		/ariables aleato			
Considere	emos dos juegos en	el que cada jugad	or arroja 3	veces una mone	eda, la c
	pabilidad P de salir ner juego:	cara. (o < p < 1)			
		cara, se le paga al	2.70		
	- Por cada	cruz el jugador de	be pagar \$	1.	
En el seg	undo juego:				
		al jugador \$3 si ob	8		•
		r paga \$4 si obtier	ie por io me	enos z cruces.	
Entonces	$(\Omega, \mathcal{O}(\Delta), \mathcal{P})$				
			Juego 1	Juego 2	
	w	P (204)	X(w)	λ(m)	
	(ccc)	P3	3	3	
	(ccc) (ccx)	b ₂ (1-b)	7	3	
	(CXC)	P2 (1-P)	1	3	
	(xcc)	b 2 (1-b)	1	3	
	(C X X)	P (1-P)2	-1	-4	
	(xcx)	P (1-P)2	-1	-4	
	(xxc)	P (1-P)2	- 1	- 4	
	(xxx)	$(1-P)^3$	-3	-4	
	1	^	K	1	
	Puntos Muestrales	Asignación de	Cantidad en	, \$ que	
	(Resultados del experimento)	Probabilidad		o que debe	

La cantidad de interés en cada juego está representada en ambos juegos por la cantidad total que recibe o debe pagar el jugador.

Esta cantidad puede pensarse como una función del resultado del experimento.
Más precisamente que tanto X como Y son funciones a valores reales cuyo
dominio es 🗘 . Precisemos estas ideas:
Definición: Sea E experimento con espacio muestral IL J
Sea A una J-á/3ebra de subconjuntos de D. Decimos que
X. Ω - R función es una variable aleatoria (na) sobre (Ω,) si
4 x ∈ R, se cumple que que Ω/x(w) (z f ∈ d)
La definición establece que X: 2 - R función, es r.a
La definición establece que $X:\Omega \to \mathbb{R}$ deunción, es r.a. sobre (Ω, A) , si $\forall x \in \mathbb{R}$ $\forall w \in \Omega/X(w) \in x$ es un evento; es
decir la preimagen por X de (-00, 2) es un evento 4 20 R.
La definición NO afirma que X tiene inversa
X: \(\Omega\) = IR dunción \(\text{X-1}\)
$\chi \in \mathbb{R} \longrightarrow (-\infty, \chi) \xrightarrow{\chi^{-1}} \partial \omega \in \mathcal{D}/\chi(\omega) \in \chi$
Subconjunto de Il que puede o no estar en A.
Pore que X sea v.a. ques/x(w) {2} de be eston end,
andquiere see x en iR.
Ejemplo: En el problema de los dos juegos, nos
concentremos en el juego 1

7=}((ccc); (ccx);	(cxc); (xc	c);(<xx);(xc< th=""><th>x); (xxc); (xxx)</th></xx);(xc<>	x); (xxc); (xxx)
Q = R	(D) P= "	probabilid	lad di Sacor	cora en cq. tiro
	Juego 4	JUEGO 2		
w	P (164) X(W)	γ(ω)	Definamos	$X: \Omega \longrightarrow \mathbb{R}$ to
(ccc)	p ³ 3	3	'	
(cxc)	$\begin{array}{c c} P^2(1-P) & 1 \\ P^2(1-P) & 1 \end{array}$	3	(-3 5)	w=(xxx)
(xcc)	b _s (1-b) 1	3 4	(1) -1 si	$\omega \in \{(C\times X); (X\times X); (X\times X)\}$
(c x x)	P (1-P)2 -1	-4 \\\	$(\omega)=\begin{cases} 1 & \text{si} \end{cases}$	w ∈ { (ccx); (cxc); (xc
(xcx)	b (1-b) ₅ -1	-4		
(xxx)	$P (1-P)^3 - 3$	- 4		$\omega_{=}(ccc)$
(1344)	(1-1) -5	-4		
- 3	X raniable o	0	1	2 3
Sec 2	-<-3 \we	: √ × (∞) <	$\{x\} = \emptyset \in \mathbb{R}$	A
See -3	< x < -1 &	m ∈ V \ X (·	w) < ze = 2 w =	$2\sqrt{X(\omega)} = -3 = \frac{1}{2}(x)$
) 1	
				C 94
	/ × ()	16 0 X(m) <	~ } ~ {(xxx).($(xx) \cdot (xcx) \cdot (xxc)^{2}$
	< x < 1 } w	, ∈ υ \ X (ω) <		c xx); (xcx); (xxc)}
	< x < 1 } w	s∈ σ \ X (ω) <	= {(xxx);(
	< x < 1 / w) ∈ Ω ∫ X (ω) ≤		
Sec -1				
Sec -1	SXCI gui	(cicio)	E A	

