In this homework assignment, we let $\mathrm{Vec}_{\mathbb{F}}^{f.d.}$ denote the category of linear maps between finite dimensional linear spaces over \mathbb{F} and V_i (i=1,2,3) and V be objects in $\mathrm{Vec}_{\mathbb{F}}^{f.d.}$. Let $m=\dim V_1$ and $n=\dim V_2$.

1. Show that

- (a) the endo-functor ** on $\operatorname{Vec}_{\mathbb{F}}^{f.d.}$ that sends T to $T^{**} := (T^*)^*$ is a category isomorphism.
- (b) the set of all bilinear maps from $V_1 \times V_2$ to V_3 , denoted by $\operatorname{Map}^{BL}(V_1 \times V_2, V_3)$, is a linear space.
- (c) a bilinear map $F: V_1 \times V_2 \to V_3$ naturally defines a linear map $F_{\natural}: V_1 \to \operatorname{Hom}(V_2, V_3)$. (where do you use the linearity of F in the 1st variable and where do you use the linearity of F in the 2nd variable?)
- (d) Show that the natural map \natural : $\operatorname{Map}^{BL}(V_1 \times V_2, V_3) \to \operatorname{Hom}(V_1, \operatorname{Hom}(V_2, V_3))$ that sends F to F_{\natural} is a linear equivalence. So we write

$$\operatorname{Map}^{BL}(V_1 \times V_2, V_3) \equiv \operatorname{Hom}(V_1, \operatorname{Hom}(V_2, V_3))$$

Remark. Let \mathcal{B}_i be a basis of the linear space V_i and denote by \mathcal{B}_i^* the dual basis of \mathcal{B}_i for the linear space V_i^* . Then a bilinear map $F\colon V_1\times V_2\to \mathbb{F}$ can be represented by a matrix A_F uniquely defined via the commutative diagram

$$\begin{array}{c} V_1 \times V_2 \xrightarrow{F} \mathbb{F} \\ []_{\mathcal{B}_1} \times []_{\mathcal{B}_2} \downarrow \\ \mathbb{F}^m \times \mathbb{F}^n \end{array}$$

Let B_F be the matrix that represents F_{\natural} with respect to basis \mathcal{B}_1 and basis \mathcal{B}_2^* via the commutative diagram

$$V_{1} \xrightarrow{F_{\natural}} V_{2}^{*}$$

$$[]_{\mathcal{B}_{1}} \downarrow \qquad \qquad \downarrow []_{\mathcal{B}_{2}^{*}}$$

$$\mathbb{F}^{m} \xrightarrow{B_{F}} \mathbb{F}^{n}$$

We say that a bilinear map $F\colon V_1\times V_2\to \mathbb{F}$ is non-degenerate if $F_{\natural}\colon V_1\to V_2^*$ is a linear equivalence.

- (e) What is the relationship between A_F and B_F ?
- (f) Show that a bilinear map $F: V_1 \times V_2 \to \mathbb{F}$ is non-degenerate if and only if A_F is an invertible matrix.

- 2. Let V be a \mathbb{F} -linear space of dimension n > 0 and V^* be its dual. Suppose that there are n elements $\underline{v}_1, \ldots, \underline{v}_n$ in V and n elements $\alpha^1, \ldots, \alpha^n$ in V^* such that $\langle \alpha^i, \underline{v}_j \rangle = \delta^i_j$. Show that $(\underline{v}_1, \ldots, \underline{v}_n)$ is a basis of V and $(\alpha^1, \ldots, \alpha^n)$ is a basis of V^* . (Each shall be called the dual basis of the other.)
- 3. Let $T: V_1 \to V_2$ be a linear map and \mathcal{B}_i be a basis of linear space V_i . Denote by \mathcal{B}_i^* the dual basis of \mathcal{B}_i for vector space V_i^* , by $T^*: V_2^* \to V_1^*$ the dual map of T, i.e., the map that sends α to $\alpha \circ T$.
 - (a) Show that sequence $V_1 \to V_2 \to V_3$ is exact if and only if its dual sequence $V_1^* \leftarrow V_2^* \leftarrow V_3^*$ is exact, and then conclude that T is injective if and only if T^* is surjective, and T is surjective if and only if T^* is injective.
 - (b) Let A be the matrix representation of T with respect to bases \mathcal{B}_1 , \mathcal{B}_2 and A^* be the matrix representation of T^* with respect to bases \mathcal{B}_2^* , \mathcal{B}_1^* . Show that A^* and A are transposes of each other.

Hint: It is helpful to start with commutative diagrams

This hint shows you a general trick in linear algebra: go to the matrix representation side!

and then observe that the defining equation $\langle \alpha, T(\underline{u}) \rangle = \langle T^*(\alpha), \underline{u} \rangle$ is represented by the defining equation

$$\vec{u} \cdot A\vec{v} = A^*\vec{u} \cdot \vec{v}$$
 or $\vec{u} \cdot A\vec{v} = \vec{v} \cdot A^*\vec{u}$

Take $\vec{u}=\vec{e_i}$ and $\vec{v}=\vec{e_j}$, then the identity says that the (i,j)-entry of A is equal to the (j,i)-entry of A^* .