3,4

## TRABAJO CORTO 01 - ESTADISTICA II

## ANDRÉS DUQUE RENDÓN CRISTÒBAL HENAO RUEDA MANUEL JOSÉ RAMÍREZ PINEDA PEDRO ALEJANDRO PACHECO BOHORQUEZ

**GRUPO 38** 

UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN

30/MARZO/2023

## Preguntas a resolver.

- 1. Estime un modelo de regresión lineal múltiple que explique el riesgo de infección en términos de las variables restantes (actuando como predictoras) Analice la significancia de la regresión y de los parámetros individuales. Interprete los parámetros estimados. Calcule e interprete el coeficiente de determinación múltiple R2.
- 2. Use la tabla de todas las regresiones posibles, para probar la significancia simultánea del subconjunto de tres variables con los valores p más grandes del punto anterior. ¿Según el resultado de la prueba es posible descartar del modelo las variables del subconjunto? Explique su respuesta.
- **3.** Plantee una pregunta donde su solución implique el uso exclusivo de una prueba de hipótesis lineal general de la forma H0 : Lβ = 0 (solo se puede usar este procedimiento y no SSextra). Especifique claramente la matriz L, el modelo reducido y la expresión para el estadístico de prueba (no hay que calcularlo).
- **4.** Realice una validación de los supuestos en los errores y examine si hay valores atípicos, de balanceo e influenciales. ¿Qué puede decir acerca de la validez de éste modelo? Argumente su respuesta.

## SOLUCIÓN

**1.** Con base en la tabla de parámetros estimados se obtiene la ecuación de regresión ajustada:

Y: Riesgo de infección Probabilidad promedio estimada (en porcentaje).

X1: Duración de la estadía (en días).

X2: Rutina de cultivos Razón del número de cultivos realizados en pacientes sin síntomas de infección hospitalaria, por cada 100.

X3: Número de camas

X4: Censo promedio diario

X5: Número de enfermeras

|    | TABLA DE PARAMETROS ESTIMADOS |             |               |           |  |  |  |  |  |  |
|----|-------------------------------|-------------|---------------|-----------|--|--|--|--|--|--|
|    | Estimado                      | error estd. | Estadístico t | Valor p   |  |  |  |  |  |  |
| β0 | -1,5124812                    | 2,0046923   | -0,7544705    | 0,4545860 |  |  |  |  |  |  |
| β1 | 0,0313136                     | 0,1177962   | 0,2658286     | 0,7916129 |  |  |  |  |  |  |
| β2 | 0,0455480                     | 0,0378258   | 1,2041533     | 0,2349682 |  |  |  |  |  |  |
| β3 | 0,0315445                     | 0,0187667   | 1,6808751     | 0,0998738 |  |  |  |  |  |  |
| β4 | 0,0249176                     | 0,0095867   | 2,5991873     | 0,0126700 |  |  |  |  |  |  |
| β5 | 0,0026273                     | 0,0009807   | 2,6789126     | 0,0103485 |  |  |  |  |  |  |

Para analizar la significancia de los parámetros del modelo, se plantea el siguiente juegos de hipótesis:

**H0:**
$$\beta_i = 0$$
 **vs H1:** $\beta_i \neq 0$  para j= 0,1,2,3,4,5.

Haciendo uso de los valores p proporcionados por la tabla de parámetros estimados a una significancia del 0.05, se concluye que los parámetros individuales  $\beta_0^{}$  ,  $\,\beta_1^{}$  ,  $\,\beta_2^{}$  y  $\,\beta_3^{}$  (para los cuales el valor p>0.05 y permiten rechazar Ho) son significativos cada uno en presencia de los demás parámetros, por otro lado se encuentra que  $\beta_4^{}$  y  $\beta_5^{}$  (para los cuales el valor p<0.05 y no permiten rechazar Ho) son individualmente no significativas en presencia de los demás parámetros.

