Chapter 3

同构定理

3.1 商空间

定义 3.1 <u>商空间</u>: F 为域, V 为 F 上的向量空间, S 为 V 的子空间, 则称 $\frac{V}{S} \equiv \{[v] \mid v \in V\}$ 为 F 的**商空间**, 其中 $[v] \equiv \{u \in V \mid u - v \in S\} = S + v$.

 $\frac{V}{S}$ 为 F 上的向量空间.

```
证: [u] + [v] = \{a \in V \mid a - u \in S\} + \{b \in V \mid b - v \in S\} = \{(a + b) \in V \mid a - u \in S, b - v \in S\}.
[u + v] = \{w \in V \mid w - (u + v) \in S\}.
\forall (a + b) \in [u] + [v], (a - u) + (b - v) = (a + b) - (u + v) \in S \Longrightarrow (a + b) \in [u + v] \Longrightarrow [u] + [v] \subseteq [u + v].
\forall w \in [u + v], \exists c, d \in S, \text{ s.t. } w = c + d + (u + v) = (c + u) + (d + v), \\ \sharp \psi \mid (c + u) \in [u], (d + v) \in [v] \Longrightarrow w \in [u] + [v] \Longrightarrow [u + v] \subseteq [u + v].
```

故 [u] + [v] = [u + v].

假设 $u \sim u', v \sim v'$, 即 [u] = [u'], [v] = [v'].

- \therefore $[u] = [u'], \therefore u + S = u' + S \Longrightarrow \exists s_1, s'_1 \in S$, s.t. $u + s_1 = u' + s'_1 \Longleftrightarrow u' = u + s_1 s'_1$,
- $\because [v] = [v'], \therefore v + S = v' + S \Longrightarrow \exists s_2, s_2' \in S, \text{ s.t. } v + s_2 = v' + s_2' \Longleftrightarrow v' = v + s_2 s_2'$
- $\implies u' + v' = u + s_1 s_1' + v + s_1 s_1', \not \exists r : s_1, s_1', s_2, s_2' \in S, : s_1 s_1' \in S, s_2 s_2' \in S.$

又: V 是交换群, $u' + v' = u + v + (s_1 - s_1' + s_2 - s_2')$

$$\implies (u' + v') + S = (u + v + (s_1 - s'_1 + s_2 - s'_2)) + S \implies [u' + v'] = [u + v],$$

即 [u] + [v] = [u + v] 与代表元选取无关, 故 [u] + [v] = [u + v] 为运算.

 $r[u] = r\{v \in V \mid v - u \in S\} = \{rv \mid v \in V, v - u \in S\} = \{rv \in V \mid rv - ru \in S\} = [ru].$ 假设 $u \sim u'$, 即 [u] = [u'].

 $\therefore [u] = [u'], \therefore u + S = u' + S \Longrightarrow \exists s, s' \in S, \text{ s.t. } u + s = u' + s' \Longleftrightarrow u' = u + s - s'$

 $\implies ru' = r(u+s-s') = ru + r(s-s'), \not\exists \vdash s-s' \in S \implies (ru') + S = (ru+r(s-s')) + S = (ru) + S \implies r[u'] = [ru'] = [ru],$

即 r[u] = [ru] 与代表元选取无关,故 r[u] = [ru] 为运算.

 $(\frac{V}{S},+)$ 满足

- (1) 结合律: ([v] + [u]) + [w] = [u + v] + [w] = [u + v + w] = [u + (v + w)] = [u] + [v + w] = [u] + ([v] + [w]),
- (2) 有单位元 [0]: [0] + [u] = [0 + u] = [u] = [u + 0] = [u] + [0],
- (3) 有逆元: $\forall v \in V, \exists -v, \text{ s.t. } [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a],$

3. 同构定理 3.1. 商空间

且 [u]+[v]=[u+v]=[v+u]=[v]+[u],即 $\left(\frac{V}{S},+\right)$ 交换,故 $\left(\frac{V}{S},+\right)$ 为交换群. (总之就是因为 $\frac{V}{S}$ 中的元素 [v] 保持了 V 中的元素 v 的各种运算性质,所以 (V,+) 是交换群就可以推出 $\frac{V}{S}$ 也是交换群.)

