

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Εργασία στα Ασαφή Συστήματα

Επίλυση προβλήματος παλινδρόμησης με χρήση μοντέλων TSK – Group3-Ser07

Μανουσαρίδης Ιωάννης (8855)

Θεσσαλονίκη, Νοέμβριος 2019

Περιεχόμενα

Περιγραφή του Προβλήματος	3
Εφαρμογή σε απλό Σετ Δεδομένων	3
Προετοιμασία του Σετ Δεδομένων	3
Διαδικασία Εκπαίδευσης	3
Αποτελέσματα ΤSK Μοντέλων και Μετρικές Σφάλματος	4
TSK Μοντέλο 1	4
TSK Μοντέλο 2	6
TSK Μοντέλο 3	9
TSK Μοντέλο 4	11
Εφαρμογή σε σύνολο δεδομένων με υψηλή διαστασιμότητα	16
Superconductivity Dataset	16
Προετοιμασία του Σετ Δεδομένων	16
Εύρεση Βέλτιστου Μοντέλου	16
Εκπαίδευση τελικού ΤՏΚ μοντέλου	21
Επεξήγηση παραδοτέων αρχείων ΜΑΤLAB	23

Περιγραφή του Προβλήματος

Στόχος αυτής της εργασίας είναι να μελετηθεί η ικανότητα των TSK μοντέλων για την επίλυση προβλημάτων regression. Θα χρησιμοποιηθούν δύο διαφορετικά σετ δεδομένων, για τα οποία γνωρίζοντας τα χαρακτηριστικά κάποιων δειγμάτων θα δημιουργηθεί μια συνάρτηση η οποία θα προσεγγίζει όσο τον δυνατόν καλύτερα την πραγματική απεικόνιση των στοιχείων της εισόδου στην έξοδο του συστήματος.

Εφαρμογή σε απλό Σετ Δεδομένων

Προετοιμασία του Σετ Δεδομένων

Το Combined Cycle Power Plant Dataset της UCI αποτελείται από δεδομένα μίας μονάδας συνδυασμένου κύκλου και περιέχει 9568 δείγματα, κάθε ένα από τα οποία περιγράφεται από 4 χαρακτηριστικά (Features). Συγκεκριμένα, τα χαρακτηριστικά αυτά είναι η μέση ωριαία θερμοκρασία (Temperature - T), η μέση ωριαία ατμοσφαιρική πίεση (Ambient Pressure - AP), η μέση ωριαία σχετική υγρασία (Relative Humidity - RH) και η μέση ωριαία πίεση καυσαερίων (Exhaust Vacuum - V). Με τη χρήση των δεδομένων αυτών, πραγματοποιείται η πρόβλεψη της μέσης ενεργειακής απόδοσης της μονάδας ανά ώρα.

Αρχικά, πραγματοποιείται διαχωρισμός του σετ δεδομένων σε τρία μη επικαλυπτόμενα υποσύνολα:

• 60% : σύνολο εκπαίδευσης - training data

• 20% : σύνολο επικύρωσης – validation data

• 20% : σύνολο ελέγχου - check data

Διαδικασία Εκπαίδευσης

Για τα 4 μοντέλα TSK, η εκπαίδευση γίνεται με την υβριδική μέθοδο, δηλαδή οι παράμετροι των συναρτήσεων συμμετοχής βελτιστοποιούνται με τη μέθοδο οπισθοδιάδοσης (Backpropagation) και οι παράμετροι της πολυωνυμικής συνάρτησης εξόδου βελτιστοποιούνται με τη μέθοδο Least Squares. Τα τέσσερα μοντέλα TSK προς εκπαίδευση διακρίνονται με βάση τον πίνακα 1.

Πίνακας 1.

