RICH Mirror Alignment

07/01/2016

Claire Prouve

LHCb UK Liverpool

Overview

- RICH mirror alignment strategy
- RICH mirror alignment implementation in Run II
- Performance in Run II
- RICH maintenance and operation

RICH Mirror Alignment

RICH 1: 4 primary mirrors 16 secondary mirrors

RICH 2: 54 primary mirrors 40 secondary mirrors

Misaligned mirrors will affect the PID due to incorrectly predicted Cherenkov angle!

Misalignment

Identify misalignment:

$$\Delta\theta_{C}(\Phi) = \theta_{meas.} - \theta_{exp.}$$

$$\Delta\theta_{C}(\Phi) = \rho_{y} \cos(\Phi)$$

$$+ \rho_{z} \sin(\Phi)$$
Misalignments
on detector plane

Decoupling misalignments

Mirror-pair: fit misalignment on detector-plane in y, z

→ 2 parameters **need** actual misalignment in y,z, for each mirror

→ 4 parameters

RICH1: easy!

Given secondary mirror only receives photons from one primary mirror.

→ Only align secondary mirrors

Decoupling misalignments

Mirror-pair: fit misalignment on detector-plane in y, z

→ 2 parametersneed actual misalignment in y,z, for each mirror

→ 4 parameters

RICH2:

Given secondary mirror can receive photons from several primary mirrors.

System of equations linking all mirrors starting from primary mirror 12.

RICH mirror alignment implementation in Run II

Run I and Run II

Run I:

- Offline, after data taking
- with Ganga
- Alignment applied at the end-of-year reprocessing

Run II:

- Online: after HLT1 and before HLT2
- Alignment run for each Fill (monitoring mode)
- HLT1 lines for alignment
- HLT farm (~1700 nodes)
- Steered by the online Finite State Machine (FSM)

HLT farm for Run II

- HLT farm nodes (Analysers)
 - Reconstruct data from HLT1 lines
 - Make the histograms
- Central node (Iterator)
 - Receives histograms from Analysers
 - Determines misalignment on detector plane
 - Determines misalignment of each individual mirror

Makes new database + decides weather

or not to continue

Iterator

(Central Node)

Alignment Constants

Analysis Results

Finite State Machine

Get default database and place where analyzers will pick it up, etc.

Mirror misalignments + new database.

In case of continue: place new database where the analyzers will pick it up.

Alignment converged!

Performance in Run II

Performance – RICH2

RICH2 Cherenkov Resolution Stability: 2015

Performance – RICH1

Waiting for news from Chris.

PID Performance

Maintenance and operation

Calibrations

Online calibrations at the end of each run.

Refractive Index Calibration:

- Hardware sensors monitor pressure and temperature.
- Limited precision and does not account for gas mixture changes.
- Simple fit to reconstructed-expected Cherenkov theta yields (n-1) scale factor.

HPD images calibration:

 Image fit performed for each HPD and used to provide calibration for anode element.

Maintenance and Operation

- ~50% HPD in RICH1 replaced and many in RICH2 → quite new detector
- Gas leak in RICH1: not found but workaround developed
- Gas pressure generally well handled
- Some incomplete events due to RICH detectors → bug in UKLO firmware found and fixed
- RICHes performed well during the heavy ion runs

Summary

- RICH detectors are performing very well
- Alignment can and will be run online for every fill
- RICH2 reached precision of Run I already

Backup

Cherenkov angle resolution

Limiting factors to Cherenkov angle resolution:

	$\sigma \left[\mathrm{mrad} \right]$		
	RICH1		RICH2
	Aerogel	$\mathrm{C_4F_{10}}$	CF_4
Emission point	0.4	0.8	0.2
Chromatic dispersion	2.1	0.9	0.5
Pixel size	0.5	0.6	0.2
Tracking	0.4	0.4	0.4
Total	2.6	1.5	0.7

Misalignment

Magnification coefficients

Magnification coefficients: Translate the tilt on the detector plane into actual mirror tilts

Magnification coefficients are calculated new for each iteration:

- Introduce 8 rotations: primary and secondary mirrors rotated around ±y and ±z axis respectively
- Rotate about 0.3 mrad (half the resolution of RICH2)
- Reconstruct events for each rotation and evaluate the tilts on the detector plane

Need to reconstruct all events 9 times!

$$\Theta^y \approx 2.0 \,\alpha^y - 0.9 \,\beta^y$$
 and $\Theta^z \approx 1.8 \,\alpha^z + 0.6 \,\beta^z$.

New HLT Lines

- Trigger on tracks that will populate the hardest-to-populate mirror-pairs
- usually the very outer mirrors
- Other tracks in the events will populate the rest

RICH2 line:

p > 40 GeV **&&** χ^2 < 2 **&&** 2.59 < η < 2.97 (-2.69 < Φ < -2.29) || (-0.85 < Φ < -0.45) || (0.45 < Φ < 0.85) || (2.29 < Φ < 2.69)

RICH1 line:

p > 10 GeV **&&** χ^2 < 2 **&&** 1.6 < η < 2.04 (-2.65 < Φ < -2.3) || (-0.8 < Φ < -0.5) || (0.5 < Φ < 0.8) || (2.3 < Φ < 2.65)

Need to reconstruct ~10 times less events!

