Fundamentals of spectral theory

Thomas Ransford

ABSTRACT. The mini-course developed the elements of spectral theory needed for the other lectures at the conference. No prior knowledge of functional analysis was assumed. The notes below are a copy of what was presented during the lectures, together with some exercises.

Introduction

Two fundamental theorems from spectral theory of matrices:

- Every $n \times n$ matrix has eigenvalues (at least 1 and at most n).
- Every normal $n \times n$ matrix has an orthonormal basis of eigenvectors.

Our aims:

- Establish analogues of these theorems in infinite dimensions.
- Apply these new results to the theory of differential equations.

Plan of the mini-course:

- (1) Normed spaces and operators
- (2) Invertible operators
- (3) The spectrum
- (4) Hilbert spaces
- (5) Operators on Hilbert spaces
- (6) Compact operators
- (7) Spectral theorem
- (8) Sturm-Liouville equation

1. Normed spaces and operators

1.1. Normed spaces.

DEFINITION. A normed space is a vector space X equipped with a norm, namely a function $\|\cdot\|: X \to \mathbb{R}$ satisfying:

- $||x|| \ge 0$ for all $x \in X$, with equality iff x = 0;
- $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{C}$ and all $x \in X$;
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

2010 Mathematics Subject Classification. Primary 47A10; Secondary 34B05, 47B05, 47B15.

©2018 American Mathematical Society

Note that X is a metric space, with metric d(x,y) := ||x-y||.

X is *complete* if every Cauchy sequence in X converges to a limit in X. A complete normed space is called a *Banach space*.

1.2. Examples of normed spaces.

EXAMPLE 1. $X = \mathbb{C}^n$ with the Euclidean norm:

$$\|(\xi_1,\ldots,\xi_n)\|_2 := \left(\sum_{k=1}^n |\xi_k|^2\right)^{1/2}.$$

Example 2. X = C[a, b] with the sup norm:

$$||f||_{\infty} := \sup_{t \in [a,b]} |f(t)|.$$

Example 3. $X = \{\text{polynomials}\}\$ with the coefficient norm

$$\left\| \sum_{k=0}^{n} a_k t^k \right\| := \sum_{k=0}^{n} |a_k|.$$

Examples 1 and 2 are Banach spaces, Example 3 is not.

1.3. Absolute convergence implies convergence.

THEOREM. Let (x_k) be a sequence in a Banach space X. If $\sum_k ||x_k|| < \infty$, then $\sum_k x_k$ converges in X.

PROOF. Set $s_n := \sum_{k=1}^n x_k$. For n > m, we have

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n x_k \right\| \le \sum_{k=m+1}^n ||x_k||.$$

As $\sum_{k} ||x_{k}|| < \infty$, the last term is small if m, n are large enough. Thus (s_{n}) is a Cauchy sequence, so it converges in X.

1.4. Operators.

Theorem. Let X,Y be normed spaces and let $T:X\to Y$ be a linear map. The following are equivalent:

- (1) T is continuous on X;
- (2) T is bounded on the unit ball of X;
- (3) there is a constant C such that $||Tx|| \le C||x||$ for all $x \in X$.

DEFINITION. A map T satisfying (1)–(3) above is called a (bounded) operator. The smallest constant C such that (3) holds is called the operator norm of T, denoted ||T||.

1.5. Examples of operators.

EXAMPLE 1. Let $A = (a_{jk})$ be an $n \times n$ matrix, and define $T : \mathbb{C}^n \to \mathbb{C}^n$ by Tx := Ax. Then, writing $x = (\xi_1, \dots, \xi_n)$,

$$||Tx||_2^2 = \sum_{i=1}^n \left| \sum_{k=1}^n a_{jk} \xi_k \right|^2 \le \sum_{k=1}^n \sum_{i=1}^n |a_{jk}|^2 ||x||_2^2.$$

So T is a bounded operator with $||T|| \leq (\sum_{j,k} |a_{jk}|^2)^{1/2}$.

EXAMPLE 2. Define $T: C[0,1] \to C[0,1]$ by Tf(t) := tf(t).

$$\|Tf\|_{\infty} = \sup_{t \in [0,1]} |tf(t)| \leq \sup_{t \in [0,1]} |f(t)| = \|f\|_{\infty}.$$

So T is bounded with $||T|| \le 1$. In fact ||T|| = 1 (take $f \equiv 1$).

Example 3. Define $T: C[0,1] \to C[0,1]$ by $Tf(t) := \int_0^t f$.

$$||Tf||_{\infty} = \sup_{t \in [0,1]} \left| \int_0^t f \right| \le \int_0^1 |f| \le ||f||_{\infty}.$$

So T is bounded with $||T|| \le 1$. In fact ||T|| = 1 (take $f \equiv 1$).

EXAMPLE 4. Let $X = \{\text{polynomials}\}\$ with the coefficient norm, and define $T: X \to X$ by Tp := p'. If $p_n(t) = t^n$, then

$$||p_n|| = 1$$
 and $||Tp_n|| = n$.

Conclusion: this T is unbounded.

1.6. The space of bounded operators. We write B(X,Y) for the set of bounded operators $T:X\to Y$.

THEOREM. B(X,Y) is a normed space with respect to the operator norm. Further, if Y is complete, then so is B(X,Y).

Important special cases:

- $Y = \mathbb{C}$. We write $X^* := B(X, \mathbb{C})$, the dual space of X. Elements of the dual are called (continuous) linear functionals.
- Y = X. We write B(X) := B(X, X), which is now an algebra. If $S, T \in B(X)$, then also $ST \in B(X)$ and

Exercises

- **1A** Justify the completeness or incompleteness each of the spaces X in §1.2.
- **1B** Let X be a Banach space and let (x_k) be vectors in X such that $\sum_{k\geq 1} ||x_k|| < \infty$. Prove that

$$\left\| \sum_{k>1} x_k \right\| \le \sum_{k>1} \|x_k\|.$$

- **1C** Prove the theorem in §1.4.
- **1D** Prove the theorem in §1.6.
- **1E** Prove that, if $S, T \in B(X)$, then $||ST|| \le ||S|| ||T||$.

2. Invertible operators

2.1. Invertible operators. Let X be a normed space. As usual, B(X) denotes the space of bounded operators on X.

We say that $T \in B(X)$ is *invertible* if there exists $S \in B(X)$ such that ST = TS = I. This S is unique, and is denoted by T^{-1} .

The set of all invertible operators on X is a group, denoted GL(X).

2.2. The fundamental lemma.

LEMMA. Assume that X is a Banach space. If $T \in B(X)$ and ||T|| < 1, then (I-T) is invertible, and $(I-T)^{-1} = \sum_{k>0} T^k$.

PROOF. Since $\sum_{k\geq 0} \|T^k\| \leq \sum_{k\geq 0} \|T\|^k < \infty$, the series $\sum_{k\geq 0} T^k$ is convergent in the Banach space B(X). Further

$$(I-T)\sum_{k>0} T^k = \lim_{n\to\infty} (I-T)\sum_{k=0}^n T^k = \lim_{n\to\infty} (I-T^{n+1}) = I.$$

Likewise $\sum_{k>0} T^k(I-T) = I$.

2.3. The group of invertible operators is open. Recall: GL(X) denotes the group of invertible operators on X.

THEOREM. Assume that X is a Banach space. Then GL(X) is open in B(X).

PROOF. By the fundamental lemma, I lies in the interior of GL(X). Given $S \in GL(X)$, the map $T \mapsto ST$ is a homeomorphism of B(X) onto itself taking GL(X) onto itself and mapping I to S. Hence S lies in the interior of GL(X) as well. Thus GL(X) is open in B(X).

2.4. Continuity of inversion.

THEOREM. Assume that X is a Banach space. Then the map $T \mapsto T^{-1}$ is continuous on GL(X).

