CAD/VLSI Circuit Design 期末報告

在 FPGA 板上使用 CORDIC 演算法 搭配脈衝陣列的定點數 QR 分解 Fixed point QR decomposition using CORDIC Algorithms on FPGA with systolic array

學號:7111064109

學生:林軒宇

指導教授:范志鵬

日期:2022/11/28

目錄

- \	簡介	1 -
ニ、	理論	1 -
	given rotation 說明	1 -
	使用 CORDIC 達成 given rotation	2 -
三、	架構改良	2 -
	改良一:PE Element 改良	2 -
	改良二:input size 改良	2 -
	改良三:systolic array 改良	4 -
	改良四:重新定義 K	4 -
四、	設計規格	5 -
	系統方塊圖	5 -
	QR_CORDIC 輸入輸出介面	5 -
	GG 輸入輸出介面	5 -
	GR 輸入輸出介面	6 -
五、	模擬結果	6 -
	Matlab 模擬結果	6 -
	Vivado 模擬結果	8 -
	Cell based simulation	10 -
六、	FPGA 驗證	14 -
	系統架構圖	14 -
	Top module 輸入輸出介面(AXI-Stream)	14 -
	Block Design	15 -
	Result	15 -
七、	結果與討論	16 -
	對照組	16 -
	實驗組(一顆 GG+一顆 GR)	17 -
八、	參考文獻	18 -

一、簡介

QR 分解是數值線性代數中具備多種用途的計算工具,主要應用於線性方程、最小平方法和特徵值問題。常見的 QR 分解的計算方法包括 Householder 變換、Givens rotation 以及 Gram-Schmidt 正交法。本文使用 given rotation 搭配 CORDIC Alogorithms。

本次實作採用 8*4 矩陣,每個數字大小定義在±0.25~±1,預期得到一組 8*4 的上三角矩陣 R。實驗流程為先使用 MATLAB 估算預期使用定點數(fixed point) 的長度(浮點數與定點數的誤差需足夠小)以及 iteration 的次數,再將 MATLAB 生成的隨機 8*4 矩陣以定點數格式匯入 verilog,並將 verilog 算出答案與 matlab 算出答案做比較,最後使用 FPGA 做驗證。

二、理論

➤ given rotation 說明

$$x' = x \cos \phi - y \sin \phi$$

 $y' = y \cos \phi + x \sin \phi$

找到角度 Φ 使得 Y'=0,以圖一為例, Φ 1,1 為 Y'、 Φ 2,1 為 Y',找出角度 Φ 6 ,需将右侧同一列的數值皆經過同樣的旋轉矩陣運算(原理同基本矩陣第二定理),之後依序將 Φ 3,1、 Φ 4,1...變成 Φ 0,直到第一行除了 Φ 1,1 外均變成 Φ 0。同理第二行,將 Φ 2,2 為 Φ 7 。 Φ 8 。 Φ 9 。 持續到第 Φ 9 。 持續到第 Φ 9 。 Φ

(圖一)given rotation 範例圖

▶ 使用 CORDIC 達成 given rotation

$$x' = \cos\phi \cdot [x - y \tan\phi]$$
$$y' = |\cos\phi \cdot [y + x \tan\phi]$$

先將 $\cos \emptyset$ 提出,接著限制 $\tan(\emptyset) = \pm 2^{-i}$,即可將算式簡化如下:

$$\begin{aligned} x_{i+1} &= K_i \Big[x_i - y_i \cdot d_i \cdot 2^{-i} \Big] \\ y_{i+1} &= K_i \Big[y_i + x_i \cdot d_i \cdot 2^{-i} \Big] \end{aligned} \qquad K_i = \cos(\tan^{-1} 2^{-i}) = 1 / \sqrt{1 + 2^{-2i}} \\ d_i &= \pm 1 \end{aligned}$$

為了簡化運算量,將每次的運量係數省略,最後再乘上所有系數的乘積和(An)

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

n為疊代的次數

三、架構改良

▶ 改良一: PE Element 改良

(圖二)為論文中一顆 PE 元件的架構,(圖三)為改良後一顆 PE 元件的架構,最大的改進在於完成一次計算所需花的 CLK 數變原先的一半(unfolding factor(J)=2)。缺點為會增加 Critical path,但此架構的 Critical path 為乘法器,因此可以近乎無代價的提高 Performance

