BA706 Analytic Modeling

HR Analytics: Job Change Prediction of Data Scientists

For David Parent

Submitted by:

Deo Dominic Fajardo (301243074) Marian Grace Ilagan (301236806) Jeriel Madamba (301219390) Justine Tinio (301241837)

Due date: December 16, 2022

1	Intr	oduction	3
	1.1	Problem Statement	3
	1.2	Objectives and Measurement	4
2	Dat	a Source	4
	2.1	Dataset Introduction	4
	2.2	Initial Data Preparation	5
3	Dat	a Exploration	6
	3.1	Preliminary Exploration	6
	3.2	Data Exploration and Visualization	8
	3.3	EDA Summary	19
4	Dat	a Preparation	.19
	4.1	Feature selection	20
	4.2	Missing values – Imputation	21
	4.3	Non-numeric values – Recode	22
	4.4	Extreme values	24
	4.5	Data Partition	25
5	Мо	del Exploration	.26
	5.1	Decision Trees	26
	5.2	Logistic Regression	32
	5.3	Neural Network	38
6	Res	ults and Analysis	.41
	6.1	Performance Measure / Model Assessment (ROC/ASE)	41
	6.2	Feature Importance	43
	6.3	Best model results	44
7	Con	clusion and Recommendations	.45
	7.1	Conclusion	45
	7.2	Recommendation	46
	7.3	Further Research	47
R	eferenc	res	48

1 Introduction

1.1 Problem Statement

Harvard Business Review reported that data scientist is one of the most in demand and lucrative jobs in the 21st century with a 256% increase in Indeed job postings last 2019 as well as an average salary of almost \$200,00 in US for experienced professionals (2022). However, despite of being well compensated, data science professionals were found to have high turnover rate with an average retention of only 1.7 years (Globe News Wire, 2022). According to Omdena, there are three main reasons why data scientists quit their jobs: a) the lack of employee engagement which can be due to stressful work environment, lack of professional and personal growth opportunities or inability to provide business value with their machine learning models; b) a mismatch in employer expectations where the actual responsibilities given to the data scientists do not meet the job description causing them to become unsatisfied with the role; and, c) the lack of development opportunities for data scientists who want to keep up with the new technologies and challenges for professional career development (2022).

Managing employee attrition and retention has been a major activity in Human Resource where predictive analytics can be applied. Predictive models can help on HR decisions and strategies such as hiring employees who has a higher chance of staying in the company, forecasting drop-off candidate rates during the recruitment process, and predicting attrition caused by poor management and unmet expectations. In turn, these data-driven decisions will help the whole organization with their cost-saving targets and achieve more streamlined process.

To study the employee attrition and retention of data scientists, we will be using a public dataset from Kaggle and identify the factors affecting their decision to quit or stay.

1.2 Objectives and Measurement

The main objective of this project is to generate a model that will best predict the likelihood of whether a data scientist plans to move to another company or not. It also aims to identify which important features affect the candidate's decision.

Several models will be created using three different machine learning techniques specifically Decision tree, Regression and Neural Networks. Model assessment will be conducted to compare the models' performance based on average squared error (ASE) and receiver operator characteristic (ROC) index.

2 Data Source

2.1 Dataset Introduction

Our dataset from Kaggle called "HR Analytics: Job Change of Data Scientists" contains data scientists' information with 19,158 observations and 14 features (including the target variable). This is a binary classification problem with the target feature consists of either 0 (candidate is not looking to change job) or 1 (candidate is looking for a job change). Sample data from the file is shown in Figure 1 below as well the description for each feature in Table 1.

Figure 1. Sample data from the dataset

enrollee_id	city	city_development_index gender	relevent_experience	enrolled_university	education_level	major_discipline	experience	company_size	company_type	last_new_job	training_hours	target
8949	city_103	0.92 Male	Has relevent experience	no_enrollment	Graduate	STEM	>20			1	. 36	1
29725	city_40	0.776 Male	No relevent experience	no_enrollment	Graduate	STEM	15	50-99	Pvt Ltd	>4	47	0
11561	city_21	0.624	No relevent experience	Full time course	Graduate	STEM	5	5		never	83	0
33241	city_115	0.789	No relevent experience		Graduate	Business Degree	<1		Pvt Ltd	never	52	1
666	city_162	0.767 Male	Has relevent experience	no_enrollment	Masters	STEM	>20	50-99	Funded Startup	4	8	0
21651	city_176	0.764	Has relevent experience	Part time course	Graduate	STEM	11	L		1	. 24	1
28806	city_160	0.92 Male	Has relevent experience	no_enrollment	High School		5	50-99	Funded Startup	1	. 24	0
402	city_46	0.762 Male	Has relevent experience	no_enrollment	Graduate	STEM	13	<10	Pvt Ltd	>4	18	1
27107	city_103	0.92 Male	Has relevent experience	no_enrollment	Graduate	STEM	7	50-99	Pvt Ltd	1	. 46	1
699	city_103	0.92	Has relevent experience	no_enrollment	Graduate	STEM	17	10000+	Pvt Ltd	>4	123	0
29452	city_21	0.624	No relevent experience	Full time course	High School		2	2		never	32	1
23853	city_103	0.92 Male	Has relevent experience	no_enrollment	Graduate	STEM		5000-9999	Pvt Ltd	1	108	0
25619	city_61	0.913 Male	Has relevent experience	no_enrollment	Graduate	STEM	>20	1000-4999	Pvt Ltd	3	23	0
5826	city_21	0.624 Male	No relevent experience				2	2		never	24	0

 $Table\ 1.\ Data\ dictionary\ -\ details\ for\ each\ feature$

Column	Description	Range of possible values
enrollee_id	Unique ID for each candidate	
city_code	City code	
city_development_index	Development index of the city (scaled)	Between 0 - 1
gender	Gender of the candidate	Male, Female, Other
relevent_experience	Relevant experience to data science	Has relevant experience, No relevant experience
enrolled_university	Type of university course enrolled to (if any)	Full time course, no enrollment, part time course
education_level	Highest educational attainment of the candidate	Primary School, High School, Graduate, Masters, Phd
major_discipline	Education major discipline of candidate	STEM, Business Degree, Arts, Humanities, No Major, Other
experience	Candidate's total experience in years	<1, 1 to 20, >20
company_size	No of employees in current employer's company.	Below 10, 10/49, 50-99, 100-500, 500-999, 1000-4999, 5000-9999, 10000+
company_type	Type of current employer	Early Stage Startup, Funded Startup, NGO, Other, Public Sector, Pvt Ltd.
last_new_job	Difference in years between previous job and current job	1,2,3,4,>4, never
training_hours	Number of training hours completed	Between 1 to 336
target	0 – Not looking for a job change 1 – Looking for a job change	0, 1

2.2 Initial Data Preparation

Preliminary checking of the data file showed that it needs to be cleaned first before uploading in SAS. The special characters in the file have caused the variables that we want to consider as interval to be nominal. To preserve the original information, additional columns were created

which includes the corrected data. Table 2 summarizes the new columns added to the file, the reason for correction and changes that were done.

