# RELATIONAL ALGEBRA

# RELATIONAL ALGEBRA

- ? There are two types of operations in RDBMS
  - Retrieval
  - Update
- ? The set of operations for specifying **retrieval requests** (or **queries**) in relational model is called Relational Algebra.
- ? A sequence of relational algebra operations forms a relational algebra expression.

# Company Database Considered in Examples

#### **EMPLOYEE**



# SELECT OPERATION (UNARY OPERATION)

- ? This operation selects a subset of tuples from a relation that satisfy a selection condition.
- $\square$  Select is denoted by:  $\sigma_{\text{selection condition}}(R)$

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |  |
|----------------|---------|-----------|----------------|--|
| Research       | 5       | 333445555 | 1988-05-22     |  |
| Administration | 4       | 987654321 | 1995-01-01     |  |
| Headquarters   | 1       | 888665555 | 1981-06-19     |  |

#### **DEPT\_LOCATIONS**

| Dnumber | Dlocation |  |
|---------|-----------|--|
| 1       | Houston   |  |
| 4       | Stafford  |  |
| 5       | Bellaire  |  |
| 5       | Sugarland |  |
| 5       | Houston   |  |

# **EXAMPLES: SELECT OPERATION**

? Select the employees whose department number is 4:

$$\sigma_{\text{DNO}=4}$$
 (EMPLOYEE)

- ? Select all the projects in department 5
- ? Select the employees whose salary is greater than \$35,000

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | ٧     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |  |
|----------------|---------|-----------|----------------|--|
| Research       | 5       | 333445555 | 1988-05-22     |  |
| Administration | 4       | 987654321 | 1995-01-01     |  |
| Headquarters   | 1       | 888665555 | 1981-06-19     |  |

#### WORKS\_ON

| Essn      | <u>Pno</u> | Hours |
|-----------|------------|-------|
| 123456789 | 1          | 32.5  |
| 123456789 | 2          | 7.5   |
| 666884444 | 3          | 40.0  |
| 453453453 | 1          | 20.0  |
| 453453453 | 2          | 20.0  |
| 333445555 | 2          | 10.0  |
| 333445555 | 3          | 10.0  |
| 333445555 | 10         | 10.0  |
| 333445555 | 20         | 10.0  |
| 999887777 | 30         | 30.0  |
| 999887777 | 10         | 10.0  |
| 987987987 | 10         | 35.0  |
| 987987987 | 30         | 5.0   |
| 987654321 | 30         | 20.0  |
| 987654321 | 20         | 15.0  |
| 888665555 | 20         | NULL  |

#### DEPT\_LOCATIONS

| Dnumber | Dlocation |
|---------|-----------|
| 1       | Houston   |
| 4       | Stafford  |
| 5       | Bellaire  |
| 5       | Sugarland |
| 5       | Houston   |

#### **PROJECT**

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### DEPENDENT

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

# SELECT OPERATION

- ? Selection condition is a Boolean expression specified on the attributes of relation R
  - It can include boolean operators AND, OR, NOT applied on relational operators <, > <=,>=, !=, =
- ? Select  $\sigma$  is commutative:

$$\sigma_{\text{}}(\sigma_{\text{}}(R)) = \sigma_{\text{}}(\sigma_{\text{}}(R))$$

? Cascade of Select operations

$$\sigma_{<\operatorname{cond}1>}(\sigma_{<\operatorname{cond}2>} \ (\sigma_{<\operatorname{cond}3>}(R)) = \sigma_{<\operatorname{cond}1> \ \operatorname{AND} \ < \operatorname{cond}2> \ \operatorname{AND} \ < \operatorname{cond}3>}(R)))$$

# σ<sub>(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)</sub> (EMPLOYEE).

| Fname    | Minit | Lname   | <u>Ssn</u> | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|------------|------------|--------------------------|-----|--------|-----------|-----|
| Franklin | Т     | Wong    | 333445555  | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Jennifer | S     | Wallace | 987654321  | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444  | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |

# PROJECT OPERATION (UNARY OPERATION)

- ? This operation selects a subset of columns from the existing relation.
- ? Project operation is denoted by  $\pi_{\text{<attribute list>}} R$
- ? It removes duplicate tuples, the result of project is set of tuples

### Example:

- ? RESULT  $\leftarrow \pi_{\text{LNAME, FNAME, SALARY}}$  (EMPLOYEE)
- ?  $DN \leftarrow \pi_{DNAME, DNUMBER}$  (DEPARTMENT)

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

| Lname   | Fname    | Salary |
|---------|----------|--------|
| Smith   | John     | 30000  |
| Wong    | Franklin | 40000  |
| Zelaya  | Alicia   | 25000  |
| Wallace | Jennifer | 43000  |
| Narayan | Ramesh   | 38000  |
| English | Joyce    | 25000  |
| Jabbar  | Ahmad    | 25000  |
| Borg    | James    | 55000  |

# PROJECT OPERATION

- ? Project operation is *not* commutative
- ?  $\pi_{< list1>} (\pi_{< list2>} (R)) = \pi_{< list1>} (R)$  as long as < list2> contains the attributes in < list1>
- ? No of Tuples in the result of projection  $\pi_{< list>}(R)$ 
  - less or equal to the number of tuples in R
  - If the list of attributes includes a *key* of R, then the no of is *equal* to the no of tuples in R

# RELATIONAL ALGEBRA EXPRESSIONS

- ? We may want to apply several relational algebra operations one after the other
  - We can write the operations as a single relational algebra expression by nesting the operations, or
  - 2. We can apply one operation at a time and create **intermediate result relations**.

