МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГИСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ "ЛЭТИ" ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТОЭ

ОТЧЕТ

по лабораторной работе №2

по дисциплине "Теоретические основы электротехники"

Тема: ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ

Студент гр. 9391	 Федоров А. Г.
Преподаватель	Езеров К.С

Протокол

к лабораторной работе №2

1. Соберем цепь из рисунка 2.1.

Внесем полученные данные в таблицу.

	1	2	3	4
Ik	0,488	0,604	1,093	1,395
Uk	0,731	-0,906	3,269	4,175

2. Соберем цепи из рисунков 2.2 а и 2.2 б.

Внесем результаты в таблицу.

		1	2	3	4
U = 4 V; I = 0 mA	ľk	1,214	0,486	0,729	0,486
U = 4 V; I = 0 mA	I"k	0,726	1,09	0,364	0,91

3. Произведем разрыв цепи, а потом соберем цепь как на рисунке 2.3.

U_{xx}=4,478 B

U₀=4.461 B

 $I_3 = -1.084 \text{ MA}$

4. Соберём цепь как на рисунке 2.4

I₃= 0.729 mA

I₁= 0.721 mA

Цель работы: экспериментальное исследование линейных разветвленных резистивных цепей с использованием методов наложения, эквивалентного источника и принципа взаимности.

Обработка результатов эксперимента.

Исследование цепи при питании ее от двух источников

	1	2	3	4
Ik	0,488	0,604	1,093	1,395
Uk	0,731	-0,906	3,269	4,175

Значения силы тока и напряжения, рассчитанные по закону Кирхгофа, и значения, взятые из программы, приблизительно равны.

Определение токов цепи методом наложения

Цепь без источника тока.

Цепь без источника напряжения.

Значения тока

		1	2	3	4
U = 4 V; I = 0 mA	ľk	1,214	0,486	0,729	0,486
U = 4 V; I = 0 mA	I"k	0,726	1,09	0,364	0,91
U = 4 V; I = 0 mA	lk	0,488	0,604	1,093	1,396

Значения тока совпадают со значениями тока в предыдущей таблице.

Для ИН:

Для ИТ:

Теоретические значения приблизительно равны экспериментальным.

Определение тока в ветви с сопротивлением R3 методом эквивалентного источника напряжения

 $U_0=U_{xx}=4,478 B$

U₀=4.461 B

 $I_3 = -1.084 \text{ MA}$

Полученное значение силы тока приблизительно равно значению силы тока, полученного в п. 2.2.1.

Значение силы тока приблизительно равно экспериментальному.

Экспериментальная проверка принципа взаимности

Значение тока І₃ в схеме обозначенной на рисунке 2.4 а.

 $I_3 = 0.729 \text{ MA}$

Значения токов в первом и во втором экспериментах приблизительно равны.

 $I_1 = 0.721 \text{ MA}$

Теоретические значения приблизительно равны экспериментальным.

Вывод: Проведено экспериментальное исследование линейных разветвленных резистивных цепей с использованием методов наложения, эквивалентного источника и принципа взаимности.

Вопросы:

- 1. Каковы результаты контроля данных в п. 2.2.1? Результаты приблизительно равны экспериментальным.
- 2. Изменятся ли токи ветвей, если одновременно изменить полярность источника напряжения (ИН) и направление тока источника тока (ИТ) на противоположные?

Изменится направление тока, а величина силы тока не изменится.

- 3. Чему равно напряжение между узлами С и D цепи (рис. 2.1)? $U_{CD}=U_1+U_2=0.731\mathrm{B}+(-0.906\mathrm{B})=-0.175\mathrm{B}$
- 4. Как изменить напряжение ИН, чтобы ток 1 І в цепи рис. 2.1 стал равен нулю?

5. Почему цепь рис. 2.4, б при $U=U_{xx}$ реализует схему метода эквивалентного источника напряжения рис. 2.3, а?

Из схемы видно, что $I_3 = U_0/(R_0 + R_3)$, где U_0 – напряжение холостого хода между узлами A и B ветви 3 при ее обрыве (рис. 2.3, δ); R_0 – эквивалентное (выходное) сопротивление всех остальных ветвей, найденное по отношению к узлам A, B при исключении источников в схеме рис. 2.3, δ .

$$R_0 = \frac{R_1(R_2 + R_4)}{R_1 + R_2 + R_4}$$

 ${\sf R}_0$ относительно ветви с ${\sf R}_3$ и U равно ${\sf R}_0=rac{{\sf R}_1({\sf R}_2+{\sf R}_4)}{{\sf R}_1+{\sf R}_2+{\sf R}_4}$

Так как R_0 для обоих схемах одинаковы и ИН расположен последовательно с R_3 и R_0 .

6. Чему будет равен ток 1 I если ИН U поместить в ветвь 4, а ИТ отключить?

7. Как проконтролировать результаты экспериментов в пп. 2.2.2, 2.2.3 и 2.2.4? Значения эксперимента проконтролированы выше.