Table 2. Corrections done in the file before upload

New columns added	Data issue	Correction done
experience_cleaned	Cannot be changed as	Changed <1 to 0.5 and >20 to 21
	interval in SAS due to < and	to make this column an interval
	> characters	data.
company_size_cleaned	Cannot be changed as	Used the midpoint of each range
	interval in SAS because the	and rounding up to nearest
	values are in range.	whole number since this is count
		of employees.
	One range is inputted as	e.g. "5000-9999" =
	10/49 instead of 10-49.	(5000+9999)/2 = 7499.5 = 7,500
last_new_job_cleaned	Cannot be changed as	Changed >4 to 5.
-	interval in SAS due to >	"never" means the candidate
	character and string "never".	didn't change their job.
	_	Considered never as blank
		instead and will impute in SAS.

3 Data Exploration

3.1 Preliminary Exploration

Using SAS Enterprise Miner, we can plot the data to find missing values, skewness, and other notable characteristics in each set of variables. We will analyze the data through bar graphs, pie charts, histograms, and summary statistics to explore the data through Graph Explore and Stat Explore node.

SAS Enterprise Miner Diagram with nodes, Graph Explore and StatExplore

The findings in these preliminary explorations will be our basis in determining the features of our model, including which variables are to be imputed, recoded, and transformed (if necessary).

3.2 Data Exploration and Visualization

The following consists of plots and key findings generated for each variable.

TARGET

15000 - 14381 Target Variable Distribution

4777 0,14381,75.1%

Figure 2. Distribution of target variable

Key Findings:

- Data set is relatively imbalanced between candidates looking for a job change (1) versus those who are not (0).
- Those candidates who are not looking for a job change make up most of the data at 75.1%.

GENDER

Figure 3. Percentage of Gender & Distribution of Target Variable by Gender

Key findings:

- Males compose most of the dataset at 69%. Female is at 6.5% and 'Other' is at 1.0%
- The remaining 23.5% are missing values which is still a noticeably large number.
- With the distribution of target variables based on Gender, Male are still most likely to both change jobs and not change jobs. On the other hand, the least likely for both targets are labelled as "Other".

EXPERIENCE

Figure 4. Percentage of Experience & Distribution of Target Variable by Experience

Key Findings:

- According to the pie chart, the mode of this variable is 21 years.
- There are only 65 records that are missing for this variable.
- Those with 21 years of experience lead the data at not looking for a job change, followed by 5 years.
- Those with 21 years of experience also make the most of those looking for a job change, followed by those with 3 years of experience.

CITY DEVELOPMENT INDEX

Figure 5. Histogram: City Development Index

Key Findings:

- There are no missing values for the City Development Index variable.
- For this variable, the values are scaled between zero and 1.

COMPANY SIZE

Figure 6. Percentage of Company Size & Distribution of Target Variable by Company size

Key Findings:

- There are 5938 missing values for Company Size.
- Apart from the missing values, candidates coming from companies with 75 employees
 lead at changing and not changing jobs.
- Those coming from companies with 7500 employees fall behind at both mentioned target values.

COMPANY TYPE

Figure 7. Percentage of Company Type & Distribution of Target Variable by company type

Key Findings:

- There are 6140 missing values within the Company Type Variable. This makes up 32% of the data.
- More than half of the data set are Pvt Ltd (51.2%).
- When the missing values are disregarded, Pvt Ltd employees leads the target variable at both job change seekers and non-seekers.

EDUCATION LEVEL

Figure 8. Percentage of Education Level & Distribution by Target Variable by Education level

Key Findings:

- The missing values for this variable amount to 460, which is only 2.4% of the entire Education Level data set.
- "Graduate" consists the majority of the Education Level variable data at 60.5%.
- When distributed against the target variable, "Graduate" has the highest amount of both job seekers & non-seekers.

 We can choose to group the variables Graduate, Masters and PHD to reduce dimensionality.

ENROLLED UNIVERSITY

Figure 9. Percentage of Enrolled University & Distribution of Target Variable by type of University Course

Key Findings:

- 2.0% of this variable are missing values, amounting to 386 only.
- The "no_enrollment" value dominates the variable data set with 72.1%, or 13,817 records.
- For both looking and not looking for job change, "no-enrollment" has the highest frequency when matched with the target variable.

LAST NEW JOB

Figure 10. Percentage of Last New Job & Distribution by Target Variable

Key Findings:

- There are 2875 (15.0%) missing values for the Last New Job variable.
- The mode of the last_new_job variable is 1 year (difference between previous job and current job).
- When the variable Last New Job is distributed against the target variable, 1 year is still the highest count on both job changers and non-changers.

MAJOR DISCIPLINE

Figure 11. Percentage & Distribution of Target Variable by Major Discipline

Key Findings:

- 14.7% of the Major Discipline variable data are missing, amounting to 2813.
- At 75.6% (14,492), the majority of this variable is "STEM".
- There are 7 levels in the Major Discipline variable. 6 of these share the 24.4 percent minority.
- For the distribution of target variable by Major Discipline, STEM is found to be the most for both looking and not looking for a job change.

RELEVANT EXPERIENCE

Figure 12. Percentage of Relevant Experience & Distribution of Target Variable by Relevant experience

Key Findings:

- With only two levels for "Relevant experience", there are no missing values for this variable.
- Those candidates that have relevant experience have the highest number of looking and not looking for job change (target variable).

TRAINING HOURS

Figure 13. Histogram: Training Hours

Key Findings:

- There are no missing values for the "Training hours" variable.
- The values are scaled between 1 and 336.

CITY

Figure 14. Sample Statistics of City Variable

Key Findings:

• The variable city has shown to have 123 number of levels, which is notably high and too specific to consider for the model.

