



# IMAGING-BASED HUMAN PHYSIOLOGY RESEARCH AND INNOVATION IN EARLY SPACEFLIGHT: POLARIS DAWN MISSION

A. Sargsyan , D. Ebert, A. Everson (KBR)

V. Perizes, J. Scheurle (Level Ex)

M. Rosenberg, J. Mateus (SpaceX)

R. Mendez, J. Martin (Butterfly Network, Inc.)

J. Wu (TRISH)

HRP Investigators' Workshop February 8, 2023



# OBJECTIVES

- **Physiological data**

- Early inflight period historically unobtainable
- Spacefaring population becoming more diverse
- Many spaceflight changes still poorly understood, risks unmitigated
- Private spaceflight offers more rapid access to higher n

- **Autonomous procedures**

- Communication delays and outages
- Transition to new training paradigms
- Terrestrial application (remote medicine, DOD)
- Leverage new hardware and software
- Concepts extend beyond medical realm (medical ultrasound as a use case)

# SPECIFIC AIMS

1. Measure urinary bladder function in microgravity
2. Measure filling and flow patterns of the internal jugular vein
3. Collect data on the effectiveness of just-in-time training & novel delivery formats
4. If present, document venous gas bubbles following reduction in cabin pressure

# PROJECT SUMMARY

## APPROACH:

- Use of advanced tech in a point-of-care device for research
- Minimum crew time utilization, complete autonomy in-flight
- A range of procedural challenge / complexity
  - Guidance by just-in-time (JIT) modules on iPhone 12\*
  - Use of available AI-based automation (bladder)
- **All procedures are relevant to a recognized spaceflight risk**

## TECHNOLOGY / PAYLOAD:

Butterfly iQ+ ultrasound system with mobile platform - iPhone 12/iPad mini6

Single-probe capacitive transducer array on silicon chip

Zoll ResQGARD® Impedance Threshold Device – ITD 7 (7 mm Hg)



# PHYSIOLOGY

- 1) Urinary bladder function in microgravity
- 2) Internal jugular vein (IJV) response to microgravity with and without inspiratory resistance
- 3) Bubble detection following pressure reduction (femoral vein, carotid artery)



# URINARY BLADDER FUNCTION

- Supports medical procedure
  - urinary retention
- Limited I4 data already being used to inform exploration systems



# IJV- MODES AND MEASURES



B-MODE



COLOR DOPPLER



SPECTRAL DOPPLER



- Cross-sectional areas
- Perimeter
- Clots if present
- Spontaneous contrast (cell aggregation = rise in viscosity)
- ITD effect on filling

- Flow direction
- Flow spontaneity
- Flow uniformity
- Flow voids and irregularities

- Flow direction
- Peak velocities in cm/s
- Flow laminarity
- Flow type (central type or "peripheralized")

# IMPEDANCE THRESHOLD DEVICE (ITD)

- Standardizes inspiratory resistance
- Simple, reusable device
- Relevant intervention for studying IJV flow anomalies
- A potential countermeasure for at-risk subjects (flow stagnation)

NORMAL BREATHING      RESISTANCE BREATHING



I4 Inflight data



# BUBBLE DETECTION

- Nitrogen offgassing
  - Informs exploration atmosphere procedures
  - Establishes individual risk profiles
  - Never attempted during spaceflight



# KNOWLEDGE MANAGEMENT STUDIES

- Ground
- COMfORT
- Butterfly iQ evaluations
- Australian Antarctic Division



# KNOWLEDGE MANAGEMENT STUDIES

- Flight
  - AMOS
- Butterfly ISS Tech Demo (1 & 2)
- Inspiration4
- Polaris Dawn



I N S P I R A T I O N 4 N



# TRAINING PARADIGM SHIFT

## Current

Preflight  
Medical  
instruction

7 to 16 hours  
6-18 months preflight

In-flight  
refresher

In-flight  
procedure

## Proposed

Instructional Just  
In Time (JIT)  
guidance

Preflight:  
-JIT tool familiarization  
-Selected procedures trained

Inflight:  
-Review and use

# KNOWLEDGE MANAGEMENT APPROACH

## Inspiration4

- all crewmembers minimally trained

## Polaris Dawn

- One repeat crewmember
- One involved in experiment preparation
- Two crewmembers WELL-TRAINED
- Two crewmembers remain UNTRAINED

# PROCEDURE GUIDES (.PDF)



## Bladder

# Bubble Detection

## INSTRUCTIONS (FEMORAL VEIN)

- 7 Maintain position over FA and FV; Rotate probe clockwise to orient ● marker to Subject's groin
- 8 Adjust rotation, **tilt** right/left to optimize 2 black stripes (FA and FV)
- 9 With leg relaxed, start recording; count ~3 seconds
- 10 Move foot/ankle while counting another ~3 seconds; stop recording
- 11 Repeat steps 9 & 10 two more times



Record a total of three six-second videos for this view

# Level Ex Polaris Dawn Procedure Guide

Create a procedural companion for the Polaris Dawn astronaut crew with a specific focus on ultrasound acquisition guidance of the internal jugular vein (IJV) using the Butterfly iQ ultrasound device.



LEVEL EX



## Goals of the Polaris Dawn Ultrasound Study

- Capture information on how microgravity environments influence the human body to support scientific research and future spaceflight missions.
- Prepare and guide crew through IJV ultrasound procedures for scientific data collection.
- Capture information on the use and impacts of interactive training and guidance modalities in spaceflight operations.

