Naloga 1. - Poravnava več zaporedij

Nagrada o za ujevnanje ter kazen 1 za zamenjako/delecijo/insercijo. Za razdaljo upostevamo Levensthoirovo razdaljo = st. razlik med zaporedjema (vse kar ni ujevnanje) u poravnani.

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
ocera=-6	Ocera =-
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
ocera = -4	cena=-7
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
mera = -5	_

ocera=-6

Iz ocen sestavimo matriko razdalj. Upostevamo razdalja = 1 ocenal.

	S1	SZ	S₃	Sy
S١	0	6	6	4
S2	کو	0	7	ળ
S 3	6	7	Ō	6
Sy	4	5	6	0

lz matrike začnemo graditi drevo. Uporabil bom metodo UPGMA.

$$d(C_1, S_2) = \frac{d(S_1, S_2) + d(S_1, S_2)}{|C_1|} = \frac{6 + 4}{2} = 5, \quad d(C_1, S_3) = \frac{d(S_1, S_3) + d(S_1, S_3)}{|C_1|} = \frac{6 + 6}{2} = 6$$

	C1	S2	S3
C1	0	5	6
SZ	5	0	7
S3	6	7	0

C2 = & C1, 523

Tu lahko že apazimo, da se bo Sz vezal s cz, zato računanje razdalj ni već potrebro.

Vsaki totki dolotimo poravravo in sicer najboljšo poravravo zaporedje ene skupine z zaporedjem druge skupine (oz. poddrevesa).

- 1. La C1 imamo motri samo due raporedji, zato C1 dodelimo poravravo (S1, S4).
- 2. Cz dodelino porovnavo, ki zadostuje min $\{c_1, s_2\} = \min\{d(s_1, s_2), d(s_4, s_2)\} = \min\{d(s_1, s_2)\}$ (Sy, Sz).
- 3. C3 dodelino poravnavo min $\{Cz, S3\}$, kjer zaporedja za C2 obravnavamo le S4 in S2. min $\{d(S4, S3), d(S2, S3)\} = min\{6, 7\} \Rightarrow (S4, S3)$

Zaporedja ravnamo od vrha drevesa navzdol. Zachemo s

poravnavo (53,54) in ji dodamo raporedje 52, take da dodamo vrzeli glede na to kako se sz poravna z 52 in 53:

Vsem dodamo še Si in spet dodamo vrzeli glede na to kako se Si poravna z SI ter Sz in Sz:

Naloga 2. – Rekonstrukcija zaporedij

Dani so naslednji podatki za problem rekonstrukcije zaporedij: $\ell=3$, multimnožica zaporedij: $S=\{\texttt{ATG},\texttt{CGT},\texttt{GCA},\texttt{GCG},\texttt{GGC},\texttt{TGG},\texttt{GTG},\texttt{TGC},\texttt{GGG}\}.$

as Uporaba hamiltonskih poti

Harviltonska pot: pot, ki obišče vsako točko natarko enkrat.

Mozni poti:

Eulerjeva sled: sled, ki gre po vsaki poveravi natanko enkrat.

Motivi poti:

Naloga 3. - Aditivna filogenija

Obravnavajte naslednje tri matrike

_1	M_1	A	B	C	D
	A	0	2	6	8
	B	2	0	6	9
	C	6	6	0	8
	D	8	10	8	0

M_2	A	B	C	D
A	0	2	6	8
В	2	0	7	9
C	6	7	0	8
D	8	9	8	0

M_3	A	B	C	D
A	0	5	6	8
B	5	0	10	6
C	6	10	0	7
D	8	6	7	0

- (a) Za vsako od njih določite, ali je aditivna ali ne z uporabo pogoja štirih točk. (3 točke)
- (b) Uporabite algoritem ADITIVNA FILOGENIJA na matriki M_2 . Zapišite vse korake algoritma. (5 točk)

$$D_{AB} + D_{CD} = 2 + 8 = 10$$

 $D_{AC} + D_{BD} = 6 + 10 = 16$
 $D_{AD} + D_{BC} = 8 + 6 = 14$

:	8	+	6	=	14	

M_2	A	B	C	D
\overline{A}	0	2	6	8
В	2	0	7	9
C	6	7	0	8
D	8	9	8	0

$$D_{AB} + D_{CD} = 2 + 0 = 2$$

 $D_{AC} + D_{BD} = 6 + 9 = 15$
 $D_{AD} + D_{BC} = 8 + 7 = 15$

DAR +
$$D_{CD} = 5 + 7 = 12$$

DAC + $D_{BD} = 6 + 6 = 12$
DAD + $D_{BC} = 8 + 10 = 18$

- b) Potek algoritma:
 - 1. Izberemo trojico z najmanjsko skupno nazdaljo
 - 2. Dolotino d = 1/2 razdalja iz (1)
 - 3. Vsem (razen diagonalnim) elementom v matriki odstejeno 25
 - 4. Znebipo se ene instance iz matrike

M_2	A	B	C	D
\overline{A}	0	2	6	8
В	2	0	7	9
C	6	7	0	8
\overline{D}	8	9	8	0

1

Trojica ABD. Veljati mora: DAD = DAB + DBD $8 = 2 + 6 \checkmark$

- 3. Matrika ostane eraka (20 = 0)
- V. Znebimo se rmesne instance = B:

	A	c	D
Α	0	6	8
С	6	0	8
Ď	8	8	0

4. Rešite mali problem varčnosti za naslednje vhodne podatke:

Istemo porawnowe zaporedij notranja vozli sta.

Cene mutacij:					
δ	A	C	G	T	
\overline{A}	0	1	2	3	
C	1	0	4	3	
G	2	4	0	5	
T	3	3	5	0	

Najprej vsakema listu dolotimo tabelo:

4 :	A	С	G	T
	0	ø	∞	ø

virstica iz motrike

Trôki i doložimo tabelo glede na A in 9 tabeli:

A ;	0	∞	∞	00	4:	∞	00 0 00			
G;	2	ч	0	5 +	G:	2	4 0 5	t		
	2	∞	∞	∞	•	∞	∞ 0 w	ε	2+0	= 2
	Δ	,	G	+		Α	c 9 -			

Tocki i določimo glede na 9 in C:

انز	Α	С	q	7
	3	0	ч	3
	Λ			

		_	,			,		
4:	00	<i>0</i> 0	0	₩	c;	∞ 0 ∞ ∞		•
₩;	0	1	2	3 +	Ą;	0 1 2 3	t	D
	00	Ø	2	00		∞ 1 ∞ ∞	_ =	2+1=3

A
$$C$$
 $\stackrel{q}{}$ $\stackrel{\uparrow}{}$ A $\stackrel{\downarrow}{}$ $\stackrel{$

Tocki k doložimo glede na i in j tabeli:

A. c.
$$9$$
 T

i: $2 \cdot 1 \cdot 2 \cdot 3$

A: $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 2 \cdot 3 + A$; $0 \cdot 1 \cdot 3 \cdot 3 \cdot 4$; $0 \cdot 1 \cdot 3 \cdot 4$; $0 \cdot 1 \cdot 3 \cdot 4$; $0 \cdot 1 \cdot 4 \cdot 4$; $0 \cdot 1 \cdot 4$; $0 \cdot 1 \cdot 4 \cdot 4$; $0 \cdot 1 \cdot 4$; $0 \cdot 1 \cdot 4 \cdot 4$; $0 \cdot 1 \cdot 4 \cdot 4$; $0 \cdot$

_	K;	Α	С	G	Ŧ
7		3	1	5	ေ

6:3:8

= 3+3=6

7 3

Toti l dolotimo glede na A in k tabeli: A C 9 † A C 9 T F: 3 1 5 6 A: 0 1 2 3 + A: 0 1 2 3 + 3279 = 0 + 2 = 2A C 4 † A C 9 T L: 3 1 5 6 c: 10 43+ 3 1 9 9 = 1 + 1 = 2A c 9 T A: 0 ∞ ∞ ∞ 9: 2 4 0 5 + 0 5 + 5 5 5 11 = 2 + 5 = 7 A C 9 + A ... 9 T A: 0 00 00 00 k: 3156 T: 3 3 5 0 + 50+ 6 4 10 6 = 3 + 4 = 7

e: ACGT

Vsaki tożki moramo zdaj e: A C G T 2 2 7 7 doložiti znak. Naceloma izberemo vajmanjšo vrednost v K: A C 9 T 3 1 5 6 Aù; A c 4 j: A C G T 2 1 2 3 GGCA

tabeli

