ผลการทดลอง Lab 1

ตอนที่ 1: การทดลองอ่านไฟล์ข้อมูล การแก้ปัญหา ข้อมูลหาย และการปรับช่วงค่าของข้อมูล แสดงข้อมูล เชิง กราฟ และ การจัดเตรียมรูปแบบข้อมูลเพื่อนำเข้าโมเดล

1. ขั้นตอนการทดลองในการนำเข้าข้อมูล

import lib

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from mpl_toolkits.mplot3d import Axes3D
   import seaborn as sns
```

read data file

```
In [2]: df = pd.read_csv('watch_test2_sample.csv')
```

แปลงชนิดของข้อมูล และทำการcopyข้อมูลไว้เพื่อใช้งานในการplot gps จากค่าจริง

```
In [3]: df['uts'] = pd.to_datetime(df['uts'])
    df.sort_values('uts', inplace = True)
    df_copy = df.copy()
```

- In [1] ทำการ import library ที่จำเป็นต่อการทดลอง
- In [2] อ่านไฟล์จาก .csv โดยใช้ pandas แล้วเก็บลง df
- In [3] แปลง format ของ feature "uts" จาก string เป็น datetime และทำการ copy ข้อมูลไว้เพื่อใช้ งานในการplot GPS จากค่าจริง

กลุ่ม เด็กดีขี้เมา

:	df													
:		uts	accelerateX	accelerateY	accelerateZ	compass	gps.x	gps.y	gyro.x	gyro.y	gyro.z	heartrate	light	pressure
	0	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	1	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	2	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	3	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	4	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	6265	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6264	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6274	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6268	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6275	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726

ln [4] นำข้อมูลมาแสดงผลเพื่อตรวจสอบความถูกต้องของ feature ใน table

In [4]:
Out[4]:

6276 rows × 13 columns

2. ทำการลดปัญหาข้อผิดพลาดของข้อมูล