Interpretación de los parámetros estimados: Los parámetros susceptibles de interpretación son aquellos que son significativos individualmente (β0, β1, β2 y β3) En el caso de  $^{\mathbf{A}}\mathbf{60}$ =-1.512 como  $x_{j} = 0 \notin [x_{j,min}, x_{j,max}] \, \forall j$  (evidenciado en la tabla de maximos y minimos para cada variable) entonces este valor no es interpretable

| TA  | TABLA DE MINIMOS Y MAXIMOS |       |      |      |           |            |  |  |  |  |  |
|-----|----------------------------|-------|------|------|-----------|------------|--|--|--|--|--|
|     | Υ                          | X1    | X2   | Х3   | <b>X4</b> | <b>X</b> 5 |  |  |  |  |  |
|     |                            |       |      |      | 42,6      |            |  |  |  |  |  |
| MAX | 7,6                        | 17,94 | 65,9 | 60,5 | 133,5     | 835        |  |  |  |  |  |

06+

estadía de todos los pacientes en el hospital  $(x_1)$ , el porcentaje de la probabilidad promedio estimada de adquirir infección en el hospital se incrementa en 0.0313 unidades.

Para  $^{62}=0.0455$ , indica que por cada punto de incremento en la razón del número de cultivos realizados en pacientes sin síntomas de infección hospitalaria  $(x_2)$ , el porcentaje de la probabilidad promedio estimada de adquirir infección en el hospital se incrementa en 0.0455 unidades.

Para  $^{63}=0.0315$ , indica que por cada punto de incremento en la razón del número de cultivos realizados en pacientes sin síntomas de infección hospitalaria  $(x_2)$ , el porcentaje de la probabilidad promedio estimada de adquirir infección en el hospital se incrementa en 0.0455 unidades.

Para  $^{63}=0.0315$ , indica que por promedio de compositor de compo

adquirir infección en el hospital se incrementa en 0.0315 unidades.

Al interpretar  $x_1$ ,  $x_2$  y  $x_3$  sin tener en cuenta sus coeficientes estimados sino únicamente la lógica y el sentido común, se puede pensar que al incrementar el número de cultivos realizados en pacientes sin síntomas de infección hospitalaria, el porcentaje de la probabilidad promedio estimada de adquirir infección en el hospital debería de disminuir ya que si se realizan cultivos con mayor frecuencia, se pueden detectar infecciones antes y prevenir su propagación, lo que reduciría el riesgo de infección. Pero se ve que según esta muestra no es así.

Significancia de la regresión: para verificar la significancia de la regresión se plantean el siguiente juego de hipótesis

**H0:** 
$$\beta_1 = \beta_2 = ... = \beta_5 = 0$$
 **vs H1:** algún  $\beta_j \neq 0$  para j= 1,2,3,4,5

| TABLA ANOVA                                                         |         |    |         |         |          |  |  |  |  |  |
|---------------------------------------------------------------------|---------|----|---------|---------|----------|--|--|--|--|--|
| Suma de cuadrados Grados de libertad Cuadrado medio Estadistico F V |         |    |         |         |          |  |  |  |  |  |
| Modelo                                                              | 41,1881 | 5  | 8,23762 | 6,96077 | 7,26E-05 |  |  |  |  |  |
| Error                                                               | 520 741 | 44 | 1,18343 |         |          |  |  |  |  |  |

De la tabla Anova se obtienen los valores del estadístico de prueba F0=6.96 y su valor p=7.26e-05, como vp<0.05=α se rechaza H0 y se concluye que el modelo de RLM planteado es significativo. Lo cual se traduce en que el porcentaje de la probabilidad promedio estimada de adquirir infecciones en el hospital depende significativamente de al menos una de las predictoras del modelo

<u>Coeficiente de determinación:</u> se sabe que  $R^2 = \frac{SSR}{SST}$  de la tabla anova se obtiene que  $R^2 = \frac{41.1881}{41.1881 + 52.0711} = \frac{41.1881}{93.2592} = 0.4417$  de lo que se puede concluir que el 44.17% de la variabilidad total en la probabilidad promedio de adquirir infecciones es explicado por el modelo propuesto.

