Exact results for Class S_k

Thomas Bourton

DESY

SCGSC 2018

Based on [hep-th/1712.01288]

Motivation

Exact results for 4d $\mathcal{N}=2$ & Class \mathcal{S}

 $\mathcal{N}=1$ theories & Class \mathcal{S}_k Class \mathcal{S}_k construction Some known results The instanton partition function Relation to 2d CFT

Motivation

Exact results for 4d $\mathcal{N}=2$ & Class \mathcal{S}

 $\mathcal{N}=1$ theories & Class \mathcal{S}_k Class \mathcal{S}_k construction Some known results The instanton partition function Relation to 2d CFT

Seiberg-Witten theory

► Low energy effective action encoded in algebraic curve. [Seiberg, Witten '94]

Gaiotto classification: Class ${\cal S}$

- ► Compactify 6d $\mathcal{N}=(2,0)$ SCFT (stack of N M5 branes) on a torus [Vafa '94]
- ▶ Gives rise to 4d $\mathcal{N}=$ 4 Super Yang-Mills theory. Gauge coupling $\tau=$ torus complex structure
- ▶ $\mathbb{SL}(2,\mathbb{Z})$ S-duality Group = Modular transformations of torus!

- More generally: Compactify 6d (2,0) on Riemann surface C [Gaiotto '09] [Gaiotto, Moore, Neitzke '09]
- ▶ Rephrase field theory operations as operations on C. e.g. Generalised S-duality frames \leftrightarrow Pair of Pants decomposition

 $\mathcal{C} = \text{four punctured sphere} \Leftrightarrow \mathcal{N} = 2 \text{ SQCD}$

Localisation techniques

- Exact evaluation of full path integral on various manifolds e.g. S⁴, S¹ × S³. [Pestun '07] [Romelsberger '05] [Kinney, Maldacena, Minwalla, Raju '05] [...]
- ▶ Idea of Localisation: $S \to S + t \int d^4x \, QV$

$$Z_{\mathbb{S}^4}(t) = \int d\mu \, e^{-S-t \int d^4 x \, \mathcal{Q}V} \,, \quad \partial_t Z_{\mathbb{S}^4}(t) = 0$$

$$t \to \infty$$

 $ightharpoonup \mathbb{S}^4$ partition function localises on instanton configurations $F=\pm\star F$

$$Z_{\mathbb{S}^4} = \int d\mathbf{a} \, Z_{1\text{-loop}}(\mathbf{a}) |Z_{\text{inst}}(\mathbf{a})|^2$$

Nekrasov's instanton counting [Nekrasov '02]: path integral $Z_{\rm inst}^{(K)}$ over all instanton configurations with topological number $K = \frac{1}{4\pi^2} \int {\rm tr} \, F \wedge F$

$$Z_{\mathrm{inst}}(\mathbf{a}) = \sum_{K=0}^{\infty} \mathbf{q}^K Z_{\mathrm{inst}}^{(K)}, \quad Z_{\mathrm{inst}}^{(K)} = \int_{\mathcal{M}_{\mathrm{inst}}^{(K)}} d\mu \, e^{-S_{\mathrm{inst}}^{(K)}}$$

 $ightharpoonup Z_{1-loop}$ quadratic fluctuations around each saddle point

AGT(W)-correspondence

lacktriangle Protected quantities often computed by a 2d QFT on ${\cal C}$

S⁴ partition function

- Computed by correlator of 2d Liouville/Toda CFT. [Alday, Gaiotto, Tachikawa '09] [Wyllard '09]
- ▶ Instanton partition function Z_{inst} = Conformal blocks of Liouville/Toda. Z_{1-loop} = three point function coefficients

$\mathbb{S}^1 \times \mathbb{S}^3$ partition function (superconformal index)

► Equal to a correlator of a 2d TQFT. [Gadde, Pomoni, Rastelli, Razamat '09]

Motivation

Exact results for 4d $\mathcal{N}=2$ & Class \mathcal{S}

 $\mathcal{N}=1$ theories & Class \mathcal{S}_k Class \mathcal{S}_k construction Some known results The instanton partition function Relation to 2d CFT

Class S_k

Natural generalisation of Class ${\cal S}$

Instead: Compactify a 6d $\mathcal{N}=(1,0)$ on \mathcal{C} .

