5. Equazioni

(gli esercizi con asterisco sono avviati)

Risolvere le sequenti equazioni ed esprimere le soluzioni in forma algebrica:

1.
$$z^2 - 5z + 8 = 0$$

3.
$$2iz + z = i(z - i)$$

5.
$$\frac{z-1}{z+1} = 2i$$

7.
$$z^3 + 22z + 52 = 0$$
 8. $z^4 - 4z^2 - 5 = 0$

9.
$$z^2 - (2i - 1)z - i - 1 = 0$$
 10. $z^3 + 2z - i = 0$

11.
$$(z-1)^2 = (1+i)^2$$
 ***12.** $(z+1)^4 = -81$

13.
$$(z+1)^3 = 8i$$

*15.
$$3z = i - |z|$$

17.
$$iz + \frac{i}{z} - 2 = 0$$

*19.
$$z \cdot Re(z) = i + 2z$$

2.
$$z + \frac{1}{z} = 4$$

4.
$$\frac{iz}{1-i} = z + 1$$

6.
$$z^3 - 8 = 0$$

8.
$$z^4 - 4z^2 - 5 = 0$$

10.
$$z^3 + 2z - i = 0$$

*12.
$$(z+1)^4 = -81$$

13.
$$(z+1)^3 = 8i$$
 ***14.** $(z-i)^2 + i - 1 = (z-i)(1+2i)$

*15.
$$3z = i - |z|$$
 *16. $z^4 = 64(1 + i\sqrt{3})^2$

18.
$$i + \bar{z} = \bar{\iota}(1+i)$$

*19.
$$z \cdot Re(z) = i + 2\bar{z}$$
 20. $z - 2\bar{z} + i(z + Re(z)) + 3 - 2iIm(z) = 0$

Risolvere le sequenti equazioni ed esprimere le soluzioni in forma esponenziale o algebrica:

22.
$$4z^2 + 1 = 0$$

24.
$$z^3 = 3 - 3i$$

26.
$$z^2 - 3iz + 4 = 0$$

28.
$$(z^5 + 2i)(z^2 - i) = 0$$

*30.
$$z^3 - (i+1)z^2 + z - i - 1 = 0$$

21. $3Re(z) - z + \bar{z} - iIm(z) + 3 - 6i = 0$

*32.
$$z^2 = \bar{z}$$

*34.
$$|z|^2 = \frac{1}{z^4}$$

*36..
$$\frac{1}{\bar{z}} = -16i \cdot z^3$$

*38.
$$i|z|^2 + Re(z) = \bar{z} - 2z + 3e^{\pi i}$$

23.
$$z^5 = -32$$

25.
$$(z+i)(z-i\sqrt{3}-\sqrt{3})(z+1-i)=0$$

27.
$$z^4 - iz^2 + 2 = 0$$

29.
$$(z^2-3)(z^2+1+i)=0$$

*30.
$$z^3 - (i+1)z^2 + z - i - 1 = 0$$
 31. $z^3 - (i+\sqrt{3})z^2 + 4z - 4(i+\sqrt{3}) = 0$

*33.
$$z^3 = |z|$$

*35.
$$|z|=4iz^2$$

*37.
$$[iRe(z)]^3 - 2z^2 - 4Im(z) = 0$$

Soluzioni

1.S.
$$\frac{1}{2}(5 \pm \sqrt{7}i)$$
; **2. S.** $2 \pm \sqrt{3}$; **3. S.** $\frac{1}{2} - \frac{1}{2}i$

4. S.
$$z = -\frac{3}{5} - \frac{1}{5}i$$
; **5.S.** $-\frac{3}{5} + \frac{4}{5}i$; **6.S.** 2; $-1 \pm \sqrt{3}i$;

7.S. -2;
$$1 \pm 5i$$
; **8. S.** $\pm \sqrt{5}$; $\pm i$; **9. S.** -1 + i ; i ;

10. S.
$$i : \left(\frac{-1 \pm \sqrt{5}}{2}\right) i :$$
 11.S. $2 + i : -i :$

*12. S.
$$\frac{3\sqrt{2}}{2} - 1 + \frac{3\sqrt{2}}{2}i$$
; $-\frac{3\sqrt{2}}{2} - 1 + \frac{3\sqrt{2}}{2}i$; $-\frac{3\sqrt{2}}{2} - 1 - \frac{3\sqrt{2}}{2}i$; $\frac{3\sqrt{2}}{2} - 1 - \frac{3\sqrt{2}}{2}i$;

(posto
$$z+1=t$$
, si ha $t^4=-81$ da cui $t=3\left(\cos\frac{\pi+2k\pi}{4}+i\sin\frac{\pi+2k\pi}{4}\right)$, $k=0,1,2,3$.

Ne segue
$$z = -1 + 3\left(\cos(\frac{\pi}{4} + k\frac{\pi}{2}) + +i\sin(\frac{\pi}{4} + k\frac{\pi}{2})\right)$$
, $k = 0,1,2,3$.

