

# LC76G Series Hardware Design

### **GNSS Module Series**

Version: 1.2

Date: 2023-05-30

Status: Released



At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

### Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

### Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

### For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

# **Legal Notices**

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

# **Use and Disclosure Restrictions**

# **License Agreements**

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

# Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.



### **Trademarks**

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

### **Third-Party Rights**

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

# **Privacy Policy**

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

# **Disclaimer**

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.



# **Safety Information**

The following safety precautions must be observed during all phases of operation, such as usage, service, or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety precautions by incorporating them into all product manuals. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.



Ensure that the product may be used in the country and the required environment, as well as that it conforms to the local safety and environmental regulations.



Keep away from explosive and flammable materials. The use of electronic products in extreme power supply conditions and locations with potentially explosive atmospheres may cause fire and explosion accidents.



The product must be powered by a stable voltage source, and the wiring shall conform to security precautions and fire prevention regulations.



Proper ESD handling procedures must be followed throughout the mounting, handling and operation of any devices and equipment that incorporate the module to avoid ESD damages.



# **About the Document**

| Document Information |                              |  |
|----------------------|------------------------------|--|
| Title                | LC76G Series Hardware Design |  |
| Subtitle             | GNSS Module Series           |  |
| Document Type        | Hardware Design              |  |
| Document Status      | Released                     |  |

# **Revision History**

| Version | Date       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -       | 2022-05-11 | Creation of the document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1.0     | 2022-07-14 | First official release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1.1     | 2023-02-09 | <ol> <li>Added the applicable variant LC76G (PB).</li> <li>Added I2C function for LC76G (PA).</li> <li>Added the ALP mode (<i>Chapters 1.1, 1.3</i> and 3.3).</li> <li>Added the number of concurrent GNSS (<i>Table 2</i>).</li> <li>Updated the power consumption under acquisition and tracking modes, TTFF, 1PPS accuracy signal of LC76G (AB) and LC76G (PA), and the power consumption under Backup mode, horizontal position accuracy and update rate of LC76G (PA), and added the power data (<i>Table 3</i>).</li> <li>Added the DC characteristics of all pins (<i>Table 6</i>).</li> <li>Reserved the AP_REQ pin (<i>Figure 1</i>, <i>Chapters 2</i> and <i>4.1</i>).</li> <li>Added the supported messages for UART, SPI and I2C interfaces (<i>Table 6</i> and <i>Chapter 4.1</i>)</li> <li>Added the 3.7 V lithium battery reference circuit (<i>Figure 7</i>).</li> <li>Updated or added the description of Backup mode, including: The way to exit Backup mode;         Notes of the way to exit Backup mode for LC76G (AB), the way to enter Backup mode for LC76G (PA), and modules' approximate power</li> </ol> |  |  |



| Version | Date       | Description                                                                                                                                                                                                                |
|---------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |            | <ul> <li>consumption when they are forced into Backup mode without sending a software command (<u>Chapter 3.3.4</u>).</li> <li>11. Updated the supported baud rates of UART interface (<u>Chapter 4.1.1.2</u>).</li> </ul> |
|         |            | 12. Updated the resistance of the pull-up resistors in I2C interface reference design ( <i>Figure</i> ).                                                                                                                   |
|         |            | 13. Added the optional notch circuit and band-pass filter circuit to active and passive antenna reference designs, as well as the corresponding description ( <i>Chapter 5.2</i> ).                                        |
|         |            | 14. Updated the maximum input power at RF_IN for LC76G (AB) and LC76G (PA) ( <i>Table 10</i> ).                                                                                                                            |
|         |            | <ol> <li>Updated the typical high-level input voltage of RESET_N and added the<br/>maximum output current of VDD_RF for LC76G (AB) and LC76G (PA)<br/>(<i>Table 12</i>).</li> </ol>                                        |
|         |            | 16. Update the supply current for LC76G (PA) ( <i>Table 15</i> ).                                                                                                                                                          |
|         |            | 17. Added the module mounting direction ( <i>Chapter 8.1.3</i> ).                                                                                                                                                          |
|         |            | 18. Added the sizes of pizza box and carton (Chapter 8.1.4).                                                                                                                                                               |
|         |            | 19. Updated the recommended ramp-to-soak, ramp-up and cool-down slopes ( <i>Figure</i> and <i>Table 19</i> ).                                                                                                              |
|         |            | 1. Added the power consumption in ALP mode for LC76G (AB) ( <u>Table 3</u> and <u>Table 14</u> ).                                                                                                                          |
| 1.2     | 2023-05-30 | 2. Added the requirement for GEOFENCE and 3D_FIX pins when the module is powered on ( <i>Chapters 2</i> , <i>4.1.2</i> and <i>4.1.4</i> ).                                                                                 |
|         |            | 3. Deleted the notch circuit in antenna reference designs and corresponding description ( <u>Chapter 5.2</u> ).                                                                                                            |



### **Contents**

| Sa  | atety Information                    | 3  |
|-----|--------------------------------------|----|
| Ab  | bout the Document                    | 4  |
| Со  | contents                             | 6  |
| Tal | able Index                           | 8  |
| Fig | igure Index                          | 9  |
| 1   | Product Description                  | 10 |
| -   | 1.1. Overview                        |    |
|     | 1.1.1. Special Marks                 |    |
|     | 1.2. Features                        |    |
|     | 1.3. Performance                     | 13 |
|     | 1.4. Block Diagram                   |    |
|     | 1.5. GNSS Constellations             |    |
|     | 1.6. Augmentation System             | 15 |
|     | 1.6.1. SBAS                          | 15 |
|     | 1.7. AGNSS                           | 16 |
|     | 1.7.1. EASY                          | 16 |
|     | 1.7.2. EPO                           | 16 |
|     | 1.8. Multi-Tone AIC                  | 16 |
|     | 1.9. Geofencing                      | 17 |
|     | 1.10. Firmware Upgrade               | 17 |
| 2   | Pin Assignment                       | 18 |
| 3   | Power Management                     | 23 |
|     | 3.1. Power Unit                      | 23 |
|     | 3.2. Power Supply                    | 24 |
|     | 3.2.1. VCC                           | 24 |
|     | 3.2.2. V_BCKP                        | 24 |
|     | 3.3. Power Modes                     | 27 |
|     | 3.3.1. Feature Comparison            | 27 |
|     | 3.3.2. Continuous Mode               | 27 |
|     | 3.3.3. ALP Mode                      | 27 |
|     | 3.3.4. Backup Mode                   | 28 |
|     | 3.4. Power-up Sequence               | 29 |
|     | 3.5. Power-down Sequence             | 29 |
| 4   | Application Interfaces               | 31 |
|     | 4.1. I/O Pins                        | 31 |
|     | 4.1.1. Communication Interfaces      | 31 |
|     | 4.1.1.1. Interface Selection (D_SEL) | 31 |
|     | 4.1.1.2. UART Interface              | 31 |
|     | 4.1.1.3. SPI*                        | 32 |



| 10 | Appendix References                       | 58 |
|----|-------------------------------------------|----|
| 9  | Labelling Information                     | 57 |
|    | 8.3. Manufacturing and Soldering          | 55 |
|    | 8.2. Storage                              |    |
|    | 8.1.4. Packaging Process                  |    |
|    | 8.1.3. Mounting Direction                 | 52 |
|    | 8.1.2. Plastic Reel                       | 52 |
|    | 8.1.1. Carrier Tape                       |    |
|    | 8.1. Packaging                            |    |
| 8  | Product Handling                          | 51 |
|    | 7.2. Top and Bottom Views                 | 50 |
|    | 7.1. Top, Side and Bottom View Dimensions | 49 |
| 7  | Mechanical Dimensions                     | 49 |
|    | 6.4. ESD Protection                       | 48 |
|    | 6.3. Supply Current Requirement           |    |
|    | 6.2. Recommended Operating Conditions     | 45 |
|    | 6.1. Absolute Maximum Ratings             | 44 |
| 6  | Electrical Specification                  | 44 |
|    | 5.4. Recommended Footprint                | 43 |
|    | 5.3.3. Ensuring Interference Immunity     |    |
|    | 5.3.2. Out-of-band Interference           |    |
|    | 5.3.1. In-band Interference               | 40 |
|    | 5.3. Coexistence with Cellular Systems    |    |
|    | 5.2.2. Passive Antenna Reference Design   | 39 |
|    | 5.2.1. Active Antenna Reference Design    | 37 |
|    | 5.2. Antenna Reference Design             | 37 |
|    | 5.1.2. Antenna Selection Guide            |    |
|    | 5.1.1. Antenna Specifications             |    |
| -  | 5.1. Antenna Selection                    |    |
| 5  | Design                                    | 36 |
|    | 4.2.1. RESET_N                            | 34 |
|    | 4.2. System Pin                           | 34 |
|    | 4.1.5. 1PPS                               |    |
|    | 4.1.4. 3D FIX*                            |    |
|    | 4.1.3. JAM_IND*                           |    |
|    | 4.1.2. GEOFENCE                           |    |
|    | 4.1.1.4. I2C Interface                    | 33 |



