

An Approach for Identifying Microservices using Clustering on Control Flow and Data Flow

Supervisor: Dr. rer. nat. Robert Heinrich

Student: Niko Benkler

SOFTWARE DESIGN AND QUALITY GROUP
INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS

Microservice Architecture

- Benefits
 - Availability, Resilience, Fault Isolation
 - Scalability, Resource Utilisation
 - Neutral Development Technology
- Challenges
 - Expensive Communication
 - Organizational Challenges
 - Microservice Identification

Motivation

State of the Art

Approach

Evaluation

PIBA

Problem

- Identifying microservices is a cumbersome task and requires detailed knowledge and manual effort
- Strong dependencies in control flow and data flow make identification difficult

Idea

Identify microservices using clustering on control flow and data flow

Benefit

- Reduce required expertise and manual effort
- Create adequate microservices

<u>Action</u>

- Extract control flow (activities) and data flow (data object) dependencies from BPMN models
- Create two weighted graphs based on the dependencies
- Identify highly cohesive sets of activities and data objects
- Match clusters to generate microservice candidates

Research Questions

- RQ1: How to identify microservices based on the system specifications?
- **RQ1.1**: Which is an appropriate strategy to decompose a system into microservices?
 - Literature research to find suitable strategies
- RQ1.2: How to identify possible microservices without detailed knowledge and manual effort?
 - Most promising strategy identified in RQ1.1 as basis
 - Elaborate approach
- RQ1.3: What is the accuracy of the approach?
 - Comparing the results of the approach with results of other approaches

State of the Art

Approach

Evaluation

Literature Research

- Conducted using digital libraries
 - IEEE
 - ACM
 - SpringerLink
 - Google Scholar for further information
- Eight promising approaches were found
- Approaches compared using eight defined criteria

["identify" OR "identification" OR "migrating" OR "monolith" OR "decomposition" OR "decompose monolith" OR "decompose"] AND "microservice"

OR

"microservice" AND ["identification" OR "transformation" OR "refactor"]

State of the Art

Approach

Evaluation

State of the Art I

Approach/Criterion	Munezero et al. [22]	Chen et al. [5]	Alwis et al. [6]	Gysel et al. [11]
Basic Concept	define business capabil- ities by using domain- driven design patterns	algorithmic identifica- tion of microservices using data flows	cation process using	service decomposition based on 16 coupling criteria
Prerequisites	domain defined by ubiq- uitous language	systems's data flows constructen on users' natural langugae de- scription	Log files of legacy system	various System Specifi- cation Artifacts (SSAs) in specified format
Input	well defined domain model	Data Flow Diagrams (DFD)	Call Graphs, Source Code, System Database	instances of SSAs (e.g. ERM models, use cases)
Tool support	n/a	n/a	External tool for generating call graphs	implementation and wiki available
Degree of human involvement	domain experts define boundaries for business responsibilities	manual construction of purified DFD	no interaction needed	priorization of coupling criteria
Granularity	depends on the size of the defined business ca- pability	most fine-grained ms candidates in terms of data operations		n/a
Validation	demonstrated on sam- ple domain	two case studies ver- ified against relevant microservice principles and results of [11]		mentation and two case
Limitation	only conceptional ap- proach, requires vast amount of expertise	transforming puri- fied DFD not trivial (identifying same data operations requires expertise)	requires expressive log files to generate call graphs and iden- tify business object relationships	generating SSAs in specified format is work intense

Motivation

23/04/2019

State of the Art

Approach

Evaluation

State of the Art II

Approach/Criterion	Mazlami et al. [20]	Amiri [2]	Baresi et al. [3]	Tyszberowicz et al. [24]
Basic Concept	meta-data aided graph clustering	business process ori- ented graph clustering	semantic similarity of OpenApi specification	functional decomposi- tion of sw requirements
Prerequisites	applications with mean- ingful VCS data	business processes and entities available	well-defined Api with proper naming	specification of software requirements
Input	Source Code and VCS meta data	BPMN business pro- cesses with data object reads and writes	reference vocabulary (fitness function), OpenApi specifications	use cases
Tool support	prototype available (https://github.com/gmaz frontend)	Clustering tool "Bunch"	experimental prototype (https://github.com/mgar riga/decomposer)	
Degree of human in- volvement	choose amount of clus- ters that will represent the microservices	no interaction needed	user defines level of hierachy	manual elimination of synonyms, irrelevant nouns and verbs
Granularity	depends on choosen amount of clusters	depends on iteration of genetic algorithm for convergence of fitness function	erachy lebel, varies from	depends on size of busi- ness capability
Validation	experiements using open-source projects with VCS data (200 to 25000 commits, 1000 to 500000 LOC, 5 to 200 authors)	multiple experiments, results compared with domain experts knowledge	452 OpenApi specifica- tion, 5 samples com- pared with results of sw- engineers and [11]	to three manual imple-
Limitation	need meaningful VCS data and ORM model for its data entities		•	manual revision of oper- ations (nouns) and state variable (verbs)

