

Rysunek 1: Inne podejście: iterujemy funkcję na jej wyniku

Definicja 1. Niech $L: V \to W, L$ - liniowe, $(V, ||.||_v), (W, ||.||_w)$ - unormowane. Mówimy, że L jest ograniczone, jeżeli

$$\underset{A>0}{\exists}, \underset{x\in V}{\forall}||L(x)||_{w}\leqslant A||x||_{v}$$

Przykład 1.

dla
$$\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2, f(x,y) : \mathbb{R}^2 \to \mathbb{R}^2$$

$$\exists_{?A}, \forall \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2, \left\| \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\| \leqslant A \left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\|$$

$$Ale : \forall \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2, \left\| \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\| < \frac{1}{2} \left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\|$$

Twierdzenie 1. Twierdzenie (L - ograniczone) \iff (L - ciągłe)

Dowód 1. \Leftarrow

Chcemy pokazać, że:

$$\underset{A>0}{\exists} . \underset{x,x' \in V}{\forall} \quad ||L(x-x')|| \leqslant A||x-x'||$$

zatem wiemy, że para (ε, δ) spełniająca warunek (*) istnieje.

Ale
$$||L(x-x')|| = \underbrace{\left\| L\left(\frac{x-x'}{||x-x'||}\right) \frac{\delta}{2} \right\| \frac{||x-x'||^2}{\delta}}_{\delta} \le \varepsilon \frac{||x-x'||^2}{\delta}$$

Co wiemy o $\left\| \frac{x-x'}{\|x-x'\|} \frac{\delta}{2} \right\|_{v} < \delta$?

$$\bigvee_{x,x' \in V} ||L(x - x')||_w \leqslant \frac{2\varepsilon}{\delta} ||x - x'||_v$$

Szukane
$$A = \frac{2\varepsilon}{\delta}$$
 istnieje! \square

 \Longrightarrow

Wiemy, że
$$\exists X \forall |L(x-x')| \le A||x-x'||$$
 (1)

Chcemy pokazać, że jeżeli $x_n \to x_0$, to $L(x_n) \to L(x_0)$, ale $0 \le ||L(x_n) - L(x_0)||_w = ||L(x_n - x_0)||_w \le A||x_n - x_0||$ (bo (1))

$$0 \leq ||L(x_n) - L(x_0)||_w \leq A||x_n - x_0|| \text{(wszystko dąży do 0)} \quad \Box$$

Definicja 2. Wielkość $\inf_{A}\{\underset{x\in V}{\forall}||L(x)||_{w}\leqslant A||x||_{v}\}$ nazywamy normą odwzorowania L i oznaczamy $A\stackrel{ozn}{=}||L||$.

Definicja 3. Niech $U \subset \mathbb{R}^m$ - jest zbiorem wypukłym, jeżeli $\underset{a,b \in U}{\forall}$. $[a,b] \stackrel{def}{=} \{a(1-t)+bt, t \in [0,1]\} \subset U$

Stwierdzenie 1. Niech $f: U \subset \mathbb{R}^m \to \mathbb{R}^n, U$ - otwarte, wypukły $\exists . \forall ||f'(x)|| \leqslant M$, to $\forall ||f(b) - f(a)||_n \leqslant M ||b - a||_m$ (jakiekolwiek skojarzenia z Twierdzeniem Lagrange zupełnie przypadkowe *wink* *wink*)

Dowód 2.

niech
$$\gamma(t) = a(1-t) + bt, t \in [0,1], \quad g(t) = f(\gamma(t)), g : \mathbb{R}^1 \to \mathbb{R}^n$$

Czyli
$$g(t) = \begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_n(t) \end{bmatrix}$$
, zatem $||g(1) - g(0)|| = \left\| \begin{bmatrix} g_1(1) - g_1(0) \\ g_2(1) - g_2(0) \\ \vdots \\ g_n(1) - g_n(0) \end{bmatrix} \right\|$

