

App No.: NEW

Docket No.: 4661-0113PUS1

Inventor: Sarman SINGH et al.

Title: POLYPEPTIDES FOR THE DIAGNOSIS AND THERAPY

OF LEISHAMANIASIS

NEW SHEET

Sheet 1 of 11

BEST AVAILABLE COPY

Figure 1

1 2 3 4 5

Figure 2

1 2 3 4 5

Figure 3A

Query: 40 EGRAAEELARKLEATASAKNLVEQDXXXXXXXXXXXXXXIAEVRAAEAGVLEATAAAKTAV 99
E RAAELA +LEATA+AK+ EQD +E RAAELA LEATAAAK +
Sbjct: 712 EERAAELASQLEATAAAKSSABQDRENTRATLEQQLRESEARAAELASQLEATAAAKMSA 771

Query: 100 EQERERTRAALXXXXXXXXXXXXXXXXXXXXKTSVEQXXXXXXXXXXXXXXXXXX 159
EQ+RE TRA L K S EQ
Sbjct: 772 EQDRENTRATLEQQQLRDSEERAAELASQLESTTAAKMSAEQDRESTRATLEQQLRDSEER 831

Query: 160 XXXXXXXXKSTAAVKSAMEQDRENTRAT 187
+ST A K + EQDRE+TRAT
Sbjct: 832 AAELASQLESTTAAKMSAEQDRESTRAT 859

Figure 3B

Query: 29 EQEREKRTTALE-----GRAAEELARKLEATASAKNLVEQDXXXXXXXXXXXXXIAEVR 81
EQ+RE TR LE RAAELA +LEATA+AK EQD +E R
Sbjct: 733 EQDRENTRATLEQQLRESEARAAELASQLEATAAAKMSAEQDRENTRATLEQQLRDSEER 792

Query: 82 AAELAGVLEATAAAKTAVEQERERTRAALXXXXXXXXXXXXXXXXXXXXKTSVEQX 141
AAELA LE+T AAK + EQ+RE TRA L K S EQ
Sbjct: 793 AAELASQLESTTAAKMSAEQDRESTRATLEQQLRDSEERAAELASQLESTTAAKMSAEQD 852

Query: 142 XXXXXXXXXXXXXXXXXXXXXXXKSTAAVKSAMEQDRENTRAT 187
+ST A K + EQDRE+TRAT
Sbjct: 853 RESTRATLEQQLRESEERAAELASQLESTTAAKMSAEQDRESTRAT 898

Figure 3C

Query: 29 EQEREKTRTALEG-----RAAELARKLEATASAKNLVEQDXXXXXXXXXXXXXIAEVR 81
EQ+RE TR LE RAAELA +LE+T +AK EQD +E R
Sbjct: 772 EQDRENTRATLEQQQLRDSEERAELASQLESTTAAKMSAEQDRESTRATLEQQQLRDSEER 831

Query: 82 AAEALAGVLEATAAAKTAVEQERERTRAALXXXXXXXXXXXXXXXXXXXXKTSVEQX 141
AAEELA LE+T AAK + EQ+RE TRA L K S EQ
Sbjct: 832 AAELASQLESTTAAKMSAEQDRESTRATLEQQLRESEERAELASQLESTTAAKMSAEQD 891

Query: 142 XXXXXXXXXXXXXXXXXXXXXXXXXSTAAVKSAMEQDRENTRA 186
++TAA KS+ EQDRENTRA
Sbjct: 892 RESTRATLEQQQLRDSEERAELASQLEATAAAKSSAEQDRENTRA 936

Figure 3D

Query: 40 EGRAAEELARKLEATASAKNLVEQDXXXXXXXXXXXXXIAEVRAAEELAGVLEATAAAKTAV 99
E RAAELA +LEATA+AK+ EQD +E RAAELA LEATAAAK +
Sbjct: 712 EERAELASQLEATAAAKSSAEQDRENTRATLEQQLRESEERAELASQLEATAAAKMSA 771

Query: 100 EQERERTRAALXXXXXXXXXXXXXXXXXXXXKTSVEQXXXXXXXXXXXXXXXXXXXX 159
EQ+RE TRA L K S EQ
Sbjct: 772 EQDRENTRATLEQQQLRDSEERAELASQLESTTAAKMSAEQDRESTRATLEQQQLRDSEER 831

