問題番号 配点	正答例	採点のポイント
1 〔問 9〕 配点 6点	A P C	○頂点Cから辺ABへの垂線を引き,辺 AB上にあり,頂点Cとの距離が最も短 くなる点Pが正確に示されている。
2 〔問 2〕 配点 7点	円すいの側面積は、 $\pi a^2 \times \frac{2\pi r}{2\pi a} = \pi a r$ 円すいの底面積は、 πr^2 となる。 したがって、円すいの表面積Qは、 $Q = \pi a r + \pi r^2 = \pi r (a+r) \qquad (1)$ $\ell = 2\pi r$ だから、 $\pi r = \frac{1}{2} \ell \qquad (2)$ (1)、(2) より、 $Q = \frac{1}{2} \ell (a+r)$	 ○(円すいの表面積) = (側面積) + (底面積) の考え方によって、円すいの表面積が文字を用いた式で適切に表されている。 ○ℓ=2πrを用いた式の変形ができ、適切に処理されている。 ○円すいの表面積について、Q=1/2 ℓ(a+r) が成り立つことが的確に示されている。
4 〔問2〕 ① 配点 7点	\triangle APC と \triangle QACにおいて, 共通な角だから, \angle ACP= \angle QCA ······(1) 仮定から, $\widehat{AC}=\widehat{BC}$ 等しい弧に対する円周角は等しいから, \angle APC= \angle QAC ······(2) (1), (2)より, 2 組の角がそれぞれ 等しいから, \triangle APC \triangle \triangle QAC	○正しいと認められる事柄について,根拠 を明確にして記述し,仮定から結論を導 く推論の過程が的確に示されている。

各学校において、採点のポイントを踏まえて『部分点の基準』を作成し、『部分点の基準 ごとの点数』を定めること。

なお、受検者の実態等に応じて、次の例のように詳細な基準を定めることができる。

- ・ 「○○について××が書かれている。」のように、具体的な内容を加えること。
- ・ 「 \bigcirc ○と \triangle △が書かれている。(3点)」「 \bigcirc ○が書かれている。(2点)」「 \triangle △が書かれている。(1点)」のように、段階を設け、段階ごとの点数を設定すること。
- ・ 「誤字が一つ以上ある。(1点減点)」のように、部分点の基準を加えること。