Ex 11E Vectors

4 OABC is a square. M is the midpoint of OA, and Q divides BC in the ratio 1:3.

AC and MQ meet at P.

- **a** If $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$, express \overrightarrow{OP} in terms of **a** and **c**.
- **b** Show that P divides AC in the ratio 2:3.

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$

$$\overrightarrow{OP} = \underline{a} + \lambda \overrightarrow{AC}$$

$$(\overrightarrow{AC} = \underline{C} - \underline{a})$$

$$\overrightarrow{OP} = \underline{a} + \lambda (\underline{C} - \underline{a})$$

$$= \underline{a} + \lambda \underline{C} - \lambda \underline{a}$$

$$\overrightarrow{OP} = (1 - \lambda)\underline{a} + \lambda \underline{C}$$

$$OP = (1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c = (\frac{1}{2} + \frac{1}{4}\mu)a + \mu c$$

$$(1-\lambda)a + \lambda c =$$

Area of a Triangle

$$\overrightarrow{AB} = 3i - 2j$$
 and $\overrightarrow{AC} = i - 5j$. Determine $\angle BAC$.

Strategy: Find 3 lengths of triangle then use cosine rule to find angle.

EXIIE

- 5 In triangle ABC the position vectors of the vertices A, B and C are $\binom{5}{8}$, $\binom{4}{3}$ and $\binom{7}{6}$. Find:
 - $\mathbf{a} \mid \overrightarrow{AB} \mid$
- $\mathbf{b} \mid \overrightarrow{AC} \mid$
- $c \mid \overrightarrow{BC} \mid$

Mixed Exercise Q7.

Modelling

In Mechanics, you will see certain things can be represented as a simple number (without direction), or as a vector (with direction):

Remember a 'scalar' just means a normal number (in the context of vectors). It can be obtained using the magnitude of the vector.

Equivalent Scalar Quantity Vector Quantity Velocity Speed = 5 km/hDisplacement Distance

e.g.
$$\binom{-5}{12}$$
 km

 $= 13 \, km$

Scalar

Find the distance moved by a particle which travels for:

- a 5 hours at velocity (8i + 6j) km h⁻¹
- **b** 10 seconds at velocity $(5\mathbf{i} \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$
- c 45 minutes at velocity (6i + 2j) km h⁻¹
- d 2 minutes at velocity (-4i 7j) cm s⁻¹.

a)
$$y = {8 \choose 6}$$
 $|y| = \sqrt{8^2 + 6^2} = 10 \text{ kmh}^{-1}$
 $d = |y| \times t$

$$d = 10 \times 5 = 50 \text{ km}$$

$$d = 10 \times 5 = 50 \text{ km}$$

$$d = \sqrt{26} \times 10 = 10\sqrt{26} = 51.0 \text{ m}$$

$$d = \sqrt{26} \times 10 = 10\sqrt{26} = 51.0 \text{ m}$$

All answers

to 35f.

b)
$$|Y| = \sqrt{5^2 + 1^2} = 2\sqrt{10}$$
 $d = 2\sqrt{10} \times \frac{3}{4} = 4.74 \text{ km}$
c) $|Y| = \sqrt{6^2 + 2^2} = 2\sqrt{10}$ $d = 2\sqrt{10} \times \frac{3}{4} = 4.74 \text{ km}$

c)
$$|y| = \sqrt{6^2 + 7^2} = \sqrt{65}$$
 $d = \sqrt{65} \times \sqrt{120} = 967 \text{ cm}$
d) $|y| = \sqrt{4^2 + 7^2} = \sqrt{65}$ $d = \sqrt{65} \times \sqrt{120} = 967 \text{ cm}$