REPRESENTATIONS OF $\mathfrak{sl}(2,\mathbb{C})$ AND CLEBSCH-GORDAN RULE

HUAN T. VO

ABSTRACT. In this notes we describe the Clebsch-Gordan rule for $\mathfrak{sl}(2,\mathbb{C})$, which gives a decomposition of tensor products of irreducible representations into irreducibles.

1. Irreducible Representations of $\mathfrak{sl}(2,\mathbb{C})$

Recall that the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ is

$$\mathfrak{sl}(2,\mathbb{C}) = \{ A \in \mathsf{Mat}_2(\mathbb{C}) \colon \mathrm{tr}(A) = 0 \},$$

It has basis

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and the Lie brackets are given by [e, f] = h, [h, e] = 2e, [h, f] = -2f.

By a **representation** V of a Lie algebra \mathfrak{g} we mean a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(V)$, the Lie algebra of all linear transformations of some complex vector space V. A subspace of V that is stable under the action of \mathfrak{g} is called a **subrepresentation** of V. A representation V is **irreducible** if its only subrepresentations are either 0 or V and is called **completely reducible** if it is the direct sum of irreducible representations. We would like to classify representations of $\mathfrak{sl}(2,\mathbb{C})$. For that, we first classify the irreducible representations. Some terminologies are in order.

Let V be a representation of $\mathfrak{sl}(2,\mathbb{C})$. For $\lambda \in \mathbb{C}$, let

$$V[\lambda] \colon = \{ v \in V \colon hv = \lambda v \}.$$

If $V[\lambda] \neq 0$, then λ is called a **weight** of V, $V[\lambda]$ is called a **weight space** and elements of $V[\lambda]$ are called **weight vectors**. A weight λ of V is called a **highest weight** of V if

$$\operatorname{Re} \lambda \geq \operatorname{Re} \lambda'$$
 for any weight λ' of V .

If λ is a highest weight of V, we call elements of $V[\lambda]$ highest weight vectors. Note that any finite dimensional representation has a highest weight since h always has at least one eigenvalue (over \mathbb{C}) and only has finitely many of them.

Lemma 1.1. The actions of e and f on $V[\lambda]$ is given by

$$eV[\lambda] \subset V[\lambda+2],$$

$$fV[\lambda]\subset V[\lambda-2].$$

Proof. The proof is a straight-forward computation based on the fact that V is a representation of $\mathfrak{sl}(2,\mathbb{C})$. Pick any $v \in V[\lambda]$, then

$$h(ev) = ([h, e] + eh)v = 2ev + \lambda ev = (\lambda + 2)ev,$$

$$h(fv) = ([h, f] + fh)v = -2fv + \lambda fv = (\lambda - 2)fv,$$

as required.

Lemma 1.2. Let V be a representation of $\mathfrak{sl}(2,\mathbb{C})$ with highest weight λ and $v_0 \in V[\lambda]$ a highest weight vector. Define

$$v_k = f^k v_0, \quad k \ge 0.$$

Then

- (i) $ev_k = k(\lambda k + 1)v_{k-1}$ for k > 0 and $ev_0 = 0$.
- (ii) $hv_k = (\lambda 2k)v_k$,

Proof. We prove part (i) and (ii) simultaneously by induction. When k=0, by definition $hv_0 = \lambda v_0$. If $ev_0 \neq 0$, then by Lemma 1.1 we have $h(ev_0) = (\lambda + 2)ev_0$, contradicting the assumption that λ is a highest weight. Thus $ev_0 = 0$. When k = 1,

$$hv_1 = hfv_0 = (\lambda - 2)fv_0 = (\lambda - 2)v_1$$

again by Lemma 1.1 and

$$ev_1 = efv_0 = ([e, f] + fe)v_0 = hv_0 = \lambda v_0,$$

where we use $ev_0 = 0$. Now suppose that (i) and (ii) are true for $k \ge 1$. We compute

$$hv_{k+1} = hfv_k = (\lambda - 2k - 2)fv_k = (\lambda - 2k - 2)v_{k+1},$$

where in the second equality we use the fact that v_k is an eigenvector of h with eigenvalue $\lambda - 2k$. Finally,

$$ev_{k+1} = efv_k = ([e, f] + fe)v_k = hv_k + fev_k$$

= $(\lambda - 2k)v_k + k(\lambda - k + 1)fv_{k-1} = (k+1)(\lambda - k)v_k$,

as required.

