Introduction to Algorithms Bonus Lecture: Proof by Induction

et al.

March 4, 2025

Proof by Induction

- ▶ A powerful mathematical technique.
- ▶ Prove that a statement is true for all natural numbers (or some sequence of numbers).
- ▶ It's like knocking over a line of dominoes...

How Induction Works

Principle of Mathematical Induction:

- ▶ Base Case: Show the statement holds for the first value (usually n = 1).
- ▶ Inductive Hypothesis: Assume the statement holds for some arbitrary n = k.
- ▶ Inductive Step: Prove it holds for n = k + 1.

How Induction Works

Principle of Mathematical Induction:

- ▶ **Base Case:** Show the statement holds for the first value (usually n = 1).
- ▶ Inductive Hypothesis: Assume the statement holds for some arbitrary n = k.
- ▶ **Inductive Step:** Prove it holds for n = k + 1.

If those steps hold, the statement is true for all n.

Prove that:

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

for all $n \geq 1$.

Step 1: Base Case

For n = 1:

$$1 = \frac{1(1+1)}{2} = \frac{2}{2} = 1$$

√True!

Step 2: Inductive Hypothesis

Assume that for some n = k, the formula holds:

$$1+2+3+\cdots+k = \frac{k(k+1)}{2}$$

(This is our assumption or "inductive hypothesis".)

Step 3: Inductive Step

We must prove it holds for n = k + 1, meaning:

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{(k+1)(k+2)}{2}$$

Step 3: Inductive Step

We must prove it holds for n = k + 1, meaning:

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{(k+1)(k+2)}{2}$$

Using the inductive hypothesis:

$$\left(\frac{k(k+1)}{2}\right) + (k+1)$$

Step 3: Inductive Step

We must prove it holds for n = k + 1, meaning:

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{(k+1)(k+2)}{2}$$

Using the inductive hypothesis:

$$\left(\frac{k(k+1)}{2}\right) + (k+1)$$

Factor k + 1 out:

$$\frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

Step 3: Inductive Step

We must prove it holds for n = k + 1, meaning:

$$1+2+3+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$$

Using the inductive hypothesis:

$$\left(\frac{k(k+1)}{2}\right) + (k+1)$$

Factor k + 1 out:

$$\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}$$

This matches the formula for n = k + 1, so the statement holds!

_ ,

Conclusion

By induction, the formula is true for all natural numbers n.

WHY DOES THIS WORK?

Think of induction like climbing an infinite ladder:

- ▶ The base case puts your foot on the first rung.
- ► The **inductive hypothesis** and the **inductive step** shows that if you can reach one step, you can reach the next.

Since they are true, you can climb forever!

 $^{^{1}}$ **■** = Q.E.D. which means "quod erat demonstrandum".

Proof by Induction:

$$2^n \ge n + 1$$

for all $n \geq 1$.

Step 1: Base Case

For n = 1:

$$2^1 = 2$$
, left side $1 + 1 = 2$. right side

Since $2 \ge 2$, the base case holds. \checkmark

Step 2: Inductive Hypothesis

Assume the statement is true for n = k:

$$2^k \ge k + 1$$
.

This assumption is the *inductive hypothesis*.

We need to prove the statement holds for n = k + 1:

$$2^{k+1} \ge (k+1) + 1.$$

We need to prove the statement holds for n = k + 1:

$$2^{k+1} \ge (k+1) + 1.$$

Start with the left-hand side:

$$2^{k+1} = 2 \cdot 2^k.$$

We need to prove the statement holds for n = k + 1:

$$2^{k+1} \ge (k+1) + 1.$$

Start with the left-hand side:

$$2^{k+1} = 2 \cdot 2^k.$$

Using the inductive hypothesis $2^k \ge k + 1$:

$$2^{k+1} \ge 2 \cdot (k+1) = 2k+2.$$

We need to prove the statement holds for n = k + 1:

$$2^{k+1} \ge (k+1) + 1.$$

Start with the left-hand side:

$$2^{k+1} = 2 \cdot 2^k.$$

Using the inductive hypothesis $2^k \ge k + 1$:

$$2^{k+1} \ge 2 \cdot (k+1) = 2k+2.$$

Since $2k + 2 \ge k + 2$, the statement holds for n = k + 1.

Conclusion

By mathematical induction, we have proven that:

$$2^n \ge n+1$$
 for all $n \ge 1$.

Induction helps us prove statements for infinitely many cases!

Another Example

We will prove that the sum of the first n odd numbers is given by:

$$1+3+5+\cdots+(2n-1)=n^2$$
.

Step 1: Base Case

For n = 1:

$$1 = 1^2$$
.

Since both sides are equal, the base case holds. \checkmark

Step 2: Inductive Hypothesis

Assume the statement is true for n = k:

$$1+3+5+\cdots+(2k-1)=k^2$$
.

The inductive hypothesis.

We need to prove the statement holds for n = k + 1:

$$1+3+5+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2$$
.

We need to prove the statement holds for n = k + 1:

$$1+3+5+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2$$
.

Using the *inductive hypothesis*:

$$k^2 + (2(k+1) - 1).$$

We need to prove the statement holds for n = k + 1:

$$1+3+5+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2$$
.

