5

10

FRAME IDENTIFIER

Field of the Invention

This invention relates to discrimination between different communication signal frames, using pseudo-noise signals to determine which frame is present.

Background of the Invention

In certain communication systems that rely upon use of pseudo-noise techniques for signal discrimination, signals are transmitted within each of a sequence of frames, with each frame including a pseudo-noise preamble or post-amble section of a selected length L1 (expressed in bits or symbols) and a data section of length L2. Where the length L1 of the pseudo-noise preamble is greater than the number N1 of distinguishable pseudo-noise signals (each of original length N1), these pseudo-noise signals must be extended to a length L1, in some manner, in order to fill in the remaining bit or symbol spaces.

What is needed is an approach that provides an identification of frame number using a computable value associated with a pseudo-noise signal associated with a preamble (or post-amble) of the frame. Preferably, this approach should provide a unique correspondence between a computable value and a frame id.

Summary of the Invention

These needs are met by the invention, which provides a method and system for determining which frame is present by: (1) receiving two or more consecutive frames and computing overlap functions, OF(m;1) and OF(m;2) (e.g., correlation functions), for each of the frame preambles or post-ambles with a reference signal, where m is an offset index or integer; (2) determining the location ("phase") of the maximum amplitude of OF(m;k) (k = 1, 2) as the index m is varied; (3) forming a pth-order difference of the phases ($p \ge 1$); and (4) using the pth-order phase difference to determine a (unique) frame number that corresponds to the pth-order difference. The pth order difference can be defined in several ways to provide a unique correspondence with frame number.

Figure 1 illustrates a sequence of N1 consecutive frames used in the invention

Figure 2 illustrates two major components of a frame, with component lengths L1 and M1, processed by the invention.

Figure 3 is a graphical view of an correlation or overlap function computed from a basic pseudo-noise signal used in the invention.

Figures 4A, 4B and 4C are graphical views of correlation function maxima computed using different index values.

Figure 5 graphically illustrates how overlap functions for two consecutive frame preambles would appear.

Description of Best Modes of the Invention

A communication signal, as received and analyzed according to the invention, includes a sequence of N1 consecutive frames f_n , numbered n = 0, 1, 2, ..., N1-2, N1-1, with frame numbers being repeated periodically where required, as shown in Figure 1. Each frame f_n includes a pseudo-noise preamble or post-amble PN(t;n) (referred to collectively as a "designated pre-amble"

herein) of length N1 bits or symbols ("units"), followed by or preceded by an OFDM sequence OFDM(t;n) that includes data that are being transmitted, as illustrated in Figure 2. In one embodiment of the invention, discussed here as an example, N1 = 253, N1' (= min value \geq N1 of form 2P-1) = 255, L1 = 378 and M1 = 3780.

In one embodiment of the invention, each pseudo-noise preamble PN(t;n) consists of a sequence of values (+1 or -1) and is optionally a time shifted replica of any other pseudo-noise preamble PN(t;n') in the ensemble of pseudo-noise signals of length N1; each augmented preamble is periodic:

$$PN(t;n) = PN(t + \Delta t(n;m);m), \tag{1}$$

Here the time shift value $\Delta t(n;m)$ is a selected number of units that may depend upon the indices m and n. More generally, PN(t;n) need not be a time-shifted

25

5

25

5

10

replica of PN(t;m), and the relationship is more complex. An overlap function, such as a correlation function,

 $C(n;m) = \int PN(t;n) \ PN(t;n+m) \ dt \ (m=0,\pm 1,\pm 2,...),$ (2) computed over a selected interval for any pair of pseudo-noise signals, PN(t;n) and P(t;n+m), behaves approximately as illustrated in Figure 3: (1) small negative (or positive values) of C(n,m), except within a small band of indices m given by $m_{c1} \le m \le m_{c2}$; (2) C(n,m) rising monotonically, but not necessarily linearly, to a sharply defined peak as m increases to a central value, $m \to m_c$; (3) C(n,m) decreasing monotonically, but not necessarily linearly, to small negative (or positive) values as m increases beyond m_c , with $m \to m_{c2}$, with $m_{c1} < m_c < m_{c2}$. Optionally, the correlation function C(n;m) is periodic in the index m, with period equal to N1 or related to N1.

