(a) True.

By Thm 24.1, $p_A(z) = \det (\lambda I - A) = 0$.

 $P_{A-\mu I}(\lambda-\mu) = \det((\lambda-\mu)I - A+\mu I) = \det(\lambda I - A) = 0.$

By Thm 24.1, A-m is an eigenvalue of A-mI

(b) False.

counter ex) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow P_A(\lambda) = \det(\lambda I_2 - A) = (\lambda - 1)^2$, so $\lambda = 1$ is an eigenvalue of A but $\lambda = -1$ is not by Thm 24.1,

(c) True.

The coefficients of char poly of real A are also real as $\det(\lambda I - A) = p_A(\lambda)$; computed by an Himetic operation of real numbers.

By Fundamental Theorem of Algebra, if λ is a root of complex polynomials, so is the conjugate pair

So, $\overline{\lambda}$ is also an eigenvalue of A by Thm 24.1.

(d) True.

$$\rho_{A^{-1}}(\lambda^{-1}=\frac{1}{\lambda})=\det(\frac{I}{\lambda}-A^{-1})$$
, $\rho_{A}(\lambda)=\det(\lambda I-A)=0$.

Note that $\det(A) \neq 0$. $\rightsquigarrow \det(A^{-1}) = \frac{1}{\det(A)} \neq 0$. $\det(A) \det(\frac{I}{\lambda} - A^{-1})$

= det
$$(\frac{1}{\lambda}A - I) = (-\lambda)^m \det(\lambda I - A) = 0$$
. det $(\frac{I}{\lambda} - A^{-1}) = \rho_{A^{-1}}(\lambda^{-1} = \frac{1}{\lambda}) = 0$.

(e) False.

counter ex)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \rightarrow P_A(z) = det(zI_2-A) = |z-1|-1| = z^2-1+1=z^2$$

So, all the eigenvalues of A are 0 (: $z^2=0$ iff z=0), but A is not a zero matrix.

(f) True

By Thm 24.7, Junitarily diagonalization $A = Q \perp Q^*$ where diagonals are eigenvalue of A.

 $A=QLQ^*=Q$ sign (L) |L| Q^* is the singular value decomposition of A. So, if λ is an eigenvalue of A, $|\lambda|$ is the singular value of A.

(g) False.

counter ex)
$$A = \begin{bmatrix} 1 & -i \\ i & -1 \end{bmatrix}$$
, $\det(\lambda I - A) = \begin{bmatrix} \lambda - 1 & i \\ -i & \lambda + 1 \end{bmatrix} = \begin{bmatrix} \lambda^2 - 1 - i^2 = \lambda^2 \\ \text{So, all the eigenvalues of } A \text{ are } 0$

As A is hermitian: $A \times = \begin{bmatrix} T & \overline{i} \\ -\overline{i} & -\overline{1} \end{bmatrix} = \begin{bmatrix} 1 & -i \\ i & -1 \end{bmatrix} = A$, diagonalizable by Thm 24.7

But it is not a diagonal.

2 (a) let any eigenvalue
$$\lambda$$
 of A . Let x be a corresponding eigenvector with largest entry 1. (If $Ax' = \lambda x'$, x can be obtained by $x = \frac{x'}{\max\{|x'|\}} \cdot \pm \text{appropriate sign}$) let $x_i = 1$ for some $1 \le i \le m$. $\lambda = \lambda x_i$, and $\lambda x_i = \sum_{j=1}^{m} a_{ij} x_j$ from $A\begin{bmatrix} x_i \\ \vdots \\ x_m \end{bmatrix} = \lambda x = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_m \end{bmatrix}$

i. $|\lambda - a_{ii}| = |\sum_{j=1}^{m} (a_{ij} x_j) - a_{ii}| = |\sum_{j\neq i} (a_{ij} x_j) + a_{ii} x_i - a_{ii}| \le \sum_{j\neq i} |a_{ij}| = 1$

i. $|\lambda - a_{ii}| = |\sum_{j=1}^{m} (a_{ij} x_j) - a_{ii}| = |\sum_{j\neq i} (a_{ij} x_j) + a_{ii} x_i - a_{ii}| \le \sum_{j\neq i} |a_{ij}|$
 $|\lambda|$ is in the m circular disk (may be on the boundary) with center a_{ii} and radius $\sum_{j\neq i} |a_{ij}|$

(b) Let
$$P = \begin{bmatrix} a_{11} \\ a_{mm} \end{bmatrix}$$
, $f(t) = (1-t)P + tA$.

