Gaussian Process Regression with Kernels Learned from Data

Éric Savin

ONERA & CentraleSupélec, Université Paris-Saclay, France eric.savin@centralesupelec.fr

Joint work with:

Jean-Luc Akian (ONERA)

Luc Bonnet (Sandia National Laboratories)
Houman Owhadi (Caltech)

J. Comput. Phys. 470:111595 (2022)

Metamodeling

Regression setting

Let $F: \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ be a smooth function. Given I observations of the function F, denoted by $(\mathbf{X}, \mathbf{Y}) = (\mathbf{X}_i, Y_i)_{i=1,...,l}$, approximate F.

- One needs to construct a surrogate model quick to evaluate and the most accurate possible;
- ► There exists many different methods depending on the available information: (generalized) Polynomial Chaos, Gaussian Process Regression/Kriging, Support Vector Machine. Artificial Neural Network. etc.:
- ▶ In the following, we will focus on the Gaussian Process Regression metamodeling method.

Kernel Ridge Regression solution

▶ Let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Let $\lambda > 0$. The Kernel Ridge Regression (KRR) solution G_{λ} is

$$G_{\lambda} := \arg\min_{G \in \mathcal{H}_K} \sum_{i=1}^{I} (Y_i - G(\boldsymbol{X}_i))^2 + \lambda \|G\|_K^2,$$
 (1)

where $(\mathcal{H}_K, \langle \cdot, \cdot \rangle_K)$ is the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel K defined by $\mathcal{H}_K = \{G : \mathcal{X} \to \mathbb{R}; \, \forall x \in \mathcal{X}, \, G(x) = \langle G, K(x, \cdot) \rangle_{\scriptscriptstyle L} \};$

The solution of the KRR approximation at an unobserved point x is:

$$F(x) \simeq G_{\lambda}(x) = K(x, X) (K(X, X) + \lambda I_I)^{-1} Y$$

such that:

$$\|G_{\lambda}\|_{K}^{2} = \mathbf{Y}^{\mathsf{T}} \left(\mathbf{K}(\mathbf{X}, \mathbf{X}) + \lambda \mathbf{I}_{I} \right)^{-1} \mathbf{K}(\mathbf{X}, \mathbf{X}) \left(\mathbf{K}(\mathbf{X}, \mathbf{X}) + \lambda \mathbf{I}_{I} \right)^{-1} \mathbf{Y}.$$

Equivalent view: Kriging and Gaussian Process Regression.

 G_{λ} depends on the **choices** of the kernel K and nugget λ .

É. Savin

Choice of the kernel K

Two different methods have been used together to determine a "best" kernel K:

- ▶ Kernel Flow (KF) algorithms. Originally developed in a classification context but it can be extended to a regression context. Two different versions:
 - ▶ Parametric, including its sparse version;
 - Non-parametric.
- ► Spectral Kernel Ridge Regression (SKRR) algorithms:
 - Sparse SKRR algorithm;
 - ▶ Non-Sparse SKRR algorithm.

H. Owhadi, G. R. Yoo, *J. Comput. Phys.* **389**:22-47 (2019) J.-L. Akian, L. Bonnet, H. Owhadi, É. Savin, *J. Comput. Phys.* **470**:111595 (2022) L. Yang, X. Sun, B. Hamzi, H. Owhadi, N. Kie, arXiv:2301.10321 (2023)

Spectral Kernel Ridge Regression (SKRR) algorithms

▶ Assume that $F \in \mathcal{H}_K$, then for any $x \in \mathcal{X}$:

$$|F(\mathbf{x}) - G_{\lambda}(\mathbf{x})| \leq \sigma(\mathbf{x}) ||F||_{K}$$
,

where
$$\sigma^2(\mathbf{x}) = K(\mathbf{x}, \mathbf{x}) - K(\mathbf{x}, \mathbf{X}) (K(\mathbf{X}, \mathbf{X}) + \lambda I_I)^{-1} K(\mathbf{X}, \mathbf{x})$$
;

▶ How to find a "best" kernel? We focus on:

$$\min_{K} \|F\|_{K}$$
.

▶ Use of Mercer's theorem to decompose *K* into the eigenvalues/eigenfunctions associated with its integral operator.

B. Schölkopf, R. Herbrich, A. J. Smola, Lecture Notes in Computer Science 2111, pp. 416-426, Springer (2001) J.-L. Akian, L. Bonnet, H. Owhadi, E. Savin, J. Comput. Phys. 470:111595 (2022)

H. Owhadi, *Physica D* **444**:133592 (2023)

Spectral Kernel Ridge Regression (SKRR) algorithms

▶ Mercer's theorem: for X compact, K continuous, symmetric, and semi-definite positive,

$$K(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{\infty} \sigma_j e_j(\mathbf{x}) \otimes e_j(\mathbf{y}),$$

where $\{e_i\}_{i=1}^{\infty}$ is a Hilbertian basis of $L^2(\mathcal{X})$, and $\sum_{i=1}^{\infty} \sigma_i < +\infty$.