(圖二)論文 PE 元件

(圖三)改良後 PE 元件

▶ 改良二:input size 改良

原論文疊代次數 n 為 9,為了使用上文圖三架構,我們須選擇偶數次疊代次數,因此此文選用疊代次數(n)為 8。此外原論文每個 input 為 16bits,此文將每個 input 改為 13bits(1 sign bit, 2 decimal bits, 10 fraction bits),找法如下文。首先定義 delta 函式如下:

$$\mathcal{S} = \frac{\sqrt{\sum (r_{ij} - \hat{r}_{ij})^2}}{\sqrt{\sum r_{ij}^2}}$$

接著使用 matlab 畫圖,做法如下:

先將 Fraction bit 設定為 5 bit, 皆著連續測試 10 組 δ 值, 如果不滿足 δ<0.01,就將 Fraction bit m1,結果如下圖:

横軸為 delta 值, 縱軸為 index(從 1~10),由上圖可以看出唯有 Fraction bit=10 時,delta 值會小於 0.01,最終測出 Fraction bit 最小需要 10 bit。

> 改良三: systolic array 改良

(圖四)為原論文架構,(圖五)為改良版架構,改良版為 pipeline 版本,在高頻下也可以成功運作。由於 R22 與 R12 間有資料相依,中間需要加 delay, delay 數由疊代次數(n)與 J(unfolding factor)有關,算式如下:

Delay >= (n/J+1)*2

n/J 為 X_{ij} 執行 Rotation mode 的次數,加 1 為乘法器,乘 2 為有兩級資料相依。 舉例:以 X₇₂、X₈₂ 為例,R22 執行需等到 R12 執行完 X₇₂、X₈₂ 才能計算。 同理(R13,R23)、(R14,R24)、(R34,R44)。

(R23,R33)、(R24,R34)多 delay 兩級目的為使用 pipeline 技巧,讓原先需要八顆乘法器降成 4 顆乘法器。最後結果如(圖五)。

(圖四)論文 systolic array

(圖五)改良後 systolic array

▶ 改良四:重新定義 K

從前文理論中,我們可以得知 An 如下:

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

其中 n 為疊代次數 ,將 n=8 帶入 ,並將其重新定義成 K ,可得結果如下: K=0.6074

最後將其轉為 FIXED POINT(共 11 bits, sign bit: 1, fraction bit: 10)

四、設計規格

▶ 系統方塊圖

▶ QR_CORDIC 輸入輸出介面

Signal Name	1/0	Width	Simple Description
Clk	I	1 Clock Signal(posedge trigger)	
Rst_n	I	1	Negedge reset
valid	I	1	valid 為 high,in 資料開始輸入
out_valid	0	1	out_valid 為 high,out 資料開始輸出
in	I	52	為第 i 列資料, 4 筆 13bits 資料組成輸入
out	0	52	為第 i 列資料, 4 筆 13bits 資料組成輸出

▶ GG 輸入輸出介面

Signal Name	1/0	Width	Simple Description
out_X	0	13	X _{ij} 資料輸出
out_Y	0	13	X _{i(j-1)} 資料輸出
Sign_d	0	2	決定第 i 與(i+1)次疊代旋轉方向
Iter_num	I	3	為第 i 次疊代, i 為 0、2、4、6
In_X	I	13	X _{ij} 資料輸入
In_Y	I	13	X _{i(j-1)} 資料輸入

► GR 輸入輸出介面

Signal Name	I/O	Width	Simple Description
out_X	0	13	X _{ij} 資料輸出
out_Y	0	13	X _{i(j-1)} 資料輸出
Sign_d	- 1	2	決定第 i 與(i+1)次疊代旋轉方向
Iter_num	I	3	為第 i 次疊代, i 為 0、2、4、6
In_X	I	13	X _{ij} 資料輸入
In_Y	ı	13	X _{i(j-1)} 資料輸入

五、模擬結果

▶ Matlab 模擬結果

1. 8*4 input matrix in floating

A1 =

-0.4453	-0.7188	-0.4297	-0.9297
0.3594	-0.5156	0.5625	0.5234
0.3516	-0.6328	-0.2813	0.3281
0.9063	0.5469	0.9297	-0.8359
-0.6875	0.3047	-0.9609	-0.5391
-0.6641	0.4297	-0.6172	-0.4297
-0.3594	-0.3359	0.6172	-0.5547
0.8906	0.3828	0.5000	0.3203
-0.3594	-0.3359	0.6172	-0.55

DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed WordLength: 13 FractionLength: 10

2. 8*4 input matrix in sign decimal

-456	-736	-440	-952
368	-528	576	536
360	-648	-288	336
928	560	952	-856
-704	312	-984	-552
-680	440	-632	-440
-368	-344	632	-568
912	392	512	328

3. 8*4 output matrix in floating

R_hat_cordic =

-1.7646	-0.2178	-1.3789	-0.6240
0.0010	-1.4063	0.1191	0.3076
-0.0049	0.0029	-1.2158	0.3896
-0.0039	-0.0020	-0.0068	-1.4883
-0.0029	0.0049	-0.0098	-0.0020
0.0039	0.0049	-0.0020	0.0049
0	0	-0.0049	0.0010
0.0029	-0.0020	0.0010	-0.0010

DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed WordLength: 13 FractionLength: 10

4. 8*4 output matrix in sign decimal

-1807	-223	-1412	-639
1	-1440	122	315
-5	3	-1245	399
-4	-2	-7	-1524
-3	5	-10	-2
4	5	-2	5
0	0	-5	1
3	-2	1	- 1

5. Delta

 $delta_p2 =$

0.0039

DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed WordLength: 19

FractionLength: 10

▶ Vivado 模擬結果

1. valid 拉起時

13bits 8*4 in_reg , 用 來存放 8*4 矩陣的值

2. 中間計算的 control 訊號

3. outvalid 拉起時

4. TESTBED 最終測試結果

```
START!!! Simulation Start .....
Your input matrix is :
 -456.000000
             -736.000000
                        -440.000000
                                     -952,000000
  368.000000
             -528.000000
                          576.000000
                                      536.000000
  360.000000
             -648.000000
                         -288.000000
                                      336.000000
  928.000000
              560.000000
                          952.000000
                                     -856.000000
 -704.000000
              312.000000
                        -984.000000
                                     -552.000000
 -680.000000
              440.000000 -632.000000
                                     -440.000000
 -368.000000 -344.000000
                          632.000000
                                     -568,000000
             392.000000
  912.000000
                          512.000000
                                     328.000000
.....
Your matrix[8][0] is
                       3, expect matrix[8][0] is
Your matrix[8][1] is
                      -2, expect matrix[8][1] is
                                                  -2
Your matrix[8][2] is
                       1, expect matrix[8][2] is
                                                   1
Your matrix[8][3] is
                      -1, expect matrix[8][3] is
                                                  -1
.....
                                                   0
Your matrix[7][0] is
                      O, expect matrix[7][0] is
                      O, expect matrix[7][1] is
                                                   n
Your matrix[7][1] is
                                                  -5
Your matrix[7][2] is
                      -5, expect matrix[7][2] is
Your matrix[7][3] is
                     1, expect matrix[7][3] is
                                                   1
_____
Your matrix[6][0] is
                      4, expect matrix[6][0] is
                                                   4
                                                   5
Your matrix[6][1] is
                      5, expect matrix[6][1] is
Your matrix[6][2] is
                      -2, expect matrix[6][2] is
                                                   -2
Your matrix[6][3] is
                     5, expect matrix[6][3] is
                                                   5
-----
Your matrix[5][0] is
                      -3, expect matrix[5][0] is
                                                  -3
Your matrix[5][1] is
                      5, expect matrix[5][1] is
                                                   -5
Your matrix[5][2] is
                     -10, expect matrix[5][2] is
                                                  -10
Your matrix[5][3] is
                      -2, expect matrix[5][3] is
                                                  -2
.....
Your matrix[4][0] is
                      -4, expect matrix[4][0] is
                                                  -4
Your matrix[4][1] is
                      -2, expect matrix[4][1] is
                                                  -2
Your matrix[4][2] is
                                                  -7
                      -7, expect matrix[4][2] is
Your matrix[4][3] is
                   -1524, expect matrix[4][3] is
                                                  -5
Your matrix[3][0] is
                      -5, expect matrix[3][0] is
                                                   3
Your matrix[3][1] is
                       3, expect matrix[3][1] is
Your matrix[3][2] is
                   -1245, expect matrix[3][2] is
                                                -1245
Your matrix[3][3] is
                   399, expect matrix[3][3] is
                                                 399
______
Your matrix[2][0] is
                       1, expect matrix[2][0] is
                                                   1
                   -1440, expect matrix[2][1] is
                                                -1440
Your matrix[2][1] is
                   122, expect matrix[2][2] is
Your matrix[2][2] is
Your matrix[2][3] is
                   315, expect matrix[2][3] is
-----
                                                -1807
Your matrix[1][0] is
                  -1807, expect matrix[1][0] is
                                                -223
                    -223, expect matrix[1][1] is
Your matrix[1][1] is
                                                -1412
Your matrix[1][2] is
                   -1412, expect matrix[1][2] is
Your matrix[1][3] is
                    -639, expect matrix[1][3] is
                                                 -639
```