Query: 160 XXXXXXXXKSTAAVKSAMEQDRENTRAT 187
+ST A K + EQDRE+TRAT
Sbjct: 832 AAELASQLESTTAAKMSAEQDRESTRAT 859

Figure 3E

Query: 29 EQEREKTRTALE-----GRAELARKLEATASAKNLVEQDXXXXXXXXXXXXXIAEV 81
EQ+RE TR LE RAAELA +LEATA+AK EQD +E R
Sbjct: 733 EQDRENTRATLEQQQLRESEARAAELASQLEATAAAKMSAEQDRENTRATLEQQQLRDSEER 792

Query: 82 AAEALAGVLEATAAAKTAVEQERERTRAALXXXXXXXXXXXXXXXXXXXXXKTSVEQX 141
AAEALA LE+T AAK + EQ+RE TRA L K S EQ
Sbjct: 793 AAELASQLESTTAAKMSAEQDRESTRATLEQQQLRDSEERAELASQLESTTAAKMSAEQD 852

Query: 142 XXXXXXXXXXXXXXXXXXXXXXXXXKSTA AVKSAMEQDRENTRAT 187
+ST A K + EQDRE+TRAT
Sbjct: 853 RESTRATLEQQQLRESEERAELASQLESTTAAKMSAEQDRESTRAT 898

Figure 3F

Query: 29 EQEREKTRTALEG-----RAAELARKLEATASAKNLVEQDXXXXXXXXXXXXXIAEV 81
EQ+RE TR LE RAAELA +LE+T +AK EQD +E R
Sbjct: 772 EQDRENTRATLEQQQLRDSEERAELASQLESTTAAKMSAEQDRESTRATLEQQQLRDSEER 831

Query: 82 AAEALAGVLEATAAAKTAVEQERERTRAALXXXXXXXXXXXXXXXXXXXXXKTSVEQX 141
AAEALA LE+T AAK + EQ+RE TRA L K S EQ
Sbjct: 832 AAELASQLESTTAAKMSAEQDRESTRATLEQQQLRESEERAELASQLESTTAAKMSAEQD 891

Query: 142 XXXXXXXXXXXXXXXXXXXXXXXXXKSTA AVKSAMEQDRENTRA 186
++TAA KS+ EQDRENTRA
Sbjct: 892 RESTRATLEQQQLRDSEERAELASQLEATAAKSSAEQDRENTRA 936

