# **Optimization in Machine Learning**

# First order methods Momentum on quadratic functions





### Learning goals

 $\bullet \ \, \text{Effect of } \varphi$ 

- Let's investigate the role of  $\varphi$ .
- We can think of gradient descent with momentum as a damped harmonic oscillator: a weight on a spring. We pull the weight down and study the path back to the equilibrium in phase space (looking at the position and the velocity).
- Depending on the choice of  $\varphi$ , the rate of return to the equilibrium position is affected.





$$f: \mathbb{R} \to \mathbb{R}, x \mapsto -\frac{1}{2}\cos(x)\exp\left(\frac{1}{4}(x+2)^2\right) + 3, \qquad x \in [-2,2], \qquad \alpha = 0,05$$





12



$$\phi = 0.0$$



$$\phi$$

$$\phi = 0.1$$



$$\phi = 0.5$$



10-6

$$\phi = 0.0 \quad \bullet \quad \phi = 0.1 \quad \bullet \quad \phi = 0.5 \quad \bullet \quad \phi = 0.65$$

10 20 50 60 70

iterations

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{2}x^6 + \frac{3}{2}x^5 + 2x^3 + 5x^2 - 3x, \qquad x \in [-\frac{9}{2}, 2],$$

$$x\in [-\frac{9}{2},2],$$

$$\alpha = \mathbf{0}, \mathbf{02}$$







- $\phi = 0.0 \quad \bullet \quad \phi = 0.1 \quad \bullet \quad \phi = 0.5 \quad \bullet \quad \phi = 0.65$

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{2}x^6 + \frac{3}{2}x^5 + 2x^3 + 5x^2 - 3x, \qquad x \in [-\frac{9}{2}, 2],$$

$$x\in [-\frac{9}{2},2],$$

$$\alpha = \mathbf{0}, \mathbf{02}$$









 $\phi = 0.0 \quad \phi = 0.1 \quad \phi = 0.5 \quad \phi = 0.65$ 





Left: If  $\varphi$  is too large, we are underdamping. The spring oscillates back and forth and misses the optimum.

Middle: The best value of  $\varphi$  lies in the middle.

Right: If  $\varphi$  is too small, we are overdamping, meaning that the spring experiences too much friction and stops before reaching the equilibrium.

# **Optimization in Machine Learning**

# First order methods SGD





- SGD
- Stochasticity
- Convergence
- Batch size



**Issue:** Data-sets might be very large and gradients expensive to evaluate

Idea: Use a smaller (random) subset of data-points to evaluate gradient and objective-function























Analysis of curvature:

Least-Squares objective function:

$$f(\theta) = \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{i=1}^n \left( \boldsymbol{\theta}^\top \mathbf{x}^{(i)} - y^{(i)} \right)^2 = (\mathbf{X}\theta - \mathbf{y})^T (\mathbf{X}\theta - \mathbf{y})$$

1st derivative of objective function:

$$\nabla f(\theta) = \frac{1}{2} \left( \mathbf{X}^T \mathbf{X} \right) \theta - \mathbf{X}^T \mathbf{y}$$

2nd derivative of objective function:

$$\nabla^2 f(\theta) = \frac{1}{2} \left( \mathbf{X}^T \mathbf{X} \right)$$

 $\Rightarrow$  Hessian is only dependent of x-coordinates of data-points



Hessian matrix:

$$\mathbf{H} = \nabla^2 f(\theta) = \frac{1}{2} (\mathbf{X}^T \mathbf{X}) = \frac{1}{2} \begin{bmatrix} 4.97 & 3.3 \\ 3.3 & 2.5 \end{bmatrix}$$



$$det(\mathbf{H} - \mathbf{I}\lambda) = 0$$

solve for  $\lambda$ :

$$(H_{11} - \lambda)(H_{22} - \lambda) - H_{21}H_{12} = \lambda^2 - 7.47\lambda + 1.535 = 0$$
  $\lambda_1 = 7.2585, \qquad \lambda_2 = 0.2115$   $\kappa(\mathbf{H}) = \lambda_1/\lambda_2 \approx 34.3191$ 

⇒ Rather high condition-number compared to matrix-values, positive definite matrix



Clustered data-points increase condition-number for Least-Squares method:

$$x_{old}^{(i)} = (0.7, 0.8, 1.5, 1.6, 2.0)$$
  
 $x_{new}^{(i)} = (0.5, 0.8, 1.2, 1.6, 2.0)$   
 $\kappa(\mathbf{H}_{new}) = \lambda_1/\lambda_2 \approx 24.6074$ 

⇒ More evenly distributed data-points improve conditioning









NB: We use g instead of f as objective, bc. f is used as model in ML.

