Document Number: MAPSKS22F256UG Rev. 0, 12/2015

MAPS-KS22F256 V1.0.0套件用户指南

1 引言

本文主要描述了MAPS-KS22F256套件的硬件 开发平台架构、核心功能模块、接口定义以及 基本的使用说明。

目录

1	引言	<u> </u>	1
2	概过	<u> </u>	2
	2.1	MAPS 开发套件	2
	2.2	基于 MAPS 的 KS22 的开发套件	3
3	MA	PS-KS22F256 简介	4
	3.1	主要功能模块	4
	3.2	设计结构框图	5
	3.3	电源拓扑	6
	3.4	跳线定义	6
	3.5	与 MAPS-Dock 板卡互连接口定义	7
	3.6	扩展接口定义	9
	3.7	MAPS-KS22F256 丝印图	10
4	MA	PS-Dock 简介	11
	4.1	MAPS-Dock 主要功能模块	11
	4.2	MAPS-Dock 跳线定义	12
	4.3	扩展接口定义	14
	4.4	USB 连接器	14
	4.5	MAPS-Dock 丝印图	15
5	MA	PS Socket 扩展板简介	15
	5.1	跳线定义	16
	5.2	Arduino 接口定义	17

2 概述

2.1 MAPS开发套件

MAPS四色板系列提供丰富的通用接口,具有良好的扩展性,适用于芯片评估、产品开发、功能演示等。整个系统由MCU板、通用外设板、特殊外设板和桥接板四部分组成。

MAPS = MCU + Application + Peripheral + Socket

四色板系列——MAPS

图1. MAPS四色板平台定义

2.1.1 MCU主板

包含一颗MCU主芯片,和与该MCU调试、测试以及特定功能对应的电路和器件。例如供电电路、通用JTAG/SWD调试接口、状态LED灯、复位按钮等等,以及特殊的CAN收发器、ISO7816卡槽。

2.1.2 外设板

提供了许多通用外设和功能,例如常用的UART, I2C, SPI, I2S通用总线外设,以及ADC, DAC 等模拟类外设。为了适合各种MCU芯片的评估开发,降低总体的投资成本,这些通用功能相对应

的器件,被集中安置在外设板上,并通过两个32针的接插件与MCU板链接,组成一个完整的MCU系统。外设板上设计了一个嵌入式调试器,用户只需使用一条USB线,连接PC即可开始评估与开发。

2.1.3 特殊应用外设板

为评估开发特定应用而设计,它通过一组特别定义的连接信号和连接器与MCU板相连,特定应用例如:电机控制、无线充电、数据安全、互联互通等方面的产品。

2.1.4 桥接板

提供两类板卡的桥接。Freedom桥接板使得用户可以方便地把各种各样的Freedom板连接到通用外设板,使用通用外设板上提供的各种功能,大大扩展了Freedom开发板的可用性。Arduino桥接板可以让用户方便地把市面上大量的Arduino开发模块组件与MCU板连接起来,构成合适的开发系统。

2.2 基于MAPS的KS22的开发套件

为了提供给KS22客户一个快速评估、低成本以及有良好扩展性的硬件平台,KS22采用了MAPS 开发套件的理念。并且复用了现有的外设板(MAPS-Dock)及桥接板(MAPS-Arduino, MAPS-Bridge)来扩展其功能。图2描述了KS22基于MAPS的开发套件组成。

KS22 开发套件

图2. MAPS-KS22F256 开发套件

3 MAPS-KS22F256简介

MAPS-KS22F256 MCU板使用MKS22FN256VLL12作为工作核心,该芯片的基本配置: 120 MHz ARM Cortex-M4,256KB Flash,64KB RAM,LQFP100封装,支持低功耗I2C,可灵活配置模拟各类协议的FlexIO,以及强大的FlexCAN。整板通过Micro USB 5V供电,或从互连的通用外设板(MAPS-Dock)取电。

图3. MAPS-KS22F256正面图

3.1 主要功能模块

- 板载100LQFP封装的MKS22FN256VLL12 CPU
- 独立的电源域,可通过跳线对VDD/VDDA/VBAT各路的功耗进行测量
- 一个USB Micro-B接口,用于供电和USB功能
- 一个CAN收发器
- 2.8寸彩色LCD液晶屏接口(SPI 总线)
- ISO7816 智能卡卡槽
- 纽扣电池给VBAT供电
- 20脚2.54mm标准调试接口,只支持SWD协议
- 4脚UART扩展接口
- 5脚I2C扩展接口

