Part III-B: Deep Learning

Lecture by None Note by THF

2025年2月4日

目录

1	线性	代数复习	1
	1.1	特殊的矩阵和向量	3
	1.2	特征分解	4
	1.3	奇异值分解	6

Learn 1

01.28

1 线性代数复习

Definition. 张量:多维数组或多维立方体(二维为矩阵,一维为向量,零维为常量),用字体不同的粗体表示: **A**

对比: 矩阵 A, 张量 A

Definition. 向量:一般指列向量,转置后为横向量

Example.
$$\boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,转置后: $\boldsymbol{x}^{\top} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Definition. 矩阵乘法: 左矩阵的行遍历右矩阵的列

Example. 两个向量的点乘(内积): $x \cdot y = x^{\top} y$,如下图:同理,两个向量的外积: $x \times y = xy^{\top}$,如下图:

图 1: 点积

图 2: 外积

Definition. 广播:把向量转置后加到矩阵的每一行

Example.

Definition. 范数: 曼哈顿距离 \Rightarrow 欧氏距离 \Rightarrow ..., L^p 范数形如:

$$\|\boldsymbol{x}\|_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}.$$

Example. 曼哈顿距离: $L^1:\|m{x}\|_1=\sum_i|x_i|$,欧几里得距离: $L^2:\|m{x}\|_2=\sqrt{\sum_i x_i^2}$

Learn 2 01.30

Notation. L^2 范数可以写为 $\|x\|_2$,也可以简写为 $\|x\|$

Learn 2

Notation. L^1 范数常用于区分 0 值和距离 0 很近的值,使用 L^2 范数,距离太近几乎没有区别

Definition. 最大范数: $p \to \infty$ 时影响范数的最大因素为最大值:

$$\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_i|.$$

Example. Frobenius 范数: 使用范数衡量矩阵的大小, 类似于 L^2 范数的计算:

$$\|\boldsymbol{A}\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}.$$

Example. 使用范数表示向量的内积:

$$\boldsymbol{x}^{\top}\boldsymbol{y} = \|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\| \cos \theta.$$

即:

$$x \cdot y = xy \cos \theta$$
.

1.1 特殊的矩阵和向量

Example. 对角矩阵,用 D 表示,除主对角线上的元素其他的元素均为零:

$$\mathbf{D} = \begin{bmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{bmatrix}.$$

Notation. 对角矩阵不一定是方阵,非方阵超出方阵的部分全部为 0

Definition. 对角转换 diag: diag(v) 将 v 中的元素放入对角矩阵中

对角转换有以下性质:

- $\operatorname{diag}(\boldsymbol{v})\boldsymbol{x} = \boldsymbol{v} \odot \boldsymbol{x}$
- $\operatorname{diag}(\boldsymbol{v})^{-1} = \operatorname{diag}(\begin{bmatrix} \frac{1}{\boldsymbol{v}_1} & \dots & \frac{1}{\boldsymbol{v}_n} \end{bmatrix}^\top)$

Example. 对称矩阵: $\mathbf{A} = \mathbf{A}^{\top}$,常用于某些不依赖参数顺序的双参数函数,交换 i,j 后结果不变

Example. 单位向量: 范数为 1 的向量, 即: $\|x\|_n = 1$

Example. 向量的正交: ${m x}^{\top}{m y} = 0$,代表着 $\|{m x}\|_n$ 和 $\|{m y}\|_n$ 都不为零时 ${m \theta} = \frac{\pi}{2}$ 标准正交: ${m \theta} = \frac{\pi}{2}$ 且 $\|{m x}\|_n = \|{m y}\|_n = 1$

Example. 正交矩阵: 行向量和列向量都分别标准正交, 有以下性质:

$$A^{\top}A = AA^{\top} = I \Rightarrow A^{-1} = A^{\top}.$$

可得: 正交矩阵求逆非常容易, 可以用来求解线性方程组

1.2 特征分解

Definition. 特征向量和特征值:

$$Ax = \lambda x$$
.

