

Full Optimization for Quantum Circuit Simulation

haofan2023 (灝粉2023)

Members: Yu-Cheng Lin, Alan Kuan, Ching-Wen Chen, and Chuan-Chi Wang

Advisor: Shih-Hao Hung (洪士灝教授)

Performance, Application and Security Laboratory (PAS Lab)

Two Key Features for Our SoTA Quantum Circuit simulator

Arbitrary Quantum Circuit Optimization

Cache Optimization
Super Block Finding Algorithm

Specific Quantum Circuit Optimization for QAOA

Launch Control
Rotation Compression

Workflow and Cache Optimization

 Cache optimization and qubit extension for the state vector-based quantum circuit simulator on CPU and GPU.

Super Block Access Pattern

• Improve data locality and reduce the execution time

Super Block Finding Algorithm Efficiency

- QFT: a fundamental quantum algorithm that efficiently transforms the representation to the frequency domain.
 - $33x \sim 38x$
- QAOA: a quantum computing algorithm designed to tackle combinatorial optimization problems by leveraging variational principles and parameterized quantum circuits.
 - $43x \sim 46x$

Profiler Output: Cache Miss Rate (CMR)

		QFT	5-level QAOA		
Simulator	Time	CMR	Time	CMR	
\overline{GPU}	0.13	24.7% (-)	2.02	24.7% (-)	
GPU_{sub}	0.09	11.5% (2.2x)	1.20	5.2% (4.8x)	
MEM	0.98	16.9% (-)	15.32	16.7% (-)	
MEM_{sub}	0.44	8.6% (2.0x)	3.42	3.0% (5.6x)	
SSD	4.75	10.5% (-)	22.20	10.5% (-)	
SSD_{sub}	0.89	8.5% (1.2x)	5.19	5.5% (1.9x)	

subscript 'sub' is used for applying the cache optimization for super block.

Experimental Environment in Our Local Machine

Name	Description
CPU	AMD Ryzen Threadripper PRO 3995WX 64-Core
GPU	NVIDIA GeForce RTX 4090 16,3884-Core
RAM	Kingston 256 GB (8*32GB) DDR4 3600MHz
Storage	Kingston 16 TB (8*2TB on PCIe 4.0 bus)
OS	Ubuntu 20.04 LTS (kernel version 5.15.0-58-generic)
CUDA	CUDA Toolkit version 12.1.105
Compiler	GCC version 9.4.0
API	OpenMP version 4.5

Gate Benchmark

unit: s

-		GPU						CPU			
		Qubit	QuEST	cuQuantum	GPU	GPU_{sub}	QuEST	MEM	MEM_{sub}	SSD	SSD_{sub}
-		23	0.007	0.007	0.007	0.005 (1.4x)	0.013	0.012	0.012 (1.1x)	0.043	0.020 (0.4x)
		24	0.015	0.014	0.014	0.010 (1.4x)	0.042	0.041	0.025 (1.7x)	0.103	0.058 (0.6x)
		25	0.030	0.029	0.029	0.022 (1.4x)	0.232	0.227	0.084 (2.8x)	0.287	0.167 (1.4x)
		26	0.063	0.060	0.061	0.045 (1.4x)	0.489	0.487	0.175 (2.8x)	0.584	0.341 (1.4x)
		27	0.131	0.126	0.126	0.094 (1.4x)	1.015	1.011	0.417 (2.4x)	1.169	0.701 (1.4x)
		28	0.272	0.261	0.261	0.197 (1.4x)	2.092	2.085	0.842 (2.5x)	2.344	1.445 (1.5x)
		29	0.564	0.541	0.541	0.413 (1.4x)	4.367	4.303	1.684 (2.6x)	4.770	2.988 (1.5x)
	•	30	1.157	1.119	1.119	0.863 (1.3x)	8.943	8.972	3.527 (2.5x)	9.934	6.275 (1.4x)
	gate	31	-	-	-	-	18.404	18.602	7.180 (2.6x)	21.460	13.906 (1.3x)
	Н	32	-	-	-	-	38.046	37.765	14.241 (2.7x)	81.186	30.385 (1.3x)
	of a sho	33	-	-	-	1-	78.533	77.768	29.874 (2.6x)	156.876	71.691 (1.0x)
		34	-	-	-	·-	-	-	7-1	315.845	148.602 (∞)
		35	-	-	-	-	-	-	-	644.295	308.866 (∞)
		36	-	-	-	=	-	=	-	1,612.000	629.316 (∞)
		37	-	=	-	-	-	-	-	2,787.740	1,415.690 (∞)
up to		38	-	=.	-	=	-	-	-	5,680.410	2,778.510 (∞)
39-qubit		39	-	-	-	-	-	-	-	11,616.501	5,861.420 (∞)
Ja-qubit	•	SU	-	-	-	1.39x	-	-	2.39x	-	00

