STA447: Stochastic Processes

Tianyu Du

February 4, 2020

Contents

1	Ma	rkov Chain Probabilities	2
	1.1	Recurrent and Transience	Ę
	1.2	Communicating States	ć
	1.3	Recurrence and Transience Equivalence Theorem	Ę
	1.4	Closed Subset of a Markov Chain	13
2 Ma	Ma	rkov Chain Convergence	13
	2.1	Stationary Distributions	13
	2.2	Searching for Stationarity	14
	2.3	Convergence Theorem	16

1 Markov Chain Probabilities

Definition 1.1. A discrete-time, discrete-space, and time-homogenous Markov chain is a triple of S = (S, v, P) in which

- (i) S represents the state space, which is nonempty and countable;
- (ii) initial probability v, which is a distribution on S;
- (iii) and transition probability (p_{ij}) satisfying

$$\sum_{j \in S} p_{ij} = 1 \quad \forall i \in S \tag{1.1}$$

Definition 1.2. A Markov chain satisfies the **time-homogenous property** if

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) = p_{ij} \quad \forall n \in \mathbb{N}$$
(1.2)

Definition 1.3. A Markov chain satisfies the **Markov property** if

$$P(X_{n+1} = j | X_n = i_n, X_{n-1} = i_{n-1}, \cdots, X_0 = i_0) = P(X_{n+1} = j | X_n = i_n)$$
(1.3)

That is, the chain is memoryless.

Proposition 1.1. As an immediate result from the Markov property, the joint probability

$$P(X_{0} = i_{0}, X_{1} = i_{1}, X_{2} = i_{2}, \cdots, X_{n} = i_{n}) = P(X_{0} = i_{0})P(X_{1} = i_{1}, X_{2} = i_{2}, \cdots, X_{n} = i_{n}|X_{0} = i_{0}) \quad (1.4)$$

$$= v_{i_{0}}P(X_{1} = i_{1}|X_{0} = i_{0})P(X_{2} = i_{2}, \cdots, X_{n} = i_{n}|X_{0} = i_{0}, X_{1} = i_{1}) \quad (1.5)$$

$$= v_{i_{0}}P(X_{1} = i_{1}|X_{0} = i_{0})P(X_{2} = i_{2}, \cdots, X_{n} = i_{n}|X_{1} = i_{1}) \quad (Markov property) \quad (1.6)$$

$$= v_{i_{0}}p_{i_{0}i_{1}} \cdots p_{i_{n-1}i_{n}} \quad (1.7)$$

Definition 1.4 (*n*-step Arrival Probability). Let m = |S| and $\mu_i^{(n)} := P(X_n = i)$ denote the probability that the state ends up at i after n step (starting point follows v).

Proposition 1.2.

$$\mu^{(n)} = vP^n \tag{1.8}$$

Proof. By the law of total expectation,

$$P(X_n = i) = \sum_{j \in S} P(X_n = i, X_{n-1} = j)$$
(1.9)

$$= \sum_{i \in S} P(X_n = i | X_{n-1} = j) P(X_{n-1} = j)$$
(1.10)

$$= \sum_{j \in S} P(X_{n-1} = j) p_{ij} \tag{1.11}$$

$$= \sum_{j \in S} \mu_j^{(n-1)} p_{ij} \tag{1.12}$$

Let $\mu^{(n)} := \left[\mu_1^{(n)}, \mu_2^{(n)}, \cdots, \mu_m^{(n)}\right] \in \mathbb{R}^{1 \times m}$ and $P = [p_{ij}] \in \mathbb{R}^{m \times m}$. The recurrence relation can be expressed in matrix notation as:

$$\mu^{(n)} = \mu^{(n-1)} P \tag{1.13}$$

where $\mu^{(0)}=v=[v_1,v_2,\cdots,v_m]$ by construction. Define P^0 to be the identity matrix I_m , then

$$\mu^{(0)} = v = vP^0 \tag{1.14}$$

$$\mu^{(1)} = \mu^{(0)}P = vP^1 \tag{1.15}$$

$$\vdots \qquad (1.16)$$

$$\mu^{(n)} = vP^n \tag{1.17}$$

Definition 1.5 (*n*-step Transition Probability). Define

$$p_{ij}^{(n)} := P(X_{m+n} = j | X_m = i)$$
(1.18)

to be the probability of arriving state j after n steps, starting from state i^1 . By the time-homogenous property,

$$p_{ij}^{(n)} = P(X_{m+n} = j | X_m = i) \quad \forall m \in \mathbb{N}$$

$$(1.19)$$

Proposition 1.3. Let $P^{(n)} := [p_{ij}^{(n)}] \in \mathbb{R}^{m \times m}$, then

$$P^{(n)} = P^n \tag{1.20}$$

Proof. Initial Step: for n = 1, $P^{(1)} = P$ by definition.

