ВикипедиЯ

Обратные тригонометрические функции

Материал из Википедии — свободной энциклопедии

Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

- ullet арксинус (обозначение: rcsin x; угол, синус которого равен x)
- ullet арккосинус (обозначение: rccos x; угол, косинус которого равен x и т. д.)
- \blacksquare арктангенс (обозначение: $\arctan x$; в иностранной литературе $\arctan x$)
- арккотангенс (обозначение: $\operatorname{arcctg} x$; в иностранной литературе $\operatorname{arccot} x$ или $\operatorname{arccotan} x$)
- \blacksquare арксеканс (обозначение: $\operatorname{arcsec} x$)
- \blacksquare арккосеканс (обозначение: $\operatorname{arccosec} x$; в иностранной литературе $\operatorname{arccsc} x$)

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика Карла Шерфера (нем. Karl Scherffer; 1716—1783) и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения:

 \sin^{-1} , $\frac{1}{\sin}$, но они не прижились [1]. Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа \sin^{-1} , \cos^{-1} для арксинуса, арккосинуса и т. п. [2], — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень -1.

Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, $\arcsin 1/2$ означает множество углов

$$\left(\frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6} \dots (30^\circ, 150^\circ, 390^\circ, 510^\circ \dots)\right)$$
, синус которых равен $1/2$. Из

множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.

В общем случае при условии $-1 \leqslant \alpha \leqslant 1$ все решения уравнения $\sin x = \alpha$ можно представить в виде $x = (-1)^n \arcsin \alpha + \pi n, \ n = 0, \pm 1, \pm 2, \dots$

Стр. 1 из 12 17.07.2020, 09:10

Содержание

Основное соотношение

Функция arcsin

Свойства функции arcsin Получение функции arcsin

Функция arccos

Свойства функции arccos Получение функции arccos

Функция arctg

Свойства функции arctg Получение функции arctg

Функция arcctg

Свойства функции arcctg Получение функции arcctg

Функция arcsec

Свойства функции arcsec

Функция arccosec

Свойства функции arccosec

Разложение в ряды

Производные от обратных тригонометрических функций

Интегралы от обратных тригонометрических функций

Неопределённые интегралы

Использование в геометрии

Связь с натуральным логарифмом

Примечания

Ссылки

См. также

Основное соотношение

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

$$\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}$$

Функция arcsin

Аркси́нусом числа x называется такое значение угла y, выраженного в радианах, для которого

Стр. 2 из 12 17.07.2020, 09:10

$$\sin y = x, \quad -rac{\pi}{2} \leqslant y \leqslant rac{\pi}{2}, \quad |x| \leqslant 1.$$

Функция $y = \arcsin x$ непрерывна и ограничена на всей своей области определения. Она является строго возрастающей.

$$ullet$$
 $\sin(rcsin x) = x$ при $-1 \leqslant x \leqslant 1$,

$$ullet$$
 $rcsin(\sin y)=y$ при $-rac{\pi}{2}\leqslant y\leqslant rac{\pi}{2},$

■
$$D(\arcsin x) = [-1;1]$$
 (область определения),

$$ullet$$
 $E(rcsin x) = \left[-rac{\pi}{2};rac{\pi}{2}
ight]$ (область значений).

График функции y = rcsin x

Свойства функции arcsin

- $\arcsin(-x) = -\arcsin x$ (функция является нечётной).
- lacksquare rcsin x > 0 при $0 < x \leqslant 1$.
- ullet rcsin x = 0 при x = 0.
- lacktriangle rcsin x < 0 при $-1 \leqslant x < 0$.

$$lacksquare lpha rccin x = egin{cases} rccin x \leq 1 \ -rccos \sqrt{1-x^2}, & 0 \leqslant x \leqslant 1 \ -rccos \sqrt{1-x^2}, & -1 \leqslant x < 0 \end{cases}$$

$$lacksquare lpha rcctg rac{\sqrt{1-x^2}}{x}, \qquad 0 < x \leqslant 1 \ rcctg rac{\sqrt{1-x^2}}{x} - \pi, \qquad -1 \leqslant x < 0$$

Получение функции arcsin

Дана функция $y = \sin x$. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие $y = \arcsin x$ функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго возрастает и принимает все значения области значений — $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. Так как для функции $y = \sin x$ на интервале $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ каждое значение функции достигается при единственном значении аргумента, то на этом отрезке существует обратная функция $y = \arcsin x$, график которой симметричен графику функции $y = \sin x$ на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ относительно прямой y = x. (графики взаимно обратных функций симметричны относительно биссектрисы первого и третьего координатных углов координатной плоскости Oxy)

Функция arccos

Аркко́синусом числа x называется такое значение угла y в радианной $0 \leqslant y \leqslant \pi, |x| \leqslant 1.$ $\cos y = x$,

Функция $y = \arccos x$ непрерывна и ограничена на всей области определения. Она является убывающей и неотрицательной.

