

AURIX™ TC33x/TC32x

About this document

Scope and purpose

The Appendix supplies information specific for the TC33x/TC32x supplementing the family documentation.

Table of Contents

	About this document	. Preface-1
	Table of Contents	тос-1
1	Introduction	1-1
2	Memory Maps (MEMMAP)	2-1
2.1	Overview	
2.2	Functional Description	
2.2.1	Segments	2-1
2.3	Bus Fabric SRI	2-2
2.4	Bus Instance SPB	2-6
2.5	Revision History	2-10
3	TC33x/TC32x Firmware	3-1
3.1	Checker Software exit information for ALL CHECKS PASSED	3-1
3.2	Revision History	3-1
4	On-Chip System Connectivity {and Bridges}	4-1
4.1	TC33x/TC32x Specific IP Configuration	
4.2	TC33x/TC32x Specific Register Set	4-2
4.3	TC33x/TC32x Specific Registers	4-4
4.3.1	sri slave interface	4-4
4.4	Connectivity	4-4
4.5	Interconnection Matrices	
4.5.1	Domain 0 Interconnection Matrix	4-4
4.6	Revision History	
4.7	FPI Bus Control Units (SBCU)	
4.7.1	TC33x/TC32x Specific IP Configuration	
4.7.2	SBCU Control Unit Registers	
4.7.2.1	SBCU Control Registers Descriptions	
4.7.2.2	SBCU OCDS Registers Descriptions	
4.7.3	Connectivity	
4.7.3.1	SBCU Connectivity	
4.7.4	Revision History	4-17
5	CPU Subsystem (CPU)	
5.1	TC33x/TC32x Specific Configuration	
5.2	TC33x/TC32x Specific Register Set	
5.3	TC33x/TC32x Specific Registers	
5.3.1	SRI slave interface for SFR+CSFR	
5.4	Connectivity	
5.5	Revision History	
6	Non Volatile Memory (NVM) Subsystem	
5.1	Overview	
5.2	Revision History	
6.3	Data Memory Unit (DMU)	
5.3.1	TC33x/TC32x Specific Register Set	
5.3.2	TC33x/TC32x Specific Registers	
5.3.2.1 5.3.3	SRI slave interface - Register Address Space	
J.J.3	Connectivity	p-1b

5.3.4	Revision History	
5.4	Non Volatile Memory (NVM)	
5.4.1	TC33x/TC32x Specific Register Set	6-17
5.4.2	Connectivity	6-18
5.4.3	Revision History	6-18
7	Local Memory Unit (LMU)	. 7-1
8	Default Application Memory (LMU_DAM)	. 8-1
9	System Control Unit (SCU)	. 9-1
9.1	TC33x/TC32x Specific IP Configuration	
9.1.1	LBIST considerations for TC33x/TC32x	
9.1.1.1	TC33x AA	
9.2	TC33x/TC32x Specific Register Set	9-2
9.3	TC33x/TC32x Specific Registers	
9.3.1	SCU: Connections to FPI/BPI bus	
9.4	Connectivity	
9.5	Revision History	
10	Clocking System	10-1
11	Power Management System (PMS)	
12	Power Management System for Low-End (PMSLE)	
12.1	TC33x/TC32x Specific IP Configuration	
12.2	TC33x/TC32x Specific Register Set	
12.3	TC33x/TC32x Specific Registers	
12.4	Connectivity	
12.5	Revision History	
13	Memory Test Unit (MTU)	13-1
13.1	TC33x/TC32x Specific IP Configuration	
13.2	Handling of Large DSPR SRAMs	
13.3	TC33x/TC32x Specific Register Set	
13.4	TC33x/TC32x Specific Registers	
13.4.1	MEMTEST Implementation	
13.4.2	MEMMAP Implementation	
13.4.3	MEMSTAT Implementation	13-9
13.4.4	MEMDONE Implementation	13-12
13.4.5	MEMFDA Implementation	13-14
13.5	SSH Instances	13-18
13.5.1	Ganging for SRAM test and initialization	13-21
13.6	Connectivity	13-22
13.7	Revision History	13-22
14	General Purpose I/O Ports and Peripheral I/O Lines (Ports)	14-1
14.1	TC33x/TC32x Specific IP Configuration	14-1
14.2	TC33x/TC32x Specific Register Set	14-1
14.3	Pn Registers	
14.3.1	SPB bus slave interface	14-25
14.4	Device Specific Connectivity Documentation	
14.5	Revision History	
15	Safety Management Unit (SMU)	
15.1	TC33x/TC32x Specific IP Configuration	15-1

15.2	TC33x/TC32x Specific Register Set	. 15-2
15.3	TC33x/TC32x Specific Registers	. 15-4
15.3.1	TC33x/TC32x Specific Registers	. 15-5
15.3.1.1	FPI slave interface	. 15-5
15.4	TC33x/TC32x Specific Alarm Mapping	15-22
15.4.1	TC33x/TC32x Specific Pre-Alarms	15-22
15.4.2	TC33x/TC32x Specific Alarms	15-24
15.5	Connectivity	15-40
15.6	Revision History	15-41
16	Interrupt Router (IR)	. 16-1
16.1	TC33x/TC32x Specific Interrupt Router Configuration	
16.2	TC33x/TC32x Specific Control Registers	
16.3	TC33x/TC32x Specific Registers	
16.3.1	IR Status and Control Registers	
16.4	TC33x/TC32x Specific Service Request Control (SRC) registers	
16.5	TC33x/TC32x Specific Registers	
16.5.1	IR Service Request Control Registers (SRC)	
16.6	Revision History	
17	Flexible CRC Engine (FCE)	17-1
1 7.1	TC33x/TC32x Specific IP Configuration	
17.2	TC33x/TC32x Specific Register Set	
17.3	TC33x/TC32x Specific Registers	
17.4	Connectivity	
17.5	Revision History	
	•	
18 10 1	Direct Memory Access (DMA)	
18.1	TC33x/TC32x Specific IP Configuration	
18.2	TC33x/TC32x Specific Register Set	
18.3	TC33x/TC32x Specific Registers	
18.4	Connectivity	
18.5	Revision History	
19	Signal Processing Unit (SPU)	. 19-1
20	SPU Lockstep Comparator (SPULCKSTP)	. 20-1
21	Extension Memory (EMEM)	. 21-1
22	Radar Interface (RIF)	. 22-1
	,	
23	High Speed Pulse Density Modulation Module (HSDDM)	22-1
23	High Speed Pulse Density Modulation Module (HSPDM)	
24	Camera and ADC Interface (CIF)	. 24-1
	Camera and ADC Interface (CIF)	. 24-1 . 25-1
24 25 25.1	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration	. 24-1 . 25-1 . 25-1
24 25 25.1 25.2	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set	. 24-1 . 25-1 . 25-1 . 25-1
24 25 25.1 25.2 25.3	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers	. 24-1 . 25-1 . 25-1 . 25-1 . 25-1
24 25 25.1 25.2 25.3 25.4	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers Connectivity	. 24-1 . 25-1 . 25-1 . 25-1 . 25-1
24 25 25.1 25.2 25.3	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers	. 24-1 . 25-1 . 25-1 . 25-1 . 25-1
24 25 25.1 25.2 25.3 25.4	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers Connectivity Revision History Generic Timer Module (GTM)	. 24-1 . 25-1 . 25-1 . 25-1 . 25-1 . 25-1
24 25 25.1 25.2 25.3 25.4 25.5 26 26.1	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers Connectivity Revision History Generic Timer Module (GTM) TC33x Specific IP Configuration	. 24-1 . 25-1 . 25-1 . 25-1 . 25-1 . 25-1 . 25-1 . 26-1
24 25 25.1 25.2 25.3 25.4 25.5	Camera and ADC Interface (CIF) System Timer (STM) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers Connectivity Revision History Generic Timer Module (GTM)	. 24-1 . 25-1 . 25-1 . 25-1 . 25-1 . 25-1 . 25-1 . 26-1

26.3.1 GTM IP Registers Specific Settings 26.3.2 GTM submodule CMP and MON registers 26.3.3 Port to GTM TIM Connections 26.3.4 GTM to Port Connections 26.3.5 GTM DTMAUXINSEL Connections 26.3.6 GTM to EVADC Connections 26.3.7 SENT Connections 26.3.8 GTM to CAN/TTCAN Connections 26.3.9 GTM to LCDCDC Connection 26.3.10 Special to TC33x 26.4 ARU Write Address Overview	26-31 26-35 26-48 26-115 26-117 26-130 26-131
Port to GTM TIM Connections 26.3.4 GTM to Port Connections 26.3.5 GTM DTMAUXINSEL Connections 26.3.6 GTM to EVADC Connections 26.3.7 SENT Connections 26.3.8 GTM to CAN/TTCAN Connections 26.3.9 GTM to LCDCDC Connection 26.3.10 Special to TC33x 26.4 ARU Write Address Overview	26-35 26-48 26-115 26-117 26-130 26-131
26.3.4 GTM to Port Connections 26.3.5 GTM DTMAUXINSEL Connections 26.3.6 GTM to EVADC Connections 26.3.7 SENT Connections 26.3.8 GTM to CAN/TTCAN Connections 26.3.9 GTM to LCDCDC Connection 26.3.10 Special to TC33x 26.4 ARU Write Address Overview	26-48 26-115 26-117 26-130 26-131 26-134
26.3.5 GTM DTMAUXINSEL Connections 26.3.6 GTM to EVADC Connections 26.3.7 SENT Connections 26.3.8 GTM to CAN/TTCAN Connections 26.3.9 GTM to LCDCDC Connection 26.3.10 Special to TC33x 26.4 ARU Write Address Overview	26-115 26-117 26-130 26-131 26-134
26.3.6 GTM to EVADC Connections 26.3.7 SENT Connections 26.3.8 GTM to CAN/TTCAN Connections 26.3.9 GTM to LCDCDC Connection 26.3.10 Special to TC33x 26.4 ARU Write Address Overview	
26.3.7 SENT Connections	
26.3.8 GTM to CAN/TTCAN Connections	
26.3.9 GTM to LCDCDC Connection	
26.3.10 Special to TC33x	
26.4 ARU Write Address Overview	
26.5 ARU Port Partitioning	26-137
26.6 ARU Read ID	
26.7 Revision History	
·	
TC33x/TC32x Specific Register Set	
·	
27.3 Connectivity	
27.4 Revision History	
General Purpose Timer Unit (GPT12)	
28.1 TC33x/TC32x Specific Register Set	
28.2 TC33x/TC32x Specific Registers	
28.3 Connectivity	
28.4 Revision History	28-3
29 Converter Control Block (CONVCTRL)	
29.1 TC33x/TC32x-Specific IP Configuration	
29.2 TC33x/TC32x Specific Register Set	29-1
29.3 TC33x/TC32x Specific Registers	
29.4 Connectivity	
29.5 Revision History	
30 Enhanced Versatile Analog-to-Digital Converter (EVADC)	30-1
30.1 TC33x/TC32x-Specific IP Configuration	
2012 - 1000/1/1002/ opcome	
30.2 TC33x/TC32x Specific Register Set	
30.2 TC33x/TC32x Specific Register Set	30-2
30.3 Connectivity	
Connectivity	
Connectivity	
Connectivity	30-2
Connectivity	30-2 30-3 30-3 30-6 30-8 ADC) 31-1
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDS) Inter-Integrated Circuit (I2C)	30-2 30-3 30-3 30-6 30-6 30-8 ADC) 31-1 32-1
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDS) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL)	30-2 30-3 30-3 30-6 30-8 ADC) 31-1 32-1
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDS) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL) Asynchronous Serial Interface (ASCLIN)	30-2 30-3 30-3 30-3 30-6 30-8 ADC) 31-1 32-1 33-1
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDS) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL) Asynchronous Serial Interface (ASCLIN) TC33x/TC32x Specific IP Configuration	30-2 30-3 30-3 30-6 30-6 30-8 ADC) 31-1 32-1 33-1 34-1
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDS) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL) Asynchronous Serial Interface (ASCLIN) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set	30-2 30-3 30-3 30-6 30-6 30-8 ADC) 31-1 32-1 33-1 34-1 34-2
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDSA) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL) Asynchronous Serial Interface (ASCLIN) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers	30-2 30-3 30-3 30-6 30-6 30-8 ADC) 31-1 32-1 34-1 34-2 34-25
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDS) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL) Asynchronous Serial Interface (ASCLIN) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers Connectivity	30-2 30-3 30-3 30-6 30-6 30-8 ADC) 31-1 32-1 34-1 34-2 34-25 34-25
Connectivity Analog Module Connections Digital Module Connections Revision History Enhanced Delta-Sigma Analog-to-Digital Converter (EDSA) Inter-Integrated Circuit (I2C) High Speed Serial Link (HSSL) Asynchronous Serial Interface (ASCLIN) TC33x/TC32x Specific IP Configuration TC33x/TC32x Specific Register Set TC33x/TC32x Specific Registers	30-2 30-3 30-3 30-6 30-6 30-8 ADC) 31-1 32-1 34-1 34-2 34-25 34-25 34-33

	Revision history	ionHistorv-1
47	8-Bit Standby Controller (SCR)	47-1
46.5	Revision History	
46.4	Connectivity	46-1
46.3	TC33x/TC32x Specific Registers	
46.2	TC33x/TC32x Specific Register Set	
46.1	TC33x/TC32x Specific IP Configuration	
46	Input Output Monitor (IOM)	
45	Hardware Security Module (HSM)	45-1
44	SD- and eMMC Interface (SDMMC)	44-1
43	External Bus Unit (EBU)	43-1
42	Gigabit Ethernet MAC (GETH)	42-1
41	Peripheral Sensor Interface with Serial PHY Connection (PSI5-S)	41-1
40	Peripheral Sensor Interface (PSI5)	
39.5	Revision History	
39.4	Connectivity	
39.3	TC33x/TC32x Specific Registers	
39.2	TC33x/TC32x Specific Register Set	
39.1	TC33x/TC32x Specific IP Configuration	
39	FlexRay™ Protocol Controller (E-Ray)	39-1
38.5	Revision History	38-17
38.4	Connectivity	
38.3.1	Bus Interface	
38.3	TC33x/TC32x Specific Registers	
38.2	TC33x/TC32x Specific in Configuration	
38 38.1	CAN Interface (MCMCAN)	
37. 4 .3 37.5	Revision History	
37.4.2 37.4.3	Trigger Inputs	
37.4.1 37.4.2	Interrupt and DMA Controller Service Requests	
37.4	Connectivity	
37.3	TC33x/TC32x Specific Registers	
37.2	TC33x/TC32x Specific Register Set	
37.1	TC33x/TC32x Specific IP Configuration	37-1
37	Single Edge Nibble Transmission (SENT)	
36	Micro Second Channel (MSC)	
35.5	Revision History	
35.4	Connectivity	
35.3.1	Register block QSPI	
35.3	TC33x/TC32x Specific Registers	
35.2	TC33x/TC32xSpecific Register Set	
35.1	TC33x/TC32x Specific IP Configuration	35-1

Introduction

Introduction 1

For Introduction, block diagrams and feature set consult the family document. For Pinning consult the Data Sheet.

Memory Maps (MEMMAP)

2 Memory Maps (MEMMAP)

This is the automatically generated memory map of the TC33x/TC32x.

2.1 Overview

The memory map describes the address locations and access possibilities for the units, memories, and reserved areas as "seen" from the different on-chip buses' point of view.

2.2 Functional Description

The bus-specific address maps describe how the different bus master devices react on accesses to on-chip memories and modules, and which address ranges are valid or invalid for the corresponding buses.

The detailed address mapping of e.g. control registers, SRAM blocks or flash banks/sectors within a module is described in the related module chapter.

The SFI is an uni-directional bridge for access from SPB to SRI and therefore not mentioned here as an SRI master in the Address Map. The SFI is fully transparent and does not include an address translation mechanism.

Note:

In addition to the here described system address map, each TriCore has a TriCore IP internal access to its PSPR via C000_0000_H and an internal access to its DSPR via D000_0000_H. This additional/private view to the local scratch pad SRAMs is described in the CPU chapter.

Table 1 defines the acronyms and other terms that are used in the address maps.

Table 1 Definition of Acronyms and Terms

Term	Description
BE	A bus access is terminated with a bus error.
ok	A bus access is allowed and is executed.
16	A bus access with width 16 and 32 bits is allowed and executed.
32	A bus access with width 32 bits is allowed and executed.
Access	A bus access is allowed and is executed.

2.2.1 Segments

This section summarizes the contents of the segments.

Segments 0 and 2

These memory segments are reserved.

Segments 1 and 3-7

These memory segments allow access to the CPUs Program and Data Scratch Pad SRAM (PSPR, DSPR), Program and Data Cache SRAMs (PCACHE, DCACHE) as well as TAG SRAMs related to Program and Data Cache (PTAG SRAM¹⁾ and DTAG SRAM¹⁾.

Where DCACHE is supported, DCACHE and DTAG SRAM¹⁾ can be only accessed if the Data Cache is disabled.

PCACHE and PTAG SRAMs¹⁾ can be only accessed if the related Program Cache is disabled.

¹⁾ TAG SRAMs are not meant to be used as general SRAMs and can be accessed only with single data access and only with 64 bit aligned address.

AURIX™ TC33x/TC32x

Memory Maps (MEMMAP)

The attribute of these segments (cached / non-cached) can be partially configured¹⁾ for each CPUs data and program side individually (see CPU chapter: Physical Memory Attribute Registers, PMAx).

Segment 8

This memory segment allows cached access to PFlash and BROM.

Segment 9

This memory segment allows cached access to LMU and to EMEM.

Segment 10

This memory segment allows non-cached access to PFlash, DFlash and BROM.

Segment 11

This memory segment allows non-cached access to LMU and to EMEM.

Segment 12

This memory segment is reserved.

Segment 13

This memory segment is reserved.

Segment 14

This memory segment is reserved.

Segment 15

The lower 128 Mbyte is SPB address space and the upper 128 Mbyte is SRI address space.

2.3 Bus Fabric SRI

This is the merged view of all SRI Bus Segments as used in the TC33x/TC32x.

Table 2 Address Map as seen by Bus Masters on Bus SRI

Address Range		Size	Unit	Access Type	
from	to			Read	Write
00000000 _H	6FFFFFF _H	-	Reserved	BE	BE
70000000 _H	7002FFFF _H	192 Kbyte	Data ScratchPad RAM (CPU0)	ok	ok
70030000 _H	70033FFF _H	16 Kbyte	Data Cache RAM (CPU0)	ok	ok
70034000 _H	700BFFFF _H	-	Reserved	BE	BE
700C0000 _H	700C17FF _H	6 Kbyte	Data Cache Tag RAM (CPU0)	ok	ok
700C1800 _H	700FFFFF _H	-	Reserved	BE	BE
70100000 _H	70101FFF _H	8 Kbyte	Program ScratchPad RAM (CPU0)	ok	ok
70102000 _H	70109FFF _H	32 Kbyte	Program Cache RAM (CPU0)	ok	ok
7010A000 _H	701BFFFF _H	-	Reserved	BE	BE

¹⁾ Mapping of Cache and TAG SRAMs is controlled via the MTU register MTU_MEMMAP.

Table 2 Address Map as seen by Bus Masters on Bus SRI (cont'd)

Address Range		Size	Unit	Access Type	
from	to			Read	Write
701C0000 _H	701C2FFF _H	12 Kbyte	Program Cache TAG RAM (CPU0)	ok	ok
701C3000 _H	7FFFFFF _H	-	Reserved	BE	BE
80000000 _H	802FFFFF _H	3 Mbyte	Program Flash (PFI0)	ok	ok
80300000 _H	8FDFFFFF _H	-	Reserved	BE	BE
8FE00000 _H	8FE7FFFF _H	512 Kbyte	Online Data Acquisition (OLDA) (DOM0)	BE	ok
8FE80000 _H	8FFEFFFF _H	-	Reserved	BE	BE
8FFF0000 _H	8FFFFFF _H	64 Kbyte	Boot ROM (BROM) (DMU)	ok	ok
90000000 _H	90001FFF _H	8 Kbyte	DLMU RAM (CPU0)	ok	ok
90002000 _H	9FFFFFF _H	-	Reserved	BE	BE
A0000000 _H	A02FFFFF _H	3 Mbyte	Program Flash (PFI0_NC)	ok	ok
A0300000 _H	A7FFFFFF _H	-	Reserved	BE	BE
A8000000 _H	A8003FFF _H	16 Kbyte	Erase Counter (PFI0)	ok	ok
A8004000 _H	A807FFFF _H	-	Reserved	BE	BE
A8080000 _H	A80FFFFF _H	512 Kbyte	Register address space (PFI0)	ok	ok
A8100000 _H	AEFFFFF _H	-	Reserved	BE	BE
AF000000 _H	AF0FFFFF _H	1 Mbyte	Data Flash 0 EEPROM (DF0) and Host Command Sequence Interpreter (DMU)	ok	ok
AF100000 _H	AF3FFFFF _H	-	Reserved	BE	BE

Table 2 Address Map as seen by Bus Masters on Bus SRI (cont'd)

Address Ran	ige	Size	Unit	Access	Туре
from	to			Read	Write
AF400000 _H	AF405FFF _H	24 Kbyte	UCB_BMHD0_ORIG (UCB)	ok	ok
			UCB_BMHD1_ORIG (UCB)	ok	ok
			UCB_BMHD2_ORIG (UCB)	ok	ok
			UCB_BMHD3_ORIG (UCB)	ok	ok
			UCB_SSW (UCB)	ok	ok
			UCB_USER (UCB)	ok	ok
			UCB_TEST (UCB)	ok	ok
			UCB_HSMCFG (UCB)	ok	ok
			UCB_BMHD0_COPY (UCB)	ok	ok
			UCB_BMHD1_COPY (UCB)	ok	ok
			UCB_BMHD2_COPY (UCB)	ok	ok
			UCB_BMHD3_COPY (UCB)	ok	ok
			UCB_REDSEC (UCB)	ok	ok
			Reserved (UCB)	ok	ok
			Reserved (UCB)	ok	ok
			UCB_RETEST (UCB)	ok	ok
			UCB_PFLASH_ORIG (UCB)	ok	ok
			UCB_DFLASH_ORIG (UCB)	ok	ok
			UCB_DBG_ORIG (UCB)	ok	ok
			UCB_HSM_ORIG (UCB)	ok	ok
			UCB_HSMCOTP0_ORIG (UCB)	ok	ok
			UCB_HSMCOTP1_ORIG (UCB)	ok	ok
			UCB_ECPRIO_ORIG (UCB)	ok	ok
			UCB_SWAP_ORIG (UCB)	ok	ok
			UCB_PFLASH_COPY (UCB)	ok	ok
			UCB_DFLASH_COPY (UCB)	ok	ok
			UCB_DBG_COPY (UCB)	ok	ok
			UCB_HSM_COPY (UCB)	ok	ok
			UCB_HSMCOTP0_COPY (UCB)	ok	ok
			UCB_HSMCOTP1_COPY (UCB)	ok	ok
			UCB_ECPRIO_COPY (UCB)	ok	ok
			UCB_SWAP_COPY (UCB)	ok	ok

Table 2 Address Map as seen by Bus Masters on Bus SRI (cont'd)

Address Range		Size	Unit	Access Typ	
from	to			Read	Write
cont'd			UCB_OTP0_ORIG (UCB)	ok	ok
			UCB_OTP1_ORIG (UCB)	ok	ok
			UCB_OTP2_ORIG (UCB)	ok	ok
			UCB_OTP3_ORIG (UCB)	ok	ok
			UCB_OTP4_ORIG (UCB)	ok	ok
			UCB_OTP5_ORIG (UCB) UCB_OTP6_ORIG (UCB)	ok ok	ok ok
			UCB_OTP7_ORIG (UCB)	ok	ok
			UCB_OTPO_COPY (UCB)	ok	ok
			UCB_OPT1_COPY (UCB)	ok	ok
			UCB_OPT2_COPY (UCB)	ok	ok
			UCB_OPT3_COPY (UCB)	ok	ok
			UCB_OPT4_COPY (UCB)	ok	ok
			UCB_OPT5_COPY (UCB)	ok	ok
			UCB_OPT6_COPY (UCB)	ok	ok
			UCB_OPT7_COPY (UCB)	ok	ok
AF406000 _H	AF7FFFF _H	-	Reserved	BE	BE
AF800000 _H	AF80FFFF _H	64 Kbyte	Configuration Sector Layout (CFS)	ok	ok
AF810000 _H	AFBFFFFF _H	-	Reserved	BE	BE
AFC00000 _H	AFC1FFFF _H	128 Kbyte	Data Flash 1 EEPROM (DF1) and HSM Command Sequence Interpreter (DMU)	ok	ok
AFC20000 _H	AFDFFFFF _H	-	Reserved	BE	BE
AFE00000 _H	AFE7FFF _H	512 Kbyte	Online Data Acquisition (OLDA) (DOM0_NC)	BE	ok
AFE80000 _H	AFFEFFFF _H	-	Reserved	BE	BE
AFFF0000 _H	AFFFFFF _H	64 Kbyte	Boot ROM (BROM) (DMU)	ok	ok
B0000000 _H	B0001FFF _H	8 Kbyte	DLMU RAM (CPU0_NC)	ok	ok
B0002000 _H	F801FFFF _H	-	Reserved	BE	BE
F8020000 _H	F8029FFF _H	40 Kbyte	sri slave interface (FSIRAM)	ok	ok
F802A000 _H	F802FFFF _H	-	Reserved	BE	BE
F8030000 _H	F80300FF _H	256 byte	sri slave interface (FSI)	ok	ok
F8030100 _H	F8037FFF _H	-	Reserved	BE	BE
F8038000 _H	F803FFFF _H	32 Kbyte	sri slave interface (PMU)	ok	ok
F8040000 _H	F807FFFF _H	256 Kbyte	sri slave interface (DMU)	ok	ok
F8080000 _H	F86FFFF _H	-	Reserved	BE	BE
F8700000 _H	F870FFFF _H	64 Kbyte	sri slave interface (DOM0)	ok	ok
F8710000 _H	F87FFFF _H	-	Reserved	BE	BE

Memory Maps (MEMMAP)

Table 2 Address Map as seen by Bus Masters on Bus SRI (cont'd)

Address Range		Size	Unit	Access Type		
from	to	to		Read	Write	
F8800000 _H	F881FFFF _H	128 Kbyte	Safety Memory Protection Register (CPU0)	ok	ok	
			DLMU Safety Memory Protection registers (CPU0)	ok	ok	
			Safety register protection registers (CPU0)	ok	ok	
			Kernel Reset registers (CPU0)	ok	ok	
			Flash Configuration registers (CPU0)	ok	ok	
			Overlay Block Control registers (CPU0)	ok	ok	
			Memory Integrity Registers (CPU0)	ok	ok	
			Core Special Function Registers (CPU0)	ok	ok	
			General Purpose Registers (CPU0)	ok	ok	
			Memory Protection Registers (CPU0)	ok	ok	
			Temporal Protection System registers (CPU0)	ok	ok	
			Floating point register (CPU0)	ok	ok	
			Core Debug Performance Counter registers (CPU0)	ok	ok	
			Data Memory Interface registers (CPU0)	ok	ok	
			Program Memory Interface registers (CPU0)	ok	ok	
F8820000 _H	FFBFFFFF	-	Reserved	BE	BE	
FFC00000 _H	FFC1FFFF _H	128 Kbyte	Data Flash 1 EEPROM (DF1) and HSM Command Sequence Interpreter (DMU)	ok	ok	
FFC20000 _H	FFFFFFF	-	Reserved	BE	BE	

2.4 Bus Instance SPB

Table 3 Address Map as seen by Bus Masters on Bus SPB

Address Range		Size	Unit	Access Typ	
from	to			Read	Write
00000000 _H	0FFFFFF _H	-	Reserved	BE	BE
10000000 _H	EFFFFFF	3584 Mbyte	Redirection of SRI ranges (SFIBRIDGE1) Bridge to Bus Segment 00 of SRI (SFIBRIDGE1)	ok	ok
F0000000 _H	F00001FF _H	512 byte	FPI slave interface (FCE)	ok	ok
F0000200 _H	F00003FF _H	-	Reserved	BE	BE
F0000400 _H	F00005FF _H	512 byte	FPI slave interface (CBS)	ok	ok
F0000600 _H	F00006FF _H	256 byte	FPI slave interface (ASCLIN0)	ok	ok
F0000700 _H	F00007FF _H	256 byte	FPI slave interface (ASCLIN1)	ok	ok
F0000800 _H	F00008FF _H	256 byte	FPI slave interface (ASCLIN2)	ok	ok
F0000900 _H	F00009FF _H	256 byte	FPI slave interface (ASCLIN3)	ok	ok
F0000A00 _H	F0000AFF _H	256 byte	FPI slave interface (ASCLIN4)	ok	ok
F0000B00 _H	F0000BFF _H	256 byte	FPI slave interface (ASCLIN5)	ok	ok
F0000C00 _H	F0000CFF _H	256 byte	FPI slave interface (ASCLIN6)	ok	ok
F0000D00 _H	F0000DFF _H	256 byte	FPI slave interface (ASCLIN7)	ok	ok
F0000E00 _H	F0000EFF _H	256 byte	FPI slave interface (ASCLIN8)	ok	ok
F0000F00 _H	F0000FFF _H	256 byte	FPI slave interface (ASCLIN9)	ok	ok

AURIX™ TC33x/TC32x

Table 3 Address Map as seen by Bus Masters on Bus SPB (cont'd)

Address Range		Size	Unit	Access	Туре
from	to			Read	Write
F0001000 _H	F00010FF _H	256 byte	FPI slave interface (STM0)	ok	ok
F0001100 _H	F00017FF _H	-	Reserved	BE	BE
F0001800 _H	F00018FF _H	256 byte	FPI slave interface (GPT120)	ok	ok
F0001900 _H	F0001BFF _H	-	Reserved	BE	BE
F0001C00 _H	F0001CFF _H	256 byte	Register block QSPI0 (QSPI0)	ok	ok
F0001D00 _H	F0001DFF _H	256 byte	Register block QSPI1 (QSPI1)	ok	ok
F0001E00 _H	F0001EFF _H	256 byte	Register block QSPI2 (QSPI2)	ok	ok
F0001F00 _H	F0001FFF _H	256 byte	Register block QSPI3 (QSPI3)	ok	ok
F0002000 _H	F00029FF _H	-	Reserved	BE	BE
F0002A00 _H	F0002AFF _H	256 byte	FPI slave interface (CCU60)	ok	ok
F0002B00 _H	F0002BFF _H	256 byte	FPI slave interface (CCU61)	ok	ok
F0002C00 _H	F0002FFF _H	-	Reserved	BE	BE
F0003000 _H	F0003AFF _H	2.7 Kbyte	FPI slave interface (SENT)	ok	ok
F0003B00 _H	F000FFFF _H	-	Reserved	BE	BE
F0010000 _H	F0013FFF _H	16 Kbyte	FPI slave interface (DMA)	ok	ok
F0014000 _H	F001BFFF _H	-	Reserved	BE	BE
F001C000 _H	F001CFFF _H	4 Kbyte	FPI slave interface (ERAY0)	ok	ok
			ERAY RAM (ERAY0)	ok	ok
F001D000 _H	F001FFFF _H	-	Reserved	BE	BE
F0020000 _H	F0023FFF _H	16 Kbyte	FPI slave interface (EVADC)	ok	ok
F0024000 _H	F0024FFF _H	-	Reserved	BE	BE
F0025000 _H	F00250FF _H	256 byte	FPI slave interface (CONVCTRL)	ok	ok
F0025100 _H	F002FFFF _H	-	Reserved	BE	BE
F0030000 _H	F00300FF _H	256 byte	BCU Registers (SBCU)	ok	ok
F0030100 _H	F0034FFF _H	-	Reserved	BE	BE
F0035000 _H	F00351FF _H	512 byte	FPI slave interface (IOM)	ok	ok
F0035200 _H	F0035FFF _H	-	Reserved	BE	BE
F0036000 _H	F00363FF _H	1 Kbyte	SCU: Connections to FPI/BPI bus (SCU)	ok	ok
			Clocking System Registers (SCU)	ok ok	ok
F002C400	F002C7FF		Power Management Registers (SCU)		ok
F0036400 _H	F00367FF _H	- 2 Khyta	Reserved EDI slave interface (SMII)		BE
F0036800 _H	F0036FFF _H	2 Kbyte	FPI slave interface (SMU)		ok
F0037000 _H	F0037FFF _H	4 Kbyte	IR Status and Control Registers (INT)		ok
F0038000 _H	F0039FFF _H	8 Kbyte	IR Service Request Control Registers (SRC) (SRC) ok		ok
F003A100	F003A0FF _H	256 byte	SPB bus slave interface (P00)	ok	ok BE
F003A100 _H	F003A1FF _H	- 250 ki ta	Reserved BE		
F003A200 _H	F003A2FF _H	256 byte	SPB bus slave interface (P02)	ok	ok

Table 3 Address Map as seen by Bus Masters on Bus SPB (cont'd)

Address Range		Size Unit		Access Type		
from to				Read	Write	
F003A300 _H	F003A9FF _H	-	Reserved	BE	BE	
F003AA00 _H	F003AAFF _H	256 byte	SPB bus slave interface (P10)	ok	ok	
F003AB00 _H	F003ABFF _H	256 byte	SPB bus slave interface (P11)	ok	ok	
F003AC00 _H	F003ACFF _H	-	Reserved	BE	BE	
F003AD00 _H	F003ADFF _H	256 byte	SPB bus slave interface (P13)	ok	ok	
F003AE00 _H	F003AEFF _H	256 byte	SPB bus slave interface (P14)	ok	ok	
F003AF00 _H	F003AFFF _H	256 byte	SPB bus slave interface (P15)	ok	ok	
F003B000 _H	F003B3FF _H	-	Reserved	BE	BE	
F003B400 _H	F003B4FF _H	256 byte	SPB bus slave interface (P20)	ok	ok	
F003B500 _H	F003B5FF _H	256 byte	SPB bus slave interface (P21)	ok	ok	
F003B600 _H	F003B6FF _H	256 byte	SPB bus slave interface (P22)	ok	ok	
F003B700 _H	F003B7FF _H	256 byte	SPB bus slave interface (P23)	ok	ok	
F003B800 _H	F003BFFF _H	-	Reserved	BE	BE	
F003C000 _H	F003C0FF _H	256 byte	SPB bus slave interface (P32)	ok	ok	
F003C100 _H	F003C1FF _H	256 byte	SPB bus slave interface (P33)	ok	ok	
F003C200 _H	F003C2FF _H	256 byte	SPB bus slave interface (P34)	ok	ok	
F003C300 _H	F003C7FF _H	-	Reserved	BE	BE	
F003C800 _H	F003C8FF _H	256 byte	SPB bus slave interface (P40)	ok	ok	
F003C900 _H	F003FFFF _H	-	Reserved	BE	BE	
F0040000 _H	F005FFFF _H	128 Kbyte	System Registers (HSM) Debug Registers (HSM) Communication Registers (HSM) HSM Reset (HSM)	32 32 32 32 32	32 32 32 32	
F0060000 _H	F006FFFF _H	64 Kbyte	FPI slave interface (MTU) FPI slave interface (MTU)	ok ok	ok ok	
F0070000 _H	F00FFFF _H	-	Reserved	BE	BE	
F0100000 _H	F01FFFFF _H	1 Mbyte	FPI slave interface (GTM) FPI slave interface (GTM) Mapped RAMs (GTM) Embedded DPLL RAM 2 (GTM)	ok ok ok ok	ok ok ok ok	
F0200000 _H	F0208FFF _H	36 Kbyte	RAM Area (CAN0) Register Area (CAN0)	ok ok	ok ok	
F0209000 _H	F020FFFF _H	-	Reserved		BE	
F0210000 _H	F0218FFF _H	36 Kbyte	RAM Area (CAN1) Register Area (CAN1)		ok ok	
F0219000 _H	F023FFFF _H	-	Reserved	BE	BE	
F0240000 _H	F0241FFF _H	8 Kbyte	Standby Controller XRAM (PMS)	ok	ok	
F0242000 _H	F0247FFF _H	-	Reserved	BE	BE	

Memory Maps (MEMMAP)

Table 3 Address Map as seen by Bus Masters on Bus SPB (cont'd)

Address Range		Size Unit		Access Type		
from to				Read	Write	
F0248000 _H	F02481FF _H	512 byte	FPI slave interface (PMS)	ok	ok	
			SMU registers in Standby power domain (PMS)	ok	ok	
F0248200 _H	F02C09FF _H	-	Reserved	BE	BE	
F02C0A00 _H	F02C0AFF _H	256 byte	FPI slave interface (ASCLIN10)	ok	ok	
F02C0B00 _H	F02C0BFF _H	256 byte	FPI slave interface (ASCLIN11)	ok	ok	
F02C0C00 _H	F7FFFFF _H	-	Reserved	BE	BE	
F8000000 _H	FFFFFFF	128 Mbyte	Redirection of SRI ranges (SFIBRIDGE1)	ok	ok	

AURIX™ TC33x/TC32x

Memory Maps (MEMMAP)

2.5 Revision History

Table 4 Revision History

Reference	Change to Previous Version						
V0.1.12							
_	First release for TC33x/TC32x.	_					
V0.1.13							
_	No changes. Only version number changed to keep alignment with family address map.						
V0.1.14							
_	No changes. Only version number changed to keep alignment with family address map.	-					
V0.1.15							
_	No changes. Only version number changed to keep alignment with family address map.	-					
V0.1.16							
_	No changes. Only version number changed to keep alignment with family address map.	_					
V0.1.17							
_	No changes. Only version number changed to keep alignment with family address map.	-					
V0.1.18		l					
_	No changes. Only version number changed to keep alignment with family address map.	-					
V0.1.19		<u>I</u>					
_	No changes. Only version number changed to keep alignment with family address map.						
V0.1.20		1					
_	No changes. Only version number changed to keep alignment with family address map.						
V0.1.21		1					
Page 6	In bus instance SPB several address ranges corrected to "BE".						

TC33x/TC32x Firmware

3 TC33x/TC32x Firmware

This chapter supplements the family documentation with device specific information for TC33x/TC32x devices.

3.1 Checker Software exit information for ALL CHECKS PASSED

Below the SCU_STMEM3...SCU_STMEM6 registers' content corresponding to "ALL CHECKS PASSED" result from Checker Software (CHSW) upon different device reset types is shown.

Table 5 "ALL CHECKS PASSED" indication by CHSW for TC33x/TC32x

Reset type	Additional conditions	SCU_STMEM3	SCU_STMEM4	SCU_STMEM5	SCU_STMEM6
Cold power-on 1)		A010FB1FH	0000001H	A010FB1FH	A010FB1FH
Warm power-on		A000F82FH	0000001H	A000F82FH	A000F82FH
System reset		2000B84FH	0000001H	2000B84FH	2000B84FH
Application reset		2000088FH	0000001H	2000088FH	2000088FH

¹⁾ Device start-up after LBIST execution is handled by AURIXTM TC3xx Firmware as cold power-on, therefore the SCU_STMEMx values in this row apply also in such a case (after LBIST).

3.2 Revision History

Table 6 Revision History

Reference	Change to Previous Version	Comment						
V1.1.0.1.14								
	First version of this document							
V1.1.0.1.15, \	/1.1.0.1.16							
	No change							
V1.1.0.1.17	·							
Table 5	Footnote added, explaining FW handling after LBIST execution (documentation improvement only, no change in implementation)							
V1.1.0.1.18	·							
- No functional changes								

On-Chip System Connectivity {and Bridges}

4 On-Chip System Connectivity {and Bridges}

Text with reference to family spec.

4.1 TC33x/TC32x Specific IP Configuration

Table 7 TC33x/TC32x specific configuration of DOM

Parameter	DOM0
Application Reset	Application Reset
Access only when any Endinit (SCU_WDTCPUxCON0.EI = 0 for any CPUx)	ENDINIT
Access only when Safety Endinit (SCU_SEICON.EI = 0)	Safety ENDINIT
Access only from HSM Master or HSM debug (or FPRO.PROINHSMCFG=0)	HSM Access
Access only when PSW = Supervisor Mode	Supervisor Mode
Access only when PSW = User Mode 0 or 1	User Mode
Access only when OCDS enabled	Debug Mode
Access only from Master x (when MOD_ACCEN0.ENx = 1 or MOD_ACCEN1.ENx = 1)	Valid Master
Access only from Master x (when MOD_ACCEN0.ENx = 1)	Valid Master (0)
Access only from Master x (when MOD_ACCEN1.ENx = 1)	Valid Master (1)
Number of SCI interfaces	16
sri base address	F8700000 _H
sri address range	10000 _H
OLDA base address	8FE00000 _H
OLDA range	80000 _H
OLDA base address (non-cached)	AFE00000 _H
OLDA range (non-cached)	80000 _H

On-Chip System Connectivity {and Bridges}

4.2 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 8 Register Address Space - DOM

Module	Base Address	End Address	Note
(DOM0)	8FE00000 _H	8FE7FFFF _H	Online Data Acquisition (OLDA)
	AFE00000 _H	AFE7FFFF _H	Online Data Acquisition (OLDA)
DOM0	F8700000 _H	F870FFFF _H	sri slave interface

Register Overview Table

Table 9 Register Overview - DOM0 (ascending Offset Address)

Short Name	Description	Offset	Access M	Page		
		Address	Read	Write	Number	
DOM0_PECONx (x=0-15)	Protocol Error Control Register x	00000 _H + x*20 _H	32,U,SV	32,P,SV	See Family Spec	
DOM0_PRIORIT Yx (x=0-15)	SCIx Arbiter Priority Register	00008 _H + x*20 _H	32,U,SV	32,P,SV	See Family Spec	
DOM0_ERRADD Rx (x=0-15)	SCI x Error Address Capture Register	00010 _H + x*20 _H	32,U,SV	32,P,SV	See Family Spec	
DOM0_ERRx (x=0-15)	SCI x Error Capture Register	00018 _H + x*20 _H	32,U,SV	32,P,SV	See Family Spec	
DOM0_ID	Identification Register	00408 _H	32,U,SV	BE	See Family Spec	
DOM0_PESTAT	Protocol Error Status Register	00410 _H	32,U,SV	32,P,SV	See Family Spec	
DOM0_TIDSTAT	0_TIDSTAT Transaction ID Status Register		32,U,SV	32,P,SV	See Family Spec	
DOM0_TIDEN	Transaction ID Enable Register	00420 _H	32,U,SV	32,P,SV	See Family Spec	
DOM0_BRCON	Domain 0 Bridge Control Register	00430 _H	32,U,SV	32,P,SV	4	

On-Chip System Connectivity (and Bridges)

Table 9 Register Overview - DOM0 (ascending Offset Address) (cont'd)

Short Name	Description	Offset	Access M	Page	
		Address	Read	Write	Number
DOM0_ACCEN0	Access Enable Register 0	004F0 _H	32,U,SV	32,SV,SE	See Family Spec
DOM0_ACCEN1	Access Enable Register 1	004F8 _H	32,U,SV	32,SV,SE	See Family Spec

On-Chip System Connectivity (and Bridges)

4.3 TC33x/TC32x Specific Registers

4.3.1 sri slave interface

Domain 0 Bridge Control Register

_	_BRCO in 0 Bri		ntrol R	Registe	r		(0043	0 _H)		Ap	plicati	on Res	et Valu	e: 000	00 0200 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	·	,	ļ	·	'	0	·	ļ	ļ	ļ.	·			0	
L						r		1					r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	ı		0	0	1		0	0		ı	0	ı	1	OLDAE N
1	rw			r	rw	rw		r	rw			r			rw

Field	Bits	Туре	Description
OLDAEN	0	rw	Online Data Acquisition Enable
			This bit is used to control trap generated for write accesses to the OLDA address range associated with this domain.
			0 _B Trap generated on a write access to the OLDA memory range.
			$1_{\rm B}$ No trap generated on a write access to the OLDA memory range.
0	5:1,	r	Reserved
	8:7,		Read as 0; shall be written with 0.
	12:11,		
	31:20		
0	6,	rw	Reserved
	10,		Read as 0; shall be written with 0.
	19:13		
1	9	rw	Reserved
			Read as 1; shall be written with 1.

4.4 Connectivity

No connections in TC33x/TC32x

4.5 Interconnection Matrices

4.5.1 Domain 0 Interconnection Matrix

By default the crossbar connects MCIs to SCIs. The following connectivity matrix highlights (in red and yellow) the MCI to SCI interconnects that are non-standard in the TC33x/TC32x. The unimplemented connections are redundant as they would not be useful (illegal or trapping) therefore do not restrict the functionality.

On-Chip System Connectivity (and Bridges)

Figure 1 TC33x/TC32x Domain0 Connectivity Matrix

4.6 Revision History

Table 10 Revision History

Reference	Change to Previous Version Comment						
V1.1.13							
	Initial TC33x appendix version						
V1.1.14							
	No change.						
V1.1.15							
	No change.						
V1.1.16							
	No change.						
V1.1.17							
	No change.						

4.7 FPI Bus Control Units (SBCU)

This chapter supplements the family documentation with device specific information for TC33x/TC32x.

4.7.1 TC33x/TC32x Specific IP Configuration

The TC33x/TC32x includes one FPI Bus instance. Each FPI Bus instance has its dedicated Bus Control Unit:

Table 11 Register Address Space - BCU

Module	Base Address	End Address	Note
(SBCU)	F0000000 _H	F7FFFFF _H	FPI default slave
SBCU	F0030000 _H	F00300FF _H	BCU Registers

System Peripheral Bus (SPB) -> SBCU. The SBCU registers are described in Chapter 4.7.2

4.7.2 SBCU Control Unit Registers

Figure 2 and **Table 12** are showing the address maps with all registers of the System Bus Control Unit (SBCU) module.

SBCU Control Registers Overview

Figure 2 SBCU Registers

Table 12 Register Overview - SBCU (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Numbe	
SBCU_ID	Module Identification Register	0008 _H	U,SV	BE	Application Reset	See Family Spec	
SBCU_CON	BCU Control Register	0010 _H	U,SV	SV,P	Application Reset	See Family Spec	
SBCU_PRIOH	Arbiter Priority Register High	0014 _H	U,SV	SV,E,P	Application Reset	8	
SBCU_PRIOL	Arbiter Priority Register Low	0018 _H	U,SV	SV,E,P	Application Reset	9	
SBCU_ECON	BCU Error Control Capture Register	0020 _H	U,SV	SV,P	Application Reset	See Family Spec	
SBCU_EADD	BCU Error Address Capture Register	0024 _H	U,SV	SV,P	Application Reset	See Family Spec	
SBCU_EDAT	BCU Error Data Capture Register	0028 _H	U,SV	SV,P	Application Reset	See Family Spec	
SBCU_DBCNTL	BCU Debug Control Register	0030 _H	U,SV	SV,P	Debug Reset	See Family Spec	
SBCU_DBGRNT	SBCU Debug Grant Mask Register	0034 _H	U,SV	SV,P	Debug Reset	10	
SBCU_DBADR1	BCU Debug Address 1 Register	0038 _H	U,SV	SV,P	Debug Reset	See Family Spec	
SBCU_DBADR2	BCU Debug Address 2 Register	003C _H	U,SV	SV,P	Debug Reset	See Family Spec	
SBCU_DBBOS	BCU Debug Bus Operation Signals Register	0040 _H	U,SV	SV,P	Debug Reset	See Family Spec	
SBCU_DBGNTT	SBCU Debug Trapped Master Register	0044 _H	U,SV	BE	Debug Reset	11	
SBCU_DBADRT	BCU Debug Trapped Address Register	0048 _H	U,SV	BE	Debug Reset	See Family Spec	
SBCU_DBBOST	BCU Debug Trapped Bus Operation Signals Register	004C _H	U,SV	BE	Debug Reset	See Family Spec	

Table 12 Register Overview - SBCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Number	
SBCU_DBDAT	BCU Debug Data Status Register	0050 _H	U,SV	BE	Debug Reset	See Family Spec	
SBCU_ALSTATx (x=0-3)	BCU EDC Alarm Status Register x	0060 _H +x *4	U,SV	SV,P	Application Reset	12	
SBCU_ALCLRx (x=0-3)	BCU EDC Alarm Clear Register x	0070 _H +x *4	U,SV	SV,P	Application Reset	See Family Spec	
SBCU_ALCTRL	BCU EDC Alarm Control Register	0080 _H	U,SV	SV,P	Application Reset	See Family Spec	
SBCU_FEGEN	FPI Error Generation Control Register	0084 _H	U,SV	SV,SE	Application Reset	See Family Spec	
SBCU_ACCEN1 Access Enable Register 1		00F8 _H	U,SV	SV,SE	Application Reset	See Family Spec	
SBCU_ACCEN0	Access Enable Register 0	00FC _H	U,SV	SV,SE	Application Reset	See Family Spec	

4.7.2.1 SBCU Control Registers Descriptions

Note: For all PRIOH / PRIOL bit fields, a lower number has a higher priority in the arbitration round than a higher one.

Arbiter Priority Register High

SBCU_PRIOH **Arbiter Priority Register High** (0014_{H}) Application Reset Value: FEDC 8888_H 31 23 20 30 29 28 27 26 25 24 22 21 19 18 17 16 **RESERVED RESERVED HSMCMI HSMRMI** rw rw rw rw 15 13 10 9 2 14 12 11 3 0 **RESERVED RESERVED RESERVED RESERVED** rw rw rw rw

Field	Bits	Туре	Description
RESERVED	3:0,	rw	Reserved
	7:4,		Read as reset value or last written value; should be written with 0.
	11:8,		
	15:12,		
	27:24,		
	31:28		
HSMRMI	19:16	rw	HSMRMI Priority (Index 12) This bit field defines the priority on the SPB for HSMRMI access to the SPB.
HSMCMI	23:20	rw	HSMCMI Priority (Index 13) This bit field defines the priority on the SPB for HSMCMI access to the SPB.

Arbiter Priority Register Low

SBCU_PRIOL

Arbite	r Priori	ty Reg	ister Lo	ow			(0018	3 _H)		Ар	plicati	on Res	et Valu	e: 8854	1 3210 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RESE	RVED	•		СР	U0	•		RESE	RVED	'		RESE	RVED	"
	r	W	1		r	W	1		r	W	I		r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESE	RVED	,		RESE	RVED	!		RESE	RVED			DI	MA	!
L	r	W	1	1	r	W	1	<u> </u>	r۱	W	1	I	r	W	

Field	Bits	Туре	Description
DMA	This bit field		DMA / Cerberus Priority (Index 0) This bit field defines the priority on the SPB for DMA and Cerberus access to the SPB.
RESERVED	7:4,	rw	Reserved
	11:8,		Read as reset value or last written value; should be written with 0.
	15:12,		
	19:16,		
	23:20,		
	31:28		
CPU0	27:24	rw	CPU0 Priority (Index 6)
			This bit field defines the priority on the SPB for CPU0 access to the SPB.

4.7.2.2 SBCU OCDS Registers Descriptions

SBCU Debug Grant Mask Register

SBCU	DBGRNT	

_	Debug	Grant I	Mask Re	egister			(0034	4 _H)			Deb	ug Res	et Valu	e: 000	0 FFFF _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	·	ı	! !		1		'	0	! !		1		!		
	1	1	1		1	1	1	r			1	1	I	I	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	HSMC MI	HSMR MI	1	1	1	1	1	CPU0	1	1	1	1	1	DMA
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description						
DMA	0	rw	 DMA / Cerberus Trigger Enable 0_B FPI Bus transactions with DMA / Cerberus as bus master are enabled for grant trigger event generation. 1_B FPI Bus transactions with DMA / Cerberus as bus master are disabled for grant trigger event generation. 						
CPU0	6	rw	 CPU0 Grant Trigger Enable 0_B FPI Bus transactions with CPU0 as bus master are enabled for grant trigger event generation. 1_B FPI Bus transactions with CPU as bus master are disabled for grant trigger event generation. 						
HSMRMI	12	rw	 HSM Register Master Interface Grant Trigger Enable 0_B FPI Bus transactions requested by the HSM bus master are enabled for grant trigger event generation. 1_B FPI Bus transactions requested by the HSM bus master are disabled for grant trigger event generation. 						
НЅМСМІ	13	rw	 HSM Cache Master Interface Grant Trigger Enable 0_B FPI Bus transactions requested by the HSM bus master are enabled for grant trigger event generation. 1_B FPI Bus transactions requested by the HSM bus master are disabled for grant trigger event generation. 						

Field	Bits	Туре	Description
1	1,	rw	Reserved
	2,		Read as 1 after reset; reading these bits will return the value last written.
	3,		
	4,		
	5,		
	7,		
	8,		
	9,		
	10,		
	11,		
	14,		
	15		
0	31:16	r	Reserved
			Read as 0; should be written with 0.

SBCU Debug Trapped Master Register

SBCU_DBGNTT
SBCU Debug Trapped Master Register

Debug Reset Value: 0000 FFFF_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	П	ļ l		ı	I	' (,)	1 1		ı	I	ı	I	'
	1	1	i i	<u> </u>	ı	l	1	- 	1 1		ı	l	į.	l	ı
							r	h							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	HSMC MI	HSMR MI	1	1	1	1	1	CPU0	1	1	1	1	1	DMA
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
DMA	0	rh	DMA / Cerberus FPI Bus Master Status
			0 _B The DMA or Cerberus was the FPI bus master.
			1 _B Neither DMA nor Cerberus was the FPI Bus master.
CPU0	6	rh	CPU0 FPI Bus Master Status
			This bit indicates whether the CPU0 was FPI Bus master when the break
			trigger event occurred.
			0 _B The CPU0 was the FPI Bus master.
			1 _B The CPU0 was not the FPI Bus master.
HSMRMI	12	rh	HSM Register FPI Bus Master Interface Status
			This bit indicates whether the HSM was FPI Bus master when the break
			trigger event occurred.
			0 _B HSMRMI was the FPI bus master.
			1 _B HSMRMI was not the FPI Bus master.

Field	Bits	Туре	Description
НЅМСМІ	13	rh	HSM Cache FPI Bus Master Interface Status This bit indicates whether the HSM was FPI Bus master when the break trigger event occurred. 0 _B HSMCMI was the FPI bus master. 1 _B HSMCMI was not the FPI Bus master.
1	1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14,	rh	Reserved Read as 1 after reset; reading these bits will return the value last written.
0	31:16	rh	Reserved Read as 1 after reset; reading these bits will return the value last written.

BCU EDC Alarm Status Register x

The BCU provides one Alarm Status Register bit for each implemented FPI master and FPI slave.

Register bits without constant definition are reserved in this product.

SBCU_ALSTATx (x=0)

BCU EI	DC Alar	m Stat	us Reg	ister x		(0060 _H +x*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
AL31	AL30	AL29	AL28	AL27	AL26	AL25	AL24	AL23	AL22	AL21	AL20	AL19	AL18	AL17	AL16	
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
AL15	AL14	AL13	AL12	AL11	AL10	AL09	AL08	AL07	AL06	AL05	AL04	AL03	AL02	AL01	AL00	
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	

Field	Bits	Туре	Description
ALy (y=00)	У	rh	Alarm y 1 _B SBCU_S, an EDC error was detected in an active phase of the SBCU Slave Interface.
ALy (y=01)	у	rh	Alarm y 1 _B DMA_S,
ALy (y=02)	у	rh	Alarm y 1 _B IR_S,
ALy (y=03)	у	rh	Alarm y 1 _B SFI_F2S_S,

Field	Bits	Туре	Description
ALy (y=04)	у	rh	Alarm y
			1 _B SCU_S,
ALy (y=05)	у	rh	Alarm y
			1 _B SMU_S,
ALy (y=06)	у	rh	Alarm y
			1 _B PMC_SCR_S,
ALy (y=07)	У	rh	Alarm y 1 _B MTU_S,
ALy (y=08)	у	rh	Alarm y
ALY (y-00)	y	111	1 _B IOM_S,
ALy (y=09,18-	у	rh	Alarm y
19,21,23- 29,31)			
ALy (y=10)	у	rh	Alarm y
			1 _B ASCLINO1_S,
ALy (y=11)	у	rh	Alarm y
			1 _B ASCLIN23_S,
ALy (y=12)	у	rh	Alarm y
			1 _B ASCLIN45_S,
ALy (y=13)	У	rh	Alarm y
			1 _B ASCLIN67_S,
ALy (y=14)	У	rh	Alarm y
			1 _B QSPIO_S,
ALy (y=15)	У	rh	Alarm y
/>			1 _B QSPI1_S,
ALy (y=16)	У	rh	Alarm y 1 _B QSPI2_S,
Al /17\		ماد	
ALy (y=17)	У	rh	Alarm y 1 _B QSPI3_S,
ALy (y=20)	.,	rh	
ALY (y-ZU)	У	111	Alarm y 1 _B FCE0_S,
ALy (y=22)	у	rh	Alarm y
- ·- ·			1 _B STM0_S,
ALy (y=30)	у	rh	Alarm y
			1_{B} ERAYO_S,

SBCU_ALSTATx (x=1)

BCU EI	(0060 _H +x*4)				Application Reset Value: 0000 0000 _H										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AL31	AL30	AL29	AL28	AL27	AL26	AL25	AL24	AL23	AL22	AL21	AL20	AL19	AL18	AL17	AL16
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AL15	AL14	AL13	AL12	AL11	AL10	AL09	AL08	AL07	AL06	AL05	AL04	AL03	AL02	AL01	AL00
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Type	Description
ALy (y=00)	У	rh	Alarm y 1 _B GPT12_S, an EDC error was detected in an active phase of the GPT12 Slave Interface.
ALy (y=01)	у	rh	Alarm y 1 _B CCU6_S,
ALy (y=02)	у	rh	Alarm y 1 _B GTM_S,
ALy (y=03- 06,08,10,12,1 5-18,22-30)	У	rh	Alarm y
ALy (y=07)	у	rh	Alarm y 1 _B SENT_S,
ALy (y=09)	у	rh	Alarm y 1 _B EVADC_S,
ALy (y=11)	у	rh	Alarm y 1 _B HSM_S,
ALy (y=13)	у	rh	Alarm y 1 _B CANO_S,
ALy (y=14)	у	rh	Alarm y 1 _B CAN1_S,
ALy (y=19)	у	rh	Alarm y 1 _B CONVCTRL_S,
ALy (y=20)	у	rh	Alarm y 1 _B ASCLIN89_S,
ALy (y=21)	у	rh	Alarm y 1 _B ASCLIN1011_S,
ALy (y=31)	у	rh	Alarm y 1 _B CERBERUS_S,

SBCU_ALSTATx (x=2)

BCU EI	BCU EDC Alarm Status Register x							(0060 _H +x*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
AL31	AL30	AL29	AL28	AL27	AL26	AL25	AL24	AL23	AL22	AL21	AL20	AL19	AL18	AL17	AL16			
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
AL15	AL14	AL13	AL12	AL11	AL10	AL09	AL08	AL07	AL06	AL05	AL04	AL03	AL02	AL01	AL00			
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh			

Field	Bits	Туре	Description
ALy (y=00)	У	rh	Alarm y 1 _B P00_S, an EDC error was detected in an active phase of the Port 00 Slave Interface.
ALy (y=01,03,06,1 0,15- 20,24,26-30)	У	rh	Alarm y
ALy (y=02)	у	rh	Alarm y 1 _B P02_S,
ALy (y=04)	У	rh	Alarm y 1 _B P10_S,
ALy (y=05)	у	rh	Alarm y 1 _B P11_S,
ALy (y=07)	у	rh	Alarm y 1 _B P13_S,
ALy (y=08)	у	rh	Alarm y 1 _B P14_S,
ALy (y=09)	у	rh	Alarm y 1 _B P15_S,
ALy (y=11)	у	rh	Alarm y 1 _B P20_S,
ALy (y=12)	у	rh	Alarm y 1 _B P21_S,
ALy (y=13)	У	rh	Alarm y 1 _B P22_S,
ALy (y=14)	у	rh	Alarm y 1 _B P23_S,
ALy (y=21)	у	rh	Alarm y 1 _B P32_S,
ALy (y=22)	у	rh	Alarm y 1 _B P33_S,

Field	Bits	Туре	Description
ALy (y=23)	у	rh	Alarm y 1 _B P34_S,
ALy (y=25)	у	rh	Alarm y 1 _B P40_S,
ALy (y=31)	У	rh	Alarm y 1 _B SBCU_M, an EDC error was detected in an active phase of the SBCU Master Interface.

SBCU_ALSTATx (x=3)

BCU EDC Alarm Status Register x					(0060 _H +x*4) Application Reset Val				et Valu	ue: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AL31	AL30	AL29	AL28	AL27	AL26	AL25	AL24	AL23	AL22	AL21	AL20	AL19	AL18	AL17	AL16
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AL15	AL14	AL13	AL12	AL11	AL10	AL09	AL08	AL07	AL06	AL05	AL04	AL03	AL02	AL01	AL00
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
ALy (y=00)	У	rh	Alarm y 1 _B A_EN, multiple output enables active: A_EN_N (Master)
ALy (y=01)	у	rh	Alarm y 1 _B ABORT_EN, multiple output enables active: ABORT_EN_N (Master)
ALy (y=02)	У	rh	Alarm y 1 _B ACK_EN, multiple output enables active: ACK_EN_N (Default Master and Slave)
ALy (y=03)	У	rh	Alarm y 1 _B D_EN , multiple output enables active: D_EN_N (Master and Slave)
ALy (y=04- 15,17-21,23- 27,30-31)	У	rh	Alarm y
ALy (y=16)	У	rh	Alarm y 1 _B DMA_M, an EDC error was detected in an active phase of the DMA / Cerberus Master Interface.
ALy (y=22)	У	rh	Alarm y 1 _B CPU0_M,
ALy (y=28)	У	rh	Alarm y 1 _B HSMRMI_M,
ALy (y=29)	у	rh	Alarm y 1 _B HSMCMI_M,

4.7.3 Connectivity

4.7.3.1 SBCU Connectivity

Table 13 List of SBCU Interface Signals

Interface Signals	I/O	Description
INT	out	Bus Control Unit SPB Service Request
INT	out	Bus Control Unit BBB Service Request

Table 14 Connections of SBCU

Interface Signals	conn	ects	Description		
SBCU:INT	to	INT:sbcu.INT	Bus Control Unit SPB Service Request		

4.7.4 Revision History

Table 15 Revision History

Reference	Change to Previous Version	Comment
V1.2.7		
-	No functional change.	
V1.2.8		
_	No functional changes.	-
V1.2.9		,
_	No functional changes.	-

CPU Subsystem (CPU)

5 CPU Subsystem (CPU)

This chapter describes the CPU subsystem module of the TC33x/TC32x.

5.1 TC33x/TC32x Specific Configuration

No product specific configuration for CPU

5.2 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 16 Register Address Space - CPU

Module	Base Address	End Address	Note		
(CPU0)	70000000 _H	7002FFFF _H	Data ScratchPad RAM interface		
	70030000 _H	70033FFF _H	Data Cache RAM interface		
	700C0000 _H	700C17FF _H	Data Cache Tag RAM interface		
	70100000 _H	70101FFF _H	Program ScratchPad RAM interface		
	70102000 _H	70109FFF _H	Program Cache RAM interface		
	701C0000 _H	701C2FFF _H	Program Cache TAG RAM interface		
	90000000 _H	90001FFF _H	DLMU RAM interface (cached)		
	B0000000 _H	B0001FFF _H	DLMU RAM interface (non-cached)		
CPU0	F8800000 _H	F881FFFF _H	SRI slave interface for SFR+CSFR		

Register Overview Table

Register Overview Tables of CPU

Table 17 Register Overview - CPU0 (ascending Offset Address)

Short Name	Long Name	Offset Address	Page Number
CPU0_FLASHCON0	CPUx Flash Configuration Register 0	01100 _H	10
CPU0_FLASHCON1	CPUx Flash Configuration Register 1	01104 _H	See Family Spec
CPU0_FLASHCON2	CPUx Flash Configuration Register 2	01108 _H	See Family Spec
CPU0_FLASHCON3	CPUx Flash Configuration Register 3	0110C _H	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_FLASHCON4	CPUx Flash Configuration Register 4	01110 _H	See Family Spec
CPU0_KRST0	CPUx Reset Register 0	0D000 _H	See Family Spec
CPU0_KRST1	CPUx Reset Register 1	0D004 _H	See Family Spec
CPU0_KRSTCLR	CPUx Reset Clear Register	0D008 _H	See Family Spec
CPU0_SPR_SPROT_R GNLAi (i=0-7)	CPUx Safety Protection SPR Region Lower Address Register i	0E000 _H +i*10 _H	See Family Spec
CPU0_SPR_SPROT_R GNUAi (i=0-7)	CPUx Safety Protection SPR Region Upper Address Register i	0E004 _H +i*10 _H	See Family Spec
CPU0_SPR_SPROT_R GNACCENAi_W (i=0-7)	CPUx Safety Protection SPR Region Write Access Enable Register Ai	0E008 _H +i*10 _H	See Family Spec
CPU0_SPR_SPROT_R GNACCENBi_W (i=0-7)	CPUx Safety Protection SPR Region Write Access Enable Register Bi	0E00C _H +i*10 _H	See Family Spec
CPU0_SPR_SPROT_R GNACCENAi_R (i=0-7)	CPUx Safety Protection SPR Region Read Access Enable Register Ai	0E088 _H +i*10 _H	See Family Spec
CPU0_SPR_SPROT_R GNACCENBi_R (i=0-7)	CPUx Safety Protection SPR Region Read Access Enable Register Bi	0E08C _H +i*10 _H	See Family Spec
CPU0_SFR_SPROT_A CCENA_W	CPUx Safety Protection Register Access Enable Register A	0E100 _H	See Family Spec
CPU0_SFR_SPROT_A CCENB_W	CPUx Safety Protection Region Access Enable Register B	0E104 _H	See Family Spec
CPU0_LPB_SPROT_A CCENA_R	CPUx Safety Protection Region LPB Read Access Enable Register A	0E110 _H	See Family Spec
CPU0_LPB_SPROT_A CCENB_R	CPUx Safety Protection Region LPB Read Access Enable Register B	0E114 _H	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_DLMU_SPROT _RGNLAi (i=0-7)	CPUx Safety Protection DLMU Region Lower Address Register i	0E200 _H +i*10 _H	See Family Spec
CPU0_DLMU_SPROT _RGNUAi (i=0-7)	CPUx Safety protection DLMU Region Upper Address Register i	0E204 _H +i*10 _H	See Family Spec
CPU0_DLMU_SPROT _RGNACCENAi_W (i=0-7)	CPUx Safety Protection Region DLMU Write Access Enable Register Ai	0E208 _H +i*10 _H	See Family Spec
CPU0_DLMU_SPROT _RGNACCENBi_W (i=0-7)	CPUx Safety Protection Region DLMU Write Access Enable Register Bi	0E20C _H +i*10 _H	See Family Spec
CPU0_DLMU_SPROT _RGNACCENAi_R (i=0-7)	CPUx Safety Protection Region DLMU Read Access Enable Register Ai	0E288 _H +i*10 _H	See Family Spec
CPU0_DLMU_SPROT _RGNACCENBi_R (i=0-7)	CPUx Safety Protection Region DLMU Read Access Enable Register Bi	0E28C _H +i*10 _H	See Family Spec
CPU0_OSEL	CPUx Overlay Range Select Register	OFBOO _H	See Family Spec
CPU0_RABRi (i=0-31)	CPUx Redirected Address Base Register i	0FB10 _H +i*12	See Family Spec
CPU0_OTARi (i=0-31)	CPUx Overlay Target Address Register i	0FB14 _H +i*12	See Family Spec
CPU0_OMASKi (i=0-31)	CPUx Overlay Mask Register i	0FB18 _H +i*12	See Family Spec
CPU0_SEGEN	CPUx SRI Error Generation Register	11030 _H	See Family Spec
CPU0_TASK_ASI	CPUx Task Address Space Identifier Register	18004 _H	See Family Spec
CPU0_PMA0	CPUx Data Access CacheabilityRegister	18100 _H	See Family Spec
CPU0_PMA1	CPUx Code Access CacheabilityRegister	18104 _H	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_PMA2	CPUx Peripheral Space Identifier register	18108 _H	See Family Spec
CPU0_DCON2	CPUx Data Control Register 2	19000 _H	See Family Spec
CPU0_SMACON	CPUx SIST Mode Access Control Register	1900C _H	See Family Spec
CPU0_DSTR	CPUx Data Synchronous Trap Register	19010 _H	See Family Spec
CPU0_DATR	CPUx Data Asynchronous Trap Register	19018 _H	See Family Spec
CPU0_DEADD	CPUx Data Error Address Register	1901C _H	See Family Spec
CPU0_DIEAR	CPUx Data Integrity Error Address Register	19020 _H	See Family Spec
CPU0_DIETR	CPUx Data Integrity Error Trap Register	19024 _H	See Family Spec
CPU0_DCON0	CPUx Data Memory Control Register	19040 _H	See Family Spec
CPU0_PSTR	CPUx Program Synchronous Trap Register	19200 _H	See Family Spec
CPU0_PCON1	CPUx Program Control 1	19204 _H	See Family Spec
CPU0_PCON2	CPUx Program Control 2	19208 _H	See Family Spec
CPU0_PCON0	CPUx Program Control 0	1920C _H	See Family Spec
CPU0_PIEAR	CPUx Program Integrity Error Address Register	19210 _H	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_PIETR	CPUx Program Integrity Error Trap Register	19214 _H	See Family Spec
CPU0_COMPAT	CPUx Compatibility Control Register	19400 _H	See Family Spec
CPU0_FPU_TRAP_CO N	CPUx Trap Control Register	1A000 _H	See Family Spec
CPU0_FPU_TRAP_PC	CPUx Trapping Instruction Program Counter Register	1A004 _H	See Family Spec
CPU0_FPU_TRAP_OP C	CPUx Trapping Instruction Opcode Register	1A008 _H	See Family Spec
CPU0_FPU_TRAP_SR C1	CPUx Trapping Instruction Operand Register	1A010 _H	See Family Spec
CPU0_FPU_TRAP_SR C2	CPUx Trapping Instruction Operand Register	1A014 _H	See Family Spec
CPU0_FPU_TRAP_SR C3	CPUx Trapping Instruction Operand Register	1A018 _H	See Family Spec
CPU0_DPRy_L (y=0-17)	CPUx Data Protection Range y, Lower Bound Register	1C000 _H +y*8	See Family Spec
CPU0_DPRy_U (y=0-17)	CPUx Data Protection Range y, Upper Bound Register	1C004 _H +y*8	See Family Spec
CPU0_CPRy_L (y=0-9)	CPUx Code Protection Range y Lower Bound Register	1D000 _H +y*8	See Family Spec
CPU0_CPRy_U (y=0-9)	CPUx Code Protection Range y Upper Bound Register	1D004 _H +y*8	See Family Spec
CPU0_CPXE_y (y=0-3)	CPUx Code Protection Execute Enable Register Set y	1E000 _H +y*4	See Family Spec
CPU0_DPRE_y (y=0-3)	CPUx Data Protection Read Enable Register Set y	1E010 _H +y*4	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_DPWE_y (y=0-3)	CPUx Data Protection Write Enable Register Set y	1E020 _H +y*4	See Family Spec
CPU0_CPXE_y (y=4-5)	CPUx Code Protection Execute Enable Register Set y	1E040 _H +(y- 4)*4	See Family Spec
CPU0_DPRE_y (y=4-5)	CPUx Data Protection Read Enable Register Set y	1E050 _H +(y- 4)*4	See Family Spec
CPU0_DPWE_y (y=4-5)	CPUx Data Protection Write Enable Register Set y	1E060 _H +(y- 4)*4	See Family Spec
CPU0_TPS_CON	CPUx Temporal Protection System Control Register	1E400 _H	See Family Spec
CPU0_TPS_TIMERy (y=0-2)	CPUx Temporal Protection System Timer Register y	1E404 _H +y*4	See Family Spec
CPU0_TPS_EXTIM_E NTRY_LVAL	CPUx Exception Entry Timer Load Value	1E440 _H	See Family Spec
CPU0_TPS_EXTIM_E NTRY_CVAL	CPUx Exception Entry Timer Current Value	1E444 _H	See Family Spec
CPU0_TPS_EXTIM_E XIT_LVAL	CPUx Exception Exit Timer Load Value	1E448 _H	See Family Spec
CPU0_TPS_EXTIM_E XIT_CVAL	CPUx Exception Exit Timer Current Value	1E44C _H	See Family Spec
CPU0_TPS_EXTIM_C LASS_EN	CPUx Exception Timer Class Enable Register	1E450 _H	See Family Spec
CPU0_TPS_EXTIM_S TAT	CPUx Exception Timer Status Register	1E454 _H	See Family Spec
CPU0_TPS_EXTIM_F CX	CPUx Exception Timer FCX Register	1E458 _H	See Family Spec
CPU0_TRIEVT (i=0-7)	CPUx Trigger Event i	1F000 _H +i*8	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_TRIADR (i=0-7)	CPUx Trigger Address i	1F004 _H +i*8	See Family Spec
CPU0_CCTRL	CPUx Counter Control	1FC00 _H	See Family Spec
CPU0_CCNT	CPUx CPU Clock Cycle Count	1FC04 _H	See Family Spec
CPU0_ICNT	CPUx Instruction Count	1FC08 _H	See Family Spec
CPU0_M1CNT	CPUx Multi-Count Register 1	1FC0C _H	See Family Spec
CPU0_M2CNT	CPUx Multi-Count Register 2	1FC10 _H	See Family Spec
CPU0_M3CNT	CPUx Multi-Count Register 3	1FC14 _H	See Family Spec
CPU0_DBGSR	CPUx Debug Status Register	1FD00 _H	See Family Spec
CPU0_EXEVT	CPUx External Event Register	1FD08 _H	See Family Spec
CPU0_CREVT	CPUx Core Register Access Event	1FD0C _H	See Family Spec
CPU0_SWEVT	CPUx Software Debug Event	1FD10 _H	See Family Spec
CPU0_TRIG_ACC	CPUx TriggerAddressx	1FD30 _H	See Family Spec
CPU0_DMS	CPUx Debug Monitor Start Address	1FD40 _H	See Family Spec
CPU0_DCX	CPUx Debug Context Save Area Pointer	1FD44 _H	See Family Spec

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_DBGTCR	CPUx Debug Trap Control Register	1FD48 _H	See Family Spec
CPU0_PCXI	CPUx Previous Context Information Register	1FE00 _H	See Family Spec
CPU0_PSW	CPUx Program Status Word	1FE04 _H	See Family Spec
CPU0_PC	CPUx Program Counter	1FE08 _H	See Family Spec
CPU0_SYSCON	CPUx System Configuration Register	1FE14 _H	See Family Spec
CPU0_CPU_ID	CPUx Identification Register TC1.6.2P	1FE18 _H	See Family Spec
CPU0_CORE_ID	CPUx Core Identification Register	1FE1C _H	See Family Spec
CPU0_BIV	CPUx Base Interrupt Vector Table Pointer	1FE20 _H	See Family Spec
CPU0_BTV	CPUx Base Trap Vector Table Pointer	1FE24 _H	See Family Spec
CPU0_ISP	CPUx Interrupt Stack Pointer	1FE28 _H	See Family Spec
CPU0_ICR	CPUx Interrupt Control Register	1FE2C _H	See Family Spec
CPU0_FCX	CPUx Free CSA List Head Pointer	1FE38 _H	See Family Spec
CPU0_LCX	CPUx Free CSA List Limit Pointer	1FE3C _H	See Family Spec
CPU0_CUS_ID	CPUx Customer ID register	1FE50 _H	See Family Spec

CPU Subsystem (CPU)

Table 17 Register Overview - CPU0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CPU0_Dy (y=0-15)	CPUx Data General Purpose Register y	1FF00 _H +y*4	See Family Spec
CPU0_Ay (y=0-15)	CPUx Address General Purpose Register y	1FF80 _H +y*4	See Family Spec

CPU Subsystem (CPU)

5.3 TC33x/TC32x Specific Registers

5.3.1 SRI slave interface for SFR+CSFR

CPUx Flash Configuration Register 0

Software may program a Flash Prefetch Buffer with a master tag identifier stored in Flash Configuration Register 0

If a CPU instance does not have a local PFlash bank then the FLASHCON0 register associated with that instance will have no functionality.

CPU0_FLASHCON0

Field	Bits	Туре	Description
TAG1	5:0	rw	Flash Prefetch Buffer 1 Configuration FPB is assigned to on chip bus master with master tag id equal to TAG1.
RES	7:6, 15:14, 23:22, 31:30	r	Reserved Always read as 0; should be written with 0.
TAG2	13:8	rw	Flash Prefetch Buffer 2 Configuration FPB is assigned to on chip bus master with master tag id equal to TAG2.
TAG3	21:16	rw	Flash Prefetch Buffer 3 Configuration FPB is assigned to on chip bus master with master tag id equal to TAG3.
TAG4	29:24	rw	Flash Prefetch Buffer 4 Configuration FPB is assigned to on chip bus master with master tag id equal to TAG4.

Table 18 Reset Values of CPU0_FLASHCON0

Reset Type	Reset Value	Note
Application Reset	3F3F 3F3F _H	
CFS Value	2020 2020 _H	

5.4 Connectivity

No connections in TC33x/TC32x

AURIX™ TC33x/TC32x

CPU Subsystem (CPU)

5.5 Revision History

Table 19 Revision History

Reference	Change to Previous Version	Comment
V1.1.16		1
	No change	
V1.1.17		
	No change	
V1.1.18		
	No change	
V1.1.19		
	No change	
V1.1.20		
Page 1	Change index variable from 'x' to intended 'i' for registers SPR_SPROT_RGNACCENAi_R and SPR_SPROT_RGNACCENBi_R to remove confusion with CPU instance variable.	
Page 1	Change index variable from 'x' to intended 'i' for registers all DLMU_SPROT registers to remove confusion with CPU instance variable.	
V1.1.21		
	No change	

Non Volatile Memory (NVM) Subsystem

6 Non Volatile Memory (NVM) Subsystem

6.1 Overview

The Non Volatile Memory (NVM) Subsystem comprises of the Data Memory Unit (DMU), Program Flash Interface (PFI), and Non Volatile Memory module (comprising of the Flash Standard Interface (FSI), Program and Data Flash memories and Program Flash Read Write buffer (PFRWB)).

- Data Memory Unit (DMU): Controls command sequences executed on all program and data flash memories.
- Flash Standard Interface (FSI): Executes erase, program and verify operations on all flash memories.
- Program Flash (PFLASH): Divided into one or more banks each connected to a CPU. It is used by the
 application to store program code and data constants. Compute performance is optimized by using a pointto-point interface to minimize latency and maximize bandwidth. Each PFLASH is connected to a PFlash Read
 Write Buffer (PFRWB) that performs the ECC correction and detection and provides the read data to the
 system.
- Program Flash Interface (PFI): Each PFLASH bank has a unique point-to-point fast connection to a CPU
 provided by a PFI. The PFI interfaces between the CPU and the PFRWB and contains the Prefetch Buffers for
 storing speculative data.
- Data Flash (DFLASH): The Data Flash Module is used to emulate EEPROM and store data and divided into two banks. DFLASH read accesses are relatively slow compared to PFLASH accesses. The DFlash Read Write Buffer (DFRWB) in the FSI interfaces to the DFLASH to provide the read data. Data Flash Module also contains regions to store configuration data - User Configuration Blocks (UCBs), and Configuration Sector (CFS) which is not accessible by user.
- Boot ROM (BROM): Connected to the system via the DMU SRI port.
 - Tuning protection (commonly called the "Secure Watchdog") to protect user software and data from maltuning data.

Attention: The 'Non Volatile Memory Subsystem' chapter is the AURIX PMU chapter re-structured for closer alignment to AURIXTC3XX product architecture. It comprises of the DMU, PFI, NVM and UCB Chapters. Please note that the application accessible registers located in the FSI, and the PFLASH read status and control registers are described in the NVM chapter.

Non Volatile Memory (NVM) Subsystem

Figure 3 Non Volatile Memory (NVM) Subsystem

The purpose of the PFLASH NVM is:

- One or more PFLASH banks stores program code and data constants.
- Implementation of Erase Counters.

The purpose of the DFLASH NVM is:

- Emulation of Electrically Erasable Programmable Read Only Memory (EEPROM):
 - CPU-EEPROM used by the user application.
 - HSM-EEPROM used by the security application.
- Multiple User Configuration Blocks (UCB) used for:
 - Password based read protection combined with write protection.
 - Read-only UCB configured by IFX with unique chip identifier and trimming data.
- Configuration Sector (CFS) stores system set-up data not accessible by the user.

Data stored in the NVM is protected by ECC checksum.

- An ECC decoder at the output of the NVM corrects and detects faults in the NVM array.
- The NVM is fault tolerant and supports system operation in the presence of a number of NVM bit errors.
- For Program Flash the calculation of the ECC checksum is extended across the address to provide read protection against addressing faults.

If the Flash is not operating in the application then the NVM may be programmed and erased by command sequences executed by the FSI micro controller. All read accesses to Flash are memory mapped reads. Margin read levels may be used to check how completely a cell is programmed or erased.

The Non Volatile Memory interface micro architecture includes a security layer and a safety layer.

Security Layer (provided by DMU and PFI)

• Read protection is enabled/disabled with a Flash Module (Bank) granularity.

AURIX™ TC33x/TC32x

Non Volatile Memory (NVM) Subsystem

• Write protection is enabled/disabled with a Flash Module sector based granularity.

Safety Layer

- Master specific read access protection to each Flash Module (Bank).
- Master specific read and write access control to individual Special Function Registers (SFRs).
- Integrity of data stored in the NVM is ensured by an ECC checksum
- Integrity of PFlash read path is ensured by monitoring of read parameters in the FSI (MISR, redundant Flip Flops etc.), PFI partial lockstep mechanism, protection of PFlash wait cycles with ECC checksum, protection of data from PFI to CPU by ECC checksum and an additional safety mechanism to ensure that the local PFlash is not being programmed/erased when not expected by PFI.

Non Volatile Memory (NVM) Subsystem

6.2 Revision History

Table 20 Revision History

Change to Previous Version	Comment	
Created to form a concise introduction chapter for the appendices		
	!	
No Changes.		
No Changes.		
No Changes.		
No Changes.		
	No Changes. No Changes. No Changes.	

6.3 Data Memory Unit (DMU)

This chapter supplements the family documentation with the device specific information for TC33x/TC32x.

6.3.1 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 21 Register Address Space - PMU

Module	Base Address	End Address	Note
PMU	F8038000 _H	F803FFFF _H	sri slave interface

Table 22 Register Address Space - DMU

Module	Base Address	End Address	Note
(DMU)	8FFF0000 _H	8FFFFFFF _H	Boot ROM (BROM)
	AF000000 _H	AF01FFFF _H	Data Flash 0 EEPROM (DF0) and Host Command Sequence Interpreter
	AFC00000 _H	AFC1FFFF _H	Data Flash 1 EEPROM (DF1) and HSM Command Sequence Interpreter
	AFFF0000 _H	AFFFFFF _H	Boot ROM (BROM)
DMU	F8040000 _H	F807FFFF _H	SRI slave interface - Register Address Space
(DMU)	FFC00000 _H	FFC1FFFF _H	Data Flash 1 EEPROM (DF1) and HSM Command Sequence Interpreter

Register Overview Table

Table 23 Register Overview - PMU (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
PMU_ID	Module Identification Register	0508 _H	U,SV	BE	Application Reset	See Family Spec

Table 24 Register Overview - DMU (ascending Offset Address)

DMU_HF_ID	Module Identification Register	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
		0000008 H	U,SV	BE		See Family Spec
DMU_HF_STATU S	Flash Status Register	0000010 H	U,SV	BE	Application Reset	11

 Table 24
 Register Overview - DMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page	
		Address	Read Write			Number	
DMU_HF_CONTR OL			U,SV	P,SV,E	Application Reset	See Family Spec	
DMU_HF_OPERA TION	Flash Operation Register	0000018 H	U,SV	BE	System Reset	See Family Spec	
DMU_HF_PROTE CT	Flash Protection Status Register	000001C H	U,SV	BE	Application Reset	13	
DMU_HF_CONFI RM0	Flash Confirm Status Register 0	0000020 H	U,SV	BE	Application Reset	See Family Spec	
DMU_HF_CONFI RM1	Flash Confirm Status Register 1	0000024 H	U,SV	BE	Application Reset	See Family Spec	
DMU_HF_CONFI RM2	Flash Confirm Status Register 2	0000028 H	U,SV	BE	Application Reset	See Family Spec	
DMU_HF_EER	Enable Error Interrupt Control Register	0000030 H	U,SV	P,SV	Application Reset	See Family Spec	
DMU_HF_ERRSR	Error Status Register	0000034 H	U,SV	BE	Application Reset	See Family Spec	
DMU_HF_CLRE	Clear Error Register	0000038 H	U,SV	P,SV	Application Reset	See Family Spec	
DMU_HF_ECCR	DF0 ECC Read Register	0000040 H	U,SV	BE	Application Reset	See Family Spec	
DMU_HF_ECCS	F_ECCS DF0 ECC Status Register		U,SV	BE	Application Reset	See Family Spec	
DMU_HF_ECCC	IF_ECCC DF0 ECC Control Register		U,SV	P,SV,E	Application Reset	See Family Spec	
DMU_HF_ECCW	DF0 ECC Write Register	000004C H	U,SV	P,SV,E	Application Reset	See Family Spec	
DMU_HF_CCONT Cranking Control Register ROL		0000050 H	U,SV	P,SV	System Reset	See Family Spec	

Table 24 Register Overview - DMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page	
		Address	Read Write			Number	
DMU_HF_PSTAT US	Power Status Register	0000060 H	U,SV	BE	Application Reset	See Family Spec	
DMU_HF_PCONT ROL	Power Control Register	0000064 H	U,SV	P,SV	Application Reset	See Family Spec	
DMU_HF_PWAIT	PFLASH Wait Cycle Register	0000068 H	U,SV	P,SV,E	System Reset	See Family Spec	
DMU_HF_DWAIT	DFLASH Wait Cycle Register	000006C H	U,SV	P,SV,E	System Reset	See Family Spec	
DMU_HF_PROCO NUSR	DF0 User Mode Control	0000074 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HF_PROCO NPF	PFLASH Protection Configuration	0000080 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HF_PROCO NTP	Tuning Protection Configuration	0000084 H	U,SV	BE	See page 15	15	
DMU_HF_PROCO NDF	DFLASH Protection Configuration	0000088 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HF_PROCO NRAM	RAM Configuration	000008C H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HF_PROCO NDBG	Debug Interface Protection Configuration	0000090 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HF_SUSPE ND	USPE Suspend Control Register		U,SV	P,U,SV	Application Reset	See Family Spec	
DMU_HF_MARGI N	MARGI Margin Control Register		U,SV	P,U,SV	Application Reset	See Family Spec	
DMU_HF_ACCEN 1	Access Enable Register 1	00000F8 H	U,SV	SV,SE	Application Reset	See Family Spec	
DMU_HF_ACCEN Access Enable Register 0 0		00000FC H	U,SV	SV,SE	Application Reset	See Family Spec	

 Table 24
 Register Overview - DMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	<u> </u>	Reset	Page	
-		Address	Read	Write		Number	
DMU_HP_PROCO NPi0 (i=0)	Configuration 0		U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NPi1 (i=0)	PFLASH Bank i Protection Configuration 1	0010004 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NPi2 (i=0)	PFLASH Bank i Protection Configuration 2	0010008 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NPi3 (i=0)	PFLASH Bank i Protection Configuration 3	001000C H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NPi4 (i=0)	PFLASH Bank i Protection Configuration 4	0010010 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NPi5 (i=0)	PFLASH Bank i Protection Configuration 5	0010014 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NOTPi0 (i=0)	PFLASH Bank i OTP Protection Configuration 0	0010040 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NOTPi1 (i=0)	PFLASH Bank i OTP Protection Configuration 1	0010044 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NOTPi2 (i=0)	PFLASH Bank i OTP Protection Configuration 2	0010048 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NOTPi3 (i=0)	PFLASH Bank i OTP Protection Configuration 3	001004C H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NOTPi4 (i=0)	PFLASH Bank i OTP Protection Configuration 4	0010050 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NOTPi5 (i=0)			U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NWOPi0 (i=0)	PFLASH Bank i WOP Configuration 0	0010080 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NWOPi1 (i=0)	PFLASH Bank i WOP Configuration 1	0010084 H	U,SV	BE	See Family Spec	See Family Spec	

 Table 24
 Register Overview - DMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Access Mo		Mode	Reset	Page	
		Address	Read	Write		Number	
DMU_HP_PROCO NWOPi2 (i=0)	PFLASH Bank i WOP Configuration 2	0010088 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NWOPi3 (i=0)	PFLASH Bank i WOP Configuration 3	001008C H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NWOPi4 (i=0)	PFLASH Bank i WOP Configuration 4	0010090 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_PROCO NWOPi5 (i=0)	PFLASH Bank i WOP Configuration 5	0010094 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_ECPRI Oi0 (i=0)	PFLASH Bank i Erase Counter Priority configuration 0	00100A0 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_ECPRI Oi1 (i=0)	PFLASH Bank i Erase Counter Priority Configuration 1	00100A4 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_ECPRI Oi2 (i=0)	PFLASH Bank i Erase Counter Priority Configuration 2	00100A8 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_ECPRI Oi3 (i=0)	PFLASH Bank i Erase Counter Priority Configuration 3	00100AC H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_ECPRI Oi4 (i=0)	PFLASH Bank i Erase Counter Priority Configuration 4	00100B0 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_HP_ECPRI Oi5 (i=0)	PFLASH Bank i Erase Counter Priority Configuration 5	00100B4 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_SF_STATU S	HSM Flash Status Register	0020010 H	Н	BE	Application Reset	See Family Spec	
DMU_SF_CONTR OL	NTR HSM Flash Configuration Register		Н	Н	Application Reset	See Family Spec	
DMU_SF_OPERA TION	HSM Flash Operation Register	0020018 H	Н	BE	System Reset	See Family Spec	
DMU_SF_EER	0020030 H	Н	Н	Application Reset	See Family Spec		

 Table 24
 Register Overview - DMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page	
		Address	Read Write			Number	
DMU_SF_ERRSR	MU_SF_ERRSR HSM Error Status Register		Н	BE	Application Reset	See Family Spec	
DMU_SF_CLRE	HSM Clear Error Register	0020038 H	Н	Н	Application Reset	See Family Spec	
DMU_SF_ECCR	HSM DF1 ECC Read Register	0020040 H	Н	BE	Application Reset	See Family Spec	
DMU_SF_ECCS	HSM DF1 ECC Status Register	0020044 H	Н	BE	Application Reset	See Family Spec	
DMU_SF_ECCC	HSM DF1 ECC Control Register	0020048 H	Н	Н	Application Reset	See Family Spec	
DMU_SF_ECCW	HSM DF1 ECC Write Register	002004C H	Н	Н	Application Reset	See Family Spec	
DMU_SF_PROCO NUSR	HSM DF1 User Mode Control	0020074 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_SF_SUSPE ND	HSM Suspend Control Register	00200E8 H	Н	Н	Application Reset	See Family Spec	
DMU_SF_MARGI N	HSM DF1 Margin Control Register	00200EC H	Н	Н	Application Reset	See Family Spec	
DMU_SP_PROCO NHSMCFG	HSM Protection Configuration	0030000 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_SP_PROCO NHSMCBS	HSM Code Boot Sector	0030004 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_SP_PROCO NHSMCX0	HSM Code Exclusive Protection Configuration	0030008 H	U,SV	BE	See Family Spec	See Family Spec	
DMU_SP_PROCO NHSMCX1	HSM Code Exclusive Protection Configuration	003000C H	U,SV	BE	See Family Spec	See Family Spec	
DMU_SP_PROCO HSM Code OTP Protection Configuration		0030010 H	U,SV	BE	See Family Spec	See Family Spec	

Table 24 Register Overview - DMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
DMU_SP_PROCO NHSMCOTP1	HSM Code OTP Protection Configuration	0030014 H	U,SV	BE	See Family Spec	See Family Spec
DMU_SP_PROCO NHSM	HSM Interface Protection Configuration	0030040 H	U,SV	BE	See Family Spec	See Family Spec

6.3.2 TC33x/TC32x Specific Registers

6.3.2.1 SRI slave interface - Register Address Space

Flash Status Register

The Flash Status Register reflects the status of the Flash Banks after reset.

Note: The DxBUSY and PxBUSY flags cannot be cleared with the "Clear Status" command or with the "Reset

to Read" command. These flags are controlled by HW.

Note: After every reset, the busy bits are set while the Flash module is busy with startup (until the operation

mode is entered). Also the protection installation bits are always set until end of startup.

DMU_HF_STATUS Flash Status Register (0000010_{H}) Application Reset Value: 0000 00FF_H 31 30 29 28 27 25 24 23 22 21 20 19 18 17 26 16 PFPAG DFPAG **RES RES RES RES RES RES RES RES** Ε Ε rΧ rΧ rh rh rΧ rΧ rΧ rΧ 15 14 10 9 8 7 6 5 4 3 2 1 0 13 12 11 POBUS D1BU **DOBU RES RES RES RES RES RES** SY SY rh rh rh

Field	Bits	Туре	Description
DOBUSY	0	rh	Data Flash Bank 0 Busy HW-controlled status flag. Indication of busy state of DFLASH bank 0 because of active execution of an operation; DF0 busy state is also indicated during Flash startup after reset or in sleep mode; while in busy state the DF0 does not allow read
			access. 0 _B DF0 ready, not busy; DF0 in operation mode. 1 _B DF0 busy; DF0 not in operation mode.

Field	Bits	Type	Description
D1BUSY	1	rh	Data Flash Bank 1 Busy HW-controlled status flag. Indication of busy state of DFLASH bank 1 because of active execution of an operation; DF1 busy state is also indicated during Flash startup after reset or in sleep mode; while in busy state the DF1 does not allow read access. Bit is not set for program/erase operations initiated by the HSM interface. 0 _B DF1 ready, not busy; DF1 in operation mode. 1 _B DF1 busy; DF1 not in operation mode.
PxBUSY (x=0)	x+2	rh	Program Flash PFxBUSY HW-controlled status flag. Indication of busy state of PFx because of active execution of an operation; PFx busy state is also indicated during Flash startup after reset or in sleep mode; while in busy state the PFx does not allow read access. O _B PFx ready, not busy; PFx in operation mode. 1 _B PFx busy; PFx not in operation mode.
RES (x=1-5)	x+2	r	Reserved Always read as 0; should be written with 0.
RES	15:8, 23, 31:26	r	Reserved Always read as 0; should be written with 0.
RES	16, 17, 18, 19, 22, 25:24	rX	Reserved Undefined.
DFPAGE	20	rh	Data Flash in Page Mode HW-controlled status flag. Set with Enter Page Mode for DFLASH, cleared with Write Page command. This bit is not set by "Enter Page Mode" initiated by the HSM interface. Note: Read accesses are allowed while in page mode. OB Data Flash not in page mode Data Flash in page mode

Field	Bits	Туре	Description
PFPAGE	21	rh	Program Flash in Page Mode HW-controlled status flag. Set with Enter Page Mode for Flash, cleared with Write Page command This bit is not set by "Enter Page Mode" initiated by the HSM interface. Note: Read accesses are allowed while in page mode. OB Flash not in page mode. 1B Flash in page mode.

Flash Protection Status Register

This register reports the state of the Flash protection and contains protection relevant control fields.

DMU_I Flash I			atus Re	gister			(00000	1C _H)		Ар	plication	on Res	et Valu	e: 0000) 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			RES	Ī			SRT	Ţ		I	R	ES			
	İ	1	r	1	İ	İ	rh	1		_1	1	r	İ	1	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	ES	RES	RES	RES	RES	RES	PRODI SP0	RE	:S	PRODI SSWA P	PRODI SBMH D	PRODI SEC	PRODI SDBG	PRODI SD	PRODI SP
	r	r	r	r	r	r	rh	r		rh	rh	rh	rh	rh	rh

Field	Bits	Type	Description
PRODISP	0	rh	PFLASH Protection Disabled The protection configured by UCB_PFLASH_ORIG and UCB_PFLASH_COPY was successfully disabled by supplying the correct password to "Disable Protection". Note: Cleared with command "Resume Protection".
PRODISD	1	rh	DFLASH Protection Disabled The protection configured by UCB_DFLASH_ORIG and UCB_DFLASH_COPY was successfully disabled by supplying the correct password to "Disable Protection". Note: Cleared with command "Resume Protection".
PRODISDBG	2	rh	Debug Interface Password Protection Disabled The password configured by UCB_DBG_ORIG and UCB_DBG_COPY was correctly received with "Disable Protection". When DMU_SP_PROCONHSMCFG.DESTDBG is "destructive" then only the SSW can disable this protection. Note: Cleared with command "Resume Protection".

Field	Bits	Type	Description
PRODISEC	3	rh	Erase Counter Priority Protection Disabled The protection configured by UCB_ECPRIO_ORIG and UCB_ECPRIO_COPY was successfully disabled by supplying the correct password to "Disable Protection". Note: Cleared with command "Resume Protection".
PRODISBMHD	4	rh	BMHD Protection Disabled The protection configured by UCB_BMHD0_ORIG and UCB_BMHD0_COPY was successfully disabled by supplying the correct password to "Disable Protection". Note: Cleared with command "Resume Protection".
PRODISSWAP	5	rh	UCB_SWAP protection Disabled The protection configured by UCB_SWAP_ORIG and UCB_SWAP_COPY was successfully disabled by supplying the correct password to "Disable Protection". Note: Cleared with command "Resume Protection".
RES	7:6, 23:14, 31:25	r	Reserved Always read as 0; should be written with 0.
PRODISPx (x=0)	x+8	rh	Program Flash Protection Disable PRODISPx The protection configured for PFx by UCB_PFLASH_ORIG and UCB_PFLASH_COPY was successfully disabled by supplying the correct password to "Disable Protection". Note: Cleared with command "Resume Protection".
RES (x=1-5)	x+8	r	Reserved Always read as 0; should be written with 0.
SRT	24	rh	Secure Retest Password Protection Disabled Note: Cleared with command "Resume Protection". O _B Secure Retest protection is not disabled. 1 _B Secure Retest protection is disabled.

