Introducció als Computadors

Tema 3: Circuits Lògics Combinacionals (CLC) http://personals.ac.upc.edu/enricm/Docencia/IC/IC3a.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ ()

Analogies

Periodic table of the elements

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC). © Encyclopædia Britannica, Inc.

21

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Índex

- Introducció
 - Què és un CLC?
 - De la descripció del CLC a la taula de veritat
 - Portes lògiques
 - Connectant CLC's
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

Disseny lògic

Full-Adder implementat amb 5 portes lògiques

Índex

- Introducció
 - Què és un CLC?
 - De la descripció del CLC a la taula de veritat
 - Portes lògiques
 - Connectant CLC's
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

Circuit

- Conjunt de components electrònics connectats
 - Ex: transistors, condensadors, resistències, sensors, altaveu, led, ...
- Té senyals d'entrada
 - Senyal: magnitud física que canvia amb el temps
 - Ex: diferència de potencial elèctric, temperatura, lluminositat, so, ...
- Processa el(s) senyal(s) d'entrada
- Genera senyal(s) de sortida

Circuit Lògic

- Circuit on els senyals s'interpreten digitalment
 - Els senyals es discretitzen (típicament a dos valors lògics)
 - Exemple: si el senyal és una diferència de potencial entre 0V i 5V
 - De 0V a 2,5V: interpretarem que té el valor lògic "0"
 - De 2,5V a 5V: interpretarem que té el valor lògic "1"
 - D'aquesta forma el circuit és immune a petites pertorbacions del senyal causades pel soroll electromagnètic, atenuacions, o d'altres motius
 - Els circuits que no discretitzen senyals es coneixen com a analògics
- Els components bàsics d'aquests circuits són les portes lògiques

Circuit Lògic Combinacional

- Circuit lògic on el valor dels senyals de sortida depèn única i exclusivament del valor actual dels senyals d'entrada
 - És independent del valor previ dels senyals d'entrada
 - "no tenen memòria"
 - Els circuits lògics "amb memòria" (CLS, "Circuits Lògics Seqüencials", tema 6) utilitzen uns components anomenats biestables
- Exemples
 - Són CLC's:
 - sumador de dos nombres de 16 bits, alarma acústica quan $T>30^{\circ}\,C,...$
 - No són CLC's:
 - o control monedes a màquina de vending, ...
- Els components bàsics d'aquests circuits són les portes lògiques

Taula de veritat (Truth table) d'un CLC

- La funcionalitat d'un CLC es pot descriure mitjançant una matriu de bits tal que per a cada possible valor dels senyals d'entrada indiqui el valor dels senyals de sortida
 - Taula de veritat (TV), Truth table (TT)
- Mida de la TV d'un CLC amb n senyals d'entrada i m de sortida
 - 2^n files $\times m$ columnes
 - Una fila per a cada valor possible dels senyals d'entrada
 - Una columna per a cada senyal de sortida
 - Podrem escriure la taula de veritat d'un CLC únicament quan el nombre de variables d'entrada sigui "petit"
- La funcionalitat d'un CLC es pot expressar en llenguatge matemàtic

$$f: \{0,1\}^n \to \{0,1\}^m (x_{n-1},\ldots,x_1,x_0) (w_{m-1},\ldots,w_1,w_0)$$

• Direm que els CLC's implementen funcions lògiques

Taula de veritat (TV): convenis

- Escriurem la capçalera de la taula,
 - Primer el nom de les *n* variables d'entrada i després de les *m* de sortida
 - Si no ens ve donat, podem triar qualsevol ordre entre elles
 - Algunes ordenacions poden fer més senzill omplir la TV
- ② Amb n variables d'entrada, $x_{n-1}x_{n-2}...x_1x_0$, la taula tindrà 2^n files
 - ullet La primera fila serà la fila 0 i la darrera la 2^n-1
 - La fila i representa la combinació de valors X tal que $X_u = i$
 - Tot i que $x_{n-1}x_{n-2}...x_1x_0$ no tingui res a veure amb un nombre natural representat en binari
 - Exemple: TV d'un CLC amb 3 senyals d'entrada i 2 de sortida
 - El contingut de la TV és la part ombrejada, és a dir, $2^n \times m$ bits

Índex

- Introducció
 - Què és un CLC?
 - De la descripció del CLC a la taula de veritat
 - Portes lògiques
 - Connectant CLC's
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

De la descripció del CLC a la TV

- Veurem tres exemples de com determinar el contingut de la taula de veritat d'un CLC a partir de la descripció de la seva funcionalitat
 - Majority report
 - Multiplexor
 - Control d'un dipòsit d'aigua

Escriure la TV d'un CLC tal que donats tres vots (sí/no) determini quin és el vot majoritari i si hi ha hagut unanimitat.