13. S.
$$-1 + \sqrt{3} + i$$
; $-1 - \sqrt{3} + i$; $-1 - 2i$; ***14.** S. $1 + 2i$; $2i$ (porre $z - i = t$);

*15. S.
$$-\frac{\sqrt{2}}{12} + \frac{1}{3}i$$
; (Si ha $3\rho(\cos\theta + i\sin\theta) = i - \rho$, perciò deve essere

$$\begin{cases} 3\rho cos\vartheta = -\rho \\ 3\rho sin\vartheta = 1 \end{cases} \Rightarrow cos\vartheta = -\frac{1}{3}, sin\vartheta = \frac{2\sqrt{2}}{3}, \rho = \frac{1}{2\sqrt{2}} \Rightarrow z = \frac{1}{2\sqrt{2}} \left(-\frac{1}{3} + \frac{2\sqrt{2}}{3}i \right));$$

*16. S.
$$2(\sqrt{3}+i)$$
, $2(-1+i\sqrt{3})$, $2(-\sqrt{3}-i)$, $2(1-i\sqrt{3})$;

$$(z^4 = 64(-2 + 2\sqrt{3}i); z = \sqrt[4]{64(-2 + 2\sqrt{3}i)} = 4\left(\cos\frac{\frac{2\pi}{3} + 2k\pi}{4} + i\sin\frac{\frac{2\pi}{3} + 2k\pi}{4}\right), k = 0,1,2,3)$$

17. S.
$$-i(\sqrt{2}+1)$$
, $i(\sqrt{2}-1)$; **18.** S. $1+2i$;

*19.5.
$$\frac{1}{2}i$$
; $2 + \frac{1}{4}i$; (sia $z = x + iy$, si ha $(x + iy)x = i + 2(x - iy)$, da cui $\begin{cases} x^2 - 2x = 0 \\ xy + 2y - 1 = 0 \end{cases}$

$$\Rightarrow \begin{cases} x = 0, y = \frac{1}{2} \\ x = 2, y = \frac{1}{4} \end{cases}$$
;

20 S.
$$-3 + 6i$$
; **21.S.** $-1 - 2i$;

22. S.
$$\frac{1}{2}e^{\pm\frac{\pi}{2}i}$$
 ; **23.**S. $2e^{i\left(-\frac{\pi}{5}+k\frac{2\pi}{5}\right)}$ $k=0,1,2,3,4;$

24.S.
$$\sqrt[6]{18}e^{i\left(-\frac{\pi}{12}+k\frac{2\pi}{3}\right)}$$
 $k=0,1,2$; **25.S.** $e^{-\frac{\pi}{2}i};\sqrt{6}e^{\frac{\pi}{4}i};\sqrt{2}e^{\frac{3\pi}{4}i};$

26. S.
$$e^{-\frac{\pi i}{2}i}$$
; $4e^{\frac{\pi}{2}i}$; **27.** S. $e^{-\frac{\pi i}{4}}$; $e^{3\frac{\pi}{4}i}$; $\sqrt{2}e^{\frac{\pi}{4}i}$; $\sqrt{2}e^{\frac{5\pi}{4}i}$;

28.5.
$$\sqrt[5]{2}e^{i\left(-\frac{\pi}{10}+k\frac{2\pi}{5}\right)}$$
 $k=0,1,2,3,4$; $e^{\frac{\pi}{4}i}$; $e^{\frac{5\pi}{4}i}$;

29.5.
$$\sqrt{3}$$
 $e^{k\pi i}k = 0.1$; $\sqrt[4]{2} e^{\frac{-3\pi}{8}i}$; $\sqrt[4]{2} e^{\frac{5\pi}{8}i}$

*30.S.
$$e^{\frac{\pi}{2}i}$$
; $\sqrt{2}e^{\frac{\pi}{4}i}$; $e^{-\frac{\pi}{2}i}$

L. Mereu – A. Nanni I numeri complessi

(si ha
$$z(z^2+1)-(1+i)(z^2+1)=0 \Rightarrow (z^2+1)(z-(1+i))=0 \Rightarrow z=\pm i, z=1+i...$$
)

31 S.
$$2e^{\frac{\pi}{2}i}$$
; $2e^{\frac{\pi}{6}i}$; $2e^{-\frac{\pi}{2}i}$

*32.S 0; 1;
$$e^{\frac{2\pi i}{3}}$$
; $e^{\frac{4\pi i}{3}}$;

$$((x+iy)^2 = x - iy \Rightarrow x^2 - y^2 - x + i(y+2xy) = 0 \Rightarrow \begin{cases} x^2 - y^2 - x = 0 \\ y + 2xy = 0 \end{cases} \to$$

$$x = y = 0; x = 1, y = 0; x = -\frac{1}{2}, y = \pm \frac{\sqrt{3}}{2}$$
 cioè $z = 0; z = 1; z = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

