

Assignment 01

Course Code: CSE-115

Course Title: Discrete Mathematics

Submitted To: Tasnimatul Jannah

Submitted By:

Name: Abdur Rahim

ID: 231001422E

Department: ECSE

Semester: 3DCSE (EVENING) **Submitted Date:** 17/11/2023

Assignment: 1

12. Determine whether each of these function z to ? is one to one.

@
$$f(n) = n-1$$

uel $f(n) = f(n2)$
 $n_1 = n_2 - 1$
 $n_1 = n_2$

This function is one to one.

(b)
$$f(n) = m^2 + 1$$

Let $f(n_i) = f(n_2)$
 $n_i^2 + 1 = n_2^2 + 1$
 $n_i^2 = n_2^2$
 $n_i = \pm n_2$
This function is not one to one

©
$$f(n) = n^3$$

Let $f(n_1) = f(n_2)$
 $n_1^3 = n_2^3$
 $n_1 = n_2$

D
$$f(n) = \begin{bmatrix} \gamma y_2 \end{bmatrix}$$

Let, $f(n) = f(nz)$
 $\gamma_2 = \frac{\gamma_2}{2}$
 $\gamma_3 = \frac{\gamma_2}{2}$
 $\gamma_4 = \frac{\gamma_2}{2}$

This function is one to one This function is one to one

This function is onto

(b)
$$f(m) = x^2 + 1$$

Let $x^2 + 1 = m$
 $x^2 = m - 1$
 $x = \sqrt{m - 1}$

This function is not onto.

@
$$f(n) = \frac{\gamma_2}{2}$$

Let $\frac{\gamma_2}{n} = \frac{n}{2}$

This function is onto

This function is onto.

20) Determine whether each of these functions 15 a bijection from R to R.

a
$$f(x) = -3x+4$$

where one to one

 $f(x) = f(x_2)$
 $f(x_1) = f(x_2)$
 $f(x_2) = f(x_1)$
 $f(x_1) = f(x_2)$
 $f(x_2) = f(x_2)$
 $f(x_1) = f(x_2)$

check onto

Let, -3x+4=7 -3x=7-4 $x=\frac{7-4}{-3}$ onto function.

These function is a bijection.

b)
$$f(x) = -3x^2 + 7$$

where one to one
$$f(x) = f(x_2)$$

$$-3x_1^2 + 7 = -3x_2^2 + 7$$

$$-3x_1^2 = -3x_2^2$$

$$x_1^2 = x_2^2$$

$$x_2^2 = x_2^2$$

$$x_1^2 = x_2^2$$

$$x_1^2 = x_2^2$$

$$x_2^2 = x_2^2$$

$$x_1^$$

one to one furtion.

Let:
$$\frac{\chi+1}{\chi+2} = m$$

 $(\chi+1) = m\chi + 2m$
 $\chi-m\eta = 2m-1$
 $\chi(1-m) = 2m-1$
 $\chi = \frac{2m-1}{1-m}$
not onto.

So These function is not a bigation function.

(d)
$$f(x) = x^{5+1}$$

Let, $f(x_1) = f(x_2)$

one to one

-one onto function.

So this function is a bijection.

let,

$$m+1=m$$

 $n=m-1$
 $x=\frac{m-1}{2}$
onto function.

one to one .

This function is bijection.

(b)
$$f(x) = x^2 + 1$$

Let, $f(x) = f(x^2)$
 $x_1^2 + 1 = x_2^2 + 1$
 $x_1 = f(x)$
 $x_1 = f(x)$
not one to one

Of
$$(x) = x^3$$

Let $f(x) = f(x^2)$
 $x^3 = x^2$
 $x = x^2$ one to one

Let $1x^3 = m$
 $x = 2Tm$

.onto

This funtion is bijection.

Tis function is not bijection @1(10 = (22+1)(22+2)

et,
$$f(x) = f(x_2)$$

$$\frac{(x_1^2+1)}{(x_1^2+2)} = \frac{x_2^2+12}{(x_2^2+12)}$$

三) スプタンナアルアナルラナタ= スタケルマナステナマルアナタ =) 2x2-x2=2x2-x2

This truction is not bijection.

30 Determine whether the relations represented by the directed graph shown in Exentises (23-25) are reflixive on symmetric.

R={ (a,0),(b,0),(b,0),(c,b)}

not reflexive not symmetric

not neflexive Not Symmetric

R = { (a.a), (b, b), (d, d) (a, b) (b.a) (a,9 (49, (b,0) (e,b) }

not reflexive Not symmetric

R={ (a,a), (b,b), (c,c), (a,c) (b,c)

(b,9) } neflexive but not symmetric

R={ (a,c), (e,d), (d,b) (b,a)} R={ (a,a), (b,b), (e,c), (d,d), (a,b) (5,a) 6.0 6.0 3

Reflexive but not symmetric.

R= {(a,a), (b, b), (c,e) (d,d) (a,b) (b,9) رد بع رو ب که reflexive

Symmetric.