Basic Principles of Probability and Statistics

Lecture notes for PET 472
Spring 2010

Prepared by: Thomas W. Engler, Ph.D., P.E

Definitions

Risk Analysis

Assessing probabilities of occurrence for each possible

outcome

Present to management for decision

Definitions

- Sample Space
 - Complete set of outcomes (52 cards)

- Outcome
 - Subset of the sample space (drawing a "5" of any suit)

- Probability
 - Likelihood of drawing a "5" P(A) = 4/52

Definitions

- Equally likely outcomes
 - Have same probability to occur
- Mutually exclusive outcomes
 - The occurrence of any given outcome excludes the occurrence of other outcomes

- Independent events
 - The occurrence of one outcome does not influence the occurrence of another
- Conditional probability
 - The probability of an outcome is dependent upon one or more events that have previously occurred.

Symbol	Definition	Expression
P(A)	Probability of outcome A occurring	
P(A+B)	Probability of outcome A and/or B occurring	P(A+B)=P(A)+P(B)-P(AB)
P(AB)	Probability of A and B occurring	P(AB) = P(A) P(B A)
P(A B)	Probability of A given B has occurred.	

Addition Theorem

$$P(A+B)=P(A)+P(B)-P(AB)$$

Example

outcome A – drawing 4, 5, 6 of any suit $P(A) = \frac{12}{52}$

outcome B – J or Q of any suit

$$P(B) = \frac{8}{52}$$

$$P(A+B) = \frac{20}{52}$$

$$P(AB) = 0$$

Mutually Exclusive events

Venn Diagram

Addition Theorem

$$P(A+B)=P(A)+P(B)-P(AB)$$

Example

outcome A – drawing 4, 5, 6 of any suit $P(A) = \frac{12}{52}$

outcome B - drawing a diamond

$$P(B) = \frac{13}{52}$$

$$P(A+B) = \frac{22}{52}$$

$$P(AB) = \frac{3}{52}$$

Venn Diagram

Multiplication Theorem

$$P(AB)=P(A)P(A|B)$$

Example

outcome A – drawing any jack

$$P(A) = \frac{4}{52}$$

outcome B – drawing a four of hearts on the second draw

$$P(B \mid A) = \frac{1}{51}$$

$$P(AB) = \left(\frac{4}{52}\right)\left(\frac{1}{51}\right) = \frac{1}{663}$$

conditional

Sampling without replacement

- observed outcome is not returned
- series of dependent events

Multiplication Theorem

$$P(AB)=P(A)P(B)$$

Example

outcome A – drawing any jack, return

$$P(A) = \frac{4}{52}$$

outcome B – drawing a four of hearts on the second draw

$$P(B) = \frac{1}{52}$$

$$P(AB) = \left(\frac{4}{52}\right)\left(\frac{1}{52}\right) = \frac{1}{676}$$

Sampling with replacement

- observed outcome is returned to sample space
- series of independent events

Probability Distributions

 A graphical representation of the range and likelihoods of possible values of a random variable

Random variable

 a variable that can have more
 than one possible value, also
 known as stochastic or deterministic

 Useful method to describe a range of possible values. Basis for Monte Carlo Simulation.

Probability Distributions

Frequency distributions

Data	
Well No	Net pay, ft
1	111
2	81
3	142
4	59
5	109
6	96
7	124
8	139
9	89
10	129
11	104
12	186
13	65
14	95
15	54
16	72
17	167
18	135
19	84
20	154

Divide into intervals
Or bins

Range	frequency	Percent
50 - 80	4	20%
81 - 110	7	35%
111 - 140	5	25%
141 - 170	3	15%
171 - 200	1	5%
	20	100%

Histogram representation Of statistical data

Probability Distributions

Cumulative frequency distributions

Range	frequency	Percent
50 - 80	4	20%
81 - 110	7	35%
111 - 140	5	25%
141 - 170	3	15%
171 - 200	1	5%
	20	100%

Benefits

- 1. Can easily read probabilities
- 2. Necessary for Monte Carlo Simulation

Parameters of distributions

- A parameter that describes central tendency or average of the distribution
 - Mean, μ weighted average value of the random variable
 - Median value of the random variable with equal likelihood above or below
 - Mode value most likely to occur
- A parameter that describes the variability of the distribution
 - Variance, σ^2 mean of the squared deviations about the mean
 - Standard deviation, σ square root of variance...degree of dispersion of distribution abut the mean

