

QUÍMICA NIVEL SUPERIOR PRUEBA 2

Martes	11	de	noviembre	de 2008	(tarde))

2 horas 15 minutos

Número de convocatoria del alumno								
0	0							

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste toda la sección A en los espacios provistos.
- Sección B: conteste dos preguntas de la sección B. Conteste a las preguntas en las hojas de respuestas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen los números de las preguntas que ha contestado y la cantidad de hojas que ha utilizado.

SECCIÓN A

Conteste todas las preguntas en los espacios provistos.

1. (a) El diagrama muestra el aparato que se usa para estudiar la velocidad de reacción entre carbonato de calcio y ácido clorhídrico.

Las cantidades de reactivos añadidos al recipiente en un experimento que se realizó a temperatura ambiente fueron:

masa de un único trozo de $CaCO_3(s) = 5,00 \text{ g}$ volumen de HCl(aq) de concentración 1,00 mol dm $^{-3} = 50,0 \text{ cm}^3$

La balanza se puso a cero al comenzar el experimento.

La gráfica muestra cómo varió la masa del recipiente y su contenido durante el experimento 1.

(Pregunta 1: continuación)

(i)	Explique por qué la masa disminuyó.	[1]
(ii)	Calcule la cantidad, en moles, de cada reactivo al principio del experimento 1.	[2]
(iii)	Use sus respuestas al apartado (a) (ii) y la ecuación de la reacción, para deducir qué reactivo se añadió en exceso.	[1]
(iv)	Se repitió el experimento con trozos pequeños de carbonato de calcio. Dibuje dos líneas (rotuladas como 2 y 3) sobre la gráfica para mostrar cómo variará la masa del recipiente y su contenido en los siguientes experimentos a la misma temperatura.	

Experimento	Masa de CaCO ₃ (s) en trozos pequeños/g	Volumen de HCl (aq) de concentración 1,00 mol dm ⁻³ /cm ³
2	2,50	50,0
3	5,00	25,0

(Esta pregunta continúa en la siguiente página)

[4]

(Pregunta 1: continuación)

(b) Se midió la velocidad inicial para una serie de reacciones entre los compuestos **A** y **B** que se llevaron a cabo a igual temperatura.

Experimento	[A] inicial / mol dm ⁻³	[B] inicial / mol dm ⁻³	Velocidad inicial / mol dm ⁻³ min ⁻¹
1	4.2×10^{-2}	7.8×10^{-2}	8.8×10^{-4}
2	4.2×10^{-2}	3.9×10^{-2}	$2,2 \times 10^{-4}$
3	$8,4 \times 10^{-2}$	3.9×10^{-2}	$2,2 \times 10^{-4}$

(i)	Deduzca el orden de reacción con respecto a A y a B, indicando una razón en cada caso.	[2]
(ii)	Deduzca la expresión de velocidad para la reacción.	[1]
(iii)	Use los datos del experimento 1 para determinar el valor de la constante de velocidad de la reacción. Incluya las unidades.	[2]

		na el térmi	-		
		• • • • • • • •			
		• • • • • • • • •			
(l _a)	Llas	annontes de	a lenintán aantiana laa	aioniontos isátomos	
(b)	Ulla	muestra de	e kriptón contiene los	siguientes isotopos.	
			Isótopo	Abundancia porcentual	
			⁸² Kr	15,80	
			⁸⁴ Kr	65,40	
			⁸⁶ Kr	18,80	
	(i)		a masa atomica relative sifras decimales.	va del kriptón en esta muestra.	
		con dos c	eifras decimales.		
	(i)	con dos c	eifras decimales.	rtícula subatómica presente en u	
		Deduzca Protones	el número de cada pa	rtícula subatómica presente en u	ın átomo de ⁸⁴ Kr.
		con dos c	el número de cada pa		ın átomo de ⁸⁴ Kr.
(c)	(ii)	Deduzca Protones Neutrone Electrone	el número de cada pa	rtícula subatómica presente en u	ın átomo de ⁸⁴ Kr.
(c)	(ii)	Deduzca Protones Neutrone Electrone	el número de cada pa es xenón pertenecen al n	rtícula subatómica presente en u	an átomo de ⁸⁴ Kr.
(c)	(ii) El kı	Deduzca Protones Neutrone Electrone	el número de cada par es xenón pertenecen al n e la siguiente línea par	rtícula subatómica presente en u	ın átomo de ⁸⁴ Kr. a. rónica del kriptón.

