

IETF-123 I2ICF Side Meeting

An Intent Translation Framework for IoT Networks (draft-gu-nmrg-intent-translator-o1)

July 23, 2025

Madrid in Spain

Mose Gu and Jaehoon Paul Jeong Sungkyunkwan University (SKKU)

Email: {rnao415, pauljeong}@skku.edu

Motivation of this Draft

- An Intent Translation Framework for IoT Networks
 - This draft defines a Framework for extracting an intent from natural language and covert to a high-level policy to manage IoT devices via Intent Translation framework by a user in Cloud.
 - Intent Translator Functions
 - Intent Extractor, Semantic Mapper, Intent Resolver, and Intent Composer
 - draft-gu-nmrg-intent-translator-o1
- Main Contents of this Draft
 - Intent Translation Framework Components
 - Semantic Mapper Components
 - Intent Resolver Components

Scope for the Draft

- Intent Translation Framework for intent based network management for IoT Network
 - This framework extracts an intent from natural language commands and converts it into a policy.
- 2. Semantic Mapper of vectorizing structured intent
 - It maps an extracted intent into an embedded vector.
- 3. Intent Resolver for reasoning intent with domain knowledge
 - It matches an embedded intent vector with a domain knowledge graph in Knowledge Base.

Goal of I2ICF Group

- □ Goal: Standardization of I2ICF for Computing in the Network
 - I2ICF Problem Statement
 - https://datatracker.ietf.org/doc/draft-jeong-opsawg-i2icf-problemstatement/
 - □ I2ICF Framework
 - https://datatracker.ietf.org/doc/draft-jeong-opsawg-i2icf-framework/
 - □ I2ICF Use Case: Intelligent Transportation Systems
 - https://datatracker.ietf.org/doc/draft-ahn-opsawg-i2icf-cits/
 - I2ICF Intent Translator
 - https://datatracker.ietf.org/doc/draft-gu-nmrg-intent-translator/

I2ICF Framework for ICF Management (ICFs in Moving Object)

- For the automatic network configuration of MOs, an Intent-Based Management is required between the Cloud and MOs.
- This framework shows an I2ICF framework as an IBS for an MO. The framework consists of the Cloud and MOs.

Intent Translator

• It converts a natural language intent into a structured, network policy for enforcement in intent-based management systems.

Intent Coordinator

- It receives an intent submitted by an IBN user and forwards the natural language intent to the Intent Extractor.
- It also delivers a network policy to downstream systems for enforcement, such as a network orchestration engine.

Intent Extractor

- It extracts structured elements from a natural language intent based on a few-shot based large language model (LLM).
- It parses the incoming natural language statement to key elements (e.g., action, source, and destination).

Semantic Mapper

It projects the structured intent into semantic space using pretrained embedding space.

Intent Resolver

 It compares the embedded intent vector against the domain knowledge stored in the Policy Knowledge Base.

Policy Knowledge Base

It stores the domain knowledge as a knowledge graph to support semantic mapping and approximate inference between intents and policies.

Policy Composer

 It generates a policy document in YAML format based on the extracted intent structure and selected knowledge graph items.

Step 2: Semantic Mapper Module

Semantic Mapper

- It embeds extracted intents from Intent Extractor into semantic space aligned with the domain knowledge graph and transforms them into vectors.
- It deliver the aggregated intent representation vector to Intent Resolver for reasoning.

Step 3: Intent Resolver Module

Intent Resolver

 It semantically matches intent embeddings and Knowledge Base and evaluates the similarity for feedback to Knowledge Base.

Summary

- This document proposes a practical and scalable architecture for intent translation in next-generation management systems.
- Through this, the natural language intent can be reliably mapped to structured policy outputs for automatic network service configuration.
- Based on the proposed framework, it enables knowledgegrounded automation in complex service domains such as IoT network and intelligent edge infrastructures (e.g., Robotic AI agents).

Next Steps

- □ This draft will be enhanced to accommodate problems as follows:
 - Deployment Considerations: the actual operational policy and preembedding verification
 - Degradation and Human Oversight Considerations: high-trust environments and <u>human verification procedures</u> through review and documentation.
 - Security Considerations: <u>secure channels</u> and include <u>verification</u> and policy conflict detection functions for <u>malicious input</u>.
- I2ICF Group will prepare a WG-Forming BoF in the IETF 124 in Montreal in November in 2025.
- □ I2ICF Group will prepare IETF-124 Hackathon Project to clarify (i) I2ICF Intent Translator and (ii) Use Case for Robotic AI Agents.