PLSC 502 – Autumn 2016 Measures of Association Ordinal Variables

November 3, 2016

Ordinal Variates

- Key issue: how to retain the information present in the ordering of the categories without giving the numerical values assigned to them cardinal content.
- Key concept: Concordance

For a pair of values on two observations $i = \{1, 2\}$ and two variables X and Y, a *concordant pair* has:

$$\operatorname{sign}(X_2 - X_1) = \operatorname{sign}(Y_2 - Y_1)$$

and a discordant pair has:

$$\operatorname{sign}(X_2 - X_1) = -\operatorname{sign}(Y_2 - Y_1).$$

A(nother) Contingency Table

Consider:

			X		
		1	2	3	
	1	n ₁₁	n ₁₂	n ₁₃	n_{1X}
Y	2	n_{21}	n_{22}	n_{23}	n_{2X}
	3	n_{31}	n_{32}	n_{33}	n_{3X}
		n_{Y1}	n _{Y2}	n _{Y3}	Ν

Concordance with $\{1,1\}$ observations:

			X		
		1	2	3	
	1	(n ₁₁)	n ₁₂	n ₁₃	n_{1X}
Y	2	n_{21}	<i>n</i> ₂₂	<i>n</i> ₂₃	n_{2X}
	3	n_{31}	<i>n</i> ₃₂	<i>n</i> ₃₃	n_{3X}
		n_{Y1}	n _{Y2}	n _{Y3}	Ν

Concordance with $\{1,2\}$ observations:

			X		
		1	2	3	
	1	n ₁₁	(n ₁₂)	n ₁₃	n_{1X}
Y	2	n_{21}	n_{22}	n ₂₃	n_{2X}
	3	n_{31}	n_{32}	n ₃₃	n_{3X}
		n_{Y1}	n_{Y2}	n _{Y3}	Ν

Discordance with $\{1,2\}$ observations:

			X		
		1	2	3	
	1	n ₁₁	(n ₁₂)	n ₁₃	n_{1X}
Y	2	n_{21}	n_{22}	n_{23}	n_{2X}
	3	n_{31}	n ₃₂	n_{33}	n_{3X}
		n_{Y1}	n _{Y2}	n _{Y3}	Ν

Discordance with $\{1,3\}$ observations:

			X		
		1	2	3	
	1	n ₁₁	n ₁₂	(n ₁₃)	n_{1X}
Y	2	n_{21}	<i>n</i> ₂₂	n_{23}	n_{2X}
	3	n_{31}	n ₃₂	n ₃₃	n_{3X}
		n _{Y1}	n _{Y2}	пүз	N

For a 3×3 table, the total number of *concordant pairs* is:

$$N_c = n_{11}(n_{22} + n_{23} + n_{32} + n_{33}) + n_{12}(n_{23} + n_{33}) + n_{21}(n_{32} + n_{33}) + n_{22}(n_{33})$$

and the total number of discordant pairs is:

$$N_d = n_{13}(n_{21} + n_{22} + n_{31} + n_{32}) + n_{12}(n_{21} + n_{31}) + n_{23}(n_{31} + n_{32}) + n_{22}(n_{31}).$$

This extends to a table of arbitrary size $M \times N$ straightforwardly...

Gamma (γ)

Gamma (γ) is the normed difference between the number of concordant and discordant pairs in the data:

$$\gamma = \frac{N_c - N_d}{N_c + N_d}$$

Equivalently:

$$\gamma = \frac{N_c}{N_c + N_d} - \frac{N_d}{N_c + N_d}$$

About γ

Gamma:

- does not count "ties."
- $\gamma \in [-1, 1]$.
- $\gamma=0 \leftrightarrow$ no association between X and Y, though it can also happen whenever $N_c=N_d$. That is, $\gamma=0$ is necessary but not sufficient for statistical independence.
- Higher absolute values of γ correspond to stronger associations between X and Y.
- $\gamma=\pm 1.0$ under conditions of (at least) weak monotonicity (e.g., γ will equal 1.0 whenever, as X increases, Y only increases or stays the same).

Inference on γ

Can be shown that:

$$\hat{\gamma} \sim \mathcal{N}(\gamma, \sigma_{\gamma}^2)$$

where

$$\sigma_{\gamma}^2 = \frac{N_c + N_d}{N(1 - \hat{\gamma}^2)}$$

So

$$z = (\hat{\gamma} - \gamma) \sqrt{\frac{N_c + N_d}{N(1 - \hat{\gamma}^2)}}.$$

Kendall's $\tau(s)$

"Tau-a":

$$\tau_{a} = \frac{N_{c} - N_{d}}{\frac{1}{2}N(N-1)}$$

"Tau-b":

$$\tau_b = \frac{N_c - N_d}{\sqrt{[(N_c + N_d + N_{Y^*})(N_c + N_d + N_{X^*})]}}$$

where N_{Y^*} and N_{X^*} are the number of pairs not tied on Y and X, respectively.

