Claims

5

1. A compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof,

wherein in (I) C is a biaryl group C'-C"

wherein C'' is an heteroaryl- or aryl-group selected from benzen-1,4-diyl, thien-2,5-diyl, and pyrid-2,5-diyl as shown in C''-1 to C''-3 below

$$R_2b$$
 R_2b
 R_2b

and C' is an heteroaryl-group selected from pyridazin-3,6-diyl, pyrazin-2,5-diyl, pyrimidin-2,5-diyl (in either orientation), 1,3,4-thiadiazol-2,5-diyl, thiazol-2,5-diyl (in either orientation), and thiazol-2,4-diyl (in either orientation) as shown in C'-1 to C'-9 below:

such that the central fragment C is represented by any one of the groups D to AD below:

5

wherein the groups D to AD are attached to rings A and B in the orientation shown [(A-C') and (C''-B)];

wherein A and B are independently selected from

wherein A is linked as shown in (I) via the 3-position to ring C' of group C and independently substituted in the 4 and 5 positions as shown in (I) by one or more substituents –(R₁a)m; and wherein B is linked as shown in (I) via the 3-position to ring C'' of group C and independently substituted in the 5 position as shown in (I) by substituent –CH₂-R₁b; R₂b and R₆b are independently selected from H, F, Cl, OMe, Me, Et and CF₃; R₂b' and R₆b' are independently selected from H, OMe, Me, Et and CF₃;

- 10 R₂a is independently selected from H, Br, F, Cl, OMe, SMe; Me, Et and CF₃; R₂a' and R₆a' are independently selected from H, OMe, SMe; Me, Et and CF₃; R₃a is independently selected from H, (1-4C)alkyl, Br, F, Cl, OH, (1-4C)alkoxy, -S(O)_n(1-4C)alkyl (wherein n = 0,1,or 2), amino, (1-4C)alkylcarbonylamino-, nitro, cyano, -CHO, -CO(1-4C) alkyl, -CONH₂ and -CONH(1-4C)alkyl;
- 15 R₃a' and R₅a' are independently selected from H, (1-4C)alkyl, OH, (1-4C)alkoxy, (1-4C)alkylthio, amino, (1-4C)alkylcarbonylamino-, nitro, cyano, -CHO, -CO(1-4C)alkyl, -CONH₂ and -CONH(1-4C)alkyl; wherein one of R₃a, R₃a', R₅a' taken together with a substituent R₁a at position 4 of ring A and rings A and C' may form a 5-7 membered ring;
- 20 wherein any (1-4C)alkyl group may be optionally substituted with F, OH, (1-4C)alkoxy, -S(O)_n(1-4C)alkyl (wherein n = 0,1,or 2) or cyano; wherein when ring C' is a diazine ring (D, E, F, G, M, N, O, P, V, W, X, Y) one of the ring nitrogens may optionally be oxidised to an N-oxide; R₁a is independently selected from R₁a1 to R₁a5 below:
- 25 R₁a1: AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1, CY2; R₁a2: cyano, carboxy, (1-4C)alkoxycarbonyl, -C(=W)NRvRw [wherein W is O or S, Rv and Rw are independently H, or (1-4C)alkyl and wherein Rv and Rw taken together with the amide or thioamide nitrogen to which they are attached can form a 5-7 membered ring optionally with an additional heteroatom selected from N, O, S(O)n in place of 1 carbon atom of the so formed ring; wherein when said ring is a piperazine ring, the ring may be optionally substituted on the additional nitrogen by a group selected from (1-4C)alkyl, (3-6C)cycloalkyl,