Demostración: E jercicio · Ayuda para a): Sea XER $\{\omega \in \nabla \setminus x(\omega) \times x\} = \bigcup_{m \in M} \{\omega \in \nabla \setminus x(\omega) \times x - \frac{1}{m}\}$ · A y v da para b): Aplicar a) y vsar diferencia de conjuntos. Notación: (Simplificamos la escritira) Sea & ER al conjunto {wer/x(w) {x} lo Lenotoremos como }x {x} ó (x{x}). Es decir ψω ε Σλ χ (ω) < χ } = : - { X < χ } = : (X ≤ χ) Similarmente: $\forall \omega \in \mathcal{A} / X(\omega) = \chi^2 = : \forall X = \chi^2 = : (X = \chi)$ $\frac{1}{2}$ $\omega \in \Omega / X(\omega) < x = \frac{1}{2} \times \langle x \rangle = \frac{1}{2} \times \langle x \rangle$ Definición

Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y sea $X: \Omega \longrightarrow \mathbb{R}$ una función. Decimos que X es una rariable aleatoria discreta sobre (Ω, \mathcal{A}) si su rango es un conjunto finito de números reales \mathcal{A} \mathcal{A}

Definicion:

Si X es v. a discreta sobre (I, A), decimos que X

es una v.a a valores enteros si X toma sólo valores
enteros; y decimos que X es v.a. a valores enteros no

negativos, cuando X asume sólo valores extens no negetivos.

= Exemplo:

La v.a X del juego 1 es voriable aleatoria discreta (Ejercicio)

En particular es vaniable alestoria a valores enteros (Ejercicio)

Ejemplo

Consideremos el caso del juego 1; definimos, X variable aleatoria discreta dada por:

$$X(w) = \begin{cases} -3 & \text{si} & w = (x, x, x) \\ -1 & \text{si} & w \in \{(x, x, c); (x, c, x); (c, x, x)\} \\ 1 & \text{si} & w \in \{(c, c, x); (x, c, c); (c, x, c)\} \\ 3 & \text{si} & w = (c, c, c) \end{cases}$$

donde c indica que la moneda salió cara; y ${\bf x}$ indica que la moneda salió cruz.

Entonces, si p es la probabilidad de que la moneda salga cara (0 , la función de densidad discreta de

X esta dada por $p_X : \mathbb{R} \to [0, 1]$:

($(1-p)^3$ $3p(1-p)^2$ $3p^2(1-p)$ p^3 0	$_{ m si}$	x = -3
- 1	$3p(1-p)^2$	si	x = -1
$p_X(x) = \langle$	$3p^2(1-p)$	si	x = 1
	p^3	si	x = 3
l	0	c.c.	

		Juseo 1	Ju#40 2
w	P (3w3)	X(w)	Y(w)
(ccc)	P3	3	3
(ccx)	P2 (1-P)	1	3
(cxc)	P2 (1-P)	1	3
(xcc)	bs (1-b)	1	3
(CXX)	P (1-P)2	-1	-4
(xcx)	P (1-P)2	-1	-4
(xxc)	P (1-P)2	-1	- 4
(xxx)	(I-P)3	-3	-4

La función p_X depende de la constante p, llamado parámetro de la función de densidad discreta de X.

Supongamos p = 0.5 (Caso 1):

$$p_X(x) = \begin{cases} 1/8 & \text{si} \quad x = -3 \text{ ó } x = 3\\ 3/8 & \text{si} \quad x = -1 \text{ ó } x = 1\\ 0 & \text{c.c.} \end{cases}$$

Analicemos otros casos:

Caso 2: p = 1/3

$$p_X(x) = \begin{cases} 8/27 & \mathbf{si} \quad x = -3\\ 12/27 & \mathbf{si} \quad x = -1\\ 6/27 & \mathbf{si} \quad x = 1\\ 1/27 & \mathbf{si} \quad x = 3\\ 0 & \mathbf{c.c.} \end{cases}$$

$$p_X(x) = \begin{cases} 1/27 & \mathbf{si} \quad x = -3 \\ 6/27 & \mathbf{si} \quad x = -1 \\ 12/27 & \mathbf{si} \quad x = 1 \\ 8/27 & \mathbf{si} \quad x = 3 \\ 0 & \mathbf{c.c.} \end{cases}$$

E	jei	(ci)	دئر	<u>S</u>												
					0.0	.1	െ	~ P			Ф	T	_	h	- 00	
-)	con	<i>P</i>	en	Q	me.	3' X	5 C	- (CC	C E	PX IR)	3	አ	pou	a el	
	,			1												
	د)	Ver	171	cou	Ca	ue	yn c	de	fir	11 do	- 0 :Sc	ceto	27+i	C C	rec 2lore	25
		Ju er	te.	ros		_v (१२०	4	2+4	mir	\a(- P.	1 7 1	Ŧy	alore feren	
		60	a f	ز ده	ir do	es	tas	7	UNC	roz 12	les	po	(0)	منه	feren	ntes
		D =	2/	3)		٢	(pe	, , ,		mpl	0:	β-	. 0.	ا اح	P= 1	13
		•														