

Interrogación 2

26 de octrube de 2022 Profesores: Fernando Suárez - Sebastián Bugedo - Nicolás Alvarado

Instrucciones

- La duración de la interrogación es de 2 horas.
- Durante la evaluación **no puede** hacer uso de sus apuntes o slides del curso.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.
- Escriba sus respuestas con lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.

Pregunta 1 - Grafos (vista en clases)

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente? Demuestre usando grafos.

Solución

Sea G(V, E) con |V| = 6, buscamos demostrar que G tiene un clique o un conjunto independiente de tamaño 3. Por el teorema visto en clases, esto es equivalente a mostrar que G tiene un clique o que \overline{G} lo tiene. Por contradicción, suponemos que ni G ni \overline{G} tiene el clique. Sea $v \in V$ tenemos 2 casos:

■ v tiene por lo menos 3 vecinos: Sean $x, y, z \in V$ los vecinos de v tales que $(v, x), (v, y), (v, z) \in E$. Una observación importante es que no pueden existir aristas entre x, y, z dado que de otra manera de generaría un clique de tamaño 3, contradiciendo nuestra hipótesis. Luego, x, y, z forman un conjunto independiente en G y por el teorema visto en clases estos vértices mismos forman un clique en \overline{G} .

■ v tiene menos de 3 vecinos: En este caso v no es adyacente con por lo menos 3 vertices de G. Sean x, y, z estos vértices tales que $(v, x), (v, y), (v, z) \notin E$. Luego, x, y, z son vecinos de v en \overline{G} y podemos aplicar el mismo razonamiento del caso anterior para concluir que x, y, z forman un clique de tamaño 3 en G.

Como en ambos casos llegamos a que G o \overline{G} cuentan con un clique, esto contradice nuestra hipótesis y por ende G debe ser tal que tiene un clique de tamaño 3 o un conjunto independiente de tamaño 3.

Pauta (6 pts.)

• 3 puntos por cada caso.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 2 - Relaciones de Orden

Sean (A, \preceq_A) y (B, \preceq_B) dos órdenes parciales. Definimos la relación \preceq sobre $A \times B$ como:

$$(a_1,b_1) \preceq (a_2,b_2)$$
 si y sólo si (i) $a_1 \neq a_2$ y $a_1 \preceq_A a_2$, o (ii) $a_1 = a_2$ y $b_1 \preceq_B b_2$

Demuestre que \leq es una relación de orden parcial.

Solución

Debemos demostrar que ≤ es refleja, antisimétrica y transitiva.

- Refleja: Sea $(a, b) \in A \times B$ un par ordenado cualquiera. Como sabemos que \leq_B es un orden parcial, también debe ser refleja y por ende $b \leq_B b$. Además, es claro que a = a y con esto se cumplen ambas condiciones de (ii), y en consecuencia $(a, b) \leq (a, b)$.
- Antisimétrica: Sean (a_1, b_1) y (a_2, b_2) dos pares ordenados tales que

$$(a_1, b_1) \leq (a_2, b_2) \text{ y } (a_2, b_2) \leq (a_1, b_1)$$

Debemos demostrar que $(a_1, b_1) = (a_2, b_2)$.

Notemos que la condición (i) no se puede cumplir para ninguna de las relaciones, ya que por un lado tendríamos que $a_1 \neq a_2$ y $a_1 \leq_A a_2$. Por otro lado, tendríamos que $a_2 \neq a_1$ y $a_2 \leq_A a_1$. Y como \leq_A es un orden y en consecuencia antisimétrica tendríamos que $a_1 = a_2$, lo que sería una contradicción.

Luego, el único caso posible es que ambas relaciones cumplan (ii). De acá obtenemos que

$$a_1 = a_2 y b_1 \leq_B b_2 y b_2 \leq_B b_1$$

Y como \leq_B es antisimétrica obtenemos que $b_1=b_2$. De esto concluimos que

$$(a_1, b_1) = (a_2, b_2)$$

.

■ Transitiva: Sean (a_1, b_1) , (a_2, b_2) y (a_3, b_3) pares ordenados tales que

$$(a_1, b_1) \leq (a_2, b_2) \text{ y } (a_2, b_2) \leq (a_3, b_3)$$

Debemos demostrar que $(a_1, b_1) \leq (a_3, b_3)$. Tenemos 4 casos:

1. Si ambas relaciones cumplen (i), tendremos que

$$a_1 \neq a_2$$
 y $a_2 \neq a_3$ y $a_1 \leq_A a_2$ y $a_2 \leq_A a_3$

Como \leq_A es un orden y por ende transitiva, obtenemos que $a_1 \leq_A a_3$. Ahora demostraremos que $a_1 \neq a_3$. Por contradicción, si $a_1 = a_3$ podemos reemplazar esto en $a_2 \leq_A a_3$ y obtener $a_2 \leq_A a_1$. Como sabemos que $a_1 \leq_A a_2$, por antisimetría de \leq_A tendríamos que $a_1 = a_2$, lo que contradice el hecho de que $a_1 \neq a_2$. Luego, como $a_1 \neq a_3$ y $a_1 \leq_A a_3$ se cumple que $(a_1, b_1) \leq (a_3, b_3)$.

