Содержание

10 Гомоморфизмы, изоморфизмы, подмодели	1
11 Секвенциальное исчисление высказываний	8
12 Исчисление высказываний Гильбертовского типа	17
13 Секвенциальное исчисление предикатов	18
14 Теорема о существовании модели	24
15 Исчисление предикатов Гильбертовского типа	40
16 Эквивалентность классов вычислимых функций	41
17 Универсальные вычислимые функции	45
18 Рекурсивные и рекурсивно-примитивные множества	51
19 Формальная арифметика Пеано. Неразрешимые проблемы	55

10 Гомоморфизмы, изоморфизмы, подмодели

10.1 Определение (гомоморфизм)

 $\mathfrak{A},\,\mathfrak{B}\epsilon\kappa(\sigma),\,h:|\mathfrak{A}|\to|\mathfrak{B}|$ - гомоморфизм алгебраических систем \mathfrak{A} и $\mathfrak{B},$ если

 $\forall P^n, f^n, c \in \sigma \ \forall a_1, \dots, a_n \in |\mathfrak{A}|$ выполнено следующее:

- a) $\mathfrak{A} \models P^{\mathfrak{A}}(a_1 \ldots a_n)$, to $\mathfrak{B} \models P^{\mathfrak{B}}(h(a_1) \ldots h(a_n))$
- 6) $h(f^{\mathfrak{A}}(a_1 ... a_n)) = f^{\mathfrak{B}}(h(a_1 ... a_n))$
- $\mathbf{B})\ h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$

10.2 Определение (эпиморфизм)

h - эпиморфизм, если h - гомоморфизм и "на"

10.3 Определение (изоморфизм)

h - изоморфизм, если:

 $1. \ h$ - взаимно-однозначно

- 2. $\forall P^n, f^n, c \in \sigma, \forall a_1, \dots, a_n \in |\mathfrak{A}|$:
 - a) $\mathfrak{A} \models P^{\mathfrak{A}}(a_1 \dots a_n) \iff \mathfrak{B} \models P^{\mathfrak{B}}(h(a_1) \dots h(a_n))$
 - 6) $h(f^{\mathfrak{A}}(a_1 \ldots a_n)) = f^{\mathfrak{B}}(h(a_1 \ldots a_n))$
 - $B) h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$

10.4 Определение (изоморфное вложение)

 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ - изоморфное вложение, если:

- 1. h разнозначно
- 2. a) $\mathfrak{A} \models P^{\mathfrak{A}}(a_1 \dots a_n) \iff \mathfrak{B} \models P^{\mathfrak{B}}(h(a_1) \dots h(a_n))$
 - 6) $h(f^{\mathfrak{A}}(a_1 \dots a_n)) = f^{\mathfrak{B}}(h(a_1 \dots a_n))$
 - $B) h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$

10.5 Замечание

- 1. h эпиморфизм $\iff h$ гомоморфизм и "на"
- 2. h изоморфизм $\iff h$ эпимоморфизм и изоморфное вложение

10.6 Определение (подмодель)

Пусть \mathfrak{A} , $\mathfrak{B} \in K(\sigma)$, $\mathfrak{A} \leq \mathfrak{B}$ - \mathfrak{A} - подмодель \mathfrak{B} , если:

- 1. $|\mathfrak{A}| \leq |\mathfrak{B}|$
- 2. $\forall P^n, f^n, c \in \sigma, \forall a_1, \dots, a_n$
- 3. a) $\mathfrak{A} \models P^{\mathfrak{A}}(a_1, \ldots, a_n) \iff \mathfrak{B} \models P^{\mathfrak{B}}(a_1, \ldots, a_n)$
 - $6) f^{\mathfrak{A}}(a_1 \dots a_n) = f^{\mathfrak{B}}(h(a_1 \dots a_n))$
 - $B) h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$

10.7 Пример

- 1. $< \mathbb{N}; +, * > \le < \mathbb{Z}; +, * > \le < \mathbb{Q}; +, * > \le < \mathbb{R}; +, * >$
- $2. < \mathbb{Z}; +, -, * > \leq < \mathbb{Q}; +, -, * >$

10.8 Определение (замкнутость множества отн-но операций)

A - замкнуто относительно операций в модели \mathfrak{B} , если:

- 1. $\forall f \in \sigma \ \forall a_1 \dots a_n \in A \ f(a_1 \dots a_n) \in A$
- 2. $\forall c \in \sigma \ c^{\mathfrak{B}} \in A$

10.9 Предложение

Пусть $\mathfrak{B} \in K(\sigma)$, $A \subseteq |\mathfrak{B}|$, тогда множество A определяет подмодель \mathfrak{B} (т.е. множество A является основным множеством некоторой подмодели модели $\mathfrak{B} \Longleftrightarrow A$ замкнуто в \mathfrak{B} относительно операций)

10.10 Предложение

Пусть $\mathfrak{A}, \mathfrak{B} \in K(\sigma), h: \mathfrak{A} \to \mathfrak{B}$ - гомоморфизм. Рассмотрим $C = h(A) = \{h(a) \mid a \in \mathfrak{A}\}$. Тогда C - замкнуто относительно операций в модели $\mathfrak{B},$ т.е. определена $(\exists) \mathfrak{C} \leq \mathfrak{B},$ такая что $|\mathfrak{C}| = C$

10.11 Предложение

$$\mathfrak{B}\in K(\sigma),\, H=\{\mathfrak{A}\in K(\sigma)|\mathfrak{A}\leq\mathfrak{B}\},\, \mathcal{C}=\bigcap |\mathfrak{A}|\, (C\neq \oslash).$$
 Тогда C замкнуто в $\mathfrak{B},\, \Longrightarrow\, \exists\mathfrak{C}\leq\mathfrak{B}: |\mathfrak{C}|=C$

10.12 Теорема

Пусть $\mathfrak{B} \in K(\sigma)$, $X \subseteq |\mathfrak{B}|, X \neq \emptyset$ Тогда \exists наименьшая по вложению модель $\mathfrak{C} \leq \mathfrak{B}$, такая что $X \subseteq |\mathfrak{C}|$ $\mathfrak{C} = Sub_{\mathfrak{B}}(X)$

10.13 Предложение

- A- множество и σ сигнатура $\Longrightarrow \exists \mathfrak{A} \in K(\sigma) |\mathfrak{A}| = A$
- \bullet $K(\sigma)$ не множество

10.14 Теорема

$$\mathfrak{B} \in K(\sigma), X \subseteq |\mathfrak{B}|$$
 и $(x \neq \emptyset$ или $\exists c \in \sigma)$ $\mathfrak{C} = Sub_{\mathfrak{B}}(X)$ Тогда множество $|\mathfrak{C}| = \{t^{\mathfrak{B}}(a_1, \dots, a_n) | t(x_1, \dots, x_n) \in T(\sigma), a_1, \dots, a_n \in X\} = T_x$

10.15 Следствие

Если $X=\oslash$, пусть $\exists c\in\sigma$, тогда $|\mathfrak{C}|=\{\mathfrak{t}^{\mathfrak{B}}|\mathfrak{t}\in T(\sigma),t$ -замкнуто $\}$ $F\cup(t)=\oslash$

10.16 Предложение

 $\mathfrak{A},\mathfrak{B}\in K(\sigma)$ $a_1,\ldots,a_n\in\mathfrak{A},\mathfrak{A}\leq\mathfrak{B},$ $t(x_1,\ldots,x_n)\in T(\sigma).$ Тогда $t^{\mathfrak{A}}(a_1,\ldots,a_n)=t^{\mathfrak{B}}(a_1,\ldots,a_n)$

Доказательство:

- 1. $t(x) = x_1 t^{\mathfrak{A}}(a_1) = a_1 = t^{\mathfrak{B}}(a_1)$
- 2. $t = c t^{\mathfrak{A}} = c^{\mathfrak{A}} = c^{\mathfrak{B}} = t^{\mathfrak{B}}$
- 3. $t = f(t_1(\overline{x}) \dots t_k(\overline{x}))$ $t^k \in \sigma$, $\forall i \ t_i^{\mathfrak{A}}(\overline{a}) = t_i^{\mathfrak{B}}(\overline{a})$, $t^{\mathfrak{A}}(\overline{a}) = f^{\mathfrak{A}}(t_1^{\mathfrak{A}}(\overline{a}), \dots, t_k^{\mathfrak{A}}(\overline{a})) = f^{\mathfrak{A}}(t_1^{\mathfrak{B}}(\overline{a}), \dots, t_k^{\mathfrak{B}}(\overline{a})) = f^{\mathfrak{B}}(t_1^{\mathfrak{B}}(\overline{a}), \dots, t_k^{\mathfrak{B}}(\overline{a})) = t^{\mathfrak{B}}(\overline{a})$

10.17 Теорема

$$\mathfrak{A},\mathfrak{B}\in K(\sigma),\mathfrak{A}\leq \mathfrak{B},a_1,\ldots,a_n\in |\mathfrak{A}|, \varphi(k_1,\ldots,k_n)\in F(\sigma)$$
 тогда $\mathfrak{A}\models \varphi(a_1,\ldots,a_n)\Longleftrightarrow \mathfrak{B}\models \varphi(a_1,\ldots,a_n)$

Доказательство: 1) а)
$$\varphi(x_1, \ldots, x_n) = (t_1(\bar{x}) = t_2(\bar{x})), \forall i \ t_i^{\mathfrak{A}}(a_1, \ldots, a_n) = t_i^{\mathfrak{B}}(a_1, \ldots, a_n) \mathfrak{A} \models \varphi(x_1, \ldots, x_n) \Longleftrightarrow t_1^{\mathfrak{A}}(\bar{a}) = t_2^{\mathfrak{A}}(\bar{a}) \Longleftrightarrow t_1^{\mathfrak{B}}(\bar{a}) = t_2^{\mathfrak{B}}(\bar{a}) \Longleftrightarrow \mathfrak{B} \models \varphi(\bar{a})$$

- **6)** $P^k \in \sigma, \ t_1(\bar{x}), \dots, t_n(\bar{x}) \in T(\sigma) \ \forall i \ t_i^{\mathfrak{A}}(a_1, \dots, a_n) = t_i^{\mathfrak{B}}(a_1, \dots, a_n)$ $\mathfrak{A} \models \varphi(a_1, \dots, a_n) \iff \mathfrak{A} \models P(t_1^{\mathfrak{A}}(\bar{a}), \dots, t_k^{\mathfrak{A}}(\bar{a})) \iff \mathfrak{A} \models P(t_1^{\mathfrak{B}}(\bar{a}), \dots, t_k^{\mathfrak{B}}(\bar{a})) \iff \mathfrak{B} \models P(t_1^{\mathfrak{B}}(\bar{a}), \dots, t_k^{\mathfrak{B}}(\bar{a})) \iff \mathfrak{B} \models \varphi(a_1, \dots, a_n)$
- 2) Пусть $\varphi_1(x_1,\ldots,x_n)$, $\varphi_2(x_1,\ldots,x_n) \in F(\sigma) \ \forall i \ \mathfrak{A} \models \varphi_i(a_1,\ldots,a_n) \Longrightarrow \mathfrak{B} \models \varphi_i(a_1,\ldots,a_n) \ \text{и} \ \mathfrak{A} \models \varphi_2(a_1,\ldots,a_n) \iff \mathfrak{B} \models \varphi_1(a_1,\ldots,a_n) \ \text{и} \ \mathfrak{B} \models \varphi_2(a_1,\ldots,a_n) \iff \mathfrak{B} \models \varphi_1(a_1,\ldots,a_n)$

10.18 Определение

Пусть $\psi(x_1,\ldots,x_n,y_1,\ldots,y_k) \in F(\sigma)$, тогда

- а) $\forall y_1,\dots,y_n \ \psi(\bar{x},\bar{y})$ \forall формула (универсальная)
- б) $\exists y_1,\ldots,y_k \ \psi(\bar{x},\bar{y})$ \exists формула (экзистенциальная)

10.19 Теорема

Пусть $\mathfrak{A},\mathfrak{B} \in K(\sigma), \ \mathfrak{A} \leq \mathfrak{B} \ a_1, \ldots a_n \in |\mathfrak{A}| \ \psi(x_1, \ldots, x_n, y_1, \ldots, y_k)$ - бескванторная $\in F(\sigma)$ тогда:

a)
$$\mathfrak{A} \models \exists y_1, \dots, \exists y_k \ \psi(\bar{a}, \bar{y}), \text{ to } \mathfrak{B} \models \exists y_1, \dots, \exists y_k \ \psi(\bar{a}, \bar{y})$$

6)
$$\mathfrak{B} \models \forall y_1, \dots, \forall y_k \ \psi(\bar{a}, \bar{y}), \text{ to } \mathfrak{A} \models \forall y_1, \dots, \forall y_k \ \psi(\bar{a}, \bar{y})$$

Доказательство: a)
$$\mathfrak{A} \models \exists \bar{y} \psi(\bar{a}, \bar{y}) \iff \exists c_1, \dots, c_k \in |\mathfrak{A}| : \mathfrak{A} \models \psi(\bar{a}, \bar{c}) \Rightarrow \mathfrak{B} \models \exists c_1, \dots, c_k \in |\mathfrak{B}| : \mathfrak{B} \models \psi(\bar{a}, \bar{c}) \iff \mathfrak{B} \models \exists y_1, \dots, y_k \psi(\bar{a}, \bar{y})$$

6) Упражнение

10.20 Замечание

 $\mathfrak{A},\mathfrak{B}\in K(\sigma),\ |\mathfrak{A}|\leq |\mathfrak{B}|.$ Тогда: $\mathfrak{A}\leq \mathfrak{B}\Longleftrightarrow i_A:|\mathfrak{A}|\to |\mathfrak{B}|$ - изоморфное вложение $(i_A:A\to B,\,i_A(a)=a)$

Доказательство:
$$\Rightarrow$$
) $\mathfrak{A}, \mathfrak{B}$ P , f , $c \in \sigma \mathfrak{A} \models P(a_1, \ldots, a_n) \iff \mathfrak{B} \models P(a_1, \ldots, a_n) \iff \mathfrak{B} \models P(i_A(a_1), \ldots, i_A(a_n))$ (упражнение)

$$\Leftarrow$$
) i_A - изоморфное вложение $\mathfrak{A} \models P(a_1,\ldots,a_n) \iff \mathfrak{B} \models P(i_A(a_1),\ldots,i_A(a_n)) \iff \mathfrak{B} \models P(a_1,\ldots,a_n)$ (упражнение)

10.21 Определение (конгруэнтность)

 $\mathfrak{A}\in K(\sigma),\ \sim$ - отношение эквивалетности, $A=|\mathfrak{A}|,\ \sigma$ - без предикатов, \sim - конгруэнция (отношение конгруэнтности) на $\mathfrak{A},$ если:

$$\forall f^k \in \sigma \text{ и } a_1, \dots, a_n, b_1, \dots, b_n \in |\mathfrak{A}|, \text{ так, что } a_1 \sim b_1, \dots, a_n \sim b_n,$$
 выполнено $f(a_1, \dots, a_n) \sim f(b_1, \dots, b_n)$

10.22 Определение (фактор)

$$\mathfrak{A}\in K(\sigma),\ \sim$$
 - конгруэнция на $\mathfrak{A}.$ Для $a\in\mathfrak{A}$ $[a]_n=\{b\in |\mathfrak{A}||a\sim b\}=a_{/\sim}$
$$A_{/\sim}=\{[a]_n|a\in A\}=\{a_{/\sim}|a\in |\mathfrak{A}|\}\ f^n,c\in\sigma$$

$$f^{\mathfrak{A}_{/\sim}}([a_1],\ldots,[a_n]) = [f^{\mathfrak{A}}(a_1,\ldots,a_n)] \ c^{\mathfrak{A}_{/\sim}} = [c^{\mathfrak{A}}]$$

10.23 Предложение

Определение фактора на модели является корректным

Доказательство:
$$f^n \in \sigma$$
, a_1, \ldots, a_n , $c_1, \ldots, c_n \in \mathfrak{A}$. Пусть $a_1 \sim c_1, \ldots, a_n \sim c_n$. Покажем, что $f([a_1], \ldots, [a_n]) = f([c_1], \ldots, [c_n])$ $[a_1] = [c_1], \ldots, [a_n] = [c_n]$

$$f(a_1, \dots, a_n) \sim f(c_1, \dots, c_n) \Rightarrow [f(a_1, \dots, a_n)] = [f(c_1, \dots, c_n)]$$
$$f([a_1], \dots, [a_n]) = [f(a_1, \dots, a_n)] = [f(c_1, \dots, c_n)] = f([c_1], \dots, [c_n])$$

10.24 Замечание

Конгруэнция - это в точности такая эквивалентность на алгебре, по которой корректно определяется фактор-алгебра

10.25 Теорема (об эпиморфизме)

 $h:|\mathfrak{A}| o |\mathfrak{A}|_{/_{\sim}}$, т .e. $h(a)=[a] \Rightarrow h$ - эпиморфизм

Доказательство: 1) Покажем, что h - гомоморфизм:

- a) $f^n \in \sigma$, $a_1, \ldots, a_n \in |\mathfrak{A}|$. $h(f(a_1, \ldots, a_n)) = [f(a_1, \ldots, a_n)] = f([a_1], \ldots, [a_n]) = f(h(a_1), \ldots, h(a_n))$
 - б) $c \in \sigma$, $h(c^{\mathfrak{A}}) = [c^{\mathfrak{A}}] = c^{\mathfrak{A}/\sim}$
 - 2) "на": $[a] \in \mathfrak{A}_{/\sim} \Rightarrow \mathfrak{a} \in |\mathfrak{A}| \ h(a) = [a]$

10.26 Предложение

 $h:\mathfrak{A}\to\mathfrak{B}$ - гомоморфизм $\Rightarrow\sim$ на $A=|\mathfrak{A}|\ a\sim c:h(a)=h(c),\sim$ - конгруэнция на \mathfrak{A}

Доказательство: упражнение.

10.27 Теорема (об изоморфизме)

 $\mathfrak{A},\mathfrak{B}\in K(\sigma),\ h:\mathfrak{A}\to\mathfrak{B}$ - эпиморфизм. Для $a,c\in\mathfrak{A}\ a\sim c:h(a)=h(c)$ тогда $\mathfrak{A}_{/\sim}\simeq\mathfrak{B},\$ а именно $g:|\mathfrak{A}|_{/\sim}\to|\mathfrak{B}|,\ g:([a])=h(a)$ - изоморфизм, $g:|\mathfrak{A}|_{/\sim}\to\mathfrak{B}$

Доказательство: g([a]) = h(a)

- 1) g отображение $a,c\in |\mathfrak{A}|,\ [a]=[c]\Rightarrow a\sim c\Rightarrow h(a)=h(c)\Rightarrow h([a])=h([c])$
 - 2) g- взаимно-однозначное:

- а) "на": $b \in \mathfrak{B} \Rightarrow \exists a \in \mathfrak{A}$, такое что $h(a) = b \Rightarrow g([a]) = h(a) = b$
- б) g разнозначно: $g([a])=g([c])\Rightarrow h(a)=h(c)\Rightarrow a\sim c\Rightarrow [a]=[c]\Rightarrow g$ взаимно-однозначное
 - 3) g сохраняет операции и константы: Пусть $f^n, c \in \sigma$
 - a) $[a_1], \dots, [a_n] \in \mathfrak{A}_{/\sim} g(f([a_1], \dots, [a_n])) = g([f(a_1, \dots, a_n)]) = g([f(a_1, \dots, a_n)])$
- $h(f(a_1,\ldots,a_n)) = f(h(a_1),\ldots,h(a_n)) = f(g([a_1]),\ldots,g([a_n]))$
 - б) $g(c^{\mathfrak{A}/\sim})=g([c^{\mathfrak{A}}])=h(c^{\mathfrak{A}})=c^{\mathfrak{B}}\Rightarrow g$ изоморфизм, $g:\mathfrak{A}/_{\sim} o\mathfrak{B}$

10.28 Предложение

Любой гомоморфизм является композицией эпиморфизма и изоморфного вложения

Доказательство:
$$\mathfrak{A},\mathfrak{B}\in K(\sigma),\ h:\mathfrak{A}\to\mathfrak{B}$$
 - гомоморфизм, $C=h(a)=\{h(a)|a\in\mathfrak{A}\},\ \exists\mathfrak{C}\in K(\sigma)\ |\mathfrak{C}|=C,\mathfrak{C}\leq\mathfrak{B},\ g:|\mathfrak{A}|\to|\mathfrak{C}|,\ g(a)=h(a)\in C$

Тогда g- эпиморфизм (упражнение). $id_c: C \to B, id_c: \mathfrak{C} \to \mathfrak{B}$ - изоморфное вложение (упражнение)

Тогда $\forall a \in \mathfrak{A}$ имеем $h(a) = g(a) = id_c(g(a)), h = g \circ id_c, g$ - эпиморфизм, id_c - изоморфное вложение

10.29 Теорема (основная теорема о гомоморфизмах)

Любой гомоморфизм является композицией, факторизацией изоморфного вложения.

