

PlexusTCL Crypter

версия 4.74 от 25 октября 2020 года

важные предупреждения

- 1.) ЕСЛИ ВЫ НЕ УВЕРЕНЫ В СТАБИЛЬНОСТИ РАБОТЫ ПРОГРАММЫ ИЛИ ВАШЕГО КОМПЬЮТЕРА, ТО ПЕРЕД ШИФРОВАНИЕМ ФАЙЛА, ОБЯЗАТЕЛЬНО СДЕЛАЙТЕ ЕГО РЕЗЕРВНУЮ КОПИЮ.
- 2.) программа не гарантирует тайну, если вы допускаете возможность атак по сторонним каналам, таких как отпечаток (дамп) оперативной памяти во время работы программы, попадание ключей шифрования в файл подкачки, заражение компьютера вредоносной программой, длинный язык вашего сист. Администратора и $\tau.д.$
- 3.) ЧТОБЫ ОБЕСПЕЧИТЬ МАКСИМАЛЬНО ВОЗМОЖНЫЙ УРОВЕНЬ БЕЗОПАСНОСТИ ПРИ ПРИМЕНЕНИИ НАСТОЯЩЕГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ, ПРОКОНСУЛЬТИРУЙТЕСЬ СО СПЕЦИАЛИСТАМИ В ОБЛАСТИ КОМПЬЮТЕРНОЙ БЕЗОПАСНОСТИ, ТАК КАК В ПРОГРАММЕ ПРИСУТСТВУЮТ ОРИГИНАЛЬНЫЕ РАЗРАБОТКИ.

Программное обеспечение "PlexusTCL Crypter" предназначено для криптографической защиты информации, путем шифрования файлов, размером до $2\ \Gamma G$ включительно. Файлы могут быть обработаны пятью криптографическими алгоритмами по выбору пользователя, а именно ARC4, Rijndael (далее AES), Serpent, Blowfish и Threefish, с использованием ключевого файла или введенной в качестве пароля строки.

Программа и алгоритмы

Программное обеспечение представляет собой исполняемый файл с интегрированным GUI (графическим интерфейсом пользователя), в котором реализованы алгоритмы шифрования и система управления вводом/выводом информации в виде вызываемых функций.

Все реализации криптографических алгоритмов, а именно ARC4, AES, Serpent, Blowfish и Threefish, протестированы с помощью тестовых векторов и полностью соответствуют своим математическим описаниям или опубликованным стандартам. Математическое описание шифра ARC4 (на самом деле RC4, от Ronald Cipher 4) никогда не было опубликовано ни своим создателем, Роном Райвестом, ни кем либо из сотрудников компании RSA Security, так как по прежнему является коммерческой тайной, но программная реализация алгоритма ARC4 полностью соответствует анонимно опубликованному в 1994 году исходному коду на языке С (Си). Компиляция этого исходного кода давала программу, которая принимая случайные ключ шифрования и поток открытого текста, всегда давала такой же шифротекст как и лицензионный RC4, а значит полностью совместима с лицензионными продуктами RSA Security, поддерживающими этот шифр. Само сочетание букв "RC4" является

торговой маркой, принадлежащей RSA Security, по этому в среде "free software" алгоритм шифрования принято называть ARC4, т.е (англ. Alleged RC4) предполагаемый RC4.

При использовании блочного шифра из программы "PlexusTCL Crypter", важно учитывать тот факт, что шифр AES отличается от шифра Threefish тем, что Threefish спроектирован как 64-битный шифр, т.е оперирующий 64-битными (8 байтными) числами как самостоятельными единицами, в то время как AES оперирует блоками данных, состоящими из 8-битных (1 байтных) значений. AES шифрует открытый текст блоками битов, обрабатывая по 8-битов (1 байту) за операцию, в то время как Threefish принимает 64-бита (8 байтов) открытого текста за одно большое число, и оперирует им как одним целым. По этому, скорость работы Threefish на 64-битных процессорах, в разы больше скорости его работы на 32-битных процессорах, но скорость работы на 32-битных процессорах, в 2-3 раза ниже, чем скорость работы AES. По этому, в случае если важна скорость шифрования, рекомендуется использовать Threefish на 64-битных процессорах, а AES на 8, 16 и 32битных. К тому же, реализация шифра AES не оптимизирована, по этому не рекомендуется использовать его для обработки больших файлов (20, 50, 100 Мб и т.д), так как обработка может занять десятки минут, что не относится к остальным шифрам в программе.

