Exercise 10.1

For the following molecules, determine the point group and the symmetry of the MOs for the π -electrons, and, using Hückel theory, obtain the MOs and orbital energies:

- (a) trans-1,3-butadiene,
- (b) ethylene,
- (c) cyclobutadiene,
- (d) cyclopentadienyl radical C₅H₅,
- (e) naphthalene,
- (f) phenanthrene.

Solution 10.1

(a) Firstly, it is easy to find that trans-1,3-butadiene belongs to the point group \mathscr{C}_{2h} , whose character table is listed below.

$\mathscr{C}_{\mathrm{2h}}$	E	C_2	i	σ_h
$\overline{A_g}$	1	1	1	1
B_q	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

Secondly, we mark all carbon atoms as follows.

Figure 10.1: The order of carbon atoms in trans-1,3-butadiene.

For π -electron atomic orbitals' representation Γ^{AO} , its following characters is listed below.

Relevant reduction coefficients are

$$\begin{split} a_g &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{A_g}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times 1 + 1 \times (-4) \times 1 \right] = 0, \\ b_g &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{B_g}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times 1 + 1 \times (-4) \times (-1) \right] = 2, \\ a_u &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{A_u}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times (-1) + 1 \times (-4) \times (-1) \right] = 2, \\ b_u &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{B_u}(R) = \frac{1}{4} \left[1 \times 4 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times (-1) + 1 \times (-4) \times 1 \right] = 0. \end{split}$$

Thus, we arrive at

$$\Gamma^{AO} = 2\Gamma^{B_g} \oplus 2\Gamma^{A_u}$$

We conclude that there are two basis functions in the irreducible representation Γ^{B_g} and Γ^{A_u} , respectively. Thus, to describe the effect of O_R , two suitable π atomic orbitals ϕ_i is enough.

Thirdly, we inspect the transformation of ϕ_i under O_R for the *trans*-1,3-butadiene, whose information is recorded below. We only list two ϕ_1 and ϕ_2 , which is enough in current case.

Table 10.1: Transformation of ϕ_i under O_R for the trans-1,3-butadiene.

$\mathscr{C}_{\mathrm{2h}}$	O_E	O_{C_2}	O_i	O_{σ_h}
ϕ_1	ϕ_1	ϕ_4	$-\phi_4$	$-\phi_1$
ϕ_2	ϕ_2	ϕ_3	$-\phi_3$	$-\phi_2$

For the irreducible representation Γ^{B_g} ,

$$\Gamma^{B_g}\phi_1 = \sum_R \chi^{B_g}(R)O_R\phi_1 = (O_E - O_{C_2} + O_i - O_{\sigma_h})\phi_1 = \phi_1 - \phi_4 + (-\phi_4) - (-\phi_1) = 2(\phi_1 - \phi_4),$$

$$\Gamma^{B_g}\phi_2 = \sum_R \chi^{B_g}(R)O_R\phi_2 = (O_E - O_{C_2} + O_i - O_{\sigma_h})\phi_2 = \phi_2 - \phi_3 + (-\phi_3) - (-\phi_2) = 2(\phi_2 - \phi_3).$$

It is easy to find that they are mutually orthogonal. They can be normalized to

$$\phi_1' = \frac{1}{\sqrt{2}}(\phi_1 - \phi_4),$$

$$\phi_2' = \frac{1}{\sqrt{2}}(\phi_2 - \phi_3).$$

Then, the effective Hamitonian matrix elements for π electrons can be calculated,

$$H'_{11} = \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} (\phi_1 - \phi_4) H^{\text{eff},\pi} \frac{1}{\sqrt{2}} (\phi_1 - \phi_4) = \frac{1}{2} (\alpha + 0 + 0 + \alpha) = \alpha,$$

$$H'_{12} = \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} (\phi_1 - \phi_4) H^{\text{eff},\pi} \frac{1}{\sqrt{2}} (\phi_2 - \phi_3) = \frac{1}{2} (\beta - 0 - 0 + \beta) = \beta,$$

$$H'_{22} = \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} (\phi_2 - \phi_3) H^{\text{eff},\pi} \frac{1}{\sqrt{2}} (\phi_2 - \phi_3) = \frac{1}{2} (\alpha - \beta - \beta + \alpha) = \alpha - \beta,$$

viz.

$$H'_{B_g} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha - \beta \end{pmatrix}.$$