SKEWNESS

Interval Variables 0 0 Data Role Me Target Target Variable Skewness Level TRAIN training_hours 1.856487 target TRAIN 0 target training hours 1.804095 TRAIN 0 target company_size_cleaned 1.427699 TRAIN target company_size_cleaned 1.366018 TRAIN target last_new_job_cleaned 1.065592 TRAIN target experience_cleaned 0.888693 TRAIN target last_new_job_cleaned 0.715807 TRAIN target experience_cleaned 0.286495 TRAIN 1 target city_development_index 0.008548 TRAIN target 0 city_development_index -1.45179<

Figure 15. Summary Statistics of Interval Variables

Key Findings:

To observe the skewness, the summary statistics for the interval variables was generated.
 Training hours, company size, and last new job has shown the highest level of skewness in the list.

INTERVAL VARIABLES

Figure 16. Minimums & Maximums

3.3 EDA Summary

Through the exploratory data analysis, it is observed that some variables have missing values. Those with missing values are Gender, Experience, Company Size, Company Type, Education Level, Enrolled University, Last New Job, and Major Discipline. Each missing data can be fixed through imputation later in the model.

When the interval variables' minimum and maximum values are examined, no unusual values are observed.

Additionally, some variables have been found to be too specific. City variable has 123 number of levels. Major discipline may be reduced through recoding. For example, we can apply recoding to this variable by using STEM and NON_STEM as our recoded values to prevent any unnecessary data dimensions. The same can be done for Education level. The variables Graduate, Masters, and PHD can be recoded into one as "Degree holder".

For skewness, training_hours, company_size, and last_new_job were observed to be the most skewed amongst all the interval variables. We can use data transformation for these if the values exceed the desired skewness threshold.

4 Data Preparation

In data preparation, we will define the variables that will be used in the models as well as the split of train and validation data. The imputation, replacement and transformation nodes that will be used by some models will be discussed here as well.

4.1 Feature selection

The file import node was used to import our dataset to SAS. Then the 'target' variable was set to binary, to flag if the observation is looking for a career change. Then, the following variables were rejected from our import:

Table 3. Rejected columns in SAS

Variable Name	Reason for Rejection
city	The variable has 123 unique
company_size	This variable was cleaned using excel, the observations were changed
	from categorical to interval.
	The variable was replaced by "company_size_cleaned".
experience	Cleaned using Excel, as the observations contains character ("<", ">")
	which cannot be used for interval. The following observations were
	change:
	">20" = 21
	"<1" = 0.5
	The variable was replaced by "experience_cleaned".
Last_new_job	Cleaned using Excel, as the observations contains character ("<", ">")
	which cannot be used for interval. The following observations were
	change:
	">4" = 5
	The variable was replaced by "last_new_job".

A total of thirteen variables will be employed in our models in its final form.

Figure 17. Feature selection

(none) ~ [not Equal	to	~	***			
Columns: Label			Mining			Basic	
Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
city	Rejected	Nominal	No		No		
city_development_index	Input	Interval	No		No		
company_size	Rejected	Nominal	No		Yes		
company_size_cleaned	Input	Interval	No		No		
company_type	Input	Nominal	No		No		
education_level	Input	Nominal	No		No		
enrolled_university	Input	Nominal	No		No		
enrollee_id	ID	Nominal	No		No		
experience	Rejected	Nominal	No		Yes		
experience_cleaned	Input	Interval	No		No		
gender	Input	Nominal	No		No		
last_new_job	Rejected	Nominal	No		Yes		
last_new_job_deaned	Input	Interval	No		No		
major_discipline	Input	Nominal	No		No		
relevent_experience	Input	Nominal	No		No		
target	Target	Binary	No		No		
training_hours	Input	Interval	No		No		

4.2 Missing values – Imputation

To find correlation between variables, all observations should have no missing or null values. In order to use all observations, imputation can be implemented using descriptive statistics. For categorical variables, we will set the imputation to the most frequent observation, while for numerical variables we will use the mean of the variable. The new imputed variable will have a corresponding indicator variable (e.g. M_company_size_cleaned) which is a flag that denotes if the value of a specific variable was imputed, therefore missing. These imputation flags will help us interpret if the missing data is statistically significant to the model.

The missing observations for each variable were imputed as shown in Figure 18 below.

Figure 18. Imputation of missing values

Note that the impute node will be used by regression and neural networks only.

4.3 Non-numeric values – Recode

To reduce the curse of dimensionality, some input levels of the following categorical variables were consolidated using the replacement node.

a. Recode Major discipline node - The observations from the 'major_discipline' variable was compressed from seven categories to (STEM, Business Degree, Arts, Humanities, No Major, Other, Missing) to three categories (STEM, NO_COLLEGE, NON_STEM) using the replacement node. For the reason that we will not take any business decisions related to the other combination for NON_STEM disciplines. This recode node will be used by all models including decision tree.

Figure 19. Recode results for major discipline

- b. Recode_gender_educationallevel_companytype node This node combines the input levels of gender, educational level and company type. This node will be used by regression and neural network models.
 - The gender variable contains four input levels (Male, Female, Unknown, and Other). To
 mitigate the decisions for the unknown, we recoded the observation by combining it with
 the other using the replacement node, then we assigned the observation name to U_O.
 Doing this can help our decision focus on three observations.
 - For educational level feature, Graduate, Masters and Phd was recoded to Degree Holder because the educational attainment after secondary education did not make a big difference in the results. Input levels are reduced from five (Primary School, High School, Graduate, Masters and Phd) to three input levels (Primary School, High School and Degree Holder).
 - For company type, input level is reduced from six to four: Startup (Early Startup and Funded Startup), Public_NGO (Public Sector and NGO), Pvt Ltd., and Other.

Figure 20. Recode results for company type, gender, and education level

4.4 Extreme values

Extreme values or outliers can skew the data and make the model biased. Variables with skewed data distribution have skewness more than absolute value of 1 or 2. In our data, interval variables training_hours and IMP_company_size_cleaned are a bit skewed (skeweness of 1.8 and 1.9) as shown in Figure 15 in EDA section. Transform nodes using cap and floor, and log transform will be prepared for regression and neural network models.

Cap and Floor

After cap and floor, training hours' skewness lowered down to 1.4 but IMP company size cleaned did not changed.

