STANDARD RESULTS

$$1. \quad \frac{d}{dx} (x^n) = nx^{n-1}$$

3.
$$\frac{d}{dx}(e^x) = e^x$$

5.
$$\frac{d}{dx} (\log_{10} x) = \frac{1}{x} \log_{10} e$$

$$7. \quad \frac{d}{dx} (\cos x) = -\sin x$$

9.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

11.
$$\frac{d}{dx} (\sec x) = \sec x \tan x$$

13.
$$\frac{d}{dx} (\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

15.
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{x \sqrt{x^2 - 1}}$$

17.
$$\frac{d}{dx} (\csc^{-1} x) = -\frac{1}{x \sqrt{x^2 - 1}}$$

19.
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

21.
$$\cosh^2 x - \sinh^2 x = 1$$
, $\operatorname{sech}^2 x + \tanh^2 x = 1$, $\coth^2 x = 1 + \operatorname{cosech}^2 x$

$$22. \quad \cosh^2 x + \sinh^2 x = \cosh 2x$$

24.
$$\frac{d}{dx} (\sinh x) = \cosh x$$

26.
$$\frac{d}{dx} (\tanh x) = \operatorname{sech}^2 x$$

28.
$$\frac{d}{dx}$$
 (sech x) = - sech x tanh x

30. Product rule :
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$2. \frac{d}{dx} (a^x) = a^x \log_e a$$

32.

34

4.
$$\frac{d}{dx} (\log_e x) = \frac{1}{x}$$

$$6. \frac{d}{dx} (\sin x) = \cos x$$

8.
$$\frac{d}{dx} (\tan x) = \sec^2 x$$

$$10. \frac{d}{dx} (\cot x) = -\csc^2 x$$

12.
$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

14.
$$\frac{d}{dx}$$
 (tan⁻¹ x) = $\frac{1}{1+x^2}$

16.
$$\frac{d}{dx} (\cot^{-1} x) = \frac{-1}{1+x^2}$$

18.
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

20.
$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

23.
$$\sinh^{-1} x = \log (x + \sqrt{x^2 + 1})$$

$$\cosh^{-1} x = \log (x + \sqrt{x^2 - 1})$$

25.
$$\frac{d}{dx} (\cosh x) = \sinh x$$

27.
$$\frac{d}{dx}$$
 (coth x) = $-\cosh^2 x$

29.
$$\frac{d}{dx}$$
 (cosech x) = $-\cosh x \coth x$

30. Product rule :
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
 31. Quotient rule : $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

32.
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$
 if $y = f_1(t)$ and $x = f_2(t)$

33.
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
, $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$

34.
$$\tan^{-1}\left(\frac{a-b}{1+ab}\right) = \tan^{-1}a - \tan^{-1}b$$
, $\tan^{-1}\left(\frac{a+b}{1-ab}\right) = \tan^{-1}a + \tan^{-1}b$

35.
$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2 \tan^{-1} x$$

36.
$$\sin 3x = 3 \sin x - 4 \sin^3 x$$
, $\cos 3x = 4 \cos^3 x - 3 \cos x$, $\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$

$$\sin 2x = 2 \sin x \cos x \; ; \; \tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \cos^2 x - \sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

37.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ $(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{2!} + \dots$ $(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3$

$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots ; |x| < 1$$

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots$$

$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots$$

$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots$$

38.
$$\sin C + \sin D = 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2}$$
, $\sin C - \sin D = 2 \cos \frac{C + D}{2} \sin \frac{C - D}{2}$

$$\cos C + \cos D = 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$$
, $\cos C - \cos D = 2 \sin \frac{C+D}{2} \sin \frac{D-C}{2}$

39.
$$2 \cos A \cos B = \cos (A + B) + \cos (A - B)$$
, $2 \sin A \sin B = \cos (A - B) - \cos (A + B)$
 $2 \sin A \cos B = \sin (A + B) + \sin (A - B)$, $2 \cos A \sin B = \sin (A + B) - \sin (A - B)$

40.
$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$
, $\sin (A - B) = \sin A \cos B - \cos A \sin B$
 $\cos (A + B) = \cos A \cos B - \sin A \sin B$, $\cos (A - B) = \cos A \cos B + \sin A \sin B$

