A Concrete Introduction to Number Theory and Algebra-环与域

Libin Wang

School of Computer Science, South China Normal University

April 19, 2021

Table of contents

① Ring (环)

② Field (域)

Ring (环).

Definition

环 R 是一个非空集合,在 R 上有两种封闭的二元操作: 加法 (记为 $+: R \times R \mapsto R$) 和乘法 (记为 $*: R \times R \mapsto R$),并且满足 以下条件:

- ② R 在乘法(*)上满足结合律;
- ③ 乘法在加法上满足分配律。

Ring(环)

具体地表示为公式,对任意 $a, b, c \in R$, 环 R 满足以下公理:

$$a + (b + c) = (a + b) + c$$
 (+ 的结合律) (1)

$$a+b=b+a$$
 (+ 的交换律) (2)

$$a + 0 = 0 + a \quad (+ \text{ 的单位元})$$
 (3)

$$a + (-a) = (-a) + a = 0$$
 (+ 的逆元) (4)

$$a*(b*c) = (a*b)*c$$
 (* 的结合律) (5)

$$a*1 = 1*a = a$$
 (* 的单位元) (6)

$$(a+b)*c = (a*c) + (b*c)$$
 (右分配律) (7)

$$a*(b+c) = (a*b) + (a*c)$$
 (左分配律) (8)

Ring (环).

Definition

- 如果 R 在乘法上也满足交换律,则称 R 为交换环,否则称 为非交换环。
- 如果 R 在乘法上具有单位元,则称环 R 为带单位元的环。

Example

● $R = \{0\}$ 是只有一个元素的最小环,称为平凡环或零环。如果一个环中, $1 \neq 0$,则这个环是非平凡环。一个最小的非平凡环就是 $R = \{0,1\}$,或者记为 \mathbb{Z}_2 。

- $R = \{0\}$ 是只有一个元素的最小环,称为平凡环或零环。如果一个环中, $1 \neq 0$,则这个环是非平凡环。一个最小的非平凡环就是 $R = \{0,1\}$,或者记为 \mathbb{Z}_2 。
- ② 在普通意义的加法和乘法上,容易验证 $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ 都是交换 环。

- $R = \{0\}$ 是只有一个元素的最小环,称为平凡环或零环。如果一个环中, $1 \neq 0$,则这个环是非平凡环。一个最小的非平凡环就是 $R = \{0,1\}$,或者记为 \mathbb{Z}_2 。
- ② 在普通意义的加法和乘法上,容易验证 $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ 都是交换 环。
- ③ 整数中所有的偶数在一般的加法与乘法上形成环,同样记为 $2\mathbb{Z}$,这是一个不带单位元的环。更一般地,对任意整数 $n \in \mathbb{Z}$, $n\mathbb{Z}$ 在一般的加法与乘法上形成环。

- $R = \{0\}$ 是只有一个元素的最小环,称为平凡环或零环。如果一个环中, $1 \neq 0$,则这个环是非平凡环。一个最小的非平凡环就是 $R = \{0,1\}$,或者记为 \mathbb{Z}_2 。
- ② 在普通意义的加法和乘法上,容易验证 $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ 都是交换 环。
- 整数中所有的偶数在一般的加法与乘法上形成环,同样记为 $2\mathbb{Z}$,这是一个不带单位元的环。更一般地,对任意整数 $n \in \mathbb{Z}$, $n\mathbb{Z}$ 在一般的加法与乘法上形成环。
- 对任意正整数 $n \in \mathbb{N}$, \mathbb{Z}_n 是模 n 的加法群。如果给加法群 \mathbb{Z}_n 配置上乘法 *,乘法 * 被定义为整数上的模 n 乘法,即 $\forall a, b \in \mathbb{Z}_n$, $a * b \triangleq ab \mod n$ 。容易验证 \mathbb{Z}_n 是一个交换环。

Example

① 取 p 为任意素数, \mathbb{Z}_p 在模 p 的加法与模 p 的乘法下成环,而且 \mathbb{Z}_p 的所有非零元素在乘法上都有逆元。以后我们将重点讨论这种特殊的环。

