Solutions

Problem Set 3, Math 54-Lec 3, Linear Algebra, Fall 2017

SEPTEMBER 8TH, 2017

Problem 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that $T^{\overline{A}}$ s one-to-one iff $T(\vec{x}) = \vec{0}$ implies $\vec{x} = \vec{0}$, that is to say the **only** vector in \mathbb{R}^n who's image under T is the zero vector is the zero vector itself.

First Direction (\Rightarrow) . If T is linear $T(\vec{0}) = \vec{0}$. If T is one-to-one and $T(\vec{x}) = \vec{0}$, then $\vec{x} = \vec{0}$.

Sccord Direction (\in). Suppose T is linear and $T(\dot{x})=\dot{0}$ only when $\dot{x}=\dot{0}$. Need to prove T is injective. To do so, need to show $T(\dot{a})=T(\dot{a})\Rightarrow\dot{a}=\dot{a}$. So let \dot{a} , $\dot{v}\in\mathbb{R}^n$ s/t $T(\dot{a})=T(\dot{v})\Rightarrow T(\dot{a})-T(\dot{v})=\dot{0}\Rightarrow T(\dot{a}-\dot{v})=\dot{0}$. But $T(\dot{x})=\dot{0}\Rightarrow\dot{x}=\dot{0}$ so this means $\ddot{u}-\ddot{v}=\dot{0}\Rightarrow\dot{x}=\dot{v}$. Tis one -to-one.

Problem 2. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ be a linearly independent set in \mathbb{R}^n . Prove that if T one-to-one then $\{T(\vec{v_1}), T(\vec{v_2}), \dots, T(\vec{v_k})\}$ is also linearly independent. [Hint: use the result from Problem 1, above.]

Proof by contradiction

Suppose $\{T(\vec{v}_1), \dots, T(\vec{v}_n)\}$ is not linearly independent. Then by definition there exist constants: c_1, c_2, \dots, c_n such that: $c_1, T(\vec{v}_1) + \dots + c_n T(\vec{v}_n) = \vec{O}$, with not all $c_1 = 0$. Observe: $c_1, T(\vec{v}_1) + \dots + c_n T(\vec{v}_n) = T(c_1, c_1 + \dots + c_n, c_n) = \vec{O}$. Since T is one-to-one, $T(\vec{x}) = \vec{O} \Rightarrow \vec{x} = \vec{O}$ from Problem 1. $c_1, \vec{v}_1 + \dots + c_n, \vec{v}_n = \vec{O}$, a contradiction since $\vec{v} \in \vec{v}_1, \dots, \vec{v}_n \in \vec{V}_n$.

that $\{7(\vec{x}), ..., 7(\vec{x}_n)\}$ is Inverty independent.