PROOF. By the fundamental lemma, if $S_n \to I$, then $S_n^{-1} \to I$. Indeed, writing $S_n = I - T_n$, we have $||T_n|| \to 0$, so for n large

$$\|(I-T_n)^{-1}-I\| = \left\|\sum_{k\geq 1} T_n^k\right\| \leq \sum_{k\geq 1} \|T_n\|^k \to 0.$$

Hence, for a general $S \in GL(X)$, we have

$$S_n \to S \Rightarrow S_n S^{-1} \to I$$

$$\Rightarrow (S_n S^{-1})^{-1} \to I$$

$$\Rightarrow S S_n^{-1} \to I$$

$$\Rightarrow S_n^{-1} \to S^{-1}.$$

2.5. A generalization of the fundamental lemma.

LEMMA. Assume that X is a Banach space. If $T \in B(X)$ and $||T^k|| < 1$ for some $k \ge 1$, then (I - T) is invertible.

PROOF. By the fundamental lemma, $(I - T^k)$ is invertible. Also,

$$I - T^k = (I - T) \left(\sum_{j=0}^{k-1} T^j \right) = \left(\sum_{j=0}^{k-1} T^j \right) (I - T),$$

whence it follows that (I - T) is invertible.

2.6. Application to an initial-value problem.

THEOREM. Let b > 0, let $n \ge 1$, let $a_0, \ldots, a_{n-1} \in C[0, b]$, let $g \in C[0, b]$ and let $x_0, \ldots, x_{n-1} \in \mathbb{C}$. Then there exists a unique solution f to

$$(*) \begin{cases} f^{(n)}(t) + a_{n-1}(t)f^{(n-1)}(t) + \dots + a_0(t)f(t) = g(t), \\ f^{(j)}(0) = x_j \quad (0 \le j < n). \end{cases}$$

Idea for the proof. Convert into a system of first-order ODEs. For example, if n=2, then (*) is equivalent to

$$(**) \begin{cases} F'(t) + A(t)F(t) = G(t), \\ F(0) = X_0, \end{cases}$$

where

$$A := \begin{pmatrix} 0 & -1 \\ a_0 & a_1 \end{pmatrix}, \quad F = \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}, \quad G = \begin{pmatrix} 0 \\ g \end{pmatrix}, \quad X_0 = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}.$$

So it is enough to prove

THEOREM. Let $A:[0,b]\to B(\mathbb{C}^n)$ and $G:[0,b]\to \mathbb{C}^n$ be continuous maps, and let $X_0\in \mathbb{C}^n$. Then there exists a unique solution F to

$$(**) \begin{cases} F'(t) + A(t)F(t) = G(t), \\ F(0) = X_0. \end{cases}$$

PROOF. F solves (**) iff (I + V)F = H, where

$$(VF)(t) := \int_0^t A(s)F(s) ds$$
 and $H(t) := \int_0^t G(s) ds + X_0.$

Here $V: Y \to Y$, where $Y := C([0, b], \mathbb{C}^n)$, a Banach space.

So it is enough to show that $V \in B(Y)$ and (I + V) is invertible.

(1) Proof that V is a bounded operator on Y: Let $F \in C([0,b],\mathbb{C}^n)$. For each $t \in [0,b]$,

$$||VF(t)||_{\mathbb{C}^{n}} = \left\| \int_{0}^{t} A(s)F(s) \, ds \right\|_{\mathbb{C}^{n}}$$

$$\leq \int_{0}^{t} ||A(s)F(s)||_{\mathbb{C}^{n}} \, ds$$

$$\leq \int_{0}^{t} ||A(s)||_{B(\mathbb{C}^{n})} ||F(s)||_{\mathbb{C}^{n}} \, ds$$

$$\leq M \int_{0}^{t} ||F(s)||_{\mathbb{C}^{n}} \, ds,$$

where $M := \sup_{s \in [0,b]} ||A(s)||_{B(\mathbb{C}^n)} < \infty$. Hence

$$\|VF\|_Y = \sup_{t \in [0,b]} \|VF(t)\|_{\mathbb{C}^n} \le Mb \sup_{s \in [0,b]} \|F(s)\| = Mb\|F\|_Y.$$

Conclusion: V is a bounded operator on Y and ||V|| < Mb.

(2) Proof that (I + V) is invertible: Repeat the previous computation with F replaced by $V^{k-1}F$ to get

$$||V^k F(t)||_{\mathbb{C}^n} \le M \int_0^t ||V^{k-1} F(s)||_{\mathbb{C}^n} ds.$$

Hence, by induction on k,

$$||V^k F(t)||_{\mathbb{C}^n} \le \frac{M^k t^k}{k!} ||F||_Y.$$

Hence

$$||V^k F||_Y \le \frac{M^k b^k}{k!} ||F||_Y.$$

Hence

$$||V^k|| \leq \frac{M^k b^k}{k!}$$
.

If k is large enough, then $M^k b^k / k! < 1$, so $||V^k|| < 1$. By the (generalized) fundamental lemma, (I + V) is invertible. Done!

Exercises

- **2A** Let (T_n) be a sequence of invertible operators in B(X) converging to a non-invertible operator T. Show that $||T_n^{-1}|| \to \infty$. [Hint: $||I T_n^{-1}T|| \le ||T_n^{-1}|| ||T_n T||$.]
- **2B** Let $n \geq 2$. Determine A, F, G, X_0 so that the systems (*) and (**) in §2.6 are equivalent.
- **2C** Show that the solution F to (**) in §2.6 satisfies

$$||F||_{\infty} \le B\Big(||X_0|| + \int_0^b ||G(s)|| \, ds\Big),$$

where B is a constant depending on A, but not on X_0 or G.

2D Combine the two preceding exercises to show that the solution f to (*) in §2.6 satisfies

$$\max_{0 \le j \le n-1} \|f^{(j)}\|_{\infty} \le C \Big(\max_{0 \le j \le n-1} |x_j| + \int_0^b |g(s)| \, ds \Big),$$

where C is a constant depending on a_0, \ldots, a_{n-1} , but not on x_0, \ldots, x_{n-1} or g.

3. The spectrum

Throughout this section, X is a Banach space and $T \in B(X)$.

3.1. Eigenvalues and eigenvectors. $\lambda \in \mathbb{C}$ is an eigenvalue of T if there exists a non-zero $x \in X$ such that $Tx = \lambda x$. The vector x is a called an eigenvector. Warning: If dim $X = \infty$ then T may have no eigenvalues!

EXAMPLE.
$$X := C[0,1]$$
 and $Tf(t) := tf(t)$ (see Exercise 3A).

Two ways round this problem:

- impose extra conditions of T (shall explore this later);
- 'broaden' the definition of eigenvalue (subject for this section).

3.2. Spectrum.

DEFINITION. The spectrum of T is defined by

$$\sigma(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \text{ not invertible} \}.$$

If dim $X < \infty$, then $\sigma(T) = \{\text{eigenvalues of } T\}$.

If dim $X = \infty$, then {eigenvalues of T} $\subset \sigma(T)$, but inclusion may be strict.

EXAMPLE. Let X := C[0,1] and Tf(t) := tf(t).

- If $(T \lambda I)$ is invertible, then there exists $f \in C[0, 1]$ such that $(t \lambda)f(t) = 1$ for all $t \in [0, 1]$, so $\lambda \notin [0, 1]$.
- Conversely, if $\lambda \notin [0,1]$, then $t \mapsto 1/(t-\lambda) \in C[0,1]$, and multiplication by this function is an inverse to $(T-\lambda I)$.
- Conclusion: $\sigma(T) = [0, 1]$.

3.3. Spectral radius formula.

THEOREM. The spectrum $\sigma(T)$ is a non-empty compact set, and

$$\max\{|\lambda| : \lambda \in \sigma(T)\} = \lim_{n \to \infty} ||T^n||^{1/n} = \inf_{n > 1} ||T^n||^{1/n}.$$

PROOF. In three steps:

- $(1) \ \rho(T) := \lim_{n \to \infty} \|T^n\|^{1/n} \text{ exists and equals } \inf_{n \ge 1} \|T^n\|^{1/n};$
- (2) $\sigma(T)$ is a closed subset of the disk $|z| \leq \rho(T)$;
- (3) there exists $\lambda \in \sigma(T)$ with $|\lambda| = \rho(T)$.

