Math 146 Notes

velo.x

Instructor: Ross Willard NC 5006

Section: 001

Tutorial: Monday, 4:30, MC1085

Contents

1	VEC	CTOR SPACE	2	
	1.1	Vector Space - Jan 6	2	
	1.2	Linear Combination - Jan 8	6	
	1.3	Subspace - Jan 10	7	
	1.4	Span - Jan 13	8	
	1.5	Span(continued) - Jan 15	10	
	1.6	Basis Jan 17	12	
	1.7	Dimension - Jan 20	14	
	1.8	Direct Sum - Tutorial Jan 20	16	
	1.9	Jan 22	17	
	1.10	Quotient Space - Jan 24	19	
2	LIN	EAR TRANSFORMATION and MATRIX	21	
	2.1	Introduction to Linear Transformation - Jan 27	21	
	2.2	Tutorial - Jan 27	24	
	2.3	Null Spance and Range	25	
	2.4	Jan 31	27	
	2.5	Ordered Basis - Feb 3	29	
	2.6	Tutorial - Feb 3	31	
	2.7	Linear Transformation and Basis and Extension- Feb 5	32	
	2.8	Introduction to Matrix - Feb 7	35	
	2.9	Feb 10	38	
	2.10	Feb 12	40	
	2.11	Feb 14	42	
3	CHAPTER 3 45			
			45	
	3.1	Feb 24 Tutorial	48	
	3.2	Feb 26	51	
	3.3	Feb 28	53	
	3.4	March 2	56	
	3.5	March 4	58	
	3.6	RREF and Solving Linear Equations - March 6	61	
		3.6.1 Solving Linear Equations using matrix	61	
4	Determinants 64			
	4.1	March 9	64	
	4.2	March 11	67	
	4.3	March 13	70	
	4 4		71	

1 VECTOR SPACE

1.1 Vector Space - Jan 6

Definition 1.1.1 (Pseudo-Field). A field is an algebraic system \mathbb{F} having:

- two elements 0 and 1
- operations $+, \times, -$, and $()^{-1}$ (defined on nonzero elements)

satisfying "the obvious" properties.

See appendix of the textbook.

Examples: \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{Z}_{prime} . $\mathbb{Q}(x) = \{\frac{f(x)}{g(x)} : f, g \ polynomials, g \neq 0\}$

NonExamples: $\{0\}$, $\mathbb{Z}_m(m \ not \ prime)$, Quaternions.

Definition 1.1.2 (Vector Space). A vector space over \mathbb{F} is a set V with two operations:

2

- Addition: $V \times V \to V \ x + y$
- Scalar Multiplication: $\mathbb{F} \times V \to V$ ax

satisfying 8 properties: $\forall x, y, z \in V$, $\forall a, b \in \mathbb{F}$

- *V1*: x + y = y + x
- V2: x + (y + z) = (x + y) + z
- V3: $\exists a "zero vector" 0 \in V s.t. x + 0 = x$
- V4: $\forall x \in V$, $\exists u \in V$, s.t. x + u = 0
- V5: 1x = x
- V6: (ab)x = a(bx) *let · denote scalar multiplication
- V7: a(x + y) = ax + ay
- V8: (a+b)x = ax + bx

Objective 1.1.1.

- Defining/Constructing
- Proving that a system is a vector space

Example 1: \mathbb{R} def: set of all n-tuples of real numbers

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$a(x_1, \dots, x_n) = (ax_1, \dots, ax_n)$$

Claim: \mathbb{R}^n is a vector space over \mathbb{R}

Proof. Check V1:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

= $(y_1 + x_1, \dots, y_n + x_n)$
= $(y_1, \dots, y_n) + (x_1, \dots, x_n)$

More generally, for any field \mathbb{F} , \mathbb{F}^n is a field over \mathbb{F} .

Example 2: $\mathbb{R}^{[0,1]} = \{all \ functions \ f : [0,1] \to \mathbb{R}\}$

- $(f+h)(x) \stackrel{def}{=} f(x) + g(x)$
- (af)(x) = af(x)

Claim: $\mathbb{R}^{[0,1]}$ is a vector space $/\mathbb{R}$.

Proof. V3: Let $\overline{0}$ be the constant 0 function, i.e., $\overline{0}(x) = 0 \ \forall x \in [0,1] \ \overline{0} \in \mathbb{R}^{[0,1]}$

Check: $f + \overline{0} = f \ \forall f \in \mathbb{R}^{[0,1]}$

$$(f + \overline{0})(x) = f(x) + \overline{0}(x)$$
$$= f(x) + 0 = f(x)$$

Since $x \in [0, 1]$ arbitrary, $f + \overline{o} = f$.

More generally, for any set D, and any field \mathbb{F} , \mathbb{F}^D is a vector space over \mathbb{F} .

Example 3: let $\mathbb{F} = \mathbb{Z}_2$.

Define $W = \{APPLE\},\$

- $APPLE + APPLE \stackrel{def}{=} APPLE$
- $0APPLE \stackrel{def}{=} APPLE$
- $1APPLE \stackrel{def}{=} APPLE$

Claim: W is a vector space over \mathbb{Z}_2 .

Examples 4: 1. $\mathbb{R}^n : \mathbb{F}^n$, 2. $\mathbb{R}^{[0,1]}$, : \mathbb{F}^D , 3. $\{APPLE\}$.

4. Fix a field \mathbb{F} , for $n \geq 0$, $P_n(\mathbb{F})$ is the set of all polynomials, of degree $\leq n$, in variable x, with coefficients from \mathbb{F} ,

$$= \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_i \in \mathbb{F}\}\$$

Addition, scalar mult are "obvious", using op's of \mathbb{F} .

Claim: $P_n(\mathbb{F})$ is a vecor space $/\mathbb{F}$.

5. $\mathbb{F}[x]=$ the set of all polynomials in x with coefficients from $\mathbb{F}=\bigcup_{n=0}^{\infty}P_n(\mathbb{F})$

<u>Claim:</u> with the "obvious" op's $\mathbb{F}[x]$ is a V.S. $/\mathbb{F}$.

Theorem 1.1.1 (Cancellation Law). Let V be a V.S., $/\mathbb{F}$, if $x, y, z \in V$, and x + z = y + z, then x = y.

Proof. Let $u \in V$ be such that z + u = 0 (from V4).

Then

$$x = x + 0 \tag{V3}$$

$$x = x + (z + u) \tag{Choice of u}$$

$$x = (x + z) + u \tag{hypothesis}$$

$$x = (y + z) + u \tag{V2}$$

$$x = y + (z + u) \tag{V2}$$

$$x = y + 0 \tag{choice of u}$$

$$x = y$$

Corollary 1.1.1. Suppose V is a V.S., there is exactly one "zero vector". i.e. a vector satisfy V3. in V.

Proof. Assume $0_1, 0_2 \in V$, both satisfying V3, i,e, $x + 0_1 = x$ and $x + 0_2 = x$, $\forall x \in V$.

$$0_1 = 0_1 + 0_1$$
$$0_1 = 0_1 + 0_2$$

$$0_1 + 0_1 = 0_1 + 0_2$$

$$= 0_2 + 0_1$$
 (V1)
$$0_1 = 0_2$$
 (By Cancellation)

Corollary 1.1.2. Suppose V is a V.S. and $x \in V$, then the vector u in V4 is unique.

Proof. Assume $u_1, u_2 \in V$ both satisfy $x + u_1 = 0 = x + u_2$, then

$$u_1 + x = u_2 + x$$
 (V1)
 $u_1 = u_2$ (By Cancellation)

Definition 1.1.3. Given a V.S. V and $x \in V$,

- ullet the unique vector $u \in V$ s.t. x + u = 0 is denoted -x.
- x y denotes x + (-y)

Note: V2 justifies $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_kx_k$ not worry about parentheses.

1.2 Linear Combination - Jan 8

Definition 1.2.1 (Linear Combination). $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_kx_k$ is called a linear combination of x_1, \dots, x_k .

Basic Problem: Given a V.S. V/\mathbb{F} , and $u_1, u_2, \dots, u_n \in V$ and $x \in V$ to decide whether x is a linear combination of u_1, \dots, u_n .

Example: $V = \mathbb{Q}[x]$ over \mathbb{Q} . Let $p = 4x^4 + 7x^2 - 2x + 3$.

- $u_1 = x^4 x^2 + 2x + 1$
- $u_2 = 2x^4 + 3x^2 + 2x$
- $u_3 = x^4 + 4x^2 + 1$
- $u_4 = 2x^3 + 3$
- $u_5 = x^4 + 1$

Is p a linear combination of u_1, \dots, u_5 ? Solution: search for $a_1, \dots, a_5 \in \mathbb{Q}$ s.t.

$$p = a_1 u_1 + a_2 u_2 + \dots + a_5 u_5$$

$$4x^{4} + 7x^{2} - 2x + 3 = a_{1}(x^{4} - x^{2} + 2x - 1) + a_{2}(2x^{4} + 3x^{2} + 2x) + a_{3}(x^{4} + 4x^{2} + 1)$$

$$+ a_{4}(2x^{3} + 3) + a_{5}(x^{4} + 1)$$

$$= (a + 1 + 2a_{2} + a - 3 + a_{5})x^{4} + (2a^{4})x^{3} + (-a_{1} + 3a_{2} + 4a_{3})x^{2}$$

$$+ (2a_{1} + 2a_{2})x + (-a_{1} + a_{3} + 3a_{4} + a_{5})$$

$$\begin{cases} a_1 + 2a_2 + a_3 + a_5 = 4 \\ 2a_4 = 0 \\ -a_1 + 3a_2 + 4a_3 = 7 \\ 2a_2 + 2a_2 = -2 \\ -a_1 + a_3 + 3a_4 + a_5 = 3 \end{cases}$$

No solution.

1.3 Subspace - Jan 10

Notation 1.3.1.

- ullet 0 denote the unique vector in V
- x denote the unique $u \in V$ satisfying V4

Theorem 1.3.1. Suppose V is a VS / \mathbb{F} , $X \in V$, $a \in \mathbb{F}$.

- 1. 0x=0, the first 0 is scalar, the second 0 is a vector
- 2. (-a)x=a(-x)=-(ax)
- 3. a0=0

Definition 1.3.1. *Suppose* V *is a* V.S. *over* \mathbb{F} , $S \subseteq V$,

- Closed under Addition: if $x, y \in S$, $x + y \in S$.
- Closed under Scalar Multiplication: if $x \in S \Rightarrow ax \in S$, $\forall a \in \mathbb{F}$.

Definition 1.3.2 (Subspace). Let V be a VS/\mathbb{F} , $S \subseteq V$, say S is a Subspace of V if

- 1. S is closed under addition and scalar multiplication
- 2. $S \neq \emptyset$

Theorem 1.3.2. Suppose V is a vector space $/\mathbb{F}$ and S is a subspace of V, then S, together the operations of V restricted to S.

- \bullet +_S: $S \times S \rightarrow S$
- $\bullet \cdot_S : \mathbb{F} \times S \to S$

is a vector space over \mathbb{F} .

Proof. Given V, S, must prove: S with restricted operations of V, satisfying V1 to V8.

V1: must show: if $X, y \in S$, then x + y = y + x. Since $S \in V$, hence $x, y \in S \Rightarrow x, y \in V$, and $V \models V1$. Same proof works for V2, 5, 6, 7, 8.

V3: know $S \neq \emptyset$, take any $x \in S$, consider $0x = 0 \in S$. (S is closed under scalar multiplication) Hence there eixst a zero vector in S.

V4: fix
$$x \in S$$
, let $u = (-x)x \in S$, then $x + u = 1x + (-1)x = (1 + (-1))x = 0x = 0$.

Note: in every \mathbb{F} , $\forall a \in \mathbb{F}$, $\exists c \in \mathbb{F} a + c = 0$, c = -a. Since $1 \in \mathbb{F}$, $-1 \in \mathbb{F}$.

Theorem 1.3.3. If V is a vector space over \mathbb{F} and $S \subseteq V$, and S with the operations of V, is itself a V.S. / \mathbb{F} , then V is a subspace of V.

1.4 Span - Jan 13

Recall: If V is a V.S. / \mathbb{F} , and $u_1, \dots, u_n, x \in V$, then x is a linear combination (lin. combo.) of u_1, \dots, u_n if $\exists a_1, \dots, a_n$ such that $x = a_1u_1 + a_2u_2 + \dots + a_nu_n$.

Definition 1.4.1. *Suppose* V *is a V.S.* $/\mathbb{F}$, $x \in V$, and $\emptyset \neq S \subseteq V$.

- 1. Say x is a linear combination of S if x is a linear combination of some finite list of vectors from S. (Note that S might be infinite)
- 2. The span of S written span(S), is the set of $x \in V$ which are linear combinations of S.
- 3. $\operatorname{span}(\varnothing) \stackrel{def}{=} \{0\}$

Examples

- In \mathbb{R}^2 , $S = \{(1,1)\}$, what is span(S)?
- In \mathbb{R}^3 ,

$$\begin{split} S = & \{(1,0,0), (1,1,0)\} \\ = & \{a(1,0,0) + b(1,1,0) : a,b \in \mathbb{R}\} \\ = & \{(a+b,b,0) : a,b \in \mathbb{R}\} \\ = & \{(s,t,0) : s,t, \in \mathbb{R}\} \\ = & \text{the plane given by } z = 0 \end{split}$$

• In $\mathbb{R}[x]$, let $S = \{x, x^2, x^3, \dots\}$, span $(S) = \{f \in \mathbb{R}[x] : f(0) = 0\}$.

Proposition 1.4.1. $(\emptyset \neq S \subseteq V)$.

• Suppose $u_1, \dots, u_n \in S$, $x \in V$. Suppose x is a linear combination of u_1, \dots, u_n .

$$x = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$
,

If v_1, \dots, v_n are more vectors from S, then x is also a linear combination of $u_1, \dots, u_n, v_1, \dots, v_n$.

$$x = a_1 u_1 + a_2 u_2 + \dots + a_n u_n + 0 v_1 + 0 v_2 + \dots + 0 v_n$$

- If S is finite, say $S = \{u_1, u_2, \dots, u_n\}$, then $x \in \text{span}(S)$ iff x is a linear combination of u_1, \dots, u_n .
- If S is infinite, we can say the following. Suppose $x, y \in \text{span}(S)$. Then x is a linear combination of a finite list u_1, \dots, u_m from S and y is a linear combination of a finite list v_1, \dots, v_n from S. By the earlier remark, we can view both x and y as linear combinations of the same list

$$\{u_1,\cdots,u_m,v_1,\cdots,v_m\}$$

- If $S = \{u_1, \dots, u_n\}$, then $\operatorname{span}(S) = \{a_1u_1, \dots, a_ku_k, a_1, \dots, a_k \in \mathbb{F}\}$.
- If $S \subseteq T \subseteq V$, then $\operatorname{span}(S) \subseteq \operatorname{span}(T)$.

Generalization 1.4.1. If $x_1, \dots, x_k \in \text{span}(S)$, then $\exists u_1, \dots, u_n \in S$, s.t. each x_l is a linear combo of u_1, \dots, u_n .

Theorem 1.4.1. Suppose V is a $V.S / \mathbb{F}$, $S \subseteq V$, then $\operatorname{span}(S)$ is the (unique) smallest subspace of $V \supseteq S$. i.e.

- 1. $\operatorname{span}(S)$ is a subspace of V.
- 2. $S \subseteq \operatorname{span}(S)$
- 3. If W is any subspace of V containing S, then $\operatorname{span}(S) \subseteq W$.

Proof.

- 1. Let $x \in S$, x = 1x, a linear combination of finitely many vectors in S.
- 2. i) Closure under scalar multiplication: let $x \in \text{span}(S)$, $c \in \mathbb{F}$, $\Rightarrow \exists u_1, \dots, u_n \in S$, s.t. $x = a_1x_1 + \dots + a_nx_n$, so

$$cx = c(a_1u_1 + \dots + a_mu_m) = (ca_1)u_1 + \dots + (ca_n)u_n$$

ii) Closure under vector addition: let $x, y \in \text{span}(S)$, want to prove that $x + y \in \text{span}(S)$.

By the technical remark, $\exists u_1, \dots, u_n \in S$ s.t. $x = a_1u_1 + \dots + a_nu_n, y = b_1u_1 + \dots + a_nu_n, a_i, b_i \in \mathbb{F}$,

Then, $x + y = (a_1u_1 + \dots + a_nu_n) + (b_1u_1 + \dots + b_nu_n) = (a_1 + b_1)u_1 + \dots + (a_n + b_n)u_n$. So $x + y \in \text{span}(S)$.