In the definition of $\mu_j^{(n)}$, the starting state is random following distribution v. While defining $p_{ij}^{(n)}$ the initial state is fixed to be i.

Inductive Step: for $n \in \mathbb{N}$,

$$p_{ij}^{(n+1)} = P(X_{n+1} = j | X_0 = i)$$
(1.21)

$$= \sum_{k \in S} P(X_{n+1} = j | X_n = k, X_0 = i) P(X_n = k | X_0 = i)$$
(1.22)

$$= \sum_{k \in S} P(X_{n+1} = j | X_n = k) p_{ik}^{(n)}$$
(1.23)

$$= \sum_{k \in S} p_{ik}^{(n)} p_{kj} \tag{1.24}$$

$$= [P^{(n)}P]_{ij} (1.25)$$

Therefore,

$$P^{(n+1)} = P^{(n)}P (1.26)$$

and

$$P^{(n)} = P^n (1.27)$$

Theorem 1.1.

$$p_{ij}^{(m+n)} = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)}$$
(1.28)

$$p_{ij}^{(m+s+n)} = \sum_{k \in S} \sum_{\ell \in S} p_{ik}^{(m)} p_{k\ell}^{(s)} p_{\ell j}^{(n)}$$
(1.29)

Theorem 1.2 (Chapman-Kolmogorov Equations (Generalization)). Let $n = (n_1, n_2, \dots, n_k)$ be a multi-set of non-negative integers, then

$$P^{(\sum_{i=1}^{k} n_i)} = \prod_{i=1}^{k} P^{(n_i)} \quad (\dagger)$$
 (1.30)

Proof. Prove by induction on the size of multi-set:

Base case is trivial for k = 1.

Inductive step for k > 1, suppose (†) holds for every set of length k, consider another multi-set with length

k+1: $n'=(n_1,n_2,\cdots,n_k,n_{k+1})$. Let $\delta:=\sum_{i=1}^k n_i$.

$$P_{ij}^{(\delta+n_{k+1})} = P(X_{\delta+n_{k+1}} = j|X_0 = i)$$
(1.31)

$$= \sum_{k \in S} P(X_{\delta + n_{k+1}} = j | X_{\delta} = k, X_0 = i) P(X_{\delta} | X_0 = i)$$
(1.32)

$$= \sum_{k \in S} P(X_{\delta + n_{k+1}} = j | X_{\delta} = k) P(X_{\delta} | X_0 = i)$$
(1.33)

$$= \sum_{k \in S} P(X_{n_{k+1}} = j | X_0 = k) P(X_{\delta} = k | X_0 = i)$$
(1.34)

$$= \sum_{k \in S} p_{kj}^{n_{k+1}} p_{ik}^{(\delta)} \tag{1.35}$$

$$= [P^{(\delta)}P^{(n_{k+1})}]_{ij} \tag{1.36}$$

$$\Rightarrow P^{(\delta+n_{k+1})} = P^{(\delta)}P^{(n_{k+1})} \tag{1.37}$$

Corollary 1.1 (Chapman-Kolmogorov Inequality). For every $k \in S$,

$$p_{ij}^{(m+n)} \ge p_{ik}^{(m)} p_{kj}^{(n)} \tag{1.38}$$

For $k, \ell \in S$,

$$p_{ij}^{(m+s+n)} \ge p_{ik}^{(m)} p_{k\ell}^{(s)} p_{\ell j}^{(n)} \tag{1.39}$$

Informal Proof. Note that $p_{ik}^{(m)}p_{kj}^{(n)}$ is exactly the probability of arriving j from i in m+n steps (say, event E), conditioned on passing state k at m steps. And $p_{ij}^{(m+n)}$ is the unconditional probability of event E, which is no less than the

1.1 Recurrent and Transience

Notation 1.1. For an arbitrary event E,

$$P_i(E) := P(E|X_0 = i) \tag{1.40}$$

$$\mathbb{E}_i(E) := \mathbb{E}[E|X_0 = i] \tag{1.41}$$

Notation 1.2. Let $N(i) := |\{n \ge 1 : X_n = i\}|$ denote the number of times the Markov chain arrives state i. Note that N(i) does not count the initial state.

