Patem and Patem and Patem and Patem and Information insomblere Statement By Applicant (Use Several Sheets If Necessary) FORM PTO-1449 (Modified) U.S. Department of Commerce Patent and Trademark Office Attorney Docket No.: UM-06617 Serial No.: 09/960,454 Applicant: Michael D. Uhler Filing Date: 09/21/2001 Group Art Unit: (37 CFR § 1.98(b)) U.S. PATENT DOCUMENTS Serial / Patent Number Examiner Cite Issue Date Applicant / Patentee Subclass Class Filing Date Initials No. aN 6,544,790 04/08/03 Sabatini. 435 455 09/18/00 C 9127104 Examiner: Date Considered: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form EXAMINER: with next communication to applicant.

FORM PTO-1449 (Modified)

U.S. Department of Commerce Patent and Trademark Office

Attorney Docket No.: UM-06617

INFORMATION

TEMENT BY APPLICANT If Necessary)

Applicant: Michael D. Uhler

MAD A Q 2004

(37 CFR § 1.5	98(b))	(b))		Filing Date: 09/21/20	Filing Date: 09/21/2001		Group AMAR: 0 8 2004	
	·			U.S. PATENT DOCUMENTS				
Examiner Initials	Cite No.	Serial / Patent Number	Issue Date	Applicant / Patentee	Class	Subclass	Filing Dat	
<u> </u>	1	4,683,195	07/28/87	Mullis et al.	435	6	02/07/86	
.	2	4,683,202	07/28/87	Mullis et al.	435	91	10/25/85	
	3	4,965,188	10/23/90	Mullis et al.	435	6	06/17/87	
	4	5,352,605	10/04/94	Fraley et al.	435	240.4	10/28/93	
	5	5,584,807	12/17/96	McCabe [,]	604	71	01/20/95	
	6	5,618,682	04/08/97	Scheirer	435	8	02/08/94	
	. 7	5,674,713	10/17/97	McElroy et al.	435	69.7	06/02/95	
	8	5,976,796	11/02/99	Szalay et al.	435	6	12/23/96	
	9	6,074,859	09/13/00	Hirokawa et al.	435	189	07/08/98	
	10	5,837,533	11/17/98	Boutin	435	320.1	07/28/94	
	11	5,654,185	08/05/97	Palsson	435	235.1	06/07/97	
	12	5,804,431	07/08/98	Palsson	435	235.1	03/13/97	
	13	5,811,274 ,	09/22/98	Palsson	435	172.2	12/09/94	
	14	5,965,352	10/12/99	Stoughton	435	172.1	12/09/94	
	15	5,998,136	12/7/99	Kamb	435	6	08/19/96	
	16	6,060,240	5/9/00	Kamb et al.	435	6	12/13/96	
	17	10/002,802		Uhler et al.				
2n)	18	10/123,435		Uhler et al.				
		FC	REIGN PATENTS O	R PUBLISHED FOREIGN PATENT APPLIC	CATIONS	<u> </u>		
1		Document	7.11			Subclass	Translation	
		Number	Publication Date	Country / Patent Office	Class		Yes N	
2W /	19	WO 95/14098	5/26/95	PCT				
1	20	WO 01/20015	3/22/01	PCT				
1 4	21	WO 99/51773	10/14/99	PCT				
	22	WO 00/05339	02/02/00	PCT				
1 1	23	0900849	3/10/99	EP				
1	24	WO 98/53103	11/26/98	PCT				
V	25	WO 99/55886	11/04/99	PCT				
NV	26	WO 99/58664	11/18/99	PCT				
aminer:			10_ e	Date Considered:	9/2-	7 102-1		
AMINER:	Initi with	al citation considered next communication	Draw line through c to applicant.	itation if not in conformance and not consider				

FORM PTO-1449 (Modified)

0

U.S. Department of Commerce Patent and Trademark Office

Attorney Docket No.: UM-06617

Serial No.: 09/960,454

INFORMATIO veral Sheet

ISCLOSURE STATEMENT BY APPLICANT Necessary)