Доказательство: $\mathfrak{A},\mathfrak{B}\in K(\sigma),\ h:\mathfrak{A}\to\mathfrak{B}$ - гомоморфизм. Пусть $\mathfrak{C}=h(\mathfrak{A}),\ \mathrm{T.e.}$ $|\mathfrak{C}|=C=h(A),\ A=|\mathfrak{A}|,\ \mathrm{пусть}\ h=g\circ id_c,\ g:\mathfrak{A}\to\mathfrak{C}$ - эпиморфизм

Для $a,c\in\mathfrak{A},\ a\sim c,\ h(a)=h(c)$ (или g(a)=g(c)). $v:\mathfrak{A}_{/\sim}\to\mathfrak{C},\ v([a])=g(a).$ Тогда $v:\mathfrak{A}_{/\sim}\to\mathfrak{C}$ - изоморфизм

Положим $u: \mathfrak{A} \to \mathfrak{A}_{/_{\infty}}, \ u(a) = [a] \Rightarrow g = u \circ v$

$$h = u \circ v \circ id_c \ \mathfrak{A} \xrightarrow{\mathfrak{u}} \mathfrak{A}_{/\sim} \xrightarrow{v} \mathfrak{C}$$

 $h = g \circ id_c$

$$q = v \circ id_c, \ \mathfrak{A} \xrightarrow{u} \mathfrak{A}_{/\sim} \xrightarrow{\mathfrak{v}} \mathfrak{C} \xrightarrow{id_c} \mathfrak{B}, \ q : \mathfrak{A}_{/\sim} \longrightarrow \mathfrak{B}$$

Композиция изоморфизма и изоморфного вложения является изоморфным вложением $h=u\circ q$

11 Секвенциальное исчисление высказываний

11.1 Определение (Секвенции, аксиомы, правила вывода)

- 1. $\Gamma \vdash \varphi$
- $2. \vdash \varphi$
- 3. *Γ* ⊢

Аксиома:

1.
$$\varphi \vdash \varphi$$

Правила вывода:

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash \psi}{\Gamma \vdash (\varphi \& \psi)} \qquad \frac{\Gamma \vdash (\varphi \& \phi)}{\Gamma \vdash \varphi} \qquad \frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)} \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)} \qquad \frac{\Gamma, \varphi \vdash \xi; \Gamma, \psi \vdash \xi; \Gamma \vdash (\varphi \lor \psi)}{\Gamma \vdash \xi}$$

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash (\varphi \to \psi)}{\Gamma \vdash \psi} \qquad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash (\varphi \to \psi)} \qquad \frac{\Gamma, \neg \varphi \vdash}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash \neg \varphi}{\Gamma \vdash} \qquad \frac{\Gamma_1, \varphi, \psi, \Gamma_2 \vdash \xi}{\Gamma_1, \psi, \varphi, \Gamma_2 \vdash \xi} \qquad \frac{\Gamma \vdash \varphi}{\Gamma, \psi \vdash \varphi}$$

11.2 Определение (Доказательство, доказуемая секвенция)

 $S_1\dots S_n$ называется доказательством, если каждая секвенция S_i либо является аксиомой, либо получена из предыдущих однократным применением правил вывода.

Секвенция S называется доказуемой, если $\exists S_1 \dots S_n$, которая является доказательством и заканчивается на эту секвенцию.

11.3 Замечание

Если $S_1 \dots S_n$ доказательство, то $\forall k \leq n$:

- а) $S_1 \dots S_k$ доказательство
- б) S_k доказуема

11.4 Определение (Дерево секвенций)

- $1. \, S$ дерево
- 2. Если $D_1 \dots D_n$ деревья секвенций, S секвенция, то $D = \frac{D_1 \dots D_n}{S}$ дерево секвенций
- 3. Других деревьев нет

11.5 Определение (Вершины, переходы, высота)

- а) V(D) множество вершин:
 - 1. Если D = S, то $V(D) = \{S\}$
 - 2. Если $D=\frac{D_1...D_n}{S},$ то $V(D)=V(D_1)\cup\ldots\cup V(D_n)$
- б) P(D) переходы:
 - 1. Если D = S, то $P(D) = \emptyset$
 - 2. Если $D = \frac{D_1...D_n}{S}, D_i = \frac{......}{S_i},$ то $P(D) = P(D_1) \cup \dots P(D_n) \cup \{\frac{S_1...S_n}{S}\}$
- в) h(D) высота дерева:
 - 1. D = S, to h(D) = 1
 - 2. $D = \frac{D_1...D_n}{S}$, $h(D) = max(h(D_1)...h(D_n)) + 1$

11.6 Определение (Дерево вывода)

Дерево секвенций называется деревом вывода, если все его вершины являются аксиомами, а переходы - частными случаями правил вывода.

11.7 Предложение

Секвенция S - доказуема \Leftrightarrow $\exists D = \frac{D_1...D_n}{S}$ - дерево вывода, заканчивающееся на эту секвенцию.

Доказательство:

 (\Rightarrow) S - доказуема $\Rightarrow \exists S_1 \dots S_n = S$ - доказательство. Индукция по n $n=1\colon S$ - аксиома $\Rightarrow D=S$ - дерево вывода.

< n o n: $\forall \ k < n$ - верно. $S_1 \dots S_n = S$ - доказательство, $\frac{S_{i_1} \dots S_{i_m}}{S}$ - правило вывода, $i_1 \dots i_m < n$

 $\forall k \leq m \ S_{i_1} \dots S_{i_k}$ - доказательство, $i_k < N, \ D_{i_1} = \frac{\dots \dots}{S_{i_1}} \dots D_{i_m} = \frac{\dots}{S_{i_m}}$ - деревья вывода.

 $(\Leftarrow)\ D=\frac{\cdots\cdots}{S}$ - дерево, n=h(D). Индукция по n $n=1\colon D=S$ - аксиома $\Rightarrow S$ - доказательство. $< n\to n\colon \forall k< n$ верно, $D=\frac{D_i\dots D_m}{S}$ - дерево вывода, $h(D)=n\Rightarrow h(D_i)< n,\, i\le m$ $D_i=\frac{\cdots\cdots}{S_i}\Rightarrow \forall i\le m\exists S_1^1\dots S_{k_i}^i=S_i\text{ - доказательство, }S_1^1\dots S_k^1=S_1\dots S_1^m\dots S_{k_m}^m, S$ - доказательство.

11.8 Определение (Производные и допустимые правила вывода)

Дерево секвенций $\frac{S_1...S_n}{S}$ высоты 2 называется производным правилом вывода, если $\exists D = \frac{......}{S}$, вершины которого либо аксиомы, либо одни из секвкнций $S_1 \dots S_n$, а все переходы являются частными случаями правил вывода

Дерево секвенций $\frac{S_1...S_n}{S}$ высоты 2 называется допустимым правилом вывода, если при добавлении его в качестве нового правила вывода множество доказуемых секвенций не увеличивается.

11.9 Замечание

Любое производное правило вывода является допустимым.

11.10 Предложение (Допустимые правила вывода)

Следующие правила вывода являются допустимыми:

$$\frac{\psi_{1} \dots \psi_{n} \vdash \varphi}{\xi_{1} \dots \xi_{k} \vdash \varphi} \qquad \frac{\psi_{1} \dots \psi_{n} \vdash}{\xi_{1} \dots \xi_{k} \vdash} (\{\psi_{1} \dots \psi_{n}\} \subseteq \{\xi_{1} \dots \xi_{k}\})$$

$$\frac{\Gamma \vdash \varphi; \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} \qquad \frac{\Gamma, \varphi, \psi, \Gamma_{1} \vdash \xi}{\Gamma, (\varphi \& \psi), \Gamma_{1} \vdash \xi} \qquad \frac{\Gamma \vdash (\varphi \& \neg \varphi)}{\Gamma \vdash}$$

$$\frac{\Gamma \vdash}{\Gamma \vdash \varphi} \qquad \frac{\Gamma, \varphi \vdash}{\Gamma \vdash \neg \varphi} \qquad \frac{\Gamma \vdash \varphi}{\Gamma, \neg \varphi \vdash}$$

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash (\neg \psi \vdash \neg \varphi)} \qquad \frac{\Gamma, \neg \varphi \vdash \neg \psi}{\Gamma, \psi \vdash \varphi} \qquad \frac{\varphi \vdash \psi; \psi \vdash \xi}{\varphi \vdash \xi}$$

11.11 Определение (Семантика секвенций)

- 1. $\varphi_1 \dots \varphi_n \vdash \psi$ называется истинной при данных значениях входящих в нее пропозициональных переменных, если либо $\exists i \leq n : \varphi_i$ ложна, либо ψ истина.
- $2. \vdash \psi$ истина, если ψ истина.
- 3. $\varphi_1 \dots \varphi_n \vdash$ истина при данных значениях входящих в нее пропозициональных переменных, если $\exists i \leq n : \varphi_i$ ложна.
- 4. Секвенция называется тождественно истинной, если она является истинной при любых значениях входящих в нее пропозициональных переменных.

11.12 Предложение

Правила вывода сохраняют тождественную истинность секвенций, а именно, если $\frac{S_1...S_n}{S}$ - правило вывода и $S_1...S_n$ - тождественно истинна, то S - тождественно истинна.

11.13 Теорема (о корректности СИВ)

Если секвенция доказуема, то она тождественно истинна.

Доказательство:

Пусть секвенция S - доказуема $\Rightarrow S_1 \dots S_n = S$ - доказательство. Индукция по n:

n=1: S - аксиома $\Rightarrow S$ - тождественно истинна.

 $< n \rightarrow n$: $\forall k < n$ - истина

 $\exists i_1 \dots i_m < n: \frac{S_{i_1} \dots S_{i_m}}{S}$ - правило вывода. $\forall k < m \ S_{i_1} \dots S_{i_k}$ - доказательство $\Rightarrow S_{i_1} \dots S_{i_m}$ - тождественно истинна $\Rightarrow S$ - тождественно истинна.

11.14 Опредление (подстановка)

Отображение $\rho: F \to F$ называется подстановкой, если оно перестановачно с логическими связками:

1.
$$\rho(\varphi \lor \psi) = (\rho(\varphi) \lor \rho(\psi))$$

2.
$$\rho(\varphi \& \psi) = (\rho(\varphi) \& (\rho(\psi)))$$

3.
$$\rho(\varphi \to \psi) = (\rho(\varphi) \to \rho(\psi))$$

4.
$$\rho(\neg \varphi) = \neg \rho(\varphi)$$

11.15 Теорема (о подстановках)

Подстановка сохраняет доказуемость секвенций, если S - доказуема, то $\rho(S)$ - доказуема.

Доказательство:

 \overline{S} - доказуема, тогда $\exists D = \frac{\dots}{S}$ - дерево вывода. $D \to \rho(D) = \frac{\dots}{\rho(S)}$ - дерево вывода, n = h(D), индукция по n:

$$n=1$$
: $D=S$ - аксиома, $ho(D)=
ho(S)$ - аксиома.

$$\frac{S_1...S_n}{S}$$
 - правило вывода, то $\frac{\rho(S_1)...\rho(S_n)}{\rho(S)}$ - правило вывода.

11.16 Определение

Формула φ доказуема, если $\vdash \varphi$ - доказуема.

11.17 Следствие

Если ρ - подстановка, φ - доказуема, то $\rho(\varphi)$ - доказуема.

11.18 Определение (равносильность)

Формулы φ и ψ называются равносильными $(\varphi \equiv \psi)$, если $\varphi \vdash \psi$ и $\psi \vdash \varphi$ - доказуемы.

11.19 Предложение

Равносильность - отношение эквивалентности.

Доказательство:

- 1. Рефлексивность: $\varphi \vdash \varphi$ аксиома $\Rightarrow \varphi \equiv \varphi$.
- 2. Симметричность: $\varphi \equiv \psi \Rightarrow \varphi \vdash \psi, \ \psi \vdash \varphi$ доказуемы $\Rightarrow \psi \vdash \varphi, \ \varphi \vdash \psi$ доказуемы $\Rightarrow \psi \equiv \varphi$.
- 3. Транзитивность: $\varphi \equiv \psi, \ \psi \equiv \xi. \ \varphi \vdash \psi, \ \psi \vdash \varphi, \ \psi \vdash \xi, \ \xi \vdash \psi. \ \frac{\varphi \vdash \psi, \psi \vdash \xi}{\varphi \vdash \xi}, \ \frac{\xi \vdash \psi, \psi \vdash \varphi}{\xi \vdash \varphi} \Rightarrow \varphi \vdash \xi, \ \xi \vdash \varphi$ доказуемы $\Rightarrow \varphi \equiv \xi.$

11.20 Предложение

Пусть φ - доказуема, $\varphi \equiv \psi \Rightarrow \psi$ - доказуема.

Доказательство:

 $\overline{\vdash \varphi}$ - доказуема, $\varphi \vdash \psi$. $\frac{\vdash \varphi; \varphi \vdash \psi}{\vdash \psi} \Rightarrow \vdash \psi$ - доказуема $\Rightarrow \psi$ - доказуема.

11.21 Предложение

Пусть $\varphi \equiv \varphi_1$, $\psi \equiv \psi_1$, тогда:

- 1. $(\varphi \lor \psi) \equiv (\varphi_1 \lor \psi_1)$
- 2. $(\varphi \& \psi) \equiv (\varphi_1 \& \psi_1)$
- 3. $(\varphi \to \psi) \equiv (\varphi_1 \to \psi_1)$
- 4. $\neg \varphi \equiv \neg \varphi_1$

11.22 Теорема (о замене)

Пусть $\psi \equiv \psi_1, \ \varphi_1$ - получена из φ заменой $\psi \mapsto \psi_1 \ (\psi$ - подформула φ). Тогда $\varphi \equiv \varphi_1$.

Доказательство:

Индукция по длине формулы φ , $ln(\varphi) = n$:

n=1: φ - пропозициональная переменная $\Rightarrow \psi=\varphi\Rightarrow \varphi_1=\psi_1\Rightarrow \varphi=\psi\equiv \psi_1=\varphi_1.$

 $< n \rightarrow n$: k < n - доказано, докажем для n.

$$\varphi = (\varphi, \vee \varphi, \varphi, \varphi), \ \varphi = (\varphi, \&\varphi, \varphi, \varphi), \ \varphi = (\varphi, \varphi, \varphi, \varphi, \varphi), \ \varphi = \neg \varphi.$$

- a) $\psi = \varphi \Rightarrow \varphi = \psi \equiv \psi_1 = \varphi_1$.
- б) $\psi \neq \varphi \Rightarrow \psi$ подформула φ , или φ , $ln(\varphi)$, $ln(\varphi)$ $< n = ln(\varphi)$.

Пусть $\varphi = (\varphi' \lor \varphi'') \Rightarrow \varphi_1 = (\varphi'_1 \lor \varphi''_1)$, где φ'_1 и φ''_1 - либо φ' и φ'' , либо получены заменой ψ на $\psi_1 \Rightarrow$ по индукции $\varphi'_1 \equiv \varphi'$, $\varphi''_1 \equiv \varphi'' \Rightarrow \varphi = (\varphi' \lor \varphi'') \equiv (\varphi'_1 \lor \varphi''_1) = \varphi_1$.

&, \neg , \rightarrow - аналогично.

11.23 Следствие

Пусть $\psi \equiv \psi_1$ и φ_1 получена из φ заменой нескольких вхождений ψ на ψ_1 . Тогда $\varphi \equiv \varphi_1$.

Доказательство:

Индукция по числу вхождений - упражнение.

11.24 Предложение

Имеют место следующие эквивалентности формул:

- 1. $\neg(\varphi \lor \psi) \equiv (\neg \varphi \& \neg \psi)$
- 2. $\neg(\varphi \& \psi) \equiv (\neg \varphi \lor \neg \psi)$

- 3. $(\varphi \lor \psi) \equiv (\psi \lor \varphi)$
- 4. $(\varphi \& \psi) \equiv (\psi \& \varphi)$
- 5. $((\varphi \lor \psi) \lor \xi) \equiv (\varphi \lor (\psi \lor \xi))$
- 6. $((\varphi \& \psi) \& \xi) \equiv (\varphi \& (\psi \& \xi))$
- 7. $(\varphi \vee (\psi \& \xi)) \equiv ((\varphi \vee \psi) \& (\varphi \vee \xi))$
- 8. $(\varphi \& (\psi \lor \xi)) \equiv ((\varphi \& \psi) \lor (\varphi \& \xi))$
- 9. $\neg \neg \varphi \equiv \varphi$
- 10. $(\varphi \to \psi) \equiv (\neg \varphi \lor \psi)$
- 11. $(\varphi \lor (\psi \& \neg \psi) \lor \xi) \equiv (\varphi \lor \xi)$
- 12. $(\varphi \& (\psi \lor \neg \psi) \& \xi) \equiv (\varphi \& \xi)$

11.25 Теорема

Для любой формулы φ существует равносильная ей формула ψ , находящаяся в КНФ.

Доказательство:

Алгоритм приведения формулы к $KH\Phi$ (используем предложение 11.24):

- 1. С помощью 10 избавляемся от импликаций.
- 2. С помощью 1, 2, 9 вносим отрицания до пропозициональных переменных.
- 3. 3-7 выносим конъюнкцию наружу.
- 4. Получаем КНФ, которая будет равносильна исходной формуле.

11.26 Теорема

КНФ тождественно истинна ⇔ в каждую ее элементарную дизъюнкцию хотя бы одна пропозициональная переменная входит как с отрицанием, так и без него.

Доказательство:

$$arphi=(arphi_1\&\dots\&arphi_n)$$
, где $arphi_i$ - элементарная дизъюнкция

 $(\Rightarrow) \ \varphi$ - тождественно истинна $\Rightarrow \forall i \ \varphi_i$ - тождественно истинна. Пусть $i \le n$ и для φ_i - условие наршено. $A_1 \dots A_k$ - пропозициональные переменные, входящие в φ_i :

$$A_j = egin{cases} \pi & A_j \in arphi_i \ \Pi & \neg A_j \in arphi_i \end{cases} \Rightarrow arphi_i =$$
ложь - противоречие.

 (\Leftarrow) $\forall \dot{\varphi}_i \exists A_j$, такая что $\varphi_i = \varphi_i \lor A_j \lor \varphi_i \lor \neg A_j \lor \varphi_i \lor \neg$ - тождественно истинная $\Rightarrow \varphi = (\varphi_1 \& \dots \varphi_n)$ - тождественно истинна.

11.27 Предложение

 $\vdash (\neg \varphi \lor \varphi)$ - доказуема.

11.28 Теорема

 ${\rm KH\Phi}\ \varphi$ доказуема \Leftrightarrow в каждую ее элементарную дизъюнкцию хотя бы одна пропозициональная переменная входит как с отрицанием, так и без него.

Доказательство:

 $\overline{(\to)}\ \varphi$ - доказуема $\Rightarrow \varphi$ - тождественно истинна \Rightarrow условие выполнено (по теореме о корректности)

$$(\leftarrow) \varphi_i, A_j$$
 - с отрицанием и без отрицания.

$$\varphi_i = \varphi_i' \vee A_j \vee \varphi_i'' \vee \neg A_j \vee \varphi_i''' \dots$$

 $\forall i \ \varphi_i$ - доказуема

$$\frac{\vdash (A_j \lor \neg A_j)}{\vdash (\varphi_i' \lor (A_j \lor \neg A_j) \lor \varphi_i'')} \\
\vdash (\varphi_i' \lor (A_j \lor \varphi_i'' \lor \neg A_j))}{\vdash (\varphi_i' \lor A_j \lor \varphi_i'' \lor \neg A_j)} \\
\vdash \varphi_i$$

$$\frac{\vdash \varphi_1; \vdash \varphi_2}{\vdash (\varphi_1 \land \varphi_2); \vdash \varphi_3}$$

$$\vdash (\varphi_1 \land \varphi_2 \land \varphi_3); \vdash \varphi_4$$

$$\frac{\cdots}{\vdash (\varphi_1 \land \varphi_2 \cdots \land \varphi_n)}$$

11.29 Следствие

 $\mathrm{KH}\Phi$ доказуема \Leftrightarrow она тождественно истинна.

