Professor: Fred Khoury

- Find the components of the vector $\overrightarrow{P_1P_2}$ with initial point $P_1(2, -1, 4)$ and terminal point 1. $P_{2}(7, 5, -8)$
- Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$ and show that $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} 2. and to v.
- Calculate the scalar triple product $u \cdot (v \times w)$ of the vectors: **3.**

a)
$$u = 3i - 2j - 5k$$
 $v = i + 4j - 4k$ $w = 3j + 2k$

b)
$$\mathbf{u} = (-2,0,6) \quad \mathbf{v} = (1,-3,1) \quad \mathbf{w} = (-5,-1,1)$$

- Given u = (3, 2, -1), v = (0, 2, -3), and w = (2, 6, 7) Compute the vectors 4.
 - a) $\boldsymbol{u} \times \boldsymbol{v}$

c) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$

d) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$

- e) $u \times (v-2 w)$
- f) $\|\mathbf{u}\|$

- g) Unit vector of \mathbf{u} , \mathbf{v} , and \mathbf{w}
- h) Angle between v, and w
- i) ||3u 5v + w||

 $u \cdot v$

- k) $u \cdot w$
- 5. Determine whether the vectors form an orthogonal set

a)
$$\mathbf{v}_1 = (2, 3), \quad \mathbf{v}_2 = (-3, 2)$$

b)
$$\mathbf{v}_1 = (-3, 4, -1), \quad \mathbf{v}_2 = (1, 2, 5), \quad \mathbf{v}_3 = (4, -3, 0)$$

c)
$$\mathbf{v}_1 = (2, -2, 1), \quad \mathbf{v}_2 = (2, 1, -2), \quad \mathbf{v}_3 = (1, 2, 2)$$

- Find the vector component $\left(proj_{a} u = \frac{u \cdot a}{\|a\|^{2}} a \right)$ of u along a and the vector component of u6. orthogonal to a.

 - a) $\mathbf{u} = (-1, -2), \quad \mathbf{a} = (-2, 3)$ b) $\mathbf{v} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad \mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 - c) $u = (1, 1, 1), \quad a = (0, 2, -1)$ d) $u = (2, 0, 1), \quad a = (1, 2, 3)$
- Find the area of the parallelogram determined by the given vectors $\mathbf{u} = (1, 1, 1), \quad \mathbf{v} = (3, 2, -5)$ 7.
- Use the cross product to find a vector that is orthogonal to both $\mathbf{u} = (3, 3, 1), \quad \mathbf{v} = (0, 4, 2)$ 8.
- 9. Find the area of the triangle with the given vertices:
 - a) A(2,0) B(3,4) C(-1,2)
- b) A(2,6,-1) B(1,1,1) C(4,6,2)

Find the volume of the parallelepiped with sides u, v, and w.

$$u = (2, -6, 2), v = (0, 4, -2), w = (2, 2, -4)$$

- 11. Which of the following are linear combinations?
 - a) (2,1,4) (1,-1,3) (3,2,5) w = (5,9,5) c) (1,-1,3) (2,4,0) w = (1,5,6)
 - b) (1,-1,3) (2,4,0) w = (4,2,6)
- d) (2,1,4) (1,-1,3) (3,2,5) w=(2,2,3)
- Show that the vector \mathbf{w} is a subspace of \mathbf{R}^3 ?
 - a) All vectors of the form $\mathbf{w} = (a, 0, 0)$
 - b) $\mathbf{w} = (a, b, c)$, where a + c + b = 0, a, b, c are real numbers
 - c) w = (a, b, c), where b = a + c,
- a, b, c are real numbers
- Determine whether the given vectors span \mathbb{R}^3
 - a) $v_1 = (1,1,1), v_2 = (2,2,0), v_3 = (3,0,0)$
 - b) $v_1 = (1,3,3), v_2 = (1,3,4), v_3 = (1,4,3), v_4 = (6,2,1)$
- Determine whether the vectors are linearly independent or linearly dependent
 - a) (1, 1, -1), (2, -3, 1), (8, -7, 1)
 - b) (1, -2, -3), (2, 3, -1), (3, 2, 1)
 - (1, -2, 1), (1, 2, -1), (7, -4, 1)
 - d) (1, -3, 7), (2, 0, -6), (3, -1, -1), (2, 4, -5)
 - e) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$
- Find the coordinate vector of \mathbf{w} relative to the basis $S = \{u_1, u_2\}$ for \mathbf{R}^2
 - a) $u_1 = (1,-1), u_2 = (1,1), w = (1,0)$
 - b) $u_1 = (2, -4), u_2 = (3, 8), w = (1, 1)$