Finally, if $S=\varnothing$, then $\operatorname{span}(S)=\{0\}$, if $S\neq\varnothing$, then $S\subseteq\operatorname{span}(S)$,

either case, $\operatorname{span}(S) \neq \emptyset$, so $\operatorname{span}(S)$ is a subspace of V.

3. Let W be a subspace of $V, W \supseteq S$. RTP: $\operatorname{span}(S) \subseteq W$.

Let $x \in \text{span}(S)$, pick $u_1, \dots, u_n \in S$, so that x is linear combination of it. that means

$$x = a_1 u_1 + \dots + a_n u_n$$

hence, $u_i \in S \subseteq W \Rightarrow a_1u_1 + \dots + a_nu_n \in W \Rightarrow x \in W$.

Hence, $\operatorname{span}(S) \subseteq W$.

1.5 Span(continued) - Jan 15

Theorem 1.5.1 (Redundancies in span.). *Example:* V/\mathbb{F} , suppose $S = \{u_1, \dots, u_5\} \subseteq V$.

Assume u_3 is a linear combination of u_2, u_4, u_5 .

$$u_3 = c_2 u_2 + c_4 u_4 + c_5 u_5$$

Claim:
$$(S) = \operatorname{span}(S - \{u_3\}).$$

Proof. RTP \subseteq and \supseteq .

 $\mathrm{span}(S)$ is

- \bullet a subspace of V
- which contains $S \setminus \{u_3\} = \{u_1, u_2, \cdots, u_3\}$

By the theorem, the samllest subspace of V containing $S\setminus\{u_3\}$ is $\operatorname{span}(S\setminus\{u_3\})$. hence $\operatorname{span}(S)\supseteq \operatorname{span}(S\setminus\{u_3\})$.

To prove that $\operatorname{span}(S) \subseteq \operatorname{span}(S \setminus \{u_3\})$,

let $x \in \text{span}(S)$, i.e.

$$x = a_1u_1 + a_2u_2 + a_3u_3 + a_4u_4 + a_5u_5$$

= $a_1u_1 + a_2u_2 + a_3(c_2u_2 + c_4u_4 + c_5u_5) + q_4u_4 + a_5u_5$
= $a_1u_1 + (a_2 + a_3c_2)u_2 + (a_4 + a_3c_4)u_4 + (a_5 + a_3c_5)u_5$

 $x \in Span(\{u_1, u_2, u_4, u_5\}).$

Also Observe:

$$0u_1 + c_2u_2 + (-1)u_3 + c_4u_4 + c_5u_5 = 0$$

A linear combination of u_1, \dots, u_5 equally the 0 vector with coefficients not all 0.

So we code redundacies formally with definition:

Definition 1.5.1. $(V\mathbb{F}, S \subseteq V)$, S is linearly dependent if \exists distinct vectors $u_1, \dots, u_n \in S$, and $\exists a_1, \dots, a_n \in \mathbb{F}$, not all 0, such that

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0(zero\ vector).$$

Thus a set S is linearly dependent:

$$\Leftrightarrow$$
 $(\exists distinct \ u_1, \cdots, u_n \in S)(\exists a_1, \cdots, a_n \in \mathbb{F})(a_1u_1 + \cdots + a_nu_n = 0) \ and \ \neg (a_1 = \cdots = a_n = 0)$

Thus a set S is linearly independent if S is not linearly dependent. i.e.

$$\Leftrightarrow \neg(\exists \textit{ distinct } u_1, \cdots, u_n \in S)(\exists a_1, \cdots, a_n \in \mathbb{F})(a_1u_1 + \cdots + a_nu_n = 0) \textit{ and } \neg(a_1 = \cdots = a_n = 0)$$

$$\Leftrightarrow$$
 $(\forall distinct \ u_1, \cdots, u_n \in S)(\forall a_1, \cdots, a_n \in \mathbb{F})(a_1u_1 + \cdots + a_nu_n \neq 0)or(a_1 = \cdots = a_n = 0)$

$$\equiv (\forall \ distinct \ u_1, \cdots, u_n \in S)()$$

Technical Remark: when $S = \{u_1, \dots, u_n\}$ without reports

- Can drop $(\forall \ distinct \ u_1.\cdots,u_n \in S)$ in choice of linear independence.
- -Can drop ($\exists \ distinct \ u_1 \cdots u_1, \cdots, u_n \in S$) in choice of linear dependence.

Example 2: Is $S = \{(0, 1, 1), (1, 0, 1), (1, 2, 3)\}$ linear dependent? (in \mathbb{R}^3)

Try to find: $a, b, c \in \mathbb{R}$ s.t.

$$a \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$$

Shows S is linearly dependent.

Question: If $S = \emptyset$, S is linearly independent.

Question 2: If $S = \{0\}$, S linearly dependent. Can write $1 \cdot 0 = 0$.

More generally, if $0 \in S \subseteq V$, then S is linearly dependent.

Theorem 1.5.2 (Linear Dependence). $V\mathbb{F}$, $S \subseteq V$, then S is linearly dependent, iff $S = \{0\}$ or $\exists x \in S$, s.t. x is a linear combination of some vectors in $S \setminus \{x\}$.

1.6 Basis Jan 17

Recall If V is a V.S. / \mathbb{F} , $S \subseteq B$.

- 1. $\operatorname{span}(S) = \operatorname{set} \operatorname{of} \operatorname{all linear combinations} \operatorname{of} S$
- 2. S is linearly dependent if $\exists u_1, u_2, \dots, u_n \in S$ (distinct), $\exists a_1, \dots, a_n \in \mathbb{F}$ not all 0, s,t, $a_1u_1 + a_2u_2 + \dots + a_nu_n = 0$.
 - else, S is linearly independent.

Definition 1.6.1. V is $V.S. / \mathbb{F}$,

- 1. A set $S \subseteq V$ is a spanning set if $\operatorname{span}(S) = V$. Also say S spans V.
- V is finitely spanned if V has a finite spanning set.
 V is countably spanned if V has a countable spanning set.

Examples:

 \mathbb{R}^3 is finitely spanned, e.g. by $\{e_1, e_2, e_3\}$.

so is \mathbb{R}^n e.g. by $\{e_1, e_2, \dots, e_n\}$, $e_i = (0, 0, \dots, 1, 0, \dots, 0)$ with 1 at i_{th} spot.

 $\mathbb{R}[x]$ is countably spanned e.g. by $\{1, x, x^2, x^3, \cdots\}$ not finitely spanned.

 $\mathbb{R}^{[0,1]}$ not countably spanned.

Definition 1.6.2. V is a $V.S. / \mathbb{F}$. A basis for V is any $S \subseteq V$,

- spans V, and
- S is linearly independent

Examples: $\{e_1, \dots, e_n\} \subseteq \mathbb{F}^n$ is a basis for \mathbb{F}^n .

 $\{1, x, x^2, x^3, \dots\} \subseteq \mathbb{R}[x]$ is a basis for $\mathbb{R}[x]$.

Theorem 1.6.1. Every countably spanned V.S. has a basis.

Proof. Suppose V.S. V is spanned by countable set S, so either $S = \{v_1, v_2, \dots, v_n\}$, or $S = \{v_1, v_2, \dots\}$, WLOG, we assume $0 \notin S$, define

$$T = \{v_j \in S, v_j \not\in span(v_1, v_2, \cdots, v_{j-1})\},\$$

Claim that T is a basis for V.

<u>Proof of Claim:</u> 1^{st} show T is linearly independent, by contradiction, assume T is linearly dependent.

Then, $\exists k$, and scalars a_1, a_2, \dots, a_n (not all 0), s,t,

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$$

Choose least k for which this is true.

Claim: $k \neq 1$, if k = 1, $a_1v_1 = 0 \Rightarrow v_1 = 0$, but $0 \notin T$, contradiction.

so k > 1, Assume $a_k = 0$, then

$$a_1v_1 + a_2v_2 + a_{k-1}v_{k-1} = 0$$

Not all of $a_1, a_2, \dots, a_{k-1} = 0$.

Next, show span(S) = V.

$$S = \{v_1, v_2, v_3, \dots, v_n\}$$
$$T = \{v_{i_1}, v_{i_2}, v_{i_3}, \dots\}$$

Know $\operatorname{span}(S) = V$, intuitively $\operatorname{span}(T) = \operatorname{span}(S)$.

$$T = \{v_j \in S : v_j \notin \text{span}(\{v_1, v_2, \cdots, v_{j-1}\})\}$$

Therefore, T is a basis of V.

Remark:

- 1. Every Vector Space has a basis. proof: some version of axiom of choice
- 2. bases is not unique, every V.S. except $\{0\}$, has multiple bases.
- 3. What is a basis for $V = \{0\}$?

1.7 Dimension - Jan 20

Remark: Given a vector space V, the basis is not unique.

Relation between two basis of a vector space. (finitely spanned vector spaces)

Theorem 1.7.1. Let V be a finitely spanned vector space over a field \mathbb{F} , let $\{v_1, \dots, v_m\}$ be a basis of V, let $\{w_1, \dots, w_n\} \subset V$ and n > m. Then $\{w_1, \dots, w_n\}$ is linearly dependent.

Sketch. Idea: Replace successfully v_1, v_2, \dots, v_n , by w_1, w_2, \dots, w_n so that

$$span(\{w_1, w_2, \cdots, w_i, v_{i+1}, \cdots, v_m\}) = span(\{v_1, v_2, \cdots, v_i, v_{i+1}\})$$

$$1 \le i \le m-1$$
.

Proof. Assume $\{w_1, \dots, w_n\}$ is linearly dependent. Prove the statement by induction.

<u>Base Case:</u> (i=1), since $\{v_1, \cdots, v_m\}$ is a basis for V and $w_1 \in V$, there exist $a_1, \cdots, a_m \in \mathbb{F}$ s.t. $w_1 = a_1v_1 + \cdots + a_mv_m$.

By the assumption, $w_1 \neq 0$, hence one of the a'_k s is nonzero.

By renumbering v_1, \dots, v_m , WLOG, we can assume $a_1 \neq 0$. We can solve for v_1 .

$$a_1v_1 = w_1 - a_2v_2 - \dots - a_mv_m$$

$$v_1 = a_1^{-1}w_1 - a_1^{-1}a_2v_2 - \dots - a_1^{-1}a_mv_m$$

so, span $(\{v_1, v_2, \dots, v_m\}) \subset \text{span}(\{w_1, w_2, \dots, w_m\}) = V$.

Induction Assumption: Assume that the statement is true for r. It means after renumbering, v_1, v_2, \cdots, v_m we have

$$span(\{w_1, w_2, \cdots, w_i, v_{i+1}, \cdots, v_m\}) = V.$$

*replace w_{i+1} .

Prove for r+1: Rewrite w_{i+1} as a linear combination of $\{w_1, \dots, w_r, v_{r+1}, \dots, v_m\}$.

$$w_{i+1} = c_1 w_1 + \dots + c_r w_r + d_{i+1} v_{i+1} + \dots + d_m v_m$$

Observation: One of the d_{r+1}, \dots, d_m must be nonzero. Because if $d_{i+1} = \dots = d_m = 0$, then

$$w_{r+1} = c_1 w_1 + \dots + c_r 2_r$$

$$0 = c_1 w_1 + \dots + c_r w_r - w_{r+1}$$

Contradiction since $\{w_1, \cdots, w_{r+1}\}$ is linearly independent.

WLOG, we can assume $d_{i+1} \neq 0$,

$$d_{r+1}v_{r_1} = w_{r+1} - c_1w_1 - \dots - a_rw_r - d_{r+2}v_{r+2} - \dots - d_mv_m$$

Since n > m, $w_n = a_i w_i + \cdots + a_m w_m$, so $\{w_1, \cdots, w_n\}$ is linearly dependent.

It completes the proof.

Theorem 1.7.2. Let V be a finitely spanned vector space, having one basis of m elements having another basis of n elements. Then m = n.

Proof. We could not have m < n, or m > n. If it happends, the other set must be linearly dependent.

Definition 1.7.1. Let V be a vector: space having a basis consisting of n elements, we say n is the dimensioning of V.

$$\dim_{\mathbb{F}} V = n$$
$$\dim\{0\} = 0$$

A vector space that has a basis consisting of n elements, zero elements, zero vector space, is called finite dimensional. Otherwise, V is called infinite dimensional(Hamel Basis)

Example:

• $\dim \mathbb{F}^n = n$

Since

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\}$$

is a basis for \mathbb{F}^n .

- $\dim P_n(\mathbb{F}) = n+1$ Since $\{1, x, \dots, x^n\}$ is a basis for $P_n(\mathbb{F})$.
- $\dim \mathbb{F}[x] = \infty$

Definition 1.7.2. Let $\{v_1, \dots, v_n\}$ be linearly independent elements of a vector space V. We say that $\{v_1, \dots, v_n\}$ is a **maximal set of linearly independent elements** of V if given any $w \in V$, the set $\{w, v_1, \dots, v_m\}$ is linearly dependent.

Corollary 1.7.1. Let V be an n-dimensional space, then

- If $\{v_1, \dots, v_n\}$ is a maximal set of linearly independent elements of V, then $\{v_1, \dots, v_n\}$ is a basis of V.
- If $\{v_1, \dots, v_n\} \subset V$ is linearly independent, then $\{v_1, \dots, v_n\}$ is a basis for V.
- If $\{v_1, \dots, v_n\} \subset V$, k < n is linearly we can add v_{k+1}, \dots, v_n so that $\{v_1, \dots, v_n\}$ is a basis for V.
- If W is a subspace of V, then $\dim W \leq \dim V$, if furthermore, $\dim W = \dim V$. Then W = V.

1.8 Direct Sum - Tutorial Jan 20

Corollary 1.8.1. If V is finitely spanned, and $\beta = \{v_1, \dots, v_n\}$ is linearly independent, then β can be extended to a basis for V, i.e. $\exists w_1, \dots, w_n \in V$, s.t. $\{v_1, \dots, v_n, w_1, \dots, w_r\}$ is a basis for V

Proof. Let m = dim = V. So $n \le m$ by theorem.

Case 1: β is already a basis. (n=m)

Case 2: β is not a basis.

Theorem 1.8.1. Let S, T be linearly independent sets, then $S \cup T$ is linearly independent if and only if $\operatorname{span}(S) \cap \operatorname{span}(T) = \{0\}.$

1.9 Jan 22

Corollary 1.9.1. If V is finitely spanned, and $\mathfrak{B} = \{v_1, \dots, v_n\}$ is linearly independent, then \mathfrak{B} can be extended to a basis for V.

i.e. $\exists w_1, \dots w_r \in V$, s.t. $\{v_1, \dots, v_n, w_1, \dots, w_n\}$ is a basis for V.

Proof. Let $m = \dim V$, so $n \le m$. (By theorem).

case 1: \mathfrak{B} is already a basis (n = m). done

Case 2: \mathfrak{B} is not a basis, so $\operatorname{span}\mathfrak{B} \neq V$, so $\exists w_1 \in V \setminus \mathfrak{B}$.

Theorem 1.9.1. For any V.S. V, if $\mathfrak{B} \subseteq V$ is linearly independent, then \mathfrak{B} can be extended to a basis for V. [use axiom of choice]

Example: Let $\mathfrak{B} = \{\cos(nx), n \ge 0\} \cup \{\sin(nx) : n > 0\} \cup \{e^x\}.$

This \mathfrak{B} can be extended to a basis \mathfrak{B}' for $\mathbb{R}^{[0,1]}$.

$$|\mathfrak{B}'| = 2^{2^{\aleph_0}}$$

Recall: If $\{v_1, \cdots, v_n\} \subseteq V$ is linearly independent. Say $\{v_1, \cdots, v_n\}$ is a maximal linearly independent set, if $\forall w \in V \setminus \{v_1, \cdots, v_n\}$, $\{v_1, \cdots, v_n, w\}$ is linearly dependent.

Corollary 1.9.2. If V is a finitely spanned set, then every basis is a maximal linearly independent set, and vice versa.

More generally,

Definition 1.9.1. Let V be a V.S., a subset $\mathfrak{B} \subseteq V$ is a maximal linearly independent set if

- B is linearly independent
- $\forall w \in V \setminus \mathfrak{B}$, $\mathfrak{B} \cup \{w\}$ is linearly dependent.