- 显示供电及复位状态的两个LED
- 复位按钮
- CPU所有引脚扇出
- MPM接口(2 x 32 DIN 41612),可与MAPS-Dock, MAPS-Arduino, MAPS-Bridge链接
- FlexIO引脚引出至MPM,模拟UART(对应Dock板上的UART2)和I2S(连接到Dock板上的WM8960)

3.2 设计结构框图

图4. MAPS-KS22F256结构框图

3.3 电源拓扑

MAPS平台由两个主电源域5V,3.3V以及其他模拟电源和外设电源构成,拓扑结构如下图。

图5.系统电源拓扑图

3.4 跳线定义

跳线定义如下表所示。

表1 MAPS-KS22F256 jumper options

选项	跳线	配置	描述
超级电容	JP11	OFF	断开超级电容
超级 电 谷	JF11	ON	使能超级电容,在主电源掉电时给 VDD 供电
板级 3.3V 供电	JP10	1-2	板级 3.3V 由 LDO 供电
恢级 3.3 ₹ 供电	JP10	2-3	板级 3.3V 由 VDD 供电
VBAT 供电	电 JP9	ON	VBAT 由锂电池供电
VDAT 供电	JP9	OFF	VBAT 由 VDD 供电
USB VDD 供电	JP12	ON	USB VDD 由 MCU_VDD 供电
USB VDD 供电	JF12	OFF	切断 USB VDD 供电
MCU VDD 供电	M1 (1-2)	ON	MCU VDD 由 VDD 供电

		OFF	利用电流表连接 1-2,可以测量 MCU VDD 这一路 的功耗
12C CCI - L++	JP13	OFF	断开 SCL 信号线上的 200K 上拉电阻
I2C SCL 上拉	JP15	ON	连接 SCL 信号线上的 200K 上拉电阻
100 CD 4 L++	ID14	OFF	断开 SDA 信号线上的 200K 上拉电阻
I2C SDA 上拉	JP14	ON	连接 SDA 信号线上的 200K 上拉电阻
ISO7816 IO (UART0_Tx) 上	ID4	ON	在 UARTO_Tx 引脚作为 ISO7816 IO 功能的时候连接上拉电阻
拉	JP4	OFF	在 UARTO_Tx 引脚作为 UART 功能的时候断开上 拉电阻
I2S MCLK selection	JP5	2-3	使用 I2S0 MCLK 信号作为 I2S 主时钟
(I2S or TPM)		1-2	使用 TPM1 通道输出模拟 I2S 主时钟
I2S Tx BCLK selection	ID6	2-3	使用 I2S0 TX_BCLK 信号作为 I2S 发送位时钟
(I2S or FlexIO)	JP6	1-2	使用 FXIO0 模拟 I2S 发送位时钟
I2S TXD0 selection	JP7	2-3	使用 I2S0 TXD0 作为 I2S 数据发送信号
(I2S or FlexIO)	Jr/	1-2	使用 FXIO0 模拟 I2S 数据发送信号
I2S Tx FS selection	JP8	2-3	使用 I2S0 TX_FS 信号作为 I2S 发送帧同步信号
(I2S or FlexIO)		1-2	使用 FXIO0 模拟 I2S 发送帧同步信号

3.5 与MAPS-Dock板卡互连接口定义

MAPS-KS22F256板与MAPS-Dock通过2个32脚的DIN连接器互连,共同组成一个完整的应用演示系统。此接口称为PM接口。所有MCU板一侧的连接器都是针状连接器,简称MPM;所有通用外设板一侧的连接器是孔状连接器,简称FPM;两侧信号定义相同,说明如下表。

3.5.1 MPM1/FPM1信号定义(MAPS-KS22F256的CN1, MAPS-Dock板的CN1)

序号	信号	MCU 引脚	描述	模块
1	SD_DAT1 ^[1]	-	SD 卡数据信号	SD
2	SD_DAT0 ^[2]	PTD3	SD 卡 数据信号	SD
3	SD_CLK ^[2]	PTC5	SD 卡时钟信号	SD
4	SD_DAT3 ^[2]	PTC3	SD 卡数据信号	SD
5	SD_CMD ^[2]	PTD2	SD 卡控制信号	SD
6	SD_DAT2 ^[1]	-	SD 卡数据信号	SD
7	KEY0	PTC12	按键	GPIO
8	KEY1	PTC13	按键	GPIO
9	KEY2	PTC14	按键	GPIO