- ▶ The 6d $\mathcal{N} = (1,0)$ theory we use is a \mathbb{Z}_k orbifold of the 6d $\mathcal{N} = (2,0)$ theory [Gaiotto, Razamat '15]
- ▶ The \mathbb{Z}_k breaks supersymmetry by 1/2, leaving $\mathcal{N}=1$ in 4d

	\mathbb{C}^2				\mathcal{C}			\mathbb{S}^1			
N M5	_	_	_	_	_	_	•				
\mathbb{Z}_k		•	•		•		×	×	×	×	•

$$\mathbb{Z}_k: (v_\perp, w_\perp) \mapsto (e^{2\pi i/k} v_\perp, e^{-2\pi i/k} w_\perp)$$

lacksquare 4d theories again classified by punctured Riemann surfaces ${\cal C}$

Example

C = four punctured sphere

▶ For k = 2 - $\mathcal{N} = 1$ superconformal quiver

 $lacksquare W \simeq \left(Q\Phi\widetilde{Q} - \widetilde{Q}\Phi Q
ight) - rac{i au}{8\pi^2}\operatorname{tr} W^lpha W_lpha$

Motivation

Exact results for 4d $\mathcal{N}=2$ & Class \mathcal{S}

 $\mathcal{N}=1$ theories & Class \mathcal{S}_k

Class S_k construction

Some known results

The instanton partition function Relation to 2d CFT

Some known results for Class \mathcal{S}_k

$\mathbb{S}^3 \times \mathbb{S}^1$ partition function (superconformal index)

- Can be computed via localisation
- lacksquare First example of 2d/4d relation for $\mathcal{N}=1$
- It may be computed as a correlator in a TQFT

S⁴ partition function

- No localisation computation so far
- ▶ For $\mathcal{N}=1$: regularisation ambiguities scheme dependent. [Gerchkovitz, Gomis, Komargodski '14]
- ▶ Derivatives of the free energy $F_{\mathbb{S}^4}$ are universal (for $\mathcal{N}=1^*$ theory) [Bobev, Elvang, Kol, Olson, Pufu '16]

Some known results for Class \mathcal{S}_k

Z_{inst} ?

- ▶ Z_{inst} played an important role in $\mathcal{N}=2~\mathbb{S}^4$ partition function.
- Instantons in susy gauge theories can be embedded within string theory we can use this to compute Z_{inst}

Motivation

Exact results for 4d $\mathcal{N}=2$ & Class \mathcal{S}

 $\mathcal{N}=1$ theories & Class \mathcal{S}_k

Class S_k construction Some known results

The instanton partition function

Relation to 2d CFT

$$\mathcal{N}=2$$
 SCQCD and D p -D $(p-4)$ system

String theory construction

▶ $\mathcal{N} = 2$ SQCD can be embedded in Type IIA [Witten '97]

		\mathbb{C}	2		\mathbb{R}^2		\mathbb{S}^1	\mathbb{R}^3_{\perp}		
N D4	_	_	_	_	•		_			•
NS5	_	_	_	_	_	_	•		•	•
K D0	•	•		•	•		_	•	•	•

▶ Supersymmetric instantons can be realised as D(p-4)-branes

K instantons in a Dp-brane
$$\equiv$$
 K D(p - 4)-branes

▶ D(p – 4) Higgs branch equivalent to moduli space of instantons

$$\mathcal{M}_{\mathsf{inst}}^{\mathsf{D}p} \cong \mathcal{M}_{\mathsf{Higgs}}^{\mathsf{D}(p-4)}$$

[Douglas '95] [Witten '95] [Douglas '96]

The theory on D0-branes

- Supersymmetric sigma model in zero dimensions
- (At least) 2 supercharges \mathcal{Q}_+ , $\widetilde{\mathcal{Q}}_+$ (reduction of 2d $\mathcal{N}=(0,2)$)
- ▶ Chiral multiplets $\{\phi, \psi_+\}$ (arrowed lines). Fermi multiplets $\{\psi_-\}$ (dashed lines). Vector multiplet \sim Fermi multiplets

Z_{inst} from a 2d Superconformal Index computation

Rephrasing the computation

- ▶ Partition function for sigma model living on D0-branes equals $Z_{\text{inst}}^{(K)}$
- Fact: Higgs branch is invariant under circle compactification (When we have susy)
- ▶ Lift the 0d theory to a 2d theory on $\mathbb{S}^1 \times \mathbb{S}^1$ (2×T-duality: D0 \rightarrow D2). Radii β_1 , β_2
- ▶ $\mathbb{S}^1 \times \mathbb{S}^1$ partition function is superconformal index of the 2d theory!

$$Z_{\text{inst}}^{(K)} = \lim_{\beta_1, \beta_2 \to 0} I_{\text{SCI}}$$

Z_{inst} from a 2d Superconformal Index computation

Computing the superconformal index

▶ Counting gauge invariant operators on \mathbb{R}^2 graded by 'fugacities' for \mathcal{Q}_+ -commuting global symmetries

$$I_{\sf SCI} = {\sf Tr}(-1)^{\sf F} q^{{\sf H}_-} v^{2j_1} t^{2j_D} {f x}^{f f} \ , \quad q = e^{-eta_1/eta_2}$$

