Derivação Numérica e Processos Iterativos

Temas:

- Derivação numérica
- Processos Numéricos Iterativos
- Cálculo de Raízes de uma Função
- Simulação e Cálculo da Taxa Interna de Retorno

Problema: Cálculo da Taxa Interna de Retorno

Considere um projeto de investimento cuja vida útil é de 15 anos. Considere ainda que os investimento necessários estão definidos e serão feitos nos instantes 0, 5 e 10 no valor de 10 unidades monetárias. Com uma carência de 2 anos para inicio da receita.

O fluxo de caixa livre (*free cash flow*) estimado para o projeto apresenta um tendência estocástica e uma tendência determinística, data pela equação:

$$y_t = y_{t-1} + \alpha + \beta . \varepsilon_t \qquad \varepsilon_t \sim N(0,1)$$

Admita:

$$y_0 = 5$$
, $\alpha = 0.125$, $\beta = 1$

Faça 1000 simulações e obtenha a distribuição de probabilidade da Taxa Interna de Retorno (TIR) para o projeto.

Considere que a taxa mínima de atratividade para o investimento deve ser de 10%.

Valor Presente Líquido e Taxa Interna de Retorno

Valor Presente Líquido:

$$VPL = \sum_{t=0}^{n} \frac{F_t}{(1+i)^t}$$

Taxa Interna de Retorno:

$$VPL = 0 \Rightarrow 0 = \sum_{t=0}^{n} \frac{F_{t}}{(1+TIR)^{t}} = \frac{F_{1}}{(1+TIR)^{0}} + \frac{F_{1}}{(1+TIR)^{1}} + \frac{F_{2}}{(1+TIR)^{2}} + \dots + \frac{F_{n}}{(1+TIR)^{n}}$$

Fazer as simulações de fluxo de caixa

Calcular a TIR para cada fluxo de caixa

Método de Newton-Raphson para Raízes Funções

Dada uma função f(x) queremos encontrar em um intervalo aberto I o valor que

anula a função.

Pseudocódigo:

- 1. Iniciar $X_n = X_0$
- 2. Inicializar o contador de iteração n=0
- 3. Enquanto $|f(x_n)| > \varepsilon$ e $n < n_{\text{max}}$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$x_n = x_{n+1}$$

$$n = n + 1$$

fim enquanto

$$tg\theta = f'(x_n) = \frac{f(x_n)}{x_n - x_{n+1}} \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Importante: A raiz encontrada depende do ponto de partida

Processos Numéricos Iterativos

Um processo iterativo calcula uma sequência iterações ou de aproximações de uma variável desejada sendo que o cálculo da aproximação seguinte é feito utilizando as aproximações anteriores.

Exemplo de problemas:

- Simulação de séries temporais
- Encontrar as raízes de uma função
- Resolver uma equação recursiva

Critérios de Parada ou Interrupção das Iterações:

- 1. Critério de Convergência ou precisão desejada
- 2. Número máximo de iterações ou simulações

Derivada Numérica

Seja x uma variável e f(x) uma função, a primeira derivada é definida como:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Aproximação numérica da primeira derivada (1o modo):

Escolher *h* "pequeno" e calcular:

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Qual o erro da aproximação ?

Considere a expansão da Série de Taylor:

$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!} \cdot f^{(2)}(x) + \frac{h^3}{3!} \cdot f^{(3)}(x) + \dots$$

$$\frac{f(x+h) - f(x)}{h} = f'(x) + \underbrace{\frac{h}{2!} \cdot f^{(2)}(x) + \frac{h^2}{3!} \cdot f^{(3)}(x) + \dots}_{\text{erro da aproximação da ordem de grandeza da } h}$$

Derivada Numérica

Aproximação numérica da primeira derivada (2o modo):

Escolher h "pequeno" e calcular:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Qual o erro da aproximação ?

Considere as expansões da Série de Taylor:

subtrair
$$f(x+h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!} \cdot f^{(2)}(x) + \frac{h^3}{3!} \cdot f^{(3)}(x) + \dots$$

$$f(x-h) = f(x) - h \cdot f'(x) + \frac{h^2}{2!} \cdot f^{(2)}(x) - \frac{h^3}{3!} \cdot f^{(3)}(x) + \dots$$

$$f(x+h) - f(x-h) = 2h \cdot f'(x) + \frac{2 \cdot h^3}{3!} \cdot f^{(3)}(x) + \frac{2 \cdot h^5}{5!} \cdot f^{(5)}(x) \dots$$

$$\frac{f(x+h) - f(x-h)}{2 \cdot h} = f'(x) + \frac{h^2}{3!} \cdot f^{(2)}(x) + \frac{h^4}{5!} \cdot f^{(3)}(x) + \dots$$
erro da aproximação da ordem de grandeza da h^2

Exercício – Cálculo Numérico da Derivada

1. Escrever a função $user_f(x)$, uma função $f:R \to R$ qualquer.

Para teste, considere o polinômio de 30 grau:

$$f(x) = (x-1).(x+2).(x-3) = x^3 - 2x^2 - 5x + 6$$

Testar a função para os dados: x = c(-4, 0, -1, 2, -2, 1, 3);

