Ministerul Educației și Cercetării al Republicii Moldova Universitatea Tehnică a Moldovei Facultatea Calculatoare, Informatică și Microelectronică

Raport

Lucrarea de laborator nr. 1

Disciplina: Analiza si proiectarea algortimilor

Tema: Algoritmul lui Fibonacci

A efectuat: A verificat: Student grupa TI-231 FR Asistent universitar

Apareci Aurica Andrievschi-Bagrin Veronica

Chişinău 2025

Cuprins

1.Cadru teoretic	3
2. Listingul programului	4
3. Cazuri de testare	5
4. Concluzii	8

1. Cadru teoretic

Tema: Numerele lui Fibonacci

Sarcina (conform variantei): Efectuati analiza empirica a algoritmilor de calculare a numerelor fibonacci. Determinati relatia ce determina complexitatea temporala pentru acesti algortmi.

Relatia lui Fibonacci constituie un caz des intalnit in practica. Ea este o relatie de recurenta omogena de ordinul doi cu coeficienti constanti.

$$F_0 = 0, F_1 = 1, F_i = F_{i-1} + F_{i-2} ext{ pentru } i \geq 2.$$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\left(1 + \sqrt{5} \right) / 2 \right)^n - \left(\left(1 - \sqrt{5} \right) / 2 \right)^n \right)$$

2. Listingul programului

```
//se utilizeaza urmatoarea biblioteca: GitHub - dotnet/BenchmarkDot-
Net: Powerful .NET library for benchmarking versiunea: 0.13.2
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
namespace lab1v2
    internal class Program
      static void Main(string[] args)
         BenchmarkRunner.Run<Benchy>();
    }
     [MemoryDiagnoser]
     public class Benchy
        int value = 13;
        [Benchmark]
        public void fib1()
          fibRec(value);
        long fibRec(int a) //recursiva
          {
             if (a == 0)
             return 0;
             if (a == 1)
             return 1;
             return fibRec(a - 1) + fibRec(a - 2);
          }
       [Benchmark]
       public void fib2()
             fibIt(value);
       long fibIt(int a) //iterativa
          long f1 = 0;
          long f2 = 1;
          long f3 = 1;
          for (int i = 0; i < a; i++)
             f3 = f1 + f2;
             f1 = f2;
             f2 = f3;
          return f1;
       }
```

```
[Benchmark]
  public void fib3()
  {
     fibDir(value);
  }
  double fibDir(int a)
  {
     return (1 / Math.Sqrt(5)) * (Math.Pow(((1 +
        Math.Sqrt(5)) / 2), a) - (Math.Pow(((1 -
        Math.Sqrt(5)) / 2), a)));
  }
}
```

3. Cazuri de testare

Drept cazuri de testare se vor calcula termenii sirului Fibonnaci cu pozitiile: 5,7,10,10,13,15,20,25,50,60,70,80,90,100. Definim urmatoarele functii ce calcuelaza numerele fibonaci utilizand metode diferite:

Fib1() – algoritm recursiv

Fib2() – algoritm iterativ

Fib3() – calcul prin formula definita.

		N = 5							
Method	Mean	Error	StdDev	Allocated					
	:	:	:	:					
	27.840 ns		:	!					
fib2	3.945 ns	0.0980 ns	0.0917 ns	-					
fib3	46.580 ns	0.9536 ns	2.1330 ns	-					
	N=7								
Method	Mean	Error	StdDev	Allocated					
	:	:	:	:					
	70.109 ns			-					
fib2	6.329 ns	0.1750 ns	0.5134 ns	-					
fib3	52.262 ns	1.0661 ns	2.4919 ns	-					
		N = 10							

Method	Mean	Error	StdDev	Allocated					
 fib1	: - 333.809 ns	: - 6	: 6 3226 ns	 - l					
fib2	: :	0.1555 ns	0.1910 ns	-					
fib3	43.323 ns	0.4221 ns	0.3742 ns	- [
N = 13									
Method	Mean	Error	StdDev	Allocated					
fib1	1,322.56 ns	25.195 ns	29.014 ns	-					
fib2	10.41 ns	0.113 ns	0.088 ns	- j					
fib3	41.05 ns	0.809 ns	0.757 ns	- 1					
		N = 15							
Method	Mean	Error	StdDev	Allocated					
	: -	00.405	:	:					
fib1 fib2	4,031.75 ns 14.12 ns		86.033 ns 0.174 ns	-					
fib3	48.73 ns	1.000 ns	1.401 ns						
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			'					
l Martin I	Mara I	N = 20	Ct-ID						
Method 	Mean	Error	StdDev	Allocated 					
fib1	48,701.23 ns 9	918.419 ns	1,976.995 ns	i - i					
fib2		0.471 ns		-					
fib3	53.22 ns	1.089 ns	1.377 ns	- 1					
		N = 25							
Method	Mean	Error 	StdDev 	Allocated					
fib1	488,966.91 ns 13	3,781.197 ns	39,761.903 ns	-					
fib2			2.005 ns	-					
fib3	52.44 ns	1.072 ns	2.090 ns	- 1					
		N = 50							
Method	Mean Err	ror StdD	ev Media	n Allocated					
	: 3.92 ns 0.690	ns 0 701	: nc 33 64 n	-: : c _					
	4.26 ns 0.917								
		N = 60							
		14 – 60							

Method Mean Error StdDev Allocated								
N = 70								
Method Mean Error StdDev Median Allocated								
N = 80								
Method Mean Error StdDev Allocated								
N = 90								
Method Mean Error StdDev Allocated : : fib2 78.12 ns 2.097 ns 6.151 ns - fib3 59.85 ns 1.274 ns 3.675 ns -								
N = 100								
Method Mean Error StdDev Median Allocated								

Tabelul valorilor obtinute

	5	7	10	13	15	20	25	50	60	70	80	90	100
fib2													
(iterativ)	3.95	6.33	6.72	10.41	14.12	23.39	25.5	33.92	41.13	53.11	65.89	78.12	70.5
fib3													
(formula)	46.6	52.3	43.3	41.05	48.73	53.22	52.44	44.26	49.54	46.41	53.38	59.85	45.79
fib1													
(recursiv)	27.8	70.1	334	1322.6	4031.8	48701	488967						

Analiza valorilor obtinute

4. Concluzii

Din cauza neeficientei sale, metoda recursiva a fost exclusa din cercetare dupa calculul celui de al 25-lea numar Fib. In cazul metodei de calcul prin aplicarea algoritmului iterativ, observam o continua crestere a timpului necesar pentru efentuarea operatiilor. Metoda de calcul prin formula poate fi considerata optimala din cauza timpului de executie relativ constant. Potrivit datelor obținute, la calculul celui de al 68-lea număr Fibonacci, metoda iterativa va avea nevoie de ~ aceiași timp ca metoda de calcul prin aplicarea formulei, însă aceste date pot să difere de la mașină de calcul la alta.