

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 23

Markus Stein 28 May 2019

... relembrando aula passada... Estatística Suficiente e Mínima

Exemplo 1: Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Bernoulli(\theta)$, $0 < \theta < 1$. Como mostrar que a estatística suficiente $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ é também minimal?

Exemplo 2: Seja X_1, \ldots, X_n uma amostra aletória de X, em que $X \sim Uniforme(\theta, \theta + 1)$ e $0 < \theta < \infty$. Avalie se a estatística suficiente $T = (X_{(1)}, X_{(n)})$ é minimal.

• Obs. 1: Toda função 1 a 1 (injetora) de uma estatística suficiente minimal é uma estatística suficiente minimal. (Como mostrar?)

Estatística suficiente minimal e completa

Assegura que as distribuições da estatística para diferentes valores dos parâmetros serão diferentes.

• Definição de **estaística completa**: (Casella e Berger, definição 6.2.21)

Exemplos: Seja X_1, \ldots, X_n uma amostra aleatória de: a. $X \sim Bernoulli(\theta), \ 0 < \theta < 1$. Verifique se $T(\boldsymbol{X}) = \sum_{i=1}^n X_i$ é estatística completa. b. $X \sim Uniforme(0,\theta)$. Verifique se $T(\boldsymbol{X}) = X_{(n)}$ é uma estatística completa.

*Obs. 2: Em geral, demonstrar que uma estatística é completa utilizando a definição envolve a utilização de artifícios.

Tarefa 1: Fazer a lista de exercícios 5 para entregar.

Tarefa 2: Ler os "slides aula 14"" para a próxima aula.

Exercício Extra: (PROCESSO DE POISSON)

Suponha que as chegadas de n consumidores em um serviço sejam contadas seguindo um Processo de Poisson com parâmetro de chegada θ . Seja X_i o tempo de espera até a chegada do i-ésimo consumidor. Responda:

- a. Qual a distribuição do tempo de espera X_i ?
- b. Escreva de maneira formal a f.d.p da v.a X_i . c. Escreva a f.d.p da v.a X_i usando a função indicadora I, que vale 1 quando $X_i > 0$ e 0 em caso contrário (contradomínio de X_i .
- d. Qual a função densidade conjunta da a.a. $X = (X_1, X_2, \dots, X_n)$ da população $X \sim Exponencial(\theta)$?
- e. Verifique se a estatística $T = \sum_{i=1}^{n} X_i$ é suficiente para θ , usando o Teorema de Neyman-Fisher. Essa estatística também é minimal?