Programme de khôlle de maths no 10

Semaine du 5 décembre

Cours

Chapitre 7 : Probabilités

- Espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, \mathcal{A} est l'ensemble des événements, $\mathbb{P} : \mathcal{A} \longrightarrow [0; 1]$ est une application vérifiant $\mathbb{P}(\Omega) = 1$, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ si $A \cap B = \emptyset$, $\mathbb{P}(\cup_i A_i) = \sum_i \mathbb{P}(A_i)$ pour toute famille (A_i) finie ou dénombrable d'événements 2 à 2 incompatibles.
- Union, intersection, contraire d'un événement
- Situation d'équiprobabilité
- Théorème de la limite monotone :
 - \triangleright Si (A_n) est une suite croissante d'événements, i.e. $\forall n \in \mathbb{N}, A_n \subset A_{n+1}$, alors

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right)$$

 \triangleright Si (A_n) est une suite décroissante d'événements, i.e. $\forall n \in \mathbb{N}, A_{n+1} \subset A_n$, alors

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right)$$

- Probabilités conditionnelles
- Formule de Bayes
- Formule des probabilités composée
- Formule des probabilités totales
- Arbre de probabilité

Questions de cours et exercice

- Questions de cours
 - Démontrer la formule du crible : $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
 - Démontrer la formule de Bayes
 - Démontrer la formule des probabilités totales
- Exercices vus en classe
 - 1) Calculer la probabilité d'avoir un carré dans une main de poker
 - 2) Une urne contient trois boules blanches et une boule noire. On effectue des tirages avec remise et à chaque tirage on ajoute une boule de la couleur tirée dans l'urne. Calculer la probabilité de n'avoir tiré aucun e boule noire au bout du *n*-ième tirage.
 - 3) Une maladie circule avec un taux d'incidence de 100 personnes pour 100 000. Un test détecte la maladie et donne 2% de faux positifs et 1% de faux négatifs.
 - Quelle est la probabilité que le résultat du test soit positif? Si le résultat est positif, quelle est la probabilité que la personne soit malade?