Sheaves and their cohomology

Date: 2023-08-15 3:00-5:00 PM Lecturer: Nithi Rungtanapirom Transcriber: Kittapat Ratanaphupha

Last session: introducing categories (objects/morphisms/iso-, automorphisms)

Categories (Contd.)

Def Let \mathcal{C} be a category

- An initial object is an object $P \in \mathrm{Ob}(\mathcal{C})$ such that $\forall X \in \mathrm{Ob}(\mathcal{C}) : \exists ! f : P \to X$.
- A terminal object is an object $Q \in Ob(\mathcal{C})$ such that $\forall x \in Ob(\mathcal{C}) : \exists ! f : X \to Q$.
- A zero object is an object which is both initial and terminal.

Example

- In (Sets), an initial object is \emptyset , and a terminal object is $\{a\}$ (a singleton.)
- In (Grps), $\{e\}$ is a zero object.
- In (Rings), an initial object is \mathbb{Z} and a terminal object is $\{0\}$.

Remark If exists, an initial/a terminal object is unique up to unique isomorphism. *Proof.* If P and P' are initial objects, then $\exists! f : P \to P'$ and $\exists! g : P' \to P$ means $g \circ f : P \to P$ that it must be id_P , also $f \circ g = \mathrm{id}_{P'}$. Hence, f, g are isomorphisms i.e. $P \cong P'$. (Similar to the terminal object.)

Def Let \mathcal{C} be a category. A subcategory of \mathcal{C} is a category \mathcal{C}' such that $\mathrm{Ob}(\mathcal{C}') \subseteq \mathrm{Ob}(\mathcal{C})$ and $\forall x, y \in \mathrm{Ob}(\mathcal{C}') : \mathrm{Hom}_{\mathcal{C}'}(X,Y) \subseteq \mathrm{Hom}_{\mathcal{C}}(X,Y)$ and the composition law of morphisms and the identity morphisms of objects in \mathcal{C}' are the same as in \mathcal{C} .

A full subcategory of \mathcal{C} is a subcategory \mathcal{C}' such that $\forall x, y \in \mathrm{Ob}(\mathcal{C}') : \mathrm{Hom}_{\mathcal{C}'}(X,Y) = \mathrm{Hom}_{\mathcal{C}'}(X,Y)$.

Examples:

- (Rings) is a subcategory of (Rngs)
- (Ab) is a full subcategory of (Grps)

Def Let \mathcal{C} and \mathcal{D} be categories. A (covariant) functor $F:\mathcal{C}\to\mathcal{D}$ consists of the following data:

- An assignment $Ob(\mathcal{C}) \to Ob(\mathcal{D})$
- for each $X, Y \in Ob(\mathcal{C})$, a map $Hom_{\mathcal{C}}(X, Y) \to Hom_{\mathcal{C}'}(X, Y)$, is a map.

such that the following conditions are satisfied:

- 1. $\forall x \in \mathrm{Ob}(\mathcal{C}) : F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$
- 2. $\forall x, y, z \in \text{Ob}(\mathcal{C}) : \forall f : X \to Y, g : Y \to Z, F(g \circ f) = F(g) \circ F(f).$

Examples

- $GL_n: (Rings) \to (Grps)$
- Forgetful functors, e.g., (Rings) \rightarrow Ab, $(R, +, \cdot) \mapsto (R, +)$, $(Grps)/(Top)/(C^{\alpha}-Mfds) \rightarrow$ (Sets)
- Inclusion functors, e.g., (Ab) \rightarrow (Grp), (fields) \rightarrow (CommRings) \rightarrow (Rings)

Def Contravariant functors $F: \mathcal{C} \to \mathcal{D}$ is a functor $F: \mathcal{C}^{\text{op}} \to \mathcal{D}$ (\mathcal{C}^{op} is \mathcal{C} with reversing arrows) where $\text{Ob}(\mathcal{C}^{\text{op}}) = \text{Ob}(\mathcal{C})$ and $\forall X, Y \in \text{Ob}(\mathcal{C}) : \text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y) = \text{Hom}_{\mathcal{C}}(Y, X)$.

