Package 'pdglasso'

March 27, 2023

Type Package												
Title What the Package Does (Title Case) Version 0.1.0 Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.												
							License What license is it under?					
							Encoding UTF-8					
LazyData true												
RoxygenNote 7.2.3 Roxygen list(markdown = TRUE)												
							Url https://github.com/savranciati/pdglasso					
Depends R (>= 2.10)												
F	1											
get.pdColG	5 6 7 8											
Index	9											
admm.pdglasso Estimate a concentration matrix under the pdColG model using (adaptive) ADMM graphical lasso algorithm.												

Description

By providing a covariance matrix S and values for lambda_1 and lambda_2, this function estimates a concentration matrix X under the coloured graphical model for paired data, using the (adaptive) ADMM algorithm. The output is the matrix and a list of internal parameters used by the function, together with the specific call in terms of symmetries and penalties required by the user.

2 admm.pdglasso

Usage

```
admm.pdglasso(
  S,
  lambda1 = 1,
  lambda2 = 1e-04,
  type = c("vertex", "inside.block.edge", "across.block.edge"),
  force.symm = NULL,
  X.init = NULL,
  rho1 = 1,
  rho2 = 1,
  varying.rho1 = TRUE,
  varying.rho2 = TRUE,
 max_iter = 1000,
  eps.abs = 1e-12,
  eps.rel = 1e-12,
  verbose = FALSE,
 print.type = TRUE
)
```

Arguments

S A $p \times p$ covariance (or correlation) matrix.

lambda1 A non-negative scalar (or vector) penalty that encourages sparsity in the concen-

tration matrix. If a vector is provided, it should match the appropriate length,

i.e.

lambda2 A non-negative scalar (or vector) penalty that encourages equality constraints in

the concentration matrix. If a vector is provided, it should match the appropriate

length, i.e.

type A string or vector of strings for the type of equality constraints to be imposed;

zero, one or more available options can be selected among: * "vertex", symmetries are imposed on the diagonal entries of the concentration matrix. * "inside.block.edge", symmetries are imposed between elements of the LL and RR block the concentration matrix. * "across.block.edge", symmetries are imposed between elements of the LR and RL block the concentration matrix. Shortened

forms are accepted too, i.e. "V" or "vert" for "vertex".

force.symm A string or vector of strings to impose forced symmetry on the corresponding

block of the concentration matrix. Same options as "type".

X. init (optional) A $p \times p$ initial guess for the concentration matrix and/or starting so-

lution for the ADMM algorithm.

rho1 A scalar; tuning parameter of the ADMM algorithm to be used for the outer

loop. It must be strictly positive.

rho2 A scalar; tuning parameter of the ADMM algorithm to be used for the inner

loop. It must be strictly positive.

varying.rho1 A boolean value; if TRUE the parameter rho1 is updated iteratively to speed-up

convergence.

varying.rho2 A boolean value; if TRUE the parameter rho2 is updated iteratively to speed-up

convergence.

max_iter An integer; maximum number of iterations to be run in case the algorithm does

not converge.

fit.pdColG 3

eps.abs	A scalar; the absolute precision required for the computation of primal and dual residuals of the ADMM algorithm.
eps.rel	A scalar; the relative precision required for the computation of primal and dual residuals of the ADMM algorithm.
verbose	A boolean value; if TRUE the progress (and internal convergence of inner loop) is shown in the console while the algorithm is running.
print.type	A boolean value; if TRUE the acronym used for the model - which penalties - is returned as printed output in the console.

Value

A list, whose element are:

- X, the estimated concentration matrix under the pdglasso model; the model is identified by the values of lambda1 and lambda 2, together with the type of penalization imposed.
- acronyms, a vector of strings for the type of penalties and forced symmetries imposed when calling the function.
- internal.par, a list of internal parameters passed to the function at the call, as well as convergence information.

Examples

```
S <- cov(toy_data$sample.data)
admm.pdglasso(S)</pre>
```

fit.pdColG

Fit and select a coloured graphical models for paired data according to eBIC criterion.

Description

Performs a sequence of calls to admm.pdglasso() providing two grids of values for lambda_1 and lambda_2. First, a grid search conditional on lambda_2=0 is run to select the best lambda_1 value among the candidates (according to eBIC); conditional on the best lambda_1, a similar search is performed for lambda_2. The output is the select model, given by the estimated concentation matrix and corresponding graph.

Usage

```
fit.pdColG(
   S,
   n,
   n.l1 = 15,
   n.l2 = 15,
   gamma.eBIC = 0.5,
   type = c("vertex", "inside.block.edge", "across.block.edge"),
   force.symm = NULL,
   X.init = NULL,
   rho1 = 1,
   rho2 = 1,
```

4 fit.pdColG

```
varying.rho1 = TRUE,
varying.rho2 = TRUE,
max_iter = 1000,
eps.abs = 1e-12,
eps.rel = 1e-12,
verbose = FALSE,
print.type = TRUE,
...
)
```

Arguments

	(or correlation)	

n the sample size of the data used to compute the sample covariance matrix S.

n.11 the number of values in the grid of candidates for lambda_1.

n.12 the number of values in the grid of candidates for lambda_2.

type A string or vector of strings for the type of equality constraints to be imposed;

zero, one or more available options can be selected among: * "vertex", symmetries are imposed on the diagonal entries of the concentration matrix. * "inside.block.edge", symmetries are imposed between elements of the LL and RR block the concentration matrix. * "across.block.edge", symmetries are imposed between elements of the LR and RL block the concentration matrix. Shortened

forms are accepted too, i.e. "V" or "vert" for "vertex".

force.symm A string or vector of strings to impose forced symmetry on the corresponding

block of the concentration matrix. Same options as "type".

