Warsaw University of Technology

Institute of Automation and Robotics

Homework 1

in the subject of Modelling and control of manipulator

Derivation of the kinematic model of the ABB IRb-7600 manipulator

Munir Fati Haji

student record book number 323834

submitted to Mr. Maksym Figat.

Table of Contents

List	of abbreviations	iii
Step 1	– Putting the axes	. 1
Step 2	- Denavit-Hartenberg(D-H) parameters	. 2
Step 3	- Direct Kinematics Problem	. 2
1.	Joint/link description matrices	. 2
2.	Composition of matrices	. 2
Step 4	- Inverse kinematic problem solution	. 5
1.	Solve $m{ heta1}$ as a function of given parameters	. 5
2.	Solve $m{ heta3}$ as a function of $m{ heta1}$ and given parameters	. 5
3.	Solve $m{ heta2}$ as a function of $m{ heta3}$ and given parameters	. 6
4.	Solve $m{ heta5}$ as a function of $m{ heta1}, m{ heta'2}, m{ heta3}$ and given parameters	. 7
5.	Solve $m{ heta}{6}$ as a function of $m{ heta}'{2}, m{ heta}{3}, m{ heta}{5}$ and given parameters	. 7
6.	Solve $m{ heta4}$ a function of $m{ heta6}$, and given parameters	. 7
Conclu	cion	0

List of abbreviations

$$cos(\theta_i) = c_i$$

$$sin(\theta_i) = s_i$$

$$cos(\theta_i + \theta_j) = c_{i+j}$$

Homework

Derive the kinematic model of the ABB IRb-7600 manipulator, i.e. solve the direct and inverse kinematic problem for that manipulator.

Figure 1 2D Drawing of the Model ABB IRb-7600 Manipulator

Step 1 – Putting the axes

From lecture notes Algorithm producing the kinematic model of a manipulator has steps as follows

- Draw the manipulator
- Identify the axes of rotation or translation (for revolute and prismatic joints)
- Assign the *iz* axis to the *ith* axis of rotation/translation
- Find the common perpendiculars between the i-1z and iz axes (if those axes intersect the common perpendicular is defined along $i-1z \times iz$)
- Define the ix axes the axis i-1x coincides with the common perpendicular between the i-1z and iz axes and points from i-1z to iz
- Determine the iy axes $iy = iz \times ix$
- The base coordinate frame 0 should be located in such a way that $\alpha 0$, $\alpha 0$ and $\theta 1$ or $\alpha 1$ are equal to 0) $0^z = 1^z$ and $0^0 P = 0^0 P$

Figure 2 Model manipulator diagram with axes based on the modified Denavit-Hatenberg convention

Step 2 - Denavit-Hartenberg(D-H) parameters

From lecture notes the modified D-H parameters are described as

$$a_{i-1} = i - 1^z \xrightarrow{i-1^x} i^z$$
, $\alpha_{i-1} = i - 1^z \xrightarrow{i-1^x} i^z$, $d_i = i - 1^x \xrightarrow{i^z} i^x$, and $\theta_i = i - 1^x \xrightarrow{i^z} i^x$

Table 1 D-H parameters

i	a_{i-1}	α_{i-1}	d_i	θ_i
1	0	0	0	$ heta_1$
2	a_1	$-\pi/2$	0	$\theta'_2 = \theta_2 - \pi/2$
3	a_2	0	0	$ heta_3$
4	a_3	$-\pi/2$	d_4	$ heta_4$
5	0	$\pi/2$	0	$ heta_5$
6	0	0	\overline{d}_6	$\overline{\theta}_6$

Step 3 - Direct Kinematics Problem

1. Joint/link description matrices

From class lecture notes we know that

Joint/link description matrices can be found by putting the DH parameters into the matrix above. Thus the matrices are as follows

$${}_{1}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{2}^{1}T = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{1} \\ 0 & 0 & 1 & 0 \\ -s_{2} & -c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{3}^{2}T = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{2} \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}T = \begin{bmatrix} c_{4} & -s_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{5}^{4}T = \begin{bmatrix} c_{5} & -s_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{6}^{5}T = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ -s_{6} & -c_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Composition of matrices

