STACKED INVERSE PROBABILITY OF CENSORING WEIGHTED BAGGING: A CASE STUDY IN THE INFCAREHIV REGISTER

Pablo Gonzalez Ginestet

Karolinska Institutet - MEB pablo.gonzalez.ginestet@ki.se

ISCB 41, Krakow 2020 August 25, 2020

▶ Predicting the risk of an event during a specific time frame can play an important role in public health (example: identifying patients who are at high risk of developing an adverse outcome)

- ▶ Predicting the risk of an event during a specific time frame can play an important role in public health (example: identifying patients who are at high risk of developing an adverse outcome)
- ➤ Supervised machine learning (ML) algorithms (ex. deep neural network, ensemble methods like bagging & stacking) are useful for building risk prediction models

- ▶ Predicting the risk of an event during a specific time frame can play an important role in public health (example: identifying patients who are at high risk of developing an adverse outcome)
- ➤ Supervised machine learning (ML) algorithms (ex. deep neural network, ensemble methods like bagging & stacking) are useful for building risk prediction models
- ► Survival data (right-censoring & competing risk) is an obstacle to the direct applicability of many ML algorithms

Attempts to adapt ML to censored data

 i) Inverse probability of censoring weighting (IPCW) (Molinaro et al. (2004); Hothorn et al. (2006); Goldberg and Kosorok (2017); olfson et al. (2015), Bandyopadhyay et al. (2015) and Vock et al. (2016))

Attempts to adapt ML to censored data

- i) Inverse probability of censoring weighting (IPCW) (Molinaro et al. (2004); Hothorn et al. (2006); Goldberg and Kosorok (2017); olfson et al. (2015), Bandyopadhyay et al. (2015) and Vock et al. (2016))
- ▶ ii) other approaches (Hothorn et al. (2004), Ishwaran et al. (2014); Shivaswamy et al. (2007), Zubek and Khan (2008), and Van Belle et al. (2011); Binder et al. (2009))

Attempts to adapt ML to censored data

- i) Inverse probability of censoring weighting (IPCW) (Molinaro et al. (2004); Hothorn et al. (2006); Goldberg and Kosorok (2017); olfson et al. (2015), Bandyopadhyay et al. (2015) and Vock et al. (2016))
- ▶ ii) other approaches (Hothorn et al. (2004), Ishwaran et al. (2014); Shivaswamy et al. (2007), Zubek and Khan (2008), and Van Belle et al. (2011); Binder et al. (2009))

Remark Specific to the algorithm so limits the generalizability

Attempts to adapt ML to censored data

- i) Inverse probability of censoring weighting (IPCW) (Molinaro et al. (2004); Hothorn et al. (2006); Goldberg and Kosorok (2017); olfson et al. (2015), Bandyopadhyay et al. (2015) and Vock et al. (2016))
- ▶ ii) other approaches (Hothorn et al. (2004), Ishwaran et al. (2014); Shivaswamy et al. (2007), Zubek and Khan (2008), and Van Belle et al. (2011); Binder et al. (2009))

Remark Specific to the algorithm so limits the generalizability

Remark Many of these developments do not have software implementations

SETUP AND NOTATION

- ► *K* competing events
- ▶ T_i event-time of type $\eta_i \in 1, ..., K$
- $ightharpoonup C_i$ censoring time
- $ightharpoonup \tilde{T}_i = \min(T_i, C_i)$
- ▶ $\Delta_i = 1(T_i \leq C_i)$ and the censored event type $\tilde{\eta}_i = \Delta_i \eta_i$.
- ▶ Observed data $(\tilde{T}_i, \Delta_i, \tilde{\eta}, \mathbf{X}_i)_{i=1,...,n}$

SETUP AND NOTATION

- ightharpoonup K competing events
- ▶ T_i event-time of type $\eta_i \in 1, ..., K$
- $ightharpoonup C_i$ censoring time
- $\tilde{T}_i = \min(T_i, C_i)$
- $igtherpoonup \Delta_i = 1(T_i \leq C_i)$ and the censored event type $\tilde{\eta}_i = \Delta_i \eta_i$.
- ▶ Observed data $(\tilde{T}_i, \Delta_i, \tilde{\eta}, \mathbf{X}_i)_{i=1,...,n}$
- Outcome

$$E_{k,i}(\tau) = \left\{ \begin{array}{ll} 1 & \text{if } \tilde{T}_i \leq \tau \text{ and } \tilde{\eta}_i = k \\ 0 & \text{if } \tilde{T}_i \leq \tau \text{ and } \tilde{\eta}_i \notin \{0,k\} \text{ or } \tilde{T}_i > \tau \\ \text{missing otherwise.} \end{array} \right.$$