Next,

$$\det(H'_{B_g} - \varepsilon^{\pi} S'_{B_g}) = \begin{vmatrix} \alpha - \varepsilon^{\pi} & \beta \\ \beta & \alpha - \beta - \varepsilon^{\pi} \end{vmatrix} = \beta^2 \begin{vmatrix} x & 1 \\ 1 & x - 1 \end{vmatrix} = \beta^2 (x^x - x - 1) = 0,$$

where

$$x = \frac{\alpha - \varepsilon^{\pi}}{\beta}.$$

Current discriminant is

$$\Delta_{B_g} = (-1)^2 - 4 \times 1 \times (-1) = 5,$$

and then two roots are

$$x_1 = \frac{1+\sqrt{5}}{2}, \quad x_2 = \frac{1-\sqrt{5}}{2},$$

which equal to

$$\varepsilon_1 = \alpha - x_1 \beta = \alpha - \frac{1 + \sqrt{5}}{2} \beta \approx \alpha - 1.618\beta, \tag{10.1}$$

$$\varepsilon_2 = \alpha - x_2 \beta = \alpha - \frac{1 - \sqrt{5}}{2} \beta = \alpha + \frac{\sqrt{5} - 1}{2} \beta \approx \alpha + 0.618 \beta. \tag{10.2}$$

For $H_{B_g}' - \varepsilon_1^\pi S_{B_g}'$, its reduced row echelon form is

$$\begin{pmatrix} 1 & \frac{-1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_1 = -\frac{\sqrt{5} - 1}{2}\phi_1' + \phi_2'.$$

The sum of squares of coefficients is

$$\sum_{i} c_i^2 = \left(-\frac{\sqrt{5}-1}{2}\right)^2 + 1^2 = \frac{5-\sqrt{5}}{2}.$$

Thus, we know

$$\Phi_1^{\pi} = \sqrt{\frac{2}{5 - \sqrt{5}}} \Phi_1 = -\frac{\sqrt{5} - 1}{2} \phi_1' + \phi_2' = -\sqrt{\frac{\sqrt{5} - 1}{2\sqrt{5}}} \phi_1' + \sqrt{\frac{\sqrt{5} + 1}{2\sqrt{5}}} \phi_2'$$

$$= -\frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_2 - \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_3 + \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_4$$

$$\approx -0.3717 \phi_1 + 0.6015 \phi_2 - 0.6015 \phi_3 + 0.3717 \phi_4. \tag{10.3}$$

Similarly, the reduced row echelon form of $H'_{B_g} - \varepsilon_2^{\pi} S'_{B_g}$ is

$$\begin{pmatrix} 1 & \frac{-1-\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

which means

$$\Phi_2 = \frac{\sqrt{5} + 1}{2} \phi_1' + \phi_2'.$$

And then,

$$\Phi_2^{\pi} = \sqrt{\frac{2}{5+\sqrt{5}}} \Phi_2 = \frac{\sqrt{5}+1}{2} \phi_1' + \phi_2' = \sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}} \phi_1' + \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}} \phi_2'
= \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{\sqrt{5}}} \phi_2 - \frac{1}{2} \sqrt{\frac{\sqrt{5}-1}{\sqrt{5}}} \phi_3 - \frac{1}{2} \sqrt{\frac{\sqrt{5}+1}{\sqrt{5}}} \phi_4
\approx 0.6015 \phi_1 + 0.3717 \phi_2 - 0.3717 \phi_3 - 0.6015 \phi_4.$$
(10.4)

In conclusion, for the irreducible representation Γ^{B_g} , relevant results are listed below.

or	\det	eigenvalue	eigenfunction				
	1	$\alpha - 1.618\beta$	$0.3717\phi_1 - 0.6015\phi_2 + 0.6015\phi_3 - 0.3717\phi_4$				
	2	$\alpha + 0.618\beta$	$0.6015\phi_1 + 0.3717\phi_2 - 0.3717\phi_3 - 0.6015\phi_4$				

$$\Gamma^{A_u}\phi_1 = \sum_R \chi^{A_u}(R)O_R\phi_1 = (O_E + O_{C_2} - O_i - O_{\sigma_h})\phi_1 = \phi_1 + \phi_4 - (-\phi_4) - (-\phi_1) = 2(\phi_1 + \phi_4),$$

