PROJECT 3 GAME DESIGN Neko

GAME DEMO: lynn-wonderland.com

A medical and surgical resource sharing and learning platform through VR technology. This immersive experience offers a comprehensive resource sharing hub, allowing medical professionals and students to practice and hone their surgical skills in a safe, virtual environment.

Genre: Medical/VR/First person

Platform: VR

Develop Engine: Unreal Engine 5.2.1

Control: VR device

Age Restriction:16+

Project Finish Time: 2023.11.01

PRSONAL PROJECT

Overview

This is a virtual surgical environment and medical resource sharing platform constructed through VR technology, which provides an opportunity for medical practitioners to learn and practice by sharing surgical cases and processing them appropriately, and at the same time provides immersive surgical processes and medical science for non-medical practitioners.

2 Background

2.1 Investigation Breast cancer surgery

In China, the proportion of mastectomies in breast cancer surgery varies but is notably high. As per the data available:

About 61.3% of women with breast cancer underwent mastectomy without breast reconstruction, 26.4% underwent mastectomy with breast reconstruction, and 12.2% chose breast-conserving surgery.[1]

The rate of mastectomy was highest among women aged 50-65 years, at 82.1%, and in non-first-tier cities, where it was 88.4%. Additionally, in Northeast China, the rate went up to 93.2%.[2]

Over a 15-year period, mastectomy was the primary surgical strategy for breast cancer, accounting for 84.8% of cases, while breast-conserving surgery (BCS) was only 15.2%.[3]

The proportion of patients with early-stage breast cancer undergoing mastectomy exceeds 70% in China, and a particular surgical technique known as the Auchin-closs operation is predominantly used for patients with axillary lymph node-positive breast cancer.[4]

Comapring with U.S.(In the United States, a study reported that 35.5% of the women in the study cohort underwent mastectomy for early-stage breast cancer. There was a 34% increase in the adjusted odds of mastectomy in women eligible for breast-conserving surgery (BCS) over the most recent eight years of the study period since 2011) the statics for China is staggering.[5]

Also, in China, the proportion of mastectomy in breast cancer surgery is notably higher in non-first-tier cities, with 88.4% of cases undergoing mastectomy, compared to first-tier cities, where the rate is not specified in the provided data. The overall mastectomy rate in the study was 77.2%, with the highest rates observed in Northeast China at 93.2%. Conversely, the rate of breast-conserving surgery was less than 10% in non-first-tier cities (9.8%).[6] The data above leads to several serious questions.

What will the high propoertion of mastectomies bring about, especially for patients?

According to researches in psychological field[7], a breast cancer diagnosis and treatment can lead to considerable distress, comparable to post-traumatic stress disorder symptoms, affecting self-concept, lifestyle, and leading to anxiety and depression. The pretreatment phase is marked by critical changes, indicating increased vulnerability and the need for psychosocial support. Due to the ambiguous boundaries in determining psychological disorders, privacy concerns, and the lack of attention in the broader context, it is difficult to find specific data to illustrate the mental health status of Chinese women after mastectomy for breast cancer. However, based on thorough psychological surveys, it can be reasonably inferred that given such a high rate of mastectomy and the relatively late and underdeveloped state of postoperative rehabilitation, female breast cancer patients face challenging circumstances.

Is such uneven distribution of medical resources a problem prevalent in all medical treatment in China?

Based on the Gini coefficient, Theil index, and concentration index, China's medical resources are concentrated in economically developed areas such as Shanghai, Beijing, Tianjin, Jiangsu, and Zhejiang.[8] Moreover, a greater proportion of financial support is also concentrated in these areas, including the attraction of talent, which exacerbates the phenomenon of uneven distribution. Hospitals in these regions have more medical resources and more humane and scientific medical technologies. At the same time, due to such concentration, medical cases are also gravitating towards these areas, which have a greater number of routine cases as well as cutting-edge and rare cases.

Medical Resourse Distribution calculaed in concentration Index

Current Surgery Learning

In order to investigate the current situation of how surgeons in China learn surgical skills and accumulate case experience today, I have created a questionnaire, which was distributed to surgeons from different cities and hospitals.

https://lynn-wonderland.com/Sites/Survey%20on%20the%20Cur-rent%20State%20of%20Resources%20for%20Learning%20Surgical%200perations.html

Also, statics show that 90.91% of survey respondents seek help from surgery video materials and up to 85.45% of them have to go to other hospitals for surgical study.

2.2 Conclusion

Based on the above, I have come up with the following ideas

1.Build a shared medical resource platform through VR. On this platform, share cutting-edge cases through VR technology and 3D reconstruction techniques of MRI and CT images, allowing surgeons to observe and learn surgical procedures within their own hospitals. Through VR, they can immerse themselves in the experience and accumulate experience, enhancing surgical skills so that they can provide more accurate and suitable surgical planning for different cases tailored to the patient's needs. Furthermore, since many doctors in the survey focus on identifying the lesion location and dealing with emergencies when learning about surgical cases, I believe that VR technology can emphasize and train doctors in determining the lesion area when reconstructing the surgical scene and process. It could also include simulations of unexpected emergencies to help doctors better adapt to the real surgical flow.

2.Design a VR controller that approximates the feel of a surgical scalpel to complement this medical resource platform. Since most VR controllers on the market today differ significantly from the feel and size of a surgical scalpel, I propose using Arduino to integrate the necessary modules and attempt to design a VR controller suitable for surgical training.

