SECTION 4-3: HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH, DAY 1

- 1. Consider $f(x) = \frac{2}{3}x^3 + x^2 12x + 7$, and observe $f'(x) = 2x^2 2x 12 = 2(x 2)(x + 3)$.
 - (a) What are the critical points of f(x)? (Where does f'(x) = 0?)
 - (b) Fill in the following table, by evaluating f'(x) at "sample points" in the intervals:

x	x < -3	-3	-3 < x < 2	2	x > 2
sample point	-4	-3	0	2	5
sign or value of f'	+	O	_	٥	+
Increasing/decreasing: f is \nearrow or \searrow	<i>></i> ↑		A		M

f'(-4) = 2(-4-2)(-4+3) = 2(-6)(-1) = positive f'(0) = 2(0-2)(0+3) = 2(-)(+) = f(5) = 2(5-2)(5+3) = 2(+)(+) = +

- (c) On what interval(s) is f(x) increasing? $(-\infty, -3)$ $\cup (2, \infty)$ decreasing? (-3, 2)
- (d) Use the First Derivative Test to determine where f has a local max and local min (if any):
 - i. Local max at $x = \frac{3}{2}$ because f' goes from $\frac{4}{2}$ to $\frac{3}{2}$. Value of local max: $y = \frac{3}{2}$
 - ii. Local min at $x = \frac{2}{2}$ because f' goes from $\frac{1}{2}$ to $\frac{1}{2}$ Value of local min: $y = \frac{1}{2}$
- (e) It is a fact that f''(x) = 4x 2, so f''(x) = 0 when $x = \frac{1}{2}$. $0 = 4x 2 \Rightarrow 4x = 2 \Rightarrow 4$

riii in the expanded chart:									
x	x < -3	-3	-3 < x < 1/2	1/2	1/2 < x < 2	2	x > 2		
sample point	-4	-3	0	1/2	1	2	5		
sign or value of f'	+	0	-	_		0	+		
sign or value of f''	_	_	_	0	+	+	+		
concavity: f is $\nearrow \searrow \nearrow \searrow$								←	incr
increasing but CD decr but the for decr, cu									

- (f) Use the Second Derivative Test to determine where f has local maxima or minima:
 - i. Local max at $x = \frac{3}{3}$ because $f'(\frac{3}{3}) = \frac{0}{3}$ and $f''(\frac{3}{3}) = \frac{1}{3}$ he has a first representation of the second second
 - ii. Local max at x = 2 because f'(2) = 0 and f''(2) is positive.
- (g) Where does f have an inflection point? $x = \frac{\sqrt{2}}{2}$ How do you know? $\frac{f}{2} = \frac{\sqrt{2}}{2} = \frac{1}{2}$

(h) Use the information you collected to sketch the graph of f(x). You don't have to be accurate with the y-values, but they should be correct relative to each other. Because f(0) = 7, you can use that to "nail down" the position of your curve on the graph. Note that

- 2. Consider $g(x) = xe^x$, and note $g'(x) = xe^x + x = e^x(x+1)$ and $g''(x) = e^x(x+2)$.
 - (a) What are the critical point(s) of g(x)? X = -1
 - (b) Where is g increasing? $\times > -1$

- Note ex is always positive so sign of g'(x) = sign of (x+1)
- (c) Use the First Derivative Test to determine whether *g* has a local max or min at its critical point.

$$g'(-2) = e^{-2}(-2+i)$$

= $+(-) = -$
 $g'(0) = 1(1) = +$

So g has a local min at
$$x = -1$$
.

(d) Use the Second Derivative Test to determine whether *g* has a local max or min at its critical point.

$$g^{(1)}(-1) = e^{-1}(-1+2) = \frac{z}{e} > 0$$

So by 2nd devisative dest because g'(-1) = 0 and g''(-1) > 0,

$$g'(-1) = 0$$
 and $g''(-1) > 0$

X= 1 is a local min.

- 3. Consider the function $h(x) = x^3$ and observe $h'(x) = 3x^2$ and h''(x) = 6x.
 - (a) What are the critical points of f(x)?

(b) What happens when you try to use the Second Derivative Test to determine whether *h* has a local max or min at its critical point?

Test fails!
$$h'(0) = 0$$
 and $h''(0) = 0$ so we can't make a conclusion.

(c) Make a table of first and second derivatives to determine where h is increasing, decreasing, concave up, and/or concave down. Then sketch h.

X	χ <o< th=""><th>٥</th><th>× > 0</th></o<>	٥	× > 0
Sample	- 1	0	1
Sign of hi	+	0	+
incr/decr	/ 1		7
sign of h"	_	0	+
concarty	7		1

- 4. Consider the function $j(x) = x^4$ and observe $j'(x) = 4x^3$ and $j''(x) = 12x^2$.
 - (a) What are the critical points of j(x)?

(b) What happens when you try to use the Second Derivative Test to determine whether *j* has a local max or min at its critical point?

(c) Make a table of first and second derivatives to determine where j is increasing, decreasing, concave up, and/or concave down. Then sketch j.

X	x < 0	0	x>0
Sample	~ (٥	l .
sign of j	_	0	+
incr/deer	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		P
Sign of j	t	0	+
concairty	0		

