# Optimization Lecture 3+4

Qingfu Zhang

Dept of CS , City U

2024

### Outline

Convex functions

Operations that preserve convexity

Perspective and conjugate

Quasiconvexity

Summary

### Outline

#### Convex functions

Operations that preserve convexity

Perspective and conjugate

Quasiconvexity

Summary

#### Definition

▶  $f: \mathbf{R}^n \to \mathbf{R}$  is convex if **dom** f is a convex set and for all  $x, y \in \mathbf{dom} \, f, 0 \le \theta \le 1$ ,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$



- ightharpoonup f is concave if -f is convex
- ▶ f is **strictly** convex if **dom** f is convex and for  $x, y \in \text{dom } f, x \neq y, 0 < \theta < 1$ ,

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

can be generated to other spaces.



#### Restriction of a convex function to a line

 $ightharpoonup f: \mathbf{R}^n \to \mathbf{R}$  is convex if and only if the function  $g: \mathbf{R} \to \mathbf{R}$ ,

$$g(t) = f(x + tv), \quad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex in t for any  $x \in \operatorname{dom} f, v \in \mathbb{R}^n$ 

can be used to check convexity of f by checking convexity of functions of one variable

#### First-order condition

• f is **differentiable** if **dom** f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)^T \in \mathbf{R}^n$$

exists at each  $x \in \operatorname{dom} f$ 

▶ 1st-order condition: differentiable f with convex domain is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all  $x, y \in \operatorname{dom} f$ 

▶ first order Taylor approximation of convex f is a global underestimator of f



# Proof (m = 1)

▶ Necessary: For any  $t \in (0,1)$ , and  $x, y \in domf$ . By def:

$$f(x+t(y-x)) \le (1-t)f(x) + tf(y)$$

$$f(y) \ge f(x) + \frac{f(x+t(y-x)) - f(x)}{t}$$

Let  $t \to 0$ , we have  $f(y) \le f(x) + f'(x)(y - x)$ 

▶ Sufficiency: Let  $z = \theta x + (1 - \theta)y$ :

$$f(x) \geq f(z) + f'(z)(x-z)$$

and

$$f(y) \ge f(z) + f'(z)(y - z)$$

$$\Rightarrow ??$$

#### Second-order conditions

▶ f is **twice differentiable** if **dom** f is open and the Hessian  $\nabla^2 f(x) \in \mathbf{S}^n$ ,

$$abla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n$$

exists at each  $x \in \operatorname{dom} f$ 

- **▶ 2nd-order conditions**: for twice differentiable *f* with convex domain
  - f is convex if and only if  $\nabla^2 f(x) \ge 0$  for all  $x \in \operatorname{dom} f$
  - if  $\nabla^2 f(x) > 0$  for all  $x \in \operatorname{dom} f$ , then f is strictly convex

#### Extended-value extension

- ightharpoonup suppose f is convex on  $\mathbb{R}^n$ , with domain **dom** f
- ▶ its extended-value extension  $\tilde{f}$  is function  $\tilde{f}: \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \operatorname{dom} f \\ \infty & x \notin \operatorname{dom} f \end{cases}$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in  $\mathbf{R} \cup \{\infty\}$  ), means the same as the two conditions

- **dom** f is convex

$$x, y \in \operatorname{dom} f, 0 \le \theta \le 1 \implies$$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

# Examples on R

#### convex functions:

- ▶ affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$
- **exponential**:  $e^{ax}$ , for any  $a \in \mathbf{R}$
- **>** powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}$ , for  $\alpha \geq 1$  or  $\alpha \leq 0$
- **>** powers of absolute value:  $|x|^p$  on **R**, for  $p \ge 1$
- **positive part (relu):**  $max\{0,x\}$

#### concave functions:

- ▶ affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$  (by def)
- **•** powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}$ , for  $0 \leq \alpha \leq 1$
- ightharpoonup logarithm:  $\log x$  on  $\mathbf{R}_{++}$
- ightharpoonup entropy:  $-x \log x$  on  $\mathbf{R}_{++}$
- ▶ negative part:  $min{0,x}$  (by def)

