Adult salmonids and rainbow smelt (freshwater, groups 1 and 2)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	Α	80000	24.00	10	No mortality	D. Herbert, personal communication to Alabaster & Lloyd (1980)
Trout (Rainbow)	Α	160000	24.00	14	100% mortality	D. Herbert, personal communication to Alabaster & Lloyd (1980)
Salmon (Coho)	Α	6779	72.00	7	Loss of habitat caused by excessive sediment transport	Coats et al. (1985)
Steelhead	Α	6779	72.00	7	Loss of habitat caused by excessive sediment transport	Coats et al. (1985)
Trout (Brook)	Α	4	48.00	3	Fish more active and less dependent on cover	Gradall & Swenson (1982)
Salmon	Α	213	24.00	10	Abandoned traditional spawning ground	Hamilton (1961)
Trout (Sea)	Α	213	24.00	10	Abandoned traditional spawning ground	Hamilton (1961)
Trout (Brown)	Α	1000	8760.00	10	Reduced abundance	Herbert et al. (1961)
Trout (Brown)	Α	60	8760.00	0	No adverse effect, healthy population	Herbert et al. (1961)
Trout (Brown)	Α	1040	17520.00	8	Gill lamellae thickened (VFSS)	Herbert et al. (1961)
Trout (Brown)	Α	1210	17520.00	8	Some gill lamellae became fused (VFSS)	Herbert et al. (1961)
Trout (Brown)	Α	1061	8760.00	14	Population one-seventh of expected size (River Fal)	Herbert et al. (1961)
Trout (Brown)	Α	5838	8760.00	14	Fish numbers one-seventh of expected (River Par)	Herbert et al. (1961)
Trout (Brown)	Α	1061	8760.00	14	Deterioration of spawning gravel (River Par)	Herbert et al. (1961)
Trout (Brown)	Α	5838	8760.00	14	Deterioration of spawning gravel (River Fal)	Herbert et al. (1961)
Trout (Brown)	Α	59	8760.00	0	No adverse effect (River Camel)	Herbert et al. (1961)
Trout (Brown)	Α	5838	8760.00	4	Diet shifted to terrestrial invertebrates	Herbert et al. (1961)
Trout (Brown)	Α	1061	8760.00	4	Diet shifted to terrestrial invertebrates	Herbert et al. (1961)
Grayling (Arctic)	Α	100	1008.00	8	Fish had decreased resistance to environmental stresses	McLeay et al. (1984)
Grayling (Arctic)	Α	100	1008.00	9	Impaired feeding	McLeay et al. (1984)
Grayling (Arctic)	Α	100	1008.00	9	Reduced growth	McLeay et al. (1984)
Trout (Rainbow)	Α	18	720.00	10	Abundance reduced	Peters (1967)
Trout (Brown)	Α	319	720.00	12	Decrease in population size	Peters (1967)
Trout (Brown)	Α	18	720.00	10	Abundance reduced	Peters (1967)
Trout (Rainbow)	Α	79	720.00	10	Abundance reduced	Peters (1967)
Trout (Brown)	Α	79	720.00	10	Abundance reduced	Peters (1967)
Trout (Rainbow)	Α	167	720.00	12	Abundance greatly reduced	Peters (1967)
Trout (Brown)	A	167	720.00	12	Abundance greatly reduced	Peters (1967)
Trout (Rainbow)	A	186	720.00	12	Abundance greatly reduced	Peters (1967)
Trout (Brown)	A	186	720.00	12	Abundance greatly reduced	Peters (1967)
Trout (Rainbow)	A	319	720.00	12	Abundance greatly reduced	Peters (1967)
Trout (Brown)	A	319	720.00	12	Abundance greatly reduced	Peters (1967)
Whitefish (Mountain)	A	10000	24.00	10	Fish died; silt-clogged gills	Langer (1980)
Salmon (Chinook)	Α	650	168.00	5	No latent effects on homing in subsequent test at low SS (returned: 55%, control 56.9%)	Brannon et al. (1981)
Salmon (Chinook)	Α	650	168.00	5	No histological signs of damage to olfactory sensory epithelium	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	7	Preference for home water reduced, VA (45%, control 80%)	Brannon et al. (1981)
Salmon (Chinook)	Α	0	0.17	3	Strong preference for clean home water (80%) over clean city water	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	7	Less likely to move upstream, VA (35% moved upstream)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	4	Preference for home water with VA vs non- home water with VA (89%)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	0	No effect on elapsed time to move upstream	Brannon et al. (1981)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chinook)	Α	337	0.17	1	Quicker to enter city water vs home water (w/ and w/o VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	3	Preferece for non-turbid water (VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	5	Avoidance of sediment plume, increased zig- zagging across raceway (VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	5	Movement slowed in turbid water (VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	1204	96.00	12	50% mortality, in-stream (LC50)	Unk, Cited by Brannon et al. (1981)
Salmon (Chinook)	Α	18722	96.00	12	50% mortality, static bioassay (LC50)	Unk, Cited by Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	7	May delay migratory/homing behavior	Brannon et al. (1981)
Grayling (Arctic)	Α	187	24.00	8	Gill histopathologies (Hypertrophy, hypoerplasia and clubbing)of lamellae	Birtwell et al. (1984)
Fish	Α	10000	24.00	9	Decreased and less diverse fish populations	Knapp (unpublished, cited by Birwell et al. (1984))
Grayling (Arctic)	Α	100	24.00	0	Healthy population, all age classes	Knapp (unpublished, cited by Birwell et al. (1984))
Whitefish (Mountain)	Α	100	24.00	0	Healthy population	Knapp (unpublished, cited by Birwell et al. (1984))
Grayling (Arctic)	Α	10000	24.00	3	Downstream displacement	Knapp (unpublished, cited by Birwell et al. (1984))
Trout (Brown)	Α	100	720.00	11	Population reduced	Scullion & Edwards (1980)
Trout (Brown)	Α	100	720.00	8	Low condition factor	Scullion & Edwards (1980)
Trout (Brown)	Α	110	720.00	8	Switched to primarily terrestrial invertebrate diet (97% diet)	Scullion & Edwards (1980)
Trout (Rainbow)	Α	250	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Trout (Rainbow)	Α	100	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Trout (Rainbow)	Α	250	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Trout (Rainbow)	Α	600	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Salmon (Sockeye)	Α	1577	96.00	5	No respiratory distress observed	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	5	No histological or maked pathological effects on gills	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	8	Plasma glucose levels increased 150%	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	8	Plasma glucose levels increased 39%	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	8	Significant increase in hematocrit levels	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	10	No mortality	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	5	No respiratory distress observed	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	10	Gill fungus caused mortality	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	10	20% mortality (control 20%)	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	5	No effect on leucocrit values	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	8	Slight increase in hematocrit levels	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	8	Signficant increase in plasma glucose	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	5	No histological or marked pathological effects on gills	
Salmon (Sockeye)	Α	508	96.00	6	Sediment particles observed between gill lamellae	Servizi & Martens (1987)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior improved (2 days, control 7 days)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior normal, but fewer test fish returned (20%, control 65%)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior impaired and delayed (3 days, control 2 days)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior normal, more test fish returned (70%, control 45%)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior improved (2 days, control 3 days)	Whitman et al. (1982)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chinook)	Α	650	168.00	7	Homing behavior normal, more test fish returned (75%, control 61%)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted (80% home water, 20% city water)	Whitman et al. (1982)
salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted (45% home water ash, 55% city water)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted (89% home water w/ash, 11% city water w/ash)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted	Whitman et al. (1982)
almon (Chinook)	Α	650	168.00	7	Homing behavior normal, but fewer test fish returned	Whitman et al. (1982)
rout (Rainbow)	Α	20	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
rout (Rainbow)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
rayling (Arctic)	Α	20	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Grayling (Arctic)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
/hite (Round)	Α	20	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Vhite (Round)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
rout (Rainbow)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ut (Rainbow)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ling (Arctic)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ling (Arctic)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ite (Round)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ite (Round)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ut (Rainbow)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
ayling (Arctic)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
lmon (Coho)	Α	1600	96.00	10	Some fish died	Stober et al. (1981)
mon (Coho)	Α	1600	144.00	10	Some fish died	Stober et al. (1981)
non (Coho)	Α	1600	192.00	10	Some fish died	Stober et al. (1981)
mon (Coho)	Α	1429	48.00	10	Some fish died	Stober et al. (1981)
mon (Chinook)	Α	1429	48.00	10	Some fish died	Stober et al. (1981)
mon eelhead)	Α	1429	48.00	10	Some fish died	Stober et al. (1981)
almon (Coho)	Α	1429	216.00	10	One fish died	Stober et al. (1981)
out (Lake)	Α	3	21.00	3	Fish avoided turbid areas	Swenson (1978)
out (Brown)	Α	4700	305.00	11	40% population reduction	Crosa et al. (2010)
out (Brown)	Α	4700	305.00	10	15% biomass reduction	Crosa et al. (2010)
ut (Brown)	Α	4700	305.00	12	40% population reduction	Crosa et al. (2010)
ut (Brown)	Α	4700	305.00	13	66% biomass reduction	Crosa et al. (2010)
ut (Brown)	Α	3000	283.00	11	36% population reduction	Crosa et al. (2010)
ut (Brown)	Α	3000	283.00	12	50% population reduction	Crosa et al. (2010)
out (Cutthroat)	Α	31	42.00	4	Feeding rate (on Chum salmon) decreased 19% (NTU)	Gregory & Levings (1996)
rout (Cutthroat)	Α	57	162.00	4	Feeding rate (on Chinook salmon) decreased 41% (NTU)	Gregory & Levings (1996)
Frout (Cutthroat)	Α	29	42.00	4	Feeding rate (on Sockeye salmon) decreased 41% (NTU)	Gregory & Levings (1996)
rout (Rainbow)	Α	30	1176.00	0	No observable effect	Water Research Center (1961)
rout (Rainbow)	Α	30	1176.00	0	No observable effect	Water Research Center (1961)

		Sediment	dose		Fish Response	_
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	Α	90	1176.00	10	Some fish died	Water Research Center (1961)
Trout (Rainbow)	Α	90	1176.00	10	Some fish died	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	12	Mortality rate 50%	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	12	Mortality rate 50%	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	8	Epithelial cells thickened	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	8	Epithelial cells thickened	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	8	Lamellae fused in gills	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	8	Lamellae fused in gills	Water Research Center (1961)
Frout (Rainbow)	Α	270	1176.00	8	Fin-rot occurred in some fish	Water Research Center (1961)
rout (Rainbow)	Α	270	1176.00	8	Fin-rot occurred in some fish	Water Research Center (1961)
rout (Brown)	Α	0	744.00	0	Population density 20/1000 ft^3	Water Research Center (1961)
rout (Brown)	Α	60	744.00	0	Population density 20/1000 ft^3	Water Research Center (1961)
rout (Brown)	Α	1000	744.00	9	Population reduced 1/3	Water Research Center (1961)
rout (Brown)	Α	6000	744.00	9	Population reduced 1/20	Water Research Center (1961)
rout (Rainbow)	Α	8	1.00	0	No behavioral effects	Barrett et al. (1992)
rout (Rainbow)	Α	45	1.00	4	Reactive distance decreased 35%	Barrett et al. (1992)
rout (Rainbow)	Α	97	1.00	4	Reactive distance decreased 55%	Barrett et al. (1992)
rout (Brook)	Α	8	24.00	0	No change in home water preference	DeVore et al. (1980)
rout (Brook)	Α	41	24.00	0	No change in home water preference	DeVore et al. (1980)
iteelhead	Α	75	168.00	7	Reduced quality of rearing habitat	Slaney et al. (1977b)
rout (Rainbow)	Α	75	168.00	7	Reduced quality of rearing habitat	Slaney et al. (1977b)
rout (Rainbow)	Α	59	2232.00	10	Habitat damage; reduced porosity of gravel	Slaney et al. (1977b)
ialmon	Α	16	24.00	4	Feeding behavior apparently reduced	Townsend (1983), Ott (1984)
Salmon (Atlantic)	Α	2500	24.00	10	Increased risk of predation	Gibson (1933)
rout	Α	16	24.00	4	Feeding behavior apparently reduced	Townsend (1983), Ott (1984)
rout (Cutthroat)	Α	35	2.00	4	Feeding ceased; fish sought cover	Cordone & Kelly (1961)
rout (Rainbow)	Α	17500	168.00	8	Fish survived; gill epithelium proliferated and thickened	Slanina (1962)
Salmon	Α	25	4.00	4	Feeding activity reduced	Phillips (1970)
Grayling (Arctic)	Α	31	0.02	3	Fish avoided turbid water	Suchanek et al. (1984a, 1984b)
rout (Rainbow)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior)	Suchanek et al. (1984a, 1984b)
Frout (Rainbow)	Α	30	600.00	3	Modified feeding behaviour	Becke et al. (2017, data pulled from Courtice et al. (2022))
rout (Brown)	Α	300	1104.00	10	Density drop average 5%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	Α	300	1272.00	12	Density drop average 60%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	Α	800	960.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	Α	4700	312.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	Α	3000	288.00	10	Density drop average 20%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	Α	3500	312.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
rout (Brown)	Α	4000	312.00	10	Density drop average 5%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	A	2600	72.00	12	Density drop average 45%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Lahontan Cutthroat)	A	138	24.00	4	75% reduction in feeding	Vinyard & Yuan (1996)
Frout (Lahontan Cutthroat)	A	107	24.00	4	55% reduction in feeding	Vinyard & Yuan (1996)
Whitefish (Mountain)	А	4034	120.00	8	Decreased blood hematocrit levels	Bergstedt & Bergersen (1996)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Vhitefish Mountain)	Α	4034	120.00	8	Decrease blood leucocrit levels	Bergstedt & Bergersen (1996)
Whitefish Mountain)	Α	4034	120.00	8	Decrease plasma protein levels	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	8	Abnormal gill, pseudobranch and fin histology observed	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	8	Decreased body condition (less mesenteric fat)	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	0	No effect to spleen, hindgut, kidney, liver or bile	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	9	Decreased CPUE	Bergstedt & Bergersen (1996)
rout (Rainbow)	Α	4034	120.00	9	Decreased CPUE	Bergstedt & Bergersen (1996)
rout (Brown)	Α	4034	120.00	9	Decreased CPUE	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	8	Decrease in Fulton's Condition Index	Bergstedt & Bergersen (1996)
rout (Rainbow)	Α	4034	120.00	8	Decrease in Fulton's Condition Index	Bergstedt & Bergersen (1996)
rout (Brown)	Α	4034	120.00	8	Decrease in Fulton's Condition Index	Bergstedt & Bergersen (1996)
rout (Rainbow)	Α	300	192.00	4	Behavioural effects with increased energy expenditure	Michel et al. (2013)
rout (Rainbow)	Α	300	576.00	6	Long-term survivability issues due to general stress.	Michel et al. (2013)
rout (Rainbow)	Α	1300	192.00	4	Behavioural effects with increased energy expenditure	Michel et al. (2013)
rout (Rainbow)	Α	1300	576.00	6	Long-term survivability issues due to general stress.	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	4	Behavioural effects with increased energy expenditure	Michel et al. (2013)
rout (Rainbow)	Α	5000	576.00	6	Long-term survivability issues due to general stress.	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	Slight decrease in growth	Michel et al. (2013)
rout (Rainbow)	Α	300	576.00	8	Slight decrease in body condition	Michel et al. (2013)
rout (Rainbow)	Α	1300	576.00	8	Slight decrease in body condition	Michel et al. (2013)
rout (Rainbow)	Α	5000	576.00	8	Slight decrease in body condition	Michel et al. (2013)
rout (Rainbow)	Α	300	192.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	1300	192.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	A	300	576.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	A	1300	576.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	A	5000	576.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	A	5000	192.00	8	Slight decrease in body weight	Michel et al. (2013)
rout (Rainbow)	A	300	192.00	8	Decreased growth rate	Michel et al. (2013)
rout (Rainbow)	A	1300	192.00	8	75% reduction in growth rate	Michel et al. (2013)
rout (Rainbow)	A	5000	192.00	8	75% reduction in growth rate	Michel et al. (2013)
rout (Rainbow) rout (Rainbow)	A	300 1300	192.00 192.00	8	Decrease in spleen-spmatic index	Michel et al. (2013) Michel et al. (2013)
out (Rainbow)	A	5000	192.00	8	Decrease in spleen-spmatic index	
	Α Δ	300	576.00		Decrease in spleen-spmatic index	Michel et al. (2013)
rout (Rainbow) rout (Rainbow)	A A	1300	576.00	8 8	No change in growth rate No change in growth rate	Michel et al. (2013) Michel et al. (2013)
rout (Rainbow)	A	5000	576.00	8	No change in growth rate	Michel et al. (2013)
rout (Rainbow)	A	5000	576.00	8	Increase in spleen-somatic index	Michel et al. (2013)
rout (Rainbow)	A	300	192.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)
rout (Rainbow)	A	1300	192.00	8	Signficant increase in immature erythrocyte	Michel et al. (2013)
rout (Rainbow)	A	5000	192.00	8	Signficant increase in immature erythrocyte	Michel et al. (2013)
rout (Rainbow)	A	300	576.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Trout (Rainbow)	Α	1300	576.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)	
Trout (Rainbow)	Α	5000	576.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)	
Trout (Rainbow)	Α	5000	576.00	8	Increase in spleen granular macrophages	Michel et al. (2013)	
Trout (Rainbow)	Α	5000	192.00	8	Increase in spleen granular macrophages	Michel et al. (2013)	
Trout (Rainbow)	Α	5000	576.00	8	Evidence of kidney damage	Michel et al. (2013)	
Trout (Rainbow)	Α	5000	192.00	8	Evidence of kidney damage	Michel et al. (2013)	
Trout (Rainbow)	Α	115	30.00	6	Physiological responses, no mortality.	Reid et al. (2003)	
Trout (Rainbow)	Α	297	30.00	5	Increased respiration rates	Reid et al. (2003)	
Trout (Rainbow)	Α	297	30.00	8	Slight increase in hematocrit levels	Reid et al. (2003)	
Trout (Rainbow)	Α	297	30.00	8	Decreased leucocrit levels	Reid et al. (2003)	
Trout (Rainbow)	Α	115	30.00	5	Increased respiration rates	Reid et al. (2003)	
Trout (Rainbow)	Α	115	30.00	8	Slight increased in hematocrit levels	Reid et al. (2003)	
Trout (Rainbow)	Α	115	30.00	8	Increased leucocrit levels	Reid et al. (2003)	

Juvenile salmonids (freshwater, groups 1 and 3)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	J	54.00	12.00	3	Change in territorial behavior and hierarchy dominance	Berg & Northcote (1985)
Salmon (Coho)	J	54.00	12.00	6	Increased physiological stress (gill flaring)	Berg & Northcote (1985)
Salmon (Coho)	J	28.00	12.00	3	Abandonded cover, change in territorial behavior	Berg & Northcote (1985)
Salmon (Coho)	J	20.00	12.00	0	No change in behavior	Berg & Northcote (1985)
Salmon (Coho)	J	30.00	12.00	6	Increased physiological stress (gill flaring)	Berg & Northcote (1985)
Salmon (Coho)	J	60.00	12.00	6	Increased physiological stress (gill flaring)	Berg & Northcote (1985)
Salmon (Coho)	J	60.00	12.00	4	Reduction in prey capture success - 16.3% capture	Berg & Northcote (1985)
Salmon (Coho)	J	30.00	12.00	4	Reduction in prey capture success - 10.8% capture	Berg & Northcote (1985)
Salmon (Coho)	J	20.00	12.00	4	Reduction in prey capture success - 16.2% capture	Berg & Northcote (1985)
salmon (Coho)	J	60.00	12.00	4	Dominance structure change alter feeding behavior	Berg & Northcote (1985)
Salmon (Coho)	J	30.00	12.00	4	Dominance structure change alter feeding behavior	Berg & Northcote (1985)
Salmon (Coho)	J	54.00	0.02	1	Alarm reaction	Berg (1983)
almon (Coho)	J	20.00	0.02	0	No reaction	Berg (1983)
almon (Coho)	J	30.00	0.02	2	Dominance structure change, no alarm reaction	Berg (1983)
Salmon (Coho)	J	60.00	0.02	2	Dominance structure change, no alarm reaction	Berg (1983)
Salmon (Coho)	J	60.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	J	30.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	J	20.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	J	27.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Trout (Rainbow)	J	171.00	96.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Frout (Rainbow)	J	1017.00	96.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	96.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	171.00	192.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	1017.00	192.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	4887.00	192.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Frout (Rainbow)	J	171.00	384.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Frout (Rainbow)	J	1017.00	384.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	384.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	171.00	768.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	1017.00	768.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	4887.00	768.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)

