Обнаружение разладки во временных рядах показов мобильной рекламы

К.В. Мерзляков, группа 622

Санкт-Петербургский Государственный Университет Кафедра статистического моделирования

18.05.2019

Содержание

- Общие замечания
- Построение модели данных
- Методы обнаружения разладки
- Оценка качества
- Моделирование данных
- Применение моделей к смоделированным данным

Общие замечания

Изменения в данных

Изменения на стороне пользователя

- Популярность приложения
- Конкуренция
- Маркетинговая активность приложения
- •

Изменения на стороне рекламной сети

- Релиз новых функций
- Партнерство с новыми рекламодателями
- Новые способы таргетинга
- .

Разладка во временных рядах

- Разладкой во временных рядах называют момент времени, в который произошло существенное изменение в структуре временного ряда
- Методы обнаружения разладки это группа методов, с помощью которых можно находить такие точки разладки
- Разладка может быть двух типов
 - Локальная аномалия или выброс
 - Глобальная изменение структуры ряда

Локальная разладка

Глобальная разладка

Мотивация

Практическая польза:

- Прогнозирование
- Извлечение тренда
- Поиск проблем в исторических данных
- Реакция на изменения своевременно

Извлечение тренда без анализа разладок

Извлечение тренда с анализом разладок

Виды разладок

Изменение в тренде

Изменение в среднем

Изменение в амплитуде колебаний

Локальное изменение

Time

Структура исследования

- Смоделировать данные, близкие к реальным
- Применить к смоделированным данным набор методов
- Оценить и сравнить качество примененных методов

Построение модели данных

Данные мобильной рекламы

Примеры разладки в реальных данных

Изменение в среднем

Построение модели ряда

- Обозначим временной ряд $Y = (y_1, \dots, y_n)$
- Наблюдаемые значения можно представить в виде Y=T+S+E, где $T=(t_1,\ldots,t_n)$ компонента-тренд, $S=(s_1,\ldots,s_n)$ периодическая компонента, $E=(\epsilon_1,\ldots,\epsilon_n)$ остатки или шум
- Для каждой из этих компонент требуется построить модель

Построение модели ряда

Модель можно задать следующим образом:

$$t_i = c, \quad i = 1, \ldots, n,$$

$$s_i = \sum_{j=1}^J A_j \cos\left(\frac{2\pi}{a_j}i + \phi_j\right), \quad i = 1, \dots, n,$$

$$\epsilon_i \sim N(\mu, \sigma^2), \quad i = 1, \dots, n,$$

где i индекс элемента ряда; j индекс косинуса в периодической компоненте; J — количество косинусов в периодической компоненте; c — константа; A_j — амплитуда j-го косинуса; a_j — период j-го косинуса; ϕ_j — фаза j-го косинуса.

Модель разладки. Изменение в среднем

Модель разладки можно задать следующим образом:

- Разладка только в одной точке ряда;
- Разладка только в тренде и заключается в сдвиге;
- ullet Разладка может произойти не всегда, а с некоторой вероятностью ho.

au — точка (индекс) разладки, тогда тренд с разладкой $ilde{T}=(ilde{t_1},\dots, ilde{t_n})$, где

$$\tilde{t_i} = \begin{cases} t_i, & i < \tau, \\ t_i + \delta^{(mean)}, & i \geqslant \tau, \end{cases}$$

 $\delta^{(mean)}$ — значение разладки. Чтобы разладка была заметна, введем ещё минимальное допустимое значение разладки $\delta^{(mean)}_{min}$ Значение разладки является случайной величиной с некоторым распределением. $\delta^{(mean)*} \sim N(\mu^{({\rm cp})},\sigma^{2({\rm cp})}); |\delta^{(mean)*}| \geqslant \delta^{(mean)}_{min}$:

$$\delta^{(mean)} = \begin{cases} \delta^{(mean)*}, & \text{с вероятностью } \rho, \\ 0, & \text{с вероятностью } 1 - \rho. \end{cases}$$

Модель разладки. Локальная

Отличие от предыдущего типа разладки в том, что в локальной разладки разладка влияет только на одну точку ряда.

$$\tilde{t_i} = \begin{cases} t_i, & i < \tau, \\ t_i + \delta^{(local)}, & i = \tau, \end{cases}$$

Остальное остается идентичным предыдущему варианту.