- ① 取 p 为任意素数, \mathbb{Z}_p 在模 p 的加法与模 p 的乘法下成环,而且 \mathbb{Z}_p 的所有非零元素在乘法上都有逆元。以后我们将重点讨论这种特殊的环。
- ② 对任意环 R, R 的直积 $R \times R$ 形成环, 环的加法与乘法定义 为 $\forall (a,b), (c,d) \in R \times R$ 序对, $(a,b)+(c,d) \triangleq (a+c,b+d)$ 和 $(a,b)(c,d) \triangleq (ac,bd)$ 。

- ① 取 p 为任意素数, \mathbb{Z}_p 在模 p 的加法与模 p 的乘法下成环,而且 \mathbb{Z}_p 的所有非零元素在乘法上都有逆元。以后我们将重点讨论这种特殊的环。
- ② 对任意环 R, R 的直积 $R \times R$ 形成环,环的加法与乘法定义为 $\forall (a,b), (c,d) \in R \times R$ 序对, $(a,b)+(c,d) \triangleq (a+c,b+d)$ 和 $(a,b)(c,d) \triangleq (ac,bd)$ 。
- ③ 实数上的 $n \times n$ 矩阵在普通的矩阵加法和矩阵乘法上形成环,也称为矩阵环,记为 $M_n(\mathbb{R})$ 。这是一种非交换环。

Ring 的属性.

Proposition

设 R 是一个环, 且 $a, b \in R$, 则有:

- **1** a0 = 0a = 0
- 2 a(-b) = (-a)b = -ab
- (-a)(-b) = ab

Ring 的属性.

Proof.

根据分配律,

$$a0 = a(0+0) = a0 + a0$$

则 a0 = 0,同理 0a = 0。同样根据分配律

$$ab + a(-b) = a(b + (-b)) = a0 = 0$$

所以,
$$-(ab) = a(-b)$$
,同理 $-(ab) = (-a)b$ 。最后,根据以上结论, $(-a)(-b) = -(a(-b)) = -(-(ab)) = ab$ 。

整环(Integral Domain.)

Definition

给定一个环 R,对任意元素 $a \in R$,如果存在元素 $b \in R$ 使得 $b \neq 0$ 且 a * b = 0,则称 a 为一个零因子(zero divisor)。如果交换环 R 中没有除 0 以外的零因子,即 $\forall a, b \in R$,如果 ab = 0 则有 a = 0 或 b = 0,则称 R 为整环。

整环实例

- 在普通意义的加法和乘法上, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ 都是整环。比如,考虑 $a, b \in \mathbb{Z}$,ab = 0 当且仅当 a = 0 或者 b = 0。其他实例,验证类似。
- ② 可验证偶数环 $2\mathbb{Z}$ 是整环。更一般地,对任意的 $n \in \mathbb{Z}$, $n\mathbb{Z}$ 都是整环。
- ③ 已知 \mathbb{Z}_n 是一个交换环。但是, \mathbb{Z}_n 并不是整环。比如, \mathbb{Z}_{15} 中,(3*5) mod 15=0,3 和 5 都是 \mathbb{Z}_{15} 中的零因子。
- ④ 矩阵环 $M_n(\mathbb{R})$ 不是整环,因为存在 $A, B \in M_n(\mathbb{R})$,使得 AB = 0 但是 A 和 B 都不为 0。

整环属性

Proposition

设 D 是一个交换环,D 是整环当且仅当对任意元素 $a, b, c \in D$,且 $a \neq 0$,若 ab = ac,则 b = c。

整环属性

Proof.

- ① 充分性. D 是整环,则 D 中无零因子。若 $a \neq 0$ 且 ab = ac,则 a(b-c) = 0,则 b-c = 0,即 b = c。
- ② 必要性. 假设 D 中消去律成立,即若 ab = ac,则 b = c。设 ab = 0,有 ab = a0. 如果 $a \neq 0$,根据消去律,得到 b = 0。 因此,a 不可能是零因子。

子环 (Subring)

Definition

给定环 R, R' 是 R 的子集, 如果 R' 在环 R 的加法和乘法上也形成环,则称 R' 是 R 的子环,记为 $R' \subset R$ 。

子环实例

- **●** 容易验证以下子环序列: $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ 。
- ② 偶数环是整数环的子环,即 $2\mathbb{Z} \subset \mathbb{Z}$ 。由此可知,子环并不自然继承母环的单位元。当然,对任意的 $n \in \mathbb{Z}$,有 $n\mathbb{Z} \subset \mathbb{Z}$ 。

子环属性

Proposition

给定环 R, R' 是 R 的子集。R' 是 R 的子环,当且仅当以下条件满足:

- $\mathbf{O} \quad R' \neq \emptyset;$
- ② $\forall a, b \in R'$,有 $ab \in R'$;
- ③ $\forall a, b \in R'$,有 $a b \in R'$ 。

Proof.

