

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

88

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/848,127	05/03/2001	Chih-Peng Li	21994/206863	6536
32361	7590	03/10/2005	EXAMINER	
GREENBERG TRAURIG, LLP MET LIFE BUILDING 200 PARK AVENUE NEW YORK, NY 10166				SWEARINGEN, JEFFREY R
		ART UNIT		PAPER NUMBER
				2145

DATE MAILED: 03/10/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/848,127	LI, CHIH-PENG	
	Examiner	Art Unit	
	Jeffrey R. Swearingen	2145	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 03 December 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-20 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-20 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____. |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date <u>12/3/2004</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

1. This action is in response to communication filed 12/2/2005. This action is made **FINAL**.

Information Disclosure Statement

2. The Examiner thanks Applicant for noting the error in a non-compliant IDS issue that the Examiner erroneously brought forward in the first office action. The Examiner withdraws said issue. The Examiner has also taken into consideration the IDS filed 12/3/2004.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. Claims 1-2 and 8-9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Watanabe et al (U.S. Patent No. 6,285,662) and Gummalla et al (U.S. Patent No. 6,614,799).

5. Watanabe discloses calculating a first back-off window based at least in part on an estimate of a number of users on the network [[Watanabe, column 8, lines 17-24], where random access channel is defined to be the radio link between the mobile terminal and the access point [Watanabe, column 6 line 65 – column 7 line 1]. Each mobile terminal is considered a user, so the number of random access channels will indicate the number of users present in the system.];

sending the first back-off window to a plurality of users of the network [Watanabe, column 8, lines 1-4], and

sending the second back-off window to one or more of the plurality of users of the network [Watanabe, column 8, lines 1-4], as shown in claim 1.

Art Unit: 2145

6. Watanabe fails to disclose calculating a second back-off window based at least in part on a number of collisions that occur within the first back-off window as shown in claim 1, or retransmitting the second back-off window as shown in claim 2.

7. Gummalla discloses adjusting back-off parameters based on collisions that occur in previous back-off windows, or calculating a second back-off window based at least in part on a number of collisions that occur within the first back-off window. [column 8, lines 32-46.] Gummalla further discloses sending the subsequent back-off windows to one or more of the plurality of users of the network. [Gummalla, column 8, lines 45-47]

8. Motivation exists to alter the back-off window size so it will function better in different load scenarios after initially sizing a back-off window. [Gummalla, column 7, lines 42-43]

9. It is obvious to one of ordinary skill in the art to calculate initial back-off windows based on an estimate of users present and future back-off windows based on the number of collisions in previous back-off windows.

10. Pertaining to claims 8 and 9, Watanabe and Gummalla do not specifically teach changing the size of the back-off window by scaling the number of collisions. However, Gummalla provides the equivalent functionality by basing the second window on a scalar number of collisions [Gummalla, column 8, lines 32-46]. Claim 9 refers to the number 2.3922, which Applicant's specification states is the average number of users in a collision.

11. Motivation exists to alter the back-off window size so it will function better in different load scenarios after initially sizing a back-off window. [Gummalla, column 7, lines 42-43]

12. It would be obvious to one of ordinary skill in the art to change the size of the back-off window by a scalar amount because Gummalla provides equivalent functionality.

13. Claims 3-7, 10-15 and 17-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Watanabe et al (U.S. Patent No. 6,285,662 and Gummalla et al (U.S. Patent No. 6,614,799), and further in view of Chiu et al. (U.S. Patent No. 5,734,833)

14. Pertaining to claim 3, Watanabe and Gummalla are applied to claim 1 as previously shown. Watanabe and Gummalla fail to disclose the usage of a cycle for claim 3.

15. Chiu discloses a cycle with a limited number of users that can compete for network resources during the cycle [Chiu, column 5, lines 4-6, where subsets of users are a limited number of users and cycles operate based on the SCS scheduler [column 4, line 65] where cycles are initiated based on the start time for requested reserved slots [column 4, lines 66-67]], as claimed in claim 3.