		Sediment	dose		Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Trout (Rainbow)	J	171.00	1536.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)	
Trout (Rainbow)	J	1017.00	1536.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	1536.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	384.00	8	Hyperplasia of gill tissue	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	768.00	8	Hyperplasia of gill tissue	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	384.00	8	Parasitic infection of gill	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	768.00	8	Parasitic infection of gill	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	1008.00	10	Mortality rate 13.6%	Goldes et al. (1988)	
Trout (Rainbow)	J	36.00	1536.00	10	Mortality rate 2.5%	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	384.00	8	Increased lamellae thickness	Goldes et al. (1988)	
Trout (Rainbow)	J	4887.00	768.00	8	Increased lamellae thickness	Goldes et al. (1988)	
Salmon (Chinook)	J	207000.00	1.00	14	100% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)	
Salmon (Chinook)	J	82400.00	6.00	12	60% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)	
Salmon (Chinook)	J	39300.00	24.00	10	No mortality (VA, <5-100um; median <15 um)	Newcombe & Flagg (1983)	
Salmon (Chinook)	J	34900.00	36.00	14	90% mortality (VA)	Newcombe & Flagg (1983)	
Salmon (Chinook)	J	500.00	36.00	10	No mortality (VA, <5-100um; median <15 um)	Newcombe & Flagg (1983)	
Salmon (Chinook)	J	1400.00	36.00	12	50% mortality	Newcombe & Flagg (1983)	
Salmon (Chinook)	J	9400.00	36.00	12	50% mortality	Newcombe & Flagg (1983)	
Salmon (Sockeye)	J	34900.00	36.00	14	90% mortality (VA)	Newcombe & Flagg (1983)	
Salmon (Sockeye)	J	207000.00	1.00	14	100% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)	
Salmon (Sockeye)	J	82400.00	6.00	12	60% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)	
Salmon (Sockeye)	J	39300.00	24.00	10	No mortality (VA, <5-100um; median <15 um)	Newcombe & Flagg (1983)	
Steelhead	J	2000.00	48.00	10	No mortality (VA)	Redding & Schreck (1982)	
Steelhead	J	3000.00	48.00	10	No mortality (VA)	Redding & Schreck (1982)	
Steelhead	J	500.00	48.00	10	No mortality (VA)	Redding & Schreck (1982)	
Steelhead	J	2000.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)	
Steelhead	J	3000.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)	
Steelhead	J	500.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)	
Steelhead	J	2000.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)	
Steelhead	J	3000.00	48.00	10	No mortality	Redding & Schreck (1982)	
Steelhead	J	500.00	48.00	10	No mortality	Redding & Schreck (1982)	
Steelhead	J	2000.00	48.00	9	Signficant increase in plasma corticosteroids (VA)		
Steelhead	J				•	Redding & Schreck (1982)	
	J	3000.00	48.00	9	Significant increase in plasma corticosteroids (VA)	Redding & Schreck (1982)	
Steelhead	J	500.00 2000.00	48.00	9	Significant increase in plasma corticosteroids (VA)	Redding & Schreck (1982)	
Steelhead	J		48.00	-	Significant increase in plasma corticosteroids (KC)	Redding & Schreck (1982)	
Steelhead	J	3000.00	48.00	9	Signficant increase in plasma corticosteroids (KC)	Redding & Schreck (1982)	
Steelhead	J	500.00	48.00	9	Signficant increase in plasma corticosteroids (KC)	Redding & Schreck (1982)	
Steelhead	J	2000.00	48.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)	
Steelhead	J	3000.00	48.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)	
Steelhead	J	500.00	48.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)	
Steelhead	J	3000.00	3.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)	
Steelhead	J	3000.00	9.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)	
Steelhead	J	2000.00	9.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)	
Steelhead	J	3000.00	9.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)	
Steelhead	J	500.00	9.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)	
Steelhead	J	2000.00	9.00	8	Increase in blood hematocrit levels (KC)	Redding & Schreck (1982)	
Steelhead	J	3000.00	9.00	8	Increase in blood hematocrit levels (KC)	Redding & Schreck (1982)	
Steelhead	J	500.00	9.00	8	Increase in blood hematocrit levels (KC)	Redding & Schreck (1982)	
Steelhead	J	2000.00	9.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	3000.00	9.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	500.00	9.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	2000.00	24.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)	

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Steelhead	J	3000.00	24.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)
Steelhead	J	500.00	24.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)
Steelhead	J	2000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
Steelhead	J	3000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
teelhead	J	500.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
teelhead	J	2000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
iteelhead	J	3000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
Steelhead	J	500.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
Steelhead	J	2000.00	48.00	5	No effect on plasma sodium concentration (VA)	Redding & Schreck (1982)
teelhead	J	3000.00	48.00	5	No effect on plasma sodium concentration (VA)	Redding & Schreck (1982)
teelhead	J	500.00	48.00	5	No effect on plasma sodium concentration (VA)	Redding & Schreck (1982)
teelhead	J	2000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)
teelhead	J	3000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)
teelhead	J	500.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)
teelhead	J	2000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)
teelhead	J	3000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)
teelhead	J	500.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)
teelhead	J	2000.00	48.00	5	No histological effect on gill tissue (VA)	Redding & Schreck (1982)
teelhead	J	3000.00	48.00	5	No histological effect on gill tissue (VA)	Redding & Schreck (1982)
teelhead	J	500.00	48.00	5		
teelhead	J	2000.00		5	No histological effect on gill tissue (VA)	Redding & Schreck (1982)
			48.00		No histological effect on gill tissue (KC)	Redding & Schreck (1982)
eelhead	J	3000.00	48.00	5	No histological effect on gill tissue (KC)	Redding & Schreck (1982)
teelhead	J	500.00	48.00	5	No histological effect on gill tissue (KC)	Redding & Schreck (1982)
teelhead	J	2000.00	48.00	5	No histological effect on gill tissue	Redding & Schreck (1982)
eelhead	J	3000.00	48.00	5	No histological effect on gill tissue	Redding & Schreck (1982)
teelhead	J	500.00	48.00	5	No histological effect on gill tissue	Redding & Schreck (1982)
teelhead	J	500.00	3.00	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)
teelhead	J	500.00	9.00	8	Blood cell count and blood chemistry change	Redding & Schreck (1982)
teelhead	J	500.00	3.00	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)
teelhead	J	500.00	3.00	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)
rayling (Arctic)	J	100.00	24.00	0	Healthy population, all age classes	Knapp (unpublished, cited by Birwell et al. (1984))
rout (Brown)	J	100.00	720.00	11	Population reduced	Scullion & Edwards (1980)
rout (Brown)	J	100.00	720.00	8	Low condition factor	Scullion & Edwards (1980)
rout (Brown)	J	110.00	720.00	8	Switched to primarily terrestrial invertebrate diet (97% diet)	Scullion & Edwards (1980)
almon (Chinook)	J	165.00	720.00	9	Decreased density	Scrivener et al. (1994)
almon (Chinook)	J	165.00	720.00	3	Fish emigrated to lower turbidity tributary	Scrivener et al. (1994)
almon (Chinook)	J	152.00	720.00	3	Fish emigrated to lower turbidity tributary	Scrivener et al. (1994)
almon (Coho)	J	835.00	4.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	703.00	8.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	633.00	6.50	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	1110.00	6.00	0	No significant change in avoidance behavior	Noggle (1978)
out (Steelhead)	J	1558.00	5.50	0	No significant change in avoidance behavior	Noggle (1978)
rout (Steelhead)	J	382.00	10.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	865.00	6.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	1888.00	5.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	192.00	7.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	197.00	3.00	0	No significant change in avoidance behavior	Noggle (1978)
almon (Coho)	J	2500.00	1.00	3	Fish favored turbid water	Noggle (1978)
almon (Coho)	J	8000.00	1.00	3	Avoidance behavior	Noggle (1978)
almon (Coho)	J	8000.00	1.00	5	Coughing rate increased	Noggle (1978)

Species Life stages* Exposure Concern (ng/L) Exposure Outstand (ng/L) SEM Description* Reference Salmon (Coho) J 498-00 4.00 6 Feeding ceased Noggle (1978) Salmon (Coho) J 400.00 4.00 6 Feeding ceased Noggle (1978) Salmon (Coho) J 115.00 4.00 4 Feeding rate decreased to 55% of maximum Noggle (1978) Salmon (Coho) J 256.00 4.00 6 Feeding rate decreased to 55% of maximum Noggle (1978) Salmon (Coho) J 4420.00 36.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1420.00 36.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 36.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 36.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 36.00 12 Mortality rate			Sediment	dose		Fish Response	
Salmon (Coho) J 404,00 4,00 6 Feeding reased Noggle (1978) Salmon (Coho) J 25,00 1,00 4 Feeding rate decreased Noggle (1978) Salmon (Coho) J 256,00 4,00 4 Feeding rate decreased to 55% of maximum Noggle (1978) Salmon (Coho) J 256,00 4,00 4 Feeding rate decreased to 55% of maximum Noggle (1978) Salmon (Coho) J 4270,00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1380,00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1380,00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500,00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500,00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 22550,00 96.00 8 Hematocrit values increased (41.3%, co	ecies				SEV ^b	Description ^c	Reference
Salmon (Coho)	lmon (Coho)	J	984.00	4.00	6	Feeding ceased	Noggle (1978)
Salmon (Coho)	lmon (Coho)	J	404.00	4.00	6	Feeding ceased	Noggle (1978)
Salmon (Coho)	lmon (Coho)	J	25.00	1.00	4	Feeding rate decreased	Noggle (1978)
Salmon (Coho) J 300.00 4.00 6 Feeding ceased Noggle (1978) Salmon (Coho) J 4420.00 95.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1927.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 195.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 195.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 195.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 8 Hematocrit values decreased (41.3%, control Apogle (1978) A2.0%) A2.0%	lmon (Coho)	J	116.00	4.00	4	Feeding rate decreased to 55% of maximum	Noggle (1978)
Salmon (Coho) J 4420.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 2586.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1927.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1900.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 3 Hematocrit values decreased (41.3%, control Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Hematocrit values increased (42.7%, control Noggle (1978) Salmon (Coho) J 31500.00 96.00 3 Hematocrit values increased (45.0%, control Noggle (1978) Salmon (Coho) J 31500.00 96.00 3 Hematocrit values increased (45.0%, control Noggle (1978) Salmon (Coho) J 31500.00 96.00 3 Hematocrit values increased (45.0%, control Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Plasma glucose decreased (71.8 mg/100mL, Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Plasma glucose increased (78.7 mg/100mL, Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Plasma glucose increased (79.0 mg/100mL, Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Plasma glucose increased (79.0 mg/100mL, Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Minor gill damage Noggle (1978) Salmon (Coho) J 22750.00 96.00 3 Minor gill damage Noggle (1978) Salmon (Coho) J 2466.00 72.00 14 Flsh died Noggle (1978) Noggle (1978) Salmon (Coho) J 4266.00 72.00 14 Flsh died Noggle (1978) Noggle (1978) Noggle (1978) Salmon (Coho) J 1547.00 46.00 72.00 18 Minor gill	lmon (Coho)	J	256.00	4.00	4	Feeding rate decreased to 9% of maximum	Noggle (1978)
Salmon (Chinook)	lmon (Coho)	J	300.00	4.00	6	Feeding ceased	Noggle (1978)
Salmon (Coho) J 1927.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1198.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 12250.00 96.00 8 Hematocrit values decreased (41.3%, control Noggle (1978) 42.0%) Salmon (Coho) J 22750.00 96.00 8 Hematocrit values increased (42.7%, control Noggle (1978) 42.0%) Salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) 42.0%) Salmon (Coho) J 3500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) 42.0%) Salmon (Coho) J 3500.00 96.00 8 Plasma glucose decreased (71.8 mg/100mL, control 7.6 mg/100mL) Noggle (1978) Salmon (Coho) J 22750.00 96.00 8 Plasma glucose increased (72.8 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 22750.00 96.00 8 Plasma glucose increased (97.0 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 31500.00 96.00 8 Plasma glucose increased (97.0 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 4266.00 72.00 8 Major gill damage Noggle (1978) Noggl	lmon (Coho)	J	4420.00	96.00	12	Mortality rate 50%	Noggle (1978)
Salmon (Coho) J 1198.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 15000.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 35000.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 3500.00 96.00 8 Hematocrit values decreased (41.3%, control Noggle (1978) salmon (Coho) J 12250.00 96.00 8 Hematocrit values increased (42.7%, control Noggle (1978) salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) salmon (Coho) J 22750.00 96.00 8 Hematocrit values increased (47.6%, control Noggle (1978) control 77.6 mg/100mL) Noggle (1978) salmon (Coho) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) salmon (Chinook) J 4	lmon (Chinook)	J	2586.00	96.00	12	Mortality rate 50%	Noggle (1978)
Salmon (Coho) J 1500.00 96.00 12 Mortality rate 50% Noggle (1978) solmon (Coho) J 15000.00 96.00 12 Mortality rate 50% Noggle (1978) solmon (Coho) J 15000.00 96.00 12 Mortality rate 50% Noggle (1978) solmon (Coho) J 35000.00 96.00 12 Mortality rate 50% Noggle (1978) solmon (Coho) J 10233.00 96.00 12 Mortality rate 50% Noggle (1978) solmon (Coho) J 10233.00 96.00 8 Hematocrit values decreased (41.3%, control Noggle (1978) solmon (Coho) J 12250.00 96.00 8 Hematocrit values increased (42.7%, control Noggle (1978) 42.0%) solmon (Coho) J 22750.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) 42.0%) solmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) 42.0%) solmon (Coho) J 3500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) 42.0%) solmon (Coho) J 3500.00 96.00 8 Plasma glucose decreased (71.8 mg/100mL, Noggle (1978) 42.0%) solmon (Coho) J 12250.00 96.00 8 Plasma glucose decreased (71.8 mg/100mL, Noggle (1978) control 7.6 mg/100mL) Noggle (1978) No	lmon (Coho)	J	1927.00	96.00	12	Mortality rate 50%	Noggle (1978)
Salmon (Coho) J 15000.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 35000.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 12250.00 96.00 8 Hematocrit values increased (41.3%, control Noggle (1978) 42.0%) Salmon (Coho) J 12250.00 96.00 8 Hematocrit values increased (42.7%, control Noggle (1978) 42.0%) Salmon (Coho) J 3500.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) 42.0%) Noggle (1978) 42.0%) Noggle (1978) 42.0% Noggle (1978) Noggle (1978	lmon (Coho)	J	1198.00	96.00	12	Mortality rate 50%	Noggle (1978)
Salmon (Coho J 3500.00 96.00 12 Mortality rate 50% Noggle (1978) Frout (Steelhead) J 10733.00 96.00 12 Mortality rate 50% Noggle (1978) Salmon (Coho) J 3500.00 96.00 8 Hematocrit values decreased (41.3%, control Noggle (1978) A2.0%) Salmon (Coho) J 12250.00 96.00 8 Hematocrit values increased (42.7%, control Noggle (1978) A2.0%) A2.0%	lmon (Coho)	J	1500.00	96.00	12	Mortality rate 50%	Noggle (1978)
Frout (Steelhead) J 10233.00 96.00 12 Mortality rate 50% Noggle (1978) salmon (Coho) J 3500.00 96.00 8 Hematocrit values decreased (41.3%, control Noggle (1978) 42.0%) salmon (Coho) J 12250.00 96.00 8 Hematocrit values increased (42.7%, control Noggle (1978) 42.0%) salmon (Coho) J 22750.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) 42.0%) salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) 42.0%) salmon (Coho) J 3500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) 42.0%) salmon (Coho) J 3500.00 96.00 8 Plasma glucose decreased (71.8 mg/100mL, Noggle (1978) control 77.6 mg/100mL) Noggle (1978) Noggle (1978) Noggle (1978) control 77.6 mg/100mL) Noggle (1978) control 77.6 mg/100mL) Noggle (1978) Noggle (19	lmon (Coho)	J	15000.00	96.00	12	Mortality rate 50%	Noggle (1978)
Salmon (Coho) J 3500.00 96.00 8 Hematorrit values decreased (41.3%, control A2.0%) Noggle (1978) Salmon (Coho) J 12250.00 96.00 8 Hematorrit values increased (42.7%, control A2.0%) Noggle (1978) Salmon (Coho) J 22750.00 96.00 8 Hematorrit values increased (45.0%, control A2.0%) Noggle (1978) Salmon (Coho) J 31500.00 96.00 8 Hematorrit values increased (43.0%, control A2.0%) Noggle (1978) Salmon (Coho) J 3500.00 96.00 8 Plasma glucose decreased (71.8 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 12250.00 96.00 8 Plasma glucose increased (78.7 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 31500.00 96.00 8 Plasma glucose increased (97.0 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Choho) J 12936.00 96.00 8 Minor gill damage Noggle (1978) Salmon (Chinook) J 4266.00 72.00 8 Major gill	lmon (Coho)	J	35000.00	96.00	12	Mortality rate 50%	Noggle (1978)
	out (Steelhead)	J	10233.00	96.00	12	Mortality rate 50%	Noggle (1978)
Salmon (Coho) J 22750.00 96.00 8 Hematocrit values increased (45.0%, control Noggle (1978) 42.0%)	lmon (Coho)	J	3500.00	96.00	8		Noggle (1978)
Salmon (Coho) J 31500.00 96.00 8 Hematocrit values increased (43.0%, control Noggle (1978) 42.0%) 4266.00 8 Plasma glucose decreased (71.8 mg/100mL) Noggle (1978) 4266.00 72.00 8 Plasma glucose increased (78.7 mg/100mL) Noggle (1978) 63mon (Coho) J 12936.00 96.00 8 Plasma glucose increased (97.0 mg/100mL) Noggle (1978) 63mon (Coho) J 31500.00 96.00 8 Plasma glucose increased (97.0 mg/100mL) Noggle (1978) 63mon (Coho) J 31500.00 96.00 8 Plasma glucose increased (97.0 mg/100mL) Noggle (1978) 63mon (Coho) J 12936.00 96.00 8 Plasma glucose increased (97.0 mg/100mL) Noggle (1978) 63mon (Coho) J 4266.00 96.00 8 Minor gill damage Noggle (1978) 63mon (Chinook) J 4266.00 72.00 8 Major gill damage Noggle (1978) 63mon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) 63mon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) 63mon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) 63mon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) 63mon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Gill damage Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) 63mon (Coho) J 1547.00 96.00 8 Minor gill damage Noggle (1978) 63mon (Coho) J 1547.00 96.00 8 Branchial necrosis Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Branchial necrosis Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Branchial necrosis Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Branchial necrosis Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) 63mon (Coho) J 1547.00 46.00 8 Focal l	lmon (Coho)	J	12250.00	96.00	8		Noggle (1978)
Salmon (Coho) J 3500.00 96.00 8 Plasma glucose decreased (71.8 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 12250.00 96.00 8 Plasma glucose increased (78.7 mg/100mL) Noggle (1978) Noggle (19	lmon (Coho)	J	22750.00	96.00	8	•	Noggle (1978)
Salmon (Coho) J 12250.00 96.00 8 Plasma glucose increased (78.7 mg/100mL, control 77.6 mg/100mL) Noggle (1978) Salmon (Coho) J 22750.00 96.00 8 Plasma glucose increased (97.0 mg/100mL) Noggle (1978) Salmon (Coho) J 22750.00 96.00 8 Plasma glucose increased (99.9 mg/100mL) Noggle (1978) Salmon (Coho) J 12936.00 96.00 8 Minor gill damage Noggle (1978) Grout (Steelhead) J 12936.00 96.00 8 Major gill damage Noggle (1978) Frout (Steelhead) J 4266.00 72.00 8 Major gill damage Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Mortality rate 92% Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Mortality rate 92% Noggle (1978) Salmon (Coho) J 1547.00 46.00	lmon (Coho)	J	31500.00	96.00	8		Noggle (1978)
talmon (Coho)	lmon (Coho)	J	3500.00	96.00	8		Noggle (1978)
control 77.6 mg/100mL) sialmon (Coho) J 31500.00 96.00 8 Plasma glucose increased (99.9 mg/100mL, control 77.6 mg/100mL) rorut (Steelhead) J 12936.00 96.00 8 Minor gill damage Noggle (1978) sialmon (Chinook) J 4266.00 72.00 8 Major gill damage Noggle (1978) sialmon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) sialmon (Chinook) J 4266.00 72.00 14 Mortality rate 92% Noggle (1978) sialmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) sialmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Gill damage Noggle (1978) sialmon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) sialmon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) sialmon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) sialmon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) sialmon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) sialmon (Coho) J 2936.00 96.00 5 No visible gill damage Noggle (1978) sialmon (Chinook) J 4266.00 72.00 8 Branchial necrosis, branchial aneurysm, branchial admorrhage present sialmon (Chinook) J 4266.00 96.00 72.00 8 Branchial necrosis Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Branchial necrosis Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Branchial necrosis Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) sialmon (Chinook) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) sialmon (Chinook) Noggle (1978) si	lmon (Coho)	J	12250.00	96.00	8		Noggle (1978)
Control T7.6 mg/100mL T7.6 m	lmon (Coho)	J	22750.00	96.00	8		Noggle (1978)
Grout (Steelhead) J 8430.00 96.00 8 Major gill damage Noggle (1978) Salmon (Chinook) J 4266.00 72.00 8 Major gill damage Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) Salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) Salmon (Coho) J 1547.00 46.00 8 Gill damage Noggle (1978) Salmon (Coho) J 1547.00 46.00 8 Gill damage Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Frout (Steelhead) J 12936.00 96.00 8 Minor gill damage Noggle (1978) Frout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Frout (S	lmon (Coho)	J	31500.00	96.00	8		Noggle (1978)
Salmon (Chinook) J 4266.00 72.00 8 Major gill damage Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Mortality rate 92% Noggle (1978) Salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 5346.00 96.00 8 Minor gill damage Noggle (1978) Grout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Grout (Steelhead) J 4266.00 72.00 8 Branchial necrosis, branchial aneurysm, branchial Noggle (1978) Salmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (19	out (Steelhead)	J	12936.00	96.00	8	Minor gill damage	Noggle (1978)
Salmon (Chinook) J 4266.00 72.00 14 Fish died Noggle (1978) Salmon (Chinook) J 4266.00 72.00 14 Mortality rate 92% Noggle (1978) Salmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 1547.00 46.00 8 Minor gill damage Noggle (1978) Scrayling (Arctic) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Scrayling (Arctic) J 4266.00 72.00 8 Branchial necrosis, branchial aneurysm, branchial a	out (Steelhead)	J	8430.00	96.00	8	Major gill damage	Noggle (1978)
Jalmon (Chinook) J 4266.00 72.00 14 Mortality rate 92% Noggle (1978) Jalmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) Jalmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Jalmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Jalmon (Coho) J 5346.00 96.00 8 Minor gill damage Noggle (1978) Jorout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Chinook) J 4266.00 96.00 8 Branchial necrosis Noggle (1978) Jalmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Jalmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978)	lmon (Chinook)	J	4266.00	72.00	8	Major gill damage	Noggle (1978)
Malmon (Chinook) J 4266.00 96.00 8 Minor gill damage Noggle (1978) Malmon (Coho) J 1547.00 46.00 8 Gill damage Noggle (1978) Malmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Malmon (Coho) J 5346.00 96.00 8 Minor gill damage Noggle (1978) Morout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Morout (Steelhead) J 8430.00 96.00 8 Branchial necrosis, branchial aneurysm, branchial demorrhage present Noggle (1978) Malmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Malmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Malmon (Coho) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) Malmon (Coho) J 1547.00 46.00 8 Focal	lmon (Chinook)	J	4266.00	72.00	14	Fish died	Noggle (1978)
Jalmon (Coho) J 1547.00 46.00 8 Gill damage Noggle (1978) Jalmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Jalmon (Coho) J 5346.00 96.00 8 Minor gill damage Noggle (1978) Jorout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Jorout (Steelhead) J 8430.00 96.00 8 Branchial necrosis, branchial aneurysm, branchial demorrhage present Noggle (1978) Jalmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Jalmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) Jalmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No vi	lmon (Chinook)	J	4266.00	72.00	14	Mortality rate 92%	Noggle (1978)
Salmon (Coho) J 1547.00 46.00 14 Fish died Noggle (1978) Salmon (Coho) J 5346.00 96.00 8 Minor gill damage Noggle (1978) Frout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Frout (Steelhead) J 8430.00 96.00 8 Branchial necrosis, branchial aneurysm, branchial demorrhage present Noggle (1978) Salmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Salmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Salmon (Coho) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) Salmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Salmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Salmon (Coho) J 5346.00 96.00 5	lmon (Chinook)	J	4266.00	96.00	8	Minor gill damage	Noggle (1978)
Salmon (Coho) J 5346.00 96.00 8 Minor gill damage Noggle (1978) Grout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Grout (Steelhead) J 8430.00 96.00 8 Branchial necrosis, branchial aneurysm, branchial demorrhage present Noggle (1978) Galmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Galmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Galmon (Coho) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) Galmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Galmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Grayling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Grayling (Arctic) J 50.00 96	lmon (Coho)	J	1547.00	46.00	8	Gill damage	Noggle (1978)
Grout (Steelhead) J 12936.00 96.00 5 No visible gill damage Noggle (1978) Grout (Steelhead) J 8430.00 96.00 8 Branchial necrosis, branchial aneurysm, branchial demorrhage present Noggle (1978) Galmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Galmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Galmon (Coho) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) Galmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Galmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Grayling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Grayling (Arctic) J 500.00 96.00 10 Mortality rate 0.6% Scannell (1988) Grayling (Arctic) J 500.00	lmon (Coho)	J	1547.00	46.00	14	Fish died	Noggle (1978)
Frout (Steelhead) J 8430.00 96.00 8 Branchial necrosis, branchial aneurysm, branchial demorrhage present Noggle (1978) Jalmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Jalmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Jalmon (Coho) J 86.00 0.67 3	lmon (Coho)	J	5346.00	96.00	8	Minor gill damage	Noggle (1978)
Stalmon (Chinook) J 4266.00 72.00 8 Branchial necrosis Noggle (1978) Stalmon (Chinook) J 4266.00 96.00 5 No visible gill damage Noggle (1978) Stalmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Stalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Stalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Staryling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Staryling (Arctic) J 25.00 96.00 10 Mortality rate 0.6% Scannell (1988) Staryling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)						Branchial necrosis, branchial aneurysm, branchial	
Jalmon (Coho) J 1547.00 46.00 8 Diffuse branchial edema present Noggle (1978) Jalmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Grayling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Grayling (Arctic) J 25.00 96.00 10 Mortality rate 0.6% Scannell (1988) Grayling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)	lmon (Chinook)	J	4266.00	72.00	8	• .	Noggle (1978)
Salmon (Coho) J 1547.00 46.00 8 Focal lamellar fused Noggle (1978) Salmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Grayling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Grayling (Arctic) J 25.00 96.00 10 Mortality rate 0.6% Scannell (1988) Grayling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)	lmon (Chinook)	J	4266.00	96.00	5	No visible gill damage	Noggle (1978)
Jalmon (Coho) J 5346.00 96.00 5 No visible gill damage Noggle (1978) Grayling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Grayling (Arctic) J 25.00 96.00 10 Mortality rate 0.6% Scannell (1988) Grayling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)	lmon (Coho)	J	1547.00	46.00	8	Diffuse branchial edema present	Noggle (1978)
Grayling (Arctic) J 86.00 0.67 3 78% of fish avoid turbid water (NTU > 20) Scannell (1988) Grayling (Arctic) J 25.00 96.00 10 Mortality rate 0.6% Scannell (1988) Grayling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)	lmon (Coho)	J	1547.00	46.00	8	Focal lamellar fused	Noggle (1978)
Grayling (Arctic) J 25.00 96.00 10 Mortality rate 0.6% Scannell (1988) Grayling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)	lmon (Coho)	J	5346.00	96.00	5	No visible gill damage	Noggle (1978)
Grayling (Arctic) J 500.00 96.00 10 No mortality Scannell (1988)	ayling (Arctic)	J	86.00	0.67	3	78% of fish avoid turbid water (NTU > 20)	Scannell (1988)
	ayling (Arctic)	J	25.00	96.00	10	Mortality rate 0.6%	Scannell (1988)
	ayling (Arctic)	J	500.00	96.00	10	No mortality	Scannell (1988)
Grayling (Arctic) J 375.00 96.00 10 Mortality rate 0.3% Scannell (1988)	ayling (Arctic)	J	375.00	96.00	10	Mortality rate 0.3%	Scannell (1988)
Grayling (Arctic) J 5.00 0.42 0 No behavioral effects Scannell (1988)		J					
Grayling (Arctic) J 23.00 0.42 3 38% preferred clear water Scannell (1988)							
Grayling (Arctic) J 69.00 0.42 3 88% preferred clear water Scannell (1988)							

