Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题

✔ 恭喜!您通过了!

下一项

0/1分

1,

Suppose a MAC system (S,V) is used to protect files in a file system

by appending a MAC tag to each file. The MAC signing algorithm ${\cal S}$

is applied to the file contents and nothing else. What tampering attacks

are not prevented by this system?

- Changing the name of a file.
- Changing the first byte of the file contents.
- Appending data to a file.

这个选项的答案不正确

The MAC tag will fail to verify if any file data is changed.

Replacing the contents of a file with the concatenation of two files on the file system.

1/1分

2.

Let (S,V) be a secure MAC defined over (K,M,T) where $M=\{0,1\}^n$ and $T=\{0,1\}^{128}$. That is, the key space is K, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$.

Which of the following is a secure MAC: (as usual, we use \parallel to denote string concatenation)

$$oxed{\hspace{0.5cm}} S'(k,m)=S(k,m)$$
 and

$$V'(k,m,t) = egin{cases} V(k,m,t) & ext{if } m
eq 0^n \ ``1" & ext{otherwise} \end{cases}$$

未选择的是正确的

$$igcup S'(k,\,m) = igl[t \leftarrow S(k,m), ext{ output } (t,t) \, igr)$$
 and

$$V'ig(k,m,(t_1,t_2)ig) = egin{cases} V(k,m,t_1) & ext{if } t_1 = t_2 \ "0" & ext{otherwise} \end{cases}$$

(i.e.,
$$V^{\,\prime}ig(k,m,(t_1,t_2)ig)$$
 only outputs "1"

if t_1 and t_2 are equal and valid)

Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题 a forger for (S',V') gives a forger for (S,V) .

$$S'(k,m) = S(k,m\oplus m)$$
 and $V'(k,m,t) = V(k,\,m\oplus m,\,t)$

未选择的是正确的

$$egin{aligned} igspace S'(k,m) &= S(k,\,m \| m) \quad ext{ and} \ V'(k,m,t) &= V(k,\,m \| m,\,t)\,. \end{aligned}$$

正确

a forger for (S^\prime,V^\prime) gives a forger for (S,V) .

$$S'((k_1,k_2),\,m)=\big(S(k_1,m),S(k_2,m)\big)\quad\text{ and }$$

$$V'\big((k_1,k_2),m,(t_1,t_2)\big)=\big[V(k_1,m,t_1)\text{ and }V(k_2,m,t_2)\big]$$
 (i.e., $V'\big((k_1,k_2),m,(t_1,t_2)\big)$ outputs ``1" if both t_1 and t_2 are valid tags)

正确

a forger for (S^\prime,V^\prime) gives a forger for (S,V) .

$$S'(k,m) = S(k, \ m[0,\ldots,n-2]\|0)$$
 and $V'(k,m,t) = V(k, \ m[0,\ldots,n-2]\|0, \ t)$

未选择的是正确的

1/1分

3.

Recall that the ECBC-MAC uses a fixed IV (in the lecture we simply set the IV to 0). Suppose instead

Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题

the IV in the tag.

In other words, $S(k,m) := (r, \ \operatorname{ECBC}_r(k,m))$ where $\mathrm{ECBC}_r(k,m)$ refers to the ECBC function using r as the IV. The verification algorithm V given key k, message m, and tag (r,t) outputs ``1" if $t=\mathrm{ECBC}_r(k,m)$ and outputs

``0" otherwise.

The resulting MAC system is insecure.

An attacker can query for the tag of the 1-block message mand obtain the tag (r,t). He can then generate the following existential forgery: (we assume that the underlying block cipher operates on n-bit blocks)

The tag $(r \oplus 1^n, t)$ is a valid tag for the 1-block message $m \oplus 1^n$.

The CBC chain initiated with the IV $r \oplus m$ and applied to the message 0^n will produce exactly the same output as the CBC chain initiated with the IV r and applied to the message m. Therefore, the tag $(r \oplus 1^n, t)$ is a valid existential forgery for the message $m \oplus 1^n$.

(The tag $(r, t \oplus r)$	is a valid tag for the	1-block message 0^n .

