Drawing 2D Primitives

Foley & Van Dam, Chapter 3

Topics

- Interactive Graphic Systems
- Drawing lines
- Drawing circles
- Filling polygons

Interactive Graphic System

Interactive Graphic System

Application Model

Represents data and objects to be displayed on the output device

Application Program

- -Creates, stores into, and retrieves from the *application* model
- -Handles user-inputs
- -Sends output commands to the *graphics system*:
 - Which geometric object to view (point, line, circle, polygon)
 - •How to view it (color, line-style, thickness, texture)

Graphics System

- -Intermediates between the application program and the interface hardware:
 - Output flow
 - Input flow
- -Causes the application program to be *device-independent*.

Display Hardware

CRT - Cathode Ray Tube

Raster Scan (CRT)

Display Hardware

FED - Field Emission Display

Anode

Catode electrodes

Image Representation in Raster Displays

Raster Display

Terminology

Pixel: Picture element.

- Smallest accessible element in picture
- Assume rectangular or circular shape

Aspect Ratio: Ratio between physical dimensions of a pixel (not necessarily 1)

Dynamic Range: The ratio between the minimal (not zero!) and the maximal light intensity a display pixel can emit

Resolution: The number of distinguishable rows and columns in the device. Measured in:

- Absolute values (1K x 1K) or,
- Density values (300 dpi [=dots per inch])

Screen Space: A discrete Cartesian coordinate system of the screen pixels

Object Space: The Cartesian coordinate system of the universe, in which the objects (to be displayed) are embedded

Scan Conversion

The conversion from a geometrical representation of an object to pixels in a raster display

Representations

Implicit formula:

Constraint(s) expressed as

$$f(x,y,..)=0$$

A k-dimensional surface embedded in n-dimensions

$$f_i(x_1,x_2,...,x_n)=0$$
 ; $i=1..n-k$

Explicit formula:

For each x define y as y=f(x)

Good only for "functions".

Parametric formula:

Depending on free parameter(s)

$$x=f_x(t)$$

$$y=f_y(t)$$

For k-dimensional surface there are k free parameters

Line in 2 dimensions

•Implicit representation:

$$\alpha x + \beta y + \gamma = 0$$

•Explicit representation:

$$y = mx + B$$
 $m = \frac{y_1 - y_0}{x_1 - x_0}$

Parametric representation:

$$P = \begin{pmatrix} x \\ y \end{pmatrix} \qquad P = P_0 + (P_1 - P_0) t \qquad t \in [0..1]$$

$$y_1 \qquad \qquad Y_1 \qquad$$

Scan Conversion - Lines

$$y = mx + B$$

slope = m =
$$\begin{cases} y_1 - y_0 \\ x_1 - x_0 \end{cases}$$

offset= B = y_1 -m x_1

Assume
$$|m| \le 1$$

Assume $x_0 \le x_1$

Basic Algorithm

For
$$x = x_0$$
 to x_1
 $y = mx + B$
PlotPixel(x,round(y))
end;

For each iteration: 1 float multiplication, 1 addition, 1 round

Scan Conversion - Lines

Incremental Algorithm

$$y_{i+1} = mx_{i+1} + B = m(x_i + \Delta x) + B = y_i + m\Delta x$$

if $\Delta x = 1$ then $y_{i+1} = y_i + m$

```
\begin{array}{l} \underline{\text{Algorithm}} \\ y = y_0 \\ \text{For } x = x_0 \text{ to } x_1 \\ \text{PlotPixel}(x, round(y)) \\ y = y + m \\ \text{end;} \end{array}
```

Scan Conversion - Lines

Pseudo Code for Basic Line Drawing

Assume $x_1 > x_0$ and line slope absolute value is ≤ 1

```
Line(x_0, y_0, x_1, y_1)
begin
    float dx, dy, x, y, slope;
    dx := x_1 - x_0;
    dy := y_1 - y_0;
    slope := dy/dx;
    y := y_0;
    for x:=x_0 to x_1 do
    begin
         PlotPixel(x,Round(y));
         y := y+slope;
    end;
end;
```

