Rootfinding with Chebyshev Polynomials in 2 Dimensions

Lucas C. Bouck

George Mason University
Department of Mathematical Sciences

August 2, 2017

SURF Colloquium

National Institute of Standards and Technology

Boulder, CO

Collaborator: Ian H. Bell (NIST Division 647)

Outline

The Problem

2 What are Chebyshev Polynomials and why use them?

2 What are Chebyshev Polynomials and why use them?

Global 2-D Rootfinding Problem

We want to find all solutions to

$$\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

in a given bounded domain Ω

The Big Picture: chebtools

- chebtools is a C++ library for working with Chebyshev expansions developed by Ian Bell
- Inspired by the Matlab library chebfun
- Solving this problem will be a significant feature for chebtools
- With a higher level Python interface, chebtools could be useful for a wide range of users

Example

$$f(x,y)=x^2-y^2$$
 and $g(x,y)=\sin\left(\pi\sqrt{x^2+y^2}\right)$ with the square domain $\Omega=[-1,1]^2$

Example (cont.)

Another view: We are finding where f and g's zero level sets intersect inside Ω

Local Methods May Not Be Good for Global rootfinding

There are actually infinitely many roots outside Ω in our example. Local methods may converge to roots outside the domain of interest.

Figure: Initial guesses in white areas did not converge to roots in Ω

A Need for a Global Method

Our example illustrates a few lessons

- Many iterative and local methods like Newton's method can only guarantee convergence to a root if the initial guess is sufficiently close
- Sufficiently close depends on the problem
- ullet This may be extremely close for some roots like (0,0) in our example

Goal:

To develop a truly global rootfinding method

2 What are Chebyshev Polynomials and why use them?

What are Chebyshev polynomials?

Chebyshev polynomials

$$T_n(x) = \cos(n \arccos(x)), x \in [-1, 1]$$

Orthogonal under a weighted inner product:

$$\int_{-1}^1 T_n(x) T_k(x) w(x) dx = 0$$

when
$$n \neq k$$

and $w(x) = \frac{1}{\sqrt{1-x^2}}$

Numerically stable for interpolating functions

Figure: First 5 Chebyshev Polynomials

Chebyshev polynomials are numerically stable

- Interpolation on evenly spaced points is susceptible to the Runge phenomenon
- Chebyshev interpolation minimizes this effect.

Figure: Interpolating $\frac{1}{1+25x}$

2 What are Chebyshev Polynomials and why use them?

2-D Interpolation

Idea:

- Pick point of maximum error
- Do 1-D interpolations in x and y directions

Our Algorithm Can Provide Accurate Approximations

- Almost machine precision accuracy with $x^2 y^2$
- Struggles with $\sin\left(\pi\sqrt{x^2+y^2}\right)$ due to the lack of differentiability at (0,0)

Bézout Matrix Polynomials

We create a matrix polynomial B(x) from our Chebyshevs

- B(x) is a matrix with polynomial entries
- $det(B(x)) = 0 \iff common roots along the specific x value$
- Solving det(B(x)) = 0 is a matrix polynomial eigenvalue problem

1-D Rootfinding and Local Refinement

1-D Rootfinding

- We now have the possible x values for where there are common roots
- We employ a well known 1-D rootfinding method again using Chebyshev Polynomials

Problem: Poor conditioning of matrix polynomial problem

- Need for local refinement of roots
- Refine the roots with Newton's method

Results:

Conclusions and Future Work

Key Contributions:

- Made significant progress in replicating the 2-D rootfinding algorithm in chebfun with some modifications in C++11, which will be fully open source
- Developed ideas and have a strategy for extending the algorithm to non-rectangular domains

Future Work:

- Further develop ideas on non-rectangular domains and subdivision strategies
- Introduce GPU/parallel computing to the rootfinding process

Other Contributions while at NIST:

 Idea for using Gram-Schmidt process to create orthogonal terms for developing equations of state

Acknowledgements

- Dr. Ian Bell for the mentorship and guidance
- Dr. Bradley Alpert for the lively discussions and brainstorming
- The SURF program

References

References here