

靜態線性應力分析

5.1 前言

❖表 **5.1 ANSYS** 的常用元素

元素	大類型	ANSYS 編號	ANSYS 名稱	元素外形 (Reproduced with permission from ANSYS, Inc.)	節點數與自由度
線元素	二維	LINK1	2-D Spar (Truss)	Y	節點數:2 節點自由度: UX,UY (<i>u,v</i>)
	三維桁架	LINK8	3-D Spar (Truss)	Z II	節點數:2 節點自由度: UX,UY,UZ (<i>u</i> , <i>v</i> , <i>w</i>)
	二維構架	BEAM3	2-D Elastic Beam (Euler beam)	T1	節點數:2 節點自由度: UX,UY,ROTZ (<i>u</i> , <i>v</i> , <i>θ</i> _z)

元素	元素類型 ANSYS 編		ANSYS 名稱	元素外形 (Reproduced with permission from ANSYS, Inc.)	節點數與自由度
			3-D Elastic	K (optional)	節點數:3 (節點 K 用於 定元素方向)
	構架	BEAM4	7/•	節點自由度: UX,UY,UZ, ROTX, ROTY, ROTZ (u,v,w,&,, &, &, &)	
	三維構架		3-D Linear Finite Strain Beam (Timoshenko beam)	†z	節點數:3
線				, , , , , , , , , , , , , , , , , , ,	(節點 K 用於 定元素方向)
線元素				188 X	節點自由度: UX,UY,UZ, ROTX, ROTY, ROTZ
				Z	$(u,v,w, \theta_x, \theta_y, \theta_z)$
	三維構架	I H⊢ΔM1XU	3-D Quadratic Finite Strain Beam (Timoshenko beam)	© L	節點數:4 (節點 L 用於 定元素方向)
				189 K X	節點自由度: UX,UY,UZ, ROTX, ROTY, ROTZ
				Z	$(u,v,w, \theta_x, \theta_y, \theta_z)$

	二平或對元 對元素	PLANE2	2-D 6-Node Triangular Structural Solid	(or Axial) X (or Radial)	節點數:6 節點自由度: UX,UY (<i>u,v</i>)
面元素	二平或對元 和 元	PLANE42	2-D Structural Solid	Y (or Axial) Element Coordinate System (shown for KEYOPT (1)=1) X (or Radial) X (or Radial)	節點數:4 節點自由度: UX,UY (u,v)
	二平或對元 對元	PLANE82	2-D 8-Node Structural Solid	(or Axial) X (or Radial) X (or Radial)	節點數:8 節點自由度: UX,UY (<i>u,v</i>)

元素類型		ANSYS 編號	ANSYS 名稱	元素外形 (Reproduced with permission from ANSYS, Inc.)	節點數與自由度
面云	三維 殼元 素	SHELL63	Elastic Shell (thin shell)	y y y X X X X X X X X X X X X X X X X X	節點數:4 節點自由度: UX,UY,UZ, ROTX, ROTY, ROTZ (u,v,w, &, &, &, &)
元素	三維 殼元素	SHELL93	8-Node Structural Shell (thick shell)	y y y y Y X X X X X X X X X X X X X X X	節點數:8 節點自由度: UX,UY,UZ, ROTX, ROTY, ROTZ (u,v,w, &, &, &, &)

元素類型		ANSYS 編號	ANSYS 名稱	元素外形 (Reproduced with permission from ANSYS, Inc.)	節點數與自由度
特殊元素	彈簧 阻尼 元素	COMBIN14	Spring- Damper	TORQUE TORQUE K, C,	節點數:2 節點自由度: UX, UY, UZ if KEYOPT (3) = 0 ROTX, ROTY, ROTZ if KEYOPT (3) = 1

5.2 ANSYS 之線元素分析

- ❖ 5.2.1 ANSYS範例5-1:平面桁架元素分析
- ❖本例的題目如圖5.1的二維平面桁架系統,受力 F=10000 lb, A和C點受拘束。桿件之楊氏模數 E=29000 ksi,截面積為4 in²,試求各桿件受力與 應力,以及A和C點的反作用力。分析單位系統採用英制:in、lb、psi。
- ❖本例為二維桁架問題,使用ANSYS的LINK1桁架 元素來模擬。

Unit

- Ansys had no build-in unit system
- The unit must be consistent.