Theorem 1.9.2. In any V.S. V, every basis is a maximal linearly independent set, and vice versa.

Definition 1.9.2. A mininal spanning set is a set $\mathfrak B$ such that

- $\operatorname{span}\mathfrak{B} = V$
- $\forall w \in \mathfrak{B}$, $\operatorname{span}(\mathfrak{B} \setminus \{w\}) \neq V$

Theorem 1.9.3. *In every vector space V,*

1. Every basis is a minimal spanning set and vice versa

2. Every spanning set can be "shrunk" to a basis i.e. if $\operatorname{span}\mathfrak{B} = V$, then $\exists \mathfrak{B}' \subseteq \mathfrak{B}$ s.t. \mathfrak{B}' is a basis for V.

Proof. For (2), already proved when $\mathfrak B$ is countable. Can extend the proof to uncountable "well-ordering $\mathfrak B$ ".

To find a basis for $\mathbb{R}^{[0,1]}$

- 1. start with $\mathfrak{B} = \mathbb{R}^{[0,1]}$
- 2. well-order \mathfrak{B} ("enumerates" \mathfrak{B})
- 3. use the enumeration to shrink \mathfrak{B} to a basis

1.10 Quotient Space - Jan 24

Review: $\mathbb{Z}_n = \text{the set of the congruence classes, } x \equiv y \pmod{m} \iff m|x-y|$

Revisit: $[0] = \{qm : a \in \mathbb{Z}\} = m\mathbb{Z}.$

 $-m\mathbb{Z}$ is collapsed to become zero

 $-x \equiv y \pmod{n} \iff x = y \in m\mathbb{Z}.$

-advanced notation: $\mathbb{F}/m\mathbb{Z}$.

Version of this:

- $(\mathbb{Z}, +, \cdot) \to \text{a vector space } V$.
- $(m\mathbb{Z}) \to a$ subspace of V.

Definition 1.10.1. Fix a V.S. V over \mathbb{F} , and a subspace W. For $x, y \in V$ say $x \equiv y \pmod{W}$, if $x - y \in W$.

Claim: $\equiv \pmod{W}$ is an equivalence relation on V.

Proof. For transitivity:

Assume $x, y, z \in V$, $x \equiv y \pmod{W}$ and $y \equiv z \pmod{W}$, by definition, $x - y \in W$, $y - z \in W$.

Then $x - z = (x - y) + (y - z) \in W$ since W is closed under addition.

Then by definition, $x \equiv z \pmod{W}$.

Definition 1.10.2. *Define* V, W *as before:*

For $x \in V$,

$$x+W:=\{x+w:w\in W\}$$

(x is fixed, add x to every vector on W). x + W is called **translation of** W **by** x, or **coset of** W **through** x.

Lemma 1.10.1. V, W as before, for any $x \in V$, the equivalence class (congruence class) of $\equiv \pmod{W}$ containing x is x + W. If $y \equiv x \pmod{W}$, and $w \in W$, then $y \equiv x + w \pmod{W}$.

Proof. For any $y \in V$, $y \in \text{the equiv of} \equiv \pmod{V}$ containing x.

$$\iff y \equiv x \pmod{W}$$

$$\iff$$
 $y-x \in W$

$$\iff \qquad y-x=w, for \ some \ w \in W$$

$$\iff$$
 $y = x + w$

$$\iff$$
 $y \in x + W$

Corollary 1.10.1. With V and W as above, for any $x, y \in V$,

$$x + W = y + W \iff x \equiv y \pmod{W}$$
 i.e. $x - y \in W$.

Remark: For $x \in V$, the span class of $\equiv \pmod{W}$ containing x is

$${y \in V, y \equiv x \pmod{W}}$$

Definition 1.10.3.

$$V/W := \text{the set of all equiv classes of the } \equiv \pmod{W} \text{ relation}$$

:= the set of all translations of W
:= $\{x + W : x \in V\} \neq V$

Next, we turn V/W into a vector space over \mathbb{F} ,

$$(x + W) + (y + W) := (x + y) + W$$

 $c(x + w) := (cx) + W$

Claim: on the above situation, the operations well-defined, and the set V/W is a vector space over \mathbb{F} . E.g. check scalar multiplication:

assume $x+W=x_1+W$, $x\equiv x_1\ (\mathrm{mod}\ W)\iff x-x_1\in W$. need to know: $\forall c\in\mathbb{F}$,

$$(cx + W) = (cx_1) + W$$

$$\Leftrightarrow cx \equiv cx_1 \pmod{W}$$

$$\Leftrightarrow (cx) - (cx_1) \in W$$

$$\Leftrightarrow c(x - x_1) \in W$$

Definition 1.10.4. V/W with the natural operations is called the **quotient space** of V modulo W.

2 LINEAR TRANSFORMATION and MATRIX

2.1 Introduction to Linear Transformation - Jan 27

Definition 2.1.1. Let V, W be vector spaces over \mathbb{F} , a function $T:V\to W$ is a linear transformation (or is linear) if

- 1. $T(x + y) = T(x) + T(y), \forall x, y \in V$
- 2. $T(ax) = aT(x), \forall x \in V, \forall a \in \mathbb{F}$

Example

$$V = W = \mathbb{R}$$
 (as $V.S./\mathbb{R}$)

Fix $\lambda \in \mathbb{R}$,

$$T: \mathbb{R} \to \mathbb{R}$$
 $T(x) = \lambda x$

T is a linear transformation.

Check: Let $x, y \in \mathbb{R}$, $a \in \mathbb{R}$

- 1. $T(x+y) = \lambda(x+y) = \lambda x + \lambda y = T(x) + T(y)$
- 2. $T(ax) = \lambda(ax) = a(\lambda x) = aT(x)$

<u>fact:</u> Every linear transformation from $\mathbb{R} \to \mathbb{R}$ has this form.

Generalization 2.1.1. *let* $V = X = \mathbb{F}$, *(field) considered as* $V.S/\mathbb{F}$, *every linear transformation* $T : \mathbb{F} \to \mathbb{F}$ *is of form* $T(x) = \lambda x$ *for some* $\lambda \in \mathbb{F}$.

Example: $V = W = \mathbb{R}^2$

define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T((x_1, x_2)) = (-x_2, x_1)$,

T((1,0)) = (0,1)

$$T((0,1)) = (-1,0)$$

Actually, T is "rotation" by 90° c.c.w centered at (0,0).

Claim: T is a linear transformation.

Proof.
$$T((x_1, x_2) + (y_1, y_2)) = T((x_1 + y_1, x_2 + y_2)) = T(-(x_2 + y_2), x_1 + y_1) = (-x_2, z_1) + (-y_2, y_1) = T((x_1, x_2)) + T((y_1, y_2))$$

Similarly, can check
$$T(a(x_1, x_2)) = aT((x_1, x_2))$$

Generalization 2.1.2. Fix $A \in M\mathbb{R}$, set of all $m \times n$ matrices with entries from \mathbb{R} ,

so

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Define $L_A: \mathbb{R}^n \to \mathbb{R}^n$, $L_A(x) = Ax$. x is a column vector nx_1 matrix

$$Ax = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{pmatrix}$$

Claim: L_A is a linear transformation.

Proof. By example, m = n = 2, $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

$$L_A(x) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = (-x_2, x_1)$$

Generalization 2.1.3. Fix a field \mathbb{F} , fix $A \in M_{m \times n}(\mathbb{F})$,

define L_A ; $\mathbb{F}^n \to \mathbb{F}^m$ by $L_A(x) = Ax$,

Claim: L_A is a linear transformation.

Recall: $C([-1,1]) = \text{all continuous functions } f: [-1,1] \to \mathbb{R}, \text{ define } T: C([-1,1]) \to \mathbb{R}, \text{ by } T(f) = \int_{-1}^{1} f(x) dx.$

Claim: T is a linear transformation.

Proof.

$$T(f+g) = \int_{-1}^{1} (f+g)dx$$
$$= \int_{-1}^{1} f dx + \int_{-1}^{1} g dx$$
$$= T(f) + T(g)$$

$$T(af) = \int_{-1}^{1} af dx = a \int_{-1}^{1} f dx = aT(f)$$

 $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ (set of all $f \in C(\mathbb{R})$),

 $f^{(n)}$ exists, and is continuous $\forall n$.

Define D(f) = f', D is linear.

Some easy properties of all linear transformations, suppose $T:V\to W$ linear.

1.
$$T(0) = 0$$

Proof. (a)
$$T(x+0) = T(x) + T(0)$$

(b)
$$T(0 \cdot x) = 0T(x) = 0$$

2. T(x - y) = T(x) - T(y)

Proof.
$$T(x-y) = T(x+(-1)y) = T(x) + T((-1)y) = T(x) - T(y)$$

3. $T(a_1x_1 + a_2x_2 + \dots + a_nx_n) = a_1T(x_1) + \dots + a_nT(x_n)$

Common Mistake:

$$T(ax + by) = T(a)T(x) + T(b)T(y)$$

More Examples:

Example 1: $M_{m \times n} \mathbb{F}$ is a vector space over \mathbb{F} , -add matrices componentwise -scalar multiply by multiplying all components

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$
$$c \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} ca_{11} & ca_{12} \\ ca_{21} & ca_{22} \end{pmatrix}$$

 $T: M_{m \times n}(\mathbb{F}) \to M_{n \times m}(\mathbb{F})$ by $T(A) = A^t$. (transpose of A)

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}^t = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix}$$

(V = W) define $I_v : V \to V$ by $I_v(x) = x$ its linear.

Example 2: Given any V and W the function $T_0: V \to W$ which maps every $x \in V$ to the 0 vector in W. (zero transformation)

Example 3: Given any V, the function $I_V: V \to V$ defined by $I_v(x) = x$ for all $x \in V$. (identity function)

2.2 Tutorial - Jan 27

Goals:

- Be able to describe the quotient space
- Be able to find a basis and the dimension of the quotient space

Recall that:

Definition 2.2.1. V is a V.S. $W \leq V/\mathbb{R}$, we call V/W a quotient space if

$$\begin{cases} (x+W) + (y+W) = (x+y) + W \\ c(x+W) = cx + W \end{cases}$$

which $x, y \in V$, $c \in \mathbb{R}$.

Example:

 $V=\mathbb{R}^3, W=\mathrm{span}\{(0,0,1)\}.$ \mathbb{R}^3/W is a quotient space.

Question: What are the elements in \mathbb{R}^3/W ?

A:
$$p + W$$
, $p \in \mathbb{R}^3$.

B:
$$[p + W] = \{x \in \mathbb{R}^3 | x - p \in w\}$$

C: All lines that are parallel to Z-axis

2.3 Null Spance and Range

Definition 2.3.1. Suppose $T: V \to W$ is a linear transformation.

1. The **null space** of T denoted N(T), is

$$N(T) = \{ x \in V : T(x) = 0 \}$$

2. The range of T denoted as R(T)

$$R(T) = \{T(x) : x \in V\} \subseteq W$$

Example: $D_n: P_n(\mathbb{R}) \to P_n(\mathbb{R}) \ D_n(f) = f'$. It's linear.

What is $N(D_n)$?

$$N(D_n) = \{ f \in P_n(\mathbb{R}) : f' = 0 \} = \{ c : c \in \mathbb{R} \}$$

 $R(D_n) = P_n(\mathbb{R})$

Theorem 2.3.1. Suppose $T: V \to W$ is linear

- 1. N(T) is a subspace of V.
- 2. R(T) is a subspace of W.

Proof.

1. $T(0_v) = 0_w$ so $0_v \in N(T)$ so $N(T) \neq \emptyset$

-closure under addition: let $x, y \in N(T)$,

$$T(x+y) = T(x) + T(y) = 0 + 0 = 0 \in N(T)$$

-closure under scalar multiplication: let $x \in N(T)$, $c \in \mathbb{F}$

$$T(cx) = cT(x) = ca = 0 \in N(T)$$

2. $R(T) \neq \emptyset$ because $V \neq \emptyset$

-closure under addition: let $u, v \in R(T) \subset W$, can write u = T(x), v = T(y), (for some $x, y \in V$), so $u + v = T(x) + T(y) = T(x + y) \in R(T)$.

-Similar argument shows that ${\cal R}(T)$ is closed under scalar multiplication.

Theorem 2.3.2 (Useful Trick). Suppose $T:V\to W$ is a linear transformation, suppose we know $V=\operatorname{span}\{v_1,\cdots,v_k\}$, then

$$R(T) = \{T(x), x \in V\}$$

$$= \{T(x) : x = a_1v_1 + \dots + a_kv_k, a_i \in \mathbb{F}\}$$

$$= \{T(a_1v_1 + \dots + a_kv_k) : a_1, \dots, a_k \in \mathbb{F}\}$$

$$= \{a_1T(v_1) + \dots + a_kT(v_k) : a_1, \dots, a_k \in \mathbb{F}\}$$

$$= \operatorname{span}\{T(x_1), \dots, T(x_k)\}$$

Example 1: $D_n: P_n(\mathbb{R}) \to P_n(\mathbb{R})$

A spanning set for $P_n(\mathbb{R})$ is

$$\{1, x, x^2, x^3, \cdots x^n\}$$

SO

$$\mathbb{R}(D_n) = \operatorname{span}\{D_n(1), D_n(x), D_n(x^2), \cdots, D_n(x^n)\}\$$

$$= \operatorname{span}\{0, 1, 2x, \cdots, nx^{n-1}\}\$$

$$= \operatorname{span}\{1, x, x^2, \cdots, x^{n-1}\} = P_{n-1}(\mathbb{R})$$

Example 2: Fix $A \in M_{m \times n}(\mathbb{F})$. $L_A : \mathbb{R}^n \to \mathbb{F}^m$ by $L_A(x) = Ax$.

The "standard basis" for \mathbb{F}^n is

$$\{(1,0,\cdots,0),(0,1,0,\cdots,0),\cdots,(0,\cdots,0,1)\}$$

 $\mathbb{F}^n = \operatorname{span}\{e_1, e_2, \cdots, e_n\}$

Then $R(L_A) = \operatorname{span}(L_A(e_1), \cdots, L_A(e_n))$ by the Useful Trick Theorem, then,

$$L_A(e_i) = \begin{pmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mi} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix} = \text{the ith column of } A$$

Hence, $R(L_A)$ is the subspace of \mathbb{F}^m spanned by the columns of A.

Two Basic Questions about Linear Transformation

Question 1: Is it injective?

Question 2: Is it surjective?

Theorem 2.3.3. Suppose $T: V \to W$ is linear, then T is injective $\iff N(T) = \{0\}.$

Proof. (\Rightarrow) Assume T is injective. i.e. $\forall x, y \in V, T(x) = T(y) \Rightarrow x = y$.

Obviously $0 \subseteq N(T)$. (Since N(T) is a subspace)

For $N(T) \subseteq \{0\}$, let $x \in N(T)$ so $T(x) = 0 = T(0) \Rightarrow x = 0$.

 $(\Leftarrow) \text{ Assume } N(T) = \{0\}, \text{ prove injectively, assume } x,y \in V \text{ and } T(x) = T(y).$

$$\Rightarrow T(x) - T(y) = 0 \Rightarrow T(x - y) = 0 \Rightarrow x - y \in N(T) = \{0\} \Rightarrow x = y.$$

2.4 Jan 31

Definition 2.4.1. A linear transformation $T: V \to W$ is an isomorphism if it is a bijection.

We also write $T: V \cong W$.

We say V, W are **isomorphic**. (and write $V \cong W$) if $\exists T : V \cong W$.

Example 1: $P_n(\mathbb{R}) \cong \mathbb{R}^{n+1}$

An example of an isomorphism $T: P_n(\mathbb{R}) \cong \mathbb{R}^{n+1}$ is

$$T(a_0 + a_1 + \dots + a_n x^n) = (a_0, a_1, \dots, a_n)$$

Easy facts:

- 1. For every V.S. V, $V \cong V$.
- 2. If $V \cong W$ then $W \cong V$.

Definition 2.4.2. Given a linear tranformation $T: V \to W$ the

nullity of T: nullity $(T) := \dim(N(T))$

rank of T: rank(T) := dim(R(T))

Theorem 2.4.1. Suppose $T: V \to W$ is linear and $dim(V) < \infty$, then rank(T) + null(T) = dim(V).

