Wikidata to build 5-star Linked Open biological databases: A case study of PanglaoDB

This manuscript (permalink) was automatically generated from jvfe/paper wdt panglao@79fc78b on September 30, 2020.

Authors

- João Vitor Ferreira Cavalcante
 - **(D)** 0000-0001-7513-7376 ⋅ **(C)** jvfe

Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte

- Tiago Lubiana
 - D 0000-0003-2473-2313 · ☐ lubianat

Computational Systems Biology Laboratory, University of São Paulo

Abstract

MOCK IDEAL ABSTRACT

<u>PanglaoDB</u> is a database of cell type markers widely used for single cell RNA sequencing data analysis. The genes, tissues, organs and cell types mentioned in the database, however, are described by free text and lack identifiers. <u>Wikidata</u>, is a freely editable knowledge graph database useful for the integration of biomedical knowledge. Its linked data model can improve significantly the handling and distribution of scientific information.

In this study we explore the feasibility of enriching PanglaoDB with Wikidata identifiers. We accessed the state of reconciliation at the beginning of the project, comparing the modelling of genes, tissues, organs and cell types on Wikidata. Taking advantage of the openess of Wikidata, we leveraged our initial analysis to contribute towards Wikidata completeness and enable full reconciliation. As a final product, we released the first SPARQL endpoint for cell marker information, in a 5-star open linked data format. We hope that this study encourages further reconciliations of databases to Wikidata.

Keywords: wikidata, knowledge graph, cell type, ontology.

Introduction

PanglaoDB

PanglaoDB [1] [2] is a public database that contains data and metadata on hundreds of single-cell RNA sequencing experiments, providing extensive information on cell types, genes and tissues, as well as manually and community curated cell type markers (Tables 1 and 2). It also provides a rich web user interface for easy data acquisition, including database dumps for bulk downloads.

Table 1: Database statistics for each species in PanglaoDB, as of 31st of August, 2020.

	Mus musculus	Homo sapiens
Samples	1063	305
Tissues	184	74
Cells	4,459,768	1,126,580
Cell Clusters	8,651	1,748

Table 2: Metadata statistics for PanglaoDB, gathered from their <u>last update on August, 2019</u>.

	Number	
Cell types	215 (uniquely named)	
Tissues	240 (+6 germ layers)	
Organs	29	
Species	2 (Homo sapiens and Mus musculus)	
Genes	110292	

Despite its usefulness for the community, the database is on a 3-star category for Linked Open Data [3] as it does not use open standards from W3C (RDF and SPARQL). To make it 5-star, it needs to be

also linked to external data via common identifiers.

The OBO Foundry provides a rich collection of linked biological identifiers [4]. However, reconciliation to OBO is challenging, as there are many ontologies, each with slightly different contribution guidelines. For that reason, we decided to reconcile PanglaoDB to Wikidata, which allows simple creation of new terms, provided they follow Wikidata`s notability criteria[5].

Wikidata

Wikidata [6] is an open, freely editable, knowledge graph database within the semantic web [7] that stores knowledge across a multitude of domains, such as arts, history, chemistry and biology, using an item-property-value linked data model (Figure 1). It is easy to use and edit, by both humans and machines, with a rich web user interface and wrapper packages available in common programming languages such as R and Python. All the data within Wikidata is linked and inherently public domain, thus, it presents a great opportunity to make scientific data more FAIR (Findable, accessible, interoperable and reusable), as well as provides the necessary tools to curate and develop ontologies.

Figure 1: Wikidata item example, showing item hepatocyte (Q827450), the labels change according to the user's language, but each item has a universal identifier, called QID.

Several advances towards biological data integration and biological data analysis in Wikidata have been made before, yielding positive results [8] [9] and showcasing it's potential for bioinformatics-related analyses, such as drug repurposing and ID conversion [9]. Wikidata has been proposed as a unified base to gather and distribute biomedical knowledge, with more than 50 000 human gene items indexed and hundreds of biomedical-related properties [10].

