for small levels of resource variation

a) average trait value → adapts to the average resource property

b) low genetic variance

c) monomorphic trait distribution

for large levels of resource variation

a) average trait value \rightarrow adapts to the average resource property

b) high genetic variance

c) polymorphic trait distribution

local resource variation drives diversity

genetic variance, VA

 \rightarrow polymorphism evolves when: $g^2 < \sigma_w^2$

Simulation job submitted. Results match theory.

local resource variation without competition

genetic variance, VA

→ polymorphism does not evolve

How do we model exploitation competition?

After solving eq. (1) and (2), we get individual fecundity

1) at long exploitation time (T $\rightarrow \infty$):

$$f_i = f_{max} \sum_{j} p_j \frac{\alpha_i(z_i, q_j)}{\sum_{k=1}^n \alpha_k(z_k, q_j)}$$

 \rightarrow exploitation of all resources

→ intense exploitation competition

2) at short exploitation time $(T \rightarrow 0)$:

$$f_i = f_{max} \sum_j p_j \alpha_i(z_i, q_j)$$

→ resources never get scarce

→ no exploitation competition

local resource variation drives diversity - with sexual reproduction