 $g: \mathbb{R}^d \to \mathbb{R}$  objective, g average over functions:

$$g(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} g_i(\mathbf{x}),$$
  $g \text{ and } g_i \text{ smooth}$ 

Stochastic gradient descent (SGD) approximates the gradient

$$abla_{\mathbf{x}} g(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{x}} g_i(\mathbf{x}) := \mathbf{d} \quad \text{by}$$

$$\frac{1}{|J|} \sum_{i \in J} \nabla_{\mathbf{x}} g_i(\mathbf{x}) := \hat{\mathbf{d}},$$

with random subset  $J \subset \{1, 2, ..., n\}$  of gradients called **mini-batch**. This is done e.g. when computing the true gradient is **expensive**.



### Algorithm Basic SGD pseudo code

- 1: Initialize  $\mathbf{x}^{[0]}$ , t = 0
- 2: while stopping criterion not met do
- 3: Randomly shuffle indices and partition into minibatches  $J_1, ..., J_K$  of size m
  - for  $k \in \{1, ..., K\}$  do
- 5:  $t \leftarrow t + 1$ 
  - Compute gradient estimate with  $J_k$ :  $\hat{\mathbf{d}}^{[t]} \leftarrow \frac{1}{m} \sum_{i \in J_k} \nabla_{\mathbf{x}} g_i(\mathbf{x}^{[t-1]})$
- 7: Apply update:  $\mathbf{x}^{[t]} \leftarrow \mathbf{x}^{[t-1]} \alpha \cdot \hat{\mathbf{d}}^{[t]}$
- 8: end for

4:

6:

9: end while



- Updates are computed faster, but also more stochastic:
  - In the simplest case, batch-size  $m := |J_k|$  is set to m = 1
  - If *n* is a billion, computation of update is a billion times faster
  - But (later): Convergence rates suffer from stochasticity!



### SGD IN ML

In ML, we perform ERM:

$$\mathcal{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)}_{g_i(\theta)}$$

for a data set

$$\mathcal{D} = \left( \left( \mathbf{x}^{(1)}, y^{(1)} \right), \dots, \left( \mathbf{x}^{(n)}, y^{(n)} \right) \right)$$

- a loss function  $L(y, f(\mathbf{x}))$ , e.g., L2 loss  $L(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$ ,
- and a model class f, e.g., the linear model  $f(\mathbf{x}^{(i)} \mid \theta) = \theta^{\top} \mathbf{x}$ .



### SGD IN ML / 2

For large data sets, computing the exact gradient

$$\mathbf{d} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

may be expensive or even infeasible to compute and is approximated by

$$\hat{\mathbf{d}} = \frac{1}{m} \sum_{i \in J} \nabla_{\boldsymbol{\theta}} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right),$$

for  $J \subset 1, 2, ..., n$  random subset.

**NB:** Often, maximum size of *J* technically limited by memory size.



### STOCHASTICITY OF SGD





Minimize  $g(x_1, x_2) = 1.25(x_1 + 6)^2 + (x_2 - 8)^2$ .

**Left:** GD. **Right:** SGD. Black line shows average value across multiple runs. (Source: Shalev-Shwartz et al., Understanding Machine Learning, 2014.)

### STOCHASTICITY OF SGD / 2

Assume batch size m = 1 (statements also apply for larger batches).

- (Possibly) suboptimal direction: Approximate gradient  $\hat{\mathbf{d}} = \nabla_{\mathbf{x}} g_i(\mathbf{x})$  might point in suboptimal (possibly not even a descent!) direction
- Unbiased estimate: If J drawn i.i.d., approximate gradient  $\hat{\mathbf{d}}$  is an unbiased estimate of gradient  $\mathbf{d} = \nabla_{\mathbf{x}} g(\mathbf{x}) = \sum_{i=1}^{n} \nabla_{\mathbf{x}} g_i(\mathbf{x})$ :

$$\mathbb{E}_{i} \left[ \nabla_{\mathbf{x}} g_{i}(\mathbf{x}) \right] = \sum_{i=1}^{n} \nabla_{\mathbf{x}} g_{i}(\mathbf{x}) \cdot \mathbb{P}(i=i)$$
$$= \sum_{i=1}^{n} \nabla_{\mathbf{x}} g_{i}(\mathbf{x}) \cdot \frac{1}{n} = \nabla_{\mathbf{x}} g(\mathbf{x}).$$

**Conclusion:** SGD might perform single suboptimal moves, but moves in "right direction" **on average**.



### **CONVERGENCE OF SGD**

As a consequence, SGD has worse convergence properties than GD.

But: Can be controlled via increasing batches or reducing step size.

### The larger the batch size m

- the better the approximation to  $\nabla_{\mathbf{x}} g(\mathbf{x})$
- the lower the variance
- the lower the risk of performing steps in the wrong direction

### The smaller the step size $\alpha$

- the smaller a step in a potentially wrong direction
- the lower the effect of high variance

As maximum batch size is usually limited by computational resources (memory), choosing the step size is crucial.