3.	(a)	A continuación se muestra la ecuación que representa la reacción que se produce cuando
		el amoníaco gaseoso se disuelve en agua.

$$\mathrm{NH_3(g)} + \mathrm{H_2O}\left(l\right) \mathop{\Longrightarrow}\limits_{} \mathrm{NH_4^+(aq)} + \mathrm{OH^-(aq)}$$

	(i)	Defina el término ácido de Brønsted-Lowry.	[1]
	(ii)	Identifique un par conjugado presente en la ecuación anterior.	[1]
	(iii)	Identifique una especie en la ecuación anterior que actúe como base de Lewis y nombre el tipo de enlace que forma en la reacción.	[2]
(b)	A co	ntinuación se muestra la expresión de la constante de ionización para la metilamina.	
		$K_{\rm b} = \frac{[{\rm CH_3NH_3^+}][{\rm OH^-}]}{[{\rm CH_3NH_2}]} = 4,37 \times 10^{-4} \text{ mol dm}^{-3}$	
	(i)	Escriba una ecuación para representar la reacción entre la metilamina y el agua.	[1]
	(ii)	Calcule el pOH de una solución acuosa de metilamina de concentración 0,0500 mol dm ⁻³ . Indique cualquier suposición hecha durante sus cálculos.	[4]

(Pregunta 3: continuación)

(iii)	Calcule el pH de una solución buffer preparada mezclando 0,025 moles de CH ₃ NH ₂ y 0,010 moles de HCl en 1,0 dm ³ de solución.							

4. Gran parte del hidrógeno que se usa para la fabricación de amoníaco se obtiene por medio de la siguiente reacción entre metano y vapor de agua.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

$$\Delta H^{\ominus} = +210 \text{ kJ}$$

(a) En un experimento usando catalizador de níquel, se introdujeron 1,0 mol de metano y 2,0 moles de vapor de agua en un recipiente cuyo volumen era de 20 dm³ y se calentó hasta temperatura constante. Cuando la mezcla alcanzó el equilibrio contenía 0,50 moles de monóxido de carbono.

(i)	Calcule la cantidad, en moles, de cada una de las otras sustancias presentes.						
	Metano						
	Vapor de agua						
	Hidrógeno						

(ii)	Deduzca la expresión de la constante de equilibrio, $K_{\rm c}$, para esta reacción.	[1]

(iii)	Calcule el valor de $K_{\rm c}$ para esta reacción y deduzca sus unidades.	[2]

SECCIÓN B

Conteste **dos** preguntas. Conteste a las preguntas en las hojas de respuestas provistas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.

- 5. (a) (i) Defina el término entalpía media de enlace. [2]
 - (ii) Explique por qué no se puede usar el enlace H–H como ejemplo para ilustrar la entalpía media de enlace. [1]
 - (b) A continuación se muestra la ecuación que representa la reacción entre el dióxido de carbono y el hidrógeno.

$$CO_2(g) + 4H_2(g) \rightarrow CH_4(g) + 2H_2O(g)$$

- (i) Use la información de la tabla 10 del Cuadernillo de datos para calcular la variación de entalpía para esta reacción. [3]
- (ii) La siguiente tabla muestra los valores de entropía estándar para las sustancias de la reacción anterior.

Sustancia	CO ₂ (g)	$H_2(g)$	CH ₄ (g)	$H_2O(g)$
$S^{\ominus}/JK^{-1} mol^{-1}$	214	131	186	189

Calcule la variación de entropía estándar para esta reacción.

- (iii) Explique cómo se puede predecir el signo de ΔS^{\ominus} para la reacción a partir de la ecuación.
- (iv) Use sus respuestas a los apartados (b) (i) y (b) (ii) para calcular la variación de energía libre estándar para la reacción, y así determinar si la reacción anterior es espontánea a 298 K. (Si no ha podido responder a los apartados (b) (i) y (b) (ii), suponga los siguientes: $\Delta H^{\Theta} = -120 \text{ kJ mol}^{-1} \text{ y} \Delta S^{\Theta} = -80 \text{ J K}^{-1} \text{ mol}^{-1}$, aunque estos no sean los valores correctos.)

