

XMC4300

Microcontroller Series for Industrial Applications

XMC4000 Family

ARM® Cortex®-M4
32-bit processor core

Data Sheet V1.0 2016-02

Microcontrollers

Edition 2016-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC4300

Microcontroller Series for Industrial Applications

XMC4000 Family

ARM® Cortex®-M4 32-bit processor core

Data Sheet V1.0 2016-02

Microcontrollers

XMC4300 Data Sheet

Revision History: V1.0 2016-02

Previous Versions:

Page	Subjects
	Initial version.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG. ARM[®], ARM Powered[®], Cortex[®], Thumb[®] and AMBA[®] are registered trademarks of ARM. Limited.

CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are trademarks of ARM, Limited.

Synopsys™ is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Data Sheet V1.0, 2016-02

Table of Contents

Table of Contents

1.1 1.2 1.3 1.4 1.5	Ordering Information Device Types Device Type Features Definition of Feature Variants Identification Registers	10 10 10
2 2.1 2.2 2.2.1 2.2.2 2.2.2.1 2.3	General Device Information Logic Symbols Pin Configuration and Definition Package Pin Summary Port I/O Functions Port I/O Function Table Power Connection Scheme	13 14 15 20 21
3	Electrical Parameters	27
3.1	General Parameters	
3.1.1	Parameter Interpretation	27
3.1.2	Absolute Maximum Ratings	
3.1.3	Pin Reliability in Overload	
3.1.4	Pad Driver and Pad Classes Summary	
3.1.5	Operating Conditions	
3.2	DC Parameters	
3.2.1	Input/Output Pins	
3.2.2	Analog to Digital Converters (VADC)	
3.2.3	Digital to Analog Converters (DAC)	
3.2.4	Out-of-Range Comparator (ORC)	
3.2.5	Die Temperature Sensor	
3.2.6	USB OTG Interface DC Characteristics	
3.2.7	Oscillator Pins	53
3.2.8	Power Supply Current	57
3.2.9	Flash Memory Parameters	61
3.3	AC Parameters	63
3.3.1	Testing Waveforms	63
3.3.2	Power-Up and Supply Monitoring	64
3.3.3	Power Sequencing	65
3.3.4	Phase Locked Loop (PLL) Characteristics	67
3.3.5	Internal Clock Source Characteristics	
3.3.6	JTAG Interface Timing	
3.3.7	Serial Wire Debug Port (SW-DP) Timing	72
3.3.8	Peripheral Timing	73
3.3.8.1	Synchronous Serial Interface (USIC SSC) Timing	73

Table of Contents

3.3.8.2	Inter-IC (IIC) Interface Timing	76
3.3.8.3	Inter-IC Sound (IIS) Interface Timing	78
3.3.8.4	SDMMC Interface Timing	80
3.3.9	USB Interface Characteristics	89
3.3.10	Ethernet Interface (ETH) Characteristics	
3.3.10.1	ETH Measurement Reference Points	90
3.3.10.2	ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)	
3.3.10.3	ETH RMII Parameters	92
3.3.11	EtherCAT (ECAT) Characteristics	
3.3.11.1	ECAT Measurement Reference Points	
3.3.11.2	ETH Management Signal Parameters (MCLK, MDIO)	93
3.3.11.3	MII Timing TX Characteristics	
3.3.11.4	MII Timing RX Characteristics	
3.3.11.5	Sync/Latch Timings	97
4	Package and Reliability	98
4.1	Package Parameters	98
4.1.1	Thermal Considerations	98
4.2	Package Outlines	00
5	Quality Declarations	01

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4300 series devices.

The document describes the characteristics of a superset of the XMC4300 series devices. For simplicity, the various device types are referred to by the collective term XMC4300 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by **Users Guides** and **Application Notes**.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

1 Summary of Features

The XMC4300 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- General Purpose DMA with up-to 8 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests
- Flexible CRC Engine (FCE) for multiple bit error detection

On-Chip Memories

- 16 KB on-chip boot ROM
- 64 KB on-chip high-speed program memory
- 64 KB on-chip high speed data memory
- 256 KB on-chip Flash Memory with 8 KB instruction cache

Communication Peripherals

- Ethernet MAC module capable of 10/100 Mbit/s transfer rates
- EtherCATSlave interface (ECAT) capable of 100 Mbit/s transfer rates with 2 MII ports, 8 Fieldbus Memory Management Units (FMMU), 8 Sync Manager, 64 bit distributed clocks
- Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with 2 nodes, 64 message objects (MO), data rate up to 1 MBaud
- Four Universal Serial Interface Channels (USIC), providing 4 serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface
- · SD and Multi-Media Card interface (SDMMC) for data storage memory cards

Analog Frontend Peripherals

- Two Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- One Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Two Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- · Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

On-Chip Debug Support

- Full support for debug features: 8 breakpoints, CoreSight, trace
- · Various interfaces: ARM-JTAG, SWD, single wire trace

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC4<DDD>-<Z><PPP><T><FFFF>" identifies:

- · <DDD> the derivatives function set
- <Z> the package variant
 - E: LFBGA
 - F: LQFP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - K: -40°C to 125°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC4300 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC4300 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC4300 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XMC4300 Device Types

Derivative ¹⁾	Package	Flash Kbytes	SRAM Kbytes
XMC4300-F100x256	PG-LQFP-100	256	128

¹⁾ x is a placeholder for the supported temperature range.

1.3 Device Type Features

The following table lists the available features per device type.

Table 2 Features of XMC4300 Device Types

Derivative ¹⁾	LED TS Intf.	SD MMC Intf.	ETH Intf.	ECAT Slave Intf.	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4300-F100x256	1	1	RMII	2 x MII	1	2 x 2	N0, N1 MO[063]

¹⁾ x is a placeholder for the supported temperature range.

Table 3 Features of XMC4300 Device Types

Derivative ¹⁾	ADC Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice
XMC4300-F100x256	16	2	2 x 4	1 x 4

¹⁾ x is a placeholder for the supported temperature range.

1.4 Definition of Feature Variants

The XMC4300 types are offered with several memory sizes and number of available VADC channels. **Table 4** describes the location of the available Flash memory, **Table 5** describes the location of the available SRAMs. **Table 6** the available VADC channels.

Table 4 Flash Memory Ranges

Total Flash Size	Cached Range	Uncached Range
256 Kbytes	0800 0000 _H - 0803 FFFF _H	0C00 0000 _H - 0C03 FFFF _H

Table 5 SRAM Memory Ranges

Total SRAM Size	Program SRAM	System Data SRAM
128 Kbytes	1FFF 0000 _H -	2000 0000 _H -
	1FFF FFFF _H	2000 FFFF _H

Table 6 ADC Channels¹⁾

Package	VADC G0	VADC G1
PG-LQFP-100	CH0CH7	CH0CH7

Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

1.5 Identification Registers

The identification registers allow software to identify the marking.

Table 7 XMC4300 Identification Registers

Register Name	Value	Marking
SCU_IDCHIP	0004 3001 _H	AA
JTAG IDCODE	101D F083 _H	AA

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC4300 Logic Symbol PG-LQFP-100

Subject to Agreement on the Use of Product Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the four sides of the different packages.

Figure 3 XMC4300 PG-LQFP-100 Pin Configuration (top view)

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 8 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	N	Ax	 A2	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, A2, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Table 9 Package Pin Mapping

Function	LQFP-100	Pad Type	Notes
P0.0	2	A1+	
P0.1	1	A1+	
P0.2	100	A2	
P0.3	99	A2	
P0.4	98	A2	
P0.5	97	A2	
P0.6	96	A2	
P0.7	89	A2	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	88	A2	After a system reset, via HWSEL this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	A2	
P0.10	3	A1+	
P0.11	95	A1+	
P0.12	94	A1+	

Table 9 Package Pin Mapping (cont'd)

i abie 3	rackage rill wa	pping (cont a)	
Function	LQFP-100	Pad Type	Notes
P1.0	79	A1+	
P1.1	78	A1+	
P1.2	77	A2	
P1.3	76	A2	
P1.4	75	A1+	
P1.5	74	A1+	
P1.6	83	A2	
P1.7	82	A2	
P1.8	81	A2	
P1.9	80	A2	
P1.10	73	A1+	
P1.11	72	A1+	
P1.12	71	A2	
P1.13	70	A2	
P1.14	69	A2	
P1.15	68	A2	
P2.0	52	A2	
P2.1	51	A2	After a system reset, via HWSEL this pin selects the DB.TDO function.
P2.2	50	A2	
P2.3	49	A2	
P2.4	48	A2	
P2.5	47	A2	
P2.6	54	A1+	
P2.7	53	A1+	
P2.8	46	A2	
P2.9	45	A2	
P2.10	44	A2	
P2.14	41	A2	
P2.15	40	A2	
P3.0	7	A2	
P3.1	6	A2	
		1	1

Table 9 Package Pin Mapping (cont'd)

Function	LQFP-100	Pad Type	Notes
P3.2	5	A2	
P3.3	93	A1+	
P3.4	92	A1+	
P3.5	91	A2	
P3.6	90	A2	
P4.0	85	A2	
P4.1	84	A2	
P5.0	58	A1+	
P5.1	57	A1+	
P5.2	56	A1+	
P5.7	55	A1+	
P14.0	31	AN/DIG_IN	
P14.1	30	AN/DIG_IN	
P14.2	29	AN/DIG_IN	
P14.3	28	AN/DIG_IN	
P14.4	27	AN/DIG_IN	
P14.5	26	AN/DIG_IN	
P14.6	25	AN/DIG_IN	
P14.7	24	AN/DIG_IN	
P14.8	37	AN/DAC/DIG_IN	
P14.9	36	AN/DAC/DIG_IN	
P14.12	23	AN/DIG_IN	
P14.13	22	AN/DIG_IN	
P14.14	21	AN/DIG_IN	
P14.15	20	AN/DIG_IN	
P15.2	19	AN/DIG_IN	
P15.3	18	AN/DIG_IN	
P15.8	39	AN/DIG_IN	
P15.9	38	AN/DIG_IN	

Table 9 Package Pin Mapping (cont'd)

Function	LQFP-100	Pad Type	Notes
HIB_IO_0	14	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.
HIB_IO_1	13	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. As output the medium driver mode is active.
USB_DP	9	special	
USB_DM	8	special	
TCK	67	A1	Weak pull-down active.
TMS	66	A1+	Weak pull-up active. As output the strong-soft driver mode is active.
PORST	65	special	Weak pull-up permanently active, strong pull-down controlled by EVR.
XTAL1	61	clock_IN	
XTAL2	62	clock_O	
RTC_XTAL1	16	clock_IN	
RTC_XTAL2	15	clock_O	
VBAT	17	Power	When VDDP is supplied VBAT has to be supplied as well.
VBUS	10	special	
VAREF	33	AN_Ref	
VAGND	32	AN_Ref	
VDDA	35	AN_Power	
VSSA	34	AN_Power	
VDDC	12	Power	
VDDC	42	Power	
VDDC	64	Power	
VDDC	86	Power	
VDDP	11	Power	

Table 9 Package Pin Mapping (cont'd)

Function	LQFP-100	Pad Type	Notes
VDDP	43	Power	
VDDP	60	Power	
VDDP	87	Power	
VSS	59	Power	
VSSO	63	Power	
VSS	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

2.2.2 Port I/O Functions

The following general scheme is used to describe each Port pin:

Table 10 Port I/O Function Description

Function		Outputs		Inputs					
	ALT1	ALTn	HWO0	HWI0	Input	Input			
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA				
Pn.y	MODA.OUT				MODA.INA	MODC.INB			