Basic Line Drawing

Symmetric Cases:

$$|m| \geq 1$$

$$x = x_0$$

For $y = y_0$ to y_1
PlotPixel(round(x),y)
 $x = x + 1/m$
end;

Special Cases:

$$m = \pm 1$$
 (diagonals)
 $m = 0, \infty$ (horizontal, vertical)

For each iteration:

1 addition, 1 rounding

Drawbacks:

- Accumulated error
- Floating point arithmetic
- Round operations

Symmetric Cases:

if
$$x_0 > x_1$$
 for $|m| \le 1$ or $y_0 > y_1$ for $|m| \ge 1$
 $swap((x_0, y_0), (x_1, y_1))$

Assumptions:

- $x_0 < x_1$, $y_0 < y_1$
- 0 < slope < 1

Given (x_p, y_p) , the next pixel is $E = (x_p + 1, y_p)$ or $NE = (x_p + 1, y_p + 1)$

Bresenham: sign(M-Q) determines NE or E

$$M = (x_p + 1, y_p + 1/2)$$

$$y = \frac{dy}{dx} x + B$$

Implicit form of a line:

$$f(x,y) = ax + by + c = 0$$

 $f(x,y) = dy x - dx y + B dx = 0$

Decision Variable:

d = f(M) =
$$f(x_p + 1, y_p + 1/2) = a(x_p + 1) + b(y_p + 1/2) + c$$

• choose NE if d > 0
• choose E if d \le 0

What happens at $x_p + 2$?

If E was chosen at $x_p + 1$

$$d_{\text{new}} = f(x_p + 2, y_p + 1/2)$$

$$d_{\text{new}} = f(x_p + 2, y_p + 1/2) = a(x_p + 2) + b(y_p + 1/2) + c$$

$$d_{\text{old}} = f(x_p + 1, y_p + 1/2) = a(x_p + 1) + b(y_p + 1/2) + c$$

$$d_{\text{new}} = d_{\text{old}} + a = d_{\text{old}} + dy$$

$$d_{\text{new}} = d_{\text{old}} + \Delta_{\text{E}}$$

If NE was chosen at $x_n + 1$

$$M = (x_p + 2, y_p + 3/2)$$

$$d_{new} = f(x_p + 2, y_p + 3/2) = a(x_p + 2) + b(y_p + 3/2) + c$$

$$d_{old} = f(x_p + 1, y_p + 1/2) = a(x_p + 1) + b(y_p + 1/2) + c$$

$$d_{new} = d_{old} + a + b = d_{old} + dy - dx$$

$$d_{new} = d_{old} + \Delta_{NE}$$

Initialization:

First point =
$$(x_0, y_0)$$
, first MidPoint = $(x_0+1, y_0+1/2)$
 $d_{start} = f(x_0+1, y_0+1/2) = a(x_0+1) + b(y_0+1/2) + c$
 $= ax_0 + by_0 + c + a + b/2$
 $= f(x_0, y_0) + a + b/2 = a + b/2$
 $d_{start} = dy - dx/2$

Enhancement:

To eliminate fractions, define:

$$f(x,y) = 2(ax + by + c) = 0$$

$$d_{start} = 2dy - dx$$

$$\Delta_{E}$$
=2dy Δ_{NF} =2(dy-dx)

- •The sign of $f(x_0+1,y_0+1/2)$ indicates whether to move East or North-East
- •At the beginning $d=f(x_0+1,y_0+1/2)=2dy-dx$
- •The increment in d (after this step) is:

If we moved East: Δ_E =2dy

If we moved North-East: Δ_{NF} =2dy-2dx

Comments:

- Integer arithmetic (dx and dy are integers)
- One addition for each iteration
- No accumulated errors
- •By symmetry, we deal with 0>slope>-1