Tuning Protection Configuration

DMU	HF	PRO	CONTP	
------------	----	------------	-------	--

Tuning	_	ction C							0084 _H) Reset Va					lue: T	able 25
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	,	l	U	СВ	I	l	l	RES	RES	RES	RES	RES	CPU0 DDIS	SWA	PEN
		1	ı	h	<u>I</u>	1	1	r	r	r	r	r	rh	r	h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	U	СВ	1		ВІ	ML				UCB	1			TP
1		r	h	+	1	r	h	1	1	1	rh	1	1		rh

Field	Bits	Type	Description					
TP	0	rh	Tuning Protection This bit indicates whether tuning protection is installed or not. O _B Tuning protection is not configured. 1 _B Tuning protection is configured and installed, if correctly confirmed.					
UCB	7:1, 15:10, 31:24	rh	Reserved for UCB Deliver the corresponding content of UCB.					
BML	9:8	rh	 Boot Mode Lock Used by the SSW to restrict the boot mode selection. 00_B Boot flow with standard evaluation of boot headers. 01_B Restricted boot flow, never evaluating HWCFG pins and without fallback to boot loader. 11_B Restricted boot flow, never evaluating HWCFG pins and without fallback to boot loader. 					
SWAPEN	17:16	rh	Enable SOTA mode This field enables the entry into "Software update Over the Air(SOTA) mode". In this mode, an alternate PFLASH address map can be selected. Please refer to the SOTA section of the Introduction chapter for more details. 00 _B Disabled, SOTA mode disabled. 10 _B Disabled, SOTA mode disabled. 11 _B Enabled, SOTA mode enabled.					
CPUxDDIS (x=0)	x+18	rh	Disable direct LPB access Disable direct LPB access by the CPU to the Local PFlash Bank (LPB). O _B Direct LPB access is enabled. 1 _B Direct LPB access is disabled.					
RES (x=1-5)	x+18	r	Reserved Always read as 0; should be written with 0.					

Table 25 Reset Values of DMU_HF_PROCONTP

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	
CFS Value	0000 0000 _H	

6.3.3 Connectivity

Table 26 Connections of DMU

Interface Signals	conn	ects	Description		
DMU:HOST_INT	to	INT:dmu.HOST_INT	PMU Host Service Request		
DMU:FSI_INT	to	INT:dmu.FSI_INT	PMU FSI Service Request		

6.3.4 Revision History

Table 27 Revision History

Reference	Change to Previous Version Cor						
V2.0.9							
	No document changes - version update to remain aligned with family document.						
V2.0.10							
	No document changes - version update to remain aligned with family document.						
V2.0.11		•					
Page 11	Updated register DMU_HF_STATUS .						
Page 16	Connectivity - Table updated.						
	No functional changes.						
V2.0.12							
_	No functional changes.						

6.4 Non Volatile Memory (NVM)

This chapter supplements the family documentation with the device specific information for TC33x/TC32x.

6.4.1 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 28 Register Address Space - FSI

Module	Base Address	End Address	Note
FSI	F8030000 _H	F80300FF _H	sri slave interface

Table 29 Register Address Space - PFI

Module	Base Address	End Address	Note
(PFI0)	80000000 _H 801FFFF _H		Program Flash cached address space
	A0000000 _H	A01FFFFF _H	Program Flash non-cached address space
	A8000000 _H	A8003FFF _H	Erase Counter address space
PFI0	A8080000 _H	A80FFFFF _H	Register address space

Register Overview Table

Table 30 Register Overview - FSI (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
FSI_COMM_1	Communication Register 1	0004 _H	U,SV	U,SV	System Reset	See Family Spec
FSI_COMM_2	Communication Register 2	0005 _H	U,SV	U,SV	System Reset	See Family Spec
FSI_HSMCOMM_ 1	HSM Communication Register 1	0006 _H	Н	Н	System Reset	See Family Spec
FSI_HSMCOMM_ 2	HSM Communication Register 2	0007 _H	Н	Н	System Reset	See Family Spec

Register Overview - PFI (ascending Offset Address) Table 31

Short Name	Long Name	Offset Address	Page Number
PFI0_ECCR	ECC Read Register	000000 _H	See Family Spec
PFI0_ECCS	ECC Status Register	000020 _H	See Family Spec
PFI0_SBABRECORDx (x=0-16)	SBAB Record x	002000 _H +x*20 H	See Family Spec
PFI0_DBABRECORDx (x=0-1)	DBAB Record x	004000 _H +x*20 H	See Family Spec
PFI0_MBABRECORDx (x=0)	MBAB Record 0	008000 _H	See Family Spec
PFI0_ZBABRECORDx (x=0-3)	ZBAB Record x	00C000 _H +x*20 H	See Family Spec

Connectivity 6.4.2

No connections in device.

Revision History 6.4.3

Revision History Table 32

Reference	Change to Previous Version	Comment
V2.0.4		*
	No document changes - version update to remain aligned with family document.	
V2.0.5		
Page 17	Register Address Space Table - Corrected PFI address ranges to match size. PFI instances not used in this device removed.	
V2.0.6		
	No functional changes.	

AURIX™ TC33x/TC32x

infineon

Local Memory Unit (LMU)

7 Local Memory Unit (LMU)

This device doesn't contain a LMU module.

AURIX™ TC33x/TC32x

Default Application Memory (LMU_DAM)

8 Default Application Memory (LMU_DAM)

This device doesn't contain LMU_DAM.

9 System Control Unit (SCU)

This chapter describes the System Control Unit (short SCU) Module of the TC33x/TC32x.

9.1 TC33x/TC32x Specific IP Configuration

Table 33 TC33x/TC32x specific configuration of SCU

Parameter	SCU
Number of WDT linked to the number of CPU	1
Name of the ssw value	After SSW execution
CFS value for DTSCBGOCTRL register	40 _H
CFS value for DTSCCON register	200 _H

The following sections describe several differences that are device specific at the SCU level.

9.1.1 LBIST considerations for TC33x/TC32x

The LBIST function can be controlled via four registers available at SCU level: LBISTCTRL0, LBISTCTRL1, LBISTCTRL2 and LBISTCTRL3 (for a complete description of these register, please address the family specification).

The LBISTCTRL3 register contains the MISR signature value that can be read back via software, after the LBIST execution (and the execution is valid).

9.1.1.1 TC33x AA

LBIST Configuration A

LBISTCTRLO.PATTERNS = 0x140;

LBISTCTRL2.LENGTH = 0x39;

With LBISTCTRL1.BODY = 0:

- LBISTCTRL1 = 0x54000007
- LBISTCTRL3 = 0x740EF25A

With LBISTCTRL1.BODY = 1:

- LBISTCTRL1 = 0x5C000007
- LBISTCTRL3 = 0x8AA15905

9.2 TC33x/TC32x Specific Register Set

The address space for the module registers is defined in **Register Address Space - SCU**.

Table 34 Register Address Space - SCU

Module	Base Address	End Address	Note
SCU	F0036000 _H	F00363FF _H	SCU: Connections to FPI/BPI bus

Table 35 Register Overview - SCU (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	
		Address	Read	Write		Number
	Reserved (0010 _H Byte)	0000 _H	BE	BE		
SCU_ID	Identification Register	0008 _H	U,SV	BE	System Reset	See Family Spec
	Reserved (0010 _H Byte)	000C _H	BE	BE		
SCU_OSCCON	OSC Control Register	0010 _H	U,SV	SV,SE,P0	See Family Spec	See Family Spec
SCU_SYSPLLSTA T	System PLL Status Register	0014 _H	U,SV	BE	See Family Spec	See Family Spec
SCU_SYSPLLCON 0	System PLL Configuration 0 Register	0018 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_SYSPLLCON 1	System PLL Configuration 1 Register	001C _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_SYSPLLCON 2	System PLL Configuration 2 Register	0020 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_PERPLLSTA T	Peripheral PLL Status Register	0024 _H	U,SV	BE	System Reset	See Family Spec
SCU_PERPLLCO N0	Peripheral PLL Configuration 0 Register	0028 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_PERPLLCO N1	Peripheral PLL Configuration 1 Register	002C _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_CCUCON0	CCU Clock Control Register 0	0030 _H	U,SV	SV,SE,P0	See Family Spec	See Family Spec

Table 35 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
SCU_CCUCON1	CCU Clock Control Register 1	0034 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_FDR	Fractional Divider Register	0038 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_EXTCON	External Clock Control Register	003C _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_CCUCON2	CCU Clock Control Register 2	0040 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_CCUCON3	CCU Clock Control Register 3	0044 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_CCUCON4	CCU Clock Control Register 4	0048 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_CCUCON5	CCU Clock Control Register 5	004C _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_RSTSTAT	Reset Status Register	0050 _H	U,SV	BE	See page 15	15
	Reserved (0004 _H Byte)	0054 _H	BE	BE		
SCU_RSTCON	Reset Configuration Register	0058 _H	U,SV	SV,SE,P0	See page 17	17
SCU_ARSTDIS	Application Reset Disable Register	005C _H	U,SV	SV,E,P0	PowerOn Reset	19
SCU_SWRSTCON	Software Reset Configuration Register	0060 _H	U,SV	SV,E,P0	See Family Spec	See Family Spec
SCU_RSTCON2	Additional Reset Control Register	0064 _H	U,SV	SV,E,P0	See Family Spec	See Family Spec
SCU_RSTCON3	Reset Configuration Register 3	0068 _H	U,SV	SV,E,P0	See Family Spec	See Family Spec
	Reserved (0004 _H Byte)	006C _H	BE	BE		
SCU_ESRCFGx (x=0-1)	ESRx Input Configuration Register	0070 _H +x *4	U,SV	SV,E,P0	System Reset	See Family Spec

Table 35 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page Number
		Address Read Write	Write			
SCU_ESROCFG	ESR Output Configuration Register	0078 _H	U,SV	SV,E,P0	System Reset	See Family Spec
SCU_SYSCON	System Control Register	007C _H	U,SV	U,SV,P0	System Reset	See Family Spec
SCU_CCUCON6	CCU Clock Control Register 6	0080 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
SCU_CCUCON7	CCU Clock Control Register 7	0084 _H	U,SV	SV,SE,P0	System Reset	See Family Spec
	Reserved (0004 _H Byte)	0098 _H	BE	BE		
SCU_PDR	ESR Pad Driver Mode Register	009C _H	U,SV	SV,E,P0	System Reset	See Family Spec
SCU_IOCR	Input/Output Control Register	00A0 _H	U,SV	U,SV,P0	System Reset	See Family Spec
SCU_OUT	ESR Output Register	00A4 _H	U,SV	U,SV,P0	System Reset	See Family Spec
SCU_OMR	ESR Output Modification Register	00A8 _H	U,SV	U,SV,P0	System Reset	See Family Spec
SCU_IN	ESR Input Register	00AC _H	U,SV	BE	System Reset	See Family Spec
	Reserved (0004 _H Byte)	00BC _H	BE	BE		
SCU_STSTAT	Start-up Status Register	00C0 _H	U,SV	BE	PowerOn Reset	See Family Spec
SCU_STCON	Start-up Configuration Register	00C4 _H	U,SV	ST,P0	Application Reset	See Family Spec
SCU_PMCSR0	Power Management Control and Status Register	00C8 _H	U,SV	SE,CE0,SV, P0	Application Reset	See Family Spec
SCU_PMCSR1	Power Management Control and Status Register	00CC _H	U,SV	SE,CE1,SV, P0	Application Reset	See Family Spec

Table 35 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Numbe
SCU_PMCSR2	Power Management Control and Status Register	00D0 _H	U,SV	SE,CE2,SV, P0	Application Reset	See Family Spec
SCU_PMCSR3	Power Management Control and Status Register	00D4 _H	U,SV	SE,CE3,SV, P0	Application Reset	See Family Spec
SCU_PMCSR4	Power Management Control and Status Register	00D8 _H	U,SV	SE,CE4,SV, P0	Application Reset	See Family Spec
SCU_PMCSR5	Power Management Control and Status Register	00DC _H	U,SV	SE,CE5,SV, P0	Application Reset	See Family Spec
SCU_PMSTAT0	Power Management Status Register 0	00E4 _H	U,SV	BE	Application Reset	See Family Spec
SCU_PMSWCR1	Standby and Wake-up Control Register 1	00E8 _H	U,SV	SV,SE,P0	Cold PowerOn Reset	See Family Spec
	Reserved (0020 _H Byte)	00F0 _H	BE	BE		
SCU_EMSR	Emergency Stop Register	00FC _H	U,SV	SV,SE,P0	Application Reset	See Family Spec
SCU_EMSSW	Emergency Stop Software set and clear register	0100 _H	U,SV	U,SV,P0	Application Reset	See Family Spec
SCU_DTSCSTAT	Core Die Temperature Sensor Status Register	0104 _H	U,SV	BE	Application Reset	See Family Spec
SCU_DTSCLIM	Core Die Temperature Sensor Limit Register	0108 _H	U,SV	U,SV,P	Application Reset	See Family Spec
	Reserved (0060 _H Byte)	0114 _H	BE	BE		
SCU_TRAPDIS1	Trap Disable Register 1	0120 _H	U,SV	SV,E,P0	Application Reset	19
SCU_TRAPSTAT	Trap Status Register	0124 _H	U,SV	BE	System Reset	See Family Spec
SCU_TRAPSET	Trap Set Register	0128 _H	U,SV	SV,E,P0	System Reset	See Family Spec

 Table 35
 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
SCU_TRAPCLR	Trap Clear Register	012C _H	U,SV	U,SV,P0	System Reset	See Family Spec
SCU_TRAPDIS0	Trap Disable Register 0	0130 _H	U,SV	SV,E,P0	Application Reset	20
SCU_LCLCON0	LCL CPU0 and CPU2 Control Register	0134 _H	U,SV	SV,SE,ST,P 0	See page 10	10
SCU_LCLCON1	LCL CPU1 and CPU3 Control Register	0138 _H	U,SV	SV,SE,ST,P 0	See page 10	10
SCU_LCLTEST	LCL Test Register	013C _H	U,SV	U,SV,P0	System Reset	11
SCU_CHIPID	Chip Identification Register	0140 _H	U,SV	ST,P0	See Family Spec	See Family Spec
SCU_MANID	Manufacturer Identification Register	0144 _H	U,SV	BE	System Reset	See Family Spec
SCU_SWAPCTRL	Address Map Control Register	014C _H	U,SV	ST,P0	System Reset	See Family Spec
	Reserved (0060 _H Byte)	0158 _H	BE	BE		
	Reserved (0060 _H Byte)	015C _H	BE	BE		
	Reserved (0060 _H Byte)	0160 _H	BE	BE		
SCU_LBISTCTRL 0	Logic BIST Control 0 Register	0164 _H	U,SV	SV,SE,P0	See Family Spec	See Family Spec
SCU_LBISTCTRL 1	Logic BIST Control 1 Register	0168 _H	U,SV	SV,SE,P0	See Family Spec	See Family Spec
SCU_LBISTCTRL 2	Logic BIST Control 2 Register	016C _H	U,SV	SV,SE,P0	See page 12	12
SCU_LBISTCTRL 3	Logic BIST Control 3 Register	0170 _H	U,SV	BE	See Family Spec	See Family Spec
	Reserved (0020 _H Byte)	0178 _H	BE	BE		
SCU_STMEM1	Start-up Memory Register 1	0184 _H	U,SV	ST,P0	PowerOn Reset	See Family Spec
SCU_STMEM2	Start-up Memory Register 2	0188 _H	U,SV	ST,P0	System Reset	See Family Spec

Table 35 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
SCU_PDISC	Pad Disable Control Register	018C _H	U,SV	SV,E,P0	System Reset	See Family Spec	
	Reserved (0020 _H Byte)	0194 _H	BE	BE			
SCU_PMTRCSR0	Power Management Transition Control and Status Register 0	0198 _H	U,SV	SV,SE,P0	Cold PowerOn Reset	See Family Spec	
SCU_PMTRCSR1	Power Management Transition Control and Status Register 1	019C _H	U,SV	SV,SE,P0	Cold PowerOn Reset	See Family Spec	
SCU_PMTRCSR2	Power Management Transition Control and Status Register 2	01A0 _H	U,SV	SV,SE,P0	Cold PowerOn Reset	See Family Spec	
SCU_PMTRCSR3	Power Management Transition Control and Status Register 3	01A4 _H	U,SV	SV,SE,P0	Cold PowerOn Reset	See Family Spec	
SCU_STMEM3	Start-up Memory Register 3	01C0 _H	U,SV	ST,P0	Application Reset	See Family Spec	
SCU_STMEM4	Start-up Memory Register 4	01C4 _H	U,SV	ST,P0	Cold PowerOn Reset	See Family Spec	
SCU_STMEM5	Start-up Memory Register 5	01C8 _H	U,SV	ST,P0	PowerOn Reset	See Family Spec	
SCU_STMEM6	Start-up Memory Register 6	01CC _H	U,SV	ST,P0	System Reset	See Family Spec	
SCU_OVCENABL E	Overlay Enable Register	01E0 _H	U,SV	SV,SE,P0	Application Reset	13	
SCU_OVCCON	Overlay Control Register	01E4 _H	U,SV	SV,P0	Application Reset	13	
SCU_EIFILT	EIFILT External Input Filter Register		U,SV	SE,SV,P0	Application Reset	See Family Spec	
SCU_EICRi (i=0-3)	External Input Channel Register i	0210 _H +i*	U,SV	SE,SV,P0	Application Reset	See Family Spec	
SCU_EIFR	External Input Flag Register	0220 _H	U,SV	BE	Application Reset	See Family Spec	

 Table 35
 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Numbe	
SCU_FMR	Flag Modification Register	0224 _H	U,SV	U,SV,P0	Application Reset	See Family Spec	
SCU_PDRR	Pattern Detection Result Register	0228 _H	U,SV	BE	Application Reset	See Family Spec	
SCU_IGCRj (j=0-3)	Flag Gating Register j	022C _H +j* 4	U,SV	SE,SV,P0	Application Reset	See Family Spec	
	Reserved (0030 _H Byte)	023C _H	BE	BE			
SCU_WDTCPUyC ON0 (y=0)	CPUy WDT Control Register 0	024C _H	U,SV	U,SV,32,CP Uy (y=CPU number)	Application Reset	See Family Spec	
SCU_WDTCPUyC ON1 (y=0)	CPUy WDT Control Register 1	0250 _H	U,SV	SV,CEy,P0	Application Reset	See Family Spec	
SCU_WDTCPUyS R (y=0)	CPUy WDT Status Register	0254 _H	U,SV	BE	Application Reset	See Family Spec	
	Reserved (0030 _H Byte)	0264 _H	BE	BE			
SCU_EICON0	ENDINIT Global Control Register 0	029C _H	U,SV	U,SV,32,P0	Application Reset	See Family Spec	
SCU_EICON1	ENDINIT Global Control Register 1	02A0 _H	U,SV	SV,E,P0	Application Reset	See Family Spec	
SCU_EISR	ENDINIT Timeout Counter Status Register	02A4 _H	U,SV	BE	Application Reset	See Family Spec	
SCU_WDTSCON0 Safety WDT Control Register 0		02A8 _H	U,SV	U,SV,32,P1	Application Reset	See Family Spec	
SCU_WDTSCON1	SCU_WDTSCON1 Safety WDT Control Register 1			SV,SE,P1	Application Reset	See Family Spec	
SCU_WDTSSR	Safety WDT Status Register	02B0 _H	U,SV	BE	Application Reset	See Family Spec	
SCU_SEICON0	Safety ENDINIT Control Register 0	02B4 _H	U,SV	U,SV,32,P1	Application Reset	See Family Spec	

Table 35 Register Overview - SCU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
SCU_SEICON1	Safety ENDINIT Control Register 1	02B8 _H	U,SV	SV,SE,P1	Application Reset	See Family Spec	
SCU_SEISR	Safety ENDINIT Timeout Status Register	02BC _H	U,SV	BE	Application Reset	See Family Spec	
	Reserved (0440 _H Byte)	02DC _H	BE	BE			
SCU_ACCEN11	Access Enable Register 11	03F0 _H	U,SV	SV,SE	Application Reset	See Family Spec	
SCU_ACCEN10	Access Enable Register 10	03F4 _H	U,SV	SV,SE	Application Reset	See Family Spec	
SCU_ACCEN01	Access Enable Register 01	03F8 _H	U,SV	SV,SE	Application Reset	See Family Spec	
SCU_ACCEN00	Access Enable Register 00	03FC _H	U,SV	SV,SE	Application Reset	See Family Spec	
	Reserved (0440 _H Byte)	0400 _H	BE	BE			

9.3 TC33x/TC32x Specific Registers

9.3.1 SCU: Connections to FPI/BPI bus

LCL CPU0 and CPU2 Control Register

Provides control for CPU0and CPU2 Lockstep Comparator Logic blocks.

SCU_LCLCON0

LCL CP	U0 and	d CPU2	Contro	ol Regi:	ster		(0134	1 _H)				R	eset Va	alue: T	able 36
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LSEN0		ı	ı	ı	1	1		0	1	ı	ı	ı	1	ı	LS0
rw	I.	l	I.	l	II.	II.	l	r	II.	l	I.	ı	l.	l	rh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1		1	1	1	1	1) D	1	1	1	1	1	1	0
rw					•			r	•				•		r

Field	Bits	Туре	Description
LSO	16	rh	Lockstep Mode Status This bit indicates whether CPU0 is currently running in lockstep monitor mode 0_B Not in lockstep mode 1_B Running in lockstep mode
LSENO	31	rw	Lockstep Enable This bit may only be written by SSW during boot. Enable lockstep CPU monitoring for the associated processor core, CPU0. After cold reset, lockstep is enabled by default. The LSEN bit may be cleared during the boot to disable lockstep mode. SMU lockstep fault reporting should be disabled when lockstep is disabled. 0 _B Lockstep is disabled 1 _B Lockstep enabled (Default after Cold Power-On Reset)
0	0, 14:1, 30:17	r	Reserved in this product Reserved
1	15	rw	Reserved in this product Reserved

Table 36 Reset Values of SCU_LCLCON0

Reset Type	Reset Value	Note
Cold PowerOn	8001 0000 _H	
Reset		

LCL CPU1 and CPU3 Control Register

Provides control for CPU1 and CPU3 Lockstep Comparator Logic blocks.

SCU_LCLCON1

LCL CF	PU1 and	d CPU3	Contro	ol Regi	ster		(0138	3 _H)				R	eset Va	alue: Ta	able 37
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1		1	1	1	1	ı) D	1	1	1	1	ı	1	0
rw		II.	II.		II.	ı		r		II.	ı		I.	11	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1		1	1	1	1	1	•) D	1	1	1	1	1	1	0
rw								r							r

Field	Bits	Туре	Description
0	0,	r	Reserved in this product
	14:1,		Reserved
	16,		
	30:17		
1	15,	rw	Reserved in this product
	31		Reserved

Table 37 Reset Values of SCU_LCLCON1

Reset Type	Reset Value	Note
Cold PowerOn	0000 0000 _H	
Reset		

LCL Test Register

Provides the capability for software to inject a fault condition into the comparators of each Lockstep Comparator Logic block. The implementation should generate a single cycle fault each time the bit is written with '1'.

SCU_LCLTEST

LCL Te	st Regi	ister				(013C _H)				System Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	,	ı	ı	'	0	ı		ı	ı	0	0	0	0	0	PLCLT 0
	1	1	1	1	r	1	1	1	1	r	r	r	r	r	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	•) D	1	1	1	1	0	0	0	0	0	LCLT0
•	*				r					r	r	r	r	r	W

Field	Bits	Туре	Description
LCLT0	0	w	LCL0 Lockstep Test
			Fault injection for LCL0. Reads as zero.
			0 _B No action
			1 _B Inject single fault in LCL0

AURIX™ TC33x/TC32x

System Control Unit (SCU)

Field	Bits	Туре	Description
PLCLT0	16	w	PFI0 Lockstep Test
			Fault injection for PFI0 lockstep. Reads as zero.
			0 _B No action
			1 _B Inject single fault in PFI0 lockstep
0	1,	r	Reserved in this product
	2,		will be read as 0, should be written as 0
	3,		
	4,		
	5,		
	15:6,		
	17,		
	18,		
	19,		
	20,		
	21,		
	31:22		

Logic BIST Control 2 Register

SCU_LBISTCTRL2

Logic E	SIST Co	ntrol 2	Regist	ter			(016	C _H)				R	eset Va	alue: T	able 38
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	!	I	I	I	I	(0	ı	I	I	ı	ı	ı	!
1	1		Ī	Ī	Ī	I	I	r	1	I	Ī	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	' '		1		1	ı	1		LEN	GTH	1				1
-	ı	,							rv	vh					

Field	Bits	Туре	Description
LENGTH	11:0	rwh	LBIST Maximum Scan-Chain Length This field defines the number of shift-cycles for each LBIST scan-load. It will be automatically loaded with the product-specific value, stored in Flash config-sector during startup-software execution.
0	31:12	r	Reserved Read as 0; should be written with 0.

Table 38 Reset Values of SCU_LBISTCTRL2

Reset Type	Reset Value	Note
System Reset	0000 0000 _H	
CFS Value	0000 0039 _H	

Overlay Enable Register

SCU_OVCENABLE

Overla	y Enab	le Reg	ister				(01E	0 _H)		Ар	plication	on Res	et Valu	e: 000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		,	'	0	Į.		ı	·	,	I	
<u> </u>	1	1	1	1	1	1	1	r	1	1	1	I	I	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	' ') D	1	ı	1	1	0	0	0	0	0	OVEN0
	1	1	-	-	r	ļ	1		+	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
OVEN0	0	rw	Overlay Enable 0 0 _B OVC is disabled on CPU0. All Overlay redirections are disabled regardless of the state of OVC0_RABRy.OVEN. 1 _B OVC is enabled on CPU0.
0	1, 2, 3, 4, 5	rw	Reserved in this Product will be read as 0, should be written as 0
0	31:6	r	Reserved Read/write 0.

Overlay Control Register

SCU_OVCCON

Overla	y Cont	rol Reg	gister				(01E4	1 _н)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	!	•	0	ı	ı	POVC ONF	OVCO NF		1	0	ı	ı	DCINV AL	OVSTP	OVSTR T	
	1		r	1	1	W	rw		1	r	1		W	W	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1) D	1	1	ı	1	0	0	0	0	0	CSEL0	
•		•	•		r		•		•	r	r	r	r	r	W	

Bits	Type	Description
0	W	CPU Select 0 Return 0 if read. 0 _B CPU0 not affected, 1 _B Action selected by OVSTRT, OVSTP, DCINVAL bits, set by the same register write access, is applied to CPU0.
	Bits 0	

AURIX™ TC33x/TC32x

Field	Bits	Туре	Description
OVSTRT	16	W	Overlay Start CPUs which are not selected are not affected. No action is taken if OVSTP is also set. Return 0 if read. 0 _B No action 1 _B For each CPU selected with CSEL, all the blocks selected with OVCx_OSEL will be activated. In the selected CPUs all the blocks deselected with OVCx_OSEL will be deactivated.
OVSTP	17	W	Overlay Stop CPUs which are not selected are not affected No action is taken if OVSTRT is also set. Return 0 if read. 0 _B No action 1 _B For CPUs selected with CSEL, all the overlay blocks are deactivated. OVCx_RABRy.OVEN bits are cleared.
DCINVAL	18	W	No function in devices without data cache in CPU. Data Cache is affected only in the CPUs selected with CSEL. Return 0 if read. 0 _B No action 1 _B Data Cache Lines in DMI are invalidated ¹⁾
OVCONF	24	rw	Overlay Configured Overlay configured status bit This bit may be used as handshake bit between a debug device (via JTAG interface and Cerberus) and CPU(s). O _B Overlay is not configured or it has been already started 1 _B Overlay block control registers are configured and ready for overlay start
POVCONF	25	W	Write Protection for OVCONF This bit enables OVCONF write during OVCCON write. Return 0 if read. 0 _B OVCONF remains unchanged. 1 _B OVCONF can be changed with write access to register OVCCON
0	1, 2, 3, 4, 5, 15:6, 23:19, 31:26	r	Reserved in this Product Return 0 if read.

¹⁾ Dirty (modified) cache lines are not effected by this operation. If data cache contains modified data, it is not invalidated, and has to be written-back and invalidated by the user. Therefore, it is highly recommended to either: access overlaid data in read-only mode, or use only non-cached access.

Reset Status Register

${\bf SCU_RSTSTAT}$

Reset	Status	Regist	er		(0050 _H) Reset Value:							alue: T	able 39		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	LBTER M	LBPO RST	STBYR	НЅМА	нѕмѕ	SWD	EVR33	EVRC	R22	R21	СВЗ	CB1	СВО	0	PORS T
r	rh	rh	rh	rh	rh	rh	rh	rh	rX	rX	rh	rh	rh	r	rh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	0	0	0	0	0	STM0	SW	SMU	0	ESR1	ESR0
		r	*	•	r	r	r	r	r	rh	rh	rh	r	rh	rh

Field	Bits	Type	Description
ESR0	0	rh	Reset Request Trigger Reset Status for ESR0 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger
ESR1	1	rh	Reset Request Trigger Reset Status for ESR1 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger
SMU	3	rh	Reset Request Trigger Reset Status for SMU (See SMU section for SMU trigger sources, including Watchdog Timers) 0_B The last reset was not requested by this reset trigger 1_B The last reset was requested by this reset trigger
SW	4	rh	Reset Request Trigger Reset Status for SW 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger
STM0	5	rh	Reset Request Trigger Reset Status for STM0 Compare Match 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger
PORST	16	rh	Reset Request Trigger Reset Status for PORST This bit is also set if the bits CB0, CB1, and CB3 are set in parallel. O _B This reset trigger has not occurred since the last clear (by RSTCON2.CLRC) 1 _B This reset trigger has occurred since the last clear (by RSTCON2.CLRC)
СВО	18	rh	Reset Request Trigger Reset Status for Cerberus System Reset 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger
CB1	19	rh	Reset Request Trigger Reset Status for Cerberus Debug Reset 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger
СВЗ	20	rh	Reset Request Trigger Reset Status for Cerberus Application Reset 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger

Field	Bits	Туре	Description							
R21	21	rX	Reserved - 0 Read as 0; should be written with 0.							
R22	22	rX	Reserved - 0 Read as 0; should be written with 0.							
EVRC	23	rh	Reset Request Trigger Reset Status for EVRC 0 _B This reset trigger has not occurred since the last clear (by RSTCON2.CLRC) 1 _B This reset trigger has occurred since the last clear (by RSTCON2.CLRC)							
EVR33	24	rh	Reset Request Trigger Reset Status for EVR33 0 _B This reset trigger has not occurred since the last clear (by RSTCON2.CLRC) 1 _B This reset trigger has occurred since the last clear (by RSTCON2.CLRC)							
SWD	25	rh	Reset Request Trigger Reset Status for Supply Watchdog (SWD) The Supply Watchdog trigger is described in Power Management Controller "Supply Monitoring" chapter 0 _B This reset trigger has not occurred since the last clear (by RSTCON2.CLRC) 1 _B This reset trigger has occurred since the last clear (by RSTCON2.CLRC)							
HSMS	26	rh	Reset Request Trigger Reset Status for HSM System Reset (HSM S) 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger							
HSMA	27	rh	Reset Request Trigger Reset Status for HSM Application Reset (HSM A) 0 _B The last reset was not requested by this reset trigger 1 _B The last reset was requested by this reset trigger							
STBYR	28	rh	Reset Request Trigger Reset Status for Standby Regulator Watchdog (STBYR) 0 _B This reset trigger has not occurred since the last clear (by RSTCON2.CLRC) 1 _B This reset trigger has occurred since the last clear (by RSTCON2.CLRC)							
LBPORST	29	rh	LBIST termination due to PORST This bitfield indicates if the LBIST was early terminated due to the occurrence of a Power On Reset. If the status of this bitfield is 0, the application must still check the LBTERM to check if the LBIST was terminated properly. This bitfield is cleared when the RSTCON2.CLRC is set. O _B LBIST was not terminated early due to a Power On Reset 1 _B LBIST early termination due to the occurrence of Power On Reset							

Field	Bits	Туре	Description
LBTERM	30	rh	LBIST was properly terminated This bitfield indicates if the LBIST was terminated properly. This bitfield is cleared when the RSTCON2.CLRC is set. 0 _B LBIST was not terminated properly 1 _B LBIST was terminated properly
0	2, 6, 7, 8, 9, 10, 15:11, 17, 31	r	Reserved Read as 0; should be written with 0.

Table 39 Reset Values of SCU_RSTSTAT

Reset Type	Reset Value	Note
Cold PowerOn Reset	0XX1 0000 _H	RSTSTAT
Cold PowerOn Reset	1001 0000 _H	RSTSTAT (Triggered by LVD Reset)

Reset Configuration Register

SCU_RSTCON

Field	Bits	Туре	Description
ESR0	1:0	rw	ESR0 Reset Request Trigger Reset Configuration
			This bit field defines which reset is generated by a reset request trigger
			from ESR0 reset.
			00 _B No reset is generated for a trigger of ESR0
			01 _B A System Reset is generated for a trigger of ESR0 reset
			10 _B An Application Reset is generated for a trigger of ESR0 reset
			11 _B Reserved, do not use this combination

System Control Unit (SCU)

Field	Bits	Туре	Description
ESR1	3:2	rw	ESR1 Reset Request Trigger Reset Configuration This bit field defines which reset is generated by a reset request trigger from ESR1 reset. O0 _B No reset is generated for a trigger of ESR1 O1 _B A System Reset is generated for a trigger of ESR1 reset 10 _B An Application Reset is generated for a trigger of ESR1 reset 11 _B Reserved, do not use this combination
SMU	7:6	rw	SMU Reset Request Trigger Reset Configuration This bit field defines which reset is generated by a reset request trigger from SMU reset. OOB No reset is generated for a trigger of SMU OOB A System Reset is generated for a trigger of SMU reset An Application Reset is generated for a trigger of SMU reset Reserved, do not use this combination
SW	9:8	rw	SW Reset Request Trigger Reset Configuration This bit field defines which reset is generated by a reset request trigger from software reset. Oo _B No reset is generated for a trigger of software reset Oo _B A System Reset is generated for a trigger of Software reset To _B An Application Reset is generated for a trigger of Software reset Reserved, do not use this combination
STM0	11:10	rw	STMO Reset Request Trigger Reset Configuration This bit field defines which reset is generated by a reset request trigger from STM0 compare match reset. OOB No reset is generated for an STM0 trigger OOB A System Reset is generated for a trigger of STM0 reset OOB An Application Reset is generated for a trigger of STM0 reset Reserved, do not use this combination
0	5:4, 13:12, 15:14, 17:16, 19:18, 21:20, 31:22	rw	Reserved Should be written with 0.

Table 40 Reset Values of SCU_RSTCON

Reset Type	Reset Value	Note
PowerOn Reset	0000 0282 _H	RSTCON

Application Reset Disable Register

SCU_ARSTDIS

Applic	ation R	eset D	isable	Registe	er		(0050	C _H)		I	Power	On Res	et Valu	e: 000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Į.	ı	ı	ı	ı	Į.	'	0	Į.		Į.	ı	ı	ı	
		1	1		1		1	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			') D		1			0	0	0	0	0	0	STM0 DIS
	*			r		*		r	w	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description					
STMODIS	0	rw	STM0 Disable Reset					
			This bit field defines if an Application Reset leads to an reset for the STM0.					
			0 _B An Application Reset resets the STM0					
			1 _B An Application Reset has no effect for the STM0					
0	1,	rw	Reserved					
	2,		Should be written with 0.					
	3,							
	4,							
	5,							
	7:6							
0	31:8	r	Reserved					
			Read as 0; should be written with 0.					

Trap Disable Register 1

SCU_TRAPDIS1

Trap D	isable	Registe	er 1				(0120) _H)		Ар	plicati	on Res	et Valu	e: 0000) FFFF _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	I	!	I	ı	I	•	D	ı	I	I	ı	ı	ı	!
	I				I			r	I				1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	' '	1			CPU	5xT	1		:	L	1		CPU	J4xT	
		r			r	W				r			r	W	

Field	Bits	Туре	Description
CPU4xT	3:0	rw	Reserved in this product
CPU5xT	11:8	rw	Reserved in this product

Field	Bits	Туре	Description	
1	7:4, 15:12	r	Reserved Must only be written with one. Read as one.	
0	31:16	r	Reserved Read as zero	

Trap Disable Register 0

SCU TRAPDISO

Trap D	isable		er O				(013) _H)		Ар	plicati	ion Res	et Valu	e: FFFI	FFFF _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	:	1	I		CPU	J3xT	I		1	Ĺ	I		CPU	J2xT	
		r	1		r	W	1			r	1		r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	:	1			CPU	J1xT			1	L	,	CPU0S MUT	CPU0T RAP2T		CPU0E SR0T
		r			r۱	W				r		rw	rw	rw	rw

Field	Bits	Type	Description
CPU0ESR0T	0	rw	Disable Trap Request ESR0T on CPU0
			0 _B A CPU0 trap request can be generated for this source
			1 _B No trap request can be generated for this source
CPU0ESR1T	1	rw	Disable Trap Request ESR1T on CPU0
			0 _B A CPU0 trap request can be generated for this source
			1 _B No trap request can be generated for this source
CPU0TRAP2T	2	rw	Disable Trap Request TRAP2T on CPU0
			0 _B A CPU0 trap request can be generated for this source
			1 _B No trap request can be generated for this source
CPU0SMUT	3	rw	Disable Trap Request SMUT on CPU0
			0 _B A CPU0 trap request can be generated for this source
			1 _B No trap request can be generated for this source
CPU1xT	11:8	rw	Reserved in this product
CPU2xT	19:16	rw	Reserved in this product
CPU3xT	27:24	rw	Reserved in this product
1	7:4,	r	Reserved
	15:12,		Must only be written with one. Read as one.
	23:20,		
	31:28		

9.4 Connectivity

Table 41 Connections of SCU

Interface Signals	conn	ects	Description			
SCU:CBS_ENDINIT_DIS	from	CBS:ocds_oc(3)	Watchdog ENDINIT disable from Cerberus			
SCU:CBS_WDT_SUSP	from	CBS:ocds_wdtsus	Watchdog suspend from Cerberus			
SCU:EMGSTOP_PORT_A	from	SMU:FSPSCU	Emergency stop Port Pin A input request			
SCU:EMGSTOP_PORT_B	from	P21.2:IN	Emergency stop Port Pin B input request			
SCU:ESR0_PORT_IN	from	TC33x/TC32x:ESR0	ESR0 Port Pin input - can be used to trigger a reset or an NMI			
SCU:ESR1_PORT_IN	from	TC33x/TC32x:ESR1	ESR1 Port Pin input - can be used to trigger a reset or an NMI			
SCU:E_IOUT(0)	to	EVADC:G0REQTRH	ERU IOUTn output (MSB is IOUT7 and LSB is			
		EVADC:G8REQTRH	IOUT0)			
SCU:E_IOUT(1)	to	EVADC:G1REQTRH	ERU IOUTn output (MSB is IOUT7 and LSB is			
		EVADC:G9REQTRH	IOUT0)			
SCU:E_IOUT(3:2)	to	CAN0:ttc_ectt(4:3)	ERU IOUTn output (MSB is IOUT7 and LSB is IOUT0)			
SCU:E_IOUT(4)	to	CAN0:ttc_ltrc_trig(4)	ERU IOUTn output (MSB is IOUT7 and LSB is IOUT0)			
SCU:E_PDOUT(0)	to	CCU60:CTRAPD	ERU PDOUTn output (MSB is PDOUT7 and LSB			
		CCU60:T12HRH	is PDOUT0)			
		EVADC:G0REQGTM				
		EVADC:G8REQGTM				
		GTM:TIM0_IN0(12)				
SCU:E_PDOUT(1)	to	CCU61:CTRAPD	ERU PDOUTn output (MSB is PDOUT7 and LSE is PDOUT0)			
		CCU61:T12HRH				
		EVADC:G1REQGTM				
		EVADC:G9REQGTM				
		GTM:TIM0_IN1(12)				
SCU:E_PDOUT(2)	to	GTM:TIM0_IN2(12)	ERU PDOUTn output (MSB is PDOUT7 and LSB is PDOUT0)			
SCU:E_PDOUT(3:0)	to	ERAY0:STPWT(3:0)	ERU PDOUTn output (MSB is PDOUT7 and LSB is PDOUT0)			
SCU:E_PDOUT(3)	to	GTM:TIM0_IN3(12)	ERU PDOUTn output (MSB is PDOUT7 and LSB is PDOUT0)			
SCU:E_PDOUT(4)	to	CCU60:CC62IND	ERU PDOUTn output (MSB is PDOUT7 and LSB			
		GPT120:T3INC	is PDOUT0)			
		GTM:TIM0_IN4(12)				
SCU:E_PDOUT(5)	to	CCU61:CC62IND	ERU PDOUTn output (MSB is PDOUT7 and LSB			
		GTM:TIM0_IN5(12)	is PDOUT0)			
SCU:E_PDOUT(6)	to	GPT120:CAPINB	ERU PDOUTn output (MSB is PDOUT7 and LSB			
		GTM:TIM0_IN6(12)	is PDOUT0)			

Table 41 Connections of SCU (cont'd)

Interface Signals	conn	ects	Description
SCU:E_PDOUT(7)	to	GTM:TIM0_IN7(12)	ERU PDOUTn output (MSB is PDOUT7 and LSB is PDOUT0)
SCU:E_REQ0(0)	from	P15.4:IN	ERU Channel 0 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ0(1)	from	CCU60:COUT60	ERU Channel 0 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ0(2)	from	P10.7:IN	ERU Channel 0 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ1(0)	from	P14.3:IN	ERU Channel 1 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ1(1)	from	CCU61:COUT60	ERU Channel 1 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ1(2)	from	P10.8:IN	ERU Channel 1 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ1(3)	from	STM0:STMIR(0)	ERU Channel 1 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ2(0)	from	P10.2:IN	ERU Channel 2 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ2(1)	from	P02.1:IN	ERU Channel 2 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ2(2)	from	P00.4:IN	ERU Channel 2 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ2(3)	from	ERAY0:MT	ERU Channel 2 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ3(0)	from	P10.3:IN	ERU Channel 3 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ3(1)	from	P14.1:IN	ERU Channel 3 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ3(2)	from	P02.0:IN	ERU Channel 3 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ4(0)	from	P33.7:IN	ERU Channel 4 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ4(1)	from	GTM:SCU_TRIG(0)	ERU Channel 4 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ4(2)	from	GPT120:T3OUT	ERU Channel 4 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ4(3)	from	P15.5:IN	ERU Channel 4 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ5(0)	from	P15.8:IN	ERU Channel 5 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ5(1)	from	GTM:SCU_TRIG(1)	ERU Channel 5 input X; x=0-5, where 0 is input A and 5 is input F.

Table 41 Connections of SCU (cont'd)

Interface Signals	conn	ects	Description
SCU:E_REQ5(2)	from	GPT120:T6OUT	ERU Channel 5 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ6(0)	from	P20.0:IN	ERU Channel 6 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ6(1)	from	TC33x/TC32x:ESR0	ERU Channel 6 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ6(3)	from	P11.10:IN	ERU Channel 6 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ7(0)	from	P20.9:IN	ERU Channel 7 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ7(1)	from	TC33x/TC32x:ESR1	ERU Channel 7 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:E_REQ7(2)	from	P15.1:IN	ERU Channel 7 input X; x=0-5, where 0 is input A and 5 is input F.
SCU:RST_REQ_STM(10)	from	HSM:SYSRST	Reset request from STMn (MSB is STM5 and LSB is STM0)
SCU:RST_REQ_STM(11)	from	HSM:APPRST	Reset request from STMn (MSB is STM5 and LSB is STM0)
SCU:SMU_EMGSTP_REQ	from	SMU:EMERGENCYSTOPR EQ	Emergency stop request from SMU
SCU:SMU_TRAP_REQ	from	SMU:NMIREQ	TRAP request from the SMU
SCU:TRAP_CPU(0)	to	cpu_pfi_pfrwb_0:tc162p _nmi_trap	TRAP output to CPUn (MSB is CPU5 and LSB is CPU0)
SCU:ERU_INT(3:0)	to	INT:scu.ERU_INT(3:0)	SCU ERU Service Request x

9.5 Revision History

The following table contains the revision history of the SCU that is relevant for the TC33x/TC32x device. For a complete revision history please address the family user manual.

This section only includes entries, respective to the Clock System, that are related to register updates. For a complete Clock System revision history please address the family user manual.

Table 42 Revision History

Reference	Change to Previous Version	Comment
V2.1.21		
	Initial version for TC33x.	
V2.1.22		
Page 15	Cold PORST reset value changed from 1xx10000 to 0xx10000 in RSTSTAT register.	
Page 15	Additional cold_power_on_reset value "LVD Reset" added to RSTSTAT register.	
Page 2	SCU_CHIPID register, CHPK bitfield: Corrected description for constant value "2" to TQFP-80.	

System Control Unit (SCU)

Table 42Revision History (cont'd)

Reference	Change to Previous Version	Comment
Page 10	LCLCON0 and LCLCON1: Cold PORST reset table values updated/corrected.	
Page 23	Revision History cleanup and update.	
V2.1.23		
Page 1	LBISTCTRL register configuration corrected.	
Page 2	Connectivity table updated due to update of Connexion DB.	
Page 2, Page 10	LBISTCTRL2 added at specific registers section.	
V2.1.24		
Page 10	Updated Cold PowerOn Reset Value of LCLCONx.	
Page 10	Removed mistakenly mentioned bits in registers LCLTEST (PLCLT1), OVCENABLE (OVEN1), OVCCON (CSEL1), RSTSTAT (STM1), RSTCON (STM1), ARSTDIS (STM1DIS) and TRAPDISO (CPU1SMUT, CPU1TRAP2T, CPU1ESR1T, CPU1ESR0T).	
V2.1.25		-
	No functional changes.	
V2.1.26		
	No functional changes.	
V2.1.27		<u>'</u>
	No functional changes.	

AURIX™ TC33x/TC32x

Clocking System

10 Clocking System

Device specific information about the clocking system is contained in the SCU chapter as both modules share a common bus interface.

Power Management System (PMS)

11 Power Management System (PMS)

This device doesn't contain a PMS module.

12 Power Management System for Low-End (PMSLE)

This chapter describes the Power Management System (PMSLE) Module of the TC33x/TC32x.

12.1 TC33x/TC32x Specific IP Configuration

No product specific configuration for PMS

12.2 TC33x/TC32x Specific Register Set

The PMS related SCU registers are specified in the SCU section of this appendix.

Table 43Register Address Space - PMS

Module	Base Address	End Address	Note
(PMS)	F0240000 _H	F0241FFF _H	
PMS	F0248000 _H	F02481FF _H	FPI slave interface

Table 44 Register Overview - PMS (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
PMS_ID	Identification Register	0008 _H	U,SV	BE	Application Reset	See Family Spec
	Reserved (0020 _H Byte)	000C _H	BE	BE		
PMS_EVRSTAT	EVR Status Register	002C _H	U,SV	BE	See Family Spec	See Family Spec
	Reserved (0004 _H Byte)	0030 _H	BE	BE		
PMS_EVRADCSTA T	EVR Primary ADC Status Register	0034 _H	U,SV	BE	LVD Reset	See Family Spec
	Reserved (0004 _H Byte)	0038 _H	BE	BE		
PMS_EVRRSTCO N	EVR Reset Control Register	003C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRRSTSTA T	EVR Reset Status Register	0044 _H	U,SV	BE	See Family Spec	See Family Spec
PMS_EVRTRIM	EVR Trim Control Register	004C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRTRIMST AT	EVR Trim Status Register	0050 _H	U,SV	BE	See Family Spec	See Family Spec
	Reserved (0008 _H Byte)	0058 _H	BE	BE		
PMS_EVRMONST AT1	EVR Secondary ADC Status Register 1	0060 _H	U,SV	BE	See Family Spec	See Family Spec
PMS_EVRMONST AT2	EVR Secondary ADC Status Register 2	0064 _H	U,SV	BE	See Family Spec	See Family Spec

 Table 44
 Register Overview - PMS (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
PMS_EVRMONCT RL	EVR Secondary Monitor Control Register	0068 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
	Reserved (0004 _H Byte)	006C _H	BE	BE		
PMS_EVRMONFIL T	EVR Secondary Monitor Filter Register	0070 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_PMSIEN	PMS Interrupt Enable Register	0074 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRUVMON	EVR Secondary Under- voltage Monitor Register	0078 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVROVMON	EVR Secondary Over- voltage Monitor Register	007C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRUVMON 2	EVR Secondary Under- voltage Monitor Register 2	0080 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVROVMON 2	EVR Secondary Over- voltage Monitor Register 2	0084 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_HSMUVMO N	EVR Primary HSM Under- voltage Monitor Register	0088 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_HSMOVMO N	EVR Primary HSM Over- voltage Monitor Register	008C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVR33CON	EVR33 Control Register	0090 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVROSCCT RL	EVR Oscillator Control Register	00A0 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
_	Reserved (0008 _H Byte)	00AC _H	BE	BE		
PMS_PMSWCR0	Standby and Wake-up Control Register 0	00B4 _H	U,SV	SV,SE,P	LVD Reset	See Family Spec
PMS_PMSWCR2	Standby and Wake-up Control Register 2	00B8 _H	U,SV	SV,SE,P	LVD Reset	See Family Spec
	Reserved (0004 _H Byte)	00BC _H	BE	BE		

 Table 44
 Register Overview - PMS (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
PMS_PMSWCR3	Standby and Wake-up Control Register 3	00C0 _H	U,SV	SV,SE,P	LVD Reset	See Family Spec
PMS_PMSWCR4	Standby and Wake-up Control Register 4	00C4 _H	U,SV	SV,SE,P	LVD Reset	See Family Spec
PMS_PMSWCR5	Standby and Wake-up Control Register 5	00C8 _H	U,SV	SV,SE,P	LVD Reset	See Family Spec
PMS_PMSWSTAT	Standby and Wake-up Status Register	00D4 _H	U,SV	BE	LVD Reset	See Family Spec
PMS_PMSWSTAT 2	Standby and Wake-up Status Register 2	00D8 _H	U,SV	BE	LVD Reset	See Family Spec
PMS_PMSWUTC NT	Standby WUT Counter Register	00DC _H	U,SV	BE	LVD Reset	See Family Spec
	Reserved (0008 _H Byte)	00E0 _H	BE	BE		
PMS_PMSWSTAT CLR	Standby and Wake-up Status Clear Register	00E8 _H	U,SV	SV,SE,P	LVD Reset	See Family Spec
	Reserved (0010 _H Byte)	00EC _H	BE	BE		
PMS_EVRSDSTAT 0	EVR SD Status Register 0	00FC _H	U,SV	BE	See Family Spec	See Family Spec
	Reserved (0008 _H Byte)	0100 _H	BE	BE		
PMS_EVRSDCTRL 0	EVRC SD Control Register 0	0108 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 1	EVRC SD Control Register 1	010C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 2	EVRC SD Control Register 2	0110 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 3	EVRC SD Control Register 3	0114 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 4	EVRC SD Control Register 4	0118 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec

 Table 44
 Register Overview - PMS (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
PMS_EVRSDCTRL 5	EVRC SD Control Register 5	011C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 6	EVRC SD Control Register 6	0120 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 7	EVRC SD Control Register 7	0124 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 8	EVRC SD Control Register 8	0128 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 9	EVRC SD Control Register 9	012C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCTRL 10	EVRC SD Control Register 10	0130 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
	Reserved (0010 _H Byte)	0138 _H	BE	BE		
PMS_EVRSDCOE FF0	EVRC SD Coefficient Register 0	0148 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCOE FF1	EVRC SD Coefficient Register 1	014C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCOE FF2	EVRC SD Coefficient Register 2	0150 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
PMS_EVRSDCOE FF3	EVRC SD Coefficient Register 3	0154 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
	Reserved (0050 _H Byte)	0170 _H	BE	BE		
PMS_AG2i_STDB Y (i=0-1)	Alarm Status Register	0188 _H +i* 4	U,SV	SV,SE,P	LVD Reset	See Family Spec
PMS_MONBISTS TAT	SMU_stdby BIST Status Register	0190 _H	U,SV	BE	See Family Spec	See Family Spec
	Reserved (0050 _H Byte)	0194 _H	BE	BE		
PMS_MONBISTC TRL	SMU_stdby BIST Control Register	0198 _H	U,SV	SV,SE,P	See Family Spec	See Family Spec

 Table 44
 Register Overview - PMS (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
PMS_CMD_STDB Y	SMU_stdby Command Register	019C _H	U,SV	SV,SE,P	See Family Spec	See Family Spec
	Reserved (0050 _H Byte)	01A0 _H	BE	BE		
PMS_AG2iFSP_S TDBY (i=0-1)	SMU_stdby FSP Configuration Register	01A4 _H +i* 4	U,SV	SV,SE,P	See Family Spec	See Family Spec
	Reserved (0050 _H Byte)	01AC _H	BE	BE		
PMS_DTSSTAT	Die Temperature Sensor Status Register	01C0 _H	U,SV	BE	See Family Spec	See Family Spec
PMS_DTSLIM	Die Temperature Sensor Limit Register	01C8 _H	U,SV	U,SV,P	See Family Spec	See Family Spec
	Reserved (0014 _H Byte)	01CC _H	BE	BE		
PMS_OTSS	OCDS Trigger Set Select Register	01E0 _H	U,SV	U,SV,P	See Family Spec	See Family Spec
PMS_OTSC0	OCDS Trigger Set Control 0 Register	01E4 _H	U,SV	U,SV,P	See Family Spec	See Family Spec
PMS_OTSC1	OCDS Trigger Set Control 1 Register	01E8 _H	U,SV	U,SV,P	See Family Spec	See Family Spec
PMS_ACCEN0	Access Enable Register 0	01F8 _H	U,SV	SV,SE,32	Application Reset	See Family Spec
PMS_ACCEN1	Access Enable Register 1	01FC _H	U,SV	SV,SE,32	Application Reset	See Family Spec

12.3 TC33x/TC32x Specific Registers

No deviations from the Family Spec

12.4 Connectivity

Table 45 Connections of PMS

Interface Signals	conn	ects	Description
PMS:ESR0PORST	to	TC33x/TC32x:ESR0	ESR0 control output during PORST activation
PMS:ESR0WKP	from	TC33x/TC32x:ESR0	ESR0 pin input
PMS:ESR1WKP	from	TC33x/TC32x:ESR1	ESR1 pin input
PMS:HWCFG1IN	from	TC33x/TC32x:P14.5	HWCFG1 pin input
PMS:HWCFG2IN	from	TC33x/TC32x:P14.2	HWCFG2 pin input
PMS:HWCFG4IN	from	TC33x/TC32x:P10.5	HWCFG4 pin input
PMS:HWCFG5IN	from	TC33x/TC32x:P10.6	HWCFG5 pin input
PMS:HWCFG6IN	from	TC33x/TC32x:P14.4	HWCFG6 pin input
PMS:PINAWKP	from	TC33x/TC32x:P14.1	PINA (P14.1) pin input
PMS:PINBWKP	from	TC33x/TC32x:P33.12	PINB (P33.12) pin input
PMS:PORSTIN	from	TC33x/TC32x:PORST	PORST pin input
PMS:PORSTOUT	to	TC33x/TC32x:PORST	PORST pin output
PMS:TESTMODEIN	from	TC33x/TC32x:P20.2	TESTMODE pin input
PMS:VDDMLVL	to	converter_0:converter_l ow_supp	VDDM monitor signal to Converter

12.5 Revision History

Table 46 Revision History

Reference	Change to Previous Version	Comment
V1.0.2		
_	No changes.	
V1.0.3		
Page 2	Enabled description of EVR33CON register for EVR33 short detection configuration.	
V1.0.4		<u>.</u>
_	No functional changes.	
V1.0.5		
_	No functional changes.	
V1.0.6		
_	No functional changes.	
V1.0.7		
_	No functional changes.	

13 Memory Test Unit (MTU)

For the generic description of the Memory Test Unit (MTU) and the SRAM Support Hardware (SSH), please refer to the platform chapter.

13.1 TC33x/TC32x Specific IP Configuration

There is no device specific IP configuration. MTU+SSH is generic across all derivates in the platforms. Only the SSH instances vary.

13.2 Handling of Large DSPR SRAMs

On this device, the CPU0 and CPU1 have large DSPR SRAMs. Therefore, there are two SSHs to support these SRAMs. These are named as CPUxDMEM and CPUxDMEM1 (x=0,1).

Logically, these 2 SSHs behave as separate SSHs, with their own MEMTEST_EN bits, Alarms to the SMU, error status flags etc. However special handling is required to enter test mode for these SSHs.

When running a Non-Destructive-test, only one of the DMEM SSHs shall be enabled at a time. This is because the ECC encoder and decoder are shared between the two SSHs.

However, as long as destructive tests or SSH register accesses are to be performed, then both SSHs can be enabled together.

Please note that when one of the DMEM SSH is enabled, the complete DSPR+DCACHE is unavailable for functional access. This is due to internal interleaving of the logical address space.

Although the DCACHE is also split equally between the two SRAMs, the entire cache has to be mapped at once to the system address map. Hence only a single bit is provided in the MTU_MEMMAP register for the entire DMEM.

The partial-erase (i.e. erasing the Cache area; refer the family spec) is triggered separately when each MEMTEST_EN bit is set.

The MEMMAP bit triggers the partial erase in both SSHs at the same time.

If both the SSHs are enabled / disabled at the same time, the software should check either the bits in the MTU_MEMSTAT register, or ensure that the EN bits for both the SSHs are set / cleared in the MEMTEST registers to ensure that the partial-erase has completed.

13.3 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 47 Register Address Space - MTU

Module	Base Address End Address		Note
MTU	F0060000 _H	F006FFFF _H	FPI slave interface

Register Overview Table

Table 48 Register Overview - MTU (ascending Offset Address)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
MTU_CLC	Clock Control Register	0000 _H	U,SV	SV,E,P	Application Reset	See Family Spec
MTU_ID	Identification Register	0008 _H	U,SV	BE	Application Reset	See Family Spec
MTU_MEMTESTi (i=0-2)	Memory MBIST Enable Register i	0010 _H +i*	U,SV	SV,SE,P	Application Reset	3
MTU_MEMMAP	Memory Mapping Enable Register	001C _H	U,SV	SV,SE,P	Application Reset	7
MTU_MEMSTATi (i=0-2)	Memory Status Register i	0038 _H +i*	U,SV	BE	Application Reset	9
MTU_MEMDONEi (i=0-2)	Memory Test Done Status Register i	0050 _H +i*	U,SV	BE	Application Reset	12
MTU_MEMFDAi (i=0-2)	Memory Test FDA Status Register i	0060 _H +i*	U,SV	BE	Application Reset	14
MTU_ACCEN1	Access Enable Register 1	00F8 _H	U,SV	BE	Application Reset	See Family Spec
MTU_ACCEN0	Access Enable Register 0	00FC _H	U,SV	SV,SE	Application Reset	See Family Spec
MTU_MCi_CONFI G0 (i=0-95)	Configuration Registers	1000 _H +i* 100 _H	U,SV,16	U,SV,P,16	Application Reset	See Family Spec
MTU_MCi_CONFI G1 (i=0-95)	Configuration Register 1	1002 _H +i* 100 _H	U,SV,16	U,SV,P,16	Application Reset	See Family Spec

Table 48 Register Overview - MTU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page	
		Address	Read	Write		Number	
MTU_MCi_MCON TROL (i=0-95)	MBIST Control Register	1004 _H +i* 100 _H	U,SV,16	SV,SE,P,16	Application Reset	See Family Spec	
MTU_MCi_MSTA TUS (i=0-95)	Status Register	1006 _H +i* 100 _H	U,SV,16	BE	Application Reset	See Family Spec	
MTU_MCi_RANG E (i=0-95)	Range Register, single address mode	1008 _H +i* 100 _H	U,SV,16	U,SV,P,16	Application Reset	See Family Spec	
MTU_MCi_REVID (i=0-95)	Revision ID Register	100C _H +i* 100 _H	U,SV,16	BE	Application Reset	See Family Spec	
MTU_MCi_ECCS (i=0-95)	ECC Safety Register	100E _H +i* 100 _H	U,SV,16	SV,SE,P,16	Application Reset	See Family Spec	
MTU_MCi_ECCD (i=0-95)	Memory ECC Detection Register	1010 _H +i* 100 _H	U,SV,16	SV,P,16	See Family Spec	See Family Spec	
MTU_MCi_ETRRx (i=0-95;x=0-4)	Error Tracking Register x	1012 _H +i* 100 _H +x* 2	U,SV,16	BE	PowerOn Reset	See Family Spec	
MTU_MCi_RDBFL y (i=0-95;y=0-66)	Read Data and Bit Flip Register y	1060 _H +i* 100 _H +y* 2	U,SV,16	U,SV,P,16	Application Reset	See Family Spec	
MTU_MCi_ALMS RCS (i=0-95)	Alarm Sources Configuration Register	10EE _H +i* 100 _H	U,SV,16	SV,SE,P,16	Application Reset	See Family Spec	
MTU_MCi_FAULT STS (i=0-95)	SSH Safety Faults Status Register	10F0 _H +i* 100 _H	U,SV,16	SV,SE,P,16	PowerOn Reset	See Family Spec	
MTU_MCi_ERRIN FOx (i=0-95;x=0-4)	Error Information Register x	10F2 _H +i* 100 _H +x* 2	U,SV,16	BE	PowerOn Reset	See Family Spec	

13.4 TC33x/TC32x Specific Registers

13.4.1 MEMTEST Implementation

Memory MBIST Enable Register i

The memory test register MEMTEST holds CPU configurable select bits for the various SSH instances. See the product specific appendix for mapping of memory controller numbers.

Memoi	ry MBIS	ST Enal	ole Reg	ister i		(0010 _H +i*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
RES31	RES30	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RES15	RES14	RES13	RES12	RES11	RES10	RES9	RES8	RES7	RES6	RES5	CPU0_ DLMU _STBY _EN		CPU0_ PMEM _EN			
r	r	r	r	r	r	r	r	r	r	r	rwh	rwh	rwh	rwh	rwh	

Field	Bits	Туре	Description
CPU0_DMEM_ EN	0	rwh	CPU0 DMEM SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
RESx (x=5-31)	х	r	Reserved Reserved. Shall be written with zero.
CPUO_DTAG_ EN	1	rwh	CPU0 DTAG SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
CPU0_PMEM_ EN	2	rwh	CPU0 PMEM SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
CPU0_PTAG_ EN	3	rwh	CPU0 PTAG SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
CPU0_DLMU_ STBY_EN	4	rwh	CPU0 STANDBY DLMU SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled

MTU_MEMTESTi (i=1)

Memoi		ST Enal	•	ister i		(0010 _H +i*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
MCAN 20_EN	MCAN 10_EN	RES79	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16	
rwh	rwh	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RES15	RES14	RES13	RES12	RES11	RES10	SADM A_EN	R8	RES7	RES6	RES5	RES4	RES3	CPU0_ DMEM 1_EN	RES1	RES0	
r	r	r	r	r	r	rwh	rwh	r	r	r	r	r	rwh	r	r	

Field	Bits	Туре	Description
RESx (x=0- 1,3-7,10-29)	х	r	Reserved Reserved. Shall be written with zero.
CPU0_DMEM1 _EN	2	rwh	CPU0 DMEM1 SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled ¹⁾ .
R8	8	rwh	Reserved - Res Reserved. Not used in this product. Shall be written with zero.
SADMA_EN	9	rwh	Safety DMA SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
MCAN10_EN	30	rwh	MCAN10 memory SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
MCAN20_EN	31	rwh	MCAN20 memory SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled

¹⁾ Please refer to separate section related to handling of the large DMEM on this device.

MTU MEMTESTi (i=2)

Memoi		•	•	ister i		(0010 _H	+i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
RES31	RES30	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SCR_R AMINT _EN	SCR_X RAM_ EN	R12	R11	R10	R9	R8	RES7	ERAY_ MBF0_ EN	RES5	ERAY_ TBF_I BFO_E N	RES3	ERAY_ OBFO_ EN	RES1	RES0	
r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	r	rwh	r	rwh	r	rwh	r	r	

Field	Bits	Type	Description							
RESx (x=0- 1,3,5,7,15-31)	Х	r	Reserved Reserved. Shall be written with zero.							
ERAY_OBF0_E N	2	rwh	ERAY OBFO SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled							
ERAY_TBF_IB F0_EN	4	rwh	ERAY TBF IBF0 memory SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled							

Memory Test Unit (MTU)

Field	Bits	Type	Description
ERAY_MBF0_E N	6	rwh	ERAY MBF0 memory SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
R8	8	rwh	Reserved - Res Reserved. Not used in this product. Shall be written with zero.
R9	9	rwh	Reserved - Res Reserved. Not used in this product. Shall be written with zero.
R10	10	rwh	Reserved - Res Reserved. Not used in this product. Shall be written with zero.
R11	11	rwh	Reserved - Res Reserved. Not used in this product. Shall be written with zero.
R12	12	rwh	Reserved - Res Reserved. Not used in this product. Shall be written with zero.
SCR_XRAM_E N	13	rwh	SCR XRAM SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled
SCR_RAMINT_ EN	14	rwh	SCR Internal RAM SSH instance Enable 0 _B SSH instance is disabled 1 _B SSH instance is enabled

13.4.2 MEMMAP Implementation

The Memory Mapping Enable register MEMMAP has configurable control bits to select memory-mapped test mode for each CPU memory.

Cache and Scratchpad memories are physically implemented as a single RAM, but this register function assumes two separate logical RAM partitions. In this register additional bits CPUxDCMAP and CPUxPCMAP are defined. These control the Cache partitions of the RAMs for Data Side and Program side respectively. Since cache content and tags of a cache must be simultaneously switched from memory mapped to cache functional mode, the control bits are mirrored and only one bit is writeable for each cache. The bits corresponding to the tag memories of the same cache will always take the same value as that written to the main Cache Memory control bit. This linkage is product specific.

Please note that the MEMMAP register is used only to map the Cache/Tag memories to system address space. These bits have no effect on testing these memories itself. For system address range into which the memories will be mapped, please refer to the memory map chapter.

Memory Mapping Enable Register

The Memory Mapping Enable register MEMMAP has configurable control bits to select memory-mapped test mode. See the Integration Section for mapping of memory controller numbers.

MTU_M Memor			nable R	egiste	r	(001C _H)				Application Reset Value: 0000 0000						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	R29		MEM2 8MAP	MEM2 7MAP	MEM2 6MAP	MEM2 5MAP	R24	MEM2 3MAP	MEM2 2MAP	MEM2 1MAP	MEM2 OMAP	R19	MEM1 8MAP	MEM1 7MAP	MEM1 6MAP	
	r		r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
MEM1 5MAP	R14	MEM1 3MAP	MEM1 2MAP	MEM1 1MAP	MEM1 OMAP	R9	MEM8 MAP	MEM7 MAP	MEM6 MAP	MEM5 MAP	R4	CPU0_ PTMA P	CPU0_ PCMA P	CPU0_ DTMA P	CPU0_ DCMA P	
r	r	r	r	r	r	r	r	r	r	r	r	rh	rwh	rh	rwh	

Field	Bits	Type	Description
CPU0_DCMAP	0	rwh	CPU0 DCache Mapping 0 _B Normal cache function 1 _B Memory-mapped
MEMxMAP (x=5-8,10- 13,15-18,20- 23,25-28)	х	r	MEMx Mapping Enable Reserved; Not used in this product. Shall be written with zero.
CPU0_DTMAP	1	rh	CPU0 DTAG Mapping Read only. Mirrors the state of CPU0_DCMAP. CPU D-cache memories may only be mapped simultaneously. 0 _B Normal cache function 1 _B Memory-mapped

Memory Test Unit (MTU)

Field	Bits	Туре	Description				
CPU0_PCMAP	2	rwh	CPU0 PCACHE Mapping 0 _B Normal cache function 1 _B Memory-mapped				
CPU0_PTMAP	3	rh	CPU0 PTAG Mapping Read only. Mirrors the state of CPU0_PCMAP. CPU P-cache memories may only be mapped simultaneously. 0 _B Normal cache function 1 _B Memory-mapped				
R4	4	r	Reserved - Res Reserved. Not used in this product.				
R9	9	r	Reserved - Res Reserved. Not used in this product.				
R14	14	r	Reserved - Res Reserved. Not used in this product.				
R19	19	r	Reserved - Res Reserved. Not used in this product.				
R24	24	r	Reserved - Res Reserved. Not used in this product.				
R29	31:29	r	Reserved - Res Reserved. Not used in this product.				

13.4.3 MEMSTAT Implementation

The Memory Status Registers MEMSTATx have an implemented bit for each security relevant RAM.

The Data- and Program- Cache and Scratchpad memories are physically implemented as a single RAM with a single MBIST. Hence CPUx_DMEM_AIU and CPUx_PMEM_AIU give the status of the partial initialization of the cache partitions for the Data and Program memories respectively.

Memory Status Register i

The memory status register MEMSTAT shows whether each SSH instance is currently executing an automatic initialization sequence.

MTU_M Memor		•	•			(0038 _H	+i*4)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R29		RES28	RES27	RES26	RES25	R24	RES23	RES22	RES21	RES20	R19	RES18	RES17	RES16
	r	1	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RES15	R14	RES13	RES12	RES11	RES10	R9	RES8	RES7	RES6	RES5	R4	_	_	CPU0_ DTAG_ AIU	_
r	r	r	r	r	r	r	r	r	r	r	r	rh	rh	rh	rh

Field	Bits	Туре	Description
CPU0_DMEM_ AIU	0	rh	CPU0 DMEM Partial AutoInitialize of Cache Partition Underway This bit indicates whether an automatic data initialization has been triggered by a change of state of MEMTEST.MEMxEN or MEMxMAP but that the intialization sequence has not yet completed. O _B MBIST not running autoinitialize 1 _B MBIST running autoinitialize
RESx (x=5- 8,10-13,15- 18,20-23,25- 28)	х	r	Reserved. Not used in this product.
CPU0_DTAG_ AIU	1	rh	CPU0 DTAG MBIST AutoInitialize Underway This bit indicates whether an automatic data initialization has been triggered by a change of state of MEMTEST.MEMxEN or MEMxMAP but that the intialization sequence has not yet completed. O _B MBIST not running autoinitialize 1 _B MBIST running autoinitialize
CPU0_PMEM_ AIU	2	rh	CPU0 PMEM Partial AutoInitialize of Cache Partition Underway This bit indicates whether an automatic data initialization has been triggered by a change of state of MEMTEST.MEMxEN or MEMxMAP but that the initialization sequence has not yet completed. O _B MBIST not running autoinitialize 1 _B MBIST running autoinitialize

Field	Bits	Туре	Description
CPU0_PTAG_ AIU	3	rh	CPU0 PTAG MBIST AutoInitialize Underway This bit indicates whether an automatic data initialization has been triggered by a change of state of MEMTEST.MEMxEN or MEMxMAP but that the initialization sequence has not yet completed. O _B MBIST not running autoinitialize 1 _B MBIST running autoinitialize
R4	4	r	Reserved - Res Reserved. Not used in this product.
R9	9	r	Reserved - Res Reserved. Not used in this product.
R14	14	r	Reserved - Res Reserved. Not used in this product.
R19	19	r	Reserved - Res Reserved. Not used in this product.
R24	24	r	Reserved - Res Reserved. Not used in this product.
R29	31:29	r	Reserved - Res Reserved. Not used in this product.

MTU_N Memo		-	-			((0038 _H	+i*4)		Ap	plicati	on Res	et Valu	e: 000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•					R	19			•				
	1	I	1	1	1	1	1	r	1	1	1	1	1 1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	R9	1	1		R8		R5	1	R4	RES3	CPU0_ DMEM 1_AIU	ı	RO

Field	Bits	Туре	Description
RO	1:0	r	Reserved - Res
			Reserved. Not used in this product.
RESx (x=3)	х	r	Reserved
			Reserved. Not used in this product.
CPU0_DMEM1	2	rh	CPU0 DMEM1 Partial AutoInitialize of Cache Partition Underway
_AIU			0 _B SSH instance is disabled
			1_B SSH instance is enabled 1 .
R4	4	r	Reserved - Res
			Reserved. Not used in this product.
R5	7:5	r	Reserved - Res
			Reserved. Not used in this product.

Field	Bits	Туре	Description
R8	8	rh	Reserved - Res Reserved. Not used in this product.
R9	31:9	r	Reserved - Res Reserved. Not used in this product.

¹⁾ Please refer to separate section related to handling of the large DMEM on this device.

MTU_MEMSTATi (i=2) Application Reset Value: 0000 0000_H **Memory Status Register i** (0038_H+i*4) 31 30 29 28 26 24 22 21 20 19 18 17 16 27 25 **R18 R17 R13** 15 9 0 12 10 8 6 5 3 2 14 13 11 4 1 R12 R11 R10 R9 R8 R5 R4 R2 R0 **R13** rh rh rh rh rh

Field	Bits	Type	Description
R0	1:0	r	Reserved - Res
			Reserved. Not used in this product.
R2	3:2	r	Reserved - Res
			Reserved. Not used in this product.
R4	4	r	Reserved - Res
			Reserved. Not used in this product.
R5	7:5	r	Reserved - Res
			Reserved. Not used in this product.
R8	8	rh	Reserved - Res
			Reserved. Not used in this product.
R9	9	rh	Reserved - Res
			Reserved. Not used in this product.
R10	10	rh	Reserved - Res
			Reserved. Not used in this product.
R11	11	rh	Reserved - Res
			Reserved. Not used in this product.
R12	12	rh	Reserved - Res
			Reserved. Not used in this product.
R13	16:13	r	Reserved - Res
			Reserved. Not used in this product.
R17	17	r	Reserved - Res
			Reserved. Not used in this product.
R18	31:18	r	Reserved - Res
			Reserved. Not used in this product.

13.4.4 MEMDONE Implementation

Memory Test Done Status Register i

Each bit in one of the memory test done status registers MEMDONEx reflects the status of the MSTATUS.DONE bit in the corresponding SSH. See the implementation section for the implemented register bits.

MTU	MEMD	ONEi ((i=0)
-----	------	--------	-------

Memoi	ry Test	Done S	Status	Registe	eri		(0050 _H	+i*4)		Application Reset Value: FFFF FFFF						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
RES31	RES30	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RES15	RES14	RES13	RES12	RES11	RES10	RES9	RES8	RES7	RES6	RES5	CPU0_ DLMU _STBY _DON	PTAG_ DONE	PMEM		DMEM _DON _E	
r	r	r	r	r	r	r	r	r	r	r	rh	rh	rh	rh	rh	

Field	Bits	Туре	Description
CPU0_DMEM_ DONE	0	rh	CPU0 DMEM Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
RESz (z=5-31)	z	r	Reserved Reserved. Not used in this product.
CPU0_DTAG_ DONE	1	rh	CPU0 DTAG Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
CPU0_PMEM_ DONE	2	rh	CPU0 PMEM Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
CPU0_PTAG_ DONE	3	rh	CPU0 PTAG Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
CPU0_DLMU_ STBY_DONE	4	rh	CPU0 STANDBY DLMU Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1

MTU_	MEMDON	Ei (i=1)
------	--------	----------

Memoi	ry Test	Done S	Status	Registe	eri	(0050 _H	+i*4)		Application Reset Value: FFFF FFFF,						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	MCAN 10_DO NE	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16	
rh	rh	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RES15	RES14	RES13	RES12	RES11	RES10	SADM A_DO NE	R8	RES7	RES6	RES5	RES4	RES3	CPU0_ DMEM 1_DO NE	RES1	RES0	
r	r	r	r	r	r	rh	rh	r	r	r	r	r	rh	r	r	

Field	Bits	Туре	Description
RESz (z=0-1,3-	z	r	Reserved
7,10-29)			Reserved. Not used in this product.
CPU0_DMEM1	2	rh	CPU0 DMEM1 Test Done Status
_DONE			0 _B SSH instance is disabled
			1 _B SSH instance is enabled ¹⁾ .
R8	8	rh	Reserved - Res
			Reserved. Not used in this product.
SADMA_DONE	9	rh	Safety DMA Test Done Status
			0 _B SSH MSTATUS.DONE = 0
			1 _B SSH MSTATUS.DONE = 1
MCAN10_DON	30	rh	MCAN10 memory Test Done Status
E			0 _B SSH MSTATUS.DONE = 0
			1 _B SSH MSTATUS.DONE = 1
MCAN20_DON	31	rh	MCAN20 memory Test Done Status
E			0 _B SSH MSTATUS.DONE = 0
			1 _B SSH MSTATUS.DONE = 1

¹⁾ Please refer to separate section related to handling of the large DMEM on this device.

MTU_MEMDONEi (i=2)

Memory Test Done Status Register i							(0050 _H -	+i*4)		Application Reset Value: FFFF FFFF						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
RES31	RES30	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RES15	SCR_R AMINT _DON E	RAM_	R12	R11	R10	R9	R8	RES7	ERAY_ MBF0_ DONE	RES5	ERAY_ TBF_I BF0_D ONE	RES3	ERAY_ OBFO_ DONE	RES1	RES0	
r	rh	rh	rh	rh	rh	rh	rh	r	rh	r	rh	r	rh	r	r	

Field	Bits	Туре	Description
RESz (z=0-	Z	r	Reserved
1,3,5,7,15-31)			Reserved. Not used in this product.
ERAY_OBF0_D ONE	2	rh	ERAY OBFO Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
ERAY_TBF_IB F0_DONE	4	rh	ERAY TBF IBF0 memory Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
ERAY_MBF0_ DONE	6	rh	ERAY MBF0 memory Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
R8	8	rh	Reserved - Res Reserved. Not used in this product.
R9	9	rh	Reserved - Res Reserved. Not used in this product.
R10	10	rh	Reserved - Res Reserved. Not used in this product.
R11	11	rh	Reserved - Res Reserved. Not used in this product.
R12	12	rh	Reserved - Res Reserved. Not used in this product.
SCR_XRAM_D ONE	13	rh	SCR XRAM Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1
SCR_RAMINT_ DONE	14	rh	SCR Internal RAM Test Done Status 0 _B SSH MSTATUS.DONE = 0 1 _B SSH MSTATUS.DONE = 1

13.4.5 MEMFDA Implementation

Memory Test FDA Status Register i

Each bit in one of the memory test done status registers MEMFDAx reflects the status of the MSTATUS.FDA bit in the corresponding SSH. See the implementation section for the implemented register bits.

MTU MEMFDAi (i	=0)
----------------	-----

Memoi	ry Test	FDA St	atus R	egister	· i	(0060 _H	+i*4)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RES31	RES30	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RES15	RES14	RES13	RES12	RES11	RES10	RES9	RES8	RES7	RES6	RES5	CPU0_ DLMU _STBY _FDA	PTAG_ FDA			DMEM _FDA
r	r	r	r	r	r	r	r	r	r	r	rh	rh	rh	rh	rh

Field	Bits	Туре	Description
CPU0_DMEM_ FDA	0	rh	CPU0 DMEM Test FDA Status 0 _B SSH MSTATUS.FDA = 0 1 _B SSH MSTATUS.FDA = 1
RESz (z=5-31)	Z	r	Reserved Reserved. Not used in this product.
CPU0_DTAG_ FDA	1	rh	CPU0 DTAG Test FDA Status 0 _B SSH MSTATUS.FDA = 0 1 _B SSH MSTATUS.FDA = 1
CPU0_PMEM_ FDA	2	rh	CPU0 PMEM Test FDA Status 0 _B SSH MSTATUS.FDA = 0 1 _B SSH MSTATUS.FDA = 1
CPU0_PTAG_F DA	3	rh	CPU0 PTAG Test FDA Status 0 _B SSH MSTATUS.FDA = 0 1 _B SSH MSTATUS.FDA = 1
CPU0_DLMU_ STBY_FDA	4	rh	CPU0 STANDBY DLMU Test FDA Status 0_B SSH MSTATUS.FDA = 0 1_B SSH MSTATUS.FDA = 1

MTU_MEMFDAi (i=1)

Memoi	ry Test	FDA St	atus R	egister	i	(0060 _H -	+i*4)		Ap	plicatio	on Rese	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MCAN 20_FD A	MCAN 10_FD A	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16
rh	rh	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RES15	RES14	RES13	RES12	RES11	RES10	SADM A_FDA	R8	RES7	RES6	RES5	RES4	RES3	CPU0_ DMEM 1_FDA	RES1	RES0
r	r	r	r	r	r	rh	rh	r	r	r	r	r	rh	r	r

Field	Bits	Туре	Description
RESz (z=0-1,3-	Z	r	Reserved
7,10-29)			Reserved. Not used in this product.
CPU0_DMEM1	2	rh	CPU0 DMEM1 Test FDA Status
FDA			$0{\rm B}$ SSH MSTATUS.FDA = 0
			1_{B} SSH MSTATUS.FDA = 1
R8	8	rh	Reserved - Res
			Reserved. Not used in this product.
SADMA_FDA	9	rh	Safety DMA Test FDA Status
			O _B SSH MSTATUS.FDA = 0
			1 _B SSH MSTATUS.FDA = 1
MCAN10_FDA	30	rh	MCAN10 memory Test FDA Status
			$0_{\rm B}$ SSH MSTATUS.FDA = 0
			1_{B} SSH MSTATUS.FDA = 1
MCAN20_FDA	31	rh	MCAN20 memory Test FDA Status
			$0_{\rm B}$ SSH MSTATUS.FDA = 0
			1 _B SSH MSTATUS.FDA = 1

MTU MEMFDAi (i=2)

Memoi		• •		egisteı	ri		(0060 _H	+i*4)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RES31	RES30	RES29	RES28	RES27	RES26	RES25	RES24	RES23	RES22	RES21	RES20	RES19	RES18	RES17	RES16
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	SCR_X RAM_F DA		R11	R10	R9	R8	RES7	ERAY_ MBF0_ FDA	RES5	ERAY_ TBF_I BF0_F DA	RES3	ERAY_ OBF0_ FDA	RES1	RES0
r	rh	rh	rh	rh	rh	rh	rh	r	rh	r	rh	r	rh	r	r

Field	Bits	Туре	Description
RESz (z=0-	Z	r	Reserved
1,3,5,7,15-31)			Reserved. Not used in this product.
ERAY_OBF0_F	2	rh	ERAY OBFO Test FDA Status
DA			0_B SSH MSTATUS.FDA = 0
			1 _B SSH MSTATUS.FDA = 1
ERAY_TBF_IB	4	rh	ERAY TBF IBF0 memory Test FDA Status
F0_FDA			O _B SSH MSTATUS.FDA = 0
			1 _B SSH MSTATUS.FDA = 1
ERAY_MBF0_F	6	rh	ERAY MBF0 memory Test FDA Status
DA			0_B SSH MSTATUS.FDA = 0
			1 _B SSH MSTATUS.FDA = 1

AURIX[™] TC33x/TC32x

Memory Test Unit (MTU)

Field	Bits	Туре	Description
R8	8	rh	Reserved - Res Reserved. Not used in this product.
R9	9	rh	Reserved - Res Reserved. Not used in this product.
R10	10	rh	Reserved - Res Reserved. Not used in this product.
R11	11	rh	Reserved - Res Reserved. Not used in this product.
R12	12	rh	Reserved - Res Reserved. Not used in this product.
SCR_XRAM_F DA	13	rh	SCR XRAM Test FDA Status 0 _B SSH MSTATUS.FDA = 0 1 _B SSH MSTATUS.FDA = 1
SCR_RAMINT_ FDA	14	rh	SCR Internal RAM Test FDA Status 0 _B SSH MSTATUS.FDA = 0 1 _B SSH MSTATUS.FDA = 1

13.5 SSH Instances

The system SRAMs do not all have the same configuration. **Table 49 "SSH instances" on Page 18** shows the instance-specific configurations of the SRAM Support Hardware.

The ECC values for all SRAMs are computed only out of the data information*.

The base address of an SSH instance MCx can be calculated from the MC_BASE (defined in the platform chapter) as: Base Address of SSH instance x (MCx) = MC_BASE + x*0x100

Table 49 SSH instances

(MCx) x =	Module	Error Addr Buffer (ETRR) Depth	ECC type	ECC granularity	Mux Factor
0	CPU0_DMEM	5	SECDED	2	16
1	CPU0_DTAG	5	SECDED	2	4
2	CPU0_PMEM	5	SECDED	2	8
3	CPU0_PTAG	5	DED	2	4
4	CPU0_DLMU_STBY	5	SECDED	2	8
5	Reserved				
6	Reserved				
7	Reserved				
8	Reserved				
9	Reserved				
10	Reserved				
11	Reserved				
12	Reserved				
13	Reserved				
14	Reserved				
15	Reserved				
16	Reserved				
17	Reserved				
18	Reserved				
19	Reserved				
20	Reserved				
21	Reserved				
22	Reserved				
23	Reserved				
24	Reserved				
25	Reserved				
26	Reserved				
27	Reserved				
28	Reserved				
29	Reserved				

AURIX[™] TC33x/TC32x

Memory Test Unit (MTU)

Table 49 SSH instances (cont'd)

(MCx) x =	Module	Error Addr Buffer (ETRR) Depth	ECC type	ECC granularity	Mux Factor
30	Reserved				
31	Reserved				
32	Reserved				
33	Reserved				
34	CPU0_DMEM1	5	SECDED	2	16
35	Reserved				
36-37	Reserved				
38	Reserved				
39	Reserved				
41	SADMA	5	SECDED	1	4
42	Reserved				
43	Reserved				
44	Reserved				
45	Reserved				
46	Reserved				
47	Reserved				
48	Reserved				
49	Reserved				
50	Reserved				
51	Reserved				
52	Reserved				
53	Reserved				
54	Reserved				
55	Reserved				
56	Reserved				
57	Reserved				
58	Reserved				
59	Reserved				
60	Reserved				
61	Reserved				
62	MCAN10	5	SECDED	1	16
63	MCAN20	5	SECDED	1	16
64	Reserved				
65	Reserved				
66	ERAY_OBF0	5	SECDED	1	4
67	Reserved				
68	ERAY_TBF_IBF0	5	SECDED	1	4

AURIX[™] TC33x/TC32x

Memory Test Unit (MTU)

Table 49 SSH instances (cont'd)

(MCx) x =	Module	Error Addr Buffer (ETRR) Depth	ECC type	ECC granularity	Mux Factor
69	Reserved				
70	ERAY_MBF0	5	SECDED	1	4
71	Reserved				
77	SCR_XRAM	5	SECDED	2	8
78	SCR_RAMINT	5	SECDED	1	4
79	Reserved				
80	Reserved				
81	Reserved				
82	Reserved				
83	Reserved				
84	Reserved				
85	Reserved				
86- 87	Reserved				
88	Reserved				
89	Reserved				
90	Reserved				
91	Reserved				
92	Reserved				
93	Reserved				
94	Reserved				
95	Reserved				

13.5.1 Ganging for SRAM test and initialization

Whenever an MBIST test or SRAM initialization is started via the MTU/SSH, there is a certain jump in the current consumption, due to the parallel accesses to the SRAM cells during the test or initialization. This current jump is different for the different SRAMs in the product, and depends on the size of the SRAM, the clock frequency e.t.c.

If too many SRAMs are tested or initialized in parallel, it may result in a significant current jump, which may put the device outside of the specified operating conditions. On the other hand, in order to reduce the overall test and/or initialization time, it may be imperative for the application to perform the test or initialization of many SRAMs in parallel.

In order to achieve this trade-off between current jump and test/initialization time - it is advised to partition the available SRAMs into different "Gangs". This is referred to as Ganging. The SRAMs in each Gang are all initialized/tested in parallel - while the Gangs themselves are executed in sequence, one after the other. This ensures that the current jump never exceeds the allowed limits, while at the same time the overall test time is minimized.

Gangs 0-16 are defined for the platform. Depending on the device and the number of implemented SRAMs, the number of gangs needed may be less. The numbering of the gangs is not important and does not signify any order

In the below ganging tables, a ganging configuration for this product is shown. This assumes a 4-march element (4N) non-destructive test (r,w^*,r^*,w) on a zero-data background (i.e. the SRAM is cleared with ECC-correct zero data). The same gangs may be used for SRAM initialization.

The provided ganging example is ensured to satisfy the specified limitations in current jumps of this device, while at the same time optimizing the overall test time. All implemented SRAMs are considered here. If certain SRAMs are not of interest to a particular application, then the gangs may be modified appropriately.

Table 50 GANG-0

MCx(x=)	Module / SRAM
00	CPU0_DMEM
02	CPU0_PMEM
04	CPU0_DLMU_STBY
34	CPU0_DMEM1
62	MCAN10
63	MCAN20
70	ERAY_MBF0
77	SCR_XRAM
78	SCR_RAMINT

Table 51 GANG-1

MCx(x=)	Module / SRAM
01	CPU0_DTAG
03	CPU0_PTAG
41	SADMA
66	ERAY_OBF0
68	ERAY_TBF_IBF0

13.6 Connectivity

Table 52 Connections of MTU

Interface Signals	conn	ects	Description
MTU:CPU0DCMAP	to	cpu_pfi_pfrwb_0:tc162p _dcache_map	CPU dcache mapped indicator per cpu
MTU:CPU0PCMAP	to	cpu_pfi_pfrwb_0:tc162p _pcache_map	CPU pcache mapped indicator per cpu
MTU:dmu_no_ram_init	from	DMU:MTU_NO_RAMIN	Disable RAM auto-initialization
MTU:scu_hsm_dbg	from	SCU:scu_hsm_dbg	HSM debug enable from SCU
MTU:sleep_n	from	SCU:scu_syst_sleep_n	Sleep request
MTU:DONE_INT	to	INT:mtu.DONE_INT	MTU Done Service Request
MTU:tcu_hsm_dbg_analysis_e n	from	TCU:hsm_debug_mode	HSM debug request from TCU

13.7 Revision History

Table 53 Revision History

Reference	Change to Previous Version	Comment
V7.4.7		
	Initial version for TC33X.	
V7.4.8		
Page 22	Revision History entries up to V7.4.7 removed.	
Page 7	MEMMAP Reserved (not implemented) bits changed to "read".	
	Settings for bitfield CPU1_DMEM1 corrected in MEMTEST, MEMSTAT, MEMDONE and MEMFDA registers.	
Page 21	Ganging information: Typo for CPU0_DMEM1 corrected.	
Page 3,	"SADMA" changed to "Safety DMA" in short description of MEMTEST1/9,	
Page 12,	MEMDONE1/9 and MEMFDA1/9 bit fields.	
Page 14		
V7.4.9		
Page 21	Unhide for external audience: MCAN10.	
Page 21	Unhide for external audience: CPU0_PTAG, CPU0_DTAG.	
V7.4.10		
_	No functional changes.	
V7.4.11		-
_	No functional changes.	
V7.4.12		ı
_	No functional changes.	
V7.4.13		ı
Page 9	Wrongly mentioned bit field in MTU_MEMSTATi (i=2) fixed.	

14 General Purpose I/O Ports and Peripheral I/O Lines (Ports)

This chapter supplements the family documentation with device specific information for TC33x/TC32x.

14.1 TC33x/TC32x Specific IP Configuration

The Ports configuration (which Port modules are implemented, their width and functionality) is represented by the device specific register set shown in this chapter.

