Errata do Livro

Cálculo Diferencial a várias variáveis, o essencial.

Página	Onde está	Deve estar
18, Exercício 3	em $\mathbb{R}^2(\{(x,y): x^2 + y^2 < r\}, r \ge 0)$ é um conjunto	(em \mathbb{R}^2 , $\{(x,y): x^2 + y^2 < r\}, r \ge 0$) é um conjunto
	aberto,	aberto em \mathbb{R}^2 ,
20, Definição 2.1	$(x,y) \mapsto f(x,y)$	$(x_1, x_2, \dots x_n) \mapsto f(x_1, x_2, \dots x_n)$
38, Teorema 3.1	(ii) $\lambda \lim_{x \to p} f(x)$ $\lim_{x \to p} g(z) = L$	$\lim_{x \to n} \lambda f(x)$
42, Proposição 3.2	$\lim_{z \to c} g(z) = L$	$\lim_{z \to c} g(z) = g(c) = L$
43, Proposição 3.3	vizinhança de x	vizinhança de p
66, linha 9	norma 1,	norma 1, se t > 0,
67, Definição 4.2	segundo no vetor	segundo o vetor
74, Teorema 4.3	$f:D\subseteq\mathbb{R}^n$	$f:D\subseteq\mathbb{R}^n\to\mathbb{R}$
75, linha 3	$\lim_{v \to \infty} \epsilon(v)$	$\lim_{v \to 0} \epsilon(v)$
76, Teorema 4.4	Diferencialidade	Diferenciabilidade
92, Teorema 4.5	\mathbb{R}^n	\mathbb{R}^2
99, Teorema 4.7	superfície	hiperfície
	$H_{f}(p) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}(p)} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}(p)} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}(p)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}(p)} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}(p)} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}(p)} \end{bmatrix}$	$H_{f}(p) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(p) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(p) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(p) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(p) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(p) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(p) \end{bmatrix}$
116	$\lim_{v \to 0} \frac{R_2(h)}{\ v\ ^2}$ $\lim_{k \to \infty} R_2(h)$	$\lim_{v \to 0} \frac{R_2(v)}{\ v\ ^2}$
117	$\lim_{h\to 0} \frac{R_2(h)}{\ h\ ^2}$	
118, Teorema 5.1	ponto mínimo local	ponto de mínimo local
	ponto máximo local	ponto de máximo local
124, 125 e 131	Weirstrass	Weierstrass
141	$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \neq a^2\} \text{ (todo o)}$	$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \neq a\}$ (todo o espaço
	espaço exceto a superfície esférica de raio a	exceto a superfície esférica de raio \sqrt{a}
143	$\frac{\partial f}{\partial u}(u,v) = \frac{4v^2 + 16uv - 9u^2}{(2u+v)^2};$	exceto a superfície esférica de raio \sqrt{a} $\frac{\partial f}{\partial v}(u,v) = \frac{4v^2 + 16uv - 9u^2}{(2u+v)^2};$