Resultado: -70, 6, 8, -4, 0, 0, 0

2. Escrever a função que calcula numericamente a derivada de uma função qualquer definida pelo usuário:

$$df(f, x, h=1e-6)$$

Argumentos:

f: Função definida pelo usuário

x: ponto no qual queremos calcular a derivada

h: precisão desejada no cálculo da derivada

Retorno:

Valor da derivada no ponto x

Exercício – Método de Newton Raphson

Escrever a função que calcula a raiz de um função a partir de um ponto dado.

$$root_f(f, x0, eps=1e-6, nmax=1e3)$$

Argumentos:

f: Função definida pelo usuário

x0: ponto inicial para as iterações

eps: precisão desejada no cálculo da raiz

nmax: número máximo de iterações

Retorno:

Valor da raiz ou NaN caso nenhuma raiz seja encontrada

Retomando o Problema.....

Considere um projeto de investimento cuja vida útil é de 15 anos. Considere ainda que os investimento necessários estão definidos e serão feitos nos instantes 0, 5 e 10 no valor de 10 unidades monetárias. Com uma carência de 2 anos para inicio da receita.

O fluxo de caixa livre (*free cash flow*) estimado para o projeto apresenta um tendência estocástica e uma tendência determinística, data pela equação:

$$y_t = y_{t-1} + \alpha + \beta . \varepsilon_t \qquad \varepsilon_t \sim N(0,1)$$

Admita:

$$y_0 = 5$$
, $\alpha = 0.125$, $\beta = 1$

Faça 1000 simulações para a TIR e obtenha a distribuição de probabilidade da Taxa Interna de Retorno (TIR) para o projeto.

Considere que a taxa mínima de atratividade para o investimento deve ser de 10%.

Valor Presente Líquido e Taxa Interna de Retorno

Valor Presente Líquido:

$$VPL = \sum_{t=0}^{n} \frac{F_t}{(1+i)^t}$$

Taxa Interna de Retorno:

$$VPL = 0 \Rightarrow 0 = \sum_{t=0}^{n} \frac{F_{t}}{(1+TIR)^{t}} = \frac{F_{1}}{(1+TIR)^{0}} + \frac{F_{1}}{(1+TIR)^{1}} + \frac{F_{2}}{(1+TIR)^{2}} + \dots + \frac{F_{n}}{(1+TIR)^{n}}$$

Fazer as simulações de fluxo de caixa

Calcular a TIR para cada fluxo de caixa

Criar uma biblioteca AnaliseProjetos.r:

1. Escrever uma função que calcula o valor presente líquido:

Argumentos:

cf: vetor com o fluxo de caixa

r: taxa de juros ou taxa de desconto

Retorno:

v: Valor presente

Referência:

TIR(%):

		10%	15,24%
i	VF	VP	VP TIR
0	-75.000,00	-75.000,00	-75.000,00
1	22.500,00	20.454,55	19.524,77
2	22.500,00	18.595,04	16.942,96
3	22.500,00	16.904,58	14.702,55
4	22.500,00	15.367,80	12.758,40
5	22.500,00	13.970,73	11.071,32
	VLP	10.292,70	0,00

r(%):

i	VF	VP	VP TIR
0	-120.000,00	-120.000,00	-120.000,00
1	34.000,00	30.909,09	30.126,23
2	34.000,00	28.099,17	26.693,82
3	34.000,00	25.544,70	23.652,47
4	34.000,00	23.222,46	20.957,64
5	34.000,00	21.111,32	18.569,84
	VLP	8.886,75	0,00

r(%):

10%

TIR(%):

12,86%

2. Escrever a função que calcula a TIR utilizando o Método de Newton-Raphson

TIR(cf, r0, eps=1e-6, nmax=1e3)

Argumentos:

cf: vetor com o fluxo de caixa

r0: taxa de juros inicial ou "chute inicial" para iterações

eps: precisão das aproximações (1e-6)

nmax: número máximo de iterações

Retorno:

tir: taxa interna de retorno

Referência:

		10%	15,24%
i	VF	VP	VP TIR
0	-75.000,00	-75.000,00	-75.000,00
1	22.500,00	20.454,55	19.524,77
2	22.500,00	18.595,04	16.942,96
3	22.500,00	16.904,58	14.702,55
4	22.500,00	15.367,80	12.758,40
5	22.500,00	13.970,73	11.071,32
	VLP	0,00	

r(%):

TIR(%):

			10 /0	12,00 /0
	i	VF	VP	VP TIR
	0	-120.000,00	-120.000,00	-120.000,00
	1	34.000,00	30.909,09	30.126,23
	2	34.000,00	28.099,17	26.693,82
	3	34.000,00	25.544,70	23.652,47
	4	34.000,00	23.222,46	20.957,64
	5	34.000,00	21.111,32	18.569,84
•		VLP	8.886,75	0,00

r(%):

10%

TIR(%):

12.86%

- 3. Escrever um script que faça a simulação do fluxo de caixa
- Para cada simulação calcular e armazenar o valor da TIR
- Gerar as estatísticas descritivas básicas
- Plotar o histograma da TIR