

Analysis of Sequential Data Analysis of Digital Signals

Prof. Dr. H.-P. Hutter, HII-Group, InIT/ZHAW, hans-peter.hutter@zhaw.ch

Objectives

- You know different techniques to analyse digital signals in different domains
- You know the most important characteristics of a speech signal
- You know the basic units of speech and their characteristics
- You know the most important features used in speech recognition

Speech Signal

Speech Signal

- Is one of the most challenging temporal signals to analyse
- Produced by humans for humans to transmit a message
- It has a lot of interesting applications
 - Speech recognition
 - Speaker recognition
 - Language recognition
 - Speech classification
 - Speech synthesis
 - **•** ...
 - Conversational Assistants
 - Natural Language Processing

What is Speech?

- Speech signal
 - Longitudinal pressure wave
 - Very large power range
 - 0 dB: faintest audible sound
 - 120 dB: loudest sound, human ear can tolerate (10⁶ times as loud)
- Is transformed by microphone into
 - Analog eletrical signal that is later on sampled
 - or directly sampled to a digital signal

- Humans produce it
 - Vocal tract
 - For humans

- 1 Nasal Cavity
- 2 Lips
- 3 Teeth
- 4 Tooth-ridge
- 5 Hard palate
- 6 Velum
- 7 Uvula
- 8 Cavum Oris
- 9 Tongue tip
- 10 Tongue middle
- 11 Vocal Cords (Glottis)

- How do human produce speech?
- Simple speech production model
 - Glottis either produce an impulse train with fundamental frequency
 F₀ or white noise
 - Excitation function e(n)

- Simple speech production model
 - Vocal tract filters this signal e(n) with filter $H(\omega)$ (impulse response h(n))

$$s(n) = h(n) * e(n)$$

- Filter characteristic $H(\omega)$ is determined by the coefficients $a_1, a_2, ..., a_p$
- $a_1, a_2, ..., a_p$ can be estimated from the signal s(n) with LPC (Linear Prediction Coding)
 - a₁, a₂, ..., a_p are therefore called LPCparameters

- Humans understand it
 - Ear
 - Brain
- Main characteristics of human ear
 - Does some kind of spectral analysis of a sound
 - Hears sounds from ca.
 20 Hz-18 kHz
 - Logarithmic sensitivity
 - Sound pressure
 - Sound frequency
 - Energies over neighboring frequencies are intergrated

- Phonemes
 - Smallest sound units that distinguish different words
 - Speaker independent
 - Notation: IPA (SAMPA)
- Phones
 - Acoustic representation of the phoneme
 - Speaker dependent

- Examples of phonemes
 - b, d:
 - ◆ Bad [bæd] <-> Dad [dæd]
 - æ, e:
 - Bat [bæt] <-> bet [bet]

Which phonemes	exist in	English	but r	not in	German	and	vice
versa?							

• English:

Your answer?

German:

Your answer?

- There are 20-60 phonemes in western languages
- German:
 - 48 phonemes
- Two major classes
 - Vowels
 - Consonants

Vowels

- Diphtongs (German)
 - aI (Bein), aU (Haus), OY (Heu)

Analysis of Sequential Data, © InIT/ZHAW

Consonants

- Fricatives: voiced/unvoiced
 - f, v, s, S, z, Z, h
- Plosives: voiced/unvoiced
 - p, t, k, b, d, g
- Nasals/laterals
 - m, n
 - 1, r, R
- Others
 - ? (glottal stop)

Analysis of Speech Signal Time Domain

What do you see?

Analysis of Sequential Data, © InIT/ZHAW

Analysis of Speech Signal Time Domain

Periodic part:

- Fundamental frequency ca. 112 Hz -> male
- Fundamental frequency between 50 Hz (deep man's voice) and 400 Hz (child's voice)

Analysis of Speech Signal Frequency Domain

Problem

- If we calculate the spectrum over the whole signal, we only get the averaged spectrum of the whole signal
 - Not very interesting for speech recognition
 - Main information lies in the change of the spectral characteristic

Solution

- Short-time spectral analysis
 - We only analyse a short segment of the signal at a time (window)
 - We assume that characteristic of speech signal does not change significantly within this window
 - We shift the analysis window a small amount in time (frame shift) and do the same short-time analysis again

Short-time Analysis

Analysis of Sequential Data, © InIT/ZHAW

Analyzing only a window of the signal is equivalent to multiplying the signal with a rectangular window function w(n)

$$\bar{x}(n) = x(n)w(n)$$

- Consequences of the windowing
 - Multiplying the window w(n) with signal x(n) in the time domain means in the spectral domain:

The resulting spectrum is the convolution of the spectrum of the window and the signal

$$\bar{X}(\omega) = X(\omega) * W(\omega)$$

- $\sin(\omega)/\omega$ shape
- Zeros at $f = k \frac{f_s}{N}$, $N = \text{length of window}, k = \pm 1, \pm 2, \pm 3, ...$