Parameters of distributions

Computing mean and standard deviation

1. Arithmetic average of discrete sample data set

$$\mu = \frac{\sum\limits_{i=1}^{N} x_i}{N} \qquad \text{N-number of equally-probable values}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

$\mu =$	17.6
$\sigma =$	2.87

4808.5 59 20. 4809.5 221 19. 4810.5 211 20.4 4811.5 275 23.3 4812.5 384 24.0 4813.5 108 23.3 4814.5 147 16.3 4815.5 290 17.2 4816.5 170 15.3 4817.5 278 15.3 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.3 4822.5 191 18.3 4822.5 191 18.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4828.5 272 15.4 4829.5 395 19.4 4830.5 405 17.5<	Depth	k,md	φ,%
4809.5 221 19.1 4810.5 211 20.4 4811.5 275 23.3 4812.5 384 24.0 4813.5 108 23.3 4814.5 147 16.2 4815.5 290 17.2 4816.5 170 15.3 4817.5 278 15.3 4818.5 238 18.0 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.3 4822.5 191 18.3 4822.5 191 18.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17	4807.5	2.5	17.0
4810.5 211 20.4 4811.5 275 23.3 4812.5 384 24.0 4813.5 108 23.3 4814.5 147 16.3 4815.5 290 17.2 4816.5 170 15.3 4817.5 278 15.3 4818.5 238 18.0 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.9 4834.5 406 20	4808.5	59	20.7
4811.5 275 23.3 4812.5 384 24.0 4813.5 108 23.3 4814.5 147 16.3 4815.5 290 17.2 4816.5 170 15.3 4817.5 278 15.9 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.3 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 406 20.2 4834.5 406 20.2 4835.5 535 18	4809.5	221	19.1
4812.5 384 24.6 4813.5 108 23.3 4814.5 147 16.1 4815.5 290 17.2 4816.5 170 15.3 4817.5 278 15.9 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.2 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.2 4826.5 179 14.6 4827.5 312 15.6 4827.5 312 15.6 4828.5 272 15.9 4828.5 272 15.9 4830.5 405 17.2 4831.5 275 16.4 4831.5 275 16.4 4831.5 275 16.4 4831.5 275 16.4 4831.5 275 16.4 4831.5 406 20.2 4831.5 406 20.3 4831.5 535 18.3 4834.5 406 20.3 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.1 4843.5 882 15.1 4844.5 332 18.0 4845.5 407 15.1	4810.5	211	20.4
4813.5 108 23.3 4814.5 147 16.3 4815.5 290 17.4 4816.5 170 15.3 4817.5 278 15.9 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.3 4822.5 191 18.3 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 400 15.5 4834.5 406 20.2 4835.5 535 18.3 4840.5 266 19	4811.5	275	23.3
4814.5 147 16. 4815.5 290 17. 4816.5 170 15.3 4817.5 278 15.9 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.3 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.0 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4831.5 275 16.4 4832.5 852 17.2 4833.5 400 20.2 4835.5 435 406 4837.5 597 17.7 4838.5 434 20.0<	4812.5	384	24.0
4815.5 290 17.2 4816.5 170 15.3 4817.5 278 15.9 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.9 4830.5 405 17.3 4830.5 405 17.3 4831.5 275 16.4 4832.5 852 17.2 4834.5 406 20.2 4835.5 335 18.3 4836.5 663 19.6 4837.5 597 17.3 4839.5 339 16.8 4840.5 216 13	4813.5	108	23.3
4816.5 170 15.3 4817.5 278 15.9 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.4 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4839.5 339 16.8 4840.5 216 13	4814.5	147	16.1
4817.5 278 15.5 4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.2 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16	4815.5	290	17.2
4818.5 238 18.6 4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.9 4830.5 405 17.3 4831.5 275 16.4 4832.5 852 17.2 4834.5 406 20.2 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.3 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.1 4843.5 882 15	4816.5	170	15.3
4819.5 167 16.2 4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.3 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.3 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.9 4830.5 405 17.3 4831.5 275 16.4 4832.5 852 17.2 4834.5 406 20.2 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.1 4843.5 882 15.1 4844.5 600 18	4817.5	278	15.9