Note: $\rho(T)$ is called the spectral radius of T.

Step 1: $\lim_{n\to\infty} ||T^n||^{1/n} = \inf_{n>1} ||T^n||^{1/n}$.

Set $\eta := \inf_{n \ge 1} ||T^n||^{1/n}$. It is enough to show that

$$\lim_{n \to \infty} \sup_{n \to \infty} ||T^n||^{1/n} \le \eta. \tag{*}$$

Let $\epsilon > 0$ and choose $m \ge 1$ such that $||T^m||^{1/m} < \eta + \epsilon$.

Given $n \ge 1$, write n = qm + r, where $0 \le r < m$. Then

$$||T^n|| \le ||T^m||^q ||T^r|| \le (\eta + \epsilon)^{mq} ||T^r|| = (\eta + \epsilon)^{n-r} ||T^r|| \le (\eta + \epsilon)^n M,$$

where M is a constant independent of n. Hence

$$\limsup_{n\to\infty}\|T^n\|^{1/n}\leq \eta+\epsilon.$$

Letting $\epsilon \to 0$, we get (*).

Step 2: $\sigma(T)$ is a closed subset of the disk $|z| \leq \rho(T)$.

Define $F: \mathbb{C} \to B(X)$ by $F(\lambda) := T - \lambda I$. Clearly F is continuous. Also, recalling that GL(X) denotes the invertible operators on X,

$$F^{-1}(GL(X)) = \mathbb{C} \setminus \sigma(T).$$

As GL(X) is open in B(X), we have $\mathbb{C} \setminus \sigma(T)$ is open in \mathbb{C} , whence $\sigma(T)$ is closed in \mathbb{C} .

Now suppose that $|\lambda| > \rho(T) = \inf_{n \geq 1} ||T^n||^{1/n}$. Then there exists $n \geq 1$ such that $||(T/\lambda)^n|| < 1$. By the generalized form of the fundamental lemma, it follows that $(I - T/\lambda)$ is invertible, and therefore $\lambda \notin \sigma(T)$. Conclusion:

$$\lambda \in \sigma(T) \implies |\lambda| \le \rho(T).$$

Step 3: There exists $\lambda \in \sigma(T)$ with $|\lambda| = \rho(T)$.

Two cases to consider:

Case 1: $\rho(T) = 0$.

We need to show that T is not invertible. Suppose, on the contrary, that T is invertible. Then, for all $n \geq 1$, we have

$$1 = ||I|| = ||T^n(T^{-1})^n|| \le ||T^n|| ||T^{-1}||^n.$$

Then $||T^n||^{1/n} \ge 1/||T^{-1}|| > 0$ for all n, contradicting $\rho(T) = 0$.

Case 2: $\rho(T) > 0$.

Without loss of generality $\rho(T)=1$. Then, by Step 2, $\sigma(T)\subset \overline{\mathbb{D}}$. We need to show that $\sigma(T)\cap\partial\mathbb{D}\neq\emptyset$. Suppose, on the contrary, that $\sigma(T)\subset\mathbb{D}$. Then (I-zT) is invertible for all $z\in\overline{\mathbb{D}}$.

As $z \mapsto (I - zT)^{-1} : \overline{\mathbb{D}} \to B(X)$ is continuous on a compact set, it is uniformly continuous. So, given $\epsilon > 0$, there is $\delta > 0$ such that

$$z, w \in \overline{\mathbb{D}}, |z - w| \le \delta \quad \Rightarrow \quad \|(I - zT)^{-1} - (I - wT)^{-1}\| \le \epsilon.$$

Using the identity $(I - S^2)^{-1} = ((I - S)^{-1} + (I + S)^{-1})/2$ and induction on n, it follows that, for all $n \ge 0$,

$$|z - w| \le \delta \quad \Rightarrow \quad \|(I - (zT)^{2^n})^{-1} - (I - (wT)^{2^n})^{-1}\| \le \epsilon.$$

In particular, taking z = 1 and $w = (1 - \delta)$, we get

$$\|(I-T^{2^n})^{-1}-(I-((1-\delta)T)^{2^n})^{-1}\| \le \epsilon.$$

To summarize, $\forall \epsilon > 0 \; \exists \delta > 0 \; \forall n \geq 0$

$$\|(I - T^{2^n})^{-1} - (I - ((1 - \delta)T)^{2^n})^{-1}\| \le \epsilon.$$
 (*)

Now $\rho((1-\delta)T) = (1-\delta) < 1$, so $((1-\delta)T)^{2^n} \to 0$ and hence

$$(I - ((1 - \delta)T)^{2^n})^{-1} \to I.$$

Together with (*), this shows that, for all sufficiently large n,

$$||(I - T^{2^n})^{-1} - I|| \le 2\epsilon.$$

Thus $(I - T^{2^n})^{-1} \to I$, whence $(I - T^{2^n}) \to I$ and $T^{2^n} \to 0$. This contradicts the supposition that $\rho(T) = 1$. Done!

3.4. Application: Fundamental theorem of algebra.

THEOREM. Every polynomial $p(z) = z^n + a_1 z^{n-1} + \cdots + a_n$ has a root.

PROOF. We have $p(z) = \det(zI - A)$, where

$$A := \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_1 \end{pmatrix}.$$

Take
$$\lambda \in \sigma(A)$$
. Then $p(\lambda) = \det(\lambda I - A) = 0$.

3.5. Some further developments.

- λ is an approximate eigenvalue of T if there exists a sequence (x_n) of unit vectors in X such that $\|(T \lambda I)x_n\| \to 0$. One can show every $\lambda \in \partial \sigma(T)$ is an approximate eigenvalue. Hence every $T \in B(X)$ has approximate eigenvalues.
- Spectral mapping theorem: If p is a polynomial then $\sigma(p(T)) = p(\sigma(T))$.
- Holomorphic functional calculus. One can define an operator f(T) for every function f holomorphic on a neighborhood of $\sigma(T)$. Idea: use Cauchy integral formula

$$f(T) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - T)^{-1} dz.$$

Exercises

- **3A** Define $T: C[0,1] \to C[0,1]$ by Tf(t) := tf(t). Prove that T has no eigenvalues.
- **3B** Let $S \in B(X)$ and suppose that $I \pm S$ are both invertible. Show that $I S^2$ is invertible and

$$(I - S^2)^{-1} = \frac{(I - S)^{-1} + (I + S)^{-1}}{2}.$$

3C (Spectral mapping theorem) Let $T \in B(X)$ and let p be a polynomial. Show that

$$\sigma(p(T)) = p(\sigma(T)).$$

[*Hint*: factorize $p(z) - \lambda = c(z - z_1) \dots (z - z_n)$.]

3D Let $T \in B(X)$ and let $\lambda \in \partial \sigma(T)$. Show that λ is an approximate eigenvalue, i.e. there exist unit vectors $x_n \in X$ such that $\|(T - \lambda I)x_n\| \to 0$. [Hint: Use Exercise 2A.]

4. Hilbert spaces

4.1. Inner products.

DEFINITION. A map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ is an inner product if:

- $x \mapsto \langle x, y \rangle$ is linear, for each $y \in X$;
- $\langle y, x \rangle = \langle x, y \rangle$, for all $x, y \in X$;
- $\langle x, x \rangle \geq 0$ for all $x \in X$, with equality iff x = 0.

Properties of inner products:

- $||x|| := \langle x, x \rangle^{1/2}$ is a norm on X.
- $|\langle x, y \rangle| \le ||x|| ||y||$ (Cauchy–Schwarz inequality).

