

# **Practice Paper 1**

A Level Mathematics A
H240/01 Pure Mathematics

**MARK SCHEME** 

**Duration:** 2 hours

### MAXIMUM MARK 100

**Version Final** 

Last updated 07/12/17

This document consists of 11 pages

### **Text Instructions**

### 1. Annotations and abbreviations

| Annotation in scoris   | Meaning                                                                                    |
|------------------------|--------------------------------------------------------------------------------------------|
| ✓and <b>x</b>          |                                                                                            |
| BOD                    | Benefit of doubt                                                                           |
| FT                     | Follow through                                                                             |
| ISW                    | Ignore subsequent working                                                                  |
| M0, M1                 | Method mark awarded 0, 1                                                                   |
| A0, A1                 | Accuracy mark awarded 0, 1                                                                 |
| B0, B1                 | Independent mark awarded 0, 1                                                              |
| SC                     | Special case                                                                               |
| ۸                      | Omission sign                                                                              |
| MR                     | Misread                                                                                    |
| Highlighting           |                                                                                            |
|                        |                                                                                            |
| Other abbreviations in | Meaning                                                                                    |
| mark scheme            |                                                                                            |
| E1                     | Mark for explaining a result or establishing a given result                                |
| dep*                   | Mark dependent on a previous mark, indicated by *                                          |
| cao                    | Correct answer only                                                                        |
| oe                     | Or equivalent                                                                              |
| rot                    | Rounded or truncated                                                                       |
| soi                    | Seen or implied                                                                            |
| www                    | Without wrong working                                                                      |
| AG                     | Answer given                                                                               |
| awrt                   | Anything which rounds to                                                                   |
| BC                     | By Calculator                                                                              |
| DR                     | This question included the instruction: In this question you must show detailed reasoning. |

### 2. Subject-specific Marking Instructions for A Level Mathematics A

- Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

  If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

#### M

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

#### Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

#### В

Mark for a correct result or statement independent of Method marks.

#### F

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep\*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

  Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier
  - cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

|   | Question | Answer                                                                                  | Marks      | AO   | Guidano                                              | ce                              |
|---|----------|-----------------------------------------------------------------------------------------|------------|------|------------------------------------------------------|---------------------------------|
| 1 | (i)      | DR                                                                                      |            |      |                                                      |                                 |
|   |          | $\sqrt{36} + \sqrt{162}$ oe                                                             | M1         | 1.1a | Attempt to expand bracket                            |                                 |
|   |          | $\sqrt{6^2} + \sqrt{9^2 \times 2}$ oe                                                   | A1         | 1.1  | Obtain 6                                             |                                 |
|   |          | $=6+9\sqrt{2}$                                                                          | <b>A1</b>  | 1.1  | Obtain $9\sqrt{2}$                                   | Must show sufficient method     |
|   |          |                                                                                         | [3]        |      |                                                      |                                 |
|   | (ii)     | DR                                                                                      |            |      |                                                      |                                 |
|   |          | $\frac{6(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})} = \frac{12-6\sqrt{2}}{2} = 6-3\sqrt{2}$ | M1         | 1.1a | Multiply numerator and denominator by $2 - \sqrt{2}$ |                                 |
|   |          |                                                                                         | A1         | 1.1  | Either numerator or denominator correct              | Must be simplified              |
|   |          |                                                                                         | <b>A1</b>  | 1.1  | Fully correct expression                             | Must show sufficient method     |
|   |          |                                                                                         | [3]        |      |                                                      |                                 |
| 2 |          | DR                                                                                      |            |      |                                                      |                                 |
|   |          | $3(1-\cos^2\theta) - 2\cos\theta - 2 = 0$                                               | M1         | 3.1a | Attempt to use $\sin^2\theta = 1 - \cos^2\theta$     |                                 |
|   |          | $3\cos^2\theta + 2\cos\theta - 1 = 0$                                                   | <b>A1</b>  | 1.1  | Obtain correct equation                              |                                 |
|   |          | $(3\cos\theta - 1)(\cos\theta + 1) = 0$                                                 | <b>M1</b>  | 1.1a | Attempt to solve quadratic                           | Factorise or <b>BC</b>          |
|   |          | $\cos\theta = \frac{1}{3}\cos\theta = -1$                                               | <b>A1</b>  | 2.2a | Obtain at least two correct angles                   |                                 |
|   |          | $\theta = 70.5^{\circ}, 289^{\circ}, 180^{\circ}$                                       | <b>A1</b>  | 1.2  | Obtain all 3 angles, and no others                   |                                 |
|   |          |                                                                                         | [5]        |      |                                                      |                                 |
| 3 | (i)      | $2x^2 + 4x + 5 = 2(x^2 + 2x) + 5$                                                       | B1         | 2.2a | p=2                                                  | The values of $p$ , $q$ and $r$ |
|   |          | $= 2[(x+1)^2 - 1] + 5$                                                                  | <b>B</b> 1 | 1.1  | q=1                                                  | could be stated explicitly or   |
|   |          | $=2(x+1)^2+3$                                                                           | M1         | 1.1a | Attempt <i>r</i>                                     | could be implied by an          |
|   |          |                                                                                         | <b>A1</b>  | 1.1  | r = 3                                                | answer in completed square      |
|   |          |                                                                                         | [4]        |      |                                                      | form                            |
|   | (ii)     | Vertex is at (-1, 3)                                                                    | B1ft       | 1.1  | Correct x coordinate                                 | FT their (i)                    |
|   |          |                                                                                         | B1ft       | 1.1  | Correct y coordinate                                 |                                 |
|   |          |                                                                                         | [2]        |      |                                                      |                                 |
|   |          |                                                                                         |            |      |                                                      |                                 |

