Sun and Abraham (2021) part3

1 Sun and Abraham (2020) の STATA コマンド

eventstudyinteract は、Sun and Abraham (2020) による新しい Difference-in-Differences (DID) 推定法を Stata で実装するためのコマンドである。従来の二方向固定効果(TWFE)モデルでは、異なる処置時点を持つデータに適用した場合、バイアスのある推定結果が得られる可能性がある。eventstudyinteract はこの問題を克服し、より正確なイベントスタディ推定を可能にする。

1.1 1. eventstudyinteract コマンドの解釈

1.2 2. 実行コードの概要

 $use\ https://raw.githubusercontent.com/naoe-research/econometrics1/main/Divorce-Wolfers-AER.\\ dta$

解説:

- div_rate:従属変数(ここでは離婚率)
- Dt*:イベントスタディの相対時間(DID変数)
- if year>1955 & year<1989:1955年より後、1989年より前のデータを使用
- [aweight=stpop]:集団加重を適用(stpop は人口データ)
- absorb(i.state i.year):州と年の固定効果を吸収
- cohort(cohort):処置を受けた年を示すコホート変数
- control_cohort(controlgroup):対照群の指定
- vce(cluster st):州ごとのクラスター標準誤差を使用

1.3 3. 出力の解釈

(1) 全体の統計情報

Number of obs = 1,631

Absorbing 2 HDFE groups

F(240, 50) = .

Prob > F = .

R-squared = 0.9414

Adj R-squared = 0.9270

Root MSE = 0.5232

統計情報の解釈:

• 観測数 (obs):1,631

● 固定効果の数(Absorbing 2 HDFE groups):2 つ(州と年)

• 決定係数 (R^2) : 0.9414 (回帰モデルがデータをかなりよく説明している)

● 調整済み R² (Adj R²):0.9270

● 残差標準誤差 (Root MSE): 0.5232 (誤差の大きさを示す)

1.4 3. 出力の解釈 (続き)

(2) 相対時間ごとの効果

	Coefficient	Std. Err.	t	P > t	95% Conf. Interval
Dt0	0.2894	0.1995	1.45	0.153	[-0.1112, 0.6900]
Dt1	0.2963	0.0885	3.35	0.002	[0.1186, 0.4740]
Dt2	0.2601	0.0854	3.05	0.004	[0.0886, 0.4316]
Dt3	0.1542	0.1028	1.50	0.140	[-0.0522, 0.3606]
Dt4	0.1178	0.1074	1.10	0.278	[-0.0979, 0.3335]
Dt5	0.1795	0.1212	1.48	0.145	[-0.0640, 0.4231]
Dt6	0.1861	0.1435	1.30	0.201	[-0.1022,0.4744]
$\mathrm{Dt}7$	0.1054	0.1379	0.76	0.448	[-0.1717, 0.3825]
Dt8	-0.0722	0.1334	-0.54	0.591	[-0.3402, 0.1957]
Dt9	-0.1932	0.1484	-1.30	0.199	[-0.4912, 0.1048]
Dt10	-0.2306	0.1675	-1.38	0.175	[-0.5671, 0.1059]
Dt11	-0.4096	0.1712	-2.39	0.021	[-0.7534, -0.0658]
Dt12	-0.4389	0.1852	-2.37	0.022	[-0.8109, -0.0669]
Dt13	-0.4849	0.2074	-2.34	0.023	[-0.9015, -0.0683]
Dt14	-0.3731	0.1914	-1.95	0.057	[-0.7575, 0.0114]
Dt15	-0.4966	0.1821	-2.73	0.009	[-0.8624, -0.1307]

表1 相対時間ごとのイベントスタディ効果

1.5 (3) 係数の解釈

• Dt0 (政策導入直後): 0.289 (統計的に有意ではない)

Dt1 (1年後): 0.296 (p値=0.002で有意)
Dt2 (2年後): 0.260 (p値=0.004で有意)
Dt3 (3年後): 0.154 (統計的に有意ではない)

• Dt10 以降:負の効果が強まり、特に Dt15 では -0.496 (p 値 = 0.009 で有意)

2 eventstudyinteract と reg(TWFE) の比較

2.1 1. 出力の比較

時点	eventstudy interact \mathcal{O} Coef.	reg Ø Coef.
Dt0	0.2894	0.2892
Dt1	0.2963	0.3359
Dt2	0.2601	0.3037
Dt3	0.1542	0.2163
Dt4	0.1178	0.1824
Dt5	0.1795	0.2470
Dt6	0.1861	0.2522
$\mathrm{Dt}7$	0.1054	0.1685
Dt8	-0.0722	-0.0077
Dt9	-0.1932	-0.1312
Dt10	-0.2306	-0.1796
Dt11	-0.4096	-0.3662
Dt12	-0.4389	-0.3894
Dt13	-0.4849	-0.4421
Dt14	-0.3731	-0.3403
Dt15	-0.4966	-0.5269

表 2 eventstudyinteract と TWFE (reg) の比較

2.2 2. 結果の解釈

1. 初期効果($Dt0 \sim Dt6$)

- eventstudyinteract の係数の方が reg よりも若干小さい傾向にある。
- Dt1 (政策導入 1 年後) の影響は eventstudy interact では 0.296, reg では 0.336 であり、reg の方が 大きめに推定されている。

2. 中期効果($Dt7 \sim Dt10$)

- eventstudyinteract では、効果が早めに負に転じる (Dt8 = -0.072, Dt9 = -0.193)。
- reg の方は、負の影響が小さめに推定されており、Dt8 の効果もほぼゼロ。

3. 長期効果($Dt11 \sim Dt15$)

- どちらのモデルでも、政策の効果が負になり、統計的に有意。
- eventstudyinteract の方が 長期的な負の影響がやや強め (例えば Dt15 = -0.496 vs. reg の -0.526)。
- eventstudyinteract の方が 異なる処置時点を考慮した補正をしているため、より適切な重み付けが行われている。

3 TWFE モデルの問題点

• バイアスの可能性: TWFE モデル (reg) は、異なるタイミングで処置を受けたグループの影響を適切 に補正できない可能性がある (特に異質な処置効果がある場合)。

誤った重み付け:

- reg では、全ての処置群を一緒に分析するため、負の重みがつくことがある(あるグループの処置 効果が他のグループの推定に悪影響を与える)。
- eventstudyinteract では、異なるコホートの影響を適切に分離しているため、正しい因果効果を推定しやすい。