V_S 满足

- (1) r([u+v]) = r([u] + [v]) = r[u] + r[v],
- (2) (r+t)[u] = [(r+t)u] = [ru+tu] = [ru] + [tu] = r[u] + t[u],
- (3) $(r \cdot t)[u] = [(r \cdot t)u] = [r(tu)] = r[tu] = r(t[u]),$
- (4) 有单位元 1: [1][u] = [1u] = [u],

故 $\frac{V}{S}$ 为 F 上的向量空间.

定理 3.1 (课本定理3.2): (1) $\Pi_S: V \to \frac{V}{S}, v \mapsto [v]$ 是线性变换.

- (2) Π_S 是满线性变换, 即 $\operatorname{Im} \Pi_S = \frac{V}{S}$.
- (3) $\ker \Pi_S = S$.
- 证: (1) 显然 Π_S 是唯一的, 故 Π_S 是映射.

如前所证, V 和 $\frac{V}{S}$ 均为 F 上的向量空间.

$$[u] + [v] = [u + v], r[u] = [ru], \therefore r[u] + t[v] = [ru] + [tv] = [ru + tv],$$
故 Π_S 为线性变换.

- (2) $\forall [v] \in \frac{V}{S}$, $\exists v \in V$, s.t. $\Pi_S(v) = [v]$, 故 Π_S 是满线性变换.
- (3) $\ker \Pi_S = \{ v \in S \mid \Pi_S(v) = [0] \}.$ $v \in \ker \Pi_S, \Pi_S(v) = [v] = v + S = [0] = 0 + S = S \iff v \in S, \text{ the } \ker \Pi_S \subseteq S.$

定理 3.2 (课本定理3.3): (1) S,T 为 V 的子空间且 $S \subseteq T$, 则 $\frac{T}{S}$ 是 $\frac{V}{S}$ 的子空间.

- (2) 取 X 为 $\frac{V}{S}$ 的子空间, 则 $\exists V$ 的子空间 T, s.t. $\emptyset \neq S \subseteq T$, $\frac{T}{S} = X$.
- $\text{iII:} \quad (1) \ \ \tfrac{T}{S} = \{[u] \mid u \in T\}, \ \tfrac{V}{S} = \{[v] \mid v \in V\}.$

 $\forall [u] \in \frac{T}{S}, u \in T, : T \not\in V \text{ in } \exists Y \in V \implies [u] \in \frac{V}{S}, \text{ in } \frac{T}{S} \subseteq \frac{V}{S}.$

 $\forall [u_1], [u_2] \in \frac{T}{S}, \forall r, t \in F, r[u_1] + t[u_2] = [ru_1 + tu_2].$

 $:: u_1, u_2 \in T, :: ru_1 + tu_2 \in T \Longrightarrow [ru_1 + tu_2] \in \frac{T}{S}$, 故 $\frac{T}{S}$ 为向量空间.

综上, 得证.

(2) 取 $T = \bigcup_{[v] \in X} [v]$. 显然 $T \subseteq V$.

 $\forall u, v \in T$, 根据 T 的定义, $[u], [v] \in X$.

 $\therefore X$ 为子空间, $\therefore r[u] + t[v] = [ru + tv] \in X \subseteq T = \bigcup_{v \in X} [v] \Longrightarrow ru + tv \in T.$

故 T 为 V 的子空间.

$$\therefore S = [0] \in X, \therefore S \subseteq T = \cup_{[v] \in X} [v].$$

$$\frac{T}{S} = \{ [v] = S + v \mid v \in T \}.$$

 $\forall [u] \in \frac{T}{S}, \ u \in T = \cup_{[v] \in X} [v] \Longrightarrow [u] \in X \Longrightarrow \frac{T}{S} \subseteq X.$

2 / 8

3. 同构定理 3.2. 第一同构定理

$$\begin{array}{l} \forall [u] \in X, \ u \in T = \cap_{[v] \in X} [v] \Longrightarrow [u] \in \frac{T}{S} \Longrightarrow X \subseteq \frac{T}{S}. \\ \text{ th } \frac{T}{S} = X. \end{array}$$

综上, 得证.

