Corso di Elettronica - Anno Accademico 2016/2017 -

Formulario

Laurea Triennale in Ingegneria Elettronica e Tecnologie dell'informazione

By Michele Salvo May 13, 2017

Descrizione	Formula	
Conduzione Intrinseca	$J_n = qn\mu_n E$	$J_p = qp\mu_p E$
Semiconduttori estrinseci di Tipo N	$n = N_D - N_A$	$p = n_i^2 / (N_D - N_A)$
Semiconduttori estrinseci di Tipo P	$p = N_A - N_D$	$n = n_i^2/(N_A - N_D)$
Concentrazione intrinseca portatori di carica	$n = p = n_i \approx 10^{10} cm^{-3}$	
Conduzione estrinseca(correnti di deriva)	$J_{n.drift} = qn\mu_n E$	$J_{p,drift} = qp\mu_p E$
Conduzione estrinseca(correnti di diffusione)	$J_{n.diff} = qD_n \nabla n = qV_T \mu_n \nabla n$	$J_{n.diff} = qV_T \mu_n \ dn/dx$
	$J_{p.diff} = -qD_p \nabla p = -qV_T \mu_p \nabla p$	$J_{p.diff} = -qV_T \mu_p \ dp/dx$
Potenziale Termico	$V_T = kT/q \approx 25 - 26mV(T = 300K)$	
Relazioni di Boltzmann all'equilibrio	$n(x_2) = n(x_1)e^{V_{21}/V_T}$	$p(x_2) = p(x_1)e^{-V_{21}/V_T}$
Giunzione pn all'equilibrio	$V_0 = V_T \ln(N_A N_D / n_i^2)$	$N_A w_p = N_D w_n$
Larghezza totale zona di svuotamento diodo	$w = \sqrt{(2\epsilon/q)V_0(N_A + N_D)/N_A N_D}$	
Conduzioni al contorno di Boltzmann	$n = (n_i^2 e^{(qv/kT)})/N_A$	$p = (n_i^2 e^{(qv/kT)})/N_D$
Caratteristica ideale del diodo	$i = A(J_{S,n} + J_{S,p})(e^{qv/kT} - 1) = I_S(e^{qv/kT} - 1) = I_S(e^{v/V_T} - 1)$	
Caratteristica reale del diodo	$i_{(1)} \propto e^{qv/(2kT)}$	$i_{(2)} \propto e^{qv/(2kT)}$
	$i = I_S(e^{v/\eta V_T} - 1)$	
Diodo in regime dinamico	$C_T = C_{TO}/(1 - v/V_0)^{\delta}$	$C_D \cong \tau' i / \eta V_T$
Diodo ideale ([] $V\gamma$ trascurabile)	(1) $i = 0$, se $v < V_{\gamma} [< 0]$	(2) $v = V_{\gamma} = 0$, se $i > 0$
Linearizzazione ai piccoli segnali del diodo	$\left rac{1}{r_D} = rac{I_D}{\eta V_T} ight $	

Descrizione	Formula
Equazioni di Ebers-Moll (npn) (N.B: per il pnp eq. con segni invertiti)	$\begin{cases} i_E = -I_{EF}(e^{v_{BE}/V_T} - 1) + \alpha_R I_{CR}(e^{V_{BC}/V_T} - 1) \\ i_C = +\alpha_F I_{EF}(e^{v_{BE}/V_T} - 1) - I_{CR}(e^{v_{BC}/V_T} - 1) \end{cases}$
Equazioni di Ebers-Moll in ZAD (npn) (N.B: per il pnp eq. con segni invertiti)	$\alpha_F = \alpha_T \gamma_E \qquad \alpha_R = \alpha_T \gamma_C \qquad \alpha_F I_{EF} = \alpha_R I_{CR}$ $\begin{cases} i_E = -I_{EF}(e^{v_{BE}/V_T} - 1) \\ i_C = +\alpha_F I_{EF}(e^{v_{BE}/V_T} - 1) + I_{CR} \cong \alpha_F I_{EF}e^{v_{BE}/V_T} \end{cases}$
(causa Effetto Early)	$i_C = \frac{\alpha_F}{1 - \alpha_F} i_B + \frac{I_{CO}}{1 - \alpha_F} = \beta_F i_B + \frac{I_{CO}}{1 - \alpha_F} = \beta_F i_B + I_{CEO}$ $ I_C = \alpha_F I_{EF} e^{\frac{ v_{BE} }{V_T}} \left(1 + \frac{ v_{CE} }{V_A} \right)$ $\beta_F \cong \beta_{FO} \left(1 + \frac{ v_{CE} }{V_A} \right)$
Linearizzazione del transistore npn in ZAD	$\begin{cases} i_B(v_{BE}, v_{CE}) = [1 - \alpha_F(v_{CE})]I_{EF}(e^{v_{BE}/V_T} - 1) - I_{CO} \\ i_C(v_{BE}, v_{CE}) = \alpha_F(v_{CE})I_{EF}(e^{v_{BE}/V_T} - 1) + I_{CO} \end{cases}$
Linearizzazione del transistore pnp in ZAD	$\begin{cases} i_B(v_{BE}, v_{CE}) = [\alpha_F(v_{CE}) - 1]I_{EF}(e^{-v_{BE}/V_T} - 1) - I_{CO} \\ i_C(v_{BE}, v_{CE}) = -\alpha_F(v_{CE})I_{EF}(e^{-v_{BE}/V_T} - 1) + I_{CO} \end{cases}$
g_m : transconduttanza	$\left g_m = \frac{\partial i_C}{\partial v_{BE}} \right _{V_{BE}} = \frac{\alpha_F I_{EF}}{V_T} e^{\frac{ V_{BE} }{V_T}} \cong \frac{ I_C }{V_T}$
r_o : resistenza di uscita (differenziale)	$\left \frac{1}{r_o} = \frac{\partial i_C}{\partial v_{CE}} \right _{V_{CE}} = \frac{ I_C }{V_A + V_{CE} }$
r_{π} : resistenza di ingresso	$r_{\pi}=rac{eta_0}{g_m}$