## Examples on $\mathbb{R}^n$

#### convex functions:

- ▶ affine functions:  $f(x) = a^T x + b$
- ightharpoonup any norm, e.g., the  $\ell_p$  norms
- $\|x\|_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p} \text{ for } p \ge 1$
- $\|x\|_{\infty} = \max\{|x_1|,\ldots,|x_n|\}$
- sum of squares:  $||x||_2^2 = x_1^2 + \cdots + x_n^2$
- ightharpoonup max function: max $(x) = \max\{x_1, x_2, \dots, x_n\}$
- ▶ softmax or log-sum-exp function:  $\log (\exp x_1 + \cdots + \exp x_n)$  (ex in class)

## Examples on $\mathbf{R}^{m \times n}$

- $X \in \mathbb{R}^{m \times n}$  (  $m \times n$  matrices) is the variable
- general affine function has form

$$f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

for some  $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}$ 

spectral norm (maximum singular value) is convex

$$f(X) = ||X||_2 = \sigma_{\mathsf{max}}(X) = \left(\lambda_{\mathsf{max}}\left(X^TX\right)\right)^{1/2}$$

▶ log-determinant: for  $X \in \mathbf{S}_{++}^n$ ,  $f(X) = \log \det X$  is concave

## Example

- ▶  $f: \mathbf{S}^n \to \mathbf{R}$  with  $f(X) = \log \det X$ ,  $\operatorname{dom} f = \mathbf{S}_{++}^n$
- ▶ consider line in  $S^n$  given by  $X + tV, X \in S^n_{++}, V \in S^n, t \in R$

$$g(t) = \log \det(X + tV)$$

$$= \log \det \left( X^{1/2} \left( I + tX^{-1/2} V X^{-1/2} \right) X^{1/2} \right)$$

$$= \log \det X + \log \det \left( I + tX^{-1/2} V X^{-1/2} \right)$$

$$= \log \det X + \sum_{i=1}^{n} \log (1 + t\lambda_i)$$

where  $\lambda_i$  are the eigenvalues of  $X^{-1/2}VX^{-1/2}$ 

▶ g is concave in t (for any choice of  $X \in \mathbf{S}_{++}^n, V \in \mathbf{S}^n$ ); hence f is concave

## **Examples**

**quadratic function**:  $f(x) = (1/2)x^T P x + q^T x + r$  (with  $P \in \mathbf{S}^n$ )  $\nabla f(x) = P x + q, \quad \nabla^2 f(x) = P$  convex if P > 0 (concave if P < 0)

▶ least-squares objective:  $f(x) = ||Ax - b||_2^2$ 

$$\nabla f(x) = 2A^{T}(Ax - b), \quad \nabla^{2}f(x) = 2A^{T}A$$

convex (for any A)

# Examples (continued)

• quadratic-over-linear:  $f(x,y) = x^2/y, y > 0$ 

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \ge 0$$

convex for y > 0



# More examples

**log-sum-exp**:  $f(x) = \log \sum_{k=1}^{n} \exp x_k$  is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \quad (z_k = \exp x_k)$$

▶ to show  $\nabla^2 f(x) \ge 0$ , we must verify that  $v^T \nabla^2 f(x) v \ge 0$  for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0$$

since  $(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2) (\sum_k z_k)$  (from Cauchy-Schwarz inequality)

**geometric mean**:  $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$  on  $\mathbb{R}_{++}^{n}$  is concave (similar proof as above)



# Epigraph and sublevel set

- ▶  $\alpha$ -sublevel set of  $f : \mathbf{R}^n \to \mathbf{R}$  is  $C_{\alpha} = \{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$
- sublevel sets of convex functions are convex sets (but converse is false)
- ▶ epigraph of  $f: \mathbf{R}^n \to \mathbf{R}$  is epi  $f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\}$



