Matière : Physique-Chimie Professeur : Zakaria HAOUZAN

Unité : Electricité Établissement : Lycée SKHOR qualifiant Niveau : 2BAC-SM-PC Heure : 7H

Leçon N°4: Oscillations Forcées dans un Circuit RLC Série

I Le Régime Alternatif Sinusoïdal

I.1 La Tension Alternative Sinusoïdale

La tension alternative sinusoïdale est une fonction du temps qui s'écrit sous la forme suivante :

$$u(t) = U_m \cos(\omega t + \phi_u) \tag{1}$$

I) Le régime alternatif sinusoïdal

1) La tension alternative sinusoïdale

La tension alternative sinusoïdale est une fonction du temps, qui s'écrit sous la forme suivante :

$$u(t) = U_m \cos(\omega t + \phi_u)$$

 U_m : L'amplitude de u(t) en volts (V);

 ω : La pulsation de u(t) en (rad.s⁻¹) avec $\omega = \frac{2\pi}{T} = 2\pi f$;

 $(\omega t + \phi_u)$: La phase de u(t) à l'instant t en (rad);

 ϕ_u : La phase de la tension à l'origine des temps en (t=0).

La tension efficace U d'une tension alternative sinusoïdale est donnée par la relation suivante :

$$U = \frac{U_m}{\sqrt{2}}$$

Remarque : Le voltmètre indique la valeur efficace de la tension et l'oscilloscope indique la tension maximale.

2) Intensité du courant alternatif sinusoïdal

L'intensité du courant alternatif sinusoïdal est une fonction du temps qui s'écrit sous la forme suivante :

$$i(t) = I_m \cos(\omega t + \phi_i)$$

 I_m : L'amplitude ou l'intensité maximale du courant en ampère (A) ; ω : La pulsation du courant en (rad.s⁻¹) avec $\omega = \frac{2\pi}{T} = 2\pi f$;

 $(\omega t + \phi_i)$: La phase de i(t) à l'instant t en (rad);

 ϕ_i : La phase de l'intensité à l'origine des temps (t=0).

L'intensité efficace I d'un courant alternatif sinusoïdal est donnée par la relation suivante :

$$I = \frac{I_m}{\sqrt{2}}$$

Remarque: L'ampèremètre indique la valeur efficace d'intensité.

3) Notion de la phase

On considère deux grandeurs alternatives sinusoïdales:

$$u(t) = U_m \cos(\omega t + \phi_u)$$
 et $i(t) = I_m \cos(\omega t + \phi_i)$

On appelle la phase de la tension u(t) par rapport à l'intensité i(t): $\phi_{u/i} = \phi_u - \phi_i$ (mesure l'avance et le retard de la tension $\mathbf{u}(\mathbf{t})$ par rapport à l'intensité $\mathbf{i}(\mathbf{t}))$

Pour simplifier l'étude, on prend $\phi_i = 0$ alors $\phi_{u/i} = \phi_u$

$$u(t) = U_m \cos(\omega t + \phi_u) \Leftrightarrow u(t) = U_m \cos(\omega (t + \frac{\phi_u}{\omega}))$$

On appelle $\frac{\phi_u}{\omega}$ le retard $\tau = \frac{\phi_u}{\omega}$ avec $\omega = \frac{2\pi}{T}$ donc $\phi_{u/i} = \phi_u = \tau \frac{2\pi}{T}$ Pratiquement la mesure de τ par l'oscilloscope nous permet de déterminer la valeur absolue de $\phi_{u/i}$.

II) Etude expérimentale du circuit RLC série en régime alternatif sinusoïdal

1) Oscillations forcées dans un circuit RLC

On alimente le circuit RLC série avec un générateur basse fréquence (GBF) délivrant une tension sinusoïdale $u(t) = U_m \cos(\omega t + \phi_u)$ et on visualise les tensions $u_R(t)$ sur la voie Y_1 et u(t) sur la voie Y_2 d'un oscilloscope.

