

Description

The VSM20N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} = 150V,I_D =20A

 $R_{DS(ON)}$ <75m Ω @ V_{GS} =10V (Typ:62m Ω) $R_{DS(ON)}$ <80m Ω @ V_{GS} =4.5V (Typ:68m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Boost converters
- LED backlighting
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM20N15-T2	VSM20N15	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Symbol	Parameter	Limit	Unit	
V _D s	Drain-Source Voltage	150	V	
V _G s	Gate-Source Voltage	±20	V	
I _D	Drain Current-Continuous	20	А	
I _D (100℃)	Drain Current-Continuous(TC=100℃)	14	Α	
I _{DM}	Pulsed Drain Current	40	Α	
P _D	Maximum Power Dissipation	90	W	
	Derating factor	0.6	W/℃	
E _{AS}	Single pulse avalanche energy (Note 5)	80	mJ	
T_{J}, T_{STG}	Operating Junction and Storage Temperature Range	-55 To 175	°C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

R _{θJC}	Thermal Resistance, Junction-to-Case (Note 2)	1.7	°C/W	
------------------	---	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

	Symbol Parameter	Condition	Min	Тур	Max	Unit
Off Characteri	stics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250µA	150	165	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V,V _{GS} =0V	-	-	1	μΑ
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteri	stics (Note 3)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.6	2.5	V
_	Dunin Course On State Resistance	V _{GS} =10V, I _D =10A	-	62	75	mΩ
R _{DS(ON)}	Drain-Source On-State Resistance	V _{GS} =4.5V, I _D =10A -		68	80	mΩ
g FS	Forward Transconductance	V _{DS} =5V,I _D =10A	-	20	-	S
Dynamic Char	acteristics (Note4)					
C _{lss}	Input Capacitance	V _{DS} =75V,V _{GS} =0V,	-	2500	-	PF
Coss	Output Capacitance		-	68	-	PF
C _{rss}	Reverse Transfer Capacitance	F=1.0MHz	-	54	-	PF
Switching Cha	rracteristics (Note 4)					
t _{d(on)}	Turn-on Delay Time	V_{DD} =75V, R_L =5 Ω V_{GS} =10V, R_{GEN} =3 Ω	-	18.5	-	nS
t _r	Turn-on Rise Time		-	10	-	nS
$t_{\text{d(off)}}$	Turn-Off Delay Time		-	22	-	nS
t _f	Turn-Off Fall Time		-	8	-	nS
Qg	Total Gate Charge	\/ 75\/ L 40A	-	60	-	nC
Q _{gs}	Gate-Source Charge	$V_{DS}=75V, I_{D}=10A,$	-	7.1	-	nC
Q _{gd}	Gate-Drain Charge	V _{GS} =10V	-	17	-	nC
Drain-Source	Diode Characteristics		•			
V _{SD}	Diode Forward Voltage (Note 3)	V _{GS} =0V,I _S =20A	-	-	1.2	V
Is	Diode Forward Current (Note 2)	-	-	-	20	Α
t _{rr}	Reverse Recovery Time	TJ = 25°C, IF = 10A	-	34	-	nS
Qrr	Reverse Recovery Charge	di/dt = 100A/µs ^(Note3)	-	55	-	nC
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50V,V $_{G}$ =10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance