Structural Classification of Minerals

Volume 3:

Minerals with $A_pB_q ... E_xF_y ... nAq.$ general chemical formulas
and organic minerals

SOLID EARTH SCIENCES LIBRARY

Structural Classification of Minerals Volume 3

Solid Earth Sciences Library

Volume 11B

Structural Classification of Minerals

Volume 3: Minerals with $A_pB_q...E_xF_y...nAq$. General Chemical Formulas and Organic Minerals

by

J. LIMA-DE-FARIA

Centro de Cristalografia e Mineralogia, Instituto de Investigação Científica Tropical, Lisbon, Portugal

Library of Congress Cataloging-in-Publication Data is available.
ISBN 978-94-010-3778-5 ISBN 978-94-007-1056-6 (eBook) DOI 10.1007/978-94-007-1056-6
Printed on acid-free paper
Cover illustration: Packing drawing of a possible binary compound AB (Barlow, 1898, Fig. 8, p. 453); today known to correspond to halite, NaCl
All Rights Reserved © 2004 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2004 Softcover reprint of the hardcover 1st edition 2004
No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

The more men are learned, the more they have loaded their minds with acquired knowledge, the less they are fit to examine from a critical standpoint the bottom of the thoughts which have shaped their conception of things. It is in this sense that it has been rightly stated that it is what we know that prevents us from finding out what we do not know.

Maurice de Broglie^a

^a In Les Premiers Congrés de Physique Solvay (Albín Michel edit., 1951, p. 10)

Contents

Complementary information	ix	List of important typographical correction	ns
Systematic tables	1	in Vol. 2	115
Tables of mineral structure types	91	Acknowledgements	117
Conclusions	111	References	119
General table of mineral basic		Mineral index	121
structure types	113		

Complementary information

It will be seen that we have adopted in this volume the same method of study as was used in the preceding volumes.

In the systematic tables, the first reference is normally the one to which the crystal data corresponds. Whenever a space group is followed by omission points (...) it is meant that other space groups are also possible. Some new symbols are used in the tables, namely c/h to indicate a certain combination of c and h closest stackings; S. means a crystallographic system, and s.g. denotes a space group. A crystallographic system is placed within curved brackets whenever it is different from the system to which the *Mineral Reference Manual* ascribes the mineral. An

example is Lindackerite (Tic.), a mineral that the above-mentioned book refers to as Monoclinic.

The book *Encyclopedia of Mineral Names* is also abbreviated as Enc.Min.Nam. The designation of defect derivatives should be applied only to mineral structures with small numbers of missing atoms, such as Pyrrhotite-4C $(Fe_{7},\square)^{o}[S]_{8}^{h}$ or Laihumite $(Fe_{0.8}^{+2},Fe_{0.8}^{+3},\square_{0.4})^{o}Si^{t}[O]_{4}^{c}$. Dzhalindite $In^{o}[\square(OH)_{3}]^{c}$ is better called a subtraction derivative of Perovskite $Ti^{o}[CaO_{3}]^{c}$.

When a chemical element is replaced by two elements in a disordered way the resultant mineral structure should be called a disordered derivative. An example is Polhemusite (Zn,Hg)^t[S]^c, a disordered derivative of Sphalerite Zn^t[S]^c.

Systematic tables

A_mB_n.nAq.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	ENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
AKDALAITE	(Al ₂ O ₃) ₄ .H ₂ O	Al ₈ [O ₁₂ (H ₂ O)] ⁿ	Hex. P6 ₁ 22	a=12.87Å Z c=14.97Å	Z=18			Am.Min.,1971, <u>56</u> ,635(Abs.); Pov.,281-282;RRW,7;Hölzel, 84.
ANTARCTICITE	CaCl ₂ .6H ₂ O	Ca [°] [(H ₂ O) ₆ Cl ₂]	Trig. P321	a=7.907Å Z c=3.95Å	Z=1			Enc.Min.Nam.,19;Am.Min., 1969, <u>54</u> ,1018-1025;Str.Tab., 159;Höizel,50;Pov.639.
ANTHONYITE	Cu(OH,Cl) ₂ .3H ₂ O		Mon.	? β=1	β=112°38'			Am.Min.,1963,48,614-619; RRW,27-28;Pov.,325;Str.Tab., 165;Höizel,53.
BARIANDITE	V ₅ O ₁₂ .6H ₂ O		Mon. Cc	a=11.7A β= b=3.65A Z c=29.06Å	β=101°30' Z=4			Am.Min.,1990, <u>75</u> ,508-521; Bull.Min.,1971, <u>94</u> ,49-54; Am. Min.,1972, <u>57</u> ,1555(Abs.); RRW,50.
BISCHOFITE	MgCl ₂ .6H ₂ O	Mg ^[sc8] [(H ₂ O) ₆ Cl ₂]	Mon. C2/m	a=9.90Å b=7.15Å Z c=6.10Å	β=93°42' Z=2			RRW,72;LF,306;Pov.,639-640; Str.Tab.,159;SB, <u>3</u> ,124-125, 489-491;Hölzel,50.
CALUMETITE	Cu(OH,Cl) ₂ .2H ₂ O		c	~				RRW,104;Str.Tab.,165;Pov., 325;Hölzel,53;Am.Min.,1963, 48,614-619.
CHLORALUMINI- TE	AICI ₃ .6H ₂ O	Al ^o [Cl ₃ (H ₂ O) ₆]	Trig. R 3c	a=11.82Å a c=11.82Å o Z=6	a _R =7.87Å α=97° Z _R =2			RRW,125-126;Pov.,638;Str. Tab.,159; Hölzel,50.
ERIOCHALCITE	CuCl ₂ .2H ₂ O	Cu ^{sq} [Cl ₂ (H ₂ O) ₂] ^{ds}	Orth. Pbmn	a=7.4141Å Z b=8.0886Å c=3.7458Å	Z=2	Cu(2a) Cl(4h) O(4e) H(8i)		Zeit.Krist.,1989, <u>189</u> ,13-15; Pov.,638-639;Str.Tab.,158; RRW,195;Hölzel,50.
LENOBLITE	V ₂ O _{4.} 2H ₂ O		c	c.				Bull.Min.,1970, <u>93,</u> 235-241;Am. Min.,1971, <u>56</u> ,635-636(Abs.); Hölzel, 87;Pov.,333;RRW,352.
MASUYITE	UO ₃ .2H ₂ O		Orth. Pcna	a=13.98Å Z b=12.11Å c=14.20Å	Z=24			Am.Min.,1960, <u>45,</u> 1026-1061; Pov.,320-321;Str.Tab.,224; RRW,385;Hölzel,89.
METASCHOEPITE UO3.1-2H2O	UO ₃ .1-2H ₂ O		Orth. Pbna		Z=32			RRW,399;Pov.,749;Str.Tab., 226;Am.Min.,1960, <u>45,</u> 1027- 1061;Am.Min.,1965, <u>50,</u> 235- 239.
METASTUDTITE	UO4.2H ₂ O		Orth. I mmm	a=6.51Å Z b=8.78Å c=4.21Å	Z=2			Am.Min.,1983, <u>68</u> ,456-458; Hölzel,89.
MEYMACITE	WO ₃ .2H ₂ O		Amorph.					Am.Min., 1968, <u>53,</u> 1065(Abs.); RRW, 404, Pov., 749, 320; Str. Tab., 224; Hölzel, 81.

A_mB_n.nAq.(cont.)

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
NAVAJOITE	V ₂ O ₅ .3H ₂ O		Mon. ?	a=17.43Å b=3.65Å c=12.25Å	β=97° Z=6			Am.Min.,1990,7 <u>5</u> ,508-521; RRW,431;Pov.,321;Str.Tab., 220:Hözel 87
NICKELBISCHO- FITE	NiCl ₂ .6H ₂ O	Ni ^[//8] [(H ₂ O) ₆ Cl ₂]	Mon. C2/m	a=10.318Å b=7.077Å	β=122.37° Z=2			Am.Min., 1980, <u>65,</u> 207-208; Hölzel, 50.
OPAL	SiO ₂ .nH ₂ O		Amorph.	-				Am.Min.,1975, <u>60,</u> 749-757; RRW 448:Str Tab 195
ROKÜHNITE	FeCl ₂ .2H ₂ O		Mon. C2/m	A=7.396Å B=8.458Å C=3.838Å	β=97.68° Z=2			Am.Min., 1981, <u>66</u> , 219 (Abs.); Min. Abs., 82M/4662; Hölzel, 50.
SCHOEPITE	UO ₃ .2H ₂ O	U ^[7] [O ₃ (H ₂ O) ₂]	Orth. P2 ₁ ca	A=14.337Å B=16.813Å C=14.731Å	Z=32	U _{I-VIII} (4a)		Can.Min.,1996,34,1071-1088; Pov.,320;Str.Tab.,225;RRW, 545:Hölzel 89
SIDWILLITE	MoO ₃ .2H ₂ O	Mo ^o [O ₃ (H ₂ O) ₂] ^{e7}	Mon. P2 ₁ /n	A=10.618Å B=13.825Å C=10.482Å	β=91.61° Z=16			Am.Min.,1986,71,1546;Hölzel, 81;Bull.Min.,1985,108,813-823
SILHYDRITE	Si ₃ O ₆ .H ₂ O		orth.	I .	Z=1			Am.Min.,1972, <u>57</u> ,1053-1065; Hölzel,72;RRW,561.
SINJARITE	CaCl ₂ .2H ₂ O		Tet.	a=7.19Å c=5.85Å	Z=2			Hölzel,50;Min.Mag.,1980,43, 643-645.
STUDTITE	UO4.4H ₂ O		Mon. C2	a=11.85Å b=6.80Å c=4.25Å	β=93°51' Z=2			Am.Min.,1974,59,166-171; RRW,589;Hölzel,89.
TUNGSTITE	WO ₃ .H ₂ O		Orth. Pmnb	٤				Enc.Min.Nam.,310;Hölzel,81; Pov.,320;Str.Tab.,224.

ApBqCr.nAq.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ADMONTITE	Mg2B12O20.15H2O		Mon.	a=12.68Å	B=109°68'			Enc.Min.Nam.,10;Am.Min.,
	; ;		P2 ₁ /c	b=10.07Å	Z=2			1980, <u>65,</u> 205(Abs.);Min.Abs.,
				c=11.32A				81-1866;HOIZeI,116.
AHLFELDITE	NiSeO ₃ .2H ₂ O	Ni ^[4+2] Se ^[3n] [O ₃ (H ₂ O) ₂]	Mon.	a=7.53Å	β=88°5'			RRW,6; Am. Min., 1969, 54, 448-
		(=Cobaltomenite)	P2 ₁ /n	b=8.76Å	Z=4			456; Am. Min., 1963, 48, 1183
				c=6.43Å		. -		(Abs.);Pov.,565-566;Str.1ab., 228.
ALUNOGEN	Al ₂ (SO ₄) ₃ .17H ₂ O	(H ₂ O) ₁₇ Al ₂ ² {g}{S}O ₄] ₃ .	Tric.	a=7.420Å		Al-11(2i) S ₁₋₁₁₁ (2i)		Am.Min.,1976,61,311-317;SR,
	2		٦.	b=26.97Å		O _{I-XII} (2i)		41A,343-344;SR,42A,368-369;
				c=6.062Å				RRW,15;Pov.,593.
ANNABERGITE	Ni ₂ (AsO ₄) ₂ .8H ₂ O	Ni ³ As ³ fO ₈ (H ₂ O) ₈ 1	Mon.	a=10.179Å	B=105.00°	Ni ₁ (2a) Ni ₁₁ (4g)		Eur.J.Min.,1996,8,187-192;LF,
	7/- 10	(=Vivianite)	C2/m	b=13.309Å	Z=2	As(4i)		307;RRW,26,Pov.,726,523,
				c=4.725Å				558;Str.Tab.,335.
APACHITE	Cu ₉ Si ₁₀ O ₂₉ .11H ₂ O		Mon.	a=12.89Å	β=90.42°			Min.Mag.,1980,43,639-641;
	!		٠	b=6.055Å	Z=1			Am.Min., 1980, 65, 1065 (Abs.);
				c=19.11Å				Hölzel, 209.
APLOWITE	(Co,Mn,Ni)SO4.	(Co,Mn,Ni)°S¹	Mon.	a=5.94Å	β=90°30′			RRW,30;Pov.,602;Str.Tab.,
	4H ₂ O	[O ₄ (H ₂ O) ₄]	P2 ₁ /n	b=13.66Å	Z=4			281;Hölzel,126.
		C		200.10				-: 1000 100 11 000 1
ARAVAIPAITE	Pb3AIF9.H2O	Pb ₃ Al'[F ₉ (H ₂ O)]	Tric.	a=5.842Å	α=93.84°			Am.Min., 1989, 74,927-933; Min.
			<u>۲</u> :	b=25.20A	β=90.14°	_		Abs., 90M/20 / 4; Holzer suppl
				c=5.652Å	γ=85.28° Z=4			
ALIRORITE	(Mn An Ca)Mn2O-		Tric	2				Enc.Min.Nam., 27:Pov., 333; Str.
	3H.O		υ !+-					Tab. 219:Am.Min., 1967,52.
	27		:					1581(Abs.);Hölzel,85.
BARIĆITE	(Mg, Fe) ₃ (PO ₄₎₂ .	(Mg,Fe) ₃ ⁹ P ₂ ¹	Mon.	a=10.075Å	B=104°52'			Can.Min., 1976, 14, 403-406; LF,
	8H ₂ O	[O ₈ (H ₂ O) ₈] (=Vivianite)	C2/m	b=13.416Å c=4.670Å	Z=2			307;Hölzel,160.
BARNESITE	Na ₂ V ₆ O ₁₆ .3H ₂ O	Na ₂ [4+2]V ₆ [559/]	Mon.	a=12.17Å	B=95°2'			Am.Min., 1963, 48, 1187-1195;
	!	[O ₁₆ (H ₂ O) ₃]	P2/m	b=3.602Å	Z=1			Am.Min., 1990, <u>75,</u> 508-521;
				c=7.78Å				Hölzel, 88; Pov., 500-501; RRW,
								51;Str.Tab.,223.
BARRERITE	(Na,K,Ca) ₅ (Si,Al) ₂₄	(Na,K,Ca)5[19](H ₂ O) ₁₇	Orth.	a=13.64Å	Z=2 ?			Gottardi+Galli, 1985,284;LF,
	O ₄₈ .17H ₂ O	{3∞}[(Si,Al) ₂₄ ^t O ₄₈] (≈Stilbite Zeolite)	Amma	b=18.20Å c=17.84Å				299;SR, <u>41A</u> ,401;Can.Min., 1997, <u>35</u> , 691-698.
BASSANITE	CaSO ₄ .0.5H ₂ O	,	Orth.	a=12.70Å	B=90°36'			RRW,54;Pov.,590;Str.Tab.,
			82	b=6.83Å	Z=3			291;Hölzel,131.
				C= 1 .947				

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
BAURANOITE	BaU ₂ O ₇ .4-5H ₂ O		٠	خ				Am.Min.,1973, <u>58</u> ,1111;Hölzel, 89.
BELLINGERITE	Cu ₃ (IO ₃) ₆ .2H ₂ O	(30)[Cu ₃ (g)[1 ^[30] O ₃]6(H ₂ O) ₂]	P 11.	a=7.256Å b=7.950Å c=7.856Å	α =105.10° β =92.95° γ =96.95° Z =1	Cu ₁ (1a) Cu ₁₁ (2i) I _{1-III} (2i) O _{1-X} (2i)		Acta Cryst., 1974, <u>B30,</u> 965-974; Pov., 630; Str. Tab., 230; SR <u>, 40A,</u> 276; RRW, 59.
BIANCHITE	(Zn,Fe)SO4.6H ₂ O	(Zn,Fe)°S'[O₄(H₂O) _{6]} (=Hexahydrite)	Mon. C2/c	a=10.02Å b=7.26Å c=24.21Å	β=98°30' Z=8			Hölzel,127;RRW,69;Pov.,729, 591;Str.Tab.,282.
BIEBERITE	CoSO4.7H2O	Co°S'[O4(H ₂ O) ₇]	Mon. P2 ₁ /c	a=14.13Å b=6.55Å c=11.00Å	β=105°5′ Z=4			RRW.69;Pov.,592-593;Str. Tab.,283;Hölzel,128;Encyc. Miner.Nam.,39.
BILINITE	Fe ₃ (SO ₄) _{4.} 22H ₂ O		Mon. P2?	ć				Enc.Min.Nam.,39;RRW,70; Pov.,598;Str.Tab.,285;Hölzel, 129.
BOBIERRITE	Mg ₃ (PO ₄₎₂ .8H ₂ O	Mg ₃ °P ₂ '[O ₈ (H ₂ O) ₈] (Dist.d.Vivianite)	Mon. C2/c	a=4.667Å b=27.926Å c=10.067Å	β=105.01° Z=4	Mgi-iii(4e) P(8f) Oi-viii(8f)		Am.Min., 1986,71,1229-1233; Pov.,558;Str.Tab.,335;RRW, 77;Hölzel,160.
BONATTITE	CuSO4.3H2O	2∞[Cu°S¹O₄(H ₂ O)₃]	Mon. Cc	a=5.592Å b=13.029Å c=7.341Å	β=97°3' Z=4	Cu(4a) S(4a) O _{I-VII} (4a)		Acta Cryst., 1968, B24, 508-513; Pov., 590; Str. Tab., 280; RRW, 79; SR, 33A, 368-369; Zeit. Krist., 1998, <u>213</u> , 141-150.
ВООТНІТЕ	CuSO ₄ .7H ₂ O	Cu°S'[O4(H ₂ O) ₇]	Mon. P2 ₁ /c	a=11.83Å b=7.29Å c=10.94Å	β=105°36' Z=4			Hölzel,127;Pov.,592-593;Str. Tab.,283;RRW,79.
BOYLEITE	(Zn,Mg)SO _{4.4} H ₂ O		Mon. P2 ₁ /n	a=5.95Å b=13.60Å c=7.96Å	β=90°18′ Z=4			Am.Min.,1979, <u>64</u> ,241-245 (Abs.);Str.Tab.,511,440; Hölzel,126.
BROCKITE	(Ca,Th,Ce)PO ₄ . H ₂ O	(Ca,Th,Ce) ^[8] P¹ [O₄ (H₂O)] (=Rhabdophane-Ce)	Hex. P6 ₂ 22	a=6.98Å c=6.40Å	Z=3			Am.Min., 1962,47, 1346-1355, Pov.,546-547; Str. Tab., 314; RRW, 89-90; Hölzel, 165
BRÜGGENITE	Ca(IO ₃₎₂ .H ₂ O		Mon. P2 ₁ /c	a=8.505Å b=10.000Å c=7.498Å	β=95°15' Z=4			Am.Min.,1972, <u>57,</u> 1191(Abs.); RRW,91-92;Hölzel,95.
CADWALADERI- TE	AICI(OH) ₂ .4H ₂ O		Amorph.	•				Pov.,659;Str.Tab.,159;RRW, 99;Hölzel,54.
CALCIOURANOI- TE	(Ca,Ba,Pb,K,Na)U ₂ O ₇ .5H ₂ O		ہ د	٤				Am.Min.,1975, <u>60</u> ,161(Abs.); Hölzel, 89

NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
CALKINSITE -	(Ce,La) ₂ (CO ₃) ₃ .		Orth.	a=9.57Å	2=4			RRW,103,Pov.,618;Str.Tab.,
- (Ce)	4H ₂ O		P2,22,	b=12.65Å c=8.94Å				246;Hölzel,105.
CARLHINTZEITE	Ca ₂ AIF ₇ .H ₂ O		- 1 - 1 - 1 - 1	8=9.48Å o	α=91.4° β=104.85°			Am.Min.,1980, <u>65</u> ,205-206 (Abs.); Hölzel,52.
			<u>:</u>	•	γ=90.0° Z=4			
CARNALLITE	KMgCl ₃ .6H ₂ O	K°Mg°[Cl ₃ (H ₂ O) ₆]	Orth.	a=16.119Å	Z=12	K _I (4c) K _{II} (8e)		Am.Min., 1985, 70, 1309-1313;
	•		Pnna	b=22.472Å		Mgi(4d) Mgii(8e)		LF,309;RRW,108;Pov.,640;Str. Teb 164:Hölzel 52:SR 7 19.
				K100.840		Cii(4d) Ciii-V(0e)		21.
CHALCANTHITE	CuSO ₄ .5H ₂ O	(H ₂ O){1∞}[Cu'S ^t	Tric 1.i.c	a=6.116Å	$\alpha = 82.36^{\circ}$	Cu _l (1a) Cu _{ll} (1e) S(2i) O _{LV} (2i)		Sov.Phys.Cryst.,1983, <u>28</u> ,383- 387;LF,317;RRW,117;Pov.,
		(=Pentahydrite)	•	c=5.961Å	y=102.61° Z=2	H _{-x} (2i)		591;Str.Tab.,281;Hölzel,127; Zeit.Krist.,1998, <u>213</u> ,141-150.
CHALCOMENITE	CuSeO ₃ .2H ₂ O	Cu°Se ^[30] [O ₃ (H ₂ O) ₂]	Orth.	a=6.67Å	Z=4	Cu(4a) S(4a)		SR, <u>22,474;Am.Min.,1964,49,</u>
		(=Teineite,≈Ahlfeldite)	P2 ₁ 2 ₁ 2 ₁	b=9.19A c=7.38Å		O _{I-V} (48)		1401-1403, RKW, 110-113, Pov., 564-566; Str. Tab., 227-
		0 100		1 500 8	9-0	72/62/ 112/406		Am Min 1088 73 1401-1404
CHALCOPHANITE	(Zn, Fe, Mn) Mn ₃ O ₇ . 3H ₂ O	(Zn, Fe, Mn) 'Mn ₃ ' [O ₇ (H ₂ O) ₃]	_ က ည်းက	a=7.533A c=20.794Å	9=7	Zn(6c) Mn(18t) O⊩ll(18t) Olv(6c)		Pov.,329-330;Str.Tab.,219;
								RRW,119;SR,19,454-455.
CHURCHITE -	NdPO ₄ .2H ₂ O	200[Nd ^{(6+2]} (H ₂ O) ₂ P ⁴ O ₄]		a=5.61Å	β=115.3°		Dist.deriv.	Min.Abs.,88-1076;RRW,132,
(pN)-			A2/a	b=15.14A c=6.19Å	b=7		GYPSUM.	517,587,339;LF,248.
CHURCHITE - (Y)	(Y,Er)PO4.2H ₂ O	$2\infty[(Y,Er)^{[6+2]}(H_2O)_2$	Mon.	a=5.47Å	B=113°24'		Dist.deriv.	
		P'O₄]	A2/a	b=15.15Å c=6.29Å	Z=4		2∞[Ca ^{tor2} (H ₂ O) ₂ S'O] GYPSUM	
CHVALETICEITE	(Mn,Mg)SO ₄ .6H ₂ O		Mon. C2/c	a=10.05Å b=7.24Å	β=98.0° Z=8			Am.Min., 1987, <u>72,</u> 1023-1028 (Abs.); Hölzel, 127.
		(c=24.3A	C	(10) (0) (0F)		Occ. Min. 1005 22 622 620.
CLARINGBULLI- TE	Cu ₄ Cl(OH) _{7.} nH ₂ O	Cu ² Cu ₃ ² [(OH) ² Cl(H ₂ O) ₁]	Hex. P63/mmc	a=6.6733A c=9.185Å	Z=2	Cu _i (2a) Cu _{ii} (6h) Ci _i (2d) Ci _{ii} (2b)		Can.Min.,1995 <u>,33</u> ,633-639; Min.Mag.,1977, <u>41</u> ,433-436.
CLINOCHALCO-	CuSeO _{3.2} H ₂ O		Mon.	a=8.177Å	β=97°16'	•••		Am.Min., 1981, 66, 217 (Abs.);
MENITE	1		P2 ₁ /n	b=8.611Å c=6.290Å	Z=4			Hölzel,92.
COBALTOMENI- TE	CoSeO ₃ .2H ₂ O	Co°Se ^[3n] [O ₃ (H ₂ O) ₂] (=Ahlfeldite)	Mon. P2 ₁ /n	a=6.46Å b=8.75Å c=7.55Å	β=99°0′ Z=4			Pov.,565-566,Str.Tab.,228; RRW,139;Hölzel,92.
				53.71			_	

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
COQUIMBITE	Fe ₂ (SO ₄₎₃ .9H ₂ O	(H ₂ O) ₆ (g)[Fe ₃ °S ₆ O ₂₄ (H ₂ O) ₆](g)[Fe°(H ₂ O) ₆]	Trig. P 31c	a=10.922Å c=17.084Å	Z=4	Fe ₁ (2b) Fe ₁₁ (2c) Fe ₁₁₁ (4f) S(12i)		Am.Min., 1970, <u>55</u> , 1534-1540; Pov., 593; Str.Tab., 284; RRW, 145, 146; SR, 404, 310; 7eit
								Krist., 1998, 213, 141-150.
соуотепте	NaFe ₃ S ₅ .2H ₂ O	Na'Fe₃[S₅(H₂O)₂□] ⁿ	Tric. D1	a=7.409Å	$\alpha = 100^{\circ}25'$			Am.Min., 1983, <u>68</u> , 245-254; Hölzel 26:K/S 166
		d.Wurtzite)	: -	c=6.441Å	y=81°29' γ=81°29' Z=2			
CUPROTUNGSTI-	Cu ₃ (WO ₄) ₂ .2H ₂ O	Cu ₃ W ₂ [O ₈ (H ₂ O) ₂]	Tet.	a=8.93Å	Z=6 ?			Encyc.Miner.Nam.,75;Min.
1		(≈Lindgrenite)	P4 ₁ 2 ₁ 2	c=14.48A				Mag.,1979,43,448450;Min. Abs.,88M/6059;Pov.,571.
CUZTICITE	Fe ₂ TeO ₆ .3H ₂ O		~ Hex.	a=5.045Å c=10.63Å	Z=2			Min.Abs., 1983, <u>68</u> ,471 (Abs.); Hölzel, 135.
CYMRITE	Ba(Si,Al) ₄ O ₈ .H ₂ O	Ba ^[9]		a=5.33Å	β=90°			Sov.Phys.Cryst.,1975, <u>20</u> ,171-
		{2∞}[(Si,Al)₄'O ₈ (H ₂ O)]	7 7	b=36.6A c=7.67Å	Z=8:5			173,P0V.,330,SR, <u>41A,</u> 301-302, Am.Min.,1964, <u>49</u> ,158-165; RRW,160; Hölzel,237
DACHIARDITE	(Na,K,Ca _{0.5}) ₄	(Na,K,Ca _{0.5}) ₄ (H ₂ O) ₁₈	Mon.	a=18.676Å	β=107.87	(AI,Si) _{I-IV} (8j)		Zeit.Krist.,1984,166,63-71;
	(AI ₄ Si ₂₀)O ₄₈ .18H ₂ O	3∞}[Al₄'Si₂₀¹O₄8] (Zeolite)	C2/m	b=7.518Å c=10.246Å	Z=1 ?	(AI,SI) _{V-VI} (4i) (v.occ.)		Pov.,358;Str.Tab.,488;RRW, 162;SR, <u>28</u> ,251-254.
DIOPTASE	CuSiO ₃ .H ₂ O	Cue [4+2]	Trig.	a=14.566Å	a _R =8.85Å	Cu(18f) Si(18f)		Am.Min.,1977, <u>62</u> ,807-811;LF,
		[[H ₂ O] ₆ [g][Si ₆ O ₁₈]]	<u>د</u>	c=7.778Å	$\alpha = 111^{\circ}52'$	O _{I-III} (18f)		196;SR, 16,348-349,19,465-
				2=3 2R (ref.str.formula)	ZR-1			1989, 187, 15-23.
DWORNIKITE	(Ni,Fe)SO ₄ .H ₂ O	3∞[(Ni,Fe)°(H ₂ O)	Mon.	a=6.839Å	β=117.85			Am.Min.,1983, <u>68</u> ,642(Abs.);
		S ^t O ₄]	C2/c	b=7.582Å	Z=4			Min.Abs.,82M-4667;LF,277; Hölzel,126.
EMMONSITE	Fe ₂ (TeO ₃) ₃ .2H ₂ O	Fe ₂ °Te ₃ ^[509] [O ₉ (H ₂ O) ₂]	Tric.	a=7.90Å	α=96.7°			SR,39A,323;Pov.,567;Str.Tab.,
		(≈Mackayite)	<u>С</u> 17-	b=8.00Å c=7.62Å	β=95.0° γ=84.5°			228,RRW,189;Hölzel,93.
					Z=2			
EPSOMITE	MgSO ₄ .7H ₂ O	Mg°S'[O ₄ (H ₂ O) ₇]	Orth. P2 ₁ 2 ₁ 2 ₁	a=11.868Å b=11.996Å	Z=4	Mg(4a) S(4a) O⊦ıv(4a)		Acta Cryst.,1964, <u>17,</u> 1361- 1369;LF,313;Acta Cryst.,1984, B40,318,323;Boy, 503
FROITE	NaFeS, 2H,O	Na ^[6] Fe [[] IS ₂ (H ₂ O) ₂]	Mon.	a=10.693Å	B=92.17°	Na(4e) Fe(4e)		Am.Min., 1980, 65, 516-521, 509.
	2.13.20	77(-21.17-)	C2/c	b=9.115Å c=5.507Å	Z=4	S(8f) O(8f)		515;SR, <u>46A</u> ,298.
ERYTHRITE	Co ₃ (AsO ₄) ₂ .8H ₂ O	Co ₃ ^o As ₂ ^t [O ₈ (H ₂ O) ₈] (=Vivianite)	Mon. C2/m	a=10.251Å b=13.447Å	β=104.98° Z=2	Co ₁ (2a) Co ₁₁ (4g) As(4i) O ₁₋₁₁ (4i)		Eur.J.Min.,1996, <u>8</u> ,187-192; Pov.,523:LF,307;RRW,196; Str Tab. 335
ERYTHROSIDERI- K2FeCl5.H2O	K ₂ FeCl ₅ .H ₂ O	Fe°[Cl ₅ K ₂ (H ₂ O)]	Orth.	a=13.75Å	Z=4	Fe(4c) Cl _{1-III} (4c)		SR,11.419-420;Pov.,641-642;
2	,		Pnma	b=9.92A c=6.73Å		Cliv(8d) K(8d) H ₂ O(4c)		Str. 1ab. 164; KKVV, 196.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
FERRIERITE - (orthorhombic)	(Mg,K,Ca) _{4,4} (Si,Al) ₃₆ O ₇₂ .18H ₂ O	(Mg,K,Ca) ₄₄ (H ₂ O) ₁₆ {∞}{(Si,Al)₃ ^c O ₇₂] (≈Mordenite,Zeolite)	OF	a=19.231Å b=14.145Å c=7.499Å	Z=1	Mg(2c) K(4e) v.occ. (Si,Al) _{II-III} (4g) (Si,Al) _{IV} (8h)		Zeit.Krist., 1987, <u>178,</u> 249-256; Min.Mag., 1986, <u>50,</u> 63-68; Pov., 355; Str.Tab., 488; LF, 297; RRW, 209.
FERRIMOLYBDI- TE	Fe ₂ (MoO ₄) ₃ .7H ₂ O		Orth. Pmmn	a=6.665Å b=15.423Å c=29.901Å	Z=8			Hölzel suppl.;Am.Min.,1963, 48,14-32;Pov.,570;Str.Tab., 302;RRW,209;
FERRITUNGSTITE	(K,Ca) _{0.2} (W,Fe) ₂ (O,OH) ₆ .H ₂ O	(K,Ca) _{0,2} th □ _{0,8} th (W,Fe) ₂ th [(O,OH) ₆ (H ₂ O)□] ^{cs} [(O,OH) ₆ (H ₂ O)□] ^{cs} (Defect.d.Pyrochlore)	Cub. Fd 3m	a=10.352Å	Z=8	(Ca,K)(16d) (W,Fe)(16c) O(48f) H ₂ O(8b)		Can.Min.,1994, <u>32</u> ,567-574; Pov.,570;Str.Tab.,302;RRW, 211;LF,140.
FERROHEXA- HYDRITE	FeSO ₄ .6H ₂ O	Fe°S'[O ₄ (H ₂ O) ₆]	Mon. C2/c	a=10.08Å b=7.28Å c=24.59Å	β=98°30' Z=8			Hölzel,127;RRW,211;Am.Min., 1963, <u>48</u> , 433(Abs.);Pov.,591- 592;Str.Tab.,282.
FERVANITE	Fe ₄ (VO ₄) ₄ .5H ₂ O		Mon. ?		β=103°20′ Z=?			Str.Tab.,330;Pov.,500;Hölzel, 161;Am.Min.,1990, <u>75</u> ,508-521; Am.Min.,1959, <u>44</u> ,322-341.
FRANCONITE	Na ₂ Nb ₄ O ₁₁ .9H ₂ O		Mon.	a=22.22Å b=12.857Å c=6.359Å	β=92.24° Z=4			Am.Min.,1985 <u>,70,</u> 436-437 (Abs.); Hölzel,86.
GEARKSUTITE	CaAl(F,OH) ₅ .H ₂ O		<i>د</i>	٠				RRW,231;Pov.,653;Str.Tab., 161;Hölzel,54.
GERASIMOVSKI- TE	(Mn,Ca)(Nb,Ti) ₅ O ₁₂ .9H ₂ O		Amorph.	ċ				RRW,234;Am.Min.,1958,43, 1220-1221;Pov.,333;Str.Tab., 199;Hölzel,85.
GERSTLEYITE	Na ₂ (Sb,As) ₈ S ₁₃ . 2H ₂ O	Na ₂ ^[4+2] {1∞}[(Sb,As) ₈ ^[3n] S ₁₃ (H ₂ O) ₂]	Mon. Cm	a=9.911Å b=23.05Å c=7.097Å	β=127.85° Z=2			Min.Abs.,82M/1149;RRW,235; Pov.,266;Hölzel,47.
GILALITE	Cu ₅ Si ₆ O _{17.} 7H ₂ O		Mon. ?	a=13.38Å b=19.16Å c=9.026Å	β≈90° Z=1			Am.Min.,1980, <u>65,</u> 1065(Abs.); Hölzel,210;Min.Mag.,1980, <u>43,</u> 639-641.
GINORITE	Ca ₂ B ₁₄ O ₂₃ .8H ₂ O		Mon. P2₁/a	a=12.74Å b=14.36Å c=12.82Å	β=100°46' Z=4			Pov.,480;Hölzel,119;Str.Tab., 260;RRW,237.
m	(Na,Ca) ₂ (Si,Al) ₅ O ₁₀ .3H ₂ O	(Na,Ca) ₂ ⁽ (H ₂ O) ₃ {3∞}{(Si,Al) ₅ ⁽ O ₁₀] (≈Natrolite,Zeolite)	Tet. ?	a=13.35Å b=13.35Å c=6.65Å	Z=2			Pov.,355;Gottardi & Galli, 1985,71-75;RRW,242;Str.Tab. 487; Min.Mag.,1988,52,207- 219;LF,289.
GOSLARITE	ZnSO _{4.} 7H ₂ O	Zn°S¹[O₄(H₂O)ァ] (=Epsomite)	Orth. P2,2,2,	a=11.87Å b=12.11Å c=6.84Å	Z=4			Pov.,592;Str.Tab.,283;RRW, 243;Hölzel,127.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
GRAEMITE	CuTeO ₃ .H ₂ O		Orth. Pcmm	a=6.805Å b=25.613Å c=5.780Å	Z=10			Am.Min., 1975 <u>, 60,</u> 486 (Abs.); Hölzel, 93.
GUNNINGITE	(Zn,Mn)SO4.H ₂ O	{3∞}[(Zn,Mn)°S¹ O₄(H2O)]	Mon. A2/a	a=7.566Å b=7.586Å c=6.954Å	β=115°56′ Z=4		Dist.deriv. {3∞}[Mg°S'O₄(H₂O)] KIESERITE	RRW,252;Pov.,590;Str.Tab., 280;Hölzel,126;Zeit.Krist., 1998,213;141-150.
GYPSUM	CaSO ₄ .2H ₂ O	2∞[Ca ^[6+2] (H ₂ O) ₂ S¹O₄]	Mon. I 2/a	a=5.679Å b=15.202Å c=6.522Å	β=118.43° Z=4	Ca(4e) S(4e) O _{I-III} (8f) H _{I-II} (8f)	2∞[Ca ^[6+2] (H ₂ O) ₂ S ^t O₄] GYPSUM	Acta Cryst., 1982, <u>B38</u> ,1074- 1077; LF, 248; RRW, 253; Pov., 605-606; Str. Tab., SR, <u>22</u> , 449- 450.
HANNEBACHITE	CaSO ₃ .0.5H ₂ O		Orth. Pbna	a=6.473Å b=9.782Å c=10.646Å	Z=8			Am.Min.,1988, <u>73</u> ,928(Abs.); Hölzel,92.
HELLYERITE	NiCO ₃ .6H ₂ O		Mon. C2/c	c				Encyc.Miner.Nam.,127;RRW, 265; Am.Min.,1959,44,533- 538; Pov.,617;Str.Tab.,244
HENDERSONITE	Ca ₂ V ₉ O ₂₄ .8H ₂ O		Orth. Pnam	a=12.40Å b=18.92Å c=10.77Å	Z=4			Am.Min.,1962,47,1252-1272; Am.Min.,1990,75,508-521; Pov.,500;Str.Tab.,223;RRW, 268:Hölzel,88.
HEWETTITE	CaV ₆ O ₁₆ .9H ₂ O	Ca ^[//8] V ₆ [O ₁₆ (H ₂ O) ₉]	Mon. P2 ₁ /m	a=12.290Å b=3.590Å c=11.174Å	β=97.24° Z=1	Ca(2e)(occ.1/2) O _{I-VIII} (2e) V _{I-III} (2e)		Can.Min.,1989,27,181-188; Pov.,500-501;Str.Tab,,223; RRW 272:Hölzel 88
HEXAHYDRITE	MgSO ₄ .6H ₂ O	Mg°S [*] [O ₄ (H ₂ O) ₆]	Mon. C2/c	a=10.110Å b=7.212Å c=21.41Å	β=98.30° Z=8	Mgı(4a) Mgıı(4e) S(8f) O _{l-X} (8f)		Acta Cryst., 1964, 17, 235-242; Pov., 591-592; Str. Tab., 282; RRW 272: Hölzel. 127
HEXAHYDRO- BORITE	Ca(B(OH) ₄) ₂ .2H ₂ O	Ca ^[8] B ₂ [[] [(OH) ₈ (H ₂ O) ₂]	Mon. P2/a	a=8.006Å b=6.649Å c=8.012Å	β=104.21° Z=2	β=104.21° Ca(2e) B(4g) Z=2 O _{1-V} (4g)		Am.Min., 1978, 63, 1283 (Abs.); Acta Cryst., 1971, <u>B27,</u> 1532- 1541: Hölzel. 113.
HILLEBRANDITE	Ca ₂ SiO ₄ .H ₂ O		(Orth.) Cmc2 ₁	~ ~ ~	Z=6 (for SiO ₃)	Ca _{I-III} (4a) Si _I (8b) Si _{II} (4a)(1/2occ.) 		Am.Min., 1995, <u>80</u> , 841-844; Pov., 417-418; Str. Tab., 378; RRW, 274: Hölzel, 1911: F. 214
HOCHELAGAITE	(Ca,Na,Sr)Nb ₄ O ₁₁ . 8H ₂ O		Mon.	a=19.88Å b=12.83Å c=6.44Å	β=93.20° Z=4			Can.Min.,1986, <u>24</u> ,449-453; Hölzel,86.
НОРЕІТЕ	Zn ₃ (PO ₄₎₂ .4H ₂ O	4	Orth. Pnma	a=10.597Å b=18.318Å c=5.031Å	Z=4	Zn ₁ (4c) Zn ₁₁ (8d) P(8d) O ₁₋₁₁ (4c) O _{11-V11} (8d)		Am.Min.,1976,61,987-995; RRW,279;Pov.,532-533;Str. Tab.,333;Hölzel,159.
HÖRNESITE	Mg ₃ (AsO ₄₎₂ .8H ₂ O	Mg ₃ °As ² [O ₈ (H ₂ O) ₈] (=Vivianite)	Mon. C2/m	a=10.26Å b=13.44Å c=4.74Å	β=104.9° Z=2			Am.Min.,1967, <u>52</u> ,1588(Abs.); Pov.,523;Str.Tab.,335;Hölzel, 160;LF,307.

NAME	CHEMICAL FORMIII A	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
HYDROTUNGSTI- WO2(OH)2.H2O	WO ₂ (OH) ₂ .H ₂ O	W ¹ O ₂ (OH) ₂ (H ₂ O)]	Mon.	a=7.45Å	β=90°			Pov.,320;Str.Tab.,224;RRW,
1	! !		P2/m	b=6.92Å c=3.72Å	Z=2			292;Hölzel,81.
IKAITE	CaCO ₃ .6H ₂ O	Ca ^[5] (H ₂ O) ₆ {g}[C ¹ O ₃]	Mon.	~ ~	β=110.53°	Ca(4e) C(4e)		Zeit.Krist., 1983, <u>163, 227-231;</u> RRW 297-Pov. 618:Str Tab
				C=11.021Å	1			245;Am.Min., 1964, 49, 439;
								Holzel, 104.
ILESITE	(Mn,Zn,Fe)SO ₄ .	(Mn,Zn,Fe)°S¹	Mon.	a=5.94Å	β=90°47'	Fe(4e) S(4e)		Pov., 602; Str. Tab., 281; RRW,
	2 D	[O ₄ (H ₂ O) ₄]	1,27 1,0	c=8.01Å	7=7	O:-w(4e) Ov:viii(4e)		826;Hölzel, 126.
JOKOKUITE	MnSO ₄ .5H ₂ O		Tric.	a=6.37Å	α=98°46'			Am.Min., 1979, 64, 655 (Abs.);
			<u>Ф</u>	b=10.77Å	β=109°58'			Hölzel, 127.
				c=6.13A	γ=77°50° Z=2			
KAATIALAITE	FeAs ₃ O ₉ .6-8H ₂ O		Mon.	a=15.363Å	β=91.77°			Am.Min., 1984, <u>69</u> , 383-387;
			P2 ₁	b=19.844Å c=4.736Å	Z=4			Hölzel,164.
KANKITE	FeAsO ₄ . 3.5H ₂ O		Mon.	a=18.803Å	β=92.71°			Am.Min., 1977, 62, 594 (Abs.);
			۷.	b=17.490Å c=7.633Å	Z=16			Am.Min., 1985, <u>70,</u> 220(Abs.); Hölzel, 161.
KIESERITE	MgSO ₄ .H ₂ O	[(O ² H) ⁵ O ₃ S ₁ O ⁴ (H ⁵ O)]	Mon.	a=6.88Å	β=117°43′	Mg(4b) S(4e)	[(O ² H) ⁶ O ₅ O ₇ (H ² O)]	SR, <u>21,</u> 361-362;Hölzel,126;
			C2/c	b=7.61Å	Z=4	O ₁ (4e) O ₁₁₋₁₁₁ (8f)	KIESERITE	RRW,324;Pov.,590;Str.Tab.,
				c=7.63A				280;LF,277;Zert.Knst.,1998, 213,141-150.
KILLALAITE	Ca ₃ Si ₂ O ₇ .H ₂ O	Ca ₂ °Ca ^M Si ₂ ^L	Mon.	a=6.807Å	B=97.76°	Ca _{l-li} (4f)		Min.Mag.,1977,41,363-369;
		[O ₂ (H ₂ O)]	P2 ₁ /m	b=15.459Å	Z=4	Call (2e)		SR,43A,316-317;Min.Mag.,
				c=6.811Å		Ca _{i-li} ⁽¹ /(2e) Si _{i-li} (4f) (v. occ.)		1974, <u>39</u> ,544-548;Hölzel,199.
KLEINITE	Hg,N(CI,SO ₄).	(CI,SO ₄)n(H,O)	Hex.	a=13.56Å	Z=24			Pov., 201; Str. Tab., 166; RRW,
	nH ₂ O	(300)[N'Hg2[2]*ch*]h	P6 ₃ /mmc	c=11.13Å				326;LF,258;Am.Min.,1978, <u>63,</u>
		(≈ β-Tridymite)						316-325;Hölzel,55.
KOLBECKITE	ScPO ₄ .2H ₂ O	(H2O)2{3∞}[Sc°P'O4]		a=5.45Å	β=90°45′		Dist.deriv.	Pov.,531-532;Str.Tab.,331;
			 	c=8.93Å	4-7		VARISCITE	Am.Min., 1960, 45, 257 (Abs.).
KONINCKITE	FePO ₄ .3H ₂ O	(H ₂ O) ₃ {3∞}[Fe°P¹O ₄]	Tet.	a=11.95Å	Z=16			Pov., 531-532; Str. Tab., 334;
		(≈Scorodite)	<i>د</i>	c=14.52Å				Bull.Min., 1968, 91, 487-489; Hölzel, 161: LF, 282.
KORNELITE	Fe ₂ (SO ₄) ₃ .7H ₂ O	(H,O)(200)[Fe, S, ¹ O.,	Mon.	a=14.30Å	B=96.8°	Fe(4e)		Am.Min., 1973, 58, 535-539;
	7	(H ₂ O) ₆] P2 ₁ /n	P2 ₁ /n	b=20.12Å		S _{I-III} (4e)		RRW, 330, Pov., 593; SR, 39A,
				c=5.425Å		O _{I-XII} (4e)		314;Str.Tab.,284;Hölzel,128;
								Zer.Knst.,1998, <u>213</u> ,141-150.

NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
KORSHIINOVSKI	Mas	STORING -	Tric	a=8 64Å	α=101 4°			Am.Min., 1983, 68, 643 (Abs.);
TE	3.5-4H ₂ O		~	b=6.25Å	β=103.9°			Hölzel,53.
				c=7.42Å	γ=72.7° Z=2			
KÖTTIGITE	Zn ₃ (AsO ₄) ₂ .8H ₂ O	Zn3 As2 [O8(H2O)8]	Mon.	a=10.241Å	β=105.21°	Zn _I (2a) Zn _{II} (4g)		Am.Min., 1979, 64, 376-382; LF,
		(=Vivianite)	C2/m	b=13.405A c=4.757Å	Z=2	AS(4I)		30/;Pov.,523;SK,45A,323;Str. Tab.,335;RRW,328.
KRAUSKOPFITE	BaSi,O ₅ .3H,O	Ba ^[9] {1∞}[Si,¹O ₅	Mon.	a=7.837Å	B=94°32'	Ba(4e) Si _{I-II} (4e)		SR,32A,459-460;Am.Min.,
	1	(H ₂ O) ₃]	P2 ₁ /c	b=10.622Å c=8.460Å	Z=4	O _{I-VIII} (4e) H _{I-VI} (4e)		1965, <u>50</u> ,314-340;RRW,333; Pov., 422;Str.Tab.,427.
KREMERSITE	(NH ₄ ,K) ₂ FeCl ₅ .H ₂ O	Fe ² [Cl ₅ (NH ₄ ,K) ₂	Orth.	a=13.78Å	Z=4			RRW,333;Hölzel,52;Str.Tab.,
		(H ₂ O)]	Pnma	b=9.85A c=7.09Å				164.
LANSFORDITE	MgCO ₃ .5H ₂ O		Mon.	a=12.48Å	β=101°46'			RRW,342;Pov.,617;Str.Tab.,
			P2 ₁ /m	b=7.55Å c=7.34Å	Z=4			244;Hölzel104.
LANTHANITE -	(Ce,La,Nd) ₂ (CO ₃) ₃ .	1	Orth.	a=9.482Å	Z=4	Lai(4c) Laii(4d)		Am.Min.,1985,70,411-413;SR,
- (Ce)	8H ₂ O		Pbnb	b=16.938Å c=8.965Å		C _I (4d) C _{II} (8e)		33A,433-435;SR,43A,236; RRW, 342;Hölzel105.
L ANTHANITE -	(La.Ce),(CO ₂),	(H,O) _a	Orth.	a=9.504Å	Z=4	RE(4d) RE((4c)		Am.Min., 1977, 62,, 142-146; Str.
-(La)	8H ₂ O	{2∞}[(La,Ce) ₂ ^[10]	Pbnb	b=16.943Å		C ₁ (4c) C ₁₁ (8e)		Tab.,246;Pov.,618;Hölzel,105.
		(g)[C"O _{3 3}]	:	C-0.93/A	,			A BA: 4004 00 007 000.
LANTHANITE -	(Nd,La) ₂ (CO ₃) ₃ .	(H ₂ O) ₈	O E	8=9.4/6A h=16.940Å	5=7			Am.Min., 1981, <u>98,</u> 637-639; Hölzel 105
(pa) -	D	{g}{C'O ₃] ₃]	2	c=8.942Å				
LAUSENITE	Fe ₂ (SO ₄) ₃ .6H ₂ O		Mon.	خ				RRW,346;Pov.,593;Str.Tab.,
TIM AMITE	(Fe Mc Mn),(PO.),	(Fe Ma Ma) OP,	Mon	a=10 541Å	R=100°25'	Fe ₁ (2a) Fe ₁₁ (4e)		J.Chem.Phys., 1966.44, 2223-
	4H ₂ O	[O ₈ (H ₂ O) ₄]	P2 ₁ /a	b=4.646Å	Z=2	P(4e)		2229;RRW,366;Pov.,553;Str.
THOOK I IN	MPSO 7H.O	Mn ⁰ S'[O,(H ₀ O)-1	Mon	a=14 15A	B=105°36°			Min Abs. 82M/4639:RRW.377.
MALLANDITE	WIII 504. 1120	(≈Melanterite)	P2,/c	b=6.50Å	Z=4			Pov., 592; Str. Tab., 283; Hölzel,
)	-	c=11.06Å				128.
MANDARINOITE	Fe ₂ (SeO ₃) ₃ .6H ₂ O		Mon.	a=16.810Å	β=98°26'			Am.Min.,1985,70,440(Abs.);
			P2 ₁ /c	b=7.880Å c=10.019Å	Z=4			Am.Min.,1980, <u>65,</u> 206(Abs.); Hölzel,92.
MANGANBELY-	(Mn,Ca)(Ti,Nb) ₅		Amorph.	خ				Am.Min.,1958,43,1220-1221 (Abs.):Pov.,458.
MANGANESE-	(Mn,Mg) ₃ (AsO ₄₎₂ .	(Mn,Mg)3 ^o As2 ^t	Mon.	a=10.38Å	B=105°40'			Pov., 523; RRW, 378-379;
HÖRNESITE	8H ₂ O	[O ₈ (H ₂ O) ₈] (Dist.d.Vivianite)	P2 ₁ /c	b=28.09Å c=4.77Å	Z=4			Hölzel, 160.

MANJIROITE (Na,K)Mn ₈ O ₁₆ . MANSFIELDITE AIASO _{4.2} H ₂ O MEIXNERITE Mg ₆ Al ₂ (OH) ₁₆ . MELANOVANADI- CaV ₄ O _{10.5} H ₂ O	K)Mn ₈ O ₁₆ .					POSITIONS		
MANSFIELDITE AIASO4.7 MEIXNERITE MgeAb((9 9	Mno	Tet	2=9 916Å	7=1		Mn. (Ba K)O. Ichn	Am Min. 1968 53 2103(Abs.):
MANSFIELDITE AIASO4.7 MEIXNERITE MgeAl2(([(Na,K)O ₁₆ (H ₂ O) _n] ^{chh}	I 4/m	c=2.864Å			HOLLANDITE	Pov., 305; LF, 107; RRW, 381;
MANSFIELDITE AIASO4.3 MEIXNERITE MgeAl2((MELANOVANADI- CaV4O1)								Holzel, /3;Str. I ab., 200.
MEIXNERITE Mg ₆ Al ₂ ((2H ₂ O	(H ₂ O) ₂ {3∞}[Al°As ^t O ₄]	orth.	a=10.08Å	Z=8		(H ₂ O) ₂ {3∞}[Al°P'O ₄]	RRW,381;Pov.,508;Str.Tab.,
MELANOVANADI- CaV₄O₁ı			Pcab	b=9.76A c=8.72Å			VARISCILE	332;H0lzel,161;LF,282.
MELANOVANADI- CaV4O10	Mg ₆ Al ₂ (OH) ₁₈ .4H ₂ O	,	Trig.	a=3.0463Å	Z=3/8			Am.Min.,1976,61,176(Abs.);
MELANOVANADI- CaV4O10			H 3H	C=22.93A				Holzel, 107.
	0.5H ₂ O		Ji Ji	a=6.360Å	α=110.18°	Ca11(2i) VVI(2i)		Am.Min., 1987, 72,637-644;
<u></u>			-	b=18.090A	β=101.62°	:		200.U31.01.1 aD., 222, NAV.,
				c=6.276A	γ=82.86° Z=4 ?			389;HOIZeI,88.
MELANTERITE FeSO _{4.7} H ₂ O		Fe ^o S'[O ₄ (H ₂ O) ₇]	Mon.	a=14.072Å	β=105°34'	ı		Acta Cryst.,1964,17,1167-
			P2 ₁ /c	b=6.503Å c=11.041Å	Z=4	S(4e)		1174;SR, <u>29</u> ,351-352;LF,314; RRW,390;Pov.,592-593.
META- Al ₂ (SO ₄)	Al ₂ (SO ₄) ₃ , 14H ₂ O		Orth.	a=12.25Å	Z=2			JCPDS,22-23;Pov.,606;
DGEN			٠	b=13.95Å				Hölzel,128;RRW,395;Str.Tab.,
				c=15.95Å				284.
-noio-	(Ca,Na,Ba)U ₂ O ₇ .		خ	خ				Am.Min., 1973, <u>58</u> , 1111(Abs.);
RANOITE 2H2O								Holzel,89.
METAHEWETTITE CaV ₆ O ₁₆ .3H ₂ O	-	Ca ^o V ₆ ^[309/] [O ₁₆ (H ₂ O) ₃]	Mon.	a=12.15Å	β=118°2′			Min.Mag.,1979,43,550;Pov.,
		(≈Barnesite)	A2/m	b=3.607Å	Z=2			500-501;Str.Tab.,223;SR,27,
$\neg \neg$				C=18.44A				589-590; Holzel,88;RRW,397.
METAKÖTTIGITE (Zn,Fe) ₃ (AsO ₄) ₂ .			Tric.	a=7.96Å	α=95.6°			Am.Min., 1983, 68, 1039(Abs.);
3(H ₂ O,C		[O ₈ (H ₂ O,OH) ₈]	ъ- ::	b=9.44Å	β=97.0°			Hölzel,160.
		(≈Symplesite)		c=4.72Å	γ=107.8° Z=?			
METAROSSITE Ca(VO3), 2H3O		Ca ^{acb} V, [3by][O ₆ (H ₂ O) ₂] Tric.	Tric.	a=6.21Å	α=92°58'	Ca(2i) V _{I-II} (2i)		SR,24,445-446;Pov.,499-500;
,			ът. .:	b=7.06Å	B=96°39'	O _{I-VIII} (2i)		Str. Tab., 222; RRW, 398; Hölzel,
				c=7.76Å	γ=105°47° Z=2			.88
METASCHODERI- AI(PO4,V	AI(PO4, VO4).3H2O		Mon.	a=11.4Å	β=79°			Am.Min., 1962, 47, 637-648;
<u> </u>			P2/m	b=14.9Å	S=8		,	RRW, 399; Pov., 496; Str. Tab.,
				c=9.2Å				334;Hölzel,161.
METASWITZERI- (Mn,Fe) ₃ (PO ₄) ₂ .		(Mn,Fe) ₃ P ₂ ¹	Mon.	a=8.496Å	β=96.65°			Min.Abs.,81-1248;K/B,85-87;
TE 4H ₂ O		[O ₈ (H ₂ O) ₄]	P2 ₁ /c	b=13.173Å	Z=8			Am.Min.,1967, <u>52</u> ,1595-1602;
\dagger		(≈Ludiamine)		C=17.214A	1	1770		A. M. M. 4060 45 4006 4064:
MEI AVANDEN- PBU-7022.nH20	2.nH ₂ O		Orth.	a=14.0/A	¿=7	AI(4e) P(4e)	-	Am.Min., 1900, 43, 1020-1001,
			<u> </u>	c=43.33Å		Q::v(4e) H ₂ O::i(4e)		225;Hölzel,90.

NAME	CHEMICAL	STRUCTURAL	SPACE GROUP	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
METAVARISCITE	AIPO4.2H ₂ O	(H,O),{3∞}[Al°P'O ₄]	Mon.	a=5.178Å	β=90.35°	AI(4e) P(4e)	Dist.deriv.	Acta Cryst.,1973, <u>B29</u> ,2292-
			P2 ₁ /n	b=9.514Å c=8.454Å	Z=4	O _{I-IV} (4e) H ₂ O _{I-II} (4e)	(H₂O)₂{3∞}[Al°P'O₄] VARISCITE	2294;SR,31A,185-187;SR, 39A,285-286LF,282;RRW,402.
MIRABILITE	Na ₂ SO ₄ .10H ₂ O	Na ₂ °S'[O ₄ (H ₂ O) ₁₀]	Mon. P2,/c	a=11.512Å β=107.789° b=10.370Å Z=4	3=107.789° Z=4	Na _{I-II} (4e) S(4e)		Acta Cryst.,1978, <u>B34</u> ,3502- 3510;Pov.,593;Str.Tab.,291;
			•	c=12.847Å				RRW,408-409;LF,318.
MITSCHERLICHI-	K ₂ CuCl ₄ .2H ₂ O	Cu ^o [K ₂ ^{co} Cl ₄ (H ₂ O) ₂]	Tet.	a=7.46Å	Z=2			Pov.,642;Str.Tab.,163;RRW,
MONOLVODO.	- 1		Trio	0=10 R2&	7=0			Sov Phys Cryst 1964 9 88-90
CALCITE	CaCO3.T2O		P3,21	C=7.54Å	ß. 7			Am.Min., 1964, 49, 1151 (Abs.);
								Am.Min.,1973, <u>58</u> ,1102(Abs.); Pov.,618;RRW,415.
MOORHOUSEITE	(Co,Ni,Mn)SO4.	(Co,Ni,Mn)°S¹	Mon.	a=10.032Å	β=98.37°	Co ₁ (4a) Co ₁₁ (4e)		Acta Cryst., 1962, 15, 1219-
		[O ₄ (H ₂ O) ₆] (=Hexahydrite)	CZ/c	b=7.233A c=24.261Å	Z=8	S(81) O _{I-X} (81)		1224;KKW,418;P0V.,591-59Z; Str.Tab.,282.
MORENOSITE	NISO4.7H2O	Ni°S'[O ₄ (H ₂ O) ₇]	Orth.	a=11.86Å	Z=4			RRW,419;Pov.,592;Str.Tab.,
		(=Epsomite)	P2,2,2,	b=12.08Å c=6.81Å				283;Min.Mag.,1964, <u>33,</u> 1110- 1113:LF.313.
MOUNTAINITE	(Ca.Na,Ka),SiaO10.	(Ca,Na ₂ ,K ₂), ^[6] (H ₂ O) ₃	Mon.	a=13.51Å	B=104°			Enc.Min.Nam., 205; RRW, 422;
	.3H ₂ O	{2∞}[Si₄ ^t O₁0]		b=13.10Å	Z=8			Pov.,434;Str.Tab.,487;Hölzel,
				20.01				100 000 000 000
MUNIRITE	NaVO ₃ .1.9H ₂ O		Mon.	a=16.756A	β=111.18°			MIn.Mag.,1988, <u>32</u> ,716-717.
			P 2 1/8	0=3.6381A c=8.023Å	6=7			Am.Min., 1984, 69, 812 (Abs.);
MUSKOXITE	Mg7Fe4O ₁₃ .10H ₂ O		Trig.	a=3.1Å	¿ =Z			Am.Min., 1969, 54, 684-696;
			<i>د</i>	c=24.113Å?				RRW,424;Pov.,333;Hölzel,83, suppl
NATRON	Na ₂ CO ₃ .10H ₂ O	[{g}][Na ₂ °(H ₂ O) ₁₀]	Mon.	a=12.83Å	23.00	Na _{I-II} (4a) C(4a)	[{g} [Na ₂ °(H ₂ O) ₁₀]	Acta Cryst., 1969, <u>B25, 2656</u> -
		{@}[C:O3],]	ဗိ	b=9.026A c=13.44Å	Z=4	O _{I-x} (4a)	(g)(C'O3 7) NATRON	2658;LF,188;KKW,428;Pov., 618;Str.Tab.,245.
NEKOITE	Ca ₃ Si ₆ O ₁₅ .7H ₂ O	Ca ₃ °(H ₂ O) ₇	Tric.	a=7.588Å	α =111.77°	Ca _{I-III} (1a)		Am.Min., 1980, 65, 1270-1276;
		{2∞}[Sie'O₁5]	<u> </u>	b=9.793A	β=103.50	Sil-vi(18)		POV., 454-455, 135, SII. 18D., 424 RRW 432 SR 46A 389
				C=7.338A	γ=80.33° Z=1	-XV(19)		
NEOTOCITE	(Mn,Fe)SiO ₃ .H ₂ O		Amorph.					Min. Abs., 83-2626; Min. Mag., 1978 42, 279-280; RRW 432-
								433;Hölzel,222.
NESQUEHONITE	MgCO ₃ .3H ₂ O	Mg ^o (H ₂ O) ₃ {g}[C ¹ O ₃]	Mon.	a=7.705Å	β=90.45°	Mg(4e) C(4e)		Acta Cryst., 1972, <u>B28</u> , 1031-
			7 2 1/11	D=5.36/A C=12.121Å		(a+)i/-iO		617-618;Str.Tab.,244;RRW,
	-							433.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
EXA-		(Ni,Mg,Fe)°S¹	Mon.	a=9.880Å	β=98.38°	Ni ₁ (4a) Ni ₁₁ (4e)		Acta Cryst., 1988, C44, 1869-
HYDRITE		[O ₄ (H ₂ O) ₆]	C2/c	b=7.228Å	Z=8	S(8f) O _{I-x} (8f)		1873;Pov.,591-592;Str.Tab.,
		(=Hexanydrite)		C=24.130A				262,KKW,435.
NINGYOITE	(U,Ca,Ce) ₂ (PO ₄) ₂ .		orth.	a=6.78Å	Z=3			Am.Min., 1959, 44, 633-650;
	1-2H ₂ O		P222	b=12.10A				RRW,437;Pov.,546;Str.Tab., 314
NITROCALCITE	Ca(NO ₃), 4H,O		Mon.	a=6 278Å	B=106 22ª	Ca(4e) N(4e)		Acta Cryst1977.B33.1861-
	7: 7/6		P2,/c	b=9.1551Å	Z=4	OLYI(4e)		1866:RRW.439:Hölzel.96.
				c=14.8999Å				
NITROMAGNESI-	Mg(NO ₃) ₂ .6H ₂ O	Mg°(H ₂ O) ₆ (g){N ¹⁷ O ₃] ₂	Mon.	a=6.194Å	β=92.99°			Acta Cryst., 1961, 14, 1296-
3 L			P2 ₁ /c	b=12.707Å c=6.600Å	Z=2			1297;Pov.,633-634;RRW,439.
OKENITE	Ca ₁₀ Si ₁₈ O ₄₆ .18H ₂ O	Ca ₁₀ (H ₂ O) ₁₈ O	Tric.	a=9.69Å	α=92.7°	Ca _{i-IV} (2i)		Am.Min., 1983, 68, 614-622;
		{2∞}[Si ₆ O _{15]3}	<u>-</u>	b=7.28Å	β=100.1°	Cav.vi(2i)		Pov., 434; Str. Tab., 424; Hölzel,
		(≈Nekoite)		c=22.02Å	γ=110.9° Z=1	(½ occ.) Si _{-ix} (2i)		220.
ORICKITE	CuFeS ₂ .nH ₂ O		Hex.	a=3.695Å	Z=4			Am.Min., 1983, 68, 245-254;
			2	c=6.16Å				Hölzel,26.
PARACOQUIMBI- Fe ₂ (SO ₄) ₃ .9H ₂ O	Fe ₂ (SO ₄) ₃ .9H ₂ O	Fe ₂ °S ₃ ¹ [O ₁₂ (H ₂ O) ₉]	Trig.	a=10.926Å	Z=12	Fe ₁ (3a) Fe ₁₁ (3b)		Am.Min.,1971, <u>56</u> ,1567-1572;
<u>_</u>			יי צ	C=51.300A		relii-v(oc)		OK, 3/A, 508, POV., 585, Str. 1 ab.,
						Si-II(18f) (rh. descrip.)		Z84;KKW,458-459.
PARAHOPEITE	Zn ₃ (PO ₄₎₂ .4H ₂ O	Zn ^o Zn ² ,P ₂ ,[O ₈ (H ₂ O) ₄]	Tric.	a=5.757Å	α=93°32'	Zn ₁ (1a) Zn ₁₁ (2i)		Min.Mag., 1968, 36, 621-624;
			<u>т</u>	b=7.534Å	β=91°18'	P(2i) O _{I-IV} (2i)		Pov.,532-533;Str.Tab.,333;SR,
				c=5.625Å	γ=91°33′ Z=1			33A, 395;SR, 41A, 425.
PARASYMPLESI-	Fe ₃ (AsO ₄) ₂ .8H ₂ O	Fe ₃ As ₂ [O ₈ (H ₂ O) ₈]	Mon.	a=10.25Å	β=103°50′			Pov., 753, 523; LF, 307; Wyckoff,
2		(=Vivianite)	C2/m	b=13.48Å c=4.71Å	Z=2			3,852-854;RRW,463;Str.Tab., 335.
PASCOITE	Ca ₃ V ₁₀ O ₂₈ .17H ₂ O	Ca ₃ ^{I7J} V ₁₀ °	Mon.	a=16.834Å	β=93°8′	Ca ₁ (2a) Ca ₁₁ (4c)		Acta Cryst.,1966, <u>21</u> ,397-405;
		[O ₂₈ (H ₂ O) ₁₇]	12	b=10.156Å	Z=2	:		SR,31A,142-143;Pov.,502;Str.
	- 1			c=10.921Å				Tab.,221;Hölzel,88.
PAULINGITE	(K,Ca,Na,Ba) ₁₂	(K,Ca,Na,Ba) ₁₂	Cub.	a=35.093Å	Z=28	(Si,Al) _{I-II} (48i)		SR,50A,333-334.Am.Min.,
		(H ₂ O) ₂₅	l m3m			(Si,Al) _{III-VIII} (96I)		1960,45,79-91;Am.Min.,1982,
		[3∞][(Si,Al) ₂₄ 'O ₄₈] (≈Sodalite,Zeolite)				:		67,799-803;Pov.,353.
PENTAHYDRITE	MgSO ₄ .5H ₂ O	Mg°S'[O ₄ (H ₂ O) ₅]	Tric.	a=6.314Å	α=81°7'	Mg ₁ (1a) Mg ₁₁ (1e)		Acta Cryst., 1972, <u>B28</u> , 1448-
			_	b=10.505A	β=109°49	SI(ZI) OIV(ZI)		1455; POV., 581; Str. 18D., 261;
				c=6.030A	γ=105°5′ Z=2			KKW,4/1,LF,31/.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
PHAUNOUXITE	O Y	{2∞}[Ca ^[8] Ca ₂ ^[7] As₂¹ O ₈ (H₂O)₁₁]	Tric. P 1	a=12.563Å b=12.181Å	α =88.94° β =91.67°	Са _{і-ііі} (2і) As _{і-іі} (2і) О _{і-Vііі} (2і)		Acta Cryst.,1983, <u>B39</u> ,4-10;Am. Min.,1983, <u>68</u> ,850(Abs.);
		(≈Rauenthalite)		c=6.205Å	γ=113.44° Z=2	:		Hölzel, 165.
PHOSPHOFERRI-	(Fe,Mn) ₃ (PO ₄) ₂ .	(Fe,Mn) ₃ °P ₂ °C	Orth.	a=9.460Å	Z=4			SR,42A,346-347;Min.Mag.,
<u>ц</u>	ر ا	[C8(⊓2C)3] (≈Reddingite)	<u> </u>	c=8.670Å				Tab.,331;RRW,477.
PHOSPHOSIDERI- FePO4.2H2O	FePO ₄ .2H ₂ O	(H ₂ O) ₂ {3∞}[Fe°P'O ₄]	Mon.	a=5.30Å	β=90°36'	Fe(4e) P(4e)	Dist.deriv.	Am.Min., 1966, <u>51</u> , 168-176;
2		(=Metavariscite)	P2 ₁ /n	b=9.77A c=8.73Å	7=4	O _{I-VI} (4e)	(H₂O)₂{3∞}[Al⁻PO₄] VARISCITE	Tab.,331.
POITEVINITE	(Cu,Fe,Zn)SO4.	{3∞}[(Cu,Fe,Zn)°	Tric.	a=5.120Å	$\alpha = 107.06^{\circ}$	(Cu,Fe,Zn)(1a)	Dist.deriv.	Can.Min., 1994, 32, 873-884;
	H ₂ 0	S ⁽ O ₄ (H ₂ O)]	<u>С</u>	b=5.160Å	β=107.40	(Cu,Fe,Zn)(1h)	[(O ² H) ⁷ O ⁴ (H ² O)]	RRW,486-487;Pov.,590;Str.
				c=7.535Å	γ=92.73° Z=2	S(ZI)	KIESERITE	l ab.,z80;EncycMiner.Nam., 242.
QUENSTEDTITE	Fe ₂ (SO ₄) ₃ .11H ₂ O	Fe ₂ °S ₃ ¹ [O ₁₂ (H ₂ O) ₁₁]	Tric.	a=6.184Å	α=94.18°	Fe _{I-II} (2i) S _{I-III} (2i)		Am.Min., 1974, 59, 582-586;
			ل	b=23.60Å	$\beta = 101.73^{\circ}$	O _{I-XII} (2i)		Pov., 593; Str. Tab., 284; SR, 40A,
				c=6.539Å	γ=96.27° Z=2	(H ₂ O) _{I-x} (2i)		265;RRW,505-506.
RALSTONITE		(AI,Mg) ₂ ^{cb} Na _{0.4} ^[6] □ _{1.6} ^[6]	Cub.	a=9.87Å	Z=8	(AI,Mg)(16c)		SB, <u>7</u> , 127-128; LF, 140; RRW,
	(F,OH) ₆ .H ₂ O	[(F,OH) ₆ (H ₂ O)□] ⁰	Fd 3m			Na(16d)		507-508;Min.Abs.,85M/0180.
		(Defect d.Pyrochlore)				(H ₂ O)(8b) (F,OH)(48f)		
RANCIFITE	(Ca Mn)Mn,O		Hex.	a=2.86Å		(A.000.)		Min.Abs804-854;Am.Min.,
	3H ₂ O		~	c=7.50Å				1987,72,230(Abs.);Bull.Min.,
	4			Z=2		-		1969,92,191-195; Pov.,333.
RAUENTHALITE	Ca ₃ (AsO ₄) ₂ .10H ₂ O	Ca ^{ISI} Ca ₂ ^{I7I} As ₂ ^t	Tric.	a=12.564Å	α=89.09°	As _{I-II} (2i)		Acta Cryst., 1983, <u>B39</u> , 4-10;
		[O ₈ (H ₂ O) ₁₀]	Т	b=12.169Å	β=79.69°	Ca _{l-III} (2i)		Pov.,520;Am.Min.,1965,50,805
		(≈Phaunouxite)		c=6.195Å	γ=118.58° Z=2	O _{1-VIII} (21) (H ₂ O) _{1-x} (21)		-800
REDDINGITE	Mn ₃ (PO ₄) ₂ .3H ₂ O	Mn ₃ °P ₂ ¹ [O ₈ (H ₂ O) ₃]	Orth.	a=9.49Å	Z=4			RRW,512;Hölzel,159;Pov.,755,
		(≈Phosphoferrite)	Pbna	b=10.08Å				547;Str.Tab.,331;Zeit.Krist.,
				c=8.70Å				1963,118,327-331.
RETGERSITE	α-NiSO ₄ .6H ₂ O	Ni°S'[O4(H2O)6]	Tet.	a=6.780Å	Z=4	Ni(4e) S(4e)		Acta Cryst., 1988, C44, 1869-
		(≈Hexahydrite)	P4 ₁ 2 ₁ 2	c=18.285A		O _{-V} (8g)		1873;KKW,514;P0v.,591;Sfr. Tab.,282.
REVDITE	Na ₂ Si ₂ O ₅ .5H ₂ O	3∞[Na2°Si2¹O5(H2O)5]	Mon.	a=53.83Å	β=96.78°	Si _{I-VIII} (4c)		Sov. Phys. Cryst., 1992, 37,632-
		(≈Vlasovite)	C2	b=9.972A c=6.907Å	Z=16			636;Am.Min.,1982, <u>67</u> ,1076; Hölzel,226.

	TOKALIL A	FORMULA	GROUP	UNIT CELL DIMENSIONS	MENSIONS	POSITIONS	STRUCTURE TYPE	REFERENCES
RHABDOPHANE - (C	(Ce Ja)PO, H ₂ O	Į,	Hex	a=6.98Å	Z=3			RRW,515;Pov.,546-547;Str.
- (Ce)	7		P6 ₂ 22	c=6.39Å	l			Tab.,314;Am.Min.,1980, <u>65,</u> 1085/Abs \ Hölzel 164
RHABDOPHANE - (L	(La,Ce)PO ₄ .H ₂ O	(La,Ce)[^{18]} P ¹ [O ₄ (H ₂ O)]	Hex.	a=6.960Å	Z=3			Min.Mag.,1984,48,146-148;
<u>(E</u>			P6 ₂ 22	c=6.372Å				Hölzel,164.
RHABDOPHANE - (P	(Nd,Ce,La)PO4. H ₂ O	(Nd,Ce,La) ^[8] P ¹ [O ₄ (H ₂ O)]	Hex. P6 ₂ 22	a≈6.98Å c≈6.39Å	Z=3			Hölzel, 164; Am. Min., 1966, <u>51,</u> 152-158.
RICHETITE	PbU ₄ O ₁₃ .4H ₂ O		Tric.	a=20.81Å	α=103.8°			Am.Min.,1985,70,1335(Abs.);
			<u>Z</u> ::	b=12.06Å	β=115.1°			Hölzel,89.
				c=16.30A	γ=90.4° Z=9			
RÖMERITE	Fe ₃ (SO ₄) ₄ .14H ₂ O	[{g}[Fe°S2'O8(H2O)4]2	Tric.	a=6.463Å	α=90°32′	Fe ₁ (1a) Fe ₁₁ (2i)		Am.Min., 1970, 55, 78-89; RRW,
		(g)[Fe°(H ₂ O) ₆]	Ъ.	b=15.309Å	β=101°5′	S _{I-II} (2i)		523;Pov.,596;Str.Tab.,285;SR,
				c=6.341Å	7=85°44' Z=1			35A,439.
ROSSITE	Ca(VO ₃) ₂ .4H ₂ O	{3∞}[Ca ⁽⁸⁾ V ₂ ⁽⁵⁾ O ₆	Tric.	a=8.534Å	$\alpha = 101^{\circ}32^{\circ}$	Ca(2i) V _{I-II} (2i)		SR,28,204-206;Min.Mag.,
		(H ₂ O)4]	٦,	b=8.556Å	β=114°58'	O _{!-x} (2i)		1985;49,140-141;Pov.,499-
		S-1		c=7.015Å	γ=103°23° Z=2			500;Str.Tab.,222;RRW,527- 528.
ROZENITE	FeSO ₄ .4H ₂ O	Fe ^o S ¹ [O ₄ (H ₂ O) ₄]	Mon.	a=5.97Å	8=90°26'	Fe(4e) S(4e)		Acta Cryst., 1962, 15, 815-826;
		(=Laumontite)	P2 ₁ /n	b=13.64Å	Z=4	O _{I-VIII} (4e)		RRW,528;Pov.,602;Str.Tab.,
				c=7.97Å				281.
SCHIEFFELINITE P	Pb(Te,S)O ₄ .H ₂ O		orth.	a=9.67Å	Z=16			Min.Mag.,1980,43,771-773;
			Cmam	b=19.56A c=10.47Å				Holzel, 126.
SCHÖLLHORNITE Na _{0.3} CrS ₂ .H ₂ O	la _{0.3} CrS ₂ .H ₂ O		Trig. R3m	a=3.32Å c=26.6Å	¿=Z			Am.Min.,1985, <u>70</u> ,638-643; Hölzel,126.
SCHUBNELITE F	FeVO ₄ .H ₂ O		Tric.	a=6.59Å	α=125°			Bull.Min.,1970,93,470-475;
			7	b=5.43Å	β=104°			Am.Min.,1972,57,1556-1557;
				c=6.62Å	γ=84°43' Z=2			F0V.,480,7KKV,047.
SCORODITE	FeAsO4.2H ₂ O	(H ₂ O) ₂ (3∞)[Fe ² As ⁴ O ₄] Orth.	Orth.	a=8.937Å	Z=8	Fe(8c) P(8c)	(H2O)2{300}[Al°P'O4]	Acta Cryst., 1976, <u>B32</u> , 2891-
		The area of 17/17/17	Pcab	b=10.278Å		O _{I-VI} (8c)	VARISCITE	2892;LF,282;SR, <u>12,</u> 251-252;
				C=9.996A		(H ₂ O) - (8C)		F0V., 500, 501. 1 ab., 532, KKVV, 548;.
SIDEROTIL (F	(Fe,Cu)SO ₄ .5H ₂ O	(Fe,Cu)°S'[O ₄ (H ₂ O) ₅]	Tric.	a=6.26Å	α=97°15'			RRW,560;Pov.,591;Str.Tab.,
		(=Chalcanthite)	Г-	b=10.63A	$\beta = 109^{\circ}40^{\circ}$			Z81;LF,317;H0/Z81,127.
				C=6.06A	γ=/5°0° Z=2			
SIMONKOLLEITE	Zn ₅ (OH) ₈ Cl ₂ .H ₂ O		Trig. R 3m	a=6.334Å c=23.58Å	Z=3			Am.Min.,1988, <u>73</u> ,194-195 (Abs.);Hölzel,53.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
SIMPLOTITE	CaV4O0.5H5O		Mon.	a=8.39Å	B=90°25'			Am.Min., 1958, 43, 16-24; RRW,
	7		A2/m	b=17.02Å	Z=4			562;Pov.,328,602;Str.Tab.,
				c=8.37Å				221; Hölzel,87.
STARKEYITE	MgSO ₄ .4H ₂ O	{g}[Mg ₂ °S ₂ 'O ₈ (H ₂ O) ₈]	Mon.	a=5.922Å	β=90°51'	Mg(4e) S(4e)		Acta Cryst., 1964, 17,863-869;
			P2 ₁ /n	b=13.604Å	Z=4	O _{I-IV} (4e)	-	RRW,577;Pov.,759,602;Str.
				c=7.905A				1 ab.,281;Zeft.Krist.,1998; <u>213;</u> 141-150
			100	1010	0-444040			Min Abc 88M 1038:Dov 408:
STEIGERITE	AIVO4.3H2O		Mon. P2./m	8=11.840A	β=111710 7=2			Str. Tab. 334:RRW.577-579:
				c=11.040Å	1			Hölzel, 161; Am. Min., 1959, 44,
			_					322-341.
STERLINGHILLI-	Mn ₃ (AsO ₄) ₂ .4H ₂ O		ے	ç				Am.Min., 1981, 66, 182-184; Str.
"								Tab.,578;Hölzel,159.
STRACZEKITE	(Ca,K,Ba)V ₈ O ₂₀ .	V ₈ °		a=11.679Å	$\beta = 100.53^{\circ}$			Min.Mag., 1984, 48, 289-293;
	3H2O	[O ₂₀ (H ₂ O) ₃ (Ca,K,Ba)]	C2/m	b=3.6608Å	Z=1			Hölzel,177;Am.Min.,1990, <u>75,</u> 508-521
	0		4	210.000	7-0		L Cholores Cons	DDM 686:Dov 750-Str Tah
STRENGITE	FePO ₄ .2H ₂ O	(H ₂ O) ₂ (3∞)[Fe ² FO ₄]	Oran.	a=10.05A h=q q2Å	0=7		(H2O)2(3∞)[AI P O4]	332-1 E 282-Hölzel 161-Can
			2	C=8.74Å				Min., 1976, 14, 40-46.
SVETI OZARITE	(Ca K Na) (Si Al)	(Ca K Na)2(H2O)22	(Orth.)	a=19.482Å	Z=4			Am.Min., 1977, 62, 1060(Abs.);
	O48.12H ₂ O		Ccma?	b=20.963Å				Min.Mag., 1982, 45, 157-161.
		(~Dachiardite,Zeolite)		c=7.554Å				
SWITZERITE	(Mn,Fe) ₃ (PO ₄) ₂ .	(Mn,Fe) ₃ °P ₂ ^c		a=8.528Å	0.05			Am.Min., 1986, 71, 1224-1228;
		[O ₈ (H ₂ O) ₇]	P2 ₁ /a	b=13.166Å	Z=4	P _{I-II} (4e)		SR, 45A, 308; RRW, 594; Pov.,
				c=11.812Å		O _{-xv} (4e)		547;Str.Tab.,333.
SYMPLESITE	Fe ₃ (AsO ₄) ₂ .8H ₂ O	Fe ₃ As ₂ [O ₈ (H ₂ O) ₈]	Mon.	a=10.25Å	$\beta = 103^{\circ}50'$	Fe ₁ (2a) Fe ₁₁ (4g)		SR, 13, 307-308; RRW, 595;
		(=Vivianite)	C2/m	b=13.48Å	Z=2	As(4i)		Pov., 523; Str. Tab., 335; Wyckoff,
				c=4.71A				3,852-854.
SZMIKITE	MnSO ₄ .H ₂ O	[(O ² H) ⁵ O ₂ (M ² O)]	Mon.	a=7.758Aβ=115°42.5	-115°42.5		Dist.deriv.	RRW,597;Str. Tab.,280;Holzel,
			A2/a	b=7.612A c=7.126Å	7=7		{3∞}[Mg°S'O₄(H₂O)] KIESERITE	126; Zeit. Knst., 1998, <u>213,</u> 141- 150.
SZOMOLNOKITE	FeSO ₄ .H ₂ O	{3∞}[Fe°S'O4(H2O)]	Mon.	a=7.624Å	β=115°52'		Dist.deriv.	RRW,598;Pov.,590;Str.Tab.,
			A2/a	b=7.468A	Z=4		(3∞)[Mg°S°O₄(H ₂ O)]	280;Holzel,126.
THICONOCION	0 107 10 2110	L (O II) IOIO ONO	Trio	0=10.12BA		Ca(3a) Ma(6c)	אורסבואו ור	Acta Cryst 1980 B36 2738-
IACHTHTDRIFE	Calmg2Ci6. LZn2C	(≈Carnallite)	ည် က ဤက	c=17.318Å		CI(18f) O _{I-II} (18f)		2739;SR,46A,173-174;Hölzel
				Z=3				suppl
TAKANELITE	(Mn,Ca)Mn ₄ O ₉ .H ₂ O		Hex.	a=8.68Å	Z=3			Am.Min.,1971, <u>56</u> ,1487-1488 (Abs.):Pov. 760:RRW 600-601
	O IIC COLT	L.IGITAISIIN ALO.1	. Č	9=8 834 Å	7=4	Cu(4a) Te(4a)		SR 43A 292 27 635-637 RRW
	Cu eC3.4720	(=Chalcomenite)	P2,2,2,	b=9.597Å		O _{I-V} (4a)		607;Pov.,564-566;Str. Tab.,
				C=1.428A				ZZO, MIII. ADS., 70-130Z.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
TENGERITE - (Y)	Y,(CO3), 2H,O	2∞f Y, ¹⁹¹ {a}C ^t O ₃ l ₃	Orth	a=6.078Å	Z=4	Y(4a) C ₍ (8b)		Am.Min., 1993, 78, 425-432;
	3	(H ₂ O) ₂]	Bb2₁m	b=9.157Å		C _{II} (4a)		Pov.,617;Hölzel,109;Min.Abs.,
		(≈Kimuraite)		c=5.114A				75-3580.
TERTSCHITE	Ca ₄ B ₁₀ O ₁₉ .20H ₂ O		Mon.	<i>د</i>				RRW,610;Pov.,483;Str.Tab., 259;Hölzel,116.
TETRANATROLI-	(Na,K) ₂ (Si,Al) ₅ O ₁₀	(Na,K)2 ⁶ (H ₂ O) ₂	Tet.	a=13.074Å	2=4	Na(16e)		Zeit.Krist., 1989, 189, 191-194;
1 E	.2H ₂ O	{3∞}[(Si,Al)₅ ^t O₁₀] (≈Natrolite Zeolite)	1 <u>4</u> 2d	c=6.620Å		Si _{I-II} (16e) (v. occ.)		Hölzel,243;Can.Min.,1980, <u>18,</u> 77-84.
THERMONATRITE Na2CO3.H2O	Na ₂ CO ₃ .H ₂ O	Nate National (H2O)	Orth.	a=6.472Å	Z=4	Na _{I-II} (4a) C(4a)		Acta Cryst.,1975, <u>B31</u> ,890-892;
		{a}{c_{O_3}}	P2 ₁ ab	b=10.724Å c=5.259Å		O _{I-IV} (4a) H _{I-II} (4a)		RRW,613;Pov.,618;Str.Tab., 245.
TODOROKITE	(Na,Ca,K,Ba,Sr) _{1-x}	(Mn,Mg,Al)	Mon.	a=9.764Å	β=94.06°	Mn ₁ (1g) Mn ₁₁ (2h)		Am.Min., 1988, 73,861-869; LF,
	(Mn, Mg, Al) ₆ O ₁₂ . 3-4H ₂ O	[(Na,Ca,K,Ba,Sr) _{1-x} O ₁₂ (H ₂ O) ₃₋₄] ^{ch} (≈Hollandite)	E E	D=2.8416A c=9.551Å	Z=1?	Mn _{Iv} (2n)		Tab.,200;LF,107.
TRABZONITE	Ca ₄ Si ₃ O ₁₀ .2H ₂ O		Mon.	a=6.895Å	β=98₀			Am.Min.,1988,73,1497(Abs.);
			P2 ₁	b=20.640Å c=6.920Å	Z=4			Hölzel, 204.
TRISTRAMITE	(Ca,U,Fe)	(Ca,U,Fe) ^[8] (P,S) [[]	Hex.	a=6.913Å	Z=3			Min.Mag.,1983,47,393-396;
	(PO4,SO4).2H ₂ O	[O ₄ (H ₂ O)] (=Rhabdophane- -(Ce))	P6 ₂ 22	c=6.422Å				K/B,175;Hölzel,175.
URANOSPHAERI- TE	Bi ₂ U ₂ O ₉ .3H ₂ O		Orth.	٤				Hőlzel,90;Pov.,333;Str.Tab., 226.
VANDENDRIESS-	PbU ₇ O ₂₂ .12H ₂ O		Orth.	a=14.07Å	Z=36 ?			Am.Min., 1960, 45, 1026-1061;
CHEITE			Pmma	b=40.85Å				Pov.,327;Str.Tab.,225;RRW,
VADISCITE	O To Calv	1 Clack No. 10	5	0-45.33A	7=8	AI/RC) D/RC)	1. O'D' AND TANGET OF THE	Acta Covet 1977 B33 283-265
	AIT 04:4120	(12O)2(3∞)[A P O4]	Pbca.	b=8.561Å		O _{[-VI} (8c)	VARISCITE	LF,282;RRW,648;SR,43A,251; Dov. 531-532;Str Tab, 331
VIVIANITE	Eo. (DO.), 8H.O	E 00 (O /U O) 1	Mon	0-10 1128	0-104 280			Can Min 1997 35 713-722 SR
	re3(rO4)2.0n2O	re3 r2[O6(n2O)8]	C2/m	b=13.464Å c=4.723Å	p=104.36			46A,327;LF,307;RRW,654; Pov.,558;K/B,66-67.
WARIKAHNITE	Zn ₃ (AsO ₄) ₂ .2H ₂ O	3∞[Zn ₃ [45/6]As₂ ^t	Tric.	a=6.710Å	$\alpha = 105.59^{\circ}$			SR,46A,341-342;Am.Min.,
		O ₈ (H ₂ O) ₂]	<u>-</u>	b=8.989Å	β=93.44°			1980,65,408(Abs.);Hölzel,160.
				C=14.533A	γ=108.68° Z=4			
WÖLSENDORFI-	(Pb,Ca)U ₂ O ₇ .2H ₂ O		Orth.	a=13.99Å	9=Z			Pov.,327;RRW,675;Str.Tab.,
2			C222	b=11.95A c=7.02Å				225;Holzel,89;Am.Min.,1957, 42,919(Abs.).
WOODRUFFITE	(Zn,Mn)Mn ₃ O ₇ .		Tet.	a=8.42Å	Z=2			Min.Mag.,1963,33,506-507;
	1-2H ₂ O		<u>Ф</u>	c=9.28Å				Pov.,319; RRW,676;Hölzel,74; Am.Min.,1953,38,761-769.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ZINC-		(Zn,Cu,Fe)°S	Mon.	a=14.07Å B=105°35'			Pov., 592-593; Str. Tab., 283;
- MELANTERITE		[O ₄ (H ₂ O) ₇]	P2 ₁ /c				RRW,687;Hölzel,127.
				c=11.04Å			
ZIRCOSULFATE Zr(SO4)2.4H2O	Zr(SO ₄) ₂ .4H ₂ O		Orth.	a=25.92Å Z=1			Am.Min., 1966, 51, 529 (Abs.);
			Fddd	b=11.62Å			Pov., 590-591; Str. Tab., 284;
_				c=5.532Å			RRW,690;Hölzel,128.

