UCLouvain

Probabilistic mapping of the sub-cellular proteome

Laurent Gatto February 9, 2020

Abstract: In biology, localisation is function - understanding the sub-cellular localisation of proteins is paramount to comprehend the context and full extend of their functions. Shotgun mass spectrometry-based spatial proteomics method are orthogonal to widely used targeted microscopy-based assay. In conjunction with contemporary machine learning, the former enable to build proteome-wide protein localisation maps, informing us on the location of thousands of proteins. When studying these proteome-wide spatial maps, one can learn that while some proteins can be found in a single location within a cell, up to half of the proteins may reside in multiple locations, can dynamically re-localise, or reside within an unknown functional compartment, leading to considerable uncertainty in associating proteins to their sub-cellular location. Recent Bayesian modelling approaches enable us to mine these data, and in particular the dynamic fraction of the spatial proteome, in much greater depth. We are now in a position to (1) probabilistically model protein localisation as well as quantify the uncertainty in the location assignments, and (2) compute a probability for, and quantify uncertainty in, whether a protein is differentially localised upon cellular perturbation. These computational approaches lead to better and more trustworthy biological interpretation of these rich spatial proteomics data.

Acknowledgements

- Mr Oliver Crook
- Dr Lisa Breckels

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

Cell organisation - localisation is function

Spatial proteomics is the systematic study of protein localisations.

Localisation – re-localisation – mis-localisation

Image from Wikipedia http://en.wikipedia.org/wiki/Cell_(biology).

Explorative/discovery approaches, steady-state global localisation maps (as opposed to microscopy-based targeted approaches).

Density gradient: PCP (Dunkley et al., 2006), LOPIT (Foster et al., 2006), hyperLOPIT (Christoforou et al., 2016; Mulvey et al., 2017) and Differential centrifugation Itzhak et al. (2016), LOPIT-DC (Geladaki et al., 2018).

Quantitation data

	Fraction ₁	Fraction ₂		$Fraction_L$
x_1	<i>x</i> _{1,1}	<i>X</i> _{1,2}		$x_{1,L}$
x ₂	x _{2,1}	<i>x</i> _{2,2}		$x_{2,L}$
x ₃	<i>x</i> _{3,1}	<i>X</i> 3,2		<i>x</i> _{3,L}
:	:	:	:	:
Χi	<i>x</i> _{i,1}	<i>X</i> _{i,2}		$x_{i,L}$
:	:	:	:	:
ΧN	<i>x</i> _{N,1}	<i>X</i> N,2		XN, L

Quantitation data and organelle markers

	Fraction ₁	Fraction ₂		$Fraction_L$	markers
\mathbf{x}_1	<i>x</i> _{1,1}	X _{1,2}		<i>x</i> _{1,L}	unknown
x ₂	x _{2,1}	<i>X</i> _{2,2}		<i>X</i> _{2,L}	loc ₁
x ₃	<i>x</i> _{3,1}	<i>X</i> _{3,2}		<i>x</i> _{3,L}	unknown
:	•	:	:	:	:
Χi	<i>x</i> _{i,1}	<i>X</i> _{i,2}		$x_{i,L}$	loc _k
:	:	:	Ė	:	:
×Ν	<i>x</i> _{N,1}	<i>x</i> _{N,2}		XN, K	unknown

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

Visualisation

Figure: From Gatto et al. (2010), *Arabidopsis thaliana* data from Dunkley et al. (2006)

Problem statement: classification

Figure: Support vector machines classifier (after 5% FDR classification cutoff) on the embryonic stem cell data from Christoforou et al. (2016).

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

Computational challenges

- Visualisation (cluster, unsupervised learning)
- Classification (supervised learning)
- Novelty detection (semi-supervised learning)
- Data integration (transfer learning)
- Unvertainty quantification
- Multi-localisation
- Spatial dynamics

To uncover and understand biology

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

Novelty detection

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

Multi-localisation

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

Spatial dynamics

Spatial proteomics

Data analysis

Computational challenges

Novelty detection

Multi-localisation and uncertainly quantification

Spatial dynamics

References I

- A Christoforou, C M Mulvey, L M Breckels, A Geladaki, T Hurrell, P C Hayward, T Naake, L Gatto, R Viner, A Martinez Arias, and K S Lilley. A draft map of the mouse pluripotent stem cell spatial proteome. *Nat Commun*, 7:8992, Jan 2016. doi: 10.1038/ncomms9992.
- TPJ Dunkley, S Hester, IP Shadforth, J Runions, T Weimar, SL Hanton, JL Griffin, C Bessant, F Brandizzi, C Hawes, RB Watson, P Dupree, and KS Lilley. Mapping the Arabidopsis organelle proteome. *PNAS*, 103(17):6518–6523, Apr 2006.
- LJ Foster, CL de Hoog, Y Zhang, Y Zhang, X Xie, VK Mootha, and M Mann. A mammalian organelle map by protein correlation profiling. *Cell*, 125(1):187–199, Apr 2006.
- L Gatto, JA Vizcaino, H Hermjakob, W Huber, and KS Lilley. Organelle proteomics experimental designs and analysis. *Proteomics*, 2010.
- Aikaterini Geladaki, Nina Kocevar Britovsek, Lisa M. Breckels, Tom S. Smith, Claire M. Mulvey, Oliver M. Crook, Laurent Gatto, and Kathryn S. Lilley. LOPIT-DC: A simpler approach to high-resolution spatial proteomics. bioRxiv, 2018. doi: 10.1101/378364. URL https://www.biorxiv.org/content/early/2018/07/26/378364.
- D N Itzhak, S Tyanova, J Cox, and G H Borner. Global, quantitative and dynamic mapping of protein subcellular localization. *Elife*, 5, Jun 2016. doi: 10.7554/eLife.16950.
- C M Mulvey, L M Breckels, A Geladaki, N K Britovek, DJH Nightingale, A Christoforou, M Elzek, M J Deery, L Gatto, and K S Lilley. Using hyperlopit to perform high-resolution mapping of the spatial proteome. *Nat Protoc*, 12(6):1110–1135, Jun 2017. doi: 10.1038/nprot.2017.026.

Thank you for your attention

Contact:

laurent.gatto@uclouvain.be - lgatto.github.io/about