CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	•	SUPPLE		END	✓	Set-1	
Name of the School	:	SOAE		socs	√	Set-2	√
(Please tick, symbol is given)							
Programme	:	B.Tech. C	CSE				
Semester	:	III					
Name of the Course	:	Probabili	ity and Stati	stics			
Course Code	:	CSEG 203	36P				
Name of Question Paper Setter	:	Dr. Mritt	unjoy Guha	Majumdar			
Employee Code	:	4000397	3				
Mobile	:	8595301	465				
Note: Please mention additionable/Graph Sheet etc. else			-	-	ring exam	ination suc	h as
	I	FOR SRE	E DEPART	TMENT			
Date of Examination			:				
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page

Model Question Paper (Blank) is on next page

Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Probability and Statistics

Semester: III

Program: B. Tech. CSE **Time:** 3 hrs.

Course Code: CSEG 2036P Max. Marks: 100

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Discuss covariance of random variables. Illustrate that for random variable X and Y , $Cov(aX + b, cY + d) = ac \times Cov(X, Y)$ for constants a, b, c and d .	4	CO2
Q 2	Define Marginal Probability Distributions. Apply your understanding marginal probability mass functions to evaluate that for random variates X and Y , given the joint probability mass function, $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	CO1
Q 3	Outline what is meant by random variables. Identify c and d if we have a random variable X with the associated probability density function $f(x) = cx^{d-1}, 0 \le x \le 1$ and if the second central moment $E[X^2]$ is 0.6.		CO1, CO2

Q 4	Define sample spaces. Identify the set diagram representation for the following	-		
	 At least one of the events A, B, At most two of the events A, B, 		4	CO1
	for a sample space S and three events A	A, B and C.		
Q 5	Discuss correlation coefficient. Identif terms of $Var(X)$, $Var(Y)$ and r_{XY} restudents in a class in centimeters and Y kilograms, and we undertake a transform and weight in pounds (Y') :	espectively, if <i>X</i> is the height of <i>Y</i> is the weight of the students in	4	CO2
	$X \to X' = 0.3^{\circ}$ $Y \to Y' = 2.2^{\circ}$			
		SECTION B 10M= 40 Marks)		1
Q 6	Choice 1: Define the Kruskal Wallis H hypothesis as well as its relevant test st assumption relevant to this statistical te than one-way ANOVA. Apply your understanding of the Krusk the scores of three groups of students (with	tatistic. Describe any one est. Highlight how it is better kal Wallis H Test for analyzing		
		97 01		
	Group B 66 72	87 91 81 83		

Q 7	Define and illustrate the calternative hypothesis, sign			is,		
	Remember and explain the Testing.	e generalized scho	eme for Hypothesis			
	Apply and discuss Hypoth Deviations.	esis Testing for P	opulation Standard			
	Illustrate if the difference and B drawn from a normal deviation $\sigma = 15$ is significant 150 and $n_B = 200$, given	l distribution with	population standar	rd	10	CO4
	z -2 -1.9	-1.8 -1.7	-1.6 -1.5	-1.4		
	p 0.04 0.06	0.07 0.09	0.11 0.13	0.16		
Q 8	Define ANOVA and the m statistical characterization. Discuss the different kinds mean squares. Identify the relevant test s mean squares, for ANOVA Apply ANOVA ($\alpha = 0.05$ food on separate groups of to determine if there were weight (measured in grams groups. The data is	of sums of square tatistic (ANOVA of square). 5) for an experime rats over a 5-wee any significant dif	es, degrees of freed coefficient) in term nt testing three type k period. The main ferences in the aver	es of goal is rage	10	CO4
	Food 1	Food 2	Food 3			
	8	4	11			
	12	5	8			
	19	4	7			
	8	6	13			
	11	7	9			
	Given: F-statistic for degree		-	3.68.		
Q 9	Define a Decision Tree. D one advantage and one disc			light	10	CO5

Expand on the two ways in which Decision Trees can have variable
selection criterion for node allocation.

Apply your understanding of the *Gini index approach* for Decision Trees to analyze 15 students' performance in an online exam. The predictors for this data-set encompass details such as whether the student is enrolled in other online courses, their academic background and whether they are currently employed or not.

	Target	P	redictor Variable	es
S.No.	Variable			
<i>D.</i> 110.	Result	Other Online	Student	Working
		Courses	Background	Status
1.	Pass	Yes	Mathematics	Not Working
2.	Fail	No	Mathematics	Working
3.	Fail	Yes	Mathematics	Working
4.	Pass	Yes	CS	Not Working
5.	Fail	No	Other	Working
6.	Fail	Yes	Other	Working
7.	Pass	Yes	Mathematics	Not Working
8.	Pass	Yes	CS	Not Working
9.	Pass	No	Mathematics	Working
10.	Pass	No	CS	Working
11.	Pass	Yes	CS	Working
12.	Pass	No	Mathematics	Not Working
13.	Fail	Yes	Other	Working
14.	Fail	No	Other	Not Working
15.	Fail	No	Mathematics	Working

SECTION-C (2Qx20M=40 Marks)

	(2Qx20M=40 Marks)		
Q 1	Define a Poisson random variable $X \sim Po(\lambda)$ and highlight the expression for its probability distribution.		
	Derive the mean and variance of the Poisson distribution, considering $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Show that this probability distribution satisfies the properties of probabilities.		
	Define a Gamma Function and highlight any two properties of the Gamma Function. Expand on your understanding of the Gamma Distribution $Y \sim \text{Gamma}(\alpha, \beta)$, with the expression for its probability distribution.	20	CO3
	Derive the mean and variance of the Gamma Distribution.		

ΔD	oly your	understa	nding o	f cumul	ative di	stributio	n funct	ions to s	show		
	$P(Y \leq \lambda)$		_								
that	the cum	ulative c	listribut	ion func	ction for	the Poi	sson dis	stributio	n is		
			F($(x,\lambda) =$	$\sum_{k=0}^{x} \frac{e^{-\lambda}}{k}$	$\frac{\lambda^x}{!}$					
and	we take	$\alpha=2, \mu$	$\beta = 1.$								
	ine a nor						table. I	Derive tl	he		
poi	nts of infl	lection o	of a norn	nal distr	ribution.						
	culate th	-	-		-						
	IQ lesser		_		_						
	iation (σ)		uiiouiio	II WILII	a ilicali	(μ) 01	100 an	iu a sta	lidard		
Civ	on. The f	Callannin	a saams	nt of th	a stands	and norm	val tabla				
GIV	en: The f	Ollowin	g segme	int or th	e standa	uu nom	iai tabic	, 			
	Z	-3	-2	-1	0	1	2	3			
	Value	0.001	0.023	0.159	0.5	0.841	0.977	0.999			
										• •	
	ermine a	_		_		-	of the o	class, giv	ven	20	C
that	the z-sco	ore corre	espondii	$\log to z$	≈ 1.3 is	0.9.					
	cuss sam	-						•			
Hig	hlight ar	ny two p	ropertie	s of a go	ood esti	mator in	sample	e statisti	cs.		
Che	oice 1: Io	•					-				
	dependeribution.	nt and ic	lenticall	y distril	outed sa	mples ta	aken fro	om a Gai	mma		
n in	i ibution.										
n in		alaulata	the pro	•		_		_			
n in dist	oice 2: Ca		1 .			aken iro	im ine c	กรษายนบ	ion i		
n in dist	oice 2: Ca e student ntioned al	ts (for a	_			uken ne	on the c				