Using the *inductive hypothesis*:

$$k^2 + (2(k+1) - 1).$$

Expanding the term:

$$k^{2} + (2k+1) = (k+1)^{2}.$$

We need to prove the statement holds for n = k + 1:

$$1+3+5+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2$$
.

Using the *inductive hypothesis*:

$$k^2 + (2(k+1) - 1).$$

Expanding the term:

$$k^2 + (2k+1) = (k+1)^2$$
.

Since both sides match, the statement holds for n = k + 1.

One More

Prove that:

$$\sum_{i=0}^{n} 3^i = \frac{3^{n+1} - 1}{2}$$

for all non negative integer n.

Step 1: Base Case

For n = 0:

$$\sum_{i=0}^{0} 3^{i} = \frac{3^{0+1} - 1}{2}$$
$$3^{0} = \frac{3^{1} - 1}{2}$$
$$1 = \frac{3 - 1}{2}$$
$$1 = \frac{2}{2}$$
$$1 = 1$$

Since both sides are equal, the base case holds. \checkmark

Step 1: Base Case

For n = 1:

$$\sum_{i=0}^{1} 3^{i} = \frac{3^{1+1} - 1}{2}$$
$$3^{0} + 3^{1} = \frac{3^{2} - 1}{2}$$
$$1 + 3 = \frac{9 - 1}{2}$$
$$4 = \frac{8}{2}$$
$$4 = 4$$

Since both sides are equal, the base case holds. \checkmark

Step 2: Inductive Hypothesis

Assume the statement is true for n = k:

$$\sum_{i=0}^{k} 3^i = \frac{3^{k+1} - 1}{2}$$

The inductive hypothesis.

We need to prove the statement holds for n = k + 1:

$$\sum_{i=0}^{k+1} 3^i = \frac{3^{(k+1)+1} - 1}{2}$$

We need to prove the statement holds for n = k + 1:

$$\sum_{i=0}^{k+1} 3^i = \frac{3^{(k+1)+1} - 1}{2}$$

By \sum definition:

$$\sum_{i=0}^{k} 3^{i} + 3^{k+1} = \frac{3^{(k+1)+1} - 1}{2}$$

We need to prove the statement holds for n = k + 1:

$$\sum_{i=0}^{k+1} 3^i = \frac{3^{(k+1)+1} - 1}{2}$$

By \sum definition:

$$\sum_{i=0}^{k} 3^{i} + 3^{k+1} = \frac{3^{(k+1)+1} - 1}{2}$$

Using the *inductive hypothesis*:

$$\frac{3^{k+1} - 1}{2} + 3^{k+1} = \frac{3^{(k+1)+1} - 1}{2}$$

We need to prove the statement holds for n = k + 1:

$$\sum_{i=0}^{k+1} 3^i = \frac{3^{(k+1)+1} - 1}{2}$$

By \sum definition:

$$\sum_{i=0}^{k} 3^{i} + 3^{k+1} = \frac{3^{(k+1)+1} - 1}{2}$$

Using the inductive hypothesis:

$$\frac{3^{k+1}-1}{2}+3^{k+1}=\frac{3^{(k+1)+1}-1}{2}$$

Expanding the term:

$$\frac{3^{k+1}}{2} - \frac{1}{2} + \frac{2 \cdot 3^{k+1}}{2} = \frac{3^{(k+1)+1} - 1}{2}$$
$$\frac{3^{k+1} - 1 + 2 \cdot 3^{k+1}}{2} = \frac{3^{(k+1)+1} - 1}{2}$$
Induction

Using the *inductive hypothesis*:

$$\frac{3^{k+1} - 1}{2} + 3^{k+1} = \frac{3^{(k+1)+1} - 1}{2}$$

Expanding the term:

$$\begin{split} \frac{3^{k+1}}{2} - \frac{1}{2} + \frac{2 \cdot 3^{k+1}}{2} &= \frac{3^{(k+1)+1} - 1}{2} \\ \frac{3^{k+1} - 1 + 2 \cdot 3^{k+1}}{2} &= \frac{3^{(k+1)+1} - 1}{2} \\ \frac{3 \cdot 3^{k+1} - 1}{2} &= \frac{3^{k+1+1} - 1}{2} \\ \frac{3^{k+1+1} - 1}{2} &= \frac{3^{k+1+1} - 1}{2} \\ \frac{3^{k+2} - 1}{2} &= \frac{3^{k+2} - 1}{2} \end{split}$$

Using the inductive hypothesis:

$$\frac{3^{k+1} - 1}{2} + 3^{k+1} = \frac{3^{(k+1)+1} - 1}{2}$$

Expanding the term:

$$\begin{split} \frac{3^{k+1}}{2} - \frac{1}{2} + \frac{2 \cdot 3^{k+1}}{2} &= \frac{3^{(k+1)+1} - 1}{2} \\ \frac{3^{k+1} - 1 + 2 \cdot 3^{k+1}}{2} &= \frac{3^{(k+1)+1} - 1}{2} \\ \frac{3 \cdot 3^{k+1} - 1}{2} &= \frac{3^{k+1+1} - 1}{2} \\ \frac{3^{k+1+1} - 1}{2} &= \frac{3^{k+1+1} - 1}{2} \\ \frac{3^{k+2} - 1}{2} &= \frac{3^{k+2} - 1}{2} \end{split}$$

Since both sides match, the statement holds for n = k + 1.