Senyals d'entrada i de sortida?

- Senyals d'entrada i de sortida?
 - 3 senyals d'entrada d'un bit (els 3 vots)
 - 2 senyals de sortida d'un bit (el vot majoritari i si és unànime)

- Senyals d'entrada i de sortida?
 - 3 senyals d'entrada d'un bit (els 3 vots)
 - 2 senyals de sortida d'un bit (el vot majoritari i si és unànime)
- Mida de la taula de veritat?

- Senyals d'entrada i de sortida?
 - 3 senyals d'entrada d'un bit (els 3 vots)
 - 2 senyals de sortida d'un bit (el vot majoritari i si és unànime)
- Mida de la taula de veritat?

 - 2 columnes (una per a cada senyal de sortida)

- Senyals d'entrada i de sortida?
 - 3 senyals d'entrada d'un bit (els 3 vots)
 - 2 senyals de sortida d'un bit (el vot majoritari i si és unànime)
- Mida de la taula de veritat?
 - $2^3 = 8$ files (una per a cada combinació possible dels senyals d'entrada)
 - 2 columnes (una per a cada senyal de sortida)
- Encapsulat del CLC
 - En aquest cas, totes les entrades són equivalents
 - Ara bé, cal especificar quina és cada sortida perquè són diferents

- Taula de veritat
 - Codificació dels senyals: convencional (0=no, 1=sí)

- Taula de veritat
 - Codificació dels senyals: convencional (0=no, 1=sí)

 v_0 v_1 v_2 resultat unanime

- Taula de veritat
 - Codificació dels senyals: convencional (0=no, 1=sí)

v_0	v_1	<i>V</i> 2	resultat	unànime
0	0	0	0	1
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• En aquest cas ens especifiquen la funcionalitat com a pseudocodi:

```
if (s==0) w=x0; else w=x1;
```

- Hauria de ser trivial deduir quins són els senyals d'entrada i de sortida
 - 3 senyals d'entrada: s, x0 i x1
 - Cal identificar-les perquè no són intercanviables
 - Marquem on han d'anar a parar x1 (1) i x0 (0)
 - 1 senyal de sortida: w

- Mida de la taula de veritat:
 - 2^3 files $\times 1$ columna
- Aquest CLC serà molt utilitzat als nostres circuits
 - Selecciona una entrada entre dues

- Taula de veritat
 - En aquest cas, dependent de com ordenem les variables d'entrada, omplir la taula de veritat pot resultar més o menys senzill

- Taula de veritat
 - En aquest cas, dependent de com ordenem les variables d'entrada, omplir la taula de veritat pot resultar més o menys senzill

s x_0 x_1 w

 x_0 x_1 s w

- Taula de veritat
 - En aquest cas, dependent de com ordenem les variables d'entrada, omplir la taula de veritat pot resultar més o menys senzill

S	<i>x</i> ₀	x_1	w	<i>x</i> ₀	x_1	5	w
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	1	0	1	0	0
0	1	1	1	0	1	1	1
1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	0
1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1

Sea un CLC con 3 entradas y 1 salida para controlar el llenado automático de un depósito de agua. La entrada x viene de un reloj y vale 1 durante el día y 0 durante la noche. Las entradas y y z vienen de dos sensores colocados dentro del depósito, en la parte superior e inferior respectivamente. Cada señal indica con el valor 1 qué el sensor está cubierto de agua y con 0 que no lo está. La salida del circuito controla una bomba de agua, cuando w vale 1 se bombea agua de un pozo para llenar el depósito y cuando vale 0 no. El agua del depósito se va consumiendo de forma irregular durante las 24 horas del día. Se desea que siempre haya agua en el depósito, pero a poder ser, accionando la bomba por la noche.

