

Indian Institute of Technology Bombay Department of Computer Science & Engineering

CS-226: Digital Logic Design

Course Project

Design a multi-cycle processor, IITB-Proc, whose instruction set architecture is provided. Use VHDL as HDL to implement. *IITB-Proc* is a 16-bit very simple computer developed for the teaching purpose. The *IITB-Proc* is an 8-register, 16-bit computer system. It should use point-to-point communication infrastructure.

Max Group Size: FOUR

Submission deadlines:

May 12, 2021 (Wednesday):

Complete Design Document (on paper) – RTL, FSM, components.

VHDL code of the controller-FSM and datapath (ALU, Registers, Register file etc.). Integration with the datapath along with the test bench .

Demonstration of the complete design on FPGA.

IITB-Proc Instruction Set Architecture

IITB-Proc is a 16-bit very simple computer developed for the teaching that is based on the Little Computer Architecture. The *IITB-Proc* is an 8-register, 16-bit computer system. It has 8 general-purpose registers (R0 to R7). PC points to the next instruction. All addresses are short word addresses (i.e. address 0 corresponds to the first two bytes of main memory, address 1 corresponds to the second two bytes of main memory, etc.). This architecture uses condition code register which has two flags Carry flag (c) and Zero flag (z). The *IITB-Proc* is very simple, but it is general enough to solve complex problems. The architecture allows predicated instruction execution and multiple load and store execution. There are three machine-code instruction formats (R, I, and J type) and a total of 14 instructions. They are illustrated in the figure below.

R Type Instruction format

Opcode	Register A (RA)	Register B (RB)	Register C (RC)	Unused	Condition (CZ)
(4 bit)	(3 bit)	(3-bit)	(3-bit)	(1 bit)	(2 bit)

I Type Instruction format

Opcode	Register A (RA)	Register C (RC)	Immediate
(4 bit)	(3 bit)	(3-bit)	(6 bits signed)

J Type Instruction format

Opcode	Register A (RA)	Immediate
(4 bit)	(3 bit)	(9 bits signed)

Instruction	s Encoding:	01	<i>M</i>			
	915	11	3 6	5 3	2 2	1
ADD:	00_00	RA	RB	RC	0	00
ADC:	00_00	RA	RB	RC	0	10
ADZ:	00_00	RA	RB	RC	0	01
AĐÍ:	00_01	RA 🛌	RB C		bit Immediate	
NĐU:	00_10	RA	RB	RC	0	00
NDC:	00_10	RA	RB	RC	0	10
₩DZ:	00_10	RA	RB	RC	0	01
ZHI:	00_11	,RA		9 bit Imr	nediate	
√ UW:	01_00	RA	RB	pold 6	5 bit Immediate	2
SW:	01_01	RA	RB	(5 bit Immediate	2
<mark>⊘</mark> LA:	01_10	√ RA	م میں کے	od		
o ⋌ SA:	01_11	RA	3 7) P(+	1mn	
BEQ:	11_00	RA P	RB	(bit Immediate	2
JAL:	10_00	RA	- dd	9 bit Immed	diate offset	
PL_JLR:	10_01	RA	RB	0,010	000_000	
3		^			ans	10
RA: Registe	r A	Shre				
RB: Registe	r B	we /		8 (
RC: Registe	r C	YC	·	—/ C	. (_	7 /
			RB 1x	2		
			لل ا	0		
			1 ~~	. —————————————————————————————————————		
					• •	

Instruction Description

Mnemonic	Name & Format	Assembly	Action
ADD	ADD (R)	add rc, ra, rb	Add content of regB to regA and store result in regC. It modifies C and Z flags
ADC	Add if carry set (R)	adc rc, ra, rb	Add content of regB to regA and store result in regC, if carry flag is set. It modifies C & Z flags
ADZ	Add if zero set (R)	adz rc, ra, rb	Add content of regB to regA and store result in regC, if zero flag is set. It modifies C & Z flags
ADI	Add immediate (I)	adi rb, ra, imm6	Add content of regA with Imm (sign extended) and store result in regB. It modifies C and Z flags
NDU	Nand (R)	ndu rc, ra, rb	NAND the content of regB to regA and store result in regC. It modifies Z flag
NDC	Nand if carry set (R)	ndc rc, ra, rb	NAND the content of regB to regA and store result in regC if carry flag is set. It modifies Z flag
NDZ	Nand if zero set (R)	ndc rc, ra, rb	NAND the content of regB to regA and store result in regC if zero flag is set. It modifies Z flag
LHI	Load higher immediate (J)	lhi 🚳 Imm	Place 9 bits immediate into most significant 9 bits of register A (RA) and lower 7 bits are assigned to zero.
LW	Load (I)	lw ra, rb, lmm	Load value from memory into reg A. Memory address is computed by adding immediate 6 bits with content of reg B. It modifies flag Z.

SW	Store (I)	sw ra, rb, Imm	Store value from reg A into memory. Memory address is formed by adding immediate 6 bits with content of red B.
LA	Load All	lm ra	Load all registers (in a sequence of register, R0 to R7) Memory address is given in reg A. Registers are loaded from consecutive addresses.
SA	Store All (J)	sm, ra	Store all registers (in a sequence of register, R0 to R7). Memory address is given in reg A. Registers are stored to consecutive addresses.
BEQ	Branch on Equality (I)	beq ra, rb, Imm	If content of reg A and regB are the same, branch to PC+Imm, where PC is the address of beq instruction
JAL	Jump and Link (I)	jalr ra, Imm	Branch to the address PC+ Imm. Store PC into regA, where PC is the address of the jalr instruction
JLR	Jump and Link to Register	jalr ra, rb	Branch to the address in regB. Store PC into regA, where PC is the address of the jalr instruction