Haus de Ox-modulos: (Sheaves)

Def: Sea X una variedad algebraica. Un sheaf de Ox-modulos Es una asignación:

(a) $F(U) - O_X(U)$ modulo pua cada abiento $U \subseteq X$

(6) Paa cada melusión WEU

Sw $F(u) \longrightarrow F(w)$ on homomorphono de O_x -modulos Sw(fS) = Sw(f)Sw(S) $Fe O_x(u)$ Restrictions de O_x

Que satisfaces el axioma de haces (sheaf axiom)

He satisfaces el axioma de haces (sheaf axiom)

Up (Sp)

He satisfaces el axioma de haces (sheaf axiom)

Up (Sp)

Sunnup

Def: Si F y G son sheares de O_X -modulos un morpono G: F $\longrightarrow G$ es una colección de mapas $\varphi(U)$: F(U) $\longrightarrow G(U)$ compatibles con las resticciones

$$F(u)$$
 $\frac{\varphi(u)}{\varphi(w)}$, $\varphi(w)$
 $f(w)$ $\frac{\varphi(w)}{\varphi(w)}$

Obs: Si UCX es abieto y F es shent en X

podemos depuir F, & "Fy G son localnete somortos"

Ejemplo 1: Si TIV -> X es un haz mechal /X olipnimos $F(U) = \{s: U \xrightarrow{s} V : \pi os = id\}$ si WEU hoy ma restriction $sw : F(u) \longrightarrow F(w)$ Ejercicio Demusta que F es un sheaf de Ox-modulos localnesta isomorfo a Ox Ejemploz: Si DCX es un drisorde Weil y X normal $O_X[D](N) = \{ f \in C(X) : f=0 \text{ of } f \neq 0 \text{ y} \}$ Ejercero @ Demustre que si D es de Catres
entorias Ox [D] es localmete pompo a Ox (b) Demeste que si D es primo entrices $Q_{\chi}[-D](u) = \{ f \in Q_{\chi}(u) : f_{D} = 0 \}$

Teorema: Sea $T \in \Delta$ un cono puntodo. Entraces

(1) Todo divisor de Contrer T-inminte

en Ut es div (χ^m) , $m \in M$.

2 Pic (Ur) = 0.

Lema: Si Des un divisor efectivo T-ministre en No entorces

Q[-D](Ur) e C[rvnM] ev un Ideal T-minto I Dem: (Suponiendo que T es full-dinensional) Sea D un dousar ejectro, T-estable y de Cantre y sea el punho distinguido (el punto fijo, que es comor a todos los dousses) Pella I Wabierto con pe W tal Como Des de Cates $f \in C(X)^*$ que DIW = dv(f)IW f es regular en el abiento W $W = N^3 P$ $Spec(R_N)$ $Spec(R_N)$ Como D es ejectivo Cómo g es regula, globalmente tenemos $dv(g) = D + E \ge 0$ $\Rightarrow g \in \mathcal{O}_{\chi}[-D](\times) = I$ así que existi complejos ai y coactes χ^{mi} : $div(\chi^{mi}) + D \ge 0$ $g = q_1 \chi^{mi} + q_s \chi^{ms}$.

De lo antion div $\left(\frac{x^{mi}}{g}\right) \ge 0$ en $\Lambda \left[\frac{dv(x^{mi})}{\Lambda} + D_{\Lambda} \ge q_{\Lambda}\right]$ © así que $\frac{\chi^{mi}}{g}$ son regulus en p. mais ava de la igualdad $1 = \sum_{i=1}^{m} \frac{\chi^{mi}}{g}$ evaluada en p. $\frac{\chi^{mi}}{g}$ (p) $\neq 0$ loego hay un abreto Γ en el que $div\left(\frac{x}{g}\right) = 0$, $dv(x^{mi})| = dv(g)| = D|_{\Gamma}$ Peo como per esto asegua la igualdad $div(x^{mi}) = D$

pres ambos dusses tren and soprite en ODS. y las multiplicadades de esos dusses se preder ver en Up.