信科电子

继电器板通讯协议 V2.6

上位机串口设置:

波特率 9600, 8 个数据位,一个停止位,无校验位。

上位机发送数据帧格式:

数据头	地址	功能码	数据区			校验和	
一字节 0x55	一字节	一字节	第1字节	第2字节	第3字节	第4字节	一字节, 将前面的7个字节 相加,取后八位得到

上位机发送数据帧说明:

功能 码	说明	数据区内容(四个字节)
0x10	读取状态	0x00, 0x00, 0x00, 0x00
0x11	断开某路	第四个字节代表断开第几路继电器,前三个字节为 0。
0x12	吸合某路	第四个字节代表吸合第几路继电器,其他为 0。
0x13	命令执行	数据区域一共的 4 个字节,每个字节 8 位,共 32 位。最多可代表 32 路开关量的状态。最后一个字节的第 0 位代表第一路,第一个字节的最高位代表最后一路。
0x14	组断开	数据区域共 4 个字节,每个字节 8 位,共 32 位。最多代表对 32 路的操作,1 代表断开 0 代表保持原来状态。最后一个字节的 第 0 位 (BITO) 代表第一路,依次类推。
0x15	组吸合	数据区域共4个字节,每个字节8位,共32位。最多代表对32路的操作,1代表吸合0代表保持原来状态。最后一个字节的第0位(BITO)代表第一路,依次类推。
0x16	组翻转	数据区域共4个字节,每个字节8位,共32位。最多代表对32路的操作,1代表翻转0代表保持原来状态。最后一个字节的第0位(BITO)代表第一路,依次类推。
0x20	翻转某路	数据中的第四个字节代表翻转第几路继电器,其他为 0。
0x21	点动闭合	数据的第 1,2,3 字节代表时间(高位字节在前,单位 ms),第 4 字节代表第几路
0x22	点动断开	数据的第 1,2,3 字节代表时间(高位字节在前,单位 ms),第 4 字节代表第几路
0x30	翻转某路	参考功能码 0x20,但是下位机不返回数据,指令可以连续发送。
0x31	断开某路	参考功能码 0x11,但是下位机不返回数据,指令可以连续发送。
0x32	吸合某路	参考功能码 0x12,但是下位机不返回数据,指令可以连续发送。
0x33	命令执行	参考功能码 0x13, 但是下位机不返回数据, 指令可以连续发送。
0x34	组断开	参考功能码 0x14,但是下位机不返回数据,指令可以连续发送。
0x35	组吸合	参考功能码 0x15, 但是下位机不返回数据, 指令可以连续发送。
0x36	组翻转	参考功能码 0x16,但是下位机不返回数据,指令可以连续发送。

上位机发送数据帧说明:

0x37	点动闭合	参考功能码 0x17, 但是下位机不返回数据, 指令可以连续发送。
0x38	点动断开	参考功能码 0x18, 但是下位机不返回数据, 指令可以连续发送。
0.40	读地址	0x00, 0x00, 0x00, 0x00
0x40		注意事项,使用广播地址 245 来读取模块地址。
0.41	写地址	数据中的第四个字节代表模块的新地址。注意事项:上电十秒钟之
0x41		内允许写地址,如果有拨码开关,需要将拨码开关拨到 0 的位置。
0x70	读变量	前三个字节为 0x00 0x00 0x00。第四个字节代表变量是序号
0x71	写变量	前三个字节代表变量的值,高位字节在前。第四个字节代表变量的
		序号

下位机返回数据帧格式:

数据头	地址	功能码	数据区			校验和	
一字节 0x22	一字节	一字节	第1字节	第2字节	第3字节	第4字节	一字节,将前面的 7个字节相加

下位机返回数据帧说明:

功能码	功能码说明	数据区内容(四个字节)			
0x10	读取状态	AND A HITLER OF THE AND			
0x11	断开某一路	继电器输出板或者输入检测板: 数据区域 4 个字			
0x12	吸合某一路	节,每个字节 8 位,共 32 位。代表 32 路的状			
0x13	命令执行	态。最后一个字节的第 0 位代表第 1 路,依次:			
0x14	组断开	推。			
0x15	组吸合	输入输出板: 第 1,2 个字节代表输入的状态,			
0x16	组翻转	3,4个字节代表输出的状态。			
0x40	返回模块地址	2) - 1 1 la la Assaulta tri Ha Marian			
0x70	读内部变量	前三个字节代表内部变量的值,高位字节在前。 第四个字节代表内部变量是序号 注意事项:此功能码只适用于支持内核可编程的			
0x71	写内部变量	模块			

广播地址说明:

个别情况下,需要快速的打开或者关闭总线上所有继电器,这个时候使用广播地址,广播地址的值为 245,也就是说,向地址 245 发送的指令,总线上的每一个地址都会执行,关闭广播地址 245 的继电器,也就关闭的总线上的所有继电器,同样的道理,打开广播地址 245 的继电器,也就打开了总线上所有的继电器。

连发指令通讯协议说明:

0x30-0.3F 功能码为指令连发功能码,因为这些功能码没有回码,所以可以连续发送,因此可以更快速的发送指令。为了让指令更快速的发送,引入了数据连发指令。很多情况下,用户不需要查询或知道继电器扳的当前状态,只需要按照自己的要求来打开或者关闭某几路,这个时候使用无回码的连续指令就会很方便。

无回码指令表(以地址1为例,指令可连续发送):

吸合第1路 55 01 32 00 00 00 01 89	断开第1路 55 01 31 00 00 00 01 88
吸合第2路 55 01 32 00 00 00 02 8A	断开第2路 55 01 31 00 00 00 02 89
吸合第3路 55 01 32 00 00 00 03 8B	断开第3路 55 01 31 00 00 00 03 8A
吸合第4路 55 01 32 00 00 00 04 8C	断开第4路 55 01 31 00 00 00 04 8B
吸合第5路 55 01 32 00 00 00 05 8D	断开第5路 55 01 31 00 00 00 05 8C
吸合第6路 55 01 32 00 00 00 06 8E	断开第6路 55 01 31 00 00 00 06 8D
吸合第7路 55 01 32 00 00 00 07 8F	断开第7路 55 01 31 00 00 00 07 8E
吸合第8路 55 01 32 00 00 00 08 90	断开第8路 55 01 31 00 00 00 08 8F
吸合第9路 55 01 32 00 00 00 09 91	断开第9路 55 01 31 00 00 00 09 90
吸合第 10 路 55 01 32 00 00 00 0A 92	断开第 10 路 55 01 31 00 00 00 0A 91
吸合第 11 路 55 01 32 00 00 00 0B 93	断开第 11 路 55 01 31 00 00 00 0B 92
吸合第 12 路 55 01 32 00 00 00 0C 94	断开第 12 路 55 01 31 00 00 00 0C 93
吸合第 13 路 55 01 32 00 00 00 0D 95	断开第 13 路 55 01 31 00 00 00 0D 94
吸合第 14 路 55 01 32 00 00 00 0E 96	断开第 14 路 55 01 31 00 00 00 0E 95
吸合第 15 路 55 01 32 00 00 00 0F 97	断开第 15 路 55 01 31 00 00 00 0F 96
吸合第 16 路 55 01 32 00 00 00 10 98	断开第 16 路 55 01 31 00 00 00 10 97
吸合全部 55 01 33 FF FF FF FF 85	断开全部 55 01 33 00 00 00 00 89