16. Motivation exists for limiting users with a cycle so that multiple messages do not get garbled in transmission because of collisions [Chiu, column 2, lines 16-21].

17. It is obvious to one of ordinary skill in the art to use cycles of limited numbers of users in order to reduce collisions with a dynamically sized backoff window taught by Watanabe and Gummalla.

18. Pertaining to claim 4, Watanabe and Gummalla are applied with Chiu as in claim 3. Watanabe and Gummalla fail to disclose calculating the second back-off window in the same cycle as the step of calculating the first back-off window..

19. Claim 4 claims the method of claim 3, wherein calculating the second back-off window comprises calculating the second back-off window in the same cycle as the step of calculating the first back-off window, as disclosed by Chiu [Figure 8 shows the calculation of changes to the “present state of traversal in the collision resolution tree”, which occurs during each subset of users during collision resolution. This shows that a future subset size and its state are calculated during a previous cycle. This is considered calculating a second (or future) back-off window in the same cycle as the step of calculating the first (or current) back-off window.].

20. Motivation exists to calculate a second back-off window in the same cycle as the first back-off window in order to inform the stations that will transmit in the next back-off window of the back-off window size before the new back-off window begins.

21. It is obvious to one of ordinary skill in the art to calculate the second back-off window of the cycle during the first back-off window.

Art Unit: 2145

22. Pertaining to claim 5, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 3. Watanabe and Gummalla fail to disclose ending the cycle when no collisions are present.

23. Chiu discloses ending the cycle when there are no collisions present [column 5, lines 6-7], as noted in claim 5.

24. Motivation exists to end a collision resolution cycle and method when no collisions are present because the collision resolution method is not necessary if no collisions are present.

25. It is obvious to one of ordinary skill in the art to end the collision resolution cycle when no collisions are present.

26. Pertaining to claim 6, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 3. Watanabe and Gummalla fail to disclose initiating a second cycle subsequent to the first cycle with a limited number of users that can compete for network resources during the second cycle.

27. Chiu discloses initiating a second cycle subsequent to the first cycle with a limited number of users [subset of the client stations, column 5, lines 5-6] that can compete for network resources during the second cycle [the subset is “recursively applied to smaller and smaller subsets, column 5, lines 6-7].

28. Motivation exists to have a second cycle immediately after the first cycle to further resolve any smaller collisions that may have occurred in the first cycle of collision resolution.

29. It is obvious to one of ordinary skill in the art to have a second cycle immediately follow the first cycle in a collision resolution method in order to continue resolving smaller collisions left over from a larger collision resolution.

30. Pertaining to claim 7, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 3. Watanabe and Gummalla fail to disclose initiating a cycle with a limited number of users that successfully reserved network resources during a prior cycle.

31. Chiu discloses initiating a cycle with a limited number of users, which comprises initiating a cycle based on a number of users that successfully reserved network resources during a prior cycle [column 5, lines 6-7 disclose recursively applying limited access to smaller and smaller subsets of client stations. A

Art Unit: 2145

smaller subset of these client stations would be a subset of client stations who were involved in a previous collision, which is the number of users attempting to access the cycle minus the number of users who transmitted successfully in the previous cycle].

32. Motivation exists to limit the number of users in a collision resolution cycle to those users who did not have collisions in the previous cycle, as they would not need to be part of a collision being resolved.

33. It is obvious to one of ordinary skill in the art to limit the number of users in a new collision resolution cycle as part of a collision resolution method to the users that were involved in previous unresolved collisions.

34. Pertaining to claim 10, Watanabe teaches a data collision resolution method including sending a first back-off window to a plurality of users of the network [Watanabe, column 8, lines 1-4]; and sending the second back-off window to one or more of the plurality of users of the network [Watanabe, column 8, lines 1-4]. Watanabe fails to teach calculating a second back-off window based at least in part on a number of users that collided while attempting to reserve network resources during the first back-off window and limiting network reservation attempts in the second back-off window to users that collided while attempting to reserve network resources during the first back-off window.