### **Table Index**

| Table 1: Special Marks                                                   | 11 |
|--------------------------------------------------------------------------|----|
| Table 2: Product Features                                                | 11 |
| Table 3: Product Performance                                             | 13 |
| Table 4: GNSS Constellations and Frequency Bands                         | 15 |
| Table 5: I/O Parameter Definition                                        | 19 |
| Table 6: Pin Description                                                 | 19 |
| Table 7: Feature Comparison in Different Power Modes                     | 27 |
| Table 8: Recommended Antenna Specifications                              | 36 |
| Table 9: Intermodulation Distortion (IMD) Products                       | 40 |
| Table 10: Absolute Maximum Ratings for LC76G (AB) and LC76G (PA)         | 44 |
| Table 11: Absolute Maximum Ratings for LC76G (PB)                        | 44 |
| Table 12: Recommended Operating Conditions for LC76G (AB) and LC76G (PA) | 45 |
| Table 13: Recommended Operating Conditions for LC76G (PB)                | 46 |
| Table 14: Supply Current for LC76G (AB) Module                           | 47 |
| Table 15: Supply Current for LC76G (PA) Module                           | 47 |
| Table 16: Supply Current for LC76G (PB) Module                           | 47 |
| Table 17: Carrier Tape Dimension Table (Unit: mm)                        | 51 |
| Table 18: Plastic Reel Dimension Table (Unit: mm)                        | 52 |
| Table 19: Recommended Thermal Profile Parameters                         | 56 |
| Table 20: Related Documents                                              | 58 |
| Table 21: Terms and Abbreviations                                        | 58 |



# Figure Index

| Figure 1: Block Diagram                                                                | 14 |
|----------------------------------------------------------------------------------------|----|
| Figure 2: Pin Assignment                                                               | 18 |
| Figure 3: Internal Power Supply                                                        | 23 |
| Figure 4: VCC Input Reference Circuit                                                  | 24 |
| Figure 5: LC76G (AB, PA) Reference Charging Circuit with Rechargeable Backup Battery   | 25 |
| Figure 6: LC76G (PB) Reference Power Supply Circuit                                    | 25 |
| Figure 7: LC76G (AB, PA, PB) Reference Power Supply Circuit with 3.7 V Lithium Battery | 26 |
| Figure 8: Enter/Exit Backup Mode Sequence                                              | 28 |
| Figure 9: Power-up Sequence                                                            | 29 |
| Figure 10: Power-down and Power-on Restart Sequence                                    | 30 |
| Figure 11: UART Interface Reference Design                                             | 31 |
| Figure 12: SPI Reference Design                                                        | 32 |
| Figure 13: I2C Interface Reference Design                                              | 33 |
| Figure 14: Reference Circuit for Module Reset                                          | 35 |
| Figure 15: Reset Sequence                                                              | 35 |
| Figure 16: Active Antenna Reference Design                                             | 38 |
| Figure 17: Passive Antenna Reference Design                                            | 39 |
| Figure 18: In-band Interference on GPS L1                                              | 40 |
| Figure 19: Out-of-band Interference on GPS L1                                          | 41 |
| Figure 20: Interference Source and Its Path                                            | 42 |
| Figure 21: Recommended Footprint                                                       | 43 |
| Figure 22: Top, Side and Bottom View Dimensions                                        | 49 |
| Figure 23: Top and Bottom Module Views                                                 | 50 |
| Figure 24: Carrier Tape Dimension Drawing                                              | 51 |
| Figure 25: Plastic Reel Dimension Drawing                                              | 52 |
| Figure 26: Mounting Direction                                                          | 52 |
| Figure 27: Packaging Process                                                           | 53 |
| Figure 28: Recommended Reflow Soldering Thermal Profile                                | 55 |
| Figure 29: Labelling Information                                                       | 57 |



# 1 Product Description

### 1.1. Overview

Quectel LC76G series module supports multiple global positioning constellations, such as GPS, GLONASS, Galileo, BDS and QZSS. The modules also support SBAS (including WAAS, EGNOS, MSAS and GAGAN) and AGNSS functions. The LC76G series comprises three variants: LC76G (AB), LC76G (PA) and LC76G (PB).

### **Key features:**

- The single-band, multi-constellation GNSS module series features a high-performance, high reliability positioning engine facilitating fast and precise GNSS positioning.
- The LC76G (AB) is designed to meet standard application requirements while operating at 3.3 V, while the LC76G (PA) and the LC76G (PB) are super low power consumption variants operating at 3.3 V and 1.8 V respectively.
- Supported serial communication interfaces: UART, SPI\* and I2C.
- Supported advanced power saving modes: Backup mode and ALP mode.
- The embedded low-power algorithms make the LC76G series module suitable for different application scenarios.
- EASY technology facilitates achieving a faster Time to First Fix (TTFF) in either hot or warm start.
- The integrated flash memory provides the capacity for storing user-specific configurations and future firmware upgrades.

The LC76G is a series of SMD type modules with a compact form factor of 10.1 mm  $\times$  9.7 mm  $\times$  2.4 mm. They can be embedded in your applications through 18 LCC pins and 10 LGA pins.

The LC76G series is fully compliant with the EU RoHS Directive.

### **NOTE**

Where applicable, this document will use the words module/modules when referring to common attributes and LC76G (AB), LC76G (PA) and LC76G (PB) when referring to attributes associated with a particular subset of module.



### 1.1.1. Special Marks

**Table 1: Special Marks** 

| Mark | Definition                                                                                                                                                                                                                                                                                                                |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *    | Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, or argument, indicates that the function, feature, interface, pin, or argument is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable. |
| •    | The symbol indicates that a function or technology is supported by the module(s).                                                                                                                                                                                                                                         |

### 1.2. Features

**Table 2: Product Features** 

| Features       |                         | LC76G (AB) | LC76G (PA) | LC76G (PB) |
|----------------|-------------------------|------------|------------|------------|
| Grade          | Industrial              | •          | •          | •          |
| Grade          | Automotive              | -          | -          | -          |
|                | Standard Precision GNSS | •          | •          | •          |
|                | High Precision GNSS     | -          | -          | -          |
| Category       | DR                      | -          | -          | -          |
|                | RTK                     | -          | -          | -          |
|                | Timing                  | -          | -          | -          |
| VCC Voltage    | 2.55–3.6 V, Typ. 3.3 V  | •          | •          | -          |
| VCC Voltage    | 1.75–1.98 V, Typ. 1.8 V | -          | -          | •          |
| V DCVD Voltage | 1.65–3.6 V, Typ. 3.3 V  | •          | •          | -          |
| V_BCKP Voltage | 1.65–3.6 V, Typ. 1.8 V  | -          | -          | •          |
| I/O Voltage    | Following VCC           | •          | •          | •          |
| Communication  | UART                    | •          | •          | •          |
| Interfaces     | SPI*                    | •          | •          | •          |



| Features                     |                     | LC76G (AB) | LC76G (PA) | LC76G (PB) |          |
|------------------------------|---------------------|------------|------------|------------|----------|
|                              | I2C                 |            | •          | •          | •        |
|                              | CAN                 |            | -          | -          | -        |
|                              | USB                 |            | -          | -          | -        |
|                              | Additional LNA      |            | •          | •          | •        |
|                              | Additional Fil      | ter        | •          | •          | •        |
| Integrated<br>Features       | RTC Crystal         |            | •          | •          | •        |
|                              | TCXO Oscilla        | ator       | •          | •          | •        |
|                              | 6-axis IMU          |            | -          | -          | -        |
|                              | Number of C<br>GNSS | oncurrent  | 4 + QZSS   | 4 + QZSS   | 4 + QZSS |
|                              |                     | L1 C/A     | •          | •          | •        |
|                              | GPS                 | L5         | -          | -          | -        |
|                              |                     | L2C        | -          | -          | -        |
|                              | CLONACC             | L1         | •          | •          | •        |
|                              | GLONASS             | L2         | -          | -          | -        |
|                              |                     | E1         | •          | •          | •        |
|                              | Galileo             | E5a        | -          | -          | -        |
| Constellations and Frequency |                     | E5b        | -          | -          | -        |
| Bands                        | BDS                 | B1I        | •          | •          | •        |
|                              |                     | B1C        | •          | •          | •        |
|                              |                     | B2a        | -          | -          | -        |
|                              |                     | B2I        | -          | -          | -        |
|                              | _                   | L1 C/A     | •          | •          | •        |
|                              | QZSS                | L5         | -          | -          | -        |
|                              |                     | L2C        | -          | -          | -        |
|                              | NavIC               | L5         | -          | -          | -        |
|                              | SBAS                | L1         | •          | •          | •        |



| Features        | LC76G (AB) LC76G (PA) LC76G (PB)                        |  |  |  |
|-----------------|---------------------------------------------------------|--|--|--|
| Temperature     | ature Operating temperature range: -40 °C to +85 °C     |  |  |  |
| Range           | Storage temperature range: -40 °C to +90 °C             |  |  |  |
| Physical        | Size: (10.1 ±0.15) mm × (9.7 ±0.15) mm × (2.4 ±0.20) mm |  |  |  |
| Characteristics | Weight: Approx. 0.5 g                                   |  |  |  |

NOTE

For more information about GNSS constellation configuration, see <u>document [1] protocol specification</u>.