• L'esquema de l'enunciat ens indica nombre entrades i sortides

- 3 senyals d'entrada: x, y i z
- 1 senyal de sortida: w
- Mida de la taula de veritat:
 - 2³ files ×1 columna

- Podem començar pels casos extrems
 - Quan el dipòsit és plé (y = 1, z = 1, sigui de nit o de dia)
 - No bombejarem aigua
 - Quan es dipòsit és buit (y = 0, z = 0, sigui de nit o de dia)
 - Bombejarem aigua

X	y	Z	w
0	0	0	1
0	0	1	
0	1	0	
0	1	1	0
1	0	0	1
1	0	1	
1	1	0	
1	1	1	0

- Quan el dipòsit és a mitges (y = 0, z = 1)
 - Quan sigui de dia (x = 1)
 - No bombejarem aigua
 - Quan sigui de nit (x = 0)
 - Bombejarem aigua

X	у	Z	W
0	0	0	1
0	0	1	1
0	1	0	
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	
1	1	1	0

- Les combinacions on y = 1, z = 0 són impossibles
 - Si el sensor y indica aigua, z també n'ha d'indicar
 - Llevat malfuncionament dels sensors... assumirem que no és el cas.
 - Però han de ser presents a la TV
- ullet Omplirem aquestes posicions de la TV amb el símbol x
 - x indica Don't care
 - Això ens donarà més llibertat a l'hora de sintetitzar el CLC
 - Acabarem posant-hi el valor que més convingui per simplificar el CLC

X	У	Z	W
0	0	0	1
0	0	1	1
0	1	0	Х
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	Х
1	1	1	0

Índex

- Introducció
 - Què és un CLC?
 - De la descripció del CLC a la taula de veritat
 - Portes lògiques
 - Connectant CLC's
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

Portes lògiques

- Són els CLC's més senzills
 - Amb una entrada d'un bit i una sortida d'un bit
 - Amb dues entrades d'un bit i una sortida d'un bit
- Seran la base per a construir CLC's més complexes
 - Donada qualsevol taula de veritat, sempre podrem construir un circuit format únicament amb portes lògiques que la satisfaci.
- Com les entrades i sortides són binàries, podem analitzar tots els CLC's possibles amb 1 i amb 2 entrades
 - Això no es pot fer amb les funcions matemàtiques de variable real perquè el domini d'entrada és infinit
 - Amb les funcions lògiques ho podrem fer sempre que el nombre de variables sigui petit
 - n variables lògiques d'entrada $\implies 2^n$ combinacions possibles

CLC's amb 1 bit d'entrada i 1 de sortida

Només hi ha 4 CLC's possibles

X	g_3	g_2	g_1	g_0
0 1	1 1	1 0	0 1	0

$$w = g_i(x)$$

- g_0, g_1, g_3 no tenen interès
 - g_0, g_3 retornen un valor constant
 - g1 retorna el mateix valor que tenim a l'entrada
- g₂ sí, inverteix el valor que tenim a l'entrada
 - En direm porta NOT
 - Algebraicament la representarem amb el símbol !
 - Als circuits la representarem amb un triangle i un cercle

CLC's amb 2 bits d'entrada i 1 de sortida

• Dels 16 CLC's possibles $(2^{2^n}, \text{ on } n=2)$, considerarem:

- f_{14} : retorna 1 \iff alguna entrada val 1, en direm OR (OR-2)
 - ullet Algebràicament tindrà el símbol + i als circuits el símbol indicat
- f_8 : retorna 1 \iff les dues entrades valen 1, en direm AND (AND-2)
 - ullet Algebràicament tindrà el símbol \cdot i als circuits el símbol indicat

Importància portes NOT, AND-2 i OR-2

Not

- Veurem que qualsevol CLC es pot implementar utilitzant únicament portes NOT, portes AND-2 i portes OR-2.
 - Independentment del nombre de senyals d'entrada i de sortida del CLC
- De moment assumirem que processen les entrades en temps 0
 - Properament considerarem el retard que introdueixen a la sortida

Implementació de les portes lògiques?

- No ens toca a IC :-)
 - A IC construirem circuits assumint que les portes lògiques es comporten com indiquen les seves taules de veritat
 - IC és independent de la implementació física de les portes
- Però, com s'implementen?
 - Electrònicament, per exemple, amb tecnologia CMOS [5]
 - També es poden implementar amb LEGO [6] o Minecraft [7] :-)

Humor amb portes lògiques?

