DS 2

Durée 3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et a fortiori durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amenés à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1. 1. Résoudre $e^x - 2e^{-x} \ge -1$ (On pourra faire un changement de variable)

- 2. Résoudre $2x \sqrt{3x+1} > 0$
- 3. Résoudre $2x \sqrt{3x+1} = 1$
- 4. En déduire le domaine de définition de la fonction

$$f(x) = \frac{\sqrt{e^x - 2e^{-x} + 1}}{\ln(2x - \sqrt{3x + 1})}$$

Exercice 2. Soit $n \in \mathbb{N}$. En intervertissant les deux sommes, calculer :

$$\sum_{k=0}^{n} \sum_{l=k}^{n} \frac{k}{l+1}$$

Relation coefficients-racines Pour les exercices 3 et 4, on pourra utiliser le résultat suivant, appelé "relation coefficients-racines" :

— Soient $(s,p)\in\mathbb{C}^2$ et soient r_1 et r_2 les racines du polynôme : x^2-sx+p . On a alors :

$$r_1 r_2 = p$$
 et $r_1 + r_2 = s$

— Réciproquement, soient r_1 et r_2 deux réels tels que $r_1r_2 = p$ et $r_1 + r_2 = s$ alors r_1 et r_2 sont les racines du polynôme :

$$x^2 - sx + p$$
.

Exercice 3. On propose de résoudre l'équation suivante d'inconnue $z \in \mathbb{C}$:

$$z^3 - 6z + 4 = 0$$
 (E)

- 1. On considère $z \in \mathbb{C}$ une solution de (E). Soient $(u, v) \in \mathbb{C}^2$ tel que u + v = z et uv = 2.
 - (a) Calculer $(u+v)^3$ de deux manières différentes.
 - (b) En déduire que $u^3 + v^3 = -4$.
 - (c) Calculer u^3v^3 .
 - (d) Montrer que u^3 et v^3 sont solutions de l'équation $Z^2 + 4Z + 8 = 0$ d'inconnue $Z \in \mathbb{C}$.
 - (e) Résoudre dans \mathbb{C} l'équation $Z^2 + 4Z + 8 = 0$.
- 2. On pose w = -2 + 2i.
 - (a) Ecrire w sous la forme exponentielle.
 - (b) Résoudre l'équation $Z^3=w$ d'inconnue $Z\in\mathbb{C}$ en exprimant les solutions sous forme exponentielle.
 - (c) On pose $j = e^{2i\pi/3}$. Montrer que l'ensemble des solutions de l'équation $Z^3 = w$ est $\{1+i, (1+i), (1+i)$
- 3. En utilisant les questions précédentes, déterminer les valeurs possibles de u et v, puis de z.
- 4. En déduire les solutions de (E).

Exercice 4. Soit $\omega = e^{\frac{2i\pi}{7}}$. On considère $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$

- 1. Calculer $\frac{1}{\omega}$ en fonction de $\overline{\omega}$
- 2. Montrer que pour tout $k \in [0, 7]$ on a

$$\omega^k = \overline{\omega}^{7-k}.$$

- 3. En déduire que $\overline{A} = B$.
- 4. Montrer que la partie imaginaire de A est strictement positive. (On pourra montrer que $\sin\left(\frac{2\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) > 0$.)
- 5. Montrer par récurrence que $\forall q \neq 1, \forall n \in \mathbb{N}$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

- 6. Montrer alors que $\sum_{k=0}^{6} \omega^k = 0$. En déduire que A + B = -1.
- 7. Montrer que AB = 2.
- 8. En déduire la valeur exacte de A.

Exercice 5. Pour chaque script, dire ce qu'affiche la console :

```
4. Script4.py
1. Script1.py
                                                _{1} s=10
_{1} a=0
                                                _{2} n = 100
 _{2} n = 100
                                                3 for i in range(n):
 3 for i in range(n):
                                                    s=s+2
     a=a+i
                                                5 print(s)
 5 print(a/50)
                                               5. Script5.py
                                                1 a=10
2. Script2.py
                                                2 for i in range(3):
_{1} a=1
                                                    if a\%2 == 0:
 _{2} n = 100
                                                       a=a/2+i
 3 for i in range(n):
                                                     else:
                                                       a=a+3
     a=a*i
 5 print(a)
                                                7 print(a)
                                               6. Script6.py (On pourra s'aider de
                                                  l'exercice 2)
3. Script3.py
                                                _{1} s = 0
1 a=0
                                                _{2} n = 100
 _{2} n = 100
                                                3 for k in range(n+1):
 3 for i in range(0,n,2):
                                                     for 1 in range(k,n+1):
     a=a+i
                                                       s=s+k/(1+1)
 5 print(a/50)
                                                6 print(s)
```