Adicionalmente, se puede calcular el  ${\it R}^2$  ajustado como una medidas de bondad de ajuste:  $R_{adj}^2 = 1 - \frac{(n-1)MSE}{SST} = 1 - \frac{(50-1)^*1.18343}{41.1881+52.0711} = 1 - \frac{57.9881}{93.2592} = 0.3782$  ya que  $R_{adj}^2 = 0.3782$  es menor que  $R^2 = 0.4417$  podemos afirmar que en el modelo existen variables que no dan un aporte significativo al modelo. \

2. Se busca probar la significancia simultánea de las 3 variables con valor p más alto las cuales son  $\beta_{_1}$  ,  $\beta_{_2}$  y  $\beta_{_3}$  aunque  $\beta_{_0}$ tiene mayor valor p que alguno de los coeficientes anteriores este no se incluye ya que no está directamente relacionado con la contribución de las variables independientes especificadas que se están examinando. Para probar esto se tiene el siguiente juego de hipótesis

**H0:** 
$$\beta_1 = \beta_2 = \beta_3 = 0$$
 **vs H1:** algún  $\beta_j \neq 0$  para j= 1,2,3

Para esta prueba de hipótesis el estadístico de prueba es 
$$F_0 = \frac{MSextra}{MSE} = \frac{MSR(\beta_1,\beta_2,\beta_3|\beta_0,\beta_4,\beta_5)}{MSE} = \frac{SSR(\beta_1,\beta_2,\beta_3|\beta_0,\beta_4,\beta_5)}{3*MSE} = \frac{SSE(\beta_0,\beta_4,\beta_5) - SSE(MP)}{3*MSE}$$
 de la tabla de todas las

posibles regresiones se saca el SEE de la regresión que incluye  $\beta_0$  ,  $\beta_4$  y  $\beta_5$  y de la

Anova se obtiene SSE y MSE, reemplazando se tiene que  $F_0 = \frac{56.868-52.0711}{3*1.18343}$ 

entonces  $F_0 = 1.3511$  para el criterio de decisión se requiere obtener el valor crítico

de una distribución 
$$f_{0.05,147}$$
 a un nivel de significancia  $\alpha$ =0.05, esto es  $f_{0.05,147} = 2.8024$ , como  $F_0 = 1.3511 < f_{0.05,347} = 2.8024$ , entonces con  $\alpha$ =0.05 no se rechaza H0 y no se puede concluir que al menos una variable del subconjunto sea significativa, sin embargo, estas variables no se pueden eliminar del modelo sin antes considerar otras pruebas de significancia individual para evaluar la relevancia.

antes considerar otras pruebas de significancia individual para evaluar la relevancia de cada variable en el modelo, si se determina que alguna de las variables es importante para explicar la variable respuesta, entonces, debe mantenerse en el modelo, incluso si el subconjunto completo no es significativo. 🗡

Esta proeba se hace Precisamente porque ningung es significativa y se quiere salver si vale la pena saculas

