Lecture A1. Math Review

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

■ 도 서울과학기술대학교 데이터사이언스학과

- I. Differentiation and integration
- II. Numerical methods for finding a root
- III. Matrix algebra
- IV. Series and others

I. Differentiation and integration

I. Differentiation and integration

Differentiation

I. Differentiation and integration

Definition 1 (differentiation)

Differentiation is the action of computing a derivative.

Definition 2 (derivative)

The **derivative** of a function y=f(x) of a variable x is a measure of the rate at which the value y of the function changes with respect to (wrt., hereafter) the change of the variable x. It is notated as f'(x) and called **derivative** of f wrt. x.

Remark 1

If x and y are real numbers, and if the graph of f is plotted against x, the derivative is the **slope of this graph** at each point.

If $\lim_{h\to 0} \frac{f(x+h/2)-f(x-h/2)}{h}$ exists for a function f at x, we say the function f is **differentiable at** x. That is, $f'(x) = \lim_{h \to 0} \frac{f(x+h/2) - f(x-h/2)}{h}$. If f is differentiable for all x, then we say f is differentiable (everywhere).

Remark 2

I. Differentiation and integration 000000000

The followings are popular derivatives.

- $f(x) = x^p \Rightarrow f'(x) = px^{p-1}$ (polyomial)
- $f(x) = e^x \Rightarrow f'(x) = e^x$ (exponential)
- $f(x) = log(x) \Rightarrow f'(x) = 1/x$ (log function; not differentiable at x = 0)

Theorem 1

Differentiation is linear. That is, h(x) = f(x) + q(x) implies h'(x) = f'(x) + q'(x).

If
$$h(x) = f(x)g(x)$$
, then $h'(x) = f'(x)g(x) + f(x)g'(x)$.

Exercise 1

I. Differentiation and integration

Suppose $f(x) = xe^x$, find f'(x).

Theorem 3 (differentiation of fraction)

If
$$h(x)=rac{f(x)}{g(x)}$$
, then $h'(x)=rac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$.

Theorem 4 (composite function)

If
$$h(x) = f(g(x))$$
, then $h'(x) = f'(g(x)) \cdot g'(x)$.

Exercise 2

Suppose $f(x) = e^{2x}$, find f'(x).

Differentiation

 Oftentimes, finding analytic derivative is hard, but finding numerical derivative is often possible.

Definition 4

For a function f and a small constant h,

- $ullet f'(x)pprox rac{f(x+h)-f(x)}{h}$ (forward difference formula)
- ullet $f'(x)pprox rac{f(x)-f(x-h)}{h}$ (backward difference formula)
- ullet $f'(x)pprox rac{f(x+h)-f(x-h)}{2h}$ (centered difference formula)

Integration

Definition 5 (integration)

Integration is the computation of an integral, which is a reverse operation of differentiation up to an additive constant.

Definition 6 (integral or antiderivative)

Let's say a function f is a derivative of g, or g'(x) = f(x), then we say g is an integral or, antiderivative of f, written as $g(x) = \int f(x)dx + C$, where C is a integration constant.

I. Differentiation and integration 000000000

The followings are popular integrals.

- For $p \neq 1$, $f(x) = x^p \Rightarrow \int f(x) dx = \frac{1}{n+1} x^{p+1} + C$ (polyomial)
- $f(x) = \frac{1}{x} \Rightarrow \int f(x)dx = log(x) + C$ (fraction)
- $f(x) = e^x \Rightarrow \int f(x)dx = e^x + C$ (exponential)
- $f(x) = \frac{g'(x)}{g(x)} \Rightarrow \int f(x)dx = log(g(x)) + C$ (See Theorem 4 above)

Exercise 3

Derive $\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g(x)' dx$. (Hint: Use Theorem 2) ahove.)

Exercise 4

I. Differentiation and integration 000000000

Find $\int xe^x dx$, and evaluate $\int_0^1 xe^x dx$. (Hint: Use Exercise 3 above.)

I. Differentiation and integration ○○○○○○○○○

II. Numerical methods for finding a root

About - solving an equation

• For the rest of this section, we consider a nonlinear and differentiable (thus, continuous) function $f:\mathbb{R}\to\mathbb{R}$, we aim to find a point $x^*\in\mathbb{R}$ such that $f(x^*)=0$. We call such x^* as a *solution* or a *root*.

1. Bisection Method

- \bullet The $\emph{bisection}$ method aims to find a very short interval [a,b] in which f changes a sign.
- Why? Changing a sign from a to b means the function crosses the $\{y=0\}$ -axis (in other words x-axis) at least once. It means that x^* such that $f(x^*)=0$ is within this interval. Since [a,b] is a very short interval, We may simply say $x^*=\frac{a+b}{2}$.

Definition 7 (sign function)

 $sgn(\cdot)$ is called a *sign function* that returns 1 if the input is positive, -1 if negative, and 0 if zero.

- Let tol be the maximum allowable length of the **short interval** and an initial interval [a,b] be such that $sgn(f(a)) \neq sgn(f(b))$.
- The **bisection algorithm** is the following.

1: while
$$((b-a)>tol)$$
 do
2: $m=\frac{a+b}{2}$
3: if $sgn(f(a))=sgn(f(m))$ then
4: $a=m$
5: else
6: $b=m$
7: end

• At each **iteration**, the interval length is halved. As soon as the interval length becomes smaller than *tol*, then the algorithm stops.

