Deep Learning Summer Term 2024

http://m13.leuphana.de/lectures/summer24/DL Machine Learning Group, Leuphana University of Lüneburg

Soham Majumder (soham.majumder@leuphana.de)

Exercise 2

Due on: Thursday, 02.05.2024

Figure 1: A simple neural network.

Task 5 A Simple Neural Network

Let $x^{(0)} = (1,2)^{\top} \in \mathbb{R}^2$ be a data point and $y = (0,1)^{\top} \in \mathbb{R}^2$ be the target. Consider the neural network with sigmoid activation functions depicted in Figure 1.

- (i) Compute the forward pass of $x^{(0)}$ by hand. What is the value of $x^{(2)}$?
- (ii) Compute the gradients with respect to all parameters in the network using backpropagation. For simplicity, you can use the squared loss function.

Solution

- (i) Figure 1 now contains the (intermediate) result(s).
- (ii) Let $E(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2$ be the squared loss function. Its derivative is given by $\frac{\partial E}{\partial \hat{y}} = \hat{y} y$. Here, \hat{y} is the prediction, hence $x^{(2)}$ in our case. Remember, that for a sigmoid activation function, the derivative is $\sigma'(\cdot) = \sigma(\cdot)(1 - \sigma(\cdot))$.

$$\begin{split} \frac{\partial E}{\partial w^{(2)}} &= \frac{\partial E}{\partial x^{(2)}} \frac{\partial x^{(2)}}{\partial s^{(2)}} \frac{\partial s^{(2)}}{\partial w^{(2)}} \\ &= \left(x^{(2)} - y \right) \sigma \left(s^{(2)} \right) \left(1 - \sigma \left(s^{(2)} \right) \right) x^{(1) \top} \\ &= \left(0.45 \right) \left(0.25 \right) \left(0.48 - 0.08 - 0.90 \right) \\ &= \left(0.05 - 0.01 - 0.10 \right) \\ &- 0.02 - 0.00 - 0.05 \right) \\ \frac{\partial E}{\partial b^{(2)}} &= \underbrace{\frac{\partial E}{\partial x^{(2)}} \frac{\partial x^{(2)}}{\partial s^{(2)}} \frac{\partial s^{(2)}}{\partial b^{(2)}} \\ &= \left(x^{(2)} - y \right) \sigma \left(s^{(2)} \right) \left(1 - \sigma \left(s^{(2)} \right) \right) 1 \\ &= \left(0.45 \right) \left(0.25 \right) \\ &- \left(0.26 \right) \left(0.19 \right) \\ &= \left(0.11 \right) \\ &= \underbrace{\frac{\partial E}{\partial x^{(2)}} \frac{\partial x^{(2)}}{\partial s^{(2)}} \frac{\partial s^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(1)}}{\partial s^{(1)}} \frac{\partial s^{(1)}}{\partial w^{(1)}} \\ &= \underbrace{\operatorname{tmp}}_{previous \ \operatorname{tmp}} \frac{\partial s^{(2)}}{\partial x^{(1)}} \frac{\partial s^{(1)}}{\partial x^{(1)}} \frac{\partial s^{(1)}}{\partial w^{(1)}} \\ &= \underbrace{\operatorname{tmp}}_{w^{(2)}} \frac{\partial s^{(2)}}{\partial x^{(2)}} \frac{\partial s^{(1)}}{\partial x^{(1)}} \frac{\partial s^{(1)}}{\partial w^{(1)}} \\ &= \underbrace{\operatorname{tmp}}_{w^{(2)}} \frac{\partial s^{(2)}}{\partial x^{(2)}} \frac{\partial s^{(1)}}{\partial x^{(1)}} \frac{\partial s^{(1)}}{\partial x^{(1)}} \\ &= \underbrace{\left(0.4 - 0.1 \right)}_{0.2 - 0.5} \left(1.00 - 2.00 \right) \\ &= \underbrace{\left(0.010 - 0.019 \right)}_{0.001 - 0.001} \\ 0.001 - 0.001 \right) \\ &= \underbrace{\left(0.010 - 0.019 \right)}_{0.000 - 0.001} \frac{\partial s^{(1)}}{\partial x^{(1)}} \frac{\partial s^{(1)}}{\partial x^{(1)}} \frac{\partial s^{(1)}}{\partial b^{(1)}} \\ &= \underbrace{\frac{\partial E}{\partial x^{(2)}} \frac{\partial x^{(2)}}{\partial s^{(2)}} \frac{\partial s^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(1)}}{\partial s^{(1)}} \frac{\partial s^{(1)}}{\partial b^{(1)}} \\ &= \underbrace{\frac{\partial E}{\partial x^{(2)}} \frac{\partial x^{(2)}}{\partial s^{(2)}} \frac{\partial s^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(1)}}{\partial s^{(1)}} \frac{\partial s^{(1)}}{\partial b^{(1)}} \\ &= \underbrace{\left(0.010 \right)}_{0.000} \\ 0.001 \\ 0.000 \\$$

Task 6 A Neural Network Implementation

We now want to implement a neural network as a class in Python. Check the template code2.py.

