Vectors and Tensors
· We will use a new notation for vectors, which
is very common,
$V = V \stackrel{?}{e} + V^{2} \stackrel{?}{e} + V^{3} \stackrel{?}{e} = \stackrel{?}{\sum} V \stackrel{?}{e}.$
·
Where $(V^{\times}, V^{y}, V^{z}) = (V^{1}, V^{2}, V^{3})$ and $(\hat{c}, \hat{j}, \hat{k}) = (\hat{e}, \vec{e}, \vec{e}, \vec{e}_{3})$
Then we use a summation convention, where
repeated indices are summed from 1 to 3.
$\vec{V} = \vec{V} \cdot \vec{e}$ (same as $\vec{V} = \vec{\Sigma} \cdot \vec{v} \cdot \vec{e}$)
· Vectors are physical objects:
If the coordinates are rotated v remains unchanged.
But the components vi are changed (see figure which
Shows how VY is changed), and the basis vectors e;
Te also changed (rotated)
(Fig A) / Vi = Ri Vi _ Original
Vector Vector
Totated rotation Components
10/14 e, vector matrix
Components
We use the summation convention
here.

· Contravariant / Covariant indices
For every set of inpstairs indices (contravariant)
For every set of upstairs indices (contravariant) (V*, Vy Vz) define the lowered (covariant) components
(vx, vg, vz) which transform as a row according
to the inverse matrix
$V_{i} = V_{i}(R^{-1})'_{i}$
$\left(\underline{V}, \ldots\right) = \left(V, \ldots\right) \left(R^{-1}\right)$
Now since R = RT (since rotations preserve length
Now since $R^{-1} = R^{T}$ (since rotations preserve length i.e. $\underline{x}^{T}\underline{x} = \underline{x}^{T}\underline{x}$) we see that
$V' = V'(R^T)^i = V'(R)^{-1}$
0
i.e
$V_{i} = (R)_{i}$ V_{i}
But this is the same transformation rule as for
upstairs indices. So up and down are the same
for rotations.
V = Vx or V = 8-7 V1 = 818 V
C
So indices are raised and lowered with 8" + 817

ı

Covoriant Contravariant pg. 2 Similary define contravariant basis vectors ë' = 8'9 ë, Which transform as a column vector ë = R' e s So that the vector is rotationally invariant V = V; e = v e;

Cross Products pg. 2
$\begin{vmatrix} \dot{a} \times \dot{b} & = \begin{vmatrix} \dot{e} & \dot{e} & \dot{e} \\ \dot{a} & \dot{a}^2 & \dot{a}^3 \end{vmatrix} = e_i \underbrace{\epsilon'' \dot{a}_i \dot{a}_i \dot{b}_k}_{a' \dot{a}^2 \dot{a}^3}$
So
$(\vec{a} \times \vec{b})^i = \epsilon^{ijk} a \cdot b_k = i + h component \text{of } a \times b$
The
(ax(bxc)) = Eigk a; Eklmbrem
= E'ýk Eklm a, b c
Think about it: for example consider Eigs.
then for $E^{i\dot{3}\dot{3}}$ is non-zero for $(i,\dot{j}) = (1,z)$ and $(i,\dot{j}) = (2,1)$
$E^{123} = -E^{213} = 1$
So thinking along these lines we conclude
Eigk Eklm = [Eigk Elmk = Sil Sim Sil]
So
$(\alpha \times (b \times c))^{i} = (\delta^{il} \delta^{jm} - \delta^{im} \delta^{jl}) \alpha_{j} b c_{m}$
= b'(a.c) - (a.b) c' the "bac-abc" rule:
$\left(\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(a \cdot c) - (\vec{a} \cdot \vec{b})\vec{c}\right) \leftarrow \text{very important.}$

Derivative Operations: grad = ($\nabla \vec{S}$); = $\partial_{i} S$ $curl = (\nabla x \nabla)^i = \varepsilon^{ijk} \partial \cdot \nabla_k$ 9:1 = D.1 = 9:1; = 3x1x + 3x1 + 3x15 Δ·Δ ? = 9'9, The bacy-cabic rule plays an important $\nabla \times (\nabla \times \hat{C}) = \vec{\nabla} (\nabla \cdot \vec{V}) - \nabla^2 \hat{C}$ · Homework: use the b (ac) - (ab) c rule to derive the wave equation