- * Exam this evening @ 6:30 pm. (unless otherwise arranged)
 Zoom details on Wattle

 - Keep video ON and mic MUTED.
 - Communicate with invigilators via zoom chat only.
- * Continued: products of posets
- ** Def: Let (P_1, \leq) & (P_2, \leq) be posets. The product poset is defined as the set P1 x P2 with the relation

a z, c and b zd. $(a,b) \leq (c,d)$ if

(a, x)

** Example

(1)
$$P_1 = \begin{cases} c \\ b \end{cases}$$

a

(c,y)

$$P_1 \times P_2 = \begin{cases} (c_1 \times) \\ (b_1 \times) \end{cases}$$
(b,y)

** Theorem: Let m > 1 be an integer. Suppose

 $M = P_1 \cdot P_2 \cdot \cdot \cdot P_k$ be its prime power decomposition: P_1, \dots, P_k all prime, and $P_1 < P_2 < \dots < P_k$

Let P_1 , P_2 , ..., P_k be the divisor posels of $P_1^{a_1}$, $P_2^{a_2}$, ..., $P_k^{a_k}$.

Then the shape of the Hasse diagram for the divisor poset of m is the same as that for $P_1 \times P_2 \times \cdots \times P_k$.

** Observe: The divisor poset of any prime power prime

· pn1

; P

** Let's go back to computing ju.

(We'll use the previous observation)

Recall' n is the inverse of S.

** Theorem: Let (P_1, \preceq) and (P_2, \preceq) be posets

Let μ , and μ_2 be the μ functions of P_1 & P_2 respectively

Let μ be the μ -function for $P_1 \times P_2$. Then,

for any interval [(a,b), (c,d)] in $P_1 \times P_2$,

we have:

 $\mu([(a,b),(c,d)]) = \mu([a,c]) \cdot \mu_2([b,d])$

** Corollary

whosens of A. $\mu([x,y]) = (-1)$

Eg. $X = \{33\}$ 4 $Y = \{1, 2, 3\}$ $(\phi, \phi, \{33\})$ $(\{53, \{23, \{33\}\})$

 $\mu([x,y]) = \mu([p,\xi_{13}]) \cdot \mu([p,\xi_{23}]) \cdot \mu([\xi_{33},\xi_{33}])$ = 1

(2) Let m, n be positive integers. $n = p_1^{a_1} \cdots p_k$, $m = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$. $\mu([1, n]) = \mu([1, p_1^{a_1}]) \cdots \mu([1, p_k^{a_k}])$ $\mu([m, m]) = \mu([p_1^{a_1}, p_1^{b_1}]) \cdots \mu([p_k^{a_k}, p_k^{b_k}])$ (Let's finish this on Wed)