14.2 TC33x/TC32x Specific Register Set

Table 54 Register Address Space - Pn

Module	Base Address	End Address	Note
P00	F003A000 _H	F003A0FF _H	SPB bus slave interface
P02	F003A200 _H	F003A2FF _H	SPB bus slave interface
P10	F003AA00 _H	F003AAFF _H	SPB bus slave interface
P11	F003AB00 _H	F003ABFF _H	SPB bus slave interface
P13	F003AD00 _H	F003ADFF _H	SPB bus slave interface
P14	F003AE00 _H	F003AEFF _H	SPB bus slave interface
P15	F003AF00 _H	F003AFFF _H	SPB bus slave interface
P20	F003B400 _H	F003B4FF _H	SPB bus slave interface
P21	F003B500 _H	F003B5FF _H	SPB bus slave interface
P22	F003B600 _H	F003B6FF _H	SPB bus slave interface
P23	F003B700 _H	F003B7FF _H	SPB bus slave interface
P32	F003C000 _H	F003C0FF _H	SPB bus slave interface
P33	F003C100 _H	F003C1FF _H	SPB bus slave interface
P34	F003C200 _H	F003C2FF _H	SPB bus slave interface
P40	F003C800 _H	F003C8FF _H	SPB bus slave interface

Register Overview Tables of Pn

Table 55 Register Overview - P00 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P00_OUT	Port 00 Output Register	000 _H	U,SV	U,SV,P	Application Reset	25
P00_OMR	Port 00 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	28
P00_ID	Port 00 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P00_IOCR0	Port 00 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34

Table 55 Register Overview - P00 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Numbe
P00_IOCR4	Port 00 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P00_IOCR8	Port 00 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
P00_IOCR12	Port 00 Input/Output Control Register 12	01C _H	U,SV	U,SV,P	See page 43	43
	Reserved (004 _H Byte)	020 _H	BE	BE		
P00_IN	Port 00 Input Register	024 _H	U,SV	BE	Application Reset	45
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P00_PDR0	Port 00 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P00_PDR1	Port 00 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 53	53
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P00_ESR	Port 00 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	55
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P00_PDISC	Port 00 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 62	62
P00_PCSR	Port 00 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	67
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P00_OMSR0	Port 00 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P00_OMSR4	Port 00 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P00_OMSR8	Port 00 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P00_OMSR12	Port 00 Output Modification Set Register 12	07C _H	U,SV	U,SV,P	Application Reset	80
P00_OMCR0	Port 00 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P00_OMCR4	Port 00 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P00_OMCR8	Port 00 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86

V2.0.0

2021-02

Table 55 Register Overview - P00 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P00_OMCR12	Port 00 Output Modification Clear Register 12	08C _H	U,SV	U,SV,P	Application Reset	87
P00_OMSR	Port 00 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	88
P00_OMCR	Port 00 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	91
	Reserved (004 _H Byte) (x=0-1)					
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P00_ACCEN1	Port 00 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P00_ACCEN0	Port 00 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 56 Register Overview - P02 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P02_OUT	Port 02 Output Register	000 _H	U,SV	U,SV,P	Application Reset	26
P02_OMR	Port 02 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	30
P02_ID	Port 02 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P02_IOCR0	Port 02 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P02_IOCR4	Port 02 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P02_IOCR8	Port 02 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
	Reserved (004 _H Byte)	020 _H	BE	BE		
P02_IN	Port 02 Input Register	024 _H	U,SV	BE	Application Reset	46
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P02_PDR0	Port 02 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P02_PDR1	Port 02 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 54	54

AURIX™ TC33x/TC32x

Table 56 Register Overview - P02 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P02_ESR	Port 02 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	57
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P02_PDISC	Port 02 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 64	64
P02_PCSR	Port 02 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	69
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P02_OMSR0	Port 02 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P02_OMSR4	Port 02 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P02_OMSR8	Port 02 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P02_OMCR0	Port 02 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P02_OMCR4	Port 02 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P02_OMCR8	Port 02 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P02_OMSR	Port 02 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	89
P02_OMCR	Port 02 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	93
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P02_ACCEN1	Port 02 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P02_ACCEN0	Port 02 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 57 Register Overview - P10 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
P10_OUT	Port 10 Output Register	000 _H	U,SV	U,SV,P	Application Reset	26
P10_OMR	Port 10 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	30
P10_ID	Port 10 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	$00C_{H}$	BE	BE		
P10_IOCR0	Port 10 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P10_IOCR4	Port 10 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P10_IOCR8	Port 10 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
	Reserved (004 _H Byte)	020 _H	BE	BE		
P10_IN	Port 10 Input Register	024 _H	U,SV	BE	Application Reset	46
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P10_PDR0	Port 10 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P10_PDR1	Port 10 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 54	54
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P10_ESR	Port 10 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	57
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P10_PDISC	Port 10 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 64	64
P10_PCSR	Port 10 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	69
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P10_OMSR0	Port 10 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P10_OMSR4	Port 10 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P10_OMSR8	Port 10 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78

Table 57 Register Overview - P10 (ascending Offset Address) (cont'd)

Short Name	Clear Register 0 Port 10 Output Modification Clear Register 4 Port 10 Output Modification Clear Register 8 Port 10 Output Modification Clear Register 8 Port 10 Output Modification Set Register Port 10 Output Modification Set Register Reset Reset Reset Reset Reset Reset	Offset	Access Mode		Reset	Page
			Number			
P10_OMCR0	·	080 _H	U,SV	U,SV,P	Application Reset	81
P10_OMCR4	·	084 _H	U,SV	U,SV,P	Application Reset	83
P10_OMCR8	·	088 _H	U,SV	U,SV,P	Application Reset	86
P10_OMSR	·	090 _H	U,SV	U,SV,P	Application Reset	89
P10_OMCR	•	094 _H	U,SV	U,SV,P	Application Reset	93
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P10_ACCEN1	Port 10 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P10_ACCEN0	Port 10 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 58 Register Overview - P11 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P11_OUT	Port 11 Output Register	000 _H	U,SV	U,SV,P	Application Reset	25
P11_OMR	Port 11 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	28
P11_ID	Port 11 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P11_IOCR0	Port 11 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P11_IOCR4	Port 11 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P11_IOCR8	Port 11 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
P11_IOCR12	Port 11 Input/Output Control Register 12	01C _H	U,SV	U,SV,P	See page 43	43
	Reserved (004 _H Byte)	020 _H	BE	BE		
P11_IN	Port 11 Input Register	024 _H	U,SV	BE	Application Reset	45

Table 58 Register Overview - P11 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Numbe
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P11_PDR0	Port 11 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P11_PDR1	Port 11 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 53	53
	Reserved (004 _H Byte) (x=0-1)	048 _H +x* 4	BE	BE		
P11_ESR	Port 11 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	55
	Reserved (004 _H Byte) (x=0-2)	054 _H +x* 4	BE	BE		
P11_PDISC	Port 11 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 62	62
P11_PCSR	Port 11 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	67
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P11_OMSR0	Port 11 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P11_OMSR4	Port 11 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P11_OMSR8	Port 11 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P11_OMSR12	Port 11 Output Modification Set Register 12	07C _H	U,SV	U,SV,P	Application Reset	80
P11_OMCR0	Port 11 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P11_OMCR4	Port 11 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P11_OMCR8	Port 11 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P11_OMCR12	Port 11 Output Modification Clear Register 12	08C _H	U,SV	U,SV,P	Application Reset	87
P11_OMSR	Port 11 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	88
P11_OMCR	Port 11 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	91
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		

Table 58 Register Overview - P11 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P11_ACCEN1	Port 11 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P11_ACCEN0	Port 11 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 59 Register Overview - P13 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P13_OUT	Port 13 Output Register	000 _H	U,SV	U,SV,P	Application Reset	27
P13_OMR	Port 13 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	31
P13_ID	Port 13 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P13_IOCR0	Port 13 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
	Reserved (004 _H Byte)	020 _H	BE	BE		
P13_IN	Port 13 Input Register	024 _H	U,SV	BE	Application Reset	46
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P13_PDR0	Port 13 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 52	52
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P13_ESR	Port 13 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	58
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P13_PDISC	Port 13 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 65	65
P13_PCSR	Port 13 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	70
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P13_OMSR0	Port 13 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73

Table 59 Register Overview - P13 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
P13_OMCR0	Port 13 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P13_OMSR	Port 13 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	90
P13_OMCR	Port 13 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	94
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P13_ACCEN1	Port 13 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P13_ACCEN0	Port 13 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 60 Register Overview - P14 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P14_OUT	Port 14 Output Register	000 _H	U,SV	U,SV,P	Application Reset	26
P14_OMR	Port 14 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	30
P14_ID	Port 14 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P14_IOCR0	Port 14 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P14_IOCR4	Port 14 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P14_IOCR8	Port 14 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
	Reserved (004 _H Byte)	020 _H	BE	BE		
P14_IN	Port 14 Input Register	024 _H	U,SV	BE	Application Reset	46
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P14_PDR0	Port 14 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P14_PDR1	Port 14 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 54	54

Table 60 Register Overview - P14 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P14_ESR	Port 14 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	57
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P14_PDISC	Port 14 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 64	64
P14_PCSR	Port 14 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	69
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P14_OMSR0	Port 14 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P14_OMSR4	Port 14 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P14_OMSR8	Port 14 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P14_OMCR0	Port 14 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P14_OMCR4	Port 14 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P14_OMCR8	Port 14 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P14_OMSR	Port 14 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	89
P14_OMCR	Port 14 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	93
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P14_ACCEN1	Port 14 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P14_ACCEN0	Port 14 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 61 Register Overview - P15 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Numbe
P15_OUT	Port 15 Output Register	000 _H	U,SV	U,SV,P	Application Reset	26
P15_OMR	Port 15 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	30
P15_ID	Port 15 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	$00C_{H}$	BE	BE		
P15_IOCR0	Port 15 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P15_IOCR4	Port 15 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P15_IOCR8	Port 15 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
	Reserved (004 _H Byte)	020 _H	BE	BE		
P15_IN	Port 15 Input Register	024 _H	U,SV	BE	Application Reset	46
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P15_PDR0	Port 15 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P15_PDR1	Port 15 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 54	54
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P15_ESR	Port 15 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	57
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P15_PDISC	Port 15 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 64	64
P15_PCSR	Port 15 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	69
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P15_OMSR0	Port 15 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P15_OMSR4	Port 15 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P15_OMSR8	Port 15 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78

Table 61 Register Overview - P15 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
P15_OMCR0	Port 15 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P15_OMCR4	Port 15 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P15_OMCR8	Port 15 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P15_OMSR	Port 15 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	89
P15_OMCR	Port 15 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	93
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P15_ACCEN1	Port 15 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P15_ACCEN0	Port 15 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 62 Register Overview - P20 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P20_OUT	Port 20 Output Register	000 _H	U,SV	U,SV,P	Application Reset	25
P20_OMR	Port 20 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	28
P20_ID	Port 20 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P20_IOCR0	Port 20 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P20_IOCR4	Port 20 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
P20_IOCR8	Port 20 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
P20_IOCR12	Port 20 Input/Output Control Register 12	01C _H	U,SV	U,SV,P	See page 43	43
	Reserved (004 _H Byte)	020 _H	BE	BE		
P20_IN	Port 20 Input Register	024 _H	U,SV	BE	Application Reset	45

Table 62 Register Overview - P20 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Numbe
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P20_PDR0	Port 20 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
P20_PDR1	Port 20 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 53	53
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P20_ESR	Port 20 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	55
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P20_PDISC	Port 20 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 62	62
P20_PCSR	Port 20 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	67
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P20_OMSR0	Port 20 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P20_OMSR4	Port 20 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P20_OMSR8	Port 20 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P20_OMSR12	Port 20 Output Modification Set Register 12	07C _H	U,SV	U,SV,P	Application Reset	80
P20_OMCR0	Port 20 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P20_OMCR4	Port 20 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P20_OMCR8	Port 20 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P20_OMCR12	Port 20 Output Modification Clear Register 12	08C _H	U,SV	U,SV,P	Application Reset	87
P20_OMSR	Port 20 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	88
P20_OMCR	Port 20 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	91
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		

Table 62 Register Overview - P20 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P20_ACCEN1	Port 20 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P20_ACCEN0	Port 20 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 63 Register Overview - P21 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P21_OUT	Port 21 Output Register	000 _H	U,SV	U,SV,P	Application Reset	28
P21_OMR	Port 21 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	32
P21_ID	Port 21 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P21_IOCR0	Port 21 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P21_IOCR4	Port 21 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
	Reserved (004 _H Byte)	020 _H	BE	BE		
P21_IN	Port 21 Input Register	024 _H	U,SV	BE	Application Reset	47
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P21_PDR0	Port 21 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P21_ESR	Port 21 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	59
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P21_PDISC	Port 21 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 66	66
P21_PCSR	Port 21 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	70
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		

Table 63 Register Overview - P21 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
P21_OMSR0	Port 21 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P21_OMSR4	Port 21 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P21_OMCR0	Port 21 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P21_OMCR4	Port 21 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P21_OMSR	Port 21 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	91
P21_OMCR	Port 21 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	95
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
P21_LPCRx	Port 21 LVDS Pad Control Register x	0A0 _H +x*	U,SV	SV,E,P	See page 95	95
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P21_ACCEN1	Port 21 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P21_ACCEN0	Port 21 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 64 Register Overview - P22 (ascending Offset Address)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
P22_OUT	Port 22 Output Register	000 _H	U,SV	U,SV,P	Application Reset	28
P22_OMR	Port 22 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	32
P22_ID	Port 22 Identification Register	008 _H	U,SV	BE	Application Reset	33
	Reserved (004 _H Byte)	00C _H	BE	BE		
P22_IOCR0	Port 22 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 34	34
P22_IOCR4	Port 22 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
	Reserved (004 _H Byte)	020 _H	BE	BE		
P22_IN	Port 22 Input Register	024 _H	U,SV	BE	Application Reset	47

Table 64 Register Overview - P22 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P22_PDR0	Port 22 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P22_ESR	Port 22 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	60
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P22_PDISC	Port 22 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 66	66
P22_PCSR	Port 22 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	70
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P22_OMSR0	Port 22 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	73
P22_OMSR4	Port 22 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P22_OMCR0	Port 22 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	81
P22_OMCR4	Port 22 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P22_OMSR	Port 22 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	91
P22_OMCR	Port 22 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	95
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P22_ACCEN1	Port 22 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	97
P22_ACCEN0	Port 22 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	99

Table 65 Register Overview - P23 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Numbe
P23_OUT	Port 23 Output Register	000 _H	U,SV	U,SV,P	Application Reset	28
P23_OMR	Port 23 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	32
P23_ID	Port 23 Identification Register	008 _H	U,SV	BE	Application Reset	34
	Reserved (004 _H Byte)	00C _H	BE	BE		
P23_IOCR0	Port 23 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 38	38
P23_IOCR4	Port 23 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 39	39
	Reserved (004 _H Byte)	020 _H	BE	BE		
P23_IN	Port 23 Input Register	024 _H	U,SV	BE	Application Reset	47
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P23_PDR0	Port 23 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 48	48
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P23_ESR	Port 23 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	60
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P23_PDISC	Port 23 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 66	66
P23_PCSR	Port 23 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	70
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P23_OMSR0	Port 23 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	75
P23_OMSR4	Port 23 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	76
P23_OMCR0	Port 23 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	82
P23_OMCR4	Port 23 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	83
P23_OMSR	Port 23 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	91

Table 65 Register Overview - P23 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page Number
		Address	Read	Write		
P23_OMCR	Port 23 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	95
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P23_ACCEN1	Port 23 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	98
P23_ACCEN0	Port 23 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	101

Table 66 Register Overview - P32 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
P32_OUT	Port 32 Output Register	000 _H	U,SV	U,SV,P	Application Reset	28
P32_OMR	Port 32 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	32
P32_ID	Port 32 Identification Register	008 _H	U,SV	BE	Application Reset	34
	Reserved (004 _H Byte)	00C _H	BE	BE		
P32_IOCR0	Port 32 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 38	38
P32_IOCR4	Port 32 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 41	41
	Reserved (004 _H Byte)	020 _H	BE	BE		
P32_IN	Port 32 Input Register	024 _H	U,SV	BE	Application Reset	47
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P32_PDR0	Port 32 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 51	51
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P32_ESR	Port 32 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	60
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P32_PDISC	Port 32 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 66	66

Table 66 Register Overview - P32 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
P32_PCSR	Port 32 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	70
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P32_OMSR0	Port 32 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	75
P32_OMSR4	Port 32 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	77
P32_OMCR0	Port 32 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	82
P32_OMCR4	Port 32 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	85
P32_OMSR	Port 32 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	91
P32_OMCR	Port 32 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	95
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P32_ACCEN1	Port 32 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	98
P32_ACCEN0	Port 32 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	101

Table 67 Register Overview - P33 (ascending Offset Address)

Short Name	Long Name	Offset Address	Access	Mode	Reset	Page Number
			Read	Write		
P33_OUT	Port 33 Output Register	000 _H	U,SV	U,SV,P	Application Reset	25
P33_OMR	Port 33 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	28
P33_ID	Port 33 Identification Register	008 _H	U,SV	BE	Application Reset	34
	Reserved (004 _H Byte)	00C _H	BE	BE		
P33_IOCR0	Port 33 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 38	38
P33_IOCR4	Port 33 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 41	41

Table 67 Register Overview - P33 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
P33_IOCR8	Port 33 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
P33_IOCR12	Port 33 Input/Output Control Register 12	01C _H	U,SV	U,SV,P	See page 43	43
	Reserved (004 _H Byte)	020 _H	BE	BE		
P33_IN	Port 33 Input Register	024 _H	U,SV	BE	Application Reset	45
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P33_PDR0	Port 33 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 51	51
P33_PDR1	Port 33 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 53	53
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P33_ESR	Port 33 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	61
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P33_PDISC	Port 33 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 62	62
P33_PCSR	Port 33 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	71
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P33_OMSR0	Port 33 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	75
P33_OMSR4	Port 33 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	77
P33_OMSR8	Port 33 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P33_OMSR12	Port 33 Output Modification Set Register 12	07C _H	U,SV	U,SV,P	Application Reset	80
P33_OMCR0	Port 33 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	82
P33_OMCR4	Port 33 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	85
P33_OMCR8	Port 33 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P33_OMCR12	Port 33 Output Modification Clear Register 12	08C _H	U,SV	U,SV,P	Application Reset	87

V2.0.0

Register Overview - P33 (ascending Offset Address) (cont'd) Table 67

Short Name	Long Name	Offset Address	Access	Mode	Reset	Page Number
			Read	Write		
P33_OMSR	Port 33 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	88
P33_OMCR	Port 33 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	91
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P33_ACCEN1	Port 33 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	98
P33_ACCEN0	Port 33 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	101

Register Overview - P34 (ascending Offset Address) Table 68

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
P34_OUT	Port 34 Output Register	000 _H	U,SV	U,SV,P	Application Reset	27
P34_OMR	Port 34 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	31
P34_ID	Port 34 Identification Register	008 _H	U,SV	BE	Application Reset	34
	Reserved (004 _H Byte)	00C _H	BE	BE		
P34_IOCR0	Port 34 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 38	38
	Reserved (004 _H Byte)	020 _H	BE	BE		
P34_IN	Port 34 Input Register	024 _H	U,SV	BE	Application Reset	46
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P34_PDR0	Port 34 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 52	52
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P34_ESR	Port 34 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	58
	Reserved (004 _H Byte) (x=0-2)	054 _H +x*	BE	BE		
P34_PDISC	Port 34 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 65	65

Table 68 Register Overview - P34 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
P34_PCSR	Port 34 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	72
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P34_OMSR0	Port 34 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	75
P34_OMCR0	Port 34 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	82
P34_OMSR	Port 34 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	90
P34_OMCR	Port 34 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	94
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		
P34_ACCEN1	Port 34 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	98
P34_ACCEN0	Port 34 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	101

Table 69 Register Overview - P40 (ascending Offset Address)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
P40_OUT	Port 40 Output Register	000 _H	U,SV	U,SV,P	Application Reset	26
P40_OMR	Port 40 Output Modification Register	004 _H	U,SV	U,SV,P	Application Reset	30
P40_ID	Port 40 Identification Register	008 _H	U,SV	BE	Application Reset	34
	Reserved (004 _H Byte)	00C _H	BE	BE		
P40_IOCR0	Port 40 Input/Output Control Register 0	010 _H	U,SV	U,SV,P	See page 38	38
P40_IOCR4	Port 40 Input/Output Control Register 4	014 _H	U,SV	U,SV,P	See page 41	41
P40_IOCR8	Port 40 Input/Output Control Register 8	018 _H	U,SV	U,SV,P	See page 42	42
	Reserved (004 _H Byte)	020 _H	BE	BE		
P40_IN	Port 40 Input Register	024 _H	U,SV	BE	Application Reset	46

Table 69 Register Overview - P40 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
	Reserved (004 _H Byte) (x=0-5)	028 _H +x*	BE	BE		
P40_PDR0	Port 40 Pad Driver Mode Register 0	040 _H	U,SV	SV,E,P	See page 51	51
P40_PDR1	Port 40 Pad Driver Mode Register 1	044 _H	U,SV	SV,E,P	See page 54	54
	Reserved (004 _H Byte) (x=0-1)	048 _H +x*	BE	BE		
P40_ESR	Port 40 Emergency Stop Register	050 _H	U,SV	SV,E,P	Application Reset	61
	Reserved (004 _H Byte) (x=0-2)	054 _H +x* 4	BE	BE		
P40_PDISC	Port 40 Pin Function Decision Control Register	060 _H	U,SV	SV,E,P	See page 64	64
P40_PCSR	Port 40 Pin Controller Select Register	064 _H	U,SV	SV,SE	Application Reset	69
	Reserved (004 _H Byte) (x=0-1)	068 _H +x*	BE	BE		
P40_OMSR0	Port 40 Output Modification Set Register 0	070 _H	U,SV	U,SV,P	Application Reset	75
P40_OMSR4	Port 40 Output Modification Set Register 4	074 _H	U,SV	U,SV,P	Application Reset	77
P40_OMSR8	Port 40 Output Modification Set Register 8	078 _H	U,SV	U,SV,P	Application Reset	78
P40_OMCR0	Port 40 Output Modification Clear Register 0	080 _H	U,SV	U,SV,P	Application Reset	82
P40_OMCR4	Port 40 Output Modification Clear Register 4	084 _H	U,SV	U,SV,P	Application Reset	85
P40_OMCR8	Port 40 Output Modification Clear Register 8	088 _H	U,SV	U,SV,P	Application Reset	86
P40_OMSR	Port 40 Output Modification Set Register	090 _H	U,SV	U,SV,P	Application Reset	89
P40_OMCR	Port 40 Output Modification Clear Register	094 _H	U,SV	U,SV,P	Application Reset	93
	Reserved (004 _H Byte) (x=0-1)	098 _H +x*	BE	BE		
	Reserved (004 _H Byte) (x=0-13)	0C0 _H +x*	BE	BE		

AURIX[™] TC33x/TC32x

General Purpose I/O Ports and Peripheral I/O Lines (Ports)

 Table 69
 Register Overview - P40 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
P40_ACCEN1	Port 40 Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	98	
P40_ACCEN0	Port 40 Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	101	

14.3 Pn Registers

14.3.1 SPB bus slave interface

Port 00 Output Register

The port output register determines the value of a GPIO pin when it is selected by Pn_IOCRx as output. Writing a 0 to a Pn_OUT.Px (x = 0-15) bit position delivers a low level at the corresponding output pin. A high level is output when the corresponding bit is written with a 1. Note that the bits of Pn_OUT.Px can be individually set or cleared by writing appropriate values into the port output modification set register Pn_OMSR or port output modification clear register Pn_OMCR, respectively. The Pn_OUT.Px bits can also be set, cleared or toggled with register Pn_OMR within the same write operation.

	_OUT t 00 Out	out Dog	istor				(000			۸n	nlicati	on Bos	ot Valu	۰۰ ۵۵۵۵	0000	
	_OUT	put Keg	istei				(000)	н/		Application Reset Value: 0000 0000 _H						
Port 11 Output Register							(000	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
P20_OUT Port 20 Output Register P33_OUT							(000	_H)		Application Reset Value: 0000 0000						
Port 33 Output Register							(000	н)		Ар	plication	on Res	et Valu	e: 0000	0000 _H	
31	L 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	'	"		'		i.	•	D		i.	i.	•				
	<u> </u>		1	1	1	I	I	r	l .	I	I	1	l .	l .		
15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
P1	5 P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	Р3	P2	P1	P0	
rw	h rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

Field	Bits	Туре	Description
Px (x=0-15)	х	rwh	Output Bit x This bit determines the level at the output pin Pn.x if the output is selected as GPIO output. Pn.x can also be set or cleared by control bits of the Pn_OMSR, Pn_OMCR or Pn_OMR registers. 0 _B The output level of Pn.x is 0. 1 _B The output level of Pn.x is 1.
0	31:16	r	Reserved Read as 0; should be written with 0.

Table 70 Access Mode Restrictions sorted by descending priority

Applies to P00_OUT
Applies to P11_OUT
Applies to P20_OUT

Applies to P33_OUT

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	rwh	Px (x=0-15)	write access for enabled masters
Otherwise (default)	rh	Px (x=0-15)	

P10_0 Port 10 P14_0 Port 10 P15_0 Port 10 P40_0	Output Register (000 _H) Application Reset Value: 0000 OUT Output Register (000 _H) Application Reset Value: 0000 OUT OUT Output Register (000 _H) Application Reset Value: 0000 OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT								00000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ı	ı	ı	I		•	0	·	·	·	ı	ı	ı	
<u> </u>								r	I	I	I				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	P11	P10	P9	P8	P7	P6	P5	P4	Р3	P2	P1	P0
r	r	r	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description
Px (x=0-11)	х	rwh	Output Bit x This bit determines the level at the output pin Pn.x if the output is selected as GPIO output. Pn.x can also be set or cleared by control bits of the Pn_OMSR, Pn_OMCR or Pn_OMR registers. 0 _B The output level of Pn.x is 0. 1 _B The output level of Pn.x is 1.
0	15, 14, 13, 12, 31:16	r	Reserved Read as 0; should be written with 0.

Table 71 Access Mode Restrictions sorted by descending priority

Applies to **P02_OUT**Applies to **P10_OUT**

Applies to P14_OUT

Applies to P15_OUT

Applies to P40_OUT

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	rwh	Px (x=0-11)	write access for enabled masters
Otherwise (default)	rh	Px (x=0-11)	

P13_0 Port 13 P34_0	3 Outp	ut Regi	ster				(000	_H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
Port 3	4 Outp	ut Regi	ster				(000	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1				1	ı)		ı		1	1	1	
								r		1					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	Р3	P2	P1	P0
r	r	r	r	r	r	r	r	r	r	r	r	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description
Px (x=0-3)	x	rwh	Output Bit x This bit determines the level at the output pin Pn.x if the output is selected as GPIO output. Pn.x can also be set or cleared by control bits of the Pn_OMSR, Pn_OMCR or Pn_OMR registers. 0 _B The output level of Pn.x is 0. 1 _B The output level of Pn.x is 1.
0	15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 31:16	r	Reserved Read as 0; should be written with 0.

Table 72 Access Mode Restrictions sorted by descending priority

Applies to **P13_OUT**Applies to **P34_OUT**

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	rwh	Px (x=0-3)	write access for enabled masters
Otherwise (default)	rh	Px (x=0-3)	

P21_0															
	1 Outp	ut Regi	ster			(000 _H)				Application Reset Value: 0000 0000 _H					
P22_0	ıvı 2 Outpi	ut Regi	ctor				(000	. 1		Δn	nlicati	nn Res	et Valu	۰ ۵۵۵۵	0000 _H
P23_0	_	at itegi	J.C.1				(000	Ή/		ΛÞ	pucati	on ites	ct vata	c. 0000	лооон
	3 Outp	ut Regi	ster				(000	_H)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
P32_0		_													
Port 3	2 Outp	ut Regi	ster				(000 _H)			Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
	1	İ	İ	Ĭ.	İ	Ĭ	İ	r	İ	İ	İ	İ	İ	İ	i
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	P7	P6	P5	P4	Р3	P2	P1	PO
r	r	r	r	r	r	r	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

Field	Bits	Туре	Description
Px (x=0-7)	x	rwh	Output Bit x This bit determines the level at the output pin Pn.x if the output is selected as GPIO output. Pn.x can also be set or cleared by control bits of the Pn_OMSR, Pn_OMCR or Pn_OMR registers. 0 _B The output level of Pn.x is 0. 1 _B The output level of Pn.x is 1.
0	15, 14, 13, 12, 11, 10, 9, 8, 31:16	r	Reserved Read as 0; should be written with 0.

Table 73 Access Mode Restrictions sorted by descending priority

Applies to P21_OUT Applies to P22_OUT Applies to P23_OUT Applies to P32_OUT

Mode Name	Acce	ss Mode	Description					
Master enabled in	rwh	Px (x=0-7)	write access for enabled masters					
ACCEN								
Otherwise (default)	rh	Px (x=0-7)						

Port 00 Output Modification Register

The port output modification register contains control bits that make it possible to individually set, clear or toggle the logic state of a single port line by manipulating the output register.

P11_0	0 Outp MR 1 Outp			J			(004 _H)				Application Reset Value: 0000 0000							
	0 Outp	ut Mod	ificatio	n Regi	ster		(004	н)		Ар	plication	on Res	et Valu	e: 0000	0000 _H			
P33_0 Port 3	мк 3 Outp	ut Mod	ificatio	n Regi	ster	(004 _H)				Application Reset Value: 0000 0000 _H								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
PCL15	PCL14	PCL13	PCL12	PCL11	PCL10	PCL9	PCL8	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0			
w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
PS15	PS14	PS13	PS12	PS11	PS10	PS9	PS8	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0			
w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0			

Field	Bits	Туре	Description
PSx (x=0-15)	х	w0	Set Bit x Setting this bit will set or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. 0 _B No operation 1 _B Sets or toggles Pn_OUT.Px.
PCLx (x=0-15)	x+16	w0	Clear Bit x Setting this bit will clear or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. O _B No operation 1 _B Clears or toggles Pn_OUT.Px.

Table 74 Access Mode Restrictions sorted by descending priority

Applies to P00_OMR Applies to P11_OMR Applies to P20_OMR Applies to P33_OMR

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PCLx (x=0-15), PSx (x=0-15)	write access for enabled masters
Otherwise (default)	r0	PCLx (x=0-15), PSx (x=0-15)	

Note: Register Pn_OMR is virtual and does not contain any flip-flop. A read action delivers the value of 0. One 8 or 16-bits write behaves as a 32-bit write padded with zeros.

Table 75 Function of the Bits PCLx and PSx

PCLx	PSx	Function
0	0	Bit Pn_OUT.Px is not changed.
0	1	Bit Pn_OUT.Px is set.
1	0	Bit Pn_OUT.Px is reset.
1	1	Bit Pn_OUT.Px is toggled.

P02_0	MR																	
Port 02	2 Outp	ut Mod	ificatio	on Regi	ster		(004 _H)				Application Reset Value: 0000 0000 _H							
P10_0	MR																	
Port 10	0 Outp	ut Mod	ificatio	on Regi	ster		(004	н)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H			
P14_0	MR																	
Port 14	4 Outp	ut Mod	ificatio	on Regi	ster		(004	н)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H			
P15_0	MR																	
Port 15	5 Outp	ut Mod	ificatio	on Regi	ster		(004	н)		Application Reset Value: 0000 0000 _H								
P40_0	MR																	
Port 40	0 Outp	ut Mod	ificatio	on Regi	ster		(004	н)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
0	0	0	0	PCI 11	PCL10	PCL9	PCL8	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCLO			
			_															
r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0			
15 14 13 12 11 10							8	7	6	5	4	3	2	1	0			
0	0	0	0	PS11	PS10	PS9	PS8	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0			
r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0			

Field	Bits	Туре	Description							
PSx (x=0-11)	х	w0	Set Bit x Setting this bit will set or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 7 0 _B No operation 1 _B Sets or toggles Pn_OUT.Px.							
PCLx (x=0-11)	x+16	w0	Clear Bit x Setting this bit will clear or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. 0 _B No operation 1 _B Clears or toggles Pn_OUT.Px.							
0	15, 14, 13, 12, 31, 30, 29, 28	r	Reserved Read as 0; should be written with 0.							

Table 76 Access Mode Restrictions sorted by descending priority

Applies to P02_OMR

Applies to P10_OMR

Applies to P14_OMR

Applies to P15_OMR

Applies to P40_OMR

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN	w0	PCLx (x=0-11), PSx (x=0-11)	write access for enabled masters				
Otherwise (default)	r0	PCLx (x=0-11), PSx (x=0-11)					

P13_0 Port 1: P34_0 Port 34	н)			-				0000 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	PCL3	PCL2	PCL1	PCL0
r	r	r	r	r	r	r	r	r	r	r	r	w0	w0	w0	w0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	PS3	PS2	PS1	PS0
r	r	r	r	r	r	r	r	r	r	r	r	w0	w0	w0	w0

Field	Bits	Туре	Description
PSx (x=0-3)	х	w0	Set Bit x Setting this bit will set or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. 0 _B No operation 1 _B Sets or toggles Pn_OUT.Px.
PCLx (x=0-3)	x+16	w0	Clear Bit x Setting this bit will clear or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. 0 _B No operation 1 _B Clears or toggles Pn_OUT.Px.
0	15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20	r	Reserved Read as 0; should be written with 0.

Table 77 Access Mode Restrictions sorted by descending priority

Applies to P13_OMR Applies to P34_OMR

Mode Name	Acce	ss Mode	Description					
Master enabled in ACCEN	w0	PCLx (x=0-3), PSx (x=0-3)	write access for enabled masters					
Otherwise (default)	r0	PCLx (x=0-3), PSx (x=0-3)						

P21_OMR Port 21 Output Modification Register P22_OMR Port 22 Output Modification Register P23_OMR Port 23 Output Modification Register P32_OMR								(004 (004 (004	'н)		Application Reset Value: 0000 0000 _H Application Reset Value: 0000 0000 _H Application Reset Value: 0000 0000 _H							
	_	2 Outp	ut Mod	ificatio	n Regi	ster		(004	(004 _H) Application					on Reset Value: 0000 0000 _H				
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	0	0	0	0	0	0	0	0	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0		
1	r	r	r	r	r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	0	0	0	0	0	0	0	0	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0		
1	r	r	r	r	r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0		

Field	Bits	Туре	Description
PSx (x=0-7)	x	w0	Set Bit x Setting this bit will set or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. 0 _B No operation 1 _B Sets or toggles Pn_OUT.Px.
PCLx (x=0-7)	x+16	w0	Clear Bit x Setting this bit will clear or toggle the corresponding bit in the port output register Pn_OUT. Read as 0. The function of this bit is shown in Table 75. 0 _B No operation 1 _B Clears or toggles Pn_OUT.Px.
0	15, 14, 13, 12, 11, 10, 9, 8, 31, 30, 29, 28, 27, 26, 25, 24	r	Reserved Read as 0; should be written with 0.

Table 78 Access Mode Restrictions sorted by descending priority

Applies to P21_OMR Applies to P22_OMR Applies to P23_OMR Applies to P32_OMR

Mode Name	Acces	ss Mode	Description
Master enabled in ACCEN	w0	PCLx (x=0-7), PSx (x=0-7)	write access for enabled masters
Otherwise (default)	r0	PCLx (x=0-7), PSx (x=0-7)	

Port 00 Identification Register

The module Identification Register ID contains read-only information about the module version.

P00_ID																
Port 00 ld	lenti	ficatio	n Regi	ster			(008	н)		Apı	olicatio	on Res	et Valu	e: 00C8	COXX _H	
P02_ID		e		_						_						
Port 02 ld	lenti	ficatio	n Regi	ster		(008 _H)				Apı	Application Reset Value: 00C8 COXX _H					
P10_ID Port 10 Id	lenti	ficatio	n Regi	ster			(008)		Anı	olicatio	on Reso	et Value	e: 00C8	S COXX _H	
Port 10 Identification Register P11_ID							(000	н/		API	Jucati	on ites	et vata		СОЛЛ	
	Port 11 Identification Register						(008	н)		Apı	olicatio	on Res	et Valu	e: 00C8	COXX _H	
P13_ID																
Port 13 ld	lenti	ficatio	n Regi	ster			(008	н)		Apı	olicatio	on Res	et Valu	e: 00C8	COXX ^H	
P14_ID	lanti	ficatio	n Bogi	ctor			/000	,		۸nı	alicati	on Boc	st Value	۰. ۵۵ <i>۲</i> د	COVV	
Port 14 Identification Register P15_ID						(008 _H)				Aþl	Application Reset Value: 00C8 C0XX _H					
Port 15 ld	lenti	ficatio	n Regi	ster		(008 _H) (008 _H)				Apı	Application Reset Value: 00C8 C0XX _H Application Reset Value: 00C8 C0XX _H					
P20_ID			Ū							•						
Port 20 ld	lenti	ficatio	n Regi	ster						Apı						
P21_ID		<i>c</i>								Application Reset Value: 00C8 C0XX _H						
Port 21 Id P22_ID	ienti	ficatio	n Regi	ster												
P22_ID Port 22 Id	lenti	ficatio	n Regi	ster			(008)		Apı	olicatio	on Reso	et Value	e: 00C8	COXX _H	
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
31 .	30	29	20	7	20	23	Z4			71	20	19	10	11	10	
							MODNUMBER									
								r								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	ļ		MOD	TYPE		I	ı		I	I	MOI	DREV	ı	I		
			1	r	<u> </u>	<u> </u>	1		1	1	1	r	1	1		

Field	Bits	Туре	Description
MODREV	7:0	r	Module Revision Number
			This bit field indicates the revision number of the TC33x/TC32x module $(01_H = first revision)$.

Field	Bits	Type	Description
MODTYPE	15:8	r	Module Type This bit field is CO _H . It defines a 32-bit module
MODNUMBER	31:16	r	Module Number This bit field defines the module identification number. The value for the Ports module is 00C8 _H

P23_I										_		_			
Port 2:		ificatio	on Regi	ster			(008	н)		Application Reset Value: 00C8 C0XX _H					
Port 32 Identification Register P33_ID Port 33 Identification Register							(008	н)		Apı	olicatio	n Rese	et Valu	e: 00C8	COXX _H
							(008	н)		Application Reset Value: 00C8 C0XX _H					
P34_ID Port 34 Identification Register							(008	н)		Application Reset Value: 00C8 C0XX _H					
P40_II		ificatio	n Regi	ster			(008)		Δηι	olicatio	n Rese	et Value	e•	COXX _H
10114	o ideiid	incacio	ii itegi	3661			(000	н/		ΛÞI	Jucatio	ii itest	. c vatu	c. 00C	COXXH
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MODN	UMBER							
	1	1				1	1	r	1	1	1	1	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			MOD	TYPE							МОІ	DREV			
1	1	1	1	r	1	1	1	1	1	1	1	r	1	1	1

Field	Bits	Type	Description
MODREV	7:0	r	Module Revision Number This bit field indicates the revision number of the TC33x/TC32x module $(01_H = first revision)$.
MODTYPE	15:8	r	Module Type This bit field is CO _H . It defines a 32-bit module
MODNUMBER	31:16	r	$\begin{tabular}{ll} \textbf{Module Number} \\ \textbf{This bit field defines the module identification number. The value for the} \\ \textbf{Ports module is } \textbf{00C8}_{H} \\ \end{tabular}$

Port 00 Input/Output Control Register 0

The port input/output control registers select the digital output and input driver functionality and characteristics of a GPIO port pin. Port direction (input or output), pull-up, pull-down, or no pull devices for inputs, and push-pull or open-drain functionality for outputs can be selected by the corresponding bit fields PCx (x = 0-15). Each 32-bit wide port input/output control register controls four GPIO port lines:

Register Pn_IOCR0 controls the Pn.[3:0] port lines

Register Pn_IOCR4 controls the Pn.[7:4] port lines

Register Pn_IOCR8 controls the Pn.[11:8] port lines

Register Pn_IOCR12 controls the Pn.[15:12] port lines

The structure with one control bit field for each port pin located in different register bytes offers the possibility to configure the port pin functionality of a single pin with byte-oriented accesses without accessing the other PCx bit fields.

The reset values of $1010\ 1010_H$ and $0000\ 0000_H$ for Pn_IOCRx registers represents input pull-up and no input pull device (tri-state mode) being activated, respectively. The switching of the intended mode of the device is controlled by HWCFG6. When a cold reset is activated and HWCFG6=1, the port pins except P33.8, P40 and P41 are set to input pull-up mode, P33.8, P40 and P41 are in tri-state mode as long as PORST is activated. If HWCFG6=0, the pins have the default state of tri-state mode. The pad state can also be configured by software through PMSWCR5. TRISTREQ bit. In the event of a warm reset or wake-up from standby mode, PMSWCR5. TRISTREQ is not affected by reset, hence Pn_IOCRx registers have the reset values configured as per the last state of the TRISTREQ bit.

Note:

In LVDS (RX and TX) operation the IOCR register of both pins of the LVDS pair must be configured as output, i.e. $1xxxx_B$. This ensures that the pull devices are disconnected and don't interfere with LVDS operation.

Register Pn_IOCR0 controls the Pn.[3:0] port lines

P00_IC	OCR0															
Port 00	0 Input	/Outpu	ıt Cont	rol Reg	gister 0		(010 _H)					R	eset V	alue: T	able 80	
Port 02 Input/Output Control Register 0 P10_IOCR0								н)				R	leset V	alue: T	able 80	
Port 10 Input/Output Control Register 0 P11_IOCR0							(010	н)				R	eset V	alue: T	able 80	
												_		_		
	Port 11 Input/Output Control Register 0 P13 IOCR0						(010	н)				R	leset V	alue: T	able 80	
	3 Input	/Outpu	ıt Cont	rol Res	zister 0		(010)				R	eset V	alue: T	able 80	
P14_IC	•	Сисро			,		(0-0	н,				-				
Port 1	4 Input	/Outpu	ıt Cont	rol Reg	gister 0		(010 _H)						Reset Value: Table 80			
P15_IC					•		(010 _H) (010 _H)					Reset Value: Table 80 Reset Value: Table 80				
Port 1:	5 Input	/Outpu	it Cont	rol Reg	gister 0											
_	0 Input	/Outpu	ıt Cont	rol Res	zister 0											
P21_IC	-				,											
	1 Input	/Outpu	ıt Cont	rol Reg	gister 0							Reset Value: Table 80				
P22_IC		10			• • • • •		1010					_				
Port 2	2 Input	/Outpu	it Cont	rol Reg	gister 0		(010	н)				R	leset V	alue: T	able 80	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	PC3 0								PC2				0			
		rw	1	1		r	1		1	rw		1		r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	PC1	I	1		0	ı		ı	PC0		ı		0		
		rw	ļ	1		r	1	1	1	rw		+		r		

Field	Bits	Туре	Description
PCx (x=0-3)	8*x+7:8*x+	rw	Port Control for Pin x
	3		This bit field defines the Port n line x functionality according to Table 81 .
0	26:24,	r	Reserved
	18:16, 10:8,		Read as 0; should be written with 0.
	2:0		

Table 79 Access Mode Restrictions sorted by descending priority

Applies to P00_IOCR0

Applies to P02_IOCR0

Applies to P10_IOCR0

Applies to P11_IOCR0

Applies to P13_IOCR0

Applies to P14_IOCR0

Applies to P15_IOCR0

Applies to P20_IOCR0

Applies to P21_IOCR0

Applies to P22_IOCR0

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	rw	PCx (x=0-3)	write access for enabled masters
Otherwise (default)	r	PCx (x=0-3)	

Table 80 Reset Values

Applies to P00_IOCR0

Applies to P02_IOCR0

Applies to P10_IOCR0

Applies to P11_IOCR0

Applies to P13_IOCR0

Applies to P14_IOCR0

Applies to P15_IOCR0

Applies to P20_IOCR0

Applies to P21_IOCR0

Applies to P22_IOCR0

Reset Type Reset Value		Note				
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)				
Application Reset 1010 1010 _H		HWCFG6 is 1 (input pull-up mode)				

Port Control Coding

Table 81 describes the coding of the PCx bit fields that determine the port line functionality.

AURIX™ TC33x/TC32x

General Purpose I/O Ports and Peripheral I/O Lines (Ports)

Table 81 PCx Coding

PCx[4:0]	I/O	Characteristics	Selected Pull-up / Pull-down / Selected Output Function
0XX00 _B	Input	-	No input pull device connected, tri-state mode
0XX01 _B			Input pull-down device connected
0XX10 _B			Input pull-up device connected ¹⁾
0XX11 _B			No input pull device connected, tri-state mode
10000 _B	Output	Push-pull	General-purpose output
10001 _B			Alternate output function 1
10010 _B			Alternate output function 2
10011 _B			Alternate output function 3
10100 _B			Alternate output function 4
10101 _B			Alternate output function 5
10110 _B			Alternate output function 6
10111 _B			Alternate output function 7
11000 _B		Open-drain	General-purpose output
11001 _B			Alternate output function 1
11010 _B			Alternate output function 2
11011 _B			Alternate output function 3
11100 _B			Alternate output function 4
11101 _B			Alternate output function 5
11110 _B			Alternate output function 6
11111 _B			Alternate output function 7

¹⁾ This is the default pull device setting after reset for powertrain applications.

P23_I0	OCR0																
Port 2:	-	t/Outpu	ıt Cont	rol Reg	gister 0)	(010	(010 _H)					Reset Value: Table 83				
Port 32 Input/Output Control Register 0 P33_IOCR0 Port 33 Input/Output Control Register 0 P34_IOCR0								(010 _H)					Reset Value: Table 83 Reset Value: Table 83				
_		t/Outpu	ıt Cont	rol Reg	gister 0)	(010	(010 _H)				Reset Value: Table 84					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		PC3				0				PC2				0			
<u>l</u>	ı	rw	l	1		r	1		1	rw	l	1		r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
PC1 0								PC0				0					
rw							i	1	İ	rw	Ì	İ	1	r			

Field	Bits	Туре	Description
PCx (x=0-3)	8*x+7:8*x+	rw	Port Control for Pin x This bit field defines the Port n line x functionality according to Table 81.
0	26:24, 18:16, 10:8, 2:0	r	Reserved Read as 0; should be written with 0.

Table 82 Access Mode Restrictions sorted by descending priority

Applies to P23_IOCR0
Applies to P32_IOCR0
Applies to P33_IOCR0
Applies to P34_IOCR0
Applies to P40_IOCR0

Mode Name	Acce	ss Mode	Description			
Master enabled in ACCEN	rw	PCx (x=0-3)	write access for enabled masters			
Otherwise (default)	r	PCx (x=0-3)				

Table 83 Reset Values variant 1

Applies to P23_IOCR0
Applies to P32_IOCR0
Applies to P33_IOCR0
Applies to P34_IOCR0

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	1010 1010 _H	HWCFG6 is 1 (input pull-up mode)

Table 84 Reset Values of P40_IOCR0

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	0000 0000 _H	HWCFG6 is 1 (input pull-up mode)

Port 00 Input/Output Control Register 4

Register Pn_IOCR4 controls the Pn.[7:4] port lines

P00_I0	OCR4																
Port 00 P02_I0	•	t/Outpu	t Cont	rol Reg	gister 4		(014 _H)					R	Reset Value: Table 86				
Port 0: P10_I0	•	t/Outpu	t Cont	rol Reg	gister 4		(014	(014 _H) Reset Value: T					able 86				
Port 10 Input/Output Control Register 4 P11_IOCR4 Port 11 Input/Output Control Register 4 P14_IOCR4								(014 _H) (014 _H)					Reset Value: Table 86				
													Reset Value: Table 86				
Port 14 Input/Output Control Register 4 P15_IOCR4 Port 15 Input/Output Control Register 4 P20_IOCR4							(014	(014 _H)					Reset Value: Table 86				
							(014	н)			Reset Value: Table 86						
	0 Input	t/Outpu	t Cont	rol Reg	gister 4		(014	(014 _H) (014 _H)					Reset Value: Table 86 Reset Value: Table 86				
	1 Input	t/Outpu	t Cont	rol Reg	gister 4		(014										
_	2 Input	t/Outpu	t Cont	rol Reg	gister 4		(014	(014 _H)				Reset Value: Table 86					
		t/Outpu	t Cont	rol Reg	gister 4		(014	(014 _H)					Reset Value: Table 86				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		PC7				0				PC6				0			
		rw				r			1	rw				r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		PC5				0				PC4				0			
<u>I</u>	1	rw		1	1	r	1	1	1	rw		1	1	r			

Field	Bits	Туре	Description
PCx (x=4-7)	8*x-25:8*x-	rw	Port Control for Port 00 Pin x
	29		This bit field defines the Port n line x functionality according to Table 81 .
0	26:24,	r	Reserved
	18:16, 10:8,		Read as 0; should be written with 0.
	2:0		

Table 85 Access Mode Restrictions sorted by descending priority

Applies to P00_IOCR4
Applies to P02_IOCR4
Applies to P10_IOCR4
Applies to P11_IOCR4

Applies to P14_IOCR4

Applies to P15_IOCR4

Applies to P20_IOCR4
Applies to P21_IOCR4

Applies to P22_IOCR4

Applies to P23_IOCR4

Mode Name Acc		ss Mode	Description			
Master enabled in ACCEN	rw	PCx (x=4-7)	write access for enabled masters			
Otherwise (default)	r	PCx (x=4-7)				

Table 86 Reset Values

Applies to P00_IOCR4

Applies to P02_IOCR4

Applies to P10_IOCR4

Applies to P11_IOCR4

Applies to P14_IOCR4

Applies to P15_IOCR4

Applies to P20_IOCR4

Applies to P21_IOCR4
Applies to P22_IOCR4

Applies to P23_IOCR4

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	1010 1010 _H	HWCFG6 is 1 (input pull-up mode)

	2 Input	t/Outpu	ıt Cont	rol Reg	gister 4		(014	(014 _H)				Reset Value: Table 88					
P33_IOCR4 Port 33 Input/Output Control Register 4 P40_IOCR4								(014 _H)					Reset Value: Table 88				
_		t/Outpu	ıt Cont	rol Reg	gister 4		(014	(014 _H)				Reset Value: Table 89					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1	PC7		'		0	'			PC6		'		0	'		
	1	rw	ı	1		r	1		1	rw		1		r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	ı	PC5	ı	'		0	•			PC4		•		0			
1	1	rw	İ	1		r	1		Î	rw		1	1	r			

Field	Bits	Туре	Description
PCx (x=4-7)	8*x-25:8*x-	rw	Port Control for Port 32 Pin x
	29		This bit field defines the Port n line x functionality according to Table 81 .
0	26:24,	r	Reserved
	18:16, 10:8,		Read as 0; should be written with 0.
	2:0		

Table 87 Access Mode Restrictions sorted by descending priority

Applies to P32_IOCR4
Applies to P33_IOCR4
Applies to P40_IOCR4

Mode Name	Acce	ss Mode	Description		
Master enabled in ACCEN	rw	PCx (x=4-7)	write access for enabled masters		
Otherwise (default)	r	PCx (x=4-7)			

Table 88 Reset Values variant 1

Applies to P32_IOCR4
Applies to P33_IOCR4

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	1010 1010 _H	HWCFG6 is 1 (input pull-up mode)

Table 89 Reset Values of P40_IOCR4

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	0000 0000 _H	HWCFG6 is 1 (input pull-up mode)

AURIX™ TC33x/TC32x

General Purpose I/O Ports and Peripheral I/O Lines (Ports)

Port 00 Input/Output Control Register 8

Register Pn_IOCR8 controls the Pn.[11:8] port lines

P00_I0	OCR8															
Port 00 Input/Output Control Register 8							(018	_H)				R	eset V	alue: T	able 91	
P02_I0					•							_				
	•	t/Outpu	it Cont	rol Reg	gister 8		(018	Н)				R	leset V	alue: T	able 91	
P10_I0		t/Outpu	ıt Cont	rol Dec	rictor Q		(018	. 1					oset V	عاياه، T	able 91	
P11_IC	-	t/Outpu	it Com	.i ot ive	sister o		(010	Ή/					eset v	atue. I	able 31	
_		t/Outpu	ıt Cont	rol Reg	gister 8		(018	i _H)				R	eset V	alue: T	able 91	
P14_I0	OCR8	•						•••								
	-	t/Outpu	ıt Cont	rol Reg	gister 8		(018	_H)				R	Reset Value: Table 91			
P15_IC					•											
	-	t/Outpu	it Cont	rol Reg	gister 8		(018 _H)				Reset Value: Table 91 Reset Value: Table 91					
P20_IC		t/Outpu	ıt Cont	rol Rec	rister 8		(018 _H)									
P33_IC	-	c, outpu	it Com	.i ot ite	Sister 0		(010	(010 _H)					reset rataer rabte 32			
_		t/Outpu	ıt Cont	rol Reg	gister 8		(018 _H)				Reset Value: Table 92					
P40_IC	OCR8							-								
Port 4	0 Inpu	t/Outpu	ıt Cont	rol Reg	gister 8		(018	_H)				R	eset V	alue: T	able 93	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	'	PC11		•		0			'	PC10		·		0	'	
	1	rw	<u> </u>	L		r	1		1	rw		1		r	1	
						•		_						•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		PC9				0				PC8				0		
1	1	rw		I	1	r	1		1	rw		1		r	1	

Field	Bits	Туре	Description
PCx (x=8-11)	8*x-57:8*x-	rw	Port Control for Port 00 Pin x
	61		This bit field defines the Port n line x functionality according to Table 81 .
0	26:24,	r	Reserved
	18:16, 10:8,		Read as 0; should be written with 0.
	2:0		

Table 90 Access Mode Restrictions sorted by descending priority

Applies to P00_IOCR8

Applies to P02_IOCR8

Applies to P10_IOCR8

Applies to P11_IOCR8

Applies to P14_IOCR8

Applies to P15_IOCR8

Applies to P20_IOCR8

Applies to P33_IOCR8

Applies to P40_IOCR8

Mode Name	Acce	ss Mode	Description			
Master enabled in ACCEN	rw	PCx (x=8-11)	write access for enabled masters			
Otherwise (default)	r	PCx (x=8-11)				

Table 91 Reset Values variant 1

Applies to P00_IOCR8

Applies to P02_IOCR8

Applies to P10_IOCR8

Applies to P11_IOCR8

Applies to P14_IOCR8

Applies to P15_IOCR8

Applies to P20_IOCR8

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	1010 1010 _H	HWCFG6 is 1 (input pull-up mode)

Table 92 Reset Values of P33_IOCR8

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	1010 1000 _H	HWCFG6 is 1 (input pull-up mode)

Table 93 Reset Values of P40_IOCR8

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	0000 0000 _H	HWCFG6 is 1 (input pull-up mode)

Port 00 Input/Output Control Register 12

Register Pn_IOCR12 controls the Pn.[15:12] port lines

P00_IC Port 00 P11_IC	0 Input	t/Outpu	t Cont	rol Reg	gister 1	2	(01C	_H)				R	eset Va	alue: T	able 95
Port 11 Input/Output Control Register 12 P20_IOCR12 Port 20 Input/Output Control Register 12 P33_IOCR12					(010	(01C _H)				Reset Value: Table 95 Reset Value: Table 95					
					(010										
Port 33	3 Input	t/Outpu	t Cont	rol Reg	gister 1	2	(010	н)				R	eset Va	alue: T	able 95
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		PC15				0				PC14				0	
1		rw				r				rw				r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	PC13		1		0	1		1	PC12		1		0	'
		rw				r				rw				r	

Field	Bits	Туре	Description
PCx (x=12-15)	8*x-89:8*x-	rw	Port Control for Port 00 Pin x
	93		This bit field defines the Port n line x functionality according to Table 81 .
0	26:24,	r	Reserved
	18:16, 10:8,		Read as 0; should be written with 0.
	2:0		

Table 94 Access Mode Restrictions sorted by descending priority

Applies to P00_IOCR12 Applies to P11_IOCR12 Applies to P20_IOCR12 Applies to P33_IOCR12

Mode Name	Acces	ss Mode	Description
Master enabled in ACCEN	rw	PCx (x=12-15)	write access for enabled masters
Otherwise (default)	r	PCx (x=12-15)	

Table 95 Reset Values

Applies to P00_IOCR12
Applies to P11_IOCR12
Applies to P20_IOCR12

Applies to P20_IOCR12
Applies to P33_IOCR12

Reset Type	Reset Value	Note
Application Reset	0000 0000 _H	HWCFG6 is 0 (tri-state mode)
Application Reset	1010 1010 _H	HWCFG6 is 1 (input pull-up mode)

Port 00 Input Register

The logic level of a GPIO pin can be read via the read-only port input register Pn_IN.Reading the Pn_IN register always returns the current logical value at the GPIO pin independently whether the pin is selected as input or output.

	0 Input	Regist	er				(024 _H)				Application Reset Value: 0000 XXXX _H						
P11_IN Port 1: P20_IN	1 Input	Regist	er			(024 _H)				Application Reset Value: 0000 XXXX _H							
Port 20 Input Register							(024	_H)		Application Reset Value: 0000 XXXX _H							
P33_IN Port 3	ı 3 Input	Regist	er				(024 _H)				Application Reset Value: 0000 XXXX _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
					,		()									
								r					I.				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	Р3	P2	P1	P0		
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh		

Field	Bits	Туре	Description
Px (x=0-15)	х	rh	Input Bit x
			This bit indicates the level at the input pin Pn.x.
			0 _B The input level of Pn.x is 0.
			1 _B The input level of Pn.x is 1.
0	31:16	r	Reserved
			Read as 0.

P02_IN	ı															
Port 02	2 Input	Regist	er				(024	н)		Ap	plicatio	on Rese	et Valu	e: 0000	OXXX _H	
P10_IN																
Port 10	-	Regist	er				(024	н)		Ap	Application Reset Value: 0000 0XXX _H					
P14_IN		.										_				
Port 14	•	Regist	er				(024	н)		Ap	pucatio	on Rese	et valu	e: 0000	0XXX _H	
P15_IN Port 1		Degist	or				(024	1		Δnı	nlicatio	nn Dasa	at Valu	۰ ۵۵۵۵	OXXX _H	
P40_IN	-	Regist	.CI				(024	Η/		ΛÞ	pucatio	JII KES	et vatu	e. 0000	OXXX _H	
Port 40		Regist	er				(024 _H) Appl				plicatio	on Rese	et Valu	e: 0000	0XXX _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	ı	ı	ı	1			•	0	ı	ı	ı	1	ı	!	'	
	İ	İ	İ	İ	<u> </u>		<u> </u>	r	İ	<u>I</u>	<u>I</u>	İ	İ	Ì	<u>i</u>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	P11	P10	P9	P8	P7	P6	P5	P4	Р3	P2	P1	P0	
r	r	r	r	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	

Field	Bits	Type	Description
Px (x=0-11)	x	rh	Input Bit x This bit indicates the level at the input pin Pn.x. 0 _B The input level of Pn.x is 0. 1 _B The input level of Pn.x is 1.
0	15, 14, 13, 12, 31:16	r	Reserved Read as 0; should be written with 0.

P13_ Port P34	13 Input	t Regist	ter				(024	_{'H})		Ар	plicatio	on Res	et Valu	e: 0000	000X _H
_	34 Input	t Regist	ter				(024	_{'H})		Ар	plicati	on Res	et Valu	e: 0000	000X _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	1						0							
	1		1	1	1	1	1	r	1	I.	1	1	1		1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	Р3	P2	P1	P0
r	r	r	r	r	r	r	r	r	r	r	r	rh	rh	rh	rh

Field	Bits	Туре	Description			
Px (x=0-3)	Х	rh	Input Bit x			
			This bit indicates the level at the input pin Pn.x. O _B The input level of Pn.x is 0. 1 _B The input level of Pn.x is 1.			

V2.0.0

2021-02

Field	Bits	Туре	Description
0	15, 14, 13,	r	Reserved
	12, 11, 10, 9,		Read as 0; should be written with 0.
	8, 7, 6, 5, 4,		
	31:16		

Po Po Po Po Po Po	2_IN ort 22 3_IN ort 23 32_IN	L Input I 2 Input I 3 Input I	Regist Regist	er				(024 (024	(024 _H) Appli (024 _H) Appli				lication Reset Value: 0000 00XX _H lication Reset Value: 0000 00XX _H lication Reset Value: 0000 00XX _H				
Po	Port 32 Input Register						(024 _H)				Ар	plication	on Res	et Valu	e: 0000	00XX _H	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1				1			0	1	1	1	1			'	
									r							_	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	0	P 7	P6	P5	P4	Р3	P2	P1	P0	
-	r	r	r	r	r	r	r	r	rh	rh	rh	rh	rh	rh	rh	rh	

Field	Bits	Туре	Description
Px (x=0-7)	х	rh	Input Bit x This bit indicates the level at the input pin Pn.x. 0 _B The input level of Pn.x is 0. 1 _B The input level of Pn.x is 1.
0	15, 14, 13, 12, 11, 10, 9, 8, 31:16	r	Reserved Read as 0; should be written with 0.

Port 00 Pad Driver Mode Register 0

P00_PDR0														
Port 00 Pa		Mode R	egister	0		(040	_H)				R	eset V	alue: T	able 97
P02_PDR0 Port 02 Pa		Mode R	egister	. 0		(040)				R	eset V	alue: T	able 97
P10_PDR0		mout it	CBISCO			(0-10	Ή/				10	CSCL I	utuc.	ubic 31
Port 10 Pa	d Driver	Mode R	egister	0		(040	_H)				R	eset V	alue: T	able 97
P11_PDR0														
Port 11 Pa		Mode R	egister	0		(040	_H)				R	eset V	alue: T	able 97
P14_PDR0 Port 14 Pa		Mode D	agistar	٠.		(040	1				D	osat V	alue• T	able 97
P15_PDR0		Mode K	egistei	U		(040	Ή/				IX	eset v	atue. I	able 31
Port 15 Pa		Mode R	egister	0		(040	_H)				R	eset V	alue: T	able 97
P20_PDR0														
Port 20 Pa		Mode R	egister	. 0		(040	_H)				R	eset V	alue: T	able 97
P21_PDR0 Port 21 Pa		Mode D	agistar	. ^		(040	1				D	oset V	aluo: T	able 97
P22_PDR0		Moue K	egistei	U		(0+0	Ή/				K	eset v	alue. I	able 31
Port 22 Pa		Mode R	egister	0		(040	_H)				R	eset V	alue: T	able 97
P23_PDR0														
Port 23 Pa	d Driver	Mode R	egister	0		(040	_H)				R	eset V	alue: T	able 97
31 3) 29	28	27	26	25	24	23	22	21	20	19	18	17	16
PL7	P	D7	Р	L6	PI	D6	PI	L5	PI	D 5	PL	.4	PI	D4
rw		rw	r	W	r	W	r	W	r	N	rv	V	r	W
15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
PL3	P	PD3	Р	L2	PI	D2	PI	L1	PI	01	PL	.0	PI	DO
rw		rw	r	W	r	W	r	W	r	M	rv	N	r	w
	'						•			•		•		

Field	Bits	Type	Description
PDx (x=0-7)	4*x+1:4*x	rw	Pad Driver Mode for Pin x
PLx (x=0-7)	4*x+3:4*x+	rw	Pad Level Selection for Pin x

Table 96 Access Mode Restrictions sorted by descending priority

Applies to P00_PDR0

Applies to P02_PDR0

Applies to P10_PDR0

Applies to P11_PDR0

Applies to P14_PDR0

Applies to P15_PDR0

Applies to P20_PDR0

Applies to P21_PDR0

Applies to P22_PDR0

Applies to P23_PDR0

Mode Name Access Mode			Description				
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDx (x=0-7), PLx (x=0-7)	write access for enabled masters				
Otherwise (default)	r	PDx (x=0-7), PLx (x=0-7)					

Table 97 Reset Values

Applies to P00_PDR0

Applies to P02_PDR0

Applies to P10_PDR0

Applies to P11_PDR0

Applies to P14_PDR0

Applies to P15_PDR0

Applies to P20_PDR0

Applies to P21_PDR0

Applies to P22_PDR0

Applies to P23_PDR0

Reset Type	Reset Value	Note			
After SSW execution	2222 2222 _H	Initial value in largest package			
After SSW execution _H		Initial value package dependent			

Output Characteristics

The pad structure of the GPIO lines offers the possibility to select the output driver strength and the slew rate. These two parameters are controlled by the PDx bit fields in the pad driver mode registers Pn_PDR0/1 for output modes. The available modes depend on the respective pad type.

Table 98 Pad Driver Mode Selection for RFast Pads

PDx.1	PDx.0	Speed Grade	Driver Setting
0	0	1	Strong driver, sharp edge ("ss")
0	1	2	Strong driver, medium edge ("sm")
1	0	3	Medium driver ("m")
1	1	4	RGMII driver.

Table 99 Pad Driver Mode Selection for Fast Pads

PDx.1	PDx.0	Speed Grade	Driver Setting
0	0	1	Strong driver, sharp edge ("ss")
0	1	2	Strong driver, medium edge ("sm")
1	0	3	Medium driver ("m")
1	1	4	TC39x A-Step: Medium driver ("m") Else: Reserved when operating as output. When operating as input see below "Pad Level Selection for Input Function".

Table 100 Pad Driver Mode Selection for Slow Pads

PDx.1	PDx.0	Speed Grade	Driver Setting
X	0	1	Medium driver, sharp edge ("sm") ¹⁾
X	1	2	Medium driver ("m")

¹⁾ This setting is marked "sm" as the electrical characteristics are identical to the strong driver medium edge setting. The Data Sheet contains also only common "sm" tables.

Note: The Data Sheet describes the DC characteristics of all pad classes.

TTL/Automotive Input Selection

The input function can operate with different VIH and VIL levels depending on the pad supply voltage, the pad type and the selection done by the PLx bits of the Pn_PDRx as of **Table 101**. PLx.1 changes additionally the pullup and pull-down resistors.

Table 101 Pad Level Selection for Input Function

PLx.1	PLx.0	Input Levels
0	Х	Automotive level "AL".
1	0	TTL level for 5V pad supply. Degraded TTL level used for CIF when pad supply is 3.3V
1	1	TTL level for 3.3V pad supply.
X	X	Only for pads with RGMII input buffer (marked "RGMII_Input" in the pinning table):
		• when PDx.1=1 and PDx.0=1 the input level RGMII is selected.
		• for other PDx values the input level is determined by PLx as for all other pads (first three rows of this table).

LVDS

The default CMOS mode can be switched to LVDS mode in LVDS pads through the LPCRx register.

Pad Driver Mode Registers

This is the general description of the PDR registers. Each port contains its own specific PDR registers, described additionally at each port, that can contain between one and eight PDx fields for PDR0 and PDR1 registers, respectively. Each PDx field controls 1 pin. For coding of PDx, see **Table 98**, **Table 99** and **Table 100**. Similarly, each PLx bit controls 1 pin. For coding of PLx, see **Table 101**.

The boot software configures the reset value of Pn_PDR0 and Pn_PDR1 registers from $0000\,0000_H$ to $2222\,2222_H$ except for analog ports and if the package doesn't make any of the related pins available. The resulting value depends on the implemented port width. The documented value is valid for the largest package.

P32_PDR0 Port 32 Pad Driver Mode Register 0 P33_PDR0 Port 33 Pad Driver Mode Register 0 P40_PDR0							(040 _H)					Reset Value: Table 103 Reset Value: Table 103																						
_	0 Pad D	river N	lode R	egister	0		(040	н)				Re	set Val	ue: Tal	ble 104																			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16																			
P	L7	PI	D 7	PL6		PL6		PL6		PL6	PL6	PL6		PL6		PL6		PL6		PL6		PL6		PL6	PD6	D6	6 PL5		PD5		PL4		PI	D4
r	w	r	W	r	W	r	W	r	W	r	W	r	W	r	W																			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0																			
Р	L3	PI	D 3	PL2		PD2		D2 PL1		PD1		P	LO	PI	DO																			
r	W	r	W	r	W	r	W	r	W	r	W	r	W	r	W																			

Field	Bits	Туре	Description	
PDx (x=0-7)	4*x+1:4*x	rw	Pad Driver Mode for Pin x	
PLx (x=0-7)	4*x+3:4*x+	rw	Pad Level Selection for Pin x	

Table 102 Access Mode Restrictions sorted by descending priority

Applies to P32_PDR0 Applies to P33_PDR0 Applies to P40_PDR0

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDx (x=0-7), PLx (x=0-7)	write access for enabled masters
Otherwise (default)	r	PDx (x=0-7), PLx (x=0-7)	

Table 103 Reset Values variant 1

Applies to P32_PDR0 Applies to P33_PDR0

Reset Type	Reset Value	Note
After SSW execution	2222 2222 _H	Initial value in largest package
After SSW execution	н	Initial value package dependent

Table 104 Reset Values of P40_PDR0

Reset Type	Reset Value	Note
After SSW execution	0000 0000 _H	Initial value in largest package
After SSW execution	н	Initial value package dependent

P13_PDR0 (040_{H}) Reset Value: Table 106 Port 13 Pad Driver Mode Register 0 P34_PDR0 Port 34 Pad Driver Mode Register 0 (040_{H}) Reset Value: Table 106 28 29 26 25 24 22 21 20 18 17 0 0 0 0 9 2 0 15 14 13 12 11 10 8 7 6 5 4 3 1 PD0 PL3 PD3 PL2 PD2 PL1 PD1 PL0 rw rw rw rw rw rw rw rw

Field	Bits	Туре	Description
PDx (x=0-3)	4*x+1:4*x	rw	Pad Driver Mode for Pin x
PLx (x=0-3)	4*x+3:4*x+	rw	Pad Level Selection for Pin x
0	31:28, 27:24, 23:20, 19:16	r	Reserved Read as 0; should be written with 0.

Table 105 Access Mode Restrictions sorted by descending priority

Applies to P13_PDR0
Applies to P34_PDR0

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDx (x=0-3), PLx (x=0-3)	write access for enabled masters
Otherwise (default)	r	PDx (x=0-3), PLx (x=0-3)	

Table 106 Reset Values

Applies to P13_PDR0
Applies to P34_PDR0

Reset Type	Reset Value	Note
After SSW execution	0000 2222 _H	Initial value in largest package
After SSW execution 0000 _H		Initial value package dependent

Port 00 Pad Driver Mode Register 1

P00_PDR1

Port 00 Pad Driver Mode Register 1 (044_H) Reset Value: Table 108

P11_PDR1

Port 11 Pad Driver Mode Register 1 (044_H) Reset Value: Table 108

P20_PDR1

Port 20 Pad Driver Mode Register 1 (044_H) Reset Value: Table 108

P33_PDR1

Port 33 Pad Driver Mode Register 1 (044_H) Reset Value: Table 108

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PL	15	PD	15	PL	14	PD	14	PL	.13	PD	13	PL	.12	PE	012
r۱	W	r	W	r۱	W	r	W	r	W	r	W	r	W	r	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PL	11	PD11		PL10		PD10		PL9		PD9		PL8		PD8	
r۱	W	n	W	r۱	W	r	W	r	W	r	W	r	W	r	W

Field	Bits	Туре	Description
PDx (x=8-15)	4*x-31:4*x- 32	rw	Pad Driver Mode for Pin x
PLx (x=8-15)	4*x-29:4*x- 30	rw	Pad Level Selection for Pin x

Table 107 Access Mode Restrictions sorted by descending priority

Applies to P00_PDR1
Applies to P11_PDR1
Applies to P20_PDR1

Applies to P33_PDR1

Mode Name	Acces	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDx (x=8-15), PLx (x=8-15)	write access for enabled masters
Otherwise (default)	r	PDx (x=8-15), PLx (x=8-15)	

Table 108 Reset Values

Applies to P00_PDR1

Applies to P11_PDR1

Applies to P20_PDR1

Applies to P33_PDR1

Reset Type	Reset Value	Note
After SSW execution	2222 2222 _H	Initial value in largest package
After SSW execution	н	Initial value package dependent

P02_P	DR1																
Port 02	2 Pad D	river M	lode R	egister	1		(044	(044 _H)					Reset Value: Table 110				
P10_P	DR1																
Port 10	D Pad D	river M	lode R	egister	1		(044	н)				Reset Value: Table 110					
P14_P																	
Port 14		river M	lode R	egister	1		(044	Ή)				Reset Value: Table 110					
P15_P					_			,				_					
Port 15		river M	lode R	egister	1		(044	Ή)			Reset Value: Table 110						
P40_P		wis on N	lada D	:-+-			/044	,				D.	+ V-I	luas Tal	hla 111		
Port 40) Pad D	river iv	ioae R	egister	1		(044	(044 _H)					Reset Value: Table 111				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	())			()			•	0				0			
		r				٢				r				r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
PL	.11	PD	11	PL	10	PE	10	P	L9	P	D 9	P	L8	P	D8		
r	W	n	N	r	W	r	W	r	W	r	W	r	W	r	W		

Field	Bits	Туре	Description
PDx (x=8-11)	4*x-31:4*x- 32	rw	Pad Driver Mode for Pin x
PLx (x=8-11)	4*x-29:4*x- 30	rw	Pad Level Selection for Pin x
0	31:28, 27:24, 23:20, 19:16	r	Reserved Read as 0; should be written with 0.

Table 109 Access Mode Restrictions sorted by descending priority

Applies to P02_PDR1 Applies to P10_PDR1 Applies to P14_PDR1 Applies to P15_PDR1 Applies to P40_PDR1

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDx (x=8-11), PLx (x=8-11)	write access for enabled masters				
Otherwise (default)	r	PDx (x=8-11), PLx (x=8-11)					

Table 110 Reset Values variant 1

Applies to P02_PDR1 Applies to P10_PDR1 Applies to P14_PDR1

Applies to P15_PDR1

Reset Type	Reset Value	Note
After SSW execution	0000 2222 _H	Initial value in largest package
After SSW execution	0000н	Initial value package dependent

Table 111 Reset Values of P40_PDR1

Reset Type	Reset Value	Note
After SSW execution	0000 0000 _H	Initial value in largest package
After SSW execution	0000н	Initial value package dependent

Port 00 Emergency Stop Register

	P00_ESR Port 00 Emergency Stop Register P11_ESR Port 11 Emergency Stop Register P20_ESR Port 20 Emergency Stop Register								_н)		Application Reset Value: 0000 0000 _H						
	Port 20) Emer	gency	Stop R	egister			(050	н)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
)								
٠									r								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	EN15	EN14	EN13	EN12	EN11	EN10	EN9	EN8	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
ENx (x=0-15)	х	rw	Emergency Stop Enable for Pin x This bit enables the emergency stop function for all GPIO lines. If the emergency stop condition is met and enabled, the output selection is automatically switched from alternate output function to GPIO input function. O _B Emergency stop function for Pn.x is disabled. 1 _B Emergency stop function for Pn.x is enabled.
0	31:16	r	Reserved Read as 0; should be written with 0.

Table 112 Access Mode Restrictions sorted by descending priority

Applies to P00_ESR Applies to P11_ESR Applies to P20_ESR

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	ENx (x=0-15)	write access for enabled masters
Otherwise (default)	r	ENx (x=0-15)	

Most GPIO lines have an emergency stop logic implemented (see Figure "General Structure of a Port Pin" in the Family chapter).

Each of these GPIO lines has its own emergency stop enable bit ENx that is located in the emergency stop register Pn_ESR of Port n. If the emergency stop signal becomes active, one of two states can be selected:

- Emergency stop function disabled (ENx = 0):
 The output line remains connected (alternate function).
- Emergency stop function enabled (ENx = 1):

The mapped output function is disconnected and the safe state is entered by switching to input function with internal pull-up connected or tri-state, depending on the configured reset value of the corresponding Pn_IOCR register through PMSWCR5.TRISTREQ or setting of HWCFG[6].(the content of the corresponding PCx bit fields in register Pn_IOCR will not be considered).

Exceptions for Emergency Stop Implementation

The Emergency Stop function is available for all GPIO Ports with the following exceptions:

- Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
- Not available for P40.x and P41.x (analog input ANx overlayed with GPI)
- Not available for P32.0 and P32.1 when using EVRC regulator.
- Not available for P21.2 (used as EMGSTOPB pin).
- Not available for P33.8 (used as EMGSTOPA pin).
- Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)

The Emergency Stop function can be overruled on the following GPIO Ports:

- P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
 P00_PCSR.
- P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL (DAP over CAN physical layer) mode. No
 Overruling in the DXCM (Debug over can message) mode
- P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
- P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode.
- P33.0-7, P33.9-15 and P34.1: Emergency Stop can be overruled by the 8-Bit Standby Controller (SCR), if implemented. Overruling can be disabled via the control register P33_PCSR and P34_PCSR.

On pins with LVDS TX pads the Emergency Stop affects only the CMOS driver not the LVDS driver. Thus only when LPCRx.TX_EN selects CMOS mode the output is switched off. When TX_EN selects LVDS mode the output is not switched off.

P02_E	SR														
Port 02	2 Emer	gency	Stop R	egister			(050	н)		Application Reset Value: 0000 0000 _H					
P10_E															
Port 10 Emergency Stop Register							(050	н)		Application Reset Value: 0000 0000 _H					
P14_E										_		_			
	4 Emer	gency	Stop R	egister			(050	н)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
P15_E		5000 1	Stan D	o aistor			/OEO	,		Application Reset Values 0000 0000					
POILT	5 Emer	gency	Stop R	egister		(050 _H)				Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	ı	ı	'	'		•))				ı	ı	ı	'
	I	1	1	I			1	ı	I	I	I	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	EN11	EN10	EN9	EN8	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO
r	r	r	r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Type	Description
ENx (x=0-11)	х	rw	Emergency Stop Enable for Pin x This bit enables the emergency stop function for all GPIO lines. If the emergency stop condition is met and enabled, the output selection is automatically switched from alternate output function to GPIO input function. O _B Emergency stop function for Pn.x is disabled. 1 _B Emergency stop function for Pn.x is enabled.
0	15, 14, 13, 12, 31:16	r	Reserved Read as 0; should be written with 0.

Table 113 Access Mode Restrictions sorted by descending priority

Applies to P02_ESR Applies to P10_ESR Applies to P14_ESR Applies to P15_ESR

Mode Name	Acce	ss Mode	Description			
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	ENx (x=0-11)	write access for enabled masters			
Otherwise (default)	r	ENx (x=0-11)				

P13_ESR Port 13 Emergency Stop Register P34_ESR									н)		Application Reset Value: 0000 0000 _H						
	Port 34		gency	Stop R	egister			(050	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								())								
		I	I						r		I						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	0	0	0	0	0	EN3	EN2	EN1	ENO	
	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	rw	rw	

Field	Bits	Туре	Description
ENx (x=0-3)	х	rw	Emergency Stop Enable for Pin x This bit enables the emergency stop function for all GPIO lines. If the emergency stop condition is met and enabled, the output selection is automatically switched from alternate output function to GPIO input function. O _B Emergency stop function for Pn.x is disabled. 1 _B Emergency stop function for Pn.x is enabled.
0	15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 31:16	r	Reserved Read as 0; should be written with 0.

Table 114 Access Mode Restrictions sorted by descending priority

Applies to P13_ESR Applies to P34_ESR

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	ENx (x=0-3)	write access for enabled masters				
Otherwise (default)	r	ENx (x=0-3)					

P21	FSR
$\mathbf{F}\mathbf{Z}\mathbf{I}$	LJN

Port 2	1 Emer	gency	Stop R	egister			(050) _H)		Ар	plicatio	on Rese	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	ļ.	i		Į.	!	'	0	Į.	ļ.	Į.	'		i.	
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	EN7	EN6	EN5	EN4	EN3	0	EN1	ENO
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw	r	rw	rw

Field	Bits	Туре	Description					
ENx (x=0-1,3-	х	rw	Emergency Stop Enable for Pin x					
7)			This bit enables the emergency stop function for all GPIO lines. If the emergency stop condition is met and enabled, the output selection is automatically switched from alternate output function to GPIO input function. 0 _B Emergency stop function for Pn.x is disabled. 1 _B Emergency stop function for Pn.x is enabled.					
0	15, 14, 13, 12, 11, 10, 9,	r	Reserved Read as 0; should be written with 0.					
	8, 2, 31:16							

Table 115 Access Mode Restrictions of P21_ESR sorted by descending priority

Mode Name	Acce	ss Mode	Description			
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	ENx (x=0-1,3-7)	write access for enabled masters			
Otherwise (default)	r	ENx (x=0-1,3-7)				

P22_E Port 2 P23_E	2 Emer	gency	Stop R	egister			(050) _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
Port 2 P32_E	3 Emer SR	gency	Stop R	egister	•		(050) _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
Port 3	2 Emer	gency	Stop R	egister	•		(050) _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
1		1						r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
ENx (x=0-7)	x	rw	Emergency Stop Enable for Pin x This bit enables the emergency stop function for all GPIO lines. If the emergency stop condition is met and enabled, the output selection is automatically switched from alternate output function to GPIO input function. O _B Emergency stop function for Pn.x is disabled. 1 _B Emergency stop function for Pn.x is enabled.
0	15, 14, 13, 12, 11, 10, 9, 8, 31:16	r	Reserved Read as 0; should be written with 0.

Table 116 Access Mode Restrictions sorted by descending priority

Applies to P22_ESR Applies to P23_ESR Applies to P32_ESR

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	ENx (x=0-7)	write access for enabled masters
Otherwise (default)	r	ENx (x=0-7)	

P33	ESR

Port 33	3 Emer	gency	Stop R	egister			(050	н)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ļ	Į.	ļ	!	! !	<u>'</u>	(0	!	Į.	Į.			Į.	'
	1	I	1		11			r		I	I			I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EN15	EN14	EN13	EN12	EN11	EN10	EN9	0	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO
rw	rw	rw	rw	rw	rw	rw	r	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description						
ENx (x=0-7,9-	х	rw	Emergency Stop Enable for Pin x						
15)			This bit enables the emergency stop function for all GPIO lines. If the emergency stop condition is met and enabled, the output selection is automatically switched from alternate output function to GPIO input						
			function.						
			0 _B Emergency stop function for Pn.x is disabled.						
			1 _B Emergency stop function for Pn.x is enabled.						
0	8,	r	Reserved						
	31:16		Read as 0; should be written with 0.						

Table 117 Access Mode Restrictions of P33_ESR sorted by descending priority

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	ENx (x=0-7,9-15)	write access for enabled masters
Otherwise (default)	r	ENx (x=0-7,9-15)	

P40_ESR

Port 40	Emer	gency	Stop R	egister			(050	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	'		1	1			D		1	1		1		'
	1	1	1	<u> </u>	<u> </u>	1	1	r	1	<u> </u>	<u> </u>	1	<u> </u>	1	<u> </u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Field	Bits	Type	Description
0	15, 14, 13,	r	Reserved
	12, 11, 10, 9,		Read as 0; should be written with 0.
	8, 7, 6, 5, 4,		
	3, 2, 1, 0,		
	31:16		

Table 118 Access Mode Restrictions of P40_ESR sorted by descending priority

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN and Supervisor Mode and ENDINIT	-	See bit field definitions above	write access for enabled masters
Otherwise (default)	-	See bit field definitions above	

Port 00 Pin Function Decision Control Register

The pad structure of the GPIO lines offers the possibility to disable/enable port pad, select digital input or analog ADC input functionalities. Note that Class S pads have different characteristics than other digital input pads. For analog inputs, setting PDISx to 1 disables the Schmitt trigger input buffer, which would otherwise reduce analog input accuracy. For the ADC diagnostic features "PDD" and "MD" however the corresponding PDISx needs to be 0 to allow activation of their pull resistors. This feature can be controlled by individual bits in the Pn_PDISC register, independently from input/output and pull-up/pull-down control functionality as programmed in the Pn_IOCR register. One Pn_PDISC register is assigned to each port.

Note:

After reset, all Px_PDISC registers have the reset value of 0000 0000_H. The startup software enables only the pads with digital input/output functionality which are available in that package. P40_PDISC and P41_PDISC are configured by the SSW for analog input function (kept disabled). The documented reset value shows the value in the largest package.

P00_P Port 00 P11_P Port 11 P20_P Port 20 P33_P	0 Pin Fo DISC 1 Pin Fo DISC 0 Pin Fo	unctior	n Decisi	ion Coı	ntrol Ro	egister	(060	н)				Re	set Val	ue: Tal	ole 120 ole 120 ole 120
Port 33	3 Pin F	unctior	n Decisi	ion Coı	ntrol R	egister	(060	н)				Re	set Val	ue: Tal	ble 120
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	ı	ı	1	ı	' ') D	1	1	1	1	ı	1	
•			•	•		•		r					•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
5	4	PDIS1	2	1	0									PDIS1	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
PDISx (x=0- 15)	x	rw	Pin Function Decision Control for Pin x This bit selects the function of the port pad. O _B Digital functionality of pad Pn.x is enabled. 1 _B Digital functionality (including pull resistors) of pad Pn.x is disabled. Analog input function (where this is available) can be used.
0	31:16	r	Reserved Read as 0; should be written with 0.

Table 119 Access Mode Restrictions sorted by descending priority

Applies to P00_PDISC Applies to P11_PDISC Applies to P20_PDISC Applies to P33_PDISC

Mode Name	Acce	ss Mode	Description					
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDISx (x=0-15)	write access for enabled masters					
Otherwise (default)	r	PDISx (x=0-15)						

Table 120 Reset Values

Applies to P00_PDISC Applies to P11_PDISC Applies to P20_PDISC Applies to P33_PDISC

Reset Type	Reset Value	Note						
After SSW execution	0000 0000 _H	Initial value in largest package						
After SSW execution	0000н	Initial value package dependent						

P02_PDISC Reset Value: Table 122 Port 02 Pin Function Decision Control Register (060_H) P10_PDISC Port 10 Pin Function Decision Control Register (060_H) Reset Value: Table 122 P14 PDISC Port 14 Pin Function Decision Control Register (060_H) Reset Value: Table 122 P15 PDISC Port 15 Pin Function Decision Control Register (060_H) Reset Value: Table 122 P40_PDISC **Port 40 Pin Function Decision Control Register Reset Value: Table 123** 31 30 29 25 28 27 26 24 23 22 21 20 19 18 17 16 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 PDIS1 PDIS1 PDIS9 PDIS8 PDIS7 PDIS6 PDIS5 PDIS4 PDIS3 PDIS2 PDIS1 PDIS0 0 0 0 0 0 1 rw rw rw rw rw rw rw rw rw rw rw

Field	Bits	Туре	Description
PDISx (x=0-	х	rw	Pin Function Decision Control for Pin x
11)			This bit selects the function of the port pad.
			O _B Digital functionality of pad Pn.x is enabled.
			1 _B Digital functionality (including pull resistors) of pad Pn.x is
			disabled. Analog input function (where this is available) can be
			used.
0	15, 14, 13,	r	Reserved
	12,		Read as 0; should be written with 0.
	31:16		

Table 121 Access Mode Restrictions sorted by descending priority

Applies to P02_PDISC Applies to P10_PDISC Applies to P14_PDISC Applies to P15_PDISC Applies to P40_PDISC

Mode Name	Acce	ss Mode	Description					
Master enabled in ACCEN and ENDINIT	rw	PDISx (x=0-11)	write access for enabled masters					
Otherwise (default)	r	PDISx (x=0-11)						

Reset Value: Table 125

General Purpose I/O Ports and Peripheral I/O Lines (Ports)

Table 122 Reset Values variant 1

Applies to P02_PDISC
Applies to P10_PDISC

Applies to P14_PDISC

Applies to P15_PDISC

Reset Type	Reset Value	Note
After SSW execution	0000 0000 _H	Initial value in largest package
After SSW execution	0000 0н	Initial value package dependent

Table 123 Reset Values of P40_PDISC

Reset Type	Reset Value	Note
After SSW execution	0000 0FFF _H	Initial value in largest package
After SSW execution	0000 0н	Initial value package dependent

P13_PDISC

Port 13 Pin Function Decision Control Register (060_H)

P34_PDISC Port 34 Pin Function Decision Control Register									н)				Re	set Val	ue: Tal	ble 125
3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								(0							
			I	11	11	11			r	I	11		1		11	1
1	.5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(0	0	0	0	0	0	0	0	0	0	0	0	PDIS3	PDIS2	PDIS1	PDIS0
1	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	rw	rw

Field	Bits	Туре	Description					
PDISx (x=0-3)	х	rw	Pin Function Decision Control for Pin x This bit selects the function of the port pad. O _B Digital functionality of pad Pn.x is enabled. 1 _B Digital functionality (including pull resistors) of pad Pn.x is disabled. Analog input function (where this is available) can be used.					
0	15, 14, 13, r 12, 11, 10, 9, 8, 7, 6, 5, 4, 31:16	r	Reserved Read as 0; should be written with 0.					

Table 124 Access Mode Restrictions sorted by descending priority

Applies to P13_PDISC Applies to P34_PDISC

Mode Name	Acce	ss Mode	Description						
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDISx (x=0-3)	write access for enabled masters						
Otherwise (default)	r	PDISx (x=0-3)							

Table 125 Reset Values

Applies to P13_PDISC Applies to P34_PDISC

Reset Type	Reset Value	Note
After SSW execution	0000 0000 _H	Initial value in largest package
After SSW execution	0000 000- _H	Initial value package dependent

P21_PDISC Port 21 Pin Function Decision Control Register $(060_{\rm H})$

Reset Value: Table 127

P22_PDISC

Port 22 Pin Function Decision Control Register (060_H)

Reset Value: Table 127

P23_PDISC

Port 23 Pin Function Decision Control Register (060_H)

Reset Value: Table 127

P32_PDISC

Port 32 Pin Function Decision Control Register (060_H) Reset Value: Table 127

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	Ī	Į.	Ī	Į.	I	1	n	Ţ	ı	1	ı	Ī	Ī	
	ı	i	i	i	i	i	'	J	1	ı	ı	ı	i	i	1
•	•	•	•		•	•	•	r	•	•	•	•	•		

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	0	0	0	0	0	0	0	0	PDIS7	PDIS6	PDIS5	PDIS4	PDIS3	PDIS2	PDIS1	PDIS0
	r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description						
PDISx (x=0-7)	х	rw	Pin Function Decision Control for Pin x						
			This bit selects the function of the port pad.						
			0 _B Digital functionality of pad Pn.x is enabled.						
			1 _B Digital functionality (including pull resistors) of pad Pn.x is						
			disabled. Analog input function (where this is available) can be used.						

Field	Bits	Туре	Description
0	15, 14, 13,	r	Reserved
	12, 11, 10, 9,		Read as 0; should be written with 0.
	8,		
	31:16		

Table 126 Access Mode Restrictions sorted by descending priority

Applies to P21_PDISC Applies to P22_PDISC Applies to P23_PDISC Applies to P32_PDISC

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PDISx (x=0-7)	write access for enabled masters				
Otherwise (default)	r	PDISx (x=0-7)					

Table 127 Reset Values

Applies to P21_PDISC Applies to P22_PDISC Applies to P23_PDISC Applies to P32_PDISC

Reset Type	Reset Value	Note
After SSW execution	0000 0000 _H	Initial value in largest package
After SSW execution	0000 00н	Initial value package dependent

Port 00 Pin Controller Select Register

This register has different functionality in each port:

- In Ports shared with the standby controller (SCR) it selects if the SCR or the Tricore system control data and control functions of these port lines.
- In Ports with analog inputs to the EVADC it enables control of pull by the EVADC for the Pull Down Diagnostics (PDD) / Multiplexer Diagnostics (MD) feature.
- In Ports with Ethernet output it selects between alternate output and fast RGMII/RMII/MII mode.
- In Ports with SMU FSP pin (P33.8) the PCSR.SEL bit enables the SMU to override pad configuration signals.
 Therefore this bit has the reset value 1_B and shall be kept 1_B by the application. The SMU override is documented in the SMU chapter (see SMU_PCTL.PCFG and Figure "SMU/PAD Control Interface to the PADs").

P00_PCSR Port 00 Pin Controller Select Register P11_PCSR Port 11 Pin Controller Select Register P20_PCSR Port 20 Pin Controller Select Register							(064 (064 (064	н)		Ар	plicatio	on Res	et Valu	e: 0000	00000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0		ı	ı	ı	ı	l	ı	0	I	I	I	I	l	I	ı
r					1			r	I				1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	RO
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Type	Description
Rx (x=0-15)	х	rw	Reserved
			Read as 0; should be written with 0.
0	30:16,	r	Reserved
	31		Read as 0; should be written with 0.

Table 128 Access Mode Restrictions sorted by descending priority

Applies to P00_PCSR Applies to P11_PCSR Applies to P20_PCSR

Mode Name	Acce	ss Mode	Description				
Supervisor Mode and Safety ENDINIT	r	Rx (x=0-15)	write access only for masters with supervisor mode				
Otherwise (default) r Rx		Rx (x=0-15)					

P02_P	P02_PCSR																
Port 02	2 Pin C	ontroll	er Sele	ct Reg	ister		(064	(064 _H) Application Reset Value: 0000 000					0000 _H				
P10_P	CSR																
Port 10	Pin C	ontroll	er Sele	ct Reg	ister		(064	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
P14_PCSR																	
Port 14	4 Pin C	ontroll	er Sele	ct Reg	ister		(064	(064 _H) Applicat					cation Reset Value: 0000 0000 _H				
P15_P	CSR																
Port 15	5 Pin C	ontroll	er Sele	ct Reg	ister		(064	н)		Application Reset Value: 0000 0000 _H							
P40_P																	
Port 40) Pin C	ontroll	er Sele	ct Reg	ister		(064	н)		Application Reset Value: 0000 0000 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0		•	1	•	1		'	0	1	1	1		1	'	'		
r		İ	İ	İ	İ	<u> </u>	İ	r	İ	İ	İ	<u>l</u>	İ	İ	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	0	0	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	RO		
r	r	r	r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Туре	Description
Rx (x=0-11)	Х	rw	Reserved
			Read as 0; should be written with 0.
0	15, 14, 13,	r	Reserved
	12,		Read as 0; should be written with 0.
	30:16,		
	31		

Table 129 Access Mode Restrictions sorted by descending priority

Applies to P02_PCSR Applies to P10_PCSR Applies to P14_PCSR

Applies to P15_PCSR

Applies to P40_PCSR

Mode Name	Acces	ss Mode	Description					
Supervisor Mode and Safety ENDINIT	r	Rx (x=0-11)	write access only for masters with supervisor mode					
Otherwise (default)	r	Rx (x=0-11)						

	Port 13	3 Pin Co	ontroll	er Sele	ct Reg	ister		(064 _H) Application Reset Value: 000				e: 0000	0000 _H			
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0			·	ı		·	I	0	·	·	·	ı	I	I	
j	r								r							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	R3	R2	R1	RO
	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	rw	rw

Field	Bits	Туре	Description					
Rx (x=0-3) x r		rw	Reserved					
			Read as 0; should be written with 0.					
0	15, 14, 13,	r	Reserved					
	12, 11, 10, 9,		Read as 0; should be written with 0.					
	8, 7, 6, 5, 4,							
	30:16,							
	31							

Table 130 Access Mode Restrictions of P13_PCSR sorted by descending priority

Mode Name	Acce	ss Mode	Description				
Supervisor Mode and Safety ENDINIT	r	Rx (x=0-3)	write access only for masters with supervisor mode				
Otherwise (default)	r	Rx (x=0-3)					

Port 21 Pin Controller Select Register P22_PCSR								_н)		Application Reset Value: 0000 0000 _H						
Port 22 Pin Controller Select Register P23_PCSR							(064	н)		Application Reset Value: 0000 0000 _H						
Port 23 Pin Controller Select Register P32 PCSR							(064 _H)				Application Reset Value: 0000 0000 _H					
_		R in Controller Select Register					(064	_н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0								0								
r				I.	I.		I.	r								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	R7	R6	R5	R4	R3	R2	R1	RO	
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
Rx (x=0-7)	X	rw	Reserved Read as 0; should be written with 0.
0	15, 14, 13, 12, 11, 10, 9, 8, 30:16, 31	r	Reserved Read as 0; should be written with 0.

Table 131 Access Mode Restrictions sorted by descending priority

Applies to P21_PCSR Applies to P22_PCSR Applies to P23_PCSR Applies to P32_PCSR

Mode Name Access Mo		ss Mode	Description					
Supervisor Mode	r	Rx (x=0-7)	write access only for masters with supervisor mode					
and Safety ENDINIT								
Otherwise (default)	r	Rx (x=0-7)						

P33_PCSR

Port 33	ort 33 Pin Controller Select Register						(064 _H)				Application Reset Value: 0000 0100 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LCK								0							
rh	II.	I	I				I	r	I		II.			l	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SEL15	SEL14	SEL13	SEL12	SEL11	SEL10	SEL9	SEL8	SEL7	SEL6	SEL5	SEL4	SEL3	SEL2	SEL1	SELO
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
SELx (x=0-7,9- 15)	х	rw	Output Select for Pin x This bit enables or disables SCR control. O _B Tricore selected for data and control of pin x and not SCR. 1 _B SCR selected for data and control of pin x.
SELx (x=8)	х	rw	Output Select for Pin x This bit enables or disables SMU to override pad configuration. O _B Disable SMU override of pad configuration for FSP pin x. 1 _B Enable SMU to override pad configuration for FSP pin x.

Field	Bits	Туре	Description
LCK	31	rh	Lock Status This bit indicates if the register can be updated with a new value or if the register is locked due to an ongoing transfer to the SCR and a write action from the bus has no effect. In Ports without SCR overlay this bit is always 0 _B . 0 _B The register is unlocked and can be updated. 1 _B The register is locked (a write transfer to SCR is ongoing) and can not be updated.
0	30:16	r	Reserved Read as 0; should be written with 0.

Table 132 Access Mode Restrictions of P33_PCSR sorted by descending priority

Mode Name	Acce	ss Mode	Description
Supervisor Mode	rh	LCK	write access only for masters with supervisor mode
and Safety ENDINIT	rw	SELx (x=0-7,9-15), SELx (x=8)	
Otherwise (default)	r	SELx (x=0-7,9-15), SELx (x=8)	
	rh	LCK	

P34_PCSR

Port 34	ort 34 Pin Controller Select Register							н)		Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LCK								0							
rh	I.	I						r	I.	I			I.		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	R3	R2	SEL1	RO
r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	rw	rw

Field	Bits	Туре	Description
SELx (x=1)	х	rw	Output Select for Pin x This bit enables or disables SCR control. O _B Tricore selected for data and control of pin x and not SCR. 1 _B SCR selected for data and control of pin x.
Rx (x=0,2-3)	х	rw	Reserved Read as 0; should be written with 0.
LCK	31	rh	Lock Status This bit indicates if the register can be updated with a new value or if the register is locked due to an ongoing transfer to the SCR and a write action from the bus has no effect. In Ports without SCR overlay this bit is always 0 _B . 0 _B The register is unlocked and can be updated. 1 _B The register is locked (a write transfer to SCR is ongoing) and can not be updated.

AURIX™ TC33x/TC32x

General Purpose I/O Ports and Peripheral I/O Lines (Ports)

Field	Bits	Туре	Description
0	15, 14, 13,	r	Reserved
	12, 11, 10, 9,		Read as 0; should be written with 0.
	8, 7, 6, 5, 4,		
	30:16		

Table 133 Access Mode Restrictions of P34_PCSR sorted by descending priority

Mode Name	Acce	ss Mode	Description						
Supervisor Mode	r	Rx (x=0,2-3)	write access only for masters with supervisor mode						
and Safety ENDINIT	T rh LCK								
	rw	SELx (x=1)							
Otherwise (default)	r	Rx (x=0,2-3), SELx (x=1)							
	rh	LCK							

Port 00 Output Modification Set Register 0

The port output modification set register x, (x = 0, 4, 8, 12) contains control bits to individually set the logic state of a single port line by manipulating the output register.

Note:

Registers Pn_OMSRx (x = 0, 4, 8, 12) are virtual and does not contain any flip-flop. A read action delivers the value of 0. One 8 or 16-bits write behaves as a 32-bit write padded with zeros.

Register Pn_OMSR0 sets the logic state of Pn.[3:0] port lines

P00_OM	SR0															
Port 00 C	-	ıt Mod	ificatio	n Set I	Registe	r O	(070	н)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H	
PO2_OMS		ıt Madi	ificatio	n Cat I) o mint o	- A	(070			Application Reset Value: 0000 0						
Port 02 0 P10_OMS	-	it Mou	ilicatio	ni set i	kegiste	er U	(070	н)		Aþ	pucau	on kes	et vatu	e: 0000	OUUUH	
Port 10 Output Modification Set Register 0								н)		Αp	plicati	on Res	et Valu	e: 0000	0000 _H	
P11_OMSR0								п,		•						
Port 11 Output Modification Set Register 0								н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
P13_OMSR0																
Port 13 Output Modification Set Register 0								н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
P14_OMSR0								н)		Λn	nlicati	on Bos	ot Valu	۰۰ ۵۵۵۵	0000 _H	
Port 14 Output Modification Set Register 0 P15_OMSR0								Η/		Aþ	pucau	UII KES	et vatu	e. 0000	OUUUH	
Port 15 (ıt Modi	ificatio	n Set F	Registe	r O	(070	")	Application Reset Value: 0000 0000						0000	
P20_OM	-				J											
Port 20 C	•	ıt Mod	ificatio	n Set F	Registe	r O	(070 _H) Applica					tion Reset Value: 0000 0000 _H				
P21_OM		_									Application Reset Value: 0000 0000 _H					
Port 21 0	•	ıt Mod	ificatio	n Set I	Registe	er O	(070	(070 _H) Ap				on Res	et Valu	e: 0000	0000 _H	
P22_OMS Port 22 C		ıt Modi	ificatio	n Set I	Pagista	r O	(070	(070 _H) Application Reset Value						۰ ۵۵۵۲	0000	
	_				•		-			-	-				••	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							(0								
							<u> </u>	r	1	1	1	1	<u>I</u>	<u> </u>		
15 14 13 12 11 10 9							8	7	6	5	4	3	2	1	0	
	'		!	ı	•	D	ı		ı		ı	PS3	PS2	PS1	PS0	
<u> </u>			I	l	1	r	!	1	1	1	1	w0	w0	w0	w0	

Field	Bits	Туре	Description
PSx (x=0-3)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	31:4	r	Reserved Read as 0; should be written with 0.

Table 134 Access Mode Restrictions sorted by descending priority

Applies to P00_OMSR0

Applies to P02_OMSR0

Applies to P10_OMSR0

Applies to P11_OMSR0

Applies to P13_OMSR0

Applies to P14_OMSR0

Applies to P15_OMSR0

Applies to P20_OMSR0

Applies to P21_OMSR0

Applies to P22_OMSR0

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PSx (x=0-3)	write access for enabled masters
Otherwise (default)	r0	PSx (x=0-3)	

P23_0	MSR0																
Port 23	3 Outp	ut Mod	ificatio	n Set F	Registe	r O	(070	н)	Application Reset Value: 0000 000								
P32_0	MSR0																
Port 3	2 Outp	ut Mod	ificatio	n Set F	Registe	r O	(070	н)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H		
P33_0																	
	Port 33 Output Modification Set Register 0							(070 _H) Application Rese						et Value: 0000 0000 _H			
P34_OMSR0							/070										
Port 34 Output Modification Set Register 0 P40_OMSR0						(070	(070 _H) Application Reset Value						e: 0000	:: 0000 0000 _H			
_	мэко 0 Outpi	ut Mad	ificatio	n Sat I	Dogista	ν O	/070	. 1		۸n	nlicati	on Bos	ot Valu	۰۰ <u>۸۸۸</u> ۲	0000		
POIL 4	o Outpi	ис моа	IIICatic	ni set i	kegiste	er U	(070	н)		Application Reset Value: 0000 0000 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
								0									
	1	I.		I.	I.			r	I.					I.			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0											PS3	PS2	PS1	PS0			
	1	<u> </u>	I	1	I .	r	1	1	1	I	l .	w0	w0	w0	w0		

Field	Bits	Туре	Description
PSx (x=0-3)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	31:4	r	Reserved Read as 0; should be written with 0.