- ullet $\cos(\arccos x) = x$ при $-1 \leqslant x \leqslant 1$,
- ullet $\operatorname{arccos}(\cos y) = y$ при $0 \leqslant y \leqslant \pi$.
- $D(\arccos x) = [-1; 1]$ (область определения),
- $E(\arccos x) = [0; \pi]$ (область значений).

График функции y=rccos x

Свойства функции arccos

- $arccos(-x) = \pi arccos x$. Функция центрально-симметрична относительно точки $\left(0; \frac{\pi}{2}\right)$, является <u>индифферентной</u> (ни чётной, ни нечётной).
- ullet rccos x > 0 при $-1 \leqslant x < 1$.
- ullet rccos x = 0 при x = 1.
- $= \arccos x = \frac{\pi}{2} \arcsin x.$

$$lacksquare lpha rccos x = egin{cases} rccos \sqrt{1-x^2}, & 0 \leqslant x \leqslant 1 \ \pi - rcsin \sqrt{1-x^2}, & -1 \leqslant x < 0 \end{cases}$$

$$lacksquare lpha rctg rac{\sqrt{1-x^2}}{x}, \qquad 0 < x \leqslant 1 \ \pi + rctg rac{\sqrt{1-x^2}}{x}, \qquad -1 \leqslant x < 0$$

$$= \arccos x = 2\arcsin\sqrt{\frac{1-x}{2}}$$

$$lacksquare lpha rccos x = 2 rccos \sqrt{rac{1+x}{2}}$$

$$lacksquare arccos x = 2 \operatorname{arctg} \sqrt{rac{1-x}{1+x}}$$

Получение функции arccos

Дана функция $y = \cos x$. На всей своей области определения она является кусочномонотонной, и, значит, обратное соответствие $y = \arccos x$ функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго убывает и принимает все свои значения — $[0;\pi]$. На этом отрезке $y=\cos x$ строго монотонно убывает и принимает все свои значения только один раз, а значит, на отрезке $[0;\pi]$ существует обратная функция $y=\arccos x$, график которой симметричен графику $y=\cos x$ на отрезке $[0;\pi]$ относительно прямой y=x.

Функция arctg

График функции $y = \operatorname{arctg} x$

Аркта́нгенсом числа x называется такое значение угла y, выраженное в радианах, для которого $\operatorname{tg} y = x, \quad -\frac{\pi}{2} < y < \frac{\pi}{2}.$

Функция $y = \operatorname{arctg} x$ определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго возрастающей.

- ullet $\operatorname{tg}\left(\operatorname{arctg}\,x
 ight)=x$ при $x\in\mathbb{R},$
- $lacksymbol{lack}$ $lacksymbol{\operatorname{arctg}} \left(\operatorname{tg} y
 ight) = y$ при $-rac{\pi}{2} < y < rac{\pi}{2},$
- $D(\operatorname{arctg} x) = (-\infty; \infty)$ (область определения),
- ullet $E(\mathrm{arctg}\;x)=\left(-rac{\pi}{2};rac{\pi}{2}
 ight)$ (область значений).

Свойства функции arctg

• $\operatorname{arctg}(-x) = -\operatorname{arctg} x$ (функция является нечётной).

$$= \operatorname{arctg} x = \arcsin \frac{x}{\sqrt{1+x^2}}.$$

lacksquare $\mathbf{arctg}\,x=\mathbf{arccos}\,rac{1}{\sqrt{1+x^2}}$, при x>0.

 $lacksquare arctg x = arctg rac{1}{x}.$

- $\arctan x = -i \operatorname{arth} ix$, где arth обратный гиперболический тангенс, гиперболический ареатангенс.
- $\operatorname{arth} x = i \operatorname{arctg} ix$.