10	KEY3	PTC15	按键	GPIO
11	UART_TXD2	PTC16(FLEXIO0_D4)	FlexIO 模拟 UART 数据发送信号	FlexIO
12	UART_RXD2	PTC17(FLEXIO0_D5)	FlexIO 模拟 UART 数据接收信号	FlexIO
13	UART_TXD1	PTE4	UART1 数据发送信号	UART
14	UART_RXD1	PTE5	UART1 数据接收信号	UART
15	I2C_SDA	PTB1	I2C 数据信号	I2C
16	I2C_SCL	PTB0	I2C 时钟信号	I2C
17	CAN_RX1	PTE25	CAN 接收信号	CAN
18	CAN_TX1	PTE24	CAN 发送信号	CAN
19	I2S_RX_FS	PTA16	I2S 接收帧同步信号	I2S
20	DAC_OUT	DAC0_OUT	DAC 输出信号	DAC
21	I2S_TX_BCLK	PTA5/PTB20	I2S 位同步时钟信号	I2S
22	I2S_MCLK	PTA17/PTA1	I2S 主时钟信号	I2S
23	I2S_TXD0	PTA12/PTB21	I2S 发送数据信号	I2S
24	I2S_TX_FS	PTA13/PTB22	I2S 发送帧同步信号	I2S
25	nRST	RESET_B	全局复位信号	System Control
26	I2S_RXD0	PTA15	I2S 接收数据信号	I2S
27	SWCLK	PTA0	SWD 时钟信号	Debug
28	SWDIO	PTA3	SWD 数据信号	Debug
29	GND	-	数字地	Power
30	GND	-	数字地	Power
31	VCC	-	5V 电源	Power
32	VCC	-	5V 电源	Power

^[1] 该信号在 MAPS-KS22F256 MCU 板中没有定义,MKS22FN256VLL12 没有 SD,在其他 MCU 板可能会有定义。 [2] MKS22FN256VLL12 通过 SPI 总线方式访问 SD 卡。

3.5.2 MPM2/FPM2信号定义(MAPS-KS22F256板的CN2,MAPS-Dock板的CN2)

序号	信号	MCU 引脚	描述	模块
1	KEY_RIGHT	PTB10	摇杆按键	Button/Joystick
2	KEY_UP	PTB9	摇杆按键	Button/Joystick
3	KEY_LEFT	PTB11	摇杆按键	Button/Joystick
4	KEY_DOWN	PTB3	摇杆按键	Button/Joystick
5	IR_OUT	PTD3	红外发射信号	IR
6	KEY_SELECT	PTA4	摇杆按键	Button/Joystick
7	TS0 ^[1]	-	触摸感应信号	Touch Pad
8	TS1 ^[1]	-	触摸感应信号	Touch Pad
9	TS2 ^[1]	-	触摸感应信号	Touch Pad
10	TS3 ^[1]	-	触摸感应信号	Touch Pad
11	3V3	-	为 DOCK 提供模拟电源	Power
12	AGND	VSSA	模拟地	Power
13	ADC_IN1	ADC0_DM0	模拟输入信号	ADC
14	ADC_IN0	ADC0_DP0	模拟输入信号	ADC
15	USB_DP	USB0_DP	USB DP 信号	USB
16	USB_DM	USB0_DM	USB DM 信号	USB
17	USB_ID	PTE6	USB ID 信号	USB

10	ID IN	DTD3	年月 接贴 停 旦	ID.
18	IR_IN	PTD2	红外接收信号	IR
19	LED3	PTB11	LED 信号	LED
20	LED2	PTB10	LED 信号	LED
21	LED1	PTB9	LED 信号	LED
22	LED0	PTB3	LED 信号	LED
23	USB_PWR	PTE3	USB 5V 电源	USB
24	DBG_TXD	PTE0	调试串口数据发送信号	UART
25	LCD_CS	PTC2	SPI 液晶屏片选信号	LCD
26	LCD_CD	PTC1	SPI 液晶屏命令/地址	LCD
			选择信号	
27	SPI_SCLK	PTC5	SPI 时钟信号	LCD/SPI Flash
28	SPI_MOSI	PTD2	SPI 数据信号,主出从入	LCD/SPI Flash
29	FLASH_CS	PTC4	SPI Flash 片选信号	SPI Flash
30	SPI_MISO	PTD3	SPI 数据信号,主入从出	LCD/SPI Flash
31	DBG_RXD	PTE1	调试串口数据发送信号	UART
32	SD_DET	PTC0	SD 卡插入检测信号	SD

