```
In [19]:
           import pandas as pd
           import numpy as np
           from matplotlib import pyplot as plt
           import heapq
In [31]:
           excelfilepath = 'data preprocessing/Employees.xlsx'
           df = pd.read_excel( excelfilepath ,'Employees')
           df_new = pd.read_excel(excelfilepath ,'NewEmployees')
           df
In [33]:
              EmpID
Out[33]:
                       Salary
                                 Role
           0
                       2000.0
                                Senior
                   1
           1
                       2000.0
                   1
                                Senior
           2
                   3
                        NaN
                                Senior
           3
                       2900.0
                   4
                                Senior
           4
                   5
                       3200.0
                                Senior
           5
                       3500.0
                   6
                                Senior
           6
                       3800.0
                   7
                                Senior
           7
                   8
                       4100.0
                                Senior
```

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

4400.0

4700.0

5000.0

5300.0

5600.0

5900.0

6200.0

6500.0

6800.0

7100.0

7400.0

7700.0

8000.0 Manager

8300.0 Manager

8600.0 Manager

8900.0 Manager

9200.0 Manager

9500.0 Manager

Senior

 TL

 TL

TL

TL

TL

TL

TL

TL

TL

TL

TL

	EmpID	Salary	Role
26	27	9800.0	Manager
27	28	10100.0	Manager
28	29	10400.0	Manager
29	30	20000.0	SMO
30	31	23000.0	SMO
31	32	26000.0	SMO
32	33	29000.0	SMO
33	34	32000.0	SMO
34	35	35000.0	SMO
35	36	38000.0	SMO
36	37	41000.0	SMO
37	38	44000.0	SMO

In [32]: df_new

Out[32]:

	EmpID	Salary	Role
0	201	2000	Senior
1	202	2300	Senior
2	203	2600	Senior
3	204	2900	Senior
4	205	3200	Senior
5	206	3500	Senior
6	207	3800	Senior
7	208	4100	Senior
8	209	4400	Senior
9	210	4700	TL
10	211	5000	TL
11	212	5300	TL
12	213	5600	TL
13	214	5900	TL
14	215	6200	TL
15	216	6500	TL
16	217	6800	TL
17	218	7100	TL

	EmpID	Salary	Role
18	219	7400	TL
19	220	7700	TL
20	221	8000	Manager
21	222	8300	Manager
22	223	8600	Manager
23	224	8900	Manager
24	225	9200	Manager
25	226	9500	Manager
26	227	9800	Manager
27	228	10100	Manager
28	229	10400	Manager
29	230	20000	SMO
30	231	23000	SMO
31	232	26000	SMO
32	233	29000	SMO
33	234	32000	SMO
34	235	35000	SMO
35	236	38000	SMO
36	237	41000	SMO
37	238	44000	SMO

In [34]: | df.describe()

Out[34]:

	EmpID	Salary
count	38.000000	37.000000
mean	19.473684	12564.864865
std	11.156714	12023.130860
min	1.000000	2000.000000
25%	10.250000	5000.000000
50%	19.500000	7700.000000
75%	28.750000	10400.000000
max	38.000000	44000.000000

```
# if i want to fill the missing values we use :
df.Salary.fillna(df.Salary.mean(), inplace = True)
```

C:\Users\Lenovo\anaconda3\lib\site-packages\pandas\core\series.py:4517: SettingWithCopyW arning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_ guide/indexing.html#returning-a-view-versus-a-copy return super().fillna(

to display the dublicated values and try to remove it In [42]: df[df.EmpID.duplicated()] # if i want to drop the dublicates values we use : df = df.drop_duplicates(keep = 'last')

In [44]: # Getting the most largest numbers in order to validate with upper salary limits print(heapq.nlargest(5 , list(df.Salary))) # Getting the most smallest numbers in order to validate with upper salary limits print(heapq.nsmallest(5 , list(df.Salary)))

[44000.0, 41000.0, 38000.0, 35000.0, 32000.0] [2000.0, 2900.0, 3200.0, 3500.0, 3800.0]

In [72]:

df

Out[72]:		EmpID	Salary	Role
	1	1	2000.000000	Senior
	2	3	12564.864865	Senior
	3	4	2900.000000	Senior
	4	5	3200.000000	Senior
	5	6	3500.000000	Senior
	6	7	3800.000000	Senior
	7	8	4100.000000	Senior
	8	9	4400.000000	Senior
	9	10	4700.000000	TL
	10	11	5000.000000	TL
	11	12	5300.000000	TL
	12	13	5600.000000	TL
	13	14	5900.000000	TL
	14	15	6200.000000	TL
	15	16	6500.000000	TL
	16	17	6800.000000	TL
	17	18	7100.000000	TL
	18	19	7400.000000	TL
	19	20	7700.000000	TL