Wikidata, however, is a work in progress, and might need extensive improvement. For example, as of August 2020, cell type information is still very scarse, with only 264 items being categorized as "instances of cell types (Q189118)" (https://w.wiki/b2w). Of those, only nine have a "Cell Ontology

ID"[11] (P7963) associated, and most have a varying amount of statements (Table 3). As an additional problem, there are also 23 items being categorized as "instances of cell (Q7868)" (https://w.wiki/b2x), illustrating the absence of any formal data model.

Table 3: As of August 2020, Wikidata items regarding cell types have a varying amount of information, with most having very few statements.

Cell type Item	Number of statements
red blood cell (Q37187)	48
myocyte (Q428914)	18
mesenchymal cell (Q66568500)	2

This work has the dual goal of re-releasing PandlaoDB in a 5-star Linked Open Data Format and improving the modelling of the necessary concepts on Wikidata.

Methodology

Data acquisition

Gene data from Wikidata was acquired using the Wikidata Query Service [12] - https://w.wiki/bWc for Homo sapiens genes and https://w.wiki/bWe for Mus musculus genes.

Data from PanglaoDB was acquired through their metadata database dump repository[13].

All data used was handled using the Pandas[14] library, with the Seaborn[15] and Matplotlib[16] libraries being used for plotting.

Reconciliation and matching

The metadata from PanglaoDB on cell types, tissues (including germ layers) and organs was matched to Wikidata items using the reconciler[17] library, further matching was done using a custom stemming function on the item labels, via PorterStemmer from the NLTK library [18]. Matches were considered perfect if the reconciliation service or the stemming function returned a value of "match" equals to "True". Matches were manually analysed for false matches, such as items with same labels but used for different concepts.

Gene data was matched manually using a Pandas [14] inner merge, since both data sources contained identifiers, which should be the same.

Item quality assessment

Wikidata items were assessed for their quality by their number of statements, which were acquired using a custom wrapper on the MediaWiki API [19] and, in the case of gene data, via Wikidata's own query service, as stated in the Data acquisition section.

Furthermore, items were also assessed by the presence of external identifiers - all of which are Wikidata properties: Ensembl Gene[20] (P594) and Entrez Gene[21] (P351) IDs for genes, Cell Ontology[11] (P7963) IDs for cell types and Uberon[22] (P1554) IDs for organs and tissues.

Results

Wikidata reconciliation - initial look

Entities from PanglaoDB, that is, cell types, genes, tissue types and organs, were matched with Wikidata items, matching summary can be seen on Table $\underline{1}$.

Table 1: Summary of the matched entities from PanglaoDB.

	# of total items	# of unique matches	% of total items that were matched
Cells	215	81	37.67%
Tissues	246	79	32.11%
Organs	29	22	75.86%
Human Genes	58216	35423	35427
Mouse Genes	53793	25124	25127

Analysis of item quality - initial look

Only *Homo sapiens* genes and Organs reconciled more than 50%. In the case of genes, this is probably due to the Gene Wiki initiative [23], a long-running project to improve biological information in Wikipedia and its sister-projects, including Wikidata.

This is further illustrated by Figure 2, in which we can see that all *Mus musculus* gene items - and nearly all *Homo sapiens* items - analysed had the Entrez ID alternative identifier present - Most of the data from the Gene Wiki project came from NCBI, creator and maintainer of Entrez. Nevertheless, there are still many gene items without an "Ensembl Gene ID" property, showcasing the need for further work in migrating this important source of information.

In the case of Organ data, there was a high number of matches both due to the fact that there were only a few number of items, but also since most Organ entities have Wikipedia pages, that are, therefore, cross-linked using Wikidata, requiring the creation of these items.

Regarding alternative identifiers, what was observed for genes cannot be said for histological entities, while there is significant progress in integrating UBERON IDs, there is near to no items with a Cell Ontology ID property (Figure $\underline{1}$).

Figure 1: Percentage of matched histological items that had alternative identifiers, UBERON IDs for Tissues and Organs, Cell Ontology IDs for Cell types.

Figure 2: Percentage of matched gene items that had alternative identifiers, Entrez ID and Ensembl Gene ID, divided by species.

