Combining satellite imagery and machine learning to predict poverty

Neal Jean^{1,2,*}, Marshall Burke^{3,4,5,*,†}, Michael Xie¹, W. Matthew Davis⁴, David B. Lobell^{3,4}, Stefano Ermon¹

+ See all authors and affiliations

Science 19 Aug 2016: Vol. 353, Issue 6301, pp. 790-794 DOI: 10.1126/science.aaf7894

Article

Figures & Data

Info & Metrics

eLetters

Measuring consumption and wealth remotely

Nighttime lighting is a rough proxy for economic wealth, and nighttime maps of the world show that many developing countries are sparsely illuminated. Jean *et al.* combined nighttime maps with high-resolution daytime satellite images (see the Perspective by Blumenstock). With a bit of machine-learning wizardry, the combined images can be converted into accurate estimates of household consumption and assets, both of which are hard to measure in poorer countries. Furthermore, the night- and day-time data are publicly available and nonproprietary.

Science, this issue p. 790; see also p. 753