41.
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}, \frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

$$\frac{d}{dx} (\tanh^{-1} x) = \frac{1}{1 - x^2} \text{ where } |x| < 1, \quad \frac{d}{dx} (\coth^{-1} x) = \frac{1}{x^2 - 1} \text{ where } |x| > 1$$

$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}}, \frac{d}{dx} (\operatorname{cosech}^{-1} x) = -\frac{1}{x\sqrt{x^2+1}}$$

42.
$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$$
, $(\cos \theta + i \sin \theta)^{-n} = \cos n\theta - i \sin n\theta$

				1 1	+ cot2 0 =	= cosec2	θ		
-43.	$\sin^2\theta + c$	$\cos^2\theta = 1$, s	sec ² 0 – tai	$n^2 \theta = 1, 1$	+ cor	90°	180°	270°	360°
-44.		0°	30°	1000	-	1	0	-1	0
1111	sin θ	0	1/2	1/√2	√3/2	0	-1	0	
	cos 0	1	$\sqrt{3}/2$	1/√2	1/2	U	0	00	1
		0	1/√3	1	√3	00	U		0
45	tan 0	90° – θ	90° + 0	$\pi - \theta$	$\pi + \theta$				
45.	sin θ	cos θ	cos θ	sin θ	- sin θ				
	cos 0	sin θ	$-\sin\theta$	- cos 0	- cos θ				
	tan 0	cot θ	- cot θ	- tan θ	tan θ				
		nula : $\frac{a}{\sin A}$	_ b	C					
46.	sine form	iuia : sin A	sin B	sin C					
		rmula : cos	A - b2 + c	$a^2 - a^2$					
47	Area of ta	riangle Δ =	[e(e - n) ((s-b)(s-c)	where s	$=\frac{a+b}{a}$	+ c		
			1000 070	0,10		Z			
48.	${}^{n}C_{r} = \frac{1}{r! r!}$	n!							
	r r!1	n-r!							
49.	$\int x^n dx =$	$=\frac{x^{n+1}}{n+1}+c$	$n \neq -1$						
40.]	n+1	,,,,,,,,						
	$\int \frac{1}{-dx} dx =$	$\log_e x + c$	fordr =	ex + c . [$a^x dx = -$	ax +			
	Jx	1000	, j c ux -	, j	1	og _e a			
	$\int \sin x dx$	$x = -\cos x$	+ c : [cos	s x dx = si	n r + c				3
									. 5
	fan x d	x = log sec	x+c; [$\cot x dx =$	log sin x -	+ c			
	sec x di	$x = \log (\sec \theta)$	$x + \tan x$	$+c = \log$	$\tan \left(\frac{\pi}{-} + \right)$	$\frac{x}{-}$ + c		t	- Car
	-				14.4			21	5
	cosec x	$dx = \log (c)$	osec x - co	(tx) + c =	log tan x	+0		7	3
	[to			-	2	10			
	J sec x ta	an x dx = 8	ecx + c;	cosec x c	ot $x dx =$	- cosec	c+c /	VA	
50.	[dx	- cin-1	(x) (- dr			,	VJ.	+
	$\sqrt{a^2-x}$	$\frac{1}{e^2} = \sin^{-1}$	(a) + c;	T-2 2	$= \cos^{-1}$	$\left \frac{x}{-}\right + c$			
	f dx	1	1-1	Va - x		(a)			
	$\int a^2 + x^2$	$=\frac{1}{a} \tan^{-1}$	- +c;	$\int -dx$	= 1 cot-	1(x).			
	f dx	1.	(as)	a + x2	a	(a)+	C		
	$\int a^2 - x^2$	$=\frac{1}{2a}\log a$	$\frac{a+x}{a-x} + c$; [_ds	1.	1 (x-	a)		
	c d-		(4 1)	J x2 -	$a^2 = 2a$	log x+	a + c		
	1 /2	2 = - 80	ec-1 (x)		-dx	1	$-1\left(\frac{x}{a}\right) + c$		
	x 1x -	a a	(a) +	1	2 2 =	- cosec	$-1\left(\frac{x}{-1}\right) + c$		
				×V.	- a	u	(a)		

51. |

52.

53. ∫

54. L

55. I

56.

57.

58.

59.

60.