Now we are ready for our main theorem. In brief, there is a 1-1 correspondence between irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$ and non-negative integers.

Theorem 1.3. (1) For any $n \geq 0$, let V_n be the finite dimensional vector space with basis $\{v_0, v_1, \dots, v_n\}$. Define the action of $\mathfrak{sl}(2, \mathbb{C})$ by

$$hv_k = (n-2k)v_k, \quad 0 \le k \le n$$

$$fv_k = v_{k+1}, \quad 0 \le k < n; \quad fv_n = 0,$$

$$ev_k = k(n+1-k)v_{k-1}, \quad 0 < k \le n; \quad ev_0 = 0.$$

Then V_n is an irreducible representation of $\mathfrak{sl}(2)$, we will call it the irreducible representation with highest weight n.

- (2) For $n \neq m$, representations V_n , V_m are not isomorphic.
- (3) Every finite-dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ is isomorphic to one of the representations V_n .

Proof. (1) Notice that if n=0, then $V_0=\operatorname{span}\{v_0\}$ is the trivial representation. So assume that n>0. To check that V_n is indeed a representation of $\mathfrak{sl}(2,\mathbb{C})$, it suffices to check that

$$hv_k = (ef - fe)v_k;$$
 $2ev_k = (he - eh)v_k;$ $-2fv_k = (hf - fh)v_k$

for $k = 0, 1, \ldots, n$. We have

$$(ef - fe)v_k = ev_{k+1} - k(n - k + 1)fv_{k-1}$$

= $(k+1)(n-k)v_k - k(n-k+1)v_k$
= $(n-2k)v_k = hv_k$.

Note that the above computation also holds when k=0 or k=n. Similarly,

$$(he - eh)v_k = k(n - k + 1)hv_{k-1} - (n - 2k)ev_k$$

= $k(n - k + 1)(n - 2k + 2)v_{k-1} - (n - 2k)k(n - k + 1)v_{k-1}$
= $2k(n - k + 1)v_{k-1} = 2ev_k$.

The above computation also works when k = 0. Finally,

$$(hf - fh)v_k = hv_{k+1} - (n - 2k)fv_k$$

= $(n - 2k - 2)v_{k+1} - (n - 2k)v_{k+1}$
= $-2v_{k+1} = -2fv_k$.

Again the above computation also holds when k = n. Thus V_n is a representation of $\mathfrak{sl}(2,\mathbb{C})$. Now to see that V_n is irreducible, let $0 \neq W \subset V_n$ be a subrepresentation of V. Pick $0 \neq w \in W$ and suppose that

$$w = a_m v_m + a_{m+1} v_{m+1} + \dots + a_n v_n, \quad a_m \neq 0, \ m \geq 0.$$

Then

$$e^n f^{n-m} w = \alpha a_m v_0,$$

where $\alpha a_m \neq 0$, as can easily be checked. Thus $v_0 \in W$, and because W is a representation, it follows that $W = V_n$, as required.

- (2) For $n \neq m$, representations V_n and V_m have different dimensions. Therefore they are not isomorphic.
- (3) Now suppose that V is a finite dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$. Then V has a highest weight λ with a highest weight vector v_0 . Put

$$v_k = f^k v_0, \quad k \ge 0.$$

Then the actions of $\mathfrak{sl}(2,\mathbb{C})$ on $\{v_k\}$ are as in Lemma 1.2. If the v_k 's are non-zero, then they are linear independent, since they have different weights. Since V is finite dimensional, there must exist some $n \geq 0$ such that $v_n \neq 0$ and $fv_n = 0$. So in particular $v_k = 0$ for all k > n. We have from Lemma 1.2

$$0 = ev_{n+1} = (n+1)(\lambda - n)v_n.$$

Since v_n is non-zero, it follows that $\lambda = n$. So V has highest weight n. The vectors v_0, \ldots, v_n are linearly independent. Now consider

$$W = \mathrm{span} \{v_0, \ldots, v_n\}.$$

The action of $\mathfrak{sl}(2,\mathbb{C})$ on W is exactly as given in part (1) of the theorem. So in particular W is a subrepresentation of V which is isomorphic to V_n . Since V is irreducible, it follows that $V = W \cong V_n$, as required.

