Lecture 1 (Infinite Series)

consider a sequence (xn) n>1

"Add the terms of the sequence (xn)n>1

 $\chi_1 + \chi_2 + \chi_3 + \cdots$

How to finitely many infinite sums?

Serves

a, ber a+ber tackle such read numbers

Consider
$$\chi_n = (-1)^n$$

 $\sum (-1)^n = -1 + 1 - 1 + 1 - 1 + \cdots$
 $n \ge 1$
 $= -1 + (1-1) + (1-1) + \cdots$
Seem to get -1
 $= (-1+1) + (-1+1) + (-1+1) + \cdots$
Seem to get 0

"convergence of an infinite series"

Defn (Sequence of partial sums of a Series) we have $\Sigma \times n$. Let $S_1 = X_1$ S9 = X1+ X2 Sz = X1+ 72+ 23 $S_n = \chi_1 + \chi_2 + \cdots + \chi_n$ The sequence $(S_n)_{n\geq 1}$ is called the sequence of partial sums of Eln.

Defn (convergence of $\Sigma \times n$) 1 We say Exn converges/exists if (Sn)_{n>1} converges in R. Suppose Sn -> S in R, then we wrute $\sum \chi_n = S.$ 1 If $(S_n)_{n\geq 1}$ is not convergent, then we say 52n is not convergent.

of If $(S_n)_{n\geq 1}$ diverges to $\pm \infty$, then we say $\sum_{n\geq 1} x_n$ diverges to $\pm \infty$ accordingly.

Note (Sn) n>1 is convergent

(Sn)_{n>1} is cauchy. So $\sum x_n$ is convergent iff for given n>1 any $\in >0$, $\neq n_0 \in \mathbb{N}$ such that $|S_n-S_m| < \in V$ $|n,m > n_0$.

This is known as "Cauchy eviterion" for the convergence of the Serves $\sum x_n$.

Examples

$$\frac{1}{2} \times n = (-1)^n$$

$$S_1 = X_1 = -1$$

$$S_2 = \chi_1 + \chi_2 = -1 + 1 = 0$$

$$S_3 = \chi_1 + \chi_2 + \chi_3 = -|+|-|$$
= -|

does not converge S4 = 0

on
$$(S_n)_{n\geqslant 1}$$
 does
$$S_{odd} = -1$$
not converge. $S_{even} = 0$

2)
$$x_n = 10^n$$
 where $10 \in [-1, 1]$

$$\sum_{n \ge 1} n^n$$
 when $10 \in [-1, 1]$

$$\sum_{n \ge 1} n^n = -1$$
.

Σ(-1)ⁿ does not converge.

Case-II
$$P = 1$$

$$\sum_{n \ge 1} \rightarrow \text{diverges } S_1 = 1$$

$$to + \infty : S_n = n$$

Sn= n diverges to +00. Case-III $\sum 10^n$ when 101 < 1. N>1 Show Σp^n is convergent and $\sum_{n>1}^{n} = \frac{n}{1-n}$. $\begin{cases} S_{n} = 10 + 10^{2} + \dots + 10^{n} \\ PS_{n} = 10^{2} + \dots + 10^{n} + 10^{n+1} \end{cases}$ (1-10) Sn = 10 - 10ⁿ⁺¹

$$S_n = \frac{1}{1 - 10} - \frac{10^{n+1}}{1 - 10}$$

Recall $10^{n+1} \rightarrow 0$ when 1101 < 1

$$\vdots S_{n} \longrightarrow \frac{n}{1-n}.$$

$$\sum_{n \geq 1}^{n} = \frac{10}{1-10}$$
 when $|101 < 1$.

"Greometric Series"

$$\chi_{n} = \frac{1}{n(n+1)}$$

$$\sum_{n \in \mathbb{N}} \frac{1}{n(n+1)}$$

$$a_{n} = \frac{1}{n}$$
 $a_{n+1} = \frac{1}{n+1}$

$$a_{n} = \frac{1}{n}$$
 $a_{n+1} = \frac{1}{n+1}$ $S_{\frac{1}{2}}$ $b_{n} = a_{n} - a_{n+1} = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$

$$s_n \rightarrow 1$$
 as $n \rightarrow \infty$

$$\therefore \sum_{n \ge 1} \frac{1}{n(n+1)} = 1$$

$$S_1 = \frac{1}{1.2}$$

$$S_2 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3}$$

$$S_3 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4}$$

$$S_n \to 1$$
 as $n \to \infty$ $S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)}$
 $= \frac{1}{n(n+1)} = 1$ $= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \cdots$

$$=1-\frac{1}{n+1}+(\frac{1}{n}-\frac{1}{n+1})$$

Porop Let (an)_{no1} be a sequence of oreal numbers such that an > L. Then $\sum_{n\geqslant 1}^{\sum_{b_n}}$ where $b_n = a_n - a_{n+1}$ converges to $a_1 - L$. Telescoping Series " Sn = b1+b2+ ... + bn $= \alpha_{1} - \alpha_{2} + \alpha_{2} - \alpha_{3} + \cdots + \alpha_{n} - \alpha_{m+1}$ $= a_1 - a_{n+1}$ $a_1 - b_n = a_1 - b_1$ $a_1 - b_1 = a_1 - b_1$ $a_1 - b_1 = a_1 - b_1$

4)
$$x_n = \frac{1}{n}$$

$$\sum \frac{1}{n} \quad \text{diverges to } + \infty$$

$$\underbrace{Note} \quad S_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$$

$$(S_n)_{n \ge 1} \quad \text{is an inerteasing}$$

$$Sequence.$$
To show that $(S_n)_{n \ge 1}$ diverges to $+\infty$, it is emough to exhibit a subsequence of $(S_n)_{n \ge 1}$ which diverges to $+\infty$.