------ Congratulations!------ The test result is PASS

Your output matrix is :

```
-1807.000000
               -223.000000 -1412.000000
                                           -639.000000
   1.000000
             -1440.000000
                              122.000000
                                            315.000000
  -5.000000
                  3.000000 -1245.000000
                                            399.000000
  -4.000000
                 -2.000000
                               -7.000000
                                          -1524.000000
  -3.000000
                              -10.000000
                  5.000000
                                             -2.000000
   4.000000
                  5.000000
                               -2.000000
                                              5.000000
   0.000000
                 0.000000
                               -5.000000
                                              1.000000
   3.000000
                 -2.000000
                                1.000000
                                             -1.000000
```

The delta result is 0.0039, calculation time is 55 clk

Cell based simulation

使用 CIC 0.13um 製程

1. Area report (area.log)

Library(s) Used:

```
slow (File: /usr/cad/Design_Kii/CBDK_IC_Contest_v2.5 SynopsysDC/db/slow.db)
Number of ports:
                                            108
Number of nets:
                                           12830
Number of cells:
                                           12213
Number of combinational cells:
Number of sequential cells:
                                            521
Number of macros/black boxes:
Number of buf/inv:
                                           1492
Number of references:
                                             95
Combinational area:
                                   91374.436870
Buf/Inv area:
                                    5277.216517
Noncombinational area:
                                   16863.668461
Macro/Black Box area:
                                       0.000000
                             undefined (No wire load specified)
Net Interconnect area:
Total cell area:
                                  108238.105330
Total area:
```

Timing report(timing.log)

Path Group: clk Path Type: max

Point	Incr	Path
clock clk (rise edge) clock network delay (ideal) row_index_ggl_reg[1]/Ck (DFFSX4) row_index_ggl_reg[1]/Q (DFFSX4) U12903/Y (NAND2BX1) U12904/Y (NOR2BX1) U7730/Y (INVX1) U12949/Y (OAI22XL) U12399/Y (NOR3XL) U12953/Y (NOR3XL) U12955/Y (AOI2BEXX1) U12955/Y (AOI2BEXX1) U12955/Y (OAI21XL) U12956/Y (XORZX1) U12956/Y (XORZX1) U12956/Y (NORZX1) U10369/Y (NORZX1) U10369/Y (NORZX1)	0.00 0.00 0.00 0.39 0.18 0.10 0.20 0.12 0.24 0.13 0.14 0.10 0.23 0.15 0.16	0.00 0.00 0.00 r 0.39 f 0.57 f 0.67 r 0.87 r 0.99 f 1.23 r 1.36 f 1.50 r 1.59 f 1.83 f 1.97 c 2.14 r 2.24 f
U12995/Y (0AI21X1)	0.14	2.39 r
U9069/Y (A0I21XL) U12505/Y (OAI21XL)	0.11 0.24	2.50 f 2.74 r
U8528/Y (A0I21XL)	0.14	2.88 f
U8525/Y (0AI21XL)	0.27	3.15 r
		-

```
U13040/Y (A0I21X1)
U13047/Y (OAI21X1)
U9104/Y (A0I21XL)
U12634/Y (OAI21XL)
                                                                     0.15
                                                                                        3.31 f
                                                                     0.16
                                                                                       3.46 r
3.58 f
                                                                     0.12
                                                                                        3.79
U16823/C0 (ADDFHX1)
U17192/C0 (ADDFHX1)
                                                                     0.23
                                                                                        4.01
                                                                     0.27
                                                                                        4.28 r
U8297/Y (XOR2X2)
U8006/Y (BUFX8)
U12574/Y (INVX3)
U16792/Y (XOR2X1)
                                                                                        4.47
                                                                     0.15
                                                                                        4.61 f
                                                                                        4.74 r
                                                                     0.12
                                                                     0.16
U16796/Y (A0I21X1)
U7629/Y (OAI21XL)
U16822/Y (A0I21X1)
                                                                     0.13
                                                                                        5.02 f
                                                                                        5.33 r
5.48 f
                                                                     0.30
                                                                     0.15
U7623/Y (OAI21XL)
U17195/Y (AOI21X1)
U17197/Y (OAI21X1)
                                                                     0.30
                                                                                        5.77 r
                                                                                        5.93 f
                                                                     0.16
                                                                                        6.12 r
                                                                     0.19
U17208/Y (A0I21X1)
U17264/Y (OAI21X1)
U17275/Y (A0I21X1)
                                                                     0.13
                                                                                        6.24 f
                                                                                       6.42 r
6.55 f
                                                                     0.18
                                                                                                              Clock period
                                                                     0.13
U17321/Y (AUI21X1)
U17321/Y (OAI21X1)
U7936/Y (AU21X1)
U7853/CO (ADDFXL)
U18594/Y (INVXL)
                                                                     0.16
                                                                                        6.70 r
                                                                                                              設定為8
                                                                     0.19
                                                                                        6.89 r
                                                                                        7.15 r
                                                                     0.26
                                                                     0.08
                                                                                        7.23 f
U7932/Y (MX2X2)
U12788/Y (MXI2X1)
U18954/Y (OAI222XL)
                                                                     0.20
                                                                                        7.43 f
                                                                                        7.56 r
                                                                     0.13
                                                                                        7.75 f
in_reg_reg[7][0][12]/D (DFFRX1)
data arrival time
                                                                     0.00
                                                                                        7.75 f
                                                                                                              Slack 不能
                                                                                        7.75
clock clk (rise edge)
clock network delay (ideal)
in_reg_reg[7][0][12]/CK (DFFRX1)
                                                                     8.00
                                                                                        8.00
                                                                                                               為負
                                                                     0.00
                                                                                        8.00
                                                                                        8.00
library setup time
data required time
                                                                    -0.25
                                                                                        7.75
                                                                                        7.75
data required time
                                                                                        7.75
                                                                                      -7.75
data arrival time
slack (MET)
                                                                                        0.00
```

