GA2-240201528-AA3 Muestreo Estadístico

Integrantes:

Rodney Zapata Palacio

Presentado a la instructora:

Marleen Astrid Martinez

Servicio Nacional de aprendizaje SENA

Centro de Comercio y Servicios (Regional Cauca)

Cauca - Popayán

Tecnólogo en Análisis y Desarrollo de Software

Ficha: 2675810

Tabla de frecuencia Semana 1

Datos (Huevos)	Frecuencia Absoluta	Frecuencia Relativa	F. Absoluta Acomulada	F. Relativa Acomulda	porcentaje
75	1	1/7	1	1/7	14,29%
76	1	1/7	2	2/7	14,29%
85	1	1/7	3	3/7	14,29%
95	1	1/7	4	4/7	14,29%
110	2	2/7	6	6/7	28,57%
111	1	1/7	7	1	14,29%
TOTAL	7	1			100,00%

Grafica de producción de huevo en la semana 1

dia	Cantidad
1	75
2	76
3	85
4	95
5	110
6	110
7	111

Calculemos las medidas de tendencia central

• Media aritmética o promedio:

$$\overline{x} = \frac{75 + 76 + 85 + 95 + 110 + 110 + 111}{7}$$

$$\bar{x} = \frac{662}{7}$$

$$\bar{x} = 94, 5$$

$$\bar{x} \approx 95$$

Mediana

Para identificar la mediana, los datos deben estar organizados de menor a mayor.

$$Me = 95$$

Moda

$$Mo = 110$$

Con respecto a la información, se puede decir que:

- El promedio de huevos de la semana 1 es de 95 huevos
- El 50% de nuevos en la semana1 es menor o igual a 95 huevos
- La mayor frecuencia de huevos en la semana1 es 110 huevos.

Medidas de Dispersion:

1. Calculemos el rango de nuevos en la semana 1.

$$R = X \max - X \min$$

Semana 1:
$$R = 111 - 75 = 36 \ huevos$$

2. Calculemos la Varianza de las huevos en la semana 1

$$Var(X) = \frac{\sum (x - \bar{X})^2}{n}$$

Semana 1:

$$Var(X) = \frac{(75 - 94.5)^2 + (76 - 94.5)^2 + (85 - 94.5)^2 + (95 - 94.5)^2 + (110 - 94.5)^2 + (110 - 94.5)^2 + (111 - 94.5)^2}{7}$$

$$Var(X) = \frac{(-19.5)^2 + (-18.5)^2 + (-9.5)^2 + (0.5)^2 + (15.5)^2 + (15.5)^2 + (16.5)^2}{7}$$

$$Var(X) = \frac{380.25 + 342.25 + 90.25 + 0.25 + 240.25 + 240.25 + 272.25}{7}$$

$$Var(X) = \frac{1565.75}{7} = 223.67$$

$$Var(X) \approx 224$$

3. Calculemos la Desviación Estándar de los valores obtenidos

La desviación Estándar es la raíz cuadrada de la Varianza

$$D.E(X) = \sqrt[2]{\frac{\sum (x - \overline{x})^2}{n}}$$

Semana 1:

$$D.E(X) = \sqrt[2]{224} = 14.96$$

Tabla de frecuencia Semana 2

Datos (Huevos)	Frecuencia Absoluta	Frecuencia Relativa	F. Absoluta Acomulada	F. Relativa Acomulda	porcentaje
112	1	1/7	1	1/7	14,29%
120	2	2/7	3	3/7	28,57%
122	1	1/7	4	4/7	14,29%
124	1	1/7	5	5/7	14,29%
130	1	1/7	6	6/7	14,29%
135	1	1/7	7	1	14,29%
TOTAL	7	1			100,00%

dia	Cantidad
1	112
2	120
3	120
4	122
5	124
6	130
7	135

Calculemos las medidas de tendencia central

• Media aritmética o promedio:

$$\overline{x} = \frac{112 + 120 + 120 + 122 + 124 + 130 + 135}{7}$$

$$\overline{x} = \frac{863}{7}$$

$$\overline{x} = 123.3$$

Mediana

Para identificar la mediana, los datos deben estar organizados de menor a mayor.

$$Me = 122$$

• Moda

$$Mo = 120$$

Con respecto a la información, se puede decir que:

- El promedio de huevos de la semana 2 es de 123 huevos
- El 50% de nuevos en la semana 2 es menor o igual a 122 huevos
- La mayor frecuencia de huevos en la semana 2 es 120 huevos.