Because the number N1 (and thus length) of a PN signal used is less than the length L1 of the designated preamble, the quantity C(n;m) will have a main peak of amplitude C(max) and one or two subsidiary peaks of lesser amplitude, as indicated in Figures 4A, 4B and 4C. Except for effects of the presence of noise, one peak will always have an amplitude equal to C(max) and each of the other (subsidiary) peaks will have a reduced amplitude, no larger than C(max;sub) (< C(max)).

When two or more consecutive frames are received, the designated preamble PRE(t;m) for each frame is used to compute overlap functions

OF(m;k) = $\int PRE(t;m) \, MS(t;k) \, dt$ (k = 1, 2, ..., N1') (3) over a discrete range, such as $-[(N1)/2]_{int} \le m \le [(N1+1)/2]_{int}$, over a corresponding continuous range, or over a selected sub-range for the N1 designated preamble signals, where MS(t;k) is a known m-sequence signal and k = 1, ..., N1 is an index that may represent a shift or translation of a single m-sequence, or {MS(t;k)} may be a collection of different m-sequences. If each of the designated preamble signals PRE(t;m) is a PN signal, each of the overlap functions will behave as illustrated in Figure 3, as a function of the unknown

frame index m, and each overlap function OF(m;k) will have a maximum peak value and a corresponding peak value location or phase, $m = m_C(k)$.

Figures 5 graphically illustrates how the overlap functions OF(m;k) would appear in a preferred embodiment in which the correlation function in Figure 3 is linear in the region $m_{c1} \le m \le m_{c2}$ for each such function. Each overlap function will manifest a main peak, of height approximately equal to C(max), and one or two subsidiary peaks of lesser amplitude with maximum peak value(s) C(max;sub) < C(max). Ideally, the main peak will have the value C(max), except for the presence of noise, where the main peak may have a reduced value, at least equal to C(max;red), with C(max;sub) < C(max;red) < C(max). Optionally, the system applies a threshold criterion and determines only the location of any main peak whose amplitude C(peak) satisfies

 $C(peak) > C_{thr} = w \cdot C(max; sub) + (1-w) \cdot C(max; red),$ (4)

where w is a selected real number satisfying $0 \le w \le 1$. This optional approach again ensures that only the maximum peak amplitude, and its corresponding phase, will be identified.

Each of the locations, $m = m_C(1)$ and $m = m_C(2)$, of the maximum peaks for the overlap functions, OF(m;k) and OF(m+1;k), of two or more consecutive frames has an associated phase $\phi(m)$, an integer or other index that ranges from -63 to +63 and generally has two different frames (e.g., nos. 51 and 201, each with phase $\phi(m) = -26$) that correspond to the same phase. Table 1 sets forth phases and phase differences associated with each of the 253 frames. Thus, an individual phase $\phi(m)$ cannot be used as a unique identifier for the unknown frame number m. However, a first-order phase difference

 $\Delta_1(\mathbf{m}) = \phi(\mathbf{m}+1) - \phi(\mathbf{m}) \tag{5}$

also set forth in Table 1, varies from 0 to +126 and from -1 to -126 and is unique, if not monotonic, for each of the 253 frames.

Thus, $\Delta_1(m)$ can be computed and compared against a table or data base to determine the frame number m. If $\Delta_1(m)$ is negative, the frame number is odd

25

5

(e.g., 1, 3, 5, ..., 251); and if $\Delta_1(m)$ is positive, the frame number is even. The frame number itself can be determined from the following:

 $0 \le \Delta_1(m) \le 126$ and even: $m = \Delta_1(m)$;

 $1 \le \Delta_1(m) \le 125$ and odd: $m = 253 - \Delta_1(m)$;

 $-126 \le \Delta_1(m) \le -2$ and even: $m = 253 + \Delta_1(m)$;

$$-125 \le \Delta_1(m) \le -1$$
 and odd: $m = -\Delta_1(m)$. (6)

Equation (6) can be expressed here as an inverse mapping $m = F\{\Delta_1(m)\}\$.