To solve the direct kinematics problem form lecture notes we have

$${}_{n}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T \dots {}_{n}^{n-1}T = \prod_{i=1}^{n} {}_{i}^{i-1}T$$

Where n is the end-effector frame,

Thus starting with ${}_{1}^{0}T$

$${}_{1}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet$$
 ${}^{0}_{2}T = {}^{0}_{1}T^{1}_{2}T$

$${}_{2}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{1} \\ 0 & 0 & 1 & 0 \\ -s_{2} & -c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{1}c_{2} & -c_{1}s_{2} & -s_{1} & a_{1}c_{1} \\ c_{2}s_{1} & -s_{1}s_{2} & c_{1} & a_{1}s_{1} \\ -s_{2} & -c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet$$
 ${}_{3}^{0}T = {}_{2}^{0}T {}_{3}^{2}T$

$${}_{3}^{0}T = \begin{bmatrix} c_{1}c_{2} & -c_{1}s_{2} & -s_{1} & a_{1}c_{1} \\ c_{2}s_{1} & -s_{1}s_{2} & c_{1} & a_{1}c_{1} \\ -s_{2} & -c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{2} \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{0}T = \begin{bmatrix} c_{2+3}c_{1} & -s_{2+3}c_{1} & -s_{1} & c_{1}(a_{1}+a_{2}c_{2}) \\ c_{2+3}s_{1} & -s_{2+3}s_{1} & c_{1} & s_{1}(a_{1}+a_{2}c_{2}) \\ -s_{2+3} & -c_{2+3} & 0 & -a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet$$
 ${}_{4}^{0}T = {}_{3}^{0}T {}_{4}^{3}T$

$${}_{4}^{0}T = \begin{bmatrix} c_{2+3}c_{1} & -s_{2+3}c_{1} & -s_{1} & c_{1}(a_{1}+a_{2}c_{2}) \\ c_{2+3}s_{1} & -s_{2+3}s_{1} & c_{1} & s_{1}(a_{1}+a_{2}c_{2}) \\ -s_{2+3} & -c_{2+3} & 0 & -a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{4} & -s_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$${}_{5}^{0}T = {}_{4}^{0}T {}_{5}^{4}T$$

$$= \begin{bmatrix} c_5(s_1s_4 + c_{2+3}c_1c_4) - s_{2+3}c_1s_5 & -s_5(s_1s_4 + c_{2+3}c_1c_4) - s_{2+3}c_1c_5 & c_{2+3}c_1s_4 - c_4s_1 & c_1(a_1 + a_3c_{2+3} - d_4s_{2+3} + a_2c_2) \\ -c_5(c_1s_4 - c_{2+3}c_4s_1) - s_{2+3}s_1s_5 & s_5(c_1s_4 - c_{2+3}c_4s_1) - s_{2+3}c_5s_1 & c_1c_4 + c_{2+3}s_1s_4 & s_1(a_1 + a_3c_{2+3} - d_4s_{2+3} + a_2c_2) \\ -c_{2+3}s_5 - s_{2+3}c_4c_5 & s_{2+3}c_4s_5 - c_{2+3}c_5 & -s_{2+3}s_4 & -d_4c_{2+3} - a_3s_{2+3} - a_2s_2 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$${}_{6}^{0}T = {}_{5}^{0}T {}_{6}^{5}T$$

The output matrix can be written as

$${}_{6}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 1 \end{bmatrix}, \text{ where }$$

$$r_{11} = s_1(c_4s_6 + c_5c_6s_4) - c_1(c_{2+3}(s_4s_6 - c_4c_5c_6) + s_{2+3}c_6s_5)$$

$$r_{12} = s_1(c_4c_6 - c_5s_4s_6) - c_1(c_{2+3}(c_6s_4 + c_4c_5s_6) - s_{2+3}s_5s_6)$$

$$r_{13} = -s_1s_4s_5 - c_1(s_{2+3}c_5 + c_{2+3}c_4s_5)$$

$$p_x = c_1((a_1 + a_2c_2) + c_{2+3}(a_3 - d_6c_4s_5) - s_{2+3}(d_4 + d_6c_5)) - d_6s_1s_4s_5$$

