Question No: 04

Setup

- Ensure the Python kernel has the necessary libraries: pandas, seaborn, numpy, kmeans, matplotlib and lets-plot
- Ensure the online_retail.csv file is in the data folder.

```
In [11]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
In [12]: # Load the dataset
df = pd.read_excel('D:/Data Science for Marketing-I/dataset/Online Retail.xlsx')
In [13]: df.head()
```

Out[13]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coui
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	Un Kingc
	1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	Un Kinga
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	Un Kingc
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	Un Kingc
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	Un Kingc
	4								•

i. Perform the following key steps to clean the given data: remove negative quantities, exclude records with negative unit prices, handle missing CustomerID values, omit December 2011 data, and create a new variable called 'Sales'."

```
In [14]: df = df.dropna(subset=["CustomerID"]) # Remove missing CustomerID
```

Filtering out transactions with Quantity <= 0 and UnitPrice <= 0: This removes erroneous or refund transactions that can distort the sales data.

```
In [15]: df = df[(df["Quantity"] > 0) & (df["UnitPrice"] > 0)] # Filter out invalid transac
```

Removing missing CustomerID: Transactions without CustomerID cannot be assigned to a customer, making them useless for customer behavior analysis.

```
In [16]: df = df[~df["InvoiceDate"].astype(str).str.startswith("2011-12")] # Remove Dec 2011
```

Removing December 2011 transactions: If these transactions are incomplete, they could bias the analysis, especially in time-based predictions.

the newly created Sales

```
df["Sales"] = df["Quantity"] * df["UnitPrice"]
In [17]:
          df.head()
In [18]:
Out[18]:
             InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerID
                                          WHITE
                                      HANGING
                                                            2010-12-01
                                                                                                  Un
          0
                536365
                            85123A
                                                        6
                                                                              2.55
                                                                                       17850.0
                                       HEART T-
                                                               08:26:00
                                                                                                Kinga
                                          LIGHT
                                        HOLDER
                                          WHITE
                                                            2010-12-01
                                                                                                  Un
          1
                536365
                             71053
                                                        6
                                                                              3.39
                                                                                       17850.0
                                          METAL
                                                                                                Kingo
                                                               08:26:00
                                       LANTERN
                                         CREAM
                                          CUPID
                                                            2010-12-01
                                                                                                  Un
          2
                536365
                            84406B
                                         HEARTS
                                                        8
                                                                              2.75
                                                                                       17850.0
                                                               08:26:00
                                                                                                Kingc
                                           COAT
                                        HANGER
                                        KNITTED
                                         UNION
                                                            2010-12-01
                                                                                                  Un
          3
                536365
                            84029G
                                      FLAG HOT
                                                        6
                                                                              3.39
                                                                                       17850.0
                                                               08:26:00
                                                                                                Kingo
                                         WATER
                                         BOTTLE
                                            RED
                                        WOOLLY
                                                            2010-12-01
                                                                                                  Un
                            84029E
                                                                                       17850.0
          4
                536365
                                         HOTTIE
                                                                              3.39
                                                               08:26:00
                                                                                                Kingc
                                         WHITE
                                         HEART.
```

ii. Calculate the total sales per customer, count the number of times they visited the store, and determine their average order value using Pandas.

CustomerID			
12346.0	77183.60	1	77183.600000
12347.0	4085.18	6	680.863333
12348.0	1797.24	4	449.310000
12349.0	1757.55	1	1757.550000
12350.0	334.40	1	334.400000
12352.0	2506.04	8	313.255000
12353.0	89.00	1	89.000000
12354.0	1079.40	1	1079.400000
12355.0	459.40	1	459.400000
12356.0	2811.43	3	937.143333
12357.0	6207.67	1	6207.670000
12358.0	484.86	1	484.860000
12359.0	6372.58	4	1593.145000
12360.0	2662.06	3	887.353333
12361.0	189.90	1	189.900000

In [20]: customer_df.describe()

Out[20]:

