Parallel Lines

Proofs updated.

This page develops important results regarding parallel lines and transversals. Read carefully, and complete the following proofs.

Axiom 1. Parallel postulate (uniqueness of parallels): Given a line and a point not on the line, there is exactly one line through the given point parallel to the given line.

Theorem 1. A 180° rotation about a point on a line takes the line to itself.

Proof Suppose point P is on line k. The point cuts the line into two opposite rays. A 180° rotation about P swaps the two opposite rays, thereby mapping the line onto itself.

Theorem 2. A 180° rotation about a point not on a line takes the line to a parallel line.

Proof Let O be a point not on line l. Let P be an arbitrary point on R(l), the rotated image of l. To show that R(l) is parallel to l, it is sufficient to show that P cannot lie also on l.

Because P is on R(l), there is a point Q on l such that P = R(Q). The rotated image of \overrightarrow{OQ} is \overrightarrow{OP} , and because $\angle QOP$ is 180° , it follows that Q, O, and P are $\boxed{collinear}$. Call that line k. We know line k is distinct from l because O is on k but not on l. Now, if P were on l, then points P and Q would be on two distinct lines, k and l, contradicting the assumption that on two points there is a unique line. The theorem is proved.

Author(s): Brad Findell

Theorem 3. If two parallel lines are cut by a transversal, alternate interior angles and corresponding angles are congruent.

Proof Given that parallel lines m and n are cut by transversal k, prove that alternate interior angles are congruent.

- (a) Let B and C be the intersections of transversal k with lines m and n, respectively. Let P be the midpoint of \overline{BC}
- (b) Rotate 180° about P, which takes k to (itself $\sqrt{m/n}$).
- (c) The rotation maps B to C and C to B because distances are preserved.
- (d) The rotation maps m to a parallel line through C, which must be (k/m/n) by the uniqueness of parallels.
- (e) The rotation swaps $\angle 2$ and $(\angle 1/\angle 2/\angle 3\sqrt{\angle 4})$. These alternate interior angles must be congruent because the rotation preserves angle measures.

Note: The congruence of corresponding angles now follows from the congruence of vertical angles. But here is a direct approach that uses a translation.

Proof Given that parallel lines m and n are cut by transversal k, prove that corresponding angles are congruent.

- (a) Let B and C be the intersections of transversal k with lines m and n, respectively.
- (b) Translate to the right along line k by distance BC, which takes k to (itself $\sqrt{m/n}$).
- (c) The translation maps B to \overline{C} , and it maps m to $(k/m/n \checkmark)$ because the translation maintains parallels, and there is a unique parallel to m through C.
- (d) The translation maps $\angle 1$ to $(\angle 1/\angle 2/\angle 3 \sqrt{\angle 4})$. These corresponding angles must be congruent because the translation preserves angle measures.

Theorem 4. If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

Note: This theorem is the $\boxed{converse}$ of the previous theorem about alternate interior angles.

Proof Given that m and n are cut by transversal k with alternate interior angles congruent, prove that lines m and n are parallel.

- (a) Let B and C be the intersections of transversal k with lines m and n, respectively. Let P be the midpoint of \overline{BC}
- (b) Rotate 180° about P, which takes k to (itself $\sqrt{m/n}$), and which swaps B and \boxed{C} because distances are preserved.
- (c) Because $\angle 2\cong \angle 3$ and because a side of $\angle 2$ (i.e., \overrightarrow{BP}) is mapped to a side of $\angle 3$ (i.e., $(\overrightarrow{CP} \checkmark / \overrightarrow{PC} / \overrightarrow{BP})$), it must be that the other side of $\angle 2$ (which lies on m) is mapped to the other side of $\angle 3$ (which lies on line \boxed{n}). Thus, n is the image of m.
- (d) Because P is not on m, the 180° rotation maps m to a parallel line through C. Thus, n must be parallel to m.