Использовать шифры Blowfish и Serpent можно на любом 32 или 64-битном процессоре, так как эти шифры показывают почти одинаковую производительность на обоих, к тому же их реализации очень быстрые по сравнению с Threefish и тем более AES. Blowfish шифрует данные блоками по 32 бита, шифруя сразу 2 части открытого текста в виде 64-битного блока данных, принимая на вход левую и правую 32-битные части данных по отдельности, заменяя их шифротекстом, как и любые другие шифры спроектированные на основе сети Фейстеля. Так как оба шифра спроектированы 32-битным, это может сказаться на производительности при использовании шифра на 64-битных платформах в лучшую сторону, но разработчик не заметил разницы. Скорость работы обоих шифров на 32-битном и 64-битном процессорах почти одинаковая.

Самым быстрым из всех шифров программы "PlexusTCL Crypter", да и вообще в мире, является шифр ARC4. Он был спроектирован американским математиком Рональдом Ривестом уже очень давно, и не использовался наверное только в операционных системах, созданных до появления шифра. Он интегрирован в программу не только из-за того, что трудно найти надежный и проверенный временем шифр, работающий с такой высокой скоростью, но и из-за его исторической значимости. Его можно использовать только с ключами длиной 2048 битов (256 байтов) и никогда не использовать один ключ дважды. Знайте, что шифры реализованные в программе, для которых нельзя выбрать длину ключа шифрования, реализованы так, что принимают только ключи максимально возможной длины.

Все четыре блочных шифра, а именно AES, Threefish, Blowfish и Serpent, работают в режиме CFB (режим обратной связи по шифротексту), что обеспечивает достаточно надежный уровень безопасности применения блочного шифра, превращая блочный шифр в поточный. Не стоит беспокоится на этот счет, так как правильно использованный блочный шифр в виде поточного, ничем не уступает самому криптостойкому блочному шифру. При шифровании данных в режиме CFB, блочный шифр вообще не используется для шифрования данных а используется для генерации псевдослучайной последовательности битов, которая складывается по модулю 2 с каждым битом шифруемых данных.

Чтобы зашифровать что-либо в помощью блочного шифра, работающего в режиме СFB, сначала необходимо сгенерировать случайную или псевдослучайную последовательность, называемую IV (вектором инициализации), зашифровать IV с помощью блочного шифра, чтобы получившуюся последовательность побитно сложить по модулю 2 с шифруемым блоком данных, получая шифротекст. После окончания шифрования первого блока данных, в качестве IV при шифровании каждого последующего блока, используется предыдущий зашифрованный блок, что обеспечивает лавинное изменение всего шифротекста при изменении даже 1 бита ключа шифрования, шифруемого блока или IV. Если выразить режим CFB символами, то получится что-то вроде:

```
iv = random(time(now));
c[0] = e(iv, key);
c[i] = p[i] \text{ xor } e(c[i-1], key); \text{ от } i=1 \text{ до } i=n;
где:
     random - генератор псевдослучайных чисел вашей ОС
     time - системное время вашей ОС в секундах
             - реальное время
     now
     XOL
            - операция побитового исключающего ИЛИ
            - ключ шифрования
     key
            - вектор инициализации
     iv
     n
            - длина шифротекста в блоках
     i
            - увеличивающийся на единицу счетчик
            - открытый текст
     p
     C
             - шифротекст
             - функция шифрования
```

Даже при шифровании файла размером 2 Гб, полностью состоящего из нулевых битов, используя в качестве ключа шифрования и IV последовательность нулей, зашифрованный файл будет выглядеть нагромождением случайных данных, не имеющих никакой закономерности. В программе "PlexusTCL Crypter", режим СFB реализован так, что в качестве IV, используется зашифрованная псевдослучайная последовательность, записываемая в файл перед первым зашифрованным блоком, что необходимо для расшифровки и нисколько не сказывается на криптостойкости, так как знание IV ничем не поможет при взломе шифротекста без знания ключа, а ключ всегда должен быть самым охраняемым секретом. Знание того, что IV записан в файл первым зашифрованным блоком, никак не поможет взломать шифротекст, если не известен ключ.