► Consequently:

$$\mathcal{H}_{\mathcal{K}} = \left\{ G \in L^2(\mathcal{X}); \, \left\| G
ight\|_{\mathcal{K}}^2 = \sum_{j=1}^{\infty} rac{\left\langle G, e_j
ight
angle_{L^2}^2}{\sigma_j} < + \infty
ight\} \, .$$

▶ Let $\kappa > 0$, let $\{c_j\}_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} c_j^2 < +\infty$, and consider:

$$\min_{\{\sigma_j\}} \sum_i \frac{c_j^2}{\sigma_j}$$
 such that $\sum_i \sigma_j = \kappa$;

then:

$$\sigma_k = rac{\kappa |c_k|}{\sum_i |c_j|}$$
.

Sparse Spectral Kernel Ridge Regression (SSKRR) algorithm

Sparse Spectral Kernel Ridge Regression (SSKRR) algorithm

- 1. Let $\{e_k\}_{k\in\mathcal{K}}\subset\{e_i\}_{i=1}^\infty$ with $\#\mathcal{K}=R$ be orthonormal vectors in $L^2(\mathcal{X})$ on which $F\in L^2(\mathcal{X})$ is expected to be S-sparse;
- 2. Let $0 < \epsilon \ll 1$; compute the expansion coefficients $c^* = (c_{k_1}, \dots c_{k_R})$ by say ℓ_1 -minimization (Basis Pursuit Denoise):

$$\boldsymbol{c}^{\star} = \arg\min_{\boldsymbol{c} \in \mathbb{R}^{R}} \left\| \boldsymbol{c} \right\|_{1} \quad \text{such that} \quad \left| \boldsymbol{Y}_{i} - \sum_{k \in \mathcal{K}} c_{k} \boldsymbol{e}_{k}(\boldsymbol{X}_{i}) \right|^{2} \leq \epsilon \,, \quad i = 1, 2 \dots I \,;$$

3. Compute:

$$\sigma_k^{\star} = \frac{\kappa \left| c_k^{\star} \right|}{\sum_{i \in \mathcal{K}} \left| c_i^{\star} \right|};$$

4. The "best" kriging surrogate is defined as:

$$F(\mathbf{x}) \simeq G_{\lambda}^{\star}(\mathbf{x}) = K^{\star}(\mathbf{x}, \mathbf{X}) (K^{\star}(\mathbf{X}, \mathbf{X}) + \lambda I_{I})^{-1} \mathbf{Y}.$$

where $K^* = \sum_{k \in K} \sigma_k^* e_k \otimes e_k$.

SSKRR algorithm

In the SSKRR algorithm, two parameters need to be determined:

▶ The trace κ of the integral operator associated with K:

$$\kappa = \sum_{j=1}^{\infty} \sigma_j = \operatorname{Tr} T_K = \int_{\mathcal{X}} K(\mathbf{x}, \mathbf{x}) d\mathbf{x}$$

$$= \mathbb{V} F$$

$$\simeq \mathbb{V} \mathbf{Y};$$

▶ The nugget λ of the approximation:

$$F(x) \simeq G_{\lambda}^{\star}(x) = K^{\star}(x, X) (K^{\star}(X, X) + \lambda I_{I})^{-1} Y$$

can be estimated through: KF algorithm, grid search, cross-validation, marginal likelihood, etc.

SSKRR algorithm: Remarks

- ▶ $R = \#\mathcal{K}$ depends on the dimension d of the input set \mathcal{X} . In high-dimensional sets, finding c^* can be numerically costly;
- ▶ The nugget λ allows us to improve the condition number of $K^*(X,X)$;
- ▶ The $I \times I$ matrix $K^*(X, X)$ is difficult to store and inverse for I large. This issue has been addressed recently;
- ▶ The prediction variance $\sigma(x)$ is independent of the observations Y. Here SKRR puts some flavour of F into $\sigma(x)$ through K^* .