# Example: Sequence of Operations

- ? To retrieve the first name, last name, and salary of all employees who work in Department 5
- ? Result of sequence of operations:
  - $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO}=5}(\text{EMPLOYEE}))$
- ? Using intermediate relation:
  - D5  $\leftarrow$   $\sigma_{DNO=5}(EMPLOYEE)$
  - RESULT  $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$  (D5)
- ? Renaming of attributes
  - $D5 \leftarrow \sigma_{DNO=5}(EMPLOYEE)$
  - R (FirstName, LastName, Salary)  $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$  (D5)

# Example of applying multiple operations and RENAME

#### (a)

| Fname    | Lname   | Salary |
|----------|---------|--------|
| John     | Smith   | 30000  |
| Franklin | Wong    | 40000  |
| Ramesh   | Narayan | 38000  |
| Joyce    | English | 25000  |

 $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO}=5}(\text{EMPLOYEE}))$ 

 $D5 \leftarrow \sigma_{DNO=5}(EMPLOYEE)$ 

R (First\_name, Last\_name, Salary)  $\leftarrow \pi_{\text{Fname, Lname, Salary}}$  (D5)

#### (b)

#### **TEMP**

| Fname    | Minit | Lname   | <u>Ssn</u> | Bdate      | Address                 | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|------------|------------|-------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789  | 1965-01-09 | 731 Fondren, Houston,TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555  | 1955-12-08 | 638 Voss, Houston,TX    | М   | 40000  | 888665555 | 5   |
| Ramesh   | K     | Narayan | 666884444  | 1962-09-15 | 975 Fire Oak, Humble,TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453  | 1972-07-31 | 5631 Rice, Houston, TX  | F   | 25000  | 333445555 | 5   |

#### R

| First_name | Last_name | Salary |
|------------|-----------|--------|
| John       | Smith     | 30000  |
| Franklin   | Wong      | 40000  |
| Ramesh     | Narayan   | 38000  |
| Joyce      | English   | 25000  |

#### Figure 6.2

Results of a sequence of operations. (a)  $\pi_{\text{Fname, Lname, Salary}}(\sigma_{\text{Dno=5}}(\text{EMPLOYEE}))$ .

(b) Using intermediate relations and renaming of attributes.

# RENAME OPEARATION

- ? Rename operator is denoted by  $\rho$  (rho)
- ? Rename operation  $\rho$  can be expressed as:
  - $\rho_{S}(R)$  rename the *relation* to S
  - $\rho_{(B1, B2, ..., Bn)}(R)$  rename the *attributes* to B1, B2, .....Bn
- ? Example:
  - $\bullet \ \rho_{\ RESULT\ (First\_Name, Last\_Name,\ DNO)}(D5)$

# Union (Binary Operation)

- ? The result of  $R \cup S$ , is a relation that includes all tuples that are either in R or in S or in both R and S
- ? Duplicate tuples are eliminated
- ? The two relations R and S must be "type compatible" (or Union compatible)
  - ? R and S must have same number of attributes
  - ? Each pair of corresponding attributes must have same or compatible domains

# UNION EXAMPLE

To retrieve the social security numbers of all employees who either work in department 5 or directly supervise an employee who works in department 5

 $\begin{aligned} \text{DEP5\_EMPS} \leftarrow \sigma_{\text{DNO=5}} & \left( \text{EMPLOYEE} \right) \\ \text{RESULT1} \leftarrow \pi_{\text{SSN}} & \left( \text{DEP5\_EMPS} \right) \\ \text{RESULT2} & \left( \text{SSN} \right) \leftarrow \pi_{\text{SUPERSSN}} & \left( \text{DEP5\_EMPS} \right) \\ \text{RESULT} \leftarrow & \text{RESULT1} \cup & \text{RESULT2} \end{aligned}$ 

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### **RESULT1**

|     | Ssn       |
|-----|-----------|
|     | 123456789 |
|     | 333445555 |
| 000 | 666884444 |
| 101 | 453453453 |

#### **RESULT2**

| Ssn       |
|-----------|
| 333445555 |
| 888665555 |

#### **RESULT**

| Ssn       |
|-----------|
| 123456789 |
| 333445555 |
| 666884444 |
| 453453453 |
| 888665555 |

# INTERSECTION AND SET DIFFERENCE (BINARY OPERATIONS)

- ? INTERSECTION operation: the result of  $R \cap S$ , is a relation that includes all tuples that are in both R and S
- ? SET DIFFERENCE operation: the result of R-S, is a relation that includes all tuples that are in R but not in S
- ? Two relations R and S must be "type compatible"

# RELATIONAL ALGEBRA OPERATIONS FROM SET THEORY

- ? Both  $\cup$  and  $\cap$  are *commutative* operations
  - $R \cup S = S \cup R$ , and  $R \cap S = S \cap R$
- ? Both  $\cup$  and  $\cap$  can be treated as n-ary operations
  - $R \cup (S \cup T) = (R \cup S) \cup T$
  - $(R \cap S) \cap T = R \cap (S \cap T)$
- ? Minus operation is not commutative
  - $\bullet$  R S  $\neq$  S R

# Example to illustrate the result of UNION, INTERSECT, and DIFFERENCE

#### (a) STUDENT

| Fn      | Ln      |
|---------|---------|
| Susan   | Yao     |
| Ramesh  | Shah    |
| Johnny  | Kohler  |
| Barbara | Jones   |
| Amy     | Ford    |
| Jimmy   | Wang    |
| Ernest  | Gilbert |