$$\Gamma^{A_u}\phi_2 = \sum_R \chi^{A_u}(R)O_R\phi_2 = (O_E + O_{C_2} - O_i - O_{\sigma_h})\phi_2 = \phi_2 + \phi_3 - (-\phi_3) - (-\phi_2) = 2(\phi_2 + \phi_3).$$

$$\phi_3' = \frac{1}{\sqrt{2}}(\phi_1 + \phi_4),$$

$$\phi_4' = \frac{1}{\sqrt{2}}(\phi_2 + \phi_3).$$

$$H'_{A_u} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha + \beta \end{pmatrix}.$$

$$\det(H'_{A_u} - \varepsilon^{\pi} S'_{A_u}) = \begin{vmatrix} \alpha - \varepsilon^{\pi} & \beta \\ \beta & \alpha + \beta - \varepsilon^{\pi} \end{vmatrix} = \beta^2 \begin{vmatrix} x & 1 \\ 1 & x + 1 \end{vmatrix} = \beta^2 (x^x + x - 1) = 0,$$

$$\Delta_{A_u} = 1^2 - 4 \times 1 \times (-1) = 5,$$

$$x_3 = \frac{-1 + \sqrt{5}}{2}, \quad x_4 = \frac{-1 - \sqrt{5}}{2}.$$

$$\varepsilon_3 = \alpha - x_3 \beta = \alpha - \frac{-1 + \sqrt{5}}{2} \beta \approx \alpha - 0.618 \beta,$$

$$\varepsilon_4 = \alpha - x_4 \beta = \alpha - \frac{-1 - \sqrt{5}}{2} \beta = \alpha + \frac{\sqrt{5} + 1}{2} \beta \approx \alpha + 1.618 \beta.$$

$$H_{A_u}' - \varepsilon_3^{\pi} S_{A_u}' = 0$$

$$\begin{pmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix}$$

$$\Phi_3 = -\frac{\sqrt{5}+1}{2}\phi_3' + \phi_4'.$$

$$\Phi_3^{\pi} = \sqrt{\frac{2}{5 + \sqrt{5}}} \Phi_3 \tag{10.5}$$

$$= -\sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}}\phi_3' + \sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}}\phi_4' \tag{10.6}$$

$$= -\frac{1}{2}\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}}}\phi_1 + \frac{1}{2}\sqrt{\frac{\sqrt{5}-1}{\sqrt{5}}}\phi_2 + \frac{1}{2}\sqrt{\frac{\sqrt{5}-1}{\sqrt{5}}}\phi_3 - \frac{1}{2}\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}}}\phi_4$$
 (10.7)

$$\approx -0.6015\phi_1 + 0.3717\phi_2 + 0.3717\phi_3 - 0.6015\phi_4. \tag{10.8}$$

$$H_{A_u}' - \varepsilon_4^{\pi} S_{A_u}' = 0$$

$$\begin{pmatrix} 1 & \frac{1-\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix}$$

$$\Phi_4 = \frac{\sqrt{5} - 1}{2} \phi_3' + \phi_4'.$$

$$\Phi_4^{\pi} = \sqrt{\frac{2}{5 - \sqrt{5}}} \Phi_4 \tag{10.9}$$

$$=\sqrt{\frac{\sqrt{5}-1}{2\sqrt{5}}}\phi_3'+\sqrt{\frac{\sqrt{5}+1}{2\sqrt{5}}}\phi_4'$$
(10.10)

$$= \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_1 + \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_2 + \frac{1}{2} \sqrt{\frac{\sqrt{5} + 1}{\sqrt{5}}} \phi_3 + \frac{1}{2} \sqrt{\frac{\sqrt{5} - 1}{\sqrt{5}}} \phi_4$$
 (10.11)

$$\approx 0.3717\phi_1 + 0.6015\phi_2 + 0.6015\phi_3 + 0.3717\phi_4. \tag{10.12}$$

Thus, we obtain all results, which are shown as following.