$$r_{21} = c_1(c_4s_6 + c_5c_6s_4) - s_1(c_{2+3}(s_4s_6 - c_4c_5c_6) + s_{2+3}c_6s_5)$$

$$r_{22} = -c_1(c_4c_6 - c_5s_4s_6) - s_1(c_{2+3}(c_6s_4 + c_4c_5s_6) + s_{2+3}s_5s_6)$$

$$r_{23} = -c_1s_4s_5 - s_1(s_{2+3}c_5 + c_{2+3}c_4s_5)$$

$$p_y = s_1((a_1 + a_2c_2) + c_{2+3}(a_3 - d_6c_4s_5) - s_{2+3}(d_4 + d_6c_5)) + d_6c_1s_4s_5$$

$$r_{31} = s_{2+3}(s_4s_6 - c_4c_5c_6) - c_{2+3}c_6s_5$$

$$r_{32} = s_{2+3}(c_6s_4 - c_4c_5s_6) - c_{2+3}s_5s_6$$

$$r_{33} = s_{2+3}c_4s_5 - c_{2+3}c_5$$

$$p_z = -s_{2+3}(a_3 - d_6c_4s_5) - c_{2+3}(d_4 + d_6c_5) - a_2s_2$$

Step 4 - Inverse kinematic problem solution

Given the following parameters solve the inverse kinematic problem

$${}_{6}^{0}T_{d} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1. Solve θ_1 as a function of given parameters

$${}_{4}^{1}T_{d} = {}_{1}^{0}T^{-1}{}_{6}^{0}T_{d}{}_{6}^{4}T^{-1}$$

From ${}_{4}^{1}T_{d_{24}} = {}_{4}^{1}T_{24}$

$$p_y c_1 - d_6(r_{23}c_1 - r_{13}s_1) - p_x s_1 = 0$$

Thus solving for θ_1

$$\theta_1 = arctan\left(\frac{p_y - d_6 r_{23}}{p_x - d_6 r_{13}}\right)$$

2. Solve θ_3 as a function of θ_1 and given parameters

$$_{5}^{2}T_{d} = _{2}^{0}T_{6}^{-1}_{6}^{0}T_{d}_{6}^{5}T_{1}^{-1}$$

$$\begin{split} \frac{^25T_d}{^2} &= \begin{bmatrix} c_6(r_{11}c_{12}-r_{31}s_2 + r_{21}c_{2}s_{1}) - s_6(r_{12}c_{12} - r_{32}s_2 + r_{22}c_{2}s_{1}) & \dots & \dots & p_xc_1c_2 - a_1c_2 - p_zs_2 - d_6(r_{13}c_{12} - r_{33}s_2 + r_{23}c_{2}s_{1}) + p_yc_2s_1 \\ s_6(r_{32}c_2 + r_{12}c_{1}s_2 + r_{22}s_{1}s_2) - c_6(r_{31}c_2 + r_{11}c_{1}s_2 + r_{21}s_{1}s_2) & \dots & \dots & d_6(r_{33}c_2 + r_{13}c_{1}s_2 + r_{23}s_{1}s_2) - p_zc_2 + a_1s_2 - p_xc_1s_2 - p_ys_1s_2 \\ c_6(r_{21}c_1 - r_{11}s_1) - s_6(r_{22}c_1 - r_{12}s_1) & \dots & \dots & p_yc_1 - d_6(r_{23}c_1 - r_{13}s_1) - p_xs_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & & & & & & & & & & & & & \\ \frac{^2}{^3}T = \begin{bmatrix} c_3c_4c_5 - s_3s_5 - c_5s_3 - c_3c_4s_5 & c_3s_4 & a_2 + a_3c_3 - d_4s_3 \\ c_3s_5 + c_4c_5s_3 & c_3c_5 - c_4s_3s_5 & s_3s_4 & d_4c_3 + a_3s_3 \\ -c_5s_4 & s_4s_5 & c_4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

From ${}_{5}^{2}T_{d_{14}} = {}_{5}^{2}T_{14}$,

$$a_2 + a_3c_3 - d_4s_3 = p_xc_1c_2 - a_1c_2 - p_zs_2 - d_6(r_{13}c_1c_2 - r_{33}s_2 + r_{23}c_2s_1) + p_yc_2s_1$$