Figure 4 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Subject to Agreement on the Use of Product Information

XMC4300 XMC4000 Family

2.2.2.1 Port I/O Function Table

Function			Output			Input									
	ALT1	ALT2	ALT3	ALT4	HWO0	HWI0	Input	Input	Input	Input	Input	Input	Input	Input	
P0.0	ECATO. PHY_RST	CAN. NO_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D	ETH0. CLK_RMIIB	ERU0. 0B0					ETH0. CLKRXB	
P0.1	USB. DRIVEVBUS	U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3				ETH0. CRS_DVB	ERU0. 0A0				ECATO. P1_RX_CLKA	ETH0. RXDVB	
P0.2	ECATO. P1_TXD2	U1C1. SELO1	CCU80. OUT01		U1C0. DOUT3	U1C0. HWIN3	ETH0. RXD0B		ERU0. 3B3						
P0.3	ECATO. P1_TXD3		CCU80. OUT20		U1C0. DOUT2	U1C0. HWIN2	ETH0. RXD1B			ERU1. 3B0					
P0.4	ETH0. TX_EN		CCU80. OUT10		U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3				ECAT0. P1_RXD3A		
P0.5	ETH0. TXD0	U1C0. DOUT0	CCU80. OUT00		U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0			ECAT0. P1_RXD2A		
P0.6	ETH0. TXD1	U1C0. SELO0	CCU80. OUT30					U1C0. DX2A	ERU0. 3B2		CCU80. IN2B		ECATO. P1_RXD1A		
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0	ECATO. LED_ERR			DB. TDI	U0C0. DX2B		ERU0. 2B1		CCU80. INOA	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	
P0.8	SCU. EXTCLK	U0C0. SCLKOUT	ECATO. LED_RUN			DB. TRST	U0C0. DX1B		ERU0. 2A1		CCU80. IN1B				
P0.9		U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0	ETH0. MDO	ETH0. MDIA	U1C1. DX2A	USB. ID	ERU0. 1B0				ECATO. P1_RX_DVA		
P0.10	ETH0. MDC	U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0				ECATO. P1_TX_CLKA		
P0.11	ECAT0. P1_LINK_ACT	U1C0. SCLKOUT	CCU80. OUT31		SDMMC. RST		ETH0. RXERB	U1C0. DX1A	ERU0. 3A2				ECATO. P1_RXD0A		
P0.12		U1C1. SELO0	CCU40. OUT3		ECATO. MDO	ECATO. MDIA		U1C1. DX2B	ERU0. 2B2						
P1.0		U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A			ECATO. P0_TX_CLKA	
P1.1		U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2		SDMMC. SDWC	U0C0. DX1A		ERU0. 3A0		CCU40. IN2A			ECATO. P0_RX_CLK	
P1.2	ECATO. PO_TXD3		CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3				ERU1. 2B0	CCU40. IN1A				
P1.3	ECATO. PO_TX_ENA	U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2				ERU1. 2A0	CCU40. INOA				
P1.4	WWDT. SERVICE_OUT	CAN. NO_TXD	CCU80. OUT33		U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. INOC			ECATO. P0_RXD0A	
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23		U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C			ECATO. PO_RXD1A	
P1.6	ECATO. PO TXDO	U0C0. SCLKOUT			SDMMC. DATA1 OUT	SDMMC. DATA1 IN								1	

Infineon

Port I/O Functions (CONt'd) Table 11

Function			Output			Input								
	ALT1	ALT2	ALT3	ALT4	HWO0	HWI0	Input	Input	Input	Input	Input	Input	Input	Input
P1.7	ECATO. P0_TXD1	U0C0. DOUT0		U1C1. SELO2	SDMMC. DATA2_OUT	SDMMC. DATA2_IN								
P1.8	ECATO. P0_TXD2	U0C0. SELO1		U1C1. SCLKOUT	SDMMC. DATA4_OUT	SDMMC. DATA4_IN								
P1.9	U0C0. SCLKOUT			U1C1. DOUT0	SDMMC. DATA5_OUT	SDMMC. DATA5_IN								ECATO. PO_RX_DV
P1.10	ETH0. MDC	U0C0. SCLKOUT		ECATO. LED_ERR		SDMMC. SDCD					CCU41. IN2C			ECATO. PO_RXD2A
P1.11	ECATO. LED_STATE_R UN	U0C0. SELO0		ECATO. LED_RUN	ETH0. MDO	ETHO. MDIC					CCU41. IN3C			ECATO. P0_RXD3A
P1.12	ETH0. TX_EN	CAN. N1_TXD		ECATO. PO_LINK_ACT	SDMMC. DATA6_OUT	SDMMC. DATA6_IN								
P1.13	ETH0. TXD0	U0C1. SELO3		ECATO. PHY_CLK25	SDMMC. DATA7_OUT	SDMMC. DATA7_IN	CAN. N1_RXDC							
P1.14	ETH0. TXD1	U0C1. SELO2		ECATO. SYNCO			U1C0. DX0E							
P1.15	SCU. EXTCLK			U1C0. DOUT0						ERU1. 1A0				ECATO. PO_LINKB
P2.0	CAN. N0_TXD			LEDTS0. COL1	ETH0. MDO	ETH0. MDIB			ERU0. 0B3		CCU40. IN1C			
P2.1				LEDTS0. COL0	DB.TDO/ TRACESWO		ETH0. CLK_RMIIA			ERU1. 0B0	CCU40. INOC			ETH0. CLKRXA
P2.2	VADC. EMUX00		CCU41. OUT3	LEDTS0. LINE0	LEDTS0. EXTENDED0	LEDTS0. TSIN0A	ETH0. RXD0A	U0C1. DX0A	ERU0. 1B2		CCU41. IN3A			
P2.3	VADC. EMUX01	U0C1. SELO0	CCU41. OUT2	LEDTS0. LINE1	LEDTS0. EXTENDED1	LEDTS0. TSIN1A	ETH0. RXD1A	U0C1. DX2A	ERU0. 1A2		CCU41. IN2A			
P2.4	VADC. EMUX02	U0C1. SCLKOUT	CCU41. OUT1	LEDTS0. LINE2	LEDTS0. EXTENDED2	LEDTS0. TSIN2A	ETH0. RXERA	U0C1. DX1A	ERU0. 0B2		CCU41. IN1A			
P2.5	ETH0. TX_EN	U0C1. DOUT0	CCU41. OUT0	LEDTS0. LINE3	LEDTS0. EXTENDED3	LEDTS0. TSIN3A	ETH0. RXDVA	U0C1. DX0B	ERU0. 0A2		CCU41. IN0A			ETH0. CRS_DVA
P2.6		ERU1. PDOUT3	CCU80. OUT13	LEDTS0. COL3				CAN. N1_RXDA	ERU0. 1B3		CCU40. IN3C	ECATO. PO_RX_ERRB		
P2.7	ETH0. MDC	CAN. N1_TXD	CCU80. OUT03	LEDTS0. COL2						ERU1. 1B0	CCU40. IN2C			
P2.8	ETH0. TXD0	ERU1. PDOUT1	CCU80. OUT32	LEDTS0. LINE4	LEDTS0. EXTENDED4	LEDTS0. TSIN4A	DAC. TRIGGER5				CCU40. IN0B	CCU40. IN1B	CCU40. IN2B	CCU40. IN3B
P2.9	ETH0. TXD1	ERU1. PDOUT2	CCU80. OUT22	LEDTS0. LINE5	LEDTS0. EXTENDED5	LEDTS0. TSIN5A	DAC. TRIGGER4				CCU41. IN0B	CCU41. IN1B	CCU41. IN2B	CCU41. IN3B
2.10	VADC. EMUX10	ERU1. PDOUT0	ECATO. PHY_RST	ECATO. SYNC1										
2.14	VADC. EMUX11	U1C0. DOUT0	CCU80. OUT21					U1C0. DX0D						
P2.15	VADC. EMUX12	ECATO. P1_TXD3	CCU80. OUT11	LEDTS0. LINE6	LEDTS0. EXTENDED6	LEDTS0. TSIN6A	ETH0. COLA	U1C0. DX0C						

Infineon

Port I/O Functions (CONt'd) Table 11

Function			Output			Input									
	ALT1	ALT2	ALT3	ALT4	HWO0	HWI0	Input	Input	Input	Input	Input	Input	Input	Input	
P3.0		U0C1. SCLKOUT		ECATO. P1_TX_ENA			U0C1. DX1B				CCU80. IN2C				
P3.1		U0C1. SELO0	ECATO. P1_TXD0				U0C1. DX2B		ERU0. 0B1		CCU80. IN1C				
P3.2	USB. DRIVEVBUS	CAN. N0_TXD	ECATO. P1_TXD1	LEDTS0. COLA					ERU0. 0A1		CCU80. IN0C				
P3.3		U1C1. SELO1		ECATO. MCLK	SDMMC. LED							CCU80. IN3B			
P3.4		U1C1. SELO2			SDMMC. BUS_POWER							CCU80. IN0B	ECATO. P1_LINKA		
P3.5		U1C1. SELO3		U0C1. DOUT0	SDMMC. CMD_OUT	SDMMC. CMD_IN			ERU0. 3B1				ECATO. P1_RX_ERRA		
P3.6		U1C1. SELO4		U0C1. SCLKOUT	SDMMC. CLK_OUT	SDMMC. CLK_IN			ERU0. 3A1						
P4.0		ECATO. PHY_CLK25		U1C0. SCLKOUT	SDMMC. DATA0_OUT	SDMMC. DATA0_IN	U1C1. DX1C		U0C1. DX0E					ECATO. PO_RX_ERRA	
P4.1		U1C1. MCLKOUT		U0C1. SELO0	SDMMC. DATA3_OUT	SDMMC. DATA3_IN								ECATO. PO_LINKA	
P5.0				ERU1. PDOUT0				ETH0. RXD0D	U0C0. DX0D	ECATO. P0_RXD0B					
P5.1	U0C0. DOUT0			ERU1. PDOUT1				ETH0. RXD1D		ECATO. P0_RXD1B					
P5.2		ECATO. PO_LINK_ACT		ERU1. PDOUT2				ETH0. CRS_DVD		ECATO. P0_RXD2B				ETH0. RXDVD	
P5.7	ECATO. SYNCO			LEDTS0. COLA						ECATO. P0_RXD3B					
P14.0							VADC. G0CH0								
P14.1							VADC. G0CH1								
P14.2							VADC. G0CH2	VADC. G1CH2							
P14.3							VADC. G0CH3	VADC. G1CH3			CAN. N0_RXDB				
214.4							VADC. G0CH4							ECATO. LATCH1A	
P14.5							VADC. G0CH5							ECATO. LATCHOA	
P14.6							VADC. G0CH6						G0ORC6	ECATO. P1_RX_CLK	
P14.7							VADC. G0CH7						G0ORC7	ECATO. P1_RXD0B	
P14.8					DAC. OUT_0			VADC. G1CH0			ETH0. RXD0C				
P14.9					DAC. OUT_1			VADC. G1CH1			ETH0. RXD1C				

Port I/O Functions (CONt'd) Table 11

Function			Output				Input								
	ALT1	ALT2	ALT3	ALT4	HWO0	HWI0	Input	Input	Input	Input	Input	Input	Input	Input	
P14.12								VADC. G1CH4						ECAT0. P1_RXD1B	
P14.13								VADC. G1CH5						ECATO. P1_RXD2B	
P14.14								VADC. G1CH6					G10RC6	ECATO. P1_RXD3B	
P14.15								VADC. G1CH7					G1ORC7	ECATO. P1_RX_DVB	
P15.2														ECATO. P1_RX_ERRE	
P15.3														ECATO. P1_LINKB	
P15.8											ETH0. CLK_RMIIC			ETH0. CLKRXC	
P15.9											ETH0. CRS_DVC			ETH0. RXDVC	
HIB_IO_0	HIBOUT	WWDT. SERVICE_OUT					WAKEUPA								
HIB_IO_1	HIBOUT	WWDT. SERVICE_OUT					WAKEUPB								
USB_DP															
USB_DM															
тск						DB.TCK/ SWCLK									
TMS					DB.TMS/ SWDIO										
PORST															
XTAL1							U0C0. DX0F	U0C1. DX0F	U1C0. DX0F	U1C1. DX0F					
XTAL2															
RTC_XTAL1									ERU0. 1B1						
RTC_XTAL2															

2.3 Power Connection Scheme

Figure 5. shows a reference power connection scheme for the XMC4300.

