Problem R-920 (C₁₂**H**₁₅**N).** Assign the individual signals of the compound whose 400 MHz 1 H NMR spectrum (CDCl₃, -10 $^{\circ}$ C) is given below. Use couplings, chemical shifts and intensities in your analysis. From their analysis, the authors deduced the conformation shown (Otter, A.; Neuenschwander, M.; Kellerhals, H. P. *Magn. Reson. Chem.* **1986**, *24*, 353).

δ

6.34 ____

6.11 ____

6.05 ____

5.98 ____

5.94 ____

5.87 ____

5.70 ____

5.55 ____

5.07 ____

7 8 H H 10 N H 1

Problem R-920 (C₁₂H₁₅N). Assign the individual signals of the compound whose 400 MHz ¹H NMR spectrum (CDCl₃, -10 °C) is given below. Use couplings, chemical shifts and intensities in your analysis. From their analysis, the authors deduced the conformation shown (Otter, A.; Neuenschwander, M.; Kellerhals, H. P. *Magn. Reson. Chem.* **1986**, *24*, 353).

δ

6.05 4

5.98 <u>10</u>

5.94 ⁶

5.87 ²

5.70

5.55 <u>5</u>

5.07 _____

- 1. The two doublets without additional coupling have to be H-1 and H-8. The enamine nitrogen can only conjugate with the 7-8 double bond trans to the NMe₂ group, not with the 1-2 double bond (steric effects) so H7 and H5 are moved upfield (this is how you decide between H-1 and H-8). Once H-7 is assigned, then all the others fall into place by consideration of leanings and the small coupling
- 2. Start with H-8 (5.70) leaning shows it must be coupled to 5.07 (H-7) not to 5.55, which would have to lean a lot more (observed leaning is 1.10, coupling to 5.55 would have to lean 1.6).
 - 3. The unique small coupling to H-7 must be to H-6, 5.94
 - 4. Leaning of H-6 (5.94) means coupling to 5.55, which must be H-5 (not to 5.87)
 - 5. Now start with H-1 (6.34). Only remaining proton it can be coupled to is 5.87, which is H-2
 - 6. This leaves H-3 and H-4, 6.11, 6.05. Hard to decide which is which.