Bloc 2 Aprenentatge Automàtic

Pràctica 2:

Aplicació dels algoritmes de Perceptró i Regressió Logística a diversos conjunts de dades

DOCENCIA VIRTUAL

Responsable del Tratamiento: Universitat Politècnia de València (UPV)

Finalidad: Prestación del servicio público de educación superior en base al
interés público de la UPV (Art. 6.1.e del RGPD).

Ejercicio de derechos y segunda capa informativa: Podrán ejercer los derechos reconocidos en el RGPD y la LOPDGDD de acceso, rectificación, oposición, supresión, etc., escribiendo al correo dpd@upv.es.

Para obtener más información sobre el tratamiento de sus datos puede visitar el siguiente enlace: https://www.upv.es/contenidos/DPD.

Propiedad Intelectual: Uso exclusivo en el entorno del aula virtual.

Queda prohibida la difusión, distribución o divulgación de la grabación de las clases y particularmente su compartición en redes sociales o servicios dedicados a compartir apuntes.

La infracción de esta prohibición puede generar responsabilidad disciplinaria, administrativa y/o civil.

Objectiu

Generar i evaluar un classificador sobre datasets (conjunts de dades)

• Sessions:

• S1: 22/11

• S2: 29/11

• S3: 05/12

• Examen P2: 13/12

Sesions de la pràctica 2

Sessió 1:

- Familiaritzar-se amb l'entorn de treball (Google Colab)
- Analitzar conjunts de dades (datasets): iris, digits, olivetti, openml

Sessió 2:

- Aplicació de l'algorisme del Perceptró a tasques de classificació: conjunt de dades iris.
- Exercici: Aplicar el Perceptró a digits i olivetti.

Sessió 3:

• Aplicació de la Regressió Logística a tasques de classificació: conjunt de dades iris.

Exemple d'examen:

• Aplicació de Perceptró i Regressió Logística a un conjunt de dades de OpenML.

Sessió 4 (examen):

- Es demanarà l'aplicació del Regressió Logística per a una tasca diferent d'OpenML.
- Caldrà pujar la solució de l'Exercici.

- Entorn de treball: Google Colab (https://colab.research.google.com)
 - S'hi treballa amb Quaderns "Notebook" (codi + text)
 - Similar a un Notebook de Jupyter
- **Dataset**: col·lecció de dades que s'utilitza per entrenar, provar i validar models d'aprenentatge automàtic.
 - Un conjunt de dades típicament consisteix en diverses "instàncies" o "exemples", cadascun dels quals inclou diverses "característiques" o "atributs".
 - Cada instància en el conjunt de dades també té una "etiqueta" o "objectiu", que és el valor que el model d'aprenentatge automàtic intenta predir.

• Ex dataset: iris

species: és la variable que el classificador basat en un model d'aprenentatge automàtic intentarà predir.

Sessió 1: entorn de treball i conjunts de dades Totes les files (individus) llevat de la

• Ex dataset: iris

columna de classe s'utilitzen per entrenar el model i validar-lo.

cm) sepal width (cm) petal length (cm) petal width (cm) species

sep	oal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm) species
0	5.1	3.5	1.4	0.2 setosa
1	4.9	3.0	1.4	0.2 setosa
2	4.7	3.2	1.3	0.2 setosa
3	4.6	3.1	1.5	0.2 setosa
4	5.0	3.6	1.4	0.72 setosa

species: és la variable que el classificador basat en un model d'aprenentatge automàtic intentarà predir.

Sessió 1: entorn de treball i conjunts de dades La columna de classe determ

• Ex dataset: iris

La columna de classe determina el valor a predir pel classificador quan se li dóna un nou individu.

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species	
0	5.1	3.5	1.4	0.2	setosa	
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5.0	3.6	1.4	0.2	setosa	

species: és la variable que el classificador basat en un model d'aprenentatge automàtic intentarà predir.

