Laporan Singkat: Persiapan Data (Pertemuan 4)

Tanggal: 25 Oktober 2025 Disusun oleh: [Nama Anda] Mata Kuliah: [Mata Kuliah Anda]

1. Pendahuluan

Laporan ini mendokumentasikan langkah-langkah yang diambil dalam Pertemuan 4 untuk persiapan dataset prediksi kelulusan mahasiswa. Tujuan dari tahap ini adalah untuk mengumpulkan, membersihkan, menganalisis (melalui EDA), dan melakukan *feature engineering* pada dataset awal untuk menghasilkan dataset bersih (processed_kelulusan.csv) yang siap digunakan untuk pemodelan *machine learning* pada pertemuan selanjutnya.

2. Langkah 1 & 2: Pengumpulan dan Pemuatan Data

2.1. Augmentasi Dataset

Dataset asli yang diberikan hanya terdiri dari 10 baris data. Ukuran ini terlalu kecil untuk melakukan *splitting* data (train/validation/test) dan *cross-validation* secara efektif, karena akan menimbulkan error atau model yang tidak stabil.

Untuk mengatasi ini, **40 baris data sintetis** yang realistis dibuat (menggunakan np.random.seed(42) untuk reproduktibilitas) dan digabungkan dengan 10 data asli. Hasilnya adalah dataset baru berisi **50 baris** yang disimpan sebagai kelulusan mahasiswa.csv.

2.2. Pemuatan Data

Dataset dimuat ke dalam DataFrame Pandas. Hasil dari df.info() menunjukkan struktur data sebagai berikut:

dtypes: float64(1), int64(3) memory usage: 1.7 KB

None

Tinjauan awal data (df.head()) menunjukkan format yang sesuai:

	IPK Jur	mlah_Absensi	Waktu_E	Belaja	ar_Jam	Lulus
0	3.047	5	6	1		
1	3.667	3	14	1		
2	2.169	14	6	0		
3	3.842	2	11	1		
4	2.100	12	2	0		

3. Langkah 3: Pembersihan Data (Cleaning)

- 1. **Pengecekan Missing Values:** Perintah df.isnull().sum() dijalankan dan mengkonfirmasi **tidak ada nilai yang hilang** (missing values) di dalam dataset.
- 2. **Pengecekan Duplikat:** Perintah df.drop_duplicates() dijalankan untuk memastikan tidak ada baris data yang identik. Ukuran data tetap (50, 4), menunjukkan tidak ada duplikat.
- 3. **Identifikasi Outlier:** Sebuah *boxplot* untuk fitur IPK dibuat dan disimpan sebagai p4_boxplot_ipk.png. Visualisasi ini membantu mengidentifikasi adanya *outlier* atau pencilan, meskipun pada tahap ini tidak ada data yang dihapus.

4. Langkah 4: Exploratory Data Analysis (EDA)

Analisis data eksploratif dilakukan untuk memahami karakteristik dan hubungan antar variabel.

Statistik Deskriptif: df.describe() memberikan gambaran statistik dasar:

	IPK Jumlah_	_Absensi Waktu_	_Belajar_Jam Lulus
count	50.000000	50.000000	50.000000 50.000000
mean	3.042562	6.360000	6.860000 0.500000
std	0.596041	3.784411	3.606385 0.505076
min	2.100000	0.000000	0.000000 0.000000
25%	2.559218	3.250000	4.000000 0.000000
50%	3.123689	5.000000	6.500000 0.500000
75%	3.539367	8.750000	9.750000 1.000000
max	3.931755	15.000000	15.000000 1.000000

- 1. Catatan: Rata-rata IPK adalah 3.04 dan data target 'Lulus' seimbang (rata-rata 0.5).
- 2. **Visualisasi Data:** Tiga plot utama dibuat dan disimpan:
 - p4_hist_ipk.png (Histogram): Menunjukkan distribusi IPK, yang tampak relatif normal.

- o p4_scatter.png (Scatter Plot): Memvisualisasikan hubungan antara IPK dan Waktu_Belajar_Jam. Plot ini (diwarnai berdasarkan Lulus) secara visual mengkonfirmasi bahwa mahasiswa dengan IPK lebih tinggi dan Waktu Belajar lebih lama cenderung 'Lulus' (nilai 1).
- p4_heatmap.png (Heatmap Korelasi): Menunjukkan korelasi linear antar fitur. Terlihat korelasi positif kuat antara Lulus dengan IPK dan Waktu_Belajar_Jam, serta korelasi negatif kuat antara Lulus dengan Jumlah_Absensi.

5. Langkah 5: Feature Engineering

Untuk memperkaya model, dua fitur baru (fitur turunan) dibuat:

- 1. Rasio_Absensi: Dihitung dengan Jumlah_Absensi / 14 (mengasumsikan 14 total pertemuan). Ini menormalisasi data absensi menjadi rasio.
- 2. **IPK_x_Study**: Dihitung dengan IPK * Waktu_Belajar_Jam. Fitur interaksi ini dibuat untuk menangkap efek gabungan dari IPK dan waktu belajar.

Dataset akhir dengan fitur-fitur baru ini kemudian disimpan sebagai **processed_kelulusan.csv**.