```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
# Ignoring warnings
warnings.filterwarnings('ignore')
# Ensuring plots are displayed inline
%matplotlib inline

df = pd.read_csv("bank.csv",delimiter=';')
df.rename(columns={'y':'deposit'}, inplace=True)
df.head()
```

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	 campaign	pdays	previous	р
0	30	blue- collar	married	basic.9y	no	yes	no	cellular	may	fri	 2	999	0	no
1	39	services	single	high.school	no	no	no	telephone	may	fri	 4	999	0	no
2	25	services	married	high.school	no	yes	no	telephone	jun	wed	 1	999	0	no
3	38	services	married	basic.9y	no	unknown	unknown	telephone	jun	fri	 3	999	0	no
4	47	admin.	married	university.degree	no	yes	no	cellular	nov	mon	 1	999	0	no

5 rows × 21 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4119 entries, 0 to 4118
Data columns (total 21 columns):

Data	columns (total	21 columns):	
#	Column	Non-Null Count	Dtype
0	age	4119 non-null	int64
1	job	4119 non-null	object
2	marital	4119 non-null	object
3	education	4119 non-null	object
4	default	4119 non-null	object
5	housing	4119 non-null	object
6	loan	4119 non-null	object
7	contact	4119 non-null	object
8	month	4119 non-null	object
9	day_of_week	4119 non-null	object
10	duration	4119 non-null	int64
11	campaign	4119 non-null	int64
12	pdays	4119 non-null	int64
13	previous	4119 non-null	int64
14	poutcome	4119 non-null	object
15	emp.var.rate	4119 non-null	float64
16	cons.price.idx	4119 non-null	float64
17	cons.conf.idx	4119 non-null	float64
18	euribor3m	4119 non-null	float64
19	nr.employed	4119 non-null	float64
20	deposit	4119 non-null	object
dtype	es: float64(5),	int64(5), object	(11)
		LCD	

memory usage: 675.9+ KB

df.tail()

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	• • •	campaign	pdays	previous	ро
4114	30	admin.	married	basic.6y	no	yes	yes	cellular	jul	thu		1	999	0	none
4115	39	admin.	married	high.school	no	yes	no	telephone	jul	fri		1	999	0	none
4116	27	student	single	high.school	no	no	no	cellular	may	mon		2	999	1	
4117	58	admin.	married	high.school	no	no	no	cellular	aug	fri		1	999	0	none
4118	34	management	single	high.school	no	yes	no	cellular	nov	wed		1	999	0	none

5 rows × 21 columns

df.tail()

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	• • •	campaign	pdays	previous	ро
4114	30	admin.	married	basic.6y	no	yes	yes	cellular	jul	thu		1	999	0	none
4115	39	admin.	married	high.school	no	yes	no	telephone	jul	fri		1	999	0	none
4116	27	student	single	high.school	no	no	no	cellular	may	mon		2	999	1	
4117	58	admin.	married	high.school	no	no	no	cellular	aug	fri		1	999	0	none
4118	34	management	single	high.school	no	yes	no	cellular	nov	wed		1	999	0	none

df.tail()

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	 campaign	pdays	previous	ро
4114	30	admin.	married	basic.6y	no	yes	yes	cellular	jul	thu	 1	999	0	none
4115	39	admin.	married	high.school	no	yes	no	telephone	jul	fri	 1	999	0	none
4116	27	student	single	high.school	no	no	no	cellular	may	mon	 2	999	1	
4117	58	admin.	married	high.school	no	no	no	cellular	aug	fri	 1	999	0	none
4118	34	management	single	high.school	no	yes	no	cellular	nov	wed	 1	999	0	none

