MATH 140A: Homework #3

Due on Feb 5, 2024 at 23:59pm $Professor\ Seward$

Ray Tsai

A16848188

Problem 1

A complex number z is said to be algebraic if there are integers a_0, \ldots, a_n , not all zero, such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0.$$

Prove that the set of all algebraic numbers is countable. Hint: For every positive integer N there are only finitely many equations with

$$n + |a_0| + |a_1| + \dots + |a_n| = N.$$

Proof. Let p be a n-degree polynomial of integer coefficients. By the Fundamental Theorem of Algebra, p has n complex roots. Notice that since \mathbb{Z}^i is countable for all i > 0, $S = \bigcup_{i=1}^{\infty} \{i\} \times \mathbb{Z}^i$ is countable, by Theorem 2.12. This follows that for $m \in \mathbb{N}$, each $(m, a_0, a_1, \ldots, a_m) \in S$, gives m algebraic numbers and S contains all possible tuples of integer coefficients, so the set

$$\bigcup_{(n,a_0,a_1,\dots,a_n)\in S} \{z \mid a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0\}$$

contains all algebraic numbers and it is countable.

Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that E and \overline{E} have the same limit points. Do E and E' always have the same limit points?

Proof. Let p be a limit point of E'. It suffices to show that there exists some $k \in E$ such that d(p,k) < r, for all r > 0. Since p is a limit point, there exists $q \in E'$ such that $d(p,q) < \frac{r}{2}$. However, as $q \in E'$, q is a limit point of E, so there exists $k \in E$ such that $d(q,k) < \frac{r}{2}$. Hence, d(p,k) < d(p,q) + d(q,k) < r, so p is a limit point of E. It follows that $p \in E'$ so E' is closed.

We prove that E and \overline{E} have the same limit points. E' is obviously contained in the set of limit points of \overline{E} , so it suffices to show the converse. Let x be a limit point of \overline{E} . We show that $x \in E'$. Since \overline{E} is closed, $x \in \overline{E} = E \cup E'$. We may assume that $x \in E$, otherwise we are done. For r > 0, we know that there exists $y \in \overline{E}$ such that $d(x,y) < \frac{r}{2}$. If $y \notin E$, then y is a limit point of E, so there exists $z \in E$ such that $d(y,z) < \frac{r}{2}$. But then d(x,z) < d(x,y) + d(y,z) < r. Hence, there exists some elements in E such that its in $N_r(x)$, for any r > 0. Thus, x is a limit point of E, so $x \in E'$.

To see that E and E' do not always share the same limit points, consider $E = \{0, 1, \frac{1}{2}, \ldots\}$. Since $E' = \{0\}$, E' does not have any limit points.

Let A_1, A_2, A_3, \ldots be subsets of a metric space.

(a) If $B_n = \bigcup_{i=1}^n A_i$, prove that $\overline{B}_n = \bigcup_{i=1}^n \overline{A}_i$ for $n = 1, 2, 3, \ldots$

Proof. We first show that $M' \cup N' = (M \cup N)'$, for subsets M, N. Since $x \in M' \cup N'$ is a limit point of M or N, we get $x \in (M \cup N)'$. Hence, it just need to show that $(M \cup N)' \subseteq M' \cup N'$. Suppose $y \notin M' \cup N'$. Then, there exists r, s > 0 such that $N_r(y)$ does not contain any points in M and $N_s(y)$ does not contain any points in N. Hence, $N_{\min(r,s)}(y)$ does not contain any points in $M \cup N$, and thus $y \notin (M \cup N)'$. By the contrapositive of the statement, we get $(M \cup N)' \subseteq M' \cup N'$. Now that we have shown $M' \cup N' = (M \cup N)'$, we get $\overline{M} \cup \overline{N} = \overline{M} \cup \overline{N}$.

We may now prove $\overline{B}_n = \bigcup_{i=1}^n \overline{A}_i$ by induction on n. The base case is trivial. For n > 1,

$$\overline{B}_n = \overline{\left(\bigcup_{i=1}^n A_i\right)}$$

$$= \overline{\left(A_n \cup \bigcup_{i=1}^{n-1} A_i\right)}$$

$$= \overline{A_n} \cup \overline{\left(\bigcup_{i=1}^{n-1} A_i\right)}.$$

Hence, $\overline{B}_n = \overline{A_n} \cup \overline{\left(\bigcup_{i=1}^{n-1} A_i\right)} = \overline{A_n} \cup \bigcup_{i=1}^{n-1} \overline{A_i} = \bigcup_{i=1}^n \overline{A_i}$, by induction.

(b) If $B = \bigcup_{i=1}^{\infty} A_i$, prove that $\overline{B} \supset \bigcup_{i=1}^{\infty} \overline{A}_i$. Show, by an example, that this inclusion can be proper.

Proof. Let $x \in \bigcup_{i=1}^{\infty} \overline{A}_i$. Then, $x \in A_i \cup A_i'$, for some $i \in \mathbb{N}$. Hence, we may assume that x is the limit point of some A_i , otherwise $x \in A_i \subset B \subset \overline{B}$ and we are done. However, $N_r(x)$ contains a point in $A_i \subset B$ for r > 0, so x is also a limit point of B, and thus $x \in \overline{B}$.

