Chemical Reaction Types

Single replacement and Double replacement

Reaction Types

A+BC→AB+C

AX+BY→AY+BX

We've discussed Synthesis, Decomposition and Combustion. Let's now look at <u>Single and Double Replacement</u> reactions.

In a single replacement reaction an <u>UNCOMBINED</u> <u>Element</u> replaces one of the elements in a compound.

A replaces C and C becomes the <u>uncombined</u> element

Typically the compounds involved in single replacement Reactions are <u>ionic</u> and <u>occur in solution</u>. For example...

Example:

$$Cl_2$$
 + 2NaBr (aq) \rightarrow 2NaCl (aq) + Br₂

The reaction of Chlorine to replace Bromine is an example Of a NON-METAL REPLACING A NON-METAL

$$Cl_2$$
 + 2NaBr (aq) \rightarrow 2NaCl (aq) + Br₂

There are also single replacement reactions in which a <u>METAL</u> REPLACES ANOTHER METAL.

$$2AgNO_3 (aq) + Cu \rightarrow Cu(NO_3)_2 (aq) + 2Ag$$

- -In single replacement reactions:
 - <u>Metals</u> will only <u>replace metals</u>
 - Non-metals will only replace non-metals

Let's look at what's happening in this reaction...

Clear AgNO₃ sol'n & Solid Cu Wire

Blue Cu(NO₃)₂ Sol'n & Solid Ag

$$2AgNO_3$$
 (aq) + Cu (s) \rightarrow Cu(NO₃)₂ (aq) + 2Ag (s)

The silver in this reaction "precipitates" out of the solution

In single replacement reactions:

- Metals replace metals

K Al Fe Cu
- Halogen <u>Non-metals</u> replace halogen <u>non-metals</u>

 F_2 Cl_2 Br_2 l_2

We saw Copper can replace Ag but there are other Metals that will replace metals as well. For example Zinc will replace Cu in ionic compounds.

 $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$

Activity Series

We know certain metals will replace other metals And certain Non-metals will replace other non-metals.

But how can we determine which will replace which?

To make this determination you need to refer to

TABLE J

in your reference tables.

TABLE J IS KNOWN AS THE ACTIVITY SERIES

For example: Al (s) + Cr(NO₃)₃ (aq) \rightarrow Al(NO₃)₃ (aq) + Cr (s)

or
$$3Cl_2(g) + 2All_3(aq) \rightarrow 2AlCl_3(aq) + 3l_2(s)$$

So, how do you use

Fe_(s) + PbSO_{4 (aq)} i+? Pb_(s) + FeSO_{4(aq)}

Sodium	Na
Magnesium	Mg
Aluminum	Al
Zinc	Zn
Chromium	Cr
Iron	Fe
Cadmium	Cd
Cobalt	Co
Cobalt Nickel	Co Ni
Nickel	Ni

displaces H₂ gas from

Fe is HIGHER so it can push push out of the way

Iroxide

actuded for comparison

So, how do you use

 $Fe_{(s)} + NaNo_{3(aq)} \rightarrow NR$

Metal	Symbol	R activity
Lithium	Li	displaces H ₂ gas from water,
Potassium	К	
Strontium	Sr	Fe is LOWER
Calcium	Ca	Fe is LUV.
Sodium	Na	it Call
Magnesium	Mg	disp. SO IC
Aluminum	Al	Such Na ous
Zinc	Zn	pus.
Chromium	Cr	of the way
Iron	Fe	displa nly and forms hydroxides
Cadmium	Cd	

The activity series also lists <u>Hydrogen</u> with the metals. Any Metal higher on the list than hydrogen will replace it from Either <u>water or acid</u>.

$$2K + 2H_2O \rightarrow 2KOH + H_2$$

$$Ni + 2HCI \rightarrow NiCl_2 + H_2$$

Replacing hydrogen from water is <u>more difficult</u> than Replacing hydrogen from <u>acids</u>. But, those metals higher Up the activity series will react with water more easily.

If the uncombined <u>metal</u> is below the combined metal (or hydrogen) it will not replace it from the compound and the reaction will <u>NOT OCCUR !!</u>

Yes

Yes

Try these

Will these reactions proceed as indicated?

1)	3Mg +	$2\text{Fe}(\text{NO}_3)_3 \rightarrow$	$3Mg(NO_3)_2 + 2Fe$	
----	-------	---	---------------------	--

2) Pb + Co(NO₃)₂
$$\rightarrow$$
 Pb(NO₃)₂ + Co

3)
$$Br_2 + 2KC1 \rightarrow 2KBr + Cl_2$$

4)
$$2Au + 6HCl \rightarrow 2AuCl_3 + 3H_2$$

5)
$$Zn + 2HNO_3 \rightarrow Zn(NO_3)_2 + H_2$$

Notice in all these reactions a <u>new compound</u> and a <u>free</u> <u>Element</u> are formed

Double Replacement Reactions

As with single replacement reactions Double replacement Reactions take place with <u>ionic compounds in solution</u>.

