Alternating Voltage and Current

• We have considered only sine waves that have maxima at $\pi/2$ and $3\pi/2$, with a zero value at 0, π , and 2π , as shown in Fig.

 $A_m \sin \omega t$

 $=10\sin \omega t$

 If the waveform is shifted to the right or left of 0°, the expression becomes

$$A_m \sin(\omega t \pm \theta)$$
 Shifted angle in degrees or radians

For positive-going (increasing with time) slope before 0°, as shown in Fig., the expression is

At $\omega t = \alpha = 0^{\circ}$, the magnitude is determined by $A_m \sin \theta$.

For positive-going (increasing with time) slope after 0°, as shown in Fig., the expression is

at $\omega t = \alpha = 0^{\circ}$, the magnitude is $A_m \sin(-\theta) - A_m \sin\theta$.

If the waveform crosses the horizontal axis with a positive-going slope 90° ($\pi/2$) sooner, as shown in Fig., it is called a *cosine wave;* that is,

$$\sin(\omega t + 90^\circ) = \sin\left(\omega t + \frac{\pi}{2}\right) = \cos\omega t$$

$$\sin \omega t = \cos(\omega t - 90^\circ) = \cos\left(\omega t - \frac{\pi}{2}\right)$$

Phase Relations: Leading and Lagging

The terms **leading and lagging** are used to indicate the relationship between two sinusoidal waveforms of the *same frequency* plotted *on the* same set of axes.

In Fig., the cosine curve is said to *lead the sine curve by 90°*, and the sine curve is said to *lag the cosine curve by 90°*.

The 90° is referred to as the phase angle between the two waveforms.

The waveforms are out of phase by 90°.

If both waveforms cross the axis at the same point with the same slope, they are *in phase*.

Phase Relations: Leading and Lagging

The geometric relationship between various forms of the sine and cosine functions can be derived from Fig.

$$\cos \alpha = \sin(\alpha + 90^{\circ})$$

$$\sin \alpha = \cos(\alpha - 90^{\circ})$$

$$-\sin \alpha = \sin(\alpha \pm 180^{\circ})$$

$$-\cos \alpha = \sin(\alpha + 270^{\circ}) = \sin(\alpha - 90^{\circ})$$
etc.

$$\sin(-\alpha) = -\sin \alpha$$
$$\cos(-\alpha) = \cos \alpha$$

Phase Relations: Leading and Lagging

$$e = -E_m \sin \omega t$$

The negative sign is associated in the above Eq. with the sine portion of the expression, not the peak value E_m . In other words,

$$e = E_m(-\sin \omega t)$$

Since

$$-\sin \omega t = \sin(\omega t \pm 180^{\circ})$$

the expression can also be written

$$e = E_m \sin(\omega t \pm 180^\circ)$$

$$e = -E_m \sin \omega t = E_m \sin(\omega t + 180^\circ) = E_m \sin(\omega t - 180^\circ)$$

Problem: What is the phase relationship between the sinusoidal waveforms of each of the following sets?

a.
$$v = 10 \sin(\omega t + 30^{\circ})$$
 b. $i = 15 \sin(\omega t + 60^{\circ})$ c. $i = 2 \cos(\omega t + 10^{\circ})$ $v = 10 \sin(\omega t - 20^{\circ})$ c. $i = 2 \cos(\omega t + 10^{\circ})$ d. $i = -\sin(\omega t + 30^{\circ})$ e. $i = -2 \cos(\omega t - 60^{\circ})$ $v = 3 \sin(\omega t + 10^{\circ})$ e. $i = -2 \cos(\omega t - 60^{\circ})$ $v = 3 \sin(\omega t - 150^{\circ})$

Problem: What is the phase relationship between the sinusoidal waveforms of each of the following sets?

a.
$$v = 10 \sin(\omega t + 30^\circ)$$

 $i = 5 \sin(\omega t + 70^\circ)$

Solution:

i leads \boldsymbol{v} by 40°, or \boldsymbol{v} lags *i* by 40°.

