### Computerized Coding of Event Data

#### Javier Osorio

School of Government and Public Policy University of Arizona

Prepared for the Winter Institute in Computational Social Science (WICSS) University of Arizona

Virtual event, January 7th, 2021

#### Route

- 1 Motivation
- 2 What is event data?
- 3 Manual and computerized coding
- 4 Types of computerized coding
- 6 Process

### **MOTIVATION**

### Motivation

We want to measure (and explain) social behavior in a systematic way









### Systematic measurement

Systematic measurement of political events:

- Concept validity
- Consistent application of coding method
- Transparent and verifiable
- Minimize measurement error
- Enable explanation

### Systematic measurement

#### Systematic measurement of political events:

- Concept validity
- Consistent application of coding method
- Transparent and verifiable
- Minimize measurement error
- Enable explanation

#### Is feasible:

- Massive availability of online text
- Real-time information
- Global coverage

### WHAT IS EVENT DATA?

#### Event Data Elements

Event data is a categorical description of:

- Someone
- Doing something
- To someone else
- At a given moment
- In a certain place

#### Event Data Elements

Event data is a categorical description of:

- Someone  $\rightarrow$  Source
- Doing something  $\rightarrow$  Action
- To someone else  $\rightarrow$  Target
- At a given moment  $\rightarrow$  Date/time
- In a certain place  $\rightarrow$  Location

#### Event Data Elements

Event data is a categorical description of:

```
- Someone \rightarrow Source \rightarrow Subject
```

- Doing something  $\rightarrow$  Action  $\rightarrow$  Verb
- To someone else  $\rightarrow$  Target  $\rightarrow$  Object
- At a given moment  $\rightarrow$  Date/time  $\rightarrow$  Date/time
- In a certain place  $\rightarrow$  Location  $\rightarrow$  Toponyms

### Example

#### Example of event coding:

- Event statement ✓
- Event description
- Event coding

### Example

#### Example of event coding:

- Event statement ✓
- Event description ✓
- Event coding

"Yesterday, Police in Denver arrested BLM protesters" date source location action target

## Example

#### Example of event coding:

- Event statement ✓
- Event description  $\checkmark$
- Event coding ✓

| "Yesterday, | Police | in Denver | arrested | BLM protesters" |
|-------------|--------|-----------|----------|-----------------|
| date        | source | location  | action   | target          |
| 01062021    | 101    | 08031     | 215      | 405             |

### MANUAL AND COMPUTERIZED EVENT CODING

## Types of Event Coding

- Manual Coding
- Computerized Coding

## Manual Event Coding

### Manual coding:

- Develop codebook
- Train coders
- Gather information (news)
- Annotate
- Validate

## Computerized Event Coding

#### Computerized coding:

- Develop codebook (dictionaries or GSR)
- Gather information (scraping)
- Annotate (coder or ML model)
- Validate

### Pros and Cons

| Criteria                          | Manual coding           | Computerized coding    |  |  |  |
|-----------------------------------|-------------------------|------------------------|--|--|--|
| Coding project                    |                         |                        |  |  |  |
| Volume of documents               | Small                   | Large                  |  |  |  |
| Coding period                     | Once                    | Repeated or continuous |  |  |  |
| Recoding possibility              | Limited                 | Easy                   |  |  |  |
| Updating possibility              | Limited                 | Easy                   |  |  |  |
| Dictionary modification           | Not recommended         | Easy                   |  |  |  |
| Content of interest               |                         |                        |  |  |  |
| Coding unit                       | Entire document         | Sentence or paragraph  |  |  |  |
| Syntax characteristics            | Complex                 | Simple                 |  |  |  |
| Content of interest               | Metaphoric or idiomatic | Literal                |  |  |  |
| Bias concerns                     |                         |                        |  |  |  |
| Sources of coder bias             | Multiple                | Unique                 |  |  |  |
| Inter-coder reliability           | Problematic             | Not an issue           |  |  |  |
| Coder fatigue                     | Difficult               | Not an issue           |  |  |  |
| Feasibility of the coding project |                         |                        |  |  |  |
| Coding time                       | Slow                    | Fast                   |  |  |  |
| Labor                             | High                    | Low                    |  |  |  |

## Brief History of Event Data

| 1970s | - World Event/Interaction Survey (WEIS)                               |  |  |  |
|-------|-----------------------------------------------------------------------|--|--|--|
| 1980s | - Protocol for the Assessment of Nonviolent Action (PANDA)            |  |  |  |
|       | - Conflict and Peace Data Bank (COPDAB)                               |  |  |  |
|       | - NSF's Data Development in International Relations (DDIR)            |  |  |  |
| 1990s | - Kansas Event Data System (KEDS)                                     |  |  |  |
|       | - Global Event Data Systems (GEDS)                                    |  |  |  |
|       | - Protocol for the Assessment of Nonviolent Direct Action (PANDA)     |  |  |  |
|       | - Integrated Data for Events Analysis (IDEA)                          |  |  |  |
|       | - Virtual Research Associates - VRA Reader and later on VRA Reporter  |  |  |  |
| 2000s | - Textual Analysis By Augmented Replacement Instructions (TABARI)     |  |  |  |
|       | - Conflict and Mediation Event Observations (CAMEO) Ontology          |  |  |  |
|       | - VRA Prospects                                                       |  |  |  |
|       | - Integrated Crisis Early Warning System (ICEWS)                      |  |  |  |
| 2010s | - Python Engine for Text Resolution And Related Coding Hierarchy (PE- |  |  |  |
|       | TRARCH), later on PETRARCH-2, and UniversalPETRARCH                   |  |  |  |
|       | - Phoenix Event Data                                                  |  |  |  |
|       | - Multi-lingual: Eventus ID (Spanish) and Hadath (Arabic)             |  |  |  |
|       | - ACCENT event data using JABARI                                      |  |  |  |
|       | - TERRIER event data                                                  |  |  |  |
| 2020s | - Machine Learning models                                             |  |  |  |