order	orbital energy	irrep	c_1	c_2	c_3	c_4
1	$\alpha + 1.618\beta$	A_u	0.3717	0.6015	0.6015	0.3717
2	$\alpha + 0.618\beta$	B_q	0.6015	0.3717	-0.3717	-0.6015
3	$\alpha - 0.618\beta$	A_u	-0.6015	0.3717	0.3717	-0.6015
4	$\alpha - 1.618\beta$	B_g	-0.3717	0.6015	-0.6015	0.3717

$$\Delta E = \alpha + 1.618\beta$$

$$\Delta E = \alpha + 0.618\beta$$

$$\Delta E = \alpha - 0.618\beta$$

 $\Delta E = \alpha - 1.618\beta$

Figure 10.2: aaaaaaa

(b) 22222222222222

ω_2	E	C_{2z}	C_{2y}	C_{2x}
\overline{A}	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	1	-1
B_3	1	-1	-1	1

$$a = \frac{1}{4} \sum_{R} \chi^{\text{AO}}(R) \chi^{A}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times 1 \right] = 0,$$

$$b_{1} = \frac{1}{4} \sum_{R} \chi^{\text{AO}}(R) \chi^{B_{1}}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) \right] = 1,$$

$$b_{2} = \frac{1}{4} \sum_{R} \chi^{\text{AO}}(R) \chi^{B_{2}}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times 1 + 1 \times (-2) \times (-1) \right] = 1,$$

$$b_{3} = \frac{1}{4} \sum_{R} \chi^{\text{AO}}(R) \chi^{B_{3}}(R) = \frac{1}{4} \left[1 \times 2 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times (-1) + 1 \times (-2) \times 1 \right] = 0.$$

$$\Gamma^{B_1}\phi_1 = \sum_R \chi^{B_1}(R)O_R\phi_1 = (O_E + O_{C_{2z}} - O_{C_{2y}} - O_{C_{2x}})\phi_1 = \phi_1 + \phi_2 - (-\phi_2) - (-\phi_1) = 2(\phi_1 + \phi_2).$$

$$\phi_1' = \frac{1}{2}(\phi_1 + \phi_2).$$

$$H^{\mathrm{eff},\pi} = (\alpha + \beta).$$

$$\Psi^p i_1 = \phi_1' = \frac{1}{2}(\phi_1 + \phi_2) \tag{10.13}$$

$$\approx 0.7071\phi_1 + 0.7071\phi_2. \tag{10.14}$$

$$\Gamma^{B_2}\phi_1 = \sum_R \chi^{B_2}(R)O_R\phi_1 = (O_E - O_{C_{2z}} + O_{C_{2y}} - O_{C_{2x}})\phi_1 = \phi_1 - \phi_2 + (-\phi_2) + (-\phi_1) = 2(\phi_1 - \phi_2).$$

$$\phi_2' = \frac{1}{2}(\phi_1 - \phi_2).$$

$$H^{\mathrm{eff},\pi} = (\alpha - \beta).$$

$$\Psi^p i_1 = \phi_1' = \frac{1}{2}(\phi_1 - \phi_2) \tag{10.15}$$

$$\approx 0.7071\phi_1 - 0.7071\phi_2. \tag{10.16}$$

Thus, we obtain all results, which are shown as following.

order	orbital energy	irrep	c_1	c_2
1	$\alpha + \beta$	B_1	0.7071	-0.7071
2	$\alpha - \beta$	B_2	0.7071	-0.7071

(c) This solution is designed for cyclobutadiene anion instead of just cyclobutadiene.

$\overline{\mathscr{D}_4}$	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
A_1	1	1	1	1	1
A_1	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
$_{-}E$	2	0	2	0	0

$$a_1 = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{A_1}(R) = \frac{1}{8} \left[1 \times 4 \times 1 + 2 \times 0 \times 1 + 1 \times 0 \times 1 + 2 \times 0 \times 1 + 2 \times (-2) \times 1 \right] = 0,$$

$$a_2 = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{A_2}(R) = \frac{1}{8} \left[1 \times 4 \times 1 + 2 \times 0 \times 1 + 1 \times 0 \times 1 + 2 \times 0 \times (-1) + 2 \times (-2) \times (-1) \right] = 1,$$

$$b_1 = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_1}(R) = \frac{1}{8} \left[1 \times 4 \times 1 + 2 \times 0 \times (-1) + 1 \times 0 \times 1 + 2 \times 0 \times 1 + 2 \times (-2) \times (-1) \right] = 1,$$

$$b_2 = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_2}(R) = \frac{1}{8} \left[1 \times 4 \times 1 + 2 \times 0 \times (-1) + 1 \times 0 \times 1 + 2 \times 0 \times (-1) + 2 \times (-2) \times 1 \right] = 0,$$

$$e = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^E(R) = \frac{1}{8} \left[1 \times 4 \times 2 + 2 \times 0 \times 0 + 1 \times 0 \times (-2) + 2 \times 0 \times 1 + 2 \times (-2) \times 0 \right] = 1.$$

$$\Gamma^{AO} = \Gamma^{A_2} \oplus \Gamma^{B_1} \oplus \Gamma^E$$
.