3. Power(power.log)

Operating Conditions: slow Wire Load Model Mode: top Library: slow

Global Operating Voltage = 1.08 Power-specific unit information : Voltage Units = 1V Capacitance Units = 1.000000pf

Time Units = 1ns

Dynamic Power Units = 1mW Leakage Power Units = 1pW (derived from V,C,T units)

Cell Internal Power = 1.5125 mW Net Switching Power = 130.5112 uW (92%) (8%)

= 1.6430 mW (100%) Total Dynamic Power

Cell Leakage Power = 68.4201 uW

Power Group	Internal	Switching	Leakage	Total
	Power	Power	Power	Power (%) Attrs
io_pad memory black_box clock_network register sequential combinational	0.0000	0.0000	0.0000	0.0000 (0.00%)
	0.0000	0.0000	0.0000	0.0000 (0.00%)
	0.0000	0.0000	0.0000	0.0000 (0.00%)
	0.0000	0.0000	0.0000	0.0000 (0.00%)
	1.3738	2.3115e-02	1.5550e+07	1.4124 (82.53%)
	0.0000	0.0000	0.0000	0.0000 (0.00%)
	0.1387	0.1074	5.2870e+07	0.2990 (17.47%)
Total	1.5125 m₩	0.1305 mW	6.8420e+07 p₩	1.7114 mW