	EmpID	Salary	Role
20	21	8000.000000	Manager
21	22	8300.000000	Manager
22	23	8600.000000	Manager
23	24	8900.000000	Manager
24	25	9200.000000	Manager
25	26	9500.000000	Manager
26	27	9800.000000	Manager
27	28	10100.000000	Manager
28	29	10400.000000	Manager
29	30	20000.000000	SMO
30	31	23000.000000	SMO
31	32	26000.000000	SMO
32	33	29000.000000	SMO
33	34	32000.000000	SMO
34	35	35000.000000	SMO
35	36	38000.000000	SMO
36	37	41000.000000	SMO
37	38	44000.000000	SMO

```
In [45]: # validate all employees that below the quarter of average
df[df.Salary < df.Salary.mean() * .25]</pre>
```

```
        Out[45]:
        EmpID
        Salary
        Role

        1
        1
        2000.0
        Senior

        3
        4
        2900.0
        Senior

        4
        5
        3200.0
        Senior
```

```
In [46]: frames = [df , df_new]
    all_records = pd.concat(frames)
    all_records
```

```
Out[46]:
              EmpID
                            Salary
                                     Role
           1
                       2000.000000 Senior
           2
                   3 12564.864865 Senior
           3
                       2900.000000 Senior
           4
                   5
                       3200.000000 Senior
           5
                   6
                       3500.000000 Senior
```

	EmpID	Salary	Role
•••			•••
33	234	32000.000000	SMO
34	235	35000.000000	SMO
35	236	38000.000000	SMO
36	237	41000.000000	SMO
37	238	44000.000000	SMO

75 rows × 3 columns

```
In [53]: # Adding new columns
all_records['SalaryWithTax'] = all_records['Salary'] * 1.22
all_records
```

```
Out[53]:
               EmpID
                                       Role SalaryWithTax
                              Salary
            1
                        2000.000000
                                     Senior
                                               2440.000000
                    1
            2
                    3 12564.864865
                                              15329.135135
                                     Senior
            3
                        2900.000000
                                     Senior
                                               3538.000000
                        3200.000000
                                     Senior
                                               3904.000000
            4
                        3500.000000
            5
                                     Senior
                                               4270.000000
                       32000.000000
                  234
                                      SMO
                                              39040.000000
           33
           34
                  235
                      35000.000000
                                      SMO
                                              42700.000000
                                              46360.000000
                  236 38000.000000
                                      SMO
           35
                  237 41000.000000
                                      SMO
                                              50020.000000
           36
                  238 44000.000000
           37
                                      SMO
                                              53680.000000
```

75 rows × 4 columns

```
In [59]: # Removing columns
del all_records['SalaryWithTax']
```

```
In [60]: all_records
```

```
EmpID
Out[60]:
                              Salary
                                       Role
            1
                    1
                         2000.000000
                                     Senior
            2
                       12564.864865
                    3
                                     Senior
            3
                         2900.000000
                                     Senior
                         3200.000000 Senior
            4
                    5
            5
                         3500.000000 Senior
                    6
```

```
EmpID
                 Salary
                         Role
33
      234 32000.000000
                         SMO
34
      235 35000.000000
                         SMO
35
      236 38000.000000
                         SMO
      237 41000.000000
36
                         SMO
37
      238 44000.000000
                         SMO
```

75 rows × 3 columns

```
# pivot table with aggregation
In [63]:
          pd.pivot_table(all_records , values = ['Salary'] , columns = ['Role'] , aggfunc = 'sum'
Out[63]:
           Role Manager
                            SMO
                                       Senior
                                                   TL
         Salary 165600.0 576000.0 65264.864865 136400.0
          # Saving dataframe to external entity
In [70]:
          import os
          FilePath = os.getcwd() + '\\CotenatedStudents.xlsx'
          writer = pd.ExcelWriter(FilePath)
          all_records.to_excel(writer , sheet_name = 'ConcatenatedSheet')
          writer.save()
          FilePath
```

Out[70]: 'C:\\Users\\Lenovo\\CotenatedStudents.xlsx'