Algoritmi in podatkovne strukture – 2

Slovar

drevesa: osnove, iskalna, uravnotežena

Drevesa

Pri seznamu smo imeli *glavo* in *rep*, sedaj pa imamo *glavo* in več repov -k:

Običajno k=2 in takrat govorimo o dvojiških drevesih. Tedaj imamo samo dve poddrevesi, ki ju imenujemo *levo* in *desno*.

Nekaj definicij

- vozlišča, ki so koreni poddreves, pravimo, da so nasledniki (children) korena
- obratno, koren je naslednikom starš (parent)
- nasledniki so si med seboj sorodniki (siblings)
- vozlišča drevesa, ki nimajo poddreves se imenujejo listi (leaves) ali zunanja vozlišča (external nodes), ostala pa se imenujejo notranja vozlišča (internal nodes)
- posebno vozlišče je koren (root) to je vozlišče, ki nima staršev
- ullet globina vozlišča v je razdalja od v do korena drevesa vključno s korenom in v
- globina ali višina drevesa je število vozlišč na najdaljši poti od korena do nekega lista h
- popolno k-tiško drevo je drevo, kjer ima vsako notranje vozlišče bodisi k naslednikov ali nobenega

Popolno k-tiško drevo

- (Po)polno *k*-tiško drevo je drevo, v katerem imajo vsi listi enako globino.
- ullet Število notranjih vozlišč v polnem k-tiškem drevesu globine h je

$$1 + k + k^{2} + \dots + k^{h-1} = \frac{k^{h} - 1}{k - 1}.$$

• popolna *k*-tiška drevesa lahko shranimo kot implicitno podatkovno strukturo – kako?

Urejena drevesa

Pri urejenih drevesih velja, da za poljuben $0 \le i < k-1$ velja:

- vsi elementi v poddrevesu d[i] so manjši od koren[i]
- vsi elementi v poddrevesu d[i+1] so večji od koren[i]

Kako je pri dvojiških drevesih?

Ali je zgornja definicija zadovoljiva, če imamo v drevesu več enakih elementov?

Odslej se bomo ukvarjali samo z dvojiškimi drevesi.

Domača naloga: dopolnite naslednje prosojnice tako, da bodo veljale za k-tiška drevesa.

Podatki v drevesu

Podatke v drevesu lahko shranimo na dva različna načina:

v notranjih in zunanjih vozliščih:

```
public class Drevo {
   Elt koren;
   Drevo levo, desno;
   ...
}
```

samo v listih:

```
public class Drevo {
  int koren;
  Object levo, desno; // bodisi Elt ali Drevo
  ...
}
```

Domača naloga: kaj lahko poveste o takšnih drevesih in njihovi popolnosti?

Iskalna drevesa

Pregledi (iskalnega) dvojiškega drevesa:

- premi (preorder) najprej »obdela« koren, nato levo poddrevo in na koncu desno poddrevo
- vmesni (inorder) najprej »obdela« levo poddrevo, nato koren in na koncu desno poddrevo
- obratni (postorder) najprej »obdela« levo poddrevo, nato desno poddrevo in na koncu koren

Vmesni pregled

```
public void VmesniPregled() {
  if (levo != NULL) levo.VmesniPregled();
  System.out.println(koren.key);
  if (desno != NULL) desno.VmesniPregled();
}
```

- Kako izpiše VmesniPregled, če imamo opravka z urejenim drevesom?
- Spremenite zgornjo metodo, da boste obiskali drevo po premi in po obratni poti. Kako se sedaj izpišejo elementi urejenega drevesa?
- Kako popraviti definicijo zgornje metode, da boste lahko namesto izpisa (System.out.println) opravili poljubno operacijo nad korenom.
 (NAMIG: bistvo rešitve je v uporabi rokovalnika – kako?)

Iskanje

```
public Object Find(int key) {
  if (koren.key == key) return koren.data;
  else if (key < koren.key)
   if (levo == NULL) return NULL;
   else return levo.Find(key);
  else
  if (desno == NULL) return NULL;
   else return desno.Find(key);
}</pre>
```

Časovna zahtevnost je $\Theta(h)$. Kako velik je lahko h? Kako majhen je lahko h? Torej?

Iskanje – nerekurzivno

Zakaj bi želeli nerekurzivno iskanje?

Se časovna zahtevnost kaj spremeni?

Vstavljanje

```
public Drevo Insert(Elt element) {
  if (element.key < koren.key)
   if (levo == NULL) levo= new Drevo(element, NULL, NULL);
   else levo= levo.Insert(element);
  else
   if (desno == NULL) desno= new Drevo(element, NULL, NULL);
   else desno= desno.Insert(element);
  return this;
}</pre>
```

Časovna zahtevnost je $\Theta(h)$. Kako velik je lahko h? Kako majhen je lahko h? Torej?