Our Approach

▶ Pre-processing step that combines IPCW and bagging, which allows for all existing and any newly developed ML methods for classification to be applied to right-censored data with or without competing risks for the TASK:

$$\mathbb{P}(T_i \le \tau, \eta_i = k | \mathbf{X}_i)$$

Our Approach

▶ Pre-processing step that combines IPCW and bagging, which allows for all existing and any newly developed ML methods for classification to be applied to right-censored data with or without competing risks for the TASK:

$$\mathbb{P}(T_i \le \tau, \eta_i = k | \mathbf{X}_i)$$

▶ PERFORMANCE evaluation metric: $Risk(f_k) = 1 - AUC_{IPCW}(E_k, f_k, \tau)$ Blanche et al.[2013]

Our Approach

▶ Pre-processing step that combines IPCW and bagging, which allows for all existing and any newly developed ML methods for classification to be applied to right-censored data with or without competing risks for the TASK:

$$\mathbb{P}(T_i \le \tau, \eta_i = k | \mathbf{X}_i)$$

- ▶ PERFORMANCE evaluation metric: $Risk(f_k) = 1 AUC_{IPCW}(E_k, f_k, \tau)$ Blanche et al.[2013]
- Possibility to optimally stack predictions from any IPCW bagged ML methods

Inverse Probability of Censoring Weighting (IPCW)

▶ Due to censoring,

$$\mathbb{P}(E_{k,i}(\tau) = 1 | \mathbf{X}_i) \neq \mathbb{P}(T_i \leq \tau, \eta_i = k | \mathbf{X}_i)$$

14 / 63

Inverse Probability of Censoring Weighting (IPCW)

- ▶ Due to censoring, $\mathbb{P}(E_{k,i}(\tau) = 1|\mathbf{X}_i) \neq \mathbb{P}(T_i \leq \tau, \eta_i = k|\mathbf{X}_i)$
- ► Inverse probability of censoring weighting (IPCW) estimation is a two-step procedure
- ▶ i) Fit a model to $G(t|\mathbf{X}_i) = P(C_i > t|\mathbf{X}_i)$ (ex. Cox proportional hazard model, Aalen's linear hazard model, boosting in Cox regression or random forest)

Inverse Probability of Censoring Weighting (IPCW)

- ▶ Due to censoring,
 - $\mathbb{P}(E_{k,i}(\tau) = 1 | \mathbf{X}_i) \neq \mathbb{P}(T_i \leq \tau, \eta_i = k | \mathbf{X}_i)$
- ► Inverse probability of censoring weighting (IPCW) estimation is a two-step procedure
- ▶ i) Fit a model to $G(t|\mathbf{X}_i) = P(C_i > t|\mathbf{X}_i)$ (ex. Cox proportional hazard model, Aalen's linear hazard model, boosting in Cox regression or random forest)
- ▶ ii) Weight each individual by

$$w_i = \left\{ egin{array}{ll} rac{1}{G(\min(T_i, au) | \mathbf{X}_i))} & ext{if } \min(T_i, au) \leq C_i \\ 0 & ext{otherwise} \end{array}
ight.$$

▶ Dependent censoring under assumption of coarsening at random (CAR).

- 1. Algorithm 1: to obtain predictions in a test set
- 2. Algorithm 2: to combine optimally algorithms based on a target loss function (AUC_{IPCW})

- 1. Algorithm 1: to obtain predictions in a test set
- 2. Algorithm 2: to combine optimally algorithms based on a target loss function (AUC_{IPCW})
- lacktriangle Training set $\mathcal Q$ and a validation or test set $\mathcal V$

- 1. Algorithm 1: to obtain predictions in a test set
- 2. Algorithm 2: to combine optimally algorithms based on a target loss function (AUC_{IPCW})
- lacktriangle Training set $\mathcal Q$ and a validation or test set $\mathcal V$
- ► Library of ML algorithms:
 - $\mathcal{L}=\{\varphi_a \text{ such that } a\in 1,\dots,A\}$ where φ_a is an algorithm , A=# algorithms

- 1. Algorithm 1: to obtain predictions in a test set
- 2. Algorithm 2: to combine optimally algorithms based on a target loss function (AUC_{IPCW})
- lacktriangle Training set ${\mathcal Q}$ and a validation or test set ${\mathcal V}$
- Library of ML algorithms: $\mathcal{L} = \{ \varphi_a \text{ such that } a \in 1, \dots, A \}$ where φ_a is an algorithm , A = # algorithms
- $\hat{Y}_{a,i} = \hat{\varphi}_a(\mathbf{X}_i^{\mathcal{V}}, \mathcal{Q})$ be the prediction for subject i in \mathcal{V} using ML algorithm $\hat{\varphi}_a$ given their covariates $\mathbf{X}_i^{\mathcal{V}}$ and trained in the training sample \mathcal{Q} .

