Réseaux de Petri: Introduction aux extensions

Pascal Racloz, Didier Buchs

Université de Genève

5 novembre 2018

Motivations des extensions

- Certaines propriétés ne peuvent pas être exprimées à l'aide des réseaux usuels
- Nécessité de réduire la taille des modélisations
- Besoin d'avoir une information plus précise sur les jetons transitant dans le réseau

Propriété inexprimable : 'test à zéro'

- Intuitivement, vient du principe de monotonie (dans les rdP traditionnels)
- Dans le cas général, il est impossible de tester si le contenu d'une place est vide.
- Autrement dit, il est impossible de définir un rdP pour lequel une transition est tirable que si une place donnée ne contient pas de jeton.

Exemple de l'utilité d'une telle propriété

'Une fois que le consommateur a décidé de consommer, il consomme tout le 'buffer'. Donc si le producteur 'passe la main' il ne pourra produire à nouveau qu'une fois le buffer vide.'

Réseau à arcs inhibiteurs

La transition est tirable si et seulement si la place est vide

(Cont'd)

- Pouvoir d'expression très grand (puissance des machines de Turing).
- Contrepartie : les propriétés (borné, etc...) deviennent indécidables.
- La monotonie n'est plus une propriété (exemple ...)
- la notion de séquence répétitive croissante n'implique plus la divergence.

Pouvoir d'expression des machines de Turing

- Simulation d'un machine a registre.
 - r_k registre
 - e_i étape i du programme
- Simulation des instructions d'un machine a registre.
 - $r_k = r_k + 1$: incrément d'un registre (similairement décrément)

• si $r_k = 0$ alors e_j sinon e_l : branchement

Finitude des étapes RdP équivalent a terminaison du prog.

Exercices

- Donner la solution au problème précédent producteur-consommateur avec arc(s) inhibiteur(s).
- Donner une modélisation du problème de l'exclusion mutuelle avec un réseau à arcs inhibiteurs.

Réseau borné et test à zéro

• Dans ce cas, il est possible de tester si une place est vide à l'aide de *places complémentaires*.

Exemple : lecteurs, rédacteurs avec au plus n lecteurs.

· L, E: Lecture, Ecriture

Exemple

p bornée par 5, p sa place complémentaire • M(p) + M(p) = 5• t tirable => M(p) = 0

Exercices

 Modéliser l'exclusion mutuelle à l'aide de places complémentaires.

Remarques : Les places complémentaires permettent la modélisation des réseaux à capacité.

Exemple:

Extension des réseaux par structuration des jetons

- Introduction d'informations dans les jetons
- Modélisation plus compacte
- Extensions faciles
- Parfois le prix à payer difficulté/impossibilité de prouver certaines propriétés

Réseaux colorés, Réseaux prédicats/transition

- Les jetons sont 'typés'.
- Le nombre de types et de valeurs des types sont finis.
- Ces réseaux permettent de représenter de manière compacte des systèmes ayant des composantes aux comportements identiques.

Autrement dit

- Plusieurs parties ayant une description identique
 - taille du modèle peut devenir inexploitable
- Information contenue dans une place
 - ex : pièces identiques dans un stock
- Distinction de margues entre elles dans une même place
 - identificateur ou valeurs
 - utilisation d'expressions avec variables
- Différent valeurs de variables associées à chaque transition
 - variables et expressions associées aux arcs
 - type : exemple un n-uplet
 - disparition/création de jetons par le franchissement de transitions

Exemple

Perte d'information si l'on transforme les processus en

16/45

Exemple (2)

'Pliage' si l'on transforme les processus en

4₱ **4 = 1 = 990**

17/45

Présentation intuitive

Exemple

Notion de couleur

Incorrect

x variable, $\{b,r\}$ valeurs

Notions de fonction et binding (liaison)

$$f(g)=d$$

 $f(d)=g$

Exercice

• Transformer le rdP ordinaire suivant en un rdP coloré avec une seule place et une seule transition.

