Mean, median & mode imputations

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Basic imputation techniques

- constant (e.g. 0)
- mean
- median
- mode or most frequent

Mean Imputation

```
from sklearn.impute import SimpleImputer
diabetes_mean = diabetes.copy(deep=True)
mean_imputer = SimpleImputer(strategy='mean')
```


Mean Imputation

```
from sklearn.impute import SimpleImputer
diabetes_mean = diabetes.copy(deep=True)
mean_imputer = SimpleImputer(strategy='mean')
diabetes_mean.iloc[:, :] = mean_imputer.fit_transform(diabetes_mean)
```

Median imputation

```
diabetes_median = diabetes.copy(deep=True)
median_imputer = SimpleImputer(strategy='median')
diabetes_median.iloc[:, :] = median_imputer.fit_transform(diabetes_median)
```


Mode imputation

```
diabetes_mode = diabetes.copy(deep=True)
mode_imputer = SimpleImputer(strategy='most_frequent')
diabetes_mode.iloc[:, :] = mode_imputer.fit_transform(diabetes_mode)
```


Imputing a constant

```
diabetes_constant = diabetes.copy(deep=True)
constant_imputer = SimpleImputer(strategy='constant', fill_value=0))
diabetes_constant.iloc[:, :] = constant_imputer.fit_transform(diabetes_constant)
```


Scatterplot of imputation

```
nullity = diabetes['Serum_Insulin'].isnull()+diabetes['Glucose'].isnull()
```


Visualizing imputations

```
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10))
nullity = diabetes['Serum_Insulin'].isnull()+diabetes['Glucose'].isnull()
imputations = {'Mean Imputation': diabetes_mean,
               'Median Imputation': diabetes_median,
               'Most Frequent Imputation': diabetes_mode,
               'Constant Imputation': diabetes_constant}
for ax, df_key in zip(axes.flatten(), imputations):
    imputations[df_key].plot(x='Serum_Insulin', y='Glucose', kind='scatter',
                             alpha=0.5, c=nullity, cmap='rainbow', ax=ax,
                             colorbar=False, title=df_key)
```


Summary

You learned to

- Impute with statistical parameters like mean, median and mode
- Graphically compare the imputations
- Analyze the imputations

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

Imputing time-series data

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Airquality Dataset

Ozone	Solar	Wind	Lamn
			Temp
41.0	190.0	7.4	67
36.0	118.0	8.0	72
12.0	149.0	12.6	74
18.0	313.0	11.5	62
NaN	NaN	14.3	56
	36.0 12.0 18.0	36.0 118.0 12.0 149.0 18.0 313.0	36.0118.08.012.0149.012.618.0313.011.5

Airquality Dataset

```
airquality.isnull().sum()
```

```
airquality.isnull.mean() * 100
```

```
Ozone 37
Solar 7
Wind 0
Temp 0
dtype: int64
```

```
Ozone 24.183007
Solar 4.575163
Wind 0.000000
Temp 0.000000
dtype: float64
```

The .fillna() method

The attribute method in .fillna() can be set to

- 'ffill' or 'pad'
- 'bfill' or 'backwardfill'

Ffill method

- Replace NaN s with last observed value
- pad is the same as 'ffill'

```
airquality.fillna(method='ffill', inplace=True)
```

airquality['Ozone'][30:40]

```
Date
             Ozone
1976-05-31
              37.0
1976-06-01
              37.0
1976-06-02
              37.0
1976-06-03
              37.0
1976-06-04
              37.0
1976-06-05
              37.0
1976-06-06
              37.0
1976-06-07
              29.0
1976-06-08
              29.0
1976-06-09
              71.0
```

Bfill method

- Replace NaN s with next observed value
- backfill is the same as 'bfill'

```
df.fillna(method='bfill', inplace=True)
```

airquality['Ozone'][30:40]

Date	Ozone
1976-05-31	37.0
1976-06-01	NaN
1976-06-02	NaN
1976-06-03	NaN
1976-06-04	NaN
1976-06-05	NaN
1976-06-06	NaN
1976-06-07	29.0
1976-06-08	NaN
1976-06-09	71.0

```
Date
             Ozone
1976-05-31
              37.0
1976-06-01
              29.0
1976-06-02
              29.0
1976-06-03
              29.0
1976-06-04
              29.0
1976-06-05
              29.0
1976-06-06
              29.0
1976-06-07
              29.0
1976-06-08
              71.0
1976-06-09
              71.0
```