SU: Average Speedup

Quantum Circuit Simulation

0.938

9.369

91.666

0.890

8.962

88.052

0.553 (1.61x)

5.594 (1.60x)

55.207 (1.59x)

GPU Speedup: 1.6x

CPU Speedup: 5.5x

0.889

8.952

87.987

36

39

24

30

33

36

39

5-level QAOA

CPU with SSD Speedup: 3.3x

		7 <u></u>	<u> </u>					61.6	uni	<u>t: s (double)</u>
	Qubit	QuEST	cuQuantum	GPU	GPU_{opt}	QuEST	MEM	MEM_{opt}	SSD	SSD_{opt}
	24	0.064	0.101	0.057	0.044 (1.45x)	0.196	0.305	0.163 (1.20x)	1.822	0.305 (0.64x)
	27	0.673	0.995	0.600	0.448 (1.50x)	6.583	5.895	1.745 (3.77x)	20.837	3.101 (2.12x)
Ţ	30	6.545	9.676	5.758	4.314 (1.52x)	59.952	55.158	16.358 (3.66x)	187.148	26.469 (2.26x)
QF	33	-	<u>=</u>	_	-	544.946	514.077	188.558 (2.89x)	2.848.325	431.315 (1.26x)

2.114

72.859

707.322

6,806,290

3.468

72.667

718.330

6,897.180

CPU

1.579 (1.34x)

13.132 (5.55x)

153.065 (4.62x)

1.472.740 (4.62x)

unite a (daubla)

26,568.467

8.827

96.762

878.957

12,788,421

133,461.023

1,226,450.254

243,090.020

3,813.630 (∞)

2.259 (0.94x)

22.426 (3.25x)

211.956 (3.34x)

2,273.152 (2.99x) $22,307.930 (\infty)$

 $212,438.108 (\infty)$

 $36,980.132 (\infty)$

			GI	PU	
	Qubit	QuEST	cuQuantum	GPU	
	24	0.064	0.101	0.057	0.04
	27	0.673	0.995	0.600	0.44
3	0.0		0 (5)	E E E O	4.04

Quantum Circuit Simulation

GPU

GPU

0.938

9.369

91.666

GPU Speedup: 1.6x

CPU Speedup: 5.5x

OuEST

0.889

8.952

87.987

Oubit

24

30

33

36

39

5-level QAOA

CPU with SSD Speedup: 3.3x

cuOuantum

0.890

8.962

88.052

3	~	~	~	CONTROL DATA	Opi	~	(1574 ± 1574 ± 179	Opi	97799787	opi
	24	0.064	0.101	0.057	0.044 (1.45x)	0.196	0.305	0.163 (1.20x)	1.822	0.305 (0.64x)
	27	0.673	0.995	0.600	0.448 (1.50x)	6.583	5.895	1.745 (3.77x)	20.837	3.101 (2.12x)
Ţ	30	6.545	9.676	5.758	4.314 (1.52x)	59.952	55.158	16.358 (3.66x)	187.148	26.469 (2.26x)
QF	33	_	_	_	<u> 22</u>	544.946	514.077	188.558 (2.89x)	2,848.325	431.315 (1.26x)
	36	-	-	Can	wo confi	بتالمييم	ontimi	izo i+2	26,568.467	3,813.630 (∞)
	39	·	-	CdI	we contin	nually	ohmin		243,090.020	36,980.132 (∞)

2.114

72.859

707.322

6.806.290

OuEST

MEM

3.468

72.667

718.330

6,897.180

GPUont

0.553 (1.61x)

