

Doucment Title4 Bank x 4M x 16Bit Synchronous DRAM

Revision History

Revision No.	History	Draft Date	Remark
1.4	143MHz Speed Added	July 14. 2003	

HY57V561620B(L/S)T 4 Banks x 4M x 16Bit Synchronous DRAM

DESCRIPTION

The HY57V561620B is a 268,435,456bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and high bandwidth. HY57V561620B is organized as 4banks of 4,194,304x16.

HY57V561620B is offering fully synchronous operation referenced to a positive edge of the clock. All inputs and outputs are synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All input and output voltage levels are compatible with LVTTL.

Programmable options include the length of pipeline (Read latency of 2 or 3), the number of consecutive read or write cycles initiated by a single control command (Burst length of 1,2,4,8 or full page), and the burst count sequence(sequential or interleave). A burst of read or write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst read or write command on any cycle. (This pipelined design is not restricted by a `2N` rule.)

FEATURES

- Single 3.3±0.3V power supply
- All device pins are compatible with LVTTL interface
- JEDEC standard 400mil 54pin TSOP-II with 0.8mm of pin pitch
- All inputs and outputs referenced to positive edge of system clock
- · Data mask function by UDQM, LDQM
- Internal four banks operation

- · Auto refresh and self refresh
- 8192 refresh cycles / 64ms
- Programmable Burst Length and Burst Type
 - 1, 2, 4, 8 or Full page for Sequential Burst
 - 1, 2, 4 or 8 for Interleave Burst
- Programmable CAS Latency; 2, 3 Clocks

ORDERING INFORMATION

Part No.	Clock Frequency	Power	Organization	Interface	Package
HY57V561620BT-6	166MHz				
HY57V561620BT-7	143MHz				
HY57V561620BT-K	133MHz				
HY57V561620BT-H	133MHz	Normal			
HY57V561620BT-8	125MHz				
HY57V561620BT-P	100MHz				
HY57V561620BT-S	100MHz		4Banks x 4Mbits x16	LVTTL	400mil 54pin TSOP II
HY57V561620B(L/S)T-6	166MHz		4Daliks X 4Mbits X 10	LVIIL	40011111 54pii1 130P 11
HY57V561620B(L/S)T-7	143MHz				
HY57V561620B(L/S)T-K	133MHz				
HY57V561620B(L/S)T-H	133MHz	Low power			
HY57V561620B(L/S)T-8	125MHz				
HY57V561620B(L/S)T-P	100MHz				
HY57V561620B(L/S)T-S	100MHz				

This document is a general product description and is subject to change without notice. Hynix Semiconductor Inc. does not assume any responsibility for use of circuits described. No patent licenses are implied.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	PIN NAME	DESCRIPTION						
CLK	Clock	The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK						
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh						
CS	Chip Select	Enables or disables all inputs except CLK, CKE, UDQM and LDQM						
BA0, BA1	Bank Address	Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity						
A0 ~ A12	Address	Row Address : RA0 ~ RA12, Column Address : CA0 ~ CA8 Auto-precharge flag : A10						
RAS, CAS, WE	Row Address Strobe, Column Address Strobe, Write Enable	RAS, CAS and WE define the operation Refer function truth table for details						
UDQM, LDQM	Data Input/Output Mask	Controls output buffers in read mode and masks input data in write mode						
DQ0 ~ DQ15	Data Input/Output	Multiplexed data input / output pin						
VDD/VSS	Power Supply/Ground	Power supply for internal circuits and input buffers						
VDDQ/VSSQ	Data Output Power/Ground	Power supply for output buffers						
NC	No Connection	No connection						

FUNCTIONAL BLOCK DIAGRAM

4Mbit x 4banks x 16 I/O Synchronous DRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Ambient Temperature	TA	0 ~ 70	°C
Storage Temperature	TSTG	-55 ~ 125	°C
Voltage on Any Pin relative to VSS	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD relative to VSS	VDD, VDDQ	-1.0 ~ 4.6	V
Short Circuit Output Current	los	50	mA
Power Dissipation	PD	1	W
Soldering Temperature · Time	TSOLDER	260 · 10	°C · Sec

Note: Operation at above absolute maximum rating can adversely affect device reliability

DC OPERATING CONDITION (TA=0 to 70°C)

Parameter	Symbol	Min	Тур.	Max	Unit	Note
Power Supply Voltage	VDD, VDDQ	3.0	3.3	3.6	V	1
Input High Voltage	VIH	2.0	3.0	VDDQ + 0.3	V	1,2
Input Low Voltage	VIL	- 0.3	0	0.8	V	1,3

