Group 1
Presentation

Robust Portfolio Optimization

December 1, 2020

Table of Contents

	Section
Introduction & Problem Setting	I
Literature Review	II
Methodology	III
Results & Recommendations	IV
Next Steps	V

Introduction & Problem Setting

Introduction & Problem Setting

Team Member Biographies

	Manufacturing System Implementation Manager, Peckham Inc.
Anthony, Lucas	 Certified Professional in Supply Management (CPSM) Bachelor of Science, Central Michigan University
	HR Data Analyst - Global People Analytics, General Motors Master of Business Administration, Wayne State University
Shahid, Maira	 Master of Business Administration, Wayne State University Bachelor of Business and Information Technology, University of the Punjab, Lahore
	Clinical Application Coordinator, Oroville Hospital
Singh, Gurjus	Bachelor of Arts, Cognitive Science, University of California, Berkley
	Principal, Journeyman Capital, LLC
Vaidya, Jay	Master of Business Administration & Master of Science in Finance, Case Western Reserve University

Introduction & Problem Setting Objective & Problem Formulation

- Objective: To develop a method for generating optimal portfolios and an appropriate decision criterion for choosing the single best "robust" alternative among the available options
 - Robustness: A robust portfolio is one that best mitigates potential drawdowns of investor capital, while still providing exposure to a selected basket of securities
 - Desired Outcome: The final product of this process should be one set of portfolio weights, spread among the basket of securities, that offers the best expected downside risk protection
 - Constraint Considerations: Should portfolios permit the use of "short" positions or leverage?

Three Distinct Phases of Work:

Phase I: Obtaining Data

- Dow Jones Industrial Avg.
 components chosen for scrutiny
 - DJIA offers liquid securities and a manageable number of securities for simulation
- Daily log returns calculated
 - Additivity property and log normality of returns dist.
- Determine if returns are approx.
 normally distributed

<u>Phase II: Optimal Portfolios & Simulations</u>

- Determine a method of generating optimal portfolios
- Simulate returns chosen basket of securities for 1,000 periods
- Calculate the optimal portfolio for each of the 1,000 simulated sets of returns

Phase III: Cross-Validate Optimal Portfolios

- Determine expected portfolio returns for each of the 1,000 optimal portfolios across the 1,000 simulations
 - Store each set of expected returns as a tuple
- Determine single optimal <u>robust</u> portfolio using minimax regret decision criterion

Introduction & Problem Setting

Data Analysis: Structure of dataset

 Use adjusted daily closing prices to calculate daily log returns

2) Generate covariance matrix of daily log returns

	AAPL	AMGN	AXP	BA	CAT	CRM	csco	CVX	DIS	GS	
AAPL	0.101573	0.042846	0.056560	0.070682	0.051836	0.067699	0.056430	0.049725	0.044311	0.060307	
AMGN	0.042846	0.070083	0.038411	0.035555	0.038586	0.041456	0.041288	0.036262	0.030646	0.039716	
AXP	0.056560	0.038411	0.127626	0.121672	0.072500	0.055739	0.058728	0.090443	0.070712	0.092278	
ВА	0.070682	0.035555	0.121672	0.248474	0.088851	0.069501	0.065910	0.108134	0.080726	0.100850	
CAT	0.051836	0.038586	0.072500	0.088851	0.108961	0.048234	0.055461	0.067987	0.050802	0.070588	
CRM	0.067699	0.041456	0.055739	0.069501	0.048234	0.119047	0.055087	0.045785	0.043109	0.055039	
csco	0.056430	0.041288	0.058728	0.065910	0.055461	0.055087	0.084935	0.050589	0.046466	0.055988	
CVX	0.049725	0.036262	0.090443	0.108134	0.067987	0.045785	0.050589	0.122194	0.056553	0.077550	
DIS	0.044311	0.030646	0.070712	0.080726	0.050802	0.043109	0.046466	0.056553	0.084521	0.060583	
GS	0.060307	0.039716	0.092278	0.100850	0.070588	0.055039	0.055988	0.077550	0.060583	0.109542	
HD	0.051839	0.036103	0.059636	0.076210	0.048224	0.054233	0.046913	0.057516	0.044549	0.057841	
HON	0.045964	0.032754	0.076369	0.090864	0.061845	0.040620	0.047657	0.066622	0.051622	0.064471	
IBM	0.044294	0.034297	0.060405	0.073705	0.052757	0.044166	0.050208	0.054235	0.043934	0.055054	
INTC	0.067406	0.045428	0.064307	0.078854	0.057626	0.060960	0.063802	0.059024	0.047157	0.063024	
JNJ	0.030321	0.031701	0.035888	0.039808	0.031457	0.027369	0.034604	0.033627	0.024906	0.031751	
JPM	0.051262	0.038183	0.095967	0.103705	0.070175	0.047428	0.052358	0.081274	0.060662	0.090502	
ко	0.028168	0.024352	0.046048	0.056010	0.034975	0.025843	0.027869	0.040093	0.033266	0.036818	
MCD	0.036871	0.025014	0.054216	0.062281	0.035407	0.038335	0.035240	0.050248	0.038034	0.044777	
MMM	0.041937	0.032721	0.055770	0.061686	0.061127	0.036375	0.046532	0.048755	0.040288	0.054384	
MRK	0.030073	0.035398	0.034946	0.037497	0.028930	0.032288	0.032466	0.037586	0.024427	0.032921	