[1] 该信号在 MAPS-KS22F256 MCU 板中没有定义,MKS22FN256VLL12 没有 TSI 模块。

3.6 扩展接口定义

CN4 - I2C扩展接口

序号	信号	MCU 引脚	描述
1	3V3	-	3.3V 电源
2	GND	-	数字地
3	I2C_SDA	PTB1	I2C 数据信号
4	I2C_SCL	PTB0	I2C 时钟信号
5	I2C_INT	PTE2	中断输入信号

CN5 - UART扩展接口

序号	信号	MCU 引脚	描述
1	3V3	-	3.3V 电源
2	GND	-	数字地
3	UART_RXD1	PTE5	UART 接收信号
4	UART_TXD1	PTE4	UART 发送信号

CN9 - MCU IO接口

CN9为IO扇出接口,如下图所示,CN9的1~100管脚与MCU的1~100管脚一一对应。

图6. MAPS-KS22F256 IO扇出分布图

3.7 MAPS-KS22F256 丝印图

图7. MAPS-KS22F256 丝印图

4 MAPS-Dock简介

MAPS-Dock板是MAPS平台的通用外设板,具备Audio、SD、USB、SPI Flash、EEPROM、LCD、CAN、PWM、IR、RS232、RS485等多个功能模块,可通过USB调试器接口5V供电,或可从互连的MCU板取电。

MAPS-Dock板是MAPS平台的通用外设板,通过PM接口(见2.2.3节)与MCU板连接,具备Audio、SD、USB、SPI Flash、EEPROM、LCD、CAN、PWM、IR、RS232、RS485等多个功能模块,可通过USB调试器接口5V供电,或可经PM接口互连的MCU板取电。

图8. MAPS-Dock正面图

4.1 MAPS-Dock主要功能模块

- 一个Micro-SD卡插槽
- 一个8 Mbit SPI Nor Flash
- 一个2 Kbit EEPROM
- USB全速接口
- 红外收发接口
- I2S音频编解码器,支持一路立体声耳机输出,两路Speaker输出,一路麦克风输入
- 板载USB调试器,支持CMSIS-DAP协议,同时支持USB转UART功能

- 两个UART接口
- 一个CAN接口
- 一个DAC/PWM Audio输出接口
- 两路单端或一路差分ADC输入
- 一个128x64单色LCD屏, SPI接口
- 四个物理按键
- 四个LED显示
- 一个五向按键
- 六个触摸按键

4.2 MAPS-Dock跳线定义

位号	跳线	连接	描述
	1-2	ON	FPM1 I2S_RXO 信号与 U5 WM8960 相连
	1-2	OFF	MCU 板使用相应信号做其它应用时需断开
	3-4	ON	FPM1 I2S_TX_FS 信号与 U5 WM8960 相连
	3-4	OFF	MCU 板使用相应信号做其它应用时需断开
	5-6	ON	FPM1 I2S_TX0 信号与 U5 WM8960 相连
JP1	3-0	OFF	MCU 板使用相应信号做其它应用时需断开
) Jr I	7-8	ON	FPM1 I2S_BCLK 信号与 U5 WM8960 相连
	7-0	OFF	MCU 板使用相应信号做其它应用时需断开
	9-10	ON	FPM1 I2S_MCLK 信号与 U5 WM8960 相连
	9-10	OFF	MCU 板使用相应信号做其它应用时需断开
	11-12	ON	FPM1 I2S_RX_FS 信号与 WM8960 相连
	11-12	OFF	MCU 板使用相应信号做其它应用时需断开
JP2	1-2	ON	FPM1 DAC/PWM 信号与 U8 相连
JFZ		OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM1 CAN_RX 信号与 U1 相连
JP3		OFF	MCU 板使用相应信号做其它应用时需断开
JFS	3-4	ON	FPM1 CAN_TX 信号与 U1 相连
		OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM1 I2C_SDA 信号与 U2, U5 相连
JP4	1-2	OFF	MCU 板使用相应信号做其它应用时需断开
JF4	3-4	ON	FPM1 I2C_SCL 信号与 U2, U5 相连
	3-4	OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM1 UART1 TX 信号与 U9 相连
	1-7	OFF	MCU 板使用相应信号做其它应用时需断开
JP5	3-4	ON	FPM1 UART1 RX 信号与 U9 相连
11.2	J-4	OFF	MCU 板使用相应信号做其它应用时需断开
	5-6	ON	FPM1 UART2 TX 信号与 U9 相连
	ט-5	OFF	MCU 板使用相应信号做其它应用时需断开