35. Gummalla teaches calculating a second back-off window based at least in part on a number of users that collided while attempting to reserve network resources during the first back-off window [Gummalla, column 8, lines 32-46]. Gummalla further fails to disclose limiting network reservation attempts in the second back-off window to users that collided while attempting to reserve network resources during the first back-off window.

36. Chiu discloses limiting network reservation attempts in the second back-off window to users that collided while attempting to reserve network resources during the first back-off window [column 5, lines 6-7 disclose recursively applying limited access to smaller and smaller subsets of client stations. A smaller subset of these client stations would be a subset of client stations that were involved in a previous collision, which is the number of users attempting to access the cycle minus the number of users who transmitted successfully in the previous cycle].

Art Unit: 2145

37. Motivation exists to have a data collision resolution method that adapts to the number of users involved in a previous collision.

38. It is obvious to one of ordinary skill in the art to combine Watanabe and Gummalla and Chiu to make an adaptable data collision resolution method.

39. Pertaining to claim 11, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 3. Watanabe and Chiu fail to disclose calculating subsequent back-off windows based on a number of users that collided in a prior back-off window and sending the subsequent back-off windows to one or more of the plurality of users of the network.

40. Gummalla discloses calculating subsequent back-off windows based on a number of users that collided in a prior back-off window and sending the subsequent back-off windows to one or more of the plurality of users of the network. [Gummalla, column 8, lines 32-46]

41. Motivation exists to alter the back-off window size so it will function better in different load scenarios after initially sizing a back-off window. [Gummalla, column 7, lines 42-43] Motivation further exists to inform users of the network who need to take part in a future back-off window for collision resolution of the size of the future back-off window before the user transmissions begin.

42. It is obvious to one of ordinary skill in the art to calculate future back-off windows in a data collision resolution method based on the number of users that collided in a previous back-off window.

43. Pertaining to claim 12, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 11. Watanabe and Gummalla fail to disclose limiting network reservation attempts in the subsequent back-off windows to the users that collided while attempting to reserve network resources during a prior back-off window.

44. Chiu discloses initiating a cycle with a limited number of users, which comprises initiating a cycle based on a number of users that successfully reserved network resources during a prior cycle [column 5, lines 6-7 disclose recursively applying limited access to smaller and smaller subsets of client stations. A smaller subset of these client stations would be a subset of client stations who were involved in a previous collision, which is the number of users attempting to access the cycle minus the number of users who transmitted successfully in the previous cycle].

Art Unit: 2145

45. Motivation exists to limit the number of users in a collision resolution cycle to those users who did not have collisions in the previous cycle, as they would not need to be part of a collision being resolved.

46. It is obvious to one of ordinary skill in the art to limit the number of users in a new collision resolution cycle as part of a collision resolution method to the users that were involved in previous unresolved collisions.

47. Pertaining to claim 13, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 11. Watanabe and Gummalla fail to disclose initiating a first cycle with a limited number of users that can compete for network resources during the cycle.

48. Chiu discloses a cycle with a limited number of users that can compete for network resources during the cycle [Chiu, column 5, lines 4-6, where subsets of users are a limited number of users and cycles operate based on the SCS scheduler [column 4, line 65] where cycles are initiated based on the start time for requested reserved slots [column 4, lines 66-67]], as claimed in claim 3.

49. Motivation exists for limiting users with a cycle so that multiple messages do not get garbled in transmission because of collisions [Chiu, column 2, lines 16-21].

50. It is obvious to one of ordinary skill in the art to use cycles of limited numbers of users in order to reduce collisions with a data collision resolution method taught by Watanabe and Gummalla.

51. Pertaining to claim 14, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 13. Watanabe and Gummalla fail to disclose initiating a second cycle when no collisions occurred during a back-off window in the first cycle.