### TYPES OF COMPUTERIZED EVENT CODING

## Types of Computerized Event Coding

### Types of Computerized Event Coding:

- Rule-based coding:
  - Shallow parsing
  - Deep parsing
- Example-based coding:
  - Machine Learning

## Rule-based event coding

#### Natural Language Processing:

- Information extraction task
- Rely on dictionaries (actors, actions, locations) and rules
- Recognize patterns in the text

#### Shallow parsing:

- Dictionaries and rules provide search criteria
- Find exact match in the text while ignoring everything else
- Works well for narrow tasks in relatively structured text

#### Deep parsing:

- Still uses dictionaries and rules as search criteria
- Uses syntactical elements and structures of the text
- Parts of Speech tagging (POS), Named Entity Recognition (NER), Universal Dependencies (UD)
- Better suited for broad coding tasks with unstructured data

```
Yesterday_RB ,_, ← Adverb

([ Police_NNP ]) ← Proper noun plural

in_IN ← Preposition

([ Denver_NNP ]) ← Proper noun plural

<: arrested_VBD :> ← Verb past tense

([ BLM_NNP ]) ← Proper noun plural

([ protesters_NNS ]) ← Noun plural
```

```
Yesterday_RB ,_, ← Adverb

([Police_NNP]) ← Proper noun plural

in_IN ← Preposition

([Denver_NNP]) ← Proper noun plural

<: arrested_VBD :> ← Verb past tense

([BLM_NNP]) ← Proper noun plural

([protesters_NNS]) ← Noun plural
```





#### Challenges in deep parsing:

- Universal dependencies do not work well for long documents
- Anaphora is an enormous problem
- Toponyms: identifying locations is really hard
- Multi-lingual limitations

# Example-based event coding

#### Machine Learning models:

- Document level analysis
- Identify the relationships between features
- Output classification



### EXAMPLE-BASED EVENT CODING PROCESS

## Example-Based Event Coding Process

#### Simplified process:

- Information gathering
- Annotation
- Machine Learning models

## Information gathering

#### Information gathering is NOT a trivial task:

- Need to process massive amounts of information at a global scale, from multiple sources, in real-time
  - Manual gathering
  - Supervised gathering
  - Automated gathering
- Beware of coverage bias
- Duplicates
- Foreign languages
- Fake news

# Information gathering

#### Supervised extraction:

- Develop a codebook and train coders
- Human coders select relevant information
- Is slow, tedious, and costly
- Automated downloading

#### Automatic extraction:

- Plenty of resources: API, Selenium, Scrapy, Rvest
- Quick and dirty automated info gathering
- Probably too dirty
  - Post-gathering classification (find the needle in a haystack)
  - Considerable human effort
  - Duplicates, fake news
  - Validity of information gathered (garbage in, garbage out)

## Information gathering

#### Document classification using Machine Learning:

- Apply after large automatic data gathering
- Treat this as a classification task for ML:
  - Classify document as relevant or not relevant (0/1)
  - Develop a codebook
  - Train human coders
  - Need a large amount of annotated documents
  - Complex and nuanced classification criteria are difficult
  - Inter-coder reliability
- Imbalanced data could be a considerable problem

#### Applications:

Tagtog, Prodigy, Brat, ezTag, WebAnno

#### Event Annotation

#### Classify event elements:

- Someone  $\rightarrow$  Source
- Doing something  $\rightarrow$  Action - To someone else  $\rightarrow$  Target
- At a given moment  $\rightarrow$  Date/time
- In a certain place  $\rightarrow$  Location

#### Event Annotation

#### Classify event elements:

- Someone  $\rightarrow$  Source
- Doing something  $\rightarrow$  Action
- To someone else  $\rightarrow$  Target
- At a given moment  $\rightarrow$  Date/time
- In a certain place  $\rightarrow$  Location

#### Challenges:

- Multi-class and multi-label annotations
- Imbalanced annotations
- Requires large amounts of data
- Inter-coder reliability (?!)

#### Distribution of Crime Category Annotations.



#### Distribution of Criminal Entities Annotations.



#### Machine Learning:

- Data-driven approach:
  - Underlying relationships in the text are unknown
  - Need to remain agnostic about ML model selection
  - Run different models
  - Pick the one with the best performance

### Machine Learning:

- Data-driven approach:
  - Underlying relationships in the text are unknown
  - Need to remain agnostic about ML model selection
  - Run different models
  - Pick the one with the best performance



#### Machine Learning challenges:

- Are Gold Standard Records made of gold, copper, or tin?
  - Largely under-looked in CS
  - CSS should not take GSRs at face value
- More data is always better, but it is labor intensive
- Simple tasks are easier to classify & need less data
  - Clear and distinct concepts
  - That may be hard in CSS
- Few labels are easier to classify & need less data
  - Multi-class multi-label tasks are hard
- Balanced data is easier to classify

### Machine Learning as a black box:

- ML models work well for classifying outcomes
- But are difficult to understand
- Classification at document level (in most models)
- Difficult to identify the specific event elements
- Some approaches may help:
  - Shapley values
  - HAN models
- But are limited for complex docs or classification tasks

### Machine Learning for event coding:

- Powerful tools with great potential
- But ML is not a silver bullet
- Always validate the quality of the input and output
- Event coding with ML from scratch is not labor/cost free
- ML is good for classifying documents, but need additional steps to extract events

# Thanks:)

#### Javier Osorio

School of Government and Public Policy University of Arizona