Math 260 Exercises 2.A Solutions

David L. Meretzky

Monday October 1st, 2018

Problem 1. Suppose v_1 , v_2 , v_3 , and v_4 spans V. Prove that the list $v_1 - v_2$, $v_2 - v_3$, $v_3 - v_4$, v_4 also spans V.

Solution 1. Let v be any vector in V. Then there exist scalars α_1 , α_2 , α_3 , and α_4 , such that $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4$. However $v_3 = (v_3 - v_4) + v_4$. Similarly, $v_2 = (v_2 - v_3) + (v_3 - v_4) + v_4$ and $v_1 = (v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + v_4$.

Making these substitutions we obtain that $v = \alpha_1((v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + v_4) + \alpha_2((v_2 - v_3) + (v_3 - v_4) + v_4) + \alpha_3((v_3 - v_4) + v_4) + \alpha_4v_4$. Collecting like terms we have that $v = \alpha_1(v_1 - v_2) + (\alpha_1 + \alpha_2)(v_2 - v_3) + (\alpha_1 + \alpha_2 + \alpha_3)(v_3 - v_4) + (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)v_4$ as desired.

Problem 2. Find a number t such that (3, 1, 4), (2, -3, 5), (5, 9, t) is not linearly independent in \mathbb{R}^3 .

Solution 2. It suffices to find t such that there exist $a, b, c \in \mathbf{R}$ non-zero such that a(3,1,4)+b(2,-3,5)+c(5,9,t)=0. We have the following 3 systems of equations 3a+2b+5c=0, a-3b+9c=0, and 4a+5b+tc=0.

Solving for c in equation 1. We have $c=\frac{-3a-2b}{5}$. Plugging this into equation 2 we obtain $a-3b+\frac{9(-3a-2b)}{5}=0$. Expanding this we obtain $\frac{5a}{5}-\frac{15b}{15}-\frac{27a}{5}-\frac{54b}{15}=-66a-42b=11a+7b=0$ thus $a=-\frac{7b}{11}$. Equation 3 then becomes $-\frac{28b}{11}+\frac{55b}{11}+t\frac{\frac{21b}{11}-2b}{5}=\frac{135b}{55}+t\frac{b}{55}=0$. If t is equal to -135, then there are non-zero coefficients as desired.

Problem 3. Prove or give counterexample: If $v_1, v_2, ... v_m$ is a linearly independent list of vectors in V and $\lambda \in \mathbf{F}$ with $\lambda \neq 0$, then $\lambda v_1, \lambda v_2, ... \lambda v_m$ is linearly independent.

Proof. Suppose that $a_1, a_m \in \mathbf{F}$ such that $a_1 \lambda v_1 + ... a_m \lambda v_m = 0$. Then $(a_1 \lambda) v_1 + ... (a_m \lambda) v_m = 0$, so each $a_i \lambda = 0$. Since $\lambda \neq 0$, $a_i = 0$ as desired. \square

Problem 4. Prove or give counterexample: If $v_1...v_m$ and $w_1...w_m$ are linearly independent lists of vectors in V, then $v_1+w_1,...v_m+w_m$ is linearly independent.

Solution 3. Counterexample: Let $v_1 = (1,0)$ and let $v_2 = (0,1)$ and let $w_1 = (0,1)$ and $w_2 = (1,0)$. Then $v_1 + w_1 = (1,1)$ and $v_2 + w_2 = (1,1)$. This is clearly a dependent list.

Problem 5. Suppose $v_1...v_m$ is linearly independent in V and $w \in V$. Prove that if $v_1 + w...v_m + w$ is linearly dependent then $w \in Span(v_1...v_m)$.

Proof. There exist non-zero coefficients $a_1,....a_m \in \mathbf{F}$ such that $a_1(v_1+w)+...a_m(v_m+w)=0$. Then factoring out w we have $(a_1+...+a_m)w+(a_1v_1+...a_mv_m)=0$ and $a_1v_1+...a_mv_m=-(a_1+...+a_m)w$. Since $v_1...v_m$ is linearly independent and not all of the $a_1,....a_m \in \mathbf{F}$ are zero, $-(a_1+...+a_m)w\neq 0$. Thus $-(a_1+...+a_m)\neq 0$. We can then divide both sides of the equation by $-(a_1+...+a_m)$ and we see that w is in the span of $v_1...v_m$.

Problem 6. Suppose $v_1...v_m$ is linearly independent in V and $w \in V$. Show that $v_1...v_m$, w is linearly independent if and only if $w \notin Span(v_1...v_m)$.

Proof. Note that w cannot be the 0 vector

Suppose $v_1...v_m$, w is linearly independent. Suppose $w \in Span(v_1..v_m)$. Then there exist non-zero coefficients $a_1...a_m$ such that $a_1v_1 + ... + a_mv_m = 1 \cdot w$. The coefficients must be non-zero otherwise w is the zero vector. Then $a_1v_1 + ... + a_mv_m - 1 \cdot w = 0$. But since $v_1...v_m$, w is linearly independent then the coefficients must all be 0. This is a contradiction. Therefore $w \notin Span(v_1...v_m)$.

Suppose now that $w \notin Span(v_1..v_m)$. Suppose that $v_1...v_m, w$ is linearly dependent. This violates the Linear Dependence Lemma. The result follows by contradiction.