UNIVERSIDAD NACIONAL DE INGENIERÍA ANÁLISIS Y MODELAMIENTO NUMÉRICO I

Práctica Dirigida I - Solucionario

Victor Huanca Sullca

10 de junio, 2020

La función $f:[a,b]\to\mathbb{R}$ se dice que satisface una *condición de Lipschitz* con constante de Lipschitz L en [a,b] si, para cada $x,y\in[a,b]$, se tiene

$$|f(x) - f(y)| \le L|x - y|.$$

- **1** Demuestre que si f satisface la condición de Lipschitz con constante de Lipschitz L en el intervalo [a,b], entonces $f \in C[a,b]$.
- Demuestre que si f tiene una derivada que es acotada en [a, b] por L, entonces f satisface la condición de Lipschitz con constante de Lipschitz L en el intervalo [a, b].
- Dé un ejemplo de una función que sea continua en un intervalo cerrado pero que no satisfaga la condición de Lipschitz en el intervalo.

2/19

Our function $f(x) : [a, b] \to \mathbb{R}$ satisfies **Lipschitz condition** on f(x) i.e. there exists a **Lipschitz constant** L > 0 such that for every $x, y \in [a, b]$,

$$|f(x) - f(y)| \le L|x - y|$$

a. A function f(x) is said to be continuous at x_0 , if for every $\epsilon > 0$, there exists a $\delta > 0$, such that

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta$

If f(x) is continuous at each point of its domain, it is called continuous function.

Assuming that f(x) follows Lipschitz condition, for any $\epsilon > 0$, take $\delta = \frac{\epsilon}{L}$ As $|x - y| < \delta$, we get

$$|f(x) - f(y)| \le L|x - y| < L \times \delta = \epsilon$$

Thus, f(x) is continuous at all points $y \in [a, b]$.

Solución - Problema 1 (cont.)

b. Given that $|f'(x)| \le L$, for all $x \in [a, b]$ If f(x) is differentiable on [a, b], then according to Mean Value Theorem: For $x, y \in [a, b]$,

$$\begin{split} \frac{f(x)-f(y)}{x-y} &= f'(\gamma) \quad \text{for some } \gamma \in [x,y] \\ \left| \frac{f(x)-f(y)}{x-y} \right| &= \left| f'(\gamma) \right| \leq L \quad \text{ for all } x,y \in [a,b] \\ \left| f(x)-f(y) \right| \leq L|x-y| \quad \text{ for all } x,y \in [a,b] \end{split}$$

Solución - Problema 1 (cont.)

c. $f(x) = \sqrt{x}$ defined on $x \in [0, 1]$ will serve our purpose.

We can claim that this function doesn't satisfy Lipschitz condition,

since its derivative $f'(x) = \frac{1}{2\sqrt{x}}$ is unbounded at x = 0.

But, it can be shown that one-sided derivatives of Lipschitz functions are always bounded, as for h > 0:

$$f'_{+}(x) = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right| \le L$$

$$f'_{-}(x) = \lim_{h \to 0} \left| \frac{f(x) - f(x - h)}{h} \right| \le L$$

Even, if both left hand and right hand derivatives at some point x_0 not become equal, i.e. derivative doesn't exist at point x_0 , one-sided derivatives always remain bounded.

Sea $f \in C[a, b]$, y sea p en el intervalo (a, b).

- Suponga que $f(p) \neq 0$. Demuestre que existe un $\delta > 0$ con $f(x) \neq 0$, para todo x en $[p \delta, p + \delta]$, con $[p \delta, p + \delta]$ subconjunto de [a, b].
- ② Suponga que f(p)=0 y k>0 es dado. Demuestre que existe $\delta>0$ con $|f(x)|\leq k$, para todo x en $[p-\delta,p+\delta]$, con $[p-\delta,p+\delta]$ subconjunto de [a,b].

$$f \in C[a,b]$$
 be(a,b).

(a) suppose
$$f(b) \neq 0$$
. Then $|f(b)| \neq 0$.

Let $\epsilon = \underbrace{1f(b)!}_{>0} \cdot \forall b$. Then by the definition of continuity,

 $\exists \delta > 0$ such that

 $f(b) - \epsilon \leq f(x) \leq f(b) + \epsilon \quad \forall \quad x \in [b - \delta', b + \delta']$.

 $\Rightarrow f(b) - \underbrace{1f(b)!}_{2} \leq f(x) \leq f(b) + \underbrace{1f(b)!}_{2}$

If
$$f(p) > 0$$
, $\underline{f(p)} \leq f(x) \leq \frac{3f(p)}{2} \Rightarrow f(x) > 0$

If
$$f(p) \lt 0$$
, $\frac{3f(p)}{2} \le f(x) \le \frac{f(p)}{2} \Rightarrow f(x) \lt 0$.

