Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Međuispit iz predmeta TEORIJA INFORMACIJE, 30. siječnja 2019.

Pravilo bodovanja zadataka

Svaki točno odgovoreni zadatak donosi 5 bodova, netočno odgovoreni 2 negativna boda, a neodgovoreni 0 bodova.

Zadatak 1: Dan je linearni binarni blok kod K čija je matrica provjere pariteta

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Ako je primljena kodna riječ c'=[1 1 0 1 1 0] odredite kodnu riječ koja je poslana.

a) [1 1 0 1 1 1]

b) [1 1 0 0 1 0] c) [0 1 0 1 1 0] d) [1 0 0 1 1 0] e) ništa od navedenog

Postupak rješavanja:

$$\mathbf{H}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$S(\mathbf{c}') = \mathbf{c}' \cdot \mathbf{H}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{c} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Zadatak 2: Razmatrajte sistematičan linearan binarni blok kôd [6,3]. Na ulazu kodera kanala koji koristi takav kôd dolaze poruke u obliku $[d_1 d_2 d_3]$, pri čemu su d_1 , d_2 i d_3 binarne znamenke. Koder kanala svaku poruku $[d_1 d_2 d_3]$ pretvara u kodnu riječ $[c_1 c_2 c_3 c_4 c_5 c_6]$ pri čemu vrijedi:

$$c_1 = d_1, c_2 = d_2, c_3 = d_3, c_4 = d_1 \oplus d_3, c_5 = d_1 \oplus d_2 \oplus d_3, c_6 = d_1 \oplus d_2$$

Pretpostavite da je dekoder kanala koji koristi identičan sistematičan linearan binarni blok kôd [6,3] primio kodnu riječ [011011]. Odredite kodnu riječ koja je najvjerojatnije poslana, tj. kodnu riječ na izlazu kodera kanala.

a) [011011]

b) [100111]

c) [010011]

d) [011101]

Postupak rješavanja:

S obzirom na navedene jednakosti

$$c_1 = d_1$$
, $c_2 = d_2$, $c_3 = d_3$, $c_4 = d_1 \oplus d_3$, $c_5 = d_1 \oplus d_2 \oplus d_3$, $c_6 = d_1 \oplus d_2$

generirajuća matrica u standardnom obliku je

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_3 | \mathbf{A} \end{bmatrix}$$

Da matrica G doista ima ovakav oblik vidi se iz jednakosti

$$[d_1 d_2 d_3] \cdot \mathbf{G} = [c_1 c_2 c_3 c_4 c_5 c_6]$$

Nadalje, transponirana matrica provjere pariteta \mathbf{H}^{T} ima sljedeći oblik:

$$\mathbf{H}^{\mathrm{T}} = \begin{bmatrix} \mathbf{A} \\ \mathbf{I}_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

S obzirom da je primljena kodna riječ c' = [011011], tada za njen sindrom vrijedi:

$$S(\mathbf{c}') = \mathbf{c}' \cdot \mathbf{H}^{\mathrm{T}} = [110]$$

Dobiveni rezultat odgovara trećem retku matrice \mathbf{H}^T što znači da je pogreška nastala na trećem bitu poslane poruke \mathbf{c} . Konačno, poslana je poruka $\mathbf{c} = [010011]$.

Zadatak 3: Dan je linearni blok kod K s matricom provjere pariteta H, tj. H^T :

$$\mathbf{H}^{\mathbf{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Odredite kodnu riječ $(\neq 0)$ koda K koja ima minimalnu težinu.

- a) 001010
- b) 010101
- c) 111000
- d) 000110

e) ništa od navedenog

Postupak rješavanja:

Iz H možemo odrediti generirajuću matricu koda:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_3 & | & \mathbf{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 1 & 1 \\ 0 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 1 & 0 & 1 \end{bmatrix}$$

$$K = \begin{cases} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{cases}$$

Minimalnu težinu ima kodna riječ 010010.

