# Pandit Deendayal Energy University Computational Engineering Laboratory Matlab Case study Report

Ву,

Vora Khyaat Darshan (21BME118D) Narinder Singh Bhadwal (21BME006)

Under the Guidance of Dr Annirudh Kulkarni



School of Technology
Pandit Deendayal Energy University
Gandhinagar-382426

March - April 2024

## Case Study 1

#### **Problem Statement:-**

To Solve a problem on Heat Transfer of Natural Convection in H – Shaped Cavity.

#### **Derivation:**-

As Per the Source of paper

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho_{lmf}}\frac{\partial p}{\partial x} + \frac{\mu_{lmf}}{\rho_{lmf}}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) \tag{2}$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho_{lmf}}\frac{\partial p}{\partial y} + \frac{\mu_{lmf}}{\rho_{lmf}} \left( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + g\beta_{T,lmf} (T - T_c) + g\beta_{c,lmf} (c - c_c)$$
(3)

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha_{hnf} \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \tag{4}$$

$$u\frac{\partial c}{\partial x} + v\frac{\partial c}{\partial y} = D\left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2}\right) \tag{5}$$

Introducing the following dimensionless variables:

$$U = \frac{uL}{\alpha_f}, V = \frac{vL}{\alpha_f}, \theta = \frac{(T - T_c)}{\Delta T}, C = \frac{(c - c_c)}{\Delta c}, P = \frac{pL^2}{\rho_f \alpha_f^2}$$

$$\tag{6}$$

The non-dimensional shape of governing equations becomes:

$$U\frac{\partial U}{\partial X} + V\frac{\partial U}{\partial Y} = -\frac{\rho_f}{\rho_{hnf}}\frac{\partial P}{\partial X} + \Pr\frac{\rho_f}{\rho_{hnf}}\frac{\mu_{hnf}}{\mu_f}\left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2}\right) \tag{7}$$

$$U\frac{\partial V}{\partial X} + V\frac{\partial V}{\partial Y} = -\frac{\rho_f}{\rho_{hnf}}\frac{\partial P}{\partial Y} + \Pr\frac{\rho_f}{\rho_{hnf}}\frac{\mu_{hnf}}{\mu_f}\left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2}\right) + \frac{\beta_{hnf}}{\rho_{hnf}}Ra\Pr(\theta + NC)$$
(8)

$$U\frac{\partial\theta}{\partial X} + V\frac{\partial\theta}{\partial Y} = \frac{\left(k_{hnf}/k_{f}\right)}{\left(\left(\rho C_{p}\right)_{hnf}/\left(\rho C_{p}\right)_{f}\right)} \left(\frac{\partial^{2}\theta}{\partial X^{2}} + \frac{\partial^{2}\theta}{\partial Y^{2}}\right) \tag{9}$$

$$U\frac{\partial C}{\partial X} + V\frac{\partial C}{\partial Y} = \frac{1}{Le} \left( \frac{\partial^2 C}{\partial X^2} + \frac{\partial^2 C}{\partial Y^2} \right) \tag{10}$$

Where:

$$Ra = \frac{g\beta_f \Delta T L^3}{\nu_f \alpha_f}, \text{Pr} = \frac{u_f}{\alpha_f}, \text{Le} = \frac{\alpha_f}{D}$$
 (11)

Boundary conditions:

Bottom wall: 
$$\frac{\partial \theta}{\partial Y} = 0, U = 0, V = 0, \Psi = 0, \frac{\partial C}{\partial Y} = 0$$

Bottom rib: 
$$\frac{\partial \theta}{\partial n} = -1, U = 0, V = 0, \Psi = 0, \frac{\partial C}{\partial n} = -1$$

Right and left walls:  $\theta = 0, U = 0, V = 0, \Psi = 0, C = 0$ 

Top wall: 
$$\frac{\partial \theta}{\partial Y} = 0, U = 0, V = 0, \Psi = 0, \frac{\partial C}{\partial Y} = 0$$

Top rib: 
$$\frac{\partial \theta}{\partial n} = -1, U = 0, V = 0, \Psi = 0, \frac{\partial C}{\partial n} = -1$$

Baffle: 
$$\frac{\partial \theta}{\partial u} = -1$$
,  $U = 0$ ,  $V = 0$ ,  $\Psi = 0$ ,  $\frac{\partial C}{\partial u} = -1$  (12)

The target physical parameters in this paper are the local Nusselt and Sherwood numbers. These parameters are defined as:

$$Nu = \left(\frac{k_{hnf}}{k_f}\right) \left(\frac{1}{\theta}\right) \tag{13}$$

$$Sh = \left(\frac{1}{C}\right) \tag{14}$$

And the average ones are:

$$Nu_{avg} = \frac{1}{s} \int Nu.ds \tag{15}$$

$$Sh_{avg} = \frac{1}{s} \int Sh.ds \tag{16}$$

Where s is the length of the bottom rib.