5.594 (1.60x)

55.207 (1.59x)

CPU

MEMont

1.579 (1.34x)

13.132 (5.55x)

153.065 (4.62x)

1,472.740 (4.62x)

unit: s (double)

 SSD_{opt}

2.259 (0.94x)

22.426 (3.25x)

211.956 (3.34x) 2,273.152 (2.99x)

 $22,307.930 (\infty)$

 $212,438.108 (\infty)$

SSD

8.827

96.762

878.957

12,788,421

133,461.023

1,226,450.254

Specific Quantum Circuit Optimization for QAOA

Arbitrary Quantum Circuit Optimization

Cache Optimization
Super Block Finding Algorithm

Specific Quantum Circuit Optimization for QAOA

Launch Control
Rotation Compression

Quantum Approximate Optimization Algorithm (QAOA)

- QAOA is one of the quantum algorithm for optimization problems. It is a hybrid approach combining classical and quantum computing.
- Parameterized Quantum Gates:
 - Quantum gates with tunable parameters.
 - Varying parameters to explore solution space efficiently.
 - In general, we can achieve $r \rightarrow 1$ when p $\rightarrow \infty$
 - where r is the approximation ratio (and 1 is the optimal solution).

Quantum Approximate Optimization Algorithm (QAOA) Workflow

V V OTTATIO V V

- H gate initialization
- p-level optimization:
 - minimize the cost function
 - y: cost layer
 - β: mixer layer
- Using measured state of the quantum circuit to update the next round value.
 - *C*: The cost function for the given problem.

The Proportion of Numbers with Each Gate

Algorithm 1 A typical methodology for the QAOA simulation.

```
1: stateVector \leftarrow initZeroState()
2: for 0 < i < N do
                                                        ▶ Initial Layer
       stateVector \leftarrow HGate(stateVector, i)
4: end for
5: for 0  do
                                                      ▶ P-level QAOA
       for 0 < i < N do
                                                          ▶ Cost Layer
           for i < j < N do
               if graph_{i,j} then
                   \theta = w_{i,j} * \gamma_p
                    stateVector \leftarrow RZZGate(stateVector, i, j, \theta)
10:
               end if
11:
           end for
12:
       end for
13:
       for 0 < i < N do
                                                        Mixer Layer
           stateVector \leftarrow RXGate(stateVector, i, \beta_p)
15:
       end for
17: end for
```


Rotation Compression: Reduce the Rotation Operations form O(N²) to O(1)

```
Algorithm 1 A typical methodology for the QAOA simulation.
                                                                               Algorithm 2 The optimized simulation method of the cost layer.
 1: stateVector \leftarrow initZeroState()
 2: for 0 < i < N do
                                                           ▶ Initial Layer
                                                                                 1: function rotationCompression(stateVector, graph, w, y)
         stateVector \leftarrow HGate(stateVector, i)
                                                                                       for 0 < b < 2^N do
                                                                                                                                       \triangleright Scan 2^N state
                                                                                 2:
 4: end for
                                                                                            totRotation \leftarrow 0
                                                                                 3:
 5: for 0  do
                                                         ▶ P-level OAOA
                                                                                            for 0 < i < N do
                                                                                 4:
        for 0 < i < N do
                                                             ▶ Cost Layer
                                                                                                for i < j < N do
                                                                                 5:
             for i < j < N do
                                                                                                    if graph_{i,j} then
                                                                                 6:
                 if graph_{i,j} then
                                                                                                        if (b_i \oplus b_i) == 1 then
                                                                                 7:
                     \theta = w_{i,j} * \gamma_D
                                                                                                            totRotation \leftarrow totRotation - w_{i,i}
  9:
                                                                                 8:
                     stateVector \leftarrow RZZGate(stateVector, i, j, \theta)
                                                                                                        else
 10:
                 end if
                                                                                                            totRotation \leftarrow totRotation + w_{i,i}
11:
                                                                                10:
             end for
                                                                                                        end if
12:
                                                                                11:
                                                                                                    end if
        end for
13:
                                                                                12:
                                                                                                end for
        for 0 < i < N do
                                                           ▶ Mixer Layer
                                                                                13:
14:
                                                                                            end for
             stateVector \leftarrow RXGate(stateVector, i, \beta_{D})
                                                                                14:
15:
                                                                                            stateVector[b] \leftarrow stateVector[b] * e^{-\frac{1}{2}i\gamma \ totRotation}
         end for
                                                                                15:
                                                                                        end for
17: end for
                                                                                16:
```

17: end function

GPU Results (Unit: ms, *float*)

- Our optimization outperforms QuEST in all cases.