### **EFFECT OF BATCH SIZE**





SGD for a NN with batch size  $\in \{0.5\%, 10\%, 50\%\}$  of the training data. The higher the batch size, the lower the variance.

# **Optimization in Machine Learning**

# First order methods SGD Further Details





### Learning goals

- Decreasing step size for SGD
- Stopping rules
- SGD with momentum

# **SGD WITH CONSTANT STEP SIZE**

**Example**: SGD with constant step size.





Fast convergence of SGD initially. Erratic behavior later (variance too big).

### SGD WITH DECREASING STEP SIZE

- Idea: Decrease step size to reduce magnitude of erratic steps.
- Trade-off:
  - $\bullet$  if step size  $\alpha^{[t]}$  decreases slowly, large erratic steps
  - if step size decreases too fast, performance is impaired



## SGD WITH DECREASING STEP SIZE / 2

• Popular solution: step size fulfilling  $\alpha^{[t]} = \alpha^{[0]}/t$ ).



× COOX

Example continued. Step size  $\alpha^{[t]} = 0.2/t$ .

- Often not working well in practice: step size gets small quite fast.
- Alternative:  $\alpha^{[t]} = \alpha^{[0]}/\sqrt{t}$ )

### ADVANCED STEP SIZE CONTROL

### Why not Armijo-based step size control?

 Backtracking line search or other approaches based on Armijo rule usually not suitable: Armijo condition

$$g(\mathbf{x} + \alpha \mathbf{d}) \leq g(\mathbf{x}) + \gamma_1 \alpha \nabla g(\mathbf{x})^{\top} \mathbf{d}$$

requires evaluating full gradient.

- But SGD is used to avoid expensive gradient computations.
- Research aims at finding inexact line search methods that provide better convergence behaviour, e.g., Vaswani et al., *Painless* Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates. NeurIPS, 2019.



### **MINI-BATCHES**

• Reduce noise by increasing batch size *m* for better approximation

$$\hat{\mathbf{d}} = \frac{1}{m} \sum_{i \in J} \nabla_{\mathbf{x}} g_i(\mathbf{x}) \approx \frac{1}{n} \sum_{i=1}^n \nabla_{\mathbf{x}} g_i(\mathbf{x}) = \mathbf{d}$$

 Usually, the batch size is limited by computational resources (e.g., how much data you can load into the memory)



Example continued. Batch size m = 1 vs. m = 5.



### STOPPING RULES FOR SGD

- For GD: We usually stop when gradient is close to 0 (i.e., we are close to a stationary point)
- For SGD: individual gradients do not necessarily go to zero, and we cannot access full gradient.
- Practicable solution for ML:
  - Measure the validation set error after T iterations
  - Stop if validation set error is not improving



### SGD AND ML

#### General remarks:

- SGD is a variant of GD
- SGD particularly suitable for large-scale ML when evaluating gradient is too expensive / restricted by computational resources
- SGD and variants are the most commonly used methods in modern ML, for example:
  - Linear models

Note that even for the linear model and quadratic loss, where a closed form solution is available, SGD might be used if the size *n* of the dataset is too large and the design matrix does not fit into memory.

- Neural networks
- Support vector machines
- ...



### **SGD WITH MOMENTUM**

SGD is usually used with momentum due to reasons mentioned in previous chapters.

## Algorithm Stochastic gradient descent with momentum

- 1:  $\mathbf{require}$  step size  $\alpha$  and momentum  $\varphi$
- 2: **require** initial parameter  ${\it x}$  and initial velocity  ${\it v}$
- 3: while stopping criterion not met do
- 4: Sample mini-batch of *m* examples
- 5: Compute gradient estimate  $\nabla \hat{g}(\mathbf{x})$  using mini-batch
- 6: Compute velocity update:  $\boldsymbol{\nu} \leftarrow \varphi \boldsymbol{\nu} \alpha \nabla \hat{\boldsymbol{g}}(\mathbf{x})$
- 7: Apply update:  $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{\nu}$
- 8: end while



# **Optimization in Machine Learning**

# First order methods Adam and friends



### Learning goals

- Adaptive step sizes
- Adam



### **ADAPTIVE STEP SIZES**

- Step size is probably the most important control parameter
- Has strong influence on performance
- Natural to use different step size for each input individually and automatically adapt them





### **ADAM**

- Adaptive Moment Estimation also has adaptive step sizes
- Uses the 1st and 2nd moments of gradients
  - Keeps an exponentially decaying average of past gradients (1st moment)
  - Like RMSProp, stores an exponentially decaying avgerage of past squared gradients (2nd moment)
  - Can be seen as combo of RMSProp + momentum.