		ON	FPM1 UART2 RX 信号与 U9 相连
	7-8	OFF	MCU 板使用相应信号做其它应用时需断开
		OFF	FPM1 SD DET 信号与 CN3 SD 卡槽相连
JP6	1-2	OFF	MCU 板使用相应信号做其它应用时需断开
		_	FPM2 UARTO TX 信号与 U2 相连,作为 USB 转 UART 用
	1-2	ON	
JP7		OFF	MCU 板使用相应信号做其它应用时需断开
	3-4	ON	FPM2 UARTO RX 信号与 U2 相连,作为 USB 转 UART 用
		OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM2 MEM_CS 信号与 U3 相连
		OFF	MCU 板使用相应信号做其它应用时需断开
	3-4	ON	FPM2 MISO 信号与 U3, LCD1 相连
JP8		OFF	MCU 板使用相应信号做其它应用时需断开
	5-6	ON	FPM2 MOSI 信号与 U3, LCD1 相连
		OFF	MCU 板使用相应信号做其它应用时需断开
	7-8	ON	FPM2 SCLK 信号与 U3, LCD1 相连
	, 0	OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM2 LCD_CS 信号与 LCD1 相连
JP9	1-2	OFF	MCU 板使用相应信号做其它应用时需断开
31 3	3-4	ON	FPM2 LCD_CD 信号与 LCD1 相连
		OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM2 USB_PWR 信号与 U7 相连,作为 USB 电源控制
ID10		OFF	MCU 板使用相应信号做其它应用时需断开
JP10	3-4	ON	FPM2 USB_ID 信号与 CN15 相连,作为 USB 检测信号
		OFF	MCU 板使用相应信号做其它应用时需断开
	1-2	ON	FPM2 LED1 信号与 LD1 相连
		OFF	MCU 板使用相应信号做其它应用时需断开
		ON	FPM2 LED2 信号与 LD2 相连
	3-4	OFF	MCU 板使用相应信号做其它应用时需断开
JP11		ON	FPM2 LED3 信号与 LD3 相连
	5-6	OFF	MCU 板使用相应信号做其它应用时需断开
		ON	FPM2 LED4 信号与 LD4 相连
	7-8	OFF	MCU 板使用相应信号做其它应用时需断开
		ON	FPM2 AIN1 信号与 RV1 相连,作为 ADC 输入
	1-2	OFF	MCU 板使用相应信号做其它应用时需断开
JP12		ON	FPM2 AINO 信号与 RV2 相连,作为 ADC 输入
	3-4	OFF	MCU 板使用相应信号做其它应用时需断开
		ON	FPM2 IR IN 信号与 D2 相连,作为红外接受
	1-2	OFF	MCU 板使用相应信号做其它应用时需断开
JP13		ON	FPM2 IR_OUT 信号与 T3 相连,作为红外发射
	3-4	OFF	MCU 板使用相应信号做其它应用时需断开
		011	VCC(5V)与 CN5 调试器接口相连,可通过调试器给整
JP14	1-2	ON	板供电
)1: 14	1-2	OFF	VCC 由板内供电
		OFF	FPM1 SWCLK 与 K20 线连,使用 K20 作为调试器
JP15	1-2	OFF	使用外接调试器
		OFF	CAN 差分信号端接 120 欧电阻
JP16	1-2		CAN 差分信号编接 120 欧电阻 CAN 差分信号不端接
	1	OFF	LAN 左刀乍写个响妆

JP17	1-2	ON	FPM1 SWDIO 与 K20 线连,使用 K20 作为调试器
		OFF	使用外接调试器
JP18 1-2-3	1-2	FPM1 DAC/PWM 信号为 DAC 输出时,跳选	
	1-2-3	2-3	FPM1 DAC/PWM 信号为 PWM 输出时,跳选

4.3 扩展接口定义

CN4-K20 SWD接口

信号定义	序号		信号定义
VDD: Dock 板 5V 电源	1	-	-
NC	3	4	CLK: K20 SWD_CLK 信号
DIO: K20 SWD_DIO 信号	5	-	-
GND: 数字地	7	8	E_RST: K20 系统复位信号

CN6-Speaker输出接口

序号	信号	描述
1	SPK_LP	Speaker 输出左声道+极
2	SPK_LN	Speaker 输出左声道-极
3	GND	音频地
4	SPK_RP	Speaker 输出右声道+极
5	SPK_RN	Speaker 输出右声道-极

4.4 USB连接器

MAPS-Dock板包含三个USB连接器,具体用途见下表。

位号	类型	用途
CN14	Micro B	USB Device,为 K20 调试器信号,同时可提供整板供电
CN8	Type A	USB Host,为 MCU 板 USB 信号,与 CN15 信号复用,只能二选一使用,可对外提供 5V 电源
CN15	Micro B	USB Device,为 MCU 板 USB 信号,与 CN8 信号复用,只能二选一使用,不可提供整板供电

4.

