Kravspecifikation

Redaktör: Dennis Ljung

Version 0.1

Status

Granskad	Andreas Runefall	-
Godkänd	Andreas Runefall	-

PROJEKTIDENTITET

 $\label{eq:VT1} VT1,\,2015,\,Grupp\,\,2$ Linköpings Tekniska Högskola, ISY

Grupp deltagare

Namn	Ansvar	Telefon	E-post
Adam Sestorp	Team leader	070 9987270	adase035@student.liu.se
Dennis Ljung	Dokumentansvarig	070 8568148	denlj069@student.liu.se
Alexander Yngve	Utvecklingsansvarig	076 2749762	aleyn573@student.liu.se
Martin Söderén	Analysansvarig	070 8163241	marso329@student.liu.se
Ruben Das	Kvalitetssamordnare	073 7355892	rubda680@student.liu.se
Sebastian Fast	Arkitekt	073 3885208	sebfa861@student.liu.se
Johan Isaksson	Testledare	070 2688785	johis024@student.liu.se

 \mathbf{Kund} : SAAB

Kontaktperson hos kund: Daniel Simon Kursansvarig: Kristian Sandahl Handledare: Andreas Runefall INNEHÅLL 4 februari 2015

Innehåll

1	Inledning	1
	1.1 Parter	1
	1.2 Syfte och mål	1
	1.3 Användning	1
	1.4 Bakgrundsinformation	1
	1.5 Definitioner	1
2	Översikt av systemet	1
	2.1 Grov beskrivning av produkten	1
	2.2 Produktkomponenter	1
	2.3 Beroenden till andra system	2
	2.4 Ingående delsystem	2
	2.5 Avgränsningar	2
	2.6 Designfilosofi	2
	2.7 Generella krav på hela systemet	2
3	Prestandakrav	3
4	Krav på vidareutveckling	3
5	Tillförlitlighet	3
6	Ekonomi	3
7	Leveranskrav och delleveranser	3
8	Dokumentation	4
	8.1 Krav på dokumentation	4

 $INNEHÅLL \qquad \qquad 4 \text{ februari } 2015$

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2014-09-09	Första utkast	hansn314	
0.2	2014-09-10	Andra utkast	hansn314	2014-09-11
0.3	2014-09-12	Tredje utkast	hansn314	2014-09-15
0.3.1	2014-09-13	Nu med logotyp!	hansn314	
0.4	2014-09-15	Fjärde utkast	hansn314	2014-09-15
0.5	2014-09-16	Femte utkast	hansn314	2014-09-16
1.0	2014-09-16	Första version	hansn314	2014-09-16
1.1	2014-12-08	Första revision av första version	hansn314	2014-12-08
1.1.1	2014-12-08	Rättade datum försättsblad	hansn314	

1 Inledning

Vi har fått i uppgift av beställaren att bygga ett system som ska kunna flytta paket på ett lager. Systemet ska följa en bana enligt uppsatta banregler (se Bilaga ??) och flytta paket mellan uppsatta stationer.

1.1 Parter

Systemet har beställts av köparen, Tomas Svensson. Leverantör är Grupp 2.

1.2 Syfte och mål

Målet med projektet är att konstruera ett system som autonomt ska kunna röra sig i ett lager. Från en dator ska systemet kunna styras att plocka upp paket.

1.3 Användning

Systemet ska sättas vid en startposition, enligt regler definierade i banreglerna. När systemet sedan slås på följer roboten banan till nästa station där ett paket skall plockas upp eller sättas ner. Vid stationen styr användaren systemet från en dator trådlöst för att plocka upp paket. Nedsättning av paket sker autonomt.

1.4 Bakgrundsinformation

Vi är studenter vid Linköpings Universitet som läser kursen TSEA29. Vår examinator agerar beställare och har givit oss i uppdrag att konstruera en lagerrobot enligt givet projektdirektiv.

1.5 Definitioner

- Vi har beslutat att kalla vårt system GLORIA
- Prioritetsnivå 1: Krav som skall ingå i systemet
- Prioritetsnivå 2: Krav som skall ska ingå i systemet om tid finns

2 Översikt av systemet

2.1 Grov beskrivning av produkten

Systemet representerar en lagerrobot som ska kunna navigera autonomt med hjälp av en tejplinje och hitta paketstationer. Ett manuellt läge skall finnas där robotens alla rörelser skall kunna styras av användaren.

2.2 Produktkomponenter

Den färdiga produkten kommer innehålla följande komponenter

- Robot
- Programvara för robot
- Programvara för att styra roboten från en dator
- Teknisk dokumentation
- Användarhandledning

2.3 Beroenden till andra system

Gloria kommer behöva en PC för att kunna fjärrstyras trådlöst.