Proof. First step find basis for N(T) and R(T)

Let S be a basis for N(T) let n = dim(V), as $N(T) \subseteq V$, S is linearly independent in V

$$\Rightarrow |S| \leq n$$
. Write $S = \{v_1, \dots, v_k\}, k < n$.

Since S is linearly independent in V and V is countably spanned, by A2Q2, S can be extended to a basis B_i for V.

$$B = \{v_1, \dots, v_k, x_1, \dots, x_m\}, \qquad k + m = n$$

Let
$$C = \{T(x_1), \cdots, T(x_m)\},\$$

Claim

- 1. |C| = m
- 2. C is a basis for R(T)

It will follow that rank(T) = m = n - k = dim(V) - null(T).

First prove that C is linearly independent. Assume

$$a_1T(x_1) + \dots + a_mT(x_m) = 0$$

$$\Rightarrow T(a_1x_1) + \dots + T(a_mx_m) = 0$$

$$\Rightarrow a_1x_1 + \dots + a_mx_m \in N(T)$$

$$\Rightarrow a_1x_1 + \dots + a_mx_m = b_1v_1 + \dots + b_kv_k$$

$$\Rightarrow a_1x_1 + \dots + a_mx_m - b_1v_1 - \dots - b_kv_k = 0$$

As $\{x_1, \dots, x_m, v_1, \dots, v_k\}$ is linearly independent, $a_1 = \dots = a_m = b_1 = \dots = b_k = 0$.

Therefore, ${\cal C}$ is linearly independent.

To prove that C spans R(T), since $\{v_1,\cdots,v_k,x_1,\cdots,x_m\}$ spans V.

$$R(T) = \operatorname{span}(T(v_1), \dots, T(v_k), T(x_1), \dots, T(x_m)) = \operatorname{span}(C)$$

2.5 Ordered Basis - Feb 3

Proposition 2.5.1. Suppose $\{v_1, \dots, v_n\}$ is a basis for V.S. / \mathbb{F} .

Then $\forall x \in V$, x can be uniquely written

$$x = a_1 v_1 + \dots + a_n v_n \qquad a_i \in \mathbb{F}$$

Proof. $\{v_1, \dots, v_n\}$ span V so every $x \in V$ can be written in this way.

For uniqueness, assume $x = a_1v_1 + \cdots + a_nv_n = b_1v_1 + \cdots + b_nv_n$

Get $0 = (a_1 - b_1)v_1 + \cdots + (a_n b_n)v_n$. As $\{v_1, \cdots, v_n\}$ is linearly independent, get $a_1 = b_1, \cdots, a_n = b_n$. \square

Example:

Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. A plane in \mathbb{R}^3 . V is a subspace of \mathbb{R} .

Let
$$v_1 = (-1, 1, 0), v_2 = (0, -1, 1).$$

 $\{v_1, v_2\}$ is a basis for V

$$x = (-3, 1, 2) \in V \Rightarrow x = 3v_1 + 2v_2$$

The **coordinates** of x relative to $\{v_1, v_2\}$ are (3, 2).

Definition 2.5.1. Let V be a V. S. $\dim V = n$. An **Ordered Basis** for V is an basis (v_1, \dots, v_n) , ordered as an n-tuple.

Notation 2.5.1. α, β, γ for ordered bases, A, B, C for basis.

Definition 2.5.2. Suppose V is a V.S., dim V = n, β is an ordered basis for V.

The coordinate vector of x relative to β is the unique n-tuple $(a_1, \dots, a_n) \in \mathbb{F}^n$ s.t.

$$x = a_1 v_1 + \dots + a_n v_n$$

We denote (a_1, \dots, a_n) by $[x]_{\beta}$.

Example: In the previous example, let $\beta = (v_1, v_2)$ where $v_1 = (-1, 1, 0)$, and $v_2 = (0, -1, 1)$. If x = (-3, 1, 2), then $[x]_{\beta} = (3, 2)$.

Definition 2.5.3. Fix $V, \mathbb{F}, \beta = (v_1, \dots, v_n)$ as in definition.

Define

$$[\quad]_{\beta}: V \to \mathbb{F}^n, \qquad x \mapsto [x]_p$$

Therefore, we can view $[\]_{\beta}$ as a function $V \to \mathbb{F}^n$.

Theorem 2.5.1. Let V be a finite dimensional vector space over \mathbb{F} , $\dim(V) = n$, and let β be an ordered basis, then the map $[\]_{\beta}: V \to \mathbb{F}^n$ is an isomorphism (i.e. a bijective linear transformation).

Proof. Let $x, y \in V$, (must show $[x + y]_{\beta} = [x]_{\beta} + [y]_{\beta}$)

Write

$$[x]_{\beta} = (a_1, \dots, a_n) \qquad \Rightarrow \qquad x = a_1 v_1 + \dots + a_n v_n$$

$$[y]_{\beta} = (b_1, \dots, b_n) \qquad \Rightarrow \qquad y = b_1 v_1 + \dots + b_n v_n$$

$$[x+y]_{\beta} = (c_1, \dots, c_n) \qquad \Rightarrow \qquad x+y = c_1 v_1 + \dots + c_n v_n$$

$$\Rightarrow (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n = c_1v_1 + \dots + c_nv_n$$

By prop,

$$\begin{cases} a_1 + b_1 = c_1 \\ a_2 + b_2 = c_2 \\ \vdots \\ a_n + b_n = c_n \end{cases} \Rightarrow (a_1, \dots, a_n) + (b_1, \dots, b_n) = (c_1, \dots, c_n) = [x]_{\beta} + [y]_{\beta} = [x + y]_{\beta}$$

Similarly, $[\]_{\beta}$ presents scalar multiplication, so it is linear.

Bijection:

To show $[\]_{\beta}$ is injective,

$$\begin{split} N([\quad]_{\beta} = & \{x \in V : [x]_{\beta} = (0, \cdots, 0)\}) \\ = & \{x \in V : x = 0\} \\ = & \{0\} \end{split} \qquad ([\quad]_{\beta} \text{ is injective}) \end{split}$$

To show $[\quad]_{\beta}$ is surjective, first find a spanning set for $V=\{v_1,\cdots,v_n\}$

$$R([\]_{\beta}) = \operatorname{span}\{[v_1]_{\beta}, \cdots, [v_n]_{\beta}\}$$

$$[v_1]_{\beta} = (1, 0, \dots, 0) = e_1$$
, as $v_1 = 1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n$.

In
$$\mathbb{C}^2$$
, $e_1 = (1,0)$, $e_2 = (0,1)$, $[v_2]_{\beta} = e_2, \cdots$.

So

$$R([\quad]_{\beta}) = \operatorname{span}\{[v_1]_{\beta}, \cdots, [v_n]_{\beta}\}$$

= $\operatorname{span}\{e_1, \cdots, e_n\}$
= \mathbb{F}^n

So $[\]_{\beta}$ is surjective.

So $[\]_{\beta}:V\cong\mathbb{F}^{n}.$

2.6 Tutorial - Feb 3

let V be a V.S. / \mathbb{F} , a linear functional on V is a linear map $f: V \to \mathbb{F}$.

The collection of all linear functionals is denoted V^* and is called the dual space of V.

Example 1:

Let
$$Vf = \mathbb{R}$$
, $\mathbb{F} = \mathbb{R}$, $f(x) = f(x \cdot 1) = xf(1)$, $x \in \mathbb{R}$.

so the linear maps $f: \mathbb{R} \to \mathbb{R}$ are given by f(x) = ax for some $a \in \mathbb{R}$.

Exampel 2:

$$V = \mathbb{R}^3, \mathbb{F} = \mathbb{R}, \text{ let } \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3.$$

$$f_{\begin{bmatrix} a \\ b \\ c \end{bmatrix}} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = x_1 a + x_2 b + x_3 c = \begin{bmatrix} abc \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Then $f_{\left[egin{smallmatrix} a \\ b \\ c \end{smallmatrix} \right]}$ is linear.

Let $f \in (T\mathbb{R}^3)^*$ recall that a linear map f is determined by its values on a basis B.

Let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 so $x = x_1e_1 + x_2e_2 + x_3e_3$, e : the standard unit basis.

$$f(x) = f(x_1e_1) + f(x_2e_3) + f(x_3e_3) = x_1f(e_1) + x_2f(e_2) + x_3f(e_3).$$

The values of f on the basis vectors determine f.

Let
$$a_1 = f(e_1)$$
, then $f(x_1e_1 + x_2e_2 + x_3e_3) = (a_1, a_2, a_3)^T(x_1, x_2, x_3)^T$.

so
$$f(x) = f_{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}$$

2.7 Linear Transformation and Basis and Extension- Feb 5

Proposition 2.7.1. Suppose V, W are vector spaces over \mathbb{F} , B is a basis for V. (note V is not finite dimensional) and $T: V \to W$ is a linear. Then T is determined by its values on vectors in B.

Proof #1. The claim is that if $T': V \to W$ is another linear transformation and $T'(v) = T(v) \ \forall v \in B$.

i.e.
$$T'|_B = T|_B$$
, then $T' = T$.

Let $x \in V$. (show that T'(x) = T(x))

$$\Rightarrow x \in \operatorname{span}(B)$$

$$\Rightarrow \exists v_1, v_2, \cdots, v_n \in B, \exists a_1, \cdots, a_n \in \mathbb{F}$$

s.t.
$$x = a_1 v_1 + \cdots + a_n v_n$$
.

Then

$$T'(x) = T'(a_1v_1 + \dots + a_nv_n)$$

$$= a'T(v_1) + \dots + a_nT'(v_n)$$

$$= a_1T(v_1) + \dots + a_nT(v_n)$$

$$= \dots$$

$$= T(x)$$

Since x was arbitrary, T' = T.

proof #2. Claim: the set of all linear transformation from V to W is a subspace of W^V . This set is called $\operatorname{Hom}(V,W)$

Define
$$D = T - T'$$
. i.e. $D: V \to W$ given by $D(x) = T(x) - T'(x)$. T

D is linear transformation. I'll prove that D is constant 0 function by showing N(D) = V.

Observe
$$B \subseteq N(D)$$
, therefore, $\operatorname{span}(B) \subseteq N(D)$, i.e. $V \subseteq N(D) \Rightarrow N(D) = V$.

Proposition 2.7.2. Suppose V, W, \mathbb{F}, B as before, B is a basis for V. Every function $\tau : B \to W$ extends uniquely to a linear transformation $T : V \to W$. (i.e. $T|_B = \tau$) We call this "freely extending" tau.

Proof. Given $\tau: B \to W$, define $T: V \to W$ as follows:

given $x \in V$, write

$$x = a_1 v_1 + \dots + a_n v_n$$
 $(v_1, \dots, v_n \in B, a_1, \dots a_n \in \mathbb{F})$

Let
$$T(x) := a_1 \tau(v_1) + \dots + a_n \tau(v_n) \in W$$
.

Check $T|B = \tau$. Suppose $x \in B$, then $x = 1 \cdot x$, so $T(x) = 1\tau(x) = \tau(x)$.

Check: *T* is linear.

Additivity: let $x, y \in V$, $\exists v_1, \dots, v_n \in B$, such that

$$x = a_1 v_1 + \dots + a_n v_n$$

$$y = b_1 v_1 + \dots + b_n v_n$$

for sone $a_i, b_i \in \mathbb{F}$.

So $x + y = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n$.

$$T(x+y) = (a_1 + b_1)\tau(v_1) + \dots + (a_n + b_n)\tau(v_n)$$

$$= (a_1\tau(v_1) + \dots + a_n\tau(v_n)) + (b_1\tau(v_1) + \dots + b_n\tau(v_n))$$
(1. f. of T)

 $=T(x)+T(y) \tag{def of T}$

Similar proof shows that T preserves scalar multiplication.

So T is linear.

Example: $V = \mathbb{R}^3, W = \mathbb{R}^3, B = \{v_1, v_2, v_3\}, \text{ where }$

$$v_1 = (1, 0, 1)$$

$$v_2 = (1, 0, -1)$$

$$v_3 = (1, 1, 1)$$

B is a basis for \mathbb{R}^3 (exercise)

Define $\tau: \{v_1, v_2, v_3\} \to \mathbb{R}^2$ by

$$\tau(v_1) = (1,0)$$

$$\tau(v_2) = (1,0)$$

$$\tau(v_3) = (\pi, e)$$

Define $\tau: \mathbb{R}^3 \to \mathbb{R}^3$ extending τ .

$$T(a, b, c) = (a + b(\pi - 1), be)$$

$$T = L \begin{pmatrix} 1 & \pi - 1 & 0 \\ 0 & e & 0 \end{pmatrix}$$

$$T(v_1) = T(1, 0, 1) = (1, 0)$$

$$T(v_2) = (1,0)$$

$$T(1,i,1) = (\pi,e)$$

Example 2:

V V.S. / \mathbb{F} , $\dim V = n$, let $\beta = (v_1, \cdots, v_n)$ be an ordered basis.

Define
$$\tau : \{v_1, \dots, v_n\} \to \mathbb{F}^n$$
 by $\tau(v_i) = e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

 τ extends uniquely to a linear transformation $T:V\to \mathbb{F}^n$

$$T:[\quad]_{\beta}.$$

Example 3:

Same V, β .

Pick $\bar{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n$.

Define $\tau_{\bar{a}}: \{v_1, \cdots, v_n\} \to \mathbb{F}$,

 $\tau_{\bar{a}}(v_i) = a_i.$

 $T(\bar{a})$ extends to a linear transformation. $f_{\bar{a}}:V \to \mathbb{F}.$

Exercise: What is f_{e_i} ?

2.8 Introduction to Matrix - Feb 7

Proposition 2.8.1. Suppose $T: V \to W$ linear over \mathbb{F} , let $\beta = (v_1, \dots, v_n)$ be an ordered basis for V, and $\gamma = (w_1, \dots, w_m)$ be an ordered basis for W.

- T is completely determined by $T(v-1), \dots, T(v_n)$
- Each $T(v_j)$ is determined by its coordinate vector $[T(v_j)]_{\gamma} \in \mathbb{F}^m$

Definition 2.8.1. In this context, the matrix representation for T for β and γ is the matrix $A \in M_{m \times n}(\mathbb{F})$, whose j^{th} column is $[T(v_j)]_{\gamma} \in \mathbb{F}^m$, thought of as a column vector.

We write $[T]^{\gamma}_{\beta}$ for A.

$$[T]^{\gamma}_{\beta} = \begin{bmatrix} | & | & | \\ [T(v_1)]_{\gamma} & [T(v_2)]_{\gamma} & \cdots & [T(v_n)]_{\gamma} \\ | & | & | \end{bmatrix}$$

Example 1:

 $D_3: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ linear, the ordered basis

$$\beta = (1, x, x^2, x^3) \qquad \text{for} \quad P_3(\mathbb{R})$$

$$\alpha = (1, x, x^2) \qquad \text{for} \quad P_2(\mathbb{R})$$

Let's find $[D_3]^{\gamma}_{\beta}$.

Apply D_3 to vectors in β .

$$D_3(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$$

$$D_3(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$$

$$D_3(x^2) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2$$

$$D_3(x^3) = 3x^2 = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2$$

then,

$$[D_3(1)]_{\gamma} = [0]_{\gamma} = (0, 0, 0)$$

$$[D_3(x)]_{\gamma} = [1]_{\gamma} = (1,0,0)$$

$$[D_3(x^2)]_{\gamma} = [2x]_{\gamma} = (0, 2, 0)$$

$$[D_3(x^3)]_{\gamma} = [3x^2]_{\gamma} = (0,0,3)$$

Hence,

$$[D_3]^{\gamma}_{\beta} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Algorithm 2.8.1. Fix \mathbb{F} , $m, n \geq 1$, pick $A \in M_{m \times n}(\mathbb{F})$.

$$T = L_A : \mathbb{F}^n \to \mathbb{F}^m$$
. $T(x) = Ax$.

Let σ_n =standard ordered basis for \mathbb{F}^n ; σ_m = standard ordered basis for \mathbb{F}^m .

$$\sigma_n = (e_1, \dots, e_n), \qquad e_j \in \mathbb{F}^n$$

 $\sigma_m = (e_1, \dots, e_m), \qquad e_i \in \mathbb{F}^m$

Recall: if $A \in M_{m \times n}(\mathbb{F})$,

$$e_j \in \mathbb{F}^n \ (e_j = (0, \cdots, 0, 1, 0, \cdots, 0)), \ A_{e_j} \in \mathbb{F}^m \ \text{is the } j^{th} \ \text{column of } A$$

If σ_n is the standard basis for \mathbb{F}^n , and $x \in \mathbb{F}^n$, then $[x]_{\sigma_n} = x$

Proof.
$$x = (a_1, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$
, so $[x]_{\sigma_n} = (a_1, a_2, \dots, a_n) = x$.

