信息学院本科生 2008-2009 学年第二学期 数据结构期末考试试卷(B卷)

专	业:_		F级:	:	学	号:		
姓	名: _		战绩:	·	_			
		1						
得	分	一、单项选择	题、	填空题(共25	分)			
		1. (2分)请月	目不	超过 30 个字解释	4件な	么是稳定的排序第	注法_	
		关键字相等的	元素	保证排序前后顺	序不	一变		o
2.	(2分	·)银行办理业务	需取	7号排队,对公业	2务先	三于个人业务办理	,这	种方式与什么
	数据	结构的特点吻合	? _	C。				
	Α.	栈	B.	FIFO 队列	C.	优先队列	D.	图
3.	(6	分)深度优先搜	袁索	可用什么数据约	吉构等	实现A,	宽月	度优先搜索用
	F	3实现。n	个顶	页点的树, 哪种	结构	进行深度优先控	捜索に	内存需求最多
	F	,哪种结构	勾进	行宽度优先搜索	内存	需求最多E	o	
	Α.	栈	В.	FIFO 队列	C.	优先队列	D.	图
	C.	满二叉树			D.	完全二叉树		
	E. 5	其余 n-1 个顶点者	『是相	根节点的孩子	F.	链		
4.	(2分) 二叉树中两个	节点	有共同的祖先节	5点,	则这两个节点在	先序	、中序、后序
	遍月	5中的相对次序_	_A_	0				
	Α.	不发生改变	В.	发生改变	C.	不能确定	D.	以上都不对
5.	(3分)10个节点的最	小堆	,有几个节点可	能排	在关键字升序的第	第 3 ′	位o
	A. 3	3	В.	4	C.	5	D.	6
6.	(2 5	分)对于一个已经	至升.	序排列的列表,	用堆	排序算法和插入	排序	算法理为升序
		3。	. ,		-			, •
			P	插入排字面烛	C	不一定哪个快	D	以上都不对
	Λ.	正111/11 文 [八	υ.	1四八117八天仄	C .		ν.	シエ 事 小 ツ

- 7. (2 分)将 n 个节点的二叉树扩充(将空指针扩展为外部节点),则外部节点的数 目为 C。
 - A. n-1
- B. n
- C. n+1 D. 2n
- 8. (2 分) 高度为 h 的 B 树,插入一个新元素,最多需要 B 次磁盘操作, 最少需要____B____次磁盘操作。
 - A. h

- B. h+1 C. 2h+1 D. 3h+1
- 9. (4 分) 一个森林有 m 棵树, n 个顶点,则它有 D 条边。
 - A. m
- B. n-1 C. n-m D. n+m

二、(本题 12 分)对下面的二叉树

- 1) 指出根、叶和节点 D 的父、兄弟和孩子。
- 2)给出先序、中序和后序遍历的结果。
- 3) 将其转换为一般树

答:

- 1)根:A:叶:G、J、K、E:D的父节点为B,兄弟节点为E,左孩子为G,右孩 子为 H。
- 2) 先序: A、B、D、G、H、J、K、E

中序: G、D、J、H、K、B、E

后序: G、J、K、H、D、E、B、A

三、(本题 10 分)有以下关键字:

503, 17, 512, 908, 170, 897, 275, 653

按序插入各个关键字构建一棵红黑树,设初始时树为空。画出得到的结果。

得 分

四、(本题 8 分)利用起泡排序将下面序列整理为降序序列,给出每趟起泡后的结果。

12, 70, 33, 65, 24, 56, 48, 92, 86, 33

解:

12, 33, 65, 24, 56, 48, 70, 86, 33, 92

12, 33, 24, 56, 48, 65, 70, 33, 86, 92

12, 24, 33, 48, 56, 65, 33, 70, 86, 92

12, 24, 33, 48, 56, 33, 65, 70, 86, 92

12, 24, 33, 48, 33, 56, 65, 70, 86, 92

12, 24, 33, 33, 48, 56, 65, 70, 86, 92

第3页,共6页

五、(本题 8 分)对于一个无向图 G=(V, E)

- 1) 如果是稠密图,用什么描述方式好?如果是稀疏图,用什么描述方法好?
- 2) 采用 Dijkstra 算法求单源最短路径, 顶点候选路径耗费可采用无序线性 表、有序线性表或堆保存, 对稠密图, 采用哪种数据结构时间复杂性最佳? 稀疏图呢?说明原因。

解:

稠密图采用邻接矩阵描述,稀疏图采用邻接链表。

对稠密图采用无序线性表,复杂性 $O(n^2)$,有序线性表为 $O(n^3)$,堆为 $O(n^2logn)$ 。稀疏图采用堆,复杂性 O(|E|logn),有序线性表为 O(n|E|),无序线性表为 $O(n^2)$

得 分

六、(本题 14 分)对下面加权有向图,回答下列问题。

- 1)给出每个顶点的入度和出度。
- 2) 画出邻接链表。
- 3) 求所有点对的最短路径。

出度: 3, 2, 2, 0, 3

入度: 0, 3, 3, 3, 1

邻接链表:

 $0 \quad (1,5) \quad (2,3) \quad (4,2)$

1 (2, 2) (3, 6)

2 (1,1) (3,2)

3

4 (1, 6) (2, 10) (3, 4)

最短路径

	0	1	2	3	4
0	0	5	3	5	2
1	NA	0	2	4	NA
2	NA	1	0	2	NA
3	NA	NA	NA	0	NA
4	NA	6	8	4	0

除以下3条路径外,其他最短路径皆为直达或不存在

0**→**2**→**3

4→1→2

1**→**2**→**3

七、(本题 14 分) 归并排序是以两个有序子列表合并操作为基础的,设计新的子列表合并算法: 排名次法,即,首先计算每个元素在合并列表中的名次(位置),然后将元素调整到正确位置。用 C++语言描述你的算法。对比这种算法和平凡算法的时间复杂性和空间复杂性。

解: 算法思想: 假定两个子列表为 A、B,对于 A 中第 i 个元素 a_i ,通过二分搜索查找它在 B 中的位置 j,则它在合并后列表中的位置为 i+j,保存在名次数组中。然后利用名次数组对原数组进行原地次序调整即可。程序略。

假定 A、B 规模均为 n。

则平凡算法需要 O(2n)次比较和 $\Theta(2n)$ 次数据移动,额外的存储空间为 2n 个数据元素的大小的空间。

上述算法需要 O(2nlogn)次比较和 $\Theta(2n)$ 次数据移动,额外的存储空间为 2n 个数组下标(整数)的大小的空间。

得 分

八、(本题 9 分)设计算法,求一棵二叉树中深度最浅的那些叶节点。用自然语言或伪代码描述清你的算法思想即可。

答:算法框架为任何一种遍历算法,先序、中序、后序均可。 h 表示当前最浅的叶节点的深度,初始化时置为 MAX_INT。 进行一次二叉树遍历,当访问到叶节点(左右孩子均为空)时,对比其深度 h'和 h,若 h'<h,则 h◆h'。 再进行一次二叉树遍历,对所有叶节点,若深度 h'=h,则记录此叶节点指针(或输出、或处理...)。

解法二:按宽度优先遍历二叉树,当遇到第一个叶节点时,记录(或输出、处理...)此层次上的所有叶节点,停止遍历。