BAB IV

HASIL PENELITIAN DAN PENGEMBANGAN

A. Model Simultan (Model 2PL dengan Variabel Random Waktu Respon)

Waktu respon (*response time*) kerap juga disebut sebagai *response latency* (Abdelfattah & Johanson, 2007: 3; Halkitis, 1996: 1). Waktu respon adalah waktu yang dibutuhkan oleh peserta tes untuk membaca sekaligus menjawab suatu butir soal tes (Verbic, 2010: 1). Dalam penelitian ini, waktu respon diasumsikan sebagai *random variable*. Artinya, waktu respon tidak hanya dikontrol atau dibatasi oleh petugas administrasi tes atau teknologi komputer saja tetapi ada faktor-faktor lain yang dapat mempengaruhi lamanya seorang peserta tes dalam menyelesaikan suatu butir soal, sehingga waktu respon memiliki distribusi tertentu sesuai dengan karaketristiknya.

Menurut Lindsey (2004: 203-206) ada beberapa karakteristik yang harus dipertimbangkan dalam pemilihan distribusi waktu respon : (1) harus bernilai positif, (2) positive skewed (besarnya probabilitas waktu respon yang singkat lebih besar jika dibandingkan besarnya probabilitas waktu respon yang lama). Ada beberapa distribusi yang dianggap sesuai dengan karakteristik waktu respon yang dipaparkan oleh Lindsey (2004: 203-206) tersebut, yaitu distribusi Lognormal, Weibull dan Gamma. Hidayah et al. (2016: 215) memilih distribusi Lognormal sebagai distribusi marginal karena diantara ketiga distribusi tersebut, distribusi Lognormal adalah distribusi yang paling mudah untuk diinterpretasikan, namun pada penerapan model dengan data empiris, asumsi distribusi waktu respon tersebut

tetaplah harus dibuktikan dengan nilai statistik apakah benar data waktu respon tersebut memang cocok dengan distribusi *Lognormal* dibandingkan dua distribusi lainnya (*Weibull* dan *Gamma*).

Untuk pengujian apakah data waktu respon memang cocok dengan distribusi *Lognormal* maka digunakan kriteria kecocokan distribusi *Anderson Darling*, dimana distribusi dengan nilai *Anderson Darling* terendah adalah pola distribusi yang paling cocok untuk data waktu respon di tiap butir soalnya. Berikut ini adalah nilai *Anderson Darling* untuk data empiris yang terdiri dari 30 butir soal tes seleksi masuk Program Pascasarjana UNY tahun 2017 yang dihitung dengan bantuan *software* Minitab 18.

Tabel 2. Perbandingan Kecocokan Distribusi dengan Anderson Darling

*)Butir soal /	Nilai A	Nilai Anderson Darling (AD)					
Item ke-	Weibull	Gamma	Lognormal	yang cocok			
1	14,770	21,444	14,125	Lognormal			
2	5,540	10,748	4,156	Lognormal			
3	6,038	10,828	2,751	Lognormal			
4	16,012	20,389	11,608	Lognormal			
5	17,515	24,184	6,602	Lognormal			
6	27,029	32,028	12,249	Lognormal			
7	12,166	12,611	7,377	Lognormal			
8	23,695	27,596	12,370	Lognormal			
9	21,545	24,264	16,082	Lognormal			
10	22,339	25,881	17.064	Lognormal			
11	22,392	23,727	16,017	Lognormal			
12	13,483	13,396	11,072	Lognormal			

*)Butir soal /	Nilai A	Nilai Anderson Darling (AD)				
Item ke-	Weibull	Gamma	Lognormal	yang cocok		
13	24,865	34,766	19,065	Lognormal		
14	17,394	18,434	13,209	Lognormal		
15	12,185	12,698	9,656	Lognormal		
16	21,090	24,195	20,419	Lognormal		
17	15,784	17,517	11,963	Lognormal		
18	10,503	9,348	6,401	Lognormal		
19	22,702	23,474	18,088	Lognormal		
20	20,853	25,033	9,024	Lognormal		
21	6,210	11,228	1,456	Lognormal		
22	11,993	13,576	16,972	Weibull		
23	10,090	12,110	17,369	Weibull		
24	10,352	9,908	27,358	Gamma		
25	11,110	13,141	16,606	Weibull		
26	15,852	13,685	18,193	Gamma		
27	7,604	10,382	12,767	Weibull		
28	10,027	9,419	25,765	Gamma		
29	10,919	11,351	19,388	Weibull		
30	10,373	10,531	21,688	Weibull		

^{*)} Butir soal/item sengaja diberikan nomor urut yang baru (berbeda dengan aslinya), hanya untuk memudahkan penyebutan nomor soal saat interpretasi saja.

Berdasarkan nilai *Anderson Darling* pada Tabel 2 dapat diketahui bahwa 70% butir soal menunjukkan bahwa data waktu respon peserta tes mempunyai pola distribusi *Lognormal*, kemudian sisanya 20% cocok dengan pola distribusi *Weibull* dan 10% cocok dengan pola distribusi *Gamma*. Hasil perbandingan ini selanjutnya menjadi salah satu pertimbangan peneliti dalam pemilihan distribusi *Lognormal* sebagai distribusi marginal (waktu respon) untuk model simultan.

Selanjutnya ada beberapa peneliti yang tercatat mengembangkan model simultan dengan menggunakan distribusi marginal *Lognormal*, seperti Thissen (1979: 259), Ingrisone et al. (2008: 27), van der Linden (2009: 258) dan Hidayah et al. (2016). Adapun struktur distribusi *Lognormal* yang dikembangkan oleh para peneliti tersebut berbeda-beda (pendefinisian *mean*-nya). Seperti halnya struktur distribusi *Lognormal* dalam penelitian ini, yang merupakan modifikasi dari distribusi *Lognormal* yang dikembangkan oleh van der Linden (2009), dan Hidayah et al. (2016).

Distribusi Lognormal ini menunjukkan bagaimana hubungan antara variabel waktu respon dengan variabel-variabel lain yang mempengaruhinya. Jadi di sini posisi waktu respon adalah sebagai variabel dependen dan variabel-variabel lain yang mempengaruhinya adalah sebagai variabel independen. Modifikasi distribusi Lognormal yang dikembangkan oleh van der Linden (2009) dan Hidayah et al. (2016) dilakukan dengan cara mempertimbangkan faktor-faktor apa saja yang terbukti berpengaruh terhadap waktu respon peserta tes pada kondisi real di lapangan, sehingga nilai mean log natural waktu respon μ_{lntij} dapat didefinisikan kembali.

Apabila coba dikaitkan dengan rumus dalam ilmu fisika, maka hubungan antara waktu (t) dengan jarak (s) dan *speed* (v) dapat dituliskan sebagai berikut:

$$t = -\frac{s}{v}. ag{39}$$

Dalam pemodelan waktu respon, pendefinisian mean~log~natural waktu respon $\mu_{\ln t_{ij}}$ dapat dibantu dengan anologi rumus waktu (t) pada ilmu fisika. Berdasarkan

persamaan 39, jarak dalam pemodelan waktu respon (t_{ij}) dapat dianalogikan sebagai *time intensity* (ξ^*_{ij}) yaitu kurun waktu ideal yang dibutuhkan oleh peserta tes dalam mengerjakan suatu butir soal, sedangkan *speed* peserta tes dalam pemodelan waktu respon dapat disimbolkan sebagai τ^*_{i} . Maka dalam pemodelan waktu respon, definisi dari *speed* peserta tes (τ^*_{i}) dapat ditulis kembali menjadi:

$$\tau_i^* = \frac{\xi_j^*}{t_{ij}}.\tag{40}$$

Misal dalam suatu tes ada 2 orang peserta tes yang akan dibandingkan speed-nya, kurun waktu ideal yang dibutuhkan oleh seorang peserta tes dalam mengerjakan soal nomor 21 (ξ^*_{21}) adalah 100 detik untuk 1 butir soal tersebut. Peserta tes pertama mengerjakan dengan waktu respon (t_1) 50 detik, sedangkan peserta tes kedua mengerjakan dengan waktu respon (t_2) 100 detik. Maka dapat dihitung speed dari masing-masing peserta tes adalah:

$$\tau_1^* = \frac{100}{50} \qquad \qquad \tau_2^* = \frac{100}{100}$$

$$\tau_1^* = 2$$
 $\tau_2^* = 1$

Dari hasil perhitungan tersebut dapat diketahui bahwa peserta tes pertama mampu mengerjakan soal no 21 dengan *speed* 2 butir soal (yang sama) per 100 detik (bisa selesai 2 kali lebih cepat dari waktu ideal), dengan waktu respon 50 detik. Peserta tes kedua mampu mengerjakan soal no 21 dengan *speed* 1 butir soal per 100 detik (bisa selesai sesuai dengan dengan waktu ideal), dengan waktu respon 100 detik. Sehingga dapat disimpulkan bahwa hubungan antara waktu respon dan *speed*

berbanding terbalik, yang berarti bahwa semakin lama waktu responnya maka *speed* peserta tes tersebut semakin rendah (lambat).

Apabila persamaan 40 dijadikan dalam bentuk *log natural*, maka akan menjadi seperti berikut:

$$\ln \tau_i^* = \ln \frac{\xi_j^*}{t_{ij}} \tag{41}$$

$$\ln \tau_{j}^{*} = \ln \xi_{i}^{*} - \ln t_{ij} \tag{42}$$

$$\ln t_{ij} = \ln \xi_i^* - \ln \tau_j^*. \tag{43}$$

Menurut van der Linden (2007: 258) dan van der Maas et al. (2011: 351) , jika ξ_j dan τ_i adalah parameter baru untuk *time intensity* dan *speed* dalam bentuk *logarithmic scale* maka persamaan 43 dapat ditulis menjadi :

$$ln t_{ij} = \xi_i - \tau_j.$$
(44)

Sehingga expected value-nya adalah:

$$E(\ln(t_{ij})) = \xi_i - \tau_j. \tag{45}$$

Berdasarkan persamaan 45, maka *mean log natural* waktu respon dapat ditulis menjadi $\mu_{\ln t_{ij}} = (\xi_j - \tau_i)$ dan varians dari $\ln t_{ij}$ disimbolkan sebagai σ^2 . Log natural waktu respon memiliki distribusi normal, atau dengan kata lain distribusi waktu respon memiliki distribusi Lognormal, sehingga $\ln t_{ij} \approx N((\xi_j - \tau_i), \sigma^2)$ atau dapat ditulis menjadi :

$$f(t;\xi,\tau) = \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left[\frac{(\ln t_{ij} - (\xi_j - \tau_i))}{\sigma}\right]^2\right) \text{ untuk t>0}$$

$$f(t;\xi,\tau) = 0 \qquad \text{untuk t yang lainnya.} \tag{46}$$

Suatu fungsi hasil pengembangan dalam suatu penelitian dapat dikatakan benar atau layak, apabila dapat memenuhi sifat sebagai *Probability Density Function* (PDF). Suatu fungsi tersebut dapat disebut sebagai PDF apabila memiliki sifat (Hines & Montgomery, 1990: 51):

- 1. $f_x(x) \ge 0$ untuk seluruh $x \in R_x$
- $2. \qquad \int_{R_x} f_X(x) dx = 1.$

Fungsi pada persamaan 46 sudah memenuhi sifat pertama sebagai suatu PDF, maka selanjutnya perlu dibuktikan sifat kedua seperti berikut ini :

$$\int_{0}^{\infty} \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left[\frac{(\ln t_{ij} - (\xi_j - \tau_i))}{\sigma}\right]^2\right) dt = 1$$
(47)

misal, pada ruas kiri:

$$w = \frac{\ln t - (\xi - \tau)}{\sigma} \tag{48}$$

$$\frac{dw}{dt} = \frac{1}{t\sigma}$$

 $dt = t \sigma dw$

batas dalam w:

untuk t \rightarrow 0, maka w \rightarrow - ∞

untuk t $\rightarrow \infty$, maka w $\rightarrow \infty$

sehingga didapatkan:

$$\int_{-\infty}^{\infty} f(w)dw = \int_{-\infty}^{\infty} \frac{1}{t\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(w)^{2}\right) t\sigma dw$$

$$\int_{-\infty}^{\infty} f(w)dw = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \exp\left(-\frac{1}{2}(w)^{2}\right) dw + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \exp\left(-\frac{1}{2}(w)^{2}\right) dw$$
(49)

karena

$$\int_{0}^{\infty} \exp\left(-av^{2}\right) dv = \frac{1}{2} \left(\frac{\pi}{a}\right)^{1/2}, a > 0$$
(50)

(Syafik, 2012: 3),

maka:

$$a = \frac{1}{2}$$

Sehingga:

$$\int_{-\infty}^{\infty} f(w)dw = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{2} \left(\frac{\pi}{1/2} \right)^{1/2} \right] + \frac{1}{\sqrt{2\pi}} \left[\frac{1}{2} \left(\frac{\pi}{1/2} \right)^{1/2} \right]$$

$$\int_{-\infty}^{\infty} f(w)dw = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{2} \sqrt{2\pi} \right] + \frac{1}{\sqrt{2\pi}} \left[\frac{1}{2} \sqrt{2\pi} \right]$$

$$\int_{-\infty}^{\infty} f(w)dw = 1.$$
(51)

Berdasarkan hasil integral pada persamaan 51, maka jelas terbukti bahwa fungsi pada persamaan 46 adalah PDF sehingga distribusi marginal waktu respon yang dikembangkan dalam penelitian ini (*Lognormal*) sudah benar dan layak untuk digunakan.

Perbedaan distribusi Lognormal yang dikembangkan oleh van der Linden (2009) dengan penelitian ini terletak pada pendefinisian standar deviasinya (σ), dimana van der Linden (2009) mendefiniskan $\sigma = \frac{1}{a}$ dengan a adalah daya beda butir soal, sedangkan pada penelitian ini standar deviasi tidak didefinisikan kembali (tetap dsimbolkan sebagai σ). Selanjutnya perbedaan distribusi Lognormal yang dikembangkan oleh Hidayah et al. (2016) dengan penelitian ini terletak pada pendefinisian kembali mean log natural waktu respon $\left(\mu_{ln}t_{ij}\right)$ yaitu dengan cara menggantikan parameter besarnya usaha peserta tes $\left(\beta_{j}\right)$ dengan parameter time intensity $\left(\xi_{j}\right)$, dengan alasan penggunaan parameter time intensity dinilai lebih tepat dengan analogi jarak pada persamaan 40.

Selanjutnya, formula Model Logistik 2 Parameter yang terintegrasi dengan waktu respon yang dikembangkan dalam penelitian ini adalah suatu CDF/*Cumulative Distribution Function* (terbukti dari kurva pada Gambar 11 dan 12 yang tidak berbentuk luasan seperti kurva pada PDF), dengan persamaan sebagai berikut:

$$P(x = 1 | \theta_{j}, t_{ij}, a_{j}, b_{j}, \tau_{ij}, \eta) = \frac{\exp(1.7(a_{j}(\theta_{i} - \tau_{i} - \eta \left(\frac{1}{t_{ij}}\right) - b_{j})))}{1 + \exp(1.7(a_{j}(\theta_{i} - \tau_{i} - \eta \left(\frac{1}{t_{ij}}\right) - b_{j})))}.$$
(52)

Berdasarkan model di atas, probabilitas peserta tes menjawab benar dipengaruhi oleh kemampuan peserta tes yang disimbolkan sebagai θ_i , waktu respon peserta tes terhadap suatu soal yang disimbolkan sebagai t_{ij} , daya beda butir soal yang disimbolkan sebagai θ_i , tingkat kesulitan butir soal yang disimbolkan sebagai θ_i , speed peserta tes yang disimbolkan sebagai θ_i (jika θ_i) maka speed diasumsikan tidak berpengaruh terhadap probabilitas menjawab benar). Selanjutnya, koefisien regresi dari waktu respon terhadap probabilitas menjawab benar disimbolkan sebagai θ_i . Jika θ_i 0 maka diasumsikan waktu respon tidak memiliki pengaruh terhadap probabilitas menjawab benar peserta tes (Ingrisone II et al., 2008; Ingrisone et al., 2008), maka persamaan 52 akan menjadi model logistik 2 parameter (IRT).

Pengembangan model pada persamaan 47 dilakukan berdasarkan kajian tentang faktor-faktor yang terbukti berpengaruh terhadap model waktu respon. Pengembangan model ini diharapkan dapat memperbaiki model yang sudah ada agar lebih realistis penerapannya. Halkitis (1996: 1) dalam penelitiannya menemukan adanya hubungan positif antara waktu respon dengan tingkat kesulitan soal, daya beda soal dan panjang soal, kemudian Zenisky &Baldwin (2006: 2) meneliti hubungan waktu respon dengan tingkat kesulitan soal, daya beda, tingkat kompleksitas soal, konten soal dan perbedaan kelompok soal.

Penambahan parameter daya beda soal (a_j) akan membuat model pada persamaan 52 menjadi Model Logistik 2 Parameter dengan *fixed variable* waktu respon. Daya beda soal (a_j) adalah kemampuan suatu butir soal untuk membedakan peserta tes yang berkemampuan tinggi dan berkemampuan rendah sedemikian rupa

sehingga sebagian besar peserta tes yang berkemampuan tinggi dalam menjawab butir soal tersebut lebih banyak yang benar dan sebagian besar peserta tes yang berkemampuan rendah dalam menjawab butir soal tersebut lebih banyak yang salah. Parameter daya beda soal (a_j) sangat penting disertakan dalam pemodelan IRT karena salah satu dasar yang perlu dipegang dalam menyusun butir-butir soal dalam suatu tes adalah anggapan bahwa kemampuan peserta tes antara satu dengan yang lainnya itu berbeda-beda, sehingga butir-butir soal tersebut harus mampu memberikan hasil tes yang mencerminkan adanya perbedaan diantara para peserta tes.

Gambar 11. Kurva CAF Model 2PL dengan Variabel Random Waktu Respon

Selain mempertimbangkan faktor-faktor yang terbukti berpengaruh terhadap probabilitas menjawab benar, model juga dikembangkan dengan mempertimbangkan bentuk kurva *Conditional Accuracy Function*/CAF (van der Linden, 2009: 252). Persamaan 52 yang merupakan suatu CDF apabila digambarkan Kurva CAF, maka akan terlihat seperti pada Gambar 11. Kurva

tersebut menggambarkan dengan jelas bagaimana hubungan probabilitas menjawab benar dengan waktu respon. Garis pada kurva tersebut dapat dimaknai bahwa, semakin lama waktu responnya maka probabilitas menjawab benarnya semakin besar. Pada Gambar 11, Kurva digambarkan dengan kondisi tingkat kemampuan peserta tes yang berbeda, sedangkan parameter lain dibuat konstan nilainya. Hal ini dapat menunjukan bahwa semakin tinggi selisih antara kemampuan peserta tes dengan tingkat kesulitan (semakin pandai), maka probabilitas menjawab benarnya semakin tinggi.

Speed adalah suatu parameter yang berbeda dengan waktu respon. Hal ini telah dijelaskan melalui persamaan 40, sehingga speed layak untuk dipertimbangkan sebagai salah satu faktor yang juga berpengaruh terhadap probabilitas menjawab benar. Speed peserta tes dalam mengerjakan satu soal dapat dikaitkan dengan strategi dalam mengerjakan soal. Semakin tepatnya peserta tes dalam memilih strategi pengerjaan soal, maka speed peserta tes bisa semakin tinggi. Salah satu strategi yang mungkin dapat dilakukan oleh peserta tes adalah, mendahulukan pengerjaan butir soal yang dianggap mudah, dan mengerjakan soal yang dianggap sulit diakhir. Hubungan antara speed, kemampuan peserta tes dengan probabilitas menjawab benar dapat dilihat pada Kurva Speed Ability Trade-Off/SAT (van der Linden, 2009: 259).

Kurva *Speed Ability Trade Off* pada Gambar 12 dapat dimaknai bahwa saat seseorang mengerjakan suatu butir soal secara lambat maka probabilitas menjawab benarnya akan lebih tinggi jika dibandingkan dengan seseorang yang mengerjakan butir soal tersebut secara cepat. Hubungan antara probabilitas menjawab benar

dengan *speed* peserta tes adalah berbanding terbalik. Karena peserta tes yang meningkatkan *speed*-nya akan berpengaruh terhadap turunnya tingkat ketelitian, sehingga probabilitas menjawab benarnya juga menurun. Pada Kurva *Speed Ability Trade Off* juga digambarkan dengan kondisi tingkat kemampuan peserta tes yang berbeda, nilai parameter lainnya juga dibuat konstan. Sama halnya dengan Kurva CAF pada Gambar 11, dapat diinterpretasikan juga bahwa semakin tinggi selisih antara kemampuan peserta tes dengan tingkat kesulitan (semakin pandai), maka probabilitas menjawab benarnya semakin tinggi.

