

Self-Organizing Agent Systems

Final work

Maite López-Sánchez

Volume Visualization and Artificial Intelligence Research Group (WAI)

Facultat/dept de Matemàtiques i Informàtica

Universitat de Barcelona (UB)

ABS frameworks

- StarLogo TNG (visual programming)
 http://web.mit.edu/mitstep/starlogo-tng/download/index.html
- NetLogo (specific scripting language)
 https://ccl.northwestern.edu/netlogo/download.shtml

 Resources: http://ccl.northwestern.edu/netlogo/resources.shtml
- Mesa (python)

https://mesa.readthedocs.io/en/master/

https://github.com/projectmesa/mesa/

Presentation video:

https://www.youtube.com/watch?v=lcySLoprPMc

Presentation

Bibliography

Michael Wooldridge,
 "An Introduction to
 Multiagent Systems"
 John Wiley & Sons 2002.

 ISBN 0 7149691X.

William Rand,
"An introduction to Agent-Based Modeling"
MIT Press, 2015.
ISBN 978-0-262-73189-8.

Uri Wilensky and

URI WILENSKY AND WILLIAM RAND

Final work assignment

Course Assessment

- Practical (programming) deliverable on:
 - (part) Research described in the paper you presented,
 or
 - An smart city simulator
- Technical requirements:
 - Usage of an ABS framework is highly recommended (but not compulsory)
 - Mechanisms for self-organization of the multi-agent system are expected to be explicit:
 - Agent communication
 - Coordination norms, ...

Smart city simulator

Course Assessment

- Choose a city service you want to model:
 - Mobility services
 - Public transportation,
 - Traffic lights,
 - Waste services:
 - Garbage collection service
 - Environment:
 - CO₂ emissions...
 - Security
 - Water
 - Health ...

Smart city simulator

Course Assessment

- Characterise agents' behaviours in terms of
 - Agent needs and preferences
 - Agent capabilities
 - Multiple features
 - Optionally: agents can learn/adapt
- Consider an fixed topology of agent relationships:
 - Grid, Network,...
 - Topology will be fixed during a simulation but it should be relatively independent of agents' code.

Smart city simulator

Course Assessment

• Simulations:

- Must include overall indicators of the system performance.
 - Must include at least one ethical indicator
- Individual agent displays will only make sense in specific cases.

Final work assignment

Course Assessment

Deliverables:

- Simulation code
- Report including:
 - Technical details: design decisions
 - Conducted tests: evaluation and conclussions
- Presentation and demo
 - May the 7th: "prototype"/preliminary presentation
 - May the 28th: final work presentation.
 - 10 minutes long if individual work.

Class