Модель разладки. Изменение в тренде

Модель разладки можно задать следующим образом:

- Разладка только в одной точке ряда;
- Разладка только в тренде и заключается в изменении коэффициента тренда;
- ullet Разладка может произойти не всегда, а с некоторой вероятностью ho.
- au точка (индекс) разладки, тогда тренд с разладкой $ilde{T}=(ilde{t_1},\dots, ilde{t_n})$, где

$$\tilde{t_i} = \begin{cases} t_i, & i < \tau, \\ t_{\tau-1} + \delta^{(trend)}(i - \tau + 1), & i \geqslant \tau, \end{cases}$$

 $\delta^{(trend)}$ — значение разладки. Чтобы разладка была заметна, введем ещё минимальное допустимое значение разладки $\delta^{(trend)}_{min}$ Таким образом, независимо от типа разладки, моделируемый ряд с разладкой будет иметь следующий вид:

$$\tilde{Y} = e^{\tilde{T} + S + E}.$$

Методы обнаружения разладки

Общая канва

- У временного ряда есть некоторая структура (сигнал)
- Сигнал может быть описан моделью
- Идея подхода: около точки разладки модель плохо описывает временной ряд
- Используя меру ошибки мы можем измерять насколько хорошо описывает выбранная модель реальные данные
- Как только ошибка (отклонение модели от реальных данных)
 превышает заданный порог, метод сигнализирует о разладке

Можно выделить два типа методов в данном подходе:

- Методы на основе прогнозирования
- Методы на основе аппроксимации

Пусть l — ширина окна. При этом 1 < l < n, l чётное. С помощью ширины окна из исходного ряда образуется последовательность подрядов $W = \{w_j\}_{j=1}^k$, где k = n - l + 1 — количество таких подрядов; а $w_j = (y_j, \ldots, y_{j+l-1}) - j$ -ый подряд. Каждый подряд w_j в свою очередь делится на два подряда одинаковой длины: $W^{(\mathrm{left})} = \{w_j^{(\mathrm{left})}\} = \{(y_j, \ldots, y_{j+\frac{l}{2}-1})\}$ и $W^{(\mathrm{right})} = \{w_j^{(\mathrm{right})}\} = \{(y_{j+\frac{l}{2}}, \ldots, y_{j+l-1})\}$. Таким образом, для каждого ряда W можно сформировать тройки рядов:

$$W^{(\text{all})} = \{w_j^{(\text{all})}\}_{j=1}^k = \{(w_j; w_j^{(\text{left})}; w_j^{(\text{right})})\}_{j=1}^k.$$

Пусть есть функция ошибки $e(\cdot)$, такая что:

$$e(X) = \min_{\theta} \sum_{p=1}^{m} (x_p - f(x_p|\theta))^2,$$

где $X=(x_1,\dots,x_m)$ — вещественный временной ряд длины m, а $f(x|\theta)$ — модель сигнала этого временного ряда с параметрами θ . Функция $f(x|\theta)$ может быть константной $(\theta=(b))$:

$$f(x|b) = b,$$

либо другой подходящей под наш ряд функцией, например:

$$f(x|P, p, \chi) = P\cos(\frac{2\pi}{p}x + \chi) + b.$$

Мера ошибки позволяет нам рассчитать, насколько хорошо аппроксимируется отрезок ряда с помощью выбранной модели. Однако, для обнаружения самой разладки необходимо еще ввести функцию разладки:

$$f_j = F(w_j^{\text{(all)}}) = \frac{e(w_j) - e(w_j^{\text{(left)}}) - e(w_j^{\text{(right)}})}{h},$$

где h — значение нормировки, $j=1,\ldots,k$.