• f is convex if and only if **epi** f is a convex set

# Jensen's inequality

**▶ basic inequality**: if f is convex, then for  $x, y \in \text{dom } f, 0 \le \theta \le 1$ ,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex and z is a random variable on dom f,

$$f(\mathbf{E}z) \leq \mathbf{E}f(z)$$

basic inequality is special case with discrete distribution

$$prob(z = x) = \theta$$
,  $prob(z = y) = 1 - \theta$ 

# Example: log-normal random variable

- ▶ suppose  $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$
- with  $f(u) = \exp u$ , Y = f(X) is log-normal
- we have  $\mathbf{E}f(X) = \exp(\mu + \sigma^2/2)$
- ► Jensen's inequality is

$$f(\mathbf{E}X) = \exp \mu \le \mathbf{E}f(X) = \exp \left(\mu + \sigma^2/2\right)$$

which indeed holds since  $\exp \sigma^2/2 > 1$ 

# Example: log-normal random variable



### Outline

Operations that preserve convexity

# Showing a function is convex

methods for establishing convexity of a function f

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show  $\nabla^2 f(x) \ge 0$ 
  - recommended only for **very simple** functions
- 3. show that *f* is obtained from simple convex functions by operations that preserve convexity
  - nonnegative weighted sum
  - composition with affine function
  - pointwise maximum and supremum
  - composition
  - minimization
  - perspective

you'll mostly use methods 2 and 3

# Nonnegative scaling, sum, and integral

- **nonnegative multiple**:  $\alpha f$  is convex if f is convex,  $\alpha \geq 0$
- **sum**:  $f_1 + f_2$  convex if  $f_1, f_2$  convex
- ▶ **infinite sum**: if  $f_1, f_2,...$  are convex functions, infinite sum  $\sum_{i=1}^{\infty} f_i$  is convex
- ▶ **integral**: if  $f(x,\alpha)$  is convex in x for each  $\alpha \in \mathcal{A}$ , then  $\int_{\alpha \in \mathcal{A}} f(x,\alpha) d\alpha$  is convex
- there are analogous rules for concave functions

# Composition with affine function

(pre-)composition with affine function: f(Ax + b) is convex if f is convex

#### examples

▶ log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log \left( b_i - a_i^T x \right),$$

$$\mathbf{dom} \, f = \left\{ x \mid a_i^T x < b_i, i = 1, \dots, m \right\}$$

▶ norm approximation error: f(x) = ||Ax - b|| (any norm)

#### Pointwise maximum

if  $f_1, \ldots, f_m$  are convex, then  $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$  is convex

#### examples:

- ▶ piecewise-linear function:  $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$
- ▶ sum of r largest components of  $x \in \mathbf{R}^n$ :

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

 $(x_{[i]} \text{ is } i \text{ th largest component of } x)$ Proof:

$$f(x) = \max \{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

(all the possible combinations of r different components of x)

## Pointwise supremum

if f(x,y) is convex in x for each  $y \in \mathcal{A}$ , then  $g(x) = \sup_{y \in \mathcal{A}} f(x,y)$  is convex

#### examples

- ▶ distance to farthest point in a set  $C: f(x) = \sup_{y \in C} ||x y||$
- ▶ maximum eigenvalue of symmetric matrix: for  $X \in \mathbf{S}^n$ ,  $\lambda_{\max}(X) = \sup_{\|\mathbf{v}\|_2=1} \mathbf{y}^T X \mathbf{y}$  is convex
- ▶ support function of a set  $C: S_C(x) = \sup_{y \in C} y^T x$  is convex

### Partial minimization

the function  $g(x) = \inf_{y \in C} f(x, y)$  is called the **partial** minimization of f (w.r.t. y)

if f(x, y) is convex in (x, y) and C is a convex set, then partial minimization g is convex

