2257. Count Unguarded Cells in the Grid

This problem is about counting the number of "unguarded" cells in a grid where some cells contain guards, some contain walls, and the guards "watch" cells in the four cardinal directions until blocked by either another guard or a wall. Let's break down my solution step-by-step:

1. Setup the Grid:

- grid is a 2D list (a grid) of size m x n, initialized to 0. Each cell in grid will represent a cell's status:
 - means an unguarded cell,
 - o means a cell with a guard,
 - means a cell with a wall,
 - 3 means a cell guarded by a guard.

2. Place Guards and Walls:

- The code loops over the list of guards and walls and places them in the
 grid:
 - Guards are marked with 1 in the respective cells,
 - Walls are marked with 2 in their cells.

3. Mark Guarded Cells:

- The function mark_guarded takes a guard's position (r, c) and marks cells in the four directions (down, up, right, left) as guarded (set to 3) until a wall or another guard is encountered.
 - Each direction is checked one at a time:
 - **Downward** (for row in range(r+1, m)): goes down from (r, c) until it finds a wall or guard, marking cells as 3.
 - **Upward** (for row in reversed(range(0, r))): goes up from (r, c), marking cells as guarded.
 - **Rightward** (for col in range(c+1, n)): goes right until blocked.
 - **Leftward** (for col in reversed(range(0, c))): goes left until blocked.

4. Mark All Guarded Cells:

 After defining mark_guarded, the code loops through all guard positions and calls mark_guarded for each guard, updating the grid with all guarded cells.

5. Count Unguarded Cells:

• Finally, the code counts all cells that remain (ungarded) by looping through each row of grid. For each cell equal to , it increments res (the result count).