5 rows × 21 columns

5 rows × 21 columns

```
df.dtypes
```

```
int64
age
                     int64
object
job
                      object
object
marital
education
                       object
object
default
housing
                       object
object
loan
contact
month object
month object
day_of_week object
duration int64
campaign int64
pdays int64
previous int64
poutcome
                       object
emp.var.rate
                       float64
cons.price.idx float64 cons.conf.idx float64
euribor3m
                       float64
                    float64
nr.employed
deposit
                        object
dtype: object
```

df.columns

df.dtypes

200	int64
age	
job	object
marital	object
education	object
default	object
housing	object
loan	object
contact	object
month	object
day_of_week	object
duration	int64
campaign	int64
pdays	int64
previous	int64
poutcome	object
emp.var.rate	float64
cons.price.idx	float64
cons.conf.idx	float64
euribor3m	float64

```
nr.employed
                 float64
    deposit
                  object
    dtype: object
df.dtypes.value_counts()
    object
    float64
    Name: count, dtype: int64
df.duplicated().sum()
    0
df.isna().sum()
    age
    job
    marital
                  0
    education
    default
                  0
    housing
                  0
    loan
                  0
    contact
                  0
    month
                  0
    day_of_week
    duration
                  0
    campaign
    pdays
    previous
    poutcome
                  0
    emp.var.rate
                  0
    cons.price.idx
cons.conf.idx
                  0
                  0
    euribor3m
                  a
    nr.employed
                  0
    deposit
                  0
    dtype: int64
cat_cols = df.select_dtypes(include='object').columns
print(cat_cols)
num_cols = df.select_dtypes(exclude='object').columns
print(num_cols)
    dtype='object')
    dtype='object')
df.hist(figsize=(10,10), color='orange')
plt.show()
```


df.describe(include='object')

	job	marital	education	default	housing	loan	contact	month	day_of_week	poutcome	deposit	
count	4119	4119	4119	4119	4119	4119	4119	4119	4119	4119	4119	11.
unique	12	4	8	3	3	3	2	10	5	3	2	
top	admin.	married	university.degree	no	yes	no	cellular	may	thu	nonexistent	no	
freq	1012	2509	1264	3315	2175	3349	2652	1378	860	3523	3668	

df.describe()

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.em
count	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.0
mean	40.113620	256.788055	2.537266	960.422190	0.190337	0.084972	93.579704	-40.499102	3.621356	5166.4
std	10.313362	254.703736	2.568159	191.922786	0.541788	1.563114	0.579349	4.594578	1.733591	73.0
min	18.000000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.800000	0.635000	4963.0
25%	32.000000	103.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	-42.700000	1.334000	5099.
50%	38.000000	181.000000	2.000000	999.000000	0.000000	1.100000	93.749000	-41.800000	4.857000	5191.0
75%	47.000000	317.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.400000	4.961000	5228.
max	88.000000	3643.000000	35.000000	999.000000	6.000000	1.400000	94.767000	-26.900000	5.045000	5228.

