Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Προγραμματισμός Ηλεκτρονικών Υπολογιστών, 1° εξάμηνο https://helios.ntua.gr/course/view.php?id=827 Ε. Ζάχος, Γ. Γκούμας, Δ. Τσουμάκος, Δ. Φυτάκης, Μ. Κόνιαρης, Π. Ποτίκας, Δ. Σούλιου

4η Σειρά Ασκήσεων

Άσκηση 4.

Γράψτε ένα πρόγραμμα το οποίο θα βρίσκει και θα εμφανίζει στην οθόνη όλους τους τετραψήφιους ακεραίους που είναι ίσοι με το άθροισμα των ψηφίων τους, υψωμένων στην τέταρτη δύναμη. Π.χ. $1634 = 1^4 + 6^4 + 3^4 + 4^4$.

Προσογή: Να γρησιμοποιήσετε αποδοτικό αλγόριθμο που θα περιλαμβάνει τη γρήση πίνακα.

Να επιδειχθεί στον υπεύθυνο του εργαστηρίου μέχρι την Παρασκευή 11/11/2022

Άσκηση 5.

Κάνετε τις κατάλληλες τροποποιήσεις στη λύση σας για την άσκηση 4 ώστε οι ζητούμενοι αριθμοί να έχουν μέχρι οκτώ ψηφία και η δύναμη στην οποία υψώνονται τα ψηφία πριν αθροιστούν να δίνεται από την είσοδο του προγράμματος. Το πρόγραμμά σας δηλαδή πρέπει να:

- Διαβάζει από την πρώτη γραμμή της εισόδου τη δύναμη Ν.
- Τυπώνει σε αύξουσα σειρά και σε ξεχωριστές γραμμές τους αριθμούς που έχουν το πολύ οκτώ ψηφία και που ισούνται με το άθροισμα των ψηφίων τους, υψωμένων στη Ν-οστή δύναμη.

Προσοχή: Το πρόγραμμά σας πρέπει να εκτελείται σε λιγότερο από 2 sec. Αν δε χρησιμοποιήσετε αποδοτικό αλγόριθμο, είναι πιθανόν αυτό να μη συμβαίνει. Προσέξτε επίσης το ενδεχόμενο υπερχείλισης!

Παράδειγμα εισόδου:

3

Παράδειγμα εξόδου:

0

153

370

371

407

Προετοιμάστε το πρόγραμμά σας στο σπίτι. Στην ώρα του εργαστηρίου, πληκτρολογήστε το και υποβάλετέ το στο grader.softlab.ntua.gr.

Να υποβληθεί στο αυτόματο σύστημα υποβολής και ελέγγου μέγρι την Παρασκευή 11/11/2022

Άσκηση 6.

Γράψτε ένα πρόγραμμα το οποίο θα ελέγχει αν συμβολοακολουθίες (το πολύ 20 χαρακτήρων) που εισάγονται από το πληκτρολόγιο είναι παλινδρομικές. Μια συμβολοακολουθία είναι παλινδρομική αν διαβάζεται το ίδιο από αριστερά προς τα δεξιά και από δεξιά προς τα αριστερά. Παραδείγματα παλινδρομικών συμβολοακολουθιών: α, ΑΝΝΑ, ΜΕΝΕΜ, ΣΕΛΕΣ, 123321, \$ασκσα\$.

Συγκεκριμένα, το πρόγραμμά σας πρέπει να:

- Διαβάζει από την πρώτη γραμμή της εισόδου το πλήθος N των συμβολοακολουθιών που θα εισαχθούν.
- Διαβάζει από τις επόμενες N γραμμές της εισόδου τις συμβολοακολουθίες. Κάθε συμβολοακολουθία τερματίζεται όταν συναντήσουμε τέλος γραμμής (το χαρακτήρα '\n').

• Τυπώνει για κάθε συμβολοακολουθία που εισάγεται τη λέξη "yes", αν είναι παλινδρομική, ή τη λέξη "no", αν δεν είναι. Αν η συμβολοακολουθία που εισάγεται είναι κενή, το πρόγραμμά σας πρέπει να τυπώνει τη λέξη "empty", ενώ αν έχει περισσότερα από 20 σύμβολα πρέπει να τυπώνει τη λέξη "error".

Τέλος, πρέπει να τυπώνει σε μία γραμμή το ποσοστό (επί τοις εκατό, με τρία δεκαδικά ψηφία) των παλινδρομικών συμβολοακολουθιών επί του συνόλου των συμβολοακολουθιών που εισήχθησαν. Για το σκοπό αυτό μπορείτε να χρησιμοποιήσετε το FORM (percentage, 0, 3) του PZhelp.