3) Scrutinize returns for approximate normality

Literature Review

Literature Review

Mean Variance Optimization

- Foundation of portfolio theory laid in Markowitz's 1952 paper, Portfolio Selection
 - Established the mathematical relationship between risk (expected portfolio volatility) and return (expected portfolio return)
- · The parameters of the MVO model are deceptively simple
 - Expected portfolio return = E = $\sum_{i=1}^{N} X_i \mu_i$
 - Expected portfolio variance = $V = \sum_{i=1}^{N} \sum_{i=1}^{N} X_i X_i \sigma_{ij}$
 - Sum of the security allocations = $\sum_{i=1}^{N} X_i = 1$
 - Minimum security allocation: X_i ≥ 0
- Quadratic optimization methods are used (notably, Markowitz's Critical Line Algorithm)

MVO Advantages

- Uses known optimization methods (quadratic programming) to reach an optimal solution
 - Produces a convex solution space, meaning that optimality is global, not local
- Permits investors to express their desired level of risk and solve for the highest attainable expected return

MVO Disadvantages

- Assumes expected returns and covariance for securities are known quantities
- It has been shown that small deviations in expected returns can cause significantly different optimal portfolio allocations
 - High recommended concentration in few securities often results, for minimal advances in "risk" reduction
- Covariance matrices are frequently unstable as the number of securities increases, rendering the results unreliable

Literature Review

Hierarchical Risk Parity

- A risk-based portfolio optimization algorithm, which has been shown to generate diversified portfolios with robust performance in out-of-sample returns scenarios
 - Generates minimum-variance portfolios
- Switches from classical mathematics of traditional portfolio opt. (geometry, linear algebra, calculus) to more modern methods (graph theory and machine learning)
 - Imposes a hierarchical structure on a basket of securities, using correlations among securities

HRP Advantages

- The hierarchy introduced by the clustering algorithm means that securities aren't viewed as perfect substitutes
 - Tends to generate clusters of "like" securities in intuitively appealing manner
- Does not require covariance matrix inversion, leading to greater stability
- Recommended allocations do not vary dramatically based on reasonable changes in inputs

HRP Disadvantages

- Does not lend itself to <u>targeting</u> of specified levels of risk or return
- Naïve bi-section of subsets of securities in the algorithm could lead to the separation of some highly correlated assets

Methodology

Methodology

Project Methodology Diagram

Methodology

Hierarchical Risk Parity Algorithm & Decision Criterion

- Objective Function, Decision Variables & Constraints:
 - Objective Function: MINIMIZE $V = \sum_{i=1}^{N} \sum_{i=1}^{N} w_i w_i \sigma_{ij}$
 - Decision Variables: w_i = the percentage of the investors assets to invest in the i^{th} security
 - Constraints: $\sum_{n=1}^{N} w_i = 1$; $0 \le w_i \le 1$
 - Decision Criterion: Minimax Regret minimize the maximum regret

Step (1) Tree Clustering

- Convert the correlation matrix into a distance matrix
- Euclidean Distance = $d_{ij}^2 = \sqrt{\sum_{n=1}^{N} (d_{n,1} d_{n,j})^2}$

Step (2) Quasi-Diagonalization

 Reorganize the covariance matrix, using the clusters generated by the distance matrix in the previous step, to align the largest values along the diagonal

• Step (3) Recursive Bisection

- Determine the weights for the portfolio by applying an inversevariance allocation algorithm
- This stage guarantees $0 \le w_i \le 1$ and $\sum_{n=1}^{N} w_i = 1$

