1 Système

$$\begin{cases} m_{s}\ddot{z}_{s} + u\left(\dot{z}_{s} - \dot{z}_{u}\right) + k_{s}\left(z_{s} - z_{u}\right) &= -F_{f} \\ m_{u}\ddot{z}_{u} - u\left(\dot{z}_{s} - \dot{z}_{u}\right) - k_{s}\left(z_{s} - z_{u}\right) + k_{t}\left(z_{u} - z_{r}\right) &= F_{f} \\ F_{f} &= C_{f} \tanh\left(\gamma_{f}\dot{z}_{s}\right) \end{cases}$$

2 Sortie plate

$$S_{p} = m_{u}z_{u} + m_{s}z_{s}$$

$$S_{p}^{(1)} = m_{u}\dot{z}_{u} + m_{s}\dot{z}_{s}$$

$$S_{p}^{(2)} = m_{u}\ddot{z}_{u} + m_{s}\ddot{z}_{s}$$

$$= -k_{t}(z_{u} - z_{r})$$

$$S_{p}^{(3)} = -k_{t}(\dot{z}_{u} - \dot{z}_{r})$$

$$S_p^{(4)} = k_t \ddot{z}_r - k_t \ddot{z}_u$$

$$= k_t \ddot{z}_r + \frac{k_t}{m_u} \left[u \left(\dot{z}_s - \dot{z}_u \right) + k_s \left(z_s - z_u \right) - k_t \left(z_u - z_r \right) + F_f \right]$$

On obitent alors

$$z_u = z_r - \frac{1}{k_t} S_p^{(2)}$$

 et

$$z_s = \frac{1}{m_s} S_p - \frac{m_u}{m_s} z_r + \frac{m_u}{k_t m_s} S_p^{(2)}$$

2.1 Linéarisation

$$\begin{cases} S_p^{(4)} &= v \\ v &= S_{pr}^{(4)} - \lambda_0 e_{sp} - \lambda_1 e_{sp}^{(1)} - \lambda_2 e_{sp}^{(2)} - \lambda_3 e_{sp}^{(3)} \end{cases}$$

$$e_{sp} &= m_u z_u + m_s z_s - S_{pr}$$

$$e_{sp}^{(1)} &= m_u \dot{z}_u + m_s \dot{z}_s - S_{pr}^{(1)}$$

$$e_{sp}^{(2)} &= k_t z_r - k_t z_u - S_{pr}^{(2)}$$

$$e_{sp}^{(3)} &= k_t \dot{z}_r - k_t \dot{z}_u - S_{pr}^{(3)}$$

On obtient la commande :

$$u(\dot{z}_{s} - \dot{z}_{u}) = \frac{m_{u}}{k_{t}}v - m_{u}\ddot{z}_{r} - k_{s}(z_{s} - z_{u}) + k_{t}(z_{u} - z_{r}) - F_{f}$$

3 Limiter le jerk

Soit la référence

$$z_r(t) = \alpha_z \left(1 + \tanh(\gamma_z t)\right)$$

Fixons

$$S_{pr}(t) = \alpha \left(1 + \tanh(\gamma t)\right)$$

On a alors

$$S_{pr} \qquad \qquad \in [0, 2\alpha]$$

$$S_{pr}^{(1)} = \alpha \gamma (1 - \tanh^{2}(\gamma t)) \qquad \qquad \in [0, \alpha \gamma]$$

$$S_{pr}^{(2)} = -2\gamma \tanh(\gamma t) S_{pr}^{(1)} \qquad \qquad \in [-2\alpha \gamma^{2}, 2\alpha \gamma^{2}]$$

$$S_{pr}^{(3)} = -2\gamma \left[\frac{1}{\alpha} \left(S_{pr}^{(1)}\right)^{2} + \tanh(\gamma t) S_{pr}^{(2)}\right] \qquad \qquad \in [-6\alpha \gamma^{3}, 4\alpha \gamma^{3}]$$

$$S_{pr}^{(4)} = -2\gamma \left[\frac{3}{\alpha} S_{pr}^{(1)} S_{pr}^{(2)} + \tanh(\gamma t) S_{pr}^{(3)}\right] \qquad \qquad \in [-24\alpha \gamma^{4}, 24\alpha \gamma^{4}]$$

$$S_{pr}^{(5)} = -2\gamma \left[\frac{3}{\alpha} \left(S_{pr}^{(2)}\right)^{2} + \frac{4}{\alpha} S_{pr}^{(1)} S_{pr}^{(3)} + \tanh(\gamma t) S_{pr}^{(4)}\right] \qquad \in [-104\alpha \gamma^{5}, 96\alpha \gamma^{5}]$$

On peut alors encadrer le jerk de référence du chassis :

$$\begin{array}{lll} z_{sr}^{(3)} & = & \frac{1}{m_s} S_{pr}^{(3)} - \frac{m_u}{m_s} z_r^{(3)} + \frac{m_u}{k_t m_s} S_{pr}^{(5)} \\ & \in & \left[- \left(\frac{6}{m_s} \alpha \gamma^3 + \frac{104 m_u}{k_t m_s} \alpha \gamma^5 + \frac{4 m_u}{m_s} \alpha_z \gamma_z^3 \right), \frac{4}{m_s} \alpha \gamma^3 + \frac{96 m_u}{k_t m_s} \alpha \gamma^5 + \frac{6 m_u}{m_s} \alpha_z \gamma_z^3 \right] \end{array}$$

Malheureusement, la surapproximation du jerk est trop importante et nécessiterait un coefficient de raideur négatif, ce qui n'est pas physiquement possible et va en contradiction avec les hypothèses sur les calculs (α et γ positifs).

4 Simulation MATLAB

La simulation est réalisée avec le solver "ode 23tb" avec une route z_r sous forme de tangente hyperbolique entre 0 et 0.2 (marche de 20cm de haut).

La loi de commande regroupe l'ensemble du terme $u(\dot{z}_s - \dot{z}_u)$ mais est fixé à 0 lorsque $|\dot{z}_s - \dot{z}_u| < \epsilon$ avec $\epsilon = 10^{-3}$.

La sortie plate de référence est de la même forme que z_r mais avec une raideur plus faible (ou égale) pour réduire le jerk subit par le chassis.