MAT 220 Fall 2017

Problem Collection for Introduction to Mathematical Reasoning

By Dana C. Ernst and Nándor Sieben Northern Arizona University

Problem 1. Three strangers meet at a taxi stand and decide to share a cab to cut down the cost. Each has a different destination but all are heading in more-or-less the same direction. Bob is traveling 10 miles, Sally is traveling 20 miles, and Mike is traveling 30 miles. If the taxi costs \$2 per mile, how much should each contribute to the total fare? What do you think is the most common answer to this question?

Problem 2. Multiply together the numbers of fingers on each hand of all the human beings in the world—approximately 7 billion in all. What is the approximate answer?

Problem 3. Imagine a hallway with 1000 doors numbered consecutively 1 through 1000. Suppose all of the doors are closed to start with. Then some dude with nothing better to do walks down the hallway and opens all of the doors. Because the dude is still bored, he decides to close every other door starting with door number 2. Then he walks down the hall and changes (i.e., if open, he closes it; if closed, he opens it) every third door starting with door 3. Then he walks down the hall and changes every fourth door starting with door 4. He continues this way, making a total of 1000 passes down the hallway, so that on the 1000th pass, he changes door 1000. At the end of this process, which doors are open and which doors are closed?

Problem 4. Suppose you have 6 toothpicks that are exactly the same length. Can you arrange the toothpicks so that 4 identical triangles are formed? Justify your answer.

Problem 5. I have 10 sticks in my bag. The length of each stick is an integer. No matter which 3 sticks I try to use, I cannot make a triangle out of those sticks. What is the minimum length of the longest stick?

Problem 6. Imagine you have 25 pebbles, each occupying one square on a 5 by 5 chess board. Tackle each of the following variations of a puzzle.

- (a) Variation 1: Suppose that each pebble must move to an adjacent square by only moving up, down, left, or right. If this is possible, describe a solution. If this is impossible, explain why.
- (b) Variation 2: Suppose that all but one pebble (your choice which one) must move to an adjacent square by only moving up, down, left, or right. If this is possible, describe a solution. If this is impossible, explain why.
- (c) Variation 3: Consider Variation 1 again, but this time also allow diagonal moves to adjacent squares. If this is possible, describe a solution. If this is impossible, explain why.

Problem 7. Consider an $n \times n$ chess board and variation 1 of the pebble puzzle from above. For what values of n is the puzzle solvable? For what values of n is the puzzle unsolvable? Justify your answers by either providing a method for a solution or an explanation for why a solution is not possible.

Problem 8. Consider an $n \times n$ chess board and variation 2 of the pebble puzzle from above. For what values of n is the puzzle solvable? For what values of n is the puzzle unsolvable? Justify your answers by either providing a method for a solution or an explanation for why a solution is not possible.

Problem 9. An ant is crawling along the edges of a unit cube. What is the maximum distance it can cover starting from a corner so that it does not cover any edge twice?

MAT 220 Fall 2017

Problem 10. How many ways can 110 be written as the sum of 14 different positive integers? *Hint:* First, figure out what the largest possible integer could be in the sum. Note that the largest integer in the sum will be maximized when the other 13 numbers are as small as possible. Finish off the problem by doing an analysis of cases.

Problem 11. Four red ants and two black ants are walking along the edge of a one meter stick. The four red ants, called Albert, Bart, Debbie, and Edith, are all walking from left to right, and the two black ants, Cindy and Fred, are walking from right to left. The ants always walk at exactly one centimeter per second. Whenever they bump into another ant, they immediately turn around and walk in the other direction. And whenever they get to the end of a stick, they fall off. Albert starts at the left hand end of the stick, while Bart starts 20.2 cm from the left, Debbie is at 38.7cm, Edith is at 64.9cm and Fred is at 81.8cm. Cindy's position is not known—all we know is that he starts somewhere between Bart and Debbie. Which ant is the last to fall off the stick? And how long will it be before he or she does fall off?

Problem 12. The grid below has 12 boxes and 15 edges connecting boxes. In each box, place one of the six integers from 1 to 6 such that the following conditions hold:

- For each possible pair of distinct numbers from 1 to 6, there is exactly one edge connecting two boxes with that pair of numbers.
- If an edge has an arrow, then it points from a box with a smaller number to a box with a larger number.

You do not need to prove that your configuration is the only one possible; you merely need to find a configuration that satisfies the constraints above.

Problem 13. Take 15 poker chips or coins, divide into any number of piles with any number of chips in each pile. Arrange piles in adjacent columns. Take the top chip off every column and make a new column to the left. Repeat forever. What happens? Make conjectures about what happens when we change the number of chips.

Problem 14. The *n*th *triangular number* is defined via $t_n := 1+2+\cdots+n$. For example, $t_4 = 1+2+3+4=10$. Find a visual proof of the following fact. By "visual proof" we mean a sufficiently general picture that is convincing enough to justify the claim.

For all
$$n \in \mathbb{N}$$
, $t_n = \frac{n(n+1)}{2}$.

Problem 15. Let t_n denote the nth triangular number. Find both an algebraic proof and a visual proof of the following fact.

For all
$$n \in \mathbb{N}$$
, $t_n + t_{n+1} = (n+1)^2$.

Problem 16. Find a visual proof of the following fact. *Warning*: This problem is not about triangular numbers.

For
$$n \in \mathbb{N}$$
, $1 + 3 + 5 + \cdots + (2n - 1) = n^2$.

Problem 17. We have two strings of pyrotechnic fuse. The strings do not look homogeneous in thickness but both of them have a label saying 4 minutes. So we can assume that it takes 4 minutes to burn through either of these fuses. How can we measure a one minute interval?