

Hyderabad Campus

CS/ECE/EEE/INSTR F215:Digital Design

Lecture 30: Counters_2

Fri, 19 Nov 2021

BITS Pilani Hyderabad Campus

Dr. R. N. Ponnalagu, EEE

I find that the harder I work, the more luck I seem to have.

-Thomas Jefferson

ınn	\mathbf{o}	\mathbf{a}
		•

Present state		Next state			Flip-flop inputs										
\mathbf{Q}_3	\mathbf{Q}_2	Q ₁	\mathbf{Q}_0	\mathbf{Q}_3	\mathbf{Q}_2	Q ₁	\mathbf{Q}_0	J Q3	K _{Q3}	\mathbf{J}_{Q2}	\mathbf{K}_{Q2}	J _{Q1}	K _{Q1}	$\mathbf{J}_{\mathrm{Q}0}$	K _{Q0}
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	×	0	×	X	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	X	1	X	1
0	1	0	0	0	1	0	1	0	×	X	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	X	0	1	×	X	1
0	1	1	0	0	1	1	1	0	×	X	0	×	0	1	×
0	1	1	1	1	0	0	0	1	×	×	1	X	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	X
1	0	0	1	1	0	1	0	×	0	0	×	1	×	X	1
1	0	1	0	1	0	1	1	×	0	0	×	X	0	1	×
1	0	1	1	1	1	0	0	×	0	1	×	×	1	X	1
1	1	0	0	1	1	0	1	×	0	×	0	0	×	1	×
1	1	0	1	1	1	1	0	×	0	×	0	1	×	×	1
1	1	1	0	1	1	1	1	×	0	×	0	×	0	1	×
1	1	1	1	0	0	0	0	×	1	×	1	×	1	X	1

4-BIT SYNCHRONOUS "UP" COUNTER

$$J_{Q0} = 1$$

 $K_{Q0} = 1$

$$J_{Q1} = Q_0$$

 $K_{Q1} = Q_0$

$$J_{Q2} = Q_0 Q_1$$

 $K_{Q2} = Q_0 Q_1$

$$J_{Q3} = Q_0 Q_1 Q_2$$

 $K_{Q3} = Q_0 Q_1 Q_2$

4-bit Synchronous Counter Waveform Timing Diagram

4-BIT SYNCHRONOUS "DOWN" COUNTER

The circuit of a 4-bit up-down binary counter with T flip-flops is:

Up = 1; the circuit counts up.

Down = 1, Up = 0; the circuit counts down.

Up = 0, Down = 0; the circuit doesn't change state.

Up = 1, Down = 1, the circuit counts up.

A 4-bit binary counter with parallel load capability:

Its operation is summarized in the following table:

\				-	
أمرن	Clear	CLK	Load	Count	Function
Activ	(a)	X T	X (I)	X X U	Clear to 0 Load inputs Count next binary state No change

A counter with parallel load can be used to create any desired count sequence. For example, the 4-bit counter with parallel load shown previously can be used to generate a BCD count in two ways:

1. Using the load input:

2. Using the clear input:

Mod - 3 Courter JA KA J N. S ABOX 01 X KB= JB = A using ACFBC

TA = AC

TB TC = 1 0,1,2,3,4,5

Design a counter to go through the sequence 0, 1, d, 4, 5, 6 & hereat

Dosign a counter to go through the sequence 0, 1, d, 4, 5, 6 & hereat Courters with unused states N.S TA TB N.S ABC = 101 $7_A = 1$ $T_B = 1$ $T_c = 0$ self lorrecting N.S ABC \$ 001

