Appunti di Algebra Superiore

Github Repository: Oxke/appunti/AlgebraSuperiore

Primo semestre, 2025 - 2026, prof. Alberto Canonaco

In topologia: sia X uno spazio topologico, allora omologia / coomologia (a coeff in A)

$$H_n(X,A)/H^n(X,A)$$

Ottenuti a partire da complessi di catene o cocatene, cioè successioni

$$C_n(X,A) \stackrel{d_n}{\to} C_{n-1}(X,A) \stackrel{d_{n-1}}{\to} \dots$$

e $d_{n-1} \cdot d_n = 0$ (cioè $\operatorname{Im}(d_n) \subseteq \operatorname{Ker}(d_{n-1})$) e $H_n(X,A) := \frac{\operatorname{Ker}(d_{n-1})}{\operatorname{Im}(d_n)}$ In astratto introdurremo le categorie *abeliane* (che generalzzano le strutture dei moduli su un anello) e studieremo i "fattori derivati" di funtori (additivi) tra categorie abeliane.

I funtori derivati misureranno la mancanza di **esattezza** (ossia mandare successioni esatte in successioni esatte) del funtore di partenza.

Libri utili

- Per la parte di algebra omologica Hilton-Stammbach, Osborne e Weibel.
- Dispense sui moduli (su KIRO) utili
- Aluffi, Algebra Chapter 0

Il corso è di 60 ore, non perché sia più pesante ma perché dovrebbero esserci ore di esercitazioni (non sarà necessariamente vero ma Canonaco cercherà di andare un po' nel dettaglio, fornire esempi e controesempi per quanto possibile)

0.1 Richiami sugli Anelli

Per convenzione, parlando di anelli si parlerà sempre di anelli con unità

Definizione 0.1.1: Anello

Un **anello** $A, +, \cdot$ è un gruppo abeliano A, + (con 0 elemento neutro) e contemporaneamente un monoide A, \cdot (cn 1 elemento neutro). Inoltre le due operazioni sono legate dalle proprietà distributive

$$a(b+c) = ab + ac$$
 ; $(b+c)a = ba + ca$

Diremo che l'anello è **commutativo** se l'operazione · è commutativa

Per quasi tutto ciò che si vedrà in questo corso non è necessario andare a disturbare anelli non commutativi, dunque si useranno quasi sempre anelli commutativi.

Esempio 0.1.1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{Z}/n\mathbb{Z}$

Esempio 0.1.2. Se A è un anello (commutativo), allora i polinomi a coefficienti in Λ e con variabili in Λ costituiscono l'anello $A[x_{\lambda} | \lambda \in \Lambda]$

Esempio 0.1.3 (Anello Banale). L'anello composto da un solo elemento $\{0 = 1\}$

Esempio 0.1.4 (Non comm.). A anello, allora l'anello $M_n(A)$ delle matrici $n \times n$ a coefficienti in A non è commutativo se n > 1 (e se non è l'anello banale ma dai l'anello banale non esiste davvero)

Esempio 0.1.5. Endomorfismi Se (G, +) è un gruppo abeliano, allora End(G) è anello con + determinato da (f + g)(a) = f(a) + g(a) e · dato dalla composizione $(f \circ g)(a) = f(g(a))$

In generale se G, G' sono gruppi con (G, +) abeliano, allora l'insieme $\operatorname{Hom}(G', G)$ degli omomorfismi da G' a G è un sottogruppo di $G^{G'}$ il gruppo delle funzioni da G' a G.

Infatti se X è un insieme allora G^X è un gruppo con (f+g)(a)=f(a)+g(a)

Definizione 0.1.2: Invertibile

 $a \in A$ è invertibile a sinistra (destra) se $\exists a' \in A$ tale che a'a = 1 (aa' = 1). a viene detto **invertibile** se $\exists a' \in A$ tale che a'a = aa' = 1

Osservazione (invertibile \iff invertibile a destra e sinistra). solo una implicazione non è ovvia. Se $a', a'' \in A$ sono tali che a'a = aa'' = 1 allora

$$(a'a)a'' = a'(aa'')1a'' = a''$$
 $= a' = a'1$

quindi a è invertibile e $a^{-1} = a' = a''$

Osservazione (Gruppo degli invertibili). L'insieme degli elementi invertibili forma un gruppo con l'operazione di prodotto e si indica con A^*

In generale, se $1 \neq 0$, allora $A^* \subseteq A \setminus \{0\}$

Definizione 0.1.3: Anello con Divisione

A si dice anello con divisione se $A^* = A \setminus \{0\}$. Un campo è un anello con divisione commutativo.

Definizione 0.1.4: Divisore di zero

 $a \in A$ è detto divisore di zero a sinistra (destra) se $\exists a' \in A \setminus \{0\}$ tale che aa' = 0 (a'a = 0)

Definizione 0.1.5: Dominio

A viene detto **dominio** se $A \neq 0$ e A non ha divisori di zero. Viene inoltre chiamato **dominio** di integrità se è commutativo.

Esempio 0.1.6. I campi, \mathbb{Z} , se A dominio d'integrità, allora anche $A[x_{\lambda} \mid \lambda \in \Lambda]$ è dominio d'integrità.

Osservazione. $A \neq 0$ tale che $\forall 0 \neq a \in A$ è invertibile a sinistra, allora A è un anello con divisione.

