

SLLS664D -AUGUST 2005-REVISED MAY 2017

MAX3232E

MAX3232E 3-V to 5.5-V Multichannel RS-232 Line Driver and Receiver With ±15-kV IEC ESD Protection

1 Features

- ESD Protection for RS-232 Bus Pins
 - ±15 kV (HBM)
 - ±8 kV (IEC61000-4-2, Contact Discharge)
 - ±15 kV (IEC61000-4-2, Air-Gap Discharge)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU V.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates up to 250 kbit/s
- Two Drivers and Two Receivers
- Low Supply Current: 300 μA (Typical)
- External Capacitors: 4 x 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Pin Compatible to Alternative High-Speed Devices (1 Mbit/s)
 - SN65C3232E (-40°C to +85°C)
 - SN75C3232E (0°C to 70°C)

2 Applications

- · Battery-Powered Systems
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

3 Description

The MAX3232E device consists of two line drivers, two-line receivers, and a dual charge-pump circuit with ±15-kV IEC ESD protection pin to pin (serial-port connection pins, including GND).

The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at data signaling rates up to 250 kbit/s and a maximum of $30\text{-V}/\mu\text{s}$ driver output slew rate.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
MAX3232ExD	SOIC (16)	9.90 mm × 3.91 mm
MAX3232ExDB	SSOP (16)	6.20 mm × 5.30 mm
MAX3232ExDW	SOIC (16)	10.30 mm × 7.50 mm
MAX3232ExPW	TSSOP (16)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Diagram

Table of Contents

1	Features 1	8.1 Overview 8
2	Applications 1	8.2 Functional Block Diagram
3	Description 1	8.3 Feature Description
4	Revision History2	8.4 Device Functional Modes
5	Pin Configuration and Functions	9 Application and Implementation 10
6	Specifications	9.1 Application Information
	6.1 Absolute Maximum Ratings 4 6.2 ESD Ratings 4	9.2 Typical Application
	6.3 Recommended Operating Conditions	11 Layout 12
	6.4 Thermal Information	11.1 Layout Guidelines
	6.6 Electrical Characteristics — Device	12 Device and Documentation Support 13
	6.7 Electrical Characteristics — Receiver	12.1 Community Resources
	6.8 Switching Characteristics	12.3 Electrostatic Discharge Caution
7	Parameter Measurement Information 7	12.4 Glossary13
8	Detailed Description 8	13 Mechanical, Packaging, and Orderable Information

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	Changed 3 V ± 5.5 V to 3 V to 5.5 V in the V _{CC} column of Table 3	Page
•	Changed 3 V ± 5.5 V to 3 V to 5.5 V in the V _{CC} column of Table 3	10
Cł	nanges from Revision B (December 2013) to Revision C	Page
•	section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable	1
Cł	nanges from Revision A (April 2007) to Revision B	Page
•	Updated document to new TI data sheet format. Deleted Ordering Information table.	

Submit Documentation Feedback

Copyright © 2005–2017, Texas Instruments Incorporated

5 Pin Configuration and Functions

Pin Functions

PIN I/O		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
C1+	1	_	Positive lead of C1 capacitor
V+	2	0	Positive charge pump output for storage capacitor only
C1-	3	_	Negative lead of C1 capacitor
C2+	4	_	Positive lead of C2 capacitor
C2-	5	_	Negative lead of C2 capacitor
V-	6	0	Negative charge pump output for storage capacitor only
DOUT2	7	0	RS232 line data output (to remote RS232 system)
RIN2	8	I	RS232 line data input (from remote RS232 system)
ROUT2	9	0	Logic data output (to UART)
DIN2	10	I	Logic data input (from UART)
DIN1	11	I	Logic data input (from UART)
ROUT1	12	0	Logic data output (to UART)
RIN1	13	I	RS232 line data input (from remote RS232 system)
DOUT1	14	0	RS232 line data output (to remote RS232 system)
GND	15	_	Ground
V _{CC}	16	_	Supply Voltage, Connect to external 3-V to 5.5-V power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

				MIN	MAX	UNIT
V _{CC}	Supply voltage (2)			-0.3	6	V
V+	Positive output supply voltage (2)		-0.3	7	V	
V-	Negative output supply voltage (2)		0.3	- 7	V	
V+ - V-	Supply voltage difference ⁽²⁾			13	V	
V _I	lanut valta va	Drivers		-0.3	6	V
VI	Input voltage	Receivers		-25	25	V
\/	Output valtage	Drivers		-13.2	13.2	V
Vo	Output voltage	Receivers		-0.3	$V_{CC} + 0.3$	V
TJ	Operating virtual junction temperature				150	°C
T _{stg}	Storage temperature			-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	All pins except RIN and DOUT	±2000	
		ANSI/ESDA/JEDEC JS-001117	RIN and DOUT Pins	±15,000	
		Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	All pins	±1500	V
		IEC61000-4-2, Contact Discharge	RS232 port pins (RIN, DOUT)	±8000	
		IEC61000-4-2, Air-Gap Discharge		±15,000	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions⁽¹⁾

See Figure 7.