4820.5 304 20.0 4821.5 98 16.9 4822.5 191 18.1 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.1 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.1 4843.5 882 15.1 4845.5 407 15	4818.5	238	18.6
4821.5 98 16.9 4822.5 191 18.1 4823.5 266 20.3 4824.5 40 15.3 4825.5 260 15.1 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4834.5 406 20.2 4834.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.6 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.1 4844.5 882 15.1 4845.5 407 15.1 4847.5 479 17	4819.5	167	16.2
4822.5 191 18.: 4823.5 266 20.: 4824.5 40 15.: 4825.5 260 15.: 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.: 4836.5 663 19.6 4837.5 597 17 4839.5 339 16.6 4840.5 216 13.3 4840.5 216 13.3 4844.5 332 18.0 4844.5 295 16.1 4845.5 407 15.1 4847.5 479 17.8 4847.5 139 2	4820.5	304	20.0
4822.5 191 18.: 4823.5 266 20.: 4824.5 40 15.: 4825.5 260 15.: 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.: 4836.5 663 19.6 4837.5 597 17 4839.5 339 16.6 4840.5 216 13.3 4840.5 216 13.3 4844.5 332 18.0 4844.5 295 16.1 4845.5 407 15.1 4847.5 479 17.8 4847.5 139 2	4821.5	98	16.9
4824.5 40 15.3 4825.5 260 15.4 4826.5 179 14.6 4827.5 312 15.6 4828.5 272 15.9 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.1 4843.5 882 15.2 4844.5 600 18.0 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 484	4822.5	191	18.1
4825.5 260 15 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.2 4844.5 600 18.0 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4823.5	266	20.3
4825.5 260 15 4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.2 4844.5 600 18.0 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4824.5	40	15.3
4826.5 179 14.0 4827.5 312 15.6 4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4825.5	260	15.1
4828.5 272 15.5 4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4826.5	179	14.0
4829.5 395 19.4 4830.5 405 17.5 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4827.5	312	15.6
4830.5 405 17.5 4831.5 275 16.4 4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4828.5	272	15.5
4831.5 275 16.4 4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.2 4843.5 882 15.2 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4829.5	395	19.4
4832.5 852 17.2 4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4830.5	405	17.5
4833.5 610 15.5 4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.2 4843.5 882 15.2 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4831.5	275	16.4
4834.5 406 20.2 4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4832.5	852	17.2
4835.5 535 18.3 4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4833.5	610	15.5
4836.5 663 19.6 4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4834.5	406	20.2
4837.5 597 17.3 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4835.5	535	18.3
4837.5 597 17.7 4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4836.5	663	19.6
4838.5 434 20.0 4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4837.5	597	17.7
4839.5 339 16.8 4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84		434	20.0
4840.5 216 13.3 4841.5 332 18.0 4842.5 295 16.3 4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84	4839.5	339	16.8
4841.5 332 18.0 4842.5 295 16 4843.5 882 15 4844.5 600 18.0 4845.5 407 15 4847.5 479 17.8 4847.5 139 20.5 4847.5 135 84	4840.5	216	13.3
4842.5 295 16.1 4843.5 882 15.1 4844.5 600 18.0 4845.5 407 15.1 4847.5 479 17.8 4847.5 139 20.1 4847.5 135 84	4841.5	·····	18.0
4843.5 882 15.3 4844.5 600 18.0 4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 84		295	16.1
4844.5 600 18.0 4845.5 407 15.7 4847.5 479 17.8 4847.5 139 20.9 4847.5 135 8.4		882	15.1
4845.5 407 15.3 4847.5 479 17.8 4847.5 139 20.5 4847.5 135 8,4	4844.5	600	18.0
4847.5 479 17.8 4847.5 139 20.5 4847.5 135 8,		407	15.7
4847.5 139 20.5 4847.5 135 8.4	4847.5	479	17.8
	4847.5	139	20.5
17	4847.5	135	8.4
μ- 17.0		μ=	17.6
$\sigma =$ 2.87		σ=	2.87