Figure 5 Power Connection Scheme

Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\rm DDP}$ pins must be connected externally to one $V_{\rm DDP}$ net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\rm SS}$. An additional 10 µF capacitor is connected to the $V_{\rm DDP}$ nets and an additional 10 uF capacitor to the $V_{\rm DDC}$ nets.

Subject to Agreement on the Use of Product Information

The XMC4300 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

 $V_{\rm AGND}$ is the low potential to the analog reference $V_{\rm AREF}$. Depending on the application it can share the common ground or have a different potential. In devices with shared $V_{\rm DDA}/V_{\rm AREF}$ and $V_{\rm SSA}/V_{\rm AGND}$ pins the reference is tied to the supply. Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When $V_{\rm DDP}$ is supplied, $V_{\rm BAT}$ must be supplied as well. If no other supply source (e.g. battery) is connected to $V_{\rm BAT}$, the $V_{\rm BAT}$ pin can also be connected directly to $V_{\rm DDP}$.

3 Electrical Parameters

Attention: All parameters in this chapter are preliminary target values and may change based on characterization results.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with a two-letter abbreviation in column "Symbol":

- CC
 - Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4300 and must be regarded for system design.
- SR

Such parameters indicate \mathbf{S} ystem Requirements, which must be provided by the application system in which the XMC4300 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 12 Absolute Maximum Rating Parameters

Parameter	Symb	ol		Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	T_{ST}	SR	-65	_	150	°C	_	
Junction temperature	T_{J}	SR	-40	_	150	°C	_	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	_	_	4.3	V	_	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	V_{IN}	SR	-1.0	_	$V_{\rm DDP}$ + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to $V_{\rm AGND}$	$V_{AIN} \\ V_{AREF}$	SR	-1.0	_	$V_{\rm DDP}$ + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I_{IN}	SR	-10	_	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	ΣI_{IN}	SR	-25	_	+25	mA		
Absolute maximum sum of all input circuit currents during overload condition	ΣI_{IN}	SR	-100	_	+100	mA		

¹⁾ The port groups are defined in Table 16.

Figure 6 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

Figure 6 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

Table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels $(V_{DDP} \text{ or } V_{DDA})$
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Table 13 Overload Parameters

Parameter	Sym	bol		Values	5	Unit	Note /
			Min.	Min. Typ.			Test Condition
Input current on any port pin during overload condition	I_{OV}	SR	-5	_	5	mA	
Absolute sum of all input circuit currents for one port	I_{OVG}	SR	_	_	20	mA	$\Sigma I_{ m OVx} $, for all $I_{ m OVx} < 0$ mA
group during overload condition ¹⁾			_	_	20	mA	$\Sigma I_{\rm OVx} $, for all $I_{\rm OVx} > 0$ mA
Absolute sum of all input circuit currents during overload condition	I_{OVS}	SR	_	_	80	mA	ΣI_{OVG}

¹⁾ The port groups are defined in Table 16.

Figure 7 shows the path of the input currents during overload via the ESD protection structures. The diodes against $V_{\rm DDP}$ and ground are a simplified representation of these ESD protection structures.

Figure 7 Input Overload Current via ESD structures

Table 14 and **Table 15** list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the **Absolute Maximum Ratings** must not be exceeded during overload.

Table 14 PN-Junction Characterisitics for positive Overload

Pad Type	I_{OV} = 5 mA, T_{J} = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 150 °C
A1 / A1+	$V_{IN} = V_{DDP} + 1.0 \; V$	$V_{IN} = V_{DDP} + 0.75 V$
A2	$V_{IN} = V_{DDP} + 0.7 \; V$	$V_{IN} = V_{DDP} + 0.6 \; V$
AN/DIG_IN	$V_{IN} = V_{DDP} + 1.0 \; V$	$V_{IN} = V_{DDP} + 0.75 V$

Table 15 PN-Junction Characterisitics for negative Overload

Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 150 °C
A1 / A1+	$V_{IN} = V_{SS}$ - 1.0 V	$V_{IN} = V_{SS}$ - 0.75 V
A2	$V_{IN} = V_{SS}$ - 0.7 V	$V_{IN} = V_{SS}$ - 0.6 V
AN/DIG_IN	$V_{IN} = V_{DDP}$ - 1.0 V	$V_{IN} = V_{DDP}$ - 0.75 V

Table 16 Port Groups for Overload and Short-Circuit Current Sum Parameters

Group	Pins
1	P0.[12:0], P3.[6:0]
2	P14.[15:0], P15.[9:2]
3	P2.[15:0], P5.[7:0]
4	P1.[15:0], P4.[1:0]

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and their basic characteristics.

Table 17 Pad Driver and Pad Classes Overview

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
A 3.3	3.3 V	LVTTL I/O	A1 (e.g. GPIO)	6 MHz	100 pF	No
			A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended
			A2 (e.g. ext. Bus)	80 MHz	15 pF	Series termination recommended

Figure 8 Output Slopes with different Pad Driver Modes

Figure 8 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in **Section 3.2.1**.

Subject to Agreement on the Use of Product Information

3.1.5 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC4300. All parameters specified in the following sections refer to these operating conditions, unless noted otherwise.

Table 18 Operating Conditions Parameters

Parameter	Symbol		Values		Unit	Note /
		Min.	lin. Typ. Max.			Test Condition
Ambient Temperature	T_{A} SR	-40	_	85	°C	Temp. Range F
		-40	_	125	°C	Temp. Range K
Digital supply voltage	$V_{\rm DDP}{\rm SR}$	3.13 ¹⁾	3.3	3.63 ²⁾	V	
Core Supply Voltage	$V_{ m DDC}$	_1)	1.3	_	٧	Generated internally
Digital ground voltage	V_{SS} SR	0	_	_	V	
ADC analog supply voltage	$V_{DDA}SR$	3.0	3.3	3.6 ²⁾	V	
Analog ground voltage for $V_{\rm DDA}$	$V_{\rm SSA}$ SR	-0.1	0	0.1	V	
Battery Supply Voltage for Hibernate Domain	$V_{BAT}SR$	1.95 ³⁾	_	3.63	V	When $V_{\rm DDP}$ is supplied $V_{\rm BAT}$ has to be supplied as well.
System Frequency	$f_{\rm SYS}$ SR	_	_	144	MHz	
Short circuit current of digital outputs	I_{SC} SR	-5	_	5	mA	
Absolute sum of short circuit currents per pin group ⁴⁾	$\Sigma I_{\mathrm{SC_PG}}$ SR	_	_	20	mA	
Absolute sum of short circuit currents of the device	$\Sigma I_{\text{SC_D}}$ SR	-	-	100	mA	

¹⁾ See also the Supply Monitoring thresholds, Section 3.3.2.

²⁾ Voltage overshoot to 4.0 V is permissible at Power-Up and PORST low, provided the pulse duration is less than 100 μs and the cumulated sum of the pulses does not exceed 1 h over lifetime.

³⁾ To start the hibernate domain it is required that $V_{\text{BAT}} \ge 2.1 \text{ V}$, for a reliable start of the oscillation of RTC_XTAL in crystal mode it is required that $V_{\text{BAT}} \ge 3.0 \text{ V}$.

⁴⁾ The port groups are defined in Table 16.

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19 Standard Pad Parameters

Parameter	Symbol	Va	alues	Unit	Note / Test Condition
		Min.	Max.		
Pin capacitance (digital inputs/outputs)	$C_{IO}CC$	_	10	pF	
Pull-down current	$ I_{PDL} $	150	_	μΑ	$^{1)}V_{IN} \geq 0.6 imes V_{DDP}$
	SR	_	10	μΑ	$^{2)}V_{IN} \leq 0.36 \times V_{DDP}$
Pull-Up current	$ I_{\rm PUH} $ SR	_	10	μΑ	$^{2)}V_{IN} \geq 0.6 imes V_{DDP}$
		100	_	μΑ	$^{1)}V_{IN} \leq 0.36 \times V_{DDP}$
Input Hysteresis for pads of all A classes ³⁾	HYSA CC	0.1 × <i>V</i> _{DDP}	_	V	
PORST spike filter always blocked pulse duration	t _{SF1} CC	_	10	ns	
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns	
PORST pull-down current	$ I_{PPD} $ CC	13	_	mA	V _{IN} = 1.0 V

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

Load current at which the pull device still maintains the valid logic level ("keep current").
 With active pull device, at load currents between force and keep current the input state is undefined.

³⁾ Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

Figure 9 Pull Device Input Characteristics

Figure 9 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases "B" the internal pull device defines the input logical state against a weak external load.

Table 20 Standard Pads Class A1

Parameter	Symbol	Va	lues	Unit	Note / Test Condition
		Min.	Max.		
Input leakage current	$I_{\rm OZA1}$ CC	-500	500	nA	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\mathrm{IHA1}}\mathrm{SR}$	$0.6 \times V_{\rm DDP}$	V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{ILA1}SR$	-0.3	$0.36 imes V_{DDP}$	V	
Output high voltage,	V_{OHA1}	V _{DDP} - 0.4	_	V	$I_{OH} \ge$ -400 μA
POD ¹⁾ = weak	CC	2.4	_	V	$I_{OH} \geq$ -500 μA
Output high voltage,		V _{DDP} - 0.4	_	V	<i>I</i> _{OH} ≥ -1.4 mA
POD ¹⁾ = medium		2.4	_	V	$I_{OH} \geq$ -2 mA
Output low voltage	V_{OLA1}	-	0.4	V	$I_{OL} \le 500 \mu A;$ POD ¹⁾ = weak
		_	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
Fall time	t _{FA1} CC	-	150	ns	$C_L = 20 \text{ pF};$ POD ¹⁾ = weak
		_	50	ns	C_L = 50 pF; POD ¹⁾ = medium
Rise time	t _{RA1} CC	-	150	ns	$C_L = 20 \text{ pF};$ POD ¹⁾ = weak
		_	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium

¹⁾ POD = Pin Out Driver

Table 21 Standard Pads Class A1+

Parameter	Symbol	Values		Unit	Note /	
		Min.		Max.		Test Condition
Input leakage current	I _{OZA1+} CC	-1		1	μΑ	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\mathrm{IHA1+}}\mathrm{SR}$	$0.6 imes V_{ extsf{DDP}}$		$V_{\rm DDP}$ + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1+}{\rm SR}$	-0.3		$0.36 \times V_{\rm DDP}$	V	