Table 135 Access Mode Restrictions sorted by descending priority

Applies to P23_OMSR0
Applies to P32_OMSR0

Applies to P33_OMSR0

Applies to P34_OMSR0

Applies to P40_OMSR0

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0 PSx (x=0-3)		write access for enabled masters
Otherwise (default)	r0	PSx (x=0-3)	

Port 00 Output Modification Set Register 4

Register Pn_OMSR4 sets the logic state of Pn.[7:4] port lines

P00_0	MSR4															
_	0 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	_H)		Ар	Application Reset Value: 0000 0000					
Port 0	2 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	н)		Ар	plication	on Res	et Valu	e: 0000	0000 _H	
	0 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	_H)		Ар	plication	on Rese	et Valu	e: 0000	0000 _H	
P11_OMSR4 Port 11 Output Modification Set Register 4								_H)		Ар	plication	on Rese	et Valu	e: 0000	0000 _H	
P14_OMSR4 Port 14 Output Modification Set Register 4								н)		Ар	plication	on Rese	et Valu	e: 0000	0000 _H	
P15_OMSR4 Port 15 Output Modification Set Register 4 P20_OMSR4								н)		Application Reset Value: 0000 0000						
Port 2	0 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	_H)		Ар	plication	on Rese	et Valu	e: 0000	0000 _H	
	1 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	_H)		Ар	plication	on Rese	et Valu	e: 0000	0000 _H	
	2 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	_H)		Ар	plication	on Rese	et Valu	e: 0000	0000 _H	
P23_0 Port 2	MSR4 3 Outp	ut Mod	ificatio	n Set F	Registe	r 4	(074	L)		Ap	plication	on Rese	et Valu	e: 0000	0000	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
)	T	T	I	T		T T		
								r	1	1	<u> </u>	1	<u> </u>	<u> </u>		
15 14 13 12 11 10 9								7	6	5	4	3	2	1	0	
			()	T		T	PS7	PS6	PS5	PS4		() D		
	+	1		r	I	<u> </u>	1	w0	w0	w0	w0	1	<u> </u>	r		

Field	Bits	Туре	Description
PSx (x=4-7)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	3:0, 31:8	r	Reserved Read as 0; should be written with 0.

Table 136 Access Mode Restrictions sorted by descending priority

Applies to P00_OMSR4

Applies to P02_OMSR4

Applies to P10_OMSR4

Applies to P11_OMSR4

Applies to P14_OMSR4

Applies to P15_OMSR4

Applies to P20_OMSR4
Applies to P21_OMSR4

Applies to 1 21_omsk4

Applies to P22_OMSR4

Applies to P23_OMSR4

Mode Name	Acce	ss Mode	Description
Master enabled in	w0	PSx (x=4-7)	write access for enabled masters
ACCEN			
Otherwise (default)	r0	PSx (x=4-7)	

P32_OMSR4 Port 32 Output Modification Set Register 4 P33_OMSR4 Port 33 Output Modification Set Register 4 P40_OMSR4 Port 40 Output Modification Set Register 4						(074	(074 _H) Application Reset Value: 0000 00 (074 _H) Application Reset Value: 0000 00 (074 _H) Application Reset Value: 0000 00						0000 _H			
								23	22	21	20	19	18	17	16	
31	JU	Z 3	20	Z1	20	ZJ	24	Z3				19	10	T 1	10	
								0								
		1	1	1	1	1	1	r	1	1	1	I	I	1		
15 14 13 12 11 10 9							8	7	6	5	4	3	2	1	0	
0								PS7	PS6	PS5	PS4		•	0		
1	II.	1	1	r	1	1	1	w0	w0	w0	w0	r				

Field	Bits	Туре	Description
PSx (x=4-7)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	3:0, 31:8	r	Reserved Read as 0; should be written with 0.

Table 137 Access Mode Restrictions sorted by descending priority

Applies to P32_OMSR4
Applies to P33_OMSR4
Applies to P40_OMSR4

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PSx (x=4-7)	write access for enabled masters
Otherwise (default)	r0	PSx (x=4-7)	

Port 00 Output Modification Set Register 8

Register Pn_OMSR8 sets the logic state of Pn.[11:8] port lines

P00_0																
Port 0	0 Outpu MSR8	ıt Mod	ificatio	n Set F	Registe	r 8	(078	(078 _H) Application Reset Value						ue: 0000 0000 _H		
	2 Outpu	ıt Mod	ificatio	n Set F	Registe	r 8	(078	н)		Ар	plication	on Res	et Valu	e: 0000	0 0000 _H	
Port 10 Output Modification Set Register 8 P11_OMSR8 Port 11 Output Modification Set Register 8 P14_OMSR8								н)		Ар	plication	on Res	et Valu	e: 0000	0 0000 _H	
								н)		Ар	plication	on Res	et Valu	e: 0000	0 0000 _H	
Port 14 Output Modification Set Register 8 P15_OMSR8								н)		Ар	plication	on Res	et Valu	e: 0000	0 0000 _H	
Port 15 Output Modification Set Register 8 P20_OMSR8							(078	н)		Ар	e: 0000	e: 0000 0000 _H				
	0 Outpu	ıt Mod	ificatio	n Set F	Registe	r 8	(078	н)		Application Reset Value: 0000 000						
_	3 Outpu	ıt Mod	ificatio	n Set F	Registe	r 8	(078	н)		Ар	plication	on Res	et Valu	e: 0000	0 0000 _H	
_	0 Outp	ıt Mod	ificatio	n Set F	Registe	r 8	(078	н)		Ар	plicati	on Res	et Valu	e: 0000	0 0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				1	1		C)	•	•	•	'	'			
	1	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	ı	-	<u>I</u>	Í	Í	1	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
						DCO	DCO		1		'	•		,	'	
	()		PS11	PS10	PS9	PS8				(0				

Field	Bits	Type	Description
PSx (x=8-11)	X	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	7:0, 31:12	r	Reserved Read as 0; should be written with 0.

Table 138 Access Mode Restrictions sorted by descending priority

Applies to P00_OMSR8

Applies to P02_OMSR8

Applies to P10_OMSR8

Applies to P11_OMSR8

Applies to P14_OMSR8

Applies to P15_OMSR8

Applies to P20_OMSR8

Applies to P33_OMSR8

Applies to P40_OMSR8

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PSx (x=8-11)	write access for enabled masters
Otherwise (default)	r0	PSx (x=8-11)	

Port 00 Output Modification Set Register 12

Register Pn_OMSR12 sets the logic state of Pn.[15:12] port lines

P00_OMSR12

	0 Outp		ificatio	n Set I	Registe	r 12	(07C	(_H)		Ар	plicati	on Res	et Valu	e: 0000	0 0000 _H		
Port 11 Output Modification Set Register 12 P20_OMSR12								. _H)		Application Reset Value: 0000 0000 _H							
Port 2	Port 20 Output Modification Set Register 12 P33_OMSR12							(_H)		Application Reset Value: 0000 0000 ₁							
			ificatio	n Set I	Registe	r 12	(070	: _H)		Ар	plicati	on Res	et Valu	e: 0000	0 0000 _H		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	Į.				1		'	0	·	I	!		!	!	'		
	I					1	I	r	I								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
PS15	PS14	PS13	PS12))							
w0	w0	w0	w0							r							

Field	Bits	Туре	Description
PSx (x=12-15)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	11:0, 31:16	r	Reserved Read as 0; should be written with 0.

Table 139 Access Mode Restrictions sorted by descending priority

Applies to P00 OMSR12 Applies to P11_OMSR12 Applies to P20_OMSR12 Applies to P33_OMSR12

POO OMCRO

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PSx (x=12-15)	write access for enabled masters
Otherwise (default)	r0	PSx (x=12-15)	

Port 00 Output Modification Clear Register 0

The port output modification clear register x, (x = 0, 4, 8, 12) contains control bits to individually clear the logic state of a single port line by manipulating the output register.

Note: Registers Pn_OMCRx (x = 0, 4, 8, 12) are virtual and does not contain any flip-flop. A read action delivers the value of 0. One 8 or 16-bits write behaves as a 32-bit write padded with zeros.

Register Pn_OMCR0 clears the logic state of Pn.[3:0] port lines

15							(0									
15								•		•	•	•					
15 14 13 12 11 10 9							8	7	6	5	4	3	2	1	0		
	1	1	1			r	1	1	I	1	I	w0	w0	w0	w0		
						0						PCL3	PCL2	PCL1	PCL0		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
_	2 Outp	ut Mod	ificatio	on Clea	r Regis	ter 0	(080)	н)	Application Reset Value: 000					e: 0000	0000 _H		
	1 Outp	ut Mod	ificatio	on Clea	r Regis	ter 0	(080)	н)	Application Reset Value: 0000 0000 _H Application Reset Value: 0000 0000 _H								
Port 2 P21_0	0 Outp	ut Mod	ificatio	n Clea	r Regis	ter 0	(080)	н)									
	Port 15 Output Modification Clear Register 0 P20_OMCR0							н)	Application Reset Value: 0000 0000								
Port 13 Output Modification Clear Register 0 P14_OMCR0 Port 14 Output Modification Clear Register 0 P15_OMCR0								(080 _H) Application Reset Value						e: 0000 0000 _H			
								н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
	1 Outp MCR0	ut Mod	ificatio	on Clea	r Regis	ter 0	(080)	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
Port 1 P11_0	0 Outp MCR0	ut Mod	ificatio	on Clea	r Regis	ter 0	(080)	н)		Ap	plicati	on Res	et Valu	e: 0000) 0000 _H		
P10_0							(080)				-				: 0000 0000 _H		
	MCR0			on Clea			(080)	••		Application Reset Value: 0000 000							
Port 0	() ()IITN																

Field	Bits	Type	Description
PCLx (x=0-3)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px
0	15:0, 31:20	r	Reserved Read as 0; should be written with 0.

Table 140 Access Mode Restrictions sorted by descending priority

Applies to P00_OMCR0

Applies to P02_OMCR0

Applies to P10_OMCR0

Applies to P11_OMCR0

Applies to P13_OMCR0

Applies to P14_OMCR0

Applies to P15_OMCR0

Applies to P20_OMCR0

Applies to P21_OMCR0

Applies to P22_OMCR0

Mode Name	Acce	ss Mode	Description
Master enabled in	w0	PCLx (x=0-3)	write access for enabled masters
ACCEN			
Otherwise (default)	r0	PCLx (x=0-3)	

P23_OMCR0 Port 23 Output Modification Clear Register 0 P32_OMCR0 Port 32 Output Modification Clear Register 0 P33_OMCR0 Port 33 Output Modification Clear Register 0 P34_OMCR0 Port 34 Output Modification Clear Register 0 P40_OMCR0 Port 40 Output Modification Clear Register 0						(080) (080) (080) (080)	н) н)	Application Reset Value: 0000 0000 Application Reset Value: 0000 0000 Application Reset Value: 0000 0000 Application Reset Value: 0000 0000 Application Reset Value: 0000 0000						00000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı					D		1	1	1		PCL3	PCL2	PCL1	PCL0
1	l					r						w0	w0	w0	w0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							')) r	· -	· -	· -		! 		

Field	Bits	Туре	Description
PCLx (x=0-3)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px
0	15:0, 31:20	r	Reserved Read as 0; should be written with 0.

Table 141 Access Mode Restrictions sorted by descending priority

Applies to P23_OMCR0

Applies to P32_OMCR0
Applies to P33_OMCR0

Applies to P34_OMCR0

Applies to P40_OMCR0

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN	w0	PCLx (x=0-3)	write access for enabled masters				
Otherwise (default)	r0	PCLx (x=0-3)					

Port 00 Output Modification Clear Register 4

Register Pn_OMCR4 clears the logic state of Pn.[7:4] port lines

P00_0	MCR4														
Port 0	O Outp	ut Mod	ificatio	on Clea	r Regis	ter 4	(084	¦ _Н)		Ар	plicatio	on Res	et Valu	ie: 0000	0000 _H
Port 02 Output Modification Clear Register 4 P10_OMCR4								_н)		Ар	plicatio	on Res	et Valu	ie: 0000	0000 _H
Port 10 Output Modification Clear Register 4 P11 OMCR4								_н)		Ар	plicatio	on Res	et Valu	ie: 0000	0000 _H
Port 11 Output Modification Clear Register 4 P14_OMCR4							(084	_н)		Ар	plicatio	on Res	et Valu	ie: 0000	0000 _H
Port 14 Output Modification Clear Register 4 P15_OMCR4							(084	_н)		Ар	plicatio	on Res	et Valu	ie: 0000	0000 _H
Port 15 Output Modification Clear Register 4 P20_OMCR4							(084	_н)		Ар	plicatio	on Res	et Valu	ie: 0000	0000 _H
Port 20 Output Modification Clear Register 4						ter 4	(084 _H) Application Reset Value: 0000 0000						0000 _H		
	1 Outp	ut Mod	ificatio	on Clea	r Regis	ter 4	(084 _H) Application Reset Value: 0000 0000						0000 _H		
	2 Outp	ut Mod	ificatio	on Clea	r Regis	ter 4	(084 _H) Application Reset Value: 0000 00					0000 _H			
P23_0 Port 23	мск4 3 Outp	ut Mod	ificatio	on Clea	r Regis	ter 4	(084 _H) Application Reset Value: 0000 000					0000 _H			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			(0				PCL7	PCL6	PCL5	CL5 PCL4 0				
				r				w0	w0	w0	w0			r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								0							
	1	ļ	ļ	1	1	1	1	r	ļ	ļ	1		1	1	

Field	Bits	Туре	Description
PCLx (x=4-7)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px
0	19:0, 31:24	r	Reserved Read as 0; should be written with 0

Table 142 Access Mode Restrictions sorted by descending priority

Applies to P00_OMCR4

Applies to P02_OMCR4

Applies to P10_OMCR4

Applies to P11_OMCR4

Applies to P14_OMCR4

Applies to P15_OMCR4

Applies to P20_OMCR4

Applies to P21_OMCR4

Applies to P22_OMCR4

Applies to P23_OMCR4

Mode Name Access Mode			Description				
Master enabled in ACCEN	w0	PCLx (x=4-7)	write access for enabled masters				
Otherwise (default)	r0	PCLx (x=4-7)					

P32_OMCR4

Port 32 Output Modification Clear Register 4 (084_H) Application Reset Value: 0000 0000_H

P33_OMCR4

Port 33 Output Modification Clear Register 4 (084_H) Application Reset Value: 0000 0000_H

P40_OMCR4

Port 40 Output Modification Clear Register 4 (084_H) Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	I	'	0	1	1	1	PCL7	PCL6	PCL5	PCL4		•	,)	I
	1	I	I	r	1	1	1	w0	w0	w0	w0		<u> </u>	r	I
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0														
	L	ı	ı	į.	į.	į.	L	r	1	ı	ı	İ	İ	l	ı

Field	Bits	Туре	Description
PCLx (x=4-7)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. O _B No operation
	10.0		1 _B Clears Pn_OUT.Px
0	19:0, 31:24	r	Reserved Read as 0; should be written with 0

Table 143 Access Mode Restrictions sorted by descending priority

Applies to P32_OMCR4
Applies to P40_OMCR4

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PCLx (x=4-7)	write access for enabled masters
Otherwise (default)	r0	PCLx (x=4-7)	

Port 00 Output Modification Clear Register 8

Register Pn_OMCR8 clears the logic state of Pn.[11:8] port lines

P00_0																
Port 00 P02_0	-	ut Mod	ificatio	on Clea	r Regis	ter 8	(088 _H)				Application Reset Value: 0000 0000 _H					
_		ut Mod	ificatio	n Clea	r Regis	ter 8	(088	_н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
P10_0		14	: : :+:-	n Clas	u Domin	. 0	/000	,		Λ	mlian d i	an Daa	a# \/a			
P11_0	-	ut Mou	ilicatio	on Clea	i Regis	ter 8	(088 ₁	н)		Aþ	pucau	on Kes	et vatu	e: 0000	0 0000 _H	
	-	ut Mod	ificatio	on Clea	r Regis	ter 8	(088	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
P14_0 Port 14		ut Mod	ificatio	on Clea	r Regis	ter 8	(088	.)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H	
P15_0	•			0.00			(000)	н,			P • •				н	
Port 15 Output Modification Clear Register 8							(088 ₁	H) Application Reset Value: 0000 000					0000 _H			
P20_0 Port 20		ut Mod	ificatio	on Clea	r Regis	ter 8	(088	.)	Application Reset Value: 0000 0000 _H					0000		
P33_0	-			0.00			(000)	17	,					н		
Port 33 P40_0	-	ut Mod	ificatio	on Clea	r Regis	ter 8	(088 ₁	(088 _H) Application Reset Value: 000					e: 0000	0000 _H		
		ut Mod	ificatio	on Clea	r Regis	ter 8	(088	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		0		PCL11	PCL10	PCL9	PCL8					0				
	1	r	I	w0	w0	w0	w0				1	r		1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							C)								
	1	1	1	1	<u> </u>		r		1	<u> </u>	1	1	1	1		

Field	Bits	Type	Description
PCLx (x=8-11)	x+16	w0	Clear Bit x
			Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0.
			0_B No operation1_B Clears Pn_OUT.Px

Field	Bits	Туре	Description
0	23:0,	r	Reserved
	31:28		Read as 0; should be written with 0

Table 144 Access Mode Restrictions sorted by descending priority

Applies to P00_OMCR8 Applies to P02 OMCR8 Applies to P10 OMCR8 Applies to P11_OMCR8 Applies to P14_OMCR8

Applies to P15 OMCR8

Applies to P20_OMCR8

Applies to P33_OMCR8

Applies to P40 OMCR8

Mode Name	Acce	ss Mode	Description				
Master enabled in	w0	PCLx (x=8-11)	write access for enabled masters				
ACCEN							
Otherwise (default)	r0	PCLx (x=8-11)					

Port 00 Output Modification Clear Register 12

Register Pn_OMCR12 clears the logic state of Pn.[15:12] port lines

P00 OMCR12

Port 00 Output Modification Clear Register 12 $(08C_{H})$ Application Reset Value: 0000 0000 ,

P11_OMCR12

Port 11 Output Modification Clear Register 12 $(08C_{H})$ Application Reset Value: 0000 0000_H

P20_OMCR12

Port 20 Output Modification Clear Register 12 $(08C_{H})$ Application Reset Value: 0000 0000_H

P33_OMCR12

Port 33 Output Modification Clear Register 12 $(08C_{H})$ Application Reset Value: 0000 0000 H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PCL15	PCL14	PCL13	PCL12		I	I	I	I	()	I	I	I	I	I
w0	w0	w0	w0		i	i	i	1	ı	,	i	<u> </u>	<u> </u>	i	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	T	I	1		ı	ı		n			ı	I	I	ı	
	1	Į.	1		<u> </u>	<u> </u>	ļ		1	1	<u> </u>	l .	Į.	<u> </u>	I
								r							

Field	Bits	Туре	Description
PCLx (x=12-	x+16	w0	Clear Bit x
15)			Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. $0_{\rm B}$ No operation $1_{\rm B}$ Clears Pn_OUT.Px

Field	Bits	Туре	Description
0	27:0	r	Reserved
			Read as 0; should be written with 0

Table 145 Access Mode Restrictions sorted by descending priority

Applies to P00_OMCR12 Applies to P11_OMCR12 Applies to P20_OMCR12

Applies to P33_OMCR12

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN	w0	PCLx (x=12-15)	write access for enabled masters				
Otherwise (default)	r0	PCLx (x=12-15)					

Port 00 Output Modification Set Register

The port output modification set register contains control bits that make it possible to individually set the logic state of a single port line by manipulating the output register.

Note:

Register Pn_OMSR is virtual and does not contain any flip-flop. A read action delivers the value of 0. One 8 or 16-bits write behaves as a 32-bit write padded with zeros.

	P00_0	MSR																
	Port 00 P11 0	•	ut Mod	ificatio	n Set F	Registe	r	(090	(090 _H) Applica					cation Reset Value: 0000 0000 _H				
	Port 1	1 Outp	ut Mod	ificatio	n Set F	Registe	r	(090	н)		Application Reset Value: 0000 0000 _H							
P20_OMSR Port 20 Output Modification Set Register P33_OMSR							r	(090 _H) Application Reset Value: 0000				0000 _H						
	Port 33	3 Outp	ut Mod	ificatio	n Set F	Registe	r	(090 _H) Application Reset Value: 00			e: 0000	0000 _H						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
									0									
						I			r					I	I			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	PS15	PS14	PS13	PS12	PS11	PS10	PS9	PS8	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0		
	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0		

Field	Bits	Туре	Description
PSx (x=0-15)	х	w0	Set Bit x
			Setting this bit will set the corresponding bit in the port output register
			Pn_OUT. Read as 0.
			0 _B No operation
			1 _B Sets Pn_OUT.Px

Field	Bits	Туре	Description				
0	31:16	r	Reserved				
			Read as 0; should be written with 0.				

Table 146 Access Mode Restrictions sorted by descending priority

PSx (x=0-15)

Applies to P00_OMSR Applies to P11_OMSR Applies to P20_OMSR Applies to P33_OMSR

Otherwise (default) r0

	. It is a second of the second											
Mode Name	Acce	ess Mode	Description									
Master enabled in	w0	PSx (x=0-15)	write access for enabled masters									
ACCEN												

P02_OMSR (090_{H}) **Port 02 Output Modification Set Register** Application Reset Value: 0000 0000 L P10_OMSR **Port 10 Output Modification Set Register** (090_{H}) Application Reset Value: 0000 0000_H P14 OMSR **Port 14 Output Modification Set Register** Application Reset Value: 0000 0000 , (090_{H}) P15 OMSR **Port 15 Output Modification Set Register** (090_{H}) Application Reset Value: 0000 0000_H P40_OMSR **Port 40 Output Modification Set Register** Application Reset Value: 0000 0000_H (090_{H}) 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 0 15 14 10 9 8 7 6 5 4 3 2 1 0 13 12 11 PS9 PS8 PS7 PS₆ PS5 PS4 PS3 PS₂ PS1 PS₀ 0 0 0 **PS11 PS10** 0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 w0 r r r

Field	Bits	Туре	Description
PSx (x=0-11)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	15, 14, 13, 12, 31:16	r	Reserved Read as 0; should be written with 0.

Table 147 Access Mode Restrictions sorted by descending priority

Applies to P02_OMSR

Applies to P10_OMSR

Applies to P14_OMSR

Applies to P15_OMSR

Applies to P40_OMSR

Mode Name	Acce	ss Mode	Description				
Master enabled in ACCEN	w0	PSx (x=0-11)	write access for enabled masters				
Otherwise (default)	r0	PSx (x=0-11)					

P13_0 Port 13 P34_0	3 Outp	ut Mod	ificatio	on Set I	Registe	r	(090	_H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
Port 34 Output Modification Set Register							(090	н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
)							
	1							r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	PS3	PS2	PS1	PS0
r	r	r	r	r	r	r	r	r	r	r	r	w0	w0	w0	w0

Field	Bits	Туре	Description
PSx (x=0-3)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 31:16	r	Reserved Read as 0; should be written with 0.

Table 148 Access Mode Restrictions sorted by descending priority

Applies to P13_OMSR Applies to P34_OMSR

Mode Name	Acces	ss Mode	Description
Master enabled in ACCEN	w0	PSx (x=0-3)	write access for enabled masters
Otherwise (default)	r0	PSx (x=0-3)	

P21_0	MSR														
Port 21	•	ut Mod	ificatio	n Set F	Registe	r	(090) _H)		Ap	plication	on Res	et Valu	e: 0000	0000 _H
_	P22_OMSR Port 22 Output Modification Set Register									_		_			
	•	ut Mod	ificatio	n Set F	Registe	r	(090) _H)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
P23_0 Port 23		ut Mad	ificatio	n Sat I	Dagista	r	(090	. 1		Δn	nlicati	nn Das	et Valu	۰ ۵۰۸۸	0000 _H
P32_0	•	ut Mou	meatic	ii Jet r	registe	•	(030	Ή/		Αþ	pacati	on ives	ct valu	c. 0000	, 0000 _H
Port 32		ut Mod	ificatio	n Set F	Registe	r	(090) _H)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ı	I	ı		ı	0	ı	I	ı	ı	ı	ı	
	1	1	I	l	1		1	r	1	l	1	1	1	I	
								•							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0 0 0 0 0 0						0	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0	
r	r	r	r	r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0

Field	Bits	Туре	Description
PSx (x=0-7)	х	w0	Set Bit x Setting this bit will set the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Sets Pn_OUT.Px
0	15, 14, 13, 12, 11, 10, 9, 8, 31:16	r	Reserved Read as 0; should be written with 0.

Table 149 Access Mode Restrictions sorted by descending priority

Applies to P21_OMSR Applies to P22_OMSR Applies to P23_OMSR Applies to P32_OMSR

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PSx (x=0-7)	write access for enabled masters
Otherwise (default)	r0	PSx (x=0-7)	

Port 00 Output Modification Clear Register

The port output modification clear register contains control bits that make it possible to individually clear the logic state of a single port line by manipulating the output register.

Note: Register Pn_OMCR is virtual and does not contain any flip-flop. A read action delivers the value of 0. One 8 or 16-bits write behaves as a 32-bit write padded with zeros.

P00_0 Port 00		ut Mod	ificatio	n Clea	r Regis	ter	(094	н)		Аp	plicatio	on Res	et Valu	e: 0000	0000 _H
P11_0 Port 11	L Outp	ut Mod	ificatio	n Clea	r Regis	ter	(094	_{'H})	Application Reset Value: 0000 0000 _H						
P20_OMCR Port 20 Output Modification Clear Register							(094 _H) Application Reset Value: 0000					0000 _H			
	P33_OMCR Port 33 Output Modification Clear Register							'н)		Ар	plication	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PCL15	PCL14	PCL13	PCL12	PCL11	PCL10	PCL9	PCL8	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0
w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0
15	15 14 13 12 11 10 9							7	6	5	4	3	2	1	0
								0	1	1	1	I -		II	
	1	1	I	I		<u> </u>	I	r	I	I	I	1	1	1	

Field	Bits	Туре	Description
PCLx (x=0-15)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px.
0	15:0	r	Reserved Read as 0; should be written with 0

Table 150 Access Mode Restrictions sorted by descending priority

Applies to P00_OMCR Applies to P11_OMCR Applies to P20_OMCR Applies to P33_OMCR

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PCLx (x=0-15)	write access for enabled masters
Otherwise (default)	r0	PCLx (x=0-15)	

P02_0	MCR														
Port 02	2 Outp	ut Mod	ificati	on Clea	r Regis	ter	(094	н)		Ap	plication	on Res	et Valu	e: 0000	0000 _H
P10_0	MCR														
	•	ut Mod	ificati	on Clea	r Regis	ter	(094	н)		Ap	plication	on Res	et Valu	e: 0000	0000 _H
P14_0															
	•	ut Mod	lificati	on Clea	r Regis	ter	(094	н)		Ap	plication	on Rese	et Valu	e: 0000	0000 _H
P15_0						_				_		_			
	•	ut Mod	lification	on Clea	r Regis	ter	(094	(094 _H) Application Reset Value: 0000 0000) 0000 _H	
P40_0			• • • • • •	61			/00.5				. 1	_			
Port 40	Outp	ut Moa	ificati	on Clea	r Regis	ter	(094	(094 _H) Application Reset Value: 0000 00) 0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	PCL11	PCL10	PCL9	PCL8	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0
r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0	w0
15	15 14 13 12 11 10 9								6	5	4	3	2	1	0
							(0							
<u> </u>		1	1	1	1		<u> </u>	r	1	<u> </u>	1	I.		<u> </u>	1

Field	Bits	Туре	Description
PCLx (x=0-11)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px.
0	15:0, 31, 30, 29, 28	r	Reserved Read as 0; should be written with 0

Table 151 Access Mode Restrictions sorted by descending priority

Applies to P02_OMCR Applies to P10_OMCR Applies to P14_OMCR Applies to P15_OMCR

Applies to P40_OMCR

Mode Name	Acce	ss Mode	Description
Master enabled in ACCEN	w0	PCLx (x=0-11)	write access for enabled masters
Otherwise (default)	r0	PCLx (x=0-11)	

Port 13 P34_0	P13_OMCR Port 13 Output Modification Clear Register P34_OMCR Port 34 Output Modification Clear Register							_н)		-	-				0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	PCL3	PCL2	PCL1	PCL0
r	r	r	r	r	r	r	r	r	r	r	r	w0	w0	w0	w0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1			0	' I	,		1		' '	
*								r							

Field	Bits	Туре	Description
PCLx (x=0-3)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px.
0	15:0, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20	r	Reserved Read as 0; should be written with 0

Table 152 Access Mode Restrictions sorted by descending priority

Applies to P13_OMCR Applies to P34_OMCR

Mode Name	Acce	ss Mode	Description			
Master enabled in ACCEN	w0	PCLx (x=0-3)	write access for enabled masters			
Otherwise (default)	r0	PCLx (x=0-3)				

P21_0						_	•					_			
Port 21 Output Modification Clear Register P22_OMCR Port 22 Output Modification Clear Register P23_OMCR Port 23 Output Modification Clear Register P32_OMCR					(094	4 _H)		Application Reset Value: 0000 0000 _H Application Reset Value: 0000 0000 _H Application Reset Value: 0000 0000 _H							
					(094	4 _H)									
					(094	4 _H)									
Port 32 Output Modification Clear Register				(094	4 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0
r	r	r	r	r	r	r	r	w0	w0	w0	w0	w0	w0	w0	w0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0														
1	1	1	1	1	1	1	1	r	1	1	1	1	1	1	

Field	Bits	Туре	Description
PCLx (x=0-7)	x+16	w0	Clear Bit x Setting this bit will clear the corresponding bit in the port output register Pn_OUT. Read as 0. 0 _B No operation 1 _B Clears Pn_OUT.Px.
0	15:0, 31, 30, 29, 28, 27, 26, 25, 24	r	Reserved Read as 0; should be written with 0

Table 153 Access Mode Restrictions sorted by descending priority

Applies to P21_OMCR Applies to P22_OMCR Applies to P23_OMCR Applies to P32_OMCR

Mode Name	Acce	ss Mode	Description			
Master enabled in ACCEN	w0	PCLx (x=0-7)	write access for enabled masters			
Otherwise (default)	r0	PCLx (x=0-7)				

Port 21 LVDS Pad Control Register x

The LVDS Pad Control Register controls the RX or TX functions of the LVDS pads. For usage of RX pad, bit field [7:0] are applicable. If used for TX pad, bit field [15:7] apply.

The sleep functionality of the LVDS pads is not controllable via this register. This is exclusively controlled by the HSCT module when this is connected.

The register x controls in general the pad pair 2^x and 2^x+1 of the port n.

Exceptionally when available the pad pair P14.9 and P14.10 is controlled by P14_LPCR5.

Attention: The bit field P21_LPCR2.PS configures the pad supply for the LVDS bias distributor for all (not-RIF) LVDS pads and for the oscillator. Therefore even if no LVDS pad is used, this field has to be configured to the correct pad supply level.

P21_LPCRx (x=2)

Port 2	1 LVDS	Pad Co	ontrol F	Registe	er x		(0A0 _H +	x*4)				Re	set Val	lue: Tal	ble 155
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	ı	' '	0	1	1	ı	1	1	1	
	•							r		•		1			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0) D	0	0	PS	0		0	1	0	0	0
r	r	r	r		r	r	r	rw	r		r	1	r	r	r

Field	Bits	Туре	Description
PS	7	rw	Pad Supply Selection
			Selects between 5V or 3.3V supply on V_{EXT} for the pad-pair. Used in RX and
			TX pads!
			O _B 3.3V supply
			1 _B 5V supply
0	0,	r	Reserved
	1,		Read as 0; should be written with 0
	2,		
	5:3,		
	6,		
	8,		
	9,		
	11:10,		
	12,		
	13,		
	14,		
	15,		
	31:16		

Table 154 Access Mode Restrictions of P21_LPCRx (x=2) sorted by descending priority

Mode Name	Acce	ss Mode	Description					
Master enabled in ACCEN and Supervisor Mode and ENDINIT	rw	PS	write access for enabled masters					
Otherwise (default)	r	PS						

Table 155 Reset Values of P21_LPCRx (x=2)

Reset Type	Reset Value	Note
After SSW execution	0000 0080 _H	Initial value of RX depends on trimming

Port 00 Access Enable Register 1

Each port has its own dedicated ACCEN0 and ACCEN1 registers.

The Access Enable Register 1 controls write¹⁾ access for transactions with the on chip bus master TAG ID 100000B to 111111B (see On Chip Bus chapter for the products TAG ID <-> master peripheral mapping). The BPI_FPI is prepared for a 6-bit TAG ID. ACCEN1 is not implemented with register bits as the related TAG IDs are not used in this product.

Mapping of TAG IDs to ACCEN1.ENx: EN0 -> TAG ID 100000B, EN1 -> TAG ID 100001B, ..., EN31 -> TAG ID 111111B.

P00_A	CCEN1																
		ss Enab	le Reg	ister 1			(0F8	_H)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H		
_	CCEN1																
		ss Enab	le Reg	ister 1			(0F8	Н)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H		
P10_ACCEN1										_		_					
Port 10 Access Enable Register 1							(0F8	'н)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
P11_ACCEN1							/o r o	. 1		۸		D	-+ \/-	000			
Port 11 Access Enable Register 1 P13_ACCEN1							(0F8	Ή)		Ар	pucati	on kes	et valu	e: 0000	0000 _H		
			lo Dog	ictor 1			/nEo	١.		۸n	nlicati	on Doc	ot Valu	۰۰ ۸۸۸ <i>۱</i>	0000		
	CCEN1	ss Enab	ne keg	istei 1			(0F8	Ή)		Aþ	pucau	uii kes	et vatu	e. 0000	0000 _H		
		ss Enab	Ιο Βοσ	istor 1			(0F8	. 1		Δn	nlicati	on Res	et Valu	۰ ۵۵۵۵	0000		
			ne neg	ister 1			(01 0	Ή/		Application Reset Value: 0000 0000 _H							
P15_ACCEN1 Port 15 Access Enable Register 1						(0F8 _H) Application Reset Value							e: 0000 0000 ₁				
	CCEN1						(от од/						"				
_		s Enab	le Reg	ister 1			(0F8	i _L)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
P21_A	CCEN1		J				·			-	•				••		
Port 2	1 Acces	ss Enab	le Reg	ister 1			(0F8	_H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
P22_A	CCEN1																
Port 2	2 Acces	ss Enab	le Reg	ister 1			(0F8	_H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1	1		1	ı	1		0	ı			1		ı	'		
	1	ı	L	1	1	1	L	r	1	L	L	1	L	1	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
								0									
<u> </u>	-	1	1	1	-		1	r	-	1	1	1	1	-			

Field	Bits	Type	Description
0	31:0	r	Reserved
			Read as 0; should be written with 0

Table 156 Access Mode Restrictions sorted by descending priority

Applies to P00_ACCEN1

Applies to P02_ACCEN1

Applies to P10_ACCEN1

Applies to P11_ACCEN1

Applies to P13_ACCEN1

Applies to P14_ACCEN1

Applies to P15_ACCEN1

Applies to P20_ACCEN1

Applies to P21_ACCEN1

Applies to P22_ACCEN1

Mode Name	Acce	ss Mode	Description					
Supervisor Mode and Safety ENDINIT	-	See bit field definitions above	write access only for masters with supervisor mode					
Otherwise (default)	-	See bit field definitions above						

	CCEN1											_				
	3 Acces		le Reg	ister 1			(0F8	н)		Application Reset Value: 0000 0000 _H						
_	2 Acces		le Reg	ister 1		(0F8 _H)				Application Reset Value: 0000 0000 _H						
	CCEN1		la Dam	iatau 1		/a=a \				Application Reset Value: 0000 0000 _H						
	3 Acces	S Ellau	ne keg	ister 1			(0F8	н)		Ар	pucati	on Res	et vatu	e: 0000	JOOOOH	
	4 Acces		le Reg	ister 1		(0F8 _H)				Application Reset Value: 0000 0000 _H						
_	CCEN1 0 Acces		le Reg	ister 1		(0F8 _H) Application Reset Val					et Valu	e: 0000	0000			
			ie neg							-	-				Н	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								0								
		1	1				1	r				1				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	ı	,	,	,		·		0	i.	!	ı	,		·		
1	1	1	1	1	1	1	1	r	1	I	I	1	1	1		

Field	Bits	Туре	Description
0	31:0	r	Reserved
			Read as 0; should be written with 0

Table 157 Access Mode Restrictions sorted by descending priority

Applies to P23_ACCEN1

Applies to P32_ACCEN1

Applies to P33_ACCEN1

Applies to P34_ACCEN1

Applies to P40_ACCEN1

Mode Name	Acce	ss Mode	Description					
Supervisor Mode and Safety ENDINIT	-	See bit field definitions above	write access only for masters with supervisor mode					
Otherwise (default)	-	See bit field definitions above						

Port 00 Access Enable Register 0

Each port has its own dedicated ACCEN0 and ACCEN1 registers.

The Access Enable Register 0 controls write¹⁾ access for transactions with the on chip bus master TAG ID 000000B to 011111B (see On Chip Bus chapter for the products TAG ID <-> master peripheral mapping). The BPI_FPI is prepared for a 6-bit TAG ID. The registers ACCEN0 and ACCEN1 are providing one enable bit for each possible 6-bit TAG ID encoding.

Mapping of TAG IDs to ACCEN0.ENx: EN0 -> TAG ID 000000B, EN1 -> TAG ID 000001B , ... , EN31 -> TAG ID 011111B.

¹⁾ The BPI_FPI Access Enable functionality controls only write transactions to the kernel registers. Read transactions are not influenced. SW has to take care for destructive/modifying read functionality in kernel registers.

P00_ACCEN0																
Port 00 Acces	ss Enab	le Regi	ster 0			(OFC	н)		Ар	Application Reset Value: FFFF FFFF _H						
P02_ACCEN0					4											
	02 Access Enable Register 0						н)		Ap	plication	on Res	et Valu	e: FFFF	FFFF _H		
P10_ACCENO					(0FC			_		_						
	Port 10 Access Enable Register 0								Ap	plication	on Res	et Valu	e: FFFF	FFFF _H		
P11_ACCENO		la Dagi	ctor O			/0F <i>C</i>	,		Λ.	nlicati	on Doc	a + \/al	^• FFFF			
Port 11 Acces P13 ACCENO		ne Kegi	ster o			(OFC	н)		Aþ	pucau	on Res	et vatu	e: rrrr	FFFF _H		
Port 13 Acces		le Regi	ster 0			(0FC)		Δn	nlicatio	on Reso	et Valu	e: FFFF	FFFF _H		
P14_ACCENO		ve weg.	J.C. 0			(0. 0	н/		7.10	pucati	JII IKUS	ot rata		н		
Port 14 Acces		le Regi	ster 0			(0FC	_н)		Ap	plication	on Res	et Valu	e: FFFF	FFFF _H		
P15_ACCENO		Ū				•			•			н				
Port 15 Acces	ss Enab	le Regi	ster 0			(0FC	н)		Application Reset Value: FFFF FFFF _H							
P20_ACCEN0																
Port 20 Acces		le Regi	ster 0			(OFC	н)		Ap	plication	on Res	et Valu	e: FFFF	FFFF _H		
P21_ACCEN0																
Port 21 Acces		le Regi	ster 0		(OFC _H)				Ap	plication	on Res	et Valu	e: FFFF	FFFF _H		
P22_ACCENO		Ja Dani	-t0		(OFC)				Application Reset Value: FFFF FFFF _H							
Port 22 Acces	ss Enab	ile Kegi	ster u			(OFC	н)		Ар	pucation	on Res	et valu	е: ғғғғ	FFFFH		
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
EN31 EN30	31 EN30 EN29 EN28 EN27 EN26					EN24	EN23	EN22	EN21	EN20	EN19	EN18	EN17	EN16		
rw rw							rw	rw	rw	rw	rw	rw	rw	rw		
TVV TVV	TW TW TW TW TW						I VV	I VV	I VV	I VV	I VV	I VV	I VV	I VV		
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
EN15 EN14	EN13	EN12	EN11	EN10	EN9	EN8	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO		
rw rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Type	Description
ENx (x=0-31)	х	rw	Access Enable for Master TAG ID x
			This bit enables write access to the module kernel addresses for transactions with the Master TAG ID n
			 0_B Write access will not be executed 1_B Write access will be executed

Table 158 Access Mode Restrictions sorted by descending priority

Applies to P00_ACCEN0

Applies to P02_ACCEN0

Applies to P10_ACCEN0

Applies to P11_ACCEN0

Applies to P13_ACCEN0

Applies to P14_ACCEN0

Applies to P15_ACCEN0

Applies to P20_ACCEN0

Applies to P21_ACCEN0

Applies to P22_ACCEN0

Mode Name	Acce	ss Mode	Description
Supervisor Mode and Safety ENDINIT	rw	ENx (x=0-31)	write access only for masters with supervisor mode
Otherwise (default)	r	ENx (x=0-31)	

P	23_A	CCEN0															
P	ort 23	3 Acces	s Enab	le Regi	ster 0			(0FC	н)		Application Reset Value: FFFF FFFF _H						
P	32_A	CCEN0															
		2 Acces	s Enab	le Regi	ster 0			(OFC	н)		Ар	plicatio	on Res	et Valu	e: FFFF	FFFF _H	
	_	CCEN0															
		3 Acces	s Enab	le Regi	ster 0			(OFC	н)		Application Reset Value: FFFF FFFF _H						
		CCENO						/o=c				. 1					
		4 Acces	s Enab	le Regi	ster u			(OFC	н)		Ар	pucatio	on Reso	et valu	e: FFFF	FFFF _H	
	_	CCENO	a Enah	lo Dogi	stor O			/0F <i>C</i>	,		Λ.,	nlicati	on Doc	at Valu	FFFF		
۲	ort 40	0 Acces	SENAD	ie Regi	ster u			(OFC	н)		Ар	Application Reset Value: FFFF FFFF _H					
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	EN31	EN30	EN29	EN28	EN27	EN26	EN25	EN24	EN23	EN22	EN21	EN20	EN19	EN18	EN17	EN16	
						EN26			EN23	EN22							
L	rw	rw	EN29	EN28	EN27 rw	EN26	EN25 rw	EN24	EN23	EN22	EN21	EN20	EN19	EN18	EN17	EN16	
	rw 15	rw 14	rw 13	rw 12	rw 11	rw 10	rw 9	rw 8	rw 7	rw 6	rw 5	rw 4	rw 3	rw 2	rw 1	rw 0	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
ENx (x=0-31)	х	rw	Access Enable for Master TAG ID x
			This bit enables write access to the module kernel addresses for transactions with the Master TAG ID n 0_B Write access will not be executed 1_B Write access will be executed

Table 159 Access Mode Restrictions sorted by descending priority

Applies to P23_ACCEN0

Applies to P32_ACCEN0

Applies to P33_ACCEN0

Applies to P34_ACCEN0

Applies to P40_ACCEN0

Mode Name	Acce	ss Mode	Description
Supervisor Mode	rw	ENx (x=0-31)	write access only for masters with supervisor mode
and Safety ENDINIT			
Otherwise (default)	r	ENx (x=0-31)	

14.4 Device Specific Connectivity Documentation

The connectivity of the Ports is documented in the Pinning documentation of each device.

AURIX[™] TC33x/TC32x

General Purpose I/O Ports and Peripheral I/O Lines (Ports)

14.5 Revision History

Table 160 Revision History

Reference	Changes to Previous Version	Comment
V1.8.20		
_	This is the first version for TC33x.	_
V1.8.21		
_	No content of this Appx changed. TC3Ax Appx added to delivery package and change in Feature List of family chapter.	

15 Safety Management Unit (SMU)

This chapter describes the Safety Management Unit (short SMU) module of the TC33x/TC32x.

15.1 TC33x/TC32x Specific IP Configuration

See features in family spec.

15.2 TC33x/TC32x Specific Register Set

SMU_core Specific Register Set

Register Address Space Table

Table 161 Register Address Space - SMU

Module	Base Address	End Address	Note
SMU	F0036800 _H	F0036FFF _H	FPI slave interface

Register Overview Table

Table 162 Register Overview - SMU (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
SMU_CLC	Clock Control Register	000 _H	U,SV	SV,P	Application Reset	See Family Spec
SMU_ID	Module Identification Register	008 _H	U,SV	BE	Application Reset	See Family Spec
SMU_CMD	Command Register	020 _H	U,SV	SV,P,32	Application Reset	See Family Spec
SMU_STS	Status Register	024 _H	U,SV	SV,P,32	Application Reset	See Family Spec
SMU_FSP	Fault Signaling Protocol	028 _H	U,SV	SV,P,SE,32	PowerOn Reset	See Family Spec
SMU_AGC	Alarm Global Configuration	02C _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec
SMU_RTC	Recovery Timer Configuration	030 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec
SMU_KEYS	Key Register	034 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec
SMU_DBG	Debug Register	038 _H	U,SV	BE	PowerOn Reset	See Family Spec

Table 162 Register Overview - SMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
SMU_PCTL	Port Control	03C _H	U,SV	SV,P,SE,32	PowerOn Reset	See Family Spec	
SMU_AFCNT	Alarm and Fault Counter	040 _H	U,SV	BE	PowerOn Reset	See Family Spec	
SMU_RTAC00	Recovery Timer 0 Alarm Configuration 0	060 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_RTAC01	Recovery Timer 0 Alarm Configuration 1	064 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_RTAC10	Recovery Timer 1 Alarm Configuration 0	068 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_RTAC11	Recovery Timer 1 Alarm Configuration 1	06C _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_AEX	Alarm Executed Status Register	070 _H	U,SV	BE	Application Reset	See Family Spec	
SMU_AEXCLR	Alarm Executed Status Clear Register	074 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_AGiCFj (i=0;j=0-2) (i=1-5;j=0-2) (i=6;j=0-2) (i=7;j=0-2) (i=8;j=0-2) (i=9;j=0-2) (i=10;j=0-2) (i=11;j=0-2)	Alarm Configuration Register	100 _H +i*1 2+j*4	U,SV	SV,P,SE,32	Application Reset	5	
SMU_AGiFSP (i=0-11)	SMU_core FSP Configuration Register	190 _H +i*4	U,SV	SV,P,SE,32	Application Reset	10	
SMU_AGi (i=0-11)	Alarm Status Register	1C0 _H +i*4	U,SV	SV,P,SE,32	Application Reset	14	
SMU_ADi (i=0-11)	Alarm Debug Register	200 _H +i*4	U,SV	BE	PowerOn Reset	18	
SMU_RMCTL	Register Monitor Control	300 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	

Table 162 Register Overview - SMU (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Number	
SMU_RMEF	Register Monitor Error Flags	304 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_RMSTS	Register Monitor Self Test Status	308 _H	U,SV	SV,P,SE,32	Application Reset	See Family Spec	
SMU_OCS	OCDS Control and Status	7E8 _H	U,SV	SV,P,OEN	Debug Reset	See Family Spec	
SMU_ACCEN1	SMU_core Access Enable Register 1	7F8 _H	U,SV	BE	Application Reset	See Family Spec	
SMU_ACCEN0	SMU_core Access Enable Register 0	7FC _H	U,SV	SV,SE	Application Reset	See Family Spec	

SMU_stdby Specific Register Set

For SMU_stdby specific register set refer to the Power Management System chapter.

15.3 TC33x/TC32x Specific Registers

15.3.1 TC33x/TC32x Specific Registers

15.3.1.1 FPI slave interface

Alarm Configuration Register

SMU_AGiCFj (i=0;j=0-2)

A	larm	Config	uratio	n Regis	ter		(10	00 _H +i*1	.2+j*4)		Application Reset Value: 0000 0000					0000 _H
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	0	0	0	0	0	0	CF24	CF23	CF22	0	0	0	0	0	0
1	r	r	r	r	r	r	r	rw	rw	rw	r	r	r	r	r	r
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	CF14	CF13	CF12	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	0	CF2	CF1	CF0
-	r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	rw	rw	rw

Field	Bits	Туре	Description						
CFz (z=0-2,4- 14,22-24)	Z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i. The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. OB Configuration flag x (x=0-2) is set to 0 DB Configuration flag x (x=0-2) is set to 1						
0	31, 30, 29, 28, 27, 26, 25, 21, 20, 19, 18, 17, 16, 15, 3	r	Reserved Read as 0; should be written with 0.						

SMU_AGiCFj (i=1-5;j=0-2)

Alarm	Config	uratio	n Regis	ter		(1	00 _H +i*1	L2+j*4)		Application Reset Value: 0000 000					0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	22, 21, 20,		
	19, 18, 17,		
	16, 15, 14,		
	13, 12, 11,		
	10, 9, 8, 7, 6,		
	5, 4, 3, 2, 1,		
	0		

SMU_AGiCFj (i=6;j=0-2)

Alarm	Config		•	ter		(100 _H +i*12+j*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	CF25	CF24	CF23	0	CF21	CF20	CF19	CF18	CF17	CF16	
r	r	r	r	r	r	rw	rw	rw	r	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CF15	CF14	CF13	CF12	CF11	CF10	0	CF8	CF7	CF6	CF5	CF4	0	CF2	CF1	CF0	
rw	rw	rw	rw	rw	rw	r	rw	rw	rw	rw	rw	r	rw	rw	rw	

Field	Bits	Туре	Description
CFz (z=0-2,4- 8,10-21,23- 25)	Z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i. The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. 0_B Configuration flag x (x=0-2) is set to 0 1_B Configuration flag x (x=0-2) is set to 1
0	31, 30, 29, 28, 27, 26, 22, 9, 3	r	Reserved Read as 0; should be written with 0.

SMU_AGiCFj (i=7;j=0-2)

Alarm	Config	uratio	n Regis	ter		(100 _H +i*12+j*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CF31	CF30	CF29	CF28	CF27	CF26	CF25	CF24	CF23	CF22	0	CF20	0	0	CF17	0	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	rw	r	r	rw	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	CF2	CF1	CF0	
r	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	rw	

Field	Bits	Туре	Description
CFz (z=0- 2,17,20,22- 31)	Z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i. The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. OB Configuration flag x (x=0-2) is set to 0 DB Configuration flag x (x=0-2) is set to 1
0	21, 19, 18, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3	r	Reserved Read as 0; should be written with 0.

SMU_AGiCFj (i=8;j=0,2) Alarm Configuration Register SMU_AGiCFj (i=8;j=1) Alarm Configuration Register							(100 _H +i*12+j*4) Application Reset Value (100 _H +i*12+j*4) Application Reset Value										
31 30 29 28 27 26							25	24	23	22	21	20	19	18	17	16	
	CF31	CF30	CF29	CF28	CF27	CF26	CF25	0	CF23	CF22	CF21	CF20	CF19	CF18	CF17	CF16	
	rw	rw	rw	rw	rw	rw	rw	r	rw	rw	rw	rw	rw	rw	rw	rw	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	0	0	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0	

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Field	Bits	Туре	Description
CFz (z=0-	z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i.
10,16-23,25- 31)			The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. O _B Configuration flag x (x=0-2) is set to 0
			1 _B Configuration flag x (x=0-2) is set to 1
0	24, 15, 14,	r	Reserved
	13, 12, 11		Read as 0; should be written with 0.

SMU	_AGiCF	i (i=9:	i=0-2)
21110	70101		

Ala	arm (Config	uratio	n Regis	ter		(100 _H +i*12+j*4) Ap					plication Reset Value: 0000 0000 _H					
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CF17	CF16	
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
С	F15	0	0	0	0	0	0	0	0	0	CF5	0	CF3	0	CF1	CF0	
- 1	rw	r	r	r	r	r	r	r	r	r	rw	r	rw	r	rw	rw	

Field	Bits	Туре	Description
CFz (z=0-	z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i.
1,3,5,15-17)			The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. OB Configuration flag x (x=0-2) is set to 0 DB Configuration flag x (x=0-2) is set to 1
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2	r	Reserved Read as 0; should be written with 0.

SMU_AGiCFj	(i=10;j=0)
------------	------------

Alarm SMU_A Alarm	\GiCFj ((i=10;j=	=1-2)			(100 _H +i*12+j*4) (100 _H +i*12+j*4)				Application Reset Value: 0000 0000 _H Application Reset Value: 0003 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	CF22	CF21	CF20	0	CF18	CF17	CF16
r	r	r	r	r	r	r	r	r	rw	rw	rw	r	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CF15	CF14	CF13	CF12	CF11	CF10	CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Type	Description							
CFz (z=0- 18,20-22)	Z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i. The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. OB Configuration flag x (x=0-2) is set to 0 DB Configuration flag x (x=0-2) is set to 1							
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 19	r	Reserved Read as 0; should be written with 0.							

SMU_AGiCFj (i=11;j=0-2)

Alarm	Config	uratio	n Regis	ter		(10	00 _H +i*1	L2+j*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	CF13	CF12	0	0	CF9	0	0	0	CF5	CF4	CF3	CF2	0	0	
r	r	rw.	rw.	r	r	rw	r	r	r	rw.	rw	rw	rw.	r	r	

Field	Bits	Туре	Description
CFz (z=2- 5,9,12-13)	Z	rw	Configuration flag x (x=0-2) for alarm z belonging to alarm group i. The configuration flags 0, 1 and 2 must be used together to define the behavior of the SMU_core when a fault state is reported by the alarm n belonging to this group. 0 _B Configuration flag x (x=0-2) is set to 0
			1 _B Configuration flag x (x=0-2) is set to 1
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	22, 21, 20,		
	19, 18, 17,		
	16, 15, 14,		
	11, 10, 8, 7,		
	6, 1, 0		

SMU_core FSP Configuration Register

SMU_AGIFSP (i=0)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	FE24	FE23	FE22	0	0	0	0	0	0	
r	r	r	r	r	r	r	rw	rw	rw	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	FE14	FE13	FE12	FE11	FE10	FE9	FE8	FE7	FE6	FE5	FE4	0	FE2	FE1	FE0	
r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	rw	rw	rw	

Field	Bits	Туре	Description
FEz (z=0-2,4- 14,22-24)	Z	rw	Fault signaling configuration flag for alarm z belonging to alarm group i. O _B FSP disabled for this alarm event 1 _R FSP enabled for this alarm event
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 21, 20,		
	19, 18, 17,		
	16, 15, 3		

SMU_AGiFSP (i=1-5)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	

Field	Bits	Туре	Description
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	22, 21, 20,		
	19, 18, 17,		
	16, 15, 14,		
	13, 12, 11,		
	10, 9, 8, 7, 6,		
	5, 4, 3, 2, 1,		
	0		

SMU_AGIFSP (i=6)

SMU_c	ore FS	P Conf	igurati	on Reg	ister	(190 _H +i*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	FE25	FE24	FE23	0	FE21	FE20	FE19	FE18	FE17	FE16	
r	r	r	r	r	r	rw	rw	rw	r	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
FE15	FE14	FE13	FE12	FE11	FE10	0	FE8	FE7	FE6	FE5	FE4	0	FE2	FE1	FEO	
rw	rw	rw	rw	rw	rw	r	rw	rw	rw	rw	rw	r	rw	rw	rw	

Field	Bits	Туре	Description
FEz (z=0-2,4- 8,10-21,23- 25)	Z	rw	Fault signaling configuration flag for alarm z belonging to alarm group i. $0_{\rm B}$ FSP disabled for this alarm event $1_{\rm B}$ FSP enabled for this alarm event
0	31, 30, 29, 28, 27, 26, 22, 9, 3	r	Reserved Read as 0; should be written with 0.

SMU_AGIFSP (i=7)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
FE31	FE30	FE29	FE28	FE27	FE26	FE25	FE24	FE23	FE22	0	FE20	0	0	FE17	0	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	rw	r	r	rw	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	FE2	FE1	FEO	
r	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw	rw	

Field	Bits	Туре	Description
FEz (z=0-	Z	rw	Fault signaling configuration flag for alarm z belonging to alarm
2,17,20,22-			group i.
31)			0 _B FSP disabled for this alarm event
			1 _B FSP enabled for this alarm event
0	21, 19, 18,	r	Reserved
	16, 15, 14,		Read as 0; should be written with 0.
	13, 12, 11,		
	10, 9, 8, 7, 6,		
	5, 4, 3		

SMU_AGIFSP (i=8)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
FE31	FE30	FE29	FE28	FE27	FE26	FE25	0	FE23	FE22	FE21	FE20	FE19	FE18	FE17	FE16	
rw	rw	rw	rw	rw	rw	rw	r	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	FE10	FE9	FE8	FE7	FE6	FE5	FE4	FE3	FE2	FE1	FEO	
r	r	r	r	r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Field	Bits	Туре	Description
FEz (z=0- 10,16-23,25- 31)	z	rw	Fault signaling configuration flag for alarm z belonging to alarm group i. $0_{\rm B}$ FSP disabled for this alarm event $1_{\rm B}$ FSP enabled for this alarm event
0	24, 15, 14, 13, 12, 11	r	Reserved Read as 0; should be written with 0.

SMU_AGiFSP (i=9)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	·i*4)		Application Reset Value: 0000 0000 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	FE17	FE16		
r	r	r	r	r	r	r	r	r	r	r	r	r	r	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
FE15	0	0	0	0	0	0	0	0	0	FE5	0	FE3	0	FE1	FE0		
rw	r	r	r	r	r	r	r	r	r	rw	r	rw	r	rw	rw		

Field	Bits	Туре	Description
FEz (z=0- 1,3,5,15-17)	Z	rw	Fault signaling configuration flag for alarm z belonging to alarm group i. 0 _B FSP disabled for this alarm event 1 _B FSP enabled for this alarm event
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2	r	Reserved Read as 0; should be written with 0.

SMU_AGiFSP (i=10)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	i*4)		Application Reset Value: 0003 0000 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0	0	FE22	FE21	FE20	0	FE18	FE17	FE16		
r	r	r	r	r	r	r	r	r	rw	rw	rw	r	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
FE15	FE14	FE13	FE12	FE11	FE10	FE9	FE8	FE7	FE6	FE5	FE4	FE3	FE2	FE1	FEO		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Field	Bits	Туре	Description
FEz (z=0- 18,20-22)	Z	rw	Fault signaling configuration flag for alarm z belonging to alarm group i. O _B FSP disabled for this alarm event 1 _B FSP enabled for this alarm event
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 19	r	Reserved Read as 0; should be written with 0.

SMU_AGiFSP (i=11)

SMU_c	ore FS	P Conf	igurati	on Reg	ister		(190 _H +	·i*4)		Application Reset Value: 0000 0000 ₊							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	FE13	FE12	0	0	FE9	0	0	0	FE5	FE4	FE3	FE2	0	0		
r	r	rw	rw	r	r	rw	r	r	r	rw	rw	rw	rw	r	r		

Field	Bits	Туре	Description
FEz (z=2- 5,9,12-13)	Z	rw	Fault signaling configuration flag for alarm z belonging to alarm group i. O _B FSP disabled for this alarm event 1 _B FSP enabled for this alarm event
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 11, 10, 8, 7, 6, 1, 0	r	Reserved Read as 0; should be written with 0.

Alarm Status Register

Refer to Alarm Status Registers for the conditions to set and reset the status flag by software.

SMU_AGi (i=0)

F	Marm	Status	Regist	er				(1C0 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	0	0	0	0	0	0	0	SF24	SF23	SF22	0	0	0	0	0	0	
L	r	r	r	r	r	r	r	rwh	rwh	rwh	r	r	r	r	r	r	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	SF14	SF13	SF12	SF11	SF10	SF9	SF8	SF7	SF6	SF5	SF4	0	SF2	SF1	SF0	
	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	r	rwh	rwh	rwh	

Field	Bits	Туре	Description
SFz (z=0-2,4- 14,22-24)	Z	rwh	Status flag for alarm z belonging to alarm group i. 0 _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	31, 30, 29, 28, 27, 26, 25, 21, 20, 19, 18, 17, 16, 15, 3	r	Reserved Read as 0; should be written with 0.

SMU_AGi (i=1-5)

Alarm	Status	Regist	er				(1C0 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	

Field	Bits	Туре	Description
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	22, 21, 20,		
	19, 18, 17,		
	16, 15, 14,		
	13, 12, 11,		
	10, 9, 8, 7, 6,		
	5, 4, 3, 2, 1,		
	0		

SMU_AGi (i=6)

Alarm	Status	Regist	er				(1C0 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	SF25	SF24	SF23	0	SF21	SF20	SF19	SF18	SF17	SF16	
r	r	r	r	r	r	rwh	rwh	rwh	r	rwh	rwh	rwh	rwh	rwh	rwh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SF15	SF14	SF13	SF12	SF11	SF10	0	SF8	SF7	SF6	SF5	SF4	0	SF2	SF1	SF0	
rwh	rwh	rwh	rwh	rwh	rwh	r	rwh	rwh	rwh	rwh	rwh	r	rwh	rwh	rwh	

Field	Bits	Туре	Description
SFz (z=0-2,4-	Z	rwh	Status flag for alarm z belonging to alarm group i.
8,10-21,23- 25)			 0_B Status flag z does not report a fault condition 1_B Status flag z reports a fault condition
0	31, 30, 29, 28, 27, 26, 22, 9, 3	r	Reserved Read as 0; should be written with 0.

SMU_AGi (i=7)

,	Alarm	Status	Regist	er				(1C0 _H +	i*4)		Application Reset Value: 0000 0000 _H						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	SF31	SF30	SF29	SF28	SF27	SF26	SF25	SF24	SF23	SF22	0	SF20	0	0	SF17	0	
٠	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	r	rwh	r	r	rwh	r	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	SF2	SF1	SF0	
	r	r	r	r	r	r	r	r	r	r	r	r	r	rwh	rwh	rwh	

Field	Bits	Type	Description
SFz (z=0- 2,17,20,22- 31)	Z	rwh	Status flag for alarm z belonging to alarm group i. 0 _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	21, 19, 18, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3	r	Reserved Read as 0; should be written with 0.

SMU_AGi (i=8)

Aları	n Status	Regist	er				(1C0 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
SF3	1 SF30	SF29	SF28	SF27	SF26	SF25	0	SF23	SF22	SF21	SF20	SF19	SF18	SF17	SF16	
rwl	rwh	rwh	rwh	rwh	rwh	rwh	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	SF10	SF9	SF8	SF7	SF6	SF5	SF4	SF3	SF2	SF1	SF0	
r	r	r	r	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

Field	Bits	Type	Description
SFz (z=0-	Z	rwh	Status flag for alarm z belonging to alarm group i.
10,16-23,25- 31)			 0_B Status flag z does not report a fault condition 1_B Status flag z reports a fault condition
0	24, 15, 14,	r	Reserved
13, 12, 11 Read as			Read as 0; should be written with 0.

SMU_AGi (i=9)

Alarm	Status	Regist	er				(1C0 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	SF17	SF16	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	rwh	rwh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SF15	0	0	0	0	0	0	0	0	0	SF5	0	SF3	0	SF1	SF0	
rwh	r	r	r	r	r	r	r	r	r	rwh	r	rwh	r	rwh	rwh	

Field	Bits	Туре	Description
SFz (z=0- 1,3,5,15-17)	Z	rwh	Status flag for alarm z belonging to alarm group i. 0 _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2	r	Reserved Read as 0; should be written with 0.

SMU_AGi (i=10)

Alarm	Status	Regist	er			(1C0 _H +i*4)				Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	SF22	SF21	SF20	0	SF18	SF17	SF16	
r	r	r	r	r	r	r	r	r	rwh	rwh	rwh	r	rwh	rwh	rwh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SF15	SF14	SF13	SF12	SF11	SF10	SF9	SF8	SF7	SF6	SF5	SF4	SF3	SF2	SF1	SF0	
rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

Field	Bits	Туре	Description
SFz (z=0-	z	rwh	Status flag for alarm z belonging to alarm group i.
18,20-22)			0 _B Status flag z does not report a fault condition
			1 _B Status flag z reports a fault condition
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	19		

SMU_AGi (i=11)

Alarm	Status	Regist	er				(1C0 _H +	·i*4)		Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	SF13	SF12	0	0	SF9	0	0	0	SF5	SF4	SF3	SF2	0	0	
r	r	rwh	rwh	r	r	rwh	r	r	r	rwh	rwh	rwh	rwh	r	r	

Field	Bits	Туре	Description
SFz (z=2- 5,9,12-13)	Z	rwh	Status flag for alarm z belonging to alarm group i. 0 _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 11, 10, 8, 7, 6, 1, 0	r	Reserved Read as 0; should be written with 0.

Alarm Debug Register

Note: Writing to this register has no effect

SMU_ADi (i=0)

A	larm	Debug	Regist	er			(200 _H +i*4)					PowerOn Reset Value: 0000 0000 _H							
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	0	0	0	0	0	0	0	DF24	DF23	DF22	0	0	0	0	0	0			
1_	r	r	r	r	r	r	r	rh	rh	rh	r	r	r	r	r	r			
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	0	DF14	DF13	DF12	DF11	DF10	DF9	DF8	DF7	DF6	DF5	DF4	0	DF2	DF1	DFO			
	r	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	r	rh	rh	rh			

Field	Bits	Туре	Description						
DFz (z=0-2,4- 14,22-24)	Z	rh	Diagnosis flag for alarm z belonging to alarm group i. The diagnosis registers make a snapshot of the alarm group status registers when either the executed alarm action is a reset or a stat machine transition to FAULT state takes place. O _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition						
0	31, 30, 29, 28, 27, 26, 25, 21, 20, 19, 18, 17, 16, 15, 3	r	Reserved Read as 0; should be written with 0.						

SMU_ADi (i=1-5)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 0 <th>16</th>	16
r r	0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	r
	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0

Field	Bits	Туре	Description
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	22, 21, 20,		
	19, 18, 17,		
	16, 15, 14,		
	13, 12, 11,		
	10, 9, 8, 7, 6,		
	5, 4, 3, 2, 1,		
	0		

SMU_ADi (i=6)

Alarm	Debug	•	er				(200 _H +	·i*4)		ı	PowerOn Reset Value: 0000 0000 ₁						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0	0	0	0	0	0	DF25	DF24	DF23	0	DF21	DF20	DF19	DF18	DF17	DF16		
r	r	r	r	r	r	rh	rh	rh	r	rh	rh	rh	rh	rh	rh		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DF15	DF14	DF13	DF12	DF11	DF10	0	DF8	DF7	DF6	DF5	DF4	0	DF2	DF1	DF0		
rh	rh	rh	rh	rh	rh	r	rh	rh	rh	rh	rh	r	rh	rh	rh		

Field	Bits	Туре	Description						
DFz (z=0-2,4- 8,10-21,23- 25)	Z	rh	Diagnosis flag for alarm z belonging to alarm group i. The diagnosis registers make a snapshot of the alarm group status registers when either the executed alarm action is a reset or a state machine transition to FAULT state takes place. O _B Status flag z does not report a fault condition						
<u> </u>	31, 30, 29,	r	1 _B Status flag z reports a fault condition Reserved						
U	28, 27, 26, 22, 9, 3	ľ	Read as 0; should be written with 0.						

SMU_ADi (i=7)

Alarm	Debug	Regist	er				(200 _H +	i*4)			PowerOn Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
DF31	DF30	DF29	DF28	DF27	DF26	DF25	DF24	DF23	DF22	0	DF20	0	0	DF17	0		
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	r	rh	r	r	rh	r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	0	0	0	0	0	0	0	0	0	0	0	DF2	DF1	DF0		
r	r	r	r	r	r	r	r	r	r	r	r	r	rh	rh	rh		

Field	Bits	Туре	Description						
DFz (z=0-	z	rh	Diagnosis flag for alarm z belonging to alarm group i.						
2,17,20,22-			The diagnosis registers make a snapshot of the alarm group status						
31)			registers when either the executed alarm action is a reset or a state						
			machine transition to FAULT state takes place.						
			0 _B Status flag z does not report a fault condition						
			1 _B Status flag z reports a fault condition						
0	21, 19, 18,	r	Reserved						
	16, 15, 14,		Read as 0; should be written with 0.						
	13, 12, 11,								
	10, 9, 8, 7, 6,								
	5, 4, 3								

SMU_ADi (i=8)

SMU_A Alarm	•	•	er				(200 _H +	·i*4)		PowerOn Reset Value: 0000 0000						
31	30	29	28	27	26	6 25 24 23 22				21	20	19	18	17	16	
DF31	DF30	DF29	DF28	DF27	DF26	DF25	0	DF23	DF22	DF21	DF20	DF19	DF18	DF17	DF16	
rh	rh	rh	rh	rh	rh	rh	r	rh	rh	rh	rh	rh	rh	rh	rh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	DF10	DF9	DF8	DF7	DF6	DF5	DF4	DF3	DF2	DF1	DF0	
r	r	r	r	r	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	

Field	Bits	Туре	Description
DFz (z=0- 10,16-23,25- 31)	Z	rh	Diagnosis flag for alarm z belonging to alarm group i. The diagnosis registers make a snapshot of the alarm group status registers when either the executed alarm action is a reset or a state machine transition to FAULT state takes place. O _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	24, 15, 14, 13, 12, 11	r	Reserved Read as 0; should be written with 0.

SMU_ADi (i=9)

Alarm	Debug	Regist	er				(200 _H +	·i*4)		1	PowerOn Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	DF17	DF16		
r	r	r	r	r	r	r	r	r	r	r	r	r	r	rh	rh		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DF15	0	0	0	0	0	0	0	0	0	DF5	0	DF3	0	DF1	DF0		
rh	r	r	r	r	r	r	r	r	r	rh	r	rh	r	rh	rh		

Field	Bits	Туре	Description							
DFz (z=0-	z	rh	Diagnosis flag for alarm z belonging to alarm group i. The diagnosis registers make a snapshot of the alarm group status registers when either the executed alarm action is a reset or a state machine transition to FAULT state takes place. O _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition							
1,3,5,15-17)										
0	31, 30, 29,	r	Reserved							
	28, 27, 26, 25, 24, 23, 22, 21, 20,		Read as 0; should be written with 0.							
	19, 18, 14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2									

SMU_ADi (i=10)

Alarm	•	•	er				(200 _H +	i*4)		PowerOn Reset Value: 0000 0000						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	DF22	DF21	DF20	0	DF18	DF17	DF16	
r	r	r	r	r	r	r	r	r	rh	rh	rh	r	rh	rh	rh	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
DF15	DF14	DF13	DF12	DF11	DF10	DF9	DF8	DF7	DF6	DF5	DF4	DF3	DF2	DF1	DF0	
rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	rh	

Field	Bits	Туре	Description
DFz (z=0-	z	rh	Diagnosis flag for alarm z belonging to alarm group i.
18,20-22)			The diagnosis registers make a snapshot of the alarm group status registers when either the executed alarm action is a reset or a state machine transition to FAULT state takes place. O _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	31, 30, 29, 28, 27, 26,	r	Reserved Read as 0; should be written with 0.
	25, 24, 23, 19		

SMU_ADi (i=11) **Alarm Debug Register** $(200_{H}+i*4)$ PowerOn Reset Value: 0000 0000_H 30 28 27 26 25 24 22 21 20 19 18 17 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r r r r r r r r r r r r r r r r 15 14 13 12 10 9 7 5 4 3 2 0 11 8 6 1 DF5 DF3 0 0 **DF13 DF12** 0 0 DF9 0 0 0 DF4 DF2 0 0 rh rh rh rh rh rh rh

Field	Bits	Туре	Description
DFz (z=2-	z	rh	Diagnosis flag for alarm z belonging to alarm group i.
5,9,12-13)			The diagnosis registers make a snapshot of the alarm group status registers when either the executed alarm action is a reset or a state machine transition to FAULT state takes place. O _B Status flag z does not report a fault condition 1 _B Status flag z reports a fault condition
0	31, 30, 29,	r	Reserved
	28, 27, 26,		Read as 0; should be written with 0.
	25, 24, 23,		
	22, 21, 20,		
	19, 18, 17,		
	16, 15, 14,		
	11, 10, 8, 7,		
	6, 1, 0		

15.4 TC33x/TC32x Specific Alarm Mapping

This section defines the mapping between the alarm signals at the input of the SMU in the TC33x/TC32x and the alarm. For that purpose alarm groups are defined. There is a one-to-one relationship between an alarm group index ALM<n>[index] signal and the alarm configuration and status registers (AG<n>[index]). A group is made of up to 32 alarms; for convenience some entries may be reserved.

15.4.1 TC33x/TC32x Specific Pre-Alarms

There are situations where it is not necessary to implement configuration and status registers for every internal alarm event; a typical case is a module with multiple SRAMs. For that, alarm inputs, called pre-alarms, are combined together with a logical OR internally in SMU. The result is then connected to the alarm group.

MTU Pre-Alarm Mapping

Table 163 MTU Pre-Alarm Mapping

Alarm Source	Logic	Alarm Index
CPU0.DMEM - Correctable error CPU0.DLMU - Correctable error	OR	ALM0[9]
CPU0.DMEM - Uncorrectable Critical error CPU0.DLMU - Uncorrectable Critical error	OR	ALM0[10]
CPU0.DMEM - Miscellaneous error CPU0.DLMU - Miscellaneous error	OR	ALM0[11]
SCR.XRAM - Correctable error SCR.RAMINT - Correctable error	OR	ALM6[19]
SCR.XRAM - Uncorrectable critical error SCR.RAMINT - Uncorrectable Critical error	OR	ALM6[20]
SCR.XRAM - Miscellaneous error SCR.RAMINT - Miscellaneous error	OR	ALM6[21]
CAN.MCAN0 - Correctable error CAN.MCAN1 - Correctable error	OR	ALM6[16]
CAN.MCAN0 - Uncorrectable critical error CAN.MCAN1 - Uncorrectable critical error	OR	ALM6[17]
CAN.MCAN0 - Miscellaneous error CAN.MCAN1 - Miscellaneous error	OR	ALM6[18]
ERAY.OBF0 - Correctable error ERAY.TBF_IBF0 - Correctable error ERAY.MBF0 - Correctable error	OR	ALM6[13]
ERAY.OBF0 - Uncorrectable Critical error ERAY.TBF_IBF0 - Uncorrectable Critical error ERAY.MBF0 - Uncorrectable Critical error	OR	ALM6[14]
ERAY.OBF0 - Miscellaneous error ERAY.TBF_IBF0 - Miscellaneous error ERAY.MBF0 - Miscellaneous error	OR	ALM6[15]

Safety Flip-flop Pre-Alarm Mapping

Table 164 Safety Flip-flop Pre-Alarm Mapping

Alarm Source	Logic	Alarm Index
MTU - Safety flip-flop uncorrectable error	OR	ALM10[21]
IOM - Safety flip-flop uncorrectable error		
IR - Safety flip-flop uncorrectable error		
SCU - Safety flip-flop uncorrectable error		
PMS - Safety flip-flop uncorrectable error		
DMA - Safety flip-flop uncorrectable error		
SYS_PLL.PER_PLL - Safety flip-flop uncorrectable error		
CERBERUS - Safety flip-flop uncorrectable error		
CCU - Safety flip-flop uncorrectable error		
SMU_core - Safety flip-flop uncorrectable error		

Module Access Enable Pre-Alarm Mapping

Table 165 Module Access Enable Pre-Alarm Mapping

Alarm Source	Logic	Alarm Index
IR - Access Enable error	OR	ALM10[22]
HSM - Access Enable error		

PMS Pre-Alarm Mapping

Table 166 PMS Pre-Alarm Mapping

Alarm Source	Logic	Alarm Index
PMS - Uncorrectable error	OR	ALM21[7]
SMU.SMU_stdby - Safety flip-flop Uncorrectable error		
HSM.VDD - Under Voltage	OR	ALM9[17]
HSM.VDDP3 - Under Voltage		
HSM.VEXT - Under Voltage		
HSM.VDD - Over Voltage	OR	ALM9[16]
HSM.VDDP3 - Over Voltage		
HSM.VEXT - Over Voltage		
PMS.VDD - Over voltage	OR	ALM9[3]
PMS.VDDPD - Over voltage		
PMS.VDDP3 - Over voltage		
PMS.VDDM - Over voltage		
PMS.VEXT - Over voltage		
PMS.VEVRSB - Over voltage		
PMS.VDD - Under voltage	OR	ALM9[5]
PMS.VDDPD - Under voltage		
PMS.VDDP3 - Under voltage		
PMS.VDDM - Under voltage		
PMS.VEXT - Under voltage		
PMS.VEVRSB - Under voltage		
PMS.EVRC - Short to Low	OR	ALM9[15]
PMS.EVRC - Short to High		
PMS.EVR33 - Short to Low		
PMS.EVR33 - Short to High		

15.4.2 TC33x/TC32x Specific Alarms

The following tables fully specify the mapping between the alarms provided by the safety mechanisms implemented by the microcontroller and the alarm groups.

In the following tables the column "Safety Mechanism & Error Indication" indicates to which safety mechanism the alarm is related. If multiple safety mechanisms are indicated, the alarm corresponds to the detection of an error by one of the listed safety mechanisms.

For some safety mechanisms different terms are used in the microcontroller documents; the following list provides a guideline between the term used in the alarm tables and the other definitions, in bold the definition used in the alarm tables.

• Register Access Protection or alternatively called Safety Register Protection

- Purpose: Monitors the master identifier of a given bus-master during a write access to a configuration register. The master identifier is a hard-coded information that is provided during any bus access. If the master identifier is not enabled by the Register Access Protection configuration registers (ACCENO) the write is aborted. Most of the modules do not provide a dedicated alarm for this event and instead will generate a bus error. Therefore the Register Access Protection is only documented where a dedicated alarm is available.
- Note: for peripherals that implement memory-mapped SRAMs, the write accesses to the memories are monitored as well.
- Bus-level Memory Protection Unit (MPU) or alternatively called Safety Memory Protection
 - Purpose: Monitors the master identifier and the address of a given bus-master during a write access to a local SRAM. The master identifier is a hard-coded information that is provided during any bus access. If the master identifier is enabled by the Bus-level MPU configuration registers and the address is within the valid address range the write is accepted, otherwise the write is aborted and a Bus-level MPU alarm is issued.
 - The SRAMs monitored are the {PSPR, DSPR, DLMU} SRAMs of each CPU and the LMU SRAMs when available in the product.

Alarm Mapping related to ALMO group

Table 167 Alarm Mapping related to ALM0 group

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM0[0]	cpu_pfi_pfrwb_0	Safety Mechanism: Lockstep CPU Alarm: CPU0 Lockstep Comparator Error Alarm Type: Pulse Note: For non-Lockstep CPUs (CPUs where no lockstep is implemented or where the lockstep is disabled by the user), this alarm only covers faults that might happen on the access path to the CPU side PFLASH bank. For more details about the CPU lockstep alarm, please refer to the CPU chapter.
ALM0[1]	cpu_pfi_pfrwb_0	Safety Mechanism: Bus-level Memory Protection Unit / Register Access Protection Alarm: CPU0 Bus-level MPU violation / Access Protection violation Alarm Type: Pulse
ALM0[2]	cpu_pfi_pfrwb_0	Safety Mechanism: PFLASH Read Path Monitor Alarm: CPU0 PFLASH0 Read Path Error Alarm Type: Pulse
ALM0[3]	Reserved	Reserved
ALM0[4]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 PCACHE TAG Uncorrectable critical error detection Alarm Type: Level
ALM0[5]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 PCACHE TAG Miscellaneous error detection Alarm Type: Level
ALM0[6]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 PSPR/PCACHE Single bit error correction Alarm Type: Level

 Table 167
 Alarm Mapping related to ALM0 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM0[7]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 PSPR/PCACHE Uncorrectable critical error detection Alarm Type: Level
ALM0[8]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 PSPR/PCACHE Miscellaneous critical error detection Alarm Type: Level
ALM0[9]	Page 23	Safety Mechanism: SRAM Monitor Alarm: CPU0 DSPR/DCACHE/DLMU Single bit error correction Alarm Type: Level
ALM0[10]	Page 23	Safety Mechanism: SRAM Monitor Alarm: CPU0 DSPR/DCACHE/DLMU Uncorrectable critical error detection Alarm Type: Level
ALM0[11]	Page 23	Safety Mechanism(s): SRAM Monitor Alarm: CPU0 DSPR/DCACHE/DLMU Miscellaneous error detection Alarm Type: Level
ALM0[12]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 DCACHE TAG Single bit error correction Alarm Type: Level
ALM0[13]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 DCACHE TAG Uncorrectable critical error detection Alarm Type: Level
ALM0[14]	MTU	Safety Mechanism: SRAM Monitor Alarm: CPU0 DCACHE TAG Miscellaneous error detection Alarm Type: Level
ALM0[21:15]	Reserved	Reserved
ALM0[22]	cpu_pfi_pfrwb_0	Safety Mechanism: SRI End-to-End EDC Alarm: CPU0 Instruction Fetch SRI Interface EDC Error Alarm Type: Pulse
ALM0[23]	cpu_pfi_pfrwb_0	Safety Mechanism: SRI End-to-End EDC Alarm: CPU0 Data SRI Interface (Load/Store) EDC Error Alarm Type: Pulse
ALM0[24]	cpu_pfi_pfrwb_0	Safety Mechanism: Exception Monitor Alarm: CPU0 exception (interrupt/trap) Alarm Type: Pulse
		Alaini Type. Fulse

Alarm Mapping related to ALM1 group

Table 168 Alarm Mapping related to ALM1 group

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM1[2:0]	Reserved	Reserved
ALM1[3]	Reserved	Reserved

Table 168 Alarm Mapping related to ALM1 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM1[14:4]	Reserved	Reserved	
ALM1[21:15]	Reserved	Reserved	
ALM1[24:22]	Reserved	Reserved	
ALM1[31:25]	Reserved	Reserved	

Alarm Mapping related to ALM2 group

Table 169 Alarm Mapping related to ALM2 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM2[0]	Reserved	Reserved	
ALM2[1]	Reserved	Reserved	
ALM2[2]	Reserved	Reserved	
ALM2[3]	Reserved	Reserved	
ALM2[14:4]	Reserved	Reserved	
ALM2[21:15]	Reserved	Reserved	
ALM2[24:22]	Reserved	Reserved	
ALM2[31:25]	Reserved	Reserved	

Alarm Mapping related to ALM3 group

Table 170 Alarm Mapping related to ALM3 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM3[0]	Reserved	Reserved	
ALM3[1]	Reserved	Reserved	
ALM3[2]	Reserved	Reserved	
ALM3[3]	Reserved	Reserved	
ALM3[14:4]	Reserved	Reserved	
ALM3[21:15]	Reserved	Reserved	
ALM3[24:22]	Reserved	Reserved	
ALM3[31:25]	Reserved	Reserved	

Alarm Mapping related to ALM4 group

Table 171 Alarm Mapping related to ALM4 group

	<u> </u>	
Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM4[2:0]	Reserved	Reserved
ALM4[3]	Reserved	Reserved
ALM4[14:4]	Reserved	Reserved
ALM4[21:15]	Reserved	Reserved

Table 171 Alarm Mapping related to ALM4 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM4[24:22]	Reserved	Reserved
ALM4[31:25]	Reserved	Reserved

Alarm Mapping related to ALM5 group

Table 172 Alarm Mapping related to ALM5 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM5[2:0]	Reserved	Reserved	
ALM5[3]	Reserved	Reserved	
ALM5[14:4]	Reserved	Reserved	
ALM5[21:15]	Reserved	Reserved	
ALM5[24:22]	Reserved	Reserved	
ALM5[31:25]	Reserved	Reserved	

Alarm Mapping related to ALM6 group

Table 173 Alarm Mapping related to ALM6 group

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM6[0]	МТИ	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[1]	IOM	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[2]	INT	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[3]	Reserved	Reserved
ALM6[4]	SCU	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[5]	PMS	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[6]	DMA	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[7]	SMU_CORE	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level

 Table 173
 Alarm Mapping related to ALM6 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM6[8]	CCU	Safety Mechanism: Safety Flip-flop Alarm: SYS_PLL.PER_PLL - Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[9]	Reserved	Reserved
ALM6[10]	MTU	Safety Mechanism: SRAM Monitor Alarm: GTM Single bit error correction Alarm Type: Level
ALM6[11]	MTU	Safety Mechanism: SRAM Monitor Alarm: GTM Uncorrectable critical error detection Alarm Type: Level
ALM6[12]	MTU	Safety Mechanism: SRAM Monitor Alarm: GTM Miscellaneous error detection Alarm Type: Level
ALM6[13]	Page 23	Safety Mechanism: SRAM Monitor Alarm: ERAY Single bit error correction Alarm Type: Level
ALM6[14]	Page 23	Safety Mechanism: SRAM Monitor Alarm: ERAY Uncorrectable critical error detection Alarm Type: Level
ALM6[15]	Page 23	Safety Mechanism: SRAM Monitor Alarm: ERAY Miscellaneous error detection Alarm Type: Level
ALM6[16]	Page 23	Safety Mechanism: SRAM Monitor Alarm: CAN Single bit error correction Alarm Type: Level
ALM6[17]	Page 23	Safety Mechanism: SRAM Monitor Alarm: CAN Uncorrectable critical error detection Alarm Type: Level
ALM6[18]	Page 23	Safety Mechanism: SRAM Monitor Alarm: CAN Miscellaneous error detection Alarm Type: Level
ALM6[19]	Page 23	Safety Mechanism: SRAM Monitor Alarm: MISC Single bit error correction Alarm Type: Level
ALM6[20]	Page 23	Safety Mechanism: SRAM Monitor Alarm: MISC Uncorrectable critical error detection Alarm Type: Level
ALM6[21]	Page 23	Safety Mechanism: SRAM Monitor Alarm: MISC Miscellaneous error detection Alarm Type: Level
ALM6[22]	Reserved	Reserved

Table 173 Alarm Mapping related to ALM6 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM6[23]	CBS	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[24]	CCU	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop correctable error detected Alarm Type: Level
ALM6[25]	CCU	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM6[31:26]	Reserved	Reserved

Alarm Mapping related to ALM7 group

Table 174 Alarm Mapping related to ALM7 group

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM7[0]	MTU	Safety Mechanism: SRAM Monitor Alarm: LMU/FSI_RAM Single bit error correction Alarm Type: Level
ALM7[1]	MTU	Safety Mechanism: SRAM Monitor Alarm: LMU/FSI_RAM Uncorrectable critical error detection Alarm Type: Level
ALM7[2]	MTU	Safety Mechanism: SRAM Monitor Alarm: LMU/FSI_RAM Miscellaneous error detection Alarm Type: Level
ALM7[8:3]	Reserved	Reserved
ALM7[11:9]	Reserved	Reserved
ALM7[16:12]	Reserved	Reserved
ALM7[17]	SRI	Safety Mechanism: Built-in SRI Error Detection Alarm: XBAR0 Bus Error Event Alarm Type: Pulse
ALM7[18]	Reserved	Reserved
ALM7[19]	Reserved	Reserved
ALM7[20]	SBCU	Safety Mechanism: Built-in SPB Error Detection Alarm: SPB Bus Error Event Alarm Type: Pulse
ALM7[21]	Reserved	Reserved
ALM7[22]	FSI	Safety Mechanism: PFlash ECC Alarm: PFlash Single Bit Error Alarm Type: Level
ALM7[23]	FSI	Safety Mechanism: PFlash ECC Alarm: PFlash Double Bit Error Alarm Type: Level

Table 174 Alarm Mapping related to ALM7 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM7[24]	FSI	Safety Mechanism: PFlash ECC Alarm: Single Bit Correction Tracking Buffer Full Alarm Type: Level
ALM7[25]	FSI	Safety Mechanism: PFlash ECC Alarm: Double Bit Correction Tracking Buffer Full Alarm Type: Level
ALM7[26]	FSI	Safety Mechanism: PFlash ECC Alarm: Multiple Bit Error Detection Tracking Buffer Full Alarm Type: Level
ALM7[27]	FSI	Safety Mechanism: PFlash ECC Alarm: Zero Bit Error Tracking Buffer Full Alarm Type: Level
ALM7[28]	FSI	Safety Mechanism: PFlash ECC Monitor Alarm: PFlash ECC Error Alarm Type: Level
ALM7[29]	FSI	Safety Mechanism: PFlash EDC Monitor Alarm: PFlash EDC Error Alarm Type: Level
ALM7[30]	FSI	Safety Mechanism: PFlash Configuration Monitor Alarm: CPU FLASHCON Configuration Error Alarm Type: Level
ALM7[31]	FSI	Safety Mechanism: PFlash Configuration Monitor Alarm: Flash Stored Configuration Error Alarm Type: Level

Alarm Mapping related to ALM8 group

Table 175 Alarm Mapping related to ALM8 group

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM8[0]	SCU	Safety Mechanism: Clock Monitor Alarm: OSC clock frequency out of range Alarm Type: Pulse
ALM8[1]	CCU	Safety Mechanism: Clock Monitor Alarm: Back-up clock out-of-range alarm Alarm Type: Level
ALM8[2]	CCU	Safety Mechanism: Clock Alive Monitor Alarm: Back-up clock alive alarm Alarm Type: Level
ALM8[3]	SCU	Safety Mechanism: PLL loss of lock detection Alarm: System PLL DCO loss of lock event Alarm Type: Pulse
ALM8[4]	SCU	Safety Mechanism: PLL loss of lock detection Alarm: Peripheral PLL DCO loss of lock event Alarm Type: Pulse

 Table 175
 Alarm Mapping related to ALM8 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM8[5]	SCU	Safety Mechanism: LBIST Safe Reset State Alarm: LBIST Alarm Alarm Type: Level
ALM8[6]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 0 Alarm Type: Pulse
ALM8[7]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 1 Alarm Type: Pulse
ALM8[8]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 2 Alarm Type: Pulse
ALM8[9]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 3 Alarm Type: Pulse
ALM8[10]	SCU	Safety Mechanism: Watchdog Alarm: CPU0 Watchdog Time-out Alarm Type: Pulse
ALM8[11]	Reserved	Reserved
ALM8[12]	Reserved	Reserved
ALM8[13]	Reserved	Reserved
ALM8[15:14]	Reserved	Reserved
ALM8[16]	SCU	Safety Mechanism: Watchdog Alarm: Safety Watchdog Time-out Alarm Type: Pulse
ALM8[17]	SCU	Safety Mechanism: All Watchdogs Alarm: Watchdog Time-out. This alarm is a logical OR over all watchdog time-out alarms Alarm Type: Pulse
ALM8[18]	SCU	Safety Mechanism: Lockstep Dual Rail Monitor Alarm: Dual Rail Error Alarm Type: Pulse
ALM8[19]	SCU	Safety Mechanism: Emergency Stop Alarm: External Emergency Stop Signal Event Alarm Type: Pulse
ALM8[20]	SCU	Safety Mechanism: Pad Monitor Alarm: Pad Heating Alarm Alarm Type: Pulse Note: This alarm is triggered by the pad-heating enable signal of all core supply-pads. It will also be triggered by the enable signal for initialisation of security sensitive RAMs and TCU test enable signals

Table 175 Alarm Mapping related to ALM8 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM8[21]	SCU	Safety Mechanism: LBIST Test Mode Alarm: LBIST Test Mode Alarm Alarm Type: Level Note: This alarm is also set if TCU related signals are activated in the SCU causing it to fail
ALM8[22]	INT	Safety Mechanism: Interrupt Monitor Alarm: EDC Configuration and Data Path Error Alarm Type: Pulse
ALM8[23]	DMA	Safety Mechanism: DMA SRI ECC Alarm: DMA SRI ECC Error Alarm Type: Pulse
ALM8[24]	Reserved	Reserved
ALM8[25]	IOM	Safety Mechanism: External Alarm Alarm: Pin Mismatch Indication Alarm Type: Level
ALM8[26]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 4 Alarm Type: Pulse
ALM8[27]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 5 Alarm Type: Pulse
ALM8[28]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 6 Alarm Type: Pulse
ALM8[29]	SCU	Safety Mechanism: External Alarm Alarm: External Request Unit Alarm 7 Alarm Type: Pulse
ALM8[30]	SCU	Safety Mechanism: Core Domain Die Temperature Sensor Alarm: Under Temperature Alarm Alarm Type: Level
ALM8[31]	SCU	Safety Mechanism: Core Domain Die Temperature Sensor Alarm: Over Temperature Alarm Alarm Type: Level

Alarm Mapping related to ALM9 group

Table 176 Alarm Mapping related to ALM9 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM9[0]	PMS	Safety Mechanism: Die Temperature Sensor Alarm: Temperature Overflow Alarm Type: Level	
ALM9[1]	PMS	Safety Mechanism: Die Temperature Sensor Alarm: Temperature Underflow Alarm Type: Level	

Table 176 Alarm Mapping related to ALM9 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM9[2]	Reserved	Reserved	
ALM9[3]	Page 24	Safety Mechanism: Voltage Monitor Alarm: Over-voltage Alarm Alarm Type: Level	
ALM9[4]	Reserved	Reserved	
ALM9[5]	Page 24	Safety Mechanism: Voltage Monitor Alarm: Under-voltage Alarm Alarm Type: Level	
ALM9[14:6]	Reserved	Reserved	
ALM9[15]	Page 24	Safety Mechanism: Voltage Monitor Alarm: Short to Low/High Alarm Alarm Type: Level	
ALM9[16]	Page 24	Safety Mechanism: Voltage Monitor Alarm: Over-voltage Alarm Alarm Type: Level	
ALM9[17]	Page 24	Safety Mechanism: Voltage Monitor Alarm: Under-voltage Alarm Alarm Type: Level	
ALM9[19:18]	Reserved	Reserved	
ALM9[21:20]	Reserved	Reserved	
ALM9[22]	Reserved	Reserved	
ALM9[23]	Reserved	Reserved	
ALM9[26:24]	Reserved	Reserved	
ALM9[27]	Reserved	Reserved	
ALM9[28]	Reserved	Reserved	
ALM9[29]	Reserved	Reserved	
ALM9[30]	Reserved	Reserved	
ALM9[31]	Reserved	Reserved	

Alarm Mapping related to ALM10 group

Table 177 Alarm Mapping related to ALM10 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM10[0]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 0 Alarm Type: Pulse	
ALM10[1]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 1 Alarm Type: Pulse	
ALM10[2]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 2 Alarm Type: Pulse	

Table 177 Alarm Mapping related to ALM10 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM10[3]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 3 Alarm Type: Pulse
ALM10[4]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 4 Alarm Type: Pulse
ALM10[5]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 5 Alarm Type: Pulse
ALM10[6]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 6 Alarm Type: Pulse
ALM10[7]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 7 Alarm Type: Pulse
ALM10[8]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 8 Alarm Type: Pulse
ALM10[9]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 9 Alarm Type: Pulse
ALM10[10]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 10 Alarm Type: Pulse
ALM10[11]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 11 Alarm Type: Pulse
ALM10[12]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 12 Alarm Type: Pulse
ALM10[13]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 13 Alarm Type: Pulse
ALM10[14]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 14 Alarm Type: Pulse
ALM10[15]	Software	Safety Mechanism: Software Monitor Alarm: Software Alarm 15 Alarm Type: Pulse
ALM10[16]	SMU_CORE	Safety Mechanism: Recovery Timer 0 Alarm: Timer Time-out Alarm Type: Pulse

Table 177 Alarm Mapping related to ALM10 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication
ALM10[17]	SMU_CORE	Safety Mechanism: Recovery Timer 1 Alarm: Timer Time-out Alarm Type: Pulse
ALM10[18]	FSP	Safety Mechanism: ErrorPin Alarm: ErrorPin Fault State Activation Alarm Type: Pulse
ALM10[19]	Reserved	Reserved
ALM10[20]	CCU	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop correctable error detected Alarm Type: Level
ALM10[21]	Page 23	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level
ALM10[22]	Page 24	Safety Mechanism: Access Enable Protection Alarm: Access Enable error Alarm Type: Pulse
ALM10[31:23]	Reserved	Reserved

Alarm Mapping related to ALM11 group

Table 178 Alarm Mapping related to ALM11 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM11[1:0]	Reserved	Reserved	
ALM11[2]	SRI	Safety Mechanism: SRI Error Detection Code (EDC) Alarm: EDC Address Phase Error Alarm Type: Pulse	
ALM11[3]	SRI	Safety Mechanism: SRI Error Detection Code (EDC) Alarm: EDC Write Phase Error Alarm Type: Pulse	
ALM11[4]	DMU	Safety Mechanism: SRI Error Detection Code (EDC) Alarm: EDC Address Phase Error Alarm Type: Pulse	
ALM11[5]	DMU	Safety Mechanism: SRI Error Detection Code (EDC) Alarm: EDC Write Phase Error Alarm Type: Pulse	
ALM11[7:6]	Reserved	Reserved	
ALM11[8]	Reserved	Reserved	
ALM11[9]	SFIBRIDGE1	Safety Mechanism: SRI Error Detection Code (EDC) Alarm: EDC Read Phase Error Alarm Type: Pulse	
ALM11[10]	Reserved	Reserved	
ALM11[11]	Reserved	Reserved	

Table 178 Alarm Mapping related to ALM11 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM11[12]	converter_0	Safety Mechanism: Converter Alarm: Phase Synchronizer Error Alarm Type: Level	
ALM11[13]	SRI	Safety Mechanism: SRI SOTA Monitor Alarm: SOTA Swap Error Alarm Type: Pulse	
ALM11[31:14]	Reserved	Reserved	

Alarm Mapping related to ALM20 group

Table 179 Alarm Mapping related to ALM20 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM20[3:0]	Reserved	Resreved	
ALM20[4]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDD Over-voltage Alarm Alarm Type: Level	
ALM20[5]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDDPD Over-voltage Alarm Alarm Type: Level	
ALM20[6]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDDP3 Over-voltage Alarm Alarm Type: Level	
ALM20[7]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDDM Over-voltage Alarm Alarm Type: Level	
ALM20[8]	PMS	Safety Mechanism: Voltage Monitor Alarm: VEXT Over-voltage Alarm Alarm Type: Level	
ALM20[9]	PMS	Safety Mechanism: Voltage Monitor Alarm: VEVRSB Over-voltage Alarm Alarm Type: Level	
ALM20[10]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDD Under-voltage Alarm Alarm Type: Level	
ALM20[11]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDDPD Under-voltage Alarm Alarm Type: Level	
ALM20[12]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDDP3 Under-voltage Alarm Alarm Type: Level	
ALM20[13]	PMS	Safety Mechanism: Voltage Monitor Alarm: VDDM Under-voltage Alarm Alarm Type: Level	

Table 179 Alarm Mapping related to ALM20 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM20[14]	PMS	Safety Mechanism: Voltage Monitor Alarm: VEXT Under-voltage Alarm Alarm Type: Level	
ALM20[15]	PMS	Safety Mechanism: Voltage Monitor Alarm: VEVRSB Under-voltage Alarm Alarm Type: Level	
ALM20[31:16]	Reserved	Reserved	

Alarm Mapping related to ALM21 group

Table 180 Alarm Mapping related to ALM21 group

Alarm Index	larm Index Module Safety Mechanism & Alarm Indication		
ALM21[0]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDD Under-voltage Alarm Alarm Type: Level	
ALM21[1]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDDP3 Under-voltage Alarm Alarm Type: Level	
ALM21[2]	hsm	Safety Mechanism: Voltage Monitor Alarm: VEXT Under-voltage Alarm Alarm Type: Level	
ALM21[3]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDD Over-voltage Alarm Alarm Type: Level	
ALM21[4]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDDP3 over-voltage Alarm Alarm Type: Level	
ALM21[5]	hsm	Safety Mechanism: Voltage Monitor Alarm: VEXT over-voltage Alarm Alarm Type: Level	
ALM21[6]	Reserved	Reserved	
ALM21[7]	Page 24	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level	
ALM21[8]	PMS	Safety Mechanism: Die Temperature Sensor Alarm: Temperature underflow Alarm Type: Level	
ALM21[9]	PMS	Safety Mechanism: Die Temperature Sensor Alarm: Temperature overflow Alarm Type: Level	
ALM21[10]	PMS	Safety Mechanism: Register Access Protection Alarm: Access Protection violation Alarm Type: Pulse	

Table 180 Alarm Mapping related to ALM21 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM21[11]	PMS	Safety Mechanism: Voltage Monitor Alarm: EVRC Short to Low Alarm Alarm Type: Level	
ALM21[12]	PMS	Safety Mechanism: Voltage Monitor Alarm: EVRC Short to High Alarm Alarm Type: Level	
ALM21[13]	PMS	Safety Mechanism: Voltage Monitor Alarm: EV33 Short to Low Alarm Alarm Type: Level	
ALM21[14]	PMS	Safety Mechanism: Voltage Monitor Alarm: EV33 Short to High Alarm Alarm Type: Level	
ALM21[15]	CCU	Safety Mechanism: Clock Alive Monitor Alarm: PLLx/fSPB Alive Alarm (provided on fBACK clock with x = 0 Alarm Type: Level Note: This alarm is also set if TCU related signals are activated in the CCU causing the clocks to fail	
ALM21[16]	SMU_CORE	Safety Mechanism: SMU_core Alive Monitor Alarm: SMU_core Alive Alarm Alarm Type: Pulse	
ALM21[31:17]	Reserved	Reserved	

Alarm Mapping related to ALM21 group

Table 181 Alarm Mapping related to ALM21 group

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM21[0]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDD Under-voltage Alarm Alarm Type: Level	
ALM21[1]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDDP3 Under-voltage Alarm Alarm Type: Level	
ALM21[2]	hsm	Safety Mechanism: Voltage Monitor Alarm: VEXT Under-voltage Alarm Alarm Type: Level	
ALM21[3]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDD Over-voltage Alarm Alarm Type: Level	
ALM21[4]	hsm	Safety Mechanism: Voltage Monitor Alarm: VDDP3 over-voltage Alarm Alarm Type: Level	
ALM21[5]	hsm	Safety Mechanism: Voltage Monitor Alarm: VEXT over-voltage Alarm Alarm Type: Level	

 Table 181
 Alarm Mapping related to ALM21 group (cont'd)

Alarm Index	Module	Safety Mechanism & Alarm Indication	
ALM21[6]	Reserved	Reserved	
ALM21[7]	Page 24	Safety Mechanism: Safety Flip-flop Alarm: Safety flip-flop uncorrectable error detected Alarm Type: Level	
ALM21[8]	PMS	Safety Mechanism: Die Temperature Sensor Alarm: Temperature underflow Alarm Type: Level	
ALM21[9]	PMS	Safety Mechanism: Die Temperature Sensor Alarm: Temperature overflow Alarm Type: Level	
ALM21[10]	PMS	Safety Mechanism: Register Access Protection Alarm: Access Protection violation Alarm Type: Pulse	
ALM21[11]	PMS	Safety Mechanism: Voltage Monitor Alarm: EVRC Short to Low Alarm Alarm Type: Level	
ALM21[12]	PMS	Safety Mechanism: Voltage Monitor Alarm: EVRC Short to High Alarm Alarm Type: Level	
ALM21[13]	PMS	Safety Mechanism: Voltage Monitor Alarm: EV33 Short to Low Alarm Alarm Type: Level	
ALM21[14]	PMS	Safety Mechanism: Voltage Monitor Alarm: EV33 Short to High Alarm Alarm Type: Level	
ALM21[15]	CCU	Safety Mechanism: Clock Alive Monitor Alarm: PLLx/fSPB Alive Alarm (provided on fBACK clock with x = 02) Alarm Type: Level Note: This alarm is also set if TCU related signals are activated in the CCU causing the clocks to fail	
ALM21[16]	SMU_CORE	Safety Mechanism: SMU_core Alive Monitor Alarm: SMU_core Alive Alarm Alarm Type: Pulse	
ALM21[31:17]	Reserved	Reserved	

15.5 Connectivity

Table 182 Connections of SMU

Interface Signals connects		ects	Description	
SMU:FSP(0)	to	P33.8:HWOUT(0)	FSP[10] Output Signals - Generated by SMU_core	
SMU:FSP(1)	to	P33.10:HWOUT(0)	FSP[10] Output Signals - Generated by SMU_core	
SMU:FSP_STS(0)	from	P33.8:IN	FSP Status Input - Shows the actual state of the FSP ErroPin	
SMU:FSP_STS(1)	from	P33.10:IN	FSP Status Input - Shows the actual state of the FSP ErroPin	
SMU:RUNSTATE	to	SCU:smu_wdt_run	SMU_core RUN state indication	
SMU:INT(2:0)	to	INT:smu.INT(2:0)	SMU Service Request	

15.6 Revision History

Table 183 Revision History

Page 38 Added descrip Page 31 Updated descrip Page 1 Missing blank	ription of ALM21[0] and ALM21[3]	
V4.0.18 Page 38 Updated descrip Page 31 Updated descrip Page 31 Updated descrip Page 1 Missing blank	ription of ALM21[0] and ALM21[3]	
Page 38 Updated descrip Page 31 Updated descrip Page 31 Updated descrip Page 1 Missing blank	ription of ALM21[0] and ALM21[3]	
Page 38 Added descrip Page 31 Updated descri Page 1 Missing blank	ription of ALM21[0] and ALM21[3]	
Page 31 Updated description Missing blank		
Page 1 Missing blank	otion for ALM21[6]	
	ription for ALM8[20]	
1/4 0 40	fixed	
V4.0.19		
Page 23, Added FSI_RAI previous version	M Alarms ALM7[0:2] which were not documented in on	n the
Page 25 Added Alarm T	Types in Alarm Mapping Tables	
Page 2 Typo fixed, no	functional change	
Page 41 Revision Histo	ry updated	
V4.0.20		
Page 33 Updated group	ping in ALM9 group, no functional change.	
V4.0.21		
 No functional 	changes.	
V4.0.22		
- No functional	changes.	
V4.0.23		
Page 28 Updated descri	winting of ALACIOI	

16 Interrupt Router (IR)

This chapter supplements the family documentation whith device specific information for TC33x/TC32x.