根据子群命题易得, 留作课后练习。

环同态与环同构

Definition

给定两个环 R 和 R', 若映射 $\phi: R \mapsto R'$ 满足: $\forall a, b \in R$,

$$\phi(\mathbf{a} + \mathbf{b}) = \phi(\mathbf{a}) + \phi(\mathbf{b})$$
$$\phi(\mathbf{a}\mathbf{b}) = \phi(\mathbf{a})\phi(\mathbf{b})$$

则称 ϕ 为一个环同态。如果 ϕ 是一个双射,则 ϕ 是一个环同构。 环同态 ϕ 的 Kernel 定义为以下集合:

$$\operatorname{Ker} \phi = \{ r \in R : \phi(r) = 0 \}_{\bullet}$$

环同态的性质

Proposition

设映射 ϕ : R → R' 是环同态,则:

- ① 如果 R 是交换环,则 $\phi(R)$ 也是交换环。
- ② 分别记 0 和 0' 是 R 和 R' 的加法单位元, $\phi(0) = 0'$ 。
- ③ 分别记 1 和 1' 是 R 和 R' 的乘法单位元,如果 ϕ 是满射,则 $\phi(1) = 1'$ 。

Example

请验证以下同态实例,体会环同态与群同态的异同点。

● 已知 \mathbb{Z} 是环,定义映射 $\phi: \mathbb{Z} \mapsto \mathbb{Z}$ 为 $\phi(k) = 2k$, $\forall k \in \mathbb{Z}$, 即把所有整数映射到偶数 $2\mathbb{Z}$ 。已知 ϕ 是 \mathbb{Z} 到 \mathbb{Z} 的群同态, 但是可以验证 ϕ 不是一种环同态。

Example

请验证以下同态实例,体会环同态与群同态的异同点。

- ① 已知 \mathbb{Z} 是环,定义映射 $\phi: \mathbb{Z} \mapsto \mathbb{Z}$ 为 $\phi(k) = 2k$, $\forall k \in \mathbb{Z}$,即把所有整数映射到偶数 $2\mathbb{Z}$ 。已知 ϕ 是 \mathbb{Z} 到 \mathbb{Z} 的群同态,但是可以验证 ϕ 不是一种环同态。
- ② 对任意整数 $n \in \mathbb{Z}$,已知 \mathbb{Z}_n 为环,定义映射 $\phi : \mathbb{Z}_n \mapsto \mathbb{Z}_n$ 为 $\phi(a) = a^2 \mod n$, $\forall a \in \mathbb{Z}_n$,即把所有 \mathbb{Z}_n 的元素映射到平方数。可以验证 ϕ 不是一种环同态,尽管这种映射在 \mathbb{Z}_n^* 中是一种群同态。

Example

请验证以下同态实例,体会环同态与群同态的异同点。

• 考虑一种特殊的环同态,定义 $\phi: 2\mathbb{Z} \mapsto \mathbb{Z}_2$ 为 $\forall k \in 2\mathbb{Z}$, $\phi(k) = k \mod 2$ 。明显, ϕ 是同态,但不是满同态,它把所有偶数都映射到了 0。将这种把任意 R 映射到零环 $\{0\}$ 的环同态称为零同态。

Example

请验证以下同态实例,体会环同态与群同态的异同点。

- 考虑一种特殊的环同态,定义 $\phi: 2\mathbb{Z} \mapsto \mathbb{Z}_2$ 为 $\forall k \in 2\mathbb{Z}$, $\phi(k) = k \mod 2$ 。明显, $\phi(k) = k \mod 2$ 。如果我们, $\phi(k) = k \mod 2$ 。我们, $\phi(k) = k \mod 2$ 。
- ② 考虑一种更特殊的环同态,对任意的环 R,定义映射 $\phi: R \mapsto \mathbb{Z}_2$ 为 $\forall a \in R$, $\phi(a) = 0$ 。可验证,这是一种零同态,显然不是满同态。特别提醒注意,如果环 R 有乘法单位元 1, $\phi(1) = 0$ 。并不是我们期望的映射到 \mathbb{Z}_2 的 1。

