Estymatory punktowe średniej, wariancji i odchylenia standardowego

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \hat{s}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\hat{s} = \sqrt{\hat{s}^2}$$

Współczynnik zmienności

$$v = \frac{\hat{s}}{\overline{x}} \cdot 100\%$$

**Zadanie1 1.** W ramach gospodarowania zasobami środowiska przyrodniczego, wykonano pomiary zanieczyszczenia powietrza. Badano poziom stężenia fluoru w mg/m³ na terenie Lubonia w lipcu 2010 roku, jakie występowało tam w związku z działalnością zakładów chemicznych Luvena. Pomiary wykonane zostały przez Wojewódzką Stację Sanitarno-Epidemiologiczną w Poznaniu. Za pomocą pakietu STATISTICA podaj i **zinterpretuj** statystyki opisowe dla poziomu stężenia fluoru w powietrzu w badanym okresie dla Lubonia. Wykonaj histogram przedstawiający empiryczny rozkład cechy.

| 3,9 | 5,8 | 5,5 | 4,6 | 6,1 | 4,8 | 5,8 | 4,1 | 4,5 | 4,9 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5,2 | 5,3 | 6,2 | 6   | 5,7 | 4,5 | 4,1 | 2,4 | 4,7 | 4,4 |
| 3,9 | 4,9 | 4,2 | 3,6 | 4,1 | 3,5 | 8   | 4,4 | 7,7 | 8,2 |

Obliczone statystyki umieść w tabeli.

| Charakterystyki próby                  | Stężenie fluoru w powietrzu w mg/m³ |
|----------------------------------------|-------------------------------------|
| $\bar{x}$ (średnia)                    |                                     |
| $m_e$ (mediana)                        |                                     |
| $m_o  (\mathrm{moda})$                 |                                     |
| x <sub>min</sub> (minimum)             |                                     |
| $x_{\text{max}}$ (maximum)             |                                     |
| R (rozstęp)                            |                                     |
| s (odchylenie standardowe)             |                                     |
| v (współczynnik zmienności)            |                                     |
| $(\overline{x} - s, \overline{x} + s)$ |                                     |

W celu obliczenia większości tych miar wpisujemy dane do jednej kolumny (zmiennej) oraz nadajemy nazwę zmiennej (klikając nagłówek dwa razy) do arkusza pakietu STATISTICA (patrz rysunek 1).

Następnie postępujemy według schematu: STATYSTYKA → STATYSTYKI PODSTAWOWE I TABELE → STATYSTYKI OPISOWE → OK → wprowadzamy zmienną → klikamy w zakładkę WIĘCEJ → Zaznaczamy interesujące nas wielkości i klikamy PODSUMOWANIE



Do skoroszytu i raportu zapisują nam się wyniki w postaci tabelki:

|                 | Statystyki o | atystyki opisowe |         |      |          |         |          |         |           |          |          |  |
|-----------------|--------------|------------------|---------|------|----------|---------|----------|---------|-----------|----------|----------|--|
|                 | Nważnych     | Średnia          | Mediana | Moda | Liczność | Minimum | Maksimum | Rozstęp | Wariancja | Odch.std | Wsp.zmn. |  |
| Zmienna         |              |                  |         |      | Mody     |         |          |         |           |          | _        |  |
| stężenie fluoru | 30           | 5,0333           | 4,7500  | 4,10 | 3        | 2,40    | 8,20     | 5,80    | 1,7340    | 1,3168   | 26,16205 |  |

Aby sporządzić histogram postępujemy według schematu: STATYSTYKA  $\rightarrow$  STATYSTYKI PODSTAWOWE I TABELE  $\rightarrow$  STATYSTYKI OPISOWE  $\rightarrow$  wprowadzamy zmienne  $\rightarrow$  klikamy w zakładkę NORMALNOŚĆ (jak wyżej)  $\rightarrow$  zmieniamy ewentualnie liczbę przedziałów ( $\approx \sqrt{n}$ ) i wybieramy HISTOGRAM.

Otrzymujemy:





#### Interpretacja:

Zbadano stężenie fluoru w powietrzu w Luboniu w lipcu 2010 roku, uzyskując 30 obserwacji. Wartość średnia stężenia fluoru wyniosła 5,0333 mg/m³. Mediana wyniosła 4,75 mg/m³, co oznacza, że w próbie połowa obserwacji ma wartość mniejszą bądź równą 4,75 mg/m³ i tyle samo obserwacji ma wartość większą bądź równą 4,75 mg/m³. Wartość modalna (moda), czyli wartość obserwowana najczęściej wynosi 4,1 mg/m³, przy czym wartość ta występuje trzy razy (liczność mody wynosi 3).

Z relacji  $m_o < m_e < \overline{x}$  wynika, że rozkład empiryczny cechy jest prawostronnie asymetryczny (przypomnijmy, że dla zmiennej o rozkładzie normalnym wartości tych 3 miar położenia są jednakowe).