Zadatak 4: Slijed bitova x = [1010101...] ulazi u Hammingov koder [n,k] = [7,4] i nakon toga se prenosi prijenosnim kanalom u kojem je vjerojatnost pogrešnog prijenosa bita 0,004. Odredite za koliko se smanji vjerojatnost otkrivanja pogreške pri prijenosu slijeda x, ako se umjesto Hammingova kodera kao zaštita uporabi parni paritet.

a) 0,00798

- b) 0,01951
- c) 0,000114
- d) 0,001935
- e) ništa od navedenog

Postupak rješavanja:

Radi se o Hammingovom kodu [7,4,3]. Dakle, taj kod može otkriti sve jednostruke i dvostruke pogreške. Sukladno tome, kod primjene Hammingovog koda [7,4,3], pogreška će biti otkrivena ako se dogodila na jednom ili dva bita unutar kodne riječi. S obzirom da je duljina kodne riječi 7 bita, vjerojatnost iznosi:

3

$$p_{H} = {7 \choose 1} p_{g}^{1} (1 - p_{g})^{6} + {7 \choose 2} p_{g}^{2} (1 - p_{g})^{5} = 0,02766$$

Kod primjene paritetnog koda, pogreška će biti otkrivena ako se dogodila na jednom, tri ili pet bita unutar kodne riječi. S obzirom da je duljina kodne riječi 5 bita, vjerojatnost iznosi:

$$p_{p} = {5 \choose 1} p_{g}^{1} (1 - p_{g})^{4} + {5 \choose 3} p_{g}^{3} (1 - p_{g})^{2} + {5 \choose 5} p_{g}^{5} (1 - p_{g})^{0} = 0,01968$$

Dakle, vjerojatnost otkrivanja pogreške se smanjila za 0,00798.

Zadatak 5: Na slici je dan koder za ciklični kôd [15, *k*]. Kodirajte slijed 10001001010 koristeći metodu ciklične redundantne zaštite.

- a) 100010010100101
- b) 100010010100011
- c) 100010010101010
- d) 100010010101100
- e) ništa od navedenog

Postupak rješavanja:

Iz slike kodera lako možemo očitati generirajući polinom:

$$g(x)=x^4+x+1$$

i isto tako (budući da je stupanj polinoma jednak četiri) da se radi o cikličnom kodu [15,11].

Jedno od temeljnih svojstava cikličnih kodova je da zaštitne bitove neke kodne riječi možemo dobiti koristeći metodu ciklične redundantne zaštite, tj. vrijedi

$$r(x) = x^{n-k} \cdot d(x) \bmod [g(x)]$$

U našem slučaju to bi bilo:

$$\frac{x^{n-k} \cdot d(x)}{g(x)} = \frac{x^4 \left(x^{10} + x^6 + x^3 + x\right)}{g(x)} = x^{10} + x^7 + x^4 + 1 \text{ uz ostatak } x + 1$$

Vidimo da ostatak pri dijeljenju iznosi x + 1, odnosno [0011] iz čega slijedi da je tražena kodna riječ:

$$\mathbf{c} = [100010010100011]$$

Zadatak 6: Razmatrajte idealan kanal čija je prijenosna funkcija zadana sljedećim izrazom:

$$H(f) = |H(f)|e^{-j\Theta(f)}, f \in \mathbf{R}, \quad |H(f)| = \begin{cases} 1, & |f| \le f_g \\ 0, & |f| > f_g \end{cases},$$

a fazna mu je karakteristika (tj. fazni odziv) linearna funkcija frekvencije, $\Theta(f) = \pi \cdot 10^{-6} f$ [rad], pri čemu je frekvencija zadana u jedinici herc. Na ulaz takvog kanala dolazi pravokutni signal definiran funkcijom

$$x(t) = \begin{cases} 1, & |t| \le 1/(2f_g) \\ 0, & |t| > 1/(2f_g) \end{cases}, t \in \mathbf{R}.$$

Odredite trenutak *t* u kojem će signal na izlazu promatranog idealnog kanala imati maksimalan iznos.

- a) t = 0 s
- b) $t = 1 \, \mu s$
- c) $t = 0.5 \, \mu s$
- d) $t = -1 \, \mu s$
- e) ništa od navedenog

Postupak rješavanja:

Impulsni odziv zadanog kanala dan je izrazom:

$$h(t) = 2f_g \frac{\sin\left[2\pi f_g(t-\tau)\right]}{2\pi f_g(t-\tau)}$$

a iz izraza za faznu karakteristiku kanala jasno je da je $\tau = 0.5 \cdot 10^{-6}$ s. S obzirom da se prve nultočke impulsnog odziva h(t) podudaraju s točkama u kojima vrijednost signala x(t) prelazi iz jedan u nula i obratno, konvolucija x(t)*h(t) imat će maksimalan iznos za $t = \tau$.

