# Improving Safety in Deep RL Using Unsupervised Action Planning

Hao-Lun Hsu<sup>1</sup>, Qiuhua Huang<sup>2</sup>, and Sehoon Ha<sup>1</sup> <sup>1</sup> Georgia Tech, <sup>2</sup> Pacific Northwest National Laboratory, USA Paper







This work is a novel approach integrating on-policy RL algorithms with unsupervised action planning (e.g. k-means clustering). It enables RL agents to reduce number of failures during both training and testing, evaluated with both discrete and continuous control problems.

#### Motivation: How to improve safety during learning

 Constrained RL algorithms with Lagrangian method can only ensure safety asymptotically [1] [2].

$$\max_{\theta} \min_{\lambda \ge 0} L(\theta, \lambda) = f(\theta) - \lambda g(\theta)$$
Original Objective Constraint

- Inspired by humans' mechanism in avoiding danger
  - ⇒ Recall the past experience of overcoming similar situations
  - ⇒ Avoid the risk by repeating similar recovery actions

#### Method: Managing safety buffer using unsupervised learning



- Safety buffer stores "recovery" actions that bring the agent from dangerous states to safe zones.
- "Recovery" action is executed depending on whether the situation is danger.
  - © Execute original action from trained RL policy
  - Activate safety buffer for acquiring a candidate action set

[1] Altman, 1998, "Constrained Markov decision process with total cost criteria: Lagrangian approach and dual linear program" [2] Chow et al., 2019, "Lyapunov-based safe policy optimization for continuous control"

## Algorithm: Safe Reinforcement Learning

Hypothesis: <u>Enough</u> number of clusters instead of the <u>optimal</u> number of clusters can lead to good performance

| Algo         | rithm 1 Safe RL using Unsupervised Action Planning                                   |                                                    |
|--------------|--------------------------------------------------------------------------------------|----------------------------------------------------|
| 1: I         | initialize policy $\pi_{\phi}$ and safety buffer $D$                                 |                                                    |
| 2: F         | Pre-train the policy $\pi$ for a small number of epochs                              |                                                    |
| 3: <b>f</b>  | For $epoch = 1, 2, \dots$ do                                                         |                                                    |
| 4:           | $[s_0, c_0] \sim P(s_0, c_0)$                                                        | $\triangleright$ Initialize state $s$ and cost $c$ |
| 5:           | for $t = 0, 1,, T$ do                                                                |                                                    |
| 6:           | $a_t \sim \pi_\phi(a_t s_t)$                                                         |                                                    |
| 7:           | $b_t = b(s_t)$                                                                       | Extract the state features                         |
| 8:           | if $c_t \geq \hat{c}$ then                                                           | ▷ If dangerous                                     |
| 9:           | $a_t = \text{queryRecoveryAction}(a_t, b_t, D)$                                      | Activate safety protection mechanism               |
| 10:          | end if                                                                               |                                                    |
| 11:          | $[s_{t+1}, c_{t+1}, b_{t+1}, r_t] \sim P(s_{t+1}, c_{t+1}, b_{t+1}, r_t   s_t, a_t)$ |                                                    |
| 12:          | if $c_t \geq \hat{c}$ and $c_{t+1} < \hat{c}$ then                                   | ▷ If recovers from danger                          |
| 13:          | $D \leftarrow D \cup (b_t, a_t, r_t)$                                                |                                                    |
| 14:          | end if                                                                               |                                                    |
| 15:          | $s_t \leftarrow s_{t+1}, c_t \leftarrow c_{t+1}, b_t \leftarrow b_{t+1}$             |                                                    |
| 16:          | if end of the episode then                                                           |                                                    |
| 17:          | Rebuild clusters in the safety buffer $D$                                            | ▶ Regularly updates clusters                       |
| 18:          | end if                                                                               |                                                    |
| 19:          | end for                                                                              |                                                    |
| 20:          | Update $\pi_{\phi}$                                                                  | ⊳ Standard RL steps                                |
| 21: <b>e</b> | end for                                                                              |                                                    |

