Introduction to Reinforcement Learning

Reinforcement Learning

- The science of decision making
- Equivalents in other fields
 - Engineering: Optimal Control
 - Neuroscience: Dopamine / Reward System (TD is very similar)
 - Psychology: Classical Conditioning (animal behaviour)
 - Math: Operations Research
 - Economics: Game Theory / Utility Theory
- Unifying Framework for sequential decision making problems

Reinforcement vs Supervised

- No supervisor
- There is reward signal, but no indication of 'best solution'
 - Feedback doesn't rely on knowledge of correct action
 - Learning from a critic instead of a teacher
 - Movie critics can tell when a movie is good or bad, and give a rating, but they don't know what the 'perfect' movie is
- Delayed rewards / feedback

Sequential Learning and Decision Making

- Dynamic system / environment
- Continuous time
- Agent gets to influence environment and its perception (data it receives)
- Goal: Select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Agent and Environment
 - Observation (received from environment)
 - Reward (received from environment)
 - Action (influences the environment)
 - At each time step t the agent
 - Executes action A,
 - Receives observation O_t
 - Receives scalr reward R,
 - The environment
 - Receives action A,
 - Emits Observation O,
 - Emits scalar reward R₊

History and State

- The history (H_t) is the complete sequence of observations, actions and rewards up to time t
- History determines what the environment will do next, but can get too long for the agent to use fully
- The state is the information used to determine what happens next

Environment State Se,

- The environment's private representation
- I.e. whatever data the environment uses to pick the next observation / reward
- Not usually visible to the agent
- May contain irrelevant information

Information State (Markov State)
Contains all useful information from the history

A state State S, is Markov iff

- $\rho[S_{t+1} | S_t] = \rho[S_{t+1} | S_1, ..., S_t]$
- Current Markov State would give the same decision as if all the previous Markov States were given

Policy, Value, and Model

Policy

- Maps from state to action
- The 'brain' of the agent
- Can be probabilistic or deterministic

Value function

- Prediction of expected future reward
 - Value function (usually) decreases after a reward is obtained
 - Future reward decreases
- Automatically accounts for risk

Value Discounting

- Value short term more than long term
 - o Gradual, each term is multiplied by
 - $\circ \gamma^n R_{t+n}$
 - \blacksquare γ is discount factor, n is time steps in the future

Agent State Sa,

- The agent's internal representation
- Agent gets to choose how to create its own Agent State
- Whatever information the agent uses to pick the next action
- I.e. the information used by RL algorithms
- Can be any function of history $S_{t}^{a} = f(H_{t})$

Environment state is Markov

- Markov state for stunt helicopter would be
 - Velocity/Position/Fuel/Wind
- All previous info can be discarded

Model

- Predicts what the environment will do next
- Transitions Model
 - ρ predicts the next state
 (i.e. environment is dynamic)
- Rewards Model
 - R predicts the next (immediate) reward

Indirectly determines distance of look ahead

Categorizing RL Agents

Value Based

- No Policy (implicit)
 - Value function provides all need info for decisions
- Uses Value Function

Model Free

- Policy and / or Value Function
- No Model
 - Doesn't try to explicitly understand how environment works

Actor Critic

- Policy
- Value Function

Policy Based

- Policy
- No value function

Model Based

- Policy and / or Value Function
- Model
 - Can be used for look-ahead

Problems within Reinforcement Learning

Learning and Planning: Sequential decision making

Reinforcement Learning

- The environment is initially unknown
- The agent interacts with the environment
- The agent improves its policy

Planning

- A model of the environment is known
- The agent performs computations with its model (without any external interaction)

Exploration and Exploitation

Exploitation

Exploits known information to maximize reward (Go to your favourite restaurant)

Exploration

 Finds more information about the environment (Try a new restaurant)

A balance of both is needed

- Exploration only → Never 'cash in'
- Exploitation only → Never 'improve'

RL is like trial-and-error learning

 Agent should discover a good policy - from its experiences of the environment

Prediction and Control

Prediction

Control

Evaluate the future reward given a policy $\mathsf{Optimize}$ the future reward $\to \mathsf{Find}$ the best policy

Prediction problem must be solved before the control problem can be solved

Credit-Assignment - How do you distribute credit for success among the many decisions that may have been involved in producing it?

Applications of RL

- Managing investment portfolio
- Backgammon
- Controlling a power station
- Robotic movement
- Robotic stunt maneuvers (helicopter)
- Multi-use agents (agent that can play any Atari game)

Course Outline

Part 1: Elementary Reinforcement Learning

- Introduction to RL
- Markov Decision Processes
- Planning by Dynamic Programming
- Model-Free Prediction
- Model-Free Control

Part 2: Reinforcement Learning in Practice

- Value Function Approximation
- Policy Gradient Methods
- Integrating Learning and Planning
- Exploration and Exploitation
- Case Study RL in Game