### 1.3. Performance

**Table 3: Product Performance** 

| Parameter                                       | Specification | LC76G (AB)          | LC76G (PA)           | LC76G (PB)          |
|-------------------------------------------------|---------------|---------------------|----------------------|---------------------|
|                                                 | Acquisition   | 36 mA<br>(118.8 mW) | 10 mA<br>(33 mW)     | 15 mA<br>(27 mW)    |
| Power Consumption <sup>1</sup> (GPS + GLONASS + | Tracking      | 36 mA<br>(118.8 mW) | 10 mA<br>(33 mW)     | 15 mA<br>(27 mW)    |
| Galileo + BDS + QZSS)                           | ALP mode      | 13 mA<br>(42.9 mW)  | 5.5 mA<br>(18.15 mW) | 7.5 mA<br>(13.5 mW) |
|                                                 | Backup Mode   | 13 μA<br>(42.9 μW)  | 13 μΑ<br>(42.9 μW)   | 13 μΑ<br>(23.4 μW)  |
| Sensitivity                                     | Acquisition   | -147 dBm            | -147 dBm             | -147 dBm            |
| (GPS + GLONASS +<br>Galileo + BDS + QZSS)       | Reacquisition | -159 dBm            | -159 dBm             | -159 dBm            |
|                                                 | Tracking      | -166 dBm            | -166 dBm             | -166 dBm            |
|                                                 | Cold Start    | 28 s                | 28 s                 | 28 s                |
| TTFF <sup>1</sup> (without AGNSS)               | Warm Start    | 25 s                | 25 s                 | 25 s                |
|                                                 | Hot Start     | 1 s                 | 1 s                  | 1 s                 |
| TTFF <sup>2</sup> (with EASY)                   | Cold Start    | 15 s                | 15 s                 | 15 s                |
| ,                                               | Warm Start    | 2 s                 | 2 s                  | 2 s                 |

<sup>&</sup>lt;sup>1</sup> Room temperature, all satellites at -130 dBm.

<sup>&</sup>lt;sup>2</sup> Open-sky, active high precision GNSS antenna.



| Parameter                            | Specification                     | LC76G (AB)                    | LC76G (PA) | LC76G (PB) |  |  |  |
|--------------------------------------|-----------------------------------|-------------------------------|------------|------------|--|--|--|
|                                      | Hot Start                         | 1 s                           | 1 s        | 1 s        |  |  |  |
| TTFF <sup>2</sup> (with EPO)         | Cold Start                        | 5 s                           | 5 s        | 5 s        |  |  |  |
| Horizontal Position Accurac          | Cy <sup>3</sup>                   | 1.5 m                         | 1.5 m      | 1.5 m      |  |  |  |
| Update Rate                          |                                   | 1 Hz (Default);<br>Max. 10 Hz | 1 Hz       | 1 Hz       |  |  |  |
| Accuracy of 1PPS Signal <sup>1</sup> | RMS                               | 30 ns                         | 30 ns      | 30 ns      |  |  |  |
|                                      | 3σ                                | 70 ns                         | 70 ns      | 70 ns      |  |  |  |
| Velocity Accuracy <sup>1</sup>       | Without Aid: 0.1 m/s              |                               |            |            |  |  |  |
| Acceleration Accuracy 1              | Without Aid: 0.1 m/s <sup>2</sup> |                               |            |            |  |  |  |
|                                      | Maximum Altitude: 10000 m         |                               |            |            |  |  |  |
| Dynamic Performance <sup>1</sup>     | Maximum Velocity: 500 m/s         |                               |            |            |  |  |  |
|                                      | Maximum Acceleration: 4g          |                               |            |            |  |  |  |

# 1.4. Block Diagram

A block diagram of the module is presented below. It includes a front-end section with an additional LNA and SAW filter. Other parts of the module include a TCXO, an XTAL and a GNSS IC with a PMU.



Figure 1: Block Diagram

\_

<sup>&</sup>lt;sup>3</sup> CEP, 50 %, 24 hours static, -130 dBm, more than 6 SVs.



### 1.5. GNSS Constellations

The module is a single-band GNSS receiver that can concurrently track signals from up to 4 GNSS constellations. Owing to its RF front-end architecture, it can concurrently track the following GNSS constellations: GPS, GLONASS, Galileo, BDS, and QZSS, plus SBAS satellites. If an intense low power consumption is the application's main a key factor, then the module can be configured for a subset of these 4 GNSS constellations.

QZSS is a regional navigation satellite system that transmits signals compatible with the GPS L1 C/A, L1C, L2C and L5 signals for the Pacific region covering Japan and Australia. The module can detect and track QZSS L1 C/A signal concurrently with GPS signals, leading to better availability especially under challenging conditions, e.g., in dense urban canyons.

**Table 4: GNSS Constellations and Frequency Bands** 

| System  | Signal                                               |
|---------|------------------------------------------------------|
| GPS     | L1 C/A: 1575.42 MHz                                  |
| GLONASS | L1: 1602 MHz + K × 562.5 kHz, K= (-7 to +6, integer) |
| Galileo | E1: 1575.42 MHz                                      |
| BDS     | B1I: 1561.098 MHz<br>B1C: 1575.42 MHz                |
| QZSS    | L1 C/A: 1575.42 MHz                                  |

# 1.6. Augmentation System

#### 1.6.1. SBAS

The module supports SBAS signal reception. By augmenting primary GNSS constellations with additional satellite-broadcast messages, the system improves the accuracy and reliability of GNSS information by correcting signal measurement errors and providing information about signal accuracy, integrity, continuity and availability. SBAS transmits signals for ranging or distance measurement, thus further improving availability. Supported SBAS systems are WAAS, EGNOS, MSAS and GAGAN.



### **1.7. AGNSS**

The module supports AGNSS feature that significantly improves the module's TTFF, especially under lower signal conditions. To implement the AGNSS feature, the module should get the assistance data including the current time and rough position. For more information, see <u>document [2] AGNSS</u> application note.

#### 1.7.1. EASY

The module supports the EASY technology to improve TTFF by providing ancillary information, such as ephemeris and almanac.

The EASY technology works as an embedded software to reduce the TTFF duration by predicting satellite navigation messages from the received ephemeris. After receiving the broadcast ephemeris for the first time, the GNSS engine automatically calculates and predicts the orbit information for up to 3 subsequent days, and saves the predicted information in the internal memory. The GNSS engine will use the information for positioning if there is not enough information from satellites, resulting in improved positioning and TTFF.

The EASY function can improve the TTFF to 2 s in warm start. In this case, the backup domain should still be valid. To obtain enough broadcast ephemeris information from GNSS satellites, in strong-signal environments the GNSS module should keep tracking the information for at least 5 minutes after fixing the position.

The EASY function is enabled by default and it can be disabled by using the **\$PAIR490** command. For more information about the command, see <u>document [1] protocol specification</u>.

### 1.7.2. EPO

The module features a leading AGNSS technology called EPO, which assists the receiver to reduce the TTFF, and it's valid for up to 14 days. For more information about EPO, see <u>document [2] AGNSS</u> <u>application note</u>.

### 1.8. Multi-Tone AIC

The module includes a function called multi-tone Active Interference Cancellation (AIC), which is used to reduce the harmonic distortion of RF signals from Wi-Fi, Bluetooth, 2G, 3G, 4G and 5G networks.

Up to 12 AIC tones embedded in the module provide effective narrow-band interference and jamming elimination. Thus, the GNSS signal could be demodulated from the jammed signal, which can ensure a



better navigation quality.

The AIC function is enabled by default, and it can be disabled by using the **\$PAIR074** command. For more information, see <u>document [1] protocol specification</u>.

### 1.9. Geofencing

The module supports geofence areas, defined on the Earth's surface using a 2D model. Geofencing is active when at least one geofence area is defined. The current status can be found by polling the receiver. The receiver evaluates whether its current location is within a defined GEOFNECE region or not and signals its status via the GEOFENCE pin. The geofencing feature can be configured using the **\$PAIR890** command. The feature is activated once one or more geofences has been configured.

For more information about geofencing configuration, see <u>document [1] protocol specification</u>.

### 1.10. Firmware Upgrade

The module is delivered with preprogrammed firmware. Quectel may release firmware versions that contain bug fixes or performance optimizations. It is highly important to implement a firmware upgrade mechanism in your system. A firmware upgrade is the process of transferring a binary file image to the receiver and storing it in non-volatile flash. For more information, see <u>document [3] firmware upgrade guide</u>.



# 2 Pin Assignment

The module is equipped with 28 pins (18 LCC pins and 10 LGA pins) by which it can be mounted on your PCB.



Figure 2: Pin Assignment



**Table 5: I/O Parameter Definition** 

| Туре | Description          |
|------|----------------------|
| Al   | Analog Input         |
| DI   | Digital Input        |
| DO   | Digital Output       |
| DIO  | Digital Input/Output |
| PI   | Power Input          |
| PO   | Power Output         |

### **Table 6: Pin Description**

| Function | Name   | No. | I/O                  | Description                                                                                                                       | DC Characteristics                                                                                                               | Remarks                                                                                                              |
|----------|--------|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| VCC      | 8      | PI  | Main power<br>supply | For LC76G (AB, PA):  Vimin = 2.55 V  Vinom = 3.3 V  Vimax = 3.6 V  For LC76G (PB):  Vimin = 1.75 V  Vinom = 1.8 V  Vimax = 1.98 V | Provides clean and steady voltage.                                                                                               |                                                                                                                      |
| Power    | V_BCKP | 6   | PI                   | Backup power<br>supply for<br>backup domain                                                                                       | For LC76G (AB, PA):  Vimin = 1.65 V  Vinom = 3.3 V  Vimax = 3.6 V  For LC76G (PB):  Vimin = 1.65 V  Vinom = 1.8 V  Vimax = 3.6 V | V_BCKP must be connected to power supply for startup, and it should always be powered if hot (warm) start is needed. |
| I/O      | TXD    | 2   | DO                   | Transmits data                                                                                                                    | For LC76G (AB, PA):  Volmax = 0.4 V  Vohmin = 2.4 V  For LC76G (PB):  Volmax = 0.27 V  Vohmin = 1.53 V                           | UART interface supports RTCM message, standard NMEA message, PAIR/PQTM message, binary data and firmware upgrade.    |