Figure 3: Percentage of reconciled entities, divided by which item type they belong to. Most reconciled items don't count with the P31 property.

A significant proportion of the matches we could acquire for histological data didn't contain in their data model an "instance of" (P31) property, this illustrates an extremely concerning fact: Although we could still match around 30 percent of the data - in the case of Cell types and Tissues - this data was probably "low-quality", that is, hard to find and even harder to obtain insights from, we can affirm this since the P31 property is the basis for most items in Wikidata, it's the most intuitive way to perform queries against their database and to annotate their items.

Furthermore, there is a significant disparity between histological data and gene data: while we could only match around 37% of Cell types from PanglaoDB, and of those 55% didn't have P31, we matched 60% of *Homo sapiens* genes, and all of them had P31. This disparity is not clearly shown when looking exclusively at the number of statements for these items (Figures 4 and 5), but it shows there is still a great amount of missing information for biological data, in particular in regards to cell types.

Figure 4: The distribution of the number of statements of the matched histological entities. Cell types performed the lowest.

Figure 5: The distribution of the number of statements for matched gene items, divided by species.

Improving Wikidata

• TBD

Adding missing items

• TBD

Improving interoperability

• TBD

Wikidata reconciliation - final look

• TBD

Analysis of item quality - final look

• TBD

SPARQL endpoint

• TBD

General Ideas

Temporary file containing ideas for the project. Interesting references and concepts.

med2rdf[24] is a project to migrate biomedical knowledge bases to RDF format, facilitating integration with the semantic web.

15 years ago, in the original Cell Ontology paper, they mention the idea to integrate their knowledge with gene expression databases, something not done as far as we know [25]

References

1. PanglaoDB - A Single Cell Sequencing Resource For Gene Expression Data https://panglaodb.se/index.html

2. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data

Oscar Franzén, Li-Ming Gan, Johan LM Björkegren

Database (2019) https://doi.org/ggkzxr

DOI: <u>10.1093/database/baz046</u> · PMID: <u>30951143</u> · PMCID: <u>PMC6450036</u>

- 3. Linked Data Design Issues https://www.w3.org/DesignIssues/LinkedData.html
- 4. The OBO Foundry http://www.obofoundry.org/
- 5. Wikidata: Notability Wikidata https://www.wikidata.org/wiki/Wikidata:Notability
- 6. Wikidata https://www.wikidata.org/wiki/Wikidata:Main_Page
- 7. Semantic Web W3C https://www.w3.org/standards/semanticweb/
- 8. **Wikidata: A platform for data integration and dissemination for the life sciences and beyond**Elvira Mitraka, Andra Waagmeester, Sebastian Burgstaller-Muehlbacher, Lynn M Schriml, Andrew I
 Su, Benjamin M Good

bioRxiv (2015-11-16) https://doi.org/gg9dk4

DOI: <u>10.1101/031971</u>

9. Wikidata as a knowledge graph for the life sciences

Andra Waagmeester, Gregory Stupp, Sebastian Burgstaller-Muehlbacher, Benjamin M Good, Malachi Griffith, Obi L Griffith, Kristina Hanspers, Henning Hermjakob, Toby S Hudson, Kevin Hybiske, ... Andrew I Su

eLife (2020-03-17) https://doi.org/ggggc6

DOI: 10.7554/elife.52614 · PMID: 32180547 · PMCID: PMC7077981

10. Wikidata: A large-scale collaborative ontological medical database

Houcemeddine Turki, Thomas Shafee, Mohamed Ali Hadj Taieb, Mohamed Ben Aouicha, Denny Vrandečić, Diptanshu Das, Helmi Hamdi

Journal of Biomedical Informatics (2019-11) https://doi.org/gg9dnt

DOI: <u>10.1016/j.jbi.2019.103292</u> · PMID: <u>31557529</u>

11. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability.