Figure 4

LCIMM	121	GAGCAGCAGCTTCGCGAATCCGAGGCGCGCCTGCAGCTGGCAGGCCAGCTGGAGGCC 180	
KEIMM	1	-----	1
DDIMM	1	GAGCAGCAGCTTCGCGAATCCGAGGCGCGCCTGCAGCTGGCAGGCCAGCTGGAGGCC 60	
LCIMM	181	ACTGCTGCTGCGAAGATGTCAGCGGAGCAGGACCGCGAGAACACGAGGGCCACGCTAGAG 240	
KEIMM	1	-----	GAG 3
DDIMM	61	ACTGCTGCTGCGAAGACGTCGGTGGAGCAGGAGCGTGAGAAAGAC-----GAG 107	
LCIMM	241	CAGCAGCTTCGACTCCGAGGAAGCGCGCTCGGGAGCTGGCAGGCCAGCTGGAGTCCACT 300	
KEIMM	4	CAGCAGCTTCGACTCCGAGGAAGCGCGCTCGGGAGCTGAGTAGTTAGAGGCGACT 63	
DDIMM	108	GA-CGGCTCTG-----GAGGGCGCGCTCGGGAGCTGGCTCCAAACTGGAGGCCACT 159	
LCIMM	301	ACTGCTGCGAAGATGTCAGCGGAGCAGGACCGCGAGAACACGAGGGCCACGCTAGAGCAG 360	
KEIMM	64	GCTGCTGCGAAGATTCGCTCCGCGGAGCAGGACCGCGAGAACACGAGGGCCACGTTGGAGCAG 123	
DDIMM	160	GCTTCTGCGAAGAATTGGTAGAGCAGGACCGCGAGAGGACGAGGGCCACCTGGAGGAA 219	
LCIMM	361	CAGCTTCGACTCCGAGGAAGCGCGCTCGGGAGCTGGCAGGCCAGCTGGAGTCCACTACT 420	
KEIMM	124	CAGCTTCGCGAATCCGAGGAAGCGCTCGGGAGCTGAAGGGCCCAGCTGGAGTCCACTGCT 183	
DDIMM	220	CGACTTCGTATTGGTAGAGGTGCGCGCTCGGGAGCTGGCAGGAGTGCCTGGAGCCACTGCT 279	
LCIMM	421	GCTGCGAAGATGTCACCGGGAGCAGGACCGCGAGAACACGAGGGCCACGCTAGAGCAGCAG 480	
KEIMM	184	GCTGCGAAGACGTCGCGGGAGCAGGACCGCGAGAACACGAGGGCCCGTTGGAGCAGCG 243	
DDIMM	280	GCTGCGAAGACGGCGCTGGAGCAGGAGCGTGAGAGGACGAGGGCCCGCTGGAGCAGCAG 339	
LCIMM	481	CTTCGCGAATCCGAGGAAGCGCGCTCGGGAGCTGGCGAGCCAGCTGGAGTCCACTACTGCT 540	
KEIMM	244	CTTCGCGAATCCGAGGAAGCGCGCTCGGGAGCTGGCGAGCCAGCTGGAGGCCACTGCTGCT 303	
DDIMM	340	CTCCGCGAATCCGAGGCCGCGCGCTCGGGAGCTGGCGAGCTGGCGAGCTGGAGCAGCCGCTGCTGCG 399	
LCIMM	541	GCGAAGATGTCAGCGGAGCAGGACCGCGAGAACACGAGGGCCACGCTAGAGCAGCAGCTT 600	
KEIMM	304	GCGAAGATTCGCTCCGCGGAGCAGGACCGCGAGAACACGAGGGCCACGCTAGAGCAGCAGCTT 363	
DDIMM	400	GCGAAGACGTTGGAGCAGGAGCGTGAGAACACGAGGGCCACCTGGAGGAGCGGGTTG 459	
LCIMM	601	CGTGACTCCGAGGAAGCGCGCTCGGGAGCTGGCGAGCCAGCTGGAGGCCACTGCTGCTGCG 660	
KEIMM	364	CGCGAATCCGAGGCCGCGCGCTGGAGCTGGCGAGTCAGCTGGAGTCCACTGCTGCTGCG 423	
DDIMM	460	CGGCTCGCTGAGGTCCGCGCTCGGGAGCTGGCGAGCGCGGCTAAAGACGACTGCTGCTGTT 519	
LCIMM	661	AAGTCGTGGCGGAGCAGGACCGCGAGAACACGAGGGCCCGTTGGAGCAGCAGCTTCGT 720	
KEIMM	424	AAGTCGTGGCGGAGCAGGACCGCGAGAACACGAGGGCCACG----- 465	
DDIMM	520	AAGTCGCGGATGGAGCAGGACCGCGAGAACACGAGGGCCACG----- 561	

Figure 5

LCIMM	1	LEQQLRESEERAELASQLEATAAAKSSAEQDRENTRATLEQQLRESEARAELASQLEA	60
KEIMM	1	-EQQLRDSEERAELMPKLEATAAAKSSAEQDRENTRATLEQQLRESEEHAAELKAQLES	59
DDIMM	1	-EQQLRESEERAELKAELEATAAAKTSVEQEREKTRTALEG-----RAAEELARKLEA	52
LCIMM	61	TAAKMSAEQDRENTRATLEQQLRDSEERAELASQLESTTA	120
KEIMM	60	AAAKTSAEQDRENTRATLEQRLRESEERAELASQLEATAAAKSSAEQDRENTRATLEQ	119
DDIMM	53	TASAKNLVEQDRERTRATLEERLRIAEVRAELAGVLEATAAAKTAVEQERERTRAALEQ	112
LCIMM	121	QLRDSEERAELASQLESTTA	180
KEIMM	120	QLRESEERAELASQLESTTA	155
DDIMM	113	QLRESEERAELASQLESTTA	172
LCIMM	181	AKMSAEQDRENTRATLEQQLRDSEERAELASQLEATAAAKSSAEQDRENTRAALEQQLR	240
KEIMM	155	-----	155
DDIMM	173	VKSAMEQDRENTRAT-----	187

