

683

網易 NETEASE

ES-AND DA BELFIN

PRODUCE BY DETERS

PROTOGE DY DETERSE

by dage by delevse

PRODUCE OF DETERSE

BEGEORGE BA DELEUSE

100

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

- ·一个强大的N维数组对象 ndarray
- ·广播功能函数
- ·线性代数
- •随机数生成

SOUNEE BY DEVEN

BY DETEASE

100

and a

Wumpy的数据类型。

問嗣

PRODUCE OF DE

类型	说明		
bool	布尔型(值为 True 或 False),占用 1bit		
inti	其长度取决于平台的整数(通常为 int32 或者 int64)		
int8	字节类型(取值范围从-128~127)		
int16	整型(取值范围-32768~32767)		
int32	整型(取值范围为-2 ³¹ ~2 ³¹ -1)		
int64	整型(取值范围为-2 ⁶³ ~2 ⁶³ -1)		
uint8	无符号整型(取值范围为 0~255)		
uint16	无符号整型(取值范围为 0~65535)		
uint32	无符号整型(取值范围为 0~2 ³² -1)		
uint64	无符号整型(取值范围为 0~2 ⁶⁴ -1)		
float16	半精度浮点型: 符号占用 1bit, 指数占用 5 bit, 尾数占用 10 bit		
float32	单精度浮点型: 符号占用 1 bit,指数占用 8 bit,尾数占用 23 bit		
float64 或者 float	双精度浮点型: 符号占用 1 bit, 指数占用 11 bit, 尾数占用 52 bit		
complex64	复数类型,由两个32位浮点数(实部和虚部)表示		
complex128 或者 complex	复数类型,由两个64位浮点数(实部和虚部)表示		

切记:不能把复数类型转化成整型。当我们试图进行这种转换时,将会触发TypeError错误

To Carlo

S. W. D. BELEN

生成类文组的逐步

Numpy 生成数组的函数

	ALL STREET	(CSS FD)	COUNTE .	
PRODUCT	函数	形式	用处	
	np.arange()	a range(start,stop,step,d type)	生成任意长度的数组	
FLANCE PU	np.linspace()	lin space (start, stop, num = 50, endpoint=True, retstep=False, d type=None)	生成任意长度的数组	
CONTRACTOR OF THE PARTY OF THE	np.zeros()	ze ros(shape, d type=None,order='C')	生成任意维度数值为0的矩阵	No.
	np.ones()	ones(shape, d type=None,order='C')	生成任意维度数值为1的矩阵	TEQ8

ES-AND BA BELFIN

PRODUCE BY DEVENSE

X1 = np.arange(30).reshape(2,3,5)

Shape: (2, 3, 5)

15	16	17	18	19	
0	1	2	3	4	
5	6	7	8	9	
10	11	12	13	14	1

三维数组用包含3个

元素的元组来表示,

以此类推...

E DA DELEVSE

ES-AND BA BELFIN

一维数组的现象写


```
In [21]: ▼ #一维数组的切片与索引
PRODUCE BY DELEV
                               import numpy as np
                               a =np.arange(9)
                               print(a)
                               a[3:7]
                              [0 1 2 3 4 5 6 7 8]
                     Out[21]: array([3, 4, 5, 6])
                     In [27]: ▼ #一般情况下一个 Cell 后只能输出一个结果,多行输出的话需要加上一下两行代码
                               from IPython.core.interactiveshell import InteractiveShell
                               InteractiveShell.ast node interactivity = 'all' # 默认为'last', 即输出最后一个结果
                               import numpy as np
                               a =np.arange(12)
                               a[3:7]
                               a[0:9:2] #下标每次递增2, 默认为1
                               a[::-1] #逆向取数
                     Out[27]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
                     Out[27]: array([3, 4, 5, 6])
                     Out[27]: array([0, 2, 4, 6, 8])
                     Out[27]: array([11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
```


ES-AND BA BELFIN

HH

PRODUCE OF DEVENSE

BEGEORGE BA DELEUSE

DA DELEUSE DIL CITA EL-WEE BY DELFIE

np.	arai	ige(3) +	- 5
			\neg	

b)

np.ones((3,3)) + np.arange(3)

$\overline{}$	/	/	7
1	1	1	
1	1	1	
1	1	1	1

1006077		
0	1	2
. 7		
	1.	1 ;
10	1 11	: 12
		-: +
	4	
		,
. 0	: 1	: '2
Special and		was all and

=		_	71	
1	2	3	U	
1	2	3	1	(
1	2	3	V	

 ${\tt np.arange(3).reshape((3,\,1)) + np.arange(3)}$

_	
0	0 0
1	1 1
2	2 2

0	1	2
-7		1
. 0	: :1	2
	1.7	1.77
110	1 :4	
	111	

0	<u> </u>	2
1	2	-
1	2	3
2	3	4

į		$\overline{}$		7	
	0	1	2	IJ.	
	1	2	3		(c
200	2	3	4	[]	

EZ-ANS DA WELFA

np.sin(), np.cos(), np.tan()

np.add()np.sub tract()np.m ultiply()np.d ivide()

np.am in()np.am ax()np.ptp()np.percentile()np.m ean()

np .sort()np .arg sort()np .lexsort()

np.random .random ()np.random .rand() np.random .rand in t()

数学函数

算数函数

统计函数

排序条件筛选函

数

随机函数

案例:计算cos x+sin³x的最大值最小值

import matplotlib.pyplot as plt import numpy as np import math

pi=math.pi
x=np.linspace(0,12*pi,1000)
y=(np.cos(x))**3+(np.sin(x))**3
plt.figure()
plt.plot(x,y)
plt.show()

ED-ANG BA WELFA

PROTOBE OF DETERSE