TSK Model	Number of Input MF	Output Format
Model 1	2	Singleton
Model 2	3	Singleton
Model 3	2	Polynomial
Model 4	3	Polynomial

Αποτελέσματα ΤSK Μοντέλων και Μετρικές Σφάλματος

Η προσομοίωση του κάθε μοντέλου γίνεται με τη χρήση του MATLAB και ακολουθεί την ίδια διαδικασία. Η δημιουργία για το μοντέλο προς εκπαίδευση γίνεται με τη συνάρτηση genfis(). Η εκπαίδευση του μοντέλου πραγματοποιείται με χρήση της συνάρτησης anfis() για 200 εποχές. Όσον αφορά την αξιολόγηση του, υπολογίζονται οι ζητούμενες μετρικές σφάλματος MSE, RMSE, R², NMSE, NDEI. Οι καμπύλες εκμάθησης σχεδιάζονται με βάση το σφάλμα RMSE. Στη συνέχεια παρουσιάζονται τα αποτελέσματα για το κάθε μοντέλο

ΤSK Μοντέλο 1

Στο πρώτο μοντέλο TSK χρησιμοποιούνται 2 συναρτήσεις συμμετοχής τύπου Bell-Shaped με επικάλυψη 0.5 για κάθε μεταβλητή εισόδου ενώ η μορφή της εξόδου είναι Singleton (Constant). Οι συναρτήσεις αυτές πριν τη διαδικασία εκπαίδευσης φαίνονται στο Σχήμα 1.

Σχήμα 1: Αρχικές Συναρτήσεις Συμμετοχής για το ΤSK Μοντέλο 1.

Οι συναρτήσεις συμμετοχής μετά την εκπαίδευση παίρνουν την εξής μορφή:

Σχήμα 2: Συναρτήσεις συμμετοχής μετά την εκπαίδευση για το ΤSK μοντέλο 1.

Σχήμα 3: Καμπύλες Εκμάθησης για ΤSK Μοντέλο 1.

Τα σφάλματα πρόβλεψης και οι τιμές πραγματικής και εκτιμήτριας εξόδου για το σύνολο των δεδομένων ελέγχου φαίνονται παρακάτω.

Σχήμα 4: Σφάλματα Πρόβλεψης για ΤSK Μοντέλο 1.

Σχήμα 5: Πραγματική και Εκτιμήτρια Έξοδος για ΤSK Μοντέλο 1.

ΤSK Μοντέλο 2

Στο δεύτερο μοντέλο TSK χρησιμοποιούμε 3 συναρτήσεις συμμετοχής τύπου Bell-Shaped με επικάλυψη 0.5 για κάθε μεταβλητή εισόδου ενώ η μορφή της εξόδου είναι Singleton (Constant). Οι συναρτήσεις αυτές πριν τη διαδικασία εκπαίδευσης φαίνονται στο Σχήμα 6.

Σχήμα 6: Αρχικές Συναρτήσεις Συμμετοχής για το ΤSK Μοντέλο 2.

Οι συναρτήσεις συμμετοχής μετά την εκπαίδευση παίρνουν την εξής μορφή:

Σχήμα 6: Συναρτήσεις συμμετοχής μετά την εκπαίδευση για το ΤSK μοντέλο 2.

Ακολουθούν οι καμπύλες εκμάθησης στο πέρας των εποχών.

Σχήμα 7: Καμπύλες Εκμάθησης για ΤSK Μοντέλο 2.

Τα σφάλματα πρόβλεψης και οι τιμές πραγματικής και εκτιμήτριας εξόδου για το σύνολο των δεδομένων ελέγχου φαίνονται παρακάτω.

Σχήμα 9: Σφάλματα Πρόβλεψης για ΤSK Μοντέλο 2.

Σχήμα 10: Πραγματική και Εκτιμήτρια Έξοδος για ΤSK Μοντέλο 2.

ΤSK Μοντέλο 3

Στο τρίτο μοντέλο TSK χρησιμοποιούμε 2 συναρτήσεις συμμετοχής τύπου Bell-Shaped με επικάλυψη 0.5 για κάθε μεταβλητή εισόδου ενώ η μορφή της εξόδου είναι Polynomial (Linear). Οι συναρτήσεις αυτές πριν τη διαδικασία εκπαίδευσης φαίνονται στο Σχήμα 11.