This will be true for any ox8<8'.

Therefore we can choose 670 such that $[b-\delta,b+\delta] \subseteq [a,b]$ and $f(x) \neq 0 \quad \forall x \in [b-\delta,b+\delta].$

Solución - Problema 3 (cont.)

(b) Suppose
$$f(b) = 0$$
 and $k > 0$. $b \in (a,b)$.

Take $E = k$ then $\exists \delta' > 0$ such that

$$|f(x) - f(b)| \leq E \qquad \forall x \in [b - \delta', b + \delta'].$$

$$=) |f(x)| \leq K \qquad \forall x \in [b - \delta', b + \delta'].$$
This will be true for any $0 < \delta < \delta'$.

Therefore we can choose $\delta > 0$ such that

$$[b - \delta, b + \delta] \subseteq [a,b] \text{ and } |f(x)| \leq k \cdot \forall x \in [b - \delta, b + \delta].$$

$$[b - \delta, b + \delta] \subseteq [a,b] \text{ in both the possiblem } (a) \text{ and } (b).$$

[Note: as $b \in (a,b)$ in both the possiblem (a) and (b) .

We can take $\delta = \min_{\delta} \delta', \frac{b - a}{2}, \frac{b - b}{2}$.

Then $[b - \delta, b + \delta] \subseteq (a,b)$ and $\delta \subseteq \delta'$.

Sea
$$f(x) = \frac{x \cos x - \sin x}{x - \sin x}$$

- **a** $Encuentre <math>\lim_{x\to 0} f(x)$
- Use aritmética de redondeo de cuatro dígitos para evaluar f(0.1)
- Reemplace cada función trigonométrica con su tercer polinomio de Maclaurin, y repita la parte (b).
- **1** El valor real es f(0.1) = -1.99899998. Encuentre el error relativo para los valores obtenidos en las partes (b) y (c).

$$\begin{split} &(\mathrm{a}) \\ &\lim_{x\to 0} \frac{x\cos x - \sin x}{x - \sin x} = (LHopital, 0/0) = \\ &= \lim_{x\to 0} \frac{-x\sin x}{1 - \cos x} = (LH, 0/0) \\ &= \lim_{x\to 0} \frac{-\sin x - x\cos x}{\sin x} = \lim_{x\to 0} \frac{-2\cos x + x\sin x}{\cos x} = -2 \end{split}$$

Solución - Problema 4 (cont.)

(b)
$$f(0.1) \approx -1.941$$

(c) see example 3 (or Common series section at the end of the book)

$$\frac{x(1-\frac{1}{2}x^2)-(x-\frac{1}{6}x^3)}{x-(x-\frac{1}{6}x^3)}=-2$$

(d)

The relative error $\frac{|p-p^*|}{|p|}$ in part (b) is 0.029.

The relative error in part (c) is 0.00050.

Richard L. Burden, J. Douglas Faires, Numerical Analysis, NINTH EDITION

Suppose that fl(y) is a k-digit rounding approximation to y. Show that

$$\left| \frac{y - fl(y)}{y} \right| \le 0.5 \times 10^{-k+1}$$

[*Hint*: If $d_{k+1} < 5$, then $fl(y) = 0.d_1.d_2...d_k \times 10^n$. If $d_{k+1} \ge 5$, then $fl(y) = 0.d_1.d_2...d_k \times 10^n + 10^{n-k}$.]

SOLUTION: We will consider the solution in two cases, first when $d_{k+1} \leq 5$, and then when $d_{k+1} > 5$.

When $d_{k+1} \leq 5$, we have

$$\left|\frac{y-fl(y)}{y}\right| = \frac{0.d_{k+1}\ldots\times 10^{n-k}}{0.d_1\ldots\times 10^n} \le \frac{0.5\times 10^{-k}}{0.1} = 0.5\times 10^{-k+1}.$$

When $d_{k+1} > 5$, we have

$$\left| \frac{y - fl(y)}{y} \right| = \frac{(1 - 0.d_{k+1} \dots) \times 10^{n-k}}{0.d_1 \dots \times 10^n} < \frac{(1 - 0.5) \times 10^{-k}}{0.1} = 0.5 \times 10^{-k+1}.$$

Hence the inequality holds in all situations.

