

Probability and Distributions

CS115 - Math for Computer Science

TS. Lương Ngọc Hoàng TS. Dương Việt Hằng

September 9, 2023

Roadmap

- Construction of a Probability Space
- Discrete and Continuous Probabilities
- Sum Rule, Product Rule, and Bayes' Theorem
- Summary Statistics and Independence
- Gaussian Distribution

Construction of a Probability Space

Modeling: Approximate reality with a simple (mathematical) model

- Experiment
- Observation: a random outcome
- All outcomes

- Flip two coins
- \circ for example, (H, H)
- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$

- Our goal: Build up a probabilistic model for an experiment with random outcomes
- Probabilistic model?
 - Assign a number to each outcome or a set of outcomes
 - Mathematical description of an uncertain situation
- Which model is good or bad?

Why probabilities modeling VNUHCM Information Technology

Inferences from data are intrinsically uncertain.

Probability theory: Model uncertainty instead of ignoring it

Inferences or prediction can be done by using probabilities

Probabilities Model

Goal: Build up a probabilistic model

The first thing: What are the elements of a probabilistic model?

Elements of Probabilistic Model

- 1. All outcomes of my interest: Sample Space Ω
- 2. Assigned numbers to each outcome of Ω : Probability Law $\mathbb{P}(\cdot)$

Sample Space Ω

The set of all outcomes of my interest

- Mutually exclusive
- 2. Collectively exhaustive
- 3. At the right granularity (not too concrete, not too abstract)
- 1 Toss a coin What about this? $\Omega = \{H, T, HT\}$
- 2. Toss a coin. What about this? $\Omega = \{H\}$
- 3. (a) Just figuring out prob. of H or T. $\implies \Omega = \{H, T\}$
 - (b) The impact of the weather (rain or no rain) on the coin's behavior.

$$\Longrightarrow \Omega = \{(H,R), (T,R), (H,NR), (T,NR)t\},\$$

where R(Rain), NR(No Rain).

Example: Sample Space Ω

Discrete case: Two rolls of a tetrahedral die

-
$$\Omega = \{(1,1), (1,2), \dots, (4,4)\}$$

Continuous case: Dropping a needle in a plain

$$-\Omega = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x, y \le 1\}$$

Probability Law

- Assign numbers to each subset of Ω : A subset of Ω : an event
- $\mathbb{P}(A)$: Probability of an event A.
 - This is where probability meets set theory.
 - Roll a dice. What is the probability of odd numbers? $\mathbb{P}(\{1,3,5\}), \text{ where } \{1,3,5\} \subset \Omega \text{ is an event.}$
- Event space A: The collection of subsets of Ω . For example, in the discrete case, the power set of Ω .
- Probability Space $(\Omega, \mathcal{A}, \mathbb{P}(\cdot))$

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - + R = Is it raining?
 - + T = Is it hot or cold?
 - + D = How long will it take to drive to work?
 - + L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - + R in {true, false}
 - + T in {hot, cold}
 - + D in [0, ∞)
 - + L in possible locations, maybe {(0,0), (0,1), ...}

Conditional Probability

Definition.

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \text{ for } \mathbb{P}(B) > 0.$$

- Note that this is a definition, not a theorem.
- All other properties of the law $\mathbb{P}(\cdot)$ is applied to the conditional law $\mathbb{P}(\cdot|B)$.
- For example, for two disjoint events A and C,

$$\mathbb{P}(A \cup C \mid B) = \mathbb{P}(A \mid B) + \mathbb{P}(C \mid B)$$

Discrete Random Variables

- The values that a random variable *X* takes is discrete (i.e., finite or countably infinite).
- Then, $p_X(x) := \mathbb{P}(X = x) := \mathbb{P}\Big(\{\omega \in \Omega \mid X(w) = x\}\Big)$, which we call probability mass function (PMF).
- Examples: Bernoulli, Uniform, Binomial, Poisson, Geometric

Bernoulli X with parameter p ∈ [0, 1]