- The tag $(r \oplus t, m)$ is a valid tag for the 1-block message 0^n .
- The tag $(m \oplus t, r)$ is a valid tag for the 1-block message 0^n .

1/1分

Suppose Alice is broadcasting packets to 6 recipients

Week 3B1, Problem Set not important but integrity is.

8/10 分 (80%)

测验, 10 个问题 In other words, each of B_1,\dots,B_6 should be assured that the

packets he is receiving were sent by Alice.

Alice decides to use a MAC. Suppose Alice and B_1, \ldots, B_6 all

share a secret key k. Alice computes a tag for every packet she

sends using key k. Each user B_i verifies the tag when

receiving the packet and drops the packet if the tag is invalid.

Alice notices that this scheme is insecure because user B_1 can

use the key k to send packets with a valid tag to

users B_2, \dots, B_6 and they will all be fooled into thinking

that these packets are from Alice.

Instead, Alice sets up a set of 4 secret keys $S = \{k_1, \dots, k_4\}$.

She gives each user B_i some subset $S_i \subseteq S$

of the keys. When Alice transmits a packet she appends 4 tags to it

by computing the tag with each of her 4 keys. When user B_i receives

a packet he accepts it as valid only if all tags corresponding

to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .

How should Alice assign keys to the 6 users so that no single user

can forge packets on behalf of Alice and fool some other user?

正确

Every user can only generate tags with the two keys he has.

Since no set S_i is contained in another set S_i , no user i

can fool a user j into accepting a message sent by i.

未选择的是正确的

未选择的是正确的

未选择的是正确的 Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题

-	•

1/1分

5.

Consider the encrypted CBC MAC built from AES. Suppose we

compute the tag for a long message m comprising of n AES blocks.

Let m' be the n-block message obtained from m by flipping the

last bit of m (i.e. if the last bit of m is b then the last bit

of m' is $b \oplus 1$). How many calls to AES would it take

to compute the tag for m' from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size)

- \bigcap n
- 6
- 0

正确

You would decrypt the final CBC MAC encryption step done using k_2 ,

the decrypt the last CBC MAC encryption step done using k_1 ,

flip the last bit of the result, and re-apply the two encryptions.

1/1分

6.

Let H:M
ightarrow T be a collision resistant hash function.

Which of the following is collision resistant:

(as usual, we use \parallel to denote string concatenation)

 $H'(m)=H(m)\oplus H(m)$

未选择的是正确的

正确

a collision finder for H^\prime gives a collision finder for H.

$$H'(m)=H(m\|m)$$

Week 3 - Problem Set

8/10 分 (80%)

测验, 10 个问题 a collision finder for H^\prime gives a collision finder for H.

未选择的是正确的

- $H'(m)=H(m)igoplus H(m\oplus 1^{|m|})$
 - (where $m \oplus 1^{|m|}$ is the complement of m)

未选择的是正确的

正确

a collision finder for H' gives a collision finder for H.

(i.e. hash the length of m)

未选择的是正确的

1/1分

7.

Suppose H_1 and H_2 are collision resistant

hash functions mapping inputs in a set M to $\left\{0,1\right\}^{256}$.

Our goal is to show that the function $H_2(H_1(m))$ is also

collision resistant. We prove the contra-positive:

suppose $H_2(H_1(\cdot))$ is not collision resistant, that is, we are

given x
eq y such that $H_2(H_1(x)) = H_2(H_1(y))$.

We build a collision for either H_1 or for H_2 .

This will prove that if H_1 and H_2 are collision resistant

then so is $H_2(H_1(\cdot))$. Which of the following must be true:

Either x,y are a collision for H_2 or

 $H_1(x), H_1(y)$ are a collision for H_1 .

igcap Either x,y are a collision for H_1 or

x,y are a collision for H_2 .

Week 3 – Problem Set

8/10 分 (80%)

测验, 10 个问题

x,y are a collision for H_2 .

igcap Either x,y are a collision for H_1 or

 $H_1(x), H_1(y)$ are a collision for H_2 .