```
In [5]: df = df.drop duplicates(keep="first")
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 271 entries, 0 to 6273
        Data columns (total 13 columns):
                       271 non-null datetime64[ns, pytz.FixedOffset(420)]
        uts
        accelerateX 267 non-null float64
        accelerateY 267 non-null float64
        accelerateZ 267 non-null float64
                     270 non-null float64
        compass
                      271 non-null float64
        gps.x
                      271 non-null float64
        gps.y
        gyro.x
                      268 non-null float64
                      269 non-null float64
        gyro.y
                      269 non-null float64
        gyro.z
                      270 non-null float64
        heartrate
                       271 non-null int64
        light
                       269 non-null float64
        pressure
        dtypes: datetime64[ns, pytz.FixedOffset(420)](1), float64(11), int64(1)
        memory usage: 29.6 KB
     ln [5] ทำการลบข้อมูลที่มีค่าซ้ำซ้อน โดยเลือกเก็บข้อมูลชุดแรกที่เจอ
In [6]: df = df.fillna(df.median())
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 271 entries, 0 to 6273
        Data columns (total 13 columns):
                     271 non-null datetime64[ns, pytz.FixedOffset(420)]
        uts
        accelerateX 271 non-null float64
        accelerateY 271 non-null float64
        accelerateZ 271 non-null float64
                      271 non-null float64
        compass
                      271 non-null float64
        gps.x
                      271 non-null float64
        gps.y
                      271 non-null float64
        gyro.x
                      271 non-null float64
        gyro.y
                      271 non-null float64
        gyro.z
        heartrate
                      271 non-null float64
        light
                      271 non-null int64
                      271 non-null float64
        dtypes: datetime64[ns, pytz.FixedOffset(420)](1), float64(11), int64(1)
        memory usage: 29.6 KB
```

ln [6] จัดการข้อมูลที่เป็น NaN โดยใช้ค่า median ของแต่ละ feature

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

<pre>In [8]: df = df.set_index('uts').interpolate(method="nearest") df</pre>													
Out[8]:		accelerateX	accelerateY	accelerateZ	compass	gps.x	gps.y	gyro.x	gyro.y	gyro.z	heartrate	light	pressure
	uts												
	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.20100
	2018-11-18 08:19:03+07:00	-0.038236	-1.156625	1.883101	355.85300	13.621482	100.369133	1.873036	2.521149	-1.295162	81.0	12	1013.16500
	2018-11-18 08:19:45+07:00	1.906998	-4.361242	-4.358852	351.80853	13.621563	100.369088	-0.676847	-3.687540	1.123822	104.0	10	1013.21800
	2018-11-18 08:20:13+07:00	-0.265259	-10.149148	3.042116	354.06730	13.621562	100.369103	-0.437397	1.558026	0.047890	122.0	10	1013.20795
	2018-11-18 08:20:33+07:00	-2.098175	-11.195846	1.754056	354.06730	13.621545	100.369100	-2.849995	-1.562282	3.178840	78.5	11	1013.20600
	2018-11-18	4.803340	0.050184	-8.263658	225.21982	13.551022	100.280217	-0.031927	-0.094716	0.037248	66.0	0	1008.64700

In [8] ทำการแทรกข้อมูลในช่วงที่หายไปด้วยค่าใกล้เคียง โดยก่อนแทรกต้องกำหนด index เป็น feature ของ uts เพราะ ข้อมูลถูกเก็บแบบ timestamp ต้องแทรกด้วยช่วงเวลา

<pre>#mva df = df.rolling("3s df</pre>	s").mean()										
08:20:13+07:00	-0.200203	-10.140140	J.U42 I IU	334.00730	10.02 1002	100.000100	-0.401001	1.000020	0.047030	122.0	10.0	1010.20730
2018-11-18 08:20:33+07:00	-2.098175	-11.195846	1.754056	354.06730	13.621545	100.369100	-2.849995	-1.562282	3.178840	78.5	11.0	1013.2060
2018-11-18 16:07:32+07:00	4.803340	0.050184	-8.263658	225.21982	13.551022	100.280217	-0.031927	-0.094716	0.037248	66.0	0.0	1008.6470
2018-11-18 16:07:58+07:00	1.780343	-6.609970	2.081448	228.24623	13.552975	100.280140	-1.199382	0.211781	-0.054275	70.0	99.0	1008.6379
2018-11-18 16:08:19+07:00	0.399084	-8.364026	-5.357756	230.59320	13.553595	100.279633	-0.019156	-0.062789	0.100037	66.0	114.0	1008.7250
2018-11-18 16:08:42+07:00	0.745593	-8.820463	-5.106835	232.32242	13.553518	100.279728	0.013835	0.034055	0.017028	57.0	44.0	1008.6930
2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0.0	1008.7260
271 rows × 12 columns												

ln [9] กิด noise ของข้อมูลด้วยการ moving average ทุก ๆ timestamp ที่ 3 วินาที

In [10]:	<pre>#scaler means = df.mean() stds = df.std()</pre>												
In [11]:	<pre>df = (df - means) df</pre>	/ stds											
Out[11]:		accelerateX	accelerateY	accelerateZ	compass	gps.x	gps.y	gyro.x	gyro.y	gyro.z	heartrate	light	pressure
	uts												
	2018-11-18 08:18:41+07:00	-1.118282	-2.036701	-0.353763	2.096929	1.876887	1.872687	-1.750671	-3.573744	4.089767	0.513937	-1.065275	0.077559
	2018-11-18 08:19:03+07:00	-0.342711	0.672244	-0.448671	2.096929	1.876873	1.872688	2.391790	3.445797	-1.622874	-0.048798	-1.065275	0.076974
	2018-11-18 08:19:45+07:00	0.042237	0.006915	-1.857185	2.061940	1.876887	1.872687	-0.932167	-4.994435	1.374548	0.310727	-1.075608	0.077836
	2018-11-18 08:20:13+07:00	-0.387637	-1.194745	-0.187136	2.081481	1.876887	1.872688	-0.620026	2.136505	0.041335	0.592095	-1.075608	0.077672
	2018-11-18 08:20:33+07:00	-0.750358	-1.412056	-0.477790	2.081481	1.876884	1.872688	-3.765023	-2.105312	3.920973	-0.087877	-1.070442	0.077641
	2018-11-18 16:07:32+07:00	0.615403	0.922796	-2.738315	0.966798	1.864411	1.870558	-0.091467	-0.110269	0.028148	-0.283271	-1.127276	0.003507
	2018-11-18 16:07:58+07:00	0.017173	-0.459956	-0.403913	0.992980	1.864757	1.870556	-1.613329	0.306389	-0.085261	-0.220745	-0.615764	0.003360
	2018-11-18 16:08:19+07:00	-0.256168	-0.824126	-2.082590	1.013284	1.864866	1.870544	-0.074819	-0.066867	0.105952	-0.283271	-0.538262	0.004776
	2018-11-18 16:08:42+07:00	-0.187597	-0.918889	-2.025969	1.028244	1.864853	1.870546	-0.031813	0.064785	0.003092	-0.423955	-0.899937	0.004255
	2018-11-18 16:09:04+07:00	-0.240089	-0.894082	-1.927287	1.028244	1.864853	1.870546	0.036164	-0.061080	0.046610	-0.330166	-1.127276	0.004792

ln [10], [11] ทำการ Normalization ด้วย standardized Norm

3. แสดงข้อมูลในรูปกราฟ

ln [12] แก้ index กลับเป็นแบบเคิม แล้ว plot graph โดยแกน x เป็นแกนของ uts และ แกน y เป็น feature ที่เหลือ

