

Reconhecimento de Padrões

Teste de hipótese

Profa: Deborah Magalhães

44

Teste de hipótese consiste em tomar decisões sobre a distribuição desconhecida de uma **população** ou os parâmetros populacionais inerentes a essa distribuição a partir de uma **amostra**.

População

Fonte:

https://medium.com/@ruhandong/summary-for-neyman-pearson-classification-algorithms-a0c9595632a9

Amostra

Fonte:

https://medium.com/@ruhandong/summary-for-neyman-pearson-classification-algorithms-a0c9595632a9

Teste de Hipótese

OU

Teste de significância

OU

Regras de decisão

Hipótese nula: 5% dos pacientes com COVID-19
 vão para unidade intensiva de tratamento

$$H_0: p \ge 0.05$$

 Hipótese alternativa: < 5% dos paciente com COVID-19 vão para unidade intensiva de tratamento.

$$H_1 \ ou \ H_a : p < 0.05$$

Teste de Hipótese

OU

Teste de significância

OU

Região crítica

Variáveis aleatórias (features):

$$X = (X_1, \cdot \cdot \cdot, X_n)$$

Função de probabilidade conjunta:

$$f_{\theta}(x) \ para \ algum \ \theta \in \Theta$$

Observação sobre o espaço paramétrico:

$$\theta_0 \cup \theta_1 = \Theta \ e \ \theta_0 \cap \theta_1 = \phi$$

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1 \end{cases}$$

Região crítica

 Região crítica: um teste de hipótese divide o espaço amostral, definindo um subconjunto (C):

$$\begin{cases} Se \ X \in C, \ entao \ rejeita \ H_0 \\ Se \ X \notin C, \ entao \ aceita \ H_0 \end{cases}$$

Tipos de Erro

Tipo I: rejeitar H₀, sendo esta **verdadeira**.

Tipo II: aceitar H_0 , sendo esta **falsa**.

Decisão estatística	Verdadeiro estado de H₀				
	H₀ verdadeira	H₀ falsa			
Não Rejeita H₀	Correto	Tipo II			
Rejeita H₀	Tipo I	Correto			

Probabilidades dos Erros

Nível de significância (α):

probabilidade do erro do Tipo I

Perda (β): probabilidade do erro do **Tipo II**

Confiabilidade do teste (γ): 1 - α

Poder (*P*): $1 - \beta$

$$P(rejeita \ H_0|H_0 \ verdadeiro) = \alpha$$

$$P(nao \ rejeita \ H_0|H_0 \ falso) = \beta$$

$$n \to \infty \Rightarrow \downarrow \alpha \simeq \beta \downarrow \qquad \downarrow \alpha \Rightarrow \beta \uparrow$$

Decisão	Verdadeiro estado de H₀					
estatística	H₀ verdadeira	H₀ falsa				
Não Rejeita H₀	γ	β				
Rejeita H₀	α	Р				

Exemplo: uma loja de brinquedos afirma que pelo menos 80% das meninas com menos de 8 anos preferem bonecas a outros brinquedos. Depois de observar o padrão de compra de meninas com idade inferior a 8 anos, notou-se que essa afirmação é inflada. A fim de descartar esta afirmação, foi observado o padrão de compra de **20** meninas selecionadas aleatoriamente com menos de 8 anos, e observamos X que corresponde ao número de meninas que compram bonecas. Desse modo, a seguinte hipótese será avaliada: H_0 : p=0.8 e H_1 : p<0.8. Se X > 12, H_0 é aceita e, se X \leq 12, H_0 é rejeitada.

Determine o nível de significância (α):

$$\alpha = P(rejeitar \ H_0 \ | \ H_0 \ verdadeira)$$

$$= P(X \le 12 \ | \ 0.8)$$

$$= \sum_{x=0}^{12} {20 \choose x} (0.8)^x (0.2)^{20-x}$$

Determine o nível de significância (α):

$$\alpha = P(rejeitar \ H_0 \ | \ H_0 \ verdadeira)$$

$$= P(X \le 12 \ | \ 0.8)$$

$$= \sum_{x=0}^{12} {20 \choose x} (0.8)^x (0.2)^{20-x}$$

$$= \mathbf{0.032142}$$

Determine a perda (β) com H₁: p=0.6

$$\beta = P(aceitar \ H_0 \mid H_0 \ falsa)$$

$$= P(X > 12 \mid 0.6)$$

$$= 1 - P(X \le 12 \mid 0.6)$$

$$= 1 - \sum_{x=0}^{12} {20 \choose x} (0.6)^x (0.4)^{20-x}$$

$$= 0.415892$$

Encontrar em C $\{X \le C\}$ e nível significância ($\infty = 0.01$):