Alexander D Diehl, Terrence F Meehan, Yvonne M Bradford, Matthew H Brush, Wasila M Dahdul, David S Dougall, Yongqun He, David Osumi-Sutherland, Alan Ruttenberg, Sirarat Sarntivijai, ... Christopher J Mungall

Journal of biomedical semantics (2016-07-04) https://www.ncbi.nlm.nih.gov/pubmed/27377652

DOI: <u>10.1186/s13326-016-0088-7</u> · PMID: <u>27377652</u> · PMCID: <u>PMC4932724</u>

- 12. https://query.wikidata.org/
- 13. oscar-franzen/PanglaoDB

Oscar Franzén

14. pandas-dev/pandas: Pandas 1.0.0

Jeff Reback, Wes McKinney, Jbrockmendel, Joris Van Den Bossche, Tom Augspurger, Phillip Cloud, Gfyoung, Sinhrks, Adam Klein, Matthew Roeschke, ... Thomas Kluyver

Zenodo (2020-01-29) https://doi.org/gg9gtt

DOI: 10.5281/zenodo.3630805

15. mwaskom/seaborn: v0.11.0 (Sepetmber 2020)

Michael Waskom, Olga Botvinnik, Maoz Gelbart, Joel Ostblom, Paul Hobson, Saulius Lukauskas, David C Gemperline, Tom Augspurger, Yaroslav Halchenko, Jordi Warmenhoven, ... Thomas Brunner

Zenodo (2020-09-08) https://doi.org/ghcq2i

DOI: 10.5281/zenodo.4019146

16. matplotlib/matplotlib: REL: v3.3.2

Thomas A Caswell, Michael Droettboom, Antony Lee, John Hunter, Elliott Sales De Andrade, Eric Firing, Tim Hoffmann, Jody Klymak, David Stansby, Nelle Varoquaux, ... Paul Ivanov Zenodo (2020-09-15) https://doi.org/ghcq2k

DOI: 10.5281/zenodo.4030140

17. reconciler: Python utility to reconcile Pandas DataFrames

João Vitor F. Cavalcante

https://github.com/jvfe/reconciler

18. Natural language processing with Python

Steven Bird, Ewan Klein, Edward Loper *O'Reilly* (2009)

ISBN: 9780596516499

19. API:REST API - MediaWiki https://www.mediawiki.org/wiki/API:REST_API

20. Ensembl 2020

Andrew D Yates, Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge Alvarez-Jarreta, M Ridwan Amode, Irina M Armean, Andrey G Azov, Ruth Bennett, ... Paul Flicek *Nucleic Acids Research* (2019-11-06) https://doi.org/gggp72

DOI: <u>10.1093/nar/gkz966</u> · PMID: <u>31691826</u> · PMCID: <u>PMC7145704</u>

21. Database resources of the National Center for Biotechnology Information

NCBI Resource Coordinators

Nucleic Acids Research (2012-11-26) https://doi.org/gg9gtr

DOI: 10.1093/nar/gks1189 · PMID: 23193264 · PMCID: PMC3531099

22. Uberon, an integrative multi-species anatomy ontology.

Christopher J Mungall, Carlo Torniai, Georgios V Gkoutos, Suzanna E Lewis, Melissa A Haendel *Genome biology* (2012-01-31) https://www.ncbi.nlm.nih.gov/pubmed/22293552

DOI: <u>10.1186/gb-2012-13-1-r5</u> · PMID: <u>22293552</u> · PMCID: <u>PMC3334586</u>

23. Wikidata as a semantic framework for the Gene Wiki initiative

Sebastian Burgstaller-Muehlbacher, Andra Waagmeester, Elvira Mitraka, Julia Turner, Tim Putman, Justin Leong, Chinmay Naik, Paul Pavlidis, Lynn Schriml, Benjamin M Good, Andrew I Su *Database* (2016-03-17) https://doi.org/f9bbk9

DOI: <u>10.1093/database/baw015</u> · PMID: <u>26989148</u> · PMCID: <u>PMC4795929</u>

24. **MED2RDF**

website http://med2rdf.org/

25.**:{unav)**

Jonathan Bard, Seung Y Rhee, Michael Ashburner Genome Biology (2005) https://doi.org/dfxc74

DOI: <u>10.1186/gb-2005-6-2-r21</u> · PMID: <u>15693950</u> · PMCID: <u>PMC551541</u>