```
In [13]: fig = plt.figure(figsize=(24, 8))
    ax = fig.add_subplot(1, 2, 1, projection='3d')
    ax.scatter(df['accelerateX'],df['accelerateX'],s=20,edgecolor='k')
    ax.set xlabel('x')
    ax.set ylabel('z')
    ax.set ylabel('z')
    ax.view_init(30, -30)

ax = fig.add_subplot(1, 2, 2, projection='3d')

ax.scat xlabel('x')
    ax.set xlabel('x')
    ax.set ylabel('x')
    ax.set ylabel('x')
    ax.set ylabel('z')
    ax.set ylabel('z')
    ax.set ylabel('z')
    ax.view_init(30, -30)
```

ln [13] แสดงกราฟข้อมูลความสัมพันธ์ระหว่างคู่ features ด้วย 2D Scatter Pair Plot หรือ 2D sns.jointplot หรือ 3D Scatter Plot เพื่อดูความสัมพันธ์ของข้อมูลเชิง 3 มิติ (accelerateX, accelerateY, accelerateZ) หรือ (gyro.x, gyro.y, gyro.z)

```
In [14]: map_im = plt.imread('map.png')
    fig, ax = plt.subplots(figsize=(14,14))
    BBox = [100.2559,100.3486,13.5383,13.6124]
    ax.scatter(df_copy['gps.y'], df_copy['gps.x'], zorder=1, alpha=0.5, c='r', s=10)
    ax.set_title('Plotting Spatial Data on Map')
    ax.set_xlim(BBox[0], BBox[1])
    ax.set_ylim(BBox[2], BBox[3])
    ax.imshow(map_im, zorder=0, extent=BBox, aspect='auto')
```


ln [14] แสดงข้อมูลเชิงพิกัด Geolocation ของ ข้อมูล (gps.x, gps.y)

4. ขั้นตอนการจัดเตรียมข้อมูลเพื่อนำเข้าโมเดล

```
In [16]: columns = ['accelerateX', 'accelerateY', 'accelerateZ', 'compass', 'heartrate']
    arr = df[columns].to_numpy()
    arr.shape
```

Out[16]: (271, 5)