- (1-4C)alkanoyl, -COO(1-4C)alkyl, -S(O)n(1-4C)alkyl (wherein n = 1 or 2), -COOAR1, -CS(1-4C)alkyl and -C(=S)O(1-4C)alkyl; wherein any (1-4C)alkyl, (1-4C)alkanoyl and (3-6C)cycloalkyl substituent may itself be substituted by cyano, hydroxy or halo, provided that, such a substituent is not on a carbon adjacent to a nitrogen atom of the piperazine ringl, ethenyl, 2-(1-4C)alkylethenyl, 2-cyanoethenyl, 2-cyano-2-((1-4C)alkyl)ethenyl,
- 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkyl)ethenyl, 2-nitroethenyl, 2-nitro-2-((1-4C)alkyl)ethenyl, 2-((1-4C)alkylaminocarbonyl)ethenyl, 2-((1-4C)alkoxycarbonyl)ethenyl, 2-(AR1)ethenyl, 2-(AR2)ethenyl, 2-(AR2a)ethenyl; R₁a3: (1-10C)alkyl
- {optionally substituted by one or more groups (including geminal disubstitution) each independently selected from hydroxy, (1-10C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkylcarbonyl, phosphoryl [-O-P(O)(OH)₂, and mono- and di-(1-4C)alkoxy derivatives thereof], phosphiryl [-O-P(OH)₂ and mono- and di-(1-4C)alkoxy derivatives thereof], and amino; and/or optionally substituted by one group selected from carboxy, phosphonate [phosphono, -P(O)(OH)₂, and mono- and
- di-(1-4C)alkoxy derivatives thereof], phosphinate [-P(OH)₂ and mono- and di-(1-4C)alkoxy derivatives thereof], cyano, halo, trifluoromethyl, (1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkoxy-(1-4C)alkoxycarbonyl, (1-4C)alkylamino, di((1-4C)alkyl)amino, (1-6C)alkanoylamino-, (1-4C)alkoxycarbonylamino-, N-(1-4C)alkyl-N-(1-6C)alkanoylamino-, -C(=W)NRvRw [wherein W is O or S, Rv and Rw are
- independently H, or (1-4C)alkyl and wherein Rv and Rw taken together with the amide or thioamide nitrogen to which they are attached can form a 5-7 membered ring optionally with an additional heteroatom selected from N, O, S(O)n in place of 1 carbon atom of the so formed ring; wherein when said ring is a piperazine ring, the ring may be optionally substituted on the additional nitrogen by a group selected from (1-4C)alkyl, (3-6C)cycloalkyl,
- 25 (1-4C)alkanoyl, -COO(1-4C)alkyl, -S(O)n(1-4C)alkyl (wherein n = 1 or 2), -COOAR1, -CS(1-4C)alkyl and -C(=S)O(1-4C)alkyl; (=NORv) wherein Rv is as hereinbefore defined, (1-4C)alkylS(O)pNH-, (1-4C)alkylS(O)p-((1-4C)alkyl)N-, fluoro(1-4C)alkylS(O)pNH-, fluoro(1-4C)alkylS(O)p((1-4C)alkyl)N-, (1-4C)alkylS(O)q-, CY1, CY2, AR1, AR2, AR3, AR1-O-, AR2-O-, AR3-O-, AR1-S(O)q-, AR2-S(O)q-, AR3-S(O)q-, AR1-NH-, AR2-NH-,
- 30 AR3-NH- (p is 1 or 2 and q is 0, 1 or 2), and also AR2a, AR2b, AR3a and AR3b versions of AR2 and AR3 containing groups, and additionally (1-6C)alkanoyloxy(1-4C)alkoxy, carboxy(1-4C)alkoxy, halo(1-4C)alkoxy, dihalo(1-4C)alkoxy, trihalo(1-4C)alkoxy, morpholino-ethoxy, (N'-methyl)piperazino-ethoxy, 2-, 3-, or 4-pyridyl(1-6C)alkoxy, N-

-102-

methyl(imidazo -2 or 3-yl)(1-4C)alkoxy, imidazo-1-yl(1-6C)alkoxy); wherein any (1-4C)alkyl, (1-4C)alkanoyl and (3-6C)cycloalkyl group present in any substituent on R₁a3 may itself be substituted by one or two groups selected from cyano, hydroxy, halo, amino, (1-4C)alkylamino and di(1-4C)alkylamino, provided that such a substituent is not on a carbon 5 adjacent to a heteroatom if present;