• Step (4) Minimax Regret Decision Criterion

 Determine expected returns for all HRP portfolios and then select the "optimal" portfolio as that which minimizes the maximum expected drawdown across the simulations

Decision Criterion

Results & Recommendations

Results & Recommendations

HRP Allocations – Descriptive Statistics

- Distribution of HRP Allocations:
 - Distribution characteristics for the security allocations from 1,000 HRP portfolios are listed below
 - Relative stability of allocations across simulations is an attractive feature
 - This is in stark contrast the MVO optimizations where small changes in inputs can lead to dramatic changes in recommended allocations
 - No security receives a recommended allocation of 0% of investor assets, leading to a broadly diversified portfolio within and across clusters

	AAPL	AMGN	AXP	BA	CAT	CRM		MMM	MRK	MSFT	NKE	PG	TRV
count	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	count	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000
mean	0.0207	0.0376	0.0145	0.0116	0.0224	0.0216	mean	0.0339	0.0544	0.0239	0.0344	0.0573	0.0304
std	0.0032	0.0042	0.0016	0.0024	0.0044	0.0049	std	0.0066	0.0127	0.0033	0.0058	0.0098	0.0061
min	0.0159	0.0308	0.0117	0.0073	0.0163	0.0145	min	0.0218	0.0412	0.0179	0.0251	0.0440	0.0218
25%	0.0187	0.0353	0.0135	0.0101	0.0196	0.0186	25%	0.0299	0.0465	0.0216	0.0303	0.0520	0.0265
50%	0.0201	0.0368	0.0142	0.0110	0.0210	0.0203	50%	0.0319	0.0491	0.0233	0.0321	0.0548	0.0284
75%	0.0217	0.0387	0.0150	0.0119	0.0233	0.0226	75%	0.0347	0.0540	0.0254	0.0386	0.0581	0.0314
max	0.0406	0.0630	0.0306	0.0199	0.0385	0.0401	max	0.0600	0.0917	0.0455	0.0567	0.0976	0.0498
	CSC0	CVX	DIS	GS	HD	HON		UNH	V	VZ	WBA	WMT	
count	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	count	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	
mean	0.0285	0.0179	0.0318	0.0167	0.0316	0.0268	mean	0.0296	0.0269	0.0811	0.0440	0.0682	
std	0.0056	0.0034	0.0053	0.0019	0.0058	0.0031	std	0.0043	0.0034	0.0098	0.0059	0.0089	
min	0.0207	0.0132	0.0225	0.0131	0.0224	0.0215	min	0.0220	0.0207	0.0578	0.0278	0.0444	
25%	0.0252	0.0160	0.0285	0.0155	0.0280	0.0248	25%	0.0273	0.0247	0.0727	0.0431	0.0628	
50%	0.0268	0.0172	0.0308	0.0163	0.0296	0.0260	50%	0.0286	0.0263	0.0836	0.0459	0.0658	
75%	0.0289	0.0186	0.0333	0.0175	0.0324	0.0282	75%	0.0301	0.0284	0.0885	0.0478	0.0695	
max	0.0491	0.0371	0.0518	0.0357	0.0505	0.0493	max	0.0505	0.0495	0.1154	0.0570	0.0945	
	IBM	INTC	JNJ	JPM	KO	MCD							
count	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000							
mean	0.0344	0.0218	0.0558	0.0193	0.0588	0.0441							
std	0.0063	0.0041	0.0088	0.0029	0.0091	0.0068							
min	0.0240	0.0151	0.0444	0.0144	0.0449	0.0300							
25%	0.0303	0.0193	0.0512	0.0170	0.0529	0.0401							
50%	0.0330	0.0211	0.0535	0.0188	0.0566	0.0428							
75%	0.0359	0.0229	0.0563	0.0212	0.0612	0.0463							
max	0.0527	0.0371	0.0946	0.0302	0.0977	0.0675							

Results & Recommendations Optimal Allocations

- The optimal HRP, which demonstrated a minimum, maximum drawdown across simulations held the allocations shown to the right
 - Note that the HRP algorithm has developed a diversified portfolio without overwhelming allocations dedicated to any single security
- For illustrative purposes, the optimal MVO portfolio is displayed as well
 - Note that the MVO algorithm allocated all resources between
 5 securities, neglecting 80%+ of the available securities