- Influence of the windowing
 - Spectrum is more or less blurred
 - Depending on the length of the window
 - Longer window -> less blurring
 - Depending on the window type
 - Relative hight of side lobes with resp. to main lobe
 - Different window types

- When a analog signal is digitized and analyzed with a short-time window the following happens to the spectrum of the original signal
 - a) The analog signal $x_a(t)$ is a sin-wave with 1250 Hz

The spectrum $X_s(f)$ of $x_a(t)$ shows exactly 2 spectral lines at +/- 1250 Hz

Analysis of Sequential Data, © InIT/ZHAW

Signal $x_a(t)$ is sampled with $f_s = 8$ kHz, i.e. it is multiplied with the pulse train $\delta_{T_s}(t)$ with a pulse period of $T_s = \frac{1}{f_s} =$ 125*ms*

> The spectrum $\Delta_{T_s}(f)$ of $\delta_{T_s}(t)$ is another pulse train who's pulse period equals the sampling frequency $f_s = 8kHz$

Analysis of Sequential Data, © InIT/ZHAW

c) The sampling results in a multiplication of the two signals $x_a(t)$ and $\delta_{T_s}(t)$

In the spectral domain this means that the resulting spectrum $X_s(f)$ is the convolution of the two spectra $\Delta_{T_s}(f)$ and $X_a(f)$:

$$X_s(f) = X_a(f) * \Delta_{T_s}(f)$$

 $X_s(f)$ is periodic with f_s

Analysis of Sequential Data, © InIT/ZHAW

d) The rectangular window function w(t) is N samples long.

The corresponding spectrum W(f) is a $\sin(x)/x$ -function with zeros at frequencies

$$f = k(f_s/N), k = \pm 1, \pm 2, ...$$

Analysis of Sequential Data, © InIT/ZHAW

Windowing results again in a multiplication of the two signals $x_s(t)$ and w(t)

> In the spectral domain this means that the resulting spectrum $\bar{X}_s(f)$ is the convolution of the two spectra $X_s(f)$ and W(f):

$$\bar{X}_{S}(f) = X_{S}(f) * W(f)$$

 $\bar{X}_s(f)$ is also periodic with f_s

Analysis of Sequential Data, © InIT/ZHAW

- f) The spectrum $\bar{X}_s(f)$ is finally also sampled at N equally spaced points in the intervall $0 \le f \le f_s$
- g) This corresponds to a muliplication of the spectrum $\bar{X}_s(f)$ in the spectral domain with the pulse sequence $\Delta_{NT_s}(f)$ In the time domain this means the the signal $\bar{x}_s(t)$ is periodically repeated with period NT_s

Conclusions

- The N-point short-time analysis of a signal x(n) corresponds to multiplying x(n) with a rectangular window of length of N.
- The N-point DFT assumes that the signal x(n) as well as the spectrum X(k) is periodic with period N.
- In this case the N-point short-time DFT represents the exact spectrum of the original signal at N discrete points.
- In all other cases the DFT-spectrum is only a more or less accurate approximation of the spectrum of x(n).
- The approximation is the more accurate the longer the window is in time.

Analysis of Speech Signal Frequency Domain

- With short-time analysis
 - As speech signal is quasi-stationary and the information we are interested in lies in the temporal variation
 - Therefore we calculate successive short-term spectra of the signal
 - Problem: How to visualize successive spectra?
- Analysis of spectral charactaristics of speech signal
 - Without a model: Spectrogram

Analysis of Speech Signal Spectrogram

- Shows the temporal changes in the spectrum of a signal
- One vertical line shows the DFT spectrum of the signal at the corresponding time frame
 - Dark means high energy at that frequency
 - Light means low energy at that frequency

Analysis of Sequential Data, © InIT/ZHAW

Analysis of Speech Signal Spectrogram

- Two types of spectrogram
 - Narrowband spectrogram
 - More spectral resolution
 - Long temporal window used (500 samples = 62.5ms)
 - Broadband spectrogram
 - Less spectral resolution
 - Short temporal window used (180 samples = 22.5ms)

Analysis of Speech Signal Formants

Formants

- Areas in the spectrogram with high energy contributions
 - Correspond to resonances in the vocal tract
 - Speech signal normally has 4-5 formants in frequency range 0-4kHz
 - Formants play an important role in characterising phones

MASTER OF SCIENCE IN ENGINEERING

Analysis of Speech Signal Spectrograms of Vowels

Analysis of Speech Signal Spectrograms of Vowels

Isolated vowels can be characterized by the average position of the first 2 formants F₁ and F₂

(Kohler, 1977)

Analysis of Sequential Data, © InIT/ZHAW

Analysis of Speech Signal Spectrograms of Vowels

- However, the position of the of the first 2 formants F₁ and F₂ is speaker dependent!
 - E.g.: Formant positions of different English vowels
- Formant positions are not constant when vowels are spoken in context

(Peterson and Barney, 1952)

