1 Problem I

Suppose that V is a finite-dimensional inner product space over \mathbb{F} . Suppose that $u \in V$ satisfies ||u|| = 1. Define the linear transformation $T \in \operatorname{End}(V)$ by $T(x) = x - 2\langle x, u \rangle u$.

Lemma 1.1

Tx = x if and only if x is orthogonal to u.

Proof.

Suppose first Tx = x. Therefore, $Tx = x - 2\langle x, u \rangle u = x$, and thus $2\langle x, u \rangle u = 0$.

Since ||u|| = 1, $u \neq 0$. Therefore, $\langle x, u \rangle = 0$, and thus x is orthogonal to u.

Suppose now that x is orthogonal to u.

Therefore, $\langle x, u \rangle = 0$, and thus $Tx = x - 2\langle x, u \rangle u = x$.

Lemma 1.2

Tx = -x if and only if $x \in \operatorname{span} u$.

Proof.

Suppose first Tx = -x.

Therefore, $Tx = x - 2\langle x, u \rangle u = -x$, and thus $2\langle x, u \rangle u = 2x$.

Since $\langle x, u \rangle \in \mathbb{F}$, $x = \langle x, u \rangle u \in \operatorname{span} u$.

Suppose now $x \in \text{span } u$, so that there exists $k \in \mathbb{F}$ such that x = ku.

Hence, $\langle x, u \rangle = \langle ku, u \rangle = k \langle u, u \rangle = k$, since ||u|| = 1.

Therefore, $Tx = x - 2\langle x, u \rangle u = x - 2ku = x - 2x = -x$.

Lemma 1.3

 $T^2 = I, T^* = T$ and T is unitary/orthogonal.

Proof.

For any $x \in V$, note that

$$T^{2}x = T(Tx) = T(x - 2\langle x, u \rangle u) \tag{1}$$

$$= Tx - 2\langle x, u \rangle Tu \tag{2}$$

$$= x - 2\langle x, u \rangle u - 2\langle x, u \rangle Tu \tag{3}$$

$$= x - 2\langle x, u \rangle (u + Tu) \tag{4}$$

$$= x - 2\langle x, u \rangle (u + u - 2\langle u, u \rangle u) \tag{5}$$

$$= x - 2\langle x, u \rangle (2u - 2||u||^2 u) \tag{6}$$

$$= x - 2\langle x, u \rangle (2u - 2u) \tag{7}$$

$$=x.$$
 (8)

Thus, $T^2 = I$.

For any $v, w \in W$, by definition of T^* , $\langle Tv, w \rangle = \langle v, T^*w \rangle$.

Note the following:

$$\langle Tv, w \rangle = \langle v - 2\langle v, u \rangle u, w \rangle \tag{9}$$

$$= \langle v, w \rangle - 2\langle v, u \rangle \langle u, w \rangle \tag{10}$$

$$= \langle v, w \rangle - \langle v, \overline{2\langle u, w \rangle} u \rangle \tag{11}$$

$$= \langle v, w - 2\overline{\langle u, w \rangle} u \rangle \tag{12}$$

$$= \langle v, w - 2\langle w, u \rangle u \rangle \tag{13}$$

$$= \langle v, Tw \rangle \tag{14}$$

Now, $\langle v, T^*w \rangle = \langle v, Tw \rangle$ for any $v, w \in V$. Taking $v = T^*w - Tw$, we obtain that $T^* = T$.

Moreover,

$$\langle Tx, Tx \rangle = \langle x, T^*Tx \rangle \tag{15}$$

$$=\langle x, T^2 x \rangle \tag{16}$$

$$= \langle x, Ix \rangle \tag{17}$$

$$=\langle x, x \rangle \tag{18}$$

Since $\langle x, x \rangle \geq 0$ for any $x \in V$, then taking square roots of both sides we obtain that ||Tx|| = ||x||, and thus T is unitary/orthogonal.

Problem. Find the characteristic polynomial of T.

Solution.

Since T is both self-adjoint and orthogonal, all eigenvalues of T have an absolute value of 1.

By Lemma 1.1, if dim $V \ge 2$, 1 is an eigenvalue of T (since T is self-adjoint, there is an orthonormal basis of eigenvectors).

By Lemma 1.2, if dim $V \ge 1$, -1 is an eigenvalue of T.

Since the coefficient corresponding to a monomial of the highest degree in the characteristic polynomial is $(-1)^n$, where $n = \dim V$, the characteristic polynomial of T is as follows:

$$p(\lambda) = (-1)^n (\lambda - 1)(\lambda + 1).$$