Значения функции разладки синхронизируются с исходным рядом по последнему индексу окна. То есть f_1 соответствует y_l , а f_k соответсвует y_n . Введем синхронизированную функцию разладки :

$$q_i = \begin{cases} f_{i-l+1}, & i \ge l, \\ 0, & i < l. \end{cases}$$

Нормирующую константу можно рассчитывать как ненормированное значение функции разладки на первом отрезке ряда (предполагая, что на этом отрезке не происходило разладок):

$$h = e(w_1) - e(w_1^{\text{(left)}}) - e(w_1^{\text{(right)}}).$$

- ullet Итого, взяв ряд Y, мы «скользим» по нему окном ширины l
- \bullet Рассчитываем значения функции разладки F() для каждого из получаемых подрядов $W^{(\mathrm{all})}$
- ullet Функция разладки начинает расти в окрестности точки разладки au,
- Следовательно можно задать порог γ , такой что при превышении функции разладки этого порога в какой-то точке $\hat{\tau}$, разладка будет обнаружена

Прогнозирование

- Строим прогноз на несколько точек ряда вперед и считаем отклонение фактических значений от прогнозных
- В случае, если отклонение выше заданного порога, метод обнаруживает разладку
- Формально, оставаясь в тех же обозначениях, есть та же ширина окна l
- ullet Есть последовательность подрядов $W=\{w_j\}_{j=1}^k$
- Каждый подряд w_j делится в этом методе на два ряда не обязательно одинаковой длины
- ullet Введем индекс g, который будет указывать в какой точке ряда w_j он будет разделен на два
- ullet формируется набор из пар рядов: $W^{(\mathrm{left})}=\{w_j^{(\mathrm{left})}\}=(y_j,\dots,y_{j+g})$ и $W^{(\mathrm{right})}=\{w_j^{(\mathrm{right})}\}=(y_{j+g},\dots,y_{j+l})$

Прогнозирование

Ключевое отличие от методов аппроксимации: вместо расчета меры ошибки на том же ряду на котором подбирались параметры модели, мы оцениваем параметры θ модели $f(x|\theta)$ на ряде $w_j^{(\mathrm{left})}$, делаем прогноз на l-g точек и рассчитываем функцию ошибки $e(\cdot)$ на ряде $w_j^{(\mathrm{right})}$. Функция разладки принимает следующий вид:

$$f_j = F(w_j^{\text{(right)}}) = \frac{e(w_j^{\text{(right)}})}{h}.$$

Оценка качества

Допущения

В рамках данной работы мы разрабатываем систему своевременного оповещения о разладках во временных рядах.

- Нам важны две характеристики: точность и скорость обнаружения разладки
- Нам точно известны ряды с разладками и без
- Можем строить матрицы сопряжённости и считать метрики качества
- Для простоты оценки качества методов мы фиксируем точку разладки au параметром n_0 , тем самым фиксируя приемлемую задержку обнаружения разладки на уровне $n-n_0$

Матрица сопряжённости

Таким образом, у нас имеется приемлемая задержка, в рамках которой нас интересует обнаружить разладку. При этом, за пределами приемлемой задержки нас не интересует что происходит с рядом. Исходя из этого возможны четыре варианта:

- Разладка произошла и метод обнаружил точку разладки после фактической точки au. Такая ситуация попадает под категорию True positive.
- Разладка произошла и метод не обнаружил точку разладки в диапазоне (τ, \cdots, n) . Это случай False negative.
- Метод обнаружил разладку в диапазоне (τ, \cdots, n) в ряде без разладки. Это ситуация False positive.
- Разладки не было и метод не обнаружил разладку в диапазоне (τ, \cdots, n) . Это случай True negative.

ROC-кривая

- Можно строить ROC-кривые (изменяя порог γ) для разных методов обнаружения разладки, сравнивая как работают те или иные методы в контролируемой среде эксперимента.
- ROC-кривая график, позволяющий оценить качество бинарной классификации. Он отображает соотношение между долей верно-положительно классифицированных наблюдений от общего количества положительных классов, и долей ложно-отрицательно классифицированных наблюдений от общего количества отрицательных наблюдений при варьировании порога γ .
- Другими словами, ROC кривая это график, где по оси ординат откладывается TPR (англ. True Positive Rate), а по оси абсцисс откладывается FPR (англ. False Positive Rate). При этом каждая точка является значением TPR и FPR для какого-то конкретного значения порога.
- $TPR = \frac{\sum \mathsf{Верно-положительные}}{\sum \mathsf{Все}}$ положительные наблюдения $FPR = \frac{\sum \mathsf{Ложно-отрицательные}}{\sum \mathsf{Все}}$ отрицательные наблюдения
- Для сравнения качества методов мы будем пользоваться метрикой ROC-AUC, которая является площадью под ROC-кривой.