		Sediment	dose		Fish Response	_
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	J	115.00	0.42	3	78% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	70.00	0.42	3	90% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	207.00	0.42	3	80% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	46.00	0.42	5	Gill flaring and displayed disturbance behavior	Scannell (1988)
Grayling (Arctic)	J	219.00	0.08	8	Significant reduction in reactive distance	Scannell (1988)
Grayling (Arctic)	J	7.00	0.08	4	11.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	4.00	0.08	4	23.6% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	8.00	0.08	4	23.8% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	8.00	0.08	4	36.3% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	5.00	0.08	4	41.7% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	7.00	0.08	4	47.8% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	3.00	0.08	4	48.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	5.00	0.08	4	48.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	18.00	0.08	4	49.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	24.00	0.08	4	49.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	2.00	0.08	5	62.1% decrease in reactive distance	Scannell (1988)
	J	8.00	0.08	5 5	62.1% decrease in reactive distance	• •
Grayling (Arctic)						Scannell (1988)
Grayling (Arctic)	J	19.00	0.08	5	61.7% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	25.00	0.08	5	61.7% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	58.00	0.08	5	61.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	88.00	0.08	5	61.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	96.00	0.08	5	62.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	121.00	0.08	5	61.7% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	96.00	0.08	4	49.6% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	4.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	27.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	56.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	68.00	0.08	5	74.6% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	88.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	120.00	0.08	5	75.0% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	27.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	50.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	56.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	69.00	0.08	5	86.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	80.00	0.08	5	87.5% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	88.00	0.08	5	86.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	121.00	0.08	5	87.1% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	143.00	0.08	5	87.0% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	149.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	169.00	0.08	5	87.5% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	183.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	78.00	0.08	5	93.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	149.00	0.08	5	93.8% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	79.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	143.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	150.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	168.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	184.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	219.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	32.00	0.08	4	27.23% decrease in reactive distance	Scannell (1988)
STUDYING (ATCLIC)						
Grayling (Arctic)	J	33.00	0.08	4	45.54% decrease in reactive distance	Scannell (1988)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	J	60.00	0.08	5	63.21% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	60.00	0.08	5	72.57% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	60.00	0.08	5	90.88% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	84.00	0.08	5	78.20% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	161.00	0.08	5	82.32% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	184.00	0.08	5	91.43% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	202.00	0.08	5	91.43% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	0.26	0.08	6	Significantly reduced reactive distance	Scannell (1988)
White (Round)	J	15.00	0.02	3	Fish significantly preferred turbid water (NTU)	Suchanek et al. (1984b)
Dolly Varden	J	4.00	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Grayling (Arctic)	J	30.00	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Γrout (Lake)	J	2.00	0.50	3	Fish avoided turbid areas	Swenson (1978)
rout (Lake)	J	2.00	1.50	3	Fish avoided turbid areas	Swenson (1978)
rout (Lake)	J	7.00	4.50	3	Fish avoided turbid areas	Swenson (1978)
rout (Lake)	J	14.00	2.50	3	Fish avoided turbid areas	Swenson (1978)
rout (Rainbow)	J	30.00	1656.00	10	No mortality	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	1656.00	10	Mortality rate 11%	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	1656.00	10	Mortality rate 13%	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	1656.00	10	Mortality rate 14%	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	3864.00	10	Mortality rate 13%	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	3888.00	12	Mortality rate 57%	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	1656.00	14	Mortality rate 98%	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	1536.00	14	Mortality rate 99%	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	2040.00	10	No mortality	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	2040.00	10	Mortality rate 10%	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	840.00	13	Mortality rate 75%	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	1728.00	13	Mortality rate 77%	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	960.00	10	Mortality rate 10%	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	504.00	12	Mortality rate 44%	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	960.00	14	Mortality rate 100%	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	1656.00	10	No mortality	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	1656.00	11	Mortality rate 21%	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	1656.00	13	Mortality rate 61%	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	1656.00	14	Mortality rate 87%	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	4440.00	10	Mortality rate 7%	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	4440.00	10	Mortality rate 12%	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	2472.00	12	Mortality rate 44%	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	4440.00	13	Mortality rate 50%	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	960.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	504.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	960.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	30.00	4440.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	90.00	4440.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	270.00	2472.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
rout (Rainbow)	J	810.00	4440.00	0	No significant difference in growth rates	Herbert & Merkens (1961)
	,	010.00	840.00	8	sanc anner ende in brown rates	Herbert & Merkens (1961)

		Sediment	dose		Fish Response	
		Sediment	uose		risii kespolise	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	J	810.00	1656.00	8	Gill epithelium cells thickened, lamellae fused	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	840.00	8	Gill epithelium cells thickened, lamellae fused	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	1728.00	8	Gill epithelium cells thickened, lamellae fused	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	1656.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	30.00	3600.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	90.00	3600.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	30.00	1440.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	888.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	1872.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2136.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2184.00	8	Gill tissue damaged	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2400.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2424.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2496.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	3384.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	3600.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	4104.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	4704.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	5880.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	6360.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	4104.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	4704.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	5880.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	6360.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	1368.00	8	Mild fin-rot present	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2904.00	8	Moderate fin-rot present	Herbert & Merkens (1961)
Trout (Brown)	J	4700.00	305.00	13	70% population reduction	Crosa et al. (2010)
Salmon (Chum)	J	40.00	0.80	4	Feeding activity reduced 43% (NTU)	DeRobertis et al. (2003)
Salmon (Chum)	J	31.00	42.00	0	Decreased vulnerability to predation (by 19%,	Gregory & Levings (1996)
					NTU)	
Salmon (Chinook)	J	57.00	162.00	0	Decreased vulnerability to predation (by 41%, NTU)	Gregory & Levings (1996)
Salmon (Sockeye)	J	29.00	42.00	0	Decreased vulnerability to predation (by 41%, NTU)	Gregory & Levings (1996)
Salmon (Chinook)	J	23.00	0.02	2	Predator response changed (NTU)	Gregory (1993)
Salmon (Chinook)	J	30000.00	48.00	3	62% of fish sought cover, direct behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	30% of fish sought cover, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	16% offish sought cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	31% of fish sought cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	1	19% of fish did not seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	1	20% of fish did not seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	2	3% of fish did not seek cover, stuporous behavior responses, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	2	19% of fish did not seek cover, stuporous behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish immediately sought cover, direct behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish immediately sought cover, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)

		Sediment	dose		Fish Response		
species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
almon (Chinook)	J	30000.00	48.00	3	Fish sought cover in 30 seconds, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish sought cover in 50 seconds, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	2	Fish did not seek cover, stuporous behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	2	Fish did not seek cover, stuporous behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish traveled 86 cm to seek cover, direct behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish traveled 86 cm to seek cover, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish traveled 138 cm to seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish traveled 164 cm to seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	0	Fish traveled 225 cm, did not seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	0	Fish traveled 323 cm, did not seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 3.98 bl/s, direct behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 3.20 bl/s, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 0.19 bl/s, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 0.21 bl/s, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover at 0.09 bl/s, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover at 0.19 bl/s, exploratory behavior response	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	3	Fish took less time to find cover (85.8 seconds, control 174.1 seconds)	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	5	Fish speed reduced (0.9 bl/s, control 2.6 bl/s)	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	5	Fish took more time to find cover (94.6 seconds, control 25.2 seconds)	Korstrom & Birtwell (2006)	
almon (Chinook)	J	30000.00	48.00	5	Fish speed reduced (1.5 bl/s, control 3.3 bl/s)	Korstrom & Birtwell (2006)	
almon (Atlantic)	J	20.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
almon (Atlantic)	J	40.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
almon (Atlantic)	J	60.00	2.50	2	Increase in foraging behavior (0.9 ,control 0.1)	Robertson et al. (2007)	
almon (Atlantic)	J	80.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
lmon (Atlantic)	J	120.00	2.50	2	Increase in foraging behavior (0.5 ,control 0.1)	Robertson et al. (2007)	
lmon (Atlantic)	J	180.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
lmon (Atlantic)	J	260.00	2.50	2	Increase in foraging behavior (0.8 ,control 0.1)	Robertson et al. (2007)	
lmon (Atlantic)	J	360.00	2.50	2	Increase in foraging behavior (0.4,control 0.1)	Robertson et al. (2007)	
almon (Atlantic)	J	460.00	2.50	0	No change in behavior or increase in foraging (0.1 ,control 0.1)	Robertson et al. (2007)	
almon (Atlantic)	J	20.00	2.50	2	Fish abandoned cover (0.3, control 0.4)	Robertson et al. (2007)	
almon (Atlantic)	J	40.00	2.50	2	Fish abandoned cover (0.3, control 0.4)	Robertson et al. (2007)	
almon (Atlantic)	J	60.00	2.50	2	Fish abandoned cover (0.2, control 0.4)	Robertson et al. (2007)	
almon (Atlantic)	J	80.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)	
almon (Atlantic)	J	120.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)	

		Sediment	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Atlantic)	J	180.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	3	Territorial behavior displayed, no difference from control (1.0, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	3	Territorial behavior displayed, no difference from control (1.0, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	3	Decrease in territorial behavior observed (0.9, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	3	Decrease in territorial behavior observed (0.7, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	3	Decrease in territorial behavior observed (0.8, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	3	Decrease in territorial behavior observed (0.3, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	3	Decrease in territorial behavior observed (0.4, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	3	Decrease in territorial behavior observed (0.3, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	3	Decrease in territorial behavior observed (0.2, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Increase in alarm reaction observed (0.1, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	2	Increase in alarm reaction observed (0.6, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	2	Increase in alarm reaction observed (0.9, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	2	Increase in foraging behavior (0.5,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	2	Increase in foraging behavior (0.8,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	2	Increase in foraging behavior (0.5,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	2	Increase in foraging behavior (0.4,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	2	Fish abandoned cover (0.5, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	2	Fish abandoned cover (0.5, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Fish abandoned cover (0.4, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	2	Fish abandoned cover (0.4, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	2	Fish abandoned cover (0.4, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	2	Fish abandoned cover (0.3, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	2	Fish abandoned cover (0.3, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	2	Fish abandoned cover (0.3, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	2	Fish abandoned cover (0.2, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Atlantic)	J	60.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	3	Increase in territorial behavior observed (0.1, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Trout (Rainbow)	J	300.00	29.00	10	Fish had decreased resistance to F. columnaris (8.1% mortaliaty)	Poston et al. (1985)
Trout (Rainbow)	J	300.00	31.00	10	Fish had decreased resistance to F. columnaris (14% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	300.00	42.00	10	Fish had decreased resistance to F. columnaris (19.7% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	300.00	48.00	11	Fish had decreased resistance to F. columnaris (26.6% mortality, control 8.8%)	Poston et al. (1985)
Trout (Rainbow)	J	300.00	60.00	11	Fish had decreased resistance to F. columnaris (34.4% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	300.00	69.00	11	Fish had decreased resistance to F. columnaris (39.8% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	16.00	10	Fish had decreased resistance to F. columnaris (8.3% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	19.00	10	Fish had decreased resistance to F. columnaris (13.9% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	20.00	11	Fish had decreased resistance to F. columnaris (33.9% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	22.00	12	Fish had decreased resistance to F. columnaris (40.6% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	23.00	12	Fish had decreased resistance to F. columnaris (46.8% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	24.00	12	Fish had decreased resistance to F. columnaris (53.5% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	300.00	69.00	10	Fish had decreased resistance to F. columnaris (7.7% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	13.00	10	Fish had decreased resistance to F. columnaris (6.9% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	19.00	10	Fish had decreased resistance to F. columnaris (15.2% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	22.00	11	Fish had decreased resistance to F. columnaris (26.9% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	30.00	11	Fish had decreased resistance to F. columnaris (34.7% mortality)	Poston et al. (1985)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Trout (Rainbow)	J	11500.00	36.00	12	Fish had decreased resistance to F. columnaris (40.5% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	41.00	12	Fish had decreased resistance to F. columnaris (46.1% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	44.00	12	Fish had decreased resistance to F. columnaris (54.4% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	49.00	13	Fish had decreased resistance to F. columnaris (60.8% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	55.00	13	Fish had decreased resistance to F. columnaris (66.8% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	52400.00	16.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions (15.6 hours, control 25.9 hours)	Poston et al. (1985)	
Trout (Rainbow)	J	32720.00	16.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions (16.2 hours, control 25.9 hours)	Poston et al. (1985)	
Trout (Rainbow)	J	52400.00	33.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions	Poston et al. (1985)	
Trout (Rainbow)	J	32720.00	38.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions	Poston et al. (1985)	
Trout (Rainbow)	J	52400.00	16.00	10	No change in survival times after F. columnaris exposure while in static conditions (15.5 hours, control 20.2 hours)	Poston et al. (1985)	
Trout (Rainbow)	J	32720.00	15.00	10	No change in survival times after F. columnaris exposure while in static conditions (14.9 hours, control 20.2 hours)	Poston et al. (1985)	
Trout (Rainbow)	J	52400.00	22.00	10	Survival times decreased after F. columnaris exposure while in static conditions (22.2 hours, control 47.6 hours)	Poston et al. (1985)	
Trout (Rainbow)	J	32720.00	30.00	10	Survival times decreased after F. columnaris exposure while in static conditions (29.8 hours, control 47.6 hours)	Poston et al. (1985)	
Trout (Steelhead)	J	2200.00	1.00	8	Cortisol levels decreased (9.9 ng/ml, control 6.0 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	1.00	8	Cortisol levels decreased (5.8 ng/ml, control 6.0 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	2200.00	4.00	8	Cortisol levels increased (11.4 ng/ml, control 4.5 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	4.00	8	Cortisol levels increased (5.5 ng/ml, control 4.5 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	2200.00	12.00	8	Cortisol levels increased (27.0 ng/ml, control 2.6 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	12.00	8	Cortisol levels increased (4.4 ng/ml, control 2.6 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	2200.00	24.00	8	Cortisol levels increased (47.7 ng/ml, control 7.8 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Cortisol levels decreased (5.4 ng/ml, control 7.8 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	2200.00	48.00	8	Cortisol levels increased (30.9 ng/ml, control 1.0 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Cortisol levels increased (13.6 ng/ml, control 1.0 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	2200.00	96.00	8	Cortisol levels increased (24.7 ng/ml, control 7.0 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	96.00	8	Cortisol levels decreased (3.1 ng/ml, control 7.0 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	2200.00	192.00	8	Cortisol levels decreased (0.2 ng/ml, control 5.8 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	192.00	8	Cortisol levels increased (6.0 ng/ml, control 5.8 ng/ml)	Redding & Schreck (1980)	

		Sedimen	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	J	2200.00	1.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	4.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	12.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	24.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	48.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	96.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	192.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	4.00	8	Cortisol levels increased (37.8 ng/ml, control 6.1 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	12.00	8	Cortisol levels increased (52.8 ng/ml, control 25.5 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	25.00	8	Cortisol levels increased (22.8 ng/ml, control 9.5 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	48.00	8	Cortisol levels increased (18 ng/ml, control 2.2 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	96.00	8	Cortisol levels increased (22.8 ng/ml, control 5.8 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	168.00	8	Cortisol levels increased (11 ng/ml, control 4.9 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	4.00	8	Cortisol levels increased (19.5 ng/ml, control 6.1 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	12.00	8	Cortisol levels decreased (18.7 ng/ml, control 25.5 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	25.00	8	Cortisol levels increased (21.3 ng/ml, control 9.5 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	48.00	8	Cortisol levels increased (8.3 ng/ml, control 2.2 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	96.00	8	Cortisol levels decreased (2.3 ng/ml, control 5.8 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	168.00	8	Cortisol levels increased (10.9 ng/ml, control 4.9 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2250.00	168.00	8	Cortisol levels increased post exposure (388 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	400.00	168.00	8	Cortisol levels increased post exposure (308 ng/ml)	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	1.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	4.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	12.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	24.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	48.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	96.00	4	Feeding rate decreased	Redding & Schreck (1980)
Salmon (Coho)	J	2200.00	192.00	4	Feeding rate decreased	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	3.00	8	Cortisol levels increased (1.6 ng/ml, control 0.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Cortisol levels increased (1.8 ng/ml, control 0.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Cortisol levels increased (1.4 ng/ml, control 0.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Cortisol levels increased (1.4 ng/ml, control 0.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	3.00	8	Cortisol levels increased (1.4 ng/ml, control 0.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Cortisol levels increased (1.3 ng/ml, control 0.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Cortisol levels increased (1.5 ng/ml, control 0.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)						Redding & Schreck (1980)

