

Sohail Akhtar
CS Department
Bahria University, Islamabad Campus

Provided by:
Dr Muhammad Rashid Hussain

Agenda

Hadoop Architecture

Typical File System

Hadoop Distributed File System

Traditional Enhancement of Storage

Vertical Scaling

Increase Storage as you grow

Increase Storage as you grow

Commodity Hardware with lot of up-scaling is solution

HDFS Architecture

What is HDFS Architecture?

 Hadoop Distributed File System (HDFS) is like Master-Worker architecture. The master is the NameNode and the workers are the low-cost commodity hardware. In the DataNodes, the actual data is stored. In this architecture, there is single NameNode and multiple DataNodes.

- What is the task of NameNode?
 - The NameNode is used to store the meta-data and another data related to DataNodes. The NameNode also responsible for:
 - Managing the file-system namespace
 - It controls the access of different clients into the data blocks.
 - Periodically checks the availability of the DataNodes.
 - It also cares about the replication factor of the data blocks.

- What is the task of DataNodes?
 - DataNodes are the main storages of data.
 Hadoop uses low-cost hardware to store data.
 - DataNodes are responsible for storing, replication creating, deleting these type of jobs according to the instruction of NameNode.
 - These DataNodes send the health report to the NameNode periodically. The default time is 3 seconds. So after every 3 seconds, these send the report to the NameNode.

HDFS Architecture

Rack Mounted Clusters in High Availability

HDFS Blocks

• File is divided into blocks (default: 64MB) and duplicated in multiple places (default: 3)

- Dividing into blocks is normal for a file system. E.g., the default block size in Linux is 4KB. The difference of HDFS is the scale.
- Hadoop was designed to operate at the petabyte scale.
- Every data block stored in HDFS has its own metadata and needs to be tracked by a central server.

Replication patterns of data blocks in HDFS

• When HDFS stores the replicas of the original blocks across the Hadoop cluster, it tries to ensure that the block replicas are stored in different failure points.

Hadoop Cluster

Hadoop Architecture

Name Node - Manages file system namespace.

Data Node - Manages data

HDFS Federation

HDFS Architecture

What is HDFS?

Hadoop Cluster

Fault Tolerance

Hadoop Architecture

Hadoop Architecture

HDFS Architecture – Rack Aware

Throughput

Minimize this. Lower is better.

Performance Measurement

- 1. Latency Time to get the first record
- 2. Throughput Number of records processed per unit of time.

Maximize this. Higher is better.

HDFS Architecture

High Availability

Percentage of Uptime of the system.

HDFS Architecture

Name Node is critical and single point of failure

NameNode & DataNode

NameNode:

- ➤ Maintains and Manages DataNodes
- Records metadata i.e. information about data blocks e.g. location of blocks stored, the size of the files, permissions, hierarchy, etc.
- Receives heartbeat and block report from all the DataNodes

DataNode:

- Slave daemons
- > Stores actual data
- > Serves read and write requests from the clients

Hadoop – secondary NameNode

Secondary NameNode Update FsImage with EditLogs

Copy the update FsImage

back to NameNode

What is the Secondary NameNode?

Fslmage

 Secondary NameNode: The Secondary NameNode is another specially dedicated node, which is used to take the checkpoints of the file-system. The Secondary NameNode is not the substitute of the Primary NameNode. It helps the NameNode but not replace for NameNode.

FsImage

HDFS Data Blocks

- > Each file is stored on HDFS as blocks
- The default size of each block is 128 MB in Apache Hadoop 2.x (64 MB in Apache Hadoop 1.x)

Fault Tolerance

Fault Tolerance: Replication Factor

Solution:

Each data blocks are replicated (thrice by default) and are distributed across different DataNodes

Fault Tolerance: Replication Factor

Solution:

Each data blocks are replicated (thrice by default) and are distributed across different DataNodes

As it is said Never Put All Your Eggs in the Same Basket

Hadoop Architecture

HDFS – Write Mechanism

HDFS Write Mechanism – Pipeline Setup

HDFS – Write Mechanism

HDFS Write Mechanism – Writing a Block

HDFS - Write Pipeline Client Copies on DN-1 and than DN-1 contacts DN-2 for copying and inturn DN-2does Client it on DN-6 Write Request on DN1, DN4, DN6 2 Core Switch BLK A - Replica 1 Write Request Switch Switch **Switch** DataNode 1 DataNode 4 BLK A - Replica 2 Write Request DataNode 6 Rack 1 Rack 5 Rack 7

HDFS – Write Mechanism

HDFS Write Mechanism - Acknowledgement

HDFS – Read Mechanism

HDFS Read Mechanism

Control and Data Flow - Summary

• Read:

- The client queries the NameNode with the file name, read range start offset, and the range length.
- The NameNode returns the locations of the blocks of the specified file within the specified range.
- The client then sends a request to one of the DataNodes, most likely the closest one.

• Write:

- A client request to create a file does not reach the NameNode immediately.
- The client caches the file data into a temporary local file.
- Once the local file accumulates data worth over one block size, the client contacts the NameNode, which updates the file system namespace and returns the allocated data block location.
- The client flushes the block from the local temporary file to the specified DataNode.
- When a file is closed, the remaining last block data is transferred to the DataNodes.

Control and Data Flow - Summary

- HDFS is designed such that clients never read and write file data through the NameNode.
- A client asks the NameNode which DataNodes it should contact using the class ClientProtocol through an RPC connection.
- Then the client communicates with a DataNode directly to transfer data using the DataTransferProtocol, which is a streaming protocol for performance reasons.

How to protect against NN Failure?

Backup

How to protect against NN Failure?

Backup following things

- HDFS Namespace information
- Standby Name node

Namespaces can be reconstructed using edit logs

Secondary Name Node

fslmage

In Memory and we loose it once NN reboots but can be rebuilt using edit logs

editLog

HDFS Architecture Check Point -1 (every hr)

HDFS Architecture Check Point -2

HDFS Architecture Check Point -2

HDFS Architecture Check Point -2

HDFS – Basic Commands

Basic HDFS Commands

Some basic HDFS Commands:

 HDFS commands are very similar with the UNIX commands. Some syntax and output format may differ for the commands.

Command	Description
Is	List all files with permissions and other details.
mkdir	Create a directory
rm	Remove File or Directory
put	Store file/folder from local disk to HDFS
cat	Concatenate text /display file content
get	Store file/folder from HDFS to local disk
count	Count number of directory, number of files and file size.

Hadoop Architecture

Summary

- Master/Slave architecture
 - Single Name Node (Master)
 - One or more Data Nodes (Slaves)
- NN manages FS namespace
- · All client interactions start with NN
- DN stores file data as Blocks
- · DN sends heartbeat and block report to NN
- File is broken into Blocks and stored on DN
- NN maintains file to block mapping, location, order of blocks and other metadata.
- Default block size is 128 MB
- · You can change block size for a file
- Client directly interacts with DN for reading/writing blocks
- Client buffers data locally to provide streaming read/write
- NN and DN can be installed on single machine to create a single node cluster for learning

THANK YOU