MDM Lista 6

Weronika Jakimowicz

ZAD. 1.

Rozważmy najpierw prawą stronę równania. Spośród n osób wybieramy najpierw lidera delegacji. Możemy to zrobić na n sposobów. Chcemy mu dobrać pewną delegację osób. Ponieważ lider został już wybrany, to zostaje nam (n-1) osób. Dla każdej z nich mamy dwie możliwości: albo osoba zostanie wybrana albo nie. Czyli dla każdej z (n-1) możemy zadecydować jej los na 2 sposoby, co daje nam

$$n \cdot 2^{n-1}$$

sposobów na wybranie delegacji z co najmniej 1 osobą.

Teraz zajmujemy się lewą stroną równania. Suma przechodzi przez wszystkie możliwe rozmiary delegacji: możemy wybrać delegację która ma tylko jedną osobę (wtedy k = 1), a możemy też przecież wybrać delegację o k = n - 1 lub k = n członkach. W każdej z takich k-osobowych delegacji lidera możemy wybrać na k sposobów. Całość daje to samo rozwiązanie co przechodzenie przez każdą potencjalną osobę po kolei i decydowanie czy ona trafia do delegacji czy też nie.

ZAD. 2.

Jeśli jedynek jest o co najmniej 2 więcej niż zer, to całość nam nie zadziała. Na przykład w 1101 nie możemy rozdzielić dwóch pierwszych 1. Załóżmy więc, że

$$k < l + 2$$

Aby ułatwić sobie zadanie, sklejmy k-1 jedynek z zerami. Na razie niech zera będą zawsze przez jedynką, to znaczy tworzymy pary 01. Ustawiamy je jedna koło drugiej i zrobić to możemy na jeden sposób. Zostaje nam k-(k-1)=1 jedynka, którą musimy wstawić na sam przód ciągu i l-(k-1) zer. Nie mamy ograniczeń na położenie zer, więc możemy je wstawić na dowolne miejsce między dotychczasowymi 2k-1 elementami lub na jednym z końców, co daje nam

$$\binom{2k}{l-k+1}$$

miejsc na wstawienie 0. Dostajemy więc $\binom{2k}{l-k+1}$ ciągów kiedy zera stoją przed jedynkami.

Teraz zauważmy, że jeśli odbijemy początkowe pary jedynek i zer, tzn. postawimy jedynki przed zerami, dostaniemy sytuację lustrzaną. Czyli kolejne $\binom{2k}{l-k+1}$ sposobów na ustawienie ciągu. Daje to ostateczną liczbę ciągów, gdzie jedynki nigdy nie są koło siebie, czyli

$$2 \cdot {2k \choose l-k+1}$$

ZAD. 3.

Zasada włączeń i wyłączeń, ale chwilowo mi się nie chce.

ZAD. 4.

Liczba wszystkich permutacji to n!. Teraz wystarczy od wszystkich permutacji odjąć te, które nam nie pasują, czyli mają co najmniej jedną liczbę i \leq k na pozycji i.

Rozważmy ciąg rekurencyjny a_k taki, że a_k to liczba permutacji zbioru n-elementowego, że pierwsze k elementów nie jest na swoim wyjściowym miejscu. Dla a_0 mamy oczywiście wartość n!.

Dla k + 1-elementu ciągu możemy skorzystać z poprzednich wartości.

ZAD. 5.

Szukamy liczby permutacji zbioru $\{1, 2, ..., n\}$ takich, że dla każdego i nie stoi ono na pozycji i. Niech d_n oznacza liczbę nieporządków na zbiorze n elementowym.

ZAD. 12.

(a) {id, (12345), (13524), (1453), (15432)}