Zadatak 7: Neka slučajna varijabla X ima funkciju gustoće vjerojatnosti definiranu izrazom

$$f_{X}(x) = \begin{cases} \frac{1}{a}e^{-x/a}, & x \ge 0\\ 0, & x < 0 \end{cases}, a > 0$$

Odredite koliko mora iznositi konstanta a pa da diferencijalna entropija slučajne varijable X iznosi 1 bit/simbol.

- a) a = 1
- b) a = 2/e
- c) a = 1/e
- d) $a = \ln 2$
- e) ništa od navedenog

Postupak rješavanja:

Diferencijalnu entropiju slučajne varijable *X* određujemo temeljem izraza:

$$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log_2 f_X(x) dx [bit/simbol]$$

Ako u taj izraz uvrstimo izraz za funkciju $f_X(x)$, nakon integracije dobit ćemo izraz:

$$H(X) = \log_2(ae) = \frac{1}{\ln 2} \ln(ae)$$

Kako bi diferencijalna entropija bila jednaka 1 bit/simbol, nužno je da vrijedi ae = 2 pa je evidentno da je a = 2/e.

Zadatak 8: Na ulaz promatranog AWGN-kanala dolazi slučajni signal X(t) srednje snage 1 mW. U tom kanalu djeluje bijeli Gaussov šum spektralne gustoće snage jednake 1 nW/Hz za svaki $f \in \mathbf{R}$. Odredite gornju graničnu frekvencija u spektru slučajnog signala ako učinkovitost prijenosnog pojasa u promatranom kanalu pri maksimalnoj prijenosnoj brzini pri kojoj je moguće postići proizvoljno malu vjerojatnost pogreške iznosi 1 bit/s/Hz.

- a) 1 MHz
- b) 166,67 kHz
- c) 333,3 kHz

d) 500 kHz

e) ništa od navedenog

Postupak rješavanja:

Maksimalna brzina pri kojoj je moguć prijenos uz proizvoljno malu vjerojatnost pogreške je kapacitet kanala. Kapacitet AWGN-kanala dan je izrazom

$$C = B \log_2 \left(1 + \frac{S}{N_0 B} \right) \left[\text{bit/s} \right]$$

Učinkovitost prijenosnog pojasa pri toj brzini prijenosa iznosi

$$\frac{C}{B} = \log_2 \left(1 + \frac{S}{N_0 B} \right) \left[\text{bit/s/Hz} \right]$$

Dakle, ako je S = 1 mW, $N_0/2 = 1$ nW/Hz, a C/B je zadano kao 1 bit/s/Hz, tada očito mora vrijediti $S/(N_0B) = 1$ pa slijedi da je B = 500 kHz, a to je najveća frekvencija u spektru uzorkovanog ulaznog signala.

Zadatak 9: Signal $A\sin(2\pi ft)$, f=1/T, se punovalno ispravlja pri čemu nastaje signal s(t) za kojeg vrijedi: s(t) = s(t + T/2) za svaki $t \in \mathbf{R}$. Nadalje, signal s(t) dolazi na ulaz kvantizatora u kojem koristi **sve** razine za rekonstrukciju signala, pri čemu je najmanja jednaka 0, a najveća m_{max} volta. Kvantizator koristi jednoliku kvantizaciju (stepenasta funkcija) s ukupno 2^r razina kvantiziranja, pri čemu je r cjelobrojni broj bita koji opisuju svaki kvantizirani uzorak. Odredite izraz za omjer srednje snage signala prema srednjoj snazi kvantizacijskog šuma u decibelima. Napomena: kvantizacijski šum Q ima jednoliku razdiobu po svakom koraku kvantizacije i vrijedi E[Q] = 0.

a)
$$1.76 + 6.02 \cdot r$$
 [dB]

b) $7.78 + 6.02 \cdot r$ [dB]

c) $10,79 + 6,02 \cdot r$ [dB]