- 1. Algorithm 1: to obtain predictions in a test set
- 2. Algorithm 2: to combine optimally algorithms based on a target loss function (AUC_{IPCW})
- lacktriangle Training set $\mathcal Q$ and a validation or test set $\mathcal V$
- Library of ML algorithms: $\mathcal{L} = \{ \varphi_a \text{ such that } a \in 1, \dots, A \}$ where φ_a is an algorithm , A = # algorithms
- ▶ $\widehat{Y}_{a,i} = \widehat{\varphi}_a(\mathbf{X}_i^{\mathcal{V}}, \mathcal{Q})$ be the prediction for subject i in \mathcal{V} using ML algorithm $\widehat{\varphi}_a$ given their covariates $\mathbf{X}_i^{\mathcal{V}}$ and trained in the training sample \mathcal{Q} .
- $\blacktriangleright \hat{w}_i^n = \frac{\hat{w}_i}{\sum_i \hat{w}_i}$

Algorithm 1 Stacked IPCW Bagging

1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , $\overline{\mathcal{L}}$, ς and $\widehat{\beta}$.

Algorithm 2 Stacked IPCW Bagging

- 1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , \mathcal{L} , ς and $\widehat{\beta}$.
- 2: Produce B training sets $Q_j^{\omega}, j = 1, \ldots, B$ by performing weighted resampling with replacement from the original training set Q, using the normalized IPCW-weights w_i^n .

Algorithm 3 Stacked IPCW Bagging

- 1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , \mathcal{L} , ς and $\widehat{\beta}$.
- 2: Produce B training sets $Q_j^{\omega}, j = \overline{1}, \ldots, B$ by performing weighted resampling with replacement from the original training set \mathcal{Q} , using the normalized IPCW-weights w_i^n .
- 3: **for** each $a \in \mathcal{L}$ **do**

Algorithm 4 Stacked IPCW Bagging

- 1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , \mathcal{L} , ς and $\widehat{\beta}$.
- 2: Produce B training sets $Q_j^{\omega}, j = 1, \dots, B$ by performing weighted resampling with replacement from the original training set \mathcal{Q} , using the normalized IPCW-weights w_i^n .
- 3: **for** each $a \in \mathcal{L}$ **do**
- 4: Train the ML technique φ_a on each bootstrap sample and obtain B fits: $\hat{\varphi}_{a,j}$ for $j=1,\ldots,B$.

Algorithm 5 Stacked IPCW Bagging

- 1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , \mathcal{L} , ς and $\widehat{\beta}$.
- 2: Produce B training sets $Q_j^{\omega}, j=1,\ldots,B$ by performing weighted resampling with replacement from the original training set \mathcal{Q} , using the normalized IPCW-weights w_i^n .
- 3: **for** each $a \in \mathcal{L}$ **do**
- 4: Train the ML technique φ_a on each bootstrap sample and obtain B fits: $\hat{\varphi}_{a,j}$ for $j=1,\ldots,B$.
- 5: Compute $\hat{Y}_{a,i,j} = \hat{\varphi}_{a,j}(\mathbf{X}_i^{\mathcal{V}}, Q_j^{\omega})$ for $j = 1, \dots, B$.

Algorithm 6 Stacked IPCW Bagging

- 1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , \mathcal{L} , ς and $\widehat{\beta}$.
- 2: Produce B training sets $Q_j^{\omega}, j = 1, \dots, B$ by performing weighted resampling with replacement from the original training set \mathcal{Q} , using the normalized IPCW-weights w_i^n .
- 3: for each $a \in \mathcal{L}$ do
- 4: Train the ML technique φ_a on each bootstrap sample and obtain B fits: $\hat{\varphi}_{a,j}$ for $j=1,\ldots,B$.
- 5: Compute $\hat{Y}_{a,i,j} = \hat{\varphi}_{a,j}(\mathbf{X}_i^{\mathcal{V}}, Q_j^{\omega})$ for $j = 1, \dots, B$.
- 6: Output: $\hat{Y}_{a,i} = \sum_{j=1}^{B} \hat{Y}_{a,i,j}$ for $i=1,\ldots,N$