- If $||x_n x|| \to 0$ and $||y_n y|| \to 0$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$. $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$ (parallelogram identity). $\langle x, y \rangle = (1/4) \sum_{k=0}^{3} i^k ||x + i^k y||^2$ (polarization identity).
- **4.2.** Hilbert spaces. A Hilbert space is a vector space H, equipped with an inner product, such that the resulting normed space is complete.

Examples:

•
$$H = \mathbb{C}^n$$

 $\langle x, y \rangle := \sum_{k=1}^n x_k \overline{y}_k$

$$\langle x, y \rangle := \sum_{k=1}^{n} x_k \overline{y}_k$$
• $H = \ell^2 := \{x = (x_1, x_2, \dots) : \sum_{1}^{\infty} |x_k|^2 < \infty\}$

$$\langle x, y \rangle := \sum_{k=1}^{\infty} x_k \overline{y}_k.$$

•
$$H = L^2[a,b] := \{f : [a,b] \to \mathbb{C} : \int_a^b |f(t)|^2 dt < \infty \}$$

$$\langle f,g\rangle := \int_a^b f(t)\overline{g(t)}\,dt$$

$$\bullet \ H = L^2(S,\mu) := \{f: S \to \mathbb{C}: \int_S |f|^2 \,d\mu < \infty\}$$

$$\langle f,g\rangle := \int_S f\overline{g}\,d\mu.$$

Henceforth, H designates a Hilbert space.

4.3. Orthonormal sequences.

DEFINITION. A (finite or infinite) sequence (e_k) in H is orthonormal (o.n.) if

$$\langle e_j, e_k \rangle = \begin{cases} 1, & j = k, \\ 0, & j \neq k. \end{cases}$$

Examples:

- $H = \mathbb{C}^n$; $e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ $H = \ell^2$; $e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots), \dots$ $H = L^2[0, 1]$; $e_k(t) = e^{2\pi i k t} \ (k \in \mathbb{Z})$

4.4. Bessel's inequality.

Theorem (Bessel's inequality). Let (e_k) be an orthonormal sequence in H. Then, for all $x \in H$,

$$\sum_{k} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

PROOF. For $n \geq 1$, we have

$$0 \le \left\| x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |\langle x, e_k \rangle|^2.$$

Let $n \to \infty$.

4.5. Riesz-Fischer theorem.

Theorem (Riesz-Fischer). Let (e_k) be an o.n. sequence in H and let (c_k) be complex scalars. Then $\sum_{k=1}^{\infty} c_k e_k$ converges in H iff $\sum_{k=1}^{\infty} |c_k|^2 < \infty$.

PROOF. Set $s_n := \sum_{k=1}^n c_k e_k$, and note that, for n > m,

$$||s_n - s_m||^2 = \left\| \sum_{k=m+1}^n c_k e_k \right\|^2 = \sum_{k=m+1}^n |c_k|^2.$$

Now use completeness of H.

REMARKS. (1) $\sum_{k} c_k e_k$ is independent of the order of the terms.

(2) By Bessel and Riesz–Fischer, the series $\sum_k \langle x, e_k \rangle e_k$ converges.

4.6. Parseval's identity.

THEOREM. Let (e_k) be an orthonormal sequence in H and let $x \in H$. TFAE:

- x lies in the closure of the span of the (e_k) ;
- $x = \sum_{k} \langle x, e_k \rangle e_k$; $||x||^2 = \sum_{k} |\langle x, e_k \rangle|^2$ (Parseval's identity).

Proof. The equivalence of the first two statements follows from

$$\left\| x - \sum_{k=1}^{n} c_k e_k \right\|^2 = \left\| x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k \right\|^2 + \left\| \sum_{k=1}^{n} (\langle x, e_k \rangle - c_k) e_k \right\|^2.$$

The equivalence of the last two statements follows from

$$\left\| x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |\langle x, e_k \rangle|^2.$$

4.7. Orthonormal bases.

DEFINITION. An *orthonormal basis* of H is an o.n. sequence (e_k) that spans a dense subspace of H. By the preceding theorem, for all $x \in H$,

$$x = \sum_{k} \langle x, e_k \rangle e_k$$
 and $||x||^2 = \sum_{k} |\langle x, e_k \rangle|^2$.

A metric space is *separable* if it has a countable dense subset. Separable H include: \mathbb{C}^n , ℓ^2 , $L^2[a,b]$.

Theorem. A Hilbert space has an orthonormal basis iff it is separable.

PROOF. 'Only if': consider
$$\{\sum_{k=1}^n c_k e_k : c_k \in \mathbb{Q} + i\mathbb{Q}, n \geq 1\}$$
. 'If': Choose (v_k) with dense span, then use Gram–Schmidt.

4.8. Orthogonal complements. Given $S \subset H$, we define

$$S^{\perp} := \{ x \in H : \langle x, s \rangle = 0 \text{ for all } x \in S \}.$$

Note that S^{\perp} is a closed subspace of H (whether S is or not).

THEOREM. Let M be a closed subspace of H. Then $H = M \oplus M^{\perp}$.

PROOF. (For H separable.) Clearly $M \cap M^{\perp} = \{0\}$. We must show that $M + M^{\perp} = H$. Let $x \in H$. Let (e_k) be an o.n. basis of M and set

$$y := \sum_{k} \langle x, e_k \rangle e_k.$$

Then $y \in M$. Also $\langle x - y, e_k \rangle = 0$ for all k, so $x - y \in M^{\perp}$. Thus

$$x = y + (x - y) \in M + M^{\perp}$$
.

4.9. Linear functionals on a Hilbert space.

Theorem (Riesz representation theorem). Let $\phi: H \to \mathbb{C}$ be a continuous linear functional. Then there exists a unique $y \in H$ such that

$$\phi(x) = \langle x, y \rangle \quad (x \in H).$$

PROOF. Existence: If $\phi = 0$, then we can take y = 0. Otherwise, $\ker \phi$ is a proper closed subspace of H. Since $H = \ker \phi \oplus (\ker \phi)^{\perp}$, there exists non-zero vector $y \in (\ker \phi)^{\perp}$. Then ϕ and $x \mapsto \langle x, y \rangle$ are linear functionals with the same kernel, so one is a multiple of the other. We can ensure that this multiple is 1 by replacing y by a suitable multiple of itself.

Uniqueness: If y_1, y_2 are two candidates, then $\langle x, y_1 - y_2 \rangle = 0$ for all x, in particular for $x = y_1 - y_2$. This implies $y_1 - y_2 = 0$.

Exercises

- **4A** Prove the properties of inner products listed in §4.1.
- **4B** Prove that ℓ^2 is complete.
- **4C** Let (e_k) be an o.n. basis of H and let $(c_k) \in \ell^2$. Show that $\sum_k c_k e_k$ is independent of the order of the sum. [Hint: Show that $\sum_k \langle c_k e_k, y \rangle$ is absolutely convergent for each $y \in H$.]

4D (Gram-Schmidt algorithm) Let (v_1, v_2, v_3, \dots) be a (finite or infinite) sequence of linearly independent vectors in H. Define inductively

$$f_k := v_k - \sum_{j=1}^{k-1} \langle v_k, e_j \rangle e_j$$
 and $e_k := f_k / \|f_k\|$.

Show that (e_k) is an orthonormal sequence and that span $\{e_1,\ldots,e_n\}$ $\operatorname{span}\{v_1,\ldots,v_n\}$ for each n.

4E Show that every subset of a separable metric space is itself separable.

5. Operators on Hilbert spaces

5.1. Adjoint of an operator.

THEOREM. Each $T \in B(H)$ has a unique adjoint $T^* \in B(H)$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle \quad (x, y \in H).$$

PROOF. Fix $y \in H$. The map $x \mapsto \langle Tx, y \rangle$ is a continuous linear functional on H, so by the Riesz representation theorem, there exists a unique $z \in H$ such that

$$\langle Tx, y \rangle = \langle x, z \rangle \quad (x \in H).$$

Define $T^*y := z$. It is routine to check that T^* is linear. Lastly,

$$||T^*x||^2 = \langle T^*x, T^*x \rangle = \langle TT^*x, x \rangle \le ||T|| ||T^*x|| ||x||,$$

whence $||T^*x|| \le ||T|| ||x||$. Thus $T^* \in B(H)$ and $||T^*|| < ||T||$.

