Q-Learning for World Grid Navigation

EE5904/ME5404 Part II: Project 2

Report due on 26 April 2019

Yáng YuánRuì

yang_yuanrui@u.nus.edu 11 April 2019

Outline

- Project Description
- Recap
- Project Implementation
- Important Notes

Project Description-Task

 The robot is to reach the goal state with maximum total reward of the trip

START						
1	11	 	 	 		91
2	12	 	 	 		92
3	13					93
4						94
5						95
6						96
7						97
8						98
9					89	99
10		 	 	 	90	100

STOP

Illustration of a 10×10 world grid with start state and goal state. Index of each cell follows the Matlab column-wise convention for ease of programming

Project Description: State Transition

- At a state, the robot can take 1 of the 4 actions
- The state transition is deterministic
- Assuming the state transition simulation is given by the deterministic state transition model
- You can actually use dynamic programming to find the optimal policy since the "model" is given
- In this project, you are only required to implement Q Learning
- Some of the actions are not allowed, for the states moving out of the boundary

Project Description: Reward Function

- Reward is given as a matrix "task1.mat" (known in Task 1)
- O Reward Matrix:
 - Dimension: 100×4
 - Each column represents an action (4 actions)
 - Each row represents a state (100 states)
- Prohibited transitions are marked by a reward of -1

Recap

Total Reward for an agent continuing its transition:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- R_t determines present value of future rewards
- Rewards received k steps in the future is discounted by factor γ^{k-1}
- ullet Small γ forces agent to focus more on intermediate rewards from next few steps
- Large γ forces agent to take into account future rewards more strongly (agent becomes more farsighted)

Recap

'Worth' actions at different states

$$Q^{\pi}: S \times A \to \mathbb{R}$$

$$Q^{\pi}(s, a) = E^{\pi}[R_t | s_t = s] \longrightarrow R_t | s_t = s$$

Deterministic Transition

- \circ Expected return from taking action a at sate s at time step t by following action π
- Optimal policy is one that maximizes values of Q-functions overall all possible (s, a)

Recap: Optimal Policy

$$Q^{\pi}(s, a) = E^{\pi} [r_{t+1}] + E^{\pi} \left[\gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \middle| s_{t} = s \right]$$

Slides 164-166

Values of Q-function are optimal if they are greater or equal to that of all other policies for all (s,a) pairs, i.e.,

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Greedy policy

At each s, select a that yields the largest value for the Q-function. When multiple choices are available, such a can be picked randomly

Optimal policy:
$$\pi^*(s) \in \arg \max_a Q^*(s, a)$$

Dynamic programming when state-transition model is given.

Recap: Model-Free Value Iteration

When state transition model is unknown, the Q-function can be estimated via iterative update rule by using the reward received from observed state transition

$$Q_{k+1}(s_k, a_k)$$

$$= Q_k(s_k, a_k) + \alpha_k \underbrace{\begin{pmatrix} \text{Reward of action } a \text{ at state } s \\ r_{k+1} + \gamma \max_{a'} Q_k\left(s_{k+1}, a'\right) - Q_k(s_k, a_k) \end{pmatrix}}_{\text{Estimate of } Q^*(s_k, a_k)}$$

Exploitation: use **greedy** policy to select currently known best action

$$a_{k+1} = \max_{a'} Q_k(s_{k+1}, a')$$

Exploration: **Try** action other than current known best action $a_{k+1} \neq \max_{a'} Q_k(s_{k+1}, a')$

Exploitation: Take a_4

Exploration: Take a_1 , a_2 , a_3

Recap: ϵ -greedy exploration

Input: Discount factor γ ; exploration probability ϵ_k ; learning rate α_k

- Initialization Initialize Q-function, e.g., $Q_0 \leftarrow 0$ Determine the initial state s_0

 - For time step k, select action a_k according to:

Exploitation

- **Apply Action** Apply action a_k , receive reward r_{k+1} , then observe next state s_{k+1}

Update
$$Q$$
-value $Q_{k+1}(s_k, a_k) =$

Update
$$Q$$
-value Update Q -function with:
$$Q_{k+1}(s_k,a_k) = Q_k(s_k,a_k) + \alpha_k \Big(r_{k+1} + \gamma \max_{a'} Q_k \left(s_{k+1},a' \right) - Q_k(s_k,a_k) \Big)$$

• Set k = k + 1 and repeat for-loop for the next time step

Implementation: Q-Learning

- Initialize
- For each trial
 - For each move
 - Select action
 - Apply action
 - Update *Q*-Value
- Extract Optimal policy

Implementation: Parameter Setup

Input: Discount factor γ ; exploration probability ϵ_k ; learning rate α_k

- Initialize Q-function, e.g., $Q_0 \leftarrow 0$
- Determine the initial state s_0

TABLE I PARAMETER VALUES AND PERFORMANCE OF Q-LEARNING

$\epsilon_k, lpha_k$	No. of go	al-reached runs	Execution time (sec.)		
	$\gamma = 0.5$	$\gamma = 0.9$	$\gamma = 0.5$	$\gamma = 0.9$	
$\frac{1}{k}$?	?	?	?	
$\frac{100}{100+k}$?	?	?	?	
$\frac{1+log(k)}{k}$?	?	?	?	
$\frac{1+5log(k)}{k}$?	?	?	?	

