Functions of an Ecosystem

Main Functions:

1. **Energy Flow** - The transfer of energy through different trophic levels within the ecosystem. It begins with producers and flows through various consumers and decomposers.

- 2. **Nutrient Cycling (Biogeochemical Cycles)** The circulation and transformation of nutrients through the living (biotic) and non-living (abiotic) components of the ecosystem. Important cycles include the carbon, nitrogen, and phosphorus cycles.
- Ecological Succession The process by which the structure of a biological community evolves over time. It involves stages of species colonization and replacement until a stable climax community is reached.

Energy Flow

Trophic Levels:

- 1. **Producers (Autotrophs)** Organisms that produce their own food through photosynthesis or chemosynthesis. Examples include green plants and algae.
- 2. **Primary Consumers (Herbivores)** Organisms that feed on producers. Examples include cows, rabbits, and caterpillars.
- 3. **Secondary Consumers (Carnivores)** Organisms that feed on primary consumers. Examples include snakes and frogs.
- 4. **Tertiary Consumers** Organisms that feed on secondary consumers. Examples include eagles and big fish.
- Quaternary Consumers (Top Carnivores) Apex predators that have no natural predators. Examples include lions and sharks.

Key Points:

- **Unidirectional Flow:** Energy flows in one direction from producers to various levels of consumers and is not recycled.
- **Energy Loss:** At each trophic level, energy is lost as heat due to metabolic processes. This loss limits the number of trophic levels.
- **Efficiency:** Only about 10% of the energy from one trophic level is transferred to the next level, known as the 10% law.

Food Chains and Food Webs

Food Chain:

- A linear sequence of organisms where each organism is eaten by the next one in the chain.
- **Example:** Grass → Grasshopper → Frog → Snake → Hawk

Types of Food Chains:

1. Grazing Food Chain:

- Starts with living green plants and moves through herbivores to carnivores.
- o **Terrestrial Example:** Grass → Caterpillar → Lizard → Snake
- **Aquatic Example:** Phytoplankton → Zooplankton → Fish → Pelican

2. Detritus Food Chain:

- Begins with dead organic matter and moves through decomposers and detritivores to higherlevel predators.
- **Example:** Dead leaves → Earthworms → Chicken → Hawk

Food Web:

- A complex network of interconnected food chains in an ecosystem.
- Interconnected Chains: Provides multiple pathways for energy flow, increasing stability and resilience.
- **Example:** In a grassland, grass can be eaten by rabbits, grasshoppers, goats, or cows, and these herbivores can be prey for multiple predators.

Ecological Pyramids

Types of Pyramids:

1. Pyramid of Numbers:

- Illustrates the number of individual organisms at each trophic level.
- **Upright Pyramid:** Common in grasslands, where the number of producers (grasses) is very high compared to consumers (grasshoppers, rats, snakes, hawks).
- **Inverted Pyramid:** Common in forests, where few large producers (trees) support many herbivores (birds) and even more parasites and hyperparasites.

2. Pyramid of Biomass:

- Represents the total biomass (dry weight) of all organisms at each trophic level.
- Upright Pyramid: Common in terrestrial ecosystems where biomass decreases from producers to top carnivores.
- **Inverted Pyramid:** Seen in aquatic ecosystems where small, rapidly reproducing producers (phytoplankton) support larger consumers (zooplankton, fish).

3. Pyramid of Energy:

- Illustrates the flow of energy through each trophic level.
- Always Upright: Energy decreases at each trophic level due to loss as heat, reflecting the laws of thermodynamics.
- **Example:** If an ecosystem receives 1000 kcal of solar energy, only 100 kcal is stored in plants, 10 kcal in herbivores, and 1 kcal in carnivores.

Pollutants and Trophic Levels

Processes:

1. Bioaccumulation:

- Refers to the accumulation of pollutants in an organism from the environment.
- **Example:** Pesticides accumulating in the tissues of a plant.

2. Biomagnification:

- Refers to the increase in concentration of pollutants at each successive trophic level.
- **Example:** Mercury accumulating in fish, with higher concentrations in larger predatory fish.

Nondegradable Pollutants:

- Pollutants that cannot be broken down by living organisms and hence persist in the environment, such as DDT and PCBs.
- These pollutants can cause serious health issues as they accumulate in the food chain.

Biotic Interactions

Types of Interactions:

- 1. Mutualism: Both species benefit.
 - **Example:** Bees pollinating flowers while obtaining nectar.
- 2. **Commensalism:** One species benefits, the other is unaffected.
 - **Example:** Barnacles on whales, where barnacles get transportation and access to plankton.
- 3. **Competition:** Both species are harmed by the interaction.
 - **Example:** Two predators competing for the same prey.
- 4. **Predation:** One species benefits (predator), the other is harmed (prey).
 - **Example:** A lion hunting a zebra.
- 5. Parasitism: One species benefits (parasite), the other is harmed (host).
 - **Example:** Ticks feeding on a deer.
- 6. Amensalism: One species is harmed, the other is unaffected.
 - Example: A large tree shading smaller plants.
- 7. **Neutralism:** Neither species benefits or is harmed.
 - **Example:** Two species coexisting in the same habitat without affecting each other.

