

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа. Часть 2

«Исследование нелинейной динамической системы на плоскости»

Студент 315 группы А. А. Владимиров

Научный руководитель Д. А. Алимов

Содержание

 1 Постановка задачи
 2

 2 Переход к безразмерным переменным
 3

 3 Неподвижные точки
 4

 4 Параметрический портрет системы
 8

1 Постановка задачи

 $\operatorname{Re}(x,y)$ Дана система обыкновенных дифференциальных уравнений

$$\begin{cases} \dot{x} = ax(K - x) - \frac{bxy}{1 + Ax}, \\ \dot{y} = -cy + \frac{dxy}{1 + Ax}, \end{cases}$$

$$(1)$$

где $(x,y) \in \mathbb{R}^2_+$ — фазовые переменные; a,b,c,d,K,A — положительные параметры.

Динамическая система, задаваемая уравнениями (1), суть есть модель «хищник-жертва» Холлинга 1 . Здесь x и y — численности жертв и хищников соответственно.

Следуя [1], перезапишем систему (1) в более общем виде и, вкратце, поясним биологический смысл входящих в запись системы компонент

$$\begin{cases} \dot{x} = A(x) - B(x, y), \\ \dot{y} = -C(y) + D(x, y). \end{cases}$$

A(x) — функция, описывающая размножение жертв при отсутствии хищников. В системе (1) $A(x)\stackrel{(1)}{=} ax(K-x) = aKx(1-\frac{x}{K})$ — логистическое уравнение, учитывающее фактор внутривидовой конкуренции жертв.

C(y) — описывает вымирание хищников при отсутствии жертв. $C(y) \stackrel{(1)}{=} cy$ — классическая модель Мальтуса экспоненциального роста (в нашем случае вырождения) изолированной популяции.

B(x,y) — описывает выедание жертв хищниками. $B(x,y) = B_1(x)B_2(y)$.

- $B_1(x)$ трофическая функция хищника. $B_1(x) \stackrel{(1)}{=} \frac{x}{1+Ax}$ модель Моро, отражающая явление насыщения хищника.
- $B_2(y)$ зависимость скорости выедания жертвы от плотности популяции хищника. $B_2(y) \stackrel{(1)}{=} by$ линейная функция, т.е. фактор конкуренции хищников за жертв исключен из рассмотрения.

D(x,y) — эффективность потребления жертв хищниками. $D(x,y) = D_1(x)D_2(y)$. В силу обыкновенно принимаемого в модели Лотки—Вольтерры предположения о постоянном коэффициенте переработки хищником пищи в собственную биомассу $D_1(x) \stackrel{(1)}{=} B_1(x)$, $D_2(y) \stackrel{(1)}{=} dy$.

Требуется провести качественный анализ системы (1) и дать биологическую интерпретацию полученным результатам.

 $^{^{1}[1]}$ n. 7.2.

2 Переход к безразмерным переменным

Перед дальнейшим исследованием системы попробуем сократить колчиество параметров линейной заменой координат. Пусть

$$\begin{cases} x = \alpha u, \\ y = \beta v, \end{cases} \quad \alpha > 0, \ \beta > 0, \tag{2}$$

тогда

$$\begin{cases} \alpha \dot{u} = a\alpha u(K - \alpha u) - \frac{b\alpha u\beta v}{1 + A\alpha u}, \\ \beta \dot{v} = -c\beta v + \frac{d\alpha u\beta v}{1 + A\alpha u}, \end{cases}$$

что равносильно

$$\begin{cases} \dot{u} = au(K - \alpha u) - \frac{bu\beta v}{1 + A\alpha u}, \\ \dot{v} = -cv + \frac{d\alpha uv}{1 + A\alpha u}. \end{cases}$$

Пусть

$$\alpha = K, \ \beta = b^{-1}, \tag{3}$$

тогда

$$\begin{cases} \dot{u} = aKu(1-u) - \frac{uv}{1+AKu}, \\ \dot{v} = -cv + \frac{dKuv}{1+AKu}. \end{cases}$$

В качестве новых параметров положим

$$e = aK, f = c, g = AK, h = dK.$$

$$(4)$$

Таким образом, после замены (2), (3) и переобозначений (4) получим систему, имеющую четыре параметра,

$$\begin{cases} \dot{u} = eu(1-u) - \frac{uv}{1+gu}, \\ \dot{v} = -fv + \frac{huv}{1+gu}. \end{cases}$$
 (5)

Изучение моделей с числом параметров больше двух довольно трудоемкая, а порой практически не выполнимая задача 2 , поэтому в рамках данной работы будем пологать параметры f и g фиксированными и равными, например, единице. Таким образом, нам предстоит исследоавать динамику упрощенной системы

$$\begin{cases} \dot{u} = eu(1-u) - \frac{uv}{1+u}, \\ \dot{v} = -v + \frac{huv}{1+u}. \end{cases}$$

$$(6)$$

 $^{^{2}[1]}$ п. 5.7.