52. Chiu discloses ending a cycle when there are no collisions present [column 5, lines 6-7]. Chiu further discloses the signal conversion system that determines the parameters of the requested contention slots and reserved slots [column 8, lines 36-37]. A contention slot and subsequent reserved slots for collision resolution are considered a cycle.

53. Motivation exists to end a collision resolution cycle and method when no collisions are present because the collision resolution method is not necessary if no collisions are present.

Art Unit: 2145

54. It is obvious to one of ordinary skill in the art to end a collision resolution cycle in a collision resolution method when no collisions are present and start it again to allow for contention and collision with a new cycle.

55. Pertaining to claim 15, Watanabe, Gummalla and Chiu do not specifically teach changing the size of the back-off window by scaling the number of collisions. However, Gummalla provides the equivalent functionality by basing the second window on a scalar number of collisions [Gummalla, column 8, lines 32-46].

56. Motivation exists to alter the back-off window size so it will function better in different load scenarios after initially sizing a back-off window. [Gummalla, column 7, lines 42-43]

57. It would be obvious to one of ordinary skill in the art to change the size of the back-off window by a scalar amount because Gummalla provides equivalent functionality.

58. Pertaining to claim 17, Watanabe teaches a data collision resolution system including a plurality of remote devices [[Watanabe, column 6 lines 43-44], where mobile terminals are considered remote devices]; and

59. an access point in communication with the plurality of remote devices [Watanabe, column 6, line 45], wherein the access point further comprises:

60. a switch for communicating with the plurality of remote devices [Watanabe, column 6, lines 44-45];

61. a transceiver for sending information to and receiving information from the plurality of remote devices [Watanabe, column 6, lines 51-55]; and

62. a collision resolution device communicably coupled to the transceiver and the switch, wherein the collision resolution device sends an initial back-off window to the plurality of remote devices; [Watanabe, column 7 line 57 – column 8 line 4]

63. Watanabe fails to teach wherein the collision resolution device calculates and sends a subsequent back-off window in response to a number of collisions in the initial back-off window and wherein the collision resolution device limits the remote devices that can compete for network resources

in the subsequent back-off window to remote devices that unsuccessfully attempted to reserve network resources in the initial back-off window.

64. Gummalla teaches calculating a second back-off window based at least in part on a number of users that collided while attempting to reserve network resources during the first back-off window [Gummalla, column 8, lines 32-46]. Gummalla further fails to disclose limiting network reservation attempts in the second back-off window to users that collided while attempting to reserve network resources during the first back-off window.

65. Chiu discloses limiting network reservation attempts in the second back-off window to users that collided while attempting to reserve network resources during the first back-off window [column 5, lines 6-7 disclose recursively applying limited access to smaller and smaller subsets of client stations. A smaller subset of these client stations would be a subset of client stations that were involved in a previous collision, which is the number of users attempting to access the cycle minus the number of users who transmitted successfully in the previous cycle].

66. Motivation exists to have a data collision resolution system that adapts to the number of users involved in a previous collision.

67. It is obvious to one of ordinary skill in the art to combine Watanabe and Gummalla and Chiu to make an adaptable data collision resolution system.

68. Pertaining to claim 18, Watanabe and Gummalla teach a data collision resolution method with Chiu as applied to claim 17. Chiu and Gummalla fail to disclose wherein the size of the initial back-off window is based on an estimate of remote devices competing for network resources

69. Watanabe discloses that the size of the initial back-off window is based on an estimate of remote devices competing for network resources. [[Watanabe, column 8, lines 17-24], where random access channel is defined to be the radio link between the mobile terminal and the access point [Watanabe, column 6 line 65 – column 7 line 1]. Each mobile terminal is considered a user, so the number of random access channels will indicate the number of users present in the system.]

Art Unit: 2145

70. Motivation exists to set the size of the initial back-off window so it will function better in different load scenarios after initially detecting the number of users present. [Gummalla, column 7, lines 41-46]

71. It is obvious to one of ordinary skill in the art to set the initial back-off window in the data collision resolution system appropriately for the number of users present in the system.

