Trabajo 1

Ivan Santiago Rojas Martinez

Estudiante de Pregrado en Estadística

Docente

Rene Iral Palomino

Asignatura

Introducción al Análisis Multivariado

Sede Medellín Septiembre 2 de 2023

Trabajo 1

Selección de la muestra de datos

Se incluye el código propuesto por el docente, con la intención de validar la extracción de la muestra

```
library(splitstackshape)
uno <- read.table("Data/data.txt", header=T, sep=",")

genera <- function(cedula){
    set.seed(cedula)
    aux <- stratified(uno, "CAT_IMC", 200/2100, bothSets=T)
    mue <- aux$SAMP1
    mue
}

data <- genera(1020479466)</pre>
```

1) Para todas sus variables realice un análisis exploratorio gráfico e identifique posibles valores atípicos u otro tipo de anomalías. (Para las variables Categóricas diagramas de barras, para las continuas o discretas, use Histogramas y/o Boxplot). Comente brevemente.

1 Análisis Descriptivos

Breve descripción de la base de datos: La base de datos corresponde a las medidas antropométricas de la población laboral colombiana (ACOPLA). Esta base de datos cuenta con 200 observaciones y 9 variables de interés, las cuales son:

- -Sexo: Variable categórica (Hom, Muj)
- -P1: Masa Corporal Variable continua (kg)
- -P7: Perímetro muslo mayor Variable continua (cm)
- -P16: Perímetro abdominal cintura Variable continua (cm)
- -P22: Anchura de las caderas Variable continua (cm)
- -P27: Longitud promedio de los pies Variable continua (cm)
- -P29: Longitud promedio de las manos Variable continua (cm)
- -P38: Estatura Variable continua (cm)
- -CAT_IMC: Categoría del indice de masa corporal Variable categórica (DELGADO, NORMAL Y OBESO)

1.1 Resumen Numerico

Cuadro 1: Tabla de resúmenes estadísticos de variables continuas

Variable	Media	Mediana	SD	Q1	Q2	Q3	Rango.intercuartil	Rango
P1	66.11600	64.80	12.140225	56.475	64.80	74.225	17.75	71.5
P7	55.47688	55.50	4.741592	52.300	55.50	58.650	6.35	29.2
P16	81.65200	81.70	10.163656	74.125	81.70	90.075	15.95	56.1
P22	35.87626	35.60	2.963242	34.000	35.60	37.800	3.80	16.3
P27	24.33600	24.50	1.681380	22.800	24.50	25.700	2.90	7.2
P29	17.63400	17.70	1.246480	16.700	17.70	18.500	1.80	6.0
P38	164.14949	164.95	9.178836	156.700	164.95	171.450	14.75	43.6

1.2 Histogramas

Histograma Estatura

1.3 Boxplots

Boxplot Estatura

ESTATURA

1.4 Diagrama de Barras

2) Realice el respectivo proceso de imputación para los datos faltantes en su base de datos. Explique cómo realiza dicha imputación, cuál criterio utiliza y muestre un par de ejemplos ilustrativos.