3 Неподвижные точки

Система (6) имеет три неподвижных точки³

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} u^* \\ v^* \end{pmatrix},$$

где $u^* = \frac{1}{h-1}, \ v^* = \frac{eh(h-2)}{(h-1)^2}.$ В дальнейшем будем называть их $a_1, \ a_2$ и a_3 соответственно.

Первые две точки тривиальны: a_1 соотвутствует вымиранию обоих видов, a_2 — вымиранию хищников, при некоторой установившейся численности жертв. Больший интерес представляет третья неподвижная точка. Точка a_3 отвечает состоянию экологического равновесия — стабильному сосуществованию обоих видов.

Для установления типа каждой неподвижной точки, воспользуемся известным приемом, 4 позволяющим узнать характер гиперболического (негиперболические мы рассматривать не будем) положения равновесия на плоскости. Для этого достаточно информации о $\operatorname{tr} J$ и $\det J$ — следе и определителе матрицы Якоби системы дифференциальных уравнений.

Итак, каждому типу равновесия соответствует область значений tr J и det J, изображенная на рис. 1. I — устойчивые фокусы, II — неустойчивые фокусы, III — неустойчивые узлы, IV — устойчивые узлы, V, VI — седла.

Рис. 1: Устойчивость положений равновесия, в зависимости от $\operatorname{tr} J$ и $\det J$. Кривая на графике: $4 \det J = \operatorname{tr}^2 J$.

Таким образом, для каждой неподвижной точки требуется выяснить в какой области в зависимости от параметров лежат соответствующие значения $\operatorname{tr} J$ и $\det J$.

Приведем диаграммы, показывающие, где относительно каждой из кривых (tr J=0, det J=0, $4 \det J=\mathrm{tr}^2 J$) лежат значения tr J и det J, в зависимости от параметров e и h. На их основании построены разбиения пространства параметров на области I-VI.

³Напомним, что как и в предыдущей части работы подавляющее большинство вычислений выполнено посредством пакета символьной компьютерной алгебры MatLab. С ходом этих вычислений можно ознакомиться в приложенном .mlx файле.

⁴см. [1] п. 4.2.

Первая точка (рис. 2, 3) является седловой вне зависимости от значений параметров и не представляет интереса.

Рис. 2: Диаграммы первой точки.

Рис. 3: Параметрический портрет первого положения равновесия.

Вторая точка (рис. 4, 5) — устойчивый узел при h < 2, седло при h > 2.

Рис. 4: Диаграммы второй точки

Рис. 5: Параметрический портрет второго положения равновесия.

Третья точка (рис. 6, 7), как было отмечено выше, нетривиальна

$$\left(\frac{1}{h-1}, \frac{eh(h-2)}{(h-1)^2}\right).$$

Нетрудно заметить, что при h < 2 точка a_3 не принадлежит фазовому пространству \mathbb{R}^2_+ (этот факт отражен на диаграмме знаком «—»). При h > 2 возможны два варианта:

$$a_3$$
 — устойчивый узел, при $2 < h < \sqrt{\frac{\sqrt{4e+1}+1}{2}}+1,$ a_3 — устойчивый фокус, при $h > \sqrt{\frac{\sqrt{4e+1}+1}{2}}+1.$

Рис. 6: Диаграммы третьей точки.

Теперь у нас достаточно информации чтобы построить параметрический портрет системы.

Рис. 7: Параметрический портрет третьего положения равновесия.

4 Параметрический портрет системы

имеет следующий вид

Рис. 8: Параметрический портрет системы.

Типы точек a_2 и a_3 (a_1 — всегда седло)

область i: a_2 — седло, a_3 — устойчивый фокус;

область ii: a_2 — седло, a_3 — устойчивый узел;

область iii: a_2 — устойчивый узел, a_3 — не лежит в фазовой плоскости.