En faisant varier la fréquence du GBF, on remarque, en utilisant les oscillogrammes, que les deux tensions u(t) et $u_R(t)$ ont la même période (même fréquence), on dit que les oscillations de la tension $u_R(t)$ sont imposées par le générateur, l'oscillateur n'est pas libre et les oscillations sont dites forcées.

Conclusion

- La fréquence des oscillations est imposée par le générateur : on dit que les oscillations sont forcées.
- Le générateur joue le rôle de l'excitateur.
- Le dipôle RLC en série joue le rôle du résonateur.
- L'excitateur fournit de l'énergie au résonateur pour compenser l'énergie perdue par effet Joule.

2) Notion d'impédance

L'impédance d'un dipôle est égale au quotient de la valeur efficace de la tension à ses bornes par la valeur efficace de l'intensité :

 $Z = \frac{U}{I} = \frac{U_m}{I_m}$

L'impédance dépend de la fréquence du circuit.

L'unité de l'impédance dans le système internationale est Ω .

Remarque : Théoriquement l'expression de l'impédance d'un circuit RLC à la fréquence f est :

$$Z=\sqrt{R^2+(L2\pi f-\frac{1}{C2\pi f})^2}$$

III) Phénomène de résonance d'intensité

1) Phénomène de résonance

Lorsque la fréquence f d'excitateur prend une valeur égale à la fréquence propre f_0 du résonateur, l'intensité efficace I du courant qui traverse le circuit sera maximale et égale à I_0 , on dit dans ce cas que le circuit RLC série est en résonance.

Donc: $f = f_0 = \frac{1}{2\pi\sqrt{LC}}$

2) L'impédance du circuit RLC à la résonance

- À la résonance, l'intensité efficace I du courant qui traverse le circuit sera maximale alors l'impédance passe par la valeur minimale.
- $\bullet\,$ À la résonance, l'impédance du circuit RLC est égale à la résistance globale du circuit : Z = R

Remarque

- À la résonance, le circuit RLC se comporte comme un conducteur ohmique de résistance R.
- À la résonance la tension aux bornes du condensateur est égale à la tension aux bornes de la bobine :

$$U_L = U_C \text{ donc } L\omega_0 = \frac{1}{C\omega_0} \Leftrightarrow L \cdot 2\pi f_0 = \frac{1}{C \cdot 2\pi f_0}$$

3) La phase à la résonance

À la résonance l'intensité i(t) et la tension u(t) sont en phase : $\phi_{u/i} = 0$

Remarque : D'après la courbe de la résonance d'intensité et l'étude expérimentale si :

- $f \le f_0$ on a i(t) en avance de phase sur u(t) on dit que le circuit est capacitif.
- $f \ge f_0$ on a u(t) en avance de phase sur i(t) on dit que le circuit est inductif.

4) La bande passante à -3db du circuit RLC

a) Définition

La bande passante à -3db du circuit RLC est définie comme une intervalle continue des fréquences $[f_1, f_2]$ du générateur, pour laquelle l'intensité efficace I du courant vérifie la relation suivante :

$$I \ge \frac{I_0}{\sqrt{2}}$$

où I_0 est l'intensité maximale efficace du courant à la résonance.

b) La largeur de bande passante -3db

On conclue que:

- Dans le cas où R est petite (amortissement faible), la résonance est aiguë et la largeur de la bande passante Δf est petite.
- Dans le cas où R est grande (amortissement forte), la résonance est floue et Δf est grande.

Remarque Théoriquement l'expression de la bande passante -3db est donnée par la relation :

$$\Delta\omega = \omega_2 - \omega_1 = \frac{R}{L}$$

$$\Delta f = \frac{\Delta \omega}{2\pi} = \frac{R}{2\pi L}$$

5) Facteur de qualité

On définit le facteur de qualité Q par un nombre sans dimension :

$$Q = \frac{\omega_0}{\Delta \omega}$$
 ou $Q = \frac{f_0}{\Delta f}$

Avec ω_0 et f_0 sont respectivement la pulsation propre et la fréquence propre. $\Delta\omega$ ou Δf la largeur de la bande passante.