| Function | Name      | No. | I/O | Description                       | DC Characteristics                                                                                                                                                                                                                                                                                               | Remarks                                                                                                                                                        |
|----------|-----------|-----|-----|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | RXD       | 3   | DI  | Receives data                     | For LC76G (AB, PA):  V <sub>IL</sub> min = -0.3 V  V <sub>IL</sub> max = 0.8 V  V <sub>IH</sub> min = 2 V  V <sub>IH</sub> max = VCC + 0.3 V  For LC76G (PB):                                                                                                                                                    |                                                                                                                                                                |
|          | D_SEL     | 24  | DI  | Selects the interface to download |                                                                                                                                                                                                                                                                                                                  | D_SEL is internally pulled down by default. High level: select SPI to download; Low level: select UART to download.                                            |
|          | SPI_CLK*  | 25  | DI  | SPI clock                         | V <sub>IL</sub> min = -0.3 V                                                                                                                                                                                                                                                                                     | SPI supports RTCM                                                                                                                                              |
|          | SPI_CS*   | 20  | DI  | SPI chip-select                   | $V_{IL}$ max = 0.45 V<br>$V_{IH}$ min = 1.35 V                                                                                                                                                                                                                                                                   |                                                                                                                                                                |
|          | SPI_MOSI* | 27  | DI  | SPI master out; slave in          | V <sub>IH</sub> max = VCC + 0.3 V                                                                                                                                                                                                                                                                                | message, standard NMEA message, PAIR/PQTM                                                                                                                      |
|          | SPI_MISO* | 26  | DO  | SPI master in;<br>slave out       | For LC76G (AB, PA): message and fir upgrade. In this $V_{OHmin} = 2.4 \text{ V}$ module requires SPI (SPI_MOSI,                                                                                                                                                                                                  | message and firmware upgrade. In this case, the module requires a four-wire SPI (SPI_MOSI, SPI_MISO, SPI_CLK and SPI_CS).                                      |
|          | I2C_SCL   | 17  | DI  | I2C serial clock                  | For LC76G (AB, PA):  V <sub>IL</sub> min = -0.3 V                                                                                                                                                                                                                                                                |                                                                                                                                                                |
|          | I2C_SDA   | 16  | DIO | I2C serial data                   | $V_{IL}max = 0.8 \text{ V}$ $V_{IH}min = 2 \text{ V}$ $V_{IH}max = \text{VCC} + 0.3 \text{ V}$ $V_{OL}max = 0.4 \text{ V}$ $V_{OH}min = 2.4 \text{ V}$ $For LC76G \text{ (PB)}:$ $V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.45 \text{ V}$ $V_{IH}min = 1.35 \text{ V}$ $V_{IH}max = \text{VCC} + 0.3 \text{ V}$ | I2C interface supports RTCM message, standard NMEA message and PAIR/PQTM message.                                                                              |
|          | GEOFENCE  | 21  | DO  | Indicates<br>geofence status      | $V_{OL}$ max = 0.27 V<br>$V_{OH}$ min = 1.53 V<br>For LC76G (AB, PA):<br>$V_{OL}$ max = 0.4 V<br>$V_{OH}$ min = 2.4 V<br>For LC76G (PB):<br>$V_{OL}$ max = 0.27 V<br>$V_{OH}$ min = 1.53 V                                                                                                                       | Once the pin is activated, the receiver continuously compares its current position to the preset geofence area.  If unused, leave the pin N/C (not connected). |



| Function | Name     | No.                                                                        | I/O                                       | Description                                                                          | DC Characteristics                                                                                                                                                                                                                                                                | Remarks                                                                                                                            |
|----------|----------|----------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|          | JAM_IND* | JAM_IND* 22 DO Jamming For LC76G (AB, PA): indication $V_{OL}$ max = 0.4 V |                                           | If unused, leave the pin N/C.                                                        |                                                                                                                                                                                                                                                                                   |                                                                                                                                    |
|          | 1PPS     | 4                                                                          | DO                                        | One pulse per second                                                                 | V <sub>OH</sub> min = 2.4 V                                                                                                                                                                                                                                                       | Synchronized on the rising edge.                                                                                                   |
|          | 3D_FIX*  | 23                                                                         | DO                                        | 3D position fix indication                                                           | For LC76G (PB):  VoLmax = 0.27 V  VoHmin = 1.53 V                                                                                                                                                                                                                                 | If unused, leave the pin N/C.  If unused, leave the pin N/C.                                                                       |
|          | RF_IN    | 11                                                                         | Al                                        | GNSS antenna interface                                                               | -                                                                                                                                                                                                                                                                                 | 50 Ω characteristic impedance.                                                                                                     |
| ANT      | ANT_ON   | 13                                                                         | DO                                        | Power control<br>for external LNA<br>or active<br>antenna in<br>power saving<br>mode | For LC76G (AB, PA):  VoLmax = 0.4 V  VoHmin = 2.4 V  For LC76G (PB):  VoLmax = 0.27 V  VoHmin = 1.53 V                                                                                                                                                                            | The pin outputs high-level signal in Continuous and ALP modes, and low-level signal in Backup mode.  If unused, leave the pin N/C. |
| VDD_RF   | 14       | РО                                                                         | Supplies power for external RF components | Vonom = VCC                                                                          | VDD_RF = VCC. The output current capacity depends on VCC.  Typically used for powering an external active antenna or LNA.  If unused, leave the pin N/C.                                                                                                                          |                                                                                                                                    |
| System   | RESET_N  | 9                                                                          | DI                                        | Resets the module                                                                    | For LC76G (AB, PA):  V <sub>IL</sub> min = -0.3 V  V <sub>IL</sub> max = 0.45 V  V <sub>IH</sub> min = 1.8 V  V <sub>IH</sub> max = 3.6 V  For LC76G (PB):  V <sub>IL</sub> min = -0.3 V  V <sub>IL</sub> max = 0.45 V  V <sub>IH</sub> min = 1.35 V  V <sub>IH</sub> max = 2.1 V | Active low. The pin belongs to the backup domain.                                                                                  |
| GND      | GND      | 1,<br>10,<br>12,<br>28                                                     | -                                         | Ground                                                                               |                                                                                                                                                                                                                                                                                   | Ensure a good GND connection to all module GND pins, preferably with a large ground plane.                                         |
| RESERVED | RESERVED | 5, 7,<br>15,<br>18,<br>19                                                  | -                                         | Reserved                                                                             | -                                                                                                                                                                                                                                                                                 | These pins must be left floating and cannot be connected to power or GND.                                                          |



### **NOTE**

- 1. To ensure that the module enters the normal operating mode, it is necessary that GEOFENCE and 3D\_FIX\* pins cannot be pulled up within 50 ms after the module is reset or powered on.
- 2. Leave RESERVED and unused pins N/C.



# 3 Power Management

The module features a power optimized architecture with a built-in autonomous energy saving capabilities. To minimize power consumption at any given time, the receiver can operate at one of the three operating modes: ALP mode and Backup mode for optimum power consumption, and Continuous mode for optimum performance.

### 3.1. Power Unit

VCC is the supply voltage pin of the module. It supplies the PMU which in turn supplies the entire system. The load current of the VCC pin varies according to VCC voltage level, processor load and satellite acquisition. It is important to supply sufficient current and make sure the power supply is clean and stable.

The V\_BCKP pin supplies the backup domain, which includes RTC and RAM. To achieve quick startup and improve TTFF duration, the backup domain power supply should be valid. If the VCC is not valid, the V\_BCKP is powering the RAM section that contains all the necessary GNSS data and some of the user configuration variables.

VDD\_RF is an output pin equal in voltage to the VCC input. In Continuous mode, VDD\_RF supplies for the external active antenna or the LNA. Only if VCC is cut off, VDD\_RF is turned off.

The module's internal power supply is shown below:



Figure 3: Internal Power Supply



### 3.2. Power Supply

### 3.2.1. VCC

The VCC is the supply voltage pin that provides power to the BB and RF sections.

Module power consumption may vary by several orders of magnitude, especially when a power saving mode is enabled. Therefore, it is important that the power supply is able to sustain peak power for a short time, ensuring that the load current does not exceed the rated value. When the module starts up or switches from the Backup mode to the Continuous mode, VCC must charge the internal capacitors in the core domain. In some cases, this can lead to a significant current drain.

For low-power applications using power saving mode, it is important that the LDO at the power supply or module input can provide the sufficient current. An LDO with a high PSRR should be chosen for optimum performance. In addition, a TVS, and a combination of a 10  $\mu$ F, a 100 nF and a 33 pF decoupling capacitor should be added near the VCC pin. The lowest value capacitor should be the closest to module pins.

It is not recommended to use a switching DC-DC converter.



Figure 4: VCC Input Reference Circuit

### NOTE

Ensure the module VCC is controlled by MCU to save power, or restart the module when it enters an abnormal state.

### 3.2.2. **V\_BCKP**

The V\_BCKP pin supplies the backup domain. Use of valid time and GNSS orbit data at startup allows GNSS hot (warm) start. V\_BCKP must be connected to power supply for startup, and it should always be powered if hot (warm) start is needed.



If there is a constant power supply in your system, it can be used to provide a suitable voltage to power V BCKP.

For LC76G (AB) and LC76G (PA), it is recommended to use an external rechargeable battery for  $V_BCKP$  and place the battery with a TVS and a combination of a 4.7  $\mu F$ , a 100 nF and a 33 pF capacitor near the  $V_BCKP$  pin. The reference charging circuit is illustrated below.



Figure 5: LC76G (AB, PA) Reference Charging Circuit with Rechargeable Backup Battery

For LC76G (PB), it is recommended to use a power supply of 1.8 V for V\_BCKP and place a TVS and a combination of a 4.7  $\mu$ F, a 100 nF and a 33 pF capacitor near the V\_BCKP pin. The reference circuit is illustrated below.