5p+

10+

|            |    | TAB   | LA DE TODAS  | LAS PO | SIBLES REGRE    | SIONES         |
|------------|----|-------|--------------|--------|-----------------|----------------|
|            | k  | R^2   | R^2 ajustado | SSE    | Est. de Mallows | Variables      |
| 1          | 1  | 0,219 | 0,203        | 72,808 | 15,522          | X1             |
| 2          | 1  | 0,195 | 0,179        | 75,033 | 17,402          | X3             |
| 3          | 1  | 0,168 | 0,15         | 77,593 | 19,566          | X4             |
| 4          | 1  | 0,166 | 0,149        | 77,755 | 19,702          | X5             |
| 5          | 1  | 0,001 | -0,02        | 93,206 | 32,759          | X2             |
| 6          | 2  | 0,39  | 0,364        | 56,868 | 4,054           | X4 X5          |
| 7          | 2  | 0,311 | 0,282        | 64,234 | 10,278          | X1 X3          |
| 8          | 2  | 0,298 | 0,268        | 65,493 | 11,342          | X1 X4          |
| 9          | 2  | 0,289 | 0,259        | 66,328 | 12,047          | X3 X5          |
| 10         | 2  | 0,262 | 0,231        | 68,789 | 14,127          | X3 X4          |
| 11         | 2  | 0,257 | 0,226        | 69,252 | 14,517          | X1 X5          |
| 12         | 2  | 0,224 | 0,191        | 72,356 | 17,141          | X2 X3          |
| 13         | 2  | 0,223 | 0,189        | 72,504 | 17,265          | X1 X2          |
| 14         | 2  | 0,179 | 0,144        | 76,602 | 20,728          | X2 X5          |
| 15         | 2  | 0,168 | 0,133        | 77,589 | 21,563          | X2 X4          |
| 16         | 3  | 0,415 | 0,377        | 54,581 | 4,12            | X3 X4 X5       |
| 17         | 3  | 0,401 | 0,362        | 55,845 | 5,189           | X2 X4 X5       |
| 18         | თ  | 0,4   | 0,361        | 55,911 | 5,245           | X1 X4 X5       |
| 19         | თ  | 0,349 | 0,308        | 60,737 | 9,322           | X1 X3 X4       |
| 20         | თ  | 0,338 | 0,295        | 61,692 | 10,129          | X1 X3 X5       |
| 21         | თ  | 0,335 | 0,291        | 62,039 | 10,423          | XX X3 X5       |
| 22         | 3  | 0,316 | 0,271        | 63,799 | 11,91           | X1 X2 X3       |
| 23         | 3  | 0,301 | 0,255        | 65,218 | 13,109          | X1 X2 X4       |
| 24         | /3 | 0,278 | 0,231        | 67,369 | 14,926          | X2 X3 X4       |
| <b>2</b> 5 | 3  | 0,258 | 0,209        | 69,238 | 16,506          | X1 X2 X5       |
| 26         | 4  | 0,441 | 0,391        | 52,155 | 4,071           | X2 X3 X4 X5    |
| 27         | 4  | 0,423 | 0,372        | 53,787 | 5,45            | X1 X3 X4 X5    |
| 28         | 4  | 0,406 | 0,353        | 55,415 | 6,825           | X1 X2 X4 X5    |
| 29         | 4  | 0,356 | 0,299        | 60,066 | 10,756          | X1 X2 X3 X5    |
| 30         | 4  | 0,351 | 0,293        | 60,564 | 11,177          | X1 X2 X3 X4    |
| 31         | 5  | 0,442 | 0,378        | 52,071 | 6               | X1 X2 X3 X4 X5 |

Presenten côto
le que se
necesita, no
survien el regorte

3. ¿Existen relaciones lineales entre las variables: duración de la estadía, número de camas, censo premedio diario y riesgo de infeccion en un hospital, tales que si se suman los coeficientes de regresión de duración de la estadía y números de camas, y si se suman los coeficientes de regresión de censo promedio diario y número de enfermeras el resultado es cero?

Para responder la pregunta se tienen que verificar simultáneamente las 2 ecuaciones, planteando entonces el siguiente juego de hipótesis

**H0:** 
$$\beta_1 + \beta_3 = 0$$
 y  $\beta_4 + \beta_5 = 0$  **v**

**H0**: 
$$\beta_1 + \beta_3 = 0$$
 y  $\beta_4 + \beta_5 = 0$  **vs H1**:  $\beta_1 + \beta_3 \neq 0$  **y**  $\beta_4 + \beta_5 \neq 0$  Lo cual se puede reescribir como

se está probando si los efectos llevan relación.



se observa que L tiene 2 filas linealmente independientes, por lo tanto r=2, el modelo el reducido puede escribirse como:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 - \beta_1 X_3 + \beta_4 X_4 - \beta_4 \beta_5 + \epsilon$   $Y = \beta_0 + \beta_1 (X_1 - X_3) + \beta_2 X_2 + \beta_4 (X_4 - X_5) + \epsilon$ 

$$Y = \beta_0 + \beta_1(X_1 - X_3) + \beta_2X_2 + \beta_4(X_4 - X_5) + \varepsilon$$