## Delivered Features

- 12 modules, compatible for Pre-Flight Training and In-Flight operational guidance
- Intro to ultrasound surveillance with the Butterfly iQ.
- Right and left IJV acquisition:
  - Transverse and longitudinal (B-mode + ITD), doppler, flow spectrum
- Imaging submissions process.



# SUMMARY

- Preflight and inflight data
- Physiological analysis (aims 1, 2, & 4)
- Flight images analyzed for quality metrics (aim 3)
- Crew feedback on training methods (aim 3)
- Data can be pooled with other studies (all aims)
  - TRISH CADRE database



# QUESTIONS & DISCUSSION



This research is supported by the Translational Research Institute for Space Health (TRISH)  
NASA Cooperative Agreement NNX16AO69A

# BACKUP

# BACKGROUND

- The Butterfly iQ+ “point-of-care” ultrasound device enables focused investigations on highly constrained missions, thanks to
  - Very small footprint, single-probe
  - Safe, FDA-approved
  - Easy to use
  - Amenable to autonomous use by minimally trained crew
  - Compliant with industry standards for imaging data
  - Use of mobile computing platforms



# ULTRASOUND INNOVATION

## Hardware

- **Butterfly IQ+**

- **FDA- and CE- approved, HIPAA compliant**
- **M: 0.3 kg | V: 0.5 L | Power at charging <15W**
- >2 hours of continuous operation on battery
- Single CMUT\* probe for all imaging procedures
- Preset modes for specific imaging applications
- iPad-based Butterfly iQ app with intuitive operation
- Compliant with imaging industry standards (“DICOM”)



\*9,000 – element  
Capacitive Micro-  
Machined Ultrasonic  
Transducer (CMUT)



# DOPPLER

UNIFORM ANTEGRADE FLOW



"CENTRAL VEIN" TYPE



"PERIPHERALIZED" TYPE



# I4: WHAT DID WE LEARN?

- **Autonomous procedures**
  - Skill management approach is the main determinant of success
    - Just-in-time tools – the main source of crew guidance - appear to be the leading limitation (basic – .pdf)
  - Preflight crew training time should be optimized by providing direct interaction with PI teams (in person or remote)
    - Guided practice using same inflight guidance tools, relevant games also a possibility
    - Specific subject matter expertise for immediate feedback
    - Communication of critical conceptual knowledge
    - Procedural tips and pitfalls (anticipated and unanticipated)
  - Concept of a “crew expert” that receives more training may be worth considering
  - Annotation of images may be necessary for more complex procedures
  - Your feedback is CRITICAL to improvement!

# I4: WHAT DID WE LEARN?

- **Technical**
  - The single-probe technology and the app performed in microgravity as expected, **including data flow**
- **Physiological**
  - Unique structural and functional data from early microgravity phase
    - Limited statistical options due to a small number of subjects and subject variability
    - ITD appears to be effective in microgravity
    - IJV engorgement appears to be more pronounced in early spaceflight
    - Post-void urine residual appears to be normal in spaceflight

# I4: OVERALL CONCLUSIONS

- Inspiration4 laid the foundation for new research and development trends
  - Nimble approach to rapid experimentation cycles
  - Efficiency in resource utilization
- Open questions in space physiology and medicine **can** be answered by “minimalist” experiments using latest technology with a small footprint
- Results show where we need to improve procedures, which contributes to the development of medical imaging capability for future human space flight in highly constrained environments

# ULTRASOUND INNOVATION

Hardware

## Impedance Threshold Device (ITD)



- **FDA approved (for certain acute care settings)**
- **Mass: 32 g**
- Simple mechanical valve
- With inhalation, creates ~7.0 cmH<sub>2</sub>O negative pressure in the chest
- Facilitates venous blood return to the heart

# SAMPLE: RIGHT IJV CROSS-SECTIONAL AREA

**GROUND (supine)**



**FLIGHT DAY 2**



|                              |             |             |             |            |             |             |             |             |             |             |
|------------------------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Area (cm<sup>2</sup>)</b> | <b>0.58</b> | <b>0.53</b> | <b>0.15</b> | <b>0.5</b> | <b>0.98</b> | <b>0.58</b> | <b>0.78</b> | <b>0.51</b> | <b>0.53</b> | <b>1.18</b> |
| <b>Perimeter (cm)</b>        | 2.95        | 2.58        | 2.53        | 2.53       | 3.55        | 2.72        | 3.3         | 2.56        | 2.6         | 3.87        |

# ULTRASOUND INNOVATION

## Flight Schedule/Methods

| Each crewmember             | FD1 | FD2 | FD3 | FD4           | FD5 | Total time |
|-----------------------------|-----|-----|-----|---------------|-----|------------|
| Bladder (15 min)            | X   | X   | -   | -             | -   | 30         |
| Major Veins (30 min)        | X   | X   | -   | -             | X   | 90         |
| Major Veins Reduced (5 min) | -   | -   | -   | X (2-5 times) | -   | 10-25      |
| Bubble detection (15 min)   | X   | X   | X   | -             | -   | 45         |

Biggest practical concern is battery charging time- primarily iQ+ but also for iPads/iPhones

# Now: ISS Operations



# Beyond Low Earth Orbit



# Software Heritage

- ADUM
  - on ISS 2004-2005
- Catalog
  - ground study 2007-2011
- Fracture
  - ground study 2008-2011
- Spinal Ultrasound
  - on ISS 2013-present
- COMfORT
  - 2016-17





**Victoria Perizes**

*Lead Biomedical Solution  
Specialist*



**Jenny Scheurle**

*Senior Game Designer*



**Walter Farrar**

*Senior Game Designer*



**Jennifer Chu**

*Senior Producer*