2nd week CV study

Densely Connected Convolutional Networks(DenseNet)

Speaker:류창훈

DenseNet FractalNet

DenseNet

Figure 2: Inception module

DenseNet

GoogleNet

input:

L개의 Layer에 L개의 input

각 Layer마다 L(L+1) / 2 개의 connect.

전체 sum 하는 구조가 아닌, 각각 연결만 한 구조.

획기적.

계층마다 가중치 값 갖고 있음.

각 계층마다 연결만 하는 구조.

결국 Parameter값 감소.

모든 특성도 고려하는 효과.

Related Work:

기존의 계단식 구조 + 바이패스 경로(HighwayNet)

여기에 무작위(확률적)로 레이어 제거 기능 추가. (훨씬 더 많은 레이어 고려 가능)

바이패스 경로: 일부 레이어를 건너뛰는 방식.

특징 재사용, 각 레이어에서 피쳐맵 연결, 효율적, 다양성 증가.

$$\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1}) + \mathbf{x}_{\ell-1}.$$
 $\rightarrow \text{ResNet}$

$$\mathbf{x}_\ell = H_\ell([\mathbf{x}_0,\mathbf{x}_1,\ldots,\mathbf{x}_{\ell-1}]),
ightarrow \mathsf{Dense}$$
 연결

$$\ell^{th}$$
 layer has $k_0 + k \times (\ell - 1)$

transition layer:

 ℓ^{th} layer has $k_0 + k \times (\ell - 1)$

다운 샘플링 위함.

각 층들은 위와 같은 입력값.

뜬금없는 1x1 layer,(Bottle Neck)

애초에 연결만 한 구조라

2x2 average pooling

이렇게 적은 입력 값들로 기존의 정확도 따라잡음.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264					
Convolution	112 × 112	7×7 conv, stride 2								
Pooling	56 × 56	3×3 max pool, stride 2								
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$					
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\wedge 0}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$					
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$								
(1)	28×28	2 × 2 average pool, stride 2								
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$					
(2)	20 ^ 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$					
Transition Layer	28×28	$1 \times 1 \text{ conv}$								
(2)	14 × 14	2 × 2 average pool, stride 2								
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 64 \end{bmatrix}$					
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$					
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$								
(3)	7 × 7	2 × 2 average pool, stride 2								
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$					
(4)	/ ^ /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$					
Classification	1 × 1	7 × 7 global average pool								
Layer		1000D fully-connected, softmax								

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

CIFAR-10

CIFAR-100

SVHN

ImageNet

출처:

https://arxiv.org/pdf/1608.06993v5.pdf

https://medium.com/@sunnerli/an-interesting-idea-toward-cnn-residual-4bb54040b9a

https://www.linkedin.com/pulse/residual-net-resnet-carmel-shalgi

https://pytorch.kr/hub/pytorch vision googlenet/