|   | Question | Answer                                           | Marks     | AO   | Guidan                                           | ce                            |
|---|----------|--------------------------------------------------|-----------|------|--------------------------------------------------|-------------------------------|
|   | (iii)    | k < 3                                            | B1ft      | 3.1a | State $k < 3$ , ft their (i)                     | Must be strict inequality     |
|   |          |                                                  | [1]       |      |                                                  |                               |
| 4 | (i)      | $V = x(21 - 2x)^2$                               | B1        | 3.3  | Sate correct expression for volume               | oe                            |
|   |          | $=4x^3 - 84x^2 + 441x$                           |           |      |                                                  |                               |
|   |          | $V' = 12x^2 - 168x + 441$                        | M1        | 1.1a | Expand and attempt differentiation               | Or use product rule           |
|   |          | $12x^2 - 168x + 441 = 0$                         | M1        | 3.1b | Equate to 0 and attempt to solve                 | BC                            |
|   |          | x = 3.5  cm                                      | A1ft      | 3.2a | Obtain $x = 3.5$ cm only, ft on their $V$        | A0 if 10.5 also given         |
|   |          |                                                  |           |      | Use second derivative oe                         |                               |
|   |          | when $x = 3.5$ , $V'' = 24 \times 3.5 - 160 < 0$ | M1        | 1.1  | Conclude maximum                                 | If evaluated, must be correct |
|   |          | hence maximum                                    | A1ft      | 2.1  |                                                  | Evidence required             |
|   |          |                                                  | [6]       |      |                                                  |                               |
|   | (ii)     | Accept any sensible assumption                   | B1        | 3.5b | E.g. Thickness of metal is assumed               |                               |
|   |          |                                                  | [1]       |      | negligible                                       |                               |
| 5 | (i)      | $f(x) = (x+1)(x^2 + 3x - 10)$                    | M1        | 2.2a | Attempt complete division by $(x + 1)$           | Allow any equiv method        |
|   |          |                                                  | <b>A1</b> | 1.1  | Obtain correct quotient                          |                               |
|   |          | = (x+1)(x+5)(x-2)                                | A1        | 1.1  | Obtain fully factorised $f(x)$                   | Must be as product            |
|   |          |                                                  | [3]       |      |                                                  |                               |
|   | (ii)     | $e^y = -1, -5, 2$                                | M1        | 2.2a | Link e <sup>y</sup> to attempt at roots from (i) |                               |
|   |          | but $e^y > 0$ , so $e^y = 2$ is only valid root  | E1        | 2.4  | Explanation that $e^y > 0$                       |                               |
|   |          | hence $y = \ln 2$                                | A1        | 2.1  | Obtain $y = \ln 2$                               | www                           |
|   |          |                                                  | [3]       |      |                                                  |                               |
| 6 | (i)      | Points at (30, 1.53), (40, 1.62), (50, 1.70)     | B1        | 1.1  | Plot $\log_{10}P$ against $t$                    | Allow one error               |
|   |          |                                                  |           |      |                                                  |                               |
|   |          |                                                  | [1]       |      |                                                  |                               |
|   | (ii)     | $\log_{10} a = 1.30$ so $a = 20$                 | B1        | 3.3  | Correct value for a                              | Could just be stated          |
|   |          | $\log_{10}b = 0.008$                             | M1        | 3.4  | State or imply that gradient is $\log_{10}b$     | Method must show use of       |
|   |          | b = 1.02                                         | <b>A1</b> | 1.1  | Obtain $b = 1.02$ (awrt)                         | graph not substitution into   |
|   |          |                                                  |           |      |                                                  | given model                   |
|   |          |                                                  | [3]       |      |                                                  |                               |