#### **INSTRUCTOR**

| Fname   | Lname   |
|---------|---------|
| John    | Smith   |
| Ricardo | Browne  |
| Susan   | Yao     |
| Francis | Johnson |
| Ramesh  | Shah    |

(b)

| Ln      |
|---------|
| Yao     |
| Shah    |
| Kohler  |
| Jones   |
| Ford    |
| Wang    |
| Gilbert |
| Smith   |
| Browne  |
| Johnson |
|         |

| (c) | Fn     | Ln   |
|-----|--------|------|
|     | Susan  | Yao  |
|     | Ramesh | Shah |

| (d) | Fn      | Ln      |  |  |
|-----|---------|---------|--|--|
|     | Johnny  | Kohler  |  |  |
|     | Barbara | Jones   |  |  |
|     | Amy     | Ford    |  |  |
|     | Jimmy   | Wang    |  |  |
|     | Ernest  | Gilbert |  |  |

| e) | Fname   | Lname   |
|----|---------|---------|
|    | John    | Smith   |
|    | Ricardo | Browne  |
|    | Francis | Johnson |

#### Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT − INSTRUCTOR. (e) INSTRUCTOR − STUDENT.

### CARTESIAN PRODUCT

- ? The result of Cartesian product of two relations R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm) is given as: Result(A1, A2, . . ., An, B1, B2, . . ., Bm)
- ? Let  $|R| = n_R$  and  $|S| = n_S$ , then  $|R \times S| = n_R * n_S$
- ? R and S may NOT be "type compatible"
- ? Cross Product is a meaningful operation only if it is followed by other operations

### Example (not meaningful):

$$\begin{array}{l} F \leftarrow \sigma_{\text{SEX='F'}}(\text{EMPLOYEE}) \\ \text{EN} \leftarrow \pi_{\text{FNAME, LNAME, SSN}}(F) \\ \text{E\_DP} \leftarrow \text{EN x DEPENDENT} \end{array}$$

#### **Problem:**

Retrieve a list of each female employee's dependents

### Example (meaningful):

$$\begin{array}{l} {\rm A\_DP} \leftarrow \sigma_{\rm \, SSN=ESSN}(\mathbf{E\_DP}) \\ {\rm R} \leftarrow \pi_{\rm \, FNAME, \, LNAME, \, DEPENDENT\_NAME}({\rm A\_DP}) \end{array}$$

#### **DEPENDENT**

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

#### Figure 6.5

The CARTESIAN PRODUCT (CROSS PRODUCT) operation.



#### FEMALE\_EMPS

|   | Fname    | Minit | Lname   | Ssn       | Bdate      | Address                 | Sex | Salary | Super_ssn | Dno |
|---|----------|-------|---------|-----------|------------|-------------------------|-----|--------|-----------|-----|
|   | Alicia   | J     | Zelaya  | 999887777 | 1968-07-19 | 3321 Castle, Spring, TX | F   | 25000  | 987654321 | 4   |
|   | Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| 1 | Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX  | F   | 25000  | 333445555 | 5   |

#### EN

#### MPNAMES

| 1 | Fname    | Lname   | Ssn       |  |  |
|---|----------|---------|-----------|--|--|
|   | Alicia   | Zelaya  | 999887777 |  |  |
|   | Jennifer | Wallace | 987654321 |  |  |
|   | Joyce    | English | 453453453 |  |  |

### E\_DI

#### EMP\_DEPENDENTS

| CIMIL_DE | PENDEN  | 13        |           |                |     |            |      |
|----------|---------|-----------|-----------|----------------|-----|------------|------|
| Fname    | Lname   | Ssn       | Essn      | Dependent_name | Sex | Bdate      |      |
| Alicia   | Zelaya  | 999887777 | 333445555 | Alice          | F   | 1986-04-05 |      |
| Alicia   | Zelaya  | 999887777 | 333445555 | Theodore       | М   | 1983-10-25 |      |
| Alicia   | Zelaya  | 999887777 | 333445555 | Joy            | F   | 1958-05-03 |      |
| Alicia   | Zelaya  | 999887777 | 987654321 | Abner          | М   | 1942-02-28 | 20.0 |
| Alicia   | Zelaya  | 999887777 | 123456789 | Michael        | М   | 1988-01-04 |      |
| Alicia   | Zelaya  | 999887777 | 123456789 | Alice          | F   | 1988-12-30 |      |
| Alicia   | Zelaya  | 999887777 | 123456789 | Elizabeth      | F   | 1967-05-05 |      |
| Jennifer | Wallace | 987654321 | 333445555 | Alice          | F   | 1986-04-05 | ***  |
| Jennifer | Wallace | 987654321 | 333445555 | Theodore       | М   | 1983-10-25 |      |
| Jennifer | Wallace | 987654321 | 333445555 | Joy            | F   | 1958-05-03 |      |
| Jennifer | Wallace | 987654321 | 987654321 | Abner          | М   | 1942-02-28 |      |
| Jennifer | Wallace | 987654321 | 123456789 | Michael        | М   | 1988-01-04 |      |
| Jennifer | Wallace | 987654321 | 123456789 | Alice          | F   | 1988-12-30 |      |
| Jennifer | Wallace | 987654321 | 123456789 | Elizabeth      | F   | 1967-05-05 |      |
| Joyce    | English | 453453453 | 333445555 | Alice          | F   | 1986-04-05 |      |
| Joyce    | English | 453453453 | 333445555 | Theodore       | М   | 1983-10-25 |      |
| Joyce    | English | 453453453 | 333445555 | Joy            | F   | 1958-05-03 |      |
| Joyce    | English | 453453453 | 987654321 | Abner          | М   | 1942-02-28 |      |
| Joyce    | English | 453453453 | 123456789 | Michael        | М   | 1988-01-04 |      |
| Joyce    | English | 453453453 | 123456789 | Alice          | F   | 1988-12-30 |      |
| Joyce    | English | 453453453 | 123456789 | Elizabeth      | F   | 1967-05-05 |      |
|          |         |           |           |                |     |            |      |