R₁a4: R₁4C(O)O(1-6C)alkyl wherein R₁4 is AR1, AR2, AR2a, AR2b, (1-4C)alkylamino, or (1-10C)alkyl (optionally substituted as defined for (R₁a3), or alternatively R₁₄ is benzyloxy-(1-4C)alkyl, naphthylmethyl, (1-4C)alkoxy-(1 4C)alkoxy-(1-4C)al

10 4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy, (1-4C)alkoxy-(1-4C)alkoxy, imidazo-1-yl(1-6C)alkyoxy(1-4C)alkyl, morpholino-ethoxy(1-4C)alkyl, (N'-methyl)piperazino-ethoxy(1-4C)alkyl, 2-, 3-, or 4-pyridyl(1-6C)alkyloxy(1-4C)alkyl, 2-, 3-, or 4-pyridyl(1-6C)alkylamino(1-4C)alkyl, 2-, 3-, or4-pyridyl(1-6C)alkylsulfonyl(1-4C)alkyl, or N-methyl(imidazo -2 or 3-yl)(1-4C)alkyloxy(1-15 4C)alkyl;

 R_1a5 : F, Cl, hydroxy, mercapto, (1-4C)alkylS(O)p- (p = 0,1 or 2), -OSO₂(1-4C)alkyl, $-NR_{12}R_{13}$, -O(1-4C)alkanoyl, $-OR_1a3$; m is 0, 1 or 2;

wherein two substituents R₁a at the 4 or 5 position of ring A taken together may form a 5 to 7 20 membered spiro ring;

wherein two substituents R₁a at the 4 and 5 positions of ring A taken together may form a 5 to 7 membered fused ring;

R₁b is independently selected from hydroxy, -OSi(tri-(1-6C)alkyl) (wherein the 3 (1-6C)alkyl groups are independently selected from all possible (1-6C)alkyl groups), -NR₅C(=W)R₄, 25 $-OC(=O)R_4$,

wherein W is O or S;

30 R_4 is hydrogen, amino, (1-8C)alkyl, -NHR₁₂, -N(R₁₂)(R₁₃), -OR₁₂ or -SR₁₂, (2-4C)alkenyl, -(1-8C)alkylaryl, mono-, di-, tri- and per-halo(1-8C)alkyl, -(CH₂)p(3-6C)cycloalkyl or

- -(CH₂)p(3-6C)cycloalkenyl wherein p is 0, 1 or 2, and additionally (2-6C)alkyl (substituted by 1, 2 or 3 substituents independently selected from methyl, chloro, bromo, fluoro, methoxy, methylthio, azido and cyano), and methyl (substituted by 1, 2 or 3 substituents independently selected from methyl, chloro, bromo, fluoro, methoxy, methylthio, hydroxy, benzyloxy,
- 5 ethynyl, (1-4C)alkoxycarbonyl, azido and cyano);
 R₅ is hydrogen, (3-6C)cycloalkyl, phenyloxycarbonyl, tert-butoxycarbonyl,
 fluorenyloxycarbonyl, benzyloxycarbonyl, (1-6C)alkyl (optionally substituted by cyano or
 (1-4C)alkoxycarbonyl), -CO₂R₈, -C(=O)R₈, -C(=O)SR₈, -C(=S)R₈, P(O)(OR₉)(OR₁₀) and
 -SO₂R₁₁, wherein R₈, R₉, R₁₀ and R₁₁ are as defined hereinbelow;
- HET-1 is selected from HET-1A and HET-1B wherein:

