Математическая статистика

Практическое задание 2

В данном задании рассматриваются различные свойства оценок, методы получения оценок, способы сравнения оценок.

Правила:

- Выполненную работу нужно отправить на почту probability.diht@yandex.ru, указав тему письма "[номер группы] Фамилия Имя - Задание 2". Квадратные скобки обязательны. Вместо Фамилия Имя нужно подставить свои фамилию и имя.
- Прислать нужно ноутбук и его pdf-версию. Названия файлов должны быть такими: 2.N.ipynb и 2.N.pdf, где N - ваш номер из таблицы с оценками.
- Никакой код из данного задания при проверке запускаться не будет.
- Некоторые задачи отмечены символом *. Эти задачи являются дополнительными. Успешное выполнение большей части таких задач (за все задания) является необходимым условием получения бонусного балла за практическую часть курса.
- Баллы за каждую задачу указаны далее. Если сумма баллов за задание меньше 25% (без учета доп. задач), то все задание оценивается в 0 баллов.

Баллы за задание:

- Задача 1 3 балла
- Задача 2 3 балла
- Задача 3 3 балла
- Задача 4 2 балла
- Задача 5 2 балла
- Задача 6 3 балла
- Задача 7а 3 балла
- Задача 7b * 5 баллов
- Задача 8 4 балла
- Задача 9^{*} 4 балла
- Задача 10^{*} 5 баллов

При выполнении задания рекомендуется пользоваться библиотекой scipy.stats. Подробное описание есть в наших инструкциях.

Задача 1. В этой задаче нужно визуализировать свойство несмещенности.

Пусть X_1,\dots,X_n --- выборка из распределения U[0, heta]. Известно, что в качестве оценки параметра hetaможно использовать следующие оценки $X_{(n)}, \frac{n+1}{n} X_{(n)}, 2\overline{X}$

Вопрос: Какие из этих оценок являются несмещенными?

Ответ: <...>

Вам нужно убедиться в этом, сгенерировав множество выборок и посчитав по каждой из них оценку параметра.

Сгенерируйте 500 выборок X_1^j,\dots,X_n^j из распределения U[0,1], по каждой из них посчитайте оценку $\widehat{\theta}_j$ получив тем самым 500 независимых оценок параметра. Нанесите их на график с одинаковой *у*-координатой. Отметьте специальным символом среднее этих выборок (см. шаблон ниже). Выполните данную процедуру для $n\in\{10,100,500\}$

Для нанесения точек на график используйте следующий шаблон. Для каждой оценки выставите разный *уровень*, чтобы реализации разных оценок не слипались. В качестве *метки* используйте latex-код этой оценки, который можно взять выше в условии этой задачи. Постарайтесь не размножать код, а сделать циклы по типам оценок и по размеру выборки. Естественно, все типы оценок должны быть на одном графике, но для разных n должны быть разные графики.

In []:

Пусть теперь X_1,\dots,X_n --- выборка из распределения $\mathcal{N}(0,\sigma^2)$. Известно, что в качестве оценки параметра σ^2 можно использовать следующие оценки $S^2,\frac{n}{n-1}S^2$

Вопрос: Какие из этих оценок являются несмещенными?

Ответ: <...>

Для данной модели выполните те же действия, что и с предыдущей.

```
In [ ]:
```

```
...
```

Сделайте вывод о том, что такое свойство несмещенности. Подтверждают ли сделанные эксперименты свойство несмещенности данных оценок? Поясните, почему в лабораторных по физике при оценке погрешности иногда используют n-1 в знаменателе, а не n.

Вывод: ...

Задача 2. В этой задаче нужно визуализировать свойство состоятельности.

а). Пусть X_1, \ldots, X_n --- выборка из распределения $\mathcal{N}(\theta, 1)$ Известно, что \overline{X} является состоятельной оценкой параметра θ . Вам нужно убедиться в этом, сгенерировав множество выборок и посчитав по каждой из них оценку параметра в зависимости от размера выборки.

Сгенерируйте 200 выборок X_1^j,\dots,X_{300}^j из распределения $\mathcal{N}(0,1)$. По каждой из них посчитайте оценки $\widehat{\theta}_{jn}=\frac{1}{n}\sum_{i=1}^n X_i^j$ для $1\leqslant n\leqslant 300$, то есть оценка параметра по первым n наблюдениям j наблюдениям j выборки. При написании кода может помочь вступительное задание.

