Desafío 2

Grupo 5

Lesertesseur, Diego Panizza, Camila Pellecchia, Franco Magariños, Néstor Suarez, Horacio

OBJETIVO

 Desarrollar un modelo de regresión lineal que permita predecir el precio por metro cuadrado de una propiedad

ESTRUCTURA

- . Dataset
- ii. Modelos estimados
- iii. Selección del mejor modelo
- iv. Interpretación de coeficientes

Dataset

DATASET PROPERATI (1/2)

El dataset limpio y sin nulos contiene 61.000 observaciones

Variable	Tipo	Ejemplos
price_usd_per_m2	float64	[1474.0, 1467.0, 1136.0, 464.0, 1006.0, 1074.0]
surface_total_in_m2	float64	[296.5, 318.2, 303.8, 700.0, 397.8, 180.0]
property_type	object	[house, apartment, PH, store]
provincia	object	[Bs.As. G.B.A. Zona Norte, Santa Fe]
ciudad	object	[Tigre, Pilar, Funes, La Plata, Escobar]
departamento	object	[Tigre, Villa Rosa, Village Golf & Tennis]
barrio	object	[Barrio Los Lagos, Barrio Los Alisos]
rooms	float64	[3.0, 2.0, 4.0, 5.0, 1.0, 7.0, 6.0]
banos	float64	[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.0, 8.0, 9.0]

DATASET PROPERATI (2/2)

El dataset limpio y sin nulos contiene 61.000 observaciones

Variable	Tipo	Ejemplos
pileta	int64	[O, 1]
cochera	int64	[O, 1]
barrio Cerrado	int64	[O, 1]
jacuzzi	int64	[O, 1]
terraza	int64	[O, 1]
quincho	int64	[O, 1]
seguridad	int64	[O, 1]
balcon	int64	[O, 1]
calefacción	int64	[O, 1]

NUEVAS VARIABLES

- Se transformaron las variables categóricas "Tipo de propiedad" y "Localidad" en variables dummy
 - La variable localidad es una concatenación de las variables 'Ciudad', 'Departamento' y 'Barrio'
- Se confeccionaron variables sinergias para las siguientes combinaciones
 - Casa Pileta
 - Departamento Cochera
- Cuartos Baños
- PH Cochera
- Se introdujo a los metros cuadrados totales de la propiedad elevada al cuadrado para captar un posible efecto no lineal

PARTICIÓN DEL DATASET

- Se realizó una división del dataset en dos partes: dataset de entrenamiento y dataset de validación
- La división fue realizada mediante selección aleatoria con estratificación por deciles de la variable target

Modelos estimados

MODELOS

- i. Mínimos Cuadrados Ordinarios
- ii. Limpieza de variables no significativas
- iii. Lasso y Ridge

MÍNIMOS CUADRADOS ORDINARIOS (MCO)

	MCO		
Dep. Variable:	price_usd_per_m2_clean	R-squared:	0.714
Model:	OLS	Adj. R-squared:	0.710
Method:	Least Squares	F-statistic:	152.0
Date:	Tue, 23 Jun 2020	Prob (F-statistic):	0.00
Time:	12:35:17	Log-Likelihood:	-4.1297e+05
No. Observations:	55152	AIC:	8.277e+05
Df Residuals:	54259	BIC:	8.357e+05
Df Model:	892		

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS (1/3)

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS (7/3)

PROBLEMA

El modelo final seguía conteniendo variables no significativas

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS (2/3)

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS (2/3)

PROBLEMA

Estamos eliminando variables que figuran como no significativas por la presencia de otras variables que hacen ruido en el modelo

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS (3/3)

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS (3/3)

step	alpha	previo	posterior
1	0.5	988	675
2	0.5	675	645
3	0.5	645	629
4	0.5	629	621
5	0.5	621	617
6	0.5	617	616
7	0.5	616	616
8	0.2	616	501
9	0.2	501	499
10	0.2	499	499
11	0.1	499	425

step	alpha	previo	posterior
12	0.1	425	404
13	0.1	404	399
14	0.1	399	399
15	0.05	399	353
16	0.05	353	346
17	0.05	346	345
18	0.05	345	345
19	0.01	345	272
20	0.01	272	269
21	0.01	269	267
22	0.01	267	267

MCO CON VARIABLES SIGNIFICATIVAS AL 1%

	MCO solo con variables s	significativas	
Dep. Variable:	price_usd_per_m2_clean	R-squared:	0.709
Model:	OLS	Adj. R-squared:	0.707
Method:	Least Squares	F-statistic:	500.5
Date:	Tue, 23 Jun 2020	Prob (F-statistic):	0.00
Time:	16:54:15	Log-Likelihood:	-4.1348e+05
No. Observations:	55152	AIC:	8.275e+05
Df Residuals:	54884	BIC:	8.299e+05
Df Model:	267		

REGULARIZACIÓN RIDGE Y LASSO

- Se corrieron ambos modelos con cross-validation para alcanzar el alpha óptimo [alphas=np.linspace(0.001, 10, 100)]
- Solo se utilizaron solo las variables detectadas anteriormente como significativas

Modelo	Alpha óptimo	\mathbb{R}^2
Lasso	0,001	0,709
Ridge	0,001	0,709

Selección del mejor modelo

SELECCIÓN DEL MEJOR MODELO

- Los modelos con regularización Ridge y Lasso no presentan mejoras. Esto resulta un indicio de que no existe overfiting
- El modelo de Mínimos Cuadrados Ordinarios con 190 features y un R²=0.70 resulta el más adecuado para la predicción

PREDICCIÓN FUERA DE LA MUESTRA

 $R^2 = 0.70$

Interpretación de coeficientes

INTERPRETACIÓN DE COEFICIENTES

PRINCIPALES

Variable	Beta
const	1300,4
apartment	250,9
house	150,9
store	714,1
surface_total_in_m2	-4,6
surface_total_in_m2 squared	0,004
rooms_clean	25,2
banos	42,9

Variable	Beta
Pileta	126,4
Jacuzzi	187,1
Quincho	39,8
Gimnasio	112,0
Seguridad	56,3
Balcon	67,6
Calefaccion	115,0
Jardín	-86,8

Variable	Beta
nouse_pileta	80,7
partment_cochera	154,3
oh_cochera	74,6

¡Muchas gracias!

Digital House Coding School

Anexo

LIMPIEZA DE VARIABLES NO SIGNIFICATIVAS

```
list alpha=[0.50,0.20,0.10,0.05,0.01]
variables significativas = data features.columns
variables significativas previo= variables significativas.shape[0]
step=1
for alpha in list alpha:
    variables significativas posterior=0
    while variables significativas posterior<variables significativas previo:
       Xtrain = Xtrain[variables significativas]
       variables significativas previo= variables_significativas.shape[0]
       model sm = sm.OLS(ytrain, Xtrain).fit()
       variables significativas = pd.DataFrame(data = [x for x in model sm.summary().tables[1].data[1:] if float(x[4]) < alpha],\
                                                columns = model sm.summary().tables[1].data[0])['']
       variables significativas posterior=variables significativas.shape[0]
        print(step, alpha,variables_significativas_previo,variables_significativas_posterior)
        step=step+1
```