Definition 1.6. Define the **return probability** from state i to j, f_{ij} , as the probability of arriving state j starting from state i. That is,

$$f_{ij} = P(\exists n \ge 1 \ s.t. \ X_n = j | X_0 = i)$$
 (1.42)

$$=P_i(N(j) \ge 1) \tag{1.43}$$

Proposition 1.4. The probability of firstly arriving j, then arriving k (denoted as event E) starting from i equals

$$P_i(E) = f_{ij}f_{jk} \tag{1.44}$$

Proof.

$$P_i(E) = P(\exists 1 \le m \le n \text{ s.t. } X_m = j, \ X_n = k)$$
 (1.45)

$$= P_i(\exists 1 \le m \le n \text{ s.t. } X_n = k | \exists m \ge 1 \text{ s.t. } X_m = j) P_i(\exists m \ge 1 \text{ s.t. } X_m = j)$$
(1.46)

$$= P_i(\exists 1 \le m \le n \ s.t. \ X_n = k | \exists m \ge 1 \ s.t. \ X_m = j) f_{ij}$$
(1.47)

$$= P(\exists 1 \le m \le n \text{ s.t. } X_n = k | X_m = j) f_{ij} \text{ (Markov property)}$$
(1.48)

$$= P(\exists 1 \le n \text{ s.t. } X_n = k | X_0 = j) f_{ij} \text{ (time homogenous property)}$$
(1.49)

$$=f_{ij}f_{jk} \tag{1.50}$$

Corollary 1.2.

$$P_i(N(i) \ge k) = (f_{ii})^k \tag{1.51}$$

$$P_i(N(j) \ge k) = f_{ij}(f_{jj})^{k-1} \tag{1.52}$$

Corollary 1.3.

$$f_{ij} \ge f_{ik} f_{kj} \tag{1.53}$$

Proposition 1.5. $1 - f_{ij}$ captures the probability that the Markov chain does not return to j from i.

$$1 - f_{ij} = P_i \left(X_n \neq j \text{ for all } n \ge 1 \right) \tag{1.54}$$

Definition 1.7. A state i in a Markov chain is **recurrent** if $f_{ii} = 1$. That is, starting from state i, the chain returns state i for sure. Otherwise, state i is **transient**.

Theorem 1.3 (Recurrent State Theorem). The following statements are equivalent:

- (i) State i is recurrent (i.e., $f_{ii} = 1$);
- (ii) $P_i(N(i) = \infty) = 1$, that is, starting from state i, state i will be visited infinitely often;
- (iii) $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty.$

Proof. $(i) \iff (ii)$:

$$P(N(i) = \infty | X_0 = i) = P(\lim_{k \to \infty} N(i) \ge k | X_0 = i)$$
(1.55)

$$= \lim_{k \to \infty} P(N(i) \ge k | X_0 = i) \tag{1.56}$$

$$= \lim_{k \to \infty} (f_{ii})^k = 1 \text{ if and only if } f_{ii} = 1$$
(1.57)

 $(i) \iff (iii)$:

$$\sum_{n=1}^{\infty} p_{ii}^{(n)} = \sum_{n=1}^{\infty} P(X_n = i | X_0 = i)$$
(1.58)

$$= \sum_{n=1}^{\infty} \mathbb{E}(1_{X_n=i}|X_0=i)$$
 (1.59)

$$= \mathbb{E}\left(\sum_{n=1}^{\infty} 1_{X_n=i} \middle| X_0 = i\right) \tag{1.60}$$

$$= \mathbb{E}(N(i)|X_0 = i) \tag{1.61}$$

$$= \sum_{n=k}^{\infty} kP(N(i) = k|X_0 = i)$$
 (1.62)

$$= \sum_{n=k}^{\infty} P(N(i) \ge k | X_0 = i)$$
 (1.63)

$$=\sum_{n=k}^{\infty} (f_{ii})^k \tag{1.64}$$

$$=\infty$$
 if and only if $f_{ii}=1$ (1.65)

Theorem 1.4 (Transient State Theorem). The following statements are equivalent:

- (i) State *i* is transient;
- (ii) $P_i(N(i) = \infty) = 0$, that is, state i will only be visited finitely many times;
- (iii) $\sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty.$

Proof. Take negation of the recurrent state theorem.

Lemma 1.1 (Stirling's Approximation).

$$n! \approx (n/e)^n \sqrt{2\pi n} \tag{1.66}$$

Proposition 1.6. For simple random walk, if p = 1/2, then $f_{ii} = 1 \ \forall i \in S$. Otherwise, all states are transient.

$$\forall i \in S, \ f_{ii} = 1 \iff p = \frac{1}{2} \tag{1.67}$$

Proof. For simplicity, consider state 0 and the series $\sum_{n=1}^{\infty} p_{00}^{(n)}$. Note that for odd n's, $p_{00}^{(n)}=0$.