Core porosity and permeability

2. Values listed as frequencies in groups

$$\mu = \frac{\sum\limits_{i}^{n} n_{i} x_{i}}{\sum\limits_{i}^{n} n_{i}}$$
 i – index to denote number of intervals
$$n - \text{frequency of data points in each interval}$$

$$x - \text{midpoint value of each interval}$$

$$\sigma = \sqrt{\frac{\sum_{i} n_{i} \left[(x_{i} - \mu)^{2} \right]}{\sum_{i} n_{i}}}$$

	Porosity	n _i	p_{i}	x_i	μ		σ^2
i	interval	frequency	prob.	midpoint	mean	deviation	variance
1	7 ≤ x < 10	1	0.024	8.5	0.202	85.342	2.032
2	10 ≤ x < 12	0	0.000	11.0	0.000	45.402	0.000
3	12 ≤ x < 14	1	0.024	13.0	0.310	22.450	0.535
4	14 ≤ x < 16	10	0.238	15.0	3.571	7.497	1.785
5	16≤x<18	12	0.286	17.0	4.857	0.545	0.156
6	18 ≤ x < 20	8	0.190	19.0	3.619	1.592	0.303
7	20 ≤ x < 22	7	0.167	21.0	3.500	10.640	1.773
8	22 ≤ x < 25	3	0.071	23.5	1.679	33.200	2.371
		42	1.00	μ=	17.74	$\sigma^2 =$	8.96
						σ=	2.993

Applicable for large data sets

Results are approximate

3. Discrete probability distributions

$$\mu = \sum_{i} p_{i} x_{i}$$

$$\sigma = \sqrt{\sum_{i} p_{i} (x_{i} - \mu)^{2}}$$

Х		midpoint				
drilling costs	probability	of range	EV	xi*pi	(x _i -μ) ²	$p(x_i)(x_i-\mu)$
\$M		\$M	\$M	\$M	(\$M) ²	(\$M) ²
100.0	0					
105.2	0.007	102.6	0.7	0.7	1641.3	10.7
111.5	0.040	108.4	4.3	4.5	1208.5	48.3
130.6	0.229	121.1	27.7	29.9	486.8	111.5
136.3	0.093	133.5	12.4	12.7	93.4	8.7
148.2	0.225	142.3	32.0	33.3	0.7	0.2
165.2	0.278	156.7	43.6	45.9	184.6	51.3
168.7	0.035	167.0	5.8	5.9	568.2	19.9
178.5	0.066	173.6	11.5	11.8	929.5	61.3
183.7	0.021	181.1	3.8	3.9	1443.0	30.3
190.0	0.007	186.9	1.3	1.3	1912.9	13.4
		$\mu =$	143.1	149.9		355.6
			$\sigma =$	15.8	σ =	18.9

p_i is the probability of occurrence of the x_ith value of the random variable

Parameters of distributions

Computing mean and standard deviation

4. Cumulative frequency distribution

х		midpoint				
drilling costs	probability	of range	EV	xi*pi	$(x_i-\mu)^2$	$p(x_i)(x_i-\mu)$
\$M		\$M	\$M	\$M	(\$M) ²	(\$M) ²
100.0	0					
105.2	0.007	102.6	0.7	0.7	1641.3	10.7
111.5	0.040	108.4	4.3	4.5	1208.5	48.3
130.6	0.229	121.1	27.7	29.9	486.8	111.5
136.3	0.093	133.5	12.4	12.7	93.4	8.7
148.2	0.225	142.3	32.0	33.3	0.7	0.2
165.2	0.278	156.7	43.6	45.9	184.6	51.3
168.7	0.035	167.0	5.8	5.9	568.2	19.9
178.5	0.066	173.6	11.5	11.8	929.5	61.3
183.7	0.021	181.1	3.8	3.9	1443.0	30.3
190.0	0.007	186.9	1.3	1.3	1912.9	13.4
		$\mu =$	143.1	149.9		355.6
			$\sigma =$	15.8	σ=	18.9

Types of distributions

- Normal
- Lognormal
- Uniform
- Triangle
- Binomial
- Multinomial
- hypergeometric

Characteristics

- Define by μ and σ
- Mode=mean=median
- Curve is symmetric

 Can normalize and obtain area (probability) under the curve.

$$t = \frac{x - \mu}{\sigma}$$

Given a set of data how do you know whether it is normally distributed?

