WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 94/26702

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		(11) International Publication Number:	
C07C 307/02, 311/51, A61K 31/18, 31/325	A1	(43) International Publication Date:	2

ication Date: 24 November 1994 (24.11.94)

(21) International Application Number:

PCT/US94/05233

(22) International Filing Date:

11 May 1994 (11.05.94)

(81) Designated States: AU, CA, CZ, FI, HU, JP, KR, NO, NZ, RU, SK, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

08/062,515 08/223,932

14 May 1993 (14.05.93) 13 April 1994 (13.04.94) US US Published

With international search report.

(71) Applicant: WARNER-LAMBERT COMPANY [US/US]; 2800 Plymouth Road, Ann Arbor, MI 48105 (US).

(72) Inventors: LEE, Helen, Tsenwhei; 3625 Fox Hunt, Ann Arbor, MI 48105 (US). PICARD, Joseph, Armand; 5764 Princeton Place, Ypsilanti, MI 48197 (US). SLISKOVIC, Drago, Robert; 4860 Cole Boulevard, Ypsilanti, MI 48197 (US). WIERENGA, Wendell; 1968 Woodlily Court, Ann Arbor, MI 48103 (US).

(74) Agents: ANDERSON, Elizabeth, M.; Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, MI 48105 (US) et

(54) Title: N-ACYL SULFAMIC ACID ESTERS (OR THIOESTERS), N-ACYL SULFONAMIDES, AND N-SULFONYL CARBAMIC ACID ESTERS (OR THIOESTERS) AS HYPERCHOLESTEROLEMIC AGENTS

(57) Abstract

The present invention is directed to compounds useful for the regulation of cholesterol of formula (I), methods for using them and pharmaceutical compositions thereof. In Formula (I) X and Y are oxgen, sulfur, or (CR'R"), wherein n is 1 to 4; R is hydrogen, alkyl, or benzyl; R1 and R2 are phenyl, substituted phenyl, naphthyl, substituted naphthyl, an aralkyl group, an alkyl chain, adamantyl, or a cycloalkyl group.

$$\begin{array}{cccc}
 & O & O \\
 & \parallel & \parallel \\
 & R_1 - X - S - N - C - Y - R_2 & (I) \\
 & \parallel & \parallel & \\
 & O & R
\end{array}$$

2,6-diisopropylphenylacetyl chloride was replaced with adamantaneacetyl chloride;

¹H NMR(CDCl₃): 1.21 (d, 12H), 1.6-2.0 (m, 15H), 2.15 (s, 2H), 3.4 (m, 2H), 7.15-7.25 (m, 3H) ppm.

5

25

30

35

EXAMPLE 5

Synthesis of Sulfamic acid[[2.4.6-tris(1-methylethyl)-phenyllacetyll-2.6-bis(1-methylethyl)phenyl ester

(a) 2.4.6-Triisopropylbenzyl alcohol

A solution of commercially available 2,4,6-triisopropylbenzoyl chloride (35 g, 131.2 mmol) in 400 mL
ether was added slowly to a suspension of lithium
aluminum hydride (LAH) (4.89 g, 131.2 mmol) in ether
(300 mL) at -15°C. The mixture was slowly warmed to
room temperature over 18 hours. Saturated Na₂SO₄
solution was added slowly and the ether layer was
separated, dried over MgSO₄, and evaporated to dryness.
The compound was used in the next step without further
purification;

20 NMR (CDCl₃): δ 1.2-1.4 (m, 18H), 2.8-3.0 (m, 1H), 3.3-3.5 (m, 2H), 4.8 (s, 2H), 7.1 (s, 2H) ppm.

(b) 2.4.6-Triisopropylbenzyl bromide

A solution of PBr₃ (2.7 g, 10 mmol) in ether (10 mL) was added slowly to a solution of 2,4,6-triiso-propylbenzyl alcohol (4.68 g, 20 mmol) in 20 mL of ether at room temperature. The mixture was stirred for 1 hour, 5 mL of absolute EtOH was added, and stirring was continued for another 0.5 hour. The solvent was removed and the residue distributed between EtOAc and saturated Na₂CO₃. The EtOAc layer was separated, washed with brine, and dried over MgSO₄. The solvent was evaporated and the pure product was isolated by column chromatography (100% CH₂Cl₂, 3.5 g, 59%); NMR (CDCl₃): δ 1.2-1.4 (m, 18H), 2.8-3.0 (m, 1H), 3.2-3.45 (m, 2H), 4.7 (s, 2H), 7.04 (s, 2H) ppm.

5

10

15

25

30

35

-26-

(c) <u>Sulfamic acid[2.4.6-tris(1-methylethyl)phenyl]-</u> acetyl]2.6-bis(1-methylethyl)phenyl ester

A solution of 2,4,6-triisopropylbenzyl bromide (12 g, 40.4 mmol) in dry THF (160 mL) was added to a suspension of Mg powder (1.96 g, 80.8 mmol) (4 hours) in THF (20 mL) heated under reflux. 2,6-Diisopropyl-phenoxysulfonyl isocyanate (ROSO₂NCO) (see <u>Phos. and Sulf., 19</u>:167 (1984) for preparation) (11.45 g, 40.4 mmol) was added neat, and after the addition was completed, the reflux was continued for another 2 hours. The reaction was stirred at room temperature for 16 hours. Saturated NH₄Cl and EtOAc were added. The EtOAc layer was separated, dried over MgSO₄, filtered, and evaporated to dryness. After purification by column chromatography (4:1 hexane:EtOAc), the compound was isolated as white solid (13.5 g, 67%), mp 178-180°C.

EXAMPLE 6

20 Synthesis of sulfamic acid[[2.4.6-tris(1-methylethyl)phenyl]acetyl]-2.6-bis(1-methylethyl)phenyl_ester
sodium_salt

This compound was prepared in the same manner as for the title compound of Example 2, except that the title compound of Example 1 was replaced with the title compound of Example 5, mp 250-252°C.

EXAMPLE 7

Synthesis of sulfamic acid(phenylacetyl)-2.6-bis-(1-methylethyl)phenyl ester

This compound was prepared in the same manner as the title compound of Example 5, except that 2,4,6-triisopropylbenzyl magnesium bromide was replaced with benzylmagnesium chloride (commercially available), mp 150-152°C.