For all even n's such that n = 2k,

$$\sum_{n=1}^{\infty} p_{00}^{(n)} = \sum_{k=1}^{\infty} p_{00}^{(2k)} \tag{1.68}$$

$$= \sum_{k=1}^{\infty} {2k \choose k} p^k (1-p)^k \tag{1.69}$$

$$=\sum_{k=1}^{\infty} \frac{2k!}{(k!)^2} p^k (1-p)^k \tag{1.70}$$

$$\approx \sum_{k=1}^{\infty} \frac{(2k/e)^{2k} \sqrt{4\pi k}}{(k^k e^{-k} \sqrt{2\pi k})^2} p^k (1-p)^k$$
(1.71)

$$= \sum_{k=1}^{\infty} \frac{2^{2k} k^{2k} e^{-2k} 2\sqrt{\pi k}}{k^{2k} e^{-2k} 2\pi k} p^k (1-p)^k$$
 (1.72)

$$=\sum_{k=1}^{\infty} \frac{2^{2k}}{\sqrt{\pi k}} p^k (1-p)^k \tag{1.73}$$

$$=\sum_{k=1}^{\infty} \frac{4^k}{\sqrt{\pi k}} p^k (1-p)^k \tag{1.74}$$

$$=\sum_{k=1}^{\infty} \frac{1}{\sqrt{\pi k}} [4p(1-p)]^k \tag{1.75}$$

When $p = \frac{1}{2}$,

$$\sum_{n=1}^{\infty} p_{00}^{(n)} = \frac{1}{\sqrt{\pi}} \sum_{k=1}^{\infty} k^{-1/2}$$
 (1.76)

$$=\infty \tag{1.77}$$

When $p \neq \frac{1}{2}$,

$$\sum_{n=1}^{\infty} p_{00}^{(n)} < \frac{1}{\sqrt{\pi}} \sum_{k=1}^{\infty} [4\pi (1-p)]^k$$
 (1.78)

$$<\infty$$
 (1.79)

By the recurrent state theorem, $f_{ii} = 1 \iff p = 1/2$. For other $i \neq 0$, the prove is similar.

Theorem 1.5 (f-Expansion).

$$f_{ij} = p_{ij} + \sum_{k \in S \setminus \{j\}} p_{ik} f_{kj} \tag{1.80}$$

Proof.

$$f_{ij} = P(\exists n \in \mathbb{Z}_{++} \ s.t. \ X_n = j | X_0 = i)$$
 (1.81)

$$= \sum_{k \in S} P(\exists n \in \mathbb{Z}_{++} \ s.t. \ X_n = j | X_0 = i, X_1 = k) P(X_1 = k | X_0 = i)$$
(1.82)

$$= \sum_{k \in S} P(\exists n \in \mathbb{Z}_{++} \text{ s.t. } X_n = j | X_1 = k) P(X_1 = k | X_0 = i) \text{ (Markov Property)}$$

$$(1.83)$$

$$=\underbrace{P(\exists n \in \mathbb{Z}_{++} \ s.t. \ X_n = j | X_1 = j)}_{=1} P(X_1 = j | X_0 = i) + \sum_{k \neq j} f_{kj} P(X_1 = k | X_0 = i)$$
(1.84)

$$= p_{ij} + \sum_{k \neq j} f_{kj} p_{ik} \tag{1.85}$$

1.2 Communicating States

Definition 1.8. State i is said to **communicate** with state j, denoted as $i \to j$, if $f_{ij} > 0$. That is, it is possible to get from state i to state j given arbitrarily long period of time.

Proposition 1.7 (Equivalent Defintion). The following statements are equivalent:

- (i) $i \rightarrow j$;
- (ii) $\exists m \geq 1, \ s.t. \ p_{ij}^{(m)} > 0.$

Proof. (Proving the negation) If $p_{ij}^{(m)} = 0$ for every $m \ge 1$, then it's impossible to get state j from state i, that's, $f_{ij} = 0$.

Definition 1.9. A Markov chain s **irreducible** if $i \to j \ \forall i, j \in S$.

1.3 Recurrence and Transience Equivalence Theorem

Lemma 1.2 (Sum Lemma). If

- (i) $i \rightarrow k$;
- (ii) $\ell \to j$;
- (iii) $\sum_{n=1}^{\infty} p_{k\ell}^{(n)} = \infty.$

Then, $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$.