Σχήμα 11: Αρχικές Συναρτήσεις Συμμετοχής για το ΤSK Μοντέλο 3.

Οι συναρτήσεις συμμετοχής μετά την εκπαίδευση παίρνουν την εξής μορφή:

Σχήμα 12: Συναρτήσεις συμμετοχής μετά την εκπαίδευση για το ΤSK μοντέλο 3.

Ακολουθούν οι καμπύλες εκμάθησης στο πέρας των εποχών.

Σχήμα 13: Καμπύλες Εκμάθησης για ΤSK Μοντέλο 3.

Τα σφάλματα πρόβλεψης και οι τιμές πραγματικής και εκτιμήτριας εξόδου για το σύνολο των δεδομένων ελέγχου φαίνονται παρακάτω.

Σχήμα 14: Σφάλματα Πρόβλεψης για ΤSK Μοντέλο 3.

Σχήμα 15: Πραγματική και Εκτιμήτρια Έξοδος για ΤSK Μοντέλο 3.

ΤSK Μοντέλο 4

Στο τέταρτο μοντέλο TSK χρησιμοποιούμε 3 συναρτήσεις συμμετοχής τύπου Bell-Shaped με επικάλυψη 0.5 για κάθε μεταβλητή εισόδου ενώ η μορφή της εξόδου είναι Polynomial (Linear). Οι συναρτήσεις αυτές πριν τη διαδικασία εκπαίδευσης φαίνονται στο Σχήμα 16.

Σχήμα 16: Αρχικές Συναρτήσεις Συμμετοχής για το ΤSK Μοντέλο 4.

Οι συναρτήσεις συμμετοχής μετά την εκπαίδευση παίρνουν την εξής μορφή:

Σχήμα 17: Συναρτήσεις συμμετοχής μετά την εκπαίδευση για το ΤSK μοντέλο 4.

Ακολουθούν οι καμπύλες εκμάθησης στο πέρας των εποχών.

Σχήμα 18: Καμπύλες Εκμάθησης για ΤSK Μοντέλο 4.

Τα σφάλματα πρόβλεψης και οι τιμές πραγματικής και εκτιμήτριας εξόδου για το σύνολο των δεδομένων ελέγχου φαίνονται παρακάτω.

Σχήμα 19: Σφάλματα Πρόβλεψης για ΤSK Μοντέλο 4.

Σχήμα 20: Πραγματική και Εκτιμήτρια Έξοδος για ΤSK Μοντέλο 4.

Πίνακας 2.

TSK Model	No of Input MF	Output Format	MSE	RMSE	R ²	NMSE	NDEI	Elapsed Time
Model 1	2	Singleton	18.682291	4.322302	0.935301	0.064665	0.254293	19.466041 sec
Model 2	3	Singleton	17.016500	4.125106	0.941070	0.058899	0.242692	172.804953 sec
Model 3	2	Polynomial	17.649839	4.201171	0.938877	0.061091	0.247167	69.442115 sec
Model 4	3	Polynomial	16.822279	4.101497	0.941743	0.058227	0.241303	1517.5511 sec

Με βάση τις μετρικές σφάλματος παραπάνω (πίνακας 2), παρατηρείται ότι όλα τα μοντέλα παρουσιάζουν παρόμοιο σφάλμα μεταξύ τους ως προς την εκτίμηση που κάνουν.

Για το μοντέλο με τις περισσότερες συναρτήσεις συμμετοχής (τρεις) και πολυωνυμική μορφή εξόδου (Μοντέλο 4), το μέσο τετραγωνικό σφάλμα (MSE) είναι μικρότερο και ο συντελεστής προσδιορισμού (R²) είναι πιο κοντά στη μονάδα σε σχέση με τα υπόλοιπα μοντέλα. Αυτό σημαίνει ότι η εκτιμήτρια έξοδος που παράγει βρίσκεται πιο κοντά στην πραγματική τιμή της εξόδου και το γεγονός αυτό το καθιστά ως το βέλτιστο εκ των τεσσάρων μοντέλων.