Only binary values

$$X = \begin{cases} 0, & \text{w.p.}^1 \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- · Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv 1_A as:

$$1_{\mathcal{A}} = \begin{cases} 1, & \text{if } A \text{ occurs,} \\ 0, & \text{otherwise} \end{cases}$$

with probability

Uniform X with parameter a, b

- integers a, b, where $a \le b$
- Choose a number of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega.$

Models complete ignorance (I don't know anything about X)

Binomial X with parameter n, p

- Models the number of successes in a given number of independent trials
- n independent trials, where one trial has the success probability p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Poisson X with parameter λ

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large n and very small p, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Is this a legitimate PMF?

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} \dots \right) = e^{-\lambda} e^{\lambda} = 1$$

• Prove this:

$$\lim_{n\to\infty} p_X(k) = \binom{n}{k} (1/n)^k (1-1/n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

Joint PMF

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) := \mathbb{P}(\lbrace X=x \rbrace \cap \lbrace Y=y \rbrace)$$

- $\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$
$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

Conditional PMF

Conditional PMF

$$p_{X|Y}(x|y) := \mathbb{P}(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

- Many cases when random variable have "continuous values", e.g., velocity of a car

Continuous Random Variable

A rv X is continuous if \exists a function f_X , called probability density function (PDF), s.t.

$$\mathbb{P}(X \in B) = \int_B f_X(x) dx$$

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete **rv**s have continuous counterparts

- $\mathbb{P}(a \leq X \leq b) = \sum_{x:a \leq x \leq b} p_X(x)$
- $p_X(x) \ge 0, \sum_{x} p_X(x) = 1$

- $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$
- $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

PDF and Examples

- $\mathbb{P}(a \leq X \leq a + \delta) \approx \boxed{f_X(a) \cdot \delta}$
- $\mathbb{P}(X=a)=0$

Cumulative Distribution Function (CDF)

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event {X ≤ x}
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

CDF Properties

Non-decreasing

• $F_X(x)$ tends to 1, as $x \to \infty$

• $F_X(x)$ tends to 0, as $x \to -\infty$

Continuous: Joint PDF and CDF

Jointly Continuous

Two continuous rvs are jointly continuous if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

1. The joint PDF is used to calculate probabilities

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Our particular interest: $B = \{(x, y) \mid a \le x \le b, c \le y \le d\}$

Continuous: Joint PDF and CDF

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

4. A function g(X, Y) of X and Y defines a new random variable, and

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

Continuous: Conditional PDF given a RV

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

Sum Rule and Product Rule

Sum Rule

$$p_X(x) = \begin{cases} \sum_{y \in \mathcal{Y}} p_{X,Y}(x,y) & \text{if discrete} \\ \int_{y \in \mathcal{Y}} f_{X,Y}(x,y) dy & \text{if continuous} \end{cases}$$

• Generally, for $X = (X_1, X_2, \dots, X_D)$,

$$p_{X_i}(x_i) = \int p_X(x_1,\ldots,x_i,\ldots,x_D) d\mathbf{x}_{-i}$$

· Computationally challenging, because of high-dimensional sums or integrals

Sum Rule and Product Rule

Product Rule

$$p_{X,Y}(x,y) = p_X(x) \cdot p_{Y|X}(y|x)$$

joint dist. = marginal of the first \times conditional dist. of the second given the first \circ Same as $p_Y(y) \cdot p_{X|Y}(x|y)$

Bayes Rule

- X: state/cause/original value \rightarrow Y: result/resulting action/noisy measurement
- Model: $\mathbb{P}(X)$ (prior) and $\mathbb{P}(Y|X)$ (cause \rightarrow result)
- Inference: $\mathbb{P}(X|Y)$?