#### **ACTUAL DEPENDENTS**

| Fname    | Lname   | Ssn       | Essn      | Dependent_name | Sex | Bdate      |  |
|----------|---------|-----------|-----------|----------------|-----|------------|--|
| Jennifer | Wallace | 987654321 | 987654321 | Abner          | М   | 1942-02-28 |  |

#### RESULT

|   | Fname    | Lname   | Dependent_name |
|---|----------|---------|----------------|
| , | Jennifer | Wallace | Abner          |



# JOIN(BINARY OPERATION)

- ? JOIN denoted by ⋈ combine related tuples from various relations
- ? JOIN combines CARTESIAN PRODECT and SELECT into a single operation
- ? General form of a join operation on two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bm) is:

# Example of JOIN operation

? Retrieve the name of the manager of each department.

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |  |
|----------------|---------|-----------|----------------|--|
| Research       | 5       | 333445555 | 1988-05-22     |  |
| Administration | 4       | 987654321 | 1995-01-01     |  |
| Headquarters   | 1       | 888665555 | 1981-06-19     |  |

# $DEPT\_MGR \leftarrow DEPARTMENT \quad \underset{MGRSSN=SSN}{\blacktriangleright} EMPLOYEE$

? The join condition can also be specified as DEPARTMENT.MGRSSN= EMPLOYEE.SSN

#### DEPT\_MGR

| Dname          | Dnumber | Mgr_ssn   | <br>Fname    | Minit | Lname   | Ssn       |  |
|----------------|---------|-----------|--------------|-------|---------|-----------|--|
| Research       | 5       | 333445555 | <br>Franklin | Т     | Wong    | 333445555 |  |
| Administration | 4       | 987654321 | <br>Jennifer | S     | Wallace | 987654321 |  |
| Headquarters   | 1       | 888665555 | <br>James    | E     | Borg    | 888665555 |  |

# COMPLETE SET OF RELATIONAL OPERATIONS

- ? The set of operations including
  - SELECT σ,
  - PROJECT  $\pi$ ,
  - UNION ∪,
  - DIFFERENCE ,
  - RENAME  $\rho$ , and
  - CARTESIAN PRODUCT X

is called a *complete set* because any relational algebra expression can be expressed using these.

- ? For example:
  - $R \cap S = (R \cup S) ((R S) \cup (S R))$
  - R  $\underset{\text{<join condition>}}{\triangleright} S = \sigma_{\text{<join condition>}} (R X S)$

# Some properties of JOIN

- ? Consider the following JOIN operation:
  - R(A1, A2, ..., An)  $\searrow$  S(B1, B2, ..., Bm) R.Ai=S.Bj
  - Result is a relation Q with degree n + m attributes: Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
  - Relation Q has one tuple for each combination of tuples—r from R and s from S, but *only if they* satisfy the join condition r[Ai]=s[Bj]
  - If R has  $n_R$  tuples, and S has  $n_S$  tuples, then no of tuples in join result  $< n_R * n_S$ .

# THETA-JOIN

? The general case of JOIN operation is called a Theta-join:  $R \bowtie S$ 

theta

- ? Theta is a boolean expression on the attributes of R and S; for example:
  - R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)
- ? Theta can have any comparison operators  $\{=,\neq,<, \leq,>,\geq,\}$

# Equi-Join

? EQUIJOIN is a join condition that involves only equality operator = .

# ? Example:

- DEPT\_MGR  $\leftarrow$  DEPARTMENT  $_{\text{MGRSSN=SSN}}$  EMPLOYEE
- Retrieve a list of each female employee's dependents

$$F \leftarrow \sigma_{SEX='F'}(EMPLOYEE)$$
 $EN \leftarrow \pi_{FNAME, LNAME, SSN}(F)$ 
 $E\_DP \leftarrow EN \longrightarrow DEPENDENT$ 
 $SSN=ESSN$ 

# Issue with Equijoin Operation

#### DEPT\_MGR

| Dname          | Dnumber | Mgr_ssn   | <br>Fname    | Minit | Lname   | Ssn       |  |
|----------------|---------|-----------|--------------|-------|---------|-----------|--|
| Research       | 5       | 333445555 | Franklin     | Т     | Wong    | 333445555 |  |
| Administration | 4       | 987654321 | <br>Jennifer | S     | Wallace | 987654321 |  |
| Headquarters   | 1       | 888665555 | <br>James    | E     | Borg    | 888665555 |  |

- ? Superfluous column
- ? Result of EQUIJOIN always have one or more pairs of attributes that have identical values in every tuple.

# NATURAL JOIN OPERATION

- ? NATURAL JOIN operation (denoted by \*) is created to get rid of the superfluous attribute in an EQUIJOIN condition.
- ? The two join attributes, or each pair of corresponding join attributes must *have the same name* in both relations
  - If this is not the case, a renaming operation is applied first.