3. The VR platform can also be aimed at non-professionals, incorporating a filter mode that reduces realism as a means of popular science education, helping people to better understand various diseases and enhance their basic medical knowledge.

2.3 Market Research

Considering that there are some surgical simulator games available on the market, I will conduct some research to study their characteristics and contemplate how this medical resource sharing platform can be compatible, inclusive, and improved upon.

Surgeon Simulator

Surgical Robot Simulator

1.Offering a basic version of the simulator with optional modules can reduce the initial cost. As is mentioned above, I would like to make it also aimed at non-professionals, incorporating a filter mode that reduces realism as a means of popular science education.

2.Make medical surgery materials an open source platform where plenty hospitals can upload resources and programmers can help to edit.

3.Instead of pursuing the ultimate simulation, the goal is to closely align with the users' needs, targeting their 'pain points' precisely. During the simulation process, the focus is on identifying the lesion area and simulating various emergency scenarios. By placing playable videos and patient-related data UIs, such as oxygen saturation levels, on the VR glasses, it helps players to better compare and observe the lesions during the process. At the same time, they can monitor the patient's various vital signs, preparing for any emergencies that may arise, which more closely matches the focus and slight tension of a real surgical scene.

3 Mechanics

3.1 Game loop Game systems

Video play and instruction system

Surgery operating system

Rating and feedback system

Reviewing system

3.2 Game Flow

3.3 Game Play

3.3.1 Game device Device Draft

Module design

Arduino

4 Dynamics

4.1 Positive feedback

For none medical professional players, this game has an educational value. During the process, they might appreciate how the game provides insight into surgical procedures and human anatomy appreciating the opportunity to learn about medical procedures in a risk-free environment.

For medical professionals, this is a learning feedback process, where one can understand new surgical cases and master techniques during the process. The system's prompts and evaluations can help players adjust better and provide appropriate encouragement.

4.2 Setback

The idea that some surgical procedures present a significant level of difficulty is an acknowledgment of the complexity and unpredictability inherent in real-life surgeries. When translated to a simulator environment, particularly with the addition of an emergency event mode, this complexity is simulated and amplified. It presents a formidable challenge to the player, or trainee, who must not only identify and locate the lesion accurately but also respond to unexpected complications that can arise during the operation.

The challenge is not simply one of knowledge but also of dexterity, decision-making, and adaptability under pressure. This reflects the real-world scenario where surgeons must be prepared for any eventuality. In a simulator, this is an opportunity for medical professionals to practice these skills in a controlled environment. The value of such training is that it allows for safe experimentation and learning from mistakes without real-world consequences.

Moreover, these difficult scenarios in a simulator encourage repeated practice. The deliberate and repeated engagement with challenging situations is designed to build a trainee's competency and confidence. It's a form of deliberate practice that is known to be effective for skill acquisition in complex fields.

The simulator's feedback system plays a crucial role in this learning process. It provides immediate and objective assessment of each action, from the precision of an incision to the management of an unexpected hemorrhage. This feedback allows users to recognize their errors, understand the consequences of different approaches, and adjust their techniques accordingly. Over time, this process is meant to help refine their skills, making them more adept at handling the high stakes and pressure of actual surgical procedures. The encouragement offered by the system, often in the form of scores or progress tracking, serves to motivate and engage users, turning the grueling process of skill acquisition into a more rewarding experience.

4.3 Debate

Willingness to share medical resources

Whether the shared resource platform can be implemented requires further exploration; it may cause hospitals of various types to change their positioning and share their private medical resources publicly.

Adaptation to VR learning surroundings

Not everyone can adapt well to the operational process in a VR environment, which may bring about dizziness and discomfort, and some may consider the VR operation to be a cumbersome process.

The extent of real-sense realization

Each player's expectations for the authenticity of surgical simulation may vary.

5.1 2D ART

5.3 Game Process

5.4 Game UI

Reference List

[1]Biomedcentral.com. (n.d.) Predictors of surgery choices in women with early-stage breast cancer ... [online] Available at: https://bmccancer.biomedcentral.com .

[2]Ncbi.nlm.nih.gov. (n.d.) A Cross-Sectional Study of Breast Cancer Surgery and the Cost Based on ... [online] Available at: https://www.ncbi.nlm.nih.gov . [3]Journals.lww.com. (n.d.) Surgical management of breast cancer in China: A 15-year...: Medicine [online] Available at: https://journals.lww.com .

[4]Journals.lww.com. (n.d.) Clinical practice guidelines for modified radical mastectomy ... [on-line] Available at: https://journals.lww.com .
[5]PubMed. (n.d.) A Cross-Sectional Study of Breast Cancer Surgery and the Cost Based on Data From

[5]PubMed. (n.d.) A Cross-Sectional Study of Breast Cancer Surgery and the Cost Based on Data From 77 Chinese 3A Hospitals in 2015 [online] Available at: [https://pubmed.ncbi.nlm.nih.gov-](https://pubmed.ncbi.nlm.nih.gov/) .

[6]BMC Women's Health. (n.d.) Trends in emotional functioning and psychosocial wellbeing in breast cancer survivors: a prospective cohort study using patient-reported outcome measures [online] Available at: https://bmcwomenshealth.biomedcentral.com.

[7]PubMed. (n.d.) Nationwide trends in mastectomy for early-stage breast cancer [online] Available at: https://pubmed.ncbi.nlm.nih.gov [Accessed 14 Nov. 2023]

Game Blueprint

Detect the location and grab instruments and further detection for covering change on skin

8 Game 3D Modle

9 Game Demo