Najmniejszą obserwowaną wartością stężenia fluoru wśród 30 obserwacji było 2,4 mg/m³, a największą obserwowaną wartością tego pestycydu było 8,2 mg/m³. Rozstęp, czyli zakres zmienności obserwacji wyniósł 5,8 mg/m³. Wariancja i odchylenie standardowe stężenia fluoru wynoszą odpowiednio 1,734 (mg/m³)² oraz 1,3168 mg/m³. Stąd współczynnik zmienności wynosi około 26 % (>10 %), co oznacza, ze obserwowana zmienna nie jest stabilna.

**Zadanie 2.** W ramach monitoringu wdrażania strategii rozwoju gminy, przeprowadzono badanie w wybranych losowo gospodarstwach rolniczych o powierzchni powyżej 30 ha zużycia energii elektrycznej w kilowatogodzinach na 1 ha użytków rolnych uzyskano następujące wyniki: 335; 196; 220; 113; 232; 205; 160; 263; 302; 221; 121; 245; 232; 115. Wyznacz i zinterpretuj średnią arytmetyczną, rozstęp, wariancję, odchylenie standardowe, współczynnik zmienności, medianę, modę, współczynnik skośności i spłaszczenia.

| 1 |                 | Statystyki o | pisowe  |        |          |         |           |          |          |          |           |
|---|-----------------|--------------|---------|--------|----------|---------|-----------|----------|----------|----------|-----------|
| 1 |                 | Średnia      | Mediana | Moda   | Liczność | Rozstęp | Wariancja | Odch.std | Wsp.zmn. | Skośność | Kurtoza   |
| 1 | Zmienna         |              |         |        | Mody     |         | _         |          | -        |          |           |
| 1 | zużycie energii | 211,4286     | 220,50  | 232,00 | 2        | 222,00  | 4489,19   | 67,00    | 31,69    | 0,0281   | -0,419532 |

**Zadanie 3.** Otwórz plik temperatura umieszczony w katalogu DYDAKTYKA / Budka. Scharakteryzuj temperaturę średnią dla miesiąca czerwca i dla lipca na podstawie zamieszczonych tam obserwacji z okresu 228 lat. Wykonaj histogramy rozkładu cechy.

Odp.  $\bar{x}_{cz} = 17,05833$ ;  $\bar{x}_{lip} = 18,7663$ 

**Zadanie 4.** Elementem prowadzonej polityki sektorowej przemysłu, w rejonie składowiska odpadów Tarnów-Krzyż w ramach monitoringu zanieczyszczenia było badanie gleby. Pobrano 14 próbek do badań geochemicznych z trzech profili w celu zbadania stężenia pierwiastków w badanej glebie. Dane zebrano w poniższej tabeli. Korzystając z pakietu STATISTICA oblicz poznane miary położenia i rozrzutu dla otworu 1 (tło) oraz łącznie dla otworów 2 i 3 (oddziaływanie składowiska), także łącznie dla wszystkich próbek dla wszystkich oznaczanych pierwiastków.

| _         | mt<br>ób |       |       | Bar   | Chrom | Cynk | Kobalt | Mangan | Miedź | Nikiel | Ołów | Rtęć  | Stront |   |       |    |
|-----------|----------|-------|-------|-------|-------|------|--------|--------|-------|--------|------|-------|--------|---|-------|----|
| _         |          |       | 0,4   | 22    | 10    | 22   | 4      | 159    | 7,2   | 6      | 6    | 0,034 | 7      |   |       |    |
|           |          |       | 0,8   | 25    | 13    | 23   | 2      | 42     | 10,9  | 8      | 6    | 0,033 | 9      |   |       |    |
|           | 1        |       | 1,1   | 42    | 13    | 35   | 10     | 248    | 15,3  | 22     | 8    | 0,038 | 11     |   |       |    |
|           | 1        | (m)   | 2     | 59    | 18    | 65   | 9      | 541    | 21,7  | 29     | 12   | 0,066 | 98     |   |       |    |
|           |          | bki   | 3     | 31    | 16    | 63   | 13     | 943    | 20,7  | 39     | 12   | 0,07  | 100    |   |       |    |
| ņ         |          | ı prć | 3,8   | 33    | 14    | 57   | 9      | 954    | 19,2  | 29     | 11   | 0,059 | 98     |   |       |    |
| Nr otworu |          | ania  | 0,4   | 32    | 10    | 28   | 6      | 493    | 9,4   | 7      | 8    | 0,029 | 7      |   |       |    |
| Ir ot     |          | pob   | 1     | 27    | 13    | 29   | 4      | 208    | 10,8  | 11     | 7    | 0,034 | 9      |   |       |    |
| 2         | 2        | séć Į | 1,7   | 32    | 11    | 31   | 5      | 241    | 13,2  | 17     | 7    | 0,026 | 41     |   |       |    |
|           |          | ooka  | 2,7   | 26    | 10    | 30   | 5      | 343    | 12,9  | 17     | 7    | 0,029 | 62     |   |       |    |
|           |          | Głębo | Głębo | Głębc | ا ي   | 3,5  | 29     | 11     | 37    | 7      | 472  | 15,1  | 22     | 8 | 0,037 | 67 |
|           |          |       | 0,8   | 63    | 19    | 65   | 14     | 944    | 19,6  | 31     | 14   | 0,078 | 14     |   |       |    |
|           | 3        |       | 2,5   | 36    | 15    | 61   | 10     | 984    | 20,1  | 29     | 11   | 0,062 | 99     |   |       |    |
|           |          |       | 3,6   | 40    | 13    | 62   | 10     | 902    | 17,3  | 31     | 11   | 0,061 | 94     |   |       |    |

Dane pochodzą z rozprawy doktorskiej p. K. Sobiak pod tytułem "Badanie wpływu składowisk odpadów na środowisko gruntowo-wodne na przykładzie wybranych obiektów zlokalizowanych w obrębie zlewni Dunajca."