Interval Variables								
Variable	Replace Variable	Lower limit	Upper Limit	Label	Limits Method	Replacement Method	Lower Replacement Value	Upper Replacement Value
IMP_company_size.	.REP_IMP_compan	-6920.52	11543.86	Imputed company_size_cleaned	STDDEV	COMPUTED	-6920.52	11543.86
IMP_experience_cl	REP_IMP_experie	-10.1036	30.24211	Imputed experience_cleaned	STDDEV	COMPUTED	-10.1036	30.24211
IMP_last new job	REP_IMP_last_ne	-2.08169	6.667491	Imputed last new job cleaned	STDDEV	COMPUTED	-2.08169	6.667491
city_development_i	. REP_city_develop	0.457216	1.199688	Scity_development_index	STDDEV	COMPUTED	0.457216	1.199688
training_hours	REP_training_hours	-112.156	241.339	Otraining_hours	STDDEV	COMPUTED	-112.156	241.339

Log Transform after cap and floor

Log Transform without cap and floor

4.5 Data Partition

In supervised machine learning, the dataset is needed to be trained in order to predict other observation. In this project the dataset is then split into 50% train and 50% validation using the data partition node. Train dataset will be used to build the model while validation data will be used to check the model performance and avoid overfitting or underfitting. This dataset is now ready for modeling.

5 Model Exploration

5.1 Decision Trees

For creating classification systems based on several variables or for creating prediction algorithms for a target variable, decision tree methodology is a frequently used data mining technique. Using branch-like segments that form an inverted tree with a root node, internal nodes, and leaf nodes, this technique divides a population into subgroups (Song & Lu, 2015).

Advantage:

- Decision trees are easy to understand and interpret since they can be seen.
- In contrast to other models, decision trees are capable of handling both categorical and numerical observations.
- It requires less data preparation than other models that call for data normalization.

Disadvantage:

- does a poor job of handling data that is unbalanced and produces bias.
- Little changes in the data might result in different decision trees.

Maximal Decision Tree

It is a decision tree that has reached its full potential and has not yet undergone any pruning. To run a Maximal decision tree, we set the sub tree method to largest and the assessment measure to average square error. The result showed an ASE of 0.142565 with 17 leaves.

Figure 21. Maximal decision tree

Split Variable	Variable Description	-Log(p)	Number of Branches
city_development_index	city_development_index	285.6961	
company_size_cleaned	company_size_cleaned	118.5231	
company_type	company_type	95.7444	
experience_cleaned	experience_cleaned	54.6879	
enrolled university	enrolled university	42.4411	8

					Ratio of
		Number of			Validation
		Splitting		Validation	to Trainin
Variable Name	Label	Rules	Importance	Importance	Importanc
city_development_index		6	1.0000	1.0000	1.000
company_size_cleaned		2	0.6317	0.6982	1.105
education_level		1	0.4105	0.3937	0.959
experience_cleaned		1	0.2240	0.1596	0.712
last_new_job_cleaned		2	0.1541	0.1389	0.901
company_type		2	0.1463	0.1710	1.168
relevent experience		2	0.1071	0.0767	0.716

Based on logworth the competing variables for the first split are city_development_index and company_sized_cleaned. For the variable importance the company_sized_cleaned explains 63.17%, while education_level explains 41.05% of the variability explained by city_development_index.

Misclassification Tree

To find the optimal tree, pruning can be performed to the maximal tree using misclassification which is the percentage of results that differ from the predictions. The result showed an ASE 0.143443 with 9 leaves.

Figure 22. Misclassification tree

Split Variable	Variable Description	-Log(p)	Number of Branches
city_development_index	city_development_index	285.6961	
company_size_cleaned	company_size_cleaned	118.5231	
company_type	company_type	95.7444	
experience_cleaned	experience_cleaned	54.6879	
enrolled university	enrolled university	42.4411	

Variable Importance					
		Number of			Ratio of Validation
		Splitting		Validation	to Training
Variable Name	Label	Rules	Importance	Importance	Importance
city_development_index		4	1.0000	1.0000	1.0000
company_size_cleaned		1	0.6364	0.7023	1.1036
education_level		1	0.4161	0.3961	0.9518
experience_cleaned		1	0.2271	0.1606	0.7069
company_type		1	0.1270	0.1675	1.3193

The competing variables for the first split are city_development_index company_sized_cleaned. For the variable importance the company_sized_cleaned explains 63.64%, while education_level explains 41.61% variability of the explained city_development_index.

Probability Tree

Probability tree is where the leaves and branches were prune, moving the population to leaves that has the best split. This will optimize the performance of the decision tree by letting the tree grow to its optimal size. The result showed an ASE of 0.14232 with 33 leaves.

Figure 23. Probability Tree

Split Variable	Variable Description	-Log(p)	Number of Branches
city_development_index	city_development_index	285.6961	
company_size_cleaned	company_size_cleaned	118.5231	
company_type	company_type	95.7444	
experience_cleaned	experience_cleaned	54.6879	
enrolled university	enrolled university	42,4411	

Variable Importance					
					Ratio of
		Number of			Validation
		Splitting		Validation	to Training
Variable Name	Label	Rules	Importance	Importance	Importance
city_development_index		5	1.0000	1.0000	1.0000
company_size_cleaned		1	0.6352	0.6982	1.0991
education_level		1	0.4154	0.3937	0.9479
experience_cleaned		1	0.2267	0.1596	0.7041
company_type		2	0.1480	0.1710	1.1551
last_new_job_cleaned		1	0.1418	0.1389	0.9796
relevent experience		1	0.0809	0.0767	0.9478

The competing variables for the first split city_development_index company_sized_cleaned. For the variable importance the company_sized_cleaned explains while education_level explains 41.54% variability explained 63.52%, of the city_development_index.

Probability Tree – 3 Branches

Since the probability has the lowest ASE among the decisions tree, we then tried running it again by changing the maximum branch to three splits instead of just two. The result showed an ASE of 0.141066 with 22 leaves.

Figure 24. Decision Tree - Three way split tree

Split Variable	Variable Description	-Log(p)	Number of Branches
city_development_index	city_development_index	298.2304	
company_size_deaned	company_size_cleaned	118.5231	2
company_type	company_type	96.2808	3
experience_deaned	experience_cleaned	60.0066	3
enrolled_university	enrolled university	43.3556	3

Variable Importance					
					Ratio of
		Number of			Validation
		Splitting		Validation	to Training
Variable Name	Label	Rules	Importance	Importance	Importance
city_development_index		2	1.0000	1.0000	1.0000
company_size_cleaned		2	0.5919	0.6603	1.1157
education_level		3	0.4069 \	0.3359	0.8255
relevent_experience		2	0.1727	0.1464	0.8477
last_new_job_cleaned		3	0.1564	0.1380	0.8823
company_type		2	0.1426	0.1650	1.1570
experience_cleaned		1	0.1198	0.0814	0.6797
training_hours		1	0.1120	0.0447	0.3995
REP_major_discipline	Replacement: major_discipline	1	0.0729	0.0786	1.0783
enrolled university		1	0.0393	0.0256	0.6509

The competing variables for the first split are city_development_index and company_sized_cleaned. For the variable importance the company_sized_cleaned explains 59.19%, while education_level explains 40.69% of the variability explained by city_development_index.