Proof. Suppose $i \to k$ and $\ell \to j$, then there exists m and r such that $p_{ik}^{(m)} > 0$ and $p_{\ell j}^{(r)} > 0$. By the Chapman-Kolmogorov inequality, $p_{ij}^{(m+n+r)} \ge p_{ik}^{(m)} p_{k\ell}^{(n)} p_{\ell j}^{(r)}$.

Then,

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} \ge \sum_{n=m+r+1}^{\infty} p_{ij}^{(n)} \tag{1.86}$$

$$=\sum_{s=1}^{\infty} p_{ij}^{(m+s+r)} \tag{1.87}$$

$$\geq \sum_{s=1}^{\infty} p_{ik}^{(m)} p_{k\ell}^{(s)} p_{\ell j}^{(r)} \tag{1.88}$$

$$= p_{ik}^{(m)} p_{\ell j}^{(r)} \sum_{s=1}^{\infty} p_{k\ell}^{(s)} = \infty$$
 (1.89)

Remark 1.1. Note that sum lemma is still applicable when $k = \ell$ or i = j.

Corollary 1.4 (Sum Corollary). If $i \leftrightarrow k$, then

$$f_{ii} = 1 \iff f_{kk} = 1 \tag{1.90}$$

Proof. Provided $i \leftrightarrow k$, there exists $m, r \in \mathbb{N}$ such that

$$p_{ik}^{(m)} > 0 (1.91)$$

$$p_{kj}^{(r)} > 0 (1.92)$$

Suppose $f_{ii} = 1$,

$$\sum_{i=1}^{\infty} p_{kk}^{(n)} \ge \sum_{i=1}^{\infty} p_{ik}^{(m)} p_{ii}^{(s)} p_{kj}^{(r)}$$
(1.93)

$$\geq \sum_{s=1}^{\infty} p_{ik}^{(m)} p_{ii}^{(s)} p_{kj}^{(r)} \tag{1.94}$$

$$= p_{ik}^{(m)} p_{kj}^{(r)} \sum_{s=1}^{\infty} p_{ii}^{(s)}$$
(1.95)

$$= \infty \tag{1.96}$$

$$\iff f_{kk} = 1 \tag{1.97}$$

Theorem 1.6 (Case Theorem). For an irreducible Markov chain, it is either

- (a) a **recurrent** Markov chain: $\forall i \in S, \ f_{ii} = 1 \text{ and } \sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty \ \forall i, j \in S;$
- (b) or a **transient** Markov chain: $\forall i \in S, \ f_{ii} < 1 \text{ and } \sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty \ \forall i, j \in S.$

Proof. Let \mathcal{M} be an irreducible Markov chain, if there exists $i \neq j \in S$ such that $f_{ii} = 1$ but $f_{jj} < 1$, this leads to a contradiction to the sum corollary because irreducibility of \mathcal{M} implies $i \leftrightarrow j$. Also, if there exists some $i, j \in S$ such that $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$. Then for every other $k, \ell \in S$, $k \leftrightarrow i$ and $j \leftrightarrow \ell$ by the irreducibility of \mathcal{M} . Then $\sum_{n=1}^{\infty} p_{k\ell}^{(n)} = \infty$ by sum lemma.

Theorem 1.7 (Finite Space Theorem). An <u>irreducible</u> Markov chain on a <u>finite</u> state space is always recurrent.

Proof. Let $i \in S$ (u.i.),

$$\sum_{j \in S} \sum_{n=1}^{\infty} p_{ij}^{(n)} = \sum_{n=1}^{\infty} \sum_{j \in S} p_{ij}^{(n)}$$
(1.98)

$$=\sum_{n=1}^{\infty}1=\infty\tag{1.99}$$

Because S is finite, $\exists k \in S$ such that $\sum_{n=1}^{\infty} p_{ik}^{(n)} = \infty$. Therefore, all states are recurrent.

Theorem 1.8 (Hit-Lemma). Define H_{ij} as the event in which the chain starts from j and visits i without firstly returning to j (direct path from j to i) 2 :

$$H_{ij} := \{ \exists n \in \mathbb{N} \ s.t. \ X_n = i \land X_m \neq j \ \forall m < n \}$$
 (1.100)

If $j \to i$ with $j \neq i$, then $P(H_{ij}|X_0 = j) > 0$.

Theorem 1.9 (f-Lemma). For all $i, j \in S$, if $j \to i$ and $f_{jj} = 1$, then $f_{ij} = 1$.

