- 1. Let $F: \mathbb{R}^n \to \mathbb{R}$ and $n \geq 2$. The value $\alpha \in \mathbb{R}$ is caller *regular* if for all $x \in \mathbb{R}^n$ such that $F(x) = \alpha$, $DF(x) \neq 0$.
 - (i) Show that for any α regular, the set $\mathcal{M}_{\alpha} = \{x \in \mathbb{R}^n : F(x) = \alpha\}$ considered with topology it has as a subset of \mathbb{R}^n is a differentiable manifold.
 - (ii) Also show that \mathcal{M}_{α} is orientable.
- 2. Show that the tangent bundle, $T\mathcal{M}$, defined in the lecture is indeed a differentiable manifold. Also if $v \in T_p\mathcal{M}$ is given in the chart (U,ϕ) as $a^1\frac{\partial}{\partial x_1}+\cdots+a^n\frac{\partial}{\partial x_n}$ and in the chart (V,ψ) as $b^1\frac{\partial}{\partial y_1}+\cdots+b^n\frac{\partial}{\partial y_n}$, find the relationship between coefficients a_i and b_j .
- 3. If $df \in T_p \mathcal{M}^*$ is given in the chart (U, ϕ) as $\alpha_1 dx_1 + \cdots + \alpha_n dx_n$ and in the chart (V, ψ) as $\beta_1 dy_1 + \cdots + \beta_n dy_n$, find the relationship between coefficients α_i and β_j .
- 4. Let (U, ϕ) be a coordinate chart. Let $x_i(p)$ be the coordinates of ϕ^{-1} , that is $\phi^{-1}(p) = (x_1(p), \dots, x_n(p))$. Show that $dx_1, \dots dx_n$ are linearly independent and span $T_p \mathcal{M}^*$
- 5. Assume \mathcal{M} is a connected manifold and $f: \mathcal{M} \to \mathbb{R}$ is such that df = 0. Show that f is constant.
- 6. Recall that $P^2=S^2/\sim$ where $x\sim y$ is x=-y or x=y. Consider $F:P^2\to\mathbb{R}^4$ defined by

$$F([x], [y], [z]) = (x^2 - y^2, xy, xz, yz).$$

(Note that the mapping is well defined and does not depend on the choice of the representative of an equivalence class.) Show that F is an embedding.

- 7. Let (G,\cdot) be a group, \mathcal{M} a manifold and $G\times\mathcal{M}\to\mathcal{M}$ a properly discontinuous action.
 - (i) Show that \mathcal{M}/G is orientable if and only if there exists an orientation of \mathcal{M} that is preserved by all $\Phi_g: \mathcal{M} \to \mathcal{M}$ for all $g \in G$.
 - (ii) Show that P^2 is not orientable and that P^3 is orientable.
- 8. Let \mathcal{M} be a compact manifold and v a smooth vector field on \mathcal{M} . Let $p \in \mathcal{M}$. Show that there exists a unique curve $\gamma \in C^{\infty}(\mathbb{R}, \mathcal{M})$ such that

$$(\forall t \in \mathbb{R}) \ \gamma'(t) = v(\gamma(t)) \text{ and } \gamma(0) = p.$$

You can use any theorem on ODE in Euclidean space.