При шифровании двух открытых текстов, первые шифруемые блоки которых совпадают, уникальный для каждого открытого текста вектор инициализации, используется в режиме CFB для сокрытия этого совпадения, если для шифрования используется один и тот-же ключ. Псевдослучайный для каждого открытого текста IV, позволяет использовать "долгосрочный ключ", т.е один ключ для шифрования множества открытых текстов, даже если они совпадают. Так как в настоящей программе в качестве IV используется зашифрованная псевдослучайная последовательность, генерируемая используемой ОС, то это представляет угрозу только в том случае, если будет атакован ГПСЧ (генератор псевдослучайных чисел). К примеру, если в ОС остановлено системное время, то генератор псевдослучайных чисел будет бесконечно генерировать одно и то же число от 0 до 255 (от 0x00 до 0xFF), так как "зерном" для генератора выступает реальное системное время в секундах. Если злоумышленник знает открытый текст, шифрование которого дает IV, то злоумышленник может попытаться восстановить ключ, и расшифровать все сообщения, зашифрованные тем же ключом. Если ГПСЧ будет генерировать одни и те же числа, то шифрование одинаковых блоков открытого текста при

использовании одного и того же ключа, будет давать одинаковые шифротексты, что дает возможность взломать шифротекст. Чтобы этого избежать, нужно следить за тем, что делает прочее программное обеспечение на используемом компьютере (не подменяет ли оно что-нибудь), избегать использования "пиратских" копий программного обеспечения которые могут быть заражены вредоносным кодом и никогда ничего не шифровать в случае получения сообщения "Критическая ошибка ГПСЧ!", что означает некорректную работу ГПСЧ (три псевдослучайных байта IV равны, а такого никогда не должно быть). Чтобы увеличить случайность и одновременно уменьшить вероятность повторения значений в IV, его первые два байта складываются по модулю два с координатами курсора мыши по осям X и Y, которые вычисляются в момент нажатия кнопки "Старт", что вносит в IV элемент неопределенности (злоумышленник не может сказать, в каком именно положении был курсор мыши в момент нажатия кнопки).

Поточный шифр ARC4, работает в режиме OFB (режим обратной связи по выходу), при использовании которого, в зависимости от ключа шифрования генерируется поток псевдослучайных битов, каждый бит которого складывается по модулю 2 с каждым битом шифруемого текста, давая на выходе шифротекст. Режим OFB это тот же режим CFB, но отличается тем, что в режиме OFB шифротекст не используется для генерации ключа шифрования открытого текста. Поточные шифры как класс шифров, работают в десятки раз быстрее блочных, именно по этому один из них и был включен в программу (блочные шифры относительно долго шифруют большие файлы). При шифровании файла алгоритмом ARC4, нельзя использовать один ключ шифрования дважды, так как использование этого шифра исключает использование вектора инициализации (это не блочный шифр)!

Функция формирования ключа

Функция формирования ключа (KDF) создана для того чтобы "растянуть" пароль пользователя и сгенерировать из него ключ шифрования. Все KDF устроены так, чтобы усложнить задачу перебора паролей, даже если для перебора используется целый серверный парк из тысяч машин, сделав перебор относительно долгим.

Все КDF устроенны одинаково. Это всегда функция, которая принимает на вход некое X, и из этого X, по завершении работы, инициализирует K, которое является ключом шифрования для блочного или поточного шифра. Типичная KDF принимает на вход алгоритм, которым будут обработаны данные, пароль пользователя, его длину, соль, длину соли, количество итераций обработки данных а так-же желаемую длину ключа. Если записать символами то, что делает любая KDF, то получится что-то подобное:

в итоге, К будет инициализирована ключом шифрования, который поступает на вход функции шифрования/расшифровки для обработки каких-либо данных. Разберем типичную KDF по порядку.

Сначала KDF принимает алгоритм обработки данных, который обрабатывать пароль пользователя и соль столько раз, сколько указано в аргументе count. Обычно это алгоритм хеширования, такой как MD5, SHA-2-512, Keccak (кечак), или алгоритм шифрования, такой как Salsa20/20, DES, Rijndael, Serpent, IDEA и т. д. Количество итераций обработки пароля и соли обычно задают статичным, которое иногда увеличивают в зависимости от быстродействия компьютерного парка потенциального злоумышленника, перебирающего пароль. Но значение count рано или поздно должно вырасти, так как производительность компьютеров все время растет, согласно наблюдению Гордона Мура! Значение count на 2020 год обычно от 150,000 до 2,000,000, и всегда зависит от производительности функции шифрования или хеширования, обрабатывающей пароль и соль. Все КDF обычно устроены так, что на разных процессорах генерируют ключ шифрования около одной или двух секунд. Чтобы сгенерировать ключ для расшифровки, к примеру базы данных, пользователю нужно вызвать KDF один раз и подождать всего одну или две секунды, в то же время злоумышленник вынужден будет вызвать KDF миллиарды раз, чтобы перебрать все возможные пароли. Перебирая множество вариантов относительно небольшого пароля, длиной всего 8 - 10 символов, печатаемых на стандартной клавиатуре "QWERTY", злоумышленник потратит количество времени, которое просто не проживет.

