AD - TRABALHO PRÁTICO

Universidade do Minho Escola de Engenharia Grupo 4:

Carolina Resende Marques, PG42818 Francisco Borges, PG42829 Rui Pereira, PG42853 Vasco António Lopes Ramos, PG42852

Conteúdo

Análise e Escolha da Fonte de Dados

2.

Arquitetura do Data Warehouse

3.

Processos de ETL

4.

Sistema de BI

Análise e **Escolha** da Fonte de Dados

Escolha da Fonte de Dados

- Na escolha do dataset houve a preocupação de garantir que o tamanho deste era suficientemente grande não só para garantir que a informação era relevante e útil, mas também que fosse possível construir uma análise adequada.

- A escolha recaiu sobre informações relacionadas com as músicas, artistas e géneros distribuídos na plataforma Spotify desde 1921 até 2020.

Ferramentas

Processo ETL

Desenvolvimento do DW

Business Intelligence

Arquitetura do Data Warehouse

Modelação

 Na construção do nosso data warehouse partimos com o objetivo de perceber quais os fatores que influenciam o mercado da música.

- Percebemos então que o nosso foco seriam as músicas, artistas e o géneros musicais.
- Achamos então que seria benéfico explorar ao máximo os dados fornecidos pelo dataset para que obtivéssemos uma maior flexibilidade analítica.

dim_valence	
id_valence (PK)	INT
valence_class	VARCHAR(45)

INT
VARCHAR(45)

dim_loudness	
id_loudness (PK)	INT
loudness_class	VARCHAR(45)

Di	me	ns	ÕE	25	
sel	eci	or	na	das	5

dim_speechiness	
id_speechiness (PK)	INT
speechiness_class	VARCHAR(45)

dim_instrumentalness	
id_instrumentalness (PK)	INT
instrumentalness_class	VARCHAR(45)

Tabelas de facto

id_track (PK)	INT
mode	TINYINT
explicit	TINYINT
id_release_date (FK)	INT
id_valence (FK)	INT
id_details (FK)	INT
id_acousticness (FK)	INT
id_danceability (FK)	INT
id_energy (FK)	INT
id_instrumentalness (FK)	INT
id_liveness (FK)	INT
id_loudness (FK)	INT
id_popularity (FK)	INT
id_speechiness (FK)	INT

fact_artist	
id_artist (PK)	INT
mode	TINYINT
id_valence (FK)	INT
id_details (FK)	INT
id_acousticness (FK)	INT
id_danceability (FK)	INT
id_energy (FK)	INT
id_instrumentalness (FK)	INT
id_liveness (FK)	INT
id_loudness (FK)	INT
id_popularity (FK)	INT
id_speechiness (FK)	INT

Fig.2- Tabelas de facto utilizadas para a BD

Modelo Dimensional

Fig.3- Modelo lógico da BD

Processos de ETL

Extração

 Optou-se por usar o "Import Wizard" diretamente de um ficheiro CSV, no nosso caso tínhamos três CSV's distintos, um com os dados das músicas, um com os dados dos artistas e por último um com o mapeamento dos "encondings" das notas musicais.

- Estes *imports* foram feitos para um schema temporário, criado para receber e tratar estes dados, a nossa *Staging Area*.
- Seguiu-se um *dump* da nossa estrutura de dados da *Staging Area* para um script SQL para facilitar e acelerar o processo.

Transformação

 Para se fazer uma classificação das métricas em gamas de valores foram criadas funções para essas mesmas classificações.

```
DELIMITER
CREATE FUNCTION duration classification (duration double)
RETURNS int
DETERMINISTIC
BEGIN
   DECLARE classification int;
   CASE
       WHEN duration <= 60000 THEN SET classification = 1;
       WHEN duration > 60000 AND duration <= 120000 THEN SET classification = 2;
       WHEN duration > 120000 AND duration <= 180000 THEN SET classification = 3;
       WHEN duration > 180000 AND duration <= 240000 THEN SET classification = 4;
       WHEN duration > 240000 AND duration <= 300000 THEN SET classification = 5;
       WHEN duration > 300000 AND duration <= 360000 THEN SET classification = 6;
        ELSE SET classification = 7;
    END CASE:
   RETURN (classification);
END;
DELIMITER ;
```

Fig.4 - Função de classificação do tempo de duração de uma música

Transformação

```
DELIMITER
CREATE FUNCTION valence classification (valence double)
RETURNS int
DETERMINISTIC
BEGIN
    DECLARE classification int;
    CASE
            WHEN valence >= 0 AND valence <= 0.2 THEN SET classification = 1;
            WHEN valence > 0.2 AND valence <= 0.4 THEN SET classification = 2;
            WHEN valence > 0.4 AND valence <= 0.6 THEN SET classification = 3;
            WHEN valence > 0.6 AND valence <= 0.8 THEN SET classification = 4;
        WHEN valence > 0.8 AND valence <= 1 THEN SET classification = 5;
    END CASE;
    RETURN (classification);
END:
DELIMITER ;
```

