

Course > Week... > 5.3 Al... > 5.3.2 ...

5.3.2 Matrix-matrix multiplication by columns 5.3.2 Matrix-matrix multiplication by columns columns

<u>Start of transcript. Skip to the</u> end.

Dr. Robert van de Geijn: We're now going to look

at how to more systematically derive the different orderings of the loop

when completing a matrixmatrix multiplication.

Remember that the ij element of C is updated

9/12/2018

0:00 / 4:29

▶ 1.0x

◄》

CC

with the dot product of the i-

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Discussion

Topic: Week 5 / 5.3.2

Hide Discussion

Add a Post

Homework 5.3.2.1

1/1 point (graded)

Let $m{A}$ and $m{B}$ be matrices and $m{A}m{B}$ be well-defined and let $m{B}$ have at least four columns. The first and the fourth column of $m{B}$ are the same.

The first and fourth columns of AB are the same.

Always • Answer: Always

Explanation

Transcripted in final section of this week

Answer: Always Partition

$$B=\left(\begin{array}{cccc}b_0&b_1&b_2&b_3&B_4\end{array}\right),$$

where B_4 represents the part of the matrix to the right of the first four columns. Then

$$AB=A\left(\begin{array}{cccc}b_0&b_1&b_2&b_3&B_4\end{array}\right)=\left(\begin{array}{cccc}Ab_0&Ab_1&Ab_2&Ab_3&AB_4\end{array}\right).$$

Now, if $b_0 = b_3$ then $Ab_0 = Ab_3$ and hence the first and fourth columns of AB are equal.

Submit

Answers are displayed within the problem

Homework 5.3.2.2

1/1 point (graded)

Let A and B be matrices and AB be well-defined and let A have at least four columns. The first and fourth columns of A are the same.

The first and fourth columns of AB are the same.

Explanation

Answer: Sometimes To find an example where the statement is true, we first need to make sure that the result has at least four columns, which means that B must have at least four columns. Then an example when the statement is true: A = 0 (the zero matrix) or B = I (the identity matrix of size at least 4×4).

An example when it is false: Almost any matrices A and B. For example:

$$A = \left(\begin{array}{cccc} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{array}\right), \quad B = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

so that

$$AB = \left(\begin{array}{cccc} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{array}\right), \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{cccc} 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 2 \end{array}\right).$$

Submit

Answers are displayed within the problem

Homework 5.3.2.3

18/18 points (graded)

Compute each of the following matrix-matrix multiplications:

$$\left(\begin{array}{ccc}
1 & -2 & 2 \\
-1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
\left(\begin{array}{c|c}
-1 \\
2 \\
1
\end{array}\right)$$

$$\left(\begin{array}{ccc|c} 1 & -2 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right) \left(\begin{array}{c|c} -1 & 0 \\ 2 & 1 \\ 1 & -1 \end{array}\right)$$

$$\left(\begin{array}{ccc|c} 1 & -2 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right) \left(\begin{array}{ccc|c} -1 & 0 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{array}\right)$$

=	-3	-4	7
	✓ Answer: -3	✓ Answer: -4	✓ Answer: 7
	6	1	-1
	✓ Answer: 6	✓ Answer: 1	✓ Answer: -1
	4	-1	3
	✓ Answer: 4	✓ Answer: -1	✓ Answer: 3

$$\begin{pmatrix} 1 & -2 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -3 & -4 \\ 6 & 1 \\ 4 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \\ -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -3 & -4 & 7 \\ 6 & 1 & -1 \\ 4 & -1 & 3 \end{pmatrix}$$

Submit

1 Answers are displayed within the problem

Homework 5.3.2.4

1/1 point (graded)

Algorithm: $C := \text{GEMM_UNB_VAR1}(A, B, C)$ Partition $B \to \begin{pmatrix} B_L & B_R \end{pmatrix}$, $C \to \begin{pmatrix} C_L & C_R \end{pmatrix}$ where B_L has 0 columns, C_L has 0 columns

while $n(B_L) < n(B)$ do

Repartition $\begin{pmatrix} B_L & B_R \end{pmatrix} \to \begin{pmatrix} B_0 & b_1 & B_2 \end{pmatrix}$, $\begin{pmatrix} C_L & C_R \end{pmatrix} \to \begin{pmatrix} C_0 & c_1 & C_2 \end{pmatrix}$ where b_1 has 1 column, c_1 has 1 column $c_1 := Ab_1 + c_1$ Continue with $\begin{pmatrix} B_L & B_R \end{pmatrix} \leftarrow \begin{pmatrix} B_0 & b_1 & B_2 \end{pmatrix}$, $\begin{pmatrix} C_L & C_R \end{pmatrix} \leftarrow \begin{pmatrix} C_0 & c_1 & C_2 \end{pmatrix}$ endwhile

Write the routine

• [C_out] = Gemm_unb_var1(A, B, C)

that computes C := AB + C using the above algorithm.

Some links that will come in handy:

- <u>Spark</u> (alternatively, open the file LAFF-2.0xM -> Spark -> index.html)
- <u>PictureFLAME</u> (alternatively, open the file LAFF-2.0xM -> PictureFLAME -> PictureFLAME.html)

The update $c_1 := Ab_1 + c_1$ can be accomplished by the call to

laff_gemv('No transpose', 1, ..., 1,)

(click on the "laff routines" tab at the top of the page for more info).

You may want to use the following script to test your implementations:

- test Gemm unb var1.m
- ☑ Done/Skip ✓

Gemm unb var1.m

Submit

• Answers are displayed within the problem

© All Rights Reserved