Problem Set 1 – Supervised Learning

DS542 - DL4DS

Spring, 2025

Note: Refer to the equations in the Understanding Deep Learning textbook to solve the following problems.

Problem 2.1

To walk "downhill" on the loss function (equation 2.5), we measure its gradient with respect to the parameters ϕ_0 and ϕ_1 . Calculate expressions for the slopes with respect to the part $\frac{\partial L}{\partial \phi_0}$ and $\frac{\partial L}{\partial \phi_1}$. $L[\phi] = \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$

$$L[\phi] = \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

$$\frac{\partial L}{\partial \phi_0} = 2 \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)$$

$$\frac{\partial L}{\partial \phi_1} = 2 \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i) x_i$$

Problem 2.2

Show that we can find the minimum of the loss function in closed-form by setting the expression for the derivatives from Problem 2.1 to zero and solving for ϕ_0 and ϕ_1 .

To find the minimum of the loss function, we set the partial derivatives to zero and solve for ϕ_0 and ϕ_1 .

Setting the derivatives to zero:

$$2\sum_{i=1}^{I}(\phi_0 + \phi_1 x_i - y_i) = 0$$

$$2\sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i) x_i = 0$$

Simplifying the first equation:

$$I\phi_0 + \phi_1 \sum_{i=1}^{I} x_i = \sum_{i=1}^{I} y_i \tag{1}$$

Simplifying the second equation:

$$\phi_0 \sum_{i=1}^{I} x_i + \phi_1 \sum_{i=1}^{I} x_i^2 = \sum_{i=1}^{I} x_i y_i$$
 (2)

Solving these simultaneous equations gives:

$$\phi_1 = \frac{I \sum_{i=1}^{I} x_i y_i - \sum_{i=1}^{I} x_i \sum_{i=1}^{I} y_i}{I \sum_{i=1}^{I} x_i^2 - (\sum_{i=1}^{I} x_i)^2}$$

$$\phi_0 = \frac{\sum_{i=1}^{I} y_i - \phi_1 \sum_{i=1}^{I} x_i}{I}$$