Корневые векторы и подпространства

Пусть даны векторное пространство V над полем F и линейное отображение $A\colon V\to V$. Вектор $v\in V$ называется корневым вектором, отвечающим числу λ , если для некоторого натурального числа m верно равенство $(A-\lambda Id)^mv=0$. Наименьшее такое m называется высотой корневого вектора v. Нулевой вектор также будем считать корневым вектором высоты 0, отвечающим любому λ .

- 1. Числу λ отвечает корневой вектор натуральной высоты. Докажите, что λ собственное значение.
- 2. Докажите, что корневые векторы, отвечающие одному собственному значению, образуют подпространство.

Пусть λ — собственное значение. Подпространство, образованное корневыми векторам, отвечающими λ , называется корневым подпространством и обозначается $V^{\lambda}(A)$.

- 3. Докажите, что пространство $V^{\lambda}(A)$ инвариантно относительно A.
- 4. Пусть ограничение A на $V^{\lambda}(A)$ записывается матрицей B. Выберем в $V^{\lambda}(A)$ произвольный базис и дополним его до базиса пространства V. Докажите, что в этом базисе матрица отображения A имеет вид $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$.
- 5. Докажите, что $V^{\lambda}(A)$ объединение цепочки $\ker(A \lambda Id) \subset \ker(A \lambda Id)^2 \subset \dots$ Пусть пространство V конечномерно, тогда цепочка пространств из предыдущего пункта стабилизируется, т. е. $V^{\lambda}(A) = \ker(A \lambda Id)^m$. Пройдём по этой цепочке слева направо, вначале выбрав произвольный базис \mathfrak{b} , а потом каждый раз будем дополнять его до базиса следующего подпространства. Полученный базис пространства $V^{\lambda}(A)$ обозначим через \mathfrak{b} .
 - 6. Докажите, что в базисе $\mathfrak b$ матрица отображения $A-\lambda Id$ имеет верхнетреугольный вид с нулями на диагонали.
 - 7. Докажите, что характеристический многочлен ограничения отображения A на $V^{\lambda}(A)$ равен $(x-\lambda)^{\dim V^{\lambda}(A)}$.
 - 8. Докажите, что при $\mu \neq \lambda$ отображение $A \mu Id$ невырождено на $V^{\lambda}(A)$.
 - 9. Докажите, что характеристический многочлен не зависит от выбранного базиса.
 - 10. Докажите, что размерность корневого подпространства равна кратности соответствующего корня характеристического многочлена.
 - 11. Докажите, что векторы, взятые из различных корневых подпространств, линейно независимы.
 - 12. Если поле F алгебраически замкнуто, то V раскладывается в прямую сумму корневых подпространств $V^{\lambda}(A)$ по всем характеристическим корням λ .

Нильпотентные отображения

Линейное отображение $N: V \to V$ называется *нильпотентным*, если существует натуральное число m, для которого $N^m = 0$, наименьшее такое m называется *высотой* N. Высотой вектора v относительно N называется наименьшее h, для которого $N^h v = 0$.

13. Пусть v — вектор высоты h. Докажите, что векторы $v, Nv, \dots, N^{h-1}v$ линейно независимы.

Линейная оболочка векторов $L = \langle v, Nv, \dots, N^{h-1}v \rangle$ называется *циклическим подпространством* отображения N, порождённым вектором v.

- 14. Докажите, что циклическое пространство инвариантно относительно N.
- 15. Запишите матрицу ограничения N на L в базисе $v, Nv, \ldots, N^{h-1}v$.
- 16. Докажите, что пространство V может быть разложено в прямую сумму dim ker N циклических подпространств отображения N.