1 Attempt without P_P

Intuition of σ' :

If we pull a substitution out of a lifting which replaced Δ -terms, we also have to replace the Δ -terms in the "domain" of the substitution. This is the lower case in the definition of σ' below.

There is just a problem in the following case: $\ell_{\Delta,x}[f(x)\sigma]$, where $x\sigma = a$ and f is a Δ -symbol. Then $\ell_{\Delta,x}[f(x)\sigma] = \ell_{\Delta,x}[f(a)] = x_i$, but $\ell_{\Delta,x}[f(x)]\sigma = x_j$ with $i \neq j$. The first case of the definition of x_j then fixes this by replacing x_j with x_i .

Lemma 1. Let C be a clause and t_1, \ldots, t_n the set of maximal Δ -terms in C, x_1, \ldots, x_n the corresponding fresh variables to replace the t_i , and σ be a substitution. Let σ' be defined such that

$$z\sigma' = \begin{cases} x_l & \text{if } z = x_k \text{ and } t_k \sigma = t_l \\ \ell_{\Delta,x}[z\sigma] & \text{otherwise} \end{cases}$$

Note that the definition of σ' only depends on the x_i and t_i .

Then $\ell_{\Delta,x}[C\sigma] = \ell_{\Delta,x}[C]\sigma'$.

Proof. We prove this for an atom $P(s_1, \ldots, s_m)$ in C, which works since lifting and substitution commute over binary connectives and into an atom.

We show that $\ell_{\Delta,x}[s_j\sigma] = \ell_{\Delta,x}[s_j]\sigma'$ for $1 \leq j \leq m$.

Note that anything in the term structure above a maximal Δ -term is unaffected by both substitution and abstraction.

Let t_i be a maximal Δ -term in $s_i\sigma$.

We show that $\ell_{\Delta,x}[t_i\sigma] = \ell_{\Delta,x}[t_i]\sigma'$, which proves the lemma.

Let $t_i \sigma = t_j$. Then $\ell_{\Delta,x}[t_i \sigma] = \ell_{\Delta,x}[t_j] = x_j$.

We show that $x_j = \ell_{\Delta,x}[t_i]\sigma'$.

Suppose that $t_i = t_j$, i.e. σ is trivial on t_i . Then i = j as the Δ -terms have a unique number. Hence $\ell_{\Delta,x}[t_i]\sigma' = x_i\sigma' = x_i = x_j$.

Otherwise $t_i \neq t_j$. Then $i \neq j$ and $x_j \neq x_i$.

 $\ell_{\Delta,x}[t_i]\sigma'=x_i\sigma'$. By the definition of σ' , as $t_i\sigma=t_j$, $x_i\sigma'=x_j$.

Lemma 2 (currently 4.8 in thesis, Lemma 11 in Huang). Let A and B be first-order formulas. Then it holds that:

1.
$$\ell_{\Phi,x}[\neg A] \Leftrightarrow \neg \ell_{\Phi,x}[A]$$

2.
$$\ell_{\Phi,x}[A \circ B] \Leftrightarrow (\ell_{\Phi,x}[A] \circ \ell_{\Phi,x}[B])$$
 for $\circ \in \{\land, \lor\}$

Lemma 3. $\Gamma \models \ell_{\Delta,x}[(\operatorname{PI}(C) \vee C)].$

Proof. By induction on the resolution refutation of the strengthening: $\Gamma \models \operatorname{PI}(C) \vee C_{\Gamma}$ Base case: Either $C \in \Gamma$, then it does not contain Δ -terms. Otherwise $C \in \Delta$ and $\operatorname{PI}(C) = \top$. Induction step:

Resolution.

$$\frac{C_1: D \vee l \qquad C_2: E \vee \neg l'}{C: (D \vee E)\sigma} \quad l\sigma = l'\sigma$$

