PREDICTING

FLIGHT

DELAY

Flight delays have become so common that people almost expect them. But behind every late takeoff, there's more than just inconvenience — there's lost money, frustrated passengers, missed connections, and disrupted operations.

We explored the historical flight data with two key goals:

- Understand what really causes delays not just weather or air traffic, but deeper patterns
- Build models that can flag risky flights early both as Yes/No and by estimating the delay time
- We created a custom metric to focus more on fixable delays (like those caused by carriers or aircraft rotation)
- And we used explainable ML (SHAP) to show why a flight is predicted to be delayed

Prachi Sawant

Exploratory Data Analysis

Distribution of Average delay per Month

Month and Year

- o July, August, and December have peak frequencies.
- o these months align with holiday travel seasons in the US.

Airport and carrier distributions

From the plots we can see that avg_delay has outliers beyond 75th percentile and is highly right skewed.

Correlation Analysis

- Individual delay types such as carrier-related, weather-based, and others show a weak direct link with overall average delay (correlation values stay under 0.07).
- Interestingly, many of these delay types show strong interdependence among each other, indicating they often happen together rather than in isolation.
- Key Takeaway: Instead of analyzing delay factors in silos, we need multivariate models that can account for these interacting effects for better predictions.
- Among all categories, weather-related delays emerge as the most time-consuming on average.
- Delays caused by late-arriving aircraft also significantly affect overall schedules.
- Security issues, on the other hand, contribute minimally to overall delay time.
- Action Plan: To make meaningful improvements, efforts should be strategically targeted at weather disruptions and aircraft turnaround delays.

Data Preprocessing

1. Removing outliers

```
[ ] # Removing outliers
   q1 = df["avg_delay"].quantile(0.25)
   q3 = df["avg_delay"].quantile(0.75)
   iqr = q3 - q1

upper_bound = q3 + 1.5 * iqr
   df = df[df["avg_delay"] <= upper_bound].copy()</pre>
```

2. Feature Engineering

- 1. is_delayed is a binary column (1 if arravival flight is delayed by more than 15 minutes else 0)
 - this will help in classification task
- 2. total_delay_ct aggregates the number of delay incidents, giving a simple measure of overall disruption for a given flight or time window.
- 3. Splitting delays into controllable vs. external helps model real-world operational vs. uncontrollable risks. For example, weather is not under airline control, but carrier delays are.
 - controllable_delay = carrier_delay + late_aircraft_delay
 - external_delay = weather_delay + nas_delay + security_delay
- 4. delay_rate gives the proportion of flights delayed, a measure thatnis useful when comparing months with different traffic volumes.
- 5. peak_season Binary indicator for high-traffic travel months (e.g., summer, holidays) suggesting increased risk during these periods.
- 6. monthly_traffic

3. Encoded Columns

- airport_encoded (from airport)
- carrier_encoded (from carrier)
- season_encoded (winter, summer, fall)

```
le_carrier = LabelEncoder()
le_airport = LabelEncoder()
le_season = LabelEncoder()

df["carrier_encoded"] = le_carrier.fit_transform(df["carrier"])
df["airport_encoded"] = le_airport.fit_transform(df["airport"])
df['season_encoded'] = le_season.fit_transform(df['season'])
```

4. Splitting of data and scaling

```
X_train, X_test, y_train, y_test = train_test_split(
     X, y, test_size=0.2, random_state=42
)

X_train = pd.DataFrame(X_train).fillna(0)

X_test = pd.DataFrame(X_test).fillna(0)

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
```

Metrics obtained of regression models

Linear Regression performance on target:

MAE: 2.59 RMSE: 3.74 R²: 0.7014

XGBoost performance on target:

MAE: 0.60 RMSE: 0.93 R²: 0.9814

Random Forest performance on target:

MAE: 0.49 RMSE: 0.97 R²: 0.9801

LightGBM performance on target:

MAE: 0.67 RMSE: 1.05 R²: 0.9767

Checking for overfitting of our best model

Best Model: XGBoost

MAE: 0.596 RMSE: 0.933 R²: 0.981

Regression Model

```
y_train_pred = xgb.predict(X_train_scaled)
y_test_pred = xgb.predict(X_test_scaled)
print("\n XGBoost Regressor Overfitting Check")
print("-" * 50)
print("Train R2: ", round(r2_score(y_train, y_train_pred), 4))
print("Train RMSE:", round(np.sqrt(mean_squared_error(y_train, y_train_pred)), 4))
print("Train MAE: ", round(mean_absolute_error(y_train, y_train_pred), 4))
print("Test R2: ", round(r2_score(y_test, y_test_pred), 4))
print("Test RMSE:", round(np.sqrt(mean_squared_error(y_test, y_test_pred)), 4))
print("Test MAE: ", round(mean_absolute_error(y_test, y_test_pred), 4))
 XGBoost Regressor Overfitting Check
Train R2: 0.9849
Train RMSE: 0.8366
Train MAE: 0.5492
Test R2: 0.9814
Test RMSE: 0.933
Test MAE: 0.5965
```

Since our test and test scores are very close, especially R2. It implies our XGBoost model is not overfitting and performs well on unseen data.

