

Objectifs

- Tension, courant, résistance
 - Nature, Mesures
 - Loi d'Ohm
 - Lois de Kirchhoff
- Puissance
- Circuits série et //
 - Résistance équivalente en série et //
 - Résistance équivalente dans un cadre plus complexe

Tension, courant, résistance : aperçu

- Tension
 - Force qui « pousse » le courant à circuler dans le circuit
 - Se mesure en Volt V

Tension entre 2 points du circuit

• Peut être comparé à la mesure de diverses altitudes d'une montagne

Tension, courant, résistance : aperçu

Courant électrique:

- Mesure du nombre d'électrons circulant à chaque seconde dans le circuit
- 1 Ampère = 6,2 X 10¹⁸ électrons /seconde
- En électronique, on manipule de très faible courant : le mA (10⁻³ A) et le μA (10⁻⁶ A) sont plutôt utilisés

Courant conventionnel

- Avant la découverte de l'électron, on croyait à des particules positives se déplaçant vers la borne négative de l'alimentation
- Le langage habituel persiste à parler de courant conventionnel
- Nos schémas utiliseront le courant conventionnel

Tension, courant, résistance: aperçu

- Résistance
 - Capacité du matériau à ralentir le mouvement des électrons, donc le courant
 - Facteurs:
 - Type de matériau: métal, semi-conducteur, isolant
 - Longueur du fil
 - Se mesure en Ohm Ω
- Résistances électroniques
 - Composants disponibles selon diverses valeurs standard
 - Identifiées par un code de couleur

Tension, courant, résistance: mesure

- Mesure de tension: multimètre en position V
 - Sondes placées en parallèle : entre les extrémités à mesurer

Tension, courant, résistance: mesure

- Mesure de l'intensité ou du courant : multimètre en position A ----
 - Sondes placées en série : de chaque coté du circuit à mesurer

Tension, courant, résistance: mesure

- Mesure de résistance: multimètre en position Ω
 - Sondes placées entre les extrémités à mesurer
 - Résistance retirée du circuit pour une lecture fiable
 - Résistance variable : sondes placées entre les 2 bornes extrêmes

$$U = R * I$$

- ⇒Pour une même tension, le courant diminue lorsque la résistance augmente
- ⇒On peut déduire que :

$$\Rightarrow$$
R = U / I
 \Rightarrow I = U / R

U = R * I

- Exemple : calcul de l'intensité à partir de différentes valeurs de résistances et d'une tension fixe U = 6 V
 - $R = 1 k\Omega = I = 6 / 1000 = 0,006 A = 6 mA$
 - $R = 2 k\Omega => I = 6 / 2 000 = 0,003 A = 3 mA$
 - $R = 3 k\Omega => I = 6 / 3 000 = 0,002 A = 2 mA$

$$U = R * I$$

- Quand la tension augmente, le courant est « forcé » davantage :
 - Exemple I = 6 V / 3 Ω = **2 A**
 - Exemple I = 12 V / 3 Ω = **4 A**
 - Exemple I = 24 V / 3 Ω = **6 A**

$$U = R * I$$

- Court circuit :
 - Résistance proche de 0 Ω
 - Si résistance du circuit = $100\mu\Omega$

$$=> I = 6 V / 0.0001 \Omega = 60 000A$$

Tout ce que le générateur peut fournir!

Lois de Kirchhoff

- Les lois de Kirchhoff permettent de calculer les différences de potentiel et l'intensité du courant continu :
 - Loi des nœuds
 - Loi des mailles

Loi des nœuds

 La somme des intensités des courants qui entrent par un nœud est égale à la somme des intensités des courants qui sortent du même nœud

Loi des mailles

• Dans une maille quelconque d'un réseau [...] la somme algébrique des différences de potentiel le long de la maille est constamment nulle

$$U_{ab} + U_{bc} + U_{cd} = U_{ad}$$

 $U_{ab} + U_{bc} + U_{cd} + U_{da} = 0$
Car: $U_{xy} = -U_{yx}$

Tension, courant, résistance : application

- Fiche technique des DELs communes :
 - Tension d'opération : entre 1,7 V et 2,2 V
 - Courant maximal: 30 mA
 - La courbe dépend de la couleur de la DEL
- En tension inverse, la DEL ne laisse pas passer le courant tant qu'on ne dépasse pas la tension de claquage (~ 5V)
- Exemple : ici, si U = 1.9V => I = 30mA

