Distribuição Beta

Aluno: Weslon Charles Ferreira Costa

Curso: Especialização em Ciência de Dados

Disciplina: Estatística Computacional

Professor: Danilo Lopes

Data: 02/11/2021

Distribuição Beta

Modelagem de porcentagem e proporções

Distribuição contínua

Valores no intervalo (0,1)

Dois parâmetros ($\alpha \in \beta$)

$$f(x) = Cx^{\alpha - 1}(1 - x)^{\beta - 1}$$

$$C = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

$$\Gamma(z) = (z-1)!$$

A esperança de uma v.a. $X \sim beta(\alpha, \beta)$ é obtida fazendo a integral:

$$\mathbb{E}(X) = \int_0^1 x \, f(x) \, dx$$

$$\mathbb{E}(X) = \frac{\alpha}{\alpha + \beta}$$

Distribuição Beta

Ouando:

- $\alpha = \beta = 1$, a função Beta se reduz ao caso da distribuição contínua Uniforme;
- $\alpha = \beta$, a função é simétrica ao redor de 1/2, aumentando a probabilidade ao redor desse valor à medida que a(= b) cresce
- $\alpha < \beta$, a função é assimétrica à direita
- $\alpha > \beta$, a função é assimétrica à esquerda

Objetivo: gerar valores de uma distribuição Beta(alfa=2, beta=2)

Distribuição proposta: Uniform $(0,1) \rightarrow 1 + 0*x$

But (2,2)

$$f(x) = C. x^{2-1} (1-x)^{2-1} (1)$$

$$C = \frac{(2+2)}{[2. [2]} = 6 \qquad (2)$$

Derivando:
$$df = 6 - 12 \times 0 \Rightarrow x = 1/2 \therefore f(1/2) = 1.5$$

Assin:
$$g(x) = 1 \Rightarrow M. g(x) = 1.5.1 + 0.x$$

$$f(x) <= M*g(x)$$

$$M = 1.5$$

N = 10000

Vide códigos no anexo 1.

Objetivo: Obter a Beta(2,4) utilizando a Cauchy como distribuição proposta

```
alfa = 2
                                                                                                                                         Histogram of BetaCauchy(1e+06)
beta = 4
d.beta = function(x){(gamma(alfa+beta)*x^{(1-x)^{(beta-1)}}/(gamma(alfa)*gamma(beta))}
BetaCauchy <- function(n){
 X = numeric(n)
 M = 7.1
  for(i in 1:n){
   Y = tan(pi*(runif(1)-1/2))
                                                                                                                              1.0
   while( runif(1) > d.beta(Y)/(M*dcauchy(Y))){
      Y = tan(pi*(runif(1)-1/2))
   X[i] = Y
                                                                                                                              0.0
hist(BetaCauchy(1000000), 30, prob = T)
                                                              Vide códigos no anexo 2.
curve(d.beta(x), add = T, col = "red")
                                                                                                                                                BetaCauchy(1e+06)
```

O M=7.1 foi inicialmente obtido visualmente, com apoio dos gráficos abaixo:

Vide códigos no anexo 3.

Objetivo: gerar valores de uma distribuição distribuição Beta(2,10)

Distribuição proposta: Extreme Value Distribution; evd(x, 0.1,0.1)

```
alfa = 2
beta = 10
d.beta = function(x){(gamma(alfa+beta)*x^(alfa-1)*((1-x)^(beta-1)))/(gamma(alfa)*gamma(beta))}
```


Objetivo: gerar valores de uma distribuição distribuição Beta(2,10) **Distribuição proposta:** Extreme Value Distribution; evd(x, 0.1,0.1)

Vide códigos no anexo 4.

Objetivo: gerar valores de uma distribuição distribuição Beta(2,2)

Distribuição proposta: Minimax(1.5,1.5)

```
alfa = 2
beta = 2
d.beta = function(x){(gamma(alfa+beta)*x^{(alfa-1)*((1-x)^{(beta-1))}/(gamma(alfa))}*gamma(beta))}
teta = 1.5
gama = 1.5
d.minmax = function(x){teta*gama*x^{teta-1}*(1-x^teta)^{gama-1}}
r.minmax = function(x){ (1-(1-runif(x))^(1/gama))^(1/teta)}
                                                                                                                                                                                        M*g(x)
                                           f(x) - Beta
                                       ---- g(x) - minmax
                                                          <- optimize(f = function(x) \{d.beta(x)/d.minmax(x)\},
                                                                       interval = c(0, 1), maximum = TRUE)$objective
                                                                                                                                   1.0
                                                                                                                              d.beta(x)
                                                                            M = 1.17755
                                                                                                                                   0.0
                                                                                                                                                  0.2
                                                                                                                                                            0.4
                                                                                                                                                                       0.6
                                                                                                                                                                                 0.8
                                                                                                                                                                                            1.0
                                                                                                                                       0.0
              0.2
                                         8.0
                                                  1.0
```

Vide códigos no anexo 5

Objetivo: gerar valores de uma distribuição distribuição Beta(2,2)

Distribuição proposta: Minimax(1.5,1.5)

Proporção de aceitados: 0.849361 Taxa (teórica) de aceitação: 1/M = 0.8492206

Vide códigos no anexo 5

Amostragem por importância

Função alvo: Distribuição Beta(2,2)

Função de importância (proposta): Minimax(teta,gama)

Justificativa: Beta e Minimax possuem mesmo domínio [a saber: (0,1)] e são muito parecidas **Obs.:** Não é necessário que a função proposta seja maior do que a função alvo

Amostragem por importância

Função alvo: Distribuição Beta(2,2)

Função de importância (proposta): Minimax(teta,gama)

```
\label{eq:d.beta} $$ d.beta = function(x)\{(gamma(alfa+beta)*x^(alfa-1)*((1-x)^(beta-1)))/(gamma(alfa)*gamma(beta))\} $$ d.minmax = function(x)\{teta*gama*x^{teta-1}*(1-x^teta)^{gama-1}\} $$ r.minmax = function(x)\{(1-(1-runif(x))^(1/gama))^(1/teta)\}$$
```

```
##### Integral de uma funcao de uma variavel

f = function(x){x*(gamma(alfa+beta)*x^(alfa-1)*((1-x)^(beta-1)))/(gamma(alfa)*gamma(beta))]

integrate(f, 0, 1)

8.5 with absolute error < 5.6e-15

# Valor teórico : Beta(beta, alfa)

%%R

alfa = 2

beta = 2

E = alfa/(alfa+beta)

E

[1] 0.5
```

Parâmetros		Função Integrate		Média teórica	Amostragem por Importância			
Beta(alfa, beta)	minimax(teta, gama)	Teórico R	Abs. Error Teórico R	ivieula teorica	1.chapeu	erro.padrao.l	IC inferior	IC superior
(2,2)	(1, 1)	0.5	5.60E-15	0.5	0.4998283	0.0007097541	0.498437	0.5012194
	(1.5, 1.5)				0.4992306	0.0007038936	0.497851	0.5006102
	(2,2)				0.5003248	0.0007036304	0.498946	0.5017039
	(1.5, 3)				0.5013832	0.0007069447	0.499998	0.5027689
	(3, 1.5)				0.500502	0.0007067264	0.499117	0.5018872

Vide códigos no anexo 6.