11.30 Теорема (О полноте для СИВ)

Если φ тождественно истинна, то φ - доказуема.

Доказательство:

Пусть φ - тождественно истинна. $\exists \psi$ - КН Φ , такая что $\varphi \equiv \psi \Rightarrow \psi$ - тождественно истинна $\Rightarrow \psi$ - доказуема, $\varphi \equiv \psi \Rightarrow \varphi$ - доказуема.

11.31 Теорема

- 1. φ тождественно истинна $\Leftrightarrow \varphi$ доказуема.
- 2. Секвенция S тождественно истинна $\Leftrightarrow S$ доказуема.

Доказательство:

- 1. Следует из теоремы о корректности и теоремы о полноте.
- 2. $S, \varphi_1, \ldots, \varphi_n \vdash \varphi$
 - а) Если S доказуема, то S тождественно истинна. Следует из теоремы о корректности.
 - б) S тождественно истинна $\Rightarrow ((\varphi_1 \wedge \cdots \wedge \varphi_n) \to \psi)$ тождественно истинна (**Упражнение**)

$$\Rightarrow ((\varphi_1 \wedge \dots \wedge \varphi_n) \to \psi)$$
 - доказуема
 $\Rightarrow \vdash ((\varphi_1 \wedge \dots \wedge \varphi_n) \to)$ - доказуема
 $\vdash \psi, \varphi_1, \dots, \varphi_n \vdash ($ Упражнение $)$

11.32 Следствие

Формулы логики высказываний эквивалентны \Leftrightarrow они тождественно истинны.

12 Исчисление высказываний Гильбертовского типа

12.1 Определение (Аксиомы, правило вывода)

Аксиомы:

- 1. $(\varphi \to (\psi \to \varphi))$
- 2. $((\varphi \to \psi) \to ((\varphi \to (\psi \to \xi)) \to (\varphi \to \xi))$
- 3. $((\varphi \& \psi) \to \varphi)$
- 4. $((\varphi \& \psi) \to \psi)$
- 5. $((\varphi \to \psi) \to ((\varphi \to \xi) \to (\varphi \to (\phi \& \xi)))) \to \xi))))$
- 6. $((\varphi \to (\varphi \lor \varphi))$
- 7. $((\varphi \to (\varphi \lor \psi))$
- 8. $((\varphi \to \xi) \to ((\psi \to \xi) \to ((\varphi \lor \psi) \to \xi)))$
- 9. $((\varphi \to \psi) \to ((\psi \to \neg \psi) \to \neg \varphi))$
- 10. $(\neg \neg \varphi \rightarrow \varphi)$

Правило вывода:

$$\frac{\varphi;\varphi\to\psi}{\psi}$$

12.2 Определение (Доказательство, доказуемая формула, доказуемая из множества формула)

Последовательность $\varphi_1, \dots, \varphi_n$ называется **доказательством**, если каждая φ_i является аксиомой, либо получена из предыдущих однократным применением правила вывода.

 φ - доказуема, если существует доказательство $\varphi_1, \dots, \varphi_n$ заканчивающееся этой формулой ($\triangleright \varphi$).

 φ - доказуема из множества формул, если существует $\varphi_1, \ldots, \varphi_n = \varphi$, в которой каждая φ_i является аксиомой, либо принадлежит множеству Γ , либо получена из предыдущих однократным применением правила вывода ($\Gamma \rhd \varphi$).

12.3 Теорема (Об эквивалентности секвенциального и гильбертовского исчислений)

1.
$$\varphi_1, \dots, \varphi_n \vdash \psi$$
 - доказуема $\Leftrightarrow \varphi_1, \dots, \varphi_n \rhd \psi$

2.
$$\varphi$$
 - доказуема $\Leftrightarrow \triangleright \psi$

3.
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$
 - доказуема $\Leftrightarrow \varphi_1, \ldots, \varphi_n \rhd \psi, \forall \psi$

12.4 Теорема (О дедукции)

$$\Gamma \cup \{\varphi\} \rhd \psi \Leftrightarrow \Gamma \rhd (\varphi \to \psi)$$

13 Секвенциальное исчисление предикатов

13.1 Определение (Аксиомы)

Аксиомы секвенциального исчисления предикатов с равенством:

- 1. $\varphi \vdash \varphi$
- $2. \vdash \forall x(x=x)$
- 3. $\vdash \forall x \forall y ((x = y) \rightarrow (y = x))$
- 4. $\vdash \forall x \forall y \forall z ((x=y) \& (y=z) \rightarrow (x=z))$
- 5. $(t_1=q_1),...,(t_n=q_n), \varphi(t_1...t_n) \vdash \varphi(q_1...q_n), [\varphi]_{t_1...t_n}^{x_1...x_n} \vdash [\varphi]_{q_1...q_n}^{x_1...x_n}, [\varphi]_{t_1...t_n}^{x_1...x_n}, \ \forall i \forall y \in Fv(t_i), \ x_i$ —не находится в области действия квантора по у

Правила вывода:

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash \psi}{\Gamma \vdash (\varphi \& \psi)} \qquad \frac{\Gamma \vdash (\varphi \& \phi)}{\Gamma \vdash \varphi} \qquad \frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash (\varphi \& \phi)}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)}$$

$$\frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)} \qquad \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)} \qquad \qquad \frac{\Gamma, \varphi \vdash \xi; \Gamma, \psi \vdash (\varphi \lor \psi)}{\Gamma \vdash \xi}$$

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash (\varphi \to \psi)}{\Gamma \vdash \psi} \qquad \frac{\Gamma \vdash \varphi; \Gamma \vdash (\varphi \to \psi)}{\Gamma \vdash \psi} \qquad \frac{\Gamma, \neg \varphi \vdash \varphi}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash (\varphi \to \psi)}{\Gamma \vdash \psi}$$

$$\frac{\Gamma, \neg \varphi \vdash}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi; \Gamma \vdash \neg \varphi}{\Gamma \vdash} \qquad \frac{\Gamma_{1}, \varphi, \psi, \Gamma_{2} \vdash \xi}{\Gamma_{1}, \psi, \varphi, \Gamma_{2} \vdash \xi} \qquad \frac{\Gamma \vdash \varphi}{\Gamma, \psi \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall x \varphi} \left(x \in Fv(\Gamma) \right) \qquad \frac{\Gamma, \varphi(t) \vdash \psi}{\Gamma, \forall x \varphi(x) \vdash \psi} \left(\varphi(t) = [\varphi]_{t}^{x} \right)$$

$$\frac{\Gamma \vdash \varphi(t)}{\Gamma \vdash \exists x \varphi(x)} \qquad \frac{\Gamma, \varphi \vdash \psi}{\Gamma, \exists x \varphi \vdash \psi} \left(x \notin Fv(\Gamma \bigcup \{\psi\}) \right)$$

13.2 Определение (Доказательство)

 $S_1 \dots S_n$ называется доказательством, если каждая S_i является аксиомой, либо получена из аксиом однократным применением правил вывода.

13.3 Определение

Секвенция S называется доказуемой, если существует доказательство $S_1 \dots S_n = S$ (зак. на S).

13.4 Замечание

Если $S_1 \dots S_n$ доказательство, то $\forall k \leq n$ а) $S_1 \dots S_n$ -доказательство б) S_k -доказуема

13.5 Определение (Дерево секвенций)

- 1. S-дерево, h(S) = 1, $V(S) = \{S\}$
- 2. $D_1\dots D_n$ —дерево секвенций, S—секвенция, то $D=\frac{D_1\dots D_n}{S}$ дерево такое, что $h(D)=\max(h(D_1)\dots h(D_n))+1,\ V(D)=V(D_1)\cup\dots\cup V(D_n)$

13.6 Определение (Дерево вывода)

Дерево секвенций называется деревом вывода, если все его вершины являются аксиомами, а переходы- частными случаями правил вывода.

13.7 Предложение

S - доказуема $\Leftrightarrow \exists D$, заканчивающееся на эту секвенцию.

13.8 Определение (Производное правило)

Дерево $\frac{S_1...S_n}{S}$ высоты 2 называется производным, если $\exists D$ заканчивающееся на S, у которого каждая вершина является аксиомой, либо одной из секвенций $S_1...S_n$, а все переходы являются частными случаями правил вывода.

13.9 Определение (Допустимое правило вывода)

Дерево секвенций $\frac{S_1...S_n}{S}$ называется допустимым правилом вывода, если при его добавлении в качестве нового правила вывода множество доказуемых секвенций не увеличится.

13.10 Замечание

Каждое производное правило вывода является допустимым.

13.11 Предложение

- а) если секвенция логики предикатов получена из доказуемой секвенции логики высказывания подстановкой формулы логики предикатов вместо пропозициональных переменных, то эта секвенция доказуема в секыентальном исчислении предикатов.
- б)Допустимые (производные) правила вывода секв. исчислений высказываний являются допустимыми(производными) правилами вывода секвенций исчисления предикатов.

Доказательство:

$$\frac{\overline{\rho: R^0 - F^1: \varphi \to [\varphi]_{y_1 \dots y_n}^{A_1 \dots A_n}} = \rho(\varphi)}{S \to [S]_{y_1 \dots y_n}^{A_1 \dots A_n} = \rho(S)}$$

$$D \to \rho(D)$$

Тогда если D - дерево вывода в СИВ, тогда $\rho(D)$ - дерево вывода в СИП

13.12 Следующие правила вывода допустимы:

$$\frac{\varphi \vdash \psi}{(\varphi \& \xi) \vdash (\psi \& \xi)} \qquad \frac{\varphi \vdash \psi}{(\xi \& \varphi) \vdash (\xi \& \psi)} \qquad \frac{\varphi \vdash \psi}{(\varphi \lor \xi) \vdash (\psi \lor \xi)}$$

$$\frac{\varphi \vdash \psi}{(\xi \lor \varphi) \vdash (\xi \lor \psi)} \qquad \frac{\varphi \vdash \psi}{(\psi \to \xi) \vdash (\varphi \to \xi)} \qquad \frac{\varphi \vdash \psi}{(\xi \to \varphi) \vdash (\xi \to \psi)}$$

$$\frac{\varphi \vdash \psi}{\neg \psi \vdash \neg \varphi} \qquad \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi(x)} \qquad \frac{\varphi \vdash \psi}{\forall x \varphi \vdash \forall x \psi}$$

$$\frac{\varphi \vdash \psi}{\exists x \varphi \vdash \exists x \varphi}$$

13.13 Определение (равносильность)

 φ и ψ равносильны ($\varphi = \psi$), если $\varphi \vdash \psi$, $\psi \vdash \varphi$ доказуемы.

13.14 Замечание

≡- отношение эквивалентности.

13.15 Следствие

Если $\varphi \equiv \varphi_1, \ \psi \equiv \psi_1, \ \text{тогда}$:

- 1. $(\varphi \lor \psi) \equiv (\phi_1 \lor \psi)$
- 2. $(\varphi \& \psi) \equiv (\varphi_1 \& \psi_1)$
- 3. $(\varphi \to \psi) \equiv (\varphi_1 \to \psi_1)$
- 4. $\neg \varphi \equiv \neg \varphi_1$

13.16 Теорема (О замене)

Пусть $\psi \equiv \varphi_1, \varphi_1 = [\varphi]_{\psi_1}^{\psi}$ получена из φ заменой первого вхождения φ на $\psi_1, \varphi \equiv \varphi_1$

13.17 Определение (Семантика СИП)

- 1. $\varphi_{1...}\varphi \vdash \psi$ -т.и , если \forall модели $\mathfrak{A} \in k(\delta(\{\varphi_1...\varphi_n,\psi\})), \forall \gamma : FV(\{\varphi_1...\varphi_n,\psi\}) \rightarrow |\mathfrak{A}|,$ если $\mathfrak{A} \models \varphi_1[\gamma], ..., \mathfrak{A} \models \varphi_n[\gamma],$ то $\mathfrak{A} \models \psi[\gamma]$
- 2. $\vdash \psi$ —тождественно истинна, если $\forall \mathfrak{A} \in k(\delta(\psi)), \forall \gamma : FV(\psi) \to |\mathfrak{A}|$ и $\mathfrak{A} \models \psi[\gamma]$
- 3. $\varphi_1 \dots \varphi_n \vdash -\text{т.и.}$ если $\forall \mathfrak{A} \in k(\delta(\{\varphi_1 \dots \varphi_n\})), \forall \gamma : FV(\{\varphi_1 \dots \varphi_n\}) \rightarrow |\mathfrak{A}| \exists i \leq n : \mathfrak{A} \nvDash \varphi_i[\gamma]$

13.18 Замечание

- 1. Секвенция $\vdash \psi$ тождественно истинна $\iff \psi$ -тождественно истинна
- 2. $\varphi_1 \dots \varphi_n \vdash$ т.и $\iff (\varphi_1 \& \dots \& \varphi_n)$ тождественно ложна

13.19 Теорема (О корректности)

Если секвенция доказуема, то она т.и.

Доказательство: упр.

13.20 Лемма

- 1. Аксиомы т.и
- 2. Правила вывода сохраняют т.и, т.е если $\frac{S_1;...;S_k}{S}$ правило вывода и $S_1\dots S_k$ -т.и , то S-т.и.

Доказательство:

Доказательство индукцией: S-доказуема $\Rightarrow \exists D \widehat{S}$ -дерево вывода, n = h(D).

Если n=1, то S- аксиома.

13.21 Предложение

Пусть $x \notin FV(\xi)$,тогда имеют место след. тождества.

- 1. $\forall x \xi \equiv \xi$
- $2. \ \exists x \xi \equiv \xi$
- 3. $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$
- 4. $\exists x \exists y \varphi \equiv \exists y \exists x \phi$
- 5. $\neg \exists x \varphi \equiv \forall x \neg \varphi$
- 6. $\neg \forall x \varphi \equiv \exists x \neg \varphi$
- 7. $(\forall x \varphi \& \forall x \psi) \equiv \forall x (\varphi \& \psi)$
- 8. $(\exists x \varphi \lor \exists x \psi) \equiv \exists x (\varphi \lor \psi)$
- 9. $(\forall x \varphi \& \xi) \equiv \forall x (\varphi \& \xi)$

- 10. $(\exists x \varphi \& \xi) \equiv \exists x (\varphi \& \xi)$
- 11. $(\forall x \varphi \lor \xi) \equiv \forall x (\varphi \lor \xi)$
- 12. $(\exists x \varphi \lor \xi) \equiv \exists x (\varphi \lor \xi)$
- 13. $(\xi \& \forall x \varphi) \equiv \forall x (\xi \& \varphi)$
- 14. $(\xi \& \exists x \varphi) \equiv \exists x (\xi \& \varphi)$
- 15. $(\xi \lor \forall x\varphi) \equiv \forall x(\xi \lor \varphi)$
- 16. $(\xi \vee \exists x\varphi) \equiv \exists x(\xi \vee \varphi)$
- 17. $\forall x \varphi(x) \equiv \forall y \varphi(y)$
- 18. $\exists x \varphi(x) \equiv \exists y \varphi(y)$

$$\forall x [\varphi(z)]_x^z \equiv \forall y [\varphi(z)]_y^z$$
$$\exists x [\varphi(z)]_x^z \equiv \exists y [\varphi(z)]_y^z$$

z не находится в области действия кванторов по x, ни по y, ни по z.

13.22 Определение (предваренная нормальная форма)

Говорят, что функция φ находится в предварённой нормальной форме, если она имеет вид:

$$\varphi = Q_1 x_1 \dots Q_n x_n$$
 $\psi(x_1, \dots, x_n, y_1, \dots, y_k)$ $Q_i \in P\{\forall, \exists\}, \varphi$ -бескванторная

13.23 Теорема (о ПНФ)

 $\forall \varphi \exists \psi, \psi - B$ ПНФ, тогда $\varphi \equiv \psi$, для любой формулы существует равносильная ей форула, находится в Предварённой нормальной форме.

Доказательство:

Алгоритм приведения формулы к предварённой нормальной формме

- 1. Избавляемся от импликации
- 2. С помощью тождеств 5 и 6, законов Де Моргана и снятия двойного отрицания, вносим отрицание под знаки квантора.
- 3. С помощью тождеств 17 и 18 переобозначаем переменные так, чтобы :
 - а) разные кванторы действовали по разным переменнымж

- b) связанные переменные не имели свободные вхождений, т.е чтобы каждая переменная имела либо связанные, либо только свободные вхождения.
- 4. С помощью тождеств 9-16 выносим все кванторы наружу. В силу теоремы о замене, а также в силу того, что равномильностьЮ являясь отношением эквиваленции, обладает свойством транзитивности, полученная в результате формула будет равносильна исходной.

14 Теорема о существовании модели

14.1 Определение

 σ - сигнатура $\Gamma \subseteq F(\sigma), \varphi \in F(\sigma)$

- 1. $\Gamma \vdash \varphi$ если $\exists \varphi_1, \dots, \varphi_n \in \Gamma | \varphi_1, \dots, \varphi_n \vdash \varphi$ доказуема
- 2. $\Gamma \vdash (\Gamma$ противоречива) если $\exists \varphi_1, \dots, \varphi_n \in \Gamma \mid \varphi_1, \dots, \varphi_n \vdash$ доказуема
- 3. $\Gamma \nvdash (\Gamma$ непротиворечива) если $\neg (\Gamma \vdash)$
- 4. $T\subseteq S(\sigma)$ **теория сигнатуры** σ , если T дедуктивно замкнуто, то есть $\forall \varphi\in S(\sigma)$ если $T\vdash \varphi$, то $\varphi\in T$
- 5. T полно, если $\forall \varphi \in S(\sigma) \ \varphi \in T$ или $\neg \varphi \in T$

14.2 Замечание

Пусть T - теория сигнатуры $\sigma = \sigma(T)$, тогда:

- 1. $\forall \varphi \in S(\sigma)$ $\varphi \in T \Leftrightarrow T \vdash \varphi$
- 2. Если $\sigma \subseteq \sigma_1$ и $\sigma \neq \sigma_1$, то T не является теорией сигнатуры σ_1

Доказательство:

1. (
$$\Rightarrow$$
) $\varphi \in T$, $\varphi \vdash \varphi$ доказуема (аксиома) $\Rightarrow T \vdash \varphi$ (\Leftarrow) $T \vdash \varphi$, T - теория $\Rightarrow \varphi \in T$

2. $\sigma \subseteq \sigma_1, \ \sigma \neq \sigma_1 \Rightarrow \exists q \in \sigma \setminus \sigma_1,$ $\exists \varphi \in S(\sigma_1) \mid q \in \sigma(\varphi) \text{ (упр.)}$ $\vdash (\varphi \vee \neg \varphi)$ - доказуемо \Rightarrow (из предположения, что T - теория σ_1) $T \vdash (\varphi \vee \neg \varphi) \Rightarrow (\varphi \vee \neg \varphi) \in T \Rightarrow q \in \sigma(T) = \sigma$ - противоречие.