Species Life Stage ^a Exposure Concentration (mg/L) Trout (Steelhead) J 583.00 0.00 5 No change in cortisol levels (0.9 ng/ml, control ng/ml) Trout (Steelhead) J 583.00 3.00 8 Cortisol levels increased (1.1 ng/ml, control ong/ml) Trout (Steelhead) J 583.00 9.00 8 Cortisol levels increased (1.1 ng/ml, control ong/ml) Trout (Steelhead) J 583.00 9.00 8 Cortisol levels increased (1.1 ng/ml, control ong/ml) Trout (Steelhead) J 583.00 24.00 8 Cortisol levels increased (0.6 ng/ml, control ong/ml) Trout (Steelhead) J 3000.00 9.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit values increased significantly over controls	Redding & Schreck (1980) 4 Redding & Schreck (1980) 5 Redding & Schreck (1980) r Redding & Schreck (1980) r Redding & Schreck (1980) Redding & Schreck (1980) Redding & Schreck (1980)
rout (Steelhead) J 583.00 3.00 8 Cortisol levels increased (1.1 ng/ml, control 0. ng/ml) Trout (Steelhead) J 583.00 9.00 8 Cortisol levels increased (1.1 ng/ml, control 0. ng/ml) Trout (Steelhead) J 583.00 24.00 8 Cortisol levels increased (0.6 ng/ml, control 0. ng/ml) Trout (Steelhead) J 3000.00 9.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 24.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit percent increased (47.5%, control	Redding & Schreck (1980) 4 Redding & Schreck (1980) 5 Redding & Schreck (1980) r Redding & Schreck (1980) r Redding & Schreck (1980) Redding & Schreck (1980)
ng/ml) Trout (Steelhead) J 583.00 9.00 8 Cortisol levels increased (1.1 ng/ml, control 0. ng/ml) Trout (Steelhead) J 583.00 24.00 8 Cortisol levels increased (0.6 ng/ml, control 0. ng/ml) Trout (Steelhead) J 3000.00 9.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 24.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit percent increased (47.5%, control	.4 Redding & Schreck (1980) .5 Redding & Schreck (1980) r Redding & Schreck (1980) r Redding & Schreck (1980) Redding & Schreck (1980)
ng/ml) Trout (Steelhead) J 583.00 24.00 8 Cortisol levels increased (0.6 ng/ml, control 0. ng/ml) Trout (Steelhead) J 3000.00 9.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 24.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit percent increased (47.5%, control)	Redding & Schreck (1980) Redding & Schreck (1980) Redding & Schreck (1980) Redding & Schreck (1980)
ng/ml) Trout (Steelhead) J 3000.00 9.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 24.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit percent increased (47.5%, control	r Redding & Schreck (1980) r Redding & Schreck (1980) Redding & Schreck (1980)
controls Trout (Steelhead) J 3000.00 24.00 8 Hematocrit values increased significantly over controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit percent increased (47.5%, control	r Redding & Schreck (1980) Redding & Schreck (1980)
controls Trout (Steelhead) J 3000.00 3.00 8 Hematocrit percent increased (47.5%, control	Redding & Schreck (1980)
40.470J	Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 9.00 8 Hematocrit percent increased (52.2%, control 42.7%)	
Trout (Steelhead) J 3000.00 24.00 8 Hematocrit percent increased (54.5%, control 43.5%)	Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 48.00 8 Hematocrit percent increased (51.4%, control 46.3%)	Redding & Schreck (1980)
Trout (Steelhead) J 500.00 3.00 8 Hematocrit percent increased (46.9%, control 46.4%)	Redding & Schreck (1980)
Trout (Steelhead) J 500.00 9.00 8 Hematocrit percent increased (49.4%, control 42.7%)	Redding & Schreck (1980)
Trout (Steelhead) J 500.00 24.00 8 Hematocrit percent increased (46.9%, control 43.5%)	Redding & Schreck (1980)
Trout (Steelhead) J 500.00 48.00 8 Hematocrit percent increased (49.5%, control 46.3%)	Redding & Schreck (1980)
Trout (Steelhead) J 583.00 3.00 5 Hematocrit percent decreased (46.1%, contro 46.4%)	ol Redding & Schreck (1980)
Trout (Steelhead) J 583.00 9.00 8 Hematocrit percent increased (48.3%, control 42.7%)	Redding & Schreck (1980)
Trout (Steelhead) J 583.00 24.00 8 Hematocrit percent increased (45.6%, control 43.5%)	Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 0.00 5 No change in osmolality (266.9 m osmol/L, co 266.8 m osmal/L)	entrol Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 3.00 8 Osmolality decreased (264.8 m osmol/L, conti 273.4 m osmal/L)	rol Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 9.00 5 No change in osmolality (273.7 m osmol/L, co 273.4 m osmal/L)	ntrol Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 24.00 5 No change in osmolality (273.7 m osmol/L, co 273.5 m osmal/L)	ntrol Redding & Schreck (1980)
Trout (Steelhead) J 3000.00 48.00 8 Osmolality decreased (271.7 m osmol/L, conti 276.5 m osmal/L)	rol Redding & Schreck (1980)
Trout (Steelhead) J 500.00 3.00 8 Osmolality decreased (269.7 m osmol/L, conti 273.4 m osmal/L)	rol Redding & Schreck (1980)
Trout (Steelhead) J 500.00 9.00 8 Osmolality decreased (272.8 m osmol/L, conti 273.4 m osmal/L)	rol Redding & Schreck (1980)
Trout (Steelhead) J 500.00 24.00 8 Osmolality decreased (269.6 m osmol/L, conti 273.5 m osmal/L)	rol Redding & Schreck (1980)
Trout (Steelhead) J 500.00 48.00 8 Osmolality decreased (274.8 m osmol/L, conti 276.5 m osmal/L)	rol Redding & Schreck (1980)
Trout (Steelhead) J 583.00 0.00 5 No change in osmolality (266.9 m osmol/L, co 266.8 m osmal/L)	ontrol Redding & Schreck (1980)
Trout (Steelhead) J 583.00 3.00 8 Osmolality increased (276.6 m osmol/L, contribution of the contribution	rol Redding & Schreck (1980)
Trout (Steelhead) J 583.00 9.00 8 Osmolality increased (274 m osmol/L, control 273.4 m osmal/L)	Redding & Schreck (1980)
Trout (Steelhead) J 583.00 24.00 8 Osmolality increased (275.2 m osmol/L, contribution of the contribution	rol Redding & Schreck (1980)

		Sedimen	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	J	3000.00	3.00	8	Cortisol levels increased (23.9 ng/ml, control 6.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Cortisol levels increased (83.6 ng/ml, control 3.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Cortisol levels increased (29.5 ng/ml, control 2.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Cortisol levels increased (16.1 ng/ml, control 2.7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	3.00	8	Cortisol levels increased (42.7 ng/ml, control 6.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Cortisol levels increased (76.2 ng/ml, control 3.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Cortisol levels increased (73.6 ng/ml, control 2.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Cortisol levels increased (19.7 ng/ml, control 2.7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	3.00	8	Hematocrit percent decreased (43.9%, control 44.1%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Hematocrit percent increased (45.6%, control 38.2%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Hematocrit percent increased (45.7%, control 40%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Hematocrit percent increased (39.7%, control 37%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	3.00	8	Hematocrit percent increased (45%, control 44.1%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Hematocrit percent increased (49%, control 38.2%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Hematocrit percent increased (50.4%, control 40%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Hematocrit percent increased (45%, control 37%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Cortisol levels increased (72.8 ng/ml, control 12.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Cortisol levels increased (40.4 ng/ml, control 7.3 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Cortisol levels increased (15.3 ng/ml, control 7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Cortisol levels increased (46.9 ng/ml, control 12.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Cortisol levels increased (39.7 ng/ml, control 7.3 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Cortisol levels increased (48.7 ng/ml, control 7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Hematocrit percent decreased (36.9%, control 46.8%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Hematocrit percent decreased (42.3%, control 46%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Hematocrit percent decreased (36.6%, control 45.2%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Hematocrit percent decreased (36.9%, control 44.9%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Hematocrit percent decreased (42.3%, control 46.2%)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Hematocrit percent decreased (36.6%, control 41.7%)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	4.00	8	Cortisol levels increased (58.9 ng/ml, control 0.9 ng/ml, dye 27.7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	10.00	8	Cortisol levels increased (24.8 ng/ml, control 17.6 ng/ml, dye 37.8 ng/ml)	Redding & Schreck (1980)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	J	2500.00	25.00	8	Cortisol levels increased (82.8 ng/ml, control 15.1 ng/ml, dye 1.7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	48.00	8	Cortisol levels increased (31.6 ng/ml, control 7.3 ng/ml, dye 39.3 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	4.00	8	Cortisol levels increased (28.4 ng/ml, control 0.4 ng/ml, dye 1.3 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	10.00	8	Cortisol levels increased (38.6 ng/ml, control 2.4 ng/ml, dye 1.2 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	25.00	8	Cortisol levels increased (16.5 ng/ml, control 8.4 ng/ml, dye 1.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	48.00	8	Cortisol levels increased (23.7 ng/ml, control 6.5 ng/ml, dye 1.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	0.25	8	Cortisol levels greater in darkness (darkness 140.7 ng/ml, ambient 113.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	1.00	8	Cortisol levels greater in darkness (darkness 144.6 ng/ml, ambient 142.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	8.00	8	Cortisol levels greater in darkness (darkness 98.3 ng/ml, ambient 67.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	3.00	8	Cortisol levels increased/decreased (73.7 ng/ml, control 6.9 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	9.00	8	Cortisol levels increased/decreased (70.9 ng/ml, control 16.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	24.00	8	Cortisol levels increased/decreased (68.6 ng/ml, control 19.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	48.00	8	Cortisol levels increased/decreased (28.4 ng/ml, control 33.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	3.00	8	Hematocrit percent increased (53%, control 46.6%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	9.00	8	Hematocrit percent increased (46.4%, control 44.3%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	24.00	8	Hematocrit percent increased (50.6%, control 46.8%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	48.00	8	Hematocrit percent decreased (46.6%, control 47.5%)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	2.00	13	77% mortality rate after exposure to suspended topsoil	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	2.00	13	Fish died from Vibro anguilarum sooner	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Sodium levels increased (153.8 meq/L, control 138.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Sodium levels increased (151 meq/L, control 137.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Sodium levels decreased (144.9 meq/L, control 147.9 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Sodium levels increased (159 meq/L, control 138.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Sodium levels increased (146 meq/L, control 137.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Sodium levels decreased (146.9 meq/L, control 147.9 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	3.00	8	Sodium levels increased (162.1 meq/L, control 154.7 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Sodium levels increased (163.7 meq/L, control 155.3 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Sodium levels decreased (157.3 meq/L, control 162 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Sodium levels decreased (157.9 meq/L, control 162.2 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	0.00	5	No change in sodium levels (162.2 meq/L, control 162.2 meq/L)	Redding & Schreck (1980)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	J	500.00	3.00	8	Sodium levels increased (164.7 meq/L, control 154.7 meq/L)	Redding & Schreck (1980)
Frout (Steelhead)	J	500.00	9.00	8	Sodium levels increased (161.5 meq/L, control 155.3 meq/L)	Redding & Schreck (1980)
rout (Steelhead)	J	500.00	24.00	8	Sodium levels decreased (150.1 meq/L, control 162 meq/L)	Redding & Schreck (1980)
rout (Steelhead)	J	500.00	48.00	8	Sodium levels decreased (150.4 meq/L, control 162.2 meq/L)	Redding & Schreck (1980)
Frout (Steelhead)	J	3500.00	0.00	5	No change in sodium levels (169 meq/L, control 168.9 meq/L)	Redding & Schreck (1980)
Frout (Steelhead)	J	3500.00	3.00	8	Sodium levels increased (161.2 meq/L, control 151.4 meq/L)	Redding & Schreck (1980)
Frout (Steelhead)	J	3500.00	9.00	8	Sodium levels increased (158 meq/L, control 154.1 meq/L)	Redding & Schreck (1980)
Frout (Steelhead)	J	3500.00	24.00	8	Sodium levels decreased (161.7 meq/L, control 167.1 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	48.00	8	Sodium levels decreased (153.5 meq/L, control 154.1 meq/L)	Redding & Schreck (1980)
ialmon (Chum)	J	28000.00	96.00	12	Mortality rate 50%	Smith (1940)
almon (Chum)	J	55000.00	96.00	12	Mortality rate 50% (winter)	Smith (1940)
out (Rainbow)	J	4315.00	57.00	14	Mortalty rate ~ 100% (CSS)	Newcombe et al. (1995)
out (Brown)	J	2900.00	66.00	10	Habitat degradation and reduction in density	Quadroni et al. (2016, data pulled from Courtice et al. (2022))
rout (Rainbow)	J	110.00	1.40	4	Fish swam together to compensate for reduced swim performance.	Berli et al. (2014, data pulled from Courtice et al. (2022))
rout (Brown)	J	300.00	1104.00	13	Density drop average 65%	Espa et al. (2019, data pulled from Courtice et al. (2022))
rout (Brown)	J	300.00	1272.00	11	Density drop average 25%	Espa et al. (2019, data pulled from Courtice et al. (2022))
rout (Brown)	J	800.00	960.00	13	Density drop average 70%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	J	4700.00	312.00	12	Density drop average 60%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	J	3000.00	288.00	13	Density drop average 75%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	J	3500.00	312.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Frout (Brown)	J	4000.00	312.00	11	Density drop average 35%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	J	2600.00	72.00	12		Espa et al. (2019, data pulled from Courtice et al. (2022))
salmon (Chinook)	J	69.00	3.00	3	Reduce predator avoidance in turbidity	Gregory (1993, data pulled from Courtice et al. (2022))
Salmon (Chinook)	J	450.00	1.50	4	Change from attraction to turbidity to reduction in foraging ability	Gregory (1993, data pulled from Courtice et al. (2022))
almon (Coho)	J	100000.00	96.00	10	Lowest concentration to observe mortality	Lake & Hinch (1999)
lmon (Coho)	J	40000.00	96.00	9	Stress response (decreased leukocrit)	Lake & Hinch (1999)
mon (Coho)	J	40000.00	96.00	9	Gill damage observed	Lake & Hinch (1999)
mon (Coho)	J	22.00	96.00	10	0% mortality	Lake & Hinch (1999)
llmon (Coho)	J	40.00	96.00	10	0% mortality	Lake & Hinch (1999)
almon (Coho)	J	55.00	96.00	10	0% mortality	Lake & Hinch (1999)
almon (Coho)	J	62.00	96.00	10	0% mortality	Lake & Hinch (1999)
almon (Coho)	J	68.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	74.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	95.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	113.00	96.00	10	0% mortality	Lake & Hinch (1999)
almon (Coho)	J	121.00	96.00	10	0% mortality	Lake & Hinch (1999)

		Sediment	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	J	106.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	99.00	96.00	10	20% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	110.00	96.00	10	19% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	113.00	96.00	10	20% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	106.00	96.00	11	40% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	133.00	96.00	11	40% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	142.00	96.00	11	40% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	130.00	96.00	12	59% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	135.00	96.00	12	59% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	150.00	96.00	14	100% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	30.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	30.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	50.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	54.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	64.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	94.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	104.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	112.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	96.00	96.00	10	20% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	101.00	96.00	10	20% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	132.00	96.00	11	21% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	121.00	96.00	12	41% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	158.00	96.00	12	60% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	160.00	96.00	12	60% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	203.00	96.00	12	60% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	130.00	96.00	13	80% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	199.00	96.00	14	81% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	225.00	96.00	14	100% mortality	Lake & Hinch (1999)
Salmon (Coho)	J	20500.00	96.00	8	Stress response (decreased leukocrit)	Lake & Hinch (1999)
Salmon (Coho)	J	60500.00	96.00	8	Stress response (decreased leukocrit)	Lake & Hinch (1999)
Salmon (Coho)	J	100500.00	96.00	8	Stress response (decreased leukocrit)	Lake & Hinch (1999)
			96.00			Lake & Hinch (1999)
Salmon (Coho)	J	20500.00		6	No change in leukocrit	, ,
Salmon (Coho)	J	60500.00	96.00	8	Stress response (decreased leukocrit)	Lake & Hinch (1999)
Salmon (Coho)	J	100500.00	96.00	8	Stress response (decreased leukocrit)	Lake & Hinch (1999)
Salmon (Coho)	J	20500.00	96.00	8	Increased blood hematocrit levels	Lake & Hinch (1999)
Salmon (Coho)	J	60500.00	96.00	6	No change in blood hematocrit	Lake & Hinch (1999)
Salmon (Coho)	J	100500.00	96.00	8	Increased blood hematocrit levels	Lake & Hinch (1999)
Salmon (Chum)	J	90.00	15.00	3	Avoidance response	Martin et al. (1976)
Salmon (Chum)	J	3954.00	96.00	10	LC10 - 10% mortality	Martin et al. (1976)
Salmon (Chum)	J	241.00	96.00	12	LC50 - 50% mortality	Martin et al. (1976)
Salmon (Chum)	J	4311.00	96.00	14	LC90 - 90% mortality	Martin et al. (1976)
Salmon (Chum)	J	3056.00	15.00	0	No effect	Martin et al. (1976)
Trout (Rainbow)	J	4300.00	504.00	10	Very low mortality	Peddicord & McFarland (1978)
Salmon (Pink)	J	11400.00	96.00	11	28% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	7600.00	96.00	10	3% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	5800.00	96.00	10	0% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	3200.00	96.00	10	0% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	1600.00	96.00	10	0% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))

Salmonid eggs and larvae (freshwater, group 4)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chum)	Ε	111.00	2808	14	Mortality rate 89.3%. (control 6.2%)	Langer (1980)
Frout (Rainbow)	E	120.00	384	10	Density of fish reduced	Erman & Ligon (1988)
rout (Rainbow)	Ε	99.00	768	13	Mortality rate 58.2% -69.3% (control 38.6%)	Erman & Ligon (1988)
Γrout (Brown)	E	162.00	720	14	98.7% mortality (control 14.25%)	Scullion & Edwards (1980)
rout (Brown)	E	12.00	720	14	86.7% mortality (control 14.25%)	Scullion & Edwards (1980)
Grayling (Arctic)	E	11.00	336	12	Mortality rate 52.6%	Scannell (1988)
Grayling (Arctic)	E	31.00	336	10	Mortality rate 3.4%	Scannell (1988)
Grayling (Arctic)	E	174.00	336	10	Mortality rate 4.6%	Scannell (1988)
Grayling (Arctic)	Ε	265.00	336	10	Mortality rate 4%	Scannell (1988)
Grayling (Arctic)	E	71.00	336	13	Mortality rate 62.6%	Scannell (1988)
Grayling (Arctic)	E	191.00	336	10	Mortality rate 19.4%	Scannell (1988)
Grayling (Arctic)	E	78.00	336	11	Mortality rate 28%	Scannell (1988)
Grayling (Arctic)	Е	3.00	14	14	92.58% mortality	Scannell (1988)
Grayling (Arctic)	Е	5.00	14	14	95.38% mortality	Scannell (1988)
Grayling (Arctic)	E	141.00	14	14	93.96% mortliaty	Scannell (1988)
Grayling (Arctic)	E	274.00	14	14	93.98% mortality	Scannell (1988)
Grayling (Arctic)	E	256.00	14	14	95.38% mortality	Scannell (1988)
Grayling (Arctic)	Е	151.00	14	14	98.52% mortality	Scannell (1988)
Grayling (Arctic)	E	1295.00	14	14	92.58% mortality	Scannell (1988)
Grayling (Arctic)	E	6.00	24	14	99.9% mortality	Scannell (1988)
Grayling (Arctic)	E	20.00	24	14	99.9% mortality	Scannell (1988)
Grayling (Arctic)	E	45.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	143.00	24	14	99.94% mortality	Scannell (1988)
Grayling (Arctic)	E	322.00	24	14	99.9% mortality	Scannell (1988)
					,	
Grayling (Arctic)	E E	778.00	24 24	14	97.02% mortality	Scannell (1988)
Grayling (Arctic)		94.00		14	97.02% mortality	Scannell (1988)
Grayling (Arctic)	E	49.00	24	14	95.02% mortality	Scannell (1988)
Grayling (Arctic)	E	20.00	14	14	87.9% mortality	Scannell (1988)
Grayling (Arctic)	E	30.00	14	14	92.58% mortality	Scannell (1988)
Grayling (Arctic)	E	43.00	14	14	95.3% mortality	Scannell (1988)
Grayling (Arctic)	E	248.00	14	14	93.9% mortality	Scannell (1988)
Grayling (Arctic)	E	392.00	14	14	95.26% mortality	Scannell (1988)
Grayling (Arctic)	E	433.00	14	14	98.58% mortality	Scannell (1988)
Grayling (Arctic)	E	575.00	14	14	93.96% mortality	Scannell (1988)
Grayling (Arctic)	E	1109.00	14	14	92.64% mortality	Scannell (1988)
Grayling (Arctic)	E	1251.00	14	13	71.2% mortality	Scannell (1988)
Grayling (Arctic)	E	22.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	32.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	84.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	123.00	24	14	96.98% mortality	Scannell (1988)
Grayling (Arctic)	Е	19.00	24	14	94.98% mortality	Scannell (1988)
Grayling (Arctic)	Е	271.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	Ε	389.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	Ε	439.00	24	14	99.94% mortality	Scannell (1988)
Grayling (Arctic)	Ε	461.00	24	14	96.98% mortality	Scannell (1988)
Frout (Rainbow)	Ε	21.00	1152	13	Mortality rate 72%	Slaney et al. (1977a)
Herring (Lake)	L	3.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	8.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	11.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)

		Sediment			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Herring (Lake)	L	16.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	18.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	21.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	24.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	28.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	1.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	3.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	8.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	11.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	16.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	18.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	21.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	24.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	28.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	1.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	1.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	3.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	8.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	11.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	16.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	18.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	0.25	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	2.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	3.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	7.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	9.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	12.00	1488	0	No behavioral effect	Swenson (1978)
Salmon (Sockeye)	E	44.00	912	0	No change in fertilization success	Galbraith et al. (2006)
Salmon (Sockeye)	E	798.00	912	10	Fertilization success decreased 0.8%	Galbraith et al. (2006)
Salmon (Sockeye)	E	1828.00	912	10	Fertilization success decreased 0.1%	Galbraith et al. (2006)
Salmon (Sockeye)	E	6621.00	912	11	Fertilization success decreased 21.6%	Galbraith et al. (2006)
Salmon (Sockeye)	E	128.00	1128	0	No change in fertilization success	Galbraith et al. (2006)
Salmon (Sockeye)	E	46943.00	1128	14	Fertilization success decreased 85.3%	Galbraith et al. (2006)
Salmon (Sockeye)	Ε	71.00	1128	0	No change in fertilization success	Galbraith et al. (2006)
Salmon (Sockeye)	Ε	7691.00	1128	11	Fertilization success decreased 27.3%	Galbraith et al. (2006)
Salmon (Sockeye)	Е	38231.00	1128	12	Fertilzation success decreased 61.3%	Galbraith et al. (2006)
Salmon (Coho)	Ε	22.00	912	0	No change in fertilization success	Galbraith et al. (2006)
Salmon (Coho)	Ε	4095.00	912	11	Fertilization success decreased 33.2%	Galbraith et al. (2006)
Salmon (Coho)	Ε	28835.00	912	12	Fertilization success decreased 49.2%	Galbraith et al. (2006)
Trout (Cutthroat)	Ε	2.00	888	11	Mortality rate 21.7%	Cederholm& Lestelle (1974
Trout (Cutthroat)	Ε	2.00	888	10	Mortality rate 9.7%	Cederholm& Lestelle (1974
Trout (Steelhead)	Ε	2.00	888	12	Mortality rate 42.8%	Cederholm& Lestelle (1974

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	E	2.00	888	10	Mortality rate 17.2%	Cederholm& Lestelle (1974)
Salmon (Atlantic)	E	6000.00	600	8	Oxygen consumption reduced 41%	Greig et al. (2005)
Salmon (Atlantic)	E	10000.00	600	8	Oxygen consumption reduced 96%	Greig et al. (2005)
Salmon (Atlantic)	E	2000.00	600	8	Oxygen consumption reduced 14%	Greig et al. (2005)
Salmon (Atlantic)	E	4000.00	600	8	Oxygen consumption reduced 40%	Greig et al. (2005)
Salmon (Atlantic)	E	8000.00	600	8	Oxygen consumption reduced 80%	Greig et al. (2005)
Salmon (Coho)	E	1330.00	48	14	Mortality rate 97.6% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	168	14	Mortality rate 99.2% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	336	14	Mortality rate 99% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1008	14	Mortality rate 99.8% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1200	14	Mortality rate 99.8% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1728	14	Mortality rate 97.8% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	528	14	Mortality rate 86.6% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	720	14	Mortality rate 91.6% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	888	14	Mortality rate 92.4% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	Ε	1176.00	1056	14	Mortality rate 98.4% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	Ε	1176.00	1392	14	Mortality rate 99.2% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	Ε	1176.00	1728	14	Mortality rate 100% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	Ε	157.00	1728	14	Mortality rate 100% (control 83.8%)	Shaw & Maga (1943)

