Comparison of Stochastic and Deterministic SAT Solvers in the Domain of Regular vs. Irregular Sudoku Puzzles

Ece Kamer Takmaz

ecekt028@gmail.com

11823453

Links

- https://github.com/ecekt/KRsudoku
- https://www.youtube.com/channel/UCgwBmGRaHx9sV6Vw7oe68cg
 - https://youtu.be/-K-avcHs4VY

Introduction

		6		8				
		1		2			7	
			5					4
8	6							
4								6
							3	7
2					7			
	9			4		5		
				9		1		

Showing puzzle number: 11696

Research questions

- Types of sudoku puzzles We expect that the irregular sudoku puzzles would require more levels, decisions or steps in order for a solver to be able to find a satisfying assignment.
- Types of solvers We would like to see the difference between solvers in finding a solution

Methodology – Data set

- http://www.menneske.no/sudoku/eng/
- 18345 irregular puzzles
- 10000 regular puzzles of 5 different difficulty levels
- Region encoding from implicit user interface descriptions of boundaries
- Propagating information via search through neighbouring cells

Methodology – Data set

- Conversion to CNF and DIMACS
- Constraints on:
 - Cells
 - Numbers
 - Rows
 - Columns
 - Blocks
- Dictionary for converting 111 -> 1

Methodology - Solvers

- Deterministic conflict driven clause learning
 - pycosat: 0.6.2 https://pypi.python.org/pypi/pycosat [10]
 - zChaff: 2007.3.12 https://www.princeton.edu/~chaff/zchaff.html [7]
- Stochastic random moves and random variable assignments
 - UBCSAT: version 1.1.0 (Sea to Sky Release) http://ubcsat.dtompkins.com/ [6]
 - Walksat: v51 https://www.cs.rochester.edu/u/kautz/walksat/ [5]

Methodology – Solver metrics

For pycosat:

- Learned: Number of learned clauses when the solver arrives at a solution
- Level: Number of levels the algorithm goes through to arrive at a solution
- Conflicts: Number of conflicts that occurred during the solving of the problem at hand

For UBCSAT:

Steps: Number of steps the algorithm goes through to arrive at a solution

For zChaff:

- Level: Maximum decision levels the algorithm goes through to arrive at a solution
- Number of decisions: Number of decisions the algorithm makes to arrive at a solution

For Walksat:

Avg Length of Trials: Average of the length of 10 trials performed by the stochastic algorithm

OUTCOMES FOR 15000 RUNS FOR EACH TYPE OF PUZZLE

Solver	Sudoku Type	Parameter	Mean	Std
Pycosat	Irregular	Learned	85.708	53.373
Pycosat	Regular	Learned	145.649	28.725
Pycosat	Irregular	Level	38.621	12.563
Pycosat	Regular	Level	25.807	10.511
Pycosat	Irregular	Conflicts	11.602	14.394
Pycosat	Regular	Conflicts	2.008	3.704
UBCSAT	Irregular	Steps	2063.506	3206.003
UBCSAT	Regular	Steps	930.679	510.775
zChaff	Irregular	Level	82.661	23.813
zChaff	Regular	Level	58.038	22.371
zChaff	Irregular	Number of Decisions	210.122	257.058
zChaff	Regular	Number of Decisions	62.667	24.900
Walksat	Irregular	Avg Length of Trials	17297.035	11595.851
Walksat	Regular	Avg Length of Trials	7263.001	5452.748

Discussion

- Type of the puzzle can have an effect on the values of the solver metrics, different distributions
- Due to the differences in the calculation of parameters, it is not quite possible to indicate the difference between the solvers; yet, it is possible to compare each solver's performance given a sudoku puzzle type.
- For all the solvers, irregular puzzles require a greater amount of decisions, levels and steps
- Stochastic solvers require a greater amount of decision steps
- The average number of conflicts encountered is also greater for the irregular puzzles as compared to classic sudoku puzzles.
- The number of learned clauses, however, is fewer than that of the regular puzzles.
- These results seem to support the hypothesis of irregular puzzles requiring a higher number of levels
 - Number of literals is 729, clauses is around 23660

Conclusions

- Results indicated that the irregular sudoku puzzles may require more steps or levels of decision-making in order for solvers to make satisfactory assignments.
- Reliable statistical test results
- Using universal metrics for solvers
- Different difficulty levels
- Distance parameter to indicate the scale of irregularity

References

- [1] T. Weber, A SAT-based sudoku solver. In 12th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2005, pages 1115, 2005.
- [2] I. Lynce and J. Ouaknine, Sudoku as a SAT problem. In Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics, AIMATH 2006, Fort Lauderdale. Springer, 2006.
- [3] T. Davis, The Mathematics of Sudoku, Unpublished, http://www.geometer.org/mathcircles/sudoku.pdf
- [4] S.B. Varun, Sudoku Squares as Experimental Designs, International Journal of Engineering Trends and Technology, 28(5), 229-235, 2015.
- [5] B.Selman, H.A. Kautz, and B. Cohen, Noise strategies for improving local search, 337343. MIT press, 1994.
- [6] D.A.D. Tompkins and H.H. Hoos, UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT, Revised Selected Papers from the Seventh International Conference on Theory and Applications of Satisfiability Testing, 306- 320, Springer Berlin / Heidelberg, 2005.
- [7] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: engineering an efficient SAT solver, Proceedings of the 38th annual Design Automation Conference, p.530-535, Las Vegas, Nevada, USA, 2001.
- [8] C.P. Gomes, H.A. Kautz, A. Sabharwal, B. Selman, Satisfiability Solvers. Handbook of Knowledge Representation, 89-134, 2008.
- [9] M. Perez, and T. Marwala, Stochastic optimization approaches for solving Sudoku, Proc. IEEE Congress on Evolutionary Computation, pp 256279, Vancouver: Piscataway, 2011.
- [10] A. Biere, PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), vol. 4, pages 75-97, Delft University, 2008.
- [11] U. Pfeiffer, T. Karnagel, G. Scheffler, A Sudoku-Solver for Large Puzzles using SAT. LPAR short papers(Yogyakarta), 52-57, 2010.
- [12] M.L. Littman, S.M. Majercik, T. Pitassi, Stochastic Boolean Satisfiability, Journal of Automated Reasoning, v.27 n.3, p.251-296, 2001.