Let $A_i = \{\frac{1}{i}\}$, for $i \in \mathbb{N}$. Note that A_i does not have a limit point. But then $B = \{\frac{1}{k} \mid k \in \mathbb{N}\}$ has a limit point 0. Therefore, $0 \in \overline{B} \setminus \bigcup_{i=1}^{\infty} \overline{A}_i$.

Is every point of every open set $E \subseteq \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .

Proof. This is true. Let $x=(x_1,x_2)\in E$. Since x is an interior point in E, there exists r>0 such that $N_r(x)\subseteq E$. Since $x\in\mathbb{R}^2$, there exists $k=(x_1-\frac{r}{2},x_2-\frac{r}{2})\in\mathbb{R}^2$ such that $d(x,k)=\sqrt{(x_1-(x_1-\frac{r}{2}))^2+(x_2-(x_2-\frac{r}{2}))^2}=\frac{r}{\sqrt{2}}< r$, so $N_r(x)$ is not empty. Hence, for any t>0, if t>r we can find $k\in N_r(x)$ such that d(x,y)< r< t. Otherwise, since $x\in\mathbb{R}^2$, there exists $s=(x_1-\frac{t}{2},x_2-\frac{t}{2})\in\mathbb{R}^2$ such that $d(x,s)=\frac{t}{\sqrt{2}}< t\leq r$. But then $s\in N_r(x)$. Therefore, x is a limit point in E.

However, this does not hold true for closed sets. Consider any non-empty finite set S in \mathbb{R}^2 . S does not have any limit points.

Let X be an infinite set. For $p \in X$ and $q \in X$, define

$$d(p,q) = \begin{cases} 1 & \text{if } p \neq q, \\ 0 & \text{if } p = q. \end{cases}$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed?

Proof. We first check that d is a valid metric. By definition, we already know d(p,q) = d(q,p) is positive than $p \neq q$, otherwise it is 0. Let $r \in X$. We show that $d(p,q) \leq d(p,r) + d(r,q)$ holds. Since d is nonnegative, we may assume that $p \neq q$, otherwise we are done. Then, r canot be equal to both p and q, so at least one of d(p,r), d(r,q) is 1. Therefore, $d(p,q) \leq 1 \leq d(p,r) + d(r,q)$, and thus d is a metric.

Let $E \subset X$ be finite and non-empty. Since for $e \in E$, $N_{\frac{1}{\pi}}(e) = \{e\} \subset E$, so every point in E is an interior point, which makes E an open set. Since any set in X is an union of finite sets, all sets in X is thus an open set. However, any set in X is also the complement of a set, so any set in X is also closed.

Problem 6

For $x \in \mathbb{R}^1$ and $y \in \mathbb{R}^1$, define

$$d_1(x,y) = (x-y)^2,$$

$$d_2(x,y) = \sqrt{|x-y|},$$

$$d_3(x,y) = |x^2 - y^2|,$$

$$d_4(x,y) = |x-2y|,$$

$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}.$$

Determine, for each of these, whether it is a metric or not.

Proof. We first note that $d_i(x,x) = 0$ and $d_i(x,y) = d_i(y,x)$, for $i \in \{1,2,5\}$. d_3 is not a metric as d(1,-1) = 0. d_4 is not a metric as $d_4(1,1) \neq 0$. Hence, we only need to check the triangle inequality for each d_i . Let $z \in \mathbb{R}$.

For d_1 , choose x = 1, y = 0, and $z = \frac{1}{2}$. Since $(x - y)^2 = 1 \ge \frac{1}{4} = (x - z)^2 + (z - y)^2$, d_1 is not a matric.

For d_2 , since $|x-y| \leq |x-z| + |z-y|$ and $2\sqrt{|x-z||z-y|} \geq 0$, we get

$$|x-y| \le |x-z| + |z-y| + 2\sqrt{|x-z||z-y|} = (\sqrt{|x-y|} + \sqrt{|y-z|})^2$$

and thus the triangle equality is met by taking the square roots of both sides. Hence, d_2 is a metric.

For d_5 , we show that $\frac{|x-y|}{1+|x-y|} \le \frac{|x-z|}{1+|x-z|} + \frac{|y-z|}{1+|y-z|}$. By multiplying both sides by the denominators and clearing the repeated terms on both sides, we get

$$|x-y| \le |x-z| + |z-y| + 2|x-z||z-y| + 2|x-y||x-z||z-y|.$$

Since $|x-y| \leq |x-z| + |z-y|$, the above inequality holds, and thus d_5 is a metric.

Prove that the set of all injections from the set of natural numbers to itself is uncountable.

Proof. Let S be a countable set of injections from \mathbb{N} to \mathbb{N} , and we index each function in S, say s_1, s_2, \ldots Note that we may view an injection from \mathbb{N} to \mathbb{N} as an infinite sequence that does not have repeated numbers. We wish to construct an injection not already in S. We start with some injection $f: \mathbb{N} \to \mathbb{N}$. Whenever $f(2k) = s_k(2k)$, we update f by swapping f(2k) with f(2k+1), as $f(2k) \neq f(2k+1)$. Note that we merely changed the ordering of f, so f remains to be an injection. Hence, $f(2k) \neq s_k(2k)$ for all $s_k \in S$, so f is an injection not in S. The result then follows. \square