 HET-1A is a C-linked 5-membered heteroaryl ring containing 2 to 4 heteroatoms independently selected from N, O and S; which ring is optionally substituted on a C atom by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom by one or two substituents selected from RT as hereinafter defined and/or on an available
- nitrogen atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl; HET-1B is a C-linked 6-membered heteroaryl ring containing 2 or 3 nitrogen heteroatoms, which ring is optionally substituted on a C atom by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom by one, two or three substituents selected from RT as hereinafter defined and/or on an available nitrogen atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;
 - HET-2 is selected from HET-2A and HET-2B wherein
 - HET-2A is an N-linked 5-membered, fully or partially unsaturated heterocyclic ring, containing either (i) 1 to 3 further nitrogen heteroatoms or (ii) a further heteroatom selected from O and S together with an optional further nitrogen heteroatom; which ring is optionally
- substituted on a C atom, other than a C atom adjacent to the linking N atom, by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom, other than a C atom adjacent to the linking N atom, by a substituent selected from RT as hereinafter defined and/or on an available nitrogen atom, other than a N atom adjacent to the linking N atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;
- 30 HET-2B is an N-linked 6-membered di-hydro-heteroaryl ring containing up to three nitrogen heteroatoms in total (including the linking heteroatom), which ring is substituted on a suitable C atom, other than a C atom adjacent to the linking N atom, by oxo or thioxo and/or which ring is optionally substituted on any available C atom, other than a C atom adjacent to the

linking N atom, by one or two substituents independently selected from RT as hereinafter defined and/or on an available nitrogen atom, other than a N atom adjacent to the linking N atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;

RT is selected from a substituent from the group:

or RT is selected from the group

- 5 (RTa1) hydrogen, halogen, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, (3-6C)cycloalkenyl, (1-4C)alkylthio, amino, azido, cyano and nitro, and additionally (1-4C)alkoxycarbonyl; or
 - (RTa2) (1-4C)alkylamino, di-(1-4C)alkylamino, and (2-4C)alkenylamino; or RT is selected from the group
- 10 (RTb1) (1-4C)alkyl group which is optionally substituted by one substituent selected from hydroxy, (1-4C)alkoxy, (1-4C)alkylthio, cyano and azido; or (RTb2) (1-4C)alkyl group which is optionally substituted by one substituent selected from (2-4C)alkenyloxy, (3-6C)cycloalkyl, and (3-6C)cycloalkenyl;
- 15 (RTc) a fully saturated 4-membered monocyclic ring containing 1 or 2 heteroatoms independently selected from O, N and S (optionally oxidised), and linked via a ring nitrogen or carbon atom;
 - and wherein at each occurrence of an RT substituent containing an alkyl, alkenyl, alkynyl, cycloalkyl or cycloalkenyl moiety in (RTa1) or (RTa2), (RTb1) or (RTb2), or (RTc) each
- 20 such moiety is optionally substituted on an available carbon atom with one, two, three or more substituents independently selected from F, Cl, Br, OH and CN;
 - R_6 is cyano, $-COR_{12}$, $-COOR_{12}$, $-CONHR_{12}$, $-CON(R_{12})(R_{13})$, $-SO_2R_{12}$, $-SO_2NHR_{12}$, $-SO_2N(R_{12})(R_{13})$ or NO_2 , wherein R_{12} and R_{13} are as defined hereinbelow;
 - R₇ is hydrogen, amino, (1-8C)alkyl, -NHR₁₂, -N(R₁₂)(R₁₃), -OR₁₂ or -SR₁₂, (2-4C)alkenyl,
- 25 -(1-8C)alkylaryl, mono-, di-, tri- and per-halo(1-8C)alkyl, -(CH₂)p(3-6C)cycloalkyl or -(CH₂)p(3-6C)cycloalkenyl wherein p is 0, 1 or 2;
 - R_8 is hydrogen, (3-6C)cycloalkyl, phenyl, benzyl, (1-5C)alkanoyl, (1-6C)alkyl (optionally substituted by substituents independently selected from (1-5C)alkoxycarbonyl, hydroxy, cyano, up to 3 halogen atoms and -NR₁₅R₁₆ (wherein R₁₅ and R₁₆ are independently selected
- from hydrogen, phenyl (optionally substituted with one or more substituents selected from halogen, (1-4C)alkyl and (1-4C)alkyl substituted with one, two, three or more halogen atoms) and (1-4C)alkyl (optionally substituted with one, two, three or more halogen atoms), or for any N(R₁₅)(R₁₆) group, R₁₅ and R₁₆ may additionally be taken together with the nitrogen atom

to which they are attached to form a pyrrolidinyl, piperidinyl or morpholinyl ring); R_9 and R_{10} are independently selected from hydrogen and (1-4C)alkyl; R_{11} is (1-4C)alkyl or phenyl;

