Key Stages in Digital Image Processing

Key Stages in Digital Image Processing: Image Aquisition

Key Stages in Digital Image Processing: Image Enhancement

Key Stages in Digital Image Processing: Image Restoration

Key Stages in Digital Image Processing: Morphological Processing

Compression

Processing

Key Stages in Digital Image Processing: Representation & Description

Key Stages in Digital Image Processing: Image Compression

Key Stages in Digital Image Processing: Colour Image Processing

Table 1.1 Common image formats and their associated properties

Acronym	Name	Properties			
GIF	Graphics interchange format	Limited to only 256 colours (8 bit); lossless compression			
JPEG	Joint Photographic Experts Group	In most common use today; lossy compression; lossless variants exist			
BMP	Bit map picture	Basic image format; limited (generally) lossless compression; lossy variants exist			
PNG	Portable network graphics	New lossless compression format; designed to replace GIF			
TIF/TIFF	Tagged image (file) format	Highly flexible, detailed and adaptable format; compressed/uncompressed variants exist			

How is an image formed?

Image s can be formalized as a mathematical model comprising a functional representation of the scene (the object function o) and that of the capture process (the point spread function (PSF) p).

Image =
$$PSF * object function + noise$$

 $s = p * o + n$

- •The **point spread function (PSF)** describes the response of an imaging system to a point source or point object.
- Object function: This describes the object (or scene) that is being imaged (its surface or internal structure, for example) and the way light is reflected from that structure to the imaging instrument.
- Noise: This is a nondeterministic function which can, at best, only be described in terms of some statistical noise distribution (e.g. Gaussian).
- Convolution operator: * A mathematical operation which convolves one function with another.

THE ELECTROMAGNETIC SPECTRUM

Gigahertz (GHz) 10-9 Terahertz (THz) 10-12 Petahertz (PHz) 10-15 Exahertz (EHz) 10-18 Zettahertz (ZHz) 10-21 Yottahertz (YHz) 10-24

A sine wave

Amplitude = 5

Frequency = 4 Hz

seconds

A sine wave signal

 $5*sin(2\pi4t)$

Amplitude = 5

Frequency = 4 Hz

Sampling rate = 256 samples/second

Sampling duration = 1 second

seconds

Figure 5.1: Sampling an analog signal.

Figure 5.2: Possible continuous-time functions corresponding to samples.

Figure 5.6: Sampling a sinusoid at a high rate.

Figure 5.7: Sampling a sinusoid at too slow of a rate.

An undersampled signal

sampling interval
$$\leq \frac{1}{\text{Nyquist frequency}}$$

Nyquist frequency = $2 \times (Maximum frequency in image)$

Harry Nyquist

Claude Shannon

a b

(a) Continuous image projected onto a sensor array.(b) Result of image sampling and quantization.

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

the imaging sample rate (or pixel) size should be 1/2 the size of the smallest object you wish to record.

- •Alaising is a phenomenon observed when the sample interval is not sufficiently brief to capture the higher range of frequencies in a signal.
- •Aliasing can happen in space, as well as in time. When the pixels in this image are larger than half the width of the bricks, we see these beautiful curved artifacts.

0	0	0	75	75	75	128	128	128	128
0	75	75	75	128	128	128	255	255	255
75	75	75	200	200	200	255	255	255	200
128	128	128	200	200	255	255	200	200	200
128	128	128	255	255	200	200	200	75	75
175	175	175	225	225	225	75	75	75	100
175	175	100	100	100	225	225	75	75	100
75	75	75	35	35	35	0	0	0	35
35	35	35	0	0	0	35	35	35	75
75	75	75	100	100	100	200	200	200	200

- Digitalization of an analog signal involves two operations:
 - Sampling, and
 - Quantization.
- Both operations correspond to a discretization of a quantity, but in different domains.

• Sampling corresponds to a discretization of the space. That is, of the domain of the function, into $f:[1,\ldots,N]\times[1,\ldots,M]\longrightarrow\mathbb{R}^m$.

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

Thus, the image can be seen as matrix,

$$f = \begin{bmatrix} f(1,1) & f(1,2) & \cdots & f(1,M) \\ f(2,1) & f(2,2) & \cdots & f(2,M) \\ \vdots & \vdots & \ddots & \vdots \\ f(N,1) & f(N,2) & \cdots & f(N,M) \end{bmatrix}.$$

- The smallest element resulting from the discretization of the space is called a pixel (picture element).
- For 3-D images, this element is called a voxel (volumetric pixel).

 Quantization corresponds to a discretization of the intensity values. That is, of the co-domain of the function.

• After sampling and quantization, we get $f:[1,\ldots,N]\times[1,\ldots,M]\longrightarrow[0,\ldots,L].$

Sampling

Sampling

Quantization

7-bit

6-bit

5-bit

4-bit

3-bit

1-bit

Figure 5.15: (a) Original image. (b) Image histogram.

Figure 5.16: (a) Uniformly quantized image. (b) Non-uniformly quantized image

Matrix form

bits to store the image = $M \times N \times k$ gray level = 2^k

- We can think of an **image** as a function, f, from R^2 to R:
 - f(x, y) gives the **intensity** at position (x, y)

$$f(x,y) \approx \begin{bmatrix} f(0,0) & f(0,1) & & f(0,M-1) \\ f(1,0) & f(1,1) & & f(1,M-1) \\ . & . & . \\ . & . & . \\ . & . & . \\ f(N-1,0) & f(N-1,1) & & f(N-1,M-1) \end{bmatrix}$$

 A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$