正确

If
$$H_2(H_1(x)) = H_2(H_1(y))$$
 then

either $H_1(x)=H_1(y)$ and x
eq y , thereby giving us

a collision on H_1 . Or $H_1(x)
eq H_1(y)$ but

 $H_2(H_1(x)) = H_2(H_1(y))$ giving us a collision on H_2 .

Either way we obtain a collision on H_1 or H_2 as required.

0/1分

8.

In this question you are asked to find a collision for the compression function:

$$f_1(x,y) = \operatorname{AES}(y,x) igoplus y$$
 ,

where $\operatorname{AES}(x,y)$ is the AES-128 encryption of y under key x.

Your goal is to find two distinct pairs (x_1,y_1) and (x_2,y_2) such that $f_1(x_1,y_1)=f_1(x_2,y_2)$.

Which of the following methods finds the required (x_1, y_1) and (x_2, y_2) ?

Choose x_1,y_1,x_2 arbitrarily (with $x_1 \neq x_2$) and let $v := AES(y_1,x_1)$.

Set
$$y_2 = AES^{-1}(x_2,\ v \oplus y_1 \oplus x_2)$$

这个选项的答案不正确

This does not work.

Choose x_1,y_1,y_2 arbitrarily (with $y_1 \neq y_2$) and let $v := AES(y_1,x_1)$.

Set
$$x_2 = AES^{-1}(y_2,\ v \oplus y_1)$$

Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

Set
$$x_2 = AES^{-1}(y_2,\ v \oplus y_2)$$

Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

Set
$$x_2 = AES^{-1}(y_2,\ v \oplus y_1 \oplus y_2)$$

1/1分

9.

 \leftarrow

Repeat the previous question, but now to find a collision for the compression function

Week 3 - Problem Set $f_2(x,y) = AES(x,x) \bigoplus y$.

8/10 分 (80%)

测验, 10 个问题 Which of the following methods finds the required (x_1,y_1) and (x_2,y_2) ?

- Choose x_1, x_2, y_1 arbitrarily (with $x_1
 eq x_2$) and set
 - $y_2=y_1\oplus AES(x_1,x_1)$
- Choose x_1, x_2, y_1 arbitrarily (with $x_1
 eq x_2$) and set
 - $y_2 = y_1 \oplus x_1 \oplus AES(x_2, x_2)$
- Choose x_1, x_2, y_1 arbitrarily (with $x_1
 eq x_2$) and set

$$y_2 = AES(x_1,x_1) \oplus AES(x_2,x_2)$$

Choose x_1, x_2, y_1 arbitrarily (with $x_1 \neq x_2$) and set

$$y_2 = y_1 \oplus AES(x_1,x_1) \oplus AES(x_2,x_2)$$

Awesome!

1/1分

10.

Let $H:M\to T$ be a random hash function where $|M|\gg |T|$ (i.e. the size of M is much larger than the size of T).

In lecture we showed

that finding a collision on H can be done with $Oig(|T|^{1/2}ig)$

random samples of H. How many random samples would it take

until we obtain a three way collision, namely distinct strings x,y,z

in M such that H(x) = H(y) = H(z) ?

 $O(|T|^{2/3})$

正确

An informal argument for this is as follows: suppose we

collect n random samples. The number of triples among the n

samples is n choose 3 which is $O(n^3)$. For a particular

triple x,y,z to be a 3-way collision we need H(x)=H(y)

and H(x) = H(z). Since each one of these two events happens

with probability $1/\lvert T \rvert$ (assuming H behaves like a random

function) the probability that a particular triple is a 3-way

collision is $O(1/{\left|T\right|^2})$. Using the union bound, the probability

that some triple is a 3-way collision is $O(n^3/{\left|T\right|}^2)$ and since

Week 3 - Problem Set bility to be close to 1, the bound on n

8/10 分 (80%)

测验, 10 个问题 follows.

- $\bigcirc \quad O\big(|T|^{3/4}\big)$
- $\bigcirc \quad O\big(|T|\big)$
- $O(|T|^{1/4})$