From Table 1, one verifies that the first-order phase sums satisfy $\sum_{1}(m) = \phi(m) + \phi(m+1) = \pm 1,$ (7)

and the values +1 and -1 should alternate as m increases. These constraints can be used to check for consistency in the phases $\phi(m)$, where $\phi(m)$ is allowed to have integer and non-integer values. For example, the peaks of three consecutive overlap functions, OF(m;k) and OF(m+1;k) and OF(m+2;k) (k = unknown frame no. = 1, 2, ...), may appear to occur at non-integer values m = m' and m = m'' and m = m'', such as $\phi(m') = 6.9$ and $\phi(m'') = -7.4$ and $\phi(m''') = 8.7$. As a first approach, one might re-assign the indices to nearest-integer values, $\phi(m') \to 7$, $\phi(m'') \to -7$ and $\phi(m''') \to 9$. However, the sums become

$$\Sigma_1(m) = \phi(m') + \phi(m'') = 0,$$
 (8A)

$$\Sigma_1(m) = \phi(m'') + \phi(m''') = +2,$$
 (8B)

each of which is clearly inconsistent with the constraints set forth in Eq. (10). One method of avoiding these inconsistencies is to (re)assign $\phi(m'') = -8$, whereby the sums become

$$\Sigma_1(m) = \phi(m') + \phi(m'') = -1,$$
 (9A)

$$\Sigma_1(m) = \phi(m'') + \phi(m''') = +1,$$
 (9B)

which is consistent with Eq. (10). If each of two consecutive sums, $\Sigma_1(m)$ and $\Sigma_1(m+1)$, does not satisfy the constraint in Eq. (7), adjustment of the reassigned phase value $\phi(m+1)$ may satisfy each of the corresponding constraints.

Other phase differences $\Delta_n(m)$ may or may not provide a unique correspondence with frame number. For example, the second-order phase difference

30

5

10

$$\Delta_2(m) = \Delta_1(m+1) - \Delta_1(m)$$

$$= \phi(m+2) - 2\phi(m+1) + \phi(m)$$
(10)

does not provide a unique correspondence because, for example

$$\Delta_2(m=124) = \Delta_2(m=126) = 251.$$
 (11)

5 This is also true for the fourth-order phase difference

$$\Delta_4(m) = \phi(m+4) - 4\phi(m+3) + 6\phi(m+2) - 4\phi(m+1) + \phi(m), \tag{12}$$

where, for example,

$$\Delta_{\Delta}(m=122) = \Delta_{\Delta}(m=126) = -988.$$
 (13)

However, the third order phase difference, defined by

$$\Delta_3(m) = \phi(m+3) - 3\phi(m+2) + 3\phi(m+1) - \phi(m), \tag{14}$$

does provide a unique correspondence with frame number m. It is postulated here that a Qth-order phase difference ($Q \ge 2$), defined as

$$\begin{array}{c} Q \\ \Delta_{Q}(m) = \sum (-)^{q} \{Q!/(Q-q)! \ q! \} \ \phi(m+q). \end{array} \tag{15} \\ q=0 \end{array}$$

does provides a unique correspondence with frame number (only) for odd integers Q. More generally, a suitably weighted linear combination, such as

$$LC(m) = \Delta_1(m) \pm 0.5 \cdot \Delta_2(m) \pm 0.25 \cdot \Delta_3(m) \pm 0.125 \cdot \Delta_4(m)$$
 (16)

can provide a unique correspondence, because the pair of indices at which $\Delta_2(m)$ is not unique and the pair of indices at which $\Delta_4(m)$ is not unique, do not coincide. More generally, a linear combination such as

$$LC(m) = \sum_{p=1}^{P} c(p) \Delta_{p}(m) \qquad (P \ge 2)$$

$$(17)$$

2 5 may provide a unique correspondence, where at least one coefficient c(p) is non-zero. In particular, a linear combination LC(m) for which

$$c(1) = 1, (18A)$$

$$c(p+1)/c(p) \le 0.5 \quad (p = 1, ..., P-1),$$
 (18B)

provides a unique correspondence.

