FICHA 9

- 1. Calcule a derivada da função $\int_1^{\ln x} \sin(u + e^u) \ du$, com x > 0.
- 2. Determine uma função contínua f e uma constante k tal que, para todo o $x \in IR$, se verifique:

$$\int_{k}^{x} f(t) dt = \sin x + \frac{1}{2}.$$

Áreas planas

- 3. Em cada alínea, determine a medida da área da região limitada pelas curvas cujas equações são dadas:
 - (a) x = 0, x = 1, y = 3x, $y = -x^2 + 4$;
 - (b) x = 0, $x = \frac{\pi}{2}$, $y = \sin x$, $y = \cos x$;
 - (c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$
- 4. Indique como recorreria ao cálculo integral para determinar a área de cada uma das seguintes regiões:
 - (a) $\{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 4 \text{ e } 0 \le y \le x\};$
 - (b) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\};$
 - (c) $\{(x,y) \in \mathbb{R}^2 : x \le 3 \text{ e } y \ge x^2 4x + 3 \text{ e } y \le -x^2 + 5x 4\}.$
- 5. Calcule a área da região plana limitada pelo gráfico da função $f(x)=x^3$ e pela recta tangente no ponto de abcissa x=1.