Tw. Lagrange!
$$\| \left\lceil g_1'(c_1)(1-0) \right\rceil \| \quad \| \left\lceil g_1'(c_1) \right\rceil \|$$

$$= \left\| \begin{bmatrix} g'_1(c_1)(1-0) \\ g'_2(c_2)(1-0) \\ \vdots \\ g'_n(c_n)(1-0) \end{bmatrix} \right\| \leq \left\| \begin{bmatrix} g'_1(c_1) \\ g'_2(c_2) \\ \vdots \\ g'_n(c_n) \end{bmatrix} \right\| \|1-0\|$$

Rysunek 2: zbiór wklęsły

Rysunek 3: zbiór wypukły

Ale
$$g'(t) = f'(\gamma(t))\gamma'(t) \to \|g'(t)\| = \|f'(\gamma(t))(b-a)\| \leqslant \|f'(\gamma(t))\| \|b-a\| \leqslant \sup_{\text{z zal. stw.}} M$$

Czyli $\forall_{t \in [0,1]} \|g'(t)\| \leqslant M \|b-a\| \implies \|f(b)-f(a)\| \leqslant M \|b-a\| \square$

Niech X - unormowana: $P:X\to X, P$ - ciągła na X. Interesuje nas zbieżność ciągów typu $\{x_0,P(x_0),P(P(x_0)),\dots\},x_0\in X$

Definicja 4. $\tilde{x} \in X$ nazywamy punktem stałym, jeżeli $P(\tilde{x}) = \tilde{x}$

Twierdzenie 2. Jeżeli ciąg $\{x_0, P(x_0), \dots\}$ - zbieżny i P - ciągle, to jest on zbieżny do punktu stałego.

Dowód 3.

Niech $x_n = P^{(n)}(x_0)$. Wiemy, że x_n - zbieżny, oznaczmy granicę tego ciągu przez \tilde{x} . Mamy:

$$\forall \exists \exists \forall x \in \mathbb{N}, \forall x \in \mathbb{N}, \forall x \in \mathbb{N}, \forall x \in \mathbb{N}, \forall x \in \mathbb{N}$$
(2)

$$\forall . \exists . \forall d(x_{n-1}, \tilde{x}) < \varepsilon_2$$
(3)

P - ciągłe, czyli

$$\underset{\varepsilon>0}{\forall} . \exists . \forall : \quad d(x, x') < \delta \implies d(P(x), P(x')) < \varepsilon, \text{ bo } (2)$$

Chcemy pokazać, że

$$\underset{\varepsilon>0}{\forall}\quad d(\tilde{x},P(\tilde{x}))<\varepsilon \tag{4}$$

Ale

$$d(\tilde{x}, P(\tilde{x})) \leqslant d(\tilde{x}, x_n) + d(x_n, P(\tilde{x})) = d(\tilde{x}, x_n) + d(P(x_{n-1}), P(\tilde{x})) < \varepsilon + \varepsilon = 2\varepsilon \quad \Box$$
 (5)

Ale z (2) wynika, że
$$\underset{\varepsilon>0}{\forall} . \exists d(x_{n-1}, \tilde{x}) < \delta \implies d(P(x_{n-1}), P(\tilde{x})) < \varepsilon$$
 (6)

Zatem znając ε z (4) przyjmujemy $\varepsilon_1 = \varepsilon$, oprócz tego znajdujemy δ przyjmując $\varepsilon_1 = \varepsilon$, a potem położymy $\varepsilon_2 = \delta$ z (3) i dzięki temu mamy (5)

Niech X - przestrzeń metryczna, odwzorowanie $P: X \to X$ nazywamy zwężającym, jeżeli:

$$\exists \quad \forall d(P(x), P(y)) \leq qd(x, y) \tag{7}$$

Twierdzenie 3. (Zasada Banacha o lustrach)

 $Je\dot{z}eli\ P: X \to X, P$ - $zw\dot{e}\dot{z}ajace$, to

1.
$$\forall \{x_0, P(x_0), P(P(x_0)), \dots\}$$
 - Zbieżny do punktu stałego \tilde{x} (8)