By the induction hypothesis, we can assume that:

$$\Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_1) \vee (D \vee l)_{\Gamma}] \text{ and } \Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_2) \vee (E \vee \neg l')_{\Gamma}]$$

which by Lemma 2 implies that

$$\Gamma \stackrel{(*)}{\models} \ell_{\Delta,x}[\mathrm{PI}(C_1)] \vee \ell_{\Delta,x}[D_{\Gamma}] \vee \ell_{\Delta,x}[l_{\Gamma}] \text{ and } \Gamma \stackrel{(\circ)}{\models} \ell_{\Delta,x}[\mathrm{PI}(C_2)] \vee \ell_{\Delta,x}[E_{\Gamma}] \vee \neg \ell_{\Delta,x}[l_{\Gamma}']$$

Let σ' be defined as in Lemma 1 with t_1, \ldots, t_n all Δ -terms in this context, i.e. from C_1, C_2 , $\operatorname{PI}(C_1)$, $\operatorname{PI}(C_2)$ and σ .

1. l is Γ -colored. Then $PI(C) = [PI(C_1) \vee PI(C_2)]\sigma$.

We show that
$$\Gamma \models \ell_{\Delta,x}[(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2))\sigma \vee (D \vee E)_{\Gamma}\sigma],$$

i.e.
$$\Gamma \models \ell_{\Delta,x}[(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2) \vee D_{\Gamma} \vee E_{\Gamma})\sigma].$$

Hence by Lemma 1,
$$\Gamma \models \ell_{\Delta,x}[(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2) \vee D_{\Gamma} \vee E_{\Gamma})]\sigma'$$
.

Since $l\sigma = l'\sigma$ (by resolution rule application), $\ell_{\Delta,x}[l\sigma] = \ell_{\Delta,x}[l'\sigma]$.

As by Lemma 1, with σ' as above, $\ell_{\Delta,x}[l\sigma] = \ell_{\Delta,x}[l]\sigma'$ and $\ell_{\Delta,x}[l'\sigma] = \ell_{\Delta,x}[l']\sigma'$, we get $\ell_{\Delta,x}[l]\sigma' = \ell_{\Delta,x}[l']\sigma'$.

So by applying σ' to (*) and (o), we can perform a resolution step on $\ell_{\Delta,x}[l]\sigma'$ and get

$$\Gamma \models \ell_{\Delta,x}[\mathrm{PI}(C_1)]\sigma' \vee \ell_{\Delta,x}[D_{\Gamma}]\sigma' \vee \ell_{\Delta,x}[\mathrm{PI}(C_2)]\sigma' \vee \ell_{\Delta,x}[E_{\Gamma}]\sigma'.$$

and consequently
$$\Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2) \vee D_{\Gamma} \vee E_{\Gamma}]\sigma'$$
.

So by Lemma 1,

$$\Gamma \models \ell_{\Delta,x}[\Big(\operatorname{PI}(C_1) \vee \operatorname{PI}(C_2) \vee D_{\Gamma} \vee E_{\Gamma}\Big)\sigma].$$

2. l is Δ -colored. Then $PI(C) = (PI(C_1) \wedge PI(C_2))\sigma$.

We show that
$$\Gamma \models \ell_{\Delta,x}[(\operatorname{PI}(C_1) \wedge \operatorname{PI}(C_2))\sigma \vee (D_{\Gamma} \vee E_{\Gamma})\sigma]$$

which by Lemma 2 is equivalent to

$$\Gamma \models \left(\ell_{\Delta,x}[\mathrm{PI}(C_1)\sigma] \land \ell_{\Delta,x}[\mathrm{PI}(C_2)\sigma]\right) \lor \ell_{\Delta,x}[D_{\Gamma}\sigma] \lor \ell_{\Delta,x}[E_{\Gamma}\sigma]$$

and by Lemma 1 is equivalent to

$$\Gamma \stackrel{(\times)}{\models} \left(\ell_{\Delta,x}[\operatorname{PI}(C_1)] \sigma' \wedge \ell_{\Delta,x}[\operatorname{PI}(C_2)] \sigma' \right) \vee \ell_{\Delta,x}[D_{\Gamma}] \sigma' \vee \ell_{\Delta,x}[E_{\Gamma}] \sigma'$$

As l and l' are Δ -colored, we can strengthen (*) and (\circ) as follows and apply σ' :

$$\Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_1)]\sigma' \vee \ell_{\Delta,x}[D_{\Gamma}]\sigma'$$
 and $\Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma' \vee \ell_{\Delta,x}[E_{\Gamma}]\sigma'$

These clearly imply (\times) .