|   | Question | Answer                                              | Marks      | AO   | Guidance                                       |                               |
|---|----------|-----------------------------------------------------|------------|------|------------------------------------------------|-------------------------------|
|   | (iii)    | Answer in range 700 to 1050                         | B1ft       | 3.4  | ft their a and b                               |                               |
|   |          |                                                     | [1]        |      |                                                |                               |
|   | (iv)     | Accept any sensible explanation                     | B1         | 3.5b | Eg extrapolation unreliable                    | Eg Model may no longer be     |
|   |          |                                                     | [1]        |      | Eg the model is continuous, not                | valid eg insufficient food to |
|   |          |                                                     |            |      | discrete                                       | support larger population     |
| 7 |          | $u = \ln x,  \mathrm{d}v = 2x + 1$                  | M1         | 1.1a | Recognise integration by parts                 |                               |
|   |          |                                                     |            |      | with correct $u$ and $dv$                      |                               |
|   |          | $du = \frac{1}{x},  v = x^2 + x$                    | <b>B</b> 1 | 1.2  | State or imply that $du = \frac{1}{x}$         |                               |
|   |          | $I = (x^2 + x)\ln x - \int (x^2 + x)\frac{1}{x} dx$ | A1         | 1.1  | Correct unsimplified expression                |                               |
|   |          |                                                     | M1         | 1.1a | Attempt to simplify and integrate              |                               |
|   |          | $= (x^2 + x)\ln x - \int (x+1)dx$                   | 1,11       | 1114 | Thempt to simplify and integrate               |                               |
|   |          | $=(x^2+x)\ln x-(\frac{1}{2}x^2+x)+c$                | <b>A1</b>  | 1.1  | Obtain fully correct integral                  | Including $+ c$               |
|   |          | (2)                                                 | [5]        |      |                                                |                               |
| 8 | (i)      | (0, 4]                                              | B1         | 2.5  | Do not allow $0 < f(x) \le 4$                  |                               |
|   |          |                                                     | [1]        |      |                                                |                               |
|   | (ii)     | $f^{-1}(x) = \frac{8}{x} - 2$                       | M1         | 1.1a | Obtain $\frac{8}{-}\pm 2$                      | Allow in terms of y           |
|   |          | $\frac{1}{x}$                                       |            |      | $\frac{z}{x}$                                  |                               |
|   |          |                                                     | A1         | 1.1  | Obtain correct inverse function                | Must now be in terms of $x$   |
|   |          |                                                     | [2]        |      |                                                |                               |
|   | (iii)    | $x = \frac{8}{x+2}$                                 | M1         | 1.1a | Equate two of $x$ , $f(x)$ and $f^{-1}(x)$ and |                               |
|   |          | $x-\frac{1}{x+2}$                                   |            |      | attempt to solve                               |                               |
|   |          | $x^2 + 2x - 8 = 0$                                  |            |      |                                                |                               |
|   |          | x = 2                                               | A1         | 2.3  | Obtain $x = 2$ only                            | A0 if $x = -4$ also given     |
|   |          |                                                     | [2]        |      |                                                |                               |