Motivation

State of the Art

Approach

Evaluation

Inspired by "Object-aware Identification of Microservices" [1]

BPMN Graph:

StructuralDependency

	t_1	t_2	<i>t</i> ₃	t_4	<i>t</i> ₅	t_6	<i>t</i> 7	t_8
t_1	0	1	0	0	0	0	0	0
t_2	0	0	1	0	0	0	0	0
<i>t</i> ₃	0	0	0	1	0	0	0	0
<i>t</i> ₄	0	0	0	0	1	1	0	0
<i>t</i> ₅	0	0	1	0	0	0	0	0
<i>t</i> ₆	0	0	0	0	0	0	1	0
<i>t</i> ₇	0	0	0	0	0	1	0	1
<i>t</i> ₈	0	0	0	0	0	0	0	0

Data ObjectDependency

	t_1	t_2	<i>t</i> ₃	t_4	<i>t</i> ₅	<i>t</i> ₆	<i>t</i> 7	<i>t</i> ₈
<i>t</i> ₁	0	1/4	1/4				0	1/2
t_2	1/4	0	3/4	3/4	5/4	1/2	1/2	3/2
<i>t</i> ₃	1/4	3/4	0	3/2	5/4	1/4	1/4	1
<i>t</i> ₄	1/4	3/4	3/2	0	5/4	1/4	1/4	1
<i>t</i> ₅	1/4	5/4	5/4	5/4		1/2	1/2	3/2
<i>t</i> ₆	0	1/2	1/4	1/4	1/2	0	5/4	3/2
<i>t</i> 7	0	1/2	1/4	1/4	1/2	5/4	0	3/2
<i>t</i> 8	1/2	3/2	1	1	3/2	3/2	3/2	0

Aggregation

		t_1	t_2	t_3	t_4	<i>t</i> ₅	<i>t</i> ₆	<i>t</i> 7	t_8
t	1	0	5/4	1/4	1/4	1/4	0	0	1/2
t	2	1/4	0	7/4	3/4	5/4	1/2	1/2	3/2
t	3	1/4	3/4	0	5/2	5/4	1/4	1/4	1
t	4	1/4	3/4	3/2	0	9/4	5/4	1/4	1
t	5	1/4	5/4	9/4	5/4		1/2	1/2	
t	6	0	1/2	1/4	1/4	1/2	0	9/4	3/2
t	7	0	1/2	1/4	1/4	1/2	9/4	0	5/2
t	8	1/2	3/2	1	1	3/2	3/2	3/2	0

Clustering

Microservice candidates

Sources: Object-aware Identification of Microservices, M.J. Amiri [1]

Motivation

State of the Art

Approach

Evaluation

Approach

Divided in nine steps

Motivation

State of the Art

Approach

Evaluation

Specify BPMN Models

- System requirements in various forms
- Transformation into BPMN models
 - Workshops
 - Use Case Transformation
 - Others: BPMN Miner[5] ...

Use Case Transformation based on [2]

Motivation

State of the Art

Approach

Evaluation

Extract Control Flow

 Delete Data Objects and accompanying associations

Original:

Extracted Control Flow:

Motivation

State of the Art

Approach

Evaluation

Extract Data Flow

Karlsruhe Institute of Technology

- Approximate Data Flow
- Delete control flow related parts
- Connect pair of tasks if connected by control flow arc
- Replace Gates
 - Replace by two data flow arcs
 - No distinction between XOR and parallel Gateway
- Delete unnecessary tasks

Motivation

State of the Art

Approach

Extracted

Data Flow:

Evaluation

Check

Delivery

Roll in

Order

Summary

Update

Inventory

Create a weighted Graph using Control Flow

- Generate one Graph by using all control flow models
- Connect pair of activities
 - if directly connected in BPMN models
 - if only gateways in between
- Assign a weight of 1 to all dependencies
- Multiple occurrences: Add weights

Motivation

State of the Art

Approach

Evaluation

Create a weighted Graph using Data Flow

- Generate one Graph by using all data flow models
- Connect pair of data objects
 - if both data objects are read by the same task
 - if a data object is used to update another data object
- max. *n* tasks in between a task that reads the first data object and another tasks that updates the other data object
- Determine parameter *n* depending on the granularity of the *BPMN* models
- Assign a weight of 1 to all dependencies
- Multiple occurrences: Add weights