# NATURAL JOIN OPERATION

- ? **Example:** To apply a natural join on the DNUMBER attributes of DEPARTMENT and DEPT\_LOCATIONS, it is sufficient to write:
  - DEPT\_LOCS ← DEPARTMENT \* DEPT\_LOCATIONS
- ? Only attribute with the same name is DNUMBER
- ? An implicit join condition is created based on this attribute: DEPARTMENT.DNUMBER=DEPT\_LOCATIONS.DNUMBER

#### **DEPARTMENT**

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |
|----------------|---------|-----------|----------------|
| Research       | 5       | 333445555 | 1988-05-22     |
| Administration | 4       | 987654321 | 1995-01-01     |
| Headquarters   | 1       | 888665555 | 1981-06-19     |

#### **DEPT\_LOCATIONS**

| Dnumber | Dlocation |  |
|---------|-----------|--|
| 1       | Houston   |  |
| 4       | Stafford  |  |
| 5       | Bellaire  |  |
| 5       | Sugarland |  |
| 5       | Houston   |  |

# Example: Natural Join

- ? Another example:  $Q \leftarrow R(A,B,C,D) * S(C,D,E)$ 
  - The implicit join condition includes *each pair* of attributes with the same name, "AND" together:
    - <sup>2</sup> R.C=S.C AND R.D=.S.D
  - Result keeps only one attribute of each such pair:
    - Q(A,B,C,D,E)

# Example of NATURAL JOIN OPERATION

(a) PROJ\_DEPT

| Pname           | <u>Pnumber</u> | Plocation | Dnum | Dname          | Mgr_ssn   | Mgr_start_date |
|-----------------|----------------|-----------|------|----------------|-----------|----------------|
| ProductX        | 1              | Bellaire  | 5    | Research       | 333445555 | 1988-05-22     |
| ProductY        | 2              | Sugarland | 5    | Research       | 333445555 | 1988-05-22     |
| ProductZ        | 3              | Houston   | 5    | Research       | 333445555 | 1988-05-22     |
| Computerization | 10             | Stafford  | 4    | Administration | 987654321 | 1995-01-01     |
| Reorganization  | 20             | Houston   | 1    | Headquarters   | 888665555 | 1981-06-19     |
| Newbenefits     | 30             | Stafford  | 4    | Administration | 987654321 | 1995-01-01     |

#### (b) DEPT\_LOCS

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date | Location  |
|----------------|---------|-----------|----------------|-----------|
| Headquarters   | 1       | 888665555 | 1981-06-19     | Houston   |
| Administration | 4       | 987654321 | 1995-01-01     | Stafford  |
| Research       | 5       | 333445555 | 1988-05-22     | Bellaire  |
| Research       | 5       | 333445555 | 1988-05-22     | Sugarland |
| Research       | 5       | 333445555 | 1988-05-22     | Houston   |

Figure 6.7

Results of two NATURAL JOIN operations.

(a) PROJ\_DEPT ← PROJECT \* DEPT.

(b) DEPT\_LOCS ← DEPARTMENT \* DEPT\_LOCATIONS.

# DIVISION (BINARY OPERATION)

- The division operation is applied to two relations  $R(Z) \div S(X)$ , where  $X \subseteq Z$ .
- Let Y = Z X
  - We have  $Z = X \cup Y$  and Y is a set of attributes of R that are not the attributes of S.
  - The result of DIVISION is a relation T(Y)
- For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with *every* tuple in S.

3

| N. |    |  |
|----|----|--|
| Α  | В  |  |
| a1 | b1 |  |
| a2 | b1 |  |
| аЗ | b1 |  |
| a4 | b1 |  |
| a1 | b2 |  |
| аЗ | b2 |  |
| a2 | b3 |  |
| аЗ | b3 |  |
| a4 | b3 |  |
| a1 | b4 |  |
| a2 | b4 |  |
| аЗ | b4 |  |

S

|   | Α  |  |
|---|----|--|
| Г | a1 |  |
|   | a2 |  |
|   | аЗ |  |

Т

|   | В  |  |
|---|----|--|
|   | b1 |  |
| Г | b4 |  |

# EXAMPLE OF DIVISION

Retrieve all employees who work on all the project that *John Smith* works on

- Smith  $\square$   $\sigma$  fname='John' and lname='Smith' (Employee)
- Smith\_Pnos  $\square$   $\pi$  Pno (Works\_on  $\stackrel{\triangleright}{\triangleright}$  Smith)
- Ssn\_Pnos  $\square$   $\pi$  <sub>Essn,Pno</sub> (Works\_on)
- ullet SSNS(ssn)  $\Box$  Ssn\_Pnos  $\div$  Smith\_Pnos

#### SSN PNOS

|                                                                            | ×                                      |
|----------------------------------------------------------------------------|----------------------------------------|
| Essn                                                                       | Pno                                    |
| 123456789                                                                  | 1                                      |
| 123456789                                                                  | 2                                      |
| 666884444                                                                  | 3                                      |
| 453453453                                                                  | 1                                      |
| 453453453                                                                  | 2                                      |
| 333445555                                                                  | 2                                      |
| 333445555                                                                  | 3                                      |
| 333445555                                                                  | 10                                     |
| 333445555                                                                  | 20                                     |
| 999887777                                                                  | 30                                     |
| 999887777                                                                  | 10                                     |
| 987987987                                                                  | 10                                     |
| 987987987                                                                  | 30                                     |
| 987654321                                                                  | 30                                     |
| 987654321                                                                  | 20                                     |
| 888665555                                                                  | 20                                     |
| 999887777<br>999887777<br>987987987<br>987987987<br>987654321<br>987654321 | 20<br>30<br>10<br>10<br>30<br>30<br>20 |