Figure 6: LC76G (PB) Reference Power Supply Circuit



V\_BCKP on LC76G (AB), LC76G (PA) and LC76G (PB) can also be powered by a 3.7 V lithium battery, as shown below.



Figure 7: LC76G (AB, PA, PB) Reference Power Supply Circuit with 3.7 V Lithium Battery

### NOTE

- 1. Connect the V\_BCKP pin to VCC when backup supply voltage is unavailable.
- 2. In the Continuous mode, the maximum current consumption of V\_BCKP exceeds 100 μA, which will deplete the battery. Therefore, it is not recommended to use a non-rechargeable battery.
- 3. If V\_BCKP is below the minimum recommended operating voltage, the module cannot work normally.
- 4. To limit the charging current and maintain the performance of the rechargeable battery, it is necessary to select 1  $k\Omega$  current-limiting resistor. The required specific resistance depends on the battery chosen for your application.
- 5. It is recommended to control the module V\_BCKP via MCU to restart the module when the module enters an abnormal state.



### 3.3. Power Modes

### 3.3.1. Feature Comparison

The module features supported in different modes are listed in the table below.

**Table 7: Feature Comparison in Different Power Modes** 

| Features               | Continuous | Backup | ALP    |
|------------------------|------------|--------|--------|
| NMEA/RTCM from UART    | •          | -      | •      |
| 1PPS                   | •          | -      | •      |
| RF                     | •          | -      | •      |
| Acquisition & Tracking | •          | -      | •      |
| Power Consumption      | High       | Low    | Low    |
| Position Accuracy      | High       | -      | Medium |

### 3.3.2. Continuous Mode

If VCC and V\_BCKP are powered on, the module automatically enters the Continuous mode that comprises acquisition mode and tracking mode. In acquisition mode, the module starts to search satellites, and to determine visible satellites, coarse frequency, as well as the code phase of satellite signals. When the acquisition is completed, the module automatically switches to tracking mode. In tracking mode, the module tracks satellites and demodulates the navigation data from specific satellites.

### 3.3.3. ALP Mode

The ALP mode refers to Adaptive Low Power mode. It is currently only available under the normal operating mode. Moreover, some of the features, such as SBAS, will be automatically disabled.

- To enter ALP mode: Send the **\$PAIR732,1\*21** command.
- To exit ALP mode: Send the \$PAIR732,0\*20 command.

For details of the relevant software command, see <u>document [1] protocol specification</u>.



### 3.3.4. Backup Mode

For power-sensitive applications, the receiver supports Backup mode to reduce power consumption. Only backup domain is active in Backup mode and it keeps track of time.

- To enter Backup mode:
  - 1. Send the \$PAIR650,0\*25 command to shut down internal main power supply in sequence.
  - 2. Cut off the power supply of the VCC pin and keep the V\_BCKP powered.
- To exit Backup mode:
  - 1. Restore VCC power supply.
  - 2. Drive the RESET\_N low for at least 100 ms.

For details of the relevant software command, see <u>document [1] protocol specification</u>.



Figure 8: Enter/Exit Backup Mode Sequence

# NOTE

- 1. The **\$PAIR650,0\*25** command must be sent; to ensure hot (warm) start of the module at the next startup, V\_BCKP must be kept powered.
- Ensure a stable V\_BCKP voltage without rush or drop when the VCC is switched on or off.
- 3. For LC76G (AB), if you only send the **\$PAIR650,0\*25** command without cutting off VCC, exit Backup mode by pulling RESET\_N low for at least 100 ms.
- 4. For LC76G (PA) and LC76G (PB), the VCC must be cut off to enter Backup mode; otherwise, the power consumption will be at mA level.
- 5. If you cut off module power supply directly without sending the **\$PAIR650,0\*25** command first, then the module will not enter the Backup mode normally. In this case, the module will be in an undefined state and the power consumption is going to be higher, about 30 μA.



### 3.4. Power-up Sequence

Once the VCC and V\_BCKP are powered up, the module starts up automatically and the voltage should rise rapidly in less than 50 ms.

To ensure the correct power-up sequence, the backup unit should start up no later than the PMU. Therefore, the V\_BCKP must be powered simultaneously with the VCC or before it.

Ensure that the VCC and  $V_BCKP$  have no rush or drop during rising time, and then keep them stable. The recommended ripple is < 50 mV.



Figure 10: Power-up Sequence

# 3.5. Power-down Sequence

Once the VCC and V\_BCKP are shut down, the module turns off automatically and voltage should drop quickly in less than 50 ms.

To avoid abnormal voltage condition, if VCC and V\_BCKP fall below the minimum specified value, the system must initiate a power-on restart by lowering VCC and V\_BCKP to less than 100 mV for at least 1 s.





Figure 1: Power-down and Power-on Restart Sequence



# **4** Application Interfaces

### 4.1. I/O Pins

### 4.1.1. Communication Interfaces

The following interfaces can be used for data reception and transmission.

### 4.1.1.1. Interface Selection (D SEL)

The D\_SEL pin is internally pulled down by default and the UART is selected to download. If SPI is selected to download, pull the D\_SEL pin up externally with a 10 k $\Omega$  resistor.

### 4.1.1.2. UART Interface

The module has one UART interface with the following features:

- Supports RTCM message, standard NMEA message, PAIR/PQTM message, binary data and firmware upgrade.
- Supported baud rates: 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600 bps.
- Hardware flow control and synchronous operation are not supported.

For more information, see <u>document [1] protocol specification</u>.



Figure 2: UART Interface Reference Design



A reference design is shown in the figure above. For more information, see <u>document [4] reference</u> <u>design</u>.

### NOTE

- 1. UART interface default settings may vary depending on software version. See the relevant software versions for details.
- 2. If the I/O voltage of MCU is not matched with the module, a level-shifting circuit must be selected.

### 4.1.1.3. SPI\*

The module has one SPI with the following features:

- Supports RTCM message, standard NMEA message, PAIR/PQTM message and firmware upgrade.
- Operates in slave mode.
- Fixed data frame size of 8 bits.

For more information, see <u>document [1] protocol specification</u>.



Figure 3: SPI Reference Design

A reference design is shown in the figure above. For more information, see <u>document [4] reference</u> <u>design</u>.

### **NOTE**

If the I/O voltage of MCU is not matched with that of the module, a level-shifting circuit must be selected.



#### 4.1.1.4. I2C Interface

The module has one I2C interface with the following features:

- Supports RTCM message, standard NMEA message and PAIR/PQTM message.
- Supports standard mode (100 kbps) and fast mode (400 kbps).
- Operates in slave mode.
- Support 7-bit address.
- Open-drain output.

For more information, see <u>document [1] protocol specification</u>.



Figure 4: I2C Interface Reference Design

A reference design is shown in the figure above. For more information, see <u>document [4] reference</u> <u>design</u>.



If the I/O voltage of MCU is not matched with that of the module, a level-shifting circuit must be selected.

### 4.1.2. GEOFENCE

The GEOFENCE pin indicates the current geofence status. Geofence configurations including geofence area(s) can be set using the **\$PAIR890** command. The receiver continuously compares its current position to the preset geofence area(s) and the pin reflects whether the receiver is inside the active area(s) or not. It outputs a high logic level voltage to indicate the receiver is inside the geofence area(s). For more information, see *document* [1] protocol specification.



### **NOTE**

Once the module is powered on, the level of the pin affects the internal configuration due to the internal mechanism of the module. To ensure that the module enters the normal operation mode, it is necessary that the pin cannot be pulled up within 50 ms of the module being reset or powered on.

### 4.1.3. JAM IND\*

In case of jamming that may interfere with the desired signal(s), the JAM\_IND pin outputs a low-level signal; otherwise, it outputs a high-level signal.

### 4.1.4. 3D\_FIX\*

The 3D\_FIX pin is at a low level by default and assigned as a fix flag output. It outputs a high logic level voltage to indicate a successful 3D position fix.

### NOTE

When the module is powered on, the level of the pin will affect the internal configuration due to the internal mechanism of the module. To ensure that the module enters the normal operation mode, it is necessary that the pin cannot be pulled up within 50 ms of the module being reset or powered on.

### 4.1.5. 1PPS

The 1PPS output pin can be used for time pulse signals, it generates one pulse per second periodic signal synchronized with a GNSS time grid with intervals. Maintaining high accuracy of 1PPS requires visible satellites in an open sky environment and powered VCC. See <u>Table 3: Product Performance</u> for details about pulse accuracy.

### 4.2. System Pin

### 4.2.1. **RESET\_N**

RESET\_N is an input pin. The module can be reset by driving the RESET\_N pin low for at least 100 ms and then releasing it.

By default, the RESET\_N pin is pulled up internally to 1.8 V with a 10 k $\Omega$  resistor, thus no external pull-up circuit is allowed for this pin.

The reference circuit shown below is recommended to control the RESET\_N pin.





Figure 5: Reference Circuit for Module Reset

The following figure shows the reset sequence of the module.



Figure 6: Reset Sequence

### **NOTE**

The module's RESET\_N pin must be connected to the MCU so that it can be used to reset the module if it enters an abnormal state.



# **5** Design

This chapter explains the reference design of RF section and recommended footprint of the module.

### 5.1. Antenna Selection

### 5.1.1. Antenna Specifications

The module can be connected to a dedicated passive or an active single-band GNSS antenna to receive GNSS satellite signals. The recommended antenna specifications are listed in the table below.