14.3 Замечание

 $T\subseteq S(\sigma)$ - теория сигнатуры σ , тогда следующие условия эквивалентны:

- 1. $T \vdash$
- 2. $\forall \varphi \in S(\sigma) \ \varphi \in T \ (\text{r.e.} \ S(\sigma) \subseteq T)$
- 3. $\exists \varphi \in S(\sigma) \mid \varphi, \neg \varphi \in T$

Доказательство:

1. (1. \Rightarrow 2.) $T \vdash \Rightarrow \exists \varphi_1, \dots, \varphi_n \in T \mid \varphi_1, \dots, \varphi_n \vdash$ доказуема. Пусть $\varphi \in S(\sigma)$

$$\frac{\varphi_1,\dots,\varphi_n\vdash}{\varphi_1,\dots,\varphi_n\neg\varphi\vdash} \quad \frac{\varphi_1,\dots,\varphi_n\neg\varphi\vdash}{\varphi_1,\dots,\varphi_n\vdash\varphi}$$
 \Rightarrow $\varphi_1,\dots,\varphi_n\vdash\varphi$ - доказуема \Rightarrow $T\vdash\varphi\Rightarrow\varphi\in T$

2.
$$(2.\Rightarrow3.) \varphi \in S(\sigma) \Rightarrow \neg \varphi \in S(\sigma) \Rightarrow \varphi, \neg \varphi \in T$$

3.
$$(3.\Rightarrow1.)$$
 $\varphi, \neg\varphi \in T \Rightarrow T \vdash \varphi$ $T \vdash \neg\varphi$

$$\frac{\varphi \vdash \varphi; \neg \varphi \vdash \neg \varphi}{\varphi, \neg \varphi \vdash}$$

$$\varphi, \neg \varphi \in T$$
 и $\varphi, \neg \varphi \vdash$ - доказуемо $\Rightarrow T \vdash$

14.4 Следствие

 ${\bf T}$ - теория сигнатуры $\sigma,$ тогда $T \vdash \Leftrightarrow T = S(\sigma)$ Доказательство: упр.

14.5 Предложение

Полное непротиворечивое множество предложений является теорией. Пусть $T\subseteq S(\sigma),\ T$ - полно в σ и $T\not\vdash$. Тогда T - теория сигнатуры σ

Доказательство:

Пусть T - не теория $\Rightarrow \exists \varphi \in S(\sigma) \mid T \vdash \varphi$ и $\varphi \notin T \Rightarrow \neg \varphi \in T \Rightarrow \exists \varphi_1, \dots, \varphi_n \mid \varphi_1, \dots, \varphi_n \vdash$ - доказуемо

$$\frac{\varphi_1, \dots, \varphi_n \vdash \varphi; \neg \varphi \vdash \neg \varphi}{\varphi_1, \dots, \varphi_n, \neg \varphi \vdash}$$

 $\Rightarrow \varphi_1, \dots, \varphi_n, \neg \varphi \vdash$ - доказуемо $\Rightarrow T \vdash$. Противоречие.

14.6 Определение (Элементарная теория модели)

Пусть $\mathfrak{A} \in K(\sigma)$, то есть $\mathfrak{A} = < A, \sigma>$, тогда элементарной теорией модели называется множество всех предложений, истинных на этой модели: $Th \mathfrak{A} = \{ \varphi \in S(\sigma) \, | \, \varphi \models \mathfrak{A} \}.$

14.7 Определение (элементарная эквиваленция)

Пусть \mathfrak{A} , \mathfrak{B} - мождели сигнатуры сигма. Они называются лементарно ээквивалентными ($\mathfrak{A} \equiv \mathfrak{B}$), tckb $Th(\mathfrak{A}) = Th(\mathfrak{B})$, т.е $\forall \varphi \in S(\sigma)$ $\mathfrak{A} \models \varphi \Leftrightarrow \mathfrak{B} \models \varphi$.

14.8 Предложение

Пусть $\mathfrak{A} \in K(\sigma)$, то $Th(\mathfrak{A})$ - полная непротиворечивая теория сигнатуры сигмы.

Доказательство:

 $Th(\mathfrak{A}) \nvdash$. Пусть $Th(\mathfrak{A}) \vdash \Rightarrow \exists \varphi_1 \dots \varphi_{\mathfrak{n}} \in Th(\mathfrak{A}) : \varphi_1 \dots \varphi_n \vdash -$ док. $\Rightarrow \varphi_1 \dots \varphi_n \vdash -$ тождественно истинна \Rightarrow истинна на $\mathfrak{A} \Rightarrow \exists k \leq n : \mathfrak{A} \nvDash \varphi_k$, но $\varphi_k \in Th(\mathfrak{A}) \Rightarrow \mathfrak{A} \models \varphi_k$

 $Th(\mathfrak{A})$ - полна. Пусть $\varphi \in S(\sigma)$. Пусть $\varphi \notin Th(\mathfrak{A}) \Rightarrow \mathfrak{A} \nvDash \varphi \Rightarrow \mathfrak{A} \models \neg \varphi \Rightarrow \neg \varphi \in Th(\mathfrak{A}) \Rightarrow Th(\mathfrak{A})$ - полна и непротиворечива $\Rightarrow Th(\mathfrak{A})$ - теория.

14.9 Теорема (б. д.)

Пусть A,B - множества, B - бесконечна и $||A|| \leq ||B||$, тогда $||A \cup B|| = ||B||$

14.10 Теорема (б. д.)

Пусть A - бесконечна, $A^* = \bigcup_{n \in \mathbb{N}} A^n = \{(a_1 \dots a_n) | n \in \mathbb{N}, a_i \in A\}$, тогда $||A^*|| = ||A||$

14.11 Теорема (б. д.)

 $\forall A \exists$ кардинал $\alpha : ||A|| = ||\alpha||$

14.12 Теорема

 $\forall A$ и $B ||A|| \le ||B||$ или $||B|| \le ||A||$.

Доказательство:

Существуют кардиналы $\alpha, \beta: ||A|| = ||\alpha||, ||B|| = ||\beta||$ $\alpha \le \beta$ или $c\beta \le A \Rightarrow \alpha \subseteq \beta$ или $\beta \subseteq \alpha \Rightarrow ||\alpha|| \le ||\beta||$ или $||\beta|| \le ||\alpha|| \Rightarrow ||A|| \le ||B||$ или $||B|| \le ||A||$.

14.13 Следствие

Если α - бесконечный кардинал, то α -предельный ординал.

Доказательство:

(от обр.) Пусть α - не предельный $\Rightarrow \exists \beta: \alpha = \beta + 1, \quad \alpha = \beta \cup \{\beta\} \Rightarrow ||\alpha|| = ||\beta||, \quad \beta < \alpha \Rightarrow \alpha$ - не кардинал $\Rightarrow \alpha$ - предельный.

14.14 Определение

Пусть $\mathfrak{A} \in K(\sigma), X$ - множество элементов произв. мощности, $\gamma: x \to |\mathfrak{A}|$ - означивание X на \mathfrak{A} .

$$\Gamma \subseteq F(\sigma), \quad Fv(\Gamma) = \{x | \exists \varphi \in \Gamma : x \in Fv(\varphi)\}.$$

Пусть $Fv(\Gamma) \subseteq x$. Говорят, что Γ истинно на $\mathfrak A$ при означивании $\gamma: \mathfrak A \models \Gamma[\gamma]$, если $\forall \varphi \in \Gamma: \mathfrak A \models \varphi[\gamma]$. Множество Γ выполнимо на $\mathfrak A$, если $\exists \gamma: x \to |\mathfrak A| : \mathfrak A \models \Gamma[\gamma]$, Γ выполнимо (имеет модель), если оно выполнимо на некоторой модели, т.е $\exists \mathfrak A \in K(\sigma) \ \exists \gamma: \ Fv(\Gamma) \to |\mathfrak A|: \mathfrak A \models \Gamma[\gamma]$

14.15 Теорема (О существовании модели)

Любое непротиворечивое множество формул имеет модель (является выполнимым)

$$\forall \Gamma \subseteq F(\sigma)$$
, если $\Gamma \nvdash$, то $\exists \mathfrak{A} \in K(\sigma) \quad \exists \gamma : Fv(\Gamma) \to |\mathfrak{A}|, \qquad \mathfrak{A} \models \Gamma[\gamma]$ Доказательство:

Пусть $\Gamma\subseteq F(\sigma), \not\vdash$ и $X-Fv(\Gamma), D$ - множество констант: $D\cap\sigma=\phi, \quad ||D||=||X||\Rightarrow \exists$ биекция $\gamma:X\to D.$ Обозначим $\Gamma'=\Gamma[\gamma]=\{\varphi(d_1\dots d_n)|\varphi\in\Gamma, \quad Fv(\varphi)=\{x_1\dots x_n\}, \quad \gamma(x_i)=d_i\}$ $[\varphi]_{d_1\dots d_n}^{x_1\dots x_n}\Rightarrow\Gamma'\subseteq S(\sigma).$

14.16 Лемма

Множество Предложений Γ' непротиворечиво.

Доказательство:

Пусть $\Gamma' \vdash \Rightarrow \exists \varphi_1' \dots \varphi_n' \in \Gamma' \qquad \varphi_1' \dots \varphi_n' \vdash$ доказательство, дерево вывода $D' = \frac{\widehat{}}{\varphi_1' \dots \varphi_n' \vdash}$

$$D = [D']_{\gamma^{-1}(\varphi')}^{\varphi'} : \qquad \varphi' = \gamma(\varphi) = \varphi[\gamma]$$
$$\varphi = \gamma^{-1}(\varphi')$$

$$D = [D']_{\gamma^{-1}(\alpha) \in X}^{d \in D} \qquad \varphi' = \varphi(d_1 \dots d_n) \to \varphi(x_1 \dots x_n)$$

$$D = \widehat{\varphi_1 \dots \varphi_n}, \quad \varphi_i \in \Gamma, D$$
 - дерево вывода (упр).

$$\Rightarrow \varphi_1 \dots \varphi_n \vdash$$
 доказательство $\Gamma \vdash$ - противоречива $\Rightarrow \Gamma' \nvdash$.

$$\delta = \max(\omega, ||\delta||, ||X||)$$

Пусть С-множество констант $C \cap (\delta \cup D) = \phi$,

$$||c|| = \delta$$

$$\sigma' = \sigma \cup D \cup C$$

 $S(\sigma')\subseteq (\sigma'\cup\{x_i|i\in\mathbb{N}\}\cup\{(.),",",\&,\cup,\to,\neg.\exists,\forall\})^*$ - множество всех конечных слов

$$||S(\sigma')|| \le \delta \Rightarrow ||S(\sigma)|| = ||\delta|| = ||\{\alpha | \alpha < \delta\}||$$

 δ - кардинал.

$$S(\sigma') = \{ \varphi_{\alpha} | \alpha < \delta |$$

$$T' \subseteq S(\sigma')$$

Шаг
$$0: T_0 = \Gamma', T_0 \nvdash$$

Шаг
$$\beta$$
: Случай 1: $0 < \beta \le \delta$

 β - непред. $\beta=\alpha+1,\quad \beta\leq\delta\Rightarrow\beta<\delta\Rightarrow\alpha<\delta,\ T_\alpha$ - построена, рассмотрим φ_α

случай 1.1: Пусть $T_\alpha \cup \{\varphi_\alpha\} \not\vdash$, пусть $\varphi_\alpha \neq \exists x \psi(x)$, положим $T_\beta = T_{\alpha+1} = T_\alpha \cup \{\varphi_\alpha\}$

случай 1.2: $T_\alpha \cup \{\varphi_\alpha\} \not\vdash, \quad \varphi_\alpha = \exists x \psi_\alpha(x), \quad \alpha < \delta, \quad \delta$ - кардинал \Rightarrow $||\alpha|| < ||\delta||.$

Если α - беконечна, то $||C \cap \sigma(T_{\alpha})|| \leq \alpha < \delta; \quad \alpha$ - конечна.

$$||C \cap \sigma(T_{\alpha}))||$$
 - конечно, $<\delta$

$$\Rightarrow ||C \cap \sigma(T_{\alpha})|| < \delta, \qquad ||c|| = \delta \Rightarrow ||c \setminus \sigma(T_{\alpha})|| = \delta \Rightarrow C \setminus \sigma(T_{\alpha}) \neq \emptyset$$

$$\Rightarrow \exists c_{\alpha} \in c \ \sigma(T_{\alpha})$$
. Положим, $T_{\beta} = T_{\alpha} \cup \{\varphi_{\alpha}, \psi_{\alpha}(c_{\alpha})\}$

Случай 1.3
$$T_{\alpha} \cup \{\varphi_{\alpha}\} \vdash$$
, $T_{\beta} = T_{\alpha} \cup \{\neg \varphi_{\alpha}\}$

Случай 2: β - предельный, тогда $T_{\beta} = \bigcup_{\alpha < \beta} T_{\alpha}$

Далее индукцией:

$$\beta < \delta, \qquad T' = T_{\delta} = \bigcup_{\alpha < \delta} T_{\alpha}$$

14.17 Лемма

 $\Delta\subseteq F(\sigma_0),\,x\notin Fv(\Delta),\,$ х - не входит в Δ , $\varphi\in F(\sigma_0)$, $c\in\sigma(\varphi)$, $c\notin\sigma(\Delta),x$ - не входит в φ . Тогда если секвенция $\Delta,\varphi\vdash$ - доказуема ,то $\Delta,[\varphi]_x^c\vdash$ - доказуема

Доказательство:

Пусть $\Delta, \varphi \vdash$ - доказуема $\Longrightarrow \exists D = \frac{\cap}{\Delta, \varphi \vdash}$ - дерево вывода

Без ограничения общности можно считать , что x - не входит в D

 $D_1=[D]_x^C$ - дерево вывода (упражнение), при этом $D_1=\frac{\cap}{\Delta,[\varphi]_x^c}\mapsto$ секвенция $\Delta,\ [\varphi]_x^c\vdash$ доказуема

14.18 Лемма (Хенкина)

- 1. T' непротиворечиво
- 2. T' полно
- 3. T' теория
- 4. $(\varphi \wedge \psi) \in T' \Leftrightarrow \varphi \in T'$ и $\psi \in T'$
- 5. $(\varphi \lor \psi) \in T' \Leftrightarrow \varphi \in T'$ и $\psi \in T'$
- 6. $\neg \varphi \in T' \Leftrightarrow \varphi \notin T'$
- 7. $(\varphi \to \psi) \in T' \Leftrightarrow если \varphi \in T'$, то $\psi \in T'$
- 8. $\exists x \psi(x) \in T' \Leftrightarrow \exists c \in C: \psi(c) \in T' \Leftrightarrow \exists t \in T(\sigma'): FV(t) = \emptyset$ и $\psi(t) \in T'$
- 9. $\forall x\psi(x)\in T'\Leftrightarrow \forall c\in C: \psi(c)\in T'\Leftrightarrow \forall t\in T(\sigma')$ если $FV(t)=\emptyset$, то $\psi(t)\in T'$

Доказательство:

1. $T' \not\vdash$

Шаг 0: $T_0 \nvdash$

<u>Шаг 1:</u> Пусть $\forall \alpha < \beta : T_{\alpha} \nvdash$. Покажем: $T_{\beta} \nvdash$

20

Случай 1: $\beta = \alpha + 1$

Случай 1.1: $T_{\beta} = T_{\alpha} \cup \{\varphi_{\alpha}\}, T_{\alpha}, \varphi_{\alpha} \not\vdash \Rightarrow T_{\beta} \not\vdash$

Случай 1.2: $T_{\beta} = T_{\alpha+1} = T_{\alpha} \cup \{\varphi_{\alpha}, \psi_{\alpha}(C_{\alpha})\}$

 $\varphi_{\alpha=\exists x\psi_{\alpha}(x)}$

Пусть $T_{\beta} \vdash \Rightarrow \exists \xi_1, \dots, \xi_n \in T_{\alpha}$:

 $\xi_1, \dots, \xi_n, \exists x \psi_\alpha(C_\alpha) \vdash$ - доказуема.

 $C_{\alpha} \notin \sigma \left\{ \xi_1, \dots, \xi_n, \exists x \psi_{\alpha}(x) \right\}$

$$\frac{\xi_{1}, \dots, \xi_{n}, \exists x \psi_{\alpha}(x), \psi_{\alpha}(y) \vdash}{\xi_{1}, \dots, \xi_{n}, \psi_{\alpha}(y) \vdash \neg \exists x \psi_{\alpha}(x)} \qquad \exists x \psi_{\alpha}(x) \vdash \exists x \psi_{\alpha}(x) \\
\underline{\xi_{1}, \dots, \xi_{n}, \exists x \psi_{\alpha}(y) \vdash \neg \exists x \psi_{\alpha}(x) ;} \quad \xi_{1}, \dots, \xi_{n}, \exists x \psi_{\alpha}(x) \vdash \exists x \psi_{\alpha}(x) \\
\underline{\xi_{1}, \dots, \xi_{n}, \exists x \psi_{\alpha}(x) \vdash}$$

 $\xi_1, \ldots, \xi_n, \exists x \psi_\alpha(x) \vdash \exists x \psi_\alpha(x)$

 $\Rightarrow \xi_1, \dots, \xi_n, \varphi_\alpha$ \vdash доказуемо $\Rightarrow T_\alpha \cup \{\varphi_\alpha\}$ \vdash противоречиво \Rightarrow в Случае 1.2 $T_\beta \nvdash$

Случай 1.3: $T_{\beta} = T_{\alpha} \cup \{ \neg \varphi_{\alpha} \}; T_{\alpha} \cup \{ \varphi_{\alpha} \} \vdash$

Пусть $T_{\beta} \vdash$, то есть $T_{\alpha} \cup \{ \neg \varphi_{\alpha} \} \vdash$

 $\xi_1,\dots,\xi_n,\xi_{n+1},\dots,\xi_k\in T_{lpha},$ такие что $\xi_1,\dots,\xi_n,\varphi_{lpha}\vdash$, $\xi_{n+1},\dots,\xi_k,\neg\varphi_{lpha}\vdash$ - доказуемы

$$\frac{\xi_1, \dots, \xi_n, \varphi_\alpha \vdash}{\xi_1, \dots, \xi_k, \neg \varphi_\alpha} \underbrace{\xi_{n+1}, \dots, \xi_k, \neg \varphi_\alpha \vdash}_{\xi_{n+1}, \dots, \xi_k \vdash \varphi_\alpha} \underbrace{\xi_{n+1}, \dots, \xi_k \vdash \varphi_\alpha}_{\xi_1, \dots, \xi_k \vdash \varphi_\alpha}$$

 $\underline{\text{Случай 2}}$: β - предельный $T_{\beta} = \bigcup_{\alpha \in \beta} T_{\alpha}$

Пусть $T_{\beta} \vdash \Rightarrow \exists \xi_1, \dots, \xi_n \notin T_{\beta} : \xi_1, \dots, \xi_n \vdash$ доказуемо

 $\Rightarrow \exists \alpha_1, \dots, \alpha_n < \beta : \xi_1 \in T_{\alpha_1}, \dots, \xi_n \in T_{\alpha_n}$

 $\Rightarrow \exists \alpha = m(\alpha_1, \dots, \alpha_n) \Rightarrow \forall i \leq n : T_{\alpha_i} \subseteq T_{\alpha_i}$

 $\alpha < \beta \Rightarrow \xi_1, \dots, \xi_n \in T_\alpha \Rightarrow T_\alpha$ ⊢противоречиво $\Rightarrow T_\beta \not\vdash \Rightarrow T_\delta \not\vdash$, т.е. $T' \not\vdash$

30

2. Пусть
$$\varphi \in S(\sigma) = \{\varphi_{\alpha} | \alpha < \delta\} \Rightarrow \exists \alpha < \delta : \varphi_{\alpha} = \varphi,$$

$$\beta = \alpha + 1 \Rightarrow \varphi_{\alpha} \in T_{\beta} \text{ или } \neg \varphi_{\alpha} \in T_{\beta}; T_{\beta} \leq T_{\delta} = T'$$

$$\Rightarrow \varphi_{\alpha} \in T' \text{или } \neg \varphi_{\alpha} \in T', \text{ т.е. } \varphi \in T' \text{или } \neg \varphi \in T'$$

$$\Rightarrow T' \text{- полна}$$

- 3. T'- полна и непротиворечива $\Rightarrow T'$ теория
- 4. (\rightarrow) Пусть ($\varphi \land \psi$) $\in T'$ $\frac{(\varphi \land \psi) \vdash (\varphi \land \psi)}{(\varphi \land \psi) \vdash \varphi}$, $\frac{(\varphi \land \psi) \vdash (\varphi \land \psi)}{(\varphi \land \psi) \vdash \psi}$ доказуемы $\Rightarrow T' \vdash \varphi, T' \vdash \psi \Rightarrow \varphi, \psi \in T'$ (\leftarrow) Пусть $\varphi, \psi \in T'$ $\frac{\varphi \vdash \varphi; \psi \vdash \psi}{\varphi, \psi \vdash (\varphi \land \psi)}$ доказуема $\Rightarrow T' \vdash (\varphi \land \psi) \Rightarrow (\varphi \land \psi) \in T'$
- 5. (\rightarrow) Пусть $(\varphi \lor \psi) \in T'$, $\varphi \notin T'$, $\psi \notin T' \Rightarrow \neg \varphi, \neg \psi \in T'$ $\frac{\neg \varphi, \neg \psi \vdash (\neg \varphi \land \neg \psi); \neg \varphi, \neg \psi \vdash \neg (\varphi \lor \psi)}{\neg \varphi, \neg \psi \vdash \neg (\varphi \lor \psi)}$ доказуема

$$\Rightarrow T' \vdash \neg(\varphi \lor \psi) \Rightarrow \neg(\varphi \lor \psi) \in T', (\varphi \lor \psi) \in T'$$

