

FIG.1

2/41

FIG.2

FIG.3

FIG.7

RECEIVED SIGNAL POWER (dB)

FIG.8

FIG.9

FIG.10

FIG.11

RECEIVED SIGNAL POWER (dB)

FIG.12

FIG.13

t0: VIRTUAL FRAME LEADING END
pi: POWER IN DETECTED SYNCHRONIZATION
CHIP TIMING

\$\mathcal{T}\$i: DETECTED SYNCHRONIZATION CHIP TIMING

CALCULATE FOR JUDGMENT

AVERAGE VALUE OF SYNCHRONIZATION CHIP TIMING STANDARD DEVIATION OF SYNCHRONIZATION CHIP TIMING

DETECTION JUDGMENT

ts \leq Ncp \rightarrow A DETECTION SUCCESSFUL ts > Ncp \rightarrow A DETECTION FAILED

- START MEASUREMENT BY MEASUREMENT WINDOW SHOWN IN RIGHT SIDE WHEN DETECTION SUCCESSFUL
- PERFORM SYNCHRONIZATION DETECTION AGAIN WHEN DETECTION FAILED |

NOTE: DEFINITION OF NCP
MEASURE 256 CHIPS BY MEASURING PORTION
-Ncp = 256/2
MEASURE 512 CHIP
-Ncp = 512/2

FIG.15

FRAME CONFIGURATION OF CPICH UPON USE OF TRANSMIT DIVERSITY SYMBOL NUMBER 2 3 ··· 148 149 0 1 4 A:SYMBOL MODULATION PATTERN ANTENNA A Α Α #1 ANTENNA #2 slot #14 slot #0 slot #1 Frame #1 Frame # l+1 1 FRAME : 10 ms (150 SLOTS) 1 SLOT : 10 SYMBOLS 1 SYMBOL: 256 CHIPS ANTENNA #1 P_{t1} α_1 MOBILE STATION ANTENNA #2 α_2 BASE STATION RECEIVED SIGNAL RECEIVED SIGNAL VECTOR R(149)R(0)R(1)TIME AXIS SYMBOL NUMBER

FIG.16

FIG.17

FIG.19

RECEIVED SIGNAL SERIES 1
$$\mathbf{r}_{_{k}}(t) = I_{_{k}}(t) + jQ_{_{k}}(t)$$
VECTOR OF CHIP TIMING k

SERIES 2 $\mathbf{r}_{_{k}}(t + n\Delta\tau) = I_{_{k}}(t + n\Delta\tau) + jQ_{_{k}}(t + n\Delta\tau)$ WHEREIN $\Delta \tau$ IS 1 SYMBOL PERIOD

COVARIANT MATRIX OF SERIES 1 AND 2 $Rrr = \begin{bmatrix} \left\langle \mathbf{r}_{-k}(t) \cdot \mathbf{r}_{-k}^{H}(t) \right\rangle & \left\langle \mathbf{r}_{-k}(t) \cdot \mathbf{r}_{-k}^{H}(t + n\Delta\tau) \right\rangle \\ \left\langle \mathbf{r}_{-k}(t + n\Delta\tau) \cdot \mathbf{r}_{-k}^{H}(t) \right\rangle & \left\langle \mathbf{r}_{-k}(t + n\Delta\tau) \cdot \mathbf{r}_{-k}^{H}(t + n\Delta\tau) \right\rangle \end{bmatrix} \qquad \text{EIGENVALUE}$ $\lambda_{1}, \lambda_{2} \quad (\lambda_{1} > \lambda_{2})$

 ∇

CHIP TIMING k

DESIRED SIGNAL POWER

 $P_{S_{-k}} = \frac{\lambda_1 - \lambda}{2}$ $P_{I_{-k}} = \lambda_2$

INTERFERENCE SIGNAL POWER

(WHEREIN N Δ au IS SUFFICIENTLY SHORT PERIOD FOR FLUCTUA)

FIG.20

FIG.21

FIG.22

FIG.23

FIG.24

FIG. 25

TOMETHE INCES

FIG.26

FIG.27

SECONDARY AVERAGING PROCESS

% A, B ARE TRANSMISSION SYMBOLS AND X, Y ARE RECEPTION SYMBOLS

FIG.29

FIG.30

FIG.31

FIG.32

FIG.33

ADD VECTOR
$$\alpha'_{i-k}(t_j) = sel_{i-k}(t_j) \cdot \alpha_{i-k}(t_j)$$
DIFFERENCE VECTOR $\beta'_{i-k}(t_j) = sel_{i-k}(t_j) \cdot \beta_{i-k}(t_j)$
AFTER SELECTION $\beta'_{i-k}(t_j) = sel_{i-k}(t_j) \cdot \beta_{i-k}(t_j)$

VECTOR
$$sel_{i_{-k}}(t_{j}) = 1$$
 SELECTION ON INFORMATION $sel_{i_{-k}}(t_{j}) = 0$ SELECTION OFF

DESIRED SIGNAL POWER
$$P_{S_-k} = \frac{\left|P_{S_-k}' - P_{I-k}'\right|}{2}$$
 WHEREIN $P_{S_-k}' = \frac{1}{N} \sum_{j=0}^{j-1} \sum_{j=0}^{j-1} \left|\frac{\alpha_{i-k}'(t_j)^2}{2}\right|$

INTERFERENCE $P_{l-s} = \frac{1}{N} \sum_{j=0}^{l-1} \sum_{l=0}^{l-1} \left| \beta_{l-s}^{(l)} \left(\ell_l \right) \right|^2$

I IS DELAY SYMBOL NUMBER

$$N$$
 IS SELECT ON NUMBER IN AVERAGING RANGE

WHEN AVERAGING PERIOD IN COMMUNICATION QUALITY CALCULATION PROCESS IS SERIES PATTERN REPETITION PERIOD

FIG.34

FIG.35

FIG.36

※ CORRESPONDS VECTOR INFORMATION 1 AND IS SYMBOL TRANSMITTED IN SELECTED COMMUNICATION QUALITY CALCULATION PROCESS

FIG.37

* CORRESPONDS VECTOR INFORMATION 1 AND IS SYMBOL TRANSMITTED IN SELECTED COMMUNICATION QUALITY CALCULATION PROCESS

FIG.38

FIG.39

FIG.40

FIG.41

FIG.42