Web Usage Mining: Recommendation

Outline

Introduction to recommendation

Content-based recommendation

Collaborative filtering

▶ Remarks and practical tips

So, what do you want?

Why Recommendation?

- Large quantity
- Diversified quality

Recommendations

From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also:TV networks, movie theaters,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller (http://www.wired.com/wired/archive/12.10/tail.html)

Recommendation Types

- Editorial
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - ▶ Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, Taobao.com...

Formal Model

- X = set of Customers
- S = set of Items
- ▶ Utility function $u: X \times S \rightarrow R$
 - R =set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	King Kong	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

Gathering Ratings

Explicit

- Ask people to rate items
- ▶ Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 e.g., purchase implies high rating
- What about low ratings?

Extrapolating Utilities

- ▶ Key problem: matrix *U* is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems
 - Content-based
 - Collaborative
 - Latent factor based

Outline

Introduction to recommendation

Content-based recommendation

Collaborative filtering

▶ Remarks and practical tips

Content-based Recommendations

Main idea: recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

- ▶ For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - ▶ Text: set of "important" words in document
- How to pick important words?
 - Usual heuristic from text mining is TF.IDF (Term Frequency * Inverse Doc Frequency)
 - ▶ Term ... Feature
 - Document ... Item

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- ▶ Variation: weight by difference from average rating for item
- **...**

Prediction heuristic

• Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{\|\mathbf{x}\| \cdot \|\mathbf{i}\|}$$

Pros: Content-based Approach

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend users with unique tastes
- Able to recommend new and unpopular items
 - No first-rater problem
- Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- Finding the appropriate features is hard
 - ▶ E.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- Recommendations for new users
 - How to build a user profile?

Outline

Introduction to recommendation

- Content-based recommendation
- Collaborative filtering
- ▶ Remarks and practical tips

Collaborative Filtering (协同过滤)

Consider user x

- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Similar Users

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: ignores the value of the rating
- Cosine similarity measure

 - Problem: treats missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Rating Predictions

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} r_{yi}}{\sum_{y \in N} s_{xy}} \qquad s_{xy} = sim(x, y)$$

- Other options?
- Many other tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item *i*, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

 s_{ij} ... similarity of items i and j r_{xj} ...rating of user u on item j N(i;x)... set of items rated by x similar to i

CF: Common Practice

- ▶ Define similarity s_{ij} of item i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

- **b**_{xi}: baseline estimate for r_{xi}
- $b_{xi} = \mu + b_x + b_i$
- μ =overall mean movie rating
- **b**_x=rating deviation of user $x = (average rating of user x)-\mu$
- b_i =rating deviation of movie i

Item-Item vs. User-User

In practice, it has been observed that item-item often works better than user-user

- Why?
 - ltems are simpler, users have multiple tastes

Pros and Cons of Collaborative Filtering

Works for any kind of item

No feature selection needed

⊗Cold start:

Need enough users in the system to find a match

⊗Sparsity:

- ▶ The user/ratings matrix is sparse
- Hard to find users that have rated the same items

⊗First rater:

- Cannot recommend an item that has not been previously rated
- New items, esoteric items

⊗Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement or more different recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - ▶ Demographics (人口统计学) to deal with new user problem

Outline

Introduction to recommendation

- Content-based recommendation
- Collaborative filtering
- ▶ Remarks and practical tips

Evaluation

Evaluation

Evaluating Predictions

Compare predictions with known ratings

- Root-mean-square error (RMSE)
 - $\int \sum_{xi} (r_{xi} r_{xi}^*)^2$ where r_{xi} is predicted, r_{xi}^* is the true rating
- Precision at top 10:
 - % of those in top 10

Another approach: 0/1 model

- Coverage
 - Number of items/users for which system can make predictions
- Precision
 - Accuracy of predictions
- Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - ▶ Prediction Context (情境)
 - Order of predictions
- In practice, we care only to predict high ratings
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Need to pre-compute
- ▶ Naïve pre-computation takes time $O(|S| \cdot |X|)$
 - Near-neighbor search in high dimensions
- Can use clustering, partitioning as alternatives, but quality degrades

The Netflix Prize

Training data

- ▶ 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

▶ Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: root mean squared error (RMSE)
- Netflix Cinematch RMSE: 0.9514

Competition

- 2700+ teams
- \$1 million prize for 10% improvement on Cinematch

Major Challenges in Recommendation

- Data Sparsity
- Scalability
- Cold Start
- Diversity vs. Accuracy
- Vulnerability to Attacks
- Value of Time
- Evaluation of Recommendations
- User Behavior mining
- User Interface
- Social-based recommendation
- Multi-resource data

Factors that Influence Recommendation

- Temporal
- Spatial / location
- Social
- ▶ Trust

• • •

Summary of Web Mining

Roadmap

Note: Helpful to combine usage with content and structure

Introduction

> 网络挖掘的概念,包含哪些方面的内容,分别有哪些重要应用?

Data

- ▶ 概念: 数据对象(Objects), 属性(Attributes), 维度 (Dimensions), 特征(features)
- ▶ 高维诅咒(Curse of dimensionality)现象。
- ▶ 对于数据的预处理有哪些方法?其中需要掌握采样 (Sampling),特征选择(Feature selection)及降维 (Dimensionality reduction)的基本原理。

Classification

- ▶ 监督学习(Supervised learning)与无监督学习 (Unsupervised learning)的关系与区别。
- ▶ 分类(Classification)的基本原理。
- ▶ 数据的向量表示(Vector space representation)
- > 熟练掌握k近邻算法,包括影响算法性能的要素——近邻个数及距离(相似度)度量。
- ▶ 熟练掌握Logistic regression分类方法。
- 如何评价分类效果?理解训练错误率,测试错误率以及泛化错误率的区别。

Clustering

- ▶ 聚类(Clustering)的基本原理及准则。
 - High similarity within clusters
 - Low similarity between clusters
 - Important issues of clustering:
 - Number of clusters, Similarity measure
- > 层次式聚类算法流程,两个类之间的距离定义。
- > 熟练掌握K-means算法——算法流程,优化目标,收敛性分析。
- > 聚类算法的评价标准。
 - With or without ground truth

Networks: Community

- ▶ 社区(Community)的概念
- 社区发现与聚类的关系。
- ▶ 如何计算结构相似度?
- ▶图分析的一些重要矩阵:邻接(Affinity)矩阵,拉普拉斯 (Laplacian)矩阵,以及它们的一些重要性质。
- ▶ Cut概念; ratio cut以及normalized cut的定义及推导。
- ▶ Modularity概念及其推导。与spectral clustering的相同 点及不同点。

Point: analyze the eigenvectors of a matrix to explore the structure of the graph

Networks: Influence

- 几种度量节点中心性的标准。
- ▶ 两种影响力传播模型——线性阈值模型(Linear Threshold Model),层级传播模型(Independent Cascade Model)的传播过程及区别。
- > 最大影响节点集(Most influential set)——问题建模,贪心算法以及算法的近似度。

▶ 子模性质(submodularity)。

Recommendation

- 推荐问题的形式。
- ▶ 基于内容的推荐: 主要思想。
- > 协同过滤:主要思想和基本方法。
- > 各自的优缺点。