 $\Rightarrow T' \vdash$ - противоречие

 (\leftarrow) Пусть $\varphi \in T'$ или $\psi \in T', \varphi \vdash (\varphi \lor \psi), \psi \vdash (\varphi \lor \psi)$ - доказуемы (Упражнение)

$$\Rightarrow T' \vdash (\varphi \lor \psi) \Rightarrow (\varphi \lor \psi) \in T'$$

- 6. (\rightarrow) Пусть $\neg \varphi \in T'$, пусть $\varphi \in T' \Rightarrow T' \vdash$ противоречие $\Rightarrow \varphi \notin T'$ (\leftarrow) Пусть $\varphi \notin T'$, T' полная $\Rightarrow \neg \varphi \in T'$
- 7. (\rightarrow) Пусть $(\varphi \rightarrow \psi) \in T'$, пусть $\varphi \in T'$ $\frac{\varphi \vdash \varphi; (\varphi \rightarrow \psi) \vdash (\varphi \rightarrow \psi)}{\varphi, (\varphi \rightarrow \psi) \vdash \psi} \text{доказуема} \Rightarrow T' \vdash \psi \Rightarrow \psi \vdash T'$ (\leftarrow) Пусть $(\varphi \rightarrow \psi) \notin T' \Rightarrow \neg (\varphi \rightarrow \psi) \in T'$, $\neg (\varphi \rightarrow \psi) \equiv (\varphi \land \neg \psi) \text{ (Упражение)}$ $\Rightarrow \neg (\varphi \rightarrow \psi) \vdash (\varphi \land \neg \psi) \text{доказуема}$ $\Rightarrow T' \vdash (\varphi \land \neg \psi) \Rightarrow T' \vdash \varphi, T' \vdash \neg \psi \Rightarrow \varphi, \neg \psi \in T'$ $\Rightarrow \psi \in T' \Rightarrow T' \vdash \neg \text{противоричиво} \Rightarrow (\varphi \rightarrow \psi) \in T'$
- 8. $(1. \Rightarrow 2.) \exists x \psi(x) \in T' \Rightarrow \exists x \psi(x) \in S(\sigma')$ $\Rightarrow \exists \alpha : \varphi_{\alpha} = \exists x \psi(x) \Rightarrow \varphi_{\alpha} \in T' \Rightarrow T' \cup \{\varphi_{\alpha}\} = T'$ т.е. $T' \cup \{\varphi_{\alpha}\} \not\vdash \Rightarrow$ На шаге β - случай 1.2:

$$\varphi_{\alpha} = \exists x \psi_{\alpha}(x), \, \psi_{\alpha}(x) = \psi(x) \Rightarrow \psi_{\alpha}(C_{\alpha}) \in T_{\beta}$$

$$\Rightarrow C_{\alpha} \in C, \ \psi(C_{\alpha}) \in T'$$

$$(2. \Rightarrow 3.) \ c \in C, \ \psi(c) \in T', \ t = c, \ FV(t) = \emptyset, \ \psi(t) \in T'$$

 $t \in T(\sigma')$

$$(3. \Rightarrow 1.) \ t \in T(\sigma'), \ FV(t) = \emptyset, \ \psi(t) \in T'$$

$$\frac{\psi(t) \vdash \psi(t)}{\psi(t) \vdash [\psi]_t^x}$$
$$\frac{\psi(t) \vdash \exists x \psi(x)}{\psi(t) \vdash \exists x \psi(x)}$$

- доказуема

$$\Rightarrow T' \vdash \exists x \psi(x) \Rightarrow \exists x \psi(x) \in T'$$

9.
$$(1. \Leftrightarrow 2.) \ \forall x \psi(x) \in T' \Leftrightarrow \neg \exists x \psi(x) \in T' \ ($$
Упражнение $)$

$$\Leftrightarrow \exists x \neg \psi(x) \notin T' \Leftrightarrow \text{He } \exists c \in C | \neg \psi(c) \in T'$$

$$\Leftrightarrow \forall c \in C \neg \psi(c) \notin T' \Leftrightarrow \forall c \in C | \psi(c) \in T'$$

$$(2. \Leftrightarrow 3.) \ \forall x \psi(x) \in T' \Leftrightarrow \neg \exists x \psi(x) \in T' \Leftrightarrow \exists x \neg \psi(x) \notin T'$$

$$\Leftrightarrow \neg \exists t \in T(\sigma') | FV(t) = \emptyset$$
 и $\neg \psi(t) \in T'$

$$\Leftrightarrow \forall t \in T(\sigma')$$
 (если $FV(t) = \emptyset$, то $\neg \psi(t) \notin T'$)

$$\Leftrightarrow \psi(t) \in T'$$

14.19 Определение

$$\mathfrak{A}' = \langle A; \sigma' \rangle \in k(\sigma'), |\mathfrak{A}'| = A.$$

- 1. $A=\{t\in T(\sigma')|\ Fv(t)=\emptyset\},\ c\subseteq A\Rightarrow A\neq\emptyset;$ Когда рассматриваем модель основное множество не пусто.
- 2. Поэтому:
 - а) Если $P^n \in \sigma', t_1 \dots t_n \in A$, то $\mathfrak{A}' \models P(t_1 \dots t_n) : P(t_1 \dots t_n) \in T'$
 - b) Если $f^n \in \sigma, t_1 \dots t_n \in A$, тогда $f^{\mathfrak{A}'}(t_1 \dots t_n) = f(t_1 \dots t_n) \in T(\sigma')$, т.е. $f(t_1 \dots t_n) \in A$
 - с) Если $e \in \sigma'$, то $e^{\mathfrak{A}'} = e \in A$, т.к. $e \in T(\sigma')$ нужно показать, что $\mathfrak{A}' \models T'$.

14.20 Лемма

Пусть $t \in T(\sigma'), FV(t) = \emptyset$, тогда $t^{\mathfrak{A}'} = t$

Доказательство:

Индукция по построению

- 1)Пусть $t = c \in \sigma' \Rightarrow t^{\mathfrak{A}'} = c^{\mathfrak{A}'} = c = t$
- 2)Пусть $t=f(t_1\dots t_n), f^n\in\sigma', t_1\in A$, тогда $t_i^{\mathfrak{A}'}=t_i\Rightarrow t^{\mathfrak{A}'}=f^{\mathfrak{A}'}(t_1^{\mathfrak{A}'}\dots t_n^{\mathfrak{A}'})=f^{\mathfrak{A}'}(t_1\dots t_n)=f(t_1\dots t_n)=t$

14.21 Следствие

Пусть
$$t(x_1 \dots x_n) \in T(\sigma'), q_1 \dots q_n \in A$$
, тогда $t^{\mathfrak{A}'}(q_1 \dots q_n) = t(q_1 \dots q_n) \in A$

Доказательство: (индукцией по построению) упр.

14.22 Лемма

$$\forall \varphi \in S(\sigma'): \mathfrak{A}' \models \varphi \Leftrightarrow \varphi \in T'$$

Доказательство:
Индукцией по построению φ
 $1)\varphi = P(t_1 \dots t_n), t_i \in T(\sigma'), Fv(t_i) = \emptyset$, тогда

 $\mathfrak{A}' \models \varphi \Leftrightarrow \mathfrak{A}' \models P(t_1 \dots t_n) \Leftrightarrow \mathfrak{A}' \models P^{\mathfrak{A}}(t_1^{\mathfrak{A}} \dots t_n^{\mathfrak{A}}) \Leftrightarrow \mathfrak{A}' \models P^{\mathfrak{A}}(t_1 \dots t_n) \Leftrightarrow$
 $P(t_1 \dots t_n) \in T' \Leftrightarrow \varphi \in T'$
 $2)$ а) $\varphi = (\varphi_1 \& \varphi_2)$
 $\mathfrak{A}' \models \varphi \Leftrightarrow \mathfrak{A}' \models \varphi_1$ и $\mathfrak{A}' \models \varphi_2 \Leftrightarrow \varphi_1 \in T'$ и $\varphi_2 \in T' \Leftrightarrow (\varphi_1 \& \varphi_2) \in T'$, т.е. $\varphi \in T'$
 $6)\varphi = (\varphi_1 \vee \varphi_2)$

в) $\varphi = (\varphi_1 \vee \varphi_2)$

в) $\varphi = (\varphi_1 \rightarrow \varphi_2)$

г) $\varphi = \neg \varphi$

(а-г)-доказательство упражнение.

 $\mathfrak{A})\varphi = \exists x \psi(x)$
 $\mathfrak{A}' \models \exists x \psi(x) \Leftrightarrow \exists a \in A: \mathfrak{A} \models \psi(a) \Leftrightarrow \exists t \in T(\gamma')$ такое что $Fv(t) = \emptyset$

и $\mathfrak{A} \models \psi(t) \Leftrightarrow \exists t \in A$ такое что $\psi(t) \in T' \Leftrightarrow \exists x \psi(x) \in T'$ т.е. $\varphi \in T'$

е) $\varphi = \forall x \psi(x)$ - упражнение.

14.23 Следствие

$$\mathfrak{A}'\models T'\ (\forall \varphi\in T':\mathfrak{A}'\models \varphi)$$

Доказательство:
$$\Gamma'=T_0\subseteq T'\Rightarrow \mathfrak{A}'\models \Gamma'$$

$$\Gamma'=\Gamma[\gamma]=[\Gamma]_{\gamma(x)\in D}^{x\in Fv(\Gamma)}$$
 $\gamma:Fv(\Gamma)\to D\subseteq \sigma'$ - биекция
$$33$$

$$\Rightarrow D \subseteq A$$
. Рассмотрим $\gamma: Fv(\Gamma) \to A$, т.е. $\gamma: Fv(\Gamma) \to (\mathfrak{A}')$ $\Rightarrow \mathfrak{A}' \models \Gamma[\gamma]$ $\varphi(x_1 \dots x_n) \in \Gamma \ \mathfrak{A}' \models \varphi(d_1 \dots d_n), \gamma(x_i) = d_i; \qquad d_i \in A$ \parallel $\mathfrak{A}' \models \varphi(\gamma(x_1) \dots \gamma(x_n))$ $\Gamma \subseteq F(\sigma)$ $\mathfrak{A} = \mathfrak{A}' \land \sigma \in k(\sigma) \Rightarrow \mathfrak{A} \in k(\sigma), \mathfrak{A} \models \Gamma[\gamma]$ - упражнение. $S(\sigma') = \{\varphi_{\alpha} | \alpha < \delta\}$

14.24 Лемма

Пусть
$$t \in T(\sigma')$$
, $Fv(t) = \emptyset$, тогда $\exists c \in C$, такое что $(t = c) \in T'$ Доказательство: (упражнение) $\vdash \exists x(x = t)$ - док(Хенк) $\Rightarrow \exists x(x = t) \in T' \Rightarrow \exists c \in C : \dots$

14.25 Определение

Пусть $c, e \in C$. Будем говорить, что $c \sim e \Leftrightarrow (c = e) \in T'$

14.26 Лемма

 \sim - отношение эквивалентности.

Доказательство: упражнение

14.27 Определение

 $\mathfrak{A}'=< A; \sigma'>$. В качестве A возьмём: $A=C/_{\sim}=\{[c]_{\sim}|c\in C\}$

- 1. Если $P^n\in\sigma',\ c_1\dots c_n\in C,\$ тогда $\mathfrak{A}'\models P([c_1]\dots[c_n]),\$ если $P(c_1\dots c_n)\in T'$
- 2. Если $f^n \in \sigma', c_1 \dots c_n \in C$, тогда $f([c_1] \dots [c_n]) = [e], \quad e \in C$, когда $(f(c_1 \dots c_n) = e) \in T'$
- 3. Если $d \in \sigma$, тогда $d^{\mathfrak{A}'} = [e], e \in C$, если выполнено $(d = e) \in T'$

14.28 Лемма (Опр.14.27 - корректно)

Доказательство:

```
f(c_1...c_n) \in T(\sigma), Fv(f(c_1...c_n)) = \varnothing
   \Longrightarrow \exists e \in C \text{ т.ч } f(c_1...c_n) = e \in T'
   Пусть d_1...d_n \in C, e, b \in C, [c_1] = [d_1]...[c_n] = [d_n], f(e_1...e_n) = e,
   f(d_1...d_n) = b \in T'. Покажем, что [e] = [b]
   \implies c_1 \sim d_1...c_n \sim d_n \implies c_1 = d_1...c_n = d_n \in T
   c_1 = d_1...c_n = d_n, f(c_1...c_n) = f(c_1...c_n) + f(c_1...c_n) = f(d_1...d_n)
доказательство(упр)
   \varphi(x_n...x_n) = (f(c_1...c_n) \vdash \varphi(d_1...d_n) - \text{аксиома}
   f(c_1...c_n) = f(c_1...c_n) \in T'(vnp)
   \implies f(c_1...c_n) = f(d_1...d_n) \in T
   e = f(c_1...c_n) \in T', e = f(c_1...c_n), f(c_1...c_n) = f(d_1...d_n) \vdash e = (d_1...d_n)
   e = f(d_1...d_n), f(d_1...d_n) = b \vdash e = b \Rightarrow e = b \in T \Rightarrow e \sim b.
  т.е [e] = [b]
   a) P^n \in \sigma', c_1...c_n, d_1...d_n \in C, [c_1] = [d_1]...[c_n] = [d_n],
   P(c_1...c_n) \in T Покажем что P(d_1...d_n) \in T
   \Rightarrow c_1 \sim d_1...c_n \sim d_n \Rightarrow c_1 = d_1...c_n = d_n \in T
   \varphi(x_1...x_n) = P(x_1...x_n)
   c_1 = d_1...c_n = d_n, P(c_1...c_n) \vdash P(d_1...d_n) \Rightarrow P(d_1...d_n) \in T'
   (a)d \in \sigma', c, e \in C, (d = c), (d = e) \in T'
   d^{\mathfrak{A}} = [c], d^{\mathfrak{A}} = [e] Покажем, что [c] = [e]
   d = c \vdash c = d, c = d, d = e \vdash c = e \text{ (viip)}
   T \vdash c = d \Rightarrow T \vdash c = e \Rightarrow c = e \in T \Rightarrow
   c \sim e \Rightarrow [c] = [e]
```

14.29 Лемма

Пусть
$$t \in T(\sigma), Fv(t) = Fv(q) = \emptyset$$
, тогда $\mathfrak{A}' \models (t=q) \Longleftrightarrow t=q \in T'$

14.30 Лемма

Пусть
$$P^n \in \sigma'$$
, $t_1...t_n \in T(\sigma)$, $Fv(t:) = \emptyset$, тогда $\mathfrak{A}' \models P(t_1...t_n) \iff P(t_1...t_n) \in T'$

14.31 Лемма

$$P^n \in \sigma', t_1 \dots t_n \in T(\sigma'), FV(t_i) = \emptyset$$

 $\mathfrak{A}' \models P(t_1 \dots t_n) \Leftrightarrow P(t_1 \dots t_n) \in T'$

14.32 Лемма

 $arphi\in S(\sigma')$, тогда $\mathfrak{A}'\vDasharphi\Leftrightarrowarphi\in T'$ Доказательство:

1.
$$\varphi = (t = q), \ \varphi = P(t_1, ..., t_n)$$

- 2. $ln\varphi = n, \, \forall \psi : ln\varphi < n$ выполено
 - а) $\varphi = (\varphi_1 \vee \varphi_2)$ $\mathfrak{A}' \models \Leftrightarrow \mathfrak{A}' \models \varphi_1$ или $\mathfrak{A}' \models \varphi_2 \Leftrightarrow (\text{по индукции})$ $\Leftrightarrow \varphi_1 \in T'$ или $\varphi_2 \in T' \Leftrightarrow (\text{по л. Хенкина}) (\varphi_1 \vee \varphi_2) \in T'$,т.е. $\varphi \in T'$
 - b) $(\varphi_1 \& \varphi_2)$ ymp
 - c) $(\varphi_1 \rightarrow \varphi_2)$ ymp
 - d) $\neg \varphi_1$ ynp
 - е) $\varphi = \exists \varphi_1(x)$ $\mathfrak{A}' \models \exists x \varphi_1(x) \Leftrightarrow \exists a(const) \in \mathfrak{A}' : \mathfrak{A}' \models \varphi_1(a) \Leftrightarrow \exists c \in C : \mathfrak{A}' \models \varphi_1[c] \Leftrightarrow (c = c) \in T'$ -упр $\Rightarrow c^{\mathfrak{A}'} = [c]$ $\exists c \in C : \mathfrak{A}' \models \varphi_1(c^{\mathfrak{A}'}) \Leftrightarrow \mathfrak{A}' \models \varphi_1(c) \Leftrightarrow (\text{по инд.}) \exists c \in C : \varphi_1(c) \in T' \Leftrightarrow \Leftrightarrow (\text{по л. Хенкина}) \exists x \varphi_1(x) \in T' \text{ т.е. } \varphi \in T'$
 - f) $\varphi = \forall x \varphi_1(x)$ ynp

14.33 Следствие

 $\mathfrak{A}' \vDash T'$

$$\overline{\forall \varphi \in T' \ \mathfrak{A}' \vDash \varphi}$$

$$T_0 \subseteq T' \Rightarrow \mathfrak{A}' \vDash T_0, \ T_0 = \Gamma' = \Gamma[\gamma] = [\Gamma]_{\gamma(x) \in D}^{x \in FV(x)}$$
Если $d \in D \to c \in C : d \sim c \to [c] = d^{\mathfrak{A}'}$
Рассмотрим $\gamma_0 : FV(\Gamma) \to c_{/\sim} = \{[c] | c \in C\}$

$$\gamma_0(x) = \gamma(x)^{\mathfrak{A}'}, \text{ если } \gamma(x) = d, \text{ то } \gamma_0(x) = d^{\mathfrak{A}'} = [c]$$
Если рассмотрим $\varphi(x_1, ..., x_n) \in \Gamma$, то $\gamma(x_i) = d_i \in D$, тогда $\varphi(d_1, ..., d_n) \in \Gamma' = T_0 \Rightarrow \mathfrak{A}' \vDash \varphi(d_1, ..., d_n) \Rightarrow \mathfrak{A}' \vDash \varphi(d_1^{\mathfrak{A}'}, ..., d_n^{\mathfrak{A}'}) \Rightarrow$

$$\mathfrak{A}' \vDash \varphi(\gamma_0(x_1), ..., \gamma_0(x_n))$$
, T.e. $\mathfrak{A}' \vDash \varphi[\gamma_0]$, $\gamma_0 : FV(\Gamma) \to |\mathfrak{A}'|$
 $| \Rightarrow \mathfrak{A}' \vDash \Gamma[\gamma_0]$, $\Gamma \subseteq F(\sigma)$, $\mathfrak{A} = \mathfrak{A}'\Gamma[\gamma_0]$

14.34 Определение

 $\Gamma\subseteq F(\gamma)$, Γ - совместна, если $\exists\mathfrak{A}\in K(\sigma),\ \exists\gamma:FV(\Gamma)\to |\mathfrak{A}|$, в т.ч. $\mathfrak{A}\vDash\Gamma[\gamma]$

 Γ - локально совместима, если:

 \forall конечного $\Gamma_0 \subseteq \Gamma$, Γ_0 - совместима

14.35 Теорема (Мальцева о компактности)

Множество формул совместно \Leftrightarrow когда оно локально совместно Доказательство:

$$(\Rightarrow)$$
 Γ - совместно $\Rightarrow \exists \mathfrak{A} \in K(\sigma)$, $\exists \gamma : FV(\Gamma) \to |\mathfrak{A}| : \mathfrak{A} \models \Gamma[\gamma]$ $\Gamma_0 \subseteq F$, Γ_0 - конечная $\Rightarrow \mathfrak{A} \models \Gamma_0[\gamma]$ - упражение $\Rightarrow \Gamma_0$ - совместна $|\Rightarrow \Gamma$ - локально совместна