Danych jest v populacji normalnych  $N(\mu_i; \sigma_i)$ , i=1,2,...,v. Z każdej populacji wylosowano próbkę  $n_i$  elementową. Formułuje się hipotezę:

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_v^2$$

 $H_1 : \sim H_0$ .

Test Bartletta: 
$$X^{2} = \frac{(n-v)\ln[\frac{1}{n-v}\sum_{i=1}^{v}(n_{i}-1)\hat{s}_{i}^{2}] - \sum_{i=1}^{v}(n_{i}-1)\ln[\hat{s}_{i}^{2}]}{1 + \frac{1}{3(v-1)}[\sum_{i=1}^{v}(\frac{1}{n_{i}-1}) - \frac{1}{n-v}]}$$

Jeżeli  $X^2 > X_{\alpha,\nu-1}^2$  hipotezę  $H_0$  odrzucamy.

#### UKŁAD CAŁKOWICIE LOSOWY

Model obserwacji (model analizy wariancji) w doświadczeniu jednoczynnikowym o układzie całkowicie losowym

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$
 (wyraz wolny + efekt obiektowy + błąd doświadczalny),

gdzie  $i=1,2,...,v,\ j=1,2,...,r_i$  oraz  $\sum_{i=1}^{v}\alpha_i=0$ , przy czym spełnione są założenia, które zapisujemy krótko w

postaci  $y_{ij}$   $\sim$   $N(\mu + \alpha_i; \sigma)$  lub równoważnie w postaci  $\varepsilon_{ij}$   $\sim$   $N(0; \sigma)$ .

Stawiamy hipoteze:

$$H_0$$
:  $\mu_1 = \mu_2 = ... = \mu_v$ 

 $H_1$ : ~ $H_0$ 

Przeprowadzamy analize wariancji (układ całkowicie losowy), wyznaczamy statystyke F:

| Źródła zmienności | Stopnie swobody | Sumy kwadratów SS | Średnie kwadraty <i>MS</i> | F     |
|-------------------|-----------------|-------------------|----------------------------|-------|
| Obiekty           | v-1             | $SS_O$            | $MS_O$                     | $F_0$ |
| Błąd              | n-v             | $SS_E$            | $MS_E$                     |       |
| Całkowita         | n-1             | $SS_C$            |                            |       |

Wzory na końcu materiałów. Jeśli  $F_0 > F_{\alpha;\nu-1;n-\nu}$  to hipotezę  $H_0$  odrzucamy.

Po odrzuceniu hipotezy  $H_0$  stawiamy hipotezy szczegółowe dla  $i.i'=1,...,v, i\neq i'$ :

$$H_{0ii'}$$
:  $\mu_i - \mu_{i'} = 0$ 

$$H_{1ii'} : \sim H_{0ii'}$$

Weryfikację tych hipotez przeprowadzamy:

- testem wielokrotnym **Tukeya** jako testem najbardziej polecany do porównywania par średnich jego celem jest ustalenie, które grupy w próbce różnią się.
- testem jednokrotnym **Fishera**, stosowanym najczęściej tylko do wybranych porównań średnich. (wzory na końcu materiału)

**Zadanie 5** Ze względu na szczególną rolę uzdrowiskowo-wypoczynkową pięciu nadmorskich miast, porównywano powierzchnię zieleni ogólnodostępnej (w ha) według uchwalonych planów miejscowych w miastach A, B, C, D i E na przestrzeni kilu lat . Przeprowadzono odczyty w tych latach i otrzymano:

| A | 9,5 | 9,0 | 9,6 | 9,5 |
|---|-----|-----|-----|-----|
| В | 9,0 | 9,0 | 9,2 |     |
| C | 8,9 | 8,7 | 8,8 |     |
| D | 8,8 | 9,2 | 9,0 | 9,0 |
| E | 8,5 | 8,6 | 8,5 | 8,7 |

Przy prawdziwości założenia analizy wariancji (założenia o rozkładzie normalnym zmiennej obserwowanej):

- a) Na poziomie istotności  $\alpha = 0.01$  zweryfikować hipotezę o jednorodności wariancji dla powierzchni zielonych w badanych miastach. Zastosować test Bartletta.
- b) Przy prawdziwości założeń analizy wariancji na poziomie istotności  $\alpha = 0.01$  zweryfikować hipotezę ogólną o braku istotnych różnic między rzeczywistą średnią powierzchnię zieleni ogólnodostępnej w badanych miast na przestrzeni interesujących lat.
- c) Wykorzystać test **Fishera** do porównań średnich powierzchni zielonych parami. Postawić i zweryfikować odpowiednie hipotezy szczegółowe. Przyjąć poziom istotności  $\alpha = 0.01$ .