RM: 
$$Y = \beta_0 + \beta_1 X_{1,3} + \beta_2 X_2 + \beta_4 X_{4,5} + \epsilon$$
, donde  $X_{1,3} = (X_1 - X_3)$  y  $X_{4,5} = (X_4 - X_5)$ 

¿cómo disaribuye? La expresión del estadístico de prueba está dado por

$$F_0 = \frac{MSH}{MSE} = \frac{SSH}{2*MSE} = \frac{SSE(RM) - SSE(FM)}{2*MSE} = \frac{SSE(RM) - 52.0711}{2*1.18343} = \frac{SSE(RM) - 52.0711}{2.3669} = F_0 \text{ Con la}$$

información suministrada no podemos obtener el valor de SSE(RM) ya que de la tabla de todas las posibles regresiones no se puede sacar este valor, dado que esta no admite restas entre variables, por lo tanto, no se puede rechazar o aceptar alguna hipótesis.

4. Validación de los supuestos sobre los errores: se quiere probar

**H0:**  $\varepsilon_i \sim normal \ vs$ **H1:**  $\varepsilon_{i}$  rormal



Si bien según la prueba de shapiro-wilk el valor permite aceptar la hipótesis nula, po lo que según este criterio los errores distribuyen normal, ahora bién, si vemos la gráfica, vemos que los puntos no se ajustan muy bien a la recta, entonces según la gráfica los errores no se distribuyen normal. Esa contradicción se puede deber a la presencia de poservaciones influenciales. Entonces se acepta el criterio de la gráfica y se concluye que el supuesto de normalidad no se cumple 🗸

Supuesto de varianza constante: se quiere probar **H0**:  $V[\varepsilon] = \sigma^2$  **vs H1**:  $V[\varepsilon] \neq \sigma^2$ 

1,5 pz



Del análisis de la gráfica se tiene que el patrón de los puntos indica un comportamiento constante. De lo cual podemos concluir que el supuesto de varianza constante se cumple.

Análisis de la presencia de observaciones extremas: para identificar si en el modelo hay observaciones extremas se busca calcular los estadísticos que nos permitan aplicar criterios a estos puntos, los cuales incluyen: residuales estudentizados,los  $h_{ii}$ , las distancias de  $\operatorname{cook}(d_i)$  y los DFFITS.

Una <u>observación i es atípica</u> cuando  $|r_i| > 3$  de acuerdo a la columna res.stud de residuales estudentizados se tiene que ningun valor es menor a 3 o mayor que 3, por lo tanto se concluye que no tiene observaciones atípicas

Puntos de balanceo: se asume que la observación i es un punto de balanceo si  $h_{ii} > \frac{2P}{n}$  en la práctica tenemos que  $h_{ii} > \frac{2P}{n} = 2 * \frac{6}{50} = 0.24$ , de acuerdo a las columnas  $h_{ii}$ . value de valores de la diagonal de la matriz H se tiene que las observaciones 17, 22, 40 y 45 son puntos de balanceo  $i \ Q \ \sim \ CAU \ Observaciones influenciales:$  se dice que la observación y será influencial si  $D_i > 1$ 

según este criterio no hay ninguna observación influencial. Adicionalmente si  $|DFFITS| > 2\sqrt{\frac{P}{n}} = 2\sqrt{\frac{6}{50}} = 0.693$ . De acuerdo a la columna DFFITS tenemos que las observaciones 12, 17, 39, 45 y 47 son influenciales.

En resumen, para el análisis de observaciones extremas se tiene que:

- no hay valores atípicos
- las observaciones 17, 22, 40 y 45 son puntos de balanceo
- las observaciones 12, 17, 39, 45 y 47 son influenciales

Como el supuesto de normalidad no se cumple y se verificó la existencia de puntos de balanceo e influenciales significa que la validez del modelo puede estar comprometida y se deben tomar medidas para corregir estas limitaciones.

En general es recomendable realizar una validación exhaustiva de los supuestos y

En general es recomendable realizar una validación exhaustiva de los supuestos examinar cuidadosamente los datos antes de tomar decisiones basados en los resultados del modelo.