72. Pertaining to claim 19, Watanabe, Gummalla and Chiu do not specifically teach changing the size of the back-off window by scaling the number of collisions. However, Gummalla provides the equivalent functionality by basing the second window on a scalar number of collisions [Gummalla, column 8, lines 32-46]. Motivation exists to alter the back-off window size so it will function better in different load scenarios after initially sizing a back-off window. [Gummalla, column 7, lines 42-43]

73. It would be obvious to one of ordinary skill in the art to change the size of the back-off window by a scalar amount because Gummalla provides equivalent functionality.

Double Patenting

74. The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. See *In re Goodman*, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); *In re Longi*, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); *In re Van Ornum*, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); *In re Vogel*, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and, *In re Thorington*, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent is shown to be commonly owned with this application. See 37 CFR 1.130(b).

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).

75. Claims 1, 3 and 7 are provisionally rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claim 1 of copending Application No. 09/962,153.

Although the conflicting claims are not identical, they are not patentably distinct from each other because calculating a back-off window based on collisions is the important technological factor in the invention. It would be obvious to one of ordinary skill in the art to calculate a back-off window based on collisions that

Art Unit: 2145

occur at any point within or after the back-off window since the key technological factor in calculating the windows is the number of collisions and not when the collisions occur.

This is a provisional obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

76. Claims 1, 3, 7 of this application conflict with claim 1 of Application No. 09/652,153. 37 CFR 1.78(b) provides that when two or more applications filed by the same applicant contain conflicting claims, elimination of such claims from all but one application may be required in the absence of good and sufficient reason for their retention during pendency in more than one application. Applicant is required to either cancel the conflicting claims from all but one application or maintain a clear line of demarcation between the applications. See MPEP § 822.

Response to Arguments

77. The amendments to claims 16 and 20 have allowed the Examiner to withdraw the rejections under 35 U.S.C. 112 for said claims.

78. Applicant's arguments filed 12/2/2004 have been fully considered but they are not persuasive.

79. Applicant has chosen to only argue a single factor in the Watanabe reference in their traversal of the initial rejection of claims 1-20. Applicant makes light of the fact that Watanabe does not explicitly disclose the transmission of the contention window.

80. However, the Examiner feels that this is an inherent teaching of Watanabe based on the careful study of Watanabe. The key factor in utilization of a contention window is to prevent packet loss within a system. This causes the Examiner to believe that a connection-based protocol is in use in Watanabe. The most commonly utilized connection-based protocol at the time of the invention would have been TCP. The size of the contention window is transmitted within the header of the TCP packet.

81. Further, it would be impossible for a system to operate if both the client and the server did not know the size of the contention window. The transmission of a contention window would be necessary for transmission of data to occur without severe and debilitating packet loss.

Art Unit: 2145

82. Applicant has not chosen to argue any further merits regarding the applied references of Watanabe, Gummalla, and Chiu. Therefore, the Examiner has not given any further rebuttals to arguments that have not been submitted

83. The Examiner believes that the motivation in the above obviousness double patenting rejection effectively rebuts the arguments of the Double Patenting traversal. To reiterate, the key function of the contention window in question in the two applications is recalculating the contention window based upon packet collisions that are detected. When said packet collisions are detected is not important to the technological novelty behind the invention. Counting packet collisions can occur at any time, including before, after, and during any contention window. Recalculating based on a counting of packet collisions can occur at any point in the cycle as well.

84. The Examiner believes that all arguments made by Applicant have herein been effectively rebutted.

Conclusion

85. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jeffrey R. Swearingen whose telephone number is (571) 272-3921. The examiner can normally be reached on M-F 8:30-5:00.

Art Unit: 2145

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Valencia Martin-Wallace can be reached on 571-272-6159. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

jps

V. Martin-Wallace

VALENCIA MARTIN-WALLACE
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 3700