# **COMPARISON ON QUADRATIC FORM**



SGD vs. SGD with Momentum vs. Adam on a quadratic form.

## **ADAM**

### Least-Squares:





### ADAM / 2

### Algorithm Adam

- 1: **require** Global step size  $\alpha$  (suggested default: 0.001)
- 2: **require** Exponential decay rates for moment estimates,  $\rho_1$  and  $\rho_2$  in [0, 1) (suggested defaults: 0.9 and 0.999 respectively)
- 3: **require** Small constant  $\beta$  (suggested default  $10^{-8}$ )
- 4: **require** Initial parameters  $\theta$
- 5: Initialize time step t = 0
- 6: Initialize 1st and 2nd moment variables  $\mathbf{s}^{[0]} = 0$ ,  $\mathbf{r}^{[0]} = 0$
- 7: while stopping criterion not met do
- 8:  $t \leftarrow t+1$
- 9: Sample a minibatch of *m* examples from the training set  $\{\tilde{x}^{(1)}, \dots, \tilde{x}^{(m)}\}$
- 10: Compute gradient estimate:  $\hat{\mathbf{g}}^{[t]} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(y^{(i)}, f\left(\tilde{\mathbf{x}}^{(i)} \mid \theta\right)\right)$
- 11: Update biased first moment estimate:  $\mathbf{s}^{[t]} \leftarrow \rho_1 \mathbf{s}^{[t-1]} + (1-\rho_1)\hat{\mathbf{g}}^{[t]}$
- 12: Update biased second moment estimate:  $\mathbf{r}^{[t]} \leftarrow \rho_2 \mathbf{r}^{[t-1]} + (1-\rho_2)\hat{\mathbf{g}}^{[t]^2}$
- 13: Correct bias in first moment:  $\hat{\mathbf{s}} \leftarrow \frac{\mathbf{s}^{[t]}}{1-\rho_1^t}$
- 14: Correct bias in second moment:  $\hat{\mathbf{r}} \leftarrow \frac{\mathbf{r}^{[t]}}{1-\rho_2^t}$
- 15: Compute update for each entry i:  $\Delta \theta_i = -\alpha \frac{\hat{\mathbf{s}}_i}{\sqrt{\hat{\mathbf{r}}_i} + \beta}$
- 16: Apply update:  $\theta \leftarrow \theta + \Delta \theta$
- 17: end while



### ADAM / 3

- Initializes moment variables **s** and **r** with zero  $\Rightarrow$  Bias towards zero
- Indeed: Unrolling  $\mathbf{s}^{[t]}$  yields

$$\mathbf{s}^{[0]} = 0$$

$$\mathbf{s}^{[1]} = \rho_1 \mathbf{s}^{[0]} + (1 - \rho_1) \hat{\mathbf{g}}^{[1]} = (1 - \rho_1) \hat{\mathbf{g}}^{[1]}$$

$$\mathbf{s}^{[2]} = \rho_1 \mathbf{s}^{[1]} + (1 - \rho_1) \hat{\mathbf{g}}^{[2]} = \rho_1 (1 - \rho_1) \hat{\mathbf{g}}^{[1]} + (1 - \rho_1) \hat{\mathbf{g}}^{[2]}$$

$$\mathbf{s}^{[3]} = \rho_1 \mathbf{s}^{[2]} + (1 - \rho_1) \hat{\mathbf{g}}^{[3]} = \rho_1^2 (1 - \rho_1) \hat{\mathbf{g}}^{[1]} + \rho_1 (1 - \rho_1) \hat{\mathbf{g}}^{[2]} + (1 - \rho_1) \hat{\mathbf{g}}^{[3]}$$

- Therefore:  $\mathbf{s}^{[t]} = (1 \rho_1) \sum_{i=1}^{t} \rho_1^{t-i} \hat{\mathbf{g}}^{[i]}$ .
- Therefore:  $\mathbf{s}^{[t]}$  is a biased estimator of  $\hat{\mathbf{g}}^{[t]}$
- **Note:** Contributions of past  $\hat{\mathbf{g}}^{[i]}$  decreases rapidly and bias vanishes for  $t \to \infty$  ( $\rho_1^t \to 0$ )
- ullet We correct for the bias by  $\hat{f s}^{[t]}=rac{{f s}^{[t]}}{(1ho_1^t)}$
- ullet Analogously:  $\hat{f r}^{[t]} = rac{{f r}^{[t]}}{(1ho_2^t)}$



### **COMPARISON OF OPTIMIZERS: ANIMATION**





Credits: Dettmers (2015) and Radford

Comparison of SGD optimizers near saddle point.

Left: After start. Right: Later.

All methods accelerate compared to vanilla SGD.

Best is RMSProp, then AdaGrad. (Adam is missing here.)