The Interrupt Router allocates two address ranges

- Interrupt Router System and OTGM register address range: 2 * 256 byte address range covering the Interrupt Router system registers, ICU control registers and OTGM registers (Chapter 16.2)
- SRC register address range: 8 KByte address range covering the Service Request Control registers (Chapter 16.4)

16.1 TC33x/TC32x Specific Interrupt Router Configuration

Table 184 TC33x/TC32x specific configuration of INT

Parameter	INT
Number of Interrupt Service Providers	1
Number of SRB groups	2

Table 185 TC33x/TC32x specific configuration of SRC

Parameter	SRC
Number of Service Request Nodes	1024

16.2 TC33x/TC32x Specific Control Registers

This chapter describes the TC33x/TC32x specific Interrupt Router system, OTGM and ICU registers

List of used Access Protection Register abbreviations

- P0 -> ACCEN_SRBx, write protection of the related SRBx register. Number of Service Request Broadcast registers (SRB) and the related ACCEN_SRB registers is equal to the number of implemented TriCore CPUs.
- P1 -> ACCEN_CONFIG, write protection of all SRCx[15:0] and ICUx Error Capture registers (ECRx)
- P2 -> ACCEN_SRC_TOSx, write protects bits [31:16] of all SRCs that are mapped to TOSx (SCR.TOS=x). For each implemented Interrupt Control Unit, one ACCEN_SRC_TOSx register is implemented.

Note:

A violation of the access protection will not be executed (e.g. a write to a 'Px'/ACCEN protected register by an SPB access with a disabled Master TAG-ID). In this case an access protection error is signaled to the SMU. Beside this signaling to the SMU, no other error, interrupt or trap is generated.

Interrupt Router Module Registers

Figure 4 Interrupt Router module registers (SRC registers are described in Chapter 16.4)

Table 186 Register Address Space - INT

Module	Base Address	End Address	Note
INT	F0037000 _H	F0037FFF _H	IR Status and Control Registers

Table 187 Register Overview - INT (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page	
		Address	Read	Write		Number	
INT_ID	Module Identification Register	0008 _H	U,SV	nBE	Application Reset	See Family Spec	
INT_SRBx (x=0-1)	Service Request Broadcast Register x	0010 _H +x *4	U,SV	SV,P0	Application Reset	See Family Spec	
INT_OOBS	OTGM OTGB0/1 Status	0080 _H	U,SV	nBE	Application Reset	See Family Spec	
INT_OSSIC	OTGM SSI Control	0084 _H	U,SV	SV	Application Reset	See Family Spec	
INT_OIXTS	OTGM IRQ MUX Trigger Set Select	0088 _H	U,SV	SV	Application Reset	See Family Spec	
INT_OIXMS	OTGM IRQ MUX Missed IRQ Select	008C _H	U,SV	SV	Application Reset	See Family Spec	
INT_OIXS0	OTGM IRQ MUX Select 0	0090 _H	U,SV	SV	Application Reset	See Family Spec	
INT_OIXS1	OTGM IRQ MUX Select 1	0094 _H	U,SV	SV	Application Reset	See Family Spec	
INT_OIT	OTGM IRQ Trace	00A0 _H	U,SV	SV	Application Reset	5	
INT_OMISP	OTGM MCDS I/F Sensitivity Posedge	00A4 _H	U,SV	SV	Application Reset	See Family Spec	
INT_OMISN	OTGM MCDS I/F Sensitivity Negedge	00A8 _H	U,SV	SV	Application Reset	See Family Spec	
INT_ACCEN_CON FIG0	Access Enable covering all INT_ECRx and all SRCy[15:0], Register 0	00F0 _H	U,SV	SV,SE	Application Reset	See Family Spec	
INT_ACCEN_CON FIG1	Access Enable covering all INT_ECRx and all SRCy[15:0], Register 1	00F4 _H	U,SV	SV,SE	Application Reset	See Family Spec	
INT_ACCEN_SRB x0 (x=0-1)	Access Enable covering SRBx, Register 0	0100 _H +x *8	U,SV	SV,SE	Application Reset	See Family Spec	

Table 187 Register Overview - INT (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page Number	
		Address	Read	Write			
INT_ACCEN_SRB x1 (x=0-1)	Access Enable covering SRBx, Register 1	0104 _H +x *8	U,SV	SV,SE	Application Reset	See Family Spec	
INT_ACCEN_SRC _TOSx0 (x=0)	Access Enable covering all SRCx[31:16] mapped to ICUx, Register 0	0180 _H	U,SV	SV,SE	Application Reset	See Family Spec	
INT_ACCEN_SRC _TOSx1 (x=0)	Access Enable covering all SRCx[31:16] mapped to ICUx, Register 1	0184 _H	U,SV	SV,SE	Application Reset	See Family Spec	
INT_LWSRx (x=0)	Latest Winning Service Request Register x, related to ICUx	0200 _H	U,SV	nBE	Application Reset	See Family Spec	
INT_LASRx (x=0)	Last Acknowledged Service Request Register x, related to ICUx	0204 _H	U,SV	nBE	Application Reset	See Family Spec	
INT_ECRx (x=0)	Error Capture Register x, related to ICUx	0208 _H	U,SV	SV,P1	Application Reset	See Family Spec	

TC33x/TC32x Specific Registers 16.3

IR Status and Control Registers 16.3.1

0

OTGM IRQ Trace

INT_OIT **OTGM IRQ Trace**

 $(00A0_{H})$ Application Reset Value: 0000 0000_H $31 \ \ \, 30 \ \ \, 29 \ \ \, 28 \ \ \, 27 \ \ \, 26 \ \ \, 25 \ \ \, 24 \ \ \, 23 \ \ \, 22 \ \ \, 21 \ \ \, 20 \ \ \, 19 \ \ \, 18 \ \ \, 17 \ \ \, 16 \ \ \, 15 \ \ \, 14 \ \ \, 13 \ \ \, 12 \ \ \, 11 \ \ \, 10 \ \ \, 9 \ \ \, 8 \ \ \, 7 \ \ \, 6 \ \ \, 5 \ \ \, 4 \ \ \, 3 \ \ \, 2 \ \ \, 1 \ \ \, 0$ OE OE TOS1 0 0 TOS0 1 0 rw rw rw rw

Field	Bits	Type	Description
TOS0	2:0	rw	Type of Service for Observation on OTGB0 Trigger Set TS16_SP Family concept encoding, compatible with SRC.TOS 000 _B CPU0 service is observed 001 _B DMA service is observed others, Reserved (no action)
OE0	7	rw	Output Enable for OTGB0 0 _B Disabled 1 _B Enabled
TOS1	10:8	rw	Type of Service for Observation on OTGB1 Trigger Set TS16_SP Family concept encoding, compatible with SRC.TOS 000 _B CPU0 service is observed 001 _B DMA service is observed others, Reserved (no action)
OE1	15	rw	Output Enable for OTGB1 0 _B Disabled 1 _B Enabled
0	6:3, 14:11, 31:16	r	Reserved Read as 0; must be written with 0.

Interrupt Router (IR)

TC33x/TC32x Specific Service Request Control (SRC) registers 16.4

This chapter describes the TC33x/TC32x Service Request Control (SRC) registers.

Table 189 shows all registers associated with the Interrupt Router module in the device. This chapter describes the Service Request Control registers including:

- Mapping of Aurix module interrupt triggers to SRC
- SRC offsets
- The index number of an SRC can be calculated with the SRC Offset: Index(SRC) = <SRC Address Offset> / 4

List of used Access Protection Register abbreviations

- PO -> ACCEN_SRBx, write protection of the related SRBx register. Number of Service Request Broadcast registers (SRB) and the related ACCEN_SRB registers is equal to the number of implemented TriCore CPUs.
- P1 -> ACCEN_CONFIG, write protection of all SRCx[15:0] and ICUx Error Capture registers (ECRx)
- P2 -> ACCEN_SRC_TOSx, write protects bits [31:16] of all SRCs that are mapped to TOSx (SCR.TOS=x). For each implemented Interrupt Control Unit, one ACCEN_SRC_TOSx register is implemented.

Note:

A violation of the access protection will not be executed (e.g. a write to a 'Px'/ACCEN protected register from a disabled master). In this case an access protection error is signaled to the SMU. Beside this signaling to the SMU, no other error, interrupt or trap is generated.

Table 188 Register Address Space - SRC

Module	Base Address	End Address	Note
SRC	F0038000 _H	F0039FFF _H	IR Service Request Control Registers (SRC)

Table 189 Register Overview - SRC (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
SRC_CPUxSB (x=0)	CPUx Software Breakpoint Service Request	00000 _H	U,SV	SV,P1,P2	Debug Reset	10	
SRC_BCUSPB	SBCU Service Request (SPB Bus Control Unit)	00020 _H	U,SV	SV,P1,P2	Debug Reset	10	
SRC_XBAR0	SRI Domain 0 Service Request	00030 _H	U,SV	SV,P1,P2	Debug Reset	10	
SRC_CERBERUSy (y=0-1)	BERUSy Cerberus Service Request y		U,SV	SV,P1,P2	Debug Reset	10	
SRC_ASCLINxTX (x=0-11)	ASCLINx Transmit Service Request	00050 _H + x*12	U,SV	SV,P1,P2	Application Reset	10	
SRC_ASCLINxRX (x=0-11)	ASCLINx Receive Service Request	00054 _H + x*12	U,SV	SV,P1,P2	Application Reset	10	
SRC_ASCLINXER R (x=0-11) ASCLINX Error Service Request		00058 _H + x*12	U,SV	SV,P1,P2	Application Reset	10	
SRC_MTUDONE	MTU Done Service Request	000EC _H	U,SV	SV,P1,P2	Application Reset	10	

AURIX™ TC33x/TC32x

Table 189 Register Overview - SRC (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Number	
SRC_QSPIxTX (x=0-3)	QSPIx Transmit Service Request	000F0 _H + x*14 _H	U,SV	SV,P1,P2	Application Reset	10	
SRC_QSPIxRX (x=0-3)	QSPIx Receive Service Request	000F4 _H + x*14 _H	U,SV	SV,P1,P2	Application Reset	10	
SRC_QSPIxERR (x=0-3)	QSPIx Error Service Request	000F8 _H + x*14 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_QSPIxPT (x=0-3)	QSPIx Phase Transition Service Request	000FC _H + x*14 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_QSPIxU (x=0-3)	QSPIx User Defined Service Request	00100 _H + x*14 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_QSPI2HC	QSPI2 High Speed Capture Service Request	00178 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_QSPI3HC	QSPI3 High Speed Capture Service Request	0017C _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_SENTx (x=0-9)	SENT TRIGx Service Request	00240 _H + x*4	U,SV	SV,P1,P2	Application Reset	13	
SRC_CCU6xSRy (x=0-1;y=0-3)	CCUx Service Request y	002C0 _H + x*10 _H +y* 4	U,SV	SV,P1,P2	Application Reset	13	
SRC_GPT120CIR Q	GPT120 CAPREL Service Request	002E0 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_GPT120T2	GPT120 Timer 2 Service Request	002E4 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_GPT120T3	GPT120 Timer 3 Service Request	002E8 _H	U,SV	SV,P1,P2	Application Reset	13	
SRC_GPT120T4	GPT120 Timer 4 Service Request	002EC _H	U,SV	SV,P1,P2	Application Reset	15	
SRC_GPT120T5	GPT120 Timer 5 Service Request	002F0 _H	U,SV	SV,P1,P2	Application Reset	15	
SRC_GPT120T6	GPT120 Timer 6 Service Request	002F4 _H	U,SV	SV,P1,P2	Application Reset	15	
SRC_STMxSRy (x=0;y=0-1)	System Timer x Service Request y	00300 _H + y*4	U,SV	SV,P1,P2	Application Reset	15	
SRC_FCE0	FCE0 Error Service Request	00330 _H	U,SV	SV,P1,P2	Application Reset	15	
SRC_DMAERRy (y=0-3)	DMA Error Service Request y	00340 _H + y*4	U,SV	SV,P1,P2	Application Reset	15	
SRC_DMACHy (y=0-63)	DMA Channel y Service Request	00370 _H + y*4	U,SV	SV,P1,P2	Application Reset	15	

Table 189 Register Overview - SRC (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Access Mode			Reset	Page	
		Address	Read	Write		Number	
SRC_CANXINTy (x=0-1;y=0-15)	CANx Service Request y	005B0 _H + x*40 _H +y* 4	U,SV	SV,P1,P2	Application Reset	15	
SRC_VADCGxSRy (x=0-1;y=0-3)	EVADC Group x Service Request y	00670 _H + x*10 _H +y* 4	U,SV	SV,P1,P2	Application Reset	15	
SRC_VADCG8SRy (y=0-3)	EVADC Group 8 Service Request y	006F0 _H + y*4	U,SV	SV,P1,P2	Application Reset	15	
SRC_VADCG9SRy (y=0-3)	EVADC Group 9 Service Request y	00700 _H + y*4	U,SV	SV,P1,P2	Application Reset	18	
SRC_VADCCGxSR y (x=0-1;y=0-3)	EVADC Common Group x Service Request y	00750 _H + x*10 _H +y* 4	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxINT0 (x=0)	E-RAY x Service Request 0	00800 _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxINT1 (x=0)	E-RAY x Service Request 1	00804 _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxTINTO (x=0)	E-RAY x Timer Interrupt 0 Service Request	00808 _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxTINT1 (x=0)	E-RAY x Timer Interrupt 1 Service Request	0080C _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxNDAT 0 (x=0)	E-RAY x New Data 0 Service Request	00810 _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxNDAT 1 (x=0)	E-RAY x New Data 1 Service Request	00814 _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxMBSC 0 (x=0)	E-RAY x Message Buffer Status Changed 0 Service Request	00818 _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxMBSC 1 (x=0)	E-RAY x Message Buffer Status Changed 1 Service Request	0081C _H	U,SV	SV,P1,P2	Application Reset	18	
SRC_ERAYxOBUS Y (x=0)	DBUS E-RAY x Output Buffer Busy		U,SV	SV,P1,P2	Application Reset	20	
SRC_ERAYXIBUSY (x=0)	E-RAY x Input Buffer Busy	00824 _H	U,SV	SV,P1,P2	Application Reset	20	
SRC_DMUHOST	DMU Host Service Request	00860 _H	U,SV	SV,P1,P2	Application Reset	20	
SRC_DMUFSI	DMU FSI Service Request	00864 _H	U,SV	SV,P1,P2	Application Reset	20	

AURIX™ TC33x/TC32x

Table 189 Register Overview - SRC (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Number	
SRC_HSMy (y=0-1)	HSM Service Request y	00870 _H + y*4	U,SV	SV,P1,P2	Application Reset	20	
SRC_SCUERUX (x=0-3)	SCU ERU Service Request x	00880 _H + x*4	U,SV	SV,P1,P2	Application Reset	20	
SRC_PMSDTS	PMS DTS Service Request	008AC _H	U,SV	SV,P1,P2	Application Reset	20	
SRC_PMSx (x=0-3)	Power Management System Service Request x	008B0 _H + x*4	U,SV	SV,P1,P2	Application Reset	20	
SRC_SCR	Stand By Controller Service Request	008C0 _H	U,SV	SV,P1,P2	Application Reset	20	
SRC_SMUy (y=0-2)	SMU Service Request y	008D0 _H + y*4	U,SV	SV,P1,P2	Application Reset	20	
SRC_GPSRxy (x=0;y=0-7)	General Purpose Group x Service Request y	00990 _H + y*4	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMAEIIRQ	AEI Shared Service Request	00A70 _H	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMARUIRQ w (w=0-2)	ARU Shared Service Request w	00A74 _H + w*4	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMBRCIRQ	BRC Shared Service Request	00A80 _H	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMCMPIR Q	CMP Shared Service Request	00A84 _H	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMSPEWIR Q (w=0-1)	SPEw Shared Service Request	00A88 _H + w*4	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMERR	Error Service Request	00B70 _H	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMTIMwx (w=0-1;x=0-7)			U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMTOMwx (w=0-1;x=0-7)	TOMw Shared Service Request x	00E10 _H + w*20 _H +x *4	U,SV	SV,P1,P2	Application Reset	23	
SRC_GTMATOMW x (w=0;x=0-3)	ATOMw Shared Service Request x	00EF0 _H + x*4	U,SV	SV,P1,P2	Application Reset	23	

16.5 TC33x/TC32x Specific Registers

16.5.1 IR Service Request Control Registers (SRC)

CPU0 Software Breakpoint Service Request

SRC_C	PU0SB														
CPU0 S	Softwa	vare Breakpoint Service Request (00000 _H)				Debug Reset Value: 0000 0000 _H					0000 _H				
_	CUSPB														
		Reque	est [SPI	B Bus C	ontrol	Unit)	(0002	0 _H)			Deb	ug Res	et Valu	e: 0000	0000 _H
SRC_X		Sarvia	e Requ	oct			(0003	٥ ١			Dob	ua Bos	ot Valu	۰۰ <u>۵۵۵</u> ۲	0000
	ERBER		•	iest			(0003	υ _Η)			Den	ug Kes	et vatu	e: 0000	0000 _H
			equest y	v		(0	0040 ₁₁	+v*4)			Deb	ug Res	et Valu	e: 0000	0000 _H
	SCLINX		•	•		,	п	, ,							н
ASCLI	Nx Tran	smit S	ervice	Reque	st	(0	0050 _н +	·x*12)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
	SCLINX	•	•												
			rvice R	•		(0	0054 _H +	·x*12)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
	SCLINX	•	•			(0	00E0 1	v*12\		۸ ـــ	nlicati	on Dos	o + \/olii	a. 0000	0000
	ITUDOI		ce Req	uest		(0	0058 _H +	·X · 12)		Aþ	pucau	on Res	et vatu	e: 0000	0000 _H
_			equest			(000EC _H) Application Reset Value: 0000 0				0000					
	SPIxTX		•			(00020H) Application Reservation									
QSPIx	Transn	nit Ser	vice Re	quest		(00	(000F0 _H +x*14 _H) Application Reset Value				e: 0000	0000 _H			
	(SPIXR)	•	•												
QSPIx	Receiv	e Servi	ice Req	uest		(00)0F4 _H +	x*14 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	SWSC	SWS	IOVCL	IOV	SETR	CLRR	SRR		0				ECC		
	LR	3003	R	100	JEIK	CLKK	JKK		U				ECC		
r	W	rh	W	rh	W	W	rh		r	<u>I</u>			rwh	<u>I</u>	1
15	14	13	12	11 10 9			8	7	6	5	4	3	2	1	0
	0		TOS	ı	SRE	()			ı	SR	PN	ı	ı	
	r		rw	<u>i</u>	rw				<u>i</u>	<u> </u>	l	W	<u> </u>	<u> </u>	1

Field	Bits	Type	Description
SRPN	7:0	rw	Service Request Priority Number The SRPN bit field defines the priority of a service request with respect to service requests with to the same service provider (same SRC.TOS configuration): 00 _H -> Service request is on lowest priority FF _H -> Service request is on highest priority Notes 1. For a CPU 01 _H is the lowest priority as 00 _H is never serviced. For a DMA 00 _H triggers channel 0. 2. For DMA, SRPN must not be greater than the highest implemented DMA channel number.
SRE	10	rw	Service Request Enable 0 _B Service request is disabled 1 _B Service request is enabled
TOS	13:11	rw	Type of Service Control The TOS bit field configuration maps a Service Request to an Interrupt Service Provider: 000 _B CPU0 service is initiated 001 _B DMA service is initiated Others, Reserved (no action)
ECC	20:16	rwh	 Error Correction Code The ECC bit field will be updated by the SRN under the following conditions: Write or Read-Modify-Write to SRC[31:0] Write to SRC[15:0] (16-bit write) Write to SRC[15:8] or write to SRC[7:0] (byte write)
SRR	24	rh	Service Request Flag The SRR bit shows the status of the Service Request. 0 _B No service request is pending 1 _B A service request is pending
CLRR	25	w	Request Clear Bit The CLRR bit is required to reset SRR. 0 _B No action 1 _B Clear SRR; bit value is not stored; read always returns 0; no action if SETR is set in parallel.
SETR	26	W	Request Set Bit The SETR bit is required to set SRR. 0 _B No action 1 _B Set SRR and SWS; SRR bit value is not stored; read always returns 0; no action if CLRR is set in parallel.

Field	Bits	Туре	Description
IOV	27	rh	Interrupt Trigger Overflow Bit The IOV bit is set by HW if a new service request was triggered via interrupt trigger or SETR bit while the SRN has still an pending service request. 0 _B No Interrupt Trigger Overflow detected 1 _B Interrupt Overflow Detected.
IOVCLR	28	w	Interrupt Trigger Overflow Clear Bit IOVCLR is required to reset IOV. 0 _B No action 1 _B Clear IOV; bit value is not stored; read always returns 0.
SWS	29	rh	SW Sticky Bit The Software Sticky Bit is set when the SRR bit has been set via the SETR bit. This bit can be cleared by writing with 1 to SWSCLR. Writing to SWS has no effect. O _B No interrupt was initiated via SETR 1 _B Interrupt was initiated via SETR
SWSCLR	30	w	SW Sticky Clear Bit SWSCLR is required to reset SWS. 0 _B No action 1 _B Clear SWS; bit value is not stored; read always returns 0.
0	9:8, 15:14, 23:21, 31	r	Reserved Read as 0; should be written with 0.

	SPIxER Error S	•	•	ct		(0(NER +	v*14 \		Δn	nlicati	on Dec	et Valu	۰ ۵۸۵۵	0000	
-	SPIXPI		-	31		(00	000F8 _H +x*14 _H) Application Reset Value						e. 0000	, 0000н		
QSPIx	Phase SPIxU	Transi	tion Se	rvice R	equest	: (00	x*14 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H		
QSPIx	User Do SPI2HO	efined	•	e Requ	est	(00)100 _H +	x*14 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
QSPI2	High S _l SPI3H(peed C	apture	Servic		Ар	plicati	on Res	et Valu	e: 0000	0000 _H					
QSPI3	High S _l ENTx ()	peed C	apture	Servic		Ар	plicati	on Res	et Valu	e: 0000	0000 _H					
SENT TRIGX Service Request (00240 _H +x*4) SRC_CCU6xSRy (x=0-1;y=0-3)											Application Reset Value: 0000 0000 _H					
CCU _x S	CCUx Service Request y (002C0 _H +x*10 _H +y*4) SRC_GPT120CIRQ											on Res	et Valu	e: 0000	0000 _H	
GPT12	0 CAPR	EL Ser	vice Re	quest			(002E	0 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
GPT12	0 Time PT120	r 2 Ser	vice Re	quest			(002E	4 _H)		Application Reset Value: 0000 0000						
_	0 Time		vice Re	quest			(002E	8 _H)		Application Reset Value: 0000 0000,					0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	SWSC LR	sws	IOVCL R	IOV	SETR	CLRR	SRR		0				ECC			
r	W	rh	W	rh	W	W	rh		r				rwh			
15	15 14 13 12 11 10							7	6	5	4	3	2	1	0	
	0		TOS	ı	SRE	()			ı	SR	PN	1			
	r		rw	<u> </u>	rw	I	r				r	W	1			

Field	Bits	Туре	Description
Field SRPN	7:0	rw	Service Request Priority Number The SRPN bit field defines the priority of a service request with respect to service requests with to the same service provider (same SRC.TOS configuration): 00 _H -> Service request is on lowest priority FF _H -> Service request is on highest priority Notes 1. For a CPU 01 _H is the lowest priority as 00 _H is never serviced.
			 For a DMA 00_H triggers channel 0. For DMA, SRPN must not be greater than the highest implemented DMA channel number.
SRE	10	rw	Service Request Enable 0 _B Service request is disabled 1 _B Service request is enabled

Field	Bits	Type	Description							
TOS	13:11	rw	Type of Service Control The TOS bit field configuration maps a Service Request to an Interrupt Service Provider: 000 _B CPU0 service is initiated 001 _B DMA service is initiated Others, Reserved (no action)							
ECC	20:16	rwh	 Error Correction Code The ECC bit field will be updated by the SRN under the following conditions: Write or Read-Modify-Write to SRC[31:0] Write to SRC[15:0] (16-bit write) Write to SRC[15:8] or write to SRC[7:0] (byte write) 							
SRR	24	rh	Service Request Flag The SRR bit shows the status of the Service Request. 0 _B No service request is pending 1 _B A service request is pending							
CLRR	25	w	Request Clear Bit The CLRR bit is required to reset SRR. 0 _B No action 1 _B Clear SRR; bit value is not stored; read always returns 0; no action if SETR is set in parallel.							
SETR	26	W	Request Set Bit The SETR bit is required to set SRR. 0 _B No action 1 _B Set SRR and SWS; SRR bit value is not stored; read always returns 0; no action if CLRR is set in parallel.							
IOV	27	rh	Interrupt Trigger Overflow Bit The IOV bit is set by HW if a new service request was triggered via interrupt trigger or SETR bit while the SRN has still an pending service request. O _B No Interrupt Trigger Overflow detected 1 _B Interrupt Overflow Detected.							
IOVCLR	28	W	Interrupt Trigger Overflow Clear Bit IOVCLR is required to reset IOV. 0 _B No action 1 _B Clear IOV; bit value is not stored; read always returns 0.							
SWS	29	rh	SW Sticky Bit The Software Sticky Bit is set when the SRR bit has been set via the SETR bit. This bit can be cleared by writing with 1 to SWSCLR. Writing to SWS has no effect. 0 _B No interrupt was initiated via SETR 1 _B Interrupt was initiated via SETR							

Field	Bits	Туре	Description
SWSCLR	30	W	SW Sticky Clear Bit SWSCLR is required to reset SWS. 0 _B No action 1 _B Clear SWS; bit value is not stored; read always returns 0.
0	9:8, 15:14, 23:21, 31	r	Reserved Read as 0; should be written with 0.

SRC_GPT120	T4														
GPT120 Time		vice Re	quest		(002EC _H)				Application Reset Value: 0000 000						
SRC_GPT120			•		, п										
GPT120 Time	r 5 Ser	vice Re	quest			(002F	0 _H)		Ap	plicati	on Res	et Valu	e: 0000	0000 _H	
SRC_GPT120															
GPT120 Time			quest			(002F	4 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
SRC_STMOSR		•	_				4-1		_		_				
System Time	r 0 Ser	vice Re	quest	y	(0	0300 ^H	+y*4)		Ap	plicati	on Res	et Valu	e: 0000) 0000 _H	
SRC_FCE0 FCE0 Error Se	rvico I	Doguos				(0033	٥ ١		۸۵	nlicati	on Doc	et Valu	۰ ، ۸۸۸٬	0000	
SRC_DMAERE		-				(0033	O _H)		Aþ	pucau	on Kes	et vatu	e. 0000	OOOOH	
DMA Error Se	(0	0340 _H	+v*4)		Αp	plicati	on Res	et Valu	e: 0000	0000					
SRC_DMACH		-	,		, ,	п	, -,		Application Reset Value: 0000 000						
DMA Channel	y Serv	vice Re	quest		(0	0370 _H	+y*4)		Application Reset Value: 0000 0000					0000 _H	
SRC_CANXIN			-15)												
CANx Service	•	-			(005E	30 _H +x*	40 _H +y*	'4)	Ар	plicati	on Res	et Valu	e: 0000	0000 _H	
SRC_VADCGx	• •	• • •	•					•	_		_				
EVADC Group			quest y	1	(00670 _H +x*10 _H +y*4)				Application Reset Value: 0000 0000 _H) 0000 _H	
SRC_VADCG8 EVADC Group		•	nuest v	,	(006E0 ±v*4)				Application Reset Value: 0000 0000 _H						
_					(006F0 _H +y*4)				_	-					
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
o swsc	SWS	IOVCL	IOV	SETR	CLRR	SRR		0				ECC			
LR	JETR	CLIKIK	JILIK		J										
r w rh w rh w				W	W	rh		r	1		I	rwh		1	
15 14 13 12 11 10					9	8	7	6	5 4 3 2 1 0					0	
0	0 TOS SRE			SRE	C)		ı	Γ	SR	PN	Т			
					r			1	<u> </u>	r	W	+			
r rw rw						•		1		r	W	1			

Field	Bits	Type	Description
SRPN	7:0	rw	Service Request Priority Number The SRPN bit field defines the priority of a service request with respect to service requests with to the same service provider (same SRC.TOS configuration): 00 _H -> Service request is on lowest priority FF _H -> Service request is on highest priority Notes 1. For a CPU 01 _H is the lowest priority as 00 _H is never serviced. For a DMA 00 _H triggers channel 0. 2. For DMA, SRPN must not be greater than the highest implemented DMA channel number.
SRE	10	rw	Service Request Enable 0 _B Service request is disabled 1 _B Service request is enabled
TOS	13:11	rw	Type of Service Control The TOS bit field configuration maps a Service Request to an Interrupt Service Provider: 000 _B CPU0 service is initiated 001 _B DMA service is initiated Others, Reserved (no action)
ECC	20:16	rwh	 Error Correction Code The ECC bit field will be updated by the SRN under the following conditions: Write or Read-Modify-Write to SRC[31:0] Write to SRC[15:0] (16-bit write) Write to SRC[15:8] or write to SRC[7:0] (byte write)
SRR	24	rh	Service Request Flag The SRR bit shows the status of the Service Request. 0 _B No service request is pending 1 _B A service request is pending
CLRR	25	w	Request Clear Bit The CLRR bit is required to reset SRR. 0 _B No action 1 _B Clear SRR; bit value is not stored; read always returns 0; no action if SETR is set in parallel.
SETR	26	W	Request Set Bit The SETR bit is required to set SRR. 0 _B No action 1 _B Set SRR and SWS; SRR bit value is not stored; read always returns 0; no action if CLRR is set in parallel.

Field	Bits	Туре	Description								
IOV	27	rh	Interrupt Trigger Overflow Bit The IOV bit is set by HW if a new service request was triggered via interrupt trigger or SETR bit while the SRN has still an pending service request. O _B No Interrupt Trigger Overflow detected 1 _B Interrupt Overflow Detected.								
IOVCLR	28	w	Interrupt Trigger Overflow Clear Bit IOVCLR is required to reset IOV. 0 _B No action 1 _B Clear IOV; bit value is not stored; read always returns 0.								
SWS	29	rh	SW Sticky Bit The Software Sticky Bit is set when the SRR bit has been set via the SETR bit. This bit can be cleared by writing with 1 to SWSCLR. Writing to SWS has no effect. 0 _B No interrupt was initiated via SETR 1 _B Interrupt was initiated via SETR								
SWSCLR	30	w	SW Sticky Clear Bit SWSCLR is required to reset SWS. 0 _B No action 1 _B Clear SWS; bit value is not stored; read always returns 0.								
0	9:8, 15:14, 23:21, 31	r	Reserved Read as 0; should be written with 0.								

SRC_V	ADCG9	SRy (y	=0-3)												
	•		ice Rec		•	(0	0700 _H	+y*4)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
		• •	x=0-1;y	•											
			oup x Se	Ар	plicati	on Res	et Valu	e: 0000	0000 _H						
_	RAYOIN														
	0 Servi		uest 0				(0080	0 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
_	RAYOIN						•					_			
	0 Servi	-	uest 1				(0080	4 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
	RAYOTI				_		/	- \		_		_			
			rupt 0 S	Service	Reque	est	(0080	8 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
_	RAYOTI			·•	D		10000	~ \		A	1: 4:	D	- + \/ -	000	
			rupt 1 S	ervice	Reque	est	(0080	C _H)		Ар	pucati	on Kes	et valu	e: 0000	0000 _H
_	RAYONI		Service	Dogu	oct		(0001	۸ ۱		Auguliantian Baart Value 00					0000
	RAYONI		Service	e Kequ	est		(0081	(00810 _H) Application Reset Value: 00					e: 0000) UUUU _H	
			Service	Deau	oct		(0081	4 \		Δn	nlicati	nn Dac	at Valu	۰ ۵۵۵۵	0000 _H
	RAYOM		Sei vice	Requ	ESL		(0001	™ H/		Λþ	pucau	on Kes	et vatu	e. 0000	OUUUH
_			ffor Sta	atus Ch	anged	0 Serv	ice Rec	niest/C	0818 _H)	Application Reset Value: 0000 0					0000
	RAY0M	_	1101 500	itus Ci	iangcu	U JCI V	ice ice	₁ ucst(c	,0010H)	Λþ	pticati	on ices	ct vatu	c. 0000	лоооон
			ffer Sta	atus Ch	anged	1 Serv	ice Rec	uest(0	081C _H)	Αp	plicati	on Res	et Valu	e: 0000	0000 _H
											_				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	swsc	SWS	IOVCL	IOV	SETR	CLRR	SRR		0				ECC		
0	LR	3443	R	100	JEIK	CLKK	JKK		U				ECC		
r	W	rh	W	rh	W	W	rh		r			I	rwh	I	
15 14 13 12 11 10 9								7	6	_	4	2	2		0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 TOS SRE)				SR	PN			
1	r		rw		rw	ı	ſ		 		r	W			

Field	Bits	Туре	Description
SRPN	7:0	rw	Service Request Priority Number The SRPN bit field defines the priority of a service request with respect to service requests with to the same service provider (same SRC.TOS configuration): 00 _H -> Service request is on lowest priority FF _H -> Service request is on highest priority Notes 1. For a CPU 01 _H is the lowest priority as 00 _H is never serviced. For a DMA 00 _H triggers channel 0. 2. For DMA, SRPN must not be greater than the highest implemented DMA
			channel number.
SRE	10	rw	Service Request Enable 0 _B Service request is disabled 1 _B Service request is enabled

Field	Bits	Type	Description
TOS	13:11	rw	Type of Service Control The TOS bit field configuration maps a Service Request to an Interrupt Service Provider: 000 _B CPU0 service is initiated 001 _B DMA service is initiated Others, Reserved (no action)
ECC	20:16	rwh	 Error Correction Code The ECC bit field will be updated by the SRN under the following conditions: Write or Read-Modify-Write to SRC[31:0] Write to SRC[15:0] (16-bit write) Write to SRC[15:8] or write to SRC[7:0] (byte write)
SRR	24	rh	Service Request Flag The SRR bit shows the status of the Service Request. 0 _B No service request is pending 1 _B A service request is pending
CLRR	25	w	Request Clear Bit The CLRR bit is required to reset SRR. 0 _B No action 1 _B Clear SRR; bit value is not stored; read always returns 0; no action if SETR is set in parallel.
SETR	26	w	Request Set Bit The SETR bit is required to set SRR. 0 _B No action 1 _B Set SRR and SWS; SRR bit value is not stored; read always returns 0; no action if CLRR is set in parallel.
IOV	27	rh	Interrupt Trigger Overflow Bit The IOV bit is set by HW if a new service request was triggered via interrupt trigger or SETR bit while the SRN has still an pending service request. O _B No Interrupt Trigger Overflow detected 1 _B Interrupt Overflow Detected.
IOVCLR	28	w	Interrupt Trigger Overflow Clear Bit IOVCLR is required to reset IOV. 0 _B No action 1 _B Clear IOV; bit value is not stored; read always returns 0.
sws	29	rh	SW Sticky Bit The Software Sticky Bit is set when the SRR bit has been set via the SETR bit. This bit can be cleared by writing with 1 to SWSCLR. Writing to SWS has no effect. 0 _B No interrupt was initiated via SETR 1 _B Interrupt was initiated via SETR

Field	Bits	Туре	Description
SWSCLR	30	W	SW Sticky Clear Bit SWSCLR is required to reset SWS. 0 _B No action 1 _B Clear SWS; bit value is not stored; read always returns 0.
0	9:8, 15:14, 23:21, 31	r	Reserved Read as 0; should be written with 0.

SRC E	RAY00	BUSY													
_			fer Busy	y		(00820 _H)				Ар	plicati	on Res	et Valu	e: 0000	0000 _H
SRC_E	RAY0IB	BUSY	•			, ,,,									
E-RAY	0 Input	Buffe	r Busy				(0082	4 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
_	MUHO														
			equest				(0086	0 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
_	MUFSI						10000	• \		A		· · · ·	-4.1/-1	000	
	SI Serv		quest				(0086	4 _H)		Ар	pucati	on Res	et valu	e: 0000	0000 _H
_	SMy (y ervice	•	st v			10	0870 _н .	+v*4\		Δn	nlicati	on Dac	at Valu	۰۰ ۵۵۵۵	0000 _H
	CUERU	•	-			,,	,0010H	· y ¬-,		Λþ	pucaci	on ices	et vatu	e. 0000	, 0000н
		•	quest x	T		(0	0880 _H	+x*4)		Ap	plicati	on Res	et Valu	e: 0000	0000
	MSDTS		•			•		•		Application Reset Value: 0000 00					- "
PMS D	TS Serv	vice Re	quest				(008A	C _H)		Application Reset Value: 0000 000					0000 _H
_	MSx (x	•													
	_	gement	t Systei	m Serv	ice Rec	quest x	(008B0	_H +x*4)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
SRC_S				_			10000	٠,١							
	ву Con MUy (у		Servic	e Keqı	iest		(008C	O _H)		Application Reset Value: 0000 0000 _H					
	moy (y ervice	-	st v			(008D0 _H +y*4)				Application Reset Value: 0000 0000 _H					
		_	-							_	-				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	SWSC	SWS	IOVCL	IOV	SETR	CLRR	SRR		0				ECC		
LR SW3 R SET						02	•								
r	W	rh	W	rh	W	W	rh		r				rwh		
15 14 13 12 11 10						9	8	7	6	5	4	3	2	1	0
(0 TOS SRE				SRE	0				SRPN					
	r rw rw						•		1	1	r	W	1		
	-										•				

Field	Bits	Type	Description						
SRPN	,,		Service Request Priority Number The SRPN bit field defines the priority of a service request with respect to service requests with to the same service provider (same SRC.TOS configuration): 00 _H -> Service request is on lowest priority FF _H -> Service request is on highest priority Notes 1. For a CPU 01 _H is the lowest priority as 00 _H is never serviced. For a DMA 00 _H triggers channel 0. 2. For DMA, SRPN must not be greater than the highest implemented DMA channel number.						
SRE	10	rw	Service Request Enable 0 _B Service request is disabled 1 _B Service request is enabled						
TOS	13:11	rw	Type of Service Control The TOS bit field configuration maps a Service Request to an Interrup Service Provider: 000 _B CPU0 service is initiated 001 _B DMA service is initiated Others, Reserved (no action)						
ECC	20:16	rwh	 Error Correction Code The ECC bit field will be updated by the SRN under the following conditions: Write or Read-Modify-Write to SRC[31:0] Write to SRC[15:0] (16-bit write) Write to SRC[15:8] or write to SRC[7:0] (byte write) 						
SRR	24	rh	Service Request Flag The SRR bit shows the status of the Service Request. O _B No service request is pending 1 _B A service request is pending						
CLRR	25	w	Request Clear Bit The CLRR bit is required to reset SRR. 0 _B No action 1 _B Clear SRR; bit value is not stored; read always returns 0; no action if SETR is set in parallel.						
SETR	26	W	Request Set Bit The SETR bit is required to set SRR. 0 _B No action 1 _B Set SRR and SWS; SRR bit value is not stored; read always returns 0; no action if CLRR is set in parallel.						

Field	Bits	Туре	Description						
		rh	Interrupt Trigger Overflow Bit The IOV bit is set by HW if a new service request was triggered via interrupt trigger or SETR bit while the SRN has still an pending service request. O _B No Interrupt Trigger Overflow detected 1 _B Interrupt Overflow Detected.						
IOVCLR	28	w	Interrupt Trigger Overflow Clear Bit IOVCLR is required to reset IOV. 0 _B No action 1 _B Clear IOV; bit value is not stored; read always returns 0.						
SWS	29	rh	SW Sticky Bit The Software Sticky Bit is set when the SRR bit has been set via the SETF bit. This bit can be cleared by writing with 1 to SWSCLR. Writing to SWS has no effect. O _B No interrupt was initiated via SETR 1 _R Interrupt was initiated via SETR						
SWSCLR	30	W	SW Sticky Clear Bit SWSCLR is required to reset SWS. 0 _B No action 1 _B Clear SWS; bit value is not stored; read always returns 0.						
0	9:8, 15:14, 23:21, 31	r	Reserved Read as 0; should be written with 0.						

SRC_G	PSR0y	(y=0-7)	·)													
General Purpose Group 0 Service Reque						st y (00990 _H +y*4)				Application Reset Value: 0000 0000 _H						
_	TMAEII	-														
AEI Shared Service Request						(00A70 _H)				Application Reset Value: 0000 0000 _H						
_		-	(w=0-2	•						_		_				
			Reque	st w		(00A74 _H +w*4)				Application Reset Value: 0000 0000 _H						
SRC_GTMBRCIRQ BRC Shared Service Request					/00A90 \				Application Reset Value: 0000 0000							
	TMCMF		Reque	3 L		(_H 08A00)				Application Reset Value: 0000 0000 _H						
_		•	Reque	st		(00A84 _H)				Application Reset Value: 0000 0000 _H						
			(w=0-1)			(OOAOTH)										
_		-	e Requ	•		(00A88 _H +w*4)				Application Reset Value: 0000 0000 _H						
SRC_G	TMERR	2				, п,										
Error Service Request						(00B70 _H)				Application Reset Value: 0000 0000 _H						
SRC_GTMTIMwx (w=0-1;x=0-7)																
TIMw Shared Service Request x SRC_GTMTOMwx (w=0-1;x=0-7)						(00B90 _H +w*20 _H +x*4) (00E10 _H +w*20 _H +x*4)				Application Reset Value: 0000 0000 _H Application Reset Value: 0000 0000 _H						
_																
TOMW																
SRC_GTMATOM0x (x=0-3) ATOM0 Shared Service Request x						(00EF0 _H +x*4)				Application Reset Value: 0000 0000 _H						
•														••		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	SWSC LR	SWS	IOVCL R	IOV	SETR	CLRR	SRR		0				ECC			
	LK								ı	i .		ı	Í	i	,	
r	W	rh	W	rh	W	W	rh		r				rwh			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0 TOS		SRE	ď)		I	ı	SRPN			'				
	r		rw	<u> </u>	rw	1	•			 	r	W	1	ļ		

Field	Bits	Туре	Description
SRPN	7:0	rw	Service Request Priority Number The SRPN bit field defines the priority of a service request with respect to service requests with to the same service provider (same SRC.TOS configuration): 00 _H -> Service request is on lowest priority FF _H -> Service request is on highest priority Notes 1. For a CPU 01 _H is the lowest priority as 00 _H is never serviced. For a DMA 00 _H triggers channel 0. 2. For DMA, SRPN must not be greater than the highest implemented DMA channel number.
SRE	10	rw	Service Request Enable 0 _B Service request is disabled 1 _B Service request is enabled

Interrupt Router (IR)

Field	Bits	Type	Description
TOS	13:11	rw	Type of Service Control The TOS bit field configuration maps a Service Request to an Interrupt Service Provider: 000 _B CPU0 service is initiated 001 _B DMA service is initiated Others, Reserved (no action)
ECC	20:16	rwh	 Error Correction Code The ECC bit field will be updated by the SRN under the following conditions: Write or Read-Modify-Write to SRC[31:0] Write to SRC[15:0] (16-bit write) Write to SRC[15:8] or write to SRC[7:0] (byte write)
SRR	24	rh	Service Request Flag The SRR bit shows the status of the Service Request. 0 _B No service request is pending 1 _B A service request is pending
CLRR	25	w	Request Clear Bit The CLRR bit is required to reset SRR. 0 _B No action 1 _B Clear SRR; bit value is not stored; read always returns 0; no action if SETR is set in parallel.
SETR	26	w	Request Set Bit The SETR bit is required to set SRR. 0 _B No action 1 _B Set SRR and SWS; SRR bit value is not stored; read always returns 0; no action if CLRR is set in parallel.
IOV	27	rh	Interrupt Trigger Overflow Bit The IOV bit is set by HW if a new service request was triggered via interrupt trigger or SETR bit while the SRN has still an pending service request. O _B No Interrupt Trigger Overflow detected 1 _B Interrupt Overflow Detected.
IOVCLR	28	w	Interrupt Trigger Overflow Clear Bit IOVCLR is required to reset IOV. 0 _B No action 1 _B Clear IOV; bit value is not stored; read always returns 0.
sws	29	rh	SW Sticky Bit The Software Sticky Bit is set when the SRR bit has been set via the SETR bit. This bit can be cleared by writing with 1 to SWSCLR. Writing to SWS has no effect. 0 _B No interrupt was initiated via SETR 1 _B Interrupt was initiated via SETR

Interrupt Router (IR)

Field	Bits	Туре	Description
SWSCLR	30	W	SW Sticky Clear Bit SWSCLR is required to reset SWS. 0 _B No action 1 _B Clear SWS; bit value is not stored; read always returns 0.
0	9:8, 15:14, 23:21, 31	r	Reserved Read as 0; should be written with 0.

16.6 Revision History

Table 190 Revision History

Reference	Change to Previous Version	Comment
V1.2.6		
Page 10	Increased DMA channel SRC registers from 16 to 64	
V1.2.7		
Page 10	Changed SRC_VADCG8SR - SRC_VADCG9SR index name to 'y'.	
V1.2.8		
	Removed connection table.	
Page 10	Added GTM BRC, CMP, SPE0, SPE1	
Page 10	Removed wrong mentioned SRC_GTMMCSWx	
V1.2.9		
	No changes.	
V1.2.10		
Page 1,	Removed additional broadcast register, no functional change.	
Page 3		
V1.2.11		
Page 6	Updated bullet list item.	

Flexible CRC Engine (FCE)

17 Flexible CRC Engine (FCE)

For the general description of the module and the registers, please refer to the family spec.

17.1 TC33x/TC32x Specific IP Configuration

There are no device specific IP configurations.

Flexible CRC Engine (FCE)

17.2 TC33x/TC32x Specific Register Set

Table 191 Register Address Space - FCE

Module	Base Address	End Address	Note
FCE	F0000000 _H	F00001FF _H	FPI slave interface

Table 192 Register Overview - FCE (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page Number
		Address	Read Write			
FCE_CLC	Clock Control Register	000 _H	U,SV	E,SV,P	Application Reset	See Family Spec
FCE_ID	Module Identification Register	008 _H	U,SV	BE	Application Reset	See Family Spec
FCE_CHSTS	Channels Status Register	020 _H	U,SV	BE	Application Reset	See Family Spec
FCE_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	U,SV	SV,E,P	Application Reset	See Family Spec
FCE_KRST1	Kernel Reset Register 1	OFO _H	U,SV	SV,E,P	Application Reset	See Family Spec
FCE_KRST0	Kernel Reset Register 0	0F4 _H	U,SV	SV,E,P	Application Reset	See Family Spec
FCE_ACCEN1	Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	See Family Spec
FCE_ACCEN0	Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	See Family Spec
FCE_IRi (i=0-7)	Input Register i	100 _H +i*2 0 _H	U,SV	P,U,SV	Application Reset	See Family Spec
FCE_RESi (i=0-7)	CRC Result Register i	104 _H +i*2 0 _H	U,SV	BE	Application Reset	See Family Spec
FCE_CFGi (i=0-7)	CRC Configuration Register i	108 _H +i*2 0 _H	U,SV	P,E,SV	Application Reset	See Family Spec
FCE_STSi (i=0-7)	CRC Status Register i	10C _H +i*2 0 _H	U,SV	P,U,SV	Application Reset	See Family Spec

Flexible CRC Engine (FCE)

Table 192 Register Overview - FCE (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
FCE_LENGTHi (i=0-7)	CRC Length Register i	110 _H +i*2 0 _H	U,SV	P,U,SV	Application Reset	See Family Spec
FCE_CHECKi (i=0-7)	CRC Check Register i	114 _H +i*2 0 _H	U,SV	P,U,SV	Application Reset	See Family Spec
FCE_CRCi (i=0-7)	CRC Regsister i	118 _H +i*2 0 _H	U,SV	P,U,SV	Application Reset	See Family Spec
FCE_CTRi (i=0-7)	CRC Test Register i	11C _H +i*2 0 _H	U,SV	P,U,SV	Application Reset	See Family Spec

17.3 TC33x/TC32x Specific Registers

No deviations from the Family Spec

17.4 Connectivity

Table 193 Connections of FCE

Interface Signals	conn	ects	Description	
FCE:SRC_FCE	to	INT:fce0.SRC_FCE	FCE Service Request	

17.5 Revision History

Table 194 Revision History

Reference	Change to Previous Version	Comment
V4.2.9		
	Initial version of TC33X.	

18 Direct Memory Access (DMA)

This is the TC33x/TC32x specific information related to the DMA module of the AURIXTC3XX product family.

18.1 TC33x/TC32x Specific IP Configuration

The TC33x/TC32x DMA contains 64 DMA channels.

18.2 TC33x/TC32x Specific Register Set

Table 195 Register Address Space - DMA

Module	Base Address	End Address	Note
DMA	F0010000 _H	F0013FFF _H	FPI slave interface

Table 196 Register Overview - DMA (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
DMA_CLC	DMA Clock Control Register	0000 _H	U,SV	SV,E,P00,P0 1	Application Reset	See Family Spec
DMA_ID	DMA Identification Register	0008 _H	U,SV	BE	Application Reset	See Family Spec
DMA_ACCENr0 (r=0-3)	RP r Access Enable Register 0	0040 _H +r*	U,SV	SV,SE	Application Reset	See Family Spec
DMA_ACCENr1 (r=0-3)	RP r Access Enable Register 1	0044 _H +r*	U,SV	nBE	Application Reset	See Family Spec
DMA_EERm (m=0-1)	ME m Enable Error Register	0120 _H +m *1000 _H	U,SV	SV	Application Reset	See Family Spec
DMA_ERRSRm (m=0-1)	ME m Error Status Register	0124 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_CLREm (m=0-1)	ME m Clear Error Register	0128 _H +m *1000 _H	U,SV	SV	Application Reset	See Family Spec
DMA_MEmSR (m=0-1)	ME m Status Register	0130 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm0R (m=0-1)	ME m Read Register 0	0140 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec

 Table 196
 Register Overview - DMA (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
DMA_MEm1R (m=0-1)	ME m Read Register 1	0144 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm2R (m=0-1)	ME m Read Register 2	0148 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm3R (m=0-1)	ME m Read Register 3	014C _H + m*1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm4R (m=0-1)	ME m Read Register 4	0150 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm5R (m=0-1)	ME m Read Register 5	0154 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm6R (m=0-1)	ME m Read Register 6	0158 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEm7R (m=0-1)	ME m Read Register 7	015C _H + m*1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmRDCR C (m=0-1)	ME m Channel Read Data CRC Register	0180 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmSDCR C (m=0-1)	ME m Channel Source and Destination Address CRC Register	0184 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmSADR (m=0-1)	ME m Channel Source Address Register	0188 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmDADR (m=0-1)	ME m Channel Destination Address Register	018C _H + m*1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmADICR (m=0-1)	ME m Channel Address and Interrupt Control Register	0190 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmCHCR (m=0-1)	ME m Channel Control Register	0194 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MEmSHAD R (m=0-1)	ME m Channel Shadow Address Register	0198 _H +m *1000 _H	U,SV	BE	Application Reset	See Family Spec

Table 196 Register Overview - DMA (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page Number
		Address	Read Write			
DMA_MEmCHSR (m=0-1)	ME m Channel Status Register	019C _H + m*1000 _H	U,SV	BE	Application Reset	See Family Spec
DMA_OTSS	DMA OCDS Trigger Set Select	1200 _H	U,SV	SV	See Family Spec	See Family Spec
DMA_PRR0	DMA Pattern Read Register 0	1208 _H	U,SV	SV	Application Reset	See Family Spec
DMA_PRR1	DMA Pattern Read Register 1	120C _H	U,SV	SV	Application Reset	See Family Spec
DMA_TIME	DMA Time Register	1210 _H	U,SV	BE	Application Reset	See Family Spec
DMA_MODEr (r=0-3)	RP r Mode Register	1300 _H +r*	U,SV	SV,SE,P00, P01	Application Reset	See Family Spec
DMA_ERRINTRr (r=0-3)	RP r Error Interrupt Set Register	1320 _H +r*	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_HRRc (c=000-63)	DMA Channel c Resource Partition Register	1800 _H +c *4	U,SV	SV,SE,P00, P01	Application Reset	See Family Spec
DMA_SUSENRc (c=000-63)	DMA Channel c Suspend Enable Register	1A00 _H +c *4	U,SV	SV,E,Pr	See Family Spec	See Family Spec
DMA_SUSACRc (c=000-63)	DMA Channel c Suspend Acknowledge Register	1C00 _H +c *4	U,SV	BE	See Family Spec	See Family Spec
DMA_TSRc (c=000-63)	DMA Channel c Transaction State Register	1E00 _H +c *4	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_RDCRCRc (c=000-63)	DMARAM Channel c Read Data CRC Register	2000 _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_SDCRCRc (c=000-63)	DMARAM Channel c Source and Destination Address CRC Register	2004 _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_SADRc (c=000-63)	DMARAM Channel c Source Address Register	2008 _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec

Table 196 Register Overview - DMA (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Address Read Write			Number
DMA_DADRc (c=000-63)	DMARAM Channel c Destination Address Register	200C _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_ADICRc (c=000-63)			U,SV	SV,Pr	Application Reset	See Family Spec
DMA_CHCFGRc (c=000-63)	DMARAM Channel c Configuration Register	2014 _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_SHADRc (c=000-63)	DMARAM Channel c Shadow Address Register	2018 _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec
DMA_CHCSRc (c=000-63)	DMARAM Channel c Control and Status Register	201C _H +c *20 _H	U,SV	SV,Pr	Application Reset	See Family Spec

18.3 TC33x/TC32x Specific Registers

No deviations from the Family Spec

18.4 Connectivity

Table 197 Connections of DMA

Interface Signals	connects		Description	
DMA:fpi0_sleep_n	from	SCU:scu_syst_sleep_n	Sleep Control	
DMA:ERR_INT(3:0)	to	INT:dma.ERR_INT(3:0)	DMA Error Service Request	
DMA:CH_INT(127:0)	to	INT:dma.CH_INT(127:0)	DMA Channel Service Request	

18.5 Revision History

Table 198 Revision History

Reference	Change to Previous Version Comment		
V0.1.15			
_	Initial version for TC33x.		
V0.1.16			
Page 1	Updated number of DMA channels.		
V0.1.17			
_	No functional changes.		
V0.1.18			
_	No functional changes.		

Direct Memory Access (DMA)

infineon

Signal Processing Unit (SPU)

19 Signal Processing Unit (SPU)

This device doesn't contain a SPU module.

AURIX™ TC33x/TC32x

SPU Lockstep Comparator (SPULCKSTP)

20 SPU Lockstep Comparator (SPULCKSTP)

This device doesn't contain a SPULCKSTP module.

Extension Memory (EMEM)

21 Extension Memory (EMEM)

This device doesn't contain an EMEM module.

Radar Interface (RIF)

22 Radar Interface (RIF)

This device doesn't contain a RIF module.

High Speed Pulse Density Modulation Module (HSPDM)

23 High Speed Pulse Density Modulation Module (HSPDM)

This device doesn't contain a HSPDM module.

AURIX™ TC33x/TC32x

Camera and ADC Interface (CIF)

24 Camera and ADC Interface (CIF)

This device doesn't contain a CIF module.

System Timer (STM)

25 System Timer (STM)

This chapter describes the device specific details in TC33x/TC32x.

25.1 TC33x/TC32x Specific IP Configuration

See features in family spec

25.2 TC33x/TC32x Specific Register Set

Register Address Space Table

The address space for the module registers is defined below

Table 199 Register Address Space - STM

Module	Base Address	End Address	Note
STM0	F0001000 _H	F00010FF _H	FPI slave interface

Register Overview Table

There are no product specific register for this module.

25.3 TC33x/TC32x Specific Registers

There are no product specific register for this module.

25.4 Connectivity

The tables below list all the connections of STM instances.

Table 200 Connections of STM0

Interface Signals	coni	nects	Description
STM0:SR0_INT	to	CAN0:STM0.SR0_INT	System Timer Service Request 0
		CAN1:STM0.SR0_INT	
		INT:stm0.SR0_INT	
STM0:SR1_INT to CAN0:STM0.SR1_INT CAN1:STM0.SR1_INT		CAN0:STM0.SR1_INT	System Timer Service Request 1
		CAN1:STM0.SR1_INT	
		INT:stm0.SR1_INT	

25.5 Revision History

Table 201 Revision History

Reference	Change to Previous Version Comment		
V9.2.3			
_	Initial version for TC33X.		
V9.2.4			
Page 1	Connection table updated (no functional changes).		

infineon

System Timer (STM)

26 Generic Timer Module (GTM)

The following chapter describes the specific TC33x GTM configuration. For the GTM IP functionalities, please refer to the Family specification.

26.1 TC33x Specific IP Configuration

Figure 5 GTM IP Block Diagram (TC33x)

Table 202 GTM Configuration by AURIX TC33x Product

GTM Modules	TC33x
TIM	2x8 ch. (TIM0-1)
ТОМ	2x16 ch. (TOM0-1)
ATOM	1x8 ch. (ATOM0)
DTM/CDTM	1x4 ch., 1x2 ch./2xCDTM
MCS	0
SPE	2 (SPE0-1)
PSM	0
DPLL	0
TBU	3 (TBU0-2)
BRC	1
MON	1
СМР	1

AURIX™ TC33x/TC32x

Generic Timer Module (GTM)

Table 202 GTM Configuration by AURIX TC33x Product (cont'd)

GTM Modules	ТСЗЗХ
GTM Clusters (max speed)	2 (CCM0-1) CCM0-1: 200 MHz max
ARU Latency (round robin)	41x10ns => 410ns @100MHz, (ARU_CADDR_END =40)

Table 203 CDTM Connections by AURIX TC33x Product

TC33x GTM (A)TOM Modules	СДТМ
TOM0_CH0CH3	CDTM0_DTM0
TOM0_CH4CH7	CDTM0_DTM1
TOM1_CH0CH3	CDTM1_DTM0
TOM1_CH4CH7	CDTM1_DTM1
ATOM0_CH0CH3	CDTM0_DTM4
ATOM0_CH4CH7	CDTM0_DTM5
Total DTM Channels	6

Table 204 TC33x/TC32x specific configuration of GTM

Parameter	GTM
Number of MCS modules	0
Number of DPLL modules	0
Number of PSM modules	0
Number of TIM modules	2
Number of ATOM DTM modules	1
Number of TOM DTM modules	2
Number of DSADC channels	0
Number of primary EVADC groups	2
Number of secondary EVADC groups	2
Number of MOSEL controlled trigger outputs	4
Number of TOUT signals	131
Number of SCU trigger outputs	4
Number of CAN modules	2
Number of MCS SET signals	0
Number of Fast Compare Channels of EVADC	0
Number of MSC modules	0
Number of DSADCINSEL registers	0
Number of PSI5/PSI5S modules	0
Number of EDSADC modules	0
Channel 3 of TBU is not available.	1

Table 204 TC33x/TC32x specific configuration of GTM (cont'd)

	(
Parameter	GTM
Number of CCM modules	2
Indicate cluster with high clock frequency	1,1
Number of ARU modules	1
Number of ATOM modules	1
Number of BRC modules	1
Number of TOM modules	2
Number of SPE modules	2
Number of CMP modules	1
Number of MON modules	1
Number of Address range protectors per CCM	10
Number of CDTM modules	2
List of DTM instances available within CDTM instance	(0,1,4,5),(0,1)
Number of MAP modules	0
Number of MCS channel in MCS module instance	0
Number of MCFG modules	0
Number of Interrupt Groups for registers ICM_IRQG_CLS_k_MEI	1
CCM0_CFG Reset Value	131111
CCM1_CFG Reset Value	131203
Fast Clock in Cluster 0	1
Fast Clock in Cluster 1	1

26.2 TC33x/TC32x Registers Register Set

Table 205 Register Address Space - GTM

Module	Base Address	End Address	Note
GTM	F0100000 _H	F01FFFFF _H	FPI slave interface

Register Overview Tables of GTM

Table 206 Register Overview - GTM (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
GTM_REV	GTM Version Control Register	000000 _H	U,SV,32		Application Reset	19
GTM_RST	GTM Global Reset Register	000004 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CTRL	GTM Global Control Register	000008 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_AEI_ADDR_ XPT	GTM AEI Timeout Exception Address Register	00000C _H	U,SV,32		Application Reset	See Family Spec
GTM_IRQ_NOTIF Y	GTM Interrupt Notification Register	000010 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_IRQ_EN	GTM Interrupt Enable Register	000014 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_IRQ_FORCI NT	GTM Software Interrupt Generation Register	000018 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_IRQ_MODE	GTM Top Level Interrupts Mode Selection Register	00001C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_EIRQ_EN	GTM Error Interrupt Enable Register	000020 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_HW_CONF	GTM Hardware Configuration Register	000024 _H	U,SV,32		Application Reset	See Family Spec
GTM_CFG	GTM Configuration Register	000028 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
GTM_AEI_STA_X PT	GTM AEI Non Zero Status Register	00002C _H	U,SV,32		Application Reset	See Family Spec
GTM_BRIDGE_M ODE	GTM AEI Bridge Mode Register	000030 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRIDGE_PT R1	GTM AEI Bridge Pointer 1 Register	000034 _H	U,SV,32		Application Reset	See Family Spec
GTM_BRIDGE_PT R2	GTM AEI Bridge Pointer 2 Register	000038 _H	U,SV,32		Application Reset	See Family Spec
GTM_TIMI_AUX_I N_SRC (i=0-1)	GTM TIM i Module AUX_IN Source Selection Register	000040 _H +i*4	U,SV,32	U,SV,32,P	Application Reset	26
GTM_TOMi_OUT (i=0-1)	GTM TOM i Output Level	000080 _H +i*4	U,SV,32		Application Reset	See Family Spec
GTM_ATOM0_OU T	GTM ATOM 0 Output Level	000098 _H	U,SV,32		Application Reset	See Family Spec
GTM_CLS_CLK_C FG	GTM Cluster Clock Configuration	0000B0 _H	U,SV,32	U,SV,32,P	Application Reset	19
GTM_TBU_CHEN	TBU Global Channel Enable	000100 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TBU_CH0_ CTRL	TBU Channel 0 Control Register	000104 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TBU_CH0_ BASE	TBU Channel 0 Base Register	000108 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TBU_CH1_ CTRL	TBU Channel 1 Control Register	00010C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TBU_CH1_ BASE	TBU Channel 1 Base Register	000110 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TBU_CH2_ CTRL	TBU Channel 2 Control Register	000114 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
GTM_TBU_CH2_ BASE	TBU Channel 2 Base Register	000118 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_MON_STAT US	Monitor Status Register	000180 _H	U,SV,32	U,SV,32,P	Application Reset	20
GTM_CMP_EN	CMP Comparator Enable Register	000200 _H	U,SV,32	U,SV,32,P	Application Reset	31
GTM_CMP_IRQ_ NOTIFY	CMP Event Notification Register	000204 _H	U,SV,32	U,SV,32,P	Application Reset	32
GTM_CMP_IRQ_E N	CMP Interrupt Enable Register	000208 _H	U,SV,32	U,SV,32,P	Application Reset	32
GTM_CMP_IRQ_F ORCINT	CMP Interrupt Force Register	00020C _H	U,SV,32	U,SV,32,P	Application Reset	33
GTM_CMP_IRQ_ MODE	CMP Interrupt Mode Configuration Register	000210 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMP_EIRQ_ EN	CMP error interrupt enable register	000214 _H	U,SV,32	U,SV,32,P	Application Reset	34
GTM_ARU_ACCE SS	ARU Access Register	000280 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_DATA _H	ARU Access Register Upper Data Word	000284 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_DATA _L	ARU Access Register Lower Data Word	000288 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_DBG_ ACCESS0	ARU Debug Access Channel 0	00028C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_DBG_ DATA0_H	ARU Debug Access 0 Transfer Register Upper Data Word	000290 _H	U,SV,32		Application Reset	See Family Spec
GTM_ARU_DBG_ DATA0_L	ARU Debug Access 0 Transfer Register Lower Data Word	000294 _H	U,SV,32		Application Reset	See Family Spec
GTM_ARU_DBG_ ACCESS1	ARU Debug Access Channel 1	000298 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_DBG_ DATA1_H	ARU Debug Access 1 Transfer Register Upper Data Word	00029C _H	U,SV,32		Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_ARU_DBG_ DATA1_L	ARU Debug Access 1 Transfer Register Lower Data Word	0002A0 _H	U,SV,32		Application Reset	See Family Spec
GTM_ARU_IRQ_N OTIFY	ARU Interrupt Notification Register	0002A4 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_IRQ_E N	ARU Interrupt Enable Register	0002A8 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_IRQ_F ORCINT	ARU Force Interrupt Register	0002AC _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_IRQ_ MODE	ARU Interrupt Mode Register	0002B0 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_CADD R_END	ARU caddr Counter End Value Register	0002B4 _H	U,SV,32	U,SV,32,P	Application Reset	22
GTM_ARU_CTRL	ARU Enable Dynamic Routing Register	0002BC _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_z_DYN _CTRL (z=0-1)	ARU z Dynamic Routing Control Register	0002C0 _H +z*4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_z_DYN _ROUTE_LOW (z=0-1)	ARU z Lower Bits of DYN_ROUTE Register	0002C8 _H +z*4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_z_DYN _ROUTE_HIGH (z=0-1)	ARU z Higher Bits of DYN_ROUTE Register	0002D0 _H +z*4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_z_DYN _ROUTE_SR_LO W (z=0-1)	ARU z Shadow Register for ARU_z_DYN_ROUTE_LOW	0002D8 _H +z*4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_z_DYN _ROUTE_SR_HIG H (z=0-1)	ARU z Shadow Register for ARU_z_DYN_ROUTE_HIGH	0002E0 _H +z*4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
	ARU z Read ID for Dynamic Routing	0002E8 _H +z*4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ARU_CADD R	ARU caddr Counter Value	0002FC _H	U,SV,32		Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_CMU_CLK_ EN	CMU Clock Enable Register	000300 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_GCLK _NUM	CMU Global Clock Control Numerator	000304 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_GCLK _DEN	CMU Global Clock Control Denominator	000308 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_CLK_ z_CTRL (z=0-7)	CMU Control for Clock Source z	00030C _H +z*4	U,SV,32	U,SV,32,P	Application Reset	25
GTM_CMU_ECLK _z_NUM (z=0-2)	CMU External Clock z Control Numerator	00032C _H +z*8	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_ECLK _z_DEN (z=0-2)	CMU External Clock z Control Denominator	000330 _H +z*8	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_FXCL K_CTRL	CMU Control FXCLK Sub- Unit Input Clock	000344 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_GLB_ CTRL	CMU Synchronizing ARU and Clock Source	000348 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CMU_CLK_ CTRL	CMU Control for Clock Source Selection	00034C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_SRC_z _ADDR (z=0-11)	BRC Read Address for Input Channel z	000400 _H +z*8	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_SRC_z _DEST (z=0-11)	BRC Destination Channels for Input Channel z	000404 _H +z*8	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_IRQ_N OTIFY	BRC Interrupt Notification Register	000460 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_IRQ_E N	BRC Interrupt Enable Register	000464 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_IRQ_F ORCINT	BRC Force Interrupt Register	000468 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

AURIX™ TC33x/TC32x

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_BRC_IRQ_ MODE	BRC Interrupt Mode Configuration Register	00046C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_RST	BRC Software Reset Register	000470 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_BRC_EIRQ_ EN	BRC Error Interrupt Enable Register	000474 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ICM_IRQG_ 0	ICM Interrupt Group Register Covering Infrastructural and Safety Components ARU, BRC, AEI, PSM0, PSM1, MAP, CMP, SPE	000600 _H	U,SV,32		Application Reset	29
GTM_ICM_IRQG_ 2	ICM Interrupt Group Register Covering TIM0, TIM1, TIM2, TIM3	000608 _H	U,SV,32		Application Reset	See Family Spec
GTM_ICM_IRQG_ 6	ICM Interrupt Group Register Covering GTM Output Sub-Modules TOM0 to TOM1	000618 _H	U,SV,32		Application Reset	See Family Spec
GTM_ICM_IRQG_ 9	ICM Interrupt Group Register Covering GTM Output Sub-Modules ATOM0, ATOM1, ATOM2 and ATOM3	000624 _H	U,SV,32		Application Reset	See Family Spec
GTM_ICM_IRQG_ MEI	ICM Interrupt Group Register for Module Error Interrupt Information	000630 _H	U,SV,32		Application Reset	See Family Spec
GTM_ICM_IRQG_ CEI1	ICM Interrupt Group Register 1 for Channel Error Interrupt Information	000638 _H	U,SV,32		Application Reset	See Family Spec
GTM_ICM_IRQG_ SPE_CEI	ICM Interrupt Group SPE for Module Error Interrupt Information	0006B4 _H	U,SV,32		Application Reset	See Family Spec
GTM_ICM_IRQG_ CLS_k_MEI (k=0)	ICM Interrupt Group k for Module Error Interrupt Information for each TIMm, MCSm, SPEm, FIFOm	000710 _H	U,SV,32		Application Reset	28
GTM_ICM_IRQG_ SPE_CI	ICM Interrupt Group SPE for Module Interrupt Information	000770 _H	U,SV,32		Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_ICM_IRQG_ ATOM_k_CI (k=0)	ICM Interrupt Group ATOM k for Channel Interrupt Information of ATOMm	000790 _H	U,SV,32		Application Reset	29
GTM_ICM_IRQG_ TOM_k_CI (k=0)	ICM Interrupt Group TOM k for Channel Interrupt Information of TOMm	0007A0 _H	U,SV,32		Application Reset	See Family Spec
GTM_SPEi_CTRL _STAT (i=0-1)	SPEi Control Status Register	000800 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_PAT (i=0-1)	SPEi Input Pattern Definition Register	000804 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_OUT_ PATz (i=0-1;z=0-7)	SPEi Output Definition Register z	000808 _H +i*80 _H +z *4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_OUT_ CTRL (i=0-1)	SPEi Output Control Register	000828 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_IRQ_ NOTIFY (i=0-1)	SPEi Interrupt Notification Register	00082C _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_IRQ_E N (i=0-1)	SPEi Interrupt Enable Register	000830 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_IRQ_F ORCINT (i=0-1)	SPEi Interrupt Generation by Software	000834 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_IRQ_ MODE (i=0-1)	SPEi Interrupt Mode Configuration Register	000838 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_EIRQ_ EN (i=0-1)	SPEi Error Interrupt Enable Register	00083C _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_REV_ CNT (i=0-1)	SPEi Input Revolution Counter	000840 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_REV_ CMP (i=0-1)	SPEi Revolution Counter Compare Value	000844 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_SPEi_CTRL _STAT2 (i=0-1)	SPEi Control Status Register 2	000848 _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_SPEi_CMD (i=0-1)	SPEi Command register	00084C _H +i*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ GPR0 (i=0-1;x=0-7)	TIMi Channel x General Purpose 0 Register	001000 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ GPR1 (i=0-1;x=0-7)	TIMi Channel x General Purpose 1 Register	001004 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ CNT (i=0-1;x=0-7)	TIMi Channel x SMU Counter Register	001008 _H +i*800 _H + x*80 _H	U,SV,32		Application Reset	See Family Spec
GTM_TIMi_CHx_ ECNT (i=0-1;x=0-7)	TIMi Channel x SMU Edge Counter Register	00100C _H +i*800 _H + x*80 _H	U,SV,32		Application Reset	See Family Spec
GTM_TIMi_CHx_ CNTS (i=0-1;x=0-7)	TIMi Channel x SMU Shadow Counter Register	001010 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ TDUC (i=0-1;x=0-7)	TIMi Channel x TDU Counter Register	001014 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ TDUV (i=0-1;x=0-7)	TIMi Channel x TDU Control Register	001018 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ FLT_RE (i=0-1;x=0-7)	TIMi Channel x Filter Parameter 0 Register	00101C _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ FLT_FE (i=0-1;x=0-7)	TIMi Channel x Filter Parameter 1 Register	001020 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ CTRL (i=0;x=0-7) (i=1;x=0-7)	TIMi Channel x Control Register	001024 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	44 and Family Spec
GTM_TIMi_CHx_ ECTRL (i=0-1;x=0-7)	TIMi Channel x Extended Control Register	001028 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_I RQ_NOTIFY (i=0-1;x=0-7)	TIMi Channel x Interrupt Notification Register	00102C _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_I RQ_EN (i=0-1;x=0-7)	TIMi Channel x Interrupt Enable Register	001030 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name		Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_TIMi_CHx_I RQ_FORCINT (i=0-1;x=0-7)	TIMi Channel x Force Interrupt Register	001034 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_I RQ_MODE (i=0-1;x=0-7)	TIMi Channel x Interrupt Mode Configuration Register	001038 _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_CHx_ EIRQ_EN (i=0-1;x=0-7)	TIMi Channel x Error Interrupt Enable Register	00103C _H +i*800 _H + x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_INP_V AL (i=0-1)	TIMi Input Value Observation Register	001074 _H +i*800 _H	U,SV,32		Application Reset	See Family Spec
GTM_TIMi_IN_SR C (i=0-1)	TIMi AUX IN Source Selection Register	001078 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TIMi_RST (i=0-1)	TIMi Global Software Reset Register	00107C _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ CTRL (i=0-1;x=0-15)	TOMi Channel x Control Register	008000 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ SR0 (i=0-1;x=0-15)	TOMi Channel x CCU0 Compare Shadow Register	008004 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ SR1 (i=0-1;x=0-15)	TOMi Channel x CCU1 Compare Shadow Register	008008 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ CM0 (i=0-1;x=0-15)	TOMi Channel x CCU0 Compare Register	00800C _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ CM1 (i=0-1;x=0-15)	TOMi Channel x CCU1 Compare Register	008010 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ CN0 (i=0-1;x=0-15)	TOMi Channel x CCU0 Counter Register	008014 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ STAT (i=0-1;x=0-15)	TOMi Channel x Status Register	008018 _H +i*800 _H + x*40 _H	U,SV,32		Application Reset	See Family Spec
GTM_TOMi_CHx_ IRQ_NOTIFY (i=0-1;x=0-15)	TOMi Channel x Interrupt Notification Register	00801C _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_TOMi_CHx_ IRQ_EN (i=0-1;x=0-15)	TOMi Channel x Interrupt Enable Register	008020 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ IRQ_FORCINT (i=0-1;x=0-15)	TOMi Channel x Force Interrupt Register	008024 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_CHx_ IRQ_MODE (i=0-1;x=0-15)	TOMi Channel x Interrupt Mode Register	008028 _H +i*800 _H + x*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _GLB_CTRL (i=0-1)	TOMi TGC0 Global Control Register	008030 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _ACT_TB (i=0-1)	TOMi TGC0 Action Time Base Register	008034 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _FUPD_CTRL (i=0-1)	TOMi TGC0 Force Update Control Register	008038 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _INT_TRIG (i=0-1)	TOMi TGC0 Internal Trigger Control Register	00803C _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _ENDIS_CTRL (i=0-1)	TOMi TGC0 Enable/Disable Control Register	008070 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _ENDIS_STAT (i=0-1)	TOMi TGC0 Enable/Disable Status Register	008074 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _OUTEN_CTRL (i=0-1)	TOMi TGC0 Output Enable Control Register	008078 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC0 _OUTEN_STAT (i=0-1)	TOMi TGC0 Output Enable Status Register	00807C _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _GLB_CTRL (i=0-1)	TOMi TGC1 Global Control Register	008230 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _ACT_TB (i=0-1)	TOMi TGC1 Action Time Base Register	008234 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _FUPD_CTRL (i=0-1)	TOMi TGC1 Force Update Control Register	008238 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page
		Address	Read	Write		Number
GTM_TOMi_TGC1 _INT_TRIG (i=0-1)	TOMi TGC1 Internal Trigger Control Register	00823C _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _ENDIS_CTRL (i=0-1)	TOMi TGC1 Enable/Disable Control Register	008270 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _ENDIS_STAT (i=0-1)	TOMi TGC1 Enable/Disable Status Register	008274 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _OUTEN_CTRL (i=0-1)	TOMi TGC1 Output Enable Control Register	008278 _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_TOMi_TGC1 _OUTEN_STAT (i=0-1)	TOMi TGC1 Output Enable Status Register	00827C _H +i*800 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CLC	Clock Control Register	09FD00 _H	U,SV	SV,E,P	Application Reset	See Family Spec
GTM_RESET_CLR	Kernel Reset Status Clear Register	09FD04 _H	U,SV	SV,E,P	Application Reset	See Family Spec
GTM_RESET1	Kernel Reset Register 0	09FD08 _H	U,SV	SV,E,P	Application Reset	See Family Spec
GTM_RESET2	Kernel Reset Register 1	09FD0C _H	U,SV	SV,E,P	Application Reset	See Family Spec
GTM_ACCEN0	Access Enable Register 0	09FD10 _H	U,SV	SV,SE	Application Reset	See Family Spec
GTM_ACCEN1	Access Enable Register 1	09FD14 _H	U,SV	SV,SE	Application Reset	See Family Spec
GTM_OTBU0T	OCDS TBU0 Trigger Register	09FD18 _H	U,SV	SV,P	Debug Reset	See Family Spec
GTM_OTBU1T	OCDS TBU1 Trigger Register	09FD1C _H	U,SV	SV,P	Debug Reset	See Family Spec
GTM_OTBU2T	OCDS TBU2 Trigger Register	09FD20 _H	U,SV	SV,P	Debug Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
GTM_OTSS	OCDS Trigger Set Select Register	09FD28 _H	U,SV	SV,P	Debug Reset	135
GTM_OTSC0	OCDS Trigger Set Control 0 Register	09FD2C _H	U,SV	SV,P	Debug Reset	See Family Spec
GTM_ODA	OCDS Debug Access Register	09FD34 _H	U,SV	SV,P	Debug Reset	See Family Spec
GTM_OCS	OCDS Control and Status	09FD38 _H	U,SV	SV,P,OEN	Debug Reset	See Family Spec
GTM_TIMnINSEL (n=0-1)	TIMn Input Select Register	09FD40 _H +n*4	U,SV	U,SV,P	Application Reset	35
GTM_TOUTSELn (n=0-16)	Timer Output Select Register	09FD60 _H +n*4	U,SV	U,SV,P	Application Reset	49
GTM_ADCTRIGIO UT0 (i=0-4)	ADC Trigger i Output Select 0 Register	09FE40 _H +i*8	U,SV	U,SV,P	Application Reset	119
GTM_ADCTRIGIO UT1 (i=0-4)	ADC Trigger i Output Select 1 Register	09FE44 _H +i*8	U,SV	U,SV,P	Application Reset	126
GTM_LCDCDCOU TSEL	LCDCDC Output Select Register	09FFD4 _H	U,SV	U,SV,P	Application Reset	134
GTM_DTMAUXIN SEL	DTM_AUX Input Selection Register	09FFD8 _H	U,SV	U,SV,P	Application Reset	115
GTM_CANOUTSE L0	CAN0/CAN1 Output Select Register	09FFDC _H	U,SV	U,SV,P	Application Reset	131
GTM_CCMi_HW_ CONF (i=0-1)	CCMi Hardware Configuration Register	0E21DC _H +i*200 _H	U,SV,32		Application Reset	See Family Spec
GTM_CCMi_TIM_ AUX_IN_SRC (i=0-1)	CCMi TIM Module AUX_IN Source Selection Register	0E21E0 _H +i*200 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CCMi_TOM _OUT (i=0-1)	CCMi TOM Output Level Register	0E21E8 _H +i*200 _H	U,SV,32		Application Reset	26
GTM_CCMi_ATO M_OUT (i=0)	CCMi ATOM Output Level Register	0E21EC _H	U,SV,32		Application Reset	See Family Spec
GTM_CCMi_CMU _CLK_CFG (i=0-1)	CCMi CMU Clock Configuration Register	0E21F0 _H +i*200 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
GTM_CCMi_CMU _FXCLK_CFG (i=0-1)	CCMi CMU Fixed Clock Configuration Register	0E21F4 _H +i*200 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CCMi_CFG (i=0-1)	CCMi Configuration Register	0E21F8 _H +i*200 _H	U,SV,32	U,SV,32,P	Application Reset	22
GTM_CCMi_PRO T (i=0-1)	CCMi Protection Register	0E21FC _H +i*200 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CTRL (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Global Configuration and Control Register	0E4000 _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CH_CTRL1 (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Channel Control Register 1	0E4004 _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CH_CTRL2 (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Channel Control Register 2	0E4008 _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CH_CTRL2_S R (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Channel Control Register 2 Shadow	0E400C _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_PS_CTRL (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Phase Shift Unit Configuration and Control Register	0E4010 _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CHz_DTV (i=0;j=0-1,4- 5;z=0-3) (i=1;j=0-1;z=0-3)	CDTMi DTMj Channel z Dead Time Reload Values	0E4014 _H +j*40 _H +z *4	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CH_SR (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Channel Shadow Register	0E4024 _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_CDTMi_DT Mj_CH_CTRL3 (i=0;j=0-1,4-5) (i=1;j=0-1)	CDTMi DTMj Channel Control Register 3	0E4028 _H +j*40 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access M	lode	Reset	Page Number
		Address	Read	Write		
GTM_ATOMi_CHx _RDADDR (i=0;x=0-7)	ATOMi Channel x ARU read address Register	0E8000 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _CTRL (i=0;x=0-7)	ATOMi Channel x Control Register	0E8004 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SOMB (i=0;x=0-7)	ATOMi Channel x Control Register in SOMB Mode	0E8004 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SOMC (i=0;x=0-7)	ATOMi Channel x Control Register in SOMC Mode	0E8004 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SOMI (i=0;x=0-7)	ATOMi Channel x Control Register in SOMI Mode	0E8004 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SOMP (i=0;x=0-7)	ATOMi Channel x Control Register in SOMP Mode	0E8004 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SOMS (i=0;x=0-7)	ATOMi Channel x Control Register in SOMS Mode	0E8004 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SR0 (i=0;x=0-7)	ATOMi Channel x CCU0 Compare Shadow Register	0E8008 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _SR1 (i=0;x=0-7)	ATOMi Channel x CCU1 Compare Shadow Register	0E800C _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _CM0 (i=0;x=0-7)	ATOMi Channel x CCU0 Compare Register	0E8010 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _CM1 (i=0;x=0-7)	ATOMi Channel x CCU1 Compare Register	0E8014 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _CN0 (i=0;x=0-7)	ATOMi Channel x CCU0 Counter Register	0E8018 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _STAT (i=0;x=0-7)	ATOMi Channel x Status Register	0E801C _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _IRQ_NOTIFY (i=0;x=0-7)	ATOMi Channel x Interrupt Notification Register	0E8020 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

AURIX™ TC33x/TC32x

Table 206 Register Overview - GTM (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
GTM_ATOMi_CHx _IRQ_EN (i=0;x=0-7)	ATOMi Channel x Interrupt Enable Register	0E8024 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _IRQ_FORCINT (i=0;x=0-7)	ATOMi Channel x Software Interrupt Generation Register	0E8028 _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_CHx _IRQ_MODE (i=0;x=0-7)	ATOMi Channel x Interrupt Mode Configuration Register	0E802C _H +x*80 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_GLB_CTRL (i=0)	ATOMi AGC Global Control Register	0E8040 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_ENDIS_CTRL (i=0)	ATOMi AGC Enable/Disable Control Register	0E8044 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_ENDIS_STAT (i=0)	ATOMi AGC Enable/Disable Status Register	0E8048 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_ACT_TB (i=0)	ATOMi AGC Action Time Base Register	0E804C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_OUTEN_CTRL (i=0)	ATOMi AGC Output Enable Control Register	0E8050 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_OUTEN_STAT (i=0)	ATOMi AGC Output Enable Status Register	0E8054 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_FUPD_CTRL (i=0)	ATOMi AGC Force Update Control Register	0E8058 _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec
GTM_ATOMi_AG C_INT_TRIG (i=0)	ATOMi AGC Internal Trigger Control Register	0E805C _H	U,SV,32	U,SV,32,P	Application Reset	See Family Spec

26.3 TC33x Specific Registers

26.3.1 GTM IP Registers Specific Settings

GTM Version Control Register

Note: The numbers are encoded in BCD. Values "A" - "F" are characters.

GTM_REV

Field	Bits	Туре	Description
STEP	7:0	r	Release step GTM Release step
NO	11:8	r	Delivery number Define delivery number of GTM specification.
MINOR	15:12	r	Minor version number Define minor version number of GTM specification.
MAJOR	19:16	r	Major version number Define major version number of GTM specification.
DEV_CODE0	23:20	r	Device encoding digit 0 Device encoding digit 0.
DEV_CODE1	27:24	r	Device encoding digit 1 Device encoding digit 1.
DEV_CODE2	31:28	r	Device encoding digit 2 Device encoding digit 2.

GTM Cluster Clock Configuration

Note: For clusters greater than 4 (only MAX 100 MHz capable), the allowed setting for the CLS_CLK_DIV are 00_B

and 10_B (clock divider 2). For clusters < 5, 200 MHz is available. In case a device has a single 100 MHz

cluster, the ARU will run with 100 MHz.

Note: Writing a value to a bit field $CLS[c]_CLK_DIV$ that is not available in the device, an AEI status 10_B is

returned.

Note: The availability of configuration bits is indicated by value of bit CFG_CLOCK_RATE in register

 $CCM[c]_{HW_CFG}$. If CFG_CLOCK_RATE=0, only the values 00_B and 01_B are valid for bit fields

CLS[c]_CLK_DIV.

Field	Bits	Туре	Description
CLSc_CLK_DI	2*c+1:2*c	rw	Cluster c Clock Divider
V (c=0-1)			This bit is only writable if bit field RF_PROT of register GTM_CTRL is
			cleared.
			00 _B Cluster c is disabled
			01 _B Cluster c is enabled without clock divider
			10 _B Cluster c is enabled with clock divider
			11 _B Reserved, do not use.
0	23:22,	r	Reserved
	21:20,		Read as zero, shall be written as zero.
	19:18,		
	17:16,		
	15:14,		
	13:12,		
	11:10, 9:8,		
	7:6, 5:4,		
	31:24		

Monitor Status Register

The MCS can be programmed to generate an error, when the comparison of signal values (duty time, cycle time) fails or also when the cycle time of the ARU (checking of the TBU_TS0 between two periodic accesses) is out of the expected range.

		MON_ST or Statu						(00018	30 _H)		Ар	plicatio	on Res	et Valu	e: 0000	4000 _H
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	,	0	0	0	0	0	0	0	0	0	0	0		0	l	CMP_ ERR
L		r	r	r	r	r	r	r	r	r	r	r		r		r
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	ACT_C MU8	0	ACT_C MUFX 4	ACT_C MUFX 3	_	ACT_C MUFX 1	_	A(I (ACT_C MU6	ACT_C MU5	ACT_C MU4	ACT_C MU3	ACT_C MU2	ACT_C MU1	ACT_C MU0
_	r	rw	r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Type	Description							
ACT_CMUx (x=0-7)	х	rw	CMU_CLKx activity This bit will be cleared on a CPU write access of value 1. A read access leaves the bit unchanged. Bits is set, when a rising edge is detected at the considered clock.							
ACT_CMUFXx (x=0-4)	x+8	rw	CMU_CLKFXx activity This bit will be cleared on a CPU write access of value 1. A read access leaves the bit unchanged. Bits is set, when a rising edge is detected at the considered clock.							
ACT_CMU8	14	rw	CMU_CLK8 activity This bit will be cleared on a CPU write access of value 1. A read access leaves the bit unchanged. Bit is set, when a rising edge is detected at the considered clock.							
CMP_ERR	16	r	Error detected at CMP This bit will be readable only. Bits is set, when the corresponding unit reports an error.							
0	13, 15, 19:17, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 31:30	r	Reserved Read as zero, shall be written as zero.							

ARU caddr Counter End Value Register

Field	Bits	Туре	Description
CADDR_END	6:0	rw	Set end value of ARU caddr counter The ARU roundtrip counter aru_caddr runs from zero to caddr_end value. Shorten the ARU roundtrip cycle by setting a smaller number than the defined reset value will cause that not all ARU-connected modules will be served. Making the roundtrip cycle longer than the reset value would cause longer ARU roundtrip time and as a result some ARU-connected modules will not be served as fast as possible for this device. This bit is write protected by bit RF_PROT of register GTM_CTRL
0	31:7	r	Reserved Read as zero, shall be written as zero.

CCMi Configuration Register

NOTE: The module specific clock enable registers (bit field **EN_***) are only implemented if the corresponding module is available in the i-th cluster.

NOTE: For the Clusters greater than 4, (only 100MHz capable), the only allowed settings for the CLS_CLK_DIV are 00 and 10 (clock divider 2).

GTM_C		-	-										_		
CCMi C	onfigu	ration	Regist	er		(OE	21F8 _H +	⊦i*200 _⊦	1)	Apı	olicati	on Res	set Valu	ie: 0002	2 0027 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TBU_D IR2	TBU_D IR1		1	1	•	1	'	0	'	' '				CLS_C	LK_DIV
r	r			I	I			r	1						r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	0	1	1	1	0	0	EN_BR C	0	0	EN_AT OM_A DTM	EN_TO M_SPE _TDT M	EN_TI M
				r				r	r	rw	r	r	rw	rw	rw

Field	Bits	Туре	Description
EN_TIM	0	rw	Enable TIM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for sub module TIM 1 _B Enable clock signal for sub module TIM
EN_TOM_SPE _TDTM	1	rw	Enable TOM, SPE and TDTM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for modules TOM, SPE, and their related DTM modules 1 _B Enable clock signal for modules TOM, SPE, and their related DTM modules.
EN_ATOM_AD TM	2	rw	 Enable ATOM and ADTM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0_B Disable clock signal for modules ATOM and their related DTM modules. 1_B Enable clock signal for modules ATOM and their related DTM modules.
EN_BRC	5	rw	Enable BRC This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0 _B Disable clock signal for module BRC 1 _B Enable clock signal for module BRC
CLS_CLK_DIV	17:16	r	Cluster Clock Divider The value of this bit field mirrors the bit field CLS[i]_CLK_DIV of register GTM_CLS_CLK_CFG, whereas i equals the cluster index. 00 _B Cluster is disabled 01 _B Cluster is enabled without clock divider 10 _B Cluster is enabled with clock divider 2 11 _B Reserved, do not use.
TBU_DIR1	30	r	DIR1 input signal of module TBU 0 _B Indicating forward direction 1 _B Indicating backward direction
TBU_DIR2	31	r	DIR2 input signal of module TBU 0 _B Indicating forward direction 1 _B Indicating backward direction
0	3, 4, 6, 7, 15:8, 29:18	r	Reserved Read as zero, shall be written as zero.