Algorithm 7 Stacked IPCW Bagging

- 1: **Input:** data $\mathbf{X}^{\mathcal{V}}$ and \mathcal{Q} ; w^n , \mathcal{L} , ς and $\widehat{\beta}$.
- 2: Produce B training sets $Q_j^{\omega}, j = 1, \dots, B$ by performing weighted resampling with replacement from the original training set \mathcal{Q} , using the normalized IPCW-weights w_i^n .
- 3: **for** each $a \in \mathcal{L}$ **do**
- 4: Train the ML technique φ_a on each bootstrap sample and obtain B fits: $\hat{\varphi}_{a,j}$ for $j=1,\ldots,B$.
- 5: Compute $\hat{Y}_{a,i,j} = \hat{\varphi}_{a,j}(\mathbf{X}_i^{\mathcal{V}}, Q_j^{\omega})$ for $j=1,\dots,B$.
- 6: Output: $\hat{Y}_{a,i} = \sum_{j=1}^B \hat{Y}_{a,i,j}$ for $i=1,\ldots,N$
- 7: end for
- 8: Output: $\widehat{Y}_i(\widehat{\underline{\beta}}) = \varsigma(\widehat{Y}_{1,i},\ldots,\widehat{Y}_{A,i}|\widehat{\beta}_1,\ldots,\widehat{\beta}_A)$ for $i=1,\ldots,N.$ One can apply, potentially IPCW, performance metrics to \widehat{Y}_i in the validation sample to obtain an accurate estimate of prediction accuracy.

Algorithm 8 Obtaining optimal coefficients for stacking

1: **Input:** data \mathcal{Q} ; w^n , \mathcal{L} and ς

Algorithm 9 Obtaining optimal coefficients for stacking

- 1: **Input:** data \mathcal{Q} ; w^n , \mathcal{L} and ς .
- 2: Partition the training sample $\mathcal Q$ into V-fold. Denote them $Q_1,...,Q_V$

Algorithm 10 Obtaining optimal coefficients for stacking

- 1: **Input:** data Q; w^n , \mathcal{L} and ς .
- 2: Partition the training sample $\mathcal Q$ into V-fold. Denote them $Q_1,...,Q_V$
- 3: for v=1 to V do
- 4: **for** j = 1 to B **do**
- 5: Obtain a weighted bootstrap sample from the training set $\mathcal{Q} \setminus Q_v$

Algorithm 11 Obtaining optimal coefficients for stacking

- 1: **Input:** data \mathcal{Q} ; w^n , \mathcal{L} and ς .
- 2: Partition the training sample $\mathcal Q$ into V-fold. Denote them $Q_1,...,Q_V$
- 3: for v=1 to V do
- 4: **for** j = 1 to B **do**
- 5: Obtain a weighted bootstrap sample from the training set $\mathcal{Q}\setminus Q_v$
- 6: Train each $\varphi_a \in \mathcal{L}$ on the same bootstrap sample and compute prediction for the validation set Q_v : $\{\hat{Y}^v_{j,1},..,\hat{Y}^v_{j,A}\}$

Algorithm 12 Obtaining optimal coefficients for stacking

- 1: **Input:** data \mathcal{Q} ; w^n , \mathcal{L} and ς .
- 2: Partition the training sample $\mathcal Q$ into V-fold. Denote them $Q_1,...,Q_V$
- 3: for $v=1\ \mathrm{to}\ V$ do
- 4: **for** j = 1 to B **do**
- 5: Obtain a weighted bootstrap sample from the training set $\mathcal{Q} \setminus Q_v$
- 6: Train each $\varphi_a \in \mathcal{L}$ on the same bootstrap sample and compute prediction for the validation set Q_v : $\{\hat{Y}_{i,1}^v,..,\hat{Y}_{i,A}^v\}$
- 7: end for
- 8: Bag the predictions: $\hat{Y}_a^v = \frac{1}{B} \sum_{j=1}^B \hat{Y}_{j,a}^v$ for $a=1,\ldots A$
- 9: end for

Algorithm 13 Obtaining optimal coefficients for stacking

- 1: **Input:** data Q; w^n , \mathcal{L} and ς .
- 2: Partition the training sample $\mathcal Q$ into V-fold. Denote them $Q_1,...,Q_V$
- 3: for $v=1\ \mathrm{to}\ V$ do
- 4: **for** j = 1 to B **do**
- 5: Obtain a weighted bootstrap sample from the training set $\mathcal{Q} \setminus Q_v$
- 6: Train each $\varphi_a \in \mathcal{L}$ on the same bootstrap sample and compute prediction for the validation set Q_v : $\{\hat{Y}_{j,1}^v,..,\hat{Y}_{j,A}^v\}$
- 7: **end for**
- 8: Bag the predictions: $\hat{Y}_a^v = \frac{1}{B} \sum_{j=1}^B \hat{Y}_{j,a}^v$ for $a=1,\ldots A$
- 9: end for
- 10: Stack them: $\hat{\mathbf{Y}}_a^Q = [\hat{Y}_a^{v=1}, \dots, \hat{Y}_a^{v=V}]$ for $a=1,\dots A$