Pf: special case when there exists a  $y_x$  such that  $g(x) = f(x, y_x)$ 

### examples

•  $f(x,y) = x^T Ax + 2x^T By + y^T Cy$  with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \ge 0, \quad C > 0$$

minimizing over y gives

$$g(x) = \inf_{y} f(x, y) = x^{T} (A - BC^{-1}B^{T}) x$$
  
g is convex, hence Schur complement  $A - BC^{-1}B^{T} \ge 0$ 

▶ distance to a set:  $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$  is convex if S is convex.

$$(x - y = (I, -I)??.)$$



## Composition with scalar functions

- ▶ composition of  $g: \mathbf{R}^n \to \mathbf{R}$  and  $h: \mathbf{R} \to \mathbf{R}$  is f(x) = h(g(x)) (written as  $f = h \circ g$ )
- composition f is convex if
  - g convex, h convex,  $\tilde{h}$  nondecreasing
  - or g concave, h convex,  $\tilde{h}$  nonincreasing

(monotonicity must hold for extended-value extension  $\tilde{h}$  )

▶ proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

#### examples

- ▶  $f(x) = \exp g(x)$  is convex if g is convex
- f(x) = 1/g(x) is convex if g is concave and positive

## General composition rule

- ▶ composition of  $g: \mathbf{R}^n \to \mathbf{R}^k$  and  $h: \mathbf{R}^k \to \mathbf{R}$  is  $f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$
- ★ f is convex if h is convex and for each i one of the following holds
  - $g_i$  convex,  $ilde{h}$  nondecreasing in its i th argument
  - $g_i$  concave,  $\tilde{h}$  nonincreasing in its i th argument
  - g<sub>i</sub> affine
- you will use this composition rule constantly throughout this course
- you need to commit this rule to memory

## **Examples**

- ▶  $\log \sum_{i=1}^{m} \exp g_i(x)$  is convex if  $g_i$  are convex
- $f(x) = p(x)^2/q(x)$  is convex if
  - p is nonnegative and convex
  - q is positive and concave

(Noting  $x^2/t$  is convex of t, x).

- composition rule subsumes others, e.g.,
  - $\alpha f$  is convex if f is, and  $\alpha \geq 0$
  - sum of convex (concave) functions is convex (concave)
  - max of convex functions is convex
  - min of concave functions is concave

### Outline

Perspective and conjugate

# Perspective

▶ the **perspective** of a function  $f : \mathbb{R}^n \to \mathbb{R}$  is the function  $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ ,

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$$

▶ g is convex if f is convex

#### examples

- $ightharpoonup f(x) = x^T x$  is convex; so  $g(x,t) = x^T x/t$  is convex for t > 0
- ►  $f(x) = -\log x$  is convex; so relative entropy  $g(x,t) = t\log t t\log x$  is convex on  $\mathbf{R}_{++}^2$

## Conjugate function

▶ the **conjugate** of a function f is  $f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$ 



- $ightharpoonup f^*$  is convex (even if f is not)
- very important concept.

# **Examples**

▶ negative logarithm  $f(x) = -\log x$ 

$$f^*(y) = \sup_{x>0} (xy + \log x) = \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases}$$

▶ strictly convex quadratic,  $f(x) = (1/2)x^TQx$  with  $Q \in \mathbf{S}_{++}^n$ 

$$f^*(y) = \sup_{x} \left( y^T x - (1/2) x^T Q x \right) = \frac{1}{2} y^T Q^{-1} y$$

### **Basic Properties**

#### Fenchel Inequality

$$f(x) + f^*(y) \ge x^T y$$

#### Examples:

•  $f(x) = \frac{1}{2}x^T Qx$  where  $Q \in S_{++}^n$ .