Examples.

- $\operatorname{Hom}_{\mathcal{C}}(-,X):\mathcal{C}^{\operatorname{op}}\to(\operatorname{Sets})$
- $\mathcal{C}^{\alpha}: (C^{\alpha}\text{-Mfd}) \to (\mathbb{R}\text{-vect}), (X, \mathcal{C}^{\alpha}_{Y}) \mapsto \mathcal{C}^{\alpha}_{Y}(X)$

Def \mathcal{C}, \mathcal{D} categories. $F, G : \mathcal{C} \to \mathcal{D}$ functors. A natural transformation (morphism of functors) $\phi : F \to G$ ($\phi : F \Longrightarrow G$) is collection $(\phi_X : F(X) \to G(X))_{X \in Ob(\mathcal{C})}$ of morphisms in \mathcal{D} such that $\forall f : X \to Y$ in \mathcal{C} : the diagram

$$F(X) \xrightarrow{\phi_X} G(X)$$

$$\downarrow^{F(f)} \qquad \downarrow^{G(f)}$$

$$F(Y) \xrightarrow{\phi_Y} G(Y)$$

is commutative.

Natural isomorphism: $\forall X \in \mathrm{Ob}(\mathcal{C}) : \phi_X$ is isomorphism (" $F \cong G$ ")

Notation

 $\operatorname{Nat}(F,G) := \{ \text{natural transformations } F \implies G \}$

Examples

• F is a field: id, $(-)^{**}$,: (F-vect) \rightarrow (F-vect) is a natural transformation given by $V \rightarrow V^{**}$, $v \mapsto (\phi \mapsto \phi(v))$ ($V^{**} := \operatorname{Hom}_F(\operatorname{Hom}_F(V, F), F)$

$$\begin{array}{ccc}
V & \longrightarrow V^{**} \\
\downarrow & & \downarrow \\
W & \longrightarrow W^{**}
\end{array}$$

If we replace (F-vect) by (f.d. F-vect), we obtain a natural isomorphism.

• det as a natural transformation. Consider the functors GL_n , $(\cdot)^{\times}$: (CRings) \rightarrow (Grps) that det is a natural transformation det: $GL_n \rightarrow (\cdot)^{\times}$.

Remark Similarly, natural transformations for contravariant functors are defined in the same way.

2

Back to Sheaves

Let X be a topological space.

Def A presheaf \mathcal{F} (of sets) on X consists of the following data:

- 1. for each $U \subseteq X$, a set $\mathcal{F}(U)$.
- 2. for each $U \subseteq V \subseteq X$, a map $\rho_{VU} : \mathcal{F}(V) \to \mathcal{F}(U)$ (Restriction map)

such that the following conditions hold:

- 1. $\forall U \subseteq X : \rho_{UU} = \mathrm{id}_{\mathcal{F}(U)}$
- 2. $\forall U \subseteq V \subseteq W \subseteq X : \rho_{WU} = \rho_{VU} \circ \rho_{WV}$

Notation

- $U \subseteq V \subseteq X$, $s \in \mathcal{F}(V)$, the restriction $s|_{U} = \rho_{VU}(s)$.
- An element of $\mathcal{F}(U)$ is called a section of \mathcal{F} over U.

Def A morphism of presheaves $\varphi : \mathcal{F} \to \mathcal{G}$ on X is a collection of maps $(\varphi_a : \mathcal{F}(U) \to \mathcal{G}(U))_{U \overset{\circ}{\subset} X}$ such that $\forall U \overset{\circ}{\subseteq} V \overset{\circ}{\subseteq} X \colon \varphi_U \circ \rho_{VU}^{\mathcal{F}} = \rho_{VU}^{\mathcal{G}} \circ \varphi_V$.

The composition of morphisms of presheaves $\varphi: \mathcal{F} \to \mathcal{G}$ and $\psi: \mathcal{G} \to \mathcal{H}$ is given by

$$(\psi \circ \varphi)_U := \psi_U \circ \varphi_U : \mathcal{F}(U) \to \mathcal{H}(U)$$

for each $U \stackrel{\circ}{\subset} X$.