#### SMITH\_PNOS

| Pno |
|-----|
| 1   |
| 2   |

#### SSNS

| Ssn       |
|-----------|
| 123456789 |
| 453453453 |

# RECAP OF RELATIONAL ALGEBRA OPERATIONS

**Table 6.1**Operations of Relational Algebra

| Operation            | Purpose                                                                                                                                                                                    | Notation                                                                                                                           |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| SELECT               | Selects all tuples that satisfy the selection condition from a relation $R$ .                                                                                                              | $\sigma_{\langle \text{selection condition} \rangle}(R)$                                                                           |
| PROJECT              | Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.                                                                                       | $\pi_{< attribute \ list>}(R)$                                                                                                     |
| THETA JOIN           | Produces all combinations of tuples from $R_1$ and $R_2$ that satisfy the join condition.                                                                                                  | $R_1 \bowtie_{< \text{join condition}>} R_2$                                                                                       |
| EQUIJOIN             | Produces all the combinations of tuples from $R_1$ and $R_2$ that satisfy a join condition with only equality comparisons.                                                                 | $R_1 \bowtie_{<\text{join condition}>} R_2,$ OR $R_1 \bowtie_{(<\text{join attributes 1}>),}$ $(<\text{join attributes 2}>)$       |
| NATURAL JOIN         | Same as EQUIJOIN except that the join attributes of $R_2$ are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all. | $R_1*_{<\text{join condition}>} R_2,$ OR $R_1*_{(<\text{join attributes 1>}),}$ $(<\text{join attributes 2>})$ $R_2$ OR $R_1*_R_2$ |
| UNION                | Produces a relation that includes all the tuples in $R_1$ or $R_2$ or both $R_1$ and $R_2$ ; $R_1$ and $R_2$ must be union compatible.                                                     | $R_1 \cup R_2$                                                                                                                     |
| INTERSECTION         | Produces a relation that includes all the tuples in both $R_1$ and $R_2$ ; $R_1$ and $R_2$ must be union compatible.                                                                       | $R_1 \cap R_2$                                                                                                                     |
| DIFFERENCE           | Produces a relation that includes all the tuples in $R_1$ that are not in $R_2$ ; $R_1$ and $R_2$ must be union compatible.                                                                | $R_1 - R_2$                                                                                                                        |
| CARTESIAN<br>PRODUCT | Produces a relation that has the attributes of $R_1$ and $R_2$ and includes as tuples all possible combinations of tuples from $R_1$ and $R_2$ .                                           | $R_1 \times R_2$                                                                                                                   |
| DIVISION             | Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in $R_1$ in combination with every tuple from $R_2(Y)$ , where $Z = X \cup Y$ .                         | $R_1(Z) \div R_2(Y)$                                                                                                               |

# AGGREGATE FUNCTIONS

? Now we specify mathematical **aggregate functions** on collections of values from the database.

### ? Examples:

- Retrieve the average or total salary of all employees
- Retrieve total number of employee tuples
- ? Functions applied to collections of numeric values include
  - SUM, AVERAGE, MAXIMUM, and MINIMUM.
  - COUNT function is used for counting tuples or values.

# AGGREGATE FUNCTION OPERATION

- ? Use of the Aggregate Functional operation  $\mathcal{F}$ 
  - ullet  $\mathcal{F}_{\text{MAX Salary}}$  (EMPLOYEE)
  - $\mathcal{F}_{MIN \text{ Salary}}$  (EMPLOYEE)
  - $\mathcal{F}_{SUM Salary}$  (EMPLOYEE)
  - $\mathcal{F}_{\text{COUNT SSN, AVERAGE Salary}}$  (EMPLOYEE)
    - ? computes no of employees and their average salary
    - Note: count just counts the number of rows, without removing duplicates

## Using Grouping with Aggregation

? Grouping can be combined with Aggregate Functions

## ? Example:

- For each department, retrieve the DNO, COUNT SSN, and AVERAGE SALARY
- ullet DNO  $\mathcal{F}_{\text{COUNT SSN, AVERAGE Salary}}$  (EMPLOYEE)

## **EXAMPLE: AGGREGATE FUNCTIONS AND GROUPING**

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                            |                               | Salary    | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|------------------------------------|-------------------------------|-----------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX           | Fondren, Houston, TX M 30000  |           | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX              | 638 Voss, Houston, TX M 40000 |           | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX F 25000    |                               | 987654321 | 4         |     |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX            | 1 Berry, Bellaire, TX F 43000 |           | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX           | М                             | 38000     | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX F 25000 333 |                               | 333445555 | 5         |     |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX M          |                               | 25000     | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX             |                               | 55000     | NULL      | 1   |

The aggregate function operation.

(a)  $\rho_{R(Dno, No\_of\_employees, Average\_sal)}$  ( $\rho_{Dno}$   $\rho_{COUNT Ssn, AVERAGE Salary}$  (EMPLOYEE)). (b)  $\rho_{Dno}$   $\rho_{COUNT Ssn, AVERAGE Salary}$  (EMPLOYEE).

(c) 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE).

R

| (a) | Dno No_of_employees |   | Average_sal |
|-----|---------------------|---|-------------|
|     | 5                   | 4 | 33250       |
|     | 4                   | 3 | 31000       |
|     | 1                   | 1 | 55000       |

| (c) | Count_ssn | Average_salary |
|-----|-----------|----------------|
|     | 8         | 35125          |

| (b) | Dno | Count_ssn | Average_salary |
|-----|-----|-----------|----------------|
|     | 5   | 4         | 33250          |
|     | 4   | 3         | 31000          |
|     | 1   | 1         | 55000          |

# Examples of Queries in Relational Algebra

• Q1: Retrieve the name and address of all employees who work for the 'Research' department.

