

Thesis submitted to obtain the title of Doctor of Philosophy

Doctoral School of Engineering Science Field: Computer Science

Real-time Soft Tissue Modelling on GPU for Medical Simulation

Prepared by Olivier COMAS at INRIA Lille, SHAMAN Team and CSIRO ICT Brisbane, EAHRC

Defended on the 00^{th} of December 2010

Jury:

Reviewers: Bernard - INRIA (Shaman)
Bernard - INRIA (Shaman)

Bernard - INRIA (Shaman)

Real-time Soft Tissue Modelling on GPU for Medical Simulation

Prepared by Olivier COMAS at INRIA Lille, SHAMAN Team and CSIRO ICT Brisbane, EAHRC

Defended on the 00^{th} of December 2010

Jury:

Reviewers: Bernard - INRIA (Shaman)

Bernard - INRIA (Shaman)

Advisor:Stéphane COTIN-INRIA (Shaman)President:Bernard-INRIA (Shaman)Examinators:Bernard-INRIA (Shaman)

Bernard - INRIA (Shaman)

Contents

C	Contents			
Ι	\mathbf{Int}	roduction	1	
1	Me	dical simulation	3	
	1.1	General context and goal: medical training, patient-specific planning and per-operative guidance	3	
	1.2	Challenges (trade-off between accuracy and real-time)	3	
2	One	e key point in medical simulation: soft-tissue modelling	5	
	2.1	Necessary background in continuum mechanics	5	
		2.1.1 Deformation tensor and strain tensor	5	
		2.1.2 Stress and constitutive laws	5	
	2.2	Tissue characterisation	5	
		anisotropic)	5	
		2.2.2 Measure/estimation of model parameters	5	
3	Ma	in principles of Finite Element Method (or how to solve equa-		
	tion	ns of continuum mechanics from previous section)	7	
	3.1	Discretisation	7	
	3.2	Derivation of element equations	7	
	3.3	Assembly of element equations	7	
	3.4	Solution of global problem	7	
II	So	olid organs modelling	9	
4	Sta	te of art: FEM	11	
5	Lin	${ m ear}$ not accurate $=>$ Non-linear FEM $=>$ Introduction of	f	
	TLI	$\mathbf{E}\mathbf{D}$	13	
	5.1	Differences with classic FEM and reasons of its efficiency	13	
	5.2	Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009) .	13	
6	GP	U implementation of TLED	15	
	6.1	What is GPGPU	15	
	6.2	Re-formulation of the algorithm for its Cg implementation	15	
	6.3	CUDA implementation/optimisations (ISBMS 2008a)	15	

<u>ii</u> Contents

7	Imp 7.1 7.2	Presentation in SOFA project and architecture	17 17 17		
II	I F	Hollow organs modelling	19		
8	Sta	te of art: hollow structures	21		
	8.1 8.2	Non-physic approaches (computer graphics stuff)	21 21		
9	Col	onoscopy simulator project	23		
	9.1	Project introduction	23		
	9.2	Mass-spring model for colon implemented on GPU (ISBMS 2008b) $$.	23		
10 More accurate: a co-rotational triangular shell model (ISBMS 2010)					
		Model description	25 25		
	10.2	Validation	25		
	10.3	Application to implant deployment simulation in cataract surgery	25		
11 'Shell meshing' technique (MICCAI 2010)					
		State of art: reconstruction/simplification	27		
	11.2	Our method	27		
12	12 Applications to medical simulation				
	12.1	Nice medical stuff to show	29		
	12.2	Interaction solid/hollow organs	29		
IV	7	Conclusion	31		
Re	References				

Part I

Introduction

Ordit.

MEDICAL SIMULATION

- 1.1 General context and goal: medical training, patientspecific planning and per-operative guidance
- 1.2 Challenges (trade-off between accuracy and real-time)

ONE KEY POINT IN MEDICAL SIMULATION: SOFT-TISSUE MODELLING

- 2.1 Necessary background in continuum mechanics
- 2.1.1 Deformation tensor and strain tensor
- 2.1.2 Stress and constitutive laws
- 2.2 Tissue characterisation
- 2.2.1 Material models for organs (non-linear, visco-elastic and anisotropic)
- 2.2.2 Measure/estimation of model parameters

MAIN PRINCIPLES OF FINITE ELEMENT METHOD (OR HOW TO SOLVE EQUATIONS OF CONTINUUM MECHANICS FROM PREVIOUS SECTION)

- 3.1 Discretisation
- 3.2 Derivation of element equations
- 3.3 Assembly of element equations
- 3.4 Solution of global problem

Part II

Solid organs modelling

STATE OF ART: FEM

Orall Jersjon

LINEAR NOT ACCURATE => NON-LINEAR FEM => INTRODUCTION OF TLED

- 5.1 Differences with classic FEM and reasons of its efficiency
- 5.2 Visco-elasticity and anisotropy added (MICCAI 2008; MedIA 2009)

GPU IMPLEMENTATION OF TLED

- 6.1 What is GPGPU
- 6.2 Re-formulation of the algorithm for its Cg implementation
- 6.3 CUDA implementation/optimisations (ISBMS 2008a)

IMPLEMENTATION IN SOFA

- 7.1 Presentation of SOFA project and architecture
- 7.2 Implementation in SOFA and TLED released in open-source

Dr. alt Jerejon

Part III

Hollow organs modelling

STATE OF ART: HOLLOW STRUCTURES

- 8.1 Non-physic approaches (computer graphics stuff)
- 8.2 Physically accurate approches (plates/shells)

$_{\text{CHAPTER}}\,9$

COLONOSCOPY SIMULATOR PROJECT

- 9.1 Project introduction
- 9.2 Mass-spring model for colon implemented on GPU (ISBMS 2008b)

MORE ACCURATE: A CO-ROTATIONAL TRIANGULAR SHELL MODEL (ISBMS 2010)

- 10.1 Model description
- 10.2 Validation
- 10.3 Application to implant deployment simulation in cataract surgery

'SHELL MESHING' TECHNIQUE

(MICCAI 2010)

- 11.1 State of art: reconstruction/simplification
- 11.2 Our method

Orall Jersjoth

APPLICATIONS TO MEDICAL SIMULATION

- 12.1 Nice medical stuff to show
- 12.2 Interaction solid/hollow organs

Orall Jergioth

Part IV

Conclusion

Otgit

References

Digit Tekejou