|   | Questi | on  | Answer                                                             | Marks      | AO   | Guidance                              |                          |
|---|--------|-----|--------------------------------------------------------------------|------------|------|---------------------------------------|--------------------------|
| 9 | (i)    | (a) | $0.5 \times 1.5 \times \{8.0 + 8.6 + 2(8.5 + 8.2 + 8.40)\} = 50.1$ | M1         | 1.1a | Attempt use of correct trapezium rule |                          |
|   |        |     |                                                                    | <b>A1</b>  | 1.1  | Obtain correct area                   |                          |
|   |        |     |                                                                    | [2]        |      |                                       |                          |
|   | (i)    | (b) | $50.1 \times 0.49 = £24.55$                                        | B1ft       | 1.1  | Obtain cost of £24.55, ft their area  |                          |
|   |        |     |                                                                    | [1]        |      |                                       |                          |
|   | (ii)   |     | Could be under-estimate as modeling tops of                        | <b>B</b> 1 | 3.5b | Limitation based on use of trapezium  | Accept any two sensible  |
|   |        |     | trapezia with straight lines                                       |            |      | rule                                  | comments                 |
|   |        |     | Lawn seed may only be sold in fixed volumes so                     | <b>B</b> 1 | 3.5b | Limitation based on buying lawn       |                          |
|   |        |     | may not be able to buy exact volume needed                         |            |      | seed                                  |                          |
|   |        |     |                                                                    | [2]        |      |                                       |                          |
|   | (iii)  |     | Any sensible refinement                                            | B1         | 3.5c | Eg Use trapezium rule with more       |                          |
|   |        |     |                                                                    |            |      | strips                                |                          |
|   |        |     |                                                                    | [1]        |      |                                       |                          |
|   | (iv)   |     | $2\sin^{-1}(0.9375) = 2.43 \text{ rads}$                           | M1         | 3.1b | Attempt to find angle (rads or degs)  | Could use cosine rule    |
|   |        |     |                                                                    | <b>A1</b>  | 1.1  | Obtain 2.43 rads, or 139°             | Allow 1.22 rads or 69.6° |
|   |        |     | $0.5 \times 3.2^2 \times (2.43 - \sin 2.43) = 9.10$                | M1         | 1.1a | Attempt complete method to find       |                          |
|   |        |     |                                                                    |            |      | area of segment                       |                          |
|   |        |     |                                                                    | <b>A1</b>  | 1.1  | Obtain 9.10 (m <sup>2</sup> )         | Allow 9.1                |
|   |        |     | $9.10 \times 0.17 = £1.55$                                         | B1ft       | 3.2a | Obtain cost of £1.55, ft their area   | Must include units       |
|   |        |     |                                                                    | [5]        |      |                                       |                          |

|    | Question | Answer                                                                                                                      | Marks     | AO          | Guidan                                                         | ce                                          |
|----|----------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------------------------------------------------------------|---------------------------------------------|
| 10 |          | (5t+3) + 4(n-1) = (17t+11)                                                                                                  | M1        | 3.1a        | Attempt to use $a + (n-1)d = l$                                |                                             |
|    |          | n = 3t + 3                                                                                                                  | <b>A1</b> | 2.1         | Obtain $n = 3t + 3$                                            |                                             |
|    |          | $S_N = \frac{1}{2} (3t+3) \{ (5t+3) + (17t+11) \}$                                                                          | M1        | 2.1         | Attempt to find sum of AP                                      |                                             |
|    |          | $S_N = \frac{1}{2} (3t + 3)(22t + 14) = 3(t + 1)(11t + 7)$<br>When t is odd, $t = 2k + 1$ so<br>$S_N = 3(2k + 2)(22t + 18)$ | A1<br>E1  | 2.1<br>2.2a | Obtain $S_N = 3(t+1)(11t+7)$ oe Consider $S_N$ when $t$ is odd | Allow consideration of odd and even factors |
|    |          | = $12(k+1)(11k+9)$ hence multiple of 12<br>When t is even, $t = 2k$ so                                                      | E1        | 2.4         | Fully correct and convincing proof                             |                                             |
|    |          | $S_N = 3(2k+1)(22k+7)$ hence always odd                                                                                     | E1<br>[7] | 2.4         | Allow worded eg $3 \times \text{odd} \times \text{odd}$        |                                             |
| 11 | (i)      | $1+x-\frac{1}{2}x^2$                                                                                                        | B1        | 1.1         | Obtain $1 + x$                                                 | Terms must be simplified for                |
|    |          | 2                                                                                                                           | M1        | 1.1a        | Attempt third term                                             | B / A marks                                 |
|    |          |                                                                                                                             | <b>A1</b> | 1.1         | Obtain correct third term                                      |                                             |
|    |          |                                                                                                                             | [3]       |             |                                                                |                                             |
|    | (ii)     | $\sqrt{1.08} \approx 1 + 0.04 - 0.5 \times 0.04^2$                                                                          | M1        | 2.1         | Substitute 0.04 throughout                                     | Need $\sqrt{1.08}$ as well                  |
|    |          | $\sqrt{0.36 \times 3} \approx 1.0392$ $0.6\sqrt{3} \approx 1.0392$                                                          | M1        | 3.1a        | Rearrange $\sqrt{1.08}$ to $k\sqrt{3}$                         |                                             |
|    |          | $\sqrt{3} \approx 1.73$                                                                                                     | <b>A1</b> | 1.1         | Obtain 1.73 or better                                          | Must see method                             |
|    |          |                                                                                                                             | [3]       |             |                                                                |                                             |
|    | (iii)    | Expansion is only valid for $ x  < \frac{1}{2}$                                                                             | <b>E1</b> | 2.3         | Explanation must be specific                                   |                                             |
|    |          |                                                                                                                             | [1]       |             |                                                                |                                             |