Algorithm 14 Obtaining optimal coefficients for stacking

- 1: **Input:** data \mathcal{Q} ; w^n , \mathcal{L} and ς .
- 2: Partition the training sample $\mathcal Q$ into V-fold. Denote them $Q_1,...,Q_V$
- 3: for $v=1\ \mathrm{to}\ V$ do
- 4: **for** j = 1 to B **do**
- 5: Obtain a weighted bootstrap sample from the training set $\mathcal{Q} \setminus Q_v$
- 6: Train each $\varphi_a \in \mathcal{L}$ on the same bootstrap sample and compute prediction for the validation set Q_v : $\{\hat{Y}_{i,1}^v,..,\hat{Y}_{i,A}^v\}$
- 7: end for
- 8: Bag the predictions: $\hat{Y}_a^v = \frac{1}{B} \sum_{j=1}^B \hat{Y}_{j,a}^v$ for $a=1,\ldots A$
- 9: end for
- 10: Stack them: $\hat{\mathbf{Y}}_a^Q = [\hat{Y}_a^{v=1}, \dots, \hat{Y}_a^{v=V}]$ for $a=1,\dots A$
- 11: Minimize IPCW loss function over the validation sample predictions $\mathbb{L}(E_i, \hat{\mathbf{Y}}_{i,1}^{\mathcal{Q}}, \dots, \hat{\mathbf{Y}}_{i,A}^{\mathcal{Q}}, w_i^n, \varsigma | \beta_1, \dots, \beta_A)$ and obtain $\widehat{\beta}$.

Performance: $AUC_{IPCW}(E_k, f_k, \tau)$

► Zheng et al. [2012], Blanche et al. [2013]

$$AUC(t) =$$

$$\mathbb{P}(\widehat{Y}_i(\underline{\beta}) > \widehat{Y}_j(\underline{\beta}) | \underbrace{T_i \leq t, \eta_i = k}_{case}, \underbrace{\{(T_j > t) \cup (T_j < t, \eta_j \notin \{0, k\}\}_{control}\}}_{control}$$

Performance: $AUC_{IPCW}(E_k, f_k, \tau)$

▶ Zheng et al. [2012], Blanche et al. [2013] AUC(t) =

$$\mathbb{P}(\widehat{Y}_i(\underline{\beta}) > \widehat{Y}_j(\underline{\beta}) | \underbrace{T_i \leq t, \eta_i = k}_{case}, \underbrace{\{(T_j > t) \cup (T_j < t, \eta_j \notin \{0, k\})\}}_{control}$$

For evaluating the predictive performance (Blanche et al.[2013]) in the validation/test data $\widehat{AUC}_{IPCW}(\tau, \mathbf{E}_k, \widehat{\mathbf{Y}}(\beta), \mathbf{w}^n)$

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} E_{k,i} \hat{w}_{i}^{n} (1 - E_{k,j}) \hat{w}_{j}^{n} \mathbb{I}[\widehat{Y}_{i}(\underline{\beta}) > \widehat{Y}_{j}(\underline{\beta})]}{(\sum_{i=1}^{n} E_{k,i} \hat{w}_{i}^{n}) (\sum_{j=1}^{n} (1 - E_{k,j}) \hat{w}_{j}^{n})}$$

Performance:
$$AUC_{IPCW}(E_k, f_k, \tau)$$

control

► Zheng et al. [2012], Blanche et al. [2013]

$$AUC(t) = \mathbb{P}(\widehat{Y}_i(\underline{\beta}) > \widehat{Y}_j(\underline{\beta}) | \underbrace{T_i \leq t, \eta_i = k}, \underbrace{\{(T_j > t) \cup (T_j < t, \eta_j \notin \{0, k\})\}}$$

► For evaluating the predictive performance (Blanche et al.[2013]) in the validation/test data $\widehat{AUC}_{IPCW}(\tau, \mathbf{E}_k, \widehat{\mathbf{Y}}(\beta), \mathbf{w}^n)$

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} E_{k,i} \hat{w}_{i}^{n} (1 - E_{k,j}) \hat{w}_{j}^{n} \mathbb{I}[\widehat{Y}_{i}(\underline{\beta}) > \widehat{Y}_{j}(\underline{\beta})]}{(\sum_{i=1}^{n} E_{k,i} \hat{w}_{i}^{n}) (\sum_{j=1}^{n} (1 - E_{k,j}) \hat{w}_{j}^{n})}$$

▶ For Selecting the optimal $\widehat{\beta}$ (Fong et al. [2016])

 $\widehat{\underline{\beta}} = arg \min \left\{ \left(1 - \widehat{AUC}_{IPCW}(\tau, \mathbf{E}_k, \widehat{\mathbf{Y}}(\underline{\beta}^*), \widehat{\mathbf{w}}^n) \right) + \lambda \sum_{a=1}^A \beta_a^{*2} \right\}$

➤ Two simulation studies (different covariates used to generate the scale parameter) and four scenarios (A;B;C;D)

- ➤ Two simulation studies (different covariates used to generate the scale parameter) and four scenarios (A;B;C;D)
- ▶ T_i event-time of type $\eta_i \in 1, 2$ and $C_i \sim$ Weibull distribution