$A_pB_qC_rD_s.nAq.\\$

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ACUMINITE	SrAIF (OH) HO	HO) BON STORY	Mon	a=13 223Å	R=111 610	Sr(8f) Al(8f)		Zeit.Krist1991.194.221-227:
	7() +	(H ₂ O)]	C2/c	b=5.175Å	Z=8	O _{I-II} (8f) F _{I-IV} (8f)		Am.Min., 1988, 73, 1492 (Abs.).
		(«Tikhonenkovite)		c=14.251Å				
AFGHANITE	(Na,Ca,K) ₈ (Si,AI) ₁₂	(Na,Ca,K) ₈ ^[8]	Hex.	a=12.8013Å	₹ Z=85	Si _{I-IV} (12d)		Eur.J.Min.,1997,9,21-30;Bull.
	O ₂₄ (Cl,SO ₄) ₃ .nH ₂ O	(CI,SO ₄) ₃ (H ₂ O) _n	P63mc	c=21.4119Å		Al _{I-IV} (12d)		Min., 1968, 91, 34-42; Pov., 349;
		{3∞}[(Si,Al) ₁₂ 'O ₂₄] (≈Cancrinite.Zeolite)						Str.Tab.,482;Holzel,240;LF, 300
AFWILLITE	Ca ₃ (SiO ₃) ₂ (OH) ₂ .	{2∞}[Ca2 ^[7] Ca ^[6] Si2 ^t O ₆		a=16.278Å β=134.98°	3=134.98°	Ca _{I-III} (4a)		Acta Cryst., 1976, <u>B32</u> , 475-480;
		(OH) ₂ (H ₂ O) ₂]	ర	b=5.6321Å	Z=4	Si _{I-II} (4a) O _{I-X} (4a)		SR,42A,398;Pov.,435-436;Str. Tab, 379;RRW 5
ACDINIEDITE	0 (01)/43 03 //	- 1	4	2-14-04	7=18			Min Mag 1972 38 781-789
AGRINIERIE	(R ₂ , Ca, Sr)(UO ₂)3O ₄ .4H ₂ O		Cmmm Cmmm	b=24.07Å c=14.13Å	91 = 7			RRW,5-6;Hölzel,89.
AKROCHORDITE	(Mn,Mg) ₅ (AsO ₄) ₂	(Mn,Mg)5°As2¹	Mon.	a=5.682Å	β=99.49°	(Mn,Mg) ₍ (2a)		Am.Min., 1989, 74, 256-262;
	(OH)4.4H2O	[O ₈ (OH) ₄ (H ₂ O) ₄]	P2 ₁ /c	b=17.627Å	Z=2	(Mn, Mg) ₁₁₋₁₁₁ (4e)		Hölzel, 167;RRW,8;Am.Min.,
				c=6.832Å		As(4e)		1969, <u>53</u> ,1179(Abs.);Moore, 1995a,7-26.
AKSAITE	MgB ₆ O ₇ (OH) ₆ .	Mg°(H ₂ O) ₂	Orth.	a=12.540Å	Z=8	Mg(8c) B _{I-VI} (8c)		Am.Min.,1971, <u>56</u> ,1553-1556;
		{g}[(B2'B")2O7(OH)6]	Ppca	b=24.327Å	•	O _{I-XV} (8c)		RRW,8;Pov.,483;Str.Tab.,261;
		(≈VOIROVSRITE)		COO+. 1-0				A 11 O 12 40 20 DO 1 0 10 2
ALUMINITE	Al ₂ SO ₄ (OH) ₄ .7H ₂ O	(H ₂ O) ₄ [Al ₂ '(OH) ₄	Mon.	a=7.440A	β=110.18°	Al _{I-II} (4e) S(4e)		Acta Cryst.,1978, <u>B34</u> ,240/-
		(H2O)3(B)(OZH)	F21/C	D=15.583A	5=7	Ci-xv(4e)		450:CD 44A 272:Zeit Kriet
				C=11./00A		1-XVIII(46)		1998,213,141-150.
AMARANTITE	Fe,O(SO ₄),.7H,O	(H ₂ O) ₈ (1∞)[Fe, S, [†]	Tric.	a=8.976Å	∝=95.6°	Fe ₁₋₁₁ (2i) S ₁₋₁₁ (2i)		Zeit.Krist., 1968, <u>127</u> , 261-275;
	77/2	O-18(H-0), 12 12	1	b=11.678Å	B=90.36°	O _{I-XVI} (2i)		Pov., 599; Str. Tab., 293; Hölzel,
				c=6.698Å	y=97.20°			134;Zeit.Krist.,1998, <u>213</u> ,141-
					7=7			
AMARILLITE	NaFe(SO ₄) ₂ .6H ₂ O		Mon. P2/m ?	a=5.33A b=6.87A	β=95°37' 7=1			Hölzel, 130; Am. Min., 1936, <u>21,</u> 270-271 (Abs.).
				c=7.89Å				
AMMONIOBORI-	(NH4)3B15O20(OH)8		Mon.	a=25.27Å	B=94°17.5			Am.Min., 1959, 44, 1150-1158;
1	.4H ₂ O		C2/c	b=9.65A c=11.56Å	Z=4			Pov.,479,158;Str.1ab.,259; RRW,19.
ANALCIME	Na(AISi ₂)O ₆ .H ₂ O	Na(H ₂ O)	Cub.	a=13.73Å	Z=16	1/2Na(24c)	Na(H ₂ O)	Zeit.Krist.,1972, <u>135</u> ,240-252;
(cubic)		{3∞}[Si ₂ 'Al'O ₆] (≈Sodalite:Zeolite)	l a3d			O(96h) (Si,Al)(48g)	{3∞}[Si₂¹Al¹O ₆] ANALCIME (cubic)	SR,38A,361;Pov.,351;Str.Tab., 471;RRW,20;LF,293;285
ANALCIME	Na(AISi ₂)O ₆ .H ₂ O	Na(H ₂ O)	Mon.	a=13.689Å	β=90.3Å	Na _{I-II} (4e)	Dist.deriv. Na(H ₂ O)	Zeit.Krist.,1988, <u>184</u> ,63-69.
(monoclinic)		{3∞}[Si ₂ ¹Al'O ₆]	C2/c	b=13.676Å	Z=16	1/2Na _{III-IV} (8f)	{3∞}[Si₂'Al'O ₆] ANALCIME (cubic)	
ANIADAITE		(~Soudille, Leolile)	Lin	0-10:000 0-6 447Å	2-101 B40		A TANK TO THE CORNER	SR 454 309 K/B 88-89 BRW
TI WALAIN	C4216(FO4)2.412O	30[Ca2 Te 72 Cg	_ - - - - - -		α=101.54°			21.Hölzel 163
		(D2D)4]	- L	0-0.0104	0=104.24°			£ 1,1 101£61, 160.
				C=5.898AZ=1y=/0./6	17= /U. /b"			

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
AD IOUNITE		Mno Alo S.	Mon	2=6 198Å	B=100 28°	Mn(4e) Al. (4e)		Min.Mag., 1976, 40, 599-608;
	22H ₂ O	[O ₁₆ (H ₂ O) ₂₂] (=Halotrichite)	P2 ₁ /c	4	Z=4	S _{I-IV} (4e)		Hölzel,129.
ARHBARITE	Cu ₂ (AsO₄(OH). 6H ₂ O		Mon. ?	خ				Am.Min.,1983, <u>68</u> ,1038(Abs.); Hölzel,167.
ARMSTRONGITE	P Y	Ca°Zr° (H ₂ O) _{2.5} {2∞}[Si ₆ O ₁₅]	Mon. C2/m	a=14.04Å b=14.16Å c=7.81Å	β=109°33' Z=4	Zr(4c) Ca(4c) Si _{l-VI} (4c)		Sov.Phys.Cryst.,1978, <u>23,</u> 539- 542;Am.Min.,1974, <u>59,</u> 208-212; SR.45A.368:Höizel.221.
ARSENBRACKE- BUSCHITE	Pb ₂ (Fe,Zn)(AsO ₄₎₂ . H ₂ O	Pb ₂ ^{le/11} (Fe,Zn)°As ₂ ^t [O ₈ (H ₂ O)] («Brackebuschite)	Mon. P2/m	a=7.764Å b=6.045Å c=9.022Å	β=112.5° Z=2			Am.Min.,1978, <u>63,</u> 1289-1291 (Abs.);Min.Abs.,81-1245;SR, 44A, 263;Hölzel,163.
ARTINITE	Mg ₂ CO ₃ (OH) ₂ . 3H ₂ O	Mg2 ² {g}{C"O ₃](OH) ₂ (H ₂ O) ₃	Mon. C2/m	a=16.560Å b=3.153Å c=6.231Å	β=99.10° Z=2	Mg(4i) ½C(4i) 		Acta Cryst., 1977, <u>B33</u> ,3951- 3953;SR, <u>30A,</u> 408-409;SR, <u>43A,</u> 233-234;Pov.,620;Str. Tab.,247;RRW,38.
ASBOLANE	Mn(O,OH) ₂ (Co,Ni,Ca) _x (OH) _{2x} . nH ₂ O		Hex.	a=2.823Å c=9.34Å	ζ=Z			Am.Min.,1982 <u>,67</u> ,417-418; Hölzel,74.
BASALUMINITE	Al ₄ SO ₄ (OH) ₁₀ .4H ₂ O	Al ₄ °S¹ [O ₄ (OH) ₁₀ (H ₂ O) ₄]	Mon. ?	a=14.857Å b=10.011Å c=11.086Å	β=122.28° Z=4			Min.Mag.,1980, <u>43</u> ,931-937; RRW,53;Str.Tab.,294;Pov., 728,737,599.
BAYLISSITE	K ₂ Mg(CO ₃) ₂ .4H ₂ O	K ^[5+3] Mg°(H ₂ O) ₄ {g}{C ^{tr} O ₃] ₂	Mon. P2 ₁ /n	a=11.404Å b=6.228Å c=6.826Å	β=99.66° Z=2	K(4e) Mg(2d) C(4e) O _{LV} (4e)		SR <u>,44A</u> ,234-235;Min.Abs.,77- 2183;Hölzel,104.
BEARSITE	Be ₂ AsO ₄ (OH). 4H ₂ O		Mon. C2/c	a=8.55Å b=36.90Å c=7.13Å	β=97°49' Z=12			Pov.,519;Str.Tab.,340;RRW, 57;Am.Min.,1963 <u>,48,</u> 210-211 (Abs.).
BERBORITE	Be ₂ BO ₃ (OH,F).H ₂ O	{₃∞}{ Be₂¹B"O₃ (OH,F)(H₂O)]	Trig. P3	a=4.43Å c=5.33Å	Z=1	B(1a) Be _I (1c) Be _{II} (1b) O _I (3d) O _{II} (1c) O _{III} (1b)		N.Jb.Abh.,1990, <u>162,</u> 101-116; Pov.,469;Str.Tab.,253;Am. Min.,1968, <u>53</u> ,348-349(Abs.); RRW,61;HÖizel,112.
BERMANITE	Mn ₃ (PO ₄) ₂ (OH) ₂ . 4H ₂ O	Mn ₃ °P ₂ ' [O ₈ (OH) ₂ (H ₂ O) ₄]°	Mon. P2 ₁	a=5.446Å b=19.25Å c=5.428Å	β=110.29° Z=2	P _{I-II} (2a) O _{I-VIII} (2a) Mn _{I-III} (2a)		Am.Min., 1976, <u>61,</u> 1241-1248; K/B,69-70;SR, <u>42A,</u> 344-345; Pov.,550;Str.Tab.,342;Hölzel, 170.
BETA-ROSELITE	Ca ₂ (Co,Mg)(AsO ₄₎₂ .2H ₂ O		Tric. P 1	a=5.88Å b=7.67Å c=5.58Å	$\alpha = 112^{\circ}19^{\circ}$ $\beta = 71^{\circ}12^{\circ}$ $\gamma = 119^{\circ}41^{\circ}$ Z = 1			RRW,66-67;Bull.Min.,1960, <u>83,</u> 118-121.
BIKITAITE (triclinic)	LiAlSi ₂ O ₆ .H ₂ O	3∞[Li¹Al⁵Si₂¹O ₆ (H₂O)]	Tric.	ن				Encyc.Miner.Nam.,39.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
DIKITAITE .	I AISI, O. H.O	PORMOLA PARI PARE CO. (H. O)1	Mon	9=8 613Å	8=114.45	Li(2a) O _{LVII} (2a)		Am.Min., 1974, 59, 71-78; RRW,
(monoclinic)	27.1.9020	1021 NO 20 12 12 12 12 12 12 12 12 12 12 12 12 12	P2	b=4.962Å	Z=2	(AI,SI) _{I-II} (2a)		70;Pov.,346;Str.Tab.,470;SR,
				c=7.600Å		Si(2a)		40A,282;Hölzel,245.
BIRINGUCCITE	Na ₂ B ₅ O ₈ (OH).H ₂ O		Mon.	a=11.1955Å β=93.891°	β=93.891	Na _{I-IV} (4e)		Am.Min., 1974, 59, 1005-1015;
	· · · · · · · · · · · · · · · · · · ·		P2 ₁ /c	b=6.5607Å	Z=8	B _{I-x} (4e)		SR, 40A, 218-219; Encyc. Miner.
				c=20.7566Å				Nam., 40; Holzel, 117.
BIRNESSITE	(Na,Ca,K)(Mg,Mn)	(Mg,Mn)°Mn ₆ °	(Hex.)	a=5.175Å	$\beta = 103.18^{\circ}$			Am.Min., 1990, 75,477-489;
	Mn ₆ O ₁₄ .5H ₂ O	O14(Na,Ca,K)(H2O)5]		b=2.850Å	Z=2			Hölzel, 74; Am. Min., 1988, 73,
		(≈Chalcophanite)	- 1	c=7.337A		100-14		7401-1404.
BLÖDITE	Na ₂ Mg(SO ₄) ₂ .4H ₂ O	Naz	Mon.	a=11.126A	β=100.84	β=100.84° Na(4e) Mg(2a)		Call.Mill., 1903, 23,009-074,
		{g}[Mg°S ₂ 'O ₈ (H ₂ O) ₄]	P2 ₁ /a	b=8.242A c=5.539Å	Z=2	O _{I-VI} (4e) S(4e) 		KKW, /0;F0V.,383,3K, <u>42</u> ,404.
BOGGSITE	Na ₃ Ca ₈ (Si,Al) ₉₆	Na ₃ Ca ₈ (H ₂ O) ₇₀	orth.	a=20.236Å	Z=1	Si _{LVI} (16j)		Am.Min., 1990, 75,501-507; Am.
		{3∞}[(Si,Al)₃6'O₁92] (Zeolite)	E E	c=12.798Å		O-vi(19J)		Hölzel suppl
BOLIVARITE	Al ₂ PO ₄ (OH) ₃ .	(2000)	Amorph.					Can.Min., 1995, 33, 59-65; Min.
	4-5H ₂ O							78.
BORAX	Na ₂ B ₄ O ₅ (OH) ₄	[{g}[B2"B205(OH)4]	Mon.	a=11.885Å B=106.623°	3=106.623	Na ₁ (4a) Na ₁₁ (4e)	{g}{B ₂ ¹ B ₂ O ₅ (OH) ₄]	Acta Cryst., 1978, B34, 3502-
	8H ₂ O	{1∞}[Na ₂ °(H ₂ O) ₈]	C2/c	b=10.654Å	Z=4		{1∞}[Na ₂ °(H ₂ O) ₈] BORAX	3510;LF,219;Pov.,478;Str. Tab.,258.
POSTWICKITE	CaMn. Ci.O., 7H.O		0	2				Min.Mag.,1983,47,387-389;
	Carvilli6013016.71120		-	•				Hölzel, 190.
BOUSSINGAULTI- (NH4)2Mg(SO4)2.	(NH4)2Mg(SO4)2.		Mon.	a=9.383Å	β=107°03'	(NH4)(4e)		Acta Cryst., 1964, 17, 1478-
1	6H ₂ O		P2 ₁ /a	b=12.669A	Z=2	Mg(2a) S(4e)		596;Str.Tab., 289;RRW,83.
DDACKEDIICCUI			Mon	8-8 810Å	R=111030'	Ph(4c) V(4c)		Min.Mag., 1973, 39, 69-73; SR,
TE	H ₂ O		P2 ₁ /m	b=6.155Å	Z=2			19,451-453;Pov.,497;Str.Tab., 339;RRW,83-84.
RRAITSCHITE -	(Ca Na ₂) ₇ (Ce La) ₂		Hex.	a=12.156Å	Z=1			Am.Min., 1968, 53, 1081-1095;
(Ce)	B ₂₂ O ₄₃ .7H ₂ O		٠	c=7.377Å				Pov.,487-488;Str.Tab.,262;
DOANIDITE	(Ma Ma)	October 11/10 BAD10	Mon	A S S S S S S S S S S S S S S S S S S S	R=0003U	Mn(2a) Ca(4e)		SR.16.289-292:Pov519-520;
	(AsO ₄) ₂ .2H ₂ O	As ₂ O ₈ (H ₂ O) ₂]	P2 ₁ /c	b=12.80Å	Z=2	As(4e) O _{I-IV} (4e)		Str.Tab.,337,287;RRW;85.
		(=Kröhnkite)		c=5.65Å		(H ₂ O)(4e)		
BRASSITE	Mg(AsO ₃ OH).4H ₂ O	L	Orth.	a=7.47Å	Z=8	As(8c) Mg(8c)		Acta Cryst., 1976, B32, 1460-
		[O ₃ (OH)(H ₂ O) ₄]	Pbca	b=10.89A c=16.58Å		O _{I-IV} (8c)		1466;SR,42A,363;Holzel,162; Am.Min.,1975,60,945(Abs.).
BREWSTERITE		(Sr,Ba,Ca) ^[9] (H ₂ O) ₅	_	a=6.767Å	β=94.40°	1		Acta Cryst.,1985,C41,492-
	Ò ₁₆ .5H ₂ O	(300)[Al2'Si6'O16]	P2 ₁ /m	b=17.455Å	Z=2	(AI,SI) _{I-IV} (4f)		497;RRW,87;Pov.,353-354; SR,29,399-401.
		(Z EUIIIE)						

NAME	CHEMICAL FORMULA	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
BRUSHITE	Ď	Caletzipt	Mon.	a=5.812Å	β=116.4°	Ca(4e) P(4e)		SR,37A,293,22,408-411,27,
		[O ₃ (OH)(H ₂ O) ₂]	l 2/a	b=15.180Å	Z=4	O _{I-III} (8fa) H(4e)		574;RRW,93;Pov.,557-558;
		(≈Gypsum)		c=6.239Å				Str.Tab.,339;Hölzel,165.
BUDDINGTONITE	(NH4)(Si ₃ AI)O ₈ .	(NH ₄)(H ₂ O) _{0.5}	Mon.	a=8.571Å	$\beta = 112^{\circ}44'$			Am.Min., 1964, 49, 831-850;
	0.5H ₂ O	{3∞}[Si ₃ ^t Al ^t O ₈]	P2 ₁	b=13.032Å	Z=4			Pov., 345-347; Str. Tab., 476;
		(≈Sanidine)		C=/.18/A				KKW, 83, LF, 200.
BULACHITE	Al ₂ AsO ₄ (OH) ₃ .		Orth.	a=15.53Å	Z=10			Am.Min., 1985, 70, 214 (Abs.);
	3H2O		Pmnm	b=17.78A c=7.03Å				Holzel,169.
RITI FRITE	Feso.(OH) 2H ₂ O	Fe°S'(O,(OH)/(H,O),1	Mon.	a=6.50Å	8=108°23'	Fe(2a)S(2e)		Am.Min., 1971, 56, 751-757; SR,
	0,4,4,1,1,2,1	77/-7: \/: - \\tag{1-7}	P2 ₁ /m	b=7.37Å		O ₁ (4f) O ₋ (2e)		37A,309-310;Pov.,599;Str. Tab.,293;RRW,96.
CAFARSITE	(Ca Mn) _e (Ti Fe) _{e s}		Cub.	a=15.984Å	Z=4			SR,44A,263;RRW,99;Am.Min.,
	(ASO ₃)12.2H2O		Pn3					1978, <u>63</u> ,795(Abs.);Am.Min.,
	1							1967, <u>52</u> ,1584(Abs.);Min.Abs., 78-1499
CAFETITE	(Ca Mo)(Fe Al),Ti		Orth.	a=31.34Å	9=Z			Am.Min.,1986,71,1045-1048;
	0 ₁₂ .4H ₂ O		Ammm	b=12.12Å				Am.Min., 1960, 45, 476; Pov.,
				c=4.96Å				319-320;Str.Tab.,198;RRW,99.
CALCIOHILAIRI-	CaZrSi ₃ O ₉ .3H ₂ O		Trig.	a=20.870Å	Z=24			Am.Min., 1988, 73, 1191-1194;
ш			R32	c=16.002A				Hölzel, 205.
CALCIUM	CaZrSi ₃ O ₉ .H ₂ O	Ca ^{lo} (H ₂ O)	Hex.	a=7.32Å	Z=2			RRW, 102; Pov., 368-369; Str.
CATAPLEIITE		{3∞}[Zr°Si₃¹O₃]	P63/mmc	c=10.15A				Tab.,404;Am.Min.,1964,49,
		(≈Catapleiite)						i i sa(Abs.), Holzei suppi
CANAPHITE	Na ₂ CaP ₂ O ₇ .4H ₂ O		Mon.	a=5.673Å	$\beta = 106.13^{\circ}$	β=106.13° Ca(2a) Na _{I-II} (2a)		Am.Min., 1988, 73, 169-171; K/B,
			٦ -	b=8.48Å c=10.529Å	Z=2	P _{I-II} (2a) O _{I-XI} (2a)		159;Hölzel,166.
CARI OSTURANI-	(Ma Fe Ti)2.	+-	Mon.	a=36.70Å	B=101.1º			Am.Min., 1985, 70, 767-772;
TE	(Si,Al) ₁₂ O ₂₈ (OH) ₃₄ .	[O ₂₈ (OH) ₃₄ (H ₂ O)]		b=9.41Å	Z=2			Hölzel,230;Am.Min.,1985, <u>70,</u>
	H ₂ O			C=7.281A	7=0			7.3-781, HOLSEI,230.
CARRIBOYDITE	(Ni, Al)8(SO ₄)1.6	(Ni,Al)8 516	Jex.	0 - 0 - 4 7 0 - 4 7	, _ 7			Min Mac 4004 44 222 227
	(OH) ₁₆ .8.5H ₂ O	[O _{6.4} (OH) ₁₆ (H ₂ O) _{8.5}]		C=10.34A				Hölzel, 134.
CASSIDYITE	Ca ₂ (Ni,Mg)(PO ₄₎₂ .		Tric.		α=96°49.5			Am.Min.,1967,52,1190-1197;
	2H ₂ O		٦-		β=107°21.5'			Pov., 553-554; Str. Tab., 337;
				c=5.41Å	γ=104°34.9°			RRW,111;Hölzel,163.
CATABI FIITE	Na. ZrSi.O. 2H.O	Na, ^[6] (H,O),	Mon.	a=23.917Å	Z=8			Min.Abs.83M/0153;RRW,111;
		(3∞)[Zr ⁹ Si ₃ O ₉]	B2/b	b=20.148Å				Pov., 368-369; Str. Tab., 403;
				C=7.432A				TOIZEI, 203, 3D, 24-23, 118.

NAME	CHEMICAL	STRUCTURAL FORMUL A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
CESBRONITE	Cu ₅ (TeO ₃) ₂ (OH) ₆ .		Orth.	a=8.624Å	Z=2			Min.Mag., 1974, 39, 744-746;
	2H ₂ O		Pbcn	b=11.878Å c=5.872Å				Hőlzel,93.
CHABAZITE	Ca(Al ₂ Si ₄)O ₁₂ .6H ₂ O	(Ca,□ ₅₎ (H ₂ O) ₆	Trig.	a=13.78Å	a _R =9.421Å	(AI,SI)(12i)	(Ca, □ ₅)(H ₂ O) ₆	Acta Cryst., 1982, <u>B38</u> , 602-605;
	(3∞)[Al ₂ 'Si ₄ 'O ₁₂]	(3∞)[Al₂'Si₄'O₁2]	R 3m	c=14.97A	α=94.20°	O ₁ (6f) O ₁₁ (6g) (rhomb. d.)	(3∞)[Al₂'Si₄'O₁2] CHABAZITE	LF,287;P0V.,351-352;Str.1ab., 492;RRW,117.
CHAI CONATRO.	Na.Cu/CO.), 3H.O	Ive O'H'O'GN	Mon	0=0 608Å	A=01 830	Ca(4e) Na(4e)		Zeit Krist 1978 148 165-177:
NITE	14a2ca(CC3)2.51 12C	fall Call	P2,/n	h=6 101Å	7=7	O. (4e) C (4e)		RRW.119:Pov. 619:SR.45A.
1		780 01/81		c=13.779Å	1	(2: NEI) (2: NAI)		286-287;Hölzel,104.
CHLORMAGALU-	(Mg,Fe) ₄ Al ₂ (OH) ₁₂		Hex.	a=5.29Å	Z=1			Am.Min., 1983, 68,849 (Abs.);
MINITE	Cl ₂ .2H ₂ O		P6/mcm	c=15.46Å				Hölzel,107.
CHOLOALITE	CuPb(TeO ₃) ₂ .H ₂ O		Cub.	a=12.519Å	Z=12			Min.Mag.,1981,44,55-57;Min.
			P23					Mag.,1994, <u>58,</u> 505-508;Hölzel, 93.
CLARAITE	(Cu,Zn) ₃ CO ₃ (OH) ₄ .		Hex.	a=26.22Å	S=66			Am.Min.,1983, <u>68</u> ,471(Abs.); Hölzel 106
CLINOHEDRITE	CaZnSiO ₄ .H ₂ O	Ca ² Zn ² Si ² [O ₄ (H ₂ O)] ^c	Mon.	a=5.090Å	β=103.26	Ca(4a) Zn(4a)	Ca°Zn'Si'[O4(H2O)]°	Zeit.Krist., 1976, 144, 377-392;
			ပိ	b=15.829Å	Z=4	Si(4a) O _{I-V} (4a)	CLINOHEDRITE	RRW,135;Pov.,395;Str.Tab.,
				c=5.386Å		:		392;SR, <u>28,</u> 261-262;SR, <u>43A,</u> 310:Moore 1995a 7-26
THI O LITEON IS	Als KO. (Al. Si.)O.		Mon	9=17 BBOÅ	B=118 479	(A) Sil (Bi)		Zeit Krist 1977 145 216-239:
	20H2O	(14a,176 (1120)20	C2/m	h=17 983Å	7=1			SR 43A 358 Str Tab. 542
	27.54			c=7.400Å		(6. \)()		RRW,136.
COBALTKORI-	(Co,Zn)(AsO ₃ OH)		Tric.	a=7.95Å	α= 90 .9°			Am.Min., 1982, 67, 414 (Abs.);
TNIGITE	.H.O.		P 1 ?	b=15.83Å	β=96.6°			Hölzel, 162; Encyc. Miner. Nam.,
				c=6.67Å	γ=90.0° Z=8			
COLEMANITE	CaB ₃ O ₄ (OH) ₃ .H ₂ O	Ca ¹⁷ (H ₂ O)	Mon.	a=8.743Å	β=110°7'	Ca(4e) B _{I-III} (4e)		1 1
		{1∞}[B ^r B ₂ O₄(OH)₃] ^{my}	P2 ₁ /a	b=11.264Å c=6.102Å	Z=4	O _{I-VIII} (4e)	{1∞}[B"B ₂ 'O ₄ (OH) ₃]"" COLEMANITE	
COLLINSITE	Ca ₂ (Mg,Fe)(PO ₄) ₂ .		Trịc.	a=5.7344Å	α=97.29°			
	2H2O		7	b=6.780A	$\beta = 108.56^{\circ}$			MIN.ADS., / 3-1844, RRVV, 141,
				c=5.441Å	γ=107.28° Z=1			Pov.,553-554;SR,41A,315; Str.Tab.,336.
COMPREIGNACI-	K ₂ (UO ₂) ₆ (OH) ₁₄ .		Orth.	a=7.16Å	Z=2			Am.Min., 1965, 50,807-808
	1 20		<u> </u>	c=14.88Å				Hölzel,90.
COPIAPITE	Fe ₅ (SO ₄) ₆ (OH) ₂ .	(H ₂ O) ₆ (1\omega)[Fe ₂ °S ₃ 'O ₁₂ Tric.	Tric.	a=7.390Å	α=93°40'	Fe ³⁺ (2i) Fe _{I-II} (2i)		Am.Min., 1973, 58, 314-322; Zeit.
		(OF)(F2O)4/2	_	D=18.213A	β=102°3	SI-III(ZI)		Min 1085 22 52-55, Call.
		{g}[re⁻(H₂O)6]		c=7.290A	γ=99°16′ Z=1			1998, <u>213</u> ,141-150.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL D	UNIT CELL DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
CORRENSITE	8 0	(Mg,Fe,Al) ₉ °(OH) ₁₀ (H ₂ O) ₁ {2∞}{(Si,Al) ₄	Orth.	a=5.33Å b=9.24Å	Z=2			Am.Min., 1982,67, 394-398; Hölzel,231;LF,233-234;Min.
		o₁₀/₂` ≈Vermiculite-Chlorite		K6.92				Abs., 88-182;RRW,148;Pov., 733;Str.Tab.,464.
COWLESITE	Ca(Al ₂ Si ₃)O ₁₀ . 5-6H ₂ O	Ca(H ₂ O) ₅₋₆ {3∞}[Al ₂ ^t Si ¹ O	Orth. P222.	a=11.27Å	2= 8			Am.Min., 1975, 80, 951-956;
		≈Thomsonite;Zeolite		c=12.61Å				565-566;LF,292.
CYANOCHROITE	K ₂ Cu(SO ₄) ₂ .6H ₂ O			a=9.09Å	β=104°28			RRW,159;Hölzel,129:Str.Tab.,
			P2 ₁ /a	b=12.14Å c=6.18Å	Z=2			289;Pov.,595.
DEFERNITE	Ca ₃ CO ₃ (OH,CI) ₄ .		orth.	a=17.82Å	Z=8	Ca _{1-V1} (4c)		Am.Min., 1988, 73,888-893; Am.
	H ₂O		Pnam	b=22.76A c=3.629Å		Cı-ıı(4 c)		Min.,1980, <u>65</u> ,1066(Abs.); Hölzel,100.
DIETRICHITE	(Zn,Fe,Mn)Al ₂		Mon.	a=20.5Å	β=96°34'			Hölzel, 129; RRW, 174; Pov., 598;
	(SO ₄) ₄ .22H ₂ O		P2	b=24.2Å c=6.18Å	Z=4			Str.Tab.,285.
DITTMARITE	(NH ₄)MgPO ₄ .H ₂ O		Orth.	a=5.606Å	Z=2			Am.Min., 1972, 57, 1316 (Abs.);
			711112 ₁	C=4.788Å		-		Hölzel, 162; RRW, 176.
DORFMANITE	Na ₂ (PO ₃ OH).2H ₂ O		ë ë	a=10.34Å	Z=8			Am.Min., 1981, <u>66, 217-218</u>
			ć	b=16.82A c=6.01Å				(Abs.);K/B, 159;Hölzel,165.
DYPINGITE	Mg ₅ (CO ₃) ₄ (OH) ₂ .		ځ	٤				Am.Min., 1970, <u>55</u> , 1457-1465;
FDINGTONITE	Ra/ALSi.\O.	Ra/H,O).	Tot	0=0 594 Å	7-3			MOIZEI, 100; KKW, 182-183.
(tetragonal)	3.5H ₂ O	(300)[AI ₂ (5)35 (300)[AI ₂ (5)35	P 421m	c=6.524Å	7-7			Am.Min.,1985,/U,1333-1334 (Abs.):Str Tab. 487:Pov. 356
								SR,42A,404;LF,289.
EDINGTONITE	Ba(Al ₂ Si ₃)O ₁₀ .4H ₂ O		orth.	a=9.550Å	Z=2			Acta Cryst., 1976, <u>B32</u> , 1623-
(ormornombic)		{3∞}[Al₂'Si₃'O₁₀] (≈Natrolite,Zeolite)	P21212	b=9.665A c=6.523Å				1627;SR, <u>42A</u> ,404;RRW,185.
EKATERINITE	Ca ₂ B ₄ O ₇ (CI,OH) ₂ .		Hex.	a=11.86Å	Z=12			Am.Min., 1983, 68,850 (Abs.);
	2H ₂ O		P6/m	c=23.88A				Am.Min.,1981,66,437(Abs.); Hölzel, 115:Min.Abs.,81-3237.
ELPIDITE	Na ₂ ZrSi ₆ O ₁₅ .3H ₂ O		ort.	a=7.14Å	Z=4	Zr(4e) Na _i (4d)		Am.Min., 1973, 58, 106-109;
			E DOCE	D=14.68A C=14.65Å		Na _{II} (4e) Si _{I-III} (8c) 		Pov.,369;Str.Tab.,426;RRW, 188:Hölzel,221
ENDELLITE	Al ₂ Si ₂ O ₅ (OH) ₄ .	(H ₂ O) ₂ {z _∞ }[Al ₂ °(OH) ₄	Mon.	a≈5.2Å	β=92°18'		(H ₂ O) ₂ {2∞}[Al ₂ °(OH) ₄	RRW,190-191;Pov.,736;Str.
		{2∞}[Si ₂ 'O ₅]"]		b≈8.9A c≈10.1Å	Z=2		{2∞}[Si₂O₅]?] HALLOYSITE -10 Å	Tab.,523,461;Hölzel,235;LF, 239;Pov.,736.
EUCHROITE	Cu ₂ AsO ₄ (OH).	Cu ₂ 'As'	Orth.	a=10.056Å	Z=4	Cu-11(4a) As(4a)		Acta Cryst., 1989, C45, 1479-
		[O ₄ (O ₁)(H ₂ O ₁) ₃]	F212121	c=6.103Å		O _{I-VIII} (4a)		1482;RRW,198;Pov.,516;Str. Tab.,341;Hölzel,167.

NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
EUDIDYMITE	Na ₂ Be ₂ Si ₆ O ₁₅ .H ₂ O	Na ₂ ^[7] (H ₂ O) {3∞}[Be ₂ Si ₆ O ₁₅]	Mon. C2/c	a=12.63A β=103°43' b=7.38Å Z=4 c=14.02Å	3=103°43' Z=4	Na(8f) Be(8f) Si⊢⊪(8f)		Am.Min.,1972, <u>57,</u> 1345-1354; Pov.,362;SR, <u>38A,</u> 367;Str.Tab., 430;RRW,200.
EUGSTERITE	Na ₄ Ca(SO _{4)3.2H₂O}		Mon. ?	٠	β=116° Z=?			Am.Min.,1981, <u>66</u> ,632-636; Hölzel,131.
EZCURRITE	Na ₂ B ₅ O ₇ (OH) ₃ . 2H ₂ O	Na ₂ ^[87] (H ₂ O) ₂ {1∞}[B ₅ 'O ₇ (OH) ₃]	P Tic.	a=8.598Å b=9.570Å c=6.576Å	$\alpha = 102^{\circ}45^{\circ}$ $\beta = 107^{\circ}30^{\circ}$ $\gamma = 71^{\circ}31^{\circ}$ Z = 2	Na _{I-II} (2) B _{I-V} (2) O _{I-XII} (2)		Am.Min.,1973, <u>58</u> ,110-115,Am. Min.,1967, <u>52</u> ,1048-1059;Pov., 485;Str.Tab.,258;RRW,202; SR, <u>39A</u> ,262.
FAIRFIELDITE	Ca ₂ (Mn,Fe)(PO ₄₎₂ . 2H ₂ O	Ca ₂ ^{I7} {1∞}[(Mn,Fe)° P ₂ 'O ₈ (H ₂ O) ₂] (≈Kröhnkite)	P Tric.	a=5.79Å b=6.57Å c=5.51Å	α =102°16° β =108°40° γ =90°18° Z =1	Ca(2i) Mn(1a) P(2i) O _{I-V} (2i)		Acta Cryst.,1970, <u>B26,</u> 640- 645; RRW,204;Pov.,553-554; Str.Tab.,336;SR, <u>35A</u> ,333-334.
FALCONDOITE	(NI,Mg) ₄ Si ₆ O ₁₅ (OH) ₂ .6H ₂ O	(Ni,Mg)₄ ⁰ (H ₂ O) ₆ (OH) ₂ {2∞}{Sie,O ₁₅] (=Sepiolite, ≈Palygorskite)	Orth. Pncn	a=13.5Å b=29.9Å c=5.24Å	Z=4			Hölzel,236;Encyc.Miner.Nam., 95;Can.Min.,1976, <u>14</u> ,407-409.
쁘	Al ₄ SO ₄ (OH) ₁₀ . 5H ₂ O		Hex. ?	ځ				Am.Min., 1965 <u>, 50,</u> 812(Abs.); Hölzel,135.
FERRINATRITE	Na ₃ Fe(SO ₄₎₃ .3H ₂ O	{3∞}{Na₃ ^{7/} Fe°S₃ ³ O₁₂ (H₂O)₃]	Trig. P 3	a=15.566Å c=8.69Å Z=6		Na _{I-III} (6g) Fe _{I-II} (2d) Fe _{III} (1a)Fe _{IV} (1b) Si _{I-III} (6g)		Min.Mag.,1977,41,375-383; RRW,209-210;Pov.,594;Str. Tab.,287;Hőizel,130.
FERRISTRUNZITE Fe ₃ (PO ₄) ₂ (OH) ₃ 5H ₂ O	Fe ₃ (PO ₄) ₂ (OH) _{3.} 5H ₂ O		Tric. P1	a=10.01Å b=9.73Å c=7.334Å	$\alpha = 90.52^{\circ}$ $\beta = 96.99^{\circ}$ $\gamma = 116.43^{\circ}$ Z = 2			Am.Min.,1989, <u>74,</u> 502(Abs.); Hölzel,168.
FERROSTRUNZI- TE	Fe ₃ (PO ₄) ₂ (OH) ₂ . 6H ₂ O		Trịc. P 1	a=10.23Å b=9.77Å c=7.37Å	α =89.65° β =98.28° γ =117.26° Z=2			Am.Min.,1984 <u>,69,</u> 811(Abs.); K/B,156;Hölzel,171.
FIBROFERRITE	FeSO ₄ (OH).5H ₂ O	Fe°S'[O4(OH)(H ₂ O) ₅]	Trig. R 3	a=24.176Å c=7.656Å	Z=18			Min.Abs.,83M/1237;RRW,213- 214;Pov.,599;Str.Tab.,293; Hölzel,135.
GAIDONNAYITE	Na ₂ ZrSi ₃ O ₉ .2H ₂ O	Na ₂ °Zr²(H ₂ O) ₂ {1∞}{Si₃ ^t O₃] (=Georgechaoite)	Orth. P2 ₁ nb	a=11.740Å b=12.820Å c=6.691Å	Z=4	Na _⊡ (4a) Zr(4a) Si _{⊡⊪} (4a)		Can.Min.,1985, <u>23</u> ,11-15; Hölzel,205.
GAYLUSSITE	Na ₂ Ca(CO ₃₎₂ .5H ₂ O	(g)[(C ¹ O ₃)] ₂	Mon. C2/c	a=14.349Å b=7.780Å c=11.207Å	β=127°51' Z=4	Na(8f) Ca(4e) O _{LV} (8f) O _{VI} (4e) C(8f)		SR <u>,33A,</u> 435-436;Am.Min., 1967, <u>52</u> ,1570-1572;Hölzel, 164;Pov.,619;Str.Tab.,245.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
GEORGEITE	Cu ₅ (CO ₃) ₃ (OH) ₄ . 6H ₂ O		Amorph.					Min.Mag.,1979,43,97-98;Min. Mag.,1991,55,163-166.
GINIITE	Fe ₅ (PO ₄) ₄ (OH) ₂ . 2H ₂ O		Mon. P2/a	a=14.253Å b=5.152Å c=10.353Å	β=111.30° Z=2			Min.Abs.,81-3230;Am.Min., 1980, <u>65,</u> 1066(Abs.).
GISMONDINE	Ca ₂ Al ₄ Si ₄ O ₁₆ .9H ₂ O	Ca₂ [°] (H₂O) ₉ {3∞}{Al₄¹Si₄¹O₁6] (Zeolite)	Mon. P2 ₁ /c	a=10.02Å b=10.62Å c=9.84Å	β=92°25' Z=2	Ca(4e) Al _{I-II} (4e) Si _{I-II} (4e)	Ca₂ [°] (H₂O)₅ {3∞}{Al⁴Si₄¹O₁₅] GISMONDINE	Am.Min., 1963, 48, 664-672; SR, 28, 279-281; Pov., 355; Str. Tab., 491; RRW, 237; LF, 295.
GMELINITE	Na₄(Al₄Si ₈)O ₂₄ . 11H₂O	Na ₄ (H ₂ O) ₁₁ {3∞}[Al ₄ Sis O ₂₄] (Zeolite)	Hex. P6 ₃ /mmc	a=13.756Å c=10.048Å		Na(4f) (Si,Al)(24l)		SR,31A,227-228;Min.Abs., 83M-0165;LF,286;Pov.,351- 352; Str.Tab.,492;RRW,240.
GOLDICHITE	KFe(SO ₄₎₂ .4H ₂ O	K ^{(10/11} {2∞}{Fe°S₂¹O ₈ (H₂O)₄]	Mon. P2 ₁ /c	a=10.387Å b=10.486Å c=9.086Å	β=101.68 ^a Z=4	β=101.68° Κ(4e) Fe(4e) Z=4 Οι-χιι(4e)		Am.Min., 1971, <u>56,</u> 1917-1933; RRW, 241-242; Pov., 595; Str. Tab., 287; SR, <u>37A,</u> 308-309.
GOOSECREEKI- TE	Ca(Al ₂ Si ₆)O ₁₆ .5H ₂ C	, Ca ^{l೮} (H ₂ O) ₅ {3∞}[Al₂′Si₅′O₁₅] (Zeolite)	Mon. P2 ₁	a=7.401Å b=17.439Å c=7.293Å	β=105.44° Z=2	Ca(2a) Al _{ı-ιι} (2a) Si _{ι-νι} (2a)		Am.Min.,1986 <u>,71,</u> 1494-1501; Hölzel,246.
GÖRGEYITE	K ₂ Ca ₅ (SO ₄) ₆ .H ₂ O	K ₂ ^[8] [Ca ₃ ^{9]} Ca ₂ ¹⁸ S ₆ O ₂₄ (H ₂ O)]	Mon. B2/b	a=17.519Å b=18.252Å c=6.840Å	β=113.33° Z=4			Min.Abs.,82M/152;RRW,243; Pov.,594;Str.Tab,290;Hőizel, 131;RRW,243;SR,46A,349; Zeit.Krist.,1998, <u>213,</u> 141-150.
GOWERITE	CaB ₆ O ₈ (OH) ₄ .3H ₂ O		Mon. P2₁/a	a=12.882Å b=16.360Å c=6.558Å	β=121.62° Z=4	β=121.62° Ca(4e) Β _{1-VI} (4e) Z=4 Ο _{1-XII} (4e)		Am.Min.,1972, <u>57</u> ,381-396; RRW,244;Pov.,483;Str.Tab., 261;SR, <u>38A,</u> 296.
GRANTSITE	Na ₄ Ca _{0.7} V ₁₂ O ₃₂ . 8H ₂ O		Mon. C2/m	a=17.54Å b=3.60Å c=12.41Å	β=95°15' Z=1			Am.Min.,1964,49,1511-1526; RRW,245-246;Pov.,502;Str. Tab.,223;Am.Min.,1990,75, 508-521;Hölzel,88.
GRUMANTITE	NaSi ₂ O ₄ (OH).H ₂ O		Orth. Fdd2	a=15.979Å b=18.25Å c=7.169Å	Z=16			Zeit.Krist.,1988, <u>185,</u> 612(Abs.), Am.Min.,1988, <u>73</u> ,440(Abs.); Hölzel,226.
HAIDINGERITE	Ca(AsO ₃ OH).H ₂ O	Ca°As[O₃(OH)(H₂O)]	Orth. Pcnb	a=6.904Å b=16.161Å c=7.935Å	Z=8	Ca(8d) As(8d) O _{LIV} (8d)		Acta Cryst., 1972, <u>B28,</u> 209-214; Bull.Min., 1966, <u>89</u> , 18-22; Pov., 524; Str. Tab., 338; RRW, 254- 255; SR, <u>32A</u> , 387-388.
HALLOYSITE - - 10A	Al ₂ Si ₂ O ₅ (OH) ₄ . 2H ₂ O	1 ₂ °(OH) ₄	Mon. Cm	a=5.20Å b=8.92Å c=10.25Å	β=100° Z=2	Al(4b) Si(4b)	(H ₂ O) ₂ {2∞}{Al ₂ °(OH) ₄ {2∞}{Si ₂ ¹O ₅ ³] HALLOYSITE - 10Å	LF,239;RRW,256;Pov.,436; Str.Tab.,461;SB,3,544-545.
HALOTRICHITE	FeAl ₂ (SO ₄) _{4.} 22H ₂ O Fe ^o Al ₂ ^o S ₄ ^t [O ₁₆ (H ₂ O) ₂₂] (=Apjohnite)	Fe ³ Al ₂ °S ₄ ' [O ₁₆ (H ₂ O) ₂₂] (=Apjohnite)	Mon. P2/m	a=20.51Å b=24.28Å c=6.18Å	β=100% Z=4			Hölzel, 129;RRW, 256;Pov., 598; Str. Tab., 285;Min. Abs., 88M/ 1830.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
HALURGITE	Mg ₂ (B ₄ O ₅ (OH) ₄) ₂ . H ₂ O	V TOWN	Mon. P2/c	a=13.25Å b=7.60Å c=13.20Å	β=92°9′ Z=4			Sov.Phys.Cryst.,1965,9,616- 617;Hölzel,115;Pov.,478;Str. Tab.,258.
HELMUTWINKLE- RITE	PbZn ₂ (AsO ₄₎₂ . 2H ₂ O		P1		α=94.7° β=110.7° γ=112.7° Z=1			Min.Abs.,80-4913;Hölzel,162; Am.Min.,1980 <u>,65</u> ,1067(Abs.).
HEMIMORPHITE	Zn ₄ Si ₂ O ₇ (OH) ₂ .H ₂ O	Zn ₄ Si ₂ O ₇ (OH) ₂ .H ₂ O (H ₂ O) {3∞}{Si ₂ '2n ₄ 'O ₇ (OH) ₂]	Orth. I mm2	a=8.367Å b=10.730Å c=5.115Å	Z=2	Zn(8e) Si(4d)		Zeit.Krist.,1977, <u>146,</u> 241-259; Str.Tab.,76;LF,194.
HEULANDITE	(Na,K,Ca,Sr,Ba) ₅ (Al ₉ Si ₂₇)O ₇₂ .26H ₂ O	(Na,K,Ca,Sr,Ba) ₅ ^[5] (H ₂ O) ₂₆ {3∞}[Als ⁵ Si ₂₇ ⁴ O ₇₂] (Zeolite)	Mon. Cm	a=17.73Å b=17.82Å c=7.43Å	β=116°20'h Z=1	β=116°20'Na,K,Ca,S/),⊔∥ Z=1 (Sa) (Si,Al)⊥x(4b)	(Na,K,Ca,Sr,Ba) ₅ ^[9] (H ₂ O) ₂₆ {3∞}[AlgʻSi ₂₇ ^t O ₇₂] HEULANDITE	Am.Min.,1968, <u>53</u> ,1120-1138; Pov.,354;Str.Tab.,489;RRW, 271-272;LF,298.
HILAIRITE	Na ₂ ZrSi ₃ O ₉ .3H ₂ O	Na₂(H₂O)₃ {1∞}{ZrºSi₃¹O₃l	Trig. R32	a=10.556Å c=15.855Å	9=Z			Min.Abs.,83M/4219;Hölzel,205
HILGARDITE - - 1Tc	Ca ₂ B ₅ O ₃ Cl.H ₂ O	Ča ₂ ^{[8/1} (H ₂ O)Čl {3∞}[B₃¹B₂ ^{tr} Oց] (≈Tyretskite)	Tric.	a=6.463Å b=6.564Å c=6.302Å	$\alpha = 61^{\circ}38'$ $\beta = 118^{\circ}46'$ $\gamma = 105^{\circ}46'$ Z = 1			Min.Abs.,79/2129;Hölzel,118; Am.Min.,1985, <u>70</u> ,636-637;SR, 45 <u>A</u> ,282-283.
HILGARDITE -	Ca ₂ B ₅ O ₉ Cl.H ₂ O	Ca₂ ^[ssy] (H ₂ O)Cl {3∞}{B₃¹B₂¹Co₃] (≈Tyretskite)	Tric. P1	a=17.495Å b=6.487Å c=6.313Å	$\alpha = 60.77^{\circ}$ $\beta = 79.56^{\circ}$ $\gamma = 83.96^{\circ}$ Z = 3	Ca _{l-vi} (1a) Cl _{ι-lii} (1a)		Am.Min.,1983 <u>,68</u> ,604-613;Am. Min.,1985 <u>,70</u> ,636-637.
HILGARDITE - 4M	Ca ₂ B ₅ O ₉ Cl.H ₂ O	Ca ₂ ^{tBoy} (H ₂ O)Cl {3∞}{B₃ ^{tB} 2 ^{tr} O ₉] (≈Zeolite)	Mon. Aa	a=11.438A b=11.318A c=6.318A	β=90.06° Z=4	Ca _{I-II} (4a) CI(4a) B _{I-V} (4a)		Am.Min.,1979, <u>64</u> ,187-195,Am. Min.,1985, <u>70</u> ,636-637;Hölzel, 118.
HISINGERITE	Fe ₂ Si ₂ O ₅ (OH) ₄ . 2H ₂ O		Mon. ? (Amorph.)	٤				Min.Abs.;83M/2626;Pov.,741; Str.Tab.,462;Hölzel,235.
HOHMANNITE	Fe ₂ O(SO ₄₎₂ .8H ₂ O	(H₂O)₄{1∞} Fe₂°S₂¹O₂ (H₂O)₄] (≈Amarantite)	Tric. P 1	a=9.148Å b=10.922Å c=7.183Å	α=90.29° β=90.79° γ=107.36° Z=2		,	SR, <u>44A,</u> 273;Min.Mag.,1978, 4 <u>2</u> ,144-146;Hölzel,135;Zeit. Krist,1998, <u>213</u> ,141-150;Str. Tab.,293;Pov.,599;RRW,277.
HONESSITE	(Ni,Fe) ₆ SO ₄ (OH) _{16.} nH ₂ O	(H₂O) _n [₂∞[(Ni,Fe) ₈ ° (OH)₁₀{g}[S'O₄]] (≈Reevesite)	Trig.	a=3.083Å c=26.71Å Z=?				Am.Min., 1959, <u>44</u> , 995-1009; Hölzel, 134;Pov., 606;Str.Tab., 534;Min.Mag., 1981, <u>44</u> , 339- 343;Zeit.Kris., 1998, <u>213,</u> 141.
HUEMULITE	Na4MgV ₁₀ O ₂₈ . 24H ₂ O		Tric. 	a=11.770Å b=11.838Å c=9.018Å	α=107°13' β=112°10' γ=101°30' Z=1			Am.Min.,1966, <u>51,</u> 1-13;Hölzel, 87;RRW,282;Str.Tab.,222; Pov.,502.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
HIMMERITE	KMrV.O., 8H.O	COMPA	Tric	a=10.81Å	v=106°4'			Pov.:502:Am.Min.:1955,40,314
	7: :5:+1) C. R.		14-	h=11 01Å	B=107°49'			-315;RRW,284;Hölzel,87;
				2 85 Å	V=65°40'			Str. Tab221:Am.Min.,1951.36,
					Z=2 +2			326-327.
HUNGCHAOITE	MgB ₄ O ₅ (OH) ₄ .	(H ₂ O) ₂ {3∞}[Mg°	Tric.	a=8.807Å	α=103.39°	Mg(2i) B _{I-IV} (2i)		Am.Min., 1977, 62, 1135-1143;
	7H ₂ O	(H ₂ O) ₅ B ₄ O ₅ (OH) ₄]	<u>Т</u>	b=10.657Å	$\beta = 108.53^{\circ}$	O _{I-V} (2i)		SR,43A,225;Am.Min.,1965,50,
				c=7.897Å	γ=97.18° Z=2			262(Abs.);Hölzel,115.
HYDROBASALU-	Al ₄ SO ₄ (OH) ₁₀ .		Mon.	a=14.911Å	B=112.40°			Min.Mag.,1980,43,931-937;
MINITE	15H,O		۷	b=9.993Å	Z=2			Pov., 606; Str. Tab., 294; Hölzel,
	•			c=13.640Å				135.
HYDROCALUMI-	Ca ₄ Al ₂ (OH) ₁₂		Mon.	a=9.6Å	β=111°			Pov., 330; Str. Tab., 219; RRW,
2	(CI,CO ₃ ,OH,H ₂ O) _{2.5}		P2 ₁	b=11.4A c=16.8Å	Z=4			288;Hölzel,108.
HYDROGLAUBER	Na ₁₀ Ca ₃ (SO ₄) ₈ .		2	٤				Am.Min., 1970, 55, 321 (Abs.);
ПЕ	6H ₂ O							Pov.,606;RRW;289;Hölzel131; Zeit.Krist.,1998,213,141-150.
HYDROMAGNE-	Mqs(CO ₂)4(OH)2.	(3∞){ Ma ₅ (OH),	Mon.	a=10.105Å	B=114.44°	Mg ₁₋₁₁ (4e)		Acta Cryst., 1977, <u>B33</u> , 1273-
SITE	4H,0	(H ₂ O) ₄ [g][C ^{tr} O ₃] ₄]	P2 ₁ /c	b=8.954Å		Mg _{III} (2a)		1275;Hölzel,106;Pov.,620;Str.
	•			c=8.378Å		O _{I-VIII} (4e)		Tab.,246;SR,40A,227;LF,187.
IANTHINITE	UO(UO ₃) ₅ .10H ₂ O		Orth.	a=11.52Å	Z=4			Bull.Min., 1959, 82, 80-86; Am.
			٠.	b=7.15A				Min.,1959,44,1103-1104;
				C=3U.3A				HOIZEI, 9U.
INDERITE	MgB ₃ O ₃ (OH) ₅ .	(H ₂ O) ₅ {g}{Mg°B ₂ 'B"	Mon.	a=12.02Å	4°40	Mg(4e) B _{I-III} (4e)		SR,28,160;Hölzel,115;Str.Tab.,
-	5H ₂ O	O ₃ (OH)₅] (≈Kumakovite)	P24/8	D=13.12A C=6.84Å	5=7	O _{I-XIII} (4e)		207,F0V.,470.
INYOITE	CaB ₃ O ₃ (OH) ₅ .4H ₂ O Ca ^[8] (H ₂ O) ₄	Ca ^[8] (H ₂ O) ₄	Mon.	a=10.63Å	B=114°2'	Ca(4e) B _{I-III} (4e)		Acta Cryst., 1959, 12, 162-170;
		{g}[B ₂ 'B"O ₃ (OH) ₅]	P2 ₁ /a	b=12.06Å	Z=4	:		RRW, 302; Pov., 476; SR, 23,
				c=8.405Å				414-415.
IRIGINITE	U(MoO ₄) ₂ (OH) ₂ .		Mon.	a=8.58Å	$\beta = 107^{\circ}40'$			Am.Min.1964,49,408-414;
	2H ₂ O		<i>~</i>	b=12.87A c=7.48Å	Z=3			Pov.,572;Str.Tab.,302;Holzel,
IAMBORITE	(Ni Fe) SO (OH)		Hex.	a=3.07Å	Z=2			Am.Min., 1973, 58, 835-839;
	nH20		2	c=23.3Å				Hölzel,83.
JENNITE	Ca ₉ Si ₆ O ₁₆ (OH) ₁₀ .		Tric.	a=10.593Å	α=99.67°			Am.Min., 1977, 62, 365-368;
	6H ₂ O		<i>ر</i>	b=7.284Å	β=97.65°			Am.Min., 1966, 51, 56-74; Hölzel,
				c=10.839Å	γ=110.11° Z=1?			220;Pov.,419;Str.Tab.,401.
JOLIOTITE	(UO ₂)CO ₃ .2H ₂ O		Orth.	a=8.16Å	Z=4			Hölzel, 109; Encyc. Miner. Nam.,
	•		Pmmm	b=10.35Å c=6.32Å				149; Min.Abs.,77/2184.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
JULIËNITE	Na ₂ Co(SCN) ₄ .	Na ₂ ^[8] (H ₂ O) ₈	Mon.	a=18.941Å	β=91.64°	Na ₁₋₁₁ (4e) Co(4e)		Acta Cryst.,1982, <u>B38</u> ,1084-
	8H ₂ O	Co{6}[SCN]4	P2 ₁ /n	b=19.209A c=5.460Å	Z=4	S _{I-IV} (4e)		1088;SR, <u>17,</u> 462-463;Str.Tab., 495;Hölzel,250.
JUNITOITE	CaZn ₂ Si ₂ O ₇ .H ₂ O	Ca°Zn2'Si2'[O7(H2O)]°	Orth.	a=12.510Å	2=4	Zn _{I-II} (4a) Ca(4b)	Zn _{I-II} (4a) Ca(4b) Ca°Zn ₂ 'Si ₂ [O ₇ (H ₂ O)]°	Min.Mag.,1985,49,91-95;
			Ama2	b=6.318Å		Si(8c) O - 111(8c)	JUNITOITE	Hölzel,220;Am.Min.,1976, <u>61,</u>
				c=8.561Å		O _{IV} (4b)		1255-1258; Moore, 1995a, 7-26.
JURBANITE	AISO4(OH).5H2O	(H ₂ O) ₂ [[g][Al ₂ °(OH) ₂	l	a=8.3965Å	Z=4	S(4e) AI(4e)		Zeit.Krist., 1985, 173, 33-39; Am.
		(H ₂ O) ₈] {g}[S ¹ O ₄] ₂]	P2,/n	b=12.479Å		O _{I-X} (4e)		Min., 1976, 61, 1-4; Hölzel, 134; Zeit Krist 1998 213 141-150
KAZAKHSTANITE		(2)	Mon.	a=11.84Å	B=100.0°			Am.Min., 1991, 76, 667 (Abs.);
	8.5H ₂ O		C2/c	b=3.650Å	Z=1 ?			Hölzel suppl
KENYAITE	NanSino, (OH),		Mon	2=7 79Å	R=05054'			Am Min 1968 53 2061-2069
	6H ₂ O		~	b=19.72Å	Z=1			Am.Min., 1968, 53, 510-511
				c=6.91Å				(Abs.); Hölzel,227;RRW,322.
KERNITE	Na₂B₄O ₆ (OH)₂.	Na ₂ ^[5] (H ₂ O) ₃	Mon.	a=7.0172Å	β=108°86'	Na _{I-II} (4e)		Am.Min.,1973,58,21-31;SR,
	3H ₂ O	{1∞}[B₂B₂"O ₆ (OH)₂]	P2 ₁ /c	b=9.1582A c=15.6774Å	Z=4	B _{I-IV} (4e) O _{I-XI} (4e)		32A,501-502;LF,218;Pov.,482; Str.Tab.,261.
KEROLITE	Mg ₃ Si ₄ O ₁₀ (OH) ₂ .	Mg ₃ (OH) ₂	2	خ				Am.Min., 1979, <u>64,</u> 615-625;
	H ² 0	{2∞}[Si4 O₁0]						Hölzel suppl.;Str.Tab.,541;
		(≈Pimelite,≈Talc)						Pov.,744;LF,227.
KHADEMITE	AI(SO ₄)F.5H ₂ O		Orth.	a=11.178Å	Z=8			Min.Mag.,1988, <u>52</u> ,133-134;
			Pcab	b=13.055Å				Hölzel, 134; Am. Min., 1981, 66,
				c=10.887A				1102-1103(Abs.).
KIMURAITE - (Y)	CaY ₂ (CO ₃) ₄ .6H ₂ O		Orth.	a=9.2545Å	Z=4			Am.Min.,1986,71,1028-1033;
			I mm2	b=23.976Å c=6.0433Å				Hölzel, 105.
KINGITE	Al ₃ (PO ₄) ₂ (OH,F) ₃ .		Tric.	a=9.15Å	α=98.6°			Am.Min., 1970, <u>55,</u> 515-517;
	9H ₂ O		2	b=10.00Å	β=93.6°			RRW,325;Hölzel,168.
				c=7.24Å	γ=93.2° 7=2			
KINICHILITE	(H,Na) ₂ (Fe,Mg,Zn) ₂		Hex.	a=9.419Å	Z=2			Am.Min., 1982, 67, 623 (Abs.);
	(TeO ₃) ₃ .3H ₂ O		P63	c=7.665Å				Min.Abs.,84M/1932;Hölzel,93.
KINOITE	Ca ₂ Cu ₂ Si ₃ O ₁₀ .	{3∞}[Ca ₂ °(H ₂ O) ₂	Mon.	a=6.990Å	β=96°5'	Cul-II(2e) Ca(4f)		Am.Min., 1971, <u>56</u> , 193-200;
	2H ₂ O	Cu ₂ [59/ [9][Si ₃ O ₁₀]]	P2 ₁ /m	b=12.890Å	Z=2	Si _I (2e) Si _{II} (4f)		RRW,325;Pov.,407;SR, <u>37A,</u>
		(≈Snattuckite)		C=5.654A				330.
KIPUSHITE	(Cu,Zn) ₆ (PO ₄) ₂	(Cu,Zn) ₆ 'P ₂ '	Mon.	a=12.197Å	β=96.77°	Cul-v(4e) Zn(4e)		Can.Min., 1985, <u>23</u> , 35-42;
		[O ₈ (OH) ₆ (H ₂ O)] (=Veszelyite)	P2 ₁ /c	b=9.156A c=10.667Å	Z=4	P _{I-II} (4e)		Hölzel, 167;K/B, 190,91-92;Am. Min., 1974, <u>59,</u> 573-581.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
KOKTAITE	(NH4)2Ca(SO4)2.		Mon.	a=10.17Å	8=102°45			Pov594:Str.Tab291:RRW.
	H ₂ O	-	P2 ₁ /m	b=7.15Å	Z=2			329;Hölzel,131;Am.Min.,1949,
				c=6.34Å				34,618(Abs.).
KONYAITE	Na ₂ Mg(SO ₄) ₂ .5H ₂ O		Mon.	a=5.784Å	β=95.37°			Am.Min., 1982, 67, 1035-1038;
			P2 ₁ /c	b=24.026Å	Z=4			Hölzel,130.
				C=0.000A				
KORITNIGITE	Zn(AsO ₃ OH).H ₂ O		Tric.	a=7.948Å	∞ =80.86 °			Am.Min.,1980,65,203(Abs.);
			_	b=15.829Å	β=96.56°			Min.Abs.,81-0253;Hölzel,162.
				c=6.668Å	γ=90.05° Z=8			
KOSTYLEVITE	K ₂ ZrSi ₃ O ₉ .H ₂ O		Mon.	a=13.171Å	β=105.26			Am.Min.,1984,69,812(Abs.);
			P2 ₁ /a	b=11.717Å	Z=2			Min.Abs.,83M/4213.
				c=6.565Å				
KOVDORSKITE	Mg2PO4(OH).3H2O	Mg ₂ °P ^c	Mon.	a=10.35Å	$\beta = 102^{\circ}0'$			Min.Abs.,82M/1161;Am.Min.,
		[O ₄ (OH)(H ₂ O) ₃]	P2 ₁ /a	b=12.90Å	Z=4			1981, <u>66</u> ,437(Abs.);K/B,114-
KDAIISITE	KEO/CO.), H.O.	V 30-311-011	Mon	2-7 000 8	200 700	V(00) E0(00)		A 100 000 34 000 005.00
	N-6(504)2.1120		P2./m	8=7.920A	p=102./67	D=102.101 N(28) F6(28)		AM.MIII., 1980, /1, 202-205; SK, 304 372-373: Dov. 603: 79:
		102 D		C=9.014Å	7_7	G-11(46)		Krist. 1998.213.141-150.
KRAUTITE	Mn(AsO ₂ OH) H ₂ O	MnºAst	Mon	a=8 012Å	R=OR RO	Mn. (40)		Am Min 1070 64 1248 1254
		[O,(OH)(HO)]	P2,/n	h=15.956Å	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AS:(4e)		Am Min 1978 61 503/Abs >-
		(≈Haidingerite)	: :	c=6.801Å	· ·	()		SR,45A,321.
KRÖHNKITE	Na ₂ Cu(SO ₄) ₂ .2H ₂ O	Na ₂ ^[7] {1∞}[Cu ^o S ₂ ^t O ₈	Mon.	a=5.807Å	β=108.32	β=108.32° Cu(2a) Na(4e)		Acta Cryst.,1975,B31,1753-
		(H ₂ O) ₂]	P2 ₁ /c	b=12.656Å	Z=2	O _{I-IV} (4e)		1755;SR, 26,449-451;Pov.,603-
		(=Brandtite)		c=5.517Å				604;Zeit.Krist.,1998, <u>213</u> ,141.
KTENASITE	(Cu,Zn) ₅ (SO ₄) ₂	2∞[(Cu,Zn) ₄ °S ₂ 'O ₈	Mon.	a=5.589Å	β=95.55°	Zn(2a) Cu _{I-II} (4e)		Zeit.Krist.,1978,147,129-140;
	(OH) ₆ .6H ₂ O	(OH)@[[@][Zu^(H2O)@]	P2 ₁ /c	b=6.166A		S(4e)		Pov., 598; Str. Tab., 292; Zeit.
THE CANADITA		0.00	-	C150.0210	- 1	000		NIS., 1990, 212, 141-130.
NURNANOVIIE	MgB ₃ O ₃ (OH) ₅ .	30 Mg (OH)5 (a)[B, B"O, (H,O),1]	P.16.	a=8.34/9A α=98.846° h=10 6068Åβ=108 891		Mg(ZI) O _{[-XIII} (ZI) B _{[-III} (ZI)		Acta Cryst., 1974, <u>B30</u> , 2194- 2199: Pov. 477: Str Tab. 257
		(a) (2) (2) (3) (4)		0-6 44478				
		(≈iiideiite)		$C=0.144/A \gamma = 105.381^{\circ}$ Z=2	7=105.581° Z=2			TOIZEI, 114.
LANGITE	Cu ₄ SO ₄ (OH) ₆ .2H ₂ O	Cu4°S ^r	Mon.	a=7.137Å	β=90.00	S(2a) Cu _{I-IV} (2a)		Acta Cryst., 1984, C40, 1309-
		[O ₄ (OH) ₆ (H ₂ O) ₂]	,		Z=2	O _{I-XII} (2a)		1311;Pov.,598;Str.Tab.,292;
	(≈Wroewolfeite)	(~Wroewolfeite)		C=11.21/A?				RRW,341.
LARDERELLITE	NH4B5O7(OH)2.H2O	NH4(H ₂ O)	Mon.	a=9.47Å	β=97°5'	B _{I-IV} (4e) N(4e)		Acta Cryst., 1969, <u>B25, 2264</u> -
		{1∞}[B ₅ O ₇ (OH) ₂]	P21/c	b=7.63A		O _{l-x} (4e)		2270;SR,34A,351-353;RRW,
				c=11.65A				342;Pov.,479;Str.Tab.,259;Am.
								Min., 1960, 45, 1087-1093.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
LAUMONTITE	اکر ا	(300){ (300){ (300){ (300){	20	a=14.724A b=13.075A c=7.559A	β=112.01° Z=4	Ca(41) AI(8J) Si _{1-I} (6J) O _{I-II} (4I) O _{III-VII} (8J)		Sov.Phys.Cryst.,1985,30,624-626;LF;294;RRW,345;Pov., 357;Str.Tab.,489;SR, <u>32A,</u> 483-484.
LAZARENKOITE	(Ca,Fe)FeAs ₃ O ₇ . 3H ₂ O		Orth.	a=21.80Å b=12.64Å c=8.40Å	Z=10			Am.Min.,1982 <u>,67,</u> 415(Abs.); Hölzel,92.
LECONTITE	(NH4,K)Na(SO4). 2H ₂ O	Na°S¹ [O₄(H₂O)₂(NH₄,K)] (⊶Mirabilite)	Orth. P2 ₁ 2 ₁ 2 ₁	a=8.216Å b=12.854Å c=6.232Å	Z=4	S(4a) Na(4a) N(4a) O _{I-VI} (4a) 		Acta Cryst.,1967,22,683-687; SR.32A,336-337;Am.Min., 1963,48,180-188;Pov.,595; RRW,350;Str.Tab,,290-291.
LEGRANDITE		Zn ₂ As¹ [O₄(OH)(H₂O)] («Spencerite)	Mon. P2 ₁ /c	a=12.805Aβ=104°23.3' b=7.933A Z=8 c=10.215A	=104°23.3' Z=8	Znv(4e) As-ıı(4e) Orxii(4e)		Am.Min.,1971, <u>58</u> ,1147-1154; Sov.Phys.Cryst.,1973, <u>17,</u> 747- 748;Pov.,516;Str.Tab.,341.
LENNILENAPEITE K7MQ46(SI,AI)72 (O,OH)216-16H2O			Tric. P 1?	a=21.9Å b=?Å c=12.18Å	? Z=1			Hölzel,230;Am.Min.,1985,7 <u>0,</u> 216(Abs.);Can.Min.,1984, <u>22,</u> 259-263.
LEONITE	K ₂ Mg(SO ₄) ₂ .4H ₂ O	3∞[K ^{t9} K¹¹ ^{t0}] Mg ^{t6} S¹ ₂ O₅(H ₂ O)₄]	Mon. C2/m	a=11.769A b=9.539A c=9.889A	β=95.31° Z=4	K(8j) Mgi(2a) Mgii(2d) Si _{i-li} (4i) 		Zelt.Krist.,1985, <u>173,</u> 75-79; Pov.,595,Str.Tab.,288;RRW, 352.
ГОУПЕ	UPO4(OH).H ₂ O (?)		Orth. Coca	a=9.74Å b=19.0Å c=10.1Å	Z=5 ?			Am.Min.,1984, <u>69,</u> 214-215 (Abs.);Hötzel,178.
	Cu ₃ NO ₃ (OH) ₅ . 2H ₂ O		Orth. Pc2 ₁ n	a=5.828Å b=6.769Å c=21.690Å	2=4	Cu-III(4a) N(4a) O _{LVI} (4a)		Acta Cryst.,1977, <u>B33,</u> 1422- 1427;Pov.,633;Str.Tab.,234; RRW,357;SR,43 <u>6,</u> 242-243.
LINDACKERITE	H ₂ Cu ₅ (AsO ₄₎₄ . 9H ₂ O		(Tric.) P1	a=8.035A b=10.368Å c=6.453Å	α=79.60° β=84.83° γ=86.17° Z=1			Am.Min.,1996, <u>81,</u> 1517(Abs.); Pov.,516;Str.Tab.,333;HÖtzel, 162.
LITHOSITE	KeAI4SIgO25.2H2O		Mon.	a=15.197A b=10.233A c=8.435A	β=90.21° Z=2			Am.Min.,1984, <u>69,</u> 210(Abs.); Hölzel,222.
LOKKATE - (Y)	CaY4(CO ₃₎₇ .9H ₂ O		Orth. Pbmm	a=39.35Å b=6.104Å c=9.26Å	Z=2			Am.Min.,1986, <u>71,</u> 1028-1033; Hölzel,105;Am.Min.,1971, <u>56,</u> 1838(Abs.);
ш	NH4(Fe,AI)(SO ₄₎₂ . 12H ₂ O		Cub. Pa3	a=12.302Å	2=4			Am.Min.,1986, <u>71</u> ,229(Abs.); Hölzel,129.
LOUGHLINITE	Na ₂ Mg ₃ Si ₆ O ₁₆ . 8H ₂ O		د	a=5.25Å b=26.71Å c=14.66Å	Z=4			Str.Tab.,466;Hözel,236;Am. Min.,1960, <u>45</u> , 270-281.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
CAMEITE	NO MO (CO.)	NIA IVILON	Pio	0=18 08 0 ==11 780 Å	=11 789Å	Na(R) Mo.(Rf)		Str Tah 288-PPW 363-Pov
COWELLE	15H ₂ O	(g){S'O₄]₄(3∞){Mg ₇ °	ည်။က - œ	c=13.47Å (α=106.5°	Mg ₁₁ (1b) S ₁₋₁₁ (6f)		594;Am.Min., 1970, 55, 378-386;
		S ₂ ¹ O ₃₆ (H ₂ O) ₁₂]		Z=3	Z _R =1	S _{III} (2c/2)		Zeit.Krist., 1998, 213, 141-150.
LUDDENITE	Cu ₂ Pb ₂ Si ₅ O ₁₄ .		Mon.	a=7.85Å	β=90.78°			Am.Min., 1983, 68, 643 (Abs.);
	14H20		~	b=20.06Å	Z=4			Hölzel,247;Min.Mag.,1982,46,
				c=14.72Å				363-364.
MAGADIITE	NaSi ₇ O ₁₃ (OH) ₃ .		Mon.	a=7.25Å	β=96.8°			Am.Min.,1969,54,1583-1591;
	3H2O		~	b=7.25Å	Z=2			1968, <u>53</u> ,2061-2069;Hölzel, 227:Str Tah 485
	210,000	10 11/Agg -140-14	Mos	70007	07000	PC) 014 (07) 13		70# Krist 1000 150 000 010.
MAKATITE	Na ₂ SI ₄ O ₈ (OH) ₂ .	Na Na (H2O)4	Mon. D2,/c	a=7.3881A b=18.094å	β=90.64° 7=4	Sil-iv(4e) Nai(2d Nai(2c) Naii(4e)		Hölzel 226:4m Min 1983 68
	1 20	1200 JOI 04 0 1 1 1 2	217	c=9.5234Å	1			852(Abs.).
MANNARDITE	BaTi ₆ (V,Cr) ₂ O ₁₆ .	Ti ₆ (V,Cr) ₂	Tet.	a=14.357Å	Z=4	Ba ₁ (4b) Ba ₁₁ (4a)		Can.Min., 1986, 24, 67-78; 55-66;
	H20	[Ba(H ₂ O)O ₁₆] ^{cm}	14 ₁ /a	c=5.908Å		Ba _{III-IV} (8e)		Hölzel,72;LF,107.
		(≈Hollandite)				(v.occ.)O _{I-IV} (16f)		
MARICOPAITE	Ca,Pb,(Si,Al), O,m	Ca ₂ Pb ₇ (H ₂ O) ₂₂	Orth.	a=19.434Å	Z=1	Pb _i (4e) Pb _{ii} (4d)		Am.Min., 1994, 79, 175-184;
	32H ₀	(3xx)I(Si.Al), O.ml	Cmmm	b=19.702Å		Pbill-Iv(4c)		Can.Min., 1988, 26, 309-313;
	2	(≈Mordenite.Zeolite)		c=7.538Å		(v. occ.)		Hölzel,246;LF,297.
MATTEUCCITE	NaH(SO ₄).H ₂ O	Na°S'[O4H(H2O)]	Mon.	a=8.217Å	B=119°56'	S(4a) Na(4a)		Acta Cryst., 1965, 19,426-432;
		(≈Mirabilite)	Aa	b=7.788Å	Z=4	O _{I-IV} (4a)		SR,30,365;Hölzel,131.
				c=7.814A	•			
MCALLISTERITE	Mg ₂ (B ₆ O ₇ (OH) ₆) ₂ .	Mg2°B ₁₂ ¹	Trig.	a=11.549Å a _R =13.66Å	aR=13.66A	Mg(12c)		SR,41A,421-422;Am.Min.,
	9H ₂ O	[O ₁₄ (OH) ₁₂ (H ₂ O) ₉]	R 3c	c=35.537A	$\alpha = 50^{\circ}14^{\circ}$	B _{I-II} (36f)		1965, 50, 629-640; Pov., 487;
				9=Z	ZR=2			Str. I ab., 265; KKW, 369.
MELANOCERITE-	(Ce,Ca) ₅ (Si,B) ₃ O ₁₂		Amorph.		Z=2			Pov., 389; RRW, 388; Hölzel, 194
- (Ce)	(OH,F).nH ₂ O (?)		(Hex.)	c=6.88 Å (a)	(at 600°C)			
MENDOZITE	NaAI(SO ₄) ₂ .11H ₂ O	Na°AI°S2[O8(H2O)11]	Mon.	a=21.75Å	β=92°28'	Na(4a) Al(4c)		Am.Min., 1972, 37, 1081-1088;
		(≈Tamarugite)	C2/c	b=9.11A c=8.30Å	Z=4	S(81) O _{LIV} (81)		Pov.,597.
META-ALUMINITE	META-ALUMINITE AISO4(OH)4.5H3O		Mon.	a=7.930Å	8=106.74			Zeit.Krist., 1980, 151, 141-152;
			P2, ?	b=16.879Å	Z=2			Encyc.Miner.Nam.,195;Hölzel,
				~				135.
METAVIVIANITE	Fe ₃ (PO ₄) ₂ (OH) _x .	Fe ₃ P ₂ [O ₈ (H ₂ O) ₆	ا ار ا		α=94.7°			Min.Mag., 1986, 50, 387-391;
	.6H ₂ O	(OH) _{x.}] (Subs.d.Symplesite)	٦ -	b=9.08A β=97.15° c=4.65Åv=107.37°Z=?	β=97.15° :107.37°Z=?			K/B,66;H0lzel,170.
MEYERHOFFERI-	CaB ₃ O ₃ (OH) ₅ .H ₂ O	Ca ² (H ₂ Q)	Tric.	1	α= 90°46 ′	Ca(2i) O _{I-IX} (2i)		SR,24,430-431;Str.Tab.,257;
1		[6][B2,B"O3(OH)5]	Р 1		β=101°56'	B _{I-III} (2i) ·		Pov., 477; RRW, 403-404; Str.
		(≈Inderite)		c=6.46Å γ	r=86°55' Z=2			Tab.,257;Hölzel,115.
MINASRAGRITE	VO(SO ₄).5H ₂ O	V°S'[O ₅ (H ₂ O) ₅]	Mon.		B=110.90°	V(4e) S(4e)		Acta Cryst., 1979, <u>B35</u> , 1545-
	•		P2 ₁ /c	b=9.716Å	Z=4	O _{I-x} (4e)		1550;Am.Min.,1973, <u>58,</u> 531-
				C-12.00EN				. 101,111 ww, 101.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
MOHRITE	(NH4)2Fe(SO4)2.		Mon.	a=6.237Å	B=106°53'			Am.Min., 1965, 50, 805 (Abs.);
	6H ₂ O		P2 ₁ /c	b=12.613Å	Z=2			RRW,411;Hölzel,130;Str.Tab., 289:Pov595.
MOOREITE	(Mg,Zn,Mn) ₁₅ (SO ₄) ₂ (OH) ₂₆ .8H ₂ O	(Mg,Zn) ₁₁ °Zn ₄ °S ₂ ′ [O ₈ (OH) ₂₆ (H ₂ O) ₈]	Mon. P2 ₁ /a	a=11.147Å b=20.350Å c=8.202Å	β=92.69° Z=2	Zn _{I-II} (4e) Mn(4e) S(4e) Mg _{I-IV} (4e) Ma _V (2b)		Acta Cryst., 1980, <u>B36</u> , 1304- 1311; SR, <u>46A</u> , 357; Pov., 332; Str. Tab., 293; RRW 418.
MORAESITE	Be ₂ PO ₄ (OH).4H ₂ O		Mon. C2/c	a=8.55Å b=36.90Å	β=97°41' Z=12			Pov.,553;Str.Tab.,340;RRW, 418-419;Encyc.Miner.Nam., 204: Hölzel 187
MOSESITE	Hg ₂ N(CI,SO ₄ ,M ₀ O _{4,} CO ₃).H ₂ O	(H ₂ O)Cl 3∞[N'Hg ₂ ^{[2]κο»}]° (≈8-Cristobalite)	Cub. F 43m	a=9.524Å	Z=8	Hg(16e) Na(4a)		RRW,421;Pov.,201;Str.Tab., 166;SR,17,440;Höizel,55;LF, 255.
MPOROROITE	AIWO ₃ (OH) ₃ .2H ₂ O		(Tric.) Mon.	a=8.27Å b=9.32Å c=16.40Å	β=92°29′ Z=5			Am.Min.,1973, <u>58</u> ,1112(Abs.); Hölzel,140.
NABAPHITE	NaBaPO ₄ .9H ₂ O		Cub. P2 ₁ 3	a=10.711Å	Z=4			Am.Min.,1983, <u>68</u> ,643-644 (Abs.); Hölzel,165.
NAMUWITE	(Zn,Cu) ₄ SO ₄ (OH) ₆ . 4H ₂ O	(Zn,Cu)3°Zn'S' [O4(OH)6(H2O)4]	Trig. P 3	a=8.331Å c=10.54Å	Z=2	Zn _i (2c) Zn _{ii} (6g) S(2d)		Am.Min.,1996,81,238-243; Hölzel,132;Encyc.Miner.Nam., 210
NASINITE	Na ₂ B ₅ O ₈ (OH).2H ₂ O Na ₂ ¹⁹ (H ₂ O) ₂ {g}[B ₂ B ₃ ¹ O ₈ (OH)]	Na ₂ ^[8] (H ₂ O) ₂ {g}[B ₂ B ₃ ¹ O ₈ (OH)]	Orth. Pna2 ₁	a=12.015Å b=6.518Å c=11.173Å	2=4	B _{I-V} (4a) O _{I-IX} (4a) Na _{I-II} (4a)		Acta Cryst.,1975, <u>B31,</u> 2405- 2410;Hölzel,191;Encyc.Miner. Nam.,211.
NASTROPHITE	Na(Sr,Ba)PO ₄ . 9H ₂ O		Cub. P2 ₁ 3	a=10.559Å	2=4			Am.Min.,1982, <u>87,857(Abs.);</u> Min.Abs.,83M/4251;Hölzel, 165;K/B,160.
NATROLITE	Na ₂ (Al ₂ Si ₃)O ₁₀ . 2H ₂ O	Na ₂ °(H ₂ O) ₂ {3∞}[Si ₃ H ₂ O ₁₀] (Zeolite)	Orth. Fdd2	a=18.272Å b=18.613Å c=6.593Å	8=Z	Si _I (8a) Si _{II} (16b) AI(16b) Na(16b) 	Na2 ^o (H ₂ O) ₂ {3∞}[Si₃¹Al₂¹O₁₀] NATROLITE	Acta Cryst.,1984,C40,1658- 1662;LF,289;RRW,429;Pov., 356;Str.Tab.,487.
NATROPHOS- PHATE	Na ₇ (PO ₄) ₂ (F,OH). 19H ₂ O	Na,°P2 [O ₈ (F,OH) (H ₂ O) ₁₉]	Cub. Fd3c	a=27.755Å	Z=32	P _{-II} (32b) Na(192h) F(16a)		Acta Cryst., 1974, <u>B30,</u> 2218- 2224;RRW, 430-431;Am.Min., 1981, <u>66</u> , 879(Abs.);Am.Min., 1973, <u>58, 139(Abs.)</u> .
NEWBERYITE	Mg(PO ₃ OH).3H ₂ O	Mg°P [[] (O ₃ OH(H ₂ O) ₃]	Orth. Pbca	a=10.215Å b=10.681Å c=10.014Å	Z=8	Mg(8c) P(8c) O _{LVII} (8c)		Acta Cryst.,1967,23,418-422; RRW,434;Pov.,548;Str.Tab., 334;SR,45A,300-301.
NIAHITE	(NH ₄)(Mn,Mg,Ca) PO ₄ .H ₂ O		Orth. Pmn2 ₁	a=5.68Å b=8.78Å c=4.88Å	Z=2			Min.Mag.,1983, <u>47,</u> 79-80; Hölzel,162.
NICKELBLÖDITE	Na ₂ (Si,Mg)(SO ₄) ₂ . 4H ₂ O	Na₂²{g}{(Ni,Mg)°S₂¹ O₅(H₂O)₄] (≈Blödite)	Mon. P2₁/a	a=10.87Å b=8.07Å c=5.46Å	β=100.72° Z=2			Enc.Min.Nam.,215;Min.Mag., 1977, <u>41</u> ,37-41;Hölzel,130.