$$x^T y \le \frac{1}{2} x^T Q x + \frac{1}{2} x^T Q^{-1} x$$

 $ightharpoonup 1/p + 1/q = 1, \ p, q > 1, a, b \in R$ 

$$ab \leq |a|^p/p + |b|^q/q$$

 $ightharpoonup f(x) = a^T x + b, x \in \mathbb{R}^n.$ 

$$f^*(y) = \{ egin{array}{ll} -b & y = a \\ +\infty & otherwise \ \end{array}$$

$$f^{**}(x) = a^T x + b$$
 for  $x \in \mathbb{R}^n$ 

# Conjugate of the Conjugate

If f(x) is convex and  $dom(f) = R^n$ , Then

$$f^{**} = f$$

#### outline of pf:

- ▶ 1:  $f(x) = \sup\{g(x)|g \text{ affine}, g(z) \le f(z) \text{ for all } z\}$
- ▶ 2: If  $f(x) \ge g(x)$  for all x then  $f^*(y) \le g^*(y)$  for all y (by def) then  $f^{**}(x) \ge g^{**}(x)$  for all x.
- ▶ 3:  $1+2 \Rightarrow$  $f^{**}(x) \ge \sup\{g(x)|g \text{ affine}, g(z) \le f(z) \text{ for all } z\} = f(x).$
- ▶ 4.  $f(x) \ge f^{**}(x)$ (why? noting that  $f(x) \ge x^T y - f^*(y)$  for all  $y \Rightarrow f(x) \ge f^{**}(x) = \sup_{y} (x^T y - f^*(y))$

$$1+4 \Rightarrow f^{**}(x) = f(x)$$
 for all  $x \in \mathbb{R}^n$ .

### Differentiable Convex function

Suppose f is convex and differentiable with  $dom(f) = R^n$ .  $y^* = \nabla f(x^*)$  for any  $x^*$ . Then:

$$f^*(y^*) = x^{*T}y^* - f(x^*)$$

### Outline

Convex functions

Operations that preserve convexity

Perspective and conjugate

Quasiconvexity

Summary

### Quasiconvex functions

▶  $f : \mathbb{R}^n \to \mathbb{R}$  is **quasiconvex** if **dom** f is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

are convex for all  $\alpha$ 



- $\blacktriangleright$  f is quasiconcave if -f is quasiconvex
- *f* is **quasilinear** if it is quasiconvex and quasiconcave

# **Examples**

- $ightharpoonup \sqrt{|x|}$  is quasiconvex on **R**
- ▶  $ceil(x) = inf\{z \in \mathbf{Z} \mid z \ge x\}$  is quasilinear (Z: the set of integers)
- ▶  $\log x$  is quasilinear on  $\mathbf{R}_{++}$
- $f(x_1, x_2) = x_1x_2$  is quasiconcave on  $\mathbf{R}^2_{++}$
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

is quasilinear

### Example: Internal rate of return

- ▶ cash flow  $x = (x_0, ..., x_n)$ ;  $x_i$  is payment in period i (to us if  $x_i > 0$ )
- we assume  $x_0 < 0$  (i.e., an initial investment) and  $x_0 + x_1 + \cdots + x_n > 0$
- ▶ **net present value** (NPV) of cash flow x, for interest rate r, is  $PV(x,r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$
- ▶ internal rate of return (IRR) is smallest interest rate for which PV(x, r) = 0:

$$\mathsf{IRR}(x) = \inf\{r \ge 0 \mid \mathrm{PV}(x, r) = 0\}$$

► IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$IRR(x) \ge R \quad \Longleftrightarrow \quad \sum_{i=0}^{n} (1+r)^{-i} x_i > 0 \text{ for } 0 \le r < R$$

# Properties of quasiconvex functions

**modified Jensen inequality**: for quasiconvex *f* 

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

How to prove it?

**first-order condition**: differentiable f with convex domain is quasiconvex if and only if

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$

**sum** of quasiconvex functions is not necessarily quasiconvex

### Outline

Convex functions

Operations that preserve convexity

Perspective and conjugate

Quasiconvexity

Summary

- ► Convex (QusiConvex) functions.
- ▶ How to prove a function is convex.
- ► Conjugate function and its properties.