Παράδειγμα εισόδου:

```
madam
this
                                       εδώ υπάργει μία κενή γραμμή!
-0123+ab##ba+3210-
abcdefghijklmnopqrstuvwxyz
Παράδειγμα εξόδου:
                                      — η συμβολοακολουθία madam είναι παλινδρομική
yes
                                      — η συμβολοακολουθία this δεν είναι παλινδρομική
no

    κενή συμβολοακολουθία

empty

    άλλη μία παλινδρομική

yes
                                      περισσότερα από 20 σύμβολα
error
```

Προετοιμάστε το πρόγραμμά σας στο σπίτι. Στην ώρα του εργαστηρίου, πληκτρολογήστε το και υποβάλετέ το στο grader.softlab.ntua.gr.

δύο από τις πέντε (ποσοστό 40%) ήταν παλινδρομικές

Να υποβληθεί στο αυτόματο σύστημα υποβολής και ελέγχου μέχρι την Παρασκευή 11/11/2022

Άσκηση 7.

40.000

Για να εξοικειωθείτε με τους πίνακες γράψτε μία συνάρτηση min που να δέχεται ως παράμετρο ένα μονοδιάστατο πίνακα και να επιστρέφει τον ελάχιστο αριθμό που περιέχεται στον πίνακα. Για τον τύπο της παραμέτρου μπορείτε να χρησιμοποιήσετε τον παρακάτω ορισμό συνωνύμου:

```
typedef int list[20];
```

με τον οποίο ορίζεται ως list ο τύπος του πίνακα 20 ακεραίων στοιχείων. Η επικεφαλίδα της συνάρτησης πρέπει να είναι:

```
FUNC int minimum(list a);
```

Ομοίως, γράψτε μια συνάρτηση maximum που να υπολογίζει τον μέγιστο αριθμό ενός.

Να επιδειχθεί στον υπεύθυνο του εργαστηρίου μέχρι την Παρασκευή 25/11/2022

Άσκηση 8.

Γράψτε ένα πρόγραμμα το οποίο να:

- Διαβάζει από την πρώτη γραμμή της εισόδου δύο ακέραιους αριθμούς N και M (μεταξύ 1 και 100).
- Διαβάζει έναν πίνακα ακεραίων N×M από τις επόμενες N γραμμές της εισόδου, κάθε μία από τις οποίες περιέχει M ακέραιους αριθμούς.
- Βρίσκει το μεγαλύτερο αριθμό κάθε στήλης και από αυτούς τυπώνει το μικρότερο.
- Βρίσκει το μικρότερο αριθμό κάθε γραμμής και από αυτούς τυπώνει το μεγαλύτερο.

Προσοχή: Μη γράφετε πολλές φορές τμήματα κώδικα που εκτελούν την ίδια εργασία! Σε όσα σημεία χρειάζεται υπολογισμός μεγίστου ή ελαχίστου, μπορείτε να χρησιμοποιήσετε παραλλαγές των δύο συναρτήσεων που γράψατε για την άσκηση 7.

Παράδειγμα εισόδου:

```
3 4
12 56 7 3
9 27 63 1
88 6 0 4
```

Παράδειγμα εξόδου:

```
    — οι μεγαλύτεροι κάθε στήλης είναι 88, 56, 63, 4
    — οι μικρότεροι κάθε γραμμής είναι 3, 1, 0
```

Προετοιμάστε το πρόγραμμά σας στο σπίτι. Στην ώρα του εργαστηρίου, πληκτρολογήστε το και υποβάλετέ το στο grader.softlab.ntua.gr.

Να υποβληθεί στο αυτόματο σύστημα υποβολής και ελέγχου μέχρι την Παρασκευή 25/11/2022

Άσκηση 9.

Παρομοίως με την άσκηση 8, γράψτε ένα πρόγραμμα το οποίο να:

- Διαβάζει από την πρώτη γραμμή της εισόδου δύο ακέραιους αριθμούς N και M (μεταξύ 1 και 100).
- Διαβάζει έναν πίνακα πραγματικών αριθμών N×M από τις επόμενες N γραμμές της εισόδου, κάθε μία από τις οποίες περιέχει M πραγματικούς αριθμούς.
- Βρίσκει και τυπώνει (με τρία δεκαδικά ψηφία) το μέσο όρο των μέσων όρων κάθε γραμμής.
- Βρίσκει και τυπώνει (με τρία δεκαδικά ψηφία) το μέσο όρο των μέσων όρων κάθε στήλης.

Παράδειγμα εισόδου:

```
3 4
12 56 7.5 3
9.3 27 63 1
88 6 0.5 4
```

Παράδειγμα εξόδου:

```
23.108 — οι μέσοι όροι των γραμμών είναι 19.625, 25.075, 24.625 
— οι μέσοι όροι των στηλών είναι 36.433, 29.667, 23.667
```

Quiz: Οι δύο αριθμοί που υπολογίστηκαν στο παραπάνω παράδειγμα είναι ίσοι. Είναι αυτό σύμπτωση; Προετοιμάστε το πρόγραμμά σας στο σπίτι. Στην ώρα του εργαστηρίου, πληκτρολογήστε το και υποβάλετέ το στο grader.softlab.ntua.gr.

Να υποβληθεί στο αυτόματο σύστημα υποβολής και ελέγχου μέχρι την Παρασκευή 25/11/2022