Двигаясь по прямой e = 1.5 в направлении от точки b_1 к точке b_3 , проследим эволюцию равновесия a_3 , и, попутно построим фазовые портреты системы в каждой из областей i—iii.

Сперва напомним, что e=aK, где aK можно интерпретировать, как скорость роста популяции жертв. Параметр h=dK, характеризует совместное поведение величин d— эффективности

потребления жертв хищниками и K — потенциальной емкости экологической системы относительно жертв (предельный размер популяции) 5 . Исходные переменные x и y выражаются через u и v как $x=Ku,\ y=b^{-1}v,$ откуда неподвижная токчка $a_2=(1,0)$ в исходных координатах имеет вид (K,0).

Итак, в области i система (6) имеет единственное положение устойчивого равновесия — фокус a_3 (см. рис. 9). Точка a_3 соответствует состоянию экологического равновесия, к которому спиралевидно стремятся траектории системы. По всей видимости, a_3 является глобальным аттрактором, а потому при любых (кроме, очевидно, нулевых) начальных размерах популяций ни одна из них не вырождается и обе колебательным образом стремятся к некоторой предельной численности.

Рис. 9: Фазовый портрет i.

После перехода границы с областью ii a_3 становится устойчивым узлом (рис. 10).

Рис. 10: Фазовый портрет *ii*.

Поведение численности популяций в области i и ii вполне аналогично, за исключением того,

⁵см. модель роста популяции, описываемую логистическим уравнением [1] п. 1.3. и модель Холлинга [1] п. 5.6.

что в случае ii, в отличие от i, траектории стремятся к положению равновесия «напрямую», а не колебательным образом.

Наконец, на общей границе областей ii и iii точка a_3 сливается с a_2 . В области iii единственным глобальным аттрактором является a_2 (рис. 11). Экологическое равновесие системы становится невозможным: какими бы ни были начальные величины популяций, популяция хищников рано или поздно выродится, в то время как популяция жертв будет стабильно приближаться к своему потенциально возможному максимуму.

Рис. 11: Фазовый портрет iii.

Итак, мы проследили за изменением фазового портрета системы в зависимости от h при фиксированном e. Приведем некоторые наблюдения.

Первое. Параметр e влияет лишь на размер инетрвала $2 < h < \sqrt{\frac{\sqrt{4e+1}+1}{2}} + 1$ на котором a_3 является узлом, что нам представляется несущественным, а потому зависимость системы от e мы опустим.

Второе. Положение равновесия a_3 (если рассматривать a_2 как выродившуюся при h < 2 точку a_3) в сущности целиком определяет фазовый портрет системы.

Отсюда вывод: поведение системы определяется зависимостью a_3 от h. Эта зависимость заключена в нескольких пунктах:

- При уменьшении h точка a_3 сдвигается вниз и вправо на фазовой плоскости.
- При h < 2 точка a_3 вырождается в $a_2 = (1, 0)$.
- Bне зависимости от h точка a_3 устойчива.

Учитывая что h = dK, полученный нами результат вполне согласуется с интуитивным пониманием биологического смысла поведения системы (1):

• При совокупном уменьшении параметров d и K, т.е. эффективности потребления хищниками жертв и предельного числа жертв в популяции, количество⁶ хищников уменьшается, а жертв увеличивается.

⁶Имеется ввиду «предельное» количество, т.е. приблизительно установишееся за большой промежуток времени.

- Если параметры d и K, уменьшить достаточно сильно (так, что они окажутся меньше некоторого граничного значения), то хищники вымрут, а жертвы достигнут своей максимально возможной численности.
- Система рано или поздно придет к состоянию экологического равновесия (при достаточно больших d и K), или вырождения (при достаточно малых d и K).

Замечание (о предельном цикле) Имеются основания пологать, что в рассматриваемой системе не возникает предельных циклов. Действительно, по физическим соображеням (на фазовой плоскости всегда существует ровно один сток, и ни одного истока), дивергенция векторного поля уравнения (6) всюду не превосходит нуля. Следовательно, по критерию Бендиксона в системе (6) предельных циклов нет.

Список литературы

- [1] Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. М.: ФИЗМАТЛИТ, 2010.
- [2] Алимов Д. А. кафедральный курс Динамические системы и биоматематика, 2021.