• Q_+ -commuting global symmetry = Cartan subalgebra of:

$$\mathfrak{u}(1)_- \oplus \mathfrak{su}(2)_1 \oplus \mathfrak{su}(2)_D \oplus \mathfrak{su}(N_L) \oplus \mathfrak{su}(N) \oplus \mathfrak{su}(N_R)$$

Receives contribution only from states with

$$\delta = \left\{ \mathcal{Q}_+, \mathcal{Q}_+^{\dagger} \right\} = H_+ - \frac{1}{2} \mathcal{R}_+^{U(1)} = 0$$

► Fact: SCI is independent of continuous couplings ⇔ we can compute it in the free theory

Z_{inst} from a 2d Superconformal Index computation

Letter counting

Example: 'Letters' of Fermi multiplet in adjoint of U(K)

Letter	H_	H_{+}	$\mathcal{R}_{+}^{\mathit{U}(1)}$	$(-1)^{F}$	δ	Index
ψ	1/2	0	0	-1	0	$-q^{1/2}\chi_{adj.}^{U(K)}(z)$
ψ_{-}^{\dagger}	1/2	0	0	-1	0	$-q^{1/2}\chi_{adj.}^{U(K)}(\mathbf{z})$
∂_{-}^{n}	n	0	0	+1	0	q ⁿ
∂_+^n	0	n	0	+1	n	

► Single letter index $i_{\mathsf{Fermi}}(q, \mathbf{z}) = \frac{-2q^{1/2}}{1-q} \chi_{\mathsf{adj.}}^{U(K)}(\mathbf{z})$

$$I_{\mathsf{SCI}} = \int \left[d\mu_{\mathit{U}(\mathcal{K})}(\mathbf{z}) \right] \mathrm{PE} \left[\sum_{\{\mathsf{multiplets}\}} i_{\mathit{multiplet}}(q, \mathbf{z}, \dots) \right]$$

▶ Plethystic exponential: $PE[f(x)] := Exp\left[\sum_{n=1}^{\infty} \frac{1}{n} f(x^n)\right]$

Z_{inst} from a 2d Superconformal Index computation

$$\begin{split} I_{SCI} &= \frac{\left(q^{k};q^{k}\right)^{2K}}{K!} I^{(0)} \oint \prod_{I=1}^{K} \frac{dz_{I}}{z_{I}} \prod_{A=1}^{N} \prod_{I=1}^{K} \frac{\theta\left(q^{\frac{1}{2}} \frac{z_{I}}{x_{L,A}};q\right) \theta\left(q^{-\frac{1}{2}} \frac{z_{R,I}}{x_{I}};q\right)}{\theta\left(t^{-1} q^{\frac{1}{2}} \frac{z_{I}}{x_{A}};q\right) \theta\left(t q^{-\frac{1}{2}} \frac{z_{I}}{x_{A}};q\right)} \\ &\times \prod_{I \neq J} \theta\left(\frac{z_{I}}{z_{J}};q\right) \prod_{I,J=1}^{K} \frac{\theta\left(t^{-2} q \frac{z_{I}}{z_{J}};q\right)}{\theta\left(v t^{-1} q^{\frac{1}{2}} \frac{z_{I}}{z_{I}};q\right) \theta\left(v^{-1} t^{-1} q^{\frac{1}{2}} \frac{z_{I}}{z_{I}};q\right)} \,. \end{split}$$

$$(a; q) = \prod_{i=0}^{\infty} (1 - aq^i)$$
 and $\theta(a; q) = (a; q)(a^{-1}q; q)$

As an aside: I_{SCI} is related to the partition function for the 6d (2,0) theory on $\mathbb{R}^4 \times \mathbb{S}^1 \times \mathbb{S}^1$ [Haghighat, Iqbal, Kozcaz, Lockhart, Vafa '13]

Z_{inst} from a 2d Superconformal Index computation

After taking the limit

$$\lim_{\beta_{1},\beta_{2}\to 0} I_{SCI} = \frac{1}{K!} \int \prod_{l=1}^{K} du_{l} \prod_{l,J=1}^{K} \frac{u'_{lJ}(u_{lJ} - 2\epsilon_{+})}{(u_{lJ} + \epsilon_{1})(u_{lJ} + \epsilon_{2})}$$

$$\times \prod_{l=1}^{K} \prod_{A=1}^{N} \frac{(u_{l} - m_{L,A})(u_{l} - m_{R,A})}{(u_{l} - a_{A} - \epsilon_{+})(u_{l} - a_{A} + \epsilon_{+})}$$