				MIN	NOM	MAX	UNIT
	Cumply valtage		V _{CC} = 3.3 V	3	3.3	3.6	V
	Supply voltage		V _{CC} = 5 V	4.5	5	5.5	V
.,	Driver high-level input voltage	DIN	$V_{CC} = 3.3 \text{ V}$	2		5.5	V
V_{IH}		DIN	$V_{CC} = 5 V$	2.4		5.5	
V_{IL}	Driver low-level input voltage	DIN		0		0.8	V
VI	Receiver input voltage	RIN		-25		25	V
т	Operating free-air temperature		MAX3232EC	0		70	°C
IA			MAX3232EI	-40		85	

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

⁽²⁾ All voltages are with respect to network GND.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		MAX3232E					
		PW (TSSOP)	D (SOIC)	DW (SOIC)	DB (SSOP)	UNIT	
		16 PINS	16 PINS	16 PINS	16 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	99.3	76.1	72.3	90.9	°C/W	
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	20.8	36.7	33.5	36.2	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	45.1	33.6	37.1	43.8	°C/W	
ΨЈТ	Junction-to-top characterization parameter	0.6	4.2	7.5	4.2	°C/W	
ΨЈВ	Junction-to-board characterization parameter	45.1	33.3	37.1	42.9	°C/W	
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	-	-	_	_	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics — Device⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7).

	PARAMETER	TEST CONDITIONS	MIN TYP ⁽²⁾	MAX	UNIT
I _{CC}	Supply current	No load, V _{CC} = 3.3 V or 5 V	0.3	1	mA

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

6.6 Electrical Characteristics — Driver⁽¹⁾

over operating free-air temperature range (unless otherwise noted) (see Figure 7).

PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.4		٧
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	$DIN = V_{CC}$	- 5	-5.4		V
I _{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND			±0.01	±1	μΑ
I _{OS} (3)	Short-circuit output current	$V_{CC} = 3.6 \text{ V},$	$V_O = 0 V$.25	±60	mA
los (°)	Short-circuit output current	$V_{CC} = 5.5 \text{ V},$	$V_O = 0 V$		±35	±6U	MA
r _O	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$	300	10M		Ω

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

6.7 Electrical Characteristics — Receiver⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7).

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	$V_{CC} - 0.1$		V
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
.,	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.5	2.4	V
V _{IT+}		V _{CC} = 5 V		1.8	2.4	V
.,	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.2		V
V _{IT}		V _{CC} = 5 V	0.8	1.5		
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.3		V
rį	Input resistance	$V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.

All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.

6.8 Switching Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$R_L = 3 k\Omega$, One DOUT switching,	C _L = 1000 pF, see Figure 3	150	250		kbit/s
t _{sk(p)}	Driver pulse skew ⁽³⁾	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ see Figure 4	$C_L = 150 \text{ pF to } 2500 \text{ pF},$		300		ns
	Driver slew rate, transition	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ $V_{CC} = 3.3 \text{ V}$	C _L = 150 pF to 1000 pF	6	6	30	
SR(tr)	region (see Figure 3)		C _L = 150 pF to 2500 pF	4		30	V/μs
t _{PLH}	Receiver propagation delay time, low- to high-level output	$C_1 = 150 \text{ pF},$			300		ns
t _{PHL}	Receiver propagation delay time, high- to low-level output	see Figure 5			300		ns
t _{sk(p)}	Receiver pulse skew ⁽³⁾				300		ns

- Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as $|t_{PLH} t_{PHL}|$ of each channel of the same device.

6.9 Typical Characteristics

 $V_{CC} = 3.3 \text{ V}$

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns

Figure 3. Driver Slew Rate

- A. C_L includes probe and jig capacitance
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns

Figure 4. Driver Pulse Skew

- A. C_L includes probe and jig capacitance
- B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$

Figure 5. Receiver Propagation Delay Times

8 Detailed Description

8.1 Overview

The MAX3232E device consists of two line drivers, two-line receivers, and a dual charge-pump circuit with IEC61000-4-2 ESD protection terminal to terminal (serial-port connection terminals, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate. Outputs are protected against shorts to ground.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Power

The power block increases, inverts, and regulates voltage at V+ and V- pins using a charge pump that requires four external capacitors.