NICKELBOUS- SINGAULTITE	FORMULA	FORMULA	GROUP	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
SINGAULTITE	(NH ₄) ₂ (Ni,Mg)		Mon.	a=9.181Å	β=106°57"	S(4e) NH ₄ (4e)		Acta Cryst., 1963, 16, 823-829;
	(SO ₄) ₂ .6H ₂ O		P2 ₁ /a	b=12.459Å	Z=2	O _{I-IV} (4e)		Am.Min., 1986, 71, 1545(Abs.);
THEORY				C=0.438A				ACIA CRST., 1904, 17, 14/8-14/9
	Ca3(EC(CH) ₂) ₃ .		Mon.	a=13.119A	β=118.40			Min.Abs., 79-2130; Am.Min.,
	7 2 2 2		0/70	c=9.526Å	5=7			1962,47,172(Abs.);Pov.,473; Hölzel 117
NOBLEITE	CaB ₆ O ₆ (OH), 3H,O	Ca ^{ltoj} (H ₂ O) ₂	Mon.	a=14.56Å	B=111045			Am Min 1981 46 560-571
		{2∞}[B ₃ 'B ₃ ^t (OH) ₂]	P2 ₁ /a	b=8.01Å	Z=4			Pov. 487-488:RRW 440:Str.
		(=Tunellite)		c=9.83Å				Tab., 265;Hölzel,119.
OTWAYITE	Ni ₂ CO ₃ (OH) ₂ .H ₂ O		orth.	a=10.18Å	Z=8			Am.Min., 1977, <u>62</u> , 999-1002;
			ć	b=27.4Å c=3.22Å				Hölzel, 106.
OYELITE	Ca ₁₀ B ₂ Si ₈ O ₂₉ .		orth.	a=11.25Å	Z=1 ·			Am.Min., 1986, 71, 230 (Abs.);
	12H ₂ O		7	b=7.25A c=20.46Å				Hölzel,220.
PACHNOLITE	NaCaAIF ₆ .H ₂ O	Na ^[12] {200}{ Al°	Mon.	a=12.117Å	β=90°37'			Can.Min., 1983, 21, 561-566;
		(g)[Ca ¹² F ₆ (H ₂ O)]]	C2/c	b=10.414A	Z=16			RRW,455;Str.Tab.,162;Pov.,
T	0.04	2 100 00 100 W		C=15.680A				664;Hölzel,52.
PALYGORSKIIE	(Mg,Al)2514O10	(Mg,Al)2 (H2O)4(OH)	Mon.	a≈12.7A	β≈95°		(Mg,Al) ₂ ′(H ₂ O) ₄ (OH)	RRW,457;Hölzel,236;Pov.,420;
		{2∞}[SI4'O₁0]	CZ/B	b≈17.9A c≈5.2Å	Z=4		{2∞}[Si₄'O₁₀] PALYGORSKITE	Str.Tab.,466;Am.Min.,1977, <u>62,</u> 784-792:RRW.457
PARABARIO-	ŀ	Ba ^{co} ⊓ ₂ coTa,°		A-7 4290Å	7=3	Ra/3h) Ta./3a)		Can Min 1096 24 RE 483-1 E
MICROLITE	2H ₂ O	[O ₁₀ (H ₂ O) ₂ (OH) ₂ □ ₂] ^{Os}	В В В	c=18.505Å)	Ta _{ll} (9b)		140;Hölzel,68.
		(Dist.defect d.Pyrochlore)				(rhomb.descr.)		
PARABRANDTITE	Ca ₂ Mn(AsO ₄₎₂ .	Ca ₂ ^{lgl} Mn°As ₂ t	Tric.	a=5.89Å	$\alpha = 96.77^{\circ}$			Am.Min., 1988, 73, 1496 (Abs.);
	2H ₂ O	{2∞}[O ₈ (H ₂ O) ₂]	<u>F</u>	b=7.031Å	$\beta = 109.32^{\circ}$			Hölzel, 164.
		(=Talmessite)		c=5.64Å	γ=108.47° Z=1			
PARABUTLERITE FeSO ₄ (OH).2H ₂ O	FeSO ₄ (OH).2H ₂ O	Fe°S'[O4(OH)(H ₂ O) ₂]	Orth.	a=7.38Å	Z=8	Fe(8d) S _{I-II} (4c)		Bull.Min., 1970, 93, 185-189; SR,
			Pmnb	b=20.13Å c=7.22Å		O _{I-IV} (8d)O _{V-X} (4c)		35A,575-576;Hölzel,134;Str. Tab, 293:Pov, 599
PARANATROLITE	Na ₂ (Al ₂ Si ₃)O ₁₀ .		orth.	a=19.07Å	Z=8			Can.Min., 1980, 18, 85-88;
	3H ₂ O		Fmm2 ?	b=19.03Å c=6.58Å				Encyc.Miner.Nam.,230;Hölzel, 243.
PARASCHOLZITE	CaZn ₂ (PO ₄₎₂ .2H ₂ O		Mon.	∞ ∢	β=106°27"			Am.Min., 1981, 66, 843-851;
			:: ဗိ	b=7.422A c=6.674Å	Z=4			Hölzel,162.
PENKVILKSITE	Na ₄ Ti ₂ Si ₈ O ₂₂ .5H ₂ O		ا ~	a=7.48Å	√=90°			Am.Min., 1975, <u>60</u> , 340-341
			Pnca ?	b=8.77A c=?				(Abs.);Hölzel,223;Encyc.Miner. Nam.,234.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
PENTAHYDRO- BORITE	H ₂ O	Ca ¹⁷ (9)(B)	Tric. P 1	a=7.845Å b=6.525Å	α=111.62° β=111.19°	Ca(2i) B _{I-II} (2i) O _{I-IX} (2i) H _{I-X} (2i)		Sov.Phys.Cryst.,1977,22,35- 36;SR,43A,227;Hölzel,114;
				c=8.124Å	γ=73.44° Z=2			Pov.,4/1;Min.Abs.,/4-959.
PHARMACOLITE	Ca(AsO ₃ OH).2H ₂ O (2∞)(Ca ^[8] As¹O ₄ H	(2∞){Ca ^(B) As¹O₄H	Mon.	a=5.9745Å β=1	β=114°50'	Ca(4a) As(4a)		Acta Cryst.,1969, <u>B25,</u> 1544-
		(H ₂ O) ₂] (≈Gvnsiim)	75	D=15.4340F	4=7 h	(H ₂ O) _[-1] (4a)		37A,302;Pov.,524;Am.Min.,
		(mpsdfo~)				(- VIL. (- 2 · V		1979,64,1248-1254;LF,248.
PHILIPSBURGITE	(Cu,Zn) ₆ (AsO ₄ ,PO ₄) ₂ (OH) ₆ .	(Cu,Zn) ₆ (As,P) ₂ [O ₈ (OH) ₆ (H ₂ O)]	Mon. P2 ₁ /c	a=12.33Å b=9.20Å	β=96.92° Z=4			Can.Min.,1985, <u>23,</u> 255-258; Hölzel,167.
РНОЅРНО-	Zn ₂ (Fe,Mn)(PO ₄) ₂ .	Zn ^[6] Zn ^P 2 [O ₆ (H ₂ O) ₄]	Mon.	a=10.378Å	1	β=121.14° Fe(2a) Zn(4e)		Am.Min., 1977, 62,812-817; K/B, 57,58:SP 26 434 261
	O.	(≈Hoperte)	P Z 4/C	c=10.553Å	7=7	(a+)\r!-\r(a+)\r!-\r		97-30,575,53;RRW,477;K/B, 57-58.
PHOSPHORRÖ-	Mg(PO ₃ OH).7H ₂ O	Mg°P'[O ₃ (OH)(H ₂ O) ₇	Mon.	a=6.574Å	β=95°11'			Zeit.Krist., 1973, 137, 246-255;
SSLEKIIE		(≈Kossiertte)	2/20	D=25.36A c=11.32Å	g=7			336;Hölzel, 163.
PICKERINGITE	MgAl ₂ (SO ₄) ₄ .		Mon. P2	a=20.8Å b=24.2Å	β=96°33' Z=4			Str.Tab.,285;Pov.,753,598; RRW,478;Hölzel,129.
	2			c=6.18Å				
PICROMERITE	K ₂ Mg(SO ₄) ₂ .6H ₂ O	K2 ^{1/1} Mg°S2 ¹ [O ₈ (H ₂ O) ₆]	Mon.	a=9.072Å		Mg(2a) K(4e)		Zeit.Knst., 1965, 122, 161-1 /4;
-		(=Boussingauitite)		b=12.212A c=6.113Å	7=7	S(4e) Oliv(4e) Hivi(4e)		Pov., 595; Hölzel, 129.
PIMELITE	Ni ₃ Si ₄ O ₁₀ (OH) ₂	Ni ₃ ⁰ (H ₂ O)(OH) ₂	2	خ				Am.Min., 1979, 64, 615-625;
		{2∞}[Si ₄ O _{10]} (2n)c						RRW,481;Str.Tab.,446;Pov.,
PIRSSONITE	Na ₂ Ca(CO ₃) ₂ 2H ₂ O	(20) Na [6]Ca[8]	Orth	a=11.32Å	Z=8	Ca(8a) Na(16b)		Acta Cryst., 1967, 23, 763-766;
	7	(H ₂ O) ₂ {g}[C ^{tr} O _{3]2}]	Fdd2	b=20.06Å		O _{LIV} (16b)		SR,32A,416-417;Pov.,619;Str.
PLANCHÉITE	Cu ₈ (Si ₄ O ₁₁) ₂ (OH) ₄ .	Cu ₈ ^[6/4] (OH) ₄ (H ₂ O)	Orth.	a=19.043Å	Z=4	Cul-Iv(8d)		Am.Min., 1977, <u>62</u> , 491-502;
		{1∞}{Sig ^t O ₂₂] ^{2.cx}	Pcnb	b=20.129Å		Si _{I-IV} (8d)		Pov.,413;LF,208;SR,43A,322-
		(≈Shattuckite, ≈Tremolite)		c=5.269A		O _{I-XIII} (8d) O _{XIV} (4c)		323;Hölzel,214;RRW,483;Str. Tab.,416.
POKROVSKITE			Mon.	a=9.43Å	β=96.6°			Am.Min., 1985, 70, 217 (Abs.);
	0,5H ₂ O		P2 ₁ /a	b=12.27Å c=3.395Å	Z=4			Hölzel, 106.
POLLUCITE		(Cs,Na)(H ₂ O) _n	Cub.	a=13.69Å	Z=16	Cs(16b)		Zeit.Krist., 1969, <u>129</u> , 280-302;
	nH ₂ O	{3∞}[Si₂ ^t Al¹O ₆] (Zeolite)	l a3d			(Si,Al)(48g) O(96h)		LF,293;RRW,487;Can.Min., 1994,32.69-80.
POSNJAKITE	Cu ₄ SO ₄ (OH) ₆ .H ₂ O	{2∞}[Cu ₄ °S¹O₄(OH) ₆	Mon.	a=10.578Å	β=117.98	1		Zeit.Krist.,1979,149,249-257;
		H ₂ O)]	Ра	b=6.345Å c=7.863Å	Z=2	O _{I-XI} (2a)		SR,45A,335-336;RRW,490; Pov., 754,598;Str.Tab.,292.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
POTASSIUM	KAI(SO ₄₎₂ .12H ₂ O	K^Al°S ₂ [O ₈ (H ₂ O) ₁₂]	Cub. Pa3	a=12.157Å	Z=4	K(4b) Al(4a) S(8c) O _I (8c) O _{II-III} (24d)		Acta Cryst.,1967, <u>22,</u> 793-800; SR, <u>32A,</u> 33 9 -343;Pov.,597; RRW,490.
PROSPERITE	CaZn ₂ (AsO ₄₎₂ .H ₂ O	{3∞}[Ca ^[9] Zn ₂ ^[5] As₂¹O ₈ (H₂O)]	Mon. C2/c	a=19.238Å b=7.731Å c=9.765Å	β=104.47° Z=8	Ca(8f) Zn _{I-II} (8f) As _{I-II} (8f) O _{I-IX} (8f)		Zeit.Krist.,1982 <u>,158</u> ,33-42; Hölzel,152.
RAITE	(Na,Ca) ₄ (Mn,Ti,Fe) ₃ Si ₈ (O,OH) ₂₄ .9H ₂ O		Orth. C222	a=30.6Å b=5.31Å c=18.20Å	Z=4			Am.Min.,1973 <u>,58</u> ,1113(Abs.); Hölzel,231.
RAMSBECKITE	(Cu,Zn) ₁₅ (SO ₄) ₄ (OH) ₂₂ .6H ₂ O		Mon. P2 ₁ /a	a=16.066Å b=15.577Å c=7.102Å	β=90.20° Z=2			Am.Min.,1987 <u>,72</u> ,225(Abs.); Hölzel,132;Am.Min.,1989, <u>74,</u> 505(Abs.).
RANSOMITE	CuFe ₂ (SO _{4)4.} 6H ₂ O	Cu°Fe₂°S₄¹ [O₁ϵ(H₂O)₅] (≈Römerite)	Mon. P2 ₁ /a	a=4.811Å b=16.217Å c=10.403Å	β=93°1′ Z=2	Cu(2a) Fe(4e) Si-II(4e) OI-VIII(4e)		Am.Min.,1970 <u>,55,</u> 729-734; RRW,510;Pov.,596;Str.Tab., 285;SR <u>,35A</u> ,436-437.
REDINGTONITE	(Fe,Mg,Ni)(Cr,Al) ₂ (SO ₄) ₄ .22H ₂ O	(Fe,Mg,Ni)°(Cr,Al) ₂ ° S₄ ^t [O₁ ₆ (H ₂ O) ₂₂] (≈Halotrichite)	(Mon.) P2	a=20.8Å b=24.2Å c=6.18Å	β=°96'34 Z=4			Pov.,755,598;Str.Tab.,285; RRW,512;Hölzel,129.
RHOMBOCLASE	HFe(SO ₄₎₂ .4H ₂ O		Orth. Pnma	a=9.73Å b=18.29Å c=5.43Å	Z=4			Min.Mag.,1974, <u>39</u> ,610-612; SR, <u>41A</u> ,350;Pov.,604;Str.Tab., 284;Hölzel,128.
RIVERSIDEITE	Ca ₅ Si ₆ O ₁₆ (OH) ₂ .2H ₂ O	Ca₁o(OH)₄{2∞}[Si₁² O₃₁(H₂O)₄] (≈Tobermorite)	Orth. C222 ₁	a=11.3Å b=7.3Å c=18.0Å	Z=4			Pov.,435,Min.Mag.,1954 <u>,30,</u> 29 3-305; Hölzel,220;RRW,521.
ROGGIANITE	Ca ₁₅ (Si,Al,Be) ₄₈ O ₉₀ (OH) ₁₆ .34H ₂ O		Tet. I 4/mcm	a=18.33Å c=9.16Å	Z ≈1			Am.Min.,1992 <u>,77</u> ,452(Abs.); Am.Min.,1983 <u>,68</u> ,852(Abs.); Min.Mag.,1988, <u>52,2</u> 01-206.
ROSELITE	Ca ₂ (Co,Mg) (AsO ₄) ₂ .2H ₂ O	Ca ₂ ^[7] {1∞}[(Co,Mg)° As ₂ ¹O ₈ (H ₂ O) ₂] (=Brandtite)	Mon. P2 ₁ /c	a=5.801Å b=12.898Å c=5.617Å	β=107.42° Z=2			SR, <u>43A,</u> 272-273;Pov.,519- 520;Str.Tab.,337;RRW,526; Hölzel,163.
RÖSSLERITE	Mg(AsO ₃ OH).7H ₂ O	Mg°As¹[O₃OH(H₂O)7]	Mon. C2/c	a=6.6918Å b=25.744Å c=11.538Å	β=95.15° Z=8	Mg _{I-II} (4e) As(8f) O _{I-IV} (8f)		Acta Cryst.,1973, <u>B29,</u> 286-292; Zeit.Krist.,1973, <u>137</u> ,194-219; SR, <u>39A,</u> 296-297;Pov.,516.
ROSTITE	AISO ₄ (F,OH).5H ₂ O		Orth. Pcab	a=11.181Å b=13.048Å c=11.885Å	Z=8			Am.Min.,1981, <u>66,</u> 1102-1103 (Abs.);Hölzel,134;Am.Min., 1979, <u>64,</u> 1331(Abs.).
ROUSEITE	Pb ₂ Mn(AsO ₃₎₂ . 2H ₂ O		Tric. P1	a=6.36Å b=7.29Å c=5.54Å	$\alpha = 97.3^{\circ}$ $\beta = 114.2^{\circ}$ $\gamma = 106.0^{\circ}$ Z = 1			Am.Min.,1986, <u>71,</u> 1034-1036; Hölzel,91.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
SACROFANITE	(Na,Ca) ₉ (Si,Al) ₁₂ O ₂₄ (OH,SO ₄) ₄ . nH ₂ O		Hex. P63mc	a=12.865Å c=72.240Å	Z=14			Am.Min.,1981, <u>66</u> ,1100(Abs.); Hölzel,240.
SANTITE	KB ₅ O ₆ (OH) ₄ .2H ₂ O		Orth. Aba2	a=11.10Å b=11.18Å c=9.08Å	Z=4			Am.Min.,1971, <u>56</u> ,636(Abs.); Hölzel,116;RRW,536;Pov.,479.
SASAITE	(AI,Fe) ₆ (PO ₄ ,SO ₄) ₅ (OH) ₃ .36H ₂ O	,	Orth.	a=21.50Å b=30.04Å c=92.06Å	Z=20 ?			Min.Mag.,1978, <u>42</u> ,401-404; Hölzel,169.
SBORGITE	NaB ₅ O ₆ (OH) ₄ .3H ₂ O	1	Mon. C2/c	a=11.119Å b=16.474Å c=13.576Å	β=112°50' Z=8	Na _{I-II} (4e) B _{I-V} (8f) O _{I-XIII} (8f)		Acta Cryst.,1972, <u>B28,</u> 3559- 3567;SR, <u>38A,</u> 292-293;RRW, 540;Pov.,479;Str.Tab.,259.
SCARBROITE	Al ₅ CO ₃ (OH) ₁₃ . 5H ₂ O	Als°c″ [O₃(OH)₁₃(H₂O)₅lʰ	(Tric.)	a=9.94Å b=14.88Å c=26.47Å	$\alpha = 98.7^{\circ}$ $\beta = 96.5^{\circ}$ $\gamma = 89.0^{\circ}$ Z = 9.7			Min.Mag.,1980, <u>43</u> ,615-618; Min.Mag.,1960, <u>32</u> ,353-362; Am.Min.,1958, <u>43</u> ,384(Abs.); RRW,541;Pov.,328;Hölzel,107.
SCHOLZITE	CaZn ₂ (PO _{4)2.} 2H ₂ O	Ca°Zn ₂ P ₂ [O ₈ (H ₂ O) ₂]	Orth. Pbc2 ₁	a=17.149Å b=22.236Å c=6.667Å	Z=12	Ca _{I-III} (4a) Zn _{I-VI} (4a)		Am.Min.,1975, <u>60</u> ,1019-1022; Am.Min.,1981, <u>66</u> ,843-851; RRW,545;Pov.,547Str.Tab., 330.
SCHULENBERGI- TE	(Cu,Zn) ₇ (SO ₄ ,CO ₃) ₂ (OH) ₁₀ . 3H ₂ O		Trig. P3	a=8.249Å c=7.183Å	Z=1			Am.Min.,1985 <u>,70</u> ,438(Abs.); Hölzel,132.
SCOLECITE	Ca(Si ₃ Al ₂)O ₁₀ .3H ₂ O	Ca ^{l/1} (H ₂ O) ₃ {3∞}{Si₃ ^t Al₂ ^t O₁₀] (≈Natrolite,Zeolite)	Mon. Cc	a=18.508Å b=18.981Å c=6.527Å	β=90.64° Z=4	Ca(4a) Si⊦⊪(4a) 	Ca ^{l7(} (H₂O)₃ {3∞}[Si₃¹Al₂¹O₁₀] SCOLECITE	Zeit.Krist.,1984, <u>166,</u> 219-223; Acta Cryst.,1979, <u>B35,</u> 1877- 1880;Pov.,356;LF,291.
SENEGALITE	Al ₂ PO ₄ (OH) ₃ .H ₂ O	Al ^o Al ^{tosy} [P ¹ [O ₄ (OH) ₃ (H ₂ O)]	Orth. P2 ₁ nb	a=7.675Å b=9.711Å c=7.635Å	Z=4	Al _{-II} (4a) P(4a) O _{I-IV} (4a)		Am.Min.,1979, <u>64</u> ,1243-1247; K/B,60-61;Am.Min.,1977 <u>,62,</u> 595(Abs.);SR,4 <u>5A,</u> 303-304.
SEPIOLITE	Mg ₄ Si ₆ O ₁₅ (OH) ₂ . 6H ₂ O	Mg₄°(H₂O) ₆ (OH) ₂ {2∞}{Si₅¹O₁₅] (≈Palygorskite)	Orth. Pncn	a=13.4Å b=26.8Å c=5.28Å	Z=4	Mgıv(4c) Oı(4d) Oviii(8e)Sil-iii(8e) 	Mg₄°(H₂O) ₆ (OH) ₂ {2∞}{Sie ^t O₁5] SEPIOLITE	SR <u>.20</u> ,436-437;SR <u>.21</u> ,457; Pov.,420-421;Str.Tab.,486; LF,241.
SHAFRANOVSKI- TE	(Na,K) ₆ (Mn,Fe) ₃ Si ₉ O ₂₄ .6H ₂ O		Trig. P3 ₁ m	a=14.58Å c=21.01Å	Z=6			Am.Min.,1983, <u>68</u> ,644(Abs.); Hölzel,247.
SHERWOODITE	Ca4.5AIV ₁₄ O ₄₀ .28H ₂ O	Ca4.5(H ₂ O) ₂₈ {3∞}[Al°V ₁₄ °O ₄₀]	Tet. I 4₁amd	a=28.06Å c=13.56Å	Z=8	AI(8c) Ca(16g) Vı(16h) V.ii(16f)Vıv-v(32i) 		Am.Min.,1978, <u>63</u> ,863-868;Am. Min.,1958, <u>43</u> ,749-755;Pov., 501-502;Str.Tab.,222;SR, <u>44A,</u> 202-203.
SMOLIANINOVITE	(Co,Ni,Mg,Ca) ₃ (Fe ⁺³ ,Al) ₂ (AsO ₄) ₄ .11H ₂ O		Orth.	a=6.40Å b=11.72Å c=21.9Å	Z=2 ?			Am.Min.,1974 <u>,59</u> ,1141;Hölzel, 164.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
SODDYITE	(UO ₂) ₂ SiO ₄ .2H ₂ O	(H ₂ O) ₂ {1∞}[(UO ₂) ₂ Si [*] O ₄]	Orth. Fddd	a=8.32Å b=11.21Å c=18.71Å	Z=8			Am.Min.,1981, <u>66</u> ,610-625; Hölzel,195;RRW,568;Pov.,456; Str.Tab.,387.
SODIUM ALUM	NaAl(SO ₄) ₂ .12H ₂ O	Na°AI°S₂[O ₈ (H₂O) ₁₂]	Cub. Pa3	a=12.213Å	Z=4	Na(4b) S(8c) O _I (8c) O _{II} (24d) 		Acta Cryst., 1967, <u>22,</u> 182-187; Pov., 597-598; SR, <u>32A,</u> 339- 343; Hölzel, 129.
SONORAITE	0		Mon. P2₁c	a=10.984Å b=10.268Å c=7.917Å	β=108.49° Z=8			Am.Min.,1968, <u>53,</u> 1828-1832; SR. <u>40A</u> ,311;RRW,570;Pov., 565;Hölzel,93.
SPENCERITE	Zn4(PO4)2(OH)2. 3H2O	Zn² ² Zn² ¹ P² [O ₈ (OH)²(H²O)₃]	Mon. P2/c	a=10.448Å b=5.282Å c=11.208Å	β=116°44′ Z=2	Zn _{II} (2a) Zn _{II} (2e) Zn _{III} (4g) P(4g) 		Min.Mag., 1972, <u>38</u> ,687-692; SR. <u>31A,</u> 190-191;Pov.,549- 550;Str.Tab.,341.
STANLEYITE	VOSO4.6 H ₂ O		Orth. ?	a=12.12Å b=9.71Å c=14.92Å	Z=8			Hölzel,135;Min.Mag.,1982, <u>45,</u> 163-166.
STELLERITE)	Ca ^{t9} (H ₂ O) ₇ {3∞}[Si ⁻ Al2 ⁺ O ₁₈] (≈Stilbite,Zeolite)	Orth. Fmmm	a=13.599Å b=18.222Å c=17.863Å	Z=8			SR. <u>41A</u> ,401;LF,299;Pov.,354; Str.Tab.,490;SR. <u>45A</u> ,375;Am. Min.,1968, <u>53</u> ,511(Abs.);Bull. Min.,1975, <u>98</u> ,11-18.
STILPNOMELANE	(K,Ca,Na) (Fe,Mg,Al) ₁₂ (Si,Al) ₁₆ (O,OH) ₅₄ . nH ₂ O		Tric. P 1	a≈21.724Å b≈21.724Å c=17.740Å	α=124° β=96° γ=120° Z=6?			Min.Mag.,1972, <u>38</u> ,693-711; Pov.,436;Str.Tab.,442;RRW, 583-584;Min.Mag.,1978, <u>42;</u> 361-368.
STOKESITE	CaSnSi ₃ O ₉ .2H ₂ O	Ca ^{l8j} Sn ^{t6j} (H ₂ O) ₂ {1∞}[Si₃ ^t O₅]	Orth. Pnna	a=14.465Å b=11.625Å c=5.235Å	Z=4	Ca(4d) Sn(4b) Si ₍ (4d) Si _{ii} (8e) 		Min.Mag., 1963, 33, 615-617; SR. <u>28,</u> 262-263; Pov., 419; Str. Tab., 428.
STRASHIMIRITE	Cu ₄ (AsO ₄) ₂ (OH) ₂ . 2.5H ₂ O	Cu4°As ₂ ¹ [O ₆ (OH) ₂ (H ₂ O) _{2.5}]	Mon. P2/m	a=9.71Å b=18.85Å c=8.94Å	β=97°12' Z=6			Am.Min., 1969, <u>54</u> , 1221 (Abs.); Pov., 516; Str. Tab., 340; RRW, 585-586; Hölzel, 167.
STRÄTLINGITE	Ca ₂ Al ₂ SiO ₇ .8H ₂ O		Trig. R 3m	a=5.753Å c=37.82Å	Z=3			Am.Min., 1992, 77,674-675; Hölzel, 192; Am.Min., 1977, <u>62,</u> 395(Abs.).
STRINGHAMITE	CaCuSiO ₄ .H ₂ O	Ca ^{l7l} H₂O {2∞}[Cu ^{sq} {g}[Si [†] O₄]]	Mon. P2 ₁ /c	.≪	β=102.96° Z=4			Min.Abs.,85M/3792;Am.Min., 1976 <u>,61,</u> 189-192;Hölzel,191.
STRUVITE	<u>Q</u>	Mg°P′(NH4) [O4(H2O)6]	Orth. Pmn2 ₁	a=6.955Å b=6.142Å c=11.218Å	Z=2	P(2a) Mg(2a) N(2a) O _{I-II} (2a) OIII(4b)		Acta Cryst., 1986, <u>B42</u> , 253-258; SR, <u>55A,</u> 329-330; Pov., 548; Str. Tab., 337; RRW, 588-589.
SUOLUNITE	Ca ₂ Si ₂ O ₅ (OH) ₂ .H ₂ O		Orth. Fdd2	a=11.02Å b=19.74Å c=6.08Å	Z=8	Ca(16b) Si(16b) O _{I:I} (8a) O _{II:-V} (16b)		SR, <u>31A,</u> 236;Min.Abs.,75-871; Am.Min.,1967, <u>52,</u> 560-561; Pov.,403;Str.Tab.,579,391; RRW, 592.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL D	UNIT CELL DIMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
SYNGENITE	K ₂ Ca(SO ₄) ₂ .H ₂ O		Mon.	a=6.225Å	B=104.153°	Ca(2e) K(4f)		Sov. Phys. Cryst., 1978, 23, 141-
			P2,/m	b=7.127Å	Z=2	S _{I-II} (2e) O _{I-V} (2e)		143;SR,44A,271-272;SR,32A,
			•	c=9.727Å				335-336;Pov.,594;Str.Tab.,
								291;SR,33A,518-520.
TALMESSITE	Ca ₂ Mg(AsO ₄) ₂ .	Ca ₂ ^[8] Mg°As ₂ ¹	Tric.	a=5.874Å	α=97.3°			SR,43A,356;RRW,601-602;
	2H ₂ O	[O ₈ (H ₂ O) ₂]	<u>С</u>	b=6.943Å	B=108.7°			Pov.,519-520;Str.Tab.,337;Am.
		(=Parabrandtite)		c=5.537Å	γ=108.1°			Min., 1988, 73, 1496 (Abs.).
		0.		•	Z=1			
TAMARUGITE	NaAI(SO ₄) ₂ .6H ₂ O	Na"Al"S ₂ [O ₈ (H ₂ O) ₆]	Mon.	a=7.353Å		Na(4e) Al(4e)		Am.Min.1969,54,19-30;SR,
			P2 ₁ /a	b=25.225A c=e 007Å	Z=4	O _{I-VIII} (4e)		34A,310-311;HOIZEI,13U;POV.,
	10-17			0.00.0		O-1 (40)		Am Min 1000 72 034/Abc >:
HOMEIZEKIIE	Pb(Cu, Zn) ₂ (ASO ₄) ₂ . 2H ₂ O							Hölzel, 162.
THOMSENOLITE	NaCaAIF ₆ .H ₂ O	Na ^[12] {3∞}	Mon.	a=5.583Å	8=96°26'	Ca(4e) Na(4e)		Acta Cryst., 1967, 23, 162-166;
	•	[Ca ^[8] Al°(H ₂ O)F ₆]	P2,/c	b=5.508Å	Z=4	AI(4e) F _{I-VI} (4e)		SR,32A,164-166;Pov.,664;
				c=16.127Å		O(4e)		Str.Tab.,162;RRW,613.
THOROSTEENS-	(Ca,Th,Mn) ₃ Si ₄ O ₁₁		Amorph.					Am.Min.1963,48,433-434
TRUPINE	F.6H ₂ O							(Abs.);Pov.,761,370;RRW,616.
TIKHONENKOVI-	SrAIF4(OH).H2O	Sr ¹⁹ ,Al ^o [F ₄ (OH)(H ₂ O)]		a=5.02Å	B=102°43'	Sr(4e) Al(4e)		SR,32A,166-167;Am.Min.,
1			P2 ₁ /c	b=10.62Å	Z=4	(H ₂ O)(4e)		1964,49,1774-1775(Abs.);
				c=8.73Å		F _{I-IV} (4e)		Pov.,658;Str.Tab.,161;RRW,
						(OH)(4e)		61/-618.
TINCALCONITE	Na ₂ B ₄ O ₅ (OH) ₄ .	{g}{B ₂ B ₂ ^T O ₅ (OH) ₄]	Trig.	a=11.09Å		Na ₁ (9e) Na ₁₁ (3b)		Am.Min., 1973, 58, 523-530;
	3H2O	(3∞)[Na°2(H2O)3]	R32	c=21.07Å		Na _{III} (6c)B _{I-II} (18f)		SR,39A,263;Pov.,478-479;
				Z=9		O _I (9d)		Str.Tab.,258;RRW,619.
TINTICITE	Fe ₄ (PO ₄) ₃ (OH) ₃ .		Mon.	a=13.65Å	β=91.2°			Am.Min., 1989, 74, 1404 (Abs.);
	5H ₂ O		P2	b=6.542Å	Z=3			Pov.,548-549;Str.Tab.,343;
				C=12.31A				KKW, 019, HOIZEI, 160.
TOBERMORITE	Ca ₅ Si ₆ O ₁₆ (OH) ₂ .		orth.	8=11.3A	Z=4			Str. Tab., 424; RRW, 626; Zeit.
	NH20		C2224	D=7.33A				20 442:Dov. 425:Likitol 220
TOTOT		1 (9) (17)	Trice	0-6-0-0 0-0-734 Å				Min Mon 1070 43 232, 238
10000	(Ca, Mill) 14 S124 C58	[Oct.(DH),(H2O),1	- Q	C=18.84Å				Hölzel 236:Pov. 434-435:
		77() 7: 10/: 10/00 1		Z=1				RRW,630.
TSCHERMIGITE	NH4AI(SO4)2.	Al°S ₂ 'O ₈ (H ₂ O) ₁₂	Cub.	a=12.242Å		AI(4a) S(8c)		Zeit. Krist., 1981, 157, 147-166;
	12H ₂ O	{8}[NH₄] ^[6]	Pa3	Z=4		N(8c) O ₁ (8c) O ₁₁ (24d)		Hölzel,129;Pov.,597;Str.Tab., 286.
TSUMCORITE	Pb(Zn,Fe) ₂ (AsO ₄₎₂ .	Pb ^{lgi} (Zn,Fe) ₂ ^o As ₂ ^t	Mon.	a=9.124Å	B=115°17'	Pb(2a)		Acta Cryst., 1973, <u>B29,</u> 2789-
	(OH,H ₂ O) ₂	[O ₈ (OH,H ₂ O) ₂]	C2/m	b=6.329Å	Z=2	(Zn,Fe)(4f)		2794;SR,39A,299-300;RRW,
		(~Brackebuschite)		c=7.577A		As(4i)		631Min.Abs., 72-1405.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
	FORMULA	FORMULA	GROUP	8 000 8	1007	(40) Cr(40)		Am Min 1084 40 1540 1588
TUNELLITE	STEGO (OH)2.3H2O	Sr (H ₂ O) ₃	Mon.	8=14.390A	β=114.2	DI-VI(4e) 31(4e)		OF 00 00 004 TO 49-10-10-10-10-10-10-10-10-10-10-10-10-10-
		{2∞}{B ₃ 'B ₃ "O ₉ (OH) ₂	P2 ₁ /a	D=8.213A	7=4	Oi-xiv(4e)		St. Tah 265. DRW 633
		(=Nobleite)		C-8.854A				OH: 1 8D.; 200; INVV, 000.
TYRETSKITE-1Tc	Ca ₂ B ₅ O ₉ (OH).H ₂ O		Б.	a=6.44A	α=61°46			Am.Min., 1968, 53, 2084-2087;
			٦ -	b=6.45Å	β=60°15'			Pov., 488-489; Holzel, 118; Str.
				c=6.41Å	$\gamma = 73^{\circ}30'$			Tab.,264;RRW,635.
UMBITE	K,ZrSi,Oo,H,O		Orth.	a=10.208Å	1			Am.Min., 1984, 69, 813-814;
	7		P2,2,2,	b=13.241Å				Am.Min., 1982, 67, 416-417
				c=7.174Å				(Abs.);Hölzel,205.
UMOHOITE	(UO ₂)M ₀ O ₄ .4H ₂ O	U ^[6] Mo ^[6] [O ₆ (H ₂ O) ₄]	Mon.	a=14.30Å	β=88°5'			RRW,639;Pov.,325-326;
	•		P2 ₁ /m	b=7.50Å	Z=4			Str. Tab., 302; SR, <u>28, 225-226;</u>
				C-0.30A				A - 16: 4070 57 507/AL- V
VANALITE	NaAl ₈ V ₁₀ O ₃₈ .30H ₂ O		Mon.	a=12.591A	β=95.30°			Am.Min., 1972, 37, 397 (Abs.);
			F2/m	c=10.923Å	7=7			nolzel, oo.
VANTASSELITE	AL(PO,)2(OH)2.		Orth.	a=10.528Å	Z=8			Am.Min., 1988, 73,931 (Abs.);
	9H ₂ O		Pmam	b=16.541Å				Hölzel, 168.
				c=20.373Å				
VASHEGYITE	Al ₁₁ (PO ₄) ₉ (OH) ₆ .		Orth.	a=10.754Å	Z=4			Hölzel, 168; Min. Mag., 1974, 39,
	38H ₂ O		Pnma ?	b=14.971A				802-806:Encyc.Miner.Nam.,
				-1				010
VESZELYITE	(Cu,Zn) ₃ PO ₄ (OH) ₃ .	(Cu,Zn) ₃ P ^r	Mon.		β=103.18°	(Cu,Zn) - (4e)		Am.Min., 1974, 59, 573-581;
	2H ₂ O	[O ₄ (OH) ₃ (H ₂ O) ₂]	P2 ₁ /a	b=10.224A	Z=4	Zn(4e) P(4e)		K/B,91-92;Pov.,549-550;
		(=Kipushite)		c=7.532A		O _{I-IV} (4e)		Str. I ab., 346; RRW, 652.
VINOGRADOVITE		3∞[(Na,Ca), ^[8] Ti₄°Si ₈ ^t			β=100.13°	Na _i (8f) Ti(8f)		Zeit.Krist., 1992, 200, 237-245;
	(H ₂ O),K ₃)	O ₂₆ (H ₂ O,K ₃)]	C2/c	b=8.662Å	Z=2	Si⊦⊪(8f)		Pov.,426-427;Sov.Phys.Cryst., 1984.29.403-406.
VOI BODTUITE	1	Cit of t		a=10 604Å	R=94 810			Am.Min. 1974.59.372-373:
	2H ₂ O	[O ₇ (OH) ₂ (H ₂ O) ₂]	2	b=5.879Å	Z=2			Pov.,498;Hölzel,159.
				c=7.202Å				
VOLKOVSKITE	Ca(B ₃ O ₄ (OH) ₂)2.		Mon.	a=6.575Å	β=119°5'			Can.Min., 1990, 28, 351-356.
	4,0 H		P2 ₁	b=23.921A	Z=4?			Am.Min., 1966, 51, 1550 (Abs.);
				c=6.522Å				Str.Tab.,261,Pov.,487-488.
VYACHESLAVITE	VYACHESLAVITE UPO4(OH).2.5H2O		Orth.	a=6.96Å	9=Z			Am.Min., 1985, 70,878 (Abs.);
			Cmcm	b=9.10Å				Hölzel,178.
WAIRAKITE	Ca(Al-SiA)O42, 2H2O Cal ¹⁵ (H2O)2	Ca ⁽⁶⁾ (H ₂ O),	Mon.	a=13.692Å	B=90.5°	Ca(8j)		Am.Min., 1979, 64, 993-1001;
	7 7 7 7 7 7	(30)[Al2 Si4 O12]	l 2/a	b=13.643Å		(AI,Si) _{I-VI} (8j)		Pov.,351-352;Str.Tab.,471;
		(«Analcime,Zeolite)		c=13.560Å		O _{I-XII} (8j)		RRW, 659-660.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
WARDSMITHITE	Ca ₅ Mg(B ₄ O ₇) ₆ . 30H ₂ O		Hex.	٠				Am.Min., 1970, 55,349-357; RRW, 662; Pov., 491; Hölzel, 115.
WAVELLITE	Al ₃ (PO ₄) ₂ (OH,F) ₃ . 5H ₂ O	Al ₃ °P ₂ ¹ [O ₆ (OH,F) ₃ (H ₂ O) ₅]	Orth. Pcmn	a=9.621Å b=17.363Å c=6.994Å	Z=4	Ali(4c) Alii(8d) P(8d) Ol-Iv(8d) 		Zeit.Krist.,1968, <u>127,</u> 21-33;SR, <u>33A,</u> 404-405;Pov.,549;Str. Tab.,343;RRW,663.
WENDWILSONITE	Ca ₂ (Mg,Co)(AsO ₄) ₂ .2H ₂ O	Ca ^{[7} {1∞}[(Mg,Co)° As₂ ^t O ₈ (H₂O)₂] (=Brandtite)	Mon. P2 ₁ /c	a=5.806Å b=12.912Å c=5.623Å	β=107°24' Z=2			Am.Min.,1987, <u>72,</u> 217-221; Hölzel,163.
WHITMOREITE	Fe ₃ (PO ₄) ₂ (OH) ₂ . 4H ₂ O	Fe ₃ °P ₂ ¹ [O ₈ (OH) ₂ (H ₂ O) ₄] ^{c/h} (Basic str.Arthurite)	Mon. P2 ₁ /c	a=10.00Å b=9.73Å c=5.471Å	β=93.8° Z=2	Fe _I (2a) Fe _{II} (4e) P(4e) O _{I-IV} (4e) 		Am.Min.,1974 <u>,59</u> ,900-905;K/B, 39-40;SR, <u>40A,</u> 246;K/B,39-40.
WOODWARDITE	(Cu,Al) ₈ SO ₄ (OH) ₁₆ . nH ₂ O		Trig.	٤				Min.Mag.,1976, <u>43</u> ,644-647; RRW,676; Hölzel,134.
WROEWOLFEITE	Cu ₄ SO ₄ (OH) ₆ .2H ₂ O Cu ₄ °S' [O ₄ (OH) ₆ (H ₂ O) ₂]	Cu4°S¹ [O4(OH) ₆ (H ₂ O) ₂]	Mon. Pc	a=6.045Å b=5.646Å c=14.337Å	β=93.39° Z=2	Cu _{-IV} (2a) S(2a) O _{I-XII} (2a)		Am.Min.,1985 <u>,70,</u> 1050-1055; Min.Mag.,1975 <u>,40</u> ,1-5; Hölzel,132.
XITIESHANITE	FeSO ₄ CI.6H ₂ O		Mon. P2₁/a	a=14.102Å β=111.266° b=6.908Å Z=4 c=10.673Å)=111.266° Z=4			Am.Min.,1984 <u>,69</u> ,1194(Abs.); Hölzel,135.
YAROSLAVITE	Ca ₃ Al ₂ F ₁₀ (OH) ₂ . H ₂ O		Orth. ?	a=8.74Å b=5.53Å c=4.51Å	Z=4			Am.Min.,1968 <u>,51</u> ,1546-1547; Hölzel,54;RRW,680;Pov.,658; Str.Tab.,161.
YOFORTIERITE	(Mn,Mg) ₅ Si ₈ O ₂₀ (OH) ₂ .8-9H ₂ O	(Mn,Mg) ₅ °(H ₂ O) ₈₋₉ (OH) ₂ {2∞}[Si ₈ ¹O ₂₀] (≈Palygorskite)	Mon. Pn	ć				Hölzel,236;Encyc.Miner.Nam., 338;Can.Min.,1975 <u>,13</u> ,68-74; LF,241.
ALITE	0	Ca ^{l^{8]}(H₂O)₄ {3∞}[Si₆^tAl₂^tO₁6] (Zeolite)}	Mon. Pc	a=6.700Å b=13.972Å c=10.039Å	β=111.07° Z=2	β=111.07° Ca(2a) Al⊦ıı(2a) Z=2 Si⊦νı(2a) O⊦xνı(2a)		Zeit.Krist.,1986, <u>174,</u> 265-281; Pov.,357;Str.Tab.,492;RRW, 683;SR, <u>34A</u> ,374.
ZAHERITE	Al ₁₂ (SO ₄) ₅ (OH) ₂₆ . 20H ₂ O		Tric. P 1?	a=18.475Å or b=19.454Å or c=3.771Å	α =95°14.4° β =91°28.8° γ =80°14.4° Z =1			Min.Mag.,1985 <u>,49,</u> 145-146; Hölzel,135;Am.Min.,1977, <u>62,</u> 1125-1128;Am.Min.,1986, <u>71,</u> 231-232(Abs.).
ZEMANNITE	(H,Na) ₂ (Zn,Fe) ₂ (TeO ₃) ₃ .nH ₂ O	(H,Na) ₂ (H ₂ O) _{n{3∞}} [(Zn,Fe) ₂ ^{°Te₃^{[M)}O₉] (≈Zeolite)}	Hex. P6 ₃ /m	a=9.404Å c=7.636Å Z=2		(Zn,Fe)(4f) Ti(6h) O _i (6h)		Eur.J.Min.,1995,7,509-523; Pov.,565,Str.Tab.,229;RRW, 685;Hölzel,93.
ZINCROSELITE	Ca ₂ Zn(AsO ₄₎₂ . 2H ₂ O		Mon. P2 ₁ /c	a=5.832Å b=12.889Å c=5.644Å	β=107.72° Z=2			Am.Min.,1988 <u>,73</u> ,932(Abs.); Hölzel,163.

$A_pB_qC_rD_sE_x.nAq.$

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
ABERNATHYITE	K(UO ₂)AsO ₄ .3H ₂ O	(H ₂ O) ₃ K ^[6] {2∞}[U ^{[2} *4]O ₂ As ¹O₄] (≈Metatorbemite)	Tet. P4/ncc	a=7.176Å c=18.126Å	2=4	U(4c) As(4b) O _{I-II} (4c) O _{III-IV} (16g)		Am.Min., 1964, <u>49</u> , 1578-1602; LF, 246; SR <u>, 29</u> , 377- 378Str. Tab., 353; Pov., 522.
AGARDITE-(La)	(Cu,Ca) ₆ La(AsO ₄) ₃ (OH) ₆ .3H ₂ O		Hex. P6 ₃ /m	ć				Encyc.Miner.Nam.,11;Hölzel, 177.
AGARDITE-(Y)	Cu ₆ (Y,Ca)(AsO ₄) ₃ (OH) ₆ .3H ₂ O		Hex. P6 ₃ /m	a=13.583Å c=5.895Å	Z=2	Cu(12i)Y(2d) As(6h)O _{I-IV} (6h) O _{V-VI} (12i)		Acta Cryst.,1985, <u>C41,</u> 161-163; Hölzel,177;RRW,5;Pov.,519.
AHEYLITE	(Fe,Zn)Al ₆ (PO ₄) ₄ (OH) ₈₋ 4H ₂ O		Т Ч Э.	a=7.408Å ob=9.891Å ob=9.891Å ob=7.627Å	α=110°56' β=115°3' γ=69°89' Z=1			Hölzel suppl
ALDERMANITE	(Mg,Ca) ₅ Al ₁₂ (PO ₄) ₈ (OH) ₂₂ .32H ₂ O		Orth. ?	a=15.00Å b=8.330Å c=26.60Å	Z=2			Min.Mag.,1981, <u>44,</u> 59-62;Am. Min.,1981, <u>66,</u> 1099(Abs.); Hölzel,172.
ALIETTITE	Ca _{0.2} Mg ₆ (Si,Al) ₆ O ₂₀ (OH) ₄ .4H ₂ O		٤					Am.Min., 1972, <u>57</u> , 598 (Abs.); Am.Min., 1982, <u>67</u> , 394-398.
ALUMINOCOPIA- PITE	(Al,Mg)Fe ₄ (SO ₄₎₆ (OH,O) ₂ .20H ₂ O		Tric. P 1	a=7.30Å b=18.80Å c=7.31Å	α =91.5° β =102.3° γ =98.7° Z=1			Can.Min.,1985, <u>23,</u> 53-56; Hölzel,133;RRW,15;Pov.,601; Str.Tab.,295;Am.Min.,1967, <u>52,</u> 1220-1223.
ALUMINOPHAR- +MACOSIDERITE	KAI4(AsO ₄₎₃ (OH) ₄ .6.5H ₂ O	Al4°As3 [†] [O ₁₂ (OH)4(H ₂ O) _{6.5} K]	Cub. P 43m	a=7.745Å	Z=1?			Am.Min.,1981, <u>66</u> ,1099(Abs.); Hölzel,173;Str.Tab.,348;SR, <u>11,</u> 405-407.
AMICITE	K ₂ Na ₂ (Al ₄ Si ₄)O ₁₆ .5H ₂ O	K₂ ^{[//} Na₂ ^{[σ} (H₂O)₅ {3∞}[Al₄'Si₄'O₁6] (Zeolite)	M on. I 2	a=10.226Å b=10.422Å c=9.884Å	β=88°19' Z=2	Sil-II(4c)All-II(4c) Ol-VIII(4c)Na(4c) K(4c)		Acta Cryst.,1979, <u>B35,</u> 2866- 2869;SR, <u>45,</u> 367;Am.Min., 1980, <u>65,</u> 808(Abs.);Hölzel,244.
AMSTALLITE	CaAl(Si,Al) ₄ O ₈ (OH) ₄ .(H ₂ O,Cl)		Mon. C2/c	a=18.830Å b=11.517Å c=5.190Å	β=100.86° Z=4			Am.Min.,1988 <u>,73</u> ,1492(Abs.); Hölzel,224.
ARISTARAINITE	Na ₂ Mg (B ₆ O ₈ (OH) ₄) ₂ .4H ₂ O	Na₂ ^[59] Mg°(H₂O)₄ {2∞}[B₃¹B₃ ^{tr} O ₈ (OH)₄]	Mon. P2₁/a	a=18.886Å b=7.521Å c=7.815Å	β=97.72° Z=2	Mg(2a) Na(4e) B _{I-VI} (4e) O _{I-XIV} (4e)		Am.Min.,1977, <u>62</u> ,979-989;Am. Min.,1974 <u>,59</u> ,847-651;SR, <u>43A,</u> 225-226; Hölzel,118.
ARMENITE	BaCa ₂ Al ₆ Si ₉ O ₃₀ .2H ₂ O	3∞[Ca₂°Al ₆ tSi₃¹O₃₀ (H₂O)₂Ba¹¹²l (≈Milarite)	(Orth.) Pnna	a=13.874Å b=18.660Å c=10.697Å	Z=4	Ba(4c)Ca(8e) Al(4c) (Si,Al)⊩ı(4d)		Am.Min., 1992, <u>77</u> , 422-430; SR, 4 <u>0A,</u> 286-287; Sov. Phys. Cryst., 1974, <u>19</u> , 480-462; Pov. 380;
ARSENIOSIDERI- TE	Ca ₂ Fe ₃ O ₂ (AsO ₄) ₃ .3H ₂ O	Ca₂ ^{[1/} (H₂O)₃ {2∞}[Fe₃ [°] As₃ ^t O₁₂] (=Mitridatite)	Mon. A2/a	a=17.76Å b=19.53Å c=11.30Å	β=96.0° Z=8			Am.Min., 1974, <u>59</u> , 48-59; RRW, 35-36; Pov., 525; Str. Tab., 345; Hölzel, 175; Encyc. Miner. Nam., 23.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
ARTHURITE		Cu°Fe2°As2	Mon.	a=10.189Å	β=92.16°			SR,44A,349;Min.Mag.,1964,
		[O ₈ (OH) ₂ (H ₂ O) ₄] ^{ch} (Subs.d.Whitmorite)	P2 ₁ /c	b=9.649Å c=5.598Å	Z=2			33,937-941;Pov.,517;Str.Tab., 345; Hölzel,170.
AUBERTITE		Cu ^o Al ^o S ₂ ^c	Tric.	a=6.282Å	α=91.85°	Cu(1e)Cl(1g)		Acta Cryst., 1979, <u>B35, 2499</u> -
	14H ₂ O	[O ₈ (H ₂ O) ₁₄ CI]	٦-	b=13.192Å	β=94.70°	AI(1f)S(2i)		2502;Min.Abs.,80-2891;
				c=6.260Å	γ=82.46° 7=1	O _{I-XI} (2i)		Hölzel, 133.
AUTUNITE	Ca(UO ₂) ₂ (PO ₄) ₂ .	(H ₂ O) ₁₀ [Ca ^[6]	Tet.	a=6.989Å	Z=2	Ca(2a)P(4d)	(H ₂ O) ₁₀ [Ca ^[6]	LF,245; Wyckoff,1965,vol.3,
	10H ₂ O	{2∞}[U ^[2+4] O ₂ P ¹ O _{4]2}]	I4/mmm	c=20.63Å		U(4e)	{2∞}[U ^{[2+4}]O₂P ^t O₄]] AUTUNITE	869-870; Am. Min., 1961, 46, 812-822; RRW, 43; Pov., 555-556.
BARBERTONITE	Mg ₆ Cr ₂ CO ₃ (OH) ₁₆ .		Hex.	a=6.18Å	Z=1			Pov., 331; Str. Tab., 247; RRW,
	,		P6 ₃ /mmc	b=15.55Å				49-50; Hölzel,107.
BASSETITE	Fe(UO ₂) ₂ (PO ₄) ₂ .		Mon.	a=6.98Å	β=90°32′			Enc.Min.Nam.,33;Min.Mag.,
		{2\infty\ \bigg \big \	P2 ₁ /m	b=17.07A	Z=1			1934, <u>C23</u> ,343-335,P0V,336, Str Tab 351.RRW 54.Hölzel
		(*Metatorbernite)		2				181;LF,246.
BAYLDONITE	(Cu,Zn) ₃ Pb(AsO ₄) ₂	E	Mon.	a=10.147Å	B=106°05'	Cu ₁ (4a)Cu ₁₁ (4b)		Acta Cryst., 1979, <u>B35</u> , 819-823;
	(OH) ₂ .H ₂ O	Pb[8at/] (AS(O ₄) ₂ (OH) ₂]	C2/c	b=5.892Å	Z=4	Cu _{III} (4d)Pb(4e)		Am.Min., 1981, 66, 148-153; SR,
				c=14.081Å		As(8f)		45A,324;Pov.,513;Str.Tab.,325
BAYLEYITE	Mg ₂ (UO ₂)(CO ₃) ₃ .	(H ₂ O) ₁₈	Mon.	a=26.560Å	β=92.90°			Min.Abs.,87M/0308;Min.Abs.,
	18H ₂ O	{3∞}[Mg2°UO2(CO3)3]	P2 ₁ /a	b=15.256Å	Z=4			87M/2144;Str.Tab.,249;RRW,
		(≈Liebijite)		c=6.505A				56;Holzel,109.
BAZHENOVITE	Ca ₈ S ₅ (S ₂ O ₃)(OH) ₂ .		Mon.	a=8.45Å	β=119.5°			Am.Min., 1989, 74, 500 (Abs.);
			P2 ₁ /c	b=17.47Å c=8.24Å	Z=1			Hölzel,26.
BECQUERELITE	Ca(UO ₂) ₆ O ₄ (OH) ₆ .	(H ₂ O) ₈ Ca ^[5]		a=13.8378Å Z=4	, Z=4	U _{-VI} (4a)		Am.Min., 1987, 72, 1230-1238;
		{2\infty\{\O_2\}^2\}(\OD_3\)^2	Pn2₁a	b=12.3781A		Ca(4a)		Am.Min., 1984, 69, 214 (Abs.);
		(≈Billietite)		C=14.9238A				57.
BEIDELLITE		(H ₂ O) _n (Na,Ca) _{0.3}	Orth.	a=5.17Å	β≈90°′		(H ₂ O) _n (Na,Ca) _{0.3}	Pov.,728,445;Str.Tab.,445;LF,
	(Si,Al) ₄ O ₁₀ (OH) ₂ . nH ₂ O	Al ₂ °(OH) ₂ {2∞}{(Si.Al) ₄ O ₁₀] ^{(2.5)c}	C2/m	b=8.94Å c=15.2Å	Z=2		(AI,Mg)2 [°] (OH)2 {2∞} [Si4 ^t O₁0] ^{(2:s)c}	232;Encyc.Miner.Nam.,34; RRW,59.
							MONTMORILLONITE	
BENTORITE	Ca ₆ (Cr,Al) ₂ (SO ₄) ₃		Hex.	a=22.35Å	S=2			Am.Min.1981,66,637(Abs.);
			P63/mmc	c=21.41A				Holzel, 136; Encyc. Miner. Nam., 36.
BERAUNITE	Fe ^{2*} Fe ₅ **(PO ₄) ₄	Fe ₆ °P₁¹	Mon.	a=20.760Å	β=93.55°	Fe ₁ (4a)Fe ₁₁ (4c)		Can.Min., 1989, 27, 441-446;
		[O₁6(OH)₅(H₂O)6] (≈Strunzite)	C2/c	b=5.154A c=19.248Å	Z=4	Fe _{III-IV} (8t) P _{I-II} (8f)		Pov., 548-549; Str. 1 ab., 545; Acta Cryst., 1967, 22, 173-181.

Hyb. (H ₂ O)Ba (Orth. Par2, 12 0720Å Z=4 U _{LN} (4a)Ba(4a) Par2, Par2, 12 0720Å Z=4 O _{LN} (4a)Ba(4a) (2a)Equerelite)	NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
Geograerelite Geograerelit	BILLIETITE	Ba(UO ₂) ₆ O ₄ (OH) ₆ . 4H ₂ O	(H ₂ O)₄Ba {2∞}{(UO ₂)₀O₄(OH) ₆]	Orth. Pbn2 ₁	a=12.0720/ b=30.167Å	-	U _{I-VI} (4a)Ba(4a) O _{I-XXVI} (4a)		Am.Min.,1987,72,1230-1238; Pov.,327;Str.Tab.225;RRW,70.
Mg°RG°S1 Mon. a=10.5984 p=100.13° Fe(2a)Fen(2c) Co(OH)(HzOy)1 P2,/n D=17.8724 Z=4 Mg(4e)Si(4e) D=17.8724 Z=4 Mg(4e)Si(4e) D=17.8724 Z=4 Mg(4e)Si(4e) D=18.1324 Z=1 O _{V-III} (4e) D=18.1324 Z=1 O _{V-III} (4e) D=18.1324 Z=1 O _{V-III} (4e) D=18.1324 D=17.9274 Z=4 D=17.9274			(≈Becquerelite)		c=7.1455Å				
Cocyiotic Pz,nn D=17,872	BOTRYOGEN	MgFe(SO ₄) ₂ (OH).	Mg°Fe°S ₂ t	Mon.	a=10.526Å	_	Fe ₁ (2a)Fe ₁₁ (2c)		Acta Cryst., 1958, <u>B24</u> , 700-767;
(ch-0)(2 ^{co}) Hex. a=5.47Å Z=1 (ch-0)(2 ^{co})(Hex. a=10.992Å α=93°57 Ca _{1·v} (21)Si _{1·l} (21) (ch-0)(2 ^{co})(Ga ²)(Si ²)(O ₂) Tric. a=10.992Å α=93°57 Ca _{1·v} (21)Si _{1·l} (21) (ch-0)(1) Hex. a=15.750Å Z=2 (ch-0)(1) Hex. a=15.750Å Z=2 (ch-0)(1) Cu ₁ (12) (ch-0)(1) Hex. a=15.750Å Z=2 (ch-0)(12) (ch-0)([O ₈ (OH)(H ₂ O) ₇] (≈Copiapite)		b=17.872A c=7.136Å		Mg(4e)Sı-ıı(4e) Oı-vılı(4e)		SR,32A,338;SR,33A,379-381; Pov.,601;Str.Tab.,295.
(2∞)[Mg,°F e²(OH) ₁₃] P3	BRUGNATELLITE	MgeFeCO ₃ (OH) ₁₃ .	(H ₂ O) ₄ C ¹ O ₃	1	a=5.47Å	Z=1			RRW.92:Pov.331:Str.Tab247:
(OH)O (2α) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca			{2∞}[Mg ₆ °Fe°(OH) ₁₃]		c=15.97Å				Hölzel, 107; Am. Min., 1941, <u>26,</u> 295-315.
(«Connelite) P 1 b=8.185A β=91°19' O _{LVII} ((2)) («Connelite) c=5.671A γ=89°51' E=6.016h)Cu _{III} ((3)) Peymmc c=9.161A c=85°31' C=9.161A c=85°31' C=1.160A γ=100°37' C=1.160A β=103°33' C=1.160A β=103°37' C=2.0 b=11.80A Z=1 Cu(8)Mg(8) C=2.0 b=11.80A Z=1 C(4e)O _L (8) C=2.2 b=2.4A C(4e)O _L (8) C=2.2 b=0.088A Z=1 C(4e)O _L (8) C=1.2.98A Z=1 C(4e)O _L (10) C=1.2.5A A=10.3° Cu _{LVI} (4c)Mn(4c) C=1.2.5A A=10.3° Cu _{LVI} (4c)Mn(4c) C=1.2.5A A=10.3° Cu _{LVI} (4c)U(4e) C=1.2.5A A=10.47A β=103°50' V(4e)O _{LVI} (4e) C=6.59A B=11.53° Mon. a=10.47A β=103°50' V(4e)O _{LVI} (4e) C=6.59A B=11.53° Mon. a=7.683A B=11.53° C=8.24A CARNOTITE C=6.59A Z=1 Cu(6)O _{LVII} (10) C=6.59A Z=10.478 A=15.93° C=11.53° C=11	BULFONTEINITE	Ca ₂ SiO ₃ (OH)F.H ₂ O	1	1	a=10.992Å	α=93°57'	Cal-Iv(2i)Sij-II(2i)		Acta Cryst., 1963, 16,551-558;
(≈Connelite) ((OH)F]		b=8.185Å	β=91°19′	O _{I-VII} (2i)		RRW,94;Pov.,422;Str.Tab.,379
Hex. Hex. a=15.750Å Z=2 Cu ₁ (6g)Cu ₁₁ (12i) Cu ₁ (72i) Cu ₂ (72i) C			(≈Connelite)		c=5.671Å	γ=89°51' Z=4			;SR, <u>28</u> ,256-257.
2. Tric. a=7.35Å α=85°31' Cuv(2a) Tric. a=7.35Å α=85°31' Cuv(2a) P 1 b=18.21Å β=103°33' Cuv(2a) C=7.10Å γ=100°37' Z=1 C2/c b=11.80Å Z=4 C(4e)O ₁ (8f) C2/c b=11.80Å Z=170°18' Cu(8f)Mg(8f) C2/c c=8.24Å C(4e)O ₁ (8f) [O ₄ (OH) ₂ (H ₂ O) ₃] [4 ₄ /amd c=12.986Å Z=17 [O ₄ (OH) ₂ (H ₂ O) ₃] [4 ₄ /amd c=12.986Å Z=4 O _{1.3Vini} (4c) [C3/c Cu ₄ ⁰ Mn°S ₂ ' Mon. a=21.707Å β=103°50' K(4e)U(4e) (C ² c ² O ₂) ₂ (V ₂ ² O ₃)] (C ² c ² O ₂) (C ² c ² O ₂ O ₂) (C ² c ² O ₂ O ₂) (C ² c ² O ₂ O ₂ O ₂) (C ² c ² O ₂	BUTTGENBACHI-			Hex.	a=15.750Å	Z=2	Cu ₁ (6g)Cu ₁₁ (12i)		Min.Mag.,1973,39,264-270;
2. Tric. a=7.35Å α=85°31'	j -			2	2		Cu _V (12j) Cu _V (2a)		RW,96.
P 1 b=18.21Å β=103°33' C=7.10Å γ=100°37' Z=1 Mon. a=10.06Å β=107°18' Cu(8f)Mg(8f) C2/C b=11.80Å Z=4 C(4e)(H-O)(8f) C=8.24Å C=8.24Å C(4e)(H-O)(8f) C=8.24Å C=12.988Å C=13.988Å	CALCIOCOPIAPI-			Tric.	a=7.35Å	α=85°31'			Hölzel, suppl; Pov., 601; Str. Tab.,
C=7.10Å γ=100°37' Mon. a=10.06Å β=107°18' Cu(8f)Mg(8f) C2/C b=11.80Å Z=4 Cu(4e)(H ₂ O)(8f) C=8.24Å C=8.24Å C(4e)(H ₂ O)(8f) C=8.24Å C=12.988Å C=10.47Å β=100.3° Cul _{1.07} (4c)Mn(4c) C=11.245Å C=11	<u> </u>			<u>С</u>	b=18.21Å	β=103°33′			295;Can.Min.,1985, <u>23</u> ,53-56;
Mon.					c=7.10Å	γ=100°37' Z=1			Am.Min.,1962,47,807-808; RRW,100
C2/c b=11.80Å Z=4 O _{II} (4e)(H ₂ O)(8f) c=8.24Å (C4e)O ₁ (8f) (C4e)O ₁	CALLAGHANITE	Cu ₂ Ma ₂ CO ₂ (OH) ₆ .		Mon.	a=10 06Å	R=107018'	Cu(8f)Ma(8f)		Acta Cryst 1958 11 169-174
Mg ⁰ Mg ₄ °S¹ Tet. a=5.239Å Z=1? (OH) _{J-III} (8f) (OH) _{J-III} (8f) (OH) _{J-III} (8f) (A-I) ² (A-		2H ₂ O		C2/c	b=11.80Å	Z=4	O.(4e)(H ₂ O)(8f)		RRW 103 Pov. 620-621 Str
. Mg°Mg,°S' Tet. a=5.239Å Z=1? [O₄(OH)₂(H₂O),] I4,/amd c=12.988Å [O₄(OH)₂(H₂O),] I4,/amd c=12.988Å [o₂(OH)₂(H₂O),] G2 b=6.098Å Z=4 SI·II(4c) («Devilline) Orth.? ? C=11.245Å OI·vv(4c)Mn(4c) K ₂ [I1](H₂O)₃ {2∞} Mon. a=10.47Å β=103°50' K(4e)U(4e) K ₂ [I1](H₂O)₃ {2∞} [(U[2²·5]O₂)₂(V₂ [5]O₃)] K ₂ [I1](H₂O)₃ {2∞} Mon. a=10.47Å β=103°50' K(4e)U(4e) [(U[2²·5]O₂)₂(V₂ [5]O₃)] Mon. a=7.693Å β=115.93° CARNOTITE C=6.59Å Z=1 A2/m b=7.63Å Z=1					c=8.24Å		C(4e)O ₁ (8f) (OH) ₁₁₁₁ (8f)		Tab.,247;SR,22,390-392.
Cu_0(OH) ₂ (H ₂ O) ₃ 14 ₁ /amd c=12.988Å 16 ₁ (OH) ₂ (H ₂ O) ₃ 16 ₁ /amd c=12.988Å	CAMINITE	MgSO ₄ .xMg(OH) ₂ .	Mg [°] Mg _x °S ^f	Tet.	a=5.239Å	Z=1?			Am.Min. 1986.71.819-825:
Cu ² Cu ² Mn			[O4(OH)2(H2O)y]	I4 ₁ /amd	c=12.988Å				Hölzel, 132.
Cocomplete Coc	CAMPIGLIAITE	Cu4Mn(SO4)2(OH)6.	Su T	Mon.	a=21.707Å	30.3	Cul-IV(4c)Mn(4c)		Am.Min.,1982,67,385-393;
Orth.? ?	:	4H ₂ O	<u> </u>	22	b=6.098Å c=11.245Å		S _{I-II} (4c) O _{I-XVIII} (4c)		Hölzel,132.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CARBONATE-	Cu ₄ Al ₂ CO ₃ (OH) ₁₂ . 2H ₂ O		Orth.? ?	خ				Am.Min., 1964, 49, 441-442 (Abs.): RRW, 107-Pov. 332-
K ₂ ^[11] (H ₂ O) ₃ {2∞} Mon. a=10.47Å β=103°50' K(4e)U(4e) K ₂ ^[11] (H ₂ O) ₃ {2∞} K ₂ ^[11] (H ₂ O) ₃ {2∞} [(U ^[2+3] O ₂₎₂ (V ₂ ^[3] O _{3)] 2−2 (V(4e)O_{1-M}(4e) [(U^[2+3]O₂₎₂(V₂^[3]O_{3)] CARNOTITE Mon. a=7.693Å β=115.93° A2/m c=9.785Å Z=1 C=9.795Å Z=1 C=9}}									Str.Tab.,295; Hölzel, 134.
[(U C ₂₎₂ (V ₂ C ₉₎] P2-/8 b=8.41A Z=2 V(4e)·U vi(4e) [(U C ₂₎₂ (V ₂ C ₉)] CARNOTITE CARNOTITE A2/m b=7.693Å β=115.93° CARNOTITE CARNOTITE CARNOTITE CARNOTITE CARNOTITE CARNOTITE CARNOTITE CARNOTITE CARNOTITE CASUMA (A = 7.693Å Z = 1.795Å	CARNOTITE	K ₂ (UO ₂) ₂ (VO ₄) ₂ .	K ₂ [11](H ₂ O) ₃ {2∞}	Mon.	a=10.47Å		K(4e)U(4e)	K ₂ [11](H ₂ O) ₃ {2∞}	Am.Min.,1965,50,825-842;SR,
Mon. a=7.693Å β=115.93° A2/m b=5.763Å Z=1 c=9.795Å		3 1 20	[(UO ₂) ₂ (V ₂ -O ₈)]	F2 ₁ /a	D=8.41A c=6.59Å	7=7	V(4e)O _{-V} (4e)	[(U ^{r3} O ₂) ₂ (V ₂ ¹³ O ₈)] CARNOTITE	30A,348349;LF,247;RRW, 109;Pov.,503,167;Str.Tab.,356
AZ/m D=5./63A Z=1 C=9.795A	CASSEDANNEITE	Pb ₅ (VO ₄) ₂ (CrO ₄) ₂ .		Mon.	a=7.693Å	$\beta = 115.93^{\circ}$			Am.Min.,1988,73,1493(Abs.);
		O E		AZ/m	D=5.763A c=9.795Å	Z=1			Hölzel, 139.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	FQUIVALENT	STRUCTURE TYPE	REFERENCES
CAVANSITE	Ca(VO)Si₄O₁₀.	(H ₂ O)₄{3∞}[Ca ^[7] V ^[5y]	0	a=9.792Å	Z=4	Ca(4c)V(4c)		Am.Min., 1973, 58, 412-424;
	4H ₂ O	Si, 011]	Pcmn	b=13.644Å		Si-1(8d)O-v(8d)		Pov., 437; Str. Tab., 468; RRW,
				c=9.629A		Ovi(4c)		112-113;SR, <u>41A</u> ,379;Hölzel, 236.
CERULÉITE	Cu ₂ Al ₇ (AsO ₄),		Tric.	a=14.359Å	∞=96.06°			Am.Min., 1977, 62, 558-559
	(OH) ₁₃ .12H ₂ O		P 1?	b=14.687Å	β=93.19°			(Abs.);Pov.,517;Hölzel,172.
				c=7.440Å	γ=91.63° Z=2			
CHAIDAMUITE	ZnFe(SO ₄) ₂ (OH).		Mon.	a=9.759Å	β=106.2°			Am.Min., 1988, 73, 1493 (Abs.);
	4H ₂ O		P2 ₁ /m	b=7.134A c=7.335Å	Z=2			Hölzel,133.
CHALCOALUMI-	CuAl4SO4(OH) ₁₂ .		Mon.	a=17.090Å	α=95°53'			RRW,117;Hölzel,133;Str.Tab.,
1 E	3H ₂ O		P2 ₁	b=8.915Å	Z=4			294.
CHALCOSIDERI-	CuFe ₆ (PO ₄) ₄ (OH) ₈ .		Tric.	a=7.68Å	α=67.5°			Am.Min., 1965, <u>50</u> , 227-231;
2	4H ₂ O		٦-	b=7.90Å	β=69.0°			Hölzel, 172; RRW, 120; Pov., 732;
	-			c=10.20Å	γ=64.7° Z=1			Str.Tab.,345.
CHAROITE	(K,Na) ₅ (Ca,Ba,Sr) ₈		Mon.	a=10.7Å	β=113°			Am.Min., 1988, <u>73</u> , 198(Abs.);
	Si ₁₈ O ₄₆ (OH,F)		<i>ر</i> .	b=32.0Å	Z=4			Am.Min., 1978, <u>63</u> , 1282(Abs.);
	nH ₂ O			c=7.25A				H0lzel,221.
CHELKARITE	CaMgB ₂ O₄Cl ₂ .		Orth.	a=13.69Å	Z=2			Am.Min., 1971, 56, 1122(Abs.);
	7H ₂ O?		Pbca	b=20.84Å c=8.26Å				Hölzel,117.
CHENEVIXITE	Cu ₂ Fe ₂ (AsO ₄) ₂		Mon.	a=15.006Å	β=102°15'			Min.Mag., 1977, 41, 27-32; Pov.,
	(OH)4.H ₂ O		P2 ₁ /m	b=5.189A c=5.724Å	Z=2			/32,516;Str.Iab.,345;RKW, 122; Hölzel,172.
CHILDRENITE	04	(Fe,Mn)°Al°P¹	Orth.	a=10.395Å	Z=8			Min.Abs.,85M/0189;Pov.,534;
	(OH) ₂ .H ₂ O	[O ₄ (OH) ₂ (H ₂ O)]	Bba2	b=13.394Å c=6.918Å				Str.Tab.,344;RRW,124; Hölzel,
CHRYSOCOLLA	Γ	,	Orth.	a=5.7Å	Z=2			Am.Min., 1969, 54, 993 (Abs.);
	(OH) ₄ .nH ₂ O		Cm2	b=8.85Å c=6.7Å				Hölzel,235;Pov.,732.
CLAIRITE	(NH ₄) ₂ (Fe,Mn) ₃		Tric.	a=9.368Å	α=88.15°			Am.Min.,1986,71,229(Abs.);
	(SO ₄) ₄ (OH) ₃ .3H ₂ O		P 1?	b=9.150A	β=90°			H0izei,136.
				c=52.610A	γ=118.36° Z=8			
CLINOTYROLITE	Ca ₂ Cu ₉		Mon.	a=10.513Å	β=94°0′			Min.Abs.,80-4909;Hölzel,174.
	(AsO ₄ ,SO ₄) ₄ (OH,O) ₁₀ .10H ₂ O		Ра	b=5.56A c=27.61Å	Z=2			

NAME		STRUCTURAL	SPACE	UNIT CELL (UNIT CELL DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
COALINGITE	OH) _{24.}	Mg₁₀°Fe₂°C" [O₃(OH)₂₄(H₂O)₂] (≈Brucite)	Trig. R 3m	a=3.12Å c=37.4Å	Z=0.5	(Mg,Fe)(6c) O _I (6c)O _{II} (6c)		Min.Mag.,1971, <u>38</u> ,286-294; Hölzel,107.
COERULEOLAC- TITE	(Ca,Cu)Al ₆ (PO ₄) ₄ (OH) ₈₋ 4-5H ₂ O		Tric.	c.				Am.Min.,1958, <u>43,</u> 1224(Abs.); Hölzel,172;RRW,140;Str.Tab., 390.
COMBLAINITE	Ni ₆ Co ₂ CO ₃ (OH) ₁₆ .4H ₂ O		Trig. R 3m	a=3.038Å c=22.79Å Z=3	a _R =7.796 Å α=22.47° Z _R =1			Am.Min.,1980, <u>65,</u> 1065-1066 (Abs.); Hölzel,107.
CONNELITE	Cu ₁₉ Cl ₄ SO ₄ (OH) ₃₂ .3H ₂ O		Нех. Р <u>6</u> 2с	a=15.78Å c=9.10Å	Z=2	Cu _{I-II} (6g) Cu _{IV-V} (6h) Cu _{VI} (2a)Cl _{I-II} (6h)		Am.Min.,1972, <u>57,</u> 426-438; Min.Mag.,1950, <u>29,</u> 280-286; Pov.,650;Str.Tab.,165; RRW,144.
CREASEVITE	Cu ₂ Pb ₂ (Fe,Al) ₂ Si ₅ S ₁₇ .6H ₂ O		Orth. Cmmm?	a=12.483Å b=21.395Å c=7.283Å	Z=4			Min.Mag.,1975, <u>40</u> ,227-231; Am.Min.,1976, <u>61,</u> 503(Abs.); Hölzel,247;Encyc.Miner.Nam., 73.
CUALSTIBITE	Cu ₆ Al ₃ (SbO ₄) ₃ (OH) ₁₂ .10H ₂ O		Hex. P3	a=9.20Å c=9.73Å	Z=1			Am.Min.,1985, <u>70</u> ,1329(Abs.); Hölzel,79.
CUPROCOPIAPI- TE	CuFe ₄ (SO ₄₎₆ (OH) ₂ . .20H ₂ O	(H ₂ O) ₆ {1∞}{Cu ² Fe ₃ Se ² O ₂₄ (OH) ₂ (H ₂ O) ₈] {g}{Fe ² (H ₂ O) ₆] (Subs.d.Copiapite)	는 다 다	a=7.31Å b=18.15Å c=7.25Å	$\alpha = 92.5^{\circ}$ $\beta = 102.3^{\circ}$ $\gamma = 100.4^{\circ}$ Z = 1			Can.Min.,1985, <u>23</u> ,53-56;RRW, 156-157;Hölzel,133;Str.Tab., 295;Pov.,601.
CURIÉNITE	Pb(UO ₂)(VO ₄) ₂ .5H ₂ O	$Pb^{[8]}(H_2O)_5\{2\infty\}$ [(UO_2) V_2O_8] (=Francevillite)	Orth. Pcan	a=10.40Å b=8.45Å c=16.34Å	Z=4	U(8d)V(8d) Pb(4c) O⊦v⊦(8d)		Bull.Min.,1971, <u>94</u> ,8-14;SR, <u>37A,</u> 239;Pov.,503;Str.Tab., 357;RRW,158.
CURITE	Pb _{6.5} (UO ₂) ₁₆ O ₁₆ (OH) _{12.} (H ₂ O,OH) ₄		Orth. Pnam	a=12.58Å b=13.01Å c=8.40Å	Z=1	U-II(4c)UIII(8d) Pb _{I-II} (4c)		SR, <u>20,</u> 150-151;RRW,158-159; Hölzel,89;Str.Tab.,226;Pov., 327;Encyc.Miner.Nam.,76.
CYANOPHYLLITE	Cu ₅ Al ₂ (SbO ₄) ₃ (OH) ₂ .12H ₂ O		Orth. Pmmb	a=11.82Å b=10.80Å c=9.64Å	Z=2			Am.Min.,1981, <u>66</u> ,1274(Abs.); Hölzel,79.
CYANOTRICHITE	Cu ₄ Al ₂ SO ₄ (OH) ₁₂ .2H ₂ O		Orth.	a=10.16Å b=12.61Å c=2.90Å	Z=1			JCPDS,11-13;Hölzel,134;Min. Mag.,1961, <u>32</u> ,737- 738;RRW,160.
CYRILOVITE	₹		Tet. P4 ₁₂₁ 2	a=7.313Å b=19.315Å	Z=4			Str.Tab.,347;Pov.,551;RRW, 160;Min.Abs.,88M/1837.
DARAPSKITE	O ₄)(NO ₃)	Na2°Na ¹⁷¹ (H2O) {g}{S*O ₄ }{g}{N ^{4*} O ₃]	Mon. P2 ₁ /m	a=10.564Å b=6.911Å c=5.194Å	1	β=102.78° Na ₁ (4f)Na ₁₁ (2e) Z=2 S(2e)N(2e) O ₁ (4f)O _{11-V11} (2e)		SR, <u>32A,</u> 332-333;Am.Min., 1970, <u>55,</u> 1510-1517;Str.Tab., 234;Pov.,634;RRW,164.

A_pB_qC_rD_sE_x.nAq. (cont.)

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
DELRIOITE	SrCaV,O ₆ (OH),		Mon	a=17.170Å	B=102°29'			Am.Min.:1970.55.185-200:Am.
	.3H ₂ O		12/a	b=7.081Å	Z=8=Z			Min., 1959, 44, 261-264; Pov.,
				c=14.644Å				499-500;Str.Tab.,340;RRW,
DESAUTELSITE	Mg ₆ Mn ₂ CO ₃ (OH) ₁₆ .		Trig.	a=3.114Å	Z=3/8			Am.Min., 1979, 64, 127-130;
	.4H2O		R3m	c=23.39A				Hölzel,107.
DESPUJOLSITE	Ca ₃ Mn(SO ₄) ₂ (OH) ₆ .	(H ₂ Q) ₃ {3∞}[Ca ^[10]	Hex.	a=8.56Å	Z=2	Ca(6h) Mn(2a)		Bull.Min.,1968, <u>91</u> ,43-50;SR,
	ο. Το. Το.	Mn°52°08(OH)6] (=Schaurteite)	P 62c	C=10./6A		S(41) O ₁ (41)		Tab., 296-297; RRW, 170.
DEVILLINE	CaCu ₄ (SO ₄) ₂ (OH) ₆ .		Mon.	a=20.870Å	β=102°44'			Acta Cryst.,1972, <u>B28</u> ,1182-
	.3H2O		P2,/c	b=6.135Å	Z=8			1189;Am.Min.,1969, <u>54</u> ,328-
				c=22.191Å				329(Abs);SR, <u>38A</u> ,339-340; Pov605.
DRESSERITE	Ba ₂ AI ₄ (CO ₃) ₄ (OH) ₈ .	(H ₂ O) ₃ {3∞}[Ba ₂ Al ₄	Orth.	a=9.27Å	Z=2			RRW,179;Pov.,621;Hölzel,108.
	.3H ₂ O		Ppmm	D=16.83A c=5.63Å				
DUFRENITE	Ca _{0.5} Fe ₆ (PO ₄) ₄	3∞[Ca _{0.5} °Fe ₆ °P₄¹O₁6	Mon.	a=25.84Å	β=111.20	Ca(4e)Fe(4a)		Am.Min., 1970, <u>55</u> , 135-169; SR,
	(OH) ₆ .2H ₂ O	(OH) ₆ (H ₂ O) ₂]	C2/c	b=5.126Å	Z=4	O _{1-XII} (8f)Fe _{II} (4c)		35A,337-339;RRW,180;Pov.,
				c=13.78Å		Fe _{III-IV} (8f)P _{I-II} (8f)		543; Str.Tab.,319.
DUNDASITE	PbAl ₂ (CO ₃) ₂ (OH) ₄	(H ₂ O){3∞}[Pb ^[9] Al ₂ °	Orth.	a=9.08Å	Z=4	Pb(4c)Al(8d)		Min.Mag., 1972, 38, 564-569;
	O. H:	(OH)4{g}[C"O ₃]2]	Pbnm	b=16.37A		C ₁₋₁₁ (4c)O _{1-V1} (4c)		Hölzel, 170; SR, 38A, 300; Pov., 621: Str Tab, 248: DBM 181
	- 1	0		A20.0-2		(SO) \rangle		021,011.18D.,240,RNV,101.
EARLSHANNONI-	PO4)2	(Mn,Fe) Fe ₂ P ₂		a=9.910Å	β=93.95°			Can.Min., 1984, 22, 471-474;
=		[O ₆ (OH) ₂ (H ₂ O) ₄] ²⁷ (Subs.d.Whitmoreite)	P2 ₁ /c	b=9.669Å c=5.455Å	Z=2			Hölzel,170.
EGGLETONITE	Na ₂ Mn ₈ (Si,Al) ₁₂ O ₂₉		Į.	a=5.554Å	β=93.95°			Min.Mag.,1984,48,93-96;
	(OH)7.11H ₂ O		B/Z/	c=25.00Å	Z=2			H0izel,230.
EMBREYITE	Pb ₅ (CrO ₄) ₂ (PO ₄) ₂		Mon.	a=9.755Å	β=103°5′			Min.Mag.,1972,38,790-793;
	.H ₂ O		P2 ₁ m	b=5.636Å	Z=1			RRW, 189; Hölzel, 139; K/B, 179.
EOSPHORITE	(Mn,Fe)AIPO4	(Mn,Fe)°Al°P ^t	Orth.	a=10.52Å	Z=8	(Mn,Fe)(8d)		Acta Cryst.,1960,13,384-387;
	(OH) ₂ .H ₂ O	[O ₄ (OH) ₂ (H ₂ O)]	Bbam	b=13.60Å		P(8f)Al(8c)		RRW,191-192;Pov.,534;Str.
		(=Childrenite)		c=6.97Å		O ₁ (8d)O ₁₁₋₁₁₁ (8f) O _{1/2-7} (16g)		Tab.,344;K/B,125-126.
EPISTILBITE	NaCa ₃ (Al ₆ Si ₁₈)O ₄₈	Na ^[9] Ca ₃ ^[9] (H ₂ O) ₁₆	Mon.		B=124.54°	(Ca,Na)(4i)		SR,32A,488-489;Zeit.Krist.,
	.16H ₂ O	(3∞)[Al ₆ Si₁8 ^t O ₄₈]	C2/m	b=17.74Å	Z=1	(AI,Si) - (8j)		1985, <u>173</u> ,257-265;Pov.,353-
		(Zeolite)		c=10.25Å		O _I (4i)		354;Eur.J.Min.,1996, <u>8</u> ,263-
						O ₋ (4g)		2/1;RKW,193;Str. I ab.,490.

NAME		STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL D	UNIT CELL DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ETTRINGITE		Ca ₆ ^{I9} /Al ₂ °S₃¹ [O₁₂(OH)₁₂(H₂O)₂a] (≈Thaumasite)	Trig. P31c	a=11.26Å c=21.48Å	Z=2	Al _{I-II} (2a)Ca _{I-II} (6c) S _{I-III} (2b) O _{I-XVI} (6c) O _{XVII-XIX} (2b)		Acta Cryst.,1970, <u>B26</u> ,386- 393;Am.Min.,1960, <u>45,</u> 1137- 1143;Pov.,600-601;Str.Tab., 297;SR, <u>35A,</u> 378-379.
EZTLITE	Pb ₂ Fe ₆ Te ₄ O ₁₅ (OH) ₁₀ .8H ₂ O		Mon. ۶	a=6.58Å b=9.68Å c=20.52Å	β=90°15' Z=2			Hölzel,93;Min.Mag.,1982, <u>46,</u> 257-259.
FAHEYITE	Be ₂ (Mn,Mg,Na) Fe ₂ ³⁴ (PO ₄) ₄ .6H ₂ O		Hex. P6 ₄ 22?	a=9.43Å c=16.00Å	Z=3			Am.Min., 1964, 49, 395-398; Encyc.Miner.Nam., 94; Hőlzel, 159; Pov., 553, Str. Tab., 330.
FAHLEITE	CaZn ₅ Fe ₂ (AsO ₄) ₆ .14H ₂ O		Orth.	a=6.60Å b=11.6Å c=22Å	Z=2			Am.Min.,1989, <u>74</u> ,501-502 (Abs.); Hölzel,164.
FAUSTITE	(Zn,Cu)Al ₆ (PO ₄) ₄ . (OH) ₈ .4H ₂ O		Tric.	٥				RRW,205-206;Hölzel,172; Pov.,535;Str.Tab.,344.
FEDORITE	(K,Na) _{2.5} (Ca,Na) ₇ Si ₁₆ O ₃₈ (OH,F) ₂ .H ₂ O	(K,Na) _{2.5} (Ca,Na) ⁷ • (OH,F) ₂ (H ₂ O) {2∞}{Si ₁₆ O ₃₈] (Calciotalc)	Tric. C 1	a=9.676Å b=16.706Å c=13.233Å	$\alpha = 93.35^{\circ}$ $\beta = 114.96^{\circ}$ $\gamma = 90.03^{\circ}$ Z = 2			Sov.Phys.Cryst., 1983, <u>28,</u> 95-96;Hölzel,230.Pov.,737; Str.Tab.,468;RRW,206.
FERRICOPIAPITE	(Fe,AI,Mg)Fe ₅ (SO ₄) ₆ (OH) ₂ .20H ₂ C	(Fe,AI,Mg)Fe ₅ (H ₂ O) ₆ (Fe,AI,Mg)° (SO ₄) ₆ (OH) ₂ .20H ₂ O {1∞}[Fe ₂ °S ₃ 'O ₁₂ (OH) (H ₂ O) ₄] ₂ {g}[Fe°(H ₂ O) ₈]] (Inser.d.Copiapite)		a=7.390Å b=18.213Å c=7.290Å		(Fe,Al,Mg)(2i) Fe _{I-II} (2i) S _{I-III} (2i) 		Am.Min., 1973, <u>58</u> , 314-322; Zeit.Krist., 1998, <u>213</u> , 141-150; Hölzei, 133;Can.Min., 1985, <u>23</u> , 53-56.
FLEISCHERITE	Pb ₃ Ge(SO ₄₎₂ (OH) ₆ . .3H ₂ O	. {3∞}[Pb ₃ ^{9]} Ge°S₂¹O ₈ (OH) ₆ (H₂O)₃] (=Schaurteite)		a=8.867Å c=10.875Å				SR,41A,345-346;Am.Min., 1960,45,1313(Abs.);Hőlzel, 137;Encyc.Miner.Nam.,103.
FLUCKITE	CaMn(AsO ₃ OH) ₂ . .2H ₂ O		Tric. P 1	a=8.459Å b=7.613Å c=6.98Å	α=82.21° β=98.25° γ=95.86° Z=2			Am.Min., 1980, <u>65,</u> 1066(Abs.); Hölzel, 164;Bull.Min., 1980, <u>103,</u> 122-128.
FLUELLITE	Al ₂ (PO ₄)F ₂ (OH). .7H ₂ O	Al ₂ °P¹ [O₄F²(OH)(H₂O) ₇]	Orth. Fddd	a=8.546Å b=11.222Å c=21.158Å	Z=8	Al(16c)P(8a) O⊦⊪(32h) F(16g)H(32h)		Am.Min.,1966, <u>51,</u> 1579-1592; Hölzel,168;RRW,216-217;Str. Tab.,159;Pov.,549.
FLUORAPOPHY- LLITE	KCa ₄ Si ₅ O ₂₀ (F,OH) .8H ₂ O	Ca ₄ ^{[//} K ^{I8} (F,OH) (H ₂ O) ₈ {2∞}[Si ₈ ^t O ₂₀] ⁸	Tet. P4/mnc	a=8.978Å c=15.83Å		Ca(8h) K(2b) (F,OH)(2a)O _I (8g) O _{II-IV} (16i)	Ca ₄ ⁽⁷ /K ⁽³ (F,OH) (H ₂ O) ₆ {2∞}{Si ₆ ⁶ O ₂₀] ⁶ HYDROAPOPHYLLITE	Am.Min., 1978, <u>63,</u> 196-202; Am.Min., 1971, <u>56,</u> 1222-1232; LF, 242; Hölzel, 226; LF, 242.
FOGGITE	CaAIPO ₄ (OH) ₂ .H ₂ O {3∞}[Ca ^(a) Af'P ¹ O ₄ (OH) ₂ (H ₂ O)]	(3∞}[Ca ^[8] Al°P⁺O₄ (OH)₂(H₂O)]	Orth. A2 ₁ 22	a=9.270Å b=21.324Å c=5.190Å	Z=8	Ca ₁ (4a)Ca ₁₁ (4b) Al ₋₁₁ (4b) P(8c) 		Am.Min., 1975, <u>60</u> ,965-971;SR, 41 <u>A</u> ,316-317;K/B,61;Hölzel, 176.

A_pB_qC_rD_sE_x.nAq. (cont.)

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
COLIDMADICDITE		DP[6+3](LI O)	400	2-12 DOR	7-8	Dh. (49)		Bull Min 1985 108 859-885
	1 CO 2)4(OT)4	7207 C	. i	41.0000 10.0000 10.0000	017	1 (9P)		Am Min 1060 4E 1036 1061.
	O ₂ E4.	{2\infty} U4" \ \OH)4	BDZ1M	D=16.400A		(ap)\/		AIII.MIII., 1800,43, 1020-1001,
				c=14.293A				Holzel, 90; Pov., 327; Str. I ab.,
								225;RRW,220.
FRANCEVILLITE		(Ba,Pb) ^[8] (H ₂ O) ₅	Orth.	a=10.41Å	Z=4			Pov.,503;Str.Tab.,357;RRW,
	(VO ₄) ₂ .5H ₂ O	{2\inf \{\text{UO}_2\}_2\V_2\O_8\}	Pcan	b=8.51Å				221;Hölzel,183.
FRANCOANEL I.I.	He(K Na),(Al Fe),	(Callicumo)	Trio	a=8 71Å	Z=6			Am.Min1976.61.1054(Abs.):
=	(PO ₄) ₈ .13H ₂ O		R3c	b=82.8Å)			Hölzel, 164; K/B, 154.
FRANZINITE	(Na,Ca) ₇ (Si,Al) ₁₂		Trig.	a=12.884Å	Z=1?			Am.Min., 1977, <u>62</u> , 1259 (Abs.);
	O ₂₄ (SO ₄ ,OH) ₃ .H ₂ O		P 3m1	C=26.580A				H0lzel, 241.
FRITZSCHEITE	Mn(UO ₂) ₂ (VO ₄) ₂	(H ₂ O) ₄ [Mn ^[6]	Orth.	a=10.59Å	¿=Z			Bull.Min., 1970, 93, 320-327;
	.4H2O	{2∞}[U ^[244] O ₂ VO _{4]2}]	Pnma	b= 8.25Å				Hölzel, 129;RRW,223;LF,245;
		(«Autunite)		c=15.54Å				Pov.,556;Str.Tab.,352
GANOPHYLLITE	(K,Na) ₆ (Mn,Al,Mg) ₂₄	L	Mon.	a=16.6Å	β=94°	(K,Na)(8f)		Min.Mag., 1986, <u>50</u> , 307-315;
	(Si,Al) ₄₀ O ₉₆ (OH) ₁₆		A2/a	b=26.6Å	S=8	Mnl-II(8f)		Hölzel,230;RRW,229;Pov.,437;
	.21H ₂ O			c=50A		O _{I-X} (8f)		Str. I ab., 443.
GARRONITE	NaCa _{2.5} (Al ₆ Si ₁₀)O ₃₂		Tet.	a=9.85Å	Z=2			Gottardi and Galli, 1985, 122;
	.13H ₂ O	{2∞}[Ale Si 10 O 32]	14 ₁ /amd?	c=10.32Å		,		Pov.,355;Str.Tab.,491;RRW,
CATHWANTE	(10) (00) (00)	(Feome)	Mon		0-0400			Am Min 1978 63 793-794
I I WOM D I WO	CaA/2(TO4)2(OT)2		Moll.	8=0.90/A	5-18-2 7-2			(Abs.): Hölzel 176
) [. ≪	7-7			(703.), 1 (912.0), 1 (0.
GEORGECHAOI-	KNaZrSi ₃ O ₉ .2H ₂ O	K°Na°Zr°(H ₂ O) ₂	Orth.	a=11.836Å	Z=4	K(4a)Na(4a)		Can.Min., 1985, <u>23</u> , 5-10, 1-4;
2		(1∞)[Si₃O9] (≈Gaidonnavite)	P2 ₁ nb	b=12.940Å		Zr(4a)Sil-III(4a) Oliv(4a)		Hölzel,205.
GI ALICOCERI.			Trio	a=3.057Å	7=7	(- \VI-)		Min.Mag. 1985.49.583-590:
NITE	(OH) ₁₆ .9H ₂ O		~	c=32.52Å	 !			RRW,238; Hölzel,133.
GOBBINSITE	(Na,K)4Ca(Al ₆ Si ₁₀)	(Na,K) ₄ Ca(H ₂ O) ₁₂	Orth.	a=10.108Å	Z=1	Na(4b)O _{I-VI} (4b)		Zeit. Krist., 1985, 171, 281-289;
	O ₃₂ .12H ₂ O	(3∞)[Ale Si ₁₀ O ₃₂]	Pmn2 ₁	b=9.766Å		OvII-x(2a)		Hölzel,244.
GORDONITE		(Zeolite) Mg ² Al, ² P, ¹	Tric	a=5.24Å	α=107°25°			RRW,243;Pov.,560;Str.Tab.,
	8H,0	[0,(0H),(H,0),1	1	h=10.49Å	R=11104'			342:Hölzel 170:K/B 153:Min.
		(≈l aueite)	•	2 S S S S S S S S S S S S S S S S S S S	v=72022			Abs89M/0263.
		(211212)		7000	Z=1			
GORMANITE	(Fe,Mg) ₃ AI ₄ (PO ₄) ₄		Tric.	a=11.79Å	α=90°50'			Can.Min.,1981, <u>19</u> ,381-387;
	(OH) ₆ .2H ₂ O		 	b=5.11Å	β=99°0'			Holzel,171.
				c=13.61A	7=90°5′			
1					7-7			

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
GOUDEYITE	Cu ₆ (AI, Y)(AsO ₄) ₃ (OH) ₆ .3H ₂ O		Hex. P6 ₃ /m	a=13.472Å b=5.902Å	Z=2			Am.Min.,1978, <u>63</u> ,704-708; Hölzel,177.
GUILDITE	CuFe(SO ₄) ₂ (OH) .4H ₂ O	Cu°Fe°S₂¹ [O₅(OH)(H₂O)₄]	Mon. P2 ₁ /m	a=9.786Å b=7.134Å c=7.263Å	β=105°28' Z=2	Fe(2a)Cu(2e) S _{I-II} (2e)		Am.Min., 1978, 63, 478-483; Am. Min., 1970, 55, 502-505; SR, 44A, 275: Pov., 601; Str., Tab., 295.
HAIWEEITE	Ca(UO ₂) ₂ Si ₆ O ₁₅ .5H ₂ O	(H ₂ O) ₅ (3∞){Ca(UO ₂) ₂ Sie ^t O ₁₅]	Mon. P2/c	a=15.4Å b=7.05Å c=7.10Å	β=107°52' Z=2			Am.Min.,1959,44,839-843; Pov.,457;Str.Tab.,386;RRW, 255;Hölzel,196;Am.Min.,1981, 66,610-625.
HANNAYITE	(NH4)2Mg3 (PO3OH)4.8H2O	Mg₃°P₄[(NH₄)₂O₁₂ (OH)₄(H₂O)৪] (≈Struvite)	P 1ic.	a=10.728Å b=7.670Å c=6.702Å	$\alpha = 97.87^{\circ}$ $\beta = 96.97^{\circ}$ $\gamma = 104.74^{\circ}$ Z = 1	Mg _I (1a)Mg _{II} (2i) P _{I-II} (2i)N(2i)		Acta Cryst., 1976, <u>B32,</u> 2842- 2848;K/B, 82-83;Pov., 548;Str. Tab., 338;SR, <u>42A,</u> 338.
HARMOTOME	Ba ₂ (Ca _{0.5} ,Na) (Si ₁₁ AI ₅)O ₃₂ .12H ₂ O	Ba ₂ ^[12] (Ca _{0.5,} Na) ^[6] (H ₂ O), ₁₂ {3∞}[Si ₁₁ 'Al ₅ [†] O ₃₂] (Zeolite)	Mon. P2 ₁ /m	a=9.879Å b=14.139Å c=8.693Å	β=124.20° Z=1	Ba(2e)Ca(4f) (Si,Al) _{I-VII} (4f) 	Deriv. K ^[12] (Ca _{0.5} ,Na) ₂ ^[6] (H ₂ O) ₆ {3∞}[Sis [‡] Al3 [‡] O₁6] PHILLIPSITE	Acta Cryst.,1974, <u>B30</u> ,2426- 2433;SR,40A,287;Pov.,353;LF, 296;Str.Tab.,491;RRW,259.
HEINRICHITE	Ba(UO ₂) ₂ (AsO ₄) ₂ .10H ₂ O	Ba(H ₂ O)₁₀ {2∞}[U₂ [°] As₂ ^t O₁₂] (≈Zeunerite)	Tet. I4/mmm	a=7.13Å c=20.56Å	Z=2			Pov.,521;Str.Tab.,352;RRW, 265;Hölzel,179;Am.Min.,1958, 43,1134-1143.
HYDROBIOTITE	K(Mg,Fe) ₆ (Si,Al) ₈ O ₂₀ .xH ₂ O	K ^{ITZ} (Mg,Fe) ₆ (H ₂ O) _x {2∞}{(Si,Al) ₈ O _{20]} (2s)c	Orth.	a=? b=? c=24.51Å?	Z=3			Hölzel,229;Encyc.Miner.Nam., 136;Am.Min.,1983, <u>88</u> ,420- 425;Pov.,445;RRW,287.
HYDROBORACI- TE	CaMg(B ₃ O ₄ (OH) ₃) ₂ .3H ₂ O	Ca ^{I9I} Mg ^{I9I} (H ₂ O) ₃ {1∞}[B ₂ 'B ¹ O₄(OH) _{3]2}	Mon. P2/c	a=11.769Å b=6.684Å c=8.235Å	β=102.55° Z=2	Mg(2a)Ca(2f) O₁(2e)O _{Ⅱ-ix} (4g) B _{□-Ⅲ} (4g)		SR,44A,232;SR,27,551-554; Pov.,481-482;SR,27,551-552; Str.Tab.,261;Can.Min.,1978, 16.75-80.
HYDROCHLORBO RITE	Ca ₂ B ₄ O ₄ (OH) ₇ Cl .7H ₂ O	[CI(H ₂ O) ₅]Ca ₂ (H ₂ O) ₃ {1∞}[B ₂ ¹B ^t (OH)₄]	Mon. I2/a	a=22.783Å b=8.745Å c=17.066Å	β=96.705° Z=8	Cal-II(8f) BI-IV(8f) OI-IV(8f)		Am. Min., 1978, <u>63</u> , 814-823, Am. Min., 1977, <u>62</u> , 147-150; Pov. 491; Str. Tab., 264; Hölzel, 119; SR, 44A, 232-233.
HYDRODRESSE- RITE	BaAl₂(CO₃)₂(OH)₄ .3H₂O	(H₂O)₃{3∞}{Ba ^[3] Al₂ ^O (OH)₄{g}{C³O₃l₂] (≈Dundasite)	Tric. P 1	a=9.7545Å b=10.4069Å c=5.6322Å	α =95.69° β =92.27° γ =115.64° Z =2	Ba(2i) Al _i (1g) Al _i (1c) Al _{iii} (1e) Al _i (1h) C _{i-ii} (2i)		Can.Min., 1982, <u>20</u> , 253-262; Am.Min., 1979, <u>64</u> , 654-655; Höizel, 108; Encyc.Miner.Nam., 136.
HYDROHONESSI- TE HYDROTALCITE	NieFe ₂ SO ₄ (OH) ₁₆ .7H ₂ O Mg ₄ Al ₂ (OH) ₁₂ CO ₃ 3H ₂ O		Hex. 7 Trig. R 3m	a=3.09Å c=10.80Å a=3.054Å c=22.81Å	Z=? Z=1/2			Min.Mag., 1981, 44, 333-337; Min.Mag., 1981, 44, 339-343. SR.40A, 306; RRW, 291; Str. Tab. 248-Dov. 742: Hölyel 107
HYDROXYAPO- PHYLLITE	KCa ₄ Si ₈ O ₂₀ (OH,F)	Ca ₄ ¹⁷ K ^{l81} (OH,F) (H ₂ O) ₈ {2∞}{Si ₈ ^t O ₂₀] ⁸	Tet. P4/mnc	a=8.978Å c=15.83Å	Z=2	K(2b)Ca(8h) O _I (8g) O _{IIIV} (16i)	Ca ₄ ^{I/I} K ^[8] (OH,F) (H ₂ O) ₈ {2∞}{Sis O ₂₀ ¹ HYDROXYAPOPHYLLITE	Am.Min., 1978, 63, 196-202; LF, 242; Hölzel, 226.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ILMAJOKITE	(Na,Ce,Ba) ₁₀ Ti ₅ Si ₁₄ O ₂₂ (OH) ₄₄ .nH ₂ O		Mon. ?	a=23Å b=24.4Å c=37Å	Z=9?			Am.Min.,1973, <u>58,</u> 139-140 (Abs.);Hölzel,193.
INDERBORITE	CaMg(B ₃ O ₃ (OH) ₅₎₂ . 6H ₂ O	(H ₂ O) ₂ {2∞}{Ca ^{la} lMg° B ₄ B ₂ Co(OH) ₁₀ (H ₂ O) ₄]	Mon. C2/c	a=12.137Å b=7.433Å c=19.234Å	β=90.29° Z=4	Ca(4e)Mg(4a) B⊦⊪(8f)		Can.Min.,1994, <u>32</u> ,533-539; Acta Cryst.,1966, <u>21</u> ,A61(Abs.); Pov.,476-477;Str.Tab.,257; RRW,300.
INDIGIRITE	Mg ₂ Al ₂ (CO ₃) ₄ (OH) ₂ .15H ₂ O		٠.	a=? b=3.16Å c=6.23Å	ζ=Z			Am.Min.,1972, <u>57</u> ,326-327 (Abs.);Hölzel,108;Pov.,742; RRW,301.
INESITE	Ca ₂ Mn ₇ Si ₁₀ O ₂₈ (OH) ₂ .5H ₂ O	(H ₂ O) ₅ (3∞)[Ca ₂ ^[79] Mn ₇ ° '' Si ₁₀ O ₂₈ (OH) ₂]	л <u>г</u> с 1-	a=8.889Å b=9.247Å c=11.975Å	α =88.15° β =132.07° γ =96.64° Z=1	Ca(2i)Mn _{I-IV} (2i) Si _{I-V} (2i)		Am.Min.,1978, <u>63</u> ,563-571;Am. Min.,1968, <u>53</u> ,1614-1634;RRW, 301;Pov.,419;Str.Tab.,426;SR, 309.
IOWAITE	Mg₄FeOCI(OH) ₈ . 2-4H ₂ O		Trig. R 3m	a=3.1183Å c=24.113Å Z=3/4?		(Fe,Mg)(3a) O _I (36i)		Min.Mag, 1994, <u>58</u> ,79-85;RRW, 303;Pov.,324-325;Str.Tab., 215;Am.Min.,1967, <u>52</u> ,1261- 1271.
IRHTEMITE	Ca ₄ MgH ₂ (AsO ₄) ₄ . 4H ₂ O		Mon. ؟	a=16.73Å b=9.48Å c=10.84Å	β=97°15' Z=4			Bull.Min.,1972, <u>95</u> ,365-370;Am. Min.,1974, <u>59</u> ,209(Abs.); Hölzel,164.
KAHLERITE	Fe(UO ₂) ₂ (AsO ₄) ₂ . 12H ₂ O		Tet. P4 ₂ /n	a=14.30Å c=21.97Å	Z=8			RRW,315;Pov.,522;Str.Tab., 351;Hölzel,179.
KAINITE	KMg(SO4)CI.3H ₂ O	K ^{laoj} Cl(H ₂ O) ₃ {2∞}[Mg°S ^t O ₄]	Mon. C2/m	a=19.72Å b=16.23Å c=9.53Å	β=94°55′ Z=16	K⊦ıı(4i)Kııı(8j) S⊦ıı(8i)Mgı(2d) Mgıı(2a)Mgııı(4f) Mgıv(8j)		Am.Min., 1972, <u>57,</u> 1325-1332; LF,319;RRW,315-316;Pov., 600;Str.Tab.,296;SR, <u>38A,</u> 332.
KAMBALDAITE	NaNi₄(CO₃)₃(OH)₃. 3H₂O	(H ₂ O) ₃ {3∞}[Na ^[6] Ni ₄ ° {g}[C ^I O ₃] ₃ (OH) ₃]	Hex. P6 ₃	a=10.340Å c=6.097Å	Z=2	Na(2a)Ni _I (6c) Ni _{II} (2b)C(6c)		Am.Min.,1985, <u>70</u> ,423-427;Am. Min.,1985, <u>70</u> ,419-422;Hölzel, 106.
KANEMITE	HNaSi ₂ O ₄ (OH) ₂ . 2H ₂ O		Orth. Pnmb	a=7.282Å b=20.507Å c=4.956Å	Z=4			Bull.Min.,1972, <u>95</u> ,371-382;Am. Min.,1974 <u>,59</u> ,210(Abs.).
KASOLITE	Pb(UO₂)SiO₄.H₂O	Pb ₂ ⁸⁽ (H ₂ O) ₂ {2∞}{(∪ ^{[7} O ₂) ₂ (Si ⁵ O ₄₎₂] (≈Uranophane)	Mon. P2₁/a	a=13.28Å b=6.96Å c=6.74Å	β=75°45′ Z=4	U(4e)Pb(4e) Si(4e)U⊦⊪(4e)		Sov.Phys. Cryst.,1965, <u>9,</u> 621- 622;SR <u>,29</u> ,405-406;Pov.,456- 457;Str.Tab.,386;RRW,319; LF,244.
KEHOEITE	(Zn,Ca)Al ₂ (PO ₄) ₂ (OH) ₂ .5H ₂ O	(Zn,Ca)(H₂O)₅ {3∞}[P₂¹Al₂¹O₀(OH)₂] (≈Analcime (cubic))	Cub. Ia 3d	a=13.7Å Z=4				Hölzel, 170;Pov.,532;Str.Tab., 358;RRW,320;Min.Mag.,1964, 33,799-803;Can.Min.1974,12, 352-353.
KEYSTONEITE	H _{0.8} Mg _{0.8} (Ni,Fe,Mn) ₂ (FeO ₃) ₃ .5H ₂ O		Hex. P6 ₃ /m	a=9.344Å c=7.607Å	Z=1			Hölzel suppl

A_pB_qC_rD_sE_x.nAq. (cont.)