Моделирование данных

Реальные данные

Моделировать ряд будем как сумму тренда, периодики и шума. Тренд будем брать за константу, а периодику зададим как сумму косинусов с определенными периодичностями, амплитудами и фазами.

Пример реального ряда

Реальные данные

Длина ряда с предыдущего слайда 216 (то есть 9 суток). Применим к этому ряду метод SSA с окном 96. И оценим параметры периодичности по первым 10 компонентам (исключая тренд) используя .

Периоды	Фазы	Амплитуды	Коэффициенты
23.93	2.005	1.001	1 002 339
11.99	-2.749	1.002	302 234
7.99	-1.031	1.002	73 878
5.99	0.750	1.002	5 238

Получается 4 косинуса с периодами 24, 12, 8, 6 (это логично, так как у в ряде наблюдается суточная периодичность). Однако, если взять оцененные параметры фаз и амплитуд, то получится следующий график:

Оценка парамтеров

К сожалению, график на предыдущем слайде не совсем похож на график исходных данных. Дело в коэффициентах амплитуды и в фазах.

Попробуем подобрать эти значения вручную.

В результате получились следующие параметры ряда:

- Ряд можно смоделировать четырьмя косинусами J=4 с периодами $a_1=24, a_2=12, a_3=8, a_4=6.$
- Адекватные параметры амплитуд получились $A_1=1.05,\,A_2=0.82,\,A_3=0.27,\,A_4=0.05$
- ullet А фазы косинусов возьмем $\phi_1=rac{3\pi}{4}$, $\phi_2=rac{\pi}{12}$, $\phi_3=-rac{2\pi}{3}$, $\phi_4=-rac{\pi}{3}$

Таким образом, модель периодической составляющей s_i нашего ряда можно записать в следующем виде:

$$s_i = 1.05 \cos(\frac{2\pi}{24}i + \frac{3\pi}{4}) + 0.82 \cos(\frac{2\pi}{12}i + \frac{\pi}{12}) + 0.27 \cos(\frac{2\pi}{8}i - \frac{2\pi}{3}) + 0.05 \cos(\frac{2\pi}{6}i - \frac{\pi}{3}),$$

 $i = 1, \dots, n.$

Прочие параметры модели

- ullet Длину ряда зафиксируем n=400
- ullet Значение тренда пока что выберем нулевым: c=0, то есть $t_i=0, i=1,\cdots,n$
- Параметры шума возьмем $\mu = 0, \sigma = 0.1$

В результате, моделируемые ряды получились внешне достаточно похожими на реальные данные:

Моделирование разладки

- ullet Вероятность возникновения разладки выберем ho=0.8
- Величины разладки $\delta^{(mean)*}\sim N(\mu=0,\sigma=0.2),$ $\delta^{(local)*}\sim N(\mu=0,\sigma=1),$ $\delta^{(trend)*}\sim N(\mu=0,\sigma=0.01)$
- Минимальные допустимые значения разладок: $\delta_{min}^{(mean)*}=0.3$, $\delta_{min}^{(local)*}=0.5$, $\delta_{min}^{(trend)*}=0.005$
- Место возникновения разладки зададим в самом конце ряда $n_0=396$ для изменения в среднем и локальной разладки
- Для изменения в тренде место возникновения разладки зададим с большей задержкой $n_0=328$

Пример сгенерированного ряда с разладкой

Применение методов

Моделирование рядов

Попробуем применить, описанные выше модели κ смоделированным данным.

- Смоделируем 50 рядов
- У каждого ряда начало периодической компоненты выбирается случайно (то есть первый ряд может начинаться с нулевого часа, второй с пятого и т.п.). Это сделано, чтобы невелировать влияние периодичности на оценку качества метода.
- Параметры методов выбраны следующие. Длина окна l принимает значения 2, 4, 24, 48, 96. Разладка возникает трех типов: локальная, разладка в среднем, разладка в тренде
- Список значений порогов выбирается следующим образом. Моделируются 50 отдельных рядов (с разладкой и без) и на них запускается расчет значений функции разладки при заданном методе и заданных параметрах. Далее берется 95 квантиль из полученных значений. После чего берётся 100 значений в диапазоне от нуля до 95 квантили с равными промежутками.

