

Lecture Slides for

INTRODUCTION TO

Machine Learning 2nd Edition

© The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml2e

CHAPTER 5:

Multivariate Methods

Multivariate Data

- Multiple measurements (sensors)
- d inputs/features/attributes: d-variate
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_2^1 & \cdots & X_d^1 \\ X_1^2 & X_2^2 & \cdots & X_d^2 \\ \vdots & & & & \\ X_1^N & X_2^N & \cdots & X_d^N \end{bmatrix}$$

Multivariate Parameters

Mean:
$$E[\mathbf{x}] = \boldsymbol{\mu} = [\mu_1, ..., \mu_d]^T$$

Covariance: $\sigma_{ij} \equiv \text{Cov}(X_i, X_j)$

Correlation: Corr
$$(X_i, X_j) \equiv \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

$$\Sigma = \text{Cov}(\mathbf{X}) = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & & & & \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

Parameter Estimation

Samplemean
$$\mathbf{m} : m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}, i = 1, ..., d$$

Covariance matrix
$$\mathbf{S}: s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

Correlation matrix
$$\mathbf{R}: r_{ij} = \frac{s_{ij}}{s_i s_j}$$

Estimation of Missing Values

- What to do if certain instances have missing attributes?
- Ignore those instances: not a good idea if the sample is small
- Use 'missing' as an attribute: may give information
- Imputation: Fill in the missing value
 - Mean imputation: Use the most likely value (e.g., mean)
 - Imputation by regression: Predict based on other attributes

Multivariate Normal Distribution

$$\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}}$$

Multivariate Normal Distribution

- Mahalanobis distance: $(\mathbf{x} \boldsymbol{\mu})^T \sum^{-1} (\mathbf{x} \boldsymbol{\mu})$ measures the distance from \mathbf{x} to $\boldsymbol{\mu}$ in terms of \sum (normalizes for difference in variances and correlations)
- Bivariate: *d* = 2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right]$$
$$z_i = (x_i - \mu_i)/\sigma_i$$

Bivariate Normal

Independent Inputs: Naive Bayes

• If x_i are independent, offdiagonals of Σ are 0, Mahalanobis distance reduces to weighted (by $1/\sigma_i$) Euclidean distance:

$$p(\mathbf{x}) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_i} \exp \left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2 \right]$$

• If variances are also equal, reduces to Euclidean distance

Parametric Classification

• If $p(\mathbf{x} \mid C_i) \sim N(\mu_i, \Sigma_i)$

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) \right]$$

Discriminant functions

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x} | C_{i}) + \log P(C_{i})$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_{i}| - \frac{1}{2} (\mathbf{x} - \mu_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \mu_{i}) + \log P(C_{i})$$

Estimation of Parameters

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}$$

$$\mathbf{m}_i = \frac{\sum_t r_i^t \mathbf{x}^t}{\sum_t r_i^t}$$

$$\mathbf{S}_i = \frac{\sum_t r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T}{\sum_t r_i^t}$$

$$g_i(\mathbf{x}) = -\frac{1}{2} \log |\mathbf{S}_i| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1} (\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

Different S_i

Quadratic discriminant

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_{i}| - \frac{1}{2}(\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{x} - 2\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i}) + \log\hat{P}(C_{i})$$

$$= \mathbf{x}^{T}\mathbf{W}_{i}\mathbf{x} + \mathbf{w}_{i}^{T}\mathbf{x} + \mathbf{w}_{i0}$$
where

$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$\mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log\hat{P}(C_{i})$$

Common Covariance Matrix S

Shared common sample covariance S

$$\mathbf{S} = \sum_{i} \hat{P}(C_{i}) \mathbf{S}_{i}$$

Discriminant reduces to

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

which is a linear discriminant

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{S}^{-1}\mathbf{m}_{i} \quad \mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

Common Covariance Matrix S

Diagonal S

• When $x_j j = 1,..d$, are independent, \sum is diagonal $p(\mathbf{x}|C_i) = \prod_j p(x_j|C_i)$ (Naive Bayes' assumption)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^d \left(\frac{\mathbf{x}_j^t - \mathbf{m}_{ij}}{\mathbf{s}_j} \right)^2 + \log \hat{P}(C_i)$$

Classify based on weighted Euclidean distance (in s_j units) to the nearest mean

Diagonal S

Diagonal S, equal variances

 Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{m}_i\|^2}{2s^2} + \log \hat{P}(C_i)$$
$$= -\frac{1}{2s^2} \sum_{i=1}^d (x_j^t - m_{ij})^2 + \log \hat{P}(C_i)$$

 Each mean can be considered a prototype or template and this is template matching

Diagonal S, equal variances

Model Selection

Assumption	Covariance matrix	No of parameters
Shared, Hyperspheric	$S_i = S = S^2 I$	1
Shared, Axis-aligned	\mathbf{S}_{i} = \mathbf{S} , with s_{ij} = 0	d
Shared, Hyperellipsoidal	S _i =S	d(d+1)/2
Different, Hyperellipsoidal	Si	K d(d+1)/2

- As we increase complexity (less restricted S), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)

Discrete Features

• Binary features: $p_{ij} = p(x_j = 1 | C_i)$

if x_i are independent (Naive Bayes')

$$p(x \mid C_i) = \prod_{j=1}^{d} p_{ij}^{x_j} (1 - p_{ij})^{(1-x_j)}$$

the discriminant is linear

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x} \mid C_{i}) + \log P(C_{i})$$

$$= \sum_{j} \left[x_{j} \log p_{ij} + (1 - x_{j}) \log (1 - p_{ij}) \right] + \log P(C_{i})$$
Estimated parameters
$$\hat{p}_{ij} = \frac{\sum_{t} x_{j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Discrete Features

• Multinomial (1-of- n_j) features: x_j Î $\{v_1, v_2, ..., v_{n_j}\}$

$$p_{ijk} \equiv p(z_{jk}=1|C_i) = p(x_j=v_k|C_i)$$

if x_i are independent

$$p(\mathbf{x} | C_i) = \prod_{j=1}^{d} \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$$

$$g_i(\mathbf{x}) = \sum_{j} \sum_{k} z_{jk} \log p_{ijk} + \log P(C_i)$$

$$\hat{p}_{ijk} = \frac{\sum_{t} z_{jk}^{t} r_i^{t}}{\sum_{t} r_i^{t}}$$

Multivariate Regression

$$r^t = g(x^t | w_0, w_1, ..., w_d) + \varepsilon$$

Multivariate linear model

$$\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1^t + \mathbf{w}_2 \mathbf{x}_2^t + \dots + \mathbf{w}_d \mathbf{x}_d^t$$

$$E(w_0, w_1, ..., w_d \mid \mathcal{X}) = \frac{1}{2} \sum_{t} \left[r^t - w_0 - w_1 x_1^t - \cdots - w_d x_d^t \right]^2$$

Multivariate polynomial model:

Define new higher-order variables

$$z_1 = x_1$$
, $z_2 = x_2$, $z_3 = x_1^2$, $z_4 = x_2^2$, $z_5 = x_1 x_2$

and use the linear model in this new **z** space (basis functions, kernel trick: Chapter 13)