Problem Set 5

Luxi Han 10449918

July 21st, 2017

1 7.1

Proof. Now for arbitrary $x, y \in conv(S)$. We have the following:

$$x = \lambda_1 x_{i_1} + \dots + \lambda_{i_m} x_{i_m}$$

 $y = \eta_1 x_{i_1} + \dots + \eta_{i_n} x_{i_n}$

Then for any convex combination of x and y, we should have:

$$\lambda x + (1 - lambda)y = \lambda \lambda_1 x_{i_1} + \dots + \lambda \lambda_{i_m} x_{i_m} + (1 - \lambda)\eta_1 x_{j_1} + \dots + (1 - \lambda)\eta_{i_n} x_{i_n} \in conv(S)$$

This is true for arbitray x, y and $\lambda \in [0, 1]$. Thus we know that conv(S) is convex.

2 7.2

2.1 a)

Denote the hyperplane as P. Now for arbitrary $x,y \in P$ and $\lambda \in [0,1]$, we have $z = \lambda x + (1-\lambda)y$. Then $\langle z,a \rangle = \langle \lambda x + (1-\lambda)y,a \rangle = \lambda \langle x,a \rangle + (1-\lambda)\langle y,a \rangle = b$. Then $z \in P$. Thus we know that P is convex.

3 7.4

3.1 i)

 $||x-y||^2 = \langle x-y, x-y \rangle = \langle x-p+p-y, x-p+p-y \rangle = \langle x-p, x-p \rangle + \langle x-p, p-y \rangle + \langle p-y, x-p \rangle + \langle p-y, p-y \rangle = ||x-p||^2 + ||y-p||^2 + 2 \langle x-p, p-y \rangle.$

3.2 ii)

Since $\langle x-p,p-y \rangle \geq 0$. Additionally, $p \neq y$, then $||y-p||^2 > 0$. Then we know that $||x-y||^2 > ||x-p||^2$. Then we know that ||x-y|| > ||x-p||.

3.3 iii)

$$\begin{aligned} ||x-z||^2 &= < x-z, x-z> \\ &= < x-\lambda y - (1-\lambda)p, x-\lambda y - (1-\lambda)p> \\ &= < x-p, x-p> + < x-p, \lambda p-\lambda y> + < \lambda p-\lambda y, x-p> + \lambda^2 < y-p, y-p> \\ &= ||x-p||^2 + 2\lambda < x-p, p-y> + \lambda^2 ||y-p||^2 \end{aligned}$$

4 7.6

Denote the set $\{x \in \Re^n | f(x) < c\}$ as A. Then for arbitrary $x, y \in A$ and $\lambda \in [0, 1]$, denote $z = \lambda x + (1 - \lambda)y$. Since the function is convex, then we should have $f(z) \le \lambda f(x) + (1 - \lambda)f(y) \le c$. Then $z \in A$. Thus the set A is a convex set.

5 7.7

For arbitrary $x, y \in C$ and $\eta \in [0, 1]$, denote $z = \eta x + (1 - \eta)y$. Then

$$f(z) = \sum_{i=1}^{k} \lambda_i f_i(z) \le \sum_{i=1}^{k} \lambda_i \eta f_i(x) + (1 - eta) f_i(y) = \eta f(x) + (1 - \eta) f(y)$$

Then we know that f(.) is a convex function.

6 - 7.13

Proof. Suppose not. Then there exist $x,y \in \Re^n$ such that $f(x) \neq f(y)$. Suppose f(x) = a, f(y) = b and without loss of generality assume a > b > 0. Then we let z be such that $x = \lambda z + (1 - \lambda)y$. Then we know that $f(x) \leq \lambda f(z) + (1 - \lambda)f(y)$. Thus $f(z) \geq \frac{f(x) - (1 - \lambda)f(y)}{\lambda}$. Now take λ to 0, then we know that f(z) tends to infinity. This contradicts with f being bounded. Thus we know that f has to be constant on \Re^n . \square

7 7.20

Since f and -f are both convex, then we know that for arbitrary $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$, we should have with $z = \lambda x + (1 - \lambda)y$ $f(z) = \lambda f(x) + (1 - \lambda)f(y)$. Firstly we want to show that for arbitrary $a \in \mathbb{R}$, f(ax) - f(0) = a(f(x) - f(0)). When a = -1, we should have f(0) = 0.5f(x) + 0.5f(-x) then it must be that f(-x) - f(0) = -1(f(x) - f(0)). When $a \in [0, 1]$, we know that f(ax) = af(x) + (1 - a)f(0). Then f(ax) - f(0) = a(f(x) - f(0)). When $a \in (1, \infty)$, we should have $\frac{1}{a}()f(x) - f(0)) = f(ax) - f(0)$. Thus f(ax) - f(0) = a(f(x) - f(0)). When $a \in (-\infty, 0)$, we can apply the above conclusion to achieve the same result. Then we know that it must be that f(ax) - f(0) = a(f(x) - f(0)).

Then we want to show that f(ax + by) - f(0) = a(f(x) - f(0)) + b(f(y) - f(0)). With the results above, we just have to show that f(x + y) - f(0) = (f(x) - f(0)) + (f(y)f(0)). Now consider we should have the following results with the conclustion reached above:

$$f(x+y) + f(x-y) = 2 * f(x)$$

$$f(x+y) + f(y-x) = 2 * f(y)$$

$$f(x-y) + f(y-x) = 2 * f(0)$$

Then we can solve for the above equations:

$$f(x+y) - f(0) = f(x) - f(0) + (f(y) - f(0))$$

$$f(x-y) - f(0) = f(x) - f(0) - (f(y) - f(0))$$

$$f(y-x) - f(0) = f(y) - f(0) - (f(x) - f(0))$$

Now we have that f(x+y) - f(0) = (f(x) - f(0)) + (f(y)f(0)). With the above results we know that f(x) = L(x) + f(0).

8 - 7.21

 \Rightarrow

Suppose x^* is a local minimizer for the problem

$$\min \phi(f(x))$$

$$s.t.G(x) \le 0$$

$$H(x) = 0$$

. Then there is a neighbourhood $B_{\delta}(x^*)$, such that $\forall x \in B_{\delta}(x^*)$, $\phi(f(x^*)) \leq \phi(f(x))$. Since $\phi(.)$ is a strictly increasing function, we knnw that $f(x^*) \leq f(x)$ with the constraint $G(x) \leq 0$; H(x) = 0. Then it must be that x^* is a local minimizer for the problem:

$$\min f(x)$$

$$s.t.G(x) \le 0$$

$$H(x) = 0$$

 \Leftarrow Suppose x^* is a local minimizer for the problem

$$\min f(x)$$

$$s.t.G(x) \le 0$$

$$H(x) = 0$$

. Then there is a neighbourhood $B_{\delta}(x^*)$, such that $\forall x \in B_{\delta}(x^*)$, $f(x^*) \leq f(x)$. Since $\phi(.)$ is a strictly increasing function, we knnw that $\phi(f(x^*)) \leq \phi(f(x))$ with the constraint $G(x) \leq 0$; H(x) = 0. Then it must be that x^* is a local minimizer for the problem:

$$\min \phi(f(x))$$

$$s.t.G(x) \le 0$$

$$H(x) = 0$$

.