2. Newton Method

- The bisection technique makes no use of the function values other than their signs, resulting in slow but sure convergence.
- More rapid convergence can be achieved by using the function values to obtain a more accurate approximation to the solution, at each iteration.
- Newton method is a method that use both the function value and derivative value.
- ullet Newton method approximates the function f near x_k by the tangent line at $f(x_k)$.

```
1: x_0 = initial guess
```

2: for
$$k = 0, 1, 2, ...$$

3:
$$x_{k+1} = x_k - f(x_k)/f'(x_k)$$

$$\text{4:} \qquad \text{break if } |x_{k+1} - x_k| < tol$$

5: end

3. Fixed point theorem

Definition 8 (Fixed point)

For a function $f(\cdot)$, x^* is called a fixed point if $f(x^*) = x^*$ holds.

Remark 4

- For example, $x^* = 2$ is a fixed point for $f(x) = x^2 3x + 4$.
- Not all functions have fixed points. For example, f(x) = x + 1.
- In graphical terms, a fixed point x means the point (x, f(x)) is on the line y = x.
- In other words the graph of f has a point in common with that line.

Theorem 1 (contraction mapping theorem)

Let x_0 to be an arbitrary point, and let $x_{k+1} = f(x_k)$ for $k \ge 0$. Under certain condition of f, the sequence of $\{x_n\}$ converges to x^* such that $f(x^*) = x^*$.

1: x_0 = initial guess

2: for
$$k = 0, 1, 2, ...$$

3:
$$x_{k+1} = x_k - f(x_k)/f'(x_k)$$

$$\text{4:} \qquad \text{break if } |x_{k+1} - x_k| < tol$$

5: end

- Consider f(x) = 1 + 1/x.
- Its solution to $f(x^*)=x^*$ can be solved by x=1+1/x, or $x^2-x-1=0$.
- In other words, $x^* = \frac{1\pm\sqrt{5}}{2} \approx 1.618 \ or \ -0.618$

```
f <- function(x) {
  return(1+1/x)
}
tol <- 10^(-5)
x_now <- 0.1</pre>
```

```
repeat{
  x next \leftarrow f(x now)
  if (abs(x next-x now) < tol) {</pre>
    break
  x now <- x next
  print(x next)
## [1] 1.521739
```

Exercise 5

Write a python code that does the exactly same thing as the above code block.

Summary

- The above mentioned root-finding numerical methods share a few common properties.
 - It is characterized as a *iterative process* (such as $x_0 \to x_1 \to x_2 \to \cdots$).
 - 2 In each *iteration*, the current candidate for the solution *gets closer* to the true value.
 - It converges. That is, it is theoretically reach the *exact value* up to tolerance.
- Many iterative numerical methods share the properties above.
- The famous back propagation in deep neural network is also motivated by Newton method.
- Major algorithms for dynamic programming are called policy iteration and value iteration that also share the properties above.

Matrix multiplication

Exercise 6

Solve the followings.

$$(.6 \quad .4) \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix} =$$

Exercise 7

What is P^2 ?

$$P = \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix}$$

Solution to system of linear equations

Exercise 8

Solve the followings.

$$\begin{aligned} (\mathbf{v}_1 & \mathbf{v}_2) \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix} &= (\mathbf{v}_1 & \mathbf{v}_2) \\ \mathbf{v}_1 + \mathbf{v}_2 &= 1 \end{aligned}$$

Solve the following system of equations.

$$\begin{aligned} x &= y \\ y &= 0.5z \\ z &= 0.6 - 0.4x \\ x + y + z &= 1 \end{aligned}$$

Exercise 10

Solve the following system of equations.

$$\begin{aligned} (\mathbf{v}_0 & \ \mathbf{v}_1 & \ \mathbf{v}_2) \begin{pmatrix} -2 & 2 \\ 3 & -5 & 2 \\ 3 & -3 \end{pmatrix} &= (0 \ 0 \ 0) \\ \\ \mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_2 &= 1 \end{aligned}$$

Exercise 11

Solve the following system of equations.

$$(\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4) \begin{pmatrix} .7 & .3 \\ .5 & .5 \\ & .6 & .4 \\ & .3 & .7 \end{pmatrix} = (\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4)$$

$$\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 = 1$$

$$\mathbf{v}_1 + \mathbf{v}_2 = a$$

Solve following and express \mathbf{v}_i for i = 0, 1, 2, ...

$$\begin{array}{rclcrcl} {\bf v}_0 + {\bf v}_1 + {\bf v}_2 + \dots & = & 1 \\ 0.02 {\bf v}_0 + 0.02 {\bf v}_1 + 0.02 {\bf v}_2 + \dots & = & {\bf v}_0 \\ 0.98 {\bf v}_0 & = & {\bf v}_1 \\ 0.98 {\bf v}_1 & = & {\bf v}_2 \\ 0.98 {\bf v}_2 & = & {\bf v}_3 \\ \dots & = & \dots \end{array}$$

IV. Series and others

Exercise 13 (Infinite geometric series)

Simplify the following. When
$$|r| < 1$$
, $S = a + ar + ar^2 + ar^3 + ...$

Simplify the following. When
$$r \neq 1$$
, $S = a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

Simplify the following. When
$$|r| < 1$$
, $S = r + 2r^2 + 3r^3 + 4r^4 + \dots$

Formulation of time varying function

Exercise 16

During the first hour $(0 \le t \le 1)$, $\lambda(t)$ increases linearly from 0 to 60. After the first hour, $\lambda(t)$ is constant at 60. Draw plot for $\lambda(t)$ and express the function in math form.

"Man can learn nothing unless he proceeds from the known to the unknown. - Claude Bernard"