Marcelo Paulon - 1411029

Descoberta do Conhecimento – 2º Trabalho

- Utilizado os datasets e os passos do link http://www.martingrandjean.ch/gephi-introduction/ repetir os dois experimentos sobre network analysis e entregar como resultado:
 - a) Experimento Mapeamento de letras sobre a Europa. Deverá ser entregue arquivo zip com nome Projeto1.zip contendo:
 - i. Arquivo de projeto gerado no Gephi. O projeto deverá se chamar Projeto1.gephi;
 - ii. Datasets utilizados;
 - iii. Imagem obtida no passo 3.4 do link. A imagem deverá se chamar Projeto1.png;

ОК

- b) Experimento Comissões e seus membros. Deverá ser entregue arquivo zip com nome Projeto2.zip contendo:
 - i. Arquivo de projeto gerado no Gephi. O projeto deverá se chamar Projeto2.gephi;
 - ii. Datasets utilizados;
 - iii. Imagem obtida no passo 4.5 do link. A imagem deverá se chamar Projeto2.png;

ОК

- 2) Utilizado os passos do link http://searchengineland.com/improve-internal-linking-calculate-internal-pagerank-r-246883 repetir o experimento sobre *PageRank* e entregar como resultado (a URL a ser utilizada é http://www.puc-rio.br/):
 - a) Datasets utilizados;

ОК

b) Código R;

ОК

- 3) Utilizado os passos do link https://searchengineland.com/easy-visualizations-pagerank-page-groups-gephi-265716 repetir o experimento sobre *PageRank* e entregar como resultado (a URL a ser utilizada é http://www.puc-rio.br/):
 - a) Arquivo de projeto gerado no Gephi. O projeto deverá se chamar Projeto4.gephi;

ОК

b) Datasets utilizados;

ОК

c) Imagens obtidas no passo "What do we want to show?" do link. As imagens deverão se chamar Projeto4_1.png e Projeto4_2.png, respectivamente;

ОК

d) Imagem obtida no passo "Changing the visualization" do link. A imagem deverá se chamar Projeto4_3.png;

ОК

- 4) Utilizando o pacote *forecast* do R e o conjunto de dados PIB.csv (dados trimestrais com início no primeiro trimestre de 1997):
 - a) Plote o gráfico da série;

b) Decomponha a série em seus componentes e plote os correspondentes gráficos;

c) Desconsiderando os 5 últimos valores do PIB, identifique e apresente o melhor ajuste ao modelo ARIMA;

Series: gdpdataOriginal\$Valor[1:77]

ARIMA(2,0,1) with non-zero mean

Coefficients:

ar1 ar2 ma1 mean

0.1994 0.4477 0.9632 2.2583

s.e. 0.1286 0.1349 0.0629 1.0035

sigma^2 estimated as 2.834: log likelihood=-148.66

AIC=307.32 AICc=308.16 BIC=319.04

d) Com os dados e o modelo do item c, apresente o gráfico com a série a temporal e a projeção para os próximos 5 trimestres com intervalos de confiança (65% e 80%).

65%:

Forecasts from ARIMA(2,0,1) with non-zero mean

80%:

Forecasts from ARIMA(2,0,1) with non-zero mean

e) Acrescente no gráfico os valores do modelo para os dados observados em azul. Acrescente também no gráfico a série original (que inclui os 5 últimos valores) em verde.

Forecasts from ARIMA(2,0,1) with non-zero mean

f) Calcule o MAPE e o RMSE para as projeções realizadas no item d.

Nome	MAPE	RMSE
Training Set (1:77)	86.92549	1.6390667
Test Set (78:82)	25.00217	0.7089138