Week 9 Probability and Distributions

Today

- Review homework
- Distributions in ecology
- Distributions in R
- In-class exercise

Why normal data is common

- Central Limit Theorem
 - The distribution of sample means converges to a normal distribution as the sample sizes get larger

Why normal data is common

 The accumulation (sum) of many small random errors drawn from any distribution is normally distributed

Typical types of non-normal response data in ecological studies

- Counts (quadrats, line transects, etc.)
- Proportions (number of individuals that have some characteristic / total number of individuals examined)
- Categorical (male, female, immature or transitional; benthic, pelagic, and piscivorous morphotypes; canopy, understory, and groundnesting)

- Counts of events within a given sampling unit (distance, area, volume, time) are **Poisson** distributed if the rate (density) is constant and they are independent (not clumped in space or time or spread out)
- Discrete probability distribution
 - Integer values from 0 to infinity
- Single parameter: mean = variance = λ
- Clumped data give rise to <u>overdispersion</u>: variance > mean
- Negative binomial can be a better option in such cases (two parameters λ varies in space/time)

Poisson (counts)

- The number of "successes" in a set of *n* independent "Bernoulli trials" or "coin flips" i.e. observations are binary (yes/no, success/failure, male/female) follow the **binomial** distribution
- Discrete probability distribution
 - Values from 0 to n
 - Parameters n and p, the probability of "success"
- Variance changes with the mean: mean = n*p variance = n*p(1-p)
- From the equation (or from considering the problem logically) can you guess the value of p at which the variance is maximized?

- The number
 i.e. obset
 follow the
- Discrete p
 - Values
 - Parame
- Variance
- From the you guess

Bernoulli trials" male/female)

= n*p(1-p) gically) can nized?

Binomial (number of successes/failures)

- The distribution p can be defined based on the results of a set of n independent "Bernoulli trials" using the beta distribution
- Continuous probability distribution
 - Values from 0 to 1
 - Parameters alpha and beta
- Distribution of p is a beta with alpha-1 "successes" and beta-1 "failures"

Exponential family

- Normal (Gaussian), Poisson, Binomial, Gamma, Inverse Gaussian
- Can be expressed as a function of two parameters:
 - Θ, the "canonical parameter" or <u>location</u>
 - Φ, the "dispersion parameter" or scale
- And three functions: a, b, and c

$$f(y|\theta,\phi) = exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right]$$

Distributions in R

- rnorm() draw random variables from the specified distribution
- dnorm() the probability density at any point
- pnorm() tail probabilities to the left or right of the specified point
- Similar r-, d-, and p- syntax for other distributions: e.g., rpois, runif, etc.

Distributions in R

- How can our results be replicable if they involve generating random observations?
- set.seed()
- Sets a starting number. Same results every time this number is the same.

Using random numbers in R to select a random subset of observations

- Create a new column in your df
- Fill it with random numbers drawn from a continuous distribution (so no ties)
- Sort by this new column
- Select the first X rows

Fitting distributions and distribution tests

- MASS and fitdistrplus packages
- denscomp() plot function

Histogram and theoretical densities

Exercise: Is this true?

 The accumulation (sum) of many small random errors from any distribution is normally distributed

• What if the process is multiplicative rather than additive – i.e., the product of many small random errors...

Use fitdistrplus to compare distributions

Exercise: Is Don Corleone cheating?

 Don Corleone challenges you to flip a coin three times. Each time the loser owes the winner a favor

 After four heads, you owe him four favors. And you're wondering if the game is rigged

What is the probability that the probability of heads is > 0.5