http://www.math.uni.wroc.pl/~aracz

8 marca 2018 r.

Iteracja Picarda

Zadanie 35. Oblicz pierwsze dwie iteracje Picarda dla zagadnienia $y' = t^2 + y^2$, y(0) = 1.

Zadanie 36. Oblicz pierwsze trzy iteracje Picarda dla zagadnienia $y' = e^t + y^2$, y(0) = 0.

Zadanie 37. Wyprowadź wzór na n-tą iterację Picarda $y_n(x)$ i oblicz jej granicę gdy $n \to \infty$ dla podanych zagadnień Cauchy'ego:

- $b) \quad y' = x + y,$ a) y' = -y, y(0) = 1y(0) = 1
- d) $y' + y^2 = 0$, y(0) = 0c) y' = 2xy, y(0) = 1

Zadanie 38. Oblicz kolejne iteracje Picarda dla zagadnienia Cauchy'ego y'=2t(y+1), y(0)=0 i udowodnij, że zbiegają one do rozwiązania $y(t) = e^{t^2} - 1$.

Zastosowania Twierdzenia Picarda-Lindelöfa

Zadanie 39. Udowodnij, że y(t) = -1 jest jedynym rozwiązaniem zagadnienia

y' = t(1+y), y(0) = -1. (Wsk. zastosuj Lemat Gronwalla.)

Zadanie 40. Dla podanich niżej zagadnień Cauchy'ego udowodnij, że rozwiązanie y = y(t) istnieje na zadanym przedziale. Powtarzając rozumowanie podane na wykladzie udowodnij, że jest to jedyne rozwiazanie.

- $y' = y^2 + \cos t^2$; y(0) = 0; $0 \le t \le 1/2$

- $y' = 1 + y + y^{2} \cos t; \quad y(0) = 0; \quad 0 \le t \le 1/3$ $y' = t + y^{2}; \quad y(0) = 0; \quad 0 \le t \le (1/2)^{2/3}$ $y' = e^{-t^{2}} + y^{2}; \quad y(0) = 0; \quad 0 \le t \le 1/2$ $y' = e^{-t^{2}} + y^{2}; \quad y(1) = 0; \quad 1 \le t \le 1 + \sqrt{e}/2$

Zadanie 41. Czy korzystając z Twierdzenia Picarda-Lindelöfa da się wyliczyć wartość rozwiązania zagadnienia y'(t) = y, y(0) = 0 na całej prostej?

Twierdzenia o istnieniu i jednoznaczności rozwiazań

Zadanie 42. Rozważamy zagadnienie początkowe $y'=t^2+y^2, \quad y(0)=0$. Niech R będzie prostokątem $0 \le t \le a, -b \le y \le b$. Udowodnij poniższe stwierdzenia.

- a) Rozwiazanie tego zagadnienia y(t) istnieje dla $0 \le t \le \min\{a, b/(a^2 + b^2)\}$.
- b) Przy ustalonym a, maksymalną wartością wyrażenia $b/(a^2+b^2)$ jest 1/(2a).
- c) Maksymalna wartość wyrażenia min $\{a, 1/(2a)\}$ jest przyjmowana dla $a = 1/\sqrt{2}$.
- d) Rozwiazanie y(t) istnieje na przedziale $0 \le t \le 1/\sqrt{2}$.

Zadanie 43. Wskaż przedział (możliwie największy), na którym istnieje rozwiązanie zagadnienia:

a) $y' = 2y^2 - t$, y(1) = 1; b) $y' = t + e^y$, y(1) = 0.

Zadanie 44. Uzasadnij, że zagadnienie $y'=1+y^2, \ y(0)=0$ nie ma rozwiazania określonego na całej prostej.

Zadanie 45. Czy wykresy dwóch różnych rozwiązań danego równania mogą się przecinać w pewnym punkcie (t_0, y_0) jeżeli równaniem tym jest:

a) $y' = y^2 + t$, b) $y' = y^{1/2}$?

Wyznacz możliwie wszystkie takie punkty (t_0, y_0) .

Zadanie 46. Znajdź rozwiązanie zagadnienia $y' = t\sqrt{1-y^2}$, y(0) = 1, różne od rozwiązania $y(t) \equiv$ 1. Które z założeń Tw. Picarda-Lindelöfa nie jest spełnione?