4. Gatelevel simulation(neverilog.log)

```
SDF statistics: No. of Pathdelays = 37064 Annotated = 100.00% -- No. of Tchecks = 3126 Annotated = 100.00%
                             Total
                                       Annotated
                                                     Percentage
         Path Delays
                             37064
                                           37064
                                                        100.00
                                            1563
                                                         100.00
             $width
                             1563
          $setuphold
                             1563
                                            1563
                                                        100.00
 Building instance overlay tables: ..... Done
                                     Instances Unique
                Modules:
                                          11485
                                                    112
                UDPs:
                                           877
                Primitives:
                                          21746
                                                      8
                                          12202
                Timing outputs:
                                                     50
                                            533
                                                     19
                Registers:
                Scalar wires:
                                          14821
                Expanded wires:
                                            52
                                                      1
                Always blocks:
                                              2
                                                      2
                Initial blocks:
                                              3
                                                      3
                Pseudo assignments:
                                                      4
                                           4689
                Timing checks:
                                                   1050
                Interconnect:
                                          32119
                Delayed tcheck signals:
                                         1563
                Simulation timescale:
                                            1ps
        Writing initial simulation snapshot: worklib.tb:v
Loading snapshot worklib.tb:v ...... Done
*Verdi* Loading libsscore ius152.so
ncsim> source /usr/cad/cadence/INCISIV/cur/tools/inca/files/ncsimrc
ncsim> run
START!!! Simulation Start .....
Your input matrix is :
                              -440.000000
  -456.000000
                                             -952.000000
                -736.000000
   368.000000
                -528.000000
                               576.000000
                                              536.000000
   360.000000
                -648.000000
                               -288.000000
                                              336.000000
   928.000000
                 560.000000
                               952.000000
                                             -856.000000
  -704.000000
                 312.000000
                               -984.000000
                                             -552.000000
  -680.000000
                 440.000000
                               -632.000000
                                             -440.000000
  -368.000000
                -344.000000
                               632.000000
                                             - 568, 000000
   912.000000
                 392.000000
                               512.000000
                                              328.000000
Your matrix[8][0] is
                            3, expect matrix[8][0] is
Your matrix[8][1] is
                           -2, expect matrix[8][1] is
                                                             - 2
Your matrix[8][2] is

    expect matrix[8][2] is

Your matrix[8][3] is
                           -1, expect matrix[8][3] is
Your matrix[7][0] is
                         0, expect matrix[7][0] is
                                                              0
Your matrix[7][1] is
                           0, expect matrix[7][1] is
                                                              0
Your matrix[7][2] is
                           -5, expect matrix[7][2] is
Your matrix[7][3] is
                            1, expect matrix[7][3] is
                                                              1
Your matrix[6][0] is
                         4, expect matrix[6][0] is
                                                              4
Your matrix[6][1] is
                            5, expect matrix[6][1] is
                           -2, expect matrix[6][2] is
Your matrix[6][2] is
                                                             - 2
Your matrix[6][3] is
                           5, expect matrix[6][3] is
                                                              5
                                                             - 3
Your matrix[5][0] is
                           -3, expect matrix[5][0] is
Your matrix[5][1] is
                            5, expect matrix[5][1] is
                                                              5
Your matrix[5][2] is
                          -10, expect matrix[5][2] is
                                                            - 10
Your matrix[5][3] is
                           -2, expect matrix[5][3] is
                                                             - 2
                                                             - 4
Your matrix[4][0] is
                           -4, expect matrix[4][0] is
Your matrix[4][1] is
                           -2, expect matrix[4][1] is
                                                             - 2
Your matrix[4][2] is
                           -7, expect matrix[4][2] is
                                                             - 7
Your matrix[4][3] is
                        -1524, expect matrix[4][3] is
                                                          - 1524
Your matrix[3][0] is
                           -5, expect matrix[3][0] is
                                                             - 5
Your matrix[3][1] is
                           3, expect matrix[3][1] is
                                                              3
Your matrix[3][2] is
                        -1245, expect matrix[3][2] is
                                                          - 1245
                          399, expect matrix[3][3] is
Your matrix[3][3] is
                                                            399
```

```
Your matrix[2][0] is 1, expect matrix[2][0] is
                                                        1
                     -1440, expect matrix[2][1] is
                                                     - 1440
Your matrix[2][1] is
                     122, expect matrix[2][2] is 315, expect matrix[2][3] is
Your matrix[2][2] is
                                                     122
Your matrix[2][3] is
                                                      315
Your matrix[1][0] is -1807, expect matrix[1][0] is
                      -223, expect matrix[1][1] is
Your matrix[1][1] is
                                                     - 223
Your matrix[1][2] is
                      -1412, expect matrix[1][2] is
                                                     - 1412
Your matrix[1][3] is
                      -639, expect matrix[1][3] is
                                                     -639
-----Congratulations!-----
----- The test result is ..... PASS ------
Your output matrix is :
- 1807.000000
               -223.000000 -1412.000000
                                         -639.000000
    1.000000
             - 1440.000000
                            122.000000
                                         315.000000
                 3.000000 -1245.000000
                                            399.000000
    - 5.000000
    -4.000000
                 -2.000000
                              -7.000000
                                         - 1524.000000
    -3.000000
                  5.000000
                              - 10.000000
                                           -2.000000
     4.000000
                 5.000000
                               -2.000000
                                             5.000000
    0.000000
                  0.000000
                               -5.000000
                                             1.000000
     3.000000
                 -2.000000
                                1.000000
                                             -1.000000
```

