Reactive Power Improvement

Power saving Improvement factors

Minimize electronic wasting

Diminish impedence

Harmonic distortion filter

Improvement of non electron current

Dropping Reactive Power

Minimizing power consumption losses by improving Reactive Power(RP)

 $P(Power) = V(Voltage) * I(Current) * Cos <math>\Theta(Power \ Factor)$ is the formula ofActive

Power(AP) in Ohms' law. Power shows a work of electricity per hour(P=VI); that is, it is indicated by multiplying voltage and current(watt-hour). Simultaneously, the voltage-current phase shift is indicated as $\cos\theta$ and the power is indicated as $P=VI*\cos\theta$, where VI is called Apparent Power. In addition, $\cos\theta$ is called 'Power Factor which is equal to AP/SQRT(AP2+RP2). If $\cos\theta=P/VI$ and $\theta=0$, that is, there is no phase shift between voltage and current, it results in $\cos\theta=1$ and power is indicated as the multiplication of VI. On contrary, if the value of θ is not 0, the power P may have the losses as much as $\cos\theta$ value.

- ▶ There occurs a phase shift between Voltage and Current because of interfering Current by some Reactance(Resistance).
- The reasons that Reactive Power becomes dropped
- ◆ Condenser(capacitor)
 Power Factor becomes
 improved after the phase shift
 between Voltage and Current
 narrows by emitting some
 stored current.
- ◆ Under ENPOSS' FORCE,
 Power Factor becomes
 enhanced after FORCE absorbs
 or offsets harmful factors such as
 Impedance, Reactance,
 Harmonics and High Frequencies
 at loads and helps current flow.

