Вольный конспект 1 лекции

21 сентября 2024 г.

Глава 1. Просранства с операторами.

§1 Определение инвариантного подпространства.

V - векторное пространство над полем F.

 $\mathcal{A}:V\longrightarrow V$ - линейный оператор.

 $Hanomunanue\ 1$: Если F алгебраически замкнуто(в частности $F=\mathbb{C}$),

то
$$\chi_{\mathcal{A}}(t) = \prod_{i=1}^n (t-\lambda_i)$$
, где λ_i - собственные числа.

Напоминание 2: В базисе из собственных векторов матрица диагональна.

$$\mathcal{A}v_1 = \lambda_1 v_1
\mathcal{A}v_2 = \lambda_2 v_2
\vdots
\mathcal{A}v_n = \lambda_n v_n$$

$$[\mathcal{A}] = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \lambda_n \end{pmatrix}$$

где $[\mathcal{A}]$ - принятое в прошлом семестре обозначение матрицы оператора в некотором базисе.

Определение 1: Пусть (V, \mathcal{A}) - линейное пространство с заданным на нем оператором и $U \subset V$ - некоторое его подпространство. U называется инвариантным, если $\mathcal{A}U \subset U$ при действии \mathcal{A} , или, что то же самое $\forall x \in U \mathcal{A}x \in U$.

3амечание 1: Если u - собственный вектор, то $\langle u \rangle$ - инвариантное подпространство.

Замечание 2: $U = \langle u_1, u_2, ..., u_n \rangle$, U - инвариантно $\iff Au_i \in U, \forall i$

Предложение 1: Если U - инвариантное подпространство, то при согласовнном с U выборе базиса в V, матрица $[\mathcal{A}]$ будет иметь блочнотреугольный вид:

$$\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

Комментарий 1: "Согласованность" выбора базиса означает, что сначала мы выбираем базис в U,а потом его дополняем до базиса в V

Комментарий 2: Под точками подразумеваются блоки, под нулем - нулевая матрица.

Так как U инвариантно, то \mathcal{A} можно ограничить на оператор из $U \to U$, при этом матрица ограничения при согласованном выборе базиса будет совпадать с верхним левым блоком исходной матрицы.

$$\mathcal{A}|_U:U\longrightarrow U.$$

 \mathcal{A} ля mex, кому несложно. Аналогично, так как U инвариантно, то \mathcal{A} индуцируется до оператора на V/U, при этом матрица индуцированного оператора при согласованном выборе базиса будет совпадать с нижним правым блоком исходной матрицы.

$$\mathcal{A}|_{V/U}:V/U\longrightarrow V/U$$

Если $V=U_1\oplus U_2$, и $U_{1,2}-$ оба инвариантны относительно \mathcal{A} , то в базисе согласованном с U_1,U_2 матрица $[\mathcal{A}]$ будет выглядеть как:

$$\begin{pmatrix} [\mathcal{A}]|_{U_1} & 0\\ 0 & \mathcal{A}|_{U_2} \end{pmatrix}$$

Комментарий: Согласованность базиса определяется аналогично прошлому разу.

Если $V=\bigoplus_{i=0}^n \langle v_i \rangle$, где $\{v_i\}$ - базис из собственных векторов, то это будет разложением в прямую сумму пространств размерности 1.

§2 Циклическое пространство.

a bit of abstract nonsense.

Определение 2: Гомоморфизм пространств с операторами. Пусть

 $\mathcal{A}:V\longrightarrow V$

 $\mathcal{A}':V'\longrightarrow V'$

Гомоморфизмом из (V, A) в (V', A'), называется линейное отображение $\varphi: V \longrightarrow V'$, такое что данная диаграмма коммутативна.

$$\begin{array}{ccc}
V & \xrightarrow{\varphi} & V' \\
\downarrow A & & \downarrow A' \\
V & \xrightarrow{\varphi} & V'
\end{array}$$

Или же, $\forall x \in V: \varphi \circ \mathcal{A}(x) = \mathcal{A}' \circ \varphi(x)$. φ - обратимо, значит $\varphi^{-1} \mathcal{A}' \varphi = \mathcal{A}$ или $\varphi \mathcal{A} \varphi^{-1} = \mathcal{A}'$

Определение 3: Квадратные матрицы A и B называются сопряженными, если $\exists C \in Gl_n(F) : B = CAC^{-1}$, где $Gl_n(F)$ - группа обратимых матриц размера n на n над полем F.