Соль, или псевдослучайная константа, нужна для того, чтобы как-либо смешав ее с паролем, многократно увеличить количество вариантов пароля, что многократно усложняет перебор, делая его очень долгим и крайне не выгодным занятием. Разработчик же исключил соль из своей КDF, так как ему не понравилось слово "соль".

В настоящей программе КDF является оригинальной разработкой, так как автор программы есть не кто иной, как "параноик страдающий шпиономанией". Это означает, что ключ шифрования генерируется криптографически стойкой хэш функцией SHA-2-256, исходный код которой подготовлен NIST (Национальным Институтом Стандартов и Технологий США), длина пароля ограничена только разрядностью регистра процессора пользователя, и на

сегодняшний день составляет минимум 4,294,967,295 символов, а количество итераций хеширования является динамическим, и генерируется хитрым сплетением битовых операций и вычислением 32-битного циклического избыточного кода (CRC32) различных частей пароля. На рисунке ниже видно, что при увеличении статичного пароля всего на 1 символ, меняется не только количество итераций хеширования, но и время формирования ключа.

```
C:\WINDOWS\SYSTEM32\cmd.exe
C:4.
                                                                                          ۸
D:\Program\Cpp>crycon.exe -r -e -c upx.exe upx.dat AAAAAAAA
Execute time: 0.2050 seconds
D:\Program\Cpp>crycon.exe -r -e -c upx.exe upx.dat AAAAAAAA
Count = 17565
Execute time: 0.2200 seconds
D:\Program\Cpp>crycon.exe -r -e -c upx.exe upx.dat AAAAAAAAAAA
Count = 20800
Execute time: 0.2800 seconds
D:\Program\Cpp>crycon.exe -r -e -c upx.exe upx.dat AAAAAAAAAAA
Count = 24577
Execute time: 0.4150 seconds
D:\Program\Cpp>crycon.exe -r -e -c upx.exe upx.dat AAAAAAAAAAA
Execute time: 0.3740 seconds
D:\Program\Cpp>crycon.exe -r -e -c upx.exe upx.dat AAAAAAAAAAAA
Count = 17474
Execute time: 0.3100 seconds
D:\Program\Cpp>crycon.exe −r −e −c upx.exe upx.dat AAAAAAAAAAAA
Count = 22788
Execute time: 0.4330 seconds
```

Почему количество итераций хеширования сделано не статическим, как у людей? Чтобы полностью исключить возможность построения радужных таблиц, привязав к количеству итераций хеширования не только пароль с его длиной, но и длину ключа, сделав взлом пароля невозможным в принципе. Но и не только длина пароля влияет на количество итераций, но и каждый байт пароля, что превращает КDF из обычной функции в непроходимый таежный лес хеширования. Если сложность (время) атаки методом перебора увеличивается с количеством итераций хеширования, а это количество зависит не только от длины пароля но и от каждого его байта, то чтобы узнать количество итераций хеширования и попытаться составить радужную таблицу, нужно знать не только длину пароля но и каждый его байт, что сводится к знанию самого пароля.

Данная KDF получила название KDFCLOMUL, от константы CLOMUL_CONST, которая все-же позволяет настраивать то, насколько большим будет количество итераций хеширования, а значит и время вычисления ключа. Она описана в header файле clomul.h, который легко найти в каталоге "src", описание же переведено на английский язык средствами Google Translate (оно почти такое же как описание ниже).

Константа CLOMUL_CONST обозначает так называемый "тактовый множитель", использующийся в функции KDFCLOMUL как один из операндов при формировании количества итераций хеширования. Если описывать константу простыми словами, то чем больше ее значение, тем дольше генерируется ключ из пароля, так как для генерации ключа требуется намного больше тактов процессора. Он необходим для генерации ключа шифрования из пароля, так как влияет на количество итераций цикла вычисления хеш-суммы пароля. Сам

же цикл использует алгоритм хеширования SHA-2-256. По умолчанию "тактовый множитель" равен 1, но увеличение до значений 12, 16, 38 или 67 заставляет любое оборудование генерировать ключ очень медленно, что делает атаку полным перебором даже на короткий 8 символьный пароль невозможной за приемлемое время. Обращайтесь с этой константой осторожно, так как неправильно подобранное значение может привести к тому, что вы будете ждать окончания генерации ключа из относительно короткого пароля минуты или даже часы.