The .interpolate() method

• The .interpolate() method extends the sequence of values to the missing values

The attribute method in .interpolate() can be set to

- 'linear'
- 'quadratic'
- 'nearest'

Linear interpolation

Impute linearly or with equidistant values

```
df.interpolate(method='linear', inplace=True)
```


airquality['Ozone'][30:40]

Date	Ozone
1976-05-31	37.0
1976-06-01	NaN
1976-06-02	NaN
1976-06-03	NaN
1976-06-04	NaN
1976-06-05	NaN
1976-06-06	NaN
1976-06-07	29.0
1976-06-08	NaN
1976-06-09	71.0

```
Date
            Ozone
1976-05-31
             37.0
1976-06-01
             35.9
1976-06-02
             34.7
1976-06-03
             33.6
1976-06-04
             32.4
1976-06-05
             31.3
1976-06-06
             30.1
1976-06-07
             29.0
1976-06-08
             50.0
1976-06-09
             71.0
```

Quadratic interpolation

Impute the values quadratically

```
df.interpolate(method='quadratic', inplace=True)
```


airquality['Ozone'][30:39]

```
airquality.interpolate(
  method='quadratic', inplace=True)
airquality['Ozone'][30:39]
```

	Ozone
	020HC
Date	
1976-05-31	37.0
1976-06-01	NaN
1976-06-02	NaN
1976-06-03	NaN
1976-06-04	NaN
1976-06-05	NaN
1976-06-06	NaN
1976-06-07	29.0
1976-06-08	NaN

```
Ozone
Date
1976-05-31 37.0
1976-06-01 -38.4
1976-06-02 -79.4
1976-06-03 -85.9
1976-06-04
           -62.4
1976-06-06
           -2.8
            29.0
1976-06-07
1976-06-08
            62.2
```

Nearest value imputation

Impute with the nearest observable value

```
df.interpolate(method='nearest', inplace=True)
```


airquality['Ozone'][30:39]

```
airquality.interpolate(
  method='nearest', inplace=True)
airquality['Ozone'][30:39]
```

Date	Ozone
1976-05-31	37.0
1976-06-01	NaN
1976-06-02	NaN
1976-06-03	NaN
1976-06-04	NaN
1976-06-05	NaN
1976-06-06	NaN
1976-06-07	29.0
1976-06-08	NaN

```
Date
            Ozone
1976-05-31
             37.0
1976-06-01
             37.0
1976-06-02
             37.0
1976-06-03
             37.0
1976-06-04
             29.0
1976-06-05
             29.0
1976-06-06
             29.0
1976-06-07
             29.0
1976-06-08
             29.0
```

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

Visualizing timeseries imputations

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Learning

Air quality time-series plot

```
airquality['Ozone'].plot(title='Ozone', marker='o', figsize=(30, 5))
```


Ffill Imputation

```
ffill_imp['Ozone'].plot(color='red', marker='o', linestyle='dotted', figsize=(30, 5))
airquality['Ozone'].plot(title='Ozone', marker='o')
```


Bfill Imputation

```
bfill_imp['Ozone'].plot(color='red', marker='o', linestyle='dotted', figsize=(30, 5))
airquality['Ozone'].plot(title='Ozone', marker='o')
```


Linear Interpolation

```
linear_interp['Ozone'].plot(color='red', marker='o', linestyle='dotted', figsize=(30, 5))
airquality['Ozone'].plot(title='Ozone', marker='o')
```


Quadratic Interpolation

```
quadratic_interp['Ozone'].plot(color='red', marker='o', linestyle='dotted', figsize=(30, 5))
airquality['Ozone'].plot(title='Ozone', marker='o')
```


Nearest Interpolation

```
nearest_interp['Ozone'].plot(color='red', marker='o', linestyle='dotted', figsize=(30, 5))
airquality['Ozone'].plot(title='Ozone', marker='o')
```


A comparison of the interpolations

```
# Create subplots
fig, axes = plt.subplots(3, 1, figsize=(30, 20))
# Create interpolations dictionary
interpolations = {'Linear Interpolation': linear_interp,
                         'Quadratic Interpolation': quadratic_interp,
                         'Nearest Interpolation': nearest_interp}
# Visualize each interpolation
for ax, df_key in zip(axes, interpolations):
            interpolations[df_key].Ozone.plot(color='red', marker='o',
                                              linestyle='dotted', ax=ax)
            airquality.Ozone.plot(title=df_key + ' - Ozone', marker='o', ax=ax)
```

A comparison of the interpolations

A comparison of imputation techniques

Summary

- Time-series plot of imputed DataFrame
- Comparison of imputations

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