 (\Leftarrow) Γ - локально совместна, пусть Γ - не совместна \Rightarrow $\Gamma \vdash \Rightarrow \exists \varphi_1, ..., \varphi_n \in \Gamma : \varphi_1, ..., \varphi_n \vdash$ - доказуемо

 $\Gamma_0 = \{\varphi_1, ..., \varphi_n\}$ - конечно, $\Gamma_0 \subseteq \Gamma$

 $\Rightarrow \Gamma_0 \text{ -- cobmectha } \exists \mathfrak{A} \in K(\sigma) \text{ , } \exists \gamma : FV(\Gamma_0) \rightarrow |\mathfrak{A}| : \mathfrak{A} \models \Gamma_0[\gamma]$

 $\Rightarrow \mathfrak{A} \vDash \varphi_{1}[\gamma] ... \mathfrak{A} \vDash \varphi_{\mathfrak{n}}[\gamma]$

С другой стороны: $\varphi_1,...,\varphi_n \vdash$ - доказуемо $\Rightarrow \varphi_1,...,\varphi_n \vdash$ - т.и. \Rightarrow на $\mathfrak A$ при γ - ист. $\Rightarrow \exists i \leq n : \mathfrak A \nvDash \varphi_i[\gamma]$ - противоречие $\Rightarrow \Gamma$ - совместно

14.36 Теорема (Геделя о полноте)

Любая тождественно истинная формула доказуема

Доказательство:

Пусть φ - т.и. , φ - не доказума

$$\begin{array}{l} \stackrel{\neg \varphi \vdash}{\vdash \varphi} \Rightarrow \text{если } \neg \varphi \vdash \text{- доказуемо, то} \vdash \varphi \text{- доказуемо , т.е. } \varphi \text{- доказуемо} \\ | \Rightarrow \neg \varphi \text{- не доказуемо} \Rightarrow \{ \neg \varphi \} \not \vdash \Rightarrow \exists \mathfrak{A} \in K(\sigma(\varphi)) \text{ , } \exists \gamma : FV(\varphi) \rightarrow |\mathfrak{A}| : \mathfrak{A} \vDash \neg \varphi[\gamma] \Rightarrow \mathfrak{A} \nvDash \varphi[\gamma] \text{- противоречие.} \end{array}$$

14.37 Следствие

Формула доказуема ⇔ она тождественно-истинна Доказательство:

- (⇒) теорема о корректности
- (⇐) теорема Геделя

14.38 Теорема

f – доказуема $\Leftrightarrow S$ – тождественное истинна

Доказательство:

- (⇒) теорема о корректности
- (⇐) Теорема о полноте (аналогично логике высказываний)

14.39 Теорема (Мальцева о расширении)

 $\Gamma \subseteq S(\sigma)$, $\mathfrak{A} \in \mathsf{K}(\sigma)$, \mathfrak{A} - бесконечна, $\mathfrak{A} \models \Gamma$ Тогда \forall кардинала $\alpha \exists \mathfrak{B} \in K(\sigma)$, такая что $\mathfrak{B} \models \Gamma$, $||\mathfrak{B}|| \geq \alpha$

Доказательство: C - множество констант, $C \cap \sigma = \emptyset$, $||C|| = \alpha$

$$\Gamma^{'} = \{ \neg(c=d) | c, d \in C, c \neq d \}, \Gamma^{''} = \Gamma \cup \Gamma^{'}$$

Покажем Γ'' – локально-совместна. $\Gamma_0'' \subseteq \Gamma'', \Gamma_0''$ – конечна. $\Gamma_0 = \Gamma_0'' \cap \Gamma, \Gamma_0' = \Gamma_0'' \cap \Gamma'$. $\Gamma_0'' = \Gamma_0 \cup \Gamma_0', \Gamma_0, \Gamma_0'$ – конечны, $\Gamma_0 \subseteq \Gamma, \Gamma_0' \subseteq \Gamma'$

$$C_0 = C \cap \sigma(\Gamma_0')$$
- конечно, $C_0 = \{d_1, \dots, d_n\}, \Gamma_0' = \{\neg (d_i = d_j) | i \neq j\}$

$$\sigma' = \sigma \cup C, \mathfrak{A}' \in K(\sigma') : \mathfrak{A}' \upharpoonright \sigma = \mathfrak{A}$$

 $\mathfrak A$ - бесконечна $\Rightarrow \exists b_1, \dots, b_n \in \mathfrak A' : b_i
eq b_j$ при i
eq j

$$d_i^{\mathfrak{A}'} = b_i \Rightarrow \mathfrak{A}' \models \Gamma \Rightarrow \mathfrak{A}' \models \Gamma_0 : \mathfrak{A}' \models \Gamma_0' \Rightarrow \mathfrak{A}' \models \Gamma_0'' \Rightarrow \Gamma_0'' - \text{ совместна}$$

 \Rightarrow Γ'' - локально-совместна \Rightarrow Γ'' - совместна $\exists \mathfrak{B}' \in K(\sigma') : \mathfrak{B}' \models \Gamma'' \Rightarrow \mathfrak{B}' \models \Gamma, \mathfrak{B}' \models \Gamma'$

$$\mathfrak{B} = \mathfrak{B}' \upharpoonright \sigma \Rightarrow \mathfrak{B} \models \Gamma. \ C' = \{d^{\mathfrak{A}'} | d \in C\} \subseteq |\mathfrak{B}|' = |\mathfrak{B}|$$

$$\mathfrak{B}^{'}\models\Gamma^{'}\Rightarrow \forall c,d\in C,$$
 если $c\neq d,\Rightarrow c^{\mathfrak{B}^{'}}\neq d^{\mathfrak{B}^{'}}\Rightarrow ||c^{'}||=\alpha$

$$C' \subseteq |\mathfrak{B}| \Rightarrow ||\mathfrak{B}''|| \ge \alpha \Rightarrow ||\mathfrak{B}|| \ge \alpha$$

14.40 Следствие

Пусть $\mathfrak{A}\in K(\sigma),\ \mathfrak{A}$ — бесконечна, α — кардинал, тогда $\exists\mathfrak{B}\in K(\Gamma)$ т. ч. $\mathfrak{A}\equiv\mathfrak{B},\ \|\mathfrak{B}\|\leq\alpha$

Доказательство:

 $\Gamma \vDash Th\,\mathfrak{A}$, тогда $\mathfrak{A} \vDash Th\,\mathfrak{A}$, \mathfrak{A} – бесконечна $\Rightarrow \exists\mathfrak{B}: \mathfrak{B} \vDash Th\,\mathfrak{A}$ и $\|\mathfrak{B}\| \geq \alpha \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$

14.41 Замечание

 $\mathfrak{A}, \mathfrak{B} \in K(\sigma), \mathfrak{A}$ – конечна, тогда $\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \mathfrak{A} \simeq \mathfrak{B}$ Доказательство: (упражнение)

14.42 Предложение (О нестандартной модели N)

 $\mathfrak{N}=<\mathbb{N};\leq,+,\bullet,0,1>$, тогда $\exists\mathfrak{M}\equiv\mathfrak{N}$ и найдется $c\in\mathfrak{M}$, такие что $\forall n\in$ $\mathbb{N} \underbrace{1+1+\ldots+1}_{n} \le c$

Доказательство:

$$\overline{\Gamma = Th(\mathfrak{N}), \, \sigma = \sigma(\mathfrak{N})} = <\leq, +, \cdot, 0, 1 >$$

$$\sigma' = \sigma \cup \{c\}, \text{ при } n \in \mathbb{N} \ \varphi_n = (\underbrace{1+1+\ldots+1}_{n} \leq c), \ \Gamma' = \{\varphi_n | n \in \mathbb{N}\},$$

 $\Gamma'' = \Gamma \cup \Gamma'$.

Покажем, что Γ'' - локально совместна.

Рассмотрим $\Gamma_0''\subseteq\Gamma',\ \Gamma_0''$ - конечно, $\Gamma_0=\Gamma_0''\cap\Gamma,\ \Gamma_0'=\Gamma_0''\cap\Gamma',\ \Gamma_0,\Gamma_0'$ - конечны, $\Gamma_0\subseteq\Gamma,\ \Gamma_0'\subseteq\Gamma,\ \Gamma_0''=\Gamma_0\cup\Gamma_0'$.

 $m = max\{n|\varphi_n \in \Gamma_0'\} \Rightarrow \Gamma_0' \subseteq \{\varphi_1 \dots \varphi_m\}, \mathfrak{N}' \in K(\sigma')$ такая, что $\mathfrak{N} \upharpoonright$ $\sigma = \mathfrak{N}$.

Положим $c^{\mathfrak{N}'} = m \Rightarrow \forall n \leq m \ \mathfrak{N}' \models \varphi_n \Rightarrow \mathfrak{N}' \models \Gamma_0; \ \mathfrak{N}' \models \Gamma \Rightarrow \mathfrak{N}' \models \Gamma_0$ $\Rightarrow \mathfrak{N}' \models \mathfrak{N}''$

 $\Rightarrow \Gamma^{''}$ - локально совместна $\Rightarrow \Gamma^{''}$ - совместна $\Rightarrow \exists \mathfrak{M}' \in K(\sigma^{'})$, такая что $\mathfrak{M}' \models \Gamma'' \Rightarrow \mathfrak{M}' \models \Gamma', \mathfrak{M}' \models \Gamma.$

Положим $\mathfrak{M} = \mathfrak{M}' \upharpoonright \sigma \Rightarrow \mathfrak{M} \models \Gamma \Rightarrow \mathfrak{M} \equiv \mathfrak{N}.$

$$c = c^{\mathfrak{M}'} \Rightarrow \forall n \, \mathfrak{M}' \models \varphi_n \Rightarrow \forall n \, \underbrace{1 + 1 + \ldots + 1}_{n} \leq c.$$

14.43 Замечание

 $\mathfrak{M} \equiv \mathfrak{N}$, поэтому в \mathfrak{M} нет наибольшего элемента: $\mathfrak{N} \nvDash \exists x \forall y \ (x \leq y) \Rightarrow$ $\mathfrak{M} \nvDash \exists y \forall x \ (x < y)$

14.44 Определение (Аксиоматизруемый класс)

Пусть $K \subseteq K(\sigma)$. Класс K – аксиоматизируем, если $\exists \Gamma \subseteq S(\sigma) : K =$ $K(\Gamma) = \{ \mathfrak{A} \in K(\sigma) \} | \mathfrak{A} \models \Gamma \} = \{ \mathfrak{A} \in K(\sigma) | \forall \varphi \in \Gamma \, \mathfrak{A} \models \varphi \}$

15 Исчисление предикатов Гильбертовского типа

15.1 Определение (Аксиомы, правила вывода)

Аксиомы:

- 1. $(\varphi \to (\psi \to \varphi))$
- 2. $((\varphi \to \psi) \to ((\varphi \to (\psi \to \xi)) \to (\varphi \to \xi))$
- 3. $((\varphi \& \psi) \to \varphi)$
- 4. $((\varphi \& \psi) \to \psi)$
- 5. $((\varphi \to \psi) \to ((\varphi \to \xi) \to (\varphi \to (\phi \& \xi)))) \to \xi))))$
- 6. $((\varphi \to (\varphi \lor \varphi))$
- 7. $((\varphi \to (\varphi \lor \psi))$
- 8. $((\varphi \to \xi) \to ((\psi \to \xi) \to ((\varphi \lor \psi) \to \xi)))$
- 9. $((\varphi \to \psi) \to ((\psi \to \neg \psi) \to \neg \varphi))$
- 10. $(\neg \neg \varphi \rightarrow \varphi)$
- 11. $(\forall x \varphi \to [\varphi]_t^x)$
- 12. $([\varphi]_t^x) \to \exists x \varphi$
- 13. (x = x)
- 14. $((x = y) \to ([\varphi]_x^z \to [\varphi]_y^z))$

Правила вывода:

$$\frac{\varphi; \varphi \to \psi}{\psi} \qquad \frac{\varphi \to \psi}{\varphi \to \forall x \psi} \qquad \frac{\psi \to \varphi}{\exists x \psi \to \varphi} \qquad x \notin FV(\varphi)$$

15.2 Определение (Доказательство, доказуемая формула)

Последовательность $\varphi_1, \dots, \varphi_n$ называется **доказательством**, если каждая φ_i является аксиомой, либо получена из предыдущих однократным применением правил вывода.

 φ - доказуема, если существует доказательство $\varphi_1, \dots, \varphi_n$ заканчивающееся этой формулой.

15.3 Определение (Вывод)

Выводом φ из Γ называется последовательность $\varphi_1, \ldots, \varphi_n = \varphi$, в которой каждая φ_i является аксиомой, либо принадлежит множеству Γ , либо получена из предыдущих однократным применением правил вывода. Если существует вывод φ из Γ , то говорят, что φ выводима из Γ и обозначают $\Gamma \rhd \varphi$.

15.4 Теорема (о дедукции) (б. д.)

$$\Gamma \cup \{\varphi\} \rhd \psi \Leftrightarrow \Gamma \rhd (\varphi \to \psi)$$

15.5 Следствие

$$\{\varphi_1,\ldots,\varphi_n\} \rhd \psi \Leftrightarrow \rhd (\varphi_1 \to (\varphi_2 \to \ldots (\varphi_n \to \varphi)\ldots))$$

15.6 Теорема (б. д.)

- 1. $\{\varphi_1,\ldots,\varphi_n\}$ \triangleright ψ \Leftrightarrow $\varphi_1,\ldots,\varphi_n$ \vdash ψ доказуема в секв. исч. предикатов
- 2. $\triangleright \varphi \Leftrightarrow \vdash \varphi$ доказуема в секв. исч. предикатов

16 Эквивалентность классов вычислимых функций

16.1 Предложение (Вычислимые на машине Тьюринга функции)

Следующие функции являются правильно вычислимыми на машине Тьюринга:

- 1. 0(x) = 0
- 2. S(x) = x + 1
- 3. $I_n^m(x_1, \dots, x_n) = x_m$

16.2 Предложение

Пусть $f(x_1,\ldots,x_n), g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m)$ - правильно вычислимы на машине Тьюринга. Тогда $h(x_1,\ldots,x_m)=f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m))$ - ПВТ.

Доказательство:

Пусть F вычисляет f, G_1, \ldots, G_n вычисляет g_1, \ldots, g_n . Тогда рассмотрим

16.3 Предложение (б. д.)

Пусть f получена из g и h при помощи оператора примитивной рекурсии. Пусть g и h - ПВТ. Тогда f - ПВТ.

16.4 Предложение (б. д.)

Пусть $f(x_1,...,x_n) = \mu y[g(x_1,...,x_n,y)=0], g$ - ПВТ. Тогда f - ПВТ.

16.5 Теорема (Вычислимость ЧРФ)

 $\mathsf{ЧР}\Phi\subseteq\mathsf{\Pi}\mathsf{BT},\ \mathsf{т}.\ e.$ каждая $\mathsf{ЧP}\Phi$ является правильно вычислимой на машине Тьюринга.

Доказательство: индукция по построению ЧРФ (упр.)

16.6 Основная теорема арифметики

 $\forall n \in \mathbb{N} \; \exists !$ разложение $n=q_1^{k_1}x\dots q_m^{k_m}$ такое, что q_1,\dots,q_m - простые, $q_1<\dots< q_m, \, \forall i \leq n, K_i \neq 0$

16.7 Определение

Пусть $a_1, \ldots, a_n \in \mathbb{N}$. Тогда $\gamma(a_1, \ldots, a_n) = 2 \cdot p_1^{a_1+1} \cdot \cdots \cdot p_n^{a_n+1}$, где $P_0 = 2, p_1 = 3, p_2 = 5 \ldots$

16.8 Определение (характеристическая функция)

Пусть
$$B\subseteq\mathbb{N}, \chi_B:\mathbb{N}\to\{0,1\}, \chi_B$$
—примитивное множество
$$\chi_B(x)=\begin{cases} 1, & x\in B\\ 0, & x\notin B \end{cases}$$
-характеристическая функция множества $B.$
$$A_1=\{\gamma(S)|S\in\{0,1\}^*\}$$

16.9 Предложение

$$\chi_{A_1}$$
 – $\Pi P\Phi$.

16.10 Определение (номер машинного слова)

Рассмотрим машинное слово
$$\alpha q: j\beta$$
, тогда $\gamma(\alpha q_1 j\beta) = 2^i * 3^i * 5^j * 7^{\gamma(\alpha)} * 11^{\gamma(\beta)}$

16.11 Определение (множество номеров машинных слов)

$$A_2 = \{\gamma(S)|S$$
-машинное слово $\}$

16.12 Предложение

$$\chi_{A_2}$$
- $\Pi P\Phi$.

16.13 Определение

Рассмотрим команды
$$k_{ij},q_ij \to q_sl\Delta, \Delta = \begin{cases} L \\ R \\ \emptyset \end{cases}$$

$$\gamma(k_{ij}) = p_{c(i,j)}^{\delta}, \ \delta = 2^s 3^L 5^{\xi}, \xi = \begin{cases} 1 & \Delta = \emptyset \\ 2 & \Delta = R \\ 3 & \Delta = L \end{cases}$$

16.14 Определение (номер программы МТ)

Пусть
$$\Pi$$
 - программа машины Тьюринга, $\gamma(\Pi)=2^33^n\Pi\gamma(k_{ij})$ $n=max\{i\mid q_i$ встречается в $\Pi\}$ $k_{ij}\in\Pi$

16.15 Предложение (множество номеров программ МТ)

Пусть $A_3 = \{\gamma(\Pi) | \Pi$ -программа машины Тьюринга $\}$,тогда χ_{A_3} -ПРФ Без Доказательства.

16.16 Определение

$$1)t(x,y) = \begin{cases} \gamma(\alpha'q_{\mathbf{i}}\alpha\beta'), & \text{если } x = \gamma(\Pi), y = \gamma(\alpha q_{\mathbf{i}}j\beta) \\ & \Pi: \alpha q_{\mathbf{i}}j\beta \xrightarrow[1 \text{ mar}]{} \alpha'q_{e}\alpha\beta' \\ 0, & \text{иначе} \end{cases}$$

$$2)T(x,y,z,t) = \begin{cases} 1, & \text{если } x = \gamma(\Pi), y = \gamma(\alpha q_i j \beta) \\ \Pi : \alpha q_i j \beta \xrightarrow[\leq t \text{ шагов}]{} \alpha' q_0 0 1^{z+1} 0 \beta' \\ 0 & \text{иначе} \end{cases}$$
$$3)T^n(a,x_1 \dots x_n,z,t) = \begin{cases} 1, & \text{если } \alpha = \gamma(\Pi) \\ \Pi : q_1 0 1^{x_1+1} 0 \dots 0 1^{x_n+1} 0 \xrightarrow[\leq t \text{ шагов}]{} \alpha q_0 0 1^{z+1} 0 \beta \\ 0, & \text{иначе} \end{cases}$$

16.17 Предложение

функции $t, T, T^n - \Pi P \Phi$ Без доказательства.

16.18 Теорема (О нормальной форме Клини)

Пусть $f(x_1 \dots x_n)$ -вычислима на машине Тьюринга. Тогда $\exists \Pi P\Phi$ $g(x_1 \dots x_n, y)$ такая что

$$f(x_1 \dots x_n) = l(\mu y[g(x_1 \dots x_n, y) = 0]).$$

Доказательство:

Пусть $f(x_1 \dots x_n)$ вычислима на машине Тьюринга с программой $\Pi, \alpha = \gamma(\Pi)$. Тогда $g(x_1 \dots x_n, y) = |T^n(\alpha, x_1 \dots x_n, l(y), r(y)) - 1| - \Pi P \Phi(y \pi p)$.

