COGNOME NOME MATRICOLA

Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. *Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI.* 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

- 1. Rispondere alle seguenti domande fornendo una giustificazione di una riga:
 - a. E vero che se E è il campo di spezzamento di un polinomio $f \in F[x]$ di grado n, allora lordine del gruppo degli automorfismi $\operatorname{Aut}(E/F)$ è minore di n!?
 - b. E' vero che un estensione E di F può contenere sia elementi algebrici che trascendenti su F?
 - c. Sia q un numero razionale. E' vero che tan $q\pi$, se definito, è algebrico?
 - d. Fornire un esempio di estensione infinita algebrica.
- 2. Calcolare il polinomio minimo di $1/\gamma$ e di $1/(\gamma+2)$ nel campo $\mathbf{Q}[\gamma], \gamma^4=4\gamma+1$.
- 3. Sia $\Phi_n(X) \in \mathbf{Q}[X]$ il polinomio minimo di $e^{2\pi i/n}$, si dimostrino le seguenti proprietà:
 - a. Se p è primo, $\Phi_p(X) = (X^p 1)/(X 1)$
 - b. Se $\alpha \ge 1$, $\Phi_{p^{\alpha}}(X) = \Phi_{p}(X^{p^{\alpha-1}})$
 - c. Se n è dispari, $\Phi_{2n}(X) = \Phi_n(-X)$
- 4. Sia E us estensione di grado 3 di \mathbf{Q} . Dimostrare che:
 - a. Esiste un polinomio $f(X) \in \mathbb{Q}[X]$ irriducibile di grado tre tale che $E \cong \mathbb{Q}[\beta], f(\beta) = 0$
 - b. Dimostrare che ogni ogni elemento di $\mathbb{Q}[\beta]$ si può scrivere nella forma $(a+b\beta)/(c+d\beta)$ dove $a,b,c,d\in\mathbb{Q}$.
- 5. Sia K il campo di spezzamento del polinomio $x^4 2 \in \mathbf{Q}[x]$.
 - a. Determinare $\alpha \in \mathbf{C}$ tale che $K = \mathbf{Q}(\alpha)$.
 - b. Sia $G = \operatorname{Aut}(K/\mathbb{Q})$. Determinare l'ordine di G dimostrando che G non è abeliano e descrivendone gli elementi.
- 6. Dopo aver definito la nozione di campo perfetto, si forniscano esempi di campi perfetti e di campi non perfetti.
- 7. Descrivere la nozione di punti costruibili del piano.
- 8. Sia $K = \mathbf{Q}[\zeta], \zeta^2 + \zeta + 1 = 0.$
 - a. Calcolare il polinomio minimo di $i + \sqrt{5} + \sqrt{3}$ su K.
 - b. Determinare i $\mathbf{Q}(\sqrt{5})$ -omomorfismi di K.