Finite Differences

Method 2 & 3: Polynomial interpolation and method of undetermined coefficients

Goal is to approximate kth derivative of u at \bar{x} with a formula of the form:

$$X_{0} = 0$$

$$X_{1} = h$$

$$X_{1} = -h$$

$$X_{1} = -h$$

$$X_{2} = -h$$

$$X_{3} = -h$$

$$X_{4} = -h$$

$$X_{5} = -h$$

$$X_{5} = -h$$

$$X_{7} = -h$$

$$X_{7}$$

Question: How do we determine the coefficients c_i^k ?

Method 2: Polynomial interpolation

Recall Lagrange's interpolation formula:

$$p_{n}(x) = \sum_{j=0}^{n} L_{j}(x)u_{j} \qquad \text{where} \qquad L_{j}(x) = \frac{(x-x_{0})(x-x_{1})\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_{n})}{(x_{j}-x_{0})(x_{j}-x_{1})\cdots(x_{j}-x_{j+1})\cdots(x_{j}-x_{n})}$$
where
$$L_{j}(x) = \frac{(x-x_{0})(x-x_{1})\cdots(x-x_{j-1})(x_{j}-x_{j+1})\cdots(x_{j}-x_{n})}{(x_{j}-x_{1})\cdots(x_{j}-x_{j+1})\cdots(x_{j}-x_{n})}$$

$$L_{j}(x) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
Guarantees that:
$$p_{i}(x_{i}) = U_{i} \qquad \text{Cordinal paperty}$$

$$Ex. \quad X_{0} = 1, \quad X_{1} = 3, \quad X_{2} = 3.5$$

$$P_{2}(x) = \frac{(x-3)(x-3.5)}{(1-3)(1-3.5)} U_{0} + \frac{(x-1)(x-3.5)}{(3-1)(3-3.5)} U_{1} + \frac{(x-1)(x-3)}{(3.5-1)(3.5-3)} U_{2}$$

$$P_{2}(x) = 0 \qquad + U_{1} \qquad + 0$$

Approximak:

$$\frac{d^{\kappa}u}{dx^{\kappa}u}\Big|_{x=\bar{x}} \propto \frac{d^{\kappa}}{dx^{\kappa}} \int_{x=\bar{x}}^{\infty} \frac{d^{\kappa}u}{dx^{\kappa}} \left(\sum_{j=0}^{\infty} L_{j}(x) u_{j} \right) \Big|_{x=\bar{x}}$$

$$= \sum_{j=0}^{\infty} \left[\frac{d^{\kappa}u}{dx^{\kappa}} L_{j}(x) \Big|_{x=\bar{x}} u_{j} \right]$$

$$= \sum_{j=0}^{\infty} \left[\frac{d^{\kappa}u}{dx^{\kappa}} L_{j}(x) \Big|_{x=\bar{x}} u_{j} \right]$$

$$= \sum_{j=0}^{\infty} \left[\frac{d^{\kappa}u}{dx^{\kappa}} L_{j}(x) \Big|_{x=\bar{x}} u_{j} \right]$$

Error error analysis fillows the error in the polymonal interpolation.

Method 3: Method of undetermined coefficients

 $\frac{d^{k}u}{dx^{k}} |_{Y=\bar{x}} \approx \sum_{j=0}^{\infty} C_{j}^{k} u_{j}$

chose ¿cisjo so that the formula is exact for as high degree polynamols as possible.

There are not parameters 25/3:0, so we can hope to make the formula exact for polynomials: $51, X, X^2, ..., X^N$

· Better to work with polynomials:

 $\frac{2}{2}$, $x-\overline{x}$, $(x-\overline{x})^3$, $(x-\overline{x})^3$, ..., $(x-\overline{x})^n$ $\frac{2}{3}$

Set of equations: For i=0,1,...,n

$$\frac{1}{i!} \sum_{j=0}^{N} c_{j}^{k} (x_{j} - \overline{x})^{j} = \frac{1}{i!} \frac{d^{k}}{dx^{k}} (x - \overline{x})^{i} \Big|_{x=\overline{x}}$$

eads to a Vandermonde type honeur system:

System:

F1 1 1	1]	CK	6	
(X5x) (X1x) (X1x)	(x,-x)	Ck	0	
(x-x) (x-x) (x,-x) 2	(xn-x)"	C ₃ .	0	Kth rou
	•			- where
10 - 17 (= 18 (= 119	(x \)			you Count From
(x2x) (x2x)	- (N!)	$\begin{bmatrix} C_n^k \end{bmatrix}$	lo	Zero

the coefficients, using exact arthretic.

Mend 3. , s numerically unstable for large n.

Fornberg's algorithm

- · Clever algorithm for doing the computations in methoda
- · Webpurge, links to codes for this algorithm: weights

Differentiation matrices

- Discrete form of a differential operator
- Operates on a vector of function samples
- Produces a vector containing approximations of some derivative.

Example: first derivative

Or we can produce a square differentiation matrix by accounting for the boundaries:

$$\frac{1}{2h} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2' \\ u_3' \\ u_4' \\ u_5 \\ u_6' \\ u_7' \end{bmatrix} + \frac{1}{2h} \begin{bmatrix} u_0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -u_8 \end{bmatrix} + \begin{bmatrix} \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \end{bmatrix}$$

Example: second derivative

$$\frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} u_0' \\ u_2'' \\ u_3'' \\ u_3'' \\ u_5'' \\ u_6'' \\ u_7'' \end{bmatrix} - \frac{1}{h^2} \begin{bmatrix} u_0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ u_8 \end{bmatrix} + \begin{bmatrix} \mathcal{O}(h^2) \\ \mathcal{O}(h^2) \end{bmatrix}$$