Proof. For i = j, trivial.

Suppose $i \neq j$, since $j \to i$, then $P(H_{ij}|X_0 = j) > 0$.

Further,

$$P(X_n \neq j \ \forall n \in \mathbb{Z}_{++} | X_0 = j) > P(H_{ij} | X_0 = j) P(X_n \neq j \ \forall n \in \mathbb{Z}_{++} | X_0 = i)$$
 (1.101)

$$\implies 0 = 1 - f_{ij} \ge P(H_{ij}|X_0 = j)(1 - f_{ij}) \tag{1.102}$$

$$\implies f_{ij} = 1 \tag{1.103}$$

Lemma 1.3 (Infinite Returns Lemma). For an irreducible Markov chain,

- (i) if this chain is recurrent, then $P(N(j) = \infty | X_0 = i) = 1 \ \forall i, j \in S$;
- (ii) if this chain is transient, then $P(N(j) = \infty | X_0 = i) = 0 \ \forall i, j \in S$.

²Notation abuse: H_{ij} describes the event starting from j and ending at i, instead of the other way round.

Proof. Let $i, j \in S$.

Suppose the chain is irreducible and recurrent, if i = j, then $f_{ii} = f_{jj} = 1$.

Otherwise, $i \neq j$. Since $j \rightarrow i$, by the f-Lemma, $f_{jj} = f_{ii} = f_{jj} = 1$.

$$P(N(j) = \infty | X_0 = i) = \lim_{k \to \infty} P(N(j) \ge k | X_0 = i)$$
(1.104)

$$= \lim_{k \to \infty} f_{ij} f_{jj}^{k-1} \tag{1.105}$$

$$=1 \tag{1.106}$$

When the chain is transient, $f_{jj} < 1$, and $\lim_{k \to \infty} f_{ij} f_{jj}^{k-1} = 0$.

Theorem 1.10 (Recurrent Equivalences Theorem). For a <u>irreducible</u> Markov chain (so that $i \to j$ for all $i, j \in S$), the following statements are equivalent:

- (1) $\exists k, \ell \in S \text{ such that } \sum_{n=1}^{\infty} p_{k\ell}^{(n)} = \infty;$
- (2) $\forall i, j \in S, \ \sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty;$
- (3) $\exists k \in S \ s.t. \ f_{kk} = 1;$
- $(4) \ \forall j \in S, \ f_{jj} = 1;$
- (5) $\forall i, j \in S, f_{ij} = 1;$
- (6) $\exists k, \ell \in S$ such that $P_k(N(\ell) = \infty) = 1$;
- (7) $\forall i, j \in S, P_i(N(j) = \infty) = 1.$

Proof. $(1) \Longrightarrow (2)$ by sum lemma;

- $(2) \Longrightarrow (3)$ take the special case when i = j, use recurrent state theorem;
- $(3) \Longrightarrow (4)$ by sum corollary;
- $(4) \Longrightarrow (5)$ by f-lemma;
- $(5) \Longrightarrow (6)$ by infinite returns lemma;
- $(6) \Longrightarrow (7)$

$$(7) \Longrightarrow (1)$$

Theorem 1.11 (Transience Equivalences Theorem). For a <u>irreducible</u> Markov chain (so that $i \to j$ for all $i, j \in S$), the following statements are equivalent:

- (1) $\forall k, \ell \in S \sum_{n=1}^{\infty} p_{k\ell}^{(n)} < \infty;$
- (2) $\exists i, j \in S, \ s.t. \ \sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty;$
- (3) $\forall k \in S \ f_{kk} < 1;$
- (4) $\exists j \in S, \ s.t. \ f_{ij} < 1;$
- (5) $\exists i, j \in S, \ s.t. \ f_{ij} < 1;$
- (6) $\forall k, \ell \in S, P_k(N(\ell) = \infty) = 0;$
- (7) $\exists i, j \in S, \ s.t. \ P_i(N(j) = \infty) = 0.$

1.4 Closed Subset of a Markov Chain

Definition 1.10. For a Markov chain with state space S, then any $C \subseteq S$ satisfies

$$p_{ij} = 0 \quad \forall i \in C, \ j \notin C \tag{1.107}$$

is a **closed subset** of the original Markov chain. That is, the chain will stay in the closed subset once enters it.

Remark 1.2. All theorems hold on the closed subset as well.

Proposition 1.8. For a simple random walk, if $p \ge \frac{1}{2}$, then $f_{ij} = 1$ for every j > i.