 SU_w: 6.7x; SU_u: 8.3x

Qubit	Baseline	Opt_{w}	SU_{w}	Opt_u	SU_u
21	17	8	2.1x	7	2.4x
22	34	17	2.0x	14	2.4x
23	121	38	3.1x	31	3.9x
24	488	96	5.1x	81	6.0x
25	1,050	196	5.4x	168	6.2x
26	2,247	398	5.7x	331	6.8x
27	4,809	811	5.9x	676	7.1x
28	10,268	1,676	6.1x	1,383	7.4x
29	21,877	3,407	6.4x	2,790	7.8x
30	46,548	6,957	6.7x	5,640	8.3x

CPU Results (Unit: ms, *float*)

- Again, our optimization consistently outperforms QuEST in all cases.
 - SU_w: 7.5x; SU_{wAVX}: 9.9x
 - SU_u: 13.7x; SU_{uAVX}: 17.1x

Qubit	Baseline	Opt_{w}	SU_{w}	Opt_{wAVX}	SU_{wAVX}	Opt_u	SU_u	Opt_{uAVX}	SU_{uAVX}
21	325	124	2.6x	63	5.2x (+2.6)	30	10.9x	21	15.5x (+4.6)
22	710	264	2.7x	135	5.2x (+2.5)	61	11.6x	42	17.1x (+5.5)
23	1,940	575	3.4x	308	6.3x (+2.9)	145	13.4x	118	16.5x (+3.1)
24	8,418	1,762	4.8x	1,164	7.2x (+2.4)	798	10.5x	790	10.7x (+0.2)
25	24,333	4,159	5.8x	3,020	8.1x (+2.3)	2,100	11.6x	1,967	12.4x (+0.8)
26	60,794	9,257	6.6x	6,856	8.9x (+2.3)	4,962	12.3x	4,693	13.0x (+0.7)
27	138,475	20,137	6.9x	15,126	9.2x (+2.3)	10,957	12.6x	10,410	13.3x (+0.7)
28	302,501	42,128	7.2x	31,898	9.5x (+2.3)	22,885	13.2x	21,653	14.0x (+0.8)
29	647,955	88,188	7.3x	66,667	9.7x (+2.4)	47,221	13.7x	44,724	14.5x (+0.8)
30	1,385,228	185,209	7.5x	139,663	9.9x (+2.4)	97,482	14.2x	92,291	15.0x (+0.8)

Speedup Trends in QAOA

Table 1: The elapsed time of 5-level QAOA (unit: second, double).

Qubit	CPU_{Single}	$CPU_{Mutiple}$	CPU_{Cache}	GPU_{Cache}	GPU_{All}
23	29.80	1.28 (23x)	1.28 (63x)	0.24 (120x)	0.06 (341x)
24	68.00	3.46 (20x)	3.46 (43x)	0.55 (123x)	0.12 (382x)
25	152.52	15.32 (10x)	15.31 (45x)	1.19 (127x)	0.23 (404x)
26	330.69	33.83 (10x)	33.83 (56x)	2.60 (126x)	0.56 (417x)
27	712.26	72.66 (10x)	72.66 (54x)	5.59 (127x)	1.08 (427x)
28	1556.87	156.52 (10x)	156.52 (54x)	11.96 (130x)	2.17 (445x)
29	3325.55	335.09 (10x)	335.09 (49x)	25.73 (129x)	4.45 (451x)
30	7226.46	718.33 (10x)	718.33 (47x)	55.20 (130x)	9.22 (468x)

We can get the 450x speedup compared to CPU with a single thread.

Put It All Together to NCHC's A100 in QAOA

Table 2: [NCHC's GPU A100] The elapsed time of 5-level QAOA (unit: second, double).

