BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Computación Matemática

Programa de Asignatura: Métodos Heurísticos

Código: MCOM 22204

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Métodos Heurísticos
Ubicación:	Segundo o Tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

Dra. Lourdes Sandoval Solís Dr. Pedro García Juárez Dra. Maya Carrillo Ruiz Dra. Rosa Garcia Tamayo	
Dia. Rosa Gardia Tamayo	
Noviembre 2012	
Marzo de 2017	
Dra. Blanca Bermúdez	
a revisión y/o actualización: Actualización de contenido	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS GENERALES:

El estudiante deberá reconocer la necesidad de resolver un problema computacional aplicando métodos heurísticos y será capaz de conocer, analizar y aplicar algoritmos meta heurísticos eficientes para resolver problemas que surgen en problemas como segmentación de imágenes, planificación de trayectorias, clustering, problemas de ruteo de vehículos, coloración de grafos y de optimización combinatoria.

ESPECIFICOS

- 1.- El estudiante manejará adecuadamente las definiciones de óptimos locales y óptimos globales.
- 2.- El estudiante manejará adecuadamente el algoritmo de Recocido Simulado y lo aplicará a problemas computacionales.
- 3.- El estudiante manejará adecuadamente el algoritmo de Búsqueda Tabú y lo aplicará a problemas computacionales.
- 4.- El estudiante manejará adecuadamente el algoritmo Genéticos y lo aplicará a problemas computacionales.
- 5.- El estudiante manejará adecuadamente el algoritmo de Colonia de Hormigas y lo aplicará a problemas computacionales.
- 6.- El estudiante manejará adecuadamente el algoritmo de Optimización de Enjambre de Partículas y lo aplicará a problemas computacionales.
- 7.- El estudiante manejará adecuadamente el algoritmo de Búsqueda Armónica y lo aplicará a problemas computacionales.
- 8.- El estudiante manejará adecuadamente el algoritmo de Colonia de Abejas y lo aplicará a problemas computacionales.
- 9.- El estudiante manejará adecuadamente el algoritmo de Búsqueda de Luciérnagas y lo aplicará a problemas computacionales.

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

4. CONTENIDO

I LNIDO	Contenido Temático/Actividades de
Unidad	aprendizaje
1. Introducción	1.1. Definición de óptimos Locales y Globales
	1.2. Condiciones Necesarias y Suficientes para
	óptimos Locales y Globales
2. Algoritmo de	2.1. Antecedentes
Recocido Simulado	2.2. Algoritmo
SA	2.3. Implementación en Matlab
	2.4. Pruebas
	2.5. Aplicaciones
Algoritmo de	3.1. Antecedentes
Tabú Search TS	3.2. Algoritmo
	3.3. Implementación en Matlab
	3.4. Pruebas
	3.5. Aplicaciones
4. Algoritmos	4.1. Antecedentes
Genéticos AG	4.2. Algoritmo
	4.3. Implementación en Matlab
	4.4. Pruebas
	4.5. Aplicaciones
5. Algoritmos de	5.1. Antecedentes
Colonia de Hormigas	5.2. Algoritmo
ACO	5.3. Implementación en Matlab
	5.4. Pruebas
	5.5. Aplicaciones
6. Optimización de	6.I. Antecedentes
Enjambre de	6.2. Algoritmo
Partículas PSO	6.3. Implementación en Matlab
	6.4. Pruebas
7 D'	6.5. Aplicaciones
7 Búsqueda	7.1. Antecedentes
Armónica HS	7.2. Algoritmo
	7.3. Implementación en Matlab
	7.4. Pruebas
O Alara vitus a ala	7.5. Aplicaciones
8 Algoritmo de	8.1. Antecedentes
Colonia de Abejas	8.2. Algoritmo
ABC	8.3. Implementación en Matlab
	8.4. Pruebas
	8.5. Aplicaciones

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

Unidad	Contenido Temático/Actividades de aprendizaje
9 Búsqueda de	9.1. Antecedentes
Luciérnagas	9.2. Algoritmo
	9.3. Implementación en Matlab
	9.4. Pruebas
	9.5. Aplicaciones

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

Bibliografía		
Básica	Complementaria	
1. Patrick Siarry (2017) Metaheuristic. Springer Verlag. 2. Xin-She Yang (2013) Nature Inspired Metaheuristic Algoritms, Luniver Press. Segunda Edición. 3. Adenso Díaz (Editor) Fred Glover Hassan M. Ghaziri; J.L. González; Manuel Laguna; Pablo Moscato Fan T. Tseg (1996). 4. Optimización heurística y Redes Neuronales Editorial Paraninfo. David E. Luenberger (1989). 5. Programación Lineal y no Lineal.Addison Wesley Iberoamericana.	1. Clarisse Dhaenens y Laetitia Jourdan (2016). Metaheuristic for Big Data (Computer Engineering Series: Metaheuristic Set). Wiley . 2. Mauro Birattari. (2009). Tuning Metaheuristics: A Machine Learning Perspective (Studies in Computational Intelligence). Springer. 3. Prajna Kunche y Subrayal M Reddy. (2016). Metaheuristic Applications to Speech Enhancement (Springer Briefs in Electrical and Computer. 4. Gunther Zapfel y Roland Brauns (2014). Engineering) Metaheuristic Search Concepts: A Tutorial With Applications to Production and Logistics. Springer. 5. Oscar Castillo y Patricia Melin. (2014). Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics: Theory and Apllications (Studies in Computational Intelligence). Springer.	

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	40%
Participación en clase	
Tareas	
Exposiciones	
Simulaciones	
Trabajo de investigación y/o de intervención	
Prácticas de laboratorio	40%
Visitas guiadas	
Reporte de actividades académicas y culturales	
Proyecto final	20%
Total	100%