Learning Classifier Systems

Andrew Cannon Angeline Honggowarsito

Contents

- Introduction to LCS / LCS Metaphor
- The Driving Mechanism
 - Learning
 - Evolution
- Minimal Classifier System
- Categories of LCS

Rule-Based Agents

- Represented by rule-based agents.
- Agents Single Components
- IF condition THEN action
- Use system's environment information to make decision

Metaphor

- Two biological Metaphors:
 - Evolution
 - Learning
- Genetic Algorithm & Learning Mechanism
- Environment of the system
- Example
 - Robots navigating maze environment

The Driving Mechanism

- Discovery The Genetic Algorithm
 - Rule Discovery
 - Apply Genetic Algorithm
 - The fitness function quantifies the optimality of a given rule
 - Classification Accuracy most widely used as metric of fitness

The Driving Mechanism

Learning

- "The improvement of performance in some environment through the acquisition of knowledge resulting from experience in that environment."
- Each classifier has one or more parameters
- Iteratively update the parameters

Learning

- Purposes:
 - Identify useful classifiers
 - Discovery of better rules
- Different problem domains require different styles of learning.
- Learning based on the information provided
 - Batch Learning
 - Training instances presented simultaneously.
 - End result: rule set that does not change with respect to time.

Learning

- Incremental learning
 - One training instances at a time
 - End result:
 - Rule set that changes continuously
- Learning based on type of feedback
 - Supervised Learning
 - Reinforcement Learning

- Basic LCS Implementation
- Developed by Larry Bull
- Advancing LCS theory
- Designed to understand more complex implementations, instead of solving real world problems.

FIGURE 3: MCS algorithm—an example iteration.

- Input Data
 - 4 Digit binary Number
- Learning Iteratively, one instance at a time
- Population [N]
 - Condition {C}
 - Action {A}
 - Fitness Parameter {F}
- Population is randomly initialized

Population

- Condition
 - String of "0, 1, #"
 - 00#1 matches 0011 or 0001
- Action
 - Which action is possible (0 or 1)
- Fitness Parameter
 - How good is the classifier

0011

С	Α	F
00#1	1	88
0##1	0	17
#010	1	34
001#	1	91
0#11	0	66
11#0	0	7

Match Set

- Population Scanned
- Match Set: List of rules whose condition matches the input string at each position
- ▶ Input = 0011

С	Α	F
00#1	1	88
0##1	0	17
#010	1	34
001#	1	91
0#11	0	66
11#0	0	7

С	Α	F
00#1	1	88
0##1	0	17
001#	1	91
0#11	0	66

Population

Match set

Action Set

- Action Set established using explore/exploit scheme by alternating between:
 - Select action found in M (Explore)
 - Select deterministically with prediction array

Match set

С	Α	F
00#1	1	88
0##1	0	17
001#	1	91
001#	0	66

Action set

00#1	1	88
001#	1	91

Prediction array

Action 1	179
Action 0	83

- Prediction array: List of prediction values calculated for each action
- Prediction value: sum of fitness values found in the subset of M advocating the same action
- Learning starts when the reward is received

Contents

- Categories of LCS
 - Accuracy based (XCS)

- Extended classifier system
- Most studied and widely used family of LCS
- Each rule predicts a particular reward (and error)
- Each rule has a particular fitness
- Retain rules that predict lower rewards as long as those predictions are accurate

- Population of rules (initially empty but bounded to some size P) specifying actions in response to conditions
- Match set formed in response to stimuli from environment
- Action selected from match set
 - Highest fitness
 - Roulette wheel selection
 - Alternation between exploration and exploitation
- Rules advocating the same action form the action set

- Receive a reward r from the environment for executing the specified action
- Update the predicted reward for each rule in the action set
 - $p \leftarrow p + \beta (r-p)$
- Update the predicted error for each rule in the action set
 - $\varepsilon \leftarrow \varepsilon + \beta (|r-p| \varepsilon)$
 - β = estimation rate

- If ε < $ε_0$, set prediction accuracy k=1
- Otherwise, set prediction accuracy
 - $k = \alpha(\epsilon_0/\epsilon)^v$ for some $\alpha, v > 0$
- Calculate relative prediction accuracy
 - k' = k(rule) / (sum of k for all rules in action set)
- Update the fitness of each rule
 - $f \leftarrow f + \beta (k' f)$
 - α = learning rate
 - β = estimation rate

- Run genetic algorithm to introduce diversity and increase fitness of population
- Run every θ_{GA} time steps
- Run on members of action set (rather than members of global population)
- Favours accurate classifiers
- Two parents selected via roulette wheel selection (based on fitness) produce two offspring via mutation and crossover

- Covering operator adds new rules when no rules match the current environmental condition (possibly generalised)
- If the population exceeds its bounded size, the requisite number of rules are deleted via roulette wheel selection based on the average size of the action sets containing each rule

- Sometimes, when a new rule is added, it is checked whether or not a more general rule already exists – if it does, another copy of the more general rule is added instead of the more specific rule
- Favours generalisation
- Computationally expensive

- Suggested parameters (Butz and Wilson 2002)
 - Maximum population size P=800 or P=2000
 - Learning rate $\alpha = 0.1$
 - Estimation rate $\beta = 0.2$
 - Genetic algorithm run every $\theta_{GA} = 25$ time steps