AND gate

COL gate

BILL gates

[8]

[9]

- Introducció
 - Què és un CLC?
 - De la descripció del CLC a la taula de veritat
 - Portes lògiques
 - Connectant CLC's
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

Disseny modular

- Al curs dissenyarem un computador senzill on tots els seus CLC's estaran fets amb portes lògiques AND-2, OR-2 i NOT
- Estratègia que seguirem:
 - Primer dissenyarem CLC's senzills directament amb portes lògiques
 - Per exemple, multiplexors, half-adders,...
 - Un cop verificats, els incorporarem a la nostra biblioteca de circuits
 - Després dissenyarem CLC's més complexes a partir dels CLC's acabats de dissenyar i de les portes lògiques bàsiques
 - Per exemple, sumadors, comparadors, ...
 - Un cop verificats, els incorporarem a la nostra biblioteca de circuits
 - Aquest procés el repetirem els nivells que facin falta fins a arribar a la funcionalitat final
- Aquesta estratègia és imprescindible en circuits "grans" i en facilita molt l'anàlisi, la depuració i la divisió del treball

• Esquema final del computador que dissenyarem

• Entrem a bloc ALU

Entrem a bloc AL

Entrem al bloc ADD

• Entrem al bloc FA (Full-adder)

• Entrem al bloc HA (Half-adder)

• Entrem al bloc XOR (Exclusive OR)

Regles d'interconnexió de CLC's

- 1 No podem connectar directament dos o més sortides d'un CLC
 - Provocarem un curtcircuit
 - Logic Works mostra el símbol C
- 2 Cal definir el valor de totes les entrades d'un CLC
 - Si no ho fem, tindrem una entrada en alta impedància
 - Logic Works mostra el símbol Z
- No pot haver cap cicle (camí tancat)
 - Si n'existeix, pot passar que aparegui un valor inestable
 - Si n'existeix, pot passar que aparegui un valor estable
 - Deixaria de ser un CLC perquè el circuit tindria "memòria"

Regles d'interconnexió: incomplint regla 1

- Al connectar les sortides de les portes AND-2 hem creat un curtcircuit
 - Logic Works mostra una C al *probe* sobre el curtcircuit
- A la sortida de les NOT, Logic Works mostra valor desconegut (X)

Regles d'interconnexió: incomplint regla 2

- Hem deixat una entrada sense definir
 - Logic Works mostra una Z al *probe* sobre el cable
- La Z es propagarà a la sortida de la AND-2 en funció del valor de l'altra entrada
 - A la porta AND-2, les entrades amb valor 0 són dominants
 - Però als dos casos el circuit és incorrecte

Regles d'interconnexió: incomplint regla 3

• Existència d'un cicle que provoca un valor inestable

- Introducció
- Anàlisi de CLC's
 - Omplint la TV per files
 - Omplint la TV per columnes
- Exercicis
- Conclusions
- Miscel·lània

Anàlisi de CLC's

- Donat l'esquema lògic d'un CLC, determinar la seva taula de veritat
 - El pas contrari rep el nom de síntesi
 - Donada una TV, elaborar un CLC que es comporti com indica la taula
- Veurem dues formes de fer l'anàlisi d'un CLC
 - Per files
 - Per columnes

- Introducció
- Anàlisi de CLC's
 - Omplint la TV per files
 - Omplint la TV per columnes
- Exercicis
- Conclusions
- Miscel·lània

Omplint la TV per files

- Considerem l'exemple de les figures 3.15 i 3.16 de la documentació
- Aquest CLC té dos senyals d'entrada
 - La seva TV tindrà 2² files
- Considerem la combinació de valors 00 als senyals d'entrada
 - Els propaguem fins a la sortida considerant les TV's de les portes
 - Obtenim el valor de la sortida corresponent a la primera fila de la TV

X	У	w
0	0	0
0	1	
1	0	
1	1	

Omplint la TV per files

Repetim el procés amb la resta de files de la TV

- La TV indica que aquest circuit es comporta com la porta XOR
 - XOR = eXclusive-OR

- Introducció
- Anàlisi de CLC's
 - Omplint la TV per files
 - Omplint la TV per columnes
- Exercicis
- Conclusions
- Miscel·lània

