U((b,c)) = (\xi, \eta + \frac{1}{2}(b \otimes \xi - \xi \otimes b)), \quad V((b,c)) = (\alpha, \beta + \frac{1}{2}(b \otimes \alpha - \alpha \otimes b)).$$

Фазовый поток X_t , порождаемый полем U, в локальных координатах имеет вид

$$b(t) = b(0) + t\xi$$
, $c(t) = c(0) + (\eta + \frac{1}{2}(b(0) \otimes \xi - \xi \otimes b(0)))t$.

Аналогично выписывается фазовый поток Y_t для V:

$$b(t) = b(0) + t\alpha$$
, $c(t) = c(0) + (\beta + \frac{1}{2}(b(0) \otimes \alpha - \alpha \otimes b(0)))t$.

Заметим, что

 $Y_s(X_t((b,c))) = (b+t\xi+s\alpha, c+(\eta+\frac{1}{2}(b\otimes\xi-\xi\otimes b))t+\beta s+\frac{1}{2}(b\otimes\alpha-\alpha\otimes b)s+\frac{1}{2}(\xi\otimes\alpha-\alpha\otimes\xi)st).$ Следовательно,

$$Y_s(X_t((b,c))) - X_t(Y_s(b,c)) = st(0, \xi \otimes \alpha - \alpha \otimes \xi)$$

и мы получаем, что

$$[u,v] = u \otimes v - v \otimes u.$$

(F)

Пусть $X_t[0,1] o \mathbb{R}^d$ — гладкая кривая, причем $X_0=0$. Положим

$$\mathbb{X}_{0t}^{ij} = \int_0^t X_s^i dX_s^j.$$

Отображение $t \to (1, X_t, \mathbb{X}_{0t})$ является гладкой кривой в $G^{(2)}$ и в локальных координатах записывается в виде

$$b(t) = X_t, \quad c(t) = \frac{1}{2} \left(\int_0^t X_s^i dX_s^j - \int_0^t X_s^j dX_s^i \right).$$

Следовательно,

$$\dot{b} = \dot{X}_t, \quad \dot{c}(t) = \frac{1}{2} (X_t^i \dot{X}_t^j - X_t^j \dot{X}_t^i).$$

Поскольку

$$(1, X_t, X_{0t}) \otimes (0, \dot{X}_t, 0) = (0, \dot{b}, \dot{c} + \frac{1}{2} (\dot{b} \otimes b + b \otimes \dot{b})),$$

то вектор скорости кривой $t \to (1, X_t, \mathbb{X}_{0t})$ принадлежит пространству $dL_q(\{(0, \xi, 0)\})$.

Положим

$$\mathcal{H} = \{(0,\xi,0)\} \subset T_1 G^{(2)}, \quad \mathcal{H}_g = dL_g(\mathcal{H}) \subset T_g G^{(2)}.$$

Предложение 2. Если $\gamma \colon [0,1] \to G^{(2)}$ — гладкая кривая, $\gamma(0) = 1$, и для каждого $t \in [0,1]$ выполнено $\dot{\gamma}(t) \in \mathcal{H}_{\gamma(t)}$, то

$$\gamma(t) = (1, X_t^i, \int_0^t X_s^i dX_s^j).$$

Доказательство. Пусть в локальных координатах кривая задается в виде

$$\gamma(t) = (1, b(t), c(t)), \quad b(0) = 0, \quad c(0) = 0.$$

По условию для каждого $t \in [0,1]$ существует такой вектор $\xi(t) \in \mathbb{R}^d$, что

$$\dot{\gamma}(t) = \gamma(t) \otimes (0, \xi(t), 0).$$

Следовательно, верны равенства

$$\dot{b} = \xi, \quad \dot{c} + \frac{1}{2}(\dot{b} \otimes b + b \otimes \dot{b}) = b \otimes \xi.$$

Заменяя во втором равенстве ξ на \dot{b} , получаем

$$\dot{c} = \frac{1}{2}(b \otimes \dot{b} - \dot{b} \otimes b).$$

По формуле Ньютона-Лейбница

$$b(t) \otimes b(t) = \int_0^t \dot{b}(s) \otimes b(s) + b(s) \otimes \dot{b}(s) ds.$$

Следовательно, справедливо равенство

$$c(t) + \frac{1}{2}b \otimes b = \int_0^t b(s) \otimes \dot{b}(s) ds.$$

Таким образом, в качестве кривой X_t можно взять b(t).

Для завершения доказательства теоремы осталось доказать, что всякий элемент группы $G^{(2)}$ можно соединить с единицей гладкой кривой γ , у которой $\dot{\gamma} \in \mathcal{H}_{\gamma}$.