Remark Alternative definition of presheaves.

Let (Ouv_X) (Ouvert) be the category of open subsets of X with inclusion maps as morphisms.

- Presheaf is a contravariant function $\mathcal{F}: (\text{Ouv}_X) \to (\text{sets})$.
- Morphism of presheaves is a natural transformation.

By this way, we can define presheaves of groups/rings/(in general: with values in a category C_X .) In this case, ρ_{VU} is a morphism in that category (restriction morphism.)

Def A sheaf on X is a presheaf \mathcal{F} on X which satisfies the following condition for all $U \subseteq X$ and open covering $\{U_i\}_{i \in I}$ of U:

(Sh) For every family $\{s_i \in \mathcal{F}(U_i)\}_{i \in I}$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all $i, j \in I$. There exists a unique $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all $i \in I$.

A morphism of sheaves is a morphism of presheaves.

Notation

- Sh(X) is a category of sheaves on X and this is a full subcategory of PSh(X).
- PAb(X), Ab(X): category of (pre-)sheaves of abelian groups on X.

Example

 \mathcal{F} given by $\mathcal{F}(U) := \begin{cases} \mathbb{Z}, & U = X. \\ \{0\}, & \text{otherwise.} \end{cases}$ is a presheaf of abelian groups which is not a sheaf

(If X is not a union of two proper open subsets.)

Remark. T a set: every presheaf of T-valued functions on X in the sense of the section 1 is a presheaf here. It is a sheaf of function in sense of the section 1 iff it satisfies (Sh).

$$f: U \to T: f \in \mathcal{F}(U) \iff (\forall i \in I: f|_{U_i} \subseteq \mathcal{F}(U_i))$$

Examples

- (X, \mathcal{R}) is a concrete k-space. \mathcal{R} is a sheaf of rings (k-algebras) on X. $f \in \mathcal{R}(X)$. We have a morphism of sheaves of k-vector spaces $\mu_f : \mathcal{R} \to \mathcal{R}$ given by $g \in \mathcal{R}(U) \mapsto g \cdot (f|_U) \in \mathcal{R}(U)$.
- $X = \mathbb{C}^n$: the partial derivative yields a morphism of sheaves of \mathbb{C} -vector spaces.

$$\frac{\partial}{\partial z_j}:\mathcal{O}_{\mathbb{C}^n} o\mathcal{O}_{\mathbb{C}^n}$$

Def \mathcal{F} presheaf on X, $a \in X$. The *stalk of* \mathcal{F} at a is

$$\mathcal{F}_a := \{(U, s) \mid a \in U \stackrel{\circ}{\subseteq} X, s \in \mathcal{F}(U)\}/\sim$$

where $(U,s) \sim (U',s') \iff \exists V \subseteq U \cap U', a \in V : s|_U = s|_V$ (Check: this is an equivalence relation.)

An element of \mathcal{F}_a is called of a germ of \mathcal{F} at a.

Remark The stalk of presheaves of group/rings/... can be defined similarly with the corresponding algebraic structure.

For example, if \mathcal{F} is a presheaf of rings, then \mathcal{F}_a is a ring under $+, \cdot$ given by

$$[(U,s)] + [(v,t)] = [(U \cap V, s|_{U \cap V} + t|_{U \cap V})].$$

(Check: well-definedness and ring axioms)

Example $X = \mathbb{C}$ and $a \in \mathbb{C}$. What is $\mathcal{O}_{\mathbb{C},a}$? ($\mathcal{O}_{\mathbb{C}}$ is a sheaf of holomorphic functions.)

Identity theorem. two holomorphic functions f and g agree on a neighborhood of a iff they have the same power series expansion around a.

$$\mathcal{O}_{\mathbb{C},a} = \left\{ \sum_{n=0}^{\infty} c_n (z-a)^n \text{ power series with positive radius of convergence.} \right\}$$

Exercise. Arapura 3.1.15.