Claim: The eigenvalue of A w.r.t t ($\lambda(t)$) is conti, so if any eigenvalue moves from one of the unions to the other, then it must be outside all the discs for some t'(contradiction)

$$pf$$
) True for $t=0$.

diag $(f(t)) = A \rightarrow center$ of each circles are the same, but radii are t times that of A.

So, the union of n disks of f(t) is still disjoint from the union of remaining n-k for $t \in [0,1]$. Let the distance of the 2 unions for A is $d_A(d_0>0)$

This distance for f(t) is decreasing i.e, $d_{f(t)} \leq d_A$ for ${}^{b}t \in [0,1]$

 $\lambda(t)$ is conti \sim for $\lambda(t)$ of f(t) in the union of n disks, its distance d(t) from the union of remaining n-k is also conti.

Obviously $d(0) \ge d_A$. Spse $\lambda(1)$ lies in the union of remaining n-k disks

Then $d(1) = 0 \Rightarrow \exists t_0 \in (0,1) \text{ s.t. } 0 < d(t_0) < dA$ But this $\lambda(t_0)$ lies outside the discs

(c)
$$|\lambda_1 - 8| \le |\lambda_2 - 4| \le |\lambda_3 - 1| < |\epsilon|$$

Note that these 3 disks are disjoint each other

since $|\mathcal{E}| \le 1$.

So, the estimation cannot proceed any more by the theorem If \mathcal{E} is real, we can estimate each \mathcal{A} by the interval of $|\mathcal{R}|$: $0.3 \leq \lambda_1 \leq q, 2 < 3 - |\mathcal{E}| \leq \lambda_2 \leq 5 + |\mathcal{E}| < 6, 0 < |-|\mathcal{E}| \leq \lambda_3 \leq |\mathcal{E}| < 2$

(d) Let
$$D = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 \longrightarrow $DAD^{-1} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 8 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 & 4 & 1 \\ 0 & 2 & 2 \end{bmatrix}$

$$= \begin{bmatrix} 8 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 & 4 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

Now, $|\lambda_1 - 8| \le 1$, $|\lambda_2 - 4| \le 2$, $|\lambda_3 - 1| \le \varepsilon^2$

 \rightarrow As $\lambda_3 \leq 1+\epsilon^2 < 2 \leq \lambda_2$, λ_3 is the smallest eigenvalue of A (: Thm 24.3: DAD-1 & A are similar, so λ_1, λ_2 , and λ_3 are eigenvalues of both DAD⁻¹ & A').

.. Done by $|\lambda_3 - 1| \le \varepsilon^2$

Solution

(a) Let λ be an eigenvalue of A and $x\neq 0$ be the corresponding eigenvector. Let ith entry of x, x_i , has the largest absolute value. Since $(\lambda I-A)x=0$,

$$\begin{split} &(\lambda - a_{ii})x_i + \sum_{j \neq i} a_{ij}x_j = 0 \\ \Rightarrow & |\lambda - a_{ii}| = \left| \sum_{j \neq i} a_{ij} \frac{x_j}{|x_i|} \right| \leqslant \sum_{j \neq i} |a_{ij}|, \end{split}$$

by triangular inequality. Therefore, the first part of Gerschgorin's theorem holds.

(b) Let A_{ϵ} be the matrix such that $(A_{\epsilon})_{ii} = (A)_{ii}$ and $(A_{\epsilon})_{ij} = (A)_{ij} \times \epsilon$ for $i \neq j$. That is, $A = A_1$. Suppose there is an empty connected domain, which is a union of the disks of the Gerschgorin's theorem, where no eigenvalue of A_1 is contained. As ϵ goes to zero, the radius of the disks converges to 0, meanwhile the eigenvalues of A_{ϵ} continuously converge to all a_{ii} . This is a contradiction because no eigenvalue of A_{ϵ} can touch the empty connected domain. This proves the second part.

(c) By Gerschgorin's theorem,

$$|\lambda_1-8|<1, \quad |\lambda_2-4|<1+\epsilon, \quad |\lambda_3-1|<\epsilon.$$

(d) Consider the transformation $A' = XAX^{-1}$ where $X = diag(1, 1, \epsilon)$. Then

$$A' = \begin{bmatrix} 8 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & \epsilon^2 & 1 \end{bmatrix}.$$

By Gerschgorin's theorem, the smallest eigenvalue of A' is contained in the disk with radius ϵ^2 centered at 1. Since A' and A has the same eigenvalues, $|\lambda_3 - 1| < \epsilon^2$.