- The points in the plot closely follow the diagonal line, indicating good predictive performance.
- Slight spread around the line suggests some prediction error, but it's generally tight.
- The plot shows the model captures the overall trend well, especially for delays up to ~30 minutes.

Classification Model

Classification Report - Logistic Regression:

precision

classification	precision	recall		support
	precision	recarr	11-score	support
0	0.980	0.985	0.983	24504
1	0.952	0.937	0.945	7702
accuracy			0.974	32206
macro avg	0.966	0.961	0.964	32206
eighted avg	0.974	0.974	0.974	32206
	Confusion M	atrix - Lic	ghtGBM Cla	ssifier
0 -	24143		36	31
o -	27275		30	,1
Actual				
Act				
н-	485		72	17
	ó			
		Predicte		

Classificat.	ion keport -	AGBOOST CI	assiller:		
	precision	recall	f1-score	support	
	0.983	0.985	0.984	24504	
	1 0.953	0.947	0.950	7702	
accurac	у		0.976	32206	
macro av	g 0.968	0.966	0.967	32206	
weighted av	g 0.976	0.976	0.976	32206	
	Confusion	Matrix - X	GBoost Cla	ssifier	
0 -	24145	7	35	59	
Actual					
н-	406		72	96	
1-1					
	Ó	No. Co.			
		Predicte	ed		

Classification Report - XGBoost Classifier:

recall f1-score

accu	racv			0.976	32206
macro	_	0.969	0.963	0.966	32206
weighted		0.975	0.976	0.975	32206
	Confu	sion Matrix	- Gradien	t Boosting	Classifier
o ler		24186		318	3
Actual		470		723	2
		ò		i	

Predicted

Classification Report - Gradient Boosting Classifier:

precision recall f1-score support

0.948

0.939

Best Model: Voting Classifier

Accuracy: 0.98 F1 Score: 0.957 ROC AUC: 0.998

OAI and SHAP Explanation

Operational Adjustability Index is a custom regression model that focuses on predicting delays caused by controllable factors. While traditional models predicted overall delay (avg_delay), OAI emphasizes delays that an airline can actually act upon and reduce.

```
[] # assigning higher weights to controllable delays
    def compute_oai(row):
        controllable = row['carrier_delay'] + row['late_aircraft_delay']
        uncontrollable = row['weather_delay'] + row['nas_delay'] + row['security_delay']
    return 0.7 * controllable + 0.3 * uncontrollable
```

We created a custom delay score (OAI) that assigns: 70% weight to controllable delays (carrier, late aircraft) 30% weight to uncontrollable delays (weather, NAS, security)

```
y_pred_oai = model_oai.predict(X_test_oai)

# Evaluation metrics
mae_oai = mean_absolute_error(y_test_oai, y_pred_oai)
rmse_oai = np.sqrt(mean_squared_error(y_test_oai, y_pred_oai))
r2_oai = r2_score(y_test_oai, y_pred_oai)

# Print evaluation
print("OAT Prediction Performance:")
print(f"MAE : {mae_oai:.3f}")
print(f"RMSE : {rmse_oai:.3f}")
print(f"R² : {r2_oai:.4f}")

AI Prediction Performance:
MAE : 94.535
RMSE : 1087.115
R² : 0.9776
```

Checking for overfitting of our OAI model

the gap in RMSE-suggests:

- . The model may be memorizing patterns in training data too closely.
- · there might be mild overfitting
- we will remove this overfitting through shap plots and identify and remove noisy/low-impact features.

 After breaking down the model's logic using SHAP, we found that delays caused by aircraft arrival issues and carrier handling had the strongest influence on predictions

Airline benefits:

- Plan Flights Smarter: Flag flights that usually end up delayed and tweak buffer times — especially for early-morning slots where delays often snowball.
- On-Ground Fixes at Trouble Spots: Some airports cause more problems than others, smarter gate assignments and live coordination can really reduce ground time and chaos.
- Upgrade the Way Performance is Measured: move beyond tracking raw delay time. Instead, judge teams by how they manage the parts of delay they can actually control using our OAI-based insights.
- Rethink Internal Workflows: For routes consistently hit by late aircraft or airline-side slowdowns, fine-tune crew shifts, gate usage, and turnaround workflows to tighten the loop.

Prachi Sawant | 23112073 | Chemical Engineering