

Clément Pernet and all participants of Workpackage 5

Second OpenDreamKit Project review

JNCF'19, Luminy, Feb 4, 2018

Goal: delivering high performance to math-software users

Goal: delivering high performance to math-software users

Harnessing modern hardware → parallelisation

- in-core parallelism (SIMD vectorisation)
- multi-core parallelism
- distributed computing: clusters, cloud

Architectures:

SIMD

Multicore server

HPC cluster

Cloud

Goal: delivering high performance to math-software users

Languages

- Computational Maths software uses high level languages (e.g. Python)
- ▶ High performance delivered by languages close to the metal (C, assembly)

 \leadsto compilation, automated optimisation

High performance mathematical computing

Goal:

- Improve/Develop parallelization of software components
- Expose them through the software stack
- Offer High Performance Computing to VRE's users

Milestone M8: Seamless use of parallel computing architecture in the VRE (proof of concept)

Astrid wants to run compute intensive routines involving both dense linear algebra and combinatorics. She has access through a JupyterHub-based VRE to a high end multi-core machine which includes a vanilla SAGE installation. She automatically benefits from the HPC features of the underlying specialized libraries (LinBox, ...). This is a proof of concept of the overall framework to integrate the HPC advances of specialized libraries into a general purpose VRE. It will prepare the final integration of a broader set of such parallel features for the end of the project

Organization of WorkPackage 5

Component	Review 1	Review 2	Final review
T5.1 Pari/GP		PAF	D5.16
T5.2 GAP			D5.15
T5.3 LinBox		D5.12	D5.14
T5.4 Singular	D5.6, D5.7		D5.13
T5.5 MPIR	D5.5, D5.7		
T5.6 Combinatorics	D5.1	D5.11	
T5.7 Pythran	D5.2	D5.11	
T5.8 SunGrid Engine	D5.3		

Overall

- ▶ 20+ software releases
- ▶ 7 research papers

Outline

T5.1: Pari

T5.2: GAP

T5.4: Singular

Exact linear algebra (T5.3)

Exact linear algebra algorithms and implementations (D5.12).

Distributed computing

Outline

Improving Software Systems

T5.1: Pari

T5.2: GAP

T5.4: Singular

Exact linear algebra algorithms and implementations (D5.12).

Distributed computing

T5.1: Pari

D5.16: Pari Suite release, fully supporting parallelization

- Generic parallelization engine is now mature (released since Nov 2016).
 Support POSIX-threads and MPI.
- Current work: applying it throughout the library
 - Chinese remaindering
 - Rational linear algebra
 - Discrete logarithm
 - Resultants
 - APRCL primality testing

D5.15: Final report of GAP development

- 8 releases were produced
- Towards an integration of HPC-GAP: main release GAP-4.9
 - Build system refactoring
 - Ability to compile in HPC-GAP compatibility mode
- Work in progress:
 - Multithreaded linear algebra: at the level of the Meataxe library
 - Introspection functionalities: on-the-fly optimisation decision

T5.4 Singular: Parallel sparse polynomial multiplication

FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation, partial evaluation, composition

T5.4 Singular: Parallel sparse polynomial multiplication

FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation, partial evaluation, composition

Parallelization of the (sparse) multiplication

$$(1+x+y+2z^2+3t^3+5u^5)^{21} \times (1+u+t+2z^2+3y^3+5x^5)^{21}$$

# cores	$\mathbb Z$	$\mathbb{Z}_{2^{64}-1}$
1	34145(1.0x)	30349(1.0×)
2	14856(2.3x)	12641(2.4x)
3	10844(3.1x)	8294(3.6x)
4	7205(4.7x)	6274(4.8x)
5	7621(4.4x)	5315(5.7x)
6	6156(5.5x)	4152(7.3x)
7	5679(6.0x)	3739(8.1x)
8	4458(7.6×)	3047(9.9x)

T5.4 Singular: Parallel sparse polynomial multiplication

FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation, partial evaluation, composition

Parallelization of the (sparse) multiplication

$$(1+x+y+2z^2+3t^3+5u^5)^{21} \times (1+u+t+2z^2+3y^3+5x^5)^{21}$$

# cores	\mathbb{Z}	$\mathbb{Z}_{2^{64}-1}$
1	34145(1.0x)	30349(1.0x)
2	14856(2.3x)	12641(2.4x)
3	10844(3.1x)	8294(3.6x)
4	7205(4.7x)	6274(4.8x)
5	7621(4.4x)	5315(5.7x)
6	6156(5.5x)	4152(7.3x)
7	5679(6.0x)	3739(8.1x)
8	4458(7.6x)	3047(9.9x)

- ▶ Planned improvements to the memory manager ⇒ closer to linear scaling
- Parallel division and GCD implementations are in progress.
- Integration into Factory/Singular remains to be done

Outline

T5.4: Singular

Exact linear algebra (T5.3)

Exact linear algebra algorithms and implementations (D5.12).