Покажем, что $f(x_1...x_n) = l(\mu y[g(x_1...x_n, y) = 0])$. Рассмотрим кортеж $x_1...x_n$:

$$1)f(x_1...x_n)$$
—не определена, тогда $\forall y\ T^n(\alpha,x_1...x_n,l(y),r(y))\neq 1\Rightarrow g(x_1...x_n,y)\neq 0 \Rightarrow l(\mu y[g(x_1...x_n,y)])$ - не определена $\Rightarrow f(x)=l[\mu y[g(...)]$

$$2)f(x_1 \dots x_n) = z \Rightarrow \exists t \in \mathbb{N}$$
 такое что $\Pi: q_1 01^{x_1+1} 0 \dots 01^{x_n+1} \xrightarrow[t \text{ шагов}]{} \alpha q_0 01^{z+1} 0\beta$

Положим:

$$y_0 = c(z,t) \Rightarrow T^n(\alpha, x_1 \dots x_n, l(y_0), r(y_0)) = 1$$
 т.к $l(y_0) = z, r(y_0) = t \Rightarrow g(x_1 \dots x_n, y_0) = 0$

Пусть для
$$y_1: g(x_1 \dots x_n, y_1) = 0 \Rightarrow T^n(\alpha, x_1 \dots x_n, l(g_1), r(y_1)) = 1 \Rightarrow l(y_1) = z, \Gamma(y_1) \geq t \Rightarrow y_1 \geq y_0(\text{упр}) \Rightarrow g_0 = \mu y[g(x_1 \dots x_n, y)] = 0 \Rightarrow l(\mu y[g(x_1 \dots x_n, y) = 0]) = l(y_0) = z$$

16.19 Следствие

Любая функция вычислиммая на машине Тьюринге является ЧРФ. Доказательство: Упражнение

16.20 Следствие

Пусть $f(x_1 \dots x_n)$ - ЧРФ, тогда \exists ПРФ $g(x_1 \dots x_n, y)$ так что выполнено : $f(x_1 \dots x_n) = l(\mu y [g(x_1 \dots x_n, y) = 0])$

Доказательство:

Пусть f-ЧРФ $\Rightarrow f$ правильно вычислима на машине Тьюринга $\Rightarrow f$ вычислима на машине Тьюринга, \Rightarrow по теореме о нормальной форме Клини $\exists g | f(x) = l(\mu y [g(x,y) = 0]).$

16.21 Основная теорема о вычислимых функциях

 $\mathsf{HP}\Phi=\mathsf{B}\mathsf{ы}\mathsf{ч}.$ на машине Тьюренга $(\mathsf{BT})=\mathsf{\Pi}\mathsf{BT}$

Доказательство:

 $\Pi P\Phi \subseteq \Pi BT \subseteq BT \subseteq \Psi P\Phi \Rightarrow$ все классы совпадают

16.22 Следствие

Любая ОРФ может быть получена из простейших функций применением операторов примитивной рекурсии, суперпозиции и минимизации таким образом, чтобы на каждом шаге получались только ОРФ.

Доказательство:УПР.

16.23 Следствие

Класс ${\rm OP\Phi}$ совпадает с классом всюду определённых функций , вычислимых на машине Тьюринга, а также совпадает с классом всюду определённых функций, Правильно вычислимых на машине Тьюринга.

Доказательство:УПР.

17 Универсальные вычислимые функции

17.1 Определение (Универсальная функция)

Пусть K - некоторое множество частичных функций $f: \mathbb{N}^{\ltimes} \to \mathbb{N}$ Функция $f(x_0, x_1, \dots, x_n)$ называется универсальной функцией для класса K , если:

- a) $\forall m \in \mathbb{N} \ f(m, x_1, \dots, x_n) \in K$
- б) $\forall g(x_1, \dots, x_n) \in K \exists m \in \mathbb{N}: \ \forall x_1...x_n \ g(x_1, \dots, x_n) = f(m, x_1, \dots, x_n),$ то есть $K = \{f(m, x_1, \dots, x_n) | m \in \mathbb{N}\}$

17.2 Замечание (О конечности класса функции)

Класс K имеет универсальную функцию \iff K счетен либо конечен Док-во (упр)

17.3 Следствие (Континуальность класса)

Если класс K континулален , то он не имеет универсальной функции Доказательство: (упр)

17.4 Следствие

 $\forall n$ класс всех частичных n - местных функций не имеет универсальных функций

Доказательство: (упр)

17.5 Следствие (ПРФ, ОРФ, ЧРФ)

ПРФ,ОРФ,ЧРФ имеют универсальные функции

Доказательство:

 $\Pi P \Phi \subset O P \Phi \subset \Psi P \Phi = \Pi B T$

A - алфавит (счетный). Любая программа $\Pi \in A^* = \bigcup_{\mathbf{n}} A^{\mathbf{n}} =$

 $\{(a_1,\ldots,a_n)|n\in\mathbb{N},a_i\in A\}$

 A^* - счетно , то количество программ счётно количество функций ПВТ - счётно \Longrightarrow ПРФ ,ОРФ,ЧРФ - счётны.

17.6 Замечание (О универсальности)

Пусть $h: \mathbb{N} \to \mathbb{N}$ -взаимно однозначно, $f(x_0, x_1, \dots, x_n)$ -универсальная для K, тогда $f(h(x_0), x_1, \dots, x_n)$ - универсальная для K Доказательство: (упражнение)

17.7 Следствие

- а) если K счётен , то он имеет континуум универсальных функций
- б) Классы ПРФ, ОРФ, ЧРФ имеют континуум универсальных функций Доказательство: (Упр.)
- а) Возьмем множество отображений $h: \mathbb{N} \to \mathbb{N}$ таких, что в \mathbb{N} выбирается не конечное и не коконечное подмножество, в нем меняем четные и нечетные элементы местами сдвигом. Количество таких подмножеств континуально, значит, таких отображений h тоже. По 17.6

все такие $f(h(x_0), x_1, \ldots, x_n)$ будут являтся универсальными для K, и, т. к. мощность множества такихh континуум, то таких функций тоже континуум, даже если предположить, что $\exists h_1, h_2 | f(h_1(x_0), x_1, \ldots, x_n) = f(h_2(x_0), x_1, \ldots, x_n)$, то таких h не более, чем счетно, потому что не более чем счетно количество $m_1, \ldots | f(m_i, x_1, \ldots, x_n) = f(m_j, x_1, \ldots, x_n)$, т.к. $m \in \mathbb{N}$.

б) ПРФ \subseteq ОРФ \subseteq ЧРФ = ПВТ имеют счетную мощность. Переходим к п. (a)

17.8 Теорема (ПР Φ^n , ОР Φ^n , ЧР Φ^{n-} n-местные)

- а) \nexists ПРФ, универсальной для ПРФⁿ
 - б) Класс $\mathrm{OP}\Phi^n$ не имеет универсальной $\mathrm{OP}\Phi$
 - в) Класс $\mathrm{OP}\Phi^n$ не имеет универсальной $\mathrm{ЧP}\Phi$ Доказательство
 - а) От противного . Пусть $\exists \Pi P\Phi f(x_o...x_n)$ универсальная для $\Pi P\Phi^n$ $g(x_1...x_n) = f(x_1,x_1,x_2..x_n) + 1 \Pi P\Phi$, так как $f \Pi P\Phi$.

$$g(x_1...x_n) \in \Pi P\Phi^n \Longrightarrow \exists m : g(x_1...x_n) = f(m, x_1...x_n)$$

Тогда f(m..m) = g(m...m) = f(m...m) + 1 противоречие

- б) Аналогично (упр) (ПРФ заменить на ОРФ)
- в) От противного . Пусть $f(x_0...x_n)$ —универсальная для ОРФ"

f–ЧРФ. Рассмотрим произвольный кортеж $m_o...m_n \in \mathbb{N}$.

Тогда $f(m_0,x_1...x_n)\in OP\Phi^n$ \Longrightarrow всюду определен $\Longrightarrow f(m_0,m_1...m_n)$ – определена $\Longrightarrow f$ - $OP\Phi$, универсальная для $OP\Phi^n$ - противоречие

17.9 Теорема (Класс ЧР Φ^n имеет универсальную ЧР Φ)

Доказательство:

Рассмотрим $f(x_0...x_n) = l(\mu y [T^n|x_0...x_n, l(y), r(y) - 1| = 0] \Longrightarrow f$ - ЧРФ \Longrightarrow

- a) $\forall m \ f(m, x_1...x_n) \text{ЧР}\Phi \Rightarrow f(m, x_1...x_n) \in \text{ЧР}\Phi^n$
- б) $g(x_1..x_n) \in \mathsf{ЧР}\Phi \Longrightarrow g$ -ПВТ \Longrightarrow Эпрограмма П | вычесляет g .

Тогда $m = \gamma(\Pi) \Longrightarrow g(x_1...x_n) = f(m, x_1...x_n)$

17.10 Определение

$$\varphi^2(x_0, x_1) = l(\mu y[|T^1(x_0, x_1, l(y), r(y) - 1| = 0])$$

17.11 Следствие

$$\varphi^{2}(x_{0},x_{1})$$
 - ЧРФ, универсально для ЧРФ $^{n}(\text{упр})$

17.12 Определение

$$\varphi^{n+1}(x_0...x_n) = \varphi^2(x_0, c^n(x_1...x_n))$$

17.13 Предложение

 φ^{n+1} - ЧРФ, универасальное для ОРФⁿ

Доказательство:

$$\overline{\text{Очевидно, что }\varphi^{n+1}}$$
-ЧРФ (упр) \Longrightarrow

- а) Пусть $m \in \mathbb{N} \Longrightarrow \varphi^{n+1}(m, x_1...x_n)$ -ЧРФ $\Longrightarrow \in \mathsf{ЧР}\Phi^n$
- б) Пусть $g(x_1...x_n) \in \text{ЧР}\Phi^n$. Тогда рассмотрим $h(x) = g(c_1^n(x)...c_n^n(x))$ $\Longrightarrow g(x_1...x_n) = h(c(x_1...x_n)) \text{упр} \Longrightarrow h$ $\text{ЧР}\Phi \in \text{ЧР}\Phi^1 \Longrightarrow \exists m: h(x) = \varphi^2(\mathbf{m},\mathbf{x}) \Longrightarrow g(x_1...x_n) = h(c(x_1...x_n)) = \varphi^2(m_1c(x_1...x_n)) = \varphi^{n+1}(m,x_1,\ldots,x_n) \Longrightarrow \varphi^{n+1}$ универсальная для $\text{ЧР}\Phi^n$

17.14 Определение (Клиниевские скобки)

$$\begin{split} [x,y] &= c(l(x),c(r(x),y)) \\ &[x_1...x_{n+1}] = [[x_1...x_n]\,,x_{n+1}] \\ &[K]_{21} = c(l(k),l(r(k)) \\ &[K]_{22} = r(r(k)) \\ &[K]_{n+1,i} = [[K]_{21}]_{n,i}\,,\,i \leq n \\ &[K]_{n+1,n+1} = [K]_{22} \end{split}$$

17.15 Предложение

Все функции из определения 17.14 являются ПРФ Доказательство: (упражнение)

17.16 Предложение

- 1. $[[x_1...x_n]]_{ne} = x_e$
- 2. $[[K]_{n1} \dots [K]_{nn}] = K$
- 3. $[]: \mathbb{N} \to \mathbb{N}$ —взаимно однозначно

Доказательство: (упражнение)

17.17 Предложение

- 1. $[c(x_0, x_1), x_2] = c(x_0, c(x_1, x_2))$
- 2. $c^n(c(x_1, x_2), x_3...x_{n+1}) = c^{n+1}(x_1...x_{n+1})$
- 3. $[x_1...x_n] = [[x_1...x_m], x_{m+1}...x_n]$

Доказательство:

- а),б) упражнение
- в) Берем $[x_1..x_n] = [[x_1..x_{n-1}], x_n] = = [[[x_1..x_{n-1}], x_n], x_n] = = [[[x_1..x_n], x_{m+1}], x_n] = [[x_1...x_m], x_{m+1}] ...] x_n]$

17.18 Определение Клиенивские универсальные функции

$$K^{2}(x_{0}, x_{1}) = \varphi^{2}(l(x_{0}), c(r(x_{0}), x_{1}))$$

$$K^{n+1}(x_{0}...x_{n}) = K^{n}([x_{0}, x_{1}], x_{2}...x_{n})$$

17.19 Предложение

$$K^n(c(x_0, x_1), x_2...x_n) = \varphi^{n+1}(x_0....x_n)$$

Доказательство: (упражнение)

17.20 Теорема

 \mathbf{K}^{n+1} — универсальное для ЧР $\Phi^{\mathbf{n}}$

Доказательство:

- $\overline{a) K^{n+1} \Psi P \Phi} \Longrightarrow \forall m K^{n+1}(m, x_1...x_n) \in \Psi \Phi P^n$
- б) Пусть $g(x_1...x_n) \in \text{ЧР}\Phi^n$. Рассмотрим $f(y, x_1...x_n) = o \cdot y + g(x_1...x_n) = g(x_1...x_n) \Longrightarrow f(y, x_1...x_n) \in \text{ЧР}\Phi^{n+1} \Longrightarrow$

$$\exists a \in \mathbb{N} : f(y, x_1..x_n) = \varphi^{n+2}(a, y, x_1..x_n)$$

Тогда
$$K^{n+1}(c(a,y),x_1...x_n) = \varphi^{n+2}(a,y,x_1...x_n) = f(y,x_1...x_n) = g(x_1...x_n)$$
.

$$\forall k : m_k = c(a, k)$$

Если рассмотрим $m_0=c(a,0),$ то $g(x_1...x_n)=K^{n+1}(m_0,x_1...x_n)\Longrightarrow K^{n+1}$ -универсальное для ЧРФⁿ

17.21 Следствие

Любая ЧРФ имеет бесконечно много клиниевших номеров , т.е $\forall g \in \text{ЧРФ}^n$ \exists бесконечно много $m_k: g(x_1...x_n) = K^{n+1}(m_k, x_1...x_n)$

17.22 Теорема (S-m-n)

 $\forall m,n \in \mathbb{N}$ существует ПРФ $S^n_m(x_0...x_n): K^{n+m+1}(x_0...x_{m+n}) = K^{m+1}(S^n_m(x_0...x_m),x_{n+1}...x_{n+m})$

Доказательство:

Положим $S_m^n(x_0..x_n)=[x_0..x_n],$ тогда $K^{n+m+1}(x_0...x_{n+m})=K^{n+m}([x_0,x_1]),x_2...x_{n+m})=K^{n+m-1}([[x_0,x_1],x_2]...x_{n+m})=...=K^{m+1}([[x_0,x_1],x_2],x_n]x_{n+1},...x_{n+m})=K^{m+1}([x_0...x_n],x_{n+1},x_{n+m})$

17.23 Теорема (О неподвижной точке)

Для любой ЧРФ $h(x_1...x_{n+1})$ существует ПРФ $g(x_1...x_n)$ так что $K^2(h(x_1...x_n,g(x_1...x_n),y)$

Доказательство:

Рассмотрим $K^2(h(x_1...x_n,[z,z,x_1....x_n],y)$ —ЧРФ $\Longrightarrow \exists a \in \mathbb{N}$ такая что $K^2(h(x_1...x_n,[z,z,x_1...x_n]),y) = K^{n+3}(a,z,x_1...x_n,y)$ $g(x_1...x_n) = [a,a,x_1...x_n]$ - ПРФ. Тогда $K^2(h(x_1....x_n,[a,a,x_1...x_n],y) = K^{n+3}(a,a,x_1...x_n,g) = K^2([a,a,x_1...x_n],y) = K^2(h(x_1...x_n,g(x_1...x_n)),y)$

17.24 Определение

Обозначим $\mathfrak{A}(n) = K^2(n,x) \mathfrak{A} : \mathbb{N} \to \mathsf{ЧР}\Phi$

17.25 Следствие

 $\forall \mathsf{ЧР\Phi}\ h(x)\exists m\in\mathbb{N}:\mathfrak{A}(h(m))=\mathfrak{A}(m)$

17.26 Теорема (Райса)

Рассмотрим $K\subseteq \mathrm{ЧР}\Phi'$, $K\neq\emptyset,K\neq\mathrm{ЧР}\Phi^n$ Тогда множество $M=\{n|\mathfrak{A}(\mathfrak{n})\in K\}$ не рекурсивно , т.е $\chi_{\mathrm{M}}(x)=\begin{cases}1,&x\in M\\0,&x\notin M\end{cases}$

 χ_m -не ЧРФ (не ОРФ)

Доказательство:

От противного .Пусть $\chi_m(\mathbf{x})$ —ЧРФ \Longrightarrow ОРФ. Т. к. $K \neq \emptyset \Rightarrow M \neq \emptyset \Rightarrow \exists a \in M$. Т. к. $K \neq \mathsf{ЧР\Phi}^n \Rightarrow \exists b \notin M$. Рассмотрим функцию $f(x) = b\chi_M(x) + a\mathrm{sg}\chi_M(x)$ Из п. 17.25 $\exists m \mid \mathfrak{A}(f(m)) = \mathfrak{A}(m)$

1. $\mathfrak{A}(m) \in K \Rightarrow f(m) = b \notin M \Rightarrow \mathfrak{A}(b) = \mathfrak{A}(f(m)) = \mathfrak{A}(m) \notin K$. Противоречие

2. $\mathfrak{A}(m) \notin K \Rightarrow f(m) = a \in M \Rightarrow \mathfrak{A}(a) = \mathfrak{A}(f(m)) = \mathfrak{A}(m) \in K$. Противоречие

18 Рекурсивные и рекурсивно-примитивные множества

18.1 Определение (Разрешимое множестов)

Множество разрешимо если существует алгоритм, на входе которого объект, а на выходе ответ, принадлежит объект этому множеству или нет и перечислимым, если существует алгоритм перечисления элементов:

- 1. Перечисляются только элементы множества
- 2. Каждый элемент будет перечислен

18.2 Определение (Рекурсивное множество)

 $A \subseteq \mathbb{N}^k$ называется рекурсивным (примитивно-рекурсивным), если:

$$\chi_A(x_1 \dots x_k) = \begin{cases} 1, & (x_1 \dots x_k) \in A \\ 0, & (x_1 \dots x_k) \notin A \end{cases} - \mathsf{OP}\Phi(\mathsf{\PiP}\Phi)$$

18.3 Определение (Рекурсивно-перечислимое множество)

 $A\subseteq \mathbb{N}^k$ -рекурсивно-перечислимое, если $A=\varnothing$, либо существует ОРФ $f_1\dots f_k$ $A=\{(f_1(n),\dots,f_k(n))|n\in\mathbb{N}\}$

 $A\subseteq \mathbb{N}$ —рекурсивно-перечислимое, если существует ОРФ f, такое что $A=\rho f=\{f(n)|n\in \mathbb{N}\}$

18.4 Замечание

Пусть $A \subseteq \mathbb{N}^k$, $\chi_A(\bar{x})$ - ОРФ $\Leftrightarrow \chi_A(\bar{x})$ - ЧРФ.

18.5 Предложение

 $A,B\subseteq \mathbb{N}^k,C\subseteq \mathbb{N}^l,$ A,B,C - рекурсивные множества (примитивнорекурсивные множества), тогда $A\cup B,A\cap B,\bar{A},A\backslash B,A\times B$ - рекурсивнопримитивные.

18.6 Замечание

 $\Pi PM \subseteq PM$

18.7 Предложение

 $A\subseteq\mathbb{N}^k, B=\{c^k(\bar{x})|\bar{x}\in A\}$, тогда A - РМ (ПРМ) $\Leftrightarrow B$ - РМ (ПРМ) Доказательство:

 $\overline{(\Rightarrow)}$ A - PM $\Rightarrow \chi_A$ - OP Φ , $\chi_B(n) = \chi_A(c_1^k(n) \dots c_r^k(n)) \Rightarrow \chi_B$ - OP $\Phi \Rightarrow B$ - PM.

 (\Leftarrow) χ_B - OPФ, $\chi_A\{x_1\dots x_k)=\chi_B(c^k(x_1\dots x_k))$ - OPФ \Rightarrow A - рекурсивное множество.

ПРМ - упр.

18.8 Предложение

 $PM \subseteq P\Pi M$, т.е $\forall A \subseteq \mathbb{N}^k$, если A - PM, то A - $P\Pi M$.

Доказательство:

Пусть $k=1, \chi_A$ - ОРФ.