Nonsalmonid eggs and larvae (estuarine, group 4)

		Sedimen	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Herring (Blueback)	E	50	168	11	Mortality rate 24% (control 20%)	Auld & Schubel (1978)
Herring (Blueback)	Ε	100	168	11	Mortality rate 24% (control 23%)	Auld & Schubel (1978)
Herring (Blueback)	Ε	500	168	11	Mortality rate 36% (control 26%)	Auld & Schubel (1978)
Herring (Blueback)	Ε	1000	168	11	Mortality rate 29% (control 23%)	Auld & Schubel (1978)
Alewife	Ε	50	168	10	Mortality rate 18% (Control 18%)	Auld & Schubel (1978)
Alewife	Ε	100	168	10	Mortality rate 17% (control 16%)	Auld & Schubel (1978)
Alewife	Ε	500	168	11	Mortality rate 23% (control 18%)	Auld & Schubel (1978)
Alewife	Ε	1000	168	11	Mortality rate 22% (control 16%)	Auld & Schubel (1978)
Shad (American)	Ε	50	168	10	Mortality rate 3% (control 2%)	Auld & Schubel (1978)
Shad (American)	Ε	100	168	10	Mortality rate 17% (control 13%)	Auld & Schubel (1978)
Shad (American)	Ε	500	168	10	Mortality rate 19% (control 13%	Auld & Schubel (1978)
Shad (American)	Ε	1000	168	11	Mortality rate 27% (control 20%)	Auld & Schubel (1978)
Perch (White)	Ε	50	168	11	Mortality rate 26% (control 32%)	Auld & Schubel (1978)
Perch (White)	Ε	100	168	11	Mortality rate 29% (control 29%)	Auld & Schubel (1978)
Perch (White)	Ε	500	168	11	Mortality rate 31% (control 32%)	Auld & Schubel (1978)
Perch (White)	Ε	1000	168	12	Mortality rate 51% (control 31%)	Auld & Schubel (1978)
Bass (Striped)	Ε	50	168	11	Mortality rate 36% (control 30%)	Auld & Schubel (1978)
Bass (Striped)	Ε	100	168	10	Mortality rate 20% (control 22%)	Auld & Schubel (1978)
Bass (Striped)	Ε	500	168	10	Mortality rate 20% (control 18%)	Auld & Schubel (1978)
Bass (Striped)	Ε	1000	168	11	Mortality rate 22% (control 14%)	Auld & Schubel (1978)
Bass (Striped)	Ε	1000	168	10	Reduced hatching success	Auld & Schubel (1978)
Perch (Yellow)	Ε	50	168	10	Mortality rate 2% (control 10%)	Auld & Schubel (1978)
Perch (Yellow)	Ε	100	168	10	Mortality rate 7% (control 10%)	Auld & Schubel (1978)
Perch (Yellow)	Ε	500	168	10	Mortality rate 4% (control 11%)	Auld & Schubel (1978)
Perch (Yellow)	Ε	1000	168	10	Mortality rate 8% (control 9%)	Auld & Schubel (1978)
Shad (American)	L	50	96	10	Mortality rate 7% (control 5%)	Auld & Schubel (1978)

		Sedimer	nt dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Shad (American)	L	100	96	10	Mortality rate 18% (control 5%)	Auld & Schubel (1978)	
Shad (American)	L	500	96	11	Mortality rate 36% (control 4%)	Auld & Schubel (1978)	
Shad (American)	L	1000	96	11	Mortality rate 34% (control 5%)	Auld & Schubel (1978)	
Bass (Striped)	L	50	60	11	Mortality rate 28% (control 35%)	Auld & Schubel (1978)	
Bass (Striped)	L	100	65	10	Mortality rate 17% (control 19%)	Auld & Schubel (1978)	
Bass (Striped)	L	500	68	12	Mortality rate 42% (control 17%)	Auld & Schubel (1978)	
Bass (Striped)	L	1000	69	11	Mortality rate 35% (control 18%)	Auld & Schubel (1978)	
Perch (Yellow)	L	50	96	10	Mortality rate 10% (control 7%)	Auld & Schubel (1978)	
erch (Yellow)	L	100	96	10	Mortality rate 17% (control 7%)	Auld & Schubel (1978)	
erch (Yellow)	L	500	96	11	Mortality rate 37% (control 7%)	Auld & Schubel (1978)	
erch (Yellow)	L	1000	96	11	Mortality rate 38% (control 7%)	Auld & Schubel (1978)	
lerring (Pacific)	L	2000	2	4	Feeding rate reduced	Boehlert & Morgan (1985)	
lerring (Pacific)	L	500	2	0	Increase in feeding rate - 85% feeding (control 52%)	Boehlert & Morgan (1985)	
lerring (Pacific)	L	1000	2	0	Increase in feeding rate - 85% feeding (control 52%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased- 75% feeding (control 52%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased- 65% feeding (control 52%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased- 45% feeding (control 52%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	500	2	0	Increase in feeding rate - 82% feeding (control 34%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	1000	2	0	Increase in feeding rate - 90% feeding (control 34%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased- 84% feeding (control 34%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased- 78% feeding (control 34%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased- 77% feeding (control 34%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	500	2	0	Increase in feeding rate - 60% feeding (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	1000	2	4	Decrease in feeding rate as SSC increased - 45% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased - 18% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased - 20% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased - 2% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	500	2	0	Increase in feeding rate - 65% feeding (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	1000	2	4	Decrease in feeding rate as SSC increased - 15% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased - 10% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased - 0% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased - 5% (control 38%)	Boehlert & Morgan (1985)	
Herring (Pacific)	L	500	24	8	Abraded epidermis, less distinct microridges	Boehlert (1983)	
Herring (Pacific)	L	1000	24	8	Abraded epidermis, less distinct microridges	Boehlert (1983)	
Herring (Pacific)	L	2000	24	8	Mechanical damage to epidermis	Boehlert (1983)	
Herring (Pacific)	L	4000	24	8	Mechanical damage to epidermis	Boehlert (1983)	

		Sedimer	nt dose		Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Herring (Pacific)	L	8000	24	8	Mechanical damage to epidermis	Boehlert (1983)	
Herring (Pacific)	L	500	24	8	Some mechanical damage to epidermis	Boehlert (1983)	
Herring (Pacific)	L	1000	24	8	Mechanical damage to epidermis, punctured	Boehlert (1983)	
Herring (Pacific)	L	2000	24	8	Mechanical damage to epidermis, punctured	Boehlert (1983)	
Herring (Pacific)	L	4000	24	8	Epidermis torn and punctured, microridges less distinct	Boehlert (1983)	
Herring (Pacific)	L	8000	24	8	Epidermis torn and punctured, microridges less distinct	Boehlert (1983)	
Herring (Pacific)	L	2433	24	10	Mortality rate 5.40% (including control)	Boehlert (1983)	
lerring (Pacific)	L	2433	24	10	Mortality rate 5.28% (including control)	Boehlert (1983)	
Herring (Atlantic)	L	4	3	0	No effect on feeding rate	Johnson & Wildish (1982)	
Herring (Atlantic)	L	8	3	0	No effect on feeding rate	Johnson & Wildish (1982)	
Herring (Atlantic)	L	20	3	4	Reduced feeding rate	Johnson & Wildish (1982)	
Herring (Atlantic)	L	10	3	3	Depth preference changed	Johnson & Wildish (1982)	
Herring (Atlantic)	L	20	3	3	Depth preference changed	Johnson & Wildish (1982)	
Perch (white)	E	50	24	10	No effect on percent hatched	Morgan et al. (1973)	
Perch (white)	E	1000	24	10	No effect on percent hatched	Morgan et al. (1973)	
Perch (white)	E	1500	24	10	No effect on percent hatched	Morgan et al. (1973)	
Perch (white)	E	2000	24	10	No effect on percent hatched	Morgan et al. (1973)	
Perch (white)	E	3250	24	10	No effect on percent hatched	Morgan et al. (1973)	
Perch (white)	E	4000	24	10	No effect on percent hatched		
, ,						Morgan et al. (1973)	
Perch (white)	E	5250	24	10	No effect on percent hatched	Morgan et al. (1973)	
erch (white)	E	2000	24	9	Development rate slowed signficantly (80% on control)	Morgan et al. (1973)	
erch (white)	E	3250	24	9	Development rate slowed signficantly (80% on control)	Morgan et al. (1973)	
Perch (white)	E	4000	24	9	Development rate slowed significantly	Morgan et al. (1973)	
erch (white)	E	5250	24	9	Development rate slowed signficantly (65% on control)	Morgan et al. (1973)	
Bass (Striped)	E	20	24	10	No effect on percent hatched	Morgan et al. (1973)	
Bass (Striped)	E _	150	24	10	No effect on percent hatched	Morgan et al. (1973)	
Bass (Striped)	E	400	24	10	No effect on percent hatched	Morgan et al. (1973)	
Bass (Striped)	E	600	24	10	No effect on percent hatched	Morgan et al. (1973)	
Bass (Striped)	E	900	24	10	Slight decline in percent hatched	Morgan et al. (1973)	
Bass (Striped)	E	1050	24	10	Slight decline in percent hatched	Morgan et al. (1973)	
Bass (Striped)	Е	1500	24	10	Slight decline in percent hatched	Morgan et al. (1973)	
Bass (Striped)	E	2000	24	10	Slight decline in percent hatched	Morgan et al. (1973)	
Bass (Striped)	Ε	2300	24	10	Slight decline in percent hatched	Morgan et al. (1973)	
Bass (Striped)	E	1500	24	9	Development rate slowed signficantly (80% of control)	Morgan et al. (1973)	
Bass (Striped)	E	2000	24	9	Development rate slowed signficantly (80% of control)	Morgan et al. (1973)	
Bass (Striped)	E	2300	24	9	Development rate slowed signficantly (80% of control)	Morgan et al. (1973)	
erch (white)	L	5200	6	0	No effect observed	Morgan et al. (1973)	
Bass (Striped)	L	5200	6	0	No effect observed	Morgan et al. (1973)	
erch (white)	L	1626	24	11	27.3% mortality (contol %)	Morgan et al. (1973)	
erch (white)	L	5380	24	11	29.3% mortality (control %)	Morgan et al. (1973)	
Perch (white)	L	1626	48	11	22.6% mortality (contol %)	Morgan et al. (1973)	
Perch (white)	L	5380	48	13	62.0% mortality (control %)	Morgan et al. (1973)	
Perch (white)	L	11642	24	12	50% mortality (LD50)	Morgan et al. (1973)	
Perch (white)	L	2680	48	12	50% mortality (LD50)	Morgan et al. (1973)	
Bass (Striped)	L	1557	24	10	20.0% mortality (contol %)	Morgan et al. (1973)	

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Bass (Striped)	L	5210	24	11	27.3% mortality (control %)	Morgan et al. (1973)	
Bass (Striped)	L	1557	48	11	38.7% mortality (contol %)	Morgan et al. (1973)	
ass (Striped)	L	5210	48	13	66% mortality (control %)	Morgan et al. (1973)	
ass (Striped)	L	7846	24	12	50% mortality (LD50)	Morgan et al. (1973)	
ass (Striped)	L	3411	48	12	50% mortality (LD50)	Morgan et al. (1973)	
erch (white)	Е	127	24	10	96% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	250	24	10	96 % hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	382	24	10	87% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	498	24	10	85% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	995	24	10	84% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	1500	24	10	86% hatched (% of controls)	Morgan et al. (1983)	
rch (white)	Е	1900	24	10	88% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	2200	24	10	86% hatched (% of controls)	Morgan et al. (1983)	
rch (white)	Е	2750	24	10	89% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	3200	24	10	88% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	Е	4000	24	10	85% hatched (% of controls)	Morgan et al. (1983)	
rch (white)	Е	5250	24	10	88% hatched (% of controls)	Morgan et al. (1983)	
erch (white)	E	127	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)	
erch (white)	E	250	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)	
erch (white)	E	382	24	9	Development rate slowed signficantly (97% of control)	Morgan et al. (1983)	
erch (white)	E	498	24	9	Development rate slowed signficantly (96% of control)	Morgan et al. (1983)	
erch (white)	E	995	24	9	Development rate slowed signficantly (85% of control)	Morgan et al. (1983)	
erch (white)	E	1500	24	9	Development rate slowed signficantly (82% of control)	Morgan et al. (1983)	
erch (white)	E	1900	24	9	Development rate slowed significantly (79% of control)	Morgan et al. (1983)	
erch (white)	E	2200	24	9	Development rate slowed significantly (78% of control)	Morgan et al. (1983)	
erch (white) erch (white)	E E	2750 3200	24 24	9	Development rate slowed signficantly (77% of control) Development rate slowed signficantly (76% of	Morgan et al. (1983) Morgan et al. (1983)	
erch (white)	E	4000	24	9	control) Development rate slowed signficantly (65% of	Morgan et al. (1983)	
erch (white)	E	5250	24	9	control) Development rate slowed signficantly (58% of	Morgan et al. (1983)	
					control)		
rch (white)	L	1626	24	10	15% mortality	Morgan et al. (1983)	
rch (white)	L	2438	24	10	16% mortality	Morgan et al. (1983)	
rch (white)	L	3022	24	10	17% mortality	Morgan et al. (1983)	
rch (white)	L	5380	24	10	19% mortality	Morgan et al. (1983)	
rch (white)	L	1626	48	11	23% mortality	Morgan et al. (1983)	
rch (white)	L	2438	48	11	25% mortality	Morgan et al. (1983)	
rch (white)	L	3022	48	12	43% mortality	Morgan et al. (1983)	
rch (white)	L	5380	48	12	49% mortality	Morgan et al. (1983)	
ss (Striped)	Е	95	24	10	82% hatched (% of controls)	Morgan et al. (1983)	
ss (Striped)	Е	265	24	10	80% hatched (% of controls)	Morgan et al. (1983)	
iss (Striped)	Е	595	24	10	84% hatched (% of controls)	Morgan et al. (1983)	
iss (Striped)	Е	890	24	11	65% hatched (% of controls)	Morgan et al. (1983)	
ass (Striped)	E	1100	24	12	56% hatched (% of controls)	Morgan et al. (1983)	

Bass (Striped)	E E E E E E E E E E E E E E E E E E E	Exposure Concen- tration (mg/L) 1600 1900 2300 95 265	Exposure duration (h) 24 24 24 24 24	SEV ^b 11 11 11	Description ^c 62% hatched (% of controls) 68% hatched (% of controls)	Reference Morgan et al. (1983)
Bass (Striped)	E E E	1900 2300 95 265	24 24	11		Morgan et al. (1983)
Bass (Striped)	E E E	2300 95 265	24		68% hatched (% of controls)	
Bass (Striped)	E E	95 265		11		Morgan et al. (1983)
Bass (Striped)	E E	265	24		62% hatched (% of controls)	Morgan et al. (1983)
Bass (Striped)	E			9	Development rate slowed signficantly (89% of control)	Morgan et al. (1983)
Bass (Striped) Perch (white)			24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)
Bass (Striped)	E	595	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)
Bass (Striped)		890	24	9	Development rate slowed signficantly (60% of control)	Morgan et al. (1983)
Bass (Striped)	E	1100	24	9	Development rate slowed signficantly (58% of control)	Morgan et al. (1983)
Bass (Striped) Perch (white)	E	1600	24	9	Development rate slowed signficantly (52% of control)	Morgan et al. (1983)
Bass (Striped) Perch (white)	E	1900	24	9	Development rate slowed signficantly (50% of control)	Morgan et al. (1983)
Bass (Striped) Perch (white)	E	2300	24	9	Development rate slowed signficantly (52% of control)	Morgan et al. (1983)
Bass (Striped) Perch (white)	L	1626	24	10	20% mortality	Morgan et al. (1983)
Bass (Striped)	L	2438	24	11	21% mortality	Morgan et al. (1983)
lass (Striped) lass (Striped) lass (Striped) lass (Striped) lass (Striped) lass (Striped)	L	3022	24	11	21% mortality	Morgan et al. (1983)
lass (Striped) lass (Striped) lass (Striped) lass (Striped) lerch (white)	L	5380	24	11	31% mortality	Morgan et al. (1983)
ass (Striped) ass (Striped) ass (Striped) ass (Striped) erch (white)	L	1626	48	11	25% mortality	Morgan et al. (1983)
lass (Striped) lass (Striped) lass (Striped) lerch (white)	L	2438	48	11	29% mortality	Morgan et al. (1983)
ass (Striped) ass (Striped) erch (white)	L	3022	48	11	37% mortality	Morgan et al. (1983)
ass (Striped) erch (white)	L	5380	48	12	57% mortality	Morgan et al. (1983)
erch (white)	L	5200	12	10	0% mortality	Morgan et al. (1983)
	L	5200	12	10	0% mortality	Morgan et al. (1983)
	L	20417	24	12	50% mortality (LDC50)	Morgan et al. (1983)
Perch (white)	L	67000	24	12	50% mortality (LDC50)	Morgan et al. (1983)
Bass (Striped)	L	6292	48	12	50% mortality (LDC50)	
	L	6900	48	12	50% mortality (LDC50)	Morgan et al. (1983)
erch (white)	E		69		, , ,	Morgan et al. (1983)
erch (White)		50		11	Egg mortality 30.3% (control 32.7%)	Auld & Schubel (1974)
Perch (White)	E	100	69	11	Egg mortality 31.1% (control 32.7%)	Auld & Schubel (1974)
Perch (White)	E	500	69	11	Egg mortality 39.4% (control 32.7%)	Auld & Schubel (1974)
Perch (White)	E	1000	69	12	Egg mortality 50.6% (control 32.7%)	Auld & Schubel (1974)
inapper (Pink)	E	32	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)
Snapper (Pink)	E	100	12	0	No sediment adhesion to egg; No apparent effect on egg	, ,
Snapper (Pink)	E E	320 1000	12 12	0	No sediment adhesion to egg; No apparent effect on egg No sediment adhesion to egg; No apparent effect	Partridge & Michael (2010) Partridge & Michael (2010)
Snapper (Pink) Snapper (Pink)	E	3200	12	0	on egg No sediment adhesion to egg; No apparent effect No sediment adhesion to egg; No apparent effect	Partridge & Michael (2010)
Snapper (Pink)	E	10000	12	0	on egg No sediment adhesion to egg; No apparent effect No sediment adhesion to egg; No apparent effect	•
Snapper (Pink)	E	32	24	0	on egg No sediment adhesion to egg; No apparent effect	• • • •
Snapper (Pink)	E	100	24	0	on egg No sediment adhesion to egg; No apparent effect	• • • •
Snapper (Pink)	E	320	24	0	on egg No sediment adhesion to egg; No apparent effect	• • • •

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Snapper (Pink)	Е	1000	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)
Snapper (Pink)	E	3200	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)
Snapper (Pink)	E	10000	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)
Snapper (Pink)	L	32	12	10	Closed-mouth larvae mortality rate 8%	Partridge & Michael (2010)
Snapper (Pink)	L	100	12	10	Closed-mouth larvae mortality rate 16%	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	10	Closed-mouth larvae mortality rate 2%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	12	11	Closed-mouth larvae mortality rate 31%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	12	13	Closed-mouth larvae mortality rate 66%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	12	14	Closed-mouth larvae mortality rate 81%	Partridge & Michael (2010)
Snapper (Pink)	L	2020	12	12	Closed-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	12	11	Open-mouth larvae mortality rate 23%	Partridge & Michael (2010)
Snapper (Pink)	L	100	12	12	Open-mouth larvae mortality rate 41%	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	12	Open-mouth larvae mortality rate 55%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
Snapper (Pink)	L	157	12	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	3	10	Open-mouth larvae mortality rate 8%	Partridge & Michael (2010)
Snapper (Pink)	L	100	3	10	Open-mouth larvae mortality rate 2%	Partridge & Michael (2010)
Snapper (Pink)	L	320	3	10	Open-mouth larvae mortality rate 10%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	3	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	3	10	Open-mouth larvae mortality rate 9%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	3	10	Open-mouth larvae mortality rate 20%	Partridge & Michael (2010)
Snapper (Pink)	L	32	12	10	Open-mouth larvae mortality rate 18%	Partridge & Michael (2010)
Snapper (Pink)	L	100	12	11	Open-mouth larvae mortality rate 33%	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	14	Open-mouth larvae mortality rate 82%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	12	14	Open-mouth larvae mortality rate 91%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	12	14	Open-mouth larvae mortality rate 91%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
Snapper (Pink)	L	142	12	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	18	10	Open-mouth larvae mortality rate 9%	Partridge & Michael (2010)
Snapper (Pink)	L	100	18	11	Open-mouth larvae mortality rate 26%	Partridge & Michael (2010)
Snapper (Pink)	L	320	18	12	Open-mouth larvae mortality rate 56%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	18	14	Open-mouth larvae mortality rate 83%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	18	14	Open-mouth larvae mortality rate 81%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	18	14	Open-mouth larvae mortality rate 83%	Partridge & Michael (2010)
Snapper (Pink)	L	270	18	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)		32	3	10	Open-mouth larvae mortality rate 2%	Partridge & Michael (2010)
	L				·	
Snapper (Pink)	L	100	3 3	10 10	No observed mortality	Partridge & Michael (2010)
Snapper (Pink)	L	320			Open-mouth larvae mortality rate 19%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	3	11	Open-mouth larvae mortality rate 29%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	3	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	3	10	Open-mouth larvae mortality rate 19%	Partridge & Michael (2010)
Snapper (Pink)	L	320	6	12	Open-mouth larvae mortality rate 43%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	6	12	Open-mouth larvae mortality rate 45%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	6	11	Open-mouth larvae mortality rate 39%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	6	11	Open-mouth larvae mortality rate 23%	Partridge & Michael (2010)
Snapper (Pink)	L	100	9	10	Open-mouth larvae mortality rate 5%	Partridge & Michael (2010)
Snapper (Pink)	L	320	9	12	Open-mouth larvae mortality rate 48%	Partridge & Michael (2010)