Vstavljanje – tudi nerekurzivno

```
public Drevo Insert(Elt element) {
   Drevo drevo= this;
   while (TRUE) {
    if (key < drevo.koren.key)
       if (drevo.levo == NULL) {
            drevo.levo= new Drevo(element, NULL, NULL);
            return this;
       } else drevo= levo;
    else
       if (drevo.desno == NULL) {
            drevo.desno= new Drevo(element, NULL, NULL);
            return this;
       } else drevo= drevo.desno;
    };
}</pre>
```

In sedaj, se časovna zahtevnost kaj spremeni?

Brisanje

Kako brišemo:

- če vozlišče nima naslednikov, ni težav ga izbrišemo,
- če ima vozlišče eno poddrevo, ga izbrišemo in na njegovo mesto postavimo njegovo poddrevo (t.j. njegovega naslednika),
- če ima vozlišče dve poddrevesi, ga nadomestimo z najmanjšim elementom v desnem poddrevesu, ali pa z . . . ???

Brisanje – rezultat

Pri brisanju bomo vrnili dva predmeta Pair:

- sam element, ki smo ga izbrisali (koren drevesa, ki smo ga izbrisali) in
- drevo, ki je ostalo, v katerem ni več brisanega elementa

Brisanje – koda

```
public Pair Delete(int key) {
  Pair rezultat;
  if (koren.key < key) {</pre>
    if (levo == NULL) return new Pair(NULL, this);
    rezultat= levo.Delete(key);
    levo= rezultat.drevo; rezultat.drevo= this;
    return rezultat;
  };
  else if (koren.key == key) {
    if (levo == NULL) return new Pair(koren, desno);
    else if (desno == NULL) return new Pair(koren, levo);
    else {
      Elt element= koren;
      rezultat= desno.MinDelete();
      koren= rezultat.elt; rezultat.elt= element;
      desno= rezultat.drevo; rezultat.drevo= this;
      return rezultat;
  else { ... };
```

Brisanje – zahtevnost

In časovna zahtevnost tega postopka? Kaj pa nerekurzivna rešitev?

Uravnotežena drevesa

Težava pri \gg običajnih \ll iskalnih drevesih: globina drevesa je lahko v najslabšem primeru n.

Rešitev: \gg uravnotežena drevesa \ll , za katera velja $h = \Theta(\log n)$.

Definicija. Drevo je *uravnoteženo*, če za vsako vozlišče velja: globini levega in desnega poddrevesa se razlikujeta kvečjemu za O(1).

Pri AVL (Adel'son-Velskiĭ in Landis) uravnoteženega drevesih je globina levega poddrevesa največ za ena različna od globine desnega poddrevesa.

Za AVL drevesa velja, da je globina drevesa $h \ge n$ notranjimi vozlišči vedno

$$\log(n+1) \le h \le 1.4404 \log(n+2) - 0.328 ,$$

torej $h = \Theta(\log n)$.

Zgornjo mejo prinese t.i. Fibonaccijevo drevo.

AVL drevesa – vzdrževanje uravnoteženosti

Neuravnoteženo drevo moramo nekako popraviti. Imamo več možnih napak, ki jih odpravimo z *vrtenji* (*rotation*).

AVL drevesa – operacije

razred: drevesu (korenu) dodamo informacijo o višini. V resnici bi lahko samo dodali informacijo o razliki višin levega in desnega poddrevesa.

iskanje: nespremenjeno

vstavljanje: v dveh korakih: najprej vstavimo kot prej, potem popravimo uravnoteženost (največ ena)

brisanje: podobno kot prej, le da sedaj pride lahko do neuravnoteženosti že pri brisanju najmanjšega elementa v desnem poddrevesu (lahko vse od lista nazaj do korena – $\Theta(\log n)$).

DOMAČA NALOGA: skodirajte vse metode. Pozor, rezultat tako pri vstavljanju kot brisanju sedaj vsebuje ne splošno drevo, ampak AVL drevo.

Zapletenost

	Find	Insert	Delete
seznam	O(n)	O(1)	O(n)
urejen seznam	O(n)	O(n)	O(n)
binarno drevo	O(n)	O(n)	O(n)
AVL drevo	$O(\log n)$	$O(\log n)$	$O(\log n)$

- Kakšna je velikost?
- Kaj pa najboljši čas?
- In kaj pa povprečen čas?
- So zgornje vrednosti smiselne?
- Recimo, da poznamo vsa poizvedovanja v naprej optimalni čas.

Primer

• vstavimo: 20, 11, 3, 1, 30, 15, 13, 12, 47, 17, 100, 110.

• izločimo: 1, 3, 11, 12, 20.