федеральное государственное автоно «Национальный и	омное образовательное учр сследовательский универс	
Факультет программно	й инженерии и ком	пьютерной техники
Лаборато	орная работа по ОПД Вариант 6543	Д № 2
	Студент: Преподаватель:	Кулагин Вячеслав Дмитриевич Саржевский Иван Анатольевич
	Поток:	1.9

Содержание

1	Зад	дание	2
2	Про	оцесс выполнения работы	3
	2.1	Текст исходной программы в виде таблицы	3
	2.2	Описание программы	3
	2.3	Область представления и определения	
		2.3.1 Область представления	3
		2.3.2 Область определения	3
	2.4	Таблица трассировки	6
3	Нов	вая программа	6
4	Вы	вод	6

1 Задание

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

Исходные данные для варианта 6543:

142:		E14F
143:		0280
144:		E14F
145:	+	0200
146:		0280
147:		2142
148:		214E
149:		E14F
14A:		A144
14B:		414F
14C:		E143
14D:		0100
14E:		2142
14F:		414F

2 Процесс выполнения работы

2.1 Текст исходной программы в виде таблицы

	Адрес	Код команды	Мнемоника	Комментарии
	142	E14F	_	Данные — переменная а
	143	0280	_	Данные — итоговый результат (b)
	144	E14F	_	Данные — переменная с
+	145	0200	CLA	0 ightarrow AC (Обнуление аккумулятора)
	146	0280	NOT	$\overline{AC} o AC$ (Отрицание значения в аккумуляторе)
	147	2142	AND 142	142 & AC $ ightarrow$ AC (& между аккумулятором и ячейкой 142)
	148	214E	AND 14E	14E & AC $ ightarrow$ AC (& между аккумулятором и ячейкой 14E)
	149	E14F	ST 14F	${ m AC} o 14 { m F}$ (Перемещение из аккумулятора в ячейку $14 { m F}$)
	14A	A144	LD 144	$144 ightarrow ext{AC}$ (Перемещение из ячейки 144 в аккумулятор)
	14B	414F	ADD 14F	14F + AC $ ightarrow$ AC (Сложение ячейки 14F с аккумулятором)
	14C	E143	ST 143	AC o 143 (Перемещение из аккумулятора в ячейку 143)
	14D	0100	HLT	Останов
	14E	2142	_	Данные — переменная d
	14F	414F	_	Данные — переменная е (временное хранение)

2.2 Описание программы

Общую формулу описанной программы можно записать так (исключив лишние переносы из ячейки в ячейку и аккумулятор):

c + (1 & a & d)

Однако она по сути может быть сокращена до:

c + (a & d)

Результат выполнения записывается в ячейку 143

Таким образом, данные располагаются в ячейках: 142, 143, 144, 14E, 14F

А команды в ячейках: 145, 146, 147, 148, 149, 14А, 14В, 14С, 14D

Первой выполняется команда в ячейке 145, последней — в 14D

2.3 Область представления и определения

2.3.1 Область представления

Пусть R = c + (a & d)

Тогда область представления выглядит следующим образом:

- R знаковое, 16-ти разрядное число
- а, d набор из 16-ти логических однобитовых значений
- ullet с знаковое, 16-ти разрядное
- при этом результат (а & d) является 16-ти разрядным числом

2.3.2 Область определения

Определим область определения. Для начала, замечу, что область итогового результата известная: $-2^{15} \le R \le 2^{15} - 1$

Однако также однозначно сказать про каждую переменную невозможно, значение многих из них будут ограничены в зависимости от значений других переменных. Рассмотрим несколько случаев:

• Если $2^{14} < c < 2^{15} - 1$

Тогда мы можем использовать все отрицательные значения (a & d) и 0 (в 16-ти ричном представлении это все числа от 8000 до FFFF, а также 0). А если говорить на языке двоичных чисел, то это все числа, старший разряд которых равен единице. Запишу это в систему:

$$\begin{cases} 2^{14} \le c \le 2^{15} - 1, \\ a_{15} = 1, \ d_{15} = 1, \\ a_i, d_i \in \{0, 1\}, \ \text{где } 0 \le i \le 14. \end{cases}$$

