MIDTERM EXAM MATH 15910, WINTER 2021

Problem 1. Let $X = \mathbb{Z} \times \mathbb{Z}$. Given $(x_1, y_1) \in X$ and $(x_2, y_2) \in X$ we define $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 - 3y_1 = x_2 - 3y_2$.

Prove that \sim is an equivalence relation. Describe its equivalence classes. What is the cardinality of the set of the equivalence classes of \sim ?

Solution.

- (1) We verify that \sim is reflexive: For every $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ we have x-3y=x-3y, so $(x,y) \sim (x,y)$.
- (2) We verify that \sim is symmetric: Let $(x_1, y_1), (x_2, y_2) \in \mathbb{Z} \times \mathbb{Z}$ such that $(x_1, y_1) \sim (x_2, y_2)$. That means $x_1 3y_1 = x_2 3y_2$, so also $x_2 3y_2 = x_1 3y_1$. Therefore $(x_2, y_2) \sim (x_1, y_1)$.
- (3) We verify that \sim is transitive: Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{Z} \times \mathbb{Z}$ such that $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. That means $x_1 3y_1 = x_2 3y_2$ and $x_2 3y_2 = x_3 3y_3$, so $x_1 3y_1 = x_3 3y_3$. Therefore $(x_1, y_1) \sim (x_3, y_3)$.

We have shown that \sim is an equivalence relation. For every $k\in\mathbb{Z},$ there is an equivalence class of the form

$$\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x - 3y = k\}.$$

Thus the cardinality of the set of equivalence classes is in one-to-one correspondence with the set \mathbb{Z} , and therefore it is countable infinite.

Problem 2. Prove that for every $n \in \mathbb{N}$, we have

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}.$$

Solution. We prove it by induction.

- (1) Base case: For n=1, the left hand side is equal $\frac{1}{1\cdot 3}=\frac{1}{3}$. The right hand side is equal to $\frac{1}{2\cdot 1+1}=\frac{1}{3}$, so both sides are equal.
- (2) Inductive step: Suppose the statement holds for $n \ge 1$, i.e. $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)\cdot(2n+1)} = \frac{n}{2n+1}$. We want to prove that it holds for n+1:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} + \frac{1}{(2(n+1)-1)\cdot (2(n+1)+1)} =$$

$$= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{n(2n+3)+1}{(2n+1)(2n+3)} = \frac{(2n+1)(n+1)}{(2n+1)(2n+3)} = \frac{n+1}{2n+3}$$

Problem 3. Let $f: A \to B$ be any function, and let $U \subseteq B$. Prove or disprove (e.g. by showing an example) the following statements.

- (a) If $f^{-1}(U)$ is countable, then U is countable.
- (b) If U is countable, then $f^{-1}(U)$ is countable.
- (c) If f is injective, then there exists an injective function $P(A) \to P(B)$.

Solution.

- (a) This statement is false. Here is an example where it does not hold. Let $A = \{1\}$, $B = \mathbb{R}$, and let f(1) = 1. Let $U = B = \mathbb{R}$ (or any other uncountable subset of B). Then U is uncountable, but $f^{-1}(U) = \{1\}$ is finite, so countable.
- (b) This statement is false. Here is an example where it does not hold. Let $A = \mathbb{R}$, and $B = \{1\}$, and let f(x) = 1 for all $x \in A$. Let $U = B = \{1\}$. Then U is finite, so countable, but $f^{-1}(U) = A = \mathbb{R}$ is uncountable.
- (c) This statement is true. We can define a function $F: P(A) \to P(B)$ by $U \mapsto f(U)$ for every $U \in P(A)$. We verify taht F is injective. Take $U_1, U_2 \subseteq A$ such that $f(U_1) = f(U_2)$. Since f is injective, it follows that $U_1 = U_2$.

Problem 4. Let X be the set of all numbers in interval (0,1) that have a finite decimal expansion, i.e.

$$X = \{x \in (0,1) \mid \exists m \ge 1 \text{ such that } x = \sum_{i=1}^{m} \frac{x_i}{2^i} \text{ where } x_i \in \{0,1\} \text{ for all } i \in \{1,\ldots,m\}\}$$

Show that X is countably infinite.

Solution. Given $m \in \mathbb{N}$, let $X_m = \{x \in (0,1) \mid x = \sum_{i=1}^m \frac{x_i}{2^i} \text{ where } x_i \in \{0,1\} \text{ for all } i \in \{1,\ldots,m\}\}$. The cardinality of X_m is finite, equal to 2^m-1 . Since $X = \bigcup_{m \in \mathbb{N}} X_m$, i.e. X is a countable union of countable sets, we conclude that X is countable (see 1.8.25(3)). It remains to show that X is not finite. Here is an example of an infinite subset of X: $\{\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots\}$.