

North East University Bangladesh

Department of Computer Science Engineering

Lab Report

Experiment Name: Diode Circuit Analysis

Experiment No: 02

Submitted to

Shahadat Hussain Pervez Lecturer of CSE Dept. North East University Bangladesh

Submitted by

Md. Abdul Mutalib ID: 190303020001 Semester: 8^{th}

Session: Fall-19

Table of Contents

Contents

1	Obj	ective	2
2	The		2
	2.1	Apparatus Needed	2
	2.2	Circuits	2
	2.3	Procedure	3
3	Rep	ort	4
L	ist c	of Figures	
	1	Circuit for diode analysis	3
	2	Positive Logic OR Gate	3
	3	Positive Logic AND Gate	3
L	ist c	of Tables	
	1	Data for circuit 1	4
	2	Data for circuit 2	
	3	Data for circuit 3	

1 Objective

The objective of this experiment is to analyse simple diode circuits and to build logic circuits using diodes and resistors.

2 Theory

Theory needed for this lab should be read from lecture 3 of theory course.

2.1 Apparatus Needed

• Trainer Board (Bread board)

• Diodes

• Resistor

• DC Voltmeter

• DC Ammeter

• DC power supply

• Function Generator

• Oscilloscope

• Connecting wires

2.2 Circuits

For analysis of diode circuit. Here, I have shown three figures (1,2,3) circuit for diode analysis.

Figure 1: Circuit for diode analysis

Figure 2: Positive Logic OR Gate

Figure 3: Positive Logic AND Gate

2.3 Procedure

- 1. Analytically find I_D , V_{D2} and V_0 for the circuit in figure 1 and record the result in table 1.
- 2. Implement the circuit in figure 1.
- 3. Find I_D , V_{D2} and V_0 circuit and record the result in table table 1.
- 4. Implement the circuit in figure 2 and apply inputs according to the table 2 and note the output voltages in table 2 to check if OR gate is properly implemented or not.

5. Implement the circuit in figure 3 and apply inputs according to the table 3 and note the output voltages in table 3 to check if AND gate is properly implemented or not.

Table 1: Data for circuit 1

Measurement	Theoretical value (Step 1)	Practical value (Step 2)
I_D		
V_{D2}		
V_0		

Table 2: Data for circuit 2

Input 1 Voltage	Input 2 Voltage	Output Voltage	Output logic level
0 V	0 V		
0 V	5 V		
0 V	5 V		
5 V	5 V		

Table 3: *Data for circuit 3*

Input 1 Voltage	Input 2 Voltage	Output Voltage	Output logic level
0 V	0 V		
0 V	5 V		
0 V	5 V		
5 V	5 V		

3 Report

- 1. Carefully Fill all the data for table table 1, 2, 3.
- 2. Comment on the learning's from this LAB.