Homework 1 (Due date: Thursday October 1, 11:59pm)

Q1. Consider a Geiger counter in a nuclear power plant that measure the number of radiation counts. We observe n readings from the counter and denote them as x_1, x_2, \cdots, x_n . It is known that the number of radiation counts follows a Poisson distribution with parameter λ .

$$P(x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, 2, \dots$$

Find the MLE estimate of λ based on the observed values x_1, x_2, \dots, x_n .

Q2. Consider the following 20 data samples generated from a Poisson distribution:

x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	<i>x</i> ₉	x_{10}	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	x_{14}	<i>x</i> ₁₅	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	x_{20}
3	1	2	1	2	1	0	2	1	0	5	6	3	2	4	4	0	5	5	3

Plot the MLE estimate for the parameter λ as a function of the number of samples (i.e., plot the MLE estimate for λ when you consider only x_1 , only x_1 and x_2 , only x_1 , x_2 and x_3 , and so on till you consider all 20 data points).