Homework 6

Quantum Mechanics

October 28th, 2022

C Seitz

Problem 1. Problem 3.12 from Sakurai

Solution.

In general the ensemble average of an operator [A] is defined as

$$[A] = \sum_{i} w_i \langle \alpha_i | A | \alpha_i \rangle$$

where $\sum_{i} w_i = 1$

$$[\sigma_x] = a \langle +| \sigma_x | + \rangle + (1-a) \langle -; y | \sigma_x | -; y \rangle$$

$$= a \langle +| (|+\rangle \langle -| +|-\rangle \langle +|) | + \rangle + (1-a) \langle -; y | (|+\rangle \langle -| +|-\rangle \langle +|) | -; y \rangle$$

$$= 0$$

$$[\sigma_y] = a \langle + | \sigma_y | + \rangle + (1 - a) \langle -; y | \sigma_y | -; y \rangle$$

$$= ai \langle + | (|+\rangle \langle -|-|-\rangle \langle +|) | + \rangle + i(1 - a) \langle -; y | (|+\rangle \langle -|-|-\rangle \langle +|) | -; y \rangle$$

$$= i(1 - a) \langle -; y | \left(-\frac{i}{\sqrt{2}} | + \rangle - \frac{1}{\sqrt{2}} | - \rangle \right)$$

$$= -i(1 - a) \langle -; y | +; y \rangle = 0$$

$$[\sigma_z] = a \langle +| (|-\rangle \langle -|-|+\rangle \langle +|) |+\rangle + i(1-a) \langle -; y| (|-\rangle \langle -|-|+\rangle \langle +|) |-; y\rangle$$
$$= -a + i(1-a) \langle -; y| \left(-\frac{i}{\sqrt{2}} |+\rangle - \frac{1}{\sqrt{2}} |-\rangle\right)$$

Problem 2. Problem 3.13 from Sakurai
Solution.
Problem 3. Problem 3.14 from Sakurai
Solution.
Problem 4. Problem 3.15 from Sakurai
Solution.
Problem 5. Problem 3.16 from Sakurai
Solution.
Problem 6. Problem 3.40 from Sakurai
Solution.