## Assignment 3: Data Exploration

#### Queenie Wei

#### Fall 2023

#### **OVERVIEW**

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

#### **Directions**

- 1. Rename this file <FirstLast>\_A03\_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Assign a useful name to each code chunk and include ample comments with your code.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 7. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai.

TIP: If your code extends past the page when knit, tidy your code by manually inserting line breaks.

TIP: If your code fails to knit, check that no install.packages() or View() commands exist in your code.

#### Set up your R session

1. Check your working directory, load necessary packages (tidyverse, lubridate), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX\_Neonicotinoids\_Insects\_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON\_NIWO\_Litter\_massdata\_2018-08\_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to include the subcommand to read strings in as factors.

```
#checking working directory
getwd()
```

## [1] "C:/Users/ziyaw/Downloads/EDE Fall2023"

```
#loading necessary packages
#install.packages("tidyverse")
#install.packages("lubridate")
library(tidyverse)
```

```
## Warning: package 'tidyverse' was built under R version 4.3.1

## Warning: package 'lubridate' was built under R version 4.3.1

library(lubridate)
library(ggplot2)

#loading the two datasets and assigning them to Neonics and Litter, respectively
Neonics <- read.csv("./Data/Raw/ECOTOX_Neonicotinoids_Insects_raw.csv",stringsAsFactors = TRUE)
Litter <- read.csv("./Data/Raw/NEON_NIWO_Litter_massdata_2018-08_raw.csv",stringsAsFactors = TRUE)</pre>
```

#### Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicology of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer: Because it would inform farmers if they should use this kind of insecticide, when to use it, how often they should use it, and for what kind of insects. In addition, farmers can learn about the negative impacts this may have on non-pests (pests are a made-up concept) such as bees and butterflies.

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: One of the most prominent uses for studying leaf litter is to study the decomposition rate at a certain site. This can in turn lead to many other fields of study – study of fungi, study of the differences in decomposition rates among plant species, the study of microclimates, etc. It is also a way scientists use to inform ecosystem function in rivers. The woody debris are also a great way to study carbon recycling in forest and aquatic ecosystems. It also constitutes habitats for different organisms, and helps with the structure and roughness of the habitat.

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON\_Litterfall\_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: 1.Trap placement may be targeted or randomized. 2. Ground traps are sampled once a year, and target sampling various by vegetation type and cover. 3.Sampling only occurs in tower plots and are exclusively terrestrial.

#### Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

```
#checking the dimensions of the two datasets
dim(Litter)
```

## [1] 188 19

```
#188rows 19columns
dim(Neonics)
```

## [1] 4623 30

#4623rows 30columns

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

# #showing how much summary(Neonics\$Effect)

| ##<br>## | Accumulation 12 | Avoidance<br>102 | Behavior<br>360 | Biochemistry     |
|----------|-----------------|------------------|-----------------|------------------|
| ##       | Cell(s)         | Development      |                 | Feeding behavior |
| ##       | 9               | 136              | 62              | 255              |
| ##       | Genetics        | Growth           | Histology       | Hormone(s)       |
| ##       | 82              | 38               | 5               | 1                |
| ##       | Immunological   | Intoxication     | Morphology      | Mortality        |
| ##       | 16              | 12               | 22              | 1493             |
| ##       | Physiology      | Population       | Reproduction    |                  |
| ##       | 7               | 1803             | 197             |                  |

#### sort(summary((Neonics\$Effect)))

|    | ( )          |              |                      | ~ ( )            |
|----|--------------|--------------|----------------------|------------------|
| ## | Hormone(s)   | Histology    | Physiology           | Cell(s)          |
| ## | 1            | 5            | 7                    | 9                |
| ## | Biochemistry | Accumulation | Intoxication         | Immunological    |
| ## | 11           | 12           | 12                   | 16               |
| ## | Morphology   | Growth       | <pre>Enzyme(s)</pre> | Genetics         |
| ## | 22           | 38           | 62                   | 82               |
| ## | Avoidance    | Development  | Reproduction         | Feeding behavior |
| ## | 102          | 136          | 197                  | 255              |
| ## | Behavior     | Mortality    | Population           |                  |
| ## | 360          | 1493         | 1803                 |                  |

Answer: most common effects: Population, Mortality, Behavior, Feeding behavior, Reproduction. These effects are especially of interest because they are directly related to how the insects are affected by theneonicotinoids and the results of neonicotinoids (e.g. population and mortality).