## Rozwiązanie:

Wypełniamy arkusz danych

Za pomocą programu STATISTICA wybieramy : STATYSTYKA  $\rightarrow$  ANOVA  $\rightarrow$  JEDNOCZYNNIKOWA ANOVA  $\rightarrow$  SZYBKIE DEFINIOWANIE  $\rightarrow$  OK



→ ustalamy zmienne w obrębie pola **Listy zmiennych zależnych** zaznaczamy zmienną obserwacji, czyli *powierzchnia zieleni*, a w polu **Predyktor jakościowy (czynnik)** wybieramy zmienną *obiekty* i akceptujemy **OK**→**OK**. Pojawia się okno **ANOVA-wyniki 1**. Ustalamy w nim poziom istotności 0,01, ufności 0,99.



Za pomocą programu STATISTICA

W oknie ANOVA – Wyniki 1 → wybieramy zakładkę WIĘCEJ WYNIKÓW → następnie zakładkę ZAŁOŻENIA i w niej wybieramy test Bartletta, klikając na przycisk między innymi z tym testem.



### Otrzymujemy:

|                  | Testy jednorodności wariancji (Zadanie 6-1.sta)<br>Efekt: "obiekty (miasta)" |    |                |          |    |   |  |  |  |
|------------------|------------------------------------------------------------------------------|----|----------------|----------|----|---|--|--|--|
|                  | Hartleya                                                                     | Со | <b>¢</b> hrana | Bartlett | а  | B |  |  |  |
|                  | F-maks                                                                       | (  | ( c            | Chi-kw.  | df | ) |  |  |  |
| zawartość wapnia | 8,000000 0,5\$3459 3,886263 4 0,4216                                         |    |                |          |    |   |  |  |  |
|                  |                                                                              |    | _              | _        |    |   |  |  |  |

#### Decyzja i wniosek:

Ponieważ  $p=0.421617>\alpha=0.01$ , to na poziomie istotności 0.01 nie mamy podstaw do odrzucenia hipotezy zerowej, orzekającej o jednorodności wariancji.

**b)** Stawiamy hipotezy: zerową i alternatywną

 $H_0$ :  $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$  rzeczywiste średnie powierzchnie zielone w badanych miast **nie** różnią się między sobą istotnie

 $H_1: \sim H_0$  co najmniej dwie średnie powierzchnie zielone w badanych miastach **różnią się** między sobą istotnie

Za pomocą programu STATISTICA : Ponownie wracamy do początkowego okna ANOVA – Wyniki 1 (klikając przycisk MNIEJ) można w nim otworzyć kartę WIĘCEJ

🕮 ANOVA - Wyniki 1: C 🔞 Porównania Profile Reszty Macierz Raport Podstawowe Średnie Więcej SUHH Wszystkie <u>e</u>fekty Średnie/wykresy Wyniki jednowym. Statystyki podklas Efektu międzygrupowe Składniki <u>u</u>kładu R pełnego modelu Współczynniki Estymacja

→ klikając w niej przycisk **WYNIKI JEDNOWYMIAROWE**. Otrzymamy tabelę analizy wariancji Tabela analizy wariancji ANOVA

|                  | Parametry.         | nowymiarow<br>zacja z sigm<br>ycja efektyw | a-ograniczer | niami              | 6-1.sta)           |  |  |  |  |  |
|------------------|--------------------|--------------------------------------------|--------------|--------------------|--------------------|--|--|--|--|--|
| Er. 1.           | Stopnie<br>swobody | ha                                         | ha           | pow. ziel. w<br>ḥa | pow. ziel. w<br>ha |  |  |  |  |  |
| Efekt            |                    | SS                                         | MS           | F                  | р                  |  |  |  |  |  |
| Wyraz wolny      | 1                  | 1419,371                                   | 1419,371     | 49314,44           | 0,000000           |  |  |  |  |  |
| obiekty (miasta) | 4                  | 1,482                                      | 0,370        | 12,87              | 0,000186           |  |  |  |  |  |
| Błąd             | 3 0,374 0,029      |                                            |              |                    |                    |  |  |  |  |  |
| Ogół             | 17                 | 1,856                                      |              |                    |                    |  |  |  |  |  |

## Decyzja:

Ponieważ prawdopodobieństwo  $p=0.000186<\alpha=0.01$ , to na poziomie istotności  $\alpha=0.01$  odrzucamy hipotezę  $H_0$  na korzyść hipotezy  $H_1$ .