(Esta pregunta continúa en la siguiente página)

[3]

(Pregunta 5: continuación)

(c) En la tabla 13 del Cuadernillo de datos hallará los valores de las variaciones de entalpía estándar para las siguientes reacciones.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$
 $C_8H_{18}(l) + 12\frac{1}{2}O_2(g) \rightarrow 8CO_2(g) + 9H_2O(l)$

Use esta información para determinar la variación de entalpía estándar para la formación del octano a partir de sus elementos.

$$8C(s) + 9H_2(g) \rightarrow C_8H_{18}(l)$$
 [4]

(d) Se puede usar un ciclo de Born-Haber para calcular la entalpía de red del fluoruro de potasio, KF, a partir de cinco variaciones de entalpía conocidas. La ecuación para una de estas variaciones de entalpía, la variación de entalpía de formación estándar, se muestra a continuación.

$$K(s) + \frac{1}{2}F_2(g) \rightarrow KF(s)$$

Para cada una de las otras **cuatro** variaciones de entalpía, indique el nombre de la variación de entalpía y escriba una ecuación, incluyendo los símbolos de estado. [4]

- (e) En la tabla 14 del Cuadernillo de datos hallará valores de entalpía de red obtenidos a partir de ciclos de Born-Haber.
 - (i) Explique por qué el valor de la entalpía de red del fluoruro de sodio, NaF, es mayor que el del fluoruro de potasio, KF. [1]
 - (ii) Explique por qué el valor de la entalpía de red del fluoruro de calcio, CaF₂, es mayor que el del fluoruro de potasio, KF. [2]

6. (a) La reacción entre el cloro y los iones bromuro es una reacción rédox.

$$Cl_2(g) + 2Br^-(aq) \rightarrow Br_2(aq) + 2Cl^-(aq)$$

Defina el término *oxidación* en cuanto a transferencia electrónica e identifique la especie que se oxida en esta reacción.

[2]

(b) El número de oxidación del oxígeno en la mayoría de sus compuestos es −2. Identifique los números de oxidación de todos los demás elementos tanto en los reactivos como en los productos en la siguiente ecuación.

$$TiO2(s) + 2Cl2(g) + C(s) \rightarrow TiCl4(l) + CO2(g)$$
[3]

- (c) Haciendo referencia a los números de oxidación, deduzca qué le sucede, en caso de que así sea, en cuanto a oxidación y reducción, a los elementos mencionados en cada una de estas reacciones.
 - (i) El cromo en $2K_2CrO_4(aq) + 2HCl(aq) \rightarrow K_2Cr_2O_7(aq) + 2KCl(aq) + H_2O(l)$ [2]

(ii) El cloro en

$$Cl_2(g) + H_2O(l) \rightarrow HCl(aq) + HClO(aq)$$
 [2]

(d) La tabla muestra algunas reacciones de los metales W, X, Y y Z.

Reacción	Reactivos	Productos	
1	$W + Z(NO_3)_2$	$Z + W(NO_3)_2$	
2	$X + YCl_2$	no hay reacción	
3	$Y + ZSO_4$	no hay reacción	
4	Z + XO	X + ZO	

- (i) Use la información para ordenar los cuatro metales en una serie de reactividad, comenzando por el más reactivo. Explique, haciendo referencia a cada uno de los metales, cómo decidió qué metal era el menos reactivo. [4]
- (ii) El metal V forma compuestos en los que actúa con número de oxidación +3. Es más reactivo que cualquiera de los metales de la tabla. Prediga la ecuación que represente la reacción entre el metal V y el óxido del metal X. [1]

[2]

(Pregunta 6: continuación)

- (e) En la tabla 15 del Cuadernillo de datos encontrará algunos potenciales de electrodo estándar.
 - (i) De dicha tabla, identifique una especie que sea capaz de reducir al bromo a iones bromuro pero no al yodo a iones yoduro en condiciones estándar. Deduzca la ecuación rédox que representa la reacción espontánea que se produce.
 - (ii) Calcule el potencial de una celda construida conectando semiceldas de aluminio y plata en condiciones estándar. [1]
 - (iii) El potencial de la celda que se representa a continuación, en condiciones estándar es de +0,48 V.

$$Zn(s) | Zn^{2+}(aq) || Co^{2+}(aq) | Co(s)$$

Deduzca el potencial de electrodo estándar para la siguiente semirreacción.

$$Co^{2+}(aq) + 2e^{-} \rightleftharpoons Co(s)$$
 [1]

- (f) El agua actúa como ligando cuando reacciona con los iones zinc y con los iones cobalto, formando los complejos $[Zn(H_2O)_4]^{2+}$ y $[Co(H_2O)_6]^{2+}$.
 - (i) Explique cómo actúa el agua como ligando en la formación de dichos complejos y prediga la forma del $[Co(H_2O)_6]^{2+}$. [3]
 - (ii) Explique por qué las soluciones que contienen $[Co(H_2O)_6]^{2+}$ son coloreadas pero las soluciones que contienen $[Zn(H_2O)_4]^{2+}$ no lo son. [4]

- 7. (a) Algunos compuestos orgánicos de **cadena lineal** tienen la fórmula molecular C₄H₈O₂. El compuesto **A** es ácido, pero los compuestos **B**, **C** y **D** son líquidos neutros con aromas característicos. Ninguno de los compuestos contiene enlaces C=C.
 - (i) Deduzca la fórmula estructural y el nombre del compuesto A. [2]
 - (ii) Indique el nombre del grupo funcional presente en los compuestos **B**, C y **D**. [1]
 - (b) La siguiente es una secuencia de reacciones que comienza en el butano.