- ➤ Two simulation studies (different covariates used to generate the scale parameter) and four scenarios (A;B;C;D)
- ▶ T_i event-time of type $\eta_i \in 1, 2$ and $C_i \sim$ Weibull distribution
- $ightharpoonup {f X}_i$: 20 covariates normal distributed and correlated each other

- ➤ Two simulation studies (different covariates used to generate the scale parameter) and four scenarios (A;B;C;D)
- ▶ T_i event-time of type $\eta_i \in 1, 2$ and $C_i \sim$ Weibull distribution
- $ightharpoonup {f X}_i$: 20 covariates normal distributed and correlated each other
- \blacktriangleright $E_{k,i}(\tau)$ was created for k=1 and $\tau=26.5$

- ➤ Two simulation studies (different covariates used to generate the scale parameter) and four scenarios (A;B;C;D)
- ▶ T_i event-time of type $\eta_i \in 1, 2$ and $C_i \sim \text{Weibull}$ distribution
- $ightharpoonup {f X}_i$: 20 covariates normal distributed and correlated each other
- \blacktriangleright $E_{k,i}(\tau)$ was created for k=1 and $\tau=26.5$
- ➤ 500 simulated data sets, sample size 1250 (training set 1000 obs and test set 250 obs)
- Scenario A.Independent Censoring (no covariate)
- Scenario B. Independent Censoring (disjoint subset of the covariates)

- Two simulation studies (different covariates used to generate the scale parameter) and four scenarios (A;B;C;D)
- ► T_i event-time of type $\eta_i \in 1, 2$ and $C_i \sim$ Weibull distribution
- ► X_i: 20 covariates normal distributed and correlated each other
- \blacktriangleright $E_{k,i}(\tau)$ was created for k=1 and $\tau=26.5$
- ➤ 500 simulated data sets, sample size 1250 (training set 1000 obs and test set 250 obs)
- Scenario A.Independent Censoring (no covariate)
- Scenario B. Independent Censoring (disjoint subset of the covariates)
 - Scenario C. Dependent Censoring (same subset of the covariates as those associated with the failure outcome)

 Scenario D. Dependent Censoring (same subset of the covariates)

▶ We compared our IPCW Bagging procedure to those algorithms in the library that allow weights to be specified as an argument of the R function: logistic regression, GAM, LASSO and random forest (Native Weight)

- ▶ We compared our IPCW Bagging procedure to those algorithms in the library that allow weights to be specified as an argument of the R function: logistic regression, GAM, LASSO and random forest (Native Weight)
- We also compare our procedure to three survival based methods:
 - cause-specific Cox proportional hazard model-based method (Ozenne et al., 2017)
 - Cox-Boost (Binder, 2013), which is a sub-distribution hazard model
 - ▶ and survival random forests for competing risk (Ishwaran and Kogalur, 2020)

- ▶ We compared our IPCW Bagging procedure to those algorithms in the library that allow weights to be specified as an argument of the R function: logistic regression, GAM, LASSO and random forest (Native Weight)
- We also compare our procedure to three survival based methods:
 - cause-specific Cox proportional hazard model-based method (Ozenne et al., 2017)
 - Cox-Boost (Binder, 2013), which is a sub-distribution hazard model
 - ▶ and survival random forests for competing risk (Ishwaran and Kogalur, 2020)

Real Data Application: InfCare HIV Register

- ► Event of interest: failure of treatment to keep viral load below 50m/L (undetectable) within 2 years
- ► Final data consisted of 3,114 subjects who were diagnosed with HIV since 2009 and have at least some record of being suppressed
- ▶ 1,726 subjects did not have a record of death or a HIV RNA measurement < 50 copies/mL within two years from their date of first suppression $(E_{1,i}(2) = 0)$
- ▶ 17 subjects died within two years $(E_{1,i}(2) = 0)$
- ▶ 764 subjects experienced a rebound in their viral load within two years of suppression $(E_{1,i}(2) = 1)$
- ▶ 624 subjects were censored prior to two years after their first suppression and thus their outcomes were not known $(E_{1,i}(2) = NA)$
- ▶ Predictor variables used: age, gender, ethnicity, immigration status, infection route, number of languages spoken, if the subject has an infection (e.g., pneumonia), HIV medications.