В случае, если "тактовый множитель" будет слишком большим, то переменная содержащая количество итераций хеширования может переполнится. На практике это означает десятки минут или даже часов ожидания, так как 32-битная переменная вмещает число 4,294,967,295. В случае переполнения, значение станет отрицательным, и цикл хеширования становится чудовищно долгим. Выбирайте значение исходя из общей мощности компьютерного парка вашего противника, так как оборона, адекватная атаке, выстраивается только если известны возможности атакующего. На 2020 год, значение можно сделать 4, этого хватит еще лет на 5-10. Максимальное же значение 57,344. Никогда не превышайте его!

Значение "тактового множителя" равное 1, обеспечивает генерацию ключа шифрования из пароля "разѕиото" на процессоре Intel Core I3-3217U с тактовой частотой 1.8 GHz где-то за 0.18 секунды, что уже превращает полный перебор всех 8 символьных паролей в адский кошмар, так как для перебора всех паролей состоящих только из строчных латинских букв, понадобится перебрать 208,827,064,576 вариантов пароля. Так как данный процессор способен перебрать 5 паролей в секунду, то полный перебор всех паролей на выше указанном процессоре займет около 79,462 лет. Но учтите, что графические процессоры в разы быстрее обычных, и перебор пароля можно выполнять параллельно на десятках тысяч машин, так что используйте длинные парольные фразы (20-30 символов). Но не делайте пароли слишком длинными (40, 50 или 100 символов), так как время генерации ключа прямо пропорционально длине пароля — чем длиннее пароль, тем дольше выполняется генерация ключа.

В случае, если используется базовый "тактовый множитель" равный 1, то количество итераций хеширования пароля составляет около 20,000 и может иметь максимальное значение 32,767, а время хеширования пароля "password" на вышеуказанном процессоре составляет около 0.18 секунды, что является идеальным компромиссом между безопасностью и быстродействием на сегодняшний день.

Как показал тест на вышеуказанном процессоре, при "тактовом множителе" равном 64, генерация 256-битного ключа шифрования для алгоритма Rijndael, при использовании пароля "password", длится 11 секунд. Чтобы избавить пользователя от ожидания, значение по умолчанию было уменьшено до минимального, ради разгрузки процессора пользователя и комфортной работы с программой, что никак не сказывается на безопасности. Программы имеющие разный "тактовый множитель", **НЕСОВМЕСТИМЫ**!

sha256sum

Так же, в пакете "PlexusTCL Crypter", начиная с версии 2.73, присутствует бонус, а именно утилита sha256sum.exe, которая вычисляет SHA-2-256 контрольную сумму как текстов так и файлов размером до 2 Гб включительно. Утилита, как и ее исходный код, распространяется свободно и бесплатно, а в архиве она присутствует на случай, если у пользователя нет программы для вычисления контрольных сумм строк и файлов. Программа принимает на

вход три аргумента, а вычисление контрольной суммы строки "PlexusTCL" и ее печать в табличном виде, будет выглядеть так:

[user@machine]~\$:./sha256sum -t -s "PlexusTCL"

2D 92 4A CF 99 37 74 AC 55 3D C7 A7 6C AD 3D DD 64 4D 93 91 E3 24 58 24 C1 21 FD 66 EE F8 0F EC

Утилита sha256sum принимает на вход три аргумента, а именно "-s/t", "-s/f" и простую строку. Строковые эквиваленты первых двух аргументов выглядят как "--string/table" и "--string/file". Первый аргумент позволяет выбрать, в каком виде вы хотите получить контрольную сумму строки или файла, в строковом или табличном. Аргумент "-s/--string" указывает на то, что контрольная сумма будет напечатана в виде строки, а аргумент "-t/--table" на печать контрольной суммы в виде таблицы, как в примере выше. Второй аргумент позволяет явно указать, контрольную сумму чего вычислить, введенной в виде третьего аргумента строки, или файла, именем которого и является третий аргумент. Чтобы вычислить контрольную сумму файла, нужно использовать аргумент "-f/--file", а для вычисления контрольной суммы строки, аргумент "-s/--string". В качестве исходного кода самого алгоритма SHA-2-256 взята реализация от USA NIST (Национальный Институт Стандартов и Технологий США), которая была протестирована с использованием официальных тестовых векторов и полностью безопасна в использовании. Алгоритм был многократно проверен множеством криптоаналитиков со всего мира, и в нем не было найдено ни уязвимостей, ни лазеек. Сам алгоритм SHA-2-256 был разработан и запатентован USA NSA(Агентство Национальной Безопасности США), что ограничивает его использование, но не запрещает использовать его для домашних целей.