Medidas de Dispersion:

4. Calculemos el rango de nuevos en la semana 2.

$$R = X \max - X \min$$

Semana 2:
$$R = 135 - 112 = 23 \ huevos$$

5. Calculemos la Varianza de las huevos en la semana 2

$$Var(X) = \frac{\sum_{x}^{n} (x - \bar{X})^2}{n}$$

Semana 2:

$$=\frac{(112 - 123.3)^{2} + (120 - 123.3)^{2} + (120 - 123.3)^{2} + (122 - 123.3)^{2} + (124 - 123.3)^{2} + (130 - 123.3)^{2} + (135 - 123.3)^{2}}{7}$$

$$Var(X) = \frac{(-11.3)^{2} + (-3.3)^{2} + (-3.3)^{2} + (-1.3)^{2} + (0.7)^{2} + (6.7)^{2} + (11.7)^{2}}{7}$$

$$Var(X) = \frac{127.69 + 10.89 + 10.89 + 1.69 + 0.49 + 44.89 + 136.89}{7}$$

$$Var(X) = \frac{333.43}{7} = 47.63$$

6. Calculemos la Desviación Estándar de los valores obtenidos

La desviación Estándar es la raíz cuadrada de la Varianza

$$D.E(X) = \sqrt[2]{\frac{\sum (x - \overline{x})^2}{n}}$$

Semana 2:

$$D.E(X) = \sqrt[2]{47.63} = 6.90$$

Datos (Huevos)	Frecuencia Absoluta	Frecuencia Relativa	F. Absoluta Acomulada	F. Relativa Acomulda	porcentaje
137	1	1/7	1	1/7	14,29%
138	1	1/7	2	2/7	14,29%
140	2	2/7	4	4/7	28,57%
141	1	1/7	5	5/7	14,29%
142	2	2/7	7	1	28,57%
TOTAL	7	1			100,00%

dia	Cantidad
1	137
2	140
3	142
4	140
5	141
6	142
7	138

Calculemos las medidas de tendencia central

• Media aritmética o promedio:

$$\overline{x} = \frac{137 + 140 + 142 + 140 + 141 + 142 + 138}{7}$$

$$\overline{x} = \frac{980}{7}$$

$$\overline{x} = 140$$

Mediana

Para identificar la mediana, los datos deben estar organizados de menor a mayor.

$$Me = 140$$

Moda

$$Mo1 = 140$$

 $Mo2 = 142$

En esta semana hubieron 2 Moda las cantidades que mas se repiten fueron 120 y 142, ambas con una frecuencia de 2.

Con respecto a la información, se puede decir que:

- El promedio de huevos de la semana 3 es de 144 huevos
- El 50% de nuevos en la semana 3 es menor o igual a 140 huevos
- La mayor frecuencia de huevos en la semana 3 fueron 140 y 142 huevos.

Medidas de Dispersion:

7. Calculemos el rango de nuevos en la semana 3.

$$R = X \max - X \min$$

Semana 3:
$$R = 142 - 137 = 5 huevos$$

8. Calculemos la Varianza de las huevos en la semana 3

$$Var(X) = \frac{\sum (x - \bar{X})^2}{n}$$

Semana 3:

$$Var(X) = \frac{(137 - 140)^2 + (140 - 140)^2 + (142 - 140)^2 + (140 - 140)^2 + (141 - 140)^2 + (142 - 140)^2 + (138 - 140)^2}{7}$$