5.2. Calculation of adjoints.

THEOREM. Let (e_k) be an o.n. basis and suppose $Te_k = \sum_j a_{jk}e_j$ for all k. Then $T^*e_k = \sum_j \overline{a_{kj}}e_j$ for all k.

PROOF. We have $T^*e_k = \sum_j \langle T^*e_k, e_j \rangle e_j$, and

$$\langle T^* e_k, e_j \rangle = \overline{\langle e_j, T^* e_k \rangle} = \overline{\langle T e_j, e_k \rangle} = \overline{\langle \sum_i a_{ij} e_i, e_k \rangle} = \overline{a_{kj}}.$$

Examples:

- If $T \in B(\ell^2)$ is the right shift, then T^* is the left shift.
- (Diagonal operators) If (e_k) is an o.n. basis for H and $Te_k = \lambda_k e_k$ for all k, then $T^*e_k = \overline{\lambda}_k e_k$ for all k.

5.3. Properties of adjoints.

Algebraic properties: $(S+T)^*=S^*+T^*, (\lambda T)^*=\overline{\lambda}T^*, (ST)^*=T^*S^*,$ $T^{**}=T.$

Norm properties: $||T^*|| = ||T||$ and $||T^*T|| = ||T||^2$.

PROOF OF THE NORM PROPERTIES. We already know that $||T^*|| \leq ||T||$. Also $||T|| = ||T^{**}|| \le ||T^*||$. Further $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$. Finally,

$$||Tx||^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle \le ||T^*T|| ||x||^2,$$

whence $||T||^2 \le ||T^*T||$.

5.4. Self-adjoint operators.

Definition. $T \in B(H)$ is self-adjoint if $T^* = T$.

Examples:

- For $T \in B(H)$, let $A := (T + T^*)/2$ and $B := (T T^*)/2i$. Then A, B are self-adjoint and T = A + iB.
- If $T \in B(H)$, then T^*T is self-adjoint.
- Let $P: H \to M$ be the orthogonal projection onto a closed subspace M. Then P is self-adjoint.

5.5. Spectrum of self-adjoint operators.

THEOREM. If T is a self-adjoint operator, then $\sigma(T) \subset \mathbb{R}$.

PROOF. Let
$$\alpha + i\beta \in \sigma(T)$$
. Then $\alpha + i(\beta + t) \in \sigma(T + itI)$, so $|\alpha + i(\beta + t)|^2 \le ||T + itI||^2 = ||(T + itI)^*(T + itI)|| = ||T^2 + t^2I||$.

Hence

$$\alpha^2 + \beta^2 + 2\beta t \le ||T^2||.$$

As this holds for all $t \in \mathbb{R}$, we must have $\beta = 0$.

5.6. Normal operators.

Definition. $T \in B(H)$ is normal if $TT^* = T^*T$.

Examples:

- Every self-adjoint operator is normal.
- Every diagonal operator is normal.
- Let A, B be self adjoint. Then A + iB is normal iff AB = BA.
- The right shift S on ℓ^2 is not normal: $S^*S = I \neq SS^*$.

5.7. Properties of normal operators. Let $T \in B(H)$ be normal.

- $||T^*x|| = ||Tx||$ for all $x \in H$.
- If $Te = \lambda e$, then $T^*e = \overline{\lambda}e$.
- If $Te = \lambda e$ and $Tf = \mu f$ where $\lambda \neq \mu$, then $\langle e, f \rangle = 0$.
- $||T^2|| = ||T||^2$. Indeed:

$$||T^2||^2 = ||(T^2)^*(T^2)|| = ||(T^*T)^*(T^*T)|| = ||T^*T||^2 = ||T||^4.$$

• $\rho(T) = ||T||$. Indeed: $||T^{2^n}|| = ||T||^{2^n}$ for all n, so

$$\rho(T) = \lim_{n \to \infty} ||T^{2^n}||^{1/2^n} = ||T||.$$

5.8. Spectral theorem in finite dimensions.

Theorem. Assume dim $H < \infty$. Then every normal $T \in B(H)$ has an o.n. basis of eigenvectors.

Proof.

- Pick an o.n. basis of each eigenspace of T.
- Put them together to get a (finite) o.n. sequence (e_n) .
- Let M be the (closed) subspace spanned by (e_n) .
- Since T is normal, $T^*(M) \subset M$, whence $T(M^{\perp}) \subset M^{\perp}$.
- If $M^{\perp} \neq \{0\}$, then $T|M^{\perp}$ has an eigenvector e; then $e \in M \cap M^{\perp}$, so e = 0, contradiction.
- Conclusion: M = H and (e_n) is an o.n. basis of H.

5.9. Spectral theorem in infinite dimensions? If $\dim H = \infty$, then it is no longer true that every normal T has an o.n. basis of eigenvectors. Indeed, it may happen that T has no eigenvectors at all, even if T is self-adjoint.

Example. $H = L^2[0,1]$ and $T: f(t) \mapsto tf(t)$.

We need a further ingredient...

Exercises

- **5A** Prove that the adjoint T^* is a linear map.
- **5B** Prove the algebraic properties of adjoints listed in §5.3.
- **5C** Let M be a closed subspace of H and let $P: H \to M$ be the orthogonal projection of H onto M. Show that P is self-adjoint.
- **5D** Let $T \in B(H)$. Show that T is a normal operator if and only if $||Tx|| = ||T^*x||$ for all $x \in H$. [Hint for 'if': Use the polarization identity (see §4.1).]
- **5E** Let $T \in B(H)$. Show that $||T|| = \rho(T^*T)^{1/2}$. Hence calculate $\left\| \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\|$.

6. Compact operators

6.1. Compact operators.

DEFINITION. $T \in B(H)$ is compact if, whenever (x_n) is a bounded sequence, (Tx_n) contains a convergent subsequence.

Examples:

- If $T \in B(H)$ and has finite rank (i.e. $\dim(T(H)) < \infty$), then it is compact.
- If dim $H = \infty$, then I_H is not compact. [Proof: Let (e_n) be an o.n. sequence. Then (e_n) is bounded. But it contains no convergent subsequence since $||e_n e_m|| = \sqrt{2}$ for all $m \neq n$.]

The set of compact operators on H is denoted by K(H).

6.2. Structure of K(H).

Theorem. K(H) is an ideal in B(H).

PROOF. Show:

- $S, T \in K(H) \Rightarrow (S+T) \in K(H)$.
- $S \in B(H), T \in K(H) \Rightarrow ST, TS \in K(H)$.

COROLLARY. If dim $H = \infty$, then no invertible operator on H is compact.

THEOREM. K(H) is closed in B(H).

PROOF. Let $(T_k) \in K(H)$ and let $T_k \to T$. Let (x_n) be bounded.

- There exists $N_1 \subset \mathbb{N}$ such that $(T_1x_n)_{n \in N_1}$ converges.
- There exists $N_2 \subset N_1$ such that $(T_2x_n)_{n \in N_2}$ converges. Etc.
- Take N to be the 1st element of N_1 , the 2nd element of N_2 , etc. Then $(T_k x_n)_{n \in \mathbb{N}}$ converges for each k.
- As $||T T_k|| \to 0$, get $(Tx_n)_{n \in N}$ is Cauchy, so convergent.

Conclusion: T is compact.

Corollary. If T is a limit of bounded, finite-rank operators, then it is compact.

THEOREM. If $T \in K(H)$ then $T^* \in K(H)$.

PROOF. Let (x_n) be a bounded sequence. As TT^* is compact, there exists $N \subset \mathbb{N}$ such that $(TT^*x_n)_{n \in \mathbb{N}}$ converges. Since

$$||T^*x_n - T^*x_m||^2 \le ||x_n - x_m|| ||TT^*(x_n - x_m)||,$$

it follows that $(T^*x_n)_{n\in\mathbb{N}}$ is Cauchy, and hence convergent.