- Shape of curves
- median = mean

Examples: porosity, fractional flow

Characteristics

- Define by μ and σ
- Mode≠mean≠median
- Curve is asymmetric

Can transform to normal variable by y=ln(x)

Examples:

- permeability
- thickness
- oil recovery (bbls/acre-foot)
- field sizes in a play

Characteristics:

- all values are equi-probable
- specify min and max
- allows for uncertainty
- used in Monte Carlo simulation

Characteristics:

- all values are equi-probable
- specify min and max
- allows for uncertainty
- used in Monte Carlo simulation

Convert to cumulative frequency plot:

• normalize to a 0 to 1 scale:

$$x' = \frac{x - L}{H - L}$$

• Define m as:

$$m = \frac{M - L}{H - L}$$

• For $x' \le m$, cumulative probability is given by:

• For x' > m,

$$P(\ge x) = 1 - \left[\frac{(1-x')^2}{1-m} \right]$$

Types of distributions

Triangle

Example

- Estimated costs to drill a well vary from a minimum of \$100,000 to a maximum of \$200,000, with the most probable value at \$130,000.
- Convert the probability distribution to a cumulative frequency distribution

x, random	x'	cumulative
variable	normalized	probability
(drilling costs)		≤x
100	0.0	0.000
110	0.1	0.033
120	0.2	0.133
130	0.3	0.300
140	0.4	0.486
150	0.5	0.643
160	0.6	0.771
170	0.7	0.871
180	0.8	0.943
190	0.9	0.986
200	1.0	1.000

Describes a stochastic process characterized by:

- 1. Only two outcomes can occur
- 2. Each trial is an independent event
- 3. The probability of each outcomes remains constant over repeated trials
- 4. Binomial probability equation is given by:

$$P(x) = C_{x}^{n} p^{x} (1-p)^{n-x}$$

where

 $x = number of successes (0 \le x \le n)$

n = total number of trials

p = probability of success on any given trial
and "the combination of n things taken x at a time"

$$C_{x}^{n} = \frac{n!}{x!(n-x)!}$$

Example

- Your company proposes to drill 5 wells in a new basin where the chance of success is 0.15 per well
- What is the probability of only one discovery in the five wells drilled?
- What is the probability of at least one discovery in the 5-well drilling program?

Number of	P(x)	Cumulative
discoveries		P(x)
0	0.4437	0.4437
1	0.3915	0.8352
2	0.1382	0.9734
3	0.0244	0.9978
4	0.0022	0.9999
5	0.0001	1.0000

Describes a stochastic process characterized by:

- 1. Any number of discrete outcomes
- 2. Each trial is an independent event
- 3. The probability of each outcomes remains constant over repeated trials
- 4. Multinomial probability equation is given by:

$$P(x_1, x_2, ..., x_r) = \frac{n!}{x_1! x_2! ... x_r!} p_1^{x_1} p_2^{x_2} ... p_r^{x_r}$$

where

r = number of possible outcomes

 x_1 = number of times outcome 1 occurs in n trials

 x_2 = number of times outcome 2 occurs in n trials

 x_r = number of times outcome r occurs in n trials

n = total number of trials

 p_r = probability of outcome r on any given trial

Example

- Your company proposes to drill 10 wells in a new basin where the chance of success is 15% per well
- What is the probability of obtaining 7 dry holes, 2 fields in the 1-2 mmbbl range and 1 field in the 8-12 mmbbl range?

outcome	probability
range	of
mmbbl	outcome
1-2	0.08
2-4	0.04
4-8	0.02
8-12	0.01
	0.150
probability	
of dry hole	0.850

number of trials (wells) in program	n =	10
probability of dry holes	x1=	7
probability of 1-2 mmbbl	x2 =	2
probability of 2-4 mmbbl	x3 =	0
probability of 4-8 mmbbl	x4 =	0
probability of 8-12 mmbbl	x5 =	1
		0.7%

Describes a stochastic process characterized by:

- 1. Any number of discrete outcomes
- Each trial is dependent on the previous event (sampling without replacement)
- 3. The probability of each outcomes remains constant over repeated trials
- 4. Hypergeometric probability equation for two possible outcomes:

$$P(x) = \frac{C_x^{d_1} C_{n-x}^{N-d_1}}{C_n^N}$$

where

n=number of trials

d_i = number of successes in the sample space before the n trials

 x_i = number of successes in n trials

N = total number of elements in the sample space before the n trials

 C_b^a = the number of combinations of a things taken b at a time.

Example

- Our company has identified ten seismic anomalies of about equal size in a new offshore area. In an adjacent area, 30% of the drilled structures were oil productive.
- If we drill 5 wells (test 5 anomalies) what is the probability of two discoveries?

number_sample	n =	5
number_pop	N =	10
population_s	d1=	3
sample_s	x1 =	2
		42%