By comparing the ASE from all decision trees model, the probability tree with three branches has the best result (optimal tree):

Table 4. Decision tree - model summary

Model	Average squared error (ASE)
Maximal Decision Tree	0.142565
Classification Tree	0.143443
Probability Tree	0.14232
Probability Tree – 3 Branches	0.141066

5.2 Logistic Regression

Logistic regression (also known as the logit model), was formulated by David Cox in 1958 and can be used for both classification and class probability estimation with its range bounded between 0 and 1. A classification model rather than a regression model, logistic regression is used for dichotomous outcome variables and relies on the "odds" of the event as it applies a nonlinear log transformation to the odds ratio, thereby not requiring a linear relationship between variables.

In this study, logistic regression was used to predict whether the candidate will be looking for a job change or will stay with the company after training. During the model development process, missing input values were included using data imputation since one cannot run nor do math with missing data on logistic regression. Moreover, data transformations were also executed in preparation for the regression to ensure linearity, achieve normality, and stabilize the variance. Although cap and floor were initially added instead of the transform node, these were showing unsatisfactory average squared error results on the models compared to the outcome by applying log transformations, hence, the method was not applied. Transforming the data via a log transformation allows us to select the best mathematical transformation for variables such as categorical or binary variables which can help reduce the skewness, leading to a more accurate model. Outliers or extreme values were also handled, and variables were reduced to avoid overfitting. Model complexity was also increased by using the Polynomial Regression aside from the standard regression methods. This model together with the Full, Forward, Backward, and Stepwise selection models were utilized, and the results are shown below.

Figure 25. Diagram: Regression model

Sequential Selection - Full

With full regression, all inputs are used to fit the model. Results show that the lowest average squared error which is at 0.158557 belongs to the model connected to the transform node.

Description of the Full Regression node	Average squared error (ASE)	
Connected to the recode node	0.159674	
Connected to the transform node	0.158557	

Sequential Selection - Forward

Starting off with an empty model, the forward selection model adds significant variables one at a time and stops until the criterion has been met. The model connected to the transform node has the lower ASE at 0.15873.

Description of the Forward Selection model	Average squared error (ASE)	
Connected to the recode node	0.159724	
Connected to the transform node	0.15873	

Sequential Selection - Backward

In backward regression, it begins with all the predictor variables in consideration then gradually removes the least significant variable one after the other until no variable is left in the model. Similar to the full selection method, the model connected to the transform node has the least ASE at 0.158545.

Description of the Backward elimination model	Average squared error (ASE)
Connected to the recode node	0.159665
Connected to the transform node	0.158545

Sequential Selection - Stepwise

The stepwise selection model combines both the forward and backward selection methods to test which significant variables best optimizes the model. It adds multiple variables while simultaneously removing those that are not significant. The same figures were generated similar

to the full selection model, in which the stepwise model connected to the transform node has the lower ASE at 0.15873.

Description of the Stepwise model	Average squared error (ASE)	
Connected to the recode node	0.159724	
Connected to the transform node	0.15873	

Polynomial Regression

Polynomial regression enables predictions to match the input or target association and minimize prediction bias. This regression node adds additional interaction terms and can be done either selectively or autonomously. With stepwise polynomial regression model, the lowest ASE was coming from the model connected to the recode node.

Description of the Stepwise polynomial model	Average squared error (ASE)	
Connected to the recode node	0.155537	
Connected to the transform node	0.157175	

The valuation data generated from the regression nodes allows us to choose the best model which is the Stepwise Polynomial Regression having the lowest ASE at 0.155537. Although the two polynomial regressions have the lowest ASE among the regression models created, the Backward Selection connected to the transform node will be used for a better interpretation of the results. It will allow us to distinctly measure the relationship between the variables and clearly define the constant effect of the predictor on the likelihood or probability that an outcome will occur.

Table 5. Regression – model summary

Description	Regression models	Average Squared Errors (ASE)
	Full Regression	0.159674
Regression models connected	Forward Selection	0.159724
to the recode node	Backward Selection	0.159665
	Stepwise Selection	0.159724
	Stepwise Polynomial Regression	0.155537

Regression models connected to the transform node	Full Regression	0.158557
	Forward Selection	0.15873
	Backward Selection	0.158545
	Stepwise Selection	0.15873
	Stepwise Polynomial Regression	0.157175

As seen from the figure below, the top three most important variables based on the Backward Selection chi-square results are city_development_index, LOG_IMP_company_size_cleaned and relevant_experience.

Results - Node: Backward Regression Diagram: HR_Analytics File Edit View Window Output 252 253 Type 3 Analysis of Effects 254 255 Wald Effect DF Chi-Square Pr > ChiSq 256 257 IMP_enrolled_university 2
IMP_experience_cleaned 1
LOG_IMP_company_size_cleaned 1 258 22.7287 <.0001 12.4589 0.0004 260 73.6970 <.0001 LOG_training_hours
REP_IMP_company_type 261 1 0.5772 0.4474 262 3 5.0457 0.1685 REP_IMP_education_level 3.4185 0.1810 263 264 REP_IMP_gender 3.1744 0.2045 265 REP_major_discipline 2 23.1314 <.0001 city_development_index 266 1 747.5816 <.0001

Figure 26. Regression - Type 3 Analysis of Effects

After creating the logistic regression models and selecting the inputs with the most appropriate selection method and fit statistic, the odds ratios will be used to interpret the model since it specifies each input's effect on the logit score. This will indicate what factors the odds of the candidate looking for a job change for each unit change in the associated input.