$$\epsilon_k = \alpha_k$$

k is time step

Implementation: For each move

Select action

- Apply action
- Update *Q*-Value

• For time step k, select action a_k according to:

$$a_k = \left\{ \begin{array}{ll} a \in \arg\max_{\hat{a}} Q_k(s_k, \hat{a}) & \text{with probability } 1 - \epsilon_k \\ \\ \text{an action uniformly randomly} \\ \text{selected from all other actions} \\ \text{available at state } s_k & \text{with probability } \epsilon_k \end{array} \right.$$

- Apply action a_k , receive reward r_{k+1} , then observe next state s_{k+1}
- Update Q-function with:

$$Q_{k+1}(s_k, a_k) = Q_k(s_k, a_k) + \alpha_k \left(r_{k+1} + \gamma \max_{a'} Q_k \left(s_{k+1}, a' \right) - Q_k(s_k, a_k) \right)$$

• Set k = k + 1 and repeat for-loop for the next time step

Implementation: For each move

- \circ For the k^{th} movement, the machine is at state i
- \circ Choose the next movement based on ϵ , (e.g., $\epsilon = \frac{1}{k}$)
- \circ Assume the current optimal movement is to the left (i.e. $a_k=4$)
 - Exploitation action is $a_k=4$, with probability of $1-\epsilon=1-\frac{1}{k}$
 - Exploration action is $a_k = 1,2,3$, each with probability of $\frac{\epsilon}{3} = \frac{1}{3k}$
 - What if *i* is at boundary?
 - Exploration action are uniformly selected from those possible explorative actions
- \circ Assume $a_k = 2$ is taken (i.e., move to the right)
 - $Q(i,2) = Q(i,2) + \alpha_k(reward(i,2) + \gamma \max(Q(i+10,:)) Q(i,2))$ given from task1.mat

Implementation: Termination Condition

In theory:

Trial termination condition:

- In each trial, the robot starts at initial state (s = 1)
- It makes a series of transitions according to the algorithm for Q-learning with ϵ -greedy exploration
- A trial ends when the robot reaches the goal state (s = 100)

Number of trials:

 Repeat the process until the values of the Q-function converges to the optimal values

Implementation: Termination Condition

In this project:

Trial termination condition:

- The robot reaches the goal state (s = 100), or
- $\alpha_k < 0.005$ (recommended)
 - You may also try other threshold

Number of trials:

- Q-function converged to the optimal values, or
- Number of trials ≥ 3000 (Try other options also)

Implementation: Overview

- For each trial
 - For each move
 - Select action (perform exploitation or exploration)
 - Apply action
 - Update *Q*-value

$$Q_{next}(s,a) = Q_{crt}(s,a) + \alpha_k(reward(s,a) + \gamma \max(Q_{crt}(s',:)) - Q_{crt}(s,a))$$

- Check trial termination condition
- Check Q-value convergence / program termination condition
- Use the Q_{final} to extract the optimal path with greedy policy:

$$\pi^*(s) \in \arg\max_{a} Q^*(s, a)$$

Implementation: Plot

- Show arrow
 - plot(x, y, '^')%, action 1
 - plot(x, y, '>')%, action 2
 - plot(x, y, 'v')%, action 3
 - plot(x, y, '<')%, action 4

- Show the grid world
 - plot lines to show the grid
- Subplot
 - easier viewing

For illustration only

Important Notes: Task 1

TABLE I PARAMETER VALUES AND PERFORMANCE OF Q -LEARNING							
61 001	No. of go	al-reached runs	Execution time (sec.)				
ϵ_k, α_k	$\gamma = 0.5$	$\gamma = 0.9$	$\gamma = 0.5$	$\gamma = 0.9$			
$\frac{1}{k}$?	?	?	?			
$\frac{100}{100+k}$?	?	?	?			
$\frac{1+log(k)}{k}$?	?	?	?			
$\frac{1+5log(k)}{k}$?	?	?	?			

- 1. Matlab code are executable which generates reported results with the provided task1.mat
- 2. Complete Table I
- 3. Plot a 10×10 grid showing the trajectory and the total reward
- 4. Provide necessary discussion based on your experimental results

Important Notes: Task 2

- Choose a learning rate and discount rate wisely so that your robot can deal with the unknown reward.
- The code will be used to find the optimal policy using a reward function not provided to the students.
- "qeval.mat" will be used (as a replacement for the reward you have from task1.mat) to evaluation your RL program.

Important Notes: Task 2

- You can assume that the unknown reward "qevalreward" are loaded in the workspace
- The state transition model, initial state, goal state, are the same as those in Task 1, but the reward function is different.
- The output of your program should be a column vector named "qevalstates" to store the trajectory
- Also plot a 10×10 grid showing the trajectory and the total reward

Important Notes: Task 1 & 2

- The program evaluation will be based on
 - Policy
 - Execution time
 - o Executable!
- You can create your own reward matrix to test the effectiveness of your code
- The marking will be based on the report and the program code. Explain your choice of parameters clearly in your report.

Important Notes

- Name your RL main script (for Task 2) as "RL_main" for testing unknown reward.
- Please play around with the discount factor, the learning rate and the exploration probability.
- Use your student number as the folder name. Generate a non-password-protected zipfile of this folder and upload this zipfile to the IVLE.

Report due on 26 April 2019

Thank you!