Now I'll prove

$$[L_A]_{\sigma_n}^{\sigma_m} = A$$

Proof. I will show, for each $j=1,\cdots,n$, that $[L_A]_{\sigma_n}^{\sigma_m}$ and A have same j^{th} columns.

By definition, j^{th} column of $[L_A]_{\sigma_n}^{\sigma_m}$ is $[L_A(e_j)]_{\sigma_m}$

$$L_A(e_j) = Ae_j = j^{th} \text{ column of } A$$

 $[L_A(e_j)]_{\sigma_n} = L_A(e_j) = j^{th} \text{ column of } A$

Theorem 2.8.1. Suppose V, M are finite dimensional vector spaces $/\mathbb{F}$, and $T: V \to W$ is a linear transformation.

 $\alpha(v_1, \cdots, v_n)$ an ordered basis for V

 $\gamma(w_1, \cdots, w_n)$ an ordered basis for W

then $\forall x \in V$,

$$\underbrace{[T]_{\beta}^{\gamma}}_{m \times n} \cdot \underbrace{[x]_{\beta}}_{n \times 1} = [T(x)]_{\gamma}$$

Proof. Write

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

i.e.

for
$$j=1,...,n,$$

$$\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} = [T(v_j)]_{\gamma}$$

i.e.

$$T(v_j) = a_{ij}w_1 + a_{2j}w_2 + \dots + a_{nj}w_m$$

Also write

$$[x]_{\beta} = (c_1, \cdots, c_n) = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

i.e.

$$x = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

On the one hand,

$$[T]_{\beta}^{\gamma} \cdot [x]_{\beta} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} a_{11}c_1 + a_{12}c_2 + \cdots + a_{1n}c_n \\ a_{21}c_1 + a_{22}c_2 + \cdots + a_{2n}c_n \\ a_{m1}c_1 + a_{n2}c_2 + \cdots + a_{mn}c_n \end{pmatrix}$$

On the other hand,

$$T(x) = T(c_1v_1 + \dots + c_nv_n)$$

$$= c_1T(v_1) + \dots + c_nT(v_n)$$

$$= c_1(a_{11}w_1 + \dots + a_{m1}w_m) + c_2(a_{12}w_1 + \dots + a_{m2}w_m) + \dots + c_n(a_{1n}w_1 + \dots + a_{mn}w_m)$$

$$= (c_1a_{11} + c_2a_{12} + \dots + c_na_{1n})w_1 + \dots + (c_1a_{m1} + \dots + c_na_{mn})w_m$$

Hence, we can see that $[T]^{\gamma}_{\beta} \cdot [x]_{\beta}$ is the coordinate vector of T(x) relative to γ , proving the theorem.

2.9 Feb 10

Recall: if $T: V \to W$ is linear,

$$\beta = (v_1, \cdots, v_n) ordered basis for V$$

$$\gamma = (w_1, \cdots, w_n) ordered basis for W$$

then, $[T]^{\gamma}_{\beta} \in M_{m \times n}(\mathbb{F})$. then,

$$[T]_{\beta}^{\gamma} = \begin{bmatrix} | & | & | \\ [T(v_1)]_{\gamma} & [T(v_2)]_{\gamma} & \cdots & [T(v_n)]_{\gamma} \\ | & | & | \end{bmatrix}$$

For any matrix,

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ \operatorname{Col}_1(A) & \operatorname{Col}_2(A) & \cdots & \operatorname{Col}_n(A) \\ | & | & | & | \end{pmatrix} = \begin{bmatrix} -- & Row_1(A) & -- \\ -- & Row_2(A) & -- \\ \vdots & & \vdots \\ -- & Row_3(A) & -- \end{bmatrix}$$

$$Col_j([T]^{\gamma}_{\beta}) = [T(v_j)]_{\gamma}$$

Definition 2.9.1. Let \mathbb{F} be a field, $m, n, p \geq 1$, $A \in M_{m \times n}(\mathbb{F})$, $B \in M_{n \times p}(\mathbb{F})$.

The matrix product AB is the $m \times p$ matrix such that the (row i, column j) entry of AB is the linear combination of the entries in $Col_j(B)$ using entries of $Row_i(A)$ as scalars.

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ b_{21} & \cdots & b_{2p} \\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & a_{1p} \\ c_{21} & \cdots & a_{2p} \\ \vdots & c_{ij} & \vdots \\ c_{m1} & \cdots & a_{mp} \end{pmatrix}$$

$$c_{ij} = a_{i1}b_{ij} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

Example: in \mathbb{Z}_5 ,

$$\begin{pmatrix} 2 & 1 \\ 0 & 3 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 4 & 2 \\ 3 & 2 \end{pmatrix}$$

Comment: When p = 1, (B is a column vector, x)

Our definition here agrees with earlier definition of $A_x(A:m\times n)x\in\mathbb{F}^n$.

In fact, AB is such that, for each $j=1,\cdots,p, Col_j(AB)=A\cdot Col_j(B)$.

So

$$A \cdot \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \cdots & x_p \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ Ax_1 & Ax_2 & \cdots & Ax_p \\ | & | & & | \end{pmatrix}$$

Suppose we have V, W, Z all finite dimensional vector spaces over \mathbb{F} . $T: V \to W$, and $U: W \to Z$ both linear transformations.

Let

$$\alpha=(v_1,\cdots,v_n)$$
 ordered basis for V $\beta=(w_1,\cdots,w_n)$ ordered basis for W $\gamma=$ ordered basis for Z

$$[T]^{\beta}_{\alpha} \Rightarrow n \times p$$

$$[U]^{\gamma}_{\beta} \Rightarrow m \times n$$
$$[U \circ T]^{\gamma}_{\alpha} \Rightarrow m \times p$$

Theorem 2.9.1. *In this situation*,

$$[U]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha} = [U \circ T]^{\gamma}_{\alpha}$$

Proof. LHS and RHS are both $m \times p$ matrices.

Suffices to show
$$\operatorname{Col}_j(LHS) = \operatorname{Col}_j(RHS)$$
. $\forall j = 1, \dots, p$. Let $\alpha(v_1, \dots, v_p)$.

$$\operatorname{Col}_{j}(RHS) = \operatorname{Col}_{j}([U \circ T]_{\alpha}^{\gamma})$$
$$= [(U \circ T)(v_{j})]_{\gamma}$$
$$= [U(T(v_{j}))]_{\gamma}$$

2.10 Feb 12

Theorem 2.10.1. Suppose V, W, Z are all finite dimensional, $V \xrightarrow{T} W \xrightarrow{U} Z$ is linear. α, β, γ are ordered bases for V, W, Z respectively, then

$$[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha}$$

Proof. Suppose \mathbb{F} a field, $A \in M_{m \times n}(\mathbb{F})$, $B \in M_{n \times p}(\mathbb{F})$,

$$L_A: \mathbb{F}^n \to \mathbb{F}^m \ L_A(x) = Ax$$

$$L_B: \mathbb{F}^p \to \mathbb{F}^n \ L_B(x) = Bx$$

$$\mathbb{F}^p \xrightarrow{L_B} \mathbb{F}^n \xrightarrow{L_A} \mathbb{F}^m$$

theorem gives

$$[L_A L_B]_{\sigma_p}^{\sigma_m} = [L_A]_{\sigma_n}^{\sigma_m} [L_B]_{\sigma_p}^{\sigma_n} = AB$$

Corollary 2.10.1. In this situation

$$L_A \cdot L_B = L_{AB}$$

Proof. It suffices to show that

$$[L_A \circ L_B]^{\sigma_m} = [L_{AB}]_{\sigma_p}^{\sigma_m}$$

Corollary 2.10.2. *Matrix multiplication(when defined) is associative. If* $A \in M_{m \times n}(\mathbb{F})$, $B \in M_{n \times p}(\mathbb{F})$, $C \in M_{p \times r}(\mathbb{F})$, then

$$(AB)\mathop{C}_{m\times p}\mathop{=}_{p\times r} = \mathop{A}_{m\times n}(BC) =$$

Proof. Suffices to prove

$$L_{(AB)C} = L_{A(BC)}$$

** not only the matrix determines the linear transformation, but also the linear transformation determines the matrix.

Well, by the first corollary,

$$L_{(AB)C} = L_{AB} \circ L_C = (L_A \circ L_B) \circ L_C$$

Similarly,

$$L_{A(BC)} = L_A \circ (L_B \circ L_C)$$

Since composition of functions is associastive, therefore,

$$L_{(AB)C} = L_{A(BC)}$$

$$\begin{array}{cccc} Fin.DimV.S.V & \leftrightsquigarrow & \mathbb{F}^n \\ v & \leftrightarrow & [v]_{\beta} \\ LinearTransformation & \leftrightarrow & matrices \\ T & \longrightarrow & [T]_{\beta}^{\gamma} \end{array}$$

Definition 2.10.1 (Invertible Matrices). A square matrix $A \in M_{m \times n}(\mathbb{F})$ is invertible if $\exists B \in M_{n \times n}(\mathbb{F})$ s.t. AB = BA.

Call B an inverse of A.

Observe: If B exists then it is unique.

i.e. if $B_1, \dots, B_2 \in M_{m \times n}(\mathbb{F})$ and

$$AB_1 = B_1 A = I_n$$
and
$$AB_2 = B_2 A = I_n$$

then
$$B_1 = I_n B_1 = (B_2 A) B = B_2 (A B_1) = B_2 I_n = B_2$$
,

when A is invertible, use A^{-1} for the unique inverse of A. So $AA^{-1} = A^{-1}A = I_n$

Theorem 2.10.2. Suppose V, W are finite dimensional spaces $/\mathbb{F}$, α, β are ordered bases for V, W respectively,

$$T: V \to W, \qquad A = [T]^{\beta}_{\alpha}$$

then T is an isomorphism \iff A is invertible.

In which case

$$A^{-1} = [T_{-1}]^{\alpha}_{\beta}.$$

Proof. \Rightarrow Assume T is an isomorphism, (bijection), Jan 31: so $\dim(W) = \dim(V)(\text{say} = n)$.

So A is $n \times n$. Let

$$B = [T^{-1}]^{\alpha}_{\beta} \in M_{n \times n})(\mathbb{F})$$

$$AB = [T]^{\beta}_{\alpha} \cdot [T^{-1}]^{\alpha}_{\beta}$$

$$= [T \circ T^{-1}]^{\beta}_{\beta}$$
 (By Monday's Theorem)
$$= [I_{v}]^{\beta}_{\beta} = I_{n}$$

A similar proof shows $BA = I_n$, so by definition, A is invertible with $A^{-1} = B$.

⇐ exercise.

Lemma 2.10.1. If $A, B \in M_{n \times n}(\mathbb{F})$ are invertible, then AB is also invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof. Let $C = B^{-1}A^{-1}$, it suffices to show that $(AB)C = C(AB) = I_n$, for then it will follow that AB is invertible and its inverse is C. Then,

$$(AB)C = (AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

The proof of $C(AB) = I_n$ is similar.

2.11 Feb 14

Corollary 2.11.1. Suppose $T: V \to W$ is linear, and $\dim(V) = \dim(W) = n$, then T is injective $\Leftrightarrow T$ is surjective $\Leftrightarrow T$ is an isomorphism.

Proposition 2.11.1. Suppose $f: X \to Y$, $g: Y \to Z$, so $gf:= g \circ f: X \to Z$. If gf is bijection, then:

- f is injective, and
- g is surjective.

Exercise: cannot expect f or g to be bijections.

Example: Let $f, g : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$.

$$g(x) = \begin{cases} \ln x, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$$

 $g \circ f \ g(f(x)) = g(e^x) = \ln(e^x) = x.$

 $f \circ f = id_{\mathbb{R}}$, a bijection.

Theorem 2.11.1. Suppose $A, B \in M_{n \times n}(\mathbb{F})$, if AB is invertible, then A and B are also invertible.

Proof. Assume AB is invertible, $\Rightarrow L_{AB} : \mathbb{F}^n \to \mathbb{F}^n$ is an isomorphism (bijection).

By wednesday's theorem, $L_{AB} = L_A L_B$.

$$\mathbb{F}^n \stackrel{L_B}{\to} \mathbb{F}^n \stackrel{L_A}{\to} \mathbb{F}^n$$

By the fact, L_B is injective, L_A surjective, so by Jan 3, Cor, L_A , L_B are isomorphisms $\Leftrightarrow A$, B are invertible

Corollary 2.11.2. If $A, B \in M_{n \times n}(\mathbb{F})$ and $AB = I_n$, then $BA = I_n$.

Proof. Assume $AB = I_n$, I_n is invertible.

$$I_n I_n = I_n I_n = I_n$$

i.e. AB is invertible. A and B are invertible by the theorem.

$$AB = I_n$$

$$\Rightarrow A^{-1}(AB) = A^{-1}I_n$$

$$\Rightarrow B = A^{-1}$$

$$BA = A^{-1}A = I_n$$

B is an inverse to A if $AB = BA = I_n$

B is a left inverse to A if $BA = I_n$

B is a right inverse to A if $AB = I_n$

Exercise:

Prove if B is a left inverse of A.

Prove if C is a right inverse of A then B = C.

Back to Coordinatization

Recall from Feb 3,

$$\begin{split} W = & \{(x,y,z) \in \mathbb{R}^3, x+y+z=0\}, & 2-\dim \\ v_1 = & (-1,1,0), & v_2 = (0,-1,1) \\ \beta = & (v_1,v_2) & \text{(an ordered basis for W)} \\ w = & (-3,1,2) \in W. & [w]_\beta = (3,2) \end{split}$$

In general, if $(a,b,c) \in W$, then $[(a,b,c)]_{\beta} = (-a,c)$.

We might prefer a different ordered basis.

Let $\gamma = (u_1, u_2)$ where

$$u_1 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \in W$$

 $u_2 = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}) \in W$

What is $[w]_{\gamma}$? In general, what is $[(a,b,c)]_{\gamma}$ for $(a,b,c) \in W$?

Theorem 2.11.2. Suppose V is a finite dimensional V.S. over \mathbb{F} , β, γ two ordered basis for V. In this situation, let $Q = [I_v]_{\gamma}^{\beta}$,

$$I_v: V \to V$$
, $I_v: V \to V$, $I_v(x) = x$, then

- 1. Q is invertible
- 2. $Q[x]_{\beta} = [x]_{\gamma}, \forall x \in V$
- 3. $Q^{-1}[x]_{\gamma} = [x]_{\beta}$

Definition 2.11.1. Q is called the **change of coordinate matrix from** β **to** γ .

Proof. $I_v:V\to V$ is an isomorphism, $\Rightarrow Q$ is invertible.

Let $x \in V$,

$$Q[x]_{\beta} = [I_v]_{\beta}^{\gamma} \cdot [x]_{\beta}$$
$$= [I_v(x)]_{\gamma}$$

(Thm, Feb 7).

Multiply on left by Q^{-1} ,

$$Q^{-1}/Q[x]_{\beta} = Q^{-1}[x]_{\gamma}$$

Notation 2.11.1. If $T:V\to V$, β an ordered basis for V, then

$$[T]_{\beta} = [T]_{\beta}^{\beta}$$

Theorem 2.11.3. Suppose V is a finite dimensional vector space over \mathbb{F} , β, γ two orderd bases, and $T: V \to V$ is linear, let $Q = [I_v]_{\beta}^{\gamma}$, then

$$[T]_{\beta} = Q[T]_{\gamma}Q$$

Proof. Suffices to show that

$$Q[T]_{\beta} = [T]_{\gamma}Q$$

$$[I_v]_{\beta}^{\gamma}[T]_{\beta}^{\beta} = [T]_{\gamma}^{\gamma}[I_v]_{\beta}^{\gamma}$$

$$[I_v \circ T]_{\beta}^{\gamma} = [T \circ I_v]_{\beta}^{\gamma}$$

$$T = T$$

3 CHAPTER 3

Facts:

1. $\operatorname{Col}_{j}(AB) = A\operatorname{Col}_{j}(B)$

2. $A_{e_i} = \operatorname{Col}_j(A)$

3. $Ax = \sum_{j=1}^{n} x_j \operatorname{Col}_j(A) \ x \in \mathbb{F}^n$

4. $\operatorname{Row}_i(AB) = \operatorname{Row}_i(A)B$

5. $(e_j)^t B = \operatorname{Row}_i(N)$

6. $x^t B = \sum_{i=1}^n \operatorname{Row}_i(B) \ x \in \mathbb{F}^n$

Notes: when $x \in \mathbb{F}^b$ and use it as a matrix, always consider x as $n \times 1$ matrix.