8.3.2 RS232 Driver

Two drivers interface standard logic level to RS232 levels. Both DIN inputs must be valid high or low.

8.3.3 RS232 Receiver

Two receivers interface RS232 levels to standard logic levels. An open input will result in a high output on ROUT. Each RIN input includes an internal standard RS232 load.

8.4 Device Functional Modes

Table 1 and Table 2 list the functional modes of the drivers and receivers of MAX3232E.

Table 1. Each Driver⁽¹⁾

INPUT DIN	OUTPUT DOUT					
L	Н					
Н	L					

(1) H = high level, L = low level

Table 2. Each Receiver⁽¹⁾

INPUT RIN	OUTPUT ROUT
L	Н
Н	L
Open	Н

H = high level, L = low level,
 Open = input disconnected or connected driver off

Figure 6. Logic Diagram

8.4.1 V_{CC} Powered by 3 V to 5.5 V

The device is in normal operation.

8.4.2 V_{CC} Unpowered, $V_{CC} = 0 \text{ V}$

When MAX3232E is unpowered, it can be safely connected to an active remote RS232 device.

Copyright © 2005–2017, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

For proper operation, add capacitors as shown in Table 3.

9.2 Typical Application

ROUT and DIN connect to UART or general-purpose logic lines. RIN and DOUT lines connect to a RS232 connector or cable.

(1) C3 can be connected to V_{CC} or GND

Notes: A. Resistor values shown are nominal.

B. Nonpolorized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 7. Typical Operating Circuit and Capacitor Values

Table 3. VCC vs Capacitor Values

V _{CC}	C1	C2, C3, C4			
3.3 V ± 0.3 V	0.1 μF	0.1 μF			
5 V ± 0.5 V	0.047 µF	0.33 μF			
3 V to 5.5 V	0.1 μF	0.47 μF			

9.2.1 Design Requirements

The recommended V_{CC} is 3.3 V or 5 V. 3 V to 5.5 V is also possible

The maximum recommended bit rate is 250 kbit/s.

9.2.2 Detailed Design Procedure

All DIN inputs must be connected to valid low or high logic levels.

Select capacitor values based on V_{CC} level for best performance.

9.2.3 Application Curve

Figure 8 curves are for 3.3-V VCC and 250-kbit/s alternative bit data stream.

Figure 8. 250 kbit/s Driver to Receiver Loopback Timing Waveform, V_{CC} = 3.3 V

10 Power Supply Recommendations

The supply voltage, V_{CC} , should be between 3 V and 5.5 V. Select the values of the charge-pump capacitors using Table 3.

11 Layout

11.1 Layout Guidelines

Keep the external capacitor traces short, specifically on the C1 and C2 nodes that have the fastest rise and fall times.

11.2 Layout Example

Figure 9. Layout Diagram

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

4-May-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
MAX3232ECD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Sample
MAX3232ECDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Sample
MAX3232ECDBE4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Sampl
MAX3232ECDBG4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Sampl
MAX3232ECDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Sampl
MAX3232ECDBRG4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Sampl
MAX3232ECDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX3232EC	Samp
MAX3232ECPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	ILIM 0 to 70 MP232EC		Samp
MAX3232ECPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Samp
MAX3232ECPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Samp

www.ti.com

4-May-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MAX3232ECPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Samples
MAX3232ECPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Samples
MAX3232ECPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MP232EC	Samples
MAX3232EID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIDBE4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIDBG4	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIDBRE4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIDBRG4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples
MAX3232EIDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX3232EI	Samples

PACKAGE OPTION ADDENDUM

4-May-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MAX3232EIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples
MAX3232EIPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MP232EI	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

4-May-2017

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MAX3232E:

Automotive: MAX3232E-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 5-May-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX3232ECDBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
MAX3232ECDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX3232ECDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
MAX3232ECPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
MAX3232EIDBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
MAX3232EIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX3232EIDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
MAX3232EIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 5-May-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX3232ECDBR	SSOP	DB	16	2000	367.0	367.0	38.0
MAX3232ECDR	SOIC	D	16	2500	367.0	367.0	38.0
MAX3232ECDWR	SOIC	DW	16	2000	367.0	367.0	38.0
MAX3232ECPWR	TSSOP	PW	16	2000	367.0	367.0	35.0
MAX3232EIDBR	SSOP	DB	16	2000	367.0	367.0	38.0
MAX3232EIDR	SOIC	D	16	2500	367.0	367.0	38.0
MAX3232EIDWR	SOIC	DW	16	2000	367.0	367.0	38.0
MAX3232EIPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.