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Snapper (Pink)	L	1000	9	14	Open-mouth larvae mortality rate 81%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	9	13	Open-mouth larvae mortality rate 64%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	9	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
Snapper (Pink)	L	502	9	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	12	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
Snapper (Pink)	L	100	12	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	11	Open-mouth larvae mortality rate 21%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	12	13	Open-mouth larvae mortality rate 68%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	12	14	Open-mouth larvae mortality rate 97%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	12	14	Open-mouth larvae mortality rate 98%	Partridge & Michael (2010)
Snapper (Pink)	L	214	12	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	3	10	Open-mouth larvae mortality post 9h recovery 3%	Partridge & Michael (2010)
Snapper (Pink)	L	100	3	10	Open-mouth larvae mortality post 9h recovery 12%	Partridge & Michael (2010)
Snapper (Pink)	L	320	3	10	Open-mouth larvae mortality post 9h recovery 20%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	3	12	Open-mouth larvae mortality post 9h recovery 41%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	3	12	Open-mouth larvae mortality post 9h recovery 51%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	3	11	Open-mouth larvae mortality post 9h recovery 38%	Partridge & Michael (2010)
Snapper (Pink)	L	32	6	10	Open-mouth larvae mortality post 9h recovery 7%	Partridge & Michael (2010)
Snapper (Pink)	L	100	6	10	Open-mouth larvae mortality post 9h recovery 1%	Partridge & Michael (2010)
Snapper (Pink)	L	320	6	10	Open-mouth larvae mortality post 9h recovery 4%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	6	12	Open-mouth larvae mortality post 9h recovery 46%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	6	12	Open-mouth larvae mortality post 9h recovery 59%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	6	13	Open-mouth larvae mortality post 9h recovery 64%	Partridge & Michael (2010)
Snapper (Pink)	L	32	9	10	Open-mouth larvae mortality post 9h recovery 6%	Partridge & Michael (2010)
Snapper (Pink)	L	100	9	11	Open-mouth larvae mortality post 9h recovery 21%	Partridge & Michael (2010)
Snapper (Pink)	L	320	9	11	Open-mouth larvae mortality post 9h recovery 29%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	9	12	Open-mouth larvae mortality post 9h recovery 58%	Partridge & Michael (2010)
Snapper (Pink)	L	32	12	10	Open-mouth larvae mortality post 9h recovery 12%	Partridge & Michael (2010)
Snapper (Pink)	L	100	12	10	Open-mouth larvae mortality post 9h recovery 16%	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	12	Open-mouth larvae mortality post 9h recovery 47%	Partridge & Michael (2010)
Snapper (Pink)	L	50	240	4	Larvae ingested less prey (14 Gladioferens imparipes, control 15)	Partridge & Michael (2010)
Snapper (Pink)	L	100	240	4	Larvae ingested less prey (13 Gladioferens imparipes, control 15)	Partridge & Michael (2010)
Snapper (Pink)	L	200	240	4	Larvae ingested less prey (10 Gladioferens imparipes, control 15)	Partridge & Michael (2010)
Snapper (Pink)	L	50	360	4	Larvae ingested less prey (6 Gladioferens imparipes, control 11)	Partridge & Michael (2010)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Snapper (Pink)	L	100	360	4	Larvae ingested less prey (7 Gladioferens imparipes, control 11)	Partridge & Michael (2010)
Snapper (Pink)	L	200	360	4	Larvae ingested less prey (3 Gladioferens imparipes, control 11)	Partridge & Michael (2010)
Perch (White)	L	3730	24	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Perch (White)	L	1550	48	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Bass (Striped)	L	4850	24	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Bass (Striped)	L	2800	48	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	0.5% increase in hematocrit values	Sherk et al. (1975)
Bass (Striped)	L	1500	336	8	25.2% increase in hematocrit values	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	6.8% decrease in hemoglobin concentration	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	5.5% increase in erythrocyte counts	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	4.4% decrease in plasma osmolality	Sherk et al. (1975)
Bass (Striped)	L	1500	336	8	5.7% increase in plasma osmolality	Sherk et al. (1975)
Herring (Pacific)	E	65	2	0	No change in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	125	2	11	Decrease in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	250	2	11	Decrease in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	500	2	11	Decrease in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	65	2	0	No change in fertilization and hatching success, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	E	125	2	9	Fertilization and hatching success decreased, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	E	250	2	9	Fertilization and hatching success decreased, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	E	500	2	9	Fertilization and hatching success decreased, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	L	500	2	9	Reduced hatch size (5mm, control 6mm)	Griffin et al. (2009)
Herring (Pacific)	L	500	2	9	Reduced hatch size (6mm, control 8mm)	Griffin et al. (2009)
Herring (Pacific)	L	500	2	9	Reduced hatch size (6mm, control 9mm)	Griffin et al. (2009)
Herring (Pacific)	L	500	2	8	Increased yolk sac size	Griffin et al. (2009)
Herring (Pacific)	L	500	2	12	Decreased post-hatch survival (87 larvae dead, 54 control larvae dead)	Griffin et al. (2009)

Adult nonsalmonids (estuarine or river-estuarine, group 5)

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Rasbora (harlequin)	А	40000	24.00	10	Fish died (BC)	Alabaster & Lloyd (1980)
Rasbora (harlequin)	Α	6000	168.00	10	No mortality	Alabaster & Lloyd (1980)
Shad (American)	Α	100	0.25	3	Change in preferred swimming depth	Dadswell et al. (1983)
Toadfish (Oyster)	Α	2200	3.00	5	No effect on oxygen consumption	Neumann et al. (1975)
Toadfish (Oyster)	Α	1580	3.00	5	No effect on oxygen consumption	Neumann et al. (1975)
Toadfish (Oyster)	Α	3360	1.00	8	Oxygen consumption more variable in prestressed fish	Neumann et al. (1975)
Toadfish (Oyster)	Α	11090	72.00	9	Latent ill effects manifested in subsequent test at low SS	Neumann et al. (1975)
Toadfish (Oyster)	Α	10370	72.00	5	No latent effect manifested in subsequent test in filtered water	Neumann et al. (1975)
Toadfish (Oyster)	Α	14600	72.00	8	Fish largely unaffected, but developed latent ill effects	Neumann et al. (1975)
Toadfish (Oyster)	Α	1580	3.00	8	Male respiration rate greater than female	Neumann et al. (1975)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Anchovy (Bay)	Α	2310	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Anchovy (Bay)	Α	4710	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Anchovy (Bay)	Α	9600	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	23770	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	38190	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	61360	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	97200	24.00	10	10% mortality (LC10)	Sherk et al. (1975)	
Killifish (Striped)	Α	128200	24.00	12	50% mortality (LC50)	Sherk et al. (1975)	
Killifish (Striped)	Α	169300	24.00	14	90% mortality (LC90)	Sherk et al. (1975)	
Mummichog	Α	24470	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Mummichog	Α	39000	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Mummichog	Α	62170	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Perch (white)	Α	3050	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Perch (white)	Α	9850	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Perch (white)	Α	31810	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Perch (white)	Α	670	48.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Perch (white)	Α	2960	48.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Perch (white)	Α	13060	48.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Silverside (Atlantic)	Α	580	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Silverside (Atlantic)	Α	2500	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Silverside (Atlantic)	Α	10000	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Spot	Α	13090	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Spot	Α	20340	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Spot	Α	68750	24.00	10	10% mortality (LC10)	Sherk et al. (1975)	
Spot	Α	88000	24.00	12	50% mortality (LC50)	Sherk et al. (1975)	
Spot	Α	112630	24.00	14	90% mortality (LC90)	Sherk et al. (1975)	
Spot	Α	1140	48.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Spot	Α	1890	48.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Spot	Α	3170	48.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Hematocrit increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Erythrocyte count increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Hemoglobin concentration increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	5	Plasma Osmolarita decreased	Sherk et al. (1975)	
Hogchoker	Α	1240	120.00	8	Hematocrit increased	Sherk et al. (1975)	
Hogchoker	Α	1240	120.00	8	Energy utilization increased	Sherk et al. (1975)	
Hogchoker	Α	1240	120.00	8	Erythrocyte count increased	Sherk et al. (1975)	
Killifish (Striped)	Α	960	120.00	8	Hematocrit increased	Sherk et al. (1975)	
Spot	Α	1270	120.00	8	Hematocrit decreased	Sherk et al. (1975)	
Spot	Α	1270	120.00	8	Hemoglobin concentration increased	Sherk et al. (1975)	
Spot	Α	1270	120.00	8	Erythrocyte count increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	5	No increase in size of gill goblet cells	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Increase of gill mucus goblet cells	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Abnormalities of gill secondary lamellae observed	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Gill Lamellae appeared swollen	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Gill epithelium separated from pilar cell tube/lamellar structure	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Enlarged gill epithelial cells	Sherk et al. (1975)	
Perch (white)	Α	3050	24.00	9	Significant adverse effect on gill tissue	Sherk et al. (1975)	
Perch (white)	Α	3050	120.00	8	Gill tissue may have been damaged	Sherk et al. (1975)	

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Perch (white)	Α	650	120.00	8	Histological damage to gill tissue	Sherk et al. (1975)
Mummichog	Α	300000	24.00	10	0% mortality	Rogers (1969)
Minnow (sheepshead)	Α	300000	24.00	11	30% mortality	Rogers (1969)
Stickleback (fourspine)	Α	52000	24.00	12	50% mortality (LD50)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	133000	12.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	72000	48.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	17210	12.00	10	0.15% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	133050	12.00	10	2.3% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	214710	12.00	10	11.9% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	17080	24.00	10	0.18% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	37650	24.00	10	1.21% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	40480	24.00	10	0.7% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	99500	24.00	10	3.23% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	130890	24.00	10	4.2% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	210580	24.00	10	13.13% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	17350	48.00	10	0.11% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	17360	48.00	10	0.73% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	40850	48.00	10	1.19% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	77200	48.00	10	0.72% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	99490	48.00	10	3.29% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	134910	48.00	10	13.36% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	209250	48.00	14		
		7700			95.33% mortality (15.0 C, KS)	Rogers (1969)
Stickleback fourspine)	A		24.00	10	15.37% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	A	8560	24.00	11	30.54% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	А	18600	24.00	12	54.11% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	А	18740	24.00	12	59.09% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	39200	24.00	13	74.13% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	39630	24.00	14	89.52% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	58810	24.00	14	89.6% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	59960	24.00	14	100% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	9380	24.00	10	0% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	22300	24.00	10	19.16% mortality (11.0 C, KS)	Rogers (1969)
Stickleback fourspine)	Α	22460	24.00	11	24.8% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	37790	24.00	11	24.69% mortality (11.0 C, KS)	Rogers (1969)
Stickleback fourspine)	Α	53710	24.00	12	44.96% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	55130	24.00	12	49.94% mortality (11.0 C, KS)	Rogers (1969)
Stickleback fourspine)	Α	55140	24.00	13	65.34% mortality (11.0 C, KS)	Rogers (1969)

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Stickleback (fourspine)	Α	99010	24.00	13	79.55% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	99300	24.00	14	89.74% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	198290	24.00	14	94.23% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	200060	24.00	14	96.6% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	299010	24.00	14	99.57% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	300160	24.00	14	95.01% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	57440	24.00	10	11.1% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	101020	24.00	10	15.12% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	200170	24.00	12	40.21% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	301130	24.00	11	39.05% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	330000	24.00	12	50% mortality (LD50, 9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	53000	24.00	12	50% mortality (LD50, 10.0-12.0 C, KS)	Rogers (1969)
Stickleback fourspine)	Α	18300	24.00	12	50% mortality (LD50, 15.0-16.0 C, KS)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	28000	24.00	12	50% mortality (LD50, 20.0-25.0 C, KS)	Rogers (1969)
unner	Α	40510	24.00	13	60.29% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	40950	24.00	11	35.73% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	73620	24.00	13	69.69% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	85730	24.00	14	80.23% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	99200	24.00	14	80.25% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	98780	24.00	14	100.32% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	118640	24.00	14	89.43% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	103970	24.00	10	6.37% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	10010	24.00	10	1.18% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	17710	24.00	10	0.61% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	37510	24.00	11	20.52% mortality (15.0 C, KS)	Rogers (1969)
unner	Α	41960	24.00	10	10.78% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	74310	24.00	10	10.43% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	99460	24.00	12	49.45% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	133520	24.00	12	59.63% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	210000	24.00	14	90% mortality (15.0 C, KS)	Rogers (1969)
/linnow sheepshead)	Α	10060	24.00	10	0.3% mortality (19.0 C, KS)	Rogers (1969)
Ainnow sheepshead)	Α	16190	24.00	10	10.42% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	31880	24.00	10	0.06% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	54610	24.00	11	20.17% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	99150	24.00	14	90% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	10910	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)

Species		Sediment dose			Fish Response	
	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Minnow (sheepshead)	А	56620	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	56950	24.00	10	5.63% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	99400	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	196940	24.00	10	10.49% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	201140	24.00	10	10.53% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	299440	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	299360	24.00	11	30.44% mortality (15.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	9100	24.00	10	0% mortality (KS, 10-12 C)	Rogers (1969)
Stickleback (fourspine)	Α	23400	24.00	11	20.7% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	24400	24.00	11	24.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	37500	24.00	11	24.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	55000	24.00	12	44.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	55200	24.00	12	49.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	55100	24.00	13	64.7% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	98500	24.00	14	89.4% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	195300	24.00	14	94.3% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	198000	24.00	14	95.5% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	298600	24.00	14	95.2% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	298000	24.00	14	100% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	98400	24.00	13	78.8% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	9100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	А	18100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	41500	24.00	10	10.3% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	74600	24.00	10	10% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	99000	24.00	12	50% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	133300	24.00	12	59.5% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	208100	24.00	14	90.2% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	9100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	55600	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	100100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	199900	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	200300	24.00	10	10.6% mortality (10.0-12.0 C, KS)	Rogers (1969)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Minnow (sheepshead)	А	201600	24.00	10	9.2% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Minnow (sheepshead)	Α	300400	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Minnow (sheepshead)	Α	300200	24.00	11	30.3% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Mummichog	Α	9100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Mummichog	Α	56000	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Mummichog	Α	100500	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Mummichog	Α	200600	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Mummichog	A	299600	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)	
Stickleback (fourspine)	A	53000	24.00	12	50% mortality (LD50, 10.0-12.0 C, KS)	Rogers (1969)	
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)	
Stickleback (fourspine)	A	510	24.00	10	1.33% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	1170	24.00	10	0% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	4150	24.00	10	5.63% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	1970	24.00	11	30.07% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	3130	24.00	12	45.04% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	3280	24.00	12	59.85% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	2620	24.00	14	94.67% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	3500	24.00	14	95.11% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	4150	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	4660	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	5100	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	5760	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Stickleback (fourspine)	Α	9910	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)	
Cunner	Α	13340	24.00	10	0% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	Α	13340	24.00	12	40.15% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	Α	23620	24.00	12	49.33% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	Α	23830	24.00	14	89.78% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	Α	13410	24.00	14	100% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	A	23830	24.00	14	100% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	A	42060	24.00	14	89.63% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	A	42130	24.00	14	97.93% mortality (16.4 C, IA)	Rogers (1969)	
Cunner	A	41980	24.00	14	100% mortality (16.4 C, IA)	Rogers (1969)	
Stickleback	A	2110	24.00	10	0.18% mortality (10.0-12.0 C, IA)	Rogers (1969)	
(fourspine) Stickleback	A	1230	24.00	10	0.72% mortality (10.0-12.0 C, IA)	Rogers (1969)	
(fourspine)	^	1230	27.00	10	5.7.270 Mortality (10.0-12.0 C, IA)	1108C13 (1203)	
Stickleback (fourspine)	Α	3510	24.00	10	4.85% mortality (10.0-12.0 C, IA)	Rogers (1969)	
Stickleback	Α	2460	24.00	11	29.26% mortality (10.0-12.0 C, IA)	Rogers (1969)	

		Sediment dose			Fish Response	
pecies	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
itickleback fourspine)	Α	4210	24.00	12	44.7% mortality (10.0-12.0 C, IA)	Rogers (1969)
itickleback fourspine)	Α	4390	24.00	12	59.78% mortality (10.0-12.0 C, IA)	Rogers (1969)
itickleback fourspine)	Α	3860	24.00	14	94.79% mortality (10.0-12.0 C, IA)	Rogers (1969)
stickleback fourspine)	Α	5610	24.00	14	94.97% mortality (10.0-12.0 C, IA)	Rogers (1969)
itickleback fourspine)	Α	5610	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
itickleback fourspine)	Α	7020	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
tickleback	Α	8950	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
fourspine) Stickleback	Α	11050	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
fourspine) Stickleback	Α	10350	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) Stickleback	Α	24210	24.00	10	19.57% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) Stickleback	А	24210	24.00	11	24.42% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) Stickleback	А	38250	24.00	11	24.24% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) stickleback	А	56840	24.00	12	43.27% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) stickleback	Α	56320	24.00	12	48.83% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) stickleback	Α	55790	24.00	12	57.63% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) itickleback	Α	100530	24.00	13	76.66% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) stickleback	А	100700	24.00	14	87.97% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) stickleback	Α	200000	24.00	14	91.92% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) itickleback	Α	200000	24.00	14	91.92% mortality (10.0-12.0 C, KS)	Rogers (1969)
fourspine) Cunner	Α	13370	24.00	10	0% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	13570	24.00	12	40.08% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	24390	24.00	12	49.9% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	24580	24.00	14	89.78% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	13770	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	24580	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	42280	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	43270	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner		9440	24.00	10	0% mortality (15.0-16.0 C, KS)	
	Α Δ				0% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	18290	24.00	10	, ,	Rogers (1969)
Cunner	A	42280	24.00	10	9.62% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	38350	24.00	10	19.24% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	74930	24.00	10	9.22% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	Α	134920	24.00	12	57.92% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	Α	210000	24.00	14	87.17% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	Α	9640	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)
Cunner	Α	13570	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)
Cunner	Α	18290	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)

		Sediment dose			Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Cunner	А	23800	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	14160	24.00	10	10.02% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	37760	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	41890	24.00	11	20.04% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	55850	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	75130	24.00	10	8.82% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	99520	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	99710	24.00	12	48.7% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Mummichog	Α	300000	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	Α	100000	24.00	10	Mortality occurred	Rogers (1969)	
Mummichog	Α	25400	24.00	10	4.59% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	Α	50490	24.00	10	9.64% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	A	73730	24.00	10	14.84% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	A	99160	24.00	14	85.3% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	A	10460	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	54770	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	99080	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	199400	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	299400	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Stickleback (fourspine)	A	10000	25.00	14	99.54% mortality (control 0%, 12.5 C, Glass powder)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	25.00	14	81.74% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	48.00	14	81.57% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	72.00	14	81.41% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	95.00	14	86.02% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	119.00	14	86.18% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	143.00	14	90.64% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	26.00	10	18.8% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	49.00	11	22.92% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	73.00	11	28.01% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	95.00	11	27.52% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	119.00	11	27.51% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	144.00	11	27.39% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	25.00	10	9.87% mortality (control 0%, 12.5 C, Powdered charcol)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	48.00	10	13.68% mortality (control 0%, 12.5 C, Powdered charcol)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	72.00	10	14.65% mortality (control 0%, 12.5 C, Powdered charcol)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	96.00	10	17.68% mortality (control 0%, 12.5 C, Powdered charcol)	Rogers (1969)	
Stickleback	Α	10000	119.00	10	18.13% mortality (control 0%, 12.5 C, Powdered charcol)	Rogers (1969)	

		Sedimer	nt dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Stickleback (fourspine)	А	10000	143.00	10	18.14% mortality (control 0%, 12.5 C, Powdered charcol)	Rogers (1969)	
Stickleback (fourspine)	А	9790	24.00	10	15.84% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	9730	24.00	11	30.99% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19420	24.00	12	55.75% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19020	24.00	13	60.28% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39350	24.00	13	73.46% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39050	24.00	14	89.95% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59040	24.00	14	89% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59210	24.00	14	100% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	9010	24.00	10	0.66% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	9590	24.00	10	0% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19470	24.00	11	20.23% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19560	24.00	11	35.55% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39350	24.00	11	25.15% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39210	24.00	11	28% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	44020	24.00	12	54.94% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	44240	24.00	12	57.31% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59040	24.00	14	89% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59210	24.00	14	100% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Cunner	Α	41500	24.00	11	35.06% mortality (23 .0C, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	41030	24.00	13	60.41% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	73920	24.00	13	68.86% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	74600	24.00	13	68.68% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	А	99480	24.00	13	79.35% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	А	99740	24.00	12	49.17% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	А	41490	24.00	10	14.23% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	А	40890	24.00	12	44.58% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	Α	74480	24.00	11	34.35% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	Α	74440	24.00	12	49.02% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
unner	Α	99350	24.00	12	44.18% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
unner	Α	99270	24.00	12	54.02% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
illifish (Gulf)	Α	100	2.00	4	Feeding rate decreased to 60.5% of control (NTU)	Benfield & Minello (1996)	
tlantic Silverside	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
oaker	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
eakfish	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
rch (White)	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)	
ot	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)	
adfish	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)	
ummichog	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)	
gchoker	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)	
adfish	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
ummichog	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
gchoker	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
ss (Striped)	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
ifish (Striped)	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
adfish	Α	118000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
sk Eel	Α	118000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
gchoker	Α	118000	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
ss (Striped)	A	16600	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
ot	A	13080	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
chovy (Bay)	A	2310	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
		570	24.00	10		. ,	
antic Silverside	A				Mortality rate 10% (LC10)	O'Conner et al. (1976)	
mmichog	A	24470	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
ifish (Striped)	A	23770	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
rch (White)	A	9850	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ot (5.)	A	20340	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
chovy (Bay)	Α	4710	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
antic Silverside	Α	2400	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ımmichog	Α	39000	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ifish (Striped)	Α	38180	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
rch (White)	Α	31810	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ot	Α	31620	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
chovy (Bay)	Α	9600	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
lantic Silverside	Α	10000	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ummichog	Α	62170	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ifish (Striped)	Α	61360	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ot	Α	27560	12.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
ot	Α	42360	12.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ot	Α	65120	12.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ot	Α	21070	18.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
ot	Α	33060	18.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ot	Α	51870	18.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ot	Α	13080	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
ot	Α	20340	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ot	Α	31620	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ot	Α	1130	48.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
ot	Α	1900	48.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
ot	Α	3170	48.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
ot	A	68750	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure SE duration (h)		Description ^c	Reference	
Killifish (Striped)	Α	97100	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
Spot	Α	88000	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
Killifish (Striped)	Α	128200	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
Spot	Α	112630	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
Killifish (Striped)	Α	169300	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
Mummichog	Α	35890	48.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
Mummichog	Α	45160	48.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)	
Mummichog	Α	56890	48.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)	
Mummichog	Α	125000	24.00	11	Fish mortality 38%	O'Conner et al. (1976)	
Mummichog	Α	109000	72.00	10	No fish mortality	O'Conner et al. (1976)	
Toadfish (Oyster)	Α	1580	72.00	0	No significant change in blood chemistry	Neumann et al. (1975)	
Toadfish (Oyster)	Α	2200	72.00	0	No significant change in blood chemistry	Neumann et al. (1975)	
Toadfish (Oyster)	Α	14600	72.00	0	No significant change in microhematocrit levels	Neumann et al. (1975)	
Toadfish (Oyster)	Α	14600	72.00	0	No significant change in hemoglobin levels	Neumann et al. (1975)	
Toadfish (Oyster)	Α	14600	72.00	0	No significant change in Erythrocyte count levels	Neumann et al. (1975)	
Toadfish (Oyster)	Α	14600	72.00	0	No significant change in Blood osmolal concentration levels	Neumann et al. (1975)	
Toadfish (Oyster)	Α	10370	72.00	0	No significant difference in oxygen consumption	Neumann et al. (1975)	
Toadfish (Oyster)	Α	11090	72.00	8	Oxygen consumption reduced	Neumann et al. (1975)	
Toadfish (Oyster)	Α	1580	72.00	5	Significant differences between male respiration rates and female respiration rates	Neumann et al. (1975)	
Perch (White)	Α	3050	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Perch (White)	Α	670	48.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Spot	Α	13090	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Spot	Α	68750	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Spot	Α	1140	48.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Silverside	Α	580	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Anchovy (Bay)	Α	2310	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Mummichog	Α	24470	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Killifish (Striped)	Α	23770	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Killifish (Striped)	Α	97200	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)	
Perch (White)	Α	9850	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Perch (White)	Α	2960	48.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Spot	Α	20340	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Spot	Α	88000	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Spot	Α	1890	48.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Silverside	Α	2500	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Anchovy (Bay)	Α	4710	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Mummichog	Α	39000	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Killifish (Striped)	Α	38190	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Killifish (Striped)	Α	128200	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)	
Perch (White)	Α	31810	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Perch (White)	Α	3060	48.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Spot	Α	112630	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Spot	A	3170	48.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Silverside	A	10000	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Anchovy (Bay)	A	9600	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Mummichog	A	62170	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Killifish (Striped)	A	61360	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)	
Killifish (Striped)	A	169300	24.00		Mortality rate 90% (LC90)		
Perch (White)		650	120.00	14 8	17.7% increase in hematocrit values	Sherk et al. (1975) Sherk et al. (1975)	
i ci cii (vviiite)	Α	1240	120.00	0	17.770 IIICI CASC III IICIIIALUCIIL VAIUES	Sherk et al. (1975)	