3.2 第一同构定理

定理 3.3 第一同态基本定理(课本定理3.4): ${}^aS \in V$ 的子空间, $\tau \in \mathcal{L}(V,W)$,

若 $S \subseteq \ker \tau$, 即 $\ker \Pi_S \subseteq \ker \tau$, 则 $\exists ! \tau' : \frac{V}{S} \to W$, s.t. $\tau = \tau' \circ \Pi_S$, 即 $\forall v \in V$, $\tau(v) = \tau'([v])$, 此时上图可交换, $\ker \tau' = \frac{\ker \tau}{S}$, $\operatorname{Im} \tau' = \operatorname{Im} \tau$.

证: τ' 的唯一性要求, 若 [u] = [v], 则 $\tau'([u]) = \tau'([v])$,

即若 $u \sim v$, 则 $\tau(u) = \tau(v)$,

即若 $u-v \in S$, 则 $\tau(u-v)=0$,

 $\mathbb{P} S \subseteq \ker \tau$.

此时,
$$\ker \tau' = \{[v] \in \frac{V}{S} \mid \tau'([v]) = 0\} = \{[v] \in \frac{V}{S} \mid \tau(v) = 0\} = \{[v] \in \frac{V}{S} \mid v \in \ker \tau\} = \frac{\ker \tau}{S},$$

$$\operatorname{Im} \tau' = \{\tau'([v]) \mid [v] \in \frac{V}{S}\} = \{\tau'([v]) \mid v \in V\} = \{\tau(v) \mid v \in V\} = \operatorname{Im} \tau \ (:: \Pi_S \ 满射, :: \forall [v] \in \frac{V}{S}, \exists v \in V).$$

那么, 若 τ 双射, 即 $\exists \tau^{-1} \in \mathcal{L}(W, V)$, 且 $\ker \tau = S$, 如何?

此时, $\ker \tau' = \frac{\ker \tau}{S} = \{[v] \mid v \in \ker \tau\} = \{[v] \mid v \in S\} = \{[0]\} \Longrightarrow \tau'$ 单射.

3 / 8

[&]quot;该定理回答了 au' 的存在性 (即 au' 在什么条件下存在) 的问题. 之所以称"基本", 是因为若将该定理中的向量空间换成其他代数结构, 定理仍然成立.

3. 同构定理 3.3. 线性泛函

由上面关于第一同态基本定理的延伸讨论我们得到:

定理 3.4 第一同构定理(课本定理3.5): 若 $\ker \tau = S$, 则 τ' 单射, $\frac{V}{\ker \tau} = \frac{V}{S} \approx \operatorname{Im} \tau$.

证: $V = \ker \tau \oplus (\ker \tau)^c$, 其中 $(\ker \tau)^c \approx \operatorname{Im} \tau \Longrightarrow \frac{V}{\ker \tau} \approx (\ker \tau)^c \approx \operatorname{Im} \tau$.

更一般地, 若 $V = S \oplus T$, 则 $\frac{V}{S} \approx T$, $\frac{V}{T} \approx S$.

证: $\forall v \in V, v = u_S + u_T,$ 其中 $u_S \in S, u_T \in T.$

令投影映射 $P_T: V \to T, v = u_S + u_T \mapsto u_T$.

 $\ker P_T = \{ v \in V \mid P_T(v) = 0 \} = S = [0] = \ker \Pi_S.$

由第一同构定理 (定理 3.4), $\exists ! \tau'$ 单射, s.t. $P_T = \tau' \circ \Pi_S$.

又 :: $\operatorname{Im} P_T = T$, 即 P_T 满射, :: τ' 满射 $\Longrightarrow \tau'$ 同构 $\Longrightarrow \frac{V}{S} \approx T$.

同理可证 $\frac{V}{T} \approx S$.

