A policy-based quiz

Quiz, 7 questions

1				
poin	t			
1.				
In broad strokes, how do policy-based methods work?				
	Define a policy as an arg-max of Q-values learned by value-based methods.			
	Define exploration policy (e.g. epsilon-greedy). Then train Q-values in a way that accounts for current exploration policy.			
	Learn the optimal reward function given a fixed policy of a rational agent.			
	Parameterize the action-picking policy. Find such policy parameters that maximize expected returns.			
1 point				
2. Policy gradient it's a gradient of what function and with respect to what inputs?				
	A gradient of expected reward w.r.t. action probabilities			
	A gradient of policy w.r.t. action probabilities			
	A gradient of policy w.r.t. actions			
	A gradient of policy w.r.t. states			
1 point				
3.				
Which of those methods can learn from partial trajectories?				
	Value Iteration			
	REINFORCE			

A policy-based quiz Quiz, 7 questions Advantage Actor-Critic **SARSA** Crossentropy method 1 point 4. What are valid reasons to use Q-learning and not REINFORCE Unlike reinforce, Q-learning can be trained much more efficiently with experience replay Unlike REINFORCE, Q-learning can be trained on partial experience (e.g. s,a,r,s') Unlike REINFORCE, Q-learning can work with discounted rewards. Unlike REINFORCE, Q-learning does not require exploration. Unlike REINFORCE, Q-learning directly optimizes expected sum of rewards over session 1 point Which of the following is a valid expression for policy gradient J? Legend: G(s,a) - discounted reward r(s,a) - immediate reward gamma - discount factor for discounted reward d(s) - a probability of being in this state at a random moment along random trajectory sampled with current policy pi(a|s) - agent's policy $\Lambda J = \Lambda G(s, a)$ $\Lambda = \int S = \Lambda(s) = \Lambda(s)$

-	\nabla J = \underset{E}{s sim d(s), a sim \pi, s' sim P(s' s,a)} \nabla \pi (a s) * G(s, a) $icy-based\ quiz$ $lestrate{lestrate} = \sum_{s=1}^{n} \frac{1}{s} = \frac{1}{s} $ \underset{E}{s sim d(s), a sim \pi, s' sim P(s' s,a)} a s) * \nabla G(s,a)
1	
poin	
6. How d	loes advantage actor critic works?
	It trains a network to predict advantage $A(s,a) = Q(s,a) - V(s)$ and picks action with highest predicted advantage
	Actor is trained by the gradients propagated through the critic.
	It uses learned state values(critic) as a baseline for policy gradient(actor)
	It trains an ensemble of two models - Q-learning(critic) and REINFORCE(actor) - and picks actions by voting.
	It trains an agent (actor) with a help of human critic
7. How d	lo you train critic in Advantage Actor Critic?
	A critic predicts V(s), we minimize [r + gamma * const(V(s')) - V(s)] ^2
	A critic predicts Q(s, a), we minimize [r + gamma * max(Q(s',a')) - Q(s,a)] ^2
	$\Lambda J = \Lambda G(s, a) + G(s, a)$
	In advantage actor-critic there's no need to train critic
	With policy gradient \nabla J(s) = \underset{E}{s sim d(s), a sim \pi, s' sim P(s' \mid s,a)} r(s,a) + gamma * \nabla J(s')
0	Jiadai Zhao , understand that submitting work that isn't my own may result in permanent failure f this course or deactivation of my Coursera account.

Δ	policy-based	aniz
А	. poncy-baseu	quiz

Submit Quiz

Quiz, 7 questions