- $\epsilon_{1,2}$ are Ω-background parameters: related to the fugacities e.g. $v=e^{\beta_1(\epsilon_1+\epsilon_2)}$
- ► Reproduces Nekrasov's expression for $Z_{\text{inst}}^{(K)}$

Orbifolding to Class \mathcal{S}_k

After the \mathbb{Z}_k orbifold

- ▶ Supersymmetry is broken by 1/2, however Q_+ is preserved
- We can again compute the 'superconformal index' of the 2d theory
- lacktriangle Counting gauge invariant operators on $\mathbb{R}^2/\mathbb{Z}_k$
- ▶ After orbifold: Q_+ -commuting global symmetry = Cartan subalgebra of:

$$\mathfrak{u}(1)_- \oplus \mathfrak{su}(2)_1 \oplus \mathfrak{su}(2)_D \oplus \mathfrak{su}(N_L)^k \oplus \mathfrak{su}(N)^k \oplus \mathfrak{su}(N_R)^k$$

We can play the same games and compute

$$I_{SCI}^{orb} = Tr(-1)^F q^{H_-} v^{2j_1} t^{2j_D} \mathbf{x}^{\mathbf{f}}$$

[TB, Pomoni '17]

Orbifolding to Class \mathcal{S}_k

▶ The orbifold breaks $U(K) \to \prod_{i=1}^k U(K_i) = G$

$$oxed{I_{\mathsf{SCI}}^{\mathsf{orb}} = \int \left[d\mu_{G}(\mathbf{z}) \right] \mathrm{PE} \left[\sum_{\{\mathsf{multiplets}\}} \mathit{i}_{\mathit{multiplet}}^{\mathsf{orb}}(q, \mathbf{z}, \dots)
ight]}$$

Take the limit

$$\begin{split} \lim_{\beta_{1},\beta_{2}\to 0} I_{\text{SCI}}^{\text{orb}} & \propto \prod_{i=1}^{k} \int \prod_{I=1}^{K_{i}} du_{i,I} \prod_{I=1}^{K_{i}} \frac{u'_{ii,IJ} \prod_{j\neq i} \prod_{J=1}^{K_{j}} (u_{ij,IJ} - 2\epsilon_{+})}{\prod_{j=1}^{k} \prod_{J=1}^{K_{j}} (u_{ij,IJ} + \epsilon_{1}) (u_{ij,IJ} + \epsilon_{2})} \\ & \times \prod_{j=1}^{k} \prod_{I=1}^{K_{i}} \prod_{A=1}^{N} \frac{(u_{i,I} - \widetilde{m}_{L,j,A}) (u_{i,I} - \widetilde{m}_{R,j,A})}{(u_{i,I} - \widetilde{a}_{j,A} - \epsilon_{+}) (u_{i,I} - \widetilde{a}_{j,A} + \epsilon_{+})} \end{split}$$

▶ We expect this to be equal to the integration over the moduli space of $\{K_1, K_2, \dots, K_k\}$ instantons for this $\mathcal{N} = 1$ theory

Motivation

Exact results for 4d $\mathcal{N}=2$ & Class \mathcal{S}

$\mathcal{N}=1$ theories & Class \mathcal{S}_k

Class S_k construction Some known results The instanton partition fur

Relation to 2d CFT

Relation to 2d CFT

- ▶ There are Seiberg-Witten curves for these Class S_k theories [Coman, Pomoni, Taki, Yagi '15]
- SW curve coefficients are related to W-algebra blocks (in semi-classical $\epsilon_i \sim Q \rightarrow 0$ limit) [Mitev, Pomoni '17]

Define

$$Z_{\mathsf{inst}}^{\mathsf{orb}} = \sum_{\{K_i\}=1}^{\infty} \mathbf{q}^{\sum_{j=1}^{k} K_i} Z_{\mathsf{inst}}^{(\{K_i\})} \,, \quad Z_{\mathsf{inst}}^{(\{K_i\})} = \lim_{\beta_1,\beta_2 \to 0} I_{\mathsf{SCI}}^{\mathsf{orb}}$$

 $ightharpoonup Z_{
m inst}^{
m orb} = \mathcal{B}_{1234}$ equal to to W-blocks for certain W-algebra representations

Summary

- ightharpoonup Repackaged the $\mathcal{N}=2$ instanton partition into a 2d SCI computation
- We computed instanton partition functions for some special $\mathcal{N}=1$ theories.
- We independently matched a prediction based on assumption that an 'AGT'-type relation exists for these theories and matched to W-blocks.
- Outlook/Future directions
 - ▶ \mathbb{S}^4 partition function for Class \mathcal{S}_k
 - ▶ Generalisation to other orbifolds of $\Gamma = DE$ type \rightarrow Class S_{Γ} [Heckman, Jefferson, Rudelius, Vafa '16]