Лема про розростання

у теорії формальних мов велике значення мають твердження, в яких формулюється необхідна умова приналежності мови до того чи іншого класу мов. Ці твердження відомі в літературі за назвою лем про розростання (або лем про "накачування"). За допомогою цих лем вдається довести, що та чи інша мова не є мовою цього класу, наприклад, не є регулярною, не є контекстновільною тощо. Доводити такі "негативні" твердження набагато важче, ніж "позитивні" (що мова є мовою цього класу), бо в останньому випадку достатньо придумати будь-яку граматику відповідного класу, яка породжує цю мову, тоді як в першому потрібно якось довести, що не існує граматики цього класу, яка породжує мову.

Застосування лем про розростання полягає в такому: довівши, що мова не задовольняє умову леми про розростання, ми можемо бути впевнені в тому, що вона не належить до відповідного класу мов.

Лема про розростання для регулярних мов

У цій лемі стверджується, що будь-яка регулярна мова допускає представлення всіх своїх ланцюжків у вигляді з'єднання трьох ланцюжків, причому середній ланцюжок з цих трьох не є порожнім, обмеженим за довжиною, і його "накачка" — повторення будь-яку кількість разів — або викидання НЕ ВИВОДИТЬ за межі мови (тобто дає ланцюжки, що належать цій регулярній мові).

Якщо L — регулярна мова, то існує натуральна константа k_L (залежна від L), така, що для будь-якого ланцюжка $x \in L$, довжина якого не менша за k_L , x допускає представлення у вигляді x = uvw, де $v \neq \lambda$ і $|v| \leq k_L$, причому для будь-якого $n \geq 0$ ланцюжок $x_n = uv^n w \in L$.

Доведення регулярності або нерегулярності мови. Приклад:

Доведемо нерегулярність мови

$$L(M) = \{ a^n b^n, n \ge 0 \}.$$

Вибираючи n настільки великим, щоб воно перевищувало k_L (константу леми), одержуємо такі можливі випадки розміщення середнього v в ланцюжку $a^n b^n$. Зокрема можливі варіанти:

1.
$$v = a^s$$
, $s < n$, тобто "накачуваний" підланцюжок v цілком розташовується в "зоні символів a ".

Накачування в цьому випадку виведе за межі мови, оскількик при повторенні ланцюжка v кількість символів a необмежено зростатиме, а кількість символів b залишатиметься сталою.

2.
$$v = b^s$$
, $s < n$, тобто "накачуваний" підланцюжок v цілком розташовується в "зоні символів b ". Накачування неможливе з тієї ж причини, що і в попередньому випадку.

3.
$$v = a^p b^q$$
, де $0 , тобто "накачуваний" підланцю-жок v розташовується на стику зон символів a і b .
У цьому випадку при накачуванні підланцюжок ab входить в слово, яке$

вже не належить мові L.

Отже, мова $a^n b^n$ нерегулярна.

<u>Бачимо, що існують ланцюжки, для яких жодні представлення у вигляді з'єднання</u> трьох ланцюжків не задовільняють умови леми про розростання для регулярних мов.

Контрольне завдання №21

Довести регулярність мови $L(M) = \{a^n b^m, n \ge 0, m \ge 0\}$