Conditions

Pliage et dépliage et conditions

23/45 •>> Q (>>

Exercice

• Transformer le rdP coloré suivant en un rdP ordinaire

Définition des réseaux predicats/transitions

Syntaxe

- *Types*= ensemble de nom de types = $\{t_1, t_2, ..., t_n\}$
- X = variables
- $Exp(t_i)$ = ensembles des expression de type t_i , $t_i \in Types$
- $Exp(t_i, X)$ = ensembles des expression de type t_i avec variables dans $X, t_i \in Types$

Sémantique

- Un type t_i a un domaine de valeurs $Dom(t_i) = \{c_{i1}, c_{i2}, ..., c_{in}\}.$
- Assignation (binding) : $X \rightarrow Dom(Types)$.
- Evaluation : eval : $Exp(t_i, X)$, $binding \rightarrow Dom(Types)$

Définition des réseaux predicats/transitions

- $R = (P, T, Pre, Post, M_0, Types)$
 - P: ensemble de places $\mu: P \to Types$
 - T : ensemble de transitions
 - Types : ensemble des noms de types
 - Pre, Post: fonctions relatives aux couleurs de franchissement $Pre, Post: P \times T \rightarrow \wp^*(\bigcup_{t_i \in \mathit{Types}} \mathit{Exp}(t_i))$
 - M_0 : marquage initial $M: P \to \wp^*(Dom(Types))$
- Chaque type est étendu par un multiset de ce type.
- Le produit cartesien de domaines peut être utilisé.

Multiset (1): places et transitions

Les places :

Peuvent contenir des marques des types.

Plusieurs marques du même type peuvent se trouver dans la même place.

$$Dom(c) = \{b, v, o\}$$

- Exemple : $M(P1) = \{b, b, b, v, v, o\}$ et $\mu(P1) = c$
- Les transitions :

A chaque transition est associé un 'binding' qui associe valeurs aux variables. bind : $X \rightarrow Dom(Types)$

• Exemple : $T1/\{x=3, y=a\}$, $T1/\{x=0, y=1, z=[1,2,3]\}$ et $T1/\{\}$

Multiset (2): Expressions

- Pour chaque nom de type t_i un ensemble d'expression multiset est défini : $\wp^*(Expt_i)$.
- Les expressions multiset sont une extension des expressions des types.
- Il n'y a pas de variables 'multiset', (equivalent a ne pas avoir de variables numériques dans les réseaux de Petri classiques).
- Dans notre variante les termes sur les arcs d'entrées des transitions ne sont que des variables (ou des set de variables).

Graphe (2)

- Les arcs : Le 'poids' d'un arc est une fonction *Pre* ou *Post* qui calcule un multiset du type de la place en fonction d'un 'binding' des variables.
- Argument supplémentaire (par rapport à un rdP ordinaire) : le 'binding' de franchissement d'une transition. Cas général : $Pre(P_i, T_i/bind)$ et $Post(P_i, T_i/bind)$ Exemple :
 - $Pre(P_i, T_i) = \{f(x)\}\$
 - $Pre(P_i, T_i/x = 3) = \{f(3)\}\$

Exemple

$$g(b) = v$$

 $g(v) = b$
 $g(o) = o$

Evolution

- Transition validée :
 - bind l'ensemble des valeurs associées aux variables. La transition ne peut être franchie que relativement à ces couleurs.
 - Soit $c_k \in Dom(\mu(T))$, T est validée par rapport à c_k : $M \stackrel{T/bind}{\Rightarrow} \Leftrightarrow \forall P_i \in P, M(P_i) \geq Pre(P_i, T/bind)$
 - \geq est définie sur les multisets.