GTM_C	CCMi_C Configu	-	-	er		(0E	21F8 _H	+i*200 _H))	Ap	plicati	on Res	et Val	ue: 0002	2 0083 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TBU_D IR2	TBU_D IR1		ı	ı	ı	ı	1	0		ı	ı	ı	ı	CLS_C	LK_DIV
r	r		1	1				r			I	1	1		r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		(0	1	1	1	EN_C MP_M ON	0	0	0	0	0	EN_TO M_SPE _TDT M	ENI TI
				r				rw	r	r	r	r	r	rw	rw

Field	Bits	Type	Description
EN_TIM	0	rw	Enable TIM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for sub module TIM 1 _B Enable clock signal for sub module TIM
EN_TOM_SPE _TDTM	1	rw	 Enable TOM, SPE and TDTM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0_B Disable clock signal for modules TOM, SPE, and their related DTM modules 1_B Enable clock signal for modules TOM, SPE, and their related DTM modules.
EN_CMP_MON	7	rw	Enable CMP and MON This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for modules CMP and MON 1 _B Enable clock signal for modules CMP and MON
CLS_CLK_DIV	17:16	r	Cluster Clock Divider The value of this bit field mirrors the bit field CLS[i]_CLK_DIV of register GTM_CLS_CLK_CFG, whereas i equals the cluster index. 00 _B Cluster is disabled 01 _B Cluster is enabled without clock divider 10 _B Cluster is enabled with clock divider 2 11 _B Reserved, do not use.
TBU_DIR1	30	r	DIR1 input signal of module TBU 0 _B Indicating forward direction 1 _B Indicating backward direction
TBU_DIR2	31	r	DIR2 input signal of module TBU 0 _B Indicating forward direction 1 _B Indicating backward direction

Field	Bits	Туре	Description
0	2,	r	Reserved
	3,		Read as zero, shall be written as zero.
	4,		
	5,		
	6,		
	15:8,		
	29:18		

CMU Control for Clock Source z

	GTM_CMU_CLK_z_CTRL (z=0-5) CMU Control for Clock Source z (00030C _H +z*4) Application Reset Value: 0000 0000 _H														0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		(0			(0				CLK	_CNT			
1	<u>I</u>		r				r			rw					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	1	ı	CLK	_CNT		1		1	ı	ı	
							r	w							'

Field	Bits	Туре	Description
CLK_CNT	23:0	rw	Clock count Defines count value for the clock divider. Value can only be modified when clock enable EN_CLKz and EN_ECLK1 are disabled.
0	25:24, 31:26	r	Reserved Read as zero, shall be written as zero.

GTM_C			-	-		(0	0030C	_H +z*4)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			0			CLK.	_SEL				CLK	_CNT			
1	1		r		1	r	W	1			r	W	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CLK_CNT														
	rw														

Field	Bits	Type	Description
CLK_CNT	23:0	rw	Clock count Defines count value for the clock divider. Value can only be modified when clock enable EN_CLKz and EN_ECLK1 are disabled.

Field	Bits	Туре	Description
CLK_SEL	25:24	rw	Clock source selection for CMU_CLKz Value can only be modified when clock enable EN_CLKz and EN_ECLK1 are disabled. Note: The existence and interpretation of this bit field depends on z. z>5 00 _B Use Clock Source 6 Divider 01 _B Use signal SUB_INC2 of module DPLL / If no DPLL: Reserved, do not use. 10 _B Use signal SUB_INC1c of module DPLL / If no DPLL: Reserved, do not use 11 _B Use signal CCM0_CMU_CLK6 of sub-module CCM0
0	31:26	r	Reserved Read as zero, shall be written as zero.

CCMi TOM Output Level Register

_	GTM_CCMi_TOM_OUT (i=0-1) CCMi TOM Output Level Register (0E21E8 _H +i*200 _H) Application Reset Value: 0000 0000 _H														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TOM_OUT_N															
	r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	том_оит														
<u> </u>	-	l	1	-	-	1	-	r	1		-	-	-	-	

Field	Bits	Туре	Description
TOM_OUT	15:0	r	Output level snapshot of TOM[i]_OUT all channels
TOM_OUT_N	31:16	r	Output level snapshot of TOM[i]_OUT_N all channels

GTM TIM i Module AUX_IN Source Selection Register

GTM_TIMi_AUX_IN_SRC (i=0-1)

(STM TI	M i Mo	dule Al	UX_IN S	Source	Select	ion Re	gister(000040) _H +i*4)	Ар	plication	on Res	et Valu	e: 0000	0000 _H
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•	0				_	SEL_O UT_N_ CH6	_	_	_	_	_	
1.			•		r				rw	rw	rw	rw	rw	rw	rw	rw
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	'	0	1	1	ı	SRC_C H7	SRC_C H6	SRC_C H5	SRC_C H4	SRC_C H3	SRC_C H2	SRC_C H1	SRC_C H0
					r				rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description							
SRC_CH0	0	rw	Defines AUX_IN source of TIM[i] channel 0 SEL_OUT_N_CH0 / SEL_OUT_N_CH0 = 1: 0 _B CDTM[i].DTM0 output DTM_OUT0 selected / CDTM[i].DTM0 out DTM_OUT1_N selected 1 _B CDTM[i].DTM4 output DTM_OUT0 selected / CDTM[i].DTM4 out DTM_OUT1_N selected							
SRC_CH1	1	rw	Defines AUX_IN source of TIM[i] channel 1 SEL_OUT_N_CH1 = 0 / SEL_OUT_N_CH1 = 1: 0 _B CDTM[i].DTM0 output DTM_OUT1 selected / CDTM[i].DTM0 output DTM_OUT2_N selected 1 _B CDTM[i].DTM4 output DTM_OUT1 selected / CDTM[i].DTM4 output DTM_OUT2_N selected							
SRC_CH2	2	rw	Defines AUX_IN source of TIM[i] channel 2 SEL_OUT_N_CH2 = 0 / SEL_OUT_N_CH2 = 1: 0 _B CDTM[i].DTM0 output DTM_OUT2 selected / CDTM[i].DTM0 output DTM_OUT3_N selected 1 _B CDTM[i].DTM4 output DTM_OUT2 selected / CDTM[i].DTM4 output DTM_OUT3_N selected							
SRC_CH3	3	rw	Defines AUX_IN source of TIM[i] channel 3 SEL_OUT_N_CH3 = 0 / SEL_OUT_N_CH3 = 1: 0 _B CDTM[i].DTM0 output DTM_OUT3 selected / CDTM[i].DTM1 output DTM_OUT0_N selected 1 _B CDTM[i].DTM4 output DTM_OUT3 selected / CDTM[i].DTM5 output DTM_OUT0_N selected							
SRC_CH4	4	rw	Defines AUX_IN source of TIM[i] channel 4 SEL_OUT_N_CH4 = 0 / SEL_OUT_N_CH4 = 1: 0 _B CDTM[i].DTM1 output DTM_OUT0 selected / CDTM[i].DTM1 output DTM_OUT1_N selected 1 _B CDTM[i].DTM5 output DTM_OUT0 selected / CDTM[i].DTM5 output DTM_OUT1_N selected							
SRC_CH5	5	rw	Defines AUX_IN source of TIM[i] channel 5 SEL_OUT_N_CH5 = 0 / SEL_OUT_N_CH5 = 1: 0 _B CDTM[i].DTM1 output DTM_OUT1 selected / CDTM[i].DTM1 output DTM_OUT2_N selected 1 _B CDTM[i].DTM5 output DTM_OUT1 selected / CDTM[i].DTM5 output DTM_OUT2_N selected							
SRC_CH6	6	rw	Defines AUX_IN source of TIM[i] channel 6 SEL_OUT_N_CH6 = 0 / SEL_OUT_N_CH6 = 1: 0 _B CDTM[i].DTM1 output DTM_OUT2 selected / CDTM[i].DTM1 output DTM_OUT3_N selected 1 _B CDTM[i].DTM5 output DTM_OUT2 selected / CDTM[i].DTM5 output DTM_OUT3_N selected							

Field	Bits	Туре	Description								
SRC_CH7	7	rw	Defines AUX_IN source of TIM[i] channel 7 SEL_OUT_N_CH7 = 0 / SEL_OUT_N_CH7 = 1: 0 _B CDTM[i].DTM1 output DTM_OUT3 selected / CDTM[i].DTM0 output DTM_OUT0_N selected 1 _B CDTM[i].DTM5 output DTM_OUT3 selected / CDTM[i].DTM4 output DTM_OUT0_N selected								
SEL_OUT_N_ CH0	16	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 0 0 _B Use DTM_OUT signal as AUX_IN source of TIM[i] 1 _B Use DTM_OUT_N signal as AUX_IN source of TIM[i]								
SEL_OUT_N_ CH1	17	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 1								
SEL_OUT_N_ CH2	18	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 2								
SEL_OUT_N_ CH3	19	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 3								
SEL_OUT_N_ CH4	20	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 4								
SEL_OUT_N_ CH5	21	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 5								
SEL_OUT_N_ CH6	22	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 6								
SEL_OUT_N_ CH7	23	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel 7								
0	15:8, 31:24	r	Reserved Read as zero, shall be written as zero.								

ICM Interrupt Group k for Module Error Interrupt Information for each TIMm, MCSm, SPEm, FIFOm

GTM_ICM_IRQG_CLS_k_MEI (k=0)

ICM Interrupt Group k for Module Error Interrupt Information for each TIMm, MCSm, SPEm, FIFOm (000710_H) Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		0		0	0	0	0			0		0	0	0	0
1		r		r	r	r	r			r		r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'	0		0	SPE_M 1_EIR Q	0	TIM_M 1_EIR Q		•	0		0	SPE_M 0_EIR Q	0	TIM_M 0_EIR Q
	•	r		r	r	r	r			r		r	r	r	r

Field	Bits	Туре	Description
TIM_Mj_EIRQ	8*j	r	Error interrupt TIMm_EIRQ (m=4*0+j)
(j=0-1)			This bit is only set when the error interrupt is enabled in the error
			interrupt enable register of the corresponding sub-module. O _B No error interrupt occurred
			 0_B No error interrupt occurred 1_B Error interrupt was raised by the corresponding sub-module
SPE_Mj_EIRQ	8*j+2	r	Error interrupt SPEm_EIRQ (m=4*0+j)
(j=0-1)			Coding see bit 0.
0	24, 16,	r	Reserved
	25, 17, 9, 1,		Read as zero, shall be written as zero.
	26, 18,		
	27, 19, 11, 3,		
	31:28,		
	23:20,		
	15:12, 7:4		

ICM Interrupt Group ATOM k for Channel Interrupt Information of ATOMm

GTM_ICM_IRQG_ATOM_k_CI (k=0)

ICM Interrupt Group ATOM k for Channel Interrupt Information of ATOMm(000790_H) Application Reset Value: 0000 0000...

vatut	0000	Иооон													
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	'	0	"				ı	ı	•	Ď	1		
		Ĺ	Ĺ	r	1		1		1	<u>I</u>	<u> </u>	r	İ	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı			_	"	Į.	I.							ATOM	
			(0										H1_IR	_M0_C H0_IR
	1	1	1		1		1	Q	Q	Q	Q	Q	Q	Q	Q
				r				r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
ATOM_M0_CH x_IRQ (x=0-7)	x	r	ATOMm channel x interrupt (m=0) This bit is only set, when the interrupt is enabled in the interrupt enable register of the corresponding sub-module. Set this bit represents an OR function of the two interrupt sources CCUOTCx_IRQ or CCU1TCx_IRQ of ATOM instance 0 channel x. 0 _B No interrupt occurred 1 _B Interrupt was raised by the corresponding sub-module
0	15:8, 23:16, 31:24	r	Reserved Read as zero, shall be written as zero.

ICM Interrupt Group Register Covering Infrastructural and Safety Components ARU, BRC, AEI, PSM0, PSM1,

MAP, CMP, SPE

$\mathsf{GTM_ICM_IRQG_0}$

ICM Interrupt Group Register Covering	Infrastructural and Safety	Components ARU, BRC, AEI, PSM0, PSM1,
MAP, CMP, SPE	(000600 _H)	Application Reset Value: 0000 0000 _H

MAP, C	CMP, SI	PE				(000600 _H)					Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	ı		ı	ı	ı	ı	1	0	ı	ı			ı	I	I		
L	1	1	1	1	ı	ı	1	r	1	1			1	I	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	,	0	1	SPE5_ IRQ	SPE4_ IRQ	SPE3_ IRQ	SPE2_ IRQ	SPE1_ IRQ	SPE0_ IRQ	CMP_I RQ	AEI_IR Q		ARU_A CC_AC K_IRQ	NEW_	ARU_ NEW_ DATA0 _IRQ		
		r		r	r	r	r	r	r	r	r	r	r	r	r		

Field	Bits	Type	Description
ARU_NEW_DA TAO_IRQ	0	r	ARU_NEW_DATA0 interrupt This bit is only set when the interrupt is enabled in the interrupt enable register of the corresponding sub-module. 0 _B No interrupt occurred 1 _B Interrupt was raised by the corresponding sub-module
ARU_NEW_DA TA1_IRQ	1	r	ARU_NEW_DATA1 interrupt Bit coding see bit 0.
ARU_ACC_AC K_IRQ	2	r	ARU_ACC_ACK interrupt Bit coding see bit 0.
BRC_IRQ	3	r	BRC shared sub-module interrupt Bit coding see bit 0.
AEI_IRQ	4	r	AEI_IRQ interrupt Bit coding see bit 0. Set this bit represents an OR function of the seven interrupt sources AEI_TO_XPT, AEI_USP_ADDR, AEI_IM_ADDR, AEI_USP_BE, AEIM_USP_ADDR, AEIM_IM_ADDR or AEIM_USP_BE.
CMP_IRQ	5	r	CMP shared sub-module interrupt Bit coding see bit 0.
SPE0_IRQ	6	r	SPE0 shared sub-module interrupt Bit coding see bit 0. Set this bit represents an OR function of the five interrupt sources SPE_NIPD, SPE_DCHG, SPE_PERR, SPE_BIS or SPE_RCMP of SPE instance 0.
SPE1_IRQ	7	r	SPE1 shared sub-module interrupt See bit 0 and bit 6.
SPE2_IRQ	8	r	SPE2 shared sub-module interrupt See bit 0 and bit 6.
SPE3_IRQ	9	r	SPE3 shared sub-module interrupt See bit 0 and bit 6.

Field	Bits	Туре	Description
SPE4_IRQ	10	r	SPE4 shared sub-module interrupt See bit 0 and bit 6.
SPE5_IRQ	11	r	SPE5 shared sub-module interrupt See bit 0 and bit 6.
0	15:12, 31:16	r	Reserved Read as zero, shall be written as zero.

26.3.2 GTM submodule CMP and MON registers

Specific to the TC33x the CMP and MON registers are changed against the family specification as only one ATOM exists, resulting in a reduced set of bits.

CMP Comparator Enable Register

	GTM	1 CN	1P	EN
--	------------	------	----	----

CMP C	ompar		able R	egister	•	(000200 _H)				Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			()				TBWC 11_EN	TBWC 10_EN	TBWC 9_EN	TBWC 8_EN	_	TBWC 6_EN	TBWC 5_EN	TBWC 4_EN
			ı	r				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TBWC 3_EN	TBWC 2_EN	TBWC 1_EN	TBWC 0_EN	0	0	0	0	0	0	0	0	ABWC 3_EN	ABWC 2_EN	ABWC 1_EN	ABWC 0_EN
rw	rw	rw	rw	r	r	r	r	r	r	r	r	rw	rw	rw	rw

Field	Bits	Туре	Description
ABWCx_EN (x=0-3)	х	rw	Enable comparator x in ABWC 0 _B ABWC Comparator x is disabled 1 _B ABWC Comparator x is enabled
TBWCx_EN (x=0-11)	x+12	rw	Enable comparator x in TBWC 0 _B TBWC comparator x is disabled 1 _B TBWC comparator x is enabled
0	11, 10, 9, 8, 7, 6, 5, 4, 31:24	r	Reserved Read as zero, shall be written as zero.

CMP Event Notification Register

GTM_C		_		gister			(000204 _H) Application Reset Value: 0000) 0000 _H		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I	·	•	0		·		TBWC	TBWC	TBWC 9	TBWC 8	TBWC 7	TBWC 6	TBWC 5	TBWC 4
1				r				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TBWC	TBWC 2	TBWC	TBWC 0	0	0	0	0	0	0	0	0	ABWC 3	ABWC 2	ABWC 1	ABWC 0
rw	rw	rw	rw	r	r	r	r	r	r	r	r	rw	rw	rw	rw

Field	Bits	Type	Description
ABWCx (x=0-3)	х	rw	Error indication for ABWCx This bit will be cleared on a CPU write access of value '1'. (As the bit is rw, otherwise no clear.) A read access leaves the bit unchanged. 0 _B No error recognized on DTMA sub-modules bits 0 and 1 1 _B An error was recognized on corresponding DTMA sub-modules bits
TBWCx (x=0- 11)	x+12	rw	TOM sub-modules outputs bitwise comparator x error indication This bit will be cleared on a CPU write access of value '1'. A read access leaves the bit unchanged. 0 _B No error recognized on TOM sub-modules bits 0 and 1 1 _B An error was recognized on corresponding TOM sub-modules bits
0	11, 10, 9, 8, 7, 6, 5, 4, 31:24	r	Reserved Read as zero, shall be written as zero.

CMP Interrupt Enable Register

GTM_C		-	le Regi	star			(0002	n g \		Δn	nlicati	on Das	et Valu	۰ ۵۵۵۵) 0000 _H
CMF III	iterrup	LIIAD	te Kegi	3tei			(0002	OO _H)		Λþ	pucati	on ites	et vatu	e. 0000	, 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			()				TBWC 11_EN _IRQ	TBWC 10_EN _IRQ	TBWC 9_EN_ IRQ	TBWC 8_EN_ IRQ	_	TBWC 6_EN_ IRQ	TBWC 5_EN_ IRQ	TBWC 4_EN_ IRQ
		·		r				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TBWC 3_EN_ IRQ	TBWC 2_EN_ IRQ		TBWC 0_EN_ IRQ	0	0	0	0	0	0	0	0	ABWC 3_EN_ IRQ	ABWC 2_EN_ IRQ	_	ABWC 0_EN_ IRQ
rw	rw	rw	rw	r	r	r	r	r	r	r	r	rw	rw	rw	rw

rw

Generic Timer Module (GTM)

Field	Bits	Type	Description
ABWCx_EN_IR Q (x=0-3)	х	rw	Enable ABWCx interrupt source for CMP_IRQ line 0 _B Interrupt source ABWCx is disabled 1 _B Interrupt source ABWCx is enabled
TBWCx_EN_IR Q (x=0-11)	x+12	rw	Enable TBWCx interrupt source for CMP_IRQ line 0 _B Interrupt source TBWCx is disabled 1 _B Interrupt source TBWCx is enabled
0	11, 10, 9, 8, 7, 6, 5, 4, 31:24	r	Reserved Read as zero, shall be written as zero.

CMP Interrupt Force Register

rw

	CMP_IR	_		ter			(00020	O20C _H) Application Reset Value: 0000 () 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			()				TRG_T BWC1	TRG_T BWC1	TRG_T BWC9			TRG_T BWC6		TRG_T BWC4
			I	ſ				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TRG_T BWC3	TRG_T BWC2	_	TRG_T BWC0	0	0	0	0	0	0	0	0	TRG_A BWC3	TRG_A BWC2	TRG_A BWC1	TRG_A BWC0

Field	Bits	Type	Description
TRG_ABWCx (x=0-3)	х	rw	Trigger ABWCx bit in CMP_IRQ_NOTIFY register by software This bit is cleared automatically after write. This bit is write protected by bit RF_PROT of register GTM_CTRL. 0 _B No event triggering 1 _B Assert corresponding field in CMP_IRQ_NOTIFY register
TRG_TBWCx (x=0-11)	x+12	rw	Trigger TBWCx bit in CMP_IRQ_NOTIFY register by software This bit is cleared automatically after write. 0 _B No event triggering 1 _B Assert corresponding field in CMP_IRQ_NOTIFY register
0	11, 10, 9, 8, 7, 6, 5, 4, 31:24	r	Reserved Read as zero, shall be written as zero.

CMP error interrupt enable register

	GTM_CMP_EIRQ_EN GMP error interrupt enable register (000214)									Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			0)				_		9_EN_		TBWC 7_EN_ EIRQ	TBWC 6_EN_ EIRQ	TBWC 5_EN_ EIRQ	TBWC 4_EN_ EIRQ
			r	-				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EIRQ	EIRQ	1_EN_ EIRQ	0_EN_ EIRQ	0	0	0	0	0	0	0	0	EIRQ	EIRQ	1_EN_ EIRQ	0_EN_ EIRQ
rw	rw	rw	rw	r	r	r	r	r	r	r	r	rw	rw	rw	rw

Field	Bits	Туре	Description
ABWCx_EN_EI RQ (x=0-3)	х	rw	Enable ABWCx interrupt source for CMP_EIRQ line 0 _B Interrupt source ABWCx is disabled 1 _B Interrupt source ABWCx is enabled
TBWCx_EN_EI RQ (x=0-11)	x+12	rw	Enable TBWCx interrupt source for CMP_EIRQ line 0 _B Interrupt source TBWCx is disabled 1 _B Interrupt source TBWCx is enabled
0	11, 10, 9, 8, 7, 6, 5, 4, 31:24	r	Reserved Read as zero, shall be written as zero.

26.3.3 Port to GTM TIM Connections

Figure 6 Port to GTM TIM Connections Overview

Figure 7 Port to GTM TIM Connections Registers Overview

Table 207 Port to GTM TIM Connections Registers Overview

Register	Long Name	Selection Bitfields	Page
TIMOINSEL	TIM0 Input Select Register (n=0)	CH0SELCH7SEL	Page 35
TIM1INSEL	TIM1 Input Select Register (n=1)	CH0SELCH7SEL	Page 40
TIMi_CHx_CTRL	TIMi Channel x Control Register (i=1-2;x=0-7)		Page 44

TIMn Input Select Register

GTM_TIMnINSEL (n=0) **TIMn Input Select Register** (09FD40_H+n*4) Application Reset Value: 0000 0000_H 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CH7SEL **CH6SEL CH5SEL** CH4SEL rw rw rw rw 15 14 13 12 11 10 **CH3SEL** CH2SEL CH1SEL **CHOSEL** rw rw rw rw

Field	Bits	Туре	Description
Field CHxSEL (x=0)	Bits 4*x+3:4*x	Type rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. O _H Reserved, do not use 1 _H P00.9, Port pad input (no LQFP100) 2 _H P02.0, Port pad input 3 _H P10.7, Port pad input (LFBGA292 only) 4 _H P14.5, Port pad input 5 _H P14.7, Port pad input (LFBGA292 only) 6 _H P15.6, Port pad input (no LQFP100) 7 _H P21.2, Port pad input 8 _H P22.1, Port pad input A _H P33.4, Port pad input A _H P33.4, Port pad input (no LQFP100) B _H Reserved, do not use C _H PDOUTO, SCU/ERU pattern detection output 0
			D _H Reserved, do not use E _H Reserved, do not use F _H COSRO , EVADC service request 0 of common block 0
CHxSEL (x=1)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H Reserved, do not use 2 _H P02.1, Port pad input 3 _H P10.1, Port pad input (no LQFP100) 4 _H P14.6, Port pad input (no LQFP100) 5 _H P15.7, Port pad input (no LQFP100) 6 _H P21.3, Port pad input 7 _H P22.0, Port pad input 7 _H P22.0, Port pad input 9 _H P33.5, Port pad input 9 _H P33.9, Port pad input A _H Reserved, do not use B _H Reserved, do not use C _H PDOUT1, SCU/ERU pattern detection output 1 D _H INT_012, CAN interrupt output INT_012 E _H Reserved, do not use F _H C1SR0, EVADC service request 0 of common block 1

Field	Bits	Туре	Description
CHxSEL (x=2)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H Reserved, do not use
			2 _H P02.2, Port pad input 3 _H P10.2, Port pad input (no LQFP100) 4 _H P10.5, Port pad input 5 _H P15.8, Port pad input (no LQFP100) 6 _H P21.4, Port pad input 7 _H P23.5, Port pad input (LFBGA292 only) 8 _H P33.11, Port pad input (no LQFP100) 9 _H P33.6, Port pad input A _H Reserved, do not use B _H Reserved, do not use C _H PDOUT2, SCU/ERU pattern detection output 2 D _H INT_O13, CAN interrupt output INT_O13 E _H Reserved, do not use
			F _H COSR1 , EVADC service request 1 of common block 0
CHxSEL (x=3)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. O _H Reserved, do not use 1 _H P00.12, Port pad input (no LQFP100) 2 _H P02.3, Port pad input 3 _H P10.3, Port pad input (no LQFP100) 4 _H P10.6, Port pad input 5 _H P14.0, Port pad input 6 _H P21.5, Port pad input (no LQFP100) 7 _H P22.2, Port pad input (no LQFP100) 8 _H Reserved, do not use 9 _H P33.7, Port pad input A _H Reserved, do not use C _H PDOUT3, SCU/ERU pattern detection output 3 D _H INT_014, CAN interrupt output INT_014 E _H Reserved, do not use F _H C1SR1, EVADC service request 1 of common block 1

Field	Bits	Туре	Description
CHxSEL (x=4)	4*x+3:4*x	rw	TIM Channel x Input Selection
,			This bit defines which input is connected for TIMn channel x of the GTM.
			The input is either derived from a port pad or from an on-chip module.
			0 _H Reserved, do not use
			1 _H P02.4 , Port pad input
			2 _H P10.0 , Port pad input (LFBGA292 only)
			3 _H P14.1 , Port pad input
			4 _H P22.3 , Port pad input (no LQFP100)
			5 _H Reserved, do not use
			6 _H P33.0 , Port pad input (no LQFP100)
			7 _H P33.8 , Port pad input
			8 _H P21.6 , Port pad input
			9 _H Reserved, do not use
			A _H T60FL , T60FL GPT12
			B _H Reserved, do not use
			C _H PDOUT4 , SCU/ERU pattern detection output 4
			D _H INT_O15, CAN interrupt output INT_O15
			E _H Reserved, do not use
			F _H COSR2 , EVADC service request 2 of common block 0
CHxSEL (x=5)	4*x+3:4*x	rw	TIM Channel x Input Selection
			This bit defines which input is connected for TIMn channel x of the GTM.
			The input is either derived from a port pad or from an on-chip module.
			0 _H Reserved, do not use
			1 _H P02.5 , Port pad input
			2 _H P10.8 , Port pad input (LFBGA292 only)
			3 _H P14.2 , Port pad input (no LQFP100)
			4 _H Reserved, do not use
			5 _H P32.4 , Port pad input (BGA only)
			6 _H P33.1 , Port pad input (no LQFP100)
			7 _H P21.7 , Port pad input
			8 _H Reserved, do not use
			9 _H Reserved, do not use
			A _H T60FL , T60FL GPT12
			B _H Reserved, do not use
			C _H PDOUT5 , SCU/ERU pattern detection output 5
			D _H Reserved, do not use
			E _H Reserved, do not use
			F _H C1SR2 , EVADC service request 2 of common block 1

Field	Bits	Туре	Description
CHxSEL (x=6)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H P02.6, Port pad input 2 _H P10.4, Port pad input (LFBGA292 only) 3 _H P14.3, Port pad input 4 _H P23.1, Port pad input 5 _H Reserved, do not use 6 _H P33.2, Port pad input (no LQFP100) 7 _H P20.0, Port pad input (no LQFP100) 8 _H Reserved, do not use B _H Reserved, do not use C _H PDOUT6, SCU/ERU pattern detection output 6 D _H Reserved, do not use E _H Reserved, do not use
CHxSEL (x=7)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H P02.7, Port pad input 2 _H P14.4, Port pad input (no LQFP100) 3 _H P20.8, Port pad input 4 _H Reserved, do not use 5 _H Reserved, do not use 6 _H P33.3, Port pad input (no LQFP100) 7 _H Reserved, do not use 8 _H P11.15, Port pad input (LFBGA292_adas only) 9 _H WUTUFLOW, PMS: Underflow output to support WUT calibration A _H Reserved, do not use B _H Reserved, do not use C _H PDOUT7, SCU/ERU pattern detection output 7 D _H MT0, ERAY0 macrotick clock from CC E _H Reserved, do not use F _H C1SR3, EVADC service request 3 of common block 1

GTM_TIMnINSEL (n=1) Application Reset Value: 0000 0000_H **TIMn Input Select Register** (09FD40_H+n*4) 31 29 20 28 27 26 25 24 23 22 21 17 16 CH7SEL **CH6SEL CH5SEL** CH4SEL rw rw rw rw 15 14 13 12 11 10 9 8 7 6 3 2 0 **CHOSEL** CH3SEL CH2SEL **CH1SEL** rw rw rw rw

Field	Bits	Type	Description
CHxSEL (x=0)	4*x+3:4*x	rw	TIM Channel x Input Selection
			This bit defines which input is connected for TIMn channel x of the GTM.
			The input is either derived from a port pad or from an on-chip module.
			0 _H Reserved, do not use
			1 _H P00.9 , Port pad input (no LQFP100)
			2 _H P02.0 , Port pad input
			3 _H P10.7 , Port pad input (LFBGA292 only)
			4 _H P14.5 , Port pad input
			5 _H P14.7 , Port pad input (LFBGA292 only)
			6 _H P15.6 , Port pad input (no LQFP100)
			7 _H P21.2 , Port pad input
			8 _H P22.1 , Port pad input (no LQFP100)
			9 _H P33.10 , Port pad input
			A _H P33.4 , Port pad input (no LQFP100)
			B _H Reserved, do not use
			C _H COSR2 , EVADC service request 2 of common block 0
			D _H Reserved, do not use
			F _H Reserved, do not use

Field	Bits	Type	Description
CHxSEL (x=1)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H Reserved, do not use 2 _H P02.1, Port pad input 3 _H P10.1, Port pad input (no LQFP100) 4 _H P14.6, Port pad input (no LQFP100) 5 _H P15.7, Port pad input (no LQFP100) 6 _H P21.3, Port pad input 7 _H P22.0, Port pad input (no LQFP100) 8 _H P33.5, Port pad input 9 _H P33.9, Port pad input A _H Reserved, do not use C _H C1SR2, EVADC service request 2 of common block 1 D _H INT_O12, CAN interrupt output INT_O12 E _H Reserved, do not use F _H Reserved, do not use
CHxSEL (x=2)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H Reserved, do not use 2 _H P02.2, Port pad input 3 _H P10.2, Port pad input (no LQFP100) 4 _H P10.5, Port pad input (no LQFP100) 6 _H P21.4, Port pad input (no LQFP100) 6 _H P23.5, Port pad input (LFBGA292 only) 8 _H P33.11, Port pad input (no LQFP100) 9 _H P33.6, Reserved, do not use B _H Reserved, do not use C _H C0SR3, EVADC service request 3 of common block 0 D _H INT_013, CAN interrupt output INT_013 E _H Reserved, do not use F _H Reserved, do not use

Field	Bits	Туре	Description
CHxSEL (x=3)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. O _H Reserved, do not use 1 _H P00.12, Port pad input (no LQFP100) 2 _H P02.3, Port pad input 3 _H P10.3, Port pad input (no LQFP100) 4 _H P10.6, Port pad input 5 _H P14.0, Port pad input 6 _H P21.5, Port pad input (no LQFP100) 7 _H P22.2, Port pad input (no LQFP100) 8 _H Reserved, do not use 9 _H P33.7, Port pad input A _H Reserved, do not use C _H Reserved, do not use D _H INT_014, CAN interrupt output INT_014
			E _H Reserved, do not use F _H C1SR3 , EVADC service request 3 of common block 1
CHxSEL (x=4)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. O _H Reserved, do not use 1 _H P02.4, Port pad input 2 _H P10.0, Port pad input (LFBGA292 only) 3 _H P14.1, Port pad input 4 _H P22.3, Port pad input (no LQFP100) 5 _H Reserved, do not use 6 _H P33.0, Port pad input (no LQFP100) 7 _H P33.8, Port pad input 8 _H P21.6, Port pad input 9 _H P20.0, Port pad input (no LQFP100) A _H COSR0, EVADC service request 0 of common block 0 B _H Reserved, do not use C _H Reserved, do not use C _H Reserved, do not use F _H Reserved, do not use F _H Reserved, do not use

Field	Bits	Type	Description
CHxSEL (x=5)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. O _H Reserved, do not use 1 _H P02.5, Port pad input 2 _H P10.8, Port pad input (LFBGA292 only) 3 _H P14.2, Port pad input (no LQFP100) 4 _H Reserved, do not use 5 _H P32.4, Port pad input (BGA only) 6 _H P33.1, Port pad input (no LQFP100) 7 _H P21.7, Port pad input 8 _H P20.7, Port pad input (no LQFP100) 9 _H Reserved, do not use A _H C1SR0, EVADC service request 0 of common block 1 B _H Reserved, do not use
CHxSEL (x=6)	4*x+3:4*x	rw	TIM Channel x Input Selection This bit defines which input is connected for TIMn channel x of the GTM. The input is either derived from a port pad or from an on-chip module. 0 _H Reserved, do not use 1 _H P02.6, Port pad input 2 _H P10.4, Port pad input (LFBGA292 only) 3 _H P14.3, Port pad input 4 _H P23.1, Port pad input 5 _H Reserved, do not use 6 _H P33.2, Port pad input (no LQFP100) 7 _H P20.0, Port pad input (no LQFP100) 8 _H Reserved, do not use 9 _H Reserved, do not use 0 _H Reserved, do not use 1 _H C0SR1, EVADC service request 1 of common block 0 1 _H Reserved, do not use 1 _H Reserved, do not use 1 _H Reserved, do not use

Field	Bits	Type	Description
CHxSEL (x=7)	4*x+3:4*x	rw	TIM Channel x Input Selection
, ,			This bit defines which input is connected for TIMn channel x of the GTM.
			The input is either derived from a port pad or from an on-chip module.
			0 _H Reserved, do not use
			1 _H P02.7 , Port pad input
			2 _H P14.4 , Port pad input (no LQFP100)
			3 _H P20.8 , Port pad input
			4 _H Reserved, do not use
			5 _H Reserved, do not use
			6 _H P33.3 , Port pad input (no LQFP100)
			7 _H Reserved, do not use
			9 _H Reserved, do not use
			A _H C1SR1 , EVADC service request 1 of common block 1
			B _H Reserved, do not use
			C _H Reserved, do not use
			D _H MT0 , ERAY0 macrotick clock from CC
			E _H Reserved, do not use
			F _H Reserved, do not use

TIMi Channel x Control Register

GTM TIMi CHx CTRL (i=1:x=0-7)

rw

rw

rw

rw

rw

TIMI C		_		•		(001024 _H +i*800 _H +x*				80 _H) Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
тос	TRL	EGPR1 _SEL	EGPR0 _SEL	FR_EC NT_OF L	•	CLK_SEI	L	FLT_C TR_FE		FIT C	FLT_M ODE_R E	FXI (.	_	CNT_FR Q	FLT_E N
r۱	N	rw	rw	rw		rw		rw	rw	rw	rw	rw	ı	W	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ECNT_ RESET	ISL	DSL	CNTS_ SEL	GPR1	_SEL	GPRO	_SEL	0	CICTR L	ARU_E N	OSM	ті	м_мо	DE	TIM_E N

Field	Bits	Type	Description
TIM_EN	0	rw	TIM channel x enable Enabling of the channel resets the registers ECNT, TIM[i]_CH[x]_CNT, TIM[i]_CH[x]_GPR0, and TIM[i]_CH[x]_GPR1 to their reset values. After finishing the action in one-shot mode the TIM_EN bit is cleared automatically. Otherwise, the bit must be cleared manually. OB Channel disabled 1B Channel enabled

rw

Field	Bits	Туре	Description						
TIM_MODE 3:1 rw			TIM channel x mode If an undefined value is written to the TIM_MODE register, the hardware switches automatically to TIM_MODE = 0b000 (TPWM mode). The TIM_MODE register should not be changed while the TIM channel is enabled. If the TIM channel is enabled and operating in TPWM or TPIM mode after the first valid edge defined by DSL has occurred, a reconfiguration of DSL,ISL,TIM_MODE will not change the channel behavior. Reading these bit fields after reconfiguration will show the newly configured settings but the initial channel behavior will not change. Only a disabling of the TIM channel by setting TIM_EN= 0 and reenabling with TIM_EN= 1 will change the channel operation mode. 000 _B PWM Measurement Mode (TPWM) 001 _B Pulse Integration Mode (TPIM) 010 _B Input Event Mode (TIEM) 011 _B Input Prescaler Mode (TIPM) 100 _B Bit Compression Mode (TBCM) 101 _B Gated Periodic Sampling Mode (TGPS) 110 _B Serial Shift Mode (TSSM)						
OSM	4	rw	One-shot mode After finishing the action in one-shot mode the TIM_EN bit is cleared automatically. O _B Continuous operation mode 1 _B One-shot mode						
ARU_EN	5	rw	GPR0 and GPR1 register values routed to ARU 0 _B Registers content not routed 1 _B Registers content routed						
CICTRL	6	rw	Channel Input Control O _B Use signal TIM_IN(x) as input for channel x 1 _B Use signal TIM_IN(x-1) as input for channel x (or TIM_IN(m-1) if x is O)						
GPR0_SEL	9:8	rw	Selection for GPR0 register If EGPR0_SEL =0 / EGPR0_SEL =1: If a reserved value is written to the EGPR0_SEL, GPR0_SEL bit fields, the hardware will use TBU_TS0 input. 00 _B Use TBU_TS0 as input / use ECNT as input 01 _B Use TBU_TS1 as input / use TIM_INP_VAL as input 10 _B Use TBU_TS2 as input / reserved 11 _B Use CNTS as input; if TGPS mode in channel = 0 is selected, use TIM Filter F_OUT as input / reserved						

Field	Bits	Туре	Description
GPR1_SEL	11:10	rw	Selection for GPR1 register If EGPR1_SEL =0 / EGPR1_SEL =1: If a reserved value is written to the EGPR1_SEL, GPR1_SEL bit fields, the hardware will use TBU_TS0 input. Note: In TBCM mode: EGPR1_SEL=1, GPR1_SEL=01 selects TIM_INP_VAL as input; in all other cases, TIM Filter F_OUT is used. 00 _B Use TBU_TS0 as input / use ECNT as input 01 _B Use TBU_TS1 as input / use TIM_INP_VAL as input 10 _B Use TBU_TS2 as input / reserved 11 _B Use CNT as input / reserved
CNTS_SEL	12	rw	Selection for CNTS register The functionality of the CNTS_SEL is disabled in the modes TIPM,TGPS and TBCM. CNTS_SEL in TSSM mode selects the source signal for registered or latched shift out operation. 0 _B use F_OUTx 1 _B use TIM_INx 0 _B Use CNT register as input 1 _B Use TBU_TS0 as input
DSL	13	rw	Signal level control In TIM_MODE=0b110 (TSSM), the bit field DSL defines the shift direction. 0_B Shift left 1_B Shift right 0_B Measurement starts with falling edge (low level measurement) 1_B Measurement starts with rising edge (high level measurement)
ISL	14	rw	Ignore signal level This bit is mode dependent and will have different meanings (see details in the TIM Channel mode description). 0_B Use DSL bit for selecting active signal level (TIEM) 1_B Ignore DSL and treat both edges as active edge (TIEM)
ECNT_RESET	15	rw	Enables resetting of counter in certain modes If TIM_MODE=0b101 (TGPS) / TIM_MODE=0b000 (TPWM) else ECNT counter operating in wrap around mode; In TIM_MODE=0b110 (TSSM), the bit field ECNT_RESET defines the initial polarity for the shift register. O _B ECNT counter operating in wrap around mode / ECNT counter operating in wrap around mode, CNT is reset on active input edge defined by DSL 1 _B ECNT counter is reset with periodic sampling / ECNT counter operating in wrap around mode, CNT is reset on active and inactive input edge
FLT_EN	16	rw	Filter enable for channel x If the filter is disabled, all filter related units (including CSU) are bypassed, which means that the signal F_IN is directly routed to signal F_OUT. OB Filter disabled and internal states are reset 1B Filter enabled

Field	Bits	Type	Description
FLT_CNT_FRQ	18:17	rw	Filter counter frequency select 00 _B FLT_CNT counts with CMU_CLK0 01 _B FLT_CNT counts with CMU_CLK1 10 _B FLT_CNT counts with CMU_CLK6 11 _B FLT_CNT counts with CMU_CLK7
EXT_CAP_EN	19	rw	Enables external capture mode The selected TIM mode is only sensitive to external capture pulses the input event changes are ignored. O _B External capture disabled 1 _B External capture enabled
FLT_MODE_R E	20	rw	Filter mode for rising edge Coding see Family Spec.
FLT_CTR_RE	21	rw	Filter counter mode for rising edge Coding see Family Spec.
FLT_MODE_F E	22	rw	Filter mode for falling edge Coding see Family Spec.
FLT_CTR_FE	23	rw	Filter counter mode for falling edge Coding see Family Spec.
CLK_SEL	26:24	rw	CMU clock source select for channel If ECLK_SEL =0 / ECLK_SEL =1: 000 _B CMU_CLK0 selected / tdu_sample_evt of TDU selected 001 _B CMU_CLK1 selected / reserved 010 _B CMU_CLK2 selected / reserved 011 _B CMU_CLK3 selected / reserved 100 _B CMU_CLK4 selected / reserved 101 _B CMU_CLK5 selected / reserved 111 _B CMU_CLK6 selected / reserved 111 _B CMU_CLK7 selected / reserved
FR_ECNT_OFL	27	rw	Extended Edge counter overflow behavior 0 _B Overflow will be signaled on ECNT bit width = 8 1 _B Overflow will be signaled on EECNT bit width (full range)
EGPR0_SEL	28	rw	Extension of GPR0_SEL bit field Details described in GPR0_SEL bit field.
EGPR1_SEL	29	rw	Extension of GPR1_SEL bit field Details described in GPR1_SEL bit field.
TOCTRL	31:30	rw	Timeout control It has to be mentioned that writing of TOCTRL= 0 will every time stop the TDU, independent of the previous state of TOCTRL. 00 _B Timeout feature disabled 01 _B Timeout feature enabled for rising edge only 10 _B Timeout feature enabled for falling edge only 11 _B Timeout feature enabled for both edges
0	7	r	Reserved Read as zero, shall be written as zero.

26.3.4 GTM to Port Connections

Figure 8 GTM to Port Connections Overview

Figure 9 GTM to Port Connections Registers Overview

Table 208 Assignment of TOUTSEL Registers to TOUTy Outputs

Register	SEL7	SEL6	SEL5	SEL4	SEL3	SEL2	SEL1	SEL0
TOUTSEL0, Page 49	TOUT7	TOUT6	TOUT5	TOUT4	TOUT3	TOUT2	TOUT1	TOUT0
TOUTSEL1, Page 54	TOUT15 ¹⁾	TOUT14 ¹⁾	TOUT13 ¹⁾	TOUT12 ¹⁾	TOUT11 ¹⁾	TOUT10 ¹⁾	TOUT9	TOUT8
TOUTSEL2, Page 58	TOUT23 ¹⁾	TOUT22 ¹⁾	TOUT21 ¹⁾	TOUT20 ³⁾	TOUT19 ³⁾	TOUT18 ¹⁾	TOUT17 ¹⁾	TOUT16 ¹⁾
TOUTSEL3, Page 62	TOUT31	TOUT30	TOUT29	TOUT28	TOUT27	TOUT26 ²⁾	TOUT25 ¹⁾	TOUT24 ¹⁾
TOUTSEL4, Page 67	-	-	-	-	-	TOUT34 ¹⁾	TOUT33 ¹⁾	TOUT32
TOUTSEL5, Page 71	TOUT47 ¹⁾	TOUT46 ³⁾	-	-	-	TOUT42	-	TOUT40 ³⁾
TOUTSEL6, Page 75	TOUT55 ⁴⁾	TOUT54 ⁴⁾	TOUT53 ⁴⁾	TOUT52 ³⁾	TOUT51 ⁵⁾	TOUT50 ¹⁾	TOUT49 ¹⁾	TOUT48 ¹⁾
TOUTSEL7, Page 79	TOUT63 ¹⁾	TOUT62 ¹⁾	TOUT61 ¹⁾	TOUT60 ³⁾	TOUT59 ¹⁾	TOUT58	TOUT57	TOUT56 ¹⁾
TOUTSEL8, Page 83	TOUT71	TOUT70	TOUT69	TOUT68	TOUT67	TOUT66 ⁴⁾	TOUT65	TOUT64

Table 208 Assignment of TOUTSEL Registers to TOUTy Outputs (cont'd)

Register	SEL7	SEL6	SEL5	SEL4	SEL3	SEL2	SEL1	SEL0
TOUTSEL9, Page 87	TOUT79 ¹⁾	TOUT78 ¹⁾	TOUT77 ¹⁾	TOUT76 ⁴⁾	TOUT75 ¹⁾	TOUT74	TOUT73	TOUT72
TOUTSEL10, Page 91	TOUT87 ³⁾	TOUT86 ¹⁾	TOUT85	TOUT84 ¹⁾	TOUT83	TOUT82 ¹⁾	TOUT81	TOUT80
TOUTSEL11, Page 95	TOUT95	TOUT94 ⁴⁾	TOUT93 ⁴⁾	TOUT92 ⁴⁾	TOUT91 ¹⁾	TOUT90 ³⁾	TOUT89 ³⁾	TOUT88 ³⁾
TOUTSEL12, Page 99	TOUT103	TOUT102	TOUT101	TOUT100	TOUT99	TOUT98	TOUT97	TOUT96
TOUTSEL13, Page 103	-	TOUT110	TOUT109	TOUT108	TOUT107	TOUT106	TOUT105	TOUT104
TOUTSEL14, Page 105	-	-	-	-	-	-	-	-
TOUTSEL15, Page 109	-	-	-	TOUT124	-	-	-	-
TOUTSEL16, Page 112	-	-	-	-	-	TOUT130	-	-

- 1) Not available in TQFP100/TQFP80 packages
- 2) Not available in TQFP100 package
- 3) Only available in BGA292 packages
- 4) Not available in TQFP80 package
- 5) Only available in BGA packages, no TQFP package available.

Timer Output Select Register

GTM_TOUTSELn (n=0)

Timer	Output	t Select	Regis	ter		(0	(09FD60 _H +n*4)				Application Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7			SE	L6			SE	L5			SE	L4	
L	r	W			r	W			r	W			r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SE	L2			SE	L1			SE	LO	
1	r	W	I	1	r	W	I.	1	r	W	1	I.	r	W	

Field	Bits	Type	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 O_H TOMO_8, Output of TOM0, channel 8 1_H TOM1_8, Output of TOM1, channel 8 2_H CDTM0_DTM4_0, ATOM0_0, Dead-time output of ATOM0, channel 0 3_H Reserved, do not use 4_H CDTM0_DTM0_0, TOM0_0, Dead-time output of TOM0, channel 0 5_H CDTM1_DTM0_0, TOM1_0, Dead-time output of TOM1, channel 0 6_H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 7_H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 8_H CDTM0_DTM5_1_N, ATOM0_5_N, Inverted dead-time output of ATOM0, channel 5
			9 _H Reserved, do not use
		B _H Reserved, do not use	
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 O_H TOMO_9, Output of TOM0, channel 9 1_H TOM1_9, Output of TOM1, channel 9 2_H CDTMO_DTM4_1, ATOMO_1, Dead-time output of ATOM0, channel 1 3_H Reserved, do not use 4_H CDTMO_DTMO_1, TOMO_1, Dead-time output of TOM0, channel 1 5_H CDTM1_DTMO_1, TOM1_1, Dead-time output of TOM1, channel 1 6_H CDTM0_DTM1_0_N, TOM0_4_N, Inverted dead-time output of TOM0, channel 4 7_H CDTM1_DTM1_0_N, TOM1_4_N, Inverted dead-time output of TOM1, channel 4 8_H CDTM0_DTM5_2_N, ATOM0_6_N, Inverted dead-time output of ATOM0, channel 6 9_H Reserved, do not use B_H Reserved, do not use

Field	Bits	Туре	Description					
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H TOM0_10 , Output of TOM0, channel 10					
			1 _H TOM1_10 , Output of TOM1, channel 10					
			2 _H CDTM0_DTM4_2, ATOM0_2 , Dead-time output of ATOM0, channel 2					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_2, TOM0_2 , Dead-time output of TOM0, channel 2 5 _H CDTM1_DTM0_2, TOM1_2 , Dead-time output of TOM1, channel 2					
			6 _H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 7 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5					
			8 _H CDTM0_DTM5_3_N, ATOM0_7_N, Inverted dead-time output of ATOM0, channel 7					
			9 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
(- - - - - - - - -		1 44	This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the					
			last defined SELx setting.					
			0 _H TOM0_11 , Output of TOM0, channel 11					
			1 _H TOM1_11 , Output of TOM1, channel 11					
			2 _H CDTM0_DTM4_3, ATOM0_3 , Dead-time output of ATOM0, channel 3					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_3, TOM0_3 , Dead-time output of TOM0, channel 3					
			5 _H CDTM1_DTM0_3, TOM1_3 , Dead-time output of TOM1, channel 3					
			6 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of TOM0, channel 5					
			7 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of					
			TOM1, channel 5					
			8 _H CDTM0_DTM5_0_N, ATOM0_4_N, Inverted dead-time output of					
			ATOM0, channel 4					
			9 _H Reserved, do not use					
			 B _H Reserved, do not use					
			B _H Reserved, do not use					

Field	Bits	Туре	Description					
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the					
			last defined SELx setting.					
			0 _H TOM0_12 , Output of TOM0, channel 12					
			1 _H TOM1_12 , Output of TOM1, channel 12					
			2 _H CDTM0_DTM5_0, ATOM0_4 , Dead-time output of ATOM0, channel 4					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_1_N, TOM0_1_N , Inverted dead-time output of TOM0, channel 1					
			5 _H CDTM1_DTM0_1_N, TOM1_1_N , Inverted dead-time output of TOM1, channel 1					
			6 _H CDTM0_DTM1_2, TOM0_6 , Dead-time output of TOM0, channel 6					
			7 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6					
			8 _H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of					
			ATOM0, channel 1					
			9 _H Reserved, do not use					
-			B _H Reserved, do not use					
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H TOMO_13 , Output of TOM0, channel 13					
			1 _H TOM1_13 , Output of TOM1, channel 13					
			2 _H CDTM0_DTM5_1, ATOM0_5 , Dead-time output of ATOM0, channel 5					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of					
			TOM0, channel 2					
			5 _H CDTM1_DTM0_2_N, TOM1_2_N, Inverted dead-time output of					
			TOM1, channel 2					
			6 _H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of					
			TOM0, channel 6					
			7 _H CDTM1_DTM1_2_N, TOM1_6_N , Inverted dead-time output of TOM1, channel 6					
			·					
			8 _H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2					
			9 _H Reserved, do not use					
			B _H Reserved, do not use					

connected as TOUT(n*8+x).
connected as TOUT(n*8+x).
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ed here are equivalent to the
.4
.4
ne output of ATOM0, channel
erted dead-time output of
erted dead-time output of
e output of TOM0, channel 7
e output of TOM1, channel 7
verted dead-time output of
4
connected as TOUT(n*8+x).
ed here are equivalent to the
.5
5
ne output of ATOM0, channel
erted dead-time output of
erted dead-time output of
erted dead-time output of
·
erted dead-time output of
verted dead-time output of

GTM_TOUTSELn (n=1) Application Reset Value: 0000 0000_H **Timer Output Select Register** (09FD60_H+n*4) 31 27 26 25 24 23 22 21 20 18 17 16 SEL7 SEL6 SEL5 SEL4 rw rw rw rw 15 14 13 12 11 10 9 8 7 6 3 2 0 SEL3 SEL₂ SEL1 **SELO** rw rw rw rw

Field	Bits	Type	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_8 , Output of TOM0, channel 8
			1 _H CDTM1_DTM0_0, TOM1_0 , Dead-time output of TOM1, channel 0
			2 _H CDTM0_DTM4_0, ATOM0_0 , Dead-time output of ATOM0, channel
			0
			3 _H Reserved, do not use
			5 _H Reserved, do not use
			6 _H CDTM0_DTM1_0_N, TOM0_4_N , Inverted dead-time output of
			TOM0, channel 4
			7 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of
			TOM1, channel 4
			8 _H CDTM0_DTM5_1_N, ATOM0_5_N, Inverted dead-time output of
			ATOM0, channel 5
			9 _H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Type	Description					
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the					
			last defined SELx setting.					
			0 _H TOM0_8 , Output of TOM0, channel 8					
			1 _H CDTM1_DTM0_0, TOM1_0 , Dead-time output of TOM1, channel 0					
			2 _H CDTM0_DTM4_0, ATOM0_0 , Dead-time output of ATOM0, channel 0					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_0_N, TOM0_0_N , Inverted dead-time output of TOM0, channel 0					
			5 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of TOM1, channel 5					
			6 _H CDTM0_DTM1_0, TOM0_4 , Dead-time output of TOM0, channel 4					
			7 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4					
			8 _H CDTM0_DTM5_1_N, ATOM0_5_N, Inverted dead-time output of					
			ATOMO, channel 5					
			9 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H TOM0_9 , Output of TOM0, channel 9					
			1 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1					
			2 _H CDTM0_DTM4_1, ATOM0_1 , Dead-time output of ATOM0, channel					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of					
			TOM0, channel 1					
			5 _H CDTM1_DTM1_2_N, TOM1_6_N , Inverted dead-time output of TOM1, channel 6					
			6 _H CDTM0_DTM1_0_N, TOM0_4_N , Inverted dead-time output of					
			TOM0, channel 4					
			7 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of					
			TOM1, channel 4					
			8 _H CDTM0_DTM5_2_N, ATOM0_6_N, Inverted dead-time output of ATOM0, channel 6					
			9 _H Reserved, do not use					
			B _H Reserved, do not use					

Field	Bits	Type x rw	Description					
SELx (x=3)	4*x+3:4*x		TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			 O_H TOMO_9, Output of TOM0, channel 9 1_H CDTM1_DTMO_1, TOM1_1, Dead-time output of TOM1, channel 1 2_H CDTMO_DTM4_1, ATOMO_1, Dead-time output of ATOM0, channel 1 3_H Reserved, do not use 4_H CDTMO_DTMO_2_N, TOMO_2_N, Inverted dead-time output of TOM0, channel 2 5_H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 6_H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 7_H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 8_H CDTM0_DTM5_2_N, ATOM0_6_N, Inverted dead-time output of ATOM0, channel 6 9_H Reserved, do not use 					
			B _H Reserved, do not use					
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
0 (X .)	X 311 X		This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H TOM0_10, Output of TOM0, channel 10 1 _H CDTM1_DTM0_2, TOM1_2, Dead-time output of TOM1, channel 2 2 _H CDTM0_DTM4_2, ATOM0_2, Dead-time output of ATOM0, channel 2					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM0_3_N, TOM0_3_N , Inverted dead-time output of TOM0, channel 3					
			5 _H CDTM1_DTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7					
			6 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of TOM0, channel 5					
			7 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of TOM1, channel 5					
			8 _H CDTM0_DTM5_3_N, ATOM0_7_N, Inverted dead-time output of ATOM0, channel 7					
			9 _H Reserved, do not use					
			 B _H Reserved, do not use					

Bits	Type rw	Description				
4*x+3:4*x		TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).				
		Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
		 O_H TOMO_11, Output of TOMO, channel 11 1_H CDTM1_DTMO_3, TOM1_3, Dead-time output of TOM1, channel 3 2_H CDTMO_DTM4_3, ATOMO_3, Dead-time output of ATOMO, channel 3 3_H Reserved, do not use 4_H Reserved, do not use 5_H CDTM1_DTM1_0_N, TOM1_4_N, Inverted dead-time output of TOM1, channel 4 6_H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 7_H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 8_H CDTM0_DTM5_0_N, ATOM0_4_N, Inverted dead-time output of ATOM0, channel 4 9_H Reserved, do not use 				
		B _H Reserved, do not use				
4*x+3:4*x	x rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
		 TOMO_12, Output of TOM0, channel 12 L CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 Reserved, do not use CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of TOM0, channel 1 CDTM1_DTM0_1_N, TOM1_1_N, Inverted dead-time output of TOM1, channel 1 CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of ATOM0, channel 1 Reserved, do not use 				
	4*x+3:4*x	4*x+3:4*x rw				

Field	Bits	Туре	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_13 , Output of TOM0, channel 13
			 1_H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2_H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 3_H Reserved, do not use 4_H CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of TOM0, channel 2 5_H CDTM1_DTM0_2_N, TOM1_2_N, Inverted dead-time output of TOM1, channel 2 6_H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 7_H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 8_H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2
			9 _H Reserved, do not use
			B _H Reserved, do not use

GTM_TOUTSELn (n=2) Timer Output Select Register

(09FD60_H+n*4)

Application Reset Value: 0000 0000_H

						, -		1/							П
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7	ı		SE	L6	1		SE	L5	1		SE	L4	1
1	r	W	l .		r	N		l	r۱	N	l	l .	r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEL3				SE	L2		SEL1				SEL0			
1	rw				r۱	N		rw				rw			

Field	Bits	Туре	Description				
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM0_14 , Output of TOM0, channel 14				
			1 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6 2 _H CDTM0_DTM5_2, ATOM0_6 , Dead-time output of ATOM0, channel 6				
			3 _H Reserved, do not use				
			4 _H CDTM0_DTM0_3_N, TOM0_3_N , Inverted dead-time output of TOM0, channel 3				
			5 _H CDTM1_DTM0_3_N, TOM1_3_N , Inverted dead-time output of TOM1, channel 3				
			6 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7				
			7 _H CDTM1_DTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7				
			8 _H CDTM0_DTM4_3_N, ATOM0_3_N , Inverted dead-time output of ATOM0, channel 3				
			9 _H Reserved, do not use				
			B _H Reserved, do not use				
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM0_15 , Output of TOM0, channel 15 1 _H CDTM1_DTM1_3, TOM1_7 , Dead-time output of TOM1, channel 7				
			1 _H CDTM1_DTM1_3, TOM1_7 , Dead-time output of TOM1, channel 7 2 _H CDTM0_DTM5_3, ATOM0_7 , Dead-time output of ATOM0, channel 7				
			3 _H Reserved, do not use				
			4 _H CDTM0_DTM0_0_N, TOM0_0_N , Inverted dead-time output of TOM0, channel 0				
			5 _H CDTM1_DTM0_0_N, TOM1_0_N , Inverted dead-time output of TOM1, channel 0				
			6 _H Reserved, do not use				
			7 _H Reserved, do not use				
			8 _H CDTM0_DTM4_0_N, ATOM0_0_N , Inverted dead-time output of ATOM0, channel 0				
			9 _H Reserved, do not use				
			B _H Reserved, do not use				

Field	Bits	Type	Description						
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection						
			This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 1 _H CDTM1_DTM0_0, TOM1_0 , Dead-time output of TOM1, channel 0 2 _H Reserved, do not use						
			 A_H Reserved, do not use CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of TOM1, channel 5 						
			6 _H Reserved, do not use						
			B _H Reserved, do not use						
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection						
			This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			0 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 1 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1 2 _H Reserved, do not use						
			 A_H Reserved, do not use 5_H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 						
			6 _H Reserved, do not use						
	-11		B _H Reserved, do not use						
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			0 _H CDTM0_DTM0_2, TOM0_2 , Dead-time output of TOM0, channel 2 1 _H CDTM1_DTM0_2, TOM1_2 , Dead-time output of TOM1, channel 2 2 _H Reserved, do not use						
			 A_H Reserved, do not use 5_H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of TOM1, channel 7 6_H Reserved, do not use 						
			B _H Reserved, do not use						

Bits	Type	Description				
4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
		This bit field defines which timer output is connected as TOUT(n*8+x).				
		Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
		 O_H CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 1_H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 2_H Reserved, do not use 				
		 A_H Reserved, do not use 5_H CDTM1_DTM1_0_N, TOM1_4_N, Inverted dead-time output of TOM1, channel 4 6_H Reserved, do not use 				
		 B _H Reserved, do not use				
4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
		This bit field defines which timer output is connected as TOUT(n*8+x).				
		Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
		 O_H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 1_H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 2_H Reserved, do not use 3_H Reserved, do not use 4_H CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of TOM0, channel 1 				
		5 _H CDTM1_DTM0_1_N, TOM1_1_N, Inverted dead-time output of				
		TOM1, channel 1				
		6 _H Reserved, do not use				
		B _H Reserved, do not use				
	4*x+3:4*x	4*x+3:4*x rw				

Field	Bits	Type	Description				
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
,			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			 O_H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 1_H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2_H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 3_H Reserved, do not use 4_H CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of TOM0, channel 2 5_H CDTM1_DTM0_2_N, TOM1_2_N, Inverted dead-time output of TOM1, channel 2 6_H Reserved, do not use 9_H Reserved, do not use A_H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of 				
			ATOM0, channel 2 B _H Reserved, do not use				

GTM_TOUTSELn (n=3)

Timer		•	•	ter		(09FD60 _H +n*4)					Application Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SEL7				SEL6			SEL5				SEL4			
	r	W	1		r	W	1		r	W	1		r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEL3				SEL2			SEL1				SEL0			
	rw				r	W		rw				rw			

Field	Bits	Type	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the
			O _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 1 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 2 _H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6 3 _H Reserved, do not use 4 _H CDTM0_DTM0_3_N, TOM0_3_N, Inverted dead-time output of TOM0, channel 3 5 _H CDTM1_DTM0_3_N, TOM1_3_N, Inverted dead-time output of TOM1, channel 3 6 _H Reserved, do not use 9 _H Reserved, do not use A _H CDTM0_DTM4_3_N, ATOM0_3_N, Inverted dead-time output of ATOM0, channel 3 B _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel 7 3H Reserved, do not use 4H CDTM0_DTM0_0_N, TOM0_0_N, Inverted dead-time output of TOM0, channel 0 5H CDTM1_DTM0_0_N, TOM1_0_N, Inverted dead-time output of TOM1, channel 0 6H Reserved, do not use BH Reserved, do not use

Field	Bits	Туре	Description				
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 1 _H CDTM1_DTM0_0, TOM1_0 , Dead-time output of TOM1, channel 0 2 _H Reserved, do not use				
			3 _H Reserved, do not use				
			4 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of				
			TOM0, channel 5				
			5 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of				
			TOM1, channel 5 6 _H Reserved, do not use				
			9 _H Reserved, do not use				
			A _H CDTM0_DTM5_1_N, ATOM0_5_N, Inverted dead-time output of				
			ATOM0, channel 5				
			B _H Reserved, do not use				
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 1 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1 2 _H Reserved, do not use				
			3 _H Reserved, do not use 4 _H CDTM0_DTM1_2_N, TOM0_6_N , Inverted dead-time output of				
			TOM0, channel 6				
			5 _H CDTM1_DTM1_2_N, TOM1_6_N , Inverted dead-time output of TOM1, channel 6				
			6 _H CDTM0_DTM1_1, TOM0_5 , Dead-time output of TOM0, channel 5				
			7 _H CDTM1_DTM1_1, TOM1_5 , Dead-time output of TOM1, channel 5				
			8 _H Reserved, do not use				
			9 _H Reserved, do not use				
			A _H CDTM0_DTM5_2_N, ATOM0_6_N, Inverted dead-time output of				
			ATOM0, channel 6				
			B _H Reserved, do not use				

Field	Bits	Type	Description				
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the				
			last defined SELx setting.				
			0 _H CDTM0_DTM0_2, TOM0_2, Dead-time output of TOM0, channel 2 1 _H CDTM1_DTM0_2, TOM1_2, Dead-time output of TOM1, channel 2 2 _H Reserved, do not use				
			3 _H Reserved, do not use				
			4 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7				
			5 _H CDTM1_DTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7				
			6 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of TOM0, channel 5				
			7 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of TOM1, channel 5				
			8 _H Reserved, do not use				
			9 _H Reserved, do not use				
			A _H CDTM0_DTM5_3_N, ATOM0_7_N, Inverted dead-time output of ATOM0, channel 7				
			B _H Reserved, do not use				
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
• •			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 1 _H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 2 _H Reserved, do not use 3 _H Reserved, do not use				
			4 _H CDTM0_DTM1_0_N, TOM0_4_N , Inverted dead-time output of TOM0, channel 4				
			5 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of TOM1, channel 4				
			6 _H CDTM0_DTM1_2, TOM0_6 , Dead-time output of TOM0, channel 6 7 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6 8 _H Reserved, do not use				
			9 _H Reserved, do not use A _H CDTM0_DTM5_0, ATOM0_4 , Dead-time output of ATOM0, channel				
			4 B _H Reserved, do not use				

Field	Bits	Type	Description					
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H CDTM0_DTM1_0, TOM0_4 , Dead-time output of TOM0, channel 4 1 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4 2 _H Reserved, do not use					
			 3_H Reserved, do not use 4_H CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of TOM0, channel 1 					
			5 _H CDTM1_DTM0_1_N, TOM1_1_N , Inverted dead-time output of TOM1, channel 1					
			6 _H CDTM0_DTM1_2_N, TOM0_6_N , Inverted dead-time output of TOM0, channel 6					
			7 _H CDTM1_DTM1_2_N, TOM1_6_N , Inverted dead-time output of TOM1, channel 6					
			8 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			O _H CDTMO_DTMO_1, TOMO_1, Dead-time output of TOMO, channel 1 1 _H CDTM1_DTMO_1, TOM1_1, Dead-time output of TOM1, channel 1 2 _H CDTMO_DTM4_1, ATOMO_1, Dead-time output of ATOMO, channel					
			 3_H Reserved, do not use 4_H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 					
			5 _H CDTM1_DTM1_2_N, TOM1_6_N , Inverted dead-time output of TOM1, channel 6					
			6 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 7 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 8 _H Reserved, do not use					
			 B _H Reserved, do not use					

GTM_TOUTSELn (n=4) Application Reset Value: 0000 0000_H **Timer Output Select Register** (09FD60_H+n*4) 31 20 27 26 25 24 23 22 21 18 17 16 SEL7 SEL6 SEL5 SEL4 rw rw rw rw 15 14 13 12 11 10 9 8 7 6 3 2 0 SEL1 **SELO** SEL3 SEL₂ rw rw rw rw

Field	Bits	Type	Description					
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as $TOUT(n*8+x)$.					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			 O_H CDTMO_DTMO_0, TOMO_0, Dead-time output of TOM0, channel 0 1_H CDTM1_DTMO_0, TOM1_0, Dead-time output of TOM1, channel 0 2_H Reserved, do not use 3_H Reserved, do not use 4_H CDTM0_DTM1_1_N, TOM0_5_N, Inverted dead-time output of TOM0, channel 5 					
			 5_H CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of TOM1, channel 5 6_H CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7 7_H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of TOM1, channel 7 8_H Reserved, do not use 					
			B _H Reserved, do not use					

Field	Bits	Type	Description				
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H CDTM0_DTM0_2, TOM0_2, Dead-time output of TOM0, channel 2 1 _H CDTM1_DTM0_2, TOM1_2, Dead-time output of TOM1, channel 2 2 _H CDTM0_DTM4_2, ATOM0_2, Dead-time output of ATOM0, channel 2				
			 Reserved, do not use CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7 				
			5 _H CDTM1_DTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7				
			6 _H Reserved, do not use				
			B _H Reserved, do not use				
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM1_12 , Output of TOM1, channel 12 1 _H Reserved, do not use				
			 3_H Reserved, do not use 4_H CDTM0_DTM0_0_N, TOM0_0_N, Inverted dead-time output of TOM0, channel 0 				
			5 _H CDTM1_DTM0_0_N, TOM1_0_N , Inverted dead-time output of TOM1, channel 0				
			6 _H Reserved, do not use B _H Reserved, do not use				

Field	Bits	Type	Description				
SELx (x=3)	## A*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H TOM1_13, Output of TOM1, channel 13 1 _H Reserved, do not use 3 _H Reserved, do not use 4 _H CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of TOM0, channel 1 5 _H CDTM1_DTM0_1_N, TOM1_1_N, Inverted dead-time output of TOM1, channel 1 6 _H Reserved, do not use				
SELx (x=4)	4*x+3:4*x	rw	B _H Reserved, do not use TOUT(n*8 + x) Output Selection				
3EEK (X-4)			This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			 O_H TOM1_14, Output of TOM1, channel 14 1_H Reserved, do not use 3_H Reserved, do not use 4_H CDTM0_DTM1_0_N, TOM0_4_N, Inverted dead-time output of TOM0, channel 4 5_H CDTM1_DTM1_0_N, TOM1_4_N, Inverted dead-time output of TOM1, channel 4 6_H Reserved, do not use B_H Reserved, do not use 				

Field	Bits	Type	Description				
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H TOM1_15, Output of TOM1, channel 15 1 _H Reserved, do not use 3 _H Reserved, do not use 4 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 5 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 6 _H CDTM0_DTM1_1_N, TOM0_5_N, Inverted dead-time output of TOM0, channel 5 7 _H CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of				
			TOM1, channel 5 8 _H Reserved, do not use B _H Reserved, do not use				
SELX (X=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 1H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 2H CDTM0_DTM4_3, ATOM0_3, Dead-time output of ATOM0, channel 3 3H Reserved, do not use 4H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 5H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 6H Reserved, do not use BH Reserved, do not use				

Field	Bits	Туре	Description					
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 1 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 2 _H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4					
			 3_H Reserved, do not use 4_H CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7 					
			5 _H CDTM1_DTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7					
			6 _H CDTM0_DTM0_1_N, TOM0_1_N , Inverted dead-time output of TOM0, channel 1					
			7 _H CDTM1_DTM0_1_N, TOM1_1_N , Inverted dead-time output of TOM1, channel 1					
			8 _H Reserved, do not use					
			9 _H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of					
			ATOM0, channel 1					
			A _H Reserved, do not use					
			B _H Reserved, do not use					

GTM_TOUTSELn (n=5)

_	Timer Output Select Register					(09FD60 _H +n*4)					Application Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7	·		SE	L6	!		SE	L5			SE	L4	'
1	r	W	I	1	r	W	1		r	W	1		r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEL3		SE	SEL2			SEL1			SEL0					
	r	W		rw				rw				rw			

Field	Bits	Туре	Description				
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			 O_H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 1_H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2_H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 3_H Reserved, do not use 4_H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 5_H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 6_H CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of TOM0, channel 2 7_H CDTM1_DTM0_2_N, TOM1_2_N, Inverted dead-time output of TOM1, channel 2 8_H Reserved, do not use 9_H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2 				
			A _H Reserved, do not use				
			B _H Reserved, do not use				
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			O _H TOMO_10, TOMO_10, Output of TOM0, channel 10 1 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2 _H CDTMO_DTM5_1, ATOMO_5, Dead-time output of ATOM0, channel 5 3 _H Reserved, do not use				
			 4_H Reserved, do not use 5_H CDTM1_DTM0_2_N, TOM1_2_N, Inverted dead-time output of TOM1, channel 2 6_H Reserved, do not use 				
			 6_H Reserved, do not use 7_H Reserved, do not use 8_H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of ATOM0, channel 1 9_H Reserved, do not use 				
			A _H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2 B _H Reserved, do not use				

Field	Bits	Туре	Description
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 O_H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 1_H TOM0_15, Output of TOM0, channel 15 2_H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6 3_H Reserved, do not use 4_H CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7 5_H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of TOM1, channel 7 6_H CDTM0_DTM0_3_N, TOM0_3_N, Inverted dead-time output of TOM0, channel 3 7_H Reserved, do not use 8_H CDTM0_DTM4_2, ATOM0_2, Dead-time output of ATOM0, channel 2 9_H Reserved, do not use A_H CDTM0_DTM4_3_N, ATOM0_3_N, Inverted dead-time output of ATOM0, channel 3
SEL v /v=2\	4*x+3:4*x		B _H Reserved, do not use
SELx (x=3)	4 XT3.4 X	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_11 , Output of TOM0, channel 11 1 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6 2 _H Reserved, do not use
			 S_H Reserved, do not use 6_H CDTM1_DTM0_3_N, TOM1_3_N, Inverted dead-time output of TOM1, channel 3 7_H Reserved, do not use 8_H CDTM0_DTM4_0_N, ATOM0_0_N, Inverted dead-time output of ATOM0, channel 0 9_H Reserved, do not use B_H Reserved, do not use

Field	Bits	Type	Description				
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM0_12 , Output of TOM0, channel 12 1 _H CDTM1_DTM1_3, TOM1_7 , Dead-time output of TOM1, channel 7 2 _H Reserved, do not use				
			7 _H Reserved, do not use 8 _H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2				
			9 _H Reserved, do not use				
			B _H Reserved, do not use				
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			O _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 1 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 2 _H CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel 7				
			3 _H Reserved, do not use				
			 7_H Reserved, do not use 8_H CDTM0_DTM4_3_N, ATOM0_3_N, Inverted dead-time output of ATOM0, channel 3 				
			9 _H Reserved, do not use				
			 B _H Reserved, do not use				
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM0_10 , Output of TOM0, channel 10				
			1 _H Reserved, do not use 2 _H CDTM0_DTM4_2, ATOM0_2 , Dead-time output of ATOM0, channel				
			2 3 _H Reserved, do not use				
			B _H Reserved, do not use				

Field	Bits	Type	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 O_H TOMO_9, Output of TOM0, channel 9 1_H Reserved, do not use 2_H CDTMO_DTM4_1, ATOMO_1, Dead-time output of ATOM0, channel 1 3_H Reserved, do not use B_H Reserved, do not use

GTM_	ΓO	UTS	SEL	n (n	=6)	
	_					

_	Output	•	•	ter		(0	9FD60 ₁	₊ +n*4)		Ар	plicati	on Res	et Valu	e: 0000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7			SE	L6			SE	L5			SE	L4	
	n	W			r	W			r	W			r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SE	L2			SE	L1			SE	LO	
L	r	W			r	W	I		r	W	I		r	W	

Field	Bits	Type	Description				
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM0_8 , Output of TOM0, channel 8				
			1 _H Reserved, do not use				
			2 _H CDTM0_DTM4_0, ATOM0_0 , Dead-time output of ATOM0, channel				
			0				
			3 _H Reserved, do not use				
			5 _H Reserved, do not use				
			6 _H CDTM0_DTM1_2, TOM0_6 , Dead-time output of TOM0, channel 6				
			7 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6				
			8 _H Reserved, do not use				
			B _H Reserved, do not use				

Field	Bits	Туре	Description					
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H TOM0_11 , Output of TOM0, channel 11					
			1 _H Reserved, do not use 2 _H CDTM0_DTM4_3, ATOM0_3 , Dead-time output of ATOM0, channel 3					
			3 _H Reserved, do not use					
			5 _H Reserved, do not use 6 _H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of					
		TOM0, channel 6 7 _H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6						
			8 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=2)	4*x+3:4*x	*x+3:4*x rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H TOM0_12 , Output of TOM0, channel 12					
			 1_H Reserved, do not use 2_H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 					
			3 _H Reserved, do not use					
			 5 _H Reserved, do not use					
			6 _H CDTM0_DTM1_3, TOM0_7 , Dead-time output of TOM0, channel 7					
			7 _H CDTM1_DTM1_3, TOM1_7 , Dead-time output of TOM1, channel 7					
			8 _H Reserved, do not use					
			9 _H Reserved, do not use					
			A _H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of ATOM0, channel 1					
			B _H Reserved, do not use					

Field	Bits	Type	Description
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_8 , Output of TOM0, channel 8
			1 _H Reserved, do not use
			4 _H Reserved, do not use
			5 _H CDTMO_DTMO_O_N, TOMO_O_N , Inverted dead-time output of TOM0, channel 0
			6 _H Reserved, do not use
			 B _H Reserved, do not use
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_9 , Output of TOM0, channel 9
			1 _H Reserved, do not use
			4 _H Reserved, do not use
			5 _H CDTMO_DTMO_1_N, TOMO_1_N , Inverted dead-time output of TOM0, channel 1
			6 _H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Туре	Description					
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the					
			last defined SELx setting.					
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 Reserved, do not use					
			2 _H CDTM0_DTM4_0, ATOM0_0, Dead-time output of ATOM0, channel					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of TOM0, channel 5					
			5 _H Reserved, do not use					
			6 _H CDTM0_DTM1_0, TOM0_4 , Dead-time output of TOM0, channel 4					
			7 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4					
			8 _H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of ATOM0, channel 1					
			9 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection					
			This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 1 _H Reserved, do not use					
			2 _H CDTM0_DTM4_1, ATOM0_1 , Dead-time output of ATOM0, channel					
			3 _H Reserved, do not use					
			4 _H CDTM0_DTM1_2_N, TOM0_6_N , Inverted dead-time output of TOM0, channel 6					
			5 _H Reserved, do not use					
			6 _H CDTM0_DTM1_0_N, TOM0_4_N , Inverted dead-time output of TOM0, channel 4					
			7 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of TOM1, channel 4					
			8 _H CDTM0_DTM4_0_N, ATOM0_0_N , Inverted dead-time output of ATOM0, channel 0					
			9 _H Reserved, do not use					
			B _H Reserved, do not use					

Field	Bits	Type	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_2, TOM0_2 , Dead-time output of TOM0, channel 2 1 _H Reserved, do not use
			2 _H CDTM0_DTM4_2, ATOM0_2 , Dead-time output of ATOM0, channel 2
			3 _H Reserved, do not use
			4 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7
			5 _H Reserved, do not use
			6 _H CDTM0_DTM1_1, TOM0_5 , Dead-time output of TOM0, channel 5
			7 _H CDTM1_DTM1_1, TOM1_5 , Dead-time output of TOM1, channel 5
			8 _H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of
			ATOM0, channel 1
			9 _H Reserved, do not use
			B _H Reserved, do not use

GTM_TOUTSELn (n=7)

Timer	Output	t Select	t Regis	ter		(0	9FD60	_H +n*4)		Ар	plication	on Res	et Valu	e: 000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7			SE	L6	!		SE	L5	,		SE	L4	'
	r	W	I		r	W	1		r	W	1		r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SEL2				SEL1			SEL0			
	r	W			r	W			r	W			r	W	

Field	Bits	Туре	Description
SELx (x=0)	SELx (x=0) 4*x+3:4*x rw	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the
			O _H CDTMO_DTMO_3, TOMO_3, Dead-time output of TOMO, channel 3 1 _H Reserved, do not use 2 _H CDTMO_DTM4_3, ATOMO_3, Dead-time output of ATOMO, channel 3 3 _H Reserved, do not use 4 _H CDTMO_DTM1_0_N, TOMO_4_N, Inverted dead-time output of TOMO, channel 4 5 _H Reserved, do not use 6 _H CDTMO_DTM1_1_N, TOMO_5_N, Inverted dead-time output of TOMO, channel 5 7 _H CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of TOM1, channel 5 8 _H CDTMO_DTM4_2_N, ATOMO_2_N, Inverted dead-time output of ATOM0, channel 2 9 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 O_H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 1_H Reserved, do not use 2_H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 3_H Reserved, do not use 4_H CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of TOM0, channel 1 5_H Reserved, do not use 9_H Reserved, do not use A_H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of ATOM0, channel 1 B_H Reserved, do not use

Field	Bits	Type	Description
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM1_1, TOM0_5 , Dead-time output of TOM0, channel 5 1 _H Reserved, do not use
			2 _H CDTM0_DTM5_1, ATOM0_5 , Dead-time output of ATOM0, channel 5
			 3_H Reserved, do not use 4_H CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of TOM0, channel 2
			5 _H Reserved, do not use
			 7_H Reserved, do not use 8_H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2
			9 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM1_2, TOM0_6 , Dead-time output of TOM0, channel 6 Reserved, do not use
			2 _H CDTM0_DTM5_2, ATOM0_6 , Dead-time output of ATOM0, channel 6
			 Reserved, do not use CDTM0_DTM0_3_N, TOM0_3_N, Inverted dead-time output of TOM0, channel 3
			5 _H Reserved, do not use
			9 _H Reserved, do not use A _H CDTM0_DTM4_3_N, ATOM0_3_N, Inverted dead-time output of ATOM0, channel 3
			B _H Reserved, do not use

Field	Bits	Type	Description				
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the				
			last defined SELx setting.				
			0 _H TOM1_11 , Output of TOM1, channel 11				
			1 _H Reserved, do not use				
			2 _H CDTM0_DTM4_3, ATOM0_3 , Dead-time output of ATOM0, channel				
			3 2 Promod de notos				
			3 _H Reserved, do not use				
			4 _H CDTM0_DTM0_3_N, TOM0_3_N, Inverted dead-time output of TOM0, channel 3				
			5 _H Reserved, do not use				
			B _H Reserved, do not use				
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
		This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the				
			last defined SELx setting.				
			0 _H TOM1_12 , Output of TOM1, channel 12				
			1 _H Reserved, do not use				
			2 _H CDTM0_DTM5_0, ATOM0_4 , Dead-time output of ATOM0, channel 4				
			3 _H Reserved, do not use				
			4 _H Reserved, do not use				
			5 _H CDTM0_DTM0_0_N, TOM0_0_N, Inverted dead-time output of				
			TOM0, channel 0				
			6 _H Reserved, do not use				
			9 _H Reserved, do not use				
			A _H CDTM0_DTM4_1_N, ATOM0_1_N, Inverted dead-time output of				
			ATOM0, channel 1				
			B _H Reserved, do not use				
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM1_10 , Output of TOM1, channel 10				
			0 _H TOM1_10 , Output of TOM1, channel 10 1 _H Reserved, do not use				
			B _H Reserved, do not use				

Field	Bits	Туре	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM1_11, TOM1_11 , Output of TOM1, channel 11 1 _H Reserved, do not use B _H Reserved, do not use

	_		ELn (n= t Select	•	ter		(0	9FD60 ₁	₋ +n*4)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		SE	L7	ı		SE	L6	ı		SE	L5	ı		SE	L4	
		r	W			r	W		rw				rw			

	SEL /				SE	L6		SEL5				SEL4			
	rw			rw					rw				rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SE	L2	"		SE	L1			SE	LO	
	r	W	Ĭ		r۱	V	İ.		r	W	i	rw			

Field	Bits	Type	Description						
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection						
			This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			O _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 1 _H Reserved, do not use 2 _H CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel 7						
			Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 6 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 7 _H Reserved, do not use						
			B _H Reserved, do not use						

Field	Bits	Type	Description
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H TOM1_13, Output of TOM1, channel 13 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_0_N, TOM0_4_N, Inverted dead-time output of TOM0, channel 4 6 _H CDTM1_DTM1_0_N, TOM1_4_N, Inverted dead-time output of TOM1, channel 4 7 _H Reserved, do not use 9 _H Reserved, do not use A _H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H TOM1_14, Output of TOM1, channel 14 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 6 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 7 _H Reserved, do not use 9 _H Reserved, do not use A _H CDTM0_DTM4_3_N, ATOM0_3_N, Inverted dead-time output of ATOM0, channel 3 B _H Reserved, do not use

Field	Bits	Type	Description					
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H TOM1_15, Output of TOM1, channel 15 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_1_N, TOM0_5_N, Inverted dead-time output of TOM0, channel 5 6 _H CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of TOM1, channel 5 7 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			O _H CDTM1_DTM0_0, TOM1_0, Dead-time output of TOM1, channel 0 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 6 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 7 _H Reserved, do not use B _H Reserved, do not use					

Field	Bits	Type	Description					
SELx (x=5)	4*x+3:4*x		TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H CDTM1_DTM0_1, TOM1_1, Dead-time output of TOM1, channel 1 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 6 _H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 7 _H Reserved, do not use					
SELx (x=6)	4*x+3:4*x	rw	B _H Reserved, do not use TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			O _H CDTM1_DTM0_2, TOM1_2, Dead-time output of TOM1, channel 2 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 6 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 7 _H Reserved, do not use B _H Reserved, do not use					

Field	Bits	Type	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM1_DTM0_3, TOM1_3 , Dead-time output of TOM1, channel 3 1 _H Reserved, do not use
			 3 _H Reserved, do not use
			4 _H CDTM0_DTM0_3, TOM0_3 , Dead-time output of TOM0, channel 3
			5 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of TOM1, channel 4
			6 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7
			7 _H CDTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7
			8 _H Reserved, do not use
			B _H Reserved, do not use

GTM_TOUTSELn (n=9)

Timer	Output	•	•	ter		(0	9FD60	₊ +n*4)		Ар	plicati	on Res	et Valu	e: 000	0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SEL7				SE	L6			SE	L5			SE	L4	'
	n	W	<u> </u>		r	W			r	W			r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SE	L2			SE	L1			SE	LO	
	r	W	!	1	r	W	1	1	r	W	1	1	r	W	1

Field	Bits	Туре	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4 1 _H Reserved, do not use
			 3 _H Reserved, do not use
			4 _H CDTM0_DTM0_0_N, TOM0_0_N, Inverted dead-time output of TOM0, channel 0
			5 _H CDTM1_DTM0_1_N, TOM1_1_N , Inverted dead-time output of TOM1, channel 1
			6 _H CDTM0_DTM1_0, TOM0_4 , Dead-time output of TOM0, channel 4 7 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4
			7 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4 8 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM1_DTM1_1, TOM1_5 , Dead-time output of TOM1, channel 5 1 _H Reserved, do not use
			 3 _H Reserved, do not use
			4 _H CDTM0_DTM0_1_N, TOM0_1_N , Inverted dead-time output of TOM0, channel 1
			5 _H CDTM1_DTM0_2_N, TOM1_2_N , Inverted dead-time output of TOM1, channel 2
			6 _H CDTM0_DTM1_0_N, TOM0_4_N , Inverted dead-time output of TOM0, channel 4
			7 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of TOM1, channel 4
			8 _H Reserved, do not use
			 B _H Reserved, do not use

Field	Bits	Type	Description						
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 1 _H Reserved, do not use 3 _H Reserved, do not use						
			 4_H CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of TOM0, channel 2 5_H CDTM1_DTM0_3_N, TOM1_3_N, Inverted dead-time output of TOM1, channel 3 6_H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 7_H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 8_H Reserved, do not use B_H Reserved, do not use 						
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 1H Reserved, do not use 3H Reserved, do not use 4H CDTM0_DTM0_3_N, TOM0_3_N, Inverted dead-time output of TOM0, channel 3 5H CDTM1_DTM0_0_N, TOM1_0_N, Inverted dead-time output of TOM1, channel 0 6H Reserved, do not use BH Reserved, do not use						

Field	Bits	Type 3:4*x rw	Description					
SELx (x=4)	4*x+3:4*x		TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 1 _H CDTM1_DTM0_0, TOM1_0 , Dead-time output of TOM1, channel 0 2 _H Reserved, do not use					
			5 _H Reserved, do not use					
			6 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of					
			TOM0, channel 5 7 _H CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of					
			7 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of TOM1, channel 5					
			8 _H Reserved, do not use					
			B _H Reserved, do not use					
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).					
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.					
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 1 _H CDTM1_DTM0_0, TOM1_0 , Dead-time output of TOM1, channel 0 2 _H Reserved, do not use					
			4 _H Reserved, do not use					
			5 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of TOM0, channel 5					
			6 _H CDTM1_DTM1_1_N, TOM1_5_N , Inverted dead-time output of TOM1, channel 5					
			7 _H Reserved, do not use					
			B _H Reserved, do not use					

Field	Bits	Type	Description
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 1 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1 2 _H Reserved, do not use
			4 _H Reserved, do not use
			 4_H Reserved, do not use 5_H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6
			6 _H CDTM1_DTM1_2_N, TOM1_6_N , Inverted dead-time output of TOM1, channel 6
			7 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
,			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_2, TOM0_2, Dead-time output of TOM0, channel 2 1 _H CDTM1_DTM0_2, TOM1_2, Dead-time output of TOM1, channel 2 2 _H Reserved, do not use
			4 _H Reserved, do not use 5 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of
			TOM0, channel 7 6 _H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of TOM1, channel 7
			7 _H Reserved, do not use
			B _H Reserved, do not use

GTM_TOUTSELn (n=10) (09FD60_H+n*4) Application Reset Value: 0000 0000_H **Timer Output Select Register** 30 29 28 27 26 25 23 22 21 20 19 31 24 18 17 16

	SEL7 SEL6				SEL5			SEL4							
	n	rw			rw			rw				rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEL3			SEL2			'	SE	L1	ı	SEL0				
	n	N	!		r۱	V			n	W	 		r	W	

Field	Bits		Description				
SELx (x=0)	4*x+3:4*x		TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			O _H CDTMO_DTMO_3, TOMO_3, Dead-time output of TOMO, channel 3 1 _H CDTM1_DTMO_3, TOM1_3, Dead-time output of TOM1, channel 3 2 _H Reserved, do not use 3 _H Reserved, do not use				
			4 _H CDTM0_DTM1_2, TOM0_6 , Dead-time output of TOM0, channel 6 5 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6 6 _H Reserved, do not use				
			B _H Reserved, do not use				
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			O _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 1 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 2 _H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 3 _H Reserved, do not use 4 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 5 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 6 _H Reserved, do not use				
			B _H Reserved, do not use				

Field	Bits	Type	Description				
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 1 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2 _H CDTM0_DTM4_3, ATOM0_3, Dead-time output of ATOM0, channel 3				
			 3_H Reserved, do not use 4_H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 5_H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 6_H Reserved, do not use B_H Reserved, do not use 				
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 1H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 2H CDTM0_DTM4_2, ATOM0_2, Dead-time output of ATOM0, channel 2 3H Reserved, do not use BH Reserved, do not use				

Field	Bits	Type	Description						
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			O _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 1 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 2 _H CDTM0_DTM4_1, ATOM0_1, Dead-time output of ATOM0, channel 1 3 _H Reserved, do not use						
			 3_H Reserved, do not use 4_H CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7 						
			5 _H CDTM1_DTM1_3_N, TOM1_7_N , Inverted dead-time output of TOM1, channel 7						
			6 _H Reserved, do not use B _H Reserved, do not use						
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection						
SELX (X-3)	4 X+3.4 X	IVV	This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			0 _H CDTM0_DTM0_0, TOM0_0, Dead-time output of TOM0, channel 0 1 _H CDTM1_DTM0_0, TOM1_0, Dead-time output of TOM1, channel 0 2 _H CDTM0_DTM4_0, ATOM0_0, Dead-time output of ATOM0, channel 0						
			3 _H Reserved, do not use						
			B _H Reserved, do not use						
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection						
			This bit field defines which timer output is connected as TOUT(n*8+x).						
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.						
			0 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 1 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1 2 _H Reserved, do not use						
			3 _H Reserved, do not use						
			4 _H CDTM0_DTM1_2_N, TOM0_6_N , Inverted dead-time output of TOM0, channel 6						
			5 _H Reserved, do not use						
			B _H Reserved, do not use						

Field	Bits	Type	Description			
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection			
			This bit field defines which timer output is connected as TOUT(n*8+x).			
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.			
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 Reserved, do not use			
			3 _H Reserved, do not use			
			4 _H CDTM0_DTM1_1_N, TOM0_5_N , Inverted dead-time output of TOM0, channel 5			
			5 _H Reserved, do not use			
			B _H Reserved, do not use			

GIM_I	(09FD60 _H +n*4)					Ар	oplication Reset Value: 0000 0000 _H								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SEL7				SE	SEL6			SEL5				SE	L4	
	r	W	I		r	W	1		r	W			r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEL3				SEL2			SEL1				SEL0			
1	rw			rw				rw				rw			

Field	Bits	Туре	Description			
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection			
			This bit field defines which timer output is connected as TOUT(n*8+x).			
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.			
			0 _H CDTM0_DTM0_2, TOM0_2 , Dead-time output of TOM0, channel 2 1 _H Reserved, do not use			
			 3 _⊔ Reserved, do not use			
			 3_H Reserved, do not use 4_H CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7 			
			5 _H Reserved, do not use			
			B _H Reserved, do not use			

Field	Bits	Type	Description
SELX (X=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H CDTMO_DTMO_3, TOMO_3, Dead-time output of TOMO, channel 3 1 _H Reserved, do not use 3 _H Reserved, do not use 4 _H CDTMO_DTM1_0_N, TOMO_4_N, Inverted dead-time output of TOMO, channel 4 5 _H Reserved, do not use B _H Reserved, do not use
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH CDTMO_DTM1_0, TOMO_4, Dead-time output of TOMO, channel 4 1H Reserved, do not use 3H Reserved, do not use 4H CDTMO_DTMO_1_N, TOMO_1_N, Inverted dead-time output of TOMO, channel 1 5H Reserved, do not use BH Reserved, do not use

Field	Bits	Type	Description					
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H CDTMO_DTM1_1, TOMO_5, Dead-time output of TOMO, channel 5 1 _H Reserved, do not use 3 _H Reserved, do not use					
			 4_H CDTMO_DTMO_O_N, TOMO_O_N, Inverted dead-time output of TOMO, channel 0 5_H Reserved, do not use 6_H CDTMO_DTM1_2_N, TOMO_6_N, Inverted dead-time output of TOMO, channel 6 7_H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 8_H Reserved, do not use B_H Reserved, do not use 					
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH CDTMO_DTM1_2, TOMO_6, Dead-time output of TOMO, channel 6 1H Reserved, do not use 3H Reserved, do not use 4H CDTMO_DTMO_1_N, TOMO_1_N, Inverted dead-time output of TOMO, channel 1 5H Reserved, do not use 6H CDTMO_DTM1_3, TOMO_7, Dead-time output of TOMO, channel 7 7H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 8H Reserved, do not use BH Reserved, do not use					

Field	Bits	Type	Description
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
, ,			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM1_3, TOM0_7 , Dead-time output of TOM0, channel 7 1 _H Reserved, do not use
			3 _H Reserved, do not use
			4 _H CDTM0_DTM0_2_N, TOM0_2_N , Inverted dead-time output of TOM0, channel 2
			5 _H Reserved, do not use
			6 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7
			7 _H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of
			TOM1, channel 7
			8 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_8 , Output of TOM0, channel 8
			1 _H Reserved, do not use
			3 _H Reserved, do not use
			4 _H CDTM0_DTM0_3_N, TOM0_3_N , Inverted dead-time output of TOM0, channel 3
			, and the second
			7 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4 8 _H Reserved, do not use
			B _H Reserved, do not use

AURIX™ TC33x/TC32x

Generic Timer Module (GTM)

Field	Bits Type Description						
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection				
			This bit field defines which timer output is connected as TOUT(n*8+x).				
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.				
			0 _H TOM0_8 , Output of TOM0, channel 8				
			1 _H Reserved, do not use				
			4 _H Reserved, do not use				
			5 _H CDTM0_DTM1_0_N, TOM0_4_N, Inverted dead-time output of				
			TOM0, channel 4				
			6 _H Reserved, do not use				
			7 _H CDTM1_DTM1_0_N, TOM1_4_N , Inverted dead-time output of				
			TOM1, channel 4				
			8 _H Reserved, do not use				
			B _H Reserved, do not use				

GTM_TOUTSELn (n=12)

	Output	•	•	ter	(09FD60 _H +n*4)						Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	SE	L7			SE	L6			SE	L5	'		SE	L4	'	
	rw				rw			rw				rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SEL3				SEL2			SEL1					SE	LO	'	
	rw			r	W	1	rw				rw					

Field	Bits	Туре	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_10 , Output of TOM0, channel 10
			1 _H Reserved, do not use
			4 _H Reserved, do not use
			5 _H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 6 _H CDTM0_DTM1_0_N, TOM0_4_N, Inverted dead-time output of TOM0, channel 4
			7 _H CDTM1_DTM1_1, TOM1_5 , Dead-time output of TOM1, channel 5 Reserved, do not use
			B _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_11 , Output of TOM0, channel 11 1 _H Reserved, do not use
			 A_H Reserved, do not use 5_H CDTM0_DTM1_1_N, TOM0_5_N, Inverted dead-time output of TOM0, channel 5 6_H CDTM0_DTM1_2_N, TOM0_6_N, Inverted dead-time output of TOM0, channel 6 7_H CDTM1_DTM1_1_N, TOM1_5_N, Inverted dead-time output of TOM1, channel 5 8_H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the
			last defined SELx setting. 0 _H TOM0_12, Output of TOM0, channel 12 1 _H Reserved, do not use 4 _H Reserved, do not use 5 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 6 _H Reserved, do not use 7 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 8 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 O_H TOMO_13, Output of TOMO, channel 13 1_H Reserved, do not use 4_H Reserved, do not use 5_H CDTMO_DTM1_2_N, TOMO_6_N, Inverted dead-time output of TOMO, channel 6 6_H Reserved, do not use 7_H CDTM1_DTM1_2_N, TOM1_6_N, Inverted dead-time output of TOM1, channel 6 8_H Reserved, do not use B_H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_14 , Output of TOM0, channel 14 1 _H Reserved, do not use
			 A_H Reserved, do not use 5_H CDTM0_DTM1_3_N, TOM0_7_N, Inverted dead-time output of TOM0, channel 7
			 6_H Reserved, do not use 7_H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of TOM1, channel 7 8_H Reserved, do not use
			B _H Reserved, do not use
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM0_15 , Output of TOM0, channel 15 1 _H Reserved, do not use
			 A_H Reserved, do not use 5_H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 6_H Reserved, do not use
			 7_H CDTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 8_H Reserved, do not use
			B _H Reserved, do not use
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM1_0, TOM0_4 , Dead-time output of TOM0, channel 4 1 _H Reserved, do not use
			 B _H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 1 _H Reserved, do not use
			B _H Reserved, do not use

GTM_T Timer		•	•	ter		(0	9FD60 _i	₊ +n*4)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	L7	1		1	L6	I			L5	1		1	L4	

	36	L		SELO						36	L4				
<u>I</u>	rw			rw				rw				rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SE	L2			SE	L1			SE	LO	
<u>I</u>	r	W	1		r۱	N	1		r۱	٧		l	r	W	1

Field	Bits	Type	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_2, TOM0_2 , Dead-time output of TOM0, channel 2 1 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
(-/			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_3, TOM0_3 , Dead-time output of TOM0, channel 3 Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 1 _H Reserved, do not use 2 _H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6
			 3_H Reserved, do not use 4_H CDTM0_DTM0_0_N, TOM0_0_N, Inverted dead-time output of TOM0, channel 0 5_H Reserved, do not use
	4* . 0 4*		
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_2, TOM0_2 , Dead-time output of TOM0, channel 2 1 _H Reserved, do not use
			 Reserved, do not use CDTM0_DTM0_1_N, TOM0_1_N, Inverted dead-time output of TOM0, channel 1 Reserved, do not use
			B _H Reserved, do not use
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_3, TOM0_3 , Dead-time output of TOM0, channel 3 1 _H Reserved, do not use
			 Reserved, do not use CDTM0_DTM0_2_N, TOM0_2_N, Inverted dead-time output of TOM0, channel 2 Reserved, do not use
			 B _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM0_0, TOM0_0 , Dead-time output of TOM0, channel 0 1 _H Reserved, do not use
			 3_H Reserved, do not use 4_H CDTM0_DTM0_3_N, TOM0_3_N, Inverted dead-time output of TOM0, channel 3 5_H Reserved, do not use
			 B _H Reserved, do not use
SELx (x=6)	4*x+3:4*x	rw	TOUT (n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H CDTM0_DTM1_1, TOM0_5 , Dead-time output of TOM0, channel 5 1 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use

GTM_TOUTSELn (n=14)

Timer Output Select Register						(09FD60 _H +n*4)					Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	SE	L7			SE	L6	!		SE	L 5			SE	L4	'	
L	rw				rw			rw				rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SE	L3			SEL2				SEL1			SEL0				
L	rw			r	rw			rw				rw				

Field	Bits	Туре	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			 7_H Reserved, do not use 8_H CDTM0_DTM4_0_N, ATOM0_0_N, Inverted dead-time output of ATOM0, channel 0 9_H Reserved, do not use
-			B _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			7 _H Reserved, do not use 8 _H CDTM0_DTM4_1_N, ATOM0_1_N , Inverted dead-time output of ATOM0, channel 1 9 _H Reserved, do not use
			 B _H Reserved, do not use
SELx (x=2)	4*x+3:4*x	rw	TOUT (n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			 7_H Reserved, do not use 8_H CDTM0_DTM4_2_N, ATOM0_2_N, Inverted dead-time output of ATOM0, channel 2
			9 _H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			7 _H Reserved, do not use
			8 _H CDTM0_DTM4_3_N, ATOM0_3_N , Inverted dead-time output of ATOM0, channel 3
			9 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			3 _H Reserved, do not use
			4 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1
			5 _H Reserved, do not use
			6 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1
			7 _H Reserved, do not use
			8 _H CDTM0_DTM5_2_N, ATOM0_6_N, Inverted dead-time output of
			ATOM0, channel 6
			9 _H Reserved, do not use
			A _H CDTM0_DTM4_1, ATOM0_1 , Dead-time output of ATOM0, channel
			B _H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. OH Reserved, do not use H CDTM1_DTM0_2, TOM1_2, Dead-time output of TOM1, channel 2 H Reserved, do not use CDTM0_DTM0_2, TOM0_2, Dead-time output of TOM0, channel 2 H Reserved, do not use H CDTM0_DTM5_3_N, ATOM0_7_N, Inverted dead-time output of ATOM0, channel 7 H Reserved, do not use H CDTM0_DTM4_2, ATOM0_2, Dead-time output of ATOM0, channel 7
			B _H Reserved, do not use
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. O _H Reserved, do not use
			 3_H Reserved, do not use 4_H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 5_H Reserved, do not use 6_H CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 7_H Reserved, do not use 8_H CDTM0_DTM5_0_N, ATOM0_4_N, Inverted dead-time output of ATOM0, channel 4 9_H Reserved, do not use A_H CDTM0_DTM4_3, ATOM0_3, Dead-time output of ATOM0, channel 3 B_H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			5 _H Reserved, do not use
			6 _H CDTM0_DTM1_3, TOM0_7 , Dead-time output of TOM0, channel 7
			7 _H Reserved, do not use
			<u></u>
			B _H Reserved, do not use

_	Output	-	-	ter		(0	9FD60 _i	_H +n*4)		Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7	!		SE	L6	,		SE	L5	!		SE	L4	'
<u> </u>	r	W			r	W			r	W			r	W	
											_	_	_		

	SLLI				SLLO				SLLS				JLL4			
1	n	N		<u> </u>	r۱	V			r۱	W			r	W		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SE	L3	1	'	SE	L2	'		SE	L1			SE	LO	1	
	rw		I	1	rv	V			r\	W	I		r	W		
Field		Bits		Туре	De	scripti	ion									

Field	Bits	Type	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			6 _H Reserved, do not use
			7 _H ,, Reserved, do not use
			8 _H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			 Reserved, do not use CDTM0_DTM1_1_N, TOM0_5_N, Inverted dead-time output of TOM0, channel 5
			7 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			5 _H Reserved, do not use
			6 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7
			7 _H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Туре	Description
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			4 _H Reserved, do not use
			5 _H CDTM0_DTM1_0, TOM0_4 , Dead-time output of TOM0, channel 4
			6 _H Reserved, do not use
			7 _H CDTM1_DTM1_0, TOM1_4 , Dead-time output of TOM1, channel 4
			8 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
SELX (X-0)	4 XT3.4 X	IVV	This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			 B _H Reserved, do not use

GTM_TOUTSELn (n=16) Application Reset Value: 0000 0000_H **Timer Output Select Register** (09FD60_H+n*4) 31 20 27 26 25 24 23 22 21 18 17 16 SEL7 SEL6 SEL5 SEL4 rw rw rw rw 15 14 13 12 11 10 9 8 7 6 3 2 0 SEL3 SEL₂ SEL1 **SELO** rw rw rw rw

Field	Bits	Type	Description
SELx (x=0)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting. 0 _H TOM1_8, Output of TOM1, channel 8 1 _H Reserved, do not use 5 _H Reserved, do not use 6 _H CDTM0_DTM1_1, TOM0_5, Dead-time output of TOM0, channel 5 7 _H Reserved, do not use
SELx (x=1)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H TOM1_9 , Output of TOM1, channel 9 1 _H Reserved, do not use
			 Reserved, do not use CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=2)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			5 _H Reserved, do not use 6 _H CDTM0_DTM1_3_N, TOM0_7_N , Inverted dead-time output of TOM0, channel 7
			 7_H CDTM1_DTM1_3_N, TOM1_7_N, Inverted dead-time output of TOM1, channel 7 8_H Reserved, do not use
			8 _H Reserved, do not use B _H Reserved, do not use
SELx (x=3)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
(A)			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=4)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use
SELx (x=5)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection
			This bit field defines which timer output is connected as TOUT(n*8+x).
			Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			0 _H Reserved, do not use
			B _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=6)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the
			last defined SELx setting. $0_{\rm H}$ Reserved, do not use
			B _H Reserved, do not use
SELx (x=7)	4*x+3:4*x	rw	TOUT(n*8 + x) Output Selection This bit field defines which timer output is connected as TOUT(n*8+x). Note: SELx values not explicitly defined here are equivalent to the last defined SELx setting.
			 0_H Reserved, do not use 7_H Reserved, do not use 8_H CDTM0_DTM5_0_N, ATOM0_4_N, Inverted dead-time output of ATOM0, channel 4 9_H Reserved, do not use
			B _H Reserved, do not use

26.3.5 GTM DTMAUXINSEL Connections

Figure 10 DTM_AUXIN Connections Overview

Figure 11 DTM_AUXIN Connections Registers Overview

DTM_AUX Input Selection Register

Field	Bits	Type	Description
ASELx (x=0)	2*x+1:2*x	rw	CDTMx_DTM4_AUX Input Selection (ATOMx_CH03) This bit field defines which GPIO/DSADC/EVADC signal is connected to the CDTMx_DTM4_AUX input. 00 _B P02.0, Port pad input 01 _B P02.8, Port pad input 10 _B Reserved, do not use 11 _B CBFLOUT0, Reserved, do not use
TSELx (x=0)	2*x+17:2*x +16	rw	CDTMx_DTM0_AUX Input Selection (TOMx_CH03) This bit field defines which GPIO/DSADC/EVADC signal is connected to the CDTMx_DTM0_AUX input. 00 _B P14.4, Port pad input (no LQFP100) 01 _B P10.1, Port pad input (FC1BFLOUT, no LQFP100) 10 _B P00.7, Port pad input (FC2BFLOUT, no LQFP100) 11 _B CBFLOUT0, Reserved, do not use
TSELx (x=1)	2*x+17:2*x +16	rw	CDTMx_DTM0_AUX Input Selection (TOMx_CH03) This bit field defines which GPIO/DSADC/EVADC signal is connected to the CDTMx_DTM0_AUX input. 00 _B P34.0, Reserved, do not use 01 _B P00.5, Port pad input (FC0BFLOUT, no LQFP100) 10 _B P33.0, Port pad input (FC2BFLOUT, no LQFP100) 11 _B CBFLOUT1, Reserved, do not use
0	15:2, 31:20	r	Reserved Read as 0, shall be written with 0.