Εντούτοις, είναι αρκετά πολυπλοκότερο από τα υπόλοιπα μοντέλα με βάση τον χρόνο εκτέλεσης του (δύο τάξει μεγαλύτερος από τα Μοντέλα 1,3 και 1 τάξη από το Μοντέλο 2). Η μεγάλη αυτή διάρκεια οφείλεται στην επιλογή της μεθόδου, Grid Partitioning και στο πλήθος των εισόδων - συναρτήσεων συμμετοχής αφού με τη μέθοδο αυτή ο χρόνος εκτέλεσης αυξάνει εκθετικά με την αύξηση του πλήθους των εισόδων.

Περαιτέρω, στο τελευταίο μοντέλο TSK η καμπύλη εκμάθησης που αφορά τα δεδομένα ελέγχου παρουσιάζει σχετικά έντονες διακυμάνσεις, καθώς επίσης και μια μικρή ανοδική πορεία της καμπύλης, προς το τέλος της εκπαίδευσης, κάτι που μπορεί να υποδεικνύει ότι συνεχίζοντας είναι πιθανό να φτάσει σε υπερεκπαίδευση.

Η χρήση του σετ επικύρωσης συνιστά στη συνεχή εκπαίδευση χωρίς το μοντέλο να οδηγείται σε υπερεκπαίδευση. Η χρησιμοποίηση μεγαλύτερου αριθμού συναρτήσεων συμμετοχής βελτιώνει τα αποτελέσματα ιδιαίτερα όταν συνδυάζεται με γραμμική πολυωνυμική έξοδο δίνοντας πιο ακριβή αποτελέσματα στην έξοδο του μοντέλου. Αντιθέτως, η χρήση σταθερής (Singleton) εξόδου μειώνει σημαντικά το χρόνο εκπαίδευσης, αλλά επιφέρει το κόστος της λιγότερο ακριβούς εκτίμησης.

Τέλος, τα σφάλματα NMSE και NDEI, που είναι κανονικοποιημένα, δίνουν τη δυνατότητα να απαλειφθεί η επίδραση της μέσης τιμής και της μεταβλητότητας της υπό μοντελοποίηση διαδικασίας. Έτσι παρέχεται μια καλύτερη εικόνα για την επίδοση των μοντέλων σε σχέση με το MSE.

Εφαρμογή σε σύνολο δεδομένων με υψηλή διαστασιμότητα

Superconductivity Dataset

Το Superconductivity Dataset είναι ένα πολύ μεγαλύτερο σετ δεδομένων σε σύγκριση με το CCPP, καθώς περιλαμβάνει 21263 δείγματα καθένα από τα οποία περιγράφεται από 81 διαφορετικά χαρακτηριστικά. Τα χαρακτηριστικά σχετίζονται με υπεραγώγιμα υλικά και στόχος του τμήματος της εργασίας αυτού αποτελεί η πρόβλεψη της κρίσιμης θερμοκρασίας με βάση αυτά. Ο μεγάλος αριθμός των χαρακτηριστικών οδηγεί σε ένα μεγάλο όγκο δεδομένων, ο οποίος με τη σειρά του καθιστά χρονοβόρα τη χρήση της μεθόδου Grid Partition. Η εκπαίδευση του ζητούμενου μοντέλου με Grid Partitioning είναι πρακτικά ανέφικτη, καθώς ο χρόνος που απαιτείται είναι υπερβολικά μεγάλος και άρα απαγορευτικός. Για το λόγο αυτό, απαιτείται η επιλογής ενός περιορισμένου πλήθους χαρακτηριστικών, και συγκεκριμένα τα πιο αντιπροσωπευτικά του δείγματος. Η επιλογή των χαρακτηριστικών αυτών γίνεται με χρήση του αλγορίθμου Relief.

