DM 9

Traiter au minimun les parties I,II,III. Le sujet est de difficulté progressive.

Soit
$$A \in M_n(\mathbb{C})$$
 $(n > 1)$.

L'objectif du problème est d'étudier l'ensemble noté \sqrt{A} des matrices B telles que $B^2=A$

I: Un exemple

Dans cette partie,
$$A$$
 est la matrice $\begin{pmatrix} 8 & 4 & 4 \\ 4 & 8 & 4 \\ 4 & 4 & 8 \end{pmatrix}$

- 1. Démontrer que A est une matrice diagonalisable. Déterminer une matrice D diagonale et une matrice P inversible telles que $P^{-1}AP = D$.
- 2. En déduire 4 matrices B telles que $B^2 = A$.
- 3. (a) Exprimer A^2 en fonction de A et I.
 - (b) Soit a, b deux nombres complexes. On pose B = aI + bA. Déterminer les conditions sur a, b pour que $B^2 = A$.
 - (c) Trouver 4 matrices B telles que $B^2 = A$. Les comparer à celles trouvées précédemment.

II Le cas des matrices diagonalisable.

Dans cette partie $A \in M_n(\mathbb{C})$ est diagonalisable.

1. Montrer que \sqrt{A} n'est pas l'ensemble vide.

On se propose dans les questions qui suivent d'étudier le nombre d'éléments de \sqrt{A} .

- 2. Soit $\lambda \in \mathbb{C}$. Justifier qu'il existe une infinité de matrices $B \in M_n(\mathbb{C})$ telles que $B^2 = \lambda I_n$.
- 3. On suppose que A possède une valeur propre multiple. Montrer en utilisant la question précédente que \sqrt{A} est infini. (on pourra commence par le cas ou A est diagonale).

Dans la suite, on note $\lambda_1,...,\lambda_p$ les valeurs propres distinctes de A et $E_1,...E_p$ les espaces propres . Soit Q_i le projecteur sur E_i parallèlement à la somme des autres espaces propres.

- 4. (a) Vérifier que $A = \sum_{i=1}^{p} \lambda_i Q_i$ et calculer les produits $Q_i Q_j$.
 - (b) En déduire que pour tout polynôme P la matrice P(A) est une combinaison linéaire de Q_1,\ldots,Q_p
 - (c) Déterminer le polynôme minimal de A et en déduire la dimension de l'algèbre $\mathbb{C}[A]$ des polynômes en A.
 - (d) Conclure quque $\mathbb{C}[A]$ est égal à vect $< Q_1,...,Q_p>$.
 - (e) Soit $B = \sum_{1}^{p} b_i Q_i$ un élément de $\mathbb{C}[A]$. Trouver la condition nécessaire et suffisante pour que $B \in \sqrt{A}$.
 - (f) Montrer que $\mathbb{C}[A] \cap \sqrt{A}$ est fini, et préciser son cardinal en fonction de p et selon que A est inversible ou non.

- 5. Dans cette question, on suppose que les valeurs propres de A sont simples.
 - (a) Montrer que $\mathbb{C}[A]$ est de dimension n
 - (b) i. Montrer que MA = AM si et seulement si les espaces propres de A sont stables par M.
 - ii. En déduire que toute matrice qui commute avec A est un un élément de $\mathbb{C}[A]$
 - (c) Conclure que \sqrt{A} est un ensemble fini.
- 6. Exemples : Dénombrer les racines carrées de la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$. (il n'est pas demandé de déterminer ces matrices)

III Le cas où A n'a qu'une valeur propre.

1. Soit A une matrice nilpotente. On suppose que son indice de nilpotence k vérifie $k > \frac{n+1}{2}$. Soit B telle que $B^2 = A$. Calculer successivement B^{2k} , B^n , puis A^{k-1} .

A quoi est égal \sqrt{A} ?

- 2. Soit A une matrice n'ayant qu'une valeur propre $a \neq 0$.
 - (a) Montrer que la matrice $N = A aI_n$ est nilpotente.
 - (b) Justifier l'existence d'un polynôme P tel que X^n divise $P^2 + a X$
 - (c) En utilisant P, construire une matrice B telle que $B^2 = A$.

IV Le cas général

Dans cette partie, on identifie les matrices aux endomorphismes de \mathbb{C}^n qu'elles représentent canoniquement. B désigne un élément de \sqrt{A} .

On note $(\lambda_1,..,\lambda_p)$ les valeurs propres distinctes de A de multiplicités respectives $(m_1,..,m_p)$. On note $E_k = \ker((A - \lambda_k I)^{m_k})$.

- 1. Montrer que la somme directe des E_k est égale à \mathbb{C}^n . Quelle est la dimension de E_k ?
- 2. Montrer que E_k est stable par A et B. On note A_k et B_k les endomorphismes induits. Montrer que $B_k \in \sqrt{A_k}$.
- 3. Réciproquement, si on se donne une famille d'endomorphismes $B_k, k=1..p$ tels que $B_k \in \sqrt{A_k}$ pour tout k, construire un élément B de \sqrt{A} .
- 4. Déterminer le spectre de A_k .
- 5. Des questions précédentes , déduire que si A est inversible, alors \sqrt{A} est non vide.

V. Le cas réel

Dans cette partie $\mathbb{K} = \mathbb{R}$. On appelle toujours \sqrt{A} l'ensemble des matrices B réelles dont le carré vaut A (les questions de cette partie sont volontairement non détaillées, et donc plus difficiles)

- 1. Montrer que si \sqrt{A} est non vide, alors les valeurs propres réelles négatives de A sont toutes de multiplicité paire.
- 2. Montrer que si A est diagonalisable dans $M_n(\mathbb{C})$ alors la condition précédente est suffisante.
- 3. Déterminer toutes les racines carrées réelles de la matrice $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$