26.3.6 GTM to EVADC Connections

Figure 12 GTM to EVADC Connections Overview

Figure 13 GTM to EVADC Connections Registers Overview

Table 209 GTM to EVADC Connections Registers Overview

Register	Long Name	Selection Bitfields	Page
ADCTRIGOOUTO	ADC Trigger 0 Output Select 0 Register (i=0)	SEL0SEL7	Page 119
ADCTRIG0OUT1	ADC Trigger 0 Output Select 1 Register (i=0)	SEL0SEL3	Page 121
ADCTRIG1OUT0	ADC Trigger 1 Output Select 0 Register (i=1)	SEL0SEL7	Page 122
ADCTRIG1OUT1	ADC Trigger 1 Output Select 1 Register (i=1)	SEL0SEL3	Page 124
ADCTRIG2OUT0	ADC Trigger 2 Output Select 0 Register (i=2)	SEL0SEL7	Page 125
ADCTRIG2OUT1	ADC Trigger 2 Output Select 1 Register (i=2)	SEL0SEL3	Page 126
ADCTRIG3OUT0	ADC Trigger 3 Output Select 0 Register (i=3)	SEL0SEL7	Page 127
ADCTRIG3OUT1	ADC Trigger 3 Output Select 1 Register (i=3)	SEL0SEL3	Page 128
ADCTRIG4OUT0	ADC Trigger 4 Output Select 0 Register (i=4)	SEL0SEL7	Page 129
ADCTRIG4OUT1	ADC Trigger 4 Output Select 1 Register (i=4)	SEL0SEL3	Page 130

Table 210 Connections of ADC_TRIGx Signals to ADC/SENT Modules

GTM Trigger Signal	EVADC	SENT		
ADC_TRIG0	<u>'</u>			
ADC_TRIG0_[1:0]	G[1:0]REQGTA	G[1:0]REQTRI	TRIG[1:0]	
ADC_TRIG0_[3:2]	-	-	TRIG[3:2]	
ADC_TRIG0_[7:4]	-	-	TRIG[7:4]	
ADC_TRIG0_[9:8]	G[9:8]REQGTA	G[9:8]REQTRI	TRIG[9:8]	
ADC_TRIG0_[11:10]	-	-	TRIG[11:10]	
ADC_TRIG1				
ADC_TRIG1_[1:0]	G[1:0]REQGTB	G[1:0]REQTRJ	-	
ADC_TRIG1_[3:2]	-	-	-	
ADC_TRIG1_[7:4]	-	-	-	
ADC_TRIG1_[9:8]	G[9:8]REQGTB	G[9:8]REQTRJ	-	
ADC_TRIG1_[11:10]	-	-	-	
ADC_TRIG2				
ADC_TRIG2_[1:0]	G[1:0]REQGTK	G[1:0]REQTRK	-	
ADC_TRIG2_[3:2]	-	-	-	
ADC_TRIG2_[7:4]	-	-	-	
ADC_TRIG2_[9:8]	G[9:8]REQGTK	G[9:8]REQTRK	-	
ADC_TRIG2_[11:10]	-	-	-	
ADC_TRIG3	•	·	•	
ADC_TRIG3_[1:0]	G[1:0]REQGTL	G[1:0]REQTRL	-	
ADC_TRIG3_[3:2]	-	-	-	
ADC_TRIG3_[7:4]	-	-	-	
ADC_TRIG3_[9:8]	G[9:8]REQGTL	G[9:8]REQTRL	-	
ADC_TRIG3_[11:10]	-	-	-	

Table 210 Connections of ADC_TRIGx Signals to ADC/SENT Modules (cont'd)

GTM Trigger Signal	EVADC	EVADC						
ADC_TRIG4								
ADC_TRIG4_[1:0]	G[1:0]REQGTL	G[1:0]REQTRL	-					
ADC_TRIG4_[3:2]	-	-	-					
ADC_TRIG4_[7:4]	-	-	-					
ADC_TRIG4_[9:8]	G[9:8]REQGTL	G[9:8]REQTRL	-					
ADC_TRIG4_[11:10]	-	-	-					

ADC Trigger i Output Select 0 Register

GTM_ADCTRIGIOUT0 (i=0)

ADC Tr	rigger i			t 0 Reg	gister	(0	(09FE40 _H +i*8)			Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7	ı		SE	L6	'	'	SE	L5	'		SE	L4	
	r	W	1		r	W	1		r	W	I.	1	r	W	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3	ı		SE	L2		'	SE	L1	1		SE	LO	1
	r	W	1		r	W			r	W	+		r	W	

Field	Bits	Туре	Description
SELx (x=0-2)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection
			This bit field defines which TOM/ATOM channel output is used as ADCx
			trigger i.
			0 _H No trigger
			T _H CDTM0_DTM1_2, TOM0_6 , Dead-time output of TOM0, channel 6
			2 _H CDTM0_DTM1_3, TOM0_7 , Dead-time output of TOM0, channel 7
			TOM0_13, Output of TOM0, channel 13
			TOM0_14, Output of TOM0, channel 14
			5 _H CDTM0_DTM5_0, ATOM0_4 , Dead-time output of ATOM0, channel
			4
			6 _H CDTM0_DTM5_1, ATOM0_5 , Dead-time output of ATOM0, channel
			5
			7 _H CDTM0_DTM5_2, ATOM0_6 , Dead-time output of ATOM0, channel
			6
			8 _H CDTM0_DTM5_3, ATOM0_7 , Dead-time output of ATOM0, channel
			7
			9 _H Reserved, do not use
			F _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=3-4)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 2 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 3 _H TOM0_13, Output of TOM0, channel 13 4 _H TOM0_14, Output of TOM0, channel 14 5 _H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 6 _H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 7 _H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6 8 _H CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel 7 9 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 A _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 B _H Reserved, do not use
SELx (x=5-7)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H Reserved, do not use 2 _H Reserved, do not use 3 _H TOM0_13, Output of TOM0, channel 13 4 _H TOM0_14, Output of TOM0, channel 14 5 _H Reserved, do not use 8 _H Reserved, do not use 9 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 A _H CDTM0_DTM1_3, TOM0_7, Dead-time output of ATOM0, channel 7 B _H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 C _H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 D _H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6 E _H CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel 7 F _H Reserved, do not use

GTM_ADCTRIGIOUT0 (i=1)

ADC Tr	igger i	Outpu	t Selec	t 0 Reg	ister	(0	(09FE40 _H +i*8)			Ар	Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	SE	L7	Į.		SE	L6	ļ	'	SE	L5	ļ		SE	L4		
<u> </u>	r	W	I		r	W	1	1	r	W	1		r	W		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SE	L3	ı		SE	L2		' 	SE	L1			SE	LO		
	r	W			r	W	v rw			rw						

Field	Bits	Type	Description
SELx (x=0-2)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection
•			This bit field defines which TOM/ATOM channel output is used as ADCx
			trigger i.
			0 _H No trigger
			1 _H CDTM1_DTM1_2, TOM1_6 , Dead-time output of TOM1, channel 6
			2 _H CDTM1_DTM1_3, TOM1_7 , Dead-time output of TOM1, channel 7
			3 _H TOM1_13 , Output of TOM1, channel 13
			4 _H TOM1_14 , Output of TOM1, channel 14
			5 _H Reserved, do not use
			8 _H Reserved, do not use
			9 _H TOM0_14 , Output of TOM0, channel 14
			A _H TOM0_15 , Output of TOM0, channel 15
			B _H CDTM0_DTM5_0, ATOM0_4 , Dead-time output of ATOM0, channel 4
			C _H CDTM0_DTM5_1, ATOM0_5 , Dead-time output of ATOM0, channel 5
			D _H CDTM0_DTM5_2, ATOM0_6 , Dead-time output of ATOM0, channel
			6 E _H CDTM0_DTM5_3, ATOM0_7 , Dead-time output of ATOM0, channel 7
			F _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=3-4)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 2 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 3 _H TOM1_13, Output of TOM1, channel 13 4 _H TOM1_14, Output of TOM1, channel 14 5 _H Reserved, do not use 8 _H Reserved, do not use 9 _H TOM1_14, Output of TOM1, channel 14 A _H TOM1_15, Output of TOM1, channel 15 B _H Reserved, do not use F _H Reserved, do not use
SELx (x=5-7)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. O _H No trigger 1 _H Reserved, do not use 2 _H Reserved, do not use 3 _H TOM1_13, Output of TOM1, channel 13 4 _H TOM1_14, Output of TOM1, channel 14 5 _H Reserved, do not use 8 _H Reserved, do not use 9 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 A _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 B _H Reserved, do not use F _H Reserved, do not use

GTM_ADCTRIGIOUT0 (i=2)

ADC Ti	rigger i		• •	t 0 Reg	ister	(0	(09FE40 _H +i*8)			Application Reset Value: 0000 0000					0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SE	L7	ı		SE	L6	ı		SE	L5			SE	L4	'
	r	W	<u> </u>		r	W	<u> </u>		r	W	1		r	W	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L3			SE	L2			SE	L1	1		SE	LO	'
	r	W	1		r	v rw			W	rw					

Field	Bits	Туре	Description
SELx (x=0-2)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 2 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 3 _H CDTM0_DTM1_1(_N), TOM0_5_N, Inverted dead-time output of TOM0, channel 5 4 _H CDTM0_DTM1_2(_N), TOM0_6_N, Inverted dead-time output of TOM0, channel 6 5 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 6 _H TOM0_11, Output of TOM0, channel 11 7 _H TOM0_15, Output of TOM0, channel 15 8 _H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 9 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 A _H CDTM1_DTM1_1(_N), TOM1_5_N, Inverted dead-time output of TOM1, channel 5 B _H CDTM1_DTM1_2(_N), TOM1_6_N, Inverted dead-time output of TOM1, channel 6 C _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 D _H TOM1_11, Output of TOM1, channel 11 E _H TOM1_15, Output of TOM1, channel 15 F _H Reserved, do not use
SELx (x=3-4)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 2 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 3 _H CDTM0_DTM1_1(_N), TOM0_5_N, Inverted dead-time output of TOM0, channel 5 4 _H CDTM0_DTM1_2(_N), TOM0_6_N, Inverted dead-time output of TOM0, channel 6 5 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 6 _H TOM0_11, Output of TOM0, channel 11 7 _H TOM0_15, Output of TOM0, channel 15 8 _H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 9 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 A _H CDTM1_DTM1_1(_N), TOM1_5_N, Inverted dead-time output of TOM1, channel 5 B _H CDTM1_DTM1_2(_N), TOM1_6_N, Inverted dead-time output of TOM1, channel 6 C _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 D _H TOM1_11, Output of TOM1, channel 11 E _H TOM1_15, Output of TOM1, channel 15 F _H Reserved, do not use

Field	Bits	Type	Description
SELx (x=5-7)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection
			This bit field defines which TOM/ATOM channel output is used as ADCx
			trigger i.
			0 _H No trigger
			1 _H CDTM0_DTM0_3, TOM0_3 , Dead-time output of TOM0, channel 3
			2 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4
			3 _H CDTM0_DTM1_1(_N), TOM0_5_N, Inverted dead-time output of
			TOM0, channel 5
			4 _H CDTM1_DTM0_3, TOM1_3 , Dead-time output of TOM1, channel 3
			5 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4
			6 _H CDTM1_DTM1_1(_N), TOM1_5_N, Inverted dead-time output of
			TOM1, channel 5
			7 _H Reserved, do not use
			F _H Reserved, do not use

GTM ADCTRIGIOUTO (i=3)

ADC Trigger i Output Select 0 Register							(09FE40 _H +i*8) Application						on Reset Value: 0000 0000			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	SEL7 SEL						•		SE	L5	•		SE	L4		
	rw				r	W			rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SEL3				SE	L2	,	SEL1					SE	SELO		
				1	r	W	1		r۱	W	1	1	rw			

Field	Bits	Туре	Description						
SELx (x=0-2)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection						
			This bit field defines which TOM/ATOM channel output is used as ADCx trigger i.						
			0 _H No trigger						
			1 _H CDTM0_DTM4_3, ATOM0_3 , Dead-time output of ATOM0, channel						
			3						
			2 _H CDTM0_DTM5_1(_N), ATOM0_5_N , Inverted dead-time output of ATOM0, channel 5						
			3 _H Reserved, do not use						
			F _H Reserved, do not use						

Field	Bits	Type	Description
SELx (x=3-4)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H CDTM0_DTM4_3, ATOM0_3, Dead-time output of ATOM0, channel 3 2 _H CDTM0_DTM5_1(_N), ATOM0_5_N, Inverted dead-time output of ATOM0, channel 5 3 _H Reserved, do not use
SELx (x=5-7)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H CDTM0_DTM4_3, ATOM0_3, Dead-time output of ATOM0, channel 3 2 _H CDTM0_DTM5_1(_N), ATOM0_5_N, Inverted dead-time output of ATOM0, channel 5 3 _H Reserved, do not use F _H Reserved, do not use

GTM ADCTRIGIOUTO (i=4)

_	rigger i			t 0 Reg	ister	(0	9FE40	_H +i*8)	Ар	plicati	on Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SEL7 SE								SE	L5			SE	L4	
	rw					W	1	rw				rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEL3				SE	L2	!	'	SEL1 SEL0						
	r	W	1	1	r	W	-		r	W	1		r	W	

Field	Bits	Туре	Description						
SELx (x=0-2)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection						
			This bit field defines which TOM/ATOM channel output is used as ADCx trigger i.						
			0 _H No trigger						
			1 _H Reserved, do not use						
			F _H Reserved, do not use						

Field	Bits	Type	Description
SELx (x=3-4)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H Reserved, do not use F _H Reserved, do not use
SELx (x=5-7)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx trigger i. 0 _H No trigger 1 _H Reserved, do not use F _H Reserved, do not use

ADC Trigger i Output Select 1 Register

GTM_ADCTRIGIOUT1 (i=0)

ADC Trigger i Output Select 1 Register						(0	9FE44	_H +i*8)		Ар	plicati	ion Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	0																
r r																	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
SEL3				SE	L2	1	SEL1 SEL0					LO	1				
rw				r	W		I	r۱	W	I		rw					

Field	Bits	Type	Description
SELx (x=0-3)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx+8 trigger i. 0 _H No trigger 1 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 2 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 3 _H TOM0_13, Output of TOM0, channel 13 4 _H TOM0_14, Output of TOM0, channel 14 5 _H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 6 _H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 7 _H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6 8 _H CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel 7 9 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 A _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 B _H Reserved, do not use E _H Reserved, do not use F _H TOM0_15, Output of TOM0, channel 15
0	31:16	r	Reserved Read as 0, shall be written with 0.

GTM_ADCTRIGIOUT1 (i=1)

Field	Bits	Туре	Description
SELx (x=0-3)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx+8 trigger i. O _H No trigger 1 _H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 2 _H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 3 _H TOM1_13, Output of TOM1, channel 13 4 _H TOM1_14, Output of TOM1, channel 14 5 _H Reserved, do not use 8 _H Reserved, do not use 9 _H TOM0_14, Output of TOM0, channel 14 A _H TOM0_15, Output of TOM0, channel 15 B _H Reserved, do not use F _H Reserved, do not use
0	31:16	r	Reserved Read as 0, shall be written with 0.

GTM_ADCTRIGIOUT1 (i=2)

ADC Tr	igger i			t 1 Reg	ister	(09FE44 _H +i*8)			Application Reset Value: 0000 0000 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								0								
	1							r						1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SE	L3	1		SEL2				SEL1				SEL0			
	n	W	•		r	W		•	r	w			r	W		

Field	Bits	Type	Description
SELx (x=0-3)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx+8 trigger i. O _H No trigger 1 _H CDTM0_DTM0_3, TOM0_3, Dead-time output of TOM0, channel 3 2 _H CDTM0_DTM1_0, TOM0_4, Dead-time output of TOM0, channel 4 3 _H CDTM0_DTM1_1(_N), TOM0_5_N, Inverted dead-time output of TOM0, channel 5 4 _H CDTM1_DTM0_3, TOM1_3, Dead-time output of TOM1, channel 3 5 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 6 _H CDTM1_DTM1_1(_N), TOM1_5_N, Inverted dead-time output of TOM1, channel 5 7 _H Reserved, do not use F _H Reserved, do not use
0	31:16	r	Reserved Read as 0, shall be written with 0.

GTM_ADCTRIGIOUT1 (i=3)

ADC Tr	rigger i	Outpu	t Selec	t 1 Reg	ister	(09FE44 _H +i*8)				Application Reset Value: 0000 0000					0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			·	!	ı	ı	'	0	ı	I	ı	ı	·	,	!	
								r								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	SE	L3			SE	L2	1		SE	EL1		SEL0			1	
	r	W		rw			rw					rw				

Field	Bits	Type	Description
SELx (x=0-3)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx+8 trigger i. O _H No trigger
			 1_H CDTM0_DTM4_3, ATOM0_3, Dead-time output of ATOM0, channel 2_H CDTM0_DTM5_1(_N), ATOM0_5_N, Inverted dead-time output of ATOM0, channel 5 3_H Reserved, do not use F_H Reserved, do not use
0	31:16	r	Reserved Read as 0, shall be written with 0.

Field	Bits	Type	Description
SELx (x=0-3)	4*x+3:4*x	rw	Output Selection for GTM to ADCx connection This bit field defines which TOM/ATOM channel output is used as ADCx+8 trigger i. 0_H No trigger 1_H Reserved, do not use F_H Reserved, do not use
0	31:16	r	Reserved Read as 0, shall be written with 0.

26.3.7 SENT Connections

Note that the upper four lines [15:12] of the GTM to SENT connections (see Family Spec) are reserved in the TC33x. Since no EDSADC is implemented in the TC33x, the respective GTM trigger signals are not available for these SENT connections. The SENT connections are as following:

- SENT_TRIG[11:0]: ADC_TRIG0[11:0]
- SENT_TRIG[15:12]: reserved

(infineon

Generic Timer Module (GTM)

26.3.8 GTM to CAN/TTCAN Connections

Figure 14 GTM to CAN/TTCAN Connections Overview

Figure 15 GTM to CAN/TTCAN Connections Registers Overview

CANO/CAN1 Output Select Register

This register holds the selection for the trigger outputs to the CANO/CAN1 modules. Bit fields SEL0..3 define the selection for triggers 0..3 for CAN0, while bit fields SEL4..7 define the selection for triggers 0..3 for CAN1.

Field	Bits	Туре	Description
SELX (X=0)	4*x+3:4*x	rw	Output Selection for GTM to CAN connection x This bit field defines which TOM/ATOM channel output is used as CAN0/CAN1 node trigger x. 0 _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 1 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2 _H TOM1_11, Output of TOM1, channel 11 3 _H TOM1_12, Output of TOM1, channel 12 4 _H Reserved, do not use 7 _H Reserved, do not use 8 _H CDTM0_DTM1_2, TOM0_6, Dead-time output of TOM0, channel 6 9 _H CDTM0_DTM1_3, TOM0_7, Dead-time output of TOM0, channel 7 A _H TOM0_13, Output of TOM0, channel 13 B _H TOM0_14, Output of TOM0, channel 14 C _H CDTM0_DTM5_0, ATOM0_4, Dead-time output of ATOM0, channel 4 D _H CDTM0_DTM5_1, ATOM0_5, Dead-time output of ATOM0, channel 5 E _H CDTM0_DTM5_2, ATOM0_6, Dead-time output of ATOM0, channel 6 F _H CDTM0_DTM5_3, ATOM0_7, Dead-time output of ATOM0, channel
SELX (X=1)	4*x+3:4*x	rw	Output Selection for GTM to CAN connection x This bit field defines which TOM/ATOM channel output is used as CANO/CAN1 node trigger x. OH CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 1H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2H TOM1_11, Output of TOM1, channel 11 3H TOM1_12, Output of TOM1, channel 12 4H Reserved, do not use 7H Reserved, do not use 8H CDTM1_DTM1_2, TOM1_6, Dead-time output of TOM1, channel 6 9H CDTM1_DTM1_3, TOM1_7, Dead-time output of TOM1, channel 7 AH TOM1_13, Output of TOM1, channel 13 BH TOM1_14, Output of TOM1, channel 14 CH Reserved, do not use FH Reserved, do not use

AURIX[™] TC33x/TC32x

Generic Timer Module (GTM)

Field	Bits	Type	Description
SELx (x=2-3)	4*x+3:4*x	rw	Output Selection for GTM to CAN connection x This bit field defines which TOM/ATOM channel output is used as CANO/CAN1 node trigger x. O _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 1 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2 _H TOM1_11, Output of TOM1, channel 11 3 _H TOM1_12, Output of TOM1, channel 12 4 _H Reserved, do not use F _H Reserved, do not use
SELx (x=4-5)	4*x+3:4*x	rw	Output Selection for GTM to CAN connection x This bit field defines which TOM/ATOM channel output is used as CANO/CAN1 node trigger x. O _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 1 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2 _H TOM1_11, Output of TOM1, channel 11 3 _H TOM1_12, Output of TOM1, channel 12 4 _H Reserved, do not use F _H Reserved, do not use
SELx (x=6-7)	4*x+3:4*x	rw	Output Selection for GTM to CAN connection x This bit field defines which TOM/ATOM channel output is used as CANO/CAN1 node trigger x. O _H CDTM1_DTM1_0, TOM1_4, Dead-time output of TOM1, channel 4 1 _H CDTM1_DTM1_1, TOM1_5, Dead-time output of TOM1, channel 5 2 _H TOM1_11, Output of TOM1, channel 11 3 _H TOM1_12, Output of TOM1, channel 12 4 _H Reserved, do not use F _H Reserved, do not use

26.3.9 GTM to LCDCDC Connection

Figure 16 GTM to LCDCDC Connections Overview

Figure 17 GTM to LCDCDC Connections Registers Overview

LCDCDC Output Select Register

GTM_LCDCDCOUTSEL **LCDCDC Output Select Register** Application Reset Value: 0000 0000_H (09FFD4_H) 30 29 20 31 28 27 26 25 24 23 22 21 19 18 17 16 0 15 14 13 12 10 9 7 2 11 SEL 0 rw

Field	Bits	Туре	Description
SEL	3:0	rw	Output Selection for GTM to LCDCDC connection This bit field defines which TOM/ATOM channel output is used as
			LCDCDC signal. 0 _H No trigger 1 _H CDTM0_DTM4_1, ATOM0_1, Dead-time output of ATOM0, channel 1 2 _H Reserved, do not use
			5 _H Reserved, do not use 6 _H CDTM0_DTM0_1, TOM0_1 , Dead-time output of TOM0, channel 1 7 _H CDTM1_DTM0_1, TOM1_1 , Dead-time output of TOM1, channel 1 8 _H Reserved, do not use
0	31:4	r	F _H Reserved, do not use Reserved Read as 0, shall be written with 0.

26.3.10 Special to TC33x

OCDS Trigger Set Select Register

Note: OCS.SUSSTA is set to 1 (module is suspended) up to 2 gtm_clk cycles earlier before GTM changes into soft suspend mode.

GTM_OTSS

OCDS	Triggei	Set Se	lect Re	egister			(09FD	չ8 _H) Debւ				ug Reset Value: 0000 0000 _H			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		0			отс	ВМ1				,)			ОТС	ВМ0	
L		r			r	W			I	r			r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'	0			OTGB1			0			1	OTGB0			
	•	r			r	W	•	r				rw			

Field	Bits	Туре	Description
OTGB0	3:0	rw	Trigger Set for OTGB0 0 _H No Trigger Set selected 1 _H Trigger Set TS16_IOS others, reserved
OTGB1	11:8	rw	Trigger Set for OTGB1 0 _H No Trigger Set selected 1 _H Trigger Set TS16_IOS others, reserved

AURIX[™] TC33x/TC32x

Generic Timer Module (GTM)

Field	Bits	Туре	Description			
ОТСВМО	19:16	rw	Trigger Set for OTGBM0			
			0 _H No Trigger Set selected			
			5 _H Trigger Set TS32_ARU			
			6 _H Trigger Set TS32_TTB0			
			7 _H Trigger Set TS32_TTB1			
			8 _H Trigger Set TS32_TTB2			
			others, Reserved			
OTGBM1	27:24	rw	Trigger Set for OTGBM1			
			0 _H No Trigger Set selected			
			No Trigger Set selected			
			5 _H Trigger Set TS32_ARU			
			others, Reserved			
0	7:4,	r	Reserved			
	15:12,		Read as 0, shall be written with 0.			
	23:20,					
	31:28					

26.4 ARU Write Address Overview

The ARU write address map for the TC33x is specified in the following table.

Table 211 ARU Write Addresses

GTM Data Source	ARU Address
ARU_ACCESS	0x000
TIM0_WRADDR[07]	0x0010x008
TIM1_WRADDR[07]	0x0090x010
unused	0x0110x060
BRC_WRADDR[021]	0x0610x076
unused	0x0770x11E
ATOM0_WRADDR[07]	0x11F0x126
unused	0x1270x1FD
ARU_EMPTY_ADDR	0x1FE
ARU_FULL_ADDR	0x1FF

26.5 ARU Port Partitioning

All GTM sub-modules which are reading from ARU can be connected to one of two ARU read ports. Therefore, it can be read from two different ARU addresses in parallel.

Table 212 GTM ARU Partitioning

Modules	ARU-0 port	ARU-1 port
ATOM0	X	
BRC	X	

26.6 ARU Read ID

Each ARU connected data destination is defined by a combination of ARU port (ARU0 or ARU1) and an ARU read ID. The two ARU counter are addressing two ARU read IDs in parallel. Depending on the ARU mode, both counter may have different values at different point in time (i.e. in dynamic routing mode). The maximum ARU round-trip time is determined by the value of the last ARU read ID. The following table describes the detailed addressing of GTM sub-modules by ARU read IDs.

The following table shows the ARU read IDs for TC33x silicon. The unused IDs are marked with "-".

Table 213 GTM Read IDs for TC33x

ARU read ID (dec)	ARU0	ARU1	GTM read ID (dec)	ARU0	ARU1
0	reserved	reserved	64	-	-
1	ARU0	ARU1	65	-	-
2	BRC channel 0	-	66	-	-

Table 213 GTM Read IDs for TC33x (cont'd)

ARU read	ARU0	ARU1	GTM read	ARU0	ARU1
ID (dec)			ID (dec)		
3	-	-	67	-	-
4	BRC channel 1	-	68	-	-
5	-	-	69	-	-
6	BRC channel 2	-	70	-	-
7	-	-	71	-	-
8	BRC channel 3	-	72	-	-
9	-	-	73	-	-
10	BRC channel 4	-	74	-	-
11	-	-	75	-	-
12	BRC channel 5	-	76	-	-
13	-	-	77	-	-
14	BRC channel 6	-	78	-	-
15	-	-	79	-	-
16	BRC channel 7	-	80	-	-
17	-	-	81	-	-
18	BRC channel 8	-	82	-	-
19	-	-	83	-	-
20	BRC channel 9	-	84	-	-
21	-	-	85	-	-
22	BRC channel 10	_	86	-	-
23	-	_	87	-	-
24	BRC channel 11	-	88	-	-
25	-	-	89	-	-
26	ATOM0 channel 0	-	90	-	-
27	-	-	91	-	-
28	ATOM0 channel 1	-	92	-	-
29	-	-	93	-	-
30	ATOM0 channel 2	-	94	_	-
31	-	_	95	_	-
32	ATOM0 channel 3	_	96	_	-
33	-	_	97	_	-
34	ATOM0 channel 4	_	98	_	_
35	-	_	99	_	-
36	ATOM0 channel 5		100	_	_
37 37	-		101	-	
38	ATOM0 channel 6		101	_	_
39	-		102	-	-

AURIX[™] TC33x/TC32x

Generic Timer Module (GTM)

Table 213 GTM Read IDs for TC33x (cont'd)

ARU read ID (dec)	ARU0	ARU1	GTM read ID (dec)	ARU0	ARU1
40	ATOM0 channel 7	-	104	-	-
41	-	-	105	-	-
42	-	-	106	-	-
43	-	-	107	-	-
44	-	-	108	-	-
45	-	-	109	-	-
46	-	-	110	-	-
47	-	-	111	-	-
48	-	-	112	-	-
49	-	-	113	-	-
50	-	-	114	-	-
51	-	-	115	-	-
52	-	-	116	-	-
53	-	-	117	-	-
54	-	-	118	-	-
55	-	-	119	-	-
56	-	-	120	-	-
57	-	-	121	-	-
58	-	-	122	-	-
59	-	-	123	-	-
60	-	-	124	-	-
61	-	-	125	-	-
62	-	-	126	-	-
63	-	-	127	-	-

26.7 Revision History

Table 214 Revision History

Reference	Change to Previous Version	Comment
V2.2.10		
	Initial release	
V2.2.11		
Page 28,	Added missing registers GTM_ICM_IRQG_CLS_k_MEI,	
Page 29	GTM_ICM_IRQG_ATOM_k_CI	
Table 208	Added package information to TOUTy table	
V2.2.12		
	Changes as device has no MCS, no DPLL and only limited CMM settings.	
V2.2.13		
	Changed setup 1:1 Clocking feasible, but 100MHz is full speed. Changed interface to reduce access time.	
	Changed T6OFL mapping within TIMINSEL register.	
V2.2.15		
	Remarks inside OCDS Registers, concerning status, if TBU channel 3, DPLL or MCS do not exist on a device.	
	CCMi_HW_CONF gets proper bit decriptions, as constants have been all 0x0.	
V2.2.18		
	IRQ_NOTIFY registers: Remark, that due to bit property rw, these registers have to be written to reset.	
	DTMAUXINSEL: Corrected. Non existing sideband signals and pins are out of this list.	
	CANOUTSEL corrected to be matching with design.	
V2.2.19		
	CCMi_CFG registers completely listed	
	CMU_CLK_z_CTRL registers completely listed	
V2.2.20		
	Changes have no impact on this document.	
V2.2.21		
	Changes have no impact on this document.	
V2.2.22	a second a s	
	Changes have no impact on this document.	
V2.2.23	and the same and t	
	EVADC connections corrected, as only 0, 1, 8 and 9 exist on EVADC side	
	The overview inside appendix shows slow speed clusters only. Correction	
	200MHz clusters are allowed and configurable.	
V2.2.24		

AURIX[™] TC33x/TC32x

Generic Timer Module (GTM)

Table 214 Revision History (cont'd)

Reference	Change to Previous Version	Comment
	TOUT package options corrected.	
	EVADC connections differently written, to avoid confusion.	

27 Capture/Compare Unit 6 (CCU6)

This chapter describes the specific properties of the product TC33x/TC32x, which is a member of the product family TC3XX.

The functionality of the CCU6 is described in the TC3XX family documentation. The complete product description consists of the family documentation and this product-specific appendix.

27.1 TC33x/TC32x Specific Register Set

Table 215 Register Address Space - CCU6

Module	Base Address	End Address	Note
CCU60	F0002A00 _H	F0002AFF _H	FPI slave interface
CCU61	F0002B00 _H	F0002BFF _H	FPI slave interface

Note:

Register MOSEL controls the trigger signals from both CCU6 kernels (CCU60 and CCU61) of the CCU6 module, and is only available in the address space of kernel CCU60.

Register Overview Tables of CCU6

Table 216 Register Overview - CCU60 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
CCU60_CLC	Clock Control Register	0000 _H	U,SV	SV,E,P	Application Reset	See Family Spec
CCU60_MCFG	Module Configuration Register	0004 _H	U,SV	U,SV,P	See Family Spec	See Family Spec
CCU60_ID	Module Identification Register	0008 _H	U,SV	BE	See Family Spec	See Family Spec
CCU60_MOSEL	CCU60 Module Output Select Register	000C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_PISEL0	Port Input Select Register 0	0010 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_PISEL2	Port Input Select Register 2	0014 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_KSCSR	Kernel State Control Sensitivity Register	001C _H	U,SV	U,SV,P,OEN	See Family Spec	See Family Spec
CCU60_T12	Timer T12 Counter Register	0020 _H	U,SV	U,SV,P	Application Reset	See Family Spec

Table 216 Register Overview - CCU60 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
CCU60_T12PR	Timer 12 Period Register	0024 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_T12DTC	Dead-Time Control Register for Timer12	0028 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_CC6xR (x=0-2)	Capture/Compare Register for Channel CC6x	0030 _H +x *4	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_CC6xSR (x=0-2)	Capture/Compare Shadow Reg. for Channel CC6x	0040 _H +x *4	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_T13	Timer T13 Counter Register	0050 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_T13PR	Timer 13 Period Register	0054 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_CC63R	Compare Register for T13	0058 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_CC63SR	Compare Shadow Register for T13	005C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_CMPSTAT	Compare State Register	0060 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_CMPMOD IF	Compare State Modification Register	0064 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_T12MSEL	T12 Mode Select Register	0068 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_TCTR0	Timer Control Register 0	0070 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_TCTR2	Timer Control Register 2	0074 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_TCTR4	Timer Control Register 4	0078 _H	U,SV	U,SV,P	Application Reset	See Family Spec

Table 216 Register Overview - CCU60 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Access Mode		Reset	Page
			Read	Write		Number
CCU60_MODCTR	Modulation Control Register	0080 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_TRPCTR	Trap Control Register	0084 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_PSLR	Passive State Level Register	0088 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_MCMOUT S	Multi-Channel Mode Output Shadow Register	008C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_MCMOUT	Multi-Channel Mode Output Register	0090 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_MCMCTR	Multi-Channel Mode Control Register	0094 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_IMON	Input Monitoring Register	0098 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_LI	Lost Indicator Register	009C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_IS	Interrupt Status Register	00A0 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_ISS	Interrupt Status Set Register	00A4 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_ISR	Interrupt Status Reset Register	00A8 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_INP	Interrupt Node Pointer Register	00AC _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_IEN	Interrupt Enable Register	00B0 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU60_OCS	OCDS Control and Status Register	00E8 _H	U,SV	SV,P,OEN	See Family Spec	See Family Spec

Table 216 Register Overview - CCU60 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
CCU60_KRSTCLR	Kernel Reset Status Clear Register	00EC _H	U,SV	SV,E,P	Application Reset	See Family Spec
CCU60_KRST1	Kernel Reset Register 1	00F0 _H	U,SV	SV,E,P	Application Reset	See Family Spec
CCU60_KRST0	Kernel Reset Register 0	00F4 _H	U,SV	SV,E,P	Application Reset	See Family Spec
CCU60_ACCEN0	Access Enable Register 0	00FC _H	U,SV	SV,SE	Application Reset	See Family Spec

Table 217 Register Overview - CCU61 (ascending Offset Address)

Short Name	Long Name	Offset	Access Mode		Reset	Page	
		Address	Read	Write		Number	
CCU61_CLC	C Clock Control Register		U,SV	SV,E,P	Application Reset	See Family Spec	
CCU61_MCFG	Module Configuration Register	0004 _H	U,SV	U,SV,P	See Family Spec	See Family Spec	
CCU61_ID	Module Identification Register	0008 _H	U,SV	BE	See Family Spec	See Family Spec	
CCU61_PISEL0	Port Input Select Register 0	0010 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
CCU61_PISEL2	Port Input Select Register 2	0014 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
CCU61_KSCSR	Kernel State Control Sensitivity Register	001C _H	U,SV	U,SV,P,OEN	See Family Spec	See Family Spec	
CCU61_T12	Timer T12 Counter Register	0020 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
CCU61_T12PR Timer 12 Period Register		0024 _H	U,SV	U,SV,P	Application Reset	See Family Spec	

Table 217 Register Overview - CCU61 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page Number
		Address	Read Write			
CCU61_T12DTC	Dead-Time Control Register for Timer12	0028 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_CC6xR (x=0-2)	Capture/Compare Register for Channel CC6x	0030 _H +x *4	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_CC6xSR (x=0-2)	Capture/Compare Shadow Reg. for Channel CC6x	0040 _H +x *4	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_T13	Timer T13 Counter Register	0050 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_T13PR	Timer 13 Period Register	0054 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_CC63R	Compare Register for T13	0058 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_CC63SR	Compare Shadow Register for T13	005C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_CMPSTAT	Compare State Register	0060 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_CMPMOD IF	Compare State Modification Register	0064 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_T12MSEL	T12 Mode Select Register	0068 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_TCTR0	Timer Control Register 0	0070 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_TCTR2	Timer Control Register 2	0074 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_TCTR4	Timer Control Register 4	0078 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_MODCTR	Modulation Control Register	0080 _H	U,SV	U,SV,P	Application Reset	See Family Spec

Table 217 Register Overview - CCU61 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Numbe
CCU61_TRPCTR	Trap Control Register	0084 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_PSLR	Passive State Level Register	0088 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_MCMOUT S	Multi-Channel Mode Output Shadow Register	008C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_MCMOUT	Multi-Channel Mode Output Register	0090 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_MCMCTR	Multi-Channel Mode Control Register	0094 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_IMON	Input Monitoring Register	0098 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_LI	Lost Indicator Register	009C _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_IS	Interrupt Status Register	00A0 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_ISS	Interrupt Status Set Register	00A4 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_ISR	Interrupt Status Reset Register	00A8 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_INP	Interrupt Node Pointer Register	00AC _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_IEN	Interrupt Enable Register	00B0 _H	U,SV	U,SV,P	Application Reset	See Family Spec
CCU61_OCS	OCDS Control and Status Register	00E8 _H	U,SV	SV,P,OEN	See Family Spec	See Family Spec
CCU61_KRSTCLR	Kernel Reset Status Clear Register	00EC _H	U,SV	SV,E,P	Application Reset	See Family Spec

Table 217 Register Overview - CCU61 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
CCU61_KRST1	Kernel Reset Register 1	00F0 _H	U,SV	SV,E,P	Application Reset	See Family Spec
CCU61_KRST0	Kernel Reset Register 0	00F4 _H	U,SV	SV,E,P	Application Reset	See Family Spec
CCU61_ACCEN0	Access Enable Register 0	00FC _H	U,SV	SV,SE	Application Reset	See Family Spec

27.2 TC33x/TC32x Specific Registers

No deviations from the Family Spec

27.3 Connectivity

Table 218 Connections of CCU60

Interface Signals	conn	ects	Description
CCU60:CC60	to	IOM:MON1(2)	T12 PWM channel 60
		IOM:REF1(6)	
		P02.0:ALT(7)	
		P02.6:ALT(7)	
		P11.12:ALT(7)	
		P15.6:ALT(7)	
		P34.2:ALT(7)	
CCU60:CC61	to	IOM:MON1(1)	T12 PWM channel 61
		IOM:REF1(5)	
		P02.2:ALT(7)	
		P02.7:ALT(7)	
		P11.11:ALT(7)	
		P15.5:ALT(7)	
CCU60:CC62	to	IOM:MON1(0)	T12 PWM channel 62
		IOM:REF1(4)	
		P02.4:ALT(7)	
		P02.8:ALT(7)	
		P11.10:ALT(7)	
		P15.4:ALT(7)	
CCU60:CC60INA	from	P02.0:IN	T12 capture input 60
CCU60:CC61INA	from	P02.2:IN	T12 capture input 61
CCU60:CC62INA	from	P02.4:IN	T12 capture input 62

AURIX[™] TC33x/TC32x

Table 218 Connections of CCU60 (cont'd)

Interface Signals	conn	osts	Description
·			<u> </u>
CCU60:CC60INB	from	P00.1:IN	T12 capture input 60
CCU60:CC61INB	from	P00.3:IN	T12 capture input 61
CCU60:CC62INB	from		T12 capture input 62
CCU60:CC60INC	from	P02.6:IN	T12 capture input 60
CCU60:CC61INC	from	P02.7:IN	T12 capture input 61
CCU60:CC62INC	from	P02.8:IN	T12 capture input 62
CCU60:CC60IND	from	PMS:pms_wut_underflo w	T12 capture input 60
CCU60:CC62IND	from	SCU:E_PDOUT(4)	T12 capture input 62
CCU60:CCPOS0A	from	P02.6:IN	Hall capture input 0
CCU60:CCPOS1A	from	P02.7:IN	Hall capture input 1
CCU60:CCPOS2A	from	P02.8:IN	Hall capture input 2
CCU60:CCPOS0B	from	CCU61:SR(2)	Hall capture input 0
CCU60:CCPOS0C	from	P10.4:IN	Hall capture input 0
CCU60:CCPOS1C	from	P10.7:IN	Hall capture input 1
CCU60:CCPOS2C	from	P10.8:IN	Hall capture input 2
CCU60:CCPOS2D	from	P40.4:IN	Hall capture input 2
CCU60:COUT60	to	SCU:E_REQ0(1)	T12 PWM channel 60
		P02.1:ALT(7)	
		P11.9:ALT(7)	
		P15.7:ALT(7)	
		P34.3:ALT(7)	
		IOM:MON1(3)	
		IOM:REF1(3)	
CCU60:COUT61	to	IOM:MON1(4)	T12 PWM channel 61
		IOM:REF1(2)	
		P02.3:ALT(7)	
		P11.6:ALT(7)	
		P15.8:ALT(7)	
CCU60:COUT62	to	IOM:MON1(5)	T12 PWM channel 62
		IOM:REF1(1)	
		P02.5:ALT(7)	
		P11.3:ALT(7)	
		P14.0:ALT(7)	
	1	1	<u> </u>

AURIX™ TC33x/TC32x

Table 218 Connections of CCU60 (cont'd)

Interface Signals	conn	ects	Description
CCU60:COUT63	to	IOM:MON1(6)	T13 PWM channel 63
		IOM:REF1(0)	
		P00.0:ALT(7)	
		P11.2:ALT(7)	
		P14.1:ALT(7)	
		P32.4:ALT(7)	
		P34.1:ALT(7)	
		PMS:dcdc_sync_ccu6	
CCU60:CTRAPA	from	P00.11:IN	Trap input capture
CCU60:CTRAPB	from	CCU60:WHE_N	Trap input capture
CCU60:CTRAPD	from	SCU:E_PDOUT(0)	Trap input capture
CCU60:SR(0)	to	HSM:EXT_INT(10)	Service request
CCU60:SR(1)	to	CCU60:T13HRH	Service request
CCU60:SR(2)	to	CCU61:CCPOS0B	Service request
		CCU61:T12HRG	
		CCU61:T13HRG	
CCU60:SR(3)	to	EVADC:G0REQTRA	Service request
		EVADC:G1REQTRA	
		EVADC:G8REQTRA	
		EVADC:G9REQTRA	
CCU60:T12HRA	from	SCU:scu_cctrig0	External timer start 12
CCU60:T13HRA	from	SCU:scu_cctrig0	External timer start 13
CCU60:T12HRB	from	P00.7:IN	External timer start 12
CCU60:T13HRB	from	P00.8:IN	External timer start 13
CCU60:T12HRC	from	P00.9:IN	External timer start 12
CCU60:T13HRC	from	P00.9:IN	External timer start 13
CCU60:T12HRD	from	GTM:CCU6_TRIG(0)	External timer start 12
CCU60:T13HRD	from	GTM:CCU6_TRIG(1)	External timer start 13
CCU60:T12HRE	from	P00.0:IN	External timer start 12
CCU60:T12HRF	from	GPT120:T6OFL	External timer start 12
CCU60:T13HRF	from	GPT120:T6OFL	External timer start 13
CCU60:T12HRG	from	CCU61:SR(2)	External timer start 12
CCU60:T13HRG	from	CCU61:SR(2)	External timer start 13
CCU60:T12HRH	from	SCU:E_PDOUT(0)	External timer start 12
CCU60:T13HRH	from	CCU60:SR(1)	External timer start 13

Table 218 Connections of CCU60 (cont'd)

Interface Signals	con	nects	Description
CCU60:TRIG(0)	to	EVADC:G0REQGTC	Output select trigger
		EVADC:G1REQGTC	
		EVADC:G8REQGTC	
		EVADC:G9REQGTC	
CCU60:TRIG(1)	to	EVADC:G0REQGTD	Output select trigger
		EVADC:G1REQGTD	
		EVADC:G8REQGTD	
		EVADC:G9REQGTD	
CCU60:TRIG(2)	to	EVADC:G0REQGTE	Output select trigger
		EVADC:G1REQGTE	
		EVADC:G8REQGTE	
		EVADC:G9REQGTE	
CCU60:WHE_N	to	CCU60:CTRAPB	Set wrong hall event negative

Table 219 Connections of CCU61

Interface Signals	conn	ects	Description
CCU61:CC60	to	IOM:MON1(8)	T12 PWM channel 60
		IOM:REF1(13)	
		P00.1:ALT(7)	
		P00.7:ALT(7)	
		P20.8:ALT(7)	
CCU61:CC61	to	IOM:MON1(9)	T12 PWM channel 61
		IOM:REF1(12)	
		P00.3:ALT(7)	
		P00.8:ALT(7)	
		P20.9:ALT(7)	
		P33.11:ALT(7)	
CCU61:CC62	to	IOM:MON1(10)	T12 PWM channel 62
		IOM:REF1(11)	
		P00.5:ALT(7)	
		P00.9:ALT(7)	
		P20.10:ALT(7)	
		P33.9:ALT(7)	
CCU61:CC60INA	from	P00.1:IN	T12 capture input 60
CCU61:CC61INA	from	P00.3:IN	T12 capture input 61
CCU61:CC62INA	from	P00.5:IN	T12 capture input 62
CCU61:CC60INB	from	P02.0:IN	T12 capture input 60
CCU61:CC61INB	from	P02.2:IN	T12 capture input 61

V2.0.0

2021-02

AURIX[™] TC33x/TC32x

Table 219 Connections of CCU61 (cont'd)

Interface Signals	conn	ects	Description
CCU61:CC62INB	from	P02.4:IN	T12 capture input 62
CCU61:CC60INC	from	P00.7:IN	T12 capture input 60
CCU61:CC61INC	from	P00.8:IN	T12 capture input 61
CCU61:CC62INC	from	P00.9:IN	T12 capture input 62
CCU61:CC60IND	from	PMS:pms_wut_underflo w	T12 capture input 60
CCU61:CC61IND	from	CAN0:INT(12)	T12 capture input 61
CCU61:CC62IND	from	SCU:E_PDOUT(5)	T12 capture input 62
CCU61:CCPOS0A	from	P00.7:IN	Hall capture input 0
CCU61:CCPOS1A	from	P00.8:IN	Hall capture input 1
CCU61:CCPOS2A	from	P00.9:IN	Hall capture input 2
CCU61:CCPOS0B	from	CCU60:SR(2)	Hall capture input 0
CCU61:CCPOS1B	from	P40.6:IN	Hall capture input 1
CCU61:CCPOS2B	from	P40.8:IN	Hall capture input 2
CCU61:CCPOS0C	from	P33.7:IN	Hall capture input 0
CCU61:CCPOS1C	from	P33.6:IN	Hall capture input 1
CCU61:CCPOS2C	from	P33.5:IN	Hall capture input 2
CCU61:CCPOS0D	from	P40.5:IN	Hall capture input 0
CCU61:CCPOS1D	from	P40.7:IN	Hall capture input 1
CCU61:CCPOS2D	from	P40.9:IN	Hall capture input 2
CCU61:COUT60	to	SCU:E_REQ1(1)	T12 PWM channel 60
		IOM:MON1(11)	
		IOM:REF1(10)	
		P00.2:ALT(7)	
		P20.11:ALT(7)	
		P33.12:ALT(7)	
CCU61:COUT61	to	IOM:MON1(12)	T12 PWM channel 61
		IOM:REF1(9)	
		P00.4:ALT(7)	
		P20.12:ALT(7)	
		P33.10:ALT(7)	
CCU61:COUT62	to	IOM:MON1(13)	T12 PWM channel 62
		IOM:REF1(8)	
		P00.6:ALT(7)	
		P20.13:ALT(7)	
		P33.8:ALT(7)	

AURIX™ TC33x/TC32x

Table 219 Connections of CCU61 (cont'd)

Interface Signals	conn	ects	Description
CCU61:COUT63	to	IOM:MON1(7)	T13 PWM channel 63
		IOM:REF1(7)	
		P00.10:ALT(7)	
		P00.12:ALT(7)	
		P20.7:ALT(7)	
CCU61:CTRAPA	from	P00.0:IN	Trap input capture
CCU61:CTRAPB	from	CCU61:WHE_N	Trap input capture
CCU61:CTRAPC	from	P33.4:IN	Trap input capture
CCU61:CTRAPD	from	SCU:E_PDOUT(1)	Trap input capture
CCU61:SR(0)	to	HSM:EXT_INT(11)	Service request
CCU61:SR(1)	to	CCU61:T13HRH	Service request
CCU61:SR(2)	to	CCU60:CCPOS0B	Service request
		CCU60:T12HRG	
		CCU60:T13HRG	
CCU61:SR(3)	to	EVADC:G0REQTRB	Service request
		EVADC:G1REQTRB	
		EVADC:G8REQTRB	
		EVADC:G9REQTRB	
CCU61:T12HRA	from	SCU:scu_cctrig0	External timer start 12
CCU61:T13HRA	from	SCU:scu_cctrig0	External timer start 13
CCU61:T12HRB	from	P02.6:IN	External timer start 12
CCU61:T13HRB	from	P02.7:IN	External timer start 13
CCU61:T12HRC	from	P02.8:IN	External timer start 12
CCU61:T13HRC	from	P02.8:IN	External timer start 13
CCU61:T12HRD	from	GTM:CCU6_TRIG(2)	External timer start 12
CCU61:T13HRD	from	GTM:CCU6_TRIG(3)	External timer start 13
CCU61:T12HRE	from	P00.11:IN	External timer start 12
CCU61:T13HRE	from	CAN0:INT(15)	External timer start 13
CCU61:T12HRF	from	GPT120:T6OFL	External timer start 12
CCU61:T13HRF	from	GPT120:T6OFL	External timer start 13
CCU61:T12HRG	from	CCU60:SR(2)	External timer start 12
CCU61:T13HRG	from	CCU60:SR(2)	External timer start 13
CCU61:T12HRH	from	SCU:E_PDOUT(1)	External timer start 12
CCU61:T13HRH	from	CCU61:SR(1)	External timer start 13
CCU61:WHE_N	to	CCU61:CTRAPB	Set wrong hall event negative

AURIX[™] TC33x/TC32x

Capture/Compare Unit 6 (CCU6)

27.4 Revision History

Table 220 Revision History

Reference	Reference Change to Previous Version Comment					
V3.0.0						
	Initial release.					

General Purpose Timer Unit (GPT12)

28 General Purpose Timer Unit (GPT12)

This chapter describes the specific properties of the product TC33x/TC32x, which is a member of the product family TC3XX.

The functionality of the GPT12 is described in the TC3XX family documentation. The complete product description consists of the family documentation and this product-specific appendix.

28.1 TC33x/TC32x Specific Register Set

Table 221 Register Address Space - GPT12

Module	Base Address	End Address	Note
GPT120	F0001800 _H	F00018FF _H	FPI slave interface

Register Overview Table

See corresponding AURIX[™] TC3xx Platform family specification.

28.2 TC33x/TC32x Specific Registers

No deviations from the Family Spec

General Purpose Timer Unit (GPT12)

28.3 Connectivity

Table 222 Connections of GPT120

Interface Signals	conn	ects	Description
GPT120:CAPINA	from	P13.2:IN	Trigger input to capture value of timer T5 into CAPREL register
GPT120:CAPINB	from	SCU:E_PDOUT(6)	Trigger input to capture value of timer T5 into CAPREL register
GPT120:T2EUDA	from	P00.8:IN	Count direction control input of timer T2
GPT120:T3EUDA	from	P02.7:IN	Count direction control input of core timer T3
GPT120:T4EUDA	from	P00.9:IN	Count direction control input of timer T4
GPT120:T5EUDA	from	P21.6:IN	Count direction control input of timer T5
GPT120:T6EUDA	from	P20.0:IN	Count direction control input of core timer T6
GPT120:T2EUDB	from	P33.6:IN	Count direction control input of timer T2
GPT120:T3EUDB	from	P10.7:IN	Count direction control input of core timer T3
GPT120:T4EUDB	from	P33.5:IN	Count direction control input of timer T4
GPT120:T5EUDB	from	P10.1:IN	Count direction control input of timer T5
GPT120:T6EUDB	from	P10.0:IN	Count direction control input of core timer T6
GPT120:T2INA	from	P00.7:IN	Trigger/gate input of timer T2
GPT120:T3INA	from	P02.6:IN	Trigger/gate input of core timer T3
GPT120:T4INA	from	P02.8:IN	Trigger/gate input of timer T4
GPT120:T5INA	from	P21.7:IN	Trigger/gate input of timer T5
GPT120:T6INA	from	P20.3:IN	Trigger/gate input of core timer T6
GPT120:T2INB	from	P33.7:IN	Trigger/gate input of timer T2
GPT120:T3INB	from	P10.4:IN	Trigger/gate input of core timer T3
GPT120:T4INB	from	P10.8:IN	Trigger/gate input of timer T4
GPT120:T5INB	from	P10.3:IN	Trigger/gate input of timer T5
GPT120:T6INB	from	P10.2:IN	Trigger/gate input of core timer T6
GPT120:T3INC	from	SCU:E_PDOUT(4)	Trigger/gate input of core timer T3
GPT120:T3IND	from	GPT120:T6OFL	Trigger/gate input of core timer T3
GPT120:T4IND	from	GPT120:T6OFL	Trigger/gate input of timer T4
GPT120:T6OFL	to	CCU60:T12HRF	Overflow/underflow signal of timer T6
		CCU60:T13HRF	
		CCU61:T12HRF	
		CCU61:T13HRF	
		GPT120:T4IND	
		GPT120:T3IND	
		GTM:TIM0_IN4(10)	
		GTM:TIM0_IN5(10)	

AURIX™ TC33x/TC32x

General Purpose Timer Unit (GPT12)

Table 222 Connections of GPT120 (cont'd)

Interface Signals	con	nects	Description	
GPT120:T3OUT	to	SCU:E_REQ4(2)	External output for overflow/underflow	
		P10.6:ALT(4)	detection of core timer T3	
		P21.6:ALT(7)		
GPT120:T6OUT	to	SCU:E_REQ5(2)	External output for overflow/underflow	
		P10.5:ALT(5)	detection of core timer T6	
		P21.7:ALT(7)		
GPT120:CIRQ_INT	to	INT:gpt120.CIRQ_INT	GPT120 CAPREL Service Request	
GPT120:T2_INT	to	INT:gpt120.T2_INT	GPT120 T2 Overflow/Underflow Service	
			Request	
GPT120:T3_INT	to	INT:gpt120.T3_INT	GPT120 T3 Overflow/Underflow Service	
			Request	
GPT120:T4_INT	to	INT:gpt120.T4_INT	GPT120 T4 Overflow/Underflow Service	
			Request	
GPT120:T5_INT	to	INT:gpt120.T5_INT	GPT120 T5 Overflow/Underflow Service	
			Request	
GPT120:T6_INT	to	INT:gpt120.T6_INT	GPT120 T6 Overflow/Underflow Service	
			Request	

28.4 Revision History

Table 223 Revision History

Reference	Change to Previous Version	Comment	
V3.0.0	/3.0.0		
_	Initial version.		
V3.0.1		,	
– No functional changes.		-	
V3.0.2			
	No functional changes.		

Converter Control Block (CONVCTRL)

29 Converter Control Block (CONVCTRL)

This chapter describes the specific properties of the product TC33x/TC32x, which is a member of the product family TC3xx.

The functionality of the CONVCTRL is described in the TC3xx family documentation. The complete product description consists of the family documentation and this product-specific appendix.

29.1 TC33x/TC32x-Specific IP Configuration

The functional description describes the features and operating modes of the converter control block in a general way. This section summarizes the configuration that is available in a specific product.

Table 224 TC33x/TC32x specific configuration of CONVERTER

Parameter	CONVCTRL
FPI base address	F0025000 _H
FPI address range	100 _H
Application Reset and Kernel Reset	Application Reset
Name of the config sector value	CFS Value
CFS value for register VRCFG	000000C3 _H

29.2 TC33x/TC32x Specific Register Set

Table 225 Register Address Space - CONVERTER

Module	Base Address	End Address	Note
CONVCTRL	F0025000 _H	F00250FF _H	FPI slave interface

Register Overview Table

See main family chapter.

29.3 TC33x/TC32x Specific Registers

No deviations from the Family Spec

AURIX™ TC33x/TC32x

Converter Control Block (CONVCTRL)

29.4 Connectivity

The CONVCTRL is connected to its environment through a number of input and output signals.

Table 226 Digital Connections for Product TC33x/TC32x

Signal Dir.		Source/Destin.	Description
General	1		
PHSYNC	0	EVADC	Synchronization signal for analog clocks
CC_ALARM O SMU		SMU	Alarm signal from safety logic

Table 227 List of CONVERTER Interface Signals

Interface Signals		Description
PHSYNC	out	Phase synchronization signal
CC_ALARM	out	Safety Alarm Signal

29.5 Revision History

Table 228 Revision History for the Appendix

Reference	Change to Previous Version	Comment					
V3.0.0							
	Initial version of TC33X.						
V3.0.1							
Page 2	EDSADC removed from digital connections table because TC33x/TC32x has no EDSADC.						

Enhanced Versatile Analog-to-Digital Converter (EVADC)

30 Enhanced Versatile Analog-to-Digital Converter (EVADC)

This chapter describes the specific properties of the product TC33x/TC32x, which is a member of the product family TC3XX.

The functionality of the EVADC is described in the TC3XX family documentation. The complete product description consists of the family documentation and this product-specific appendix.

30.1 TC33x/TC32x-Specific IP Configuration

The functional description describes the features and operating modes of the A/D Converters in a general way. This section summarizes the configuration that is available in a specific product.

Each converter group is equipped with a separate analog converter module and a dedicated analog input multiplexer.

Table 229 General Converter Configuration TC33x/TC32x

Converter Group	Input Channels	Converter Cluster	Common Service Req. Group	Associated Standard Reference Pins
Primary Gro	ups			
G0	CH0 CH7	Primary	C0	V _{AREF1} , V _{AGND1}
G1	CH0 CH7	Primary	C1	V _{AREF1} , V _{AGND1}
Secondary G	roups			
G8	CH0 CH15	Secondary	C0	V _{AREF1} , V _{AGND1}
G9	CH0 CH15	Secondary C1		$V_{\text{AREF1}}, V_{\text{AGND1}}$

Synchronization Groups

Both converter kernels can be connected to synchronization groups to achieve parallel conversion of several input channels.

Not all channels can be synchronized to each other, but certain groups can be formed.

Table 230 summarizes which kernels can be synchronized for parallel conversions.

Table 230 Synchronization Groups

ADC Kernel	Synchr.	Master sele	Master selected by control input CIx ¹⁾				
	Group	CI0 ²⁾	CI1	CI2	CI3		
G0 (Prim.)	А	G0	G1	G8	G9		
G1 (Prim.)	А	G1	G0	G8	G9		
G8 (Sec.)	А	G8	G9	G0	G1		
G9 (Sec.)	Α	G9	G8	G0	G1		

¹⁾ The control input is selected by bitfield STSEL in register GxSYNCTR. Select the corresponding ready inputs accordingly by bits EVALRx.

²⁾ Control input CIO always selects the own control signals of the corresponding ADC kernel. This selection is meant for the synchronization master or for stand-alone operation.

AURIX™ TC33x/TC32x

Enhanced Versatile Analog-to-Digital Converter (EVADC)

Table 231 TC33x/TC32x specific configuration of EVADC

Parameter	EVADC
Number of available primary groups	2
Number of available secondary groups	2
Number of available Fast Compare channels	0
FPI base address	F0020000 _H
FPI address range	4000 _H

30.2 TC33x/TC32x Specific Register Set

Table 232 Register Address Space - EVADC

Module	Base Address	End Address	Note
EVADC	F0020000 _H	F0023FFF _H	FPI slave interface

Register Overview Table

See main family chapter.

Enhanced Versatile Analog-to-Digital Converter (EVADC)

30.3 Connectivity

The EVADC is connected to its environment through a number of analog input signals and also digital input and output signals. These connections establish communication with other peripherals, with the system blocks, and with external components. The following tables list:

- Analog Module Connections
- Digital Module Connections

30.3.1 Analog Module Connections

The EVADC module accepts a number of analog input signals. The analog input multiplexers select the input channels to be converted from the signals available in this product.

Note:

If an analog input channel is connected to an I/O port pin, make sure the output driver and/or pull devices and/or the digital input path are disabled during normal operation (Px_PDISC.PDISy = 1). For diagnostic functions (MD, PDD) ports must be configured differently (see family description).

The exact number of analog input channels and the available connection to port pins depend on the employed product type and package (refer to **Table 229** and to the corresponding Data Sheets).

A summary of channels can be found in the table below.

Special Markings

- Input channels marked "PDD" provide a pull-down device for pull-down diagnostics.
- Input channels marked "MD" can activate the pullup and pulldown devices for multiplexer diagnostics.
- Input channels marked "AL" cannot select the input thresholds (via the Port Driver mode Registers) and, therefore, the strength of pullup and pulldown devices. These inputs are fixed to automotive levels.
- Input channels marked "AltRef" can be selected as an alternate reference voltage for conversions on channels of the same group.
- Input channels marked "FixRef" cannot select an alternate reference voltage, but only the corresponding standard reference voltage.

Table 233 Analog Input Connections for Product TC33x/TC32x

Signal	Source	Overlay	Description
Reference Inputs			,
$\overline{V_{AREF}}$	VAREF1	-	positive analog reference
$\overline{V_{AGND}}$	VAGND1	-	negative analog reference
Analog Inputs for Gro	oup 0 (Primary)	
G0CH0 (AltRef)	AN0	-	analog input channel 0 of group 0
G0CH1 (MD)	AN1	-	analog input channel 1 of group 0
G0CH2 (MD)	AN2	-	analog input channel 2 of group 0
G0CH3	AN3	-	analog input channel 3 of group 0
G0CH4 (FixRef)	AN4	G8CH8	analog input channel 4 of group 0
G0CH5 (FixRef)	AN5	G8CH9	analog input channel 5 of group 0
G0CH6 (FixRef)	AN6	G8CH10	analog input channel 6 of group 0
G0CH7 (PDD, FixRef)	AN7	G8CH11	analog input channel 7 of group 0

Enhanced Versatile Analog-to-Digital Converter (EVADC)

Table 233 Analog Input Connections for Product TC33x/TC32x (cont'd)

Table 233 Allatog IIIp	ut Commections i	of Product 1C33x/1C32x	(Cont u)
Signal	Source	Overlay	Description
G1CH0 (AltRef)	AN8	G8CH12	analog input channel 0 of group 1
G1CH1 (MD)	AN9	G8CH13	analog input channel 1 of group 1
G1CH2 (MD)	AN10	G8CH14	analog input channel 2 of group 1
G1CH3 (PDD)	AN11	G8CH15	analog input channel 3 of group 1
G1CH4	AN12	-	analog input channel 4 of group 1
G1CH5	AN13	-	analog input channel 5 of group 1
G1CH6	AN14	-	analog input channel 6 of group 1
G1CH7	AN15	-	analog input channel 7 of group 1
Analog Inputs for Grou	up 8 (Secondary)		
G8CH0 (AltRef)	AN32	-	analog input channel 0 of group 8
G8CH1 (MD)	AN33	-	analog input channel 1 of group 8
G8CH2 (MD, AL)	AN34	-	analog input channel 2 of group 8
G8CH3 (PDD)	AN35	-	analog input channel 3 of group 8
G8CH4	AN36	-	analog input channel 4 of group 8
G8CH5	AN37	-	analog input channel 5 of group 8
G8CH6	AN38	-	analog input channel 6 of group 8
G8CH7	AN39	-	analog input channel 7 of group 8
G8CH8	AN40	G0CH4	analog input channel 8 of group 8
G8CH9	AN41	G0CH5	analog input channel 9 of group 8
G8CH10	AN42	G0CH6	analog input channel 10 of group 8
G8CH11	AN43	G0CH7	analog input channel 11 of group 8
G8CH12	AN44	G1CH0	analog input channel 12 of group 8
G8CH13	AN45	G1CH1	analog input channel 13 of group 8
G8CH14	AN46	G1CH2	analog input channel 14 of group 8
G8CH15	AN47	G1CH3	analog input channel 15 of group 8
Analog Inputs for Grou	ıp 9 (Secondary)		
G9CH0 (AltRef)	P00.12	-	analog input channel 0 of group 9
G9CH1 (MD)	P00.11	-	analog input channel 1 of group 9
G9CH2 (MD)	P00.10	-	analog input channel 2 of group 9
G9CH3	P00.9	-	analog input channel 3 of group 9
G9CH4	P00.8	-	analog input channel 4 of group 9
G9CH5	P00.7	-	analog input channel 5 of group 9
G9CH6	P00.6	-	analog input channel 6 of group 9
G9CH7	P00.5	-	analog input channel 7 of group 9
G9CH8	P00.4	-	analog input channel 8 of group 9
G9CH9	P00.3	-	analog input channel 9 of group 9
G9CH10	P00.2	-	analog input channel 10 of group 9
G9CH11	P00.1	-	analog input channel 11 of group 9
			•

Enhanced Versatile Analog-to-Digital Converter (EVADC)

Table 233 Analog Input Connections for Product TC33x/TC32x (cont'd)

Signal	Source	Overlay	Description
G9CH12	-	-	analog input channel 12 of group 9
G9CH13	-	-	analog input channel 13 of group 9
G9CH14	-	-	analog input channel 14 of group 9
G9CH15	-	-	analog input channel 15 of group 9
Common Input	Signals (x = 0-1)	,	j
GxCH28	$V_{ANACOMM}$	-	common reference signal, available to all converters, used for production testing, can be fed to the converters through pin AN11
GxCH29	V_{MTS}	-	module test signal, comparator supply voltage $V_{\rm DDK}$
GxCH30	V_{AGND}	-	negative reference voltage
GxCH31	V_{AREF}	-	positive reference voltage

Enhanced Versatile Analog-to-Digital Converter (EVADC)

30.3.2 Digital Module Connections

The EVADC module accepts a number of digital input signals and generates a number of output signals. This section summarizes the connection of these signals to other on-chip modules or to external resources via port pins.

Table 234 Digital Connections for Product TC33x/TC32x

Signal	Dir.	Source/Destin.	Description
Gate Inputs for Prin	mary/Sec	ondary Groups (x = 0-1,	8-9, input line selected via bitfield $GTSEL = [yyyy_B]$)
GxREQGTA	I	GTM_adcx_trig0	[0000 _B] GTM ADC trigger 0
GxREQGTB	1	GTM_adcx_trig1	[0001 _B] GTM ADC trigger 1
GxREQGTC	I	CCU6061 TRIG0	[0010 _B] CCU6061 trigger output 0
GxREQGTD	I	CCU6061 TRIG1	[0011 _B] CCU6061 trigger output 1
GxREQGTE	1	CCU6061 TRIG2	[0100 _B] CCU6061 trigger output 2
GxREQGTF	1	-	[0101 _B] Gating input F, group x
GxREQGTG	1	GTM_adcx_trig4	[0110 _B] GTM ADC trigger 4
GxREQGTH	I	-	[0111 _B] Gating input H, group x
GxREQGTI	I	-	[1000 _B] Gating input I, group x
GxREQGTJ	I	-	[1001 _B] Gating input J, group x
GxREQGTK	I	GTM_adcx_trig2	[1010 _B] GTM ADC trigger 2
GxREQGTL	1	GTM_adcx_trig3	[1011 _B] GTM ADC trigger 3
GxREQGTM	1	eru_pdout_x	[1100 _B] ERU pattern detection output x
GxREQGTN	I	-	[1101 _B] Gating input N, group x
GxREQGTO	1	-	[1110 _B] Gating input O, group x
GxREQGTP	I	[internal]	$[1111_{\rm B}]$ Extend inputs to the selected internal trigger source (see GxTRCTR)
GxREQGTySEL	0	GxREQTRyP ¹⁾	Selected gating signal of the respective source
Trigger Inputs for P	Primary/S	econdary Groups (x = 0	-1, 8-9, input line selected via bitfield XTSEL = [yyyy _B])
GxREQTRA	I	CCU60_SR3	[0000 _B] CCU60 service request output 3
GxREQTRB	1	CCU61_SR3	[0001 _B] CCU61 service request output 3
GxREQTRC	1	-	[0010 _B] Trigger input C, group x
GxREQTRD	1	-	[0011 _B] Trigger input D, group x
GxREQTRE	1	-	[0100 _B] Trigger input E, group x
GxREQTRF	1	-	[0101 _B] Trigger input F, group x
GxREQTRG	I	GTM_adcx_trig4	[0110 _B] GTM ADC trigger 4
GxREQTRH	I	eru_iout_x	[0111 _B] ERU interrupt output x
GxREQTRI	I	GTM_adcx_trig0	[1000 _B] GTM ADC trigger 0
GxREQTRJ	1	GTM_adcx_trig1	[1001 _B] GTM ADC trigger 1
GxREQTRK	I	GTM_adcx_trig2	[1010 _B] GTM ADC trigger 2
GxREQTRL	I	GTM_adcx_trig3	[1011 _B] GTM ADC trigger 3
GxREQTRM	1	vadc_gxsr1	[1100 _B] Service request 1, group x
GxREQTRN	I	vadc_c0sr1	[1101 _B] Service request 1, common group 0

Enhanced Versatile Analog-to-Digital Converter (EVADC)

Table 234 Digital Connections for Product TC33x/TC32x (cont'd)

Signal	Dir.	Source/Destin.	Description
GxREQTRO	I	vadc_c1sr1	[1110 _B] Service request 1, common group 1
GxREQTRyP	I	GxREQGTySEL ¹⁾	$[1111_{\rm B}]$ Extend triggers to selected gating input of the respective source
GxREQTRySEL	0	-	Selected trigger signal of the respective source
Global Signals and	l Service R	equest Lines For Primar	ry/Secondary Groups: x = 0-1, 8-9
GxDATA[20:0]	0	GTM	Result values written to RES15
GxWR	0	GTM	Write signal for GxDATA
EMUX00	0	P02.6, P33.3	Control of external analog multiplexer interface 0
EMUX01	0	P02.7, P33.2	
EMUX02	0	P02.8, P33.1	
EMUX10	0	P00.6, P33.6	Control of external analog multiplexer interface 1
EMUX11	0	P00.7, P33.5	
EMUX12	0	P00.8, P33.4	
GxSR0	0	ICU	Service request 0 of group x
GxSR1	0	ICU	Service request 1of group x
GxSR2	0	ICU	Service request 2 of group x
GxSR3	0	ICU	Service request 3 of group x
C0SR0	0	ICU, GTM_TIM0_CH0, GTM_TIM1_CH4	Service request 0 of common block 0
C0SR1	0	ICU, GTM_TIM0_CH2, GTM_TIM1_CH6	Service request 1 of common block 0
C0SR2	0	ICU, GTM_TIM0_CH4, GTM_TIM1_CH0	Service request 2 of common block 0
COSR3	0	ICU, GTM_TIM0_CH6, GTM_TIM1_CH2	Service request 3 of common block 0
C1SR0	0	ICU, GTM_TIM0_CH1, GTM_TIM1_CH5	Service request 0 of common block 1
C1SR1	0	ICU, GTM_TIM0_CH3, GTM_TIM1_CH7	Service request 1 of common block 1
C1SR2	0	ICU, GTM_TIM0_CH5, GTM_TIM1_CH1	Service request 2 of common block 1
C1SR3	0	ICU, GTM_TIM0_CH7, GTM_TIM1_CH3	Service request 3 of common block 1
System-Internal C	onnection	s (x = 0-1, 8-9)	,
PHSYNC	I	Phase synchronizer	Synchronization signal for analog clocks
otgb0[15:0]	0	OTGM	Alternate trigger buses for additional trace signals
otgb1[15:0]	0	OTGM	indicating the input signal sample phase (see OCS)

¹⁾ Internal signal connection.

Enhanced Versatile Analog-to-Digital Converter (EVADC)

30.4 Revision History

This is a summary of the modifications that have been applied to this chapter.

Table 235 Revision History

Reference	Change to Previous Version	Comment
V3.0.0		
_	Initial version.	_
V3.0.1		
Page 1	$V_{\rm AREF1}$ / $V_{\rm AGND1}$ corrected to $_{\rm AREF0}$ / $V_{\rm AGND0}$ in table General Converter Configuration TC33x/TC32x .	
Page 3	VAREF2 / VAGND2 corrected to VAREF0 / VAGND0 in table Analog Input Connections for Product TC33x/TC32x .	
Page 1	In table Synchronization Groups the synchronization group "C" changed to "A".	
Page 3	In table Analog Input Connections for Product TC33x/TC32x analog inputs "G8CH8" to "G8CH15" at source "AN40" to "AN47" moved to overlay "AN04" to "AN11".	
Page 3	In section Special Markings explanation for "AL" added.	
V3.0.2		
Page 1	V_{AREF1} / V_{AGND1} fixed in table General Converter Configuration TC33x/TC32x .	
Page 3	VAREF1 / VAGND1 fixed in table Analog Input Connections for Product TC33x/TC32x .	
Page 6	Wrongly mentioned destination GTM_TIM2_* removed in table Digital Connections for Product TC33x/TC32x .	
Page 3	Removed comment regarding overlay connections.	
Page 3	In table Analog Input Connections for Product TC33x/TC32x from G8CH8/G0CH4 to G8CH15/G1CH3 connection overlay updated.	
V3.0.3		
Page 1	Added values.	
V3.0.4		•
	No functional changes.	
V3.0.5		
Page 6	Statement "for Primary Groups" changed to "for Primary/Secondary Groups" (2 times).	

Enhanced Delta-Sigma Analog-to-Digital Converter (EDSADC)

31 Enhanced Delta-Sigma Analog-to-Digital Converter (EDSADC)

This device doesn't contain an EDSADC.

infineon

Inter-Integrated Circuit (I2C)

32 Inter-Integrated Circuit (I2C)

This device doesn't contain an I2C.

infineon

High Speed Serial Link (HSSL)

33 High Speed Serial Link (HSSL)

This device doesn't contain a HSSL.

Asynchronous Serial Interface (ASCLIN)

34 Asynchronous Serial Interface (ASCLIN)

Text with reference to family spec.

34.1 TC33x/TC32x Specific IP Configuration

No product specific configuration for ASCLIN

34.2 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 236 Register Address Space - ASCLIN

Module	Base Address	End Address	Note
ASCLIN0	F0000600 _H	F00006FF _H	FPI slave interface
ASCLIN1	F0000700 _H	F00007FF _H	FPI slave interface
ASCLIN2	F0000800 _H	F00008FF _H	FPI slave interface
ASCLIN3	F0000900 _H	F00009FF _H	FPI slave interface
ASCLIN4	F0000A00 _H	F0000AFF _H	FPI slave interface
ASCLIN5	F0000B00 _H	F0000BFF _H	FPI slave interface
ASCLIN6	F0000C00 _H	F0000CFF _H	FPI slave interface
ASCLIN7	F0000D00 _H	F0000DFF _H	FPI slave interface
ASCLIN8	F0000E00 _H	F0000EFF _H	FPI slave interface
ASCLIN9	F0000F00 _H	F0000FFF _H	FPI slave interface
ASCLIN10	F02C0A00 _H	F02C0AFF _H	FPI slave interface
ASCLIN11	F02C0B00 _H	F02C0BFF _H	FPI slave interface

Register Overview Table

Table 237 Register Overview - ASCLIN (ascending Offset Address)

Short Name	Long Name	Offset Address	Page Number
ASCLINO_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN1_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN2_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN3_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN4_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN5_CLC	Clock Control Register	000 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN6_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN7_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN8_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN9_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN10_CLC	Clock Control Register	000 _H	See Family Spec
ASCLIN11_CLC	Clock Control Register	000 _H	See Family Spec
ASCLINO_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN1_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN2_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN3_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN4_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN5_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN6_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN7_IOCR	Input and Output Control Register	004 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN8_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN9_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN10_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN11_IOCR	Input and Output Control Register	004 _H	See Family Spec
ASCLIN0_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN1_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN2_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN3_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN4_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN5_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN6_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN7_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN8_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN9_ID	Module Identification Register	008 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN10_ID	Module Identification Register	008 _H	See Family Spec
ASCLIN11_ID	Module Identification Register	008 _H	See Family Spec
ASCLINO_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN1_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN2_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN3_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN4_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN5_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN6_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN7_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN8_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN9_TXFIFOCON	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN10_TXFIFOCO N	TX FIFO Configuration Register	00C _H	See Family Spec
ASCLIN11_TXFIFOCO N	TX FIFO Configuration Register	00C _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN0_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN1_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN2_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN3_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN4_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN5_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN6_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN7_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN8_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN9_RXFIFOCON	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN10_RXFIFOCO N	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN11_RXFIFOCO N	RX FIFO Configuration Register	010 _H	See Family Spec
ASCLIN0_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN1_BITCON	Bit Configuration Register	014 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN2_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN3_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN4_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN5_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN6_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN7_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN8_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN9_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN10_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLIN11_BITCON	Bit Configuration Register	014 _H	See Family Spec
ASCLINO_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN1_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN2_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN3_FRAMECON	Frame Control Register	018 _H	See Family Spec

 Table 237
 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN4_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN5_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN6_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN7_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN8_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN9_FRAMECON	Frame Control Register	018 _H	See Family Spec
ASCLIN10_FRAMECO N	Frame Control Register	018 _H	See Family Spec
ASCLIN11_FRAMECO N	Frame Control Register	018 _H	See Family Spec
ASCLINO_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN1_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN2_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN3_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN4_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN5_DATCON	Data Configuration Register	01C _H	See Family Spec

 Table 237
 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN6_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN7_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN8_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN9_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN10_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLIN11_DATCON	Data Configuration Register	01C _H	See Family Spec
ASCLINO_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN1_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN2_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN3_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN4_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN5_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN6_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN7_BRG	Baud Rate Generation Register	020 _H	See Family Spec

V2.0.0

2021-02

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN8_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN9_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN10_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLIN11_BRG	Baud Rate Generation Register	020 _H	See Family Spec
ASCLINO_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN1_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN2_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN3_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN4_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN5_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN6_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN7_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN8_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN9_BRD	Baud Rate Detection Register	024 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN10_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLIN11_BRD	Baud Rate Detection Register	024 _H	See Family Spec
ASCLINO_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN1_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN2_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN3_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN4_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN5_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN6_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN7_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN8_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN9_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN10_LINCON	LIN Control Register	028 _H	See Family Spec
ASCLIN11_LINCON	LIN Control Register	028 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLINO_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN1_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN2_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN3_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN4_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN5_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN6_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN7_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN8_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN9_LINBTIMER	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN10_LINBTIME R	LIN Break Timer Register	02C _H	See Family Spec
ASCLIN11_LINBTIME R	LIN Break Timer Register	02C _H	See Family Spec
ASCLINO_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN1_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN2_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN3_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN4_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN5_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN6_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN7_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN8_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN9_LINHTIMER	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN10_LINHTIME R	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN11_LINHTIME R	LIN Header Timer Register	030 _H	See Family Spec
ASCLIN0_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN1_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN2_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN3_FLAGS	Flags Register	034 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN4_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN5_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN6_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN7_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN8_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN9_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN10_FLAGS	Flags Register	034 _H	See Family Spec
ASCLIN11_FLAGS	Flags Register	034 _H	See Family Spec
ASCLINO_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN1_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN2_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN3_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN4_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN5_FLAGSSET	Flags Set Register	038 _H	See Family Spec

V2.0.0

2021-02

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN6_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN7_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN8_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN9_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN10_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLIN11_FLAGSSET	Flags Set Register	038 _H	See Family Spec
ASCLINO_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN1_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN2_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN3_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN4_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN5_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN6_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN7_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN8_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN9_FLAGSCLEA R	Flags Clear Register	03C _H	See Family Spec
ASCLIN10_FLAGSCLE AR	Flags Clear Register	03C _H	See Family Spec
ASCLIN11_FLAGSCLE AR	Flags Clear Register	03C _H	See Family Spec
ASCLINO_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN1_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN2_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN3_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN4_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN5_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN6_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN7_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN8_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN9_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN10_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLIN11_FLAGSENA BLE	Flags Enable Register	040 _H	See Family Spec
ASCLINO_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN1_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN2_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN3_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN4_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN5_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN6_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN7_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN8_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN9_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN10_TXDATA	Transmit Data Register	044 _H	See Family Spec
ASCLIN11_TXDATA	Transmit Data Register	044 _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLINO_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN1_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN2_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN3_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN4_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN5_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN6_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN7_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN8_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN9_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN10_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN11_RXDATA	Receive Data Register	048 _H	See Family Spec
ASCLIN0_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN1_CSR	Clock Selection Register	04C _H	See Family Spec

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ASCLIN2_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN3_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN4_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN5_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN6_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN7_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN8_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN9_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN10_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLIN11_CSR	Clock Selection Register	04C _H	See Family Spec
ASCLINO_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec
ASCLIN1_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec
ASCLIN2_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec
ASCLIN3_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec

 Table 237
 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	rt Name Long Name		Page Number	
ASCLIN4_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN5_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN6_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN7_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN8_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN9_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN10_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLIN11_RXDATAD	Receive Data Debug Register	050 _H	See Family Spec	
ASCLINO_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN1_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN2_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN3_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN4_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN5_OCS	OCDS Control and Status	0E8 _H	See Family Spec	

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number See Family Spec	
ASCLIN6_OCS	OCDS Control and Status	0E8 _H		
ASCLIN7_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN8_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN9_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN10_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLIN11_OCS	OCDS Control and Status	0E8 _H	See Family Spec	
ASCLINO_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN1_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN2_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN3_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN4_KRSTCLR	SCLIN4_KRSTCLR Kernel Reset Status Clear Register		See Family Spec	
ASCLIN5_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN6_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN7_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	

V2.0.0

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number See Family Spec	
ASCLIN8_KRSTCLR	Kernel Reset Status Clear Register	0EC _H		
ASCLIN9_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN10_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLIN11_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	See Family Spec	
ASCLINO_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN1_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN2_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN3_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN4_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN5_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN6_KRST1	CLIN6_KRST1 Kernel Reset Register 1		See Family Spec	
ASCLIN7_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN8_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	
ASCLIN9_KRST1	Kernel Reset Register 1	0F0 _H	See Family Spec	

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
ASCLIN10_KRST1	T1 Kernel Reset Register 1 0F0 _H		See Family Spec	
ASCLIN11_KRST1	Kernel Reset Register 1	OFO _H	See Family Spec	
ASCLINO_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN1_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN2_KRST0	Kernel Reset Register 0	OF4 _H	See Family Spec	
ASCLIN3_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN4_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN5_KRST0	Kernel Reset Register 0	OF4 _H	See Family Spec	
ASCLIN6_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN7_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN8_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN9_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN10_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	
ASCLIN11_KRST0	Kernel Reset Register 0	0F4 _H	See Family Spec	

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
ASCLINO_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN1_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN2_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN3_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN4_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN5_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN6_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN7_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN8_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN9_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
ASCLIN10_ACCEN1	Access Enable Register 1	0F8 _H	See Family Spec	
SCLIN11_ACCEN1 Access Enable Register 1		0F8 _H	See Family Spec	
ASCLINO_ACCENO	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN1_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	

Table 237 Register Overview - ASCLIN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
ASCLIN2_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN3_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN4_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN5_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN6_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN7_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN8_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN9_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN10_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	
ASCLIN11_ACCEN0	Access Enable Register 0	0FC _H	See Family Spec	

34.3 TC33x/TC32x Specific Registers

No deviations from the Family Spec

34.4 Connectivity

Table 238 Connections of ASCLINO

Interface Signals	connects		Description
ASCLINO:ACTSA	from	P14.9:IN	Clear to send input
ASCLINO:ACTSD	from	ASCLINO:ARTS	Clear to send input

Table 238 Connections of ASCLINO (cont'd)

Interface Signals	conn	ects	Description	
ASCLIN0:ARTS	to	P14.7:ALT(2)	Ready to send output	
		ASCLINO:ACTSD		
ASCLINO:ARXA	from	P14.1:IN	Receive input	
ASCLIN0:ARXB	from	P15.3:IN	Receive input	
ASCLINO:ARXD	from	P33.10:IN	Receive input	
ASCLIN0:ASCLK	to	P14.0:ALT(6)	Shift clock output	
		P15.2:ALT(6)		
ASCLIN0:ATX	to	IOM:MON2(12)	Transmit output	
		IOM:REF2(12)		
		P14.0:ALT(2)		
		P14.1:ALT(2)		
		P15.2:ALT(2)		
		P15.3:ALT(2)		
		P33.9:ALT(6)		
ASCLIN0:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request	
ASCLINO:TX_INT	to	INT:asclin0.TX_INT	ASCLIN Transmit Service Request	
ASCLIN0:RX_INT	to	INT:asclin0.RX_INT	ASCLIN Receive Service Request	
ASCLIN0:ERR_INT	to	INT:asclin0.ERR_INT	ASCLIN Error Service Request	

Table 239 Connections of ASCLIN1

Interface Signals	conn	ects	Description	
ASCLIN1:ACTSA	from	P20.7:IN	Clear to send input	
ASCLIN1:ACTSB	from	P32.4:IN	Clear to send input	
ASCLIN1:ACTSD	from	ASCLIN1:ARTS	Clear to send input	
ASCLIN1:ARTS	to	P20.6:ALT(2)	Ready to send output	
		P23.1:ALT(2)		
		ASCLIN1:ACTSD		
ASCLIN1:ARXA	from	P15.1:IN	Receive input	
ASCLIN1:ARXB	from	P15.5:IN	Receive input	
ASCLIN1:ARXC	from	P20.9:IN	Receive input	
ASCLIN1:ARXD	from	P14.8:IN	Receive input	
ASCLIN1:ARXE	from	P11.10:IN	Receive input	
ASCLIN1:ARXG	from	P02.3:IN	Receive input	
ASCLIN1:ASCLK	to	P15.0:ALT(6)	Shift clock output	
		P20.10:ALT(6)		
		P33.11:ALT(2)		
		P33.12:ALT(4)		

Table 239 Connections of ASCLIN1 (cont'd)

Interface Signals	nterface Signals connects D		Description
ASCLIN1:ASLSO	to	P14.3:ALT(4)	Slave select signal output
		P20.8:ALT(2)	
		P33.10:ALT(4)	
ASCLIN1:ATX	to	IOM:MON2(13)	Transmit output
		IOM:REF2(13)	
		P02.2:ALT(2)	
		P11.12:ALT(2)	
		P14.10:ALT(4)	
		P15.0:ALT(2)	
		P15.1:ALT(2)	
		P15.4:ALT(2)	
		P15.5:ALT(2)	
		P20.10:ALT(2)	
		P33.12:ALT(2)	
ASCLIN1:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN1:TX_INT	to	INT:asclin1.TX_INT	ASCLIN Transmit Service Request
ASCLIN1:RX_INT	to	INT:asclin1.RX_INT	ASCLIN Receive Service Request
ASCLIN1:ERR_INT	to	INT:asclin1.ERR_INT	ASCLIN Error Service Request

Table 240 Connections of ASCLIN2

Interface Signals	conn	ects	Description	
ASCLIN2:ACTSA	from	P10.7:IN	Clear to send input	
ASCLIN2:ACTSB	from	P33.5:IN	Clear to send input	
ASCLIN2:ACTSD	from	ASCLIN2:ARTS	Clear to send input	
ASCLIN2:ARTS	to	P10.8:ALT(2)	Ready to send output	
		P33.4:ALT(2)		
		ASCLIN2:ACTSD		
ASCLIN2:ARXA	from	P14.3:IN	Receive input	
ASCLIN2:ARXB	from	P02.1:IN	Receive input	
ASCLIN2:ARXD	from	P10.6:IN	Receive input	
ASCLIN2:ARXE	from	P33.8:IN	Receive input	
ASCLIN2:ARXG	from	P02.0:IN	Receive input	
ASCLIN2:ASCLK	to	P02.4:ALT(2)	Shift clock output	
		P10.6:ALT(2)		
		P14.2:ALT(6)		
		P33.7:ALT(2)		
		P33.9:ALT(4)		

Asynchronous Serial Interface (ASCLIN)

Table 240 Connections of ASCLIN2 (cont'd)

Interface Signals	conn	ects	Description
ASCLIN2:ASLSO	to	P02.3:ALT(2)	Slave select signal output
		P10.5:ALT(6)	
		P33.6:ALT(2)	
ASCLIN2:ATX	to	IOM:MON2(14)	Transmit output
		IOM:REF2(14)	
		P02.0:ALT(2)	
		P10.5:ALT(2)	
		P14.2:ALT(2)	
		P14.3:ALT(2)	
		P33.8:ALT(2)	
		P33.9:ALT(2)	
ASCLIN2:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN2:TX_INT	to	INT:asclin2.TX_INT	ASCLIN Transmit Service Request
ASCLIN2:RX_INT	to	INT:asclin2.RX_INT	ASCLIN Receive Service Request
ASCLIN2:ERR_INT	to	INT:asclin2.ERR_INT	ASCLIN Error Service Request

Table 241 Connections of ASCLIN3

Interface Signals	conn	ects	Description
ASCLIN3:ACTSA	from	P00.12:IN	Clear to send input
ASCLIN3:ACTSD	from	ASCLIN3:ARTS	Clear to send input
ASCLIN3:ARTS	to	P00.9:ALT(3)	Ready to send output
		ASCLIN3:ACTSD	
ASCLIN3:ARXA	from	P15.7:IN	Receive input
ASCLIN3:ARXC	from	P20.3:IN	Receive input
ASCLIN3:ARXE	from	P00.1:IN	Receive input
ASCLIN3:ARXF	from	P21.6:IN	Receive input
ASCLIN3:ASCLK	to	P00.0:ALT(2)	Shift clock output
		P00.2:ALT(2)	
		P15.6:ALT(6)	
		P15.8:ALT(6)	
		P20.0:ALT(3)	
		P21.5:ALT(2)	
		P21.7:ALT(3)	
		P33.2:ALT(2)	

Asynchronous Serial Interface (ASCLIN)

Table 241 Connections of ASCLIN3 (cont'd)

Interface Signals	conn	ects	Description
ASCLIN3:ASLSO	to	P00.3:ALT(2)	Slave select signal output
		P14.3:ALT(5)	
		P21.2:ALT(2)	
		P21.6:ALT(2)	
		P33.1:ALT(2)	
ASCLIN3:ATX	to	IOM:MON2(15)	Transmit output
		IOM:REF2(15)	
		P00.0:ALT(3)	
		P00.1:ALT(2)	
		P15.6:ALT(2)	
		P15.7:ALT(2)	
		P20.0:ALT(2)	
		P20.3:ALT(2)	
		P21.7:ALT(2)	
ASCLIN3:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN3:TX_INT	to	INT:asclin3.TX_INT	ASCLIN Transmit Service Request
ASCLIN3:RX_INT	to	INT:asclin3.RX_INT	ASCLIN Receive Service Request
ASCLIN3:ERR_INT	to	INT:asclin3.ERR_INT	ASCLIN Error Service Request

Table 242 Connections of ASCLIN4

Interface Signals	conne	ects	Description
ASCLIN4:ACTSD	from	ASCLIN4:ARTS	Clear to send input
ASCLIN4:ARTS	to	ASCLIN4:ACTSD	Ready to send output
ASCLIN4:ARXA	from	P00.12:IN	Receive input
ASCLIN4:ARXB	from	P34.2:IN	Receive input
ASCLIN4:ASCLK	to	P00.10:ALT(2)	Shift clock output
		P34.3:ALT(2)	
ASCLIN4:ASLSO	to	P00.11:ALT(2)	Slave select signal output
		P22.4:ALT(2)	
ASCLIN4:ATX	to	P00.9:ALT(5)	Transmit output
		P34.1:ALT(2)	
ASCLIN4:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN4:TX_INT	to	INT:asclin4.TX_INT	ASCLIN Transmit Service Request
ASCLIN4:RX_INT	to	INT:asclin4.RX_INT	ASCLIN Receive Service Request
ASCLIN4:ERR_INT	to	INT:asclin4.ERR_INT	ASCLIN Error Service Request

Asynchronous Serial Interface (ASCLIN)

Table 243 Connections of ASCLIN5

Interface Signals	conn	ects	Description
ASCLIN5:ACTSD	from	ASCLIN5:ARTS	Clear to send input
ASCLIN5:ARTS	to	ASCLIN5:ACTSD	Ready to send output
ASCLIN5:ARXA	from	P00.6:IN	Receive input
ASCLIN5:ARXB	from	P33.4:IN	Receive input
ASCLIN5:ARXC	from	P22.3:IN	Receive input
ASCLIN5:ASCLK	to	P33.3:ALT(2)	Shift clock output
ASCLIN5:ASLSO	to	P14.8:ALT(2)	Slave select signal output
		P33.5:ALT(7)	
ASCLIN5:ATX	to	P00.7:ALT(2)	Transmit output
		P22.2:ALT(2)	
		P33.0:ALT(2)	
ASCLIN5:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN5:TX_INT	to	INT:asclin5.TX_INT	ASCLIN Transmit Service Request
ASCLIN5:RX_INT	to	INT:asclin5.RX_INT	ASCLIN Receive Service Request
ASCLIN5:ERR_INT	to	INT:asclin5.ERR_INT	ASCLIN Error Service Request

Table 244 Connections of ASCLIN6

Interface Signals	conn	ects	Description
ASCLIN6:ACTSD	from	ASCLIN6:ARTS	Clear to send input
ASCLIN6:ARTS	to	ASCLIN6:ACTSD	Ready to send output
ASCLIN6:ARXE	from	P22.0:IN	Receive input
ASCLIN6:ARXF	from	P23.1:IN	Receive input
ASCLIN6:ASCLK	to	P23.1:ALT(7)	Shift clock output
ASCLIN6:ATX	to	P22.0:ALT(7)	Transmit output
		P23.5:ALT(2)	
ASCLIN6:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN6:TX_INT	to	INT:asclin6.TX_INT	ASCLIN Transmit Service Request
ASCLIN6:RX_INT	to	INT:asclin6.RX_INT	ASCLIN Receive Service Request
ASCLIN6:ERR_INT	to	INT:asclin6.ERR_INT	ASCLIN Error Service Request

Table 245 Connections of ASCLIN7

Interface Signals	conne	ects	Description
ASCLIN7:ACTSD	from	ASCLIN7:ARTS	Clear to send input
ASCLIN7:ARTS	to	ASCLIN7:ACTSD	Ready to send output
ASCLIN7:ARXE	from	P22.1:IN	Receive input
ASCLIN7:ARXF	from	P22.4:IN	Receive input
ASCLIN7:ASLSO	to	P14.8:ALT(3)	Slave select signal output

Asynchronous Serial Interface (ASCLIN)

Table 245 Connections of ASCLIN7 (cont'd)

Interface Signals	conne	ects	Description	
ASCLIN7:ATX	to	P22.1:ALT(7)	Transmit output	
ASCLIN7:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request	
ASCLIN7:TX_INT	to	INT:asclin7.TX_INT	ASCLIN Transmit Service Request	
ASCLIN7:RX_INT	to	INT:asclin7.RX_INT	ASCLIN Receive Service Request	
ASCLIN7:ERR_INT	to	INT:asclin7.ERR_INT	ASCLIN Error Service Request	

Table 246 Connections of ASCLIN8

Interface Signals	conne	ects	Description
ASCLIN8:ACTSD	from	ASCLIN8:ARTS	Clear to send input
ASCLIN8:ARTS	to	ASCLIN8:ACTSD	Ready to send output
ASCLIN8:ARXC	from	P33.1:IN	Receive input
ASCLIN8:ARXD	from	P33.6:IN	Receive input
ASCLIN8:ASCLK	to	P02.8:ALT(3)	Shift clock output
ASCLIN8:ATX	to	P33.7:ALT(4)	Transmit output
ASCLIN8:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN8:TX_INT	to	INT:asclin8.TX_INT	ASCLIN Transmit Service Request
ASCLIN8:RX_INT	to	INT:asclin8.RX_INT	ASCLIN Receive Service Request
ASCLIN8:ERR_INT	to	INT:asclin8.ERR_INT	ASCLIN Error Service Request

Table 247 Connections of ASCLIN9

Interface Signals	conn	ects	Description
ASCLIN9:ACTSD	from	ASCLIN9:ARTS	Clear to send input
ASCLIN9:ARTS	to	ASCLIN9:ACTSD	Ready to send output
ASCLIN9:ARXC	from	P14.7:IN	Receive input
ASCLIN9:ARXD	from	P14.9:IN	Receive input
ASCLIN9:ARXE	from	P20.6:IN	Receive input
ASCLIN9:ARXF	from	P20.7:IN	Receive input
ASCLIN9:ATX	to	P14.7:ALT(4)	Transmit output
		P20.7:ALT(2)	
ASCLIN9:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN9:TX_INT	to	INT:asclin9.TX_INT	ASCLIN Transmit Service Request
ASCLIN9:RX_INT	to	INT:asclin9.RX_INT	ASCLIN Receive Service Request
ASCLIN9:ERR_INT	to	INT:asclin9.ERR_INT	ASCLIN Error Service Request

Table 248 Connections of ASCLIN10

Interface Signals	connects		Description
ASCLIN10:ACTSD	from	ASCLIN10:ARTS	Clear to send input
ASCLIN10:ARTS	to	ASCLIN10:ACTSD	Ready to send output

Asynchronous Serial Interface (ASCLIN)

Table 248 Connections of ASCLIN10 (cont'd)

Interface Signals	conn	ects	Description
ASCLIN10:ARXA	from	P00.4:IN	Receive input
ASCLIN10:ARXB	from	P00.8:IN	Receive input
ASCLIN10:ARXC	from	P13.0:IN	Receive input
ASCLIN10:ARXD	from	P13.1:IN	Receive input
ASCLIN10:ASCLK	to	P13.2:ALT(2)	Shift clock output
ASCLIN10:ASLSO	to	P13.3:ALT(2)	Slave select signal output
ASCLIN10:ATX	to	P00.8:ALT(3)	Transmit output
		P13.0:ALT(2)	
ASCLIN10:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN10:TX_INT	to	INT:asclin10.TX_INT	ASCLIN Transmit Service Request
ASCLIN10:RX_INT	to	INT:asclin10.RX_INT	ASCLIN Receive Service Request
ASCLIN10:ERR_INT	to	INT:asclin10.ERR_INT	ASCLIN Error Service Request

Table 249 Connections of ASCLIN11

Interface Signals	conn	ects	Description
ASCLIN11:ACTSD	from	ASCLIN11:ARTS	Clear to send input
ASCLIN11:ARTS	to	ASCLIN11:ACTSD	Ready to send output
ASCLIN11:ARXA	from	P10.0:IN	Receive input
ASCLIN11:ARXB	from	P10.4:IN	Receive input
ASCLIN11:ARXC	from	P21.0:IN	Receive input
ASCLIN11:ARXD	from	P21.1:IN	Receive input
ASCLIN11:ARXE	from	P21.2:IN	Receive input
ASCLIN11:ARXF	from	P21.5:IN	Receive input
ASCLIN11:ASCLK	to	P21.3:ALT(2)	Shift clock output
ASCLIN11:ASLSO	to	P21.4:ALT(2)	Slave select signal output
ASCLIN11:ATX	to	P10.0:ALT(2)	Transmit output
		P21.0:ALT(2)	
		P21.5:ALT(3)	
ASCLIN11:sleep_n	from	SCU:scu_syst_sleep_n	Negative turn-off request
ASCLIN11:TX_INT	to	INT:asclin11.TX_INT	ASCLIN Transmit Service Request
ASCLIN11:RX_INT	to	INT:asclin11.RX_INT	ASCLIN Receive Service Request
ASCLIN11:ERR_INT	to	INT:asclin11.ERR_INT	ASCLIN Error Service Request

Asynchronous Serial Interface (ASCLIN)

34.5 Revision History

Table 250 Revision History

Reference	Change to Previous Version	Comment
V3.2.6		
_	Initial version for TC33x.	
V3.2.7		
_		
V3.2.8		
_	No functional changes.	