Corollary 1.4. If V_n is the irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ with highest weight n, then V_n is the direct sum of its weight spaces:

$$V_n = V[-n] \oplus V[-n+2] \oplus \cdots \oplus V[n-2] \oplus V[n],$$

and each weight space is one dimensional. More specifically, V[n-2k] is generated by v_k , where $v_k = f^k v_0$ for some highest weight vector v_0 .

2. Concrete Expressions for V_n

In this section we give a concrete expression for the irreducible representations V_n . Observe that $V_1 \cong \mathbb{C}^2$, the standard representation of $\mathfrak{sl}(2,\mathbb{C})$. The isomorphism is

$$v_0 \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix} =: z_1, \quad v_1 \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix} =: z_2.$$

Consider S^nV_1 , the *n*th symmetric power of V_1 , i.e. an element $P \in S^nV_1$ is a homogeneous polynomial in z_1 and z_2 of total degree n:

$$P = a_0 z_1^n + a_1 z_1^{n-1} z_2 + \dots + a_{n-1} z_1 z_2^{n-1} + a_n z_2^n,$$

where $a_0, \ldots, a_n \in \mathbb{C}$.

Theorem 2.1. With the following actions:

$$(h \cdot P)(z_1, z_2) = z_1 \frac{\partial P}{\partial z_1} - z_2 \frac{\partial P}{\partial z_2},$$

$$(e \cdot P)(z_1, z_2) = z_1 \frac{\partial P}{\partial z_2},$$

$$(f \cdot P)(z_1, z_2) = z_2 \frac{\partial P}{\partial z_1},$$

we have $S^n\mathbb{C}^2 \cong V_n$ as representations of $\mathfrak{sl}(2,\mathbb{C})$. Thus $S^{\cdot}(V_1)$, the symmetric algebra of V_1 , contains all irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$.

Proof. Note that $S^n\mathbb{C}^2$ has the following basis

$$\left\{\frac{1}{n!}z_1^n, \frac{1}{(n-1)!}z_1^{n-1}z_2, \dots, z_1z_2^{n-1}, z_2^n\right\}.$$

Let $v_k = \frac{1}{(n-k)!} z_1^{n-k} z_2^k$, $0 \le k \le n$. To see that $S^n \mathbb{C}^2 \cong V_n$, we just need to check that the actions of e, f, h on the v_k 's follow the rule of part (1) of Theorem 1.3, which is a straight-forward exercise.

3. Digression on Lie Groups

For our purpose, it suffices to look at matrix Lie groups, i.e. closed subgroups of $\mathsf{GL}(n,\mathbb{C})$. For instance, the Lie group $\mathsf{SU}(2)$ is given by

$$SU(2) = \{ A \in GL(2, \mathbb{C}) : A^*A = I_2, \det(A) = 1 \}.$$

Here A^* denotes the conjugate transpose of A. The group SU(2) is connected. It is homeomorphic to the three-dimensional sphere \mathbb{S}^3 sitting inside \mathbb{R}^4 and hence is compact and is simply connected.

Given a matrix Lie group G, its Lie algebra \mathfrak{g} can be identified with the tangent space to G at the identity e. One can obtain \mathfrak{g} via the exponential mapping. More specifically, the Lie algebra \mathfrak{g} is the set of all matrices X such that $e^{tX} \in G$ for all real numbers t, where

$$e^{tX} = \sum_{k=0}^{\infty} \frac{1}{k!} t^k X^k.$$

For instance, the Lie algebra of SU(2) is $\mathfrak{su}(2)$, given by

$$\mathfrak{su}(2) = \{ A \in \mathsf{Mat}_2(\mathbb{C}) \colon A^* = -A, \ \operatorname{tr}(A) = 0 \}.$$

Notice that $\mathfrak{su}(2)$ is not a complex vector space since if $A^* = -A$, then $(iA)^* = -iA^* = iA$. Its complexification is precisely the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$, i.e.

$$\mathfrak{sl}(2,\mathbb{C}) = \mathfrak{su}(2) + i\mathfrak{su}(2).$$

So in particular the complex representations of $\mathfrak{su}(2)$ and $\mathfrak{sl}(2,\mathbb{C})$ are the same.

Given a representation of a matrix Lie group G, i.e. a smooth group homomorphism $G \to \mathsf{GL}(V)$ for some complex vector space V, one can obtain a representation of the corresponding Lie algebra \mathfrak{g} as follows. For $X \in \mathfrak{g}$ and $v \in V$, we have

$$X \cdot v = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (e^{tX} \cdot v).$$

However, not every representation of \mathfrak{g} comes from a representation of G. Nevertheless, it turns out that if G is connected and simply-connected, then the category of representations of G and the category of representations of \mathfrak{g} are equivalent. So in our case in particular, the representation theory of $\mathsf{SU}(2)$ is the same as the representation theory of $\mathfrak{sl}(2,\mathbb{C})$.