51.
$$\int \operatorname{sech}^2 x \, dx = \tanh x + c, \int \operatorname{cosech}^2 x \, dx = -\coth x + c$$

$$\int \sinh x \, dx = \cosh x + c, \int \cosh x \, dx = \sinh x + c$$

$$\int \operatorname{sech} x \tanh x \, dx = -\operatorname{sech} x + c, \int \operatorname{cosech} x \coth x \, dx = -\operatorname{cosech} x + c$$

52.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{-1} \frac{x}{a} + c$$

$$\int \sqrt{a^2 + x^2} \, dx = \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} a^2 \log (x + \sqrt{a^2 + x^2}) + c$$

$$\int \sqrt{x^2 - a^2} \, dx = \frac{1}{2} x \sqrt{x^2 - a^2} - \frac{1}{2} a^2 \log (x + \sqrt{x^2 - a^2}) + c$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \left(\frac{x}{a}\right) + c \; ; \int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \left(\frac{x}{a}\right) + c$$

53.
$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(y) \, dy \; ; \int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx, \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx$$

$$\int_{-a}^{a} f(x) \, dx = \begin{cases} 2 \int_{0}^{a} f(x) \, dx &, & \text{if } f(x) \text{ is even function} \\ 0 &, & \text{if } f(x) \text{ is odd function} \end{cases}$$

$$\int_{0}^{2a} f(x) \, dx = \begin{cases} 2 \int_{0}^{a} f(x) \, dx &, & \text{if } f(2a - x) = f(x) \\ 0 &, & \text{if } f(2a - x) = -f(x) \end{cases}$$

54. Leibnitz rule for differentiation under the integral sign
$$\frac{d}{dx} \int_{\phi(\alpha)}^{\psi(\alpha)} f(x,\alpha) \, dx = \int_{\phi(\alpha)}^{\psi(\alpha)} \frac{\partial}{\partial \alpha} \{f(x,\alpha)\} \, dx + f[\psi(\alpha),\alpha] \, \frac{d\psi(\alpha)}{d\alpha} - f[\phi(\alpha),\alpha] \, \frac{d\phi(\alpha)}{d\alpha}$$

55. If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 then $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$ and $\hat{r} = \frac{\vec{r}}{|\vec{r}|} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}}$

56.
$$\overrightarrow{AB}$$
 = position vector of B-position vector of A = \overrightarrow{OB} - \overrightarrow{OA}

57.
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
; work done = $\int_c \vec{F} \cdot d\vec{r}$

58.
$$\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \hat{n}$$

59. Area of parallelogram =
$$\vec{a} \times \vec{b}$$
, Moment of force = $\vec{r} \times \vec{F}$

60.
$$\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

where
$$\vec{a} = \sum a_1 \hat{i}$$
, $\vec{b} = \sum b_1 \hat{i}$ and $\vec{c} = \sum c_1 \hat{i}$

If
$$\vec{a}$$
 . $(\vec{b} \times \vec{c}) = 0$ then \vec{a} , \vec{b} , \vec{c} are coplanar.

61.
$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$$

61.
$$a \times (b \times c) = (a \cdot c) \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \stackrel{\rightarrow}{d}$$

62. $(\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) \cdot (\stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{d}) = \begin{vmatrix} \stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{c} & \stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{d} \\ \stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{c} & \stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{d} \\ \stackrel{\rightarrow}{b} \cdot \stackrel{\rightarrow}{c} & \stackrel{\rightarrow}{b} \cdot \stackrel{\rightarrow}{d} \end{vmatrix}$

63.
$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{d}] \overrightarrow{c} - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{d}$$
65.

66.
$$AI = A = IA$$

68. (AB)
$$C = A(BC)$$
; $A(B + C) = AB + AC$

69.
$$A + B = B + A$$
; $A + (B + C) = (A + B) + C$

70.
$$(AB)^{-1} = B^{-1}A^{-1}$$

71. Walli's formula

$$\int_0^{\pi/2} \sin^n \theta \ d\theta = \int_0^{\pi/2} \cos^n \theta \ d\theta = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \dots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \dots \cdot \frac{4}{5} \cdot \frac{2}{3} & \text{if } n \text{ is odd} \end{cases}$$

72.
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c$$
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + c$$

73.
$$\Gamma(1/2) = \sqrt{\pi}$$
, $\Gamma(-1/2) = -2\sqrt{\pi}$

74.
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots$$

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} - \dots$$

$$\log (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} - \dots$$
75. $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$

.1. 80

among t solved by

1.1(a).

dx and place, t

arbitra

by divid

1.1(b)