# Analysis I

# 1. Organisation, Tipps & Tricks und Literaturhinweise

#### Mathe...

- ist intellektuell extrem herausfordernd
- kommt mit einem hohen Arbeitsaufwand
- oft falschen Erwartungen und
- ist wie Ausdauersport

aber dafür ist Mathe eines der schönsten Studien c:

### Generelles Zeitmanagement:

- $\bullet$  Vor- und Nachbereitung wahrscheinlich mehr als die gesetzten  $14 \times 3 \, h = 42 \, h$
- Klausurvorbereitung auch mehr als 39 h
- Pro Woche  $2 \times 1.5 \, \text{h}, \, 2 \times 2 \, \text{h}, \, 1.5 \, \text{h}, \, 10 \, \text{h}$
- Es gibt immer eine Aufgabe die man nicht lösen kann
- In die Vorlesungen kommen

### Vorlesung:

- normal nicht alles zu verstehen
- Notizen was man nicht versteht
- Punkte konzise angehen
- Mathe muss sich gedanklich setzen genügend Zeit zu verarbeiten

### Übungen:

- zeitintensiv
- Ergebnisse vernünftig aufschreiben

- Weg zu einer korrekter Lösung ist sehr langwierig
- nicht 10 Blätter Papier ab, von denen 9.5 inkonklusiv sind
- also schön Aufschreiben

Wenn wir einen Satz gezeigt bekommen, dann bekommen wir nicht die gescheiterten Jahrelangen Versuche zur Schau, sondern nur die Ausgearbeitete Lösung  $\rightarrow$  also bei uns auch langer weg, aber Aufschreiben nur klein

### Übungszettel:

- 50% muss richtig sein
- bis Freitag 10:00 Uhr
- in F4
- diese Woche nicht so umfangreich, weil weniger Zeit
- auf ILIAS Terminfindung Abstimmung
- Donnerstag Einteilung in Tutorien
- Blätter tackern :c
- alle zwei Wochen Beweismechanik Aufgaben, nur digital nicht in Papier (ist dann die letzte Aufgabe)

### Literaturempfehlung:

- Otto Forster: Analysis 1
  - kurz und knapp aber konzise, udn das hilft
  - ähnliche Struktur wie Vorlesung
  - weig motivation und wenige Querverbindungen
- Königsberger: Analysis 1
  - kurz aber konzise
  - alle themen der Vorlesung, andere Struktur
  - mehr motivation und Querverbindungen
- Klaus Fritsche: Grundkurs Analysis 1
  - ausführlich

- Daniel Grieser: Analysis I
  - Ausfühlich, aber mit Fokus auf das Wesentliche
  - alle Themen der Volesung enthalten, ähnliche Struktur
  - bunt??
- Harro Huser: Lehrbuch der Analysis Teil 1
  - extrem ausfühlich,dick, an einigen stellen sehr extensiv
  - alle und mehr Themen als Vorlesung
  - Querverbindungen
- Walter Rudin: Analysis
  - sehr knapp und elegant
  - klassiker
  - alle themen der Volesung, leicht andere Struktur
  - empfehlenswertes Buch fortgeschrittene Leser\*innen
  - nicht für Anfänger\*innen
- Herber amann, Joachim Escher: Analysis I
  - strkt logischer Aufbau, damit teils länglich. Großes Bild
  - alle Themen, andere Struktur
  - auch nicht für anfänger\*innen
- Terence Tao: Analysis (englisch, aber gut)
- Rober Denk, Reinhard Racke: Kompendium der ANalysis
  - kurz und knapp, teils wie Nachschlagewerk
  - alle themen
- Florian Modler, Martin Kreh: Tutorium Analysis 1 und Lineare Algebra 1
  - kurz und knapp, teils wie nachschalgewerk
  - von studierende f
     ür studierende
  - aber enthält ein paar Fehler

## 2. Natürliche Zahlen und elemntare Begriffe

#### 2.1. Zahlbereiche

$$\begin{split} \mathbb{N} &\coloneqq \{1,2,3,\dots\} \\ \mathbb{N}_0 &\coloneqq \{0,1,2,3,\dots\} \\ \mathbb{Z} &\coloneqq \{\dots,-3,-2,-1,0,1,2,3,\dots\} \\ \mathbb{Q} &\coloneqq \{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\} \\ \mathbb{R} &\coloneqq \{ \text{ reelle Zahlen } \} \end{split}$$