Table 21 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note /
		Min.	Max.		Test Condition
Output high voltage,	V_{OHA1+}	V_{DDP} - 0.4	_	V	$I_{OH} \geq$ -400 μA
POD ¹⁾ = weak	CC	2.4	-	V	$I_{OH} \ge$ -500 μA
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{OH} \geq$ -1.4 mA
POD ¹⁾ = medium		2.4	_	V	$I_{OH} \ge$ -2 mA
Output high voltage,		V_{DDP} - 0.4	_	V	$I_{\mathrm{OH}} \geq$ -1.4 mA
POD ¹⁾ = strong		2.4	_	V	$I_{OH} \ge$ -2 mA
Output low voltage	V_{OLA1+}	_	0.4	V	$I_{OL} \le 500 \mu A;$ POD ¹⁾ = weak
		_	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong
Fall time	t _{FA1+} CC	-	150	ns	$C_L = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_L = 50 \text{ pF};$ POD ¹⁾ = medium
		_	28	ns	C_{L} = 50 pF; POD ¹⁾ = strong; edge = slow
		_	16	ns	C_L = 50 pF; POD ¹⁾ = strong; edge = soft;
Rise time	t _{RA1+} CC	-	150	ns	$C_L = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_L = 50 \text{ pF};$ POD ¹⁾ = medium
		_	28	ns	C_{L} = 50 pF; POD ¹⁾ = strong; edge = slow
		_	16	ns	C_L = 50 pF; POD ¹⁾ = strong; edge = soft

¹⁾ POD = Pin Out Driver

Table 22 Standard Pads Class_A2

Parameter	Symbol	Va	lues	Unit	Note /
		Min.	Max.		Test Condition
Input Leakage current	I _{OZA2} CC	-6	6	μΑ	$ \begin{array}{l} 0 \; V \leq V_{IN} < \\ 0.5^{\star} V_{DDP} - 1 \; V; \\ 0.5^{\star} V_{DDP} + 1 \; V \\ < V_{IN} \leq V_{DDP} \end{array} $
		-3	3	μΑ	$\begin{array}{l} 0.5^*V_{\rm DDP} \text{ - 1 V} < \\ V_{\rm IN} < 0.5^*V_{\rm DDP} \\ \text{+ 1 V} \end{array}$
Input high voltage	V_{IHA2} SR	$0.6 imes V_{DDP}$	V_{DDP} + 0	0.3 V	max. 3.6 V
Input low voltage	$V_{ILA2}SR$	-0.3	$0.36 \times \\ V_{\rm DDP}$	V	
Output high voltage,	V_{OHA2}	V_{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μA
POD = weak	CC	2.4	_	V	$I_{OH} \geq$ -500 μA
Output high voltage,		V_{DDP} - 0.4	_	V	$I_{\mathrm{OH}} \geq$ -1.4 mA
POD = medium		2.4	_	V	$I_{OH} \ge$ -2 mA
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -1.4 mA
POD = strong		2.4	_	V	$I_{OH} \ge$ -2 mA
Output low voltage, POD = weak	V_{OLA2} CC	-	0.4	V	$I_{OL} \leq 500 \; \muA$
Output low voltage, POD = medium		-	0.4	V	$I_{\rm OL} \le 2 \; {\rm mA}$
Output low voltage, POD = strong		_	0.4	V	$I_{\rm OL} \le 2 \; {\rm mA}$

Table 22 Standard Pads Class_A2

Parameter	Symbol	,	Values	Unit	Note /
		Min.	Max.		Test Condition
Fall time	t _{FA2} CC	_	150	ns	$C_{\rm L}$ = 20 pF; POD = weak
		_	50	ns	$C_{\rm L}$ = 50 pF; POD = medium
		_	3.7	ns	C_L = 50 pF; POD = strong; edge = sharp
		_	7	ns	C_{L} = 50 pF; POD = strong; edge = medium
		_	16	ns	C_L = 50 pF; POD = strong; edge = soft
Rise time	$t_{RA2}CC$	_	150	ns	$C_{\rm L}$ = 20 pF; POD = weak
		_	50	ns	$C_{\rm L}$ = 50 pF; POD = medium
		_	3.7	ns	C_L = 50 pF; POD = strong; edge = sharp
		_	7.0	ns	C_{L} = 50 pF; POD = strong; edge = medium
		_	16	ns	C_L = 50 pF; POD = strong; edge = soft

Table 23 HIB_IO Class_A1 special Pads

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Input leakage current	I _{OZHIB} CC	-500	500	nA	$0 \text{ V} \leq V_{IN} \leq V_{BAT}$	
Input high voltage	V_{IHHIB} SR	$0.6 imes V_{BAT}$	V_{BAT} + 0.3	V	max. 3.6 V	
Input low voltage	V_{ILHIB} SR	-0.3	$0.36 imes V_{BAT}$	V		
Input Hysteresis for HIB_IO pins ¹⁾	HYSHIB CC	$0.1 imes V_{BAT}$	_	V	$V_{BAT} \geq 3.13\;V$	
		$0.06 imes V_{BAT}$	-	V	$V_{BAT} < 3.13 \; V$	
Output high voltage, POD ¹⁾ = medium	V_{OHHIB} CC	V _{BAT} - 0.4	_	٧	$I_{\mathrm{OH}} \geq$ -1.4 mA	
Output low voltage	V_{OLHIB} CC	-	0.4	V	I _{OL} ≤ 2 mA	
Fall time	t _{FHIB} CC	-	50	ns	$V_{\rm BAT} \ge 3.13 \text{ V}$ $C_{\rm L} = 50 \text{ pF}$	
		-	100	ns	V_{BAT} < 3.13 V C_{L} = 50 pF	
Rise time	$t_{RHIB}CC$	-	50	ns	$V_{\mathrm{BAT}} \ge 3.13 \ \mathrm{V}$ $C_{\mathrm{L}} = 50 \ \mathrm{pF}$	
		_	100	ns	V_{BAT} < 3.13 V C_{L} = 50 pF	

¹⁾ Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

3.2.2 Analog to Digital Converters (VADC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 24
 VADC Parameters (Operating Conditions apply)

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Analog reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{\ +} 0.05^{1)}$	V	
Analog reference ground ⁵⁾	V_{AGND} SR	$V_{\rm SSM}$ - 0.05	_	V _{AREF} -	V	
Analog reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	_	V _{DDA} + 0.1	V	
Analog input voltage	$V_{AIN}SR$	V_{AGND}	_	V_{DDA}	V	
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$0.03 \times V_{\rm DDA} < V_{\rm AIN} < 0.97 \times V_{\rm DDA}$
		-500	_	100	nA	$\begin{array}{l} \text{0 V} \leq V_{\text{AIN}} \leq \text{0.03} \\ \times V_{\text{DDA}} \end{array}$
		-100	-	500	nA	$0.97 \times V_{DDA} \\ \leq V_{AIN} \leq V_{DDA}$
Input leakage current at VAREF	I _{OZ2} CC	-1	-	1	μΑ	$\begin{array}{l} \textbf{0 V} \leq V_{AREF} \\ \leq V_{DDA} \end{array}$
Input leakage current at VAGND	I _{OZ3} CC	-1	-	1	μΑ	$\begin{array}{l} \textbf{0} \ \textbf{V} \leq V_{AGND} \\ \leq V_{DDA} \end{array}$
Internal ADC clock	$f_{ADCI}CC$	2	_	36	MHz	$V_{DDA} = 3.3 \; V$
Switched capacitance at the analog voltage inputs ⁴⁾	$\begin{array}{c} C_{AINSW} \\ CC \end{array}$	_	4	6.5	pF	
Total capacitance of an analog input	C_{AINTOT}	_	12	20	pF	
Switched capacitance at the positive reference voltage input ⁵⁾⁶⁾	$\begin{array}{c} C_{AREFSW} \\ CC \end{array}$	-	15	30	pF	
Total capacitance of the voltage reference inputs ⁵⁾	$\begin{array}{c} C_{AREFTOT} \\ CC \end{array}$	_	20	40	pF	

Subject to Agreement on the Use of Product Information

Table 24 VADC Parameters (Operating Conditions apply)

Parameter	Symbol	,	Values	3	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Total Unadjusted Error	TUE CC	-4	-	4	LSB	12-bit resolution;
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-3	_	3	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$
Gain Error ⁸⁾	EA _{GAIN} CC	-4	_	4	LSB	
Integral Non-Linearity ⁸⁾	$EA_{INL}CC$	-3	-	3	LSB	
Offset Error ⁸⁾	EA _{OFF} CC	-4	_	4	LSB	
Worst case ADC $V_{\rm DDA}$ power supply current per active converter	I _{DDAA} CC	_	1.5	2	mA	during conversion $V_{\rm DDP} = 3.6 \ \rm V,$ $T_{\rm J} = 150 \ ^{\rm o} \rm C$
Charge consumption on V_{AREF} per conversion ⁵⁾	Q_{CONV}	_	30	_	pC	$\begin{array}{l} \text{O V} \leq V_{\text{AREF}} \\ \leq V_{\text{DDA}}^{9)} \end{array}$
ON resistance of the analog input path	R _{AIN} CC	_	600	1 200	Ohm	
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm	
Resistance of the reference voltage input path	R _{AREF} CC	_	700	1 700	Ohm	

- 1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).
- If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage
 is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.
- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 12).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16.
 Never less than ±1 LSB.
- 8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.
- 9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 459 \, \text{ns}$ results in a typical average current of $I_{AREF} = 65.4 \, \mu\text{A}$.

Figure 10 VADC Reference Voltage Range

The power-up calibration of the VADC requires a maximum number of 4 $352f_{\rm ADCI}$ cycles.

Figure 11 VADC Input Circuits

Subject to Agreement on the Use of Product Information

Figure 12 VADC Analog Input Leakage Current

Conversion Time

Table 25 Conversion Time (Operating Conditions apply)

Parameter	Syr	mbol	Values	Unit	Note		
Conversion time	t _C				N = 8, 10, 12 for N-bit conversion $T_{\rm ADC} = 1/f_{\rm PERIPH}$ $T_{\rm ADCI} = 1/f_{\rm ADCI}$		

- STC defines additional clock cycles to extend the sample time
- PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:

$$f_{\rm ADC}$$
 = 144 MHz i.e. $t_{\rm ADC}$ = 6.9 ns, DIVA = 3, $f_{\rm ADCI}$ = 36 MHz i.e. $t_{\rm ADCI}$ = 27.8 ns

According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

$$t_{\text{CN12C}} = (2 + 12 + 2) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 16 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 459 \text{ ns}$$

12-bit uncalibrated conversion:

$$t_{\text{CN12}} = (2 + 12) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 14 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 403 \text{ ns}$$

10-bit uncalibrated conversion:

$$t_{\text{CN10}} = (2 + 10) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 12 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 348 \text{ ns}$$

8-bit uncalibrated:

$$t_{\text{CN8}}$$
 = (2 + 8) × t_{ADCI} + 2 × t_{ADC} = 10 × 27.8 ns + 2 × 6.9 ns = 292 ns

3.2.3 Digital to Analog Converters (DAC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 26
 DAC Parameters (Operating Conditions apply)

Parameter	Symbol			Values	6	Unit	Note /
			Min.	Тур.	Max.		Test Condition
RMS supply current	I_{DD}	CC	_	2.5	4	mA	per active DAC channel, without load currents of DAC outputs
Resolution	RES	CC	-	12	-	Bit	
Update rate	$f_{URATE_{_}}$	ACC	_		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy
Update rate	$f_{URATE_{_}}$	_F CC	_		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy
Settling time	t _{SETTLE}	CC	_	1	2	μS	at full scale jump, output voltage reaches target value ± 20 LSB
Slew rate	SR	CC	2	5	_	V/μs	
Minimum output voltage	V _{OUT_N} CC	1IN	_	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H
Maximum output voltage	V _{OUT_N} CC	MAX	_	2.5		V	code value unsigned: FFF _H ; signed: 7FF _H
Integral non-linearity	INL	CC	-5.5	±2.5	5.5	LSB	$\begin{aligned} R_L &\geq 5 \text{ kOhm,} \\ C_L &\leq 50 \text{ pF} \end{aligned}$
Differential non- linearity	DNL	CC	-2	±1	2	LSB	$\begin{aligned} R_L &\geq 5 \text{ kOhm,} \\ C_L &\leq 50 \text{ pF} \end{aligned}$

