1 Chapter 3: Bayesian Inference under Measurement Noise

Problem 3.1 Let s be the stimulus of interest, x the measurement, $p_s(s)$ the stimulus distribution, and $p_{x|s}(x|s)$ the measurement distribution.

- (a) Write down the posterior distribution over hypothesized stimulus s, given an observed measurement x_{obs} .
- (b) Which of the terms in your expression is called the likelihood function?
- (c) What is the difference between the likelihood function and the measurement distribution?
- 1. (a) Using Bayes' theorem, the posterior distribution is:

$$p_{s|x}(s|x_{obs}) = \frac{p_{x|s}(x_{obs}|s)p_s(s)}{p_x(x_{obs})}$$

 $p_{s|x}(s|x_{obs})$ is the Posterior distribution.

 $p_{x|s}(x_{obs}|s)$ is the Likelihood function, describing how the measurement x_{obs} is generated given s.

 $p_s(s)$ is the Prior distribution over s.

 $p_x(x_{obs})$ is measurements distribution, also known as the Normalization term.

2. (b) $p_{x|s}(x_{obs}|s)$

This is the Likelihood function. This function describe the probability of observing x_{obs} given a particular stimulus s. It never sums to 1.

3. (c)

The likelihood function is a function of the hypothesis s, while the measurement distribution is a function of observed data x_{obs} .

Also, likelihood function doesn't integrate to 1 over s, but measurement distribution integrates to 1 overall possible x_{obs} .