Readiness Assurance Test

Choose the most appropriate response for each question.

31) Which of the following is a solution to the system of linear equations

$$x + 3y - z = 2$$
$$2x + 8y + 3z = -1$$

$$-x - y + 9z = -10$$

(a)
$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

32) Find a basis for the solution set of the following homogeneous system of linear equations

$$x + 2y + -z - w = 0$$

$$-2x - 4y + 3z + 5w = 0$$

$$(a) \ \left\{ \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\3 \end{bmatrix} \right\}$$

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0\\2\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\3\\-1 \end{bmatrix} \right\}$$
 (b)
$$\left\{ \begin{bmatrix} -2\\1\\0\\-3\\1 \end{bmatrix} \right\}$$
 (c)
$$\left\{ \begin{bmatrix} 2\\-1\\3\\-1 \end{bmatrix} \right\}$$

$$(c) \left\{ \begin{bmatrix} 2\\-1\\3\\-1 \end{bmatrix} \right\}$$

$$(d) \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 5 \end{bmatrix} \end{cases}$$

33) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent
- (d) It is a basis of \mathbb{R}^3 .
- 34) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent
- (d) It is a basis of \mathbb{R}^3 .
- 35) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0\\-2 \end{bmatrix}, \begin{bmatrix} -2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-3 \end{bmatrix}, \begin{bmatrix} 3\\3\\-3 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent
- (d) It is a basis of \mathbb{R}^3 .
- 36) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\5\\-4 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It spans but it is linearly dependent
- (b) It is a basis of \mathbb{R}^3 .
- (c) It does not span and is linearly independent
- (d) It does not span and is linearly dependent
- 37) Suppose $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n \in \mathbb{R}^5$ and you know that every vector in span $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$ can be written uniquely as a linear combination of the vectors $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$. What can you conclude about n?
 - (a) $n \ge 5$
 - (b) $n \le 5$
 - (c) n = 5
 - (d) n could be any positive integer
- 38) Suppose you know that every vector in \mathbb{R}^5 can be written as a linear combination of the vectors $\{\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_n\}$. What can you conclude about n?
 - (a) n = 5
 - (b) n could be any positive integer
 - (c) $n \le 5$
 - (d) $n \ge 5$
- 39) Suppose you know that every vector in \mathbb{R}^5 can be written uniquely as a linear combination of the vectors $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$. What can you conclude about n?
 - (a) n could be any positive integer
 - (b) $n \le 5$
 - (c) $n \ge 5$
 - (d) n = 5
- 40) Suppose you know that every vector in \mathbb{R}^5 can be written uniquely as a linear combination of the vectors $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$. What can you conclude about the set $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n\}$?
 - (a) It does not span and is linearly dependent
 - (b) It does not span and is linearly independent
 - (c) It is a basis of \mathbb{R}^5 .
 - (d) It spans but it is linearly dependent