

Multiple View Geometry: Exercise Sheet 2

Prof. Dr. Daniel Cremers, Julia Bergbauer, Jakob Engel, TU Munich http://vision.in.tum.de/teaching/ss2014/mvg2014

Exercise: April 28th, 2014

Part I: Theory

The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let A be a symmetric matrix, and λ_a , λ_b eigenvalues with eigenvectors v_a and v_b . Prove: if v_a and v_b are not orthogonal, it follows: $\lambda_a = \lambda_b$.

Hint: What can you say about $\langle Av_a, v_b \rangle$?

2. Let $A \in \mathbb{R}^{n \times n}$ with the orthonormal basis of eigenvectors v_1, \ldots, v_n and eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$. Find all vectors x, that minimize the following term:

$$\min_{||x||=1} x^T A x$$

How many solutions exist? How can the term be maximized?

Hint: Use the expression $x=\sum\limits_{i=1}^n \alpha_i v_i$ with coefficients $\alpha_i\in\mathbb{R}$ and compute appropriate coefficients!

3. Let $A \in \mathbb{R}^{m \times n}$. Prove that $\operatorname{kernel}(A) = \operatorname{kernel}(A^{\top}A)$.

Hint: Consider a)
$$x \in \text{kernel}(A)$$
 $\Rightarrow x \in \text{kernel}(A^{\top}A)$ and b) $x \in \text{kernel}(A^{\top}A)$ $\Rightarrow x \in \text{kernel}(A)$.

Part II: Practical Exercises

This exercise is to be solved during the tutorial. Let

$$A_{1} = \begin{pmatrix} 2 & 6 & 7 & 8 & 5 \\ 6 & 9 & 6 & 8 & 5 \\ 7 & 6 & 1 & 7 & 5 \\ 8 & 8 & 7 & 12 & 5 \\ 5 & 5 & 5 & 5 & 5 \end{pmatrix} \quad \text{and} \quad A_{2} = \begin{pmatrix} 2 & 6 & 7 & 8 & 5 \\ 6 & 9 & 6 & 8 & 5 \\ 7 & 6 & 1 & 7 & 5 \\ 8 & 8 & 7 & 12 & 5 \\ 5 & 5 & 5 & 5 & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

 $(A_1 \text{ and } A_2 \text{ only differ in the bottom-right digit}).$

- 1. Do each of the following tasks for both matrices A_1 , and A_2 . For readability, we omit the index.
 - (a) Find out whether the matrix A is invertible.
 - (b) Compute the eigenvalue decomposition $A = P\Lambda P^{-1}$ with diagonal matrix Λ . Compute $A P\Lambda P^{-1}$. What do you observe?
 - (c) Compute the Singular Value Decomposition (SVD) $A = U\Sigma V^{\top}$ with diagonal matrix Σ . Compute $A U\Sigma V^{\top}$. What do you observe?
 - (d) Compute $\min_{x} ||Ax b||^2$ (Hint: last slide of the first chapter)