Table 1. Frame Numbers; Phases; Phase Differences

Table 1	. Flain	e Numbers	, I mases, i	111030 1211	TOTOTIOUS
FrameNo	∳ai(m)	Deltal(m)	Delta2(m)	Delta3(m)	Detla4(m) -12
0	0	0 -1	-1 3	4 -8	20
1	-1	-1	-5	12	-28
2		2 -3	7	-16	36
3 4	2	4	7 -9	20	-44
5	1 -2 2 -3	4 -5 6	11	-24	52
5 6	3 -4	6	-13	28	-60 68
7	-4	-7	15 -17	-32 36	-76
8	4	8 ~9	19	-40	84
9 10	-5 5	10	-21	44	-92
11	4 -5 5 -6	-11	23	-48	100
12	6 -7	12	-25	52	-108
13	- 7	-13	27 - 29	-56 60	116 -124
14	7	14 -15	31	-64	132
15	-8 8	16	-33	68	-140
16 17	-9	-17	35	-72	148
18	9	18	-37	76	-156
19	-10	-19	39	-80 84	164 -172
20	10	20	-41 43	-88	180
21	-11 11	-21 22	-45	92	-188
22 23	-12	-23	47	-96	196
24	12	24	-49	100	-204
25	-13	-25	51	-104 108	212 -220
26	13	26 -27	-53 55	-112	228
27	-14 14	28	-57	116	-236
28 29	-15	-29	59	-120	244
30	15	30	-61	124	-252
31	-16	-31	63 -65	-128 132	260 -268
32	16	32 -33	67	-136	276
- 33 34	-17 17	34	-69	140	-284
35	-18	-35	71	-144	292
36	18	36	-73 75	148 -152	-300 308
37	-19	-37 38	-77	156	-316
38 39	19 -20	-39	79	-160	324
40	20	40	-81	164	-332
41	-21	-41	83	-168	340
42	21	42	-85 87	172 -176	-348 356
43	-22	-43 44	-89	180	-364
44 45	22 -23	-45	91	-184	372
46	23	46	-93	188	-380
47	-24	-47	95	-192	388 -396
48	24	48	-97 99	196 -200	404
49 = 0	-25 25	-49 50	-101	204	-412
50 51	-26	-51	103	-208	420
52	26	52	-105	212	-428 436
53	-27	-53	107 -109	-216 220	-444
54	27 -28	54 -55	111	-224	452
55 56	-28 28	-35 56	-113	228	-460
57	-29	-57	115	-232	468
58	29	58	-117	236	-476 484
59	-30	-59	119 -121	-240 244	-492
60	30 -31	60 -61	123	-248	500
61 62	31	62	-125	252	-508
63	-32	-63`	127	-256	516
64	32	64	-129 131	260 -264	-524 532
65	-33	-65 66	-131 -133	268	-540
66 67	33 -34	-67	135	-272	548
68	34	68	-137	276	-556 -564
69	-35	-69	139	-280 284	564 -572
70	35	70 -71	-141 143	-288	580
71 72	-36 36	72	-145	292	-588
72 73	-37	-73	147	-296	596
74	37	74	-149	300 -304	-604 612
75	-38	-75 76	151 -153	308	-620
76 77	38 -39	-77	155	-312	628
78	39	78	-157	316	-636

٠		4 6 1	A ()	δ3(m)	D ₄ (m)
Frama No.	,φ(m) ·40	Δ,(m) -79	Δ ₂ (m) 159	13(m) -320	644
80	40	80 -81	-161 163	324 -328	-652 660
82	41	82 -83	-165 167	332 -336	-668 676
84	42	84 -85	-169 171	340 -344	-684 692
86	43	86 -87	-173 175	348 -352	-700 708
88	44	88 -89	-177 179	356 -360	-716 724
90	45	90	-181	364	-732
	-46	-91	183	-368	740
92	46	92	-185	372	-748
	-47	-93	187	-376	756
94	47	94	-189	380	-764
	-48	-95	191	-384	772
96	48	96	-193	388	-780
	-49	-97	195	-392	788
98	49	98 -99	-197 199	396 -400	-796 804
100	-50 50	100	-201 203	404 -408	-812 820
102	-51 -51	102	-205 207	412 -416	-828 836
104	-52 -52	-103 104 -105	-209 211	420 -424	-844 852
106	-53	106	-213	428	-860
	-53	-107	215	-432	868
108	-54	108	-217	436	-876
	-54	-109	219	-440	884
110	-55 55 -56	110 -111	-221 223	444 -448	-892 900
112	-56	112	-225	452	-908
	-57	-113	227	-456	916
114	57	114	-229	460	-924
	-58	-115	231	-464	932
116	-58	116	-233	468	-940
	-59	-117	235	-472	948
118	59	118	-237	476	-956
	-60	-119	239	-480	964
120	60	120	-241	484	-972
	-61	-121	243	-488	980
122	61	122	-245	492	-988
	-62	-123	247	-496	996
124	62	124	-249	500	-1003
	-63	-125	251	-503	1006
126	63	126	-252	503	-1003
	-63	-126	251	-500	996
128	62	125	-249	496	-988
	-62	-124	247	-492	980
130	61	123	-245	488	-972
131	-61	-122	243	-484	964
132	60	121	-241	480	-956
133	-60	-120	239	-476	948
	59 -59	119 -118	-237 235	472 -468	-940 932 -924
	58	117	-233	464	916
	-58	-116	231	-460	-908
	57	115	-229	456	900
	-57	-114	227	-452	-892
	56	113	-225	448	884
	-56	-112	223	-444	-876
	55	111	-221	440	868
	-55	-110	219	-436	-860
	54 -54	109 -108	-217 215 -213	432 -428 424	852 -844
	53	107	211	-420	836
	-53	-106	-209	416	-828
	52 -52	105 -104 103	207 -205	-412 408	820 -812
	51 -51 50	-102 101	203 -201	-404 400	804 -796
	-50	-100 99	199 -197	-396 392	788 -780
	49 -49 48	-98 97	195 -193	-388 384	772 -764
156 157 158	48 -48 47	-96 95	191 -189	-380 376	756 -748
± - 7 U	•				