Real Data Application: InfCare HIV Register

TABLE 2 Estimated AUCs for predicting a rebound in viral load in split sample test set based on Cox-PH-weig

ML Algorithm	R package	IPCW Bagging	Native weight	Survival
Logistic Regression	stats::glm	0.601	0.574	
GAM	gam::gam	0.575	0.585	
LASSO	glmnet::glmnet	0.572	0.599	
Random Forest	ranger::ranger	0.539	0.599	0.554
SVM	e1071::svm	0.603		
BART	bartMachine::bartMachine	0.598		
k-NN	class::knn	0.602		
Neural Network	neuralnet::neuralnet	0.603		
Stacked IPCW bagging		0.602		
Cox-PH	riskRegression::CSC			0.586
Cox-Boost	CoxBoost::CoxBoost			0.587

R package on GitHub:

github.com/pablogonzalezginestet/stackBagg •Link

▶ We generalized IPCW bagging approach to arbitrary algorithms (Hothorn et al. [2006] limited to random forest and boosting)

- ▶ We generalized IPCW bagging approach to arbitrary algorithms (Hothorn et al. [2006] limited to random forest and boosting)
- ► We extendeded the IPCW bagging method to allow for the possibility of competing risks

- ► We generalized IPCW bagging approach to arbitrary algorithms (Hothorn et al. [2006] limited to random forest and boosting)
- ► We extendeded the IPCW bagging method to allow for the possibility of competing risks
- We explored IPCW bagging in cases of dependent censoring (under CAR assumption)

- ▶ We generalized IPCW bagging approach to arbitrary algorithms (Hothorn et al. [2006] limited to random forest and boosting)
- ► We extendeded the IPCW bagging method to allow for the possibility of competing risks
- We explored IPCW bagging in cases of dependent censoring (under CAR assumption)
- ▶ We suggested a procedure to optimally stack predictions from a set of ML procedures using as our target loss function the area under the time-dependent ROC curve (AUC) following the Super Learner technique (VanderLaan et al.[2007])

- ▶ We generalized IPCW bagging approach to arbitrary algorithms (Hothorn et al. [2006] limited to random forest and boosting)
- ► We extendeded the IPCW bagging method to allow for the possibility of competing risks
- We explored IPCW bagging in cases of dependent censoring (under CAR assumption)
- ▶ We suggested a procedure to optimally stack predictions from a set of ML procedures using as our target loss function the area under the time-dependent ROC curve (AUC) following the Super Learner technique (VanderLaan et al.[2007])
- Computationally intensive limiting the the algorithms to add in the library

- ▶ We generalized IPCW bagging approach to arbitrary algorithms (Hothorn et al. [2006] limited to random forest and boosting)
- ► We extendeded the IPCW bagging method to allow for the possibility of competing risks
- We explored IPCW bagging in cases of dependent censoring (under CAR assumption)
- We suggested a procedure to optimally stack predictions from a set of ML procedures using as our target loss function the area under the time-dependent ROC curve (AUC) following the Super Learner technique (VanderLaan et al.[2007])
- Computationally intensive limiting the the algorithms to add in the library
- We have also developed an R package (installed via the command remotes::install_github("pablogonzalezginestet/stackBagg").

Karolinska Institutet

Thank You!

Simulation studies. Shape and scale parameter

Shape parameter: main event type is 3.5, competing event type is 2.5, and is 1 for the censoring time.

TABLE 1 List of covariates and transformations used to generate the scale parameter of the main event time ($\eta = 1$), competing event time ($\eta = 2$) and censoring time in each simulation and scenario † .

(sim,scen)	$X_{T,\eta=1}$	X _{T,η=2}	$\mathbf{x}_{\scriptscriptstyle C}$
1, A	$X_1, X_{16}, X_1X_{16}, bs(X_{11}), bs(X_{16})$	X ₂	No covariate
1, B	same as A	same as A	$X_3, X_4, X_9,$
			X_{19}, X_{20}
1, C 1, D	same as A	same as A	$X_1, X_6, X_{11}, X_{16}, X_{20}$
1, D	same as A	$X_1, X_6, X_{11}, X_{16}, X_{20}$	same as C
2, A	$X_1, X_6, X_{11}, X_{16}, X_{20}, \cos(X_{16})/.1, X_1X_6, X_{20}I(X_{20} > median(X_{20}))$	<i>X</i> ₂	No covariate
2, B	same as A	same as A	$I(X_3 > median(X_3)), X_4, X_9, cos(X_{19})/.7$
2, C	same as A	same as A	$I(X_1 > median(X_1)), X_6, X_{11}, cos(X_{16})/.7, X_{20}$
2, D	same as A	$X_1, X_6, X_{11}, X_{16}, X_{20}$	same as C

 $^{^{\}dagger}$ (sim, scen) denotes the pair simulation and scenario; bs() denotes the basis matrix of cubic-spline function; cos() denotes cosine function and I() denotes the indicator function.