Для каждого j нанесите на один график зависимость $\widehat{\theta}_{jn}$ от n с помощью plt.plot. Каждая кривая должна быть нарисована *одним цветом* с прозрачностью alpha=0.2. Поскольку при малых n значения оценок могут быть большими, ограничьте область графика по оси y с помощью функции plt.ylim((min, max)).

b). Пусть X_1, \dots, X_n --- выборка из распределения $U[0,\theta]$ Известно, что $X_{(n)}$ является состоятельной оценкой параметра θ . Выполните исследование, аналогичное пункту a), сгенерировав выборки из распределения U[0,1] и посчитав оценки $\widehat{\theta}_{jn} = \max_{i=1...n} X_i^j$.

Сделайте вывод о том, что такое свойство состоятельности. Подтверждают ли сделанные эксперименты свойство состоятельности данных оценок? Как связаны результаты в пункте *a)* с законом больших чисел?

Задача 3. В этой задаче нужно визуализировать свойство асимптотической нормальности.

а). Пусть X_1, \dots, X_n --- выборка из распределения $\mathcal{N}(\theta, 1)$ Известно, что \overline{X} является асимптотически нормальной оценкой параметра θ Вам нужно убедиться в этом, сгенерировав множество выборок и посчитав по каждой из них оценку параметра в зависимости от размера выборки.

Сгенерируйте 200 выборок X_1^j,\dots,X_{300}^j из распределения $\mathcal{N}(0,1)$. По каждой из них посчитайте оценки $\widehat{\theta}_{jn}=\frac{1}{n}\sum_{i=1}^n X_i^j$ для $1\leqslant n\leqslant 300$, то есть оценка параметра по первым n наблюдениям j выборки. Для этой оценки посчитайте статистику $T_{jn}=\sqrt{n}\left(\widehat{\theta}_{jn}-\theta\right)$ где $\theta=0$.

Для каждого j нанесите на один график зависимость T_{jn} от n с помощью plt.plot. Каждая кривая должна быть нарисована *одним цветом* с прозрачностью alpha=0.2. Сходятся ли значения T_{jn} к какойлибо константе?

Для n=300 по выборке $T_{1,300},\ldots,T_{200,300}$ постройте гистограмму и ядерную оценку плотности. Хорошо ли они приближают плотность распределения $\mathcal{N}(0,1)$ (ее тоже постройте на том же графике)? Не забудьте сделать легенду.

b). Пусть X_1, \dots, X_n --- выборка из распределения $Pois(\theta)$. Известно, что \overline{X} является асимптотически нормальной оценкой параметра θ . Выполните исследование, аналогичное пункту *a*).

Сделайте вывод о том, что такое свойство асимптотической нормальности. Подтверждают ли сделанные эксперименты свойство асимптотической нормальности данных оценок? Как связаны результаты с центральной предельной теоремой?

Задача 4. Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$ Из домашнего задания известно, что $n\left(\theta-X_{(n)}\right)\stackrel{d_{\theta}}{\longrightarrow} Exp\left(1/\theta\right)$. Проведите исследование, аналогичное заданию 3 для $\theta=1$.

Задача 5. Дана параметрическая модель и несколько выборок из двух или трех наблюдений (для удобства они даются в виде python-кода). Нужно для каждой выборки построить график функции правдоподобия.

- а). Параметрическая модель $\mathcal{N}(\theta,1)$, выборки: [-1, 1], [-5, 5], [-1, 5]
- b). Параметрическая модель $Exp(\theta)$, выборки: [1, 2], [0.1, 1], [1, 10]
- c). Параметрическая модель $U[0,\theta]$, выборки: [0.2, 0.8], [0.5, 1], [0.5, 1.3]
- *d*). Параметрическая модель $Bin(5,\theta)$, выборки: [0, 1], [5, 5], [0, 5]
- е). Параметрическая модель $Pois(\theta)$, выборки: [0, 1], [0, 10], [5, 10]
- f). Параметрическая модель $Cauchy(\theta)$, где θ --- параметр сдвига, выборки: [-0.5, 0.5], [-2, 2], [-4, 0, 4]

Выполнить задание, не создавая много кода, поможет следующая функция.

In []:

```
def draw_likelihood(density_function, grid, samples, label):
    ''' density_function --- функция, считающая плотность (обычную или дискретную)
        grid --- сетка для построения графика
        samples --- три выборки
        label --- latex-код параметрической модели

plt.figure(figsize=(18, 5))
    for i, sample in enumerate(samples):
        sample = np.array(sample)[np.newaxis, :]
        likelihood = значение функции правдоподобия

    plt.subplot(1, 3, i+1)
    plt.plot(grid, likelihood)
    plt.xlabel('$\\theta$', fontsize=16)
    plt.grid(ls=':')
    plt.title(label + ', sample=' + str(sample), fontsize=16)
    plt.show()
```

Первый пункт можно выполнить с помощью следующего кода

In []:

Сделайте вывод о том, как функция правдоподобия для каждой модели зависит от выборки. Является ли функция правдоподобия плотностью?

