天岸大学

本科生毕业论文

学	院	管理与经济学部
专	业	工业工程
年	级	2012 级
姓	名	秦昱博
指导	教师	杨道箭

2023年3月5日

摘 要

中文摘要一般在 400 字以内,简要介绍毕业论文的研究目的、方法、结果和结论,语言力求精炼。中英文摘要均要有关键词,一般为 3 — 7 个。字体为小四号宋体,各关键词之间要有分号。英文摘要应与中文摘要相对应,字体为小四号 Times New Roman,详见模板。

关键词: 关键词 1; 关键词 2; 关键词 3; ……; 关键词 7(关键词总共 3—7个, 最后一个关键词后面没有标点符号)

ABSTRACT

The upper bound of the number of Chinese characters is 400. The abstract aims at introducing the research purpose, research methods, research results, and research conclusion of graduation thesis, with refining words. Generally speaking, both the Chinese and English abstracts require the keywords, the number of which varies from 3 to 7, with a semicolon between adjacent words. The font of the English Abstract is Times New Roman, with the size of 12pt(small four).

Keywords: keyword 1, keyword 2, keyword 3,, keyword 7 (no punctuation at the end)

目 录

第一章 一个测试 · ·		 	1
1.1 真的只是一个测试		 	1
1.1.1 参考文献标引 ·	 .	 	1
第二章 继续测试 · ·	• • • • •	 	2
2.1 行内公式与行间公式		 	2
2.2 插图 · · · · · · · ·	• • • • • ·	 	2
2.3 代码环境 · · · · · ·		 	3
2.4 普通表格的绘制方法		 	3
结 论		 	3
参考文献	• • • • •	 	4
外文资料			
中文译文			
致 谢			

第一章 一个测试

1.1 真的只是一个测试

中文学位论文测试[1]。

1.1.1 参考文献标引

一只敏捷的棕色狐狸跳过那只懒惰的狗[2]。

第二章 继续测试

2.1 行内公式与行间公式

考虑整个供应链的利润函数 β_{SC} 。因为 $\frac{\partial \beta_{SC}}{\partial p_1} = q - \int_0^q F(x) dx > 0$,所以 β_{SC} 对 p_1 单调递增,所以:

$$\beta_{SC}(q_s, p_{1s}, p_{2s}) < \beta_{SC}(q_s, p_{1n}, p_{2n})$$
(2-1)

因为对于 $\forall q \in [q_s, q_n)$,有:

$$\left. \frac{\partial \beta_{SC}}{\partial q} \right|_{(q,p_{1n},p_{2n})} = p_{1n} - c + c_L + (p_{2n} - p_{1n} - c_L)F(q)$$

销售商决策如式 (2-2) 所示:

$$\begin{cases} p_{1s} = v_h - (v_h - p_2) \mathbb{E}(\varphi) \\ p_{2s} = v_l \\ q_s \in \underset{q \ge 0}{\operatorname{argmax}} \beta_R(q, p_1, p_2) \end{cases}$$
 (2-2)

2.2 插图

当 q = 5190 时, $p_{1s} = 5.78$, $p_{2s} = 2.95$,图像如图 2-1 所示。

图 2-1 最优 p_1, p_2 仿真结果

2.3 代码环境

很多和计算机专业背景相关的同学都会使用到代码环境,使用 \verb 指令或者是 verbatim 环境固然是一种选择,但是比不上专门的 lstlisting 环境这么专业。

```
int main(int argc, char ** argv) {
   printf("Hello world!\n");
   return 0;
}
```

2.4 普通表格的绘制方法

表格应具有三线表格式,其标准格式如表 2-1 所示。

$P_u(lbs)$	$u_u(in)$	β	$G_f(psi.in)$
269.8	0.000674	1.79	0.04089
421.0	0.001035	3.59	0.04089
640.2	0.001565	7.18	0.04089
269.8	0.000674	1.79	0.04089
421.0	0.001035	3.59	0.04089
640.2	0.001565	7.18	0.04089
269.8	0.000674	1.79	0.04089
421.0	0.001035	3.59	0.04089
640.2	0.001565	7.18	0.04089
269.8	0.000674	1.79	0.04089
421.0	0.001035	3.59	0.04089
640.2	0.001565	7.18	0.04089
	269.8 421.0 640.2 269.8 421.0 640.2 269.8 421.0 640.2 269.8 421.0	269.8 0.000674 421.0 0.001035 640.2 0.001565 269.8 0.000674 421.0 0.001035 640.2 0.001565 269.8 0.000674 421.0 0.001035 640.2 0.001565 269.8 0.000674 421.0 0.001035	269.8 0.000674 1.79 421.0 0.001035 3.59 640.2 0.001565 7.18 269.8 0.000674 1.79 421.0 0.001035 3.59 640.2 0.001565 7.18 269.8 0.000674 1.79 421.0 0.001035 3.59 640.2 0.001565 7.18 269.8 0.000674 1.79 421.0 0.001035 3.59

表 2-1 符合本科生毕业论文绘图规范的表格

结 论

得出结论,楼主傻逼。

参考文献

- [1] Zhang J, Li X, Chen J, *et al.* A tree parent storage based on hashtable for XML construction [C]. In Communication Systems, Networks and Applications (ICCSNA), 2010 Second International Conference on, 2010: 325–328.
- [2] 邓建松, 彭冉冉, 陈长松. L^MT_EX 2_{ε} 科技排版指南 [M]. 北京: 科学出版社, 书号: 7-03-009239-2/TP.1516, 2001.
- [3] 胡伟. LaTeX 2_{ε} 完全学习手册 [M]. 北京: 清华大学出版社, 书号: 978-7-302-24159-1, 2011.
- [4] SNiwa, Suzuki M, Kimura K. Electrical Shock Absorber for Docking System Space [C]. In IEEE International Workshop on Intelligent Motion Control, Istenbul, 1990: 825–830.

外文资料

Here follows the English paper.

...

中文译文

这里就是外文资料的中文翻译。

...

致 谢

我就做了三件微小的事情,谢谢大家。