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

$$= p_Y(y)p_{X|Y}(x|y)$$

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum_{x'} p_X(x')p_{Y|X}(y|x')$$

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$$

$$= f_Y(y)f_{X|Y}(x|y)$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_Y(y) = \int f_X(x')f_{Y|X}(y|x')dx'$$

Bayes Rule

- X: state/cause/original value → Y: result/resulting action/noisy measurement
- Model: $\mathbb{P}(X)$ (prior) and $\mathbb{P}(Y|X)$ (cause \rightarrow result)
- Inference: $\mathbb{P}(X|Y)$?

$$\underbrace{p_{X|Y}(x|y)}_{\text{posterior}} = \underbrace{\frac{p_{Y|X}(y|x)}{p_{Y|X}(y|x)}}_{\substack{p_{Y}(y) \\ evidence}} \underbrace{p_{Y}(y)}_{\substack{p_{Y}(y) \\ evidence}}$$

Bayes Rule for Mixed Case

K: discrete. Y: continuous

Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k} p_K(k')f_{Y|K}(y|k')$$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_Y(y)p_{K|Y}(k|y)}{p_K(k)}$$
$$p_K(k) = \int f_Y(y')p_{K|Y}(k|y')dy'$$

Independence

Occurrence of A provides no new information about B. Thus, knowledge about A
does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\!\perp B$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

Conditional Independence

Conditional Independence of A and B given C, $A \perp\!\!\!\perp B \mid C$

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \times \mathbb{P}(B|C)$$

Independence for Random Variable

Two rvs

$$p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}((X,y)) = p_X(x) \cdot \mathbb{P}((X,y)) = p_X(x) \cdot \mathbb{P}((X,y)$$

 $\mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)$, for all x, y

$$\mathbb{P}(\{X = x\} \cap \{Y = y\} | C) = \mathbb{P}(X = x | C) \cdot \mathbb{P}(Y = y | C), \text{ for all } x, y$$
$$p_{X,Y|C}(x,y) = p_{X|C}(x) \cdot p_{Y|C}(y)$$

• Notation: $X \perp\!\!\!\perp Y$ (independence), $X \perp\!\!\!\perp Y | Z(conditional independence)$

Expectation/Variance

Expectation

$$\mathbb{E}[X] = \sum_{x} x p_X(x), \quad \mathbb{E}[X] = \int_{x} x f_X(x) dx$$

- · Variance, Standard deviation
 - Measures how much the spread of PMF/PDF is

$$var[X] = \mathbb{E}[(X - \mu)^2]$$
$$\sigma_X = \sqrt{var[X]}$$

Properties

- $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$
- $var[aX + b] = a^2 var[X]$
- var[X + Y] = var[X] + var[Y] if $X \perp \!\!\! \perp Y$ (generally not equal)

- Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
 - Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- What about $\mathbb{E}[XY]$? Seems good.
- $\circ \ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0$ when $X \perp \!\!\! \perp Y$
- More data points (thus increases) when xy > 0 (both positive or negative)

Independence

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow cov(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp\!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

Properties

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$\mathsf{var}[X+Y] = \mathbb{E}[(X+Y)^2] - (\mathbb{E}[X+Y])^2 = \mathsf{var}[X] + \mathsf{var}[Y] - 2\mathsf{cov}(X,Y)$$

Extension to Random Vectors X

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

Expectation, Covariance, Variance

•
$$\mathbb{E}(\mathbf{X}) := \begin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_n) \end{pmatrix}$$

• Covariance of $\boldsymbol{X} \in \mathbb{R}^n$ and $\boldsymbol{Y} \in \mathbb{R}^m$

$$cov(\boldsymbol{X}, \boldsymbol{Y}) = \mathbb{E}(\boldsymbol{X}\boldsymbol{Y}^{\mathsf{T}}) - \mathbb{E}(\boldsymbol{X})\mathbb{E}(\boldsymbol{Y})^{\mathsf{T}} \in \mathbb{R}^{n \times m}$$

• Variance of X: $var(X) = cov(X, X) \in \mathbb{R}^{n \times n}$, often denoted by Σ_X (or simply Σ):

$$\boldsymbol{\Sigma}_{\boldsymbol{X}} := \mathsf{var}[\boldsymbol{X}] = \begin{pmatrix} \mathsf{cov}(X_1, X_1) & \mathsf{cov}(X_1, X_2) & \cdots \mathsf{cov}(X_1, X_n) \\ \vdots & \vdots & \vdots \\ \mathsf{cov}(X_n, X_1) & \mathsf{cov}(X_n, X_2) & \cdots \mathsf{cov}(X_n, X_n) \end{pmatrix}$$

• We call $\Sigma_{\mathbf{X}}$ covariance matrix of \mathbf{X} .