Applicant: Michael D. Uhler

Filing Date: 09/21/2001 Group Art Unit: (37 CFR § 1.98(b)) OTHER DOCUMENTS (Including Author, Title, Date, Relevant Pages, Place of Publication) Amundson, et al., Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses, Oncogene, 18(24):3666 (1999) an 27 28 Bally, et al., Biological barriers to cellular delivery of lipid-based DNA carriers, Adv Drug Deliv Rev, 38(3):291 (1999); Baron, et al., Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes, Proc Natl Acad Sci 29 USA, 96(3):1013 (1999); 30 Bittner, et al., Data analysis and integration: of steps and arrows, Nat Genet, 22(3):213 (1999); 31 Boynton and AL, Control of 3T3 cell proliferation by calcium, In Vitro, 10(12 (1974); Brown and Botstein, Exploring the new world of the genome with DNA microarrays, Nat Genet, 21(1 Suppl):33 (1999); 32 Brown, et al., Induction of alkaline phosphatase in mouse L cells by overexpression of the catalytic subunit of cAMP-dependent protein kinase, J Biol Chem, 265(22):13181 (1990); 33 34 Brunner, et al., Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus, Gene Ther, 7(5):401 (2000); Cheng, Receptor ligand-facilitated gene transfer: enhancement of liposome-mediated gene transfer and expression by transferrin, Hum Gene 35 Ther, 7(3):275 (1996); 36 Duggan, et al., Expression profiling using cDNA microarrays, Nat Genet, 21(1 Suppl):10 (1999); 37 Gill and Sanseau, Rapid in silico cloning of genes using expressed sequence tags (ESTs), Biotechnol Annu Rev, 5(25 (2000); Graves, Powerful tools for genetic analysis come of age, Trends Biotechnol, 17(3):127 (1999) 38 Huang, et al., Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells, Oncogene, 18(23):3546 (1999) 39 40 Iyer, et al., The transcriptional program in the response of human fibroblasts to serum, Science, 283(5398):83 (1999), Mann, et al., Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues, Proc Natl Acad Sci U S A, 96(11):6411 41 (1999); 42 Mortimer, et al., Cationic lipid-mediated transfection of cells in culture requires mitotic activity, Gene Ther, 6(3):403 (1999); 432 Neumann, et al., Fundamentals of electroporative delivery of drugs and genes, Bioelectrochem Bioenerg, 48(1):3 (1999); Ross, et al., Enhanced reporter gene expression in cells transfected in the presence of DMI-2, an acid nuclease inhibitor, Gene Ther, 44 5(9):1244 (1998); Schena, et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 270(5235):467 (1995); 45 46 Tseng, et al., Mitosis enhances transgene expression of plasmid delivered by cationic liposomes, Biochim Biophys Acta, 1445(1):53 (1999); Wagner, et al., DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety, Bioconjug Chem, 2(4):226 (1991); 47 48 Watson and Akil, Gene chips and arrays revealed: a primer on their power and their uses, Biol Psychiatry, 45(5):533 (1999); 49 Young, Biomedical discovery with DNA arrays, Cell, 102(1):9 (2000) Zenke, et al., Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic 50 cells, Proc Natl Acad Sci U S A, 87(10):3655 (1990); Zhu, et al., Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays, Proc Natl Acad Sci 51 USA, 95(24):14470 (1998) Antonyak, et al., Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor, J Biol Chem, 273(5):2817 52 QN 53 Barila, et al., A nuclear tyrosine phosphorylation circuit: c-Jun as an activator and substrate of c-Abl and JNK, Embo J, 19(2):273 (2000); Examiner: Date Considered:

9 127 MRECEIVED

EXAMINER:

Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. MAR 0 8 2004 FORM PTO-1449 (Modified)

U.S. Department of Commerce Patent and Trademark Office

Attorney Docket No.: UM-06617

Serial No.: 09/960,454

INFORMATION

EXEMENT BY APPLICANT

Applicant: Michael D. Uhler If Necessary) Filing Date: 09/21/2001 (37 CFR § 1.98(b)) Group Art Unit: OTHER DOCUMENTS (Including Author, Title, Date, Relevant Pages, Place of Publication) Collins and Uhler, Cyclic AMP- and cyclic GMP-dependent protein kinases differ in their regulation of cyclic AMP response 54 element-dependent gene transcription, J Biol Chem, 274(13):8391 (1999); Frodin, et al., A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1, Embo J, 19(12):2924 55 56 Frost, et al., Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins, Embo J, 16(21):6426 (1997); 57 Fuchs, et al., MEKK1/JNK signaling stabilizes and activates p53, Proc Natl Acad Sci U S A, 95(18):10541 (1998); Gryz and Meakin, Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and 58 neuronal differentiation, Oncogene, 19(3):417 (2000); Guan, et al., Interleukin-lbeta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells, J Biol Chem, 273(44):28670 (1998); 59 60 Hansra, et al., Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes, Biochem J, 342 (Pt 2)(337 (1999); Huggenvik, et al., Regulation of the human enkephalin promoter by two isoforms of the catalytic subunit of cyclic adenosine 61 3',5'-monophosphate-dependent protein kinase, Mol Endocrinol, 5(7):921 (1991); 62 Iglesias and Rozengurt, Protein kinase D activation by deletion of its cysteine-rich motifs, FEBS Lett, 454(1-2):53 (1999); Kawai, et al., Mouse smad8 phosphorylation downstream of BMP receptors ALK-2, ALK-3, and ALK-6 induces its association with Smad4 63 and transcriptional activity, Biochem Biophys Res Commun, 271(3):682 (2000); Kohn, et al., Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 64 4 translocation, J Biol Chem, 271(49):31372 (1996); Komeima, et al., Inhibition of neuronal nitric-oxide synthase by calcium/ calmodulin-dependent protein kinase Halpha through Ser847 65 phosphorylation in NG108-15 neuronal cells, J Biol Chem, 275(36):28139 (2000); Kuno-Murata, et al., Augmentation of thyroid hormone receptor-mediated transcription by Ca2+/calmodulin-dependent protein kinase type 66 IV, Endocrinology, 141(6):2275 (2000); 67 Leevers, et al., Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane, Nature, 369(6479):411 (1994); 68 Ling, et al., NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176, Proc Natl Acad Sci U S A, 95(7):3792 (1998); Novak, et al., Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways, Proc Natl Acad Sci U S 69 A, 95(8):4374 (1998); Ohteki, et al., Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3, J Exp Med, 70 192(1):99 (2000); Raingeaud, et al., MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction 71 pathway, Mol Cell Biol, 16(3):1247 (1996); Robinson, et al., A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell 72 transformation, Curr Biol, 8(21):1141 (1998); Takeda, et al., Apoptosis signal-regulating kinase 1 (ASK1) induces neuronal differentiation and survival of PC12 cells, J Biol Chem, 73 275(13):9805 (2000); Wang, et al., Activation of the hematopoietic progenitor kinase-I (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway 74 by transforming growth factor beta (TGF-beta)-activated kinase (TAK1), a kinase mediator of TGF beta signal transduction, J Biol Chem, 272(36):22771 (1997); 75 Zang, et al., Association between v-Src and protein kinase C delta in v-Src-transformed fibroblasts, J Biol Chem, 272(20):13275 (1997) Zimmermann, et al., PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit type I, J 76 Biol Chem, 274(9):5370 (1999). Examiner: Date Considered: **EXAMINER:**

Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Sheet 4 of 4 FORM PTO-1449 U.S. Department of Commerce Attorney Docket No.: UM-06617 Serial No.: 09/960,454 (Modified) Patent and Trademark Office INFORMATIO ISCLOSURE STATEMENT BY APPLICANT Applicant: Michael D. Uhler M Necessary) (37 CFR § 1.98(b)) Filing Date: 09/21/2001 Group Art Unit: OTHER DOCUMENTS (Including Author, Title, Date, Relevant Pages, Place of Publication) QN Abravaya, et al., Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo 77 footprinting, Mol Cell Biol, 11(1):586 (1991); Altmann, et al., Transcriptional activation by CTF proteins is mediated by a bipartite low-proline domain, Proc Natl Acad Sci U S A, 78 91(9):3901 (1994); Benbrook and Jones, Different binding specificities and transactivation of variant CRE's by CREB complexes, Nucleic Acids Res, 79 22(8):1463 (1994); 80 Blackwell, et al., Sequence-specific DNA binding by the c-Myc protein, Science, 250(4984):1149 (1990) Boccaccio, et al., Induction of epithelial tubules by growth factor HGF depends on the STAT pathway, Nature, 391(6664):285 (1998); 81 Cao, et al., Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and 82 growth signals, Mol Cell Biol, 10(5):1931 (1990); Fisch, et al., An AP1-binding site in the c-fos gene can mediate induction by epidermal growth factor and 12-O-tetradecanoyl phorbol-13-acetate, Mol Cell Biol, 9(3):1327 (1989); 83 Hale and Braithwaite, Identification of an upstream region of the mouse p53 promoter critical for transcriptional expression, Nucleic Acids 84 Res, 23(4):663 (1995); Hariharan, et al., Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally 85 versatile zinc finger protein, Proc Natl Acad Sci U S A, 88(21):9799 (1991) 86 Hiscott, et al., Triggering the interferon response: the role of IRF-3 transcription factor, J Interferon Cytokine Res, 19(1):1 (1999); Kamps, et al., A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL, Cell, 87 60(4):547 (1990); 88 Lam, et al., Cell-cycle regulation of human B-myb transcription, Gene, 160(2):277 (1995); Lembecher, et al., Distinct NF-kappa B/Rel transcription factors are responsible for tissue-specific and inducible gene activation, Nature, 89 365(6448):767 (1993); Northrop, et al., Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells 90 (NF-AT) complex, J Biol Chem, 268(4):2917 (1993); Oh and Im, The p53 mutation which abrogates trans-activation while maintaining its growth-suppression activity, Mol Cells, 10(4):386 Q1 (2000): Pani, et al., The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3 beta involves a cell-specific factor 92 and positive autoactivation, Mol Cell Biol, 12(2):552 (1992) 93 Robbins, et al., Negative regulation of human c-fos expression by the retinoblastoma gene product, Nature, 346(6285):668 (1990); 94 Treisman, The SRE: a growth factor responsive transcriptional regulator, Semin Cancer Biol, 1(1):47 (1990); Uchijima, et al., Tax proteins of human T-cell leukemia virus type 1 and 2 induce expression of the gene encoding erythroid-potentiating activity (tissue inhibitor of metalloproteinases-1, TIMP-1), J Biol Chem, 269(21):14946 (1994); 95 Vinson, et al., Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design, Genes 96 Dev, 7(6):1047 (1993). Ziauddin, J and Sabatini, DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411: 107-110. 97 Wagner, et al. (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by 98 transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle, Proc Natl Acad Sci U S A, 89(17):7934 BN 99 Wagner, et al. (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells, Proc Natl Acad Sci U S A, 87(9):3410.

Date Considered:

Initial citation considered Draw life through citation if not in conformance and not considered. Include copy of this form

Examiner:

EXAMINER:

with next communication to applicant.

RECEIVED MAR 0 8 2004