REMARKS. (1) To summarize: K(H) is a closed *-ideal in B(H).

(2) It can be shown that if H is infinite-dimensional and separable, then K(H) is the unique non-trivial closed ideal in B(H).

6.3. Compact diagonal operators.

THEOREM. Let $T \in B(H)$, let (e_n) be an o.n. basis of H, and suppose that $Te_n = \lambda_n e_n$ for all n. Then T is compact iff $\lambda_n \to 0$.

PROOF. Suppose that $\lambda_n \not\to 0$. Then there is a sequence $N \subset \mathbb{N}$ and $\delta > 0$ such that $|\lambda_n| \geq \delta$ for all $n \in \mathbb{N}$. For $m, n \in \mathbb{N}$ we then have

$$||Te_n - Te_m||^2 = |\lambda_n|^2 + |\lambda_m|^2 \ge 2\delta^2,$$

so $(Te_n)_{n\in\mathbb{N}}$ has no convergent subsequence. So T is not compact.

Suppose conversely that $\lambda_n \to 0$. Let T_n be the diagonal operator with eigenvalues

 $(\lambda_1,\ldots,\lambda_n,0,0,\ldots)$. Then T_n is finite rank and

$$||T - T_n|| = \sup_{k > n} |\lambda_k| \to 0 \quad (n \to \infty).$$

So T is compact.

6.4. Hilbert-Schmidt operators.

LEMMA. Let $T \in B(H)$, and let (e_n) and (f_m) be o.n. bases of H. Then

$$\sum_{n} ||Te_n||^2 = \sum_{m} ||T^*f_m||^2.$$

Proof. By Parseval,

$$\sum_{n} ||Te_{n}||^{2} = \sum_{n} \sum_{m} |\langle Te_{n}, f_{m} \rangle|^{2} = \sum_{m} \sum_{n} |\langle e_{n}, T^{*}f_{m} \rangle|^{2} = \sum_{m} ||T^{*}f_{m}||^{2}. \quad \Box$$

DEFINITION. $T \in B(H)$ is a Hilbert–Schmidt operator if $\sum_n ||Te_n||^2 < \infty$ for some (and hence for every) o.n. basis (e_n) .

Theorem. Every Hilbert-Schmidt operator T is compact.

PROOF. Let (e_n) be an o.n. basis. For $x \in H$, we have

$$Tx = T\left(\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k\right) = \sum_{k=1}^{\infty} \langle x, e_k \rangle Te_k.$$

Set $T_n x := \sum_{k=1}^n \langle x, e_k \rangle Te_k$. By Cauchy-Schwarz and Parseval,

$$||(T - T_n)x|| \le \sum_{k=n+1}^{\infty} |\langle x, e_k \rangle| ||Te_k|| \le ||x|| \Big(\sum_{k=n+1}^{\infty} ||Te_k||^2\Big)^{1/2},$$

so $||T - T_n|| \le (\sum_{k=n+1}^{\infty} ||Te_k||^2)^{1/2} \to 0$ as $n \to \infty$. As each T_n is of finite rank, it follows that T is compact.

6.5. Integral operators.

THEOREM. Let $K \in L^2([a,b] \times [a,b])$. For $f \in L^2[a,b]$, define

$$T_K f(x) := \int_a^b K(x, y) f(y) \, dy.$$

- (1) $T_K \in B(L^2[a,b])$ with $||T_K|| \le ||K||_2$
- (2) T_K is a Hilbert–Schmidt operator, hence compact.

PROOF. (1) Write $K_x(y) := K(x, y)$.

- Since $K \in L^2([a,b]^2)$, we have $K_x \in L^2[a,b]$ for a.e. $x \in [a,b]$.
- For all such x, we have $T_K f(x) = \langle f, \overline{K_x} \rangle$.
- By Cauchy-Schwarz, $|T_K f(x)| \leq ||K_x||_2 ||f||_2$ a.e.
- Hence $T_K f \in L^2([a,b])$ with $||T_K f||_2 \le ||K||_2 ||f||_2$.
- (2) Let (e_n) be an o.n. basis of $L^2[a,b]$. Then

$$\sum_{n} ||T_{K}e_{n}||^{2} = \sum_{n} \int_{a}^{b} |(T_{K}e_{n})(x)|^{2} dx = \sum_{n} \int_{a}^{b} |\langle e_{n}, \overline{K_{x}} \rangle|^{2} dx$$

$$= \int_{a}^{b} \sum_{n} |\langle e_{n}, \overline{K_{x}} \rangle|^{2} dx = \int_{a}^{b} ||\overline{K_{x}}||_{2}^{2} dx = ||K||_{2}^{2} < \infty. \quad \Box$$

Remark. All this works equally well in any countably generated, σ -finite measure space.

- **6.6.** A compact operator with no eigenvalues. Define $T \in B(\ell^2)$ by T := SD, where S is the right shift and D is the diagonal operator with $De_n := e_n/n$ for all n.
 - As S is bounded and D is compact, T is also compact.
 - A computation gives $||T^n|| = 1/n!$. By the spectral radius formula,

$$\rho(T) = \lim_{n \to \infty} ||T^n||^{1/n} = \lim_{n \to \infty} (1/n!)^{1/n} = 0.$$

So the only possible eigenvalue of T is 0. But T is injective, so 0 is not an eigenvalue either.

Exercises

- **6A** Prove that, if $S, T \in K(H)$, then $(S + T) \in K(H)$.
- **6B** Prove that, if $S \in B(H)$ and $T \in K(H)$, then both $ST, TS \in K(H)$.
- **6C** In the notation of §6.5, show that $(T_K)^* = T_L$, where $L(x,y) := \overline{K(y,x)}$.
- **6D** In the example in §6.6, prove that $||T^n|| = 1/n!$.

7. The spectral theorem

7.1. Spectral theorem.

THEOREM. Let H be a separable Hilbert space and let $T \in B(H)$ be a compact normal operator. Then H has an o.n. basis of eigenvectors of T.

The proof hinges on the following key lemma:

LEMMA. A compact normal operator $T \in B(H)$ has an eigenvector.

7.2. Proof of key lemma. Suppose first T is compact and *self-adjoint*. WLOG ||T|| = 1.

- Choose $x_n \in H$ with $||x_n|| = 1$ such that $||Tx_n|| \to 1$.
- $||(T^2 I)x_n||^2 = ||T^2x_n||^2 + ||x_n||^2 2||Tx_n||^2 \to 0.$
- By compactness of T, a subsequence $T^2x_{n_i} \to \text{some } y \in H$.
- As $(T^2 I)x_{n_j} \to 0$, it follows that $x_{n_j} \to y$.
- Hence ||y|| = 1 and $(T^2 I)y = 0$.
- If (T-I)y = 0, then y is an eigenvector of T.
- If $(T-I)y=z\neq 0$, then $(T+I)z=(T^2-I)y=0$, and so z is an eigenvector of T.

Conclusion: T has an eigenvector in this case.

Now suppose T is compact and normal.

- Set $A := (T + T^*)/2$ and $B := (T T^*)/2i$.
- As A is compact and self-adjoint, it has an eigenvalue α .
- Set $K := \ker(A \alpha I)$.
- As T is normal, AB = BA. It follows that $B(K) \subset K$.
- As $B|_K$ is compact and self-adjoint, it has an eigenvector e.
- So e is an eigenvector of both A and B.
- As T = A + iB, it follows that e is an eigenvector of T.

Conclusion: T has an eigenvector in this case too.