Part 1

- (i) Implement the ReLU and sigmoid activation functions and their derivatives.
- (ii) The class NeuralNetwork already has two member functions __init__ and forward. Fix the TODOs and
 - (a) initialize the weights via $w_{ij} \sim \mathcal{N}(0, \sigma^2)$, where $\sigma = \sqrt{\frac{2}{d_{\text{in}} + d_{\text{out}}}}$, d_{in} denotes the number of input neurons, and d_{out} denotes the number of output neurons of that layer
 - (b) initialize the biases as zeros
 - (c) implement the forward pass

Make sure to also save the intermediate results (e.g. $x^{(\ell)}$, $s^{(\ell)}$, see Figure 1) when computing the forward pass. We will need those later on.

Hint: You can test your implementation by overwriting the weights and biases with the values from Task 5 (i) and compare all intermediate results.

Part 2

- (i) Implement backpropagation as a member function backprop(self, x, y). It should compute the gradients of all parameters.
- (ii) Implement a training function train(self, x, y, eta=.01, iterations=100) that implements (batch) gradient descent. You can use the squared loss if not stated otherwise.
- (iii) Test your training procedure by fitting a binary classification problem on toy data and visualize the prediction appropriately. Make sure to use a sigmoid activation and a single neuron in the output layer.

Hint: You can test your implementation by comparing the results with the values from Task 5 (ii).

Solution

The code is provided as solution2.py.

Task 7 Approximating a Function Using ReLUs

In this task, we aim to approximate a function $f:[a,b]\to\mathbb{R}$ arbitrarily well using a neural network with a single hidden layer consisting of n neurons based on ReLU activations.

Consider a grid of n equidistant points $x_1, x_2, x_3, \ldots, x_n$, with $a = x_1$ and $b = x_n$. Furthermore, the grid has a constant spacing of $h = x_{i+1} - x_i$ for $i = 1, 2, \ldots, n-1$. We want to approximate f using a linear combination of ReLU functions given by

$$NN(x) = \sum_{i=1}^{n} \lambda_i \cdot ReLU(x - b_i),$$

where $\lambda_i \in \mathbb{R}$ are weights and the biases are given by $b_1 = a - h$, $b_2 = a$, $b_3 = a + h$, ..., $b_n = b - h$.

Prior to b_1 , all ReLU functions $\max(0, x - b_i)$ are zero. Between $b_1 = a - h$ and $b_2 = a = x_1$, only the first ReLU function $\max(0, x - b_1)$ can be non-zero. The function $\lambda_1 \cdot \max(0, x - b_1)$ is supposed to approximate f at x_1 . If we subtract that function from f, we obtain a new function which the next ReLU function can approximate, and iterate to the end. Hence, we can approximate the function f on the interval [a, b] using a sum of f ReLU functions.

To learn the parameters λ_i we can construct a linear system of equations

$$f(x_i) = \sum_{j=1}^{n} \lambda_j \cdot \text{ReLU}(x_i - b_j)$$
 for $i = 1, ..., n$.

By using $x_i = a + (i - 1)h$ and $b_j = a + (j - 2)h$, we obtain $x_i - b_j = (i - j + 1)h$. Considering i and j where the ReLU is positive,

$$f(x_i) = \sum_{j=1}^{i} \lambda_j (i - j + 1)h$$
 for $i = 1, ..., n$. (1)

Write down the linear system determined by Equation (1). Then, implement this approximation method, solve for $\lambda_1, \lambda_2, \ldots, \lambda_n$, and experiment with various values of n. Check code2.py.

Solution

Equation (1) yields

$$f(x_1) = 1h\lambda_1 = h(1\lambda_1)$$

$$f(x_2) = 2h\lambda_1 + 1h\lambda_2 = h(2\lambda_1 + 1\lambda_2)$$

$$f(x_3) = 3h\lambda_1 + 2h\lambda_2 + 1h\lambda_3 = h(3\lambda_1 + 2\lambda_2 + 1\lambda_3)$$

$$f(x_4) = 4h\lambda_1 + 3h\lambda_2 + 2h\lambda_3 + 1h\lambda_4 = h(4\lambda_1 + 3\lambda_2 + 2\lambda_3 + 1\lambda_4)$$

for the first values of i which can be written in the following linear system of equations:

$$h\begin{pmatrix} 1 & & & \\ 2 & 1 & & \\ \vdots & \ddots & \ddots & \\ n & \dots & 2 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}$$

where $f_i = f(x_i)$ for i = 1, ..., n. The parameters λ_i can be obtained by solving the system. Note that this approach can be generalized to non-equidistant data points. The approximation improves by increasing the number of functions n.

The code is provided as solution2.py.