- 1. Если $A = \emptyset$, то A РПМ (по определению).
- 2. Пусть $A \neq \emptyset \Rightarrow \exists a \in A$. Рассмотрим функцию $f(x) = x * \chi_A(x) + a * \bar{s}g\chi_A(x)$
 - а) Пусть f(n)=m. Если $n\in A\Rightarrow f(n)=n$, т.е $m=n\Rightarrow m\in A$ если $n\notin A$, то $f(n)=a\in A\Rightarrow m=a\in A\Rightarrow m\in A\Rightarrow \rho f\subseteq A$
 - b) Пусть $n \in A \Rightarrow f(n) = n$, тогда $A \subseteq \rho f \Rightarrow A = \rho f$, $f \mathrm{OP}\Phi \Rightarrow A \mathrm{P\Pi M}$.

для случая k > 1 без доказательства.

18.9 Теорема Поста

Пусть $A\subseteq \mathbb{N}^k$, тогда A - $PM\Leftrightarrow A, \bar{A}$ - $P\Pi M$, т.е множество рекурсивно \Leftrightarrow оно и его дополнение рекурсивно.

 $(\Rightarrow)A - PM, \bar{A} - PM \Rightarrow A, \bar{A} - P\Pi M.$

 $(\Leftarrow)k=1$. A, \bar{A} - РПМ. Если $A=\emptyset \Rightarrow A$ РМ(упр), если $\bar{A}=\emptyset$, то $A=\mathbb{N}\Rightarrow A$ - РМ(упр).

Пусть $A \neq \varnothing, \bar{A} \neq \varnothing (A \neq \mathbb{N})$. Тогда существует ОРФ $f,g: A = \rho f, \bar{A} = \rho g$. Тогда заметим, что $\chi_A(x) = \bar{s}g|f(\mu y[|f(y) - x| * |g(y) - x| = 0]) - x|$ - ЧРФ. Если $x \in A \Rightarrow \exists y: f(y) = x, x \notin \bar{A} \Rightarrow \nexists y: g(y) = x \Rightarrow$ существует наименьший y_0 такой что $f(y) = x \Rightarrow \chi_A(x) = 1$.

Если $x \notin A \Rightarrow x \in \overline{A} \Rightarrow \exists y : g(y) = x, \nexists y : f(y) = x \Rightarrow$ существует наименьший y_0 такой что $g(y_0) = x \Rightarrow f(y_0) \neq x \Rightarrow |f(...) - x| \neq 0 \Rightarrow s\overline{g} = 0 \Rightarrow \chi_A(x) = 0 \Rightarrow \chi_A(x) - \text{ЧР}\Phi \Rightarrow \chi_A(x) - \text{ОР}\Phi \Rightarrow A - \text{РМ}.$

18.10 Предложение

Пусть $A,B\subseteq \mathbb{N}^k, c\subseteq \mathbb{N}^l, A,B,C$ - РПМ, тогда $A\cup B,A\cap B,A\times B$ - РПМ. Доказательство: упр.

18.11 Теорема (Об эквивалентности определения РПМ)

 $A \subseteq \mathbb{N}$, тогда эквивалентны:

- 1. A PΠM.
- 2. $A = \emptyset$, либо \exists прф $f : A = \rho f$
- 3. $A=\varnothing$, либо \exists чрф $f:A=\rho f$
- 4. $\exists \Pi PM \ B \subseteq \mathbb{N}^2 : A = \{x | \exists y(x,y) \in B\}$
- 5. $\exists \text{ PM } B \subseteq \mathbb{N}^2 : A = \{x | \exists y(x,y) \in B\}$
- 6. $\exists \ \mathsf{ЧР\Phi} \ f : A = \delta f = \{x | f(x) \ \text{-} \ \mathsf{onpegeneha}\}$

18.12 Предложение

Пусть $A\subseteq \mathbb{N}^k, B=\{c^k(x_1\dots x_k)|(x_1\dots x_k)\in A\}$. Тогда A - РПМ \Leftrightarrow В - РПМ.

18.13 Следствие

Пусть $A\subseteq \mathbb{N}^k$, тогда A - РПМ \Leftrightarrow существует ЧРФ $f:\mathbb{N}^k\to\mathbb{N}$ такая что $A=\delta f$, т.е $A=\{(x_1\dots x_n)|f(x_1\dots x_n)$ -определена $\}$

Доказательство:

 (\Rightarrow) Пусть A - РПМ \Rightarrow B - РПМ \Rightarrow $\exists f$ - ЧРФ такая что $B=\delta f$, тогда рассмотрим $g(x_1\dots x_k)=f(c^k(x_1\dots x_k)),$ тогда $(x_1\dots x_k)\in A\Leftrightarrow c^k(x_1\dots x_k)\in B\Leftrightarrow f(c^k(x_1\dots x_k))$ - определена $\Leftrightarrow g(x_1\dots x_k)$ - определена $\Rightarrow A=\delta g$

(⇐) - упражнение

18.14 Теорема (О существовании РПМ, но не РМ)

Существет РПМ, но не РМ, а именно: $\forall k \in \mathbb{N} \exists A \subseteq \mathbb{N}^k$ такое что, A - РПМ, но не РМ.

Доказательство:

 $\overline{\text{B}}$ качестве $\overline{\text{A}}$ рассмотрим : $A = \{c(x,y)|k^2(x,y) - \text{определена}\}, \{(x,y)|k^2(x,y) - \text{определена}\}$ - $\text{РПM}_{\overline{53}} \Rightarrow A$ - РПM.

Покажем, что A - не PM. От противного:

Пусть A - РМ $\Rightarrow \chi_A$ - ОРФ. т.к. $k^2(x,y)$ - универсальное $\Rightarrow \exists a: k^2(a,x) = o(x)$

Рассмотрим $g(x,y) = k^2(x * \chi_A(c(x,y) + a*\bar{s}g\chi_A(c(x,y))), y)$ - ЧРФ Покажем, что g(x,y) - ОРФ всюду определена: $(x,y) \in \mathbb{N}^2$.

- а) $k^2(x,y)$ —определена $\Rightarrow c(x,y) \in A \Rightarrow \chi_A(c(x,y)) = 0 \Rightarrow g(x,y) = k^2(x,y)$ определена.
- б) $k^2(x,y)$ не определена $\Rightarrow c(x,y) \notin A \Rightarrow \chi_A(c(x,y)) = 0 \Rightarrow g(x,y) = k^2(a,y) = o(y) = 0$ \Rightarrow определена.

 $\Rightarrow g(x,y) - OP\Phi.$

Покажем, что g(x,y) - универсальна для ОРФ:

- a) $n \in \mathbb{N} \Rightarrow g(n, y)$ OP Φ
- б) h(x) ОР $\Phi \Rightarrow h(x)$ ЧР $\Phi \Rightarrow \exists n \in \mathbb{N} : h(x) = k^2(n, x)$

Заметим, что $\forall x \, k^2(n,x)$ - определена $\Rightarrow k^2(n,x) = g(n,x) \Rightarrow \forall x \, h(x) = g(n,x) \Rightarrow g(x_0,x_1)$ - ОРФ универсальная для ОРФ (противоречие).

Пусть k>1, тогда рассмотрим $Ak=\{(c_1^k(n)\dots c_k^k(n))| n\in A\}\Rightarrow A_k$ - РПМ, но не РМ.

18.15 Замечание

Множество $A = \delta k^n(x_1 \dots x_n)$ - РПМ, но не РМ. Доказательство: упр

18.16 Предложение

 $A \subseteq \mathbb{N}^k$, тогда эквивалентны:

- 1. A PΠM
- 2. $A = \delta f, f \Psi P \Phi$
- 3. $\exists \ \mathsf{PM} \ B \subseteq \mathbb{N}^{k+1}$ такое что $A = \{(x_1 \dots x_k) | (x_1 \dots x_k, y) \in B\}$
- 4. $\exists \Pi PM \ B \subseteq \mathbb{N}^{k+1}$ такое что $A = \{(x_1 \dots x_k) | (x_1 \dots x_k, y) \in B\}$

18.17 Теорема(о графике) (б. д.)

$$f$$
 - ЧРФ $\Leftrightarrow G_f = \{(x_1 \dots x_n, y) | f(x_1 \dots x_n) = y\}$ - РПМ $(G$ - график)

18.18 Определение (Частичная характеристическая функция)

Пусть $A\subseteq \mathbb{N}^k$. $\chi_A^*(x_1\dots x_k)=\begin{cases} 1, & (x_1\dots x_k)\in A\\ \text{неопр}, & (x_1\dots x_k)\notin A \end{cases}$ - частичная характеристическая функция множества A.

18.19 Теорема

Множество является рекурсивно-перечислимым \Leftrightarrow его частичая характеристическая функция является ЧРФ. т.е $A \subseteq \mathbb{N}^k$. A - РПМ $\Leftrightarrow \chi_A^*$ - ЧРФ.

Доказательство:

$$\overline{(\Rightarrow)}$$
 Пусть A - РПМ \Rightarrow существует ЧРФ $f: A = \delta f$ Положим $h(\bar{x}) = S(o(f(\bar{x}))) \Rightarrow h$ - ЧРФ. Заметим:

- 1. Если $\bar{x} \in A \Rightarrow f(\bar{x})$ определена $\Rightarrow h(\bar{x}) = 1$
- 2. Если $\bar{x} \notin \Rightarrow f(\bar{x})$ не определена $\Rightarrow h(\bar{x})$ не определена $\Rightarrow \chi_A^*(\bar{x}) = h(\bar{x}) \Rightarrow \chi_A^*$ ЧРФ.
- (\Leftarrow) Пусть χ_A^* ЧРФ. Тогда $A=\delta\chi_A^*\Rightarrow A$ РПМ.

18.20 Теорема (О составном определении) (б. д.)

РПМ
$$A_1 \dots A_n \subseteq \mathbb{N}^k, A_i \cap A_j = \emptyset$$
 при $i \neq j$ $g_1(x_1 \dots x_k) \dots g_n(x_1 \dots x_k)$ - ЧРФ. Тогда функция
$$f(x_1 \dots x_k) = \begin{cases} g_1(x_1 \dots x_k) & \text{если}(x_1 \dots x_k) \in A_1 \\ \vdots & \\ g_n(x_1 \dots x_k) & \text{если}(x_1 \dots x_k) \in A_n \\ \text{неопред.} & \text{иначе} \end{cases}$$

Тогда f - ЧР Φ .

19 Формальная арифметика Пеано. Неразрешимые проблемы

19.1 Определение (Арифметика Пеано)

 $\Sigma_0 = (<^2, +^2, \times^2, S^1, 0)$ - сигнатура арифметики Пеано $T(\Sigma_0)$ - множество термов, $F(\Sigma_0)$ - множество формул, $S(\Sigma_0)$ - множество предложений, $\{v_i|\in\mathbb{N}\}$ - переменные

19.2 Определение (Гёделевская нумерация)

Гёделевской нумерацией термов и формул сигнатуры Σ_0 называется:

1.
$$\gamma(0) = c(0,1), \ \gamma(v_i) = c(1,i)$$

2.
$$\gamma(S(t)) = c(2, \gamma(t))$$

3.
$$\gamma(t+q) = c(3, c(\gamma(t), \gamma(q)))$$

4.
$$\gamma(t \times q) = c(4, c(\gamma(t), \gamma(q)))$$

5.
$$\gamma(t=q) = c(5, c(\gamma(t), \gamma(q)))$$

6.
$$\gamma(t < q) = c(6, c(\gamma(t), \gamma(q)))$$

7.
$$\gamma(\varphi \& \psi) = c(7, c(\gamma(\varphi), \gamma(\psi)))$$

8.
$$\gamma(\varphi \vee \psi) = c(8, c(\gamma(\varphi), \gamma(\psi)))$$

9.
$$\gamma(\varphi \to \psi) = c(9, c(\gamma(\varphi), \gamma(\psi)))$$

10.
$$\gamma(\neg\varphi) = c(10, c(\gamma(\varphi)))$$

11.
$$\gamma(\exists v_i \varphi) = c(11, c(i, \gamma(\varphi)))$$

12.
$$\gamma(\forall v_i \varphi) = c(12, c(i, \gamma(\varphi)))$$

19.3 Предложение

Следующие множества - прим. рек. мн-ва:

1.
$$\gamma(T(\Sigma_0)) = {\gamma(t)|t \in T(\Sigma_0)}$$

2.
$$\gamma(F(\Sigma_0)) = {\gamma(t)|t \in F(\Sigma_0)}$$

3.
$$\gamma(S(\Sigma_0)) = {\gamma(t)|t \in S(\Sigma_0)}$$

19.4 Определение (Разрешимое множество, перечислимое множество)

$$X \subseteq T(\Sigma_0) \cup F(\Sigma_0).$$

X - разрешимо, если $\gamma(X) = \{\gamma(a) | a \in X\}$ - рекурсивное множество.

X - **перечислимо**, если $\gamma(X) = \{\gamma(a) | a \in X\}$ - рекурсивно-перечислимое множество.

19.5 Замечание (упр.)

$$\forall n \forall a_1, \dots, a_n \in \mathbb{N} \exists x = p_0^{a_0} \cdot \dots \cdot p_n^{a_n}, \text{ T. e. } ex(0, x) = a_0, \dots, ex(n, x) = a_n$$

19.6 Обозначение

$$\prod_{\Sigma_0} = \{ \varphi \in F(\Sigma_0) | \varphi$$
-т. и. $\}$

19.7 \prod_{Σ_0} - перечислимо

Доказательство:

$$f(x,n,y) = egin{cases} y & ext{ если } ex(n,x) = y \text{ и} \\ & \gamma^{-1}(ex(0,x)) \dots \gamma^{-1}(ex(n,x)) \text{ -посл-ть формул из } F(x,x) \end{pmatrix}$$
 үгү үрүү иначе

19.8 f - общ. рек. ф-ла (б. д.)

19.9
$$\gamma(\prod_{\Sigma_0}) = \rho f$$
 (б. д.)

19.10 Определение (Формальная арифметика Пеано)

- 1. $\forall v_0 \neg (S(v_0) = 0)$
- 2. $\forall v_0 \forall v_1 ((S(v_0) = S(v_1)) \rightarrow (v_0 = v_1))$
- 3. $\forall v_0(v_0 + 0 = v_0)$
- 4. $\forall v_0 \forall v_1 (v_0 + S(v_1)) = S(v_0 + v_1)$
- 5. $\forall v_0(v_0 * 0 = 0)$
- 6. $\forall v_0 \forall v_1 (v_0 * S(v_1) = (v_0 * v_1) + v_0)$
- 7. $\forall v_0 \neg (v_0 < 0)$
- 8. $\forall v_0 \forall v_1 ((v_0 < S(v_1)) \rightarrow ((v_0 < v_1) \lor (v_0 = v_1)))$
- 9. $\forall v_0 \forall v_1 (((v_0 < v_1) \lor (v_0 = v_1)) \rightarrow (v_0 < S(v_1))$
- 10. $\forall v_0 \forall v_1 (\neg (v_0 = v_1) \rightarrow ((v_0 < v_1) \lor (v_1 < v_0)))$

19.11 Определение (Термы)

- 1. 0 = 0
- 2. $\underline{1} = S(0)$
- 3. n+1=S(n), т. е. $\underline{n}=S(S(\ldots S(0)\ldots))$, где S применяется n раз.

19.12 Определение (Представимость в арифметике)

 $f:\mathbb{N}^k o\mathbb{N}$ - представима в арифметике $A_0(A_0$ - набор аксиом), если $\exists \varphi(v_0,\dots,v_k|\forall n_0,\dots,n_k\in\mathbb{N}:$

- 1. если $f(n_0, \dots, n_{k-1}) = n_k$, то $A_0 \vdash \varphi(\underline{n_0}, \dots, \underline{n_k})$
- 2. если $f(n_0,\ldots,n_{k-1})\neq n_k$, то $A_0\vdash \neg\varphi(\underline{n_0},\ldots,\underline{n_k})$

19.13 Каждая орф представима в A_0

Доказательство:

- 1. $0(v_0)$ представима формулой $\varphi(v_0, v_1) = (v_1 = 0)$
- 2. $S(v_0)$ представима формулой $\varphi(v_0, v_1) = (v_1 = S(v_0))$
- 3. $I_m^n(v_0,\dots,v_{n-1})$ представима формулой $\varphi(v_0,\dots,v_n)=(v_n=v_{m-1})$
- 4. Суперпозиция упражнение
- 5. Остальное б. д.

19.14 Теорема (Гёделя о неразрешимости)

Любая непротиворечивая теория, содержащая арифметику Пеано, является неразрешимой. Или система аксиом A_0 является наслдественное неразрешимой. А именно: пусть $T \subseteq S(\Sigma_0), A_0 \subseteq T, T$ непротиворечива, тогда T - неразрешима.

Доказательство:

От противного: пустьT - разрешима, тогда $M=\gamma(T)$ - рекурсивное множество, а значит χ_M - орф. Рассмотрим функцию

$$f(x,y) = \begin{cases} \gamma([\gamma^{-1}(x)]_{\underline{y}}^{v_0}) & \text{если } x \in \gamma(F(\Sigma_0)) \\ 0 & \text{если } x \notin \gamma(F(\Sigma_0)) \end{cases}$$

 $\gamma(F(\Sigma_0))$ - прм, следовательно f(x,y) - прф (б. д.)

Рассмотрим функцию $g(x,y)=\chi_M(f(x,y))$ - орф, следовательно g представимо в A_0 , значит существует формула $\varphi(v_0,v_1,v_2)$ представляющая $g(v_0,v_1)$. Тогда рассмотрим $n=\gamma(\varphi(v_0,v_1,v_2))$.

Тогда $f(n,y)=\gamma([\varphi(v_0,v_0,0)]^{v_0}_{\underline{y}})=\gamma(\varphi(\underline{y},\underline{y},0))$ - номер формулы. $f(n,n)=\gamma(\varphi(\underline{n},\underline{n},0)),\,g(n,n)=\chi_M(f(n,n))=1$ - ?

- 1. Пусть $g(n,n)=\chi_M(f(n,n))=1$. Тогда $g(n,n)\neq 0\Rightarrow A_0\vdash \neg\varphi(\underline{n},\underline{n},0),\ A_0\in T\Rightarrow T\vdash \neg\varphi(\underline{n},\underline{n},0)\Rightarrow \neg\varphi(\underline{n},\underline{n},0)\in T\Rightarrow T$ непротиворечива $\Rightarrow \varphi(\underline{n},\underline{n},0)\notin T\Rightarrow \gamma(\varphi(\underline{n},\underline{n},0))\notin M\Rightarrow \chi_M(f(n,n))=\chi_M(\gamma(\varphi(\underline{n},\underline{n},0)))=0$ противоречие.
- 2. Пусть $g(n,n)=\chi_M(f(n,n))=0\Rightarrow \chi_M(\gamma(\varphi(\underline{n},\underline{n},0)))=0\Rightarrow \gamma(\varphi(\underline{n},\underline{n},0))\notin M\Rightarrow \varphi(\underline{n},\underline{n},0)\notin T, A_0\subseteq T\Rightarrow A_0\nvdash\varphi(\underline{n},\underline{n},0)\Rightarrow g(n,n)\neq 0$ противоречие.

Значит χ_M - не орф, т. е. M не рекурсивное множество, а значит T - не разрешима.

19.15 Теорема (б. д.)

Любая полная перечислимая теория является разрешимой, т. е. $T\subseteq S(\Sigma_0),\,T$ - перечислима, T - полная теория, тогда T - неразрешима.

19.16 Теорема (Чёрча о неразрешимости)

Множество \prod_{Σ_0} - теорем логики предикатов сигнатуры Σ_0 неразрешимо Доказательство:

Пусть $T=\{\varphi\in S(\Sigma_0)|\vdash\varphi\},\ T_0=\{\varphi\in S(\Sigma_0)|A_0\vdash\varphi\},\ \psi=\&\xi,$ где $\xi\in A_0.$

Если T - разрешимо, то $\varphi \in T_0 \Leftrightarrow A_0 \vdash \varphi \Leftrightarrow \psi \vdash \varphi \Leftrightarrow \vdash (\psi \to \varphi) \Leftrightarrow (\psi \to \varphi) \in T$,

 $\chi_{\gamma(T_0)}^{(x)} = \chi_{\gamma(T)}(c(9, c(\gamma(\psi), (x))))$ - упр.

19.17 Теорема (Гёделя о неполноте)

 $T \subseteq S(\Sigma_0), A_0 \subseteq T, T$ - перечислима, T - непротиворечивая теория, тогда T - не полна.

<u>Доказательство:</u> Пусть T - полна. Следовательно T - разрешима - противоречие, значит T - не полна.