Note

1.All voltages are referenced to Vss = 0V

2.VIH (max) is acceptable 5.6V AC pulse width with ≤3ns of duration

3.VIL (min) is acceptable -2.0V AC pulse width with ≤3ns of duration

AC OPERATING CONDITION (TA=0 to 70°C, VDD=3.3 ± 0.3V, VSS=0V)

Parameter	Symbol	Value	Unit	Note
AC Input High / Low Level Voltage	VIH / VIL	2.4/0.4	V	
Input Timing Measurement Reference Level Voltage	Vtrip	1.4	V	
Input Rise / Fall Time	tR / tF	1	ns	
Output Timing Measurement Reference Level	Voutref	1.4	V	
Output Load Capacitance for Access Time Measurement	CL	50	pF	1

Note:

Output load to measure access time is equivalent to two TTL gates and one capacitor (50pF)
 For details, refer to AC/DC output circuit

CAPACITANCE (TA=25°C, f=1MHz)

Parameter	Pin	Symbol	-6/7	/K/H	-8/I	Unit		
i didilictei		Cymbol	Min	Max	Min	Max		
Input capacitance	CLK	CI1	2.5	3.5	2.5	4.0	pF	
	A0 ~ A12, BA0, BA1, CKE, CS, RAS, CAS, WE, UDQM, LDQM	Cl2	2.5	3.8	2.5	5.0	pF	
Data input / output capacitance	DQ0 ~ DQ15	CI/O	4.0	6.5	4.0	6.5	pF	

OUTPUT LOAD CIRCUIT

DC Output Load Circuit

AC Output Load Circuit

DC CHARACTERISTICS I (TA=0 to 70°C, VDD=3.3±0.3V)

Parameter	Symbol	Min.	Max	Unit	Note
Input Leakage Current	ILI	-1	1	uA	1
Output Leakage Current	ILO	-1	1	uA	2
Output High Voltage	Voн	2.4	-	V	IOH = -4mA
Output Low Voltage	VOL	-	0.4	V	IOL = +4mA

Note

1.VIN = 0 to 3.6V, All other pins are not tested under VIN = 0V

2.DOUT is disabled, VOUT=0 to 3.6V

DC CHARACTERISTICS II (TA=0 to 70°C, VDD=3.3±0.3V, VSS=0V)

Parameter	Symbol	Test Condition				;	Speed				Unit	Note
raiailletei	Syllibol	o. Test somation			-7	-K	-H	-8	-P	-S	Oilit	Note
Operating Current	IDD1	Burst length=1, One bank acti tRC ≥ tRC(min), IOL=0mA	ve	130	120	120	120	120	110	110	mA	1
Precharge Standby Current	IDD2P	CKE ≤ VIL(max), tCK = 15ns				·	2	ı	ı	I	A	
in Power Down Mode	IDD2PS	CKE ≤ VIL(max), tCK = ∞					1				mA	
Precharge Standby Current in Non Power Down Mode	IDD2N	$\label{eq:cke} \begin{split} CKE &\geq VIH(min), \ \overline{CS} \geq VIH(min \\ Input \ signals \ are \ changed \ one \\ 30ns. \ All \ other \ pins \geq VDD-0.2 \end{split}$	time during				30				mA	
III Non Power Down Mode	IDD2NS	$\label{eq:cke} \begin{split} CKE &\geq VIH(min), tCK = \infty \\ Input signals are stable. \end{split}$					15					
Active Standby Current	IDD3P	CKE ≤ VIL(max), tCK = 15ns			mA							
in Power Down Mode	IDD3PS	CKE ≤ VIL(max), tCK = ∞					5				IIIA	
Active Standby Current in Non Power Down Mode	IDD3N	$\label{eq:cke} \begin{split} \text{CKE} &\geq \text{VIH(min)}, \overline{\text{CS}} \geq \text{VIH(min)} \\ \text{Input signals are changed one} \\ \text{30ns. All other pins} &\geq \text{VDD-0.2} \end{split}$	time during				40				mA	
III Non Fower Down Mode	IDD3NS	$\label{eq:cke} \begin{split} CKE &\geq VIH(min), tCK = \infty \\ Input signals are stable. \end{split}$					30					
Burst Mode Operating	IDD4	tCK ≥ tCK(min), IOL=0mA	CL=3	150	130	130	130	130	110	110	mA	1
Current	1004	All banks active	CL=2	140	140	140	140	140	120	120	IIIA	
Auto Refresh Current	IDD5	tRRC ≥ tRRC(min), All banks active		240	220	220	220	200	200	200	mA	2
			3							mA	3	
Self Refresh Current IDD6 CKE ≤ 0.2V Low P		Low Power	Power 1.5							mA	4	
	Super Lo			900								5