Species Life Stage® Concen- tration (mg/LV) services and stage of the	
Spot A 1270 120.00 8 3.9% decrease in hematocrit values Sherk et al. Perch (White) A 650 120.00 8 15.1% increase in hemoglobin concentration Sherk et al. Spot A 1270 120.00 8 6.7% increase in hemoglobin concentration Sherk et al. Perch (White) A 650 120.00 8 29.0% increase in erythrocyte counts Sherk et al. Perch (White) A 1240 120.00 8 3.0.4% increase in erythrocyte counts Sherk et al. Spot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. Spot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. Perch (White) A 650 120.00 8 2.8% increase in erythrocyte counts Sherk et al. Perch (White) A 650 120.00 8 Decret (White) A 650 120.00 8 Perch (White) A 650 120.00	
rech (White) A 650 120.00 8 15.1% increase in hemoglobin concentration Sherk et al. pot A 1270 120.00 8 6.7% increase in hemoglobin concentration Sherk et al. pot A 1270 120.00 8 29.0% increase in erythrocyte counts Sherk et al. pot A 1270 120.00 8 30.4% increase in erythrocyte counts Sherk et al. pot A 1270 120.00 8 30.4% increase in erythrocyte counts Sherk et al. pot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. pot A 650 120.00 8 2.8% increase in plasma osmolality Sherk et al. pot A 650 120.00 8 10.0000 8 10.000 8 10.000 8 10.000 8 10.000 8 10.000 8 10.000 8 10.0000 8 10.000 8 10.000 8 10.000 8 10.000 8 10.000 8 10.000 8 10.00000 8 10.0000000 8 10.000000 8 10.000000 8 10.0000000 8 10.00000000 8 10.0000000000	(1975)
pot A 1270 120.00 8 6.7% increase in hemoglobin concentration Sherk et al. erch (White) A 650 120.00 8 29.0% increase in erythrocyte counts Sherk et al. logchoker A 1240 120.00 8 30.4% increase in erythrocyte counts Sherk et al. pot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. erch (White) A 650 120.00 8 2.8% increase in plasma osmolality Sherk et al. erch (White) A 650 120.00 8 Increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 Secondary lamellae swollen with abnormalities Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelian separated from pilar cell tube Sherk et al. erch (White) A 650 120.00 8 Red blood cells increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor e erch (White) A 650 120.00 8 Red blood cells increased O'Connor e erch (White) A 650 120.00 8 Red blood cells increased O'Connor e erch (White) A 650 120.00 8 Red blood cells increased O'Connor e erch (White) A 650 120.00 8 Red blood cells increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Microhematocrit	(1975)
rech (White) A 650 120.00 8 29.0% increase in erythrocyte counts Sherk et al. logchoker A 1240 120.00 8 30.4% increase in erythrocyte counts Sherk et al. pot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. erch (White) A 650 120.00 8 2.8% increase in erythrocyte counts Sherk et al. erch (White) A 650 120.00 8 Increase in plasma osmolality Sherk et al. erch (White) A 650 120.00 8 Secondary lamellae swollen with abnormalities Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelian separated from pilar cell tube Sherk et al. erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Microhematocrit increased O'Connor et erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1220 120.00 8 Microhematocrit increased O'	(1975)
logchoker A 1240 120.00 8 30.4% increase in erythrocyte counts Sherk et al. pot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. erch (White) A 650 120.00 8 1.8% increase in plasma osmolality Sherk et al. erch (White) A 650 120.00 8 1.8% increase in plasma osmolality Sherk et al. erch (White) A 650 120.00 8 1.8% increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 1.8% increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 1.8% increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 1.8% increased Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 1.8% increased Sherk et al. erch (White) A 650 120.00 8 1.8% increased O'Connor et erch (White) A 650 120.00 8	(1975)
pot A 1270 120.00 8 5.4% increase in erythrocyte counts Sherk et al. erch (White) A 650 120.00 8 1.8% increase in plasma osmolality Sherk et al. erch (White) A 650 120.00 8 Increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 Secondary lamellae swollen with abnormalities Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epitheliam separated from pilar cell tube Sherk et al. erch (White) A 650 120.00 8 Red blood cells increased O'Connor elerch (White) A 650 120.00 8 Microhematocrit increased O'Connor elerch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor elerch (White) A 650 120.00 8 Osmolality increased O'Connor elogchoker A 1240 120.00 8 Red blood cells increased O'Connor elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor elogchoker A 1620 88.00 8 Microhematocrit increased O'Connor elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor elogchoker A 1620	(1975)
erch (White) A 650 120.00 8 2.8% increase in plasma osmolality Sherk et al. erch (White) A 650 120.00 8 Increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 Secondary lamellae swollen with abnormalities Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelium separated from pilar cell tube Sherk et al. erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Microhematocrit increased O'Connor et erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor et erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elog	(1975)
lerch (White) A 650 120.00 8 Increase in mucus goblet cells in gills Sherk et al. erch (White) A 650 120.00 8 Secondary lamellae swollen with abnormalities Sherk et al. erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelian separated from pilar cell tube Sherk et al. erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Microhematocrit increased O'Connor et erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor et erch (White) A 650 120.00 8 Osmolality increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Micro	(1975)
Perch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. Perch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. Perch (White) A 650 120.00 8 Epithelian separated from pilar cell tube Sherk et al. Perch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor exterch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor exterch (White) A 650 120.00 8 Osmolality increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Microhematocrit increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Red blood cells increased O'Connor exterch (White) A 650 120.00 8 Re	(1975)
erch (White) A 650 120.00 8 Epithelial cells enlarged Sherk et al. erch (White) A 650 120.00 8 Epithelium separated from pilar cell tube Sherk et al. erch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Microhematocrit increased O'Connor et erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor et erch (White) A 650 120.00 8 Osmolality increased O'Connor et erch (White) A 650 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elilifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor et elilifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor et elilifish (Striped) A 1620 96.00 8 Microhematocrit increased O'Connor et elilifish (Striped) A 1620 168.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit increased O'Connor et elilification A 1620 288.00 8 Microhematocrit incre	(1975)
Perch (White) A 650 120.00 8 Epithelium separated from pilar cell tube Sherk et al. Perch (White) A 650 120.00 8 Red blood cells increased O'Connor et erch (White) A 650 120.00 8 Microhematocrit increased O'Connor et erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor et erch (White) A 650 120.00 8 Osmolality increased O'Connor et elogchoker A 1240 120.00 8 Red blood cells increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1240 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 120.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 96.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elogchoker A 1620 168.00 8 Microhematocrit increased O'Connor et elog	(1975)
erch (White) A 650 120.00 8 Red blood cells increased O'Connor elerch (White) A 650 120.00 8 Microhematocrit increased O'Connor elerch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor elerch (White) A 650 120.00 8 Osmolality increased O'Connor elerch (White) A 650 120.00 8 Red blood cells increased O'Connor elegation (White) A 1240 120.00 8 Red blood cells increased O'Connor elegation (White) A 1240 120.00 8 Microhematocrit increased O'Connor elegation (White) A 960 120.00 8 Microhematocrit increased O'Connor elegation (White) A 1620 96.00 8 Microhematocrit increased O'Connor elegation (White) A 1620 168.00 8 Microhematocrit increased O'Connor elegation (White) A 1620 288.00 8 Microhematocrit increased O'Connor elegation (White) A 1620 288.00 8 Microhematocrit increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Connor elegation (White) A 1270 120.00 8 Red blood cells increased O'Con	(1975)
erch (White) A 650 120.00 8 Microhematocrit increased O'Connor e erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor e erch (White) A 650 120.00 8 Osmolality increased O'Connor e logchoker A 1240 120.00 8 Red blood cells increased O'Connor e logchoker A 1240 120.00 8 Microhematocrit increased O'Connor e illifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 96.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e Mummichog A 1	(1975)
erch (White) A 650 120.00 8 Hemoglobin concentration increased O'Connor elerch (White) A 650 120.00 8 Osmolality increased O'Connor elegation of the control	et al. (1977)
erch (White) A 650 120.00 8 Osmolality increased O'Connor e logchoker A 1240 120.00 8 Red blood cells increased O'Connor e logchoker A 1240 120.00 8 Microhematocrit increased O'Connor e illifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 96.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e pot A 1270 120.00 8 Red blood cells increased O'Connor e	et al. (1977)
erch (White) A 650 120.00 8 Osmolality increased O'Connor e logchoker A 1240 120.00 8 Red blood cells increased O'Connor e logchoker A 1240 120.00 8 Microhematocrit increased O'Connor e illifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 96.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e pot A 1270 120.00 8 Red blood cells increased O'Connor e	et al. (1977)
logchoker A 1240 120.00 8 Microhematocrit increased O'Connor e illifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 96.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e pot A 1270 120.00 8 Red blood cellls increased O'Connor e	et al. (1977)
illifish (Striped) A 960 120.00 8 Microhematocrit increased O'Connor e Aummichog A 1620 96.00 8 Microhematocrit increased O'Connor e Aummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Aummichog A 1620 288.00 8 Microhematocrit increased O'Connor e Aummichog A 1620 288.00 8 Microhematocrit increased O'Connor e Aummichog A 1270 120.00 8 Red blood cellls increased O'Connor e	et al. (1977)
Mummichog A 1620 96.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e pot A 1270 120.00 8 Red blood cellls increased O'Connor e	et al. (1977)
Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e pot A 1270 120.00 8 Red blood cellls increased O'Connor e	et al. (1977)
Mummichog A 1620 168.00 8 Microhematocrit increased O'Connor e Mummichog A 1620 288.00 8 Microhematocrit increased O'Connor e pot A 1270 120.00 8 Red blood cellls increased O'Connor e	et al. (1977)
pot A 1270 120.00 8 Red blood cellls increased O'Connor e	
oot A 1270 120.00 8 Red blood cellls increased O'Connor e	et al. (1977)
·	
pot A 1270 120.00 8 Hemoglobin concentration increased O'Connor e	
ass (Striped) A 600 264.00 8 Red blood cells slightly increased O'Connor e	
lass (Striped) A 600 264.00 8 Microhematocrit slightly increased O'Connor e	
ass (Striped) A 600 264.00 8 Hemoglobin concentrations decreased O'Connor e	
ass (Striped) A 600 264.00 8 Osmolality decreased O'Connor e	
lass (Striped) A 1500 336.00 8 Microhematocrit increased O'Connor e	
lass (Striped) A 1500 336.00 8 Osmolality increased O'Connor e	
oadfish (Oyster) A 14600 72.00 8 Red blood cells increased O'Connor e	
oadfish (Oyster) A 14600 72.00 8 Microhematocrit increased O'Connor e	
Foodfish (Oyster) A 14600 72.00 8 Hemoglobin concentration slightly increased O'Connor e	
oadfish (Oyster) A 14600 72.00 8 Osmolality decreased O'Connor e	` '
•	
	` '
· · · · · · · · · · · · · · · · · · ·	
pot A 15820 72.00 8 Microhematocrit decreased O'Connor e	
pot A 15820 168.00 5 No change in microhematocrit O'Connor e	` '
pot A 15820 24.00 8 Hemoglobin concentration slightly decreased O'Connor e	
pot A 15820 72.00 8 Hemoglobin concentration decreased O'Connor e	
pot A 15820 168.00 8 Hemoglobin concentration slightly decreased O'Connor e	
pot A 15820 24.00 8 Osmolality increased O'Connor e	
pot A 15820 72.00 8 Osmolality increased O'Connor e	
pot A 15820 168.00 8 Osmolality decreased O'Connor e	
erch (White) A 650 120.00 8 Mucus goblet cells appeared O'Connor e	
Perch (White) A 650 120.00 8 Secondary lamellae swollen O'Connor e	et al. (1977)
erch (White) A 650 120.00 8 Epithelium on secondary lamellae separated from O'Connor e pilar tube	

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Perch (White)	Α	650	120.00	8	Epithelial cells enlarged	O'Connor et al. (1977)
Hogchoker	Α	1240	120.00	8	Liver glycogen concentrations decreased	O'Connor et al. (1977)
Bass (Striped)	Α	790	3.00	5	Respiration increased	O'Connor et al. (1977)
erch (White)	Α	190	3.00	5	Respiration decreased	O'Connor et al. (1977)
oadfish (Oyster)	Α	1580	3.00	5	No change in respiration	O'Connor et al. (1977)
nchovy (Bay)	Α	9600	24.00	14	Mortality rate 90%	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ass (Striped)	Α	1500	336.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ass (Striped)	Α	600	264.00	0	No effect	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ogchoker	Α	1240	120.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
llifish (Striped)	Α	960	24.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
llifish (Striped)	Α	23770	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
llifish (Striped)	Α	38190	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
llifish (Striped)	Α	61360	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ummichog	Α	24470	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ummichog	Α	39000	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ummichog	Α	62170	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ummichog	Α	35860	48.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
lummichog	Α	45160	48.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ummichog	Α	56890	48.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ummichog	Α	1620	96.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
erch (White)	Α	9850	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
erch (White)	Α	31810	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
erch (White)	Α	670	48.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
erch (White)	Α	2960	48.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
erch (White)	Α	13060	48.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
verside tlantic)	Α	580	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
verside tlantic)	Α	2500	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
lverside .tlantic)	Α	10000	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
oot	Α	13090	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
oot	Α	20340	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
	Α	31620	24.00	14	90% mortality	Sherk et al. (1974, copied from

		Sedime	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Spot	Α	1140	48.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	1890	48.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	3170	48.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	1270	120.00	0	No effect	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Perch (Shiner)	Α	1000	96.00	10	Mortality rate 10%	McFarland & Peddicord (1980)
Perch (Shiner)	Α	3000	96.00	10	Mortality rate 20%	McFarland & Peddicord (1980)
Perch (Shiner)	Α	6000	96.00	11	Mortality rate 30%	McFarland & Peddicord (1980)
Sole (English)	Α	10000	240.00	10	0% mortality	McFarland & Peddicord (1980)
Sole (English)	Α	70000	240.00	10	0% mortality	McFarland & Peddicord (1980)
Sole (English)	Α	117000	240.00	13	80% mortality	McFarland & Peddicord (1980)
Perch (Shiner)	Α	3000	200.00	12	LC50 - 50% mortality	McFarland & Peddicord (1980)
Smelt	Α	19	0.08	0	No effect	Wildish & Power (1985)
Smelt	Α	22	0.08	3	Avoidance response	Wildish & Power (1985)
Smelt	Α	24	0.03	3	Avoidance response	Wildish & Power (1985)
Smelt	Α	40	0.06	3	Avoidance response	Wildish & Power (1985)
Smelt	Α	14	0.08	0	No effect	Wildish & Power (1985)

Adult nonsalmonids (freshwater, group 6)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Bass (Largemouth)	Α	73	2880.00	9	Weight gain reduced by 32.6%	Buck (1956)
Bass (Largemouth)	Α	207	2880.00	9	Weight gain reduced by 79.36%	Buck (1956)
Bass (Largemouth)	Α	73	2880.00	12	Reduced reproduction rates (66% reduction)	Buck (1956)
Bass (Largemouth)	Α	100	2880.00	12	Reduced reproduction rates or unable to reproduce	Buck (1956)
Bass (Largemouth)	Α	207	2880.00	14	Fish unable to reproduce	Buck (1956)
Bass (Largemouth)	Α	207	2880.00	9	Growth and development retarded	Buck (1956)
Sunfish (redear)	Α	73	2880.00	9	Weight gain reduced by 16.87%	Buck (1956)
Sunfish (redear)	Α	207	2880.00	9	Weight gain reduced by 49.21%	Buck (1956)
Sunfish (redear)	Α	73	2880.00	12	Reduced reproduction rates	Buck (1956)
Sunfish (redear)	Α	100	2880.00	12	Reduced reproduction rates or unable to reproduce	Buck (1956)
Sunfish (redear)	Α	207	2880.00	12	Reduced reproduction rates or unable to reproduce (85.7% reduction)	Buck (1956)
Sunfish (redear)	Α	207	2880.00	9	Growth and development retarded	Buck (1956)
Bluegill	Α	73	2880.00	9	Weight gain reduced 36.94%	Buck (1956)
Bluegill	Α	207	2880.00	9	Weight gain reduced by 59.46%	Buck (1956)
Bluegill	Α	73	2880.00	14	Fish unable to reproduce	Buck (1956)
Bluegill	Α	100	2880.00	14	Fish unable to reproduce	Buck (1956)
Bluegill	Α	207	2880.00	14	Fish unable to reproduce	Buck (1956)
Bluegill	Α	73	2880.00	12	Reduced reproduction rates	Buck (1956)
Bluegill	Α	100	2880.00	12	Reduced reproduction rates	Buck (1956)
Bluegill	Α	207	2880.00	12	Reduced reproduction rates	Buck (1956)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
luegill	Α	207	2880.00	9	Growth and development retarded	Buck (1956)	
tickleback hreespine)	Α	99	1440.00	10	Density of fish reduced	Erman & Ligon (1988)	
culpin (Prickly)	Α	99	1440.00	10	Density of fish reduced	Erman & Ligon (1988)	
ulpin (Prickly)	Α	99	1440.00	8	Poor condition, signs of starvation	Erman & Ligon (1988)	
sh	Α	120	384.00	10	Density of fish reduced	Erman & Ligon (1988)	
ickleback nreespine)	Α	120	384.00	10	Density of fish reduced	Erman & Ligon (1988)	
culpin (Prickly)	Α	120	384.00	10	Density of fish reduced	Erman & Ligon (1988)	
uegill	Α	60	0.05	4	Rate of feeding reduced by 20%	Gardner (1981)	
uegill	Α	120	0.05	4	Rate of feeding reduced by 27%	Gardner (1981)	
uegill	Α	190	0.05	4	Rate of feeding reduced by 46%	Gardner (1981)	
uegill	Α	60	0.05	0	No effect on prey size selection	Gardner (1981)	
uegill	Α	120	0.05	0	No effect on prey size selection	Gardner (1981)	
uegill	Α	190	0.05	0	No effect on prey size selection	Gardner (1981)	
uegill	Α	123	0.05	4	Rate of feeding reduced	Gardner (1981)	
eek Chub	Α	4	48.00	3	Fish more active and less dependent on cover	Gradall & Swenson (1982)	
eek Chub	Α	345	48.00	3	Prefered more turbid conditions	Gradall & Swenson (1982)	
sh	Α	900	720.00	12	Fish absent or markedly reduced in abundance	Herbert & Richards (1962)	
sh	Α	1000	720.00	12	Fish absent or markedly reduced in abundance	Herbert & Richards (1962)	
sh	Α	20	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	60	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	400	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	40	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	100	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	60	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	50	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962)	
sh	Α	620	48.00	10	Fish kills downstream from sediment sources	Hesse &Newcombe (1982)	
h	Α	14540	24.00	10	Fish kills downstream from sediment sources	Hesse &Newcombe (1982)	
sh	Α	21875	24.00	10	Fish kills downstream from sediment sources	Hesse &Newcombe (1982)	
nfish (Green)	Α	3300	8.00	0	No effect on ventilation rate	Horkel & Pearson (1976)	
nfish (Green)	Α	6700	8.00	0	No effect on ventilation rate	Horkel & Pearson (1976)	
nfish (Green)	Α	13300	8.00	5	Rate of ventilation increased (sig)	Horkel & Pearson (1976)	
nfish (Green)	Α	17800	8.00	5	Rate of ventilation increased (sig)	Horkel & Pearson (1976)	
nfish (Green)	Α	26700	8.00	5	Rate of ventilation increased (sig)	Horkel & Pearson (1976)	
ınfish (Green)	Α	3300	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)	
ınfish (Green)	Α	6700	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)	
unfish (Green)	Α	13300	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)	
unfish (Green)	Α	17800	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)	
unfish (Green)	Α	26700	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)	
sh	Α	3000	240.00	10	Fish died	Kemp (1949)	
sh	Α	22	8760.00	14	Fish populations destroyed	Menzel et al. (1984)	