Gambar 12. Kurva SAT Model 2PL dengan Variabel Random Waktu Respon

Selanjutnya, untuk mendapatkan model simultan antara akurasi respon dengan waktu respon, maka diberlakukan konsep *joint distribution*. *Joint distribution* dapat dinyatakan dalam persamaan berikut:

$$f(x_{ij},t;\theta,a,b,\tau,\eta,\xi,\sigma) = f(x_{ij}|t;\theta,a,b,\tau,\eta).f(t_{ij}|\xi,\tau,\sigma)$$
(53)

Distribusi bersyarat keakuratan respon terhadap waktu responnya adalah sebagai berikut :

$$f(x_{ij}|t;\theta,a,b,\tau,\eta) = \left[\frac{\exp(1.7(a_{j}(\theta_{i}-\tau_{i}-\eta\left(\frac{1}{t_{ij}}\right)-b_{j})))}{1+\exp(1.7(a_{j}(\theta_{i}-\tau_{i}-\eta\left(\frac{1}{t_{ij}}\right)-b_{j}))))}\right]^{x_{ij}}\left[\frac{\exp(1.7(a_{j}(\theta_{i}-\tau_{i}-\eta\left(\frac{1}{t_{ij}}\right)-b_{j}))))}{1+\exp(1.7(a_{j}(\theta_{i}-\tau_{i}-\eta\left(\frac{1}{t_{ij}}\right)-b_{j}))))}\right]^{1-x_{ij}}.$$
(54)

Distribusi marginal waktu responnya adalah sebagai berikut :

$$f(t_{ij}|\xi,\tau,\sigma) = \left\{ \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left[\frac{(\ln t_{ij} - (\xi_j - \tau_i))}{\sigma} \right]^2 \right) \right\}. \tag{55}$$

Joint distribution-nya adalah sebagai berikut:

$$f(x_{ij}|t;\theta,a,b,\tau,\eta) = \left[P(x=1|\theta_j,t_{ij},a_j,b_j,\tau_{i_j},\eta)\right]^{x_{ij}} \left[P(x=1|\theta_j,t_{ij},a_j,b_j,\tau_{i_j},\eta)\right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma)$$
dengan,

$$P(x=1 \middle| \theta_j, t_{ij}, a_j, b_j, \tau_{i_j}, \eta) = \frac{\exp(1.7(a_j(\theta_i - \tau_i - \eta \left(\frac{1}{t_{ij}}\right) - b_j)))}{1 + \exp(1.7(a_j(\theta_i - \tau_i - \eta \left(\frac{1}{t_{ij}}\right) - b_j))))} \operatorname{dan} f(t_{ij} \middle| \xi, \tau, \sigma) = \left\{ \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{(\ln t_{ij} - \left(\xi_j - \tau_i\right))}{\sigma}\right]^2\right) \right\}.$$

B. Estimasi Parameter Model Simultan

Metode estimasi parameter yang digunakan dalam penelitian ini adalah *Bayesian*. Pada metode *Bayesian*, semua parameter dalam model adalah *random variable*, sehingga semua parameter dinyatakan dalam bentuk distribusi. Estimasi parameter dilakukan dengan menentukan distribusi *prior* yang sesuai dengan setiap parameter yang ada dalam model, dan distribusi *likelihood* yang sesuai dengan data terlebih dahulu, untuk menghasilkan bentuk distribusi *posterior*.

Distribusi *prior* merupakan representasi dari distribusi frekuensi parameter yang berada pada range tertentu. Tingkat kemampuan peserta tes (Θ) dibangkitkan pada rentang -3 sampai dengan 3, sehingga distribusi *prior* yang digunakan adalah normal, $\theta_i \sim N(0,1)$. Tingkat kesulitan soal (b) dibangkitkan pada rentang -2 sampai dengan 2, menurut Hambleton &Swaminathan (1985: 107) nilai b dapat dikategorikan baik jika berada pada rentang -2 sampai 2, sehingga distribusi prior yang digunakan adalah normal, $b_j \sim N(0,1)$. Daya beda soal (a) dibangkitkan pada rentang 0 sampai dengan 2, menurut Hambleton & Swaminathan (1985: 37) nilai a dapat dikategorikan baik jika berada pada rentang 0 sampai 2, sehingga distribusi prior yang digunakan adalah normal truncated (nilainya lebih dari 0), $a_j \sim N(0,1)$; $a_j > 0$. Speed peserta tes dalam mengerjakan satu butir soal dapat disimbolkan sebagai τ_i nilainya positif sehingga distribusi priornya adalah normal truncated, $\tau_i{\sim}{\rm N}(0,\!1);\;\tau_i{>}0.$ Time intensity dapat disimbolkan sebagai $\;\xi_j,$ nilainya positif sehingga distribusi priornya adalah normal truncated, $\xi_j \sim N(0,1)$; $\xi_j > 0$. Standar deviasi ditentukan memiliki prior distrubusi Uniform, sehingga $\sigma \sim U(0,1)$. Distribusi prior ini dipilih berdasarkan domain dari parameter yang ditentukan berdasarkan teori. Probability Density Function (PDF) dari distribusi prior untuk setiap parameter dinyatakan sebagai berikut:

$$f(\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta^2}{2}\right) \tag{57}$$

$$f(a) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{b^2}{2}\right) \tag{58}$$

$$f(b) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{a^2}{2}\right) \tag{59}$$

$$f(b) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\tau^2}{2}\right) \tag{60}$$

$$f(b) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\xi^2}{2}\right) \tag{61}$$

$$f(\sigma) = \frac{1}{q - p}. ag{62}$$

Distribusi *likelihood* ditentukan berdasarkan data, yaitu respon jawaban peserta tes yang berbentuk dikotomus dimana skor jawaban benar adalah 1 dan skor jawaban salah adalah 0, sehingga distribusi *likelihood* yang sesuai adalah distribusi *Bernoulli*. Distribusi *likelihood*-nya adalah sebagai berikut:

$$L(x_{ij},t\Big|\theta,a,b,\tau,\eta,\xi,\sigma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{x_{ij}} \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}\Big|\xi,\tau,\sigma) \right\} \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}\Big|\xi,\tau,\sigma) \right\} \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}\Big|\xi,\tau,\sigma) \right\} \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}\Big|\xi,\tau,\sigma) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},h_{j},\tau_{i_{j}},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},h_{j},\tau_{i_{j}},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},a_{j},h_{j},\tau_{i_{j}},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},h_{j},\tau_{i_{j}},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},h_{ij},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j},t_{ij},h_{ij},\eta) \right] \cdot \left[P(x=1\Big|\theta_{j$$

dengan,

$$P(x = 1 \middle| \theta_j, t_{ij}, a_j, b_j, \tau_{ij}, \eta) = \frac{\exp(1.7(a_j(\theta_i - \tau_i - \eta \left(\frac{1}{t_{ij}}\right) - b_j)))}{1 + \exp(1.7(a_j(\theta_i - \tau_i - \eta \left(\frac{1}{t_{ij}}\right) - b_j))))} \quad \mathbf{dan} \quad f(t_{ij} \middle| \xi, \tau, \sigma) = \left\{ \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{(\ln t_{ij} - \left(\xi_j - \tau_i\right)}{\sigma}\right]^2\right)\right\} \cdot \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{(\ln t_{ij} - \left(\xi_j - \tau_i\right)}{\sigma}\right]^2\right)\right) \cdot \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{(\ln t_{ij} - \left(\xi_j - \tau_i\right)}{\sigma}\right]^2\right)\right) \cdot \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{(\ln t_{ij} - \left(\xi_j - \tau_i\right)}{\sigma}\right]^2\right)\right) \cdot \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{(\ln t_{ij} - \left(\xi_j - \tau_i\right)}{\sigma}\right]^2\right) + \frac{1}{t_{ij}\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left[\frac{($$

Distribusi *posterior* adalah proporsional terhadap perkalian antara distribusi *likelihood* dengan distribusi *prior*. Distribusi *posterior* untuk parameter θ_i dapat dinyatakan sebagai berikut:

$$L(\theta|x_{ij},t,a,b,\tau,\eta,\xi,\sigma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{x_{ij}} \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma) \right\}$$

$$\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_{i}^{2}}{2}\right) \right].$$

$$(63)$$

Distribusi posterior untuk parameter b_i dapat dinyatakan sebagai berikut:

$$L(b|x_{ij},t,\theta,a,\tau,\eta,\xi,\sigma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{x_{ij}} \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma) \right\}$$

$$\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{b_{j}^{2}}{2}\right) \right].$$

$$(64)$$

Distribusi posterior untuk parameter a_i dapat dinyatakan sebagai berikut:

$$L(a|x_{ij},t,\theta,b,\tau,\eta,\xi,\sigma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{x_{ij}} \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma) \right\}$$

$$\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{a_{j}^{2}}{2} \right) \right].$$

$$(65)$$

Distribusi *posterior* untuk parameter τ_i dapat dinyatakan sebagai berikut:

$$L(\tau|x_{ij},t,\theta,b,a,\eta,\xi,\sigma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{x_{ij}} \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{i_{j}},\eta) \right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma) \right\}$$

$$\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\tau_{i}^{2}}{2} \right) \right].$$

$$(66)$$

Distribusi *posterior* untuk parameter ξ_j dapat dinyatakan sebagai berikut:

$$L(\xi|x_{ij},t,\theta,b,a,\tau,\eta,\sigma) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{ij},\eta) \right]^{x_{ij}} \left[P(x=1|\theta_{j},t_{ij},a_{j},b_{j},\tau_{ij},\eta) \right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma) \right\}$$

$$\left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\xi_{j}^{2}}{2} \right) \right].$$

$$(67)$$

Distribusi posterior untuk parameter σ dapat dinyatakan sebagai berikut:

$$L(\sigma|x_{ij},t,\theta,b,a,\tau,\xi,\eta) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ \left[P(x=||\theta_{j},t_{ij},a_{j},b_{j},\tau_{ij},\eta) \right]^{x_{ij}} \left[P(x=||\theta_{j},t_{ij},a_{j},b_{j},\tau_{ij},\eta) \right]^{1-x_{ij}} f(t_{ij}|\xi,\tau,\sigma) \right\}.$$
(68)

Distribusi *posterior* di atas merupakan suatu model dengan parameter yang kompleks, sehingga integrasi numeriknya dengan *Markov Chain Monte Carlo* (MCMC) dan untuk membangkitkan nilai parameter berdasarkan distribusi *posterior* di atas, digunakan algoritma *Gibbs Sampling*. Implementasi terhadap algoritma tersebut dilakukan dengan bantuan R2WinBUGS (mengintegrasikan program R dengan WinBUGS). Pembangkitan data secara simulasi seutuhnya dilakukan dengan bantuan program R, sedangkan untuk estimasi parameternya

dilakukan dengan R2WinBUGS (*syntax* di *running* di program R namun *output*-nya dapat dilihat pada WinBUGS). Untuk lebih jelasnya, contoh *syntax* secara lengkap dapat dilihat pada Lampiran 9 sampai dengan Lampiran 13.

C. Uji Konvergensi Parameter Model

Estimator Bayesian merupakan mean dari distribusi posterior, artinya nilai estimasi parameter itu mendekati nilai *mean* dari distribusi *posterior*nya. Langkah selanjutnya adalah memastikan apakah bangkitan posterior yang telah dihasilkan bersifat konvergen (data hasil bangkitan telah stabil). Apabila jumlah iterasi terlalu kecil, maka kondisi konvergen tidak bisa tercapai. Untuk memastikan nilai bangkitan posterior yang dihasilkan sifatnya konvergen, maka dapat diperiksa dengan mengamati history trace plot, autocorrelation plot, atau quantiles plot pada output program WinBUGS 14. Apabila secara visual terlihat tidak ada trend atau kecenderungan tertentu (menyebar stabil di sekitar dua garis horizontal yang pararel) dalam plot tersebut, maka dapat disimpulkan bahwa hasil estimasi tersebut konvergen. Selain itu konvergensi suatu parameter dapat diperiksa dengan membandingkan nilai 5% dari standar deviasi posterior dengan nilai Markov Chain Error (MC Error). Apabila nilai 5% SD lebih besar dari MC Error maka dapat disimpulkan hasil estimasi tersebut konvergen (Septiana & Soehardjoepri, 2017). Estimasi parameter tahap awal dilakukan dengan menggunakan data bangkitan (simulasi). Data dibangkitkan dengan berbagai skenario data, yang merupakan kombinasi dari banyaknya peserta tes (n=300, n=600 dan n=1200) dan banyaknya soal tes (m=10, m=20 dan m=40).

Tabel 3 dan Tabel 4 adalah tabel informasi untuk hasil estimasi parameter dari skenario simulasi dengan n=300 dan m=10. Secara visual dapat diketahui bahwa memang ada selisih antara data bangkitan dengan hasil estimasi parameter, tetapi selisihnya tidak terlalu jauh. Dari hasil estimasi tersebut, perlu dilakukan pengujian konvergensi estimasi parameter model pada saat simulasi. Selain dengan mengamati *trend* atau kecenderungan pada *history trace plot, autocorrelation plot*, atau *quantiles plot*, uji konvergensi estimasi parameter dapat dilakukan dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Tabel 3. Hasil Estimasi *Item parameter* untuk n=300;m=10

		Parameter							
[tem	a			b	xi(ξ)			
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi			
1	1,034636	0,9182	-2,0	-2,0450	0,688888	0,72590			
2	0,809734	0,8855	-1,6	-1,6260	0,027548	0,03307			
3	0,954706	0,9166	-1,2	-1,1570	0,582995	0,58680			
4	0,505483	0,4495	-0,8	-0,7637	1,769432	1,81500			
5	1,352648	1,2360	-0,4	-0,2773	1,249049	1,28800			
6	1,073110	1,0530	0,4	0,5181	0,204248	0,25560			
7	1,369896	1,4620	0,8	0,8476	0,361367	0,50110			
8	1,289136	1,1150	1,2	1,6120	0,805527	0,87190			
9	1,071314	1,0440	1,6	1,8210	1,075639	1,14700			
10	0,750666	0,8127	2,0	1,6610	0,414484	0,44080			

Tabel 4. Rata-Rata Estimasi *Person parameter* untuk n=300;m=10

Parameter	Bangkitan	Estimasi
Tau (τ)	0,748704	0,802044333
Theta (θ)	-0,064500	-0,003495110

Tabel 5. Uji Konvergensi *Item parameter* untuk n=300;m=10

			Parai	neter		
ltem	8	a	l)	xi(ξ)	
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD
1	0,002231	0,007655	0,002304	0,006670	0,001087	0,003254
2	0,002765	0,008265	0,002679	0,007645	4,41E-04	0,001408
3	0,003113	0,008130	0,002560	0,007035	8,99E-04	0,003196
4	0,001251	0,004477	0,003665	0,010110	8,53E-04	0,003172
5	0,004841	0,012995	0,002360	0,006905	9,21E-04	0,003213
6	0,006163	0,014320	0,007204	0,015620	9,73E-04	0,003153
7	0,008526	0,020725	0,006275	0,014055	8,63E-04	0,003224
8	0,006131	0,016245	0,008621	0,021175	9,84E-04	0,003243
9	0,005489	0,014235	0,008281	0,022820	9,33E-04	0,003275
10	0,004076	0,009985	0,008603	0,023795	9,09E-04	0,003171

Gambar 13. Uji Konvergensi Parameter Tau untuk n=300;m=10

Gambar 14. Uji Konvergensi Parameter Theta untuk n=300;m=10

Gambar 13 dan Gambar 14 adalah gambar grafik yang menunjukkan perbandingan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Berdasarkan kedua gambar tersebut dapat dilihat bahwa posisi garis grafik 5% SD semuanya berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 300 dengan banyaknya soal tes 10 tersebut konvergen.

Selanjutnya Tabel 6 dan Tabel 7 menunjukkan hasil estimasi parameter dari skenario simulasi dengan n=600 dan m=10. Secara visual dapat diketahui bahwa tidak ada selisih yang terlalu jauh antara data bangkitan dengan hasil estimasi parameter. Pengujian konvergensi estimasi parameter model juga dilakukan di sini dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Tabel 6. Hasil Estimasi *Item parameter* untuk n=600;m=10

	Parameter							
[tem	a			b	xi(ξ)		
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi		
1	1,143216	1,4800	-2,0	-2,0450	0,053424	0,06388		
2	0,656054	0,6821	-1,6	-1,6170	0,606765	0,50870		
3	1,411578	1,3530	-1,2	-1,1620	0,112806	0,10840		
4	0,490147	0,5087	-0,8	-0,8722	0,558029	0,55050		
5	0,582267	0,4930	-0,4	-0,0932	0,116654	0,12160		
6	0,482088	0,3950	0,4	0,7900	0,297337	0,30950		
7	1,461318	1,4590	0,8	0,8197	0,738549	0,75850		
8	0,610556	0,5729	1,2	1,2840	1,331617	1,33300		
9	1,253023	1,3280	1,6	1,5890	0,613480	0,61020		
10	0,480220	0,7611	2,0	1,1130	1,529282	1,53600		

Tabel 7. Rata-Rata Estimasi *Person parameter* untuk n=600;m=10

Parameter	Bangkitan	Estimasi
Tau (τ)	0,778423	0,791079
Theta (θ)	0,062949	0,000548

Tabel 8. Uji Konvergensi *Item parameter* untuk n=600;m=10

		Parameter							
fem	£	a	1	O	xi(ξ)				
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD			
1	0,004421	0,012365	0,001540	0,004360	6,62E-04	0,001883			
2	0,001224	0,003742	0,001839	0,005505	7,55E-04	0,002309			
3	0,003810	0,011060	0,001602	0,004699	7,00E-04	0,002197			
4	9,83E-04	0,003103	0,002606	0,007745	8,26E-04	0,002301			
5	0,001091	0,003360	0,004158	0,011515	6,83E-04	0,002267			
6	0,001233	0,002831	0,007600	0,017695	7,92E-04	0,002304			
7	0,007314	0,016900	0,004818	0,009675	8,23E-04	0,002266			
8	0,002287	0,004696	0,008157	0,016070	8,03E-04	0,002297			
9	0,008239	0,018410	0,008500	0,019040	7,03E-04	0,002261			
10	0,003054	0,006280	0,006244	0,012770	7,25E-04	0,002285			

Gambar 15 dan Gambar 16 menunjukkan grafik perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Kedua gambar tersebut menunjukkan bahwa posisi garis grafik 5% SD semuanya berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 600 dengan banyaknya soal tes 10 tersebut konvergen.

Gambar 15. Uji Konvergensi Parameter Tau untuk n=600;m=10

Gambar 16. Uji Konvergensi Parameter Theta untuk n=600;m=10

Tabel 9. Hasil Estimasi *Item parameter* untuk n=1200;m=10

		Parameter								
tem	8	ı		b	xi(ξ)					
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi				
1	0,780827	0,8328	-2,0	-1,9570	1,640509	1,65300				
2	1,885334	1,9610	-1,6	-1,6520	1,884588	1,86300				
3	0,999605	1,1130	-1,2	-1,1810	1,237541	1,27500				
4	0,510208	0,4907	-0,8	-0,9604	0,111071	0,09783				
5	0,601502	0,6061	-0,4	-0,4514	1,628819	1,63500				
6	0,714503	0,7698	0,4	0,2185	0,387096	0,41590				
7	0,415220	0,4225	0,8	0,7316	1,536423	1,55200				
8	0,704105	0,8687	1,2	0,8760	0,853944	0,89130				
9	0,470797	0,4624	1,6	1,6880	0,643100	0,62600				
10	1,561728	1,2240	2,0	2,4880	0,726325	0,70060				

Tabel 10. Rata-Rata Estimasi Person parameter untuk n=1200;m=10

Parameter	Bangkitan	Estimasi
Tau (τ)	0,776439	0,784431000
Theta (Θ)	0,034913	0,000101175

Tabel 9 dan Tabel 10 adalah tabel informasi untuk hasil estimasi parameter dari skenario simulasi dengan n=1200 dan m=10. Secara visual dapat diketahui bahwa memang ada selisih antara data bangkitan dengan hasil estimasi parameter, tetapi selisihnya tidak terlalu jauh. Dari hasil estimasi tersebut, perlu dilakukan pengujian konvergensi estimasi parameter model pada saat simulasi.

Tabel 11. Uji Konvergensi *Item parameter* untuk n=1200;m=10

		Parameter							
[tem	£	a	l)	xi(ξ)				
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD			
1	0,003587	0,005027	0,002882	0,004994	0,001908	0,002430			
2	0,020340	0,020513	0,003357	0,003625	0,001630	0,002327			
3	0,004242	0,006578	0,002516	0,004226	0,001665	0,002366			
4	0,001813	0,003029	0,006177	0,009150	0,001837	0,002473			
5	0,002233	0,003969	0,004588	0,006553	0,001821	0,002517			
6	0,004066	0,006584	0,008227	0,010688	0,001644	0,002426			
7	0,003073	0,003310	0,012650	0,014400	0,001340	0,002436			
8	0,008622	0,008235	0,014240	0,012353	0,002007	0,002536			
9	0,004673	0,004238	0,029560	0,024060	0,001909	0,002396			
10	0,021920	0,022680	0,030920	0,035393	0,001299	0,002343			

Gambar 17 dan Gambar 18 adalah gambar grafik yang menunjukkan perbandingan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Berdasarkan kedua gambar tersebut dapat dilihat bahwa posisi garis grafik 5% SD berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 1200 dengan banyaknya soal tes 10 tersebut konvergen.

