Computer Architecture

Tutorial 4 – Floating Point Numbers

- 1) Convert the following decimal numbers to binary: a) 5.5 b) 8.25 c) 9.3 d) 11.46875
- 2) Convert the binary number 1001.1010101 to decimal.
- 3) Normalise the following binary numbers: a) 101.1 b) 1000.01 c) 0.00010101
- 4) Convert –31.3 to IEEE Single Precision format.
- 5) Interpret the 32-bit hexadecimal value C154 0000 as an IEEE Single Precision number.
- 6) Carry out the operation 31.3 + 13.25 in IEEE Single Precision arithmetic
- 7) Fill in the missing entries

	Fraction	Binary	Decimal	
	1/4	0.01	0.25	
	3/8			
L	23/16	4		TT_1
F	ASS12	mment	Project.	Exam Help
		1.011	3	1
	4	1.1	5.625	
	ľ	ittps://ti	utorcs.co	om

8) Consider a five-bit floating representation based on the IEEE floating point format with 1 sign bit, two exponent bits and 2 significand bits. For this format fill in the missing entries:

WeChat: cstutorcs

Bits	Binary Value or Special Value	Decimal value or Special Value
0 00 00	•	•
0 00 01		
0 00 10		
0 00 11		
0 01 00		
0 01 01		
0 01 10		
0 01 11		
0 10 00		
0 10 01		
0 10 10		
0 10 11		
0 11 00		
0 11 01		
0 11 10		
0 11 11		