Here we would like to introduce a notion that will be useful in the next section. Let V be a representation of G and suppose that V is equipped with an *invariant inner product* $\langle \cdot, \cdot \rangle$, i.e.

(1)
$$\langle gv, gw \rangle = \langle v, w \rangle$$
 for all $g \in G$ and $v, w \in V$.

In other words, g acts as a unitary operator. One advantage of having an invariant inner product on V is that if W is a sub representation of V, its orthogonal complement

$$W^{\perp} = \{ v \in V \colon \langle v, w \rangle = 0 \text{ for all } w \in W \}$$

is also a subrepresentation. Indeed, for $v \in W^{\perp}$ and $g \in G$, we have

$$\langle gv, w \rangle = \langle g^{-1}gv, g^{-1}w \rangle = \langle v, g^{-1}w \rangle = 0$$

for all $w \in W$. The invariant inner product descends to the corresponding representation of \mathfrak{g} , where condition (1) becomes

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} \langle e^{tX}v, e^{tX}w \rangle = 0$$

for $X \in \mathfrak{g}$. In other words,

$$\langle Xv, w \rangle + \langle v, Xw \rangle = 0.$$

Again it can be checked easily that if W is \mathfrak{g} -subrepresentation of V, then W^{\perp} is also a \mathfrak{g} -subrepresentation.

4. Representations of $\mathfrak{sl}(2,\mathbb{C})$

Theorem 4.1. Any finite dimensional representation of $\mathfrak{sl}(2,\mathbb{C})$ is completely reducible.

Proof (sketch). From Section 3 we know that representations of $\mathfrak{sl}(2,\mathbb{C})$ are the same as representations of $\mathsf{SU}(2)$. If a finite dimensional representation V of $\mathsf{SU}(2)$ is equipped with an invariant inner product, then one can easily show that V is completely reducible by an induction argument. Hence it suffices to prove that any finite dimensional representation V of $\mathsf{SU}(2)$ can be equipped with an invariant inner product.

Recall that SU(2) is homeomorphic to \mathbb{S}^3 and so is compact. In general, given a compact Lie group G and a finite dimensional representation V of G equipped with an arbitrary inner product $\langle \cdot, \cdot \rangle_G$ on V as follows (this is known as the Weyl Unitary Trick). First one can define a non-zero measure μ on the Borel σ -algebra of G such that: (1) μ is locally finite, i.e. every point in G has a neighbourhood with finite measure and (2) it is invariant under right-translation, i.e. $\mu(Eg) = \mu(E)$ for any $g \in G$ and any Borel set $E \subset G$. This is known as a Haar measure. Then one obtain a new inner product:

$$\langle v_1, v_2 \rangle_G = \int_G \langle g \cdot v_1, g \cdot v_2 \rangle \,\mathrm{d}\mu(g).$$

To see that $\langle \cdot, \cdot \rangle_G$ is indeed invariant, note that

$$\langle h \cdot v_1, h \cdot v_2 \rangle_G = \int_G \langle (gh) \cdot v_1, (gh) \cdot v_2 \rangle \, d\mu(g)$$

$$= \int_G \langle k \cdot v_1, k \cdot v_2 \rangle \, d\mu(kh^{-1}) \quad \text{(make the substitution } k = gh)$$

$$= \int_G \langle k \cdot v_1, k \cdot v_2 \rangle \, d\mu(k) \quad \text{(because } \mu \text{ is right invariant)}$$

$$= \langle v_1, v_2 \rangle_G,$$

as required. For a completely algebraic proof of this result, without referring to Lie groups, the readers can consult [Kir08, **Section 6.3**]. \Box

Corollary 4.2. Every finite dimensional representation V of $\mathfrak{sl}(2,\mathbb{C})$ is the direct sum of its weight spaces. In other words,

$$V = \bigoplus_{n \in \mathbb{Z}} V[n],$$

where only finitely many V[n] are non-zero.

Proof. This follows directly from Corollary 1.4 and Theorem 4.1.