```
In [17]: sns.heatmap(arr)
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x136debc50>

ln [16] สร้าง table ที่มีข้อมูล 5 Features

[accelerateX, accelerateY, accelerateZ, compass, heartrate]

ln [17] น้ำ array ที่สร้างจาก ln [16] มา plot เป็น heatmap

```
In [18]: timestep = 3
    stride = 1
    data = []
    for i in range(0, len(df)-timestep+1, stride):
        data.append(df[columns].iloc[i: i+timestep].to_numpy())
```

```
In [19]: data = np.array(data)
  data.shape
```

```
Out[19]: (269, 3, 5)
```

ln [18] จัดเรียงข้อมูล time series โดยต้องการตัด ข้อมูลตาม time series เงื่อนใบ time step ที่ 3 และ time stride ที่ 1

ln [19] ทำข้อมูลใน ln [18] เป็น array 3 มิติ ที่มี 5 feature โดยใช้ array จาก ln [16]

```
In [20]: data
Out[20]: array([[[-1.11828156, -2.03670093, -0.35376317, 2.09692929,
                   0.51393742],
                 [-0.34271073, 0.67224354, -0.4486707, 2.09692929,
                  -0.0487981 ],
                 [ 0.04223724, 0.00691484, -1.85718468, 2.06193985,
                   0.31072737]],
                [[-0.34271073, 0.67224354, -0.4486707, 2.09692929,
                  -0.0487981 ],
                 [0.04223724, 0.00691484, -1.85718468, 2.06193985,
                   0.31072737],
                 [-0.3876371, -1.19474507, -0.18713573, 2.08148088,
                   0.59209513]],
                [[0.04223724, 0.00691484, -1.85718468, 2.06193985,
                   0.31072737],
                 [-0.3876371, -1.19474507, -0.18713573, 2.08148088,
                   0.59209513],
                 [-0.75035831, -1.41205597, -0.47779004, 2.08148088,
                  -0.08787695]],
                . . . ,
                [0.61540298, 0.92279609, -2.73831488, 0.96679796,
                  -0.28327123],
                 [0.01717307, -0.45995626, -0.40391315, 0.99297999,
                  -0.22074506],
                 [-0.25616838, -0.82412577, -2.08259004, 1.01328405,
                  -0.28327123]],
                [[0.01717307, -0.45995626, -0.40391315, 0.99297999,
                  -0.22074506],
                 [-0.25616838, -0.82412577, -2.08259004, 1.01328405,
                  -0.28327123],
                 [-0.18759656, -0.91888925, -2.02596911, 1.02824384,
                  -0.42395511]],
```

ln [20] แสดงผลลัพธิ์จาก ln [19]

```
In [21]: data = np.concatenate(data)
In [22]: data
Out[22]: array([[-1.11828156, -2.03670093, -0.35376317,
                                                         2.09692929,
                                                                     0.51393742],
                [-0.34271073, 0.67224354, -0.4486707,
                                                         2.09692929, -0.0487981 ],
                [ 0.04223724, 0.00691484, -1.85718468,
                                                         2.06193985, 0.31072737],
                [-0.25616838, -0.82412577, -2.08259004,
                                                         1.01328405, -0.28327123],
                                                         1.02824384, -0.42395511],
                [-0.18759656, -0.91888925, -2.02596911,
                [-0.24008947, -0.89408187, -1.92728678,
                                                        1.02824384, -0.33016586]])
In [23]: sns.heatmap(data)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x12d62af10>

ln [21] ปรับ array จาก ln [19] ให้เป็น 2 มิติ

ln [23] นำ array ที่ปรับแล้วจาก ln [21] มา plot เป็น heatmap

ตอนที่ 2: การทดลองการลดมิติของข้อมูลด้วยค่า Principle Component Analysis

1. เตรียมชุดข้อมูล feature3 ค่า X(accelerateX,accelerateY,accelerateZ)

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    import seaborn as sns

In [2]: df = pd.read_csv('watch_test2_sample.csv')
    df['uts'] = pd.to_datetime(df['uts'])

In [3]: df.drop_duplicates(inplace=True)

In [4]: df.set_index('uts', inplace=True)
    df.fillna(df.mean(), inplace=True)

In [5]: accelerator_df = df[['accelerateX', 'accelerateY', 'accelerateZ']].copy()
    accelerator_df
```

- In [1] ทำการ import library ที่จำเป็นต่อการทดลอง
- In [2] อ่านไฟล์จาก .csv โดยใช้ pandas แล้วเก็บลง df แล้วแปลง format ของ feature "uts" จาก string เป็น datetime และทำการ copy ข้อมูลไว้เพื่อใช้งานในการplot GPS จากค่าจริง
- ln [3] ทำการลบข้อมูลที่มีค่าซ้ำซ้อน