From ${}_{5}^{2}T_{d_{24}} = {}_{5}^{2}T_{24}$,

$$d_4c_3 + a_3s_3 = d_6(r_{33}c_2 + r_{13}c_1s_2 + r_{23}s_1s_2) - p_2c_2 + a_1s_2 - p_2c_1s_2 - p_2s_1s_2$$

Now rearranging the equation

$$a_2 + a_3c_3 - d_4s_3 = s_2(\boldsymbol{d_6r_{33}} - \boldsymbol{p_z}) - c_2(\boldsymbol{a_1} + c_1(-\boldsymbol{p_x} + \boldsymbol{d_6r_{13}}) - \boldsymbol{p_y}\boldsymbol{s_1} + \boldsymbol{d_6r_{23}}\boldsymbol{s_1})$$

$$d_4c_3 + a_3s_3 = c_2(\boldsymbol{d_6r_{33}} - \boldsymbol{p_z}) + s_2(\boldsymbol{a_1} + c_1(-\boldsymbol{p_x} + \boldsymbol{d_6r_{13}}) - \boldsymbol{p_y}\boldsymbol{s_1} + \boldsymbol{d_6r_{23}}\boldsymbol{s_1})$$

Introducing the following substitutions

$$E = d_6 r_{33} - p_z$$

$$F = a_1 + c_1 (-p_x + d_6 r_{13}) - p_y s_1 + d_6 r_{23} s_1$$

Substituting and squaring both sides the following standard system of equations is obtained:

$$(a_2 + a_3c_3 - d_4s_3)^2 = (s_2E - c_2F)^2$$

 $(d_4c_3 + a_3s_3)^2 = (c_2E + s_2F)^2$

Combining the two equations after squaring

$$a_3c_3 + \frac{-E^2 - F^2 + a_2^2 + a_3^2 + a_4^2}{2a_2} = d_4s_3$$

Introducing the following substitutions

$$G = \frac{-E^2 - F^2 + a_2^2 + a_3^2 + d_4^2}{2a_2}$$

Thus it will be

$$a_3c_3 + G = d_4s_3$$

From this solving for θ_3

$$\theta_{3} = \arctan\left(\frac{Gd_{4} - \sqrt{a_{3}^{2}(-G^{2} + a_{3}^{2} + d_{4}^{2})}}{\left(a_{3}^{2} + d_{4}^{2}\right)\sqrt{1 - \frac{\left(-Gd_{4} + \sqrt{a_{3}^{2}(-G^{2} + a_{3}^{2} + d_{4}^{2})}\right)^{2}}{(a_{3}^{2} + d_{4}^{2})^{2}}}}\right), \text{ or } \theta_{3} = \arctan\left(\frac{Gd_{4} + \sqrt{a_{3}^{2}(-G^{2} + a_{3}^{2} + d_{4}^{2})}}{\left(a_{3}^{2} + d_{4}^{2}\right)\sqrt{1 - \frac{\left(Gd_{4} + \sqrt{a_{3}^{2}(-G^{2} + a_{3}^{2} + d_{4}^{2})}\right)^{2}}{(a_{3}^{2} + d_{4}^{2})^{2}}}}\right)$$

3. Solve θ_2 as a function of θ_3 and given parameters From ${}^1_4T_{d_{34}}={}^1_4T_{34}$,

$$p_z - d_6 r_{33} = -d_4 c_{2+3} - a_3 s_{2+3} - a_2 s_2$$

From this solving for θ_2 '

$$\theta_{2}' = 2\arctan\left(\frac{a_{2} + a_{3}c_{3} - d_{4}s_{3} \pm \sqrt{a_{3}^{2}c_{3}^{2} + d_{4}^{2}c_{3}^{2} + a_{3}^{2}s_{3}^{2} + d_{4}^{2}s_{3}^{2} + a_{2}^{2} - p_{z}^{2} - d_{6}^{2}r_{33}^{2} - 2a_{2}d_{4}s_{3} + 2d_{6}r_{33} + 2a_{2}a_{3}c_{3}}{d_{6}r_{33} - p_{z} + d_{4}c_{3} + a_{3}s_{3}}\right)$$