Distributed computing

10

Mathematics is the art of reducing any problem to linear algebra

SINGULA- W. Stein

Mathematics is the art of reducing any problem to linear algebra SINGULA-W. Stein

Linear algebra: a key building block for HPC

Similarities with numerical HPC

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

Mathematics is the art of reducing any problem to linear algebra SINGULA-W. Stein

Linear algebra: a key building block for HPC

Similarities with numerical HPC

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

Specificities

- Multiprecision arithmetic \Rightarrow lifting from finite precision (\mathbb{F}_p)
- Rank deficiency ⇒ unbalanced dynamic blocking
- Early adopter of subcubic matrix arithemtic \Rightarrow recursion C. Pernet: High Performance Mathematical Computing

- 1. Algorithmic innovations:
 - 1.1 Rank deficient dense Gaussian elimination
 - 1.2 Quasiseparable matrices
 - 1.3 Outsourced computing security
- 2. Software releases and integration:
 - 2.1 LinBox ecosystem: LinBox, fflas-ffpack, givaro
 - 2.2 SageMath integration
- 3. Distributed Parallel linear algebra: rational solver
 - 3.1 Chinese remaindering based
 - 3.2 Dixon Lifting based

12

Rank deficient dense Gaussian elimination

[ISSAC'18] Symmetric triangular factorization

- First unconditional recursive algorithm
- Pivoting revealing the Rank Profile Matrix
- $O(n^2r^{\omega-2}) \; (=1/3n^3 \; \text{with} \; \omega = 3, r = n)$
- Also hot topic in numerical linear algebra (LAPACK Working notes 294, Dec'17)

LAPACK vs FFPACK modulo 8 388 593

n	LAPACK (numerical) dsytrf (LDLT)	FFPACK (exact) fsytrf (LDLT)
5000	1.60s	1.59s
10000	11.98s	10.90s

14

Quasiseparable matrices

[ISSAC'16, JSC'18] New compact representation and algorithms

- Matches the best space complexities
- Reduction to matrix multiplication
- **Breakthrough:** flat representation (non hierarchical)

Quasiseparable matrices

- Matches the best space complexities
- Reduction to matrix multiplication
- Breakthrough: flat representation (non hierarchical)

Follow-up: on-going work with numerical HPC colleagues:

- S. Chandrasekaran (UCSB)
- ► T. Mary (U. Manchester, Mumps)

Software releases and integration

givaro: field/ring arithmetic

fflas-ffpack: dense linear algebra over finite field

LinBox: exact linear algebra

Tightly integrated in SageMath

Software releases and integration

16

Software releases and integration

LinBox ecosystem

givaro: field/ring arithmetic

fflas-ffpack: dense linear algebra over finite field

LinBox: exact linear algebra

Tightly integrated in SageMath

4 releases

6 releases

6 releases

13 tickets

Featuring

- ► Full functional implementations of new algorithmic contributions
- Improved vectorization and parallel routines
- Drastic improvement of reliability (continuous integration, test-suite coverage, randomized certificates, etc)

Distributed computing (on-going work)

D5.14: Distributed exact linear system solving

- 2 full time engineers
- Communication and serialization layer done
- Prototype MPI parallelization of Chinese remainder based solver.

Distributed computing (on-going work)

D5.14: Distributed exact linear system solving

- 2 full time engineers
- Communication and serialization layer done
- Prototype MPI parallelization of Chinese remainder based solver.

17

Distributed computing (on-going work)

D5.14: Distributed exact linear system solving

Work in progress:

- ► Major refactorization of LinBox solver code
- ► Hyrbid OpenMP-MPI implementation
 - ► Better memory usage,
 - yet still slower than full-MPI
- Hybrid combination of CRT+Dixon and parallelization.

Exploratory aspects: security of outsourced computing

Trust and reliability over the Cloud

Outsourcing computations:

- trusted lightweight client computer
- untrusted powerful cloud server

Contributions:

- Linear time certif. for LU, Det. Rank Profile Matrix [ISSAC'16,17]
- Error correction in LU decomp.

Exploratory aspects: security of outsourced computing

Trust and reliability over the Cloud

Outsourcing computations:

- trusted lightweight client computer
- untrusted powerful cloud server

Contributions:

- ► Linear time certif. for LU, Det, Rank Profile Matrix [ISSAC'16,17]
- ► Error correction in LU decomp.

Secure Multiparty Computation

- each player contribute with a share of the input
- shares must remain private

- SMC protocol for Strassen's MatMul ([D. Lucas' talk Wed. 6])
- SMC protocol for LUP, and LinSys

Exploratory aspects: security of outsourced computing

Trust and reliability over the Cloud

Outsourcing computations:

- trusted lightweight client computer
- untrusted powerful cloud server

Contributions:

- Linear time certif. for LU, Det. Rank Profile Matrix [ISSAC'16,17]
- Error correction in LU decomp.

Secure Multiparty Computation

- each player contribute with a share of the input
- shares must remain private

- SMC protocol for Strassen's MatMul ([D. Lucas' talk Wed. 6])
- SMC protocol for LUP, and LinSys

Angle: algorithm/application-based solutions → towards practicality

Conclusion

Outcome of WorkPackage 5

	Review 1	Review 2	Final review
T5.1 Pari/GP		M	D5.16
T5.2 GAP			D5.15
T5.3 LinBox		D5.12	D5.14
T5.4 Singular	D5.6, D5.7		D5.13
T5.5 MPIR	D5.5, D5.7		
T5.6 Combinatorics	D5.1	D5.11	
T5.7 Pythran	D5.2	D5.11	
T5.8 SunGrid Engine	D5.3		

Overall

- ▶ 20+ software relases
- ▶ 7 research papers

19

Lessons learnt

From dedicated to general purpose HPC components:

- Early instances of HPC computer algebra: dedicated to some target application (cryptanalysis, etc)
- ▶ Building a general purpose HPC component:
 - challenging
 - longer term sustainability

Risk of technology dependency

- Cilk: from success to shut-down
- Interchangeability and modularity

Security for outsourced computing

- exploit algebraic properties of the problem
 - → well suited for computer algebra