 Table 26
 DAC Parameters (Operating Conditions apply) (cont'd)

Parameter	Symbol	l		Values	6	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Offset error	ED_{OFF}	СС		±20		mV	
Gain error	ED_{G_IN} (CC	-6.5	-1.5	3	%	
Startup time	t _{STARTUP}	CC	_	15	30	μS	time from output enabling till code valid ±16 LSB
3dB Bandwidth of Output Buffer	$f_{\rm C1}$	СС	2.5	5	-	MHz	verified by design
Output sourcing current	I _{OUT_SOU}	JRCE	_	-30	-	mA	
Output sinking current	I _{OUT_SINK}	<	_	0.6	-	mA	
Output resistance	R_{OUT}	СС	_	50	_	Ohm	
Load resistance	R_{L}	SR	5	_	_	kOhm	
Load capacitance	C_{L}	SR	-	_	50	pF	
Signal-to-Noise Ratio	SNR (CC	_	70	-	dB	examination bandwidth < 25 kHz
Total Harmonic Distortion	THD	СС	_	70	-	dB	examination bandwidth < 25 kHz
Power Supply Rejection Ratio	PSRR (CC	_	56	_	dB	to $V_{\rm DDA}$ verified by design

Conversion Calculation

Unsigned:

 $\mathsf{DACxDATA} = 4095 \times (V_{\mathsf{OUT}} - V_{\mathsf{OUT_MIN}}) \, / \, (V_{\mathsf{OUT_MAX}} - V_{\mathsf{OUT_MIN}})$

Signed:

 $\mathsf{DACxDATA} = 4095 \times (V_{\mathsf{OUT}} - V_{\mathsf{OUT_MIN}}) \, / \, (V_{\mathsf{OUT_MAX}} - V_{\mathsf{OUT_MIN}}) \, - \, 2048$

Figure 13 DAC Conversion Examples

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹⁾ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 27 apply for the maximum reference voltage $V_{\rm ARFF} = V_{\rm DDA} + 50$ mV.

 Table 27
 ORC Parameters (Operating Conditions apply)

Parameter	Symb	ol		Values	;	Unit	Note / Test Condition
			Min.	Тур.	Max.		
DC Switching Level	V_{ODC}	CC	100	125	210	mV	$V_{AIN} \geq V_{AREF} + V_{ODC}$
Hysteresis	V_{OHYS}	CC	50	_	V_{ODC}	mV	
Detection Delay of a	$t_{\sf ODD}$	CC	50	_	450	ns	$V_{AIN} \geq V_{AREF}$ + 210 mV
persistent Overvoltage			45	-	105	ns	$V_{AIN} \geq V_{AREF}$ + 400 mV
Always detected	t_{OPDD}	CC	440	_	-	ns	$V_{AIN} \geq V_{AREF}$ + 210 mV
Overvoltage Pulse			90	-	-	ns	$V_{AIN} \geq V_{AREF}$ + 400 mV
Never detected	t_{OPDN}	CC	_	_	45	ns	$V_{AIN} \geq V_{AREF}$ + 210 mV
Overvoltage Pulse			_	-	30	ns	$V_{AIN} \geq V_{AREF}$ + 400 mV
Release Delay	t_{ORD}	CC	65	-	105	ns	$V_{AIN} \leq V_{AREF}$
Enable Delay	$t_{\sf OED}$	CC	_	100	200	ns	

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

Figure 14 GxORCOUTy Trigger Generation

Figure 15 ORC Detection Ranges

3.2.5 Die Temperature Sensor

The Die Temperature Sensor (DTS) measures the junction temperature $T_{\rm J}$.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 28 Die Temperature Sensor Parameters

Parameter	Symbol			Values	S	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Temperature sensor range	T_{SR}	SR	-40	-	150	°C	
Linearity Error (to the below defined formula)	ΔT_{LE}	СС	_	±1	_	°C	per $\Delta T_{\rm J} \le 30$ °C
Offset Error	ΔT_{OE}	CC	_	±6	_	°C	$\Delta T_{\rm OE} = T_{\rm J} - T_{\rm DTS}$ $V_{\rm DDP} \le 3.3 \rm V^{1)}$
Measurement time	t_{M}	CC	_	_	100	μS	
Start-up time after reset inactive	t_{TSST}	SR	_	-	10	μS	

¹⁾ At $V_{\rm DDP\ max}$ = 3.63 V the typical offset error increases by an additional $\Delta T_{\rm OE}$ = ±1 °C.

The following formula calculates the temperature measured by the DTS in [°C] from the RESULT bit field of the DTSSTAT register.

Temperature
$$T_{DTS}$$
 = (RESULT - 605) / 2.05 [°C]

This formula and the values defined in **Table 28** apply with the following calibration values:

- DTSCON.BGTRIM = 8_H
- DTSCON.REFTRIM = 4_H

3.2.6 USB OTG Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 29 USB OTG VBUS and ID Parameters (Operating Conditions apply)

Parameter	Symbol	,	Values	3	Unit	Note /
		Min.	Тур.	Max.		Test Condition
VBUS input voltage range	V_{IN} CC	0.0	_	5.25	V	
A-device VBUS valid threshold	$V_{\rm B1}$ CC	4.4	_	_	V	
A-device session valid threshold	$V_{\rm B2}$ CC	0.8	_	2.0	V	
B-device session valid threshold	$V_{\rm B3}$ CC	0.8	_	4.0	V	
B-device session end threshold	$V_{\rm B4}$ CC	0.2	_	0.8	V	
VBUS input resistance to ground	R _{VBUS_IN} CC	40	_	100	kOhm	
B-device VBUS pull- up resistor	R _{VBUS_PU}	281	_	_	Ohm	Pull-up voltage = 3.0 V
B-device VBUS pull- down resistor	R _{VBUS_PD}	656	_	_	Ohm	
USB.ID pull-up resistor	R _{UID_PU}	14	_	25	kOhm	
VBUS input current	I _{VBUS_IN} CC	_	-	150	μΑ	$0 \text{ V} \le \text{V}_{\text{IN}} \le 5.25 \text{ V}:$ $\text{T}_{\text{AVG}} = 1 \text{ ms}$

Table 30 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)

Parameter	Sym	bol		Values	3	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input low voltage	V_{IL}	SR	_	_	0.8	V	
Input high voltage (driven)	V_{IH}	SR	2.0	_	-	V	
Input high voltage (floating) 1)	V_{IHZ}	SR	2.7	_	3.6	V	
Differential input sensitivity	V_{DIS}	CC	0.2	_	_	V	
Differential common mode range	V_{CM}	CC	0.8	_	2.5	V	
Output low voltage	V_{OL}	CC	0.0	_	0.3	V	1.5 kOhm pull- up to 3.6 V
Output high voltage	V_{OH}	CC	2.8	_	3.6	V	15 kOhm pull- down to 0 V
DP pull-up resistor (idle bus)	R_{PUI}	CC	900	_	1 575	Ohm	
DP pull-up resistor (upstream port receiving)	R_{PUA}	CC	1 425	-	3 090	Ohm	
DP, DM pull-down resistor	R_{PD}	CC	14.25	_	24.8	kOhm	
Input impedance DP, DM	Z_{INP}	CC	300	_	_	kOhm	$0 \ V \le V_{IN} \le V_{DDP}$
Driver output resistance DP, DM	Z_{DRV}	СС	28	-	44	Ohm	

¹⁾ Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at B-connector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

3.2.7 Oscillator Pins

Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 16) or in direct input mode (see Figure 17).

Figure 16 Oscillator in Crystal Mode

Figure 17 Oscillator in Direct Input Mode

Table 31 OSC XTAL Parameters

Parameter	Symbol	Values U		Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Input frequency	$f_{ m OSC}{ m SR}$	4	_	40	MHz	Direct Input Mode selected
		4	_	25	MHz	External Crystal Mode selected
Oscillator start-up time ¹⁾²⁾	t _{OSCS} CC	_	_	10	ms	
Input voltage at XTAL1	V_{IX} SR	-0.5	_	V _{DDP} + 0.5	V	
Input amplitude (peak-to-peak) at XTAL1 ²⁾³⁾	$V_{PPX}SR$	V_{DDP}	_	V _{DDP} + 1.0	V	
Input high voltage at XTAL1 ⁴⁾	$V_{IHBX}SR$	1.0	_	V _{DDP} + 0.5	V	
Input low voltage at XTAL1 ⁴⁾	$V_{ILBX}SR$	-0.5	_	0.4	V	
Input leakage current at XTAL1	I _{ILX1} CC	-100	_	100	nA	

¹⁾ $t_{\rm OSCS}$ is defined from the moment the oscillator is enabled wih SCU_OSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of 0.4 * $V_{\rm DDP}$.

²⁾ The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

³⁾ If the shaper unit is enabled and not bypassed.

⁴⁾ If the shaper unit is bypassed, dedicated DC-thresholds have to be met.

Table 32 RTC XTAL Parameters

Parameter	rameter Symbol Values		Unit	Note /		
		Min.	Тур.	Max.		Test Condition
Input frequency	$f_{\rm OSC}$ SR	_	32.768	-	kHz	
Oscillator start-up time ¹⁾²⁾³⁾	t _{OSCS} CC	_	_	5	S	
Input voltage at RTC_XTAL1	V_{IX} SR	-0.3	-	V_{BAT} + 0.3	V	
Input amplitude (peak- to-peak) at RTC_XTAL1 ²⁾⁴⁾	$V_{PPX}SR$	0.4	_	_	V	
Input high voltage at RTC_XTAL1 ⁵⁾	$V_{IHBX}SR$	V_{BAT}	_	V_{BAT} + 0.3	V	
Input low voltage at RTC_XTAL1 ⁵⁾	$V_{ILBX}SR$	-0.3	_	V_{BAT}	V	
Input Hysteresis for RTC_XTAL1 ⁵⁾⁶⁾	V_{HYSX} CC	0.1 × <i>V</i> _{BAT}		_	V	$3.0~\textrm{V} \leq V_{\textrm{BAT}} < 3.6~\textrm{V}$
		V_{BAT}		_	V	V _{BAT} < 3.0 V
Input leakage current at RTC_XTAL1	I _{ILX1} CC	-100	_	100	nA	

t_{OSCS} is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 400 mV.

The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

³⁾ For a reliable start of the oscillation in crystal mode it is required that $V_{\rm BAT} \ge 3.0$ V. A running oscillation is maintained across the full $V_{\rm BAT}$ voltage range.

⁴⁾ If the shaper unit is enabled and not bypassed.

⁵⁾ If the shaper unit is bypassed, dedicated DC-thresholds have to be met.