| Question |      | Answer                                                                                                                      | Marks     | AO   | Guidance                                                            |                                               |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------|-----------|------|---------------------------------------------------------------------|-----------------------------------------------|
| 12       |      | DR                                                                                                                          |           |      |                                                                     |                                               |
|          |      | $\sin y + x \cos y \frac{dy}{dx} - 2 \sin 2y \frac{dy}{dx} = 0$                                                             | B1        | 1.1a | Correct derivatives of cosy and – 2sin2y                            |                                               |
|          |      | ar ar                                                                                                                       | M1        | 1.1  | Attempt use of product rule for <i>x</i> siny                       |                                               |
|          |      |                                                                                                                             | <b>A1</b> | 1.1  | Obtain correct derivative                                           |                                               |
|          |      | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\siny}{2\sin 2y - x\cos y}$                                                        |           |      |                                                                     |                                               |
|          |      | $2\sin 2y - x\cos y = 0$                                                                                                    | M1        | 3.1a | Rearrange and use denominator $= 0$                                 |                                               |
|          |      | $4\sin y \cos y - x\cos y = 0$<br>$\cos y(4\sin y - x) = 0 \text{ so } \cos y = 0 \text{ or } x = 4\sin y$                  | M1        | 3.1a | Use $\sin 2y = 2\sin y \cos y$ and attempt solution                 |                                               |
|          |      | $\cos y = 0 \text{ gives } (\frac{7}{2}, \frac{1}{2}\pi)$                                                                   | A1        | 2.1  | Obtain $(\frac{7}{2}, \frac{1}{2}\pi)$                              |                                               |
|          |      | $x = 4\sin y \text{ gives } 4\sin^2 y + \cos 2y = 2.5$ $4\sin^2 y + 1 - 2\sin^2 y = 2.5$ $\sin y = \pm \frac{1}{2}\sqrt{3}$ | M1        | 3.1a | Substitute $x = 4$ siny into original equation and attempt to solve | Including use of correct identity             |
|          |      | $\sin y = \frac{1}{2} \sqrt{3} \text{ gives } (2\sqrt{3}, \frac{1}{3}\pi) \text{ and } (2\sqrt{3}, \frac{2}{3}\pi)$         | <b>A1</b> | 3.2a | Obtain one correct solution                                         |                                               |
|          |      | $\sin y = -\frac{1}{2}\sqrt{3}$ gives $x < 0$ , so no valid solutions                                                       | A1        | 2.4  | Obtain both correct roots                                           | Must discount $\sin y = -\frac{1}{2}\sqrt{3}$ |
|          |      |                                                                                                                             | [9]       |      |                                                                     |                                               |
| 13       | (i)  | 1.4422, 1.5099, 1.5197, 1.5211, 1.5213, 1.5214                                                                              | B1        | 1.1a | Correct $x_2$                                                       |                                               |
|          |      |                                                                                                                             | M1        | 1.1  | Use correct iterative process                                       |                                               |
|          |      | Hence $\alpha = 1.521$                                                                                                      | A1        | 2.2a | Obtain 1.521 (must be 4sf)                                          |                                               |
|          | (44) | 2 4 4                                                                                                                       | [3]       |      |                                                                     |                                               |
|          | (ii) | $F'(x) = -(x^2 + 4x)x^{-4}$                                                                                                 | B1        | 1.1  | Correct $F'(x)$                                                     |                                               |
|          |      | $F'(\alpha) = -1.57$                                                                                                        | B1ft      | 1.1  | Correct F '( $\alpha$ )                                             | Follow their value of $\alpha$                |
|          |      | Will only converge if $ F'(\alpha)  < 1$                                                                                    | E1        | 1.2  | Identify correct condition                                          |                                               |
|          |      |                                                                                                                             | [3]       |      |                                                                     |                                               |