	TotalSales	OrderCount	AvgOrderValue
count	4297.000000	4297.000000	4297.000000
mean	1953.273240	4.131720	400.371478
std	8355.832473	7.412705	1271.352605
min	2.900000	1.000000	2.900000
25%	304.470000	1.000000	178.700000
50%	657.300000	2.000000	295.056667
75%	1600.860000	4.000000	431.674000
max	268478.000000	200.000000	77183.600000

In [21]: rank_df = customer_df.rank(method='first')

In [22]: rank_df.head(15)

Out[22]:

TotalSales OrderCount AvgOrderValue CustomerID 12346.0 4289.0 1.0 4297.0 12347.0 3957.0 3469.0 3887.0 12348.0 3349.0 3302.0 2860.0 12349.0 3320.0 2.0 4237.0 12350.0 1240.0 3.0 2560.0 12352.0 3629.0 3773.0 2359.0 12353.0 200.0 118.0 4.0 12354.0 2780.0 4150.0 5.0 12355.0 1669.0 6.0 3353.0 12356.0 3723.0 2345.0 4081.0 12357.0 4110.0 7.0 4294.0 12358.0 1737.0 8.0 3446.0 12359.0 4116.0 2861.0 4224.0 12360.0 3679.0 2346.0 4056.0 12361.0 606.0 9.0 1184.0

In [23]:

rank_df.describe()

Out[23]:

	TotalSales	OrderCount	AvgOrderValue
count	4297.000000	4297.000000	4297.000000
mean	2149.000000	2149.000000	2149.000000
std	1240.581383	1240.581383	1240.581383
min	1.000000	1.000000	1.000000
25%	1075.000000	1075.000000	1075.000000
50%	2149.000000	2149.000000	2149.000000
75%	3223.000000	3223.000000	3223.000000
max	4297.000000	4297.000000	4297.000000

- Total Sales per Customer → Sum of all purchases per customer.
- Order Count → Number of distinct purchases made.

- Avg. Order Value = Total Sales / Order Count → Measures spending per transaction.
- Ranking & Normalization → Standardizes data before clustering.

iii. Normalize the customer data after ranking the variables, considering that they are on different scales.

In [24]: normalized_df = (rank_df - rank_df.mean()) / rank_df.std()
In [25]: normalized_df.head(15)

Out[25]:

	TotalSales	OrderCount	AvgOrderValue
CustomerID			
12346.0	1.724998	-1.731446	1.731446
12347.0	1.457381	1.064017	1.400956
12348.0	0.967288	0.573118	0.929403
12349.0	0.943912	-1.730640	1.683082
12350.0	-0.732721	-1.729834	0.331296
12352.0	1.192989	1.309064	0.169275
12353.0	-1.637136	-1.729028	-1.571038
12354.0	0.508632	-1.728222	1.612953
12355.0	-0.386915	-1.727416	0.970513
12356.0	1.268760	0.157990	1.557334
12357.0	1.580710	-1.726610	1.729028
12358.0	-0.332102	-1.725804	1.045478
12359.0	1.585547	0.573924	1.672603
12360.0	1.233293	0.158797	1.537183
12361.0	-1.243772	-1.724998	-0.777861

In [26]: normalized_df.describe()

	TotalSales	OrderCount	AvgOrderValue
count	4.297000e+03	4297.000000	4.297000e+03
mean	-6.614315e-18	0.000000	-1.322863e-17
std	1.000000e+00	1.000000	1.000000e+00
min	-1.731446e+00	-1.731446	-1.731446e+00
25%	-8.657231e-01	-0.865723	-8.657231e-01
50%	0.000000e+00	0.000000	0.000000e+00
75%	8.657231e-01	0.865723	8.657231e-01
max	1.731446e+00	1.731446	1.731446e+00

Out[26]:

- Groups customers based on Total Sales, Order Count, and Avg Order Value.
- Scatter plots show how customer segments differ in spending behavior.

