05 Resonance

Build a series RLC circuit, keep the output voltage value of AC source unchanged, and adjust frequency of the source signal.

A Report By

Kibria Golam

2019380163

1. When current of resistor reaches maximum I_{max} , the resonance frequency is found. When current of resistor reaches $0.707I_{\text{max}}$ the half power frequency is found.

Table 1 R=5-ohm, L=30mH, C= 1uF

f/Hz		f1	896. 463	f0	909. 726	f2	922. 988	
Ir/A		i1	0.072	<mark>i0</mark>	0.412	i2	0. 284	

Table 2
R=50-ohm, L=30mH, C= 1uF

f/Hz		f1	786. 37	f0	<mark>919</mark>	f2	1051.63	
Ir/A		i1	0.029	<mark>i0</mark>	0.041	i2	0.029	

2. When voltage of resistor reaches maximum U_{max} , the resonance frequency is found. When current of resistor reaches $0.707I_{\text{max}}$ the half power frequency is found.

Table 3 R=5-ohm, L=30mH, C=1uF

Table 4

R=50-ohm, L=30mH, C= 1uF

f/Hz		f1	786. 37	f0	<mark>919</mark>	f2	1051.63	
Ur/A		U1	1.464	<mark>UO</mark>	2. 05 <mark>7</mark>	U2	1.453	

3. When voltage values on inductor and capacitor are the same, the resonance frequency is found. Record maximum voltage Umax on resistor, then found half power frequency.

Table 5
R=5-ohm, L=30mH, C= 1uF

f/Hz		f ₁	890.989	f_0	904.252	f_2	917.514	
I _R /A		I _{R 1}	0.243	I _{R0}	0.389	I _{R2}	0.346	
U _R /V		U _{R1}	1.216	U _{R0}	1.943	U _{R2}	1.731	
U _L /V		U _{L1}	41.243	U _{L0}	<mark>67.218</mark>	U _{L2}	60.752	
Uc/V		Uc1	42.858	Uco	<mark>67.892</mark>	Uc2	59.647	

Table 6
R=50-ohm, L=30mH, C= 1uF

f/Hz		f_1	771.28	f_0	903.91	f ₂	1036.53	
I _R /A		I _{R 1}	0.027	I _{R0}	0.041	I _{R2}	0.031	
U _R /V		U _{R1}	1.37	U _{R0}	2.062	U _{R2}	1.527	
U _L /V		U _{L1}	4.203	U_{L0}	<mark>7.222</mark>	U _{L2}	6.099	
U _C /V		U _{C1}	5.574	U _{C0}	7.223	U _{C2}	4.65	