Gambar 17. Uji Konvergensi Parameter Tau untuk n=1200;m=10

Gambar 18. Uji Konvergensi Parameter Theta untuk n=1200;m=10

Tabel 12 dan Tabel 13 memberikan informasi untuk hasil estimasi parameter dari skenario simulasi dengan n=300 dan m=20. Secara visual dapat diketahui bahwa nilai parameter bangkitan dengan hasil estimasi parameter tidaklah terlalu jauh. Selanjutnya pengujian konvergensi estimasi parameter model juga

dilakukan dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Tabel 12. Hasil Estimasi *Item parameter* untuk n=300;m=20

	Parameter							
fem	a			b	xi(8	(3)		
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi		
1	1,3679375	1,2440	-2,0	-1,9960	0,1365749	0,10400		
2	0,9505754	1,0420	-1,8	-1,7400	0,7560874	0,70750		
3	1,0540022	1,0350	-1,6	-1,5780	1,1979612	1,22300		
4	0,4369791	0,3695	-1,4	-1,2290	1,2410687	1,23900		
5	0,6306937	0,5939	-1,2	-1,2220	0,0468743	0,04302		
6	1,7774280	1,9000	-1,0	-1,0720	0,1030442	0,16980		
7	0,9936347	1,0760	-0,8	-1,1110	0,5245736	0,59010		
8	1,0181475	1,2290	-0,6	-0,5236	0,2010676	0,21250		
9	0,4371098	0,4183	-0,4	-0,2512	0,5786030	0,61660		
10	1,6934222	1,9820	-0,2	-0,2718	1,8166355	1,88000		
11	0,4404402	0,4961	0,2	0,1764	0,4095710	0,47670		
12	1,0525162	0,8148	0,4	0,7768	0,1924929	0,08508		
13	0,6249118	0,6798	0,6	0,5488	0,3501343	0,33560		
14	0,7147058	0,8077	0,8	0,1704	0,2266896	0,24080		
15	0,6326274	0,5960	1,0	1,0510	0,6850560	0,77740		
16	0,6359859	0,9598	1,2	0,4668	0,1076085	0,10180		
17	0,9258781	1,0960	1,4	1,4300	0,7053621	0,70690		
18	1,1128531	1,1190	1,6	1,7130	1,3132361	1,33000		
19	0,5582253	0,7535	1,8	1,3840	1,6734316	1,65000		
20	1,0380097	1,0490	2,0	2,0320	0,8846970	0,85670		

Tabel 13. Rata-Rata Estimasi *Person parameter* untuk n=300;m=20

Parameter	Bangkitan	Estimasi
Tau (τ)	0,757221	0,783158
Theta (θ)	0,079997	0,010464

Tabel 14. Uji Konvergensi *Item parameter* untuk n=300;m=20

	Parameter							
tem	8	ı	l)	xi((ξ)		
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD		
1	0,003433	0,010395	0,001855	0,006125	8,16E-04	0,002775		
2	0,002246	0,007865	0,002215	0,006170	0,001019	0,003059		
3	0,002356	0,007545	0,002125	0,005875	0,001083	0,003158		
4	9,04E-04	0,003050	0,003202	0,011160	9,74E-04	0,003103		
5	0,001593	0,004887	0,003493	0,010085	4,92E-04	0,001699		
6	0,005614	0,018995	0,002244	0,005780	8,00E-04	0,003127		
7	0,002533	0,008370	0,002400	0,006320	9,19E-04	0,003171		
8	0,003453	0,011530	0,002704	0,007930	0,001049	0,003117		
9	0,001105	0,003498	0,004506	0,014475	8,00E-04	0,003119		
10	0,006338	0,017910	0,001931	0,004912	0,001119	0,003112		
11	0,001460	0,004424	0,004980	0,015965	0,001064	0,003129		
12	0,003263	0,009245	0,005974	0,017855	8,50E-04	0,002570		
13	0,002292	0,006810	0,005731	0,015485	9,71E-04	0,003089		
14	0,002872	0,007740	0,004770	0,012725	0,001135	0,003149		
15	0,002077	0,005670	0,007289	0,018560	0,001213	0,003122		
16	0,003514	0,010415	0,005253	0,014310	8,88E-04	0,002756		
17	0,004621	0,013340	0,006692	0,017700	0,001022	0,003089		
18	0,005467	0,014610	0,007401	0,019240	9,31E-04	0,003090		
19	0,002951	0,007505	0,006841	0,016960	0,001050	0,003116		
20	0,004576	0,013570	0,008342	0,023755	9,05E-04	0,003111		

Gambar 19. Uji Konvergensi Parameter Tau untuk n=300;m=20

Gambar 20. Uji Konvergensi Parameter Theta untuk n=300;m=20

Selanjutnya Gambar 19 dan Gambar 20 adalah gambar grafik menunjukkan grafik perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Berdasarkan kedua gambar tersebut dapat diketahui bahwa posisi garis grafik 5% SD semuanya berada di atas *MC Error*,

sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 300 dengan banyaknya soal tes 20 tersebut konvergen.

Tabel 15. Hasil Estimasi *Item parameter* untuk n=600;m=20

	Parameter						
[tem	a		b		xi(ξ)		
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi	
1	0,944382	0,9727	-2,0	-2,02800	0,894496	0,85450	
2	0,532126	0,4754	-1,8	-1,92500	1,994901	1,98900	
3	0,703178	0,8152	-1,6	-1,64900	0,893728	0,95390	
4	0,408241	0,4368	-1,4	-1,69900	0,492904	0,51580	
5	0,908599	0,8805	-1,2	-1,34200	0,733164	0,71760	
6	0,992439	0,9486	-1,0	-1,09600	0,214258	0,27290	
7	1,659499	1,5230	-0,8	-0,81980	0,450249	0,49250	
8	1,498708	1,4280	-0,6	-0,59330	1,626876	1,69800	
9	0,804193	0,9014	-0,4	-0,64910	1,458248	1,47300	
10	0,926516	0,8436	-0,2	-0,20300	1,234032	1,27300	
11	0,749531	0,8310	0,2	-0,00556	0,578578	0,67490	
12	1,217771	1,3610	0,4	0,26490	0,830810	0,82330	
13	0,893436	1,0590	0,6	0,35710	0,405864	0,45270	
14	1,506254	1,5770	0,8	0,77640	0,014093	0,03004	
15	1,526587	1,8360	1,0	0,80530	0,700063	0,76150	
16	1,018507	0,8574	1,2	1,50200	0,176215	0,20890	
17	0,967301	0,9500	1,4	1,63000	1,334336	1,35500	
18	0,602448	0,6245	1,6	1,28500	0,513763	0,54520	
19	0,707045	0,9593	1,8	1,10100	0,224596	0,20400	
20	0,486596	0,5530	2,0	1,41500	0,582063	0,52090	

Tabel 16. Rata-Rata Estimasi *Person parameter* untuk n=600;m=20

Parameter	Bangkitan	Estimasi
Tau (τ)	0,769744	0,79333
Theta (θ)	0,080576	0,04436

Tabel 17. Uji Konvergensi *Item parameter* untuk n=600;m=20

	Parameter						
tem	8	ı	ŀ)	xi((ξ)	
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD	
1	0,001415	0,004905	0,001890	0,004456	7,52E-04	0,002203	
2	8,11E-04	0,002758	0,002445	0,006835	8,01E-04	0,002194	
3	0,001303	0,004001	0,002032	0,004643	6,67E-04	0,002218	
4	6,17E-04	0,002345	0,002262	0,007320	7,08E-04	0,002246	
5	0,001404	0,004519	0,001752	0,004698	7,09E-04	0,002216	
6	0,001448	0,005030	0,001823	0,004963	6,88E-04	0,002195	
7	0,003086	0,010295	0,001876	0,004117	6,94E-04	0,002214	
8	0,002599	0,008205	0,001693	0,003699	7,41E-04	0,002236	
9	0,001334	0,004754	0,001924	0,004625	7,80E-04	0,002239	
10	0,001821	0,004739	0,002329	0,005700	7,22E-04	0,002241	
11	0,001557	0,005085	0,002117	0,006720	7,76E-04	0,002241	
12	0,003534	0,009840	0,002336	0,005745	8,08E-04	0,002203	
13	0,002785	0,007520	0,003295	0,007950	7,35E-04	0,002222	
14	0,007525	0,018755	0,004343	0,010275	3,19E-04	0,001195	
15	0,006723	0,018485	0,002963	0,007120	8,23E-04	0,002176	
16	0,002968	0,007970	0,007106	0,017520	6,32E-04	0,002205	
17	0,003058	0,007960	0,005964	0,013605	8,22E-04	0,002183	
18	0,001680	0,004628	0,006219	0,015350	6,47E-04	0,002206	
19	0,002810	0,008660	0,004785	0,013425	7,36E-04	0,002202	
20	0,001509	0,003931	0,006699	0,016680	6,99E-04	0,002193	

Gambar 21. Uji Konvergensi Parameter Tau untuk n=600;m=20

Gambar 22. Uji Konvergensi Parameter Theta untuk n=600;m=20

Tabel 15 dan tabel 16 yang menunjukkan hasil estimasi parameter dari skenario simulasi dengan n=600 dan m=20. Secara visual dapat diketahui bahwa selisih antara data bangkitan dengan hasil estimasi *item parameter* tidak terlalu jauh. Untuk *person parameter* pada parameter theta-nya terlihat adanya selisih ratarata yang cukup jauh. Selanjutnya juga dilakukan pengujian konvergensi estimasi parameter model dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Gambar 21 dan Gambar 22 adalah gambar grafik menunjukkan perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Kedua gambar tersebut menunjukkan bahwa semua posisi garis grafik 5% SD berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 600 dengan banyaknya soal tes 20 tersebut konvergen.

Tabel 18 dan Tabel 19 memberikan informasi untuk hasil estimasi parameter dari skenario simulasi dengan n=1200 dan m=20. Secara visual dapat diketahui bahwa nilai parameter bangkitan dengan hasil estimasi parameter tidaklah terlalu jauh. Selanjutnya pengujian konvergensi estimasi parameter model juga dilakukan dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Tabel 18. Hasil Estimasi *Item parameter* untuk n=1200;m=20

	Parameter						
em	a			b	xi(ξ)	
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi	
1	0,766631	0,7887	-2,0	-1,9790	1,161445	1,13800	
2	0,589993	0,5645	-1,8	-1,8740	1,344779	1,34100	
3	0,961274	1,0190	-1,6	-1,6900	0,058504	0,10840	
4	0,730853	0,6931	-1,4	-1,4550	0,200503	0,23380	
5	1,459399	1,3530	-1,2	-1,2660	1,293318	1,29900	
6	1,303265	1,2800	-1,0	-1,0650	2,141999	2,18600	
7	1,201483	1,1830	-0,8	-0,8094	2,717017	2,71400	
8	0,693185	0,6153	-0,6	-0,5758	1,053168	1,07000	
9	1,536690	1,5740	-0,4	-0,4506	1,468475	1,48000	
10	1,479504	1,4050	-0,2	-0,2448	0,481639	0,51760	
11	1,339817	1,2800	0,2	0,1553	0,275745	0,31680	
12	0,511067	0,4972	0,4	0,3336	1,024223	0,99720	
13	0,483049	0,4971	0,6	0,5007	0,347847	0,35590	
14	1,075530	0,8552	0,8	1,0810	0,110887	0,09853	
15	0,452804	0,4356	1,0	0,9894	0,356031	0,39920	
16	1,124749	1,0530	1,2	1,1240	2,358780	2,40300	
17	0,747436	0,6084	1,4	2,0990	0,311475	0,32060	
18	0,449318	0,5035	1,6	1,1790	0,275393	0,29900	
19	0,547749	0,6257	1,8	1,4280	1,532059	1,52100	
20	0,638374	0,6754	2,0	1,7670	0,042432	0,02072	

Tabel 19. Rata-Rata Estimasi *Person parameter* untuk n=1200;m=20

Parameter	Bangkitan	Estimasi	
Tau (τ)	0,792395	0,806218	
Theta (θ)	-0,063920	-0,034790	

Tabel 20. Uji Konvergensi *Item parameter* untuk n=1200;m=20

	Parameter						
[tem	2	1	ŀ)	xi	(ξ)	
Nomor Item	MC Error	2% SD	MC Error	5% SD	MC Error	5% SD	
1	0,002102	0,003953	0,004134	0,005020	0,001885	0,002425	
2	0,001945	0,003065	0,004707	0,006245	0,001323	0,002366	
3	0,003410	0,005935	0,003441	0,004982	0,001263	0,002383	
4	0,002295	0,003605	0,005262	0,006086	0,001597	0,002491	
5	0,004033	0,007748	0,003579	0,003950	0,001776	0,002326	
6	0,004858	0,007242	0,003545	0,003829	0,001577	0,002193	
7	0,004606	0,006564	0,003196	0,003710	0,001710	0,002378	
8	0,002204	0,003672	0,005877	0,006569	0,001715	0,002264	
9	0,010390	0,010965	0,004571	0,004136	0,001271	0,002371	
10	0,006935	0,010193	0,005356	0,005672	0,001552	0,002250	
11	0,006763	0,010650	0,006778	0,007421	0,001496	0,002266	
12	0,002285	0,003461	0,008790	0,011288	0,001357	0,002291	
13	0,003195	0,003726	0,012190	0,015060	0,001577	0,002290	
14	0,006871	0,008528	0,014280	0,016995	0,001344	0,002204	
15	0,002603	0,003336	0,015920	0,018450	0,001659	0,002548	
16	0,009929	0,008603	0,009749	0,009413	0,001626	0,002420	
17	0,006509	0,006437	0,034190	0,030840	0,001664	0,002411	
18	0,003602	0,004178	0,014270	0,019103	0,001646	0,002393	
19	0,005633	0,004944	0,017480	0,016088	0,001416	0,002270	
20	0,006057	0,007172	0,022730	0,025043	6,28E-04	0,001245	

Gambar 23. Uji Konvergensi Parameter Tau untuk n=1200;m=20

Gambar 24. Uji Konvergensi Parameter Theta untuk n=1200;m=20

Selanjutnya Gambar 23 dan Gambar 24 adalah gambar grafik menunjukkan grafik perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Berdasarkan kedua gambar tersebut dapat

diketahui bahwa posisi garis grafik 5% SD semuanya berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 1200 dengan banyaknya soal tes 20 tersebut konvergen.

Tabel 21. Hasil Estimasi *Item parameter* untuk n=300;m=40

			Par	ameter		
em	a			b	xi(ξ)
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi
1	1,420813	1,2250	-2,0	-2,07200	0,146382	0,11130
2	0,814819	0,8320	-1,9	-2,04400	1,674795	1,66300
3	1,140889	1,2050	-1,8	-1,92200	1,467943	1,49800
4	1,097697	0,9232	-1,7	-1,87400	1,101273	1,11400
5	0,742975	0,5958	-1,6	-1,55900	0,488679	0,49780
6	0,769511	0,7235	-1,5	-1,59000	0,469265	0,48900
7	0,533025	0,4584	-1,4	-1,10800	1,544713	1,65500
8	0,477875	0,4149	-1,3	-1,39100	0,005174	0,08737
9	1,059029	0,9644	-1,2	-1,24800	0,276319	0,27730
10	1,446540	1,4790	-1,1	-1,13200	0,410380	0,40600
11	1,878304	2,0440	-1,0	-1,11200	0,623411	0,67830
12	0,747986	0,7258	-0,9	-0,86370	0,058635	0,03787
13	0,429544	0,4001	-0,8	-0,89630	0,010999	0,05482
14	0,720490	0,6130	-0,7	-0,73930	0,606550	0,58560
15	1,630203	1,5300	-0,6	-0,70750	1,697735	1,74900
16	1,420215	1,2440	-0,5	-0,44280	0,071854	0,10770
17	0,461385	0,3396	-0,4	-0,15800	1,060575	1,00400
18	0,509605	0,6729	-0,3	-0,54520	0,572866	0,57810
19	0,617575	0,5641	-0,2	-0,06189	0,847496	0,76430
20	0,611963	0,7036	-0,1	-0,31490	0,299369	0,24240
21	0,593442	0,6085	0,1	0,07172	1,173227	1,11200

			Par	ameter		
tem	a			b	xi(ξ)
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi
22	0,478612	0,6049	0,2	0,23010	0,710617	0,69070
23	1,168548	0,9890	0,3	0,46050	0,066377	0,14160
24	0,445620	0,4371	0,4	0,45860	0,620521	0,63270
25	1,313823	1,2660	0,5	0,54180	0,407624	0,34990
26	1,270896	1,4700	0,6	0,55110	1,260330	1,33100
27	0,411226	0,3760	0,7	0,62740	0,298022	0,24900
28	0,645577	0,8566	0,8	0,46240	2,464407	2,51600
29	0,874638	0,9756	0,9	0,87410	2,251791	2,26100
30	0,609944	0,5754	1,0	0,89980	0,986818	1,05000
31	1,442441	1,2900	1,1	1,00500	1,014953	1,13300
32	1,651907	1,7330	1,2	1,37400	0,976486	1,02900
33	1,006573	1,1570	1,3	0,95520	0,412032	0,48150
34	1,187404	0,9748	1,4	1,48100	0,609310	0,56230
35	1,168198	1,4600	1,5	1,24400	0,138609	0,18910
36	0,775669	0,6804	1,6	1,75600	0,344801	0,36110
37	0,961883	1,5160	1,7	1,47700	0,176215	0,25690
38	0,641878	0,9023	1,8	0,75600	0,073653	0,11530
39	0,620973	0,7233	1,9	1,45000	1,131537	1,14800
40	0,644864	0,7641	2,0	1,45100	1,287061	1,20300

Tabel 22. Rata-Rata Estimasi *Person parameter* untuk n=300;m=40

Parameter	Bangkitan	Estimasi
Tau (τ)	0,746342	0,761439
Theta (θ)	0,057928	0,011799

Tabel 21 dan Tabel 22 selanjutnya memberikan informasi untuk hasil estimasi parameter dari skenario simulasi dengan n=300 dan m=40. Secara visual dapat diketahui bahwa selisih antara data bangkitan dengan hasil estimasi *item parameter* tidak terlalu jauh. Untuk *person parameter* pada parameter theta-nya terlihat adanya selisih rata-rata yang cukup jauh. Berikutnya pengujian konvergensi estimasi parameter model dilakukan dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Tabel 23. Uji Konvergensi *Item parameter* untuk n=300;m=40

			Parar	neter	Parameter								
tem	2	ı	k)	xi((ξ)							
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD							
1	0,002819	0,008815	0,002178	0,005840	8,45E-04	0,002778							
2	0,001732	0,005725	0,002675	0,006865	8,58E-04	0,003012							
3	0,002869	0,008550	0,002197	0,005500	9,98E-04	0,003077							
4	0,001812	0,006230	0,002201	0,006090	8,99E-04	0,003059							
5	0,001415	0,004219	0,002370	0,008000	9,74E-04	0,003088							
6	0,001463	0,004921	0,002607	0,007180	9,02E-04	0,003038							
7	0,001059	0,003708	0,003044	0,009040	9,59E-04	0,003061							
8	8,06E-04	0,003225	0,003754	0,012190	8,25E-04	0,002560							
9	0,001838	0,006925	0,002656	0,006630	0,001178	0,003101							
10	0,003310	0,012060	0,002333	0,005350	9,88E-04	0,003047							
11	0,005104	0,017050	0,002298	0,004699	8,84E-04	0,003070							
12	0,001624	0,005535	0,003289	0,009835	4,53E-04	0,001527							
13	0,001049	0,003428	0,005032	0,014390	5,39E-04	0,002012							
14	0,001317	0,004529	0,003188	0,009525	8,51E-04	0,003026							
15	0,003457	0,011270	0,002105	0,004686	0,001068	0,003077							

			Parar	neter		
em	a	ı	l)	xi((ξ)
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD
16	0,003587	0,011240	0,003020	0,007675	7,23E-04	0,002786
17	0,001067	0,003159	0,006578	0,017560	0,001019	0,003074
18	0,001547	0,005480	0,003479	0,009740	8,54E-04	0,003053
19	0,001598	0,004643	0,005044	0,012605	9,37E-04	0,003019
20	0,001877	0,005920	0,003721	0,011185	7,76E-04	0,002985
21	0,001683	0,005090	0,004156	0,011900	9,84E-04	0,003006
22	0,001466	0,004780	0,003831	0,011265	0,001113	0,003055
23	0,002796	0,010680	0,004998	0,014265	9,57E-04	0,002981
24	0,001435	0,003947	0,006391	0,018110	9,41E-04	0,003021
25	0,004733	0,013160	0,003675	0,010635	9,96E-04	0,003013
26	0,004612	0,014595	0,003346	0,008735	9,46E-04	0,003043
27	0,001281	0,003531	0,007429	0,022145	0,001003	0,003092
28	0,002372	0,006820	0,003527	0,008960	9,38E-04	0,003046
29	0,003370	0,008955	0,004512	0,011225	9,58E-04	0,002993
30	0,001678	0,005075	0,005563	0,016900	0,001034	0,003113
31	0,003998	0,013550	0,004082	0,011765	0,001058	0,003094
32	0,006218	0,022220	0,004783	0,013025	9,51E-04	0,003014
33	0,003950	0,012690	0,005546	0,014950	9,32E-04	0,003074
34	0,004063	0,011200	0,007842	0,019900	7,80E-04	0,003045
35	0,005511	0,019690	0,005475	0,016430	8,43E-04	0,003015
36	0,002416	0,006815	0,008466	0,022590	8,59E-04	0,003048
37	0,007131	0,021670	0,005465	0,017375	9,99E-04	0,003076
38	0,003290	0,010045	0,005778	0,017190	8,71E-04	0,002786
39	0,002804	0,007135	0,007574	0,019490	0,001073	0,003059
40	0,002917	0,007795	0,007160	0,019160	9,24E-04	0,003056

Gambar 25. Uji Konvergensi Parameter Tau untuk n=300;m=40

Gambar 26. Uji Konvergensi Parameter Theta untuk n=300;m=40

Gambar 25 dan Gambar 26 adalah gambar grafik menunjukkan perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error (MC Error*). Berdasarkan kedua gambar tersebut dapat diketahui bahwa semua posisi garis grafik 5% SD berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 300 dengan banyaknya soal tes 40 tersebut konvergen.

