КОМП'ЮТЕРНИЙ ПРАКТИКУМ № 4. ОБЧИСЛЕННЯ ВЛАСНИХ ЗНАЧЕНЬ

Метод Крилова (варіант 4)

Програмна частина

У лабораторній роботі програмно реалізовано такі ключові етапи методу Крилова:

1. Побудова послідовності векторів

Функція mat_vec_mul(A, y) виконує помноження матриці на вектор: ynew[i]=∑jA[i][j] y[j]. Використовують цю функцію послідовно, щоб обчислити

у1=A у0, у2=A у1,...,у4=A у3.

2. Розв'язок системи для коефіцієнтів рір_ірі

Функція **gaussian_elimination(augmented_matrix)** реалізує пряму та зворотну ходи методу Гаусса над розширеною матрицею [C|b], де C=[y3 y2 y1 y0],b=-y4.

Вона по черзі нормалізує та виключає рядки, а потім обчислює рішення зворотнім ходом.

3. Побудова характеристичного многочлена

Отримані p1,...,p4 підставляють у поліном $\chi(\lambda)=\lambda^4+p1\lambda^3+p2\lambda^2+p3\lambda+p4$.

4. Уточнення коренів (метод Ньютона)

- \circ **poly(x)** повертає значення $\chi(x)$ \chi(x) $\chi(x)$.
- \circ **poly_der(x)** значення похідної $\chi'(x)$ \chi'(x) $\chi'(x)$.
- о **newton(x0)** виконує декілька ітерацій $xk+1=xk-\chi(xk)/\chi'(xk)$; $x_{k+1}=x_k chi(x_k)/chi'(x_k)xk+1=xk-\chi(xk)/\chi'(xk)$, починаючи з різних початкових наближень, щоб знайти всі 4 корені.

Таким чином, програмна реалізація повторює «ручний» алгоритм і дозволяє швидко отримати р_і і власні числа.

Результати та перевірка

- **Коефіцієнти характеристичного рівняння рір_ірі:** p₁=-21.960000,p₂=169.721000,p₃=-550.440464,p₄=631.387954.
- Наближені власні числа (метод Ньютона): 2.805858,4.471975,5.450954,9.231214.
- Перевірка в Wolfram Alpha