K,  $(\rho C_p)$ ,  $\mu$ ,  $(\rho \beta)$ , and  $\rho$  of hybrid nanoliquid could be represented as:

$$\frac{k_{hnf}}{k_f} = \left[ (1 - \lambda) \varphi \left( k_f - k_s \right) + k_s - (1 - \lambda) k_f \right] \times \left[ k_s - (1 - \lambda) k_f + \varphi \left( k_f - k_s \right) \right]^{-1}$$
(17)

$$(\rho C_p)_{lmf} = \varphi_{Cu} (\rho C_p)_{Cu} + \varphi_{Al_2O_3} (\rho C_p)_{Al_2O_3} + (1 - \varphi) (\rho C_p)_f$$
(18)

$$\mu_{hnf} = (1 - \varphi)^{-2.5} \mu_f \tag{19}$$

$$(\rho\beta)_{hnf} = (1 - \varphi)(\rho\beta)_f + \varphi_{Cu}(\rho\beta)_{Cu} + \varphi_{Al_2O_3}(\rho\beta)_{Al_2O_3}$$
(20)

$$\rho_{hnf} = (1 - \varphi)\rho_f + \varphi_{Cu}\rho_{Cu} + \varphi_{A_2O_3}\rho_{A_2O_3} \tag{21}$$

And the correlations of entropy generation would be as:

$$S_{gen} = S_{HT} + S_{FF} + S_{Mass} \tag{22}$$

In which

$$S_{HT} = \frac{k_{lnf}}{k_f} \left( \left( \frac{\partial \theta}{\partial X} \right)^2 + \left( \frac{\partial \theta}{\partial Y} \right)^2 \right) \tag{23}$$

11

$$S_{FF} = \varphi_1 \frac{\mu_{hnf}}{\mu_f} \left[ 2 \left( \frac{\partial V}{\partial Y} \right)^2 + 2 \left( \frac{\partial U}{\partial X} \right)^2 + \left( \frac{\partial U}{\partial Y} + \frac{\partial V}{\partial X} \right)^2 \right]$$
 (24)

$$S_{Mass} = \varphi_2 \left( \left( \frac{\partial C}{\partial X} \right)^2 + \left( \frac{\partial C}{\partial Y} \right)^2 \right) + \varphi_3 \left( \frac{\partial C}{\partial X} \frac{\partial \theta}{\partial X} + \frac{\partial C}{\partial Y} \frac{\partial \theta}{\partial Y} \right)$$
 (25)

And the Bejan number is:

$$Be = \frac{S_{HT} + S_{Mass}}{S_{gen}} \tag{26}$$

# **Equations (Our Source (Handwritten))**

|          | Case Study -   Equation                                                                                                                                                                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *        | The domination the the equation was read :-                                                                                                                                                                                               |
| D        | Covering equations:                                                                                                                                                                                                                       |
|          | To represente conservation of Mara.                                                                                                                                                                                                       |
|          | Marier Stokes equation -                                                                                                                                                                                                                  |
|          | $3\left(\frac{\partial v}{\partial t} + V \cdot \nabla v\right)$                                                                                                                                                                          |
|          | = - TP + M J2V+3g.  It's represente the Conservation Momentum                                                                                                                                                                             |
| 3)       | Energy equations:                                                                                                                                                                                                                         |
| 0        | Jt's represents the Konservation of energy.                                                                                                                                                                                               |
| *        | Assumption and Simplification:                                                                                                                                                                                                            |
| •        | Steady Hate Condition: $3 = 0$ Incompressible blace: $\nabla \cdot V = 0$ Boussiness approximation (devity cariation with temperature): $S = So(1-B(T-To))$ Neighbours discours discipation: Negliting the viscours term $\mu \nabla^2 V$ |
| (vision) | Content third proportion: g, H, K and Cp are content Shot on OnePlus Within the Jamain. Khyaat                                                                                                                                            |