16. Find the coordinate vector of \mathbf{v} relative to the basis $S = \{v_1, v_2, v_3\}$

a)
$$v = (2, -1, 1), v_1 = (2, 1, 3), v_2 = (1, 0, 1), v_3 = (1, 1, 1)$$

b)
$$v = (2,1,0), v_1 = (1,2,1), v_2 = (-1,1,2), v_3 = (1,2,3)$$

17. Given the matrix A and b:

- a) Reduce A to row-reduced echelon form.
- b) What is the dimension of A?
- c) What is the rank of A?
- d) What are the pivots?
- e) What are the free variables?
- f) Find the special (homogeneous) solutions.
- g) What is the nullspace N(A)?
- h) Find the particular solution to Ax = b
- i) Give the complete solution.

$$i. \quad A = \begin{pmatrix} -1 & 2 & 5 & 0 \\ 2 & 1 & 0 & 0 \\ 6 & -1 & -8 & -1 \\ 0 & 2 & 4 & 3 \end{pmatrix} \qquad b = \begin{pmatrix} 5 \\ -15 \\ -47 \\ 16 \end{pmatrix}$$

$$ii. \qquad A = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & -4 & 2 & 4 \\ -1 & 2 & -1 & -2 \\ 3 & -6 & 3 & 6 \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ -2 \\ 1 \\ -3 \end{pmatrix}$$

iii.
$$A = \begin{pmatrix} 1 & 2 & -3 & 1 \\ -2 & 1 & 2 & 1 \\ -1 & 3 & -1 & 2 \\ 4 & -7 & 0 & -5 \end{pmatrix} \qquad b = \begin{pmatrix} 4 \\ -1 \\ 3 \\ -5 \end{pmatrix}$$

Solution

2.
$$(2, -7, -6)$$
, $\boldsymbol{u} \times \boldsymbol{v}$ is orthogonal to both \boldsymbol{u} and \boldsymbol{v} .

4.
$$a)(-4, 9, 6)$$
 $b)(32, -6, -4)$ $c)(-14, -20, -82)$ $d)(27, 40, -42)$ $e)(-44, 55, -22)$ $e)\sqrt{14}$

$$g\left(\frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}, -\frac{1}{\sqrt{14}}\right), \left(0, \frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}}\right), \left(\frac{2}{\sqrt{89}}, \frac{6}{\sqrt{89}}, \frac{7}{\sqrt{89}}\right)$$

$$(\sqrt{14})^{2}\sqrt{14}^{2}\sqrt{14}^{2}\sqrt{14}^{2}\sqrt{13}^{2}\sqrt{13}^{2}\sqrt{13}^{2}\sqrt{89}^{2}\sqrt{89}^{2}\sqrt{89}^{2}$$

 $h) 105.343^{\circ}$ $i) 22.045$ $j) 7$ $k) 11$

6. a)
$$\left(\frac{8}{13}, -\frac{12}{13}\right) \left(-\frac{21}{13}, -\frac{14}{13}\right)$$
 b) $(\cos \theta, 0) (0, \sin \theta)$

c)
$$\left(0, \frac{2}{5}, \frac{-1}{5}\right) \left(1, \frac{3}{5}, \frac{6}{5}\right)$$
 d) $\left(\frac{5}{14}, \frac{5}{7}, \frac{15}{14}\right) \left(\frac{23}{14}, -\frac{5}{7}, -\frac{1}{14}\right)$