Tabel 24. Hasil Estimasi *Item parameter* untuk n=600;m=40

			Par	ameter		
em	a			b	xi(ξ)
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi
1	1,401303	1,4500	-2,0	-1,94000	2,496972	2,46700
2	0,702296	0,6476	-1,9	-1,80800	0,565950	0,56510
3	1,657746	1,8010	-1,8	-1,70400	0,346663	0,42750
4	1,835349	1,5400	-1,7	-1,66400	0,071076	0,10190
5	1,334673	1,3120	-1,6	-1,47800	0,274535	0,26860
6	1,405276	1,1940	-1,5	-1,42800	0,166256	0,20550
7	0,532356	0,4570	-1,4	-1,27000	0,234422	0,26670
8	0,603440	0,5891	-1,3	-1,39700	1,614631	1,57800
9	0,592632	0,5124	-1,2	-1,04100	0,664716	0,68090
10	1,195949	1,0900	-1,1	-1,11300	0,290775	0,30050
11	1,955391	1,7060	-1,0	-0,93320	0,941116	0,96470
12	1,664998	1,5470	-0,9	-0,93720	1,176308	1,12100
13	1,440088	1,4650	-0,8	-0,75590	0,365791	0,34760
14	1,274209	1,0660	-0,7	-0,53490	0,595344	0,59110
15	0,493491	0,5270	-0,6	-0,80600	0,645208	0,65460
16	0,562225	0,4820	-0,5	-0,21340	0,177893	0,20990
17	1,280297	1,2800	-0,4	-0,45420	0,619647	0,61200
18	0,460293	0,4995	-0,3	-0,33820	1,619861	1,59600
19	1,658044	1,7090	-0,2	-0,19910	0,359594	0,32280
20	0,940522	0,9130	-0,1	-0,04351	0,810306	0,80490
21	1,688052	1,6370	0,1	0,16890	1,229459	1,18800
22	0,841669	0,9049	0,2	0,15320	1,374619	1,33500
23	1,132685	0,9782	0,3	0,27830	0,563279	0,54640
24	0,756640	0,6692	0,4	0,60980	1,935700	1,95900
25	1,064086	1,2360	0,5	0,33260	0,575513	0,57270
26	0,824705	1,1060	0,6	0,33320	0,475988	0,50520

			Par	ameter		
tem	a			b	xi(ξ)
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi
27	1,309321	1,3300	0,7	0,76470	0,090894	0,06201
28	1,422993	1,1760	0,8	0,94150	1,471984	1,51000
29	0,712261	0,5671	0,9	1,45800	1,979227	1,95800
30	1,526643	1,3250	1,0	1,13100	0,403435	0,44620
31	1,590451	1,4120	1,1	1,25500	0,569093	0,62060
32	0,814536	1,0440	1,2	0,98320	1,044285	1,02200
33	0,620237	0,5902	1,3	1,34100	0,910752	0,90260
34	1,778621	1,3600	1,4	1,71200	1,526511	1,48900
35	0,638710	0,7244	1,5	1,48400	0,403619	0,45760
36	0,979931	0,8313	1,6	1,83300	0,724427	0,74300
37	1,751979	1,7760	1,7	1,56700	0,993969	1,00700
38	1,729873	1,4710	1,8	2,21500	0,570661	0,59300
39	0,563243	0,6059	1,9	1,84300	0,811413	0,81320
40	0,464389	0,5230	2,0	1,66500	0,290582	0,18820

Tabel 25. Rata-Rata Estimasi *Person parameter* untuk n=600;m=40

Parameter	Bangkitan	Estimasi
Tau (τ)	0,79418139	0,797725
Theta (O)	0,00501800	-0,001607

Selanjutnya berdasarkan Tabel 24 dan Tabel 25 dapat diketahui hasil estimasi parameter dari skenario simulasi dengan n=600 dan m=40. Secara visual dapat diketahui bahwa selisih antara data bangkitan dengan hasil estimasi *item* parameter tidak terlalu jauh. Untuk *person parameter* pada parameter theta-nya

terlihat adanya selisih rata-rata yang cukup jauh. Kemudian pengujian konvergensi estimasi parameter model dilakukan dengan membandingkan nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*).

Tabel 26. Uji Konvergensi *Item parameter* untuk n=600;m=40

			Parar	neter		
tem	8	ı	ŀ)	xi((ξ)
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD
1	0,002918	0,008810	0,001647	0,004042	7,21E-04	0,002244
2	7,78E-04	0,003116	0,002150	0,005450	7,73E-04	0,002235
3	0,003250	0,010820	0,001681	0,003635	8,36E-04	0,002201
4	0,002563	0,008970	0,001964	0,003923	7,40E-04	0,002145
5	0,001903	0,007330	0,001764	0,004116	7,96E-04	0,002224
6	0,001741	0,006640	0,001918	0,004287	7,66E-04	0,002232
7	6,90E-04	0,002554	0,003239	0,007955	7,41E-04	0,002267
8	8,84E-04	0,002993	0,002067	0,005530	8,81E-04	0,002210
9	9,06E-04	0,002846	0,002569	0,006810	8,93E-04	0,002240
10	0,001903	0,005920	0,002074	0,004697	8,53E-04	0,002189
11	0,002985	0,009840	0,001822	0,003492	7,09E-04	0,002273
12	0,002180	0,008385	0,001803	0,003582	7,24E-04	0,002294
13	0,002492	0,009125	0,001947	0,004354	8,08E-04	0,002253
14	0,001553	0,006025	0,001938	0,004926	8,68E-04	0,002289
15	8,18E-04	0,002970	0,002613	0,007500	7,32E-04	0,002252
16	0,001054	0,003031	0,003703	0,011235	7,81E-04	0,002243
17	0,001861	0,007415	0,002141	0,004563	8,32E-04	0,002215
18	0,001032	0,002962	0,002998	0,007335	7,53E-04	0,002213
19	0,003806	0,012080	0,002053	0,004855	7,24E-04	0,002240
20	0,001738	0,005325	0,002829	0,006425	7,71E-04	0,002207

		Parameter								
em	8	ı	ŀ)	xi	(ξ)				
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD				
21	0,002803	0,010480	0,002090	0,004578	8,11E-04	0,002228				
22	0,001681	0,005195	0,002845	0,006315	7,19E-04	0,002211				
23	0,002022	0,006495	0,003086	0,007775	8,07E-04	0,002258				
24	0,001399	0,004194	0,003295	0,008620	7,65E-04	0,002222				
25	0,002737	0,009120	0,002389	0,007095	9,21E-04	0,002248				
26	0,002359	0,007980	0,002822	0,007710	7,49E-04	0,002210				
27	0,004533	0,012570	0,003578	0,010165	6,16E-04	0,001828				
28	0,003218	0,008685	0,003253	0,008230	8,28E-04	0,002221				
29	0,001664	0,004136	0,006587	0,015325	7,97E-04	0,002199				
30	0,004573	0,012900	0,004023	0,011645	8,39E-04	0,002286				
31	0,005544	0,015425	0,005429	0,013110	7,32E-04	0,002192				
32	0,002968	0,008025	0,004558	0,010040	8,42E-04	0,002167				
33	0,001696	0,004389	0,006105	0,015995	7,66E-04	0,002239				
34	0,004734	0,014180	0,005096	0,013915	8,75E-04	0,002207				
35	0,002620	0,006060	0,008066	0,017595	8,54E-04	0,002233				
36	0,002844	0,007655	0,007545	0,019475	8,30E-04	0,002240				
37	0,007142	0,021610	0,005019	0,012960	7,04E-04	0,002250				
38	0,005502	0,019465	0,005980	0,021765	7,80E-04	0,002221				
39	0,002183	0,004821	0,008588	0,019345	7,58E-04	0,002240				
40	0,001810	0,004141	0,008987	0,021240	7,50E-04	0,002207				

Gambar 27. Uji Konvergensi Parameter Tau untuk n=600;m=40

Gambar 28. Uji Konvergensi Parameter Tau untuk n=600;m=40

Gambar 27 dan Gambar 28 selanjutnya menunjukkan perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Berdasarkan kedua gambar tersebut dapat diketahui bahwa semua posisi garis grafik 5% SD berada di atas *MC Error*, sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 600 dengan banyaknya soal tes 40 tersebut konvergen.

Tabel 27. Hasil Estimasi *Item parameter* untuk n=1200;m=40

			Par	ameter		
em	a			b	xi(ξ)
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi
1	0,498518	0,4433	-2,0	-1,92200	0,853967	0,80410
2	0,989378	0,9662	-1,9	-1,98400	0,456198	0,48460
3	1,747619	1,8460	-1,8	-1,87900	0,291257	0,35530
4	1,209024	1,1020	-1,7	-1,69700	0,154825	0,18640
5	0,693941	0,6801	-1,6	-1,53900	0,547218	0,53490
6	0,554610	0,4907	-1,5	-1,55300	0,089681	0,08995
7	0,885083	0,9132	-1,4	-1,39400	0,854944	0,86840
8	0,596149	0,5777	-1,3	-1,28500	0,773287	0,73660
9	0,932710	0,9453	-1,2	-1,12500	0,068829	0,08835
10	0,724358	0,7042	-1,1	-1,23700	1,536313	1,54700
11	1,152037	1,2020	-1,0	-0,95590	1,568674	1,57000
12	0,456312	0,4707	-0,9	-0,79290	0,846771	0,84980
13	0,527030	0,5427	-0,8	-0,78920	0,904828	0,93480
14	0,513468	0,5042	-0,7	-0,87430	2,330319	2,30400
15	1,773282	1,7750	-0,6	-0,62840	0,734479	0,75150
16	1,553882	1,3920	-0,5	-0,47480	0,456977	0,49500
17	1,104059	1,1560	-0,4	-0,52040	0,682875	0,65330
18	0,847938	0,9002	-0,3	-0,31380	1,071874	1,04100
19	1,966501	1,8310	-0,2	-0,19230	1,017417	1,00200
20	0,732099	0,7169	-0,1	-0,04068	1,158965	1,12300
21	0,734633	0,7903	0,1	-0,05873	0,831134	0,78490
22	1,260703	1,0620	0,2	0,29280	0,346020	0,32910
23	0,542993	0,5433	0,3	0,56660	0,022046	0,02882
24	0,596325	0,5557	0,4	0,39840	0,811330	0,82200
25	1,566512	1,6940	0,5	0,42760	0,505067	0,46180
26	0,735368	0,8173	0,6	0,55190	0,110024	0,07451

			Par	ameter		
tem	a			b	xi(ξ)
Nomor Item	Bangkitan	Estimasi	Bangkitan	Estimasi	Bangkitan	Estimasi
27	0,424486	0,3754	0,7	0,94670	0,673225	0,64600
28	0,960340	0,9863	0,8	0,71790	0,606626	0,60790
29	0,953559	0,8609	0,9	1,1080	1,159746	1,12300
30	0,673916	0,7174	1,0	0,8293	0,346203	0,33670
31	1,095121	1,0970	1,1	1,1140	0,975039	0,97950
32	0,949187	0,7951	1,2	1,6040	0,405669	0,36950
33	0,588963	0,6752	1,3	1,1370	0,732110	0,70620
34	0,888980	0,8001	1,4	1,4430	1,287587	1,26200
35	0,584503	0,5956	1,5	1,4330	0,630154	0,63700
36	1,179061	1,1200	1,6	1,7470	2,994443	2,96400
37	1,320797	1,4990	1,7	1,4830	1,068284	1,06400
38	0,950716	0,9291	1,8	1,6500	0,369734	0,37190
39	1,379043	1,6730	1,9	1,6590	0,002268	0,02254
40	0,680731	0,8314	2,0	1,6500	0,614899	0,54510

Tabel 28. Rata-Rata Estimasi *Person parameter* untuk n=1200;m=40

Parameter	Bangkitan	Estimasi
Tau (τ)	0,815438	0,814089
Theta (Θ)	0,004895	-0,004879

Tabel 27 dan Tabel 28 selanjutnya memberikan informasi untuk hasil estimasi parameter dari skenario simulasi dengan n=1200 dan m=40. Secara visual dapat diketahui bahwa selisih antara data bangkitan dengan hasil estimasi *item*

parameter tidak terlalu jauh. Untuk person parameter pada parameter theta-nya terlihat adanya selisih rata-rata yang cukup jauh. Berikutnya pengujian konvergensi estimasi parameter model dilakukan dengan membandingkan nilai 5% dari standar deviasi posterior (5% SD) dengan nilai Markov Chain Error (MC Error).

Tabel 29. Uji Konvergensi *Item parameter* untuk n=1200;m=40

tem	8	1	k)	xi((ξ)
Nomor Item	MC Error	2% SD	MC Error	5% SD	MC Error	5% SD
1	0,001470	0,002365	0,004788	0,007085	0,001540	0,002400
2	0,002970	0,005511	0,004490	0,004826	0,001491	0,002237
3	0,007008	0,012330	0,003358	0,003911	0,001779	0,002293
4	0,004268	0,006223	0,003945	0,004940	0,001700	0,002249
5	0,002923	0,003638	0,005797	0,006080	0,001769	0,002422
6	0,001569	0,002652	0,007249	0,008295	0,001412	0,002253
7	0,002968	0,004805	0,004159	0,004827	0,001624	0,002309
8	0,002394	0,003223	0,006495	0,006522	0,001344	0,002302
9	0,003613	0,005817	0,003589	0,005676	0,001491	0,002264
10	0,002032	0,003704	0,004738	0,005414	0,001699	0,002447
11	0,004821	0,006298	0,003797	0,003801	0,001707	0,002266
12	0,001664	0,002532	0,005128	0,007740	0,001834	0,002213
13	0,001804	0,002923	0,004788	0,007032	0,001571	0,002310
14	0,002038	0,003001	0,004982	0,006492	0,001567	0,002338
15	0,009629	0,012173	0,004247	0,004311	0,002003	0,002325
16	0,005313	0,009113	0,0056	0,005196	0,001843	0,002341
17	0,003459	0,007028	0,004757	0,005010	0,001268	0,002324
18	0,003642	0,005115	0,005262	0,005685	0,001723	0,002267

	Parameter							
tem	a		l)	xi((ξ)		
Nomor Item	MC Error	5% SD	MC Error	5% SD	MC Error	5% SD		
19	0,009232	0,012885	0,005345	0,004888	0,001497	0,002161		
20	0,003691	0,004474	0,006623	0,007650	0,001274	0,002297		
21	0,003528	0,004629	0,006720	0,007297	0,001348	0,002219		
22	0,004659	0,007823	0,007079	0,008228	0,001478	0,002363		
23	0,003887	0,004253	0,015390	0,016193	0,001007	0,001576		
24	0,002533	0,003593	0,008443	0,010560	0,001287	0,002219		
25	0,009624	0,015345	0,006020	0,006891	0,001528	0,002459		
26	0,005476	0,006437	0,011470	0,012135	0,001429	0,002317		
27	0,002883	0,002777	0,019760	0,018518	0,001332	0,002324		
28	0,005833	0,007515	0,008772	0,009983	0,001324	0,002328		
29	0,006378	0,006899	0,010550	0,012413	0,001691	0,002294		
30	0,004881	0,005834	0,013470	0,013658	0,001501	0,002411		
31	0,004224	0,009398	0,009522	0,011108	0,001114	0,002131		
32	0,007906	0,007808	0,025770	0,022493	0,001545	0,002412		
33	0,005176	0,005426	0,015290	0,015008	0,001355	0,002294		
34	0,005646	0,006571	0,015600	0,014363	0,001600	0,002310		
35	0,006270	0,005258	0,026140	0,020903	0,001400	0,002276		
36	0,007991	0,009585	0,011260	0,012495	0,001924	0,002300		
37	0,015930	0,017370	0,011830	0,012135	0,001873	0,002357		
38	0,007289	0,009518	0,019440	0,019433	0,001046	0,002214		
39	0,020060	0,030150	0,014820	0,019530	0,007880	0,001341		
40	0,007658	0,008295	0,018650	0,019718	0,001611	0,002387		

Gambar 29. Uji Konvergensi Parameter Tau untuk n=1200;m=4

Gambar 30. Uji Konvergensi Parameter Theta untuk n=1200;m=40

Gambar 29 dan Gambar 30 adalah gambar grafik menunjukkan perbandingan antara nilai 5% dari standar deviasi *posterior* (5% SD) dengan nilai *Markov Chain Error* (*MC Error*). Berdasarkan kedua gambar tersebut dapat diketahui bahwa semua posisi garis grafik 5% SD berada di atas *MC Error*,

sehingga dapat disimpulkan bahwa hasil estimasi untuk data dengan skenario banyaknya peserta tes 1200 dengan banyaknya soal tes 40 tersebut konvergen

D. Uji Ketepatan/Keakuratan Estimasi Parameter Model

Pengujian ini dilakukan untuk mengetahui apakah proses estimasi parameter model memang sudah tepat/akurat. Untuk mengetahui ketepatan/keakuratan tersebut, maka besarnya parameter bangkitan dibandingkan dengan rata-rata parameter estimasi dari 30 kali replikasi, 15000 iterasi. Kriteria yang digunakan untuk menguji ketepatan/keakuratan estimasi parameter model adalah RMSE, bias, SE dan korelasi. Berikut adalah hasil perhitungan koefesien kriteria ketepatan pada tiap paramater di masing-masing skenario tes.

Tabel 30. Uji Ketepatan Estimasi *Parameter* a untuk n=300;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (a)			
1	1,034636	1,109970	0,075334	0,161684	0,178373
2	0,809734	0,828997	0,019262	0,145964	0,147229
3	0,954706	0,952530	-0,002176	0,166573	0,166587
4	0,505483	0,471013	-0,034469	0,077686	0,084990
5	1,352648	1,237470	-0,115178	0,205963	0,235980
6	1,073110	1,034043	-0,039067	0,195906	0,199764
7	1,369896	1,362033	-0,007863	0,210868	0,211015
8	1,289136	1,422880	0,133744	0,320296	0,347098
9	1,071314	1,244203	0,172890	0,242406	0,297744
10	0,750666	1,082820	0,332154	0,303647	0,450031

Tabel 30 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) cukup mendekati nilai parameter bangkitannya (*true parameter*). Hal ini juga didukung oleh nilai bias, SE dan RMSE yang mendekati nilai 0, artinya adalah ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 10 berjalan cukup baik.

Tabel 31. Uji Ketepatan Estimasi *Parameter* b untuk n=300;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (b)			
1	-2,0	-1,947800	0,052200	0,113054	0,124524
2	-1,6	-1,449100	0,150900	0,160759	0,220486
3	-1,2	-1,118237	0,081763	0,114374	0,140594
4	-0,8	-0,708357	0,091643	0,170991	0,194001
5	-0,4	-0,269098	0,130902	0,097193	0,163039
6	0,4	0,640273	0,240273	0,235825	0,336667
7	0,8	1,048280	0,248280	0,226379	0,335992
8	1,2	1,340667	0,140667	0,270023	0,304466
9	1,6	1,710533	0,110533	0,251228	0,274469
10	2,0	1,709667	-0,290333	0,308687	0,423770

Berdasarkan Tabel 31 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu dari Tabel 31 juga dapat dilihat bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, yang berarti bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 10 berjalan cukup baik.