#### Code

```
title('Temperature Distribution in H-Shaped Cavity');
% Parameters
L = 1; % Length of cavity
W = 1; % Width of cavity
H = 0.1; % Height of cavity
T_hot = 100; % Temperature of hot wall
T_cold = 0; % Temperature of cold walls
nx = 51; % Number of grid points in x-direction
ny = 51; % Number of grid points in y-direction
dx = L/(nx-1); % Grid spacing in x-direction
dy = W/(ny-1); % Grid spacing in y-direction
max_iter = 1000; % Maximum number of iterations
tolerance = 1e-5; % Convergence tolerance
% Initialization
T = ones(nx, ny) * T_cold; % Initialize temperature array
% Main loop (iterate until convergence)
for iter = 1:max_iter
    % Boundary conditions
    T(:,1) = T_cold; % Left cold wall
    T(:,end) = T_cold; % Right cold wall
    T(1,:) = T_hot; % Hot wall
    % Compute temperature field using simple averaging
    T \text{ new} = T;
    for i = 2:nx-1
        for j = 2:ny-1
            % Average of neighboring points
            T_{\text{new}}(i,j) = 0.25*(T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1));
        end
    end
    % Check for convergence
    if max(abs(T_new(:) - T(:))) < tolerance
        disp(['Converged at iteration ', num2str(iter)]);
        break;
    end
```

```
% Update temperature array
T = T_new;
end
% Plotting the results
[X, Y] = meshgrid(linspace(0,L,nx), linspace(0,W,ny));
contourf(X, Y, T', 50, 'LineColor', 'none');
colorbar;
xlabel('x');
vlabel('v');
```

#### **Results:-**



# Case Study 2

# **Problem Statement:-**

To Update the code on the problem on Heat Transfer of Natural Convection in H – Shaped Cavity.

### **Derivations: -**

|         | Case Study 2 Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| *       | To derice the equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| -5      | Crowning equations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|         | Start with the continuity equations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 6       | $\frac{\partial x}{\partial u} + \frac{\partial y}{\partial v} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 7       | By using Marier-Stokes equations (momentum equation):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|         | $\frac{\partial y}{\partial t} + y \frac{\partial y}{\partial x} + v \frac{\partial y}{\partial y} = -\frac{1}{3} \frac{\partial l}{\partial x} + v \left( \frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} \right) + \frac{\partial^2 x}{\partial x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         | $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \frac{1}{9} \frac{\partial r}{\partial y} + v \left( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + 9y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| 0       | Then, $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} = \partial^$ |  |  |  |  |  |  |
|         | $\frac{\partial T}{\partial t} + y \frac{\partial T}{\partial x^2} + \omega \frac{\partial T}{\partial y^2} = Or\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 4,33,41 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

#### Code:-

```
% Parameters
L = 1;
                   % Length of cavity
W = 1;
                   % Width of cavity
H = 0.1;
                   % Height of cavity
T_{hot} = 100;
                 % Temperature of hot wall
 T_{cold} = 0;
                  % Temperature of cold walls
nx = 51;
                  % Number of grid points in x-direction
 ny = 51;
                   % Number of grid points in y-direction
dx = L/(nx-1); % Grid spacing in x-direction
 dy = W/(ny-1); % Grid spacing in y-direction
max_iter = 100; % Maximum number of iterations
 tolerance = 1e-5;% Convergence tolerance
alpha = 0.1;
                 % Thermal diffusivity
% Initialize temperature array
 T = ones(nx, ny) * T_cold;
% Set up VideoWriter object
 writerObj = VideoWriter('temperature_evolution.avi'); % Specify the file name
writerObj.FrameRate = 10; % Set the frame rate
% Open the video writer object
 open(writerObj);
% Create a figure for animation
 figure;
 % Main loop (iterate until convergence)
 for iter = 1:max_iter
     % Boundary conditions
     T(:,1) = T_{cold};
                                     % Left cold wall
     T(:,end) = T_cold;
                                     % Right cold wall
     T(1,:) = T_hot;
                                      % Hot wall
     \label{total formula for the total formula} T(\mbox{ceil(end/2-round(H/(2*dy))):floor(end/2+round(H/(2*dy))), end)} = T_{\mbox{cold}}; \mbox{$\%$ Middle cold wall}
     % Compute temperature field using finite difference method
     T_new = T;
for i = 2:nx-1
          for j = 2:ny-1
           % Finite difference equation  T_{\text{new}(i,j)} = T(i,j) + \text{alpha * ( } (T(i+1,j) - 2*T(i,j) + T(i-1,j))/dx^2 + (T(i,j+1) - 2*T(i,j) + T(i,j-1))/dy^2 ); 
       end
   % Check for convergence
   if max(abs(T_new(:) - T(:))) < tolerance
       disp(['Converged at iteration ', num2str(iter)]);
       break;
   % Update temperature array
   T = T_new;
   % Plot the current temperature distribution in 3D
   [X, Y] = meshgrid(linspace(0, L, nx), \ linspace(0, W, ny));
    surf(X, Y, T', 'EdgeColor', 'none');
   colorbar;
xlabel('x');
   title(['Iteration: ', num2str(iter)]);
axis([0 L 0 W 0 100]); % Set axis limits for consistency
   % Capture the frame
   frame = getframe(gcf);
   % Write the frame to the video file
   writeVideo(writerObj, frame);
% Close the video writer object
close(writerObj);
```

## **Results:-**