Qubit	cuQuantum	GPU_{Ori}	GPU_{Cache}	GPU_{All}
23	0.28	0.32	0.25 (1.1x)	0.06 (4.7x)
24	0.60	0.69	0.53 (1.1x)	0.12 (5.0x)
25	1.30	1.49	1.17 (1.1x)	0.23 (5.6x)
26	2.79	3.19	2.50 (1.1x)	0.56 (5.0x)
27	6.00	6.84	5.47 (1.1x)	1.08 (5.6x)
28	12.87	14.62	11.72 (1.1x)	2.17 (6.0x)
29	27.58	31.19	24.97 (1.1x)	4.45 (6.2x)
30	58.93	66.44	52.65 (1.1x)	9.22 (6.4x)

- The optimization can also be observed on A100
 - The better results can be achieved when implementations for RZZ gates are further optimized.

One more thing...

NVLink for A100

Open-Source Bechmark ^[1]	NVLink	PCI-E	
Bandwidth	247 GB/s	16 GB/s	

NVLink in QAOA

 With Launch Control and Rotation Compression, we can focus on transferring data for one single RX gate.

RX-Gates Benchmark (unit: µs, double)

Qubit	PCIe (µs)	NVLink (μs)	Speedup
23	4,155	365	11.4x
24	7,983	535	15.0x
25	15,817	877	18.0x
26	31,484	1,559	20.2x
27	63,314	2,868	22.1x
28	124,576	5,700	21.9x
29	249,862	10,836	23.1x
30	502,660	22,692	22.2x

NVLink in QAOA w/ 2 A100s

• Utilizing NVLink, two GPUs yield an additional 2x increase in performance.

Table 2: [NCHC's GPU A100] The elapsed time of 5-level QAOA (unit: second, double).

Qubit	cuQuantum	GPU_{Cache}	GPU_{All}	GPU_{PCIe}	GPU_{NVLink}
23	0.28	0.25 (1.1x)	0.06 (4.7x)	0.04 (6.2x)	0.02 (11.6x)
24	0.60	0.53 (1.1x)	0.12 (5.0x)	0.09 (6.8x)	0.05 (12.4x)
25	1.30	1.17 (1.1x)	0.23 (5.6x)	0.18 (7.3x)	0.10 (13.1x)
26	2.79	2.50 (1.1x)	0.56 (5.0x)	0.35 (7.9x)	0.20 (13.7x)
27	6.00	5.47 (1.1x)	1.08 (5.6x)	0.73 (8.2x)	0.42 (14.3x)
28	12.87	11.72 (1.1x)	2.17 (6.0x)	1.72 (7.4x)	0.97 (13.3x)
29	27.58	24.97 (1.1x)	4.45 (6.2x)	3.33 (8.2x)	2.13 (12.9x)
30	58.93	52.65 (1.1x)	9.22 (6.4x)	6.60 (8.9x)	4.06 (14.5x)

Energy Efficiency

INPUTS				
# CPU Cores	64			
# GPUs (A100)	2			
Application Speedup	92.0x			

Node Replacement

184.0x

GPU NODE POWER SAVINGS					
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings		
Compute Power (W)	202,400	6,500	195,900		
Networking Power (W)	8,544	93	8,451		
Total Power (W)	210,944	6,593	204,351		

Node Power efficiency

32.0x

ANNUAL ENERGY SAVINGS PER GPU NODE					
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings		
Compute Power (kWh/year)	1,773,024	56,940	1,716,084		
Networking Power (kWh/year)	74,849	814	74,035		
Total Power (kWh/year)	1,847,873	57,754	1,790,119		

\$/kWh	\$ 0.34
Annual Cost Savings	\$ 608,640.46
3-year Cost Savings	\$ 1,825,921.38

Metric Tons of CO2
Gasoline Cars Driven for 1 year
Seedlings Trees grown for 10 years

1,269 274 20,980

(source: Link)

Contact us to resolve your performance issues.

Professor: Shih-Hao Hung

Email: hungsh@csie.ntu.edu.tw

Performance, Application and Security Laboratory (PAS Lab)

Thank you for listening:) Any Questions / Feedback?

Yu-Cheng Lin

Contact me: <u>r11922015@csie.ntu.edu.tw</u>