First Quarto in Stat 343

T.Scofield

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

head(Fumbles)

	team	rank	W	L	week1	week2	week3
1	Air Force	53	8	4	4	2	2
2	Akron	19	1	11	2	3	2
3	Alabama	68	9	3	0	3	2
4	Arizona	31	7	4	1	0	2
5	Arizona St	94	5	6	2	1	3
6	Arkansas	46	9	2	0	1	0

Formulas from Stats

Moment generating functions

Exponential
$$X \sim \operatorname{Exp}(\lambda) \colon M_X(t) = \frac{\lambda}{\lambda - t}$$

Poisson
$$X \sim \operatorname{Pois}(\lambda) \colon M_X(t) = e^{\lambda(e^t-1)}$$

Quadratic formula

Applies to finding zeros of $ax^2 + bx + c = 0$

$$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Stating hypotheses

$$H_0: \pi = \frac{1}{3}$$
 vs. $H_a: \pi \neq \frac{1}{3}$

$$H_0: \pi = \frac{1}{3}$$
 vs. $H_a: \pi > \frac{1}{3}$

Plotting

gf_dist("norm", params=c(100, 15)) |> gf_labs(title="Normal distribution for IQ")

Normal distribution for IQ

