Recommender Systems Challenge 2023

Lorenzo Campana

Politecnico di Milano

February 21, 2024

Personal Code: 10605775

Overview

- $\approx 600k$ user-book interactions ($\approx 13k$ users, $\approx 22k$ books)
- Implicit ratings
- Slides results consider 80% training, 20% test
- Evaluation metric: MAP@10

$$\mathsf{MAP@K} = \frac{1}{K} \sum_{u=1}^{N} \frac{1}{\min(K, m)} \sum_{k=1}^{K} P(k) * rel(k)$$

Baseline

Top Popular algorithm

Identify the most frequently occurring books

- Non Personalized
- MAP@10 = 0.011742
- How was it used?
 - To provide recommendation to new users

Hyperparameter tuning

- Optuna
- 5 Folds Cross Validation
- AWS free tier ≈ €2.25

Figure: Optuna easy parallelization

Directory tree structure

```
— XGboostRecommender.py

 - best_models.ipynb
 best_models_info.pickle
Builder.py

    dataset

  └─ book_dataset
       — data_target_users_test.csv
      └─ data train.csv
  saved models
   ─ URM.npz
   — URM_test.npz
    — URM_train.npz
    — URM_train_val.npz
    — URM_val.npz
    — cross val

— train

    submissions

   tuners
       — graph_tuners.py
       — knn_ml.py
      └─ knn_tuners.py
      ☐ mf tuners.pv
      hvbrid
       hybrid_tuner.py
       __ xaboost tuner.py
      __ neural_tuner.py
   ∟ tuner.py
  xgboost.ipynb
  xgboost_tuner_run.py
```

Figure: Directory tree structure

Recommendation Algorithms Comparison

KNN Collaborative Filtering

- Item-Based
 - tversky
 - MAP@10 = 0.04596
- User-Based
 - TF-IDF
 - MAP@10 = 0.03493

Graph-based

- P3alpha
 - k = 40
 - MAP@10 = 0.04793
- RP3beta
 - k = 28
 - MAP@10 = 0.04899

Recommendation Algorithms Comparison

Matrix Factorization

- IALS
 - k = 80 latent factors
 - MAP@10 = 0.03230

Neural

- MultVAE
 - MAP@10 = 0.037868

Item-Based CF

- SLIMElasticNet
 - k = 570
 - MAP@10 = 0.05003
- SLIMBRP
 - MAP@10 = 0.03893

Hybrid Models

ScoresHybrid

- SLIMElasticNet, RP3beta
- $\alpha = 0.50282$
- MAP@10 = 0.05104

$$\tilde{R} = \alpha \cdot \tilde{R_A} + (1 - \alpha) \cdot \tilde{R_B}$$

XGBoost (Preprocessing)

- Candidate generation selection
- Candidate generation cut-off selection
- Feature engineering
- Categorical features encoding

XGBoost (Candidate Generation)

ScoresHybrid

- SLIMElasticNet, RP3beta
- Metric: Recall
- Cut-off = 35
- $\alpha = 0.36771$
- RECALL@35 = 0.24885

- SLIMElasticNet
 - Metric: Recall
 - Cut-off = 35
 - RECALL@35 = 0.24221
- RP3beta
 - Metric: Recall
 - Cut-off = 35
 - RECALL@35 = 0.24156

XGBoost (Feature Engineering)

- Chosen scores:
 - ScoresHybrid
 - SLIMElasticNet
 - RP3beta
 - ItemKNNCF
 - UserKNNCF
 - TopPop
 - IALS
 - MultVAE
- Metric: NDCG
- Cut-off = 10

- k=[3, 10, 20]
 - is_in_top_k()
 - count_agreement()
- score_stats()
 - mean
 - . . .
 - iqr
- normalize_scores()
- disagreement()
- $n_{groups} = 20$
 - user_profile()
 - item_profile()

XGBoost (Categorical Features)

- naive enable_categorical = True (Used approach)
- Truncated SVD ($k = 100 \approx 10\%$ explained variance)
- What I did not tried:
 - Target encoding
 - Matrix Factorization
 - One-hot encoding
 - Embeddings

XGBoost (Feature Importance)

• MAP@10 = 0.051485

Figure: Feature Importance

Conclusion

- Thank you for your attention!
- Feel free to check out the project on GitHub:
 - https://github.com/lorecampa/RecSysChallenge2023