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.[TIP: The sort() command can sort the output of the summary command...]

| ##       | Honoy Poo                   | Paragitic Wagn             |
|----------|-----------------------------|----------------------------|
| ##       | Honey Bee<br>667            | Parasitic Wasp<br>285      |
| ##       | Buff Tailed Bumblebee       | Carniolan Honey Bee        |
| ##       | 183                         | 152                        |
| ##       | Bumble Bee                  | Italian Honeybee           |
| ##       | 140                         | 113                        |
| ##       | Japanese Beetle             | Asian Lady Beetle          |
| ##       | 94                          | 76                         |
| ##       | Euonymus Scale              | Wireworm                   |
| ##       | 75                          | 69                         |
| ##       | European Dark Bee           | Minute Pirate Bug          |
| ##       | 66                          | 62                         |
| ##       | Asian Citrus Psyllid        | Parastic Wasp              |
| ##       | 60                          | 58                         |
| ##       | Colorado Potato Beetle      | Parasitoid Wasp            |
| ##       | 57                          | 51                         |
| ##       | Erythrina Gall Wasp         | Beetle Order               |
| ##       | 49                          | 47                         |
| ##       | Snout Beetle Family, Weevil | Sevenspotted Lady Beetle   |
| ##       | 47                          | 46                         |
| ##       | True Bug Order<br>45        | Buff-tailed Bumblebee 39   |
| ##<br>## | =+                          |                            |
| ##       | Aphid Family<br>38          | Cabbage Looper<br>38       |
| ##       | Sweetpotato Whitefly        | Braconid Wasp              |
| ##       | 37                          | 33                         |
| ##       | Cotton Aphid                | Predatory Mite             |
| ##       | 33                          | 33                         |
| ##       | Ladybird Beetle Family      | Parasitoid                 |
| ##       | 30                          | 30                         |
| ##       | Scarab Beetle               | Spring Tiphia              |
| ##       | 29                          | 29                         |
| ##       | Thrip Order                 | Ground Beetle Family       |
| ##       | 29                          | 27                         |
| ##       | Rove Beetle Family          | Tobacco Aphid              |
| ##       | 27                          | 27                         |
| ##       | Chalcid Wasp                | Convergent Lady Beetle     |
| ##       | 25                          | 25                         |
| ##       | Stingless Bee               | Spider/Mite Class          |
| ##       | 25                          | 24                         |
| ##       | Tobacco Flea Beetle         | Citrus Leafminer           |
| ##       | 24                          | 23<br>Magaan Baa           |
| ##       | Ladybird Beetle<br>23       | Mason Bee<br>22            |
| ##<br>## |                             |                            |
| ##       | Mosquito<br>22              | Argentine Ant<br>21        |
| ##       | Beetle                      | Flatheaded Appletree Borer |
| ##       | 21                          | 20                         |
| ##       | Horned Oak Gall Wasp        | Leaf Beetle Family         |
| ##       | normed dak dari wasp        | 20                         |
| ##       | Potato Leafhopper           | Tooth-necked Fungus Beetle |
|          | 10000 Zoulloppor            |                            |

