Minimizing Average Cost per Patient for Thyroid Gland Disorder Diagnosis

By Vince Wu and Ryan Liu

COSTS FUNCTION

- Correct Diagnosis (=C) \$0
- Misdiagnosis (=M) \$5000
- Abstain Prediction (=A) (forward to endocrinologist) \$1000
- Total Number of Patients (N = C+M+A)
- Total Costs:

$$T = \frac{5000M + 1000A}{N}$$

PROBABILITY ANALYSIS

- OvR (by default threshold) assign classification with p > 0.5
- Larger p → Higher chance for correct prediction (diagnosis)
- Smaller p → More likely for misdiagnosis

NEW MODEL

• With OvR default threshold th = 0.5 (A = 0)

$$T = \frac{5000M + 1000A}{N} = \frac{5000M}{N} = \frac{5000*16}{102} = $784.3$$

- With threshold th = 1 (A=N)
 - T = 1000

y_train_ovr	1.0	2.0	3.0	All
y_train				
1.0	69	4	0	73
2.0	9	9	0	18
3.0	3	0	8	11
All	81	13	8	102

Idea:

- Set new threshold th (if p > th predict; if p
 - th $\uparrow \rightarrow M \downarrow$ and A \uparrow
 - th $\downarrow \rightarrow$ M \uparrow and A \downarrow
- Optimal threshold th \neq 0.5 to minimize cost T
- Sweep threshold th to get minimum cost T

THRESHOLD ANALYSIS

- Minimum total cost T = \$362.75 (Training Set)
- New Threshold th = $0.68 \neq 0.5$ (default)
- Minimum total cost T = \$575.22 (Testing Set)

METHOD ROBUSTNESS

- Always found the optimal threshold
- Verification:
 - When abstain price is low, abstain to predict cost leas high threshold
 - When abstain price is high, abstain to predict cost more low threshold

