TEORÍA DE SINGULARIDADES Y DEL RESIDUO.

1.1 SINGULARIDAD.-

Un punto z_0 es un punto singular o una singularidad deu na función F, si F es analítica en algún punto de toda variedad de z_0 , excepto en z_0 mismo. Existen Varios tipos de Singularidades.

1º **SINGULARIDAD AISLADA.**- El punto $z = z_0$ si $\exists \delta > 0$, tal que el círculo \parallel $z-z_0 \parallel = \delta$ no encierra puntos singulares distintos de z_0 (es decir $\exists V_{\delta}(z_0)$ sin singularidad).

Si tal $\delta \mathbb{Z}$, decimos que z_0 es una singularidad no aislada.

Si z_0 no es un punto singular y si $\exists \delta > 0 / \| z - z_0 \| = \delta$ no encierra puntos singulares, decimos que z_0 es un punto ordinario de F(z).

2º **POLOS.-** Si podemos encontrar un entero positivo n tal que $\lim_{z \to z_0} (z - z_0)^n$ $F(z) = A \neq 0$, entonces $z = z_0$ es llamado polo de orden n, si n = 1. z_0 es

llamado un polo simple. **Ejemplo.-** $f(z) = \frac{1}{(z-2)^3}$, se tiene un polo de orden tres en z=2. **Ejemplo.-** $f(z) = \frac{3z-2}{(z-1)^2(z+1)(z-4)}$; tiene un polo de orden dos en z=1 y polos simples en z=-1 y z=4

Si $y(z) = (z - z_0)^n F(z)$, de donde $F(z_0) \neq 0$ y n es un entero positivo, entonces $z = z_0$ es llamado un cero de orden n de y(z).

Si $n=1, z_0$ es llamado un cero simple, en tal caso z_0 es un polo de orden n de la función $\frac{1}{y(z)}$

3º LOS PUNTOS DE RAMIFICACIÓN.-Ejemplos .-

(a) $f(z) = (z-3)^{\frac{1}{2}}$ tiene un punto de ramificación en z=3

- (b) $f(z) = ln(z^2 + z 2)$ tiene puntos de ramificación donde $z^2 + z 2 = 0$, es decir z = 1, z = -2.
- 4° **SINGULARIDADES REMOVIBLES.-** El punto singular z_0 es llamado una singularidad removible de F(z) si $\lim_{z \to z_0 f(z)}$ existe.

1

Ejemplo.- El punto singular z = 0, es una singularidad removible de f(z) = $\frac{sen(z)}{z}$, puesto que $\lim_{z\to z_0} \frac{sen(z)}{z} = 1$.