Таблица 3.2 – Распределение электрической энергии между электростанциями летом

t Hac	D MR	5xK-200	6xK-300	4xK-500	2xΠT-60	3xT-250
t, yac	<i>P</i> _H , MBT					
1	2694	488,04	935,27	1123,76	35,23	111,7
2	2694	488,04	935,27	1123,76	35,23	111,7
3	2694	488,04	935,27	1123,76	35,23	111,7
4	2694	488,04	935,27	1123,76	35,23	111,7
5	2963	536,03	1072,25	1207,79	35,23	111,7
6	3232	584,02	1151,05	1350	35,23	111,7
7	3771	692	1350	1582,07	35,23	111,7
8	4040	692	1350	1212,77	35,23	750
9	4310	692	1350	1462,54	55,46	750
10	4310	692	1350	1462,54	55,46	750
11	4202	692	1350	1445,45	55,46	750
12	4040	692	1350	1193,54	55,46	750
13	3502	634,84	1350	1350	55,46	111,7
14	3771	692	1350	1445,45	55,46	750
15	3771	692	1350	1445,45	55,46	750
16	3879	692	1350	1445,45	55,46	750
17	3933	692	1350	1445,45	55,46	750
18	3933	692	1350	1445,45	55,46	750
19	3771	692	1350	1445,45	55,46	750
20	3502	634,84	1350	1350	55,46	111,7
21	3232	572,02	1171,1	1321,72	55,46	111,7
22	3232	572,02	1171,1	1321,72	55,46	111,7
23	2963	542,76	1044,48	1208,6	55,46	111,7
24	2963	542,76	1044,48	1208,6	55,46	111,7
За сутки	84096	14875,45	29295,54	31845,08	1169,2	9702,1
Cylkn						

В ходе расчета установлено, что есть необходимость продажи электроэнергии в первые 4 часа зимнего периода и в 11 час, а также в период с 14 до 19 часов включительно летнего периода.

3.2 Определение распределения тепла между электростанциями

Произведём расчет расхода тепла на агрегат за каждый час суток с помощью энергетических характеристик турбоагрегатов согласно [2, стр.8]:

$$Q_{\text{K}-200} = 29,48 + 1,82 \cdot P_{\text{\tiny 3K}} + 1,95 \cdot (P - P_{\text{\tiny 3K}}) =$$

$$= 29,48 + 1,82 \cdot 173 + 1,95 \cdot \left(\frac{595,055}{5} - 173\right) = 239,061 \text{ MBT}$$

$$Q_{\text{K}-300} = 58 + 1,805 \cdot P_{\text{\tiny 3K}} + 1,9 \cdot (P - P_{\text{\tiny 3K}}) =$$

$$\mathcal{C}_{\scriptscriptstyle \mathrm{3H}}^{\, \mathrm{39}} = \mathcal{C}_{\Sigma} + \mathcal{C}_{\scriptscriptstyle \mathrm{3c}} = 5\,376\,931\,802,\!16 + 43\,879\,500,\!00 \; = 5\,420\,811\,302,\!16$$
 руб

Себестоимость 1 кВт × ч энергии, полезно отпущенной потребителям:

$$C_{99}^{\text{пол}} = \frac{C_{9\text{H}}^{99} + C_{\text{пок}} - C_{\text{прод}}}{9_{\text{год}}^{\text{отп}} \times (1 - K_{\text{пок}})}$$

где $K_{\text{пот}}$ – коэффициент потерь в сетях: $K_{\text{пот}} = 0,1$;

Количество покупной и продаваемой энергии:

$$C_{\text{прод}} = \Im_{\text{прод}} \times T_{\text{мэс}} = 690 \ 137,7 \times 1000 \times 0,16 = 110 \ 422 \ 032 \ \text{руб}.$$

 Где $T_{\text{мэс}}$ -тариф на межсистемный переток

$$C_{\mathfrak{I}\mathfrak{I}}^{\Pi O \Pi} = \frac{C_{\mathfrak{I}\mathfrak{I}}^{\mathfrak{I}\mathfrak{I}} + C_{\Pi O K} - C_{\Pi p O \mathcal{I}}}{\mathfrak{I}_{\Gamma O \mathcal{I}}^{\Pi T \Pi} \times (1 - K_{\Pi O T})} = \frac{5 \ 420 \ 811 \ 302,16 - 110 \ 422 \ 032}{34105822,1 \times 1000 \times (1 - 0,1)} =$$
$$= 0,173 \ \text{py6./kBt} \times \text{q}$$

4.5 Расчет основных показателей экономической эффективности

Стоимость реализации энергии:

где: T_{99}^{cp} -средний тариф на электроэнергию, отпускаемую потребителям,

$$T_{99}^{cp} = 0.28666 \times \frac{2.5}{2.5789} = 0.278 \frac{py6}{\kappa B_T \times y}$$

 $T_{{ t T}9}^{cp}$ -средний тариф на тепловую энергию, отпускаемую потребителям, $T_{{ t T}9}^{cp}=128 imesrac{2,5}{2,5789}=124,388~rac{{ t py6}}{{ t \kappa B{ t T} imes{ t Y}}}$

$$\mathcal{A} = \mathfrak{I}_{\text{год}}^{\text{отп}} \times (1 - K_{\text{пот}}) \times T_{\mathfrak{I}\mathfrak{I}}^{\text{ср}} + Q_{\text{отп}}^{\text{год}} \times T_{\text{т}\mathfrak{I}\mathfrak{I}}^{\text{ср}} = 34105822, 1 \times 1000 \times (1 - 0, 1) \times 0,278 + 5291339 \times 124,388 = 9191455764,95 \text{ руб.}$$

Прибыль энергосистемы:

$$\Pi = \mathcal{I} - (C_{\text{эн}} + C_{\text{пок}} - C_{\text{прод}})$$

Продолжение таблицы А4

11p o Activitating 1 would print 1									
0,333	762,20	1500,00	1500,00	120,00	750,00	4632,20			
0,334	767,60	1500,00	1500,00	120,00	750,00	4637,60			
0,335	773,00	1500,00	1500,00	120,00	750,00	4643,00			
0,336	778,40	1500,00	1500,00	120,00	750,00	4648,40			
0,337	783,80	1500,00	1500,00	120,00	750,00	4653,80			
0,338	789,20	1500,00	1500,00	120,00	750,00	4659,20			
0,339	794,60	1500,00	1500,00	120,00	750,00	4664,60			
0,340	800,00	1500,00	1500,00	120,00	750,00	4670,00			

Рисунок А1 – Суммарная ХОП энергосистемы для зимнего периода

Рисунок А2 – Суммарная ХОП энергосистемы для летнего периода