57.1362

<.0001

267

268

relevent_experience

Figure 27. Regression - Odds ratio estimates

Output			
799			
800			
801		Odds Ratio Estimates	
802			
803			Point
804 Ef	fect		Estimate
805			
806 IM	P_enrolled_university	Full time course vs no_enrollment	1.385
807 IM	P_enrolled_university	Part time course vs no_enrollment	1.103
808 IM	P_experience_cleaned		0.984
809 LO	G_IMP_company_size_cleaned	1	1.124
810 LO	G_training_hours		0.979
811 RE	P_IMP_company_type	Other vs Startup	1.196
812 RE	P_IMP_company_type	Public_NGO vs Startup	1.010
813 RE	P_IMP_company_type	Pvt Ltd vs Startup	1.194
814 RE	P_IMP_education_level	Degree_holder vs Primary School	1.714
815 RE	P_IMP_education_level	High School vs Primary School	1.608
816 RE	P_IMP_gender	Female vs 0_U	1.040
817 RE	P_IMP_gender	Male vs 0_U	0.915
818 RE	P_major_discipline	NON_STEM vs STEM	1.126
	P_major_discipline	NO_COLLEGE vs STEM	0.464
820 ci	ty_development_index		0.003
821 re	levent_experience	Has relevent experience vs No relevent experience	0.613
822			
823			

Interpretation of the odd ratio estimate:

Effect	Interpretation
IMP_enrolled_university (Full time	Employees enrolled in a full-time course are 38.5%
course vs no_enrollment)	more likely to look for a job change than those who are
	not enrolled in any course.
IMP_enrolled_university (Part time	Employees enrolled in a part-time course are 10.3%
course vs no enrollment)	more likely to look for a job change than those who are
	not enrolled in any course.
IMP_experience_cleaned	For every unit the employee's total experience in years
	goes up, the probability that the employee will look for a
	job change decreases by 1.6%.
LOG_IMP_company_size_cleaned	As company size increases by 2.74 times, it is 12.4%
	more likely that the employee will look for a job change.
LOG_training_hours	For every 2.74 times the training hours goes up, it is
	2.1% less likely that the employee will look for a job
	change.
REP_IMP_company_type (Other	Employees from Other companies are 19.6% more likely
vs Startup)	to look for a job change compared to those from start-up
	companies.
REP_IMP_company_type	Employees from public sector/NGOs are 1% more likely
(Public_NGO vs Startup)	to look for a job change compared to those from start-up
	companies.
REP_IMP_company_type (Pvt Ltd	Employees from Pvt Ltd are 19.4% more likely to look
vs Startup)	for a job change compared to those from start-up
	companies.

REP_IMP_education level (Degree	Degree holder employees are 71.4% more likely to look
holder vs Primary School)	for a job change than those who completed primary
	school.
REP_IMP_education level (High	Employees who finished high school are 60.8% more
School vs Primary School)	likely to look for a job change than those who completed
	primary school.
REP_IMP_Gender (Female vs	Females are 4% more likely to look for a job change
O_U)	than Other/Unknown gender.
REP_IMP_Gender (Male vs O_U)	Males are 8.5% less likely to look for a job change than
	Other/Unknown gender.
REP_major_discipline	Employees with non-STEM education major discipline
(NON_STEM vs STEM)	are 12.6% more likely to look for a job change compared
	to those who took STEM.
REP_major_discipline	Employees with no college are 53.6% less likely to look
(NO_COLLEGE vs STEM)	for a job change compared to those who took STEM.
city_development_index	For every unit of city development index that goes up,
	the probability that the employee will look for a job
	change decreases by 99.7%.
relevant_experience (Has relevant	Employees with relevant experience are 38.7% less
experience vs No relevant	likely to look for a job change than those with no
experience)	relevant experience.

5.3 Neural Network

Neural Network uses a prediction formula based on regression, so probability is also computed and customized for each observation. The results of NN can be more accurate, but it will also be hard to interpret. Since NN can't work on an incomplete dataset, we will be connecting our models after the imputation node. In general, transformation is not needed for NN since extreme and unusual values can be handled with the use of hyperbolic tangent activation function. However, there could be times that results are better when data is less skewed so in this study, we will also include models with transformation.

Figure 28. Diagram: Neural network model

All NNs are using maximum iterations of 100 for the convergence criterion to be met. Each NN model was tested to use preliminary training and will be compared if it has lower ASE when preliminary training is set to No. Whichever is lower will be the final set up for that node.

Full Neural Network

In a full neural network model, all variables will be used in training the data. Three full neural network models were created for this study and will be compared if the results are better with the recode and transform nodes or not. Based on ASE, the best model among the three is the model without any recode and transform, NN 3 HU IMP.

Full Neural network node	Description	Preliminary training	Average Squared Error (ASE)
NN 3 HU IMP	Directly connected to impute node	Yes	0.146924
NN 3 HU IMP REC	Connected to impute and recode nodes	No	0.151555
NN 3 HU IMP REC TRANS	Connected to impute, recode, and transform nodes	Yes	0.15012

Reduced Variables Set Neural Network

Neural network has no internal mechanism to select useful inputs in a model; therefore, we will generate models using the reduced variables from our best decision tree model and regression

models. Among these 5 models, the best one is NN stepwise polynomial connected to impute and recode (NN 3HU Stepwise Polynomial IMP REC).

Neural network node (Reduced variable)	Description	Preliminary training	Average Squared Error (ASE)
NN 3HU Three way split	NN from Three-way split decision tree	Yes	0.174168
NN 3HU Backward IMP NN from backward regression (with recode data)		No	0.156545
NN 3HU Stepwise Polynomial IMP REC	NN from stepwise polynomial regression (with recode data)	No	0.146318
NN 3HU Backward IMP REC TRANS	NN from backward regression (with recode and transformed data)	No	0.156338
NN 3HU Stepwise Poly IMP REC TRANS	NN from stepwise polynomial regression (with recode and transformed data)	No	0.147195

Optimal Neural Network

From the neural network models above, the best model is provided by "NN 3HU Stepwise Polynomial IMP REC" three hidden units with ASE of 0.146318. For the final tuning, hidden units were changed to 2, 4 and 6 to check which one will result to a better model. Results showed that the best model created by NN is the 4 hidden units model with ASE of 0.146234.

Neural Network model	Average Squared Error (ASE)
NN 2HU Stepwise Polynomial IMP REC	0.152741
NN 3HU Stepwise Polynomial IMP REC	0.146318
NN 4HU Stepwise Polynomial IMP REC	0.146234
NN 6HU Stepwise Polynomial IMP REC	0.147792

6 Results and Analysis

6.1 Performance Measure / Model Assessment (ROC/ASE)

To help us summarize the results from all our models, we can connect them to a special node called "Model comparison". This allows us to cross-model comparisons and predictions from preceding nodes. Our basis for our assessment is based on two criteria: Receiver Operator Characteristic (ROC) index and Average Squared Error (ASE).

