

IMMERSIVE 3D EXPERIENCES

Directional Early-to-Late Energy Ratios to Quantify Clarity: A Case Study in a Large Auditorium

Alexis Campos

Perception Research, Peru acampos@perception3d.com

Cesar D. Salvador

Perception Research, Peru

salvador@perception3d.com

Shuichi Sakamoto

Tohoku University, Japan saka@ais.riec.tohoku.ac.jp

1. Introduction

- Importance. Quantifying the directional features of speech and music clarity is important for:
- The positioning of acoustic materials and sound sources in rooms.
- To distinguish the directional dependence of early and late reflections to investigate clarity of speech and music.
- Contribution. In this research, omnidirectional clarity metrics have been reviewed to identify the ones based on early-to-late energy ratios (ELER) and extend them to their directional versions.

2. Review of Omnidirectional Clarity

Source Material	Name	Metric
Speech	Speech Clarity	$C_{50} = \frac{\int_{0ms}^{50ms} h'(t)^2 dt}{\int_{50ms}^{\infty} h'(t)^2 dt}.$
Speech	Speech Transmission Index	$STI = \sum_{k=1}^{7} \alpha_k * MTI_k$
Music	Music Clarity	$C_{80} = \frac{\int_{0ms}^{80ms} h'(t)^2 dt}{\int_{80ms}^{\infty} h'(t)^2 dt}.$
Music	Center Time	$T_{S} = \frac{\int_{0ms}^{\infty} t * h(t)^{2} dt}{\int_{0ms}^{\infty} h(t)^{2} dt}.$

3. Directional ELER Patterns Captured in a Large Auditory with an Ambisonic Microphone

4. Conclusion

We propose to extend the current omnidirectional metrics of clarity to include directional information.

C50 \rightarrow ELER50 C80 \rightarrow ELER80 Three patterns were identified: an omnidirectional pattern, a dipole pointing forward and backward, and a cardioid shape pointing towards the source.

The differences found in the dynamic range between frequency bands fluctuates over the usual JND between 1 and 3 dB.

ELER	Dynamic Range	
ELER ₅₀	- 44 dB to 0 dB	
$ELER_{80}$	-20 dB to 0 dB	

Extension to this work might consider BRIR and the paradigm of SRM.

References:

[1] ISO 3382–1:2009. [2] Dick et al., JASA, 145(4), 2795–2809, 2019. [3] Amengual et al., JASA, 141(4), EL369–EL374, 2017. [4] Salvador et al., IEEE/ACM TASLP, 26(3), 461–474, 2018.