\mathscr{D}_4	E	C_4	C_2	C_4^3	$C'_{2,1}$	$C'_{2,2}$	$C_{2,1}''$	$C_{2,2}^{\prime\prime}$
ϕ_1	ϕ_1	ϕ_2	ϕ_3	ϕ_4	$-\phi_2$	$-\phi_4$	$-\phi_3$	$-\phi_1$
ϕ_2	ϕ_2	ϕ_3	ϕ_4	ϕ_1	$-\phi_1$	$-\phi_3$	$-\phi_2$	$-\phi_4$

$\overline{\mathscr{D}_5}$	E	$2C_5$	$2C_{5}^{2}$	$5C_2'$
$\overline{A_1}$	1	1	1	1
A_2	1	1	1	-1
E_1	2	$2\cos\alpha$	$2\cos 2\alpha$	0
E_2	2	$2\cos 2\alpha$	$2\cos\alpha$	0

$$\begin{split} a_1 &= \frac{1}{10} \sum_R \chi^{\text{AO}}(R) \chi^{A_1}(R) = \frac{1}{10} \left[1 \times 5 \times 1 + 2 \times 0 \times 1 + 2 \times 0 \times 1 + 5 \times (-1) \times 1 \right] = 0, \\ a_2 &= \frac{1}{10} \sum_R \chi^{\text{AO}}(R) \chi^{A_2}(R) = \frac{1}{10} \left[1 \times 5 \times 1 + 2 \times 0 \times 1 + 2 \times 0 \times 1 + 5 \times (-1) \times (-1) \right] = 1, \\ e_1 &= \frac{1}{10} \sum_R \chi^{\text{AO}}(R) \chi^{E_1}(R) = \frac{1}{10} \left[1 \times 5 \times 2 + 2 \times 0 \times 2 \cos \alpha + 2 \times 0 \times 2 \cos 2\alpha + 5 \times (-1) \times 0 \right] = 1, \\ e_2 &= \frac{1}{10} \sum_R \chi^{\text{AO}}(R) \chi^{E_2}(R) = \frac{1}{10} \left[1 \times 5 \times 2 + 2 \times 0 \times 2 \cos 2\alpha + 2 \times 0 \times 2 \cos \alpha + 5 \times (-1) \times 0 \right] = 1, \end{split}$$

$$\Gamma^{AO} = \Gamma^{A_2} \oplus \Gamma^{E_1} \oplus \Gamma^{E_2}$$
.

\mathscr{D}_5	E	C_5^1	C_5^2	C_5^3	C_5^4	$C'_{2,1}$	$C'_{2,2}$	$C'_{2,3}$	$C'_{2,4}$	$C'_{2,5}$
ϕ_1	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	$-\phi_1$	$-\phi_3$	$-\phi_5$	$-\phi_2$	$-\phi_4$
ϕ_2	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_1	$-\phi_5$	$-\phi_2$	$-\phi_4$	$-\phi_1$	$-\phi_3$

(e) 555555555555555

$\overline{\mathscr{D}_{\mathrm{2h}}}$	E	C_{2z}	C_{2y}	C_{2x}	i	σ_{xy}	σ_{xz}	σ_{yz}
$\overline{A_g}$	1	1	1	1	1	1	1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	-1	1	-1	1	-1	1	-1
B_{3g}	1	-1	-1	1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	-1	1	-1	-1	1	-1	1
B_{3u}	1	-1	-1	1	-1	1	1	-1

$$a_g = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{A_S}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times 1 + 1 \times 0 \times 1 \\ + 1 \times 0 \times 1 + 1 \times (-10) \times 1 + 1 \times 0 \times 1 + 1 \times 2 \times 1] = 0,$$

$$b_{1g} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{1g}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) \\ + 1 \times 0 \times 1 + 1 \times (-10) \times 1 + 1 \times 0 \times (-1) + 1 \times 2 \times (-1)] = 0,$$

