LECTURER: Nghia Duong-Trung

NEURAL NETS AND DEEP LEARNING

TOPIC OUTLINE

Introduction to Neural Networks	
	1
Feed-forward Networks	2
Overtraining Avoidance	3
Convolutional Neural Networks (Part 1)	4
Convolutional Neural Networks (Part 2)	5
Recurrent Neural Networks	6

INTRODUCTION TO DEEP LEARNING DLMDSDL01

- Course book: DLBDSNNDL01_Neural Nets and Deep Learning, provided by IU, myStudies
- Reading list DLBDSNNDL01, provided by IU, myStudies
- This slide is a summarization of important contents in the course book.
- Additional teaching materials:

https://github.com/duongtrung/IU-DLBDSNNDL01 Neural Nets and Deep Learning

DISCLAIMER

- This is the modified version of the IU slides.
- I used it for my lectures at IU only.

CONVOLUTIONAL NEURAL NETWORKS (Part 1)

STUDY GOALS

On completion of this session, you will be able to ...

- understand the inspiration behind convolutional neural networks
- learn the purpose and importance of the architectural design of a convolutional neural network.
- explain the role of different types of layers in a convolutional neural network.

EXPLAIN SIMPLY

- What inspired the development of convolutional neural networks?
- Why is the architectural design of a convolutional neural network crucial for its performance and effectiveness?
- How do different types of layers contribute to the overall functioning of a convolutional neural network?

Convolutional neural networks (CNN)...

- are deep neural networks commonly used to identify and recognize objects in image data.
- are inspired from the study of **brain's** visual cortex.
- are effective in terms of computational time, model size and prediction quality.
- detect objects by progressing from basic shapes to recognizing specific objects.
- learn feature extraction effectively by assigning importance to image aspects.
- need less preprocessing of the input data compared to other algorithms.
- have been used extensively and with remarkable results in may complex task.

Convolution in brain's visual cortex

- Visual cortex can detect complex patterns in the visual field by detecting and combining lower-level patterns.
- Object recognition involves extracting features from visual information, building upon them, and constructing layers of abstractions

CONVOLUTION AND IMAGE FILTERING

Convolution in Image Processing

CNN considers the object as a **combination** of its parts.

- A convolution layer detects low-level **patterns** (lines, edges, or shapes).
- At higher-level layers, some **parts** of the object (ears, nose, or eyes) are identified.
- These parts are assembled into larger abstractions until the **whole object** (cat) is finally recognized.

CNN STRUCTURE

CNN Structure

CNNs have three main types of layers, the **convolutional** layer, **pooling** layer, and **fully connected** layer

Structure of a typical CNN

Source of the text and the image: Zöller (2023)

Convolutional layer ...

- is a main building block of a CNN.
- relies on input data, a filter, and a feature map.
- neurons connect to a small receptive area from the previous layer.
- allows the network to focus on low-level features and assemble them into more general features.

CNN Layers With Rectangular Local Receptive Fields

Filter

- Filters are feature detectors.
- Convolution is the process of moving a filter across the image to detect features.
- The result of filtering is a **feature map**.
- The output connects only to the receptive field, not to every pixel in the image.

Spatial arrangement

- Three hyperparameters that determine the size of the output volume:
- Depth: the number of filters to be used
- **Stride**: the step size when sliding a filter.
- **Padding**: the number of pixels added to an image.

CNN Layers With Rectangular Local Receptive Fields

CONVOLUTION AND IMAGE FILTERING

Pooling layer

- objective is to reduce the spatial dimensions and number of parameters.
- decreases computational time.
- helps to reduce the **complexity** of the network and control **overfitting**

Types of Pooling

Fully connected layer ...

- compiles the data extracted from the previous layers to form the final output.
- neurons have **full connections** to the neurons of the previous layers.
- uses a "**softmax**" activation function to assign an estimated probability $(0 \rightarrow 1)$.

Fully connected neurons

REVIEW STUDY GOALS

- understand the inspiration behind convolutional neural networks
- learn the purpose and importance of the architectural design of a convolutional neural network.
- explain the role of different types of layers in a convolutional neural network.

SESSION 4

CONVOLUTIONAL NEURAL NETWORKS (Part 1)

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

TRANSFER TASKS CASE STUDY

Task:

Given:

- the input volume has dimensions of 32x32x16,
- you apply a convolution process with a stride of 2 and a filter of size 2, What is the output volume?

Sample solution:

The output volume is:

output_size = (input_size - filter_size) / stride + 1

For the width dimension: output_width = (32 - 2) / 2 + 1 = 15 + 1 = 16For the height dimension: output_height = (32 - 2) / 2 + 1 = 15 + 1 = 16For the depth dimension: output_depth = input_depth = 16 So, the output volume would be 16x16x16.

1. Which of the following statements is true about CNNs? Select one.

- a) The quality of a convolutional neural network is significantly reduced when the number of parameters is diminished.
- b) Convolutional neural networks are used widely in image recognition tasks but cannot be used effectively in other machine learning domains such as face recognition, medical analysis, or self-driving cars.
- Convolutional neural networks generally require more preprocessing of the input data compared to other classification algorithms.
- d) A convolutional neural network is a deep learning framework commonly used to identify and recognize objects in image data.

2. Which of the following statements is true about CNN layers? Select one

- a) The filter in a convolutional layer is a kind of a feature detector which moves across the image data checking if the feature is present in the respective local receptive field.
- b) A feature map is a mapping mechanism which is applied to the filter of a CNN in the input layers of the network.
- C) The objective of the pooling layer in a CNN is to augment the dimensions of the image input data so that it can improve the generalization and prediction accuracy of the model.
- d) The role of the fully connected layer is to empower the neural network to learn direct linear relationships that map input features into the desired target.

- 3. Which of the following is the correct order for a convolutional neural network operation? Select one.
 - a) Pooling \rightarrow convolution \rightarrow flattening \rightarrow full connection.
 - b) Full connection \rightarrow convolution \rightarrow pooling \rightarrow flattening
 - Convolution \rightarrow pooling \rightarrow flattening \rightarrow full connection

-.Ö.-

Answers

- 1. d)
- 2. a)
- 3. c

LIST OF SOURCES

<u>Text</u>

Zöller, T. (2023). Neural Nets and Deep Learning Course Book. IU International University of Applied Sciences.

<u>Images</u>

Zöller (2023).

File: Brodmann_areas_17_18_19.png. Visual cortext (2023, October). Wikipedia Commons. https://en.wikipedia.org/wiki/Visual_cortext

File:Neural_network_with_dark_background.png. Convolutional neural_networks (2023, September). Wikipedia Commons. https://en.wikipedia.org/wiki/Convolutional_neural_network.

