Pandas - Applications in Finance

```
In [1]: import numpy as np
   import pandas as pd
   import datetime, calendar

   import matplotlib.pyplot as plt
   from mpl_finance import candlestick_ohlc
   import matplotlib.dates as mdates

   np.set_printoptions(suppress=True)

In [2]: datafile = 'http://people.bu.edu/kalathur/datasets/AAPL.csv'
   df = pd.read_csv(datafile, index_col='Date', parse_dates=True)
   df = df.round(2)
   df
```

Volume

Out[2]:

	- p			0.000	,	
Date						
2019-01-02	154.89	158.85	154.23	157.92	156.05	37039700
2019-01-03	143.98	145.72	142.00	142.19	140.51	91312200
2019-01-04	144.53	148.55	143.80	148.26	146.50	58607100
2019-01-07	148.70	148.83	145.90	147.93	146.18	54777800
2019-01-08	149.56	151.82	148.52	150.75	148.96	41025300
2019-09-10	213.86	216.78	211.71	216.70	216.70	31777900
2019-09-11	218.07	223.71	217.73	223.59	223.59	44289600
2019-09-12	224.80	226.42	222.86	223.09	223.09	32226700
2019-09-13	220.00	220.79	217.02	218.75	218.75	39763300
2019-09-16	217.73	220.13	217.56	219.90	219.90	20750000

Low Close Adj Close

Open High

178 rows × 6 columns

```
In [3]: df.mean().round(2)
Out[3]: Open
                          189.65
        High
                          191.59
        Low
                          188.10
        Close
                          189.94
        Adj Close
                          188.90
        Volume
                     28910325.84
        dtype: float64
        Volume Weighted Average Price (VWAP)
In [4]: | vwap = np.average(df['Adj Close'], weights=df['Volume'])
        print("VWAP =", vwap)
        VWAP = 187.04154812148687
        Averages by Day of Week
In [5]: for freq in ['W-MON', 'W-TUE', 'W-WED', 'W-THU', 'W-FRI']:
            print(freq, "Average", df.resample(freq).asfreq().dropna()['Adj Close'].mean().round(2))
        W-MON Average 190.02
        W-TUE Average 188.58
        W-WED Average 189.2
        W-THU Average 188.45
        W-FRI Average 188.31
In [6]: result = df.groupby(df.index.dayofweek)['Adj Close'].mean().round(2)
        result
Out[6]: Date
        0
             190.02
        1
             188.58
        2
             189.20
             188.45
             188.31
        Name: Adj Close, dtype: float64
```

Interpreting Moving Averages

https://www.tradingview.com/wiki/Moving Average (https://www.tradingview.com/wiki/Moving Average)

Simple Moving Average (SMA)

- For analyzing time-series data
- Moving window of N periods
- Mean of values inside the window
- an unweighted moving average

```
In [10]: newDF['SMA'] = df['Adj Close'].rolling(window=N).mean().round(2)
newDF
```

Out[10]:

	Open	High	Low	Close	Adj Close	Volume	SMA
Date							
2019-01-02	154.89	158.85	154.23	157.92	156.05	37039700	NaN
2019-01-03	143.98	145.72	142.00	142.19	140.51	91312200	NaN
2019-01-04	144.53	148.55	143.80	148.26	146.50	58607100	NaN
2019-01-07	148.70	148.83	145.90	147.93	146.18	54777800	NaN
2019-01-08	149.56	151.82	148.52	150.75	148.96	41025300	NaN
2019-09-10	213.86	216.78	211.71	216.70	216.70	31777900	208.73
2019-09-11	218.07	223.71	217.73	223.59	223.59	44289600	209.46
2019-09-12	224.80	226.42	222.86	223.09	223.09	32226700	210.48
2019-09-13	220.00	220.79	217.02	218.75	218.75	39763300	211.33
2019-09-16	217.73	220.13	217.56	219.90	219.90	20750000	212.00

178 rows × 7 columns

```
In [11]: newDF['mDate'] = mdates.date2num(df.index)
newDF
```

Out[11]:

	Open	High	Low	Close	Adj Close	Volume	SMA	mDate
Date								
2019-01-02	154.89	158.85	154.23	157.92	156.05	37039700	NaN	737061.0
2019-01-03	143.98	145.72	142.00	142.19	140.51	91312200	NaN	737062.0
2019-01-04	144.53	148.55	143.80	148.26	146.50	58607100	NaN	737063.0
2019-01-07	148.70	148.83	145.90	147.93	146.18	54777800	NaN	737066.0
2019-01-08	149.56	151.82	148.52	150.75	148.96	41025300	NaN	737067.0
2019-09-10	213.86	216.78	211.71	216.70	216.70	31777900	208.73	737312.0
2019-09-11	218.07	223.71	217.73	223.59	223.59	44289600	209.46	737313.0
2019-09-12	224.80	226.42	222.86	223.09	223.09	32226700	210.48	737314.0
2019-09-13	220.00	220.79	217.02	218.75	218.75	39763300	211.33	737315.0
2019-09-16	217.73	220.13	217.56	219.90	219.90	20750000	212.00	737318.0