Remember this is solution for θ_2 to solve for θ_2 use the equation

$$\theta'_2 = \theta_2 - \pi/2$$

4. Solve θ_5 as a function of θ_1 , θ'_2 , θ_3 and given parameters

$${}_{6}^{3}T_{d} = {}_{3}^{0}T^{-1}{}_{6}^{0}T_{d}$$

$${}_{6}^{3}T_{d} = \begin{bmatrix} r_{11}c_{2+3}c_{1} - r_{31}s_{2+3} + r_{21}c_{2+3}s_{1} & \dots & \dots & p_{\chi}c_{2+3}c_{1} - p_{Z}s_{2+3} - a_{2}c_{3} - a_{1}c_{2+3} + p_{y}c_{2+3}s_{1} \\ -r_{31}c_{2+3} - r_{11}s_{2+3}c_{1} - r_{21}s_{2+3}s_{1} & \dots & \dots & a_{1}s_{2+3} - p_{Z}c_{2+3} + a_{2}s_{3} - p_{\chi}s_{2+3}c_{1} - p_{y}s_{2+3}s_{1} \\ r_{21}c_{1} - r_{11}s_{1} & \dots & \dots & p_{\chi}c_{1} - p_{\chi}s_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{3}T = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{6}s_{4} - c_{4}c_{5}s_{6} & -c_{4}s_{5} & a_{3} - d_{6}c_{4}s_{5} \\ c_{6}s_{5} & -s_{5}s_{6} & c_{5} & d_{4} + d_{6}c_{5} \\ -c_{4}s_{6} - c_{5}c_{6}s_{4} & c_{5}s_{4}s_{6} - c_{4}c_{6} & s_{4}s_{5} & d_{6}s_{4}s_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From ${}_{6}^{3}T_{d_{23}} = {}_{6}^{3}T_{23}$

$$c_5 = -r_{33}c_{2+3} - r_{13}s_{2+3}c_1 - r_{23}s_{2+3}s_1$$

Thus θ_5 will be

$$\theta_5 = \arctan\left(\frac{\sqrt{1 - (-r_{33}c_{2+3} - r_{13}s_{2+3}c_1 - r_{23}s_{2+3}s_1)^2}}{-r_{33}c_{2+3} - r_{13}s_{2+3}c_1 - r_{23}s_{2+3}s_1}\right)$$

5. Solve θ_6 as a function of θ'_2 , θ_3 , θ_5 and given parameters

From ${}_{6}^{3}T_{d_{21}} = {}_{6}^{3}T_{21}$

$$c_6 s_5 = -r_{31} c_{2+3} - r_{11} s_{2+3} c_1 - r_{21} s_{2+3} s_1$$

Thus θ_6 will be

$$\theta_6 = \arctan\left(\frac{\sqrt{1 - \left(\frac{-r_{31}c_{2+3} - r_{11}s_{2+3}c_1 - r_{21}s_{2+3}s_1}{s_5}\right)^2}}{\frac{-r_{31}c_{2+3} - r_{11}s_{2+3}c_1 - r_{21}s_{2+3}s_1}{s_5}}\right)$$

Where $s_5 \neq 0$

6. Solve θ_4 a function of θ_6 , and given parameters

From ${}_{4}^{1}T_{d_{22}} = {}_{4}^{1}T_{22}$,

$$-c_4 = c_6(r_{22}c_1 - r_{12}s_1) + s_6(r_{21}c_1 - r_{11}s_1)$$

Thus θ_4 will be

$$\theta_4 = \arctan\left(\frac{\sqrt{1 - \left(-c_6(r_{22}c_1 - r_{12}s_1) - s_6(r_{21}c_1 - r_{11}s_1)\right)^2}}{-c_6(r_{22}c_1 - r_{12}s_1) - s_6(r_{21}c_1 - r_{11}s_1)}\right)$$

Conclusion

In this homework the derivation of the kinematic model of the ABB IRb-7600 manipulator is done, i.e. solving the direct and inverse kinematic problem for that manipulator. During the derivation of the equations MATLAB 2021b has been used to solve the matrix problems.