36710 - 36752

ADVANCED PROBABILITY OVERVIEW

FALL 2020

LECTURE 10: MON, OCT 5, 2020

PRODUCT SPACES

IR = IR x ... XIR. WE ALREADY KNOW WHEAT A RANDOM

VECTOR IS: MEASURABLE FUNCTION FROM (D,FP) INTO

· SIGNA FIELD GENERATED BY
OPEN SETS IN IR

- GENEROTED BY HYRER-RECTANGLES

(a., 6,7 × ... × (ar,64)

PRODUCT 6-FIELD IS CONSTRUCTED USING 6-FIELDS OF COMPONENT OF

Def LET (21, 5,) AND (22, 52) BE MEASURE SPACES.

THE PRODUCT 6-FIELD ON (1 x (2 15) THE SMALLEST 6-FIELD

CONTAINING THE CLASS { A, x A2, A, e F, A2 e F2 }

A(x A2 IS CALLED A MEASURABLE RECTANGLE, THE PRODUCT

6-FLEZD IS DENOTED WIT $f_{i}\otimes f_{2}$ (or $f_{i}\times f_{2}$)
REMARK: THE PRODUCT 6-FLEID IS NOT THE CARTESIAN PRODUCT OF
F. and Fz. IT IS LARGER PLAN THAT.
NOT 6-FIELD BELYUSE IT IS NOT CLOSED UNDER COMPLEMENTS OR UNLEWS
$C_{i} = \mathbb{R}$
Lemma LET (2, 5,) AND (D2, F2) BE MEASURABLE SPACES
SUCH THAT THE CLASS C. GENERATES J., 1=1,2
$(i.e. \ f_1 = 6(C_1)). \text{Let} C = \underbrace{\begin{cases} C_1 \times C_2, c_1 \in C_1 \\ C_2 \in C_2 \end{cases}}_{C_2 \in C_2}$ Then $6(C) = \underbrace{f_1 \otimes f_2}_{C_2}.$
L> 63" = 63 @ @ 63
PRODUCT 6-FIED
PAY FIX $C_1 \in C_1$ THE CLASS OF SET $\{A \subseteq \Lambda_2 : C_1 \times A\} \in G(C)$.
5 - FIELD. SO C(× A2, A2 & SELONGS TO
5(C). SIMILARLY, FOR EACH FIRED AZE 52,
A, EF. => 6(C) COMAINS MEASURABLE
RECERNALES SO $6CC) = 5.85$

REMARK LE C1 AND C2 ARE RT-SYSTEMS, 50 IS C, X C2 IF C, D, e C1 AND C2, D2 C C1 THEN (C, x C2) 1 (D, x D2) = (C, 10, 0,) x (C2 102) Claim LET'S CONSIDER 12, × 12. A COORDINATE PROSECTION, CAY for, IS THE CNOWN fi: SIX Se -> SI OF THE FORM (w, w2) = f(w, w2) = a. THE PRODUCT 6-FIELD IS THE SMALLEST 6-FIELD FOR WHICH ALL COORDINATE PROJECTIONS ARE MEASURABLE. Let $A, \in \mathcal{F}$. THEN $f_1(A_1) = A_1 \times \Omega_2$ Notice THAT, FOR AZE FZ, $f_1'(A_1) \cap f_2'(A_2) = A_1 \times A_2$ Proposition 6: (1, F.) AND (12, FZ) BE MEASURABLE I LET BE S. D SZ, W, E DI. THE WIL- SECTION OF B SEE ASK (5 THE DET BOIL = { az e Lz, (a, , wz) e B}. THEN BULE 52. 12 IF ME IS A 6-FINITE MEASURE ON (NZ, FZ). THEN THE FUNCTION WIE - 12 1 -> 112 (BWI) IS MEASURABLE, FOR EACH BE F. DF