#### Wniosek:

Na poziomie istotności 0.01 stwierdzamy istotne zróżnicowanie rzeczywistych średnich powierzchni zielonych w badanych miastach.

c) Stawiamy hipotezy szczegółowe:

W celu wykonania dalszej analizy szczegółowej po analizie wariancji wracamy znów do okna ANOVA – Wyniki 1 → WIĘCEJ WYNIKÓW, a następnie klikamy opcję POST-HOC. W polu Pokaż zaznaczamy Istotne różnice i wybieramy TEST NIR FISHERA.



prawdopodobieństwa p mniejsze od  $\alpha = 0.01$  oznaczają odrzucenie hipotez zerowych szczegółowych.

|           | Prawdopo                                    | Test NIR; zmienna zawartość wapnia (Zadanie 6-1.sta) Prawdopodobieństwa dla testów post-hoc Błąd: MS międzygrupowe = ,02878, df = 13,000 |          |          |          |          |  |  |  |  |  |  |
|-----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|--|--|--|--|--|--|
|           | obiekty                                     |                                                                                                                                          |          |          |          |          |  |  |  |  |  |  |
| Nr podkl. | (miasta) 9,4000 9,0667 8,8000 9,0000 8,5750 |                                                                                                                                          |          |          |          |          |  |  |  |  |  |  |
| 1         | Α                                           |                                                                                                                                          | 0,023183 | 0,000471 | 0,005380 | 0,000011 |  |  |  |  |  |  |
| 2         | В                                           | 0,023183                                                                                                                                 |          | 0,076377 | 0,615534 | 0,002231 |  |  |  |  |  |  |
| 3         | С                                           | 0,000471                                                                                                                                 | 0,076377 |          | 0,146692 | 0,106105 |  |  |  |  |  |  |
| 4         | D 0,005380 0,615534 0,146692 0,003606       |                                                                                                                                          |          |          |          |          |  |  |  |  |  |  |
| 5         | Е                                           | 0,000011                                                                                                                                 | 0,002231 | 0,106105 | 0,003606 |          |  |  |  |  |  |  |

#### Decyzje:

Na poziomie istotności  $\alpha$  = 0,01, na podstawie testu Fishera, odrzucamy hipotezy szczegółowe dla par miast: A-C (bo p=0,000471 <  $\alpha$  = 0,01), A-D (bo p=0,005380 <  $\alpha$  = 0,01), A-E (bo p=0,000011 <  $\alpha$  = 0,01), B-E (bo p=0,002231 <  $\alpha$  = 0,01), D-E (bo p=0,003606 <  $\alpha$  = 0,01).

#### Wnioski:

Na poziomie istotności 0,01 stwierdzamy, że prawdziwe średnie powierzchnie zielone wypisanych powyżej par miast różnią się między sobą istotnie.

**TEST KRUSKALA-WALLISA** jest jedną z najpopularniejszych alternatyw dla jednoczynnikowej analizy wariancji. Przeprowadzany jest w przypadku, gdy zostały złamane założenia ANOVA bądź gdy charakter naszych zmiennych nie pozwala na wykorzystanie analizy wariancji.

Weryfikujemy hipotezy:

 $H_0$ : Rozkłady dla k populacji są takie same

 $H_1$ : Nie wszystkie rozkłady są takie same

Wszystkim obserwacjom zmiennej losowej X uszeregowanym niemalejąco nadajemy rangi, czyli kolejne numery od 1 do n (jednakowym wartościom obserwacji przypisujemy liczbę będącą średnią arytmetyczną rang, które kolejno miały następować. Dla każdej próbki obliczamy sumy rang  $T_{i,\;i=1,\,2,\,\dots,\,v}$ .

Wyznaczamy wartość statystyki:

$$X^{2} = \frac{12}{n(n+1)} \sum_{i=1}^{v} \frac{T_{i}^{2}}{n_{i}} - 3(n+1).$$

Jeżeli H<sub>0</sub> jest prawdziwa to powyższa statystyka ma asymptotyczny rozkład chi-kwadrat o (v-1) stopniach swobody.

Przyjmujemy poziom istotności α i odczytujemy wartość krytyczną

 $X_{\alpha,v-1}^2$ . Jeżeli  $X^2 > X_{\alpha,v-1}^2$  hipotezę  $H_0$  odrzucamy.

**Zadanie 6.** Inspektor do spraw polityki przestrzennej i planowania miejscowego, zlecił przeprowadzenie analiz w celu sprawdzenie, czy preferencje studentów różnych kierunków (Gospodarki Przestrzennej, Ochrony Środowiska, Ekonomii, Medycyny) do zamieszkania w małej miejscowości różnią się istotnie na poziomie istotności 0,01. Wyniki ankiet przeprowadzonych pośród 10 studentów każdego kierunku podano w umownej skali sumarycznej.

| Grupa<br>ankietowanych      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------------------------|----|----|----|----|----|----|----|----|----|----|
| Gospodarki<br>Przestrzennej | 38 | 39 | 48 | 31 | 43 | 37 | 38 | 47 | 33 | 44 |
| Ochrony<br>Środowiska       | 56 | 48 | 47 | 54 | 50 | 55 | 48 | 46 | 53 | 49 |
| Ekonomii                    | 44 | 49 | 40 | 40 | 49 | 45 | 48 | 41 | 39 | 50 |
| Medycyny                    | 44 | 45 | 48 | 53 | 52 | 43 | 44 | 49 | 52 | 50 |

Z racji, że porównywanych grup było więcej niż 2 (4 kierunki studiów) a zmienna zależna (punktacja) była mierzona na <u>skali porządkowej</u> przeprowadzono test Kruskala-Wallisa, aby porównać ze sobą grupy studentów pod względem preferencji zamieszkania w małej miejscowości.