- 7.3. Proof of spectral theorem. Let T be a compact normal operator on a separable H.
 - \bullet Pick an o.n. basis of each eigenspace of T.
 - Put them together to get a (countable) o.n. sequence (e_n) .
 - Let M be the closed subspace spanned by (e_n) .
 - Since T is normal, $T^*(M) \subset M$, whence $T(M^{\perp}) \subset M^{\perp}$.
 - If $M^{\perp} \neq \{0\}$, then by the lemma $T|_{M^{\perp}}$ has an eigenvector e; then $e \in M \cap M^{\perp}$, so e = 0, contradiction.
 - Conclusion: M = H and (e_n) is an o.n. basis of H.

7.4. Eigenvalue decay.

THEOREM. Let $T \in B(H)$ with an o.n. basis (e_n) of eigenvectors, $Te_n = \lambda_n e_n$.

- (1) If T is compact, then $\lambda_n \to 0$.
- (2) If T is Hilbert-Schmidt, then $\sum_{n} |\lambda_n|^2 < \infty$.

PROOF. (1) This is just the Theorem in §6.3.

(2) If T is Hilbert–Schmidt, then

$$\sum_{n} |\lambda_n|^2 = \sum_{n} ||Te_n||^2 < \infty.$$

COROLLARY. Every compact operator on H is the limit of a sequence of finite-rank operators.

PROOF. If T is compact and self-adjoint, then it is a diagonal operator whose eigenvalues tend to zero, so it is the limit of finite-rank operators (see $\S6.3$).

If T is compact but not self-adjoint, we write it as T=A+iB, where $A:=(T+T^*)/2$ and $B:=(T-T^*)/2i$ are both compact and self-adjoint. There exist finite-rank operators $A_n\to A$ and $B_n\to B$. Set $T_n:=A_n+iB_n$. Then T_n is finite-rank and $T_n\to T$.

7.5. Min-max principle. Let \mathcal{M}_n denote the set of (closed) subspaces of H of dimension n.

Theorem. Let $T \in B(H)$ be a compact self-adjoint operator with positive eigenvalues, ordered so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$. Then, for each n,

$$\lambda_n = \max_{M \in \mathcal{M}_n} \min_{x \in M \atop \|x\| = 1} \langle Tx, x \rangle = \min_{M \in \mathcal{M}_{n-1}} \max_{x \in M^{\perp} \atop \|x\| = 1} \langle Tx, x \rangle.$$

PROOF. We need two facts:

- For all x, we have $\langle Tx, x \rangle = \sum_k \lambda_k |\langle x, e_k \rangle|^2$. If dim $M > \dim N$, then $M \cap N^{\perp} \neq \{0\}$ (as $P_N|_M : M \to N$ has a non-trivial kernel).

Let us write $M_n := \operatorname{span}\{e_1, \dots, e_n\}$.

• If dim M = n, then $\exists x_0 \in M \cap M_{n-1}^{\perp}$ with $||x_0|| = 1$, so

$$\min_{\substack{x \in M \\ |x| = 1}} \langle Tx, x \rangle \le \langle Tx_0, x_0 \rangle = \sum_{k=n}^{\infty} \lambda_k |\langle x_0, e_k \rangle|^2 \le \lambda_n.$$

• If dim M = n - 1, then then $\exists x_0 \in M_n \cap M^{\perp}$ with $||x_0|| = 1$, so

$$\max_{\substack{x \in M^{\perp} \\ \|x\| = 1}} \langle Tx, x \rangle \ge \langle Tx_0, x_0 \rangle = \sum_{k=1}^{n} \lambda_k |\langle x_0, e_k \rangle|^2 \ge \lambda_n.$$

- Equality is attained in the first case if $M = M_n$ and in the second if $M = M_{n-1}$.
- **7.6. Further developments.** Let $T \in K(H)$. The singular values σ_k of T are the square roots of the eigenvalues of T^*T , listed in decreasing order.
 - Singular-value decomposition: Given $T \in K(H)$, there are o.n. sequences (e_k) and (f_k) such that $Tx = \sum_k \sigma_k \langle x, e_k \rangle f_k$.
 - Distance formula: If $T \in K(H)$ then, for each $n \ge 1$,

$$\sigma_n(T) = \min\{||T - R|| : R \in B(H), \text{ rank } R < n\}.$$

Hence T is the limit of a sequence of finite-rank operators.

- Weyl's inequality: Let $T \in K(H)$ and let $\lambda_1, \ldots, \lambda_n$ be n eigenvalues of T. Then $|\lambda_1 \lambda_2 \dots \lambda_n| \leq \sigma_1 \sigma_2 \dots \sigma_n$.
- Schatten classes: $S_p(H) := \{T : \sum_k |\sigma_k(T)|^p < \infty | \}.$ $S_2(H) = \text{Hilbert-Schmidt operators.}$

 $S_1(H) = \text{trace-class operators.}$

• Spectral theorem for general normal operators: Every bounded normal operator on H is unitarily equivalent to multiplication by a bounded function on some L^2 -space.

Exercises

- **7A** (Singular-value decomposition) Let $T \in B(H)$ be a compact operator.
 - Show that T^*T is a compact self-adjoint operator.
 - Let (e_k) be an eigenbasis of T^*T . Show that the vectors (Te_k) are mutually orthogonal.
 - Show that the eigenvalues of T^*T are positive, σ_k^2 say. Order the non-zero ones so that $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \dots$

• Set $f_k := Te_k/\sigma_k$ if $\sigma_k \neq 0$. Show that the resulting (e_k) and (f_k) are o.n. sequences and

$$Tx = \sum_{k} \sigma_k \langle x, e_k \rangle f_k \quad (x \in H).$$

- **7B** Let $T \in B(H)$ be a compact operator, with singular-value decomposition $Tx = \sum_k \sigma_k \langle x, e_k \rangle f_k$.
 - Show that, if $R \in B(H)$ and $\operatorname{rank}(R) < n$, then $\ker(R) \cap \operatorname{span}\{e_1, \dots, e_n\} \neq \{0\}$, and deduce that $||T R|| > \sigma_n$.
 - $\{0\}$, and deduce that $||T R|| \ge \sigma_n$. • Show that, if $Rx := \sum_{k=1}^{n-1} \sigma_k \langle x, e_k \rangle f_k$, then $\operatorname{rank}(R) < n$ and $||T - R|| \le \sigma_n$.
 - Deduce the distance formula:

$$\sigma_n(T) = \min\{||T - R|| : R \in B(H), \text{ rank}(R) < n\}.$$

7C Let H be a separable Hilbert space and E be a subset of H such that $\langle e, f \rangle = 0$ for all $e, f \in E$. Prove that E is at most countable. [This was used in proving the spectral theorem in §7.3.] [Hint: Show that the open balls $\{x \in H : ||x - e|| < ||e||/2\}$ $\{e \in E, e \neq 0\}$ are disjoint.]

8. Sturm-Liouville equation

- 8.1. Formulation of the problem. Sturm–Liouville problem (SL): Find $y \in C^2[a, b]$ and $\lambda \in \mathbb{C}$ satisfying:
 - (SL1) differential equation:

$$-(py')' + qy = \lambda y,$$

where $p \in C^1[a, b]$ and p > 0, and $q \in C[a, b]$ is real-valued, and

• (SL2) boundary conditions:

$$\begin{cases} \alpha_0 y(a) + \alpha_1 y'(a) = 0 \\ \beta_0 y(b) + \beta_1 y'(b) = 0, \end{cases}$$

where $(\alpha_0, \alpha_1), (\beta_0, \beta_1) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$

8.2. Examples. The existence of non-trivial solutions y depends on the parameter λ .

Example. Consider the Sturm-Liouville problem:

$$\begin{cases}
-y'' = \lambda y \text{ on } [0, 1] \\
y(0) = 0, \ y(1) = 0.
\end{cases}$$

This has a non-trivial solution y iff $\lambda = k^2 \pi^2$ (k = 1, 2, 3, ...). In this case $y(t) = c \sin(k\pi t)$.

Remark. This particular SL-problem arises in the wave equation for a stretched string. Other applications include Schrödinger's equation and Legendre's equation.

