Statistics II: Introduction to Inference

Problem set 3

- 1. (Additive properties) Prove the following statements using moment generating functions.
 - (a) Let $X_i \stackrel{ind}{\sim} \mathtt{binomial}(n_i, p)$, for $i = 1, \dots, k$, then $T = \sum_{i=1}^k X_i$ follows $\mathtt{binomial}(\sum_i n_i, p)$.
 - (b) Let $X_i \stackrel{ind}{\sim} \mathtt{Poisson}(\lambda_i)$, for $i = 1, \dots, n$, then $T = \sum_{i=1}^n X_i$ follows $\mathtt{Poisson}(\sum_i \lambda_i)$.
 - (c) Let $X_i \stackrel{ind}{\sim} \text{normal}(\mu_i, \sigma_i^2)$, for $i = 1, \dots, n$, then $T = \sum_{i=1}^n X_i$ follows normal $(\sum_i \mu_i, \sum_i \sigma_i^2)$.
 - (d) Let $X_i \stackrel{ind}{\sim} \text{Gamma}(\alpha_i, \beta)$, for i = 1, ..., n, then $T = \sum_{i=1}^n X_i$ follows $\text{Gamma}(\sum_i \alpha_i, \beta)$.
 - (e) Let $X_i \stackrel{ind}{\sim} \chi_{n_i}^2$, for i = 1, ..., k, then $T = \sum_{i=1}^k X_i$ follows χ_N^2 where $N = \sum_i n_i$.
- 2. Let $X \sim \text{normal}(\mu, \sigma^2)$ distribution, then $T = aX + b \sim \text{normal}(a\mu + b, a^2\sigma^2)$.
- 3. Let $X \sim \text{Gamma}(\alpha, \beta)$ distribution, then $T = aX \sim \text{Gamma}(\alpha, \beta/a)$.
- 4. Let $X \sim \text{beta}(n/2, m/2)$ distribution, then $T = mX/\{n(1-X)\} \sim F_{n,m}$.
- 5. Let $X \sim \mathtt{uniform}(0,1)$ distribution, and $\alpha > 0$ then $T = X^{1/\alpha} \sim \mathtt{beta}(\alpha,1)$.
- 6. Let $X \sim \mathtt{Cauchy}(0,1)$ distribution, then $T = 1/(1+X^2) \sim \mathtt{beta}(0.5,0.5)$.
- 7. Let $X \sim \text{uniform}(0,1)$ distribution, then $T = -2 \log X \sim \chi_2^2$.
- 8. Let X be distributed as some absolutely continuous distribution with cdf G_X , then $T = G_X(X) \sim \text{uniform}(0,1)$.
- 9. Let the random variable X have pdf

$$f(x) = \sqrt{\frac{2}{\pi}} \exp\{-x^2/2\}, \qquad x > 0.$$

- (a) Find E(X) and var(X).
- (b) Find an appropriate transformation Y = g(X) and α, β , so that $Y \sim \text{Gamma}(\alpha, \beta)$.
- 10. Let X is distributed as $Gamma(\alpha, \beta)$ distribution, $\alpha, \beta > 0$. Then show that the r-th order population moment

$$E(X^r) = \beta^{-r} \frac{\Gamma(r+\alpha)}{\Gamma(\alpha)}, \qquad r > -\alpha.$$

11. Let the bivariate random variable (X, Y) has a joint pdf

$$f_{X,Y}(x,y) = \begin{cases} C(x+2y) & \text{if } 0 < y < 1, \ 0 < x < 2, \\ 0 & \text{otherwise.} \end{cases}$$

1

- (a) Find the marginal distribution of Y.
- (b) Find the conditional distribution of Y given X = 1.

- (c) Compare the expectations of the above two distributions of Y.
- (d) Find the covariance between X and Y.
- (e) Find the distribution of $Z = 9/(2Y+1)^2$.
- (f) What is P(X > Y)?
- 12. Let $X \sim \text{normal}(0,1)$. Define $Y = -X\mathbb{I}(|X| \le 1) + X\mathbb{I}(|X| > 1)$. Find the distribution of Y. (Hint: Apply the CDF approach)
- 13. Let $X \sim \text{normal}(0,1)$. Define Y = sign(X) and Z = |X|. Here $\text{sign}(\cdot)$ is a $\mathbb{R} \to \{0,1\}$ function such that sign(a) = 1 if $a \ge 0$, and sign(a) = -1 otherwise.
 - (a) Find the marginal distributions of Y and Z.
 - (b) Find the joint CDF of (Y, Z). Hence or otherwise prove that Y and Z are independently distributed.
- 14. Suppose $X_1, \dots, X_n \stackrel{\text{IID}}{\sim} \text{normal}(\mu_x, \sigma^2), Y_1, \dots, Y_m \stackrel{\text{IID}}{\sim} \text{normal}(\mu_y, \sigma^2)$, and all the random variables $\{X_1, \dots, X_n, Y_1, \dots, Y_m\}$ are mutually independent. Then find the distribution of $T := S_X^{\star 2}/S_Y^{\star 2}$, where $S_X^{\star 2}$ and $S_Y^{\star 2}$ are the unbiased sample variances of X and Y, respectively.
- 15. Let X_1, \dots, X_n be iid random variables with continuous CDF F_X , and suppose $E(X_1) = \mu$. Define the random variables Y_1, \dots, Y_n as follows:

$$Y_i = \begin{cases} 1 & \text{if } X_i > \mu \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find $E(Y_1)$.
- (b) Find the distribution of $\sum_{i=1}^{n} Y_i$.
- 16. Let $X_1, \dots, X_n \stackrel{\text{IID}}{\sim} \text{normal } (\mu, \sigma^2)$, and S_n^2 be the sample variance. Find a function of S_n^2 , say $g\left(S_n^2\right)$, which satisfies $E\left[g\left(S_n^2\right)\right] = \sigma$. (Hint: You may use problem 2.)
- 17. Let X_1, \dots, X_n be iid with pdf f_X and CDF F_X . Find the CDF of r-th order statistics $X_{(r)}$. Hence derive the pdf of $X_{(r)}$.
- 18. Let Y have a Cauchy(0,1) distribution.
 - (a) Find the CDF of Y.
 - (b) Hence provide a method of simulating random samples from $\mathtt{Cauchy}(0,1)$ distribution, starting from $\mathtt{uniform}(0,1)$ random variables.

¹You may skip this problem.