

Rings and Fields

* A ring R has no zero divisors (Div(R)=\$) = R satisfies cancellation laws >Proof: "=>"let Div(R)=Ø, let a, *B, CER, a +0, a6=ac $\rightarrow \alpha b - \alpha c = 0 \rightarrow \alpha (b-c) = 0$ and $\alpha \neq 0 \Rightarrow b-c = 0 \Rightarrow b=c$ (="let a pub ER, $a \neq 0$, $ab=0 \Rightarrow ab=a0 \Rightarrow b=0 \Rightarrow Div(R)$ *I < RAJ < R → INJ < R > IUJ may not be ideal (ex.: ZZ, 3Z &Z but ZZU3Z \$Z) > 203 & R, R & R (any ideal other than E03, R is called proper) \Rightarrow If $I \leq R$, $1 \in I \Rightarrow I = R$ (any ideal containing I is R itself) Proof: I < R > I < R let a ER, We have I ≥R ⇒ ViEI, ai EI nia EI For i=1, aICI / IaCI = aCI = RCI = I=R > Any field F has no proper ideal Proof; Suppose ISF, I + {oJ, I + F my ⇒ ∃aEI, a+o, letrEF

for $\alpha = \alpha^{-1} \Rightarrow \alpha \alpha^{-1} \in I \Rightarrow I \in I \Rightarrow I = F \Rightarrow F \text{ has no proper ideal}$

I < F ⇒ ar ∈ I rra ∈ I

* let $f: R_1 \rightarrow R_2$ be homo, $\implies ker(f) \triangleleft R_1$ \rightarrow Proof; \neq (o) = 0 \Longrightarrow 0 \in ker(b) \Longrightarrow ker(b) \neq ϕ let $\alpha, b \in \ker(f)$, $f(\alpha-b) = f(\alpha+(-b)) = f(\alpha)+f(-b) = f(\alpha)-f(b)$ = $0-0=0 \Longrightarrow \alpha-b \in \ker(f)$ $f(ab)=f(a)+(b)=0.0=0 \Rightarrow ab\in ker(f)\Rightarrow ker(f)\leqslant R_1$ let $r \in \mathbb{R}$, $a \in \ker(f)$, $f(ra) = f(r)f(a) = f(r)o = o \Rightarrow racked$ $f(ar)=f(a)f(r)=of(r)=o \Rightarrow ar \in ker(f) \Rightarrow ker(f) \leq R_1$ > Im(f) ≤Rz may not be true ex.: define f: Z-Q, The Im(f)= Z , We have Z & Q (bec. 2. 3 & Z) >If f is epimorphism, then Im(f) < Rz * Let $I \triangleleft R$, then $R/I = R = \{r+I : r \in R\}$ by the set of all cosets of I in R is a ring called the quotient/residue ring of I in R where (r_+I)(r_+I)=(r_+r_2)+I and (r_1+I)(r_2+I)=(r_1r_2)+I $\Rightarrow If I = \{a_{1}, a_{2}, ---\}, r+I = \{r+a_{1}, r+a_{2}, ---\}$ ex: 7 = {0+6R, 1+6R, 2+6R, 3+6R, 4+6R, 5+6R} Ly We stopped at 5+6R because 6+6R=0+6R

* Properties of quotient rings

 $\Im R$ is commutative $\Longrightarrow \underline{R}$ is commutative

QR has $I \Longrightarrow \frac{R}{I}$ has $I = I_R + I$

3 R is finite ⇒ F is finite

 $\rightarrow R$ is infinite $\Rightarrow \frac{R}{T}$ may not be infinite $(ex; \frac{Z}{6Z})$

 $\Phi \text{Div}(R) = \emptyset \Longrightarrow \text{Div}(\frac{R}{I})$ may not be equal to \emptyset (ex; $\frac{7Z}{6Z}$)

DElements of R have same properties of cosets in group theory

(with addition)