Analysis of Speech Signal Diphthongs

- Spectrograms of Diphthongs
 - Continuous movement of formants of 1st vowel to 2nd vowel

Analysis of Speech Signal Consonants

- The different types of consonants have different characterstics in the spectrogram
 - Fricatives
 - voiced/unvoiced
 - Plosives
 - Voiced/unvoiced
 - Nasals
 - Laterals
 - Others: r, R, |

Fricatives (unvoiced)

- The different types of consonants have different characterstics in the spectrogram
 - Fricatives
 - voiced/unvoiced
 - Plosives
 - Voiced/unvoiced
 - Nasals
 - Laterals
 - Others: r, R, |

- The different types of consonants have different characterstics in the spectrogram
 - Fricatives
 - voiced/unvoiced
 - Plosives
 - Voiced/unvoiced
 - Nasals
 - Laterals
 - Others: r, R, |

- The different types of consonants have different characterstics in the spectrogram
 - Fricatives
 - voiced/unvoiced
 - Plosives
 - Voiced/unvoiced
 - Nasals
 - Laterals
 - Others: r, R, |

Nasals/Laterals

- The different types of consonants have different characterstics in the spectrogram
 - Fricatives
 - voiced/unvoiced
 - Plosives
 - Voiced/unvoiced
 - Nasals
 - Laterals
 - Others: r, R, |

Nasals/Laterals

Analysis of Speech Signal

- Vowels are easier to distinguish than consonants
- Which of the two is more important to understand what has been said?
- Exercise: Try to find out what the two sentences are:

Th. k.ds I..rn i. th. f.rst cl.ss h.. t. r..d

I .e.. .ou a .e..e. .i.. a .i..u.e o. .y .o.

- Goal of feature extraction
 - Extract all information out of the signal that is important for the given task
 - Discard all information that is irrelevant to the given task

Speech signal conveys a lot of information

- Speech recognition: which features are important, which not and why?
 - Phase (time delay)?
 - Not important for SR (important for sound source localization)
 - Signal amplitude?
 - Not important for SR, only determines loudness
 - Spectrum?
 - Important, it distinguishes the phones
 - Temporal change of spectrum (spectrogram)
 - -> determines phone sequence

- Speech recognition: which features are important, which not and why?
 - What is important in the spectrogram?
 - Fundamental frequency F₀?
 - Less, conveys mainly information about the speaker less about the content (only about intonation)
 - Formants $F_1 F_4$?
 - Yes, very important regarding phone sequence
 - What is important from the formants?
 - Number of formants
 - Center frequency positions of the formants
 - Bandwidth

- How to separate important information form unimportant information (noise)
 - Filter out unimportant information
 - In the time domain
 - In the spectral domain
 - Apply a suitable model and fit the parameters
 - Speech production model (see slide 5)
 - Speech perception model (ear model)

Feature Extraction Filtering

- Time domain
 - Classic filters: LP, BP, HP, ...
 - LPC (to filter out excitation function e(n))
- Frequency domain:
 - Homomorphic filtering
 - Allows the convolution of two signals in one domain to be transformed into a summation of the two signals in the new domain.
 - Example: DFT-Cepstrum

Feature Extraction DFT-Cepstrum

DFT-Cepstrum c(n) is defined as the inverse DFT of the log-Spectrum of the signal x(n)

- Can be used to separate a source s(n) from the filter h(n)
 - By filtering the cepstral coefficients of s(n) or h(n)
- Can be used to smooth a spectrum by lowpass filtering the cepstral coefficients
- Cepstrum normally is a complex function
 - If phase of signal is unimportant → real cepstrum sufficient

Feature Extraction Cepstrum

- Cepstral smoothing
 - Low cepstral coefficients
 -> slow variations in spectrum
 - High cepstral coefficients
 -> fast variations in spectrum
 - Cepstral smoothing of spectrum
 - Filter out high cepstral coefficients

Analysis of Sequential Data, © InIT/ZHAW

Feature Extraction Auditory Based Features

- DFT-Spectrum
 - Is equivalent to a uniform filter bank with N filters
- Mel-Spectrum
 - Models basic characteristics of the ear
 - Log sensitivity of frequencies above 1 kHz
 - Exponentially increasing bandwidth of filters above 1 kHz (critical bands)
- Mel-Cepstrum
 - IDFT of Log(Mel-Spectrum)

Feature Extraction Auditory Based Features

- Fast Cochlea Transform (FCT)
 - Audience, Inc., 2008
 - Implemented in noisecancelling chip in many smartphones

- Proprietary modifications to Lyon's digital IIR biquad filter cascade
- Logarithmic Frequency Scale (unlike FFT)
- Optimal frequency-dependent time-frequency trade-off (unlike FFT)
- Better spectral resolution at low frequencies, better temporal resolution at high frequencies
- Critical bandwidths of human hearing built directly into transform
- Proprietary Inverse transform, low latency <20ms