

介绍

笔记简介:

• 面向对象:深度学习初学者

• 依赖课程: 线性代数,统计概率,优化理论,图论,离散数学,微积分,信息论

知乎专栏:

https://zhuanlan.zhihu.com/p/693738275

Github & Gitee 地址:

https://github.com/mymagicpower/AIAS/tree/main/deep_learning

https://gitee.com/mymagicpower/AIAS/tree/main/deep_learning

* 版权声明:

- 仅限用于个人学习
- 禁止用于任何商业用途

LeNet-5是由Yann LeCun等人在1998年提出的经典卷积神经网络架构,是深度学习领域中的重要里程碑之一。LeNet-5主要用于手写数字识别任务,是最早用于数字识别的卷积神经网络之一。

All rights reserved by www.aias.top , mail: 179209347@qq.com

LeNet-5 - 网络结构

输入层	输入为 32×32 的灰度图				
卷积层C1	6个 5×5 的 VALID 卷积核-,填充为2,输出的特征图的尺寸为28×28,深度为6。				
池化层S2	采用 2×2 最大池化模式,得到 6 个 14×14 的特征图。				
卷积层C3	该层将输入与16个大小为5×5的卷积核进行VALID卷积运算,输出为 16 个 10×10 的特征图。				
池化层S4	采用 2×2 最大池化模式,得到 16 个 5×5 的特征图。				
卷积层C5	120 个 5×5 的 VALID 卷积核,输出为 120 个 1×1 的特征图。				
全连接层F6	84 个神经元与 C5 层全连接。				
输出层	由于手写数字识别处理的是 0~9 的 10 分类问题,因此,该层有10个输出。				

All rights reserved by www.aias.top , mail: 179209347@qq.com

AlexNet

AlexNet是由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton设计的深度卷积神经网络架构,是在2012年ImageNet大规模视觉识别挑战赛(ILSVRC)中取得突破性成果的模型。AlexNet在当时引领了深度学习领域的发展,证明了深度卷积神经网络在图像识别任务上的有效性。

VGGNet

VGGNet是由牛津大学计算机视觉组(Visual Geometry Group)提出的深度卷积神经网络架构,是2014年ImageNet大规模视觉识别挑战赛(ILSVRC)的冠军之一。VGGNet的主要贡献在于展示了通过增加网络深度(层数)可以提高模型性能的重要性。

VGGNet的一些关键特点:

- 深度: VGGNet采用了较深的网络结构。
- 卷积层和池化层的堆叠:卷积层用于提取图像特征,池化层用于降低特征图的维度。
- 卷积核大小为3x3:有助于减少参数数量,同时保持有效的感受野。
- 全连接层: 全连接层用于最终的分类。
- 使用ReLU激活函数: ReLU 作为激活函数, 有助于加速模型的收敛。
- 模型简单且易复现: VGGNet的结构相对简单,易于理解和复现。

VGGNet - 网络结构

根据卷积核大小与卷积层数目不同, VGG可以分为6种子模型,分别对应的模型 为:

- VGG11
- VGG11-LRN
- VGG13
- VGG16-1
- VGG16-3
- VGG19

不同的后缀代表不不同的网络层数。 VGG16-1表示后三组卷积块中最后一层卷 积采用卷积核尺寸为1*1。VGG19位后三组 每组多一层卷积,VGG19为3*3的卷积。

	e - 100000000000000000000000000000000000	ConvNet C	onfiguration	,	Dis 24-5
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 × 2	24 RGB image	e)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
- 8		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool	I.	
			4096		
		FC-	4096		
		FC-	1000		
		soft	-max		

ResNet

ResNet (Residual Network) 是由微软亚洲研究院的研究员提出的一种深度神经网络架构,旨在解决深度神经网络训练过程中的梯度消失和梯度爆炸问题。ResNet通过引入残差学习的概念,使得网络可以更轻松地训练非常深的层次,甚至超过1000层。

All rights reserved by www.aias.top , mail: 179209347@qq.com