Definition 3.0.1. Let $A \in M_{m \times n}(\mathbb{F})$. An elementary row operation (an A) is any one of

1. Switching two rows $R_i \rightleftharpoons R_j$ $c_i \rightleftharpoons C_j$, $(i \ne j)$

2. Multiplying a row by an nonzero scalar $R_i \leftarrow cR_i$ $c_i \leftarrow cC_i$ $(c \neq 0)$

3. Adding a scalar multiple of one row to another $R_i \leftarrow R_i + cR_j$ $C_i \leftarrow C_i + aC_j$ $(i \neq j)$

Elementary Column Operations are defined similarly, with columns instead of rows.

Operations have types (1) (2) or (3).

Proposition 3.0.1 (Newton's Third Law of Operations). *To every elementary operation, there is an equal but opposite elementary operation.*

Example: $R_i \leftarrow R_i + aR_i$ can be undone by $R_i \leftarrow R_i + (-a)R_i$

Notation 3.0.1. If O is an elementary operation and O applied A gives B, then write $A \stackrel{O}{\longrightarrow} B$.

Definition 3.0.2. An elementary matrix is an $n \times n$ matrix (over \mathbb{F}), which can be obtained by applying **one** elementary operation to I_n .

Example 1: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ is an elementary matrix. $R_2 \rightleftharpoons R_3$ $C_2 \rightleftharpoons C_3$

Example 2: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix}$ $R_3 \leftarrow aR_3 \ a \in \mathbb{F}, \ a \neq 0$ $C_3 \leftarrow aC_3$

Example 3:

$$\begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{R_2 \leftarrow R_2 + aR_1}{\longleftarrow} I_3$$

Example 4:

$$\begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{C_1 \leftarrow C_1 + aC_2}{\longleftarrow} I_3$$

Example 5:

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & a & 0 \\ 0 & 0 & 1 \end{pmatrix} elementary?$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow aR_2 + R_1} \begin{pmatrix} 1 & 0 & 0 \\ 1 & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

NOT AN ELEM ROW OP

Theorem 3.0.1. Fix m, n, let O be an elementary operation (for $m \times n$ matrix).

Let E be the elementary matrix corresponding to O. (i.e. $I_n \stackrel{O}{\longrightarrow} E$), then $\forall A \in M_{m \times n}(\mathbb{F}), A \stackrel{O}{\longrightarrow} AE$.

Proof. For
$$j = 1, \dots, n$$
, let $A_j = \operatorname{Col}_j(A)$ so $A = \begin{bmatrix} | & | & & | \\ A_1 & A_2 & \cdots & A_n \\ | & | & & | \end{bmatrix}$, $T = \begin{bmatrix} | & | & & | \\ e_1 & e_2 & \cdots & e_n \\ | & | & & | \end{bmatrix}$

Case 1: O is $C_i \rightleftharpoons C_j$ (i < j),

$$E = \begin{bmatrix} | & | & & | & | & | & | \\ e_1 & e_2 & \cdots & e_j & \cdots & e_i & \cdots & e_n \\ | & | & & | & & | & | \end{bmatrix}$$

Say
$$A \xrightarrow{O} \begin{bmatrix} | & & | & & | & & | \\ A_1 & \cdots & A_j & \cdots & A_i & \cdots & A_n \\ | & & | & & | & & | \end{bmatrix}$$
 To show that $AE = B_t$,
$$\operatorname{Col}_t(AE) = \operatorname{Col}_t(B) \qquad \forall t = 1, \cdots, n$$

By fact 1

$$\operatorname{Col}_{t}(AE) = A \cdot \operatorname{Col}_{t}(E) = A \begin{cases} e_{t} & \text{if } t \neq i, j \\ e_{j} & \text{if } t = i \end{cases} \xrightarrow{Facts} \begin{cases} \operatorname{Col}_{t}(A) & \text{if } t \neq i, j \\ \operatorname{Col}_{j}(A) & \text{if } t = i \end{cases} = \operatorname{Col}_{t}(B)$$

So AE = B.

Theorem 3.0.2. Let O be an elementary row operation, for $m \times _$ matrices. Let E be its elementary matrix. Then $\forall A \in M_{m \times n}(\mathbb{F}), A \stackrel{O}{\longrightarrow} EA$.

Proof. Can be proved similarly, if $A \xrightarrow{O} B$, show

$$\operatorname{Row}_{i}(B) = \operatorname{Row}_{j}(EA) \qquad \forall i = 1, \dots, m$$

Theorem 3.0.3. Elementary matrices are invertible. Moreover, if E is the elementary matrix, corresponding to an elementary operation O, then E^{-1} is the elementary matrix corresponding to the elementary operation O^{-1} . "inverse to" O.

Proof. Say E corresponding to O, elementary column operation, so

$$I_n \stackrel{O}{\longrightarrow} E \stackrel{O^{-1}}{\longrightarrow} I_n$$

By Theorem 1,

$$EE' = I_n \Rightarrow E' = E^{-1}$$

and E is invertible.

3.1 Feb 24 Tutorial

Goal: Permutation: definition, notation, and permutation matrix

Definition 3.1.1 (General Definition). *Permutation is an order of the set* $\{1, 2, \dots, n\}$, *e.g.* $1, 2, 3, \dots, n$ or $2, 1, 3, 5, 4, \dots, n$.

Definition 3.1.2 (Our Definition). *Permutation is a bijection between* $\{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$.

e.g.

define τ :

Definition 3.1.3 (Composition of σ and τ). $\sigma \circ \tau(i) = \sigma(\tau(i))$

$$\sigma \circ \tau(1) = \sigma(3) = 3$$

$$\sigma \circ \tau(2) = \sigma(1) = 2$$

$$\sigma \circ \tau(3) = \sigma(4) = 1$$

$$\sigma \circ \tau(4) = \sigma(2) = 4$$

still a bijection! $\sigma \circ \tau$ *is a bijection.*

Expression $\sigma \circ \tau$: 1 $\stackrel{2}{\smile}$ 3 $\stackrel{2}{\smile}$ $\stackrel{4}{\smile}$

Notation 3.1.1 ("cycles").

$$\sigma = (124)(3) = (241)(3)$$
$$\tau = (1342)$$
$$\sigma \circ \tau = (13)(2)(4)$$

Definition 3.1.4. S_n is the set of all permutations of $\{1, \dots, n\}$.

Definition 3.1.5. Given $r \in S_n$, $A, B \in M_n(\mathbb{F})$, we write $A \xrightarrow{R:\sigma} B$ to mean that B is obtained from A by moving

$$\operatorname{Row}_{i}(A) + \operatorname{Row}_{\sigma}(i)(B), \quad \text{for } 0 \leq i \leq n$$

Example: $\sigma = (124)$

$$A = \begin{pmatrix} -- & r_1 & -- \\ -- & r_2 & -- \\ == & r_3 & -- \\ -- & r_4 & -- \end{pmatrix} \xrightarrow{R:\sigma} \begin{pmatrix} -- & r_4 & -- \\ -- & r_1 & -- \\ == & r_3 & -- \\ -- & r_2 & -- \end{pmatrix} = B$$

$$\sigma(a) = 1 \ a = \sigma^{-1}(1)$$

B can also be written as

$$\begin{pmatrix} -- & r_{\sigma^{-1}}(1) & -- \\ -- & r_{\sigma^{-1}}(2) & -- \\ == & r_{\sigma^{-1}}(3) & -- \\ -- & r_{\sigma^{-1}}(4) & -- \end{pmatrix}$$

Definition 3.1.6. Given $\sigma \in S_n$, the permutation matrix associated to σ is the matrix P_{σ} which is obtained from I_n by $\xrightarrow{R:\sigma}$.

$$I_n \xrightarrow{R:\sigma} P_{\sigma}$$

$$I_n = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} \xrightarrow{R:\sigma} P_{\sigma} = \begin{pmatrix} -- & e_{\sigma^{-1}}(1) & -- \\ -- & e_{\sigma^{-1}}(2) & -- \\ & \vdots \\ -- & e_{\sigma^{-1}}(n) & -- \end{pmatrix}$$

Recall: $\sigma = (124)(3)$

$$P_{\sigma} = \begin{pmatrix} -- & e_{\sigma^{-1}}(1) & -- \\ -- & e_{\sigma^{-1}}(2) & -- \\ == & e_{\sigma^{-1}}(3) & -- \\ -- & e_{\sigma^{-1}}(4) & -- \end{pmatrix} = \begin{pmatrix} -- & e_4 & -- \\ -- & e_1 & -- \\ == & e_3 & -- \\ -- & e_2 & -- \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} | & | & | & | & | \\ e_2 & e_4 & e_3 & e_1 \\ | & | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ e_{\sigma(1)} & e_{\sigma(2)} & e_{\sigma(3)} & e_{\sigma(4)} \\ | & | & | & | & | \end{pmatrix}$$

 P_{σ} is a very special matrix

Each row and column has exactly one "1"

For this matrix $\operatorname{Row}_i(P_{\sigma}) = e_{\sigma^{-1}}(i)$ and $\operatorname{Col}_i(P_{\sigma}) = e_{\sigma}(i)$

$$P_{\sigma^{-1}} = (P_{\sigma})^t$$

$$P_{\sigma}e_j = e_{\sigma}(j)$$

Theorem 3.1.1. $\sigma \in S_n$, $A \in M_{n \times n}(\mathbb{F})$

- 1. $P_{\sigma}A$ is the result of applying σ to the rows of $A: A \xrightarrow{R:\sigma} P_{\sigma}A$
- 2. AP_{σ} is the result of applying σ to the column of $A: A \xrightarrow{C:\sigma} AP_{\sigma}$

 $\textit{Proof.} \ \ \text{(2) Suppose } (\sigma^{-1})^{-1} = \tau \text{ (bijection), } (\sigma^{-1}) = (\tau^{-1}) \to \sigma = \tau, \ 1 \stackrel{\sigma}{\longrightarrow} i \stackrel{\sigma^{-1}}{\longrightarrow} 1.$

$$A = \begin{pmatrix} | & | & & | \\ C_1 & C_2 & \cdots & C_n \\ | & | & & | \end{pmatrix} \xrightarrow{\sigma^{-1}} \begin{pmatrix} C_{(\sigma^{-1})^{-1}}(1) & C_{(\sigma^{-1})^{-1}}(2) & \cdots & C_{(\sigma^{-1})^{-1}}(n) \\ | & | & & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ C_{\sigma}(1) & C_{\sigma}(2) & \cdots & C_{\sigma}(n) \\ | & | & & | \end{pmatrix} = B$$

We want $B = AP_{\sigma}$, $\operatorname{Col}_{j}(AP_{\sigma}) = A \cdots \operatorname{Col}_{j}(P_{\sigma}) = A \cdot e_{\sigma}(j) = A_{\sigma}(j)$ $\operatorname{Col}_{j}(B) = \operatorname{Col}_{j}$.

Corollary 3.1.1. $P_{\sigma}P_{\tau} = P_{\sigma\tau}$

Proof.

$$I_n \xrightarrow{R:\sigma_{\tau}} P_{\sigma_{\tau}} = \begin{pmatrix} -- & r_{\sigma\tau^{-1}}(1) & -- \\ -- & r_{\sigma\tau^{-1}}(2) & -- \\ & \vdots & \\ -- & r_{\sigma\tau^{-1}}(n) & -- \end{pmatrix}$$

$$I_{n} \xrightarrow{R:\tau} P_{\tau} = \begin{pmatrix} -- & r_{\tau^{-1}}(1) & -- \\ -- & r_{\tau^{-1}}(2) & -- \\ & \vdots & \\ -- & r_{\tau^{-1}}(n) & -- \end{pmatrix} \xrightarrow{R:\sigma} \begin{pmatrix} -- & r_{\sigma^{-1}\tau^{-1}}(1) & -- \\ -- & r_{\sigma^{-1}\tau^{-1}}(2) & -- \\ & \vdots & \\ -- & r_{\sigma^{-1}\tau^{-1}}(n) & -- \end{pmatrix}$$

 $(\sigma\tau)^{-1} = \sigma^{-1}\tau^{-1}$

3.2 Feb 26

Definition 3.2.1. If A, B matrices of some size, write $A \rightsquigarrow B$ to mean we can obtain B from A by some sequence of elements row and/or solumn operations.

Example: $\mathbb{F} = \mathbb{R}$

$$A = \begin{pmatrix} 2 & 4 & 1 & 0 \\ -1 & -2 & 1 & 3 \\ 3 & 6 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A \xrightarrow{R_1 \rightleftharpoons R_2} \begin{pmatrix} -1 & -2 & 1 & 3 \\ 2 & 4 & 1 & 0 \\ 3 & 6 & 0 & -3 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + 2R_1} \begin{pmatrix} -1 & -2 & 1 & 3 \\ 0 & 0 & 3 & 6 \\ 3 & 6 & 0 & -3 \end{pmatrix}$$

$$R_3 \leftarrow \xrightarrow{R_3 + 3R} \begin{pmatrix} -1 & -2 & 1 & 3 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 3 & 6 \end{pmatrix} \xrightarrow{C_1 \leftarrow (-1)C_1} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 3 & 6 \end{pmatrix} \xrightarrow{C_2 \rightleftharpoons C_3} \begin{pmatrix} 1 & 1 & -2 & 3 \\ 0 & 3 & 0 & 6 \\ 0 & 3 & 0 & 6 \end{pmatrix}$$

$$R_3 \leftarrow \xrightarrow{R_3 + (-1)R_2} \begin{pmatrix} 1 & 1 & -2 & 3 \\ 0 & 3 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{1}{3}R_2} \begin{pmatrix} 1 & 1 & -2 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$C_3 \leftarrow \xrightarrow{C_3 + 2C_1} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{C_4 \leftarrow C_4 + (-2)C_1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$R_1 \leftarrow \xrightarrow{R_1 + (-1)R_2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{C_1 \leftarrow C_1 + (-1)C_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

For $i = 1, \dots, 11$, let E_i be the elementary corresponding to step i,

$$E_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\underbrace{E_{10}E_7E_6E_3E_2E_1}_PA\underbrace{E_4E_5E_8E_9E_{11}}_O=D.$ P and Q are invertible.

Theorem 3.2.1. Suppose $A, B \in M_{m \times n}(\mathbb{F})$, if $A \rightsquigarrow B$ then \exists invertible $P \in M_{m \times m}(\mathbb{F})$ and invertible $Q \in M_{n \times n}(\mathbb{F})$ s.t. PAQ = B.

Proof. Pick a sequence of elementary row/col operations taking A to B. Let Q_1, Q_k be the row operations in this sequence, Q_1', \dots, Q_2' be the column operations.

Let E_i be the elementary matrix corresponding to Q_i . $I_m \xrightarrow{Q_i} E_i$.

Let E_j be the elementary matrix corresponding to Q'_j .

$$P = E_k \cdots, E_2 E_1$$
$$Q = E_1' E_2' \cdots E_e'$$

Then
$$PAQ = B$$
.

Theorem 3.2.2. $\forall A \in M_{m \times n}(\mathbb{F}), \exists D \in M_{m \times n}(\mathbb{F}) \text{ of the form}$

$$D = \begin{pmatrix} I_r & O_{r \times (n-r)} \\ O_{(m-r) \times r} & O_{(m-r) \times (n-r)} \end{pmatrix} \qquad (\textit{for some } r \ge 0)$$

s.t. $A \rightsquigarrow D$.

Proof. If $A = O_{m \times n}$, done. Else, A has a nonzero entry somewhere, use Type (1) operations, can move this entry to (1, 1) position, making this entry = 1, with a type (2) operations, apply type 3 operations to get

$$\sim \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & & & & \\ 0 & & & & \\ \vdots & & & & \\ 0 & & & & \end{pmatrix}$$

Corollary 3.2.1. $\forall A$, $\exists invertible P, Q s.t.$

$$PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

Proof. Find P and Q,

1. find $E_1, \dots, E_k, E'_1, \dots, E'_e$ multiply...

