Лабораторная работа на тему: Лабораторная работа. Определение константы диссоциации метилового оранжевого.

Рябов Олег Шистко Степан Группа Б04-302

7 марта 2025 г.

Содержание

1 Введение

Тема работы: Лабораторная работа. Определение константы диссоциации метилового оранжевого.

Целью лабораторной работы является: - регистрация спектров поглощения растворов метилового оранжевого с различными значениями рН в видимой и УФ-областях спектра; - определение рабочих длин волн для кислой и основной форм исследуемого индикатора, нахождение изобестической точки; - проверка закона Бугера - Ламберта - Бера; определение коэффициентов экстинкции кислой и основной форм индикатора на выбранных длинах волн; - определение константы диссоциации метилового оранжевого.

В работе используются:

Таблица 1. (растворы)

Номер	Раствор	Раствор кислоты	Вода
раствора	метилоранж	или щелочи 0.1 н	
	0.2 г/л		
1	2.0 мл	5 мл HCl	Добавляют воду в
2	1.5 мл	5 мл HCl	каждый раствор,
3	1.0 мл	5 мл HCl	доводя его объем
4	0.5 мл	5 мл HCl	до 50 мл.
5	2.5 мл	5 мл NaOH	
6	2.0 мл	5 мл NaOH	
7	1.5 мл	5 мл NaOH	
8	1.0 мл	5 мл NaOH	
9	2.0 мл	25 мл буфер 1	
10	2.0 мл	25 мл буфер 2	
11	2.0 мл	25 мл буфер 3	
12	0 мл	0 мл	

Рис. 1: Растворы

2 Полученные результаты

Получена изобестическая точка на длине волны 477нм Так же определены спектры

Рис. 2: Растворы

поглощения дял конфигураций метил-оранжевого в целочной и кислой средах:

Рис. 3: acid $\lambda = 515nm$

Рис. 4: alkali $\lambda = 468nm$

По данным графикам мы определяем длину волны с наибольшем поглощением (для всех концентраций она совпадает) и строим графики зависимости оптической плотности от концентрации:

Рис. 5: acid

Рис. 6: alkali

Таким образом полученные эстинкции для двух форм МО:

в кислотной среде - $\varepsilon=6.9\dots(\lambda=515nm)$

в щелочной среде - $\varepsilon=3.9\dots(\lambda=468nm)$

Заполненные таблички с константами диссоции и длинами волн:

Рис. 7

Рис. 8

Рис. 9