96

2p +

|          | Tabla para el nálisis de la presencia de observaciones extremas |        |      |      |       |     |        |            |         |         |         |           |         |
|----------|-----------------------------------------------------------------|--------|------|------|-------|-----|--------|------------|---------|---------|---------|-----------|---------|
| i        | Υ                                                               | X1     | X2   | ХЗ   | X4    | X5  |        | se,y gorro |         |         | Cooks,D | valor hii | Dffits  |
| 1        | 4,3                                                             | 9,89   | 45,2 | 11,8 | 108,7 | 190 | 4,4359 | 0,4859     | -0,1359 | -0,1397 | 0,0008  | 0,1995    | -0,0689 |
| 2        | 5,6                                                             | 8,95   | 53,7 | 18,9 | 122,8 | 147 | 5,256  | 0,4118     | 0,344   | 0,3416  | 0,0033  | 0,1433    | 0,1383  |
| 3        | 5                                                               | 10,33  | _    | 21,2 | 104,3 | 266 | 5,3191 | 0,2537     | -0,3191 | -0,3016 | 0,0009  | 0,0544    | -0,0716 |
| 4        | 5,3                                                             | 8,15   | 54,9 | 12,3 | 79,8  | 99  | 3,8798 | 0,2215     | 1,4202  | 1,3334  | 0,0128  | 0,0415    | 0,2798  |
| 5        | 2,6                                                             | 9,76   | 53,2 | 6,9  | 80,1  | 64  | 3,598  | 0,2994     | -0,998  | -0,9543 | 0,0124  | 0,0758    | -0,2729 |
| 6        | 4,3                                                             | 9,23   | 51,6 | 11,6 | 42,6  | 620 | 4,1832 | 0,4136     | 0,1168  | 0,1161  | 0,0004  | 0,1445    | 0,0472  |
| 7        | 4,2                                                             | 7,39   | 51   | 14,6 | 88,4  | 72  | 3,8943 | 0,2876     | 0,3057  | 0,2914  | 0,0011  | 0,0699    | 0,079   |
| 8        | 6,4                                                             | 11,62  | 53,9 | 25,5 | 99,2  | 133 | 4,9321 | 0,3281     | 1,4679  | 1,4153  | 0,0334  | 0,0909    | 0,4529  |
| 9        | 4,8                                                             | 9,36   | 54,1 | 18,3 | 90,6  | 165 | 4,5131 | 0,1896     | 0,2869  | 0,2679  | 0,0004  | 0,0304    | 0,0469  |
| 10       | 4,7                                                             | 8,77   | 54,5 | 5,2  | 47    | 143 | 2,9554 | 0,3551     | 1,7446  | 1,6966  | 0,0572  | 0,1065    | 0,5991  |
| 11       | 5,7                                                             | 11,2   | 56,5 | 34,5 | 88,9  | 180 | 5,1881 | 0,4204     | 0,5119  | 0,5102  | 0,0076  | 0,1493    | 0,2119  |
| 12       | 7,6                                                             | 11,4   | 61,1 | 16,6 | 97,9  | 535 | 5,9965 | 0,4264     | 1,6035  | 1,6022  | 0,0777  | 0,1537    | 0,6955  |
| 13       | 5,4                                                             | 7,9    | 64,1 | 7,5  | 98,1  | 68  | 4,5151 | 0,4857     | 0,8849  | 0,9091  | 0,0343  | 0,1994    | 0,4527  |
| 14       | 4,2                                                             | 9      | 56,3 | 14,6 | 76,4  | 72  | 3,8871 | 0,2384     | 0,3129  | 0,2948  | 0,0007  | 0,048     | 0,0655  |
| 15       | 6,1                                                             | 13,6   | 54   | 24,2 | 111,7 | 312 | 5,7391 | 0.4928     | 0,3609  | 0.3572  | 0,0034  | 0,1371    | 0,1409  |
