KNN & PCA Assignment

Q1. What is K-Nearest Neighbors (KNN) and how does it work in both classification and regression problems?

Answer:

K-Nearest Neighbors (KNN) is a **supervised learning algorithm** used for both classification and regression. It is a **lazy learner** (no explicit training phase, it stores data and computes predictions at query time).

How it works:

- Choose a value of **k** (number of neighbors).
- For a new data point, compute the **distance** (Euclidean, Manhattan, etc.) to all training points.
- Select the k nearest neighbors.
- For **classification**: assign the majority class label among the neighbors.
- For regression: take the average (or weighted average) of the neighbors' values.

Key features:

- Non-parametric (no assumption about data distribution).
- Sensitive to scale → requires feature scaling (normalization or standardization).
- o Performance depends on **k** value and distance metric.

Example:

If we classify a fruit by features like weight & color, KNN looks at the closest k fruits in dataset → predicts the new fruit's type.

Q2. What is the Curse of Dimensionality and how does it affect KNN performance?

Answer:

The **Curse of Dimensionality** refers to problems that arise when the number of features (dimensions) in data is very large.

• In high dimensions:

- Distances between points become less meaningful (all points appear equally far).
- Volume of feature space increases exponentially → requires huge data to cover space.
- Noise increases, computation cost increases.

Impact on KNN:

- Distance metrics (Euclidean, Manhattan) lose effectiveness.
- Nearest neighbors may not be truly "near".
- Leads to poor accuracy, overfitting, and high variance.

That's why dimensionality reduction (PCA) or feature selection is often combined with KNN.

Q3. What is Principal Component Analysis (PCA)? How is it different from feature selection?

Answer:

PCA (Principal Component Analysis) is an unsupervised dimensionality reduction technique.

- It transforms original correlated features into a smaller set of uncorrelated features (principal components).
- Each component is a linear combination of original features.
- Components are ordered by the amount of variance explained.

Difference from Feature Selection:

- **Feature Selection** → keeps a subset of original features (drops some features).
- **PCA** → creates **new features** (principal components), not just dropping existing ones.

Example:

Suppose dataset has height and weight. PCA might create one component = 0.6*height + 0.8*weight, capturing maximum variance.

Q4. What are eigenvalues and eigenvectors in PCA, and why are they important?

Answer:

- **Eigenvectors**: Directions in which data variance is maximum (axes of new feature space).
- **Eigenvalues**: Magnitude of variance along those directions (importance of component).

Importance in PCA:

- Eigenvectors define the **principal components**.
- Eigenvalues tell how much variance each component explains.
- Components with larger eigenvalues are kept, smaller ones discarded.

Q5. How do KNN and PCA complement each other when applied in a single pipeline?

Answer:

- KNN problem → performance drops in high-dimensional space (curse of dimensionality).
- **PCA solution** → reduces dimensions while retaining most variance.

• Pipeline:

- 1. Apply PCA to reduce features.
- 2. Use reduced dataset as input to KNN.
- 3. Improves speed, reduces noise, better generalization.

Example:

In Wine dataset (13 features), reducing to 2–3 PCA components can still maintain high accuracy but with less computation.

Q6. Train a KNN Classifier on the Wine dataset with and without feature scaling. Compare model accuracy in both cases.

Answer:

```
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score
# Load dataset
wine = load_wine()
X, y = wine.data, wine.target
# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.3, random_state=42, stratify=y
# Without scaling
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
acc_without_scaling = accuracy_score(y_test, y_pred)
```

Output:

- Accuracy without scaling: 72.22%
- Accuracy with scaling: 94.44%

Conclusion: Feature scaling drastically improves KNN performance, since distance-based algorithms are sensitive to feature magnitudes.

Q7. Train a PCA model on the Wine dataset and print the explained variance ratio of each principal component.

Answer:

0.007282951

```
from sklearn.decomposition import PCA

pca = PCA()
pca.fit(X_train_scaled)
print("Explained variance ratio:", pca.explained_variance_ratio_)

Explained variance ratio: [0.35730453 0.19209164 0.11006755 0.07250719 0.06973166 0.05341402 0.04555029 0.0241568 0.02040417 0.01976974 0.01685307 0.01086639
```

/ Interpretation:

- PC1 explains ~35.7% variance, PC2 ~19.2%, PC3 ~11%.
- First 2 components already capture **55% variance**.

Q8. Train a KNN Classifier on the PCA-transformed dataset (retain top 2 components). Compare accuracy with the original dataset.

Answer:

```
pca_2 = PCA(n_components=2)
X_train_pca = pca_2.fit_transform(X_train_scaled)
X_test_pca = pca_2.transform(X_test_scaled)

knn.fit(X_train_pca, y_train)
y_pred_pca = knn.predict(X_test_pca)
acc_pca = accuracy_score(y_test, y_pred_pca)

print("Accuracy using 2 PCA components:", acc_pca)
```

Output:

- Accuracy with 2 PCA components: 94.44%
- Accuracy with full scaled dataset: 94.44%

 \leftarrow Conclusion: PCA reduced dimensions from 13 \rightarrow 2 with **no loss in accuracy**. Useful for faster training and visualization.

Q9. Train a KNN Classifier with different distance metrics (euclidean, manhattan) on the scaled Wine dataset and compare results.

Answer:

```
knn_euclidean = KNeighborsClassifier(n_neighbors=5, metric="euclidean")
knn_euclidean.fit(X_train_scaled, y_train)
acc_euclidean = accuracy_score(y_test, knn_euclidean.predict(X_test_scaled))
knn_manhattan = KNeighborsClassifier(n_neighbors=5, metric="manhattan")
knn_manhattan.fit(X_train_scaled, y_train)
acc_manhattan = accuracy_score(y_test, knn_manhattan.predict(X_test_scaled))
print("Accuracy with Euclidean:", acc_euclidean)
print("Accuracy with Manhattan:", acc_manhattan)
```

Output:

• Euclidean: 94.44%

• Manhattan: 98.15%

Q10. High-dimensional gene expression dataset (Cancer classification case study).

Pipeline Explanation:

1. PCA for Dimensionality Reduction:

- Reduces thousands of gene features to a smaller set (10–50 PCs).
- o Removes noise, improves computational efficiency.

2. Choosing Components:

- Keep enough PCs to explain ~90–95% variance.
- Use Scree plot or cumulative variance graph.

3. KNN after PCA:

- Train KNN on reduced dataset.
- o Scales better, avoids curse of dimensionality.

4. Model Evaluation:

- Use stratified train-test split or cross-validation.
- o Metrics: Accuracy, F1-score, ROC-AUC (since class imbalance possible).

5. Justification to Stakeholders:

- PCA + KNN reduces overfitting, improves generalization.
- Easier visualization of patient clusters.
- o Proven technique for biomedical high-dimensional datasets.

Example Code (simulated with Wine dataset):

Output (Wine dataset proxy):

• Accuracy after PCA (95% variance retained): 96.30%