Problem: What is the phase relationship between the sinusoidal waveforms of each of the following sets?

b.
$$i = 15 \sin(\omega t + 60^{\circ})$$

 $v = 10 \sin(\omega t - 20^{\circ})$

Solution:

i leads v by 80°, or v lags *i* by 80°.

Problem: What is the phase relationship between the sinusoidal waveforms of each of the following sets?

c.
$$i = 2\cos(\omega t + 10^\circ)$$

 $v = 3\sin(\omega t - 10^\circ)$

Solution:

$$i = 2\cos(\omega t + 10^{\circ}) = 2\sin(\omega t + 10^{\circ} + 90^{\circ})$$

= $2\sin(\omega t + 100^{\circ})$

i leads \boldsymbol{v} by 110°, or \boldsymbol{v} lags *i* by 110°.

Problem: What is the phase relationship between the sinusoidal waveforms of each of the following sets?

d.
$$i = -\sin(\omega t + 30^\circ)$$

 $v = 2\sin(\omega t + 10^\circ)$

Solution:

 \boldsymbol{v} leads i by 160°, or i lags \boldsymbol{v} by 160°.

i leads \boldsymbol{v} by 200°, or \boldsymbol{v} lags *i* by 200°.

Problem: What is the phase relationship between the sinusoidal waveforms of each of the following sets?

By choice

e.
$$i = -2\cos(\omega t - 60^{\circ})$$

 $v = 3\sin(\omega t - 150^{\circ})$

Solution:

$$i = -2\cos(\omega t - 60^\circ) = 2\cos(\omega t - 60^\circ - 180^\circ)$$
 However, $\cos \alpha = \sin(\alpha + 90^\circ)$
= $2\cos(\omega t - 240^\circ)$ so that $2\cos(\omega t - 240^\circ) = 2\sin(\omega t - 240^\circ + 90^\circ)$
= $2\sin(\omega t - 150^\circ)$

 \boldsymbol{v} and i are in phase.

 $Average Value \, Under \, the \, Curve = \frac{Area \, Under \, the \, Curve}{Lenght \, of \, \, the \, Curve}$

Determine the average value of the waveforms in Fig.

$$G = \frac{(10 \text{ V})(1 \text{ ms}) - (10 \text{ V})(1 \text{ ms})}{2 \text{ ms}} = \frac{0}{2 \text{ ms}} = \mathbf{0} \text{ V}$$

$$G = \frac{(14 \text{ V})(1 \text{ ms}) - (6 \text{ V})(1 \text{ ms})}{2 \text{ ms}}$$
$$= \frac{14 \text{ V} - 6 \text{ V}}{2} = \frac{8 \text{ V}}{2} = 4 \text{ V}$$

Area shaded =
$$2\left(\frac{1}{2}bh\right) = 2\left[\left(\frac{1}{2}\right)\left(\frac{\pi}{2}\right)(A_m)\right] = \frac{\pi}{2}A_m \cong 1.58A_m$$

Area =
$$A_m \frac{\pi}{3} + 2\left(\frac{1}{2}bh\right) = A_m \frac{\pi}{3} + \frac{\pi}{3}A_m = \frac{2}{3}\pi A_m = 2.094A_m$$

Area =
$$\int_{0}^{\pi} A_{m} \sin \alpha \, d\alpha$$
Area =
$$A_{m} \left[-\cos \alpha \right]_{0}^{\pi}$$

$$= -A_{m} \left(\cos \pi - \cos 0^{\circ} \right)$$

$$= -A_{m} \left[-1 - (+1) \right] = -A_{m} (-2)$$

Area =
$$2A_m$$

Average,
$$G = \frac{2A_m}{\pi}$$

$$G = \frac{2A_m}{\pi} = 0.637A_m$$

Determine the average value of the sinusoidal waveform in Fig.

$$G = \frac{+2A_m - 2A_m}{2\pi} = \mathbf{0} \,\mathbf{V}$$

The average value of a pure sinusoidal waveform over one full cycle is zero.