2 Markov Chain Convergence

2.1 Stationary Distributions

Definition 2.1. Let $\pi \in \Delta(S)$, π is **stationary** for a Markov chain if

$$\pi_j = \sum_{i \in S} \pi_i p_{ij} \quad \forall j \in S \tag{2.1}$$

In matrix notation

$$\pi = \pi P \tag{2.2}$$

Proposition 2.1. Let π be a stationary distribution of \mathcal{M} , then

$$\pi_j = \sum_{i \in S} \pi_i p_{ij}^{(n)} \tag{2.3}$$

In matrix notation,

$$\pi = \pi P^n \tag{2.4}$$

Proof. Using the matrix notation, it can be shown that $\pi = \pi P^n$ for every $n \in \mathbb{N}$. Therefore,

$$\pi_j = \sum_{i \in S} \pi_i [P^n]_{ij} \tag{2.5}$$

$$= \pi_j = \sum_{i \in S} \pi_i p_{ij}^{(n)} \text{ since } P^{(n)} = P^n$$
 (2.6)

Definition 2.2. A chain is doubly stochastic if

$$\forall j \in S \ \sum_{i \in S} p_{ij} = 1 \tag{2.7}$$

That is, for every state j, the arrival probability is one.

13

Proposition 2.2. Uniform distribution is stationary for all finite state doubly stochastic Markov chains.

Proof. Let $\pi_i = \frac{1}{|S|}$ for all $i \in S$, then

$$\sum_{i \in S} \pi_i p_{ij} = \sum_{i \in S} \frac{1}{|S|} p_{ij} \tag{2.8}$$

$$= \frac{1}{|S|} \sum_{i \in S} p_{ij} \tag{2.9}$$

$$= \frac{1}{|S|} \text{ (doubly stochastic)} \tag{2.10}$$

$$=\pi_i \tag{2.11}$$

2.2 Searching for Stationarity

Definition 2.3. A Markov chain is **reversible** with respect to a distribution π if

$$\pi_i p_{ij} = \pi_j p_{ji} \quad \forall i, j \in S \tag{2.12}$$

Theorem 2.1. If a chain is reversible with respect to π , then π is a stationary distribution.

Proof.

$$\sum_{i \in S} \pi_i p_{ij} = \sum_{i \in S} \pi_j p_{ji} \tag{2.13}$$

$$= \pi_j \sum_{i \in S} p_{ji} \text{ (reverse the chain)}$$
 (2.14)

$$=\pi_j \tag{2.15}$$

Theorem 2.2 (Vanishing Probability). For a Markov chain \mathcal{M} , if

$$\forall i, j \in S, \lim_{n \to \infty} p_{ij}^{(n)} = 0 \tag{2.16}$$

that is, the chain moves chaotically, then \mathcal{M} cannot have a stationary distribution.

Proof. Suppose, for contradiction, there is a stationary distribution π . Then,

$$\pi_j = \lim_{n \to \infty} \pi_j \tag{2.17}$$

$$= \lim_{n \to \infty} \sum_{i \in S} \pi_i p_{ij}^{(n)} \tag{2.18}$$

$$=\sum_{i\in S}\lim_{n\to\infty}\pi_i p_{ij}^{(n)} \tag{2.19}$$

$$= \sum_{i \in S} \pi_i \lim_{n \to \infty} p_{ij}^{(n)} \tag{2.20}$$

$$= 0 \neq 1 \tag{2.21}$$

 $\Rightarrow \leftarrow$

Lemma 2.1 (Vanishing Lemma). If \mathcal{M} has some k, ℓ such that $\lim_{n\to\infty} p_{k\ell}^{(n)} = 0$, then for all $i, j \in S$ such that $k \to i$ and $j \to \ell$, $\lim_{n\to\infty} p_{ij}^{(n)} = 0$.

Proof. Because $k \to i$ and $j \to \ell$, there exists $r, s \in \mathbb{N}$ such that

$$p_{ki}^{(r)} > 0, \ p_{j\ell}^{(s)} > 0$$
 (2.22)

Note that for arbitrary $n \in \mathbb{N}$,

$$p_{k\ell}^{(r+n+s)} \ge p_{ki}^{(r)} p_{ij}^{(n)} p_{j\ell}^{(s)} \tag{2.23}$$

$$p_{k\ell}^{(r+n+s)} \ge p_{ki}^{(r)} p_{ij}^{(n)} p_{j\ell}^{(s)}$$

$$\implies p_{ij}^{(n)} \le \frac{p_{k\ell}^{(r+n+s)}}{p_{ki}^{(r)} p_{j\ell}^{(s)}}$$
(2.23)

