Chapitre 16:

Le message nerveux et sa transmission

Introduction

Dès le XVIIIe siècle, les expériences de Luigi Galvani sur l'électricité animale ont révélé que les muscles se contractent en réponse à une stimulation électrique. Cette découverte a ouvert la voie à la compréhension du **message nerveux**, un phénomène à la fois électrique et chimique, qui permet la transmission d'informations sensorielles ou motrices au sein des neurones et vers d'autres cellules, comme les muscles.

Problématique:

Comment le message nerveux est-il produit et transmis dans les axones des neurones, et comment est-il relayé au niveau des synapses ? Quels sont les effets de molécules exogènes, comme le gaz sarin ou les myorelaxants, sur ce processus ?

I. La naissance et la propagation du message nerveux au sein du neurone

1. Nature et origine du potentiel de membrane

Au repos, la membrane d'un neurone présente une **différence de potentiel (ddp)** de -70 mV, appelée **potentiel de repos (PR)**. Cette polarisation négative est due à une répartition inégale des ions sodium (Na⁺) et potassium (K⁺) de part et d'autre de la membrane. Les techniques modernes, comme les microélectrodes, permettent d'enregistrer ces variations de potentiel.

2. Le potentiel d'action (PA)

Lorsqu'un neurone est stimulé (par un choc électrique, par exemple), une **inversion de la polarisation membranaire** se produit : le potentiel passe de -70 mV à +30 mV. Ce pic électrique, appelé **potentiel d'action (PA)**, se caractérise par quatre phases :

- Dépolarisation : entrée massive d'ions Na⁺, faisant passer le potentiel de -70 mV à +30 mV
- **Repolarisation**: sortie des ions K⁺, ramenant le potentiel vers -70 mV.
- **Hyperpolarisation** : sortie excessive de K⁺, rendant le potentiel temporairement plus négatif que le potentiel de repos.
- Retour au potentiel de repos : rétablissement de l'équilibre ionique grâce à la pompe Na⁺/K⁺-ATPase.

Le PA est un signal **bref (3 ms)** et **local**, qui constitue l'unité de base du message nerveux.

3. Les caractéristiques du potentiel d'action

- Loi du tout ou rien : Un PA ne se déclenche que si la stimulation dépasse un seuil de dépolarisation (environ -50 mV). En dessous de ce seuil, aucune réponse n'est générée.
- Constance d'amplitude et de durée : Une fois le seuil atteint, le PA a toujours la même amplitude (110 mV) et la même durée (3 ms), quelle que soit l'intensité de la stimulation.
- **Propagation unidirectionnelle**: Le PA se propage le long de l'axone **sans perte d'amplitude**, à une vitesse de 10 à 100 m/s, selon le type de fibre nerveuse.

4. Codage des messages nerveux

Les messages nerveux sont codés sous forme de **trains de PA** (séries de PA successifs). L'intensité du message est déterminée par :

- La fréquence des PA : Plus la stimulation est forte, plus la fréquence des PA est
- Le recrutement de neurones : Dans un nerf, plus le message est intense, plus le nombre de neurones activés est grand.

II. La transmission du message nerveux d'un neurone à un autre par les synapses

1. Structure de la synapse

La synapse est une **jonction spécialisée** entre deux neurones ou entre un neurone et une cellule musculaire. Elle se compose de trois éléments :

- L'élément présynaptique : terminaison axonique contenant des vésicules synaptiques remplies de neurotransmetteurs.
- La fente synaptique : espace de 20 à 50 nm qui empêche la propagation directe du PA.
- L'élément postsynaptique : dendrite ou corps cellulaire du neurone suivant, doté de récepteurs spécifiques aux neurotransmetteurs.

2. Étapes de la transmission synaptique

La transmission synaptique se déroule en plusieurs phases :

- Libération des neurotransmetteurs : L'arrivée d'un PA au niveau du bouton synaptique provoque l'exocytose des vésicules, libérant les neurotransmetteurs dans la fente synaptique.
- 2. **Fixation sur les récepteurs postsynaptiques** : Les neurotransmetteurs se lient à des récepteurs spécifiques, ouvrant des canaux ioniques.
- 3. **Génération d'un nouveau PA** : La fixation des neurotransmetteurs induit une dépolarisation de la membrane postsynaptique, pouvant déclencher un PA si le seuil est atteint.
- 4. **Recyclage des neurotransmetteurs** : Les neurotransmetteurs sont dégradés ou recapturés par l'élément présynaptique pour être réutilisés.

3. Codage de l'information synaptique

La fréquence des PA présynaptiques détermine la **quantité de neurotransmetteurs libérés** dans la fente synaptique. Une fréquence élevée de PA présynaptiques entraîne une concentration plus importante de neurotransmetteurs, ce qui augmente la probabilité de déclencher un PA postsynaptique.

4. Diversité des neurotransmetteurs et des messages

Les neurotransmetteurs sont des molécules chimiques variées (acétylcholine, noradrénaline, GABA, sérotonine, etc.). Selon leur nature, ils peuvent avoir un effet **excitateur** (favorisant la dépolarisation) ou **inhibiteur** (empêchant la dépolarisation).

5. Intégration des messages : la sommation

Les neurones intègrent les messages en provenance de multiples synapses grâce à deux mécanismes :

- **Sommation spatiale**: Combinaison de messages provenant de plusieurs neurones présynaptiques.
- **Sommation temporelle**: Addition de messages successifs provenant d'un même neurone. Cette intégration permet au neurone postsynaptique de produire une réponse adaptée et coordonnée.

III. L'action de molécules exogènes sur le message nerveux

Certaines substances peuvent perturber la transmission synaptique :

- Le curare : Bloque les récepteurs de l'acétylcholine au niveau des synapses neuromusculaires, provoquant une paralysie musculaire. Utilisé en chirurgie pour induire un relâchement musculaire.
- La nicotine : Agoniste de l'acétylcholine, elle active les récepteurs nicotiniques, mais son action diffère selon les synapses.
- **Le botox** : Inhibe la libération des neurotransmetteurs, entraînant une paralysie flasque des muscles.
- Le gaz sarin : Inhibe l'enzyme acétylcholinestérase, empêchant la dégradation de l'acétylcholine. Cela provoque une hyperstimulation musculaire, pouvant être mortelle.
- Les anticorps anti-récepteurs à l'acétylcholine : Dans la myasthénie, une maladie auto-immune, ces anticorps bloquent les récepteurs, entraînant une fatigabilité musculaire extrême.

Conclusion

Le message nerveux repose sur deux mécanismes complémentaires : la **propagation électrique** des potentiels d'action le long des axones, et la **transmission chimique** au niveau des synapses. Ce système permet une communication rapide et précise entre les neurones et les organes effecteurs. Cependant, il est vulnérable à certaines substances exogènes, qui peuvent perturber ou bloquer la transmission synaptique, avec des conséquences parfois dramatiques sur la motricité et la santé.