2. Si ambas relaciones cumplen (ii) tenemos que

$$a_1 = a_2 \text{ y } a_2 = a_3 \text{ y } b_1 \leq_B b_2 \text{ y } b_2 \leq_B b_3$$

Por transitividad de la igualdad, y por transitividad de \leq_B obtenemos que $a_1 = a_3$ y $b_1 \leq_B b_2$ y por ende que $(a_1, b_1) \leq (a_3, b_3)$.

3. Si la primera relación cumple (i) y la segunda cumple (ii), tendríamos que

$$a_1 \neq a_2$$
 y $a_2 = a_3$ y $a_1 \leq_A a_2$ y $b_2 \leq_B b_3$

Como $a_2 = a_3$, podemos reemplazar a_3 en $a_1 \neq a_2$ y $a_1 \leq_A a_2$. De esto obtenemos $a_1 \neq a_3$ y $a_1 \leq_A a_3$, es decir, la propiedad (i). Concluimos que $(a_1, b_1) \leq (a_3, b_3)$.

4. Si la primera relación cumple (ii) y la segunda cumple (i), tendríamos que

$$a_1 = a_2$$
 y $a_2 \neq a_3$ y $b_1 \preceq_B b_2$ y $a_2 \preceq_A a_3$

Como $a_1 = a_2$, podemos reemplazar a_1 en $a_2 \neq a_3$ y $a_2 \leq_A a_3$. De esto obtenemos $a_1 \neq a_3$ y $a_1 \leq_A a_3$, es decir, la propiedad (i). Concluimos que $(a_1, b_1) \leq (a_3, b_3)$.

Como en los 4 casos llegamos a $(a_1,b_1) \preceq (a_3,b_3)$ concluimos que \preceq es transitiva.

Pauta (6 pts.)

- 1 punto por refleja.
- 2 puntos por simétrica.
- 3 puntos por transitiva.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 3 - Funciones y Cardinalidad

- a) Demuestre que si A, B son conjuntos enumerables tales que $A \cap B = \emptyset$, entonces $A \cup B$ es enumerable¹.
- b) Sea $\{0,1\}^{\omega}$ el conjunto de los strings infinitos de la forma $a_0a_1a_2a_3\cdots$, donde cada a_i es 0 o 1. Demuestre que $\{0,1\}^{\omega}$ no es enumerable.

Solución

a) Mostraremos 2 soluciones alternativas².

Solución Alternativa 1

Como A y B conjuntos enumerables podemos enumerarlos en una lista infinita con indices naturales tal que todos los elementos de A y B aparecen una única vez cada uno.

$$A = \{a_1, a_2, a_3, \ldots\}$$
 $B = \{b_1, b_2, b_3, \ldots\}$

Luego, podemos enumerar los elementos intercalandolos entre ellos

$$A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, \ldots\}$$

Para que la enumeración funcione, todos los elementos de $A \cup B$ deben aparecer una única vez cada uno. Esto es evidente ya que como A y B son enumerables todos sus elementos aparecen exactamente una vez en sus listas respectivas. Además, como $A \cap B = \emptyset$, no comparten elementos y por ende no se generan repeticiones en la lista.

Solución Alternativa 2

Como A y B conjuntos enumerables existen dos funciones $f: \mathbb{N} \to A$ y $g: \mathbb{N} \to B$ biyectivas. Luego, podemos definir la siguiente función biyectiva $h: \mathbb{N} \to A \cup B$

$$h(x) = \begin{cases} f(\frac{x+1}{2}) & x \text{ es impar} \\ g(\frac{x}{2}) & x \text{ es par} \end{cases}$$

Notemos que h debe ser inyectiva, ya que f y g son inyectivas, y como $A \cap B = \emptyset$ (no comparten elementos) no se generan colisiones en el recorrido. Además, h debe ser sobre ya que tanto f y g son sobre, y reciben todo el dominio de los naturales en h.

¹En caso de utilizar una biyección (o enumeración infinita), debe argumentar por qué su propuesta corresponde efectivamente a una biyección.

²Podrían haber más soluciones posibles, por ejemplo utilizar el teorema de Schröder-Bernstein.

b) Por contradicción, supongamos que $\{0,1\}^{\omega}$ es enumerable. Entonces existe una lista infinita de $\{0,1\}^{\omega}$:

$$w_0, w_1, w_2, w_3, \dots$$

donde cada string en $\{0,1\}^\omega$ aparece exactamente una vez.