A. G. Wilson, Z. Hu, R. Salakhutdinov, E. P. Xing, Proc. Mach. Learn. Res. 51: 370-378 (2016) F. Schäfer, T. J. Sullivan, H. Owhadi, SIAM Multiscale Model. Simul. 19(2):688-730 (2021)

Non-sparse Spectral Kernel Ridge Regression (NSKRR) algorithm

Non-sparse Spectral Kernel Ridge Regression (NSKRR) algorithm

1. Let $\{e_k\}_{k\in\mathcal{K}}\subset\{e_i\}_{i=1}^\infty$ be orthonormal vectors in $L^2(\mathcal{X})$; Let $K^{(0)}(\mathbf{x},\mathbf{y})=\sum_{k\in\mathcal{K}}\sigma_k^{(0)}e_k(\mathbf{x})\otimes e_k(\mathbf{y})$ be the initial kernel;

2.

for
$$n \leftarrow 1$$
 to N do

Approach
$$F$$
 by its NSKRR approximation $F(\mathbf{x}) \simeq G_{\lambda}^{(n-1)}(\mathbf{x}) = \mathbf{K}^{(n-1)}(\mathbf{x}, \mathbf{X}) (\mathbf{K}^{(n-1)}(\mathbf{X}, \mathbf{X}) + \lambda \mathbf{I}_I)^{-1} \mathbf{Y};$ for $k \in \mathcal{K}$ do $\Big|$ Compute $c_k^{(n-1)} = \langle G_{\lambda}^{(n-1)}, e_k \rangle_{L^2};$ end C Compute $\sigma_k^{(n)} = \frac{\kappa |c_k^{(n-1)}|}{\sum_{i \in \mathcal{K}} |c_i^{(n-1)}|};$

Form the new kernel as $K^{(n)}(\pmb{x},\pmb{y}) = \sum\limits_{k \in \mathcal{K}} \sigma_k^{(n)} e_k(\pmb{x}) \otimes e_k(\pmb{y}).$

end

Application: Lift coefficient C_L of RAE2822

▶ Performance measure: $X \mapsto F(X)$ is the lift coefficient C_L of a RAE2822 wing profile, with $X = (r, M, \alpha)$, where r is the thickness-to-chord ratio, M is Mach number, and α is the angle of attack of the wing profile following $\beta_1(4, 4)$ laws.

RAE 2822 wing profile.

	$X_{ m lb}$	$X_{ m ub}$
$X_1 = r$	0.97 × <u>r</u>	1.03 × <u>r</u>
$X_2 = M$	0.95 × <u>M</u>	1.05 × <u>M</u>
$X_3 = \alpha$	$0.98 \times \underline{\alpha}$	$1.02 imes \underline{lpha}$

Range of each input parameter.

Application: Lift coefficient C_L of RAE2822

- ▶ $\{e_k\}_{k \in \mathcal{K}}$ is chosen as a Jacobi polynomial basis;
- ▶ SPGL1 (Spectral Projected Gradient Algorithm) is used to compute c^{*};
- ▶ $I_{\text{Tot}} = I + I_{\text{V}} + I_{\text{T}} = 80 + 15 + 25$ observations of F computed using elsA. I is the learning set, I_{V} is the validation set, I_{T} is the test set;
- $m{\kappa} = \mathbb{V} \mathbf{Y}$ and λ is determined by the parametric KF algorithm using the learning and validation sets

E. van den Berg, M. P. Friedlander, SIAM J. Optim. 21(4):1201-1229 (2011)
 L. Cambier, S. Heib, S. Plot, Mechanics & Industry 14(3):159-174 (2013)

Application: Lift coefficient C_L

Expansion coefficients \mathbf{c}^* with I=80 observations of the lift coefficient C_L .

Application: Lift coefficient C_L of RAE2822

Lift coefficient C_L				
	SSKRR	Sparse gPC	Fully tensorized gPC	
$e_{ m RMSE}$	7.574×10^{-5}	3.715×10^{-4}	$1.159 imes 10^{-4}$	
e _{NRMSE}	1.040×10^{-4}	5.103×10^{-4}	8.437×10^{-5}	
$e_{ m MRE}$	0.0319%	0.232%	0.0368%	
Q^2	0.99996	0.99911	0.99995	

Comparison of errors between surrogate models for the lift coefficient $\it C_L$ with $\it I=80$ and $\it I_T=25$.

$$\begin{split} e_{\mathrm{MRE}} &= \max_{1 \leq i \leq l_{\mathrm{T}}} \frac{|Y_i - G_{\lambda}(\boldsymbol{X}_i)|}{|Y_i|} \,, \quad e_{\mathrm{RMSE}}^2 = \frac{1}{l_{\mathrm{T}}} \sum_{i=1}^{l_{\mathrm{T}}} |Y_i - G_{\lambda}(\boldsymbol{X}_i)|^2 \,\,, \\ e_{\mathrm{NRMSE}}^2 &= \frac{e_{\mathrm{RMSE}}^2}{(\mathbb{E}\boldsymbol{Y}_{\mathrm{T}})^2 + \mathbb{V}\boldsymbol{Y}_{\mathrm{T}}} \,, \quad \mathrm{Q}^2 = 1 - \frac{e_{\mathrm{RMSE}}^2}{\mathbb{V}\boldsymbol{Y}_{\mathrm{T}}} \,\,, \\ \mathbb{E}\boldsymbol{Y}_{\mathrm{T}} &= \frac{1}{l_{\mathrm{T}}} \sum_{i=1}^{l_{\mathrm{T}}} Y_i \,, \quad \mathbb{V}\boldsymbol{Y}_{\mathrm{T}} = \frac{1}{l_{\mathrm{T}}} \sum_{i=1}^{l_{\mathrm{T}}} \left(Y_i - \mathbb{E}\boldsymbol{Y}_{\mathrm{T}} \right)^2 \,. \end{split}$$