Dari Tabel 32 dapat diketahui bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*). Selain itu juga didukung oleh nilai bias, SE dan RMSE yang mendekati nilai 0, hal ini dapat diartikan bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 10 berjalan sangat baik.

Tabel 32. Uji Ketepatan Estimasi *Parameter* xi untuk n=300;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	0,688888	0,691207	0,002319	0,060597	0,060641
2	0,027548	0,093547	0,065999	0,036218	0,075284
3	0,582995	0,616460	0,033465	0,050072	0,060225
4	1,769432	1,805800	0,036368	0,058840	0,069172
5	1,249049	1,266767	0,017718	0,064595	0,066981
6	0,204248	0,212560	0,008312	0,043055	0,043850
7	0,361367	0,394080	0,032713	0,059660	0,068040
8	0,805527	0,834497	0,028970	0,051096	0,058737
9	1,075639	1,114447	0,038808	0,060758	0,072094
10	0,414484	0,448203	0,033719	0,071379	0,078943

Tabel 33. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=300;m=10

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,748704	0,779295	0,030591	0,213931	0,258001
theta (Θ)	-0,064500	-0,003670	0,060823	0,446644	0,614440

Tabel 33 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-300 peserta tes cukup dekat dengan nilai estimasi parameternya. Hal ini juga didukung oleh nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, yang artinya bahwa ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 10 berjalan cukup baik.

Tabel 34. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=300;m=10

Parameter	Korelasi
a	0,891600
b	0,994411
xi(ξ)	0,988036
tau (τ)	0,925497
theta (Θ)	0,999440

Hubungan antara nilai parameter bangkitan dengan rata-rata nilai estimasi parameter bersifat linier, dengan arah koefisen korelasi yang semuanya positif. Hal ini menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Berdasarkan Tabel 34 dapat diketahui bahwa hampir semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna), sehingga dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Tabel 35. Uji Ketepatan Estimasi *Parameter* a untuk n=600;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal	_	Estimasi (a)			
1	1,143216	1,242083	0,098868	0,231247	0,251496
2	0,656054	0,630800	-0,025254	0,061342	0,066337
3	1,411578	1,441253	0,029676	0,232392	0,234279
4	0,490147	0,484390	-0,005757	0,076743	0,076958
5	0,582267	0,578507	-0,003761	0,074583	0,074678
6	0,482088	0,489303	0,007216	0,080126	0,080450
7	1,461318	1,443290	-0,018028	0,259111	0,259738
8	0,610556	0,634503	0,023947	0,069103	0,073134
9	1,253023	1,421490	0,168467	0,299190	0,343360
10	0,480220	0,553293	0,073074	0,087562	0,114048

Tabel 35 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) mendekati nilai parameter bangkitannya (*true parameter*). Hal ini terlihat jelas dari angka-angka pada kolom kedua dan ketiga pada tabel yang hampir mirip. Selain itu nilai bias, SE dan RMSE-nya juga mendekati nilai 0, yang berarti ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 10 berjalan baik.

Tabel 36. Uji Ketepatan Estimasi *Parameter* b untuk n=600;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (b)			
1	-2,0	-2,058800	-0,058800	0,068991	0,090649
2	-1,6	-1,637433	-0,037433	0,106107	0,112517
3	-1,2	-1,224600	-0,024600	0,072723	0,076771
4	-0,8	-0,772630	0,027370	0,182093	0,184138
5	-0,4	-0,460743	-0,060743	0,187449	0,197046
6	0,4	0,367737	-0,032263	0,333027	0,334586
7	0,8	0,820927	0,020927	0,154347	0,155760
8	1,2	1,149193	-0,050807	0,217101	0,222966
9	1,6	1,611800	0,011800	0,188439	0,188808
10	2,0	1,677367	-0,322633	0,325909	0,458594

Berdasarkan Tabel 36 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu juga didukung dari nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) yang mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 10 berjalan cukup baik.

Tabel 37. Uji Ketepatan Estimasi *Parameter* xi untuk n=600;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	0,053424	0,066199	0,012676	0,030063	0,032626
2	0,606765	0,631979	0,025206	0,046342	0,052753
3	0,112806	0,128611	0,015805	0,033034	0,036629
4	0,558029	0,577663	0,019635	0,039851	0,044426
5	0,116654	0,121544	0,004899	0,033206	0,033565
6	0,297337	0,303077	0,005739	0,038833	0,039255
7	0,738549	0,753889	0,015331	0,039818	0,042668
8	1,331617	1,343633	0,012016	0,042919	0,044561
9	0,613480	0,632413	0,018933	0,031169	0,036461
10	1,529282	1,547967	0,018684	0,046475	0,050099

Dari Tabel 37 dapat diketahui bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*). Hal ini dapat dilihat dari angka-angka pada kolom kedua dan ketiga di Tabel 37 yang hampir mirip. Selain itu nilai koefisien ketepatan estimasi (bias, SE dan RMSE) mendekati nilai 0, yang menunjukkan bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 10 berjalan sangat baik.

Tabel 38. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=600;m=10

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,778423	0,791053	0,012629	0,215603	0,253685
theta (Θ)	0,062949	0,000887	-0,062062	0,442391	0,655739

Tabel 38 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-600 peserta tes cukup dekat dengan nilai estimasi parameternya. Selain itu dari Tabel 38 juga didapatkan informasi bahwa nilai koefisien kriteria ketepatan proses

estimasi parameter seperti bias, SE dan RMSE mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 10 berjalan cukup baik.

Tabel 39. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=600;m=10

Parameter	Korelasi
a	0,990945
b	0,997679
xi (ξ)	0,999931
tau (τ)	0,989448
theta (O)	0,911380

Melalui Tabel 39 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna) dengan arah koefisen korelasi yang semuanya positif. Tanda positif menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (true parameter). Secara umum dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), time intensity (xi), speed peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran person parameter dan item parameter dalam model.

Tabel 40 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) sangat mendekati nilai parameter bangkitannya (*true parameter*). Hal ini juga didukung oleh nilai bias, SE dan RMSE yang mendekati nilai 0, artinya adalah ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 10 berjalan sangat baik.

Tabel 40. Uji Ketepatan Estimasi *Parameter* a untuk n=1200;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal	_	Estimasi (a)			
1	0,780827	0,827470	0,046643	0,057999	0,074428
2	1,885334	1,864600	-0,020734	0,272206	0,272995
3	0,999605	1,027127	0,027522	0,091199	0,095261
4	0,510208	0,520070	0,009862	0,044027	0,045118
5	0,601502	0,621953	0,020451	0,047909	0,052092
6	0,714503	0,741387	0,026883	0,082943	0,087191
7	0,415220	0,428740	0,013520	0,039813	0,042046
8	0,704105	0,737397	0,033292	0,093284	0,099046
9	0,470797	0,492377	0,021580	0,057468	0,061386
10	1,561728	1,586067	0,024339	0,253623	0,254788

Tabel 41. Uji Ketepatan Estimasi *Parameter* b untuk n=1200;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (b)			
1	-2,0	-2,025067	-0,025067	0,060070	0,065091
2	-1,6	-1,640667	-0,040667	0,040067	0,057089
3	-1,2	-1,232767	-0,032767	0,063182	0,071173
4	-0,8	-0,877880	-0,077880	0,132061	0,153315
5	-0,4	-0,479327	-0,079327	0,071259	0,106633
6	0,4	0,327107	-0,072893	0,137391	0,155530
7	0,8	0,714877	-0,085123	0,183145	0,201960
8	1,2	1,127893	-0,072107	0,188926	0,202219
9	1,6	1,473740	-0,126260	0,280995	0,308058
10	2,0	2,084467	0,084467	0,206793	0,223378

Berdasarkan Tabel 41 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu dari Tabel 41 juga dapat dilihat bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, yang berarti bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 10 berjalan cukup baik.

Tabel 42. Uji Ketepatan Estimasi *Parameter* xi untuk n=1200;m=10

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	1,640509	1,637467	-0,003042	0,032991	0,033131
2	1,884588	1,898467	0,013879	0,026130	0,029587
3	1,237541	1,246833	0,009292	0,025714	0,027341
4	0,111071	0,123866	0,012795	0,024141	0,027322
5	1,628819	1,633033	0,004215	0,025890	0,026231
6	0,387096	0,390653	0,003558	0,036110	0,036285
7	1,536423	1,536367	-0,000559	0,026861	0,026861
8	0,853944	0,865980	0,012036	0,029376	0,031746
9	0,643100	0,648627	0,005527	0,028600	0,029129
10	0,726325	0,743000	0,016675	0,031889	0,035985

Dari Tabel 42 dapat diketahui bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*). Selain itu juga didukung oleh nilai bias, SE dan RMSE yang mendekati nilai 0, hal ini dapat diartikan bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 10 berjalan sangat baik.

Tabel 43. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=1200;m=10

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,776439	0,783279	0,006840	0,213747	0,253254
theta (Θ)	0,034913	-0,000515	-0,035428	0,440485	0,602331

Tabel 43 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-1200 peserta tes cukup dekat dengan nilai estimasi parameternya. Hal ini juga didukung oleh nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan

RMSE) mendekati nilai 0, yang artinya bahwa ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 10 berjalan cukup baik.

Tabel 44. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=1200;m=10

Parameter	Korelasi
a	0,999478
b	0,999190
xi(ξ)	0,999949
tau (τ)	0,987000
theta (Θ)	0,960477

Hubungan antara nilai parameter bangkitan dengan rata-rata nilai estimasi parameter bersifat linier, dengan arah koefisen korelasi yang semuanya positif. Hal ini menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Berdasarkan Tabel 44 dapat diketahui bahwa hampir semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna), sehingga dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Tabel 45 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu pada Tabel 45 juga menunjukkan bahwa nilai bias, SE dan RMSE-nya juga mendekati

nilai 0, yang berarti ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 45. Uji Ketepatan Estimasi *Parameter* a untuk n=300;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (a)			
1	1,367938	1,385930	0,017993	0,225891	0,226606
2	0,950575	0,928467	-0,022109	0,131863	0,133704
3	1,054002	1,094670	0,040668	0,186590	0,190971
4	0,436979	0,435680	-0,001299	0,059816	0,059830
5	0,630694	0,610373	-0,020320	0,070703	0,073565
6	1,777428	1,657967	-0,119461	0,245250	0,272797
7	0,993635	1,054353	0,060719	0,126316	0,140152
8	1,018148	1,076443	0,058296	0,188864	0,197657
9	0,437110	0,468113	0,031004	0,066354	0,073240
10	1,693422	1,723767	0,030344	0,221751	0,223818
11	0,440440	0,459193	0,018753	0,071072	0,073504
12	1,052516	1,033230	-0,019286	0,192449	0,193413
13	0,624912	0,674097	0,049185	0,109185	0,119752
14	0,714706	0,744737	0,030031	0,132158	0,135527
15	0,632627	0,634430	0,001803	0,119882	0,119896
16	0,635986	0,772410	0,136424	0,137843	0,193939
17	0,925878	1,049130	0,123252	0,245223	0,274454
18	1,112853	1,214370	0,101517	0,269143	0,287652
19	0,558225	0,661967	0,103741	0,122109	0,160228
20	1,038010	1,267617	0,229607	0,307133	0,383471

Berdasarkan Tabel 46 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Hal ini juga didukung oleh nilai koefisien bias, SE dan RMSE yang mendekati nilai 0, besaran koefisien kriteria ini menunjukkan bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 46. Uji Ketepatan Estimasi *Parameter* b untuk n=300;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal	_	Estimasi (b)			
1	-2,0	-2,056100	-0,056100	0,085815	0,102526
2	-1,8	-1,845167	-0,045167	0,119205	0,127475
3	-1,6	-1,639533	-0,039533	0,073587	0,083534
4	-1,4	-1,440467	-0,040467	0,159803	0,164847
5	-1,2	-1,165103	0,034897	0,176240	0,179661
6	-1,0	-0,978133	0,021867	0,087192	0,089892
7	-0,8	-0,849423	-0,049423	0,114287	0,124516
8	-0,6	-0,665140	-0,065140	0,115119	0,132271
9	-0,4	-0,478469	-0,078469	0,237937	0,250542
10	-0,2	-0,247813	-0,047813	0,075640	0,089485
11	0,2	0,239109	0,039109	0,236567	0,239778
12	0,4	0,375380	-0,024620	0,260451	0,261612
13	0,6	0,513499	-0,086501	0,248956	0,263555
14	0,8	0,753813	-0,046187	0,324955	0,328221
15	1,0	1,009787	0,009787	0,329431	0,329577
17	1,4	0,962320	-0,237680	0,249681	0,344721
18	1,6	1,249853	-0,150147	0,251237	0,292684
19	1,8	1,485700	-0,114300	0,230619	0,257390
20	2,0	1,471650	-0,328350	0,324830	0,461875

Tabel 47. Uji Ketepatan Estimasi *Parameter* xi untuk n=300;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	0,136575	0,144973	0,008398	0,060294	0,060876
2	0,756087	0,786883	0,030796	0,059948	0,067395
3	1,197961	1,225500	0,027539	0,055167	0,061658
4	1,241069	1,253733	0,012665	0,067222	0,068405
5	0,046874	0,079197	0,032323	0,034076	0,046967
6	0,103044	0,129272	0,026228	0,042536	0,049972
7	0,524574	0,533977	0,009403	0,061064	0,061784
8	0,201068	0,216893	0,015826	0,053103	0,055411
9	0,578603	0,607747	0,029144	0,066221	0,072350
10	1,816635	1,849033	0,032398	0,063206	0,071026
11	0,409571	0,416543	0,006972	0,060436	0,060837
12	0,192493	0,228276	0,035783	0,065857	0,074950
13	0,350134	0,365900	0,015766	0,048729	0,051216
14	0,226690	0,260187	0,033497	0,051642	0,061555
15	0,685056	0,701383	0,016327	0,047847	0,050556
16	0,107608	0,123288	0,015680	0,048466	0,050940
17	0,705362	0,739513	0,034151	0,047804	0,058749
18	1,313236	1,340833	0,027597	0,055016	0,061550
19	1,673432	1,693467	0,020035	0,057995	0,061358
20	0,884697	0,910770	0,026073	0,053389	0,059415

Dari Tabel 47 dapat dilihat bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*), terbukti dari angka-angka pada kolom kedua dan ketiga pada tabel tersebut yang hampir sama nilainya. Selain itu juga didukung oleh nilai koefisien ketepatan estimasinya seperti bias, SE dan RMSE yang mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 20 berjalan sangat baik.

Tabel 48. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=300;m=20

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,75722100	0,777587000	0,020366	0,172417	0,195701
theta (O)	0,07999668	0,016671107	-0,063326	0,389588	0,463836

Tabel 48 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-300 peserta tes cukup dekat dengan nilai estimasi parameternya. Berdasarkan tabel tersebut juga didapatkan informasi bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 49. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=300;m=20

Parameter	Korelasi
a	0,981938
b	0,997980
xi (ξ)	0,999850
tau (τ)	0,993628
theta (\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}}}}} \ext{\tin}}}}}} \ext{\tinit}\\ttitt{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texitile}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	0,976405

Melalui Tabel 49 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna). Arah koefisen korelasi yang semuanya positif menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Dari informasi nilai koefisien korelasi pada Tabel 49 dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Tabel 50 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) cukup mendekati nilai parameter bangkitannya (*true parameter*). Hal ini dapat dilihat dari angka-angka pada kolom kedua dan ketiga di tabel yang hampir mirip. Selain dari Tabel 50 juga dapat diketahui bahwa nilai bias, SE dan RMSE-nya juga mendekati nilai 0, yang berarti ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 50. Uji Ketepatan Estimasi *Parameter* a untuk n=600;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (a)			
1	0,944382	0,965077	0,020695	0,095514	0,097731
2	0,532126	0,535507	0,003380	0,068340	0,068424
3	0,703178	0,726777	0,023599	0,072117	0,075880
4	0,408241	0,411943	0,003703	0,059469	0,059584
5	0,908599	0,917003	0,008404	0,071280	0,071774
6	0,992439	0,997360	0,004921	0,091647	0,091779
7	1,659499	1,745600	0,086101	0,236988	0,252144
8	1,498708	1,555100	0,056392	0,170632	0,179709
9	0,804193	0,844477	0,040284	0,098551	0,106466
10	0,926516	0,976853	0,050337	0,098889	0,110963
11	0,749531	0,816680	0,067149	0,094932	0,116280
12	1,217771	1,245277	0,027505	0,174920	0,177070
13	0,893436	0,929397	0,035960	0,129194	0,134106
14	1,506254	1,527187	0,020932	0,245224	0,246116
15	1,526587	1,602100	0,075513	0,271990	0,282278
16	1,018507	1,194137	0,175629	0,187765	0,257102
17	0,967301	1,060977	0,093676	0,124671	0,155942
18	0,602448	0,670147	0,067699	0,092848	0,114908
19	0,707045	0,835340	0,128295	0,189782	0,229078
20	0,486596	0,558043	0,071447	0,071597	0,101148

Tabel 51, Uji Ketepatan Estimasi *Parameter* b untuk n=600;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (b)			
1	-2,0	-2,002433	-0,002433	0,090493	0,090526
2	-1,8	-1,796600	0,003400	0,125630	0,125676
3	-1,6	-1,613200	-0,013200	0,100361	0,101225
4	-1,4	-1,411867	-0,011867	0,167003	0,167424
5	-1,2	-1,224267	-0,024267	0,085748	0,089115
6	-1,0	-1,034343	-0,034343	0,080443	0,087468
7	-0,8	-0,838123	-0,038123	0,057101	0,068658
8	-0,6	-0,633613	-0,033613	0,054503	0,064034
9	-0,4	-0,432970	-0,032970	0,097597	0,103015
10	-0,2	-0,268757	-0,068757	0,079930	0,105433
11	0,2	0,113384	-0,086616	0,114042	0,143206
12	0,4	0,332673	-0,067327	0,102489	0,122625
13	0,6	0,559983	-0,040017	0,159821	0,164754
14	0,8	0,730060	-0,069940	0,160325	0,174916
15	1,0	0,884917	-0,115083	0,136309	0,178394
17	1,4	1,005460	-0,194540	0,199873	0,278918
18	1,6	1,253133	-0,146867	0,198589	0,246997
19	1,8	1,377567	-0,222433	0,249305	0,334110
20	2,0	1,561500	-0,238500	0,369365	0,439674

Berdasarkan Tabel 51 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu berdasarkan tabel tersebut juga dapat diketahui bahwa nilai bias, SE dan RMSE-nya mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 52. Uji Ketepatan Estimasi *Parameter* xi untuk n=600;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	0,894496	0,895133	0,000637	0,055102	0,055105
2	1,994901	2,017133	0,022233	0,036553	0,042783
3	0,893728	0,911770	0,018042	0,038391	0,042419
4	0,492904	0,508713	0,015809	0,041641	0,044541
5	0,733164	0,745343	0,012179	0,037358	0,039293
6	0,214258	0,226480	0,012222	0,036795	0,038772
7	0,450249	0,453193	0,002944	0,041486	0,041590
8	1,626876	1,642967	0,016090	0,046733	0,049425
9	1,458248	1,465667	0,007418	0,044158	0,044777
10	1,234032	1,261733	0,027701	0,035125	0,044734
11	0,578578	0,587777	0,009199	0,039491	0,040548
12	0,830810	0,849800	0,018990	0,038304	0,042753
13	0,405864	0,421350	0,015486	0,038479	0,041478
14	0,014093	0,055933	0,041840	0,020635	0,046652
15	0,700063	0,712900	0,012837	0,054020	0,055525
16	0,176215	0,186667	0,010452	0,053113	0,054132
17	1,334336	1,346800	0,012464	0,033459	0,035705
18	0,513763	0,535480	0,021717	0,036288	0,042290
19	0,224596	0,241577	0,016981	0,036291	0,040067
20	0,582063	0,601553	0,019490	0,036862	0,041698

Dari Tabel 52 dapat dilihat bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*). Hal ini dapat terlihat dari angka-angka pada kolom kedua dan ketiga pada tabel tersebut yang hampir sama nilainya. Berdasakan Tabel 52 juga dapat diketahui bahwa nilai

koefisien ketepatan estimasi (bias, SE dan RMSE) mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 20 berjalan sangat baik.

