Отчёт по НИР

Модель 'Хищник-Жертва' с учетом конкуренции двух типов

Виктория Михайловна Шутенко

Содержание

1	Ана.	Анализ детерминированной модели													
	1.1	Поиск состояний равновесия			5										
	1.2	Матрица Якоби.			6										
	1.3	Построение графиков													
2	Пос	строение классической модели Хищник-Жертва			10										

List of Figures

1.1	График функций																					ç
1.2	Фазовый портрет	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	Ç
	График функций Фазовый портрет																					

List of Tables

1 Анализ детерминированной модели

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 \\ \dot{y} = \gamma y - \frac{xy}{1 + \alpha x} - \delta y^2 \end{cases}$$

Здесь x – плотность популяции жертв, y – плотность популяции хищников.

1.1 Поиск состояний равновесия

Для нахождения состояний равновесия решим систему уравнений:

$$\begin{cases} x - \frac{xy}{1+\alpha x} - \varepsilon x^2 = 0 \\ y = \gamma y - \frac{xy}{1+\alpha x} - \delta y^2 = 0 \end{cases}$$

Выражаем 2-е уравнение через х:

$$y(\gamma - \frac{x}{1+\alpha x} - \delta y) = 0$$

1)
$$y_1 = 0$$

2)
$$\gamma - \frac{x}{1+\alpha x} - \delta y = 0$$
 ; $y_2 = \frac{\gamma}{\delta} - \frac{x}{\delta(1+\alpha x)}$

При y = 0:

$$x-\varepsilon x^2=0$$
; $x(1-\varepsilon x)=0$

1.
$$x_1 = 0$$

2.
$$1 - \varepsilon x = 0$$
; $x_2 = \frac{1}{\varepsilon}$

Отсюда получаем 2 точки:

$$M_1(0;0)$$
 и $M_2(\frac{1}{\varepsilon};0)$

Точка M_1 является точкой тривиального равновесия, при котором несуществуют и хищники, и жерты.

Точка M_2 не имеет биологического смысла, поскольку невозмозжно существование жертв без хищников.

При
$$y=rac{\gamma}{\delta}-rac{x}{\delta(1+lpha x)}$$
 $x-rac{x(rac{\gamma}{\delta}-rac{x}{\delta(1+lpha x)})}{1+lpha x}-arepsilon x^2=0$ $x-rac{rac{x\gamma}{\delta}-rac{x^2}{\delta(1+lpha x)}}{1+lpha x}-arepsilon x^2=0$

$$x\frac{\delta(\varepsilon x-1)(\alpha x+1)^2+\alpha \gamma x+\gamma-x}{\alpha \delta x+\delta}=0$$

1.
$$x_1 = \frac{\alpha^2 - 2\varepsilon\alpha\delta}{3\varepsilon\alpha^2\delta} - \frac{1}{3\sqrt[3]{2}\varepsilon\alpha^2\delta}$$

2.
$$x_2 = \frac{\alpha^2 - 2\varepsilon\alpha\delta}{3\varepsilon\alpha^2\delta b} + \frac{1}{6\sqrt[3]{2}\varepsilon\alpha^2\delta}$$

Отсюда получаем 3 и 4 точку:

$$M_3(rac{lpha^2-2arepsilonlpha\delta}{3arepsilonlpha^2\delta}-rac{1}{3\sqrt[3]{2}arepsilonlpha^2\delta};rac{\gamma}{\delta}-rac{x}{\delta(1+lpha x)})$$
 и $M_4(rac{lpha^2-2arepsilonlpha\delta}{3arepsilonlpha^2\delta b}+rac{1}{6\sqrt[3]{2}arepsilonlpha^2\delta};rac{\gamma}{\delta}-rac{x}{\delta(1+lpha x)})$

Точки M_3 и M_4 являются точками нетривиального равновесия, при котором существуют обе популяции.

1.2 Матрица Якоби.

Для начала найдем частные производные:

$$\frac{\partial(x)}{\partial x} = 1 - \frac{y}{(1 + \alpha x)^2} - 2\varepsilon x$$

$$\frac{\partial(y)}{\partial x} = \frac{-x}{1 + \alpha x}$$

$$\frac{\partial(y)}{\partial y} = -\gamma + \frac{x}{1 + \alpha x} - 2\delta x$$

$$\frac{\partial(x)}{\partial y} = \frac{y}{(1+\alpha x)^2}$$

Общий вид матрицы якоби

$$\begin{pmatrix} \frac{y}{(1+\alpha x)^2} - 2\varepsilon x & \frac{-x}{1+\alpha x} \\ \gamma + \frac{x}{1+\alpha x} - 2\delta x & \frac{y}{(1+\alpha x)^2} \end{pmatrix}$$

Для точки $M_3(rac{lpha^2-2arepsilonlpha\delta}{3arepsilonlpha^2\delta}-rac{1}{3\sqrt[3]{2}arepsilonlpha^2\delta};rac{\gamma}{\delta}-rac{x}{\delta(1+lpha x)})$

$$\begin{pmatrix} -1 & \frac{-1}{\alpha+\varepsilon} \\ -\gamma + \frac{1}{\alpha+\varepsilon} - 2\frac{\delta}{\varepsilon} & 0 \end{pmatrix}$$

Характерестическое уравнение

$$\begin{pmatrix} -1 - \lambda & \frac{-1}{\alpha + \varepsilon} \\ -\gamma + \frac{1}{\alpha + \varepsilon} - 2\frac{\delta}{\varepsilon} & 0 - \lambda \end{pmatrix}$$

$$\lambda_1 = -1, \lambda_2 = 0$$

1.3 Построение графиков

Прграммный код для построения графиков данной модели:

using Plots

 $\hbox{using DifferentialEquations}\\$

using ParameterizedFunctions

using ImplicitEquations

g = 1

e = 0.01

```
a = 0.87
d = 0.0042
x0 = 5
y0 = 10
pp! = @ode_def PP begin
    dx = x - ((x*y)/(1+a*x)) - e*x^2
    dy = -g*y+((x*y)/(1+a*x))-d*y^2
end g e a d
M = [x0, y0]
param=[g, e, a, d]
timespan = (0, 100)
problem = ODEProblem(pp!, M, timespan, param)
solution1 = solve(problem)
plot(solution1, title = "Детерминированная модель Хищник-Жертва", xlabel = "t", y
plot(solution1, vars=(1, 2), xaxis="Жертва", yaxis="Хищник",legend=false)
  В результате выполнения данного кода, получается два графика:
```

Детерминированная модель Хищник-Жертва (x) жертва (x) хищник (y) 75 50 25 60 80 100

Figure 1.1: График функций.

Figure 1.2: Фазовый портрет.

Построение классической модели Хищник-Жертва

```
using Plots
using DifferentialEquations
using ParameterizedFunctions
using ImplicitEquations
g = 0.37
e = 0.038
a = 0.36
d = 0.037
x0 = 9
y0 = 20
pp! = @ode_def PP begin
    dx = -g*x+e*x*y
    dy = a*y-d*x*y
end g e a d
M = [x0, y0]
param=[g, e, a, d]
```

```
timespan = (0.0, 25.0)

problem = ODEProblem(pp!, M, timespan, param)

solution1 = solve(problem)

plot(solution1, title = "Детерминированная модель Хищник-Жертва", xlabel = "t", y

plot(solution1, vars=(1, 2), xaxis="Жертва", yaxis="Хищник",legend=false)
```

В результате выполнения данного кода, получается два графика:

Figure 2.1: График функций.

Figure 2.2: Фазовый портрет.