 $\exists If f: R_1 \rightarrow R_2 \text{ is home,} \Rightarrow \frac{R_1}{\text{ker(f)}} \cong \text{Im(f)} \quad (I^{st} \text{ isomorphism} \text{theorem})$

 $\rightarrow \mathbb{Z}_{n_{\mathbb{Z}}} \cong \mathbb{Z}_{n} \left(ex: \mathbb{Z}_{7\mathbb{Z}} \cong \mathbb{Z}_{7} \right)$

 $\rightarrow \frac{\pi}{PZ}$ is always a field, ρ is prime (ex.: $\frac{\pi}{ZZ}$ is a field)

→ For the next part, we will assume all rings to be commutative with I *Types of ideals

Detn ideal PSR is said to be a prime ideal it OP #R

That CPV 6 CP

ex: (0) is prime in 72

 \rightarrow Proof: We have $\langle o \rangle \neq \mathbb{Z}$, let $ab \in \langle o \rangle \Rightarrow ab = 0$

 $Div(Z) = \emptyset$ and $\langle o \rangle \leqslant Z \Rightarrow \alpha = 0 \lor b = 0$

 $\Rightarrow a \in \langle o \rangle \lor b \in \langle o \rangle \Rightarrow \langle o \rangle$ is prime in \mathbb{Z}

ex: <5> is prime in 12

ex: <6> is not prime in 72 (bec. 6 E<6>, 6=2x3 but 2 \$<6>)
13 \$<6>)

- the ideal generated by a prime number is prime

* to ideal $P \triangleleft R$ is prime $\Leftrightarrow \frac{R}{P}$ is an integral domain

 \rightarrow Proof: "=>"let P \ R be prime, we have R is commutative and R has I+P

Let r_1+P , $r_2+P \in P$, $r_4+P \neq P$, $(r_4+P)(r_2+P)=P$ $\Rightarrow r_4 r_2+P=P \Rightarrow r_4 r_2 \in P$ and P is prime $\Rightarrow r_4 \in P \lor r_2 \in P$ but if $r_4 \in P \Rightarrow r_4+P=P$, $\Rightarrow r_2 \in P \Rightarrow r_2+P=P \Rightarrow Div(P)=P$

 $\Rightarrow \frac{R}{P}$ is an integral domain

"Let P be an integral domain, we have $P \triangleleft R$ and $P \neq R$ (bee. if $P = R \Rightarrow P = R = \{r + R : r \in R\} = R\}$)

Let $ab \in P \Rightarrow ab + P = P \Rightarrow (a + P)(b + P) = P$ and P is an integral domain $\Rightarrow Div(P) = P \Rightarrow a + P = P \lor b + P = P$ $\Rightarrow a \in P \lor b \in P \Rightarrow P$ is prime

Extra ideal I &R is said to be a principal ideal ill JaEI; I=(a), where (a):={ar:rER} ex: <2> is principal in Z,672 -> Any ring R is principal (bec. FIER: R={IrER}=<1>) * A ring is said to be a principal ideal ring ilf ∀I ≤R, I is principal * Z is a principal ideal ring \rightarrow Proof: let $A \triangleleft Z$ Case 1: $A = \{0\} \Rightarrow A = \langle 0 \rangle \Rightarrow A$ is principal Case 2: A=R ⇒A=<1> ⇒ A is principal Case 3: A + TZ, A + {o}, let a E A, where a is the smallest positive integer in A letnEA ⇒ 39, rE72: n=qa+r, o≤r<a (division algorithm)

Let $n \in A \Longrightarrow \exists q, r \in \mathcal{T}: n = q\alpha + r$, $0 \le r < \alpha$ (division algorithm) $\rightarrow r = n - q\alpha \in A$ and but α is the smallest positive integer in A $\Rightarrow r = 0 \Longrightarrow n - q\alpha = 0 \Longrightarrow n = q\alpha \Longrightarrow A = <\alpha \Longrightarrow A$ is principal $\Rightarrow \mathbb{Z}$ is a principal ideal ring

Any field is gene principal ideal ring (bec. a field contains only two each is generated by one element; 0, 1)