MATH216

Mathematics IV

Dr. Neil Course

- 1 Introduction
 - Direction Fields
 - Classification
 - Greek Letters
- 2 First Order ODEs
 - Linear ODEs
 - Separable ODEs
 - Autonomous ODEs
- 3 Second Order Linear ODEs
 - Homogeneous Equations with Constant Coefficients
 - Complex Roots
 - Repeated Roots
- 4 Higher Order Linear ODEs
- 5
- 6 The Laplace Transform
 - Definition
 - Elementary Laplace Transforms
- **7** Systems of First Order Linear ODEs
 - Homogeneous Linear Systems with Constant Coefficients
 - Complex Eigenvalues
 - Repeated Eigenvectors

Introduction

Direction Fields

A Falling Object

$$\frac{dv}{dt} = 9.8 - \frac{v}{5}$$

Mice and Owls

$$\frac{dy}{dx} = 2 - x - y$$

$$\frac{dy}{dx} = 2 - x - y$$

Classification

- ODE = ordinary differential equation (adi diferansiyel denklemler)
- PDE = partial differential equation (kısmi türevli diferansiyel denklemler)
- IVP = initial value problem
- BVP = boundary value problem

Greek Letters

alpha	A	α
beta	B	β
gamma	Γ	γ
delta	Δ	δ
epsilon	E	$\epsilon \ \varepsilon$
zeta	Z	ζ
eta	N	η
theta	Θ	θ
iota	Ι	ι
kappa	K	κ
lambda	Λ	λ
mu	M	μ
nu	N	ν
xi	Ξ	ξ
omnicron	O	0
pi	Π	π
rho	P	ρ
sigma	\sum	σ
tau	T	au
upsilon	Y	v
phi	Φ	$\phi \varphi$
chi	X	χ
psi	Ψ	ψ
omega	Ω	ω

First Order ODEs

A Linear Equation

The solution to

$$ty' + 2y = 4t$$

is

$$y(t) = t^2 + \frac{c}{t^2}.$$

Note that the solution satisfying y(1) = 2 is a differentiable function $y:(0,\infty) \to \mathbb{R}$.

A Separable Equation

The solution to

$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}$$

is

$$y(x) = 1 \pm \sqrt{x^3 + 2x^2 + 2x + c}.$$

Note that the solution satisfying y(0) = -1 is a differentiable function $y: (-2, \infty) \to \mathbb{R}$.

Logistic Growth

A Critical Threshold

Logistic Growth with a Threshold

Second Order Linear ODEs

The initial value problem

$$\begin{cases} y'' + 5y' + 6y = 0\\ y(0) = 2\\ y'(0) = 3 \end{cases}$$

$$y = 9e^{-2t} - 7e^{-3t}.$$

The initial value problem

$$\begin{cases} 4y'' - 8y' + 3y = 0\\ y(0) = 2\\ y'(0) = \frac{1}{2} \end{cases}$$

$$y = -\frac{1}{2}e^{\frac{3t}{2}} + \frac{5}{2}e^{\frac{t}{2}}.$$

The initial value problem

$$\begin{cases} y'' + y' + 9.25y = 0\\ y(0) = 2\\ y'(0) = 8 \end{cases}$$

$$y = e^{-\frac{t}{2}} \left(2\cos 3t + 3\sin 3t \right).$$

The initial value problem

$$\begin{cases} 16y'' - 8y' + 145y = 0\\ y(0) = -2\\ y'(0) = 1 \end{cases}$$

$$y = -2e^{\frac{t}{4}}\cos 3t + \frac{1}{2}e^{\frac{t}{4}}\sin 3t.$$

The initial value problem

$$\begin{cases} y'' + 4y' + 4y = 0\\ y(0) = 1\\ y'(0) = 1 \end{cases}$$

$$y = e^{-2t} + 3te^{-2t}.$$

The initial value problems

$$\begin{cases} y'' - y' + \frac{1}{4}y = 0 \\ y(0) = 2 \\ y'(0) = \frac{1}{3} \end{cases}$$
 and
$$\begin{cases} y'' - y' + \frac{1}{4}y = 0 \\ y(0) = 2 \\ y'(0) = 2 \end{cases}$$

have solutions

$$y = 2e^{\frac{t}{2}} - \frac{2}{3}te^{\frac{t}{2}}$$

and

$$y = 2e^{\frac{t}{2}} + te^{\frac{t}{2}}.$$

Higher Order Linear ODEs

The initial value problem

$$\begin{cases} y^{(4)} + y''' - 7y'' - y' + 6y = 0 \\ y(0) = 1 \\ y'(0) = 0 \\ y''(0) = -2 \\ y'''(0) = -1 \end{cases}$$

$$y = \frac{11}{8}e^{t} + \frac{5}{12}e^{-t} - \frac{2}{3}e^{2t} - \frac{1}{8}e^{-3t}.$$

