

SimPhony

A Data-Driven Approach for Video Creation

Doron Kukliansky

Zach Moshe, Neta Livneh, Yahel Guberman, Ofer Fridman

Outline

- Hackathon project
- Speaker recognition
- Semantic sentence similarity

The Problem

- Not enough Simpsons episodes!
- There are only
 - o 27 seasons
 - o 596 episodes
 - 14000 minutes
 - o 90GB of data

The Problem

There aren't episodes on every subject.

Goal: Given a script, automatically create a new Simpsons episode.

Solution

Data-Driven Approach

 Use existing sub-scenes as building blocks for a dialog-based script

Example:

- Homer: I want dinner.
- Marge: All we have is beer.
- O Homer: I love beer!

Why Simpsons?

- Lots of data
- Characters don't age
- Characters don't change clothes
- Speech isn't perfect

Scene Indexing

- We need to cut video precisely
 - Speech to text
 - Watch all simpsons episodes!
 - If only someone watched all Simpsons episodes...

Subtitles

```
82
00:04:25,760 --> 00:04:27,591
Come on, fat boy, run!
83
00:04:27,680 --> 00:04:28,829
I'm not fat!
84
00:04:28,920 --> 00:04:30,512
I'm just... I'm unfit.
```

Subtitles don't include the speaker...

Speaker Recognition

- Find data set
- Using text
- Using images
- Using speech

Speaker Recognition Using Speech

- Multiclass classification problem
 - 4 labels + 1 other
- Inference on sound extracted from episodes

Speech Training Data

- Download labeled waves
 - Not the exactly same setting
 - The prior is lost
 - Sound encoding issues?
- Episode scripts
 - Created a script-subtitle alignment script

Speaker Recognition

- Deep learning
- Multiclass logistic regression
 - O How to define features?

Mel Cepstrum Features

MFCCs are commonly derived as follows:[1][2]

- 1. Take the Fourier transform of (a windowed excerpt of) a signal.
- 2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
- Take the logs of the powers at each of the mel frequencies.
- 4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
- 5. The MFCCs are the amplitudes of the resulting spectrum.

~\$ pip install python_speech_features

Classification

- Features are calculated on time windows
 - Combine predictions
- Multiclass logistic regression
 - o 80% accuracy on 4 labels

Not Enough Data

- Not every sentence appears in the episodes we have
- Approaches
 - Text to speech
 - Find similar sentence

Text to speech

- Generate speech from text
- Most lip movement is in the vowels
 - Find sentences with "lip similarity"
 - Food -> "CooC" <- Good

Text to Speech - Fail

- Speech feels unnatural
- Actually, it's a Text to Dubbing problem
 - Much harder!

Sentence Similarity

- Edit distance
 - Similar words, different meaning
- Semantic distance
 - Word Mover's Distance

Earth Mover's Distance

EMD Formulation

```
d_i — amount of source dirt in i

d'_j — amount of destination dirt in j

c(i, j) — distance from i to j

T_{ij} — dirt flow from i to j. Unknown.
```

$$\min_{\mathbf{T}\geq 0} \sum_{i,j=1}^n \mathbf{T}_{ij} c(i,j)$$
 subject to: $\sum_{j=1}^n \mathbf{T}_{ij} = d_i \ orall i \in \{1,\dots,n\}$ $\sum_{i=1}^n \mathbf{T}_{ij} = d_j' \ orall j \in \{1,\dots,n\}.$

Word Mover Distance

WMD Formulation

```
d_i — count of word i in sentence 1 / sentence length d'_j — count of word j in sentence 2 / sentence length c(i, j) — distance from word i to word j — dirt flow from i to j. Unknown.
```

$$\min_{\mathbf{T}\geq 0} \sum_{i,j=1}^n \mathbf{T}_{ij} c(i,j)$$
 subject to: $\sum_{j=1}^n \mathbf{T}_{ij} = d_i \ \ orall i \in \{1,\dots,n\}$ $\sum_{i=1}^n \mathbf{T}_{ij} = d_j' \ \ orall j \in \{1,\dots,n\}.$

Word Mover Distance


```
In [1]: from gensim.models import Word2Vec
model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
model.wmdistance(sentence1, sentence2)
```

Sentence Similarity

	orig	script
0	go to bed	Go to sleep.
1	your father said eat your carrot	Your mother said\neat your broccoli.
2	we had lunch	And we had dinner.
3	you missed lunch	you missed breakfast.

Pivot

- Speaker isn't important enough
- New task: Simpsons' style text

Demo

Extras

- CNN based Simpsons detector
 - http://zachmoshe.com/2017/05/03/simpsons-detector.html
- Our GitHub repository
 - https://github.com/yahelg/simphony

Thank You!

I will not create fake Simpsons episodes. I will not create fake Simpsons episodes.