北京化工大学 2016——2017 学年第一学期

《线性代数》期末考试试卷

课程代码	М	Α	Т	1	1	5	0	0	Т
かってしていつ		, ·	•		'	•	U	•	•

班级:
姓名:
学号:
任课教师:
分数:

题号
一
三
四
五
六
七
总分

得分
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日</

一、填空题(每小题3分,共18分)

- 1. 设 $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$, $A^T 为 A$ 的转置矩阵,则行列式 $|A^T A|$ ______.
- 2. 矩阵 $A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ 的逆阵 $A^{-1} =$ _______.
- 3. 读 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix}$, 并且 PA = B,

则 *P* = _____.

- 4. 设 3 阶矩阵 A 的秩 r(A) = 1, $\eta_1 = \begin{pmatrix} -1 & 3 & 0 \end{pmatrix}^T$, $\eta_2 = \begin{pmatrix} 2 & -1 & 1 \end{pmatrix}^T$, $\eta_3 = \begin{pmatrix} 5 & 0 & k \end{pmatrix}^T$ 是方程组 AX = 0 的 3 个解向量,则常数 $k = \underline{\hspace{1cm}}$.
- 5. 设 4 阶矩阵 A 满足 |2E+A|=0, $AA^T=4E$, |A|<0, 其中 E 为 4 阶单位矩阵,则伴随矩阵 A^* 必有一个特征值为_____.
- 6. **(注:仅3.0 学分的专业做此题)** 若实对称矩阵 $A \ni B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 合同,则二次型 $X^T A X$

的规范形为______

6*. **(注:仅 3.5 学分的专业做此题)** 设 $ax^2 + 2bxy + cy^2 = 1$ (a > 0) 为一椭圆的方程,则 a,b,c满足关系式______.

二、计算题(每小题 14 分, 共 70 分)

7. 设矩阵 X 满足方程 AX = 2X + B ,其中 $A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 9 \\ 1 & 8 \\ 1 & 5 \end{pmatrix}$, 求 X .

8. 讨论当参数
$$a$$
 , b 取何值时,非齐次线性方程组
$$\begin{cases} x_1+x_2+x_3+x_4=0,\\ x_2+2x_3+2x_4=1,\\ -x_2+(a-3)x_3-2x_4=b,\\ 3x_1+2x_2+x_3+ax_4=-1. \end{cases}$$

(1) 无解; (2) 有唯一解; (3) 有无穷多解,并在此时用导出组的基础解系表示其通解.

- (1) 求A 的特征值和特征向量;
- (2) 求f(A)的特征值和特征向量.

10. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ -1 & 4 & -3 \\ 1 & a & 5 \end{pmatrix}$$
有二重特征值.

(1) 求a; (2) 判断A 是否能对角化?

- 11. 已知实二次型 $f(x_1,x_2,x_3) = x_1^2 2x_2^2 + bx_3^2 4x_1x_2 + 2ax_2x_3 + 4x_1x_3$,(a>0) 经过正交变换化为标准形 $f(x_1,x_2,x_3) = 2y_1^2 + 2y_2^2 7y_3^2$.
- (1) 求a,b的值及所用的正交变换x = Qy.
- (2)* (注:仅3.0学分的专业做此问)确定该二次型的正定性.

四. 证明题(12分)

12. (注: 仅 3.0 学分的专业做此题)设向量组 $B: \beta_1, \beta_2, \cdots, \beta_t$ 能由向量组 $A: \alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示为

$$(\beta_1, \beta_2, \dots, \beta_t) = (\alpha_1, \alpha_2, \dots, \alpha_s)K$$
,

其中 K 为 $s \times t$ 矩阵,且 A 组线性无关. 证明 B 组线性无关的充分必要条件是矩阵 K 的秩 r(K) = t.

12*. **(注:仅 3.5 学分的专业做此题)** 设 A 、 B 是两个 n 阶非零矩阵,满足 $AB = \mathbf{0}$, $A^* \neq \mathbf{0}$. 若 $\alpha_1,\alpha_2,\cdots,\alpha_k$ 是齐次线性方程组 $BX = \mathbf{0}$ 的一个基础解系, α 是任意一个 n 维列向量. 证明 $B\alpha$ 可由 $\alpha_1,\alpha_2,\cdots,\alpha_k$, α 线性表示,并问何时线性表示是惟一的.