Tension, courant, résistance

- Tension délivrée : 9 V
- Si on veut faire passer 20 mA => 1.85V
- D'après la loi des mailles :
 - UT = UR + UL => UR = 9 1.85 = 7.15 V
 - $R = 7.15 / 0.02 = 357.5 \Omega$
- Dans les résistance standard, on va prendre celle qui a une valeur un peu plus haute, ici $360~\Omega$

https://www.circuitbread.com/ee-faq
/the-forward-voltages-of-different-l

Puissance

- Unité de mesure de l'énergie consommée
- Se mesure en Watt W et ses multiples
- Définition: 1 W = 1 V * 1 A
- Formule: P = U * I

- Exemple: résistances de ¼ W d'un sketch Arduino
 - Caractéristiques de la résistance de 220 Ω dans plusieurs sketchs
 - $U_R = 2,98 \text{ V}$
 - I = 0,0135 A
 - P = 2,98 V * 0,0135 A = 0,0402 W = 40,2 mW
 - Choix de résistances de ¼ W est donc correct

Circuits série - Exemple

- Pile équivalente : somme des tensions individuelles (loi des mailles)
 - $\bullet \ U_{B} = U_{B1} + U_{B2} = 3 \ V$
- Tension des résistances (loi des mailles)
 - $\bullet \ U_{R} = U_{R1} + U_{R2} = 3 \ V$
- Courant est le même dans tout le circuit (pas de
 - $I_T = I_{B1} = I_{B2} = I_{R1} = I_{R2}$
- Résistance équivalente

•
$$R_T = R_1 + R_2 = 440 \Omega$$

$$\Rightarrow I_T = 3 / 440$$

$$\Rightarrow$$
I_T \simeq 0,0068 A \simeq 6,8 mA

$$V = R. I$$

$$V = V_1 = V_2 = V_3$$

$$V = R_1 \times I_1 = R_2 \times I_2 = R_3 \times I_3$$

$$V = R_1 \times I_2 = V_1 \times V_2 \times V_3$$

$$V = R_1 \times I_2 = R_2 \times I_3 \times I_4$$

$$V = R_1 \times I_2 \times I_3 \times I_4$$

$$V = R_1 \times I_4 \times I_4$$

$$R = R_1 \times R_3$$

$$V = R_1 \times R_3$$

$$V = R_1 \times R_3$$

Circuits parallèle - Exemple

- Pile équivalente : somme des tensions individuelles (loi des mailles)
 - $U_{R} = U_{R1} + U_{R2} = 3 \text{ V}$
- Tension des résistances (loi des mailles)
 - $\bullet \quad U_R = U_{R1} = U_{R2} = 3 \quad V$
- Courant est le même dans tout le circuit (loi des nœud)
 - $I_T = I_{B1} = I_{B2}$
 - $\bullet \quad I_{T} = I_{R1} + I_{R2}$
- Résistance équivalente
 - $U_T / R_T = U_1/R_1 + U_2/R_2$
 - $1/R_T = 1/R_1 + 1/R_2$

$$\Rightarrow R_T = 110 \Omega$$

$$\Rightarrow I_T = 3 / 110$$

$$\Rightarrow$$
I_T \simeq 0,0273 A \simeq 27,3 mA

$$\Rightarrow$$
I_{R1} \simeq 3 / 220 \simeq 0,0136 \simeq 13,6 mA

$$\Rightarrow$$
I_{R1} \simeq 3 / 220 \simeq 0,0136 \simeq 13,6 mA

Circuits – Résumé

- Série :
 - $U_T = \sum U_i$
 - $I_T = I_i$
 - $R_T = \sum R_i$
- Parallèle :
 - $U_T = U_i$
 - $I_T = \sum I_i$
 - $1/R_{T} = \sum 1/R_{i}$

Références

Sujet	Origine	Lien
Courant réel ou conventionnel	conv/réel /cc ca	https://www.youtube.com/embed/kcL2_D33k3o/?start=350&end=480
L'électricité	Unités de mesures	https://www.youtube.com/embed/2nyb9AQ5MiY/?start=8&end=145
Résistances en série et //	Tronik aventure 1	https://www.youtube.com/watch?v=CBuWMuOQILQ
	Tronik aventure 2	https://www.youtube.com/watch?v=iOndsi9bR6w
	Tronik aventure 3	https://www.youtube.com/watch?v=EIRR9mWCDUA&t=500s
circuits combinés	Tronik aventure 4	https://www.youtube.com/watch?v=BbyTzoodjXY
Diviseur de tension	sparkfun	https://learn.sparkfun.com/tutorials/voltage-dividers

Références

- https://fr.wikipedia.org/wiki/Loi d%270hm
- https://fr.wikipedia.org/wiki/Lois de Kirchhoff

• Fin de la présentation