Вывод: ...

Сгенерируем выборку большого размера из стандартного нормального распределения и посчитаем ее функцию правдоподобия в модели $\mathcal{N}(\theta,1)$. Выполните код ниже

In []:

```
sample = sps.norm.rvs(size=10**5)
likelihood = sps.norm.pdf(sample).prod()
print(likelihood)
```

Почему результат отличается от ожидаемого? Как обойти эту неприятность для подсчтета оценки максимального правдоподобия? Реализуйте это. Подсказка: нужно использовать некоторую функцию у класса, который реализует это распределения.

In []:

Задача 6. На высоте 1 метр от точки heta находится источник γ назлучения, причем направления траекторий γ [квантов случайны, т.е. равномерно распределены по полуокружности. Регистрируются координаты $X_i, i=1,\ldots,n$ точек пересечения γ -квантов с поверхностью детекторной плоскости. Известно, что X_i имеет распределение Коши.

- a). На отрезке [-7,7] постройте плотность стандартного нормального распределения и стандартного распределения Коши. Не забудьте добавить легенду.
- b). Сгенерируйте выборку размера 100 из стандартного распределения Коши. Для всех $n \leqslant 100$ по первым n। элементам выборки посчитайте значения \overline{X} и $\widehat{\mu}$ (выборочное среднее и выборочная медиана). На одном графике изобразите зависимость значений этих оценок от n. Сделайте вывод.

Задача 7. На сегодняшний день возобновляемые источники энергии становятся все более востребованными. К таким источникам относятся, например, ветрогенераторы. Однако, их мощность очень трудно прогнозировать. В частности, выработка энергии при помощи ветрогенераторы сильно зависит от скорости ветра. Поэтому предсказание скорости ветра является очень важной задачей. Скорость ветра часто моделируют с помощью распределения Вейбулла, которое имеет плотность

$$p_{\theta}(x) = \frac{kx^{k-1}}{\lambda^k} e^{-(x/\lambda)^k},$$

где $heta = (k,\lambda)$ |--- двумерный параметр. К сожалению, найти точную оценку максимального правдоподобия на heta не получится. В данном задании нужно найти оценку максимального правдоподобия приближенно с помощью поиска по сетке.

Выборка. Создайте выборку по значению скорости ветра для некоторой местности для не менее чем 100 дней. Помочь в этом может <u>дневник погоды (https://www.gismeteo.ru/diary/)</u>. Однако, данные там округлены до целого, поэтому вы можете попробовать найти другие данные.

а). Найдите оценку максимального правдоподобия параметра $\theta = (k, \lambda) | c$ точностью $10^{-5} | при помощи$ поиска по двумерной сетке.

За распределение Вейбулла отвечает класс weibull min из scipy.stats, которое задается так: weibull min(c=k, scale= λ).

Двумерную сетку можно создать с помощью numpy.mgrid[from:to:step, from:to:step]. Если попробовать сразу создать сетку с шагом 10^{-5} , то может не хватить памяти. Поэтому найдите сначала максимум по сетке с большим шагом, а потом сделайте сетку с маленьким шагом в окрестности найденной точки. При вычислении без циклов, возможно, придется создавать четырехмерные объекты.

Функция numpy.argmax выдает не очень информативный индекс, поэтому пользуйтесь следующей функцией.

```
In [ ]:
```

```
def cool_argmax(array):
    return np.unravel_index(np.argmax(array), array.shape)
```

Нарисуйте график плотности с параметрами, соответствующим найденным ОМП, а так же нанесите на график гистограмму.

```
In [ ]:
```

. . .

b). На самом деле, при помощи дифференцирования можно перейти к задаче поиска ОМП для параметра k. Выполните такое преобразование и найдите ОМП приближенно с помощью метода Ньютона, основываясь на параграфе 35 книги А.А. Боровкова "Математическая статистика", 2007.

Задача 8.

а). Пусть X_1,\ldots,X_n --- выборка из распределения $U[0,\theta]$ Рассмотрим оценки $2\overline{X},(n+1)X_{(1)},X_{(1)}+X_{(n)},\frac{n+1}{n}X_{(n)}$ Вам необходимо сравнить эти оценки в равномерном подходе с квадратичной и линейной функциями потерь, построив графики функций риска при помощи моделирования.