RESEARCH\_DEPT  $\leftarrow \sigma$  dname='research' (DEPARTMENT)

RESEARCH\_EMPS  $\leftarrow$  (RESEARCH\_DEPT  $\searrow$  dnumber= dno EMPLOYEE)

RESULT  $\leftarrow \pi$  fname, lname, address (RESEARCH\_EMPS)

#### **EMPLOYEE**

| Fname    | Minit | Lname   | <u>Ssn</u> | Bdate      | Address                                  | Sex                                  | Salary    | Super_ssn | Dno |
|----------|-------|---------|------------|------------|------------------------------------------|--------------------------------------|-----------|-----------|-----|
| John     | В     | Smith   | 123456789  | 1965-01-09 | 731 Fondren, Houston, TX                 | 731 Fondren, Houston, TX M 30000 333 |           | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555  | 1955-12-08 | 638 Voss, Houston, TX M 40000 888665     |                                      | 888665555 | 5         |     |
| Alicia   | J     | Zelaya  | 999887777  | 1968-01-19 | 3321 Castle, Spring, TX                  | astle, Spring, TX F 25000 98         |           | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321  | 1941-06-20 | 291 Berry, Bellaire, TX                  | F 43000 88866555                     |           | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444  | 1962-09-15 | 975 Fire Oak, Humble, TX                 | М                                    | 38000     | 333445555 | 5   |
| Joyce    | Α     | English | 453453453  | 1972-07-31 | 5631 Rice, Houston, TX                   | F 25000 33344                        |           | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987  | 1969-03-29 | 980 Dallas, Houston, TX M 25000 98765432 |                                      | 987654321 | 4         |     |
| James    | Е     | Borg    | 888665555  | 1937-11-10 | 0 450 Stone, Houston, TX M 55000 NULL    |                                      | NULL      | 1         |     |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |
|----------------|---------|-----------|----------------|
| Research       | 5       | 333445555 | 1988-05-22     |
| Administration | 4       | 987654321 | 1995-01-01     |
| Headquarters   | 1       | 888665555 | 1981-06-19     |

#### **DEPT LOCATIONS**

| Dnumber | Dlocation |
|---------|-----------|
| 1       | Houston   |
| 4       | Stafford  |
| 5       | Bellaire  |
| 5       | Sugarland |
| 5       | Houston   |

# Examples of Queries in Relational Algebra

Q6: Retrieve the names of employees who have no dependents.

 $ALL\_EMPS \leftarrow \pi \text{ ssn}(EMPLOYEE)$ 

888665555 | 1937-1

EMPS\_WITH\_DEPS(SSN)  $\leftarrow \pi \text{ ESSN}(DEPENDENT)$ 

EMPS\_WITHOUT\_DEPS ← (ALL\_EMPS - EMPS\_WITH\_DEPS)

RESULT  $\leftarrow \pi$  LNAME, FNAME (EMPS\_WITHOUT\_DEPS \* EMPLOYEE)

#### **EMPLOYEE**

James

Borg

| Fname    | Minit | Lname                 | Ssn       | Bdate              | Address                           | Sex | Salary | Super_ssn | ſ |
|----------|-------|-----------------------|-----------|--------------------|-----------------------------------|-----|--------|-----------|---|
| John     | В     | Smith                 | 123456789 | 1965-01-09         | 731 Fondren, Houston, TX          | М   | 30000  | 333445555 | Г |
| Franklin | Т     | Wong                  | 333445555 | 1955-12-08         | 638 Voss, Houston, TX             | М   | 40000  | 888665555 | Г |
| Alicia   | J     | Zelaya                | 999887777 | 1968-01-19         | 3321 Castle, Spring, TX           | F   | 25000  | 987654321 | Т |
| Jennifer | S     | Wallace               | 987654321 | 1941-06-20         | 291 Berry, Bellaire, TX           | F   | 43000  | 888665555 | Γ |
| Ramesh   | K     | Narayan               | 666884444 | 1962-09-15         | 975 Fire Oak, Humble, TX          | М   | 38000  | 333445555 | T |
| Joyce    | Α     | English               | 453453453 | 1972-07-21         | 1972-07-21 F621 Disa Hauster TV F |     | 05000  | 22244555  | 1 |
| Ahmad    | V     | Jabbar                | 987987987 | 1969-0 <b>DE</b> I | PENDENT                           |     |        |           |   |
|          |       | O <sub>marrow</sub> . |           |                    |                                   |     |        |           | _ |

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

Dno

# Examples of Queries in Relational Algebra

Q5: Retrieve the names of all employees with two or more dependents.

