Functional Notes for RP2040 Minimal Board Design

Main Microcontroller

◆ U3 – RP2040

- Dual-core ARM Cortex-M0+ microcontroller.
- Needs external flash (U4) to store and run code.
- Connected to crystal (U1) for accurate clock signal.
- Powered by 3.3 V (+3V3) and 1.1 V (+1V1) internally.

External Flash Memory

U4 – W25Q128JVSIQ (16MB QSPI Flash)

- Stores your firmware (program code).
- Connected via 6 QSPI pins: QSPI_SS, QSPI_SCLK, QSPI_SD0 to QSPI_SD3.
- Max supported size by RP2040 is 16MB, so this is optimal.

▲ Power Supply Section

◆ U2 – NCP1117DT33RKG (3.3 V LDO Regulator)

- Converts USB 5V (VBUS) to 3.3 V for RP2040 and flash.
- C14, C15, C17 (10 μF) are filtering capacitors to stabilize power.

Decoupling Capacitors (Noise Filtering)

- C2 to C10, C16: 0.1 μF capacitors.
- C11, C12: 1 μF caps.
- Placed close to RP2040 pins to smooth out voltage fluctuations.
- Essential for stable operation, especially at high speeds.

Clock Source

◆ U1 – Crystal Oscillator (12 MHz, ABM8-272-T3)

- Provides precise timing signal to RP2040.
- C1 & C13 (15 pF): Load capacitors for the crystal.
- Connected to XIN and XOUT pins of RP2040.

USB Interface

◆ J1 – Micro USB Connector

- Used to provide power and data to the board.
- Pins D+ and D- connected via resistors R2, R3 (27 Ω) to RP2040.
- Connects to computer for USB communication (programming, debugging).
- R4 marked DNF: Optional pull-up for flash chip's QSPI_SS.

SOOT Mode Circuit

- $R5 1k\Omega + P3$ Header (USB_BOOT)
 - Allows forcing RP2040 into USB BOOTSEL mode.
 - When P3 is shorted (jumper added) and RESET is toggled, RP2040 enters USB programming mode.
 - Useful for uploading firmware without a programmer.

🔁 RUN & RESET Logic

- ◆ **RUN pin**: Connected to a header (P2-29), allows external reset.
 - Pulling this pin low resets the RP2040.

Property Debug Interface (Optional)

- SWD and SWCLK (P2-31, P2-33): Used for in-circuit debugging with external debugger like a J-Link.
- Not required for normal use, but very useful for development.

General Purpose I/Os (GPIOs)

- P1 & P2 headers give access to all GPIOs (GPI00 to GPI029, including analog-capable ones).
- Some pins (GPIO26–GPIO29) can be used as ADC (analog input).

Other Notable Info

Label	Function
+3V3, +1V1	Power rails (regulated and internal)
GND	Ground reference for all components
C17	Bulk capacitor for +3V3 stability
P1, P2	2×36 pin headers for GPIOs
U3-57	GND exposed pad of RP2040

***** Board Summary

This board is a **minimal but complete system** to run RP2040 with:

- Program storage (QSPI flash),
- Power regulation (LDO),
- USB interface (programming/data),
- Reset and BOOT options,
- GPIO headers for external interfacing.

☼ Working Mechanism of the RP2040 Minimal Board

1. Power-Up Sequence

- Power is supplied via the USB connector (J1).
- VBUS (5V) from USB goes into the 3.3V regulator (U2: NCP1117DT33RKG).
- The regulator converts 5V into +3.3V, which powers:
 - o The **RP2040 (U3)**
 - o The flash memory (U4)
 - All I/O devices through the +3V3 rail
- Internal to RP2040, a **Low Dropout Regulator (LDO)** converts 3.3V to **1.1V (core voltage)** via LDOOUT.
- Capacitors (C14, C15, C17, C2–C12) ensure the voltage remains stable and noise-free.

② 2. Clock Initialization

- The 12 MHz crystal oscillator (U1) connected to RP2040's XIN and XOUT pins provides an accurate reference clock.
- Load capacitors (C1, C13) are tuned to match the crystal's required load.
- RP2040 uses this input to generate internal clock signals via its PLL (Phase-Locked Loop).

3. Boot Process

When RP2040 is powered or reset:

a. Checks QSPI_SS Pin (Pin 56):

- If **QSPI_SS** is **HIGH**, RP2040 boots from the external flash (U4).
- If QSPI_SS is LOW (via jumper on P3), it enters BOOTSEL (USB Mass Storage Mode).

✓ b. Boot from Flash Memory (U4)

- Flash memory stores the firmware (your program).
- RP2040 reads code using the **QSPI interface** (6 pins: QSPI_SS, SCLK, SD0–SD3).
- Executes code directly from flash (XIP = Execute in Place).

If BOOTSEL mode is entered, the board appears as a USB drive. You can drag and drop a .UF2 firmware file.

4. USB Communication

- USB D+ and D- (pins from J1) connect to RP2040 via resistors R2 and R3 (27 Ω).
- Allows communication with a computer:
 - o Programming via UF2 bootloader
 - Serial monitor output
 - o USB device functionality (e.g., keyboard, mouse)

5. Program Execution

- Once the code is loaded into the flash and RP2040 boots, the program runs automatically.
- Your program can:
 - o Control GPIO pins
 - o Read analog inputs (GPIO26–29)
 - o Send/receive data via UART, I2C, SPI
 - Use USB for HID/CDC tasks

6. Reset and USB_BOOT Functions

- RUN pin (P2-29): When pulled LOW momentarily, resets the microcontroller.
- USB_BOOT jumper (P3):
 - o Pulls QSPI_SS LOW
 - o On next reset, forces entry into BOOTSEL mode (for firmware upload)

7. Debugging (Optional)

- Pins SWD and SWCLK (P2-31, P2-33) allow connection to a debugger (e.g., J-Link).
- Useful during development for breakpoints, stepping, etc.

▲ 8. I/O and Expansion

- P1 and P2 headers expose all RP2040 GPIOs.
- Can connect sensors, buttons, LEDs, displays, etc.
- Pins 26–29 can be used for analog sensors (ADC inputs).

Summary Flowchart:

[USB Plugged In]

```
[5V VBUS → LDO Regulator (U2)] → [3.3V to RP2040 and Flash]

↓

[RP2040 Powers Up]

↓

[Crystal → Clock Initialized]

↓

[BOOT Check: QSPI_SS HIGH → Run Code | LOW → USB BOOT Mode]

↓

[RP2040 Reads Program from Flash via QSPI]

↓
```

[Program Executes \rightarrow Controls GPIO, USB, ADC, etc.]

