Mathematical Induction

Use induction to prove that 3 divides $11^n - 5^n$ for all positive integers n.

Let P(n) denote the proposition that $11^n - 5^n$ is divisible by 3 for all positive integers n.

BASIS STEP: P(1) is true since 3 divides 6.

INDUCTIVE STEP: Let us assume P(n) is true, that is $11^n - 5^n$ is divisible by 3 for an arbitrary positive integer n. This is our inductive hypothesis.

We have to show that P(n + 1) is true, $11^{n+1} - 5^{n+1}$ is divisible by 3 assuming the inductive hypothesis P(n).

Proof:
$$11^{n+1} - 5^{n+1} = 11^n \cdot (9+2) - 5^n \cdot (3+2)$$

= $(11^n \cdot 9 - 5^n \cdot 3) + (11^n \cdot 2 - 5^n \cdot 2) = 3 \cdot (11^n \cdot 3 - 5^n) + 2(11^n - 5^n)$

- $2(11^n-5^n)$ is divisible by 3 using the inductive hypothesis.
- $3 \cdot (11^n \cdot 3 5^n)$ is divisible by 3 the definition of divisibility since $(11^n \cdot 3 5^n)$ is an integer.
- Thus, the sum $11^{n+1} 5^{n+1} = 3 \cdot (11^n \cdot 3 5^n) + 2(11^n 5^n)$ is also divisible by 3.
- By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $11^n 5^n$ is divisible by 3 for all positive integers n.