Physics 77/88 - Fall 2024 - Homework 1

Unix and Python

Submit this notebook to bCourses to receive a credit for this assignment.

due: **Sept 11 2024**

Please upload both, the .ipynb file and the corresponding .pdf

Problem 1 (4P)

Imagine you have to import many 8 bit color images (e. g. RGB) for training an ANN.

- a) How many different colors can be saved theoretically in each of the images? Explain your answer. (2P)
- b) Do the same for a 16 bit image. (2P)
- a) $2^8=256$ different colors can be represented because each on/off state of every bit can save a different color.
- b) With similar reasoning to the 8 bit image, the 16 bit image can represent $2^{16}=65536$ different colors.

Problem 2 (2P)

For many algorithms, you need to calculate the product P_{tot} of different **probabilities** P_i like eg.

$$P_{tot} = \Pi_i^I \, P_i$$

for large I.

- a) Why could this be a problem? (1P)
- b) How can you solve the problem? (1P)
- a) Because the total probability gets multiplicatively smaller , for large I, the total probability would become too small to accurately represent by a given number of bits.
- b) This problem can be solved by adding more bits to store the number (such as using a double) so that smaller quantities can be more accurately stored. Alternatively, by taking the logarithm of both sides, the product can be calculated instead as a sum. By then exponentiating, the total probability can be calculated without need for more bits.

Problem 3 (4P)

Write down the following numbers as binary and with base 3 (including derivation):

- a) 21 (2P)
- b) 27 (2P)
- a) (i) Binary: $(1*2^4) + (0*2^3) + (1*2^2) + (0*2^1) + (1*2^0) = 10101$
- a) (ii) Base 3: $(2*3^2) + (1*3^1) + (0*3^0) = 210$
- b) (i) Binary: $(1*2^4) + (1*2^3) + (0*2^2) + (1*2^1) + (1*2^0) = 11011$
- b) (ii) Base 3: $(1*3^3) + (0*3^2) + (0*3^1) + (0*3^0) = 1000$

Problem 4 - optional (4P)

Create an arbitrary list *L1* in Python. From *L1* create another list *L2* that lists only those properties of *L1* which are **dunder methods**.

['__add__', '__class__', '__class_getitem__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__ge tattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__subclass__', '__iter__', '__le__', '__le n__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__']

Problem 5 (2P)

[0.3 0.01 0.2 0.121 0.11]

After a curve fit, a programm returns a vector *V* containing the errors, e. g.:

```
In [2]: import numpy as np

V = np.array([0.3, 0.01, 0.2, 0.121, 0.11])
print(V)
```

How would you calculate the mean of the squared errors (MSE) most efficiently in Python?

```
In [3]: MSE = np.mean(V**2)
print(MSE)
```

0.0313682