 $\begin{tabular}{ll} df.plot(kind='box', subplots=True, layout=(2,5), figsize=(20,10), color='purple') \\ plt.show() \end{tabular}$


```
# Calculate the number of rows and columns for subplots
num_plots = len(cat_cols)
num_rows = (num_plots + 1) // 2 # Add 1 and divide by 2 to round up for odd numbers
num_cols = 2
# Create a new figure
plt.figure(figsize=(20, 25)) # Adjust the figure size as needed
# Loop through each feature and create a countplot
for i, feature in enumerate(cat_cols, 1):
   plt.subplot(num_rows, num_cols, i)
    sns.countplot(x=feature, data=df, palette='Set2') # Changed palette to 'Set2'
   plt.title(f'Bar Plot of {feature}')
   plt.xlabel(feature)
   plt.ylabel('Count')
   plt.xticks(rotation=45)
# Adjust layout to prevent overlap of subplots
plt.tight_layout()
plt.show()
```



```
# Assigning selected columns to a new variable
columns_to_check = df[['age', 'campaign', 'duration']]
# Calculating quartiles and IQR
q1 = np.percentile(columns_to_check, 25)
q3 = np.percentile(columns_to_check, 75)
iqr = q3 - q1
# Calculating lower and upper bounds
lower\_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Filtering out values beyond the bounds
df[['age', 'campaign', 'duration']] = columns_to_check[(columns_to_check > lower_bound) & (columns_to_check < upper_bound)]</pre>
df.plot(kind='box', subplots=True, layout=(2,5),figsize=(20,10),color='brown')
plt.show()
                                                 8
                                                          200
                                                \perp
                       93.0
                                                                            5050
```

```
## Exclude non-numeric columns
numeric_df = df.drop(columns=cat_cols)

# Compute the correlation matrix
corr = numeric_df.corr()

# Print the correlation matrix
print(corr)

# Filter correlations with absolute value >= 0.90
corr = corr[abs(corr) >= 0.90]
```

```
sns.heatmap(corr,annot=True,cmap='turbo',linewidths=0.2)
plt.show()
```

```
-0.015033 -0.067815 0.159435 0.301478 -0.458851
euribor3m
              -0.041936 -0.097339 0.161037 0.381983 -0.514853
nr.employed
               emp.var.rate cons.price.idx cons.conf.idx euribor3m \
                  -0.019192
                                  -0.000482
                                                 0.098135
                                                          -0.015033
age
                                                 0.045889
duration
                  -0.063870
                                  -0.013338
                                                           -0.067815
campaign
                   0.176079
                                  0.145021
                                                 0.007882
                                                           0.159435
pdays
                   0.270684
                                  0.058472
                                                -0.092090
                                                           0.301478
previous
                  -0.415238
                                  -0.164922
                                                -0.051420
                                                          -0.458851
emp.var.rate
                   1.000000
                                  0.755155
                                                 0.195022
                                                           0.970308
                                  1.000000
                                                 0.045835
cons.price.idx
                   0.755155
                                                           0.657159
cons.conf.idx
                   0.195022
                                  0.045835
                                                 1.000000
                                                            0.276595
euribor3m
                   0.970308
                                  0.657159
                                                 0.276595
                                                           1.000000
                                                 0.107054
                                                           0.942589
                                  0.472560
nr.employed
                   0.897173
               nr.employed
                 -0.041936
duration
                 -0.097339
campaign
                  0.161037
pdays
                  0.381983
previous
                 -0.514853
emp.var.rate
                  0.897173
cons.price.idx
                  0.472560
cons.conf.idx
                  0.107054
euribor3m
                  0.942589
                  1.000000
nr.employed
                                                                       1.00
          age
      duration -
                                                                       0.99
    campaign -
        pdays -
                                                                       0.98
      previous -
                                                                       0.97
  emp.var.rate -
                                                       0.97
 cons.price.idx -
                                                                       0.96
  cons.conf.idx -
    euribor3m -
                                        0.97
                                                            0.94
                                                                       0.95
                                                       0.94
                                                             1
  nr.employed -
                    duration
                          campaign
                                    previous
                                         emp.var.rate
                                              cons.price.idx
                                                   cons.conf.idx
                                                        euribor3m
                                                             nr.employed
```

```
'previous', 'poutcome', 'cons.price.idx', 'cons.conf.idx', 'deposit'],
           dtype='object')
df1.shane
     (4119, 18)
from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
df_encoded = df1.apply(lb.fit_transform)
df_encoded
            age job marital education default housing loan contact month day_of_wee
                                       2
                                               0
                                                        2
                                                                              6
       0
            12
                           1
                                                              0
                                                                       0
       1
            21
                                                                              6
       2
             7
                  7
                                                        2
                                       3
                                               Ω
                                                              Ω
                                                                              4
       3
            20
                  7
                                       2
                                               0
                                                         1
       4
            29
                  0
                                       6
                                               0
                                                        2
                                                              0
                                                                       0
                                                                              7
      4114
             12
                                               0
                                                        2
                                                              2
                                                                       0
                                       3
                                               0
                                                        2
                                                              0
                                                                              3
      4115
            21
                  0
      4116
                           2
                                                        0
                                       3
     4117
            40
                  0
                           1
                                               0
                                                        0
                                                              0
                                                                       0
     4118 16
                  4
                                       3
                                               0
                                                        2
                                                              0
                                                                       0
                                                                              7
    4119 rows × 18 columns
             Generate code with df encoded
                                             View recommended plots
 Next steps:
df_encoded['deposit'].value_counts()
     deposit
         3668
          451
     1
    Name: count, dtype: int64
x = df_encoded.drop('deposit',axis=1) # independent variable
y = df_encoded['deposit']
                                       # dependent variable
print(x.shape)
print(y.shape)
print(type(x))
print(type(y))
     (4119, 17)
     (4119,)
     <class 'pandas.core.frame.DataFrame'>
     <class 'pandas.core.series.Series'>
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=1)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
     (3089, 17)
     (1030, 17)
     (3089,)
     (1030,)
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
def eval_model(y_test,y_pred):
   acc = accuracy_score(y_test,y_pred)
   print('Accuracy_Score',acc)
   cm = confusion_matrix(y_test,y_pred)
   print('Confusion Matrix\n',cm)
   print('Classification Report\n',classification_report(y_test,y_pred))
def mscore(model):
```