W celu przeprowadzenia analizy, należy wprowadzić dane do arkusza:



Z menu **Statystyka** opcję **Statystyki nieparametryczne**. Następnie w otwierającym się oknie wybieramy opcję **Porównanie wielu prób niezależnych (grup).** Po kliknięciu na przycisku **OK** otworzy się okno **Test ANOVA rang Kruskala-Wallisa i test mediany** (rysunek powyżej).

Klikając przycisk **Podsumowanie. ANOVA Kruskala-Wallisa** i test mediany otrzymujemy dwa arkusze wyników. Nas interesuje ten dotyczący nieparametrycznej analizy wariancji.

|                         | Wartość p dla porównań wielok<br>Zmienna niezależna (grupująca<br>Test Kruskala-Wallisa: H ( 3, N | a): Kierunek studiów       | • •      | sz2)     |  |  |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------|----------------------------|----------|----------|--|--|--|--|--|--|--|
| Zależna:                | Gospodarki Przestrzenna Ochrona Środowiska Ekonomia Medycy                                        |                            |          |          |  |  |  |  |  |  |  |
| Punktacja               | R:9,2000                                                                                          | R:30,150                   | R:17,850 | R:24,800 |  |  |  |  |  |  |  |
| Gospodarki Przestrzenna |                                                                                                   | 0,000369                   | 0,588142 | 0,017078 |  |  |  |  |  |  |  |
| Ochrona Środowiska      | 0,000369                                                                                          |                            | 0,111839 | 1,000000 |  |  |  |  |  |  |  |
| Ekonomia                | 0,588142                                                                                          | 0,111839                   |          | 1,000000 |  |  |  |  |  |  |  |
| Medycyna                | 0,017078                                                                                          | 0,017078 1,000000 1,000000 |          |          |  |  |  |  |  |  |  |

#### Decyzje:

Na poziomie istotności  $\alpha$  = 0,05, na podstawie testu Kruskala-Wallisa odrzucamy hipotezę zerową o braku istotnych różnic pomiędzy preferencjami studentów rozważanych kierunków H(3,N=40)=18,11213 (bo p=0,0004 <  $\alpha$  = 0,05). Podane wartości p w tabeli, takie, że p< $\alpha$  = 0,05 wskazują na pary kierunków, studiów po których preferencje studentów różnią się istotnie.

### Wnioski:

Na poziomie istotności 0,05 stwierdzamy, że preferencje studentów z wybranych kierunków różnią się istotnie. Na podstawie testu porównań wielokrotnych stwierdzono różnice w preferencjach dla kierunków: Gospodarka Przestrzenna-Ochrona Środowiska (bo p=0,00369 <  $\alpha$  = 0,05), Gospodarka Przestrzenna-Medycyna (bo p=0,017078 <  $\alpha$  = 0,05).

**Zadanie 7** Porównywano zawartość magnezu (w mg/l) w wodach mineralnych czterech rodzajów (obiektów) dostępnych na polskim rynku. Otrzymane obserwacje zapisano w tabeli (dane pobierz z pliku cw2.sta).

| Muszynianka | Muszynianka plus | Piwniczanka | Galicjanka |
|-------------|------------------|-------------|------------|
| *           | *                | *           | *          |
| *           | *                | *           | *          |

Przy prawdziwości założeń analizy wariancji

- a) Na poziomie istotności  $\alpha = 0.01$  zweryfikować hipotezę ogólną o braku istotnych różnic między rzeczywistymi średnimi zawartościami magnezu w badanych wodach mineralnych.
- **b)** Na poziomie istotności  $\alpha = 0.01$  zweryfikować hipotezę o jednorodności wariancji zawartości magnezu w badanych wodach. Zastosować test Bartletta.
- c) Wykorzystać test **Tukeya** do porównań średnich zawartości magnezu w wodach mineralnych parami. W tym celu postawić i zweryfikować odpowiednie hipotezy szczegółowe. Przyjąć  $\alpha = 0.01$ .

Odp. **a**) 
$$p = 0.0000 < \alpha = 0.01$$
; **b**)  $p = 0.038777 > \alpha = 0.01$ ;

**Zadanie 8** Podczas zajęć laboratoryjnych 4-osobowa grupa studentek (S1, S2, S3, S4) uczyła się ustalać kwasowość gleby mierzonej współczynnikiem pH. Każda studentka pobrała losowo 23 próbki gleby i poddała je badaniom chemicznym. Obserwacje pobierz z pliku cw2.sta.

