

IN1006 Systems Architecture (PRD1 A 2022/23)

↑ My Moodle | IN1006_PRD1_A_2022-23 | COURSEWORK 1: Weekly Assessed Quiz | Quiz 7 Weekly Assessed Quiz 2022

Started on	Thursday, 15 December 2022, 4:03 PM
State	Finished
Completed on	Thursday, 15 December 2022, 4:24 PM
Time taken	21 mins 41 secs
Grade	5.60 out of 10.00 (56 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
How many supers	calar execution units could be used for the MIPS pseudo-code below? Assume no register forwarding.
add a, b, c	
add c, b ,c	
add f, c ,d	

Select one:

add h, e, f add f, h, b

- a. 1
- b. Don't know/no answer
- oc. 4
- Od. 2
- e. 3
- 0 f. 5

Your answer is correct.

The number of execution units that can be used is limited to the largest sized block of non-dependent instructions. All instructions have some dependency with another.

The correct answer is: 1

How many superscalar execution units could be used for the MIPS pseudo-code below? Assume no register forwarding.		
1. add a, b, c		
2. add d, b ,c		
3. add g, e ,b		
4. add h, g, k		
5. add f, a, h		
Select one:		
○ a. 3		
b. 2	×	
oc. Don't know/no answer		
O d. 5		
○ e. 1		
O f. 4		
Your answer is incorrect		

Your answer is incorrect.

Question 2 Incorrect

Mark -0.10 out of 1.00

The number of execution units that can be used is limited to the largest sized block of non-dependent instructions. In the above block:

- Instructions 1, 2 and 3 have no dependency.
- There is a dependency between 4 and 3 (due to g).
- There is a dependency between 4 and 5 (due to h).

Therefore the largest size block of non-dependent instructions is 3.

The correct answer is: 3

Question 3	
Incorrect	

Mark -0.10 out of 1.00

Which of the following describes best the concept of "out-of-order" execution?

- a. Do not know the answer
- b. Instructions are executed in pipelines.
- oc. Instructions are loaded first to cache before brought to the CPU for execution.
- O d. An instruction and a data queue are used to regulate the execution of instructions by the CPU.
- e. Instructions are executed in two separate CPUs operating in parallel.

Your answer is incorrect.

Instructions are not given to the CPU for execution immediately when they are due. They are placed in a queue and are moved from it to the CPU only when all the data that they need are available. Also the data D produced by an instruction I are placed in a queue and only when the data of all the instructions that were earlier than I are also written in the queue data, D are written to memory.

The correct answer is:

An instruction and a data queue are used to regulate the execution of instructions by the CPU.

Mark 1.00 out of 1.00	
Consider the following MIPS code:	
1. add a, b, c	
2. add b, c ,d	
3. add f, e , b	
4. add h, k, g 5. add m, k, w	
Which of the following compiler optimisations could avoid data hazards in this code assuming a 4 stage pipeline (i.e., 1. fetch instruction; 2. Decode and load data; 3. Execute instruction; 4. Write to memory) with no forwarding?	
 a. Move instruction 4 before instruction 3. 	
○ b. Move instruction 5 before instruction 1.	
○ c. Do not know the answer.	
d. Move instructions 4 and 5 before instruction 3.	
 e. No compiler optimisation is possible. 	
Your answer is correct.	
Instruction 3 depends on instruction 2 (due to b). Instructions 4 and 5 can be moved before it in the program without affecting the	
overall program outcome. This move would make instruction 3 to load b in the 7th cycle in a pipeline execution (assuming that	
instruction 1 starts in cycle 1). In the 7th cycle however instruction 2 will have written b to memory (this would happen in cycle 5 of	
the pipeline). So the data hazard would no longer be present.	
The correct answer is:	
Move instructions 4 and 5 before instruction 3.	
Question 5	
Correct	
Mark 1.00 out of 1.00	
Which of the following is the best description of a 'stall'?	
Select one:	
○ a. Don't know/no answer	
b. Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.	
c. Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.	
d. A gap in the pipeline where some or all of the stages are not processing an instruction.	
e. Loading instructions into pipeline before the result of a decision is known, e.g. loading instructions after a branch f Waiting for the part instruction to be forced after a branch is taken.	
 f. Waiting for the next instruction to be fetched after a branch is taken. 	
A stall occurs in response to a control hazard. It involves waiting for the next instruction to be fetched after a branch is taken.	
The correct answer is: Waiting for the next instruction to be fetched after a branch is taken.	