Data Matrix and Data Covariance Matrix

- N: number of samples, D: number of measurements (or original features)
- iid dataset $\mathcal{X} = \{x_1, \dots, x_N\}$ whose mean is 0 (well-centered), where each $x_i \in \mathbb{R}^D$, and its corresponding data matrix

$$\mathbf{X} = (\mathbf{x}_1 \cdots \mathbf{x}_N) = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,N} \\ x_{2,1} & x_{2,2} & \dots & x_{2,N} \\ \vdots & & & & \\ x_{D,1} & x_{D,2} & \dots & x_{D,N} \end{pmatrix} \in \mathbb{R}^{D \times N}$$

Data Covariance Matrix

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^\mathsf{T} = \frac{1}{N} \sum_{n=1}^N \boldsymbol{x}_n \boldsymbol{x}_n^\mathsf{T} \in \mathbb{R}^{D \times D}$$

Relation between covariance matrix and data covariance matrix?

• Covaiance matrix for a random vector $\mathbf{Y} = (Y_1, \dots, Y_D)^T$,

$$\Sigma_{\mathbf{Y}} = \begin{pmatrix} \operatorname{cov}(Y_1, Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots \operatorname{cov}(Y_1, Y_D) \\ \vdots & \vdots & \vdots \\ \operatorname{cov}(Y_D, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots \operatorname{cov}(Y_D, Y_D) \end{pmatrix}$$

- Data convariance matrix $\boldsymbol{S} \in \mathbb{R}^{D \times D}$
 - Each Y_i has N samples $(x_{i,1} \cdots x_{i,N})$

$$\mathbf{S}_{ij} = \text{cov}(Y_i, Y_j) = \frac{1}{N} \sum_{k=1}^{N} x_{i,k} \cdot x_{j,k}$$

= average covariance (over samples) btwn feastures i and j

Properties

For two random vectors \mathbf{X} , $\mathbf{Y} \in \mathbb{R}^n$,

•
$$\mathbb{E}(\mathbf{X} + \mathbf{Y}) = \mathbb{E}(\mathbf{X}) + \mathbb{E}(\mathbf{Y}) \in \mathbb{R}^n$$

•
$$var(\boldsymbol{X} + \boldsymbol{Y}) = var(\boldsymbol{X}) + var(\boldsymbol{Y}) \in \mathbb{R}^{n \times n}$$

• Assume
$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$$
.

$$\bullet \ \mathbb{E}(\mathbf{Y}) = \mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b}$$

•
$$var(\mathbf{Y}) = var(\mathbf{AX}) = \mathbf{A} var(\mathbf{X}) \mathbf{A}^{\mathsf{T}}$$

$$\circ$$
 cov($\boldsymbol{X}, \boldsymbol{Y}$) = $\boldsymbol{\Sigma}_{\boldsymbol{X}} \boldsymbol{A}^{\mathsf{T}}$ (Please prove)

Normal (also called Gaussian) Random Variable

• Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- var[X] = 1

• General Normal $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- $\mathbb{E}[X] = \mu$
- $var[X] = \sigma^2$

Gaussian Random Vector

- $\mathbf{X} = (X_1, X_2, \cdots, X_n)^\mathsf{T}$ with the mean vector $\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_n) \end{pmatrix}$ and the covariance matrix $\boldsymbol{\Sigma}$.
- A Gaussian random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)^\mathsf{T}$ has a joint pdf of the form:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

where Σ is symmetric and positive definite.

• We write $m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma}), ext{ or } p_{m{X}}(m{x}) = \mathcal{N}(m{x} \mid m{\mu}, m{\Sigma}).$