• Ex dataset: iris

• Ex dataset: iris

16	SepalLeigthCm	SegulWidthCoy	PetallengthCm	PetitWidthCo	Species
1	3.1	3.5	1.8	0.2	Into-settona
7	4.9		1.6	0.2	His setria
2	4.7	3.2	1.3	0.2	(d)s-setoja
4	4.6	3.1	3.5	0.2	Inip-pational
3	5	3.6	1.4	0.2	His setora
6	5,4	1.9	1.7	0.4	Mis-setasa
7	4.6	3.4	1,4	0.3	tro-settria
8	5	1.4	1.5	0.2	Mic setoca
9	4.4	2.9	1.4	0.2	leto-pertosa
30	4.9	3.1	1.5	0.1	tro-setosa
11	5.6	8.7	1,5	0.2	Iris-setosa
12	4.6	3.4	1.6	0.2	Into-setone
25	4.8	3	1.4	0.1	105 setoral
58	4.3	. 3	1.1	0.5	Inio-setona
25	5.6	4	1.2	0.2	Into-particus
bil	5.7	4.4	1.5	0.4	inc-setora
17	5.6	3.9	1.3	0.4	Into-partorus
58	5.1	3.5	1.4	0.3	Ins-setora
29	5.7	8.8	1.7	0.0	trio-setata

sepal length sepal width petal length petal width

• Ex dataset: iris

- Datasets:
 - IRIS

• DIGITS

OLIVETTI

• OPENML (repositorio)

Us de Google Colab

Pas 1: Crear un Compte de Google (si encara no en tens un)

- Per utilitzar Google Colab, necessites un compte de Google. Si ja tens un compte de Gmail, YouTube o qualsevol altre servei de Google, pots utilitzar aquest compte. Si no en tens un, segueix aquests passos per crear-ne un de nou:
 - 1. Vés a <u>accounts.google.com</u>.
 - 2. Segueix les instruccions per crear un compte de Google nou.

Pas 2: Accedir a Google Colab

- Un cop tingues el teu compte de Google, pots accedir a Google Colab:
 - 1. Vés a Google Colab.
 - 2.Inicia la sessió amb el teu compte de Google.

Us de Google Colab

Pas 3: Crear un Nou Notebook

- Després d'iniciar la sessió a Google Colab, pots començar a crear notebooks:
 - 1. Fes clic a "Nou Notebook" a la cantonada inferior dreta de la pantalla. Això obrirà un nou notebook en una nova pestanya del navegador.
 - 2. Pots canviar el nom del notebook fent clic al títol (per defecte, alguna cosa com "Untitled0.ipynb") a la part superior de la pàgina i escrivint el nom que vulgues.

Pas 4: Escriure i Executar Codi

- Google Colab et permet escriure i executar codi Python de manera interactiva:
 - 1. Escriu el teu codi Python en una cel·la.
 - 2. Per executar el codi en aquesta cel·la, prem Shift + Enter o fes clic al botó de reproducció (triangle) a la cantonada superior esquerra de la cel·la.
 - 3. El resultat de l'execució del codi apareixerà sota de la cel·la.

Us de Google Colab

Pas 5: Desar i Compartir el teu Notebook

- Google Colab desa automàticament els teus notebooks a Google Drive:
 - 1. Per desar manualment, ves a "Fitxer" > "Desar".
 - 2. Per compartir el teu notebook, fes clic al botó "Compartir" a la cantonada superior dreta i segueix les instruccions per compartir-lo com ho faries amb qualsevol altre arxiu de Google Drive.

Pas 6: Importar i Exportar Notebooks

- Pots importar notebooks existents o exportar els teus:
 - Importar: "Fitxer" > "Obre notebook" > tria des de GitHub, Google Drive o puja un arxiu.
 - Exportar: "Fitxer" > "Descarregar" > tria el format que prefereixis (per exemple, .ipynb per a Jupyter Notebook o .py per a un script de Python).

Probar els següents notebooks en Google colab:

- iris.ipynb
- digits.ipynb
- olivetti.ipynb
- openml.ipynb

Què cal saber de la sessió de hui?

- Saber què és i quin format té un dataset.
- Saber interpretar un dataset: nº individus, nº classes, ...
- Saber carregar un dataset d'openml.
- Saber extraure les característiques i la columna objectiu d'un dataset.