

Deep Learning

CNNs

How do Computers see?

How do Humans see?

Cones and rods picks up photons and propagate the signal to the back of our brain

Along the way, the signal gets processed in stages

Cones and rods picks up photons and propagate the signal to the back of our brain

Along the way, the signal gets processed in stages

The extracted information gets aggregated and formed into an image

Cones and rods picks up photons and propagate the signal to the back of our brain

Along the way, the signal gets processed in stages

The extracted information gets aggregated and formed into an image

Convolutional Neural Networks

High Performance Machine Learning Group

Image Representation

- **01.** Is a matrix or grid of intensity values
- **02.** integers [0, 255] or float points [0,1]
- Each element in the matrix is a pixel
- 04. Can have 1 greyscale channel or multiple colour channels: RGB

Image Representation

- **01.** Is a matrix or grid of intensity values
- **02.** integers [0, 255] or float points [0,1]
- **03.** Each element in the matrix is a **pixel**
- 04. Can have 1 greyscale channel or multiple colour channels: RGB

Image Representation

- **01.** Is a matrix or grid of intensity values
- **02.** integers [0, 255] or float points [0,1]
- **03.** Each element in the matrix is a **pixel**
- O4. Can have 1 greyscale channel or multiple colour channels: RGB

Images are correlated spatially

Strong correlation between neighbouring pixels

Images are correlated spatially

Strong correlation between neighbouring pixels

Images are correlated spatially

Strong correlation between neighbouring pixels

Images are correlated spatially

Strong correlation between neighbouring pixels

Images are correlated spatially

Strong correlation between neighbouring pixels

Detect the features across an image and aggregate them

Form complete features higher up in the **hierarchy**

Images are correlated spatially

Strong correlation between neighbouring pixels

ImageNet Challenge

Computer Vision Benchmark 1.4M

1.4M Images, 1000 classes

Image Classification

Difficult until 2012

ImageNet Challenge

Computer Vision Benchmark

1.4M Images, 1000 classes

Image Classification

Difficult until 2012

Kernel (filter): small matrix that we use to convolve an image

Convolution:

An operation that "blends" one function with another.

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	6

Kernel (filter): small matrix that we use to convolve an image

Convolution:

An operation that "blends" one function with another.

A filter applies a **convolution** operation on an image

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	4

Kernel (filter): small matrix that we use to convolve an image

Convolution:

An operation that "blends" one function with another.

A filter applies a **convolution** operation on an image

Kernel (filter): small matrix that we use to convolve an image

Convolution:

An operation that "blends" one function with another.

A filter applies a **convolution** operation on an image

Convolutions Compute

Convolutions Compute

The kernel is **shifted** across the image and produces a point value
The step size in which it shifts is the **stride**The output is always smaller, we use **padding** to preserve dimensions

Convolutions Compute

The kernel is **shifted** across the image and produces a point value
The step size in which it shifts is the **stride**The output is always smaller, we use **padding** to preserve dimensions

The image shrinks according to

Output_size = inputSize -(KernelSize - 1)

Source layer (image)

Feature map (activation map)

Source layer (image)

Feature map (activation map)

How do we know which kernels to use?

Kernels are learnt and initialized randomly during training the CNN learns spatial features

Source layer (image)

Feature map (activation map)

How do we know which kernels to use?

Kernels are learnt and initialized randomly during training the CNN learns spatial features

Fully connected

$$\sum_{i \in \text{image}}^{W imes H imes C} \mathbf{x}_i \mathbf{w}_i$$

Source layer (image)

Feature map (activation map)

How do we know which kernels to use?

Kernels are learnt and initialized randomly during training the CNN learns spatial features

Fully connected

$$\sum_{i \in \text{image}}^{W \times H \times C} \mathbf{x}_i \mathbf{w}_i$$

Source layer (image)

Feature map (activation map)

How do we know which kernels to use?

Kernels are learnt and initialized randomly during training the CNN learns spatial features

Fully connected

$$\sum_{i \in \text{image}}^{W \times H \times C} \mathbf{x}_i \mathbf{w}_i \quad \longrightarrow \quad$$

Locally connected shared weights

$$\sum_{i \in 3 \times 3}^{W \times H \times C} \mathbf{x}_i \mathbf{w}_i$$

CNNs actually look a lot like normal Dense Neural Networks

See the nodes as moving across the image!

We say these are **shared weights**

CNNs actually look a lot like normal Dense Neural Networks

 $\sum_{i \in \text{image}}^{W \times H \times C} \mathbf{x}_i \mathbf{w}_i \longrightarrow \sum_{i \in 3 \times 3}^{W \times H \times C} \mathbf{x}_i \mathbf{w}_i$

Locally connected

shared weights

See the nodes as moving across the image!

We say these are **shared weights**

CNNs actually look a lot like normal Dense Neural Networks

Locally connected shared weights

$$\sum_{i \in 3 \times 3}^{W \times H \times C} \mathbf{x}_i \mathbf{w}_i$$

W_1	W ₂	W ₃
W ₄	W ₅	W ₆
W ₇	W ₈	W ₉

See the nodes as moving across the image!

We say these are **shared weights**

CNNs actually look a lot like normal Dense Neural Networks

Pooling and dilated convolutions

We could discard information gradually by max pooling Keep the strongest signal, works better than average pooling Nowadays, we use a bigger stride for dimensionality reduction

Pooling and dilated convolutions

We could discard information gradually by max pooling Keep the strongest signal, works better than average pooling Nowadays, we use a bigger stride for dimensionality reduction Dilated convolutions can be used if you expect your images to have information which are spatially far from each other

CNN Cases

AlexNet (2012)

AlexNet (2012)

Images become smaller and number of filters increases as we go deeper 8 layers with dropout and ReLU activations trained for 6 days on 2 GPUs

Type: ML Percentrop Data Set: MAIST Midden Levers: 3 Hidden Neurons: 1000 Synapses, 24864180 Synapses shown: 23a Learning: 88

Transfer Learning

Transfer Learning

Thank You

High Performance Machine Learning Group

VGG16 and ResNet (2014, 2015)

VGG16: construct large and deep models (120M params)

Vanishing gradient problem

VGG16 and ResNet (2014, 2015)

VGG16: construct large and deep models (120M params)

Vanishing gradient problem

ResNet (2015)

ResNet (2015)

ResNets: construct large and deep models with skip connections, able to train up to 152 layers (!)

Higher abstraction and less nuisance from vanishing or exploding gradients

ResNet (2015)

ResNets: construct large and deep models with skip connections, able to train up to 152 layers (!)

Higher abstraction and less nuisance from vanishing or exploding gradients

Early layers learn features that get progressively more abstract, we can **preserve** and **control** the flow of information with **skip connections**

DenseNet (2016)

ResNets: construct large and deep models with skip connections, able to train up to 152 layers (!)

Higher abstraction and less nuisance from vanishing or exploding gradients

Early layers learn features that get progressively more abstract, we can **preserve** and **control** the flow of information with **skip connections**

DenseNet (2016)

ResNets: construct large and deep models with skip connections, able to train up to 152 layers (!)

Higher abstraction and less nuisance from vanishing or exploding gradients

Early layers learn features that get progressively more abstract, we can **preserve** and **control** the flow of information with **skip connections**

