Ejercicio SIMPLEX Clase 17

Investigación Operativa UTN FRBA 2021

Curso: I4051

Elaborado por: Rodrigo Maranzana

Docente: Martín Palazzo

Enunciado

Una empresa fabrica el producto A, que le aumenta su utilidad 2 \$ por unidad, y el producto B, que le aumenta la utilidad 3 \$ por unidad. El producto A requiere de 2 kg de cobre y 1 kg de aluminio. El producto B requiere de 1 kg de cobre y 2 kg de aluminio. El máximo disponible de cobre es 160 kg y el máximo disponible de aluminio es de 180 kg.

Plantear el modelo matemático del problema a resolver, indicando las variables principales, las restricciones y la función objetivo. Resuelva por el método analítico utilizando el algoritmo del Simplex el ejercicio del punto anterior.

Enunciado

Función objetivo: Maximizar la utilidad de un mix de productos A y B.

Tipo: Lineal

Variables de decisión: Cantidad de producto A (X_1) y B (X_2)

Tipo: Lineal

Restricciones: •

- Máximo de materia prima de cobre (Y₁) y aluminio (Y₂)
- Restricciones y variables de decisión Reales
- Positividad

Métodos de resolución posibles:

- Método gráfico
- Algoritmo SIMPLEX
- Algoritmo de punto interior
- Otros algoritmos específicos de asignación de recursos.
- Algoritmos heurísticos.

Método elegido: SIMPLEX

Modelo extendido

Una empresa fabrica el producto A, que le aumenta su utilidad 2 \$ por unidad, y el producto B, que le aumenta la utilidad 3 \$ por unidad.

El producto A requiere de 2 kg de cobre y 1 kg de aluminio. El producto B requiere de 1 kg de cobre y 2 kg de aluminio. El máximo disponible de cobre es 160 kg y el máximo disponible de aluminio es de 180 kg.

$$Max Z = 2X_1 + 3X_2$$

sujeto a:

$$Y_1$$
: $2X_1 + 1X_2 \le 160$

$$Y_2$$
: $1X_1 + 2X_2 \le 180$

$$X_1, X_2 \geq 0$$

Modelo extendido

$$Max Z = 2X_1 + 3X_2$$

sujeto a:

$$Y_1: 2X_1 + X_2 \leq 160$$

$$Y_2$$
: $X_1 + 2X_2 \le 180$

$$X_1, X_2 \ge 0$$

Modelo Extendido

$$Max Z = 2X_1 + 3X_2$$

 $sujeto a$:

$$2X_1 + X_2 + X_3 = 160$$
$$X_1 + 2X_2 + X_4 = 180$$

$$X_1, X_2 \geq 0$$

Modelo matricial

$$Max Z = 2X_1 + 3X_2$$

 $sujeto a$:

$$2X_1 + X_2 + X_3 = 160$$
$$X_1 + 2X_2 + X_4 = 180$$

$$X_1, X_2 \ge 0$$

Modelo Extendido Matricial

 $Max Z = C^T X$ sujeto a:

$$AX = b$$

Valores de matrices:

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

Representación gráfica

	C_{j}				D (4
C _j Base	X _j Base	B_k			B_k/A_{ij}
Z	Z_j -	- C _j			

$$Max \ Z = 2X_1 + 3X_2$$
 $sujeto \ a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $sujeto \ a$:
 $AX = b$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$

C_{j}				. D. / A	
C _j Base	X _j Base	B_k			B_k / A_{ij}
Z	Z_j -	- <i>C_j</i>			

$$Max Z = 2X_1 + 3X_2 + 0X_3 + 0X_4$$
 $sujeto a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $sujeto \ a$:
 $AX = b$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \ b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

	C_{j}		2	3	0	0	5 (4
C _j Base	X _j Base	\boldsymbol{B}_k					B_k/A_{ij}
Z	Z_j -	- <i>C_j</i>					

$$Max Z = 2X_1 + 3X_2 + 0X_3 + 0X_4$$
 $sujeto a:$
 $2X_1 + 1X_2 + 1X_3 = 160$
 $1X_1 + 2X_2 + 1X_4 = 180$
 $X_1, X_2 \ge 0$

Max
$$Z = C^T X$$

sujeto a:
$$C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

	c_{j}		2	3	0	0	. D. / A
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
Z	Z_j -	- <i>C_j</i>					

$$Max \ Z = 2X_1 + 3X_2$$
 $sujeto \ a$:
 $2X_1 + 1X_2 + 1X_3 = 160$
 $1X_1 + 2X_2 + 1X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $sujeto \ a$:
 $AX = b$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \ b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
			2	1	1	0	
			1	2	0	1	
Z	Z_j -	- <i>C_j</i>					

$$Max \ Z = 2X_1 + 3X_2$$
 $sujeto \ a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $sujeto \ a$:
 $AX = b$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \ b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

