Zhen Chen

Contact Department of Computer Science, The University of Texas at Austin 737-230-9435 Information 2317 Speedway, Stop D9500 zchen96@cs.utexas.edu Austin, Texas 78712, USA https://zhenchen-jay.github.io/

RESEARCH INTERESTS

Currently, My research majorly focuses on understanding the physical phenomenon of thin shell models, explore the corresponding geometric properties, and robust mesh processing. I am also interested in exploring the possibility to combine the cloth simulation with deep neutral networks.

EDUCATION The University of Texas at Austin

Austin, Texas

Ph.D. in Computer Science

2018 - Present

Supervisor: Prof. Etienne Vouga

University of Science and Technology of China

Bachelor in Mathematics

Anhui, China

2014 – 2018

Mentors: Prof. Ligang Liu

Publications

[1] **Zhen Chen**, Danny M. Kaufman, Mélina Skouras, Etienne Vouga. **Complex Wrinkle Evolution**. *ACM Transcations on Graphics*, 2023 (SIGGRAPH 2023).

- [2] Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, Xifeng Gao. Robust Low-Poly Meshing for General 3D Models. ACM Transcations on Graphics, 2023 (SIGGRAPH 2023).
- [3] Yan Zheng, Lemeng Wu, Xingchao Liu, **Zhen Chen**, Qiang Liu, Qixing Huang. **Neural Volumetric Mesh Generator**. *NeurIPS 2022 Workshop SBM Poster, 2022*.
- [4] **Zhen Chen**, Hsiao-yu Chen, Danny M. Kaufman, Mélina Skouras, Etienne Vouga. **Fine Wrinkling on Coarsely-Meshed Thin Shells**. *ACM Transcations on Graphics*, 2021.
- [5] Zhen Chen, Daniele Panozzo, Jeremie Dumas. Half-Space Power Diagrams and Discrete Surface Offsets. *IEEE Transaction on Visualization and Computer Graphics*, 2019.

TALKS Complex Wrinkle Field Evolution

SIGGRAPH 2023

Robust Low-Poly Meshing for General 3D Models

SIGGRAPH 2023

Fine Wrinkling on Coarsely-Meshed Thin Shells

SIGGRAPH 2022

Half-Space Power Diagrams and Discrete Surface Offsets (with Jeremie Dumas)

EXPERIENCE Research Intern, Tencent AI Lab

Bellevue, US

Mentor: Xifeng Gao Summer 2023

Project description: Develop a robust and efficient algorithm for approximate convex decomposition of general 3D meshes. We aim to enhance collision detection in real-time games.

Research Intern, Tencent AI Lab

Bellevue, US

Mentor: Xifeng Gao Summer 2022

Project description: Propose a remeshing algorithm which captures sharp features with intersect-free and water-tight guarantee, and apply this technique to the real word mesh data.

Research Intern, Adobe

Remote in Austin, US

Mentor: Danny M. Kaufman

Summer 2021

Project description: Design a time integrator which achieves a trade-off between amplitude distortion (dissipation) and period distortion (dispersion). This is specifically designed for the incremental potential contact (IPC) model.

Research Assistant

UT Austin

Supervisor: Etienne Vouga

Fall 2021 - Spring 2022

Project description: Proposed an algorithm which interpolates the wrinkle patterns on two key frames. This can be applied for the artist to draw and design wrinkles on the cloth, and get a temporally continuous interpolation.

Teaching assistant, Department of Computer Science	UT Austin
CS 303E: Elements of Computers and Programming	Fall 2018
Teaching assistant, Department of Mathematics	USTC
Complex Analysis	Fall 2017
Mathematical Analysis	Spring 2017
Student intern Coometrie Computing Lab	NIVII

Student intern, Geometric Computing Lab

NYU

Host: Prof. Daniele Panozzo

Summer 2017

Project description: Explored the algorithm to compute the offset surface of 3D meshes.

Reviews Eurographics 2022

Computer Graphics Forum 2022 SIGGRAPH 2022, 2023

HONORS AND Baosteel ScholarShip(Top 2%) 2017
AWARDS National Scholarship (Top 1% nationwide) 2016
Outstanding Freshman Scholarship (Top 1%) 2014

Language **Programming**: C/C++, Python, Matlab AND SKILLS **Software**: Houdini, Adobe Premiere

Language: Chinese(native), English(fluent)