Biogeochemical Cycles

Types of Cycles:

1. Gaseous Cycles:

Water Cycle (Hydrologic):

- Continuous movement of water through evaporation, transpiration, condensation, and precipitation.
- Important for nutrient transportation and as a solvent for biochemical reactions.

Carbon Cycle:

- Involves the movement of carbon through photosynthesis, respiration, decomposition, and combustion.
- Short-term cycle includes photosynthesis and respiration.
- Long-term cycle involves carbon storage in fossil fuels and sedimentary rocks.

Nitrogen Cycle:

- Conversion of atmospheric nitrogen (N₂) into usable forms (ammonia, nitrates) through nitrogen fixation.
- Nitrogen is essential for the synthesis of amino acids and proteins.

2. Sedimentary Cycles:

Phosphorus Cycle:

- Phosphorus moves from rocks to soil and water bodies through weathering and erosion.
- Essential for DNA, RNA, and ATP.

Sulfur Cycle:

- Sulfur moves from rocks and sediments to the atmosphere through weathering, volcanic activity, and decomposition.
- Essential for amino acids and proteins.

Interconnected Cycles:

• Nutrient cycles interact with each other and are crucial for maintaining ecosystem balance and supporting life.

Ecological Succession

Types of Succession:

1. Primary Succession:

- Occurs on newly formed habitats without soil, such as volcanic lava or glacial retreat areas.
- **Pioneer Species:** First organisms to colonize, such as lichens and mosses.
- Soil Formation: Pioneer species break down rocks, accumulating organic matter to form soil.
- Community Development: Gradual replacement of pioneer species by more complex plant and animal communities until a stable climax community is established.

2. Secondary Succession:

- Occurs in areas where a climax community has been disturbed but soil remains, such as after a forest fire or agricultural abandonment.
- **Stages:** Rapid colonization by pioneer species, followed by intermediate species, and finally the return of a stable climax community.

Characteristics:

- Increased Productivity: More biomass production as succession progresses.
- Nutrient Shift: Movement of nutrients from non-living to living components.
- Increased Diversity: More species and niches develop, enhancing ecosystem complexity.
- Complex Food Webs: More interactions among species, leading to a stable and resilient ecosystem.

TERRESTRIAL ECOSYSTEMS

3.1 Tundra

Characteristics:

• Climate:

- Extremely cold with temperatures often below freezing.
- Short growing season (about 50-60 days).
- Low precipitation, mostly as snow.

Soil:

- Poorly developed due to permafrost (permanently frozen subsoil).
- Low in nutrients and organic material.

• Vegetation:

- o Dominated by mosses, lichens, sedges, and dwarf shrubs.
- Plants have shallow root systems due to permafrost.
- o Adaptations include thick cuticles, small leaves, and antifreeze proteins.

Adaptations:

• Plants:

- Arctic willow has a long lifespan (150-300 years).
- o Protected by thick cuticles and epidermal hair to reduce water loss and withstand cold.

Animals:

- Mammals like caribou and Arctic foxes have large bodies, small ears, and tails to minimize heat loss.
- Fur and blubber provide insulation.
- Insects have short life cycles to exploit the brief summer.

3.2 Forest Ecosystem

Types of Forests:

1. Coniferous Forest (Boreal Forest):

Climate:

- Long, cold winters and short, cool summers.
- Moderate to high rainfall, often as snow.

• Vegetation:

- Dominated by coniferous trees such as pines, firs, spruces, and larches.
- Adaptations include needle-like leaves and antifreeze proteins to survive harsh winters.

Soil:

Acidic, nutrient-poor, and often frozen.

2. Temperate Forest:

Climate:

- Moderate temperatures with distinct seasons.
- Sufficient rainfall to support dense forests.

Vegetation:

Deciduous trees (e.g., oaks, maples, beeches) shed leaves in winter.

Evergreen trees (e.g., pines) retain leaves year-round.

Soil:

• Podzolic, fairly deep, and rich in organic matter.

Importance:

• Fire plays a role in regeneration by clearing old vegetation and allowing new growth.

3. Tropical Rainforest:

Climate:

- Near the equator with high temperatures and humidity.
- Rainfall exceeds 2000 mm per year.

Vegetation:

- Extremely high biodiversity.
- Layers include emergent trees, canopy, understory, and forest floor.
- Adaptations include large leaves for photosynthesis, buttress roots for stability, and epiphytes like orchids and bromeliads.

Soil:

Nutrient-poor due to rapid decomposition and leaching.

Locations:

Found in Southeast Asia, Central and South America, Northern Australia, Western Africa, and parts of India.

4. Temperate Rainforest:

Climate:

- High rainfall with frequent fog, especially important in water balance.
- Moderate temperatures with seasonal variation.

Vegetation:

- High biotic diversity but less than tropical rainforests.
- Includes large evergreen trees, mosses, ferns, and lichens.

Importance of Forests:

Ecological:

- Maintain biodiversity.
- Regulate climate and water cycles.
- Prevent soil erosion and act as carbon sinks.