In this case however, <u>both</u> reactants are compounds.

For example ...

$$HNO_3(aq) + Na_2CO_3(aq) \longrightarrow H_2CO_3(aq) + NaNO_3(aq)$$
H replaces No

These reactions occur in solution because the ions of the compounds most be obe to move freely from one place to another

$$HNO_3(aq) + Na_2CO_3(aq) \longrightarrow H_2CO_3(aq) + NaNO_3(aq)$$

Since these compounds are <u>all in sol'n</u> we can write the equation a little differently showing all the <u>ions</u> present:

$$H^{+} + NO_{3}^{-} + 2Na^{+} + CO_{3}^{-2} \rightarrow 2H^{+} + CO_{3}^{-2} + Na^{+} + NO_{3}^{-}$$

This equation is known as a **COMPLETE IONIC EQUATION**

Double Replacement

May Recourse white Ings "if this reaction can occur as Indicated in solution why can't the reverse reaction Happen just as easily?"

$$HNO_3(aq) + Na_2CO_3(aq) \longrightarrow H_2CO_3(aq) + NaNO_3(aq)$$

In other words ...

$$2H^{+} + CO_{3}^{-2} + Na^{+} + NO_{3}^{-} \rightarrow H^{+} + NO_{3}^{-} + 2Na^{+} + CO_{3}^{-2}$$

Well it can! So in order for these reactions to proceed Forward to <u>completion</u> something else <u>must occur</u>

The criteria necessary to drive double replacement reactions Forward to <u>completion</u> will be one of the following:

Reaction Start

Reaction Complete

Double Replacement

1- Precipitate forms

Some compounds are INSOLUABLE in water. Therefore, In <u>double replacement</u> reactions the IONS of these Insoluble compounds are no Longer <u>free</u> and therefore can <u>Not react</u> with other free ions

For example:

$$Ba(NO_3)_2 (aq) + CuSO_4 (Cu(NO_3)_2 (aq) + BaS_2 (aq) + BaS_3 (aq)$$

A common precipitate

These insoluble compounds that are Formed are known as PRECIPITATES

Another example of a <u>common precipitate</u> that forms in This kind of reactions is <u>AgCl</u>

In forcing the double replacement reaction to completion Are known as SPECTATOR IONS. For example, the above Equation can be rewritten as a NET IONIC EQUATION...

The only ions $Ag^+ + Cl^- \rightarrow AgCl$ (s) Involved in Driving the reaction to completion

Gas Evolution

The other type of double replacement reaction that goes To completion is one in which a gas is evolved.

For example ...

$$HNO_3(aq) + Na_2CO_3(aq) \longrightarrow H_2CO_3(aq) + NaNO_3(aq)$$

Decomposes

 $H_2CO_3 \rightarrow H_2O + CO_2$ (g)

Carbonic acid is the Acid that gives soda its fizz

Once the gas is <u>evolved</u>, the ions from which its generated Are no longer available. The rxn is <u>driven to completion</u>

Molecule formation

The last process we'll discuss that drives double replacement reactions to completion are <u>reactions that</u> <u>Lead to the formation of molecules</u> (i.e. covalently bonded Compounds like water)

Molecules <u>can not ionize</u> and thus once formed they are No longer available for replacement reactions.

Molecule formation

The most common example of <u>molecule formation</u> is <u>ACID-BASE</u> neutralization. In this type of double replacement Reaction <u>WATER</u> is the molecular compound that's formed

```
For example:

HCI + KOH → KCI + H<sub>2</sub>O

Acid Base A Salt Water

Complete ionic equation:

H+ + CI- + K+ + OH- → K+ + CI- + H<sub>2</sub>O

Net Ionic equation:
```

 $H^+ + OH^- \rightarrow H_2O$

(the general equation for acid-base neutralizations)

Try these

Name the reaction type:

$$CO_2 + H_2O \rightarrow H_2CO_3$$

$$CaCO_3 \rightarrow CaO + CO_2$$

$$CH_4 + O2 \rightarrow CO_2 + H_2O$$

$$Mg + ZnCl_2 \rightarrow MgCl_2 + Zn$$

$$MgSO_4$$
 (aq) + $Ba(NO_3)_2$ (aq) \rightarrow $BaSO_4$ (s) + $Mg(NO_3)_2$ (aq)

$$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2(g)$$

$$HCL + Ca(OH)_2 \rightarrow CaCl_2 + H_2O$$

Synthesis

Decomp

Combustion

Single Rep.

Double Rep. Single Rep.

Double Rep.