

- $\mathbf{B2}$ △ABC において、 $\mathbf{AB}=7$ 、 $\mathbf{AC}=4$ 、 $\sin A=\frac{2\sqrt{6}}{7}$ である。ただし、 $0^{\circ}<\angle\mathbf{A}<90^{\circ}$ である。
 - (1) △ABCの面積を求めよ。 4 6
 - (2) 辺BCの長さを求めよ。また,辺AB,AC上にそれぞれ点P,Qをとり,AP=x,AQ=y とする。 \triangle APQの周の長さが四角形PBCQの周の長さと等しいとき,yをxを用いて表せ。 $BC= \mathcal{I}$, A=0-A
 - (3) (2)のとき, さらに \triangle APQ の面積が四角形 PBCQ の面積と等しいとする。このとき, x, y の値と線分 PQ の長さを求めよ。 (配点 20)

- **B3** xの整式 $P(x) = x^3 3x^2 k(k-4)x k^2$ がある。ただし、k は実数の定数である。
 - (1) P(x) を因数分解せよ。 $\left(\chi_{-} \xi \right) \left\{ \chi_{+}^{2} \xi + \xi \right\} \chi_{+}^{2} \xi$
 - (2) 方程式 P(x) = 0 が異なる 3 個の正の解をもつとき、k のとり得る値の範囲を求めよ。
 - (3) (2)における3個の正の解を α , β , γ (α < β < γ) とする。kが変化するとき,

$$-\alpha+\beta-\gamma+rac{4}{\alpha\gamma+1}$$
の最小値とそのときの k の値を求めよ。 (配点 20)

【選択問題】 数学B受験者は、次のB4 \sim B8のうちから2題を選んで解答せよ。

 $\mathbf{B4}$ 座標平面上に円 $C: x^2+y^2=1$ と直線 $\ell: y=-2x+2$ がある。また、連立不等式 $x^2+y^2\leq 1,\ x\geq 0,\ y\geq 0$

の表す領域を Dとする。

- (1) 円 C と直線 ℓ の共有点の x 座標を求めよ。 $\left(\frac{3}{6}, \frac{4}{5}\right), \left(1, 0\right)$
- (2) 領域 D と直線 m: y = -2x + k (k は定数) が共有点をもつような k の値の範囲を求めよ。
- (3) (2)の直線mの領域Dに含まれる線分をLとする。k=2のとき、Lの長さを求めよ。また、Lの長さが1であるとき、kの値を求めよ。

(2)
$$0 \le k \le \sqrt{5}$$

(3) $k = \frac{2\sqrt{5}}{5}$, $k = \frac{4\sqrt{5}}{5}$, $\frac{2\sqrt{5}}{5}$

B5 θ の方程式 $2\sin^2\theta+\sqrt{3}\sin2\theta-\sqrt{3}\sin\theta-\cos\theta+k=0$ (kは定数) ……① があり, $\theta=\pi$ を解の1つにもっている。また, $t=\sqrt{3}\sin\theta+\cos\theta$ とおく。

- (1) kの値を求めよ。
- (2) $t \in r \sin(\theta + \alpha)$ $(r > 0, 0 \le \alpha < 2\pi)$ の形で表せ。また、方程式①を $t \in \pi$ いて表せ。
- (3) $0 \le \theta \le \frac{\pi}{2}$ のとき,方程式①を解け。また,p を正の実数とし, $0 \le \theta \le p$ において,方程式①が異なる 3 個の実数解をもつとき,p のとり得る値の範囲を求めよ。 (配点 20)

(2)
$$t = 2\sin(\theta + \frac{\pi}{6})$$
 $t^2 + t - 2 = 0$
(3) $\theta = \frac{\pi}{3}$, $\frac{5\pi}{3} = P < \frac{3\pi}{3}$

- **B6** 関数 $f(x) = x^3 6x^2 + 10x 3$ がある。y = f(x) のグラフを C とし、点 A(1, f(1)) における C の接線を ℓ とする。
 - (1) f'(1) の値を求めよ。また,接線 ℓ の方程式を求めよ。 f'(1) = [, f=x+1
 - (2) 曲線 C 上の点 P における接線を m とする。点 P が曲線 C 上を動くとき, m の傾きの最小値とそのときの点 P の座標を求めよ。 M_{CM} -2 , P $\begin{pmatrix} 2 \end{pmatrix}$
 - (3) 曲線 C と接線 ℓ の共有点のうち、A でない方を B とする。また、曲線 C 上を点 A から点 B まで動く点 Q(t,f(t)) をとり、点 Q を通り x 軸に垂直な直線と ℓ との交点を R とする。線分 QR の長さが最大になるとき、t の値を求めよ。また、このとき(2)で求めた点 P に対し、 $\triangle PQR$ の面積を求めよ。 C = 3 、 $\triangle PQ = 2$ (配点 20)

B7 等差数列 $\{a_n\}$ があり、 $a_1+a_4=6$ 、 $a_2+a_6=9$ を満たしている。また、数列 $\{b_n\}$ -1, 0, 3, 8, 15, ……

があり, その階差数列は等差数列である。

- (1) 数列 $\{a_n\}$ の一般項 a_n を n を用いて表せ。 $\mathcal{Q}_{N}=\mathcal{N}+\mathcal{D}$
- (2) 数列 $\{b_n\}$ の一般項 b_n をnを用いて表せ。 $b_N = N^2 2N$
- (3) $a_n + \frac{1}{2}b_n$ の整数部分を c_n とするとき, c_{2k} $(k=1, 2, 3, \dots)$ をkを用いて表せ。

また, $\sum\limits_{k=1}^{2n} c_k$ $(n=1,\ 2,\ 3,\ \cdots)$ を n を 用いて表せ。 (配点 20)

$$C_{2}=2^{2}, \frac{1}{3}n(4^{2}+3^{2}n+2)$$