Przy prawdziwości założeń analizy wariancji:

- a) Na poziomie istotności  $\alpha = 0.02$  zweryfikować hipotezę ogólną o braku różnic między średnimi kwasowościami gleby oznaczonymi przez poszczególne studentki.
- **b)** Wykorzystać test **Tukeya** do porównań wielokrotnych. W tym celu utworzyć grupy jednorodne średnich na poziomie istotności  $\alpha = 0.02$ .
- c) Wykonać wykres średnich

Odp. a) p = 0,0000; b) grupy: (S2, S3), (S1, S4); c) graficzna prezentacja średnich potwierdza ich zróżnicowanie, bo wyznaczone 98 % przedziały ufności są rozłączne dla co najmniej jednej pary obiektów.

**Zadanie 9** W ramach monitoringu zanieczyszczenia powietrza benzenem w województwie małopolskim zebrano dane dotyczące stężenia benzenu dla 6 miejscowości tego województwa. W każdej miejscowości było 12 stanowisk pomiarowych, dla których obliczono średnie dobowe (w μg/m³). Dane te znajdują się w pliku cw2.sta.

- a) Na poziomie istotności  $\alpha = 0.05$  zweryfikować hipotezę ogólną o braku istotnych różnic między rzeczywistym poziomem średniodobowego stężenia benzenu w poszczególnych miejscowościach województwa małopolskiego.
- b) Wykorzystać test Fishera do porównań rzeczywistych średnich stężeń benzenu w badanych miejscowościach W tym celu postawić i zweryfikować odpowiednie hipotezy szczegółowe. Przyjąć poziom istotności  $\alpha = 0.05$ .

Odp. **a**) p = 0.001337;

**b**) istotne różnice M1 z M3, M1 z M4, M1 z M5, M1 z M6, M2 z M6, M2 z M3.

**Zadanie 10** Dokonywano pomiarów zanieczyszczenia powietrza (emisji) na terenie Poznania. Oznaczano m.in. zawartość dwutlenku siarki w µg/m³/miesiac. Dla poszczególnych dzielnic otrzymano obserwacje:

| Stare Miasto | 3,9 | 4,0 | 4,3 | 4,0 |     |
|--------------|-----|-----|-----|-----|-----|
| Nowe Miasto  | 3,2 | 3,4 | 3,0 | 3,4 |     |
| Wilda        | 4,5 | 4,6 | 5,2 |     |     |
| Jeżyce       | 2,5 | 2,6 | 2,5 | 2,8 |     |
| Grunwald     | 3.8 | 3.7 | 4.0 | 3.9 | 4,3 |

- a) Na poziomie istotności  $\alpha = 0.01$  zweryfikować hipotezę ogólną o braku istotnych różnic między rzeczywistymi średnimi zawartościami dwutlenku siarki w dzielnicach Poznania.
- b) Wykorzystać test Fishera do porównań średnich zawartości dwutlenku siarki. W tym celu postawić i zweryfikować odpowiednie hipotezy szczegółowe. Przyjąć poziom istotności  $\alpha = 0.01$ .

Odp. a) p = 0.000000; b) nie odrzucamy hipotezy dla porównania Stare Miasto - Grunwald

**Zadanie 9** Badając wpływ składowania odpadów na glebę pobrano 14 próbek gleby do badań geochemicznych z trzech profili. Określono w nich między innymi stężenie rtęci. Otrzymując obserwacje:

Otwór 1 0,034 0,033 0,038 0,066 0,07 0,059

Otwór 2 0,029 0,034 0,026 0,029 0,037

Otwór 3 0,078 0,062 0,061

Przyjmując  $\alpha = 0.05$  i założenie o normalności rozkładu

- a) Sprawdzić czy spełnione jest założenie o jednorodności wariancji.
- b)Odpowiedzieć czy badane profile (otwory) różniły się pod względem zawartości badanego pierwiastka.
- c) Jeżeli jest to uzasadnione wykorzystać test Tukeya do porównań wielokrotnych w tym celu utworzyć grupy jednorodne.

<u>Odp.</u> **a**) p = 0.066857; **b**) p = 0.006437; **c**) ) grupy: (otwór 2, otwór 1), (otwór 1, otwór 3).

**Zadanie 11** Obserwowano dobowy przybór odpadów (w m³) na terenie kilku gmin w ciągu 5 dni. Otrzymano dane:

| Gmina 1 | Gmina 2 | Gmina 3 | Gmina 4 |
|---------|---------|---------|---------|
| 6,5     | 8,0     | 8,0     | 5,3     |
| 6,7     | 8,4     | 9,4     | 6,4     |
| 7,2     | 9,2     | 7,8     | 7,2     |
| 6,4     | 8,3     | 8,3     | 6,7     |
| 6,9     | 7,9     | 8,5     | 6,9     |

- a) Na poziomie istotności  $\alpha = 0.01$  zweryfikować hipotezę ogólną o braku istotnych różnic między rzeczywistymi średnimi przyborami odpadów w badanych gminach.
- **b**) Wykorzystać test Tukeya do porównań średnich dobowych przyborów odpadów. W tym celu postawić i zweryfikować odpowiednie hipotezy szczegółowe. Przyjąć poziom istotności  $\alpha$ = 0,01. Odp. **a**) p = 0,000042.