35 Queued Synchronous Peripheral Interface (QSPI)

35.1 TC33x/TC32x Specific IP Configuration

Table 251 TC33x/TC32x specific configuration of QSPI

Parameter	QSPI0	QSPI1	QSPI2	QSPI3
QSPI module has HSIC			х	х

35.2 TC33x/TC32xSpecific Register Set

Register Address Space Table

Table 252 Register Address Space - QSPI

Module	Base Address	End Address	Note
QSPI0	F0001C00 _H	F0001CFF _H	Register block QSPI0
QSPI1	F0001D00 _H	F0001DFF _H	Register block QSPI1
QSPI2	F0001E00 _H	F0001EFF _H	Register block QSPI2
QSPI3	F0001F00 _H	F0001FFF _H	Register block QSPI3

Register Overview Tables of QSPI

Table 253 Register Overview - QSPI0 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Number	
QSPI0_CLC	Clock Control Register	000 _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI0_PISEL	Port Input Select Register	004 _H	U,SV	SV,P	Application Reset	10	
QSPI0_ID	PI0_ID Module Identification Register		U,SV	BE	Application Reset	See Family Spec	
QSPI0_GLOBALC ON			U,SV	J,SV SV,P Applica Reset		See Family Spec	
QSPI0_GLOBALC ON1	Global Configuration Register 1	014 _H	U,SV	SV,P	Application Reset	See Family Spec	
QSPI0_BACON	Basic Configuration Register	018 _H	U,SV	BE	Application Reset	See Family Spec	
QSPI0_ECONz (z=0-7)	Configuration Extension z	020 _H +z*4	U,SV	SV,P	Application Reset	See Family Spec	
QSPI0_STATUS	Status Register	040 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_STATUS1	Status Register 1	044 _H	U,SV	U,SV,P	Application Reset	See Family Spec	

V2.0.0

2021-02

Table 253 Register Overview - QSPI0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Numbei	
QSPI0_SSOC	Slave Select Output Control Register	048 _H	U,SV	SV,P	Application Reset	See Family Spec	
QSPI0_FLAGSCLE AR	Flags Clear Register	054 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_XXLCON	Extra Large Data Configuration Register	058 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_MIXENTRY	_		U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_BACONEN TRY	D_BACONEN BACON_ENTRY Register		U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_DATAENT RYx (x=0-7)			U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_RXEXIT	RX_EXIT Register	090 _H	U,SV	BE	Application Reset	See Family Spec	
QSPI0_RXEXITD	RX_EXIT Debug Register	094 _H	U,SV	BE	Application Reset	See Family Spec	
QSPI0_MC	Move Counter Register	0A4 _H	U,SV	U,SV,P Application Reset		See Family Spec	
QSPI0_MCCON	Move Counter control Register	0A8 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI0_OCS	OCDS Control and Status	0E8 _H	U,SV	SV,P	Debug Reset	See Family Spec	
QSPI0_KRSTCLR	KRSTCLR Kernel Reset Status Clear Register		U,SV	SV,E,P Application Reset		See Family Spec	
QSPI0_KRST1	Kernel Reset Register 1	OFO _H	DFO _H U,SV		Application Reset	See Family Spec	
QSPI0_KRST0	Kernel Reset Register 0	0F4 _H	U,SV	SV,E,P	Application Reset	See Family Spec	

Table 253 Register Overview - QSPI0 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read	Write		Number	
QSPI0_ACCEN1	Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	See Family Spec	
QSPI0_ACCEN0	Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	See Family Spec	

Table 254 Register Overview - QSPI1 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page	
		Address	Read Write			Number	
QSPI1_CLC	Clock Control Register	000 _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI1_PISEL	Port Input Select Register	004 _H	U,SV	SV,P	Application Reset	11	
QSPI1_ID	Module Identification Register		U,SV BE		Application Reset	See Family Spec	
QSPI1_GLOBALC ON			U,SV	SV,P	Application Reset	See Family Spec	
QSPI1_GLOBALC ON1	1_GLOBALC Global Configuration Register 1		U,SV	SV,P	Application Reset	See Family Spec	
QSPI1_BACON	Basic Configuration Register	018 _H	U,SV	BE	Application Reset	See Family Spec	
QSPI1_ECONz (z=0-7)	Configuration Extension z	020 _H +z*4	U,SV	SV,P	Application Reset	See Family Spec	
QSPI1_STATUS	Status Register	040 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_STATUS1	Status Register 1	044 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_SSOC	C Slave Select Output Control Register		U,SV	SV,P	Application Reset	See Family Spec	
QSPI1_FLAGSCLE AR	Flags Clear Register	054 _H	U,SV	U,SV,P	Application Reset	See Family Spec	

Table 254 Register Overview - QSPI1 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access	Mode	Reset	Page Number	
		Address	Read	Write			
QSPI1_XXLCON	Extra Large Data Configuration Register	058 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_MIXENTRY	MIX_ENTRY Register	05C _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_BACONEN TRY	BACON_ENTRY Register	060 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_DATAENT RYx (x=0-7)	DATA_ENTRY Register x	064 _H +x*	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_RXEXIT	•		U,SV	BE	Application Reset	See Family Spec	
QSPI1_RXEXITD	(EXITD RX_EXIT Debug Register		U,SV	BE	Application Reset	See Family Spec	
QSPI1_MC	Move Counter Register	0A4 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_MCCON	Move Counter control Register	0A8 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI1_OCS	OCDS Control and Status	0E8 _H	U,SV	SV,P	Debug Reset	See Family Spec	
QSPI1_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI1_KRST1	Kernel Reset Register 1	0F0 _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI1_KRST0	Kernel Reset Register 0	0F4 _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI1_ACCEN1	Access Enable Register 1	0F8 _H	U,SV	SV,SE	Application Reset	See Family Spec	
QSPI1_ACCEN0	Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	See Family Spec	

Table 255 Register Overview - QSPI2 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page Number	
		Address	Read	Write			
QSPI2_CLC	Clock Control Register	000 _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI2_PISEL	Port Input Select Register	004 _H	U,SV	SV,P	Application Reset	12	
QSPI2_ID	_ID Module Identification Register		U,SV	BE	Application Reset	See Family Spec	
QSPI2_GLOBALC ON	Global Configuration 010 _H Register		U,SV SV,P		Application Reset	See Family Spec	
QSPI2_GLOBALC ON1			U,SV	SV,P	Application Reset	See Family Spec	
QSPI2_BACON	Basic Configuration Register	018 _H	U,SV	BE	Application Reset	See Family Spec	
QSPI2_ECONz (z=0-7)	ONz Configuration Extension z		U,SV	SV,P	Application Reset	See Family Spec	
QSPI2_STATUS	Status Register	040 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI2_STATUS1	Status Register 1	044 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI2_SSOC	Slave Select Output Control Register	048 _H	U,SV	SV,P	Application Reset	See Family Spec	
QSPI2_FLAGSCLE AR	Flags Clear Register	054 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI2_XXLCON	Extra Large Data Configuration Register	058 _H			Application Reset	See Family Spec	
QSPI2_MIXENTRY	MIX_ENTRY Register	05C _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI2_BACONEN TRY	BACON_ENTRY Register	060 _H	U,SV	U,SV,P	Application Reset	See Family Spec	

Table 255 Register Overview - QSPI2 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page
		Address	Read	Write		Number
QSPI2_DATAENT RYx (x=0-7)	DATA_ENTRY Register x	064 _H +x*	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI2_RXEXIT	RX_EXIT Register	090 _H	090 _H U,SV BE		Application Reset	See Family Spec
QSPI2_RXEXITD	RX_EXIT Debug Register	094 _H	U,SV	BE	Application Reset	See Family Spec
QSPI2_CAPCON	Capture Control Register	0A0 _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI2_MC	Move Counter Register	0A4 _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI2_MCCON	Move Counter control Register	0A8 _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI2_OCS	OCDS Control and Status	0E8 _H	U,SV	SV,P	Debug Reset	See Family Spec
QSPI2_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	U,SV SV,E,P		Application Reset	See Family Spec
QSPI2_KRST1	Kernel Reset Register 1	OFO _H	U,SV	SV,E,P	Application Reset	See Family Spec
QSPI2_KRST0	Kernel Reset Register 0	0F4 _H			Application Reset	See Family Spec
QSPI2_ACCEN1	_ACCEN1 Access Enable Register 1		U,SV	SV,SE	Application Reset	See Family Spec
QSPI2_ACCEN0	Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	See Family Spec

Table 256 Register Overview - QSPI3 (ascending Offset Address)

Short Name	Long Name	Offset	Access	Mode	Reset	Page
		Address	Read	Write		Number
QSPI3_CLC	Clock Control Register	000 _H	U,SV	SV,E,P	Application Reset	See Family Spec
QSPI3_PISEL	Port Input Select Register	004 _H	U,SV	SV,P	Application Reset	13
QSPI3_ID	_ID Module Identification Register		U,SV	BE	Application Reset	See Family Spec
QSPI3_GLOBALC ON	Global Configuration Register			SV,P	Application Reset	See Family Spec
QSPI3_GLOBALC ON1			U,SV	SV,P	Application Reset	See Family Spec
QSPI3_BACON	Basic Configuration Register	018 _H	U,SV	BE	Application Reset	See Family Spec
QSPI3_ECONz (z=0-7)	ONz Configuration Extension z		U,SV	SV,P	Application Reset	See Family Spec
QSPI3_STATUS	Status Register	040 _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI3_STATUS1	Status Register 1	044 _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI3_SSOC	Slave Select Output Control Register	048 _H	U,SV	SV,P	Application Reset	See Family Spec
QSPI3_FLAGSCLE AR	Flags Clear Register	054 _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI3_XXLCON	Extra Large Data Configuration Register	058 _H			Application Reset	See Family Spec
QSPI3_MIXENTRY	MIX_ENTRY Register	05C _H	U,SV	U,SV,P	Application Reset	See Family Spec
QSPI3_BACONEN TRY	BACON_ENTRY Register	060 _H	U,SV	U,SV,P	Application Reset	See Family Spec

Table 256 Register Overview - QSPI3 (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset	Access Mode		Reset	Page	
		Address	Read	Write		Number	
QSPI3_DATAENT RYx (x=0-7)	DATA_ENTRY Register x	064 _H +x*	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI3_RXEXIT	RX_EXIT Register	090 _H	090 _H U,SV BE		Application Reset	See Family Spec	
QSPI3_RXEXITD	RX_EXIT Debug Register	094 _H	U,SV	BE	Application Reset	See Family Spec	
QSPI3_CAPCON	Capture Control Register	0A0 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI3_MC	Move Counter Register	0A4 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI3_MCCON	Move Counter control Register	0A8 _H	U,SV	U,SV,P	Application Reset	See Family Spec	
QSPI3_OCS	OCDS Control and Status	0E8 _H	U,SV	SV,P	Debug Reset	See Family Spec	
QSPI3_KRSTCLR	Kernel Reset Status Clear Register	0EC _H	U,SV SV,E,P		Application Reset	See Family Spec	
QSPI3_KRST1	Kernel Reset Register 1	OFO _H	U,SV	SV,E,P	Application Reset	See Family Spec	
QSPI3_KRST0	Kernel Reset Register 0	0F4 _H	U,SV	U,SV SV,E,P Applica Reset		See Family Spec	
QSPI3_ACCEN1	Access Enable Register 1		U,SV	SV,SE	Application Reset	See Family Spec	
QSPI3_ACCEN0	Access Enable Register 0	0FC _H	U,SV	SV,SE	Application Reset	See Family Spec	

35.3 TC33x/TC32x Specific Registers

35.3.1 Register block QSPI

Port Input Select Register

The PISEL register controls the input signal selection of the SSC module.

QSPI0_PISEL

Port Input Select Register (004 _H)						Ар	plicati	on Res	et Valu	ie: 0000	0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0															
	r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		SLSIS		0		SCIS		0		SRIS	1	0		MRIS	
r	1	rw	1	r	1	rw		r	1	rw		r	1	rw	

Field	Bits	Туре	Description
MRIS	2:0	rw	Master Mode Receive Input Select MRIS selects one out of eight MRST receive input lines, used in Master Mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P20.12_IN,
SRIS	6:4	rw	Slave Mode Receive Input Select SRIS selects one out of eight MTSR receive input lines, used in Slave Mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P20.14_IN,
SCIS	10:8	rw	Slave Mode Clock Input Select SCIS selects one out of eight module kernel SCLK input lines that is used as clock input line in slave mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P20.11_IN,

Field	Bits	Туре	Description
SLSIS	14:12	rw	Slave Mode Slave Select Input Selection The SLSIS must be programmed properly before the slave mode is set with GLOBALCON.MODE and the module is set to RUN mode. The following signal sources are available in this product (if supported by the package!) 000 _B no input 001 _B P20.13_IN, 010 _B P20.9_IN,
0	3, 7, 11, 31:15	r	Reserved Read as 0; should be written with 0.

QSPI1		lect Re	gister				(004	_н)		Ap	plicati	on Res	et Valu	ıe: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
	1		l	I				r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		SLSIS	ı	0		SCIS	ı	0		SRIS		0		MRIS	
r		rw	I	r		rw		r		rw		r		rw	

Field	Bits	Туре	Description
MRIS	2:0	rw	Master Mode Receive Input Select
			MRIS selects one out of eight MRST receive input lines, used in Master
			Mode. Note that not all inputs are used in every device of the family.
			Selecting an unused input returns a continuous low value.
			The following signal sources are available in this product (if supported by
			the package!)
			000 _B P10.1_IN ,
			001 _B P11.3_IN ,
SRIS	6:4	rw	Slave Mode Receive Input Select
			SRIS selects one out of eight MTSR receive input lines, used in Slave
			Mode. Note that not all inputs are used in every device of the family.
			Selecting an unused input returns a continuous low value.
			The following signal sources are available in this product (if supported by
			the package!)
			000 _B P10.3_IN ,
			001 _B P11.9_IN ,
			010 _B P10.4_IN ,

Field	Bits	Туре	Description
SCIS	10:8	rw	Slave Mode Clock Input Select SCIS selects one out of eight module kernel SCLK input lines that is used as clock input line in slave mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P10.2_IN, 001 _B P11.6_IN,
SLSIS	14:12	rw	Slave Mode Slave Select Input Selection The SLSIS must be programmed properly before the slave mode is set with GLOBALCON.MODE and the module is set to RUN mode. The following signal sources are available in this product (if supported by the package!) 000 _B no input 001 _B P11.10_IN,
0	3, 7, 11, 31:15	r	Reserved Read as 0; should be written with 0.

QSPI2_PISEL

-	put Se	lect Re	gister				(004	н)		Apı	olicati	on Res	et Valu	ie: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ļ	'		ı	ļ.	•		0	,	'		•	ļ.	'	
	1			1	1	1		r	1			1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		SLSIS		0		SCIS		0		SRIS		0		MRIS	
r		rw		r		rw		r		rw		r		rw	

Field	Bits	Туре	Description
MRIS	2:0	rw	Master Mode Receive Input Select MRIS selects one out of eight MRST receive input lines, used in Master Mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P15.4_IN, 001 _B P15.7_IN, 100 _B P15.2_IN,

Field	Bits	Туре	Description					
SRIS	6:4	rw	Slave Mode Receive Input Select SRIS selects one out of eight MTSR receive input lines, used in Slave Mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P15.5_IN, 001 _B P15.6_IN,					
SCIS	10:8	rw	Slave Mode Clock Input Select SCIS selects one out of eight module kernel SCLK input lines that is used as clock input line in slave mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P15.3_IN, 001 _B P15.8_IN,					
SLSIS	14:12	rw	Slave Mode Slave Select Input Selection The SLSIS must be programmed properly before the slave mode is set with GLOBALCON.MODE and the module is set to RUN mode. The following signal sources are available in this product (if supported by the package!) 000 _B no input 001 _B P15.2_IN, 010 _B P15.1_IN,					
0	3, 7, 11, 31:15	r	Reserved Read as 0; should be written with 0.					

QSPI3_PISEL

	-	put Se	elect Re	gister				(004	н)		Ap	plicatio	on Res	et Valu	ie: 0000	0000 _H
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ļ	ı	Į.	ļ	i	ļ	'	0	ļ	ļ				'	
L		1	1	I	1	1	1	I	r	1	1			•		
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0		SLSIS	1	0		SCIS	1	0		SRIS		0		MRIS	
_	r		rw		r		rw		r		rw		r		rw	

Field	Bits	Туре	Description
MRIS	2:0	rw	Master Mode Receive Input Select MRIS selects one out of eight MRST receive input lines, used in Master Mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P02.5_IN, 001 _B P10.7_IN, 011 _B P22.1_IN,
SRIS	6:4	rw	Slave Mode Receive Input Select SRIS selects one out of eight MTSR receive input lines, used in Slave Mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P02.6_IN, 001 _B P10.6_IN, 011 _B P22.0_IN,
SCIS	10:8	rw	Slave Mode Clock Input Select SCIS selects one out of eight module kernel SCLK input lines that is used as clock input line in slave mode. Note that not all inputs are used in every device of the family. Selecting an unused input returns a continuous low value. The following signal sources are available in this product (if supported by the package!) 000 _B P02.7_IN, 001 _B P10.8_IN, 011 _B P22.3_IN,
SLSIS	14:12	rw	Slave Mode Slave Select Input Selection The SLSIS must be programmed properly before the slave mode is set with GLOBALCON.MODE and the module is set to RUN mode. The following signal sources are available in this product (if supported by the package!) 000 _B no input 001 _B P02.4_IN,
0	3, 7, 11, 31:15	r	Reserved Read as 0; should be written with 0.

35.4 Connectivity

The tables below list all the connections of QSPI instances.

Table 257 Connections of QSPI0

Interface Signals	conne	ects	Description			
QSPI0:MRST	to	IOM:MON2(0)	Slave SPI data output			
		IOM:REF2(0)				
		P20.12:ALT(3)				
QSPI0:MRSTA	from	P20.12:IN	Master SPI data input			
QSPI0:MTSR	to	P20.12:ALT(4)	Master SPI data output			
		P20.14:ALT(3)				
QSPI0:MTSRA	from	P20.14:IN	Slave SPI data input			
QSPI0:SCLK	to	P20.11:ALT(3)	Master SPI clock output			
		P20.13:ALT(5)				
QSPI0:SCLKA	from	P20.11:IN	Slave SPI clock inputs			
QSPI0:SLSIA	from	P20.13:IN	Slave select input			
QSPI0:SLSIB	from	P20.9:IN	Slave select input			
QSPI0:SLSO(0)	to	P20.8:ALT(3)	Master slave select output			
QSPI0:SLSO(1)	to	P20.9:ALT(3)	Master slave select output			
QSPI0:SLSO(2)	to	P20.13:ALT(3)	Master slave select output			
QSPI0:SLSO(3)	to	P11.10:ALT(3)	Master slave select output			
QSPI0:SLSO(4)	to	P11.11:ALT(3)	Master slave select output			
QSPI0:SLSO(5)	to	P11.2:ALT(3)	Master slave select output			
QSPI0:SLSO(6)	to	P20.10:ALT(3)	Master slave select output			
QSPI0:SLSO(7)	to	P33.5:ALT(2)	Master slave select output			
QSPI0:SLSO(8)	to	P20.6:ALT(3)	Master slave select output			
QSPI0:SLSO(9)	to	P20.3:ALT(3)	Master slave select output			
QSPI0:SLSO(12)	to	P22.4:ALT(4)	Master slave select output			
QSPI0:SLSO(13)	to	P15.0:ALT(3)	Master slave select output			
QSPI0:TX_INT	to	INT:qspi0.TX_INT	QSPI Transmit Service Request			
QSPI0:RX_INT	to	INT:qspi0.RX_INT	QSPI Receive Service Request			
QSPI0:ERR_INT	to	INT:qspi0.ERR_INT	QSPI Error Service Request			
QSPI0:PT_INT	to	INT:qspi0.PT_INT	QSPI Phase Transition Service Request			
QSPI0:U_INT	to	INT:qspi0.U_INT	QSPI User Defined Service Request			
QSPI0:HC_INT	to	INT:qspi0.HC_INT	QSPI High Speed Capture Service Request			

Table 258 Connections of QSPI1

Interface Signals	conn	ects	Description
QSPI1:MRST	to	IOM:MON2(1)	Slave SPI data output
		IOM:REF2(1)	
		P10.1:ALT(3)	
		P10.6:ALT(6)	
		P11.3:ALT(3)	
QSPI1:MRSTA	from	P10.1:IN	Master SPI data input
QSPI1:MRSTB	from	P11.3:IN	Master SPI data input
QSPI1:MTSR	to	P10.1:ALT(2)	Master SPI data output
		P10.3:ALT(3)	
		P10.4:ALT(4)	
		P11.9:ALT(3)	
QSPI1:MTSRA	from	P10.3:IN	Slave SPI data input
QSPI1:MTSRB	from	P11.9:IN	Slave SPI data input
QSPI1:MTSRC	from	P10.4:IN	Slave SPI data input
QSPI1:SCLK	to	P10.2:ALT(3)	Master SPI clock output
		P11.6:ALT(3)	
QSPI1:SCLKA	from	P10.2:IN	Slave SPI clock inputs
QSPI1:SCLKB	from	P11.6:IN	Slave SPI clock inputs
QSPI1:SLSIA	from	P11.10:IN	Slave select input
QSPI1:SLSO(0)	to	P20.8:ALT(4)	Master slave select output
QSPI1:SLSO(1)	to	P20.9:ALT(4)	Master slave select output
QSPI1:SLSO(2)	to	P20.13:ALT(4)	Master slave select output
QSPI1:SLSO(3)	to	P11.10:ALT(4)	Master slave select output
QSPI1:SLSO(4)	to	P11.11:ALT(4)	Master slave select output
QSPI1:SLSO(5)	to	P11.2:ALT(4)	Master slave select output
QSPI1:SLSO(6)	to	P33.10:ALT(2)	Master slave select output
QSPI1:SLSO(7)	to	P33.5:ALT(3)	Master slave select output
QSPI1:SLSO(8)	to	P10.4:ALT(3)	Master slave select output
QSPI1:SLSO(9)	to	P10.5:ALT(4)	Master slave select output
QSPI1:SLSO(10)	to	P10.0:ALT(3)	Master slave select output
QSPI1:TX_INT	to	INT:qspi1.TX_INT	QSPI Transmit Service Request
QSPI1:RX_INT	to	INT:qspi1.RX_INT	QSPI Receive Service Request
QSPI1:ERR_INT	to	INT:qspi1.ERR_INT	QSPI Error Service Request
QSPI1:PT_INT	to	INT:qspi1.PT_INT	QSPI Phase Transition Service Request
QSPI1:U_INT	to	INT:qspi1.U_INT	QSPI User Defined Service Request
QSPI1:HC_INT	to	INT:qspi1.HC_INT	QSPI High Speed Capture Service Request

Table 259 Connections of QSPI2

Interface Signals	conn	ects	Description
QSPI2:HSICINA	from	P15.2:IN	Highspeed capture channel
QSPI2:HSICINB	from	P15.3:IN	Highspeed capture channel
QSPI2:MRST	to	IOM:MON2(2)	Slave SPI data output
		IOM:REF2(2)	
		P15.4:ALT(3)	
		P15.7:ALT(3)	
QSPI2:MRSTA	from	P15.4:IN	Master SPI data input
QSPI2:MRSTB	from	P15.7:IN	Master SPI data input
QSPI2:MRSTE	from	P15.2:IN	Master SPI data input
QSPI2:MTSR	to	P15.5:ALT(3)	Master SPI data output
		P15.6:ALT(3)	
QSPI2:MTSRA	from	P15.5:IN	Slave SPI data input
QSPI2:MTSRB	from	P15.6:IN	Slave SPI data input
QSPI2:SCLK	to	P15.3:ALT(3)	Master SPI clock output
		P15.6:ALT(5)	
		P15.8:ALT(3)	
		P33.1:ALT(3)	
QSPI2:SCLKA	from	P15.3:IN	Slave SPI clock inputs
QSPI2:SCLKB	from	P15.8:IN	Slave SPI clock inputs
QSPI2:SLSIA	from	P15.2:IN	Slave select input
QSPI2:SLSIB	from	P15.1:IN	Slave select input
QSPI2:SLSO(0)	to	P15.2:ALT(3)	Master slave select output
QSPI2:SLSO(1)	to	P14.2:ALT(3)	Master slave select output
QSPI2:SLSO(2)	to	P14.6:ALT(3)	Master slave select output
QSPI2:SLSO(3)	to	P14.3:ALT(3)	Master slave select output
QSPI2:SLSO(4)	to	P14.7:ALT(3)	Master slave select output
QSPI2:SLSO(5)	to	P15.1:ALT(3)	Master slave select output
QSPI2:SLSO(7)	to	P20.10:ALT(4)	Master slave select output
QSPI2:SLSO(8)	to	P20.6:ALT(4)	Master slave select output
QSPI2:SLSO(9)	to	P20.3:ALT(4)	Master slave select output
QSPI2:SLSO(10)	to	P33.2:ALT(3)	Master slave select output
		P34.3:ALT(4)	
QSPI2:SLSO(11)	to	P33.6:ALT(3)	Master slave select output
QSPI2:SLSO(12)	to	P33.4:ALT(3)	Master slave select output
QSPI2:TX_INT	to	INT:qspi2.TX_INT	QSPI Transmit Service Request
QSPI2:RX_INT	to	INT:qspi2.RX_INT	QSPI Receive Service Request
QSPI2:ERR_INT	to	INT:qspi2.ERR_INT	QSPI Error Service Request

Table 259 Connections of QSPI2 (cont'd)

Interface Signals	connects		Description
QSPI2:PT_INT	to	INT:qspi2.PT_INT	QSPI Phase Transition Service Request
QSPI2:U_INT	to	INT:qspi2.U_INT	QSPI User Defined Service Request
QSPI2:HC_INT	to	INT:qspi2.HC_INT	QSPI High Speed Capture Service Request

Table 260 Connections of QSPI3

Interface Signals	conn	ects	Description
QSPI3:HSICINA	from	P33.9:IN	Highspeed capture channel
QSPI3:HSICINB	from	P33.10:IN	Highspeed capture channel
QSPI3:MRST	to	IOM:MON2(3)	Slave SPI data output
		IOM:REF2(3)	
		P02.5:ALT(3)	
		P10.7:ALT(3)	
		P22.1:ALT(3)	
QSPI3:MRSTA	from	P02.5:IN	Master SPI data input
QSPI3:MRSTB	from	P10.7:IN	Master SPI data input
QSPI3:MRSTD	from	P22.1:IN	Master SPI data input
QSPI3:MTSR	to	P02.6:ALT(3)	Master SPI data output
		P10.6:ALT(3)	
		P22.0:ALT(3)	
QSPI3:MTSRA	from	P02.6:IN	Slave SPI data input
QSPI3:MTSRB	from	P10.6:IN	Slave SPI data input
QSPI3:MTSRD	from	P22.0:IN	Slave SPI data input
QSPI3:SCLK	to	P02.7:ALT(3)	Master SPI clock output
		P10.8:ALT(3)	
		P22.3:ALT(3)	
QSPI3:SCLKA	from	P02.7:IN	Slave SPI clock inputs
QSPI3:SCLKB	from	P10.8:IN	Slave SPI clock inputs
QSPI3:SCLKD	from	P22.3:IN	Slave SPI clock inputs
QSPI3:SLSIA	from	P02.4:IN	Slave select input
QSPI3:SLSO(0)	to	P02.4:ALT(3)	Master slave select output
QSPI3:SLSO(1)	to	P02.0:ALT(3)	Master slave select output
QSPI3:SLSO(2)	to	P02.1:ALT(3)	Master slave select output
QSPI3:SLSO(3)	to	P00.5:ALT(3)	Master slave select output
		P02.2:ALT(3)	
QSPI3:SLSO(4)	to	P00.2:ALT(6)	Master slave select output
		P02.3:ALT(3)	
QSPI3:SLSO(5)	to	P02.8:ALT(2)	Master slave select output
QSPI3:SLSO(6)	to	P00.8:ALT(2)	Master slave select output

Queued Synchronous Peripheral Interface (QSPI)

Table 260 Connections of QSPI3 (cont'd)

Interface Signals	conr	nects	Description
QSPI3:SLSO(7)	to	P00.9:ALT(2)	Master slave select output
QSPI3:SLSO(8)	to	P10.5:ALT(3)	Master slave select output
QSPI3:SLSO(12)	to	P22.2:ALT(3)	Master slave select output
QSPI3:TX_INT	to	INT:qspi3.TX_INT	QSPI Transmit Service Request
QSPI3:RX_INT	to	INT:qspi3.RX_INT	QSPI Receive Service Request
QSPI3:ERR_INT	to	INT:qspi3.ERR_INT	QSPI Error Service Request
QSPI3:PT_INT	to	INT:qspi3.PT_INT	QSPI Phase Transition Service Request
QSPI3:U_INT	to	INT:qspi3.U_INT	QSPI User Defined Service Request
QSPI3:HC_INT	to	INT:qspi3.HC_INT	QSPI High Speed Capture Service Request

35.5 Revision History

Table 261 Revision History

Reference	Change to Previous Version Comment		
V3.0.20			
	Initial version TC33x		

Micro Second Channel (MSC)

36 Micro Second Channel (MSC)

This device doesn't contain a MSC.

Single Edge Nibble Transmission (SENT)

37 Single Edge Nibble Transmission (SENT)

This document describes the SENT Interface specific appendix for the product TC33x/TC32x.

37.1 TC33x/TC32x Specific IP Configuration

See features in family spec.

Table 262 TC33x/TC32x specific configuration of SENT

Parameter	SENT
Number of SENT channels for this device	6

Single Edge Nibble Transmission (SENT)

37.2 TC33x/TC32x Specific Register Set

Register Address Space Table

The address space for the module registers is defined in **Register Address Space Table**.

Table 263 Register Address Space - SENT

Module	Base Address	End Address	Note
SENT	F0003000 _H	F0003AFF _H	FPI slave interface

Register Overview Table

There are no product specific register for this module.

37.3 TC33x/TC32x Specific Registers

There are no product specific register for this module.

37.4 Connectivity

This section describes the connectivity of the SENT module.

37.4.1 Interrupt and DMA Controller Service Requests

The trigger outputs of the SENT module are connected via the Interrupt router. The request lines are connected as shown in **Connections of SENT**.

37.4.2 Trigger Inputs

The module has 8 Sent Channels and the same number of trigger inputs but not more than n+1 = 16. They can be randomly chosen by programming IOCRx.ETS. The trigger inputs (TRIG[n:0]) of the SENT module are connected to the GTM as shown in **Connections of SENT**.

37.4.3 Connections of SENT

The tables below list all the connections of SENT instances.

Table 264 Connections of SENT

Interface Signals	conn	ects	Description
SENT:SENTOA	from	P40.6:IN	Receive input channel 0
SENT:SENT1A	from	P40.7:IN	Receive input channel 1
SENT:SENT2A	from	P40.8:IN	Receive input channel 2
SENT:SENT3A	from	P40.9:IN	Receive input channel 3
SENT:SENT4A	from	P40.4:IN	Receive input channel 4
SENT:SENT5A	from	P40.5:IN	Receive input channel 5
SENT:SENTOB	from	P00.1:IN	Receive input channel 0
SENT:SENT1B	from	P00.2:IN	Receive input channel 1
SENT:SENT2B	from	P00.3:IN	Receive input channel 2
SENT:SENT3B	from	P00.4:IN	Receive input channel 3

Single Edge Nibble Transmission (SENT)

Table 264 Connections of SENT (cont'd)

Interface Signals	conn	ects	Description
SENT:SENT4B	from	P00.5:IN	Receive input channel 4
SENT:SENT5B	from	P00.6:IN	Receive input channel 5
SENT:SENTOC	from	P02.8:IN	Receive input channel 0
SENT:SENT1C	from	P02.7:IN	Receive input channel 1
SENT:SENT2C	from	P02.6:IN	Receive input channel 2
SENT:SENT3C	from	P02.5:IN	Receive input channel 3
SENT:SENT4C	from	P33.6:IN	Receive input channel 4
SENT:SENT5C	from	P33.5:IN	Receive input channel 5
SENT:SPC(0)	to	P00.1:ALT(6)	Transmit output
SENT:SPC(1)	to	P02.7:ALT(6)	Transmit output
SENT:SPC(2)	to	P00.3:ALT(6)	Transmit output
SENT:SPC(3)	to	P00.4:ALT(6)	Transmit output
SENT:SPC(4)	to	P00.5:ALT(6)	Transmit output
SENT:SPC(5)	to	P00.6:ALT(6)	Transmit output
SENT:TRIG(15:0)	from	GTM:SENT.TRIG(15:0)	GTM timer output vector
SENT:TRIGO(9:0)	to	INT:sent.TRIGO(9:0)	SENT TRIGO=m Service Request

37.5 Revision History

Table 265 Revision History

Reference	Change to Previous Version	Comment
V2.1.9		
	Initial version for TC33X.	
V2.1.10		·
Page 1 Second sentence changed to internal audience only due to customer confusion. No functional change.		
Page 2	Minor notation update in connection table, no functional change.	

CAN Interface (MCMCAN)

38 CAN Interface (MCMCAN)

This section describes the MCMCAN Interface specific appendix for the product TC33x/TC32x.

38.1 TC33x/TC32x Specific IP Configuration

Table 266 TC33x/TC32x specific configuration of CAN

Parameter	CAN0	CAN1	
Node size in byte	1024	1024	
Number of CAN Nodes	4	4	
RAM size in byte	32768	16384	
Maximum Number of Standard ID Filter Messages per node	128	128	
Maximum Number of Extended ID Filter Messages per node	64	64	
Maximum Number of RxFIFO structures per node	2	2	
Maximum Number of Messages in a Rx buffer per node	64	64	
Maximum Number of Tx Event Messages per node	32	32	
Maximum Number of Tx Messages in a Tx Buffer per node	32	32	

CAN Interface (MCMCAN)

38.2 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 267 Register Address Space - CAN

Module	Base Address	End Address	Note
CAN0	F0200000 _H	F0208FFF _H	Bus Interface
CAN1	F0210000 _H	F0218FFF _H	Bus Interface

Register Overview Table

Table 268 Register Overview - CAN (ascending Offset Address)

Short Name	Long Name	Offset Address	Page Number
CAN0_RAM	Embedded SRAM for messages (008000 _H Byte)	000000 _H	
CAN1_RAM	Embedded SRAM for messages (004000 _H Byte)	000000 _H	
CAN0_CLC	CAN Clock Control Register	008000 _H	See Family Spec
CAN1_CLC	CAN Clock Control Register	008000 _H	See Family Spec
CAN0_ID	Module Identification Register	008008 _H	See Family Spec
CAN1_ID	Module Identification Register	008008 _H	See Family Spec
CAN0_MCR	Module Control Register	008030 _H	See Family Spec
CAN1_MCR	Module Control Register	008030 _H	12
CAN0_BUFADR	Buffer receive address and transmit address	008034 _H	See Family Spec
CANO_MECR	Measure Control Register	008040 _H	See Family Spec
CANO_MESTAT	Measure Status Register	008044 _H	See Family Spec

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CAN0_ACCENCTR0	Access Enable Register Control 0	0080DC _H	See Family Spec
CAN1_ACCENCTR0	Access Enable Register Control 0	0080DC _H	See Family Spec
CAN0_OCS	OCDS Control and Status	0080E8 _H	See Family Spec
CAN1_OCS	OCDS Control and Status	0080E8 _H	See Family Spec
CAN0_KRSTCLR	Kernel Reset Status Clear Register	0080EC _H	See Family Spec
CAN1_KRSTCLR	Kernel Reset Status Clear Register	0080EC _H	See Family Spec
CAN0_KRST1	Kernel Reset Register 1	0080F0 _H	See Family Spec
CAN1_KRST1	Kernel Reset Register 1	0080F0 _H	See Family Spec
CAN0_KRST0	Kernel Reset Register 0	0080F4 _H	See Family Spec
CAN1_KRST0	Kernel Reset Register 0	0080F4 _H	See Family Spec
CAN0_ACCEN0	Access Enable Register 0	0080FC _H	See Family Spec
CAN1_ACCEN0	Access Enable Register 0	0080FC _H	See Family Spec
CAN0_ACCENNODEi0 (i=0-3)	Access Enable Register CAN Node i 0	008100 _H +i*400 H	See Family Spec
CAN1_ACCENNODEi0 (i=0-3)	Access Enable Register CAN Node i 0	008100 _H +i*400 H	See Family Spec

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CAN0_STARTADRi (i=0-3)	Start Address Node i	008108 _H +i*400 H	See Family Spec
CAN1_STARTADRi (i=0-3)	Start Address Node i	008108 _H +i*400 H	See Family Spec
CAN0_ENDADRi (i=0-3)	End Address Node i	00810C _H +i*40 0 _H	See Family Spec
CAN1_ENDADRi (i=0-3)	End Address Node i	00810C _H +i*40 0 _H	See Family Spec
CAN0_ISREGi (i=0-3)	Interrupt Signalling Register i	008110 _H +i*400 H	See Family Spec
CAN1_ISREGi (i=0-3)	Interrupt Signalling Register i	008110 _H +i*400 H	See Family Spec
CAN0_GRINT1i (i=0-3)	Interrupt routing for Groups 1 i	008114 _H +i*400 H	See Family Spec
CAN1_GRINT1i (i=0-3)	Interrupt routing for Groups 1 i	008114 _H +i*400 H	See Family Spec
CAN0_GRINT2i (i=0-3)	Interrupt routing for Groups 2 i	008118 _H +i*400 H	See Family Spec
CAN1_GRINT2i (i=0-3)	Interrupt routing for Groups 2 i	008118 _H +i*400 H	See Family Spec
CAN0_NTCCRi (i=0-3)	Node i Timer Clock Control Register	008120 _H +i*400 H	See Family Spec
CAN1_NTCCRi (i=0-3)	Node i Timer Clock Control Register	008120 _H +i*400 H	See Family Spec
CANO_NTATTRi (i=0-3)	Node i Timer A Transmit Trigger Register	008124 _H +i*400 H	See Family Spec
CAN1_NTATTRi (i=0-3)	Node i Timer A Transmit Trigger Register	008124 _H +i*400 H	See Family Spec

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CANO_NTBTTRi (i=0-3)	Node i Timer B Transmit Trigger Register	008128 _H +i*400 H	See Family Spec
CAN1_NTBTTRi (i=0-3)	Node i Timer B Transmit Trigger Register	008128 _H +i*400 H	See Family Spec
CAN0_NTCTTRi (i=0-3)	Node i Timer C Transmit Trigger Register	00812C _H +i*40 0 _H	See Family Spec
CAN1_NTCTTRi (i=0-3)	Node i Timer C Transmit Trigger Register	00812C _H +i*40 0 _H	See Family Spec
CAN0_NTRTRi (i=0-3)	Node i Timer Receive Timeout Register	008130 _H +i*400 H	See Family Spec
CAN1_NTRTRi (i=0-3)	Node i Timer Receive Timeout Register	008130 _H +i*400 H	See Family Spec
CAN0_NPCRi (i=0-3)	Node i Port Control Register	008140 _H +i*400 H	See Family Spec
CAN1_NPCRi (i=0-3)	Node i Port Control Register	008140 _H +i*400 H	See Family Spec
CAN0_CRELi (i=0-3)	Core Release Register i	008200 _H +i*400 H	See Family Spec
CAN1_CRELi (i=0-3)	Core Release Register i	008200 _H +i*400 H	See Family Spec
CAN0_ENDNi (i=0-3)	Endian Register i	008204 _H +i*400 H	See Family Spec
CAN1_ENDNi (i=0-3)	Endian Register i	008204 _H +i*400 H	See Family Spec
CAN0_DBTPi (i=0-3)	Data Bit Timing & Prescaler Register i	00820C _H +i*40 0 _H	See Family Spec
CAN1_DBTPi (i=0-3)	Data Bit Timing & Prescaler Register i	00820C _H +i*40 0 _H	See Family Spec

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CANO_TESTI (i=0-3)	Test Register i	008210 _H +i*400 H	See Family Spec
CAN1_TESTi (i=0-3)	Test Register i	008210 _H +i*400 H	See Family Spec
CAN0_RWDi (i=0-3)	RAM Watchdog i	008214 _H +i*400 H	See Family Spec
CAN1_RWDi (i=0-3)	RAM Watchdog i	008214 _H +i*400 H	See Family Spec
CAN0_CCCRi (i=0-3)	CC Control Register i	008218 _H +i*400 H	See Family Spec
CAN1_CCCRi (i=0-3)	CC Control Register i	008218 _H +i*400 H	See Family Spec
CAN0_NBTPi (i=0-3)	Nominal Bit Timing & Prescaler Register i	00821C _H +i*40 0 _H	See Family Spec
CAN1_NBTPi (i=0-3)	Nominal Bit Timing & Prescaler Register i	00821C _H +i*40 0 _H	See Family Spec
CAN0_TSCCi (i=0-3)	Timestamp Counter Configuration i	008220 _H +i*400 H	See Family Spec
CAN1_TSCCi (i=0-3)	Timestamp Counter Configuration i	008220 _H +i*400 H	See Family Spec
CAN0_TSCVi (i=0-3)	Timestamp Counter Value i	008224 _H +i*400 H	See Family Spec
CAN1_TSCVi (i=0-3)	Timestamp Counter Value i	008224 _H +i*400 H	See Family Spec
CAN0_TOCCi (i=0-3)	Timeout Counter Configuration i	008228 _H +i*400 H	See Family Spec
CAN1_TOCCi (i=0-3)	Timeout Counter Configuration i	008228 _H +i*400 H	See Family Spec

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CAN0_TOCVi (i=0-3)	Timeout Counter Value i	00822C _H +i*40 0 _H	See Family Spec
CAN1_TOCVi (i=0-3)	Timeout Counter Value i	00822C _H +i*40 0 _H	See Family Spec
CAN0_ECRi (i=0-3)	Error Counter Register i	008240 _H +i*400 H	See Family Spec
CAN1_ECRi (i=0-3)	Error Counter Register i	008240 _H +i*400 H	See Family Spec
CAN0_PSRi (i=0-3)	Protocol Status Register i	008244 _H +i*400 H	See Family Spec
CAN1_PSRi (i=0-3)	Protocol Status Register i	008244 _H +i*400 H	See Family Spec
CAN0_TDCRi (i=0-3)	Transmitter Delay Compensation Register i	008248 _H +i*400 H	See Family Spec
CAN1_TDCRi (i=0-3)	Transmitter Delay Compensation Register i	008248 _H +i*400 H	See Family Spec
CAN0_IRi (i=0-3)	Interrupt Register i	008250 _H +i*400 H	See Family Spec
CAN1_IRi (i=0-3)	Interrupt Register i	008250 _H +i*400 H	See Family Spec
CAN0_IEi (i=0-3)	Interrupt Enable i	008254 _H +i*400 H	See Family Spec
CAN1_IEi (i=0-3)	Interrupt Enable i	008254 _H +i*400 H	See Family Spec
CAN0_GFCi (i=0-3)	Global Filter Configuration i	008280 _H +i*400 H	See Family Spec
CAN1_GFCi (i=0-3)	Global Filter Configuration i	008280 _H +i*400 H	See Family Spec

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
CAN0_SIDFCi (i=0-3)	Standard ID Filter Configuration i	008284 _H +i*400 H	See Family Spec
CAN1_SIDFCi (i=0-3)	Standard ID Filter Configuration i	008284 _H +i*400 H	See Family Spec
CAN0_XIDFCi (i=0-3)	Extended ID Filter Configuration i	008288 _H +i*400 H	See Family Spec
CAN1_XIDFCi (i=0-3)	Extended ID Filter Configuration i	008288 _H +i*400 H	See Family Spec
CAN0_XIDAMi (i=0-3)	Extended ID AND Mask i	008290 _H +i*400 H	See Family Spec
CAN1_XIDAMi (i=0-3)	Extended ID AND Mask i	008290 _H +i*400 H	See Family Spec
CAN0_HPMSi (i=0-3)	High Priority Message Status i	008294 _H +i*400 H	See Family Spec
CAN1_HPMSi (i=0-3)	High Priority Message Status i	008294 _H +i*400 H	See Family Spec
CAN0_NDAT1i (i=0-3)	New Data 1 i	008298 _H +i*400 H	See Family Spec
CAN1_NDAT1i (i=0-3)	New Data 1 i	008298 _H +i*400 H	See Family Spec
CAN0_NDAT2i (i=0-3)	New Data 2 i	00829C _H +i*40 0 _H	See Family Spec
CAN1_NDAT2i (i=0-3)	New Data 2 i	00829C _H +i*40 0 _H	See Family Spec
CAN0_RXF0Ci (i=0-3)	Rx FIFO 0 Configuration i	0082A0 _H +i*40 0 _H	See Family Spec
CAN1_RXF0Ci (i=0-3)	Rx FIFO 0 Configuration i	0082A0 _H +i*40 0 _H	See Family Spec

CAN Interface (MCMCAN)

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
CAN0_RXF0Si (i=0-3)	Rx FIFO 0 Status i	0082A4 _H +i*40 0 _H	See Family Spec	
CAN1_RXF0Si (i=0-3)	Rx FIFO 0 Status i	0082A4 _H +i*40 0 _H	See Family Spec	
CAN0_RXF0Ai (i=0-3)	Rx FIFO 0 Acknowledge i	0082A8 _H +i*40 0 _H	See Family Spec	
CAN1_RXF0Ai (i=0-3)	Rx FIFO 0 Acknowledge i	0082A8 _H +i*40 0 _H	See Family Spec	
CAN0_RXBCi (i=0-3)	Rx Buffer Configuration i	0082AC _H +i*40 0 _H	See Family Spec	
CAN1_RXBCi (i=0-3)	Rx Buffer Configuration i	0082AC _H +i*40 0 _H	See Family Spec	
CAN0_RXF1Ci (i=0-3)	Rx FIFO 1 Configuration i	0082B0 _H +i*40 0 _H	See Family Spec	
CAN1_RXF1Ci (i=0-3)	Rx FIFO 1 Configuration i	0082B0 _H +i*40 0 _H	See Family Spec	
CAN0_RXF1Si (i=0-3)	Rx FIFO 1 Status i	0082B4 _H +i*40 0 _H	See Family Spec	
CAN1_RXF1Si (i=0-3)	Rx FIFO 1 Status i	0082B4 _H +i*40 0 _H	See Family Spec	
CAN0_RXF1Ai (i=0-3)	Rx FIFO 1 Acknowledge i	0082B8 _H +i*40 0 _H	See Family Spec	
CAN1_RXF1Ai (i=0-3)	Rx FIFO 1 Acknowledge i	0082B8 _H +i*40 0 _H	See Family Spec	
CAN0_RXESCi (i=0-3)	Rx Buffer/FIFO Element Size Configuration i	0082BC _H +i*40 0 _H	See Family Spec	
CAN1_RXESCi (i=0-3)	Rx Buffer/FIFO Element Size Configuration i	0082BC _H +i*40 0 _H	See Family Spec	

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
CAN0_TXBCi (i=0-3)	Tx Buffer Configuration i	0082C0 _H +i*40 0 _H	See Family Spec	
CAN1_TXBCi (i=0-3)	Tx Buffer Configuration i	0082C0 _H +i*40 0 _H	See Family Spec	
CAN0_TXFQSi (i=0-3)	Tx FIFO/Queue Status i	0082C4 _H +i*40 0 _H	See Family Spec	
CAN1_TXFQSi (i=0-3)	Tx FIFO/Queue Status i	0082C4 _H +i*40 0 _H	See Family Spec	
CAN0_TXESCi (i=0-3)	Tx Buffer Element Size Configuration i	0082C8 _H +i*40 0 _H	See Family Spec	
CAN1_TXESCi (i=0-3)	Tx Buffer Element Size Configuration i	0082C8 _H +i*40 0 _H	See Family Spec	
CAN0_TXBRPi (i=0-3)	Tx Buffer Request Pending i	0082CC _H +i*40 0 _H	See Family Spec	
CAN1_TXBRPi (i=0-3)	Tx Buffer Request Pending i	0082CC _H +i*40 0 _H	See Family Spec	
CAN0_TXBARi (i=0-3)	Tx Buffer Add Request i	0082D0 _H +i*40 0 _H	See Family Spec	
CAN1_TXBARi (i=0-3)	Tx Buffer Add Request i	0082D0 _H +i*40 0 _H	See Family Spec	
CAN0_TXBCRi (i=0-3)	Tx Buffer Cancellation Request i	0082D4 _H +i*40 0 _H	See Family Spec	
CAN1_TXBCRi (i=0-3)	Tx Buffer Cancellation Request i	0082D4 _H +i*40 0 _H	See Family Spec	
CAN0_TXBTOi (i=0-3)	Tx Buffer Transmission Occurred i	0082D8 _H +i*40 0 _H	See Family Spec	
CAN1_TXBTOi (i=0-3)	Tx Buffer Transmission Occurred i	0082D8 _H +i*40 0 _H	See Family Spec	

CAN Interface (MCMCAN)

Table 268 Register Overview - CAN (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
CAN0_TXBCFi (i=0-3)	Tx Buffer Cancellation Finished i	0082DC _H +i*40 0 _H	See Family Spec	
CAN1_TXBCFi (i=0-3)	Tx Buffer Cancellation Finished i	0082DC _H +i*40 0 _H	See Family Spec	
CANO_TXBTIEi (i=0-3)	Tx Buffer Transmission Interrupt Enable i	0082E0 _H +i*40 0 _H	See Family Spec	
CAN1_TXBTIEi (i=0-3)	Tx Buffer Transmission Interrupt Enable i	0082E0 _H +i*40 0 _H	See Family Spec	
CANO_TXBCIEi (i=0-3)	Tx Buffer Cancellation Finished Interrupt Enable i	0082E4 _H +i*40 See 0 _H Fam Spec		
CAN1_TXBCIEi (i=0-3)	Tx Buffer Cancellation Finished Interrupt Enable i	0082E4 _H +i*40 0 _H	See Family Spec	
CANO_TXEFCi (i=0-3)	Tx Event FIFO Configuration i	0082F0 _H +i*400 H	See Family Spec	
CAN1_TXEFCi (i=0-3)	Tx Event FIFO Configuration i	0082F0 _H +i*400 H	See Family Spec	
CAN0_TXEFSi (i=0-3)	Tx Event FIFO Status i	0082F4 _H +i*400 H	See Family Spec	
CAN1_TXEFSi (i=0-3)	Tx Event FIFO Status i	0082F4 _H +i*400 H	See Family Spec	
CAN0_TXEFAi (i=0-3)	Tx Event FIFO Acknowledge i	0082F8 _H +i*400 H	See Family Spec	
CAN1_TXEFAi (i=0-3)	Tx Event FIFO Acknowledge i	0082F8 _H +i*400 H	See Family Spec	

38.3 TC33x/TC32x Specific Registers

38.3.1 Bus Interface

Module Control Register

The Module Control Register MCR contains basic settings that determine the operation of the MCMCAN module.

The write access to the lowest byte of the MCR register becomes only valid, if and only if, MCR.CCCE and MCR.CI are already set during write access. To switch the clocks on or off, the bits of MCR.CCCE and MCR.CI have to be reset afterwards. Before this sequence hasn't taken place, no write access to the corresponding nodes, can be done.

Note:

If the baud rate logic is supplied from an unstable clock source, or no clock at all, the CAN functionality is not guaranteed.

To be able to change the clock settings the following programming sequence needs to be met:

uwTemp = CANn_MCR.U;

uwTemp |= (0xC0000000 | CLKSELx);

CANn_MCR.U = uwTemp;

uwTemp &= ~0xC0000000;

CANn_MCR.U = uwTemp;

The clock settings for CAN nodes becomes active.

To be able to start the RAM initialization, the following programming sequence need to be met:

 $CANn_MCR = 0xC00000000;$

Wait until CANn_MCR.RBUSY is 0b

Set CANn_MCR.RINIT to 0b

Set CANn_MCR.RINIT to 1b

Dummy read CANn_MCR

Wait until CANn_MCR.RBUSY is 0b

Set CANn_MCR.RINIT to 0b

CANn_MCR &= ~0xC0000000;

RAM initialization is finished

CAN1_MCR

Module	e Cont	rol Reg	ister				(00803	30 _H)		Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CCCE	CI	RINIT	RBUSY			0	ı		I	ı	'	0	ı	ı	
rw	rw	rw	rh		<u>1</u> 1	r	I.		<u> </u>	1	1	r	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			()				CLK	SEL3	CLK	SEL2	CLK	SEL1	CLK	SEL0
	1	1		r	1	1	1	r	W	r	W	r	W	r	W

Field	Bits	Туре	Description
CLKSEL0	1:0	rw	Clock Select 0 This bitfield is MCR.CI and MCR.CCCE protected. 00 _B No clock supplied 01 _B The asynchronous clock source is switched on 10 _B The synchronous clock source is switched on 11 _B Both clock sources are switched on
CLKSEL1	3:2	rw	Clock Select 1 This bitfield is MCR.CI and MCR.CCCE protected. 00 _B No clock supplied 01 _B The asynchronous clock source is switched on 10 _B The synchronous clock source is switched on 11 _B Both clock sources are switched on
CLKSEL2	5:4	rw	Clock Select 2 This bitfield is MCR.CI and MCR.CCCE protected. 00 _B No clock supplied 01 _B The asynchronous clock source is switched on 10 _B The synchronous clock source is switched on 11 _B Both clock sources are switched on
CLKSEL3	7:6	rw	Clock Select 3 This bitfield is MCR.CI and MCR.CCCE protected. 00 _B No clock supplied 01 _B The asynchronous clock source is switched on 10 _B The synchronous clock source is switched on 11 _B Both clock sources are switched on
RBUSY	28	rh	RAM BUSY This bit shows that the RAM Initialization is running. This bit is set back to 0b by hardware when the RAM initialization is completed.
RINIT	29	rw	RAM Init This bit is MCR.CI and MCR.CCCE protected. This bit starts the initialization of the RAM block to all 0x0. The RAM initialization is started only when this bit is changed from 0b to 1b and also RBUSY is 0b.
CI	30	rw	Change Init Needs to be set to enable and disable clocks. O _B Change Init disabled 1 _B Change Init enabled (takes effect with CCCE:=1)
CCCE	31	rw	Clock and RAM Change Enable Needs to be set to enable and disable the clocks. O _B Clock and RAM Change disabled 1 _B Clock and RAM Change enabled (takes effect with CI:=1)
0	23:8, 27:24	r	Reserved Shall read 0; shall be written with 0.

38.4 Connectivity

Table 269 Connections of CANO

Interface Signals	conne	ects	Description
CAN0:DSTDBG	from	DMU:SCU_ENTERED_DE ST_DBG	Destructive Debug entered
CAN0:DXSCLK	to	TCU:dxs_clk	DXS Clock, DAP module clock
CAN0:INT(5:0)	to	HSM:EXT_INT(18:13)	CAN interrupt request
CAN0:INT(12)	to	CCU61:CC61IND	CAN interrupt request
		GTM:TIM0_IN1(13)	
		GTM:TIM1_IN1(13)	
CAN0:INT(13)	to	GTM:TIM0_IN2(13)	CAN interrupt request
		GTM:TIM1_IN2(13)	
CAN0:INT(14)	to	GTM:TIM0_IN3(13)	CAN interrupt request
		GTM:TIM1_IN3(13)	
CAN0:INT(15)	to	CCU61:T13HRE	CAN interrupt request
		GTM:TIM0_IN4(13)	
		GTM:TIM1_IN4(13)	
CAN0:STM0_SR0_INT	from	STM0:SR0_INT	System Timer Service Request 0
CAN0:STM0_SR1_INT	from	STM0:SR1_INT	System Timer Service Request 1
CAN0:TRIG(3:0)	from	GTM:CAN0.TRIG(3:0)	GTM timer output vector
CAN0:INT(15:0)	to	INT:mcmcan0.INT(15:0)	CAN Service Request

Table 270 Connections of CAN00

Interface Signals	conn	ects	Description
CAN00:RXDA	from	P02.1:IN	CAN receive input node 0
CAN00:RXDB	from	P20.7:IN	CAN receive input node 0
CAN00:RXDD	from	P33.12:IN	CAN receive input node 0
CAN00:RXDE	from	P33.7:IN	CAN receive input node 0
CAN00:RXDG	from	P34.2:IN	CAN receive input node 0
CAN00:TXD	to	IOM:MON2(5)	CAN transmit output node 0
		IOM:REF2(5)	
		P02.0:ALT(5)	
		P20.8:ALT(5)	
		P33.8:ALT(5)	
		P34.1:ALT(4)	

Table 271 Connections of CAN01

Interface Signals	connects		Description	
CAN01:RXDA	from	P15.3:IN	CAN receive input node 1	
CAN01:RXDB	from	P14.1:IN	CAN receive input node 1	

CAN Interface (MCMCAN)

Table 271 Connections of CAN01 (cont'd)

Interface Signals	conn	ects	Description
CAN01:RXDD	from	P33.10:IN	CAN receive input node 1
CAN01:TXD	to	IOM:MON2(6)	CAN transmit output node 1
		IOM:REF2(6)	
		P14.0:ALT(5)	
		P15.2:ALT(5)	
		P33.9:ALT(5)	

Table 272 Connections of CAN1

Interface Signals	conn	ects	Description	
CAN1:DSTDBG	from	DMU:SCU_ENTERED_DE ST_DBG	Destructive Debug entered	
CAN1:STM0_SR0_INT	from	STM0:SR0_INT	System Timer Service Request 0	
CAN1:STM0_SR1_INT	from	STM0:SR1_INT	System Timer Service Request 1	
CAN1:TRIG(3:0)	from	GTM:CAN1.TRIG(3:0)	GTM timer output vector	
CAN1:INT(15:0)	to	INT:mcmcan1.INT(15:0)	CAN Service Request	

Table 273 Connections of CAN02

Interface Signals	conn	ects	Description
CAN02:RXDA	from	P15.1:IN	CAN receive input node 2
CAN02:RXDB	from	P02.3:IN	CAN receive input node 2
CAN02:RXDD	from	P14.8:IN	CAN receive input node 2
CAN02:RXDE	from	P10.2:IN	CAN receive input node 2
CAN02:TXD	to	IOM:MON2(7)	CAN transmit output node 2
		IOM:REF2(7)	
		P02.2:ALT(5)	
		P10.3:ALT(6)	
		P14.10:ALT(5)	
		P15.0:ALT(5)	

Table 274 Connections of CAN03

Interface Signals	connects		Description	
CAN03:RXDA	from	P00.3:IN	CAN receive input node 3	
CAN03:RXDC	from	P20.0:IN	CAN receive input node 3	
CAN03:RXDD	from	P11.10:IN	CAN receive input node 3	
CAN03:RXDE	from	P20.9:IN	CAN receive input node 3	

CAN Interface (MCMCAN)

Table 274 Connections of CAN03 (cont'd)

Interface Signals	con	nects	Description
CAN03:TXD	to	IOM:MON2(8)	CAN transmit output node 3
		IOM:REF2(8)	
		P00.2:ALT(5)	
		P11.12:ALT(5)	
		P20.3:ALT(5)	
		P20.10:ALT(5)	

Table 275 Connections of CAN10

Interface Signals	conn	ects	Description
CAN10:RXDA	from	P00.1:IN	CAN receive input node 0
CAN10:RXDB	from	P14.7:IN	CAN receive input node 0
CAN10:RXDD	from	P13.1:IN	CAN receive input node 0
CAN10:TXD	to	to P00.0:ALT(5) CAN transmit output node 0	CAN transmit output node 0
		P13.0:ALT(7)	
		P14.9:ALT(4)	
		P23.1:ALT(5)	

Table 276 Connections of CAN11

Interface Signals	conne	ects	Description
CAN11:RXDA	from	P02.4:IN	CAN receive input node 1
CAN11:RXDB	from	P00.5:IN	CAN receive input node 1
CAN11:TXD	to	P00.4:ALT(3)	CAN transmit output node 1
		P02.5:ALT(2)	

Table 277 Connections of CAN12

Interface Signals	conne	ects	Description
CAN12:RXDA	from	P20.6:IN	CAN receive input node 2
CAN12:RXDB	from	P10.8:IN	CAN receive input node 2
CAN12:RXDD	from	P11.8:IN	CAN receive input node 2
CAN12:TXD	to	P10.7:ALT(6)	CAN transmit output node 2
		P20.7:ALT(5)	

Table 278 Connections of CAN13

Interface Signals	conn	ects	Description
CAN13:RXDA	from	P14.7:IN	CAN receive input node 3
CAN13:RXDB	from	P33.5:IN	CAN receive input node 3

CAN Interface (MCMCAN)

Table 278 Connections of CAN13 (cont'd)

Interface Signals	coni	nects	Description
CAN13:TXD	to	P14.6:ALT(4)	CAN transmit output node 3
		P22.4:ALT(6)	
		P33.4:ALT(7)	

Note:

For the connectivity of the MCMCAN module to the STM module, please refer to the User Manual, chapter MCMCAN User Interface under CAN Transmit Trigger Inputs section.

38.5 Revision History

Table 279 Revision History

Reference	Change to Previous Version	Comment
V1.19.8		
-	First version for TC33x/TC32x Appendix	
V1.19.9		
-	No changes.	
V1.19.10		·
Page 17	Added note at the end of connections tables.	
V1.19.11		·
_	No functional changes.	
V1.19.12		
Page 1	Update of "specific configuration of CAN" table.	
V1.19.13		
Page 12	Updated information on bit implementation in A-step.	

FlexRay™ Protocol Controller (E-Ray)

39 FlexRay™ Protocol Controller (E-Ray)

Text with reference to family spec.

39.1 TC33x/TC32x Specific IP Configuration

No product specific configuration for ERAY

FlexRay™ Protocol Controller (E-Ray)

39.2 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 280 Register Address Space - ERAY

Module	Base Address	End Address	Note
ERAY0	F001C000 _H	F001CFFF _H	FPI slave interface

Register Overview Table

Table 281 Register Overview - ERAY (ascending Offset Address)

Short Name	Long Name	Offset Address	Page Number
ERAY0_CLC	Clock Control Register	0000 _H	See Family Spec
ERAY0_CUST1	Busy and Input Buffer Control Register	0004 _H	See Family Spec
ERAY0_ID	Module Identification Register	0008 _H	See Family Spec
ERAY0_CUST3	Customer Interface Timeout Counter Register	000C _H	See Family Spec
ERAY0_TEST1	Test Register 1	0010 _H	See Family Spec
ERAY0_TEST2	Test Register 2	0014 _H	See Family Spec
ERAY0_LCK	Lock Register	001C _H	See Family Spec
ERAY0_EIR	Error Service Request Select Register	0020 _H	See Family Spec
ERAY0_SIR	Status Service Request Register	0024 _H	See Family Spec
ERAY0_EILS	Error Service Request Line Select	0028 _H	See Family Spec

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ERAY0_SILS	Status Service Request Line Select	002C _H	See Family Spec
ERAY0_EIES	Error Service Request Enable Set	0030 _H	See Family Spec
ERAY0_EIER	Error Service Request Enable Reset	0034 _H	See Family Spec
ERAY0_SIES	Status Service Request Enable Set	0038 _H	See Family Spec
ERAY0_SIER	Status Service Request Enable Reset	003C _H	See Family Spec
ERAY0_ILE	Service Request Line Enable	0040 _H	See Family Spec
ERAY0_T0C	Timer 0 Configuration	0044 _H	See Family Spec
ERAY0_T1C	Timer 1 Configuration	0048 _H	See Family Spec
ERAY0_STPW1	Stop Watch Register 1	004C _H	See Family Spec
ERAY0_STPW2	Stop Watch Register 2	0050 _H	See Family Spec
ERAY0_SUCC1	SUC Configuration Register 1	0080 _H	See Family Spec
ERAY0_SUCC2	SUC Configuration Register 2	0084 _H	See Family Spec
ERAY0_SUCC3	SUC Configuration Register 3	0088 _H	See Family Spec
ERAY0_NEMC	NEM Configuration Register	008C _H	See Family Spec

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ERAY0_PRTC1	PRT Configuration Register 1	0090 _н	See Family Spec
ERAY0_PRTC2	PRT Configuration Register 2	0094 _H	See Family Spec
ERAY0_MHDC	MHD Configuration Register	0098 _H	See Family Spec
ERAY0_GTUC01	GTU Configuration Register 1	00A0 _H	See Family Spec
ERAY0_GTUC02	GTU Configuration Register 2	00A4 _H	See Family Spec
ERAY0_GTUC03	GTU Configuration Register 3	00A8 _H	See Family Spec
ERAY0_GTUC04	GTU Configuration Register 4	00AC _H	See Family Spec
ERAY0_GTUC05	GTU Configuration Register 5	00B0 _H	See Family Spec
ERAY0_GTUC06	GTU Configuration Register 6	00B4 _H	See Family Spec
ERAY0_GTUC07	GTU Configuration Register 7	00B8 _H	See Family Spec
ERAY0_GTUC08	GTU Configuration Register 8	00BC _H	See Family Spec
ERAY0_GTUC09	GTU Configuration Register 9	00C0 _H	See Family Spec
ERAY0_GTUC10	GTU Configuration Register 10	00C4 _H	See Family Spec
ERAY0_GTUC11	GTU Configuration Register 11	00C8 _H	See Family Spec

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number
ERAY0_CCSV	Communication Controller Status Vector	0100 _H	See Family Spec
ERAY0_CCEV	Communication Controller Error Vector	0104 _H	See Family Spec
ERAY0_SCV	Slot Counter Value	0110 _H	See Family Spec
ERAY0_MTCCV	Macrotick and Cycle Counter Value	0114 _H	See Family Spec
ERAY0_RCV	Rate Correction Value	0118 _H	See Family Spec
ERAY0_OCV	Offset Correction Value	011C _H	See Family Spec
ERAY0_SFS	SYNC Frame Status	0120 _H	See Family Spec
ERAY0_SWNIT	Symbol Window and Network Idle Time Status	0124 _H	See Family Spec
ERAY0_ACS	Aggregated Channel Status	0128 _H	See Family Spec
ERAY0_ESIDn (n=01-15)	Even Sync ID Symbol Window n	0130 _H +(n-1)*4	See Family Spec
ERAY0_OSIDn (n=01-15)	Odd Sync ID Symbol Window n	0170 _H +(n-1)*4	See Family Spec
ERAYO_NMVx (x=1-3)	Network Management Vector x	01B0 _H +(x-1)*4	See Family Spec
ERAY0_MRC	Message RAM Configuration	0300 _H	See Family Spec
ERAY0_FRF	FIFO Rejection Filter	0304 _H	See Family Spec

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
ERAY0_FRFM	FIFO Rejection Filter Mask	0308 _H	See Family Spec	
ERAY0_FCL	FIFO Critical Level	030C _H	See Family Spec	
ERAY0_MHDS	Message Handler Status	0310 _H	See Family Spec	
ERAYO_LDTS	Last Dynamic Transmit Slot	0314 _H	See Family Spec	
ERAY0_FSR	FIFO Status Register	0318 _H	See Family Spec	
ERAY0_MHDF	Message Handler Constraints Flags	031C _H	See Family Spec	
ERAY0_TXRQ1	Transmission Request Register 1	0320 _H	See Family Spec	
ERAY0_TXRQ2	Transmission Request Register 2	0324 _H	See Family Spec	
ERAY0_TXRQ3	Transmission Request Register 3	0328 _H	See Family Spec	
ERAY0_TXRQ4	Transmission Request Register 4	032C _H	See Family Spec	
ERAY0_NDAT1	New Data Register 1	0330 _H	See Family Spec	
ERAY0_NDAT2	New Data Register 2	0334 _H	See Family Spec	
ERAY0_NDAT3	New Data Register 3	0338 _H	See Family Spec	
ERAY0_NDAT4	New Data Register 4	033C _H	See Family Spec	

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Offset Address	Page Number	
ERAY0_MBSC1	Message Buffer Status Changed 1	0340 _H	See Family Spec
ERAY0_MBSC2	Message Buffer Status Changed 2	0344 _H	See Family Spec
ERAY0_MBSC3	Message Buffer Status Changed 3	0348 _H	See Family Spec
ERAY0_MBSC4	Message Buffer Status Changed 4	034C _H	See Family Spec
ERAY0_NDIC1	New Data Interrupt Control 1	03A8 _H	See Family Spec
ERAY0_NDIC2	New Data Interrupt Control 2	03AC _H	See Family Spec
ERAY0_NDIC3	New Data Interrupt Control 3	03B0 _H	See Family Spec
ERAY0_NDIC4	New Data Interrupt Control 4	03B4 _H	See Family Spec
ERAY0_MSIC1	Message Buffer Status Changed Interrupt Control 1	03B8 _H	See Family Spec
ERAY0_MSIC2	Message Buffer Status Changed Interrupt Control 2	03BC _H	See Family Spec
ERAY0_MSIC3	Message Buffer Status Changed Interrupt Control 3	03C0 _H	See Family Spec
ERAY0_MSIC4	Message Buffer Status Changed Interrupt Control 4	03C4 _H	See Family Spec
ERAY0_CREL	Core Release Register	03F0 _H	See Family Spec
ERAY0_ENDN	Endian Register	03F4 _H	See Family Spec

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
ERAY0_WRDSn (n=01-64)	Write Data Section n	0400 _H +(n-1)*4	See Family Spec	
ERAY0_WRHS1	Write Header Section 1	0500 _H	See Family Spec	
ERAY0_WRHS2	Write Header Section 2	0504 _H	See Family Spec	
ERAY0_WRHS3	Write Header Section 3	0508 _H	See Family Spec	
ERAY0_IBCM	Input Buffer Command Mask	0510 _H	See Family Spec	
ERAY0_IBCR	Input Buffer Command Request	0514 _H	See Family Spec	
ERAY0_RDDSn (n=01-64)	Read Data Section n	0600 _H +(n-1)*4	See Family Spec	
ERAY0_RDHS1	Read Header Section 1	0700 _H	See Family Spec	
ERAY0_RDHS2	Read Header Section 2	0704 _H	See Family Spec	
ERAY0_RDHS3	Read Header Section 3	0708 _H	See Family Spec	
ERAY0_MBS	Message Buffer Status	070C _H	See Family Spec	
ERAY0_OBCM	Output Buffer Command Mask	0710 _H	See Family Spec	
ERAY0_OBCR	Output Buffer Command Request	0714 _H	See Family Spec	
ERAY0_OTSS	OCDS Trigger Set Select	0870 _H	See Family Spec	

FlexRay™ Protocol Controller (E-Ray)

Table 281 Register Overview - ERAY (ascending Offset Address) (cont'd)

Short Name	Long Name	Offset Address	Page Number	
ERAY0_OCS	OCDS Control and Status	08E8 _H	See Family Spec	
ERAY0_KRSTCLR	Kernel Reset Status Clear Register	08EC _H	See Family Spec	
ERAY0_KRST1	Kernel Reset Register 1	08F0 _H	See Family Spec	
ERAY0_KRST0	Kernel Reset Register 0	08F4 _H	See Family Spec	
ERAY0_ACCEN0	Access Enable Register 0	08FC _H	See Family Spec	

39.3 TC33x/TC32x Specific Registers

No deviations from the Family Spec

39.4 Connectivity

Table 282 Connections of ERAY0

Interface Signals	conn	ects	Description
ERAY0:MT	to	CCU:eray_mt	Macrotick-clock from CC (synchronous to fpi
		SCU:E_REQ2(3)	clock)
		GTM:TIM1_IN7(13)	
		GTM:TIM0_IN7(13)	
ERAY0:RXDA0	from	P14.8:IN	Receive Channel A0
ERAY0:RXDA1	from	P11.9:IN	Receive Channel A1
ERAY0:RXDA2	from	P02.1:IN	Receive Channel A2
ERAY0:RXDA3	from	P14.1:IN	Receive Channel A3
ERAY0:RXDB0	from	P14.7:IN	Receive Channel B0
ERAY0:RXDB1	from	P11.10:IN	Receive Channel B1
ERAY0:RXDB2	from	P02.3:IN	Receive Channel B2
ERAY0:RXDB3	from	P14.1:IN	Receive Channel B3
ERAY0:STPWT(3:0)	from	SCU:E_PDOUT(3:0)	StoP Watch Trigger signal
ERAY0:TINT0	to	CAN0:ttc_ectt(5)	Timer Interrupt 0 (high-active)
ERAY0:TINT1	to	CAN0:ttc_ectt(6)	Timer Interrupt 1 (high-active)

FlexRay™ Protocol Controller (E-Ray)

Table 282 Connections of ERAY0 (cont'd)

Interface Signals	conn	ects	Description
ERAY0:TXDA	to	P02.0:ALT(6)	Transmit Channel A
		P11.3:ALT(4)	
		P14.0:ALT(3)	
		P14.10:ALT(6)	
ERAY0:TXDB	to	P02.2:ALT(6)	Transmit Channel B
		P11.12:ALT(4)	
		P14.0:ALT(4)	
		P14.5:ALT(6)	
ERAY0:TXENA	to	P02.4:ALT(6)	Transmit Enable Channel A
		P11.6:ALT(4)	
		P14.9:ALT(6)	
ERAY0:TXENB	to	P02.5:ALT(6)	Transmit Enable Channel B
		P11.6:ALT(2)	
		P11.11:ALT(6)	
		P14.6:ALT(6)	
		P14.9:ALT(5)	
ERAY0:sleep_n	from	SCU:scu_syst_sleep_n	turn-off request from processor
ERAY0:INT0_INT	to	INT:eray0.INT0_INT	E-RAY Service Request 0
ERAY0:INT1_INT	to	INT:eray0.INT1_INT	E-RAY Service Request 1
ERAY0:TINT0_INT	to	INT:eray0.TINT0_INT	E-RAY Timer Interrupt 0 Service Request
ERAY0:TINT1_INT	to	INT:eray0.TINT1_INT	E-RAY Timer Interrupt 1 Service Request
ERAY0:NDAT0_INT	to	INT:eray0.NDAT0_INT	E-RAY New Data 0 Service Request
ERAY0:NDAT1_INT	to	INT:eray0.NDAT1_INT	E-RAY New Data 1 Service Request
ERAY0:MBSC0_INT	to	INT:eray0.MBSC0_INT	E-RAY Message Buffer Status Changed 0 Service Request
ERAY0:MBSC1_INT	to	INT:eray0.MBSC1_INT	E-RAY Message Buffer Status Changed 1 Service Request
ERAY0:OBUSY	to	INT:eray0.OBUSY	E-RAY Output Buffer Busy Service Request
ERAY0:IBUSY_INT	to	INT:eray0.IBUSY_INT	E-RAY Input Buffer Busy Service Request

39.5 Revision History

Table 283 Revision History

Reference	Change to Previous Version Commen			
V3.2.9				
	Initial version for TC33X			
V3.2.10				
_	No functional change.			

FlexRay™ Protocol Controller (E-Ray)

Table 283 Revision History (cont'd)

Reference	erence Change to Previous Version Comment		
V3.2.11			
_	No functional change.		

Peripheral Sensor Interface (PSI5)

40 Peripheral Sensor Interface (PSI5)

This device doesn't contain a PSI5.

Peripheral Sensor Interface with Serial PHY Connection (PSI5-S)

41 Peripheral Sensor Interface with Serial PHY Connection (PSI5-S)

This device doesn't contain a PSI5.

infineon

Gigabit Ethernet MAC (GETH)

42 Gigabit Ethernet MAC (GETH)

This device doesn't contain a GETH module.

External Bus Unit (EBU)

43 External Bus Unit (EBU)

This device doesn't contain an EBU module.

SD- and eMMC Interface (SDMMC)

44 SD- and eMMC Interface (SDMMC)

This device doesn't contain an SDMMC module.

Hardware Security Module (HSM)

45 Hardware Security Module (HSM)

The HSM is a separate processor subsystem dedicated for security tasks. It is connected as master and slave to the SPB bus.

For security reasons this module is described in a separate documentation. Please contact your Infineon representative for further information.

Input Output Monitor (IOM)

46 Input Output Monitor (IOM)

This document describes the IOM specific appendix for the product TC33x/TC32x.

46.1 TC33x/TC32x Specific IP Configuration

Table 284 TC33x/TC32x specific configuration of IOM

Parameter	ІОМ
Number of FPC channels	16
Number of GTM inputs	8
Number of LAM	16
Number of ECM	1

46.2 TC33x/TC32x Specific Register Set

Register Address Space Table

Table 285 Register Address Space - IOM

Module	Base Address	End Address	Note
IOM	F0035000 _H	F00351FF _H	FPI slave interface

Register Overview Table

There are no product specific register for this module.

46.3 TC33x/TC32x Specific Registers

There are no product specific register for this module.

46.4 Connectivity

This section describes the connectivity of the IOMmodule.

Table 286 Connections of IOM

Interface Signals	conn	ects	Description	
IOM:GTM(7:0)	from	GTM:TOUT(29:22)	GTM-provided inputs to EXOR combiner	
IOM:MON1(0)	from	CCU60:CC62	Monitor input 1	
IOM:MON1(1)	from	CCU60:CC61	Monitor input 1	
IOM:MON1(2)	from	CCU60:CC60	Monitor input 1	
IOM:MON0(12:0)	from	GTM:TOUT(34:22)	Monitor input 0	
IOM:MON1(3)	from	CCU60:COUT60	Monitor input 1	
IOM:MON1(4)	from	CCU60:COUT61	Monitor input 1	
IOM:MON1(5)	from	CCU60:COUT62	Monitor input 1	
IOM:MON0(15:13)	from	GTM:TOUT(70:68)	Monitor input 0	

Input Output Monitor (IOM)

Table 286 Connections of IOM (cont'd)

Interface Signals	conn	ects	Description
IOM:MON1(6)	from	CCU60:COUT63	Monitor input 1
IOM:MON1(7)	from	CCU61:COUT63	Monitor input 1
IOM:MON1(8)	from	CCU61:CC60	Monitor input 1
IOM:MON1(9)	from	CCU61:CC61	Monitor input 1
IOM:MON2(0)	from	QSPI0:MRST	Monitor input 2
IOM:MON2(1)	from	QSPI1:MRST	Monitor input 2
IOM:MON2(2)	from	QSPI2:MRST	Monitor input 2
IOM:MON2(3)	from	QSPI3:MRST	Monitor input 2
IOM:MON2(5)	from	CAN00:TXD	Monitor input 2
IOM:MON2(6)	from	CAN01:TXD	Monitor input 2
IOM:MON2(7)	from	CAN02:TXD	Monitor input 2
IOM:MON2(8)	from	CAN03:TXD	Monitor input 2
IOM:MON1(10)	from	CCU61:CC62	Monitor input 1
IOM:MON1(11)	from	CCU61:COUT60	Monitor input 1
IOM:MON1(12)	from	CCU61:COUT61	Monitor input 1
IOM:MON1(13)	from	CCU61:COUT62	Monitor input 1
IOM:MON2(11:9)	from	GTM:TOUT(106:104)	Monitor input 2
IOM:MON2(12)	from	ASCLINO:ATX ASCLINO:ATXP	Monitor input 2
IOM:MON2(13)	from	ASCLIN1:ATX ASCLIN1:ATXP	Monitor input 2
IOM:MON2(14)	from	ASCLIN2:ATX ASCLIN2:ATXP	Monitor input 2
IOM:MON2(15)	from	ASCLIN3:ATX ASCLIN3:ATXP	Monitor input 2
IOM:PIN(0)	from	P33.0:IN	GPIO pad input to FPC
IOM:PIN(1)	from	P33.1:IN	GPIO pad input to FPC
IOM:PIN(2)	from	P33.2:IN	GPIO pad input to FPC
IOM:PIN(3)	from	P33.3:IN	GPIO pad input to FPC
IOM:PIN(4)	from	P33.4:IN	GPIO pad input to FPC
IOM:PIN(5)	from	P33.5:IN	GPIO pad input to FPC
IOM:PIN(6)	from	P33.6:IN	GPIO pad input to FPC
IOM:PIN(7)	from	P33.7:IN	GPIO pad input to FPC
IOM:PIN(8)	from	P33.8:IN	GPIO pad input to FPC
IOM:PIN(9)	from	P33.9:IN	GPIO pad input to FPC
IOM:PIN(10)	from	P33.10:IN	GPIO pad input to FPC
IOM:PIN(11)	from	P33.11:IN	GPIO pad input to FPC
IOM:PIN(12)	from	P33.12:IN	GPIO pad input to FPC
IOM:PIN(13)	from	P20.12:IN	GPIO pad input to FPC

Input Output Monitor (IOM)

Table 286 Connections of IOM (cont'd)

Interface Signals	conn	ects	Description
IOM:PIN(14)	from	P20.13:IN	GPIO pad input to FPC
IOM:PIN(15)	from	P20.14:IN	GPIO pad input to FPC
IOM:REF1(0)	from	CCU60:COUT63	Reference input 1
IOM:REF1(1)	from	CCU60:COUT62	Reference input 1
IOM:REF1(2)	from	CCU60:COUT61	Reference input 1
IOM:REF1(3)	from	CCU60:COUT60	Reference input 1
IOM:REF1(4)	from	CCU60:CC62	Reference input 1
IOM:REF1(5)	from	CCU60:CC61	Reference input 1
IOM:REF0(15:0)	from	GTM:TOUT(15:0)	Reference input 0
IOM:REF1(6)	from	CCU60:CC60	Reference input 1
IOM:REF1(7)	from	CCU61:COUT63	Reference input 1
IOM:REF1(8)	from	CCU61:COUT62	Reference input 1
IOM:REF1(9)	from	CCU61:COUT61	Reference input 1
IOM:REF2(0)	from	QSPI0:MRST	Reference input 2
IOM:REF2(1)	from	QSPI1:MRST	Reference input 2
IOM:REF2(2)	from	QSPI2:MRST	Reference input 2
IOM:REF2(3)	from	QSPI3:MRST	Reference input 2
IOM:REF2(5)	from	CAN00:TXD	Reference input 2
IOM:REF2(6)	from	CAN01:TXD	Reference input 2
IOM:REF2(7)	from	CAN02:TXD	Reference input 2
IOM:REF2(8)	from	CAN03:TXD	Reference input 2
IOM:REF1(10)	from	CCU61:COUT60	Reference input 1
IOM:REF1(11)	from	CCU61:CC62	Reference input 1
IOM:REF1(12)	from	CCU61:CC61	Reference input 1
IOM:REF1(13)	from	CCU61:CC60	Reference input 1
IOM:REF2(11:9)	from	GTM:TOUT(109:107)	Reference input 2
IOM:REF2(12)	from	ASCLINO:ATX ASCLINO:ATXP	Reference input 2
IOM:REF2(13)	from	ASCLIN1:ATX ASCLIN1:ATXP	Reference input 2
IOM:REF2(14)	from	ASCLIN2:ATX ASCLIN2:ATXP	Reference input 2
IOM:REF2(15)	from	ASCLIN3:ATX ASCLIN3:ATXP	Reference input 2

Input Output Monitor (IOM)

46.5 Revision History

Table 287 Revision History

Reference	eference Change to Previous Version Comment		
V2.1.15			
-	Initial version for TC33X.		

8-Bit Standby Controller (SCR)

47 8-Bit Standby Controller (SCR)

The description of the SCR for all devices is covered by the family specification.

Revision history

Document version	Date of release	Description of changes
V2.0.0	2021-02	Version comparison table updated.
		• For further changes see respective revision history of each chapter. The version comparison table below gives an overview.
V1.6.0 2020-08		Version comparison table updated.
		• For further changes see respective revision history of each chapter. The version comparison table below gives an overview.
		Removed device TC3Ax from set of documentation.
V1.5.0	2020-04	Version comparison table updated.
		• For further changes see respective revision history of each chapter. The version comparison table below gives an overview.
V1.4.0	2019-12	Added TC3Ax appendix as target specification.
		Version comparison table updated.
		• For further changes see respective revision history of each chapter. The version comparison table below gives an overview.
V1.3.0 2019-09		Added additional device TC3Ax to AURIX™ TC3xx set of documentation.
		Version comparison table updated.
		• For further changes see respective revision history of each chapter. The version comparison table below gives an overview.
V1.2.0	2019-04	Added additional device TC3Ex to AURIX™ TC3xx set of documentation.
		Version comparison table updated.
		• For further changes see respective revision history of each chapter. The version comparison table below gives an overview.
V1.1.0	2019-01	Power Management System for Low-End (PMSLE) added.
		TC33x and TC33xED added.
		Changes in connectivity tables.
		Version comparison table new.
		Detailed Revision History contained in each chapter.
V1.0.0	2018-08	First revision of the User's Manual.
		Detailed OCDS information not contained. Available under NDA.
		Detailed Revision History contained in each chapter.

Version comparison table for AURIX[™] TC33x/TC32x appendix

Chapter name	UM V1.6.0 chapter version	UM V2.0.0 chapter version	Content changes
Introduction	V1.0.0	V1.0.0	No
MEMMAP	V0.1.20	V0.1.21	Yes, see chapter revision history
FW	V1.1.0.1.17	V1.1.0.1.18	No functional changes
SRI Fabric	V1.1.16	V1.1.17	No functional changes

Chapter name	UM V1.6.0	UM V2.0.0	Content changes
SBCU, EBCU	chapter version	chapter version	No functional above as
·	V1.2.8	V1.2.9	No functional changes
CPU	V1.1.20	V1.1.21	No functional changes
NVM Subsystem	V2.0.7	V2.0.7	No
• DMU	V2.0.11	V2.0.12	No functional changes
• NVM	V2.0.6	V2.0.6	No
LMU	n/a	n/a	-
DAM	n/a	n/a	-
SCU	V2.1.26	V2.1.27	No functional changes
CCU	see SCU	see SCU	-
PMS	n/a	n/a	-
PMSLE	V1.0.6	V1.0.7	No functional changes
MTU	V7.4.12	V7.4.13	Yes, see chapter revision history
PORTS	V1.8.21	V1.8.21	No
SMU	V4.0.22	V4.0.23	Yes, see chapter revision history
INT	V1.2.11	V1.2.11	No
FCE	V4.2.9	V4.2.9	No
DMA	V0.1.18	V0.1.18	No
SPU	n/a	n/a	-
SPU2	n/a	n/a	-
BITMGR	n/a	n/a	-
SPULCKSTP	n/a	n/a	_
EMEM	n/a	n/a	-
RIF	n/a	n/a	_
HSPDM	n/a	n/a	_
CIF	n/a	n/a	_
STM	V9.2.4	V9.2.4	No
GTM	V2.2.23	V2.2.24	Yes, see chapter revision history
CCU6	V3.0.0	V3.0.0	No No
GPT12	V3.0.2	V3.0.2	No
CONVCTRL	V3.0.1	V3.0.2	No
EVADC	V3.0.1	V3.0.1	Yes, see chapter revision history
EDSADC	n/a	n/a	-
I2C	n/a	n/a	-
HSSL	n/a	n/a	-
ASCLIN	V3.2.8	V3.2.8	No
QSPI	V3.0.20	V3.0.20	No
MSC	n/a	n/a	-
SENT	V2.1.10	V2.1.10	No

Chapter name	UM V1.6.0 chapter version	UM V2.0.0 chapter version	Content changes
MCMCAN	V1.19.13	V1.19.13	No
E-Ray	V3.2.10	V3.2.11	No functional changes
PSI5	n/a	n/a	-
PSI5-S	n/a	n/a	-
GETH	n/a	n/a	-
EBU	n/a	n/a	-
SDMMC	n/a	n/a	-
HSM	n/a	n/a	-
IOM	V2.1.15	V2.1.15	No
SCR	n/a	n/a	_

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.