The delta result is 0.0039, calculation time is 54 clk

5. APR

六、FPGA 驗證

▶ 系統架構圖

Top module 輸入輸出介面(AXI-Stream)

Signal Name	I/O	Width	Simple Description
			TVALID 表示主設備正在驅動一個有
S_AXIS_MM2S_TVALID	I	1	效的傳輸。當 TVALID 和 TREADY 都
			置位時,發生一個傳輸。
S AXIS MM2S TREADY	0	1	TREADY 表示從設備在當前週期能夠
3_AXI3_IVIIVI23_ITILADI		1	接收一次傳輸。
			TDATA 是基本的有效載荷,用來提
S_AXIS_MM2S_TDATA	1	64	供跨越接口的數據。數據為整數個
			字節。
			TKEEP 是字節修飾符。用來表明
			TDATA 相關字節的內容是否作為數
S_AXIS_MM2S_TKEEP	I	8	據流的一部分被處理。TKEEP 字節
			修飾符未被確認的那些相關字節是
			空字節,可以從數據流中去除。
S_AXIS_MM2S_TLAST	I	1	TLAST 表明了包的邊界。
aclk	I	1	Clock Signal(posedge trigger)
aresetn	ı	1	negedge reset
M_AXIS_S2MM_TVALID	0	1	同上
M_AXIS_S2MM_TREADY	I	1	同上
M_AXIS_S2MM_TDATA	0	64	同上

M_AXIS_S2MM_TKEEP	0	8	同上
M_AXIS_S2MM_TLAST	0	1	同上

備註: (M2S:master to slave、S2M:slave to master)

Block Design

Result

1. Timing Report

Setup		Hold		Pulse Width					
Worst Negative Slack (WNS):	0.160 ns	Worst Hold Slack (WHS):	0.018 ns	Worst Pulse Width Slack (WPWS):	5.750 ns				
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns				
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0				
Total Number of Endpoints:	28306	Total Number of Endpoints:	28290	Total Number of Endpoints:	11347				
All user specified timing constrain	nts are met.								

2. Power Report

derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power:

Design Power Budget:

Not Specified

N/A

Junction Temperature:

45.3°C

Thermal Margin:

39.7°C (3.3 W)

Effective \$JA:

11.5°C/W

Power analysis from Implemented netlist. Activity

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

Medium

Power supplied to off-chip devices: 0 W

3. Total Report

Confidence level:

Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
synth_1	constrs_1	synth_design Complete!								10437	10130	17.50	0	4
✓ impl_1	constrs_1	route_design Complete!	0.160	0.000	0.018	0.000	0.000	1.762	0	9651	9571	17.50	0	4

七、結果與討論

▶ 對照組

Your matrix[3][1] is

Your matrix[3][2] is

Your matrix[3][3] is

Your matrix[2][0] is

Your matrix[2][1] is

Your matrix[2][2] is

Your matrix[2][3] is

Your matrix[1][0] is

Your matrix[1][1] is

Your matrix[1][2] is

Your matrix[1][3] is

Your matrix[8][0] is 3, expect matrix[8][0] is 3 Your matrix[8][1] is -2, expect matrix[8][1] is -2 Your matrix[8][2] is 1, expect matrix[8][2] is 1 Your matrix[8][3] is -1, expect matrix[8][3] is -1 Your matrix[7][0] is 0, expect matrix[7][0] is 0 Your matrix[7][1] is O, expect matrix[7][1] is 0 Your matrix[7][2] is -5, expect matrix[7][2] is Your matrix[7][3] is 1, expect matrix[7][3] is Your matrix[6][0] is 4, expect matrix[6][0] is Your matrix[6][1] is 5, expect matrix[6][1] is Your matrix[6][2] is -2, expect matrix[6][2] is -2 5, expect matrix[6][3] is Your matrix[6][3] is -5 -----Your matrix[5][0] is -3, expect matrix[5][0] is -3 Your matrix[5][1] is 5, expect matrix[5][1] is 5 Your matrix[5][2] is -10, expect matrix[5][2] is -10 Your matrix[5][3] is -2, expect matrix[5][3] is Your matrix[4][0] is -4, expect matrix[4][0] is -4 -2 Your matrix[4][1] is -2, expect matrix[4][1] is -7 Your matrix[4][2] is -7, expect matrix[4][2] is Your matrix[4][3] is -1524, expect matrix[4][3] is -1524 -----Your matrix[3][0] is -5, expect matrix[3][0] is -5

