I Questions de cours

- 1 Énoncer et démontrer la proposition sur la dérivabilité et la dérivée de L(f) lorsque L est une application linéaire et f dérivable.
- 2 Énoncer et démontrer la proposition sur l'intégrale de L(f) lorsque L est une application linéaire et f continue par morceaux.
- 3 Donner la définition d'une somme de Riemann puis énoncer et démontrer la proposition sur la convergence des sommes de Riemann.

II Exercices

Exercice 1:

Soient I un intervalle, E un espace vectoriel euclidien muni de la norme $\|\cdot\|$ issue du produit scalaire et $f:I\longrightarrow E$ dérivable.

On suppose que f ne s'annule pas et on pose, pour tout $t \in I$, g(t) = ||f(t)||. Démontrer que g est dérivable et donner g'.

Exercice 2:

On considère les applications :

Calculer la quantité $p\left(\int_0^{\frac{1}{2}} f(t) dt\right)$.

Exercice 3:

Soit $f:[a;b] \longrightarrow E$ de classe \mathcal{C}^1 telle que f(a)=0.

Démontrer que :

$$\left\| \int_{a}^{b} f(t) dt \right\| \le \frac{(b-a)^{2}}{2} \sup_{t \in [a;b]} \|f'(t)\|.$$

Exercice 4:

Soient E un espace vectoriel euclidien et une application $f:[a;b] \longrightarrow E$ continue telle que $\int_a^b \|f(t)\| dt = \left\| \int_a^b f(t) dt \right\|$.

On note u le vecteur unitaire de E défini par $u = \frac{\displaystyle\int_a^b f(t) \mathrm{d}t}{\displaystyle\int_a^b \|f(t)\| \,\mathrm{d}t}.$

Pour tout $t \in [a;b]$, on décompose f(t) dans la somme directe $\mathbb{R}u \oplus (\mathbb{R}u)^{\perp}$ sous la forme $f(t) = \alpha(t)u + v(t)$.

- 1 Montrer que α et v sont continues sur [a; b].
- 2 Démontrer que $\int_{-b}^{b} v(t) dt$ est orthogonal à u.
- 3 Démontrer que $\int_a^b \alpha(t) dt = \int_a^b \|f(t)\| dt.$
- 4 Démontrer que pour tout $t \in [a; b], \alpha(t) \leq ||f(t)||$.
- 5 Démontrer que pour tout $t \in [a; b], f(t) \le ||f(t)|| u$.
- 6 Le résultat subsiste-t-il si on ne suppose pas que E est euclidien?

Exercice 5:

Pour $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente, on pose :

$$L(M) = \sum_{k=1}^{+\infty} \frac{1}{k} M^k.$$

On cherche à étudier sur \mathbb{R} la fonction f définie par $f(t) = \exp(-L(tM))$.

1 - Montrer que :

$$\forall t \in \mathbb{R}, \ f(t) = \prod_{k=1}^{n-1} \exp\left(-\frac{t^k}{k}M^k\right)$$

2 - Montrer que f est dérivable sur $\mathbb R$ avec :

$$\forall t \in \mathbb{R}, \ (I_n - tM)f'(t) = -Mf(t)$$

- 3 Montrer que f' est constante.
- 4 En déduire que $\exp(L(M)) = (I_n M)^{-1}$

$\underline{Exercice\ 6:}$

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

1 - Soit f une fonction de classe C^2 sur \mathbb{R}^+ à valeurs dans E telle que les fonctions ||f|| et ||f''|| soient majorées respectivement par M_1 et M_2 .

Montrer que pour tout h > 0, la fonction ||f'|| est majorée par $\frac{2M_0}{h} + \frac{hM_2}{2}$. En déduire que la fonction ||f'|| est majorée par $2\sqrt{M_0M_2}$.

2 - Soit f définie sur [0;1] par $f(x) = 2(x-1)^2 - 1$.

Quelles sont les bornes de f, f' et f'' sur [0;1]? En utilisant la fonction cos, prolonger f en une fonction de classe \mathcal{C}^2 sur \mathbb{R}^+ pour laquelle la majoration de la question précédente est optimale.