

## MTH101 (Symmetry)

## Tutorial Sheet 02 / January 18, 2022

Spring 2022

1. Look at the triangles below and conclude the following (using Pythagoras theorem).



(a) 
$$\sin\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

(a) 
$$\sin\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
 (b)  $\sin\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$  (c)  $\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ 

(c) 
$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

Also, calculate  $\sin\left(\frac{5\pi}{12}\right)$ .

- 2. Why is  $\sin(-\theta) = -\sin(\theta)$  but  $\cos(-\theta) = \cos(\theta)$ ? Substantiate your argument with the help of an example involving rotation in a plane.
- 3. A point P = (1, 1) is rotated by an angle  $\frac{5\pi}{12}$  in a plane so that it moves to point Q. Now the point Q is reflected about y-axis so that it moves to the point Q'. What are the coordinates of Q and Q'?
- 4. Match the following in connection with the symmetries of a square.



| Matrix                                                      | Symmetry     |
|-------------------------------------------------------------|--------------|
| $\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ | $f_{d_2}$    |
| $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$             | $f_Y$        |
| $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$            | $r_{3\pi/2}$ |
| $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$             | $r_{\pi/2}$  |
| $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$              | 1            |
| $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$             | $f_{d_1}$    |
| $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$            | $f_X$        |
| $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$             | $r_{\pi}$    |

Try making a similar exercise for symmetries of a triangle.

- 5. Write  $3 \times 3$  rotation matrices  $R_{x,\theta}$ ,  $R_{y,\theta}$  and  $R_{z,\theta}$ . Consider a point P = (a, b, c) and calculate the following.
  - (a)  $R_{x,\theta}(R_{y,\theta}(P))$  and  $R_{y,\theta}(R_{x,\theta}(P))$  when  $\theta = \pi$ .
  - (b)  $R_{x,\theta}(R_{y,\theta}(P))$  and  $R_{y,\theta}(R_{x,\theta}(P))$  when  $\theta = \frac{\pi}{2}$ .

Do you connect these computations with an ongoing discussion over moodle forum?