**Table 8: Recommended Antenna Specifications** 

| Antenna Type    | Specifications                        |
|-----------------|---------------------------------------|
|                 | Frequency Range: 1559–1606 MHz        |
| Passive Antenna | Polarization: RHCP                    |
| Passive Antenna | VSWR: < 2 (Typ.)                      |
|                 | Passive Antenna Gain: > 0 dBi         |
|                 | Frequency Range: 1559–1606 MHz        |
|                 | Polarization: RHCP                    |
| Active Antenna  | VSWR: < 2 (Typ.)                      |
| Active Antenna  | Passive Antenna Gain: > 0 dBi         |
|                 | Active Antenna Noise Figure: < 1.5 dB |
|                 | Active Antenna Total Gain: < 17 dB    |

### NOTE

- 1. For recommended antenna and design, see <u>document [5] GNSS antenna selection guidance</u> or contact Quectel Technical Support (<u>support@Quectel.com</u>).
- 2. The total antenna gain equals the internal LNA gain minus the total insertion loss of cables and components inside the antenna.



### 5.1.2. Antenna Selection Guide

Either an active or a passive single-band GNSS antennas can be used by the module. A passive antenna is recommended if the antenna can be placed close to the module, for instance, when the distance between the module and the antenna is less than 1 m. It is recommended to switch from a passive antenna to an active antenna once the loss is > 1 dB, since the insertion loss of RF cable can decrease the  $C/N_0$  of GNSS signal. For more information about RF layout, see <u>document [6] RF layout application note</u>.

C/N₀ is an important factor for GNSS receivers, and it is defined as the ratio of the received modulated carrier signal power to the received noise power in one Hz bandwidth. C/N₀ formula:

$$C/N_0 = Power of GNSS signal - Thermal Noise - System NF(dB-Hz)$$

The "Power of GNSS signal" is GNSS signal level. In practical environment, the signal level at the earth's surface is about -130 dBm. "Thermal Noise" is -174 dBm/Hz at 290 K. To improve C/N₀ of GNSS signal, an LNA could be added to reduce "System NF".

"System NF", formula:

$$NF = 10 \log F (dB)$$

"F" is the noise factor of receiver system:

$$F = F1 + (F2 - 1)/G1 + (F3 - 1)/(G1 \cdot G2) + \cdots$$

"F1" is the first stage noise factor; "G1" is the first stage gain, etc. This formula indicates that the LNA with enough gain can compensate for the noise factor behind the LNA. In this case, "System NF" depends mainly on the noise figure of components and traces before first stage LNA plus noise figure of the LNA itself. This explains the need for using an active antenna if the antenna connection cable is too long.

## 5.2. Antenna Reference Design

In a complex electromagnetic environment, a SAW filter circuit must be added to the antenna design to further reduce the impact of out-of-band signals on the GNSS module. The SAW filter circuit has a stable suppression effect on all out-of-band signals. In the actual layout, the circuit should be placed close to RF\_IN pin. The recommended SAW in the SAW filter circuit is SAFFB1G56AC0F7F from Murata or B39162B2618P810 from RF360. SAW filter circuit can be selected according to the use case.

### 5.2.1. Active Antenna Reference Design

A typical reference design of an active antenna is illustrated in the following figure. In this case, the antenna is powered by VDD\_RF. To mitigate the impact of out-of-band signals on GNSS module



performance in a complex electromagnetic environment around the module, you must choose the active antenna whose SAW filter is placed in front of the LNA in the internal framework

If VDD\_RF pin supplies the active antenna, it is important to consider the operating voltage range of the antenna and the voltage drop on the power supply circuit. The voltage drop is caused by the resistor (R2) and the inductor (L1) in the external power supply circuit. The minimum operating voltage of the selected active antenna must meet the circuit design characteristics.



Figure 7: Active Antenna Reference Design

C1 is a DC-blocking capacitor used for blocking the DC current from VDD\_RF. The C2, R1, and C3 components are reserved for matching antenna impedance. By default, C1 is 100 pF, R1 is 0  $\Omega$ , and C2 and C3 are not mounted. D1 is an electrostatic discharge (ESD) protection device to protect the RF signal input from the potential damage caused by ESD. The junction capacitance of D1 cannot be more than 0.6 pF and a transient voltage suppressor is recommended.

L1 inductor is used for preventing the RF signal from leaking into VDD\_RF and preventing noise propagation from the VDD\_RF to the antenna. L1 inductor routes the bias voltage to the active antenna without losses. Place L1, C4 and C5 close to the antenna interface and route the proximal end of L1 pad on the RF trace. The recommended value of L1 should be at least 68 nH. R2 resistor is used to protect the module in case the active antenna is short-circuited to the ground plane.

The antenna is always powered when R4 is mounted. When it is not mounted, while Q1, Q2 and R3 are mounted, the antenna power supply can be controlled through ANT\_ON pin. When the pin outputs high level, the antenna is powered; otherwise, the antenna is not powered.



### 5.2.2. Passive Antenna Reference Design

The following figure is a typical reference design of a passive antenna.



Figure 8: Passive Antenna Reference Design

C1, R1, and C2 are reserved for matching antenna impedance. By default, R1 is 0  $\Omega$ , and C1 and C2 are not mounted. D1 is an electrostatic discharge (ESD) protection device to protect the RF signal input from the potential damage caused by ESD. The junction capacitance of D1 cannot be more than 0.6 pF and a transient voltage suppressor is recommended. RF trace impedance should be controlled to 50  $\Omega$  and trace length should be kept as short as possible.

## 5.3. Coexistence with Cellular Systems

Since GNSS signals are usually very weak, a GNSS receiver could be vulnerable to the environmental interference. According to 3GPP specifications, a cellular terminal should transmit a signal of up to 33 dBm at GSM bands, or of about 24 dBm at WCDMA and LTE bands, or of about at 26 dBm at 5G bands. Therefore, coexistence with cellular systems must be optimized to avoid significant deterioration of the GNSS performance.

In a complex communication environment, interference signals can come from in-band and out-of-band signals. Therefore, interference can be divided into two types: in-band interference and out-of-band interference, which are both described in this chapter.

In this chapter, you can also find suggestions for decreasing the impact of interference signals that will ensure the interference immunity of a GNSS receiver.



### 5.3.1. In-band Interference

In-band interference refers to the signal whose frequency is within or near the operating frequency range of a GNSS signal. For example, GPS L1 is centered at 1575.42 MHz with a bandwidth of 2.046 MHz. As shown in the figure below, the frequency of the interfering signal is within the GPS operation band, and the power of the interfering signal is higher than the power of the received GPS signal.

See the following figure for more details.



Figure 9: In-band Interference on GPS L1

The most common in-band interferences usually come from:

- Harmonics, caused by crystals, high-speed signal lines, MCUs, switch-mode power supply etc., or
- Intermodulation from different communication systems.

Common frequency combinations are presented in the table below. The table lists some probable inband interferences generated by two kinds of out-of-band signal intermodulation, or the second harmonic of LTE Band 13.

**Table 9: Intermodulation Distortion (IMD) Products** 

| Source F1      | Source F2      | IM Calculation                        | IMD Products      |
|----------------|----------------|---------------------------------------|-------------------|
| GSM850/Band 5  | Wi-Fi 2.4 GHz  | F2 (2412 MHz) - F1 (837 MHz)          | IMD2 = 1575 MHz   |
| Band 1         | n78            | F2 (3500 MHz) - F1 (1925 MHz)         | IMD2 = 1575 MHz   |
| DCS1800/Band 3 | PCS1900/Band 2 | 2 × F1 (1712.6 MHz) - F2 (1850.2 MHz) | IMD3 = 1575 MHz   |
| PCS1900/Band 2 | Wi-Fi 5 GHz    | F2 (5280 MHz) - 2 x F1 (1852 MHz)     | IMD3 = 1576 MHz   |
| LTE Band 13    | N/A            | 2 × F1 (786.9 MHz)                    | IMD2 = 1573.8 MHz |



### 5.3.2. Out-of-band Interference

Strong signals transmitted by other communication systems can cause a GNSS receiver saturation, thus greatly deteriorating its performance, as illustrated in the following figure. In practical applications, common strong interference signals originate from wireless communication modules, such as GSM, 3G, LTE, 5G, Wi-Fi and Bluetooth.



Figure 20: Out-of-band Interference on GPS L1

### 5.3.3. Ensuring Interference Immunity

There are several things you can do to decrease the impact of interference signals and thus ensure the interference immunity of a GNSS receiver:

- Keep the GNSS antenna away from interference sources;
- Add a band-pass filter in front of the GNSS module;
- Use shielding and multi-layer PCB and ensure adequate grounding;
- Optimize layout and component placement of the PCB and the whole device.

The following figure illustrates the interference source and its possible interference path. A complex communication system usually contains RF power amplifiers, MCUs, crystals, etc. These devices should be far away from a GNSS receiver, or a GNSS module. In particular, shielding should be used to prevent strong signal interference for power amplifiers. The cellular antenna should be placed away from a GNSS receiving antenna to ensure enough isolation. Usually, a good design should provide at least a 20 dB isolation between two antennas. Take DCS1800, for example, the maximum transmitted power of DCS1800 is around 30 dBm. After a 20 dB attenuation, the signal received by the GNSS antenna will be around 10 dBm, which is still too high for a GNSS module. With a GNSS band-pass filter with around 40 dB rejection in front of the GNSS module, the out-of-band signal will be attenuated to -30 dBm.





Figure 1: Interference Source and Its Path



## 5.4. Recommended Footprint

The figure below illustrates module footprint. These are recommendations, not specifications.



Figure 2: Recommended Footprint

NOTE

Maintain at least 3 mm keepout between the module and other components on the motherboard to improve soldering quality and maintenance convenience.