| 16       | 3,7                                                             | 7,1    | 59   | 2,6  | 75,8  | 70  | 3,5531 | 0,3544     | 0,1469  | 0,1428  | 0,0004  | 0,1061    | 0,0487  |
| 17       | 5,9                                                             | 17,9   | 56,2 | 26,4 | 91,8  | 835 | 6,9271 | 0,7031     | -1,0231 |         | 0,1816  | 0,4177    | -1,0502 |
| 18       | 4,3                                                             | 7,6    | 47,1 | 16,4 | 65,7  | 318 | 3,8623 | 0,319      | 0,4377  | 0,4209  | 0,0028  | 0,086     | 0,1279  |
| 19       | 5,5                                                             | 10,9   | 57,2 | 10,6 | 71,9  | 593 | 5,1181 | 0,3424     | 0,3819  | 0,3698  | 0,0025  | 0,0991    | 0,1214  |
| 20       | 1,3                                                             | 8,2    | 60,9 | 1,9  | 58    | 73  | 3,2139 | 0,3667     | -1,9139 | -1,8687 | 0,0746  | 0,1136    | -0,6893 |
| 21       | 6,2                                                             | 10,2   | 51,9 | 16,4 | 59,2  | 568 | 4,6541 | 0,3046     | 1,5459  | 1,4803  | 0,0311  | 0,0784    | 0,4378  |
| 22       | 6,6                                                             | 13,95  | 65,9 | 15,6 | 133,5 | 356 | 6,6799 | 0,6186     | -0,0799 | -0,0893 | 0,0006  | 0,3233    | -0,061  |
| 23       | 5,3                                                             | 9,77   | 50,2 | 15,7 | 89,7  | 154 | 4,2149 | 0,2502     | 1,0851  | 1,0249  | 0,0098  | 0,0529    | 0,242   |
| 24       | 4,5                                                             | 9,31   | 47,2 | 30,2 | 101,3 | 170 | 4,8524 | 0,3531     | -0,3524 | -0,3424 | 0,0023  | 0,1053    | -0,1163 |
| 25       | 2                                                               | 8,93   | 56   | 6,2  | 72,5  | 95  | 3,5695 | 0,2387     | -1,5695 | -1,4788 | 0,0184  | 0,0481    | -0,3373 |
| 26       | 4,4                                                             | 7,7    | 56,9 | 12,2 | 67,9  |     | 3,736  | 0,2885     | 0,664   | 0,6331  | 0,0051  | 0,0703    | 0,1729  |
| 27       | 1,3                                                             | 8,92   | 53,9 | 2,2  | 79,5  | 56  | 3,4194 | 0,3036     | -2 1194 | -2,0288 | 0,058   | 0,0779    | -0,6123 |
| 28       | 6,3                                                             | 9,74   | 54,4 | 11,4 | 76,1  | 221 | 4,1068 | 0,1767     | 2,1982  | 2,0432  | 0,0189  | 0,0264    | 0,3496  |
| 29       | 1,6                                                             | 8,82   | 58,2 | 3,8  | 51,7  | 80  | 3,0329 | 0,3599     | -1,4329 | -1,3958 | 0,0399  | 0,1094    | -0,4948 |
| 30       | 4,2                                                             | 9,06 / | 52,8 | 6,9  | 75,9  | 134 | 3,6371 | 0,2396     | 0,5629  | 0,5304  | 0,0024  | 0,0485    | 0,1188  |
| 31       | 3,2                                                             | 8,19   | 52,1 | 10,8 | 59,2  | 176 | 3,3952 | 0,263      | -0,1952 | -0,185  | 0,0004  | 0,0585    | -0,0456 |
| 32       | 5,6                                                             | 11,48  | 57,6 | 20,3 | 82    | 252 | 4,8163 | 0,2691     | 0,7837  | 0,7436  | 0,006   | 0,0612    | 0,1889  |
| 33       | 2,9                                                             | 10,8   | 63,9 | 1,6  | 57,4  | 130 | 3,5585 | 0,4568     | -0,6585 | 0,667   | 0.0159  | 0,1763    | -0,3066 |