Show (S₂n)_{n>1} diverges to + 0.

$$S_2 = 1 + \frac{1}{2}$$

$$S_{2} = S_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

$$\frac{1}{3} > \frac{1}{4}, \frac{S_4}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2}$$

$$S_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$> 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

$$S_8 > 1 + \frac{3}{6}$$

$$S_{2^{n}} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2^{n}}$$

$$= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \cdots + \frac{1}{2^{n}}$$
There are
$$2^{n} - 2^{n-1} \text{ many terms}$$
and each of them is
of the terms
of that we are
$$3^{n} > 1 + \frac{1}{2} + \frac{n-1}{2} = 1 + \frac{n}{2} = 2^{n}$$
Clubbing together.

Son diverges to + 00.

As $(S_n)_{n\geqslant 1}$ is an increasing sequence and $(S_{2n})_{n\geqslant 1}$ diverges to $+\infty$, we get $(S_n)_{n\geqslant 1}$ diverges to $+\infty$.

: (\S\frac{1}{h}) diverges to +00 "Horemonie Series" 7) $\sum_{n \geq 1} \frac{1}{h^2}$ is convergent.

 $(S_n)_{n\geq 1}$ is monotonically $S_2 = 1 + \frac{1}{2}$

increasing.

 $S_3 = 1 + \frac{1}{92} + \frac{1}{32}$

Aim 7 a subsequence

is bounded.

of $(S_n)_{n\geq 1}$, which $S_n = 1 + \frac{1}{92} + \cdots + \frac{1}{n^2}$

Consider the subsequence (Sn)no of $(S_n)_{n\geqslant 1}$

$$S_{1} = 1$$

$$S_{3} = 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}}$$

$$< 1 + \frac{1}{2^{2}} + \frac{1}{2^{2}} = 1 + \frac{1}{2}$$

$$S_{7} = 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \cdots + \frac{1}{7^{2}}$$

$$= S_{3} + \frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}}$$

$$< S_{3} + \frac{4}{4^{2}} < 1 + \frac{1}{2} + \frac{1}{4}$$

$$S_{15} = S_{7} + \frac{1}{8^{2}} + \cdots + \frac{1}{15^{2}}$$

$$< 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

$$< S_{2-1}^{n} = S_{3-1}^{n-1} + \frac{1}{(2^{n-1})^{2}} + \cdots + \frac{1}{(2^{n-1})^{2}}$$

$$= \sum_{2-1}^{n-1} + \frac{1}{(2^{n-1})^{2}} + \cdots + \frac{1}{(2^{n-1})^{2}}$$

$$S_{2^{n-1}-1} < 1 + \frac{1}{2} + \frac{1}{2^{2}} + \cdots + \frac{1}{2^{n-2}}$$

$$S_{2-1} < 1 + \frac{1}{2} + \cdots + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} \left\{ 2 - 1 \right\}$$

$$= 1 + \frac{1}{2} + \cdots + \frac{1}{2^{n-1}}$$

:. The Sequence
$$(S_{2^{n}-1})_{n\geqslant 1}$$
 is bounded.

- 1) Every bounded monotonic sequence is convergent.
- 2) If a monotonie Sequence has a convergent subsequence, then the Sequence it self is convergent.
 - $(S_{2^{n}-1})_{n\geq 1}$ is also monotonically increasing bounded using fact 1), we can conclude, $(S_{2^{n}-1})_{n\geq 1}$
 - us convergent.
 Apply Fact 2), to conclude $\sum_{n\geqslant 1}^{1}h_{2}$ is convergent.

Exercise Show that $\sum_{n\geqslant 1} \frac{1}{n^{\frac{1}{p}}}$ is convergent when p>1.

Think! What happens if 0<b<1?

8) $\sum_{n\geqslant 1} \frac{(-1)^{n+1}}{n}$ is convergent.

Let $(S_n)_{n\geqslant 1}$ be the sequence of poortial sums of this series.

consider, $(S_{2n})_{n\geqslant 1}$ and $(S_{2n-1})_{n\geqslant 1}$.

It is enough to show, both their Subsequences converge to the same limit.

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2n-1} - \frac{1}{2n}$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{2n-1} - \frac{1}{2n}\right)$$

:. San>0, (San)_{n>1} is an increasing sequence.

$$S_{2n-1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots - \frac{1}{2n-2} + \frac{1}{2n-1}$$

$$= 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2n-2} - \frac{1}{2n-1}\right)$$

$$> 0 > 0 > 0 > 0$$

$$\therefore S_{2n-1} < 1 \text{ and } (S_{2n-1})_{n}, 1$$

$$\therefore S_{2n-1} < 1 \text{ and } (S_{2n-1})_{n}, 1$$

$$\therefore S_{2n-1} < 1 \text{ Sequence.}$$

$$S_{2n} < S_{2n-1}$$

 $S_{2n} = S_{2n-1} - \frac{1}{2n}$

$$0 < S_{2n} < S_{2n-1} < 1$$

both are bounded

$$(S_{2n})_{n\geqslant 1}$$
 and $(S_{2n-1})_{n\geqslant 1}$ are convergent.

Suppose,
$$S_{2n} \rightarrow L_1$$

and $S_{2n-1} \rightarrow L_2$
 $S_{2n-1} - S_{2n} \rightarrow L_2 - L_1$
 $\frac{1}{2n} \rightarrow 0$ as $n \rightarrow \infty$
 \vdots $L_2 - L_1 = 0$
i.e. $L_1 = L_2$.