Figure 29. Final diagram: Model assessment

Our fit statistics from our model comparison can help us determine which models demonstrates the highest ROC index and lowest Average Squared Error. The results as follows:

Fit Statistics window under Model Comparison node results

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Valid: Roc Index	Valid: Average Squared Error
Y	Tree4	Tree4	Three Way Split Tree	target	0.789	0.141066
	Tree	Tree	Maximal Tree	target	0.789	0.142565
	Tree2	Tree2	Classification Tree	target	0.779	0.14344
	Tree3	Tree3	Probability Tree	target	0.786	0.1423
	Neural8	Neural8	NN 3HU STEPWISE POLY IMP REC	target	0.785	0.14631
	Neural5	Neural5	NN 4HU STEPWISE POLY IMP REC	target	0.788	0.14623
	Neural26	Neural26	NN 3HU BACKWARD IMP CAP TRANS	target	0.784	0.1465
	Neural21	Neural21	NN 3HU BACKWARD IMP REC CAP	target	0.785	0.14656
	Neural13	Neural13	NN 3HU IMP REC TRANS	target	0.776	0.15012
	Neural18	Neural18	NN 3HU STEPWISE POLY IMP REC TRANS	target	0.775	0.14990
	Neural	Neural	NN 3HU IMP	target	0.784	0.14692
	Neural11	Neural11	NN 6HU IMP	target	0.774	0.1504
	Neural10	Neural10	NN 4HU IMP	target	0.777	0.15017
	Neural6	Neural6	NN 3HU BACKWARD IMP REC	target	0.743	0.15654
	Neural20	Neural20	NN 3HU FORWARD IMP REC CAP	target	0.742	0.15673
	Neural24	Neural24	NN 3HU IMP CAP	target	0.745	0.15678
	Neural7	Neural7	NN 6HU STEPWISE POLY IMP REC	target	0.784	0.13070
	Neural27	Neural27	NN 3HU IMP REC CAP	target	0.772	0.1515
	Neural4	Neural4	NN 2HU STEPWISE POLY IMP REC	target	0.771	0.15274
	Neural2	Neural2	NN 3HU IMP REC	target	0.771	0.15190
	Neural25	Neural25	NN 3HU FORWARD IMP CAP TRANS	target	0.744	0.15694
	Neural9	Neural9	NN 2HU IMP	target	0.772	0.15034
	Reg10	Reg10	IMP REC TRANS STEPWISE POLYNOMIAL	target	0.754	0.15717
	Neural16	Neural16	NN 3HU BACKWARD IMP REC TRANS	target	0.746	0.15633
	Reg7	Reg7	IMP REC TRANS FORWARD REG	target	0.741	0.15033
	Reg9	Reg9	IMP REC TRANS STEPWISE REG	target	0.741	0.1587
	Reg20	Reg20	IMP REC CAP STEPWISE POLY	target	0.767	0.15559
	Reg6	Reg6	IMP REC TRANS FULL REG	target	0.743	0.15855
	Reg5	Reg5	IMP REC STEPWISE POLYNOMIAL		0.743	0.15553
	Reg8	Reg8	IMP REC TRANS BACKWARD REG	target	0.743	0.15854
			IMP CAP TRANS FULL REG	target	0.743	0.15948
	Reg21	Reg21	IMP FULL REGRESSION	target	0.736	0.15948
	Reg11 Reg25	Reg11 Reg25	IMP CAP TRANS STEPWISE POLY	target	0.765	0.15948
			IMP BACKWARD REGRESSION	target	0.736	0.15002
	Reg13	Reg13	IMP CAP TRANS BACKWARD REG	target		
	Reg23	Reg23	IMP STEPWISE POLYNOMIAL	target	0.736	0.15947
	Reg15	Reg15		target	0.766	0.15596
	Reg22	Reg22	IMP CAP TRANS FORWARD REG	target	0.735	0.15963
	Reg24	Reg24	IMP CAP TRANS STEPWISE REG	target	0.735	0.15963
	Reg	Reg	IMP REC FULL REG	target	0.732	0.15967
	Reg18	Reg18	IMP REC CAP BACKWARD REG	target	0.732	0.15966
	Reg16	Reg16	IMP REC CAP FULL REG	target	0.732	0.15967
	Reg3	Reg3	IMP REC BACKWARD REG	target	0.732	0.159665
	Reg12	Reg12	IMP FORWARD REGRESSION	target	0.735	0.159561
	Reg14	Reg14	IMP STEPWISE REGRESSION	target	0.735	0.15956
	Reg17	Reg17	IMP REC CAP FORWARD REG	target	0.731	0.159793
	Reg19	Reg19	IMP REC CAP STEPWISE REG	target	0.731	0.159793
	Reg2	Reg2	IMP REC FORWARD REG	target	0.731	0.159724
	Reg4	Reg4	IMP REC STEPWISE REG	target	0.731	0.15972
	Neural12	Neural12	NN 3HU Three Way Split	target	0.712	0.17469

When arranged accordingly, the top five models based on each respective validation are:

Top ROC Inc	lex	Top Average Squared Error		
Model Description Valid: Roc Index		Model Description	Valid: ASE	
Three Way Split Tree	0.789	Three Way Split Tree	0.141066	
Maximal Tree	0.789	Probability Tree	0.14232	
NN 4HU STEPWISE				
POLY IMP REC	0.788	Maximal Tree	0.142565	
Probability Tree	0.786	Classification Tree	0.143443	
NN 3HU STEPWISE		NN 4HU STEPWISE		
POLY IMP RE	0.785	POLY IMP REC	0.146234	

It is shown that under ROC Index, our best models, Three Way Split Tree and Maximal Tree have both tied with a value of 0.789. Meanwhile, if determined using the Average Squared Error, Three Way Split Tree also leads with the lowest value at 0.141066.