Note

^{1.}IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open

^{2.}Min. of tRRC (Refresh RAS cycle time) is shown at AC CHARACTERISTICS II

^{3.}HY57V561620BT-6/7/K/H/8/P/S

^{4.}HY57V561620BLT-6/7/K/H/8/P/S

^{5.}HY57V561620BST-6/7/K/H/8/P/S

AC CHARACTERISTICS I (AC operating conditions unless otherwise noted)

Parameter		Symbol	-	6	-	7	-	K	-1	Н	-	8	-	P	-	s	Unit	Note
Faic	ameter	Symbol	Min	Max	Oiiit	Note												
System Clock	CAS Latency = 3	tCK3	6	4000	7	1000	7.5	1000	7.5	1000	8	4000	10	1000	10	1000	ns	
Cycle Time	CAS Latency = 2	tCK2	10	1000	10	1000	7.5	1000	10	1000	10	1000	10	1000	12	1000	ns	
Clock High Pulse	Width	tCHW	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Clock Low Pulse	Width	tCLW	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Access Time	CAS Latency = 3	tAC3	-	5.4	-	5.4	-	5.4	-	5.4	-	6	-	6	-	6	ns	0
From Clock	CAS Latency = 2	tAC2	-	6	-	6	-	5.4	-	6	-	6	-	6	-	6	ns	2
Data-Out Hold Ti	me	tOH	2.7	-	2.7	-	2.7	-	2.7	-	3	-	3	-	3	-	ns	
Data-Input Setup	Time	tDS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Data-Input Hold 1	Гime	tDH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
Address Setup Ti	me	tAS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Address Hold Tin	ne	tAH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
CKE Setup Time		tCKS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
CKE Hold Time		tCKH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
Command Setup	Time	tCS	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Command Hold 1	īme	tCH	0.8	-	0.8	-	0.8	-	0.8	-	1	-	1	-	1	-	ns	1
CLK to Data Outp	out in Low-Z Time	tOLZ	1	-	1	-	1	-	1	-	1	-	1	-	1	-	ns	
CLK to Data Output in High-Z	CAS Latency = 3	tOHZ3	2.7	5.4	2.7	5.4	2.7	5.4	2.7	5.4	3	6	3	6	3	6	ns	
Time	CAS Latency = 2	tOHZ2	2.7	5.4	2.7	5.4	2.7	5.4	3	6	3	6	3	6	3	6	ns	

Note

^{1.}Assume tR / tF (input rise and fall time) is 1ns

^{2.}Access times to be measured with input signals of 1v/ns edge rate

AC CHARACTERISTICS II

	meter	O t. a.l.	-	6		7	-	K	-	Н	-	8	-	P	-	s	1114	Note
Para	meter	Symbol	Min	Max	Unit	Note												
RAS Cycle Time	Operation	tRC	60	-	60	=	60	-	65	-	68	-	70	-	70	-	ns	
RAS Cycle Time	Auto Refresh	tRRC	60	-	60	-	60	-	65	-	68	-	70	-	70	-	ns	
RAS to CAS Dela	у	tRCD	18	-	18	-	15	-	20	-	20	-	20	-	20	-	ns	
RAS Active Time		tRAS	42	100K	42	100K	45	100K	45	100K	48	100K	50	100K	50	100K	ns	
RAS Precharge T	ïme	tRP	18	-	18	-	15	-	20	-	20	-	20	-	20	-	ns	
RAS to RAS Bank	k Active Delay	tRRD	12	-	14	-	15	-	15	-	16	-	20	-	20	-	ns	
CAS to CAS Dela	у	tCCD	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Write Command t	o Data-In Delay	tWTL	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
Data-In to Precha	rge Command	tDPL	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Data-In to Active	Command	tDAL	5	-	5	-	5	-	5	-	5	-	5	-	5	-	CLK	
DQM to Data-Out	: Hi-Z	tDQZ	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
DQM to Data-In N	/lask	tDQM	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
MRS to New Con	nmand	tMRD	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Precharge to	CAS Latency = 3	tPROZ3	3	-	3	-	3	-	3	-	3	-	3	-	3	-	CLK	
Data Output Hi-Z	CAS Latency = 2	tPROZ2	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Power Down Exit	Time	tPDE	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Self Refresh Exit	Time	tSRE	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	1
Refresh Time		tREF	-	64	-	64	-	64	-	64	-	64	-	64	-	64	ms	

