Equivalenza modello termico ed elettrico (1/3)

Si suppone di studiare i componenti a regime termico In tale situazione la struttura del componente generico può essere descritta con una *rete termica* analoga a una rete elettrica se:

- la differenza di potenziale della rete elettrica si sostituisce con una differenza di temperatura ($\Delta V \leftrightarrow \Delta T$),
- la corrente elettrica si sostituisce con il flusso di potenza termica (I ↔ Pd)
- la resistenza elettrica si sostituisce con la resistenza termica (R $\leftrightarrow \theta_{th}$ o R_{th})

Con queste sostituzioni si può riscrivere la legge di Ohm per la rete termica: $\Delta T = R_{th} \cdot Pd$

S. Saponara- Costruzioni Elettroniche

Equivalenza modello termico ed elettrico (2/3)

Ovviamente la temperatura è in gradi centigradi (°C) – se facciamo sempre riferimento a differenze di temperatura gradi centigradi o Kelvin (°K) è lo stesso - La potenza termica è espressa in [W] e la resistenza termica è in [°C / W o °K / W]

N.B-: Se siamo in regime transitorio, si devono considerare anche le inerzie termiche (capacità termiche) delle varie parti della rete, questo si traduce nell'introduzione di capacità nella rete elettrica equivalente

Equivalenza modello termico ed elettrico (3/3)

Alla luce dell'analogia modello termico ed elettrico, a regime, si può rappresentare la struttura termica di un componente elettronico con sistema di raffreddamento in questo modo →

(in assenza del dissipatore la serie delle resistenze termiche casedissipatore e dissipatore-ambiente deve essere sostituita con una, di valore molto maggiore, case-ambiente propria del componente) 151

S. Saponara- Costruzioni Elettroniche

Esempio 2: analisi modello termico per l'FPGA AX2000

operating range T_i=-55 to 125 C, T_imax=150 C

lable 2-8 • Package Thermal Characteristics

Package Type	Pin Count	θje	θ _{ja} Still Air	θ _{ja} 1.0m/s	θ _{ja} 2.5m/s	Units
Ceramic Quad Flat Pack (CQFP) ₁	208	2.0	22.0	19.8	18.0	*C/W
Ceramic Quad Flat Pack (CQFP) ₁	352	2.0	17.9	16.1	14.7	*CAV
Ceremic Column Grid Array (CCGA)2,3	624	6.5	8.9	8.5	8.0	*C/W

Notes

- 1. B_{IC} for CQFP packages refers to the thermal resistance between the junction and the bottom of the package.
- θ_{jc} for CCGA packages refers to the thermal resistance between the junction and the top of the package.

Figure 2-2 • Hear Flow when Air is Presen

Figure 2-3 · Heat Flow in a Vacuum

S. Saponara- Costruzioni Elettroniche

Esercizio 1

Senza dissipatore, con $\,$ ventola a 2.5 m/s calcolare max potenza dissipabile in funzione di $\,$ T $_{\rm A}$ per garantire range di funzionamento

Soluzione

Se uso package CQFP \rightarrow 14.7 C/W T_{j} max<125 \rightarrow P=(125- T_{A})/14.7=8.5-(T_{A} /14.7) 6.8 W a $T_{A=25C}$ 3.74 W a $T_{A=70C}$ 0 W a $T_{A=125C}$

Se uso package CGA \rightarrow 8 C/W T_{j} max<125 \rightarrow P=(125- T_{A})/8=15.625-(T_{A} /8) 12.5 W a $T_{A=25C}$ 6.875 W a $T_{A=70C}$ 0W a $T_{A=125C}$

153

S. Saponara- Costruzioni Elettroniche

Esercizio 2

Senza dissipatore nè ventola calcolare max potenza dissipabile in funzione di T_A per garantire range di funzionamento

Soluzione

Se uso package CQFP \rightarrow 17.9 C/W T_{j} max<125 \rightarrow P=(125- T_{A})/17.9=6.98-(T_{A} /17.9) 5.58 W a $T_{A=25C}$, 3 W a $T_{A=70C}$, 0 W a $T_{A=125C}$