Προετοιμασία του Σετ Δεδομένων

Αρχικά, εφαρμόζεται ένα shuffle στο dataset για να υπάρχει τυχαιότητα στην σειρά με την οποία υπάρχουν τα δεδομένα και αυτό να μην επηρεάσει το διαχωρισμό τους στη συνέχεια.

Το σετ δεδομένων χωρίζεται σε τρία τμήματα ως εξής:

- 60% : σύνολο εκπαίδευσης training set
- 20% : σύνολο επικύρωσης validation set
- 20% : σύνολο ελέγχου check set

Στη συνέχεια με την χρήση του αλγόριθμου Relief του Matlab γίνεται εκτίμηση των σημαντικότερων χαρακτηριστικών. Επιλέγεται η λειτουργία με αριθμό 100 γειτόνων.

Εύρεση Βέλτιστου Μοντέλου

Για την εύρεση του βέλτιστου μοντέλου (εύρεση αριθμού χαρακτηριστικών και κανόνων) χρησιμοποιείται συνδυαστικά η μέθοδος του Grid Search και του 5-Fold Cross Validation .

Το 5-Fold Cross Validation (5-πτυχη διασταυρωμένη επικύρωση) πραγματοποιείται με τη χρήση της cvpartition του MATLAB. Πιο συγκεκριμένα, αρχικά το training set δεδομένων χωρίζεται σε δύο νέα τμήματα, ένα νέο training set δεδομένων, 80% του αρχικού training set εκπαίδευσης, και ένα νέο validation set δεδομένων, 20% του αρχικού training set. Συνολικά η διαδικασία επαναλαμβάνεται πέντε φορές με διαφορετική αναδιάταξη των δεδομένων κάθε φορά δημιουργώντας τελικά πέντε νέα δευτερεύοντα μοντέλα. Στη συνέχεια, κάθε ένα από τα δευτερεύοντα αυτά μοντέλα εκπαιδεύεται και έπειτα υπολογίζεται το μέσο τετραγωνικό σφάλμα MSE. Τέλος, υπολογίζεται η μέση τιμή των προηγουμένως υπολογισμένων σφαλμάτων, η οποία αποτελεί αντιπροσωπευτικό δείγμα του πραγματικού σφάλματος για το συνολικό κύριο μοντέλο.

Η διαδικασία αυτή εκτελείται συνδυαστικά με τη Grid Search μέθοδο. Η συνδυαστική επαναληπτική αυτή διαδικασία χρησιμοποιώντας το 5-Fold Cross Validation, εξετάζει διαφορετικά μοντέλα ως προς τον αριθμό των κανόνων (IF-THEN) και το πλήθος των χαρακτηριστικών. Το βέλτιστο μοντέλο είναι εκείνο με το ελάχιστο μέσο σφάλμα.

Οι δοκιμές πραγματοποιήθηκαν με δύο διαφορετικά σύνολα κανόνων (NR-Number of Rules) και συνολικά 40 μοντέλα. Το σύνολο των χαρακτηριστικών ήταν ίδιο σε κάθε περίπτωση, ενώ ο αριθμός των κανόνων μεταβλήθηκε για λόγους που θα αναλυθούν παρακάτω. Τα μοντέλα προκύπτουν από τα παρακάτω καρτεσιανά γινόμενα:

Δοκιμή 1:

NF x NR = $\{3, 9, 15, 21\}$ x $\{4, 8, 12, 16, 20\}$

Δοκιμή 2:

