Lecture 6: Machine learning for materials sience pt. 2

Lecture #6: Atomic structures encoding

Slides by Artem Dembitskiy

Previously on

- Supervised machine learning
- Ridge regression
- Random forest

Goals/Agenda

- Heirarchy of crystal/molecular structure descriptors
- Feature importance
- Crystal structure fingerprints

Features

- In classical ML we use features
- to represent materials in a machine-readable format
- Think of it like a fingerprint

Geometrical and compositional encoding of atomic structure

Heirarchy of features

Depending on the resolution we have:

- Local descriptors
 - site
- Fragment descriptors
 - bond
 - polyhedron
- Global descriptors
 - chemical family
 - structural type
 - density

Geometrical (Structural) features

- Atomic packing (e.g. volume per atom, density)
- Voronoi polyhedra features
 - o area, volume, face distance, solid angle
- bond distance/angle

Can be calculated for sublattices

Min/max/mean statistics

Voronoi polehdra features can be collected by pymatgen's methodology

```
from pymatgen.analysis.local_env import VoronoiNN
features = VoronoiNN().get_voronoi_polyhedra(structure, site_id)
```

Compositional (elemental/atomic) features

Aggregation over

- Atomic numbers
- Valence electrons
- Covalent radii
- Atomic fraction of each element in a composition
- Stoichiometry related
- Electron affinity
- Ionic radii
- Oxidation states
- Electronegativity
- ...

Image source

Atomic structure fingerprints

(not taught in the course)

- Atom-centered Symmetry Functions
- Smooth overlap of atomic positions
- Many-body tensor representations
- Pair distribution function
- X-ray diffraction pattern

Feature engineering

- Primary descriptors are used to design more complex features
- e.g. by applying set of mathematical operators

See SISSO paper

Phonon cutoff frequency ω_{max} 12 prototype functions Cross validation, testing $x, 1/x, x^{1/2}, x^{-1/2}, x^2, x^{-2}$ and error analysis Mean phonon frequency $\omega_{
m mean}$ x^3 , x^{-3} , $\ln(x)$, $1/\ln(x)$, e^x , e^{-x} Dielectric constant (electronic) ε_{e} 96 4,480 183,368 Dielectric constant (total) ε_{tot} Linear least square unique unique unique features features features fit models Nearest neighbor distance $N_{\rm dd}$ (taking one, two or three features) of one of two of three functions function functions Density LASSO-based 36 top features Bulk modulus Mfeature down-selection C Predictions on new compounds Prediction performance Triclinic Training set (THZ) 73 of 82 cases (90%) Tetragonal Phonon cutoff frequency Test set BSiO₂F 9 of 82 cases (10%) ZrO₂4 new cases (not included in original CaSiO₃ dataset of 82 cases) $R_{\text{train}}^2 = 0.81, R_{\text{test}}^2 = 0.72$ 13 DFT computed breakdown field (MV/m) Bandgap (eV)

8 Primary features

Band gap

 E_{g}

8 Primary features

 $E_{\rm g}, \omega_{\rm max}, \omega_{\rm mean}$ $\varepsilon_{\rm e}, \varepsilon_{\rm tot}, N_{\rm dd}, \rho, M$

Predictive Model for intrinsic breakdown field

of dielectric materials

Machine learning in materials informatics: recent applications and prospects

Pros

• Better performance compared to primary descriptors

Cons

- Increased computational complexity
- Garbage feature needs to be filtered
- Lack of interpretability

Permutation feature importance

We want to know which features most influence model prediction

Given dataset $\{X, y\}$

- Fit the model
- Get scores
- ullet Randomly shuffle one of the feature vectors x_i
- Refit model
- Get scores
- The higher degradation of the model performance the more important the feature

Permutation importance in sklearn

Effect of permuting a predictive feature

Linear model without feature permutation Mean Absolute Error: 0.51

Linear model with feature permutation Mean Absolute Error: 2.28

Effect of permuting a non-predictive feature

Pros

- Works for any model
- Yields variance of the feature importance

Cons

- Computational complexity
 - Requires refitting the model for each feature
- Wrong output for correlated features

Intuition behind the impurity-based feature importance

Decision tree:

- Selects the best feature for splitting at each node
- Best split is measured by gain in purity (Gini impurity or Entropy)
- The higher gain the higher importance of the feature

In the case of Random Forest the feature importances are "computed as the mean and standard deviation of accumulation of the impurity decrease within each tree."

Pros

- You have this information after fitting the model
- Yields variance of the feature importance

Cons

• Wrong output for high-cardinality features

Feature selection

- Drop features with low variance
- Backward/Forward feature selection
- LASSO
- Tree-based feature selection

Why?

- Remove redundant features
- Develop robust model
- The less features the less compute is needed
- Feature collection = time = money
 - save your resources

sience pt. 2

Forward feature selection algorithm

Image source 22

How to collect features?

Design your own Featurizer

- You are an expert in your field
- Consider essential descriptors of your target
- Use pymatgen/ase/etc.

Ready-to-use Featurizers

- Matminer Python Library
- Dscribe Python library

Gross level features

- Generate gross level features nonspecific to your task
- Select the best candidates

Structure		Composition		Function	
Feature 1	Feature 2	Feature 3	Feature 4		Feature 1, logx
0.1	1e-14	.003	223	10	-1
4.2	1.2e-12	.002	14	.238	. 62
1.1	1e-6	.0031	101	.91	.041

The most important properties of an ideal descriptor:

- Invariant with respect translation of the coordinate system
- Invariant with respect to rotation of the coordinate system
- Invariant with respect to permutation of atomic indices: changing the enumeration of atoms does not affect the target
- Unique: single way to construct a descriptor and the descriptor itself corresponds to a single property
- Continuous: small changes in the atomic structure -> small changes in the descriptor
- Compact
- Computationally cheap

From DScribe: Library of descriptors for machine learning in materials science by Lauri Himanen at al. (Computer Physics Communications, 2020)

Which features to consider?

- What accuracy do I need?
- At which scale your property is defined?
 - Site (i.e. defect formation energy)
 - Bond (i.e. migration barrier)
 - Structure (i.e. hardness)
- Size of the chemical space?
 - Several elements or the whole periodic table
- Diversity of crystal structures?
 - Fixed structural type? Not fixed?
- Do we know (expect) any relashionship?
- How many samples do I have?
 - ~100? ~100,000?

Lecture 6: Machine learning for materials sience pt.

You can find the right feature design by answering these questions

Example

Lecture 6: Machine learning for materials sience pt. 2

Considered features

Abbreviation	Feature		
Elemental			
НОМО	Highest Occupied Molecular Orbital (eV)		
LUMO	Lowest Unoccupied Molecular Orbital (eV)		
IE	Ionization energy (kJ/mol)		
X	Pauling Electronegativity		
Z radius	Zunger's Pseudopotential radius (a.u.)		
EA	Electron affinity (kJ/mol)		
Geometric			
t	Tolerance factor		
μ	Octahedral factor		
$ar{\mu}$	Mismatch factor	28	

Lecture 6: Machine learning for materials sience pt. 2

Features for Eg prediction

Band gap predictions of double perovskite oxides using machine learning

Thank you for your attention!