The initial value problems

$$\begin{cases} y^{(4)} - y = 0 \\ y(0) = \frac{7}{2} \\ y'(0) = -4 \\ y''(0) = \frac{5}{2} \\ y'''(0) = -2 \end{cases} \text{ and } \begin{cases} y^{(4)} - y = 0 \\ y(0) = \frac{7}{2} \\ y'(0) = -4 \\ y''(0) = \frac{5}{2} \\ y'''(0) = -\frac{15}{8} \end{cases}$$

have solutions

$$y = 3e^{-t} + \frac{1}{2}\cos t - \sin t$$

and

$$y = \frac{1}{32}e^t + \frac{95}{32}e^{-t} + \frac{1}{2}\cos t - \frac{17}{16}\sin t.$$

The Laplace Transform

Definition: Suppose that

- (i) $A > 0, K > 0, M > 0, a \in \mathbb{R}$;
- (ii) f is piecewise continuous on [0, A]; and
- (iii) $|f(t)| \le Ke^{at}$ for all $t \ge M$.

The Laplace Transform of f is

$$F(s) = \mathcal{L}[f](s) = \int_0^\infty e^{-st} f(t) dt.$$

Note that

$$\mathcal{L}[f'](s) = sF(s) - f(0)$$

$$\mathcal{L}[f''](s) = s^2 F(s) - sf(0) - f'(0)$$

$$\mathcal{L}[f^{(n)}](s) = s^n F(s) - s^{n-1} f(0) - s^{(n-2)} f'(0)$$

$$- \dots - sf^{(n-2)}(0) - f^{(n-1)}(0).$$

Elementary Laplace Transforms

		FIANBUL
f(t)	$F(s) = \mathcal{L}[f](s)$	
1	$F(s) = \mathcal{L}[f](s)$ $\frac{1}{s}$	s > 0
e^{at}	$\frac{1}{s-a}$	s > a
$t^n \qquad (n \in \mathbb{N})$	$\frac{n!}{s^{n+1}}$	s > 0
$\sin at$	$\frac{a}{s^2+a^2}$	s > 0
$\cos at$	$\frac{s}{s^2+a^2}$	s > 0
$\sinh at$	$\frac{a}{s^2-a^2}$	s > a
$\cosh at$	$\frac{s}{s^2-a^2}$	s > a
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$	s > a
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$	s > a
$t^n e^{at} (n \in \mathbb{N})$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$u_c(t)$	$\frac{e^{-cs}}{s}$	s > 0
$u_c(t)f(t-c)$	$e^{-cs}F(s)$	
$e^{ct}f(t)$	F(s-c)	
f(ct) $(c>0)$	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	
$(-1)^n f(t)$	$F^{(n)}(s)$	
$t^n f(t)$	$(-1)^n \frac{d^n F}{d^n r}$	

The initial value problem

$$\begin{cases} y^{(4)} - y = 0 \\ y(0) = 0 \\ y'(0) = 1 \\ y''(0) = 0 \\ y'''(0) = 0 \end{cases}$$

$$y = \frac{1}{2}\sinh t + \frac{1}{2}\sin t.$$

Systems of First Order Linear ODEs

A direction field for the linear system

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

The linear system

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

has general solution

$$\mathbf{x}(t) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}.$$

A direction field for the linear system

$$\mathbf{x}' = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix} \mathbf{x}$$

The linear system

$$\mathbf{x}' = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix} \mathbf{x}$$

has general solution

$$\mathbf{x}(t) = c_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{-4t}.$$

A direction field for the linear system

$$\mathbf{x}' = \begin{pmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{pmatrix} \mathbf{x}$$

The linear system

$$\mathbf{x}' = \begin{pmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{pmatrix} \mathbf{x}$$

has general solution

$$\mathbf{x}(t) = c_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} e^{-\frac{t}{2}} + c_2 \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} e^{-\frac{t}{2}}.$$

The initial value problem

$$\mathbf{y}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & \frac{3}{2} & 0 & 0 \\ \frac{4}{3} & -3 & 0 & 0 \end{pmatrix} \mathbf{y}, \qquad \mathbf{y}(0) = \begin{pmatrix} -1 \\ 4 \\ 1 \\ 1 \end{pmatrix}$$

$$y(t) = \frac{4}{9} \begin{pmatrix} 3\cos t \\ 2\cos t \\ -3\sin t \\ -2\sin t \end{pmatrix} + \frac{7}{18} \begin{pmatrix} 3\sin t \\ 2\sin t \\ 3\cos t \\ 2\cos t \end{pmatrix} - \frac{7}{9} \begin{pmatrix} 3\cos 2t \\ -4\cos 2t \\ -6\sin 2t \\ 8\sin 2t \end{pmatrix} - \frac{1}{36} \begin{pmatrix} 3\sin 2t \\ -4\sin 2t \\ 6\cos 2t \\ -8\cos 2t \end{pmatrix}$$

Example (continued)

Example (continued)

A direction field for the linear system

$$\mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \mathbf{x}$$

The linear system

$$\mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \mathbf{x}$$

has general solution

$$\mathbf{x}(t) = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t} + c_2 \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} t + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] e^{2t}.$$