Pseudo Code for Midpoint Line Drawing

```
Line(x_0, y_0, x_1, y_1)
begin
      int dx, dy, x, y, d, \Delta_F, \Delta_{NF};
      x = x_0, y = y_0,
      dx := x_1 - x_0; \quad dy := y_1 - y_0;
      d := 2*dy-dx;
      \Delta_F := 2*dy; \qquad \Delta_{NE} := 2*(dy-dx);
      PlotPixel(x,y);
      while (x < x_1) do
            if (d < 0) then
              d:=d+\Delta_{F}
              x:=x+1;
            end:
                                           Assume x_1>x_0 and 0 < slope \le 1
            else
              d:=d+\Delta_{NF};
              x:=x+1:
              y := y + 1;
            end;
            PlotPixel(x,y);
      end:
end:
```

Implicit representation (centered at the origin, radius R):

$$x^2 + y^2 - R^2 = 0$$

Explicit representation:

$$y = \pm \sqrt{R^2 - x^2}$$

Parametric representation:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} R & \cos & (t) \\ R & \sin & (t) \end{pmatrix} \qquad t \in [0 ... 2\pi]$$

Basic Algorithm

```
For x = -R to R
y = sqrt(R<sup>2</sup>-x<sup>2</sup>)
PlotPixel(x,round(y))
PlotPixel(x,-round(y))
end;
```

Comments:

- Square-root operations are expensive
- Floating point arithmetic
- Large gap for x values close to R

Exploiting Eight-Way Symmetry

For a circle centered at the origin:

If (x,y) is on the circle then

$$(y,x)$$
 $(y,-x)$ $(x,-y)$ $(-x,-y)$ $(-y,-x)$ $(-y,x)$ $(-x,y)$

are on the circle as well.

Therefore we need to compute only one octant (45°) segment.


```
CirclePoints(x, y)
begin
   PlotPixel(x,y);
   PlotPixel(y,x);
   PlotPixel(y,-x);
   PlotPixel(x,-y);
   PlotPixel(-x,-y);
   PlotPixel(-y,-x);
   PlotPixel(-y,x);
   PlotPixel(-x,y);
end;
```


Circle Midpoint (for one octant)

(The circle is located at (0,0) with radius R)

- We start from $(x_0,y_0)=(0,R)$
- One can move either East or South-East
- Again, d(x,y) will be a threshold criteria at the midpoint

Circle Midpoint (for one octant)

Threshold Criteria:

$$d(x,y)=f(x,y) = x^2 + y^2 - R^2 = 0$$

Circle Midpoint (for one octant)

y0

At the beginning

$$d_{start} = d(x_0 + 1, y_0 - 1/2)$$

= $d(1,R-1/2) = 5/4 - R$

If d<0 we move East:

$$\Delta_{E} = d(x_0+2,y_0-1/2) - d(x_0+1,y_0-1/2) = 2x_0+3$$

if d>0 we move South-East:

$$\Delta_{SE} = d(x_0+2,y_0-3/2) - d(x_0+1,y_0-1/2) = 2(x_0-y_0)+5$$

- Δ_{E} and Δ_{SE} are not constant anymore
- Since d is incremented by integer values, we can use

$$d_{start} = 1-R$$

yielding an integer algorithm. This has no affect on the threshold criteria.

Pseudo Code for Circle Midpoint

MidpointCircle (R)

```
begin
   int x, y, d;
   x := 0;
   y := R;
   d := 5.0/4.0-R;
   CirclePoints(x,y);
   while (y>x) do
      if ( d<0 ) then
                     /* East */
         d := d+2x+3:
         x := x+1;
     end;
     else
                           /* South East */
        d := d+2(x-y)+5;
        x := x+1:
        y := y-1;
     end;
     CirclePoints(x,y); /* Mirror to create the other seven octants */
end;
```

Pseudo Code for Circle Midpoint

MidpointCircle (R)

```
begin
  int x, y, d;
  x := 0;
  y := R;
  d := 1-R;
                        /* originally d := 5.0/4.0 - R */
  CirclePoints(x,y);
  while (y>x) do
     if ( d<0 ) then
                  /* East */
        x := x+1;
     end;
     else
                        /* South East */
        d := d+2(x-y)+5; /* Multiplication! */
       x := x+1:
       y := y-1;
    end;
    CirclePoints(x,y); /* Mirror to create the other seven octants */
end;
```

