Module/framework/package	Name and brief description of algorithm	An example of a situation where using the provided GLM implementation provides superior performance compared to that of base R or its equivalent in Python (identify the equivalent in Python)
Base R	The glm.fit function applies Iterative Reweighted Least Squares (IRLS) that solves weighted least squares problems through an iterative process until reaching convergence. It functions as a Fisher scoring method through which parameter estimates get updated by performing Hessian matrix operations.	The reference execution of Base R GLM functions exists as the standard implementation. Python users can find equivalent functionality through statsmodels GLM implementation.
Big Data version of R	Packages Rmpi and snow and parallel and pbdMPI provide options for parallel execution of GLMs. The bigglm package through biglm implements chunked IRLS while batchtools distributes GLM computation across clusters with different schedulers.	The system works best for processing very large data sets that exceed memory capacity. The bigglm package along with distributed frameworks allows R to process datasets containing billions of observations that would result in memory errors when using base R. Dask with statsmodels provides Python users with distributed GLM capabilities but R maintains stronger options for distributed GLM processing.
Dask ML	SparkR implements distributed optimization algorithms L-BFGS, OWL-QN and Iterative Residual Rescaling through which users can customize parameters maxIter, tol and regParam. The framework	The system outmatches base R by processing enormous datasets distributed across multiple clusters. The SparkR framework enables the processing of enormous datasets across hundreds of nodes thus making it possible

	11 CH: COLM	to CACIMO About 1 D
	enables fitting of GLM	to fit GLMs that base R
	models from different	cannot handle. The Python
	families which include	equivalent to SparkR is
	Gaussian, Binomial, Poisson,	PySpark however SparkR
	Gamma and Tweedie	provides better compatibility
	distributions.	for users who work in R.
Spark R	The system selects from	Scikit-learn provides superior
	different optimization	performance with large
	algorithms to match the	datasets through its 'sag' and
	model and regularization	'saga' solvers because they
	_	, ,
	requirements. The	scale linearly with the sample
	LogisticRegression class in	size. The 'saga' solver
	SparkR supports 'newton-cg',	achieves much better
	'lbfgs', 'liblinear', 'sag', 'saga'	performance than base R's
	and 'newton-cholesky' as its	GLM when applied to
	available solvers. The solvers	extremely large sparse
	in this implementation	datasets with L1
	demonstrate optimal	regularization. The equivalent
	performance for L1, L2 and	package in R is glmnet but
	ElasticNet penalties across	scikit-learn provides better
	varying dataset conditions.	integration within the Python
	varying dataset conditions.	data science environment.
Spark optimization	The framework supports	The system demonstrates
Spark optimization	different distributed	I -
		outstanding performance
	optimization algorithms	when handling distributed
	which include Gradient	training operations that
	Descent and L-BFGS and	require data parallelism. The
	Limited-memory BFGS	system manages datasets of
	together with	petabyte scale across
	communication-efficient	extensive clusters that base R
	aggregation trees. To achieve	chunked processing would
	better performance the system	not succeed in handling.
	utilizes standardization of	Particularly efficient for
	features and stochastic	GLMs with large feature
	variations and minibatch	spaces (millions of features)
	processing techniques.	due to optimized gradient
		aggregation. The equivalent
		tool in R is SparkR which we
		have already discussed but
		Spark MLlib enables users to
		access more advanced
G T : I	TI	optimization capabilities.
Scikit-Learn	The system provides four	Python developers who work
	distributed algorithms	with large datasets exceeding
	including ADMM	memory capacity will find
	(Alternating Direction	Superior as their ideal

Method of Multipliers) and L-BFGS and proximal gradient descent and Newton's method. The problem characteristics determine which algorithm users choose from the available options. The distributed computing environment benefits the most from ADMM implementations.

solution when they do not need a complete Spark cluster. The task scheduling system and lazy evaluation features of Dask allow users to process data efficiently on either one multi-core machine or a small cluster. The proximal gradient method in Dask ML surpasses scikit-learn performance when dealing with L1-regularized problems that exceed RAM capacity. The R equivalent to distributed computing with future package exists but Dask ML provides superior integration with the Python scientific stack.