Notemos que cada w_i es una palabra de la forma

$$w_i = a_{i0}a_{i1}a_{i2}a_{i3}\dots$$
, con $a_{ij} \in \{0, 1\}$

Strings	Representación por caracteres					
w_0	a_{00}	a_{01}	a_{02}	a_{03}	a_{04}	• • •
w_1	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	• • •
w_2	a_{20}	a_{21}	a_{22}	a_{23}	a_{24}	• • •
w_3	a_{30}	a_{31}	a_{32}	a_{33}	a_{34}	• • •
w_4	a_{40}	a_{41}	a_{42}	a_{43}	a_{44}	• • •
:	:	÷	÷	÷	÷	٠

Para cada
$$i \ge 0$$
, definimos $a_i = \begin{cases} 1 & a_{ii} = 0 \\ 0 & a_{ii} = 1 \end{cases}$

Sea ahora el string $w^* = a_0 a_1 a_2 a_3 a_4 a_5 a_6 \dots$ ¿Aparece w^* en la lista?

- $\lambda w^* = w_0$? No, porque difieren en el primer caracter.
- $\dot{\iota}w^* = w_1$? No, porque difieren en el segundo caracter.
- **.** . . .
- $i.w^* = w_i$? No, porque el *i*-ésimo caracter de w^* es distinto al de w_i :

$$a_i \neq a_{ii}$$

Por lo tanto, w^* no aparece en la lista $\rightarrow \leftarrow$

Como $\{0,1\}^\omega$ no puede ponerse en una lista, no es enumerable.

Pauta (6 pts.)

- a) 2 ptos por encontrar la enumeración o biyección.
 - $\bullet\,$ 1 pto por argumentar por qué es una biyección o una enumeración correcta.
- b) 2 ptos por dar una diagonalización válida.
 - 1 pto por argumentar por qué es correcta.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 4 - Análisis de Algoritmos

(a) Resuelva la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 1 \\ T(n-1) + n & n \ge 2 \end{cases}$$

(b) Considere una versión modificada del algoritmo MergeSort visto en clases. El algoritmo TripleMergeSort opera dividiendo la lista original de tamaño n en tres sublistas de tamaños similares. Además, se utiliza el algoritmo TripleCombinar que toma 3 listas ordenadas y las combina en una lista ordenada de n elementos, efectuando para ello n-1 comparaciones de elementos en el peor caso.

Determine la complejidad TripleMergeSort en el peor caso.

```
TripleMergeSort (A, n):
      if n \leq 1:
          return A
\mathbf{2}
      else:
3
          p = |n/3|
4
          q = |2n/3|
\mathbf{5}
          A_1 = \text{TripleMergeSort}(A[0, \dots, p-1], p)
6
          A_2 = \texttt{TripleMergeSort}(A[p, \dots, q-1], q-p)
7
          A_3 = \text{TripleMergeSort}(A[q, \dots, n-1], n-q)
8
          return TripleCombinar(A_1, A_2, A_3)
9
```

Solución

a) Vamos a expandir el caso recursivo:

$$T(n) = T(n-1) + n$$

$$= (T(n-2) + n - 1) + n$$

$$= T(n-2) + n + (n-1)$$

$$= (T(n-3) + n - 2) + n + (n-1)$$

$$= T(n-3) + n + (n-1) + (n-2)$$

$$\vdots$$

$$= T(n-i) + \sum_{k=1}^{i} (n-k+1)$$

Tomamos i = n - 1:

$$T(n) = T(1) + \sum_{k=1}^{n-1} (n - k + 1)$$

$$= T(1) + \sum_{k=1}^{n-1} n - \sum_{k=1}^{n-1} k + \sum_{k=1}^{n-1} 1$$

$$= 1 + n \cdot (n - 1) - \frac{n \cdot (n - 1)}{2} + n - 1$$

$$= n^2 - n - \frac{n^2}{2} + \frac{n}{2} + n$$

$$= \frac{n^2}{2} + \frac{n}{2}$$

$$= \frac{n \cdot (n + 1)}{2}$$

b) Como vimos antes, el peor caso es que TripleCombinar tenga que ejecutar n-1 comparaciones, a la que sumamos la comparación que se hace para verificar el tamaño de la lista. Entonces, la ecuación de recurrencia para TRIPLEMERGESORT es:

$$T(n) = \begin{cases} 1 & n < 2\\ 2 \cdot T(\left\lfloor \frac{n}{3} \right\rfloor) + T(\left\lceil \frac{n}{3} \right\rceil) + n & n \ge 2 \end{cases}$$

Aplicamos el teorema maestro:

$$a_1=2, a_2=1, b=3, c=1, d=1, c_0=1$$

$$a_1+a_2=3, b^d=3^1=3 \to \text{Entramos en el segundo caso: } a_1+a_2=b^d$$

Por lo tanto, $T(n) \in \Theta(n \cdot \log(n))$.

Pauta (6 pts.)

- 2 puntos por expandir y reemplazar.
 - 1 punto por llegar al resultado correcto.
- b) 1.5 puntos por entregar T(n) correcto.
 - 1.5 puntos por aplicar bien el teorema maestro.

Puntajes parciales y soluciones alternativas a criterio del corrector.