Получение функции arctg

Дана функция $y=\operatorname{tg} x$. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие $y=\operatorname{arctg} x$ функцией не является (так как нарушается требование однозначности). Поэтому рассмотрим отрезок, на котором она строго возрастает и принимает все свои значения только один раз — $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$. На этом отрезке $y=\operatorname{tg} x$ строго монотонно возрастает и принимает все свои значения только один раз, следовательно, на интервале $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ существует обратная $y=\operatorname{arctg} x$, график которой симметричен графику $y=\operatorname{tg} x$ на отрезке $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ относительно прямой y=x.

Функция arcctg

График функции $y = \operatorname{arcctg} x$

Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого $\mathbf{ctg}\ y = x, \quad 0 < y < \pi.$

Функция $y = \operatorname{arcctg} x$ определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.

- ullet $\operatorname{ctg}(\operatorname{arcctg}\,x)=x$ при $x\in\mathbb{R},$
- $lacksymbol{\bullet}$ $\operatorname{arcctg}(\operatorname{ctg}\,y) = y$ при $0 < y < \pi,$
- $D(\operatorname{arcctg} x) = (-\infty; \infty),$
- $E(\operatorname{arcctg} x) = (0; \pi).$

Свойства функции arcctg

Стр. 6 из 12 17.07.2020, 09:10

- $\mathrm{arcctg}(-x) = \pi \mathrm{arcctg}\,x$. График функции центрально-симметричен относительно точки $\left(0; \frac{\pi}{2}\right)$. Функция является <u>индифферентной (ни</u> чётной, ни нечётной).
- ullet $\operatorname{arcctg} x > 0$ при любых x.

$$lacksquare = \left\{egin{array}{ll} rcsinrac{1}{\sqrt{1+x^2}}, & x\geqslant 0 \ \pi-rcsinrac{1}{\sqrt{1+x^2}}, & x< 0 \end{array}
ight.$$

• $\operatorname{arcctg} x = \pi/2 - \operatorname{arctg} x$.

Получение функции arcctg

Дана функция $y=\operatorname{ctg} x$. На всей своей области определения она является кусочномонотонной, и, значит, обратное соответствие $y=\operatorname{arcctg} x$ функцией не является. Поэтому рассмотрим промежуток, на котором она строго убывает и принимает все свои значения только один раз — $(0;\pi)$. На этом отрезке $y=\operatorname{ctg} x$ строго убывает и принимает все свои значения только один раз, следовательно, на интервале $(0;\pi)$ существует обратная функция $y=\operatorname{arcctg} x$, график которой симметричен графику $y=\operatorname{ctg} x$ на отрезке $(0;\pi)$ относительно прямой y=x.

График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, $x \to -x$) и сместить вверх на $\Pi/2$; это вытекает из вышеупомянутой формулы $\operatorname{arcctg} x = \operatorname{arctg}(-x) + \pi/2$.

Функция arcsec

График функции $y = \operatorname{arcsec} x$

Арксе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого $\sec y = x$, $|x| \geqslant 1$, $0 \leqslant y \leqslant \pi$.

Функция $y = \operatorname{arcsec} x$ непрерывна и ограничена на всей своей области определения. Она является строго возрастающей и всюду неотрицательной.

Стр. 7 из 12 17.07.2020, 09:10

- ullet $\sec(\operatorname{arcsec} x) = x$ при $|x| \geqslant 1$,
- ullet $\operatorname{arcsec}(\sec y) = y$ при $0 \leqslant y \leqslant \pi$.
- ullet $D(\operatorname{arcsec} x) = (-\infty; -1] \cup [1, \infty)$ (область определения),
- $lacksymbol{^{ullet}} E(\operatorname{arcsec} x) = [0; rac{\pi}{2}) \cup (rac{\pi}{2}; \pi]$ (область значений).

Свойства функции arcsec

- $\operatorname{arcsec}(-x) = \pi \operatorname{arcsec} x$. График функции центрально-симметричен относительно точки $\left(0; \frac{\pi}{2}\right)$. Функция является <u>индифферентной (ни</u> чётной, ни нечётной).
- ullet $\operatorname{arcsec} x\geqslant 0$ при любых x.

$$lacksquare lpha rcsin rac{\sqrt{x^2-1}}{x}, \qquad x\geqslant 1 \ \pi+rcsin rac{\sqrt{x^2-1}}{x}, \qquad x\leqslant -1$$

- $\operatorname{arcsec} x = \frac{\pi}{2} \operatorname{arccosec} x$.
- $\operatorname{arcsec} x = \operatorname{arccos} \frac{1}{x}$.

