

M.Tech. Digital Manufacturing

Jayakrishnan J Guest Faculty

DMZG521 – Design for Additive Manufacturing Session 3 & Lecture No. 5-6

Quick Recap

Session 1

- Need for DfAM
- Difference between DFM and DfAM
- Difference between AM and other machining operations
- Classification of AM processes
- AM Ecosystem

Session 2

- Machine configuration of AM processes
- Capabilities of different AM processes
- Materials used in different AM processes
- Science behind each AM process

The best design is the simplest one that works.

- Albert Einstein

What is 'X' in DFX?

- Design for Manufacture
- Design for Assembly
- Design for Quality
- Design for Reliability
- Design for Serviceability/Maintainability
- Design for Safety
- Design for the Environment
- Design for User-Friendliness
- Design for Shorter Time-to-Market
- Design for Additive Manufacturing

Design Procedure

Stakeholders

Standardization

- Development cost and training cost is reduced
- Fewer mistakes.
- Start-up costs reduced due to familiarity.
- Less debugging. Therefore, higher quality, lower lead time, and higher productivity.
- Tooling costs reduced since tools are already available.
- Production quantities higher because same parts are reused. Hence economies of scale and easier just-intime (JIT) arrangements.

Standard v. One-off Design (Time Comparison)

One-off

Standard

Standard v. One-off Design (Cost Comparison)

Mass Production Vs Mass customization

Mass Customization

AM Process

- Opportunistic DfAM
- Restrictive DfAM
- Redesign using DfAM

DfAM process today

Source: DfAM-a review by Anton Wiberg et al.,

AM enabled design method

Design Aspects and Consideration for AM

al.,

AM enables Manufacturing for Design

Drivers of AM

Mass customization

Function integration

Flow optimization

Tailoring porosities and properties

Courtesy: google images

Shape complexity

Material complexity

Hierarchical complexity

Functional complexity

Complexity of Geometry

Shape Complexity

Shape complexity to reduce assembly issues

CAD model of seat post designed for aluminium alloy casting

2. Topological optimisation using Altair's solidThinking Inspire® 9.5 software

3. Re-designed by Empire Cycles using the optimised CAD model as a template

Produce in titanium alloy on a
 Renishaw AM250 laser melting system

A component before and after weight optimization through the PLM software NX.

Courtesy: Renishaw and Empire cycles

Hierarchical complexity

Functional Complexity

2.900 cm³ vs 244 cm³ 19.2 kg vs 1,2 kg 210 mm vs 85 mm

Functional Complexity

Aspect	Classic Design	Additive Design	Ratio 8%	
Number of parts	12	1		
Weight [kg]	1,3 kg	0,05 kg	4%	
Volume [mm³]	401,920 mm ³	45.263 mm ³	11%	
# of gaskets	3	0	0%	
Maunufacturing time [min]	720	360	50%	
Assembly time [min]	35	0	0%	
Throughput time [shifts]	18	2	11%	
# involved departments	4	2	50%	
Manufacturing cost [€]	1.250	340	27%	

Material Complexity

Material compostion	Radius	
1: 100 % Cu	0.39"	
2: 90% Cu + 10% Ni	0.45"	
3: 80% Cu + 20 % Ni	0.50"	
4: 70% Cu + 30% Ni	0.54"	
5: 60% Cu + 40% Ni	0.57"	
6: 50% Cu + 50% Ni	0.60"	
7: 40% Cu + 60% Ni	0.62"	
8: 30% Cu + 70% Ni	0.64"	
9: 20% Cu + 80% Ni	0.66"	
10: 10% Cu + 90% Ni	0.68"	
11: 100% Ni	0.70"	

Material Complexity

DfAM Potentials

Other Design Freedoms in AM

- Part consolidation
- Weight reduction
- Functional integration / customization
- Superior aesthetics
- Manufacturing footprint reduction

Comparison of Restrictive and Opportunistic DfAM

Die casting design rule		Similar SLM design rule	Degree of new design freedom	Exemplary benefit	
Necessary design space	Add draft angles	No	Very high	b ₂ < b ₁	Reduction of design space
d_1	Aim for uniform wall thickness	No	Very high	$d_2 < d_1$	Weight reduction
Necessary undercut (contact surface) Two-part design	Avoid undercuts	Partly (due to removal of support structures)	High (restriction less crucial)		Parts consolidation
Lateral slider Die casting part	Avoid small distances between features	No	Very high	h₂ < h₁	Reduction of design space

Core DfAM Concepts and Objectives

- AM enables the usage of complex geometry in achieving design goals without incurring time or cost penalties compared with simple geometry.
- As a corollary to the first guideline, it is often possible to consolidate parts, integrating features into more complex parts and avoiding assembly issues.
- AM enables the usage of customized geometry and parts by direct production from 3D data.
- With the emergence of commercial multimaterial AM machines, designers should explore multifunctional part designs that combine geometric and material complexity capabilities.
- AM allows designers to ignore all of the constraints imposed by conventional manufacturing processes (although AM-specific constraints might be imposed).

Next Sessions

- 1. Part consolidation
- 2. Mass customization
- 3. Lightweighting
- 4. Topology Optimization
- 5. Generative Design
- 6. Heterogenous modelling
- 7. Hierarchical structures
- 8. Modelling for Hybrid AM
- 9. Multi-Materials
- 10. Functional Integration

End of Lecture 5-6