Table 2-1 Consistent units.

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	N	lbf	lbf
Mass	kg	tonne (10 ³ kg)	slug	lbf s² /in
Time	S	S	S	S
Stress	Pa (N/m²)	MPa (N/mm²)	lbf/ft ²	psi (lbf/in²)
Energy	J	mJ (10 ⁻³ J)	ft lbf	in lbf
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s²/in⁴

圖 5.1 二維平面桁架系統

1 foot = 12 inches

LINK1 輸入資料

Element Name	LINK1
Nodes	I, J
Degrees of Freedom	UX, UY
Real Constants	AREA, ISTRN
Material Properties	EX, ALPX, DENS, DAMP
Surface Loads	None
Body Loads	Temperature T(I), T(J)
Special Features	Plasticity, Creep, Stress stiffening, Large deflection

圖 5.2 例題5-1:ANSYS有限元素模型

圖 5.2 例題5-1:分析結果之變形圖

❖各桿件(元素)受力值與應力值如下:

STAT	CURRENT	CURRENT
ELEM	FORCE	STRESS
1	-6250.0	-1562.5
2	3750.0	937.50
3	6250.0	1562.5
4	3750.0	937.50
5	6250.0	1562.5
6	-6250.0	-1562.5
7	-7500.0	-1875.0

❖節點反作用力值如下:

NODE FX 1 -0.27285E-11

NODE FY 1 5000.0 3 5000.0

表 5.2 LINK1 元素輸出值說明

表(a)

Name	⊴×(a) Definition			
EL	Element Number			
NODES	Element node numbers (I and J)			
MAT	Material number for the element			
VOLU:	Element volume			
XC, YC	Location where results are reported			
TEMP	Temperature at nodes I and J			
FLUEN	Fluence at nodes I and J			
MFORX	Member force in the element coordinate			
	system X direction			
SAXL	Axial stress in the element			
EPELAXL	Axial elastic strain in the element			
EPTHAXL	Axial thermal strain in the element			
EPINAXL	Axial initial strain in the element			
SEPL	Equivalent stress from the stress-strain curve			
SRAT	Ratio of trial stress to the stress on yield			
	surface			
EPEQ	Equivalent plastic strain			
HPRES	Hydrostatic pressure			
EPPLAXL	Axial plastic strain			
EPCRAXL	Axial creep strain			
EPSWAXL	Axial swelling strain			

表(b)

Name	Item	Е	-	J
SAXL	LS	1	-	-
EPELAXL	LEPEL	1	-	-
EPTHAXL	LEPTH	1	•	-
EPSWAXL	LEPTH	2	•	-
EPINAXL	LEPTH	3	•	-
EPPLAXL	LEPPL	1	ı	-
EPCRAXL	LEPCR	1	•	-
SEPL	NLIN	1	•	-
SRAT	NLIN	2	•	-
HPRES	NLIN	3	-	-
EPEQ	NLIN	4	-	-
MFORX	SMISC	1	-	-
FLUEN	NMISC	-	1	2
TEMP	LBFE	-	1	2

- ❖若將圖5.1題目的DE桿移除,該桁架系統會變成如圖5.3的機構,而不再是結構。機構會運動,因其拘束不足而造成剛體運動(rigid body motion),這對於靜態的有限元素分析來說,是無法求解的。
- ❖讀入ANSYS執行後會產生圖5.4的錯誤訊息,此為 ANSYS告知使用者該有限元素模型的拘束不足, 其剛體運動造成無法求解。

圖 5.3 有剛體運動的機構

圖 5.4 剛體運動的訊息