Effective (rms) Values

The rms value of an alternating current is given by that steady (d.c.) current which when flowing through a given circuit for a given time produces the same heat as produced by the alternating current when following through the same circuit for the same time.

Effective (rms) Values

Relationship of dc and ac quantities with respect to the power delivered to a load.

The power delivered by the ac supply at any instant of time is

$$P_{\rm ac} = (i_{\rm ac})^2 R = (I_m \sin \omega t)^2 R = (I_m^2 \sin^2 \omega t) R$$

However,
$$\sin^2 \omega t = \frac{1}{2}(1 - \cos 2\omega t)$$

$$P_{\rm ac} = I_m^2 \left[\frac{1}{2} (1 - \cos 2\omega t) \right] R$$

Effective (rms) Values

$$P_{\rm ac} = I_m^2 \left[\frac{1}{2} (1 - \cos 2\omega t) \right] R$$

$$P_{\rm ac} = \frac{I_m^2 R}{2} - \frac{I_m^2 R}{2} \cos 2\omega t$$

The average power delivered by the ac source is just the first term, since the average value of a cosine wave is zero.

$$P_{\text{av(ac)}} = P_{\text{dc}}$$
 $\frac{I_m^2 R}{2} = I_{\text{dc}}^2 R$ $I_{\text{dc}} = \frac{I_m}{\sqrt{2}} = 0.707 I_m$

The equivalent dc value of a sinusoidal current or voltage is $1/\sqrt{2}$ or 0.707 of its peak value.

The equivalent dc value is called the *rms or effective value* of the sinusoidal quantity.

Analytical Method for Determining rms Value

The mean of square of the instantaneous values of current over one

complete cycle is:

mean of
$$i^2 = \frac{area \circ f i^2}{2\pi}$$

$$= \frac{\int_0^{2\pi} i^2 d\alpha}{2\pi}$$

rms value of
$$i = \sqrt{\frac{\int_0^{2\pi} i^2 d\alpha}{2\pi}}$$

$$= \sqrt{\frac{\int_{0}^{2\pi} (I_{m} \sin \alpha)^{2} d\alpha}{2\pi}} = \sqrt{\frac{I_{m}^{2}}{2\pi}} \left(\int_{0}^{2\pi} \sin^{2} \alpha d\alpha \right)$$

Analytical Method for Determining rms Value

$$I_{rms} = \sqrt{\frac{I_m^2}{2\pi} \left(\int_0^{2\pi} \frac{(1 - \cos 2\alpha)}{2} d\alpha \right)} = \sqrt{\frac{I_m^2}{4\pi} \left(\int_0^{2\pi} (1 - \cos 2\alpha) d\alpha \right)}$$

$$= \sqrt{\frac{I_m^2}{4\pi} \left[\left[\alpha - \frac{\sin 2\alpha}{2} \right]_0^{2\pi} \right]} = \sqrt{\frac{I_m^2}{4\pi} \left((2\pi - \frac{\sin 4\pi}{2}) - (0 - \frac{\sin 0}{2}) \right)}$$

$$=\sqrt{\frac{I_m^2}{4\pi}\times 2\pi} \qquad =\sqrt{\frac{I_m^2}{2}} \quad =\frac{I_m}{\sqrt{2}}$$

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$

HOME WORK

PROBLEM: Find the Average value and RMS value of the following Signal and also plot the following signals on the same plot.

A.
$$v_1(t) = 10 \sin(200t + 0)$$

B.
$$v_2(t) = 20 \sin(200t + 180)$$

C.
$$v_3(t) = 30 \sin(200t - 90)$$

Reference: PPTX Collected, Prof. Dr. Dipankar Das