# **6** Electrical Specification

## 6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital pins of the module are listed in table below.

Table 10: Absolute Maximum Ratings for LC76G (AB) and LC76G (PA)

| Parameter           | Description               | Min. | Max. | Unit |
|---------------------|---------------------------|------|------|------|
| VCC                 | Main Power Supply Voltage | -0.3 | 3.63 | V    |
| V_BCKP              | Backup Supply Voltage     | 0    | 3.63 | V    |
| V <sub>IN</sub> _IO | Input Voltage at I/O Pins | -0.3 | 3.63 | V    |
| P <sub>RF_IN</sub>  | Input Power at RF_IN      | -    | 0    | dBm  |
| T_storage           | Storage Temperature       | -40  | 90   | °C   |

Table 11: Absolute Maximum Ratings for LC76G (PB)

| Parameter           | Description               | Min. | Max. | Unit |
|---------------------|---------------------------|------|------|------|
| VCC                 | Main Power Supply Voltage | -0.3 | 1.98 | V    |
| V_BCKP              | Backup Supply Voltage     | 0    | 3.63 | V    |
| V <sub>IN</sub> _IO | Input Voltage at I/O Pins | -0.3 | 1.98 | V    |
| P <sub>RF_IN</sub>  | Input Power at RF_IN      | -    | 0    | dBm  |
| T_storage           | Storage Temperature       | -40  | 90   | °C   |



### **NOTE**

Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. The product is not protected against over-voltage or reversed voltage. Therefore, it is necessary to use appropriate protection diodes to keep voltage spikes within the parameters given in the table above.

## **6.2. Recommended Operating Conditions**

All specifications are at an ambient temperature of +25 °C. Extreme operating temperatures can significantly impact the specified values. Applications operating near the temperature limits should be tested to ensure specification validity.

Table 12: Recommended Operating Conditions for LC76G (AB) and LC76G (PA)

| Parameter           | Description                               | Min. | Тур. | Max.      | Unit |
|---------------------|-------------------------------------------|------|------|-----------|------|
| VCC                 | Main Power Supply Voltage                 | 2.55 | 3.3  | 3.6       | V    |
| V_BCKP              | Backup Supply Voltage                     | 1.65 | 3.3  | 3.6       | V    |
| IO_Domain           | Digital I/O Pin Voltage Domain            | -    | VCC  | -         | V    |
| $V_{IL}$            | Digital I/O Pin Low-level Input Voltage   | -0.3 | -    | 0.8       | V    |
| $V_{\text{IH}}$     | Digital I/O Pin High-level Input Voltage  | 2    | -    | VCC + 0.3 | V    |
| $V_{OL}$            | Digital I/O Pin Low-level Output Voltage  | -    | -    | 0.4       | V    |
| Vон                 | Digital I/O Pin High-level Output Voltage | 2.4  | -    | -         | V    |
| RESET_N             | Low-level Input Voltage                   | -0.3 | -    | 0.45      | V    |
| KESET_N             | High-level Input Voltage                  | 1.8  | -    | 3.6       | V    |
| VDD_RF              | VDD_RF Output Voltage                     | -    | VCC  | -         | V    |
| I <sub>VDD_RF</sub> | VDD_RF Output Current                     | -    | -    | 100       | mA   |
| T_operating         | Operating Temperature                     | -40  | 25   | +85       | °C   |
|                     | 1 3 - 1                                   | -    |      |           |      |



Table 13: Recommended Operating Conditions for LC76G (PB)

| Parameter           | Description                               | Min. | Тур. | Max.      | Unit |
|---------------------|-------------------------------------------|------|------|-----------|------|
| VCC                 | Main Power Supply Voltage                 | 1.75 | 1.8  | 1.98      | V    |
| V_BCKP              | Backup Supply Voltage                     | 1.65 | 1.8  | 3.6       | V    |
| IO_Domain           | Digital I/O Pin Voltage Domain            | -    | VCC  | -         | V    |
| V <sub>IL</sub>     | Digital I/O Pin Low-level Input Voltage   | -0.3 | -    | 0.45      | V    |
| V <sub>IH</sub>     | Digital I/O Pin High-level Input Voltage  | 1.35 | -    | VCC + 0.3 | V    |
| V <sub>OL</sub>     | Digital I/O Pin Low-level Output Voltage  | -    | -    | 0.27      | V    |
| V <sub>OH</sub>     | Digital I/O Pin High-level Output Voltage | 1.53 | -    | -         | V    |
| DECET N             | Low-level Input Voltage                   | -0.3 | -    | 0.45      | V    |
| RESET_N             | High-level Input Voltage                  | 1.35 | -    | 2.1       | V    |
| VDD_RF              | VDD_RF Output Voltage                     | -    | VCC  | -         | V    |
| I <sub>VDD_RF</sub> | VDD_RF Output Current                     | -    | -    | 100       | mA   |
| T_operating         | Operating Temperature                     | -40  | 25   | +85       | °C   |

### **NOTE**

- 1. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
- 2. Digital I/O Pin refers to all digital pins specified in <u>Table 6: Pin Description</u> except RESET\_N.

## 6.3. Supply Current Requirement

The following table lists the supply current values of the total system that may be applied. Actual power requirements may vary depending on processor load, external circuits, firmware version, the number of tracked satellites, signal strength, startup type, test time and conditions.



Table 14: Supply Current for LC76G (AB) Module

| Parameter                                    | Description       | Condition       | I <sub>Typ.</sub> <sup>4</sup> | I <sub>PEAK</sub> <sup>4</sup> |
|----------------------------------------------|-------------------|-----------------|--------------------------------|--------------------------------|
| I <sub>VCC</sub> <sup>5</sup> Current at VCC |                   | Acquisition     | 36 mA                          | 62 mA                          |
|                                              | Tracking          | 36 mA           | 62 mA                          |                                |
|                                              |                   | ALP mode        | 13 mA                          | 43 mA                          |
| I <sub>V_BCKP</sub> <sup>6</sup>             |                   | Continuous mode | 130 μΑ                         | 167 μΑ                         |
|                                              | Current at V_BCKP | ALP mode        | 125 µA                         | 191 μΑ                         |
|                                              |                   | Backup mode     | 13 μΑ                          | 53 μΑ                          |

Table 15: Supply Current for LC76G (PA) Module

| Parameter                        | Description       | Condition       | I <sub>Typ.</sub> <sup>4</sup> | I <sub>PEAK</sub> <sup>4</sup> |
|----------------------------------|-------------------|-----------------|--------------------------------|--------------------------------|
| I <sub>VCC</sub> <sup>5</sup> Cu |                   | Acquisition     | 10 mA                          | 19 mA                          |
|                                  | Current at VCC    | Tracking        | 10 mA                          | 19 mA                          |
|                                  |                   | ALP mode        | 5.5 mA                         | 18 mA                          |
| I <sub>V_BCKP</sub> <sup>6</sup> | Current at V_BCKP | Continuous mode | 127 μΑ                         | 190 μΑ                         |
|                                  |                   | ALP mode        | 122 μΑ                         | 182 μΑ                         |
|                                  |                   | Backup mode     | 13 μΑ                          | 46 μΑ                          |

Table 16: Supply Current for LC76G (PB) Module

| Parameter                                    | Description       | Condition       | I <sub>Typ.</sub> <sup>4</sup> | I <sub>PEAK</sub> <sup>4</sup> |
|----------------------------------------------|-------------------|-----------------|--------------------------------|--------------------------------|
| I <sub>VCC</sub> <sup>5</sup> Current at VCC |                   | Acquisition     | 15 mA                          | 28 mA                          |
|                                              | Current at VCC    | Tracking        | 15 mA                          | 28 mA                          |
|                                              |                   | ALP mode        | 7.5 mA                         | 25 mA                          |
| I <sub>V_BCKP</sub> <sup>6</sup>             | Current at V_BCKP | Continuous mode | 122 µA                         | 182 μΑ                         |
|                                              |                   | ALP mode        | 117 μΑ                         | 175 μΑ                         |
|                                              |                   | Backup mode     | 13 μΑ                          | 44 µA                          |

<sup>&</sup>lt;sup>4</sup> Room temperature, measurements are taken with typical voltage.

<sup>&</sup>lt;sup>5</sup> Used to determine maximum current capability of power supply.

<sup>&</sup>lt;sup>6</sup> Used to determine required battery current capability.



### 6.4. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly, and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Measures to ensure protection against ESD damage when handling the module:

- When mounting the module onto a motherboard, make sure to connect the GND first, and then the RF\_IN pin.
- When handling the RF\_IN pin, do not come into contact with any charged capacitors or materials that may easily generate or store charges (such as patch antenna, coaxial cable and soldering iron).
- When soldering the RF\_IN pin, make sure to use an ESD safe soldering iron (tip).



## 7 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are in millimeters (mm). The dimensional tolerances are ±0.20 mm, unless otherwise specified.

### 7.1. Top, Side and Bottom View Dimensions



Unlabeled tolerance: +/-0.2mm

Figure 3: Top, Side and Bottom View Dimensions

NOTE

The package warpage level of the module conforms to the *JEITA ED-7306* standard.



## 7.2. Top and Bottom Views



Figure 4: Top and Bottom Module Views

### NOTE

The images above are for illustrative purposes only and may differ from the actual module. For authentic appearance and label, see the module received from Quectel.



# 8 Product Handling

## 8.1. Packaging

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of packaging materials are subject to the actual delivery.

The module is packed with carrier tape packaging and the details are as follows.