| ##                                                     | 20                                 | 20                           |
|--------------------------------------------------------|------------------------------------|------------------------------|
| ##                                                     | Codling Moth                       | Black-spotted Lady Beetle    |
| ##                                                     | 19                                 | 18                           |
| ##                                                     | Calico Scale                       | Fairyfly Parasitoid          |
| ##                                                     | 18                                 | 18                           |
| ##                                                     | Lady Beetle                        | Minute Parasitic Wasps       |
| ##                                                     | 18                                 | 18                           |
| ##                                                     | Mirid Bug                          | Mulberry Pyralid             |
| ##                                                     | 18<br>Sillusam                     | Nadalia Pastla               |
| ##                                                     | Silkworm<br>18                     | Vedalia Beetle<br>18         |
| ##                                                     | Araneoid Spider Order              | Bee Order                    |
| ##                                                     | 17                                 | 17                           |
| ##                                                     | Egg Parasitoid                     | Insect Class                 |
| ##                                                     | 17                                 | 17                           |
| ##                                                     | Moth And Butterfly Order           | Oystershell Scale Parasitoid |
| ##                                                     | 17                                 | 17                           |
| ##                                                     | Hemlock Woolly Adelgid Lady Beetle | Hemlock Wooly Adelgid        |
| ##                                                     | 16<br>Min -                        | 16                           |
| ##                                                     | Mite<br>16                         | Onion Thrip<br>16            |
| ##                                                     | Western Flower Thrips              | Corn Earworm                 |
| ##                                                     | websern flower imitps              | 14                           |
| ##                                                     | Green Peach Aphid                  | House Fly                    |
| ##                                                     | 14                                 | 14                           |
| ##                                                     | Ox Beetle                          | Red Scale Parasite           |
| ##                                                     | 14                                 | 14                           |
| ##                                                     | Spined Soldier Bug                 | Armoured Scale Family        |
| ##                                                     | 14<br>Diamondback Moth             | 13<br>Fulanhid Wash          |
| ##                                                     | 13                                 | Eulophid Wasp<br>13          |
| ##                                                     | Monarch Butterfly                  | Predatory Bug                |
| ##                                                     | 13                                 | 13                           |
| ##                                                     | Yellow Fever Mosquito              | Braconid Parasitoid          |
| ##                                                     | 13                                 | 12                           |
| ##                                                     | Common Thrip                       | Eastern Subterranean Termite |
| ##                                                     | 12                                 | 12                           |
| ##                                                     | Jassid                             | Mite Order                   |
| ##<br>##                                               | 12<br>Pop Aphid                    | Dond Wolf Spider             |
| ##                                                     | Pea Aphid<br>12                    | Pond Wolf Spider<br>12       |
| ##                                                     | Spotless Ladybird Beetle           | Glasshouse Potato Wasp       |
| ##                                                     | 11                                 | 10                           |
| ##                                                     | Lacewing                           | Southern House Mosquito      |
| ##                                                     | 10                                 | 10                           |
| ##                                                     | Two Spotted Lady Beetle            | Ant Family                   |
| ##                                                     | 10                                 | 9                            |
| ##                                                     | Apple Maggot                       | (Other)                      |
| ##                                                     | 9                                  | 670                          |
| <pre>sort(summary(Neonics\$Species.Common.Name))</pre> |                                    |                              |

| ## | Ant Family | Apple Maggot |
|----|------------|--------------|
| ## | 9          | 9            |

