长春花 (1s/512M)

给定一个素数 p,对每个 $0 \le x < p$,设 f(x) 表示一个最小的非负整数 a,使得存在一个非负整数 b,满足 $(a^2+b^2) \bmod p = x$ 。

现在,你想要求 $\max\{f(0),f(1),\cdots,f(p-1)\}$ 的值。

输入格式

输入只有一行,包含一个整数 p。保证 p 为素数。

输出格式

输出一行一个整数,表示答案。

样例数据

样例 1 输入

7

样例 1 输出

2

样例 2 输入

233

样例 2 输出

10

子任务

对于 30% 的数据, $p \le 100$.

对于 60% 的数据, $p \le 1000$ 。

对于 100% 的数据, $2 \le p \le 10^5$,保证 p 为素数。

紫罗兰 (2s/512M)

给定一张 n 个顶点 m 条边的无向图,顶点的编号在 $1\sim n$ 内,第 i 条无向边连接着顶点 x_i 与 y_i 。

我们称顶点 $v_0, v_1, \cdots, v_{k-1}$ 构成了一个大小为 k 的环,当且仅当 $k \geq 3$,且对任意 $0 \leq i < k$,图中都存在一条连接顶点 v_i 与 $v_{(i+1) \bmod k}$ 的无向边。我们称一个环 C 为最小环,当且仅当图中不存在一个大小严格小于 C 的环。

现在, 你想要求出, 图中有多少本质不同的最小环。

我们称两个环 $C_1(u_0,u_1,\cdots,u_{k-1})$ 与 $C_2(v_0,v_1,\cdots,v_{k-1})$ 不同,当且仅当组成这两个环的边不同。

输入格式

输入的第一行包含两个整数 n 和 m 。

接下来 m 行,每行两个整数 x,y,描述一条边。图中不包含重边与自环。

输出格式

输出一行一个整数,表示最小环的个数。

样例数据

样例 1 输入

```
4 5
1 2
1 3
1 4
2 4
3 4
```

样例 1 输出

2

样例 2 输入

```
1000 15
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6
```

样例 2 输出

20

样例3输入

```
1000 1
1 2
```

0

子任务

对于 20% 的数据, $1 \le n \le 10$ 。

对于 40% 的数据, $1 \le n \le 20$.

对于 60% 的数据, $1 \le n \le 100$ 。

对于 70% 的数据, $1 \le n \le 300$ 。

对于 100% 的数据, $1 \le n \le 3000$, $0 \le m \le 6000$ 。

天竺葵 (2s/512M)

给定一张 n 个顶点 m 条边的无向图,顶点的编号在 $1\sim n$ 内,第 i 条无向边连接着顶点 x_i 与 y_i ,边权为 w_i 。每条边的边权均为 $1\sim m$ 内的整数,且没有两条边的边权相同。

现在已知第i 条边的边权为 $[l_i, r_i]$ 中的整数,且边号为 $1, 2, \cdots, n-1$ 的边为原图的一棵最小生成树。你需要构造出每条边的边权 w_i ,或声明无解。

输入格式

本题包含多组数据。

输入的第一行包含一个整数 T,表示数据组数。

对于每组数据,输入的第一行包含两个整数 n, m。

接下来 m 行,每行四个整数 u_i, v_i, l_i, r_i ,表示一条边的信息。

输出格式

对于每组测试数据,如果不存在合法的方案,输出一行一个字符串 NO。

否则,输出的第一行包含 YES ,接下来一行包含 m 个整数 w_1, w_2, \cdots, w_m ,描述每条边的边权。

样例输入

```
3
7 10
1 5 1 3
3 6 8 10
4 6 5 6
1 7 1 2
3 5 1 1
2 4 6 6
1 7 10 10
6 7 8 10
1 7 6 8
3 5 1 4
9 9
1 2 1 3
1 7 7 8
4 9 2 7
```

```
5 9 1 3
1 4 1 6
3 9 5 6
4 6 4 6
5 8 8 8
4 5 8 9
3 3
2 3 3 3
1 2 2 3
2 3 1 1
```

样例输出

```
YES
3 8 5 2 1 6 10 9 7 4
YES
1 7 6 2 3 5 4 8 9
NO
```

子任务

对于 100% 的数据, $T \geq 1$, $1 \leq n \leq 5 \times 10^5$, $1 \leq m \leq 5 \times 10^5$, $1 \leq u_i < v_i \leq n$, $1 \leq l_i \leq r_i \leq m$ 。

对于 100% 的数据,每个测试点中,所有测试数据的 m 的总和不超过 5×10^5 。

对于 100% 的数据,保证图为连通图,且前 n-1 条边恰好构成原图的一棵生成树。

子任务编号	附加限制	分值
1	$l_i = r_i \; (1 \leq i \leq m)$	3
2	$\sum m \leq 10$	5
3	$\sum m \leq 20$	9
4	$m=n-1,\sum m\leq 500$	10
5	m=n-1	5
6	m=n	20
7	$\sum m \leq 5 \cdot 10^3$	11
8	$u_i=i, v_i=i+1\ (1\leq i\leq n-1)$	8
9	$\sum m \leq 10^5$	12
10	没有额外的限制	17

风信子 (2s/512M)

给定一张 $n\times m$ 的网格图,第 i 行第 j 列的格子记为 (i,j) $(1\leq i\leq n,1\leq j\leq m)$ 。 初始时你位于位置 (x_s,y_s) 。 你可以进行以下四种操作:

- U: 从当前位置 (x,y) 移动至 (x,y-1)。
- D: 从当前位置 (x,y) 移动至 (x,y+1)。

- L: 从当前位置 (x, y) 移动至 (x 1, y)。
- R: 从当前位置 (x,y) 移动至 (x+1,y)。

现在, 你需要构造一个长度为 $n \cdot m - 1$ 的操作序列, 使得:

- 任意时刻,你所在的位置 (x,y) 没有超出网格范围。即,你需要保证 $1 \le x \le n$ 且 $1 \le y \le m$ 。
- 在操作结束后, 你经过了每个格子**恰好一次**。
- 在操作结束后,你位于格子 (x_t,y_t) 。

输入格式

输入只有一行,包含六个整数 n, m, x_s, y_s, x_t, y_t 。

输出格式

输出一行,包含一个长度恰好为 $n \cdot m - 1$ 的字符串,描述你的构造。

数据保证一定存在一组合法的解。

样例数据

样例 1 输入

5 5 1 1 5 5

样例 1 输出

RRRRDDDLLLURRULLLDDDRRRR

样例 2 输入

4 6 2 2 1 4

样例 2 输出

RRULLLDDRRRDDDLLLURRULL

子任务

对于 100% 的数据, $1 \le x_s, x_t \le n$, $1 \le y_s, y_t \le m$, $(x_s, y_s) \ne (x_t, y_t)$, $4 \le n, m \le 1000$ 。保证存在一组合法的方案。

测试点编号	n	m	特殊性质
1	= 6	=6	
$2\sim 3$	= 8	= 8	
$4\sim 5$	=4	= 10	
6	=4	= 1000	
7	=5	= 10	
$8\sim 9$	=5	= 1000	
10	= 1000	= 1000	$(x_s,y_s)=(1,1)$, $\ (x_t,y_t)=(n-1,m)$
11	= 1000	= 1000	$(x_s,y_s)=(1,1)$, $\ (x_t,y_t)=(1,2)$
$12\sim14$	≤ 30	≤ 30	
$15\sim19$	≤ 200	≤ 200	
$20\sim25$	≤ 1000	≤ 1000	