- (i) La reacción del butano con bromo implica la especie Br•, pero la especie Br se forma en la reacción S_N2. Indique el nombre de cada una de estas especies y describa los **dos** tipos de ruptura de enlace responsables de su formación.
- (ii) Indique el significado de cada uno de los tres símbolos del término S_N^2 . [2]
- (iii) Use flechas curvas para describir el mecanismo de esta reacción $S_N 2$. [4]
- (iv) En una reacción $S_N 1$ también se forma algo de 2-butanol (compuesto F). Dibuje la estructura del intermediario que se forma en esta reacción. [1]
- (v) Deduzca la estructura del compuesto **G**, e identifique los reactivos usados en su formación. [3]
- (vi) Un isómero del compuesto **G** se puede convertir directamente en el compuesto **A**.

 Dibuje la estructura de este isómero.

 [1]
- (c) (i) Prediga cuál de los compuestos **E**, **F** o **G** tiene el mayor punto de ebullición e identifique la fuerza intermolecular más potente en este compuesto. [2]
 - (ii) Prediga cuál de los compuestos **E**, **F** o **G** tiene la menor solubilidad en agua y explique su elección haciendo referencia a las fuerzas intermoleculares. [2]
- (d) El compuesto 2-butanol existe en forma de isómeros ópticos. Describa la característica molecular responsable de esto y dibuje la estructura tridimensional de cada isómero óptico, mostrando la relación entre ellos. Indique cómo diferenciar muestras separadas de cada isómero usando luz polarizada en un plano.

 [4]

[3]

8. Esta pregunta concierne a los siguientes compuestos.

Benceno C_6H_6 Ácido benzoico C_6H_5COOH Ciclohexano C_6H_{12} Ciclohexeno C_6H_{10}

Etino C_2H_2

Benzoato de sodio C₆H₅COO⁻ Na⁺

La configuración electrónica del carbono es 1s²2s²2p².

- (a) Use la idea de hibridación para discutir la formación de los **dos** tipos diferentes de enlace entre átomos de carbono en una molécula de etino. [4]
- (b) Identifique los **dos** tipos de hibridación presentes en el ciclohexeno y prediga los **dos** ángulos de enlace diferentes en la molécula. [4]
- (c) El símbolo se usa en ocasiones para representar al benceno. Explique, haciendo referencia a los siguientes datos, por qué el símbolo se considera mejor para representar el benceno.

$$C_6H_{10}(g) + H_2(g) \to C_6H_{12}(g)$$
 $\Delta H^{\oplus} = -120 \text{ kJ}$
 $C_6H_6(g) + 3H_2(g) \to C_6H_{12}(g)$ $\Delta H^{\oplus} = -208 \text{ kJ}$ [3]

- (d) Explique cómo las longitudes del enlace carbono a carbono es también una de las razones por las que se prefiere el símbolo 🔘 al símbolo 🔘. [2]
- (e) (i) Discuta el enlace en la zona COO⁻ del ion benzoato en términos de deslocalización electrónica. [1]
 - (ii) Compare las longitudes del enlace carbono a oxígeno en el ácido benzoico y en el ion benzoato. [2]
- (f) Explique, haciendo referencia a los tipos de reacción y a su respuesta al apartado (c), por qué es más probable que se produzca la reacción I en lugar de la reacción II.

I
$$C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$$

II $C_6H_6 + Cl_2 \rightarrow C_6H_6Cl_2$ [2]

(Pregunta 8: continuación)

Use la información de las tablas 16 y 17 del Cuadernillo de datos para las siguientes preguntas.

- (g) Una muestra de 25,0 cm³ de solución acuosa de ácido benzoico necesitó 17,0 cm³ de una solución acuosa de hidróxido de sodio de concentración 0,0300 mol dm⁻³ para su neutralización completa.
 - (i) Calcule la constante de disociación ácida, K_a , para el ácido benzoico. [1]
 - (ii) Escriba una ecuación para representar la reacción de neutralización. [1]
 - (iii) Identifique un indicador adecuado para la titulación y explique su elección. [2]
 - (iv) Calcule la concentración, en mol dm⁻³, de la solución de ácido benzoico. [3]