3.3 Feb 28

Corollary 3.3.1. *If* $A \rightsquigarrow B$, then

1. $B \rightsquigarrow A$

2. $A^t \rightsquigarrow B^t$

Proof. 1. Row and Column operations are reversible

2. Change row operations to column operations and vice versa

Definition 3.3.1. *Let* A *be an* $m \times n$ *matrix over* \mathbb{F} .

1. The row space of A is the span in \mathbb{F}^n , of the rows of A.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

2. The column space of A is the span in \mathbb{F}^n of the columns of A.

Recall: $L_A: \mathbb{F}^n \to \mathbb{F}^n$ $R(L_A) = the \ column \ space \ of \ A$

3. The null space of A, denoted N(A) is $N(L_A) = \{x \in \mathbb{F}^n : Ax = 0\}$, a subsapce \mathbb{F}^n

Recall:
$$\underbrace{\dim(column\ space\ of\ A)}_{rank(L_A)} + \underbrace{\dim(N(A))}_{nullity(L_A)} = \dim \mathbb{F}^n = n.$$

Definition 3.3.2. rank of A is $rank(L_A)$

nullity of A is nullity (L_A)

Theorem 3.3.1. If $A \in M_{m \times n}(\mathbb{F})$ and $Q \in M_{m \times n}(\mathbb{F})$, with Q invertible, then $R(L_AQ) = R(L_A)$.

Proof. AQ is $m \times n$, L_{AQ} :

 $L_{AQ} = L_A \circ L_Q$, L_Q is an isomorphism hence is surjective.

$$\begin{split} R(L_{AQ}) = & \{L_{AQ}: x \in \mathbb{F}^n\} \\ = & \{L_A(L_Q(x)): x \in \mathbb{F}^n\} \\ = & \{L_A(y): y \in \mathbb{F}\} \\ = & R(L_A) \end{split} \tag{as L_Q is surjective)}$$

Corollary 3.3.2. IF $A \rightsquigarrow B$, entirely by column operations, then A and B have the same column space.

Proof. $A \rightsquigarrow B$ by column operations $\Rightarrow B = AQ$, for some invertible Q.

Then,

Column Space of
$$B$$
 =Column Space of AQ
= $R(L_{AQ})$
= $R(L_A)$ (Thm 1)
=Column Space of A

Corollary 3.3.3. If $A \rightsquigarrow B$, entirely by row operations, then A and B have the same row space.

Proof. $A \sim B$ by row operations

 $\Rightarrow A^t \sim B^t$ by column operations

 $\Rightarrow A^t, B^t$ have same column space

 $\Rightarrow A, B$ have same row space

Lemma 3.3.1. Suppose V is finite dimensional, $T: V \cong V'$, and W is a subspace of V.

Let $W' = \{T(w) : w \in W\}$, a subspace of V', then $\dim(W) = \dim(W')$.

Proof. Let B_w be a basis for $W = \{w_1, \dots, w_k\}$.

Claim: $\{T(w_1), \ldots, T(w_k)\}$ is a basis for W.

$$a_1T(w_1) + \ldots + a_kT(w_k) = 0$$

$$\Rightarrow T(a_1w_1 + \ldots + a_kw_k) = 0$$

$$\Rightarrow a_1w_1 + \ldots + a_kw_k \in N(T) = \{0\}$$

$$\Rightarrow a_1w_1 + \ldots + a_kw_k = 0$$

$$\Rightarrow a_1 = \ldots = a_k = 0$$

Theorem 3.3.2. Suppose $A \in M_{m \times n}(\mathbb{F})$. $P \in M_{m \times m}(\mathbb{F})$, P invertible. Then $\dim(\text{Column Space of } A) = \dim(\text{Column Space of } PA)$. i.e. $\operatorname{rank}(A) = \operatorname{rank}(PA)$.

Proof. $L_{PA}: \mathbb{F}^n \to \mathbb{F}^m$,

Let
$$W = R(L_A)$$
, let $W' = \{L_P(y) : y \in W\}$.

We know $\dim(W) = \dim(W')$. (lemma)

Note:

$$W' = \{L_P(y) : y \in W\}$$

$$= \{L_P(L_A(x)) : x \in \mathbb{F}^n\}$$

$$= \{L_{PA}(x) : x \in \mathbb{F}^n\}$$

$$= R(L_{PA})$$

So dim(Column Space of A) = dim($R(L_A)$) = dim($R(L_{PA})$) = dim(Column Space of PA).

Corollary 3.3.4. *IF* $A \rightsquigarrow B$ *entirely by row operations then* rank $(A) = \operatorname{rank}(B)$.

Proof. $A \rightsquigarrow B$ by row operations, $\Rightarrow B = PA$ for some invertible $P \Rightarrow \operatorname{rank}(A) = \operatorname{rank}(PA) = \operatorname{rank}(B)$.

Corollary 3.3.5. *If* $A \sim B$ *then* rank(A) = rank(B).

Proof. If $A \rightsquigarrow B$, then B = PAQ then $\operatorname{rank}(A) = \operatorname{rank}(PA) = \operatorname{rank}(PAQ)$.

Corollary 3.3.6. If $A \rightsquigarrow \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ then $\operatorname{rank}(A) = r$.

Corollary 3.3.7. For any A, rank $(A) = \operatorname{rank}(A^t)$. i.e. Column Space of A and row space of A have same dimension.

Proof.

$$A \leadsto \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \qquad r = \text{rank}A$$

$$A^t \rightsquigarrow \begin{pmatrix} I_r^t & 0 \\ 0 & 0 \end{pmatrix} \qquad r = \text{rank} A^t$$

3.4 March 2

Suppose $A \in M(\mathbb{F})$, A can be transformed:

$$A^t \rightsquigarrow \begin{pmatrix} I_r^t & 0 \\ 0 & 0 \end{pmatrix} \qquad r = \text{rank}A^t$$

 $r = \operatorname{rank}(A)$.

Theorem 3.4.1 (Invertible Matrix Theorem). For $A \in M_{n \times n}(\mathbb{F})$, TFAE

- 1. A is invertible
- 2. rank(A) = n
- 3. A can be written as a product of elementary matrices.
- 4. $A \rightsquigarrow I_n$
- 5. $A \sim I_n$ by row operations

Proof. From 5 to 1,

$$I_n = E_k \cdots E_1 A$$

$$I_n = EA \Rightarrow AE = I_n$$

So A is invertible, and $A^{-1} = E$. Hence, E is invertible.

$$\Rightarrow E^{-1}I_n = E^{-1}(EA) \Rightarrow E^{-1} = A.$$

$$E^{-1} = (E_k \cdots E_1)^{-1}$$
.

$$E^{-1} = (E_k \cdots E_1)^{-1} = E^{-1} \cdots E^{-1}$$

56

and each $^{-1}$ is an elementary operation, hence proves 3.

If
$$A \rightsquigarrow I_n = \begin{pmatrix} I_n & \cdots \\ \cdots & \cdots \end{pmatrix}$$
.

 $1 \Rightarrow L_A$ is an isomorphism.

 $\Rightarrow L_A$ is surjective.

$$\Rightarrow R(L_A) = \mathbb{F}^n$$

$$\Rightarrow \dim(R(L_A)) = n \Rightarrow \operatorname{rank}(A) = n.$$

4 to 1, 3, Assume (4), then $I_n = PAQ$, $\Rightarrow P^{-1}I_nQ^{-1} = P^{-1}(PAQ)Q^{-1}$,

$$\Rightarrow P^{-1}Q^{-1} = A \text{ so } A \text{ is invertible.}$$

4 to 5, $A \rightsquigarrow I_n \Rightarrow I_n = (PA)Q, P, Q$ invertible.

$$QI_nQ^{-1} = Q(PAQ)Q^{-1}.$$

 $I_n = QPA \Rightarrow A \rightsquigarrow I_n$ by row operations.

Suppose $A \rightsquigarrow I_n$ by row operations, then $I_n = E_k \cdots E_2 E_1 A$

$$\Rightarrow I_n A^{-1} = E_k \cdots E_2 E_1 A A^{-1}$$

$$\Rightarrow A^{-1} = E_k \cdots E_2 E_1 I_n.$$

Show: exactly the same sequence of row operations, transforming $A \rightsquigarrow I_n$ also transforms $I_n \rightsquigarrow A^{-1}$.

Algorithm 3.4.1. To find A^{-1} (when it exists)

- 1. Form $n \times 2n$ matrix AI_n
- 2. Apply row operations transform to $(I_n \blacksquare)$ \blacksquare : will be A^{-1} .

Example:

$$A = \begin{pmatrix} 1 & -3 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3 & 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + 3R_3} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 3 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 & 1 & -3 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{R_2 \leftrightarrows R_3}{\longrightarrow} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_3}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 & 2 & -1 & 6 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & -3 \end{pmatrix}$$

$$\Rightarrow A^{-1} = \begin{pmatrix} 2 & -1 & 6 \\ 0 & 0 & 1 \\ -1 & 1 & -3 \end{pmatrix}$$

3.5 March 4

Consier a system of m linear equations in n variables.

$$S \begin{cases} a_{11}x_1 + a_{12}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_1 + \dots + a_{2n}x_n = b_1 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_1 + \dots + a_{nn}x_n = b_1 \end{cases}$$

 $a_{ij}, b_i \in \text{some field } \mathbb{F}.$

Then we want solutions $x = (x_1, \dots, x_n) \in \mathbb{F}^n$.

Can write (S) as

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

or compactly as AX = b.

A is the coefficient matrix of (S).

 $A \in M_{m \times n}(\mathbb{F}), b \in \mathbb{F}^m$, the RHS vector.

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

is a vector of formal variables.

Solutions: vectors $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{F}^n$, such that Ax = b.

(S) is homogeneous if b = 0 else, (S) is nonhomogeneous.

If $b \neq 0$, then the system AX = 0 is the homogeneous system associated to AX = b.

The solution set to AX=b is $\{x\in\mathbb{F}^n:Ax=b\}=:Sol(AX=b).$

Definition 3.5.1. AX = b is consistent if $Sol(AX = b) \neq \emptyset$, else AX = b is inconsistent.

Theorem 3.5.1. Let $A \in M_{m \times n}(\mathbb{F})$, $b \in \mathbb{F}^m$, consider the system AX = b,

- 1. If b = 0, then Sol(AX = 0) = N(A).
- 2. AX = b is consistent $\Leftrightarrow b \in column$ space of $A (= R(L_A))$.
- 3. If AX = b is consistent, then Sol(AX = b) is a translation of N(A), i.e. Sol(AX = b) = u + N(A), where u can be any solution to AX = b.

Proof. (1) For $x \in \mathbb{F}^n$,

$$x \in Sol(AX = 0)$$

$$\Leftrightarrow Ax = 0$$

$$\Leftrightarrow L_A(x) = 0$$

$$\Leftrightarrow x \in N(L_A) = N(A)$$

(2) AX = b is consistent

$$AX = b$$
 is consistent
 $\Leftrightarrow Sol(AX = b) \neq \emptyset$
 $\Leftrightarrow \exists x \in \mathbb{F}^n.Ax = b$
 $\Leftrightarrow \exists x \in \mathbb{F}^b, L_A(x) = b$
 $\Leftrightarrow b \in R(L_A) = \text{Column Space of } A$

(3) Assume AX = b is consistent, pick a solution, say $u \in \mathbb{F}^n$, (So Au = b).

I'll prove that $Sol(AX = b) \subseteq u + N(A)$. So Ax = b = Au, so A(x - u) = Ax - Au = 0.

$$\Rightarrow x - u \in N(A)$$

$$\Rightarrow x = u + (X - u) \Rightarrow x \in u + N(A).$$

 $u + N(A) \subseteq Sol(AX = b)$, suppose $x \in u + N(A)$,

$$\Rightarrow x = u + v$$

$$\Rightarrow Ax = A(u + v)$$

$$= Au + Av$$

$$= b + 0 = b$$

$$\Rightarrow x \in Sol(AX = b).$$

Goal: Given AX = b,

- 1. Determine whether AX = b is consistent
- 2. If it is, then find one solution u and find basis $\{x_1, \dots, x_k\}$ for N(A). Then $Sol(AX = b) = u + \operatorname{span}(\{x_1, \dots, x_k\}) = \{u + c_1x_1 + \dots + c_kx_k, c_1 \dots c_k \in \mathbb{F}\}.$

Definition 3.5.2. Suppose $A \in M_{m \times n}(\mathbb{F})$, $b \in \mathbb{F}^m$, the $m \times (n+1)$ matrix (A|b) is the augmented matrix of AX = b.

Lemma 3.5.1. Given $A \in M_{m \times n}(\mathbb{F})$, $b \in \mathbb{F}^m$, if $(A|b) \leadsto (A'|b')$ using only row operations, then

$$Sol(AX = b) = Sol(A'X = b')$$

Proof. Suppose $(A|b) \rightsquigarrow (A'|b')$ via row operations,

so \exists invertible $P \in M_{m \times m}(\mathbb{F})$ s.t. P(A|b) = (A'|b'). $\Rightarrow PA = A'$ and Pb = b' and $A = P^{-1}A'$ and $b = P^{-1}b'$.

Claim:

$$Sol(AX = b) \subseteq Sol(A'X = b')$$

Let $x \in Sol(AX = b)$, i.e. Ax = b,

$$\Rightarrow (PA)x = Pb$$

$$\Rightarrow A'x = b'$$
.

i.e.
$$x \in Sol(A'X = b')$$
.

Definition 3.5.3. A matrix is in **Reduced Row Echelon Form** (RREF) if all of the following hold:

- 1. If a row has a nonzero entry, the 1st such = 1. (called the **leading one** of the row)
- 2. If a column contains a leading one, all other entries in that column = 0.
- 3. Lower (nonzero) columns have leadings further to right.
- 4. All zero rows of any are at bottom

Non-Examples of RREF:

$$\begin{pmatrix}
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Example:

$$\begin{pmatrix}
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

3.6 RREF and Solving Linear Equations - March 6

Theorem 3.6.1. Every $A \in M_{m \times n}(\mathbb{F})$ can be converted to a matrix in RREF, by a sequence of elementary row operations.

Proof. If $A = O_{m \times n}$, done.

Else, pick first column, say $Col_j(A)$, which is nonzero, using row operations, move nonzero entry in column j, to position (1, j,), change it to 1, clear all other entries in Col_j ,

get

$$A' = \begin{pmatrix} 0 & \cdots & 0 & 1 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & & & \\ & & & \vdots & & B & \\ 0 & \cdots & 0 & 0 & & & \end{pmatrix}$$

Next, if $B = O_{(m-1)\times(n-j)}$, we are done, else find 1st column of A, say $\operatorname{Col}_j(A)$, which meets a nonzero entry of B, pick a nonzero entry of B in that column, move it to position $(2, j_2)$, change it to 1, clear all other entries in that column.

$$A'' = \begin{pmatrix} 0 & \cdots & 1 & * & \cdots & * & 0 & * & \cdots & * \\ \hline 0 & \cdots & 0 & * & \cdots & 0 & 1 & * & \cdots & * \\ \hline 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Eventually stops, resulting matrix is in RREF.

Proposition 3.6.1. If R is in RREF, then rank(R) = # of leading 1s.

Example:

$$R = \begin{pmatrix} 1 & 0 & 2 & 0 & -3 \\ 0 & 1 & -1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

In general, if R is in RREF and has leading 1s in columns j_1, \dots, j_n , then.

$$\operatorname{Col}_{j_1}(R) = e_1$$

 \vdots
 $\operatorname{Col}_{i_r}(R) = e_r$

and these column span Column Space of R, so rank(R) = r.

3.6.1 Solving Linear Equations using matrix

Solving AX = b.

Form augmented matrix
$$(A|b) \overset{rowops}{\leadsto} \underbrace{(R|s)}_{in\ RREF}$$
 .
$$\operatorname{Sol}(AX = b) = \operatorname{Sol}(RX = s)$$

Example: Say

$$(R|s) = \begin{pmatrix} 1 & 0 & 2 & 0 & -3 & s_1 \\ 0 & 1 & -1 & 0 & 4 & s_2 \\ 0 & 0 & 0 & 1 & -2 & s_3 \\ 0 & 0 & 0 & 0 & 0 & s_4 \end{pmatrix}$$

Either
$$s_4 = 0$$
 or $s = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Column Space of $R = \text{span}\{e_1, e_2, e_3\}$.

So RX = s is consistent, $\Leftrightarrow s_4 = 0$.

