wame:				***********	*********	•	
Invigilato	r's Sigr	nature :				•••	
	- (CS/B.Tec	h (ECE-N	EW)/SE	M-6/E0	-604/201	lO
			2010			i.	
n de Santa. Santa de Santa de Sa Santa de Santa de S	VI	SI CIRC	CUITS A	nd sys	TEMS		
Time Allo	tted: 3	Hours			Fu	ll Marks : 7	Ό
	- -	figures in t	- F				
Candid	ates ar					own word:	5
			as far as p	гасисаріе	•		
			GROUP -	- A			
	(Multiple	Choice Ty	pe Quest	ions)		
1. Cho	oose t	he correc	t alterna	tives for	any	ten of the	he
folk	owing:		entroller George			$10 \times 1 = 1$	0
1)	Scalir	ng is done	for				
	a) i	improving	the switch	ing speed			
	b) 1	reducing th	ne power d	issipatior	1		
	c) (decreasing	the chip s	ize			
	d) ;	all of these	•				
ii)	For 0	·25 μm pro	cess what	is the va	lue of λ	?	
	a) (0·5 μm		b) 0	125 µm		
	c)	0·75 μm		d) 1	μm.		
0404						[Turn o	ver
6404						,	

iii) The two transitional crit	ical points on the VTC curve are					
	identified where the slop	e becomes					
	a) -1	b) + 1					
	c) 0	d) ∞.					
iv)	Noise margin for low sign	nal levels (NM _H) is					
	a) $V_{IL} - V_{OL}$	b) $V_{IH} - V_{IL}$					
	c) V _{OH} - V _{IH}	d) $V_{OH} - V_{IL}$.					
v)	The threshold voltage transistor is	of an enhancement nMOS					
	a) greater than 0 V	b) less than 0 V					
	c) equal to 0 V	d) none of these.					
vi)	The (W/L) ratio of the pMOS and nMOS transistors for an ideal symmetric inverter is						
	a) 1	b) 3·5					
	c) 2·5	d) 4.					
VII)	The equivalent (W/L) of (W_1/L) and (W_2/L) connection	two nMOS transistors with					
w .	a) $(W_1/L)+(W_2/L)$	b) $(W_1/L).(W_2/L)$					
	c) $1/(L/W_1 + L/W_2)$	d) $(W_1/L)/(W_2/L)$.					
viii)	In MOSFET threshold volta	age depends on					
	a) gate voltage	b) source voltage					
	c) drain voltage	d) all of these.					
4	2						

www.makaut.com

ix)	In a	short channel MC	OS structu	re electron mobility
	a)	increases		
	b)	decreases		
	c)	remains same		
	d)	first increases th	en decreas	ses.
x)	СМ	OS inverter is usef	ul because	e it has
	a)	low sensitivity to	noise	
	b)	low power consu	mption	
45.	c)	excellent speed		
	d)	all of these.		
Ki)	The	main advantage	of preci	narge-evaluate dynamic
	logi	c is		
+ 5 ,	a)	lesser number of	transistor	s required
i, ,	b)	high speed		
	c)	low power consu	mption	
	d)	all of these.		
di)	Who	en two nMOS	are conn	ected in parallel, the
	equ	ivalent k_n is given	by	
	a)	2k _n	b)	$k_n/2$
•	c)	k _n	d)	none of these.

[Turn over

- xiii) How many transistors are required to design the function $F = (ABC + DE)^{l}$ using CMOS logic?
 - a) 5

b) 7

c) 10

d) 14.

- xiv) In the region C of the VTC curve of CMOS inverter
 - a) pMOS is linear & nMOS is in saturation
 - b) pMOS is in saturation & nMOS is in linear
 - c) pMOS is in saturation & nMOS is in saturation
 - d) pMOS is in linear & nMOS is in linear.
- xv) A MOS device can be used as a resistor
 - a) in linear region
- b) in saturation region
- c) sub-threshold region d)
- none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) Explain the VLSI design flow with the help of Y-chart.
 - b) Discuss the concepts of regularity, modularity and locality in VLSI design. 3+2
- 3. Draw the VTC curve of a simple CMOS inverter circuit and clearly define the different operating regions of NMOS and PMOS.

4

- 4. Describe the following phenomena in MOS structure:
 - a) I-V characteristics
 - b) Channel length modulation.
- 5. a) What do you mean by CMOS Transmission Gate (TG).
 - b) Design the following circuits using transmission gates: 2+3
 - i) 2 input XOR gate
 - ii) 2×1 MUX.
- 6. Explain with a circuit diagram, operation of a differential amplifier.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

- 7. a) Design a transmission gate full adder circuit and explain.
 - b) What are the differences between PLA and PAL?
 - c) Implement the following two functions using PLA and PAL.
 - i) F1 = BA + C'B'A + CB'A'
 - ii) F2 = C'B'A' + CBA.

5 + 5 + 5

6404

5

[Turn over

- 8. a) Where are the dynamic logic circuits preferred in comparison to static logic?
 - b) What is domino CMOS logic? How the cascading problem in dynamic logic can be eliminated in domino logic?
 - c) What is the charge sharing problem in dynamic CMOS logic? How can it be prevented?
 - d) Describe the operation of three transistor DRAM cell. 2 + 4 + 4 + 5
- 9. a) What are the differences in between diffusion and ion implantation?
 - b) Explain the fabrication steps of CMOS inverter with necessary diagrams. 3 + 12
- 10. a) Show that for a symmetric CMOS inverter the two noise margins are same and are equal to VIL. Also show that for ideal CMOS inverter $(W/L)_p = 2.5(W/L)_n$.
 - b) What do you mean by design rules? What are the differences in between lambda (λ) and micron (μ) rules.

6404

11. Write short notes on any three of the following: 3×5

- a) Constant voltage scaling
- b) CMOS NORA logic
- c) Drain Induced Barrier Lowering (DIBL)
- d) CPLD
- e) Dynamic RAM.

7