1	H5	DEFIN	ET A	MEASUR	Ċ ¿	DΛ\	PIEL	D	DF.	FLNLT	E L	DISTOUT	المامي	7]
	OF	MEAS.	RECT	angles		APPL	4	EZ	KTEN	SION	TH	EDREM	V.	1
				2 (5 (
	THE	LEI	3E SGUE	MEASC.	RE (DΝ	(lî	< ×	, 6:	3 ×)) (S	A	PRIN	טכז
	M	FASUR	ξ.											
	Thin	(TONE	LL: The	EDREAN)	LET	- (-		, 5	= 1, M	1)	ANO	C-G	22, 52,	u2)
	ßE	6 - FIN	VITE M	EASURE O	المردح	5 /	ANO		<i>[</i> =	Ω,	x I	22 ->	Rzo	
			EGAN	VE FUNC	COV	THE	7 (5	5	5	12 (8)	F2/	63'	meas.	
		cs (to		1 41. 20 42 /	(ca)	7.			((5)) du.		(4(000)
	A.x		,	d M. & M. 2 (ne Asi	JR E) [. 2 -	Ω_1	[00 /	, 0, 2) (1/0-1/		JM(WZ)
) (12		lz	ا ۽ اس	<i>u c</i>)	1300.[olug (cuz)
	TU	E INT	EGRAL	CAN	BE									
TM	E P	ROF	RELUE	ON 8	TAND	ARO	MAC	¥21/	ver	l				
Th	m (1	FUBIN	()	T PSIDN	HE i	s Ame	:ی	೯೧	N G-3	,	ıF	f: 2,	×_Nz	⇒R
	ıs	A M	eas. F	FUNCTION "	THAT	12	INTE	GRA	BCE	- W	rt .	MI B	12 71	sen
	THE	= ABO	VE RE	SULT HUL	20			1	f.c.				2 Ccu, Ce	
V						-	J _n, x			, , u 2) [3	JALLEY M		·2)
SEE	E	CAMPLI	E 14	IN NOTE	+4									

Def (interprincence between sets). Let (2, 3, P) be a Prosability space. Let (2, 4nn) (2, 8e) two classes of sets in (3, 4nn) (3, 4nn) (4, 4nn

Def (INDEPENDENCE BETWEE RANDOM VARIABLES)

LET (Ω, \mathcal{F}, P) be a prob. Seace and $X_1 : \Omega \to S_1$ 1 = 1, 2. BE RANDOM VARIABLES. THEN X_1 AND X_2 ARE INDEPENDENT IF $\delta(X_1)$ AND $\delta(X_2)$ ARE

INDEPENDENT.

Def (INDEPENDENCE OF MUCRIPLE COLLECTIONS OF SETS) (Λ , \mathcal{F} , \mathcal{P})

AND A COLLECTION { \mathcal{C} _{E}, \mathcal{E} _{T}} OF CLASSET OF MEAS.

SUBSETS. THIS COLLECTION IS SAID TO BE INDEP WHET

FOR ANY $n \leq 1T$ | AND ANY DISTINCT \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 in \mathcal{E}_4 .

P(Λ At.) = \mathcal{E} _{F} (Λ At.)

REMARK MUTUAL INDEP. IS NOT IMPLIED BY PAIRWISE INDEP. !

EXAMPLE. TOSS A COIN TWICE AND EACH OUTCOME teas PROB 1/4 A1 = { DENTICAL OUTEMES } A2 = { FIRST OVECOME IS te} A3 = { SECOND OUTENIE (5 H3 THEN P(A) = 1/2 ALL 1=1,2,3 AND P(Ann As) = 1 = P(An) P(As) ALL L) PARRULSE INDEPENDENCE FOLOS BUT $P(A, \cap A_2 \cap A_3) = P(\{HH\}) = \frac{1}{2} \neq P(A_1)P(A_2)P(A_3)$ L> MUTUAL INGEPENDENCE DOES NOT HOLD !