"Tau-c":

$$au_c = (N_c - N_d) imes \left\{ rac{2m}{[N^2 2(m-1)]}
ight\}$$

where m is the number of rows or columns, whichever is smaller.

au Traits & Tips

- All have $\tau_{(\cdot)} \in [-1,1]$
- ullet For all aus, the numerator signs the statistic.
- Like γ , τ_a doesn't do "ties"
- $| au_b| = 1.0$ only under *strict monotonicity*
- $\tau_b \rightarrow$ "square" tables
- ullet $au_c
 ightarrow$ "rectangular" (asymmetrical) tables
- $\gamma \geq \tau \ \forall \ \tau_{(\cdot)}$

Example: Sarah Palin Support...

September 2008 "Battleground" Poll in PA:

```
> summary(MamaGriz)
     caseid
                    female
                                                 palin
                 Female:2370
 Min.
                                Very Unfavorable
                                                     :1200
                                Somewhat Unfavorable: 739
 1st Qu.:30034
                 Male :2221
 Median :31831
                                Somewhat Favorable :1132
 Mean
        :36776
                                Very Favorable
                                                    :1520
 3rd Qu.:60674
 Max.
        :62125
          pid
            :1709
 Democrat.
 Independent: 1391
 GOP
            :1491
```

Gamma: The Gamma. 2 Function

```
Gamma2.f<-function(x, pr=0.95)
    # x is a matrix of counts. You can use output of crosstabs or xtabs in R.
    # A matrix of counts can be formed from a data frame by using design.table.
    # Confidence interval calculation and output from Greg Rodd
    # Check for using S-PLUS and output is from crosstabs (needs >= S-PLUS 6.0)
    if(is.null(version$language) && inherits(x, "crosstabs")) { oldClass(x)<-NULL;
attr(x, "marginals") <- NULL}
    n <- nrow(x)
    m \le ncol(x)
    pi.c<-pi.d<-matrix(0,nr=n,nc=m)
    row.x<-row(x)
    (x) [oo->x, [oo
    for(i in 1:(n)){
        for(j in 1:(m)){
            pi.c[i, j] <- sum(x[row.x<i & col.x<j]) + sum(x[row.x>i & col.x>j])
            pi.d[i, i] <- sum(x[row.x<i & col.x>i]) + sum(x[row.x>i & col.x<i])
    C \leftarrow sum(pi.c*x)/2
    D <- sum(pi.d*x)/2
    psi<-2*(D*pi.c-C*pi.d)/(C+D)^2
    sigma2<-sum(x*psi^2)-sum(x*psi)^2
    gamma \leftarrow (C - D)/(C + D)
    pr2 < -1 - (1 - pr)/2
    CIa <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + gamma
    list(gamma = gamma, C = C, D = D, sigma = sqrt(sigma2), Level = paste(
        100 * pr, "%", sep = ""), CI = paste(c("[", max(CIa[1], -1),
        ", ", min(CIa[2], 1), "]"), collapse = ""))
```

Estimating γ

```
> Gamma2.f(palinpid)
$gamma
[1] 0.73376
$C
[1] 4824989
$D
[1] 740927
$sigma
[1] 0.0094232
$Level
[1] "95%"
$CI
[1] "[0.715293551681856, 0.752232009250073]"
```

Kendall's au

```
> with(MamaGriz, cor.test(PID,Palin,method="kendall"))
Kendall's rank correlation tau

data: PID and Palin
z = 43.5, p-value <2e-16
alternative hypothesis: true tau is not equal to 0
sample estimates:
    tau
0.55453</pre>
```

Men vs. Women on Palin

- > palinfemale<-with(MamaGriz, xtabs(~palin+female))
- > addmargins(palinfemale)

p

female

palin	Female	Male	Sum
Very Unfavorable	692	508	1200
Somewhat Unfavorable	411	328	739
Somewhat Favorable	557	575	1132
Very Favorable	710	810	1520
Sum	2370	2221	4591

Men vs. Women on Palin

```
> Gamma2.f(palinfemale)
$gamma
[1] 0.13641
$sigma
[1] 0.021992
$Level
[1] "95%"
$CT
[1] "[0.0933060117469164, 0.17951420622549]"
> MamaGriz$Female <- with(MamaGriz, 1 - (as.integer(female)-1))
> with(MamaGriz, cor.test(Female,Palin,method="kendall"))
Kendall's rank correlation tau
data: Female and Palin
z = -6.13, p-value = 8.9e-10
alternative hypothesis: true tau is not equal to 0
sample estimates:
      tau
-0.082912
```