PRÁCTICA 2: Conjuntos Inductivos

Pablo Verdes

Dante Zanarini

Pamela Viale

Alejandro Hernandez

Mauro Lucci

- 1. Defina inductivamente los siguientes conjuntos:
 - a) El conjunto de los números naturales múltiplos de 3.
 - b) El conjunto de los números enteros múltiplos de 3.
- 2. Sea $\Sigma = \{a, b, c\}$. Defina inductivamente los siguientes conjuntos y enuncie el principio de inducción primitiva para cada uno de ellos:
 - $a) \Sigma^*$.
 - b) $B = \{a^n b c^{2n} / n \in \mathbb{N}\}.$
- 3. Defina inductivamente los siguientes conjuntos:
 - $a) A = \{a\}^*.$
 - b) $B = \{\alpha \in \{a, b, c\}^* / \alpha \text{ es un palindromo}\}.$
 - c) $C = \{a, b, ab, ba\}.$
- 4. Considere el conjunto de las matrices

$$M = \left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} / a, b, c \in \mathbb{N}_0 \text{ donde } a, b, c \text{ tienen la misma paridad} \right\}$$

- a) Defina inductivamente el conjunto M.
- b) Enuncie el principio de inducción primitiva para M.
- 5. Enuncie el principio de inducción primitiva para el conjunto \mathbb{P} , definido inductivamente como el menor conjunto tal que:
 - $0 \in \mathbb{P}$.
 - Si $n \in \mathbb{P}$ entonces $(n+2) \in \mathbb{P}$.

Utilice este principio para probar que para todo $n \in \mathbb{P}$ existe $m \in \mathbb{N}_0$ tal que n = m + m.

- 6. Sea $\Sigma = \{a, b, c\}$. Definimos Δ inductivamente como el menor conjunto tal que:
 - $a \in \Delta$.
 - Si $\alpha \in \Delta$ entonces $b\alpha b \in \Delta$.
 - a) Enuncie el principio de inducción primitiva para Δ .
 - b) Demuestre que cualquier cadena de Δ tiene un numero par de símbolos b.
- 7. Sea $\Sigma = \{a, b, c\}$. Definimos Γ inductivamente como el menor conjunto tal que:
 - $\lambda \in \Gamma$.
 - Si $\alpha \in \Gamma$ entonces $b\alpha \in \Gamma$.
 - Si $\alpha \in \Gamma$ entonces $a\alpha \in \Gamma$.
 - a) Enuncie el principio de inducción primitiva para Γ .
 - b) Determine cuales de las siguientes afirmaciones son correctas:
 - $b \in \Gamma$.
 - $a \in \Gamma$.
 - $babacbaca \in \Gamma$.
 - $aba \in \Gamma$.
 - c) Considere ahora el conjunto Δ definido inductivamente como el menor conjunto tal que:
 - $\lambda \in \Delta$.
 - Si $\alpha \in \Gamma$ entonces $\alpha b \in \Gamma$.
 - Si $\alpha \in \Gamma$ entonces $\alpha a \in \Gamma$.

Determine cuales de las siguientes afirmaciones son correctas:

- $\alpha \in \Delta \Rightarrow b\alpha \in \Delta.$
- $\bullet \ \alpha \in \Delta \Rightarrow a\alpha \in \Delta.$
- $\Gamma \subseteq \Delta$.
- $\Delta \subseteq \Gamma$.
- $\Delta = \Gamma$.

- 8. Definimos inductivamente la relación $S \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ como el menor conjunto tal que:
 - Si $n \in \mathbb{N}_0$ entonces $(n, n) \in S$.
 - Si $(n, m) \in S$ entonces $(n, m + 1) \in S$.
 - a) Determine cuales de las siguientes afirmaciones son correctas:
 - \bullet $(0,0) \in S$.
 - $0 \in S$.
 - $(2,3) \in S$.
 - \bullet $(3,4) \in S$.
 - b) Enuncie el principio de inducción primitiva para S. Demuestre, utilizando este principio que para todo par $(n, m) \in S$, $n \le m$.
 - c) Definimos inductivamente $Q \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ como el menor conjunto tal que:
 - Si $n \in \mathbb{N}_0$ entonces $(0, n) \in Q$.
 - Si $(n,m) \in Q$ entonces $(n+1,m+1) \in Q$.

Determine cuales de las siguientes afirmaciones son correctas:

- $S \subseteq Q$.
- $Q \subseteq S$.
- $\mathbf{Q} = S.$
- 9. El número de formas de elegir k elementos a partir de un conjunto de n elementos, es exactamente $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Sabiendo que $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ demuestre que $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ para cualquier $n \in \mathbb{N}_0$.

- 10. Considere la siguiente definición de listas:
 - Nil es una lista.
 - Si l es una lista, y x un elemento, entonces Cons(x, l) es una lista.
 - Nada mas es una lista.

y la siguiente función:

$$append\left(l_{1}, l_{2}\right) = \begin{cases} l_{2} & l_{1} = Nil\\ Cons\left(x, append\left(xs, l_{2}\right)\right) & l_{2} = Cons\left(x, xs\right) \end{cases}$$

demuestre las siguientes propiedades:

- a) Nil es elemento neutro de append a izquierda.
- b) Nil es elemento neutro de append a derecha.
- c) append es asociativa.
- 11. Considere la siguiente definición de arboles binarios sin información:
 - Null es un árbol.
 - Leaf es un árbol.
 - Si l es un árbol y r es un árbol, entonces Node(l,r) es un árbol.
 - Nada mas es un árbol.

y las siguientes funciones:

$$nleafs\left(t\right) = \begin{cases} 0 & t = Null \\ 1 & t = Leaf \\ nleafs\left(l\right) + nleafs\left(r\right) & t = Node\left(l,r\right) \end{cases}$$

$$nnodes(t) = \begin{cases} 0 & t = Null \\ 0 & t = Leaf \\ 1 + nnodes(l) + nnodes(r) & t = Node(l, r) \end{cases}$$

demuestre que $nleafs(t) \leq nnodes(t) + 1$ para cualquier árbol.

- 12. Explique cual es la falla en los siguientes razonamientos inductivos:
 - a) Mostraremos por inducción en la cantidad de caballos, que todos los caballos tienen el mismo color.
 - Caso base n=1: Para un conjunto de un único caballo $\{c_1\}$ la proposición es trivial
 - Caso inductivo n=k: Supongamos que para cualquier conjunto de k caballos, todos resultan ser del mismo color y sea $C=\{c_1,\ldots,c_k,c_{k+1}\}$ un conjunto de k+1 caballos. Por hipótesis inductiva, $C_1=\{c_1,\ldots,c_k\}$ son todos del mismo color y por la misma razón $C_2=\{c_2,\ldots,c_k,c_{k+1}\}$ también son del mismo color. Luego todos los caballos son del mismo color.
 - b) Mostraremos por inducción en \mathbb{N}_0 que el doble de cualquier numero es cero.
 - Caso base n = 0: Trivial $(2 \cdot 0 = 0)$.
 - Inductivo fuerte $n \le k$: Supongamos que para todo $n \le k$ resulta 2k = 0, y veamos que pasa para k + 1. Descompongamos a k + 1 en en la suma de dos naturales, es decir, sea a + b = k + 1. Como a < k + 1 y b < k + 1, por hipótesis inductiva 2a = 0 y 2b = 0, luego 2(k + 1) = 2(a + b) = 2a + 2b = 0.