Для каждого $\theta \in (0,2]$ с шагом 0.01 сгенерируйте 2000 выборок X_1^j,\dots,X_{100}^j из распределения $U[0,\theta]$ По каждой из этих выборок посчитайте значение всех четырех оценок. Тем самым для данного θ и оценки θ^* получится 2000 реализаций этой оценки $\theta_1^*,\dots,\theta_{2000}^*$ где значение θ_j^* посчитано по реализации выборки X_1^j,\dots,X_{100}^j Теперь можно оценить функцию потерь этой оценки с помощью усреднения

$$\widehat{R}\left(\theta^*,\theta\right) = \frac{1}{2000} \sum_{j=1}^{2000} g\left(\theta_j^*,\theta\right),\,$$

где
$$g(x, y) = (x - y)^2 |u| g(x, y) = |x - y|$$

Нанесите на один график все четыре функции риска. Для каждого типа функции потерь должен быть свой график. Пользуйтесь следующим шаблоном. Ограничение сверху по оси *у* ставьте таким, чтобы графики функции риска с малыми значениями четко различались.

In []:

```
plt.plot(тета, функция риска, label=latex-метка)
plt.grid(ls=':')
plt.xlabel('$\\theta$', fontsize=16)
plt.ylabel('$\\widehat{R}\\left(\\theta^*, \\theta\\right)$', fontsize=16)
plt.legend(fontsize=14)
plt.title(тип функции потерь, fontsize=16)
plt.ylim((0, ограничение сверху))
```

Сделайте вывод о том, какая оценка лучше и в каком подходе.

b). Пусть X_1, \dots, X_n --- выборка из распределения $Exp(\theta)$ Для $1 \le k \le 5$ рассмотрим оценки $\left(k!/\overline{X^k}\right)^{1/k}$ которые вы получили в домашнем задании. Проведите исследование, аналогичное пункту a). Используйте цикл по k чтобы не размножать код. Факториалы есть гамма-функция, которая реализована в scipy.special.gamma.

Задача 9*. Пусть θ^* І--- оценка параметра θ и $R(\theta^*,\theta) = \mathsf{E}_{\theta}(\theta^*-\theta)^2$ І--- функция риска с квадратичной функцией потерь. Тогда справедливо bias-variance разложение

$$R(\theta^*, \theta) = bias^2(\theta^*, \theta) + variance(\theta^*, \theta),$$

$$bias(\theta^*, \theta) = \mathsf{E}_{\theta}\theta^* - \theta,$$

$$variance(\theta^*, \theta) = \mathsf{D}_{\theta}\theta^*.$$

а). Пусть X_1,\dots,X_n --- выборка из распределения $U[0,\theta]$ Рассмотрим класс оценок $\mathscr{K}=\left\{cX_{(n)},c\in\mathbb{R}\right\}$ Выпишите bias-variance разложение для таких оценок.

...

Заметим, что каждая компонента bias-variance разложения пропорциональна θ^2 . Это означает, достаточно рассмотреть поведение компонент при изменении c только для одного значения θ .

Постройте график зависимости компонент bias-variance разложения от c для n=5 и $\theta=1$ С помощью функций plt.xlim и plt.ylim настройте видимую область графика так, чтобы четко была отобажена информативная часть графика (по оси x примерно от 0.9 до 1.3). Не забудьте добавить сетку и легенду, а так же подписать оси.

Сделайте выводы. Какая C дает минимум функции риска? Является ли соответствующая оценка смещеной? Что можно сказать про несмещенную оценку?

b). Пусть X_1,\dots,X_n --- выборка из распределения $\mathcal{N}(0,\sigma^2)$ Рассмотрим класс оценок $\mathcal{K}=\left\{\frac{1}{c}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2,c\in\mathbb{R}\right\}$ Выпишите bias-variance разложение для таких оценок. Можно использовать то, что величина $\frac{nS^2}{\sigma^2}$ имеет распределение хи-квадрат с n-1 степенью свободы (это будет доказано в нашем курсе позже) и ее дисперсия равна 2(n-1)

...

Повторите исследование, аналогичное пункту а) для $sigma^2 = 1$ и $n \in \{5, 10\}$ Для экономии места нарисуйте два графика в строчку. Не забудьте сделать выводы.

Задача 10^{*}. Разберитесь с теорией параграфа 4 главы 6 книжки М.Б. Лагутина "Наглядная математическая статистика", 2009. Проведите соответствующее исследование.