Dimostrazione. $\exists a' \in A$ tale che a'a = 1 ma anche $\exists a'' \in A : a''a' = 1$. Allora a' è invertibile a sinistra e a destra, infatti

$$a'^{-1} = a = a'' \implies a \in A^*$$

Definizione 0.1.6: Sottoanello

 $A' \subseteq A$ è sottoanello di A se $(A', +) < (A, +), ab \in A'$ per ogni $a, b \in A'$ e $1 \in A'$

Esempio 0.1.7. $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}\subseteq\mathbb{H}$ sono tutti sottoanelli

Esempio 0.1.8. $A \subseteq A[X]$ sottoanello

Definizione 0.1.7: Ideale

 $I \subseteq A$ è un'ideale sinistro (destro) se (I,+) < (A,+) e $ab \in I$ $(ba \in I)$, $\forall a \in A$ e $\forall b \in I$.

Un **ideale** bilatero è un ideale sia sinistro che destro.

Esempio 0.1.9. Gli ideali in \mathbb{Z} sono tutti e soli della forma $n\mathbb{Z}$, con $n \in \mathbb{N}$

Osservazione. Se I è un ideale sinistro o destro allora

$$I = A \iff I \cap A^* \neq \emptyset$$

quindi A con divisione \implies gli unici ideali sinistri o destri sono $\{0\}$ e A

Definizione 0.1.8: Anello opposto

L'anello opposto di un anello A è A^{op} , con $(A^{op}, +) := (A, +)$ e con prodotto ab in A^{op} definito come ba in A

Osservazione. $(A^{op})^{op} = A \in A^{op} = A \iff A \text{ commutativo}$

Proposizione 0.1.1 (Anello Quoziente). Se $I \subseteq A$ ideale, allora il gruppo abeliano A/I, + è un anello con prodotto $\overline{a}\overline{b} := \overline{ab}$, dove $\overline{a} := a + I \in A/I$

Definizione 0.1.9: omomorfismo di anelli

Siano A, B anelli. $f: A \to B$ è **omomorfismo** di anelli se, $\forall a, a' \in A$

- i) f(a+a') = f(a) + f(a')
- ii) f(aa') = f(a)f(a')
- iii) $f(1_A) = 1_B$

ed è **isomorfismo** se è un omomorfismo biunivoco

Osservazione. f omomorfismo è isomorfismo $\iff \exists f': B \to A$ omomorfismo tale che $f' \circ f = \mathrm{id}_A$ e $f \circ f' = \mathrm{id}_B$

Indicheremo $A \cong B$ se esiste un isomorfismo tra $A \in B$

Proposizione 0.1.2. Se $f: A \to B$ è un omomorfismo allora

- 1. $A' \subseteq A$ è sottoanello $\implies f(A') \subseteq B$ è sottoanello.
- 2. $B' \subseteq B$ sottoanello $\implies f^{-1}(B') \subseteq A$ è sottoanello
- 3. $J \subseteq B$ è ideale (sinistro / destro) $\Longrightarrow f^{-1}(J) \subseteq A$ è ideale (sinistro / destro). In particolare $\operatorname{Ker} f := f^{-1}(0_B) \subseteq A$ è ideale
- 4. f suriettivo e $I \subseteq A$ $ideale \implies f(I) \subseteq B$ \grave{e} ideale

Osservazione. $f:A\to B$ è iniettivo \iff Ker $f=\{0_A\}$ e in tal caso $A\cong \mathrm{Im} f:=f(A)$ che dunque è sottoanello di B

Teorema 0.1.3: Omomorfismo

 $f:A\to B$ è omomorfismo di anelli, $I\subseteq A$ ideale tale che $I\subseteq \mathrm{Ker} f.$ Allora

 $\exists ! \overline{f} : A/I \to B$ omomorfismo tale che $\overline{f}(\overline{a}) = f(a) \quad \forall a \in A$

$$A \xrightarrow{f} B$$

$$\pi \downarrow \qquad \overline{f}$$

$$A/I$$

Inoltre im $\overline{f} = \text{im} f$ e $\text{Ker} \overline{f} = \text{Ker} f/I$

Proposizione 0.1.4. Gli ideali di A/I sono tutti e soli della forma J/I con $J \subseteq A$ ideale tale che $I \subseteq J$

Teorema 0.1.5: Primo teorema di isomorfismo

 $f:A\to B$ è omomorfismo di anelli, allora im $f\cong A/\mathrm{Ker} f$

Definizione 0.1.10

L'ideale generato da $U\subseteq A$ è il più piccolo ideale di A che contiene $U=\bigcap_{U\subseteq I\subseteq A \text{ideale}} I$ ed esplicitamente è

$$AUA := \left\{ \sum_{i=1}^{n} a_i u_i b_i : n \in \mathbb{N}, a_i, b_i \in A, u_i \in U \right\}$$

Osservazione. Se A è commutativo e $U=\{u\}$ allora $A\{u\}A=Au=\{au:a\in A\}$ (ideale principale)

Definizione 0.1.11: PID

Aè un dominio (d'integrità) a ideali principali (PID) se ogni ideale di Aè a ideali principali.

Esempio 0.1.10. Campi (non ci sono ideali propri)

Esempio 0.1.11. \mathbb{Z} (con ideali nZ = (n))

Esempio 0.1.12. K[X] con K campo