Example

① 对任意环 R,已知 $R \times R$ 是环。定义映射 $\phi: R \times R \mapsto R \times R$ 为 $\forall (a,b) \in R \times R$, $\phi(a,b) = (a,0)$ 。可验证,这是一个环同态,但并非满同态。注意,在 $\phi(R \times R)$ 中的单位元是 (1,0),但是 $R \times R$ 中的单位元是 (1,1)。

Example

① 设 p 是任意一个奇素数,考虑 $2\mathbb{Z}$ 与 \mathbb{Z}_p 之间的映射 $\phi: 2\mathbb{Z} \mapsto \mathbb{Z}_p$,定义为 $\forall k \in 2\mathbb{Z}$, $\phi(k) = k \bmod p$ 。 直观上看,该映射把所有的偶数做模 p 操作满射到环 \mathbb{Z}_p 。容易验证 ϕ 是满同态。值得注意的是,偶数环 $2\mathbb{Z}$ 没有乘法单位元,环 \mathbb{Z}_p 的乘法单位元是 1, $2\mathbb{Z}$ 中有无穷多的元素映射到 \mathbb{Z}_p 的乘法单位元 1 上。也就是说,即使乘法单位元必然映射为乘法单位元,也并非只有乘法单位元才映射为乘法单位元。

理想

环的理想在群论中的对应概念是正规子群。

Definition

给定环 R, $I \in R$ 的子环,如果对任意的 $r \in R$ 有 $rI \subset I$ 和 $Ir \subset I$, 则称 $I \in R$ 的理想。

理想

环的理想在群论中的对应概念是正规子群。

Definition

给定环 R, I 是 R 的子环,如果对任意的 $r \in R$ 有 $rI \subset I$ 和 $Ir \subset I$,则称 I 是 R 的理想。

从表面上看,所谓环 R 的理想 I,首先它是环 R 的子环,其次它 具有 "吸收性",即对任意的环元素 $r \in R$,无论它是否落在 I 中,用 r 左乘或者右乘 I,所得到的元素都会落回到 I 中。

理想的实例

- 所有的环 R 都有两个平凡理想: {0} 和 R。
- ② 如果 R 的理想 I 中包括 1, 则 R = I。
- ③ 对任意整数 $n \in \mathbb{Z}$,集合 $n\mathbb{Z}$ 是环 \mathbb{Z} 的理想。直观上看,集合 $n\mathbb{Z}$ 包含了所有 n 的倍数, $n\mathbb{Z}$ 在加法上成群,而用任意整数乘 n 的倍数还是得到一个 n 的倍数,虽然此时 $n\mathbb{Z}$ 中并不必然有单位元 1,也不必然有乘法逆元。

主理想(Principal Ideal)

Proposition

设 R 是一个交换环且有单位元,任取 $a \in R$,则集合

$$\langle a \rangle = \{ ar : r \in R \}$$

是环 R 的一个理想,称之为主理想(Principal Ideal)。

主理想(Principal Ideal)

Proposition

设 R 是一个交换环且有单位元,任取 $a \in R$,则集合

$$\langle a \rangle = \{ ar : r \in R \}$$

是环 R 的一个理想,称之为主理想(Principal Ideal)。

主理想 vs 循环群

环的主理想对应群论中的循环群。

主理想-证明

Proof.

首先,验证 $\langle a \rangle$ 是非空集合,至少包括 0 和 a 两个元素。其次,验证 $\langle a \rangle$ 在加法上成群。最后,验证 $\langle a \rangle$ 具有吸收性,即任取 $s \in R$ 乘上 $\langle a \rangle$ 中任意元素 ar,必然有

$$s(ar) = a(sr) \in \langle a \rangle$$

注意,上式成立需要依赖交换律。所以, $\langle a \rangle$ 是 R 的理想。

主理想-实例

- 对任意环 R, 只包含一个元素 0 的主理想 (0) 称为零理想。
- ② 对任意带单位元的环 R, 称 $\langle 1 \rangle$ 为单位理想, 显然 $R = \langle 1 \rangle$ 。
- ③ 对任意整数 n,集合 $n\mathbb{Z}$ 是整数环 \mathbb{Z} 的理想,也是主理想, $n\mathbb{Z} = \langle n \rangle$ 。

理想与主理想

Proposition

整数环 Z 的所有理想都是主理想。

Proof.