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
KIDWELLITE	NaFe ₉ (PO ₄) ₆ (OH) ₁₀		Mon.	a=20.61Å	β=112.64			Min.Mag.,1978,42,137-140;
	.5H ₂ O		A2/m	b=5.15Å c=13.75Å	Z=2			Hölzel,173;K/B,157.
KITTATINNYITE	Ca ₂ Mn ₃ Si ₂ O ₈ (OH) _{4.} .9H ₂ O		Hex. P6 ₃ /mmc	a=6.498Å c=22.78Å	Z=2			Am.Min.,1983, <u>68</u> ,1029-1032; Hölzel,187.
KLEEMANITE	ZnAl ₂ (PO ₄) ₂ (OH) ₂		Mon.	a=7.290Å	β=110.20			Min.Mag., 1979, 43, 93-95; K/B,
	ο ₂ ης.		۲٤	c=9.762Å	7=7			16U;HOIZeI,1 / U.
KOLFANITE	Ca ₂ Fe ₃ O ₂ (AsO ₄) ₃		Mon.	a=17.86Å	β=96°			Am.Min., 1983, 68, 280 (Abs.);
	O2D3.			C=19.00A	71=7			H0lZel,1/5.
KOMAROVITE	(Ca,Mn)Nb ₂ (Si ₂ O ₇)		Orth.	a=21.30Å	Z=18			Am.Min.,1972,57,1315-1316
				c=17.19Å				(Abs.);Holzel,201;Pov.,744,368 RRW,330.
LABUNTSOVITE		Ti,Nb) ₉ 'Si ₁₆	Mon.	a=14.18Å	y=117°	Ti _I (2a)Ti _{II} (4g)		Sov. Phys. Cryst., 1974, 18, 596-
	(SiO ₃) ₁₆ (O,OH) ₁₀ .xH ₂ O	[O ₄₈ (O,OH) ₁₀ (H ₂ O) _x (K,Na) ₈]	12/m	b=15.48A c=13.70Å	Z=2	Ti _{III} (4i)Si _{I-II} (8j)		599;Hölzel,201;RRW,338;Str. Tab.,393;SR,39A,345;Pov.,745
LANDESITE	٦	(Mn,Mg) ₉ °Fe ₃ °P ₈ °	Orth.	a=9.458Å	Z=4?	P(8d)		Min.Mag.,1980,43,789-795;
	OH)3.9H ₂ O	[O ₃₂ (OH) ₃ (H ₂ O) ₉]	Pbna	b=10.185A		(Mn,Mg) ₍ (4a)		RRW,340;Am.Min.,1964,49,
				C=8.543A	-	(Mn,Mg) _{II} (8d)		1122-1125;P0V., /45,547;SK, 46A 326
LAUEITE	MnFe ₂ (PO ₄) ₂ (OH) ₂ .	Mn°Fe ₂ °P ₂ ¹	Tric.	a=5.28Å	α=107°55°	Mn(1a)Fe _i (1c)		Am.Min., 1965, 50, 1884-1892;
	.8H ₂ O	[O ₈ (OH) ₂ (H ₂ O) ₈]	٦-	b=10.66Å		Fe _{II} (1g)P(2i)		Am.Min., 1969, 54, 1312-1323;
		(≈Strunzite)		c=7.14Å	y=71°7′			K/B,67-68;RRW,344;Pov.,560-
1.100					1=7			301,017,000,000-000.
LAWSONBAUE-	(Mn,Mg) ₉ Zn ₄ (SO ₄) ₂	(Mn, Mg) ₉ Zn ₄ S ₂	Mon.	a=10.50A	β=95.21°	(Mn,Mg) _i (2a)		Am.Min., 1982, 67, 1029-1034;
¥		(=Torreyite)	741/0	c=16.41Å	7=7	Zni-ii(4e)S(4e)		AIII.MIII., 1979,049-952, Hölzel,132.
LAWSONITE	CaAl ₂ Si ₂ O ₇ (OH) ₂	Ca ^[8] (H ₂ O){3∞}	Orth.	a=8.795Å	Z=4	Ca(4c)AI(8d)		Am.Min.,1978, <u>63</u> ,311-315,
	.H2O	[Al ₂ (OH) ₂ (g)[Si ₂ O ₇]]	Ccmm	b=5.847Å		Si(8f)O _I (4c)		RRW,348;Pov.,403;Str.Tab.,
				c=13.142A		O _{II} (16h) O _{III-IV} (8f)O _V (4c)		390;SR, <u>44A</u> ,310-311;Hölzel, 199.
LEHNERITE	Mn(UO ₂) ₂ (PO ₄) ₂		Mon.	a=7.04Å	β=90°18'			Min.Abs.,89M/0934; Hölzel,
	02Hg.		P2 ₁ /n	b=17.16A c=6.95Å	Z=2			181;K/B,190,83-84.
LEIGHTONITE	K ₂ Ca ₂ Cu(SO ₄) ₄		Orth.	a=11.67Å	2=4			RRW,351;Pov.,594;Str.Tab.,
	.2H ₂ O		Fmmm	b=16.52A c=7.49Å				290;Hölzel,131;Can.Min.,1962, 7,272-277.
LEMOYNITE	(Na,K)2CaZr2Si10	(Na,K) ₂ ^[5//] Ca ^[6]	Mon.	a=10.384Å	β=104.59			SR,42A,406-407;RRW,351;
	O ₂₆ .5-6H ₂ O	(H ₂ O) ₅₋₆ (3∞)[Zr, ³ Si ₁₀ [†] O ₂₆]	C2/c	b=15.947Å c=18.601Å	Z=4			Pov.,369;Str.Tab.,428.
		44 - 124						

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
LEUCOPHOSPHI-	K(Fe,AI) ₂ (PO ₄) ₂	K ^[6] (H ₂ O){3∞}	12	a=9.782Å	β=102.24°	K(4e)Fe _{i-II} (4e)		Am.Min., 1972, 57,397-410;SR,
1E	(OH).2H ₂ O	[(Fe,Al) ₂ (P ^t O ₄) ₂ (OH) (H ₂ O)] (=Tinsleyite)	P2 ₁ /n	b=9.658Å c=9.751Å	Z=4	P ₋ (4e)O _{-X} (4e)		38A,314-315;Pov.,551;Str. Tab.,348;RRW,355;Hölzel,173.
LEVYNE	NaCa _{2.5} (Al ₆ Si ₁₂)O ₃₆	NaCa _{2.5} (H ₂ O) ₁₈	Trig.	a=13.338Å	a _R =10.87Å	(Ca,Na) _{I-IV} (6c)		Sr,41A,386;LF,288;RRW,355;
	.18H ₂ O		R 3m	c=23.014Å	α=75°42'	(Ca,Na) _v (3b)		SR,23,491-492; Pov.,351;Str.
	100/10/10	(Zeolite)	;	6=Z	Z _R =3			1 ab.,492;LF,288.
LIEBIGIIE	Ca ₂ (UO ₂)(CO ₃) ₃ .	Ca2 ¹² (H ₂ O) ₁₁	Orfin.	a=16.699A	8=7			Min. Abs., 84M/3848; Pov., 625; Str Tab 249 RRW 356
	2	15 ON POSTERIO CAISI	700	c=13.697Å				
LIOTTITE	(Ca,Na) ₈ (Si,Al) ₁₂	(Ca,Na) ₈ (H ₂ O) ₂	Hex.	a=12.870Å	Z=3	Ca _i (1d)Ca _{ii} (2h)		Can.Min.,1996,34,1021-1030; Am.Min.,1977,62,321-326;
	2H ₂ O	(≈C4,51,51,74 (3∞)[(Si,Al) ₁₂ †O ₂₄] (≈Cancrinite)) -			Ca _{IV-V} (2i)		Hölzel,240.
LIROCONITE	Cu ₂ AlAsO ₄ (OH) ₄ .	Cu ₂ 'Al'As'	Mon.	a=12.64Å	β=91°18′ 7=4	Cu(8f)Al(4a) As(4e)		Sov.Phys.Cryst.,1968,13,324-328:RRW.359:Pov.,517:Str.
		[b() 7: 1\b() () () () ()	į	c=9.86Å	·	(21.)		Tab.,346;Hölzel,172.
LOVDARITE	K ₂ Na ₆ Be ₄ Si ₁₄ O ₃₆ .	K ₂ Na ₆ (H ₂ O) ₉	Orth.	a=38.789Å	Z=2?			Am.Min., 1974, 59, 874 (Abs.);
	2 2 2 3	{3∞}[Si₁₄'Be₄'O₃6]	P21212	c=7.012Å				Acta Cryst., 1981, A37, C169 (Abs.); Am.Min., 1983, 68,474
								(Abs.).
LUETHEITE	Cu ₂ Al ₂ (AsO ₄) ₂		Mon.	a=14.743Å	β=101°49'			Min.Mag.,1977,41,27-32;
	(On)4.n ₂ O		F21/H	D=5.093A c=5.598Å	7=7	-		H0lZel,1 / Z.
LÜNEBURGITE	Mg ₃ (B(OH) ₃) ₂	(H ₂ O) ₅	Tri i	a=6.3475Å	α=84.46°	Mg ₁ (1a)Mg ₁₁ (2i)		Am.Min., 1991, 76, 1400-1407;
	(PO4)2.5H2O	{2∞}{Mg ₃ B ₂ (OH) ₆	7	b=9.8027Å	$\beta = 106.40^{\circ}$	B(2I)P(2i)		RRW,367;Pov.,475;Str.Tab.,
		(P'O ₄) ₂]		c=6.2976Å	γ=96.40°			256;Hölzel,114;Encyc.Miner.
MACDONA! DITE	RaCa.Si.,O.,(OH).	RalfulCa, [6](HO),	Ę	a=14 081&	7=4	Ba(4c)Si(16h)		SR 33A 489-490-Am Min
	.10H ₂ O (H ₂ O) ₁₀ {2∞} Si ₁₆ ₁	(H ₂ O) ₁₀ {2∞}[Si ₁₆ ¹ O ₃₆]	Cmcm	b=13.109Å	I	Ca ₁ (8f)Ca ₁₁ (8d)		1965, 50, 314-340; Pov., 434;
		(»Hydroxyapophyllite)		c=23.560Å				Str.Tab.,468;RRW,369.
MAGNESIOAU-	(Mg,Cu)Al(SO ₄) ₂ Cl.	(Mg,Cu)°Al°S ₂ t	Tric.	a=6.31Å	α=91.74°			Min.Abs.,89M/0935.
	<u>2</u> 5	(=Aubertite)		c=6.29Å	p=94.35° γ=82.67° Z=1			
MAGNESIOCO-	MgFe ₄ (SO ₄) ₆ (OH) ₂ .	(H ₂ O) ₆ (1∞){Mg°Fe ₃ °	Tric 1.	a=7.342Å		Mg(1a)Fe _{I-II} (2i)		Zeit.Krist., 1972, 135, 34-35;
1	22	Se C ₂₄ (C ₁₇₂ (T ₂ C)8] (g)[Fe (H ₂ O)6]] (Subs d Conjanite)		c=7.389Å	p=102.13 γ=98.85° 7-1	O _{I-XXIII} (2i)		Hölzel, 132; Str. Tab., 295; RRW, 373
MANASSEITE	1	(capadocarcobabas)	Hov	a=6 13Å	7=1			Dov 331-Str Tah 247-BBW
	4H ₂ O		P6 ₃ /mmc	b=15.37Å				378;Hölzel, 106.
MAPIMITE	Zn ₂ Fe ₃ (AsO ₄) ₃	Zn ₂ °Fe ₃ °As ₃ ¹	Mon.	a=11.415Å	β=107.74°	Zn _{I-II} (2a)Fe _I (2a)		Acta Cryst., 1981, <u>B37</u> , 1040-
	(OH)4.10H ₂ O	[O ₁₂ (OH)4(H ₂ O) ₁₀]	E	b=11.259A c=8.661Å	7=2	Feii(4b)Asi(2a) Asii(4b)		1043;Am.Min.,1982, <u>67,</u> 623- 624(Abs.);Hölzel,171.
	-							

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
MARGARITASITE	02)2	(Cs, H ₃ O, K) ₂ ^[11] (H ₂ O)	Mon.	a=10.514Å	β=106.01		K ₂ ^[11] (H ₂ O) {2∞}	Am.Min., 1982, 67, 1273-1289;
	(VO ₄) ₂ .H ₂ O	$\{2\infty\}\{(\bigcup^{\mathbb{Z}^*} \bigcirc_2)_2 \ (\bigvee_2^{[5]} \bigcirc_8)\}$	P2 ₁ /a	b=8.425Å c=7.252Å	Z=2		[(U ^[2+5] O ₂₎₂ (V ₂ ^[5] O ₈)] CARNOTITE	Hölzel, 183.
MATULAITE	CaAl ₁₈ (PO ₄) ₁₂ (OH) ₂₀ .28H ₂ O		Mon. P2 ₁ /c	a=20.4Å b=16.7Å c=10.6Å	β=98.2°' Z=2			Am.Min.,1980, <u>65</u> ,1067(Abs.); Hölzel,176.
MAZZITE	K ₂ CaMg ₂ (Si,Al) ₃₆ O ₇₂ .28H ₂ O	K₂CaMg₂(H₂O)₂8 {3∞}{(Si,Al)₃c¹O ₇₂] (≈Gmelinite,Zeolite)	Hex. P6₃/mmc	a=18.392Å c=7.646Å	Z=3			Am.Min.1975, <u>60</u> ,340(Abs.); Min.Abs.,3276-3282;SR, <u>41A,</u> 388-389; Hölzel,244.
MBOBOMKULITE	(Ni,Cu)Al ₄ (NO ₃ ,SO ₄) ₂ (OH) ₁₂ . 3H ₂ O		Mon. ۶	a=10.171Å b=8.865Å c=17.145Å	β=95.37° Z=4			Am.Min., 1982 <u>, 67,</u> 415-416; Hölzel, 135.
MERLINOITE		(K,Na)₅(Ba,Ca)₂ (H₂O)₂₄ {3∞}[(Si₂₃Alց)O6₄] (Zeolite)	Orth. Immm	a=14.116Å b=14.229Å c=9.946Å	Z=1			SR. <u>45A,372;Am.Min.,1978,63,</u> 598; Hölzel,244.
LITE	ò	Na ₂ ^{Iel} Ca ₂ ^{I/1} (H ₂ O) ₈ {3∞}{Ale Sis O ₃₀] (≈Natrolite,Zeolite)	Orth. Fdd2	a=18.4049Å b=56.655Å c=6.5443Å	7=8	Na(16b)Ca(16b) Al _{I-III} (16b)Si _I (8a) Si _{II-V} (16b)		Acta Cryst.,1986, <u>C42</u> ,937-942; Pov.,356;Str.Tab.,487; Hölzel, 243.
META- -ANKOLEITE	K ₂ (UO ₂) ₂ (PO ₄) ₂ . 6H ₂ O	(H2O) ₆ [K ₂ ^[6] {2∞}[U ^[2+4] O ₂ P [†] O _{4]2}	Tet. P4/nmm	a=6.993Å c=8.891Å	Z=1		(H ₂ O) ₆ [Ca ^[6] {2∞}[U ^[2+4] O ₂ P [†] O _{4]2}] META-AUTUNITE	Am.Min., 1967, 52, 560(Abs.); Pov., 556; Str. Tab., 395; Hölzel, 180; K/B, 162LF: 246.
META-AUTUNITE	Ca(UO ₂) ₂ (PO ₄) ₂ . 6H ₂ O	(H ₂ O) ₆ [Ca ^{l6]} {2∞}[U ^[2+4] O ₂ P [‡] O _{4]2}]	Tet. P4/nmm	a=6.980Å c=8.420Å	Z=1	U(2c)O _I (2a) Ca(2c)O _{I-II} (2c) O _{II} (8i) P(2a)	(H ₂ O) ₆ [Ca ^[6] {2∞}[U ^[2+4] O ₂ P ^t O _{4]2}] META-AUTUNITE	LF,246;Wyckoff,1965,3,869- 871;SR,24,412-413;Pov.,556; Str.Tab.,352;RRW,395.
METAHEINRICHI- TE	Ba(UO ₂) ₂ (AsO ₄₎₂ . 8H ₂ O	(H ₂ O) ₈ [Ba {2∞}[U ^[2+4] O ₂ As¹O _{4]2}]	Tet. P4 ₂	a=7.07Å c=17.74Å	Z=2			Am.Min., 1958, 43, 1134-1143; Pov., 522; Str. Tab., 353; RRW, 397; Hölzel, 180.
METAKAHLERITE			⊤et. ?	a=20.25Å c=17.20Å	Z=16			Am.Min., 1986, 71, 1037-1044; Str. Tab., 353; RRW, 398; Hölzel, 179.
METAKIRCHHEI- MERITE	Co(UO ₂) ₂ (AsO ₄) ₂ . 8H ₂ O		Tet. I4/mmm	a=14.29Å c=21.92Å	Z=4			Pov.,522;Str.Tab.,353;RRW, 398;Hölzel,180;Bull.Min.,1958, 81,67-68(Abs.);Am.Min.,1959, 44,466
METALODEVITE	ł		Tet. P4 ₂ /m	a=7.16Å c=17.20Å	¿=Z			Bull.Min.,1972,95,360-364; Am.Min.,1974,59,210-211 (Abs.);Höizel,180
METANOVÁCEKI- TE			Tet. P4/n	a=7.16Å c=8.58Å	Z=1			Hölzel,179;Str.Tab.,352.
METASIDERO- NATRITE	Na ₂ Fe(SO ₄) ₂ (OH). 2H ₂ O		Orth. Pbnm	a=7.357Å b=16.002Å c=7.102Å	Z=4			Am.Min., 1973, <u>58,</u> 1080-1081; RRW,399;Hölzel,136;Str.Tab., 297;Pov.,600.

NAME		STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
METATORBERNI- TE	Ou()	(H ₂ O) ₈ [Cu ^{8q} {2∞}{U ^{[2+4} O ₂ P [‡] O ₄] ₂] (∞Meta-antunite)	Tet. P4/n	a=6.972Å c=17.277Å	Z=2	U _{I-II} (2c)Cu(2c) P(2a)O _{I-IV} (2c) O _{V-VIII} (8q) P(2b)	$(H_2O)_8[Cu^{8q}$ $\{2\infty\}[U^{[2+4]}O_2P^{\dagger}O_4]_2]$ METATORBERNITE	Zeit.Krist.,1993, <u>205,</u> 1-7;SR, <u>29,</u> 375-377;Pov.,556-557;Str. Tab.,352;RRW,400;Am.Min.,
		(Simple agrama)						1964,49,1603-1621;K/B,95-96.
METATYUYAMU- NITE	Ca(UO ₂) ₂ (VO ₄) ₂ . 3H ₂ O	Ca(H ₂ O) ₃ {2∞}[(UO ₂) ₂ V ₂ O ₈] (≈Camotite)	Orth. Pnam	a=10.54Å b=8.49Å c=17.34Å	2=4			RRW,400;Str.Tab.,357;Pov., 503;Hölzel,183.
META- URANOCIRCITE-I	Ba(UO ₂) ₂ (PO ₄) ₂ . 8H ₂ O	(H ₂ O) ₈ [Ba {2∞}{U ^{[2+4} O ₂ P ^t O ₄] ₂] I (≈Meta-autunite)	Tet. P4 ₂ /n	a=6.96Å c=16.90Å	Z=2			RRW,401;Pov.,556;Str.Tab., 352;K/B,96-97;Hölzel,182.
META- URANOSPINITE	Ca(UO ₂) ₂ (AsO ₄) ₂ . 8H ₂ O	(H ₂ O) ₈ [Ca ^{l5}] {2∞}[U ^[2+4] O ₂ As¹O _{4]2}] (≈Meta-autunite)	Tet. P4/nmm	a=7.19Å c=8.81Å	Z=1			Str.Tab.,353;RRW,401; Hölzel,180.
METAVAUXITE	FeAl ₂ (PO ₄₎₂ (OH) ₂ . 8H ₂ O	Fe [°] Al ₂ 'P ₂ ' [O ₈ (OH) ₂ (H ₂ O) ₈]	Mon. P2 ₁ /c	a=10.22Å b=9.56Å c=6.94Å	β=97.9° Z=2	Fe(2a)Al(4e) P(4e)O _{L-IV} (4e) O _{V-VIII} (4e) for OH(4e)P4 ₂ /nmc		SR <u>,32A,</u> 367-368;Pov.,560;Str. Tab.,341;RRW,402;Hölzel,170.
METAZELLERITE	Ca(UO ₂)(CO ₃) ₂ . 3H ₂ O		Orth. Pbn2 ₁	a=9.718Å b=18.226Å c=4.965Å	2=4			Am.Min.,1966, <u>51</u> ,1567-1578; Pov.,625;Str.Tab.,249;RRW, 403;Hölzel,109.
METAZEUNERITE Cu(UO ₂) ₂ (AsO ₄) ₂ . 8H ₂ O	ł	(H ₂ O) ₈ [Cu ^{sq} {2∞}[U ^[2+4] O ₂ As [†] O _{4]2}]	Tet. P4/n	a=7.10Å c=17.70Å	Z=2	U(4d)2Cu(4d) As(4c)O _{I-II} (4d) O _{II-IV} (8g)	$(H_2O)_8$ [Cu^{8q} $\{2\infty\}[U^{[2+4]}O_2P^{4}O_4]_2$] METATORBERNITE	SR. <u>24</u> ,415-416Am.Min.,1964, 49,1603-1621;;RRW,403;Pov., 522;Str.Tab.,353;Hölzel,180.
MILARITE	(K,Na)Ca ₂ (Be,Al) ₃ Si ₁₂ O ₃₀ .H ₂ O	(H ₂ O)(K,Na) ¹⁷² /Ca ₂ (Be,Al) ₃ ^t (g)[Si ₁₂ O ₃₀] (=Amenite)	Hex. P6/mcc	a=10.40Å c=13.80Å	Z=2	K(2a)Ca(4c) (Be,Al)(6f) Si(24m)		Sov.Phys.Cryst.,1975, <u>19</u> ,460- 462;Pov.,380;Str.Tab.,409;RW 406;Hölzel,210;SR <u>,15</u> ,301-303.
MINYULITE	KAl ₂ (PO ₄₎₂ (OH,F). 4H ₂ O	K ⁽⁸⁾ {2∞}{Al ₂ °P ₂ ¹O ₈ (OH,F)(H ₂ O)₄]	Orth. Pba2	a=9.337Å b=9.740Å c=5.522Å	Z=2	K(2a)Al(4c) P(4c)F(4c) O⊦v(4c)		Am.Min.,1977, <u>62,</u> 256-262; RRW,408;Pov.,551;Str.Tab., 346;SR, <u>43A,</u> 251;K/B,80-81.
MITRIDATITE	Ca ₂ Fe ₃ O ₂ (PO ₄₎₃ . 3H ₂ O	Ca ₂ ^[J] (H ₂ O) ₃ 2 ∞ }[Fe ₃ °P ₃ O ₁₄] (=Arseniosiderite)	Mon. A2/a	a=17.53Å b=19.35Å c=11.25Å	β=95.92° Z=8			Min.Mag,1977, <u>41</u> ,527-528;Am. Min.,1974, <u>59</u> ,48-59;SR, <u>43A,</u> 256-257;RRW,409;Hölzel,175.
MIXITE	Cu ₆ Bi(AsO ₄₎₃ (OH) ₆ . 3H ₂ O		Hex. P6₃/m	a=13.646Å c=5.920Å	Z=2	Bi(2d)Cu(12i) As(6h)O _{⊦-V} (6h) O _{VI} (12i)		SR <u>,54A,</u> 250;Pov.,519;Str.Tab., 350;Hölzel,177.
MONGOLITE	Ca ₄ Nb ₆ Si ₅ O ₂₄ (OH) ₁₀ .6H ₂ O		Tet. ?	a=7.00Å c=29.0Å	Z=1			Am.Min.,1986, <u>71</u> ,1279(Abs.); Hölzel,192.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
	H ₈ K₂TI₂(SO₄) ₈ .11H₂O		Cub. Fd3c	a=25.29Å				Am.Min,1995,80,634(Abs.); Am.Min,1969,54,1496(Abs.); Pov.,606;Str.Tab.,555;RRW, 415; Hölzel,128.
MONTEREGIANI- TE-(Y)	K ₂ Na ₄ Y ₂ Si ₁₆ O ₃₈ .10H ₂ O	K₂ ¹¹⁰ (H₂O)₁₀Na4°Y₂° {2∞}{Si₁6O₃₀] (≈Hydroxyapophyllite)	Mon. P2 ₁ /n	a=9.512Å b=23.956Å c=Å9.617	β=93.85° Z=2	K _{I-II} (4e)Na _I (4e) Na _{II} . III(2d)Y(4e)		Am. Min, 1987, <u>72,</u> 365-374; Hölzel, 237.
MONTMORILLO- NITE	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ .nH ₂ O	(H ₂ O) _n (Na,Ca) _{0.3} (Al,Mg) ₂ (OH) ₂ {2∞}{Si ⁴ O ₁₀ ^{(2,8)c}	Mon. C2/m	a=5.18Å b=8.96Å c=9.97Å	β=99°54' Z=2		(H ₂ O) _n (Na,Ca) _{0.3} °(Al,Mg) ₂ ° (OH) ₂ {2∞}{Si,¹O ₁₀] ^{(2,s)c} MONTMORILLONITE	LF,232;Wyckoff <u>4</u> ,372-373; Pov.,445;Str.Tab.,445;RRW, 417;SR, <u>16</u> ,368-369.
MONTROYALITE	Sr ₄ Al ₈ (CO ₃) ₃ (OH,F) ₂₆ .10H ₂ O		7ric.	ځ				Can.Min.,1986, <u>24,</u> 455-459; Hölzel,108;Am.Min.,1987, <u>72,</u> 1025(Abs.).
MOUNTKEITHITE	(SO ₄ ,CO ₃) _{3.5} (SO ₄ ,CO ₃) _{3.5} (OH) ₂₄ .11H ₂ O		Hex.	a=10.698Å c=22.54Å	Z=0.5?	-		Min.Mag.,1981, <u>44</u> ,345-350; Hölzel,108.
MUNDRABILLAI- TE	(NH4) ₂ Ca(PO ₃ OH) ₂ .H ₂ O		Mon. Pm	a=8.643Å b=8.184Å c=6.411Å	β=98.0° Z=2			Min.Mag.,1983,4 <u>7,</u> 80-81: Hölzel,166;K/B,159.
MURMANITE	Na ₃ (Ti,Nb) ₄ O ₄ (Si ₂ O _{7)2:} 4H ₂ O	Na₃ [°] (Ti,Nb)₄°Si₄¹ [O₁a(H₂O)₄] (≈Bafertisite)	Tric. P 1?	a=8.700Å b=8.728Å c=11.688Å	$\alpha = 94.31^{\circ}$ $\beta = 98.62^{\circ}$ $\gamma = 105.6^{\circ}$ Z = 1			Sov.Phys.Cryst.,1986, <u>31,</u> 44- 48;Hölzel,200;Str.Tab.,395; Pov.,454.
NATROAPOPHY- LLITE	NaCa ₄ Si ₆ O ₂₀ F .8H ₂ O	Ca₄ ^{('/} Na ^{!9} F(H ₂ O) ₈ {2∞}[Si ₈ O _{20]} ⁸	Orth. Pnnm	a=8.875Å b=8.881Å c=15.79Å	Z=2 (Na(2b)F(2a) Cal-II(4g)SliII(8h) Ol-VII(8h)	Dist.deriv. Ca4 ^[7] K ^[8] (OH,F)(H ₂ O) ₈ {2∞}{Sis ^t O ₂₀ 3 ^s HYDROXYAPOPHYLLITE	Am.Min.,1981, <u>86,</u> 410-415, 416-423;Hölzel,226;Encyc. Miner.Nam.,212.
NATROCHALCITE NaCu ₂ (SO ₄) ₂ (OH)	NaCu ₂ (SO ₄) ₂ (OH) .H ₂ O	Na ^[8] {2∞}{Cu ₂ °S ₂ ¹O ₈ (OH)(H ₂ O)]	Mon. C2/m	a=8.75Å b=6.16Å c=7.44Å	β=118°40' Z=2	Cu(4e)Na(2d) S(4i)O _{I-II} (4i) O _{III} (8j)		SR. <u>22</u> ,470-471;Zeit.Krist., 1989 <u>,187,</u> 239-247Zeit.Krist., 1998, <u>213</u> ,141-150.
NATRODUFRENI- TE	NaFe ₆ (PO₄)₄(OH) ₆ . .2H ₂ O	{3∞}[Na°Fe ₆ °P4 ^t O ₁₆ (OH) ₆ (H ₂ O) ₂] (=Dufrenite)	Mon. C2/c	a=25.83Å b=5.150Å c=13.772Å	β=111°32' Z=4			Am.Min.,1983, <u>68</u> ,1039 (Abs.);Hölzel,171;Encyc. Miner.Nam.,212.
ICHI-	Na(Nb,Ti)Si ₂ O ₆ (O,OH).2H ₂ O	Na ^[6] (H ₂ O) ₂ {3∞}[{3∞}[(Nb,Ti)°Si ₂ 'O ₆ (O,OH)]	Orth. Pbam	a=7.408Å b=14.198Å c=7.148Å	Z=4	Na ₁ (4g)Na ₁₁ (4h) Si(8i)Nb(4h) (occ.v.)		Acta Cryst.,1973, <u>B29</u> ,1432- 1438;Min.Abs.,87M/1267; Hölzel,198.
NISSONITE	CuMgPO₄(OH). 2.5H₂O		Mon. C2/c	a=22.58Å b=5.027Å c=10.514Å	β=99°20' Z=8			Am.Min.,1967, <u>52</u> ,927(Abs.); Hölzel,167;Pov.,549;Str.Tab., 41;RRW,438.
NONTRONITE	Na _{0.3} Fe ₂ (Si,Al) ₄ O ₁₀ (H ₂ O) ₁ Na _{0.3} ° (OH) ₂ .nH ₂ O Fe ₂ °(OH) ₂ {2∞}{(Si,Al) ₄ to the control of t	(H ₂ O) _n Na _{0.3} ° Fe ₂ °(OH) ₂ {2∞}{(Si,Al) ₄ ¹O ₁₀] ^{(2,s)c}	Mon. C2/m	a=5.23Å b=9.11Å c=15.5Å	β~98° Z=1?		(H ₂ O) _n (Na,Ca) _{0.3} (Ai,Mg) ₂ ° (OH) ₂ {2∞}{Si4 ^O to] ^(2.8) MONTMORILLONITE	LF,232;RRW,440;Pov.,445; Str.Tab.,445;Am.Min.,1975; <u>60</u> ,840-848.

NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
NOVÁCEKITE	Mg(UO ₂) ₂ (AsO ₄) ₂ . 9H ₂ O	(H ₂ O) ₉ [Mg ^[6] {2∞}[U ^[2+4] O ₂ As ^t O ₄] ₂]	Tet. P4 ₂ /n	a=7.11Å c=20.06Å	2=2			RRW,443;Str.Tab.,351;Pov., 751;Hölzel,179.
OGDENSBURGI-	(Ca.Zn.Mn),Fe	(≈Autunite)	Orth	a=11.351Å	Z=2?			Am.Min., 1987, 72, 409-412;
TE	(ASO ₄) ₅ (OH) ₁₁ 5H ₂ O		Bmmm	b=14.837Å	 i			Hölzel,176.
OHMILITE	Sr ₃ (Ti,Fe)(Si ₂ O ₆) ₂ (O.OH),2H ₂ O	Sr ₃ (Ti,Fe)(Si ₂ O ₆₎₂ Sr ₂ ^[9] Sr ⁹ (Ti,Fe)° (O.OH), 2H ₂ O (O.OH)(H ₂ O),	(Mon. P2,/m	a=10.979Å	β=100.90° Z=2	Sr _{I-III} (2e) Ti(2a)Si _{I-II} (4f)		Am.Min.,1983, <u>68</u> ,811-817; Hölzel,225.
	- 3 1 1	{1∞}[Si₄O ₁₂]		c=7.818Å	1			-
OJUELAITE	ZnFe ₂ (AsO ₄) ₂ (OH) ₂	Zn°Fe2°As2 ^t	Mon.	a=10.247Å	β=94°22'			Am.Min.,1982, <u>67</u> ,623-624
	.4H ₂ O	[O ₆ (OH) ₂ (H ₂ O)₄] ⁷ ′′′ (≈Arthurite)	P2 ₁ /c	b=9.665Å c=5.569Å	Z=2			(Abs.);Holzel,170.
ORTHOSERPIE-	Ca(Cu,Zn) ₄ (SO ₄) ₂	{3∞}[Ca ^[7] (Cu,Zn)₄ ^[6]	Orth.	a=22.10Å	Z=8			Am.Min., 1987, 72, 1026(Abs.);
Ā II		S₂'O ₈ (OH) ₆ (H₂O)₃] (≈Serpierite)	Pca21	D=6.20A c=20.39Å				213,141-150.
OURSINITE	(Co,Mg)(UO ₂) ₂ Si ₂		Orth.	a=12.74Å	Z=4			Am.Min., 1984, 69, 567 (Abs.);
	O ₂ -0 ₂ -0		-	c=7.050Å				1020, 190.
PAHASAPAITE	Li ₈ (Ca,Li,K) _{10.5} Be ₂₄	Liglepte](Ca,Li,K)10.5 leptel		a=13.781Å		(Ca,Li,K) ₍ (24f)		Am.Min., 1989, 74, 1195-1202;
		(PO ₄) ₂₄ .38H ₂ O (H ₂ O) ₃₈ (3∞){[Be ₂₄ ¹ P ₂₄ ¹ O ₈₆] (≈Zeolite)	123	Z=1		(Ca,Li,K) _{II} (8c) P(24f)Be(24f)		Hölzel, 159.
PARAROBERTSI-	Ca ₂ Mn ₃ (PO ₄) ₃ O ₂ .		Mon.	a=8.825Å	β=101.19			Can.Min., 1989, <u>27</u> , 451-455;
1			P2 ₁ /c	b=13.258Å c=11.087Å	Z=4			Hölzel suppl
PARAUMBITE	K ₃ Zr ₂ H(Si ₃ O ₉₎₂ .	K ₃ Zr ₂ °(H ₂ O) ₃	Orth.	a=10.34Å	Z=4			Am.Min., 1984, 69, 813-814
	3H ₂ O	{1∞}[Si₃Oց]₂. (≈Wollastonite)	٠.	b=13.29A c=14.55Å				(Abs.);Holzel,205
PARAVAUXITE	FeAl ₂ (PO ₄) ₂ (OH) ₂	Fe°Al2°P2[O ₈ (OH) ₂	Tric.	a=5.233Å	α=106.9°	Fe(1a)Al _l (1c)		SR,34A,332-333;Am.Min.,
	8. O	(H ₂ O) ₈] (≈Laueite)	<u>.</u>	b=10.541A c=6.96Å	$\beta = 110.8^{\circ}$	Alı(1g)P(Zl) O _{I-IX} (Zl)		1962,41,1-6;H0lzel,171;Pov., 560-561;Str.Tab.,342;RRW,
PARSONSITE	Pb ₂ (UO ₂)(PO ₄).		Tric	8=6 862Å	z=101°26'			SR.22,422;Pov.,554;Str.Tab.,
	0-2H ₂ O		P1	b=10.425Å	β=98°15'			350,RRW,465-466;Hölzel,182.
,				c=6.684A	γ=86°17' Z=2			
PARTHÉITE	Ca ₂ Al ₄ Si ₄ O ₁₅ (OH) ₂ .	Ca ₂ AI ₄ °(OH) ₂ (H ₂ O) ₄	l	a=21.555Å	β=91.55°	Si-11(8f)All-11(8f)		Zeit.Krist., 1984, <u>169</u> , 165-175;
		{3∞}[Si₄'O₁₅] (≈Zeolite)	C2/c	b=8.761A c=9.304Å	Z=4	Ca(8f)O _{-Vii} (8f) O _{Viii} (4e)		Am.Min.,1980, <u>65,</u> 1068(Abs.); Hölzel,246.
PENTAGONITE	Ca(VO)Si ₄ O ₁₀ .	(H2O)4(3∞){Ca ^[7] V ^[5y]	1	a=10.386Å	Z=4	Ca(4a)V(4a)		Am.Min.,1973,58,405-411;Am.
		Si₄'O₁₁] (≈Cavansite)	CGMZ1	c=8.975Å		SILI(80)OLVI(90) OVII-IX(4a)		470-471;SR,39A,338.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
PETARASITE	Na ₅ Zr ₂ Si ₆ O ₁₈ (CI,OH).2H ₂ O	Na ₅ ^[7] (CI,OH)(H ₂ O) ₂ {3∞}[Zr ₂ °Si ₆ O ₁₈]	Mon. P2 ₁ /m	a=10.796Å β=113.21° b=14.493Å Z=2 c=6.623Å			SR, <u>46A,</u> 391;Min.Abs., 83M/5067;Hölzel,208.
PETERSITE-(Y)	Cu ₆ (Y,Ca)(PO ₄) ₃ (OH) ₆ .3H ₂ O		Hex. P6 ₃ /m	a=13.288Å Z=2 c=5.877Å			Am.Min., 1982, <u>67</u> , 1039-1042; Hölzel, 177; K/B, 161.
PHARMACOSI- DERITE	KFe4(ASO ₄) ₃ (OH) _H 6-7H ₂ O	K ¹⁷² (OH) ₄ (H ₂ O) ₆₋₇ {3∞}[Fe ₄ ² AS ₃ O ₁₂]	Cub. P₹3m	a=7.98Å Z=1	Fe(4e)As(3d) O _I (12i)O _{II-III} (4e) O _{IV} (3c)		Zeit.Krist., 1967, <u>125</u> , 92-108; SR, <u>32A,</u> 384-385; Pov., 507-508 Str. Tab., 348; RRW, 474-475.
PHILLIPSITE	K(Ca _{0.5,} Na) ₂ (Si ₅ ,Al ₃)O ₁₆ .6H ₂ 0	K ^{t/2} (Ca _{0.5} ,Na) ₂ ^[6] (H ₂ O) ₆ (3∞}[Si ₅ A ₃ ⁴ O _{16]} (Zeolite)	Mon. P2 ₁ /m	a=9.865Å β=124.20° b=14.300Å Z=2 c=8.668Å	K(2e)Ca(4f) (Si,Al) _{I-IV} (4f) 	K ^{I™} (Ca _{0.5} ,Na) ₂ ^[6] (H ₂ O) ₆ (3∞){Si₅ ² Al₃¹O₁6] PHILLIPSITE	Acta Cryst., 1974, <u>B30,</u> 2426- 2433;SR, <u>27,</u> 692-693; Hölzel, 244;LF, 296;Pov., 353.
PHYLLOTUNGS- TITE	HCaFe₃(WO₄)₀ .10H₂O		Orth. P222	a=7.29Å Z=3 b=12.59Å c=19.55Å			Am.Min.,1986, <u>71</u> ,846(Abs.); Hölzel,140.
POLYHALITE	K₂Ca₂Mg(SO₄)₄ .2H₂O	K₂ ^{I¹¹1} Ca₂ ^{!³I} Mg°(H₂O)₂ {3∞}[Si⁴O₁₀] (≈Phillipsite)	т п 7.1.	a=11.69Å α=91.6° b=16.33Å β=90.0° c=7.60Å γ=91.9° Z=4	K(8i)Ca(8i) Mg(4a)Si _{⊢ll} (8i) O _{⊡Vill} (8i) (H ₂ O)(8i)		LF,320;SR, <u>40A,</u> 309;SR <u>,26,</u> 449 ;Pov.,594;Str.Tab.,290.
POUGHITE	Fe ₂ (TeO ₃) ₂ (SO ₄) .3H ₂ O	Fe ₂ °(H ₂ O) ₃ {g}[Te ⁽⁴⁾ O _{3]2} {g}[S ^t O ₄]	Orth. Pmnb	a=9.66Å Z=4 b=14.20Å c=7.86Å			Am.Min.,1968, <u>53,</u> 1075-1080; SR, <u>37A,</u> 318;Pov.,565;Str.Tab., 228; Hölzel,93.
PROBERTITE	NaCaB ₅ O ₇ (OH)₄ .3H ₂ O	Na ^{t5} [Ca ^{19]} (H ₂ O) ₃ {1∞}[B ₃ *B ₂ "O ₇ (OH) ₄]	Mon. P2 ₁ /c	a=6.588Å β=99.97° b=12.560Å Z=4 c=13.428Å	Na(4e)Ca(4e) B _{I-V} (4e) O _{I-IX} (4e)		Acta Cryst., 1982, <u>B38,</u> 3072- 3075; Sov. Phys. Cryst., 1966, <u>10,</u> 513-522; Pov., 484-485.
PROTASITE	Ba(UO ₂) ₃ O ₃ (OH) ₂ .3H ₂ O		Mon. Pn	a=12.2949Åβ=90.401° b=7.2206Å Z=2 c=6.9558Å			Am.Min.,1987, <u>72,</u> 1230-1238; Min.Mag.,1986, <u>50,</u> 125-128; Hölzel,90.
PSEUDOLAUEITE	MnFe ₂ (PO ₄) ₂ (OH) ₂ .7-8H ₂ O		Mon. P2 ₁ /a	a=9.647Å β=104.63° b=7.428Å Z=2 c=10.194Å	Mn(2a)Fe(4e) P(4e)O _{⊦ix} (4e)		Am.Min.,1969, <u>54,</u> 1312-1323; SR <u>,34A,</u> 331-332;Pov.,560- 561;Str.Tab.,341;RRW,495.
PYROAURITE	MgeFe ₂ CO ₃ (OH) _{n6} .4H ₂ O	Mg ₆ °Fe ₂ °(OH) ₁₆ {2∞}[(C ^t O ₃)(H ₂ O) ₄]	Trig. R3m	a=3.1094Å Z=3/8 c=23.4117Å	(Mg,Fe)(3a) (OH)(6c)O(3b) 		Acta Cryst.,1968, <u>B24,</u> 972- 977;SR, <u>33A,</u> 439-440;SR, <u>40A,</u> 306;Pov.,755;Str.Tab.,248.
RAMEAUITE	K ₂ CaO ₈ (UO ₂) ₈ .9H ₂ O		Mon. C2/c	a=13.97Å β=121°1' b=14.26Å Z=4 c=14.22Å			Min.Mag.,1972, <u>38,</u> 781-789; RRW,508;Hölzel,89.
RAPIDCREEKITE	Ca ₂ (SO ₄)(CO ₃) .4H ₂ O	(30)[Ca ₂ [891S ¹ O ₄] C''O ₃ (H ₂ O) ₄]	Orth. Pcnb	a=15.517Å Z=8 b=19.226Å c=6.164Å	Ca _{I-II} (8d)S(8d) C(8d)O _{I-VIII} (8d)	,	Can.Min.,1996, <u>34</u> ,99-106;Can. Min.,1986 <u>,24</u> ,51-54;Hölzel, 137.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
RECTORITE	(Na,Ca)AI ₄ (Si,AI) ₈ O ₂₀ (OH) ₄ .2H ₂ O	(H ₂ O) ₂ (Na,Ca)°Al ₄ ° (OH) ₄ {2∞}{(Si,Al) ₈ [†] O ₂₀] ^(2,8) c (≈Montmorillonite)	Mon.	a=5.13Å b=8.88Å c=23.85Å	β=96.3° Z=2			Sov.Phys.Cryst.,1971,16,250- 253;Hölzel,231;Pov.,445-446; RRW,512;Str.Tab.,463.
REEVESITE	Ni ₆ Fe ₂ CO ₃ (OH) ₁₆ . 4H ₂ O	Nie Fe2 (OH) 16 {2∞}{(C ^t O ₃)(H ₂ O)₄] (=Pyroaurite)	Trig. R3m	a=6.614Å c=45.54Å	Z=3			Am.Min.,1971, <u>56,</u> 1077-1081; Encyc.Miner.Nam.,254;Hölzel, 107;RRW,513;Str.Tab.,248.
RHODESITE	(K,Na) ₂ Ca ₄ Si ₁₆ O ₃₆ (OH) ₂ .10H ₂ O	(H ₂ Ó)₁₀(K,Na)₂Ca₄ (OH)₂{2∞}[Sì₁₅ ['] Ó₃₅]	Orth. Pmam	a=23.416Å b=6.555Å c=7.050Å	Z=1	K(2e) Ca ₁ (2c) Ca ₁₁ (2d) Si ₁₋₁₁ (4j) Si ₁₁₁ (8l)		Zeit. Krist., 1992, <u>199</u> , 25-48; Zeit. Krist., 1979, <u>149</u> , 155-157; Pov., 434; Str. Tab., 469; Hölzel, 237.
RIVADAVITE	Na ₆ Mg (B ₆ O ₇ (OH) ₆) ₄ . 10H ₂ O		Mon. P2 ₁ /m	a=14.779Å b=8.010Å c=11.128Å	β=105°57' Z=1			Am.Min.,1967 <u>,52</u> ,326-335; Pov.,487-488;Str.Tab.,261; RRW,520;Hölzel,116.
ROBERTSITE	Ca ₂ Mn ₃ O ₂ (PO ₄) ₃ . 3H ₂ O	Ca ₂ ^[7] (H ₂ O) ₃ {2∞}[Mn ₃ °P ₃ ¹O ₁₂] (=Arseniosiderite)	Mon. A2/a	a=17.36Å b=19.53Å c=11.30Å	β=96.0° Z=8			Am.Min.,1974 <u>,59</u> ,48-59;RRW, 521;Hölzel,175;K/B,157.
RUIZITE	Ca ₂ Mn ₂ Si ₄ O ₁₁ (OH) ₄ .2H ₂ O		Mon. C2/m	a=9.064Å b=6.171Å c=11.976Å	β=91.38° Z=2	Mn(4e)Ca(4i) Si⊦⊪(4i)		Am.Min.,1985 <u>,70,</u> 171-181;Min. Mag.,1977, <u>41,</u> 429-432;Hölzel, 204.
SALÉEITE	Mg(UO ₂) ₂ (PO ₄) ₂ . 10H ₂ O	(H ₂ O), _{0[} Mg ^[5] {2∞}[U ^[2+4] O ₂ P [•] O _{4]2}]	Mon. P2₁/c	a=6.951Å b=19.947Å c=9.896Å	β=135.17° Z=2	U(4e)Mg(2d) P(4e)O _{⊩XI} (4e)	Dist.deriv. (H ₂ O)₁0[Ca ^[6] {2∞}[U ^[2+4] O ₂ P ^t O ₄]₂] AUTUNITE	Zeit.Krist.,1986 <u>,177</u> ,247-253; LF,245;RRW,533;Pov.,756, 521;Str.Tab.,351;Hölzel,179.
SANTACLARAITE	CaMn ₄ Si ₅ O ₁₄ (OH) ₂ . .H ₂ O	(H₂O)HCa°Mn₄°(OH) {1∞}{Si₅¹O₁₅] (≈Rhodonite)	Tric. B 1	a=15.633 $\[A]$ α =109.71° b=7.603 $\[A]$ β =88.61° c=12.003 $\[A]$ γ =99.95° Z=4.	α =109.71° β =88.61° γ =99.95° Z=4			Am.Min.,1984 <u>,69</u> ,200-206;Am. Min.,1981 <u>,66</u> ,154-168;Hölzel, 222.
SANTAFEITE	(Ca,Sr,Na) ₃ (Mn,Mg,Al,Fe) ₄ (VO ₄) ₄ (OH) ₅₋ 2H ₂ O		Orth. B22 ₁ 2	a=9.25Å b=30.00Å c=6.33Å	Z=2?			Min.Mag,1986, <u>50,</u> 299-300;Am. Min.,1958, <u>43</u> ,677-687;RRW, 536;Pov.,496;Str.Tab.,349.
SAPONITE	(Ca,Na) _{0.3} (Mg,Fe) ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ . 4H ₂ O	(H ₂ O) ₄ (Ca,Na) _{0.3} (Mg,Fe) ₃ (OH) ₂ {2∞}{(Si,Al) ₄ O ₁₀ } ^{(2.8)c}	Mon. Cc	a=5.3Å b=9.21Å c=15.36Å	β~97° Z=2?			Str.Tab.,446;Hölzel,231;LF, 233;Pov.,446;Min.Abs.,78- 2716.
SAUCONITE	Na _{0.3} Zn ₃ (Si,Al) ₄ O ₁₀ (OH) ₂ .4H ₂ O	(H ₂ O) ₄ Na _{0.3} Zn ₃ (OH) ₂ {2∞}{(Si,Al) ₄ O ₁₀ ^{(2.8)c} (≈Vermiculite)	Mon. Cc	a=5.3Å b=9.17Å c=30.7Å	β~97° Z=1.5?			Hölzel,232;LF,233;Pov.,446; Str.Tab.,446.
SAYRITE	Pb ₂ (UO ₂) ₅ O ₆ (OH) ₂ . 4H ₂ O		Mon. P2 ₁ /c	a=10.704Å b=6.960Å c=14.533Å	β=116.81° Z=2			Am.Min.,1984 <u>,69</u> ,568(Abs.); Hölzel,90.
SAZHINITE-(Ce)	Na ₂ CeSi ₆ O ₁₄ (OH). 6H ₂ O	(H ₂ O) ₆ HNa ₂ ^{IS} Ce ¹⁵⁺¹ {2∞}[Sic ¹ O ₁₅]	Orth. Pmm2	a=7.50Å b=15.62Å c=7.55Å	Z=2	Nal(2e)Na _{II} (2g) Ce(2g)Si _{I-II} (4i) Si _{III-IV} (2g)		Sov.Phys.Cryst.,1980, <u>25,</u> 419- 423;SR, <u>46A</u> ,393-394;Am.Min., 1975 <u>,60,</u> 162(Abs.).

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
SCAWTITE	Ca ₇ (Si ₃ O _{9)₂(CO₃)}	Ca ₇ °Si ₆ ¹Ctr	Mon.	a=10.118Å	B=100°40'	Ca ₁ (8i)Ca ₁₁ (4h)		Acta Cryst 1973 B29 73-80
	2H ₂ O	[O ₂₁ (H ₂ O) ₂]	1 2/m	b=15.187Å		Ca ₁₁₁ (2d)Si ₁ (8i)		SR.31A.350-351.Pov. 419-
				c=6.626Å		Si _{II} (4g)		420;Str.Tab., 424;RRW, 541;
								Hölzel,220;
SCHAURTEITE	Ca ₃ Ge(SO ₄) ₂ (OH) ₆ .	{3∞}[Ca₃ ¹⁹]Ge [°] S₂¹O ₈	Hex.	a=8.525Å	Z=2			Am.Min., 1968, 53,507 (Abs.);
	.3H ₂ O		P6 ₃ /mmc	c=10.803Å				Am.Min., 1967, 52,926-927
SCHERTELITE	(NH ₄) ₂ Mg(PO ₃ OH) ₂		Orth.	a=11.49Å	Z=8	P _{LII} (8c)Mq(8c)		Acta Civst 1972 B28 683-693
	.4H20	(OH) ₂ (H ₂ O) ₄]	Pbca	b=23.66Å)	O _{I-VIII} (8c)		Am.Min., 1963, 48, 635-641;
				c=8.62Å				Pov., 548; Str. Tab., 338.
SCHODERITE	Al ₂ (PO ₄)(VO ₄)		Mon.	a=16.26Å	β=91.77°			Am.Min.,1979, <u>64</u> ,713-720;Am.
	0.5 T20		P.Z/m?	b=30.60A c=12.55Å	Z=18			Min., 1962, 47, 637-648; Pov., 496: Str Tab 334
SERPIERITE	Ca(Cu,Zn)4(SO4)2	{3∞}[Ca ^[7] (Cu,Zn)₄°	Mon.	a=22.186Å	β=113.36°	Ca(8f)Cul.III(8f)		Acta Cryst 1968. B24. 1214-
	(OH) ₆ .3H ₂ O	S ₂ ^t O ₈ (OH) ₆ (H ₂ O) ₃]	C2/c	b=6.250Å	Z=8	Cu _{IV-V} (4e)		1221;Am.Min.,1969,54,328-
				c=21.853Å		S _{I-II} (8f)		329(Abs.);Pov.,605;Str.Tab.,
			:					296;SR,33A,382-384.
SHABYNITE	Mg5BO3(OH)5		Mon.	٠,				Am.Min.,1981, <u>66</u> ,1101(Abs.);
	(CI,OH)2.4H2O		2	•				Hölzel,112.
SHIGAITE	Mn7Al4(SO ₄) ₂		-igi	a=9.512A	-	Mn(18f) Al ₁ (6c)		Can.Min., 1996, 34, 91-97; Am.
	(OH)22.8H2O		ž	C=33.074A 7=3		Al _{II} (18f)		Min., 1986, 71, 1546 (Abs.);
	1000			2-3				Holzel, 132.
SIDERONALKILE	Na ₂ Fe(SO ₄) ₂ (OH)		orth.	a=7.27A	Z=4			RRW,559;Pov.,600;Str.Tab.,
	ئ ا		E .	p=zu.50A c=7.15Å				297;Hölzel,136.
SIELECKIITE	Cu ₃ AI ₄ (PO ₄) ₂ (OH) ₁₂		Tric.	a=9.41Å	α=90.25°			Min.Mag., 1988, <u>52</u> , 515-518;
	.2H ₂ O			b=7.56Å	β=91.27°			Min.Abs.,88-6097;Hölzel,172.
				c=5.95Å	γ=104.02° Z=1			
SIGLOITE	FeAl ₂ (PO ₄) ₂ (OH) ₃	Fe ^o Al ₂ °P ₂ t	Tric	a=5.26Å	$\alpha = 106^{\circ}58^{\circ}$			Am.Min., 1962, 47, 1-8; Pov., 560-
		[O ₈ (O ₂ H)(H ₂ O) ₈]	<u>т</u>	b=10.52Å	β=111°30'			561;Str.Tab.,342;RRW,560;
		(=Laueite)		c=7.06Å	γ=69°30' Z=1			Hölzel,171;Am.Min.,1988,74, 1404(Abs.).
SINCOSITE	Ca(VO) ₂ (PO ₄) ₂	(H ₂ O) ₅ [Ca ^[6]	Tet.	a=8.895Å	Z=2		Deriv. (H ₂ O) ₆ [Ca ¹⁶]	Am.Min., 1985, 70, 409-410;
		{2∞}[VO P'O₄]₂]	٠.	c=12.727Å			{2∞}[U ^[2+4] O ₂ P¹O ₄] ₂] META-AUTUNITE	Hölzel,177;K/B,175;Str.Tab., 353.
SJÖGRENITE	Mg ₆ Fe ₂ CO ₃ (OH) ₁₆	Mg ₆ °Fe ₂ °C ^{II}	Hex.	a=3.13Å	Z=1/4	(Mg,Fe)(2a)		Min.Mag., 1967, 36, 465-479;
		[O ₃ (OH) ₁₆ (H ₂ O) ₄] (=Barbertonite)	P6 ₃ /mmc	c=15.66A		C(2b)O ₁ (4f) O ₁₁ (6h)		SR,32A,422;Hölzel,107;Pov., 331:Str Tab, 247
SODIUM		(H,O) ₈ [Na, ^[6]	Tet.	a=6.97Å	Z=1		Deriv. (H ₂ O), o[Ca ^[5]	Am Min 1958 43 383(Abs.)
AUTUNITE	.8H ₂ O	{2∞}[Ú ^[2+4] Ō₂P¹O₄]₂]	E	b=8.69Å			{2\infty\ \text{10}^{12+4}\ \text{0}_2\ \text{P}^4\ \text{0}_4\ \text{12}\ \text{AUTUNITE}	Am.Min., 1995, 80, 1329 (Abs.); LF, 245; RRW, 568.

NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
SODIUM PHARMACOSI- DERITE	(Na,K) ₂ Fe ₄ (AsO ₄) ₃ (OH) ₅ .7H ₂ O		Cub. P 43m	a=8.012Å Z=2				Am.Min.,1986, <u>71,</u> 230(Abs.); Hölzel,172.
SODIUM- -URANOSPINITE	(Na ₂ ,Ca)(UO ₂) ₂ (AsO ₄) ₂ .5H ₂ O		Tet. P4/nmm	a=7.12Å c=8.61Å	Z=1			RRW,569;Hölzel,180.
SÖRENSENITE	Na ₄ Be ₂ Sn(Si ₃ O ₉₎₂ . 2H ₂ O	Na ^{t¹⁷Be₂'Sn^o(H₂O)₂ {1∞}{Si₃'O₉]₂^{my} (≈Wollastonite)}	Mon. C2/c	a=20.698Å b=7.442Å c=12.037Å	β=117.28° Z=4	Na _{-⊪} (8f) Sn(4c) 		Acta Cryst.,1976, <u>B32,</u> 2553- 2556;Am.Min.,1966, <u>51,</u> 1547- 1548(Abs.);Hölzel,221.
SOUZALITE	(Mg,Fe) ₃ (Al,Fe) ₄ (PO ₄) ₄ (OH) ₆ .2H ₂ O		(Tric.) A2/m	a=12.58Å b=5.10Å c=13.48Å	β~113° Z=2			Encyc.Miner.Nam.,281;Hölzel, 171;Can,Min,,1981, <u>19</u> ,381- 387.
SPHENISCIDITE	(NH ₄ ,K)(Fe,Al) ₂ (PO ₄) ₂ (OH).2H ₂ O		Mon. P2 ₁ /n	a=9.75Å b=9.63Å c=9.70Å	β=102°34' Z=4			Min.Mag.,1986, <u>50,</u> 291-293; Hölzel,173.
STERCORITE	(NH4)Na(PO ₃ OH) .4H ₂ O	Na°P¹ [O₃(OH)(NH₄)(H₂O)₄] (≈Laueite)	Tric. P 1	a=10.636Å b=6.9187Å c=6.4359Å	α =90.46° β =97.87° γ =109.20° Z=2	P(2i) Na(2i) O _{I-V} (2i) N(2i) 		Acta Cryst.,1974, <u>B30,</u> 504-510; SR, <u>40A,</u> 237-238.
STEWARTITE	MnFe ₂ (PO ₄) ₂ (OH) ₂ .8H ₂ O		P 17.C.	a=10.398Å α =90.10° b=10.672Å β =109.10° c=7.223Å γ =71.83° Z=2	$\alpha = 90.10^{\circ}$ $\beta = 109.10^{\circ}$ $\gamma = 71.83^{\circ}$ Z = 2	Mn(2i)Fe _{li} (1a) Fe _{li} (1d)Fe _{lii} (2i) P _{I-li} (2i)		Am.Min.,1974, <u>59</u> ,1272-1276; K/B,68-69;SR, <u>40A,</u> 247-248; Pov.,560;RRW,580.
STICHTITE	Mg ₆ Cr ₂ CO ₃ (OH) ₁₆ 4H ₂ O	Mg ₆ °Cr ₂ °(OH)₁ ₆ {2∞}[(C ^{tr} O₃)(H ₂ O)₄] (=Pyroaurite)	Trig. R3m	a=6.19Å c=46.47Å	Z=3			Str.Tab.,248;RRW,582;Hölzel, 107;Min.Mag.,1973,39,377- 389;RRW,582.
STILBITE	NaCa ₄ (Si ₂₇ Al ₉)O ₇₂ .30H ₂ O	Na ^{I6} (Ca₁ ^{I6} (H ₂ O) ₃₀ {3∞}{Si₂²⁴Al₃¹O ₇₂] (Zeolite)	Mon. C2/m	a=13.64Å b=18.24Å c=11.27Å	β=128° Z=1	Na(8j)(occ.0.22) Ca(4i)Si _{I-IV} (8j) Si _V (4g)	Na ^{l5} (Ca ₄ ^[5] (H ₂ O) ₃ {3∞}{Si ₂₇ ⁴ Al ₉ ^t O ₇₂] STILBITE	Acta Cryst.,1971, <u>B27</u> ,833-841, LF,299;RRW,583;Str.Tab.,490; Pov.,354;Hölzel,246.
STRELKINITE	Na ₂ (UO ₂) ₂ (VO ₄) ₂ .6H ₂ O		Orth. Pnmm	a=10.64Å b=8.36Å c=32.72Å	Z=8			Am.Min., 1975, <u>60,</u> 488-489 (Abs.); Hölzel, 183; K/B, 174.
STRONTIODRES- SERITE	(Sr,Ca)Al ₂ (CO ₃₎₂ (OH) ₄ .H ₂ O	(OH)₄{3∞}[(Sr,Ca) ^[9] Al₂ [°] (H₂O){g}[C ^u O ₃] ₂] (=Dundasite)	Orth. Pbnm	a=9.176Å b=16.010Å c=5.602Å	Z=4			Min.Abs.,80-0189;Hölzel,108.
STRUNZITE	MnFe ₂ (PO ₄) ₂ (OH) ₂ . .6H ₂ O	Mn°Fe₂°P₂¹ [O₅(OH)₂(H₂O)₅] (≈Laueite)	Д Т.с. Р 1-	a=10.228Å b=9.837Å c=7.284Å	$\alpha = 90.17^{\circ}$ $\beta = 98.44^{\circ}$ $\gamma = 117.44^{\circ}$ Z = 2			Min.Abs.,81-1246;SR, <u>44A,</u> 249- 250.
SVYAZHINITE	(Mg,Mn)(Al,Fe) (SO ₄₎₂ F.14H ₂ O	(Mg,Mn)°(Al,Fe)° S₂¹[O ₈ (H₂O)₁₄F] (≈Aubertite)	PTric.	a=6.217Å b=13.306Å c=6.255Å	α =90.09° β =93.50° γ =82.05° Z=1			Am.Min.,1985 <u>,70,</u> 877(Abs).; Hőlzel,133.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
TAKOVITE	Ni ₆ Al ₂ CO ₃ (OH) ₁₆		Trig.	a=3.0250Å	Z=0.38?			Am.Min.,1977,62,458-464;
	.4H ₂ O		2	c=22.595Å				Hölzel,107.
TARANAKITE	H ₆ K ₃ (Al,Fe) ₅ (PO ₄₎₈ . .18H ₂ O (?)	(Al,Fe)5°H ₆ K3(H ₂ O) ₁₄ {2∞}[P ₈ O ₂₀ (H ₂ O) ₄] (≈Pvrophvllite)	Trig. R 3c	a=8.71Å c=96.1Å	Z=6			Am.Min., 1976,61,329-331; Pov.,558;Str.Tab.,338;RRW, 604:Hölzel,173
TERSKITE	Na ₄ ZrSi ₆ O ₁₅ (OH) ₂		Orth.	a=14.195Å	Z=4			Am.Min., 1992, 77, 452 (Abs.);
	.H ₂ O		Pnc2	b=14.750Å c=7.511Å				Am.Min., 1984, 69, 212 (Abs.); Hölzel 221
THOMSONITE	NaCa ₂ (Al ₅ ,Si ₅)O ₂	NaCa ₂ (H ₂ O) ₆ (3∞}	Orth.	a=13.088Å	Z=4		NaCa ₂ (H ₂ O) ₆	Min.Abs.,86M/1429;RRW,613-
		(Zeolite)	<u>-</u>	c=13.229Å			{3∞}{Al5 Si5 O ₂₀ } THOMSONITE	014;Pov.,355;Str.1ab.,487; Hölzel,243;LF,292.
THORBASTNÄSI-	Th(Ca,Ce)(CO ₃) ₂ F ₂		Hex.	a=6.99Å	Z=3			Am.Min., 1965, 50, 1505 (Abs.);
ш			P 62c	b=9.71A				Pov.,618;Str.Tab.,243;RRW, 614;Hölzel,102.
TINSLEYITE	KAI ₂ (PO ₄) ₂ (OH)	K ^[6] (H ₂ O){3∞}[AI ₂ °	Mon.	a=9.602Å	$\beta = 103.16^{\circ}$			Am.Min., 1984, 69, 374-376;
		(P'O ₄) ₂ (OH)(H ₂ O)] (=Leucophosphite)	P2/n	b=9.532Å c=9.543Å	Z=4			Hölzel,173;K/B,155.
TORBERNITE	Cu(UO ₂) ₂ (PO ₄) ₂	(H ₂ O) ₁₀ [Cu ^[6]	Tet.	a=7.06Å	Z=2	Cu(2a) P(4d)	(H ₂ O) ₁₀ [Ca ^{16]}	RRW,622;Pov.,555-557;Str.
		${2\infty}[U^{I^2+4}O_2P^{i}O_4]_2]$	14/mmm	b=20.5Å		U(4e)	{2\infty}[U^{[2+4]}O_2P^tO_4]_2]	Tab.,351;Hölzel,179;LF,245;
							AUTUNITE	Wyckoff, 1965, 3,869-870.
TORREVITE	(Mg,Mn) ₉ Zn ₄ (SO ₄) ₂	(Mg,Mn)9 Zn4'S2	Mon.	a=10.5Å	β~95°			Hölzel, 132; Am. Min., 1982, 67,
		[O ₈ (OH) ₂₂ (H ₂ O) ₈] (=Lawsonbauerite)	P21/C	b=9.6A c=16.4Å	Z=Z			1029-1034;Am.Min.,1979, <u>64,</u> 949-952
TOSUDITE	1		Orth.	2				Am Min. 1982 67 394-398
	(Si,AI) ₈ O ₁₈ (OH) ₁₂		2					Pov., 762; Str. Tab., 463; Hölzel,
	.5H ₂ O							231;Am.Min.,1964,49,816 (Abs.);RRW,623.
TUPERSSUA-	NaFe ₃ Si ₈ O ₂₀ (OH) ₂		Mon.	a=13.729Å	β=104.28			Am.Min.,1985,70,1332(Abs.);
TSIAITE	.5H ₂ O		C2/m	b=18.000Å c=4.828Å	Z=3			Hölzel,236.
TURQUOISE	CuAl ₆ (PO ₄) ₄ (OH) ₈	Cu ^[6] (H ₂ O) ₄ {3∞}[Al ₆ °	Ji.	a=7.424Å		Cu(1a) P _{I-II} (2i)	Cu ^[6] (H ₂ O) ₄ (3∞)[Al ₆ °	Zeit.Krist.,1965, <u>121</u> ,87-113;LF,
		[4(4OT)8(TO)	<u>-</u>	b=7.629A c=9.910Å	β=79.71° γ=65.08°	Ali-II(ZI)	(OH)8(PO4)4] TURQUOISE	Z81;SK, <u>30A</u> ,395;P0v.,535;Str. Tab.,344;RRW,634.
TAINAMINE	10,010,010	(0.000	4	1000	1-7			
TYOYAMONITE	Ca(UO ₂) ₂ (VO ₄) ₂ .5-8H ₂ O	Ca(H ₂ O) ₅₋₈ {2∞}[(UO ₂) ₂ (V ₂ O ₈)] (≈Carnotite)	Orth. Pnan	a=10.36A b=8.36Å c=20.40Å	Z=4			RRW,636;Pov.,503;Str.Tab., 357;Hölzel,183.
UKLONSKOVITE	NaMgSO₄(OH,F) .2H ₂ O	Na ^{ISI} Mg ^{ISI} S ^t IO ₄ (OH.F)(H ₂ O) ₂]	Mon. P2./m	a=13.15Å b=7.19Å	β=90°37′ 7=4			Am.Min.,1965, <u>50</u> ,520-521 (Abs.) RRW 637-Str Tab. 296:
	7			c=5.72Å	-			Pov.,600;Hölzel,136.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ULEXITE	8	Ca ^{I9} Na ^o (H ₂ O) ₅ {g}[B ₃ B ₂ ^r O ₆ (OH) ₆]	Tric. P ⁻ 1	a=8.816Å b=12.870Å c=6.678Å	$\alpha = 90.36^{\circ}$ $\beta = 109.05^{\circ}$ $\gamma = 104.98^{\circ}$ Z = 2	Na(2i)Ca(2i) B _{I-V} (2i)O _{I-VI} (2i)		Am.Min.,1978, <u>63</u> ,160-171,Am. Min,1959, <u>44</u> ,712-719;RRW, 637;Pov.,484-485;Str.Tab., 259.
URALOLITE	Ca ₂ Be ₄ (PO ₄₎₃ (OH) ₃ .5H ₂ O	S Ca₂ ^{(7/} (H₂O) ₅ {2∞}[Be₄ ^{(P¹} O₄) ₃ (OH) ₃]	Mon. P2 ₁ /n	a=6.550Å b=16.005Å c=15.969Å	β=101.64° Z=4	Cal.II(4e) Bel.IV(4e) Pl.III(4e) Ol.XII(4e)		Eur.J.Min.,1994, <u>6</u> ,887-896; RRW,639;Pov.,553;Str.Tab., 340;Hölzel,167.
URAMPHITE	NH4(UO ₂)(PO4) .3H ₂ O		Tet.					Am.Min.,1959 <u>,44</u> ,464(Abs.); RRW,640;Pov.,556;Str.Tab., 351;Hölzel,181.
URANOCIRCITE	Ba(UO ₂) ₂ (PO ₄) ₂ .10H ₂ O	(H ₂ O) ₁₀ [Ba ^[6] {2∞}[[U ^[2+4] O ₂ P [‡] O ₄] ₂]	Tet. I4/mmm	a=7.01Å c=20.46Å	Z=2		(H ₂ O) ₁₀ [Ca ⁽⁵⁾ {2∞}[U ^[2+4] O ₂ P ^t O ₄] ₂] AUTUNITE	Str.Tab.,351;Pov.,556;RRW, 640;Min.Abs.,1966, <u>17</u> ,695;LF, 245.
URANOPILITE	(UO ₂) ₆ SO₄(OH) ₁₀ .12H ₂ O		Mon.	a=? b=? c=8.91Å	β=? Z=?			RRW,641;Pov.,602-603;Str. Tab.,298;Hölzel,138.
URANOSPINITE	Ca(UO ₂) ₂ (AsO ₄) ₂ .10H ₂ O	(H ₂ O ₎₁₀ [[Ca] ^[6] {2∞} [U ^{[2+4} O ₂ As'O _{4]2}]	Tet. I4/mmm	a=7.15Å c=20.61Å	Z=2		(H ₂ O)₁0[Ca ⁽⁸⁾ {2∞}[U ^[24] O₂P ^t O₄]2] AUTUNITE	Str.Tab.,352;RRW,642;Pov., 522;Hölzel,179;LF,245.
USHKOVITE	MgFe ₂ (PO ₄₎₂ (OH) ₂ . .8H ₂ O	Mg°Fe ₂ °P ₂ ¹ [O ₈ (OH) ₂ (H ₂ O) ₈] (=Laueite)	Tric. P ⁻ 1	a=5.20Å b=10.70Å c=7.14Å	$\alpha = 108^{\circ}36^{\circ}$ $\beta = 106^{\circ}56^{\circ}$ $\gamma = 72^{\circ}43^{\circ}$ Z = 1			Am.Min.,1984 <u>,69,</u> 212-213 (Abs.);K/B,157;Hötzel,170.
VAUXITE	FeAl ₂ (PO ₄₎₂ (OH) ₂ .6H ₂ O	Fe°Al₂°P₂¹ [O₅(OH)₂(H₂O)₅] (≈Laueite)	Tric. P 1	a=9.13Å b=11.59Å c=6.14Å	$\alpha = 98.3^{\circ}$ $\beta = 92.0^{\circ}$ $\gamma = 108.4^{\circ}$ Z = 2	Fe _I (1a)Fe _{II} (1c) Al _I (2i)Al _{II} (1g) Al _{III} (1e)		
	Mg _{0.7} (Mg,Fe,Al) ₆ (Si,Al) ₈ O ₂₂ (OH) ₂ .8H ₂ O	(H ₂ O) ₈ Mg _{0.7} ° (Mg,Fe,Al) ₆ °(OH) ₂ {2∞}{(Si,Al) ₈ O ₂₂ ^{2,8,6}	Mon. C2/c	a=5.349Å b=9.255Å c=28.89Å	β=97°7' Z=2?	Mg₁⋅៲៲(4e) Mg∿(4a) (Si,Al)⊦៲(8f)	$(H_2O)_8Mg_0.7^\circ$ $(Mg,Fe,A))_6^\circ(OH)_2$ $\{2\infty\}\{(Si,Al)_8^iO_{22}]^{(2.6)_c}$ VERMICULITE	Am.Min.,1966, <u>51</u> ,1124-1143; LF,233,Pov.,446;Str.Tab.,447; Hölzel,232.
VERTUMNITE	Ca ₄ Al ₄ Si ₄ O ₆ (OH) ₂₄ . .3H ₂ O		Mon. P2 ₁ /m	a=5.744Å b=5.766Å c=25.12Å	β=119.72° Z=1			SR, <u>44A,</u> 316;Hölzel,192;Am. Min.,1977, <u>62</u> ,1061(Abs.);Min. Abs.,81-1207.
КОІТЕ	Ca _{0.3} (Cr,Mg) ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ .4H ₂ O	Ca _{0.3} (Cr,Mg) ₂ (OH) ₂ (H ₂ O) ₄ {2∞}[Si ₄ 'O ₁₀]	Mon. ؟	a=5.16Å b=8.94Å c=14.40Å	β=? Z=?		(H ₂ O) _n (Al,Mg)2° (OH) ₂ {2∞}[Si₄ ^t O₁ ₀] ^{(2.s)c} MONTMORILLONITE	
VOLTAITE	K ₂ Fe ₈ Al(SO ₄) ₁₂ .18H ₂ O	(H ₂ O) ₆ {3∞}[K ₂ ^[12] Fe ₈ ° Al° S ₁₂ O ₄₈ (H ₂ O) ₁₂]	Cub. Fd3c	a=27.254Å Z=16				SR,39A,314-315;Pov.,595;Str. Tab.,287;RRW,656;Hölzel,130.
WALLKILLDELLI- TE	Ca ₄ Mn ₆ (AsO ₄) ₄ (OH) ₈ .18H ₂ O		Hex. P6 ₃ /mmc	a=6.506Å c=23.49Å	Z=2			Am.Min., 1983, <u>68</u> , 1029-1032; Hölzel, 174.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
WARDITE	NaAl ₃ (PO ₄) ₂ (OH) ₄ . 2H ₂ O	(H ₂ O) ₂ {3∞}{Na ⁽⁸⁾ Al ₃ ^[6] P ₂ O ₈ (OH)₄]	Tet. P4 ₁₂₁ 2	a=7.03Å c=19.04Å	Z=4	Na(4f)Al _I (8g) Al _{II} (4e)P(8g) O _{I-II} (8g)		Min.Mag.,1970, <u>37,</u> 598-605; K/B,47-48;Pov.,551;Str.Tab., 347;RRW,662;Hölzel,173.
WEEKSITE	K ₂ (UO ₂) ₂ Si ₆ O ₁₅ . 4H ₂ O	t	Orth. Pnnb	a=14.26Å b=35.88Å c=14.20Å	Z=16	U(2a) Si(4e) O _{I-IV} (4e) O _V (8f) 		Am.Min.,1960 <u>,45</u> ,39-52;Am. Min.,1981 <u>,66</u> ,610-625;Pov., 457;Str.Tab.,386;RRW,664.
WELOGANITE	Na ₂ (Sr,Ca) ₃ Zr (CO ₃) ₆ .3H ₂ O	(H ₂ O) ₃ Na ₂ ^[876] (Sr,Ca) ₃ ^[10] Zr ^[9] {g}[C ^T O ₃] ₈	Tric. P1	a=8.966Å b=8.980Å c=6.730Å	α =102.72° β =116.65° γ =60.06° Z=1			SR,41 <u>A,</u> 295;Pov.,618;Str.Tab., 246;RRW,667;Hötzel,105.
WIGHTMANITE	Mg ₅ O(BO ₃)(OH) ₅ . 2H ₂ O	Mgs [°] [(OH) ₅ (H ₂ O) ₂ O{g}[B ^r O ₃]] ^{415,}	Mon. I2/m	a=13.46Å b=3.102Å c=18.17Å	β=91.60° Z=4	Mg _{I-v} (4a) B(4a) O _{I-v} (4a)		Am.Min.,1974, <u>59,</u> 985-1004; Am.Min.,1962, <u>47</u> ,718-722;SR, <u>40A,</u> 222-224;Pov.,471;Str. Tab.,253.
WILCOXITE	MgAI(SO ₄₎₂ F. 18H ₂ O		Tric. P 1	a=14.90Å b=6.65Å c=6.77Å	α =117°26' β =100°35' γ =80°10' Z =1			Min.Mag.,1983 <u>,47</u> ,37-40.
WILLHENDERSO- NITE	l	(KCa⊡ ₄)(H ₂ O) ₅ {3∞}[Al₃ ^t Si₃ ^t O ₁₂]	Tr <u>i</u> c. P 1	a=9.23Å b=9.21Å c=9.52Å	$\alpha = 92.7^{\circ}$ $\beta = 92.4^{\circ}$ $\gamma = 90.1^{\circ}$ Z = 2		Dist.subs.deriv. (Ca⊟ ₅₎ (H ₂ O) ₆ {₃∞}{Al ₂ ^t Si ₄ 'O ₁₂] CHABAZITE	Am.Min., 1984 <u>, 69,</u> 186-189; Hölzel, 245: LF, 287.
XANTHOXENITE	Ca ₄ Fe ₂ Pe ₄ ^t 3H ₂ O [O ₁₆ (OH) ₂ (H ₂ O) ₃] (=Stewartite)	Ca ₄ °Fe ₂ °P4¹ [O ₁₆ (OH) ₂ (H ₂ O) ₃] (=Stewartite)	Tr <u>i</u> c. P 1	a=6.70Å b=8.85Å c=6.54Å	α =92.1° β =110.2° γ =93.2° Z=1			Min.Mag.,1978 <u>,42</u> ,309-323; K/B,192;Pov.,550;Hölzel,175.
ш	(Ca,Na,K) _{0.2} (Cu,Fe, Mg) ₂ Si ₄ O ₁₀ (OH) ₂ .3H ₂ O		Mon. ?	a=5.26Å b=9.108Å c=14Å	β~90° Z=?			Am.Min.,1991 <u>,76,</u> 668-669;Min. Abs.,88M/1097;Hölzel,232.
ZAKHAROVITE	Na4Mn ₅ Si ₁₀ O ₂₄ (OH) ₆ .6H ₂ O		Trig. P31m	a=14.58Å c=37.71Å	S=2			Am.Min.,1983, <u>68</u> ,1040;Hölzel, 247.
ZAPATALITE	Cu ₃ AI ₄ (PO ₄) ₃ (OH) ₉ . 4H ₂ O		Tet. ?	a=15.22Å b=11.52Å	Z=6			Min.Mag.,1972,38,541-544; K/B,161;Hölzel,172.
ZELLERITE	Ca(UO ₂)(CO ₃) ₂ . 5H ₂ O		Orth. Pmn2 ₁	a=11.220Å b=19.252Å c=4.933Å	Z=4			Am.Min.,1966, <u>51,</u> 1567-1579; Pov.,625;Str.Tab.,249;RRW, 685;Hölzel,110.
ZEOPHYLLITE	Ca ₁ 3Si ₁₀ O ₂₈ (OH) ₂ F ₈ .6H ₂ O		T nig. 3	a=9.36 c=36.48Å Z=3	α _R =13.31Å α=41°11' Z _R =1	Са _і (1а)Са _{ії-ііі} (6f) Sі _{іті} (2c) Sі _{ііі} (6f)		Acta Cryst., 1968, <u>B28</u> , 2726- 2732; Pov., 430; Str. Tab., 467; RRW, 685; Hötzel, 236; Min. Mag., 1983, <u>47</u> , 397, 400.

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
ZELINERITE	Cull 10.) (AsO.)	(H,O), (C,I,G	Tet	я=7 18Å	7=2	CHOLLEGE	(H,O), (Ca ⁽⁶⁾	Str. Tab351:Pov521:RRW.
	16H ₂ O	1 (220) 1 (244) 1 (4/mmm	I4/mmm	_	l l		{2∞}IU ^[2+4] O,As ^t O₄I,1	
) 7:	171600170 011mz1					AUTUNITE	
ZINCOBOTRYO-	1	(Zn.Ma.Mn)°Fe°S,¹	Mon.	a=10,488Å B=100°50'	8=100°50'			Am.Min., 1964, 49, 1776-1777
	(SO ₄) ₂ (OH).7H ₂ O	[O8(OH)(H2O)7]	P2,/n	b=17.819Å Z=4	Z=4			(Abs.);RRW,688;Pov.,601;Str.
		(=Botryogen)		c=7.185Å				Tab.,295.
ZINCOCOPIAPITE	ZnFe4(SO4)6(OH)2.	(H ₂ O) _R (1∞)[Zn ^o Fe ₄ S _n ^t	Tric.	a=7.35Å	$\alpha = 93^{\circ}50'$			Am.Min.,1964,49,1777(Abs.);
	20H,O	0,4(0H),(H0),l	P.1	b=18.16Å	B=101°30'			Can.Min., 1985, 23, 53-56; Pov.,
	ı	(g)[Fe ₀ (H ₂ O ₆)]		c=7.28Å	y=99°22'			601;Str.Tab.,295;RRW,688.
		(Subs.d.Copiapite)			Z=1			
ZINCOVOLTAITE K2Zn5Fe4(SO4)12.	K ₂ Zn ₅ Fe ₄ (SO ₄) ₁₂ .	{3∞}IK, ^[12] Fe,°Zn₅°	Cub.	a=27.180Å				Am.Min.,1990, <u>75</u> ,244-245
	18H ₂ O	S ₁₂ O ₄₈ (H ₂ O) ₁₈]	Fd3c	Z=16				(Abs.);Hölzel,suppl.
		(Subs.d.Voltaite)						
ZINC-ZIPPEITE	Zn ₂ (UO ₂) ₆ (SO ₄) ₃		(Orth.?)	a=8.80Å	Z=8			Hölzel, 138.
	(OH) ₁₀ .16H ₂ O		٠.	b=68.43Å				
				c=14.55Å				
ZORITE	Na ₆ Ti ₅ Si ₁₂ O ₃₄	Na ₆ Ti ₅ [36] (H ₂ O) 11	Orth.	a=23.241A Z=1?	Z=1?	(Ti,Nb) ₍ 4e)		Sov.Phys.Cryst.,1979,24,686-
	(0.0H), 11H,0	(3∞)(Si,¹O ₃ (O OH)₅I Cmmm	Cmmm	b=7.238Å		Ti _{II} (4I) Si _I (80)		693;Am.Min., 1973, <u>58</u> , 1113
		CALL STORY		C=6 955Å				(Ahs):SR 45A 396

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
AJOITE	(K,Na)Cu ₇ AlSi ₉ O ₂₄		Tric.	a=13.637Å	α=107.16°			Am.Min., 1981, 66, 201-203:
	(OH) ₆ .3H ₂ O		<u>7</u> ::	b=14.507Å	β=105.45			Hölzel,223.
				c=13.620Å	γ=110.57° Z=3			
ANDERSONITE	Na ₂ Ca(UO ₂)(CO ₃) ₃ .		Trig.	a=17.90Å	a _R =13.11Å	U(18h) Ca(18h)		Acta Cryst.,1981, <u>B37</u> ,1496-
	6H ₂ O		R.3m	c=23.734Å	α=86°56'	Na ₋₁₁ (18h)		1500;Str.Tab.,249;SR,28,177-
				Z=18	Z _R =6	O _{I-IV} (36i) O _{V-VII} (18h)		178;Pov.,619;RRW,22.
ARDEALITE	Ca ₂ (HPO ₄)(SO ₄).	Ca ₂ °P'S'[HO ₈ (H ₂ O) ₄]	Mon.	a=5.721Å	β=117.26	i		Am.Min.,1978,63,520-527;
	5 C	(≈cypsum)	3	c=6.250Å	5=7	O(48) O -V (48)		32:Hölzel 125
ARSENURANOS-	HAI(UO ₂)4(ASO ₄)4.		Tet.	a=7.16Å	Z=2			Min.Mag.,1978,42,117-128;
PATHITE	40H ₂ O		P4 ₂ /n	c=30.37Å				Am.Min.,1979,64,465(Abs.);
								Hölzel, 180.
ARSENURANYLI-			orth.	a=15.40Å	2= 8			Pov.,524;Str.Tab.,355;RRW,
4	(OH)4.6H ₂ O		Bmmb	b=17.40A				38;Am.Min., 1959, 44, 208(Abs.);
		-	- 1	C-13.7.A				HOIZEI, 181.
ATTAKOLITE	(Ca,Mn,Fe)3Ale	(3∞)[(Ca,Mn,Fe)₃[³]	(Orth.)	a=17.188Å	$\beta = 113.83^{\circ}$	Ca(4g) Mn(4i)		Am.Min., 1992, 77, 1285-1291;
	(TO4)5(SIO4)2.5H2O	₹		D=11.4//A) 	(a) 0(4i)		Pov 544-545 Str Tab 324
				- 1.3EEA		:		RRW.41:Hölzel.176.
BANNISTERITE	KCaMn ₂₁ (Si,Al) ₃₂		Mon.	a=22.20Å	β=94°20′			Min.Mag., 1968, 36, 893-913;
	O ₇₆ (OH) ₁₆ .12H ₂ O		A2/a	b=16.32Å	Z=2			Hölzel,230; Am. Min., 1981, 66,
				c=24.70A				1063-1067.
BARIO-ORTHO-	(Ba,Sr)₄Fe₂Ti₂O₂		orth.	a=10.477Å	Z=1?			Am.Min., 1982, <u>67</u> , 809-816;
JOAQUINITE	(SiO ₃) ₈ .H ₂ O		 E	D=9.599A c=22.59Å				Hölzel, 206; Encyc. Miner. Nam., 31
BERGENITE	(Ba,Ca) ₂ (UO ₂) ₃		Mon.	a=22.32Å	β=93.0°			Am.Min., 1981, 66, 1102 (Abs.);
	(PO ₄) ₂ (OH) ₄		P2 ₁ /c	b=17.19Å	Z=18			K/B, 162; Hölzel, 182; Am. Min.,
	.5.5H ₂ O			c=20.63Å				1960,45,909(Abs.);Str.Tab., 355.
BETA-	Ca(UO ₂) ₂	Ca(H ₂ O) ₅ H ₂	Mon.	a=13.966Å	β=91.38°	Ca(4e) U _{I-II} (4e)		Am.Min., 1986, 71, 1489-1493;
UKANOPHANE	(SIO ₃ OH) ₂ .5H ₂ O	{2∞}[(UO ₂) ₂ (Si O ₄) ₂]	F21/a	b=15.443A c=6.632Å	7=7	Si _{I-II} (4e)		KKW,67;Am.Min.,1981, <u>66,</u> 610-625.
BETPAKDALITE	(H,K) ₆ Ca ₄ Fe ₆ As ₄			a=19.441Å	β=131.28			Am.Min., 1985, 70, 1333 (Abs.);
	Mo ₁₆ O ₇₄ .28H ₂ O		C2/m	b=11.096Å c=15.25Å	Z=1 ?			Hölzel,178;Pov.,570-571;Str. Tab303.
BIJVOETITE - (Y)	(Y,Dy) ₂ (UO ₂) ₄			a=21.22Å	Z=16			Encyc.Miner.Nam.,39;Hölzel,
	(CO ₃)₄(OH) ₆ .11H ₂ O		C2ma	b=45.3A c=13.38Å				110;Am.Min.,1983, <u>68</u> ,1248 (Abs.)
		1	T			-		١٠٠٠٠ ١٠٠٠ ١٠٠٠ ١٠٠٠ ١٠٠٠ ١٠٠٠ ١٠٠٠ ١٠

	CHEMICAL	STRUCTURAL	SPACE	INIT CELL DIMENSIONS	ENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
NAME	FORMULA	FORMULA	GROUP	ONII CELL DIM	200	POSITIONS		
BUKOVSKÝITE	Fe ₂ (AsO ₄)(SO ₄)		Tic.		α=93.5°			Min.Abs.,87M/2138;Holzel,
	(OH).7H ₂ O		т ::		β=115.96°			109, Am. Min., 1909, <u>04, 981-</u>
				c=10.284A γ= Z	γ=90.27° Z=4			992(ADS).
BLIDANGAITE	(No Co) Fo. Al.		Mon	1	R=110 91º			Am.Min., 1978, 63, 793 (Abs.);
	(PO ₄)8(O,OH) ₁₂ . 4H ₅ O		C2/c	b=5.048Å Z	Z=2			Hölzel,174.
CACOXENITE		(H ₂ O) ₇₅ {3∞}[Fe ₂₄ °	Hex.	×	Z=2			Am.Min.,1985,70,220(Abs.);
		Al ^{5by} (O ₆ (P ⁶ O ₄) ₁₇	P6 ₃ /m	c=10.550Å				K/B,28-29;Pov.,548-549;Str. Tab.,343;RRW,98.
CALCIOFERRITE	Ca₄Mg(Fe,Al)₄	70.50	2	2				Hölzel,175;Pov.,550;Str.Tab.,
	(PO ₄) ₆ (OH) ₄ .13H ₂ O		C2/c ?					349;RRW,100-101;Encyc.
								Miner.Nam.,52;Min.Abs.,
								84M/1917;Am.Min.,1969; <u>24,</u>
THE CONTRACT OF THE	10-10 10-0			C				Am Min 1964 49 1152-1153
CALCORMOLITE	Ca(OO ₂)3(MoO ₄)3		٠, ر	<u>.</u>				(Abs.):Pov. 572:Str.Tab303;
	(01)2.11120							RRW,102;Hölzel,141.
CANAVESITE	May(HBO3)(CO3).		Mon.	a=23.49Å B=	8=114.910			Hölzel, 113; Encyc. Miner. Nam.,
	5H ₂ O		P2/m		Z=12			54;Can.Min.,1978,16,69-73.
CARBOBORITE	Ca ₂ Mg(B(OH) ₄) ₂		Mon.	∞ <	3=91°41'			Encyc.Miner.Nam.,55;Pov.,
	(CO ₃) ₂ .4H ₂ O		P2 ₁ /m	b=6.68Å	Z=4			475;Str. I 80.,256;Am. Min., 1965 50 262-263(Abs.).
				- 10.09A	0.0	(0C) 0 (4 (0 0) V		Am Min 1088 73 308-404
CETINEITE	K _{3.5} (Sb ₂ O ₃) ₃ (SbS ₃)	(H ₂ O) ₂ {3∞}[K _{3,5} "	Hex.	a=14.2513A Z=Z	7 = 7	K(6c) Na(2a)		MILIMIII., 1900, 13, 390-101,
		(Sb ₂ ^[37] O ₃) ₂ Sb ^[37] S ₃ (OH) _{0.5}]	P6 ₃	c=5.900A		1/25b - (2b) Sb - v(6c)		H0lzel,47.
CHERNIKOVITE	(H ₃ O)(UO ₂)PO ₄ .		Tet.	a=7.020Å	Z=2			Encyc.Miner.Nam.,62;Hölzel,
	3H2O	30				1000000		C LAIR 400F 7 4930 4940.
CHIAVENNITE	CaBe ₂ MnSi ₅ O ₁₃	Ca ¹² /Mn ¹² (H ₂ O) ₂	orth.	a=8.729A 4	7=4	Ca(4c) Mn(4a)		Am Min 1983, L. 1338-1340,
	(OH) ₂ .ZH ₂ O	{3∞}[Si₅Be₂(OH)₂]	T D D D	D=31.326A C=4 903Å		Si(4c) Sill-III(8d)		Hölzel, 222.
CHUDOBAITE	(Ma Zn) (AsO.)		Tric		v=80.5°			Am.Min., 1989, 74,676-684; Am.
	(ASO ₂ OH), 10H ₂ O		1	∞4	B=84.23°			Min.,1960,45,1130(Abs.);Am.
	7/				v=82.12°			Min., 1977, 62, 599 (Abs.); Pov.,
					Z=1			516;Str.Tab.,338;RRW,131;
				- 1				A TOI 200 000 000 100 100 100 100 100 100 100
CHUKHROVITE -	Ca ₃ (Y,Ce)Al ₂ (SO ₄)	(H ₂ O) ₁₀ (3∞)[Ca ₃ °	G. F. F.	a=16.710A	Z=8	Ca(32e)		Min 1960 45 1132-1133:Pov.
(£)-	F ₁₃ .10H ₂ O	(Y,Ce) Al2 S O4F 13]	3			(Υ,Ce) (((30g))		664;Str.Tab.,161;RRW,131.
CLINOUNGEMA- CHITE	K ₃ Na ₉ Fe(SO ₄) ₆ (OH) ₂ 9H ₂ O		Mon.	β ¿	β=110°40'			Pov.,600;Str.Tab.,298;RRW, 137;Hölzel,136.
	7: ::::(::::)							

	CHEMICAL	STRUCTURAL	SPACE	Old Cloud State Control	014010141141	EQUIVALENT	avt adutations	
NAME	FORMULA	FORMULA	GROUP	ONII CELL L	HMENSIONS	POSITIONS	SIRUCIONE ITE	REFERENCES
COBALT-	Ca ₂ (UO ₂) ₆ (SO ₄) ₃		٠.	a=8.80Å	Z=8			Hölzel,138.
- ZIPPEITE	(OH) _{10.} 16H ₂ O	-	<i>~</i>	b=68.43Å c=14.55Å				
CREEDITE	Ca ₃ Al ₂ SO ₄ (OH) ₂ F ₈	(H ₂ O) ₂ {3∞}{Ca ₃ ^[8] Al ₂ °	Mon.	a=14.03Å	t°30'	Ca ₁ (8f) Ca ₁₁ (4e)		SR, 30A, 378; Pov., 657; Str. Tab.,
	2H ₂ O		C2/c	b=8.51A c=9.93Å	Z=4	S(4e) Al(8f) F _{I-III} (8f)		161;KKW,151.
CUPROSKLO-	Cu(UO ₂),	(H,O),Cu ^[/by] H,	Tric.	a=7.052Å	α=109.23°	U(2i) Cu(1e)		Am.Min., 1975,60,448-453;Am.
DOWSKITE	(SiO ₃ OH) ₂ .6H ₂ O	{2\infty}\(\(\mathbb{O}_2\)_2\(\mathbb{S}_1\)_2\(\mathbb{O}_2\)_2\	<u>Б</u>	b=9.267Å	β=89.84°	Si(Zi) O _{l-IX} (Zi)		Min., 1981, 66, 610-625; SR, 41A,
				c=6.655Å	γ=110.01°			380-381;Pov.,455;SR, <u>28,277-</u>
					Z=1			2/8;Str. I ab., 385; Holzel, 195.
DELHAYELITE	(Na,K) ₁₀ Ca ₅ Al ₆ Si ₃₂	(H ₂ O) ₁₈ (Na,K) ₁₀ [8]		a=6.53Å	Z=1			Min.Mag.,1959,32,6-9;Pov.,
		{3∞}[Ca₅ ²⁷ Al ₆ Si ₃₂ O ₈₀ Cl ₆] (≈Macdonaldite)	Fmn2 ₁	c=7.04Å				434,3tf. I db.,468,RKW, 167, Hölzel,237.
DEWINDTITE		Pb ₂ ^[8] (H ₂ O) ₇	1	a=16.031Å	2=6			Eur.J.Min.,1990,2,399-405;
	(OH) ₃ .7H ₂ O	{200}[(U ^[7by/8by] O ₂)4		b=17.264Å				Pov.,559;Str.Tab.,355;RRW,
		(OH) ₃ (P ¹ O ₄) ₃]		c=13.605Å				170;Hölzel,181;Am.Min.,1954,
DIADOCHITE	Fe, (DO.)(SO.)(OH)	1_	Tric	2=0 61Å	~=0804Q'			Hölzel 169-BRW 171-K/B 176
	.5H;0		<u>و</u> :	b=9.77Å	B=108°1'			.02.61.02.02.61.02.02.61.02.61.02.61.02.61.02.61.02.61.02.61.02.61.02.61.02.61.02.02.61.02.61.02.02.61.02.02.61.02.02.02.02.02.02.02.02.02.02.02.02.02.
				c=7.36Å	y=63°59°			
					Z=2			
DONNAYITE - (Y)	NaSr ₃ CaY(CO ₃) ₆		Tric.	a=9.000Å	$\alpha = 102^{\circ}77$			Am.Min., 1979, 64, 653-654;
	.3H ₂ O		<u>Т</u>	b=8.999Å	$\beta = 116^{\circ}28'$			Hölzel, 105; Can. Min., 1978, 16,
				c=6.793Å	γ=59°99' Z=1			335-340.
DUHAMELITE	Cu ₄ Pb ₂ Bi(VO ₄) ₄		Orth.	a=7.49Å	Z=1			Min.Mag.,1981,44,151-152;
	(OH) ₃ .8H ₂ O		۷.	b=9.66Å		-		Am.Min., 1982, 67, 414 (Abs.);
				c=5.87Å				Min. Abs.,81-3236;Hölzel,177.
DUMONTITE	Pb ₂ (UO ₂) ₃ (PO ₄) ₂	Pb ₂ (H ₂ O) ₅ {2∞}{(UO ₂) ₃		a=8.16Å	ခံ	U ₁ (2e) U ₁₁ (4f)		SR,27,583-584;K/B,162;Bull.
	O ₂ .5H ₂ O	$O_2(P^{\bullet}O_4)_2$ (\approx Dewindtite)	P2 ₁ /a	b=16.73A c=7.02Å	Z=2	PD(41) P(41)		Min., 1958, 81, 63-65; Am. Min., 1989, 74, 1403 (Abs.); Pov., 559.
EAKERITE	Ca ₂ SnAl ₂ Si ₆ O ₁₈	Ca ₂ ¹⁸¹ Sn ¹⁶¹ (H ₂ O) ₂	Mon.	a=15.892Å	β=101.34°	Sn(2a) Ca(4e)		Am.Min., 1976, 61, 956-962; SR,
	(OH) ₂ .2H ₂ O	{2∞}[Al'Si ₃ 'O ₉ (OH)] ₂	P2,/m	b=7.721A c=7.438Å	Z=2	Al(4e) Si _{I-III} (4e) O _{I-XI} (4e)		42A,403-404;RRW,184;Hölzel, 207.
EPISTOLITE	Na ₅ TiNb ₂ (Si ₂ O ₇) ₂	(208	Tric.	a=5.41Å	α=103°3'			Pov.,454;Str.Tab.,395;RRW,
	(O,F) ₄ .5H ₂ O		Ъ.	b=7.08Å	β=96°3′			192;Hölzel,201;Am.Min.,1984,
				c=12.07Å	γ=88°36' Z=2			
FAUJASITE		Na ₂₀ Ca ₁₂ Mg ₈ (H ₂ O) ₂₃₅	Cub.	a=24.74Å	Z=1	(Si,Al)(192i)		Am.Min., 1964, 49, 967-704; SR,
	_	{300}[(Al ₆₀ Si ₁₃₂) [†] O ₃₈₄]	Fd3m			(Na,Ca)(32e)		32A,484-488;Pov.,353;Str.
		(≈Sodalite,Zeolite)				O-Iv(96g)		Tab.,493;RRW,205;Hölzel,244.
	7				-	(S=0)(A-A)		

NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
	T	AJONADIA	Τ.	8 0, 0	00,000	20120		Am Min 4004 66 637/Abc):
FERRARISITE	7	(H ₂ O) ₉ Ca ₄ °	<u></u>	a=8.249A	α=106.16			Affi.Miff., 1801,00,037 (AUS.),
	(ASO ₄) ₂ .9H ₂ O	{2\infty}[Ca''\As\^O\4(OH)\2]		b=6.722Å	β=92.94°			SR,46A,337-338;Hölzel,166.
				c=11.198Å	γ=99.20°			
					Z=1			
FERRIERITE	KNa ₃ Mg(Al ₅ Si ₃₁)	KNa ₃ Mg ^o (H ₂ O) ₁₈	Mon.	a=18.886Å	β=90.0°	(AI,SI) _{I-V} (4e)		Am.Min., 1985, 70,619-623; Zeit.
(monoclinic)	O ₇₂ .18H ₂ O	{3∞}[(Al₅Si₃₁)¹O ₇₂]	P2 ₁ /n	b=14.182A	Z=1			Krist., 1987, 178, 249-256; Pov.,
		(≈Mordenite,Zeolite)		c=7.470A				355;Str. I ab., 488;RKW, 209.
FURONGITE	Al ₁₃ (UO ₂) ₇ (PO ₄) ₁₃		Tric.	a=19.271Å	$\alpha = 67.62^{\circ}$			Am.Min.,1988,73,198(Abs.);
	(OH) ₁₄ .58H ₂ O		<u>.</u>	b=14.173Å	B=115.45°			K/B,162;Acta Cryst.,1981, <u>A37</u> ,
				c=12.136Å	γ=94.58°			C-186, (Abs.); Hölzel, 183; K/B,
					Z=1			102.
GEIGERITE	Mn ₅ (AsO ₄) ₂	Mn₅°As₄¹	Tric.	a=7.944Å	α=80.97°	As _{I-II} (2i) Mn _I (1a)		Am.Min., 1989, 74, 676-684;
	(AsO ₃ OH) ₂ .10H ₂	[O ₁₄ (OH) ₂ (H ₂ O) ₁₀]	<u>Т</u>	b=10.691Å	β=84.20°	Mn _{II-III} (2i)		Hölzel, 162.
	0	(≈Chudobaite)		c=6.770Å	γ=81.85° 7=1			
CDIMEE! ITE	V Novi IO VOO		Po	2=0 30₺	7=2			Am Min 1973 58 139(Abs.):
GRIMSELIE	- Nama (002)(003)3 - H2O		P 62c	c=8.26Å	7 7			RRW,248;Hölzel,109.
GRISCHUNITE	NaCa ₂ Mn ₅ Fe	1	Orth.	a=12.855Å	Z=4	Na(4a) Ca(8c)		Am.Min.,1987,72,1225-1229;
	(AsO ₄) ₆ .2H ₂ O	Mn ₅ °Fe°As ₆ O ₂₄]	Pcab	b=13.487Å		As _{i-III} (8c)		Am.Min., 1986, 71, 227-228
				c=12.04/A				(Abs.);Holzel,164.
GUERINITE		(H ₂ O) ₉ Ca ₄ °		a=17.62Å	β=90.6°	Ca _{I-VI} (4e)		Acta Cryst.,1974, <u>B30</u> ,1789-
	(AsO ₄) ₂ .9H ₂ O	{2\infty}[Ca ^[7] As ₄ 'O ₁₄ (OH) ₂]	P2 ₁ /n	b=6.734Å	Z=2	As _{I-V} (4e) O _{I-VV} (4e)		1794;Hölzel,166.
OI III I EMINITE	(000/ (01//00		4	2-7 084 8	7=2	Ba/2a) O.(2a)		Can Min 1995 33 1103-1109
GUILLEMINITE	Ba(UC ₂) ₃ (SeC ₃) ₂	(H2O)3Ba:	E	8=7.004A	7=7	Da(za) Oi(za)		Am Min 1085, 50, 1103-1109,
	(OH)4-3H2O	{2∞}[U₃''''(Se''O₃)₂Oፄ] (≈Phosphiranviite)	P21nm	c=16,881Å		Oii(4b) 3e(4b)		Pov., 567; Str. Tab., 229.
GYROLITE	NaCa ₁₆ AlSi ₂₄ O ₆₀	(20)[Na°Ca16°(H2O)14]	1	a=9.74Å	α=95.7°	Cal-VII(2i) Sil-		Min.Mag.,1988,52,377-387;
	(OH), 14H,O	(200) Alisio On		b=9.74Å	B=91.5°	x _{II} (2i)		RRW,253;Pov.,434;Str.Tab.,
		(≈Reyerite)		c=22.40Å	y=120.0°			467;Hölzel,236.
	1				1=7			A Mi- 4084 60 070 083.
HOTSONITE	Al ₁₁ (SO ₄) ₃ (PO ₄) ₂		Tric.	a=11.23A	α=112°32"			Am.Min., 1984, <u>69</u> , 979-983; K/B 176-Hölzel 124
	O2L01.12(LO)		.	D=11.00A	p=10/32			70, 170, 1020, 124.
				C=10.55A	γ=64-2/ Z=?			
нЙсепте	Pb ₂ (UO ₂) ₃ (AsO ₄) ₂ (OH) _{4.3} H ₂ O		Mon.	خ	β=119°48'			Str.Tab.,356;Pov.,524;Hölzel, 182.
HURÉAULITE	Mn ₅ (PO ₃ OH) ₂	Mn ₅ °P ₄ ^t	Mon.	a=17.594Å	β=96.67°	Mn _I (4e)		Am.Min., 1973, 58, 302-307; K/B,
	(PO ₄) ₂ .4H ₂ O	[O ₁₄ (OH) ₂ (H ₂ O) ₄]	C2/c	b=9.086Å c=9.404Å	Z=4	Mn _{II-III} (8f) P _{I-II} (8f)		130-131;SR,39A,287;Pov.,547 -548;Str.Tab.,330;RRW,285.
						The state of the s		

\$17.41)O _{1.7} \$18.20 \$1		Orth. Pnm2, 17 Tric. P1 PP P1	. •	Z=2 α=109.87°		Am.Min., 1987, <u>72</u> , 1024 (Abs.); Hölzel 237
(OH) ₂ .6H ₂ O (CU(UO ₂) ₂ (SO ₄) ₂ (OH) ₂ .8H ₂ O (OH) ₂ .8H ₂ O 2(H ₂ O.OH) (K,Na) ₂ Ba ₄ Ti ₄ Al ₂ 2(H ₂ O.OH) (K,Na) ₂ Ba ₄ Ti ₄ Al ₂ Si ₁₀ O ₃₆ .6H ₂ O (OH) ₉ .16H ₂ O (OH) ₉ .16H ₂ O (CO ₃).H ₂ O			10	r=109.87°		Hölzel 237
Cu(UO ₂) ₂ (SO ₄) ₂ (OH) ₂ ·8H ₂ O (OH) ₂ ·8H ₂ O (CH ₂ O ₄ O ₂) ₂ (CH ₂ O ₄ O ₂) ₃ (K,Na) ₂ Ba ₄ Ti ₄ Al ₂ (CH) ₉ ·16H ₂ O (CH) ₉ ·16H ₂ O (CO ₃)·H ₂ O				r=109.87°		
(CH) ₂ -8H ₂ O (K(Mn,Fe) ₂ (Nb,Ta) O ₂ (PO ₄) ₂ . 2(H ₂ O ₂ OH) (K,Na) ₂ Ba ₄ Ti ₄ Al ₂ Si ₁₀ O ₃₆ .6H ₂ O Ca ₂ Zn ₄ Fe ₈ (PO ₄) ₉ (OH) ₉ .16H ₂ O (OH) ₉ .16H ₂ O (CO ₃).H ₂ O						Min.Abs.,84M/3844;Hölzel,
K(Mn,Fe) ₂ (Nb,Ta) O ₂ (PO ₄) ₂ . 2(H ₂ O _. OH) (K,Na) ₂ Ba ₄ Ti ₄ Al ₂ Si ₁₀ O ₃₆ .6H ₂ O Ca ₂ Zn ₄ Fe ₆ (PO ₄) ₉ (OH) ₉ .16H ₂ O (CO ₃).H ₂ O HKMg ₂ B ₁₂ O ₁₆ (OH) ₁₀ .4H ₂ O (CO ₃).H ₂ O (CA ₃ Mg)(Mn,Zn) ₂ Fe ₃ (PO ₄) ₄ (OH) ₃ .			1	β=112.01° γ=100.40°		Tab.,299;RRW,311.
Ca ₂ Ch(O ₂) ₂ 2(H ₂ O ₂ OH) (K, Na) ₂ Ba ₄ Ti ₄ Al ₂ Si ₁₀ O ₃₆ .6H ₂ O Ca ₂ Zn ₄ Fe ₈ (PO ₄) ₉ (OH) ₉ .16H ₂ O (CO ₃).H ₂ O				7=2		Am Min 1987 72 223:Hölzel
(K,Na)-B471,4M2 S1:003e,6H2O Ca2Zn4Fes(P04)9 (OH)9-16H2O (CO3)-H2O HKMQ2B12O16 (OH)10-4H2O (OH)10-4H2O (CA3,MQ)(Mn,Zn)2 Fes(PO4,4(OH)3- Fes(PO4,4(OH)3-			b=10.023Å			144;K/B,158.
Si,0O ₃ e.6H ₂ O Ca ₂ Zn ₄ Fe ₈ (PO ₄) ₉ (OH) ₉ .16H ₂ O (CO ₃).H ₂ O HKMg ₂ B ₁₂ O ₁₆ (OH) ₁₀ .4H ₂ O 14H ₂ O (Ca ₃ Mg)(Mn,Zn) ₂ Fe ₃ (PO ₄ A(OH) ₃ .			1	Z=8 ?		Encyc.Miner.Nam.,149;Hölzel,
(Ca, Mg) (Mn, Zn) 2 (CA) (CA) (CA) (CA) (CA) (CA) (CA) (CA)			b=25.904Å c=10.608Å			205;Min.Record,1977,8,453-456.
(OH) ₉ . 16H ₂ O (CO ₃). H ₂ O (CO ₃). H ₂ O HKMg ₂ B ₁₂ O ₁₆ (OH) ₁₀ . 4H ₂ O (OH) ₁₀ . 4H ₂ O 14H ₂ O (Ca.Mg)(Mn.Zn) ₂ Fe ₃ (PO ₄ A(OH) ₃ .				Z=2		Am.Min., 1980, 65, 1067 (Abs.);
(Y) Ca ₂ (Y,Ce) ₂ (SiO ₃) ₄ (CO ₃).H ₂ O HKMg ₂ B ₁₂ O ₁₆ (OH) ₁₀ .4H ₂ O (OH) ₁₀ .4H ₂ O 14H ₂ O (Ca ₁ Mg)(Mn,Zn) ₂ Fe ₃ (PO ₄ ₄ (OH) ₃ .		:	b=20.37Å c=9.95Å			Hölzel,176;K/B,161.
(CC ₃). r ₂ C ₁ HKMg ₂ B ₁₂ O ₁₆ (OH) ₁₀ .4H ₂ O 14H ₂ O (Ca ₃ Mg)(Mn,Zn) ₂ Fe ₃ (PO ₄ A(OH) ₃ .	-	Orth.	a=12.93Å	Z=4	Ca(8d) Si _{I-II} (8d)	Sov. Phys. Cryst., 1967, 11, 485-
HKMg2B ₁₂ O ₁₆ (OH) ₁₀ .4H ₂ O -(Y) Y ₂ O ₄ (UO ₂) ₄ (CO ₃) ₃ . 14H ₂ O (Ca.Mg)(Mn,Zn) ₂ Fe ₃ (PO ₄) ₄ (OH) ₃ .	7		c=6.73Å		C(4c)	Str. Tab., 405; Can. Min., 1964, 8, 1-10
(OH) ₁₀ .4H ₂ O TTE – (Y) Y ₂ O ₄ (UO ₂) ₄ (CO ₃) ₃ . 14H ₂ O (Ca,Mg)(Mn,Zn) ₂ Fe ₃ (PO ₄) ₄ (OH) ₃ .	(H ₂ O) ₄ (3∞){ K ^[8] Mg ₂ ° N	Mon.	×	0.13	B _{1-V1} (8f) O _{1-V111} (8f)	SR,31A,172-173;Pov.,485-
TE - (Y)			b=8.43Å c=14.665Å	Z=4	K(4e) Mg(8f)	486;Str.1ab.,262;KKW,316; Am.Min.,1965, <u>50</u> ,1079-1083.
	2	Mon.		β=115.3°		Bull.Min., 1986, 109, 643-647;
	u.		b=12.93A c=12.39Å	Z=4		Am.Min., 1988, (3, 191 (Abs.); Hölzel, 110.
	2			8=110°30'		Am.Min., 1979, 64, 1330-1331
2H ₂ O	<u>. </u>		b=7.19Å c=19.74Å	Z=2		(Abs.); K/B,156,Hölzel,177.
KINGSMOUNTITE (Ca,Mn) ₄ FeAl ₄	2 (Mon.	-	β=91.16°		Can.Min., 1979, 17,579-582;
(PO ₄) ₆ (OH) ₄ .12H ₂ O			b=24.46A c=6.258Å	Z=2		K/B,153;H0lZel,176.
		Tric.		$\alpha = 70^{\circ}29'$		Min.Mag., 1989, 53, 385-386;
(OH) ₄ .4H ₂ O	[O ₁₆ (OH) ₄ (H ₂ O) ₄] ? (≈Hotsonite)		b=13.519Å c=7.500Å	β =117°52' γ =136°34'		Pov.,744,549;Str.Tab.,543; RRW, 333;Hölzel,169.
1		1	2-7 27 K	7-7		Am Min 1975 60 487(Abs.):
-(Ce) 5H ₂ O 1527-022.	<u> </u>	Pmmm Pmmm	∞ 4 ∞4	4-7		Hölzel, 224.
LAVENDULAN NaCaCu ₅ (AsO ₄) ₄		Orth.		Z=8		Pov.,518;Str.Tab.,349M;RRW,
GI.5H ₂ O			b=41.0A c=9.85Å			347;Hölzel,174.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
LEIFITE	Na ₆ Be ₂ Al ₂ Si ₁₆ O ₃₉ (OH) ₂ .1.5H ₂ O	Na ₆ ¹⁷ (OH) ₂ (H ₂ O) _{1.5} {3∞}{Be ₂ Si ₁₆ Al ₂ O ₃₉]	Trig. P 3m1	a=14.352Å c=4.852Å	Z=1	Na(6i) Be(2d) Si ₁ (6h) Si ₁₁ (6g) Si ₁₁₁ (6i)		Acta Cryst.,1974, <u>B30</u> ,396-401; SR, <u>40A,</u> 285;Pov.,350;Str.Tab., 483;RRW,350-351.
LOUDOUNITE	NaCa ₅ Zr ₄ Si ₁₆ O ₄₀ (OH) ₁₁ .8H ₂ O		~ ~	ċ				Can.Min.,1983, <u>21,</u> 37-40; Hölzel,230;Am.Min.,1983, <u>68,</u> 1039(Abs.).
LUN'OKITE	(Mg,Fe)(Mn,Ca)Al (PO ₄₎₂ (OH).4H ₂ O	(Mg,Fe)°(Mn,Ca)°Al° P ₂ '[O ₈ (OH)(H ₂ O) ₄] (=Segelerite)	Orth. Pbca	a=14.95Å b=18.71Å c=6.96Å	2=8			Am.Min.,1984,69,210-211 (Abs.);K/B,153;Hölzel,176.
MAGNESIUM- ZIPPEITE	Mg(UO ₂) ₆ (SO ₄) ₃ (OH) ₁₀ .16H ₂ O		٠	a=8.80Å b=68.43Å c=14.55Å	Z=8			Hölzel,138.
MARTHOZITE	Cu(UO ₂) ₃ (SeO ₃) ₃ (OH) ₂ .7H ₂ O		Orth. Pnma	a=16.40Å b=17.20Å c=6.98Å	Z=4			Bull. Min., 1969, <u>92</u> , 278-283; Am. Min., 1970, <u>55</u> , 533 (Abs.); Hölzel, 94; RRW, 384; Pov., 567.
MCKELVEYITE – (Y)	NaBa ₃ (Ca,U)Y (CO ₃₎₆ .3H ₂ O		Tric. P 3	a=9.174Å c=19.154Å	Z=3			Am.Min., 1965, <u>50</u> , 593-612; Pov., 618; Str. Tab., 246; Hölzel, 105; RRW, 388, 370-371.
METAVANMEER- SSCHEITE	U(UO ₂) ₃ (PO ₄) ₂ (OH) ₆ .2H ₂ O		Orth. Fddd	a=34.18Å b=33.88Å c=14.074Å	Z=32			Hölzel,181;Am.Min.,1982, <u>67,</u> 1077(Abs.).
METAVANURALI- TE	AI(UO ₂) ₂ (VO ₄) ₂ (OH).8H ₂ O		Tr <u>i</u> c. P 1	a=10.46Å b=8.44Å c=10.43Å	α =75°53' β =102°50' γ =90° Z=2			Bull.Min.,1970, <u>93</u> ,242-248,Am. Min.,1971, <u>56</u> ,637(Abs.); Hölzel,183;Pov.,503;RRW,402.
METAVOLTINE	K₂Na ₆ Fe ₇ O₂ (SO₄)₁₂.18H₂O	(H ₂ O) ₁₆ {3∞}[K ₂ ^[9] Na ₆ ° Fe ₇ °S ₁₂ ˙O ₅₀]	Trig. P3	a=9.575Å c=18.17Å	Z=1			SR. <u>42A</u> ,374;Min.Abs.,77/4074; Min.Mag.,1977, <u>41</u> ,371-374; Pov.,600;Str.Tab.,297;RRW, 403.
MILLISITE	(Na,K)CaAl ₆ (PO ₄) ₄ (OH) ₉ .3H ₂ O		Tet. P4 ₁₂₁₂ ?	a=7.00Å c=19.07Å	Z=4 ?			Am.Min., 1960, 45, 547-561; Str. Tab., 347; K/B, 153; Pov., 551.
MOLURANITE	H₄U(UO ₂)₃(MoO₄)7. 18H₂O		Amorpn.	•				Hölzel, 141.
MONTGOMERYI. TE	Са4МgAl4(PO4) ₆ (OH) ₄ .12H ₂ O	(H ₂ O) ₁₂ Ca ₄ ^[8] {1∞}[Mg [°] Al ₄ [°] P ₆ ^t O ₂₄ (OH) ₄] (=Calcioferrite)	Mon. C2/c	a=10.023Å b=24.121Å c=6.243Å	β=91.55° Z=2	Cai(4e) Alı(4c) Alıı(4c) Pı(4e) Pıı(8f)		Am.Min., 1974, <u>59</u> , 843-850; Am. Min., 1976, <u>61</u> , 12-14; Pov., 550; Str. Tab., 347; K/B, 74-75; SR, <u>40A, 2</u> 43.
	O _z	K _{2.8} Na₁ ₅ Ca₂(H₂O)₂₀ {₃∞}[Al₅¹Si₃⁵Óℊ₀] (Zeolite)	Orth. Cmc2 ₁	a=18.094Å b=20.516Å c=7.524Å	Z=1	(Al,Si) _{I-VI} (8b) O _{I-VI} (8b)		Zeit.Krist., 1986, <u>175,</u> 249-256; SR, <u>44A,</u> 311; Pov., 358; Str. Tab., 488; LF, 397; Hölzel, 245.
MOREAUITE	Al ₃ (UO ₂)(PO ₄) ₃ (OH) ₂ .13H ₂ O		Mon. P2 ₁ /c	a=23.41Å b=21.44Å c=18.34Å	β=92.0° Z=16			Am.Min., 1985, <u>70</u> , 1330-1331 (Abs.);K/B,162;Höizel,182.

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
MOTUKOREAITE	$(Mg_6Al_3(OH)_{18})$ $(Na_0e(SO_4,CO_3)_2)$. $12H_2O$		Trig. R 3m	a=9.172Å c=33.51Å	Z=3	Al _I (3b) Al _{II} (6c) Mg(18g) Na(3a) S(3c)		SR <u>,53A,</u> 182;Am.Min.,1987 <u>,72,</u> 1028(Abs.);Min.Mag.,1977, <u>41,</u> 389-390;Hölzel,134.
MUNDITE	AI(UO ₂) ₃ (PO ₄) ₂ (OH) _{3.} 5.5H ₂ O		Orth. P2 ₁ cn	a=17.08Å b=30.98Å c=13.76Å	Z=16			Am.Min.,1982 <u>,67,</u> 624(Abs.); K/B,162;Hölzel,181.
NAKAURIITE	Cu ₆ (SO ₄) ₄ (CO ₃) (OH) ₆ .48H ₂ O		Orth.	a=14.585Å b=11.47Å c=16.22Å	Z=2			Am.Min.,1977, <u>62,</u> 594(Abs.); Hölzel,135.
NICKEL-ZIPPEITE	Ni ₂ (UO ₂) ₆ (SO ₄) ₃ (OH) ₁₀ .16H ₂ O		?	a=8.80Å b=68.43Å c=14.55Å	Z=8			Hölzel,138.
NOSEAN	Na ₈ (Si ₆ Al ₆)O ₂₄ (SO ₄).H ₂ O	Na₅S¹O₄(H₂O) {3∞}[Sie¹Ale¹O₂₄] (≈Sodalite)	Cub. P 4 3n	a=9.05Å	Z=1	Al(6d) Si(6e) 0.49S (2a)		Can.Min., 1989, <u>27,</u> 165-172; RRW, 443; Hölzel, 241; Pov., 350; Str. Tab., 483; SR, <u>30A,</u> 432.
OBOYERITE	H ₆ Pb ₆ (TeO ₃) ₃ (TeO ₆₎₂ .2H ₂ O		Tric. P 1	a=12.249Å α =116.45' b=15.113Å β =98.58° c=6.868Å Z=2 γ =85.82°	α =116.45° β =98.58° =2 γ =85.82°			Am.Min.,1981, <u>66,</u> 220(Abs.); Min.Mag.,1979, <u>43</u> ,453-457; Hölzel,94.
OFFRÉTITE	KCaMg(Al ₅ Si ₁₃)O ₃₆ . 15H ₂ O	KCaMg(Al ₅ Si ₁₃)O ₃₆₋ K ^{l9l} Ca ^{l9l} Mg ¹ (H ₂ O) ₁₅ 3∞}[Al ₅ Ci ₁₃ O ₃₆] Zeolite 	Hex. P ēm2	a=13.291Å c=7.582Å	Z=1	Mg(1c) K(1b) Ca ₁ (2i) Ca ₁₁ (2g) (v.occ.)Si ₁ (12o) Si ₁₁ (6m)		Acta Cryst., 1972, <u>B28,</u> 825-834; Pov., 358; Str. Tab., 492; RRW, 445; Hölzel, 244; Am. Min., 1976, 61,853-863; Sr, 42A, 454.
OLMSTEADITE		(H ₂ O) ₂ K ^[8] (3∞}[Fe ₂ ° (Nb,Ta)°P ₂ ¹O ₁₀] (≈Montgomeryite)	Orth. Pb2₁m	a=7.512Å b=10.000Å c=6.492Å	Z=2	K(2b) Na(2a) Fe(4c) P _i (2b) P _{ii} (2a)		Am.Min.,1976 <u>,61,5</u> -11;K/B,31- 32;SR, <u>42A,</u> 343-344.
OVERITE	CaMgAl(PO ₄₎₂ (OH).4H ₂ O	Ca²(H₂O)₄{2∞}[Mg²Al⁴ (P₂¹O₅(OH)] (≈Segelerite)	Orth. Pbca	a=14.723Å b=18.746Å c=7.107Å	Z=8	Mg(8c) P _{I-II} (8c) Ca(8c) AI(8c) 		Am.Min.,1977, <u>62,</u> 692-702;Am. Min.,1974, <u>59</u> ,48-59;SR, <u>43A,</u> 252;Pov.,550;Str.Tab.,347.
PARNAUITE	Cu ₉ (AsO ₄) ₂ (SO ₄) (OH) ₁₀ .7H ₂ O		Orth. P2 ₁ 22	a=14.98Å b=14.223Å c=6.018Å	Z=2			Am.Min.,1978 <u>,63</u> ,704-708; Hölzel,168;Encyc.Miner.Nam., 232.
PERETAITE	CaSb ₄ O ₄ (SO ₄) ₂ (OH) ₂ .2H ₂ O	{2∞}{Sb ₁ ^(5by) Sb ₂ ⁽⁰ 4 1 (OH) ₂ {1∞}{Ca ^{8ap} S ₂ ⁽ 0 ₈ ((H ₂ O) ₂]	Mon. C2/c	a=24.665Å b=5.6006Å c=10.185Å	β=95.98° Z=4	Sb _{-II} (8f) Ca(4e) S(8f)		Am.Min.,1980, <u>65,</u> 940-946,936- 939;Hölzel,123;Zeit.Krist., 1998, <u>213,</u> 141-150.
	Q		Hex. P6/mmm	a=18.49Å c=7.51Å	Z=1			Am.Min.,1985, <u>70</u> ,1331(Abs.); Hölzel,244.
	KCuFe ₁₅ (PO ₄) ₁₂ (OH) ₁₂ .12H ₂ O		Orth. Pbmn	a=14.40Å b=18.76Å c=10.40Å	Z= 2			Am.Min.,1984 <u>,69</u> ,1192(Abs.); Hölzel,181.
PHOSPHURANY- LITE	Ca(UO ₂) ₃ (PO ₄) ₂ (OH) ₂ .6H ₂ O	Ca(H ₂ O) _{e(} 2∞){(UO ₂) ₃ (OH) ₂ (PO ₄) ₂] (≈Dumontite)	Orth. Cmcm	a=15.778Å b=13.702Å c=17.253Å	Z=8 ?	U ₁ (16h)U ₁₁ (8g) U ₁₁₁ (4b) Ca(f) P(16h)		Acta Cryst.,1991, <u>B47</u> ,439-446; Str.Tab.,355;RRW,478;Pov., 559,K/B,162,Hölzel,181;Eur.J. Min.,1991,3,69-77.

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
PHURALUMITE	2	Al ₂ (OH) ₄ (H ₂ O) ₁₀ {2∞}[(P'O ₄) ₂ (UO ₂) ₃ (OH) ₂]	Mon. P2₁/a	a=13.836Å b=20.918Å c=9.428Å	β=112.44° Z=4	U _{I-III} (4e) Al _{I-II} (4e) P _{I-II} (4e)		Acta Cryst.,1979, <u>B35,</u> 1880- 1882;Am.Min.,1980, <u>65,</u> 208 (Abs.);SR <u>,45A</u> ,313;K/B,161; Hölzel,182.
PHURCALITE	Ca ₂ (UO ₂) ₃ (PO ₄) ₂ (OH) ₄ .4H ₂ O	Ca ₂ ^{1/1} (OH) ₂ (H ₂ O) ₄ {2∞}{(P'O ₄) ₂ (UO ₂) ₃ (OH) ₂] (≈Phuralumite)	Orth. Pbca	a=17.426Å b=16.062Å c=13.592Å	Z=8	Ca _{I-II} (8c) P _{I-II} (8c) U _{I-III} (8c)		Acta Cryst.,1979, <u>B34,</u> 1677- 1679;Am.Min.,1979, <u>64,</u> 243; Am.Min.,1978, <u>63,</u> 1283(Abs.); Can.Min.,1991, <u>29,</u> 95-105;SR, 44A,255.
PSEUDOBOLÉITE	28PbCl ₂ .2AgCl. 24Cu(OH) ₂ .14H ₂ O (?)		Tet. I 4/mmm	a=15.4Å c=31.2Å	Z=2			Encyc.Miner.Nam.,246;Pov., 649-650;Str.Tab.,166;RRW, 494; Hölzel,57.
p-VEATCHITE	(Sr,Ca) ₂ (B ₅ O ₆ (OH)) ₂)B (OH) ₃ .H ₂ O	(Sr,Ca) ₂ ¹⁷⁰⁴⁷¹ B(H ₂ O) (OH) ₃ {2∞}{B ₂ ¹ B ₃ ¹ O ₈ (OH)] ₂	Mon. P2 ₁	a=6.70Å b=20.80Å c=6.60Å	β=119°15' Z=4	Sri(4f) Sr _{ii} (4f) B _{i-Xi} (4f)		Sov.Phys.Cryst.,1971, <u>16,</u> 75- 81;SR <u>,37A,</u> 274;Am.Min.,1960, <u>45,</u> 1221-1229;Pov.,489.
RANKACHITE	(WO ₄) ₈ .		Orth. Pmmm	a=8.17Å b=42.02Å c=5.45Å	Z=2			Am.Min.,1985, <u>70,</u> 876(Abs.); Hölzel,81.
RENARDITE	Pb(UO ₂) ₄ (PO ₄) ₂ (OH) ₄ .7H ₂ O		Orth. Bmmb	a=16.01Å b=17.5Å c=13.7Å	Z=6			RRW,514;Pov.,559;Str.Tab., 355;K/B,162;Hölzel,181.
REYERITE	(Na,K)₂Ca₁₄Al₂Si₂₂ O₅(OH)₀.6H₂O	(Na,K) ₂ Ca ₁₄ (OH) ₈ (H ₂ O) ₈ {2∞}{Si ₁₄ Al ₂ O ₃₈] {2∞}{Si ₂ O ₂₀	П <u>тіў</u> Р 3	a=9.765Å c=19.067Å	Z=1	Ca _l (2d) Ca _{lt-ll} (6g) Si _{t-ll} (2d) Si _{ll-V} (6g)		Min.Mag.,1988, <u>52,</u> 247-256; Am.Min.,1973, <u>58,</u> 517-522; Pov.,434-435;Str.Tab.,467; RRW,515.
SABUGALITE	HAI(UO ₂)4(PO ₄)4. 16H ₂ O	(H ₂ O) ₁₆ [HAl{2∞}[UO ₂ P ¹ O ₄]4] (≈Autunite)	Mon. I 4/mmm	a=6.96Å c=19.3Å				RRW,531;Pov.,556;Str.Tab., 351;K/B,162;Am.Min.,1951, <u>36,</u> 671-679.
SAINFELDITE	Ca ₅ (AsO ₄) ₂ (AsO ₃ OH) ₂ .4H ₂ O	Cas [°] As ₄ [†] [O ₁₄ (OH) ₂ (H ₂ O) ₄]	Mon. C2/c	a=18.781Å b=9.820Å c=10.191Å	β=97°1' Z=4	Asııı(8f) Caı(4e) Caııııı(8f)		Bull.Min.,1972, <u>95</u> ,33-41;Am. Min.,1965, <u>50</u> ,806(Abs.);SR, <u>38A</u> ,326;Pov.,520;Str.Tab., 330;RRW,532.
SAKHAITE	Ca ₃ Mg(BO ₃₎₂ (CO ₃). nH ₂ O		Cub. Fd3m	a=14.749Å	Z=16			Min.Mag.,1990, <u>54,</u> 105-108; Min.Abs.,81-1239;Am.Min., 1966 <u>,51,</u> 1817(Abs.);Pov.,471.
SAMPLEITE	NaCaCu₅(PO₄)₄Cl. 5H₂O		Orth. 2/m	a=9.70Å b=38.40Å c=9.65Å	Z=8			RRW,535;Pov.,551;Str.Tab., 349;K/B,161;Min.Mag.,1978, 42,369-371;Hölzel,174.
SANJUANITE	Al ₂ (PO ₄)(SO ₄)(OH). 9H ₂ O		7 Tric.	a=11.314Å b=90.18Å c=7.376Å	$\alpha = ?$ $\beta = 95^{\circ}46'$ $\gamma = 105^{\circ}39'$ Z = 2			Min.Mag.,1989, <u>53</u> ,385-386; Pov.,562;Str.Tab.,572;Hőlzel, 169;Am.Min.,1968 <u>,53,</u> 1-8.

Mon. Pairo	NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
CPH SHAO	SARMIENTITE	Fe ₂ (AsO ₄)(SO ₄)		Mon.	a=6.55Å	B=97°39'			Am.Min., 1968, 53, 2077-2082;
The control of the		(OH).5H ₂ O		P2,/c	b=18.55Å	Z=4			RRW,538-539;Pov.,517;Str. Tab.,342:Hölzel,169.
Table	SATIMO! ITE	O (O d) IV SINA		Ę	a=12.62&	7=4			Am Min. 1970.55.1069(Abs.):
Fe ZnMnFes/POJ)	SALIMOLIE	13H ₂ O		-> di	b=18.64Å c=6.97Å				RRW,540;Pov.,487-488.
COH); 9H; O Fe; P ₃ O ₁₂ (OH) ₂ Finado Fe ₃ CasAA Fe ₃ (4d) E - CuPb Fe ₃ CasAA Fe ₃	SCHOONERITE	ZnMnFe ₃ (PO ₄) ₃	(H ₂ Q) ₉ Zn ^[5] {2∞}[Mn°	orth.	a=11.119Å		Zn(4d) Mn(4d)		Am.Min.,1977, <u>62</u> ,250-255,246-
E - Cupb (Nd. dd. Sm.)		OH) ₂ .9H ₂ O	Fe ₃ P ₃ O ₁₂ (OH) ₂]	Pmab	D=25.546A c=6.437Å		Fe _{III} (4c)		Hölzel, 170.
(Nut Gd, Sm. Y) (Coo ₂₃ (OH) (OH) ₂ 4H ₂ O (Coh ₃ (Coh ₃) (OH) ₂ 4H ₂ O (Ch) ₃ 4H ₂ O (Ch) ₃ 4H ₂ O (Ch) ₃ 4H ₂ O (Ch) ₄ 4H ₂ O (Ch) ₆ 4CO ₃ O (Ch) ₆ 4CO (Ch) ₆ 4CO (Ch) ₆ 4CO ₃ O (Ch) ₆ 4CO (Ch)	SCHUILINGITE -	CuPb		Orth.	a=7.418Å	Z=4			Encyc.Miner.Nam.,270;Hölzel,
CaMgFe(PO ₄) ₂ Ca ² (H ₂ O) ₃ (2∞)HMg° Orth. a=14.826A Z=8 Ca(8c) Mg(8c) (OH),4H ₂ O Fe ² P ₂ O ₆ (OH)I PCa Ca(10-2) ₂ (VO ₄) PCa PCa (OH) ₂ .6H ₂ O Cu ₂ (OH) ₂ (H ₂ O) Mon. a=10.599A β=103.42° PCa (OH) ₂ .6H ₂ O Ca(10-2) ₂ (CO ₃) ₅ Orth. a=21.99A Z=2 PCa (OH) ₄ .6H ₂ O Ca(10-2) ₂ (CO ₃) ₅ Orth. a=21.99A Z=2 Aca (OH) ₄ .6H ₂ O (COH) ₂ (H ₂ O) ₃ Tric. a=9.590A α=108.04° Al(11) All(10) (OH) 6H ₂ OH ₂ O (COH) ₂ (H ₂ O) ₃ Trig. a=12.20A ar=13.67A Aca (OH) ₂ (SO ₃) Cu ₂ (H ₂ O) ₃ (H ₂ O) ₃ Trig. a=12.20A ar=13.67A Aca (OH) ₁ CI Aca Aca Aca Aca (OH) ₂ (SO ₃) Aca Aca Aca (OH) ₂ (AH ₂ O Aca Aca	(pn) -	(Nd,Gd,Sm,Y) (CO ₃) ₃ (OH) 1,5H ₂ O		P2 ₁ cn	b=18.87A c=6.385Å				107.
(OH), 4H₂O FeP₂²O₂(OH)] Pbca b=18.751A Fe(8c) P₁⋅⋅⋅(6c) Cu₂(UO₂)₂(VO₄)₂ (U₂²(OH)₂(H₂O₃)² Mon. a=10.598A β=103.42° (6c) Cu₂(UO₂)₂(VO₄)₂ (UO₂)₂√₂O₃ P₂₁/a b=3633A Z=2 (6c) Ca(UO₂)₂(CO₃)₂ Ca(UO₂)₂(CO₃)₂ Orth. a=21.99A Z=2 Ca(UO₂)₂(CO₃)₂ 7 b=15.83A Z=2 (OH).6H₂O (I₂∞)[Mn²(H₂O₃ Tric. a=9.580A A=[18.67] (OH).6H₂O (I₂∞)[Mn²(H₂O₃ Tric. a=9.580A A=[18.7] (OH).6H₂O (I₂∞)[Fe₃(So₂(H₂O)₃ Trig. a=1.2.04 A=[1.67] (OH).6H₂O 2∞][Fe₃(So₂(H₂O)₃ Trig. a=12.204 A=[1.67] (OH).6.33H₂O 2∞][Fe₃(So₂(D₃)₂ 7 C=6.800A Y=88 (OH).0.4H₂O 2∞][Fe₃(So₂(D₃)₂ 7 C=14.55A Z=2 (OH).0.4H₂O P3c1 C=14.55A Z=2 (Sh₂O)2(OH).0.C P3c1 C=14.54A Z=6 (Co+0,AlSO4)OH).0.C P3c1 C=30.71A HeU	SEGELERITE	CaMgFe(PO ₄) ₂	Ca°(H₂O)₄{2∞}[Mg°	orth.	a=14.826Å		Ca(8c) Mg(8c)		Am.Min., 1977, 62, 692-702; Am.
Cu₂(UO₂)₂(VO₃)₂ Cu₂(UO₂)²(VO₃)₂ Cu₂(UO₂)²(VO₃)₂ Cu₂(UO₂)²(VO₃)₂ Cu₂(UO₂)²(VO₃)₂ Cu₂(UO₂)²(VO₃)₂ Cu₂(UO₂)²(VO₃)₂ Cu₂(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Cu²(UO₂)²(CO₃)₃ Tric. a=21.804 Z=2 Al/(Th) All/(Te) TE MnAI(PO₃OH)₂ (2∞)[Mn²(H₂O)₃ Tric. a=9.5804 x=108.04° Al/(Th) All/(Te) (OH).6H₂O (OH)3 Tric. a=9.5804 x=887° Al/(Th) All/(Te) (OH)6.33H₂O 2mlag.²(H₂O)₃ Trig. a=12.204 a=1.3674 (OH)3.33H₂O 2mlag.²(H₂O)₃ Trig. a=12.204 a=8.804 z=8 (OH)1.4All.²O 2mlag.²(H₂O)₃ 7mlag.²(H₂O)₃ 7mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ (CH)1.0.4H₂O 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ (CH)3.4All.²O 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ (CH,28H₂O 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ (CH,28H₂O 2mlag.²(H₂O)₃ 2mlag.²(H₂O)₃ 2		(OH).4H ₂ O	Fe°P ₂ 'O ₈ (OH)]	Pbca	b=18.751A		Fe(8c) P _{I-II} (8c)		Min., 1974, 59, 48-59; SR, 43A, 252-253: K/R 157-RRW 550-
Cu₂(UO₂)₂(VO₄)² Cu₂²(OH)₂(H₂O)₅ Mon. a=10.599A β=103.42° (OH)₂ 6H₂O (2∞){(UO₂)₂(Y₂O₃)} P2√/a b=8.903A Z=2 (OH)₃ 6H₂O (2∞){(UO₂)₂(Y₂O₃)} Orth. a=21.99A Z=2 (OH)₃ 6H₂O (2∞){(Mn²(H₂O)₃ Tric. a=21.99A A (1h) A (1e) TE MnAl(PO₃OH)² Tric. a=21.90A A (1h) A (1e) (OH)₃ 6H₂O (1∞){14²(PO₃OH)² Tric. a=21.80A A (1h) A (1e) (OH)₃ 6H₂O (OH)₃ 6H₂O Tric. a=25.90A α=108.04° A (1h) A (1e) (OH)₃ 6H₂O (OH)₃ 33H₂O Trig. a=12.20A a=13.67A a=12.20A a=13.67A (OH)₃ 33H₂O Cul₅AlSO₄(OH)₃ R 3 Z=1 Z=13 Z=13 (OH)₃ 4H₂O Pacal Pacal A=8.0A Z=8 A=3.03° (OH)₃ 4H₂O Pacal Pacal A=3.04A Z=6 A=3.04 (OH)₃ 4H₂O Pacal Pacal A=3.04A A=6 A=6 (OH)₃ 4H₂O Pacal			(=Overne)		¥ 705.7-5		:		551; Hölzel, 176.
(OH) ₂ 6H ₂ O {2∞}{(UO ₂)e(UO ₂)²V ₂ O ₈ } P2/4a b=8.903Å Z=2 Ca(UO ₂)e(CO ₃)₅ Ca(UO ₂)e(CO ₃)₅ Orth. b=8.903Å Z=2 Ca(UO ₂)e(CO ₃)₅ Orth. b=1.99Å Z=2 (OH) ₄ .6H ₂ O Tric. a=9.500Å α=108.04° All(1h) All(1e) (OH) ₂ .6H ₂ O (OH) ₃ 33H ₂ O Trig. a=9.500Å α=108.04° All(1h) All(1e) NaMQ₂Fes(SO ₄)¬ Nal³Mg₂²(H₂O)₃ Trig. a=12.20Å aR=13.67Å A=23.03° (OH) ₁₀ .4H ₂ O Na ₄ (UO ₂)e(SO ₄)₃ Trig. a=12.20Å aR=13.67Å A=53.03° (OH) ₁₀ .4H ₂ O Orth. a=8.48Å Z=8 A=3.03° A=3.03° (OH) ₁₀ .4H ₂ O P3.7 P=8.48Å Z=8 A=10.3°24° KAl ₂ (NO) ₃ (OH) ₁₀ Mon. a=10.89Å B=92·10° KAl ₂ (UO ₂)e(SiO ₄)e P2.4a B=11.04 Z=6 H ₆ U(UO ₂)e(SiO ₄)e P2.4a B=11.04 Z=6 C=20.12Å B=1.03°24°	SENGIERITE	Cu ₂ (UO ₂) ₂ (VO ₄) ₂	Cu ₂ °(OH) ₂ (H ₂ O) ₆	Mon.	a=10.599Å	β=103.42			SR,46A,248;Am.Min.,1981,66,
Ca(UO ₂) ₆ (CO ₃) ₅ Orth. a=21.99A z=2 b=15.63A c=487A c=4.87A c=4.87A c=4.87A c=4.87A c=4.87A c=4.87A c=4.887 a=108.04° All(1h) All(1e) Orth. a=51.99A z=108.04° All(1h) All(1e) TE MnAl(PO ₃ OH) ₂ (t ₁ O ₂)[Al ^o (PO ₃ OH) ₂ (t ₁ O ₂)(All(1c)) Tric. a=9.818A p=98.63° a=108.04° All(1h) All(1e) NaMg ₂ Fe ₅ (SO ₄) ₇ (NH) 3H ₂ (H ₂ O) ₃ (OH) ₁ (All(1c)) Trig. a=12.20A a=13.67A a=10.374A a=10.3		(OH) ₂ .6H ₂ O	{2\infty}[(UO ₂) ₂ V ₂ O ₈]	P2 ₁ /a	b=8.903Å c=10.085Å	Z=2			220(Abs.);Pov.,503;Str.Tab., 356;RRW,554.
TE MnA(PO ₂ OH) ₂ {2∞}{ Mn ² (H ₂ O) ₆ Tric. a=9.504 α=108.04° All(1h) All(1e) (c) (c) (d) 6H ₂ O (d)	SHARPITE	Ca(UO ₂) ₆ (CO ₃) ₅		Orth.	a=21.99Å	Z=2			Am.Min., 1985, 70,220(Abs.);
TE MnAi(PO ₃ OH) ₂ {2∞}{ Mn(2) ₂ OH) ₂ P 1 b=9.818A α=108.04° Ali(1h) Alii(1e) C=6.860A α=108.04° Ali(1h) Alii(1e) C=6.860A γ=99.63° Mn(2l) P ₁₊₁ (2l) C=35.13A α=12.20A α=13.63 α=13.64 α=13.6				خ	D=15.63A C=4.487Å				H0lzel, 109.
NaMg,Fe ₅ (SO ₄) ₇ Na ¹⁻³ Mg ₂ ² (H ₂ O) ₃₃ Trig. C=6.860Å Y=98.87° Z=2 Z=2 Z=2 Z=1 Z=1/3 Z	SINKANKASITE		{2∞}[Mn²(H ₂ O) ₆	Tric.	a=9.590Å	$\alpha = 108.04^{\circ}$	Al _i (1h) Al _{ii} (1e) Mn(2i) P _{i-II} (2i)		Am.Min., 1995, 80, 620-627; Am. Min., 1984, 69, 380-382; K/B, 155.
NaMg ₂ Fe ₅ (SO ₄)? Nal*3Mg ₂ ² (H ₂ O) ₃₃ Trig. a=12.20Å a _R =13.67Å (OH) ₆ .33H ₂ O 2∞]{Fe ₅ °S ² O ₂₈ (OH) ₆] R 3 C=35.13Å α=53.03° Na ₄ (UO ₂) ₆ (SO ₄) ₃ Orth. a=8.80Å Z=8 (OH) ₁₀ .4H ₂ O ? b=68.48Å Z=8 : Cu ₆ AISO ₄ (OH) ₁₂ Cl Hex. a=8.245Å Z=2 : SH ₂ O P3c1 c=14.34Å Z=6 CI ₂ .8H ₂ O Non. a=10.89Å B=92°10' CI ₂ .8H ₂ O ? b=13.04Å Z=6 H ₆ U(UO ₂) ₆ (SiO ₄) ₆ Non. a=17.64Å B=103°24' H ₆ U(O ₂) ₆ (SiO ₄) ₆ P2 ₄ /a b=21.00Å Z=6			(OH)]]	-	c=6.860Å	γ=98.87° Z=2			Ì
(OH) ₆ .33H ₂ O 2∞][Fe ₅ °S ² 'O ₂₆ (OH) ₆] R 3 C=35.13Å α=53.03°' Na ₄ (UO ₂) ₆ (SO ₄) ₃ Orth. a=8.80Å Z=8 Cu ₆ AlSO ₄ (OH) ₁₂ Cl Hex. a=8.245Å Z=2 SA ₂ O Hex. a=10.89Å B=92°10' CI ₂ .8H ₂ O Non. a=17.64Å B=103°24' H ₆ U(UO ₂) ₆ (SiO ₄) ₆ P2 ₄ /a D=21.00Å Z=6 Sa ₂ O Sa ₂ O	SLAVÍKITE	NaMg ₂ Fe ₅ (SO ₄) ₇	Na ¹³ /Mg ₂ °(H ₂ O) ₃₃	Trig.	a=12.20Å	a _R =13.67Å			SR,41A,351;Str.Tab.,293;Pov.,
Na ₄ (UO ₂) ₆ (SO ₄) ₃		(OH) ₆ .33H ₂ O	2∞}[Fe ₅ °S ₇ O ₂₈ (OH) ₆]	ec C	c=35.13Å Z=1	α=53.03°' Z _R =1/3	,		599;Zeit.Krist.,1998, <u>213,</u> 141- 150;Bull.Mi.,1964, <u>87</u> ,622
(OH) _{10.} 4H ₂ O : c=14,55A : Cu ₆ AlSO ₄ (OH) ₁₂ Cl : 3H ₂ O KAl ₇ (NO ₃) ₄ (OH) ₁₆ Cl ₂ .8H ₂ O Cl ₂ .8H ₂ O H ₆ U(UO ₂) ₆ (SiO ₄) ₆ : 30H ₂ O Cl ₂ .8H ₂ O H ₆ U(UO ₂) ₆ (SiO ₄) ₆ P _{2,} /a b=21.00A Z=6 C=30.71A B=103°24' P _{2,} /a b=21.00A Z=6	SODIUM -	Na4(UO ₂) ₆ (SO ₄) ₃		Orth.	a=8.80Å	Z=8			Hölzel, 138.
Cu ₀ AISO ₄ (OH) ₁₂ Cl Hex. a=8,245Å z=2 .3H ₂ O P3c1 c=14.34Å KAI ₇ (NO ₃) ₄ (OH) ₁₆ Mon. a=10.89Å z=6 Cl ₂ ·8H ₂ O c=30.71Å c=30.74Å H ₆ U(UO ₂) ₆ (SiO ₄) ₆ Mon. a=17.64Å p=103°24′ P2 ₄ /a b=21.00Å z=6 c=20.12Å c=20.12Å	- ZIPPEITE	(OH) ₁₀ .4H ₂ O		<i>د</i>	b=68.48Å c=14.55Å				
3H2O P3c1 c=14.34A KAI ₇ (NO ₃) ₄ (OH) ₁₆ Mon. a=10.89Å β=92°10' CI ₂ .8H ₂ O ? b=13.04Å Z=6 Ci ₂ .8H ₂ O C=30.71Å Mon. a=17.64Å β=103°24' H ₆ U(UO ₂) ₆ (SiO ₄) ₆ Mon. a=17.64Å β=103°24' c=20.12Å	SPANGOLITE	CueAISO4(OH)12CI		Hex.	a=8,245Å	Z=2			RRW,571;Pov.,332;Str.Tab.,
KAI ₇ (NO ₃) ₄ (OH) ₁₆		.3H ₂ O		P3c1	c=14.34Å				294;Hölzel,134;Am.Min.,1949, 34,181-187.
Cl ₂ .8H ₂ O Cl ₂ .8H ₂ O H ₆ U(UO ₂) ₆ (SiO ₄) ₆ Mon. a=17.64Å β=103°24' 30H ₂ O P2 ₄ /a b=21.00Å Z=6 c=20.12Å	SVEITE	KAI-(NO3),(OH),6		Mon.	a=10.89Å	β=92°10'			Am.Min., 1982, 67, 1076 (Abs.);
H ₆ U(UO ₂) ₆ (SiO ₄) ₆ P2 ₄ /a b=21.00Å Z=6 c=20.12Å		Cl ₂ .8H ₂ O		٠.	b=13.04Å c=30.71Å	Z=6			Hölzel,96.
P2,/8 0=21.00A 2=6 0=20.12Å	SWAMBOITE	H ₆ U(UO ₂) ₆ (SiO ₄) ₆		Mon.	a=17.64Å	β=103°24'			Am.Min., 1983, 68, 1250 (Abs.);
		.30H ₂ O		P2 ₁ /8	c=20.12Å	9=7			292;Can.Min.,1981,19,553-557

NAME	CHEMICAL	STRUCTURAL EODMIII A	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
SWARTZITE	CaMg(UO ₂)(CO ₃₎₃ . 12H ₂ O	Mg°Ca ^[880] (H ₂ O) ₁₂ [U ^[6p30] O ₂ (C ^r O ₃₎₃]	Mon. P2 ₁ /m	a=11.080Å b=14.634Å c=6.439Å	β=99.43° Z=2			Min.Abs.,87M/2145;Pov.,625; Str.Tab.,249;RRW,594;Hölzel, 109.
SYNADELPHITE	(Mn,Mg,Ca) ₉ (AsO ₄) ₂ (AsO ₃) (OH) ₉ ,2H ₂ O	(Mn,Mg,Ca),As2 As ^[5y] [O ₁₁ (OH),(H ₂ O) ₂] ^{ch}	Orth. Pnma	a=10.754Å b=18.865Å c=9.884Å	Z=4	Asi(4c) Asii(8d) Mni(4c) Mnii-v(8d)		Am.Min.,1970, <u>55,</u> 2023-2037; RRW,596;Pov.,512;Str.Tab., 321;SR, <u>35A</u> ,360-361.
TENGCHONGITE	004)2		Orth. A2 ₁ 22	a=15.616Å b=13.043Å c=17.716Å	Z=4			Am.Min.,1988 <u>,73</u> ,195-196 (Abs.);Hölzel,141.
TERUGGITE	Ca ₄ Mg (AsB ₆ O ₁₁ (OH) _§) ₂ . 14H ₂ O	Mg°(H ₂ O) ₆ {3∞}{Ca ₄ ⁸ } (As'Be ^{6t} O ₁₁ (OH) ₆) ₂ (H ₂ O) ₈]	Mon. P2₁/a	a=15.675Å b=19.920Å c=6.255Å	β=95°20' Z=2	Mg(2a) As(4e) Ca∟ı(4e) B∟vı(4e)		Am.Min., 1973, <u>58</u> , 1034-1043; Am.Min.1968, <u>53</u> , 1815-1827; SR. <u>394</u> , 265-266, RRW, 610; Pov., 483, Str. Tab., 262.
THREADGOLDITE AI(UO ₂₎₂ (PO ₄₎₂ (OH).8H ₂ O	AI(UO ₂) ₂ (PO ₄) ₂ (OH).8H ₂ O	(H ₂ O) ₈ (OH)[Al ^{6]} {2∞}[U ^[2+4] O ₂ P ⁴ O _{4]2}] (≈Autunite)	Mon. Cc	a=20.168Å b=9.842Å c=19.719Å	β=110.71° Z=8	U-⊦v(4a) P∟v(4a) AI⊦⊩(4a)	(H ₂ O) ₁₀ [Ca ^{l9]} {2∞}[U ⁽⁴⁺²⁾ O ₂ P [‡] O ₄] ₂] Dist. deriv. AUTUNITE	Acta Cryst., 1979, <u>B35</u> , 3017- 3020; SR. <u>45A</u> , 313-314; Am. Min., 1980, <u>65,</u> 209(Abs.); K/B, 162.
TIPTOPITE	K ₂ (Li,Na,Ca) ₆ Be ₆ (PO ₄) ₆ (OH) ₂ . 1.3H ₂ O	(Li,Na,Ca) ₆ K ₂ (H ₂ O) _{1·3} (OH) ₂ {3∞}{Be _c P _c O ₂₄] (≈Cancrinite,Zeolite)	Hex. P6 ₃	a=11.655Å c=4.692Å		Be(6c) P(6c) O _{LIV} (6c) K(2b) 		Am.Min.,1987, <u>72</u> ,816-820; Hölzel,159;LF,300.
TISINALITE	H ₃ Na ₃ (Mn,Ca,Fe)Ti Si ₆ (O,OH) ₁₈ .2H ₂ O		Trig. R [.] 3m	a=10.14Å c=13.08Å Z=1	a _R =7.30Å α=88° Z _R =1/3			Am.Min.,1981, <u>66,</u> 219-220 (Abs.);Hölzel,208.
TLALOCITE	Cu ₁₀ Zn ₆ Te ₃ O ₁₁ Cl (OH) ₂₅ .27H ₂ O		Orth.	a=16.780Å b=19.985Å c=12.069Å	1 1			Min.Abs.,80-0755;Hölzel,93; Min.Mag.,1975, <u>40,</u> 221-226; Hölzel,93.
TRASKITE	Ba ₁₂ Fe ₂ Ti ₆ Si ₁₂ O ₅₄ Cl ₃₋ 7H ₂ O		Hex. P [.] 6m2	a=17.89Å c=12.33Å	Z=3?			Min.Abs.,78-202;Holzel,208; RRW,623-624;Pov.,366;Str. Tab.407;Am.Min.,1965, <u>50</u> ,314- 340.
TRIANGULITE	Al ₃ (UO ₂) ₄ (PO ₄) ₄ (OH) ₅ .5H ₂ O		Tric. P1	a=10.39Å b=10.56Å c=10.60Å	α=116.4° β=107.8° γ=113.4° Z=1			Am.Min., 1984, <u>69,</u> 212(Abs.); Hölzel, 183.
TRÖGERITE	(H ₃ O) ₂ (UO ₂) ₂ (AsO ₄) ₂ .6H ₂ O	U ₂ ⁸ As ₂ ¹ [O ₁₂ (H ₂ O) ₆ (H ₃ O) ₂]	Tet. P4/nmm	a=7.16Å c=8.80Å	Z=4 ?			Pov.,522;RRW,629;Str.Iab., 352;Min.Abs.,76-874;Hölzel, 180;
TRONA	Na ₃ (HCO ₃)(CO ₃). 2H ₂ O	2∞[Na₃ ^{op} H(H₂O)₂ {g}[C ^{tr} O₃]₂]	Mon. C2/C	a=20.346Å b=3.49Å c=10.296Å	β=106°26′ Z=4	Na ₁ (4e) Na ₁₁ (8q) H ₁ (4a) H ₁₋₁₁₁ (8f) C(8f) O _{1-IV} (8f)	2∞[Na ₃ ^{op} H(H ₂ O) ₂ {g}[C ^t O ₃] ₂] TRONA	LF,249;RRW,630;Pov,626,Am. Min.,1959,44,274-281;SR,20, 389-392;Str.Tab.,245.

CaculOsia(Poly)	NAME	CHEMICAL	STRUCTURAL EODMIII A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
CZPM		LOKWOLA 0.000	NOW WOLK	TOOLS IN	2010	000			Am Min 1000 75 243/Ahs):
Ca ^[8] (H ₂ O ₂) ₂ (SlO ₄) ₂ P2, a = 15.42A	ULKICHILE	CaCu(UO ₂)(PO ₄) ₂		C2/m	a=12.79A b=6.85Å	7=91.03 ⁻			Str. Tab., 584; Hölzel suppl
Ca ^[3] (H ₂ O) ₂ H ₂ (2∞) Ca ^[3] (H ₂ O) ₃ H ₂ (2∞) [(U ^[2-3] O ₂) ₂ (SiO ₃) ₃] P2 ₁ C=6.665A Ca ^[3] (H ₂ O) ₃ H ₂ (2∞) Ca ^[4] (H ₂ O) ₃ H ₂ (2∞) Data)		•	c=13.02Å				
Pbnm	URANCALCARITE	Ca(UO ₂) ₃ CO ₃ (OH) ₆		Orth.	a=15.42Å	2=4			Am.Min., 1985, 70, 438-439
Ca(UO))? Ca(UO)?		.3H2O		Pbnm	b=16.08A c=6.970Å				(Abs.);Bull.Min.,1984, <u>107,</u> 21- 24.
CalCo CalC	Tive in Contract			Mon	0-1E 000Å	0-07 270	(9C) Si (9C)	_	Acts Crest 1988 C44 421-424
HAI(UO ₂) ₄ (PO ₄) ₄ Tet. a=7.00Å Z=1 Det. a=9.22Å Z=2 Det. a=9.22Å Det. a=9.22Å Z=4 Det. a=9.22Å Det. Det. a=9.22Å Det. Det. a=9.23Å Det.	UKANOPHANE		Ca (H ₂ O) ₅ H ₂ {2∞} [(U ^[2+5] O ₂) ₂ (SiO ₄) ₂]	P2,	a=15.909A b=7.002Å	p=97.27 Z=2	Ca(2a) Sili(2a)		Pov., 455-456, Str. Tab., 385;
HAN(UO ₂) ₂ (PO ₄) ₄ . Tet. a=7.00Å Z=1 40H ₂ O ₁ C=30.02Å C=30.02Å C=30.02Å C=30.02Å C=30.02Å C=30.02Å C=30.02Å C=2.03 C=2.02Å C=2.03 C=2.0			7/1		c=6.665Å		O _{I-XVII} (2a)	URANOPHANE	RRW,641;Am.Min.,1981, <u>66,</u> 610-625:LF.244
(Fe Ba Pb)(Uo ₂) ₂ P4 ₂ /n c=30.02A (Fe Ba Pb)(Uo ₂) ₂ Orth. a=9.22A Z=2 (Mg,Ca) ₄ (Uo ₂) ₂ Orth. p=13.81A Z=2 (Mg,Ca) ₄ (Uo ₂) ₂ Orth. ? P222; (Si2 ₂) ₂ , s(OH) ₂ . Orth. ? P ₁₄ (Ab) (Si2 ₂) ₂ , s(OH) ₂ . P24,mn a=17.06A Z=4 P ₁₄ (Ab) (OH) ₂ , H ₂ O (PC) ₂ , (OH) ₂ I P24,mn a=17.06A Z=4 P ₁₄ (Ab) (OH) ₂ , H ₂ O (PC) ₂ , (OH) ₂ I Mon. a=17.06A Z=4 P ₁₄ (Ab) (OH) ₂ , H ₂ O (PC) ₂ , (OH) ₂ I Mon. a=20.81A E=20.81 E=24.5A Sr ₂ (B ₂ O ₂ (OH)) ₂ B Sr ₂ (Mn,Ca,Zh) ₂ As ₄ Mon. a=20.81A E=4 B ₁₄ (4a) Sr ₂ (B ₂ O ₂ (OH)) ₂ B Sr ₂ (Mn,Ca,Zh) ₂ As ₄ Mon. a=10.17A Z=4 B ₁₄ (4a) Sr ₂ (B ₂ O ₃ (OH)) ₂ B Mn, Ca,Zh) ₂ As ₄ Mon. a=10.17A Z=4 A ₂ Mn,(4a) (OH) ₃ , H ₂ O (Sa ₂ (So ₄) ₂ (Se ₄ As ₂ O ₃) (Mn,Ca,Zh) ₂ As ₄	TINANOSPATHITE	HAI(IO2),(PO.),		Tet	a=7.00Å	Z=1			Min.Mag.,1978,C44,117-128;
(Fe,Ba,Pb)(UO2)2 Orth. VMo ₄ (OH) ₄ .12H ₂ O Def.13.81 A P222 ₁ b=13.81 A P222 ₁ b=13.81 A P2.17A Z=2 (Mg,Ca) ₄ (UO ₂₎ 4 (Sig ₂ O ₃ b ₃ s(OH) ₅ . (Sig ₂ O ₃ b ₃ s(OH) ₅ . (OH) ₄ -4H ₂ O (H ₂ O) ₄ (OH) ₄ U (PCO ₃) ₂ (OH) ₂ D Orth. P2.17M		40H ₂ O		P42/n	c=30.02Å				Pov., 763; RRW, 642; Hölzel, 180.
WO ₄ (OH) ₄ ,12H ₂ O P2221 D=13.81A (Si ₂ O ₃) ₅ s(OH) ₅ . Orth. ? P2221 P21.17A (Si ₂ O ₃) ₅ s(OH) ₅ . (H ₂ O) ₄ (OH) ₄ U Orth. ? P2.176A Z=4 P ₁₀ (4b) U ₁₀ (2a) (OH) ₅ 4H ₂ O (PO ₄) ₂ (OH) ₂ I P2.170H D=16.78A Z=4 P ₁₀ (4b) U ₁₀ (2a) (OH) ₅ 4H ₂ O (PO ₄) ₂ (OH) ₂ I Mon. a=10.55A Z=4 P ₁₀ (4b) (OH) ₁ 11H ₂ O (PO ₄) ₂ (OH) ₂ I Mon. a=20.81A Z=24 B ₁₀ (4a) (OH) ₂ H ₂ O (E ₂ O ₂ (OH) ₂) ₂ B ₂ (OH) ₂ B	URANOTUNGSTI-	(Fe,Ba,Pb)(UO ₂) ₂		Orth.	a=9.22Å	Z=2			Am.Min.,1986,71,1547(Abs.);
(Mg,Ca) ₄ (UO ₂) ₄ (Sl ₇ O ₃) ₅ s(OH) ₅ . (Sl ₇ O ₃) ₅ s(OH) ₅ . (Sl ₇ O ₃) ₅ s(OH) ₅ . (UUC) ₂ (PO ₄) ₂ (H ₇ O ₃ (OH) ₃ U (PO ₃) ₂ (OH) ₃ U (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₂ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₃ (OH) ₃ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₄ (DH) ₂ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₄ (PO ₃) ₄ (DH) ₂ A(UO ₂) ₂ (VO ₄) ₂ (PO ₃) ₄	H	WO ₄ (OH) ₄ .12H ₂ O		P2221	D=13.81A C=7.17Å				H0lzel,141.
(Sh2O ₃) S(OH) ₂ (H2O ₄) (TT ISOIT	(Mr.Ca).(IIO.).		dright	2				Am.Min 1959.44,464-465;
U(UC ₂) ₂ (PO ₄) ₂ (H ₂ O) ₄ (OH) ₄ U Orth. a=17.06Å Z=4 P _{LII} (4b) U _{1II} (2a) (OH) ₆ .4H ₂ O {2∞}{(U ²⁻³ O ₂) ₂ P2 ₁ /mn D=16.76Å U _{V-V} (4b) AI(UC ₂) ₂ (VO ₄) ₂ (P¹O ₄) ₂ (OH) ₂] Mon. a=10.84Å Z=4 AI(UC ₂) ₂ (VO ₄) ₂ Sr ₂ (W ₁) ₂ (P ₁) ₂ Mon. a=20.81Å β=92°1' Sr ₂ (4a) (OH) ₃ .11/40 (Sr ₂ (B ₂ O ₈ (OH)) ₂ B Sr ₂ (B ₂ O ₈ (OH)) ₂ B Mon. a=20.81Å β=92°1' Sr ₂ (4a) (OH) ₃ .14/20 (Sr ₂ (B ₂ O ₈ (OH)) ₂ B Tric. a=20.80Å α=90°0' C=6.64Å Sr ₂ (B ₂ O ₈ (OH)) ₂ B Tric. a=20.80Å α=90°0' C=6.63Å Z=4 (OH) ₃ .14/20 (Mn, Ca,Zn) ₂ A ₂ (Mon. A1 a=11.72Å B=90°48' (CH) ₃ .14/20 (Nm, Ca,Zn) ₂ A ₂ (Mon. A2 A5(4a) (ASO ₃ OH) ₂ (ASO ₄) ₂ . (Mon. Ca,Zn) ₂ A ₂ (Mon. A5(4a) (ASO ₃ OH) ₂ (ASO ₄) ₂ . (H ₂ O) ₂ (ASO ₃ (A) ₂ (ASO ₃ A) ₃		(Si ₂ O ₅) _{5.5} (OH) ₅ .			•				Hölzel, 196.
(ÖH)6.4H₂O (≥∞){(U³-50₂)₃ P2₁/mn b=16.76A U _{IV-V} (4b) Al(UO₂)₂(VO₃)₂ (PO₃)₂ (OH)₂ Mon. a=10.55A Z=4 A(UO₂)₂(VO₃)₂ A2/a b=8.44A B=82²¹¹ (OH)₁.11H₂O (Sr₂¹I¹⁰¹¹¹¹¹²(OH)₃ Mon. a=20.81A β=92²¹¹ Sr₂(B₅O₃(OH))₂B Sr₂¹I⁰³¹¹²(OH)₃ Mon. a=20.80A α=90°0¹ Sr₂(B₅O₃(OH))₂B Tric. a=20.80A α=90°0¹ Sr₂(B₅O₃(OH))₂B Tric. a=20.80A α=90°0¹ (OH)₃.H₂O (Mn, Ca.Zn)₅²As₄¹ Mon. a=18.015A β=90°48¹ (AsO₃OH)₂(AsO₃)₂ (Mn, Ca.Zn)₅²As₄¹ Mon. a=18.015A β=90°238² (Na, K, Ca)₃(Sis/Al₅) (Na, K, Ca)₃(So₃) Hex. a=12.58A Z=4 A1 (AsO₃OH)₂(Sis/Al₅O₂) Hex. a=12.58A Z=1 A1 (AsO₃OH)₂(Sis/Al₅O₂) Hex. a=12.58A Z=1 A2.a A1.a a=5.11A O□√√(Gc) A1.a a=5.14A B=97°19² A2.a A2.a	VANMEERSS-		(H-0)4(OH)4U	Orth.	a=17.06Å	2=4	P _{[-11} (4b) U _{[-111} (2a)		K/B,161;Am.Min.,1982,67,
Al(UO ₂) ₂ (VO ₄) ₂ Al(UO ₂)	CHEITE		{2\infty\(\bigcup\)^{[2+5]}\(\O_2\)_3	P2 ₁ /mn	b=16.76Å		U _{IV-V} (4b)		1077, (Abs.); Hölzel, 181.
Al(UO ₂) ₂ (VO ₄) ₂ Al(UO ₂) ₂ (VO ₄) ₂ Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ (B ₅ O ₈ (OH)) ₂ B CoH) ₃ .H ₂ O E (Mn, Ca, Zn) ₅ (AsO ₃ OH) ₂ (AsO ₄) ₂ (AsO ₃ OH) ₂ (AsO ₄) ₃ (AsO ₃ OH) ₃ (AsO ₄) ₃ (AsO ₃ OH) ₃ (AsO ₄) ₃ (AsO ₄ O ₄ (AsO ₄) ₃ (AsO ₄ OH) ₃ (AsO ₄) (AsO ₄ OH) ₃ (AsO ₄) ₃ (AsO ₄ OH) ₃ (AsO ₄) (AsO ₄ OH) ₃ (AsO ₄ OH) (AsO ₄			(P ¹ O ₄) ₂ (OH) ₂]		c=7.023A				
(OH).11H₂O A2/a D=8.44A C=24.52Å Sf₂(B₅Og(OH))₂B Sr₂ ^{(Inor11} B²(OH)₃ Mon. a=20.81Å β=92°1' Sr₁·(4a) (OH)₃-H₂O {2∞}{B₂¹B₂¹B₃²(OH)₃² Aa b=11.74Å Z=4 B₁·xi(4a) Sf₂(B₅Og(OH))₂B Tric. a=20.80Å α=90°0' Sf₂(B₅Og(OH))₂B Tric. a=20.80Å α=90°0' (OH)₃-H₂O A1 b=11.72Å β=90°48' (CH)₃-H₂O (Mn, Ca,Zn)₅ As⁴ Mon. a=18.015Å β=96.238° (AsO₃OH)₂(AsO₄)₂ (Mn, Ca,Zn)₅ As⁴ Mon. a=18.015Å Z=4 As₁····(4a) (Na K, Ca)₅(SisAl₅) (Na K, Ca)₅(SO₄) Hex. a=12.58Å Z=1 Si(6c) Al(6c) Ca₂(ASO₄).2H₂O (H₂O)₂{3∞}{Sisel²Al₅O₂o4} Mon. a=5.81Å β=97°19' Ca₂(ASO₄).2H₂O (AsO₃OH)₂.5H₂O P2./c P2./c C=2.7 75Å	VANURALITE	AI(UO ₂) ₂ (VO ₄) ₂		Mon.	a=10.55A	2=4			Bull.Min., 1970, 93, 242-248; Am.
Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₂ ¹¹⁰⁰ r ¹¹ B ¹ (OH) ₃ Mon. a=20.81A β=92°1' Sr _{1-II} (4a) (OH) ₃ . H ₂ O {2∞}{B ₂ ¹ D ₈ (OH)} ₂ Aa b=11.74A Z=4 B _{1-XI} (4a) Sr ₂ (B ₅ O ₈ (OH)) ₂ B {2∞}{B ₂ ¹ D ₈ (OH)} ₂ Tric. a=20.80A α=90°0' Sr ₂ (B ₅ O ₈ (OH)) ₂ B Tric. a=20.80A α=90°0' (OH) ₃ . H ₂ O A1 b=11.72A β=90°48' (OH) ₃ . H ₂ O A1 c=6.63Å Z=4 A+D ₂ O (Am, Ca,Zn) ₅ As ₄ ' Mon. a=18.015Å β=96.238° Mn, A+D ₂ O (Na, K, Ca) ₆ (SO ₄) Hex. c=9.770Å Si(6c) Al(6c) Ca ₅ (SO ₄). 2H ₂ O (H ₂ O) ₂ (3∞){Si ₆ /B ₁ 6 ¹ O ₂ d Hex. a=12.58Å Z=1 Si(6c) Al(6c) Ca ₅ (ASO ₄). 2H ₂ O (H ₂ O) ₂ (3∞){Si ₆ /B ₁ 6 ¹ O ₂ d Mon. a=5.81Å β=97°19' Ca ₅ (ASO ₄). 2H ₂ O P2./c P2./c C=2.7 7.5A Si(6c) Al(6c)		(OH).11H ₂ O		A2/a	D=8.44A				MIN., 197 1, 30, 039-04U, F0V.,
Sr ₂ (B ₅ O ₈ (OH)) ₂ B Sr ₁ ^{110/11} B ¹⁷ (OH) ₃ Mon. a=20.81Å β=92°1' Sr _{1-II} (4a) (OH) ₃ . H ₂ O {2∞}{B ₂ ¹ D ₈ (OH)} ₂ Aa b=11.74Å Z=4 B _{1-XI} (4a) Sr ₂ (B ₅ O ₈ (OH)) ₂ B {2∞}{B ₂ ¹ D ₈ (OH)} ₂ Tric. a=20.80Å α=90°0' Sr ₂ (B ₅ O ₈ (OH)) ₂ B Tric. a=20.80Å α=90°0' (OH) ₃ . H ₂ O A1 c=6.63Å γ=91°57' (OH) ₃ . H ₂ O (Mn, Ca,Zn) ₅ As ₄ ' Mon. a=18.015Å β=96.238° Mn _{1-III} (4a) (Na K, Ca) ₂ (Si ₂ Al ₂) (Na, K, Ca) ₃ (SO ₄) Hex. c=9.770Å Si(6c) Al(6c) (Na K, Ca) ₂ (SO ₄). 2H ₂ O (H ₂ O) ₂ (3∞){Si ₂ Al ₂ (SO ₂)} Hex. a=12.58Å Z=1 Si(6c) Al(6c) Ca ₂ (SO ₄). 2H ₂ O (H ₂ O) ₂ (3∞){Si ₂ Al ₂ (SO ₂){Si ₂ Al ₂ (SO ₂)} Mon. a=5.81Å β=97°19' Ca ₅ (ASO ₄). 2H ₂ O P2./c P2./c C=2.7 7.5Å Si (6c) Al(6c)					C=24.52A				303,301.180.,330,RAVV,047-
Sf ₂ (B ₅ C ₉ (CH)) ₂ B Sf ₂ = 16 (CH) ₃ Mon. (CH) ₃ . H ₂ O (CH) ₂ (A ₅ O ₄) (Mn, Ca, Zn) ₅ °As ₄ ' Mon. (A ₅ O ₃ O ₄ O ₄ O ₄) ₂ (Mn, Ca, Zn) ₅ °As ₄ ' Mon. (A ₅ O ₃ O ₄			C. HOTTING	Mos	8 70 00	17000	(40)		Sov. Dhis Cost 1071 16 236.
Sr ₂ (B ₂ OH)) ₂ B Sr ₂ (B ₂ OH)) ₃ B Sr ₂ (B ₂ OH)) ₃ B E (Mn, Ca, Zn) ₅ As ₄ Mon. a=18.015A β=90*48' c=6.63Å	VEATCHITE	Sr ₂ (B ₅ O ₈ (OH)) ₂ B	Sr ₂ '''' 'B' (OH) ₃	Mon.	a=20.81A	β=92°1°	Of - (4a)		240:Higs.Ciyst., 1971, 10,230-
Sr ₂ (B ₅ C ₉ (OH)) ₂ B Sr ₂ (B ₅ C ₉ (OH)) ₂ B (OH) ₃ .H ₂ O (Mn, Ca, Zn) ₅ °As ₄ ' (Mn, Ca, Zn) ₅ (Sn) ₅ (Sn) ₅ (Sn) ₄ (Sn) ₅ (Sn) ₅ (Sn) ₄ (Sn) ₅ (Sn) ₄ (Sn) ₅		(OH)3.H ₂ O	{2∞}[62.63.08(OH)]2	¥8	D=11./4A	4=7	DI-XI(44)		56 1034-1054-Dov 489-SP
Sr ₂ (B ₅ O ₈ (OH)) ₂ B (OH) ₃ . H ₂ O (Mn, Ca, Zn) ₅ ^o As ₄ ^t (Nn, Ca, Zn) ₅ ^o As ₄ ^t (Nn, Ca, Zn) ₅ ^o As ₄ ^t (Nn, Ca) ₅ (Si ₅ Al ₅) (Na, K, Ca) ₅ (Si ₅ Al ₅) (Na, K, Ca) ₅ (Si ₅ Al ₅) (Na, K, Ca) ₅ (Si ₅ Al ₅) (Na, K, Ca) ₅ (So ₄) 2H ₅ O (Ca ₅ (ASO ₄) 2H ₅ O (7,0.0-0				37A,373-374;RRW,650.
(OH) ₃ .H ₂ O E (Mn, Ca, Zn) ₅ As ₄ Mon. a=18.015 β=90°48' c=6.63Å γ=91°57' c=6.23° Mn _{1,III} (4a) mon. α=18.015Å β=90°48' mn _{1,III} (4a) mon. α=18.015Å β=90°48' mn _{1,III} (4a) mon. α=18.016 β=90°48' mn _{1,III} (4a) mon. α=18.016 β=90°48' mn _{1,III} (4a) mon. α=18.019Å β=90°48' mn _{1,III} (4a) mn _{1,III} (4a) mon. α=18.019Å β=90°48' mn _{1,III} (4a) mn _{1,III} (4a) mon. α=18.019Å β=90°48' mn _{1,III} (4a) mn _{1,III} (4a	VEATCHITE - A	Sr,(B,O,(OH)),B		Tric.	a=20.80Å	α= 90 _° 0,			Am.Min., 1979, 64, 362-366;
(Mn,Ca,Zn) ₅ (Mn,Ca,Zn) ₅ ⁵ As ₄ Mon. a=18.015Å β=96.238 Mn _{1-lil} (4a) (AsO ₃ OH) ₂ (AsO ₄) ₂ . [O ₁₄ (OH) ₂ (H ₂ O) ₄] Cc b=9.261Å Z=4 As _{1-lil} (4a) 4H ₂ O (≈Sainfeldite) Cc b=9.261Å Z=4 As _{1-lil} (4a) (≈Sainfeldite) Cc c=9.770Å As _{1-lil} (4a) (¬Sainfeldite) Cc c=9.711Å As _{1-lil} (4a)		(OH) ₃ .H ₂ O		A1	b=11.72Å	β=90°48'			Hölzel,119.
(Mn.Ca,Zn) ₅ (Mn, Ca,Zn) ₅ dss ₄ Mon. Mon. a=18.015Å β=96.238 mn _{-lill} (4a) Mn _{-lill} (4a) (AsO ₂ OH) ₂ (AsO ₄) ₂ . [O ₁₄ (OH) ₂ (H ₂ O) ₄] Cc b=9.261Å Z=4 As _{-lill} (4a) As _{-lill} (4a) 4H ₂ O (≈Sainfeldite) Hex. a=12.58Å Z=1 Si(6c) Al(6c) (Na,K,Ca) ₈ (Si ₆ Al ₈ (O ₂₄) Hex. a=12.58Å Z=1 Si(6c) Al(6c) O ₂₄ (SO ₄).2H ₂ O (H ₂ O) ₂ (3∞){Si ₆ Al ₈ (O ₂₄) P6 ₃ 2 c=5.11Å O _{1-V} (6c) (asO ₄ (AsO ₄).2 (AsO ₂ OH) ₂ .5H ₂ O P2 _{-l} /c P2 _{-l} /c D-10.9Å Z=3					c=6.63Å	γ=91°57' Z=4			
(ASO ₃ OH)₂(ASO ₄)₂. [O₁₄(OH)₂(H₂O)₃] Cc b=9.261Å Z=4 As₁····(4a) 4H₂O (≈Sainfeldite) Hex. c=9.770Å si(6c) Al(6c) (Na,K,Ca)₃(Si₀Ali₃(O₂₄) Hex. a=12.58Å Z=1 Si(6c) Al(6c) O₂₄(SO₃).2H₂O (H₂O)₂(3∞){Si₀Ali₃(O₂₄) P6₃₂ c=5.11Å O₁··ν(6c) Ca₂(ASO₃).2H₂O (AsO₂OH)₂.5H₂O P2₁/c P2₁/c p2₁/c (AsO₃OH)₂.5H₂O P2₁/c Cancinite, Canci	VILLYAELLENITE	(Mn.Ca.Zn) ₅	(Mn,Ca,Zn) ₅ ^o As ₄	Mon.	a=18.015Å	β=96.238			Am.Min., 1988, 73, 1172-1178;
4H₂O (Na,K,Ca) ₈ (Si ₈ Al ₈) (Na,K,Ca) ₈ (Si ₈ Al ₈ O ₂₄) Hex. a=12.58Å Z=1 Si(6c) Al(6c) O₂4(SO ₄).2H₂O (H₂O)₂(3∞){Si ₈ Al ₈ O ₂₄ P6₃2 c=5.11Å O₁⋅ν(6c) (≈Cancrinite,Zeolite) Mon. a=5.81Å β=97°19' (AsO₃OH)₂.5H₂O P2₁/C C=2.7 7.4 Å		(ASO ₂ OH) ₂ (ASO ₄) _{2.1}	[O,4(OH),(H),]	ဗ	b=9.261Å	Z=4	-		Am.Min., 1986, 71, 1547 (Abs.);
(Na,K,Ca) ₈ (Si ₈ Al ₆) (Na,K,Ca) ₈ (SO ₄) Hex. a=12.58Å Z=1 Si(6c) Al(6c) O ₂₄ (SO ₄).2H ₂ O (H ₂ O) ₂ (3∞){Si ₈ Al ₈ O ₂₄] P6 ₃ 2 c=5.11Å O _{1-tV} (6c) ≈Cancrinite,Zeolite) Mon. a=5.81Å β=97°19' € (AsO ₃ OH) ₂ : 5H ₂ O P2 ₁ /c P2 ₁ /c c=2.7.74Å		4H20	(«Sainfeldite)		c=9.770Å				Encyc.Miner.Nam.,320.
O₂₄(SO₄).2H₂O (H₂O)₂(3∞){Sie¹Ale²O₂₄ P6₃2 c=5.11Å O₊ιν(8c) (≈Cancrinite,Zeolite) Mon. a=5.81Å β=97°19′ (AsO₃OH)₂.5H₂O P2₁/c P2₁/c C=2.7.75Å		(Na,K,Ca) ₈ (Si ₆ Al ₆)	(Na,K,Ca) ₈ (SO ₄)	Hex.	a=12.58Å		Si(6c) AI(6c)		RRW,654;Str.Tab.,482;Pov,
Ca ₅ (ASO ₄) ₂ (ASO ₃ OH) ₂ .5H ₂ O P2 ₄ /c b=10.19Å Z=3 C=22.75Å		O ₂₄ (SO ₄).2H ₂ O	(H ₂ O) ₂ {3∞}{Si ₆ ^t Al6 ^t O ₂ 4] (≈Cancrinite,Zeolite)	P6 ₃ 2	c=5.11Å		O _{I-IV} (6c)		764;Hölzel,240;LF,300.
	VLADIMIRITE	Ca ₅ (AsO ₄) ₂		Mon. P2./c	a=5.81Å	β=97°19'			339-Pov 520-Am Min 1965
		(ASC3CT)2.5T2C		2	c=22.75Å	2			50,813(Abs.).

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
VOGLITE	Ca ₂ Cu(UO ₂)(CO ₃) ₄ 6H ₂ O		Mon. P2 ₁	a=25.97Å b=24.50Å c=10.70Å	β=104.0° Z=16			J.Appl.Cryst.,1979 <u>,12,</u> 616; Hölzel,109.
WALPURGITE	Bi ₄ O ₄ (UO ₂) (AsO ₄₎₂ .2H ₂ O		Tric. P 1	a=7.135Å b=10.426Å c=5.494Å	$\alpha = 101.47^{\circ}$ $\beta = 110.82^{\circ}$ $\gamma = 88.20^{\circ}$ Z = 1			Min.Abs.,83M/1226;Am.Min., 1983, <u>68</u> ,852(Abs.);Pov.,524; Str.Tab.,350;RRW,661.
WERMLANDITE	CaMg ₇ (AI,Fe) (SO ₄) ₂ (OH) ₁₈ . 12H ₂ O	Ca°Mg₁°(Al,Fe)°S₂¹ [O ₈ (OH)₁8(H₂O)₁2] (≈Hydrocalumite)	Trig. P 3c1	a=9.303Å c=22.57Å	2=2	(Ca,Mg)(2b) (AI,Fe)(4d) S(4d) Mgi(2a) Mgilli(6f)		Zeit. Krist., 1984, 168, 133-144; Am. Min., 1972, <u>57</u> , 327 (Abs.); RRW, 667-668; Hölzel, 107; Pov., 764.
WILHELMVIER- LINGITE	CaMnFe(PO ₄) ₂ (OH).2H ₂ O		Orth. Pbca	a=14.80Å b=18.50Å c=7.31Å	Z=8			K/B,157;Am.Min.,1984, <u>69</u> ,568 (Abs.);Hölzel,176.
YUKSPORITE	(K,Ba)NaCa ₂ (Si,Ti) ₄ O ₁₁ (F,OH). H ₂ O		Orth.	a=24.869Å b=16.756Å c=7.057Å	Z=3			Am.Min., 1986, <u>71,</u> 1547-1548 (Abs.);Hölzel, 224.
ZIPPEITE	K ₄ (UO ₂)ε(SO ₄) ₃ (OH) ₁₀ .4H ₂ O		Mon C2/c	a=8.755Å b=13.987Å c=17.730Å	β=104.13° Z=2	β=104.13° K _{i-ll} (8f) (occ. ½) Z=2 U _{i-ll} (8f)		Can.Min., 1995,33,1091-1101; RRW,689;Pov.,602;Hölzel,138.
ZODACITE	Ca ₄ MnFe ₄ (PO ₄) ₆ (OH) ₄ .12H ₂ O	$(H_2O)_{12}Ca_4^{[8]}\{1\infty\}$ Mon. [Mn°Fe ₄ °P ₆ O ₂₄ (OH) ₄] C2/c (=Montgomeryite)	Mon. C2/c	a=10.152Å b=24.14Å c=6.308Å	β=91.14° Z=2			Am.Min.,1988 <u>,73</u> ,1179-1181; Min.Abs.,89M/2284;Hölzel, 176.
ZYKAITE	Fe ₄ (AsO ₄) ₃ SO ₄ (OH).15H ₂ O		Orth.	a=20.85Å b=7.036Å c=37.01Å	Z=8			Am.Min.,1978, <u>63</u> ,1284(Abs.); Hölzel,169.

$A_pB_qC_rD_sE_xF_yG_r.nAq.$

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
AËRINITE	Ca ₄ (AI,Fe,Mg) ₁₀ Si ₁₂ O ₃₆ (OH) ₁₂ CO ₃ . 12H ₂ O		Mon.	a=14.690Å b=16.872Å c=5.170Å	β=94°45' Z=1			Am.Min.,1988 <u>,73</u> ,1498-1499 (Abs.);Hölzel,193.
ALBRECHT- SCHRAUFITE	Ca₄Mg(UO₂)₂ (CO₃)₅F₂.17H₂O		Pitc.	a=13.562Å b=13.406Å c=11.636Å	α =115.75° β =107.66° γ =92.86° Z=2			Acta Cryst.,1984, <u>A40,</u> C-247 (Abs.); Hölzel suppl
BAKERITE	Ca ₄ B ₄ (BO ₄)(SiO ₄) ₃ (OH) ₃ .H ₂ O	Ca₄(H₂O) {2∞}{B ₆ 'Si₃¹O₁₂(OH)₃] (≈Datolite)	Mon. P2,/c	a=4.82Å b=7.60Å c=9.60Å	β=90°12' Z=1			Am.Min.,1962,47,919-923; Hölzel,193;RRW,47;Pov.,728, 437;Str.Tab.,383.
BURCKHARDTITE Pb ₂ (Fe.Mn)Te (Si ₃ Al)O ₁₂ (OH) H ₂ O	Pb ₂ (Fe,Mn)Te (Si ₃ Al)O ₁₂ (OH) ₂ . H ₂ O		Mon. ?	a=5.21Å b=9.04Å c=12.85Å	β=90° Z=2			Am.Min.,1979, <u>64</u> ,355-358; Hölzel,237.
BYELORUSSITE - - (Ce)	NaBa ₂ Ce ₂ MnTi ₂ Si ₈ O ₂₆ (F,OH).H ₂ O		Orth. P2 ₁ 2 ₁ 2 ₁	a=10.57Å b=9.69Å c=22.38Å	Z=4			Am.Min.,1991 <u>,76</u> ,665-666 (Abs.);Hölzel suppl
	(Ca,Yb,Er) ₄ Y ₄ Si ₈ O ₂₀ (CO ₃) ₆ (OH). 7H ₂ O	(Ca,Yb,Er), ^[8] Y, ^[8] (H ₂ O),⁄(3∞){Sis,O ₂₀ {g}[C ¹ O _{3]s} (OH)]	Orth. Ccm2 ₁	a=13.27Å b=13.91Å c=9.73Å	Z=2			SR <u>,44A</u> ,304;Hölzel,230;Am. Min.,1976 <u>,61</u> ,174-175.
CHALCOPHYLLI- TE	Cu ₉ Al(AsO ₄₎₂ (SO ₄) _{1.5} (OH) ₁₂ . 18H ₂ O	Cu ₉ °Al°As ₂ 'S _{1.5} ' [O ₁₄ (OH) ₁₂ (H ₂ O) ₁₈]	Trig. R ^{.3}	a=10.756Å c=29.678Å Z=3	a _{R=} 20.49Å α=30°40' Z _R =1	Cu _i (9d)Cu _{ii} (18f) Al(3b) As(6c) S(6c)		Zeit.Krist.,1980, <u>151</u> ,129-140; Min.Abs.,80-4170;SR, <u>46A,</u> 341; Pov.,525;Str.Tab.,346;RRW, 119.
CHARLESITE	Ca ₆ Al ₂ (SO ₄) ₂ B (OH) ₄ (OH,O) ₁₂ . 26H ₂ O	Ca ₆ ^[3] (H ₂ O) ₂₆ {3∞}[Al ₂ ° S ₂ ¹B'O ₆ (OH) ₄ (OH,O) ₁₂] (=Sturmanite)	Trig. P31c	a=11.16Å c=21.21Å	Z=2			Am.Min.,1983, <u>68</u> ,1033-1037; Hölzel,137.
DEMESMAEKERI- Te	Cu ₅ Pb ₂ (UO ₂₎₂ (SeO ₃₎₆ (OH) ₆ .2H ₂	Pb ₂ ^[9] (H ₂ O) ₂ {3∞}{Cu ₅ ⁸ Se ₆ ⁽⁴⁾ (U ₂ ^{[7)} O ₂₂ (OH) ₆]	Tric. P [.] 1	a=11.955Å b=10.039Å c=5.639Å	α =89.78° β =100.36° γ =91.34° Z =1	U(2i) Pb(2i) Se _{Lill} (2i) Cu _l (1h) Cu _{ll-III} (2i)		Acta Cryst., 1986, <u>C39</u> , 824-827; Hölzel, 95; RRW, 168; Pov., 567; Str. Tab., 229; Bull. Min., 1965, <u>88</u> , 422-425.
ENGLISHITE	K ₃ Na ₂ Ca ₁₀ Al ₁₅ (PO ₄₎₂₁ (OH) ₇ . 26H ₂ O				11.16			Can.Min.,1984, <u>22</u> ,469-470; Hölzel,174;Min.Mag.,1976, <u>40,</u> 863-866.
ERIONITE	K₂NaCa₁₅Mg	1(H ₂ O) ₂₈	Hex. P6 ₃ /mmc	a=13.26Å c=15.12Å	Z=1	Ca(2b) Si _{I-II} (24I)		Bull.Min.,1969, <u>92,</u> 250-256;SR, <u>344,</u> 375;Am.Min.,1976, <u>61,</u> 853- 863;RRW,195;Pov.,358.
FRANÇOISITE - - (Nd)	(Nd,Y,Sm,Ce,Pr) (UO ₂₎₃ (PO ₄₎₂ O (OH).6H ₂ O		Mon. P2 ₁ /c	a=9.298Å b=15.605Å c=13.668Å	β=114°46′ Z=4			Min.Abs.,89M/2281;Hölzel, 182.
FRANSOLETITE	Ca ₃ Be ₂ (PO ₄₎₂ (PO ₃ OH) ₂ .4H ₂ O		Mon. P2 ₁ /a	a=7.354Å b=15.07Å c=7.055Å	β=96.41° Z=2			Am.Min., 1985, <u>70</u> , 512(Abs.); K/B, 153; Hölzel, 159.