Se uso package CGA \rightarrow 8.9 C/W T_{j} max<125 \rightarrow P=(125- T_{A})/8.9=14-(T_{A} /8.9) 11 W a $T_{A=25C}$ 6 W a $T_{A=70C}$ 0 W a $T_{A=125C}$

154

Esercizio 3

Con dissipatore ideale (O C/W) calcolare max potenza dissipabile in funzione di T_A per garantire range di Funzionamento

Soluzione

Se uso package CQFP \rightarrow 2 C/W T_{j} max<125 \rightarrow P=(125- T_{A})/2=62.5-(T_{A} /2) 50 W a $T_{A=25C}$ 27.5 W a $T_{A=70C}$ 0 W a $T_{A=125C}$

Se uso package CGA \rightarrow 6.5 C/W T_{j} max<125 \rightarrow P=(125- T_{A})/6.5=19.2-(T_{A} /6.5) 15.38 W a $T_{A=25C}$, 8.46 W a $T_{A=70C}$, 0 W a $T_{A=125C}$

155

S. Saponara- Costruzioni Elettroniche

Esercizio 4

Con package CQFP, determinare sistema di raffredamento che garantisce Pmax=4 W fino a T_A = 100 C

Soluzione

Senza dissipatore nè ventola CQFP→ 17.9 C/W

 T_j max<= 17.9x4 + T_A =171.6 C > 125

Per dissipare 4W con salto termico T_j - T_A = 25 C serve resistenza termica totale inferiore a 25/4=6.25 C/W

2 C/W sono dovuti a giunzione-case → case-ambiente<4.25 Senza dissipatore è 17.9 e non ce la fa.

Se metto un dissipatore di circa 4 C/W in parallelo a 17.9 C/W si ha sicuramente valore inferiore

156

Esercizio 5

Con package CGA, determinare sistema di raffredamento che garantisce Pmax=4 W fino a T_A = 100 C Soluzione

Per dissipare 4W con salto termico T_j - T_A = 25 C serve resistenza termica totale inferiore a 25/4=6.25 C/W ma giunzione-case ha gia 6.5 C/W \rightarrow non è possibile

157

S. Saponara- Costruzioni Elettroniche

Esempio: dissipatori per package di transistor di potenza TO220 (catalogo RS)

Confezione da: 10 pezzi

 Resistenza
 Codice
 Prezzo/conf.

 termica
 1-4
 5-19

 6,8°C/W
 402-995
 27,01 €
 22,95 €

CASE 221A-09 TO-220AB

Confezione da: 1 pezzo

221A-09

 Modelio
 Codice
 Prezzo cat.

 1-24
 25-99

 5,1°C/W
 268-127
 4,29 €
 3,65 €

 3,5°C/W
 268-111
 6,81 €
 5,79 €

158

Esempio: dissipatori per package di transistor di potenza TO3 (catalogo RS)

	Prezzo/confezio da 10 pezzi	one	
R termica	1-4	5-19	
7,1°C/W	10,5	7 € 8,99 €	

159

PIN 1 — Base PIN 2 — Emitter Case is Collector.

S. Saponara- Costruzioni Elettroniche

Esempio: dissipatori per package di transistor di potenza TO39/TO5 (catalogo RS)

TO39 PACKAGE (TO-205AD)

Pin 1 = Emitter Pin 2 = Base Pin 3 = Collector

160

S. Saponara- Costruzioni Elettroniche

Esempio: dissipatori a bassa R termica

http://www.padaengineering.com/ Superpower P6D 24mmx200mm in aria forzata 6 m/s – 66 m³/h

Tc [°C]	Ta [°C]	Rth [°C/W]
36.5	22	0.196
44.5	22	0.183
53	22.5	0.176
62.5	23	0.174
71	23	0.173
79.5	23	0.172 161
	36.5 44.5 53 62.5 71	36.5 22 44.5 22 53 22.5 62.5 23 71 23

S. Saponara- Costruzioni Elettroniche