R₁₂ and R₁₃ are independently selected from hydrogen, phenyl (optionally substituted with one or more substituents selected from halogen, (1-4C)alkyl and (1-4C)alkyl substituted with one, two, three or more halogen atoms) and (1-4C)alkyl (optionally substituted with one, two, three or more halogen atoms), or for any N(R₁₂)(R₁₃) group, R₁₂ and R₁₃ may additionally be taken together with the nitrogen atom to which they are attached to form an unsubstituted or substituted pyrrolidinyl, piperidinyl or morpholinyl ring, which ring may be optionally substituted by a group selected from (1-4C)alkyl, (3-6C)cycloalkyl, (1-4C)alkanoyl, -COO(1-4C)alkyl, -S(O)n(1-4C)alkyl (wherein n = 1 or 2), -COOAR1, -CS(1-4C)alkyl and -C(=S)O(1-4C)alkyl;

AR1 is an optionally substituted phenyl or optionally substituted naphthyl;

AR2 is an optionally substituted 5- or 6-membered, fully unsaturated (i.e with the maximum degree of unsaturation) monocyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O-O, O-S or S-S bonds), and linked via a ring carbon atom, or a ring nitrogen atom if the ring is not thereby quaternised; AR2a is a partially hydrogenated version of AR2 (i.e. AR2 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom or linked via a ring nitrogen atom if the ring is not thereby quaternised;

AR2b is a fully hydrogenated version of AR2 (i.e. AR2 systems having no unsaturation), linked via a ring carbon atom or linked via a ring nitrogen atom;

AR3 is an optionally substituted 8-, 9- or 10-membered, fully unsaturated (i.e with the maximum degree of unsaturation) bicyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O-O, O-S or S-S bonds), and linked via a ring carbon atom in either of the rings comprising the bicyclic system;

AR3a is a partially hydrogenated version of AR3 (i.e. AR3 systems retaining some, but not

AR3a is a partially hydrogenated version of AR3 (i.e. AR3 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom if the ring is not thereby quaternised, in either of the rings comprising the bicyclic

30 system;

AR3b is a fully hydrogenated version of AR3 (i.e. AR3 systems having no unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom, in either of the rings comprising the bicyclic system;

