Álgebra Linear I

Resolução dos Exercícios Programados 4 - EP4

- 1. Dados u e v num espaço vetorial V, seja H = [u,v], o subespaço gerado por u e v. Mostre que H é um subespaço de V.
- 2. Para $n \ge 0$, o conjunto Π_n dos polinômios de grau menor ou igual a n consiste de todos os polinômios da forma $p(t) = a_0 + a_1 t + a_2 t^2 + ... + a_n t^n$, onde os coeficientes $a_0, a_1, a_2...a_n$ e a variável t são números reais. O grau de p é a maior potência de t, cujo coeficiente seja diferente de zero. Se $p(t) = a_0 \ne 0$, o grau de p é zero. Se todos os coeficientes forem iguais a zero, p é chamado de polinômio nulo. Mostre que Π_n é um espaço vetorial.
- 3. Determine se o conjunto dado é um subespaço vetorial de Π_n para um valor apropriado de n. Justifique sua resposta.
- (a) Todos os polinômios da forma $p(t) = at^2$, com a em \Re .
- (b) Todos os polinômios $p(t) = a + t^2$, com a em \Re .
- (c) Todos os polinômios de com p(0)=0.
- (d) Todos os polinômios de grau máximo 3, com os inteiros como coeficientes.
- 4. Escreva a matriz $E = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$ como combinação linear das matrizes $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix}$.
- 5. Seja W a união do primeiro e terceiro quadrantes do plano xy. Isto é, seja $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$.
 - (a) Se *v* pertence a W e *c* é um escalar qualquer, será que *cv* pertence a *W*? Por quê?
 - (b) Determine vetores u e v pertencentes a W tais que u + v não pertença a W. Isso é suficiente para mostrar que W não é um espaço vetorial.