Wir besprechen gar nicht was eine Menge ist, das ist zu philosophisch Es ist schwierig Mengen zu Definieren, man kommt schnell auf logische Wiedersprüche

- Notation: für x schreiben wir für eine Eigenschaft A "A(x)", falls x A erfüllt.
- $\rightarrow$  Menge aller Objekte x mit A(x)

$${x:A(x)}$$

- $\rightarrow$  gibt es kein x mit A(x), so nennen wir die Menge leer, " $\emptyset$ "
- ∃≜ Existenzquantor, "es existiert"
- A, B, Eig.,  $M := \{x : x \text{ erf. } A\}$   $N := \{x : \text{ erf. } B\}$  $M \subset N$ , falls  $\forall x \in M : x \in N$
- M = N, falls  $M \subset N \vee N \subset M$
- "Echte Tielmenge":  $M \nsubseteq N$ , falls  $M \subset N, N \neq N$ .

### Example 2.1.1 (gerade Zahlen)

$$n \in \mathbb{N}_0 \text{ gerade } : \iff (\exists k \in \mathbb{N}_0 : n = 2k)$$

$$M := \{ n \in \mathbb{N}_0 : \exists k \in \mathbb{N}_0 : n = 2k \}$$
 (1)

$$= \{2k : k \in \mathbb{N}_0 \tag{2}$$

### Example 2.1 $\mathbb{N} \subsetneq \mathbb{N}_0 \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$

Zu  $\mathbb{Q} \subsetneq \mathbb{R} : \sqrt{2} \notin \mathbb{Q}$ . Widerspruchsbeweis: Ang.,  $\sqrt{2} \in \mathbb{Q}$ , so  $\sqrt{2} = \frac{p}{q}$ , mit  $p \in \mathbb{N}_0, q \in \mathbb{N}$ .  $\times p$ ,  $\neq p$  teilerfremd (d.h. Bruch ist vollständig gekürzt).. Also  $p^2 = 2q^2$ 

- $\implies p$  ist gerade. Also p = 2l mit  $l \in N_0$ .
- $\implies 4l^2 = p^2 = 2q^2 \implies 2l^2 = q^2 \implies q \text{ gerade.}$
- $\implies p, q \text{ gerade.} \implies p, q \text{ nicht teilerfremd.}$

### 2.2. Vollständige Induktion

• Ziel: Beweis von Aussagen für alle  $n \in \mathbb{N}_0$ 

Dominoprinzip: Wenn alle Steine umfallen sollen,

- müssen wir den 1. Stein umwerfen,
- muss stehts der n-te Stein den (n+1)-ten umwerfen.

**Prinzip** (vollst. Ind.) Wollen wir eine Aussage  $A(n) \forall n \in \mathbb{N}$  zeigen; so zeigen wir

- (i) A(1) gilt (Induktionsanfang)
- (ii) Aus A(n) für  $n \in \mathbb{N}$  stets A(n+1) folgt. (Induktionsschritt)

### Definition 2.1 Summen

Für  $x_{-1}, \ldots, x_n \in \mathbb{R}$  definieren wir

$$\sum_{k=1}^{n} x_k \coloneqq x_1 + \ldots + x_n$$

### Example 2.2 Geometrische Summe

 $\forall n \in \mathbb{N} :$ 

$$\sum_{k=0}^{n} x^{k} x^{0} + x^{1} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$
(3)

**I.A.** n = 1

$$\sum_{k=0}^{\infty} 1x^k = x^0 + x^1 = 1 + x = \frac{(1-x)(1+x)}{1-x} = \frac{1-x^2}{1-x}$$

I.S.

$$n \rightarrow n+1$$

Angenommen, (equation) gilt für ein  $n \in \mathbb{N}$ . z.z. (equation) gilt für n + 1

$$\sum_{k=0}^{n+1} x^k = \left(\sum_{k=0} nx^k\right) + x^{n+1} =$$