Now we introduce a concept which will be useful in the next section. Let V be a finite-dimensional representation of $\mathfrak{sl}(2,\mathbb{C})$, we define the **formal character** of V to be

$$\operatorname{ch}(V) \colon = \sum_{n \in \mathbb{Z}} \dim(V[n]) t^n.$$

Note that $\operatorname{ch}(V) \in \mathbb{Z}[t,t^{-1}]$, the ring of Laurent polynomials in t with integer coefficients, because V is finite-dimensional. In particular, the character of the zero vector space is 0. From now on, we assume all representations of $\mathfrak{sl}(2,\mathbb{C})$ are finite-dimensional.

Lemma 4.3. If V and W are representations of $\mathfrak{sl}(2,\mathbb{C})$, then

$$\operatorname{ch}(V \oplus W) = \operatorname{ch}(V) + \operatorname{ch}(W).$$

Proof. We have

$$V \oplus W = \bigoplus_{n \in \mathbb{Z}} V[n] \oplus \bigoplus_{m \in \mathbb{Z}} W[m] = \bigoplus_{n \in \mathbb{Z}} V[n] \oplus W[n],$$

Taking formal character we obtain

$$\operatorname{ch}(V \oplus W) = \sum_{n \in \mathbb{Z}} \dim((V \oplus W)[n]) t^n$$

$$= \sum_{n \in \mathbb{Z}} \dim(V[n] \oplus W[n]) t^n$$

$$= \sum_{n \in \mathbb{Z}} (\dim(V[n]) + \dim(W[n])) t^n$$

$$= \operatorname{ch}(V) + \operatorname{ch}(W),$$

as required.

Our main result concerning formal characters is the following theorem.

Theorem 4.4. Two representations V and W of $\mathfrak{sl}(2,\mathbb{C})$ are isomorphic if and only if $\mathrm{ch}(V) = \mathrm{ch}(W)$.

Proof. The only if direction is clear from the definition, so we only need to prove the if direction. We proceed by induction on the dimension of V and W. Notice that the condition $\operatorname{ch}(V) = \operatorname{ch}(W)$ implies that V and W have the same weight space decomposition and so they have the same dimension. Let n be the dimension of V and W. The case n=0 is vacuously true, so consider n>0. Let λ be a highest weight of both V and W. Then part (3) of Theorem 1.3 implies that V contains a subrepresentation V' isomorphic to V_{λ} and W contains a subrepresentation W' isomorphic to V_{λ} . Now decompose

$$V = V' \oplus (V')^{\perp}, \quad W = W' \oplus (W')^{\perp}.$$

Here we assume that V and W are each equipped with an invariant inner product (see Section 3). Thus $(V')^{\perp}$ and $(W')^{\perp}$ are both subrepresentations. Now by assumption

$$\operatorname{ch}(V) = \operatorname{ch}(V') + \operatorname{ch}((V')^{\perp}) = \operatorname{ch}(W') + \operatorname{ch}((W')^{\perp}) = \operatorname{ch}(W).$$

But $\operatorname{ch}(V') = \operatorname{ch}(W') = \operatorname{ch}(V_{\lambda})$, so $\operatorname{ch}((V')^{\perp}) = \operatorname{ch}((W')^{\perp})$. Since $(V')^{\perp}$ $((W')^{\perp}$ resp.) has dimension less than the dimension of V (W resp.), the induction hypothesis yields $(V')^{\perp}$ and $(W')^{\perp}$ are isomorphic as representations. Thus the representations V and W are isomorphic and that completes the induction.

5. CLEBSCH-GORDAN RULE

In this section we describe how to decompose the tensor product of two irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$ into irreducibles. In general, given two representations V and W of a Lie algebra \mathfrak{g} we can turn $V \otimes W$ into a representation as follows:

$$X \cdot (v \otimes w) = X \cdot v \otimes w + v \otimes X \cdot w, \quad X \in \mathfrak{g}, \ v \in V, \ w \in W.$$

This action will look more natural on the level of Lie groups. Suppose G is a Lie group whose Lie algebra is \mathfrak{g} and V and W are representations of G. Then we can define an action of G on $V \otimes W$ by

$$g \cdot (v \otimes w) = g \cdot v \otimes g \cdot w, \quad g \in G, \ v \in V, \ w \in W.$$

Now for $X \in \mathfrak{g}$, its action on $v \otimes w \in V \otimes W$ is given by

$$X \cdot (v \otimes w) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left(e^{tX} \cdot v \otimes e^{tX} \cdot w \right) = X \cdot v \otimes w + v \otimes X \cdot w,$$

as expected.