178 rows × 8 columns

```
In [12]: | olhc = newDF[['mDate', 'Open', 'High', 'Low', 'Adj Close']].copy().values
         olhc[:5]
Out[12]: array([[737061. ,
                               154.89,
                                          158.85,
                                                     154.23,
                                                                156.05],
                [737062. ,
                               143.98,
                                          145.72,
                                                     142. ,
                                                                140.51],
                [737063. ,
                               144.53,
                                          148.55,
                                                     143.8 ,
                                                                146.5],
                                                                146.18],
                [737066. ,
                               148.7 ,
                                          148.83,
                                                     145.9 ,
                                                                148.96]])
                [737067. ,
                               149.56,
                                          151.82,
                                                     148.52,
```



```
In [14]: # Show plot for lastN values only
lastN = 50

fig, ax = plt.subplots(1, figsize=(12,8))
candlestick_ohlc(ax, olhc[-lastN:])

plt.plot(newDF['mDate'][-lastN:], newDF['Adj Close'][-lastN:], label='Data')
plt.plot(newDF['mDate'][-lastN:], newDF['SMA'][-lastN:], '--', lw=2.0, label='SMA')

ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))

plt.title("20 Day Moving Average")
plt.xlabel("Days")
plt.ylabel("Price ($)")
plt.grid()
plt.legend()
plt.show()
```


Weighted Moving Average (WMA)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWa rning: Currently, 'apply' passes the values as ndarrays to the applied function. In the future, this will chang e to passing it as Series objects. You need to specify 'raw=True' to keep the current behaviour, and you can pass 'raw=False' to silence this warning

"""Entry point for launching an IPython kernel.

Out[18]:

	Open	High	Low	Close	Adj Close	Volume	SMA	mDate	WMA
Date									
2019-01-02	154.89	158.85	154.23	157.92	156.05	37039700	NaN	737061.0	NaN
2019-01-03	143.98	145.72	142.00	142.19	140.51	91312200	NaN	737062.0	NaN
2019-01-04	144.53	148.55	143.80	148.26	146.50	58607100	NaN	737063.0	NaN
2019-01-07	148.70	148.83	145.90	147.93	146.18	54777800	NaN	737066.0	NaN
2019-01-08	149.56	151.82	148.52	150.75	148.96	41025300	NaN	737067.0	NaN
2019-09-10	213.86	216.78	211.71	216.70	216.70	31777900	208.73	737312.0	209.944000
2019-09-11	218.07	223.71	217.73	223.59	223.59	44289600	209.46	737313.0	211.359048
2019-09-12	224.80	226.42	222.86	223.09	223.09	32226700	210.48	737314.0	212.656857
2019-09-13	220.00	220.79	217.02	218.75	218.75	39763300	211.33	737315.0	213.444476
2019-09-16	217.73	220.13	217.56	219.90	219.90	20750000	212.00	737318.0	214.260619

178 rows × 9 columns

```
In [19]: fig, ax = plt.subplots(1, figsize=(12,8))

plt.plot(newDF.index, newDF['Adj Close'], label='Data')
plt.plot(newDF.index, newDF['SMA'], '--', lw=2.0, label='SMA')
plt.plot(newDF.index, newDF['WMA'], '--', lw=2.0, label='WMA')

plt.title("20 Day Moving Average")
plt.xlabel("Days")
plt.ylabel("Price ($)")
plt.grid()
plt.legend()
plt.show()
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/plotting/_matplotlib/converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.

```
To register the converters:

>>> from pandas.plotting import register_matplotlib_converters
>>> register_matplotlib_converters()
warnings.warn(msg, FutureWarning)
```



```
In [ ]:
```

Exponential Moving Average (EMA)

- For analyzing time-series data
- Alternative to SMA
- Moving window of N periods
- Uses exponentially decreasing weights
- Gives higher weights to recent prices
- weighted averages are calculated using weights (1 alpha) * *(n 1), (1 alpha) * *(n 2), ..., 1 alpha, 1

```
In [20]: newDF['EMA'] = df[['Adj Close']].ewm(alpha=0.5, min_periods=N).mean()
newDF
```

VA/RAA

Out[20]:

	Open	High	Low	Close	Adj Close	Volume	SMA	mDate	WMA	EMA
Date										
2019-01-02	154.89	158.85	154.23	157.92	156.05	37039700	NaN	737061.0	NaN	NaN
2019-01-03	143.98	145.72	142.00	142.19	140.51	91312200	NaN	737062.0	NaN	NaN
2019-01-04	144.53	148.55	143.80	148.26	146.50	58607100	NaN	737063.0	NaN	NaN
2019-01-07	148.70	148.83	145.90	147.93	146.18	54777800	NaN	737066.0	NaN	NaN
2019-01-08	149.56	151.82	148.52	150.75	148.96	41025300	NaN	737067.0	NaN	NaN
2019-09-10	213.86	216.78	211.71	216.70	216.70	31777900	208.73	737312.0	209.944000	214.881240
2019-09-11	218.07	223.71	217.73	223.59	223.59	44289600	209.46	737313.0	211.359048	219.235620
2019-09-12	224.80	226.42	222.86	223.09	223.09	32226700	210.48	737314.0	212.656857	221.162810
2019-09-13	220.00	220.79	217.02	218.75	218.75	39763300	211.33	737315.0	213.444476	219.956405
2019-09-16	217.73	220.13	217.56	219.90	219.90	20750000	212.00	737318.0	214.260619	219.928203

178 rows × 10 columns

```
In [21]: fig, ax = plt.subplots(1, figsize=(12,8))

plt.plot(newDF.index, newDF['Adj Close'], label='Data')
plt.plot(newDF.index, newDF['SMA'], '--', lw=2.0, label='SMA')
plt.plot(newDF.index, newDF['WMA'], '-.', lw=2.0, label='WMA')
plt.plot(newDF.index, newDF['EMA'], ':', lw=2.0, label="EMA")

plt.title("20 Day Moving Average")
plt.xlabel("Days")
plt.ylabel("Price ($)")
plt.grid()
plt.legend()
plt.show()
```


In []: