M.Sc. in ,Transportation Systems'

Applied Statistics in Transport Exercises: Descriptive analysis and graphics with R

These exercises should be solved with R, but please solve them (as far as possible) without using the R-functions.

Description of the data set:

• The dataset consists of information on 2053 dwellings.

Variables:

nr net-rent in EUR

nrsqm net-rent per m2 in EURndwa net dwelling area in m2

• rooms number of rooms in the dwelling

yc year of constructionn neighbourhood

agood good address? (y=1, n=0)
abest best address? (y=1, n=0)
hw hot water supply? (y=0, n=1)

• ch central heating available? (y=0, n=1)

• tb tiled bathroom? (y=0, n=1)

• bathextra special extra equipment in the bathroom? (y=1, n=0)

• kextra special extra equipment in the kitchen? (y=1, n=0)

Exercises:

The following table shows the first 10 observations of the first 7 variables.

No. Obs.	nr	nrsqm	ndwa	rooms	ус	n	agood
1	741.39	10.9	68	2	1918	2	1
2	715.82	11.01	65	2	1995	2	1
3	528.25	8.38	63	3	1918	2	1
4	553.99	8.52	65	3	1983	16	0
5	698.21	6.98	100	4	1995	16	1
6	935.65	11.55	81	4	1980	16	0
7	204.85	3.72	55	2	1924	6	0
8	426.93	5.4	79	3	1924	6	0
9	446.33	8.58	52	1	1957	6	0
10	381.45	4.95	77	3	1948	6	0

Reading your data:

- setwd("##")
- getwd()
- rent.data<-read.table("rent.asc", header=T, sep="\t")
- Is()
- class(rent.data)
- str(rent.data)
- head(rent.data)
- summary(rent.data)
- dim(rent.data)
- names(rent.data)
- rent.data [1:8,]
- rent.data [1:5,4:7]
- rent.data [3,4]
- rent.data \$rooms[3:8]
- fix(rent.data)
- attach(rent.data)
- 1. Which scale do the variables belong to? Choose suitable ways to visualise the variables nr, rooms, n. Classify the data for net rent if suitable.
- 2. Which measures of central tendency are suitable for the variables? Compute the arithmetic mean, the median and the mode for the variables nr, rooms, n so than each of the measures is used once.
- 3. Compute the arithmetic mean and the median for the variable nr. Which advantage has the median compared to the arithmetic mean? What can you say about the degree of skew of the variable nr in the sub-sample? Compare this result with the graphs in exercise 1.
- 4. For which variables can you plot the empirical cumulative distribution function (ecdf)? Plot the ecdf for the variable rooms.
- 5. For which variables boxplots are suitable? Create and interpret a boxplot for the variable nr. Compute the quartiles for the variable nr.
- 6. Which measures of dispersion are suitable for the variables? Compute the variance for the variable nr. Indicate the unit for the variance and the standard deviation of the variable nr
- 7. Get an overview of the variables with the help of the function "summary".
- 8. Compute the absolute and relative frequencies of the variable rooms. Group the variable nr and compute the relative frequencies for the groups.
- 9. Create a contingency table for the variables agood and rooms.
- 10. Visualize the variable nrsqm, grouped by the number of rooms (rooms). Interpret the graphic.