$$\alpha = P\{X \le C \mid p = 0.8\} = 0.01$$

Binomial probabilities:	n	x	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9
$\binom{n}{x} p^x (1-p)^{n-x}$	15	_	0.200	0.005	0.012	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	15	0	0.206	0.035	0.013	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1	0.343	0.132	0.067	0.031	0.005	0.000	0.000	0.000	0.000	0.000	0.000
		2	0.267	0.231	0.156	0.092	0.022	0.003	0.000	0.000	0.000	0.000	0.000
		3	0.129	0.250	0.225	0.170	0.063	0.014	0.002	0.000	0.000	0.000	0.000
		4	0.043	0.188	0.225	0.219	0.127	0.042	0.007	0.001	0.000	0.000	0.000
		5	0.010	0.103	0.165	0.206	0.186	0.092	0.024	0.003	0.001	0.000	0.000
		6	0.002	0.043	0.092	0.147	0.207	0.153	0.061	0.012	0.003	0.001	0.000
		7	0.000	0.014	0.039	0.081	0.177	0.196	0.118	0.035	0.013	0.003	0.000
		8	0.000	0.003	0.013	0.035	0.118	0.196	0.177	0.081	0.039	0.014	0.00
		9	0.000	0.001	0.003	0.012	0.061	0.153	0.207	0.147	0.092	0.043	0.003
		10	0.000	0.000	0.001	0.003	0.024	0.092	0.186	0.206	0.165	0.103	0.01
		11	0.000	0.000	0.000	0.001	0.007	0.042	0.127	0.219	0.225	0.188	0.04
		12	0.000	0.000	0.000	0.000	0.002	0.014	0.063	0.170	0.225	0.250	0.12
		13	0.000	0.000	0.000	0.000	0.000	0.003	0.022	0.092	0.156	0.231	0.26
20		14	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.031	0.067	0.132	0.34
		15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.013	0.035	0.20
	20	0	0.122	0.012	0.003	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.00
		1	0.270	0.058	0.021	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.00
		2	0.285	0.137	0.067	0.028	0.003	0.000	0.000	0.000	0.000	0.000	0.00
		3	0.190	0.205	0.134	0.072	0.012	0.001	0.000	0.000	0.000	0.000	0.00
	4 5 6 7 8 9		0.090	0.218	0.190	0.130	0.035	0.005	0.000	0.000	0.000	0.000	0.00
		5	0.032	0.175	0.202	0.179	0.075	0.015	0.001	0.000	0.000	0.000	0.00
		6	0.009	0.109	0.169	0.192	0.124	0.037	0.005	0.000	0.000	0.000	0.00
			0.002	0.055	0.112	0.164	0.166	0.074	0.015	0.001	0.000	0.000	0.00
		8	0.000	0.022	0.061	0.114	0.180	0.120	0.035	0.004	0.001	0.000	0.00
			0.000	0.007	0.027	0.065	0.160	0.160	0.071	0.012	0.003	0.000	0.00
		10	0.000	0.002	0.010	0.031	0.117	0.176	0.117	0.031	0.010	0.002	0.00
		11	0.000	0.000	0.003	0.012	0.071	0.160	0.160	0.065	0.027	0.007	0.00
		12	0.000	0.000	0.001	0.004	0.035	0.120	0.180	0.114	0.061	0.022	0.00
		13	0.000	0.000	0.000	0.001	0.015	0.074	0.166	0.164	0.112	0.055	0.00
		14	0.000	0.000	0.000	0.000	0.005	0.037	0.124	0.192	0.169	0.109	0.00
		15	0.000	0.000	0.000	0.000	0.001	0.015	0.075	0.179	0.202	0.175	0.03
		16	0.000	0.000	0.000	0.000	0.000	0.005	0.075	0.173	0.190	0.173	0.09
		17	0.000	0.000	0.000	0.000	0.000	0.003	0.033	0.130	0.134	0.205	0.09
		18	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.072	0.067	0.137	0.13
		27/2	0.000	0.000	0.000						0.007		0.27
		19 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.021	0.058	0.27

Questão (0.5): Seja X uma variável aleatória que segue uma distribuição binomial. Queremos testar a hipótese H₀: p=0.8 e H₁: p=0.6 com nível de significância fixo ∝=0.01. Defina a perda (β) para n=10, n=20, n=30 e implemente a função em python e escreva uma conclusão do comportamento da perda à medida que o tamanho da amostra varia.

Muito Obrigada!

Se você tiver qualquer dúvida ou sugestão:

deborah.vm@ufpi.edu.br