Motivation

State of the Art

Approach

Evaluation

Identify Clusters

- Bunch Software [3]
 - Genetic Algorithm: Randomly picks k cluster
 - Fitness Function: Turbo-MQ
 - Cluster Factor: Rewards intra-cluster coupling
- Input: List of edges with weights
- Output: DOT format
- Visualization: GraphViz [4]
- Two sets of cluster
 - Activity cluster
 - Data Object Cluster

$$Turbo - MQ = \sum_{i=1}^{k} CF_i$$

$$CF_i = \begin{cases} 0 & \mu_i = 0 \\ \frac{\mu_i}{\mu_i + \epsilon_i} & otherwise \end{cases}$$

State of the Art

Approach

Evaluation

Matching of Clusters

- Count data object access between activity clusters and data object cluster
- Use amount as weight
- Use Bunch to identify compound cluster

Motivation

State of the Art

Approach

Evaluation

Extract Microservice Candidates

Each compound cluster correspond to a microservice candidate

Approach

 \rightarrow

Evaluation

State of the Art

Motivation

 \rightarrow

Evaluation

- Goal: Determine the accuracy of the approach
- Comparison to two Reference Sets
- Questions: What is the Precision and Recall regarding the identified
 - microservices?
 - functionalities of the microservices?
 - data objects of the microservices?

$$Precision = \frac{N_{ret \cap rel}}{N_{ret}} \qquad \qquad Recall = \frac{N_{ret \cap rel}}{N_{rel}}$$

	Relevant	Not Relevant	Sum
Retrieved	$N_{ret \cap rel}$	$N_{ret \cap \overline{rel}}$	N_{ret}
Not Retrieved	$N_{\overline{ret} \cap rel}$	$N_{\overline{ret} \cap \overline{rel}}$	$N_{\overline{ret}}$
Sum	N_{rel}	$N_{\overline{rel}}$	N_{total}

Motivation

State of the Art

Approach

Evaluation

Evaluation Design

- CoCoME as running example
 - Community case study for software evolution
 - Typical component-based information system
- Comparison to two reference sets
 - Well established procedure to reason about the accuracy
- Precision and Recall capable to determine accuracy of the approach
 - How many relevant instances identified
 - How many of the identified are correct
- Reference Sets
 - Decomposition by approach in "Identifying Microservices Using Functional Decomposition" [4]
 - Manual Decomposition

State of the Art

Approach

Evaluation

Evaluation Results

- Reference Set 1 does not contain all functionalities
 - focus is on Reference Set 2 (Manual Decomposition)
- No false positive microservices
- Recall_{microservice} = $\frac{3}{4}$ = 0.75 Precision_{microservice} = $\frac{3}{3}$ = 1
- Recall_{functionality} = $\frac{12}{18} \approx 0.67$ Precision_{functionality} = $\frac{12}{13} \approx 0.92$
- Recall_{dataObject} = $\frac{5}{7} \approx 0.71$ Precision_{dataObject} = $\frac{5}{7} \approx 0.71$

Satisfying results

State of the Art

Approach

Evaluation

Conclusion

- Approaches exist, but no one considers control and data flow together
- Contributions:
 - Strategy developed that fills the gap in current research
 - Approach elaborated for identifying microservices using clustering on control flow and data flow
- Evaluation:
 - (Semi-)automatic approach capable of identifying microservices
 - Reduces effort and necessary knowledge
 - Produces adequate microservices in the case of CoCoME

State of the Art

Approach

Evaluation

Limitations and Future Work

Limitations

- Transformation of system specifications into BPMN models not trivial
- Same granularity for all BPMN models required
- Parameter n needs knowledge about granularity

Future Work

- Additional data flow diagram needed?
- Different clustering algorithms to achieve variable microservice sizes
- Approach capable of identifying different microservice sizes?
- Cluster matching: Elaborate white box approach
- Apply on other systems

State of the Art

Approach

Evaluation

Bibliography

- [1] M. J. Amiri. "Object-Aware Identification of Microservices". In: (July 2018), pp. 253–256
- [2] D. Lubke, K. Schneider, and M. Weidlich. "Visualizing Use Case Sets as BPMN Processes"
- [3] Bunch Software, https://www.cs.drexel.edu/~spiros/bunch/, Accessed on 15.04.2019
- [4] Shmuel Tyszberowicz et al. "Identifying Microservices Using Functional Decomposition"
- [5] Raffaele Conforti et al. "BPMN Miner: Automated discovery of BPMN processmodels with hierarchical structure"

23/04/2019

PIBA

Problem

- Identifying microservices is a cumbersome task and requires detailed knowledge and manual effort
- Strong dependencies in control flow and data flow make identification difficult

Idea

Identify microservices using clustering on control flow and data flow

Benefit

- Reduce required expertise and manual effort
- Create adequate microservices

<u>Action</u>

- Extract control flow (activities) and data flow (data object) dependencies from BPMN models
- Create two weighted graphs based on the dependencies
- Identify highly cohesive sets of activities and data objects
- Match clusters to generate microservice candidates

State of the Art

Approach

Evaluation

