MSO202A: Assignment-II

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$

1. If f is differentiable in an open set Ω , then

$$\frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) = 0 \quad \text{and} \quad f'(z) = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$

- 2. Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there does not exist any point c on the line x + y = 1 joining z_1 and z_2 such that $f(z_1) f(z_2) = (z_1 z_2)f'(c)$, i.e., mean value theorem does not extend to complex plane.
- 3. Derive C-R equations in polar coordinates.
- 4. Let $f: \mathbb{D} \to \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, f(z) = f(w) whenever |z| = |w|. Using CR equations in polar coordinates, show that f is a constant function.
- 5. Show that the function $f(z) = \bar{z}$ is not differentiable at any point of \mathbb{C} . Find the points of differentiability of the function $f_a(z) = (z a) \operatorname{Re}(z a)$ for a given $a \in \mathbb{C}$.
- 6. Let U be an open set and $f: U \to \mathbb{C}$ be a differentiable function. Let $\bar{U} = \{\bar{z} : z \in \mathbb{C}\}$. Show that $g: \bar{U} \to \mathbb{C}$ defined by $g(z) := \overline{f(\bar{z})}$ is differentiable on \bar{U} .
- 7. Show that the following functions satisfy CR equations at z=0, but they are not differentiable at z=0.

(a)

$$f(z) = \begin{cases} \frac{z^5}{|z|^4} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

(b)
$$f(z) = \sqrt{|xy|}$$

- 8. Let Ω be an open connected subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$ be a differentiable function. Show that f=u+iv is constant if
 - (a) either of the functions u or v is constant, or
 - (b) |f(z)| is constant for all $z \in \Omega$, or
 - (c) if there exists an $\alpha \in \mathbb{R}$ such that $f(z) = |f(z)|e^{i\alpha}$ for all $z \in \Omega$
- 9. Show that the function $f(z) = (2 x^2 y^2)(x iy)$ has derivative only on the points of the circle $x^2 + y^2 = 1$.
- 10. Does there exist an analytic function f(z) = u + iv where u(x, y) is given by (a) x^2y (b) $e^x \cos(x y)$ (c) $e^x \sin y$
- 11. If f(z) is an analytic function, then show that $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$.
- 12. Find the domain in which the function $f(z) = |\text{Re } z^2| + i|\text{Im } z^2|$ is analytic.