31/45

Exercice

 Donner les bindings pour lesquels les transitions T1, T2 et T3 sont franchissables.

$$f(r) = a$$

$$f(b) = b$$

$$g(r) = r$$

$$g(b) = r$$

Franchissement

- Si T est validée relativement à bind alors T peut être franchie.
 Notation T/bind
 - On retranche des places en 'amont' de T les marques Pre(P, T/bind)
 - On ajoute aux places en 'aval' de T les marques Post(P, T/bind)
 - $\forall P_i, M'(P_i) = M(P_i) + Post(P_i, T/bind) Pre(P_i, T/bind)$

Remarque:

les opérations + et - sont définies sur les multisets des types des places :

$$\forall P_i, M'(P_i) = M(P_i) +_{\mu(P_i)} Post(P_i, T/bind) -_{\mu(P_i)} Pre(P_i, T/bind)$$

33/45

Séquence de franchissements

$$s = T_1/b_1.T_2/b_2....T_n/b_n$$

34/45

Non-déterministe des franchissements

Le binding de la transition peut induire du non-déterminisme :

Exercice

• Donner le marquage résultant du franchissement de chacune des transitions des réseaux de l'exercice page 32.

$$f(r) = a$$

$$f(b) = b$$

$$g(r) = r$$

$$g(b) = r$$

Exercice

• Pour le rdP suivant, déterminer une séquence de franchissements qui ramène au marquage initial.

$$t(c_1)=c_2$$

$$f(c_2) = c_3$$

$$f(c_3)=c_4$$

$$f(c_4)=c_1$$

37/45

Modéliser le probleme des philosophes pour 100 philosophes

Modélisation : pliage complet

• Coloration totale i.e. une place et une transition

Modélisation : pliage complet

$$type = \{P_1, P_2, P_3\}$$

$$cond_{T_1} = (x = P_3 \land y = P_1)$$

$$cond_{T_2} = (x = P_2 \land y = P_3)$$

$$cond_{T_3} = (x = P_3 \land y = P_2)$$

$$cond_{T_4} = (x = P_2 \land y = P_3)$$

$$cond_{T_2} = (x = P_2 \land y = P_3)$$

 $cond_{T_4} = (x = P_2 \land y = P_3)$

40/45

Faites le pliage complet des philosophes

Propriétés d'un rdP coloré

Un rdP coloré n'est qu'une représentation avec un graphisme condensé d'un rdP ordinaire.

- => Les propriétés d'un rdP coloré sont les mêmes que celles des rdP non colorés, mais elles se présentent parfois de façon différentes.
 - Marquage
 - -> Vecteur dont chaque composante est un multiset

Exemple : M =
$$\begin{bmatrix} \{1,2,2,4\} \\ \{\} \\ \{1,4\} \end{bmatrix}$$

Matrice d'incidence

L'élément (i,j) de la matrice d'incidence est égale à la différence des deux multisets).

Exemple : W =
$$\begin{bmatrix} -\{x\} & \{y\} - \{x\} \\ \{x\} & \{\} \end{bmatrix}$$

Franchissement

Franchissement d'une transition T_j se fait relativement à un 'binding'.

Exemple :
$$s = T_1/\{x = 1, y = 3\}$$
. $T_2/\{x = 2, y = 3\}$. $T_1/\{x = 0, y = 4\}$. $T_2/\{x = 4, y = 0\}$
$$\overline{s} = \begin{bmatrix} \{\{x = 1, y = 3\}, \{x = 0, y = 4\}\} \\ \{\{x = 2, y = 3\}, \{x = 4, y = 0\}\} \end{bmatrix}$$

 $(M' = M + W.\overline{s})$ Remarque : . n'est pas le produit matriciel

- Réseau borné Un rdP coloré est borné si, pour tout marquage accessible, toute place contient un nombre fini de marques. (rdP coloré sauf? \Rightarrow au maximum une marque de chaque couleur)
- Vivacité et blocage rdP coloré est vivant si son rdP déplié est vivant \Rightarrow il reste possible de franchir n'importe quelle transition relativement à nimporte laquelle de ses couleurs de franchissement. rdP coloré sans blocage si pour tout marquage accessible il y a au moins une transition franchissable pour au moins une de ces couleurs.

Résumé

- Réseaux à arcs inhibiteurs : test à zéro d'une place.
- Structuration des jetons : réseaux colorés, réseaux à prédicats et réseaux à files.
- Pouvoir d'expression des extensions.