### 8.1.1. Carrier Tape

Carrier tape dimensions are detailed below:



**Figure 5: Carrier Tape Dimension Drawing** 

**Table 17: Carrier Tape Dimension Table (Unit: mm)** 

| W  | Р  | Т   | A0   | В0   | K0  | K1  | F    | E    |
|----|----|-----|------|------|-----|-----|------|------|
| 24 | 16 | 0.3 | 10.1 | 10.5 | 2.8 | 3.3 | 11.5 | 1.75 |



### 8.1.2. Plastic Reel



Figure 6: Plastic Reel Dimension Drawing

Table 18: Plastic Reel Dimension Table (Unit: mm)

| øD1 | øD2 | W    |
|-----|-----|------|
| 330 | 100 | 24.5 |

## 8.1.3. Mounting Direction



**Figure 7: Mounting Direction** 



### 8.1.4. Packaging Process



Place the module onto the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape on the plastic reel and use the protective tape for protection. 1 plastic reel can load 500 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag inside a vacuum bag, then vacuumize it.





Place the vacuum-packed plastic reel inside a pizza box.

Place 4 packaged pizza boxes inside 1 carton and seal it. 1 carton packs 2000 modules.



Pizza box size (mm):  $363 \times 343 \times 41$ Carton size (mm):  $380 \times 190 \times 365$ 

Figure 8: Packaging Process



### 8.2. Storage

The module is provided in a vacuum-sealed packaging. MSL of the module is rated at 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours <sup>7</sup> in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
  - The module is not stored in Recommended Storage Condition;
  - Violation of the third requirement above;
  - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
  - Before module repairing.
- 5. If needed, the pre-baking should meet the requirements below:
  - The module should be baked for 8 hours at 120 ±5 °C;
  - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

### **NOTE**

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the module.

-

<sup>&</sup>lt;sup>7</sup> This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. Do not unpack the modules in large quantities until they are ready for soldering.



### 8.3. Manufacturing and Soldering

Push the squeegee to apply solder paste on the stencil surface, thus making the paste fill the stencil openings and then penetrate the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. For more information about the stencil thickness of the module, see <u>document [7] module SMT application note</u>.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid module damage caused by repeated heating, it is recommended to mount the module only after reflow soldering the other side of the PCB. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown in the figure and table below.



Figure 9: Recommended Reflow Soldering Thermal Profile



**Table 19: Recommended Thermal Profile Parameters** 

| Factor                                         | Recommendation |
|------------------------------------------------|----------------|
| Soak Zone                                      |                |
| Ramp-to-soak Slope                             | 0–3 °C/s       |
| Soak Time (between A and B: 150 °C and 200 °C) | 70–120 s       |
| Reflow Zone                                    |                |
| Ramp-up Slope                                  | 0–3 °C/s       |
| Reflow Time (D: over 217 °C)                   | 40–70 s        |
| Max. Temperature                               | 235–246 °C     |
| Cooling Down Slope                             | -3-0 °C/s      |
| Reflow Cycle                                   |                |
| Max. Reflow Cycle                              | 1              |

### NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may require direct contact with the module, **NEVER** wipe the module shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, and trichloroethylene. Otherwise, the shielding can may become rusty.
- 3. The module shielding can is made of cupronickel base material. The Neutral Salt Spray Test has shown that after 12 hours the laser-engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, **DO NOT** use any coating material that may react with the PCB or shielding cover. Prevent the coating material from penetrating the module shield.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to SMT process complexity, contact Quectel Technical Support in advance regarding any ambiguous situation, or any process (e.g., selective soldering, ultrasonic soldering) that is not addressed in *document* [7] *module SMT application note*.



## **9** Labelling Information

The label of the Quectel GNSS modules contains important product information. The location of the product type number is shown in the figure below.



Figure 30: Labelling Information

The image above is for illustrative purposes only and may differ from the actual module. For authentic appearance and label, see the module received from Quectel.



# 10 Appendix References

### **Table 20: Related Documents**

| Document Name |                                                                  |  |
|---------------|------------------------------------------------------------------|--|
| [1]           | Quectel_LC26G(AB)&LC76G&LC86G_Series_GNSS_Protocol_Specification |  |
| [2]           | Quectel_LC26G&LC76G&LC86G_Series_AGNSS_Application_Note          |  |
| [3]           | Quectel_LC26G(AB)&LC76G&LC86G_Series_Firmware_Upgrade_Guide      |  |
| [4]           | Quectel_LC76G_Series_Reference_Design                            |  |
| [5]           | Quectel_GNSS_Antenna_Selection_Guidance                          |  |
| [6]           | Quectel_RF_Layout_Application_Note                               |  |
| [7]           | Quectel_Module_SMT_Application_Note                              |  |

### **Table 21: Terms and Abbreviations**

| Abbreviation     | Description                                        |
|------------------|----------------------------------------------------|
| AGNSS            | Assisted GNSS (Global Navigation Satellite System) |
| AIC              | Active Interference Cancellation                   |
| ALP              | Adaptive Low Power                                 |
| ARM              | Advanced RISC Machine                              |
| BDS              | BeiDou Satellite Navigation System                 |
| bps              | bit(s) per second                                  |
| CEP              | Circular Error Probable                            |
| C/N <sub>0</sub> | Carrier-to-noise Ratio                             |
| DCS1800          | Digital Cellular System at 1800 MHz                |
|                  |                                                    |



| Abbreviation | Description                                       |
|--------------|---------------------------------------------------|
| DR           | Dead Reckoning                                    |
| EASY         | Embedded Assist System                            |
| EGNOS        | European Geostationary Navigation Overlay Service |
| EPO          | Extended Prediction Orbit                         |
| ESD          | Electrostatic Discharge                           |
| GAGAN        | GPS Aided Geo Augmented Navigation                |
| Galileo      | Galileo Satellite Navigation System (EU)          |
| GLONASS      | Global Navigation Satellite System (Russia)       |
| GNSS         | Global Navigation Satellite System                |
| GPS          | Global Positioning System                         |
| GSM          | Global System for Mobile Communications           |
| I/O          | Input/Output                                      |
| I2C          | Inter-Integrated Circuit                          |
| IC           | Integrated Circuit                                |
| IMU          | Inertial Measurement Unit                         |
| Іреак        | Peak Current                                      |
| NavIC        | Indian Regional Navigation Satellite System       |
| kbps         | kilobits per second                               |
| LCC          | Leadless Chip Carrier (package)                   |
| LDO          | Low-dropout Regulator                             |
| LGA          | Land Grid Array                                   |
| LNA          | Low-Noise Amplifier                               |
| LTE          | Long-Term Evolution                               |
| Mbps         | Megabits per second                               |
| MCU          | Microcontroller Unit/Microprogrammed Control Unit |
| MISO         | Master In Slave Out                               |



| Abbreviation | Description                                                            |
|--------------|------------------------------------------------------------------------|
| MOSI         | Master Out Slave In                                                    |
| MSAS         | Multi-functional Satellite Augmentation System (Japan)                 |
| MSL          | Moisture Sensitivity Levels                                            |
| NF           | Noise Figure                                                           |
| NMEA         | NMEA (National Marine Electronics Association) 0183 Interface Standard |
| OC           | Open Connector                                                         |
| PCB          | Printed Circuit Board                                                  |
| PI           | Power Input                                                            |
| PMU          | Power Management Unit                                                  |
| 1PPS         | One Pulse Per Second                                                   |
| PSRR         | Power Supply Rejection Ratio                                           |
| QR (Code)    | Quick Response (Code)                                                  |
| QZSS         | Quasi-Zenith Satellite System                                          |
| RAM          | Random Access Memory                                                   |
| RF           | Radio Frequency                                                        |
| RHCP         | Right Hand Circular Polarization                                       |
| RoHS         | Restriction of Hazardous Substances                                    |
| RTC          | Real-Time Clock                                                        |
| RTK          | Real-Time Kinematic                                                    |
| RXD          | Receive Data (Pin)                                                     |
| 3GPP         | 3rd Generation Partnership Project                                     |
| SAW          | Surface Acoustic Wave                                                  |
| SBAS         | Satellite-Based Augmentation System                                    |
| CLK          | SPI Serial Clock                                                       |
| SMD          | Surface Mount Device                                                   |
| SMT          | Surface Mount Technology                                               |



| Abbreviation        | Description                                 |
|---------------------|---------------------------------------------|
| SPI                 | Serial Peripheral Interface                 |
| TCXO                | Temperature Compensated Crystal Oscillator  |
| T_operating         | Operating Temperature                       |
| TTFF                | Time to First Fix                           |
| TVS                 | Transient Voltage Suppressor                |
| TXD                 | Transmit Data (Pin)                         |
| UART                | Universal Asynchronous Receiver/Transmitter |
| USB                 | Universal Serial Bus                        |
| VCC                 | Supply Voltage                              |
| V <sub>I</sub> max  | Maximum Input Voltage                       |
| V <sub>I</sub> min  | Minimum Input Voltage                       |
| V <sub>I</sub> nom  | Normal Input Voltage                        |
| V <sub>IH</sub> max | High-level Maximum Input Voltage            |
| V <sub>IH</sub> min | High-level Minimum Input Voltage            |
| V <sub>IH</sub> nom | High-level Normal Input Voltage             |
| V <sub>IL</sub> max | Low-level Maximum Input Voltage             |
| V <sub>IL</sub> min | Low-level Minimum Input Voltage             |
| V <sub>O</sub> nom  | Normal Output Voltage                       |
| V <sub>OL</sub> max | Low-level Maximum Output Voltage            |
| V <sub>OH</sub> min | High-level Minimum Output Voltage           |
| VSWR                | Voltage Standing Wave Ratio                 |
| WAAS                | Wide Area Augmentation System               |
| WCDMA               | Wideband Code Division Multiple Access      |
| XTAL                | External Crystal Oscillator                 |
|                     |                                             |