۲	IRP Optima	l Alloca	tions
AAPL	0.019458	JPM	0.017191
AMGN	0.030779	KO	0.054128
AXP	0.012800	MCD	0.063747
BA	0.007579	MMM	0.032134
CAT	0.021180	MRK	0.043471
CRM	0.024155	MSFT	0.028325
CSC0	0.045413	NKE	0.032350
CVX	0.014886	PG	0.060319
DIS	0.025349	TRV	0.029940
GS	0.016498	UNH	0.024800
HD	0.031235	V	0.026028
HON	0.022065	VZ	0.089743
IBM	0.037715	WBA	0.033189
INTC	0.019804	WMT	0.089956
JNJ	0.045761		

Expected Portfolio Std. Dev. = .1878 Expected Portfolio Return = .1334 Sharpe Ratio = 0.71

	MΝ	O Optim	al Allo	cat	ions
AAPL	0	0.3191	JPM	0	0.0000
AMGN	0	0.0000	KO	0	0.0000
AXP	0	0.0000	MCD	0	0.0000
BA	0	0.0000	MMM	0	0.0000
CAT	0	0.0000	MRK	0	0.0000
CRM	0	0.0151	MSFT	0	0.0000
CSC0	0	0.0000	NKE	0	0.2242
CVX	0	0.0000	PG	0	0.0075
DIS	0	0.0000	TRV	0	0.0000
GS	0	0.0000	UNH	0	0.0000
HD	0	0.0000	V	0	0.0000
HON	0	0.0000	VZ	0	0.0000
IBM	0	0.0000	WBA	0	0.0000
INTC	0	0.0000	WMT	0	0.4340
JNJ	0	0.0000			

Expected Portfolio Std. Dev. = .2127 Expected Portfolio Return = .2808 Sharpe Ratio = 1.32

HRP Optimized Correlation Matrix

- Robust Optimization

Next Steps

Next Steps

- The analysis we detailed today was conducted as of a snapshot in time (November 13, 2020), and does not represent a time-series analysis of the HRP method
 - Further studies could/should be undertaken to determine the efficacy of HRP methods for inter- and intra-day portfolio rebalancing
- Expanding the basket of securities to scrutinize the applicability of the HRP method across asset classes would significantly bolster the potential range of applications of the method

Thank You For Your Time.

Questions?

References

- Bailey, D., & Lopez de Prado, M. (2012). Balanced baskets: A new approach to trading and hedging risks. *Journal of Investment Strategies*, 1(4), 21-62.
- Hilpisch, Y. (2018). Python for finance: mastering data-driven finance (2nd ed.). O'Reilly Media, Inc.
- Jobson, J.D., & Korkie, R. (1981). Putting Markowitz theory to work. *Journal of Portfolio Management*, 7(4), 70-74. https://jpm.pm-research.com/content/7/4/70
- Kolanovic, M., Lau, A., Lee, T., & Krishnamachari, R. (2017). Cross asset portfolios of tradable risk premia indices. Hierarchical risk parity: Enhancing returns at target volatility. White paper, Global Quantitative & Derivatives Strategy. J.P. Morgan.
- Kolm, P., Tütüncü, R., & Fabozzi, F. (2013). 60 years of portfolio optimization: Practical challenges and current trends. European
 Journal of Operational Research, 234(2), 356-371. https://doi.org/10.1016/j.ejor.2013.10.060
- Ledoit, O., & Wolf, R. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. *Journal of Empirical Finance*, 10(5), 603-621.
- Lopez de Prado, M. (2018). Advances in financial machine learning. Hoboken, NJ: John Wiley & Sons, Inc.
- Lopez de Prado, M. (2016). Building diversified portfolios that outperform out of sample. Journal of Portfolio Management, 42(2), 56-69. https://jpm.pmresearch.com/content/42/4/59
- Markowitz, H. (1952). Portfolio selection. *The Journal of Finance*, 7, 77-91.
- Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Boston, MA: Harvard Business School Press.
- Morningstar, Inc. (n.d.) Retrieved November 20, 2020, https://www.morningstar.com/etfs/arcx/dia/risk
- NumPy User Guide: Data types. (n.d.). Retrieved from https://numpy.org/devdocs/user/basics.types.html
- Sharpe, W.F. (1994). The Sharpe ratio. *Journal of Portfolio Management*, *21(1)*, 49-58. https://doi-org.turing.library.northwestern.edu/10.3905/jpm.1994.409501
- What is the adjusted close? | Yahoo Help SLN28256. (n.d.). Retrieved November 19, 2020, from https://help.yahoo.com/kb/SLN28256.html