Chapitre

Lois de base

2. Lois de Kirchoff

2.1. Loi des noeuds

Il ne peut y a avoir de cumul de charge à un noeud en un point du circuit. Elle traduit donc la conservation de la charge.

La somme des charges entrantes vaut la somme des charges sortantes du noeud. On a $\sum_k i_k = 0$, avec $i_k > 0$ si il va vers le noeud et < 0 dans le cas contraire.

2.1. Loi des mailles

Définition 1.1: Maille

C'est un chemin fermé le long duquel les tensions sont annotées.

Théorème 1.2 : Loi de Mailles

La somme algébrique des tensions le long de la maille est nulle

On a :
$$V_A-V-B+V_B-V_C+\cdots+V_E-V_A=0=U_{AB}-U_{CB}+U_{CD}-U_{ED}-U_{AE}=0$$

En pratique, on introduit les flèches associées aux tensions et on définit le sens de parcours de la maille. On effecte ensuite les tension d'un signe + si elles sont dans le sens de parcours de la maille. $^{\mathbb{Q}}$

Astuce

En appliquant les lois dans un circuit, on peut obtenit un système d'équation

2. Résistance

2.2. Calcul d'une résistance

Définition 2.1 : Résistance

On a $R = \frac{l}{s}\rho$ avec ρ la résistivité, l la longueur du fil, s la section.

La résistivité du cuivre à 20° est de $17 \times 10^{-19} \omega \cdot m$.

2.2. Associations de résistances

En série

π Thé

Théorème 2.1

La résistance équivalente pour une association de résitances en série est la somme des résistances.

En parallèle

Théorème 2.2

La résistance équivalente pour une association de résitances en parallèle vaut $R_{eq}=\frac{1}{G_1+G_2+\cdots+G_i}$

X

Cas de 2 résistances

Dans le cas de deux résistances seulements, on peut écrire :

 $R_{eq}=rac{R_1R_2}{R_1+R_2}.$ Cela ne fonctionne que pour 2 résistances!

2.2. Transformations de Kenely

Si $i_3=0$, alors entre A_1 et A_2 , r_3 est en parallèle avec (r_1+r_2) et $r_3=R_1+R_2$. On a alors toujours entre les 2 points $\frac{r_3(r_1+r_2)}{r_1+r_2+r_3}=\frac{r_3r_1+r_2r_3}{r_1+r_2+r_3}=R_1+R_2$.

On obtient de la même façon : $\frac{r_1r_2+r_3r_2}{r_1+r_2+r_3}=R_1+R_3$ et $\frac{r_1r_2+r_3r_1}{r_1+r_2+r_3}=R_2+R_3.$

On maniuple les 3 équations pour obtenir : $R_3=rac{r_1r_2}{r_1+r_2+r_3}$. De la même façon, on obtient : $R_1=rac{r_3r_2}{r_1+r_2+r_3}$ et $R_2=rac{r_3r_1}{r_1+r_2+r_3}$.

Théorème 2.3

On a $R_1 = \frac{r_3 r_2}{r_1 + r_2 + r_3}$

2. Ponts diviseurs

2.3. Ponts diviseurs de tension

On prend un circuit avec 2 résistances en série. On peut écrire X

× Difficulté

Il faut faire attention à appliquer correctement la formule du diviseur de tension notamment quand on a des associations de résistances en parallèle dans le circuit. Dans ce cas, il faudrait d'abord calculer la résistance équivalente

ÉLECTROCINÉTIQUE & Lois de base, Ponts diviseurs de courant

$$\begin{cases} V_1 & = R_1 i \\ V_2 & = R_2 i \\ V_e & = V_1 + V_2 = (R_1 + R_2) i \end{cases}$$

Pour trouver le résultat final, on fait le rapport des expressions obtenues. On obtient finalement $V_1=\frac{R_1}{R_1+R_2}V_e$ et $V_2=\frac{R_2}{R_1+R_2}V_e$ i

π Théorème 3.1

Pour N résistors en série soumis à la tension totale V, la tension V_k aux bornes de résistance R_k est $V_k=\frac{R_k}{\sum_j^N R_j}V$

i Info

Les tensions V_1 et V_2 sont des fractions de la tension totale V_e , ce qui explique la dénomination "diviseur de tension" donnée à ce circuit.

2.3. Ponts diviseurs de courant

Dans cette situation *, on peut écrire :

$$\begin{cases} i_1 & = G_1 V \\ i_2 & = G_2 V \\ i & = i_1 + i_2 = (G_1 + G_2) V \end{cases}$$

En faisant le rapport de i_1 sur i et de i_2 sur i, on a bien $i_1=\frac{G_1}{G_1+G_2}i$ et $i_2=\frac{G_2}{G_1+G_2}i$ ou de manière équivalente $I_1=\frac{R_2}{R_1+R_2}i$ et $I_2=\frac{R_1}{R_1+R_2}i$

Théorème 3.2

Pour N résistors en parallèle soumis à l'intensité totale i, l'intensité i_k dans le résistor de conductance G_k est $i_k=\frac{G_k}{\sum_j^N G_j}i$

× Difficulté

Il faut faire attention à appliquer correctement la formule du diviseur de courant notamment quand on a des associations de résistances en série dans le circuit. Dans ce cas, il faudrait d'abord simplifier en introduisant des résistances équivalentes