Omplint la TV per columnes

- Considerem l'exemple de les figures 3.17 i 3.18 de la documentació
- Aquest CLC té dos senyals d'entrada
 - La seva TV tindrà 2² files
- Considerarem totes les sortides internes dels CLC's del circuit
 - A la TV afegirem una columna per a cada sortida interna
 - Podem etiquetar-la amb un nom o l'expressió lògica equivalent
 - Omplirem els valors d'entrada del CLC amb els valors estàndar

		х∙у	!x	!y	b∙c	a+d	!e
X	у	а	b	С	d	е	w
0	0						
0	1						
1	0						
1	1						

Omplint la TV per columnes

- Ara, omplirem la TV de columna en columna a mesura que totes les entrades dels CLC's interns siguin conegudes
 - Comencem amb la columna a, continueu amb la resta de columnes...

Omplint la TV per columnes

En acabar, podrem extreure la TV

		x•y	!x	!y	p.c	a+d	!e
X	у	а	b	С	d	е	W
0	0	0	1	1	1	1	0
0	1	0	1	0	0	0	1
1	0	0	0	1	0	0	1
1	1	1	0	0	0	1	0

X	у	w
0	0	0
0	1	1
1	0	1
1	1	0

- La TV indica que aquest circuit també es comporta com la porta XOR
 - Hem vist dos CLC's diferents que tenen la mateixa taula de veritat

- Introducció
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

201819-Q1-E1

 Deduïu la taula de veritat del següent circuit (mux és el CLC de l'exemple 2, slide 15)

201819-Q1-E1

 Deduïu la taula de veritat del següent circuit (mux és el CLC de l'exemple 2, slide 15)

201415-Q1-E1 (Feu la Taula de Veritat)

Escribid el contenido de la ROM del CLC que controla el motor del limpiaparabrisas de un coche. El CLC tiene tres señales de entrada (modo -1 bit-, M -2 bits- y S -1 bit-) y dos de salida (V -2 bits- y B -1 bit-). V indica la velocidad de barrido de la escobilla; los valores 00, 01, 10 y 11 codifican, respectivamente, las velocidades nula, lenta, r'epida y muy r'epida. B indica si debe activarse la bomba de agua del limpiaparabrisas (el valor 0 codifica que no debe activarse y el valor 1 que debe hacerlo).

En modo automático (modo=0), la entrada S indica si el parabrisas está limpio (S=0) o sucio (S=1). Mientras esté sucio, la bomba de agua debe activarse y la escobilla debe barrer a velocidad lenta. La entrada M codifica la intensidad de lluvia en este momento (los valores 00, 01, 10 y 11 codifican, respectivamente, $sin\ lluvia$, moderada, intensa y $muy\ intensa$), La salida V tomará el valor nula, lenta, rápida y $muy\ rápida$ cuando la intensidad de lluvia sea, respectivamente, $sin\ lluvia$, moderada, intensa y $muy\ intensa$. Nos garantizan que las entradas nunca mostrarán simultáneamente presencia de suciedad y de lluvia.

En modo manual (modo=1), la entrada S indica que el conductor ha accionado el pulsador de la bomba de agua del parabrisas (S=1); por tanto, la orden debe transmitirse a la bomba de agua. La entrada M indica la velocidad de barrido seleccionada por el conductor (los valores 00, 01, 10 y 11 codifican, respectivamente, las velocidades nula, lenta, r'apida y muy r'apida); esta selección debe transmitirse al motor.

201415-Q1-E1 (Feu la Taula de Veritat)

Escribid el contenido de la ROM del CLC que controla el motor del limpiaparabrisas de un coche. El CLC tiene tres señales de entrada (modo -1 bit-, M -2 bits- y S -1 bit-) y dos de salida (V -2 bits- y B -1 bit-). V indica la velocidad de barrido de la escobilla; los valores 00, 01, 10 y 11 codifican, respectivamente, las velocidades nula, lenta, r'apida y muy r'apida. B indica si debe activarse la bomba de agua del limpiaparabrisas (el valor 0 codifica que no debe activarse y el valor 1 que debe hacerlo).

