Cache timing attacks

To get started

- A timing attack is a side channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms.
- Known to be practical against RSA, ElGamal, and the Digital Signature Algorithm.
- The DSA algorithm works in the framework of public-key cryptosystems and is based on the algebraic properties of the modular exponentiations, together with the discrete logarithm problem.

About DSA

Used to sign messages

Acknowledge ownership

Protection based on discrete logarithm

In practice, FLUSH+RELOAD can be used to get the key while modular exponentiation

FLUSH+RELOAD

FLUSH+RELOAD

FLUSH+RELOAD Example

With Modular Exponentiation

```
x \leftarrow 1
for i \leftarrow |e|-1 downto 0 do
   x \leftarrow x^2 \mod n
   if (e_i = 1) then
      x = xb \mod n
   endif
done
return x
```

Implementation

Found some open-source tools implementing FR attacks

Simple victim program takes a binary number as an input and branches if the number is 1

Spy program to check if number input is 1

Cache Techniques

EVICT+TIME	PRIME+PROBE	FLUSH+RELOAD
Trigger victim to encrypt a chosen plaintext C	Fill up (prime) the cache with attacker's data	Flush a particular line
		Allow victim to run
Evict selective lines from cache	Allow victim to run	Access that particular line
Again invoke victim to encrypt C	Probe the cache contents	