C_{j}		2	3	0	0	5 //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
		160	2	1	1	0	
		180	1	2	0	1	
Z	Z_j -	$Z_j - C_j$					

$$Max \ Z = 2X_1 + 3X_2$$
 $sujeto \ a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

Max
$$Z = C^T X$$

sujeto a:
 $AX = b$

$$C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

c_{j}		2	3	0	0	5 //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
	<i>X</i> ₃	160	2	1	1	0	
	X_4	180	1	2	0	1	
Z	$Z_j - C_j$						

$$Max \ Z = 2X_1 + 3X_2 + 0X_3 + 0X_4$$
 $sujeto \ a$:
 $2X_1 + X_2 + X_3 = 160$
 $X_1 + 2X_2 + X_4 = 180$
 $X_1, X_2 \ge 0$

$$Max \ Z = C^T X$$
 $sujeto \ a$:
 $AX = b$
 $C = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \ b = \begin{bmatrix} 160 \\ 180 \end{bmatrix}$$

c_{j}		2	3	0	0	5 //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
Z	Z_j –	$Z_j - C_j$					

	C_{j}			3	0	0	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X ₃	160	2	1	1	0	
0	X_4	180	1	2	0	1	
Z	Z_j -	- <i>C_j</i>	-2	-3	0	0	

$$Z_1 = C_3 * A_{11} + C_4 * A_{21} = 0 * 2 + 0 * 1 = 0$$
 $C_1 = 2$
 $Z_1 - C_1 = 0 - 2 = -2$

c_{j}		2	3	0	0	5 //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- С _ј	-2	-3	0	0	

$$Z = 0 * 160 + 0 * 180 = 0$$

¡Hay valores negativos, puede mejorar!

Representación gráfica

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

Columna pivote: $\min(Z_j - C_j)$

 X_2 el más negativo, entra a la base. ¿Quién sale?

c_j		2	3	0	0	5 //	
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	<i>X</i> ₂	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	160
0	X_4	180	1	2	0	1	90
0	Z_j -	- С _ј	-2	-3	0	0	

 B_k / A_{ij} (de la columna pivote) = B_k / A_{i2}

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	160
0	X_4	180	1	2	0	1	90
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

Fila pivote: $\min\left(\frac{B_k}{A_{ij}}\right)$, si $\frac{B_k}{A_{ij}} > 0$ X_4 Sale de la base, entra X_2

pivote

Representación gráfica

Tabla iteración 0

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

Tabla iteración 1

C_j		2	3	0	0	D /4	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3						
3	X_2						
0	Z_j -	- C _j					

$\overline{c_j}$		2	3	0	0	D (4	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores de la fila pivote: $B'_{k_p} = B_{k_p}/A_{i_pj_p}$ $A'_{i_pj} = A_{i_pj}/A_{i_pj_p}$ Valores de la fila pivote. Valor pivote

C_{j}		2	3	0	0	D (4	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180 90	1 <mark>0.5</mark>	2 1	0 0	1 0.5	
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores de la fila pivote: $B'_{k_p} = B_{k_p}/A_{i_pj_p}$ $A'_{i_pj} = A_{i_pj}/A_{i_pj_p}$ Valores de la fila pivote Valor pivote

Tabla iteración 0

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Tabla iteración 1

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3						
3	X_2	90	0.5	1	0	0.5	
Z	Z_j –	- <i>C_j</i>					

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores del resto de las filas

	C_{j}		2	3	0	0	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	160 70	2	→ 1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas:

$$B'_{k} = B_{k} - \frac{B_{k_{p}} * A_{ij_{p}}}{A_{i_{p}j_{p}}}$$
 Valor a actualizar Valor pivote

Tabla iteración 0

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Tabla iteración 1

C_j		2	3	0	0	D /4	
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70					
3	X_2	90	0.5	1	0	0.5	
Z	Z_j –	- <i>C_j</i>					

	C_{j}		2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2		1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

Actualizar valores del resto de las filas:

$$A'_{ij} = A_{ij} - \frac{A_{i_pj} * A_{ij_p}}{A_{i_pj_p}}$$
Valor a actualizar Valor pivote

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2 1.5		1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores del resto de las filas:

$$A'_{ij} = A_{ij} - \frac{A_{i_pj} * A_{ij_p}}{A_{i_pj_p}}$$
Valor a actualizar Valor pivote

C_{j}			2	3	0	0	D (4
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2 1.5	1)0	1 1	0-0.5	5
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Actualizar valores del resto de las filas:

$$A'_{ij} = A_{ij} - \frac{A_{i_pj} * A_{ij_p}}{A_{i_pj_p}}$$
Valor a actualizar Valor pivote

Tabla iteración 0

C_{j}			2	3	0	0	D /4
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	-3	0	0	

Tabla iteración 1

	C_{j}		2	3	0	0	D /4
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	<i>X</i> ₃	70	1.5	0	1	-0.5	
3	X_2	90	0.5	1	0	0.5	
Z	$Z_j - C_j$						