• Если $-2^{15} \le c \le -2^{14} - 1$

Тогда мы можем использовать все положительные значения (a & d) и 0 (в 16-ти ричном представлении это все числа от 0 до 7FFF). А в двоичном – все те, у которых старший разряд – ноль (при этом не обязательно у обоих сразу). Запишу это в систему:

$$\begin{cases} -2^{15} \le c \le -2^{14} - 1, \\ a_{15} \& d_{15} = 0, \\ a_i, d_i \in \{0, 1\}, \text{ где } 0 \le i \le 14. \end{cases}$$

• И, наконец, если $-2^{14} \le c \le 2^{14} - 1$

Тогда (а & d) может принимать все те же значения, что c. В 16-ти ричном представлении это означает, что все подходящие числа находятся в диапазоне от C000 до 3FFF. В двоичных числах это значит, что нам подходят все значения, которые начинаются на 00 или 11. Запишу это в систему:

$$\begin{cases} -2^{14} \leq c \leq 2^{14} - 1, \\ a_{15} \oplus a_{14} = 0, \\ d_{15} \oplus d_{14} = 0, \\ a_i, d_i \in \{0, 1\}, \text{ где } 0 \leq i \leq 13. \end{cases}$$

Запишу область определения целиком, объединив все описанные случаи:

$$\begin{cases} 2^{14} \le c \le 2^{15} - 1, \\ a_{15} = 1, \ d_{15} = 1, \\ a_i, d_i \in \{0, 1\}, \text{ где } 0 \le i \le 14. \end{cases}$$

$$\begin{cases} -2^{15} \le c \le -2^{14} - 1, \\ a_{15} & \& \ d_{15} = 0, \\ a_i, d_i \in \{0, 1\}, \text{ где } 0 \le i \le 14. \end{cases}$$

$$\begin{cases} -2^{14} \le c \le 2^{14} - 1, \\ a_{15} \oplus a_{14} = 0, \\ d_{15} \oplus d_{14} = 0, \\ a_i, d_i \in \{0, 1\}, \text{ где } 0 \le i \le 13. \end{cases}$$

2 случай

Рис. 1: Область определения на числовой оси

2.4 Таблица трассировки

Выполн	яемая		Содержание регистров						Ячейка	, содержание	
кома	нда			посл	е выпо	лнени	я кома	нды		которо	й поменялось
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	N Z V C	Адрес	Новый код
145	200	146	0200	145	0200	000	0145	0000	- Z	-	_
146	280	147	0280	146	0280	000	0146	FFFF	N	-	_
147	2142	148	2142	142	7FFF	000	0147	7FFF		-	-
148	214E	149	214E	14E	7FFF	000	0148	7FFF		-	-
149	E14F	14A	E14F	14F	7FFF	000	0149	7FFF		14F	7FFF
14A	A144	14B	A144	144	BFFF	000	014A	BFFF	N	-	-
14B	414F	14C	414F	14F	7FFF	000	014B	3FFE	C	-	_
14C	E143	14D	E143	143	3FFE	000	014C	3FFE	C	143	3FFE
14D	0100	14E	0100	14D	0100	000	014D	3FFE	C	_	_

3 Новая программа

Возможно сократить программу до меньшего числа комманд, она может выглядеть следующим образом:

	Адрес	Код команды	Мнемоника	Комментарии
	142	E14F	_	Данные — переменная а
	143	0280	_	Данные — итоговый результат (b)
	144	E14F	_	Данные — переменная с
+	145	A142	LD 142	$142 o ext{AC}$ (Перемещение из ячейки 142 в аккумулятор)
	146	214A	AND 14A	14A & AC $ ightarrow$ AC (& между аккумулятором и ячейкой 14A)
	147	4144	ADD 144	144 + AC $ ightarrow$ AC (Сложение ячейки 144 с аккумулятором)
	148	E143	ST 143	AC o 143 (Перемещение из аккумулятора в ячейку 143)
	149	0100	HLT	Останов
	14A	2142	_	Данные — переменная d

4 Вывод

Проведя данную лабораторную работу, я выяснил, как работает БЭВМ, а также смог сократить исходную программу, поняв, что она далет, и какие значения способа принимать