Zadanie 47. Wyznaczyć nieskończenie wiele rozwiązań równania $y'=2y^{1/2}$ z warunkiem początkowym y(0) = 0. Które z założeń Tw. Picarda-Lindelöfa nie jest spełnione?

Zadanie 48. Inny dowód uproszczonej wersji Lematu Gronwalla. Niech w(t) bedzie nieujemna ciagła funkcją spełniającą

$$w(t) \leqslant L \int_{t_0}^t w(s) \, ds$$

na odcinku $t_0 \leqslant t \leqslant t_0 + \alpha$. Ponieważ w jest ciągła, istnieje taka stała A, że $0 \leqslant w(t) \leqslant A$ dla wszystkich $t_0 \leq t \leq t_0 + \alpha$.

- a) Udowodnij, że $w(t) \leq LA(t-t_0)$.
- b) Użyj tego oszacowania do dowodu, że $w(t) \leq AL^2(t-t_0)^2/2$.
- c) Pokaż indukcyjnie, że $w(t) \leq AL^n(t-t_0)^n/n!$.
- d) Udowodnij, że w(t) = 0 dla $t_0 \le t \le t_0 + \alpha$.

Metody iteracyjne

Zadanie 49. Wzorując się na dowodzie Twierdzenia Picarda-Lindelöfa, udowodnić następujące twierdzenie: Załóżmy, że f(x) i f'(x) są ciągłe na odcinku $a \leqslant x \leqslant b$ oraz $|f'(x)| \leqslant \lambda < 1$ na tym odcinku. Załóżmy dodatkowo, że ciąg zdefiniowany rekurencyjnie $x_{n+1} = f(x_n)$ spełnia: $x_n \in [a, b]$ dla wszystkich n=0,1,2,3,... Przy tych założeniach ciąg x_n zbiega, gdy $n\to\infty$, do jedynego rozwiązania równania: x = f(x).

Wskazówka. Przeprowadzić dowód według następującego schematu:

1. Opierając się na Twierdzeniu o Wartości Średniej, udowodnić, że

$$|x_n - x_{n-1}| = |f'(\xi)(x_{n-1} - x_{n-2})| \le \lambda |x_{n-1} - x_{n-2}|$$

dla pewnej stałej $\xi \in [a, b]$.

- 2. Indukcyjnie pokazać, że $|x_n-x_{n-1}| \le \lambda^{n-1}|x_1-x_0|$. 3. Udowodnić zbieżność szeregu $\sum_{n=1}^{\infty} (x_n-x_{n-1})$.
- 4. Zapisując x_n w postaci sumy teleskopowej udowodnić, że $\lim_{n\to\infty} x_n = y$ dla pewnego $y \in [a,b]$.
- 5. Jednoznaczność rozwiązania wywnioskować z równości:

$$y_1 - y_2 = f(y_1) - f(y_2) = f'(\xi)(y_1 - y_2)$$

dla pewnego ξ leżącego pomiedzy y_1 i y_2 .

Zadanie 50. Udowodnij, że ciąg iteracji $x_0, x_{n+1} = 1 + (1/2) \operatorname{arc} \operatorname{tg} x_n$ zbiega do jedynego rozwiązania równania $x = 1 + (1/2) \operatorname{arc} \operatorname{tg} x$.

Zadanie 51. Udowodnij, że równanie $x = \sin x + 1/4$ ma jedyne rozwiązanie na odcinku $[\pi/4, \pi/2]$. Udowodnij, że ciąg iteracji $x_0 \in [\pi/4, \pi/2], x_{n+1} = \sin x_n + 1/4$ zbiega do tego rozwiązania.

Zadanie 52. Załóżmy, że y jest rozwiązaniem równania $x = \sin x + 1/4$.

- a) Niech $x_0 = \pi/4$. Udowodnij, że potrzeba 20 iteracji aby wyznaczyć y z dokładnością 8 miejsc po przecinku.
- b) Niech $x_0 = 3\pi/8$. Udowodnij, że potrzeba 16 iteracji aby wyznaczyć y z dokładnością 8 miejsc po przecinku.

Andrzej Raczyński