				9	
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173	-47 46 -46 45 -45 -44 -44 -43 -43 -42 -42 41 -41 -40 -40 39	-94 93 -92 91 -90 89 -88 -85 -84 83 -82 81 -80	∆₂(m) 187 -185 183 -181 179 -177 175 -173 171 -169 167 -165 163 -161 159 -157	-372 74 368 -73 368 -73 360 -73 360 -73 352 -70 348 69 344 -66 336 -60 336 -60 332 -6 332 -6 332 -6 332 -6 332 -6 332 -6 332 -6	24 16 08 09 98 76 68 66 54 43 68 28
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 194 195	-39 -38 -38 -37 -36 -355 -334 -33322 -311 -300 -399 -298	-78 77 -76 75 -74 -73 -72 -71 -70 -68 -66 -65 -64 -65 -65 -65 -65 -75 -75 -75 -75 -75 -75 -76 -76 -76 -76 -76 -76 -76 -76 -76 -77 -76 -77 -76 -77 -77	155 -153 151 -149 147 -145 143 -141 139 -137 135 -133 131 -129 127 -125 123 -121 119 -117	304 -6 -300 5 296 -5 -292 5 288 -5 -284 5 280 -5 -276 5 272 -5 268 5 264 -5 -252 248 -4 240 -4 240 -4 236 232 -4 228 224 -6	12 04 98 98 98 98 98 98 98 98 98 98
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217	-28 -27 -27 -26 -26 -25 -24 -24 -23 -22 -21 -20 -19 -19 -18 -17	-554 -554 -551 -59 -48 -44 -44 -44 -41 -33 -33 -33 -33 -33 -35	111 -109 107 -105 103 -101 99 -97 95 -93 91 -89 87 -85 83 -81 79 -77 75 -73 71 -69	216 -212 208 -204 200 -196 192 -188 184 -180 176 -172 168 -164 160 -156 152 -148 144 -140 136	436 428 420 4404 3388 3372 3356 3356 3340 3324 -3324 -3324 -3924 -296 -296
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238	-17 -16 -15 -15 -14 -14 -13 -13 -12 -12 -11 -10 -9 -9 8 -8 7	-34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -18 -17 -16 -15	67 -65 63 -61 -59 -57 55 -53 -49 -47 -45 43 -41 39 -37 -33 -33 -29	-124 120 -116 112 -108 104 -100 96 -92 88 -84 80 -76	260 -252 244 -236 -228 -220 212 -204 196 -188 180 -172 164 -156 148 -140 132 -124 116 -108

Frame No.	\$(m)	Di(m)	$\Delta_2(m)$	10 Δ ₃ (m)	14(m)
239 240 241 242 243 244 245 246 247 248 249 250 251	-7 -6 -5 -5 -4 -4 -3 -2 -2 1	-14 13 -12 11 -10 9 -8 7 -6 5 -4 3 -2	27 -25 23 -21 19 -17 15 -13 11 -9 7 -5 3 -1	-52 48 -44 40 -36 32 -28 24 -20 16 -12 8 -4	100 -92 84 -76 68 -60 52 -44 36 -28 20 -12