CryCon

Crypter for Console - консольная программа-фильтр, аналог графической программы "PlexusTCL Crypter", из которого удален криптостойкий генератор паролей и уничтожитель обрабатываемого файла. Все написанное ранее про программу "PlexusTCL Crypter" и ее алгоритмы, кроме интеграции в вектор инициализации координат курсора мыши, справедливо и для программы CryCon. Как и любая консольная программа, CryCon принимает агрументы, которые интерпретируются программой, и в зависимости от них, программа выполняет какие-либо операции. Длина всех аргументов ограничена 2048 символами.

Первым аргументом программы CryCon всегда выступает строка, указывающая на используемый алгоритм шифрования, если этот аргумент не "-h" или "--help", который указывает на то, что нужно вывести короткую справку. Пользователь сам указывает, какой алгоритм шифрования следует использовать для шифрования или расшифровки файла в виде короткого (буквенного) или длинного (строкового) аргумента. Аргументы, соответствующие алгоритмам шифрования, указаны в таблице ниже, и могут быть переданы программе только в маленьком (строковом) регистре.

алгоритм шифрования	буквенный аргумент	строковый аргумент
ARC4	-a	arc4
AES (Rijndael)	-r	aes
Serpent	-s	serpent
Blowfish	-b	blowfish
Threefish	-t	threefish

Второй аргумент, как и последующие, интерпретируются программой в зависимости от выбранного алгоритма. Например, вторым аргументом при выборе алгоритма ARC4, является имя обрабатываемого файла, третьим имя файла назначения и четвертым имя ключевого файла или строковый ключ. Так как при выборе алгоритма ARC4, аргументы указывающие на то, какую операцию выполнять и какой длины ключ использовать, не указываются, из этого следует, что для шифрования файла secret.dat в файл en.secret.dat с использованием в качестве ключа, данные из файла key.sk, правильные аргументы при запуске программы CryCon будут выглядеть так:

[user@machine]~\$:./crycon --arc4 secret.dat en.secret.dat key.sk

Второй аргумент при выборе любого другого алгоритма, а именно AES, Serpent, Blowfish или Threefish, всегда указывает на то, какую операцию выполнить, шифрование или расшифровку. Этот аргумент может быть коротким (буквенным) или длинным (строковым), и выглядит буквенный аргумент как "-е" и "-d", а строковый как "--encrypt" и "--decrypt".

Третий аргумент интерпретируется в зависимости от того, какой алгоритм был выбран. Если был выбран алгоритм AES или Serpent, то третий аргумент интерпретируется как указание на то, какой длины ключ следует использовать, 128, 192 или 256-битный. Этот аргумент может быть коротким (буквенным), а именно "-a", "-b", "-c", или длинным (строковым), а именно "--128", "--192" или "--256". Если был выбран алгоритм Blowfish или Threefish, то третий аргумент интерпретируется как имя обрабатываемого файла, потому что при использовании этих алгоритмов длина ключа не указывается. Все дело в том, что в программе CryCon, алгоритм Threefish реализован только в его 512-битной (средней) версии, а алгоритм Blowfish, это алгоритм с переменной длиной ключа, которая всегда максимальна. Из этого следует, что аргументы для запуска программы, при выборе алгоритма AES или Serpent при 256-битном ключе, будут такими:

[user@machine]~\$:./crycon --aes --encrypt --256 secret.dat en.secret.dat key.sk

[user@machine]~\$:./crycon --serpent --encrypt --256 secret.dat en.secret.dat key.sk

а при выборе алгоритма Blowfish или Threefish такими:

[user@machine]~\$:./crycon --blowfish --encrypt secret.dat en.secret.dat
key.sk

[user@machine]~\$:./crycon --threefish --encrypt secret.dat en.secret.dat
key.sk

В случае, если во время работы программы произошла ошибка, например такая как: закончилось место на диске, файл для обработки не был открыт (значит что-то мешает), введенный аргумент некорректен (написан неправильно), длина ключа в ключевом файле мала и т.д, то программа уведомит об этом выводом текстового сообщения и прервет все операции.