Методы

И для подхода с аппроксимацией и для подхода с прогнозированием мы будем использовать следующие модели:

- Среднее f(x|b) = b
- Четыре косинуса с периодами из модели генерации ряда + тренд $f(x|P_i,p_i,\chi_i,b)=\sum_{i=1}^4 P_i\cos(\frac{2\pi}{p_i}x+\chi_i)+bx$, где $p_1=24,p_2=12,p_3=8,p_4=6$
- Один косинус с периодом 24 + тренд $f(x|P,24,\chi,b) = P\cos(\frac{2\pi}{24}x+\chi) + bx$
- Только тренд f(x|b) = bx

Обратите внимание

Следует отличать модель ряда, с помощью которого генерировался искусственный ряд и модель, используемая внутри метода обнаружения разладки.

Методы

Всего будем сравнивать между собой 8 методов:

- Аппроксимация с выбранной моделью средним
- Аппроксимация с моделью из четырёх синусов с периодичностью 24, 12, 8, 6 и трендовой составляющей
- Аппроксимация с моделью из одного синуса с периодичностью 24 и тренда
- Аппроксимация с моделью только из тренда
- Прогнозирование с выбранной моделью средним
- Прогнозирование с моделью из четырёх синусов с периодичностью 24, 12, 8, 6 и трендовой составляющей
- Прогнозирование с моделью из одного синуса с периодичностью 24 и тренда
- Прогнозирование с моделью только из тренда

Замечания

Поскольку у нас есть 8 методов с одной стороны, и решетка параметров из 5 вариантов (длина окна l) с другой, то мы будем оценивать качество всех методов для комбинаций методов и параметров.

Однако не во всех случаях корректно применять методы, поэтому проговорим исключения, когда мы не будем считать качество:

- Методы, в которых лежит модель, отличная от среднего, бессмысленно применять для окон l менее 48. Поскольку невозможно оценить какие либо параметры синуса, если длина ряда менее одного периода.
- В случае с разладкой в тренде бессмысленно применять методы с окном l менее 48 по тем же причинам

Результаты

В таблице приведены сводные результаты ROC-AUC для экспериментов на 50 временных рядах.

Результаты применения методов к смоделированным данным

Тип разладки		local			mea					in trend			
Окно		4	24	48	96	2	4	24	48	96	48	96	
Точка разладки		396	396	396	396	396	396	396	396	396	328	328	
Метод													
approximation_mean		0,65	0,49	0,65	0,67	0,52	0,70	0,53	0,86	0,69	1,00	1,00	
approximation_sin_insight_trend				0,87	0,76				0,85	0,71	0,61	0,96	
approximation_sin_trend				0,53	0,53				0,52	0,55	0,58	0,83	
approximation_trend				0,63	0,71				0,50	0,50	0,48	0,66	
prediction_mean	0,70	0,66	0,57	0,62	0,48	0,54	0,57	0,54	0,54	0,62	0,95	0,96	
prediction_sin_insight_trend				0,79	0,90				0,65	0,75	0,58	0,99	
prediction_sin_trend				0,50	0,53				0,48	0,48	0,58	0,85	
prediction trend				0,51	0,54				0,62	0,49	0,64	0,91	

Выводы

- Как мы видим, лучше всего сработал метод аппроксимации с моделью "Среднее". Причем для разных типов разладки. Однако для каждого типа разладки у этого метода своя оптимальная длина окна
- Также, хорошо сработал метод аппроксимации с моделью из четырех синусов
- Методы прогнозирования с моделями "Среднее"и "4 синуса + тренд"сработали хорошо, но немного хуже чем методы аппроксимации
- Примечательно, что все методы хорошо определяют разладку в тренде, если выбрать окно l=96. Вероятно имеет смысл понизить величину разладки при генерации ряда.
- Плохо сработали методы с моделью "Синус + тренд"и с моделью "Тренд"(и аппроксимация и прогнозирование).