Tabel 53. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=600;m=20

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,769744	0,784401	0,014657	0,171482	0,192336
theta (Θ)	0,080576	0,038196	-0,042379	0,381931	0,444646

Tabel 53 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-600 peserta tes cukup dekat dengan nilai estimasi parameternya. Dari Tabel 53 juga dapat diketahui bahwa nilai koefisien kriteria ketepatan proses estimasi parameter seperti bias, SE dan RMSE mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 54. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=600;m=20

Parameter	Korelasi
a	0,992951
b	0,998970
xi (ξ)	0,999860
tau (τ)	0,994600
theta (Θ)	0,981708

Melalui Tabel 54 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna) dengan arah koefisen korelasi yang semuanya positif. Hal ini menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Berdasarkan Tabel 54 dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Tabel 55. Uji Ketepatan Estimasi *Parameter* a untuk n=1200;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (a)			
1	0,766631	0,775147	0,008516	0,052527	0,053212
2	0,589993	0,585930	-0,004062	0,038225	0,038440
3	0,961274	0,977250	0,015976	0,086034	0,087505
4	0,730853	0,730683	-0,000170	0,049971	0,049971
5	1,459399	1,449867	-0,009532	0,112348	0,112751
6	1,303265	1,311500	0,008235	0,107460	0,107775
7	1,201483	1,206100	0,004617	0,075535	0,075676
8	0,693185	0,699803	0,006619	0,056448	0,056835
9	1,536690	1,524567	-0,012123	0,137525	0,138059
10	1,479504	1,516700	0,037196	0,149793	0,154342
11	1,339817	1,356767	0,016950	0,165146	0,166014
12	0,511067	0,498100	-0,012967	0,046485	0,048260
13	0,483049	0,487817	0,004767	0,044815	0,045068
14	1,075530	1,129177	0,053647	0,121191	0,132534
15	0,452804	0,450830	-0,001974	0,039705	0,039754
16	1,124749	1,147137	0,022387	0,123753	0,125761
17	0,747436	0,797510	0,050074	0,092465	0,105153
18	0,449318	0,473867	0,024549	0,047392	0,053373
19	0,547749	0,586363	0,038615	0,069079	0,079139
20	0,638374	0,721163	0,082789	0,118963	0,144935

Tabel 55 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu pada Tabel 55 juga menunjukkan bahwa nilai bias, SE dan RMSE-nya juga mendekati nilai 0, yang berarti ketepatan proses estimasi parameter daya beda pada data

dengan banyaknya peserta tes 1200 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 56. Uji Ketepatan Estimasi *Parameter* b untuk n=1200;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (b)			
1	-2,0	-2,039067	-0,039067	0,062801	0,073961
2	-1,8	-1,813800	-0,013800	0,067598	0,068992
3	-1,6	-1,637267	-0,037267	0,058967	0,069756
4	-1,4	-1,428300	-0,028300	0,070715	0,076167
5	-1,2	-1,251800	-0,051800	0,043127	0,067403
6	-1,0	-1,053927	-0,053927	0,039258	0,066703
7	-0,8	-0,850770	-0,050770	0,047998	0,069867
8	-0,6	-0,623337	-0,023337	0,063057	0,067237
9	-0,4	-0,435717	-0,035717	0,043693	0,056434
10	-0,2	-0,222703	-0,022703	0,058828	0,063057
11	0,2	0,211257	0,011257	0,094654	0,095321
12	0,4	0,391973	-0,008027	0,132086	0,132330
13	0,6	0,592027	-0,007973	0,155879	0,156083
14	0,8	0,759533	-0,040467	0,143757	0,149344
15	1,0	0,945670	-0,054330	0,228782	0,235145
16	1,2	1,178000	-0,022000	0,092961	0,095528
17	1,4	1,313103	-0,086897	0,234168	0,249771
18	1,6	1,464767	-0,135233	0,290050	0,320027
19	1,8	1,654200	-0,145800	0,221021	0,264779
20	2,0	1,735500	-0,264500	0,313702	0,410328

Berdasarkan Tabel 56 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) mendekati nilai parameter bangkitannya (*true parameter*). Hal ini juga didukung oleh nilai koefisien bias, SE dan RMSE yang mendekati nilai 0, besaran koefisien kriteria ini menunjukkan bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 20 berjalan baik.

Tabel 57. Uji Ketepatan Estimasi *Parameter* xi untuk n=1200;m=20

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	1,161445	1,159267	-0,002178	0,035895	0,035961
2	1,344779	1,355800	0,011021	0,018557	0,021583
3	0,058504	0,073562	0,015058	0,029078	0,032746
4	0,200503	0,198893	-0,001609	0,033685	0,033723
5	1,293318	1,293533	0,000215	0,030719	0,030720
6	2,141999	2,140567	-0,001432	0,028676	0,028712
7	2,717017	2,710433	-0,006583	0,023489	0,024394
8	1,053168	1,058333	0,005166	0,029080	0,029535
9	1,468475	1,467400	-0,001075	0,023210	0,023235
10	0,481639	0,488640	0,007001	0,024321	0,025309
11	0,275745	0,276397	0,000652	0,025279	0,025288
12	1,024223	1,026073	0,001850	0,032410	0,032463
13	0,347847	0,351927	0,004079	0,025741	0,026062
14	0,110887	0,119422	0,008535	0,027183	0,028491
15	0,356031	0,356147	0,000116	0,033842	0,033842
16	2,358780	2,353067	-0,005713	0,027079	0,027675
17	0,311475	0,314567	0,003092	0,033276	0,033420
18	0,275393	0,282703	0,007310	0,026624	0,027609
19	1,532059	1,533933	0,001874	0,023035	0,023111
20	0,042432	0,058461	0,016028	0,024542	0,029312

Dari Tabel 57 dapat dilihat bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*), terbukti dari angka-angka pada kolom kedua dan ketiga pada tabel tersebut yang hampir sama nilainya. Selain itu juga didukung oleh nilai koefisien ketepatan estimasinya seperti bias, SE dan RMSE yang mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 20 berjalan sangat baik.

Tabel 58. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=1200;m=20

Parameter	Rata-Rata Bangkitan	Grand Rata- Rata Estimasi	Rata-Rata Bias	Rata-Rata SE	Rata-Rata RMSE
tau (τ)	0,792395	0,795393	0,002998	0,172357	0,193591
theta (O)	-0,063920	-0,036627	0,027294	0,360074	0,485646

Tabel 58 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-300 peserta tes cukup dekat dengan nilai estimasi parameternya. Berdasarkan tabel tersebut juga didapatkan informasi bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 20 berjalan cukup baik.

Tabel 59. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=1200;m=20

Parameter	Korelasi
a	0,997820
b	0,999120
xi (ξ)	0,999983
tau (τ)	0,994183
theta (Θ)	0,957144

Melalui Tabel 59 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna). Arah koefisen korelasi yang semuanya positif menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Dari informasi nilai koefisien korelasi pada Tabel 59 dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b),

time intensity (xi), speed peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran person parameter dan item parameter dalam model.

Tabel 60. Uji Ketepatan Estimasi *Parameter* a untuk n=300;m=40

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(a)			
1	1,420813	1,470403	0,049591	0,238909	0,244002
2	0,814819	0,860690	0,045871	0,110227	0,119391
3	1,140889	1,126173	-0,014715	0,103929	0,104966
4	1,097697	1,077947	-0,019751	0,127916	0,129432
5	0,742975	0,726703	-0,016272	0,081223	0,082837
6	0,769511	0,780673	0,011163	0,111018	0,111577
7	0,533025	0,526087	-0,006939	0,085011	0,085294
8	0,477875	0,493357	0,015482	0,064293	0,066131
9	1,059029	1,064143	0,005114	0,175136	0,175211
10	1,446540	1,374900	-0,071640	0,196995	0,209617
11	1,878304	1,713600	-0,164704	0,241057	0,291951
12	0,747986	0,700473	-0,047512	0,129507	0,137947
13	0,429544	0,397587	-0,031957	0,061699	0,069484
14	0,720490	0,751943	0,031454	0,096389	0,101392
15	1,630203	1,454633	-0,175570	0,198457	0,264972
16	1,420215	1,482033	0,061818	0,307619	0,313769
17	0,461385	0,445377	-0,016008	0,056279	0,058511
18	0,509605	0,491940	-0,017665	0,078481	0,080445
19	0,617575	0,653403	0,035828	0,125553	0,130565
20	0,611963	0,591103	-0,020860	0,127431	0,129127
21	0,593442	0,591717	-0,001725	0,093933	0,093949
22	0,478612	0,460340	-0,018272	0,086016	0,087935
23	1,168548	1,162090	-0,006458	0,209590	0,209689
24	0,445620	0,477900	0,032280	0,067402	0,074733
25	1,313823	1,387030	0,073207	0,224514	0,236148
26	1,270896	1,286493	0,015598	0,204333	0,204927
27	0,411226	0,453443	0,042217	0,067733	0,079813
28	0,645577	0,664350	0,018773	0,124917	0,126320
29	0,874638	0,869067	-0,005571	0,157031	0,157129
30	0,609944	0,679263	0,069319	0,134892	0,151661
31	1,442441	1,475533	0,033092	0,223027	0,225469
32	1,651907	1,757267	0,105360	0,252085	0,273216
33	1,006573	1,096637	0,090064	0,166083	0,188931
34	1,187404	1,269943	0,082540	0,271930	0,284181
35	1,168198	1,289367	0,121169	0,263519	0,290041

Nomor Soal	Bangkitan	Rata-Rata Estimasi	Bias	SE	RMSE
		(a)			
36	0,775669	0,968050	0,192381	0,231473	0,300982
37	0,961883	1,193070	0,231187	0,270470	0,355811
38	0,641878	0,817120	0,175243	0,108194	0,205951
39	0,620973	0,727537	0,106564	0,152730	0,186232
40	0,644864	0,846687	0,201823	0,161309	0,258366

Tabel 60 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) cukup mendekati nilai parameter bangkitannya (*true parameter*). Hal ini juga didukung oleh nilai bias, SE dan RMSE-nya juga mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 61. Uji Ketepatan Estimasi *Parameter* b untuk n=300;m=40

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(b)			
1	-2,0	-2,044467	-0,044467	0,124540	0,132240
2	-1,9	-1,868867	0,031133	0,118326	0,122354
3	-1,8	-1,873267	-0,073267	0,087117	0,113831
4	-1,7	-1,763000	-0,063000	0,095193	0,114152
5	-1,6	-1,592667	0,007333	0,140614	0,140806
6	-1,5	-1,532267	-0,032267	0,122655	0,126828
7	-1,4	-1,451033	-0,051033	0,205676	0,211912
8	-1,3	-1,321393	-0,021393	0,159244	0,160675
9	-1,2	-1,247567	-0,047567	0,130552	0,138948
10	-1,1	-1,099733	0,000267	0,048553	0,048554
11	-1,0	-1,055953	-0,055953	0,086325	0,102873
12	-0,9	-0,885700	0,014300	0,220562	0,221025
13	-0,8	-0,605147	0,194853	0,242212	0,310861
14	-0,7	-0,729110	-0,029110	0,149477	0,152285
15	-0,6	-0,640813	-0,040813	0,110366	0,117671
17	-0,5	-0,499913	8,67E-05	0,097629	0,097629
18	-0,4	-0,311951	0,088049	0,193217	0,212333
19	-0,3	-0,294005	0,005995	0,232580	0,232657
20	-0,2	-0,224727	-0,024727	0,227620	0,228959
21	-0,1	-0,034551	0,065449	0,293368	0,300580
22	0,1	0,069176	-0,030824	0,169680	0,172457

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(b)			
23	0,2	0,274571	0,074571	0,280727	0,290463
24	0,3	0,326820	0,026820	0,166587	0,168732
25	0,4	0,409177	0,009177	0,213309	0,213506
26	0,5	0,466877	-0,033123	0,148161	0,151819
27	0,6	0,574867	-0,025133	0,171020	0,172857
28	0,7	0,512239	-0,187761	0,207674	0,279969
29	0,8	0,760363	-0,039637	0,247121	0,250279
30	0,9	0,983950	0,083950	0,175327	0,194389
31	1,0	0,899180	-0,100820	0,297761	0,314367
32	1,2	1,090820	-0,009180	0,156822	0,157091
33	1,3	1,154560	-0,045440	0,167077	0,173146
34	1,4	1,259860	-0,040140	0,293649	0,296379
35	1,5	1,369273	-0,030727	0,288902	0,290531
36	1,6	1,368107	-0,131893	0,309715	0,336629
37	1,7	1,315923	-0,284077	0,401721	0,492016
38	1,8	1,488233	-0,211767	0,313974	0,378715
39	1,9	1,300593	-0,499407	0,285386	0,575197
40	2,0	1,552020	-0,347980	0,339839	0,486396

Berdasarkan Tabel 61 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu Tabel 61 juga menunjukkan bahwa nilai koefisien kriteria ketepatan proses estimasi parameternya, seperti bias, SE dan RMSE mendekati nilai 0, hal ini berarti bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 62. Uji Ketepatan Estimasi *Parameter* xi untuk n=300;m=40

Nomor Soal	Bangkitan	Rata-Rata Estimasi (xi/ξ)	Bias	SE	RMSE
1	0,146382	0,161118	0,014736	0,063107	0,064804
2	1,674795	1,698233	0,023439	0,045769	0,051421
3	1,467943	1,489333	0,021390	0,061308	0,064932
4	1,101273	1,130533	0,029260	0,043391	0,052335

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
5	0,488679	0,498223	0,009545	0,054119	0,054954
6	0,469265	0,474030	0,004765	0,058789	0,058982
7	1,544713	1,553033	0,008320	0,053370	0,054015
8	0,005174	0,073365	0,068191	0,030243	0,074597
9	0,276319	0,299433	0,023114	0,053354	0,058146
10	0,410380	0,440437	0,030057	0,051747	0,059843
11	0,623411	0,631180	0,007769	0,064076	0,064545
12	0,058635	0,101701	0,043066	0,037913	0,057377
13	0,010999	0,065462	0,054463	0,023043	0,059137
14	0,606550	0,628557	0,022006	0,033886	0,040404
15	1,697735	1,713100	0,015365	0,061515	0,063405
16	0,071854	0,091764	0,019910	0,035012	0,040277
17	1,060575	1,074837	0,014262	0,040959	0,043371
18	0,572866	0,599570	0,026704	0,050362	0,057004
19	0,847496	0,874507	0,027011	0,064135	0,069591
20	0,299369	0,333023	0,033655	0,055871	0,065224
21	1,173227	1,177933	0,004707	0,055205	0,055405
22	0,710617	0,743617	0,033000	0,042212	0,053580
23	0,066377	0,093223	0,026846	0,032453	0,042118
24	0,620521	0,639037	0,018515	0,067440	0,069935
25	0,407624	0,433837	0,026213	0,072614	0,077201
26	1,260330	1,275733	0,015403	0,045138	0,047694
27	0,298022	0,296180	-0,001842	0,051710	0,051743
28	2,464407	2,472767	0,008359	0,059564	0,060148
29	2,251791	2,255500	0,003709	0,058075	0,058193
30	0,986818	1,017943	0,031125	0,044759	0,054518
31	1,014953	1,025570	0,010617	0,055064	0,056078
32	0,976486	1,005490	0,029004	0,056130	0,063181
33	0,412032	0,438697	0,026665	0,066858	0,071979
34	0,609310	0,632793	0,023484	0,054062	0,058942
35	0,138609	0,174394	0,035785	0,069899	0,078527
36	0,344801	0,370460	0,025659	0,056899	0,062417
37	0,176215	0,194203	0,017988	0,042825	0,046449
38	0,073653	0,111478	0,037825	0,042800	0,057119
39	1,131537	1,155800	0,024263	0,057570	0,062474
40	1,287061	1,300800	0,013739	0,042754	0,044907

Dari Tabel 62 dapat dilihat bahwa pada kolom kedua dan ketiga angkaangkanya hampir sama, sehingga dapat dikatakan bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*). Selain itu berdasarkan tabel tersebut dapat juga diketahui bahwa nilai koefisien ketepatan estimasinya seperti bias, SE dan RMSE mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 40 berjalan sangat baik.

Tabel 63. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=300;m=40

Parameter	Rata-Rata Bangkitan	Grand Rata- Rata Estimasi	Rata-Rata Bias	Rata-Rata SE	Rata-Rata RMSE
tau (τ)	0,746342	0,765203	0,018861	0,127775	0,139548
theta (Θ)	0,057928	0,007643	-0,050285	0,333886	0,404114

Tabel 63 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-600 peserta tes cukup dekat dengan nilai estimasi parameternya. Selain itu dari tabel tersebut juga dapat diketahui bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 300 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 64. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=300;m=40

Parameter	Korelasi
a	0,977463
b	0,994710
xi (ξ)	0,999806
tau (τ)	0,997274
theta (\text{\text{\text{\text{\text{\text{\text{\text{theta}}}}}}	0,974981

Melalui Tabel 64 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna). Arah koefisen korelasi yang semuanya positif, yang berarti bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Dari tabel tersebut secara umum dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Tabel 65. Uji Ketepatan Estimasi *Parameter* a untuk n=600;m=40

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(a)			
1	1,401303	1,413867	0,012563	0,158186	0,158684
2	0,702296	0,703063	0,000768	0,051543	0,051549
3	1,657746	1,578833	-0,078913	0,180082	0,196613
4	1,835349	1,627233	-0,208115	0,152313	0,257898
5	1,334673	1,327433	-0,007240	0,139150	0,139338
6	1,405276	1,361533	-0,043742	0,146472	0,152864
7	0,532356	0,541340	0,008984	0,055704	0,056424
8	0,603440	0,557650	-0,045790	0,051374	0,068819
9	0,592632	0,579473	-0,013159	0,041491	0,043528
10	1,195949	1,213467	0,017518	0,120261	0,121530
11	1,955391	1,764567	-0,190824	0,235931	0,303442
12	1,664998	1,557633	-0,107365	0,155840	0,189244
13	1,440088	1,420900	-0,019188	0,254606	0,255328
14	1,274209	1,256400	-0,017809	0,127018	0,128261
15	0,493491	0,471740	-0,021751	0,035960	0,042026
16	0,562225	0,559020	-0,003205	0,063277	0,063358
17	1,280297	1,253907	-0,026390	0,154434	0,156673
18	0,460293	0,413120	-0,047173	0,045983	0,065876
19	1,658044	1,661533	0,003489	0,186432	0,186465
20	0,940522	0,904410	-0,036112	0,055531	0,066240
21	1,688052	1,651600	-0,036452	0,156196	0,160393
22	0,841669	0,844657	0,002988	0,075896	0,075955
23	1,132685	1,088790	-0,043895	0,098128	0,107499
24	0,756640	0,752890	-0,003750	0,100821	0,100891

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(a)			
25	1,064086	1,048583	-0,015503	0,146940	0,147755
26	0,824705	0,817327	-0,007378	0,152616	0,152794
27	1,309321	1,248967	-0,060355	0,206864	0,215489
28	1,422993	1,370833	-0,052160	0,196089	0,202908
29	0,712261	0,708553	-0,003707	0,089709	0,089785
30	1,526643	1,392137	-0,134506	0,204478	0,244751
31	1,590451	1,572933	-0,017517	0,233341	0,233998
32	0,814536	0,841277	0,026741	0,143808	0,146273
33	0,620237	0,645933	0,025697	0,070865	0,075380
34	1,778621	1,705333	-0,073288	0,403670	0,410269
35	0,638710	0,673670	0,034960	0,096830	0,102948
36	0,979931	1,068557	0,088626	0,170403	0,192072
37	1,751979	1,699533	-0,052446	0,169373	0,177307
38	1,729873	1,569033	-0,160840	0,160705	0,227366
39	0,563243	0,605990	0,042747	0,055063	0,069708
40	0,464389	0,527513	0,063124	0,061590	0,088193

Tabel 65 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) cukup mendekati nilai parameter bangkitannya (*true parameter*). Hal ini terlihat dari angka-angka pada kolom kedua dan ketiga di Tabel 65 yang hampir mirip. Selain itu dari tabel yang sama juga menunjukkan bahwa nilai bias, SE dan RMSE-nya juga mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 66. Uji Ketepatan Estimasi *Parameter* b untuk n=600;m=40

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(b)			
1	-2,0	-2,021070	-0,021070	0,064376	0,067736
2	-1,9	-1,887100	0,012900	0,085998	0,086960
3	-1,8	-1,779133	0,020867	0,056222	0,059969
4	-1,7	-1,655133	0,044867	0,096340	0,106275
5	-1,6	-1,592567	0,007433	0,058492	0,058962
6	-1,5	-1,468533	0,031467	0,097463	0,102417