NF x NR = $\{3, 9, 15, 21\}$ x $\{4, 6, 8, 10, 12\}$

Κάθε δοκιμή αποτελείται από 20 κύρια μοντέλα. Για την πρώτη δοκιμή η εκπαίδευση των κύριων μοντέλων έγινε με βάση 5 δευτερεύοντα (5 Fold Validation). Όλα τα κύρια μοντέλα (σύνολο είκοσι), το καθένα ξεχωριστά δέχεται εκπαίδευση, με βάση τα 5 δευτερεύοντα μοντέλα (σύνολο εκατό) για 200 εποχές το καθένα, και υπολογίζεται το σφάλμα αυτών. Τέλος, υπολογίζεται ο μέσος όρος αυτών των 5 σφαλμάτων που αποτελεί και τη μετρική σύγκρισης για την εύρεση του βέλτιστου μοντέλου.

Η πρώτη δοκιμή διήρκησε συνολικά 14 ώρες, 39 λεπτά και 3 δευτερόλεπτα (52742.93 seconds). Στον παρακάτω πίνακα παρουσιάζονται τα μέσα σφάλματα των 5 δευτερευόντων μοντέλων για κάθε ένα από τα 20 κύρια μοντέλα, ενώ στα σχήματα 21 και 22 φαίνονται οι τιμές του μέσου σφάλματος για το διαφορετικό αριθμό κανόνων και χαρακτηριστικών.

Πίνακας 3.

Number of Rules 4 Rule		8 Rules	10 Rules	10 Rules 12 Rules	
Number of Features					
5 Features	450.927	413.893	401.401	394.809	386.820
8 Features	373.117	318.384	313.644	292.995	280.613
10 Features	327.228	280.374	280.541	272.509	262.334
15 Features	288.841	251.155	243.292	252.629	241.421

Σχήμα 21: Μέσο σφάλμα μοντέλων για τις διάφορες τιμές χαρακτηριστικών και κανόνων.

Σχήμα 22: Κοινό 3D Διάγραμμα Μέσου Σφάλματος των διάφορων μοντέλων.

Ο λόγος που πραγματοποιήθηκε και η δεύτερη δοκιμή ήταν για να περιοριστεί ο χρόνος εκτέλεσης του πειράματος και να φανεί η σύνδεση του χρονικού διαστήματος του αλγορίθμου σε σχέση με τις παραμέτρους. Στη δεύτερη δοκιμή κάποια αριθμοί κανόνων είναι ίδιο με τη πρώτη δοκιμή και ο αριθμός των εποχών για κάθε δευτερεύων μοντέλο μειώθηκε στις 100. Ο χρόνος εκτέλεσης του αλγορίθμου μειώθηκε κατά πολύ, σε μόλις 3 ώρες, 55 λεπτά και 13 δευτερόλεπτα (14112.982123 seconds), δηλαδή σχεδόν 4 φορές λιγότερο. Όπως και για τη δοκιμή 1 παρακάτω παρουσιάζονται τα αντίστοιχα σφάλματα.

Πίνακας 4.

Number of Rules Number of Features	4 Rules	6 Rules	8 Rules	10 Rules	12 Rules	
5 Features	453.612	422.352	403.761	394.719	383.793	
8 Features	379.461	345.310	313.644	325.277	303.742	
10 Features	325.037	305.650	296.711	300.301	284.507	
15 Features	301.372	298.795	283.744	271.449	273.298	

Σχήμα 23: Μέσο σφάλμα μοντέλων για τις διάφορες τιμές χαρακτηριστικών και κανόνων.

Σχήμα 24: Κοινό 3D Διάγραμμα Μέσου Σφάλματος των διάφορων μοντέλων.