| ##       | Glasshouse Potato Wasp       | Lacewing                           |
|----------|------------------------------|------------------------------------|
| ##       | 10                           | 10                                 |
| ##       | Southern House Mosquito      | Two Spotted Lady Beetle            |
| ##<br>## | Spotless Ladybird Beetle     | Braconid Parasitoid                |
| ##       | Spottess Ladybird Beetre     | 12                                 |
| ##       | Common Thrip                 | Eastern Subterranean Termite       |
| ##       | 12                           | 12                                 |
| ##       | Jassid                       | Mite Order                         |
| ##       | 12                           | 12                                 |
| ##       | Pea Aphid                    | Pond Wolf Spider                   |
| ##       | 12                           | 12                                 |
| ##       | Armoured Scale Family        | Diamondback Moth                   |
| ##       | 13                           | 13                                 |
| ##<br>## | Eulophid Wasp<br>13          | Monarch Butterfly<br>13            |
| ##       | Predatory Bug                | Yellow Fever Mosquito              |
| ##       | 13                           | 13                                 |
| ##       | Corn Earworm                 | Green Peach Aphid                  |
| ##       | 14                           | 14                                 |
| ##       | House Fly                    | Ox Beetle                          |
| ##       | 14                           | 14                                 |
| ##       | Red Scale Parasite           | Spined Soldier Bug                 |
| ##       | 14                           | 14                                 |
| ##       | <del>_</del>                 | Hemlock Woolly Adelgid Lady Beetle |
| ##<br>## | Homlock Hools Adolmid        | 16<br>Mite                         |
| ##       | Hemlock Wooly Adelgid<br>16  | 16                                 |
| ##       | Onion Thrip                  | Araneoid Spider Order              |
| ##       | 16                           | 17                                 |
| ##       | Bee Order                    | Egg Parasitoid                     |
| ##       | 17                           | 17                                 |
| ##       | Insect Class                 | Moth And Butterfly Order           |
| ##       | 17                           | 17                                 |
| ##       | Oystershell Scale Parasitoid | Black-spotted Lady Beetle          |
| ##       | 17<br>Calico Scale           | 18                                 |
| ##<br>## | Calico Scale                 | Fairyfly Parasitoid<br>18          |
| ##       | Lady Beetle                  | Minute Parasitic Wasps             |
| ##       | 18                           | 18                                 |
| ##       | Mirid Bug                    | Mulberry Pyralid                   |
| ##       | 18                           | 18                                 |
| ##       | Silkworm                     | Vedalia Beetle                     |
| ##       | 18                           | 18                                 |
| ##       | Codling Moth                 | Flatheaded Appletree Borer         |
| ##       | 19                           | 20                                 |
| ##       | Horned Oak Gall Wasp         | Leaf Beetle Family                 |
| ##<br>## | 20<br>Potato Leafhonner      | 20<br>Tooth-necked Fungus Beetle   |
| ##       | Potato Leafhopper<br>20      | 20                                 |
| ##       | Argentine Ant                | Beetle                             |
| ##       | 21                           | 21                                 |
| ##       | Mason Bee                    | Mosquito                           |
| ##       | 22                           | 22                                 |
|          |                              |                                    |

| ## | Citrus Leafminer          | Ladybird Beetle             |
|----|---------------------------|-----------------------------|
| ## | 23                        | 23                          |
| ## | Spider/Mite Class         | Tobacco Flea Beetle         |
| ## | 24                        | 24                          |
| ## | Chalcid Wasp              | Convergent Lady Beetle      |
| ## | 25                        | 25                          |
| ## | Stingless Bee             | Ground Beetle Family        |
| ## | 25                        | 27                          |
| ## | Rove Beetle Family        | Tobacco Aphid               |
| ## | 27                        | 27                          |
| ## | Scarab Beetle             | Spring Tiphia               |
| ## | 29                        | 29                          |
| ## | Thrip Order               | Ladybird Beetle Family      |
| ## | 29                        | 30                          |
| ## | Parasitoid                | Braconid Wasp               |
| ## | 30                        | 33                          |
|    |                           |                             |
| ## | Cotton Aphid              | Predatory Mite              |
| ## | 33                        | 33                          |
| ## | Sweetpotato Whitefly      | Aphid Family                |
| ## | 37                        | 38                          |
| ## | Cabbage Looper            | Buff-tailed Bumblebee       |
| ## | 38<br>Tours Provident     | 39                          |
| ## | True Bug Order            | Sevenspotted Lady Beetle    |
| ## | 45                        | 46                          |
| ## | Beetle Order              | Snout Beetle Family, Weevil |
| ## | 47                        | 47                          |
| ## | Erythrina Gall Wasp<br>49 | Parasitoid Wasp             |
| ## |                           | 51                          |
| ## | Colorado Potato Beetle    | Parastic Wasp               |
| ## | 57                        | 58                          |
| ## | Asian Citrus Psyllid      | Minute Pirate Bug           |
| ## | 60                        | 62                          |
| ## | European Dark Bee         | Wireworm                    |
| ## | 66                        | 69                          |
| ## | Euonymus Scale            | Asian Lady Beetle           |
| ## | 75                        | 76                          |
| ## | Japanese Beetle           | Italian Honeybee            |
| ## | 94                        | 113                         |
| ## | Bumble Bee                | Carniolan Honey Bee         |
| ## | 140                       | 152                         |
| ## | Buff Tailed Bumblebee     | Parasitic Wasp              |
| ## | 183                       | 285                         |
| ## | Honey Bee                 | (Other)                     |
| ## | 667                       | 670                         |

Answer: Honey bee, Parasitic Wasp, Buff Tailed Bumblebee, Carniolan Honey Bee, Bumble Bee, italian Honeybee. These species are commonly studied because they are vital pollinators that are negatively affected by neonicotinoids. Because the insecticide can present itself in pollen and nectar, there is a direct threat to the pollinators, and they are toxic to them.