#### Algorithm 2 queryRecoveryAction

- 1: **Input:** action  $a_t$ , state feature  $b_t$ , and the safety buffer
- 2: Acquire an action set A containing actions in the same cluster with  $b_t$
- 3: **if**  $a_t \in A$  **then**
- return  $a_t$
- **return** the action  $\tilde{a_t} \in A$  with the maximum reward
- 7: end if
- Algo. 1: augmented learning process with conservative exploration mechanism via safe action planning
- Algo. 2: action planning process

#### **Experiment:** Ablation studies

Number of clusters (N) with corresponding reward (R) and failure (F)

|                              | Brute | Force | $N^{1}$ | /10  | $N^1$ | /3   | $N^1$ | /2   | $N^{8/10}$ |      |
|------------------------------|-------|-------|---------|------|-------|------|-------|------|------------|------|
| Task/ Number of Clusters     | R     | F     | R       | F    | R     | F    | R     | F    | R          | F    |
| Goal Navigation              | 28.52 | 0.47  | 20.66   | 0.56 | 25.37 | 0.43 | 28.44 | 0.45 | 25.32      | 0.44 |
| Push Navigation              | 2.69  | 0.30  | 2.41    | 0.38 | 3.12  | 0.35 | 2.93  | 0.31 | 2.72       | 0.29 |
| Survival Navigation          | 1.73  | 0.33  | 1.06    | 0.37 | 1.95  | 0.32 | 2.03  | 0.31 | 1.55       | 0.36 |
| Fetch Push w/o Toppling      | -0.39 | 0.08  | -0.41   | 0.05 | -0.40 | 0.08 | -0.32 | 0.10 | -0.37      | 0.11 |
| Pen Manipulation w/o Falling | -1.00 | 0.24  | -1.20   | 0.37 | -1.13 | 0.24 | -0.87 | 0.21 | -0.84      | 0.26 |
| Egg Manipulation w/o Crush   | -1.84 | 0.33  | -1.91   | 0.35 | -1.77 | 0.29 | -1.82 | 0.25 | -1.80      | 0.28 |

## **Experiment:** Benefit of integrating RL with action planning

- Relative cumulative failures during learning
  - ⇒ Our approach have lower number of failures compared with Lagrangian methods
  - ⇒ Intrinsic fear model can only reduce failures in simple tasks

| Task/ Algorithm              | PPO  | TRPO | PPO+Lag | TRPO+Lag | CPO  | TRPO+Buffer<br>(Ours) | PPO+Lag<br>(Ours) | PPO+Lag+Buff<br>(Ours) | Intrinsic Fe |
|------------------------------|------|------|---------|----------|------|-----------------------|-------------------|------------------------|--------------|
| Goal Navigation              | 1.00 | 0.90 | 0.70    | 0.39     | 0.58 | 0.37                  | 0.43              | 0.29                   | 0.14         |
| Push Navigation              | 0.99 | 1.00 | 0.51    | 0.46     | 0.74 | 0.22                  | 0.32              | 0.15                   | 0.10         |
| Survival Navigation          | 1.00 | 0.98 | 0.15    | 0.13     | 0.17 | 0.06                  | 0.05              | 0.12                   | 0.70         |
| Fetch Push w/o Toppling      | 0.72 | 1.00 | 0.29    | 0.32     | 0.06 | 0.16                  | 0.13              | 0.04                   | 0.19         |
| Pen Manipulation w/o Falling | 0.98 | 1.00 | 0.41    | 0.76     | 0.36 | 0.56                  | 0.45              | 0.41                   | 0.50         |
| Egg Manipulation w/o Crush   | 1.00 | 0.90 | 0.15    | 0.39     | 0.27 | 0.21                  | 0.13              | 0.12                   | 0.33         |

Pareto optimal solutions during testing

⇒ Our approach shows better trade-off between reward and cost



Danger threshold for 6 robotic control tasks