Figure 6

LCIMM	1	LEQQLRESEERAELASQLEATAAAKSSAEQDRENTRATLEQQLRESEARAELASQLEA	60
DDIMM	1	-----EQQLRESEARAELKAELEA	20
LCIMM	61	TAAKMSAEQDRENTRATLEQQLRDSEERAELASQLESTTA	120
DDIMM	21	AAAKTSVEQEREKTRTALEG-----RAAEELARKLEATAAKNLVEQDRERTRATEE	73
LCIMM	121	QLRDSEERAELASQLESTTA	180
DDIMM	74	RLRIAEVRAELAGVLEATAAAKTAVEQERERTRAALEQQLRESEARAELAQLEAAA	133
LCIMM	181	AKMSAEQDRENTRATLEQQLRDSEERAELASQLEATAAAKSSAEQDRENTRAALEQQLR	240
DDIMM	134	AKTSVEQEREENTRATLEERLRLIAEVRAELAARLKSTA AVKSAMEQDRENTRAT-----	187

Figure 7

KEIMM	1	EQOLRDSEERAELMRKLEATAAAKSSAEQ-----	30
DDIMM	1	EQOLRESEARAELKAELEATAAAAKTSVEQEREKTRTALEGRAAELARKLEATASAKNLV	60
KEIMM	30	- - DRENTRATLQQQLRESEEHAAELKAQLESTAAAKTSAEQDRENTRAALEGRLRESEER	88
DDIMM	61	EQDRERTRATLERLRLIAEVRAAELAGVLEATAAAKTAVEQERERTRAALEQQQLRESEAR	120
KEIMM	89	AAELASOLEATAAAKSSAEQDRENTRATLQQQLRESEARAELASOLESTAAAKSSAEQD	148
DDIMM	121	AAELAAOLEAAAAAKTSVEQERENTRATLERLRLIAEVRAAELAARLKSTAAVKSAMEQD	180
KEIMM	149	RENTRAT 155	
DDIMM	181	RENTRAT 187	

Figure 8

1	10	20	30	39
K E Q Q L R D S E T R A A E L K A E L E A T A A A K T S V E Q E R E K T R A	L G R A A E L A R K L E A T A S A K N L V E Q D R E R T R A T L E R L R I	A V G V K S A V T S M E N A Q Q E	S A A Q S	L

Figure 9

1	10	20	30	39
L E Q Q L R D S E E R A A E L M R K L E A T A A A K S S A E Q D R E N T R A T	R E A H K A Q S T A	A S		

App No.: NEW

Docket No.: 4661-0113PUS1

Inventor: Sarman SINGH et al.

Title: POLYPEPTIDES FOR THE DIAGNOSIS AND THERAPY
OF LEISHAMANIASIS
NEW SHEET

Sheet 8 of 11

BEST AVAILABLE COPY

Figure 10

a)

b)

Figure 11

a)

b)

App No.: NEW

Docket No.: 4661-0113PUS1

Inventor: Sarman SINGH et al.

Title: POLYPEPTIDES FOR THE DIAGNOSIS AND THERAPY
OF LEISHAMANIASIS

NEW SHEET

Sheet 9 of 11

BEST AVAILABLE COPY

Figure 12

a)

b)

Figure 13

a)

b)

Figure 14

BEST AVAILABLE COPY

a)

b)

Figure 15

Mean	0.1670	0.8665	0.1634	0.1396	0.1663	0.1636	0.1080
Std.Dev	0.0882	0.2182	0.0598	0.0584	0.0534	0.0615	0.0295

Figure 16

	Mean	0.1290	0.9730	0.1300	0.1545	0.1456	0.1363	0.1219
	Std.Dev	0.0716	0.2096	0.0419	0.0548	0.0705	0.0456	0.0796