Note

1. A new command can be given tRRC after self refresh exit

IBIS SPECIFICATION

ІОН Characteristics (Pull-up)

Voltage	100MHz (Min)	100MHz (Max)	66MHz (Min)
(V)	I(mA)	I(mA)	I(mA)
3.45		-2.4	
3.3		-27.3	
3.0	0	-74.1	-0.7
2.6	-21.1	-129.2	-7.5
2.4	-34.1	-153.3	-13.3
2.0	-58.7	-197	-27.5
1.8	-67.3	-226.2	-35.5
1.65	-73	-248	-41.1
1.5	-77.9	-269.7	-47.9
1.4	-80.8	-284.3	-52.4
1.0	-88.6	-344.5	-72.5
0	-93	-502.4	-93

IOL Characteristics (Pull-down)

Voltage	100MHz (Min)	100MHz (Max)	66MHz (Min)
(V)	I(mA)	I(mA)	I(mA)
0	0	0	0
0.4	27.5	70.2	17.7
0.65	41.8	107.5	26.9
0.85	51.6	133.8	33.3
1.0	58.0	151.2	37.6
1.4	70.7	187.7	46.6
1.5	72.9	194.4	48.0
1.65	75.4	202.5	49.5
1.8	77.0	208.6	50.7
1.95	77.6	212.0	51.5
3.0	80.3	219.6	54.2
3.45	81.4	222.6	54.9

66MHz and 100MHz Pull-down

DEVICE OPERATING OPTION TABLE

HY57V561620B(L/S)T-6

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
166MHz(6ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.4ns	2.7ns
143MHz(7ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133MHz(7.5ns)	2CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns

HY57V561620B(L/S)T-7

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
143MHz(7ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133MHz(7.5ns)	2CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns

HY57V561620B(L/S)T-K

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
133MHz(7.5ns)	2CLKs	2CLKs	6CLKs	8CLKs	2CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns

HY57V561620B(L/S)T-H

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
133MHz(7.5ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns

HY57V561620B(L/S)T-8

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
125MHz(8ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	3ns
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

HY57V561620B(L/S)T-P

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
100MHz(10ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
66MHz(15ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

HY57V561620B(L/S)T-S

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
100MHz(10ns)	3CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
83MHz(12ns)	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	6ns	3ns
66MHz(15ns)	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	6ns	3ns

COMMAND TRUTH TABLE

Comma	nd	CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	ADDR	A10/ AP	ВА	Note
Mode Register S	Set	Н	Х	L	L	L	L	Х		OP code		
No Operation		Н	х	Н	Х	Х	Х	Х		Х		
		"	^	L	Н	Н	Н	^		^		
Bank Active		Н	Х	L	L	Н	Н	Х	R	.A	V	
Read		Н	х	L	Н	L	Н	х	CA	L	V	
Read with Autop	orecharge		^	_	11	_	"	^	0.7	Н	V	
Write		H	х	L	Н	L	L	X	CA	L	V	
Write with Autop	recharge		^			L	-	^	OA.	Н	٧	
Precharge All Ba	anks	Н	X	L	L	Н	L	x	X	Н	Х	
Precharge selected Bank			^	_	_		_		^	L	V	
Burst Stop		Н	Х	L	Н	Н	L	Х	X			
DQM		Н			Х			V	X			
Auto Refresh		Н	Н	L	L	L	Н	Х		Х		
Burst-Read-Sing WRITE	gle-	Н	Х	L	L	L	Н	Х		N9 Pin Hig r Pins OP		
	Entry	Н	L	L	L	L	Н	Х				
Self Refresh ¹	Exit	L	Н	Н	Х	Х	Х	X		X		
	LAIL		'''	L	Н	Н	Н	^				
	Entry	Н	L	Н	Х	Х	Х	X				
Precharge	Litty		_	L	Н	Н	Н	^		Х		
power down	Exit	L	Н	Н	Х	Х	Х	X	^			
LAIL				L	Н	Н	Н	^				
-	Entry	Н	L	Н	Х	Х	Х	Х				
Clock Suspend	Littiy		_	L	V	V	V	^		X		
	Exit	L	Н	X				Х				

Note

^{1.} Exiting Self Refresh occurs by asynchronously bringing CKE from low to high

^{2.} X = Don't care, H = Logic High, L = Logic Low. BA =Bank Address, RA = Row Address, CA = Column Address, Opcode = Operand Code, NOP = No Operation

PACKAGE INFORMATION

400mil 54pin Thin Small Outline Package