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Stickleback (threespine)	Α	219	720.00	14	Population decimated	Scullion & Edwards (1980)	
Minnow (common)	Α	1244	720.00	14	Population decimated	Scullion & Edwards (1980)	
Carp (Common)	Α	212500	0.02	11	Mortality rate 33.3%	Wallen (1951)	
Carp (Common)	Α	165000	0.02	6	Fish gulped air	Wallen (1951)	
Carp (Common)	Α	105000	0.02	11	Mortality rate 33.3%	Wallen (1951)	
Carp (Common)	Α	122500	0.02	3	Fish recovered completely in clear water	Wallen (1951)	
Goldfish	Α	20000	0.02	3	Fish swam to surface	Wallen (1951)	
Goldfish	Α	105000	0.02	10	Mortality rate 12.5%	Wallen (1951)	
Goldfish	Α	175000	0.02	8	Fish swam to surface, floated on side	Wallen (1951)	
Goldfish	Α	222500	0.02	3	Fish stayed at surface	Wallen (1951)	
Goldfish	Α	222500	0.02	12	Mortality rate 47.9%	Wallen (1951)	
Goldfish	Α	70000	0.02	3	Fish recovered completely in clear water	Wallen (1951)	
hiner (Golden)	Α	20000	0.02	0	No effect	Wallen (1951)	
hiner (Golden)	Α	35000	0.02	5	Fish showed signs of respiratory distress	Wallen (1951)	
Shiner (Golden)	Α	75000	0.02	10	Some mortality	Wallen (1951)	
hiner (Golden)	Α	120000	0.02	10	Some mortality	Wallen (1951)	
hiner (Golden)	Α	170000	0.02	14	Mortality rate 100%	Wallen (1951)	
hiner (Golden)	Α	100000	0.02	5	Fish cleared sediment from gills	Wallen (1951)	
hiner (Red)	Α	100000	0.02	3	Fish surfaced once	Wallen (1951)	
hiner (Red)	Α	125000	0.02	3	Fish swam to surface	Wallen (1951)	
hiner (Red)	Α	162500	0.02	8	Fish swam to surface, floated on side	Wallen (1951)	
hiner (Red)	Α	182500	0.02	14	Mortality rate 100%	Wallen (1951)	
linnow (Plains)	Α	50000	0.02	6	Fish showed signs of mild distress	Wallen (1951)	
1innow (Plains)	Α	105000	0.02	14	Mortality rate 100%	Wallen (1951)	
linnow (Plains)	A	105000	0.02	8	Sediment present in gills, digestive tracks	Wallen (1951)	
linnow (Plains)	A	150000	0.02	0	Fish recovered completely in clear water	Wallen (1951)	
nnnow (nams) Nosquitofish	A	40000	0.02	6	Fish showed signs of mild distress	Wallen (1951)	
/losquitofish	A	60000	0.02	3	Fish swam to surface	Wallen (1951)	
//osquitofish	A	115000	0.02	10	Mortality rate 9.8%	Wallen (1951)	
//osquitofish		115000	0.02	3	Avoidance response		
•	A				'	Wallen (1951)	
1osquitofish	A	187500	0.02	14	Mortality rate 90.1%	Wallen (1951)	
Mosquitofish	A A	200000 20000	0.02 0.02	0 1	Fish recovered completely in clear water	Wallen (1951)	
ass Largemouth)					Fish floated an side	Wallen (1951)	
Bass Largemouth) Bass	A	50000 101000	0.02	8 14	Fish floated on side Mortality rate 100%	Wallen (1951) Wallen (1951)	
Largemouth)	A				·	·	
Bass Largemouth)	A	101000	0.02	7	Gills covered in sediment	Wallen (1951)	
unfish (Green)	A	20000	0.02	1	Fish displayed mild reactions	Waller (1951)	
unfish (Green)	A	50000	0.02	1	Fish showed mild symptoms	Wallen (1951)	
unfish (Green)	A	80000	0.02	10	Mortality rate 2.3%	Wallen (1951)	
unfish (Green)	A	210000	0.02	13	Some mortality	Wallen (1951)	
unfish (Green)	A	175000	0.02	3	Fish showed avoidance response	Wallen (1951)	
hiner (Golden)	Α	166000	170.00	14	Mortality rate 100%	Wallen (1951)	
/losquitofish	A	181500	396.00	14	Mortality rate 100%	Wallen (1951)	
Goldfish	Α	197000	288.00	14	Mortality rate 100%	Wallen (1951)	
unfish (Green)	Α	166500	132.00	14	Mortality rate 100%	Wallen (1951)	
Minnow (Plains)	Α	96000	324.00	14	Mortality rate 100%	Wallen (1951)	
Shiner (Red)	Α	183000	216.00	14	Mortality rate 100%	Wallen (1951)	

		Sediment dose			Fish Response	
pecies	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
arp (Common)	Α	165000	230.00	14	Mortality rate 100%	Wallen (1951)
iss argemouth)	Α	101000	182.00	14	Mortality rate 100%	Wallen (1951)
ımpkinseed	Α	69000	312.00	14	Mortality rate 100%	Wallen (1951)
nfish rangespotted)	Α	157000	240.00	14	Mortality rate 100%	Wallen (1951)
tfish hannel)	Α	85000	223.00	14	Mortality rate 100%	Wallen (1951)
ackstripe pminnow	Α	175000	456.00	14	Mortality rate 100%	Wallen (1951)
ack Crappie	Α	145000	48.00	14	Mortality rate 100%	Wallen (1951)
ss (Rock)	Α	38250	84.00	14	Mortality rate 100%	Wallen (1951)
iner (Golden)	Α	115000	408.00	10	No mortality	Wallen (1951)
iner (Golden)	Α	150000	120.00	10	No mortality	Wallen (1951)
osquitofish	Α	135000	408.00	10	No mortality	Wallen (1951)
osquitofish	Α	150000	288.00	10	No mortality	Wallen (1951)
nfish (Green)	Α	140000	312.00	10	No mortality	Wallen (1951)
nfish (Green)	A	130000	168.00	10	No mortality	Wallen (1951)
Ilhead (Black)	A	140000	408.00	10	No mortality	Wallen (1951)
Ilhead (Black)	A	185000	600.00	10	No mortality	Wallen (1951)
, ,						
ss irgemouth)	Α	90000	144.00	10	No mortality	Wallen (1951)
mpkinseed	Α	82500	456.00	10	No mortality	Wallen (1951)
nfish rangespotted)	A	125000	432.00	10	No mortality	Wallen (1951)
ntral udminnow	Α	100000	480.00	10	No mortality	Wallen (1951)
iner (Red)	Α	107500	336.00	10	No mortality	Wallen (1951)
nckstripe pminnow	Α	107500	312.00	10	No mortality	Wallen (1951)
oldfish	Α	165000	480.00	10	No mortality	Wallen (1951)
oldfish	Α	190000	216.00	10	No mortality	Wallen (1951)
h armwater)	Α	100000	252.00	10	Some fish died; most survived	Wallen (1951)
sh varmwater)	Α	200000	480.00	10	Fish died; opercular vacities and gill filaments clogged	Wallen (1951)
oldfish	Α	25000	336.00	10	Some mortality (MC)	Wallen (1951)
rp (Common)	Α	165000	480.00	5	No mortality	Wallen (1951)
h	Α	2045	8760.00	12	Habitat destruction, fish population decreased by 6-20 fold	Vaughan (1979)
sh	Α	2045	8760.00	12	Habitat destruction; fish populations smaller than expected	Vaughan (1979); Vaughan et al. (1982)
sh	Α	2045	8760.00	9	Species diversity significantly decreased	Vaughan (1979)
rter reenside)	Α	2045	8760.00	14	Darters absent	Vaughan (1979)
rter ainbow)	Α	2045	8760.00	14	Darters absent	Vaughan (1979)
rter	Α	2045	8760.00	14	Darters absent	Vaughan (1979); Vaughan et al. (1982)
cker ongnose)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
cker ongnose)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
icker ongnose)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
icker ongnose)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)

		Sediment dose			Fish Response	_
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Burbot	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
urbot	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Valleye	Α	9	21.00	3	Fish preferred turbid water	Swenson (1978)
/alleye	Α	12	21.00	3	Fish preferred turbid water	Swenson (1978)
melt (Rainbow)	Α	3	168.00	3	Fish preferred turbid water	Swenson (1978)
melt (Rainbow)	Α	3	168.00	3	Fish preferred turbid water	Swenson (1978)
ucker Longnose)	Α	3	21.00	0	No behavioral effect	Swenson (1978)
ucker (White)	Α	3	21.00	0	No behavioral effect	Swenson (1978)
routperch	Α	3	21.00	0	No behavioral effect	Swenson (1978)
melt (Rainbow)	Α	3	168.00	7	Increased vulnerability to predation	Swenson (1978)
ass Smallmouth)	Α	5	16.00	4	Decrease in prey consumed (NTU)	Carter et al. (2010)
ass Smallmouth)	Α	10	23.00	4	Decrease in prey consumed (NTU)	Carter et al. (2010)
Bass Smallmouth)	Α	20	30.00	4	Decrease in prey consumed (NTU)	Carter et al. (2010)
Bass Smallmouth)	Α	40	43.00	4	Decrease in prey consumed (NTU)	Carter et al. (2010)
∕linnow Fathead)	Α	120	0.02	3	Reduced ability to recognize predators	Chivers et al. (2013)
Pace (Rosyside)	Α	10	0.70	4	Feeding behavior altered (50% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
ace (Rosyside)	Α	20	0.70	4	Feeding behavior altered (48% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Dace (Rosyside)	Α	30	0.70	4	Feeding behavior altered (~42% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Pace (Rosyside)	Α	10	0.70	4	Feeding behavior altered (55% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Dace (Rosyside)	Α	20	0.70	4	Feeding behavior altered (~48% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Pace (Rosyside)	Α	30	0.70	4	Feeding behavior altered (32% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	10	0.70	4	Feeding behavior altered (~49% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	20	0.70	4	Feeding behavior altered (26% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	30	0.70	4	Feeding behavior altered (33% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	10	0.70	4	Feeding behavior altered (39% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	20	0.70	4	Feeding behavior altered (33% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	30	0.70	4	Feeding behavior altered (18% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Pace (Rosyside)	Α	20	0.70	4	Feeding behavior altered (48% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
ace (Rosyside)	Α	10	0.70	4	Feeding behavior altered (55% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Pace (Rosyside)	Α	30	0.70	4	Feeding behavior altered (32% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	20	0.70	4	Feeding behavior altered (26% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Shiner Yellowfin)	Α	10	0.70	4	Feeding behavior altered (39% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
hiner Yellowfin)	Α	30	0.70	4	Feeding behavior altered (22% prey captures forward movement, NTU)	Hazelton & Grossman (2009)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Stickleback (Three-spined)	Α	10	0.50	0	No change in feeding rate (69, control 69, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Feeding rate reduced (54, control 69, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Feeding rate reduced (27, control 69, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in female feeding rate (27, control 27, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	0	Female feeding rate increased (30, control 27, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Female feeding rate reduced (12, control 27, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in female feeding rate (15, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	0	Female feeding rate increased (16, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Female feeding rate reduced (4 control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in female feeding rate (20, control 20, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Female feeding rate reduced (12, control 20, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Female feeding rate reduced (3, control 20, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in male feeding rate (32, control 32, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Male feeding rate reduced (25, control 32, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Male feeding rate reduced (27, control 32, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in male feeding rate (15, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Male feeding rate reduced (14, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Male feeding rate reduced (2, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in male feeding rate (25, control 25, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Male feeding rate reduced (12, control 25, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Male feeding rate reduced (8, control 25, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	Feeding rate increased (0.57, control 0.55, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Feeding rate reduced (0.21, control 0.28, NTU)	Helenius et al. (2013)
itickleback Three-spined)	Α	78	0.50	0	Feeding rate increased (0.23, control 0.17, NTU)	Helenius et al. (2013)
Stickleback Three-spined)	Α	10	0.50	0	Feeding rate increased (0.69, control0.55, NTU)	Helenius et al. (2013)
stickleback Three-spined)	Α	48	0.50	4	Feeding rate reduced (0.16, control 0.28, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Feeding rate reduced (0.15, control 0.55, NTU)	Helenius et al. (2013)
Carp (Crucian)	Α	10	2.00	10	Mortality rate <1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	20	2.00	10	Mortality rate <1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	40	2.00	10	Mortality rate 1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	80	2.00	10	Mortality rate 1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	10	2.00	10	Mortality rate 1% (control 0%, NTU)	Li et al. (2013)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Carp (Crucian)	Α	20	2.00	10	Mortality rate <1% (control 0%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	40	2.00	10	Mortality rate <1% (control 0%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	80	2.00	10	Mortality rate 1% (control 0%, NTU)	Li et al. (2013)
Ayu	Α	164	3.00	3	Fish moved to clear water (9 individuals)	Mori et al. (2018)
Ayu	Α	12	0.02	3	Fish moved to turbid areas (11, control 9.7)	Mori et al. (2018)
Ayu	Α	12	0.75	3	Fish moved to clear areas (8, control 9.7)	Mori et al. (2018)
Ayu	Α	12	1.00	3	Fish moved to turbid areas (10, control 9.7)	Mori et al. (2018)
Ayu	Α	12	1.00	3	Fish moved to clear areas (8, control 9.7)	Mori et al. (2018)
Ayu	Α	240	1.32	3	49.15% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.62	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.74	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.92	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.97	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.21	3	69.69% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.24	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.41	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.51	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.61	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.77	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.84	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.94	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.01	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.11	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.33	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.41	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.48	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.66	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.76	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.76	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.82	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.93	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	4.10	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	4.23	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	4.80	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	5.37	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	5.77	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	5.85	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	5.92	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	5.95	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	6.09	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	6.67	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	6.89	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	7.09	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	7.16	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	7.39	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	7.56	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	7.64	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	A	240	7.96	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu Ayu	A	240	8.06	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	A	240	8.52	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	A	240	8.91	3	79.66% of fish moved to clear water	Mori et al. (2018)
						. ,
Ayu	Α	240	8.98	3	69.49% of fish moved to clear water	Mori et al. (2018)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
lyu	А	240	9.08	3	79.66% of fish moved to clear water	Mori et al. (2018)
yu	Α	240	9.30	3	69.49% of fish moved to clear water	Mori et al. (2018)
yu	Α	240	9.48	3	69.49% of fish moved to clear water	Mori et al. (2018)
/u	Α	240	9.60	3	79.66% of fish moved to clear water	Mori et al. (2018)
/u	Α	240	9.73	3	69.49% of fish moved to clear water	Mori et al. (2018)
'u	Α	240	10.00	3	69.49% of fish moved to clear water	Mori et al. (2018)
'u	Α	240	73.00	3	46% of fish moved to clear water	Mori et al. (2018)
⁄u	Α	240	2.75	3	41% of fish moved to clear water	Mori et al. (2018)
⁄u	Α	240	5.75	3	48% of fish moved to clear water	Mori et al. (2018)
u	Α	240	8.50	3	47% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	12.00	3	52% of fish moved to clear water	Mori et al. (2018)
u	Α	240	14.00	3	50% of fish moved to clear water	Mori et al. (2018)
u	Α	240	17.00	3	50% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	20.00	3	45% of fish moved to clear water	Mori et al. (2018)
/u	Α	240	23.00	3	43% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	26.00	3	45% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	29.00	3	49% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	32.00	3	43% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	35.00	3	46% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	38.00	3	48% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	41.00	3	47% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	44.00	3	43% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	46.00	3	46% of fish moved to clear water	Mori et al. (2018)
ru	Α	240	50.00	3	46% of fish moved to clear water	Mori et al. (2018)
⁄u	Α	240	52.00	3	46% of fish moved to clear water	Mori et al. (2018)
u	A	240	55.00	3	38% of fish moved to clear water	Mori et al. (2018)
ru	A	240	58.00	3	37% of fish moved to clear water	Mori et al. (2018)
/u	A	240	61.00	3	36% of fish moved to clear water	Mori et al. (2018)
ru	A	240	64.00	3	41% of fish moved to clear water	Mori et al. (2018)
ru	A	240	67.00	3	44% of fish moved to clear water	Mori et al. (2018)
		240	70.00	3	45% of fish moved to clear water	
⁄u	A					Mori et al. (2018)
ru ru	A A	240 12	73.00 73.00	3	44% of fish moved to clear water Fish moved to turbid water (10 fish, control 10	Mori et al. (2018) Mori et al. (2018)
yu	Α	12	2.75	3	fish) Fish moved to turbid water (4 fish, control 10	Mori et al. (2018)
yu	Α	12	5.75	3	fish) Fish moved to turbid water (2 fish, control 10 fish)	Mori et al. (2018)
yu	А	12	8.50	3	Fish moved to turbid water (3 fish, control 10 fish)	Mori et al. (2018)
yu	Α	12	12.00	3	Fish moved to turbid water (2 fish, control 10 fish)	Mori et al. (2018)
yu	Α	12	14.00	3	Fish moved to turbid water (3 fish, control 10 fish)	Mori et al. (2018)
yu	Α	12	17.00	3	Fish moved to turbid water (3 fish, control 10 fish)	Mori et al. (2018)
yu	А	12	20.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
yu	Α .	12	23.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
yu	A	12	26.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
yu	А	12	29.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Ayu	А	12	32.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	35.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	38.00	3	Fish moved to turbid water (7 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	41.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	44.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	46.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	50.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	52.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	55.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	58.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	61.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	64.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	67.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	70.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	73.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
yu	Α	240	17.00	3	10% probability fish move to clear water	Mori et al. (2018)
yu	Α	240	67.00	3	10% probability fish move to clear water	Mori et al. (2018)
yu	Α	240	113.00	3	20% probability fish move to clear water	Mori et al. (2018)
/u	Α	240	160.00	3	30% probability fish move to clear water	Mori et al. (2018)
yu	Α	240	227.00	3	50% probability fish move to clear water	Mori et al. (2018)
yu	Α	240	279.00	3	70% probability fish move to clear water	Mori et al. (2018)
yu	Α	240	342.00	3	80% probability fish move to clear water	Mori et al. (2018)
Ayu	Α	240	432.00	3	90% probability fish move to clear water	Mori et al. (2018)
īlapia Redbreast)	Α	20000	2.00	10	No mortality	Buermann et al. (1997)
Filapia (Redbreast)	Α	30000	2.00	10	No mortality	Buermann et al. (1997)
Tilapia (Redbreast)	Α	36000	2.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia Redbreast)	Α	40000	2.00	10	Mortality rate 20%	Buermann et al. (1997)
Filapia Redbreast)	Α	52000	2.00	11	Mortality rate 40%	Buermann et al. (1997)
ilapia Redbreast)	Α	60000	2.00	13	Mortality rate 60%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	2.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	2.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	2.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	2.00	14	Mortality rate 100%	Buermann et al. (1997)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Tilapia (Redbreast)	Α	140000	2.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	20000	6.00	10	No mortality	Buermann et al. (1997)
Tilapia (Redbreast)	Α	30000	6.00	10	No mortality	Buermann et al. (1997)
Tilapia (Redbreast)	Α	36000	6.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	40000	6.00	10	Mortality rate 20%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	52000	6.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	6.00	12	Mortality rate 60%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	20000	24.00	10	No mortality	Buermann et al. (1997)
Tilapia (Redbreast)	Α	30000	24.00	10	Mortality rate 20%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	36000	24.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	40000	24.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	52000	24.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	24.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	20000	48.00	10	No mortality	Buermann et al. (1997)
Filapia Redbreast)	Α	30000	48.00	10	Mortality rate 20%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	36000	48.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	40000	48.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	52000	48.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	48.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	48.00	14	Mortality rate 100%	Buermann et al. (1997)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Tilapia (Redbreast)	Α	66000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	48000	2.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	48000	6.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	42000	24.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	42000	48.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
,						

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Tilapia (Redbreast)	Α	100000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Minnow Fathead)	Α	50	96.00	0	No change in erdrin toxin tolerance	Brungs & Bailey (1967)
Minnow Fathead)	Α	48	96.00	8	Decreased tolerance to erdrin toxin	Brungs & Bailey (1967)
Minnow (Fathead)	Α	47	96.00	8	Decreased tolerance to erdrin toxin	Brungs & Bailey (1967)
Minnow Fathead)	Α	12	96.00	0	Increased tolerance to erdrin toxin	Brungs & Bailey (1967)
Creek Chub	Α	8	24.00	3	51.5% fish abandoned cover (control 22.8%)	DeVore et al. (1980)
Creek Chub	Α	39	24.00	3	Fish prefer turbid water	DeVore et al. (1980)
Fish	Α	32	24.00	9	Decreased populations in warm turbid waters	DeVore et al. (1980)
Minnow (Fathead)	Α	12	0.33	3	Attracted to turbidity	Abrahams & Kattenfeld (1997, data pulled from Courtice et al. (2022))
Guppies (Trinidadian)	Α	2100	12.00	3	Social dynamic behavioural effects	Borner et al. (2015, data pulled from Courtice et al. (2022))
Sucker (White)	Α	500	6.00	6	Evidence of physiological effects	Merten et al. (2010, data pulled from Courtice et al. (2022))
Bluegill	Α	15	1.00	2	Habitat selection was modified.	Miner & Stein (1996, data pulled from Courtice et al. (2022))
Shiner Whitetail)	Α	100	504.00	4	Reduction in feeding	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022))
Shiner (Whitetail)	Α	50	48.00	4	Increased corticosteroid	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022))
Shiner (Lahontan Redside)	А	138	24.00	4	75% reduction in feeding	Vinyard & Yuan (1996)
Shiner (Lahontan Redside)	Α	107	24.00	4	60% reduction in feeding	Vinyard & Yuan (1996)
Dace (Rosyside)	Α	30	2.00	4	Reduction in feeding success	Zamor (2007, data pulled from Courtice et al. (2022))
Shiner (Tricolor)	Α	100	144.00	9	Decrease in spawn effort (0.75, control 0.83)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	300	144.00	9	Significant decrease in spawn effort (0.58, control 0.83)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	600	144.00	9	Significant decrease in spawn effort (0.25, control 0.83)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	100	144.00	9	Fewed eggs laid when spawning (0.12, control 0.26)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	300	144.00	9	Fewed eggs laid when spawning (0.10, control 0.26)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	600	144.00	9	Fewed eggs laid when spawning (0.02, control 0.26)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	300	144.00	9	Delayed spawn onset	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	600	144.00	9	Delayed spawn onset	Burkhead & Jelks (2001)
Shiner (Golden)	Α	20700	96.00	10	20% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	1500	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	3800	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
hiner (Golden)	Α	8200	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	12870	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	15800	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)

 o A = adult; E = egg; EE = eyed egg; F = fry; F* = swim-up fry; FF = young fry (<30 weeks old); FF* = older fry (>30 weeks old); J = juvenile; L = larva; PS = presmolt; S = smolt; SF = sac fry; U = underyearling; Y = approximate yearling; YY = young of the year

 $^{^{\}it b}$ Severity-of-ill-effect ranging from 0 (no detectible effect) to 14 (maximum effect; see Table 1)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference

^cPanicle sizes of suspended sediment (SS) sometimes were given categorically in source documents. As abbreviated here. VFSS = very fine (<15 um); FSS = fine (15-74 um); MFSS = medium to fine (75-149 um); MCSS = medium to coarse (150-290 um); and CSS = coarse (180-740 um). Usual 'sediments' used: BC = bentonite clay; CS = calcium sulfate; CWS = coal washery solids; DE = dtatomaceous earth; DM = drilling mud (nontoxic); FC = fire clay; FE = fuller's earth; IA = incinerator ash; KC = kaolin clay; KS = Kingston silt; LNFH = lime-neutralized ferric hydroxide; MC = montmorillonite clay; VA = volcanic ash; WF = wood fibers. Other abbreviation: NTU = nephelometric turbidity units.