Descrizione	Formula
NMOS - Zona Triodo(lineare)	$i_D = \frac{\beta_n}{2} [2(v_{GS} - v_{Th})v_{DS} - v_{DS}^2]$ $\beta_n = C_{ox}\mu_n \frac{W}{L} = k_n' \frac{W}{L}$
NMOS - Zona di saturazione	$i_D = \frac{\beta_n}{2} [v_{GS} - v_{Th}]^2$
Caratteristica reale del transistore NMOS-E	$i_D = \frac{\beta_n}{2} [v_{GS} - v_{Th}]^2 \left(1 + \frac{V_{DS}}{V_A} \right)$
Effetto body	$V_{Th} = V_{Th,0} + \gamma \left(\sqrt{2 \psi_F + v_{SB}} - \sqrt{2 \psi_F } \right)$
	$\gamma = \frac{\sqrt{2q\epsilon_{Si}N_A}}{C_{ox}} \qquad \qquad \psi_F = -V_T ln \frac{N_A}{n_i}$
PMOS - Zona Triodo(lineare)	$i_D = -\frac{\beta_p}{2} [2(v_{GS} - v_{Th})v_{DS} - v_{DS}^2] \beta_n = C_{ox}\mu_p \frac{W}{L} = k_p' \frac{W}{L}$
PMOS - Zona di saturazione	$i_D = -\frac{\beta_p}{2} [v_{GS} - v_{Th}]^2$
Caratteristica reale del transistore PMOS-E	$i_D = -\frac{\beta_p}{2} [v_{GS} - v_{Th}]^2 \left(1 + \frac{ v_{DS} }{V_A}\right)$
Effetto body	$V_{Th} = V_{Th,0} - \gamma \left(\sqrt{2 \psi_F - v_{SB}} - \sqrt{2 \psi_F } \right)$
	$\gamma = \frac{\sqrt{2q\epsilon_{Si}N_D}}{C_{ox}} \qquad \psi_F = V_T ln \frac{N_D}{n_i}$
JFET a canale n - Zona Triodo	$i_D = \frac{I_{DSS}}{V_p^2} (2(v_{GS} - V_p)v_{DS} - v_{DS}^2)$
JFET a canale n - Zona di Saturazione	$i_D = \frac{I_{DSS}}{V_p^2} (v_{GS} - V_p)^2 \left(1 + \frac{v_{DS}}{V_A}\right)$
JFET a canale p - Zona Triodo	$i_D = \frac{I_{DSS}}{V_p^2} (2(v_{GS} - V_p)v_{DS} - v_{DS}^2)$
JFET a canale p - Zona di Saturazione	$i_D = \frac{I_{DSS}}{V_p^2} (v_{GS} - V_p)^2 \left(1 + \frac{v_{DS}}{V_A}\right)$

Descrizione	Formula
Linearizzazione dell'NMOS in zona di saturazione	$\begin{cases} i_G = 0 \\ i_D = \frac{\beta_n}{2} [v_{GS} - v_{Th}]^2 \left(1 + \frac{v_{DS}}{V_A}\right) \end{cases}$
Linearizzazione del PMOS in zona di saturazione	$\begin{cases} i_G = 0 \\ i_D = -\frac{\beta_p}{2} [v_{GS} - v_{Th}]^2 \left(1 + \frac{ v_{DS} }{V_A} \right) \end{cases}$
g_m : transconduttanza	$g_m = \sqrt{2\beta_{n/p} I_D \left(1 + \frac{ V_{DS} }{V_A}\right)} = \frac{2I_D}{V_{GS} - V_{Th}}$
r_o : resistenza di uscita (differenziale)	$\frac{1}{r_o} = \frac{ I_D }{V_A + V_{DS} }$
g_{mb} : transconduttanza di effetto body	$g_{mb} = \beta_{n/p} V_{GS} - V_{Th} \left(1 + \frac{ V_{DS} }{V_A} \right) \left. \frac{\partial v_{Th}}{\partial v_{BS}} \right _{V_{BS}}$
Linearizzazione dei JFET in zona di saturazione	$\begin{cases} i_G = 0 \\ i_D = \frac{I_{DSS}}{V_P^2} (v_{GS} - v_p)^2 \left(1 + \frac{ v_{DS} }{V_A}\right) \end{cases}$
g_m : transconduttanza	$g_m = \sqrt{2\beta_{n/p} I_D \left(1 + \frac{ V_{DS} }{V_A}\right)} = \frac{2I_D}{V_{GS} - V_p}$
r_o : resistenza di uscita (differenziale)	$\frac{1}{r_o} = \frac{ I_D }{V_A + V_{DS} }$