$$b_{2g} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{2g}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times 1 + 1 \times 0 \times (-1) \\ + 1 \times 0 \times 1 + 1 \times (-10) \times (-1) + 1 \times 0 \times 1 + 1 \times 2 \times (-1)] = 2,$$

$$b_{3g} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{3g}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) + 1 \times 0 \times 1 \\ + 1 \times 0 \times 1 + 1 \times (-10) \times (-1) + 1 \times 0 \times (-1) + 1 \times 2 \times 1] = 3,$$

$$a_u = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{A_u}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times 1 + 1 \times 0 \times (-1) + 1 \times 2 \times (-1)] = 2,$$

$$b_{1u} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{1u}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) + 1 \times 2 \times (-1)] = 2,$$

$$b_{1u} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{1u}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times 1 + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) + 1 \times 2 \times 1] = 3,$$

$$b_{2u} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{2u}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) + 1 \times 2 \times 1] = 0,$$

$$b_{3u} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{3u}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) + 1 \times 2 \times 1] = 0,$$

$$b_{3u} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{3u}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) + 1 \times 2 \times 1] = 0,$$

$$b_{3u} = \frac{1}{8} \sum_R \chi^{\text{AO}}(R) \chi^{B_{3u}}(R) = \frac{1}{8} [1 \times 10 \times 1 + 1 \times 0 \times (-1) + 1 \times (-2) \times (-1) + 1 \times 0 \times (-1) + 1 \times$$

$$\Gamma^{\text{AO}} = 2\Gamma^{B_{2g}} \oplus 3\Gamma^{B_{3g}} \oplus 2\Gamma^{A_u} \oplus 3\Gamma^{B_{1u}}.$$

\mathscr{D}_5	E	C_{2z}	C_{2y}	C_{2x}	i	σ_{xy}	σ_{xz}	σ_{yz}
ϕ_1	ϕ_1	ϕ_6	$-\phi_9$	$-\phi_4$	$-\phi_6$	$-\phi_1$	ϕ_4	ϕ_9
ϕ_2	ϕ_2	ϕ_7	$-\phi_8$	$-\phi_3$	$-\phi_7$	$-\phi_2$	ϕ_3	ϕ_8
ϕ_5	ϕ_5	ϕ_{10}	$-\phi_5$	$-\phi_{10}$	$-\phi_{10}$	$-\phi_5$	ϕ_{10}	ϕ_5

(f) 666666666666666

$\overline{\mathscr{D}_5}$	E	C_2	σ_{xz}	σ_{yz}
$\overline{A_1}$	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

$$\begin{split} a_1 &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{A_1}(R) = \frac{1}{4} \left[1 \times 14 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times 1 + 1 \times (-14) \times 1 \right] = 0, \\ a_2 &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{A_2}(R) = \frac{1}{4} \left[1 \times 14 \times 1 + 1 \times 0 \times 1 + 1 \times 0 \times (-1) + 1 \times (-14) \times (-1) \right] = 7, \\ b_1 &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{B_1}(R) = \frac{1}{4} \left[1 \times 14 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times 1 + 1 \times (-14) \times (-1) \right] = 7, \\ b_2 &= \frac{1}{4} \sum_R \chi^{\text{AO}}(R) \chi^{B_2}(R) = \frac{1}{4} \left[1 \times 14 \times 1 + 1 \times 0 \times (-1) + 1 \times 0 \times (-1) + 1 \times (-14) \times 1 \right] = 0, \end{split}$$

$$\Gamma^{\rm AO} = 7\Gamma^{A_2} \oplus 7\Gamma^{B_1}.$$

$\mathscr{C}_{\mathrm{2v}}$	E	C_2	σ_{xz}	σ_{yz}
ϕ_1	ϕ_1	$-\phi_{10}$	ϕ_{10}	$-\phi_1$
ϕ_2	ϕ_2	$-\phi_9$	ϕ_9	$-\phi_2$
ϕ_3	ϕ_3	$-\phi_8$	ϕ_8	$-\phi_3$
ϕ_4	ϕ_4	$-\phi_7$	ϕ_7	$-\phi_4$
ϕ_5	ϕ_5	$-\phi_6$	ϕ_6	$-\phi_5$
ϕ_{11}	ϕ_{11}	$-\phi_{14}$	ϕ_{14}	$-\phi_{11}$
ϕ_{12}	ϕ_{12}	$-\phi_{13}$	ϕ_{13}	$-\phi_{12}$