0

- ln [4] กำหนด index เป็น feature ของ uts เพราะ ข้อมูลถูกเก็บแบบ timestamp แล้วแทนข้อมูลที่ หายไป หรือ NaN ด้วย mean ของแต่ละ feature
- ln [5] ขัด array ให้มี feature 3 คือ [accelerateX, accelerateY, accelerateZ]

uc[J].	accelerateY	accelerateY	accelerate7
ut[5]:			

	acceleratex	accelerate i	acceleratez
uts			
2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692
2018-11-18 08:19:03+07:00	-0.038236	-1.156625	1.883101
2018-11-18 08:19:45+07:00	1.906998	-4.394027	-4.358852
2018-11-18 08:20:13+07:00	-0.265259	-10.149148	3.042116
2018-11-18 08:20:33+07:00	-2.098175	-11.195846	1.754056
2018-11-18 16:07:32+07:00	4.803340	0.050184	-8.263658
2018-11-18 16:07:58+07:00	1.780343	-6.609970	2.081448
2018-11-18 16:08:19+07:00	0.399084	-8.364026	-5.357756
2018-11-18 16:08:42+07:00	0.745593	-8.820463	-5.106835
2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516

271 rows × 3 columns

2. ปรับให้เป็น Zero Mean และ คำนวณค่า covariance

In [6]: accelerator_df = accelerator_df - accelerator_df.mean()
In [7]: accelerator_df

Out[7]:

	accelerateX	accelerateY	accelerateZ
uts			
2018-11-18 08:18:41+07:00	-5.618468	-9.810479e+00	-1.596343
2018-11-18 08:19:03+07:00	-1.699325	3.237402e+00	-2.016934
2018-11-18 08:19:45+07:00	0.245909	1.776357e-15	-8.258887
2018-11-18 08:20:13+07:00	-1.926348	-5.755121e+00	-0.857919
2018-11-18 08:20:33+07:00	-3.759265	-6.801819e+00	-2.145979
2018-11-18 16:07:32+07:00	3.142251	4.444211e+00	-12.163693
2018-11-18 16:07:58+07:00	0.119253	-2.215943e+00	-1.818587
2018-11-18 16:08:19+07:00	-1.262006	-3.969999e+00	-9.257791
2018-11-18 16:08:42+07:00	-0.915496	-4.426436e+00	-9.006870
2018-11-18 16:09:04+07:00	-1.180755	-4.306949e+00	-8.569551

271 rows × 3 columns

```
In [8]:
         accelerator = accelerator df.to numpy()
In [9]:
         cov = accelerator.T.dot(accelerator)/(len(accelerator) - 1)
In [10]:
         eigen_values, eigen_vectors = np.linalg.eig(cov)
         eigen_values, eigen_vectors
Out[10]: (array([13.15046863, 25.75818909, 29.22011425]),
          array([[ 0.26701286, -0.87106272, 0.41225462],
                 [-0.60926567, 0.17885949, 0.77253131],
                 [0.74665888, 0.45744838, 0.48295082]]))
In [11]: sorted_indexes = np.argsort(eigen_values)[::-1]
         eigen_values = eigen_values[sorted_indexes]
         eigen_vectors = eigen_vectors[:, sorted_indexes]
         eigen_values, eigen_vectors
Out[11]: (array([29.22011425, 25.75818909, 13.15046863]),
          array([[ 0.41225462, -0.87106272, 0.26701286],
                 [ 0.77253131, 0.17885949, -0.60926567],
                 [ 0.48295082, 0.45744838, 0.74665888]]))
     In [9] คำนวณค่า covariance matrix ของชุดข้อมูล
     ln [10] คำนวณค่า eigenvalue / eigenvector จาก covariance matrix ที่คำนวนได้จาก
          ln [9]
     ln [11] sort array ที่ได้จาก ln [10] เพื่อเตรียม plot graph ในขั้นต่อไป
```

3. แสดงกราฟ Eigen Space (Eigenvalue, Eigenvector)

```
In [12]: plt.bar(np.arange(len(eigen_values)), eigen_values)
```