3.3 线性泛函

定义 3.2 <u>对偶(空间)和线性泛函</u>: $V^* = \mathcal{L}(V, F)$ 为 F 上的向量空间, 称 V^* 为 V 的对偶(空间). 若 $f \in V^*$, 则称 f 为线性泛函.

- (1) $\ker V^*$ 为 F 上的向量空间.
- (2) $\because \dim F = 1$, $\operatorname{Im} f \subseteq F$, $\therefore \dim \operatorname{Im} f \leq 1$, $\dim \ker f \geq \dim V 1$.
- (3) : 必有零映射 $0 \in V^*$, $0: V \to F$, $v \mapsto 0$, $\therefore V^*$ 非空.

3. 同构定理 3.4. 对偶基

- (4) 若 dim Im f = 0, 则 Im $f = \{0\}$, f 为零映射.
- (5) 若 dim Im f = 1, 则 Im $f = \langle r \rangle$, 其中 $0 \neq r \in F \Longrightarrow$ Im f = F. 由反证法易证, 若 $v \in f^{-1}(r) = \{v \in V \mid f(v) = r\}$, 其中 $r \neq 0$, 则 $v \neq 0$, 且必有 $f(\langle v \rangle^c) = \{0\}$.

证明 (5) 的末句:

证: 假设 $\exists u \in \langle v \rangle^c$, s.t. $f(u) \neq 0$.

$$f\left(\frac{ru}{f(u)}\right) = r \Longrightarrow \frac{ru}{f(u)} \in f^{-1}(r).$$

又 $\dot{}$: $u \in \langle v \rangle^c$, : $\dim f^{-1}(r) \ge 2$, 这与 $f^{-1}(r) \subseteq (\ker f)^c$, $\dim(\ker f)^c = \dim \operatorname{Im} f \le 1$ 矛盾,

故假设错误, $\forall u \in \langle v \rangle^c$, $f(u) = 0 \Longrightarrow f(\langle v \rangle^c) = \{0\}$.

定理 3.5 (课本定理3.11): (1) $\forall 0 \neq v \in V, \exists 0 \neq f \in V^*, \text{ s.t. } f(v) \neq 0.$

- $(2) \ v = 0 \Longleftrightarrow \forall f \in V^*, f(v) = 0.$
- (3) $f \in V^*$, $\not\equiv f(x) \neq 0$, $\not\sqsubseteq V = \ker f \oplus \langle x \rangle$, $\not\sqsubseteq Im f \approx \langle x \rangle$.
- (4) $0 \neq f, g \in V^*$, $\ker f = \ker g \iff \exists 0 \neq \lambda \in F$, s.t. $f = \lambda g$.
- 证: (1) $v \neq 0$, 则 $V = \langle v \rangle \oplus \langle v \rangle^c$, 其中 $\langle v \rangle = \{rv \mid r \in F\}$.

 $\uparrow f: V \to F, rv + w \mapsto r, \not\exists rv \in \langle v \rangle, w \in \langle v \rangle^c, \not\exists t f(v) = 1, f \in V^*.$

下证 f 为线性变换: $\forall u_1, u_2 \in V, u_1 = r_1 v + w_2, u_2 = r_2 v + w_2, 其中 <math>w_1, w_2 \in \langle v \rangle^c$,

 $f(ru_1+tu_2)=f(r(r_1v+w_1)+t(r_2v+w_2))=f((rr_1v+rw_1)+(tr_2v+tw_2))=f((rr_1+tr_2)v+(rw_1+tw_2))=rr_1+tr_2=rf(r_1v+w_1)+tf(r_2v+w_2)=rf(u_1)+tf(u_2).$

故得证.

注意此处 f 的构造并非唯一: 构造 $f: V \to F$, $rv + u \mapsto rt$, 其中 $u \in \langle v \rangle^c$, 同理可得证.