**Zadanie 12** Poniższe dane dotyczą frekwencji (w procentach) w wyborach prezydenckich z wybranych komisji wyborczych w trzech miastach wojewódzkich:

Wrocław: 38,5; 40,8; 41,7; 41,2; 37.9; 38,3; 42; 39,8; 43,1; 42,6 Warszawa: 38,9; 43,1; 40,4; 41,8; 42,39, 43,7; 40; 39,7; 43; 43,1 Poznań: 43,9; 44,2; 45,2; 44,6; 42,5; 43,4; 44,8; 42,8; 43,1; 44,8; 45

Na poziomie istotności  $\alpha$ = 0,05 zweryfikować hipotezę, że rozkłady frekwencji we wszystkich miastach są jednakowe przy alternatywie, że się różnią. Zastosować test **Kruskala-Wallisa.** 

## Wzory 1 : TESTY PARAMETRYCZNE

| Analiza wariancji - UKŁAD CAŁKOWICIE LOSOWY                                     |                                                                                                                                                                                                                                                                                                              |                                                     |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Sumy<br>kwadratów SS<br>i średnie<br>kwadraty MS                                | ji - UKŁAD CAŁKOWICIE LOSOWY $SS_{C} = \sum_{i=1}^{v} \sum_{j=1}^{r_{i}} x_{ij}^{2} - \frac{(\sum_{i=1}^{v} \sum_{j=1}^{r_{i}} x_{ij})^{2}}{n}, SS_{O} = \sum_{i=1}^{v} \frac{(\sum_{i=1}^{r_{i}} x_{ij})^{2}}{r_{i}} - \frac{(\sum_{i=1}^{v} \sum_{j=1}^{r_{i}} x_{ij})^{2}}{n}$ $SS_{E} = SS_{C} - SS_{O}$ | $MS_O = \frac{SS_O}{v-1}$ $MS_E = \frac{SS_E}{n-v}$ |  |  |
| Hipoteza ogólna - test dla porównania wielu obiektów - test Fishera – Snedecora |                                                                                                                                                                                                                                                                                                              |                                                     |  |  |
| $H_0$ : $\mu_1 = \mu_2 =$<br>$H_1$ :~ $H_0$                                     | F V   H <sub>0</sub>                                                                                                                                                                                                                                                                                         | bszar krytyczny $0 > F_{\alpha;\nu-1;n}$ - $\nu$    |  |  |
| Hipotezy szczegółowe - test dla różnicy średnich:                               |                                                                                                                                                                                                                                                                                                              |                                                     |  |  |
|                                                                                 | test Tukeya                                                                                                                                                                                                                                                                                                  |                                                     |  |  |
| $H_{0ii}$ : $\mu_i - \mu_{i'} = 0$                                              | Najmniejsza istotna różnica                                                                                                                                                                                                                                                                                  |                                                     |  |  |
| $H_{1ii'}:\sim H_{0ii'}$ ,                                                      | $\left  \text{gdy } \left  \overline{x_i} - \overline{x_{i'}} \right  > NIR^T  \text{H}_0 \text{ odrzucamy}  \left  NIR^T \right  = \sqrt{\frac{MS_E}{r}} \cdot q_{\alpha, \nu, \nu_E}$                                                                                                                      |                                                     |  |  |
| test Fishera                                                                    |                                                                                                                                                                                                                                                                                                              |                                                     |  |  |
| $H_{0ii}$ : $\mu_i - \mu_{i'} = 0$                                              | Najmniejsza istotna różnica                                                                                                                                                                                                                                                                                  |                                                     |  |  |
| $H_{1ii}$ :~ $H_{0ii}$ ,                                                        | $\left  \text{gdy } \left  \overline{x_i} - \overline{x_{i'}} \right  > NIR^F  \text{H}_0 \text{ odrzucamy}  \right  NIR^F = \sqrt{MS_E \left( \frac{1}{r_i} + \frac{1}{r_{i'}} \right)} \cdot t_{\alpha, \nu_E}$                                                                                            |                                                     |  |  |

Wzory 1: TESTY NIEPARAMETRYCZNE

## Hipotezy szczegółowe - test dla różnicy średnich :

Obliczamy średnie rang  $\overline{x}_i$  dla każdego obiektu (populacji), i=1,2, ..., v.

| test Chi - kwadrat                                                                        |                                                                                 |                                                                                               |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $H_{0ii'}: \mu_i - \mu_{i'} = 0$                                                          |                                                                                 | Najmniejsza istotna różnica                                                                   |
| $\begin{aligned} &H_{0ii'} : \mu_i - \mu_{i'} = 0 \\ &H_{1ii'} : \sim &H_0 \end{aligned}$ | gdy                                                                             | NIR <sup>chi</sup> =                                                                          |
|                                                                                           | $\left  \overline{x}_i - \overline{x}_{i'} \right  > NIR^{chi}$ $H_0$ odrzucamy | $= \sqrt{X_{\alpha, v-1}^2 \cdot \frac{n(n+1)}{12} \cdot (\frac{1}{n_i} + \frac{1}{n_{i'}})}$ |