ОПРЕДЕЛЕНИЕ 4: (V, \mathcal{A}) - пространство с оператором, $u \in V$. Инвариантным подпространством порожденным u называется наименьшее инвариантное подпространство, содержащее u. Обозначается как $\langle u \rangle_{\mathcal{A}} = \langle u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^ku, ... \rangle$

Предложение 2: Пусть $m = \min_{m \in \mathbb{N}} : \mathcal{A}^m u \in \langle u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^{m-1}u, ... \rangle$. Тогда $u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^{m-1}u$ - базис в $\langle u \rangle)\mathcal{A}$ и матрица $[\mathcal{A}]_{\langle u \rangle)\mathcal{A}}$ - сопутствующая матрица многочлена $t^m - c_{m-1}t^{m-1} - ... - c_1t - c_0$, где $\mathcal{A}^m = c_0u + c_1\mathcal{A}u + ... + c_{m-1}\mathcal{A}^{m-1}u$.

$$[A] = \begin{pmatrix} 0 & 0 & 0 & \dots & c_0 \\ 1 & 0 & 0 & \dots & c_1 \\ 0 & 1 & 0 & \dots & c_2 \\ 0 & 0 & 1 & \dots & c_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Доказательство (вроде очевидно, но все же)

Индукция $u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^ku$ - линейно независимые. и k < m-1. В силу минимальности m $\mathcal{A}^{k+1} \notin \langle u \rangle_{\mathcal{A}} = \langle u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^ku. \rangle$. Значит

 $u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^{m-1}u$ - линейно независимые, а так как они порождают $\langle u, \mathcal{A}u, \mathcal{A}^2u, ..., \mathcal{A}^{m-1}u \rangle$, то они являются базисом.

Теперь, посмотрим куда переходят элементы этого базиса под \mathcal{A} :

$$\mathcal{A}: \mathcal{A}^l u \mapsto \mathcal{A}^{l+1} u$$
, при $0 \le l < m-1$

$$\mathcal{A}: \mathcal{A}^m \mapsto \mathcal{A}^{m-1}u, \text{ при } 0 \le t < m-1$$

$$\mathcal{A}: \mathcal{A}^{m-1}u \mapsto \mathcal{A}^m = c_0u + c_1\mathcal{A}u + \dots + c_{m-1}\mathcal{A}^{m-1}u$$

Определение 5: Многочлен f аннулирует $u \in V$, если f(A)v = 03амечание 1: если f и g аннулируют u, то (f,g) аннулирует u.

Замечание 2: Степень минимального аннулятора u равна $\dim \langle u \rangle_A$ §3 Теорема Гамильтона-Кэли.

Лемма 1.

$$det \begin{pmatrix} -t & 0 & 0 & \dots & c_0 \\ 1 & -t & 0 & \dots & c_1 \\ 0 & 1 & -t & \dots & c_2 \\ 0 & 0 & 1 & \dots & c_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & \dots & \dots & c_{m-1} \end{pmatrix} = (-1)^m (t^m - c_{m-1}t^{m-1} - \dots - c_1t - c_0)$$

Доказательство: (См. прошлый семестр) Явное вычисление определителя по индукции. Сразу разложим по 1 строке и применим индукционное предположение:

$$\det(A) = -t(t^{m-1} - c_{m-1} - \dots) + -(1)^{m-1}(c_0) = (-1)^m(t^m - c_{m-1}t^{m-1} - \dots - c_1t - c_0)$$

Теорема Гамильтона-Кэли. Характеристический многочлен $\chi_{\mathcal{A}}(t)$ является аннулятором всего пространства V.

Доказательство.

Если V - циклическое, то есть $\exists u: V = \langle u \rangle_{\mathcal{A}}$, то в базисе из $u, \mathcal{A}u, ..., \mathcal{A}^{k-1}u$ матрица оператора будет сопутствующей и ее характеристический многочлен будет вычисляться как определитель из леммы:

$$\chi_{\mathcal{A}}(t) = (-1)^m (t^m - c_{m-1}t^{m-1} - \dots - c_1t - c_0).$$
 Очевидно, $\chi_{\mathcal{A}}(\mathcal{A})V = 0.$

Теперь, пусть V - нециклическое, тогда $\exists u \in V : \langle u \rangle_{\mathcal{A}} \neq V$. Матрица ${\cal A}$ в соответствующем базисе выглядит как

$$\begin{pmatrix} B & * \\ 0 & C \end{pmatrix}$$

В силу свойств умножения матриц:

$$p\begin{pmatrix} B & * \\ 0 & C \end{pmatrix} = \begin{pmatrix} p(B) & * \\ 0 & p(C) \end{pmatrix}$$

В силу свойств определителя:

$$\chi_{\mathcal{A}}(\mathcal{A}) = \chi_B(t)\chi_C(t) = \begin{pmatrix} \chi_B(B) & * \\ 0 & \chi_B(C) \end{pmatrix} \begin{pmatrix} \chi_C(B) & * \\ 0 & C\chi_C(C) \end{pmatrix} = 0$$
 Комментарий: При подстановки матрциы в многочлен в общем-то

Комментарий: При подстановки матрциы в многочлен в общем-то нельзя ничего конкретного сказать, что будет на месте *. Не стоит думать, что там будет находится p(*).