首先,零理想也是主理想,因为 $\langle 0 \rangle = \{0\}$ 。设 I 是整数环 $\mathbb Z$ 的一个非零理想,则 I 中必然包括某些正整数,根据良序原则,则 I 中必然存在一个最小正整数 n。对任意的元素 $a \in I$,根据除法算法,存在整数 q 和 r, $0 \le r < n$,使得:

$$a = qn + r$$

也就是,r = a - qn,利用理想的属性,可知 $r \in I$ 。又因为 $n \in I$ 中最小正整数,所以,r = 0。因此,a = qn,即 $I = \langle n \rangle$ 。

环同态与 Kernel

Proposition

环同态 $\phi: R \mapsto R'$ 的 Kernel 是 R 的理想。

Proof.

根据群论的结论, $K = \text{Ker } \phi$ 是 R 的加法子群(并且是正规子群),只需要证明 K 具有理想的 "吸收性",即对任意的 $r \in R$ 和 $a \in K$ 有 $ar \in K$ 和 $ra \in K$ 。显然如此,因为:

$$\phi(ar) = \phi(a)\phi(r) = 0\phi(r) = 0$$

且

$$\phi(ra) = \phi(r)\phi(a) = \phi(r)0 = 0$$

环同态与 Kernel

Example

对任意整数 $n \in \mathbb{Z}$,定义映射 $\phi : \mathbb{Z} \mapsto \mathbb{Z}_n$ 为 $\forall a \in \mathbb{Z}$, $\phi(a) = a \bmod n$ 。容易验证这是一个环同态,而 Ker ϕ 就是 $n\mathbb{Z}$ 。

Lemma

设 R 是环, I 是 R 中的理想。商群 R/I 中元素的乘法定义为: 对任意的群元 $r, s \in R$,

$$(r+I)(s+I) = rs+I$$

该乘法是一种良定义操作,且具有封闭性、结合律和对加法具有 分配律。

商环

Proof.

首先证明乘法是一种良定义操作,即假设 $l' \in r+1$, $s' \in s+1$, 证明 $l's' \in (rs+1)$ 。因为 $l' \in r+1$, $s' \in s+1$, 即存在 $i_1, i_2 \in I$ 使得 $l' = r+i_1$ 和 $s' = s+i_2$,因此,

$$r's' = (r + i_1)(s + i_2) = rs + ri_2 + i_1s + i_1i_2$$

根据理想的吸收性, $ri_2 + i_1s + i_1i_2 \in I$,所以, $t's' \in rs + I$ 。商环乘法的封闭性、结合律和分配律留作课后练习。 \square \square

商环

Theorem

设 R 是环,I 是 R 中的理想。商群 R/I 在陪集加法与引理25中定义的乘法上形成环,称为 R 模 I 的商环,同样记为 R/I。

商环

Example

任取 $n \in \mathbb{Z}$, $n\mathbb{Z} = \langle n \rangle$ 是整数环 \mathbb{Z} 的主理想,则 $\mathbb{Z}/n\mathbb{Z}$ 是商环,其中元素刚好构成模 n 的完全剩余系。

环的标准同态与第一同构定理

Definition

设 I 是环 R 的理想,定义环同态映射 $\phi: R \mapsto R/I$ 为 $\phi(r) = r + I$, $\forall r \in R$ 。并称该映射为环的标准同态或者自然同态,且 Ker $\phi = I$ 。

Theorem (第一同构定理.)