Lemma 5.1. If V and W are representations of $\mathfrak{sl}(2,\mathbb{C})$, then

$$\operatorname{ch}(V \otimes W) = \operatorname{ch}(V)\operatorname{ch}(W).$$

Proof. Recall that V and W have bases consisting of eigenvectors of h. If $v \in V[n]$ and $w \in W[m]$, then

$$h \cdot (v \otimes w) = h \cdot v \otimes w + v \otimes h \cdot w = nv \otimes w + v \otimes mw = (n+m)v \otimes w.$$

It follows that

$$(V \otimes W)[k] = \bigoplus_{n+m=k} V[n] \otimes W[m].$$

Hence,

$$\operatorname{ch}(V \otimes W) = \sum_{k \in \mathbb{Z}} \dim((V \otimes W)[k]) t^k$$

$$= \sum_{k \in \mathbb{Z}} \sum_{n+m=k} \dim(V[n]) \dim(W[m]) t^k$$

$$= \sum_{n \in \mathbb{Z}} \dim(V[n]) t^n \sum_{m \in \mathbb{Z}} \dim(W[m]) t^m$$

$$= \operatorname{ch}(V) \operatorname{ch}(W),$$

as required.

Theorem 5.2 (Clebsch-Gordan rule). Let V_m and V_n be the irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$ of highest weights m and n, respectively. Assume $m \geq n$, then

$$V_m \otimes V_n \cong V_{m+n} \oplus V_{m+n-2} \oplus \cdots \oplus V_{m-n+2} \oplus V_{m-n},$$

as representations of $\mathfrak{sl}(2,\mathbb{C})$.

Proof. By Theorem 4.4, it suffices to show that the two sides have the same formal characters. From Corollary 1.4, we have

$$\operatorname{ch}(V_n) = t^{-n} + t^{-n+2} + \dots + t^{n-2} + t^n = \frac{t^{n+2} - t^{-n}}{t^2 - 1}.$$

So the formal character of the right hand side is given by b

(2)
$$\frac{t^{m+n+2}-t^{-m-n}}{t^2-1} + \frac{t^{m+n}-t^{-m-n+2}}{t^2-1} + \dots + \frac{t^{m-n+4}-t^{-m+n-2}}{t^2-1} + \frac{t^{m-n+2}-t^{-m+n}}{t^2-1}.$$

Now note that

$$-t^{-m-n} - t^{-m-n+2} - \dots - t^{-m+n-2} - t^{-m+n}$$

$$= t^{-m}(t^{-n} + t^{-n+2} + \dots + t^{n-2} + t^n)$$

$$= t^{-m}\operatorname{ch}(V_n).$$

Also,

$$t^{m+n+2} + t^{m+n} + \dots + t^{m-n+4} + t^{m-n+2}$$

$$= t^{m+2}(t^n + t^{n-2} + \dots + t^{-n+2} + t^{-n})$$

$$= t^{m+2}\operatorname{ch}(V_n).$$

Therefore (2) becomes

$$\operatorname{ch}(V_n)\left(\frac{t^{m+2}-t^{-m}}{t^2-1}\right) = \operatorname{ch}(V_n)\operatorname{ch}(V_m) = \operatorname{ch}(V_n \otimes V_m),$$

where the last equality follows from Lemma 5.1.

Example. When m = n = 1, we have

$$V_1 \otimes V_1 \cong V_2 \oplus V_0 \cong V_2 \oplus \mathbb{C}$$
,

where one can check easily that V_2 is the adjoint representation of $\mathfrak{sl}(2,\mathbb{C})$. The isomorphism is $v_0 \mapsto e$, $v_1 \mapsto h$ and $v_2 \mapsto f$.

References

- [Kir08] **Alexander Kirillov, Jr.**, An Introduction to Lie Groups and Lie Algebras. Cambridge University Press, 2008.
- [Ha03] **Brian C. Hall**, Lie Groups, Lie Algebra, and Representations: An Elementary Introduction. Springer-Verlag, 2003.
- [Hum72] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1972.
- [Ful04] William Fulton, Joe Harris, Representation Theory: A First Course. Springer-Verlag, 2004.
- [Kas95] Christian Kassel, Quantum Groups. Springer-Verlag, 1995.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO ONTARIO M5S 2E4, CANADA *E-mail address*: vohuan@math.toronto.edu