14/23/03/02/18

CS-301/2401

B.Tech. (Semester-III) Exam.-2015 Discrete Structures

Time: Three Hours

Maximum Marks: 100

Note: Attempt questions from all sections.

SECTION - A

(Short-answer Type Questions)

Note: Attempt any ten questions. Each question carries 4 marks.

- What can you say about the sets A and B if we know that
 - (1) A B = A?
- (ii) A B = B A?

Jane L

How many relations are there on the set {a,b,c,d}?

- 3. Let the functions f and g be defined by f(x) = 2x+1 and $g(x) = x^2-2$. Find the formula defining the composition function gof.
 - Let G be a group of order P. Where P is a prime.
 Find all subgroups of G.
- 5. In an integral domain D, show that if ab = ac with $a \ne 0$ then b = c.
 - Suppose f: G→G¹ is a group homomorphism,
 prove that
 - (i) $f(e) = e^{1}$
 - (ii) $f(a^{-1}) = f(a)^{-1}$
 - 7. Which of these are posets?
 - \sim (i) $(Z_i =)$
 - (ii) (Z, ≥)

Where Z is the set of integers.

8. Determine whether the posets with these Hasse diagrams are lattices.

- 9. Change the Boolean function f(x,y,z) = x'yz + xyz + x'yz' + xyz'into disjunctive normal form of two variables.
- 10. Prove that P ^ (~P) is a contradiction.
- Negate each of the following statements

(i) $\forall x (x+1>x)$ (ii) $\exists x (x^2<0)$ $\exists x \sim (x+1>x)$ $\Rightarrow \sim \forall x (x+1>x)$ $\Rightarrow \exists x \sim (x+1>x)$ Show that $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are

logically equivalent.

13/ Find the generating function A(z) for the sequence $a_r = 3^r$, $r \ge 0$

- 14. Explain the following
 - (i) Isomorphic graphs
 - (ii) Regular graphs
- 15. Show that any tree is a bipartite graph.

SECTION - B

(Long Answer type questions)

Note: Attempt any three questions. Each question carries 20 marks. 20x3=60

- Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric and / or transitive, where (x,y) ∈ R if and only if
 - (i) $x \pm y$
 - (ii) $xy \ge 1$

for the

(iii)
$$x = y + 1$$

- (iv) x is a multiple of y
- $(v) \quad \chi = y^2$
- 2. Let * be the operation on the set R of real numbers defined by a*b = a + b + 2ab
 - (i) Find 2 * 3, 3 * (-5)
 - (ii) Is (R, *) a semi group? Is it commutative?
 - (iii) Find the identity element
 - (iv) Which elements have inverses and what are they?
- (a) Reduce the following Boolean products to either O or a fundamental product.
 - (i) xyzhx (b) xyzhx'z' nyz+Jn/zl
 - (b) Use a Karnaugh map to find a minimal sum

of products form for
$$E = xyz + xyz' + x'yz' + x'y'z' + x'y'z' + x'y'z$$

- Translate each of these statements into logical expression using predicates, quantifier and logical connectives.
 - (i) No one is perfect.
 - (ii) Not everyone is perfect
 - (iii) All your friends are perfect
 - (iv) One of your friends is perfect
 - (v) Everyone is your friend and is perfect.
 - (vi) Not everybody is your friend or someone is not perfect.
- 5/ (a) What is the chromatic number of the complete bipartite graph K_{min} where m and n are positive integers.

Find a minimal spanning tree of the weighted graph shown below:

Let G be a finite graph with $n \ge 1$ Vertices. Then prove that the following are equivalent:

- (i) G is a tree
- (ii) G is a cycle-free and has n-1 edges.
- (iii) G is connected and has n-1 edges.