SPRAWOZDANIE

Zajęcia: Matematyka Konkretna

Prowadzący: prof. dr hab. inż. Vasyl Martsenyuk

Laboratorium Nr 6	Rafał Klinowski
Data 14.11.2023	Informatyka
Temat: Funkcje aktywacji	II stopień, stacjonarne,
Wariant 6	2 semestr, gr. a

1. Polecenie:

Ćwiczenie polegało na stworzeniu notatnika Jupyter w języku Python do przeprowadzenia analizy funkcji aktywacji oraz jej gradientu.

Wariant zadania: 6

6. Funkcja Swish

2. Napisany program, uzyskane wyniki

Na początku konieczne było stworzenie funkcji obliczających wartość sigmoid(x), swish(x) oraz pochodnej funkcji Swish.

```
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def swish(x, beta):
    return x * sigmoid(beta * x)

def swish_gradient(x, beta):
    return ((1 + np.exp(-beta * x)) + x * (-beta * np.exp(-beta * x))) / (1 + np.exp(-beta * x)) **2
```

Rysunek 1. Kod źródłowy funkcji.

Następnie wybrano 100 punktów z zakresu <-10;10> oraz utworzono wykresy funkcji dla różnych wartości beta.

Rysunek 2. Funkcja Swish w zależności od parametru beta.

Rysunek 3. Gradient funkcji Swish w zależności od parametru beta.

Rysunek 4. Funkcja i jej gradient na jednym wykresie dla beta=1.

Repozytorium zawierające uzyskane wyniki wraz z niezbędnymi plikami: https://github.com/Stukeley/MatematykaKonkretna/tree/master/Lab6