X. init (optional) A $p \times p$ initial guess for the concentration matrix and/or starting so-

lution for the ADMM algorithm.

rho1 A scalar; tuning parameter of the ADMM algorithm to be used for the outer

loop. It must be strictly positive.

rho2 A scalar; tuning parameter of the ADMM algorithm to be used for the inner

loop. It must be strictly positive.

varying.rho1 A boolean value; if TRUE the parameter rho1 is updated iteratively to speed-up

convergence.

varying.rho2 A boolean value; if TRUE the parameter rho2 is updated iteratively to speed-up

convergence.

max_iter An integer; maximum number of iterations to be run in case the algorithm does

not converge.

eps.abs A scalar; the absolute precision required for the computation of primal and dual

residuals of the ADMM algorithm.

eps.rel A scalar; the relative precision required for the computation of primal and dual

residuals of the ADMM algorithm.

verbose A boolean value; if TRUE the progress (and internal convergence of inner loop)

is shown in the console while the algorithm is running.

print.type A boolean value; if TRUE the acronym used for the model - which penalties - is

returned as printed output in the console.

gamma the parameter for the eBIC computation. gamma=0 is equivalent to BIC.

get.pdColG 5

Value

a list:

- model, the final model;
- pdColG, the associated coloured graph;
- 11.path, a matrix containing the grid values for lambda_1 as well as quantities used in eBIC computation;
- 12.path, a matrix containing the grid values for lambda_2 as well as quantities used in eBIC computation.

Examples

```
S <- cov(toy_data$sample.data)
fit.pdColG(S)</pre>
```

get.pdColG

Build a graph from the output of a call to admm.pdglasso.

Description

Description here.

Usage

```
get.pdColG(admm.out, th1 = NULL, th2 = NULL, verbose = FALSE)
```

Arguments

admm.out	An object of list type, that is the output of a call to the admm-pdglasso function.
th1	(optional) A scalar, the threshold to identify edges in the graph; it must be non-negative.
th2	(optional) A scalar, the threshold to identify coloured edges in the graph; it must be non-negative.
verbose	(optional) if TRUE provides summary statistics of the graph.

Value

a list, containing:

- g, the graph in matrix form.
- dof, the degrees of freedom corresponding to the graph build under the pdglasso model provided.

Examples

```
S <- cov(toy_data)
mod.out <- admm.pdglasso(S)
get.pdColG(mod.out)</pre>
```

6 pdColG.summarize

pdColG.mle

Maximum likelihood estimate

Description

Computes the m.l.e. of the concentration matrix of a colured graphical model for paired data.

Usage

```
pdColG.mle(S, pdColG)
```

Arguments

S a sample variance and covariance matrix.

pdColG a coloured graph for paired data.

Value

the m.l.e. of the concentration matrix Σ^{-1} .

Examples

#

pdColG.summarize

Summary statistics for coloured graphs for paired data

Description

This function

Usage

```
pdColG.summarize(pdColG, print.summary = TRUE)
```

Arguments

```
pdColG a coloured graph for paired data.
```

print.summary logical (default TRUE) indicating whether a summary should be printed.

Value

a list

Examples

```
#
pdColG.summarize(toy_data$pdColG)
```

simul.pdColG 7

simul.pdColG

Title

Description

Title

Usage

```
simul.pdColG(
  p,
  concent.mat = TRUE,
  sample = TRUE,
  Sigma = NULL,
  sample.size = NULL,
  type = c("vertex", "inside.block.edge", "across.block.edge"),
  force.symm = NULL,
  dens = 0.1,
  dens.vertex = NULL,
  dens.inside = NULL,
  dens.across = NULL
)
```

Arguments

p number of variables.

concent.mat a logical (default TRUE) indicating whether a concentration matrix should be

generated.

sample a logical (default TRUE) indicating whether a sample form a normal distribution

with zero mean vector and the generated concentration matrix should be gener-

ated.

Sigma x

sample.size sample size with default value equal to 3p.

Value

this function

Examples

#

8 toy_data

toy_data

Toy dataset generated through simul.pdColG() function

Description

Data simulated by using the function simul.pdColG with the following arguments:

```
• p <- 20
```

- q <- p/2
- dens=0.3, type=c("v","i","a"), force=NULL

Usage

toy_data

Format

toy_data:

A list containing three elements:

- pdColG, a $p \times p$ matrix describing the coloured graphical model,
- K, the concentration matrix associated to the model,
- sample.data, a data frame with 60 rows and 20 columns.

Source

Generated by the package functions.

Index