Points in Polygon Analysis

QGIS Tutorials and Tips

Author Ujaval Gandhi

http://google.com/+Ujaval Gandhi

Translations by Dick Groskamp

Punten in polygoon-analyses

De kracht van GIS ligt in het analyseren van meerdere gegevensbronnen tegelijk. Vaak bevinden zich de antwoorden die u zoekt zich op vele verschillende lagen en u moet nekele analyses uitvoeren om deze informatie uit te nemen en te compileren. Eén zo'n type analyse is Points-in-Polygon. Wanneer u een polygoonlaaag en een puntenlaag heeft – en wilt weten hoeveel of waar de punten vallen binnen de grenzen van elke polygoon, kunt u deze analyse-methode gebruiken.

Overzicht van de taak

Gegeven de locaties van alle bekende significante aardbevingen, zullen we proberen uit te vinden welk land het hoogste aantal aardbevingen had.

De gegevens ophalen

We zullen NOAA's National Geophysical Data Center's Significant Earthquake Database gebruiken omdat onze laag alle belangrijke aardbevingen weergeeft. Download de tab-delimited earthquake data.

Natural Earth heeft een mooie gegevensset Admin 0 – Countries . Download de countries Gegevensbronnen: [NGDC] [NATURALEARTH]

Procedure

1. Open Kaartlagen • Laag toevoegen • Tekstgescheiden kaartlaag toevoegen en blader naar het gedownloade bestand signif.txt.

2. Kies, omdat dit een tab-gescheiden bestand is, Tab als het Bestandsformaat. De velden X-veld en Y-veld zouden automatisch moeten worden gevuld. Klik op OK.

Note

U zou mogelijk enkele foutberichten kunnen zien wanneer QGIS probeert het bestand te importeren. Dit zijn geldige fouten en enkele rijen uit het bestand zullen niet worden geïmporteerd. U mag voor het doel van deze handleiding de fouten negeren.

3. Kies, omdat de gegevensset met aardbevingen coördinaten in Latitude/Longitude heeft, WGS 84 EPSG:436 als het CRS in het dialoogvenster Keuze Coördinaten ReferentieSysteem.

4. De puntenlaag met aardbevingen zou nou moeten wordne geladen en weergegeven in QGIS. Laten we ook de laag voor de Countries openen. Ga naar Kaartlagen → Laag toevoegen → Vectorlaag toevoegen. Blader naar het gedownloade bestand ne_10m_admin_0_countries.zip en klik op Open. Selecteer ne_10m_admin_0_countries.shp al de laag in het dialoogvenster Lagen selecteren om toe te voegen....

5. Klik op Vector • Analyse-gereedschap • Punten in polygonen

6. Selecteer, in het pop-upvenster, respectievelijk de polygoonlaag en puntenlaag. Noem de uitvoerlaag earthquake_per_coutry.shp en klik op OK.

Note

Wees geduldig na het klikken op OK, QGIS kan tot 10 minuten nodig hebben om de resultaten uit te rekenen.

7. Wanneer u gevraagd wordt of u de laag wilt toevoegen aan de inhoudsopgave, klik dan op Ja.

8. U zult zien dat een nieuwe laag is toegevoegd aan de lagenlijst. Open de attributentabel door met rechts op de laag te klikken en te selecteren Open attributentabel.

9. In de attributentabel zult u een nieuw veld zien, genaamd PNTCNT. Dit is de telling van het aantal punten uit de laag met aardbevingen die binnen elke polygoon vallen.

Ø	Attribute tab	le - earthquakes					_ 🗆 🗙
	REGION_WB	NAME_LEN	LONG_LEN	ABBREV_LEN	TINY	HOMEPART	PNTCNT
0	Latin America	5.00	5.00	5.00	4.00	-99.00	0.0000000000000
1	South Asia	11.00	11.00	4.00	-99.00	1.00	57.00000000000
2	Sub-Saharan Af	6.00	6.00	4.00	-99.00	3 1.00	0.000000000000
3	Latin America	8.00	8.00	4.00	-99.00	-99.00	0.000000000000
4	Europe & Centr	7.00	7.00	4.00	-99.00	1.00	44.00000000000
5	Europe & Centr	5.00	13.00	5.00	5.00	-99.00	0.000000000000
6	Europe & Centr	7.00	7.00	4.00	5.00	1.00	0.000000000000
7	Middle East &	20.00	20.00	6.00	-99.00	1.00	0.000000000000
8	Latin America	9.00	9.00	4.00	-99.00	1.00	20.00000000000
9	Europe & Centr	7.00	7.00	4.00	-99.00	1.00	14.00000000000
10	East Asia & Pac	14.00	14.00	9.00	3.00	-99.00	0.000000000000
11	Antarctica	10.00	10.00	4.00	-99.00	1.00	0.000000000000
12	East Asia & Pac	23.00	27.00	7.00	-99.00	-99.00	0.000000000000
13	Sub-Saharan Af	22.00	35.00	10.00	2.00	-99.00	0.000000000000
14	Latin America	17.00	19.00	6.00	4.00	1.00	0.000000000000
15	East Asia & Pac	9.00	9.00	4.00	-99.00	1.00	9.000000000000
16	Europe & Centr	7.00	7.00	5.00	-99.00	1.00	4.000000000000
17	Europe & Centr	10.00	10.00	4.00	-99.00	1.00	15.00000000000
18	Sub-Saharan Af	7.00	7.00	4.00	-99.00	1.00	1.000000000000
19	Europe & Centr	7.00	7.00	5.00	-99.00	1.00	2.000000000000
20	Sub-Saharan Af	5.00	5.00	5.00	-99.00	1.00	1.000000000000
21 1	Suh-Saharan Δf	12.00	12.00	4.00	-99.00	1.00	0.0000000000
Show All Features							

10. We kunnen, om onze antwoorden te krijgen, eenvoudigweg de tabel sorteren op het veld PNTCNT en het land met de hoogste telling zal ons antwoord zijn. Klik 2 keer op de kolom ``PNTCNT``om het in aflopende volgorde te sorteren. Klik op de eerste rij om die te selecteren en sluit de attributentabel.

11. Terug i het hoofdvenster van QGIS zult u één object zien geaccentueerd in geel. Dat is het object dat is gekoppeld aan de geselecteerde rij in de attributentabel wat het hoogste aantal punten had. Selecteer het gereedschap Objecten identificeren en klik op die polygoon. U zult zien dat het land met het hoogste aantal significante aardbevingen China is.

We bepaalden uit een eenvoudige analyse van 2 gegevenssets dat China het hoogste aantal grote aardbevingen had. U kunt deze analyse nog meer verfijnen door ook de bevolking en de grootte van land in aanmerking te nemen en bepalen wat het meest getroffen land is door grote aardbevingen.