- \(\mathcal{L} = \{\) logistic regression (LR); GAM df= 3, 4; LASSO; random forest (RF); SVM; bayesian additive regression trees (BART); k-nearest neighbors and neural networks\)\}
- ightharpoonup B = 10 and 5-fold cross-validation
- ightharpoonup grid of values for $\lambda \in \{0.01, 0.1, 0.5, 1, 5, 10, 15, 25, 50, 100\}$
- stacking function for ensemble: linear
- We compare IPCW Bagging with Native weight methods (LR, GAM, LASSO and RF) and survival based methods (CoxPH, CoxBoost, RF for competing risk).
- CoxPH and CoxBoost (not shown here) weights were used

Real Data Application: InfCare HIV Register. Tuning Parameter

The following table shows the values of the tuning parameter that were selected among a grid search using 5-fold cross validation on the training dataset.

TABLE: Tuning parameter selected using 5-fold cross validation on the training set for the InfCare HIV Registry.

ML algorithm	Tuning parameter
Logistic Regression	NA
Generalized Additive Models	df = 3
LASSO	$\lambda_{CV} = 0.01685$
Random Forest	num.tree = 50 , $mtry = 1$
Support vector machine	$cost = 100, \ kernel = radial, gamma = 0.1$
Bayesian additive regression tre	es $num_trees = 50, k = 2, q = 0.9$
k-nearest neighbors	k = 43
Neural Network	hidden = 2

TABLE 3 Average Estimated AUCs across 500 data sets for Simulation 1 and 2 and their four scenarios (A, B, C and D) using all available covariates and a Cox-PH model for censoring for predicting the event of interest in the test data set.

MLAlgorithm	Simulation 1								Simulation 2							
	Α	A *	В	В*	С	C*	D	D*	Α	Α*	В	В*	С	C*	D	D*
True	0.761		0.761		0.761		0.781		0.928		0.928		0.928		0.940	
IPCW Bagging																
LogReg	0.647	0.648	0.648	0.647	0.646	0.647	0.651	0.650	0.631	0.631	0.630	0.630	0.631	0.630	0.656	0.655
GAM.3	0.718	0.718	0.718	0.717	0.715	0.715	0.725	0.725	0.635	0.634	0.633	0.632	0.635	0.633	0.659	0.657
GAM.4	0.714	0.714	0.713	0.712	0.711	0.711	0.721	0.721	0.651	0.650	0.649	0.649	0.651	0.649	0.673	0.672
LASSO	0.654	0.655	0.655	0.655	0.654	0.654	0.656	0.655	0.639	0.638	0.637	0.637	0.639	0.637	0.663	0.662
RF	0.700	0.700	0.700	0.699	0.700	0.699	0.702	0.701	0.820	0.821	0.818	0.818	0.819	0.818	0.832	0.830
SVM	0.635	0.636	0.635	0.635	0.635	0.636	0.639	0.639	0.620	0.620	0.620	0.620	0.620	0.618	0.647	0.645
BART	0.702	0.701	0.702	0.701	0.700	0.700	0.710	0.709	0.888	0.889	0.886	0.887	0.887	0.886	0.899	0.898
k-NN	0.572	0.573	0.570	0.571	0.570	0.570	0.587	0.587	0.588	0.588	0.586	0.586	0.586	0.587	0.609	0.610
NNet	0.654	0.655	0.651	0.652	0.652	0.652	0.652	0.651	0.625	0.624	0.624	0.623	0.623	0.622	0.647	0.644
Stacked IPCW bagging	0.715	0.715	0.714	0.713	0.712	0.712	0.721	0.721	0.891	0.891	0.889	0.890	0.889	0.889	0.902	0.902
Native Weight																
LogReg	0.649	0.650	0.649	0.648	0.647	0.648	0.653	0.652	0.633	0.633	0.632	0.632	0.633	0.632	0.658	0.656
GAM.3	0.720	0.720	0.720	0.718	0.717	0.718	0.727	0.727	0.638	0.637	0.636	0.635	0.636	0.635	0.661	0.659
GAM.4	0.716	0.716	0.715	0.714	0.713	0.713	0.723	0.723	0.655	0.655	0.653	0.653	0.653	0.652	0.677	0.675
LASSO	0.659	0.660	0.659	0.659	0.659	0.659	0.659	0.658	0.644	0.644	0.643	0.643	0.645	0.643	0.670	0.667
RF	0.701	0.701	0.702	0.700	0.701	0.700	0.704	0.702	0.826	0.826	0.822	0.822	0.823	0.822	0.837	0.835
Survival																
Cox-PH	0.661	0.662	0.661	0.661	0.662	0.662	0.688	0.687	0.638	0.638	0.637	0.637	0.637	0.636	0.662	0.660
Cox-Boost	0.649	0.649	0.648	0.647	0.648	0.648	0.637	0.634	0.631	0.631	0.630	0.631	0.628	0.628	0.669	0.668
RF	0.721	0.721	0.721	0.720	0.721	0.720	0.729	0.727	0.790	0.790	0.787	0.788	0.793	0.791	0.808	0.806