⁶⁾ Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

3.2.8 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

If not stated otherwise, the operating conditions for the parameters in the following table are:

 $V_{\rm DDP}$ = 3.3 V, $T_{\rm A}$ = 25 °C

Table 33 Power Supply Parameters

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾¹¹⁾	I_{DDPA}	CC	_	135	_	mA	144 / 144 / 144
Peripherals enabled			-	125	_		144 / 72 / 72
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			_	97	_		72 / 72 / 144
JOPO FERIFIE JOCO			_	80	_		24 / 24 / 24
			-	68	_		1/1/1
Active supply current Code execution from RAM Flash in Sleep mode	I_{DDPA}	CC	_	108	_	mA	144 / 144 / 144
			_	98	-		144 / 72 / 72
Active supply current ²⁾	I_{DDPA}	CC	_	86	-	mA	144 / 144 / 144
Peripherals disabled			_	85	-		144 / 72 / 72
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			_	70	_		72 / 72 / 144
JCPU, JPERIPH, JCCU			_	55	_		24 / 24 / 24
			_	50	_		1/1/1
Sleep supply current ³⁾	I_{DDPS}	CC	_	127	_	mA	144 / 144 / 144
Peripherals enabled			_	115	_		144 / 72 / 72
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			_	93	_		72 / 72 / 144
JCPU / JPERIPH / JCCU III III II-			_	57	_		24 / 24 / 24
			_	47	_		1/1/1
$f_{\mathrm{CPU}}/f_{\mathrm{PERIPH}}/f_{\mathrm{CCU}}$ in kHz			-	48	_		100 / 100 / 100

Table 33 Power Supply Parameters

Parameter	Symbol		Values	8	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Sleep supply current ⁴⁾	I_{DDPS} CC	_	77	_	mA	144 / 144 / 144
Peripherals disabled		_	76	_		144 / 72 / 72
Frequency: $f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz		_	65	_		72 / 72 / 144
JCPU / JPERIPH / JCCU		_	53	_		24 / 24 / 24
		_	46	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		_	47	_		100 / 100 / 100
Deep Sleep supply	I_{DDPD} CC	-	11	-	mA	24 / 24 / 24
current ⁵⁾		_	7.0	_		4/4/4
Flash in Sleep mode Frequency:		_	6.6	-		1/1/1
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz						
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	7.6	_		100 / 100 / 100 6)
Hibernate supply current	I_{DDPH} CC	-	8.7	-	μΑ	V_{BAT} = 3.3 V
RTC on ⁷⁾		_	6.5	-		V_{BAT} = 2.4 V
		_	5.7	-		V_{BAT} = 2.0 V
Hibernate supply current	I_{DDPH} CC	_	8.0	-	μΑ	V_{BAT} = 3.3 V
RTC off ⁸⁾		_	6.0	-		V_{BAT} = 2.4 V
		_	5.0	-		V_{BAT} = 2.0 V
Hibernate off ⁹⁾	I_{DDPH} CC	_	4.4	_	μΑ	V_{BAT} = 3.3 V
		_	3.5	_		V_{BAT} = 2.4 V
		_	3.1	_		V_{BAT} = 2.0 V
Worst case active supply current ¹⁰⁾	I _{DDPA} CC	-	-	250 11)	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 ^{\circ}\text{C}$
$\overline{V_{\mathrm{DDA}}}$ power supply current	I_{DDA} CC	-	-	_12)	mA	
$\overline{I_{\mathrm{DDP}}}$ current at $\overline{\mathrm{PORST}}$ Low	I _{DDP_PORST}	_	5	10	mA	$V_{\rm DDP} = 3.3 \text{ V},$ $T_{\rm J} = 25 ^{\circ}\text{C}$
		-	13	55	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 ^{\circ}\text{C}$
Power Dissipation	P_{DISS} CC	-	-	1.4	W	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 ^{\circ}\text{C}$

Table 33 Power Supply Parameters

Parameter	Symbol		Values	3	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Wake-up time from Sleep to Active mode	t _{SSA} CC	_	6	_	cycles	
Wake-up time from Deep Sleep to Active mode		_	-	_	ms	Defined by the wake-up of the Flash module, see Section 3.2.9
Wake-up time from Hibernate mode		-	-	_	ms	Wake-up via power-on reset event, see Section 3.3.2

- 1) CPU executing code from Flash, all peripherals idle.
- 2) CPU executing code from Flash.
- 3) CPU in sleep, all peripherals idle, Flash in Active mode.
- 4) CPU in sleep, Flash in Active mode.
- 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
- 6) To wake-up the Flash from its Sleep mode, $f_{\rm CPU} \ge$ 1 MHz is required.
- 7) OSC ULP operating with external crystal on RTC XTAL
- 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
- 9) V_{RAT} supplied, but Hibernate domain not started; for example state after factory assembly
- 10) Test Power Loop: f_{SYS} = 144 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.
 - The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.
- 11) I_{DDP} decreases typically by approximately 5 mA when f_{SYS} decreases by 10 MHz, at constant T_{J}
- 12) Sum of currents of all active converters (ADC and DAC)

Peripheral Idle Currents

Default test conditions:

- f_{svs} and derived clocks at 144 MHz
- $V_{\text{DDP}} = 3.3 \text{ V}, T_{\text{a}} = 25 \text{ °C}$
- all peripherals are held in reset (see the PRSTAT registers in the Reset Control Unit of the SCU)
- the peripheral clocks are disabled (see CGATSTAT registers in the Clock Control Unit of the SCU
- no I/O activity

The given values are a result of differential measurements with asserted and deasserted peripheral reset as well as disabled and enabled clock of the peripheral under test.

The tested peripheral is left in the state after the peripheral reset is deasserted, no further initialisation or configuration is done. E.g. no timer is running in the CCUs, no communication active in the USICs, etc.

Table 34 Peripheral Idle Currents

Parameter	Symbol		Values	· ·	Unit	Note /
		Min.	Тур.	Max.		Test Condition
PORTS FCE WDT	I _{PER} CC	_	≤ 0.3	_	mA	
MultiCAN ERU LEDTSCU0 ETH CCU4x ¹⁾ , CCU8x ¹⁾		_	≤ 1.0	-		
DAC (digital) ²⁾		_	1.3	_		
USICx SDMMC		_	3.0	-		
VADC (digital) ²⁾		-	4.5	_		
DMA0, USB, EtherCAT		_	6.0	_		

Enabling the f_{CCU} clock for the CCU4x/CCU8x modules adds approximately I_{PER} = 4.8 mA, disregarding which and how many of those peripherals are enabled.

The current consumption of the analog components are given in the dedicated Data Sheet sections of the respective peripheral.

3.2.9 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 35 Flash Memory Parameters

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per 256 Kbyte Sector	$t_{ERP}CC$	-	5	5.5	S	
Erase Time per 64 Kbyte Sector	$t_{ERP}CC$	_	1.2	1.4	s	
Erase Time per 16 Kbyte Logical Sector	$t_{ERP}CC$	_	0.3	0.4	s	
Program time per page ¹⁾	$t_{PRP}CC$	_	5.5	11	ms	
Erase suspend delay	t _{FL_ErSusp}	_	_	15	ms	
Wait time after margin change	t _{FL_Margin}	10	_	_	μS	
Wake-up time	t _{WU} CC	_	-	270	μS	
Read access time	t _a CC	22	_	_	ns	For operation with 1 / $f_{\rm CPU}$ < $t_{\rm a}$ wait states must be configured ²⁾
Data Retention Time, Physical Sector ³⁾⁴⁾	t _{RET} CC	20	-	-	years	Max. 1000 erase/program cycles
Data Retention Time, Logical Sector ³⁾⁴⁾	t _{RETL} CC	20	-	-	years	Max. 100 erase/program cycles
Data Retention Time, User Configuration Block (UCB) ³⁾⁴⁾	t _{RTU} CC	20	_	_	years	Max. 4 erase/program cycles per UCB
Endurance on 64 Kbyte Physical Sector PS4	N _{EPS4} CC	10000	-	-	cycles	Cycling distributed over life time ⁵⁾

- In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms.
- 2) The following formula applies to the wait state configuration: FCON.WSPFLASH \times (1 / f_{CPU}) $\geq t_a$.
- 3) Storage and inactive time included.
- 4) Values given are valid for an average weighted junction temperature of $T_J = 110$ °C.
- Only valid with robust EEPROM emulation algorithm, equally cycling the logical sectors. For more details see the Reference Manual.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 18 Rise/Fall Time Parameters

Figure 19 Testing Waveform, Output Delay

Figure 20 Testing Waveform, Output High Impedance

3.3.2 Power-Up and Supply Monitoring

 $\overline{ ext{PORST}}$ is always asserted when $V_{ ext{DDP}}$ and/or $V_{ ext{DDC}}$ violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 21 PORST Circuit

Table 36 Supply Monitoring Parameters

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage reset threshold	$V_{POR}CC$	2.79 ¹⁾	-	3.05 ²⁾	V	3)
Core supply voltage reset threshold	$V_{\sf PV}$ CC	-	-	1.17	V	
$V_{ m DDP}$ voltage to ensure defined pad states	V_{DDPPA} CC	_	1.0	-	V	
PORST rise time	t_{PR} SR	_	_	2	μS	4)
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	_	2.5	3.5	ms	Time to the first user code instruction
$V_{ m DDC}$ ramp up time	t _{VCR} CC	_	550	_	μѕ	Ramp up after power-on or after a reset triggered by a violation of V_{POR} or V_{PV}

¹⁾ Minimum threshold for reset assertion.

- 2) Maximum threshold for reset deassertion.
- 3) The $V_{\rm DDP}$ monitoring has a typical hysteresis of $V_{\rm PORHYS}$ = 180 mV.
- If t_{PR} is not met, low spikes on PORST may be seen during start up (e.g. reset pulses generated by the supply monitoring due to a slow ramping V_{DDP}).

Figure 22 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 37 Power Sequencing Parameters

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Positive Load Step Current	$\Delta I_{PLS}SR$	-	-	50	mA	Load increase on $V_{\rm DDP}$ $\Delta t \leq 10 \text{ ns}$
Negative Load Step Current	$\Delta I_{NLS}SR$	-	-	150	mA	Load decrease on $V_{\rm DDP}$ $\Delta t \leq 10 \text{ ns}$
$V_{ m DDC}$ Voltage Over-/ Undershoot from Load Step	ΔV_{LS} CC	-	_	±100	mV	For maximum positive or negative load step
Positive Load Step Settling Time	t _{PLSS} SR	50	_	-	μS	
Negative Load Step Settling Time	t _{NLSS} SR	100	_	-	μS	
External Buffer Capacitor on V_{DDC}	C _{EXT} SR	-	10	-	μF	In addition $C = 100 \text{ nF}$ capacitor on each V_{DDC} pin

Positive Load Step Examples

System assumptions:

 $f_{\rm CPU}$ = $f_{\rm SYS}$, target frequency $f_{\rm CPU}$ = 144 MHz, main PLL $f_{\rm VCO}$ = 288 MHz, stepping done by K2 divider, $t_{\rm PLSS}$ between individual steps:

24 MHz - 48 MHz - 72 MHz - 96 MHz - 144 MHz (K2 steps 12 - 6 - 4 - 3 - 2)

24 MHz - 48 MHz - 96 MHz - 144 MHz (K2 steps 12 - 6 - 3 - 2)

24 MHz - 72 MHz - 144 MHz (K2 steps 12 - 4 - 2)

3.3.4 Phase Locked Loop (PLL) Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Main and USB PLL

Table 38 PLL Parameters

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Accumulated Jitter	$D_{P}CC$	_	-	±5	ns	accumulated over 300 cycles $f_{\rm SYS}$ = 144 MHz
Duty Cycle ¹⁾	D _{DC} CC	46	50	54	%	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	$f_{ m PLLBASE}$ CC	30	-	140	MHz	
VCO input frequency	$f_{REF}CC$	4	_	16	MHz	
VCO frequency range	$f_{\sf VCO}$ CC	260	_	520	MHz	
PLL lock-in time	t_{L} CC	_	_	400	μS	

^{1) 50%} for even K2 divider values, 50±(10/K2) for odd K2 divider values.