- AR4 is an optionally substituted 13- or 14-membered, fully unsaturated (i.e with the maximum degree of unsaturation) tricyclic heteroaryl ring containing up to four heteroatoms independently selected from O, N and S (but not containing any O-O, O-S or S-S bonds), and linked via a ring carbon atom in any of the rings comprising the tricyclic system;
- 5 AR4a is a partially hydrogenated version of AR4 (i.e. AR4 systems retaining some, but not the full, degree of unsaturation), linked via a ring carbon atom, or linked via a ring nitrogen atom if the ring is not thereby quaternised, in any of the rings comprising the tricyclic system; CY1 is an optionally substituted cyclobutyl, cyclopentyl or cyclohexyl ring; CY2 is an optionally substituted cyclopentenyl or cyclohexenyl ring;
- wherein; optional substituents on AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4, AR4a, CY1 and CY2 are (on an available carbon atom) up to three substituents independently selected from (1-4C)alkyl {optionally substituted by substituents selected independently from hydroxy, trifluoromethyl, (1-4C)alkyl S(O)q- (q is 0, 1 or 2), (1-4C)alkoxy, (1-4C)alkoxycarbonyl, cyano, nitro, (1-4C)alkanoylamino, -CONRvRw or -NRvRw},
- trifluoromethyl, hydroxy, halo, nitro, cyano, thiol, (1-4C)alkoxy, (1-4C)alkanoyloxy, dimethylaminomethyleneaminocarbonyl, di(N-(1-4C)alkyl)aminomethylimino, carboxy, (1-4C)alkoxycarbonyl, (1-4C)alkanoyl, (1-4C)alkylSO₂amino, (2-4C)alkenyl {optionally substituted by carboxy or (1-4C)alkoxycarbonyl}, (2-4C)alkynyl, (1-4C)alkanoylamino, oxo (=O), thioxo (=S), (1-4C)alkanoylamino {the (1-4C)alkanoyl group being optionally
- substituted by hydroxy}, (1-4C)alkyl S(O)q- (q is 0, 1 or 2) {the (1-4C)alkyl group being optionally substituted by one or more groups independently selected from cyano, hydroxy and (1-4C)alkoxy}, -CONRvRw or -NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl];
 - and further optional substituents on AR1, AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4,
- 25 AR4a, CY1 and CY2 (on an available carbon atom), and also on alkyl groups (unless indicated otherwise) are up to three substituents independently selected from trifluoromethoxy, benzoylamino, benzoyl, phenyl {optionally substituted by up to three substituents independently selected from halo, (1-4C)alkoxy or cyano}, furan, pyrrole, pyrazole, imidazole, triazole, pyrimidine, pyridazine, pyridine, isoxazole, oxazole, isothiazole,
- 30 thiazole, thiophene, hydroxyimino(1-4C)alkyl, (1-4C)alkoxyimino(1-4C)alkyl, halo-(1-4C)alkyl, (1-4C)alkanesulfonamido, -SO₂NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl]; and

optional substituents on AR2, AR2a, AR2b, AR3, AR3a, AR3b, AR4 and AR4a are (on an available nitrogen atom, where such substitution does not result in quaternization) (1-4C)alkyl, (1-4C)alkanoyl {wherein the (1-4C)alkyl and (1-4C)alkanoyl groups are optionally substituted by (preferably one) substituents independently selected from cyano,

- 5 hydroxy, nitro, trifluoromethyl, (1-4C)alkyl S(O)q- (q is 0, 1 or 2), (1-4C)alkoxy, (1-4C)alkoxycarbonyl, (1-4C)alkanoylamino, -CONRvRw or -NRvRw [wherein Rv is hydrogen or (1-4C)alkyl; Rw is hydrogen or (1-4C)alkyl]}, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxycarbonyl or oxo (to form an N-oxide).
- 10 2. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 1, wherein group C is represented by any one of groups D to L.
- A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo
 hydrolysable ester thereof, as claimed in claim 1 or claim 2, wherein R₁a and R₁b are independently selected from -NHCO(1-4C)alkyl, -NHCO(1-4C)cycloalkyl, -NHCS(1-4C)alkyl, -N(R₅)-HET-1 and HET-2.
- 4. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 1, claim 2 or claim 3, wherein HET-2A is selected from the structures (Za) to (Zf) below:

wherein u and v are independently 0 or 1.

والمراوية فا

- 5. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in claim 4 wherein RT is selected from
- (a) hydrogen;
- (b) halogen,;
- 5 (c) cyano;
 - (d) (1-4C)alkyl;
- fluoromethyl, choromethyl, bromomethyl, cyanomethyl, azidomethyl, hydroxymethyl;
 - (f) difluoromethyl, and trifluoromethyl.
- 10 6. A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein at least one of A and B is an oxazolidinone.
- A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo
 hydrolysable ester thereof, as claimed in any one of the preceding claims wherein both A and B are oxazolidinones.
- A compound of the formula (I) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, as claimed in one of the preceding claims, wherein group C is
 selected from groups F, H and I.
 - 9. A compound of the formula (Ia) or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, wherein R_1a , A, C, B and R_1b are as stated in any one of the preceding claims.

10. A pro-drug of a compound as claimed in any one of the preceding claims.

25

11. A method for producing an antibacterial effect in a warm blooded animal which comprises administering to said animal an effective amount of a compound of the invention as claimed in any one of claims 1 to 9, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof.