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(b)			
7	-1,4	-1,322133	0,077867	0,156952	0,175206
8	-1,3	-1,228067	0,071933	0,120526	0,140360
9	-1,2	-1,124360	0,075640	0,083291	0,112511
10	-1,1	-1,078980	0,021020	0,092982	0,095328
11	-1,0	-0,970183	0,029817	0,065333	0,071816
12	-0,9	-0,857217	0,042783	0,036681	0,056355
13	-0,8	-0,744430	0,055570	0,086337	0,102674
14	-0,7	-0,666813	0,033187	0,070801	0,078193
15	-0,6	-0,503507	0,096493	0,194373	0,217006
17	-0,5	-0,438877	0,061123	0,144024	0,156458
18	-0,4	-0,399660	0,000340	0,053795	0,053796
19	-0,3	-0,198463	0,101537	0,105625	0,146514
20	-0,2	-0,151405	0,048595	0,075149	0,089492
21	-0,1	-0,091964	0,008036	0,086104	0,086478
22	0,2	0,125899	0,025899	0,064577	0,069577
23	0,3	0,215629	0,015629	0,095795	0,097061
24	0,4	0,440793	0,140793	0,121913	0,186241
25	0,5	0,469533	0,069533	0,146468	0,162135
26	0,6	0,648883	0,148883	0,144609	0,207553
27	0,7	0,715650	0,115650	0,300576	0,322057
28	0,8	0,818887	0,118887	0,263602	0,289171
29	0,9	0,931787	0,131787	0,131818	0,186397
30	1,0	0,976193	0,076193	0,169275	0,185632
31	1,1	1,209610	0,209610	0,278162	0,348296
32	1,2	1,297733	0,197733	0,202155	0,282781
33	1,3	1,276360	0,076360	0,347593	0,355882
34	1,4	1,380400	0,080400	0,251905	0,264424
35	1,5	1,534933	0,134933	0,211636	0,250991
36	1,6	1,470500	-0,029500	0,311691	0,313084
37	1,7	1,576200	-0,023800	0,289738	0,290714
38	1,8	1,883033	0,183033	0,268248	0,324743
39	1,9	1,966233	0,166233	0,254501	0,303981
40	2,0	1,778767	-0,121233	0,286964	0,311522

Berdasarkan Tabel 66 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) cukup mendekati nilai parameter bangkitannya (*true parameter*). Selain itu dari dari tabel tersebut dapat juga diketahui bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter

tingkat kesullitan pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 67. Uji Ketepatan Estimasi *Parameter* xi untuk n=600;m=40

Nomor Soal	Bangkitan	Rata-Rata Estimasi (xi/ξ)	Bias	SE	RMSE
1	2,496972	2,492600	-0,004372	0,063942	0,064091
2	0,565950	0,568263	0,002313	0,032447	0,032529
3	0,346663	0,372270	0,025607	0,033416	0,042100
4	0,071076	0,083745	0,012668	0,030163	0,032715
5	0,274535	0,252993	-0,021541	0,042989	0,048085
6	0,166256	0,164000	-0,002256	0,039930	0,039994
7	0,234422	0,221413	-0,013009	0,034610	0,036974
8	1,614631	1,603667	-0,010964	0,032661	0,034453
9	0,664716	0,668793	0,004078	0,035154	0,035389
10	0,290775	0,308607	0,017832	0,032861	0,037388
11	0,941116	0,918907	-0,022209	0,041764	0,047302
12	1,176308	1,167900	-0,008408	0,049703	0,050409
13	0,365791	0,350333	-0,015458	0,040064	0,042943
14	0,595344	0,586330	-0,009014	0,030991	0,032275
15	0,645208	0,645600	0,000392	0,041919	0,041921
16	0,177893	0,170545	-0,007347	0,048378	0,048933
17	0,619647	0,598710	-0,020937	0,028163	0,035093
18	1,619861	1,617833	-0,002028	0,039783	0,039834
19	0,359594	0,358107	-0,001488	0,041573	0,041599
20	0,810306	0,827360	0,017054	0,032640	0,036827
21	1,229459	1,230000	0,000541	0,057429	0,057431
22	1,374619	1,382700	0,008081	0,033922	0,034871
23	0,563279	0,566963	0,003685	0,034787	0,034981
24	1,935700	1,926267	-0,009434	0,059399	0,060144
25	0,575513	0,573847	-0,001666	0,039349	0,039384
26	0,475988	0,478810	0,002822	0,034787	0,034901
27	0,090894	0,094430	0,003536	0,029437	0,029648
28	1,471984	1,486867	0,014883	0,053249	0,055290
29	1,979227	1,962467	-0,016761	0,026545	0,031394
30	0,403435	0,407053	0,003618	0,037199	0,037375
31	0,569093	0,560610	-0,008483	0,049889	0,050605
32	1,044285	1,050467	0,006182	0,040774	0,041240
33	0,910752	0,924517	0,013765	0,038768	0,041139
34	1,526511	1,525300	-0,001211	0,031889	0,031911
35	0,403619	0,401230	-0,002389	0,046089	0,046151
36	0,724427	0,713957	-0,010470	0,043371	0,044617
37	0,993969	1,006210	0,012241	0,037269	0,039227
38	0,570661	0,575443	0,004782	0,040459	0,040741
39	0,811413	0,816560	0,005147	0,031535	0,031952
40	0,290582	0,296177	0,005595	0,035820	0,036254

Dari Tabel 67 dapat diketahui bahwa rata-rata nilai estimasi parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*), hal ini dapat dilihat dari kolom kedua dan ketiga angka-angkanya hampir sama. Selain itu berdasarkan Tabel 67 juga dapat diketahui bahwa nilai koefisien ketepatan estimasinya (bias, SE dan RMSE) mendekati nilai 0, yang berarti bahwa ketepatan proses estimasi parameter *time intensity* pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 40 berjalan sangat baik.

Tabel 68. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=600;m=40

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,794181	0,794679	0,022180	0,126115	0,141124
theta (Θ)	-0,002883	0,005018	-0,007901	0,317346	0,382189

Tabel 68 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-600 peserta tes cukup dekat dengan nilai estimasi parameternya. Berdasarkan tabel 68 juga didapatkan informasi bahwa nilai koefisien kriteria ketepatan proses estimasi parameter seperti bias, SE dan RMSE mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 600 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 69. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=600;m=40

Parameter	Korelasi
a	0,994013
b	0,996896
xi (ξ)	0,999812
tau (τ)	0,996026
theta (Θ)	0,966542

Melalui Tabel 69 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna) dengan arah koefisen korelasi yang semuanya positif. Tanda positif pada koefisien korelasi ini menunjukkan bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Secara umum dari tabel tersebut juga dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Tabel 70. Uji Ketepatan Estimasi *Parameter* a untuk n=1200;m=40

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(a)			
1	0,498518	0,502153	0,003635	0,040576	0,040739
2	0,989378	0,979073	-0,010305	0,078901	0,079572
3	1,747619	1,763700	0,016082	0,204170	0,204802
4	1,209024	1,201733	-0,007291	0,097258	0,097531
5	0,693941	0,696480	0,002539	0,044957	0,045028
6	0,554610	0,541510	-0,013100	0,034025	0,036460
7	0,885083	0,885130	0,000471	0,064813	0,064813
8	0,596149	0,595877	-0,000273	0,043257	0,043258
9	0,932710	0,930520	-0,002190	0,063852	0,063889
10	0,724358	0,720380	-0,003978	0,059043	0,059177
11	1,152037	1,124767	-0,027270	0,085564	0,089804

Nomor Soal	Bangkitan	Rata-Rata Estimasi	Bias	SE	RMSE
		(a)			
12	0,456312	0,458460	0,002149	0,041299	0,041355
13	0,527030	0,515960	-0,011070	0,037947	0,039528
14	0,513468	0,521460	0,007993	0,054392	0,054976
15	1,773282	1,762233	-0,011049	0,170713	0,171071
16	1,553882	1,571433	0,017551	0,129820	0,131001
17	1,104059	1,098260	-0,005799	0,086774	0,086968
18	0,847938	0,852943	0,005005	0,078807	0,078966
19	1,966501	1,961033	-0,005468	0,202600	0,202674
20	0,732099	0,717600	-0,014499	0,051614	0,053612
21	0,734633	0,756360	0,021727	0,052089	0,056438
22	1,260703	1,311800	0,051097	0,143719	0,152533
23	0,542993	0,554737	0,011744	0,053175	0,054456
24	0,596325	0,616027	0,019702	0,055875	0,059247
25	1,566512	1,657400	0,090888	0,197551	0,217456
26	0,735368	0,762500	0,027132	0,080678	0,085118
27	0,424486	0,434860	0,010374	0,041896	0,043161
28	0,960340	1,043483	0,083144	0,119065	0,145222
29	0,953559	0,963973	0,010414	0,093679	0,094256
30	0,673916	0,693863	0,019948	0,070731	0,073490
31	1,095121	1,146397	0,051275	0,120588	0,131036
32	0,949187	0,964837	0,015650	0,104747	0,105910
33	0,588963	0,601097	0,012134	0,070469	0,071506
34	0,888980	0,903150	0,014170	0,096708	0,097741
35	0,584503	0,603790	0,019287	0,053618	0,056981
36	1,179061	1,186030	0,006970	0,127532	0,127723
37	1,320797	1,393300	0,072503	0,202263	0,214865
38	0,950716	1,017830	0,067114	0,146791	0,161406
39	1,379043	1,445043	0,066001	0,231329	0,240560
40	0,680731	0,734253	0,053522	0,082378	0,098238

Tabel 70 menunjukkan bahwa rata-rata nilai estimasi parameter daya beda (a) mendekati nilai parameter bangkitannya (*true parameter*). Hal ini juga didukung oleh nilai bias, SE dan RMSE-nya juga mendekati nilai 0, yang artinya adalah ketepatan proses estimasi parameter daya beda pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 40 berjalan baik.

Tabel 71. Uji Ketepatan Estimasi *Parameter* b untuk n=1200;m=40

Nomor Soal	Bangkitan	Rata-Rata Estimasi (b)	Bias	SE	RMSE
1	-2,0	-1,992700	0,007300	0,056864	0,057331
2	-1,9	-1,903567	-0,003567	0,059767	0,059873
3	-1,8	-1,795133	0,004867	0,038198	0,038507
4	-1,7	-1,703400	-0,003400	0,056115	0,056218
5	-1,6	-1,573500	0,026500	0,071941	0,076666
6	-1,5	-1,463533	0,036467	0,099412	0,105890
7	-1,4	-1,427000	-0,027000	0,055560	0,061773
8	-1,3	-1,283500	0,016500	0,075475	0,077257
9	-1,2	-1,186533	0,013467	0,065810	0,067173
10	-1,1	-1,090633	0,009367	0,061809	0,062515
11	-1,0	-0,997467	0,002533	0,042964	0,043038
12	-0,9	-0,879910	0,020090	0,124491	0,126102
13	-0,8	-0,777330	0,022670	0,084709	0,087690
14	-0,7	-0,721207	-0,021207	0,086222	0,088791
15	-0,6	-0,609663	-0,009663	0,058564	0,059356
16	-0,5	-0,485237	0,014763	0,051262	0,053345
17	-0,4	-0,392193	0,007807	0,068574	0,069017
18	-0,3	-0,319343	-0,019343	0,068668	0,071340
19	-0,2	-0,211537	-0,011537	0,049238	0,050571
20	-0,1	-0,091217	0,008783	0,102370	0,102746
21	0,1	0,068583	-0,031417	0,098596	0,103480
22	0,2	0,192285	-0,007715	0,073518	0,073922
23	0,3	0,293290	-0,006710	0,205687	0,205796
24	0,4	0,388540	-0,011460	0,143499	0,143956
25	0,5	0,496783	-0,003217	0,069815	0,069889
26	0,6	0,599010	-0,000990	0,165864	0,165867
27	0,7	0,698317	-0,001683	0,213321	0,213328
28	0,8	0,753550	-0,046450	0,141757	0,149173
29	0,9	0,902213	0,002213	0,123104	0,123124
30	1,0	1,013277	0,013277	0,247251	0,247608
31	1,1	1,062457	-0,037543	0,147875	0,152566
32	1,2	1,211547	0,011547	0,172940	0,173325
33	1,3	1,285763	-0,014237	0,230370	0,230810
34	1,4	1,416433	0,016433	0,154846	0,155715
35	1,5	1,434100	-0,065900	0,226103	0,235510
36	1,6	1,598400	-0,001600	0,156184	0,156192
37	1,7	1,672933	-0,027067	0,170514	0,172649
38	1,8	1,686733	-0,113267	0,219954	0,247405
39	1,9	1,854067	-0,045933	0,259895	0,263923
40	2,0	1,827467	-0,172533	0,232543	0,289559

Berdasarkan Tabel 71 dapat diketahui bahwa rata-rata nilai estimasi parameter tingkat kesulitan (b) mendekati nilai parameter bangkitannya (*true parameter*). Selain itu Tabel 61 juga menunjukkan bahwa nilai koefisien kriteria ketepatan proses estimasi parameternya, seperti bias, SE dan RMSE mendekati nilai 0, hal ini berarti bahwa ketepatan proses estimasi parameter tingkat kesullitan pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 40 berjalan baik.

Tabel 72. Uji Ketepatan Estimasi *Parameter* xi untuk n=1200;m=40

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi (xi/ξ)			
1	0,853967	0,845533	-0,008434	0,032919	0,033982
2	0,456198	0,452843	-0,003355	0,029430	0,029621
3	0,291257	0,293010	0,001753	0,029859	0,029910
4	0,154825	0,146985	-0,007840	0,025476	0,026655
5	0,547218	0,537120	-0,010098	0,031440	0,033022
6	0,089681	0,085257	-0,004425	0,029427	0,029758
7	0,854944	0,851563	-0,003381	0,040647	0,040788
8	0,773287	0,760233	-0,013054	0,026325	0,029384
9	0,068829	0,066286	-0,002543	0,024073	0,024207
10	1,536313	1,521267	-0,015046	0,028729	0,032430
11	1,568674	1,562600	-0,006074	0,026981	0,027656
12	0,846771	0,836533	-0,010237	0,033858	0,035372
13	0,904828	0,897817	-0,007011	0,042889	0,043458
14	2,330319	2,324000	-0,006319	0,024636	0,025434
15	0,734479	0,715110	-0,019369	0,026186	0,032571
16	0,456977	0,440460	-0,016517	0,038578	0,041965
17	0,682875	0,670793	-0,012082	0,025956	0,028630
18	1,071874	1,063070	-0,008804	0,029986	0,031252
19	1,017417	0,997250	-0,020167	0,026439	0,033252
20	1,158965	1,152633	-0,006332	0,028448	0,029144
21	0,831134	0,817227	-0,013907	0,038740	0,041160
22	0,346020	0,349553	0,003534	0,022596	0,022870
23	0,022046	0,030763	0,008717	0,012280	0,015060
24	0,811330	0,804387	-0,006944	0,028117	0,028961
25	0,505067	0,489003	-0,016063	0,041965	0,044934

Nomor	Bangkitan	Rata-Rata	Bias	SE	RMSE
Soal		Estimasi			
		(xi/ξ)			
26	0,110024	0,099730	-0,010294	0,028857	0,030638
27	0,673225	0,647907	-0,025318	0,032026	0,040825
28	0,606626	0,595520	-0,011106	0,026736	0,028951
29	1,159746	1,147033	-0,012713	0,034361	0,036638
30	0,346203	0,343420	-0,002783	0,029242	0,029374
31	0,975039	0,963897	-0,011142	0,026771	0,028997
32	0,405669	0,393547	-0,012122	0,031861	0,034089
33	0,732110	0,724577	-0,007533	0,024331	0,025470
34	1,287587	1,286200	-0,001387	0,031594	0,031624
35	0,630154	0,613133	-0,017020	0,025753	0,030869
36	2,994443	2,973033	-0,021410	0,034388	0,040509
37	1,068284	1,057513	-0,010771	0,030363	0,032216
38	0,369734	0,354767	-0,014967	0,025561	0,029620
39	0,002268	0,026449	0,024182	0,013148	0,027525
40	0,614899	0,603507	-0,011392	0,026653	0,028986

Dari Tabel 72 dapat dilihat bahwa pada kolom kedua dan ketiga angkaangkanya hampir sama, sehingga dapat dikatakan bahwa rata-rata nilai estimasi
parameter *time intensity* (xi) sangat mendekati nilai parameter bangkitannya (*true parameter*). Selain itu berdasarkan tabel tersebut dapat juga diketahui bahwa nilai
koefisien ketepatan estimasinya seperti bias, SE dan RMSE mendekati nilai 0, hal
ini menunjukkan bahwa ketepatan proses estimasi parameter *time intensity* pada
data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 40 berjalan
sangat baik.

Tabel 73. Uji Ketepatan Estimasi *Parameter* tau dan theta untuk n=1200;m=40

Parameter	Rata-Rata	Grand Rata-	Rata-Rata	Rata-Rata	Rata-Rata
	Bangkitan	Rata Estimasi	Bias	SE	RMSE
tau (τ)	0,815438	0,805488	-0,009950	0,136137	0,148077
theta (Θ)	0,004895	-0,003682	-0,008578	0,359499	0,441861

Tabel 73 menunjukkan bahwa rata-rata parameter bangkitan (*true parameter*) *speed* peserta tes (tau) dan kemampuan peserta tes (theta) dari ke-1200 peserta tes cukup dekat dengan nilai estimasi parameternya. Selain itu dari tabel tersebut juga dapat diketahui bahwa nilai koefisien kriteria ketepatan proses estimasi parameter (bias, SE dan RMSE) mendekati nilai 0, hal ini menunjukkan bahwa ketepatan proses estimasi parameter *speed* peserta tes dan kemampuan peserta tes pada data dengan banyaknya peserta tes 1200 dan banyaknya butir soal 40 berjalan cukup baik.

Tabel 74. Uji Ketepatan Estimasi *Parameter* (Korelasi) untuk n=1200;m=40

Parameter	Korelasi
a	0,997567
b	0,999646
xi (ξ)	0,999907
tau (τ)	0,997385
theta (\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}}}}}} \ext{\tin}\tint{\text{\text{\text{\tinit}\text{\text{\text{\text{\text{\tinit}\text{\texi}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	0,962611

Melalui Tabel 74 dapat diketahui bahwa semua besarnya koefisien korelasi mendekati 1 (korelasi sempurna). Arah koefisen korelasi yang semuanya positif, yang berarti bahwa semakin tinggi nilai koefisien korelasi maka hasil estimasi parameternya juga semakin mendekati parameter bangkitannya (*true parameter*). Dari tabel tersebut secara umum dapat disimpulkan bahwa semua besaran estimasi parameter tersebut baik daya beda (a), tingkat kesulitan (b), *time intensity* (xi), *speed* peserta tes (tau) maupun kemampuan peserta tes (theta) layak digunakan sebagai ukuran *person parameter* dan *item parameter* dalam model.