Графический интерфейс пользователя

GUI существует, чтобы управлять логикой работы программы с помощью компьютерной мыши, так как не все пользователи успешно работают в командной строке. К тому же, GUI бывает красив, элегантен, строг,

интуитивно понятен и просто приятен в работе с ним. Чтобы использовать программу "PlexusTCL Crypter" для обработки файла, нужно выполнить следующие действия.

- 1.) Запустите программу PlexusTCL Crypter 4.74.exe
- 2.) Выберите нужный вам алгоритм шифрования.

3.) Если появилось поле для выбора длины ключа шифрования, выберете нужную вам длину ключа. Чем больше выбрана длина ключа шифрования, тем больше его криптостойкость, но генерация ключа шифрования как и само шифрование, будут длится дольше.

4.) Выберите необходимое действие (зашифровать/расшифровать). Если вы используете поточный шифр ARC4, то поле для выбора длины ключа шифрования и варианты (зашифровать/расшифровать) не появятся.

5.) Введите в поля озаглавленные как "Файл для обработки" и "Файл назначения" названия файлов, который хотите обработать а так же в который будут записаны обработанные данные. Строки в полях не должны совпадать!

Нужно вводить название файла с его расширением если обрабатываемый файл лежит в одном каталоге с программой, которая будет с ним работать, так как программа не может определять расширения файлов с которыми работает. Если файл лежит в другом каталоге, нужно вводить название файла вместе с полным путем к нему. Если вы не желаете вводить имя файла с полным путем к нему, то вы можете просто вызвать диалоговое окно выбора файла, нажав на кнопку с надписью "Открыть" справа от соответствующего поля.

Выбранным для обработки файлом, считается тот файл, название которого появилось в поле "Имя файла" и который одновременно стал выделенным. Чтобы утвердить файл для обработки, нажмите "Открыть", и его имя вместе с полным путем к нему, появится в соответствующем поле. Имя файла, в который будут сохранены обработанные данные, вводится в поле "Файл назначения" или выбирается так же, как и файл для обработки, после нажатия на кнопку "Открыть" справа от соответствующего поля. Каждая кнопка соответствует полю, находящемуся слева от нее.

6.) Если вы хотите использовать в качестве ключа шифрования простую строку или ключевую фразу, введите ее в поле озаглавленное как "Ключ шифрования или путь к ключевому файлу". Не стоит беспокоится на счет безопасности использования строки в качестве ключа шифрования, так как строка не используется в качестве ключа шифрования. Строка будет преобразована в ключ шифрования функцией формирования ключа КDFCLOMUL (оригинальная разработка) на основе алгоритма хеширования SHA-2-256. В примере ниже, в качестве пароля, используется строка состоящая из 256 псевдослучайных заглавных, строчных латинских букв, арабских цифр и специальных символов, полученная с помощью встроенного генератора, который может генерировать строки от 8 до 256 символов.

PlexusTCL Crypter 4.74 250KT20 [RU] [?] [3ak		[?] [Закрыть]
Алгоритм шифрования AES-CFB	Файл для обработки D:VAGENTS_LIST.txt	Открыть
Длина ключа шифрования	Файл назначения	
256 ▼	D:\AGENTS_LIST.txt.en	Открыть
Генератор 256	ЗашифроватьС Расшифровать	□ Стереть
Ключ шифрования или путь к ключевому файлу YG7WOGgJA5FzlcPjH21qrF+Lw2kTxj2vU+nCSlm8+t8scXERmPyuwP Открыть		
+XN/37nJTHnO/qS4u/JECP4TzHXZLRmFlkdiY09FoyefhVAubsBNtVH1aNkU MCEQikL3edhNjz9pS02Z0GFogUkRUnMwDTMq40fMYztCzakm8h0KYnkkzbJ		
MCE GIKESedi IN JESPS 022 OCH O	gon formwo finq4ofin i ziczanifoliok frikazbi	Старт
Состояние		

В примере ниже, показан как раз прогресс генерации ключа шифрования из 256 символьного пароля. Генерация запускается только после нажатия кнопки "Старт", когда пароль введен, его длина от 8 до 256 символов.

Если вы хотите использовать в качестве ключа шифрования, данные из файла (файл может быть любым, но его размер должен быть больше длины ключа шифрования в байтах или равен ей), введите в поле название файла. Важно отметить, что данные из ключевого файла HE подвергаются никаким изменениям — данные из ключевого файла считаются ключом шифрования как таковым. Просто знайте это!