| 34       | 4,6                                                             | 10,16  | 54,2 | 8,4  | 51,5  | 831 | 5,0059 | 0,5244     | -0,4059 | -0,4259 | 0,0092  | 0,2324    | -0,2321 |
| -        | 4,9                                                             | 9,89   | 50,5 | 17,7 | 103,6 |     | 4,676  | 0,2782     | 0,224   | 0,213   | 0,0005  | 0,0654    | 0,0557  |
| 36       | 5,6                                                             | 10,12  | _    | 14,9 | 79,1  |     | 4,5513 |            | 1,0487  | 0,978   | 0,0047  | 0.0286    | 0,1676  |
| -        | 3,9                                                             | 10,73  |      | 19,3 | 101   | _   | 5,4229 | 0,2883     | -1,5229 | -1,4518 | 0,0265  | 0,0702    | -0,4042 |
| -        | 4,9                                                             | 10,23  | _    | 9,9  | 77,9  |     |        | 0,4767     | -0,5601 | -0,5728 | 0,013   | 0,192     | -0,2771 |
| -        | 5,3                                                             | 11,77  |      | 17,3 | 56    |     |        | 0,4696     | 1,5237  | 1,5528  | 0,0921  | 0,1864    | 0,7557  |
| $\vdash$ | 2,9                                                             | 10,79  |      | 2,6  | 56,6  | 461 |        | 0,5605     | -0,6422 | -0,6888 | 0,0286  | 0,2655    | -0,4116 |
| -        | 4,5                                                             | 8,28   | 48,1 | 26   | 101,8 |     | 4,5782 | 0,3489     | -0,0782 | -0,0759 | 0,0001  | 0,1029    | -0,0254 |
| -        | 4,3                                                             | 10,39  |      | 14   | 88,3  |     |        | 0,1918     | -0,5691 | -0,5315 | 0,0015  | 0,0311    | -0,0944 |
| -        | 4,1                                                             | 9,05   | 51,2 | 20,5 | 79,8  | _   |        | 0,2111     | -0,1504 | -0,1409 | 0,0001  | 0,0377    | -0,0276 |
| 44       |                                                                 | 7,78   | 45,5 | 20,9 | 71,6  |     | 4,5317 | 0,4017     | 0,4683  | 0,4632  | 0,0056  | 0,1364    | 0,1824  |
| -        | 5,4                                                             | 11,18  |      | 60,5 | 85,8  |     | 6,647  | 0,7507     | -1,247  | -1,5838 | 0,38    | 0,4762    | -1,5373 |
| $\vdash$ | 4,3                                                             | 9,42   | 50,6 | 24,8 | 62,8  | _   | 4,769  | 0,3314     | -0,469  | -0,4527 | 0,0035  | 0,0928    | -0,1435 |
| -        | 2,5                                                             | 8,54   | 56,1 | 27   | 82,5  | 98  | 4,4751 | 0,3613     | -1,9751 | -1,9248 | 0,0766  | 0,1103    | -0,7002 |
| 48       |                                                                 | 11,03  | _    | 19,7 | 102,1 | 318 | 5,1068 | 0,2814     | -0,1068 | -0,1016 | 0,0001  | 0,0669    | -0,0269 |
| -        | 3,1                                                             | 9,41   | 59,5 | 20,6 | 91,7  | 29  | 4,5032 | 0,3298     | -1,4032 | -1,3536 | 0,0309  | 0,0003    | -0,4348 |
| -        | 3,5                                                             | 7,94   | 49,5 | 6,2  | 92,3  |     |        | 0,3611     | -0,4986 | -0,4859 | 0,0049  | 0,1102    | -0,1695 |
| 55       | 0,0                                                             | 7,04   | 70,0 | ٠,٤  | 32,3  | 100 | 5,5500 | 0,0011     | 0,7000  | 0,4008  | 3,0048  | 0,1102    | 0,1000  |

¿ Para qué todo eso? 3 avuian el reporte. pac ejemplo, no Je en el reporte donde usan et datos son de reporte estadístico.