Gene set enrichment analysis in

Kim Dill-McFarland 2021.07.14

Gene set

two or more genes with shared function, structure, localization, or any other defining similarity

Gene set features

Defined by individual study to general knowledge

Vary in size

Not exclusive (1 gene in many sets)

Redundant and overlapping

Hallmark

- summarize and represent specific well-defined biological processes
- generated by computational methodology based on identifying overlaps between gene sets in other MSigDB collections and retaining genes that display coordinate expression

• Total: 50

• Examples: glycolysis, inflammatory response, apoptosis

Curated (C2) Canonical pathways

- from pathway databases including <u>KEGG</u>, <u>REACTOME</u>, etc
- Canonical representations of a biological process compiled by domain experts

• Total: 2922

Examples: Caspase pathway, signaling by NOTCH1, DNA repair

Gene ontology (C5) Biological process

molecular-level activities performed by gene products

• Total: 7481

• Examples: viral life cycle, vitamin D biosynthetic process, mitochondrial calcium-ion transmembrane transport

- too specific (individual studies)
 - C2 chemical and genetic perturbations
 - C7 immunologic signatures

- areas not relevant to our experimental design
 - C1 chromosome position
 - C3 gene regulation
 - C4/C6 cancer-oriented

Hypergeometric enrichment (aka Fisher's Exact test)

Probability that the number of significant genes in a gene set occurred by chance

Hypergeometric enrichment

1. Define genes in a gene set

2. Define genes significant for your variable of interest (in our case, media vs Mtb-infected)

3. Calculate proportion of significant genes in gene set

4. Estimate probability and significance (P-value)

Hypergeometric enrichment

Likely enriched

Not likely enriched

Gene set enrichment analysis (GSEA)

Compares expression in two biological states and determines if gene sets show significant, concordant change

aka

Determines if genes in a set generally increase or decrease in expression

Gene set enrichment analysis (GSEA)

1. Define genes in a gene set

2. Calculate fold change

3. Order genes by fold change and map to gene set

4. Estimate enrichment score and significance (P-value)

Gene set enrichment analysis (GSEA)

Subramanian et al PNAS doi.org/10.1073/pnas.0506580102

Hypergeometric enrichment

Gene set enrichment analysis

Significant genes

All genes

Binary significant vs not

Numeric fold change values

Depends on how you define significance

Mean fold change per gene

• Compare 2+ states

Compare only 2 states