iv. Apply K-Means clustering with k=4 on the prepared customer dataset, and interpret the clustering results.

```
In [27]: from sklearn.cluster import KMeans
         - K-Means Clustering
         kmeans = KMeans(n_clusters=4).fit(normalized_df[['TotalSales', 'OrderCount', 'AvgOr
In [28]:
In [29]:
         kmeans
Out[29]:
              KMeans
         KMeans(n_clusters=4)
In [30]: kmeans.labels_
Out[30]: array([3, 0, 0, ..., 1, 2, 0], dtype=int32)
In [31]:
         kmeans.cluster_centers_
Out[31]: array([[ 1.20644969, 1.00770735, 0.86513619],
                [-1.24791741, -0.79892804, -1.06185436],
                [0.21331718, 0.71126116, -0.64332031],
                [-0.13185971, -0.85028576, 0.79926069]])
```

```
In [32]: four_cluster_df = normalized_df[['TotalSales', 'OrderCount', 'AvgOrderValue']].copy
         four_cluster_df['Cluster'] = kmeans.labels_
In [33]: four_cluster_df.head()
Out[33]:
                      TotalSales OrderCount AvgOrderValue Cluster
          CustomerID
             12346.0
                                                                 3
                       1.724998
                                   -1.731446
                                                   1.731446
             12347.0
                       1.457381
                                    1.064017
                                                   1.400956
                                                                 0
             12348.0
                       0.967288
                                   0.573118
                                                   0.929403
                                                                 0
             12349.0
                       0.943912
                                   -1.730640
                                                   1.683082
                                                                 3
             12350.0
                                                                 3
                      -0.732721
                                   -1.729834
                                                   0.331296
In [34]: four_cluster_df.groupby('Cluster').count()['TotalSales']
Out[34]: Cluster
               1133
          1
               1148
               953
          2
          3
               1063
          Name: TotalSales, dtype: int64
In [35]: plt.scatter(
             four_cluster_df.loc[four_cluster_df['Cluster'] == 0]['OrderCount'],
             four_cluster_df.loc[four_cluster_df['Cluster'] == 0]['TotalSales'],
             c='blue'
         plt.scatter(
             four_cluster_df.loc[four_cluster_df['Cluster'] == 1]['OrderCount'],
             four_cluster_df.loc[four_cluster_df['Cluster'] == 1]['TotalSales'],
             c='red'
          )
          plt.scatter(
             four_cluster_df.loc[four_cluster_df['Cluster'] == 2]['OrderCount'],
             four_cluster_df.loc[four_cluster_df['Cluster'] == 2]['TotalSales'],
             c='orange'
         plt.scatter(
             four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['OrderCount'],
             four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['TotalSales'],
             c='green'
          plt.title('TotalSales vs. OrderCount Clusters')
          plt.xlabel('Order Count')
          plt.ylabel('Total Sales')
```


9

- Red Cluster (Bottom Left): Low Total Sales and low Order Count.
- Green Cluster (Middle Left): Higher Total Sales but still low Order Count.
- Blue Cluster (Top Right): High Total Sales and high Order Count.
- Orange Cluster (Middle Right): Medium Total Sales with a range of Order Count.

```
plt.scatter(
    four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['OrderCount'],
    four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['AvgOrderValue'],
    c='green'
)

plt.title('AvgOrderValue vs. OrderCount Clusters')
plt.xlabel('Order Count')
plt.ylabel('Avg Order Value')

plt.grid()
plt.show()
```

AvgOrderValue vs. OrderCount Clusters


```
In [37]:
    plt.scatter(
        four_cluster_df.loc[four_cluster_df['Cluster'] == 0]['TotalSales'],
        four_cluster_df.loc[four_cluster_df['Cluster'] == 0]['AvgOrderValue'],
        c='blue'
)

plt.scatter(
    four_cluster_df.loc[four_cluster_df['Cluster'] == 1]['TotalSales'],
    four_cluster_df.loc[four_cluster_df['Cluster'] == 1]['AvgOrderValue'],
        c='red'
)

plt.scatter(
```

```
four_cluster_df.loc[four_cluster_df['Cluster'] == 2]['TotalSales'],
    four_cluster_df.loc[four_cluster_df['Cluster'] == 2]['AvgOrderValue'],
    c='orange'
)

plt.scatter(
    four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['TotalSales'],
    four_cluster_df.loc[four_cluster_df['Cluster'] == 3]['AvgOrderValue'],
    c='green'
)

plt.title('AvgOrderValue vs. TotalSales Clusters')
plt.xlabel('Total Sales')
plt.ylabel('Avg Order Value')

plt.grid()
plt.show()
```