Question **4**Correct

1. add a, b, c 2. add b, b ,d 3. add f, e , a 4. add h, k, g	
5. add m, a, b	
Which of the following compiler optimisations could avoid data hazards in this code assuming a 4 stage pipeline (i.e., 1. fetch instruction; 2. Decode and load data; 3. Execute instruction; 4. Write to memory) with no forwarding?	
a. Move instruction 4 before instruction 3.	•
○ b. No optimisations are possible.	
○ c. Do not know the answer.	
○ d. Move instruction 5 before instruction 3.	
e. Move instructions 5 before instruction 4.	

Your answer is correct.

Question **6**Correct

Mark 1.00 out of 1.00

Consider the following MIPS code:

The data hazards in this code arise due to instruction 3 (it depends on instruction 1).

Moving instruction 4 before instruction 3 will resolve the hazard as following the move instruction 3 will read data in cycle 5 and by this cycle instruction 1 will have stored its output.

The correct answer is:

Move instruction 4 before instruction 3.

Mark -0.10 out of 1.00	
How many superscalar execution units could be used for the MIPS pseudo-code below? Assume no register forwarding.	
1. add a, b, c	
2. sub d, b ,c	
3. add g, e ,d	
4. add h, e, f	
5. sub n, f, b	
Select one:	
○ a. Don't know/no answer	
O b. 4	
	×
O d. 3	

Your answer is incorrect.

e. 5f. 2

Question **7**Incorrect

The number of execution units that can be used is limited to the largest sized block of non-dependent instructions. In the above program instructions 1, 2, 4 and 5 can be executed in parallel as they do not depend on data that any of them generates. Therefore 4 is the number of execution units.

The correct answer is: 4

Mark -0.10 out of 1.00	
How many superscalar execution units could be used for the MIPS pseudo-code below? Assume no register forwarding.	
1. add a, b, d	
2. add d, b ,c	
3. add g, e ,b	
4. add h, g, k	
5. add f, l, h	
Select one:	
○ a. 4	
O c. 2	
○ d. Don't know/no answer	
© e. 5	
○ f. 1	
Your answer is incorrect.	
The number of execution units that can be used is limited to the largest sized block of non-dependent instructions. In the above block:	
Instructions 2 and 3 have no dependency.	
• There is a dependency between 4 and 3 (due to g).	
• There is a dependency between 4 and 5 (due to h).	
• There is a dependency between 1 and 2 (due to d).	
Therefore the largest size block of non-dependent instructions is 2.	
The correct answer is: 2	
Question 9	
Correct	
Mark 1.00 out of 1.00	
Which of the following is the best description of a 'data hazard'?	
Which of the following is the best description of a data nazara:	
Select one:	
a. Loading instructions into pipeline before the result of a decision is known, e.g. loading instructions after a branch	
ob. Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.	
○ c. Don't know/no answer	
 d. A gap in the pipeline where some or all of the stages are not processing an instruction. 	
e. Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.	
○ f. Waiting for the next instruction to be fetched after a branch is taken.	
A data hazard occurs when an instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound	
math expressions.	
The correct answer is: Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math	

Question **8**Incorrect

expressions.

Question 10				
rect				
Mark 1.00 out of 1.00				
Which of the following is the best description of a 'structural hazard'?				
Select one:				
a. A gap in the pipeline where some or all of the stages are not processing an instruction.				
O b. Don't know/no answer				
 c. Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses. 	*			
Od. Instruction depends upon the results of a previous instruction still in the pipeline, e.g. compound math expressions.				
e. Waiting for the next instruction to be fetched after a branch is taken.				
Of. Loading instructions into pipeline before the result of a decision is known, e.g. loading instructions after a branch				
A structural hazard occurs when hardware cannot support a combination of instructions in the same clock cycle, e.g. two				
simultaneous memory accesses.				
The correct answer is: Hardware cannot support a combination of instructions in the same clock cycle, e.g. two simultaneous memory accesses.				
Quiz 6 _ Weekly Assessed Quiz 2022				
Jump to				
Quiz navigation				

Show one page at a time

Finish review