$\begin{array}{c} Physics~457~Notes \\ \text{Particle Physics \& Cosmology at} & \\ \hline \end{array} \text{University of Michigan} \\ \end{array}$

\mathbb{E} VAN \mathbb{C} ARPENTER

Winter Semester 2022

Jan 5th Lecture 1: First Day	.p.	2
Jan 7th Lecture 2: Second Day		
Jan 12th Lecture 3: Finishing Special Relativity		
3 · 1 · · · · · · · · · · · · · · · · ·	1	

Lecture 1. (Jan 5th) First Day

eV is energy required to move 1 e^- through 1 V

We can set $c, \hbar, k_B = 1$ A result of that is being able to describe all quantities in terms of energies or inverse energies.

Lecture 2. (Jan 7th) Second Day

eV are a thng Natural units are thing

Dimension	SI	Planck	Natural
Energy	$1.602 \times 10^{-10} \text{ J}$	1 GeV	1 GeV
Mass	$1.783 \times 10^{-27} \text{ kg}$	$1 \text{ GeV}/c^2$	1 GeV
Momentum	$5.33 \times 10^{-19} \text{ kg*m/s}$	1 GeV/c	1 GeV
Distance	$1.973 \times 10^{-16} \text{ m}$	ħc GeV	$1 \; \mathrm{GeV^{-1}}$
Time	$5.33 \times 10^{-19} \text{ kg*m/s}$	1 GeV/c	1 GeV^{-1}

Table 1: Units

Proper time is Δt_0 with the clock at rest in that frame Time dilation is $\Delta t = \gamma \Delta t_0$ in the frame Proper length is Δx_0 with the clock at rest in that frame Length Contraction is $\Delta x = \Delta x_0/\gamma$ in the frame

Lecture 3. (Jan 12th) Finishing Special Relativity

Invariant vs constant and how they are different. Different relationships for beta and gamma Lorentz transform in matrix form as boost.