• Economic:

- Provide timber, fuel, medicinal plants, and raw materials.
- Support livelihoods through forest products and ecotourism.

3.4 Deforestation

Causes:

1. Shifting Cultivation:

- Traditional agricultural practice where land is cleared, used for a few years, and then abandoned.
- Leads to soil degradation and loss of forest cover.

2. Development Projects:

- o Infrastructure projects like dams, roads, and urban expansion require land clearance.
- Result in large-scale deforestation.

3. Fuel Requirements:

- High demand for firewood due to population growth.
- Leads to unsustainable tree cutting.

4. Raw Material Requirements:

- Wood and other forest products are vital for industries.
- Overexploitation of resources like timber, rubber, and medicinal plants.

5. Other Causes:

- Overgrazing by livestock.
- Mining activities.
- Urbanization and industrial activities.
- Natural disasters like floods and fires.

Effects:

• Environmental:

- Loss of biodiversity and habitat destruction.
- o Disruption of water cycles and reduction in precipitation.
- o Increased soil erosion and land degradation.
- Climate change due to loss of carbon sinks.

Social:

- Displacement of indigenous communities.
- Loss of livelihoods dependent on forest resources.

3.5 Grassland Ecosystem

Types of Grasslands:

1. Semi-Arid Zone:

- Found in Northern Gujarat, Rajasthan, Western Uttar Pradesh, Delhi, and Punjab.
- Characterized by hill spurs and sand dunes.

2. Dry Sub-Humid Zone:

Covers most of peninsular India.

3. Moist Sub-Humid Zone:

- Found in the Ganga alluvial plain in Northern India.
- Level, low-lying, and poorly drained topography.

4. Humid Montane Regions:

- Includes Assam, Manipur, West Bengal, Uttar Pradesh, Punjab, Himachal Pradesh, and Jammu & Kashmir.
- Savannas derived from humid forests due to shifting cultivation and grazing.

Economic Importance:

• Livestock Grazing:

- Supports large populations of domesticated animals.
- o Provides fuel, draught power, nutrition, and raw materials.

Biodiversity:

- Maintains populations of wild herbivores.
- Supports various ecosystems and food chains.

Impact of Grazing:

- Overgrazing leads to soil degradation, reduced grass cover, and erosion.
- Changes in microclimate and disruption of biogeochemical cycles.

Role of Fire:

- Maintains grasslands by preventing shrub and tree invasion.
- Increases forage yield under controlled burning conditions.

3.6 Desert Ecosystem

Characteristics:

- Climate:
 - Low rainfall (<25 cm annually).
 - Extreme temperature variations between day and night.

• Vegetation:

- o Sparse, drought-resistant plants like cacti and shrubs.
- o Adaptations include deep root systems, small leaves, and succulence.

Types of Deserts:

1. Hot Deserts (e.g., Thar Desert):

- High temperatures, low humidity, and scanty rainfall.
- o Plants include deep-rooted shrubs and succulents.
- Animals adapted to conserve water and avoid heat.

2. Cold Deserts (e.g., Ladakh, Leh, Kargil):

- Extreme cold with low precipitation.
- Sparse vegetation and specialized fauna like Tibetan antelope and snow leopards.

Adaptations:

Plants:

- o Conserve water through succulence, reduced leaf size, and deep root systems.
- o Germinate, bloom, and reproduce during short rainy seasons.

Animals:

- Physiological and behavioral adaptations to conserve water.
- Nocturnal habits to avoid daytime heat.
- Adaptations like long legs, fast running, and concentrated urine.

3.7 Desertification

Causes:

• Human Activities:

- o Overgrazing, deforestation, unsustainable agriculture, and mining.
- Population pressure and urbanization.

Status in India:

- 69.6% of land is under drylands.
- 32.07% of total land area undergoing land degradation.
- 81.45 million hectares affected by desertification.

Control Measures:

- National Action Programme for combating desertification.
- Integrated Watershed Management Programme.
- National Afforestation Programme.
- Mahatma Gandhi National Rural Employment Guarantee Scheme.
- Soil Conservation in River Catchments and Flood Prone Areas.
- Desert Development Programme.

Afforestation:

- Essential for preventing soil erosion and modifying hostile climates.
- Crucial for meeting local demands for firewood, timber, and fodder.

3.8 Indian State of Forest Report, 2017

Key Findings:

Forest Cover:

- o Total forest and tree cover is 24.39% of the total geographical area.
- Increase of 8,021 sq km (1%) compared to 2015.
- Very dense forest (VDF) has increased by 1.36%.
- o Madhya Pradesh has the largest forest cover, followed by Arunachal Pradesh and Chhattisgarh.

Percentage Cover:

- Mizoram has the highest forest cover percentage (88.93%), followed by Lakshadweep (84.56%).
- o 15 states/UTs have above 33% forest cover.
- Seven states/UTs have more than 75% forest cover.
- Eight states have forest cover between 33% and 75%.

Global Ranking:

• India ranks 10th in forest cover and 8th in net forest area gain.

These highly detailed notes should provide a deep understanding of the chapter, covering all key points and intricate details for your exams. If you need further details on specific topics, feel free to ask!