Outlook

Sparse and non-sparse SKRR algorithms:

- ▶ Choices of the basis $\{e_i\}_{i=1}^{\infty}$;
- ▶ Performances of the sparse and non-sparse SKRR algorithms;
- ► Time series: approximation of space-time fields;
- ▶ Solve PDEs using GPR.

Thank You!

Reproducing Kernel Hilbert Space (RKHS)

▶ We denote by $\mathfrak{F}(\mathcal{X},\mathbb{R})$ the set of functions from \mathcal{X} to \mathbb{R} .

Definition (RKHS)

Let \mathcal{X} be a non-empty set. We will call a subset $\mathcal{H} \subseteq \mathfrak{F}(\mathcal{X}, \mathbb{R})$ a Reproducing Kernel Hilbert Space (RKHS) on \mathcal{X} if

- \blacktriangleright \mathcal{H} is a vector subspace of $\mathfrak{F}(\mathcal{X}, \mathbb{R})$;
- $ightharpoonup \mathcal{H}$ is endowed with an inner product $\langle\cdot,\cdot
 angle_{\mathcal{H}}$, with respect to which \mathcal{H} is a Hilbert space:
- ▶ for every $x \in \mathcal{X}$, the linear evaluation functional $\delta_x : \mathcal{H} \to \mathbb{R}$ defined by $\delta_x(f) = f(x)$ is bounded: $\exists C_x > 0, \ \forall f, g \in \mathcal{H}, \ |\delta_x(f - g)| = |f(x) - g(x)| \le C_x \|f - g\|_{\mathcal{U}}$, where $||f||_{\mathcal{U}}^2 = \langle f, f \rangle_{\mathcal{U}}.$

This means in particular that for $(f_n) \in \mathcal{H}$ such that $\lim_{n \to \infty} \|f_n - f\|_{\mathcal{H}} = 0$ then:

$$\lim_{n\to\infty} \delta_{\mathbf{x}}(f_n) = \delta_{\mathbf{x}}(f) \quad \text{or} \quad \lim_{n\to\infty} f_n(\mathbf{x}) = f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X}.$$

V. I. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge University Press (2016)

É. Savin

16 / 16

Reproducing Kernel Hilbert Space (RKHS)

▶ The Riesz representation theorem shows that the linear evaluation functional δ_x is given by the inner product with a unique vector in \mathcal{H} .

Reproducing kernel

A function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of \mathcal{H} if

- $\forall x \in \mathcal{X}, \ K(x,\cdot) \in \mathcal{H};$
- $\forall x \in \mathcal{X}, \ \forall f \in \mathcal{H}, \ f(x) = \langle f, K(x, \cdot) \rangle_{\mathcal{U}}$ (reproducing property).

Kernel function

Let \mathcal{X} be a non-empty set and let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a function. K is called a kernel function if it is positive semi-definite that is, for any $m \geq 1$, for every $(a_1, \ldots, a_m) \in \mathbb{R}^m$, for any distinct $(x_1, \ldots, x_m) \in \mathcal{X}^m$,

$$\sum_{i=1}^m \sum_{j=1}^m a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) \geq 0.$$

V. I. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge University Press (2016)

16 / 16

Reproducing Kernel Hilbert Space (RKHS)

▶ It can be shown that there is a one-to-one correspondence between RKHS on a set and kernel functions on this set.

One-to-one correspondence

Given a kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, \mathcal{H}_K denotes the unique RKHS with reproducing kernel K.

Positive definite

Let $\mathcal X$ be a non-empty set and let $K: \mathcal X \times \mathcal X \to \mathbb R$ be a kernel function. K is assumed positive definite, or non-degenerate, that is, for any $m \geq 1$, for any

$$\mathbf{a}=(a_1,\ldots,a_m)\in\mathbb{R}^m$$
, $\mathbf{a}
eq \mathbf{0}$, for any distinct $(\pmb{x}_1,\ldots,\pmb{x}_m)\in\mathcal{X}^m$,

$$\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) > 0.$$

V. I. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge University Press (2016)

02/27/23

16 / 16