TA Problems of the Week: Semester One

Omkar Tasgaonkar

December 26, 2024

Contents

0.1	Problem of the week $(9/30 - 10/3)$: Integrals!	2
	0.1.1 Solution:	2

0.1 Problem of the week (9/30 - 10/3): Integrals!

Given a function f(x) at $x = 2\pi$, which outputs -1:

$$If f'(x) = -(1 - \sin^2(\pi/2 - x))^{1/2}$$
 (1)

Find f(x)

0.1.1 Solution:

Assume domain restriction from 0 to $\pi/2$

$$\sin^2(\pi/2 - x) = \cos^2(x) \tag{2}$$

$$f'(x) = -(1 - \cos^2(x))^{1/2} \tag{3}$$

$$-(1-\cos^2(x))^{1/2} = -(\sin^2(x))^{1/2} \tag{4}$$

$$-(\sin^2(x))^{1/2} = -\sin(x) \tag{5}$$

Now that we have simplified the derivative to a simple cos function, we can integrate it. Let's review the fundamental theorem of calculus first: $\int_a^b g(x)\,dx = \mathrm{f(b)}\,\cdot\,\mathrm{f(a)}$

$$\int -\sin(x) dx$$

$$= \cos(x) + C \tag{6}$$

$$\cos(2\pi) + C = -1\tag{7}$$

$$C = -2 \tag{8}$$

$$So f(x) = \cos(x) - 2 \tag{9}$$