8.3. Notation. In what follows:

- $Y := \{ y \in C^2[a, b] : y \text{ satisfies (SL2)} \}.$
- $L: C^2[a,b] \to C[a,b]$ is defined by

$$Ly := -(py')' + qy.$$

Thus y is a solution to (SL) iff $y \in Y$ and $Ly = \lambda y$. If $y \not\equiv 0$, we call it an eigenfunction of (SL) and λ its eigenvalue.

Remark. This is an abuse of terminology, since $L(Y) \not\subset Y$.

8.4. The main theorem.

THEOREM. With the above notation:

• The eigenvalues of (SL) form a real sequence (λ_k) such that

$$\lambda_k \to \infty$$
 and $\sum_k \lambda_k^{-2} < \infty$.

• The corresponding normalized eigenfunctions (y_k) form an o.n. basis of $L^2[a,b]$.

Basic idea of the proof:

- Construct an integral operator T that is an inverse to the differential
- Apply the spectral theorem to T, and deduce result for L.

And now for the details ...

8.5. Proof of main theorem.

LEMMA 1 (Lagrange's identity). If $y_1, y_2 \in Y$, then $\langle Ly_1, y_2 \rangle = \langle y_1, Ly_2 \rangle$.

Proof. Integrating by parts, we have

$$\langle Ly_1, y_2 \rangle = \int_a^b p y_1' \overline{y_2'} dt + \int_a^b q y_1 \overline{y_2} dt - \left[p y_1' \overline{y_2} \right]_a^b.$$
Thus $\langle Ly_1, y_2 \rangle - \langle y_1, Ly_2 \rangle = -\left[p \cdot (y_1' \overline{y_2} - \overline{y_2'} y_1) \right]_a^b = 0$, as $y_j \in Y$.

Consequences:

- Every eigenvalue λ of (SL) is real.
- Eigenfunctions having distinct eigenvalues are orthogonal.

Lemma 2. There exists a constant C such that each eigenvalue $\lambda > C$.

Proof. Suppose not.

- Then there exist at least five eigenvalues $\lambda_1, \ldots, \lambda_5 < \min q$.
- Let y_1, \ldots, y_5 be the associated normalized eigenfunctions.
- By linear algebra, there exist $\gamma_1, \ldots, \gamma_5 \in \mathbb{C}$, not all zero, such that y := $\sum_{1}^{5} \gamma_{j} y_{j} \text{ satisfies } y(a) = y'(a) = y(b) = y'(b) = 0.$ • By (*), $\langle Ly, y \rangle = \int_{a}^{b} p|y'|^{2} + \int_{a}^{b} q|y|^{2} \geq (\min q) \sum_{1}^{5} |\gamma_{j}|^{2}.$ • Also $\langle Ly, y \rangle = \sum_{1}^{5} \lambda_{j} |\gamma_{j}|^{2} < (\min q) \sum_{1}^{5} |\gamma_{j}|^{2}.$ Contradiction.

Consequence: Replacing q by q + C if necessary, WLOG we may suppose that all eigenvalues $\lambda > 0$. In particular, $L|_{Y}$ is injective.

Lemma 3. There exist real-valued $u, v \in C^2[a, b]$ such that

- Lu = Lv = 0;
- $\bullet \ \alpha_0 u(a) + \alpha_1 u'(a) = 0;$
- $\beta_0 v(b) + \beta_1 v'(b) = 0;$
- $p.(u'v v'u) \equiv 1$.

PROOF. We use the existence/uniqueness theorem for the initial-value problem (section 2).

- $\exists u \in C^2, u \not\equiv 0$ such that Lu = 0 and $\alpha_0 u(a) + \alpha_1 u'(a) = 0$, $\exists v \in C^2, v \not\equiv 0$ such that Lv = 0 and $\beta_0 v(b) + \beta_1 v'(b) = 0$.
- p.(u'v v'u) is a constant because

$$[p.(u'v - v'u)]' = (Lu)v + pu'v' - (Lv)u - pu'v' = 0.$$

- If the constant is 0, then $v \in Y$, contradicting $L|_Y$ injective.
- Replace u by a multiple of itself to make the constant 1.

LEMMA 4. With u, v as above, define $G : [a, b] \times [a, b] \to \mathbb{R}$ by

$$G(s,t) := \begin{cases} u(s)v(t), & s \le t, \\ u(t)v(s), & t \le s, \end{cases}$$

and $T: L^2[a,b] \to L^2[a,b]$ by

$$Tf(s) := \int_a^b G(s,t)f(t) dt.$$

If $f \in C[a,b]$, then $Tf \in Y$ and L(Tf) = f. Consequently

$$T: C[a, b] \to Y$$

 $L: Y \to C[a, b]$

are mutually inverse mappings.

Proof. Fix $f \in C[a, b]$.

• We have

$$Tf(s) = v(s) \int_a^s uf + u(s) \int_s^b vf,$$
$$(Tf)'(s) = v'(s) \int_s^s uf + u'(s) \int_s^b vf.$$

It follows that $Tf \in C^2[a,b]$.

• Further

$$\alpha_0(Tf)(a) + \alpha_1(Tf)'(a) = (\alpha_0 u(a) + \alpha_1 u'(a)) \int_a^b vf = 0.$$

Likewise $\beta_0(Tf)(b) + \beta_1(Tf)'(b) = 0$. So $Tf \in Y$.

• Lastly, writing $U(s) := \int_a^s uf$ and $V := \int_s^b vf$, we have

$$L(Tf) = -(p(v'U + u'V))' + q(vU + uV)$$

= $(Lv)U + (Lu)V + p.(u'v - v'u)f = f.$

CONCLUSION OF PROOF OF MAIN THEOREM.

• As $G \in L^2([a,b] \times [a,b])$, the operator T is Hilbert–Schmidt. Also, as G is real-valued and symmetric, T is self-adjoint.

- By the spectral theorem, $L^2[a, b]$ has an orthonormal basis of eigenvectors (y_k) of T and the eigenvalues satisfy $\sum_k |\mu_k|^2 < \infty$.
- The (y_k) automatically belong to Y. Indeed, since T maps $L^2[a,b]$ into C[a,b] and $y_k = (1/\mu_k)Ty_k$, we have $y_k \in C[a,b]$. Likewise, since T maps C[a,b] into Y, similar reasoning gives $y_k \in Y$.
- As T, L are mutually inverse, they have the same eigenvectors, and the eigenvalues of L are the reciprocals of those of T.
- Hence the (normalized) eigenfunctions of L form an o.n. basis of $L^2[a,b]$. Also the eigenvalues of L satisfy $\sum_k |\lambda_k|^{-2} < \infty$.
- Lastly, as already observed, the eigenvalues of L are real and bounded below. Consequently $\lambda_k \to \infty$ as $k \to \infty$.

8.6. Further developments.

- The eigenvalues of L are simple (i.e. $\dim \ker(L \lambda_k I) = 1$).
- The eigenfunctions y_k can be chosen real-valued.
- Oscillation theorem: y_k has exactly k-1 zeros in (a,b).
- SL with weights: $-(py')' + qy = \lambda ry$, where r(t) > 0.
- Singular Sturm–Liouville problems.
- Boundary-value problems in higher dimensions . . .

Exercises

- **8A** Let y_1, y_2 be two eigenfunctions of (SL) corresponding to the same eigenvalue λ . Show that there exist $\gamma_1, \gamma_2 \in \mathbb{C}$, not both zero, such that $z := \gamma_1 y_1 + \gamma_2 y_2$ satisfies z(a) = z'(a) = 0, and deduce that $z \equiv 0$. [Hint for the last part: Use the uniqueness of the solution to (*) in §2.6.]
- 8B Let y be an eigenfunction of (SL). Show that \overline{y} is also an eigenfunction with the same eigenvalue. Deduce that there exists a real-valued eigenfunction with the same eigenvalue.

DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE, UNIVERSITÉ LAVAL, QUÉBEC (QC), G1V0A6, Canada

Email address: ransford@mat.ulaval.ca