RECEIVED
CENTRAL FAX CENTER
FEB 1 1 2009

SPECIFICATION AMENDMENTS

On page 1, in the paragraph beginning on line 24:

Many manufacturing methods for an oxide-dispersed alloy are basically based on powder metallurgy. Generally, alloy powder in a state in which the oxide of additive metal is dispersed in a matrix metal is manufactured, and the alloy powder is moldedly solidified, for example, by sintering, and is further worked as necessary. As a method of introducing an oxide to manufacture alloy powder in which dispersed particles are dispersed in a matrix metal, several methods are available.

On page 4, in the paragraph beginning on line 22:

That is to say, the present invention provides a manufacturing method for an oxidedispersed alloy in which dispersed particles consisting of metal oxides of one or two or more kinds of additive metals are dispersed in a matrix metal, and this method includes the following steps:

- (a) A step of manufacturing alloy powder or an alloy wire rod consisting of the matrix metal and the additive metal;
- (b) A step of oxidizing the additive metal in the alloy powder by water to form dispersed particles by introducing the alloy powder or alloy wire rod into a high-energy ball mill with water and by making agitation; and
- (c) A step of moldedin moldedly solidifying the alloy powder or alloy wire rod after oxidation.

On page 7, in the paragraph beginning on line 2:

The alloy powder having been subjected to oxidation processing using the high-energy ball mill can be made a bulk-form alloy by molded molded solidification processing. The molded molded solidification processing is preferably performed by a method of sintering the alloy powder while the alloy powder is pressurized as in the case of hot press. The conditions of hot press are preferably a temperature of 700 to 1300°C and a press pressure of 10 MPa or higher. Also, in order to prevent the oxidation of alloy, the

atmosphere of hot press is preferably a vacuum atmosphere. Before the moldedin molded solidification processing, the alloy powder may preliminarily be sintered temporarily.

ROBERTS & ROBERTS LLP

On page 7, in the paragraph beginning on line 13:

For the alloy obtained by the moldedin molded solidification processing, the percent compaction thereof can be improved by forging. Also, in order to fabricate the alloy into a predetermined shape, plastic forming such as rolling, extruding, and drawing can be performed. Also, heat treatment can be carried out for the plastic forming.

On page 10, in the paragraph beginning on line 18:

The temporarily sintered alloy was moldedin moldedly solidified via a hot press. At this time, the press temperature was set at 1200° C, and the press pressure was set at 6.5 tons. Also, the atmosphere was a vacuum atmosphere of 1.5×10^{-2} Pa, and the press time was one hour. As a result, an alloy compact measuring $40.34 \text{ mm} \times 40.45 \text{ mm} \times 60.53 \text{ mm}$ and having a density of 16.23 g/cm^3 and a percent compaction of 75.6% was obtained.

In the abstract:

The present invention provides a manufacturing method for an oxide-dispersed alloy in which dispersed particles consisting of oxides of one or two or more kinds of additive metals are dispersed in a matrix metal, comprising the steps of (a) manufacturing alloy powder or an alloy wire rod consisting of the matrix metal and the additive metal; (b) oxidizing the additive metal in the alloy powder by water to form dispersed particles by introducing the alloy powder or alloy wire rod into a high-energy ball mill with water and by making agitation; and (c) meldedin moldedly solidifying the alloy powder or alloy wire rod after oxidation. The present invention is especially useful in manufacturing an oxide-dispersed alloy in which the free energy of oxide formation of the matrix metal is higher than water standard free energy of formation, and the free energy of formation.