7.
$$\sqrt{114}$$

8.
$$(2, -6, 12)$$

9. a) 7 b)
$$\frac{\sqrt{374}}{2}$$

11. a)
$$(5,9,5) = 3(2,1,4) - 4(1,-1,3) + 1(3,2,5)$$

b)
$$(4,2,6) = 2(1,-1,3) + 1(2,4,0)$$

d)
$$(2,2,3) = \frac{1}{2}(2,1,4) - \frac{1}{2}(1,-1,3) + \frac{1}{2}(3,2,5)$$

13. *a*)
$$det = -6$$
, *Yes*

$$b) \begin{pmatrix} 1 & 0 & 0 & 39 & 7b_1 - b_2 - b_3 \\ 0 & 1 & 0 & -17 & b_3 - 3b_1 \\ 0 & 0 & 1 & -16 & b_2 - 3b_1 \end{pmatrix}, \quad Yes$$

14. a) Lineraly dependent

- b) Lineraly independent
- c) Lineraly independent
- d) Lineraly dependent
- e) Lineraly independent

15. a) $(w)_S = \left(\frac{5}{28}, \frac{3}{14}\right)$

 $b) \quad \left(w\right)_{S} = \left(\frac{1}{2}, \ \frac{1}{2}\right)$

16. a) $(v)_S = (-1, 4, 0)$

b) $(v)_S = (\frac{1}{2}, -1, \frac{1}{2})$

17.

i)
$$A = \begin{pmatrix} -1 & 2 & 5 & 0 \\ 2 & 1 & 0 & 0 \\ 6 & -1 & -8 & -1 \\ 0 & 2 & 4 & 3 \end{pmatrix} \quad b = \begin{pmatrix} 5 \\ -15 \\ -47 \\ 16 \end{pmatrix}$$

$$a) \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- b) Dim = 1
- c) Rank = 3
- $d) x_1, x_2, x_4$
- e) x_3
- f) $s_1 = (1, -2, 1, 0)$

$$g) \quad \mathbf{x}_{3} \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

h)
$$\begin{bmatrix} 1 & 0 & -1 & 0 & | & -7 \\ 0 & 1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & | & 6 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow x_p = (-7, -1, 6, 0)$$

$$i) \quad \mathbf{x} = \begin{bmatrix} -7 \\ -1 \\ 6 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

ii)
$$A = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & -4 & 2 & 4 \\ -1 & 2 & -1 & -2 \\ 3 & -6 & 3 & 6 \end{pmatrix} \quad b = \begin{pmatrix} -1 \\ -2 \\ 1 \\ -3 \end{pmatrix}$$

$$a) \begin{bmatrix} 1 & -2 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

- b) Dim = 3
- c) Rank = 1
- d) x_1
- $e) x_2, x_3, x_4$

f)
$$s_1 = (1,1,0,0)$$
 $s_2 = (-2,0,1,0)$ $s_3 = (-3,0,0,1)$

$$g) \quad \boldsymbol{x}_{2} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \boldsymbol{x}_{3} \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \boldsymbol{x}_{4} \begin{bmatrix} -3 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

h)
$$x_p = (-1, 0, 0, 0)$$

$$i) \quad \mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

iii)
$$A = \begin{pmatrix} 1 & 2 & -3 & 1 \\ -2 & 1 & 2 & 1 \\ -1 & 3 & -1 & 2 \\ 4 & -7 & 0 & -5 \end{pmatrix} \quad b = \begin{pmatrix} 4 \\ -1 \\ 3 \\ -5 \end{pmatrix}$$

- b) Dim = 2
- c) Rank = 2
- $d) x_1, x_2$
- $e) x_3, x_4$
- $f) \quad s_1 = \left(\frac{7}{5}, \frac{4}{5}, 1, 0\right) \quad s_2 = \left(\frac{1}{5}, -\frac{3}{5}, 0, 1\right)$

$$g) \quad \boldsymbol{x}_{3} \begin{bmatrix} \frac{7}{5} \\ \frac{4}{5} \\ 1 \\ 0 \end{bmatrix} + \boldsymbol{x}_{4} \begin{bmatrix} \frac{1}{5} \\ -\frac{3}{5} \\ 0 \\ 1 \end{bmatrix}$$

h)
$$x_p = \left(\frac{6}{5}, \frac{7}{5}, 0, 0\right)$$

i)
$$\mathbf{x} = \begin{bmatrix} \frac{6}{5} \\ \frac{7}{5} \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} \frac{7}{5} \\ \frac{4}{5} \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} \frac{1}{5} \\ -\frac{3}{5} \\ 0 \\ 1 \end{bmatrix}$$