Kulture Carte Ca	NAME	CHEMICAL	STRUCTURAL FORMIII A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT	STRUCTURE TYPE	REFERENCES
(NO.3); 6H; 0 Migr. 5c, Nr. 5c, Mr. 5c	HUMBERSTONI-	KaNa7Mq2(SQ4)k	K, [10] (H,O) (20) [Na-0	1	a=10.9055Å	a _R =10.28Å	N(6c) S(18f)		Can.Min., 1994, 32, 381-385;
National	1	(NO ₃), 6H ₂ O	Mg, S, [N, TO]		c=24.3949Å	α=64.0'	K(9e) Mg(3a)		Am.Min., 1970, 55, 1518-1533;
Mon.			Subs.d.Ungemachite		Z=3	Z _R =1	Na ₍ (6c)(v.occ.)		Pov.,600;Str.Tab.,298.
(\$C_3\()(CH) _{17.1} 14H ₂ O Na_1Ba ₂ CeFeNb ₂ Si ₆ CaMnFe ₂ *Fe ₂ * (\$C_3\()(CH) _{17.1} 14H ₂ O Na_1Ba ₂ CeFeNb ₂ Si ₆ CaMnMnG ₂ Fe ₂ * (\$C_3\()(CH) ₂ H ₂ CF ₁ CP ₂ CH ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₂ O (\$C_3\()(CH) ₂ H ₂ CH ₃ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₃ O (\$C_3\()(CH) ₂ H ₂ CH ₃	HYDROMBOBOM			Mon.	a=10.145Å	β=90.55°			Am.Min.,1982, <u>67</u> ,415-416
Na_Be_CGFeNb_Sib	KULITE	_		~	b=17.155A c=20.870Å	¿=Z			(ADS.).
CaMnFe ₂ ⁻⁷ Fe ₃ ⁻⁷ Ca ⁶ Mn ¹⁰ Fe ₂ ⁻⁷⁰ Mon. C ² 0.31Å C ² 0.30 ¹⁰ Mn ¹⁰ Fe ₂ ⁻⁷⁰ Fe ₁ ⁻¹ Mon. C ² 0.30 ¹⁰ Mn ¹⁰ Fe ₂ ⁻⁷⁰ Fe ₂	ILIMAUSSITE -	Na, Ba, CeFeNb, Si		Hex	a=10.80Å	Z=3			Am.Min., 1969, 54, 992-993
CaMin(Bc) ² Fe) ² Ca ⁰ Min ⁰ Fe) ² /Pe ¹ Mon. ? (PO ₃ ₃ (OH) ₂ , BP ₂ O Fe) ² Fe) ² Fe) ² Mon. a=14.94A β=110.16° Fe)(2a) Fe ₁ (2b) Fe) ² FO ₃ ₃ (OH) ₂ Fe) ² Fe) ² Fe Fe) ² Fe Mon. a=14.94A β=110.16° Fe ₁ (2a) Fe ₁ (2c) Fe) ² FO ₃ ₃ (OH) ₂ Fe Fe ² Fe ² Fe ² Fe Fe ² Fe ² Fe ² Fe ² Fe ₁ (4e) Ca ⁰ Min ⁰ Min ² CaMin(Ma) Fe ² Ga ⁰ Min ⁰ Min ² Fe ² F	- (Ce)	O ₂₈ .5H ₂ O		P6 ₃ /mcm	c=20.31Å) I			(Abs.); Pov., 368; Str. Tab., 401; RRW 297-298; Hölzel 198
(PO) ₄ (O [†] I) ₂ B [†] -C (PO) ₄ (O [†] I) ₂ B [†] -C ? (PO) ₄ (O [†] I) ₂ B [†] -C ? CaMn(Mg, Fe) ₂ (PO) ₄ (O [†] (O†) ₂ Fe ₂ (P [*] P _P ¹ (Mg, Fe) ₂ (Mg, Fe)	JAHNSITE -	CaMnFe,2*Fe,3*	CalisiMn ^[6] Fe,(2+) o	Mon	2				Hölzel,177;Min.Mag.,1978,42,
CaMn(Mg,Fe) ₂ Cal ^m Mn ^{el} Mg,Fe) ₂ Mon. Pca ² Path a=14.94A p=110.16° Fe ₁ (2c) Fe ₂ ²⁰ PO ₄ J ₄ (OH) ₂ Cal ^m Mn ^{el} Mg,Fe) ₂ P2a D=7.14A Z=2 P _{1,0} (4e) SH ₂ O (aMniteite) Cal ^m Mn ^{el} Mn ² Mon. a=14.887A p=108.77° P _{1,0} (4e) (aMniteite) (aMniteite) P2a P2a P2a (aMniMn,Fe) ² (aMniteite) P2a P2a P2a (bO ₄ A(OH) ₂ , 8H ₂ O Cal ^m Mn ^{el} Mn ² P2a P2a P7 a=1.05A Z=2 (cal ^m Mn (SO ₄)(CO ₂) (amniteite) P5a Path Cal ^m Cal	- (CaMnFe)		Fe ₂ (3+)0P ₄ t IO-16(OH)2(H ₂ O) ₈]	<i>د</i>					309-323.
Page (POJJJ(CH) Page Pag	JAHNSITE -	1	Ca ^[6] Mn ^[6] (Mg,Fe) ₂ °	Mon.		3=110.16	Fe ₁ (2a) Fe ₁₁ (2c)		Am.Min., 1974, 59, 964-973; Am.
CaMnMn, Fe 2 / (PO λ) (OH) 2 / (Hz O D) Mon. (PO λ) (OH) 2 / (Hz O D) main (SO D) (OH) 2 / (Hz O D) Mon. (PO λ) (OH) 2 / (Hz O D) main (SO D) (OH) 2 / (Hz O D) Mon. (PO λ) (OH) 2 / (Az O D) main (SO D) (Az O D) Mon. (PO λ) (Az O D) main (SO D) (Az O D) Mon. (PO Δ) (Az O D) main (SO D) (Az O D) Mon. (PO D) (Az O D) main (SO D) Mon. (PO D) (Az O D) main (SO D) Mon. (PO D) (Az O D) main (PO D) Mon. (PO D) (Az O D) main (PO D) Mon. (PO (PO D)	-(Caming)		[O ₁₆ (OH) ₂ (H ₂ O) ₈]	B 77.	c=9.93Å	7-7	(p+) -		RRW,308;SR,40A,248-249.
(PO ₄) ₄ (OH) ₂ .8H ₂ O Fe ₂ ⁽³⁷⁹ P ₁ ¹ P2/a p=7.152Å Z=2 O ₁₆ (OH) ₂ (H ₂ O) ₃ O ₁₆ (OH) ₂ (D ₂ O ₃ O ₁₆ (OH) ₃ O ₁₆ (OH) ₂ O ₁₆ (OH) ₃ O ₁₇ (OH) ₆ D ₁₆ (D ₂ O ₃ O ₁₇ O ₁₇ (OH) ₆ D ₁₆ (D ₂ O ₃ O ₄ O ₄ O ₅ O ₁₇ O	JAHNSITE -	*	Ca ^[6] Mn ^[5] Mn ₂ °	Mon.	a=14.887Å	β=109.77°			Am.Min., 1990, 75, 401-404;
Cas ₃ Mn(SO ₄)(CO ₃) Hex. a=11.06Å Z=2 Mn(Za) Ca(6c) (OH) ₆ .12H ₂ O P6 ₃ c=10.50Å Z=2 Mn(Za) Ca(6c) (PAS)O ₄ / ₂ (OH) ₉ Tric. a=10.98Å α=95.1° S(2b) C(2b) (PAS)O ₄ / ₂ (OH) ₉ Tric. a=10.98Å α=95.1° P1 b=15.96Å β=90.1° (PAS)O ₄ / ₂ (OH) ₉ Tric. a=6.84Å Z=1 Z=2 HCa ₄ Mg ₂ Al ₄ (SO ₄)e 7 c=28.01Å β=91.48° CuPb ₃ (CrO ₄)SiO ₃ Mon. a=20.81Å β=91.48° c=9.28Å CuPh ₃ (CrO ₄)SiO ₃ Mon. a=10.409Å Z=4 c=12.312Å (OH) ₄ .2H ₂ O Pbca p=10.408Å Z=4 (OH) ₃ .15H ₂ O Tric. a=13.50Å α=90° (AsO ₃ OH) ₄ .4H ₂ O P1 b=14.10Å β=92° (PO ₄) ₂ (OH) ₁₂ .8H ₂ O Mon. ? Ca5Fe ₂ Mo ₂ O ₁ O P1 P14.10Å β=92°	- (CaMnMn)	O. H	Fe ₂ ^{(3+%} P ₄ ^t [O ₁₆ (OH) ₂ (H ₂ O) ₈]	P2/a	b=7.152Å c=9.966Å	Z=2			Hölzel suppl
(OH) ₆ ·12H ₂ O (P.As)O ₄) ₂ (OH) ₆ (P.As)O ₄ O ₄ O ₄ O ₅ (P.As)O ₄ O ₄ O ₅ (P.As)O ₄ O ₄ O ₆ (P.As)O ₄ O ₄ O ₆ (P.As)O ₄ O ₄ O ₆ (P.As)O ₆ O ₆	JOURAVSKITE	Ca ₃ Mn(SO ₄)(CO ₃)		Hex.	a=11.06Å	Z=2	Mn(2a) Ca(6c)		Acta Cryst., 1969, B25, 1943-
PbAI(UO ₂) ₅ ((PAS)Q ₄) ₂ (OH) ₉ ((PAS)Q ₄) ₂ (OH) ₂ ((PAS)Q ₄) ₃ ((PAS)Q ₄) ₄ ((PAS)Q ₄) ₅ ((PAS)Q ₄) ₆ ((PAS)Q ₄		(OH) ₆ .12H ₂ O		P63 .:	c=10.50Å		S(2b) C(2b)		1951;SR,34A,313-314;Bull.
PbAI(UO ₂) ₅ Tric. a=10.98Å α=95.1° (P-As)O ₄) ₂ (OH) ₉ Tric. b=15.96Å α=95.1° (P-As)O ₄) ₂ (OH) ₉ Tric. b=15.96Å α=95.1° (P-As)O ₄) ₂ (OH) ₂ Tric. a=6.84Å Z=1 HCa ₄ Mg ₂ AI ₄ (SO ₄) ₆ Tric. a=6.84Å Z=1 CuPb ₂ (CrO ₄)SiO ₃ Mon. a=20.81Å Z=4 CuPb ₂ (CrO ₄)SiO ₃ C2/m a=20.84Å Z=4 CH) ₃ .15H ₂ O Orth. a=10.409Å Z=4 CHO ₃ .15H ₂ O Orth. a=13.50Å α=95.14 CaFe ₂ Mo ₂ O ₁₀ P1 b=14.10Å p=92.2 CAFe ₂ Mo ₃ O ₁₀ P1 b=14.10Å p=22 CAFe ₂ Mo ₃ O ₁₀ 7 c=6.95Å γ=119°									Min., 1965, 88, 254-262; Pov.,
PbAI(UO₂)s Tric. a=10.98Å α=95.1° ((P.As)O₄)₂(OH)s P1 b=15.96Å β=96.1° .9.5H₂O C=9.088Å γ=89.0° Es,32H₂O 7 c=28.01Å E (OH)₄.2H₂O Mon. a=6.84Å Z=1 E (OH)₄.2H₂O Mon. a=6.84Å Z=4 C2/m b=5.84Å Z=4 C2/m b=5.84Å Z=4 COH)₃.15H₂O Orth. a=10.409Å Z=4 (OH)₃.15H₂O Pbca c=12.312Å NaCas(AsO₃) P1 b=14.10Å β=92° (AsO₃OH)₄.4H₂O P1 b=14.10Å β=92° (PO₄)₂(OH)₂.8H₂O 7 c=6.95Å γ=119° (PO₄)₂(OH)₂.8H₂O 7 c=6.95Å γ=119°									600-601;Str.Tab.,297;RRW,
Part(UC)2)5	THE CLITICAL V			ŀ	8 00 07	77.00			Am Min 1085 70 427/Abs):
HCa ₄ Mg ₂ Al ₄ (SO ₄) ₆ Tet. a=6.84Å Z=1 Z=2 Z=2 Z=2 Z=2 Z=2 Z=2 Z=2 Z=1	NAMII UGAITE	(P AS)O ₃) ₂ (OH) ₂		- <u>7</u>	a=10.98A h=15.98Å	α=95.1°			Hölzel 182:K/B.175.
HCa ₄ Mg ₂ Al ₄ (SO ₄) ₈ Tet. a=6.84A Z=1 F _{9.32H₂O} γ c=28.01Å Z=1 FP _{3.32H₂O} Mon. a=20.81Å B=91*48° C (OH) _{4.2H₂O} Mon. a=20.81Å Z=4 C FE COHD ₃ -2H ₂ O COTh. a=10.409Å Z=4 C FE COHD ₃ -15H ₂ O Orth. a=10.409Å Z=4 D NaCa ₅ (AsO ₄) Pbca D=20.330Å C=12.312Å D (ASO ₃ OH) _{4.4} H ₂ O F1 b=14.10Å p=92° (ASO ₃ OH) _{4.4} H ₂ O P1 b=14.10Å p=92° CaFe ₂ Mo ₂ OH) _{12.2} BH ₂ O Mon. ?		.9.5H ₂ O		:	c=9.068Å	γ=89.0° 7=2			
F _{9.3} 2H ₂ O γ c=28.01Å TE CuPb ₃ (CrO ₄)SiO ₃ Mon. a=20.81Å β=91°48° (OH) _{4.} 2H ₂ O C2/m b=5.84Å Z=4 CH) _{4.} 2H ₂ O C2/m b=5.84Å Z=4 CH) _{3.} 15H ₂ O Orth. a=10.409Å Z=4 Pbca Dcana D=20.330Å D=20.330Å NaCa ₅ (AsO ₄) Tric. a=13.50Å α=90° (AsO ₃ OH) _{4.4} H ₂ O P1 b=14.10Å β=92° CaFe ₂ Mo ₅ O ₁₀ Mon. ? Ro ₂ (PO) ₂ (OH) _{12.8} H ₂ O Mon. P Parameter Parameter	LANNONITE	HCa ₄ Mq ₂ AI ₄ (SO ₄) ₈		Tet.	a=6.84Å	Z=1			Min.Mag.,1983,47,37-40;
TTE CuPb ₃ (CrO ₄)SiO ₃ Mon. a=20.81Å β=91°48' (OH) ₄ .2H ₂ O C2/m b=5.84Å Z=4 (OH) ₄ .2H ₂ O Orth. a=10.409Å Z=4 (OH) ₃ .15H ₂ O Pbca b=20.330Å NaCa ₅ (AsO ₄) Tric. a=13.50Å α=90° (AsO ₃ OH) ₄ .4H ₂ O P1 b=14.10Å β=92° (PO ₄) ₂ (OH) ₁₂ .8H ₂ O Mon. ?		F ₉ .32H ₂ O		۲	c=28.01Å				Hölzel,137.
(OH)4.2H ₂ O C2/m b=5.84Å Z=4 FE KMg ₂ Al ₂ Ti(PO ₄) ₄ Orth. a=10.409Å Z=4 (OH)3.15H ₂ O Orth. a=10.409Å Z=4 NaCa ₅ (AsO ₄) Pbca b=20.330Å (AsO ₃ OH) _{4.4} H ₂ O Tric. a=13.50Å α=90° (AsO ₃ OH) _{4.4} H ₂ O P1 b=14.10Å β=92° (PO ₄) ₂ (OH) _{12.2} BH ₂ O Mon. ? ?	MACQUARTITE	CuPb ₃ (CrO ₄)SiO ₃		Mon.	a=20.81Å	β=91°48'			Am.Min.,1981,66,638(Abs.);
TTE KMg₂Al₂Ti(PO₄)₄ Orth. a=10.409Å Z=4 (OH)₃.15H₂O Pbca b=20.330Å Z=4 NaCas(AsO₄) Tric. a=13.50Å α=90° (AsO₃OH)₄.4H₂O P1 b=14.10Å β=92° CaFe₂Mo₅O₁₀ CaFe₂Mo₅O₁₀ Z=2 (PO₄)₂(OH)₁₂.8H₂O ?		(OH) ₄ .2H ₂ O		C2/m	b=5.84Å c=9.26Å	Z=4			Hölzel,139.
(OH) ₃ .15H ₂ O NaCa ₅ (AsO ₄) (AsO ₃ OH) ₄ .4H ₂ O CaFe ₂ Mo ₅ O ₁₀ CaFe ₂ Mo ₅ O ₁₀ (Po ₄ ₂ (OH) ₁₂ .8H ₂ O)	MANTIENNEITE	KMg ₂ Al ₂ Ti(PO ₄) ₄		Orth.	a=10.409Å	Z=4			Am.Min.,1985,70,1330(Abs.);
NaCa ₅ (AsO ₄) Tric. a=13.50Å α=90° (AsO ₃ OH) ₄ .4H ₂ O P1 b=14.10Å β=92° c=6.95Å γ=119° caFe ₂ Mo ₅ O ₁₀ Z=2 (PO ₄) ₂ (OH) ₁₂ .8H ₂ O γ		(OH) ₃ .15H ₂ O		Pbca	b=20.330A c=12.312Å				Hölzel,173;K/B,154.
(AsO ₃ OH) _{4.4} H ₂ O P1 b=14.10Å β=92° c=6.95Å γ=119° c=6.95Å γ=119° Ann. ? Z=2 Mo ₃ (OH) ₁₂ .8H ₂ O ? ?	MCNEARITE	NaCa ₅ (AsO ₄)		Tric.	a=13.50Å	α=90°			Am.Min., 1982, 67,856 (Abs.);
CaFe ₂ Mo ₅ O ₁₀		(AsO ₃ OH) ₄ .4H ₂ O		<u>F</u> :	b=14.10Å	β=92°			Hölzel,165.
CaFe ₂ Mo ₅ O ₁₀ Mon. ? (PO ₄) ₂ (OH) ₁₂ :8H ₂ O ?					c=6.95A	γ=119° Z=2			
	MELKOVITE	CaFe ₂ Mo ₅ O ₁₀ (PO ₄) ₂ (OH) ₁₂ .8H ₂ O		Mon.	٤				Am.Min.,1970, <u>55</u> ,320(Abs.); Hölzel,178;RRW,390;K/B,191.

	CHEMICAL	STRUCTURAL	SPACE	ONCIONATION I INC.	OIACLO LOTA	EQUIVALENT	CTDICTIBE TVDE	OH CANADANA
NAME	FORMULA	FORMULA	GROUP	ONII CELL DI	MENSIONS	POSITIONS		
MORINITE	NaCa ₂ Al ₂ (PO ₄) ₂	(H ₂ O) ₂ (3∞)[Ca ₂ ^[8]	Mon.	a=9.454Å	β=105.46°	Ca(4f) Al(4f)		Can.Min., 1979, 17, 93-102; Am.
	(OH)F4.2H2O	Na ^(5by) {g}[Al ₂ °P ₂ ¹O ₈	P2 ₁ /m	b=10.692Å	Z=2	Na(2e) P _{I-II} (2e)		Min., 1958, 43, 585-594; SR, 44A, 247-248; K/B. 64-65; Pov., 550.
AILOVEI AL LIMITE	(Ali Cu) IA(I (C)	(4.1)	Mon	2-10 1758	A=05 050			Am Min. 1982 67 415-416
MICHELALOMIE	(NO ₃) ₂ (OH) ₁₂ .3H ₂ O			b=8.860Å	Z=4			(Abs.);Hölzel,136:K/B,154.
				C=17.174A	,			A A Sin 4005 70 075 (A bo):
PAULKERRITE	K(Mg,Mn) ₂ Ti		Pod Pod Pod	a=10.49A b=20.75Å	7=4			Am.min.,1965, <u>/U</u> ,675(Abs.); Hölzel,173.
	(OH)3.15H2O			c=12.44Å				
PEISLEYITE	Na ₃ Al ₁₆ (PO ₄) ₁₀		Mon.	a=13.31Å	β=11.0°			Am.Min., 1983, 68,849-850
	(SO ₄) ₂ (OH) ₁₇ 20H ₂ O		~	b=12.62A c=23.14Å	Z=2			(ADS.);K/B,1/6;H0lZel,1/3.
PERHAMITE	Ca ₃ Al ₇ (SiO ₄) ₃		Hex.	a=7.02Å	Z=1			Min.Mag.,1977,41,437-442;
	(PO ₄) ₄ (OH) ₃ 16 5H ₂ O		P6/mmm	c=20.21A				Hölzel,241.
PICROPHARMA-	Ca4Mg(AsO ₃ OH) ₂	(H ₂ O) ₁₁ Ca ₄ ^[6/7] {2∞}	Tric.	a=13.547Å	α=99.85°	As _{I-IV} (2i) Mg(2i)		Am.Min., 1981, 66, 385-391; Am.
COLITE	(AsO ₄) ₂ .11H ₂ O	[Mg°As4O14(OH)2]	٦-	b=13.500Å	β=96.41°	Ca _{I-IV} (2i)		Min., 1976, 61, 326-328; Pov.,
-		(≈Guerinite)		c=6.710Å	γ=91.60° Z=2			515;Sfr. I ab., 337;H0izei, 164.
PLANERITE	Al ₆ (PO ₄) ₂ (PO ₃ OH) ₂		Tric.	a=7.70Å	$\alpha = 110°50°$			Hölzel suppl
	(OH) ₈ .4H ₂ O		P 1?	b=10.109Å	β=115°4'			
				c=7.390Å	γ=70°46' Z=1?			
POTTSITE	PbBi(VO ₄)		Tet.	a=11.084Å	Z=10			Min.Mag.,1988, <u>52</u> ,389-390;
	(VO3OH).ZH2O		14122	C+12.03+7				Dov. 626-DDM 607-64-Tob
RABBITTITE	Ca ₃ Mg ₃ (UO ₂) ₂		Mon.	a=32.6A	β=90°			Pov.,625;KKW,507;Str. I ab.,
	(CO ₃)6(On)4. 18n ₂ O		r 24/a :	c=9.45Å	0			Nam.,251;Am.Min.,1955,40,
								201-206.
RANUNCULITE	AI(UO ₂)(PO ₃ OH)		Mon.	a=11.1Å	β≈90°			Min.Mag., 1979, 43, 321-323;
	(OH) ₃ .4H ₂ O		~	b=17.7A c=18.0Å	Z=14			H0lzel, 182;NB, 101.
RICHEI SDORFI-	Ca,Cu,Sb(AsO ₄) ₄	(HoO) (Spo) (Spo) (OH)	Mon.	a=14.079Å	B=101.05°	Cu ₁ (4i) Cu ₁₁₋₁₁₁ (8j)		Zeit.Krist., 1987, <u>179</u> , 323-334;
12		{2∞}{Ca₂ ^[f] Cu₅ ^[5] Cl (As¹O₄)₄](≈Whiteite)	C2/m	b=14.203Å c=13.470Å		Ca(8j) Sb(4f)		Am.Min.,1984, <u>69</u> ,211(Abs.).
RITTMANNITE				a=15.01Å	$\beta = 112.82^{\circ}$			Can.Min., 1989, <u>27</u> , 447-449;
	(Fe,Mn,Mg) ₂ (Al,Fe) ₂ (PO ₄) ₄		P.Z/a	b=6.89A c=10.16Å	7=7			noizei suppi:
	(OH) ₂ .8H ₂ O			3 1 1	17 0010			Min Abs 78/2308: Am Min
ROSCHERITE (Monoclinic)	Ca(Mg,Fe) ₂ Be ₂ Al _x (PO ₄) ₃ (OH) ₃ .2H ₂ O	(H₂O)₂Ca'¹ (3∞}[(Mg,Fe)₂°Be₂Alx°	Mon. C2/c	a=15.874A b=11.854Å	β=95°34° Z=4			1958,43,824-838;SR,43A,248;
		P ₃ 'O ₁₂ (OH) ₃]		c=6.605A				K/B,13/-138;P0V.,551.

(H-O)/Ca ⁽¹ (Sa) Mn ² Tric. a=15.921A a=91°4′ Fe ⁽¹ (Ba)-P ₁ (Sa)-P ₁ (Mn) ² Tric. a=7.767A a=92.95°5′ Co ⁽¹ (H ₂ O)/(Sa)-P ₁ (Cu)-P ₁ (Mn) ² Tric. a=7.767A a=92.96° Cu(2) C(2)) Co ⁽¹ (Cu)-P ₁ (Mn) ² Tric. a=7.767A a=92.96° Cu(2) C(2)) Fe ⁽¹ (Ba)-P ₂ (Sa)-P ₂ (Mn) Tric. a=7.767A a=92.96° Cu(2) C(2)) Fe ⁽² (Sa)-P ₂ (Mn) Tric. a=7.787A a=92.96° Cu(2) C(2)) Fe ⁽² (Sa)-P ₂ (Mn) Tric. a=7.787A a=92.96° Cu(2) C(2)) Fe ⁽² (Sa)-P ₂ (Mn) Tric. a=7.787A a=92.96° Cu(2) C(2)) Fe ⁽² (Sa)-P ₂ (Mn) Tric. a=17.92A p=10.5° Mg(2c) Si(4) Ca)-P ₂ (Mn) Fe ⁽² (Sa)-P ₂ (Mn) Tric. a=17.93A b=103.2° Cu(3) Cu(3) Cu(4)	NAME	CHEMICAL	STRUCTURAL	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
(PO) ₂ (OH) ₂ : 34-O Fe, Fe, Po, Po, CH) ₃ C i De 11.966A β=96959 Cu ₂ O ₂ (UO) ₃ (CH) ₂ : 34-O Fe, Fe, Po, Po, CH) ₃ Tric p=17.87A q=27.16* U(13) U(2) Cu ₂ O ₂ (UO) ₃ (CO) ₃ (H-Q) ₂ (CH) ₃ Tric p=5.246 p=0.89 Cu(13) C(2) (UO) ₃ (CO) ₃ (CH) ₂ P. p=2.08A p=0.89 Cu(13) C(2) (UO) ₃ (CO) ₃ (CH) ₂ P. p=2.08A p=0.89 Cu(13) C(2) (UO) ₃ (CO) ₃ (CH) ₂ Mon. a=9.208A p=0.89 Cu(2) (UO) ₃ (CO) ₃ (H-Q) Mon. a=17.382A p=10.59 U(41) O _{1,4} (41) (SO) ₃ (H-Q) Mon. a=17.382A p=10.32 U(41) O _{1,4} (41) (SO) ₄ (H-Q) ₄ (H-Q) Mon. a=17.382A p=10.32 U(41) O _{1,4} (41) (No.O ₄ , 15H-O P. P. p=1.335A p=10.32 P=1.03 (No.O ₄ , 15H-O P. P. p=1.35AA Z=2 U(41) O _{1,4} (41) (SO) ₄ (C,OH) ₂ (No.O ₄ , 15H-O P. P. P. P. P. P.	ROSCHERITE	CaBe,Mn,Fe,	(H,O),Ca ^[7] (3m)IMn,°	Tric	a=15.921Å	α=91°4′			Am.Min.,1978,63,427(Abs.);
Curociuo)3(Co2); (H-O)4(3e)[Cu2 ³ U3 ⁴ M ² Tric. a=7.787A	(Triclinic)	(PO ₄) ₃ (OH) ₂ .3H ₂ O	Fe, Be, P3 O12 (OH)2]	٥ 1	b=11.965Å	β=94°21'			SR,43A,248;K/B,138;Str.Tab.,
Cu ₂ O ₂ (UO ₃) ₂ (CO ₃) (H ₂ O) ₂ (UO ₃) (H ₂ O) ₃ (UO ₃)<					c=6.741Å	γ=89°59'			340.
Ca(Nd(Sm,Y) ₂ Ca(N	ROLIBALLI TITE	(-00)-(-01)-0-110	[8/] 1 1 ₀ 11 J1 C C T	Tric	a=7 7.67 Å	×=02 16°	11/(1a) (1 ₁ /2i)		Acta Cryst 1985 C41 654-657
Cal(Md Sm. Y) ₂		OH) 4HO	C. C	۵ ۱ ۲	h=6 024 Å	8=00 80e	Ci(2) C(2)		Bull Min. 1970.93.550-554: Am.
Car(Nd, Sm, Y),		021 F :2(10)	02 014(01)2]	-	0-0.9247	D-90.09	0. (2)		Min. 1972.57.1912(Abs.): Pov.
Ca(Nu(Sm, V) ₂ Won. a=9.208A p=90.3° U(a)(cO ₂) ₄ (OH) ₂ P2 a=17.382A p=105.9° Wg(2c) Si(4i) P2 p=22.09A Z=5 O ₂ (0H) O ₂ (v(4i) D=17.047A Z=2 O ₂ (0H) O ₂ (v(4i) O ₂ (v(C000.	Z=1	(1-14-1)		327;RRW,528.
(UC ₂)(CO ₂) ₄ (OH) ₂ P2 P2 P2.2.08Å Z=5 E (H ₂ O) ₂ Mg(UC ₂) ₂ CO ₂ Mg(UC ₂) ₃ CO ₂ Mg(UC ₂) ₄ CO ₂ Mg(UC ₂) ₄	SHABAITE - (Nd)	Ca(Nd,Sm,Y)2		Mon.	a=9.208Å	β=90.3°			Am.Min.,1990, <u>75</u> ,433-434
E (H-5O)2Mg(UO2)2		(UO ₂)(CO ₃) ₄ (OH) ₂		P2	b=32.09Å	Z=2			(Abs.);Hölzel,110;Eur.J.Min., 1989 1 85-88
SiO ₄ /j ₂ -4H ₂ O	SKLODOWSKITE	(H ₃ O),Mq(UO ₂),		Mon.	a=17.382Å	B=105.9°	Mg(2c) Si(4i)		SR,43A,323-324, <u>27</u> ,710-711;
Na ₂ CaFe ₂ " (As ₂ O ₄)		(SiO ₄) ₂ .4H ₂ O		C2/m	b=7.047Å	Z=2	U(4i) O _{I-IV} (4i)		Pov.,455;Str.Tab.,385;Am.Min.
Na ₂ CaFe ₂ ² (As ₂ O ₄)					c=6.610Å		O _v (8j)		,1981, <u>66</u> ,610-625;Hölzel,195.
(NaCA) ₀ -15H ₂ O	SODIUM	Na ₂ CaFe ₂ ³⁺ (As ₂ O ₄)		Mon.	a=11.28Å	β=94°30′			Am.Min., 1972, 57, 312-313
(Na, Fe), Ray Fe), Ba ₂ Sr ₂ Tr ₂ (Na, Fe), Ba ₂ Sr ₂ Tr ₂ (Na), Pa ₂ Sr ₂ (N	BETPAKDALITE	(MoO₄)6.15H ₂ O		<i>د</i>	b=19.30A c=17.67Å	Z=4			(Abs.);RRW,568-569;Holzel, 178.
SiO4. H ₂ O P2,2,2,1 b=6.9436Å Z=8 C=6.6748Å (SiO2,)e(O,OH) ₂ (V-1) (O,OH) ₂ (H ₂ O) P2 c=6.6748Å Z=0 (SiO2,)e(O,OH) ₂ (V-1) (O,OH) ₂ (H ₂ O) P2 c=11.87Å Z=2 (SiO2,)e(O,OH) ₂ (V-1) (O,OH) ₂ (H ₂ O) PC C=11.87Å Z=7 (SiO2,)e(O,OH) ₂ (V-1) (O,OH) ₂ (H ₂ O) PC C=11.87Å Z=7 (SiO4,)e(O,OH) ₂ (V-1) (D,OH) ₂ (H ₂ O) PC C=22.392Å Z=7 (B(OH) ₂ (M)OH) ₂ (CO) ₂ (PE-2'S) ² B Trig. a=11.16Å Z=2 (B(OH) ₂ (M)OH) ₂ (CO) ₃ (PE-2'S) ² B Fing. C=21.79Å Z=21.79Å (SO4).12H ₂ O (C=Ettingite) PS ₃ (PS ₃ (PS ₃) C=10.39Å C=(2b) S(2b) (SO4).12H ₂ O (SO4)(CH) ₂ (H ₂ O)(OH) Mon. a=24.03Å B=106.94° (Ca) ₁ (4e) (SO4, CO3) ₂ (OH) (Ettingite) P2./a DTH C=10.88Å Z=2 (SO3, CO3) ₂ (OH), 46H ₂ O (Ettingite) P2./a DTH C=5.9Å S(18) (NO3) ₂ GH ₂ O (B)[F ² (S ² O ₃	SODIUM	(H ₃ O)(Na,K)(UO ₂)		Orth.	a=13.931Å	β=103.2°			Can.Min.,1997,35,735-741;
(SiO ₃) ₈ (O,OH) ₂ (Na,Fe) ₂ Ba ₂ Sr ₂ Ti ₂ Mon. a=10.516Å β=109°17 (SiO ₃) ₈ (O,OH) ₂ (COH) ₂ (H ₂ O) P2 b=9.764Å Z=2 (SiO ₃) ₈ (O,OH) ₂ (2∞)[Si ₆ O ₂ J] PC c=11.87Å (SiO ₃) ₈ (O,OH) ₂ (2o)(H) ₂ (H ₂ O) Pcam b=9.764Å Z=2 (SiO ₃) ₈ (O,OH) ₂ (2o)(H) ₂ (H ₂ O) Pcam b=9.764Å Z=2 (SiO ₃) ₈ (O,OH) ₂ (2o)(H) ₂ (H ₂ O) ₂ J Pcam b=9.764Å Z=2 (SiO ₃) ₈ (O,OH) ₂ (2o)(H) ₂ (H ₂ O) ₂ J Pcam b=9.764Å Z=2 (B(OH) ₃)(OH) ₁ ,c(H ₂ O) ₂ J Price c=21.79Å Z=2 (SiO ₄) ₂ (OH) ₂ (COH) ₂ (H ₂ O) ₂ J Pcan d=11.04Å Z=2 (SO ₄).12H ₂ O (CO)(H ₂ (H ₂ O) ₂ J Pca d=10.89Å Ca(cb) S(2b) (SO ₄).12H ₂ O (Price (Price Price C=10.39Å Pca S(A) ₁ I ₂ I ₂ I ₂ O (SO ₄).12H ₂ O (Price (Price Price Price S(A) ₁ I ₂ I ₂ I ₂ O Price S(A) ₁ I ₂ I ₂ I ₂ O (SO ₄).2D ₂ O(H) (Price Price	BOLTWOODITE	SiO ₄ .H ₂ O		P2,2,2,	b=6.9436Å	Z=8			Am.Min., 1976, 61, 1054-1055
(SiO ₃) ₆ (O.OH) ₂ (H ₂ O) P2 b=9.516 β=109°17' (Na,Fe) ₂ Ba ₂ Sr ₂ Ti ₂ Mon. b=9.516 β=109°17' (SiO ₃) ₆ (O.OH) ₂ (H ₂ O) P2 b=9.74 Z=2 (=1.87 Å ==10.517 Å Z=7 (=2.392 Å Z=2.392 Å ==10.517 Å Z=7 (=2.392 Å Z=2.392 Å Z=2 (=2.392 Å					c=6.6749Å				(Abs.); Am. Min., 1981, <u>66</u> , 610-
(Sic ₃) ₈ (O.OH) ₂ (Na, Fe) ₂ Ba ₂ Sr ₂ Tr ₂ (Mon. a=10.516A β=109°17' (Sic ₃) ₈ (O.OH) ₂ (No.H) ₂ (H ₂ O) P2 b=9.764A Z=2 (Sic ₃) ₈ (O.OH) ₂ (P ₂ O ₂ II) P2 b=9.76A Z=2 (Sic ₃ O ₂									625; Hölzel, 195.
SiGo,OH)2	STRONTIOJOA-	(Na, Fe) ₂ Ba ₂ Sr ₂ Ti ₂	(Na,Fe) ₂ Ba ₂ Sr ₂ Ti ₂	Mon.	a=10.516Å	$\beta = 109^{\circ}17'$			Am.Min., 1982, 67, 809-816;
Na₂Ba₂Sr₂Ti₂ Na₂Ba₃Sr₂Ti² Na₂Ba₃Sr₂Ti² Orth. a=10.517Å Z=? II- (SiO₃)a(O,OH)₂ (O,OH)₂(H₂O) Pcam b=9.77Å L₂O (Sie,OH)₂ (O,OH)₂(H₂O) Pcam b=9.77Å Cae,Fe₂(SO₄)₂ Cae,Fe₂(SS₂B¹ Trig. a=11.16Å Z=2 (B(OH)₄)(OH)₁₂ (OGOH)₂(H₂O)₂s¹ Hex. a=11.04Å Z=2 (SO₄).12H₂O (Soa,12H₂O) (OCH)(H₂O)₂s¹ Pe₃ c=10.39Å (SOa,12H₂O) (Soa,12H₂O) (OCH)(H₂O)₂s¹ Pe₃ c=10.39Å (SOa,12H₂O) (Soa,12H₂O) (OCH)(H₂O)₂s¹ Pe₃ c=10.39Å (SOa,12H₂O) (Soa,10A)₁₀O₂s (H₂O)(OH) Mon. a=24.03Å β=106.94° Cai.⊪(4e) K(4e) b=5.11Å (SOa,10A)₂ (COa)₂(OH) (gylS¹O₄lgylC²O₂l₂ P₂√a b=5.11Å Z=2 (SOa,10A)₂ (COa)₂(OH) (gylS²O₄lgylC²O₂l₂ P₂√a b=5.11Å Z=2 (SOa,10A)₂ (COa)₂(OH) (gylS²O₄lgylC²O₂l₂ P₂√a b=5.11Å Z=2 (SOa,10A)₂ (GylSOa)₂ (GylSoa)₂ Prig. A=10.39Å Fe(3a) K(9e) (SOa,10A)₂ (GylFe²(S²O₄)₂ Prig. A=10.39Å Fe(3a) K(9e) (Soa,10A)₂ (GylFe²(S²O₄)₂ Prig. A=10.39Å Fe(3a) K(9e) (Soa,10A)₂ (GylFe²(S²O₄)₂ Prig. A=10.39Å A=10.39Å Fe(3a) K(9e) (Soa,10A)₂ (GylFe²(S²O₄)₂ Prig. A=10.39Å A=10.39Å Fe(3a) K(9e) (Soa,10A)₂ (GylFe²(S²O₄)₂ Prig. A=10.39Å A=10.39Å Fe(3a) K(9e)	QUINITE	(SiO ₃) ₈ (O,OH) ₂ .H ₂ O	(0,0H) ₂ (H ₂ 0) {2∞}[Sig 0,1]	P2	b=9.764Å c=11.87Å	Z=2			Hölzel,206.
II- (SiO₃)e(O,OH)₂ (O,OH)₂(H₂O) Pcam b=9.77Å II- (SiO₃)e(O,OH)₂ (O,OH)₂(H₂O) Pcam b=9.77Å Cae₁Fe₂(SO₄)₂ (Cae₁Fe₂°S₂¹B² Trig. a=11.16Å Z=2 (B(OH)₄)(OH)₁₂ (CoH)₁e(H₂O)₂₅] P31c c=21.79Å Cas₃Si(OH)e(CO₃) (Cae₁Si°C″O₂₅² Hex. a=11.04Å Z=2 (Ca(6c) Si(2a) Ca(6c) Si(2a) (SO₄).12H₂O (SO₄).12H₂O (SO₄).2Hβ² (Po)₂₂ (Po)₂ (Po)β² (STRONTIO-		Na ₂ Ba ₂ Sr ₂ Ti ₂ °	Orth.	a=10.517Å	Z=2			Am.Min., 1982, <u>67</u> ,809-816;
Ca6Fe ₂ (SO ₄) ₂ Ca6 (^{la} Fe ₂ - ^{S₂} ¹ b' (^{la} Ch) ₁₆ (H ₂ O) ₂₆] Trig. a=11.16Å Z=2 (B(OH) ₄)(OH) ₁₂ (Ca(OH) ₁₆ (H ₂ O) ₂₆] P31c c=21.79Å Z=2 (SO ₄).12H ₂ O (Cac (^{la} Ch) ₁₆ (H ₂ O) ₁₂] P63 a=11.04Å Z=2 Ca(6c) Si(2a) (SO ₄).12H ₂ O (Cac (^{la} Ch) ₁₆ (H ₂ O) ₁₂] P63 a=11.04Å Z=2 Ca(6c) Si(2a) (SO ₄).12H ₂ O (Cac (^{la} Ch) ₁₆ (H ₂ O) ₁₂) P63 m=24.03Å p=106.94° Ca(6c) Si(2a) (SO ₄ , CO ₃) ₂ (OH) (A ^{la} Ch) ₁₆ (A ^{la} Co ₃) P2./a b=5.11Å Z=2 (Si,Al) _{1-√} (4e) (SO ₄ , CO ₃) ₂ (OH) (2c)(Si(Al) ₁₀ O ₂₂) P2./a b=5.11Å Z=2 (Si,Al) _{1-√} (4e) (CO ₃)(OH) ₄ , 6H ₂ O (2c)(Si(Al) ₁₀ O ₂₂) Orth. a=10.50Å Z=8 7 (CO ₃)(OH) ₄ , 6H ₂ O (Si ^{la} Ch) ₁₀ O ₂₂ Trig. a=10.898A a=10.39Å Fe(3a) K(9e) (NO ₃) ₂ , 6H ₂ O (Si) ^{la} Ch ₂ O ₃ R 3 c=24.988A a=27.59 C(18)	- ORTHOJOAQUI- NITE		(O,OH) ₂ (H ₂ O) {2∞}lSis ^t O ₂₄ l	Pcam	b=9.77Å c=22.392Å				Hölzel,288.
(B(OH) ₄)(OH) ₁₂ (Ge(OH) ₁₆ (H ₂ O) ₂₆) P31C C=21.79Å 25H ₂ O Ca ₃ Si(OH) ₆ (CO ₃) Ca ₆ ^{US₃} C ^C O ₃ S' Hex. a=11.04Å Z=2 Ca(6c) Si(2a) (SO ₄).12H ₂ O (OH) ₆ (H ₂ O) ₁₂] P6 ₃ C=10.39Å (SO ₄).12H ₂ O (≈Etringite) (STURMANITE	Ca ₆ Fe ₂ (SO ₄),	Cae la Fe, S, B	Trig.	a=11.16Å	Z=2			Am.Min., 1988, 73, 195; Hölzel,
Ca ₃ Si(OH) ₆ (CO ₃) Ca ₆ ^[9] Si ² C ² O ₃ S ¹ Hex. a=11.04Å Z=2 Ca(6c) Si(2a) (SO ₄).12H ₂ O [O ₇ (OH) ₆ (H ₂ O) ₁₂] P6 ₃ c=10.39Å Z=2 C(2b) S(2b) KCa ₆ (Si Al) ₁₀ O ₂₂ K ^{I'III} Ca ₆ (H ₂ O) ₁ OH) Mon. a=24.03Å p=106.94° Ca _{1,III} (4e) K(4e) (SO ₄ , CO ₃) ₂ (OH) (g)[S¹O ₄](g)[C ^I O ₃] ₂ P2 ₁ /a b=5.11Å Z=2 (Si,Al) ₁₋₁ (4e) (SO ₄ , CO ₃) ₂ (OH) (g)[S¹O ₄](s)[C ^I O ₃] ₂ Orth. a=10.50Å Z=8? Ca _{1,III} (4e) K(9e) (CO ₃)(OH) ₄ .6H ₂ O (g)[Fe ¹ (S¹O ₄) ₆] Trig. a=10.898Å a _R =10.39Å F(3a) K(9e) (NO ₃) ₂ .6H ₂ O (g)[Fe ² (S¹O ₄) ₆] R 3 c=24.989Å α=62°59 S(18f) (SI)N ¹ VO ₃ 12 Z=3 Z _R =1 Z _R =1 Z _R =1		(B(OH) ₄)(OH) ₁₂ .25H ₂ O	$[O_8(OH)_{16}(H_2O)_{25}]$ (=Ettringite)	P31c	c=21.79Å				137.
(SO ₄).12H ₂ O [O ₇ (OH) ₆ (H ₂ O) ₁₂] P6 ₃ c=10.39A (C(2b) S(2b) (≈Ettingite) (≈Ettingite) (≈Ettingite) (≈Ettingite) (≈Ettingite) (≈Ca ₆ (Si,Al) ₁₀ O ₂₂ K ¹⁷⁰ Ca ₆ (H ₂ O) ₁ OH) Mon. a=24.03A β=106.94° Ca _{1,III} (4e) K(4e) (SO ₄ ,CO ₃) ₂ (OH) (SO ₄ ,CO ₃) ₂ (OH) (SO ₄ ,CO ₃) ₂ (OH) (So ₄ (Si,Al) ₁₀ O ₂₂ P2 ₁ /a b=5.11A Z=2 (Si,Al) _{1,1} √(4e) (Ca ₅ (So ₄) ₂ (So ₄) ₂ Orth. a=10.50A Z=8 ? (CO ₃)(OH) ₄ .6H ₂ O (CO ₃)(OH) ₂ .6H ₂ O (Si)(N ₂) ₂ .6H ₂ O	THAUMASITE	Ca ₃ Si(OH) ₆ (CO ₃)	Ca ₆ ^[8] Si ^o C ^I O ₃ S ¹	Hex.	a=11.04Å	Z=2	Ca(6c) Si(2a)		Acta Cryst.,1971, <u>B27</u> ,594-
KCa ₆ (Si,Al) ₁₀ O ₂₂ K ¹¹⁰ Ca ₆ (H ₂ O)(OH) Mon. a=24.03Å β=106.94° Ca _{1,} (4e) K(4e) K(3e) (SO ₄ ,CO ₃) ₂ (OH) (g)[S ¹ O ₄ [g)[C ¹ O ₃] ₂ P2 ₄ /a b=5.11Å Z=2 (Si,Al) ₁₋ √(4e) C=10.88Å C=10.88Å Z=8 ? Orth. a=10.50Å Z=8 ? Pmma b=54.71Å C=5.59Å C=5.59Å K(3e) K(3e) K(3hFe ³ (SiO ₄) ₆ K(3hFe ³ (SiO ₄) ₆ R 3 C=24.989Å α=62°59 S(18f) C=24.989Å α=62°59 S(18f) C=24.989Å C=33		(SO ₄).12H ₂ O	[O ₇ (OH) ₆ (H ₂ O) ₁₂] (≈Ettringite)	ည် တိ	c=10.39A		C(2b) S(2b)		601;SK,3/A,344-345, <u>21,</u> 448-451, <u>18,533-534;RRW,612;</u>
KC3e(Si,Al) ₁₀ C ₂₂ K C3e(FI ₂ C) ₁ (CH) Mon. A=24,03A B=105.94 Cal ₁₁₁ (4e) N(4e) N(4e) (SO ₄ ,CO ₃) ₂ (CH) (g)[S'O ₄ [[g)[C"O ₃] ₂ P2 ₁ /a b=5.11Å Z=2 (Si,Al) ₁₋ √(4e) C=10.88Å C=10.50Å Z=8 ? C=10.50Å Z=8 ? C=3.80		0 44.07	a love in collect		0		(42) (42)		Am Min 4027 62 1414 1420.
(CO ₃)(CH ₂ CO ₄ CO ₄) (Si ₁ CO ₁ CO ₂ CO ₃ CO ₄ CO ₄ CO ₄ CO ₅ CO ₄	TUSCANITE	KCa ₆ (Si,Al) ₁₀ O ₂₂ (SO, CO ₂) ₂ (OH)	K ^{1,12} Ca ₆ (H ₂ O)(OH)	Mon. P2./a	a=24.03A b=5.11Å	$\beta = 106.94^{\circ}$	Cal-III(4e) K(4e)		Am.Min., 1977, 62, 1114-1120; Am.Min., 1977, 62, 1110-1113;
CaCu ₅ (AsO ₄) ₂ Orth. a=10.50Å Z=8? (CO ₃)(OH) ₄ .6H ₂ O Pmma b=54.71Å (CO ₃)(OH) ₄ .6H ₂ O C=5.59Å K ₃ Na ₈ Fe(SO ₄) ₆ K ₃ ¹⁷⁰ Na ₈ ¹⁸ (H ₂ O) ₆ Trig. a=10.898Å a _R =10.39Å (NO ₃) ₂ .6H ₂ O (g)Fe ³ (S¹O ₄) ₆ R 3 c=24.989Å α=62°59' K ₃ Nu ³ O ₃₁₂ Z _R =1		.H ₂ O	{2∞}{(Si,Al)₁0 ⁽ O ₂₂]	5 <u>-</u> I	c=10.88Å	ı !			SR, 43A, 325-326; Hölzel, 227.
(NO₃)₂.6H₂O (g) Fe(3a) K(3e) (H₂O)e Trig. a=10.898Å a _R =10.39Å Fe(3a) K(9e) (S(2a) (g) Fe°(S¹O₄)e R 3 c=24.989Å α=62°59' S(18f) (g) Fu(O₃)₂.6H₂O (g) Fu(O₃)₂ (g) Fu(O₃)₃ (g) Fu(O₃)₂ (g) Fu(O₃)₃ (g) Fu(O₃)	TYROLITE	CaCu ₅ (AsO ₄₎₂ (CO ₃)(OH) ₄ .6H ₂ O		Orth. Pmma	a=10.50Å b=54.71Å c=5.59Å	Z=8 ?			RRW,635;Pov.,518;Hölzel,179.
$\{g\}[Fe^{(SO_4)_6}]$ R 3		K ₃ Na ₈ Fe(SO ₄) ₆	K ₃ ¹⁷⁰¹ Na ₈ ¹⁶ (H ₂ O) ₆	Trig.	a=10.898Å	a _R =10.39Å	Fe(3a) K(9e)		Am.Min., 1986, 71, 826-829; Str.
		(NO ₃) ₂ .6H ₂ O	{g}[Fe^(S'O ₄) ₆] {g}[N ^t O ₃] ₂	ლ ლ	c=24.989Å Z=3	$\alpha = 62^{\circ}59^{\circ}$ $Z_R = 1$	S(18f)		1ab.,297-298;Pov.,600;RRW, 639;Hölzel,137.

NAME	CHEMICAL FORMULA	STRUCTURAL	SPACE GROUP	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
UPALITE	AI(UO ₂) ₃ (PO ₄) ₂ O (OH).7H ₂ O		(Mon.) Bbcm	a=34.68Å b=16.81Å c=13.72Å	Z=16			Am.Min.,1980 <u>,65,</u> 208(Abs.); K/B,161;Hölzel,182.
VOCHTENITE	(Fe ^{2*} ,Mg)Fe ^{3#} (UO ₂) ₄ (PO ₄) ₄ (OH) .12-13H ₂ O		Mon. ?	a=12.606Å b=19.990Å c=9.990Å	β=102.31° Z=3			Min.Mag.,1989 <u>,53,</u> 473-478; Hölzel suppl
WALENTAITE	H ₄ Ca ₄ Fe ₁₂ (AsO ₄) ₁₀ (PO ₄) ₆ .28H ₂ O		Orth. I 222	a=26.24Å b=10.31Å c=7.38Å	Z=1			Am.Min.,1984 <u>,69</u> ,1193-1194; K/B,175;Hölzel,164.
WENKITE	Ba ₄ Ca ₆ (Si,Al) ₂₀ O ₃₉ (OH) ₂ (SO ₄) ₃ .nH ₂ O	Ba4 ¹⁷² Ca6 ^[8] (OH) ₂ (SO ₄) ₃ (H ₂ O) _n {3∞}[(Si,Al) ₂₀ O ₃₉]	Hex. P'62m	a=13.511Å c=7.462Å	Z=1	Ba _i (1b) Ba _{ii} (3g) (Si,Al) _i (12d) (Si,Al) _{ii} (6k) 1/2(Al,Si)(4h)		Acta Cryst.,1974, <u>B30</u> ,1262- 1266; Zeit.Krist.,1973, <u>137,</u> 113- 126; Pov.,349;Str.Tab.,482; RRW,667.
WHITEITE – - (CaFeMg)	Ca(Fe,Mn)Mg ₂ Al ₂ (PO ₄) ₄ (OH) ₂ .8H ₂ O	Ca ^{l8} (Fe,Mn) ^{I9} Mg ₂ ° Al ₂ °P₄ [†] O₁6(OH) ₂ (H ₂ O) ₈] (≈Jahnsite)	Mon. P2/a	a=14.90Å b=6.98Å c=10.13Å	β=113°7' Z=2			Min.Mag.,1978 <u>,42</u> ,309-323; K/B,155;Hölzel,176.
WHITEITE – - (MnFeMg)	MnFeMg ₂ Al ₂ (PO ₄) ₄ Mn ⁽⁸ Fe ⁽⁶⁾ Mg ₂ ° (OH) ₂ ·8H ₂ O Al ₂ °P ₄ [O ₁₆ (OH) ₂ (H ₂ O) ₈]	Mn ⁽⁸⁾ Fe ⁽⁵⁾ Mg ₂ ° Al ₂ °P4 [†] (O ₁₆ (OH) ₂ (H ₂ O) ₈]	Mon. P2/a	a=14.99Å b=6.96Å c=10.14Å	β=113°19' Z=2			Min.Mag.,1978, <u>42</u> ,309-323; Hölzel,176.
WHITEITE – - (CaMnMg)	CaMnMg ₂ Al ₂ (PO ₄) ₄ Ca ⁽³⁾ Mn ⁽⁵⁾ Mg ₂ ° (OH) ₂ ·8H ₂ O (H ₂ O) ₆ (OH) ₂ (H ₂ O) ₆	, Ca ^{ls} IMn ^{te} IMg ₂ ° Al ₂ °P4[O ₁₆ (OH) ₂ (H ₂ O) ₈]	Mon. P2/a	a=14.842Å b=6.976Å c=10.109Å	β=112.59° Z=2			Can.Min.,1989, <u>27,</u> 699-702.
WICKSITE	NaCa ₂ MgFe (Fe,Mn) ₄ (PO ₄) ₆ .2H ₂ O	Ca₂ ^{!ч} (H₂O)₂ {3∞}[Na°Mg°Fe° (Fe,Mn)₄°P ₆ C _{O24}]	Orth. Pcab	a=12.524Å b=12.907Å c=11.646Å	Z=4	Na(4a) Ca(8c) (Fe,Mn)(8c) P _{⊦⊞} (8c)		Can.Min.,1997, <u>35</u> ,777-784; Hölzel,164.
WYARTITE	Ca ₃ U(UO ₂) ₆ (CO ₃) ₂ (OH) ₁₈ .4H ₂ O		Orth. P2 ₁ 2 ₁ 2 ₁	a=11.25Å b=7.09Å c=20.80Å	Z=2			Am.Min.,1960, <u>45</u> ,200-208;Am. Min.,1959, <u>44</u> ,908(Abs.);Hötzel, 110;RRW,677;Pov.,327.
YECORAITE	Fe ₃ Bi ₅ O ₉ (TeO ₃) (TeO ₄) ₂ .9H ₂ O		٠.	٥				Am.Min.,1986, <u>71</u> ,1547(Abs.); Hölzel,93.

$A_pB_qC_rD_sE_xF_yG_z ... \ nAq.$

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
ALTHUPITE	AITh(UO ₂) ₇ (PO ₄) ₄	U ^(/by) Th ^[bp36] Al ^o O(OH) ₃	-	a=10.935Å	α=72.64°			Am.Min., 1988, 73, 189-199;
	O ₂ (OH) ₅ .15H ₂ O	(H ₂ O) ₁₅ {2∞}{(UO ₂) ₃ O	٦-	b=18.567Å				Hölzel,183;K/B,162.
		(OH)(P¹O₄) ₂] ₂ (≈Phosphuranylite)		c=13.504Å	γ=84.21° Z=2			
ASHCROFTINE-	K ₅ Na ₅ (Y,Ca) ₁₂ Si ₂₈	K _s [tortz]Na ₅ [8rtz]	Tet.	a=23.994Å	Z=4	K _{I-II} (8i)		Am.Min., 1987, 72, 1176-1189;
-(<u>3</u>	O ₇₀ (OH) ₂ (CO ₃) ₈ .8H ₂ O	(Y,Ca) ₁₂ (C ^t O ₃) ₈ (H ₂ O) ₈ (OH) ₂ (2∞)[Sj ₂₈ ^t O ₇₀]	I4/mmm	c=17.512Å		Si _{I-V} (320) C _{I-II} (6I)		RRW,39;Pov.,433.
	4	(≈Apophyllite)						
ASSELBORNITE	(Pb,Ba)(UO ₂) ₆		Cub.	a=15.66A				Am.Min., 1984, 69, 565-569;
	(BiO)4(AsO4) ₂ (OH) ₁₂ .3H ₂ O		Im3m	Z=4				Hölzel, 183.
CARLETONITE	KNa ₄ Ca ₄ Si ₈ O ₁₈	K ^{I¹0]} Na ₄ ^[5+1] Ca ₄ ^[7]	Tet.	a=13.178Å	2=4	K(4f)Si _{I-II} (16I)		Am.Min., 1972, 57, 765-778; Am.
	(CO ₃) ₄ (F,OH).H ₂ O	(CO ₃)₄(F,OH)(H ₂ O) {2∞}[Sig¹O₁8]	P4/mbm	c=16.695Å		Ca(16I)		Min., 1971, <u>56</u> , 1855-1866; RRW 107.
CHESSEXITE	Na ₄ Ca ₂ Mg ₃ Al ₈		Orth.	a=13.70Å	Z=2			Am.Min., 1984, <u>69</u> , 406-412;
	(SiO ₄) ₂ (SO ₄) ₁₀ (OH) ₁₀ .40H ₂ O	7	<i>د</i>	b=27.96A c=9.99Å				Hölzel,137.
COCONINOITE	Fe, Al,(UO,),		Orth	2				RRW.139-140:Pov559:Str.
	(PO ₄) ₄ (SO ₄)(OH) ₂ .		٠	•				Tab.,356;Am.Min.,1966,51,651
	.20H ₂ O	1						-663;Hölzel,182.
EHRLEITE	Ca ₂ ZnBe(PO ₄) ₂	Ca ₂ ^[//8] (P'O ₃ OH)	- Tic	a=7.130Å	α=94.31°	Ca _{l-II} (2i)Zn(2i)		Can.Min., 1987, <u>25</u> , 767-774;
	(PO ₃ OH).4H ₂ O	(H ₂ O)₄{2∞}{Zn'Be'P ₂ '		b=7.430Å	$\beta = 102.07^{\circ}$	Be(2i)		K/B,153;Hölzel,159.
		[80		c=12.479Å	γ=82.65° Z=2			
IQUIQUEITE	K ₃ Na₄Mg(CrO₄)B ₂₄		Hex.	a=11.636Å	Z=3			Am.Min., 1986, 71,830-836;
	O ₃₉ (OH) .12H ₂ O		P31c	c=30.158A				Hölzel,118.
JOAQUINITE- (Ce) NaBa ₂ FeTi ₂ Ce ₂	NaBa ₂ FeTi ₂ Ce ₂	Na ^[6] Ba ₂ ^{l10]} Fe ^[5] Ti ₂ º	Mon.	a=10.516Å	$\beta = 109.67^{\circ}$	β=109.67° Na(2b)Ba(4b)		Am.Min., 1975, 60, 872-878;
	(SiO ₃) ₈ O ₂ (OH).H ₂ O		22	b=9.686Å	Z=2	Ce(4c)Fe(2b)		Am.Min., 1972, <u>57,</u> 85-102; Str. Tab. 401: Pov. 366
LEPERSONNITE-	Ca(Gd,Dy) ₂ (UO ₂) ₂₄	771 C to 170-1	Orth.	a=16.23Å	Z=2			Am.Min., 1983, 68, 1248-1252;
- (Gd)	(CO ₃) ₈ Si ₄ O ₁₂ 60H ₂ O		Pnnm	b=38.74Å c=11.73Å				Hölzel,110.
MACHATSCHKI-	(Ca,Ña)₅(AsO₄)		Trig.	a=15.127Å	9=Z			Am.Min., 1983, <u>68</u> , 851-852
3	(AsO ₃ OH) ₃ PO ₄ . 15H ₂ O		R3c	c=22.471Å				(Abs.);Hölzel,177;Am.Min., 1977,62,1260(Abs.);K/B,167.
MCAUSLANITE	Fe ₃ Al ₂ (PO ₄) ₃		Tric.	a=10.055Å	$\alpha = 105.84^{\circ}$			Can.Min., 1988, 26, 917-921;
	(PO ₃ OH)F.18H ₂ O		<u>7</u> ::	b=11.568Å	β=93.66°			Hölzel, suppl
				c=6.888Å	γ=106.47° Z=1			

ApBqCrDsExFyGz ... nAq.(cont.)

NAME	CHEMICAL	STRUCTURAL FORMUII A	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
MENDOZAVILITE	NaCa ₂ Fe ₆ (PO ₄) ₂ (PMo ₁₁ O ₃₉) (OH,Cl) ₁₀ .33H ₂ O		ć	ć				Am.Min.,1988 <u>,73</u> ,193(Abs.); Hölzel,178.
OBRADOVICITE	H ₄ (K,Na)CuFe ₂ (AsO ₄)(MoO ₄) ₅ . .12H ₂ O		Orth. Pcmn	a=15.046Å b=14.848Å c=11.056Å	Z=4			Min.Mag.,1986 <u>,50,</u> 283-284; Hölzel,178.
ORPHEITE	H ₆ Pb ₁₀ Al ₂₀ (PO ₄) ₁₂ (SO ₄) ₅ (OH) ₄₀ .11H ₂ O (?)		Trig. R 3m	a=7.00Å c=16.72Å	¿=Z			Am.Min.,1976, <u>61,</u> 176(Abs.); Encyc.Miner.Nam.,224;Hölzel, 174;K/B,176.
ORTHOJOAQUI- NITE- (Ce)	NaBa ₂ FeCe ₂ Ti ₂ (SiO ₃) ₈ O ₂ (O,OH) H ₂ O	Na ^{te} lBa ₂ ¹¹⁰¹ Fe ^[5] Ti ₂ ° Ce ₂ ^[7] O ₂ (O,OH)(H ₂ O) {2∞}ISi₄ ^t O ₁₂] ₂	Orth.? Ccmm	a=10.477Å b=9.599Å c=22.59Å	Z=4			Am.Min.,1982, <u>67,</u> 809-816; Hölzel,206.
PARAMENDOZA- VILITE	NaAI4Fe ₇ (PO ₄) ₅ (PMo ₁₂ O ₄₀)(OH) ₁₆ .56H ₂ O		خ	ځ				Am.Min.,1988 <u>,73</u> ,194(Abs.); Hölzel,178.
PUMPELLYITE- - (Fe ^{2*})	Ca ₂ Fe ^{2*} Al ₂ (SiO ₄) (Si ₂ O ₇)(OH) ₂ .H ₂ O	Ca ₂ ^[7] (H ₂ O){3∞}{Fe° Al ₂ °Si₃¹O₁₁(OH)₂] (≈Clinozoisite)	Mon. A2/m	a=8.81Å b=5.94Å c=19.14Å	α=97.6° Z=2			RRW,497;Pov.,404-405;Str. Tab.,399;Am.Min.,1983, <u>68,</u> 1250(Abs.);Hölzel,203.
PUMPELLYITE- - (Fe ^{3*})	Ca ₂ Fe ^{3*} Al ₂ (SiO ₄) (Si ₂ O ₇)(OH,O) ₂ .H ₂ O	Ca ₂ ^[7] (H ₂ O){3∞}[Fe° Al ₂ °Si₃¹O₁₁(OH,O)₂] (≈Clinozoisite)	Mon. A2/m	خ				Encyc.Miner.Nam.,246.
PUMPELLYITE- - (Mg)	Ca ₂ MgAl ₂ (SiO ₄) (Si ₂ O ₇)(OH) ₂ .H ₂ O	Ca₂ ^[7] (H₂O){3∞}[Mg° Al₂°Si ₃¹O₁₁(OH)₂]	Mon. A2/m	a=8.83Å b=5.90Å c=19.17Å	β=97°7′ Z=4	Са _{і-іі} (4h) (AI,Mg,Fe)(4f) AI(8j)Si _{і-ііі} (4i)		Acta Cryst.,1969, <u>B25,</u> 2276- 2281;Hölzel,203.
PUMPELLYITE- - (Mn)	Ca ₂ MnAl ₂ (SiO ₄) (Si ₂ O ₇)(OH) ₂ .H ₂ O	Ca ₂ ^[7] (H ₂ O){3∞}[Mn° Al ₂ °Si₃ [†] O₁₁ (OH)₂]	Mon. A2/m	a=8.923Å b=5.995Å c=19.156Å	β=97º8' Z=4			Bull.Min.,1981, <u>104,</u> 396-399; Am.Min.,1983, <u>68,</u> 1250(Abs.); Hölzel,203.
ROEBLINGITE	Ca ₆ MnPb ₂ (Si ₃ O ₉₎₂ (SO ₄₎₂ (OH) ₂ .4H ₂ O	Ca ₆ °Pb ₂ (OH) ₂ (H ₂ O)₄ {2∞}[Mn°(Si₃¹O₃) ₂]	Mon. C2/m	a=13.208Å b=8.287Å c=13.089Å	β=106.65°′ Z=2	Mn(2d)Pb(4i) Ca _l (4i)Ca _{ll} (8j) 		Am.Min., 1984, <u>69</u> , 1173-1179; Am.Min., 1966, <u>51</u> , 504-508; RRW, 522; Pov., 394; Str. Tab., 378.
SARYARKITE-(Y)	Ca(Y,Th)Al ₅ (SiO ₄) ₂ (PO ₄) ₂ (OH) ₇ .6H ₂ O		Tet. P42 ₁ 2	a=8.213Å b=6.55Å	Z=4			Am.Min.,1964, <u>49</u> ,1775(Abs.); RRW,539;Pov.,395;Str.Tab., 572;Hölzel,193.
SCHRÖCKINGE- RITE	NaCa ₃ (UO ₂)(SO ₄) (CO ₃) ₃ F.10H ₂ O	(H ₂ O) ₄ (2∞)[NaCa ₃ (UO ₂)(C ^{tr} O ₃) ₃ (S ^t O ₄)F (H ₂ O) ₆]	Tric. P 1	a=9.60Å b=9.62Å c=14.46Å	α =91°42' β =91°48' γ =120°5' Z=2			Am.Min., 1959, 44, 1020-1025; Min.Abs., 86M/4306; Pov., 626; Str. Tab., 249; RRW, 546; Hörzel, 109.
SERGEEVITE	Ca ₂ Mg ₁₁ (CO ₃) ₄ (HCO ₃) ₄ (OH) ₄ . 6H ₂ O		Trig.	a=19.01Å c=7.82Å	Z=3			Am.Min.,1981, <u>66</u> ,1100(Abs.); Hölzel,106.

ApBqCrDsExFyGz ... nAq.(cont.)

NAME	CHEMICAL	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
SHUISKITE	Ca ₂ MgCr ₂ (SiO ₄) (Si ₂ O ₇)(OH) ₂ .H ₂ O	Ca₂ ^{[71} [3∞][Mg°Cr₂° SiO₄Si₂¹O ₇ (OH)₂ (H₂O)] (=Pumpellyite)	Mon. A2/m	a=8.897Å β=98° b=5.843Å Z=4 c=19.41Å			Am.Min.,1982 <u>,67</u> ,860(Abs.); Hölzel,203.
STEENSTRUPI-	Na ₁₄ Ce ₆ Mn ₂ Fe ₂ Zr	i i	Trig.	a=10.46Å			Am.Min.,1984, <u>69</u> ,215(Abs.);
NE - (Ce)	(FO4)7812O36(OT)2 3H ₂ O		E E S	Z=3			577.
TATARSKITE	Ca ₆ Mg ₂ (SO ₄) ₂		2	2			Am.Min., 1964, 49, 1151 (Abs.);
	(CO ₃) ₂ Cl ₄ (OH) ₄ 7H ₂ O						Hölzel,137;Str.Tab.,296;Pov., 600.
VISÉITE	Ca ₁₀ Al ₂₄ (PO ₄) ₁₄	Ca10Al24(PO4)14F3O13 Cub.	Cub.	a=13.65Å			Min.Mag.,1977,41437-442;
	(SiO ₄) ₆ F ₃ O ₄₃	(H,O)7/300)[SikO ₃]	<i>د</i>	Z=1?			RRW,654;Pov.,532;Str.Tab.,
	.72H ₂ O	(≈Analcime.Zeolite)	_				472;Hölzel,243;Gottardi &
							Galli,1985,76;LF,293.
XIANGJIANGITE (Fe.Al)(UO3)	(Fe.Al)(UO ₂) ₄		Tet.	a=7.17Å Z=1			Am.Min., 1979, 64, 466 (Abs.).
	(PO ₄) ₂ (SO ₄) ₂ (OH)		٠	c=22.22Å			K/B,176;Hölzel,179;

ORGANIC MINERALS

NAME FORMULA FORMULA FORMULA FORMULA ABELSONITE NIC3:H32N4 {g}{NIC3:H32N4} ACETAMIDE CH3CONH2 {g}{NIC3:H32N4} AMBER CH3CONH2 {g}{NIC3:H32N4} CALCLACITE Ca(CH3COO)CI {f}{C}{NIC3:H2COO}CI EARLANDITE Ca(CH5COO)CI {H2O}s EVENKITE Ca(CH5COO)CI {g}{S}{C3:H32} FICHTELITE C10H22O3 {g}{S}{C3:H32} GLUSHINSKITE MgC2O4.2H2O GGUANINE GUANINE C5H3(NH2)N4O	FORMULA					LUNA LUI LOI CHO	CLCATCTTC
NiC ₃ ,H ₃₂ N ₄ (g) CH ₃ CONH ₂ (g) CH ₃ CONH ₂ (g) Ca(CH ₃ COO)Cl (g) .5H ₂ O Ca ₃ (C ₆ H ₅ O7) ₂ .4H ₂ O C ₂ 4H ₅₀ C ₁₉ H ₃₄ (g) C ₁₉ H ₃₄ (g) E C ₁₀ H ₂ O ₃ E C ₁₀ H ₂ O ₃ E C ₁₀ H ₂ O ₃ E C ₁₀ H ₂ O ₄ (H ₂ O ₄) C ₅ H ₃ (NH ₂)N ₄ O		GROUP	UNII CELL DIMENSIONS	MENSIONS	POSITIONS	SIRUCIONE ITPE	KEFEKENCES
CH ₃ CONH ₂ (g) C,H,O (G) Ca(CH ₃ COO)C (g) .5H ₂ O (Ca ₃ (C ₆ H ₅ O ₇) ₂ .4H ₂ O (C ₂ 4H ₅ O (C ₁₉ H ₃ A (g) C ₁₉ H ₃₄ (g)		Tric.	a=8.44Å	$\alpha = 90^{\circ}53'$			Am.Min., 1978, <u>63</u> , 930-937;
CH ₃ CONH ₂ (g) C,H,O Ca(CH ₃ COO)C (f) Sh ₂ O Ca(CH ₅ O ₇) ₂ .4H ₂ O C ₂ 4H ₅ O C ₂ 4H ₅ O C ₁ 9H ₃ 4 (g) E C ₁ 0H ₂ O ₃		<u>.:</u>	b=11.12Å	B=113°45'			Hölzel,250.
CH ₃ CONH ₂ (9) [C,H,Q] Ca(CH ₃ COO)CI (9) .5H ₂ O Ca ₃ (C ₆ H ₅ O ₇) ₂ .4H ₂ O C ₂ 4H ₅₀ C ₂ 4H ₅₀ TE C ₁₉ H ₃₄ (9) TE C ₁₀ H ₂ O ₃ TE C ₁₀ H ₂ O ₃ TE C ₁₀ H ₂ O ₃ C ₅ H ₃ (NH ₂)N ₄ O			c=7.28Å	γ=79°34'			
CH ₃ CONH ₂ (g) Ca(CH ₃ OO)Cl (g) Ca(CH ₃ COO)Cl (H) SH ₂ O Ca ₃ (C ₆ H ₅ O ₇) ₂ ·4H ₂ O C ₂ 4H ₅₀ C ₂ 4H ₅₀ C ₁₉ H ₃₄ (g)	-			Z=1			
C,H,O Ca(CH ₃ COO)C 5H ₂ O Ca ₃ (C ₆ H ₅ O ₇) ₂ .4H ₂ O C ₂ 4H ₅ O C ₂ 4H ₅ O C ₁₉ H ₃₄ C ₁₉ H ₃ (NH ₂)N ₄ O C ₂ H ₃ O C ₂ H ₃ (NH ₂)N ₄ O C ₂ H ₃ O C	{C"O(CH3)(NH2)]	Hex.	a=11.40Å c=13.50Å	¿=Z			Am.Min., 1976, 61,338 (Abs.); Hölzel 249 Encyc, Miner, Nam., 9
Ca(CH ₃ COO)Cl .5H ₂ O Ca ₃ (C ₆ H ₅ O ₇) ₂ .4H ₂ O C ₂ 4H ₅₀ C ₁₉ H ₃₄ TE C ₁₀ H ₂ O ₃ TE C ₁₀ H ₂ O		Amorph.					Str.Tab.,498;RRW,17.
5H ₂ O Ca ₃ (C ₆ H ₅ O ₇) ₂ .4H ₂ O C ₂ 4H ₅₀ C ₂ 4H ₅₀ TE C ₁₀ H ₂ O ₃ TE C ₁₀ H ₂ O ₃ TE C ₂ H ₂ O ₃ C ₅ H ₃ (NH ₂)N ₄ O	t	Mon.	a=10.51Å	.9₀66=9			Acta Cryst., 1958, 11,745-746;
Ca ₃ (C ₆ H ₅ O ₇) ₂ .4H ₂ O C ₂ 4H ₅₀ C ₁₉ H ₃₄ (9) C ₁₀ H ₂₂ O ₃ MgC ₂ O ₄ .2H ₂ O C ₅ H ₃ (NH ₂)N ₄ O		P2 ₁ /a	b=13.72Å c=6.82Å	Z=4			Hölzel,248;RRW,102.
C ₂₄ H ₅₀ C ₁₉ H ₃₄ (g) C ₁₀ H ₂₂ O ₃ MgC ₂ O ₄ .2H ₂ O C ₅ H ₃ (NH ₂)N ₄ O		Mon.	خ				Str.Tab.,495;Hölzel,248;RRW, 184.
C ₁₉ H ₃₄ (9) C ₁₀ H ₂₂ O ₃ MgC ₂ O ₄ .2H ₂ O C ₅ H ₃ (NH ₂)N ₄ O		Mon.	a=7.50Å	β=94°			Am.Min., 1965, 50, 2109 (Abs.);
C ₁₉ H ₃₄ [9] C ₁₀ H ₂₂ O ₃ MgC ₂ O ₄ .2H ₂ O C ₅ H ₃ (NH ₂)N ₄ O	-	_	b=4.99Å c=32.7Å	Z=2			RRW,201;Str.Tab.,496;Hölzel, 249.
C ₁₀ H ₂₂ O ₃ MgC ₂ O ₄ .2H ₂ O C ₅ H ₃ (NH ₂)N ₄ O	19H34]		~	.85°	C _{I-XIX} (2a)		Can.Min.,1995,33,711;Str.Tab.
		P2 ₁	b=7.458Å c=10.824Å		H _{-xxxIII} (2a)		,496;RRW,214;Hölzel,249.
		Orth.	a=18.60Å	Z=16			Am.Min., 1965, 50, 2109 (Abs.);
- -		Fdd2	b=23.00Å c=10.86Å				Str.Tab.,496;RRW,215;Hölzel, 249.
		Mon.	a=12.675Å	B=129.45°			Min.Mag.,1980,43,837-340;
		C2/c		Z=4			Hölzel, 248; Am. Min., 1981, 66, 439 (Abs.).
		Mon.	2				Encyc.Miner.Nam.,120;Min.
		P2 ₁ /n	·				Mag., 1974, <u>39</u> , 889-890; Hölzel, 250.
HARTITE C20H34 (9)[C20H34]		Tric.	a=21.10Å	$\alpha = 103^{\circ}11^{\circ}$			Str.Tab.,496;Hölzel,249;Acta
		٦-	b=11.54Å	β=92°59'			Cryst., 1978, B34, 1311-1316.
			c=7.50Å	γ=80°35' Z=4			•
HOELITE C ₁₄ H ₈ O ₂		Mon.	a=15.81Å	$\beta = 102^{6}7'$			Hölzel,249.
		P2 ₁ /a	b=3.967Å c=7.876Å	Z=2			
HUMBOLDTINE FeC.O4.2H,O {1∞}{C,O4Fe	{1∞}[C,O₄Fe(H,O),]	Mon.	a=12.04Å	B=127°34'	Fe(4e)C(8f)		SR,21,505-506; Hölzel,248;Str.
4		C2/c	b=5.58Å c=9.89Å		O _{I-III} (8f)		Tab.,494;RRW,283-284.
IDRIALITE C ₂₂ H ₁₄		Orth.	a=8.07Å	Z=4			Str. Tab., 497; Am. Min., 1965, 50,
			c=27.75Å				RRW,296.

ORGANIC MINERALS (cont.)

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE	UNIT CELL DIMENSIONS	IMENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
KARPATITE	C ₂₄ H ₁₂		Mon.	a=16.25Å	B=111°10'			Am.Min.,1969,54,329(Abs.);
	! i		P2/c	b=4.638Å c=10.42Å	Z=2			RRW,119;Str.Tab.,496;Hölzel, 250.
KLADNOITE	C ₆ H ₄ (CO) ₂ NH	{g}{C ₆ H ₄ (CO) ₂ NH]	Mon. P2 ₁ /n	a=22.83Å b=7.651Å c=3.810Å	β=91°36′ Z=4	C _{I-VIII} (4e)N(4e) O _{I-II} (4e)H _{I-V} (4e)		Acta Cryst., 1972, <u>B28,</u> 415-418; Hölzel, 249.
KRATOCHVÍLITE	C ₁₃ H ₁₀	[@][C ₁₃ H ₁₀]	Orth. Pnam	a=8.49Å b=5.721Å c=18.97Å	Z=4	C _{I-VI} (8d)C _{VII} (4c)		SR,19,583-584;Hölzel,249;Str. Tab.,496;Miner.Refer.Manual, 245.
MELLITE	A ₂ C ₆ (COO) ₆ . 16H ₂ O	Al ₂ [°] (H ₂ O) ₁₆ {g}[C ₆ (COO) ₆]	Tet. P4 ₁ /acd	a=15.53Å c=23.19Å	Z=8	AI(16e)O _{I-II} (16e) O _{III-VIII} (32g) C _{I-IV} (32g)		Acta Cryst.,1973, <u>B29,</u> 26-31; RRW,390-391;Str.Tab.,495; Hölzel,249.
MINGUZZITE	K ₃ Fe(C ₂ O ₄) ₃ .3H ₂ O		Mon.	β= 2	β=94°13.5'			RRW,407-408;Str.Tab.,494; Hölzel,248;Am.Min.,1956,41, 370(Abs.)
MOOLOOITE	CuC ₂ O ₄ .nH ₂ O		orth.	a=5.35Å b=5.63Å c=2.56Å	Z=1			Min.Mag.,1986, <u>50,</u> 295-298; Hölzel,248.
OXAMMITE	(NH ₄) ₂ C ₂ O ₄ .H ₂ O		Orth. P2 ₁ 2 ₁ 2	a=8.035Å b=10.309Å c=3.795Å	Z=2			Acta Cryst.,1972, <u>B28</u> ,3340- 3351;RRW,454;Str.Tab.,494; Hölzel,248;
PHYLLORETINE	C ₁₈ H ₁₈		Orth. Pnn2	a=6.26Å b=8.52Å c=23.45Å	Z=4			Str.Tab.,496;Hölzel,249.
REFIKITE	C ₂₀ H ₃₂ O ₂		Orth. P2 ₁ 2 ₁ 2	a=10.43Å b=22.35Å c=7.98Å	Z=4			Am.Min.,1965, <u>50,</u> 2109-2110 (Abs.);RRW,513;Str.Tab.,497; Hölzel,248.
SIMONELLITE	C ₁₉ H ₂₄		Orth. Pnaa	a=9.231Å b=9.134Å c=36.01Å	Z=8			Am.Min.,1970 <u>,55,</u> 1818(Abs.); Str.Tab.,496;Hölzel,249.
STEPANOVITE	NaMgFe(C ₂ O ₄) ₃ .8-9H ₂ O		Trig.	a=9.28Å c=36.67Å	Z=6			Am.Min.,1964,49,442-443 (Abs.);Str.Tab.,495;RRW,578;
UREA	CO(NH ₂) ₂	{B}[C"O(NH ₂) ₂]	Tet. P 42 ₁ m	a=5.646Å c=4.701Å	Z=2		{g}[C ^r O(NH ₂) ₂] UREA	Min.Mag.,1973, <u>39</u> ,346-348; Hölzel,249;Kitaigorodskii,1961, 153-154.
URICITE	C ₅ H ₄ N ₄ O ₃	{g}[C₅H₄N₄O₃]	Mon. P2 ₁ a	a=14.464Å b=7.403Å c=6.208Å	β=65.10° Z=4			Acta Cryst., 1965 <u>, 19</u> ,286-287; Hölzel,250.
WEDDELLITE	CaC ₂ O ₄ .2H ₂ O	(H ₂ O) ₂ Ca {g}{C ₂ O ₄]	Tet. I4/m	a=12.37Å c=7.357Å	Z=8	Ca(8h)C(16i) O _{I-II} (16i)		Am.Min., 1980, <u>65,</u> 327-334; Acta Cryst., 1965, <u>18,</u> 917-921; Hölzel, 248.

ORGANIC MINERALS (cont.)

NAME	CHEMICAL FORMULA	STRUCTURAL FORMULA	SPACE GROUP	UNIT CELL DIMENSIONS	MENSIONS	EQUIVALENT POSITIONS	STRUCTURE TYPE	REFERENCES
WHEATLEYITE	Na ₂ Cu(C ₂ O ₄) ₂		(Tric.)	a=7.559Å	$\alpha = 76.65^{\circ}$	a=7.559Å α=76.65° Cu(1a)Na(2i)		Am.Min., 1986, 71, 1240-1242;
	.2H ₂ O		<u>Т</u>	b=9.665Å	$\beta = 103.67^{\circ}$	β=103.67° O _{I-V} (2i)C _{I-II} (2i)		Acta Cryst., 1980, <u>B36, 2145</u> -
			-	c=3.589Å	γ=109.10° Z=1			2147; Hölzel,248.
WHEWELLITE CaC ₂ O ₄ .H ₂ O	CaC ₂ O ₄ .H ₂ O		Mon.	a=6.290Å B=109.46° Ca _{I-II} (4e)	B=109.46°	Ca _{l-II} (4e)		Am.Min., 1980, 65, 327-334; Am.
			P2,/c	b=14.583Å Z=8	Z=8	C _{I-IV} (4e)		Min., 1968, 53, 455-463; Hölzel,
				c=10.116Å		O _{I-VIII} (4e)		248;RRW,669;Str.Tab.,494.
ZHEMCHUZHNI-	NaMg(AI,Fe)		Trig.	a=16.67Å Z=6	9=Z			Am.Min., 1964, 49, 442-443
KOVITE	(C ₂ O ₄) ₃ .8H ₂ O			c=12.51Å				(Abs.);RRW,686;Str.Tab.,495;
			_					070 010

Tables of mineral structure types

Table 64S

A_mB_n.nAq.

MINERALS TENTATIVELY CLASSIFIED

 $\begin{array}{ll} \textbf{ERIOCHALCITE} & Al^0[Cl_2(H_2O)_2]^{Os} & Pbmn \\ \textbf{NICKELBISCHOFITE} & Ni^{[7/6]}[(H_2O)_6Cl_2] & C2/m \\ \textbf{SCHOEPITE} & U^{[7]}[O_3(H_2O)_{12}] & P2_1ca \\ \textbf{SIDWILLITE} & Mo^0[O_3(H_2O)_2]^{o?} & P2_1/n \\ \end{array}$

MINERALS NOT YET CLASSIFIED

ANTHONYITE $Cu(OH,CI)_2.3H_2O$ Mon. s.g.? BARIANDITE $V_5O_{12}.6H_2O$ Cc ... CALUMETITE $Cu(OH,CI)_2.2H_2O$ S.? LENOBLITE $V_2O_4.2H_2O$ S.? MASUYITE $UO_3.2H_2O$ Pcna METASCHOEPITE $UO_3.1-2H_2O$ Pbna METASTUDTITE $UO_4.2H_2O$ Immm MEYMACITE $WO_3.2H_2O$ Amorph.

NAVAJOITE V₂O₅.3H₂O Mon. s.g.? OPAL SiO₂.nH₂O Amorph. ROKHÜNITE FeCl₂.2H₂O C2/m SILHYDRITE Si₃O₆.H₂O Orth. s.g.? SINJARITE CaCl₂.2H₂O Tet. s.g.? STUDTITE UO₄.4H₂O C2 ... TUNGSTITE WO₃.H₂O Pmnb

A_pB_qC_r.nAq.

CLOSE-PACKED

MANJIROITE Mn₈°[(Na,K)O₁₆(H₂O)_n]^{chh} I 4/m (Dist.d.Hollandite)

GROUP

NATRON [{g}[Na2°(H2O)10] {g}[CtO3]c] Cc

SHEET

GYPSUM $2\infty[Ca^{[6+2]}(H_2O)_2S^tO_4]$ | 2/a

 $\begin{array}{ll} \text{Deriv.:} & \text{CHURCHITE - (Nd)} & 2\infty[Nd^{[\theta+2]}(H_2O)_2P^tO_4] & A2/a... \\ & \text{CHURCHITE - (Y)} & 2\infty[(Y,Er)^{[\theta+2]}(H_2O)_2P^tO_4] & A2/a... \\ \end{array}$

FRAMEWORK

KIESERITE 300[Mg°StO4(H2O)] C2/c

VARISCITE (H₂O)₂{3∞}[Al°P^tO₄] Pbca (Basic str.Metavariscite)

 $\begin{array}{lll} \mbox{Deriv.:} & \mbox{GUNNINGITE} & \mbox{$3 \mbox{$\infty$}[(Zn,Mn)^\circ S^iO_4(H_2O)]$} & \mbox{$A2/a$} \\ & \mbox{$POITEVINITE} & \mbox{$3 \mbox{$\infty$}][(Cu,Fe,Zn)^\circ S^iO_4(H_2O)]$} & \mbox{$P$} & \mbox{$1 \mbox{$1 \mbox{$N$}}$} \\ & \mbox{$SZMIKITE} & \mbox{$3 \mbox{$3 \mbox{$M$}]}[Fe^\circ S^iO_4(H_2O)]$} & \mbox{$A2/a$} \\ & \mbox{$SZOMOLNOKITE} & \mbox{$3 \mbox{$3 \mbox{M}]}[Fe^\circ S^iO_4(H_2O)]$} & \mbox{$A2/a$} \\ \end{array}$

Pop.: MANSFIELDITE (H₂O)₂(3∞)[Al²As²O₄] SCORODITE (H₂O)₂(3∞)[Fe⁰As²O₄] STRENGITE (H₂O)₂(3∞)[Fe⁰P¹O₄]

Deriv.: KOLBECKITE (H₂O)₂(3ω)[Sc°PO₄] P2₁/m METAVARISCITE (H₂O)₂(3ω)[Al°PO₄] P2₁/n PHOSPHOSIDERITE (H₂O)₂(3ω)[Fe°PO₄] P2₁/n Table 65S

A_pB_qC_r.nAq.(cont.)

MINERALS TENTATIVELY CLASSIFIED

AHFELDITE Ni^[4+2]Se^[3n][O₃(H₂O)₂] P2₁/n(=Cobaltomenite) **ALUNOGEN** $Al_2^o(H_2O)_{17}\{g\}[SO_4]_3$ P $\bar{1}$ **APLOWITE** (Co,Mn,Ni) $^oS[O_4(H_2O)_4]$ P2₁/n **ARAVAIPAITE** Pb3Al°[F9(H2O)] P1 ... **BARNESITE** $Na_2^{[4+2]}V_6^{[550]}[O_{16}(H_2O)_3]$ P2/m BARRERITE (Na,K,Ca)₅^[8](H₂O)₁₇(3∞)[(Si,Al)₂₄tO₄₈] Amma (≈Stilbite,Zeolite) BELINGERITE {3\infty}[Cu^0_3{\g}][1^{[3n]}O_3]_6(H_2O_2] P 1 **BIANCHITE** (Zn,Fe) S[O₄(H₂O)₆] C2/c (=Hexahydrite) BIEBERITE Co°St[O4(H2O)7] P21/C BONATITE {2\infty}[Cu°StO4(H2O)3] Cc **BOOTHITE** Cu⁶S[†][O₄(H₂O)]₇ P2₁/c **BROCKITE** (Ca,Th,Ce)^[B]P[†][O₄(H₂O)] P622 (=Rhabdophane-(Ce)) CARNALLITE KoMgo [Cl3(H2O)6] Pnna CHALCANTHITE $(H_2O)\{1\infty\}[Cu^0S^tO_4(H_2O)_4] P \overline{1}$ (=Pentahydrite) CHALCOMENITE Cu°Se^[3n][O₃(H₂O)₂] P2₁2₁2₁ (=Teineite. ≈Ahlfeldite) CHALCOPHANITE (Zn,Fe,Mn)°Mn₃°[O₇(H₂O)₃] R 3 CLARINGBULLITE Cu°Cu₃P[(OH)₇Cl(H₂O)_n] P6₉/mmc COBALTOMENITE Co°Se^[3n][O₃(H₂O)₂] P2₁/n(=Ahlfeldite) **COQUIMBITE** $(H_2O)_6\{g\}[Fe_3^\circS_6^\daggerO_{24}(H_2O)_6]\{g\}[Fe^\circ(H_2O)_6]$ P 31c COYOTEITE NatFe3t[S5(H2O)2]n P1...(Subs.def.d.Wurtzite) CUPROTUNGSTITE Cu₃°W₂¹[O₃(H₂O)₂] P4₁2₁2... (≈Lindgrenite) CYMRITE Ba[8][200][(Si,AI)4tO8(H2O)] P21 DACAHIARDITE (Na,K,Ca_{0.5})₄(H₂O)₁₈(3∞)[Al₄^tSi₂₀^tO₄₈] C2/m (Zeolite) DIOPTASE Cu₆[4+2][(H₂O)₆{g}[Si₆tO₁₈]] R 3 **DWORNIKITE** $3\infty[(Ni,Fe)^{\circ}(H_{2}O)S^{i}O_{4}]$ C2/c (=Kieserite) **EMMONSITE** $Fe_{2}^{\circ}Te_{3}^{(5b)}[O_{9}(H_{2}O)_{2}]$ P $\bar{1}$ (\approx Mackayite) **EPSOMITE** $Mg^{\circ}S^{i}[O_{4}(H_{2}O)_{7}]$ P2₁2₁2₁ ERDITE Na^[6]Fe^t[S₂(H₂O)₂] C2/c .. ERYTHROSIDERITE Fe^o[Cl₅K₂(H₂O)] Pnma FERRIERITE (Orthorhombic) $(Mg,K,Ca)_{4.4}^{\circ}(H_2O)_{18}(3\infty)[(Si,Al)_{36}^{\circ}O_{72}]$ Pnnm (≈Mordenite,Zeolite) **FERRITUNGSTITE** $(K,Ca)_{0.2}^{cb}\square_{0.8}^{cb}(W,Fe)_{2}^{[6]}[(O,OH)_{6}(H_{2}O)\square]^{Qs}$ Fd $\bar{3}$ m (Defect deriv. Pyrochlore) FERROHEXAHYDRITE $Fe^{\circ}S^{t}[O_{4}(H_{2}O)_{6}]$ C2/c GERSTLEYITE $Na_{2}^{[4+2]}\{1\infty\}\{(Sb,As)_{8}^{[3n]}S_{13}(H_{2}O)_{2}\}$ Cm GONNARDITE (Na,Ca)2°(H2O)3(300)[(Si,Al)5^tO10] Tet. s.g.? (≈Natrolite,Zeolite) **GOSLARITE** Zn°S 1 [O₄(H₂O)₇] P2₁2₁2₁ (=Epsomite) **HEWETTITE** Ca $^{[7/8]}$ V₆ 0 [O₁₆(H₂O)₉] P2₁/m HEXAHYDRITE $Mg^{\circ}S^{\dagger}[O_4(H_2O)_6]$ C2/c HEXAHYDROBORITE $Ca^{(8)}B_2^{\dagger}[(OH)_8(H_2O)_2]$ P2/a HOPEITE Zn°Zn₂^tP₂^t[O₈(H₂O)₄] Pnma (≈Vivianite) **HYDROTUNGSTITE** $W^{\circ}[O_2(OH)_2(H_2O)]$ P2/m **IKAITE** $Ca^{[8]}(H_2O)_6\{g\}[C^{\dagger}O_3]$ C2/c $\begin{array}{ll} \textbf{ILESITE} & (Mn,Zn,Fe)^{\circ}S^{\circ}[O_{4}(H_{2}O)_{4}] & P2_{1}/n \\ \textbf{KILLALAITE} & Ca_{2}^{\circ}Ca^{7/}Si_{2}^{\circ}[O_{7}(H_{2}O)] & P2_{1}/m \\ \textbf{KLEINITE} & (Cl,SO_{4})_{n}(H_{2}O)\{\infty\}[N^{i}Mg_{2}^{(2j_{4}ch_{3})}]^{h} & P6_{3}/mmc \\ \end{array}$ (≈β-Tridymite) KONINCKITE (H₂O)₃(3∞)[Fe^oP^tO₄] Tet. s.g.? (≈Scorodite) **KORNELITE** $(H_2O){3\infty}[Fe_2{}^0S_3{}^1O_{12}(H_2O)_6]$ P21/n

KRAUSKOPFITE Ba^[9] $\{1\infty\}[Si_2^tO_5(H_2O)_3]$ P2₁/c KREMERSITE Fe^o[Cl₅(NH₄,K)₂(H₂O)] Pnma **LANTHANITE** - (Ce) $(H_2O)_8\{2\infty\}\{(Ce, La, Nd)_2^{[10]}\{g\}\{C^tO_3\}_3\}$ Pbnb LANTHANITE - (La) (H₂O)₈(2∞){(La,Ce)₂^[10](g){C^tO₃]₃ Pbnb LANTHANITE - (Nd) (H2O)8(200)[(Nd,La)2[10](g)(CtO3]3 LUDLAMITE (Fe,Mg,Mn)3°P2^t[O8(H2O)4] P21/a (≈Vivianite) MALLARDITE Mn°S¹[O₄(H₂O)₁] P2₁/c (≈Melanterite) MELANTERITE Fe°S [O₄(H₂O)₇] P2₁/c METAHEWETTITE Ca°V₆ O₁₆(H₂O)₃] A2/m METAKÖTTIGITE (Zn,Fe)3°AS2^t[O8(H2O,OH)8] P 1 (≈Symplesite) METAROSSITE CaacbV2[5by][O6(H2O)2] P 1 ... METASWITZERITE (Mn,Fe)3°P2^t[O8(H2O)4] P2₁/C (≈Ludlamite) MIRABILITE Na₂°S¹[O₄(H₂O)₁₀] P2₁/c MITSCHERLICHITE Cu°[K₂°C₁₄(H₂O)₂] P4₂/mnm MOORHOUSEITE (Co,Ni,Mn)°St[O4(H2O)6] C2/c (=Hexahydrite) **MORENOSITÉ** Ni°S^t[O₄(H₂O)₇] P2₁2₁2₁ (=Epsomite) **MOUNTAINITE** (Ca,Na₂,K₂)₂^[6](H₂O)₃{2 ∞ }[Si₄O₁₀] P2/c **NEKOITE** $Ca_3^o(H_2O)_7\{2\infty\}[Si_6^tO_{15}]$ P1 NESQUEHONITE $Mg^{o}(H_{2}O)_{3}\{g\}[C^{tr}O_{3}]$ P2₁/n NICKELHEXAHYDRITE (Ni,Mg,Fe)°S^t[O₄(H₂O)₆] C2/c (=Hexahydrite) NITROMAGNESITE Mg°(H2O)6[g][NtO3]2 P21/C **OKENITE** $Ca_{10}^{o}(H_2O)_{18}O\{2\infty\}[Si_6{}^tO_{15}]_3$ P $\overline{1}_{_}(\approx Nekoite)$ PARACOQUIMBITE Fe°S3^t[O₁₂(H₂O)₉] R 3 PARAHOPEITE Zn°Zn2^tP2[O₈(H2O)4] P 1 (Dist.d.Hopeite) PASCOITE Ca₃^[7]V₁₀°[O₂₈(H₂O)₁₇] | 2 ... **PAULINGITE** $(K,Ca,Na,Ba)_{12}(H_2O)_{25}\{3\infty\}[(Si,Al)_{24}^tO_{98}]$ I m3m (≈Sodalite.Zeolite) PENTAHYDRITE Mg°S^t[O₄(H₂O)₅] P 1 (≈Chalcanthite) PHAUNOUXITE {2\infty}[Ca^{[8]}Ca_2^{[7]}As_2^tO_8(H_2O)_{11}] P 1 (≈Rauenthalite) PHOSPHOFERRITE (Fe,Mn)3°P2^t(O8(H2O)3] Pbna (≈Reddingite) QUENSTEDTITE $Fe_2^{\circ}S_3^{t}[O_{12}(H_2O)_{11}]$ P $\overline{1}$ RALSTONITE $(AI,Mg)_2^{\circ\circ}Na_{0.4}^{[6]}\Box_{1.6}^{[6]}[(F,OH)_6(H_2O)\Box]^{Ge}$ (Defect.d.Pyrochlore) **RAUENTHALITE** Ca^[8]Ca₂^[7]As₂^t[O₈(H₂O)₁₀] P 1 (≈Phaunouxite) **REDDINGITE** Mn₃°P₂^t[O₈(H₂O)₃] Pbna (≈Phosphoferrite) **RETGERSITE** Ni^oS^t[O₄(H₂O)₆] P4₁2₁2 (=Hexahydrite) REVDITE 3∞[Na2°Sl2^tO5(H2O)5] C2 (≈Vlasovite) RHABDOPHANE - (Ce) (Ce,La)[8]Pt[(O₄(H₂O)] P6₂22 RHABDOPHANE - (La) (La,Ce)^[8]P¹[(O₄(H₂O)] P6₂22 RHABDOPHANE - (Nd) (Nd,Ce,La)^[8]P¹[(O₄(H₂O)] P6₂22 **RÖMERITE** [{g}|Fe $^{\circ}S_{2}^{+}O_{8}(H_{2}O)_{4}]_{2}$ {g}|Fe $^{\circ}(H_{2}O)_{6}$] $\stackrel{\frown}{P}$ $\stackrel{\frown}{1}$ **ROSSITE** $_{3}\infty$ [Ca $^{[8]}V_{2}^{[5]}O_{6}(H_{2}O)_{4}$] $\stackrel{\frown}{P}$ $\stackrel{\frown}{1}$ **ROZENITE** Fe°S¹[O₄(H₂O)₄] P2₁/n (=Laumontite) **SIDEROTIL** (Fe,Cu) ${}^{\circ}S^{t}[O_{4}(H_{2}O)_{5}]$ P $\overline{1}$ (=Chalcanthite) STARKEYITE {g}[Mg2°S2^tO8(H2O)8] P21/n STRACZEKITE V_8 $O_{20}(H_2O)_3(Ca,K,Ba)$ $O_{20}(H_2O)_3(Ca,K,Ba)$ **SVETLOZARITE** (Ca;K,Na)₃{3∞}[(H₂O)₁₂ (Si,Al)₂₄O₄₈] Ccma?(≈Dachiardite) **SWITZERITE** (Mn,Fe)₃°P₂^t[O₈(H₂O)₇] P2₁/a

Table 66S

$A_pB_qC_r.nAq.(cont.)$

MINERALS TENTATIVELY CLASSIFIED (cont.)