Therefore,

$$0 \ge \lim_{n \to \infty} p_{ij}^{(n)} \le \lim_{n \to \infty} \frac{p_{k\ell}^{(r+n+s)}}{p_{ki}^{(r)} p_{j\ell}^{(s)}}$$
(2.25)

$$= \frac{1}{p_{ki}^{(r)} p_{j\ell}^{(s)}} \lim_{n \to \infty} p_{k\ell}^{(r+n+s)}$$
(2.26)

$$= \frac{1}{p_{ki}^{(r)} p_{i\ell}^{(s)}} 0 = 0 \tag{2.27}$$

Therefore,

$$\lim_{n \to \infty} p_{ij}^{(n)} = 0 \tag{2.28}$$

Corollary 2.1. For an irreducible Markov chain, either

(i)
$$\lim_{n\to\infty} p_{ij}^{(n)} = 0$$
 for all $i, j \in S$;

(ii)
$$\lim_{n\to\infty} p_{ij}^{(n)} \neq 0$$
 for all $i, j \in S$.

Proof. Immediate result from vanishing lemma.

Corollary 2.2 (Vanishing Probabilities Corollary). If there exists $i, j \in S$, $\lim_{n\to\infty} p_{ij}^{(n)} = 0$, then \mathcal{M} cannot have a stationary distribution.

Corollary 2.3. A Markov chain which is irreducible and transient cannot have a stationary distribution.

Definition 2.4. The **period** of a state i is the greatest common divisor of the set

$$\Phi = \{ n \ge 1 : p_{ii}^{(n)} > 0 \} \tag{2.29}$$

Note that if $f_{ii} = 0$, then $\Phi = \emptyset$, and period is not well-defined.

Definition 2.5. If all states in \mathcal{M} has period of 1, then \mathcal{M} is said to be aperiodic.

Lemma 2.2 (Equal Period Lemma). If $i \leftrightarrow j$, then the periods of i and j are equal.

Corollary 2.4. If \mathcal{M} is irreducible, then all states have the same period.

Corollary 2.5. If \mathcal{M} is <u>irreducible</u>, and $p_{ii} > 0$ for some $i \in S$ (so that state i has period 1), then the whole chain \mathcal{M} is aperiodic.

2.3 Convergence Theorem

Theorem 2.3 (Markov Chain Convergence Theorem). If a Markov chain \mathcal{M} is

- (i) irreducible;
- (ii) aperiodic;
- (iii) with a stationary distribution π
- (i. conditioned on initial state) then

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j \quad \forall i, j \in S$$
 (2.30)

In fact, the limiting probability does not depend on initial state i.

(ii. unconditional) and for any initial probability v,

$$\lim_{n \to \infty} P(X_n = j) = \pi_j \tag{2.31}$$

Theorem 2.4 (Stationary Recurrence Theorem). For an <u>irreducible</u> chain \mathcal{M} with a stationary distribution, \mathcal{M} is always recurrent.

Proof. Suppose not, this contradicts the previous result *irreducible transient Markov chain cannot have stationary distribution.*

Proposition 2.3. If a state i has $f_{ii} > 0$ and is aperiodic, then there is $n_0(i) \in \mathbb{N}$ such that

$$p_{ii}^{(n)} > 0 \quad \forall n \ge n_0(i)$$
 (2.32)

Corollary 2.6. If a chain is <u>irreducible</u> and <u>aperiodic</u>, then for any states $i, j \in S$, there is $n_0(i, j) \in \mathbb{N}$ such that

$$p_{ij}^{(n)} > 0 \quad \forall n \ge n_0(i)$$
 (2.33)

Lemma 2.3 (Markov Forgetting Lemma). If a Markov chain \mathcal{M} is

- (i) irreducible;
- (ii) aperiodic;
- (iii) with a stationary distribution π

then for all $i, j, k \in S$, then

$$\lim_{n \to \infty} \left| p_{ik}^{(n)} - p_{jk}^{(n)} \right| = 0 \tag{2.34}$$

Proof. Proof by constructing coupled Markov chain.

Corollary 2.7. If \mathcal{M} is irreducible and aperiodic then it has at most one stationary distribution.

Proof. Suppose \mathcal{M} has a stationary distribution, then by the Markov chain convergence theorem, π_j is the limit of

$$\lim_{n \to \infty} P(X_n = j) \tag{2.35}$$

and such limit must be unique if it exists.

Corollary 2.8 (Generalized Version). If \mathcal{M} is irreducible then it has at most one stationary distribution.