图9.MAPS-Dock丝印图

5 MAPS Socket扩展板简介

MAPS-Arduino板上有两个32脚的FPM接口,用于与MCU板对接,CN1为FPM1,CN2为FPM2;板上Arduino接口CN3可连接通用Arduino外设模块。

MAPS-FRDM板上有两个32脚的FPM接口,用于与通用外设板对接,CN1为MPM1,CN2为MPM2;板上Arduino接口CN3可连接FRDM MCU主板。

MAPS-Bridge板上分别有两个32脚的MPM接口和两个32脚的FPM接口,用于桥接MCU板和通用外设板,同时可连接通用Arduino外设模块。CN1为MPM1,CN2为MPM2,CN3为FPM1,CN4为FPM2,CN5为Arduino接口。

注意

使用MAPS-Bridge桥接板时,如果需要使用任何Arduino外设模块,一定要在通用外设板一侧,把Arduino外设模块上所用信号对应的跳线帽拔下,以免发生信号冲突。

图10. MAPS-Arduino/FRDM/Bridge正面图

5.1 跳线定义

位号	跳线	连接	描述	
JP1	1-2	ON	DN 模拟地AGND与数字地GND相连	
		OFF	外接模拟地AGND	
	3-4	ON	模拟电源AVDD与数字电源VDD相连	
		OFF	外接模拟电源AVDD	

5.2 Arduino接口定义

信号定义	序	号	信号定义
NC: 无信号	1	15	D15/I2C_SCL: GPIO15 或 I2C 时钟信号
VDD: 3.3V 电源	2	16	D14/I2C_SDA: GPIO14 或 I2C 数据信号
RESET: 复位信号	3	17	AREF: 模拟参考电源
VDD: 3.3V 电源	4	18	AGND: 模拟地
VCC: 5V 电源	5	19	D13/SPI_CLK: GPIO13 或 SPI 时钟信号
GND: 数字地	6	20	D12/SPI_MISO: GPIO12 或 SPI 数据信号,主入从出
GND: 数字地	7	21	D11/SPI_MOSI: GPIO11 或 SPI 数据信号, 主出从入
VIN: 5~12V 电源	8	22	D10/SPI_CS: GPIO11 或 SPI 数据信号,主出从入
-	-	23	D9: GPIO9
-	-	24	D8: GPIO8
-	-	25	D7: GPIO7
-	-	26	D6: GPIO6
A0: 模拟输入 0	9	27	D5: GPIO5
A1: 模拟输入 1	10	28	D4: GPIO4
A2: 模拟输入 2	11	29	D3/SCL: GPIO3 或 I2C 时钟信号
A3: 模拟输入 3	12	30	D2/SDA: GPIO2 或 I2C 数据信号
A4: 模拟输入 4	13	31	D1/UART_TX: GPIO1 或 UART 发送信号
A5: 模拟输入 5	14	32	D0/UART_RX: GPIO0 或 UART 接收信号

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

本文档中的信息仅供系统和软件实施方使用 Freescale 产品。本文并未明示或者暗示授予利用本文档信息进行设计或者加工集成电路的版权许可。 Freescale 保留对此处任何产品进行更改的权利,恕不另行通知。

Freescale 对其产品在任何特定用途方面的适用性不做任何担保、表示或保证,也不承担因为应用程序或者使用产品或电路所产生的任何责任,明确拒绝承担包括但不局限于后果性的或附带性的损害在内的所有责任。Freescale 的数据表和/或规格中所提供的"典型"参数在不同应用中可能并且确实不同,实际性能会随时间而有所变化。所有运行参数,包括"经典值"在内,必须经由客户的技术专家对每个客户的应用程序进行验证。Freescale 未转让与其专利权及其他权利相关的许可。Freescale 销售产品时遵循以下网址中包含的标准销售条款和条件:freescale.com/SalesTermsandConditions

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM, ARM powered logo, Keil, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

© 2015 飞思卡尔半导体有限公司