Pseudo Code for Circle Midpoint

MidpointCircle (R)

```
begin
   int x, y, d;
   x := 0:
   y :=R;
   d := 1-R:
                                /* originally d := 5.0/4.0 - R */
   \Delta_F = 3;
   \Delta_{SF} = -2R + 5;
   CirclePoints(x,y);
   while (y>x) do
       if ( d<0 ) then /* East */
           d := d + \Delta_{E}; /* See Foley & van Dam pg. 87 */
           \Delta_F := \Delta_F + 2;
           \Delta_{SF} := \Delta_{SF} + 2;
           x := x+1:
      end;
      else
                               /* South East */
          d := d + \Delta_{SF}; /* See Foley & van Dam pg. 87 */
          \Delta_E := \Delta_E + 2;
          \Delta_{SF} := \Delta_{SF} + 4;
          x := x+1:
          v := v-1;
      end:
      CirclePoints(x,y); /* Mirror to create the other seven octants */
end;
```

Circle Midpoint

Polygon Fill

Representation:

Polygon = V_0 , V_1 , V_2 , ... V_n $V_i=(x_i,y_i)$ - vertex $E_i=(v_i,v_i+1)$ - edge

 $E_n = (v_n, v_0)$

vertex

Scan Conversion - Polygon Fill

Problem: Given a closed 2D polygon, fill its interior with a specified color, on a graphics display

Assumption: Polygon is simple, i.e. no self intersections, and simply connected, i.e. without holes

Solutions:

- Flood fill
- Scan Conversion

Flood Fill Algorithm

- •Let P be a polygon with n vertices, $v_0 ... v_{n-1}$
- •Denote $v_n = v_0$
- •Let c be a color to paint P
- •Let p=(x,y) be a point in P

Flood Fill Algorithm

```
FloodFill(P,x,y,c)
if (OnBoundary(x,y,P) or Colored (x,y,c))
  then return;
else begin
 PlotPixel(x,y,c);
  FloodFill(P,x+1,y,c);
  FloodFill(P,x,y+1,c);
  FloodFill(P,x,y-1,c);
  FloodFill(P,x-1,y,c);
end;
```

Slow algorithm due to recursion, needs initial point

Fill Polygon

Question: How do we know if a given point is inside or outside a polygon?

Scan Conversion – Basic Algorithm

- •Let P be a polygon with n vertices, $v_0 ... v_{n-1}$
- •Denote $v_n = v_0$
- Let c be a color to paint P

```
ScanConvert (P,c)

For j:=0 to ScreenYMax do

I:= points of intersection of edges

from P with line y=j;

Sort I in increasing x order and fill

with color c alternating segments;

end;
```

Question: How do we find the intersecting edges?

Scan Conversion – Fill Polygon

What happens in with these cases?

Scan Conversion - Fill Polygon

Intersections at pixel coordinates

Rule: In the odd/even count, we count y_{min} vertices of an edge, but not y_{max} vertices

Vertex B is counted once because y_{min} of (A,B) Vertex E is not counted because y_{max} of both (D, E) and (E, F) Vertex H is counted twice because y_{min} of both (G, H) and (H, I)

Fill Polygon – Optimized Algorithm

Uses a list of "active" edges A (edges currently intersecting the scan line)

```
ScanConvert(P,c)
Sort all edges E=\{E_i\} in increasing MinY(E_i) order.
A := \emptyset;
For k := 0 to ScreenYMax do
   For each E_i \in E,
       if MinY(E_i) \le k A := A \cup E<sub>i</sub>; E=E-E<sub>i</sub>
   For each E_i \in A,
      if MaxY(E_i) \le k A := A - E_i
   I:=Points of intersection of members
      from A with line y=k;
   Sort I in increasing x order and draw
     with color c alternating segments;
end;
```

Fill Polygon – Optimized Algorithm

Implementation with linked lists

Flood Fill vs. Scan Conversion

Flood Fill	Scan Conversion
 Very simple. Requires a seed point Requires large stack size Common in paint packages 	 •More complex •No seed point is required •Requires small stack size •Used in image rendering