- d) $7.78 + 3.01 \cdot r$ [dB]
- e) ništa od navedenog

Postupak rješavanja:

Signal $s(t) = |A\sin(\omega t)|$ ima istu srednju snagu S kao i signal $A\sin(\omega t)$, tj. $S = A^2/2$. Kvantizacijski šum određen je jednolikom razdiobom po svakom koraku kvantizacije Δ pa je njegova srednja snaga N jednaka $\Delta^2/12$. Nadalje vrijedi: $\Delta = m_{\text{max}}/2^r$ pa je

$$N = \frac{1}{12} \frac{m_{\text{max}}^2}{2^{2r}}$$

S obzirom da vrijedi $A = m_{\text{max}}$, omjer srednje snage signala prema srednjoj snazi kvantizacijskog šuma iznosi:

$$\frac{S}{N} = \frac{\frac{A^2}{2}}{\frac{1}{12} \frac{A^2}{2^{2r}}} = 6 \cdot 2^{2r}$$

$$10 \log \frac{S}{N} = 10 \log 6 + r \log 4 = 7,78 + 6,02r \text{ [dB]}$$

Zadatak 10: U prvom AWGN-kanalu srednja snaga signala $x_1(t)$ na ulazu kanala iznosi 10 mW, signal je strogo pojasno ograničen na pojas frekvencija između 0 Hz i 10 kHz (X(f) = 0 za $|f| > 10^4$ Hz), a omjer srednje snage signala prema srednjoj snazi bijelog Gaussovog šuma u promatranom pojasu frekvencija iznosi 50. U drugom AWGN-kanalu snaga signala $x_2(t)$ na ulazu kanala iznosi također 10 mW, no signal je strogo pojasno ograničen na pojas frekvencija između 0 Hz i 5 kHz (X(f) = 0 za $|f| > 5 \cdot 10^3$ Hz). Pod pretpostavkom da u oba kanala djeluje bijeli Gaussov šum jednake spektralne gustoće snage, odredite razliku kapaciteta između ta dva kanala izraženu jedinicom nat/s.

- a) 23433,2 nat/s
- b) 19659,13 nat/s
- c) 16242,66 nat/s
- d) 28362,13 nat/s
- e) ništa od navedenog

Postupak rješavanja:

Izraz za kapacitet AWGN-kanala izražen jedinicom nat/s je

$$C = B \ln \left(1 + \frac{S}{N_0 B} \right) \left[\text{nat/s} \right]$$

Dakle, ako je signal $x_1(t)$ ograničen na pojas frekvencija $B_1 = 10$ kHz, tada je kapacitet C_1 jednak 39318,26 nat/s. Iz zadanog omjera srednje snage signala prema srednjoj snazi bijelog Gaussovog šuma u prvom kanalu možemo odrediti spektralnu gustoću snage bijelog Gaussovog šuma:

$$\left(\frac{S}{N}\right)_1 = \frac{S_1}{\frac{N_0}{2} \cdot 2B_1} = 50 \rightarrow \frac{N_0}{2} = \frac{S}{2 \cdot 50 \cdot B_1} = \frac{10^{-2}}{10^6} = 10^{-8} \text{ W/Hz}$$

U drugom kanalu vrijedi $S_2 = S_1$, spektralna gustoća snage bijelog šuma je također $N_0/2 = 10^{-8}$ W/Hz, a širina prijenosnog pojasa je duplo manja, dakle, $B_2 = 5 \cdot 10^3$ Hz. Stoga je kapacitet drugog kanala jednak

$$C_2 = B_2 \ln \left(1 + \frac{S_2}{\frac{N_0}{2} 2B_2} \right) = 5 \cdot 10^3 \ln \left(1 + \frac{10^{-2}}{10^{-8} \cdot 2 \cdot 5 \cdot 10^3} \right) = 5 \cdot 10^3 \ln \left(1 + 10^2 \right) = 5 \cdot 10^3 \ln \left(101 \right) = 23075, 6 \text{ nat/s}$$

Dakle, razlika kapaciteta $C_1 - C_2$ iznosi 16242,66 nat/s.