5

5.

- 12. A compound of the invention as claimed in any one of claims 1 to 9, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, for use as a medicament.
- 10 13. The use of a compound of the invention as claimed in any one of claims 1 to 9, or a pharmaceutically-acceptable salt, or in-vivo hydrolysable ester thereof, in the manufacture of a medicament for use in the production of an antibacterial effect in a warm blooded animal.
- 14. A pharmaceutical composition which comprises a compound of the invention as
 15 claimed in any one of claims 1 to 9, or a pharmaceutically-acceptable salt or an in-vivo hydrolysable ester thereof, and a pharmaceutically-acceptable diluent or carrier.
- 15. A process for the preparation of a compound of formula (I) as claimed in claim 1 or pharmaceutically acceptable salts or in-vivo hydrolysable esters thereof, which process20 comprises one of processes (a) to (h): and thereafter if necessary:
 - i) removing any protecting groups;
 - ii) forming a pro-drug (for example an in-vivo hydrolysable ester); and/or
 - iii) forming a pharmaceutically-acceptable salt; wherein said processes (a) to (h) are:
- 25 (a) by modifying a substituent in, or introducing a substituent into another compound of the invention;....
 - (b) by reaction of a molecule of a compound of formula (IIa) (wherein X is a leaving group useful in palladium coupling) with a molecule of a compound of formula (IIb) (wherein X' is a leaving group useful in palladium coupling) wherein X and X' are chosen such that an
- 30 heteroaryl-aryl, or heteroaryl-heteroaryl bond replaces the heteroaryl-X and aryl-X' (or heteroaryl-X') bonds;

(c) by reaction of a (hetero)biaryl derivative (IIIa) or (IIIb) carbamate with an
 5 appropriately substituted oxirane (wherein 0, 1, or 2 of R₁a'-R₁a'''' are substitutents as defined for R₁a and the remainder are hydrogen) to form an oxazolidinone ring at the undeveloped aryl position;

- or by variations on this process in which the carbamate is replaced by an isocyanate or by an amine or/and in which the oxirane is replaced by an equivalent reagent X-C(R₁a')(R₁a'')(O-optionally protected)(R₁a''') or X-CH₂CH(O-optionally protected)CH₂R₁b where X is a displaceable group;
- (d) by reaction of a (hetero)biaryl derivative (IVa) or (IVb) to form an isoxazoline ring at the undeveloped aryl position;

OHC C B
$$H_2N-OH$$
 $HO-N$ C B R_1b (IVa)

1. NBS/Base $R_1a^{"}$ $R_1a^{"}$

5

or by variations on this process in which the reactive intermediate (a nitrile oxide IVa' or IVb'') is obtained other than by oxidation of an oxime (IVa') or (IVb');

$$\begin{bmatrix} O^{-}N^{\frac{1}{2}} & C & B \\ & & & \\$$

- (e) for HET2 as optionally substituted 1,2,3-triazoles, by cycloaddition via the azide (wherein the substituent at the position of R₁a in (I) is azide) to acetylenes, or to acetylene equivalents such as optionally substituted cylcohexa-1,4-dienes or optionally substituted
 10 ethylenes bearing eliminatable substituents such as arylsulfonyl;
 - (f) for HET2 as 4-substituted 1,2,3-triazole, by reacting aminomethyloxazolidinones with 1,1-dihaloketone sulfonylhydrazones;

$$(R_1a)m - A - C - N - NH_2 - (R_1a)m - A - C - N - N - RT$$

(g) for HET2 as 4-substituted 1,2,3-triazole, by reacting azidomethyl oxazolidinones with terminal alkynes using Cu(I) catalysis;

(h) for HET2 as 4-halogenated 1,2,3-triazole, by reacting azidomethyl oxazolidinones with halovinylsulfonyl chlorides at a temperature between 0 °C and 100 °C either neat or in an inert diluent.

$$(R_1a)m - A - C - N - N_3 - (R_1a)m - A - C - N - N - Halogen$$