- (2) "⇒": 若 v = 0, 则 $\forall u \in V$, $f(v) + f(u) = f(v + u) = f(u) \Longrightarrow f(v) = 0$. "⇐": 假设 $v \neq 0$, 则由 (1), $\exists f \in V^*$, s.t. $f(v) \neq 0$, 矛盾, 故假设错误, v = 0.
- (3) $f(x) \neq 0 \Longrightarrow \operatorname{Im} f \neq \{0\} \Longrightarrow \dim \operatorname{Im} f \neq 0 \Longrightarrow \dim (\ker f)^c = \dim \operatorname{Im} f = 1$ $\Longrightarrow \exists v \in V, \text{ s.t. } \ker f^c = \langle v \rangle \Longrightarrow V = \ker f \oplus \ker f^c = \langle v \rangle^c \oplus \langle v \rangle \text{ } \exists \text{ } \operatorname{Im} f \approx \ker f^c = \langle v \rangle. \text{ } \because f(x) \neq 0,$ $\therefore x = rv + w, \text{ } \exists rv \in \langle v \rangle, w \in \langle v \rangle^c \Longrightarrow \langle x \rangle \approx \langle v \rangle \Longrightarrow V = \ker f \oplus \langle x \rangle \text{ } \exists \text{ } \operatorname{Im} f \approx \langle x \rangle.$
- (4) " \Longrightarrow ": $\diamondsuit K = \ker f = \ker g$.

 $\forall x \notin K, \text{ in } (3) \text{ ff}, V = K \oplus \langle x \rangle.$

取 $\lambda = \frac{f(x)}{g(x)}$, $\forall v \in V$, x = rx + w, 其中 $rx \in \langle x \rangle$, $w \in K$

 $\Longrightarrow f(v) = f(rx + w) = rf(x) = r\frac{f(x)}{g(x)}g(x) = r\lambda g(x) = \lambda g(rx) = \lambda g(rx + w) = \lambda g(v) \Longrightarrow f = \lambda g.$

"=": 若 $\exists 0 \neq \lambda \in F$, s.t. $f = \lambda g$, 则显然 $\ker f = \ker g$.

3.4 对偶基

定义 3.3 <u>对偶基</u>: $\mathcal{B} = \{b_1, \dots, b_n\}$ 为 V 的基, 则 $\forall i, \exists b_i^* \in V, \text{ s.t. } b_i^*(b_i) = 1, b_i^*(b_j) = 0 \forall i \neq j,$ 即 $b_i^*(b_j) = \delta_{ij},$

3. 同构定理 3.5. 伴随算子

从而可构造出 $\mathcal{B}^* = \{b_1^*, \cdots, b_n^*\} \subseteq V^*$, 称为 \mathcal{B} 的**对偶基**.

定理 3.6 (课本定理3.12): (1) $\mathcal{B}^* = \{b_1^*, \dots, b_n^*\}$ 线性无关.

(2) $\dim V < \infty$, 则 \mathcal{B}^* 是 V^* 的基.

- 证: (1) $\sum_{i=1}^{m} r_i b_i^* = 0 \Longrightarrow \forall v \in V, \sum_{i=1}^{m} r_i b_i^* (v) = (\sum_{i=1}^{m} r_i b_i^*) (v) = 0(v) = 0.$ 取 $v = b_j$,则 $\sum_{i=1}^{m} r_i b_i^* (b_j) = \sum_{i=1}^{m} r_i \delta_{ij} = r_j = 0.$ 对各个 b_i 如法炮制,从而可得 $r_j = 0 \forall i$,故得证.
 - (2) $\forall f \in V^*, \forall v \in V, :: \mathcal{B} \in V$ 的基, $:: v = \sum_{i=1}^n r_i b_i$ $\implies b_j^*(v) = b_j^* \left(\sum_{i=1}^n r_i b_i \right) = \sum_{i=1}^n r_i b_j^* (b_i) = \sum_{i=1}^n r_i \delta_{ij} = r_j$ 回代得 $v = \sum_{i=1}^n b_i^*(v) b_i$ $\implies f(v) = f\left(\sum_{i=1}^n b_i^*(v) b_i \right) = \sum_{i=1}^n b_i^*(v) f(b_i) = \sum_{i=1}^n f(b_i) b_i^*(v) = \left(\sum_{i=1}^n f(b_i) b_i^* \right) (v)$, 此处 $b_i^*(v), f(b_i) \in F$, 因此可交换位置,我们可视 $\{b_i^*(v)\}$ 为基, $f(b_i)$ 为 f(v) 在这组基上的展开系数 $\implies f = \sum_{i=1}^n f(b_i) b_i^*$, 即 f 可展开为 $\{\mathcal{B}^*\}$ 的线性表示,结合 (1) 得证.