<sup>8.</sup> Concentrations are always a numeric value. What is the class of Conc.1..Author. column in the dataset, and why is it not numeric?

```
class(Neonics$Conc.1..Author.)
```

## [1] "factor"

Answer: It is a factor because there are symbols (such as  $\sim$  and /) in some of the cells.

### Explore your data graphically (Neonics)

9. Using geom\_freqpoly, generate a plot of the number of studies conducted by publication year.

```
#this generates a line line plot for frequency in accordance with the
#publication year
ggplot(Neonics) +
  geom_freqpoly(aes(x = Publication.Year))
```

## 'stat\_bin()' using 'bins = 30'. Pick better value with 'binwidth'.



10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
#this separates the line graph into several small ones according to their
#locations
ggplot(Neonics) +
  geom_freqpoly(aes(x = Publication.Year, color = Test.Location))
```

## 'stat bin()' using 'bins = 30'. Pick better value with 'binwidth'.



Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: the most common test locations would be in lab settings, although there was a peak of field natural locations around 2010. Tests are occurring a lot more in labs, and a lot less in field natural environments over time. In addition, there is a dropoff in all kinds of experiments around 2020, which may be attributed to the corona virus. There used to be more experiments in natural sites than lab sites, but with the advancement of technology, it is easier to control for different factors in labs, making it more favorable.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX\_CodeAppendix for more information.

[TIP: Add theme(axis.text.x = element\_text(angle = 90, vjust = 0.5, hjust=1)) to the end of your plot command to rotate and align the X-axis labels...]

```
ggplot(Neonics) +
  geom_bar(aes(x=Endpoint))+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```



Answer: The two most common end points are NOEL and LOEL, which stand for No-observable-effect-level and Lowest-observable-effect-level, respectively. LOEL is defined as the lower dose level that produces effects significantly different from responses to controls, and NOEL is the highest dose possible that does not produce a result that is significantly different from the controls.

#### Explore your data (Litter)

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

```
class(Litter$collectDate)

## [1] "factor"

#the class of collectdate is not date, it is factor.
today <- Sys.Date()
format(today, format = "%B")

## [1] "September"</pre>
```

```
Litter$collectDate <- as.Date(Litter$collectDate, format = "%Y-%m-%d")

class(Litter$collectDate)

## [1] "Date"

#the class has been changed to Date

#finds the unique values in litter$collectdate

dates <- unique(Litter$collectDate)

dates

## [1] "2018-08-02" "2018-08-30"

#the dates were august 2nd and august 30th
```

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

```
length(unique(Litter$plotID))

## [1] 12

summary(Litter$siteID)

## NIWO
## 188
```

Answer: All 188 observations were collected at the Niwot Ridge. The information provided by the unique function does not automatically provide the number of unique values, whereas summary does. One would need to mannually count the number of unique plots. Summary also provides other summary statistics when relavent.

14. Create a bar graph of functionalGroup counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

```
ggplot(Litter) +
geom_bar(aes(x=functionalGroup))
```



15. Using geom\_boxplot and geom\_violin, create a boxplot and a violin plot of dryMass by functional-Group.



```
ggplot(Litter) +
geom_boxplot(aes(x = dryMass, y = functionalGroup))
```



Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: Because the data is very spread out with a lot of outliers. Boxplots are more robust when it comes to data with more outliers.

What type(s) of litter tend to have the highest biomass at these sites?

Answer: Needles tend to have the highest biomass at these sites according to the bargraph. We can derive this result by looking at the quartiles. The 2nd and 4th quartiles are much higher than the other functional groups.