Fig.5 - Função de classificação da propriedade valence

Transformação

 Para tratar dos valores presentes na lista de artistas e géneros criou-se procedures para popular as respetivas dimensões corretas

```
DELIMITER
CREATE PROCEDURE populate dim genre (bound VARCHAR(255))
DECLARE id INT DEFAULT 0;
DECLARE value TEXT;
DECLARE occurance INT DEFAULT 0:
DECLARE i INT DEFAULT 0;
DECLARE COUNT INT;
DECLARE splitted value VARCHAR(255);
DECLARE done INT DEFAULT 0;
DECLARE curl CURSOR FOR SELECT distinct
    SUBSTR(genres, INSTR(genres, '|')+1, INSTR(genres, '|') -(1+INSTR(genres, '|')))
                                    FROM spotify staging.data w genres
                                    WHERE genres != '[]';
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
OPEN cur1:
  read loop: LOOP
    FETCH curl INTO value;
    IF done THEN
      LEAVE read loop;
    END IF:
    SET occurance = (SELECT LENGTH(value) - LENGTH(REPLACE(value, bound, '')) + 1);
    SET i=1:
    WHILE i <= occurance DO
      SET splitted value = (SELECT LTRIM(REPLACE(SUBSTRING(SUBSTRING INDEX(value, bound, i),
                LENGTH(SUBSTRING INDEX(value, bound, i - 1)) + 1), ',', '')));
      SET COUNT = (SELECT COUNT(*) FROM dim genre WHERE name=splitted value);
      IF COUNT = 0 THEN
            INSERT INTO dim genre (name) VALUES (splitted value);
      END IF:
      SET i = i + 1;
    END WHILE;
  END LOOP;
CLOSE cur1;
END:
DELIMITER ;
```

Fig.6 - Procedure para separar os valores presentes na lista de géneros

Carregamento

 Nesta fase, o nosso objetivo era transferir os dados da nossa staging area, criada na fase de extração, para o nosso data warehouse.

- Para esse objetivo fez-se o carregamento dos dados das dimensões independentes, de seguida preencheu-se as dimensões dependentes de outras dimensões, depois o carregamento das tabelas de facto e por fim a população das tabelas que faziam uma relação de músicas com artistas e vice-versa.

Sistema de Bl

Interrogações propostas

- → Artistas com maior número de músicas;
- → Anos mais populares;
- → Artistas mais populares;
- → Número de artistas populares por década;
- → Emoções apresentadas nas músicas de 1929 vs 2020;
- → Artistas pop populares por duração;
- → Géneros de músicas mais populares;
- → Rácio entre qualidade de som e popularidade;
- → Rácio entre energia e nível acústico;
- → Relação entre a emoção e a sua capacidade de dançar;
- → Músicas rock populares e a sua energia.

Artistas com maior número de músicas

Fig.7- Artistas com maior número de músicas

Anos mais populares

Average popularity by year

Fig.8- Média da popularidade em cada ano

Artistas mais populares

Fig.9- Os 9 artistas mais populares

Número de artistas populares por década

Fig.10- Número de artistas populares por décadas

1929 vs 2020

Distribution of Valence (Happiness) in 1929

Distribution of Valence (Happiness) in 2020

Fig.11- Comparação dos valores de felicidade de uma música no ano 1929 com 2020

Artistas pop populares por duração

Fig.12- Popularidade dos artistas pop em relação à duração das suas músicas

Géneros de música mais populares

Fig.13- Os 3 géneros de música com maior popularidade

Rácio entre qualidade de som e popularidade

Fig.14- Popularidade das músicas em relação à qualidade de som

Rácio entre energia e nível acústico

Fig.15- relação entre a energia e nível acústico de uma música

Relação entre a Emoção e a Capacidade de Dançar

Relation between valance and dancibility (very sad and angry)

extremely danceable highly danceable

Relation between valence and dancibility (happy)

possible to dance

somewhat danceable

impossible to dance

Músicas Rock populares e a sua energia

Fig.17- Relação entre a energia presente nas músicas de Rock e a sua popularidade

Conclusão

- Possibilidade de compreender melhor a arquitetura de um data warehouse.
- Conseguir identificar um dataset adequado e a partir do mesmo fazer uma modelação dimensional.
- Capacidade de fazer a importação dos dados para o nosso data warehouse através de processos de ETL.
- Possibilidade de exploração da ferramenta Tableau e a capacidade de fazer uma análise dos dados do data warehouse.