

1200V XPT™ IGBT GenX3™ w/ Diode

IXYH30N120C3D1

High-Speed IGBT for 20-50 kHz Switching

V _{CES}	=	1200V
C110	=	30A
V _{CE(sat)}	≤	3.3V
t _{fi(typ)}	=	88ns

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _{.1} = 25°C to 150°C	1200	V	
V _{CGR}	$T_J^{\circ} = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GE} = 1\text{M}\Omega$	1200	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _C = 25°C	66	A	
I _{C110}	$T_{\rm C} = 110^{\circ}{\rm C}$	30	Α	
I _{F110}	$T_{c} = 110^{\circ}C$	20	Α	
I _{CM}	$T_{\rm C} = 25^{\circ}$ C, 1ms	133	Α	
I _A	T _C = 25°C	20	A	
E _{AS}	$T_{c} = 25^{\circ}C$	400	mJ	
SSOA	$V_{GF} = 15V, T_{VJ} = 150^{\circ}C, R_{G} = 10\Omega$	I _{CM} = 60	A	
(RBSOA)	Clamped Inductive Load	$@V_{CE} \leq V_{CES}$		
P _c	T _c = 25°C	416	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque	1.13/10	Nm/lb.in	

d d	Modifiling Forque		1.10/10	1 1111/	10.111
Weight			6		g
Symbol (T. = 25°C.	Test Conditions Unless Otherwise Specified)	Chara Min.	ncteristic	Values ⊢ Max.	
BV _{CES}	$I_{\rm C} = 250 \mu A, V_{\rm GE} = 0 V$	1200			
$V_{GE(th)}$	I_{c} = 250 μ A, V_{ce} = V_{GE}	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			25	μΑ
	$T_{J} = 12$	25°C		350	μΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CF(sat)}	I _C = 30A, V _{GF} = 15V, Note 1			3.3	V

T₁ = 150°C

3.7

G = Gate C = Collector E = Emitter Tab = Collector

Features

- Optimized for Low Switching Losses
- Square RBSOA
- Positive Thermal Coefficient of Vce(sat)
- Anti-Parallel Ultra Fast Diode
- Avalanche Rated
- High Current Handling Capability
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- High Frequency Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

IXYH30N120C3D1

•			teristic Values		
$(T_{J} = 25)$	C Unless Otherwise	Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}	$I_{\rm C} = 30A, V_{\rm CE} =$	= 10V, Note 1	10	17	S
C _{ies})			1640	pF
Coes	$V_{CE} = 25V, V_{GE}$	= 0V, f = 1MHz		140	pF
C _{res}	J			38	pF
$\mathbf{Q}_{g(on)}$)			69	nC
\mathbf{Q}_{ge}	$I_C = 30A, V_{GE} =$	= 15V, V _{CE} = 0.5 • V _{CES}		9	nC
Q _{gc}	J			34	nC
t _{d(on)})			19	ns
t _{ri}	Inductive load	d, T _J = 25°C		40	ns
E _{on}	$I_{c} = 30A, V_{ge} =$	= 15V		2.6	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.5 \cdot V_{CE}$	$_{\rm s}$, $R_{\rm g} = 10\Omega$		130	ns
t _{fi}	Note 2			88	ns
E _{off}	J			1.1	mJ
$\mathbf{t}_{d(on)}$)			19	ns
t _{ri}	Inductive load	d, T _J = 150°C		52	ns
E _{on}	$I_{\rm C} = 30A, V_{\rm GE} =$	= 15V		6.0	mJ
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CE}$	$_{\rm S}$, $R_{\rm G}$ = 10 Ω		156	ns
t _{fi}	Note 2			140	ns
E _{off}	J			1.6	mJ
R _{thJC}					0.30 °C/W
R _{thCS}				0.21	°C/W

3 - Emitter

Dim.	Mill	imeter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b ₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

Reverse Diode (FRED)

(T _J = 25°C, Unless Otherwise Specified)		Characteristic Value				
Symbol Test Conditions		Min. Typ. Max				
V_{F}		1 - 204 V - 0V Note 1			3.00	V
		$I_F = 30A, V_{GE} = 0V, \text{ Note } 1$	$T_J = 150^{\circ}C$	1.75		V
I _{RM})	$I_{E} = 30A, V_{GE} = 0V, -di_{E}/dt = 100A/\mu s,$	T = 100°C		9	Α
t _{rr}	}	$V_{\rm p} = 600 \text{V}$	$T_1 = 100^{\circ}C$	195		ns
R _{thJC})	п	J		0.90 °C	

Notes:

- 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CF} (clamp), T_{J} or R_{g} .

Pulse Width - Second

Fig. 11. Maximum Transient Thermal Impedance (IGBT)

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance

Fig. 14. Inductive Switching Energy Loss vs.

Junction Temperature

Fig. 16. Inductive Turn-off Switching Times vs.

Fig. 13. Inductive Switching Energy Loss vs.
Collector Current

Fig. 15. Inductive Turn-off Switching Times vs.

Gate Resistance

Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature

IXYH30N120C3D1

Fig. 18. Inductive Turn-on Switching Times vs.

Fig. 19. Inductive Turn-on Switching Times vs.

Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature

Fig. 21. Maximum Peak Load Current vs. Frequency

Fig. 22. Maximum Transient Thermal Impedance (Diode)

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

