Data Visualization and Cartography

Field Calculation, Classification, and Cartogram in GIS

Dr. Suresh Muthukrishnan, Furman University, Greenville, SC, USA

Part 1: Field Calculation in QGIS and Manual Calculation for Choropleth Map

With Day 4 Project open, Right click on Malawi Districts layer and select Open Attribute Table option.

2. With the attribute table open, click **Toggle Editing Mode ON** (the pencil button on top left of the attribute table).

3. Now, click on **New Field** button ¹ Give **Pop_Change** as Whole number (integer) type with 10 digit length.

I. Using **Field Calculator** option on the top left part of the attribute table window, click and select **Pop_Change** as the field for which value is to be calculated. Then click the calculate button to calculate the **Percentage value**.

5. In the **Expression Dialog** that opens, copy and paste the following expression. Alternately, you can also create the expression by selecting the appropriate variables under **Fields and Values** and double clicking on those variables to select them.

6. Click OK to close the expression dialog window. Click **Update All** button on the top right of your attribute table (as shown below) to calculate this and store this value permanently.

7. Now, Toggle Editing Mode OFF by clicking the button and confirm to Save when prompted.

8. Now, using this approach, calculate Male to Female ratio for 2018 as a new field value.

What is the v	ou used to calculate this:	
vviiat is tile v	ou asca to calculate tills.	

- 9. You can do more complex expressions to calculate values for new fields. If these expressions are unable to meet your needs, it is possible to use Python code to accomplish virtually anything GIS.
- 10. Next, read the posted reading assignment on **Classification** on course Moodle site.
- 11. You need to understand your data well and make an informed decision on which classification would serve best. Understanding data involves looking at the distribution of the values for the **Population Change field** that we calculated.
- 12. Right click on Malawi Districts layer and open Layer Properties.
- 13. Under properties window, click on **Symbology** → **Histogram** → **Load Values**. Focus on the distribution of values and the ranges. In this histogram (frequency plot), Y-axis shows number of Districts and X-axis shows the percentage change in population. Note how many districts show negative value? This will hopefully help you discuss your method selection.

14. Now, switch back to **Classes** tab. Change the **Mode** (method of classification) and look at the histogram. Seeing this along with the reading material posted will help you understand the classification methods and their impacts on the map we make.

15. Reflect on how the method of classification changes the type of conclusions one might make of the variable that is being studied. Write one paragraph reflection on this and post it to the Forum on Moodle.

Part II - Creating a Cartogram using QGIS

Read the two reading materials posted on Moodle regarding the effectiveness of cartograms (a way of distorting shapes using one of the attributes of those shapes) and example case studies. In this activity, we are just going to create a simple cartogram that shows spatial variation in the population density at district level in Malawi.

- 1. Let's download the Cartogram plugin from the menu Plugins → Manage and Install Plugins
- 2. Under Search box, type Cartogram3
- 3. When the plugin is displayed, click on Install Plugin button at bottom right corner of the window
- 4. When installation is successful, you will see a new toolbar added to the project.

- 5. When installation is successful, click on Menu Vector → Cartogram → Compute Cartogram
- 6. In the cartogram window, select **Malawi Districts layer** as the **Input layer**; **Pop_Change** as the **Field**; 25 for maximum number of iterations; and 1% for maximum average error.
- 7. The algorithm runs iteratively, so the higher the number of iterations, better it is. Similarly, the lower the error margin permitted, the better will be the result. However, if your computer is not able to handle these value for iterations and error, you can change them both to 10 and see if that helps your computer.

More details on how this cartogram is computed can be found at the following website. https://github.com/austromorph/cartogram3

8. When completed, this is what the result would look like:

-End of Session-