仿照上面的方法, $\forall v \in V$, 我们都可构造 $v^* \in V^*$, s.t. $v^*(v) = 1$, $\forall u_2 \in \langle v \rangle^c$, $v^*(u_2) = 0$, 从而有映射 $V \to V^*$, $v \mapsto v^*$, $0 \mapsto 0$ (零映射).

 V^* 本身也是向量空间.

定义 3.4 二重对偶(空间): $V^{**} = \mathcal{L}(V^*, F)$ 称为二重对偶(空间), 其中的元素为 $v^{**}: V^* \to F, f \to v^{**} = f(v)$.

 $V \to V^* \to V^{**}, v \mapsto v^* \mapsto v^{**}, b_i \mapsto b_i^* \mapsto b_i^{**},$ 满足 $b_i^*(b_j) = \delta_{ij}, b_i^{**}(b_j^*) = b_j^*(b_i),$ 两个映射复合得 $\tau: V \to V^{**}, v \mapsto v^{**}.$

- (1) τ 是映射.
- (2) τ 是线性变换.
- (3) $\ker \tau = \{v \in V \mid \tau(v) = 0\} = \{0\} \iff \tau \text{ } \rlap{\ }\rlap{\text{$.$} } \rlap{\text{$.$} } \rlap{$

证: (1) 若 $u = v \in V$, 则 $\forall f \in V^*$, $u^{**}(f) = f(u) = f(v) = v^{**}(f)$, 即得证.

- (2) $\forall f \in V^*, (\tau(ru+tv))(f) = (ru+tv)^{**}(f) = f(ru+tv) = rf(u) + tf(v) = ru^{**}(f) + tv^{**}(f) = r\tau(u)(f) + t\tau(v)(f) = (r\tau(u) + t\tau(v))(f) \Longrightarrow \tau(ru+tv) = r\tau(u) + t\tau(v),$ 结合 (1) 得证.
- (3) $\tau(v) = 0 \Longrightarrow \forall f \in V^*, v^{**}(f) = 0 \Longrightarrow f(v) = 0 \Longrightarrow (定理 3.5 (1)) v = 0$, 即得证.

引理 3.1 (课本引理3.13): 若 $\dim V < \infty$, 则 $\dim V^* = \dim V^{**}$, V^{**} 与 V 同构, 一个线性空间的二重对偶就回到自身, 故实际上套娃式的 V^{***} 是没有意义的, 此处我们就写成 $V^{**} = V$.

3.5 伴随算子

3. 同构定理 3.5. 伴随算子

定义 3.5 <u>伴随算子</u>: 由线性变换 $\tau:V\to W$ 可引出伴随算子 $\tau^{\times}:W^{*}\to V^{*},$ $g\mapsto \tau^{\times}(g)=g\circ \tau.$

- (1) τ^{\times} 是映射.
- (2) τ× 是线性变换.

证: (1) 若 $f = g \in W^*$, 则 $\tau^{\times}(f) = f \circ \tau = g \circ \tau = \tau^{\times}(g)$, 故得证.

(2) $\tau^{\times}(rg_1 + tg_2) = (rg_1 + tg_2) \circ \tau = rg_1 \circ \tau + tg_2 \circ \tau = r\tau^{\times}(g_1) + t\tau^{\times}(g_2)$, 结合 (1) 得证.