En modo automático (modo=0), la entrada S indica si el parabrisas está limpio (S=0) o sucio (S=1). Mientras esté sucio, la bomba de agua debe activarse y la escobilla debe barrer a velocidad lenta. La entrada M codifica la intensidad de lluvia en este momento (los valores 00, 01, 10 y 11 codifican, respectivamente, sin lluvia, moderada, intensa y muy intensa), La salida V tomará el valor nula, lenta, rápida y muy rápida cuando la intensidad de lluvia sea, respectivamente, sin lluvia, moderada, intensa y muy intensa. Nos garantizan que las entradas nunca mostrarán simultáneamente presencia de suciedad y de lluvia.

En modo manual (modo=1), la entrada S indica que el conductor ha accionado el pulsador de la bomba de agua del parabrisas (S=1); por tanto, la orden debe transmitirse a la bomba de agua. La entrada M indica la velocidad de barrido seleccionada por el conductor (los valores 00, 01, 10 y 11 codifican, respectivamente, las velocidades nula, lenta, r'apida y muy r'apida); esta selección debe transmitirse al motor.

- Introducció
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

Conclusions

- A un CLC, el valor dels senyals de sortida depèn única i exclusivament del valor actual dels senyals d'entrada
- La funcionalitat d'un CLC amb n senyals d'entrada i m de sortida es pot expressar amb una taula de veritat amb 2^n files \times m columnes
- Els CLC's més senzills, les portes lògiques AND-2, OR-2 i NOT, seran la base que utilitzarem per construir CLC's més complexes
 - Veurem que són prou potents per a poder construir qualsevol CLC
 - Dissenyarem els CLC's modularment
 - Al connectar CLC's cal respectar 3 regles
 - No crear curtcircuits, definir totes les entrades, no crear cicles
- L'anàlisi de l'esquema lògic d'un CLC consisteix en determinar la seva taula de veritat
 - Hem vist dues estratègies: per files i per columnes
 - CLC's diferents poden tenir la mateixa taula de veritat
- No oblideu respondre l'ET3a a Atenea abans de la propera classe

- Introducció
- Anàlisi de CLC's
- Exercicis
- Conclusions
- Miscel·lània

Símbols alternatius de les portes lògiques

Logic function	n	American (MIL/ANSI) Symbol		British (BS3939) Symbol		Common German Symbol		International Electrotechnical Commission (IEC) Symbol	
Buffer			OUT		1 OUT	IN	OUT		OUT 1
Inverte (NOT ga	r te)		-	-	1 >-	-	D~	-	1
2-inpu AND ga	t te)—	=	&	=	D-	I	<u>*</u>
2-inpu NAND ga	t ate	Ð	—	=	& >	=	D~	I	8
2-inpu OR gat	t e	1	—		≥1	=	D-		≥1 —
2-inpu NOR ga	t te	D	—		≥1	=	D-		≥1
2-inpu EX-OR g	t ate	1	>-		=1	=	<u> </u>	<u> </u>	=1
2-inpul EX-NOI gate	R	1)o—		=1 0	=	○		=1

Referències I

Llevat que s'indiqui el contrari, les figures, esquemes, cronogrames i altre material gràfic o bé han estat extrets de la documentació de l'assignatura elaborada per Juanjo Navarro i Toni Juan, o corresponen a enunciats de problemes i exàmens de l'assignatura, o bé són d'elaboració pròpia.

- [1] [Online]. Available: https://www.britannica.com/science/periodic-table.
- [2] [Online]. Available: https://www.pinterest.es/pin/170010954663237098/.
- [3] [Online]. Available: http://www.CircuitsToday.com/.
- [4] [Online]. Available: https://es.wikipedia.org/wiki/Archivo:Imagen_4.png.
- [5] [Online]. Available: https://www.cs.uaf.edu/2011/fall/cs441/lecture/09_05_semiconductors.html.
- [6] [Online]. Available: https://www.randomwraith.com/logic.html.
- [7] [Online]. Available: https://minecraft.wonderhowto.com/news/redstone-logic-gates-mastering-fundamental-building-blocks-for-creating-game-machines-0135063/.
- $\hbox{[Online]}. \ \ A vailable: \verb|www.humorthatworks.com/database/android-logo-logic-gates|.}$
- [9] [Online]. Available: https://me.me/i/or-gate-out-and-gate-out-col-gate-colgate-avi-2550614.
- [10] [Online]. Available: https://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1.

Introducció als Computadors

Tema 3: Circuits Lògics Combinacionals (CLC) http://personals.ac.upc.edu/enricm/Docencia/IC/IC3a.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) & (2)