则 λ 为 A 的特征值, x 为 A 的一个 (右) 特征向量

$$\boldsymbol{x}^{\top} \boldsymbol{A} = \lambda \boldsymbol{x}^{\top}.$$

称 x 为左特征向量

Definition. 特征分解: 如果 \boldsymbol{A} 有 n 个线性无关的特征向量 $\{\boldsymbol{v}^{(1)},\dots,\boldsymbol{v}^{(n)}\}$,对应 n 个特征值 $\{\lambda_1,\dots,\lambda_n\}$,将特征向量(列向量)排列为一个矩阵 $\boldsymbol{V}=\begin{bmatrix}\boldsymbol{v}^{(1)}&\dots&\boldsymbol{v}^{(n)}\end{bmatrix}$,并将特征值排列为一个向量 $\boldsymbol{\lambda}=\begin{bmatrix}\lambda_1&\dots&\lambda_n\end{bmatrix}^{\mathsf{T}}$,则:

$$A = V \operatorname{diag}(\lambda) V^{-1}.$$

特征向量、值、分解的性质:

- A 对 x 变换相当于对 x 缩放 λ 倍
- $v \in A$ 的特征向量,则 cv 也是,且特征值一样
- 实对称矩阵一定可以分解为实特征向量和实特征值,即 $A = Q\Lambda Q^{\top}$

Notation. 实对称矩阵的分解:

$$A = Q\Lambda Q^{\top}$$
.

其中 Q 为 A 的特征向量 $v^{(i)}$ 组成的**正交矩阵**, Λ 为对角矩阵,且 $\Lambda_{i,i} = \lambda_i$ 所对应的特征向量 Q 的第 i 个列向量 $Q_{:,i}$

使用 A 进行矩阵乘法可以看作是:将空间各自沿 $v^{(i)}$ 延展 λ_i 倍

None: Deep Learning 5

图 3: 实对称矩阵的乘法

Learn 3 01.31

Notation. $x^{T}Ax$ 表示二次型或者二次方程 (x) 为二维向量), 如:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 a + x_2 b & x_1 b + x_2 c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= ax_1^2 + 2bx_1x_2 + cx_2^2.$$

Definition. 所有特征值都是非负数的矩阵为半正定矩阵,对于半正定矩阵有:

$$\forall \boldsymbol{x}, \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \geq 0.$$

对于正定矩阵 $(A_{i,j} > 0)$ 有:

$$\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} = 0 \Rightarrow \boldsymbol{x} = \boldsymbol{0}.$$

Notation. $\exists x \in A$ 的某个特征向量 v 时,由于:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

且 $\boldsymbol{x} = \boldsymbol{v} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\top}$, 二次型可以写为: $f = \boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v}$, 带入得:

$$f = \mathbf{v}^{\top} \mathbf{A} \mathbf{v}$$

$$= \mathbf{v}^{\top} \lambda \mathbf{v}$$

$$= \lambda \mathbf{v}^{\top} \mathbf{v}$$

$$= \lambda \left(x_1^2 + x_2^2 \right).$$

Learn 3

None: Deep Learning

如果限定 $\|\boldsymbol{x}\|_2 = 1$,即 $x_1^2 + x_2^2 = 1$,则 $f = \lambda$,即 $\max(f) = \max(\lambda)$, $\min(f) = \min(\lambda)$

1.3 奇异值分解

除特征分解外,还有一种分解叫做奇异值分解,将一个实对称矩阵分解为奇异向量和奇异值

6

Notation. 特征分解: $A = V \operatorname{diag}(\lambda) V^{-1}$

Definition. 奇异值分解 (SVD):

$$A = UDV^{\top}$$
 or $A = U\Sigma V^{\top}$.

Notation. 每个实数矩阵都有一个奇异值分解

Learn 4 02.01

Notation. 奇异值分解出来的部分:

• $U: m \times m$ 的方阵,为正交矩阵,其列向量为**左奇异向量**

• $D: m \times n$ 的矩阵, 为对角矩阵, 其对角线值为**奇异值**

• $V: n \times n$ 的方阵,为正交矩阵,其列向量为**右奇异向量**