TACHYHYDRITE Ca°Mg₂°[Cl₆(H₂O)₁2] R $\bar{3}$ (≈Carnalite) TEINEITE Cu¹⁰¹Tel·¹⁰¹[O₃.(H₂O)₂]P2₁2₁2₁(=Chalcomenite) TENGERITE-{Y} $2\infty[Y_2^{[9]}\{g\}[C^{tr}O_3]_3(H_2O)_2]$ P2₁2₁2₁ (≈Kimuraite) TETRANATROLITE (Na,K)₂°(H₂O)₂{3∞}[(Si,Al)₅^tO₁₀] (≈Natrolite,Zeolite) THERMONATRITE Na[6]Na[5by](H₂O){g}[C^{tr}O_3] P2₁ab TODOROKITE (Mn,Mg,Al)₅°[(Na,Ca,K,Ba,Sr)₁,νO₁₂ (H₂O)₃₄]°ⁿ P2/m (≈Hollandite) TRISTRAMITE (Ca,U,Fe)[8](P,S)^t[O₄(H₂O)] P6₂22 (=Rhaudophane - (Ce)) VIVIANITE Fe₃°P₂^t[O₈(H₂O)₈] C2/m

$$\label{eq:posterior} \begin{split} &\text{Pop.: ANNABERGITE } \text{Nis}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{BARICITE } \text{(Mg,Fe),}^{\circ}\text{P}_{2}^{-}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{ERYTHRITE } \text{Cos}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{HORNESITE } \text{Mg,}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{KÖTTIGITE } \text{Mg,}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{PARASYMPLESITE } \text{Fe,}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{SYMPLESITE } \text{Fe,}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \\ &\text{Deriv.: } \text{BOBIERRITE } \text{Mg,}^{\circ}\text{P}_{2}^{1}[O_{\delta}(H_{2}O)_{\delta}] \text{ C2/c} \\ &\text{MANGANESEHÖRNESITE } \text{(Mn,Mg)}_{3}^{\circ}\text{Asz}^{1}_{2}[O_{\delta}(H_{2}O)_{\delta}] \text{ P2-1/c} \\ \end{split}$$

WARIKAHNITE $3\infty[Zn_3^{[4/5/6]}As_2^{t}O_8(H_2O)_2]$ P $\bar{1}$ **ZINCMELANTERITE** $(Zn,Cu,Fe)^{\circ}S^{t}[O_4(H_2O)_7]$ P2₁/c

MINERALS NOT YET CLASSIFIED

ADMONTITE Mg2B12O20.15H2O P21/c APACHITE Cu₉Si₁₀O₂₉.11H₂O Mon. s.g.? AURORITE (Mn,Ag,Ca)Mn₃O₇.3H₂O P 1 ... BASSANITE CaSO4.0.5H2O A2 BAURANOITE BaU2O7.4-5H2O S.? BILINITE Fe₃(SO₄)₄.22H₂O P2 ? BOYLEITE (Zn,Mg)SO₄.4H₂O P2₁/n BRÜGGENITE Ca(IO₃)₂.H₂O P2₁/c CADWALADERITE AICI(OH)2.4H2O Amorph. CALCIOURANOITE (Ca,Ba,Pb,K,Na)U2O7.5H2O S.? CALKINSITE - (Ce) (Ce,La)₂(CO₃)₃. 4H₂O P2₁22₁ CARLHINTZEITE Ca₂AIF₇.H₂O C 1.. CHVALETICEITE (Mn,Mg)SO4.6H2O C2/C CLINOCHALCOMENITE CuSeO3.2H2O P21/n CUZTICITE Fe₂TeO₆.3H₂O Hex. s.g.? FERRIMOLYBDITE Fe(MoO₄)₃.7H₂O Pmmn FERVANITE Fe₄(VO₄)₄.5H₂O Mon. s.g.? FRANCONITE Na2Nb4O11.9H2O Mon. s.g.? GEARKSUTITE CaAI(F,OH)5.H2O S.? GERASIMOVSKITE (Mn,Ca)(Nb,Ti)₅O₁₂.9H₂O Amorph. GILALITE Cu₅Si₆O₁₇.7H₂O Mon. s.g.? GINORITE Ca₂B₁₄O₂₃.8H₂O P2₁/a GRAEMITE CuTeO3.H2O Pcmm HANNEBACHITE CaSO₃.0.5H₂O Pbna HELLYERITE NiCO3.6H2O C2/c **HENDERSONITE** $Ca_2V_9O_{24}.8H_2O$ Pnam ... HILLEBRANDITE Ca2SiO4.H2O Cmc21 HOCHELAGAITE (Ca,Na,Sr)Nb₄O₁₁.8H₂O Mon. s.g.? JOKOKUITE MnSO₄.5H₂O P 1 KAATIALAITE FeAs₃O₉.6-8H₂O P2₁ ... KANKITE FeAsO₄. 3.5H₂O Mon. s.g? KORSHUNOVSKITE Mg₂Cl(OH)₃.3.5-4H₂O Tric. s.g.? LANSFORDITE MgCO₃.5H₂O P2₁/m LAUSENITE Fe₂(SO₄)₃.6H₂O Mon. s.g.?

MANDARINOITE Fe2(SeO3)3.6H2O P21/c MANGANBELYANKINITE (Mn,Ca)(Ti,Nb)₅O₁₂.9H₂O Amorph. MEIXNERITE Mg₆Al₂(OH)₁₈.4H₂O R 3m ●MELANOVANADITE CaV₄O₁₀.5H₂O P 1 META-ALUNOGEN Al₂(SO₄)₃.14H₂O Orth. s.g.? METACALCIOURANOITE (Ca,Na,Ba)U2O7. 2H2O s.g.? METASCHODERITE AI(PO4, VO4).3H2O P2/m METAVANDENDRIESSCHEITE PbU7O22.nH2O Pmma? MONOHYDROCALCITE CaCO₃.H₂O P3₁21 ... MUNIRITE NaVO₃.1.9H₂O P2₁/a MUSKOXITE Mg7Fe4O13.10H2O Trig. s.g.? NEOTOCITE (Mn,Fe)SiO3.H2O Amorph. NINGYOITE (U,Ca,Ce)₂(PO₄)₂. 1-2H₂O P222 ... **ONITROCALCITE** Ca(NO₃)₂.4H₂O P2₁/c ORICKITE CuFeS2.nH2O Hex. s.g.? RANCIÉITE (Ca,Mn)Mn₄O₉. 3H₂O Hex. S.g.? RICHETITE PbU₄O₁₃.4H₂O P1 .. SCHIEFFELINITE Pb(Te,S)O₄.H₂O Cmcm SCHÖLLHORNITE Na_{0.3}CrS₂.H₂O R3m ... SCHUBNELITE FeVO4.H2O P 1 SIMONKOLLEITE Zn5(OH)8Cl2.H2O R 3m SIMPLOTITE CaV₄O₉.5H₂O A2/m ... STEIGERITE AIVO₄.3H₂O P2₁/m ... STERLINGHILLITE Mn₃(AsO₄)₂.4H₂O S.? TAKANELITE (Mn,Ca)Mn₄O₉.H₂O Hex. s.g.? TERTSCHITE Ca₄B₁₀O₁₉.20H₂O Mon. s.g.? TRABZONITE Ca4Si3O10.2H2O P21 ... URANOSPHAERITE Bi₂U₂O₉.3H₂O Orth. s.g.? VANDENDRIESSCHEITE PbU7O22.12H2O Pmma ... WÖLSENDORFITE (Pb,Ca)U2O7.2H2O C222 WOODRUFFITE (Zn,Mn)Mn₃O₇.1-2H₂O P 4 ZIRCOSULFATE Zr(SO₄)₂.4H₂O Fddd

Table 67S

$A_pB_qC_rD_s.nAq.$

CLOSE-PACKED

CLINOHEDRITE Ca°Zn[†]Si[†][O₄(H₂O)]^c Cc JUNITOITE Ca°Zn[†]Si₂[†][O₇(H₂O)]^c Ama2

CHAIN

BORAX {g}[$B_2^{t}B_2^{t}O_5(OH)_4]\{1\infty\}[Na_2^{\circ}(H_2O)_8]$ C2/c **COLEMANITE** $Ca^{[7]}(H_2O)\{1\infty\}[B^{t}B_2^{t}O_4(OH)_3]^{my}$ P2,/a

SHEET

 $\begin{array}{lll} \textbf{HALLOYSITE - 10 \ \mathring{\textbf{A}} \ } & (\text{H}_2\text{O})_2\{2\infty\}[\text{Al}_2^{\circ}(\text{OH})_4\{2\infty\}[\text{Si}_2^{\,t}\text{O}_5]^{\circ}] \\ \textbf{Mon.s.g.?} \\ \textbf{PALYGORSKITE} \ & (\text{Mg},\text{Al})_2^{\,\circ}(\text{H}_2\text{O})_4(\text{OH})\{2\infty\}[\text{Si}_4^{\,t}\text{O}_{10}] \\ \textbf{C2/m} \\ \textbf{SEPIOLITE} \ & \text{Mg}_4^{\,\circ}(\text{H}_2\text{O})_6(\text{OH})_2\{2\infty\}[\text{Si}_6^{\,t}\text{O}_{15}] \ & \text{Pncn} \\ & (\approx \text{Palygorskite}) \\ \end{array}$

FRAMEWORK

ANALCIME (cubic) Na(H₂O){ 3∞ }[Si₂^tAl^tO₆] I a3d **CHABAZITE** (Ca, \square_5)(H₂O)₆{ 3∞ }[Al₂^tSi₄^tO₁₂] R $\overline{3}$ m (Zeolite) **GISMONDINE** Ca₂°(H₂O)₉{ 3∞ }[Al₄^tSi₄^tO₁₆] P2₁/c **HEULANDITE** (Na,K,Ca,Sr,Ba)₅⁽⁶⁾(H₂O)₂₆ { 3∞ }[Al₉^tSi₂r^tO₇₂] Cm (Zeolite) **NATROLITE** Na₂°(H₂O)₂{ 3∞ }[Si₃^tAl₂^tO₁₀] Fdd2 (Zeolite) **SCOLECITE** Ca^[7](H₂O)₃{ 3∞ }[Si₃^tAl₂^tO₁₀] Cc

ACUMINITE {3\infty}[Sr^{[9]}Al^9F_4(OH)(H2O)] C2/c

Deriv. ANALCIME(monoclinic)Na(H_2O){ 3∞ }[Si₂^tAl^tO₆]C2/c (\approx Sodalite)

BREWSTERITE $(Sr,Ba,Ca)^{[9]}(H_2O)_5{3\infty}[Al_2^tSi_6^tO_{16}] P2_1/m$

Pop.: ENDELLITE $(H_2O)_2[2\infty][Al_2^{\circ}(OH)_4][2\infty][Si_2^{\dagger}O_5]^{\circ}$

MINERALS TENTATIVELY CLASSIFIED

(Zeolite)

(≈Tikhonenkovite) **AFGHANITE** $(Na,Ca,K)_8^{[8]}(Cl,SO_4)_3(H_2O)_n\{3\infty\}[(Si,Al)_{12}^{t}O_{24}]$ P6₃mc... (≈Cancrinite,Zeolite) **AFWILLITE** {2\infty}[Ca2^[7]Ca^[6]Si2^tO6(OH)2(H2O)2] Cc (≈Bultfonteinite) **AKROCHORDITE** (Mn,Mg)₅°As₂^t[O₈(OH)₄(H₂O)₄] P2₁/c **AKSAITE** $Mg^{\circ}(H_2O)_2\{g\}[(B_2^{\ t}B^{tr})_2O_7(OH)_6]$ Pbca (≈Volkovskite) **ALUMINITE** (H₂O)₄[Al₂°(OH)₄(H₂O)₃{g}[S^tO₄]] P2₁/c AMARANTITE $(H_2O)_6\{1\infty\}[Fe_4^\circ S_4^\bullet O_{18}(H_2O)_8] P \overline{1}$ ANAPAITE $3\infty[Ca_2^{[7by]}Fe^\circ P_2^\bullet O_8(H_2O)_4] P \overline{1}$ APJOHNITE Mn°Al2°S4^t[O₁₆(H₂O)₂₂] P2₁/c (=Halotrichite) ARMSTRONGITE $Ca^{\circ}Z_{1}^{\circ}(H_{2}O)_{25}[2\infty][Si_{6}^{\circ}O_{16}]$ C2/m... ARSENBRACKEBUSCHITE $Pb_{2}^{[6/11]}(Fe,Zn)^{\circ}As_{2}^{\dagger}[O_{6}(H_{2}O)]$ P2/m (≈Brackebuschite) ARTINITE $Mg_2^{\circ}\{g\}[C^{Ir}O_3](OH)_2(H_2O)_3$ C2/m BASALUMINITE $AI_4^{\circ}S^{\circ}[O_4(OH)_{10}(H_2O)_4]$ Mon. s.g.? BAYLISSITE $K^{[5+3]}Mg^{\circ}(H_2O)_4[g][C^{Ir}O_3]_2$ P2₁/n **BERBORITE** $\{3\infty\}[Be_2^{\dagger}B^{\dagger}O_3(OH,F)(H_2O)]$ P3 **BERMANITE** $Mn_3^{\circ}P_2^{\dagger}[O_8(OH)_2(H_2O)_4]^{\circ}$ P2₁ BIKITAITE (triclinic) 300[LitAltSi2tO6(H2O)] Tric. P1 BIKITAITE (monoclinic) 3\(\infty\)[Li^tAl^tSi_2^tO_6(H_2O)] P21 **BIRNESSITE** $(Mg,Mn)^{\circ}Mn_6^{\circ}[O_{14}(Na,Ca,K)(H_2O)_5]$ (Hex.)C2/m (≈Chalcophanite)

BLÖDITE $Na_2^{\circ}\{g\}[Mg^{\circ}S_2^{\dagger}O_8(H_2O)_4]$ $P2_1/a$

BRASSITE Mg°As^t[O₃(OH)(H₂O)₄] Pbca

(Zeolite)

(=Kröhnkite)

BOGGSITE Na₃Ca₈(H₂O)₇₀(3∞)[(Si,Al)₉₆^tO₁₉₂] I mma

BRANDTITE Ca₂[7] {1∞}[(Mn,Mg)°As₂^tO₈(H₂O)₂] P2₁/c

BRUSHITE Ca^[6+2]P^t[O₃(OH)(H₂O)₂] I 2/a (≈Gypsum) **BUDDINGTONITE** (NH₄)(H₂O)_{0.5}{ 3∞ }[Si₃^tAl^tO₈] P2_{1...} (≈Sanidine) BUTLERITE Fe°S^t[O₄(OH)(H₂O)₂] P2₁/m CALCIUM CATAPLEIITE Ca^[6](H₂O){3∞}[Zr⁰Si₃^tO₉] P6₃/mmc (≈Catapleiite) **CARLOSTURANITE** (Mg,Fe,Ti)₂₁⁰(Si,Al)₁₂^t[O₂₈(OH)₃₄(H₂O)] Cm **CARRBOYDITE** $(Ni,Al)_8^o S_{1.6}^t [O_{6.4}(OH)_{16}(H_2O)_{8.5}]^n$ Hex.s.g.? CATAPLEIITE Na₂^[6](H₂O)₂{3∞}[Zr^oSi₃^tO₉] B2/b $\begin{array}{lll} \textbf{CHALCONATRONITE} & \textbf{Na}_{2}^{0} (\textbf{H}_{2} \textbf{O})_{3} \textbf{Cu}^{[59]} \{^{0}_{3}\} \textbf{C}^{tt} \textbf{O}_{3}]_{2} & \textbf{P2}_{1} / n \\ \textbf{CLINOPTILOLITE} & (\textbf{Na}, \textbf{K})_{6}^{[6]} (\textbf{H}_{2} \textbf{O})_{20} \{^{3}_{20}\} [\textbf{A}|_{6}^{1} \textbf{S}|_{30}^{1} \textbf{O}_{72}] & \textbf{C2} / m \\ \end{array}$ (≈Heulandite,Zeolite) **COPIAPITE** $(H_2O)_6\{1\infty\}[Fe_2^\circS_3^tO_{12}(OH)(H_2O)_4]_2$ {g}[Fe°(H₂O)₆] P 1 CORRENSITE $\label{eq:main_equation} (\text{Mg,Fe,Al})_9^o(\text{OH})_{10}(\text{H}_2\text{O})_n\{2\infty\}[(\text{Si,Al})_4^{\ t}\text{O}_{10}]_2^{(2.s)c} \quad \text{Orth. s.g.?}$ («Vermiculite-Chlorite) COWLESITE Ca(H₂O)₅₋₆{3∞}[Al₂^tSi₃^tO₁₀] P222₁ (≈Thomsonite,Zeolite) EDINGTONITE (tetragonal) Ba(H₂O)_{3.5}(3\omega)[Al₂^tSi₃^tO₁₀] P 42₁m (≈Natrolite,Zeolite) EDINGTONITE (orthorhombic) Ba(H₂O)₄(3\infty)[Al₂^tSi₃^tO₁₀] P2₁2₁2 (≈Natrolite,Zeolite) **EUCHROITE** Cu₂°As^t[O₄(OH)(H₂O)₃] P2₁2₁2₁ EUDIDYMITE $Na_2^{[7]}(H_2O)\{3\omega\}[Be_2^{i}Si_6^{i}O_{15}]$ C2/c EZCURRITE $Na_2^{[6/7]}(H_2O)_2\{1\omega\}[B_5^{i}O_7(OH)_3]$ P 1 FAIRFIELDITE $Ca_2^{[7]}\{1\infty\}[(Mn,Fe)^{\circ}P_2^{t}O_8(H_2O)_2] P \overline{1}$ (≈Kröhnkite)

Table 68S

$A_pB_qC_rD_s.nAq.(cont.)$

MINERALS TENTATIVELY CLASSIFIED (cont.)

 $\textbf{FALCONDITE} \hspace{0.2cm} \textbf{(Ni,Mg)_4}^O \textbf{(H}_2O)_6 \textbf{(OH)_2} \textbf{\{2\infty\}} \textbf{[Si_6}^tO_{15]} \hspace{0.2cm} \textbf{Pncn}$ MENDOZITE Na°Al°S₂^t[O₈(H₂O)₁₁] C2/c (≈Tamarugite) (=Sepiolite,≈Palygorskite) METAVIVIANITE Fe₃°P₂^t[O₈(H₂O)₆(OH_x.] P 1 FERRINATRITE {3\infty}[Na₃[7]Fe⁰S₃tO₁₂(H₂O)₃] P 3 (Subs.d.Symplesite) FIBROFERRITE Fe°S¹[O₄(OH)(H₂O)₅] R 3 MEYERHOFFERITE Ca^o(H₂O){g}[B₂^tB^{tr}O₃(OH)₅] P 1 GAIDONNAYITE Na₂°Zr°(H₂O)₂{1∞}[Si₃^tO₉] P2₁nb (≈Inderite) MINASRAGRITE V°S^t[O₅(H₂O)₅] P2₁/c (Georgechaoite) GAYLUSSITE Ca[8]Na2[6](H2O)5{g}[CtO3]2 C2/c MOOREITE $(Mg,Zn)_{11}^{0}$ Zn₄S₂ 1 O₈ $(OH)_{26}(H_{2}O)_{8}$ $P2_{1}/a$ MOSESITE $(H_{2}O)$ Cl $3∞[N^{t}Hg_{2}^{(2]eos}]$ $^{\circ}$ F $\overline{4}$ 3m (≈β-Cristobalite) $\begin{array}{lll} \textbf{GMELINITE} & \textbf{Na}_4(\textbf{H}_2\textbf{O})_{11}(3\infty)[\textbf{A}]_4 \ \textbf{S}]_6 \ \textbf{O}_{24}] & \textbf{P6}_3 / \text{mmc} \ (\textbf{Zeolite}) \\ \textbf{GOLDICHITE} & \textbf{K}^{10/11}[2\infty][\textbf{Fe}^\circ\textbf{S}_2^\dagger\textbf{O}_6(\textbf{H}_2\textbf{O})_4] & \textbf{P2}_1/c \\ \end{array}$ **NAMUWITE** $(Z_{n_1},Cu)_3^{\circ}Z_n^{\dagger}S^{\dagger}[O_4(OH)_6(H_2O)_4] P \bar{3}$ GOOSECREEKITE $Ca^{(6)}(H_2O)_5(3\infty)[Al_2{}^tSi_6{}^tO_{16}]$ P2₁ (Zeolite) NASINITE Na₂^[8](H₂O)₂{g}[B₂^tB₃^{tr}O₈(OH)] Pna2₁ NATROPHOSPHATE Na7°P2^t[O8(F,OH)(H2O)19] Fd3c GÖRGEYITE K₂^[8][Ca₃^[9]Ca₂^[8]S₆[†]O₂₄(H₂O)] B2/b HAIDINGERITE CaºAst[O3(OH)(H2O)] Pcnb NEWBERYITE Mg°P^t[O₃OH(H₂O)₃] Pbca HALOTRICHITE Fe^oAl₂^oS₄^t[O₁₆(H₂O)₂₂] P2/m (=Apjohnite) NICKELBLÖDITE Na₂°{g}{(Ni,Mg)°S₂^tO₈(H₂O)₄] P2₁/a **HEMIMORPHITE** $(H_2O){3\infty}[Si_2^tZn_4^tO_7(OH)_2]$ I mm2 (≈Blödite) NOBLEITE $Ca^{[10]}(H_2O)_3\{2\infty\}[B_3{}^{tr}(OH)_2]$ P2₁/a (=Tunellite) HILAIRITE Na₂(H₂O)₃{1 ∞ }[Zr^oSi₃^tO₉] R32 HILGARDITE - 1Tc Ca₂^[8/7](H₂O)Cl{3 ∞ }[B₃^tB₂^{tr}O₉] P1 PACHNOLITE Na^[12] [2∞][Al²(q)[Ca^[8]F₆(H₂O)]] F2/d
PARABARIOMICROLITE Ba²⁵□₃ Ta₄ [O₁₀(H₂O)₂(OH)₂□₂] E (≈Tyretskite) R 3m (Dist.defect.deriv.Pyrochlore)
PARABRANDTITE Ca₂^[8]Mn°As₂¹[O₈(H₂O)₂] P1... HILGARDITE - 3Tc Ca₂[Bby](H₂O)Cl(3w)[B₃tB₂trO₉] P1 (≈Tyretskite) HILGARDITE - 4M Ca2[8by](H2O)CI(300)[B3tB2trO9] Aa (=Talmessite) PARABUTLERITE Fe°S¹[O₄(OH)(H₂O)₂] Pmnb PENTAHYDROBORITE Ca^[7](H₂O)₂(g){B₂¹O(OH)₆] P 1 (≈Zeolite) **HOHMANNITE** $(H_2O)_4\{1\infty\}[Fe_2{}^{o}S_2{}^{t}O_9(H_2O)_4]$ P 1 PHARMACOLITE {2∞}[Ca^[8]As^tO₄(H₂O)₂] I a (≈Gypsum) (≈Amarantite) PHILIPSBURGITE $(Cu,Zn)_6^o(As,P)_2^t[O_8(OH)_6(H_2O)]$ P2₁/c **HONESSITE** $(H_2O)_n[2\infty[(Ni,Fe)_8^{\circ}(OH)_{16}[g][S^tO_4]]$ Trig. s.g.? (=Veszelyite) (≈Reevesite) PHOSPHOPHYLLITE Zn^[6]Zn[†]P₂[†][O₈(H₂O)₄] P2₁/c (≈Hopeite) **HUNGCHAOITE** $(H_2O)_2\{3\infty\}[Mg^0(H_2O)_5B_4{}^tO_5(OH)_4] P \bar{1}$ PHOSPHORRÖSSLERITE Mg°Pt[O3(OH)(H2O)7] C2/c **HYDROMAGNESITE** $\{3\infty\}[Mg_5^{\circ}(OH)_2(H_2O)_4\{g\}[C^{tr}O_3]_4]$ (≈Rösslerite) P2₁/ c PICROMERITE K2[7]Mg°S2[O8(H2O)6] P21/a **INDERITE** $(H_2O)_5\{g\}[Mg^0B_2^tB^tO_3(OH)_5]$ P2₁/a(\approx Kumakovite) (=Boussingaultite) INYOITE Ca[8](H2O)4{g}[B2 BtO3(OH)5] P21/a **PIMELITE** $Ni_3^0(H_2O)(OH)_2\{2\infty\}[Si_4^{t}O_{10}]^{(2h)c}$ S.? (*Talc) JULIËNITE Na2[8](H2O)8C0t(g)[SCN]4 P21/n PIRSSONITE {2\infty}[Na2[6]Ca[8](H2O)2{9}[CtO3]2] Fdd2 **JURBANITE** $(H_2O)_2[\{g\}[Al_2^o(OH)_2(H_2O)_8]\{g\}[S^tO_4]_2]$ P2₁/n PLANCHÉITE Cu₈[6/4](OH)₄(H₂O){1∞}[Si₈^tO₂₂]² (≈Shattuckite,≈Tremolite) KERNITE Na₂^[5](H₂O)₃{1∞}[B₂^tB₂^{tr}O₆(OH)₂] P2₁/c POLLUCITE (Cs,Na)(H₂O)_n(3∞)[Si₂^tAl^tO₆] I a3d (Zeolite) **KEROLITE** $Mg_3^{\circ}(OH)_2\{2\infty\}[Si_4^{\circ}O_{10}]$ S.? (\approx Pimelite, \approx Talc) POSNJAKITE {2\infty}[Cu4\inftyStO4(OH)6H2O)] Pa KINOITE {3\infty}{Ca2\(^{0}(H_2O)_2Cu2^{[5y]}\) {g}{Si3\(^{1}O_{10}\)] P2₁/m... POTASSIUM ALUM K°Al°S₂ [O₈(H₂O)₁₂] Pa3 PROSPERITE {3∞}[Ca^[9]Zn₂^[5]AS₂ O₈(H₂O)] C2/c (≈Shattuckite) KIPUSHITE (Cu,Zn)6°P2'[O8(OH)6(H2O)] P21/c (=Veszelyite) KOVDORSKITE M92°P'[O4(OH)(H2O)3] P21/a RANSOMITE Cu°Fe2°S4^t[O₁6(H2O)6] P2₁/a (≈Römerite) **REDINGTONITE** (Fe,Mg,Ni)^o(Cr,Al)₂^oS₄^t[O₁₆(H₂O)₂₂] (Mon.)P2 KRAUSITE K[10][10][Fe°S2*O8(H2O)] P21/m (≈Halotrichite) KRAUTITE Mn°As^t[O₃(OH)(H₂O)] P2₁/n (≈Haidingerite) RIVERSIDEITE Ca₁₀(OH)₄{2\omega}[Si₁₂^tO₃₁(H₂O)₄] C222₁ **KRÖHNKITE** Na₂^[7] $\{1\infty\}[Cu^{o}S_{2}^{t}O_{8}(H_{2}O)_{2}]$ P2₁/c (=Brandtite). (≈Tobermorite) KTENASITE 200[(Cu,Zn)4°S2^tO8(OH)6]{g}[Zn°(H2O)6] P21/C ROSELITE Ca₂^[7]{1∞}[(Co,Mg)^oAs₂^tO₈(H₂O)₂] P2₁/c **KURNAKOVITE** $3\infty[Mg^{0}(OH)_{5}\{g\}[B_{2}^{\dagger}B^{\dagger r}O_{3}(H_{2}O)_{5}]]$ P $\bar{1}$ (=Brandtite) (≈Inderite) RÖSSLERITE Mg°Ast[O3OH(H2O)7] C2/c LANGITE Cu₄°S^t[O₄(OH)₆(H₂O)₂] Pc (≈Wroewolfeite) SCARBROITE Al₅°C^{tr}[O₃(OH)₁₃(H₂O)₅]^h Tric. s.g.? SCHOLZITE Ca°Zn₂P₂[O₈(H₂O)₂] Pbc2₁ SENEGALITE Al⁶Al^{15by}P^t[O₄(OH)₃(H₂O)] P2₁nb **LARDERELLITE** $NH_4(H_2O)\{1\infty\}[B_5O_7(OH)_2]$ $P2_1/c$ LAUMONTITE $Ca^{p}(H_{2}O)_{4}[3\infty][Al_{2}^{t}Si_{4}^{t}O_{12}]$ C2/m (≈Mordenite,Zeolite) **SHERWOODITE** $Ca_{4.5}(H_2O)_{28}\{3\infty\}[Al^{\circ}V_{14}{^{\circ}O_{40}}]$ | 4₁amd LECONTITE Na^oS^t[O₄(H₂O)₂(NH₄,K)] P2₁2₁2₁ (≈Mirabilite) **SODDYITE** $(H_2O)_2\{1\infty\}[(UO_2)_2SiO_4]$ Foldd $\begin{array}{ll} \textbf{LEGRANDITE} & Zn_2^0 As^t [O_4(OH)(H_2O)] & P2_1/c \ (\approx Spencerite) \\ \textbf{LEONITE} & \ 3\infty [K^{[9]}K^{[10]}Mg^{[6]}S^t_2O_8(H_2O)_4] & C2/m \end{array}$ SODIUM ALUM NaºAlºS2 [O8(H2O)12] Pa3 **SPENCERITE** Zn₂°Zn₂'P₂'[O₈(OH)₂(H₂O)₃] P2/c LÖWEITE Na₁₂^[7](H₂O)₃(g)[S^tO₄]₄(3\omega)[Mg₇°S₉^tO₃₆(H₂O)₁₂]
MAKATITE Na°Na|^{55y}/(H₂O)₄(2\omega)[Si₂O₄(OH)]₂P2₁/c STELLERITE $Ca^{[6]}(H_2O)_7\{3\infty\}[Si_7^tAl_2^tO_{18}]$ Fmmm (≈Stilbite,Zeolite) MANNARDITE Ti₆°(Cr)₂°[Ba(H₂O)O₁₆]^{chh} I 4₁/a(≈Hollandite) STOKESITE $Ca^{[8]}Sn^{[6]}(H_2O)_2\{1\infty\}[Si_3^{\dagger}O_9]$ Pnna **MARICOPAITE** $Ca_2Pb_7(H_2O)_{32}\{3\infty\}[(Si,AI)_{48}^tO_{100}]$ STRASHIMIRITE Cu4°AS2^t[O8(OH)2(H2O)2,5] P2/m... Cmmm..(«Mordenite, Zeolite). STRINGHAMITE Ca[7]H2O{20}[Cusq {g}[SitO4]] P21/C MATTEUCCITE Na^oS^t[O₄H(H₂O)] Aa (≈Mirabilite) STRUVITE Mg°P¹(NH4)[O4(H2O)6] Pmn21 MCALLISTERITE Mg2°B12^t[O14(OH)12(H2O)9] R 3c **TALMESSITE** $Ca_2^{[8]}Mg^{\circ}As_2^{t}[O_8(H_2O)_2] P \bar{1}$ (=Parabrandtite)

Table 69S

A_pB_qC_rD_s.nAq.(cont.)

MINERALS TENTATIVELY CLASSIFIED (cont.)

TAMARUGITE Na°Al°S₂¹[O₈(H₂O)₆] P2₁/a THOMSENOLITE Na¹¹²[⟨3∞⟩[Ca¹³]Al°(H₂O)F₆] P2₁/c TIKHONENKOVITE Sr¹³]Al°[F₄(OH)(H₂O)] P2₁/c TIKHONENKOVITE Sr¹³]Al°[F₄(OH)(H₂O)] P2₁/c TINCALCONITE {g}[B₂¹B₂¹¹O₅(OH)₄[⟨3∞}[Na°₂(H₂O)₃] R32 TRUSCOTITE (Ca,Mn)₁₄¹³[Si₂₄¹[O₅₈(OH)₃(H₂O)₂] P $\bar{3}$ TSCHERMIGITE Al°S₂¹O₅(H₂O)₁²(g)[NH₄]¹⁵] Pa3 TSUMCORITE Pb¹³(Zn,Fe)₂°As₂¹[O₅(OH,H₂O)₂] C2/m (≈Brackebuschite) TUNELLITE Sr¹¹¹O[(H₂O)₃{2∞}[B₃¹B₃¹¹O₃(OH)₂] P2₁/a (=Nobleite) UMOHOITE Ul⁶]Mo¹⁶][O₅(H₂O)₄] P2₁/m... VESZELYITE (Cu,Zn)₃°P¹[O₄(OH)₃(H₂O)₂]P2₁/a(=Kipushite) VINOGRADOVITE 3∞[(Na,Ca)₄¹ð¹Ti₄°Si₅¹O₂₅(H₂O,K₃)] C2/c (≈Rinkite)

 $\begin{array}{lll} \textbf{VOLBORTHITE} & \textbf{Cu}_3^{\circ} V_2^{t} [O_7(O\text{H})_2(\text{H}_2\text{O})_2] & \textbf{C2}... \\ \textbf{WAIRAKITE} & \textbf{Ca}^{[6]}(\text{H}_2\text{O})_2 \{ 3\infty \} [\text{AI}_2^{t} \text{Si}_4^{t} \text{O}_{12}] \ \textbf{I} \ 2/a \\ (\approx & \textbf{Analcime}, \textbf{Zeolite}) & \textbf{WAVELLITE} & \textbf{AI}_3^{\circ} P_2^{t} [O_8(O\text{H}, \textbf{F})_3(\text{H}_2\text{O})_5] & \textbf{Pcmn}... \\ \textbf{WENDWILSONITE} & \textbf{Ca}^{[7]} \{ 1\infty \} [(\text{Mg}, \text{CO})^{\circ} \text{As}_2^{t} \text{O}_8(\text{H}_2\text{O})_2] & \textbf{P2}_1/c \\ (= & \textbf{Brandtite}) & \textbf{WHITMOREITE} & \textbf{Fe}_3^{\circ} P_2^{t} [O_8(O\text{H})_2(\text{H}_2\text{O})_4]^{orh} & \textbf{P2}_1/c & \textbf{(Basic str. Arthurite)} \\ \textbf{WROEWOLFEITE} & \textbf{Cu}_4^{\circ} \text{S}^{t} [O_4(O\text{H})_6(\text{H}_2\text{O})_2] & \textbf{Pc} \\ \textbf{YOFORTIERITE} & (\textbf{Mn}, \textbf{Mg})_5^{\circ} (\text{H}_2\text{O})_8, \textbf{g}(\text{OH})_2 \{ 2\infty \} [\textbf{Si}_8^{t} \text{O}_{20}] & \textbf{Pn} \\ (\approx & \textbf{Palygorskite}) & \textbf{YUGAWARALITE} & \textbf{Ca}^{[8]} (\text{H}_2\text{O})_4 \{ 3\infty \} [\textbf{Si}_6^{t} \text{Al}_2^{t} \text{O}_{16}] & \textbf{Pc} & \textbf{(Zeolite)} \\ \textbf{ZEMANNITE} & (\textbf{H}, \textbf{Na})_2 (\textbf{H}_2\text{O})_n \{ 3\infty \} [(\textbf{Zn}, \textbf{Fe})_2^{\circ} \textbf{Te}_3^{(4y)} \text{O}_9] & \textbf{P6}_3/m \\ (\approx & \textbf{Zeolite}) & \textbf{Zeolite} \\ \end{array}$

MINERALS NOT YET CLASSIFIED

AGRINIERITE (K2,Ca,Sr)(UO2)3O4.4H2O Cmmm AMARILLITE NaFe(SO₄)₂.6H₂O P2/m? **AMMONIOBORITE** (NH₄)₃B₁₅O₂₀(OH)₈.4H₂O C2/c ARHBARITE Cu₂(AsO₄(OH).6H₂O Mon. s.g.? ASBOLANE Mn(O,OH)₂(Co,Ni,Ca)_x(OH)_{2x}.nH₂O Hex. s.g.? BEARSITE Be2AsO4(OH).4H2O C2/c BETA-ROSELITE Ca₂(Co,Mg)(AsO₄)₂,2H₂O P 1 ●BIRINGUCCITE Na₂B₅O₈(OH).H₂O P2₁/c BOLIVARITE Al₂PO₄(OH)₃.4-5H₂O Amorph. BOSTWICKITE CaMn₆Si₃O₁₆.7H₂O S.? ●BOUSSINGAULTITE (NH₄)₂Mg(SO₄)₂.6H₂O P2₁/a ●BRACKEBUSCHITE Pb₂(Mn,Fe)(VO₄)₂.H₂O P2₁/m... **BRAITSCHITE - (Ce)** (Ca,Na₂)₇(Ce,La)₂B₂₂O₄₃.7H₂O Hex. BULACHITE Al₂AsO₄(OH)₃.3H₂O Pmnm... CAFARSITE (Ca,Mn)₈(Ti,Fe)_{6.5}(AsO₃)₁₂.2H₂O Pn3 CAFETITE (Ca,Mg)(Fe,AI)₂Ti₄O₁₂.4H₂O Ammm CALCIOHILAIRITE CaZrSi₃O₉.3H₂O R32 ●CANAPHITE Na₂CaP₂O₇.4H₂O Pc CASSIDYITE Ca₂(Ni,Mg)(PO₄)₂.2H₂O P 1... CESBRONITE Cu₅(TeO₃)₂(OH)₆.2H₂O Pbcn CHLORMAGALUMINITE (Mg,Fe)₄Al₂(OH)₁₂Cl₂.2H₂O P6/mcm... CHOLOALITE CuPb(TeO3)2.H2O P23... CLARAITE (Cu,Zn)₃CO₃(OH)₄.4H₂O Hex. s.g.? COBALTKORITNIGITE (Co,Zn)(AsO3OH).H2O P 1? COLLINSITE Ca₂(Mg,Fe)(PO₄)₂.2H₂O P 1 COMPREIGNACITE K2(UO2)6(OH)14.4H2O Pnmn... CYANOCHROITE K2Cu(SO4)2.6H2O P21/a ●DEFERNITE Ca₃CO₃(OH,Cl)₄.H₂O Pnam DIETRICHITE (Zn,Fe,Mn)Al₂(SO₄)₄.22H₂O P2 DITTMARITE (NH₄)MgPO₄.H₂O Pmn2₁ DORFMANITE Na₂(PO₃OH).2H₂O Orth. s.g.? DYPINGITE Mg5(CO3)4(OH)2.5H2O S.? EKATERINITE Ca₂B₄O₇(Cl,OH)₂.2H₂O P6/m ●ELPIDITE Na₂ZrSi₆O₁₅.3H₂O Pbcm EUGSTERITE Na₄Ca(SO₄)₃.2H₂O Mon. s.g.? FELSÖBÁNYAITE Al₄SO₄(OH)₁₀.5H₂O Hex. s.g.? FERRISTRUNZITE Fe₃(PO₄)₂(OH)₃5H₂O P1... FERROSTRUNZITE Fe₃(PO₄)₂(OH)₂.6H₂O P 1 GEORGEITE Cu₅(CO₃)₃(OH)₄.6H₂O Amorph. GINITE Fe₅(PO₄)₄(OH)₂.2H₂O P2/a GOWERITE CaB₆O₈(OH)₄.3H₂O P2₁/a GRANTSITE Na₄Ca_{0.7}V₁₂O₃₂.8H₂O C2/m...

GRUMANTITE NaSi2O4(OH).H2O Fdd2 HALURGITE Mg2(B4O5(OH)4)2.H2O P2/C HELMUTWINKLERITE PbZn₂(AsO₄)₂,2H₂O P1... HISINGERITE Fe₂Si₂O₅(OH)₄.2H₂O Mon. ? (Amorph.) $\label{eq:huemulite} \textbf{HUEMULITE} \ \ \textbf{Na}_{4} \textbf{Mg} \textbf{V}_{10} \textbf{O}_{28}. \textbf{24} \textbf{H}_{2} \textbf{O}_\textbf{P1}...$ HUMMERITE KMgV5O14.8H2O P 1 HYDROBASALUMINITE Al₄SO₄(OH)₁₀.15H₂O Mon. s.g.? HYDROCALUMITE Ca₄Al₂(OH)₁₂(Cl,CO₃,OH,H₂O)_{2,5}.4H₂O HYDROGLAUBERITE Na₁₀Ca₃(SO₄)₈.6H₂O S.? IANTHINITE UO2(UO3)5.10H2O Orth. s.g.? IRIGINITE U(MoO₄)₂(OH)₂.2H₂O Mon. s.g.? JAMBORITE (Ni,Fe)₈SO₄(OH)₁₆.nH₂O Hex. s.g.? JENNITE Ca₉Si₆O₁₆(OH)₁₀.6H₂O Tric. S.g.? JOLIOTITE (UO2)CO3.2H2O Pmmm KAZAKHSTANITE Fe₅V₁₅O₃₉(OH)₉.8.5H₂O C2/c... KENYAITE Na₂Si₂₂O₄₁(OH)₈.6H₂O Mon. s.g.? KHADEMITE AI(SO₄)F.5H₂O Pcab KIMURAITE - (Y) CaY₂(CO₃)₄.6H₂O I mm2... KINGITE Al₃(PO₄)₂(OH,F)₃.9H₂O Tric. S.g.? KINICHILITE (H,Na)₂(Fe,Mg,Zn)₂(TeO₃)₃.3H₂O P6₃... KOKTAITE (NH₄)₂Ca(SO₄)₂.H₂O P2₁/m KONYAITE Na₂Mg(SO₄)₂.5H₂O P2₁/c KORITNIGITE Zn(AsO3OH).H2O P 1 KOSTYLEVITE K2ZrSi3O9.H2O P21/a LAZARENKOITE (Ca,Fe)FeAs₃O₇.3H₂O Orth. s.g.? LENNILENAPEITE $K_7Mg_{48}(Si,Al)_{72}(O,OH)_{216}.16H_2O P \overline{1}$? LERMONTOVITE UPO4(OH).H2O(?) Ccca ●LIKASITE Cu₃NO₃(OH)₅.2H₂O Pc2₁n LINDACKERITE H2Cu5(AsO4)4.9H2O P1... LITHOSITE K₆Al₄Si₈O₂₅.2H₂O Mon. s.g.? LOKKAITE - (Y) CaY4(CO3)7.9H2O Pbmm.. LONECREEKITE NH₄(Fe,Al)(SO₄)₂₋12H₂O Pa3 LOUGHLINITE Na₂Mg₃Si₆O₁₆.8H₂O S.? LUDDENITE Cu₂Pb₂Si₅O₁₄.14H₂O Mon. s.g.? MAGADIITE NaSi7O13(OH)3.3H2O Mon. s.g.? MELANOCERITE - (Ce) (Ce,Ca)₅(Si,B)₃O₁₂(OH,F).nH₂O(?) Amorph. (Hex.) META-ALUMINITE Al2SO4(OH)4.5H2O P21? MOHRITE (NH₄)₂Fe(SO₄)₂.6H₂O P2₁/c MORAESITE Be2PO4(OH).4H2O C2/c MPOROROITE AIWO₃(OH)₃.2H₂O (Tric.) Mon. s.g.? NABAPHITE NaBaPO₄.9H₂O P2₁3

Table 70S

A_pB_qC_rD_s.nAq.(cont.)

MINERALS NOT YET CLASSIFIED (cont.)

NASTROPHITE Na(Sr,Ba)PO4.9H2O P213 NIAHITE (NH₄)(Mn,Mg,Ca)PO₄.H₂O Pmn2₁ ●NICKELBOUSSINGAULTITE (NH₄)₂(Ni,Mg)(SO₄)₂.6H₂O P2₄/a NIFONTOVITE Ca₃(BO(OH)₂)₃.2H₂O B2/b OTWAYITE Ni₂CO₃(OH)₂,H₂O Orth, s.g.? OYELITE Ca₁₀B₂Si₈O₂₉.12H₂O Orth. s.g.? PARANATROLITE Na₂(Al₂Si₃)O₁₀.3H₂O Fmm2 ... PARASCHOLZITE CaZn2(PO4)2.2H2O Cc... PENKVILKSITE Na₄Ti₂Si₈O₂₂.5H₂O Pnca? PICKERINGITE MgAl₂(SO₄)₄.22H₂O P2 POKROVSKITE Mg2CO3(OH)2.0,5H2O P21/a RAITE (Na,Ca)₄(Mn,Ti,Fe)₃Si₈(O,OH)₂₄.9H₂O(?) C222 RAMSBECKITE (Cu,Zn)₁₅(SO₄)₄(OH)₂₂.6H₂O P2₁/a RHOMBOCLASE HFe(SO₄)₂.4H₂O Pnma ROGGIANITE Ca₁₅(Si,Al,Be)₄₈O₉₀(OH)₁₆.34H₂O I 4/mcm ROSTITE AISO₄(F,OH).5H₂O Pcab ROUSEITE Pb2Mn(AsO3)2.2H2O P1... SACROFANITE (Na,Ca)₉(Si,Al)₁₂O₂₄(OH,SO₄)₄.nH₂O P63mc... SANTITE KB₅O₆(OH)₄.2H₂O Aba2 **SASAITE** (AI,Fe)₆(PO₄,SO₄)₅(OH)₃,36H₂O Orth. s.g.? **OSBORGITE** NaB₅O₆(OH)₄.3H₂O C2/c SCHULENBERGITE (Cu,Zn)₇(SO₄,CO₃)₂(OH)₁₀.3H₂O P3... SHAFRANOVSKITE (Na,K)₆(Mn,Fe)₃Si₉O_{24.6}H₂O P3₁m... SMOLIANINOVITE (Co,Ni,Mg,Ca)₃(Fe⁺³,Al)₂(AsO₄)₄.11H₂O Orth. s.g.?

SONORAITE FeTeO3(OH).H2O P21C STANLEYITE VOSO4.6H2O Orth. s.g.? STILPNOMELANE (K,Ca,Na)(Fe,Mg,Al)₁₂(Si,Al)₁₆(O,OH)₅₄.nH₂O P 1 STRÄTLINGITE Ca2Al2SiO7.8H2O R 3m ●SUOLUNITE Ca₂Si₂O₅(OH)₂.H₂O Fdd2 ●SYNGENITE K₂Ca(SO₄)₂.H₂O P2₁/m THOMETZEKITE Pb(Cu,Zn)2(AsO4)2.2H2O S.? THOROSTEENSTRUPINE (Ca,Th,Mn)₃Si₄O₁₁F.6H₂O Amorph. Metamict TINTICITE Fe₄(PO₄)₃(OH)₃.5H₂O P2... TOBERMORITE Ca5Si6O16(OH)2.xH2O C2221 TYRETSKITE- 1Tc Ca₂B₅O₉(OH).H₂O P 1... UMBITE K2ZrSi3O9.H2O P212121 VANALITE NaAl₈V₁₀O₃₈.30H₂O P2/m... VANTASSELITE Al4(PO4)3(OH)3.9H2O Pmam... VASHEGYITE Al₁₁(PO₄)₉(OH)₆.38H₂O Pnma? VOLKOVSKITE Ca(B3O4(OH)2)2.H2O P21 VYACHESLAVITE UPO4(OH).2.5H2O Cmcm... WARDSMITHITE Ca₅Mg(B₄O₇)₆.30H₂O Hex. s.g.? WOODWARDITE (Cu,Al)₈SO₄(OH)₁₆.nH₂O Trig. s.g.? XITIESHANITE FeSO₄CI.6H₂O P2₁/a YAROSLAVITE Ca₃Al₂F₁₀(OH)₂,H₂O Orth, s.g.? **ZAHERITE** Al₁₂(SO₄)₅(OH)₂₆,20H₂O P 1? ZINCROSELITE Ca2Zn(AsO4)2.2H2O P21/C

$A_pB_qC_rD_sE_x.nAq.$

SHEET

AUTUNITE (H2O)10[Ca^[6]{2\infty}[U^[2+4]O2P^tO4]2] | 4/mmm

 $\begin{array}{l} \textbf{HYDROXYAPOPHYLLITE} \\ \textbf{Ca}_{4}^{[7]}\textbf{K}^{[8]}(\textbf{OH},\textbf{F})(\textbf{H}_{2}\textbf{O})_{8}\{2\infty\}[\textbf{Sig}^{\dagger}\textbf{O}_{20}]^{s} & \textbf{P4/mnc} \\ \textbf{CARNOTITE} & \textbf{K}_{2}^{[1^{\dagger}]}(\textbf{H}_{2}\textbf{O})_{3}\{2\infty\}[\textbf{U}^{[2^{\star}5]}\textbf{O}_{2})_{2}(\textbf{V}_{2}^{[5]}\textbf{O}_{8})] & \textbf{P2}_{1}/\textbf{a} \\ \textbf{META-AUTUNITE} & \textbf{(H}_{2}\textbf{O})_{6}[\textbf{Ca}^{[6]}\{2\infty\}[\textbf{U}^{[2^{\star}4]}\textbf{O}_{2}\textbf{P}^{\dagger}\textbf{O}_{4}]_{2}] \\ \textbf{P4/nmm} \\ \textbf{METATORBERNITE} & \textbf{(H}_{2}\textbf{O})_{8}[\textbf{Cu}^{sq}\{2\infty\}[\textbf{U}^{[2^{\star}4]}\textbf{O}_{2}\textbf{P}^{\dagger}\textbf{O}_{4}]_{2}] \\ \textbf{P4/n} & (\approx \textbf{Meta-autunite}) \\ \textbf{MONTMORILLONITE} \\ \textbf{(H}_{2}\textbf{O})_{n}(\textbf{Na},\textbf{Ca})_{0.3}^{\circ}(\textbf{A}|,\textbf{Mg})_{2}^{\circ}(\textbf{OH})_{2}\{2\infty\}[\textbf{Si}_{4}^{\dagger}\textbf{O}_{10}]^{(2.8)c} & \textbf{C2/m} \\ \end{array}$

VERMICULITE (H₂O)₈Mg_{0.7}°(Mg,Fe,Al)₆°(OH)₂{2∞}{(Si,Al)₈¹O₂₂}(^{2.s)c} C2/c Pop.: TORBERNITE (H₂O)₁₀[Cu^[6]{2∞}[U^[2+4]O₂P¹O₄]₂]

URANOCIRCITE (H₂O)₁₀[Ba^[6]{2∞}[U^[2+4]O₂P¹O₄]₂]

URANOSPINITE (H₂O)₁₀[Ca^[6]{2∞}[U^[2+4]O₂P²O₄]₂]

Deriv.: SALÉEITE (H₂O)₁₀[Mg^[6]{2∞}[U^[2+4]O₂P²O₄]₂] P2₁/c

SODIUM AUTUNITE (H₂O)₁₆[Nag^[6]{2∞}[U^[2+4]O₂P²O₄]₂] P4/nmm

ZEUNERITE (H₂O)₁₆[Cu^[6]{2∞}[U^[2+4]O₂A6·O₄]₂] 1 4/mmm

Pop.: FLUORAPOPHYLLITE Ca₄^[7]Na^[6]F(H₂O)₈{2∞}[Sis^[6]O₂₀]⁸ Pnnm

Pop.: MARGARITASITE (Cs,H₃O,K)₂^[11](H₂O)₂(2∞)[Sis^[6]O₂₀]⁸ Pnnm

Pop.: META-ANKOLEITE (H₂O)₈[C₂^[6](2∞)[U^[2+4]O₂P²O₄]₂]

Deriv.: SINCOSITE (H₂O)₈[Ca^[6](2∞)[U^[2+4]O₂P²O₄]₂]

Pop.: METAZEUNERITE (H₂O)₈[Ca^[6](2∞)[U^[2+4]O₂A6·O₄]₂]

 $\begin{array}{lll} Pop.: & BEIDELLITE & (H_2O)_m(Na,Ca)_{0.3}Al_2^o(OH)_2\{2\infty\}_{\{(Si,AI)_4^{1}O_{10}\}_{2}^{(2a)c}} \\ & NONTRONITE & (H_2O)_nNa_{0.3}^oFe_2^o(OH)_2\{2\infty\}_{\{(Si,AI)_4^{1}O_{10}\}_{2}^{(2a)c}} \\ Deriv.: & VOLKONSKOITE & (H_2O)_4Ca_{0.3}^o(Cr,Mg)_2^o(OH)_2\{2\infty\}_{\{(Si,AI)_4^{1}O_{10}\}_{2}^{(2a)c}} \\ & Mon.s.g.? \end{array}$

FRAMEWORK

PHILLIPSITE $K^{[12]}(Ca_{0.5},Na)_2^{[6]}(H_2O)_6\{3\infty\}[Si_5^{+}Al_3^{+}O_{16}]$ P2₁/m (Zeolite) STILBITE $Na^{[6]}Ca_4^{[6]}(H_2O)_3\{3\infty\}[Si_{27}^{+}Al_9^{+}O_{72}]$ C2/m (Zeolite) THOMSONITE $NaCa_2(H_2O)_6\{3\infty\}[Al_5^{+}Si_5^{+}O_{20}]$ Pncn (Zeolite) TURQUOISE $Cu^{[6]}(H_2O)_4\{3\infty\}[Al_6^{+}(OH)_8(P^{+}O_4)_4]$ P $\bar{1}$ WILLHENDERSONITE $(KCa\square_4)(H_2O)_5[3\infty][Al_3^{+}Si_3^{+}O_{12}]$ P $\bar{1}$ (Dist.subs.d.Chabazite.Zeolite)

Deriv.: HARMOTOME $Ba^{1/2}(Ca_{0.5},Na)^{(9)}(H_2O)_{12}\{3\infty\}[Si_{11}{}^tAl_5{}^tO_{32}]$ $P2_1/m...$ Table 71S

$A_pB_qC_rD_sE_x.nAq.(cont.)$

MINERALS TENTATIVELY CLASSIFIED

ABERNATHYITE (H₂O)₃K^[6]{2∞}[U^[2+4]O₂As^tO₄] P4/ncc (≈Meta-ankoleite,≈Meta-torbernite) ALUMINOPHARMACOSIDERITÉ $\begin{array}{lll} \text{Al}_{4}^{\text{A}}\text{As}_{3}^{\text{t}}[\text{O}_{12}(\text{OH})_{4}(\text{H}_{2}\text{O})_{6};\text{K}] & \text{P} & \text{43}m \\ \text{AMICITE} & \text{K}_{2}^{\text{I7}}\text{Na}_{2}^{\text{[6]}}(\text{H}_{2}\text{O})_{\text{5}}\{\text{3}\omega\}[\text{Al}_{4}^{\text{t}}\text{Si}_{4}^{\text{t}}\text{O}_{16}] & \text{I} & \text{2} & \text{(Zeolite)} \\ \text{ARISTARAINITE} & \text{Na}_{2}^{\text{[5y]}}\text{Mg}_{9}^{\text{c}}(\text{H}_{2}\text{O})_{4}\{\text{2}\omega\}[\text{B}_{3}^{\text{t}}\text{B}_{3}^{\text{tr}}\text{O}_{8}(\text{OH})_{4}] \end{array}$ **ARMENITE** $3\infty[Ca_2^{\circ}Al_6^{t}Si_9^{t}O_{30}(H_2O)_2Ba^{[12]}]$ Pnna (=Milarite) ARSENIOSIDERITE Ca₂^[7](H₂O)₃{2w}[Fe₃°As₃^tO₁₂] A2/a (=Mitridatite) ARTHURITÉ Cu°Fe2°As2^t[O8(OH)2(H2O)4]^{c/h} P21/C (Subs.deriv.Whitmorite,=Earlshnnonite) AUBERTITE $Cu^{\circ}Al^{\circ}S_{2}^{i}[O_{8}(H_{2}O)_{14}Cl] P \bar{1}$ BASSETITE $(H_{2}O)_{8}[Fe^{[6]}[2\infty][U^{[2^{*4}]}O_{2}P^{i}O_{4}]_{2}] P6_{3}/mmc$ (≈Metatorbemite) **BAYLDONITE** $(H_2O)\{2\infty\}\{(Cu,Zn)_3Pb^{[8ap]}(As^tO_4)_2(OH)_2\}$ BEYLEYTE $(H_2O)_{18}\{3\infty\}[Mg_2^OUO_2(CO_3)_3]$ C2/c (\approx Liebijite) BECQUERELITE (H₂O)₈Ca^[5]{2∞}[(UO₂)₆O₄(OH)₆] Pn2₁a BERAUNITE Fe₆°P₄^t[O₁₆(OH)₅(H₂O)₆] C2/c (≈Strunzite) BILLIETITE $(H_2O)_4Ba\{2\infty\}[(UO_2)_6O_4(OH)_6]$ Pbn2₁ (≈Becquerelite) **BOTRYOGEN** Mg $^{\circ}$ Fe $^{\circ}$ S₂^t[O₈(OH)(H₂O)₇] P2₁/n **BRUGNATELLITE** $(H_2O)_4C^{tr}O_3\{2\underline{\infty}\}[Mg_6°Fe°(OH)_{1\underline{3}}]$ P $\overline{3}$... **BULFONTEINITE** $(H_2O)\{2\infty\}\{Ca_2^{[7]}Si^{\dagger}O_3(OH)F\}$ P $\overline{1}$ CAMINITE Mg°Mg_x°S^t[O₄(OH)₂(H₂O)_v] | 4₁/amd CAMPIGLIAITE Cu_4 °Mn° S_2 ^t $[O_8(OH)_6(H_2O)_4]$ C2 (≈Devilline) CAVANSITE (H₂O)₄{3∞}[Ca^[7]V^[5y]Si₄^tO₁₁] Pcmn CHILDRENITE (Fe,Mn)°Al°P¹[O₄(OH)₂(H₂O)] Bba2 (Eosphorite) **COALINGITE** Mg₁₀°Fe₂°C^{tr}[O₃(OH)₂₄(H₂O)₂] R 3m

CUPROCOPIAPITE (H₂O)₆{1\omega}[Cu^oFe₃oS₆tO₂₄(OH)₂(H₂O)₈] $\{g\}[Fe^{\circ}(OH)_{6}]$ P $\bar{1}$ (Subs.d.Copiapite) CURIÉNITE Pb^[8](H_2O)₅{2 ∞ }[(UO_2) V_2O_8] Pcan

(=Francevillite)

 $\begin{array}{ll} \textbf{DARAPSKITE} & \text{Na}_2^{\text{O}} \text{Na}_1^{\text{(I)}} (\text{H}_2\text{O}) \{g\} [\text{S}^{\text{IO}}_4] \{g\} [\text{N}^{\text{IO}}_0] & \text{P2}_1/\text{m} \\ \textbf{DESPUJOLSITE} & (\text{H}_2\text{O})_3 \{\infty\} [\text{Ca}^{\text{(I)}} \text{Mn}^{\text{(I)}} \text{S}_2^{\text{IO}} \text{O}_8 (\text{OH})_6] & \text{P $\bar{6}$2c} \\ \end{array}$

DEVILLINE Ca^[7](H₂O)₃{g}[S^tO₄]₂{2\infty}[Cu₄^[6](OH)₆] P2₁/c **DRESSERITE** $(H_2O)_3\{3\infty\}[Ba_2AI_4(OH)_4\{g\}[C^{tr}O_3]_4]$ Pbmm DUFRENITE 300[Ca_{0.5}°Fe₆°P₄^tO₁₆(OH)₆(H₂O)₂] C2/c **DUNDASITE** (H₂O){3∞}{Pb^[9]Al₂°(OH)₄{g}{C^{tr}O₃]₂] Pbnm EARLSHANNONITE (Mn,Fe)°Fe2°P2^t[O8(OH)2(H2O)4]° P2₁/c (Subs.d.Whitmoreite)

EOSPHORITE (Mn,Fe)°Al°P¹[O₄(OH)₂(H₂O)] Bbam (=Childrenite)

EPISTILBITE Na^[9]Ca₃^[9](H₂O)₁₆{3∞}[Al₆^tSi₁₈^tO₄₈] C2/m

ETTRINGITE Ca₆^[8]Al₂°S₃¹[O₁₂(OH)₁₂(H₂O)₂₆] P31c (≈Thaumasite)

FEDORITE $(K,Na)_{2.5}(Ca,Na)_7^{\circ}(OH,F)_2(H_2O)\{2\infty\}[Si_{16}O_{38}]$ C 1 (Calciotalc)

FERRICOPIAPITE

 $(H_2O)_6(Fe,AI,Mg)^0{1\infty}[Fe_2^0S_3^1O_{12}(OH)(H_2O)_4]_2{g}[Fe^0(H_2O)_6]$ P 1 (Inser.d.Copiapite)

FLEISCHERITE [300][Pb3[9]Ge°S2[O8(OH)8(H2O)3] P 62c (=Schaurteite)

FLUELLITE Al₂°P^t[O₄F₂(OH)(H₂O)₇] Fddd FOGGITE {3∞}[Ca⁽⁸⁾Al°PO₄(OH)₂(H₂O)] A2₁22 FOURMARIERITE Pb[6+3](H2O)4[200][U4[2+5]O11(OH)4] Bb2₁m

FRANCEVILLITE (Ba,Pb)^[8](H₂O)₅{2 ∞ }[(UO₂)₂V₂O₈] Pcan (=Curiénite)

FRITZSCHEITE (H₂O)₄[Mn^[6]{2∞}[U^[2+4]O₂V[†]O₄]₂] Pnma (≈Autunite)

GARRONITE NaCa_{2.5}(H₂O)₁₃{2 ∞ }[Al₆^tSi₁₀^tO₃₂] I 4₁/amd? (Zeolite)

GEORGECHAOITE K°Na°Zr°(H2O)2{1∞}[Si3^tO9] P21nb (≈Gaidonnayite)

GOBBINSITE (Na,K)₄Ca(H₂O)₁₂{3∞}[Al₆^tSi₁₀O₃₂] Pmn2₁

GORDONITE $Mg^{\circ}Al_2^{\circ}P_2^{t}[O_8(OH)_2(H_2O)_8]$ P $\overline{1}$ (\approx Laueite) GUILDITE Cu°Fe°S2¹[O8(OH)(H2O)4] P21/m **HAIWEEITE** $(H_2O)_5\{3\infty\}[Ca(UO_2)_2Si_6{}^tO_{15}]$ P2/c

HANNAYITE Mg3°P4^t[(NH4)2O12(OH)4(H2O)8] P 1

HEINRICHITE Ba(H₂O)₁₀{2∞}[U°As^tO₁₂] | 4/mmm... (≈Zeunerite)

HYDROBIOTITE K[12](Mg,Fe)6°(H2O)x[2\infty][(Si,Al)8^tO20][2s)c

HYDROBORACITE $Ca^{[8]}Mg^{[6]}(H_2O)_3\{1\infty\}[B_2^tB^{tr}O_4(OH)_3]_2$ P2/c

HYDROCHLORBORITE

 $[CI(H_2O)_5]Ca_2(H_2O)_3\{1\infty\}[B_2^tB^{tr}(OH)_4]$ | 2/a **HYDRODRESSERITE** $(H_2O)_3\{3\infty\}[Ba^{[9]}Al_2^{o}(OH)_4\{g\}[C^{tr}O_3]_2]$ P 1 (≈Dundarite)

INDERBORITE $(H_2O)_2\{2\infty\}[Ca^{[8]}Mg^0B_4{}^tB_2{}^tO_6(OH)_{10}(H_2O)_4]$

INESITE (H₂O)₅{3∞}[Ca₂^[7y]Mn₇°Si₁₀^tO₂₈(OH)₂] P 1 KAINITE KIRO CI(H2O)3(20)[Mg°StO4] C2/m

KAMBALDAITE $(H_2O)_3\{3\infty\}[Na^{[6]}Ni_4{}^0\{g\}[C^{ir}O_3]_3(OH)_3]$ P6₃ **KASOLITE** Pb₂^{8]} $(H_2O)_2\{2\infty\}[(U^{[7]}O_2)_2(S^{ir}O_4)_2]$ P2₁/a (≈Uranophane)

KEHOEITE $(Zn,Ca)(H_2O)_5{3\infty}[P_2^tAl_2^tO_8(OH)_2]$ | a $\overline{3}d$ (≈Analcime cubic)

LABUNTSOVITE (Ti,Nb)9°Si₁₆^t[O₄₈(O,OH)₁₀(H₂O)_x(K,Na)₈]

LANDESITE (Mn,Mg)₉°Fe₃°P₈^t[O₃₂(OH)₃(H₂O)₉] Pbna

P2₁/c (=Torreyite) **LAWSONITE** Ca^[8](H₂O){ 3∞ }[Al₂°(OH)₂{g}[Si₂¹O₇]] Ccmm **LEMOYNITE** (Na,K)₂^[5/7]Ca^[6](H₂O)₅₋₆{ 3∞ }[Zr₂°Si₁₀*O₂₆] C2/c **LEUCOPHOSPHITE**

 $K^{(6)}(H_2O)\{3\infty\}[(Fe,AI)_2^{\circ}(P^tO_4)_2(OH)(H_2O)]$ P2₁/n (=Tinsleyite) **LEVYNE** NaCa_{2.5}(H₂O)₁₈(3∞)[Si₁₂^tAl₆^tO₃₆] R $\bar{3}$ m (Zeolite) LIEBIGITE Ca₂^[8](H₂O)₁₁{2∞}[UO₂{g}[C^{tr}O₃]₃] Bba2 **LIOTTITE** $(Ca,Na)8(H_2O)_2(SO_4,CI,OH)_4\{3\infty\}[(Si,AI)_{12}^tO_{24}]$ P6 (≈Cancrinite) LIROCONITE Cu2ºAlºAst[O4(OH)4(H2O)4] 1 2/a

Table 72S

(≈Zeolite)

(≈Cavansite)

$A_pB_qC_rD_sE_x.nAq.(cont.)$

MINERALS TENTATIVELY CLASSIFIED (cont.)

LOVDARITE $K_2Na_6(H_2O)_9\{3\infty\}[Si_{14}{}^tBe_4{}^tO_{36}]$ $P2_12_12$ LÜNEBURGITE $(H_2O)_5(2\infty)[Mg_3^{\circ}B^t(OH)_3(P^tO_4)_2]$ P $\bar{1}$ MACDONALDITE $Ba^{(10)}Ca_4^{(6)}(HO)_2(H_2O)_{10}\{2\infty\}[Si_{16}^{t}O_{36}]$ Cmcm (≈Hydroxyapophyllite) MAGNESIOAUBERITE (Mg,Cu)°Al°S2^t[O8(H2O)14Cl] P 1 (=Auberite) $\textbf{MAGNESIOCOPIAPITE}(H_2O)_6\{1\infty\}[\textbf{Mg}^0\textbf{Fe}_3{}^0\textbf{S}_6{}^{\textbf{t}}\textbf{O}_{24(}(\textbf{OH})_2$ $(H_2O)_8$ {g}[Fe° $(H_2O)_6$] P 1 (Subs.deriv.Copiapite) MAPIMITE Zn2°Fe3°As3^t[O12(OH)4(H2O)10] Cm **MAZZITE** $K_2CaMg(H_2O)_{28}\{3\infty\}[(Si,Al)_{36}^{L}O_{72}]$ P6₃/mmc... (≈Gmelinite,Zeolite) MERLINOITE (K,Na)₅(Ba,Ca)₂(H₂O)₂₄{3∞}[(Si₂₃Al₉)O₆₄] $\begin{array}{ll} \text{I mmm (Zeolite)} \\ \textbf{MESOLITE} & \text{Na}_2^{[6]}\text{Ca}_2^{[7]}(\text{H}_2\text{O})_8\{3\infty\}[\text{Al}_6{}^t\text{Si}_9{}^t\text{O}_{30}] & \text{Fdd2} \end{array}$ (≈Natrolite,Zeolite) **METAHEINRICHITE** $(UO_2)_2Ba\{2\infty\}[(U^{[2+4]}O_2As^tO_4)_2]$ $P4_2...$ **METATYUYAMUNITE** $Ca(H_2O)_3\{2\infty\}[(UO_2)_2V_2O_8]$ Pnam (≈Carnotite) META-URANOCIRCITE-I (H₂O)₈[Ba {2∞}[U^[2+4]O₂P^tO₄]₂] P4₂/n... (≈Meta-autunite) **META-URONOSPINITE** $(H_2O)_8[Ca^{[6]}\{2\infty\}[U^{[2+4]}O_2P^tO_4]_2]$ P4/nmm (≈Meta-autunite) METAVAUXITE Fe°Al₂¹P₂¹[O₈(OH)₂(H₂O)₈] P2₁/c MILARITE (H₂O)(K,Na)¹¹²|Ca₂°(Be,Al)₃¹{g}[Si₁₂¹O₃₀] P6/mcc MINYULITÉ K^[8]{2\infty}[Al2\inftyP2^tO8(OH,F)(H2O)4] Pba2 MITRIDATITE Ca₂^[7](H₂O)₃{2∞}[Fe₃°P₃^tO₁₂] A2/a (=Arseniosiderite) MONTEREGIANITE-(Y) K2[10](H2O)10Na4°Y2°{2∞}[Si16^tO38] P2₁/n (≈Hydroxyapophyllite) **MURMANITE** Na₃°(Ti,Nb)₄°Si₄^t[O₁₈(H₂O)₄] P $\bar{1}$? (≈Bafertisite) NATROCHALCITE Na^[8]{2\infty}{Cu2\infty}S2\text{tO}8(OH)(H2O)] C2/m **NATRODUFRENITE** $\{3\infty\}[Na^{\circ}Fe_{6}^{\circ}P_{4}^{\dagger}O_{16}(OH)_{6}(H_{2}O)_{2}]$ C2/c **NENADKEVICHITE** $Na^{[6]}(H_2O)_2\{3\infty\}\{\{3\infty\}\{(Nb,Ti)^0Si_2^tO_6(O,OH)\}\}$ Pbam NOVÁCEKITE (H₂O)₉[Mg⁽⁶⁾{2\omega}[U^[2+4]O₂As^tO₄] P4₂/n (≈Autunite) **OHMILITE** Sr₂^[9]Sr^[8](Ti,Fe)°(O,OH)(H₂O)₂{1∞}[Si₄^tO₁₂] P2₁/m **OJUELAITE** Zn°Fe₂°As₂^t[O₈(OH)₂(H₂O)₄]^{c/n} P2₁/c (≈Arthurite) **ORTHOSERPIERITE** $\{3\infty\}[Ca^{[7]}(Cu,Zn)_4^{[6]}S_2^{t}O_8(OH)_6(H_2O)_3]$ Pca2₁ (≈Serpierite) **PAHASAPAITE** $\text{Li}_{8}^{[6p1c]}(\text{Ca,Li,K})_{10.5}^{[6p1c]}(\text{H}_{2}\text{O})_{38}\{3\infty\}[\text{Be}_{24}^{\text{t}}\text{P}_{24}^{\text{t}}\text{O}_{96}]$ I 23 (≈Zeolite) PARAUMBITE $K_3Zr_2^0(H_2O)_3\{1\infty\}[Si_3O_9]_2$. Orth. s.g.? (≈Wollastonite) PARAVAUXITE Fe°Al₂°P₂¹[O₈(OH)₂(H₂O)₈] P 1 (≈Laueite) PARTHÉITE Ca₂Al₄°(OH)₂(H₂O)₄(3\omega)[Si₄[†]O₁₅] C2/c

PENTAGONITE (H₂O)₄(3∞)[Ca^[7]V^[5y]Si₄^tO₁₁] Ccm2₁

PETARASITE $Na_5^{[7]}(CI,OH)(H_2O)_2\{3\infty\}[Zr_2^oSi_6^tO_{18}]$ $P2_1/m$ PHARMACOSIDERITE $K(OH)_4(H_2O)_{6-7}(3\infty)[Fe_4{}^0As_3{}^tO_{12}]$ P 43m POLYHALITE K₂^[11](H₂O)₂{3∞}[Ca₂^[8]Mg^oSi₄O₁₆] P 1 POUGHITE Fe₂^o(H₂O)₃(g)[Te⁽⁴⁾O₃(g)[SO₄] Pmnb PROBERTITE Na^[6]Ca^[9](H₂O)₃(1∞)[B₃*B₂*TO₇(OH)₄] P2₁/c PSEUDOLAUEITE Mn°Fe2°P2^t[O8(OH)2(H2O)7-8] P21/a **RECTORITE** $(H_2O)_2(Na,Ca)AI_4^o(OH)_4\{2\infty\}[(Si,AI)_8^tO_{20}]^{(2.5)c}$ Mon.s.g.? (≈Montmorillonite) **REEVESITE** $Ni_6{}^{\circ}Fe_2{}^{\circ}(OH)_{16}\{2\infty\}[(C^{tr}O_3)(H_2O)_4]$ R3m (=Pyroaurite) **RHODESITE** $(H_2O)_{10}(K,Na)_2Ca_4(OH)_2\{2\infty\}[Si_{16}C_{36}]$ Pmam **ROBERTSITE** $Ca_2^{[7]}(H_2O)_3\{2\infty\}[Mn_3^0P_3^tO_{12}]$ A2/a (=Arseniosiderite) SANTACLARAITE (H₂O)Hca^oMn₄o(OH){1∞}[Si₅to₁₅] B 1 (≈Rhodonite) SAPONITE $(H_2O)_4(Ca,Na)_{0.3}(Mg,Fe)_3^{\circ}(OH)_2\{2\infty\}[(Si,Al)_4^{t}O_{10}]^{(2.6)c}$ Cc **SAUCONITE** (H₂O)₄Na_{0.3}Zn₃(OH)₂{2∞}{(Si,Al)₄^tO₁₀]^{(2.s)c} Cc (≈Vermiculite) **SAZHINITE-(Ce)** $(H_2O)_6Hna^{[5]}Ce^{[6+1]}\{2\infty\}[Si_6^{1}O_{15}]$ Pmm2 SCAWTITE Ca₇°Si₆^tC^{tr}[O₂₁(H₂O)₂] I 2/m SCHAURTEITE {3∞}[Ca₃^[9]Ge°S₂^{tO}₈(OH)₆(H₂O)₃] P6₃/mmc... (=Fleischerite) SCHERTELITE {3\infty}[Mg^\tilde{P}_2^tO_6(NH_4)_2(OH)_2(H_2O)_4] Pbca SERPIERITE {300}[Ca^[7](Cu,Zn)₄°S₂*O₈(OH)₆(H₂O)₃] C2/c **SIGLOITE** $Fe^{\circ}Al_2^{\circ}P_2^{\dagger}[O_8(OH)_2(H_2O)_8]$ P 1 (=Laueite) **SJÖGRENITE** Mg₆°Fe₂°C^{tr}[O₃(OH)₁₆(H₂O)₄] P6₃/mmc (=Barbertonite) SÖRENSENITE Na₄^[7]Be₂^tSn^o(H₂O)₂{1∞}{Si₃^tO₉]₂^{my} C2/c (≈Wollastonite) STERCORITE Na $^{\circ}$ P^t[O₃(OH)(NH₄)(H₂O)₄] P $\overline{1}$ (\approx Laueite) STEWARTITE $Mn^{\circ}Fe_2^{\circ}P_2^{\circ}[O_8(OH)_2(H_2O)_8] P \overline{1}$ (\approx Laueite) **STICHTITE** $Mg_6{}^{\circ}Cr_2{}^{\circ}(OH)_{16}\{2\infty\}[(C^{tr}O_3)(H_2O)_4]$ R3m... (=Pyroaurite) STRONTIODRESSITE $(OH)_4{3\infty}[(Sr,Ca)^{[9]}Al_2^{\circ}(H_2O)\{g\}[C^{tr}O_3]_2]$ Pbnm (=Dundasite) STRUNZITE Mn°Fe₂°P2^t[O₈(OH)₂(H₂O)₆] P 1 (~Laueite) SVYAZHINITE (Mg,Mn)°(AI,Fe)°S2^t[O₈(H₂O)F] P1... (≈Aubertite) TARANAKITE (AI,Fe)₅ 0 H₆K₃(H₂O)₁₄{2 ∞ }[P₈ t O₂₀(H₂O)₄] R 3c... (≈Pyrophyllite) TINSLEYITE K^[6](H₂O){3∞}[Al₂°(P^tO₄)₂(OH)(H₂O)] P2/n... (=Leucophosphite) TORREYITE $(Mg_1Mn)_9$ ° Zn_4 † S_2 † $[O_8(OH)_{22}(H_2O)_8]$ P2₁/c (=Lawsonbaucrite) TYUYAMUNITE $Ca(H_2O)_{5-8}\{2\infty\}[(UO_2)(V_2O_8)]$ Pnan **ÙKLONSKOVITE** Na^[6]Mg^[6]S^t[O₄(OH,F)(H₂O)₂] P2₁/m ULEXITE Ca^[9]Na⁰(H₂O)₅{g}[B₃^tB₂^{tr}O₆(OH)₆] P 1 URALOLITE Ca2^[7](H₂O)₅{2\infty}[Be₄^t(P^tO₄)₃(OH)₃] P2₁/n **USHKOVITE** $Mg^{\circ}Fe_2^{\circ}P_2^{t}[O_8(OH)_2(H_2O)_8]$ P $\overline{1}$ (=Laueite) VAUXITE Fe°Al₂°P₂¹[O₈(OH)₂(H₂O)₆] P 1 (≈Laueite)

Table 73S

$A_pB_qC_rD_sE_x.nAq.(cont.)$

MINERALS TENTATIVELY CLASSIFIED (cont.)

VOLTAITE $(H_2O)_6{3\infty}[K_2^{[12]}Fe_8Al^oS_{12}^tO_{48}(H_2O)_{12}]$ Fd3c WARDITE (H₂O)₂(3∞)₁Na^[6]Al₃(^{6]}P₂[†]O₈(OH)_a] P4₁2₁2...
WELOGANITE Na₂(^{6[6]}(H₂O)₃(Sr,Ca)₃(^{10]}Zr^[9](g)₁C^{tr}O₃]₆ P1
WIGHTMANITE Mg₅°((OH)₅(H₂O)₂O(g)₁B^{tr}O₃])^{*18} L2/m XANTHOXENITE Ca₄°Fe₂°P₄¹[O₁₆(OH)₂(H₂O)₃] P 1 (=Stewartite) ZINCOBOTRYOGEN (Zn,Mg,Mn)°Fe°S2^t[O8(OH)(H2O)7] P2₁/n (=Botryogen)

AGARDITE-(La) (Cu,Ca)₆La(AsO₄)₃(OH)₆.3H₂O P6₃/m

ZINCOCOPIAPITE $(H_2O)_6\{1\infty\}[Zn^0Fe_3^0S_6^tO_{24}(OH)_2(H_2O)_8]$ {g}[Fe^o(H₂O)₆] P 1 (Subs.d.Copiapite) ZINCOVOLTAITE (300)[K2 12]Fe4 Zn5 S12 O48(H2O)18] Fd3c (Subs.d.Voltaite) ZORITE Na₆°Ti₅^[5/6](H₂O)₁₁{3∞}[Si₁₂^tO₃₄(O,OH)₅] Cmmm (≈Zeolite)

MINERALS NOT YET CLASSIFIED

●AGARDITE-(Y) Cu₆(Y,Ca)(AsO₄)₃(OH)₆.3H₂O P6₃/m AHEYLITE (Fe,Zn)Al₆(PO₄)₄(OH)₈.4H₂O P 1 ALDERMANITE (Mg,Ca)₅Al₁₂(PO₄)₈(OH)₂₂.32H₂O Orth. s.g.? ALIETTITE Ca_{0.2}Mg₆(Si,Al)₈O₂₀(OH)₄.4H₂O S.? ALUMINOCOPIAPITE (AI,Mg)Fe₄(SO₄)₆(OH,O)₂.20H₂O AMSTALLITE CaAl(Si,Al)4O8(OH)4.(H2O,Cl) C2/c BARBERTONITE MgCr₂CO₃(OH)₁₆.4(H₂O P6₃/mmc BAZHENOVITE Ca₈S₅(S₂O₃)(OH)₂.20H₂O P2₁/c **BENTORITE** Ca₆(Cr,Al)₂(SO₄)₃(OH)₁₂.26H₂O P6₃/mmc ●BUTTGENBACHITE Cu₁₈(NO₃)₂(OH)₃₂Cl₃.H₂O P6₃/mmc CALCIOCOPIAPITE CaFe₄(SO₄)₆(OH)₂.20H₂O P 1 ●CALLAGHANITE Cu₂Mg₂CO₃(OH)₆.2H₂O C2/c CARBONATE-CYANOTRICHITE Cu4Al2CO3(OH)12.2H2O Orth.? s.g.? CASSEDANNEITE Pb5(VO4)2(CrO4)2.H2O A2/m... CERULÉITE Cu₂Al₇(AsO₄)₄(OH)₁₃.12H₂O P 1? CHAIDAMUITE ZnFe(SO₄)₂(OH).4H₂O P2₁/m... CHALCOALUMITE CuAl4SO4(OH)12.3H2O P21 CHALCOSIDERITE CuFe6(PO4)4(OH)8.4H2O P 1 CHAROITE (K,Na)₅(Ca,Ba,Sr)₈Si₁₈O₄₆(OH,F).nH₂O Mon. CHELKARITE CaMgB₂O₄Cl₂.7H₂O? Pbca CHENEVIXITE Cu₂Fe₂(AsO₄)₂(OH)₄.H₂O P2₁/m CHRYSOCOLLA (Cu,Al)2H2Si2O5(OH)4.nH2O? Cm? CLAIRITE (NH₄)₂(Fe,Mn)₃(SO₄)₄(OH)₃.3H₂O P 1? CLINOTYROLITE Ca₂Cu₉(AsO₄,SO₄)₄(OH,O)₁₀.10H₂O Pa... COERULEOLACTITE (Ca,Cu)Al₆(PO₄)₄(OH)₈.4-5H₂O Tric. COMBLAINITE Ni₆Co₂CO₃(OH)₁₆.4H₂O R 3m... ● CONNELITE Cu₁₉Cl₄SO₄(OH)₃₂.3H₂O P 62c... CREASEYITE Cu₂Pb₂(Fe,Al)₂Si₅S₁₇.6H₂O Cmmm? CUALSTIBITE Cu₆Al₃(SbO₄)₃(OH)₁₂.10H₂O P3... ●CURITE Pb_{6.5}(UO₂)₁₆O₁₆(OH)_{12.}(H₂O,OH)₄ Pnam CYANOPHYLLITE Cu₅Al₂(SbO₄)₃(OH)₂.12H₂O Pmmb CYANOTRICHITE Cu4Al2SO4(OH)12.2H2O Orth. s.g.? CYRILOVITE NaFe₃(PO₄)₂(OH)₄,2H₂O P4₁2₁2 DELRIOITE SrCaV2O6(OH)2.3H2O 12/a.. DESAUTELSITE Mg₆Mn₂CO₃(OH)₁₆.4H₂O R3m... EGGLETONITE Na₂Mn₈(Si,Al)₁₂O₂₉(OH)₇.11H₂O | 2/a ... EMBREYITE Pb5(CrO4)2(PO4)2.H2O P21m EZTLITE Pb₂Fe₆Te₄O₁₅(OH)₁₀.8H₂O Mon. s.g.? FAHEYITE Be₂(Mn,Mg,Na)Fe₂³⁺(PO₄)₄.6H₂O P6₄22? FAHLEITE CaZn₅Fe₂(AsO₄)₆.14H₂O Orth. s.g.? FAUSTITE (Zn,Cu)Al₆(PO₄)₄.(OH)₈.4H₂O Tric. s.g.? FLUCKITE CaMn(AsO3OH)2.2H2O P 1 FRANCOANELLITE H₆(K,Na)₃(Al,Fe)₅(PO₄)₈.13H₂O R3c... FRANZINITE (Na,Ca)₇(Si,Al)₁₂O₂₄(SO₄,OH)₃.H₂O P 3m1...

GANOPHYLLITE (K,Na)₆(Mn,Al,Mg)₂₄(Si,Al)₄₀O₉₆(OH)₁₆.21H₂O A2/a GATUMBAITE CaAl₂(PO₄)₂(OH)₂.H₂O P2/m... GLAUCOCERINITE (Zn,Cu)5Al3(SO4)1.5(OH)16.9H2O Trig. s.g.? GORMANITE (Fe,Mg)₃Al₄(PO₄)₄(OH)₆.2H₂O P1... GOUDEYITE Cu₆(Al, Y)(AsO₄)₃(OH)₆,3H₂O P6₃/m... HYDROHONESSITE Ni₆Fe₂SO₄(OH)₁₆.7H₂O Hex. s.g.? HYDROTALCITE Mg4Al2(OH)12CO3.3H2O R 3m ILMAJOKITE (Na,Ce,Ba)₁₀Ti₅Si₁₄O₂₂(OH)₄₄.nH₂O Mon. s.g.? INDIGIRITE Mg₂Al₂(CO₃)₄(OH)₂.15H₂O S.? ●IOWAITE Mg₄FeOCI(OH)₈,2-4H₂O R 3m IRHTEMITE Ca₄MgH₂(AsO₄)₄.4H₂O Mon. s.g.? KAHLERITE Fe(UO₂)₂(AsO₄)₂.12H₂O P4₂/n KANEMITE HNaSi₂O₄(OH)₂.2H₂O Pnmb KEYSTONEITE H_{0.8}Mg_{0.8}(Ni,Fe,Mn)₂(TeO₃)₃,5H₂O P6₃/m KIDWELLITE NaFe₉(PO₄)₆(OH)₁₀.5H₂O A2/m... KITTATINNYITE Ca₂Mn₃Si₂O₈(OH)₄,9H₂O P6₃/mmc... KLEEMANITE ZnAl2(PO4)2(OH)2.3H2O P2... KOLFANITE Ca₂Fe₃O₂(AsO₄)₃.2H₂O Mon. s.g.? KOMAROVITE (Ca,Mn)Nb₂(Si₂O₇)(O,F)₃.3.5H₂O Orth. s.g.? **LEHNERITE** Mn(UO₂)₂(PO₄)₂.8H₂O P2₁/n LEIGHTONITE K2Ca2Cu(SO4)4.2H2O Fmmm LUETHEITE Cu₂Al₂(AsO₄)₂(OH)₄.H₂O P2₁/m MANASSEITE Mg6Al2CO3(OH)16.4H2O P63/mmc MATUALAITE CaAl₁₈(PO₄)₁₂(OH)₂₀.28H₂O P2₁/c MBOBOMKULITE (Ni,Cu)Al₄(NO₃,SO₄)₂(OH)₁₂.3H₂O Mon. s.g.? METAKAHLERITE Fe(UO₂)₂(AsO₄)₂.8H₂O Tet. s.g.? METAKIRCHHEIMERITE Co(UO₂)₂(AsO₄)₂.8H₂O | 4/mmm METALODEVITE Zn(UO₂)₂(AsO₄)₂.10H₂O P4₂/m METANOVÁCEKITE Mg(UO₂)₂(AsO₄)₂.4H₂O P4/n METASIDERONATRITE Na₂Fe(SO₄)₂(OH).2H₂O Pbnm... METAZELLERITE Ca(UO₂)(CO₃)₂.3H₂O Pbn2₁... ●MIXITE Cu₆Bi(AsO₄)₃(OH)₆.6H₂O P6₃/m MONGOLITE Ca₄Nb₆Si₅O₂₄(OH)₁₀.6H₂O Tet. s.g.? MONSMEDITE H₈K₂Tl₂(SO₄)₈.11H₂O Fd3c MONTROYALITE Sr₄Al₈(CO₃)₃(OH,F)₂₆.10H₂O Tric. s.g.? **MOUNTKEITHITE** $(Mg,Ni)_{11}(Fe,Cr)_3(SO_4,CO_3)_{3,5}(OH)_{24}.11H_2O$ Hex. s.g.? MUNDRABILLAITE (NH₄)₂Ca(PO₃OH)₂H₂O Pm... NISSONITE CuMgPO₄(OH).2.5H₂O C2/c.. OGDENSBURGITE (Ca,Zn,Mn)₄Fe₆(AsO₄)₅(OH)₁₁.5H₂O OURSINITE (Co,Mg)(UO2)2Si2O7.6H2O Aba2.. PARAROBERTSITE Ca₂Mn₃(PO₄)₃O₂.3H₂O P2₁/c PARSONSITE Pb2(UO2)(PO4)2.0-2H2O P 1 PETERSITE - (Y) Cu₆(Y,Ca)(PO₄)₃(OH)₆.3H₂O P6₃/m...

Table 74S

$A_pB_qC_rD_sE_x.nAq.(cont.)$

MINERALS NOT YET CLASSIFIED (cont.)

PHYLLOTUNGSTITE HCaFe₃(WO₄)₆.10H₂O P222... PROTASITE Ba(UO₂)₃O₃(OH)₂.3H₂O Pn RAMEAUITE K2CaO8(UO2)6.9H2O C2/c RIVADAVITE Na₆Mg(B₆O₇(OH)₆)₄.10H₂O P2₁/m ● RUIZITE Ca₂Mn₂Si₄O₁₁(OH)₄.2H₂O C2/m SANTAFEITE (Ca,Sr,Na)₃(Mn,Mg,Al,Fe)₄(VO₄)₄(OH)₅.2H₂O **SAYRITE** Pb₂(UO₂)₅O₆(OH)₂.4H₂O P2₁/c SCHODERITE Al₂(PO₄)(VO₄).8H₂O P2/m? SHABYNITE Mg₅BO₃(OH)₅(Cl,OH)₂.4H₂O Mon. s.g.? **OSHIGAITE** Mn₇Al₄(SO₄)₂(OH)₂₂.8H₂O R 3 SIDERONATRITE Na₂Fe(SO₄)₂(OH).3H₂O Pbnm **SIELECKIITE** Cu₃Al₄(PO₄)₂(OH)₁₂.2H₂O P 1 ... SODIUM PHARMACOSIDERITE $(Na,K)_2Fe_4(AsO_4)_3(OH)_5.7H_2O P \bar{4}3m$ SODIUM-URANOSPINITE (Na2, Ca)(UO2)2(AsO4)2.5H2O P4/nmm **SOUZALITE** (Mg,Fe)₃(Al,Fe)₄(PO₄)₄(OH)₆.2H₂O A2/m SPHENISCIDITE (NH₄,K)(Fe,AI)₂(PO₄)₂(OH).2H₂O P2₁/n STRELKINITE Na₂(UO₂)₂(VO₄)₂.6H₂O Pnmm...

TAKOVITE Ni₆ Al₂CO₃(OH)₁₆.4H₂O Trig. s.g.? TERSKITE Na₄ZrSi₆O₁₅(OH)₂.H₂O Pnc2 THORBASTNÄSITE Th(Ca,Ce)(CO₃)₂F₂.3H₂O P 62c TOSUDITE Na_{0.5}(AI,Mg)₆(Si,AI)₈O₁₈(OH)₁₂.5H₂O Orth. s.g.? TUPERSSUATSIAITE NaFe3Si8O20(OH)2.5H2O C2/m URAMPHITE NH₄(UO₂)(PO₄).3H₂O Tet. s.g.? URANOPILITE (UO2)6SO4(OH)10.12H2O Mon. s.g.? VERTUMNITE Ca₄Al₄Si₄O₆(OH)₂₄.3H₂O P2₁/m WALLKILLDELLITE Ca₄Mn₆(AsO₄)₄(OH)₈.18H₂O WEEKSITE K₂(UO₂)₂Si₆O₁₅.4H₂O Pnnb WILCOXITE MgAI(SO₄)₂F.18H₂O P 1... YAKHONTOVITE (Ca,Na,K)_{0.2}(Cu,Fe,Mg)₂Si₄O₁₀(OH)₂.3H₂O Mon. s.g.? ZAKHAROVITE Na₄Mn₅Si₁₀O₂₄(OH)₆.6H₂O P31m... ZAPATALITE Cu₃Al₄(PO₄)₃(OH)₉.H₂O Tet. s.g.? ZELLERITE Ca(UO₂)(CO₃)₂.5H₂O Pmn2₁... **●ZEOPHYLLITE** Ca₁₃Si₁₀O₂₈(OH)₂F₈6H₂O R 3... **ZINC-ZIPPEITE** $Zn_2(UO_2)_6(SO_4)_3(OH)_{10}.16H_2O$ Orth.? s.g.?

$A_pB_qC_rD_sE_xF_y.nAq.$

SHEET

TRONA $2\infty[Na_3^{olp}H(H_2O)_2\{g\}[C^{ti}O_3]_2]$ C2/c URANOPHANE $Ca^{[8]}(H_2O)_5H_2\{2\infty]\{(U^{[2+5]}O_2)_2(S^{ti}O_4)_2]$ P2₁

MINERALS TENTATIVELY CLASSIFIED

ARDEALITE $Ca_2^oP^tS^t[HO_8(H_2O)_4]$ Cc. (\approx Gypsum) **ATTAKOLITE** $\{3\infty\}[(Ca,Mn,Fe)_3^{[8]}Al_6^{[6]}P_5^tS_2^tO_{28}(H_2O)_3]$ C2/m **BETA-URANOPHANE** $Ca(H_2O)_5H_2\{2\infty\}[(UO_2)_2(Si^tO_4)_2]$ **CACOXENITE** $(H_2O)_{75}[3\infty][Fe_{24}{}^{\circ}Al^{[5by]}O_6(P^tO_4)_{17}(OH)_{12}]$ $\begin{array}{lll} \textbf{CETINEITE} & (H_2O)_2\{3\omega\}[K_{3.5}^{\circ}(Sb_2^{[3n]}O_3)_3Sb^{[3n]}S_3(OH)_{0.5}] & P6_3\\ \textbf{CHIAVENNITE} & & Cal^{[8]}Mn^{[6]}(H_2O)_2\{3\omega\}[Si_5^{\dagger}Be_2^{\dagger}(OH)_2] & Pnab \end{array}$ **CHUKHROVITE - (Y)** $(H_2O)_{10}{3\infty}[Ca_3^{\circ}(Y,Ce)^{\circ}Al_2^{\circ}S^{I}O_4F_{13}]$ Fd3 **CREEDITE** $(H_2O)_2\{3\infty\}[Ca_3^{[8]}Al_2^{\circ}S^t[O_4(OH)_2F_8]$ C2/c **CUPROSKLODOWSKITE** $(H_2O)_6Cu^{[7by]}H_2\{2\infty\}[(UO_2)_2(Si^tO_4)_2] P \bar{1}$ DELHAYELITE (H₂O)₁₈(Na,K)₁₀^[8](3∞)[Ca₅^[6]Al₆^tSi₃₂^tO₈₀Cl₆] Pmn2₁ ... (≈Macdonaldite) **DEWINDTITE** Pb₂^[8](H₂O)₇{2∞}[(U^[7by/8by]O₂)₄(OH)₃(P^tO₄)₃] **DUMONTITE** Pb₂(H₂O)₅{2 ∞ }[(UO₂)₃O₂(P^tO₄)₂](\approx Dewindtite) **EAKERITE** $Ca_2^{[8]}Sn^{[6]}(H_2O)_2 \{2\infty\}[Al^tSi_3{}^tO_9(OH)]_2 P2_1/m$ (≈Ussingite) **FAUJASITE** Na₂₀Ca₁₂Mg₈(H₂O)₂₃₅{ 3∞ }[(Al₆₀Si₁₃₂)^tO₃₈₄] Fd3m (≈Sodalite,Zeolite) **FERRARISITE** $(H_2O)_9Ca_4^{0}\{2\infty\}[Ca^{[7]}As_4^{t}O_{14}(OH)_2] P \bar{1}$ FERRIERITE (monoclinic) KNa₃Mg^o(H₂O)₁₈ $\{3\infty\}[(Al_5Si_{31})^tO_{72}]$ P2₁/n (\approx Mordenite,Zeolite) GEIGERITE Mn5°As4^t [O14(OH)2(H2O)10] P 1 (≈Chudobaite) GRISCHUNITE (H₂O)₂Ca₂^[8]{3∞}[Na^oMn₅^oFe^oAs₆^tO₂₄] Pcab

(≈Ferrarisite) **GUILLEMINITE** $(H_2O)_3Ba^{[10]}\{2\infty\}[U_3^{[7/8]}(Se^{tr}O_3)_2O_8]$ P2₁nm (≈Phosphuranylite) GYROLITE {2\infty}[Na\cappa Ca_{16}\cappa (H_2O)_{14}]{2\infty}[Al\tangle Si_{24}\tangle O_{60}(OH)_8] P 1 (≈Reyerite) HURÉAULITE Mn5°P4^t[O14(OH)2(H2O)4] C2/c **KAINOSITE** – **(Y)** $(H_2O){3\infty}[Ca_2^{[8]}(Y,Ce)_2^{[8]}[g][Si_4^tO_{12}]C^{tr}O_3]$ **KALIBORITE** $(H_2O)_4[5\infty][K^{[8]}Mg_2^o[B_2^{\dagger}B_4^{\dagger t}O_8(OH)_5]_2]$ C2/c **KRIBERGITE** $AI_5^oP_3^{\dagger}S^{\dagger}[O_{16}(OH)_4(H_2O)_4]$ Tric.s.g.? (≈Hotsonite) LEIFITE Na₆^[7](OH)₂(H₂O)_{1.5} {3∞}[Be₂^tSi₁₆^tAl₂O₃₉] P 3m1 LUN'OKITE (Mg,Fe)°(Mn,Ca)°Al°P₂¹[O₈(OH)(H₂O)₄] Pbca (=Segelente) METAVOLTINE (H₂O)₁₈{3\infty}[K₂^[9]Na₆°Fe₇°S₁₂^tO₅₀] P3 MONTGOMERYITE (H₂O)₁₂Ca₄^[8]{1∞}[Mg°Al₄°P₆¹O₂₄(OH)₄] C2/c (=Calcioferrite,=Zodacite) **MORDENITE** $K_{2.8}Na_{1.5}Ca_2(H_2O)_{29} \{3\infty\}[Al_9{}^tSi_{39}{}^tO_{96}]$ Cmc2₁ NOSEAN Na₈S^tO₄(H₂O){3 ∞ }[Si₆^tAl₆^tO₂₄] P $\overline{4}$ 3n (\approx Sodalite) **OFFRÉTITE** $K^{[8]}Ca^{[6]}Mg^{t}(H_{2}O)_{15}\{3\infty\}[Al_{5}{}^{t}Si_{13}{}^{t}O_{36}]$ P 6m2 (Zeolite) **OLMSTEADITE** (H₂O)₂K^[8]{3∞}[Fe₂°(Nb,Ta)°P₂^tO₁₀] Pb2₁m (≈Montgomeryite) OVERITE Ca°(H₂O)₄(2∞)[Mg°Al°P₂^tO₈(OH)] Pbca (=Segelerite) PERETAITE {2\infty} Sb2 tO4(OH)2 {1\infty} Ca8ap S2 tO8(H2O)2 C2/c

GUERINITE (H₂O)₉Ca₄°{2∞}[Ca^[7]As₄^tO₁₄(OH)₂] P2₁/n

Table 75S

$A_pB_qC_rD_sE_xF_y.nAq.(cont.)$

MINERALS TENTATIVELY CLASSIFIED (cont.)