3. l is grey. Then $PI(C) = [(l \wedge PI(C_2)) \vee (\neg l' \wedge PI(C_2))]\sigma$.

We show that $\Gamma \models \ell_{\Delta,x}[[(l \land \operatorname{PI}(C_2)) \lor (\neg l' \land \operatorname{PI}(C_2))]\sigma \lor (D_{\Gamma} \lor E_{\Gamma})\sigma]$, which by Lemma 2 and Lemma 1 is equivalent to

$$\Gamma \models \Big(\ell_{\Delta,x}[l]\sigma' \wedge \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma'\Big) \vee \Big(\neg \ell_{\Delta,x}[l']\sigma' \wedge \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma'\Big) \vee \ell_{\Delta,x}[D_{\Gamma}]\sigma' \vee \ell_{\Delta,x}[E_{\Gamma}]\sigma'.$$

Suppose for a model M of Γ that $M \not\models \ell_{\Delta,x}[D_{\Gamma}]\sigma'$ and $M \not\models \ell_{\Delta,x}[E_{\Gamma}]\sigma'$ as otherwise we would be done. But then by (*) and (\circ) , $M \models \ell_{\Delta,x}[\operatorname{PI}(C_1)]\sigma' \vee \ell_{\Delta,x}[l]\sigma'$ and $M \models \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma' \vee \neg \ell_{\Delta,x}[l']\sigma'$.

As observed in case 1, $\ell_{\Delta,x}[l]\sigma' = \ell_{\Delta,x}[l']\sigma'$. By a case distinction on the truth value of $\ell_{\Delta,x}[l]\sigma'$, we obtain the result.

Paramodulation.

$$\frac{C_1: D \vee s = t \qquad C_2: E[r]_p}{C: (D \vee E[t]_p)\sigma} \quad \sigma = \mathrm{mgu}(s, r)$$

By the induction hypothesis, we have:

$$\Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_1) \vee (D \vee s = t)_{\Gamma}]$$

$$\Gamma \models \ell_{\Delta,x}[\mathrm{PI}(C_2) \vee (E[r])_{\Gamma}]$$

By Lemma 2 and Lemma 1, these imply:

$$\Gamma \models \ell_{\Delta,x}[\mathrm{PI}(C_1)]\sigma' \vee \ell_{\Delta,x}[D_{\Gamma}]\sigma' \vee (\ell_{\Delta,x}[s_{\Gamma}]\sigma') = (\ell_{\Delta,x}[t_{\Gamma}]\sigma')$$

$$\Gamma \models \ell_{\Delta,x}[\mathrm{PI}(C_2)]\sigma' \vee \ell_{\Delta,x}[(E[r]_p)_{\Gamma}]\sigma'$$

$$PI(C) =$$

We show that $\Gamma \models$

easy case: $\operatorname{PI}(C) = [(s = t \land \operatorname{PI}(C_2)) \lor (s \neq t \land \operatorname{PI}(C_1))]\sigma$

to show: $\Gamma \models \ell_{\Delta,x}[[((s=t \land \mathrm{PI}(C_2)) \lor (s \neq t \land \mathrm{PI}(C_1))) \lor (D \lor E[t])]\sigma]$

proof idea: either s = t, then also $PI(C_2)$, or else $s \neq t$, but then also $PI(C_1)$

by lemma 1 for σ' as in lemma, $\Gamma \models \ell_{\Delta,x}[((s = t \land \operatorname{PI}(C_2)) \lor (s \neq t \land \operatorname{PI}(C_1))) \lor (D \lor E[t])]\sigma'$