PlexusTCL Crypter 4.74 250KT20 [RU]		[?] [Закрыть]
Алгоритм шифрования AES-CFB Длина ключа шифрования	Файл для обработки D:VAGENTS_LIST.txt Файл назначения	Открыть
256	D:\AGENTS_LIST.txt.en	Открыть
Генератор 64 Ключ шифрования или путь к	 Зашифровать С Расшифровать 	Стереть
D:\key.sk		Открыть
	v	Старт
Состояние		

Вы так же можете вызвать диалоговое окно выбора ключевого файла (как на рисунке ниже), если хотите выбрать один из множества файлов, нажав на "Открыть" рядом с полем для ввода ключа. Файл считается утвержденным также, как в примере с выбором обрабатываемого файла.

7.) Нажмите "Старт", чтобы начать операцию шифрования/расшифровки. Перед этим, вы можете поставить галочку в поле "Стереть", если желаете уничтожить файл для обработки после того, как он будет обработан. Если галочка установлена, то после окончания всех операций, файл для обработки будет перезаписан нулями, его размер будет усечен до нуля и он будет удален стандартной функцией DeleteFile из библиотеки Kernel32.dll.

В случае, если вы допустили ошибку, программа уведомит об этом выводом текстового сообщения. Так же, программа уведомит о том, что в качестве файла назначения был выбран существующий файл, и предложит перезаписать его.

Если вы согласитесь на перезапись существующего файла, программа немедленно уничтожит все данные в файле назначения путем записи обработанных данных из файла для обработки, поверх старых данных. В случае совпадения строк в любых двух и более полях, а именно в полях "Файл для обработки", "Файл назначения" и "Ключ шифрования или путь к ключевому файлу", программа прервет операцию и уведомит о равенстве строк, потому что оно недопустимо.

Если ошибки не были допущены и программа готова к обработке файла, программа уведомит об этом выводом диалогового окна. Обратите внимание на то, что отмена выбираемой операции невозможна (придется ждать окончания обработки файла).

Выполняемая операция, используемый алгоритм, количество обработанных данных и процент прогресса, будут видны в самом нижнем поле, как на рисунке ниже.

PlexusTCL Crypter 4.74 250KT20 [RU]		[?] [Закрыть]
Алгоритм шифрования АЕS-CFB	Файл для обработки D:VAGENTS_LIST.txt Файл назначения	Открыть
256	D:\AGENTS_LIST.txt.en	Открыть
Генератор 64 Ключ шифрования или путь к	 Зашифровать Расшифровать ключевому файлу	Стереть
D:\key.sk	^	Открыть
	~	Старт
Шифрование: AES-CFB; Обработано: 2,14 МиБ из 3,36 МиБ; Прогресс: 84 %		

Когда операция будет завершена, программа уведомит об этом выводом сообщения. Обратите внимание на то, что на время выполнения операции, программа отключает кнопку "Старт". Это сделано для того, чтобы у пользователя не было возможности запустить обработку одного файла сразу в двух потоках одновременно.

8.) Чтобы расшифровать файл, заполните поля так же как и для шифрования, но выберите "Расшифровать" перед нажатием кнопки "Старт".

Исходные коды

Программа стусоп, как и утилита sha256sum, написаны на языке программирования С (Си) и скомпилированы в исполняемые файлы компилятором ТСС (Tiny C Compiler) версии 0.9.27. GUI написан на языках программирования C/C++/Pascal (Си, Си++ и Паскаль) и скомпилирован в исполняемый файл компилятором C++ Builder версии 6.0. Все исполняемые файлы в пакете "PlexusTCL Crypter" и их исходные коды, распространяются свободно и бесплатно.

Ниже указаны SHA-2-256 контрольные суммы всех трех программ входящих в "PlexusTCL Crypter":

Название файла	SHA-2-256 контрольная сумма
PlexusTCL Crypter 4.74.exe	67C4183F1333943B829D3532265D5B1A 316AFDC7373615EE56BF66B9D07E6FF3
crycon.exe	2AD67A37C4A9262DBD455E73BC56F2F1 B267330D17C317E52F65DED13BE8C1C9
sha256sum.exe	83CD0D3A42E11DE25D1C5EEEDBE00F60 4B2F59FAD4EDF3378E6125DB99BE028A

DE, SE, DA, VE, Plexus Technology Cybernetic Laboratories, 2010 - 2020 [172A6A5B2CCAB47D55AAAA93BA8F186B73EABCBFF71FF5B15B20254E12E4093B]