PHOSPHURANYLITE Ca(H₂O)₆(2∞){(UO₂)₃(OH)₂(P^tO₄)₂] Cmcm (≈Dumontite) PHURALUMITE Al₂°(OH)₄(H₂O)₁₀{2∞}{(P^tO₄)₂(UO₂)₃(OH)₂] P2₁/a

PHURCALITE $Ca_2^{[7]}(OH)_2(H_2O)_4\{2\infty\}[(P^tO_4)_2(UO_2)_3(OH)_2]$

Pbca (≈Phuralumite)

p-VEATCHITE

 $(Sr,Ca)_2^{[10/11]}B(H_2O)(OH)_3\{2\infty\}[B_2^{t}B_3^{tr}O_8(OH)]_2$ P2₁

REYERITE

 $\begin{array}{ll} \text{(Na,K)}_2\text{Ca}_{14}^{\text{o}}\text{(OH)}_8\text{(H}_2\text{O)}_6\text{\{}2\infty\text{)}\text{[Si}_1^{\text{t}}\text{Al}_2^{\text{t}}\text{O}_{38\text{)}}\text{\{}2\infty\text{)}\text{[Si}_8^{\text{t}}\text{O}_{20\text{)}}. & P \ \overline{3} \\ \textbf{SABUGALITE} & \text{(H}_2\text{O)}_{16\text{[HAI }}\text{\{}2\infty\text{)}\text{[UO}_2\text{PO}_4\text{]}_4\text{]} & \text{I 4/mmm} \\ \text{(\approxAutunite)} \end{array}$

SAINFELDITE $Ca_5^{\circ}As_4^{\ t}[O_{14}(OH)_2(H_2O)_4]$ C2/c (\approx Villyaellenite)

SCHOONERITE $(H_2O)_9Zn^{[5]}\{2\infty\}\{Mn^oFe_3^oP_3^tO_{12}\}$ Pmab SEGELERITE $Ca^o(H_2O)_4\{2\infty\}\{Mg^oFe^oP_2^tO_8(OH)\}$ Pbca $(=O)_4(te_1)$

SENGIEŔITE Cu2°(OH)2(H2O)6{2∞}[(UO2)2V2O8] P2₁/A SINKANKASITE {2∞}[Mn°(H2O)6 {1∞}[Al°(P¹O3OH)2(OH)]] P 1

SLAVÍKITE $Na^{[3]}Mg_2^{\circ}(H_2O)_{33}\{2\infty\}[Fe_5^{\circ}S_7^{\dagger}O_{28}(OH)_6]$ R $\bar{3}$

 $\begin{array}{l} \textbf{SWARTZITE} \quad \textbf{Mg}^{o}\text{Ca}^{[8ap]}(H_{2}\text{O})_{12}[\textbf{U}^{[6p3c]}\text{O}_{2}\{g\}[\textbf{C}^{tr}\text{O}_{3}]_{3}] \quad P2_{1}/m \\ \textbf{SYNADELPHITE} \quad (\textbf{Mn},\textbf{Mg},\textbf{Ca})_{9}^{o}\textbf{As}_{2}^{o}\textbf{As}^{[5y]}[\textbf{O}_{11}(\textbf{OH})_{9}(H_{2}\textbf{O})_{2}]^{ch} \\ \textbf{Pnma} \end{array}$

TERUGGITE $Mg^{o}(H_{2}O)_{6}\{3\infty\}[Ca_{4}{}^{BI}(As^{t}B_{6}{}^{thr}O_{11}(OH)_{6})_{2}(H_{2}O)_{8}]$ P2₁/a

THREADGOLDITE $(H_2O)_8(OH)[AI^{[6]}\{2\infty\}[U^{[2+4]}O_2P^{1}O_4]_2]$ Cc (\approx Autunite)

TIPTOPITE (Li,Na,Ca)₆K₂(H₂O)_{1·3}(OH)₂{ 3∞ }[Be₆^tP₆^tO₂₄] P6₃ (\approx Cancrinite,Zeolite)

TRÖGERITE $U_2^{\circ}As_2^{t}[O_{12}(H_2O)_6(H_3O)_2]$ **P4/nmm VANMEERSSCHEITE** $(H_2O)_4(OH)_4U\{2\infty\}[(U^{[2+5]}O_2)]_3(P^tO_4)_2$ $(OH)_2]$ **P2**₁/mn

VEATCHITE S_{I2}^{110/11]}B^{tr}(OH)₃(2∞}[B₂^tB₃^{tr}O₈(OH)]₂ Aa VILLYAELLENITE (Mn,Ca,Zn)₅ As₄ [O₁₄(OH)₂(H₂O)₄] Cc ... (≈Sainfeldite)

VISHNEVITÉ (Na,K,Ca) $_8$ (SO $_4$)(H $_2$ O) $_2$ {3 ∞ }[Si $_6$ ^tAl $_6$ ^tO $_2$ 4] P6 $_3$ 2 ... (\approx Cancrinite,Zeolite)

WERMLANDITE Ca^oMg₇^o(Al,Fe)^oS₂^t[O₈(OH)₁₈(H₂O)₁₂] P 3c1 (≈Hydrocalumite)

ZODACITE $(H_2O)_{12}Ca_4^{[8]}\{1\infty\}$ [Mn°Fe₄°P₆†O₂₄(OH)₄] C2/c ... (=Montgomeryite)

MINERALS NOT YET CLASSIFIED

AJOITE (K,Na)Cu₇AlSi₉O₂₄(OH)₆.3H2O P1 ... ANDERSONITE Na₂Ca(UO₂)(CO₃)₃.6H₂O R $\overline{3}$ m ARSENURANOSPATHITE HAI(UO₂)₄(AsO₄)₄.40H₂O P4₂/n ARSENURANYLITE Ca(UO₂)₄(AsO₄)₂(OH)₄.6H₂O Bmmb ...

BANNISTERITE KCaMn₂₁(Si,Al)₃₂O₇₆(OH)₁₆.12H₂O A2/a BARIO-ORTHOJOAQUINITE (Ba,Sr)₄Fe₂Ti₂O₂(SiO₃)₈.H₂O Ccmm ...

BERGENITE (Ba,Ca)₂(UO₂)₃(PO₄)₂(OH)₄.5.5H₂O P2₁/c **BETPAKDALITE** (H,K)₆Ca₄Fe₆As₄Mo₁₆O₇₄.28H₂O C2/m **BIJVOETITE** - **(Y)** (Y,Dy)₂(UO₂)₄(CO₃)₄(OH)₆.11H₂O C2ma ...

BUKOVSKÝITE $Fe_2(AsO_4)(SO_4)(OH).7H_2O$ P $\overline{1}$... **BURANGAITE** $(Na_1Ca)_2Fe_2AI_{10}(PO_4)_8(O,OH)_{12}.4H_2O$ C2/c **CALCIOFERRITE** $Ca_4Mg(Fe,AI)_4(PO_4)_6(OH)_4.13H_2O$? C2/c?

CALCURMOLITE Ca(UO₂)₃(MoO₄)₃(OH)₂.11H₂O S.? **CANAVESITE** Mg₂(HBO₃)(CO₃).5H₂O P2/m **CARBOBORITE** Ca₂Mg(B(OH)₄)₂(CO₃)₂.4H₂O P2₁/m **CHERNIKOVITE** (H₃O)(UO₂)PO₄.3H₂O P4/nmm? **CHUDOBAITE** (Mg,Zn)₅(ASO₄)₂(ASO₃OH)₂.10H₂O P $\bar{1}$ **CLINOUNGEMACHITE** K₃Na₉Fe(SO₄)₆(OH)₃.9H₂O Mon.s.g.?

COBALT- ZIPPEITE $Co(UO_2)_6(SO_4)_3(OH)_{10}F_8.16H_2O$ S.? DIADOCHITE $Fe_2(PO_4)(SO_4)(OH).5H_2O$ P1 ... DONNAYITE - (Y) NaSr₃CaY(CO₃)_{6.}3H₂O P Ī DUHAMELITE $Cu_4Pb_2Bi(VO_4)_4(OH)_3.8H_2O$ Orth.s.g.? EPISTOLITE $Na_5TiNb_2(Si_2O_7)_2(O,F)_4.5H_2O$ P1 FURONGITE $Al_{13}(UO_2)_7(PO_4)_{13}(OH)_{14}.58H_2O$ P1 ... GRIMSELITE $K_3Na(UO_2)(CO_3)_3.H_2O$ P $\bar{6}2c$ HOTSONITE $Al_{11}(SO_4)_3(PO_4)_2(OH)_{21}.16H_2O$ Tric.s.g.? HÜGELITE $Pb_2(UO_2)_3(ASO_4)_2(OH)_4.3H_2O$ Mon.s.g.? HYDRODELHAYELITE $KCa_2(Si_7AI)O_{17}(OH)_2.6H_2O$ Pnm2₁

JOHANNITE Cu(UO2)2(SO4)2(OH)2.8H2O P1

JOHNWALKITE K(Mn,Fe)₂(Nb,Ta)O₂(PO₄)₂.2(H₂O,OH) Ph2₄m

JONESITE $(K,Na)_2Ba_4Ti_4Al_2Si_{10}O_{36}.6H_2O$ B22₁2 JUNGITE $Ca_2Zn_4Fe_8(PO_4)_9(OH)_9.16H_2O$ Pcmm ... KAMOTOITE – (Y) $Y_2O_4(UO_2)_4(CO_3)_3.14H_2O$ P2₁/n KECKITE $(Ca_1Mg)(Mn,Zn)_2Fe_3(PO_4)_4(OH)_3.2H_2O$ P2₁/a KINGSMOUNTITE $(Ca_1Mn)_4FeAl_4(PO_4)_6(OH)_4.12H_2O$ C2 LAPLANDITE - (Ce) $Na_4CeTiPSi_7O_{22}.5H_2O$ Pmmm LAVENDULAN NaCaCu₅(ASO_4)_4C1.5H_2O Orth.s.g.? LOUDOUNITE $NaCa_5Zr_4Si_{16}O_{40}(OH)_{11}.8H_2O$ S.? MAGNESIUM-ZIPPEITE $Mg_2(UO_2)(SO_4)_3(OH)_{10}.16H_2O$ S.? MARTHOZITE $Cu_1(UO_2)_3(SeO_3)_3(OH)_2.7H_2O$ Pnma ... MCKELVEYITE - (Y) $NaBa_3(Ca_1U)^4(CO_3)_6.3H_2O$ P $\frac{1}{3}$ METAVANMEERSSCHEITE $U_1(UO_2)_3(PO_4)_2(CO_3)_6.2H_2O$

 $\begin{array}{lll} (\text{Mg}_6\text{Al}_3(\text{OH})_{18})(\text{Na}_{0.6}(\text{SO}_4,\text{CO}_3)_2).12\text{H}_2\text{O} & R \ \bar{3}\text{m} \\ \text{MUNDITE} & \text{Al}(\text{UO}_2)_3(\text{PO}_4)_2(\text{OH})_3.5.5\text{H}_2\text{O} & \text{P2}_1\text{cn} \dots \\ \text{NAKAURITE} & \text{Cu}_8(\text{SO}_4)_4(\text{CO}_3)(\text{OH})_6.48\text{H}_2\text{O} & \text{Orth.s.g.?} \\ \text{NICKEL-ZIPPEITE} & \text{Ni}_2(\text{UO}_2)_6(\text{SO}_4)_3(\text{OH})_{10}.16\text{H}_2\text{O} & \text{S.?} \\ \text{OBOYERITE} & \text{H}_6\text{Pb}_6(\text{TeO}_3)_3(\text{TeO}_6)_2.2\text{H}_2\text{O} & \text{P} \ \bar{1} \dots \\ \text{PARNAUITE} & \text{Cu}_9(\text{ASO}_4)_2(\text{SO}_4)(\text{OH})_{10}.7\text{H}_2\text{O} & \text{P2}_122 \\ \text{PERLIALITE} & \text{K}_9\text{Na}(\text{CaSr})(\text{Al}_{12}\text{Si}_{24})\text{O}_{72}.15\text{H}_2\text{O} & \text{P6/mmm} \\ \text{PHOSPHOFIBRITE} & \text{KCuFe}_{15}(\text{PO}_4)_{12}(\text{OH})_{12}.12\text{H}_2\text{O} \\ \end{array}$

PSEUDOBOLÉITE 28PbCl₂.2AgCl.24Cu(OH)₂.14H₂O(?) I 4/mmm

RANKACHITE CaFeV₄O₄(WO₄)₈.12H₂O Pmmm RENARDITE Pb(UO₂)₄(PO₄)₂(OH)₄.7H₂O Bmmb Table 76S

$A_pB_qC_rD_sE_xF_y.nAq.(cont.)$

MINERALS NOT YET CLASSIFIED (cont.)

SAKHAITE Ca₃Mg(BO₃)₂(CO₃).nH₂O Fd3m SAMPLEITE NaCaCu₅(PO₄)₄CI.5H₂O 2/m ... SANJUANITE Al₂(PO₄)(SO₄)(OH).9H₂O Tric.s.g.? SARMIENTITE Fe₂(AsO₄)(SO₄)(OH).5H₂O P2₁/c SATIMOLITE KNa₂Al₄(B₂O₅)₃Cl₃.13H₂O Orth.s.g.? SCHUILINGITE - (Nd) CuPb(Nd,Gd,Sm,Y)(CO₃)₃(OH).1.5H₂O P2₁cn SHARPITE Ca(UO₂)₆(CO₃)₅(OH)₄.6H₂O Orth.s.g.? **SODIUM - ZIPPEITE** Na₄(UO₂)₆(SO₄)₃(OH)₁₀.4H₂O Orth.s.g.? SPANGOLITE CueAISO4(OH)12CI.3H2O P3c1 SVEITE KAI7(NO3)4(OH)16CI2.8H2O Mon.s.g.? **SWAMBOITE** H₆U(UO₂)₆(SiO₄)₆.30H₂O P2₁/a TENGCHONGITE Ca(UO₂)₆(MoO₄)₂O₅.12H₂O A2₁22 TISINALITE H₃Na₃(Mn,Ca,Fe)TiSi₆(O,OH)₁₈.2H₂O R 3m TLALOCITE Cu₁₀Zn₆Te₃O₁₁Cl(OH)₂₅.27H₂O Orth.s.g.? TRASKITE Ba₁₂Fe₂Ti₆Si₁₂O₅₄Cl₃.7H₂O P 6m2

ULRICHITE CaCu(UO2)(PO4)2.4H2O C2/m URANCALCARITE Ca(UO2)3CO3(OH)6.H2O Pbnm ... URANOSPATHITE HAI(UO2)4(PO4)4.40H2O P42/n URANOTUNGSTITE (Fe,Ba,Pb)(UO2)2WO4(OH)4.12H2O P2221 ... URSILITE (Mg,Ca)₄(UO₂)₄(Si₂O₅)_{5.5}(OH)_{5.}13H₂O Orth.s.g.? VANURALITE AI(UO2)2(VO4)2(OH).11H2O A2/a VEATCHITE - A Sr₂(B₅O₈(OH))₂B(OH)₃.H₂O A1 ... VLADIMIRITE Ca₅(AsO₄)₂(AsO₃OH)₂.5H₂O P2₁/c VOGLITE Ca₂Cu(UO₂)(CO₃)₄.6H₂O P2₁... WALPURGITE Bi₄O₄(UO₂)(AsO₄)₂.2H₂O P 1 WILHELMVIERLINGITE CaMnFe(PO₄)₂(OH).2H₂O Pbca YUKSPORITE (K,Ba)NaCa₂(Si,Ti)₄O₁₁(F,OH).H₂O Orth.s.g.? ■ZIPPEITE K₄(UO₂)₆(SO₄)₃(OH)₁₀.4H₂O C2/c ZYKAITE Fe₄(AsO₄)₃SO₄(OH).15H₂O Orth.s.g.?

TRIANGULITE Al₃(UO₂)₄(PO₄)₄(OH)₅.5H₂O P1

$A_pB_qC_rD_sE_xF_vG_z.nAq.$

MINERALS TENTATIVELY CLASSIFIED

BAKERITE Ca₄{2∞}[B₈^tSi₃^tO₁₂(OH)₃] P2₁/c (≈Datolite) CAYSICHITE - (Y) $\begin{array}{lll} \text{(Ca,Yb,Er)_4}^{(B)}(\text{H}_2\text{O})_7(\text{30})[\text{Sig}^{\dagger}\text{O}_{20}\{q\}[\text{C}^{t}\text{O}_3]_6(\text{OH})]} & \text{Ccm2}_1 \\ \text{CHALCOPHYLLITE} & \text{Cu}_9^{\circ}\text{Al}^{\circ}\text{As}_2^{\circ}\text{S}_{1.5}^{\bullet}[\text{O}_{14}(\text{OH})_{12}(\text{H}_2\text{O})_{18}] \\ \end{array}$ CHARLESITE Ca₆^[8](H₂O)₂₆{3∞}[Al₂°S₂^tB^tO₈(OH)₄(OH,O)₁₂] P31c (=Sturmanite) **DEMESMAEKERITÉ** $\begin{array}{ll} \text{Pb}_2^{[9]}(\text{H}_2\text{O})_2\!\{3\!\infty\!\}\!\{\text{Cu}_6^{\,\text{O}}\!\text{Se}_6^{[4\!y]}\!\text{U}_2^{[7\!y]}\!\text{O}_{22}\!(\text{OH})_6\!\} & \text{P} & \bar{1} \\ \text{ERIONITE} & \text{K}_2^{[12]}\!\text{NaCa}_{1.5}\!\text{Mg}(\text{H}_2\text{O})_{28}\,\{\!3\!\infty\!\}\!\{\text{Al}_8^{\,\text{t}}\!\text{Si}_{28}^{\,\text{t}}\!\text{O}_{72}\!] \end{array}$ P6₃/mmc (Zeolite) HUMBERSTONITE K₃^[10](H₂O)₆{2∞}[Na₇°Mg₂°S₆^tN₂^{tr}O₃₀] R 3 (Subs.d.Ungemachite)

JAHNSITE - (CaMnFe) Ca^[6]Mn^[6]Fe₂^{(2+)o}Fe₂^{(3+)o}P₄ ^t $[O_{16}(OH)_2.(H_2O)_8]$ Mon.s.g.? **JAHNSITE - (CaMnMg)** Ca^[6]Mn^[6](Mg,Fe)₂°Fe₂^{(3+)o}P₄^t $[O_{16}(OH)_2(H_2O)_8]$ P2/a (\approx Whiteite) JAHNSITE - (CaMnMn) Ca^[6]Mn^[6]Mn₂°Fe₂^{(3+)o}P₄^t [O₁₆(OH)₂(H₂O)₈] P2/a ... MORINITE (H₂O)₂{3∞}[Ca₂^[8]Na^[5by]{g}[Al₂^oP₂^tO₈(OH)F₄]] **PICROPHARMACOLITE** $(H_2O)_{11}Ca_4^{[6/7]}{2\infty}[Mg^oAs_4^tO_{14}(OH)_2]$ P $\bar{1}$ (\approx Guerinite) RICHELSDORFITE $(H_2O)_6\{2\infty\}[Sb^o(OH)_6]\{2\infty\}[Ca_2{}^{[7]}Cu_5{}^{[5]}CI(As^tO_4)_4] \quad C2/m$ (≈Whiteite) **ROSCHERITE** (Monoclinic) $(H_2O)_2Ca^{[7]}{3\infty}[(Mg,Fe)_2{}^oAl_x{}^oP_3{}^tO_{12}(OH)_3]$ C2/c

ROSCHERITE (Triclinic) $\begin{array}{lll} (\text{H}_2\text{O})_3\text{Ca}^{[7]} \{\infty\} & \text{M}_1^2\text{OFe}_x \\ & \text{PO}_3 & \text{O}_{12} (\text{OH})_2 \right] & \text{C} & \bar{1} \\ & \text{ROUBAULTITE} & (\text{H}_2\text{O})_4 \{\infty\} & \text{Cu}_2^0\text{U}_3 \\ & \text{N}_3 & \text{Cu}_2^{[7/8]}\text{C}_2^{\text{tr}} \text{O}_{14} (\text{OH})_2 \right] & \text{P} & \bar{1} \\ & \text{N}_2 & \text{N}_3 & \text{N}_3 & \text{N}_4 \\ & \text{N}_3 & \text{N}_4 & \text{N}_4 & \text{N}_5 \\ & \text{N}_4 & \text{N}_4 & \text{N}_4 & \text{N}_4 \\ & \text{N}_5 & \text{N}_6 & \text{N}_8 & \text{N}_8 \\ & \text{N}_5 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_6 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 & \text{N}_8 & \text{N}_8 \\ & \text{N}_8 & \text{N}_8 \\$ **STRONTIOJOAQUINITE** $(Na,Fe)_2Ba_2Sr_2Ti_2^o(O,OH)_2(H_2O)\{2\infty\}[Si_8^tO_{24}]$ P2. STRONTIO-ORTHOJOAQUINITE Na₂Ba₂Sr₂Ti₂°(O,OH)₂ $\begin{array}{lll} .(H_2O)\{2\infty\}[Si_8^{\dagger}O_{24}] & Pcam ... \\ \textbf{STURMANITE} & Ca_6^{(8)}Al_2^{\circ}S_2^{\dagger}[O_8(OH)_{16}(H_2O)_{25}] & P31c ? \end{array}$ (=Ettringite) THAUMASITE Ca₆[8]Si°C^{tr}O₃S^t[O₇(OH)₆(H₂O)₁₂] P6₃ (≈Ettringite) TUSCANITE $\begin{array}{l} K^{(10)}\text{Ca}_{6}(\text{H}_{2}\text{O})(\text{OH})\{g\}[S^{t}\text{O}_{4}]\{g\}[C^{t}\text{O}_{3}]_{2}\{2\infty\}[(\text{Si}_{1}\text{Al})_{10}{}^{t}\text{O}_{22}] \ \ P2_{1}/a \\ \text{UNGEMACHITE} \ \ K_{3}^{110]}\text{Na}_{8}{}^{(6)}(\text{H}_{2}\text{O})_{6}[g][\text{Fe}^{6}(S^{t}\text{O}_{4})_{6}]\{g\}[\text{N}^{t}\text{O}_{3}]_{2} \end{array}$ **WENKITE** $Ba_4^{[12]}Ca_6^{[8]}(OH)_2(SO_4)_3(H_2O)_n\{3\infty\}[(Si,Al)_{20}^{t}O_{39}]$ P 62m WHITEITE - (CaFeMg) $Ca^{[8]}(Fe,Mn)^{[6]}Mg_2^{\circ}Al_2^{\circ}P_4^{t}[O_{16}(OH)_2(H_2O)_8]$ P2/a (\approx Jahnsite) WHITEITE - (MnFeMg) $Mn^{[8]}Fe^{[6]}Mg_2^{\circ}Al_2^{\circ}P_4^{\dagger}[O_{16}(OH)_2(H_2O)_8]$ P2/a ... WHITEITE - (CaMnMg) $Ca^{[8]}Mn^{[6]}Mg_2^{\circ}Al_2^{\circ}P_4^{\circ}[O_{16}(OH)_2(H_2O)_8]$ P2/a WICKSITE Ca2[9](H2O)2[300][Na0Mg0Fe0(Fe,Mn)40P6tO24] Pcah

Table 77S

$A_pB_qC_rD_sE_xF_yG_z.nAq.$ (cont.)

MINERALS NOT YET CLASSIFIED

AËRINITE Ca₄(AI,Fe,Mg)₁₀Si₁₂O₃₆(OH)₁₂CO₃.12H₂O Mon.s.g.?

ALBRESCHTSCHRAUFITE $Ca_4Mg(UO_2)_2(CO_3)_6F_2.17H_2O$ P $\bar{1}$

BURCKHARDTITE Pb₂(Fe,Mn)Te(Si₃Al)O₁₂(OH)₂.H₂O Mon.s.g.?

BYELORUSSITE - (Ce) NaBa $_2$ Ce $_2$ MnTi $_2$ Si $_8$ O $_2$ 6(F,OH).H $_2$ O P2 $_1$ 2 $_1$ 2 $_1$

ENGLISHITE $K_3Na_2Ca_{10}AI_{15}(PO_4)_{21}(OH)_7.26H_2O$ A2/a ... FRANÇOISITE - (Nd)

(Nd,Y,Sm,Ce,Pr)(UO₂)₃(PO₄)₂O(OH).6H₂O P2₁/c FRANSOLETITE Ca₃Be₂(PO₄)₂(PO₃OH)₂.4H₂O P2₁/a HYDROMBOBOMKULITE

 $\label{eq:condition} $$(Ni,Cu)Al_4(NO_3)_2(SO_4)(OH)_{12}.14H_2O $$ Mon.s.g.? $$ ILÍMAUSSITE - (Ce) $$Na_4Ba_2CeFeNb_2Si_8O_{28}.5H_2O $$ P6_3/mcm \dots$$$

 $\label{eq:continuity} \begin{array}{lll} \text{Poyntain} & \text{Monso}_4)(\text{CO}_3)(\text{OH})_6.12\text{H}_2\text{O} & \text{P6}_3 \dots \\ \text{KAMITUGAITE} & \text{PbAI}(\text{UO}_2)_5((\text{P},\text{As})\text{O}_4)_2(\text{OH})_9.9.5\text{H}_2\text{O} & \text{P1} \dots \\ \text{LANNONITE} & \text{HCa}_4\text{Mg}_2\text{Al}_4(\text{SO}_4)_8\text{F}_9.32\text{H}_2\text{O} & \text{Tet.s.g.?} \\ \text{MACQUARTITE} & \text{CuPb}_3(\text{CrO}_4)\text{SiO}_3(\text{OH})_4.2\text{H}_2\text{O} & \text{C2/m} \dots \\ \text{MANTIENNEITE} & \text{KMg}_2\text{Al}_2\text{Ti}(\text{PO}_4)_4(\text{OH})_3.15\text{H}_2\text{O} & \text{Pbca} \\ \text{MCNEARITE} & \text{NaCa}_5(\text{AsO}_4)(\text{AsO}_3\text{OH})_4.4\text{H}_2\text{O} & \text{P1} \dots \\ \text{MELKOVITE} & \text{CaFe}_2\text{Mo}_5\text{O}_{10}(\text{PO}_4)_2(\text{OH})_{12}.8\text{H}_2\text{O} & \text{Mon.s.g.?} \\ \text{NICKELALUMITE} & (\text{Ni},\text{Cu})\text{Al}_4(\text{SO}_4)(\text{NO}_3)_2(\text{OH})_{12}.3\text{H}_2\text{O} \\ \text{Mon.s.g.?} \end{array}$

PAULKERRITE K(Mg,Mn)₂Ti(Fe,Al)₂(PO₄)₄(OH)₃.15H₂O Pbca

PEISLEYITE Na₃Al₁₆(PO₄)₁₀(SO₄)₂(OH)₁₇.20H₂O Mon.s.g.? PERHAMITE Ca₃Al₇(SiO₄)₃(PO₄)₄(OH)₃.16.5H₂O P6/mmm PLANERITE Al₆(PO₄)₂(PO₃OH)₂(OH)₈.4H₂O P 1 ? POTTSITE PbBi(VO₄)(VO₃OH).2H₂O I 4₁22

RABBITTITE Ca₃Mg₃(UO₂)₂(CO₃)₆(OH)₄.18H₂O P2₁/a ? RANUNCULITE AI(UO₂)(PO₃OH)(OH)₃.4H₂O Mon.s.g.? RITTMANNITE

 $(Mn,Ca)Mn(Fe,Mn,Mg)_2(Al,Fe)_2(PO_4)_4(OH)_2.8H_2O \ P2/a \\ \textbf{SHABAITE - (Nd)} \ Ca(Nd,Sm,Y)_2(UO_2)(CO_3)_4(OH)_2.6H_2O \\ P2...$

•SKLODOWSKITE (H₃O)₂Mg(UO₂)₂(SiO₄)₂.4H₂O C2/m SODIUM BETPAKDALITE

 $Na_2CaFe_2^{3+}(As_2O_4)(MoO_4)_6.15H_2O$ Mon.s.g.? **SODIUM BOLTWOODITE** $(H_3O)(Na,K)(UO_2)SiO_4.H_2O$ P2₁2₁2₁

TYROLITE CaCu₅(AsO₄)₂(CO₃)(OH)₄.6H₂O Pmma

UPALITE Al(UO₂)₃(PO₄)₂O(OH).7H₂O Bbcm ...

VOCHTENITE (Fe²⁺,Mg)Fe³⁺(UO₂)₄(PO₄)₄(OH).12-13H₂O

Mon.s.g.?

WALENTAITE H₄Ca₄Fe₁₂(AsO₄)₁₀(PO₄)₆.28H₂O I 222 ... **WYARTITE** Ca₃U(UO₂)₆(CO₃)₂(OH)₁₈.4H₂O P2₁2₁2₁ **YECORAITE** Fe₃Bi₅O₉(TeO₃)(TeO₄)₂.9H₂O S.?

$A_pB_qC_rD_sE_xF_yG_z...$ nAq.

MINERALS TENTATIVELY CLASSIFIED

ALTHUPITE

 $U^{[7by]}$ Th^[6p3c]Al^oO(OH)₃(H₂O)₁₅{2 ∞ }[(UO₂)₃O(OH)(P^tO₄)₂]₂ P $\overline{1}$ (\approx Phosphuranylite)

ASHCROFTINE - (Y)

 $K_5^{[10/12]}$ Na₅^[8/12](Y,Ca)₁₂(C^{tr}O₃)₈(H₂O)₈(OH)₂{2 ∞ }[Si₂₈^tO₇₀]

I 4/mmm (≈Apophyllite)

CARLETONITE

 $\begin{array}{lll} & K^{(10)}Na^{[5+1]}Ca^{[7]}(CO_3)_4(F,OH)(H_2O)\{2\infty\}[Si_8^{\dagger}O_{18}] & P4/mbm_EHRLEITE & Ca_2^{[7/8]}(P^tO_3OH)(H_2O)_4\{2\infty\}[Zn^tBe^tP_2^{\dagger}O_8] & P & I \\ & \textbf{JOAQUINITE - (Ce)} \end{array}$

 $Na^{[6]}Ba_2^{[10]}Fe^{[5]}Ti_2^{\circ}Ce_2^{[7]}O_2(OH)(H_2O)\{2\infty\}[Si_4^{\dagger}O_{12}]_2$ C2 ORTHOJOAQUINITE - (Ce)

ORTHOJOAQUINITE - (Ĉe) Na $^{[5]}$ Ba $_2^{[10]}$ Fe $^{[5]}$ Ti $_2^{\circ}$ Ce $_2^{[7]}$ O $_2$ (O,OH)(H $_2$ O) $\{2\infty\}$ [Si $_4^{\dagger}$ O $_{12}$] $_2$ Ccmm...

PUMPELLYITE - (Fe^{2+}) $Ca_2^{[7]}(H_2O)\{3\infty\}[Fe^{\alpha}Al_2^{\alpha}Si_3^{\dagger}O_{11}(OH)_2]$ A2/m (\approx Clinozoisite)

PUMPELLYITE - (Fe^{3+}) $Ca_2^{[7]}(H_2O)\{3\infty\}[Fe^{\circ}Al_2^{\circ}Si_3^{\dagger}O_{11}(OH)_2]$ A2/m (\approx Clinozoisite)

PUMPÈLLYITE - (Mg) $Ca_2^{[7]}(H_2O)\{3\infty\}[Mg^0Al_2^0Si_3^!O_{11}(OH)_2)]$ A2/m

PUMPELLYITE - (Mn) $Ca_2^{[7]}$ (H₂O){3 ∞ }[Mn°Al₂°Si₃^tO₁₁(OH)₂] A2/m

ROEBLINGITE $Ca_6{}^{\circ}Pb_2(OH)_2(H_2O)_4\{2\infty\}[Mn^{\circ}(Si_3{}^{t}O_9)_2]$ C2/m

SCHRÖCKINGERITE

 $\begin{array}{ll} (H_2O)_4\{2\infty\}[NaCa_3(UO_2)(C^{tr}O_3)_3(S^{t}O_4)F(H_2O)_6] & P \ \overline{1} \ ... \\ \textbf{SHUISKITE} & Ca_2^{r/3}\{3\infty\}[Mg^oCr_2^oSi^tO_4Si_2^tO_7(OH)_2(H_2O)] & A2/m \\ (=&Pumpellyite) \end{array}$

VISÉITE $Ca_{10}Al_{24}(PO_4)_{14}F_3O_{13}(H_2O)_{72}\{3\infty\}[Si_6^{\ t}O_{24}]$ Cub.s.g.? (\approx Analcime,Zeolite)

Table 78S

$A_pB_qC_rD_sE_xF_vG_z...$ nAq.(cont.)

MINERALS NOT YET CLASSIFIED

CHESSEXITE Na₄Ca₂Mg₃Al₈(SiO₄)₂(SO₄)₁₀(OH)₁₀.40H₂O Orth.s.g.?

COCONINOITE Fe₂³⁺Al₂(UO₂)₂(PO₄)₄(SO₄)(OH)₂ 20H₂O Orth.s.g.?

IQUIQUEITE K₃Na₄Mg(CrO₄)B₂₄O₃₉(OH).12H₂O P31c **LEPERSONNITE - (Gd)**

Ca(Gd,Dy)₂(UO₂)₂₄(CO₃)₈Si₄O₁₂.60H₂O Pnnm ... MACHATSCHKIITE (Ca,Na)₆(AsO₄)(AsO₃OH)₃PO₄.15H₂O

MCAUSLANITE Fe₃Al₂(PO₄)₃(PO₃OH)F.18H₂O P1... **MENDOZAVILITE**

NaCa₂Fe₆(PO₄)₂(PMo₁₁O₃₉)(OH,CI)₁₀.33H₂O S.?

ASSELBORNITE (Pb,Ba)(UO₂)₆(BiO)₄(AsO₄)₂(OH)₁₂.3H₂O OBRADOVICITE H₄(K,Na)CuFe₂(AsO₄)(MoO₄)₅.12H₂O

ORPHEITE H₆Pb₁₀Al₂₀(PO₄)₁₂(SO₄)₅(OH)₄₀.11H₂O(?) R 3m **PARAMENDOZAVILITE**

 $NaAl_4Fe_7(PO_4)_5(PMo_{12}O_{40})(OH)_{16}.56H_2O$ S.?

SARYARKITE - (Y) Ca(Y,Th)Al₅(SiO₄)₂(PO₄)₂(OH)₇.6H₂O

SERGEEVITE Ca₂Mg₁₁(CO₃)₄(HCO₃)₄(OH)₄.6H₂O Trig.s.g.?

STEENSTRUPINE - (Ce)

 $Na_{14}Ce_6Mn_2Fe_2Zr(PO_4)_7Si_{12}O_{36}(OH)_2.3H_2O R \bar{3}m$ TATARSKITE Ca₆Mg₂(SO₄)₂(CO₃)₂Cl₄(OH)₄.7H₂O S.? XIANGJIANGITE (Fe,AI)(UO₂)₄(PO₄)₂(SO₄)₂(OH).22H₂O Tet.s.g.?

ORGANIC MINERALS

GROUP

UREA {g}[C^{tr}O(NH₂)₂] P 42₁m

MINERALS TENTATIVELY CLASSIFIED

ABELSONITE $\{g\}[NiC_{31}H_{32}N_4]$ P1... ACETAMIDE $\{g\}[C^{tr}O(CH_3)(NH_2)]$ R3c CALCLACITE {g}[Ca(CH₃COO)Cl(H₂O)₅] P2₁/a FICHTELITE {9}[C₁₉H₃₄] P2₁ **HARTITE** {g}[C₂₀H₃₄] P 1 **HUMBOLDTINE** $\{1\infty\}[C_2O_4Fe(H_2O)_2]$ C2/c

KLADNOITE {g}[C₆H₄(CO)₂NH] P2₁/n KRATOCHVILITE {g}[C₁₃H₁₀] Pnam MELLITE Al2°(H2O)16{g}[C6(COO)6] P41/acd URICITE {g}[C₅H₄N₄O₃] P2₁a WEDDELLITE $(H_2O)_2Ca[O]_2\{g\}[CO_2]$ | 4/m

MINERALS NOT YET CLASSIFIED

AMBER [C,H,O] Amorph. EARLANDITE Ca₃(C₆H₅O₇)₂.4H₂O Mon.s.g.? EVENKITE C24H50 Mon. P21/a FLAGSTAFFITE C₁₀H₂₂O₃ Fdd2 GLUSHINSKITE MgC2O4.2H2O C2/c GUANINE C5H3(NH2)N4O P21/n HOELITE C₁₄H₈O₂. P2₁/a IDRIALITE C22H14 Orth.s.g.? KARPATITE C24H12. P2/C MINGUZZITE K₃Fe(C₂O₄)₃.3H₂O Mon.s.g.?

MOOLOOITE CuC₂O₄.nH₂O Orth.s.g.? **OXAMMITE** (NH₄)₂C₂O₄.H₂O P2₁2₁2 PHYLLORETINE C₁₈H₁₈ Pnn2 REFIKITE $C_{20}H_{32}O_2$ $P2_12_12$ SIMONELLITE C₁₉H₂₄ Pnaa STEPANOVITE NaMgFe(C2O4)3.8-9H2O Trig.s.g.? **WHEATLEYITE** Na₂Cu(C₂O₄)₂.2H₂O P $\bar{1}$ ●WHEWELLITE CaC₂O₄.H₂O P2₁/c ZHEMCHUZHNIKOVITE NaMg(AI,Fe)(C2O4)3.8H2O Trig.s.g.?

 $\begin{tabular}{lll} Tale \ 79S & MINERAL \ STRUCTURE \ TYPES \ corresponding \ to \ general \ structural \ formulas \ A_mB_n.nAq. \ up \ to \ A_pB_r...E_xF_y...nAq., \ and \ to \ organic \ minerals \ \end{tabular}$

	CLOSE-PACKED	GROUP
A _m B _n .nAq.		
A _p B _q C _r .nAq.	MANJIROITE $Mn_8^{\circ}(Na,K)O_{16}(H_2O)_n]^{cnn}$ (Dist.d.Hollandite)	NATRON [{g}Na ₂ °(H ₂ O) ₁₀ {g}[C ^{tr} O ₃]°]
$A_pB_qC_rD_s.nAq.$	CLINOHEDRITE Ca°Zn'Si'[O ₄ (H ₂ O)]° JUNITOITE Ca°Zn ₂ 'Si ₂ '[O ₇ (H ₂ O)]°	
$A_pB_qC_rD_sE_x.nAq$		
$A_pB_qC_rD_sE_xF_y.nAq$		
$A_pB_qC_rD_sE_xF_yG_z.nAq$		
$A_pB_qC_rD_sE_xF_yG_z$ nAq.		
ORGANIC MINERALS		UREA {g}[C"O(NH ₂) ₂]

CHAIN	SHEET	FRAMEWORK			
	GYPSUM {2∞}[Ca ⁽⁶⁺²⁾ (H ₂ O) ₂ S ¹ O₄]	KIESERITE 3[Mg°S¹O4(H2O)] VARISCITE (H2O)2{3[Al°P¹O4]			
$^{3}_{2}$ $^{\text{T}}$ $^{\text{D}}_{2}$ $^{\text{O}}_{3}$ $^{\text{O}}$ O	HALLOYSITE-10Å (H ₂ O) ₂ (2ω){ Al ₂ °(OH) ₄ (2ω){Si ₂ ¹O ₅]° } PALYGORSKITE (Mg,AI) ₂ °(H ₂ O) ₄ (OH){2ω}{Si ₄ ¹O ₁₀] SEPIOLITE Mg ₄ °(H ₂ O) ₆ (OH) ₂ (2ω){Si ₆ ¹O ₁₆]	ANALCIME(cubic) Na(H ₂ O){3∞}{Si ₂ 'Ai'O ₆] (Zeolite) CHABAZITE ((Ca,□ ₆)(H ₂ O) ₆){3∞}{Ai ₄ 'Si ₄ 'O ₁₆] (Zeolite) GISMONDINE Ca ₂ (H ₂ O) ₆ }(3∞){Al ₄ 'Si ₄ 'O ₁₆] HEULANDITE (Na,K,Ca,Sr,Ba) ₆ ⁽⁶⁾ (H ₂ O) ₂₆ (3∞){Al ₆ 'Si ₂₇ 'O ₇₂] (Zeolite) NATROLITE Na ₂ °(H ₂ O) ₂ (3∞){Si ₅ 'Al ₂ O ₁₆] (Zeolite) SCOLECITE			
	AUTUNITE $ (H_2O)_{10} \left[\text{ Cas}^{[0]} \{2\omega\} \left[U^{[2+4]} O_2 P^{\dagger} O_4 \right]_2 \right] $ CARNOTITE $ K_2^{[11]} (H_2O)_3 \left[2\omega\} \left[(U^{[2+5]} O_2)_2 \left(V_2^{[5]} O_8 \right) \right] $ HYDROXYAPOPHYLLITE $ C_4^{[7]} K^{[8]} (OH, F) (H_2O)_8 \left[2\omega\} \left[Si_5^{[5]} O_{20} \right]^6 $ META-AUTUNITE $ (H_2O)_8 \left[\text{Ca}^{[6]} \left\{ 2\omega \right\} \left[U^{[2+4]} O_2 P^{\dagger} O_4 \right]_2 \right] $ METATORBERNITE $ (H_2O)_8 \left[\text{Cu}^{[6]} \left\{ 2\omega \right\} \left[U^{[2+4]} O_2 P^{\dagger} O_4 \right]_2 \right] $ MONTMORILLONITE $ (H_2O)_6 \left[\text{Cu}^{[6]} \left\{ 2\omega \right\} \left[U^{[2+4]} O_2 P^{\dagger} O_4 \right]_2 \right] $ MONTMORILLONITE $ (H_2O)_6 \left[\text{Cu}^{[6]} \left\{ 2\omega \right\} \left[(H_2O)_6 M_{90}^{2} O_7^2 \right] \right] $ VERMICULITE $ (H_2O)_8 M_{90}^{2} \left[(H_2O)_8 M_{90}^{2} O_7^2 \right] $ (Mg,Fe,Al) $_8^{[6]} \left(\text{OH})_2 \left[2\omega \right] \left[(\text{Si},\text{Al})_8 \left \text{O}_2 \right \right] \right] $ TRONA $ \left\{ 2\omega \right\} \left[\text{Na}_8 \sigma^6 H (H_2O)_2 (g) \left[\text{C}^{[6]} O_3 \right]_2 \right] $ URANOPHANE $ C_8^{[6]} (H_2O)_5 H_2 \left\{ 2\omega \right\} \left[(U^{[2+5]} O_2)_2 (\text{Si}^{[7]} O_4)_2 \right] $	$ \begin{array}{l} \textbf{Ca}^{[7]}(H_2O)_3[3\omega)[Si_3^*Al_2O_{10}] \\ \textbf{PHILLIPSITE} \\ \textbf{K}^{[12]}(Ca_{0.5},Na)_2^{[8]}(H_2O)_6[3\omega)[Si_3^*Al_3^!O_{16}] \\ \textbf{(Zeolite)} \\ \textbf{STILBITE} \\ \textbf{Na}^{[8]}\textbf{Ca}_a^{[8]}(H_2O)_{30}[3\omega)[Si_{27}^*Al_6O_{72}] \\ \textbf{(Zeolite)} \\ \textbf{THOMSONITE} \\ \textbf{NaCa}_2(H_2O)_6[3\omega)[Al_3^!Si_5^!O_{20}] \\ \textbf{(Zeolite)} \\ \textbf{TURQUOISE} \\ \textbf{CU}^{[8]}(H_2O)_4[3\omega)[Al_6^*(OH)_6(P^!O_4)_4] \\ \textbf{WILLHENDERSONITE} \\ (\textbf{K},\textbf{Ca},\textbf{D4})(H_2O)_5[3\omega)[Al_3^!Si_3^!O_{12}] \\ \textbf{(Deriv.Chabazite,Zeolite)} \end{array} $			

Table 80S $\label{eq:minerals} \mbox{Minerals from A_mB_n.nAq. up to $A_pB_qC_rD_sE_xF_yG_z...nAq. and organic minerals}$

	CLOSE- PACKED	GROUP	CHAIN	SHEET	FRAMEWORK	TENT.CLASS.	NOT YET CLASS.	TOTAL
A _m B _n .nAq	-	-		-	-	8	14	22
A _p B _q C _r .nAq	1	1	-	1 (+2)	2 (+10)	61 (+9)	65 (+02)	154
A _p B _q C _r D _s .nAq	2	-	2	3 (+1)	6 (+1)	154	117 (+@11)	297
A _p B _q C _r D _s E _x .nAq	-	-		7 (+15)	5 (+1)	151	107 (+•11)	297
A _p B _q C _r D _s E _x F _y .nAq	-	-	-	2	•	58	85 (+@2)	147
A _p B _q C _r D _s E _x F _y G.nAq	-	-		-	-	27	33 (+@2)	62
A _p B _q C _r D _p E _x F _y GnAq	-	-	-	-	-	14	16	30
ORGANIC MINERALS	-	1				11	17 (+@2)	31
TOTAL	3	2	2	13 (+18)	13 (+12)	484 (+9)	454 (+@38)	1040

Amorpous 10

 $\begin{array}{ll} X(+y) & x(structure\ types)\ +y(Population+derivatives) \\ Z(+\bullet) & z(minerals)\ +\bullet w(minerals\ with\ determined\ structure) \end{array}$

MINERAL STRUCTURE TYPES

	CLOSE- PACKED	GROUP	CHAIN	SHEET	FRAMEWORK	TOTAL	% CLOSE- PACKED
A _m B _n .nAq	-	-	-	-	-	•	-
A _p B _q C _r .nAq	1	1	-	1	2	5	20.0
A _o B _o C _r D _s .nAq	2	-	2	3	6	13	15.4
A _p B _q C _r D _s E _x .nAq	-	-	-	7	5	12	•
A _o B _o C _r D _o E _x F _v .nAq	-	-	-	2	-	2	•
A _p B _q C _r D _s E _x F _y G.nAq	-	-	-		-	-	
A _p B _q C _r D _s E _x F _y GnAq	-	-	-	-	-	-	-
ORGANIC MINERALS	-	1		-	-	1	
TOTAL	3	2	2	13	13	33	9.1

Table 81S

CLOSE-PACKED MINERALS

	CLOSE- PACKED	CLOSE-PACKED TENT. CLASSIFIED	TOTAL CLOSE- PACKED	TOTAL MINERALS	% CLOSE- PACKED	
A _m B _n .nAq	-	8	8	22	36.4	
A _p B _q C _r .nAq	1	76	77	154	50.0	
A _p B _q C _r D _s .nAq	2	62	64	299	21.4	
A _p B _q C _r D _s E _x .nAq	-	34	34	300	11.3	
A ₀ B ₀ C _r D ₈ E _x F _y ,nAq	-	9	9	147	6.1	
A _p B _q C _r D _s E _x F _y G.nAq	-	9	9	62	14.5	
A _p B _q C _r D _s E _x F _y GnAq	-	-	-	30		
ORGANIC MINERALS	-	-	-	32	-	
TOTAL	3	197	201	1040	19.3	

CRYSTALLOGRAPHIC PARAMETERS OF MINERAL STRUCTURES

	≤15A	>15A	≤25A	>25A	TOTAL	%≤15A	%≤25A
A _m B _n .nAq	12	5	17	-	17	70.6	100.0
A _p B _q C _r .nAq	114	65	165	14	179	63.7	92.2
A _p B _q C _r D _s .nAq	153	129	261	21	282	54.3	92.6
A _p B _q C _r D _s E _x .nAq	125	166	260	31	291	43.0	89.3
A _p B _q C _r D _s E _x F _y .nAq	38	103	120	21	141	27.0	85.1
A _p B _q C _r D _s E _x F _y G.nAq	23	36	51	8	59	39.0	86.4
A _p B _q C _r D _s E _x F _y GnAq	7	18	21	4	25	28.0	84.0
ORGANIC MINERALS	13	14	24	3	27	48.1	88.9
TOTAL	485	536	919	102	1021	47.5	90.0

Conclusions

This work is the first attempt to present a structural classification of the whole domain of minerals, and, like any pioneer work, it will certainly be incomplete and contain a number of errors. Its aim is to relate the mineral structures in a natural and easy way, and this is accomplished by a structural classification and the use of structural formulas. What is now required is to develop and improve the structural formulas, by revisiting works on structure determination of minerals, and to pay more attention to the new determinations in order to present complete structural descriptions.

There is a clear tendency in minerals towards close packing (for the highest density of atoms, in agreement with the stability principle of Laves, 1956). As Moore said (1995, p. 3): "a large number, probably several hundreds (of closest-packed structures), have been overlooked through misrepresentation in early studies". However such a tendency decreases with the complexity of the chemical formula.

Some of the minerals that were tentatively classified as close-packed have afterwards been confirmed to be so. Examples are: Allactite $\mathrm{Mn_7^oAs_2^t[(OH)_4O_8]^{ch}}$ P2₁/a, Arsenoclasite $\mathrm{Mn_5^oAs_2^t[(OH)_4O_8]^{ch}}$ P2₁2₁2₁ and Flinkite $\mathrm{Mn_2^oMn^{lobyl}As^t[O_4(OH)_4]^{ch}}$ Pnma (Moore 1995, p. 15–19) (see Vol. 2, Tables 73, 75 and 86).

Considering this strong tendency towards close packing, one should try first to determine if the mineral structure fits in a close packing or not. To achieve this purpose, appropiate graphical projections should be used along with computer programs developed in order to facilitate the solution of the structural problem.

The computer programs should enable the plane direction with the highest density of atoms in a structure to be found, and also the structure to be sliced along a certain plane direction (hkl). Attempts to develop such programs, namely the PRSH and the PRCM programs, were made by Langlet (1975). Some interesting computer programs are already commercially available, such as *Diamond* (Bergerhoff, 1995).

The analysis of the crystallographic parameters of the unit cell of the various minerals has shown that many mineral structures have small crystallographic parameters, equal to 15Å or less (Tables 81S of Vol. 3, 63S of Vol. 2 and 25S of Vol. 1). However, when mineral structures are sampled for crystallographic parameters not greater than 25Å, their numbers increase significantly over those pertaining to 15Å: some 90% for structures dealt with in Vol. 3, 92% for those in Vol. 2, and 94% for Vol. 1. So much so that, once we have covered the whole domain of minerals, we are in a position to state that most of the mineral structures have crystallographic parameters that do not exceed 25Å. This fact is possibly related to some shortrange mechanism of mineral crystallization.

Many minerals are based not on ideal but on slightly distorted close packings, therefore it is interesting to measure the packing efficiency of the mineral structures. Some authors have proposed such measurements, examples being Zoltai and Stout (1984) and Moore (1992). One of the difficulties in the determination of the structural categories of the mineral structures results from the fact that many mineralogists are not much concerned with close packings but rather with clusters or higher structural units. On the other

hand, when they think of close packings they restrict themselves to the closest packings and not to close packings in a wider sense. If a mineral structure is not based on a close packing, it is however interesting to search for its close packing analogue, and for this new computer programs are called for.

Further to the well established character of the chemical plus structural classification of minerals, a number of arguments may be evoked for the predominance of the structural over the chemical factor. Gottardi wrote in 1984: "[...] a purely structural classification is unavoidable nowadays, but with the disadvantage of having galena and rock salt in the same box". Even Strunz in certain cases gives more importance to the structural than to the chemical factor, for instance in placing together arsenates and phosphates on account of their structural similarity (Tagilite–Euchorite group, Strunz, 1982, pp. 340–341).

On the other hand the use of the chemical plus structural classification does not always lead to the same results. Examples are the works of Strunz and Povarennykh, which do not present the same list of similar minerals for the same mineral group. A specific example is the Seidozerite group (Seidozerite–Lamprophyllite group, Strunz, 1982, p. 394, and Seidozerite group, Povarennykh, 1966/1972, p. 398). The structural classification avoids this ambiguity, because it has well defined rules for the organization of similarity among minerals.

We are at the beginning of the structural classification of minerals. What is necessary now is to

develop and use computer programs which will facilitate a better structural description of minerals, the study of the relation between their structure and properties, and relationships among the minerals. If one wants to understand the minerals and their properties one has first to use structural formulas, as was strongly recommended by the Nomenclature Commission of the International Union of Crystallography (Lima-de-Faria et al., 1990).

On perusing the three volumes of this complete set, one cannot help feeling the health of information laid before one as tabled structure types. Although the tables are essentially concerned with structural formulas, on some of them, namely, Tables 1S to 21S, 27S to 59S, and 73S to 78S, the space groups have also been indicated. This was done whenever it was felt that a tool should be provided to clearly distinguish a given structure type from its distortion derivatives. In order not to overload the tables, however, the author has resisted the temptation to generalize the use of such a device: when its mention was not deemed compulsory, the space group has not been included in the tables. However, because complete information is strongly desirable, it is forseeable that, in the rather near future, the space group (information on physical properties) will usually be added to the symbol of the structure type, as proposed by Lima-de-Faria and Figueiredo (1976) and Lima-de-Faria (1994) (information of the structural formula). For instance, Naº[Cl]º Fm3m will probably become common for the structure type symbol of halite.

General table of mineral basic structure types

Now that we have produced the three volumes of the structural classification of minerals, we might care to provide a bird's-eye view of the main mineral structure types. To do this we do not need to deal with all the structure types, but just select the main atomic arrangements of minerals that correspond to the so-called basic structure types, and display them in a table. Only the classified structure types are included in this general table, and not the tentatively classified.

According to Buerger (1947), when considering the relationships among structures, an assemblage of structures emerges: the derivatives, which differ very little in atomic arrangement from the basic structure. There are two kinds of derivatives: the distortion derivatives which result from a slight distortion of the basic structure, and the substitution derivatives which come from the replacement of certain chemical elements by others. Examples are Herzenbergite Sn°[S]° Pnma which is a distortion derivative of Halite Na°[Cl]°

Fm3m, and Matildite Ag°Bi°[S₂]° P3m1 which is a substitution derivative of Halite. By slightly distorting or by changing the chemical elements one does not change the whole structure much; consequently the basic structure, its population, the distortion and substitution derivatives form a family, namely the assemblage of structures with more similarity.

The basic structure, according to Buerger, is the structure with higher symmetry. The same is stated by Megaw (1973), who gives the term aristotype to the simplest and most symmetrical member of the structure type. The population of a structure type consists of structures which have the same general structural formula and space group.

With this general table, one aims at an understanding of the variety of mineral structures and their relationships. With the study of the mineral families one intends to understand the changes in properties and symmetry resulting from slight distortions and chemical changes.

The general table will be found inside the back cover of the book.

List of important typographical corrections in Vol. 2

- p. 2 Aikinite. Am.Mim. for Am.Min.
- p.4 Ardeite. Equivalent positions are wrong (they belong to Arsenoclasite)
- p.6 Berryite. Z=6 for Z=4.
- p.8 Carbocernaite. Alter Si to Sr.
- p.10 Clinochrysotile. Z=2 for Z=4.

(These errors have been pointed out by Dr. P. Bayliss and are here very gratefully acknowledged.)

Acknowledgements

Thanks are due for the support facilities afforded by the Instituto de Investigação Científica Tropical, in particular its Presidente Professor Joaquim Cruz e Silva, and by the Director of the Crystallographic and Mineralogical Center Professor Maria Ondina Figueiredo. Grateful acknowledgements are made to my wife Natasha for assistance and revision of the structure types and the mineral names, and to my friend Doctor Arnaldo Silvério for helping with the English. I am also very grateful to Ana Luisa Cunha who typed many tables and gave much help in overcoming some computer difficulties.

Finally, thanks are due to the Acquisition Editor of Kluwer Academic Publishers, Ms. Petra van Steenbergen, for her interest and encouragement in publishing this book.

References

- Bergerhoff, G. (1995) "Diamond" computer program. Buerger, M.J. (1947) Derivative crystal structures. *J. Chem. Physics*, 15, 1–16.
- Gottardi, G. (1984) "The classification of minerals". *Acta Cryst. A40*, Supplement, C-208 (Abstracts ECM-13, Hamburg).
- Gottardi, G and Galli, E. (1985) *Natural Zeolites*. Springer, Berlin.
- Langlet, G.A. (1975) Extension of the FIGATOM program to automatic plotting of layers in close-packed structures. *J. Appl. Cryst.*, 9, 320.
- Laves, F. (1956) "Crystal structure and atomic size". In *Theory of Alloy Phases*. American Soc. of Metals, Cleveland, USA.
- Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E., and Parthé, E. (1990) "Nomenclature of inorganic structure types. Report of the International Union of Nomenclature, Sub-Committee on the Nomenclature of inorganic structure types". *Acta Cryst.* 446, 1–11.

- Megaw, H. (1973) *Crystal structures. A working approach*. W.B. Saunders Company, Philadelphia.
- Moore, P.B. (1992) "Betapakdalite unmasked, and a comment on bond valences". *Aust. J. Chem.*, 45, 1335–1354.
- Moore, P.B. (1995) "Closest-packed Mineral Structures of Franklin-Ogdensburg: Kepler's Gift on the Snow Flake" (private communication).
- Povarennykh, A.S. (1966) Crystal Chemical Classification of Minerals. (in Russian) Naukova Dunka, Kiev. English translation Plenum Press, New York, 1972.
- Strunz, H. (1982) *Mineralogische Tabellen*. Akademische Verlagsgesellschaft, Leipzig.
- Zoltai, T. and Stout, J.H. (1984) *Mineralogy. Concepts and Principles*. Burgess Publishing Company, Minneapolis, USA.

Mineral Index

Abelsonite T.258, T.78S Abernathyite T.214, T.71S Acetamide T.258, T.78S Acuminite T.191, T.67S Admontite T.175, T.66S Aërinite T.250, T.77S Afghanite T.191, T.67S Afwillite T.191, T.67S Agardite - (La) T.214, T.73S Agardite - (Y) T.214, T.73S Agrinierite T 191, T.69S Aheylite T.214, T.73S Ahlfeldite T.175, T.65S Ajoite T.238, T.75S Akdalaite T.173, T.64S Akrochordite T.191, T.67S Aksaite T.191, T.67S Albrechtschraufite T.250, T.77S Aldermanite T.214, T.73S Aliettite T.214, T.73S Althupite T.255, T.77S Aluminite T.191, T.67S Aluminocopiapite T.214, T.73S Aluminopharmacosiderite T.214, T.71S Alunogen T.175, T.65S Amarantite T.191, T.67S Amarillite T.191, T.69S Amber T.258, T.78S Amicite T.214, T.71S Ammonioborite T.191, T.69S Amstallite T.214, T.73S Analcime (cubic) T.191, T.67S, T.79S Analcime (monoclinic) T.191, T.67S Anapaite T.191, T.67S Andersonite T.238, T.75S Annabergite T.175, T.66S Antarcticite T.173, T.64S Anthonyite T.173, T.64S Apachite T.175, T.66S Apjohnite T.192, T.67S

Aplowite T.175, T.65S

Aravaipaite T.175, T.65S Ardealite T.238, T.74S Arhbarite T.192, T.69S Aristarainite T.214, T.71S Armenite T.214, T.71S Armstrongite T.192, T.67S Arsenbrackebuschite T.192, T.67S Arseniosiderite T.214, T.71S Arsenuranospathite T.238, T.75S Arsenuranylite T.238, T.75S Arthurite T.215, T.71S Artinite T.192, T.67S Asbolane T.192, T.69S Ashcroftine - (Y) T.255, T.77S Asselbornite T.255, T.78S Attakolite T.238, T.74S Aubertite T.215, T.71S Aurorite T.175, T.66S Autunite T.215, T.70S, T.79S

Bakerite T.250, T.76S Bannisterite T.238, T.75S Barbertonite T.215, T.73S Bariandite T.173, T.64S Barićite T.175, T.66S Bario-orthojoaquinite T.238, T.75S Barnesite T.175, T.65S Barrerite T.175, T.65S Basaluminite T.192, T.67S Bassanite T.175, T.66S Bassetite T.215, T.71S Bauranoite T.176, T.66S Bayldonite T.215, T.71S Bayleyite T.215, T.71S Baylissite T.192, T.67S Bazhenovite T.215, T.73S Bearsite T.192, T.69S Becquerelite T.215, T.71S Beidellite T.215, T.70S Bellingerite T.176, T.65S Bentorite T.215, T.73S

Beraunite T.215, T.71S Berborite T.192, T.67S Bergenite T.238, T.75S Bermanite T.192, T.67S Beta-roselite T.192, T.69S Beta-uranophane T.238, T.74S Betpakdalite T.238, T.75S Bianchite T.176, T.65S Bieberite T.176, T.65S Bijvoetite - (Y) T.238, T.75S Bikitaite (monoclinic) T.193, T.67S Bikitaite (triclinic) T.192, T.67S Bilinite T.176, T.66S Billietite T.216, T.71S Biringuccite T.193, T.69S Birnessite T.193, T.67S Bischofite T.173, T.64S Blödite T.193, T.67S Bobierrite T.176, T.66S Boggsite T.193, T.67S Bolivarite T.193, 69S Bonattite T.176, T.65S Boothite T.176, T.65S Borax T.193, T.67S, T.79S Bostwickite T.193, T.69S Botryogen T.216, T.71S Boussingaultite T.193, T.69S Boyleite T.176, T.66S Brackebuschite T.193, T.69S Braitschite - (Ce) T.193, T69S Brandtite T.193, T.67S Brassite T.193, T.67S Brewsterite T.193, T.67S Brockite T.176, T.65S Brüggenite T.176, T.66S Brugnatellite T.216, T.71S Brushite T.194, T.67S Buddingtonite T.194, T.67S Bukovskýite T.239, T.75S Bulachite T.194, T.69S Bulfonteinite T.216, T.71S Burangaite T.239, T.75S Burckhardtite T.250, T.77S Butlerite T.194, T.67S Buttgenbachite T.216, T.73S Byelorussite - (Ce) T.250, T.77S

Cacoxenite T.239, T.74S Cadwaladerite T.176, T.66S Cafarsite T.194, T.69S Cafetite T.194, T.69S Calciocopiapite T.216, T.73S Calcioferrite T.239, T.75S Calciohilairite T.194, T.69S Calciouranoite T.176, T.66S Calcium catapleiite T.194, T.67S Calclacite T.258, T.78S Calcurmolite T.239, T.75S Calkinsite - (Ce) T.177, T.66S Callaghanite T.216, T.73S Calumetite T.173, T.64S Caminite T.216, T.71S Campigliaite T.216, T.71S Canaphite T.194, T.69S Canavesite T.239, T.75S Carboborite T.239, T.75S Carbonate-cyanotrichite T.216, T.73S Carletonite T.255, T.77S Carlhintzeite T.177, T.66S Carlosturanite T.194, T.67S Carnallite T.177, T.65S Carnotite T.216, T.70S, T.79S Carrboydite T.194, T.67S Cassedanneite T.216, T.73S Cassidvite T.194, T.69S Catapleiite T.194, T.67S Cavansite T.217, T.71S Caysichite - (Y) T.250, T.76S Ceruléite T.217, T.73S Cesbronite T.195, T:69S Cetineite T.239, T.74S Chabazite T.195, T.67S Chaidamuite T.217, T.73S Chalcanthite T.177, T.65S Chalcoalumite T.217, T.73S Chalcomenite T.177, T.65S Chalconatronite T.195, T.67S Chalcophanite T.177, T.65S Chalcophyllite T.250, T.76S Chalcosiderite T.217, T.73S Charlesite T.250, T.76S Charoite T.217, T.73S Chelkarite T.217, T.73S Chenevixite T.217, T.73S Chernikovite T.239, T.75S Chessexite T.255, T.78S Chiavennite T.239, T.74S Childrenite T.217, T.71S Chloraluminite T.173, T.64S Chlormagaluminite T.195, T.69S Choloalite T.195, T.69S Chrysocolla T.217, T.73S Chudobaite T.239, T.75S Chukhrovite - (Y) T.239, T.74S Churchite - (Nd) T.177, T.64S Churchite - (Y) T.177, T.64S Chvaleticeite T.177, T.66S Clairite T.217, T.73S

Claraite T.195, T.69S Claringbullite T.177, T.65S Clinochalcomenite T.177, T.66S Clinohedrite T.195, T.67S, T.79S Clinoptilolite T.195, T.67S Clinotyrolite T.217, T.73S Clinoungemachite T.239, T.75S Coalingite T.218, T.71S Cobaltkoritnigite T.195, T.69S Cobaltomenite T.177, T.65S Cobalt-zippeite T.240, T.75S Coconinoite T.255, T.78S Coeruleolactite T.218, T.73S Colemanite T.195, T.67S, T.79S Collinsite T.195, T.69S Comblainite T.218, T.73S Compreignacite T.195, T.69S Connelite T.218, T.73S Copiapite T.195, T.67S Coquimbite T.178, T.65S Corrensite T.196, T.67S Cowlesite T.196, T.67S Covoteite T.178, T.65S Creaseyite T.218, T.73S Creedite T.240, T.74S Cualstibite T.218, T.73S Cuprocopiapite T.218, T.71S Cuprosklodowskite T.240, T.74S Cuprotungstite T.178, T.65S Curiénite T.218, T.71S Curite T.218, T.73S Cuzticite T.178, T.66S Cyanochroite T.196, T.69S Cyanophyllite T.218, T.73S Cyanotrichite T.218, T.73S Cymrite T.178, T.65S

Dachiardite T.178, T.65S Darapskite T.218, T.71S Defernite T.196, T.69S Delhayelite T.240, T.74S Delrioite T.219, T.73S Demesmaekerite T.250, T.76S Desautelsite T.219, T.73S Despujolsite T.219, T.71S Devilline T.219, T.71S Dewindtite T.240, T.74S Diadochite T.240, T.75S Dietrichite T.196, T.69S Dioptase T.178, T.65S Dittmarite T.196, T.69S Donnayite - (Y) T.240, T.75S Dorfmanite T.196, T.69S

Cyrilovite T.218, T.73S

 Dresserite
 T.219, T.71S

 Dufrenite
 T.219, T.71S

 Duhamelite
 T.240, T.75S

 Dumontite
 T.240, T.74S

 Dundasite
 T.219, T.71S

 Dwornikite
 T.178, T.65S

 Dypingite
 T.196, T.69S

Eakerite T.240, T.74S Earlandite T.258, T.78S Earlshannonite T.219, T.71S Edingtonite (orthorhombic) T.196, T.67S Edingtonite (tetragonal) T.196, T.67S Eggletonite T.219, T.73S Ehrleite T.255, T.77S Ekaterinite T.196, T.69S Elpidite T.196, T.69S Embrevite T.219, T.73S Emmonsite T.178, T.65S Endellite T.196, T.67S Englishite T.250, T.77S Eosphorite T.219, T.71S Epistilbite T.219, T.71S Epistolite T.240, T.75S Epsomite T.178, T.65S Erdite T.178, T.65S Eriochalcite T.173, T.64S Erionite T.250, T.76S Erythrite T.178, T.66S Erythrosiderite T.178, T.65S Ettringite T.220, T.71S Euchroite T.196, T.67S Eudidymite T.197, T.67S Eugsterite T.197, T.69S Evenkite T.258, T.78S Ezcurrite T.197, T.67S Eztlite T.220, T.73S

Faheyite T.220, T.73S Fahleite T.220, T.73S Fairfieldite T.197, T.67S Falcondoite T.197, T.68S Faujasite T.240, T.74S Faustite T.220, T.73S Fedorite T.220, T.71S Felsöbányaite T.197, T.69S Ferrarisite T.241, T.74S Ferricopiapite T.220, T.71S Ferrierite (monoclinic) T.241, T.74S Ferrierite (orthorhombic) T.179, T.65S Ferrimolybdite T.179, T.66S Ferrinatrite T.197, T.68S Ferristrunzite T.197, T.69S Ferritungstite T.179, T.65S

Ferrohexahydrite T.179, T.65S Ferrostrunzite T.197, T.69S Fervanite T.179, T.66S Fibroferrite T.197, T.68S Fichtelite T.258, T.78S Flagstaffite T.258, T.78S Fleischerite T.220, T.71S Fluckite T.220, T.73S Fluellite T.220, T.71S Fluorapophyllite T.220, T.70S Foggite T.220, T.71S Fourmarierite T.221, T.71S Francevillite T.221, T.71S Francoanellite T.221, 73S Françoisite - (Nd) T.250, T.77S Franconite T.179, T.66S Fransoletite T.250, T.77S Franzinite T.221, T.73S Fritzscheite T.221, T.71S Furongite T.241, T.75S

Gaidonnayite T.197, T.68S Ganophyllite T.221, T.73S Garronite T.221, T.71S Gatumbaite T.221, T.73S Gaylussite T.197, T.68S Gearksutite T.179, T.66S Geigerite T.241, T.74S Georgechaoite T.221, T.71S Georgeite T.198, T.69S Gerasimovskite T.179, T.66S Gerstleyite T.179, T.65S Gilalite T.179, T.66S Giniite T.198, T.69S Ginorite T.179, T.66S Gismondine T.198, T.67S, T.79S Glaucocerinite T.221, T.73S Glushinskite T.258, T.78S Gmelinite T.198, T.68S Gobbinsite T.221, T.71S Goldichite T.198, T.68S Gonnardite T.179, T.65S Goosecreekite T.198, T.68S Gordonite T.221, T.71S Görgeyite T.198, T.68S Gormanite T.221, T.73S Goslarite T.179, T.65S Goudevite T.222, T.73S Gowerite T.198, T.69S Graemite T.180, T.66S Grantsite T.198, T.69S Grimselite T.241, T.75S Grischunite T.241, T.74S

Grumantite T.198, T.69S

Guanine T.258, T.78S Guerinite T.241, T.74S Guildite T.222, T.71S Guilleminite T.241, T.74S Gunningite T.180, T.64S Gypsum T.180, T.64S, T.79S Gyrolite T.241, T.74S

Haidingerite T.198, T.68S Haiweeite T.222, T.71S Halloysite - 10Å T.198, T.67S, T.79S Halotrichite T.198, T.68S Halurgite T.199, T.69S Hannayite T.222, T.71S Hannebachite T.180, T.66S Harmotome T.222, T.70S Hartite T.258, T.78S Heinrichite T.222, T.71S Hellyerite T.180, T.66S Helmutwinklerite T.199, T.69S Hemimorphite T.199, T.68S Hendersonite T.180, T.66S Heulandite T.199, T.67S, T.79S Hewettite T.180, T.65S Hexahydrite T.180, T.65S Hexahydroborite T.180, T.65S Hilairite T.199, T.68S Hilgardite - 1Tc T.199, T.68S Hilgardite - 3Tc T.199, T.68S Hilgardite - 4M T.199, T.68S Hillebrandite T.180, T.66S Hisingerite T.199, T.69S Hochelagaite T.180, T.66S Hoelite T.258, T.78S Hohmannite T.199, T.68S Honessite T.199, T.68S Hopeite T.180, T.65S Hörnesite T.180, T.66S Hotsonite T.241, T.75S Huemulite T.199, T.69S Hügelite T.241, T.75S Humberstonite T.251, T.76S Humboldtine T.258, T.78S Hummerite T.200, T.69S Hungchaoite T.200, T.68S Huréaulite T.241, T.74S Hydrobasaluminite T.200, T.69S Hydrobiotite T.222, T.71S Hydroboracite T.222, T.71S Hydrocalumite T.200, T.69S Hydrochlorborite T.222, T.71S Hydrodelhayelite T.242, T.75S Hydrodresserite T.222, T.71S Hydroglauberite T.200, T.69S

Hydrohonessite T.222, T.73S Hydromagnesite T.200, T.68S Hydrombobomkulite T.251, T.77S Hydrotalcite T.222, T.73S Hydrotungstite T.181, T.65S Hydroxyapophyllite T.222, T.70S, T.79S

Ianthinite T.200, T.69S Idrialite T.258, T.78S Ikaite T.181, T.65S Ilesite T.181, T.65S Ilímaussite - (Ce) T.251, T.77S Ilmajokite T.223, T.73S Inderborite T.223, T.71S Inderite T.200, T.68S Indigirite T.223, T.73S Inesite T.223, T.71S Inyoite T.200, T.68S Iowaite T.223, T.73S Iquiqueite T.255, T.78S Irhtemite T.223, T.73S Iriginite T.200, T.69S

Jahnsite - (CaMnFe) T.251, T.76S Jahnsite - (CaMnMg) T.251, T.76S Jahnsite - (CaMnMn) T.251, T.76S Jamborite T.200, T.69S Jennite T.200, T.69S Joaquinite - (Ce) T.255, T.77S Johannite T.242, T.75S Johnwalkite T.242, T.75S Jokokuite T.181, T.66S Joliotite T.200, T.69S Jonesite T.242, T.75S Jouravskite T.251, T.77S Juliënite T.201, T.68S Jungite T.242, T.75S Junitoite T.201, T.67S, T.79S Jurbanite T.201, T.68S

Kaatialaite T.181, T.66S
Kahlerite T.223, T.73S
Kainite T.223, T.71S
Kainosite - (Y) T.242, T.74S
Kaliborite T.242, T.74S
Kambaldaite T.223, T.71S
Kamitugaite T.251, T.77S
Kamotoite - (Y) T.242, T.75S
Kanemite T.223, T.73S
Kankite T.181, T.66S
Karpatite T.259, T.78S
Kasolite T.223, T.71S
Kazakhstanite T.201, T.69S
Keckite T.242, T.75S

Kehoeite T.223, T.71S Kenyaite T.201, T.69S Kernite T.201, T.68S Kerolite T.201, T.68S Keystoneite T.223, T.73S Khademite T.201, T.69S Kidwellite T.224, T.73S Kieserite T.181, T.64S, T.79S Killalaite T.181, T.65S Kimuraite - (Y) T.201, T.69S Kingite T.201, T.69S Kingsmountite T.242, T.75S Kinichilite T.201, T.69S Kinoite T.201, T.68S Kipushite T.201, T.68S Kittatinnyite T.224, T.73S Kladnoite T.259, T.78S Kleemanite T.224, T.73S Kleinite T.181, T.65S Koktaite T.202, T.69S Kolbeckite T.181, T.64S Kolfanite T.224, T.73S Komarovite T.224, T.73S Koninckite T.181, T.65S Konyaite T.202, T.69S Koritnigite T.202, T.69S Kornelite T.181, T.65S Korshunovskite T.182, T.66S Kostylevite T.202, T.69S Köttigite T.182, T.66S Kovdorskite T.202, T.68S Kratochvílite T.259, T.78S Krausite T.202, T.68S Krauskopfite T.182, T.65S Krautite T.202, T.68S Kremersite T.182, T.65S Kribergite T.242, T.74S Kröhnkite T.202, T.68S Ktenasite T.202, T.68S Kurnakovite T.202, T.68S

Labuntsovite T.224, T.71S
Landesite T.224, T.71S
Langite T.202, T.68S
Lannonite T.251, T.77S
Lansfordite T.182, T.66S
Lanthanite - (Ce) T.182, T.65S
Lanthanite - (La) T.182, T.65S
Lanthanite - (Nd) T.182, T.65S
Laplandite - (Ce) T.242, T.75S
Larderellite T.202, T.68S
Laueite T.224, T.71S
Laumontite T.203, T.68S
Lausenite T.182, T.66S

Lavendulan T.242, T.75S Lawsonbauerite T.22, T.71S Lawsonite T.224, T.71S Lazarenkoite T.203, T.69S Lecontite T.203, T.68S Legrandite T.203, T.68S Lehnerite T.224, T.73S Leifite T.243, T.74S Leightonite T.224, T.73S Lemovnite T.224, T.71S Lennilenapeite T.203, T.69S Lenoblite T.173, T.64S Leonite T.203, T.68S Lepersonnite - (Gd) T.255, T.78S Lermontovite T.203, T.69S Leucophosphite T.225, T.71S Levyne T.225, T.71S Liebigite T.225, T.71S Likasite T.203, T.69S Lindackerite T.203, T.69S Liottite T.225, T.71S Liroconite T.225, T.71S Lithosite T.203, T.69S Lokkaite - (Y) T.203, T.69S Lonecreekite T.203, T.69S Loudounite T.243, T.75S Loughlinite T.203, T.69S Lovdarite T.225, T.72S Löweite T.204, T.68S Luddenite T.204, T.69S Ludlamite T.182, T.65S Luetheite T.225, T.73S Lun'okite T.243, T.74S Lüneburgite T.225, T.72S

Macdonaldite T.225, T.72S Machatschkiite T.255, T.78S Macquartite T.251, T.77S Magadiite T.204, T.69S Magnesioaubertite T.225, T.72S Magnesiocopiapite T.225, T.72S Magnesium-zippeite T.243, T.75S Makatite T.204, T.68S Mallardite T.182, T.65S Manasseite T.225, T.73S Mandarinoite T.182, T.66S Manganbelyankinite T.182, T.66S Manganesehörnesite T.182, T.66S Manjiroite T.183, T.64S, T 79S Mannardite T.204, T.68S Mansfieldite T.183, T.64S Mantienneite T.251, T.77S Mapimite T.225, T.72S Margaritasite T.226, T.70S

Maricopaite T.204, T.68S Marthozite T.243, T.75S Masuvite T.173, T.64S Matteuccite T.204, T.68S Matulaite T.226, T.73S Mazzite T.226, T.72S Mbobomkulite T.226, T.73S Mcallisterite T.204, T.68S Mcauslanite T.255, T.78S Mckelveyite - (Y) T.243, T.75S Mcnearite T.251, T.77S Meixnerite T.183, T.66S Melanocerite - (Ce) T.204, T.69S Melanovanadite T.183, T.66S Melanterite T.183, T.65S Melkovite T.251, T.77S Mellite T.259, T.78S Mendozavilite T.256, T.78S Mendozite T.204, T.68S Merlinoite T.226, T.72S Mesolite T.226, T.72S Meta-aluminite T.204, T.69S Meta-alunogen T.183, T.66S Meta-ankoleite T.226, T.70S Meta-autunite T.226, T.70S, T.79S Metacalciouranoite T.183, T.66S Metaheinrichite T.226, T.72S Metahewettite T.183, T.65S Metakahlerite T.226, T.73S Metakirchheimerite T.226, T.73S Metaköttigite T.183, T.65S Metalodevite T.226, T.73S Metanovácekite T.226, T.73S Metarossite T.183, T.65S Metaschoderite T.183, T.66S Metaschoepite T.173, T.64S Metasideronatrite T.226, T.73S Metastudtite T.173, T.64S Metaswitzerite T.183, T.65S Metatorbernite T.227, T.70S, T.79S Metatyuyamunite T.227, T.72S Meta-uranocircite-I T.227, T.72S Meta-uranospinite T.227, T.72S Metavandenriesscheite T.183, T.66S Metavanmieersscheite T.243, T.75S Metavanuralite T.243, T.75S Metavariscite T.184, T.64S Metavauxite T.227, T.72S Metavivianite T.204, T.68S Metavoltine T.243, T.74S Metazellerite T.227, T.73S Metazeunerite T.227, T.70S Meyerhofferite T.204, T.68S Meymacite T.173, T.64S

Milarite T.227, T.72S Millisite T.243, T.75S Minasragrite T.204, T.68S Minguzzite T.259, T.78S Minyulite T.227, T.72S Mirabilite T.184, T.65S Mitridatite T.227, T.72S Mitscherlichite T.184, T.65S Mixite T.227, T.73S Mohrite T.205, T.69S Moluranite T.243, T.75S Mongolite T.227, T.73S Monohydrocalcite T.184, T.66S Monsmedite T.228, T.73S Monteregianite - (Y) T.228, T.72S Montgomeryite T.243, T.74S Montmorillonite T.228, T.70S, T.79S Montroyalite T.228, T.73S Moolooite T.259, T.78S Mooreite T.205, T.68S Moorhouseite T.184, T.65S Moraesite T.205, T.69S Mordenite T.243, T.74S Moreauite T.243, T.75S Morenosite T.184, T.65S Morinite T.252, T.76S Mosesite T.205, T.68S Motukoreaite T.244, T.75S Mountainite T.184, T.65S Mountkeithite T.228, T.73S Mpororoite T.205, T.69S Mundite T.244, T.75S Mundrabillaite T.228, T.73S Munirite T.184, T.66S Murmanite T.228, 72S Muskoxite T.184, T.66S

Nabaphite T.205, T.69S Nakauriite T.244, T.75S Namuwite T.205, T.68S Nasinite T.205, T.68S Nastrophite T.205, T.70S Natroapophyllite T.228, T.70S Natrochalcite T.228, T.72S Natrodufrenite T.228, T.72S Natrolite T.205, T.67S Natron T.184, T.64S, T.79S Natrophosphate T.205, T.68S Navajoite T.174, T.64S Nekoite T.184, T.65S Nenadkevichite T.228, T.72S Neotocite T.184, T.66S Nesquehonite T.184, T.65S Newberyite T.205, T.68S

Niahite T.205, T.70S Nickelalumite T.252, T.77S Nickelbischofite T.174, T.64S Nickelblödite T.205, T.68S Nickelboussingaultite T.206, T.70S Nickelhexahydrite T.185, T.65S Nickel-zippeite T.244, T.75S Nifontovite T.206, T.70S Ningyoite T.185, T.66S Nissonite T.228, T.73S Nitrocalcite T.185, T.66S Nitromagnesite T.185, T.65S Nobleite T.206, T.68S Nontronite T.228, T.70S Nosean T.244, T.74S Novácekite T.229, T.72S

Oboverite T.244, T.75S Obradovicite T.256, T.78S Offrétite T.244, T.74S Ogdensburgite T.229, T.73S Ohmilite T.229, T.72S Ojuelaite T.229, T.72S Okenite T.185, T.65S Olmsteadite T.244, T.74S Opal T.174, T.64S Orickite T.185, T.66S Orpheite T.256, T.78S Orthojoaquinite - (Ce) T.256, T.77S Orthoserpierite T.229, T.72S Otwayite T.206, T.70S Oursinite T.229, T.73S Overite T.244, T.74S Oxammite T.259, T.78S Oyelite T.206, T.70S

Pachnolite T.206, T.68S Pahasapaite T.229, T.72S Palygorskite T.206, T.67S, T.79S Parabariomicrolite T.206, T.68S Parabrandtite T.206, T.68S Parabutlerite T.206, T.68S Paracoquimbite T.185, T.65S Parahopeite T.185, T.65S Paramendozavilite T.256, T.78S Paranatrolite T.206, T.70S Pararobertsite T.229, T.73S Parascholzite T.206, T.70S Parasymplesite T.185, T.66S Paraumbite T.229, T.72S Paravauxite T.229, T.72S Parnauite T.244, T.75S Parsonsite T.229, T.73S Parthéite T.229, T.72S

Pascoite T.185, T.65S Paulingite T.185, T.65S Paulkerrite T.252, T.77S Peislevite T.252, T.77S Penkvilksite T.206, T.70S Pentagonite T.229, T.72S Pentahydrite T.185, T.65S Pentahydroborite T.207, T.68S Peretaite T.244, T.74S Perhamite T.252, T.77S Perlialite T.244, T.75S Petarasite T.230, T.72S Petersite - (Y) T.230, T.73S Pharmacolite T.207, T.68S Pharmacosiderite T.230, T.72S Phaunouxite T.186, T.65S Philipsburgite T.207, T.68S Phillipsite T.230, T.70S, T.79S Phosphoferrite T.186, T.65S Phosphofibrite T.244, T.75S Phosphophyllite T.207, T.68S Phosphorrösslerite T.207, T.68S Phosphosiderite T.186, T.64S Phosphuranylite T.244, T.75S Phuralumite T.245, T.75S Phurcalite T.245, T.75S Phylloretine T.259, T.78S Phyllotungstite T.230, T.74S Pickeringite T.207, T.70S Picromerite T.207, T.68S Picropharmacolite T.252, T.76S Pimelite T.207, T.68S Pirssonite T.207, T.68S Planchéite T.207, T.68S Planerite T.252, T.77S Poitevinite T.186, T.64S Pokrovskite T.207, T.70S Pollucite T.207, T.68S Polyhalite T.230, T.72S Posnjakite T.207, T.68S Potassium alum T.208, T.68S Pottsite T.252, T.77S Poughite T.230, T.72S Probertite T.230, T.72S Prosperite T.208, T.68S Protasite T.230, T.74S Pseudoboléite T.245, T.75S Pseudolaueite T.230, T.72S Pumpellyite - (Fe²⁺) T.256, T.77S Pumpellyite - (Fe³⁺) T.256, T.77S Pumpellyite - (Mg) T.256, T.77S Pumpellyite - (Mn) T.256, T.77S p-Veatchite T.245, T.75S Pyroaurite T.230, T.72S

Quenstedtite T.186, T.65S

Rabbittite T.252, T.77S Raite T.208, T.70S Ralstonite T.186, T.65S Rameauite T.230, T.74S Ramsbeckite T.208, T.70S Ranciéite T.186, T.66S Rankachite T.245, T.75S Ransomite T.208, T.68S Ranunculite T.252, T.77S Rapidcreekite T.230, T.72S Rauenthalite T.186, T.65S Rectorite T.231, T.72S Reddingite T.186, T.65S Redingtonite T.208, T.68S Reevesite T.231, T.72S Refikite T.259, T.78S Renardite T.245, T.75S Retgersite T.186, T.65S Revdite T.186, T.65S Reverite T.245, T.75S Rhabdophane - (Ce) T.187, T.65S Rhabdophane - (La) T.187, T.65S Rhabdophane - (Nd) T.187, T.65S Rhodesite T.231, T.72S Rhomboclase T.208, T.70S Richelsdorfite T.252, T.76S Richetite T.187, T.66S Rittmannite T.252, T.77S Rivadavite T.231, T.74S Riversideite T.208, T.68S Robertsite T.231, T.72S Roeblingite T.256, T.77S Roggianite T.208, T.70S Rokühnite T.174, T.64S Römerite T.187, T.65S Roscherite (monoclinic) T.252, T.76S Roscherite (triclinic) T.253, T.76S Roselite T.208, T.68S Rossite T.187, T.65S Rösslerite T.208, T.68S Rostite T.208, T.70S Roubaultite T.253, T.76S Rouseite T.208, T.70S Rozenite T.187, T.65S Ruizite T.231, T.74S

Sabugalite T.245, T.75S Sacrofanite T.209, T.70S Sainfeldite T.245, T.75S Sakhaite T.245, T.76S Saléeite T.231, T.70S Sampleite T.245, T.76S

Sanjuanite T.245, T.76S Santaclaraite T.231, T.72S Santafeite T.231, T.74S Santite T.209, T.70S Saponite T.231, T.72S Sarmientite T.246, T.76S Saryarkite - (Y) T.256, T.78S Sasaite T.209, T.70S Satimolite T.246, T.76S Sauconite T.231, T.72S Sayrite T.231, T.74S Sazhinite - (Ce) T.231, T.72S Sborgite T.209, T.70S Scarbroite T.209, T.68S Scawtite T.232, T.72S Schaurteite T.232, T.72S Schertelite T.232, T.72S Schieffelinite T.187, T.66S Schoderite T.232, T.74S Schoepite T.174, T.64S Schöllhornite T.187, T.66S Scholzite T.209, T.68S Schoonerite T.246, T.75S Schröckingerite T.256, T.77S Schubnelite T.187, T.66S Schuilingite - (Nd) T.246, T.76S Schulenbergite T.209, T.70S Scolecite T.209, T.67S, T.79S Scorodite T.187, T.64S Segelerite T.246, T.75S Senegalite T.209, T.68S Sengierite T.246, T.75S Sepiolite T.209, T.67S, T.79S Sergeevite T.256, T.78S Serpierite T.232, T.72S Shabaite - (Nd) T.253, T.77S Shabynite T.232, T.74S Shafranovskite T.209, T.70S Sharpite T.246, T.76S Sherwoodite T.209, T.68S Shigaite T.232, T.74S Shuiskite T.257, T.77S Sideronatrite T.232, T.74S Siderotil T.187, T.65S Sidwillite T.174, T.64S Sieleckiite T.232, T.74S Sigloite T.232, T.72S Silhydrite T.174, T.64S Simonellite T.259, T.78S Simonkolleite T.187, T.66S Simplotite T.188, T.66S Sincosite T.232, T.70S Sinjarite T.174, T.64S Sinkankasite T.246, T.75S

Sjögrenite T.232, T.72S Sklodowskite T.253, T.77S Slavíkite T.246, T.75S Smolianinovite T.209, T.70S Soddyite T.210, T.68S Sodium alum T.210, T.68S Sodium autunite T.232, T.70S Sodium betpakdalite T.253, T.77S Sodium boltwoodite T.253, T.77S Sodium pharmacosiderite T.233, T.74S Sodium-uranospinite T.233, T.74S Sodium-zippeite T.246, T.76S Sonoraite T.210, T.70S Sörensenite T.233, T.72S Souzalite T.233, T.74S Spangolite T.246, T.76S Spencerite T.210, T.68S Spheniscidite T.233, T.74S Stanleyite T.210, T.70S Starkevite T.188, T.65S Steenstrupine - (Ce) T.257, T.78S Steigerite T.188, T.66S Stellerite T.210, T.68S Stepanovite T.259, T.78S Stercorite T.233, T.72S Sterlinghillite T.188, T.66S Stewartite T.233, T.72S Stichtite T.233, T.72S Stilbite T.233, T.70S, T.79S Stilpnomelane T.210, T.70S Stokesite T.210, T.68S Straczekite T.188, T.65S Strashimirite T.210, T.68S Strätlingite T.210, T.70S Strelkinite T.233, T.74S Strengite T.188, T.64S Stringhamite T.210, T.68S Strontiodresserite T.233, T.72S Strontiojoaquinite T.253, T.76S Strontio-orthojoaquinite T.253, T.76S Strunzite T.233, T.72S Struvite T.210, T.68S Studtite T.174, T.64S Sturmanite T.253, T.76S Suolunite T.210, T.70S Sveite T.246, T.76S Svetlozarite T.188, T.65S Syvazhinite T.233, T.72S Swamboite T.246, T.76S Swartzite T.247, T.75S Switzerite T.188, T.65S Symplesite T.188, T.66S Synadelphite T.247, T.75S Syngenite T.211, T.70S

Szmikite T.188, T.64S Szomolnokite T.188, T.64S

Tachyhydrite T.188, T.66S Takanelite T.188, T.66S Takovite T.234, T.74S Talmessite T.211, 68S Tamarugite T.211, T.69S Taranakite T.234, T.72S Tatarskite T.257, T.78S Teineite T.188, T.66S Tengchongite T.247, T.76S Tengerite - (Y) T.189, T.66S Terskite T.234, T.74S Tertschite T.189, T.66S Teruggite T.247, T.75S Tetranatrolite T.189, T.66S Thaumasite T.253, T.76S Thermonatrite T.189, T.66S Thometzekite T.211, T.70S Thomsenolite T.211, T.69S Thomsonite T.234, T.70S, T.79S Thorbastnäsite T.234, T.74S Thorosteenstrupine T.211, T.70S Threadgoldite T.247, T.75S Tikhonenkovite T.211, T.69S Tincalconite T.211, T.69S Tinsleyite T.234, T.72S Tinticite T.211, T.70S Tiptopite T.247, T.75S Tisinalite T.247, T.76S Tlalocite T.247, T.76S Tobermorite T.211, T.70S Todorokite T.189, T.66S Torbernite T.234, T.70S Torrevite T.234, T.72S Tosudite T.234, T.74S Trabzonite T.189, T.66S Traskite T.247, T.76S Triangulite T.247, T.76S Tristramite T.189, T.66S Trögerite T.247, T.75S Trona T.247, T.74S, T.79S Truscottite T.211, T.69S Tschermigite T.211, T.69S Tsumcorite T.211, T.69S Tunellite T.212, T.69S Tungstite T.174, T.64S Tuperssuatsiaite T.234, T.74S Turquoise T.234, T.70S, T.79S Tuscanite T.253, T.76S Tyretskite -1Tc T.212, T.70S Tyrolite T.253, T.77S Tyuyamunite T.234, T.72S

Uklonskovite T.234, T.72S Ulexite T.235, T.72S Ulrichite T.248, T.76S Umbite T.212, T.70S Umohoite T.212, T.69S Ungemachite T.253, T.76S Upalite T.254, T.77S Uralolite T.235, T.72S Uramphite T.235, T.74S Urancalcarite T.248, T.76S Uranocircite T.235, T.70S Uranophane T.248, T.74S, T.79S Uranopilite T.235, T.74S Uranospathite T.248, T.76S Uranosphaerite T.189, T.66S Uranospinite T.235, T.70S Uranotungstite T.248, T.76S Urea T.259, T.79S Uricite T.259, T.78S Ursilite T.248, T.76S Ushkovite T.235, T.72S

Vanalite T.212, T.70S Vandendriesscheite T.189, T.66S Vanmeersscheite T.248, T.75S Vantasselite T.212, T.70S Vanuralite T.248, T.76S Variscite T.189, T.64S, T.79S Vashegyite T.212, T.70S Vauxite T.235, T.72S Veatchite - A T.248, T.76S Veatchite T.248, T.76S Vermiculite T.235, T.70S, T.79S Vertumnite T.235, T.74S Veszelyite T.212, T.69S Villyaellenite T.248, T.75S Vinogradovite T.212, T.69S Viséite T.257, T.77S Vishnevite T.248, T.75S Vivianite T.189, T.66S Vladimirite T.248, T.76S Vochtenite T.254, T.77S Voglite T.249, T.76S Volborthite T.212, T.69S Volkonskoite T.235, T.70S Volkovskite T.212, T.70S Voltaite T.235, T.73S Vyacheslavite T.212, T.70S

Wairakite T.212, T.69S Walentaite T.254, T.77S Wallkilldellite T.235, T.74S Walpurgite T.249, T.76S Wardite T.236, T.73S Wardsmithite T.213, T.70S Warikahnite T.189, T.66S Wavellite T.213, T.69S Weddellite T.259, T.78S Weeksite T.236, T.74S Weloganite T.236, T.73S Wendwilsonite T.213, T.69S Wenkite T.254, T.76S Wermlandite T.249, T.75S Wheatleyite T.260, T.78S Whewellite T.260, T.78S Whiteite - (CaFeMg) T.254, 76S Whiteite - (CaMnMg) T.254, T.76S Whiteite - (MnFeMg) T.254, T.76S Whitmoreite T.213, T.69S Wicksite T.254, T.76S Wightmanite T.236, T.73S Wilcoxite T.236, T.74S Wilhelmvierlingite T.249, T.76S Willhendersonite T.236, T.70S, T.79S Wölsendorfite T.189, T.66S Woodruffite T.189, T.66S Woodwardite T.213, T.70S Wroewolfeite T.213, T.69S Wyartite T.254, T.77S

Xanthoxenite T.236, T.73S Xiangjiangite T.257, T.78S Xitieshanite T.213, T.70S Yakhontovite T.236, T.74S Yaroslavite T.213, T.70S Yecoraite T.254, T.77S Yofortierite T.213, T.69S Yugawaralite T.213, T.69S Yuksporite T.249, T.76S

Zaherite T.213, T.70S Zakharovite T.236, T.74S Zapatalite T.236, T.74S Zellerite T.236, T.74S Zemannite T.213, T.69S Zeophyllite T.236, T.74S Zeunerite T.237, T.70S Zhemchuzhnikovite T.260, T.78S Zincmelanterite T.190, T.66S Zincobotryogen T.237, T.73S Zincocopiapite T.237, T.73S Zincovoltaite T.237, T.73S Zincroselite T.213, T.70S Zinc-zippeite T.237, T.74S Zippeite T.249, T.76S Zircosulfate T.190, T.66S Zodacite T.249, T.75S Zorite T.237, T.73S Zykaite T.249, T.76S