Mecánica Clásica Tarea # 13

Favio Vázquez*

Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México.

Problema 1

Una partícula de masa m se mueve sobre el eje de las x sujeta a un potencial

$$V = a \sec^2\left(\frac{x}{l}\right),\,$$

encuentre la trayectoria por el método de Hamilton-Jacobi.

Solución:

Problema 2

Usando los ángulos de Euler como coordenadas, establezca la ecuación de Hamilton-Jacobi del trompo simétrico. ¿Se podrá resolver esta ecuación por separación de variables?; de ser esto posible encuentre la solución. Puede dejar integrales indicadas.

Solución:

Problema 3

Demuestra que la ecuación de Hamilton-Jacobi de una partícula atraída por dos centros gravitatorios iguales que se encuentran a una distancia fija l es separable en coordenadas elípticas confocales.

Solución:

Problema 4

Establezca la ecuación de Hamilton-Jacobi de una partícula libre en dos dimensiones en coordenadas polares. Encuentre una solución completa de esta ecuación. Haga un análisis de las superficies de nivel de esta solución y de su relación con el movimiento. Establezca el significado de las constantes α y β .

Solución:

^{*}Correo: favio.vazquezp@gmail.com

Problema 5

 $\begin{tabular}{l} Utilizando el método de Hamilton-Jacobi reduzca a cuadraturas el péndulo simple. \\ \underline{Solución:} \end{tabular}$