T1(Ssn, No\_of\_dependents) 
$$\leftarrow$$
 Essn  $\mathcal{F}_{COUNT Dependent\_name}$  (DEPENDENT)   
T2  $\leftarrow$   $\sigma_{No of dependents > 1}$  (T1)

RESULT 
$$\leftarrow \pi_{\text{LNAME FNAME}}$$
 (T2 \* EMPLOYEE)

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate                                         | Bdate Address S                                 |           | Salary    | Super_ssn | Dno |
|----------|-------|---------|-----------|-----------------------------------------------|-------------------------------------------------|-----------|-----------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09                                    | 731 Fondren, Houston, TX M 30000 3              |           | 333445555 | 5         |     |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08                                    | 2-08 638 Voss, Houston, TX M 40000 8886655      |           | 888665555 | 5         |     |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19                                    | 968-01-19 3321 Castle, Spring, TX F 25000 9876  |           | 987654321 | 4         |     |
| Jennifer | s     | Wallace | 987654321 | 1941-06-20 291 Berry, Bellaire, TX F 43000 88 |                                                 | 888665555 | 4         |           |     |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15                                    | 975 Fire Oak, Humble, TX                        | М         | 38000     | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31                                    | 1972-07-31 5631 Rice, Houston, TX F 25000 333   |           | 333445555 | 5         |     |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29                                    | 1969-03-29 980 Dallas Houston TX M 25000 987654 |           | 987654321 | 4         |     |
| 1        |       | _       | 000005555 |                                               | SENT                                            |           |           |           |     |

### DEPENDENT

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

## OUTER JOIN OPERATION

- ? In INNER JOIN, tuples without a *matching* are eliminated from the join result
  - Tuples with null are also eliminated
  - This amounts to loss of information.
- ? OUTER joins operations are used when we want to keep
  - all the tuples in R in the join result, or
  - all tuples in S in the join result, or
  - all tuples in both relations R and S in the join result

## LEFT OUTER JOIN

- ? List the employees name and the department name that they manage. If they don't manage one, then indicate this with a null value.
- ? Temp  $\Box$  (Employee  $\underset{Ssn=Mgr\_Ssn}{\smile}$  Department)
- Result  $\square \pi_{\text{Fname, Minit, Lname, Dname}}$  (Temp)

### **RESULT**

| Fname    | Minit | Lname   | Dname          |
|----------|-------|---------|----------------|
| John     | В     | Smith   | NULL           |
| Franklin | Т     | Wong    | Research       |
| Alicia   | J     | Zelaya  | NULL           |
| Jennifer | S     | Wallace | Administration |
| Ramesh   | K     | Narayan | NULL           |
| Joyce    | Α     | English | NULL           |
| Ahmad    | V     | Jabbar  | NULL           |
| James    | E     | Borg    | Headquarters   |

## OUTER JOIN OPERATION

- ? Left outer join: keeps every tuple in R, denoted as  $R \bowtie S$ 
  - if no matching tuple is found in S, then the attributes of S in the join result are filled with null values.
- ? **Right outer join:** keeps every tuple in S in the result of  $R \times S$ .
- ? **Full outer join:** keeps all tuples <u>in both the left</u> and the right relations. It is denoted by  $\equiv \bowtie$

## Full Outer Join vs Cartesian Product

#### **EMPLOYEE**

| Fname    | Minit | Lname   | <u>Ssn</u> | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|------------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789  | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555  | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777  | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321  | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444  | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453  | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987  | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555  | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |  |
|----------------|---------|-----------|----------------|--|
| Research       | 5       | 333445555 | 1988-05-22     |  |
| Administration | 4       | 987654321 | 1995-01-01     |  |
| Headquarters   | 1       | 888665555 | 1981-06-19     |  |



99



### RESULT

| Employee  | ~ |
|-----------|---|
| Linployee | Q |

 $_{\mathrm{Ssn=Mgr\_Ssn}}^{}$  Department

|          |       |         | ·              |
|----------|-------|---------|----------------|
| Fname    | Minit | Lname   | Dname          |
| John     | В     | Smith   | NULL           |
| Franklin | Т     | Wong    | Research       |
| Alicia   | J     | Zelaya  | NULL           |
| Jennifer | S     | Wallace | Administration |
| Ramesh   | K     | Narayan | NULL           |
| Joyce    | Α     | English | NULL           |
| Ahmad    | V     | Jabbar  | NULL           |
| James    | E     | Borg    | Headquarters   |

## **OUTER UNION OPERATIONS**

- ? The outer union operation take the union of tuples in two relations R(X, Y) and S(X, Z) that are **partially compatible**,
  - Only some of their attributes, say X, are type compatible.
  - The attributes that are type compatible are represented only once in the result
  - The attributes that are not type compatible from either relation are also kept in the result relation T(X, Y, Z).

## OUTER JOIN EXAMPLE

- ? An outer union can be applied to two relations STUDENT(Name, SSN, Department, Advisor) and INSTRUCTOR(Name, SSN, Department, Rank).
  - Tuples are matched based on having the same combination of values of the shared attributes— Name, SSN, Department.
  - If a student is also an instructor, both Advisor and Rank will have a value; otherwise, one of these two attributes will be null.
  - Result relation:

STUDENT\_OR\_INSTRUCTOR (Name, SSN, Department, Advisor, Rank)

## RELATIONAL ALGEBRA OPERATORS

- ? Relational Algebra consists of several groups of operations
  - Unary Relational Operations
    - ? SELECT (symbol: σ (sigma))
    - ? PROJECT (symbol:  $\pi$  (pi))
    - ? RENAME (symbol: ρ (rho))
  - Relational Algebra Operations From Set Theory
    - <sup>2</sup> UNION (∪), INTERSECTION (∩), DIFFERENCE (-)
    - ? CARTESIAN PRODUCT (x)
  - Binary Relational Operations
    - ? JOIN (several variations of JOIN exist)
    - ? DIVISION
  - Additional Relational Operations
    - **? OUTER JOINS, OUTER UNION**
    - <sup>2</sup> AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

## CHAPTER SUMMARY

- ? Relational Algebra
  - Unary Relational Operations
  - Relational Algebra Operations From Set Theory
  - Binary Relational Operations
  - Additional Relational Operations
  - Examples of Queries in Relational Algebra