 $\psi: R \mapsto S$ 是环同态,记 $K = Ker \psi$ 是 R 的理想。如果 $\phi: R \mapsto R/K$ 是标准同态,则存在唯一同构 $\eta: R/K \mapsto \psi(R)$ 使 得 $\psi = \eta \phi$ 。

环的标准同态与第一同构定理

Example

任取 $n \in \mathbb{Z}$,构造映射 $\phi : \mathbb{Z} \mapsto \mathbb{Z}_n$ 为,任取 $a \in \mathbb{Z}$, $\phi(a) = a \mod n$ 。可验证,这是一个环同态映射。Ker $\phi = n\mathbb{Z}$,因为所有 n 的倍数都映射为 0。根据第一同构定理, $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ 。

域的定义

Definition

如果一个带单位元的交换环 R 中的非 0 元素都存在唯一的乘法逆元,即 $\forall a \in R$ 且 $a \neq 0$,则存在唯一的 $a^{-1} \in R$ 使得 $a * a^{-1} = a^{-1}a = 1$,则称这种代数结构为域。

域-实例

Example

- 在普通的加法与乘法上, \mathbb{Q} , \mathbb{R} , \mathbb{C} 都是域。 \mathbb{Z} 不是域,因为乘法上 \mathbb{Z} 不是群。
- ② 任意给定素数 p,在模 p 的加法与乘法上 \mathbb{Z}_p 是域。因为 \mathbb{Z}_p 在加法上是阿贝尔群,而 \mathbb{Z}_p^* 在乘法上也是阿贝尔群。对任 意合数 $n \in \mathbb{Z}_p$ 则不是域,因为 $\mathbb{Z}_n \{0\}$ 乘法上不成群。

域的乘法逆元与零因子

Proposition (乘法逆元与零因子.)

对任意的域 F,任取 $a, b \in F$,如果 ab = 0 则 a = 0 或者 b = 0。 即域中不存在零因子。

Proof.

不妨设 $a \neq 0$,否则证完。因为 $a \neq 0$,则存在 a 的乘法逆元 $a^{-1} \in F$ 且 $a^{-1} \neq 0$,使得 $aa^{-1} = 1$ 。等式 ab = 0 两边乘上 a^{-1} ,根据之前的命题,则 b = 0。

域的乘法逆元与零因子

Proposition (整环与域.)

每一个有限整环都是域。

Proof.

证明的思路就是利用有限整环的性质,为每一个非 0 元素找到乘法逆元。设 D 是一个有限整环,记 D^* 为环中所有非 0 元素的集合。对任意的 $a \in D^*$,构造映射 $\lambda_a : D^* \mapsto D^*$ 为 $\lambda_a(d) = ad$, $\forall d \in D^*$ 。首先,证明这确实是合理的映射,因为如果 $a \neq 0$, $d \neq 0$,则 $ad \neq 0$ 。然后,因为 D^* 是有限集且 λ_a 是从 D^* 到 D^* 的单射,所以 λ_a 必然是满射。因此,必然存在某个 $d \in D^*$ 使得 ad = 1,又因为 D 是交换环,所以这个 d 就是 a 的乘法逆元。结论:可为 D^* 中每一个元素都找到乘法逆元,所以 D 是一个域。

特征 (Characteristic)

Definition (特征.)

环 R 的特征(characteristic)定义为最小的正整数 n 使得对任意的 $r \in R$, $r + r + \cdots + r = nr = 0$ 。如果不存在这样的 n,则 R

的特征定义为 0。

Example

- 环 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ 的特征都是 0。
- ② 对任意素数 p,域 \mathbb{Z}_p 的特征是 p。因为 \mathbb{Z}_p 加法群的阶为 p,即对任意的 $a \in \mathbb{Z}_p$,pa = 0。

特征的属性

Lemma

设 R 为环, 若 1 在加法群的阶为 n, 则 R 的特征为 n。

Proof.

若 1 在加法群的阶为 n, 则 n 是最小正整数使得 n1 = 0。那么,任取 $r \in R$,有:

$$nr = n(1r) = (n1)r = 0r = 0$$

即 n 是 R 的特征。

特征的属性

Proposition

整环的特征或者为素数,或者为0。

Proof.

设整环 D 的特征为 n, 且 $n \neq 0$ 。如果 n 不是素数,则 n = ab,且 1 < a, b < n。根据以上引理,有

$$0 = n1 = (ab)1 = (a1)(b1)$$

因为 D 是整环,D 中无零因子,所以必然 a1 = 0 或者 b1 = 0。 但是这都意味着 D 的特征小于 n,矛盾。

域的特征与阶的关系

Proposition (有限域的特征.)