• Puisque $\Delta \omega = \frac{R}{L}$ alors le facteur de qualité Q sera :

$$Q = \frac{L\omega_0}{R} = \frac{L \cdot 2\pi f_0}{R}$$

• À la résonance : $L \cdot 2\pi f_0 = \frac{1}{C \cdot 2\pi f_0}$ alors le facteur de qualité Q sera :

$$Q = \frac{1}{R \cdot C \cdot 2\pi f_0} = \frac{1}{R \cdot C \cdot \omega_0}$$

• La fréquence propre $f_0 = \frac{1}{2\pi\sqrt{LC}}$ alors le facteur de qualité Q sera :

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Remarque À la résonance, le circuit RLC se comporte comme un conducteur ohmique de résistance R, donc la tension efficace : $U = RI_0$

$$Q = \frac{L\omega_0}{R} \frac{I_0}{I_0} = \frac{1}{R \cdot C \cdot \omega_0} \frac{I_0}{I_0} = \frac{U_L}{U} = \frac{U_C}{U}$$

On appelle le facteur de qualité : le facteur de surtension car : $U_L = Q \cdot U$

Quelques effets de la résonance sur le circuit

Le facteur de qualité Q est inversement proportionnel à la largeur de la bande passante et qui caractérise l'acuité de la résonance.

- Si Q est grand alors le circuit est plus sélectif.
- Si la résonance est aiguë alors la valeur de Q est grande.
- Si la résonance est floue alors le circuit est amorti.

IV) La puissance en régime alternatif sinusoïdal

1) La puissance instantanée

On considère un dipôle AB traversant un courant alternatif sinusoïdal : $i(t) = I\sqrt{2}\cos(\omega t)$ et la tension à ses bornes $u(t) = U\sqrt{2}\cos(\omega t + \phi)$.

En convention récepteur, la puissance instantanée reçue par un dipôle s'écrit : $P(t) = u(t) \cdot i(t)$

 $P(t) = u(t) \cdot i(t) = 2UI \cdot \cos(\omega t + \phi) \cdot \cos(\omega t)$

Puisque : $\cos a \cdot \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$

Alors $P(t) = U \cdot I[\cos \phi + \cos(2\omega t + \phi)]$

La puissance est une fonction sinusoïdale de pulsation 2ω et de période $\frac{T}{2}$ avec T la période de u(t) et i(t).

2) La puissance moyenne ou puissance active

La puissance moyenne est la somme des puissances instantanées consommées par un dipôle durant la période T.

$$P = \frac{1}{T} \int_0^T P(t)dt = \frac{1}{T} \int_0^T UI[\cos\phi + \cos(2\omega t + \phi)]dt$$
$$= \frac{UI}{T} (\cos\phi \cdot T + [\frac{1}{2\omega}\sin(2\omega t + \phi)]_0^T)$$
$$= UI\cos\phi + \frac{UI}{T} \cdot \frac{1}{2\omega} (\sin(2\omega T + \phi) - \sin\phi)$$

Puisque $\sin(2\omega T + \phi) = \sin(4\pi + \phi) = \sin \phi$

Alors la puissance movenne a pour expression : $P = U \cdot I \cdot \cos \phi$

- \bullet Le produit U·I des amplitudes efficaces désigne la puissance apparente S du dipôle : S = U·I
- \bullet Le cos ϕ correspond au facteur de puissance.

Puisque U = Z·I et cos $\phi = \frac{R}{Z}$ donc on a : P = Z·I·I· $\frac{R}{Z}$ = R·I²

Dans un circuit RLC série la puissance électrique moyenne ne se consomme que par la résistance globale R par effet joule et elle est donnée par la relation suivante : $P = R \cdot I^2$