References where the mathematical symbols are defined:

The fragment molecular orbital method: practical applications to large molecular systems,

- D. G. Fedorov, K. Kitaura, Eds., CRC Press (2009), in press, chapter 1, or
- D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 111 (2007) 6904-6914.

One-body FMO properties.

	Ecorr $\frac{E_I'}{}$	Euncorr	DX	DY	DZ
1(frg00001,L1)	-76.191947612	-76.007836505	-1.77830	0.65969	1.48864
2(frg00002,L1)	-76.191961348	-76.007891466	1.28642	1.11442	-1.69243
3(frg00003,L1)	-76.191905112	-76.007851357	0.38270	-2.11713	-1.05827

Total energy of the molecule: Ecorr (1)= -228.575814072

Total energy of the molecule: Euncorr(1)= -228.023579328

Total energy of the molecule: Edelta (1)= -0.552234744

Dipole moment D(xyz), DA(1) = -0.1091791 -0.3430276 -1.2620705 1.3124061

Two-body FMO properties.

DL: D=C dynamically correlated (MP2,CI), D=N not dynamically correlated (RHF,DFT). D=S separated dimer: semiclassical interaction (ES), D=M MCSCF. L stands for layer, Z is the monomer charge product, R is the interfragment distance relative to van-der-Waals radii (-1.00 is printed if distances are not computed). dDIJ*VIJ is the density polarisation contribution. Q(I->J) is the charge transfer amount, printed as zero if not available. Positive values correspond to I in IJ having extra negative charge.

1	J DL	Z	R	Q(I->J)	Ecorr				dDIJ*VIJ,unc tot,corr	
			R_{IJ}	ΔQ_{IJ}			$\Delta E'_{IJ}$	$\Delta E_{IJ}^{\prime\mathrm{RHF}}$	$Tr(\Delta \mathbf{D}^{IJ} \mathbf{V}^{IJ})$	$\Delta E_{IJ}^{ m int}$
 2	1 C1	0	0.76	0.0282	-152.397129212	-152.026399729	-0.01322025	-0.01067176	-0.00072479	-8.751
3	1 C1	0	0.76	-0.0270	-152.397000640	-152.026329054	-0.01314792	-0.01064119	-0.00069990	-8.690
3	2 C1	0	0.77	0.0251	-152.395924095	-152.025383234	-0.01205763	-0.00964041	-0.00065907	-7.980

Total energy of the molecule: Ecorr (2)= -228.616323630 $E^{\text{FMO2-MP2}}$

Total energy of the molecule: Euncorr(2)= -228.056616444 $E^{\text{FMO2-RHF}}$

Total energy of the molecule: Edelta (2)= -0.559707186

Dipole moment D(xyz), DA(2) = -0.1306606 -0.3288742 -1.2622254 1.3108941**D**^{FMO2-RHF}

Charge transfer for each fragment:

```
IFG QFG DeltaQ and its contributions from JFG, Q(JFG->IFG).
```

.....

1 0 0.0012 = 2-> 0.0282 3-> -0.0270

2 0 -0.0031 = 1-> -0.0282 3-> 0.0251

```
3 0 0.0019 = 1-> 0.0270 2-> -0.0251
```

```
Total absolute monomer transf. charge = 0.006128 \Delta \overline{Q}
Total amount of absolute transf. charge = 0.080338 \Delta Q
```

Three-body FMO properties.

2

3

4

5

6

7

8

9

1.0

1.0

8.0

1.0

1.0

1.0

1.0

1

1

2

2

2

3 8.0

3

3

0.499521

0.459853

-0.957268

0.499446

0.457823

-0.957996

0.499980

0.458016

0.508812

0.454091

-0.962262

0.507613

0.451585

-0.958814

0.508432

0.452280

I	J	K DL	RMIN	RMAX	E	corr	deltaE <mark>ΔE'_{IJI}</mark>	_ ′	$\Delta E_{IJK}^{\prime\mathrm{RHF}}$	dDIJK*VI $\Delta E_{IJK}^{\mathrm{D}}$	
3	2	1 C1	0.76	0.76	-228.6	6158310	053 -0.0015	9118 -0	0.00173101	0.002083	75 0.309
Total	energ	y of	the mole	ecule: l	Ecorr	(3)=	-228.6158	831053	$E^{ ext{FMO3-MP}}$	2	
Total	energ	y of	the mole	ecule: E	Euncorr	(3)=	-228.0562	263700	$E^{ ext{FMO3-RHI}}$	F	
	Ū	•	the mole			` ,	-0.5599 -0.3294254		622198	1.3108852	D ^{FMO3-RHF}
n-body Mulliken atomic charges Q(n)											
IAT 1	IFG	Z 8.0		(1) 59373	Q(2) -0.961		Q(3) -0.962384				

0.509189

0.454418

-0.963056

0.508127

0.451920

-0.959831

0.508997

0.452620