Функция arccosec

График функции $y = \operatorname{arccosec} x$

Арккосе́кансом числа x называется такое значение угла y (в радианной мере измерения углов), для которого $\mathbf{cosec}\, y = x, \qquad |x| \geqslant 1, \quad -\pi/2 \leqslant y \leqslant \pi/2.$

Функция $y = \operatorname{arccosec} x$ непрерывна и ограничена на всей своей области определения. Она является строго убывающей.

ullet $\operatorname{cosec}(\operatorname{arccosec} x) = x$ при $|x| \geqslant 1,$

Стр. 8 из 12 17.07.2020, 09:10

- $lacksymbol{=}$ $\operatorname{arccosec}(\operatorname{cosec} y) = y$ при $-\pi/2 \leqslant y \leqslant \pi/2$
- ullet $D(\operatorname{arccosec} x) = (-\infty; -1] \cup [1, \infty)$ (область определения),
- $lacksymbol{lack} E(\operatorname{arccosec} x) = [-rac{\pi}{2};0) \cup (0;rac{\pi}{2}]$ (область значений).

Свойства функции arccosec

- ullet $\operatorname{arccosec}(-x) = -\operatorname{arccosec} x$ (функция является нечётной).
- $\operatorname{arccosec} x = \pi/2 \operatorname{arcsec} x$.
- $\operatorname{arccosec} x = \arcsin \frac{1}{x}$.

Разложение в ряды

- $lacksquare rcsin x = x + rac{x^3}{6} + rac{3x^5}{40} + \cdots = \sum_{n=0}^{\infty} rac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}$ для всех $|x| \leq 1$
- $lacksymbol{=} rccos x = rac{\pi}{2} rcsin x = rac{\pi}{2} \sum_{n=0}^{\infty} rac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}$ для всех $|x| \leq 1$
- lacktriangledown $= x rac{x^3}{3} + rac{x^5}{5} \cdots = \sum_{n=1}^\infty rac{(-1)^{n-1}}{2n-1} x^{2n-1}$ для всех $|x| \leq 1$

Производные от обратных тригонометрических функций

Все обратные тригонометрические функции бесконечно дифференцируемы в каждой точке своей области определения. Первые производные:

$$(rcsin x)' = rac{1}{\sqrt{1-x^2}}.$$
 $(rccos x)' = -rac{1}{\sqrt{1-x^2}}.$
 $(rctg x)' = rac{1}{1+x^2}.$
 $(rcctg x)' = -rac{1}{1+x^2}.$
 $(rccec x)' = rac{1}{|x|\sqrt{x^2-1}}.$

$$(\operatorname{arccosec}\ x)' = -rac{1}{|x|\sqrt{x^2-1}}.$$

Интегралы от обратных тригонометрических функций

Неопределённые интегралы

Для действительных и комплексных x:

$$\int rcsin x \, dx = x \, rcsin x + \sqrt{1-x^2} + C,$$
 $\int rccos x \, dx = x \, rccos x - \sqrt{1-x^2} + C,$
 $\int rcto x \, dx = x \, rcto x - \frac{1}{2} \ln(1+x^2) + C,$
 $\int rccos x \, dx = x \, rccos x + \frac{1}{2} \ln(1+x^2) + C,$
 $\int rccos x \, dx = x \, rccos x + \ln\left(x\left(1+\sqrt{\frac{x^2-1}{x^2}}\right)\right) + C,$
 $\int rccos x \, dx = x \, rccos x + \ln\left(x\left(1+\sqrt{\frac{x^2-1}{x^2}}\right)\right) + C,$

Для действительных $x \ge 1$:

$$\int \operatorname{arcsec} x \, dx = x \, \operatorname{arcsec} x - \ln \left(x + \sqrt{x^2 - 1} \right) + C, \ \int \operatorname{arccosec} \, x \, dx = x \, \operatorname{arccosec} \, x + \ln \left(x + \sqrt{x^2 - 1} \right) + C.$$

См. также **Список интегралов от обратных тригонометрических функций**

Использование в геометрии

Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например, с помощью теоремы косинусов.