Las ecuaciones (1.2) y (1.3) en la Sección 1.2 dan fórmulas alternativas para las raíces x_1 y x_2 de $ax^2+bx+c=0$. Construya un algoritmo con entrada a,b,c y salida x_1,x_2 que calcule las raíces x_1 y x_2 (que puede ser igual o ser conjugados complejos) usando la mejor fórmula para cada raíz.

$$x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}} \tag{1.2}$$

$$x_1 = \frac{-2c}{b - \sqrt{b^2 - 4ac}} \tag{1.3}$$

Richard L. Burden, J. Douglas Faires, Numerical Analysis, NINTH EDITION

14/19

SOLUTION: The following algorithm uses the most effective formula for computing the roots of a quadratic equation.

```
INPUT A,B,C. OUTPUT x_1,x_2. Step 1 If A=0 then  \text{if } B=0 \text{ then OUTPUT ('NO SOLUTIONS');} \\ \text{STOP.} \\ \text{else set } x_1=-C/B; \\ \text{OUTPUT ('ONE SOLUTION',}x_1);} \\ \text{STOP.} \\ \text{Step 2 Set } D=B^2-4AC. \\ \text{Step 3 If } D=0 \text{ then set } x_1=-B/(2A); \\ \text{OUTPUT ('MULTIPLE ROOTS',}x_1);} \\ \text{STOP.} \\
```

Solución - Problema 8 (cont.)

```
Step 4 If D < 0 then set
                      b = \sqrt{-D}/(2A);
                      a = -B/(2A);
                    OUTPUT ('COMPLEX CONJUGATE ROOTS');
                      x_1 = a + bi:
                      x_2 = a - bi:
                    OUTPUT (x_1, x_2);
                    STOP
Step 5 If B \ge 0 then set
                       d = B + \sqrt{D}:
                       x_1 = -2C/d;
                      x_2 = -d/(2A)
               else set
                       d = -B + \sqrt{D}:
                      x_1 = d/(2A);
                       x_2 = 2C/d.
Step 6 OUTPUT (x_1, x_2);
      STOP.
```

Suppose that as x approaches zero,

$$F_1(x) = L_1 + O(x^{\alpha})$$
 and $F_2(x) = L_2 + O(x^{\beta})$.

Let c_1 and c_2 be nonzero constants, and define

$$F(x) = c_1 F_1(x) + c_2 F_2(x)$$
 and $G(x) = F_1(c_1 x) + F_2(c_2 x)$.

Show that if $\gamma = \min \{\alpha, \beta\}$, then as x approaches zero,

$$(1) F(x) = c_1 L_1 + c_2 L_2 + O(x^{\gamma})$$

$$G(x) = L_1 + L_2 + O(x^{\gamma})$$

Suppose for sufficiently small |x| we have positive constants k_1 and k_2 independent of

x, for which

$$|F_1(x) - L_1| \le K_1|x|^{\alpha}$$
 and $|F_2(x) - L_2| \le K_2|x|^{\beta}$.

Let $c = \max(|c_1|, |c_2|, 1)$, $K = \max(K_1, K_2)$, and $\delta = \max(\alpha, \beta)$.

a. We have

$$|F(x) - c_1L_1 - c_2L_2| = |c_1(F_1(x) - L_1) + c_2(F_2(x) - L_2)|$$

$$\leq |c_1|K_1|x|^{\alpha} + |c_2|K_2|x|^{\beta}$$

$$\leq cK (|x|^{\alpha} + |x|^{\beta})$$

$$\leq cK|x|^{\gamma} (1 + |x|^{\delta - \gamma}) \leq K|x|^{\gamma},$$

for sufficiently small |x|. Thus, $F(x) = c_1L_1 + c_2L_2 + O(x^{\gamma})$.

b. We have

$$|G(x) - L_1 - L_2| = |F_1(c_1x) + F_2(c_2x) - L_1 - L_2|$$

 $\leq K_1|c_1x|^{\alpha} + K_2|c_2x|^{\beta}$
 $\leq Kc^{\delta}(|x|^{\alpha} + |x|^{\beta})$
 $\leq Kc^{\delta}|x|^{\gamma}(1 + |x|^{\delta-\gamma}) \leq K''|x|^{\gamma},$

for sufficiently small |x|. Thus, $G(x) = L_1 + L_2 + O(x^{\gamma})$.

Dada la función $f: \mathbb{R} \to \mathbb{R}$, definida como $f(x) = \sqrt{1+x} - \sqrt{x}$ para $|x| \gg 1$. Determine el número de condicionamiento de f.

Solución - Problema 12

Se define el número de condición o condicionamiento de la función f como

$$\kappa\left\{f(x)\right\} = \left|\frac{xf'(x)}{f(x)}\right|.$$

La derivada de la función f, es $f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{x}}$

Luego

$$\kappa\left\{f(x)\right\} = \left| \left(\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{x}}\right) \frac{x}{\sqrt{1+x} - \sqrt{x}} \right| = \left| \frac{1}{2}\sqrt{\frac{x}{1+x}} \right|$$

Como se observa, el número de condicionamiento para $x\gg 1$ es $\kappa\left\{f(x)\right\}\approx \frac{1}{2}$