- 1. En motor mottar 4 kJ varmeenergi fra et 600 K varmereservoar, utfører en mengde arbeid og dumper deretter 2 kJ varmeenergi til et 200 K varmereservoar. Finn ut om denne motoren er en Carnot-motor eller ikke.
- 2. I en maskin følger n = 0.16 mol monatomic ideell gass en syklus som vist i figuren.

Start tilstanden er: P1 = 400 kPa, V1 = 0.001 m<sup>3</sup>, T1 = 300 K

Steg 1 -> 2

Varme tilføres ved konstant volumet slik at trykk og temperatur stiger til P2, T2

Steg 2 -> 3

Gassen ekspanderer adiabatisk til en tilstand med: P3 = 100 kPa, V3 = 0.004 m³, T3 = 300 K

Steg 3 -> 1

Kompresjon ved konstant temperatur til tilstanden 1.

monatomic ideell gass har  $\gamma = 5/3$ 



- a) Bruk adiabatlikningen PV<sup>y</sup> = konstant til å beregne P2, Regn ut T2
- b) Regn ut varmen  $Q_{12}$  fra 1 til 2, og  $Q_{31}$  fra 3 til 1
- c) Regn ut arbeidet  $W_{23}$  fra 2 til 3, og  $W_{31}$  fra 3 til 1
- d) Finn maskinens virkningsgrad

Fasit: T2 = 756 K,  $\eta = 38.9\%$ 

3. Et PV-diagrammet er vist nedenfor. Kretsprosessen gjennomføres reversibelt. Prosessene  $1\rightarrow 2$  og  $3\rightarrow 4$  er isoterme. Systemet består av 1 mol av en to-atom ideell gass. Du får oppgitt at T2 = 600 K og T3 = 402 K. For to-atom ideell gass: U = 5/2 nRT



## Fyll inn alle tallene i tabellen

|                     | W [kJ] | Q [kJ] | ∆ U [kJ] |
|---------------------|--------|--------|----------|
| 1 → 2               |        |        |          |
| $2 \rightarrow 3$   |        |        |          |
| $3 \rightarrow 4$   |        |        |          |
| 4 → 1               |        |        |          |
| Hele kretsprosessen |        |        |          |

Fasit: W12 = 3.46 kJ, W34 = -2.32 kJ