定理 3.7 (课本定理3.18): (1) $\forall \tau, \sigma \in \mathcal{L}(V, W), \forall a, b \in F, (a\tau + b\sigma)^{\times} = a\tau^{\times} + b\sigma^{\times}.$

- (2) $\sigma \in \mathcal{L}(V, W), \tau \in \mathcal{L}(W, U), \ \mathbb{M} \ (\tau \circ \sigma)^{\times} = \sigma^{\times} \circ \tau^{\times}.$
- (3) $\tau \in \mathcal{L}(V)$ 可逆 $\Longrightarrow (\tau^{-1})^{\times} = (\tau^{\times})^{-1}$.

证: $(1) \ \forall f \in W^*, (a\tau + b\sigma)^*(f) = f \circ (a\tau + b\sigma) = af \circ \tau + bf \circ \sigma = a\tau^{\times}(f) + b\tau^{\times}(f) = (a\tau^{\times} + b\sigma^{\times})(f),$ 即得证.

 $(2) \ \forall f \in U^*, \ (\tau \circ \sigma)^*(f) = f \circ (\tau \circ \sigma) = (f \circ \tau) \circ \sigma = \sigma^{\times}(f \circ \tau) = \sigma^{\times}(\tau^{\times}(f)) = (\sigma^{\times} \circ \tau^{\times})(f), \ \text{即得证}.$

 $(3) \ 1^{\times} = (\tau \circ \tau^{-1})^{\times} = (\tau^{-1})^{\times} \circ \tau^{\times} \Longrightarrow (\tau^{-1})^{\times} = (\tau^{\times})^{-1}.$

定理 3.8 (课本定理3.18): $\dim V < \infty$, $\dim W < \infty$, $\tau \in \mathcal{L}(V,W)$, $\tau^{\times} \in \mathcal{L}(W^*,V^*)$, $\tau^{\times \times} \in \mathcal{L}(V^{**},W^{**}) = \mathcal{L}(V,W)$, 则 $\tau^{\times \times} = \tau$.

7 / 8

3. 同构定理 3.5. 伴随算子

定理 3.9 (课本定理3.22): $\tau \in \mathcal{L}(V, W)$, 其中 dim $V < \infty$, dim $W < \infty$, \mathcal{B} 和 \mathcal{C} 分别是 V 和 W 的定序基, \mathcal{B}^* 和 \mathcal{C}^* 分别是 \mathcal{B} 和 \mathcal{C} 的对偶基, 则 $[\tau^{\times}]_{\mathcal{C}^*\mathcal{B}^*} = ([\tau]_{\mathcal{B}\mathcal{C}})^T$.

证: 设 dim V=n, dim W=m, V 的定序基 $\mathcal{B}=\{b_1,\cdots,b_n\}$, W 的定序基 $\mathcal{C}=\{c_1,\cdots,c_m\}$, $\tau\in\mathcal{L}(V,W)$ 的矩阵 表示为 $[\tau]_{\mathcal{BC}} = [\alpha_{ij}]_{m \times n}, \, \tau^{\times} \in \mathcal{L}(W^*, V^*)$ 的矩阵表示为 $[\tau^{\times}]_{\mathcal{C}^*\mathcal{B}^*} = [\beta_{ij}]_{n \times m}^T$.

又由 τ^{\times} 的定义, $\tau^{\times}(c_i^*) = c_i^* \circ \tau$, 故将该复合函数作用于 b_j 上有 $c_i^*(\tau(b_j)) = (c_i^* \circ \tau)(b_j) = (\tau^{\times}(c_i^*))(b_j) = (\tau^{\times}(c_i^*))(b_j)$ $\left(\sum_{l=1}^{n} \beta_{li} b_l^*\right)(b_j) = \sum_{l=1}^{n} \beta_{li} b_l^*(b_j) = \sum_{l=1}^{n} \beta_{li} \delta_{lj} = \beta_{ji} \Longrightarrow \beta_{ji} = c_i^*(\tau(b_j)),$

代入上面的 $\tau(b_j)$ 的展开式得 $\beta_{ji} = c_i^* \left(\sum_{k=1}^m \alpha_{kj} c_k \right) = \sum_{k=1}^m \alpha_{kj} c_i^* (c_k) = \sum_{k=1}^m \alpha_{kj} \delta_{ik} = \alpha_{ij}$, 故得证.