Out[12]: <BarContainer object of 3 artists>

ln [12] แสดงกราฟแท่ง (Bar graph) ของค่า Eigenvalue ที่จัดเรียงค่าจากมากไปน้อย

ln [15] ปรับขนาดของ Eigenvector ด้วยค่า Eigenvalue จากสูตร

Eigenvector * $\sqrt{Eigenvalue}$

```
In [16]:
          scale = 2
           ev1, ev2, ev3 = eigen vectors.T * scale
In [17]: fig = plt.figure(figsize=(60, 12))
         ax = fig.add subplot(141, projection='3d')
         ax.plot(accelerator[:, 0],
                 accelerator[:, 1],
                 accelerator[:, 2],
                 'o',
                 markersize=10,
                 color='green',
                 alpha=0.2
                )
         ax.plot([df['accelerateX'].mean()],
                 [df['accelerateY'].mean()],
                 [df['accelerateZ'].mean()],
                 markersize=10,
                 color='red',
                 alpha=0.5
         ax.plot([0, ev1[0]], [0, ev1[1]], [0, ev1[2]],
                 color='red', alpha=0.8, lw=2
         ax.plot([0, ev2[0]], [0, ev2[1]], [0, ev2[2]],
                 color='violet', alpha=0.8, lw=2
         ax.plot([0, ev3[0]], [0, ev3[1]], [0, ev3[2]],
                 color='cyan', alpha=0.8, lw=2
         ax.set_xlabel('x_values')
         ax.set_ylabel('y_values')
         ax.set zlabel('z values')
         plt.title('Eigenvector')
         ax.view init(10, 60)
```

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

In [16] เตรียมค่าเพื่อนำในสร้าง graph ตามสูตรค้านล่าง

```
# Split each eigenvector and scale with its sqrt(eigenvalue)
ev1 = eig_vecs[:,0]*np.sqrt(eig_vals[0])
ev2 = eig_vecs[:,1]*np.sqrt(eig_vals[1])
ev3 = eig_vecs[:,2]*np.sqrt(eig_vals[2])
```

ln [17] แสดงกราฟความสัมพันธ์ของ feature และ eigen vector จาก ln [16]

```
In [18]:
         K = 2
         pca = accelerator.dot( eigen vectors[:, :K])
In [19]:
         pca
Out[19]:
         array([[-5.37811822e+01,
                                     1.49013734e+01],
                 [ 5.37392288e+00,
                                     7.59435471e+00],
                 [-1.39162216e+01, -1.48583130e+01],
                 [-2.83599554e+01,
                                     2.42294504e+001,
                 [-3.88042832e+01,
                                     7.96651355e+00],
                 [-5.21090850e+01,
                                     4.66019934e+01],
                 [ 1.83454424e+01, -1.31337096e+01],
                 [-5.67352295e+01,
                                     9.60914170e+01],
                 [-2.55461835e+01,
                                     5.46388549e+01],
                 [-2.25228300e+01,
                                     5.60560563e+00],
                 [ 1.22171468e+00,
                                     1.06332249e+01],
                 [-3.69782231e+01,
                                     2.61911370e+01],
                 [ 1.07145241e+01,
                                     1.06019548e+00],
                 [-1.68749714e+01,
                                     1.98803977e+00],
                 [ 3.51453509e+01, -1.84538192e+01],
                 [-1.20574507e+01,
                                     3.78674641e+01],
                 [-3.75640957e+01,
                                     9.23175298e+01],
                 [-9.81386740e+00,
                                     7.20369008e+01],
                 [-2.40529866e+01,
                                     4.55844588e+01],
```

ln [18] ลดมิติของข้อมูลจาก 3D features **X** (accelerateX, accelerateY, accelerateZ) ลงเหลือ 2D โดย เลือก eigenvector 2 vector แรก ที่สัมพันธ์กับ eigenvalue ที่มีค่าสูงสุด 2 อันดับแรก [np.dot()]

In [20]: sns.heatmap(pca)

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x12af3add0>

ln [20] แสดง graph heatmap จากข้อมูลที่ได้ใน ln [18]