В прямоугольном треугольнике эти функции от отношений сторон сразу дают угол. Так, если катет длины \boldsymbol{a} является противолежащим для угла $\boldsymbol{\alpha}$, то

$$lpha = rcsin(a/c) = rccos(b/c) = rctg(a/b) = rccsec(c/a) = rccsec(c/b) = rcctg$$

Связь с натуральным логарифмом

Стр. 10 из 12 17.07.2020, 09:10

Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:

Прямоугольный треугольник АВС

$$\begin{split} &\arcsin z = -i\ln(iz+\sqrt{1-z^2}) = \frac{\pi}{2} - i\ln(z+\sqrt{z^2-1}),\\ &\arccos z = \frac{\pi}{2} + i\ln(iz+\sqrt{1-z^2}),\\ &\operatorname{arctg}\ z = \frac{i}{2}(\ln(1-iz) - \ln(1+iz)),\\ &\operatorname{arcctg}\ z = \frac{i}{2}\left(\ln\left(\frac{z-i}{z}\right) - \ln\left(\frac{z+i}{z}\right)\right),\\ &\operatorname{arccec}\ z = \arccos(z^{-1}) = \frac{\pi}{2} + i\ln\left(\sqrt{1-\frac{1}{z^2}} + \frac{i}{z}\right),\\ &\operatorname{arccosec}\ z = \arcsin(z^{-1}) = -i\ln\left(\sqrt{1-\frac{1}{z^2}} + \frac{i}{z}\right). \end{split}$$

Примечания

- 1. *Александрова Н. В.* История математических терминов, понятий, обозначений: Словарь-справочник, изд. 3-е. <u>СПб.</u>: ЛКИ, 2008. C. 211. ISBN 978-5-382-00839-4.
- 2. Здесь знак $^{-1}$ определяет функцию $x = f^{-1}(y)$, обратную функции y = f(x)
- 3. Энциклопедический словарь, 1985, с. 220.
- 4. При значении x, близком к 1, эта расчётная формула даёт большую погрешность. Поэтому можно воспользоваться формулой $\arcsin x = \arccos \sqrt{1-x^2}$, где $\arccos x = \frac{\pi}{2} \arcsin x$

Стр. 11 из 12 17.07.2020, 09:10

Ссылки

- Weisstein, Eric W. Обратные тригонометрические функции (http://mathworl d.wolfram.com/InverseTrigonometricFunctions.html) (англ.) на сайте Wolfram MathWorld.
- Математическая энциклопедия / Гл. ред. И. М. Виноградов. М.: «Советская Энциклопедия», 1982. [dic.academic.ru/dic.nsf /enc_mathematics/3612/%D0%9E%D0%91%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95 Т. 3. с. 1135].
- *Обратные тригонометрические функции* статья из Большой советской энциклопедии. М.: «Советская Энциклопедия», 1974. Т. 18. с. 225.
- Обратные тригонометрические функции (http://yunc.org/%D0%9E%D0%9 1%D0%A0%D0%90%D0%A2%D0%9D%D0%AB%D0%95_%D0%A2%D0%A0%D 0%98%D0%93%D0%9E%D0%9D0%9E%D0%9C%D0%95%D0%A2%D0%A 0%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95_%D0%A4%D 0%A3%D0%9D%D0%9A%D0%A6%D0%98%D0%98) // Энциклопедический словарь юного математика (https://ru.wikipedia.org/wiki/Энциклопедический словарь_(Педагогика)) / Савин А.П. М.: Педагогика, 1985. С. 220-221. 352 с.
- Построение графиков обратных тригонометрических функций онлайн (htt p://yotx.ru)
- Онлайн калькулятор: обратные тригонометрические функции (http://www.planetcalc.ru/326/)

См. также

- Тригонометрические функции
- Обратные гиперболические функции
- Теорема Данжуа Лузина

Источник — https://ru.wikipedia.org/w/index.php?title=Oбратные_тригонометрические_функции&oldid=106857309#Функция arctg

Эта страница в последний раз была отредактирована 6 мая 2020 в 22:20.

Текст доступен по <u>лицензии Creative Commons Attribution-ShareAlike</u>; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.

Стр. 12 из 12 17.07.2020, 09:10