阶为 n 的有限域 F 的特征是一个素数 p, 且 $p \mid n$ 。

Proof.

因为有限域 F 的阶为 n,且 F 是加法群,所以对任意的 $a \in F$,有 na = 0。所以,F 的特征必然是素数 p,且 $p \mid n$ 。

有限域的阶

以下不加证明给出另一个重要结论。

Proposition (有限域的阶)

如果有限域 F 的特征是素数 p,则 F 的阶是 p^n ,n 是某个正整数。进一步,对任意的素数 p 和正整数 n,存在阶为 p^n 的有限域,并且所有的 p^n 阶有限域都同构。

Example

 p^n 阶的有限域也记为 $GF(p^n)$, GF 是 Galois Field 的缩写。

域的理想

Proposition (域的理想)

任何一个域 F 的理想只有 0 和自己本身 F。

Proof.

首先,已知 0 和 F 都是 F 的理想。设 I 是域 F 的非 0 理想,则存在非零元素 $a \in I$ 。因为 F 是域,则存在 a 的乘法逆元 $a^{-1} \in F$ 。根据理想的吸收性, $a^{-1}a = 1 \in I$ 。包含 1 的理想 I 等于 F,即 I = F。

域同态是单射

Proposition (域同态是单射.)

任何一个域同态或者是单射或者是零同态。

Proof.

域 F_1 到域 F_2 的域同态 ϕ 是单射,当且仅当 $\operatorname{Ker} \phi = \{0\} \subset F_1$ 。 因为 F_1 的理想只有 0 和 F_1 本身,所以当 $\operatorname{Ker} \phi = \{0\}$ 时 ϕ 是单射,而当 $\operatorname{Ker} \phi = F_1$ 时, ϕ 是零同态。

Definition (极大理想与素理想.)

设 R 是环,M 是 R 的真子集且是 R 的理想,则称 M 是 R 的真理想。设 M 是 R 的真理想,如果 M 不是 R 的任意真理想的真子集,则称 M 是极大理想(maximal ideal)。即如果 M 是 R 的极大理想,则对 R 的任意理想 I,若 $M \subset I$,则 I = R。设 P 是交换环 R 的真理想,如果对任意 $ab \in P$,则或者 $a \in P$,或者 $b \in P$,就称 P 为素理想($Prime\ Ideal$)。

Example

素理想的"素"确实有"素数"的意味。设 p 为素数,如果 $p \mid ab$,则 $p \mid a$ 或 $p \mid b$ 。请体会素理想定义中要求与之类似之处:对任意 $ab \in P$,则 $a \in P$ 或 $b \in P$ 。令 $P = p\mathbb{Z}$,p 是任意素数, $a \in P$ 当且仅当 $p \mid a$ 。所以,从整数的角度上看,素理想确实是素数的倍数形成的理想。当然,理想不能仅停留于此,还需要进一步的抽象,但是这个例子告诉我们,抽象代数的"抽象"并非凭空而出,往往源自于具体的实例。

Example

设 $P = \{0, 2, 4, 6\}$ 为环 \mathbb{Z}_8 的理想,可验证 P 是极大理想,也是素理想。任取素数 p,则 $p\mathbb{Z}$ 是 \mathbb{Z} 的素理想。

极大理想与域

Theorem (极大理想与域.)

设 R 是交换环,M 是 R 的理想,则 M 是 R 的极大理想,当且 仅当 R/M 是域。

极大理想与域

Example

任取素数 p,已知 $p\mathbb{Z}$ 是 \mathbb{Z} 的素理想。因为 $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$, \mathbb{Z}_p 是 域,所以 $p\mathbb{Z}$ 是 \mathbb{Z} 的极大理想,

素理想与整环

Theorem (素理想与整环.)

设 R 是交换环,P 是 R 的理想,则 P 是 R 的素理想,当且仅当 R/P 是整环。

素理想与整环

Example

设 p 是素数,则 $p\mathbb{Z}$ 是 \mathbb{Z} 的理想。可知, $p\mathbb{Z}$ 是 \mathbb{Z} 的极大理想,因为 $\mathbb{Z}/p\mathbb{Z}\cong\mathbb{Z}_p$ 是域。

Proposition (极大理想与素理想.)

交换环的每一个极大理想都是素理想。