Branch: CS & IT

Batch: Hinglish

Weekly Test - 04 **Digital Logic**

Time Duration - 50 Min

Maximum Marks - 20

Note: Negative Marking - 1/3, NAT no negative marking {For MSQs no part marking no negative marking(from week onwards)}

Part A: 1 to 6 questions each will carry 1 marks (MCOs + NAT)

[NAT]

We have two types of digital units available:

 $2:1 \text{ MUX} \rightarrow \text{Cost 2 unit each}$

NOT gate \rightarrow Cost 1 unit each

We have to implement half subtractor circuit then the minimum costing required to implement the circuit is unit.

2. [NAT]

A 3:8 decoder circuit is as given below:

When applied input is ABC = $(110)_2$ then the sum of output pin numbers which will glow will be $()_{10}$.

[MCQ]

The latching action of a latch shown below, is controlled by two inputs X₁, X₂. The invalid input combinational X₁, X₂ will be

- (a) $X_1 = 1, X_2 = 0$ (b) $X_1 = 0, X_2 = 1$
- (c) $X_1 = X_2 = 0$ (d) $X_1 = X_2 = 1$

[NAT]

Two numbers A & B are 2-bit numbers i.e. $A = a_1, a_0 &$ $B = b_1b_0$. If we perform operation (A - B) using parallel subtractor with minimum no. of possible gates XOR, AND, OR, NOT etc. then minimum number of 2-input XOR gate required will be _____.

5. [MCQ]

The design of a combinational circuit is attempted as demonstrated below.

- (i) For S = 0, y = 0 regardless of status of B
- (ii) For S = 1 and B = 0, $y = x_1$
- (iii) For S = 1 and B = 1, $y = x_0$

The minimum number count of 3-input NAND gates required to complete the design, will be

(a) 3

(b) 2

(c) 4

(d) 1

6. [NAT]

How many don't care inputs are there in a BCD adder?

Part B: 7 to 13 questions each will carry 2 marks (MCQs + NAT)

7. [MCQ]

In a 4-bit carry look ahead adder, the X-OR and AND/OR gate has delay of 5ns each. The sum will appear after delay of

- (a) 10 ns
- (b) 20 ns
- (c) 15 ns
- (d) 40 ns

8. [NAT]

A MUX circuit is as shown below:

Clock input has frequency of 10 MHz, then duty cycle of the output waveform at output Y will be _____. (up to two decimal places).

9. The following binary values were applied to the *X* and *Y* inputs of the NAND latch shown in the figure in the sequence indicated below:

$$X = 0, Y = 1; X = 0, Y = 0; X = 1, Y = 1$$

The corresponding stable P, Q outputs will be

(a)
$$P = 1, Q = 0; P = 1, Q = 0; P = 1, Q = 0$$
 or $P = 1, Q = 1$

(b)
$$P = 1, Q = 0; P = 1, Q = 0 \text{ or } P = 0, Q = 1$$

 $P = 0, Q = 1$

(c)
$$P = 1, Q = 0; P = 1, Q = 1; P = 1, Q = 0$$
 or $P = 0, Q = 1$

(d)
$$P = 1, Q = 0; P = 1, Q = 1; P = 1, Q = 1$$

10. [MCQ]

A MUX circuit is designed as shown below:

What is the output Y of above combinational circuit?

- (a) AB + BC + CA
- (b) B(A+C)
- (c) $A \oplus B \oplus C$
- (d) Borrow output of full adder

11. [NAT]

A 16-bit parallel adder is designed using 16, 1-bit full adders. Each 1-bit full adder is designed using X-OR, AND and OR gates. The delay contributed by X-OR gate is 20ns while that contributed by AND/OR gate is 5ns. The number of additions per second that a 16-bit parallel adder can perform reliably, will be $\times 10^6$

12. [NAT]

A designer has sufficient number of units of decoder with enable input of size 4×2^4 and a decoder of size 8×2^8 is to be realized. The number of units of 4×2^4 decoders, required will be

13. [MCQ]

Consider the configuration of a 2×1 MUX as shown below.

It is required to implement two variable

Boolean function f = P + Q. Then

(a)
$$x = Q$$
, $y = 1$ and $z = P$

(b)
$$x = Q$$
, $y = 0$ and $z = P$

(c)
$$x = P$$
, $y = Q$ and $z = 0$

(d)
$$x = P$$
, $y = 0$ and $z = Q$

Answer Key

- 1. (5)
- 2. (22)
- 3. (a)
- 4. (3)
- 5. (c)
- 6. (312)
- 7. **(b)**

- 8. (0.80) [Range 0.75 to 0.82]
- 9. (c)
- 10. (b)
- 11. (5.26) (Range 5.1 to 5.3)
- 12. (17)
- 13. (a)

For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

