Capstone Project - The Battle of Neighborhoods

I. Introduction/Business Problem

With the huge amount of data and feedbacks in Foursquare, as well as the geographic information of NYC and Toronto, I am curious about the following questions:

- 1. We all know both NYC and Toronto are big multicultural cities, but is there any difference of taste in these 2 cities? What are the most favored and least favored styles of food in NYC and Toronto? Are the preferences of food consistent with their race/immigrants (original) nationality composition?
- 2. As social network apps are more and more popular nowadays, the feedbacks on apps like Foursquare, Yelp, etc. are more and more important to restaurants. Higher rating, more comments and more fancy photos are great help to promote a restaurant and attract more customers. I would like find out what kind of restaurants have the highest ratings, the most comments and the most photos. In addition, I want to find out do more feedbacks (comments and photos) imply extremer (high or low) ratings.
- 3. Cluster the neighborhoods by the number of feedbacks. Currently, I assume restaurants in business areas will have less feedbacks. Because people go there either just grab something to eat during breaks or have business dinners, they do not have time/mood to take pictures and leave comments or it's inappropriate to do so in a business dinner. On the other hand, restaurants in leisure/fun/living areas may have more feedbacks, because people usually go there with family and friends and they like taking pictures and commenting on the foods/atmospheres under such scenario. I do not live either city and I do not know too much about them, yet I am relatively more familiar with NYC, so I will only study NYC for this item.

II. Data

- 1. Most of the data are available in Foursquare, but need to write new codes to pull them (i.e., ratings, photos, comments).
- 2. Geographic data is available from previous projects.
- 3. Need to find the race/immigrants (original) nationality composition for these 2 cities.

III. Methodology

In this report, we gathered restaurants information of each style from Foursquare and investigated the distribution of these different style restaurants. We are wondering whether the distribution of the restaurants is consistent with the distribution of common impression of food preference or ethnic/race in Toronto and New York city.

We also tried to use the restaurant style information combined with geographic information to classify neighborhoods in New York City.

IV. Results and Discussion

There are totally 2399 restaurants in New York city and 342 restaurants in Toronto after data cleaning.

In New York city, Italian restaurants out numbers other flavored restaurants. Chinese and Mexican restaurants are the 2^{nd} and 3^{rd} .

[84]:		Venue Category	Count	Pct	Pct2
	39	Italian Restaurant	301	0.125469	12.55%
	14	Chinese Restaurant	222	0.092539	9.25%
	50	Mexican Restaurant	169	0.070446	7.04%
	2	American Restaurant	156	0.065027	6.50%
	75	Sushi Restaurant	111	0.046269	4.63%
	41	Japanese Restaurant	90	0.037516	3.75%
	81	Thai Restaurant	88	0.036682	3.67%
	26	Fast Food Restaurant	88	0.036682	3.67%
	46	Latin American Restaurant	83	0.034598	3.46%
	12	Caribbean Restaurant	79	0.032930	3.29%

In Toronto, the most numbered restaurant is Italian as well, But the 2^{nd} and 3^{rd} are Japanese and Sushi restaurants, which should be both are Japanese restaurants. The 4^{th} is Seafood, which might include Japanese restaurants. The 5^{th} is American restaurant.

[13]:		Venue Category	Count	Pct	Pct2
	20	Italian Restaurant	39	0.114035	11.40%
	21	Japanese Restaurant	34	0.099415	9.94%
	34	Sushi Restaurant	28	0.081871	8.19%
	33	Seafood Restaurant	25	0.073099	7.31%
	0	American Restaurant	23	0.067251	6.73%
	36	Thai Restaurant	18	0.052632	5.26%
	17	Greek Restaurant	15	0.043860	4.39%
	1	Asian Restaurant	15	0.043860	4.39%
	39	Vegetarian / Vegan Restaurant	14	0.040936	4.09%
	14	Fast Food Restaurant	14	0.040936	4.09%

[68]: < module 'matplotlib.pyplot' from ''home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/matplotlib/pyplot.py'> module 'matplotlib/pyplot.pyplot' from ''home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/matplotlib/pyplot.pyplot.pyplotlib/pyplot.pyplot/pyplotlib/pyplot.pyplotlib/py

We used the number of each kind restaurants and geographic information to group the neighborhoods by clustering and pinned in a map.

93]:	Boroug	h Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0 Bron	x Wakefield	40.894705	-73.847201	3.0	Caribbean Restaurant	Vietnamese Restaurant	Empanada Restaurant	Ethiopian Restaurant	Falafel Restaurant	Fast Food Restaurant	Filipino Restaurant	French Restaurant	German Restaurant	Gluten-free Restaurant
	1 Bron	x Co-op City	40.874294	-73.829939	4.0	Fast Food Restaurant	Vietnamese Restaurant	Venezuelan Restaurant	English Restaurant	Ethiopian Restaurant	Falafel Restaurant	Filipino Restaurant	French Restaurant	German Restaurant	Gluten-free Restaurant
	2 Bron	x Eastchester	40.887556	-73.827806	3.0	Caribbean Restaurant	Seafood Restaurant	Fast Food Restaurant	Chinese Restaurant	Vietnamese Restaurant	Gluten-free Restaurant	Ethiopian Restaurant	Falafel Restaurant	Filipino Restaurant	French Restaurant
	5 Bron	x Kingsbridge	40.881687	-73.902818	2.0	Latin American Restaurant	Mexican Restaurant	Spanish Restaurant	Fast Food Restaurant	Seafood Restaurant	Chinese Restaurant	Caribbean Restaurant	Vietnamese Restaurant	Ethiopian Restaurant	Falafel Restaurant
	6 Manhatta	n Marble Hill	40.876551	-73.910660	2.0	Seafood Restaurant	American Restaurant	Vietnamese Restaurant	Greek Restaurant	English Restaurant	Ethiopian Restaurant	Falafel Restaurant	Fast Food Restaurant	Filipino Restaurant	French Restaurant

Italian restaurants ranked number 1 in both New York city and Toronto in terms of the number of restaurants. Chinese and Mexican restaurants are also popular in New York city. Japanese restaurants are popular in Toronto. I think the distribution makes sense and is consistent with the common impression.

In the map of New York city, we can find although Italian restaurants out numbered Chinese restaurants, the Chinese restaurants neighborhoods (blue dot) seems covering more places than Italian restaurants neighborhoods (purple dot).

An interesting finding is in Little Italy, the 1st common venue is Chinese restaurant, the 2nd is Mediterranean, the 3rd is Italian.

Little Italy

Chinese Restaurant

Italian Restaurant Vietnamese Restaurant

Hotpot Restaurant

French Restaurant Seafood Restaurant Japanese Restaurant

One thing we can improve in the future research is group the venue categories more accurate. For example, in Toronto, the 2nd numbered restaurant is Japanese restaurant and the 3rd is Sushi. They both should be classified as Japanese restaurant.

V. Conclusion

we have some really interesting finds by description statistics and clustering. The result is consistent with common impression.