6.2 Feature Importance

Figure 30. Best model: Three-Way Split Tree - Variable Importance

Variable Importance						
Variable Name	Label	Number of Splitting Rules] Import	cance	Validation Importance	Ratio of Validatior to Training Importance
city_development_index		2	1.	0000	1.0000	1.0000
company_size_cleaned		2	0.	5919	0.6603	1.1157
education_level		3	0.	4069	0.3359	0.8255
relevent_experience		2	0.	1727	0.1464	0.8477
last_new_job_cleaned		3	0.	1564	0.1380	0.8823
company_type		2	0.	1426	0.1650	1.1570
experience_cleaned		1	0.	1198	0.0814	0.6797
training_hours		1	0.	1120	0.0447	0.3995
REP_major_discipline	Replacement: major_discipline	1	0.	0729	0.0786	1.0783
enrolled university		1	0.	0393	0.0256	0.6509

In determining the important variables, we must first select our overall best model. According to our model comparisons, the Three-Way Split Tree can be considered as this has the highest ROC index and the lowest Average Squared Error. The above image displays the metrics of important input features. The top 3 most important variables concluded are city_development_index, company_sized_cleaned, and education_level. The city_development_index is the input shown to have the highest importance. Moreover, company_size_cleaned explains 59.19% of the variability explained by the city_development_index. While for education_level, it's variability relative to the city_development index amounts to 40.69%.

Best model results 6.3

Number of Leaves = Valid: Average Squared Error = 0.1411

> 15 Number of Leaves Train: Average Squared Error Valid: Average Squared Error

10

- • X

Subtree Assessment Plot

Average Square Error

0.18

0.16

0.14

Leaf Statistics - E X ■ Training Percent 1 ■ Validation Percent 1 Treemap

Figure 31. Three-way split tree results

The three-way split decision tree has 22 terminal nodes with ASE of 0.1411. We have selected four nodes (group) that have the highest probability to change jobs and 1 node that has the lowest probability to leave their jobs. The probability and characteristics of these groups are described in Table 6 below. The information will be used to report business results and suggest recommendations which will be discussed in section 7.

Table 6. Leaf nodes considered for business report and recommendations

Node	Training Observations	Training %	Validation observations	Validation %	Group characteristics
2	1737	0.59	1690	0.59	Employees from city
					development index below
					0.6245
7	4797	0.09	4714	0.09	Employees from city
					development index at least
					0.7915 or missing, known
					company size (11,12,20,21)
42	184	0.51	174	0.52	Employees from city
					development index between
					0.7915 and 0.9175 or
					missing, Graduate, no
					relevant experience, Training
					hours below 126
26	562	0.64	648	0.56	Employees from company
					size unknown, city
					development index between

					0.9175 and 0.9235, graduate / masters
9	362	0.53	333	0.53	Employees from city development index between 0.6245 and 0.7915, unknown company size, graduate / masters

7 Conclusion and Recommendations

7.1 Conclusion

This project consists of two major parts: First, the use of intensive modeling techniques such as decision trees, logistic regression, and neural networks to predict the probability of whether data scientists to look for a new job; Second, interpreting affected factors on the employee's decision and finding the optimal solution that can address our business problem. Based on the results from a study of 19,000 data scientists, it can be predicted that those who are looking for a job change are highly influenced by the employee's location (city development index), current company size, and education level. Employees coming from low development index cities (below 0.6245) are more inclined to switch to a new job with a probability of 59%. Moreover, employees who have college or master's degrees from cities with development indexes falling within 0.6245 - 0.7915 or 0.9175 - 0.9235 coming from unidentified company size and have less than 126 training hours are likely to switch jobs as well. On the other hand, employees from cities with a development index of at least 0.7915 or undetermined, and from a company with a specified number of employees are predicted to not look for a new job. This model is tested to be accurate 86% of the time.

7.2 Recommendation

Recruitment and Talent Acquisition

Results showed that from all the factors to be considered, the city development index is the most important determinant of whether a candidate will stay in their current company or switch to a new job. The City Development Index (CDI) can be defined as a measure to examine the socioeconomic development of cities, as well as an individual's access to urban facilities and their average well-being. Through data-driven talent acquisition and HR analytics, the company can reduce costs and improve its hiring process by making decisions based on reliable data by targeting potential candidates who are living in these specific indices in developed cities. Not only can it reduce the drop-off rate during the recruitment process, but it can also eliminate unnecessary costs and time spent in selecting the right employees since they are most likely looking to switch jobs. Practicing evidence-based HR can enable the company to prevent losses before they happen, reduce the risk of turnover and improve retention by designing targeted strategies.

Training and Development

Through machine learning techniques, the HR department now has the ability to pinpoint bottlenecks in their hiring process, streamline the training they currently offer, and improve the structure of candidate pipelines to hire the most motivated and skilled individuals. Offering incentives such as training and certifications can help influence employment and improve retention. As data science constantly evolves, training opportunities can be used as a retention tool that can instill loyalty and commitment from employees to further advance their careers, climb up the management ladder or hone their knowledge of new technologies. By offering access to data science boot camps, certifications (e.g., SAS Advanced Analytics or Azure Data Scientist

Associate from Microsoft), and unlimited access to training platforms (e.g., LinkedIn Learning, Coursera, Skillshare, and Udemy), employees can improve their job performance, as well as their analytical and problem-solving skills. It gives employees the opportunity to upskill, reskill, boost their performance and achieve organizational goals.

7.3 Further Research

Despite obtaining informative results from the modeling techniques used, this study has a huge scope for improvement and extension in the current model. Adding more information and variables can be done to further enhance the results such as performing sentiment analysis or opinion mining to analyze employee feedback and describe how employees feel about their organization. Through this, it can detect changes in employee satisfaction and measure the employee's overall experience. In addition, performing a more thorough analysis of the significant variables used in the study can be done such as learning how to identify the unknown company sizes included in the dataset and understanding why employees from lower CDI are moving to higher CDI locations.

References

- City Development Index. (n.d.). https://www.cdindex.net/en/methodology
- Davenport, T. H., Patil D. (2022). *Is Data Scientist still the sexiest job of the 21st Century*.

 Harvard Business Review. https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-21st-century.
- Globe News Wire. (2021). Study Reveals High Turnover Rates Among Data Science

 Professionals. https://www.globenewswire.com/en/newsrelease/2021/10/15/2314725/0/en/Study-Reveals-High-Turnover-Rates-Among-DataScience-Professionals.html
- Kaggle.com dataset. *HR Analytics: Job change of Data Scientists. Predict who will move to a new job*. Retrieved from https://www.kaggle.com/arashnic/hr-analytics-job-change-of-data-scientists/code.
- Song, Y.-Y., & Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130–135.
 https://doi.org/10.11919/j.issn.1002-0829.215044
- Sperandei, S. (2014). Understanding logistic regression analysis. *Biochemia Medica*, 12–18. https://doi.org/10.11613/bm.2014.003.
- Omdena. (2022). *3 Reasons why data scientists leave their jobs and how tech companies can change this.* https://omdena.com/blog/why-data-scientists-leave-their-jobs/