Bachelor of Science (Information Technology) (I.T.) Semester-V Examination **GRAPH THEORY**

Paper-6

Time: Three Hours] [Maximum Marks: 50

N.B.:— (1) All questions are compulsory and carry equal marks.

(2) Draw neat diagrams wherever necessary.

EITHER

- (A) Define the following terms:
 - (i) Graph
 - (ii) In degree
 - (iii) Out degree
 - (iv) Loop

5 (v) Multigraph.

(B) Find the degree of each vertex in the multigraph as shown in the figure below. What is the degree of an isolated vertex V₂?

OR

(C) Consider the graph G(V, E) as shown in the following figure. Determine whether H(V', E') is a subgraph of G or not where:

(a) $V' = \{a, b, f\}$ and $E' = \{(a, b), (a, f)\}$

(b)
$$V' = \{a, b, d\}$$
 and $E' = \{(a, b), (a, d)\}$

5

(D) What is Isomorphic Graph? Explain with an example. Also mention conditions for isomorphic 5 graph.

1

EITHER

- 2. (A) What is walk of a path? Explain closed walk, open walk and length of a path with an example of each.
 - (B) Find the connected components of a graph G(V, E) where $V = \{a, b, c, d, e\}$ and
 - (i) $E = \{(a, c), (b, e), (d, c), (e, a)\}$
 - (ii) $E = \phi$ for the given graph.

OR

- (C) Define the following:
 - (i) Connected graph with example.
 - (ii) Distance and diameter.
 - (iii) Cut-point. 5
- (D) What is Dijkstra's shortest path algorithm? Give its advantages.

EITHER

- 3. (A) Define Ordered Trees. Distinguish between a general tree and a binary tree. 5
 - (B) Consider the trees T_1 , T_2 and T_3 as shown below. Identify trees which represent :
 - (a) rooted tree
 - (b) ordered rooted tree
 - (c) binary tree. 5

5

- (C) Prove that a graph G is a tree if and only if it is minimally connected.
- (D) Use Kruskal algorithm to find a minimal spanning tree for the connected weighted graph as shown below. The weight of each edge is given in terms of kilometers.

5

5

5

Figure – Connected Weighted Graph

EITHER

- 4. (A) Define the following:
 - (i) Simple Digraphs.
 - (ii) Symmetric Digraphs.
 - (iii) Equivalence Relation in Digraphs.
 - (iv) Transitive Relation in Digraphs.
 - (v) Reflexive Relation in Digraphs.

(B) Define Arborescence and prove that, An arborescence is a tree in which every vertex other than the root has an in-degree of exactly one.

OR

- (C) Explain the following:
 - (i) Connected Digraphs.
 - (ii) Euler Digraph.
 - (iii) Application of Euler's Digraph.
- (D) Define Network and Maximal Flow. Give its applications.
- 5. Attempt all:
 - (A) Define Ring sum of two graphs. 2½
 - (B) Give an example of vertex connectivity. 2½
 - (C) Explain fundamental circuit and cut-sets. 2½
 - (D) Explain circuit correspondence in a graphs. 2½