train score = model.score(x train.v train)

```
test_score = model.score(x_test,y_test)
   print('Training Score',train_score)
   print('Testing Score',test_score)
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(criterion='gini',max_depth=5,min_samples_split=10)
dt.fit(x_train,y_train)
\rightarrow
                      {\tt DecisionTreeClassifier}
     DecisionTreeClassifier(max_depth=5, min_samples_split=10)
mscore(dt)
    Training Score 0.9148591777274199
    Testing Score 0.8990291262135922
ypred_dt = dt.predict(x_test)
print(ypred_dt)
    [0 0 1 ... 0 0 0]
eval_model(y_test,ypred_dt)
    Accuracy_Score 0.8990291262135922
    Confusion Matrix
     [[905 25]
      [ 79 21]]
    Classification Report
                  precision
                             recall f1-score
                                               support
                            0.97
0.21
                      0.92
                                        0.95
                                                   930
              0
              1
                      0.46
                                        0.29
                                                  100
                                        0.90
        accuracy
                                                  1030
                            0.59
       macro avg
                      0.69
                                        0.62
                                                  1030
    weighted avg
                      0.87
                              0.90
                                        0.88
                                                  1030
from sklearn.tree import plot_tree
cn = ['no','yes']
fn = x_train.columns
print(fn)
print(cn)
    dtype='object')
    ['no', 'yes']
plt.figure(figsize=(30,10))
plot_tree(dt,class_names=cn,filled=True)
plt.show()
```

```
dt1 = DecisionTreeClassifier(criterion='entropy',max_depth=4,min_samples_split=15)
dt1.fit(x_train,y_train)
                               DecisionTreeClassifier
     DecisionTreeClassifier(criterion='entropy', max_depth=4, min_samples_split=15)
                              samples = 5
yalue = [1, 2] gini = 0.234
samples = 59
                                                          gini = 0.4
samples = 94
                                                                                                                    gini = 0.458
samples = 31
mscore(dt1)
     Training Score 0.9080608611201036
     Testing Score 0.9048543689320389
     ypred dt1 = dt1.predict(x test)
eval_model(y_test,ypred_dt1)
    Accuracy_Score 0.9048543689320389
    Confusion Matrix
     [[915 15]
      [ 83 17]]
    Classification Report
                  precision
                              recall f1-score
                                                support
                               0.98
               0
                      0.92
                                         0.95
                                                   930
                                                   100
                      0.53
                               0.17
                                         0.26
              1
                                         0.90
                                                  1030
        accuracy
       macro avg
                      0.72
                               0.58
                                         0.60
                                                  1030
    weighted avg
                      0.88
                               0.90
                                         0.88
                                                  1030
```

plt.figure(figsize=(40,20))
plot_tree(dt1,class_names=cn,filled=True)
plt.show()