$$Var(X) = \frac{(-3)^2 + (0)^2 + (2)^2 + (0)^2 + (1)^2 + (2)^2 + (-2)^2}{7}$$

$$Var(X) = \frac{9 + 0 + 4 + 0 + 1 + 4 + 4}{7}$$

$$Var(X) = \frac{22}{7} = 3.14$$

9. Calculemos la Desviación Estándar de los valores obtenidos

La desviación Estándar es la raíz cuadrada de la Varianza

$$D.E(X) = \sqrt[2]{\frac{\sum (x - \overline{x})^2}{n}}$$

Semana 3:

$$D.E(X) = \sqrt[2]{3.14} = 1.7$$

Tabla de frecuencia Semana 4

Datos (Huevos)	Frecuencia Absoluta	Frecuencia Relativa	F. Absoluta Acomulada	F. Relativa Acomulda	porcentaje
135	1	1/7	1	1/7	14,29%
136	1	1/7	2	2/7	14,29%
140	2	2/7	4	4/7	28,57%
141	2	2/7	6	6/7	28,57%
142	1	1/7	7	1	14,29%
TOTAL	7	1			100,00%

dia	Cantidad
1	135
2	140
3	141
4	142
5	140
6	141
7	136

• Media aritmética o promedio:

$$\bar{x} = \frac{135 + 140 + 141 + 142 + 140 + 141 + 136}{7}$$

$$\bar{x} = \frac{975}{7}$$

$$\bar{x} = 139.28$$

$$\bar{x} \approx 139$$

Mediana

Para identificar la mediana, los datos deben estar organizados de menor a mayor.

$$Me = 140$$

Moda

$$Mo1 = 140$$

 $Mo2 = 141$

En esta semana hubieron 2 Moda las cantidades que mas se repiten fueron 140 y 141, ambas con una frecuencia de 2.

Con respecto a la información, se puede decir que:

- El promedio de huevos de la semana 4 es de 139 huevos
- El 50% de nuevos en la semana 4 es menor o igual a 140 huevos
- La mayor frecuencia de huevos en la semana 3 fueron 140 y 141 huevos.

Medidas de Dispersion:

10. Calculemos el rango de nuevos en la semana 4.

$$R = X \max - X \min$$

Semana 4:
$$R = 142 - 135 = 7 \ huevos$$

11. Calculemos la Varianza de las huevos en la semana 4

$$Var(X) = \frac{\sum_{n=1}^{\infty} (x_n - \bar{X})^2}{n}$$

Semana 4:

$$Var(X) = \frac{(135 - 139.28)^2 + (140 - 139.28)^2 + (141 - 139.28)^2 + (142 - 139.28)^2 + (140 - 139.28)^2 + (141 - 139.28)^2 + (136. - 139.28)^2}{Var(X)} = \frac{(-4.28)^2 + (0.72)^2 + (1.72)^2 + (2.72)^2 + (0.72)^2 + (1.72)^2 + (-3.28)^2}{7}$$

$$Var(X) = \frac{18.31 + 0.51 + 2.95 + 7.39 + 0.51 + 2.95 + 9}{7}$$

$$Var(X) = \frac{43.42}{7} = 6.20$$

12. Calculemos la Desviación Estándar de los valores obtenidos

La desviación Estándar es la raíz cuadrada de la Varianza

$$D.E(X) = \sqrt[2]{\frac{\sum (x - \overline{x})^2}{n}}$$

Semana 4:

$$D.E(X) = \sqrt[2]{6}.20 = 2.49$$

CONCLUSIONES:

Teniendo en cuentas las graficas que nos arroja cada semana podemos notar que las dos primeras semanas las líneas de tendencias son positivas van aumentando, la semana 3 también aumenta pero la pendiente menos inclinada, y en la semana 4 el ultimo dia bajo bastante.

Los promedios de huevos en cada semanas fueron: 94, 123, 140, 139

Donde la semana 3 fue la mejor semana alcanzando su punto mas alto una producción de 142 y después de ese punto tiende a disminuir un poco,

Por consiguiente la producción está bien semana a semana va aumentando la producción de huevos en comparación con la semana anterior a excepción de la ultima semana que bajó un punto, pero inclusive es mas alto que la primera semana, se estima que para el próximo mes Tenga un comportamiento parecido y la producción se mantenga bien.