3, expect matrix[3][1] is

1, expect matrix[2][0] is

-1245, expect matrix[3][2] is

399, expect matrix[3][3] is

-1440, expect matrix[2][1] is 122, expect matrix[2][2] is

315, expect matrix[2][3] is

-1807, expect matrix[1][0] is

-223, expect matrix[1][1] is

-1412, expect matrix[1][2] is

-639, expect matrix[1][3] is

3

-1245

-1440

122

315

-1807

-223

-1412

-639

The delta result is 0.0039, calculation time is 55 clk

▶ 實驗組(一顆 GG+一顆 GR)

```
O are wrong!the real output s 1694.000000, but expected result is 1693.000000
Output pixel
                      1 are wrong!the real output s 1.000000, but expected result is 2.000000
Output pixel
                      2 are wrong!the real output s 6.000000, but expected result is 8.000000
Output pixel
                      3 are wrong!the real output s 4.000000, but expected result is 5.000000
Output pixel
Output pixel
                      б are wrong!the real output s 3.000000, but expected result is 4.000000
                      8 are wrong!the real output s 793.000000, but expected result is 792.000000
Output pixel
                      9 are wrong!the real output s 1846.000000, but expected result is 1847.000000
Output pixel
                                                   s -8.000000, but expected result is -10.000000
Output pixel
                     12 are wrong!the real output
                     13 are wrong!the real output s -3.000000, but expected result is 0.000000
Output pixel
Output pixel
                     14 are wrong!the real output s -8.000000, but expected result is -7.000000
                     15 are wrong!the real output s 0.000000, but expected result is 1.000000
Output pixel
Output pixel
                     16 are wrong!the real output s 130.000000, but expected result is 129.000000
Output pixel
                     17 are wrong!the real output s 324.000000, but expected result is 325.000000
                     18 are wrong! the real output s -1173.000000, but expected result is -1170.000000
Output pixel
Output pixel
                     19 are wrong!the real output s 7.000000, but expected result is 8.000000
Output pixel
                     20 are wrong!the real output s 5.000000, but expected result is 4.000000
                     21 are wrong!the real output s -6.000000, but expected result is -5.000000
Output pixel
                     22 are wrong!the real output s 3.000000, but expected result is 0.000000
Output pixel
                     23 are wrong! the real output s -1.000000, but expected result is 1.000000
Output pixel
Output pixel
                     24 are wrong!the real output s 944.000000, but expected result is 943.000000
                     25 are wrong!the real output s 919.000000, but expected result is 923.000000
Output pixel
                     26 are wrong!the real output s -123.000000, but expected result is -117.000000
Output pixel
                     27 are wrong!the real output s -1586.000000, but expected result is -1583.000000
Output pixel
                     28 are wrong! the real output s 9.000000, but expected result is 10.000000
Output pixel
                     29 are wrong!the real output s -11.000000, but expected result is -10.000000
Output pixel
                     30 are wrong!the real output s -9.000000, but expected result is 7.000000
Output pixel
Output Pixel: 0 ~
                          31 are wrong! The wrong pixel reached a total of
```

FAIL! There are 26 errors at functional simulation!

```
The test result is .....FAIL ......
```

實驗組僅將 PE 元件改成一顆 GG+一顆 GR(即表示無 systolic array),其餘皆固定,可得結果如下:

- 1. 如上圖黃框所標處,有 systolic array 的總計算時間少了將近 9 倍
- 2. expect 值為 matlab 計算後的值,造成實驗組紅框處 expect value 與 output value 不同的原因在於 rounding 的差異,需將 matlab 的 fi 函數 rounding 方式 改為"Floor",才可以使 expect value 與 output value 符合預期。

八、 參考文獻

- [1] D. Boppana, K. Dhanoa and J. Kempa, "FPGA based embedded processing architecture for the QRD-RLS algorithm," *12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines*, 2004, pp. 330-331, doi: 10.1109/FCCM.2004.34
- [2] ANDRAKA, Ray. A survey of CORDIC algorithms for FPGA based computers. In: *Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays.* 1998. p. 191-200