by lemma 11 (huang) $\Gamma \models [((\ell_{\Delta,x}[s] = \ell_{\Delta,x}[t] \land \ell_{\Delta,x}[\operatorname{PI}(C_2)]) \lor (\ell_{\Delta,x}[s \neq t] \land \ell_{\Delta,x}[\operatorname{PI}(C_1)])) \lor (\ell_{\Delta,x}[D] \lor \ell_{\Delta,x}[E[t]])]\sigma'$

reformulate: $\Gamma \models ((\ell_{\Delta,x}[s]\sigma' = \ell_{\Delta,x}[t]\sigma' \land \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma') \lor (\ell_{\Delta,x}[s]\sigma' \neq \ell_{\Delta,x}[t]\sigma' \land \ell_{\Delta,x}[\operatorname{PI}(C_1)]\sigma')) \lor (\ell_{\Delta,x}[D]\sigma' \lor \ell_{\Delta,x}[E[t]]\sigma')$

By the rule: $s\sigma = r\sigma$, hence also $\ell_{\Delta,x}[s\sigma] = \ell_{\Delta,x}[r\sigma]$ and $\ell_{\Delta,x}[s]\sigma' = \ell_{\Delta,x}[r]\sigma'$ REALLY TRUE? – think so. . .

Suppose $M \models \Gamma$ and $M \not\models (\ell_{\Delta,x}[D]\sigma' \vee \ell_{\Delta,x}[E[t]]\sigma')$.

Suppose $M \models \ell_{\Delta,x}[s]\sigma' = \ell_{\Delta,x}[t]\sigma'$.

By induction hypothesis (and lemma 11 (huang) and adding the substitution σ'), $\Gamma \models \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma' \vee \ell_{\Delta,x}[(E[r])]\sigma'$.

However by assumption $\Gamma \not\models \ell_{\Delta,x}[E[t]]\sigma'$.

Hence $\Gamma \nvDash \ell_{\Delta,x}[E[s]]\sigma'$, and $\Gamma \nvDash \ell_{\Delta,x}[E[r]]\sigma'$. Therefore $\Gamma \vDash \ell_{\Delta,x}[\operatorname{PI}(C_2)]\sigma'$.

Suppose on the other hand $M \models \ell_{\Delta,x}[s]\sigma' \neq \ell_{\Delta,x}[t]\sigma'$.

By the induction hypothesis, $M \models \ell_{\Delta,x}[\operatorname{PI}(C_1)]\sigma' \vee (\ell_{\Delta,x}[D]\sigma' \vee (\ell_{\Delta,x}[s] = \ell_{\Delta,x}[t])\sigma')$, hence then $M \models \ell_{\Delta,x}[\operatorname{PI}(C_1)]\sigma'$.

Consequently, $M \models (\ell_{\Delta,x}[s]\sigma' \neq \ell_{\Delta,x}[t]\sigma' \wedge \ell_{\Delta,x}[\mathrm{PI}(C_1)]\sigma') \vee (\ell_{\Delta,x}[s]\sigma' = \ell_{\Delta,x}[t]\sigma' \wedge \ell_{\Delta,x}[\mathrm{PI}(C_2)]\sigma').$

By lemma 11 (huang), $M \models \ell_{\Delta,x}[s \neq t \land PI(C_1) \lor (s = t \land PI(C_2))]\sigma'$.

Hence $\Gamma \models \ell_{\Delta,x}[(s \neq t \land \operatorname{PI}(C_1) \lor (s = t \land \operatorname{PI}(C_2))]\sigma' \lor (\ell_{\Delta,x}[D] \lor \ell_{\Delta,x}[E[t]])\sigma').$

is this really what i need to show?

General layout of this proof:

 $\Gamma \models \ell_{\Delta,x}[(\mathrm{PI}(C) \vee C)]$

Lemma 4.10: swap Γ and Δ and obtain logical negation interpolant

Lemma 4.11: $\Delta \models \ell_{\Gamma,y}[\neg \operatorname{PI}(C) \lor C]$

 $\Gamma \models \bar{Q}\ell_{\Gamma \cup \Delta,z}[PI(\pi)]; \Delta \models \neg \bar{Q}\ell_{\Gamma \cup \Delta,z}[PI(\pi)];$