Segon Control de Xarxes de Compu	tadors (XC), Grau en Enginyeria Informàtica	26/11	/2015	Tardor 2015
Nom:	Cognoms:	Grup	DNI	
Duració: 1h15m. El test es recollirà en	n 20m. Responeu en el mateix enunciat.			
Test. (3 punts) Totes les preguntes són	n multiresposta: Valen la meitat si hi ha un error, 0 si	més.		
 En un protocolo de transporte: UDP garantiza la integridad de los dato TCP garantiza la integridad de los dato UDP procura evitar la congestión de la TCP descarta segmentos en desorden 	red.			
 2. En una conexión interactiva, cuando a Se envían los segmentos cuando está Se envían los datos a medida que está Se acumulan los datos y se envían cua Se envían los bytes de datos uno a un 	completo un segmento (MSS). an disponibles para su envío. ando llega un ACK.			
 3. El número de secuencia en TCP: Indica en un ACK el último byte recibid Indica en un ACK el siguiente byte que Se incrementa en uno con el SYN y el El valor inicial es un número aleatorio. 	se espera.			
4. En una transferencia TCP, el temporiza ☐ Se define como 2 veces el RTT medio. ☐ Se define como el RTT medio + 4 vece ☐ Se duplica cuando hay retransmisione: ☐ No se modifica cuando hay retransmis	es su varianza. s.			
 5. El tamaño de la ventana de congestión Hasta que llegan confirmaciones (ACK Hasta que se detecta una pérdida. Hasta que la ventana de congestión ig Hasta que la ventana de congestión ig 	uala ssthresh.			
☐ Cuando la ventana de congestión igua☐ Cuando vence el temporizador RTO co	mento acaba la fase creciente de slow-start. la ssthresh acaba la fase de slow-start.	e slow-start.		

8. Desde que un cliente inicia una conexión hasta que el servidor puede enviarle los primeros bytes de datos al cliente (suponiendo velocidad de transferencia muy alta y 100ms de RTT) transcurre:

7. En TCP el tamaño de la ventana de congestión cambia:

 $\hfill \square$ Cuando cambia la ventana anunciada del receptor (awnd o rwnd).

Con cada segmento enviado.

Con cada ACK que confirma datos.

Cuando cambia el RTT.

☐ 50 ms ☐ 100 ms ☐ 150 ms ☐ 200 ms

Segon Control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		26/11/2015		Tardor 2015
Nom:	Cognoms:	Grup	DNI	

Duració: 1h15m. El test es recollirà en 20m. Responeu en el mateix enunciat.

Problema 1 (7 punts)

En la xarxa de la figura hi ha 20 PCs (10 connectats a R1 i 10 connectats a R3) que envien dades al servidor, cadascun amb una connexió TCP i a la màxima velocitat que els hi permet la xarxa. Suposa el següent per a respondre les preguntes: (1) tots els enllaços són de 10 Mbps; (2) els routers tenen una memòria de 2 MB (2 10⁶ bytes) que pot emmagatzemar tots els datagrames pendents de transmetre (i es descarten els datagrames que arriben si s'esgota la memòria); (3) tots els sockets TCP dels PCs i del servidor tenen un buffer de recepció de 60 kB; (4) suposa per simplicitat que la mida de les capçaleres TCP i IP és 0 i

MSS és 1500 B; (5) els retards en els enllaços és 0; (6) els acks transmesos per el servidor no es perden mai i arriben immediatament als PCs; TCP sempre envia ack quan rep dades, només implementa SS/CA i és el més eficient possible (és a dir, els ack s'envien immediatament, el temps de procés és 0, etc.); (7) les connexions estan en règim permanent, és a dir, fa molt temps que s'han establert les connexions. Justifica breument les respostes: no s'acceptarà un resultat sense justificar. Dóna els resultats que es demanen fent servir les caixes i amb les unitats inicades.

1.1 (0,75 punts) Digues quina és la velocitat efectiva (*throughput*), v_{ef}, que aconseguirà cada connexió TCP.

1.2 (0,75 punts) Digues quina serà la finestra anunciada, awnd. Farà falta fer servir l'opció window scale?

awnd=	kB
-------	----

1.3 (0,75 punts) Raona quina serà, aproximadament, l'ocupació dels buffers dels Routers R1, R2 i R3. Digues quants bytes hi haurà aproximadament en cada buffer. Es produiran pèrdues?

R1=	MB
R2=	МВ
R3=	MB

1.4 (0,75 punts) Calcula quin serà aproximadament el RTT que tindrà cada connexió TCP.

RTT=	S
------	---

1.5 (0,75 punts) Suposa ara (i per els següents apartats) que en mitjana es desitja tenir un RTT que, aproximadament, no superi els 600 ms. Per aconseguir-ho es redueix la mida dels buffers del routers. Quina hauria de ser la mida del buffer que s'hauria de configurar en R1, R2 i R3 per aconseguir-ho? Suposa que només es canvia la mida del buffer en els routers on sigui necessari.

	<u> </u>
R1=	MB
R2=	MB
R3=	MB

1.6 (0,75 punts) Digues si amb el buffers de l'apartat anterior es produiran pèrdu	ies. Quina serà ara velocitat efectiva (v _{ef})
(throughput) que aconseguirà cada connexió TCP?	

1.7 (0,75 punts) Calcula quina serà ara, en mitjana, la finestra que farà servir cada connexió TCP (\overline{W}). Suposa que, en mitjana, en cada RTT cada connexió TCP envia un nombre de bytes igual a la finestra mitjana, \overline{W} .

$$\overline{W}$$
= kB

1.8 (1 punt) Fes un esbos de l'evolució de la finestra de congestió (cwnd) de TCP que es correspongui amb les condicions dels apartats anteriors. Suposa que l'evolució de la cwnd és periódica, i dibuixa'n un període. Indica en el dibuix quan estarà en slow start (SS) i congestion avoidance (CA). Calcula qué valdrà el slow start threshold (ssth) i el valor màxim que tindrà cwnd (cwnd $_{max}$) en cada període. Calcula ssth i cwnd $_{max}$ perquè la velocitat efectiva i finestra mitjana siguin les calculades en els apartats anteriors. Per aquest càlcul, suposa que el temps en SS és molt més petit que en CA.

ssth = kB $cwnd_{max} = kB$

1.9 (0.75 punts) Calcula la duració, aproximada, d'un període (T) de l'esbos de l'apartat anterior.

T= s