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2	(-3)	0	0	

Actualizar valores del resto de las filas:

C_{j}			2	3	0	0	D (4
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-0.5	-3) 0	0	

Actualizar valores del resto de las filas:

Valor de la fila pivote Valor de la columna pivote
$$(Z_j - C_j)' = (Z_j - C_j) - \frac{A_{i_p j} * (Z_{j_p} - C_{j_p})}{A_{i_p j_p}}$$
 Valor a actualizar Valor pivote

c_{j}		2	3	0	0	D (1	
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	$Z_j - C_j$		-2 -0.5	(-3)	0	0	

Actualizar valores del resto de las filas:

Tabla iteración 0

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	160	2	1	1	0	
0	X_4	180	1	2	0	1	
0	Z_j -	- <i>C_j</i>	-2	-3	0	0	

	C_{j}		2	3	0	0	D /4
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	
3	X_2	90	0.5	1	0	0.5	
Z	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	
3	X_2	90	0.5	1	0	0.5	
270	Z_j –	- <i>C_j</i>	-0.5	0	0	1.5	

$$Z = 0 * 70 + 3 * 90 = 270$$

¡Hay valores negativos, puede mejorar!

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	
3	X_2	90	0.5	1	0	0.5	
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

 X_1 Columna pivote, entra a la base

C_{j}		2	3	0	0	D (4	
C _j Base	X _j Base	\boldsymbol{B}_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

Calculamos B_k / A_{ij}

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	<i>X</i> ₃	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

El menor positivo B_k / A_{ij} es el saliente, X_3 . Entra X_1

Representación gráfica

Tabla iteración 1

	C_j		2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

C_j		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
2	X_1						
3	X_2						
Z	Z_j -	- C _j					

	C_{j}		2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	7046.6	7 (1.5)	0 0	10.6	7 -0.5 -0.3	46.67 3
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- <i>C_j</i>	-0.5	0	0	1.5	

Actualizamos la fila pivote

$$B'_{k_p} = B_{k_p}/A_{i_pj_p}$$
 $A'_{i_pj} = A_{i_pj}/A_{i_pj_p}$
Valores de la fila pivote Valor pivote

Tabla iteración 1

	C_j		2	3	0	0	D //
$C_j Ba$	se X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	Z_j -	- C _j	-0.5	0	0	1.5	

C_{j}		2	3	0	0	D //	
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
2	<i>X</i> ₁	46.67	1	0	0.67	-0.33	
3	X_2						
Z	Z_j –	- <i>C_j</i>					

	C_{j}		2	3	0	0	D //
C _j Base	X _j Base	$\boldsymbol{B_k}$	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0 -0.3	0.5	180.00
270	Z_j -	- C _j 66.67	-0.5	0	0	1.5) i

Actualizamos el resto de las filas:

Valor de la fila pivote Valor de la columna pivote
$$B'_k = B_k - \frac{B_{kp} * A_{ijp}}{A_{ipjp}} \qquad \qquad A'_{ij} = A_{ij} - \frac{A_{ipj} * A_{ijp}}{A_{ipjp}}$$
 Valor a actualizar Valor pivote

Tabla iteración 1

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	$Z_j - C_j$		-0.5	0	0	1.5	

C_{j}			2	3	0	0	- D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
2	<i>X</i> ₁	46.67	1	0	0.67	-0.33	
3	X_2	66.67	0	1	-0.33	0.67	
Z	$Z_j - C_j$						

	C_{j}		2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	$Z_j - C_j$		(-0.5)	0	0 0.3	1.5	<mark>33</mark>

Actualizamos el resto de las filas:

Tabla iteración 1

C_{j}			2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k/A_{ij}
0	X_3	70	1.5	0	1	-0.5	46.67
3	X_2	90	0.5	1	0	0.5	180.00
270	$Z_j - C_j$		-0.5	0	0	1.5	

C_{j}			2	3	0	0	D /4
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	B_k / A_{ij}
2	X_1	46.67	1	0	0.67	-0.33	
3	X_2	66.67	0	1	-0.33	0.67	
Z	$Z_j - C_j$		0	0	0.33	1.33	

	C_{j}		2	3	0	0	D //
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	B_k / A_{ij}
2	X_1	46.67	1	0	0.67	-0.33	
3	X_2	66.67	0	1	-0.33	0.67	
293.33	$Z_j - C_j$		0	0	0.33	1.33	

$$Z = 2 * 46.67 + 3 * 66.67 = 293.33$$

No hay valores negativos, las variables slack salieron de la base, ¡es el óptimo!

Representación Gráfica

Conclusión

Dado el modelo formulado, bajo las suposiciones tomadas al principio:

Se logró maximizar la solución para cantidades de producto A y B de $X_1^* = 46.67$ y $X_2^* = 66.67$ respectivamente; con un ingreso máximo de $Z^* = 293.33