|    | Questio | on         | Answer                                                                                       | Marks     | AO   | Guidan                                    | ce                                        |
|----|---------|------------|----------------------------------------------------------------------------------------------|-----------|------|-------------------------------------------|-------------------------------------------|
| 14 | (i)     | (a)        | when $x = 0$ , $t = 0$ and hence $y = 0$                                                     | E1        | 2.4  | Justify (0, 0) convincingly               |                                           |
|    |         |            |                                                                                              | [1]       |      |                                           |                                           |
|    |         | <b>(b)</b> | when $x = 1$ , $t = 1$ and hence $y = 0.5$                                                   | B1        | 1.1  | Obtain $y = 0.5$                          |                                           |
|    |         |            |                                                                                              | [1]       |      |                                           |                                           |
|    | (ii)    |            | $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{\left(1+t\right)^2}$                             | M1        | 2.1  | Attempt $\frac{\mathrm{d}x}{\mathrm{d}t}$ | Using quotient rule, or other             |
|    |         |            | $dt (1+t)^2$                                                                                 | A 1       | 2.1  |                                           | valid method                              |
|    |         |            |                                                                                              | A1        | 2.1  | Obtain correct derivative                 |                                           |
|    |         |            | .2 .2                                                                                        | M1        | 2.1  | e e dy                                    |                                           |
|    |         |            | $\int \frac{t^2}{1+t}  dx = \int \frac{t^2}{1+t} \times \frac{2}{(1+t)^2}  dt$               | 1411      | 2.1  | Use $\int y dx = \int y \frac{dx}{dt} dt$ |                                           |
|    |         |            |                                                                                              | A1        | 2.1  | Obtain given answer                       |                                           |
|    |         |            | $=\int \frac{2t^2}{(1+t)^3} dt$                                                              | 711       | 2.1  | South given unswer                        |                                           |
|    |         |            | (1 + 1)                                                                                      | B1        | 2.4  | Justify <i>t</i> -limits from $x = 0, 1$  | 2+                                        |
|    |         |            |                                                                                              | [5]       | 2.4  |                                           | $x = 0$ : $\frac{2t}{1+t} = 0$ so $t = 0$ |
|    |         |            |                                                                                              |           |      |                                           |                                           |
|    |         |            |                                                                                              |           |      |                                           | $x = 1: \frac{2t}{1+t} = 1$               |
|    |         |            |                                                                                              |           |      |                                           | 2t = 1 + t  so  t = 1                     |
|    | (iii)   |            | DR                                                                                           |           |      |                                           |                                           |
|    |         |            | use $u = 1 + t$ giving $du = dt$                                                             | <b>E1</b> | 1.1a | Must be stated explicitly                 |                                           |
|    |         |            | $\int \frac{2t^2}{(1+t)^3} dt = \int \frac{2(u-1)^2}{u^3} du$                                | M1        | 1.1a | Attempt to change integrand to            |                                           |
|    |         |            | $\int \frac{1}{(1+t)^3} dt = \int \frac{1}{u^3} dt$                                          |           |      | function of <i>u</i>                      |                                           |
|    |         |            | $= \int 2u^{-1} - 4u^{-2} + 2u^{-3} du$                                                      | A1        | 1.1  | Obtain correct integrand                  | Any equivalent form                       |
|    |         |            | $= \int 2u^{-1} - 4u^{-2} + 2u^{-3} du$ $= \left[ 2\ln u + 4u^{-1} - u^{-2} \right]_{1}^{2}$ | M1        | 1.1a | Attempt integration                       |                                           |
|    |         |            |                                                                                              |           |      |                                           |                                           |
|    |         |            | $= (2\ln 2 + 2 - 0.25) - (2\ln 1 + 4 - 1)$                                                   | M1        | 1.1a | Attempt use of limits $u = 1, 2$          |                                           |
|    |         |            | $=2\ln 2-\frac{5}{4}$                                                                        | A1        | 1.1  | Obtain correct exact area                 | Allow one overt again                     |
|    |         |            | 4                                                                                            |           | 1.1  | Obtain correct exact area                 | Allow any exact equiv                     |
|    |         |            |                                                                                              | [6]       |      |                                           |                                           |