2.4 Ingående delsystem

Systemet ska bestå av fyra delsystem. En PC-modul som skall bestå av mjukvara för att styra roboten manuellt. En huvudmodul som skall kommunicera med PC-modulen, läser sensordata från sensormodulen och bestämmer vad styrmodulen skall göra.

2.5 Avgränsningar

Roboten skall endast kunna köras på banor som följer banreglerna.

2.6 Designfilosofi

Funktionaliteten och driftsäkerheten av systemet prioriteras högst, dvs kunna leverera ett paket till rätt plats utan problem.

2.7 Generella krav på hela systemet

Krav	Förändring	Beskrivning	Prioritet
Krav 1	Orginal	Roboten skall kunna färdas autonomt längs en bana en-	1
		ligt Bilaga ??	
Krav 2	2014-09-16	Roboten skall, om olastad, endast stanna för pålastning	1
		vid nästkommande station om där finns ett paket	
Krav 3	2014-09-16	Roboten skall, om lastad, endast stanna för avlastning	1
		vid nästkommande station om där ej finns ett paket	
Krav 4	2014-09-12	Roboten skall, styrd av en användare, kunna plocka upp	1
		paket	
Krav 5	Orginal	Roboten skall sätta ner paket autonomt	1
Krav 6	Orginal	Roboten skall kunna ta emot kommandon trådlöst från	1
		en dator	
Krav 7	Orginal	Roboten skall skicka sensor- och debugdata trådlöst till	
		dator	
Krav 8	Orginal	Det skall finnas programvara för att skicka och ta emot	1
		data från roboten	
Krav 9	Orginal	Det skall finnas möjlighet att ställa om roboten i ett läge	2
		där den detekterar och plockar upp ett paket autonomt	
Krav 10	2014-09-12	Alla moduler skall vara enkelt utbytbara	1
Krav 11	2014-09-12	Det skall finnas en brytare som startar roboten	1
Krav 12	2014-09-12	Det skall finnas möjlighet att ställa roboten i antingen	1
		ett autonomt läge eller ett manuellt läge där roboten	
		styrs av användaren	
Krav 13	2014-09-12	Varje enskild modul skall innehålla minst en processor	1
Krav 23	2014-12-08	Sensorerna skall kunna kalibreras	1

3 Prestandakrav

Tiden det tar för roboten att ta sig igenom banan, plocka upp ett paket och ställa ner ett paket skall minimeras.

4 Krav på vidareutveckling

Krav	Förändring	Beskrivning	Prioritet
Krav 14	Orginal	Gränsnitten skall vara väl definierade	1
Krav 15	2014-09-12	Modulerna skall vara enkla att byta ut	1

5 Tillförlitlighet

Krav	Förändring	Beskrivning	Prioritet
Krav 16	2014-09-12	Systemet skall ta sig igenom en bana, specifierad i ban-	1
		reglerna	
Krav 17	Orginal	Roboten skall navigera på ett sådant sätt att roboten	1
		befinner sig på banan vid varje givet tillfälle	
Krav 18	Orginal	Om roboten påverkas av yttre faktorer på ett sådant sätt	2
		att den hamnar utanför banan, skall den försöka hitta	
		tillbaks till banan	

6 Ekonomi

Krav	Förändring	Beskrivning	Prioritet
Krav 19	Orginal	Projektmedlemmar ska lägga ca 360 timmar vardera på	1
		projektet	

7 Leveranskrav och delleveranser

Krav	Förändring	Beskrivning	Prioritet
Krav 20	Orginal	Inlämning av förstudiedokument 2015-02-16	1
Krav 21	Orginal	Inlämning halvtids-dokument och utkast 1 av rapport	1
		2015-03-13	
Krav 22	Orginal	Inlämning dokument iteration 2 2015-04-20	1
Krav 23	Orginal	Inlämning utkast 2 av rapport 2015-05-13	1
Krav 24	Orginal	Inlämning av slutrapport 2015-05-27	1
Krav 25	Orginal	Tidsrapport varje vecka fram till projektavslut	1
Krav 26	Orginal	Statusrapport varje vecka fram till projekavslut	1

8 Dokumentation

Dokument	Språk	Syfte	Målgrupp	Format
Teknisk dokumentation	Svenska	Beskriv hur systemet är	Tekniskt ansvarig	PDF
		konstruerat		
Användarhandledning	Svenska	Introduktionsbeskrivning	Användare	PDF
		av systemet		

 ${\bf Tabell} \ {\bf 1} - {\rm Dokumentation}$

8.1 Krav på dokumentation

Krav	Förändring	Beskrivning	Prioritet
Krav 27	2014-09-12	All dokumentation enligt Tabell 1 skall levereras tre da-	1
		gar före slutleveransen	
Krav 28	Orginal	Dokumentationen skall följa LIPS-standarden	1
Krav 29	Orginal	All källkod skall vara väl dokumenterad	1