15-09-2025 Deadline 28-09-2025

Instruction: The task can be carried out individually or in groups of two (recommended), and it should be presented orally (code demonstration) along with submission of code and a compact report. **Attention!** Plagiarism check (including usage of AI tools) will be performed on all submissions.

In this assignment, you are going to study the diffusion equation for temperature T (i.e., the heat conduction equation), which can be written as

$$0 = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + S \tag{1}$$

Discretize this equation using FVM (Eq. 4.57 in Versteeg & Malalasekara [1]) and solve using Gauss-Seidel iteration. MATLAB is recommended for programming.

The computational domain and boundary conditions are as shown in figure 1 and table 1, respectively (pick one Case and register your team). Discuss the results from both a physical and a numerical point of view. Present the results as contour plots (wherever applicable). The submission must include the following:

- 1. Use different meshes to solve the problem (i.e., 10×10 , 20×20 , 40×40 , etc) and show mesh independence. Stretch and refine the mesh in regions where you expect large gradients and discuss the solution outcome.
- 2. Plot residual error (R) vs number of iterations (N). Increase or decrease the error tolerance (ϵ) and discuss the outcome.
- 3. What happens if you change the boundary conditions? e.g. change Neumann to Dirichlet or Dirichlet to Neumann on one side. Discuss the results.
 - 4. In order to illustrate the heat flow, plot the heat flux vector as a vector plot and discuss.

$$\dot{q}_x = -k \frac{\partial T}{\partial x}, \dot{q}_y = -k \frac{\partial T}{\partial y} \tag{2}$$

Figure 1: Computational domain.

Case	T 1	T2	T3	T 4	\mathbf{S}	k
1	15	$5(1-y/H) + 15sin(\pi y/H)$	10	dT/dx = 0	$4-5T^3$	16(y/H+1)
2	15	$5(1-y/H) + 15sin(\pi y/H)$	10	dT/dx = 0	500000 - 30000 * T	16(y/H+1)
3	15	q = +5000	10	dT/dx = 0	-1.5	16(y/H+1)
4	15	$5(1-y/H) + 15sin(\pi y/H)$	10	q = -5000	-1.5	16(y/H+1)
5	15	$5(1-y/H) + 15sin(\pi y/H)$	10	dT/dx = 0	-1.5	16((x/L) + 1)((y/H) + 1)
6	15	$5(1-y/H) + 15sin(\pi y/H)$	10	dT/dx = 0	-1.5	16((x/L)+1)

Table 1: L=1 and H=0.5; S is source term (per area); k is coefficient of conductivity.

References

[1] H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics - The Finite Volume Method. Longman Scientific & Technical, Harlow, England, 1st edition, 1995.