

cinferms annual meeting | 2020 VIRTUAL

Determinants of Car Accident Severity

Zejian Wu, Shuyu (Jade) Zhang, Jiayu Fan, Chenhao You, Yue Gao, Clark Univeristy

Damage of Car Accident

36,560 people were killed in traffic crashes in 2018

- 1,038 children
- 9,378 speeding-related
- 4,985 motorcycle fatalities
- 6,283 pedestrians died
- 857 bicyclist deaths
- 885 large-truck occupants died

Over the past 10 years, the number of traffic deaths in urban areas has increased

- pedestrian deaths are up 69%
- bicyclist fatalities increased 48%
- motorcycle deaths are up 33%

Basic Ideas

- Investigate the determinants of car accident
- Combined the information of vehicle, involved individuals, and surrounding environment
- 2018 car accident statistics from Crash Report Sampling System (U.S. Department of Transportation)

- Person Level & Vehicle Level
- Basic Machine
 Learning methods
- Make contribution to car accident and injury prevention

Data Description

Targets

- 1. Vehicle Level (N=51,260)
 - MXVSEV_IM

Maximum Injury Severity in Vehicle

Group 1: No Apparent Injury

Group 2: Injury

MAXSEV_IM

Maximum Injury Severity in Crash Group 1:No Injury of all Persons

Group 2:Injury

- 2. Person Level (N=62,933)
 - INJSEV_IM

Maximum Injury Severity of Person Group 1:No or No Apparent Injury Group 2: Injury SAS Name: INJ_SEV Attribute Codes

1975- 2012	2013- 2015	2016- Later	
0			No Injury (O)
	0	0	No Apparent Injury (O)
1	1	1	Possible Injury (C)
2			Non-Incapacitating Evident Injury (B)
	2	2	Suspected Minor Injury (B)
3			Incapacitating Injury (A)
	3	3	Suspected Serious Injury (A)
4	4	4	Fatal Injury (K)
5	5	5	Injured, Severity Unknown (U) (Since 1978)
6	6	6	Died Prior to Crash
8			Not Reported (2010 Only)
9	9		Unknown
		9	Unknown/Not Reported

Attribute Codes for INJ_SEV

General View of Targets

1. Vehicle Level

Maximum Injury Severity in Vehicle

Mean	Medium	Maximum	Minimum	Standard Dev
0.5503	0	5	0	0.9483

Maximum Injury Severity in Crash

Mean	Medium	Maximum	Minimum	Standard Dev
0.9180	0	6	0	1.1226

2. Person Level

Maximum Injury Severity of Person

Mean	Medium	Maximum	Minimum	Standard Dev
0.4926	0	6	0	0.9016

Algorithms

- Logistic Regression
- Support Vector Machine

- K-Nearest Neighbors
- Decision Tree
- Random Forest

Source: Information Age Automating - data science and machine learning for business insights

Results - Performance

Vehicle Level

1. Maximum Injury Severity in Vehicle

	Logistic Regression	SVM	KNN	Decision Tree	Random Forest
Accuracy	49.81%	48.52%	69%	81.17%	84.15%
AUC	0.5200	0.5000	0.7652	0.7614	0.9176

Best ROC CURVE – Random Forest

Confusion Matrix – Random Forest

	Predict: No Injury	Predict: Injury	Sensitivity	Specificity
Actual: No Injury	9812	808	75.040/	02.20%
Actual: Injury	2547	7994	75.84%	92.39%

Result - Performance

Vehicle Level

2. Maximum Injury Severity in Crash

	Logistic Regression	SVM	KNN	Decision Tree	Random Forest
Accuracy	49.63%	49.81%	58.1%	68.77%	73.59%
AUC	0.5096	0.5000	0.6114	0.6877	0.8230

Best ROC CURVE – Random Forest

Confusion Matrix – Random Forest

	Predict: No Injury	Predict: Injury	Sensitivity	Specificity
Actual: No Injury	5972	1660	600/	79.250/
Actual: Injury	2401	5345	69%	78.25%

Result - Performance

Person Level

1. Maximum Injury Severity of Person

	Logistic Regression	SVM	KNN	Decision Tree	Random Forest
Accuracy	49.77%	49.77%	74.05%	81.17%	87.99%
AUC	0.5077	0.5000	0.8269	0.8126	0.9453

Best ROC CURVE – Random Forest

Confusion Matrix – Random Forest

	Predict: No Injury	Predict: Injury	Sensitivity	Specificity
Actual: No Injury	12620	951	02.050/	02.00%
Actual: Injury	2293	11154	82.95%	92.99%

Result – Feature Importance

Vehicle Level

1. Maximum Injury Severity in Vehicle

Variable	Description
NUMOCCS	a count of the number of occupants in this vehicle
ACC_TYPE	the type of crash this vehicle was involved in
BDYTYP_IM	a classification of this vehicle based on its general body configuration, size, shape, doors, etc.
MODEL	the model of this vehicle within a given make

Result – Feature Importance

Vehicle Level

2. Maximum Injury Severity in Crash

Variable	Description
ACC_TYPE	the type of crash this vehicle was involved in
MINUTE_IM	the minutes after the hour at which the crash occurred
MAK_MOD	the 5-digit combination of two data elements ("Vehicle Make" code (MAKE) followed by the 3-digit "Vehicle Model" code (MODEL))
MODEL	the model of this vehicle within a given make

Result – Feature Importance

Person Level

1. Maximum Injury Severity of Person

Variable	Description
AIR_BAG	air bag availability and deployment for this person
SEX_IM	the sex of this person involved in the crash
AGE_IM	the age of this person involved in the crash
MINUTE_IM	the minutes after the hour at which the crash occurred

Conclusion

- Random Forest and Decision Tree obtained the most satisfying results
- K-Nearest Neighbors, Logistic Regression, and Support Vector Machine cannot provide good estimation for this problem
- At vehicle-level, a count of the number of occupants in this vehicle, the type of crash this vehicle was involved in, and the make and model of the vehicle play important roles in accident severity
- 4. At person-level, sex, age, and air bag availability and deployment are the most important indicators.

Future Research

- 1. Integrate more data (before and after 2018) at a more detailed-level
- Alternative machine learning algorithms: Neural Networks, Naïve Bayes Classifier
- More feature engineering: logarithm transformation (age/size),
 Grouping (model/make), and Categorical Imputation.
- 4. Investigate further relationship among the features

Thank you!

zewu@clarku.edu