Cluster Interpretation:

- Cluster 0 (Low Spenders, Frequent Buyers) → Small purchases but frequent.
- Cluster 1 (High Spenders, Infrequent Buyers) → Large purchases but rare.
- Cluster 2 (Top Customers) → High value, frequent purchases.
- Cluster 3 (Occasional, Low Spenders) → Rare and small transactions.

v. Determine the optimal number of clusters using the Silhouette Score, and explain what the final result indicates about customer segments.

- Selecting the best number of clusters

```
In [38]: from sklearn.metrics import silhouette_score
```

Silhouette Score identifies the best k-value for maximum separation.

The highest Silhouette Score is 0.4117 for 4 clusters, this suggests that 4 clusters are the optimal choice for segmenting the data. Increasing the number of clusters beyond 4 leads to lower scores, implying that clusters become less distinct and more mixed.

- Interpreting Customer Segments

CustomerID				
12346.0	1.724998	-1.731446	1.731446	3
12347.0	1.457381	1.064017	1.400956	1
12348.0	0.967288	0.573118	0.929403	1
12349.0	0.943912	-1.730640	1.683082	3
12350.0	-0.732721	-1.729834	0.331296	3
12352.0	1.192989	1.309064	0.169275	1
12353.0	-1.637136	-1.729028	-1.571038	0
12354.0	0.508632	-1.728222	1.612953	3
12355.0	-0.386915	-1.727416	0.970513	3
12356.0	1.268760	0.157990	1.557334	1
12357.0	1.580710	-1.726610	1.729028	3
12358.0	-0.332102	-1.725804	1.045478	3
12359.0	1.585547	0.573924	1.672603	1
12360.0	1.233293	0.158797	1.537183	1
12361.0	-1.243772	-1.724998	-0.777861	0

```
In [41]: kmeans.cluster_centers_
```

In [42]: high_value_cluster = four_cluster_df.loc[four_cluster_df['Cluster'] == 2]
high_value_cluster.head()

Out[42]: TotalSales OrderCount AvgOrderValue Cluster

CustomerID				
12364.0	0.425607	0.159603	0.330490	2
12399.0	0.532815	0.577955	-0.104790	2
12413.0	0.160409	0.162827	-0.244240	2
12414.0	-0.181367	0.163633	-0.798013	2
12421.0	0.224088	0.578761	-0.663399	2

```
In [43]: customer_df.loc[high_value_cluster.index].describe()
```

Out[43]:

	TotalSales	OrderCount	AvgOrderValue
count	932.000000	932.000000	932.000000
mean	1078.091354	5.600858	207.237522
std	1376.426975	8.667353	57.692518
min	201.120000	2.000000	28.731429
25%	570.377500	3.000000	165.573333
50%	817.295000	4.000000	208.329000
75%	1197.405000	6.000000	246.279937
max	32649.460000	200.000000	339.920000

Out[44]: StockCode

Description

WHITE HANGING HEART T-LIGHT HOLDER	621
REX CASH+CARRY JUMBO SHOPPER	435
ASSORTED COLOUR BIRD ORNAMENT	316
REGENCY CAKESTAND 3 TIER	316
PARTY BUNTING	311

Out[45]: StockCode

Description REGENCY CAKESTAND 3 TIER 200 WHITE HANGING HEART T-LIGHT HOLDER 158 ASSORTED COLOUR BIRD ORNAMENT 155 SET OF 3 CAKE TINS PANTRY DESIGN 152 PARTY BUNTING 138

- Identified top-spending customers.
- Extracted most frequently purchased products for each segment.