2. Istnieje tylko jedno
$$\tilde{x}$$
 (9)

3.
$$\forall d(x_m, \tilde{x}) < \frac{q^m}{1-q} d(x_1, x_0)$$
 (10)

Przykład 2. (uwaga)

(P - nie musi być ciągłe) - potem się okaże, że ciągłość gdzieś tutaj siedzi implicite

- lustra w łazience koło sali $1.01 \rightarrow$ można stanąć tak, że jedno jest przed tobą a drugie za tobą i wtedy te odbicia się ciągną w nieskończoność i zbiegają do punktu
- telewizor + kamera która go nagrywa a on wyświetla ten obraz
- mapa położona na podłodze zawiera dokładnie jeden punkt, który się pokrywa z miejscem na którym leży

Dowód 4. ad. 2

Załóżmy, że
$$\exists P(\tilde{x}_1) = \tilde{x}_1, P(\tilde{x}_2) = \tilde{x}_2, \tilde{x}_1 \neq \tilde{x}_2$$

Wtedy $d(\tilde{x}_1, \tilde{x}_2) = d(P(\tilde{x}_1), P(\tilde{x}_2)) < qd(\tilde{x}_1, \tilde{x}_2)$

Dalej:

$$d(\tilde{x}_1, \tilde{x}_2) \leqslant qd(\tilde{x}_1, \tilde{x}_2)$$
, ale $0 \leqslant q \leqslant 1, \tilde{x}_1 \neq \tilde{x}_2 \implies \text{sprzeczność!}$

Obserwacja 1.

$$d(x_{n+1}, x_n) = d(P(x_n), P(x_{n-1})) \leqslant qd(x_n, x_{n-1}) = qd(P(x_{n-1}), P(x_{n-2})) \leqslant q^2d(x_{n-1}, x_{n-2}) \leqslant q^nd(x_1, x_0)$$

Co, jeżeli zamiast n+1 weźmiemy n+m? $d(x_{n+m},x_n) \leq d(x_{n+m},x_{n+m+1}) + d(x_{n+m-1},x_n) \leq d(x_{n+m},x_{n+m-1}) + d(x_{n+m-1},x_{n+m-2}) + d(x_{n+m-2},x_n) \leq \cdots \leq d(x_{n+m},x_{n+m-1}+\cdots+d(x_{n+1},x_n) \leq d(x_{n+m},x_{n+m-1}+\cdots+d(x_{n+1},x_n)) \leq d(x_{n+m},x_{n+m-1}+\cdots+d(x_{n+1},x_n)) \leq d(x_{n+m},x_{n+m+1}+\cdots+d(x_{n+1},x_n)) \leq d(x_{n+m},x_{n+m+1}+\cdots+d(x_{n+1},x_n)) \leq d(x_{n+m},x_{n+m+1}+\cdots+d(x_{n+m-1},x_n)) \leq d(x_{n+m},x_{n+m+1}+\cdots+d(x_{n+m+1},x_n)) \leq d(x_{n+m},x_{n+m+1}+\cdots+d(x_{n+m+1},x_n))$

Czyli $d(x_{n+m},x_n)\leqslant \frac{q^n}{1-q}d(x_1,x_0)$ Skoro X - zupełna, to jeżeli x_n - Cauchy, to znaczy, że jest zbieżny w X. Czyli czy

$$\forall \exists \forall d(x_n, x_m) < \varepsilon?$$

Załóżmy, że m > n i m = n + k. Wtedy

$$\forall \exists \forall d(x_n, x_{n+k}) < \varepsilon? \text{ TAK!}$$

Dla N takiego, że $\frac{q^N}{1-q}d(x_1,x_0)<\varepsilon$. Stąd wiadomo, że x_n - Cauchy, czyli jest zbieżny. $x_n\to \tilde{x}$, zatem jeżeli $d(x_{n+m},x_n)\leqslant \frac{q^n}{1-q}d(x_1,x_0)\to d(\tilde{x},x_n)\leqslant \frac{q^n}{1-q}d(x_1,x_0)$