Secara menyeluruh untuk mengetahui bagaimana hubungan antara banyaknya peserta tes dan banyaknya butir soal terhadap perbedaan hasil estimasi parameter model simultan maka perlu dibuat tabel perbandingan untuk masingmasing kriteria ketepatan estimasi parameter (bias, SE, RMSE dan korelasi) seperti berikut ini

Tabel 75. Perbandingan Rata-Rata Bias terhadap banyaknya n dan m

n	m	Rata-Rata Bias				
"	111	a	b	xi	Tau	Theta
	10	0,053463	0,095683	0,029839	0,030591	0,060823
300	20	0,042543	-0,079183	0,02283	0,020366	-0,063326
	40	0,030288	-0,059924	0,022702	0,018861	-0,05029
	10	0,034845	-0,052718	0,014892	0,012629	-0,06206
600	20	0,053081	-0,09152	0,015737	0,014657	-0,042379
	40	-0,03001	0,054302	-0,00062	0,02218	-0,0079
	10	0,020336	-0,052762	0,007488	0,00684	-0,035428
1200	20	0,016705	-0,055533	0,00317	0,002998	0,027294
	40	0,016688	-0,011221	-0,008744	-0,00995	-0,008578

Tabel 76. Perbandingan Rata-Rata SE terhadap banyaknya n dan m

n	m	Rata-Rata SE				
"		a	b	xi	Tau	Theta
	10	0,203099	0,194851	0,055627	0,213931	0,446644
300	20	0,16148	0,200748	0,055001	0,172417	0,389588
	40	0,154708	0,197547	0,0514	0,127775	0,333886
	10	0,14714	0,183619	0,038169	0,215603	0,442391
600	20	0,132318	0,146853	0,040014	0,171482	0,381931
	40	0,135124	0,155836	0,039378	0,126115	0,317346
	10	0,104047	0,136389	0,02877	0,213747	0,440485
1200	20	0,086743	0,123155	0,027786	0,172357	0,360074
	40	0,095382	0,120791	0,029191	0,136137	0,359499

Tabel 77. Perbandingan Rata-Rata RMSE terhadap banyaknya n dan m

n	m	Rata-Rata RMSE				
"	111	a	b	xi	tau	Theta
	10	0,231881	0,251801	0,065397	0,258001	0,614400
300	20	0,176700	0,227202	0,060349	0,195701	0,463836
	40	0,172453	0,230291	0,058170	0,139540	0,404114
	10	0,157448	0,202184	0,041303	0,253685	0,655739
600	20	0,146424	0,179274	0,044214	0,192363	0,444646
	40	0,148147	0,181649	0,041000	0,141120	0,382180
	10	0,108435	0,154445	0,030362	0,253254	0,602331
1200	20	0,090728	0,139412	0,028659	0,193591	0,485646
	40	0,099314	0,124725	0,031695	0,148077	0,441861

Tabel 78. Perbandingan Korelasi terhadap banyaknya n dan m

n	m	Korelasi				
		a	b	xi	tau	Theta
	10	0,891603	0,994411	0,999440	0,988036	0,925497
300	20	0,981938	0,997980	0,999850	0,993628	0,976405
	40	0,977463	0,994710	0,999806	0,997274	0,974981
	10	0,990945	0,997679	0,999931	0,989448	0,911380
600	20	0,992951	0,998970	0,999860	0,994600	0,981708
	40	0,994013	0,996903	0,999812	0,996026	0,966542
	10	0,999478	0,999190	0,999949	0,987000	0,960477
1200	20	0,997820	0,999120	0,999983	0,994183	0,957144
	40	0,997567	0,999646	0,999907	0,997385	0,962611

Gambar 31 dan Gambar 32 adalah grafik yang digunakan untuk melihat bagaimana perbandingan SE dan RMSE antar jumlah peserta tes dan jumlah butir soal. Berdasarkan kedua gambar tersebut, dapat diketahui bahwa secara umum banyaknya peserta tes (n) tidak berpengaruh secara signifikan terhadap perbedaan hasil estimasi *person parameter* (tau dan theta) pada model simultan. Hal ini dapat dilihat dari garis untuk n=300, n=600 dan n=1200 pada grafik yang hampir berhimpitan (nilai SE atau RMSE yang saling berdekatan). Artinya, hasil estimasi *person parameter* tidak terpengaruh oleh banyaknya peserta tes (n) yang dilibatkan dalam proses, hasil estimasi *person parameter* tetaplah stabil/ konsisten, atau dengan kata lain metode estimasi *Bayesian* yang diaplikasikan dalam penelitian ini adalah metode estimasi yang tepat karena hasil estimasi parameternya *robust*

terhadap banyaknya jumlah peserta tes. Kondisi *robust* semacam ini berlaku untuk semua *person parameter* di tiap grafik dengan banyaknya m yang berbeda, baik itu parameter tau atau theta. Untuk hasil estimasi *item parameter*-nya (a, b dan xi) dipengaruhi oleh jumlah peserta tes (n), semakin banyak peserta tesnya (n) maka hasil estimasi parameternya semakin tepat/akurat. Secara umum dapat disimpulkan bahwa *person parameter* tidak dipengaruhi oleh banyaknya peserta tes, artinya sedikit atau banyak peserta tes yang dilibatkan dalam proses maka hasil estimasi *item parameter*-nya tetaplah stabil/konsisten, sedangkan *item parameter* dipengaruhi oleh banyaknya peserta tes, dimana semakin banyak peserta tes, maka hasil estimasi *item parameter* semakin mendekati nilai parameter sebenarnya.

Gambar 33 dan 34 menunjukkan bahwa untuk *person parameter* (tau dan theta) semakin banyak jumlah soal (m) maka semakin rendah nilai SE atau RMSE-nya (estimasi semakin tepat/akurat), baik pada n sedikit maupun n banyak. Hal ini ditunjukkan oleh posisi garis yang semakin besar nilai m-nya makin posisi garisnya semakin rendah. Selanjutnya untuk *item parameter* (a, b dan xi) hasil estimasinya cenderung stabil/konsisten pada n sedikit maupun n banyak. Hal ini ditunjukkan oleh garis SE atau RMSE yang saling berhimpitan antara m=10, m=20 dan m=40. Secara umum dapat disimpulkan bahwa *item parameter* tidak dipengaruhi oleh banyaknya butir soal tes, artinya banyak atau sedikit butir soal tes yang dilibatkan dalam proses maka hasil estimasi *item parameter*-nya tetaplah stabil/konsisten, sedangkan *person parameter* dipengaruhi oleh banyaknya butir soal tes, dimana semakin banyak butir soal tes, maka hasil estimasi *person parameter* semakin mendekati nilai parameter sebenarnya.

Gambar 31. Perbandingan SE Berdasarkan n pada m=10, m=20 dan m=40

Gambar 32. Perbandingan RMSE Berdasarkan n pada m=10, m=20 dan m=40

Gambar 33. Perbandingan SE Berdasarkan m pada n=300, n=600 dan n=1200

Gambar 34. Perbandingan RMSE Berdasarkan m pada n=300, n=600 dan n=1200

E. Perbandingan Ketepatan/Keakuratan Model yang Mempertimbangkan Waktu Respon dan IRT dengan Data Bangkitan (Simulasi)

Penelitian tentang pemodelan waktu respon ini pada awalnya bermaksud untuk memperbaiki konsep *Item Response Theory* (IRT) pada tes dengan sistem terkomputerisasi. Setiap tes selalu dibatasi waktu (dicatat atau tidak), sehingga seharusnya ada variabel waktu yang dilibatkan dalam pemodelan yang digunakan untuk mengungkap kondisi *real* dalam suatu tes. Dari kajian penelitian sebelumnya dapat diketahui bahwa pemodelan waktu respon dapat memperbaiki hasil estimasi paramater kemampuan peserta tes khususnya pada model IRT yang tidak memperhitungkan waktu respon sebagai indikator kemampuan peserta tes (Abdelfattah & Johanson, 2007: 85; Oshima, 1994: 200; Schnipke & Pashley, 1997: 7; Sinharay, 2018: 457).

model Perbandingan ketepatan/keakuratan dilakukan ini untuk membuktikan bahwa pada saat waktu respon diperhitungkan sebagai bagian dari kemampuan peserta tes (theta), maka akan ada peningkatan keakuratan estimasi parameter kemampuan peserta tes (theta), sehingga dari perbandingan model dengan kriteria keakuratan seperti SE dan RMSE ini akan didapatkan model untuk tes terkomputerisasi yang lebih realistis penerapannya. Selain dibandingkan dengan model IRT 2 parameter, model waktu respon 2 parameter (simultan) yang merupakan hasil pengembangan dalam penelitian ini, juga akan dibandingkan dengan model waktu respon 1 parameter (simultan) yang dikembangkan oleh Hidayah et al. (2016). Perbandingan dengan model simultan dari Hidayah et al. (2016) perlu juga dilakukan karena model dalam penelitian ini dikembangkan dengan cara memperbaiki kelemahan model tersebut, sehingga diharapkan Model Logistik 2 Parameter dengan variabel random yang merupakan hasil pengembangan dalam penelitian ini mempunyai tingkat akurasi prediksi lebih baik.

Perbandingan model pertama kalinya dilakukan dengan data bangkitan hasil simulasi dengan replikasi sebanyak 30 kali dan iterasi sebanyak 1500 (untuk masing-masing model). Tabel 79 dan Tabel 80 berikut adalah hasil perbandingan keakuratan hasil estimasi parameter model dengan kriteria SE dan RMSE.

Berdasarkan Tabel 79 dan Tabel 80, hasil perbandingan model dapat dimaknai bahwa untuk *item parameter* dari kriteria keakuratan dengan SE dan RMSE belum bisa disimpulkan secara umum model mana yang dapat mengestimasi *item parameter* lebih akurat dibandingkan 2 model lainnya karena tiap kriteria menghasilkan keputusan model terbaik yang berbeda. Untuk keakuratan parameter b berdasarkan kriteria SE, model simultan dari Hidayah et al. (2016) lebih unggul. Untuk parameter a berdasarkan kriteria RMSE, model hasil pengembangan lebih unggul dibandingkan 2 model lainnya.

Pada dasarnya yang menjadi tujuan utama dari pengembangan pemodelan waktu respon selama ini adalah untuk meningkatkan keakuratan hasil estimasi parameter kemampuan peserta tes (theta/Θ). Dengan meningkatnya keakuratan dari hasil estimasi parameter kemampuan peserta tes, maka penyelenggara tes semakin mudah untuk memetakan kemampuan sebenarnya dari peserta tes sehingga keputusan seorang peserta tes ini lulus/gagal lebih mudah diambil.

Untuk *person parameter* baik theta maupun tau, hasil perbandingan model menunjukkan bahwa dari kedua kriteria tersebut model hasil pengembangan lebih

unggul dari model lainnya. Nilai SE dan RMSE yang lebih rendah (mendekati 0) menunjukkan bahwa model hasil pengembangan mempunyai proses estimasi parameter model yang lebih akurat dibandingkan 2 model lainnya.

Tabel 79. Perbandingan Rata-Rata SE terhadap banyaknya n dan model

n	Model	Rata-Rata SE			
		a	b	Tau	Theta
200	IRT	0,158559	0,234908	-	0,398317
300	Hidayah et.al (2016)	-	0,182735	0,352495	0,401218
	Hasil Pengembangan	0,161480	0,200748	0,172417	0,389588
600	IRT	0,121132	0,164711	ı	0,394590
800	Hidayah et.al (2016)	-	0,148394	0,201577	0,410335
	Hasil Pengembangan	0,132318	0,146853	0,171482	0,381931
	IRT	0,086534	0,119379	-	0,374974
1200	Hidayah et.al (2016)	-	0,100352	0,176659	0,369873
	Hasil Pengembangan	0,086743	0,123155	0,172357	0,360074

Tabel 80. Perbandingan Rata-Rata RMSE terhadap banyaknya n dan model

n	Model	Rata-Rata RMSE			
		a	b	Tau	Theta
200	IRT	0,496936	1,139822	-	1,244588
300	Hidayah et.al (2016)	-	0,209987	0,196194	0,503576
	Hasil Pengembangan	0,176700	0,227202	0,195701	0,463836
600	IRT	0,342505	1,124059	ı	1,245815
600	Hidayah et.al (2016)	-	0,154104	0,204518	0,486143
	Hasil Pengembangan	0,146424	0,179274	0,192363	0,444646
	IRT	0,465018	1,118343	-	1,158567
1200	Hidayah et.al (2016)	-	0,122063	1,067623	0,785633
	Hasil Pengembangan	0,090728	0,139412	0,193591	0,485646

Untuk membantu memperjelas hasil perbandingan model secara visual, berikut adalah grafiknya.

Gambar 35. Grafik Perbandingan Keakuratan Theta dengan Kriteria SE

Berdasarkan hasil perbandingan model yang nampak pada Gambar 31, dapat disimpulkan bahwa model hasil pengembangan yaitu Model Logistik 2 Parameter dengan variabel respon yang dikembangkan secara simultan dengan konsep *joint distribution* adalah model yang paling tepat/akurat dalam mengungkap kondisi tes yang memperhitungkan waktu respon sebagai indikator kemampuan peserta tes jika dibandingkan model IRT dan model simultan dari Hidayah et al. (2016), sehingga tujuan untuk menghasilkan model yang dapat meningkatkan keakuratan estimasi parameter kemampuan pesertas tes (theta/Θ) tercapai. Model hasil pengembangan juga terbukti dapat memperbaiki model simultan dari Hidayah et al. (2016) sehingga didapatkan model baru yang lebih realistis.

F. Perbandingan Kecocokan Model Model yang Mempertimbangkan Waktu Respon dan IRT dengan Data Empiris

Pemilihan model yang tepat dan cocok akan dapat mengungkapkan keadaan tes yang sebenarnya. Oleh karena itu perbandingan tingkat kecocokan antar model perlu dilakukan. Kecocokan untuk masing-masing model baik itu model IRT, model simultan dari Hidayah et al. (2016) dan model yang dikembangkan dalam penelitian ini, dapat dilihat berdasarkan kriteria *Deviance Information Criterion* (DIC). Model dengan nilai DIC terkecil adalah model yang paling tepat diterapkan (Spiegelhalter et al., 2002, 2014) pada kondisi *real*, data berasal dari hasil Tes Potensi Akademik (TPA) dengan subtes Analogi untuk tes seleksi masuk Program Pascasarjana UNY tahun 2017 yang berbasis komputer (CBT). Berikut ini adalah nilai DIC untuk model IRT dan model simultan.

Tabel 81. Perbandingan Nilai DIC Model

Model	Deviance (Dbar)	Complexity (pD)	DIC
IRT	10797,6	544,347	11541,9
Hidayah et.al (2016)	11059,3	642,873	11702,2
Hasil Pengembangan	10946,9	524,617	11471,5

Berdasarkan Tabel 81 jika dilihat dari nilai DIC terendah, model yang paling cocok untuk mengungkapkan kondisi tes sebenarnya adalah model hasil pengembangan, yaitu Model Logistik 2 Parameter dengan variabel random waktu respon. Hal ini sesuai dengan tujuan awal dari penelitian ini yaitu untuk menghasilkan model yang paling tepat dan cocok untuk menggambarkan keadaan *real*. Apabila dicermati dari urutan nilai DIC terendahnya, data empiris cenderung

lebih cocok dengan pemodelan yang melibatkan parameter daya beda (model 2 parameter), sehingga dapat disimpulkan bahwa daya beda adalah salah satu faktor yang dapat menyebabkan perbedaan kecocokan model yang signifikan antara model 1 parameter dan model 2 parameter.

Tabel 82 dan Tabel 83 menyajikan hasil estimasi *item parameter* dan *person* parameter model Model Logistik 2 Parameter dengan variabel random waktu respon untuk data empiris dengan jumlah peserta tes 717 dan jumlah butir soal 21 (hanya diambil butir soal yang waktu responnya cocok dengan pola distribusi *Lognormal* saja dan lolos uji asumsi IRT).

Untuk parameter daya beda (a), hasil estimasi *item parameter* pada Tabel 82 menunjukkan nilainya berada pada rentang 0,2676 sampai dengan 1,345 sehingga daya beda (a) dapat dikategorikan baik karena menurut Hambleton &Swaminathan (1985: 37) butir yang baik berada a antara 0 sampai 2, artinya butir soal sudah cukup dapat membedakan peserta tes yang berkemampuan tinggi dan berkemampuan rendah. Berdasarkan hasil estimasi *item parameter* pada Tabel 82 juga dapat diketahui bahwa, tingkat kesulitan butir soal (b) berada pada rentang yang sangat jauh yaitu –4,274 sampai dengan 3,499 sehingga tingkat kesulitan butir soal (b) dapat dikategorikan sangat mudah sampai dengan sangat sulit, namun nilai b pada pada Tabel 81 dominan bernilai negatif, artinya soalnya banyak yang mudah untuk dikerjakan oleh peserta tes. Suatu butir soal dikatakan baik apabila nilai b berada pada rentang -2 sampai dengan 2 (Hambleton & Swaminathan, 1985). Jika dilihat dari kriteria besarnya hasil estimasi parameter a antara 0 sampai dengan 2 dan b antara -2 sampai dengan 2, maka butir soal nomor 12, 14, 17, 18, 19 dan 21

tergolong baik atau ideal. Dari keseluruhan prosentase soal yang tergolong baik atau ideal berdasarkan kriteria a dan b hanya 28% saja, hal ini menunjukkan bahwa perbaikan terhadap kualitas butir soal Tes Potensi Akademik (TPA) dengan subtes analogi perlu dilakukan.

Selanjutnya untuk *item parameter*, *time intensity* (xi) nilainya berada pada rentang 0,087 sampai dengan 2,816, artinya waktu ideal yang dibutuhkan untuk mengerjakan ke-21 butir soal tersebut tidak terlampau jauh. *Mean* dari *time intensity* (xi) adalah 1,213 apabila dikonversikan maka *time intensity* (xi) nya adalah 72,78 detik, artinya adalah kurun waktu ideal yang dibutuhkan untuk mengerjakan masing-masing soal Tes Potensi Akademik (TPA) dengan subtes analogi adalah 72,78 detik. Sebagai informasi tambahan, parameter *time intensity* pada penelitian ini masih didefinisikan secara umum, padahal sebenarnya ada banyak faktor yang mempengaruhi tinggi rendahnya nilai *time intensity* seperti tingkat kesulitan soal, kompleksitas soal dan banyaknya kata dalam soal, namun sayangnya penelitian ini masih belum bisa mengakomodasi semua parameter tersebut dalam model yang dikembangkan.

Tabel 83 menyajikan rata-rata nilai estimasi *person parameter* yang terdiri dari parameter *speed* (tau) dan parameter kemampuan (theta) dari masing-masing peserta tes yang berjumlah 717 orang. *Speed* peserta tes (tau) bervariasi pada rentang 0,1544 sampai dengan 2,571 dengan rata-rata sebesar 0,604662, *speed* peserta tes dalam mengerjakan soal dapat diketegorikan sedang sampai dengan tinggi. Kemampuan peserta tes (theta) membentang pada rentang -2,805 sampai

dengan 1,74 dengan rata-rata sebesar 0,063429, yang artinya kemampuan peserta tes dapat dikategorikan cukup rendah sampai dengan sedang.

Tabel 82. Hasil Estimasi Item parameter untuk Data Empiris

Nomor		Parameter				
Item	a	b	xi(ξ)			
1	0,4899	-3,74100	0,816			
2	0,3000	-4,27400	0,927			
3	0,2676	3,49900	2,560			
4	0,3682	-4,05400	0,916			
5	0,7721	-3,92600	0,609			
6	0,9789	-3,53500	0,349			
7	0,7387	-2,18300	1,489			
8	1,3450	-2,49900	1,531			
9	0,7485	-3,01700	0,658			
10	1,1840	-2,95400	0,768			
11	1,2140	-2,41700	1,934			
12	0,4869	-1,97800	1,285			
13	0,6909	-2,67600	0,087			
14	0,4630	-0,80400	1,984			
15	0,4886	2,60800	2,816			
16	0,4798	-2,61500	0,774			
17	0,6631	-1,11000	1,128			
18	1,0310	-0,93890	1,076			
19	0,3342	-1,77300	1,964			
20	0,6997	-2,94900	0,293			
21	0,2574	0,01397	1,508			
	Mean					

Tabel 83. Rata-Rata Estimasi Person parameter untuk Data Empiris

Parameter	Estimasi
Tau (τ)	0,604662
Theta (θ)	0,063429

Gambar 36. Fungsi Informasi dan kesalahan Baku Pengukuran

Gambar 36 menunjukkan fungsi informasi dan kesalahan baku pengukuran untuk Tes Potensi Akademik (TPA) pada subtes analogi. Dari grafik tersebut dapat dimaknai bahwa tes ini dapat memberikan informasi yang akurat pada peserta tes dengan estimasi kemampuan (theta) antara -4 sampai dengan 1,1. Bahkan tes ini dapat memberikan informasi yang akurat untuk peserta tes dengan kemampuan (theta) kurang dari -4. Selain itu, tes ini juga memberikan informasi tertinggi pada peserta tes dengan estimasi kemampuan (theta) sebesar -2,2. Hal ini menunjukkan bahwa Tes Potensi Akademik (TPA) pada subtes analogi ini cocok untuk peserta tes dengan kemampuan rendah sampai dengan sedang.

G. Keterbatasan Penelitian

Model yang dikembangkan dalam penelitian ini tidak dapat mengakomodasi semua parameter yang seharusnya diperhitungkan dalam tes terkomputerisasi. Selain itu proses analisis statistika dalam pengujian model simultan 2 parameter yang dikembangkan memiliki beberapa keterbatasan, yaitu :

- 1. Parameter *time intensity* pada model simultan 2 parameter ini masih didefinisikan secara umum (*fixed variable*). Sebenarnya parameter *time intensity* ini bisa dipengaruhi oleh beberapa faktor, seperti tingkat kesulitan soal, kompleksitas soal dan banyaknya kata dalam soal, namun penelitian ini masih belum mengakomodasi semua parameter tersebut dalam satu model karena adanya keterbatasan yang dimiliki oleh peneliti.
- 2. Pengujian kecocokan distribusi waktu respon dilakukan dengan cara membandingkan nilai *Anderson Darling* (AD) pada sejumlah butir soal dari tes *real*, sehingga keputusan yang didapatkan terkait kecocokan distribusi waktu respon hanya berlaku untuk kondisi data yang sesuai dengan kondisi dari tes *real*, yang datanya didapatkan oleh peneliti.
- 3. Pemilihan model yang tepat dan cocok akan dapat mengungkapkan keadaan yang sebenarnya. Hal ini terkait dengan pemilihan distribusi *prior* pada proses estimasi dengan menggunakan metode *Bayesian*. Pemilihan distribusi *prior* ini adalah subjektivitas dari peneliti, jadi antara peneliti satu dengan peneliti lain bisa mendefinisikan suatu parameter dengan distribusi *prior* yang berbeda-beda sesuai dengan pengetahuan yang dimiliki oleh peneliti. Kesimpulan yang didapatkan terkait model yang dihasilkan hanya berlaku untuk kondisi data yang sesuai dengan distribusi yang dipilih oleh peneliti.

4. Kriteria kecocokan modelnya terbatas menggunakan ukuran DIC (*Deviance Information Criterion*), sebagai ukuran kecocokan model yang sering digunakan dalam penerapan metode *Bayesaian*.