Assume $s_4 = 0$, write the equations

$$\begin{cases} x_1 + 2x_3 - 3x_5 = s_1 \\ x_2 - x_3 + 4x_5 = s_2 \\ x_4 - 2x_5 = s_3 \\ 0 = 0 \end{cases}$$

Variable \sim Leading 1s: dependent variables, x_1, x_2, x_4

Other variables: free variables x_3, x_5 ,

Next, express every variable in terms of free variables

$$x_{1} = s_{1} - 2x_{3} + 3x_{5}$$

$$x_{2} = s_{2} + x_{3} - 4x_{5}$$

$$x_{3} = x_{3}$$

$$x_{4} = s_{3} + 2x_{5}$$

$$x_{5} = x_{5}$$

Rewrite as vector equation:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ 0 \\ s_3 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -4 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$
 $s, t \in \mathbb{F}$

If s = t, then we use u is one solution to RX = s.

Consider the homogeneous case: RX = 0,

$$Sol(RX = 0) = Sol(AX = 0) = N(A)$$

We see $N(A) = \text{span}\{v_1, v_2\}.$

$$\begin{aligned} \dim(N(A)) &= \text{nullity}(A) \\ &= n - \text{rank}(A) \\ &= n - (\# \text{ of leading 1s in} R) \\ &= \# \quad \text{of free variables} \end{aligned}$$

In genreal

$$(A|b) \stackrel{row\ ops}{\sim} \underbrace{(R|S)}_{RREF}$$

If (R|s) has a row $(0 \cdots 0|1)$, then AX = b has no solution, otherwise we write equations corresponding to RX = s, and express all variables in terms of free variables.

Write in vector form, $x = u + s_1v - 1 + \cdots + s_kv_k$, k = # of free variables = n - rank(A) = nullity(A).

Proposition 3.6.2. Given A, there is only one unique RREF R s.t. $A \stackrel{row ops}{\sim} R$.

Proof. Understand what info R encodes. A4Q5b, if R is RREF for A, then R has a leading one in column j, if and only if the $\operatorname{Col}_{j}(A) \not\in \operatorname{span}\{\operatorname{Col}_{1}(A), \cdots, \operatorname{Col}_{j-1}(A)\}$. A determines where leading 1s in R go.

$$A = \begin{pmatrix} | & | & & | \\ A_1 & A_2 & \cdots & A_s \\ | & | & & | \end{pmatrix} \rightsquigarrow R = \begin{pmatrix} 1 & 0 & 2 & 0 & -3 \\ 0 & 1 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} R_1 & R_1 & R_3 & \cdots \end{pmatrix}$$

 $A_1 \not\in \operatorname{span}(\emptyset)$

 $A_2 \not\in \operatorname{span}(A_1)$

 $A_3 \notin \text{span}(A_1, A_2), A_3 = 2A_1 - A_2$

It's true, Hint A4Q5(a).

4 Determinants

4.1 March 9

In 2×2 case:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det(A) = ad - bc \in \mathbb{F}(\text{or}|A|)$$

A is invertible $\iff \det(A) \neq 0$.

When $det(A) \neq 0$,

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$\det(AB) = \det(A) \det(B)$$

IN $n \times n$, we assign $(-1)^{i+j}$ to (i, j) position (of any $n \times n$ matrix).

Definition 4.1.1. Suppose $A \in M_{n \times n}(\mathbb{F})$, $1 \le i, j \le n$, \tilde{A}_{ij} is the $(n-1) \times (n-1)$ matrix obtained from A by deleting row i, column j,

 \tilde{A}_{ij} is called the (i,j) submatrix of A.

When dets are defined,

- $\det(\tilde{A}_{ij})$ is the (i,j) minor of A
- $(-1)^{i+j} \det(\tilde{A}_{ij})$ is the (i,j) cofactor of A.

Definition 4.1.2 (Determinants). recursive on n, we use cofactor expansion on 1^{st} column,

- 1. If A is 1×1 (A = (a)), then det(A) = a.
- 2. If A is $n \times n$, n > 1,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$\det(A) = a_{11} \det(\tilde{A}_{11}) - a_{21} \det(\tilde{A}_{21}) + \dots + (-1)^{1+n} a_{n1} \det(\tilde{A}_{n1})$$

$$= \sum_{i=1}^{n} a_{i1} \underbrace{(-1)^{i+1} \det(\tilde{A}_{i1})}_{(i,1) \quad cofactor \ of A}$$

Example:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad \tilde{A}_{11} = (a_{22}) \qquad \tilde{A}_{21} = (a_{12})$$
$$\det(A) = a_{11} \cdot \det(\tilde{A}_{11}) - a_{21} \det(\tilde{A}_{21}) a_{11} a_{22} - a_{21} a_{12}$$

Lemma 4.1.1. If $A \in M_{n \times n}(\mathbb{F})$ is upper-triangle, say

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$
 then
$$\det A = \prod_{i=1}^{n} a_{ii}$$

Proof. By induction on n,

Base Case: $n = 1, A = (a_{11}), \det(A) = a_{11} = \prod_{i=1}^{1} a_{ii} \checkmark$.

Inductive Step: Assume n > 1, by definition,

$$\det A = a_{11} \det(\tilde{A}_{11}) - 0 \cdot \det(\tilde{A}_{21}) + 0 \cdot \det(\tilde{A}_{31}) - \cdots$$

$$= a_{11} \cdot \det(\tilde{A}_{11})$$

$$= a_{11} \left(\prod_{i=2}^{n} a_{ii} \right)$$

$$= \prod_{i=1}^{n} a_{1i}$$
(by IH)

Corollary 4.1.1. $\det(I_n) = 1$.

Theorem 4.1.1. If $A \in M_{n \times n}(\mathbb{F})$ hsa a zero row, then $\det(A) = 0$.

Proof. By induction on n,

n = 1, then A is the zero matrix, det(A) = 0.

n > 1, assume its $\operatorname{Row}_{i_0}(A) = (0, 0, \dots, 0)$, then

$$A = a_{11} \det(\tilde{A}_{11}) - a_{21} \det(\tilde{A}_{21}) + (-1)^{i_0+1} \det(\tilde{A}_{i_01}) + \dots + (-1)^{n+1} a_{n1} \det(\tilde{A}_{n1})$$

Claim: $\forall i \neq i_0, \tilde{A}_{i1}$ also has a zero row, by induction, $det(\tilde{A}_{i1}) = 0, \forall i \neq i_0$.

Theorem 4.1.2. If $A \in M_{n \times n}(\mathbb{F})$ has a zero column, then $\det(A) = 0$.

Proof. n=1,

$$n > 1$$
, case 1: $\operatorname{Col}_1(A) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$

$$A = \begin{pmatrix} 0 & a_{12} & \cdots \\ 0 & a_{22} & \cdots \\ \vdots & \vdots & \\ 0 & a_{m2} & \cdots \end{pmatrix}$$

Then

$$\det(A) = 0 \cdot \det(\tilde{A}_{11}) - 0 \cdot \det(\tilde{A}_{21}) + 0 \cdot \cdot \cdot \cdot \det(\tilde{A}_{31}) - \cdot \cdot \cdot = 0$$

case 2:

$$\operatorname{Col}_{j}(A) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad j > 1$$

$$A = \begin{pmatrix} a_{11} & \dots & 0 & \dots & a_{1n} \\ a_{11} & \dots & 0 & \dots & a_{2n} \\ \vdots & \dots & 0 & \dots & \\ a_{11} & \dots & 0 & \dots & a_{mn} \end{pmatrix}$$

$$\det(A) = a_{11} \det(A_{11}) - a_{21} \det(A_{21}) + \cdots$$

each \tilde{A}_{i1} itself has a zero column.

4.2 March 11

Theorem 4.2.1. If $A \in M_{n \times n}(\mathbb{F})$, and A has two equal adjacent rows, then, $\det(A) = 0$.

Proof. Suppose rows i_0 , $i_0 + 1$ are equal.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & & \\ r_1 & r_1 & \cdots & r_n \\ \vdots & & & & \\ a_{n1} & a_{n2} & & a_{nn} \end{pmatrix}$$

$$\det(A) = a_{11} \det(\tilde{A}_{11}) - a_{21} \det(\tilde{A}_{21}) + \cdots$$

$$= (-1)^{i_0+1} r_1 \det(\tilde{A}_{i_0,1}) + (-1)^{i_0+1} r_1 \det(\tilde{A}_{i_0,1})$$

$$= 0$$

Observe: If $i \neq i_0, i_0 + 1$, then \tilde{A}_{i1} has 2 equal adjacent rows so $\det(\tilde{i}1) = 0$ by IH. Also $\tilde{A}_{i_0,1} = \tilde{A}_{i_0+1,1}$.

Theorem 4.2.2. For fixed n, $\det: M_{n \times n}(\mathbb{F}) \to \mathbb{F}$ is "linear in each row" i.e. for each $i_0 \in \{1, \dots, n\}$, $\forall u_1, \dots, u_n \in \mathbb{F}^n, \forall r, s \in \mathbb{F}^n, \forall c \in \mathbb{F}$,

$$\det \begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & r+s & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix} = \det \begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & r & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix} + \det \begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & s & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix}$$

and

$$\det\begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & cr & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix} = c \det\begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & r & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix}$$

Proof. By example, n = 4, $i_0 = 3$,

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ r_1 & r_2 & r_3 & r_4 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ s_1 & s_2 & s_3 & s_4 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$C = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ r_1 + s_1 & r_2 + s_2 & r_3 + s_3 & r_4 + s_4 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

Claim: $\det C = \det A + \det B$.

$$\tilde{C}_{11} = \begin{pmatrix} a_{22} & a_{23} & a_{24} \\ r_2 + s_2 & r_3 + s_3 & r_4 + s_4 \\ a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\tilde{A}_{11} = \begin{pmatrix} same \\ r_2 & r_3 & r_4 \\ same \end{pmatrix}$$

$$\tilde{B}_{11} = \begin{pmatrix} same \\ s_2 & s_3 & s_4 \\ same \end{pmatrix}$$

By induction, $\det(\tilde{C}_{11}) = \det(\tilde{A}_{11}) + \det(\tilde{B}_{11})$, similarly,

$$\det(\tilde{C}_{21}) = \det(\tilde{A}_{21}) + \det(\tilde{B}_{21})$$
$$\det(\tilde{C}_{41}) = \det(\tilde{A}_{41}) + \det(\tilde{B}_{41})$$

so,

$$\det(C) = a_{11} \det(\tilde{C}_1) - a_{21} \det(\tilde{C}_{21}) + (r_1 + s_1) \det(\tilde{C}_{31}) - a_{41} \det(\tilde{C}_{41}) = \det A + \det B$$

Theorem 4.2.3. Suppose $A \in M_{n \times n}(\mathbb{F})$, then $A \stackrel{R_i \leftarrow R_i + cR_j}{\longrightarrow} B$, where $j = i \pm 1$, then $\det A = \det B$.

Proof. Assuem j = i + 1, let $r = \text{Row}_i(A)$, s = Row(i + 1)(A),

$$A = \begin{pmatrix} -- & u_1 & -- \\ & \vdots & & \\ -- & r & -- \\ & -- & s & -- \\ & \vdots & & \\ -- & u_n & -- \end{pmatrix} \qquad B = \begin{pmatrix} -- & u_1 & -- \\ & \vdots & & \\ -- & r + cs & -- \\ & -- & s & -- \\ & \vdots & & \\ -- & u_n & -- \end{pmatrix}$$

Use linearity in row i,

$$\det B = \det \begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & r & -- \\ & -- & s & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix} + c \det \begin{pmatrix} -- & u_1 & -- \\ & \vdots & \\ -- & s & -- \\ & \vdots & \\ -- & u_n & -- \end{pmatrix} = \det A$$

Theorem 4.2.4. Suppose $A \in M_{n \times n}(mF)$, $1 \le i \le n-1$, and $A \stackrel{R_1 = R_{i+1}}{\longrightarrow} B$, then $\det B = -\det A$.

Proof.

$$A = \begin{pmatrix} \vdots \\ -- & r & -- \\ -- & s & -- \\ \vdots \end{pmatrix}$$

SO

$$B = \begin{pmatrix} \vdots \\ --s & -- \\ --r & -- \\ \vdots \end{pmatrix}$$

$$\det B = \det \begin{pmatrix} \vdots \\ --s & -- \\ --r & -- \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ --s & -r & -- \\ --r & -- \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ --s & -r & -- \\ --s & -- \\ \vdots \end{pmatrix}$$

$$= \det \begin{pmatrix} \vdots \\ --s & -r & -s & -- \\ --s & -- & -- \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ --s & -r & -- \\ --s & -- \\ \vdots \end{pmatrix}$$

$$= (-1) \det \begin{pmatrix} \vdots \\ --r & -- \\ --s & -- \\ \vdots \end{pmatrix} = \det(A)$$

Theorem 4.2.5. If A has 2 equal rows, then $\det A = 0$.

Proof. Suppose $A = \begin{pmatrix} \vdots \\ -- & r & -- \\ \vdots \\ -- & r & -- \\ \vdots \end{pmatrix}$, By a sequence of adjacent row switches, $A \rightsquigarrow A' = \begin{pmatrix} \vdots \\ -- & r & -- \\ -- & r & -- \\ \vdots \end{pmatrix}$,

By theorem 4.8, $\det A' = \pm \det A = 0$, by theorem 4.5,

4.3 March 13

Every elementary matrix arises

$$I_n \stackrel{row \ ope}{\longrightarrow} E$$

So, if E is a elementary matrix of

• type 1:

$$\det E = -\det I_n = -1$$

if E is an elementary matrix of type 2:

• type 2:

$$\det E = c \cdot \det I_n = c$$

• type 3:

$$\det E = \det I_n = 1$$

Observe: for elementary matrix E,

1. $\det E \neq 0$

2.
$$det(E^t) = det(E)$$

Because E^t is an elementary matrix of the same type.

Pause: we get an "easy" way to calculate det A, use type 1 and 3 row operations to $A \rightsquigarrow B$ upper triangle.

Example:

$$\det\begin{pmatrix} 0 & 1 & 3 \\ -2 & -3 & -5 \\ 3 & -1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 3 \\ -2 & -3 & -5 \\ 3 & -1 & 1 \end{pmatrix} \xrightarrow{R_1 = R_3} \begin{pmatrix} 3 & -1 & 1 \\ -2 & -3 & -5 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{2}{3}R_1} \begin{pmatrix} 3 & -1 & 1 \\ 0 & -\frac{11}{3} & -\frac{13}{3} \\ 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{R_3 \Rightarrow R_3} \begin{pmatrix} 3 & -1 & 1 \\ 0 & 1 & 3 \\ 0 & -\frac{11}{3} & -\frac{13}{3} \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + \frac{11}{3}R_2} \begin{pmatrix} 3 & -1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & \frac{20}{3} \end{pmatrix} = B$$

so det $A = (-1)^2 \det(B) = 20$. det $B = 3(1)(\frac{20}{3}) = 20$.

Theorem 4.3.1 (Thm 4.11). For any $A, B \in M_{n \times n}(\mathbb{F})$,

$$\det(AB) = \det(A)\det(B)$$

Proof. Case 1: A invertible, so $A = E_k \dots E_2 E_1$, E_i elementary.

So

$$\det(AB) = \det(E_k \dots E_1 B)$$

$$= \det(E_k) \dots \det(E_1) \det(B)$$

$$= \det(E_k \dots E_1) \det(B)$$

$$= \det(A) \det(B)$$
(By **)
$$= \det(A) \det(B)$$

Case 2: A is not invertible $det(A) = 0 \Rightarrow (det A)(det B) = 0$, Need det(AB) = 0, need AB non-invertible. If AB were invertible then A would be too, Feb 14, so AB is not invertible.

Corollary 4.3.1. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Proof.
$$AA^{-1} = I_n$$
 so Thm 4.10, $(\det A)(\det A^{-1}) = \det(I_n) = 1$.

Corollary 4.3.2 (Cor 4.12). For $A \in M_{n \times n}(\mathbb{F})$, $\det(A^t) = \det A$.

Proof. Case 1: A is not invertible, so A^t also not invertible.

$$\Rightarrow \det A^t = \det A = 0.$$

case 2: A invertible, so
$$A = E_k \dots E_2 E_2$$
, and $A^t = E_1^t E_2^t \dots E_k^t$.

4.4