Jessica Braganza FIT112151 PAGE NO: BE comp 2 DATE:							
Be com -							
ML Pravical 4							
Title: K-means Clustoung							
I'why does k-Means Chustering algorithm use only Eurlic	sean						
distance metrice?							
Ans. 1. K-Means uses a vector quantization method used as a							
dustering method that does not explicitly use painwise distance							
data points at all.							
2. It repeatedly assigns points to the closest centraid by using							
Euclidean distance from data points to a centraid.							
3. Euclidean distance is used because the sum of squared							
deviations from controld is equal to the sum of pairle							
aquared Euclidean distances divided by the number							
4. The term "centraid" is itself from Euclidean geometry							
	,						
2) Explain K-Means algorithm with example.							
Ans. Given P1 = [0.1, 0.6], P2 = [0.15, 0.71], P3 [0.08, 0.9], P4 [0.16, 0.85]							
Ps = [0.2, 0.3] P6 = [0.25, 0.5] P4 [0.24, 0.1] P8 [0.3, 0.2]							
Mi (centroid) = [0.1, 0.6] Ci 7 custers							
M2 (centraid) = [0.3,0.2] (2]							
x y $\sqrt{(x-0.1)^2 + (y-0.6)^2}$ $\sqrt{(x-0.3)^2 + (y-0.2)^2}$	Custey'						
0.1 0.6 0 43	* C1						
0.12 0.11 0.12 0.53	C1						
0.08 0.9 0.30 0.73	Cı						
0.16 0.85 0.25	C ₁						
0.2 0.3 0.314 0.14	C 2						

0.24 0.15

0.2

0.3

C2

C2

0 . 11

C1= [P1, P2, P3, P4, P6] = {(0.1, 0.6), (0.08, 0.9), (0.16, 0.85), (0.25, 0.9)}

$$m_1 = \left(\begin{array}{c} 0.1 + 0.08 + 0.16 + 0.25 \\ 4 \end{array}\right)$$

(0.15 0.71)

= (0.25 0.2)

	_x	1.7.	V(x-0.15)2+ (4-0.71)2	$\sqrt{(x-0.25)^2+(y-0.2)^2}$	Cluster
	0.1	0.6	0.12	6.43	۲,
	0.15	15.0	50 - 2 0 - 11 10 - 11 11	a (20)0.52 pt 20 ydy 20 d	Cı
,5 ³⁰ a v	0.08	p. q	0.2	0.72	Cı
	0.16	0.85	0.14	0.66	Cı
	6.3	0.5	0 · 41	6.11	C ₂
	0.25	0.5	0.23	0.3	Cı
<u> </u>	0.24	6.1	0.62	0.10 = 1	C 2: /:
<u>.</u>	0.3	0.2	- 0.53	0.05	C2

C, = & P, P2, \$3, P4, P6 3 and C2 = 3 P5, P+, P8 3

3) white down any 2 applications of K-means in detail.

Ans. 1. Vector Quantization:

- the domain. Fox eg. in computer graphics, whose quantization is task
 of reducing the war palette of an image to a fixed no. of work.
- ii) A use rate for this approach is image segmentation.
 - 2. Feature learning:
 - i) k-means unsterring has been med as a feature step for either supervised learning
 - ii) Basic approach is to train a cluster first wing training data