3.3.5 Internal Clock Source Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Fast Internal Clock Source

Table 39 Fast Internal Clock Parameters

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Nominal frequency	f_{OFINC}	_	36.5	_	MHz	not calibrated
	CC	_	24	_	MHz	calibrated
	∆f _{OFI} CC	-0.5	-	0.5	%	automatic calibration ¹⁾²⁾
		-15	-	15	%	factory calibration, $V_{\rm DDP} = 3.3~{\rm V}$
		-25	-	25	%	no calibration, $V_{\rm DDP}$ = 3.3 V
		-7	_	7	%	Variation over voltage range ³⁾ 3.13 V \leq $V_{\rm DDP}$ \leq 3.63 V
Start-up time	t _{OFIS} CC	-	50	_	μS	

¹⁾ Error in addition to the accuracy of the reference clock.

²⁾ Automatic calibration compensates variations of the temperature and in the $V_{\rm DDP}$ supply voltage.

³⁾ Deviations from the nominal $V_{\rm DDP}$ voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

Slow Internal Clock Source

Table 40 Slow Internal Clock Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Nominal frequency	$f_{OSI}CC$	-	32.768	_	kHz	
Accuracy	Af _{OSI} CC	-4	_	4	%	$V_{\mathrm{BAT}} = \mathrm{const.}$ $0~\mathrm{^{\circ}C} \leq T_{\mathrm{A}} \leq$ $85~\mathrm{^{\circ}C}$
		-5	_	5	%	$V_{\rm BAT}$ = const. $T_{\rm A}$ < 0 °C or $T_{\rm A}$ > 85 °C
		-5	_	5	%	$2.4 \text{ V} \leq V_{\text{BAT}},$ $T_{\text{A}} = 25 \text{ °C}$
		-10	_	10	%	$1.95 \text{ V} \le V_{\text{BAT}} < 2.4 \text{ V},$ $T_{\text{A}} = 25 \text{ °C}$
Start-up time	$t_{ m OSIS}$ CC	-	50	_	μS	

3.3.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 41 JTAG Interface Timing Parameters

Parameter		mbol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
TCK clock period	t_1	SR	25	_	_	ns	
TCK high time	t_2	SR	10	_	_	ns	
TCK low time	t_3	SR	10	_	_	ns	
TCK clock rise time	t_4	SR	_	_	4	ns	
TCK clock fall time	t_5	SR	_	_	4	ns	
TDI/TMS setup to TCK rising edge	<i>t</i> ₆	SR	6	_	_	ns	
TDI/TMS hold after TCK rising edge	<i>t</i> ₇	SR	6	_	_	ns	
TDO valid after TCK falling edge ¹⁾ (propagation delay)	<i>t</i> ₈	CC	_	_	13	ns	C _L = 50 pF
			3	_	_	ns	C _L = 20 pF
TDO hold after TCK falling edge ¹⁾	t ₁₈	CC	2	_	_	ns	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	<i>t</i> ₉	CC	-	_	14	ns	C _L = 50 pF
TDO valid to high imped. from TCK falling edge ¹⁾	t ₁₀	CC	_	_	13.5	ns	C _L = 50 pF

¹⁾ The falling edge on TCK is used to generate the TDO timing.

²⁾ The setup time for TDO is given implicitly by the TCK cycle time.

Figure 23 Test Clock Timing (TCK)

Figure 24 JTAG Timing

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

 Table 42
 SWD Interface Timing Parameters (Operating Conditions apply)

Parameter		nbol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	$t_{\rm SC}$	SR	25	-	_	ns	C _L = 30 pF
			40	-	_	ns	C _L = 50 pF
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	t_2	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	_	_	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	_	ns	
SWDIO output valid time	t_5	CC	_	-	17	ns	C _L = 50 pF
after SWDCLK rising edge			_	-	13	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	CC	3	-	_	ns	

Figure 25 SWD Timing

Subject to Agreement on the Use of Product Information

3.3.8 Peripheral Timing

3.3.8.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 43 USIC SSC Master Mode Timing

Parameter	Symbol		Values	s	Unit	Note /
		Min.	Тур.	Max.		Test Condition
SCLKOUT master clock period	t _{CLK} CC	33.3	-	_	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{PB} - 6.5 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{PB} - 8.5 ¹⁾	-	-	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-6	-	8	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	23	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	1	-	-	ns	

¹⁾ $t_{PB} = 1 / f_{PB}$

Table 44 USIC SSC Slave Mode Timing

Parameter		nbol		Values	S	Unit	Note /
			Min.	Тур.	Max.		Test Condition
DX1 slave clock period	t_{CLK}	SR	66.6	-	_	ns	
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	t ₁₀	SR	3	_	_	ns	

Table 44 USIC SSC Slave Mode Timing

Parameter	Symbol			Values	3	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	t ₁₁	SR	4	_	-	ns	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	t ₁₂	SR	6	_	-	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	4	_	-	ns	
Data output DOUT[3:0] valid time	t ₁₄	CC	0	_	24	ns	

¹⁾ This input timing is valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 26 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Subject to Agreement on the Use of Product Information

3.3.8.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 45 USIC IIC Standard Mode Timing¹⁾

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{b}SR$	-	-	400	pF	

Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Table 46 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol		Values	3	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{b}SR$	-	-	400	pF	

¹⁾ Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

²⁾ C_b refers to the total capacitance of one bus line in pF.

Figure 27 USIC IIC Stand and Fast Mode Timing

3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 47 USIC IIS Master Transmitter Timing

Parameter	Symbol		Values	i	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	_	_	ns	
Clock high time	t ₂ CC	0.35 x	_	_	ns	
		t_{1min}				
Clock low time	t ₃ CC	0.35 x	_	_	ns	
		t_{1min}				
Hold time	t ₄ CC	0	_	_	ns	
Clock rise time	t ₅ CC	_	_	0.15 x	ns	
				t_{1min}		

Figure 28 USIC IIS Master Transmitter Timing

Table 48 USIC IIS Slave Receiver Timing

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₆ SR	66.6	-	_	ns	
Clock high time	t ₇ SR	0.35 x t _{6min}	_	_	ns	
Clock low time	t ₈ SR	0.35 x t _{6min}	_	_	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	_	_	ns	
Hold time	t ₁₀ SR	0	_	_	ns	

Figure 29 USIC IIS Slave Receiver Timing

3.3.8.4 SDMMC Interface Timing

Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Note: Operating Conditions apply, total external capacitive load $C_1 = 40 \text{ pF}$.

AC Timing Specifications (Full-Speed Mode)

Table 49 SDMMC Timing for Full-Speed Mode

Parameter	Symb	ol	Values	3	Unit	Note/ Test
			Min.	Max.		Condition
Clock frequency in full speed transfer mode $(1/t_{pp})$	$f_{\sf pp}$	СС	0	24	MHz	
Clock cycle in full speed transfer mode	$t_{\rm pp}$	CC	40	_	ns	
Clock low time	t_{WL}	CC	10	_	ns	
Clock high time	t_{WH}	CC	10	_	ns	
Clock rise time	t_{TLH}	CC	_	10	ns	
Clock fall time	t_{THL}	CC	-	10	ns	
Inputs setup to clock rising edge	t_{ISU_F}	SR	2	_	ns	
Inputs hold after clock rising edge	t _{IH_F}	SR	2	-	ns	
Outputs valid time in full speed mode	t _{ODLY_F}	- CC	_	10	ns	
Outputs hold time in full speed mode	t _{OH_F}	СС	0	_	ns	

Table 50 SD Card Bus Timing for Full-Speed Mode¹⁾

Parameter	Symbol	Values		Values		Unit	Note/ Test
		Min.	Max.		Condition		
SD card input setup time	t_{ISU}	5	_	ns			
SD card input hold time	t _{IH}	5	_	ns			

Table 50 SD Card Bus Timing for Full-Speed Mode¹⁾ (cont'd)

Parameter	Symbol	Values		Unit	Note/ Test
		Min.	Max.		Condition
SD card output valid time	t_{ODLY}	_	14	ns	
SD card output hold time	t _{OH}	0	_	ns	

¹⁾ Reference card timing values for calculation examples. Not subject to production test and not characterized.

Full-Speed Output Path (Write)

Figure 30 Full-Speed Output Path

Full-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

No clock delay:

(1)

 $t_{ODLY F} + t_{DATA DELAY} + t_{TAP DELAY} + t_{ISU} < t_{WL}$

With clock delay:

$$t_{ODLY_F} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$$

(3)

$$t_{DATA_DELAY} + t_{TAP_DELAY} + t_{WL} < t_{PP} + t_{CLK_DELAY} - t_{ISU} - t_{ODLY_F}$$

$$t_{DATA\ DELAY} + t_{TAP\ DELAY} + 20 < 40 + t_{CLK\ DELAY} - 5 - 10$$

$$t_{DATA\ DELAY} < 5 + t_{CLK\ DELAY} - t_{TAP\ DELAY}$$

The data can be delayed versus clock up to 5 ns in ideal case of $t_{\rm WL}$ = 20 ns.

Full-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(4)

$$t_{CLK_DELAY} < t_{WL} + t_{OH_F} + t_{DATA_DELAY} + t_{TAP_DELAY} - t_{IH}$$

$$t_{CLK_DELAY} < 20 + t_{DATA_DELAY} + t_{TAP_DELAY} - 5$$

$$t_{DATA\ DELAY} < 15 + t_{CLK\ DELAY} + t_{TAP\ DELAY}$$

The clock can be delayed versus data up to 18.2 ns (external delay line) in ideal case of $t_{\rm WL}$ = 20 ns, with maximum $t_{\rm TAP\ DELAY}$ = 3.2 ns programmed.

(5)

Electrical Parameters

Full-Speed Input Path (Read)

Figure 31 Full-Speed Input Path

Full-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$\begin{split} t_{CLK_DELAY} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ODLY} + t_{ISU_F} &< 0.5 \times t_{pp} \\ t_{CLK_DELAY} + t_{DATA_DELAY} &< 0.5 \times t_{pp} - t_{ODLY} - t_{ISU_F} - t_{TAP_DELAY} \\ t_{CLK_DELAY} + t_{DATA_DELAY} &< 20 - 14 - 2 - t_{TAP_DELAY} \\ t_{CLK_DELAY} + t_{DATA_DELAY} &< 4 - t_{TAP_DELAY} \end{split}$$

The data + clock delay can be up to 4 ns for a 40 ns clock cycle.

Full-Speed Read Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$t_{\text{CLK_DELAY}} + t_{\text{OH}} + t_{\text{DATA_DELAY}} + t_{\text{TAP_DELAY}} > t_{\text{IH_F}}$$
 $t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} > t_{\text{IH_E}} - t_{\text{OH}} - t_{\text{TAP_DELAY}}$

$$t_{CLK\ DELAY} + t_{DATA\ DELAY} > 2 - t_{TAP\ DELAY}$$

The data + clock delay must be greater than 2 ns if t_{TAP} DELAY is not used.

If the $t_{\mathsf{TAP_DELAY}}$ is programmed to at least 2 ns, the data + clock delay must be greater than 0 ns (or less). This is always fulfilled.

