

Final de Sistemas Operativos

27/02/2024

Nota:			

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)

Preguntas teóricas					Ejercicios			
1	2	3	4	5	1 2			

- A) Teoría: Explícitamente defina como VERDADERA o FALSA cada una de estas afirmaciones justificando brevemente.
- 1). En filesystem, usando la asignación enlazada, la mejor manera de lograr la menor fragmentación interna es aplicando la técnica de next fit.
- 2). Dentro de una aplicación conformada por varios procesos monohilo, ejecutando en un sistema monoprocesador, no hay concurrencia.
- 3). El PSW es un conjunto de registros que no pueden ser manipulados explícita y arbitrariamente por los procesos.
- 4) Los archivos de un file system basado en I-Nodos no pueden ser accedidos de manera secuencial.
- 5). Si en el análisis del estado de un sistema se verifica que existe una espera circular a través de un grafo de asignación de recursos, entonces podría concluirse que existe un deadlock sin la necesidad de mayor análisis.
- B) Práctica: Resuelva los ejercicios justificando las respuestas
- 1. En un sistema que utiliza Round Robin con Q=3 se ejecutan 2 procesos. El proceso A tiene 2 hilos de usuario cuya biblioteca utiliza SJF sin desalojo.
 - a) Realice el diagrama GANTT según la traza de ejecución que muestra la tabla.
 - b) En el caso en que la biblioteca ULT utilice jacketing ¿Cuándo comenzaría la ejecución de KLTB1?

Proceso	Hilo	Arribo	CPU	E/S	CPU	E/S	CPU	E/S	CPU
А	ULTA1	0	2	1	1	2	1	1	4
	ULTB1	0	3	2	1	_	-	_	_
В	KLTB1	3	4	2	2	-	-	-	-
В	KLTB2	16	5	-	-	-	-	-	-

2. Un sistema maneja memoria virtual utilizando paginación bajo demanda, con direcciones lógicas de 16 bits, asignando hasta 4 frames por proceso, con sustitución local y algoritmo de reemplazo LRU. La tabla de páginas del proceso A es la siguiente:

Página	0	1	2	3	4	5	6	7	8	9
Frame	5	-	-	9	7	1	-	-	-	-
Últ. ref	200	-	-	400	300	100	-	-	-	-

- a) Indique la traza de ejecución, señalando los fallos de página que ocurren si el proceso A realiza las siguientes referencias: A000h, 0300h, 3500h, 1000h, 4100h y A001h
 - Se sabe que todas las referencias son válidas y la primera (A000h) no produce PF. Además, los frames se cargaron en orden ascendente.
- b) En qué referencia cambiaría la traza de ejecución si se utilizara FIFO como algoritmo de reemplazo? Justifique sin volver a realizar el ejercicio.

Final de Sistemas Operativos

27/02/2024

Nota:		

RESOLUCIÓN

TEORÍA

- 1. Falso. Para reducir la fragmentación interna se debe reducir el tamaño de bloque.
- **2. Falso.** Hay concurrencia entre los diferentes procesos de la aplicación, que podrán encontrarse activos en el mismo intervalo de tiempo (aún teniendo un solo procesador en el sistema).
- **3. Verdadero.** El acceso de escritura a los mismos requiere encontrarse en modo kernel. Dichos registros son manipulados por el propio Procesador como resultado de la ejecución de las instrucciones.
- 4. Falso. Con recorrer secuencialmente los punteros del inodo es posible el acceso secuencial a los datos del archivo.
- **5. Verdadero.** Sería necesario que todos los recursos que conforman la espera circular tengan una sola instancia por recurso (información apreciable en el mismo grafo de asignación de recursos).

PRÁCTICA

1)

a) Ejercicios de 23/05/2023

b) En el caso que hubiera jacketing, KLTB1 ejecutaría en el instante 6. En el instante 3 llegarían a Listos el proceso A por fin de quantum y KLTB1 por ser un proceso nuevo.

2) Ejercicio de 2023-02-28

a) Lo primero que necesitamos saber es qué porción de la dirección corresponde a la página y cuál al desplazamiento. Sabiendo que A000h no produce PF:

A000h -> 1010 0000 0000 0000 -> La única manera de dividir la dirección y no tener PF es tener 3 bits para página y 13 para el desplazamiento, de esta manera nos quedarían los primeros 3 bits (101) como página 5, entonces las referencias son:

A000h -> página 5, 0300h -> página 0, 3500h -> página 1, 1000h -> página 0, 4100h -> página 2 y A001h -> página 5

	5	0	1	0	2	5
Fr 1	5	5	5	5	5	5
Fr 5	0	0	0	0	0	0
Fr 7	4	4	1	1	1	1
Fr 9	3	3	3	3	2	2
			PF		PF	

b) El algoritmo FIFO, a diferencia de LRU, reemplaza las páginas según su tiempo de carga sin importar cuántas veces se haya accedido posteriormente, por lo que la referencia a la página 1 (3500h) causaría un PF pero reemplazaría a la página 5 (Frame 1).