In questo caso può essere vantaggioso utilizzare la forma trigonometrica (o la forma esponenziale), Infatti si ha, tenendo conto che due numeri complessi sono uguali se hanno lo stesso modulo e stessa anomalia a meno di multipli di 2π

$$\rho^2 e^{2\vartheta i} = \rho e^{-\vartheta i} \ \, \mathrm{da} \ \, \mathrm{cui} \left\{ \begin{aligned} \rho^2 &= \rho \to \rho = 0 \\ 2\vartheta &= -\vartheta + 2k\pi \to \vartheta = 0 \\ \end{aligned} \right. \forall \, \vartheta = \frac{2\pi}{3} \\ \forall \, \vartheta = \frac{4\pi}{3} \end{aligned}$$

$$\Rightarrow z = 0, \ z = 1, z = e^{\frac{2\pi i}{3}}, z = e^{\frac{4\pi i}{3}}$$
);

*33. S 0; 1;
$$e^{\frac{2\pi i}{3}}$$
; $e^{\frac{4\pi i}{3}}$

(Si ha
$$\rho^3 e^{3\vartheta i} = \rho$$
. Tenendo conto che il secondo membro ha anomalia 0 , risulta :
$$\begin{cases} \rho^3 = \rho \to \rho = 0 \ \forall \rho = 1 \\ 3\vartheta = 2k\pi \to \vartheta = 0 \ \forall \vartheta = \frac{2\pi}{3} \ \forall \vartheta = \frac{4\pi}{3} \end{cases} \Rightarrow z = 0, \ z = 1, z = e^{\frac{2\pi i}{3}}, \ z = e^{\frac{4\pi i}{3}});$$

*34 S.
$$e^{\frac{3\pi i}{2}}$$
; (per $\rho \neq 0$ si ha: $\rho^6 e^{4\vartheta i} = 1 \rightarrow \rho = 1 \wedge 4\vartheta = 0 + 2k\pi$

$$\begin{cases} \rho = 1 \\ \vartheta = 0 \end{cases} \Rightarrow z = 1; \begin{cases} \rho = 1 \\ \vartheta = \frac{\pi}{2} \end{cases} \Rightarrow z = e^{\frac{\pi i}{2}}; \begin{cases} \rho = 1 \\ \vartheta = \pi \end{cases} \Rightarrow z = e^{\pi i}; \begin{cases} \rho = 1 \\ \vartheta = \frac{3\pi}{2} \end{cases} \Rightarrow z = e^{\frac{3\pi i}{2}}.$$

*35. S.
$$\frac{1}{2}e^{\frac{\pi i}{4}}$$
; $\frac{1}{2}e^{\frac{5\pi i}{4}}$;

$$(\rho = 4e^{\frac{\pi i}{2}} \cdot \rho^2 e^{2\vartheta i} \Rightarrow \begin{cases} \rho = 4 \rho^2 \\ \frac{\pi}{2} + 2\vartheta = 0 + 2k\pi \end{cases} \Rightarrow \begin{cases} \rho = 0 \lor \rho = \frac{1}{4} \\ \vartheta = -\frac{\pi}{4} + k\pi \end{cases} \Rightarrow z = 0; \quad z = \frac{1}{4}e^{-\frac{\pi i}{4}} ; z = \frac{1}{4}e^{\frac{3\pi i}{4}});$$

*36. S.
$$\frac{1}{2}e^{\frac{\pi i}{4}}$$
; $\frac{1}{2}e^{\frac{5\pi i}{4}}$; $(\frac{1}{\rho e^{-\vartheta i}} = 16e^{-\frac{\pi i}{2}} \cdot \rho^3 e^{3\vartheta i} \Rightarrow \rho^4 e^{\left(2\vartheta - \frac{\pi}{2}\right)i} = \frac{1}{16} \Rightarrow \begin{cases} \rho^4 = \frac{1}{16} \\ 2\vartheta - \frac{\pi}{2} = 0 + 2k\pi \end{cases} \Rightarrow$

$$\begin{cases} \rho = \frac{1}{2} \\ \vartheta = \frac{\pi}{4} + k\pi \end{cases} \Rightarrow z = \frac{1}{2}e^{\frac{\pi i}{4}}; z = \frac{1}{2}e^{\frac{5\pi i}{4}});$$

*37.S. 0,
$$2e^{\frac{\pi i}{2}}$$
, $\pm 2\sqrt{2} - 2i$

(se
$$z = x + iy \Rightarrow -ix^3 - 2(x + iy)^2 - 4y = 0 \Rightarrow i(-x^3 - 4xy) - 2x^2 + 2y^2 - 4y = 0 \Rightarrow$$

L. Mereu – A. Nanni I numeri complessi

$$\Rightarrow \begin{cases} -x^3 - 4xy = 0 \\ -2x^2 + 2y^2 - 4y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = 0 \\ y = 2 \end{cases} \lor \begin{cases} x = \pm 2\sqrt{2} \\ y = -2 \end{cases};$$

*38. S.
$$\frac{3\sqrt{2}}{2}e^{\frac{5\pi i}{4}}$$
 (se $z = x + iy \Rightarrow i(x^2 + y^2) + x = x - iy - 2(x + iy) - 3 \Rightarrow$

$$\begin{cases} x^2 + y^2 + 3y = 0 \\ -2x - 3 = 0 \end{cases} \Rightarrow \begin{cases} x = -\frac{3}{2} \\ y = -\frac{3}{2} \end{cases}.$$