AC Timing Specifications (High-Speed Mode)

Table 51 SDMMC Timing for High-Speed Mode

Parameter	Symbo	ol	Values		Unit	Note/ Test
			Min.	Max.		Condition
Clock frequency in high speed transfer mode $(1/t_{pp})$	$f_{\sf pp}$	СС	0	48	MHz	
Clock cycle in high speed transfer mode	$t_{\rm pp}$	СС	20	_	ns	
Clock low time	t_{WL}	CC	7	_	ns	
Clock high time	t_{WH}	CC	7	_	ns	
Clock rise time	t_{TLH}	CC	_	3	ns	
Clock fall time	t_{THL}	CC	_	3	ns	
Inputs setup to clock rising edge	t _{ISU_H}	SR	2	_	ns	
Inputs hold after clock rising edge	t _{IH_H}	SR	2	_	ns	
Outputs valid time in high speed mode	t _{ODLY_}	, CC	_	14	ns	
Outputs hold time in high speed mode	t _{OH_H}	CC	2	_	ns	

Table 52 SD Card Bus Timing for High-Speed Mode¹⁾

Parameter	Symbol	Value	s	Unit	Note/ Test Condition
		Min.	Max.		
SD card input setup time	t_{ISU}	6	_	ns	
SD card input hold time	t_{IH}	2	_	ns	
SD card output valid time	t_{ODLY}	_	14	ns	
SD card output hold time	t _{OH}	2.5	_	ns	

¹⁾ Reference card timing values for calculation examples. Not subject to production test and not characterized.

High-Speed Output Path (Write)

Figure 32 High-Speed Output Path

High-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

No clock delay:

$$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$$

With clock delay:

$$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$$

$$t_{\mathrm{DATA\ DELAY}} + t_{\mathrm{TAP\ DELAY}} - t_{\mathrm{CLK\ DELAY}} < t_{\mathrm{WL}} - t_{\mathrm{ISU}} - t_{\mathrm{ODLY\ H}}$$

$$t_{\mathrm{DATA\ DELAY}} - t_{\mathrm{CLK\ DELAY}} < t_{\mathrm{WL}} - t_{\mathrm{ISU}} - t_{\mathrm{ODLY\ H}} - t_{\mathrm{TAP\ DELAY}}$$

$$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$$

$$t_{DATA\ DELAY} - t_{CLK\ DELAY} < -10 - t_{TAP\ DELAY}$$

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

$$t_{\rm CLK_DELAY} < t_{\rm WL} + t_{\rm OH_H} + t_{\rm DATA_DELAY} + t_{\rm TAP_DELAY} - t_{\rm IH}$$

$$t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < t_{\rm WL} + t_{\rm OH_H} + t_{\rm TAP_DELAY} - t_{\rm IH}$$

$$t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + 2 + t_{\rm TAP_DELAY} - 2$$

$$t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY} - 2$$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of $t_{\rm WL}$ = 10 ns, with maximum $t_{\rm TAP\ DELAY}$ = 3.2 ns programmed.

High-Speed Input Path (Read)

Figure 33 High-Speed Input Path

High-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} + t_{\text{TAP_DELAY}} + t_{\text{ODLY}} + t_{\text{ISU_H}} < t_{pp}$$

$$t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} < t_{pp} - t_{\text{ODLY}} - t_{\text{ISU_H}} - t_{\text{TAP_DELAY}}$$

$$t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} < 20 - 14 - 2 - t_{\text{TAP_DELAY}}$$

$$t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} < 4 - t_{\text{TAP_DELAY}}$$

The data + clock delay can be up to 4 ns for a 20 ns clock cycle.

High-Speed Read Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

(12)

$$\begin{split} t_{\text{CLK_DELAY}} + t_{\text{OH}} + t_{\text{DATA_DELAY}} + t_{\text{TAP_DELAY}} > t_{\text{IH_H}} \\ t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} > t_{\text{IH_H}} - t_{\text{OH}} - t_{\text{TAP_DELAY}} \\ t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} > 2 - 2.5 - t_{\text{TAP_DELAY}} \\ \end{split}$$

The data + clock delay must be greater than -0.5 ns for a 20 ns clock cycle. This is always fulfilled.

3.3.9 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

 Table 53
 USB Timing Parameters (operating conditions apply)

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Rise time	t_{R}	CC	4	_	20	ns	$C_L = 50 \text{ pF}$
Fall time	t_{F}	CC	4	_	20	ns	$C_L = 50 \text{ pF}$
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	_	111.11	%	C _L = 50 pF
Crossover voltage	V_{CRS}	CC	1.3	_	2.0	V	C _L = 50 pF

Figure 34 USB Signal Timing

3.3.10 Ethernet Interface (ETH) Characteristics

For proper operation of the Ethernet Interface it is required that $f_{SYS} \ge 100$ MHz.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.10.1 ETH Measurement Reference Points

Figure 35 ETH Measurement Reference Points

3.3.10.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)

Table 54 ETH Management Signal Timing Parameters

Parameter		nbol		Values	3	Unit	Note /
			Min.	Тур.	Max.		Test Conditi on
ETH_MDC period	<i>t</i> ₁	CC	400	-	_	ns	C _L = 25 pF
ETH_MDC high time	t_2	CC	160	_	_	ns	
ETH_MDC low time	t_3	CC	160	-	_	ns	
ETH_MDIO setup time (output)	t_4	CC	10	_	_	ns	
ETH_MDIO hold time (output)	<i>t</i> ₅	CC	10	_	_	ns	
ETH_MDIO data valid (input)	<i>t</i> ₆	SR	0	_	300	ns	

Figure 36 ETH Management Signal Timing

3.3.10.3 ETH RMII Parameters

In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.

Table 55 ETH RMII Signal Timing Parameters

Parameter	Symbol			Value	S	Unit	Note /	
				Тур.	Max.		Test Condit ion	
ETH_RMII_REF_CL clock period	t ₁₃	SR	20	_	_	ns	C _L = 25 pF; 50 ppm	
ETH_RMII_REF_CL clock high time	t ₁₄	SR	7	_	13	ns	$C_{L} = 25 pF$	
ETH_RMII_REF_CL clock low time	t ₁₅	SR	7	_	13	ns		
ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time	t ₁₆	SR	4	_	_	ns		
ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time	t ₁₇	SR	2	_	_	ns		
ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid	t ₁₈	CC	4	_	15	ns		

Figure 37 ETH RMII Signal Timing

Subject to Agreement on the Use of Product Information

3.3.11 EtherCAT (ECAT) Characteristics

3.3.11.1 ECAT Measurement Reference Points

Figure 38 Measurement Reference Points

3.3.11.2 ETH Management Signal Parameters (MCLK, MDIO)

Table 56 ECAT Management Signal Timing Parameters

Parameter	Symbol Values				Unit	Note /	
		Min.	Тур.	Max.		Test Conditi on	
ECAT_MCLK period	t _{MCLK} CC	_	400	_	ns	IEEE802.3 requirement	
ECAT_MCLK high time	t _{MCLK_h} CC	160	_	_	ns	(2.5 MHz) C _L = 25 pF	
ECAT_MCLK low time	t _{MCLK_I} CC	160	_	_	ns		
ECAT_MDIO setup time (output)	t _{D_setup} CC	10	_	_	ns		
ECAT_MDIO hold time (output)	t _{D_hold} CC	10	_	_	ns		
ECAT_MDIO data valid (input)	t _{D_valid} SR	0	_	300	ns		

Figure 39 ECAT Management Signal Timing

3.3.11.3 MII Timing TX Characteristics

Table 57 ETH MII TX Signal Timing Parameters

Parameter	Symbol	,	Values	3	Unit	Note /
		Min.	Тур.	Max.		Test Condition
PHY_CLK25, TX_CLK period	t _{TX_CLK}	_	40	_	ns	
Delay between PHY clock source PHY_CLK25 and TX_CLK output of the PHY	t _{PHY_delay}	-	_	_	ns	PHY dependent

Table 57 ETH MII TX Signal Timing Parameters (cont'd)

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
PHY setup requirement: TXEN/TXD[3:0] with respect to TX_CLK	t _{TX_setup} SR	15	_	0	ns	PHY dependent IEEE802.3 limit is 15 ns
PHY hold requirement: TXEN/TXD[3:0] with respect to TX_CLK	t _{TX_hold} CC	0	_	25	ns	PHY dependent IEEE802.3 limit is 0 ns

Note: ECAT0_CONPx.TX_SHIFT can be adjusted by displaying TX_CLK of a PHY and TXEN/TXD[3:0] on an oscilloscope. TXEN/TXD[3:0] is allowed to change between 0 ns and 25 ns after a rising edge of TX_CLK (according to IEEE802.3 – check your PHY's documentation). Configure TX_SHIFT so that TXEN/TXD[3:0] change near the middle of this range. It is sufficient to check just one of the TXEN/TXD[3:0] signals, because they are nearly generated at the same time.

Figure 40 MII TX Characteristics

3.3.11.4 MII Timing RX Characteristics

Table 58 ETH MII RX Signal Timing Parameters

Parameter	Symbol	Symbol Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
RX_CLK period	t _{RX_CLK} SR	_	40	_	ns	C _L = 25 pF, IEEE802.3
RX_DV/RX_DV/RXD[3:0] valid before rising edge of RX_CLK	t _{RX_setup} SR	10	_	_	ns	requirement
RX_DV/RX_DV/RXD[3:0] valid after rising edge of RX_CLK	t _{RX_hold} SR	10	_	_	ns	

Figure 41 MII RX characteristics

3.3.11.5 Sync/Latch Timings

Table 59 Sync/Latch Timings

Parameter	Symbol		Values	3	Unit	Note / Test Condition
		Min.	Тур.	Max.		
SYNC0/1	$t_{ m DC_SYNC_}$	-	_	11 + m ¹⁾	ns	
LATCH0/1	$t_{ m DC_LATCH}$ SR	12 + n ²⁾	-	_	ns	

¹⁾ additional delay form logic and pad, number is added after characterization

Note: SYNC0/1 pulse length are initially loaded by EEPROM content ADR 0x0002. The actual used value can be read back from Register DC_PULSE_LEN.

Figure 42 Sync/Latch Timings

²⁾ additional shaping delay, number is added after characterization

Package and Reliability

4 Package and Reliability

The XMC4300 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 60 provides the thermal characteristics of the packages used in XMC4300.

Table 60 Thermal Characteristics of the Packages

<u> </u>							
Parameter	Symbol	Lim	it Values	Unit	Package Types		
		Min.	Max.				
Exposed Die Pad dimensions including U- Groove	Ex × Ey CC	-	7.0 × 7.0	mm	PG-LQFP-100-25		
Exposed Die Pad dimensions excluding U- Groove	Ax × Ay CC	-	6.2 × 6.2	mm	PG-LQFP-100-25		
Thermal resistance Junction-Ambient $T_{\rm J} \le 150~{\rm ^{\circ}C}$	R _{⊙JA} CC	-	22.5	K/W	PG-LQFP-100-25 ¹⁾		

¹⁾ Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\rm \Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{\text{INT}} + P_{\text{IOSTAT}} + P_{\text{IODYN}}) \times R_{\Theta,\text{IA}}$

The internal power consumption is defined as

 $P_{\mathsf{INT}} = V_{\mathsf{DDP}} \times I_{\mathsf{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}} - V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- · Reduce the system frequency
- Reduce the number of output pins
- · Reduce the load on active output drivers

Package and Reliability

4.2 Package Outlines

The exposed die pad dimensions are listed in Table 60.

Figure 43 PG-LQFP-100-25 (Plastic Green Low Profile Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Quality Declarations

5 Quality Declarations

The qualification of the XMC4300 is executed according to the JEDEC standard JESD47I.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Table 61 Quality Parameters

Parameter	ameter Symbol Value		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	20	_	-	а	$T_{\rm J} \le 109 ^{\rm o}{\rm C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	_	_	3 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	V_{CDM} SR	_	_	1 000	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	_	-	3	_	JEDEC J-STD-020D
Soldering temperature	T _{SDR} SR	_	_	260	°C	Profile according to JEDEC J-STD-020D

Subject to Agreement on the Use of Product Information

www.infineon.com

Published by Infineon Technologies AG