Με βάση τα σφάλματα το βέλτιστο μοντέλο είναι το μοντέλο 20 της δοκιμής 1, αυτό με τα 15 χαρακτηριστικά και τους 14 κανόνες. Συγκρίνοντας τα μοντέλα των δοκιμών 1 και 2 φαίνεται ότι όσο αυξάνεται η πολυπλοκότητα των μοντέλων, ο χρόνος εκτέλεσης αυξάνεται κατά πολύ, ενώ το σφάλμα δεν μειώνεται αντίστοιχα σε τόσο μεγάλο βαθμό. Η επιλογή εξαρτάται από το τι ζητείται σε κάθε περίπτωση και επομένως αν χρόνος ήταν σημαντικό ζήτημα, η δεύτερη δοκιμή να ήταν καλύτερη και το βέλτιστο μοντέλο να ήταν το μοντέλο 19 (10 κανόνες, 15 χαρακτηριστικά και σφάλμα 271.449). Ωστόσο, στο παρόν πρόβλημα αναζητείται το βέλτιστο μοντέλο με βάση το σφάλμα και με βάση αυτό το κριτήριο επιλέγεται το μοντέλο 20 της δοκιμής 1.

Σημείωση:

Οι προσομοιώσεις πραγματοποιήθηκαν σε laptop με

- Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
- Radeon (TM) R5 M420 & Intel(R) HD Graphics 620
- 4.0 GB RAM

Εκπαίδευση τελικού ΤSK μοντέλου

Όσον αφορά το τελικό μοντέλο, αρχικά παρουσιάζονται οι συναρτήσεις συμμετοχής πριν την εκπαίδευση, οι οποίες είναι οι εξής:

Σχήμα 25: Τελικό TSK model - Συναρτήσεις συμμετοχής πριν την εκπαίδευση.

Σχήμα 26: Τελικό TSK model - Συναρτήσεις συμμετοχής μετά από εκπαίδευση 150 εποχών.

Η καμπύλη εκμάθησης και τα σφάλματα πρόβλεψης φαίνονται στα παρακάτω διαγράμματα.

Σχήμα 27: Τελικό TSK model - Καμπύλη εκμάθησης

Σχήμα 28: Τελικό TSK model - Σφάλματα πρόβλεψης

Σχήμα 29: Τελικό TSK model - Τελική vs Επιθυμητή έξοδος

Στον παρακάτω πίνακα παρουσιάζονται οι δείκτες απόδοσης RMSE,NMSE, NDEI και R2.

Πίνακας 5.

TSK Model	Number of features	Number of rules	MSE	RMSE	NMSE	NDEI	R ²	Time (sec)
Final	15	14	248.7617	15.772	383.793	0.459	0.7890	1714.97

Το μοντέλο παρουσιάζει αρκετά μικρά σφάλματα. Ο συντελεστής R^2 βρίσκεται κοντά στο 1, που σημαίνει ότι το μοντέλο δεν δίνει ως εκτίμηση τη μέση τιμή, αλλά πλησιάζει προς την τέλεια εκτίμηση. Το μοντέλο μετά από 70 περίπου εποχές συγκλίνει προς το τελικό σφάλμα, ενώ οι συναρτήσεις συμμετοχής δεν παρουσιάζουν πολύ μεγάλη διαφορά μετά την εκπαίδευση του δικτύου.

Σημαντική διαφορά όμως βρίσκεται στον χρόνο εκτέλεσης. Αν είχε χρησιμοποιηθεί η μέθοδος Grid Partitioning, ο αντίστοιχος συνολικός χρόνος θα ήταν απαγορευτικά μεγάλος. Στην περίπτωση που είχε χρησιμοποιηθεί Grid Partitioning, για 15 χαρακτηριστικά με 2 συναρτήσεις συμμετοχής για το καθένα, θα κατέληγε σε ένα σύνολο των 2^{15} κανόνες, ενώ με 3 συναρτήσεις θα κατέληγε σε 3^{15} κανόνες.

Επεξήγηση παραδοτέων αρχείων ΜΑΤLAB

- tsk_model1_4.m : MATLAB Script Εκπαίδευση και αξιολόγηση των τεσσάρων TSK models.
- **grid_search.m:** MATLAB Script Επιλογή των βέλτιστων παραμέτρων
- **final_tsk_model.m:** MATLAB Script Εκπαίδευση και αξιολόγηση του τελικού μοντέλου