§9.2 一阶微分方程

2017-2018 学年 II

Outline

1. 变量分离的一阶微分方程

2. 可分离变量的一阶微分方程

3. 齐次微分方程

4. 一阶线性微分方程

We are here now...

1. 变量分离的一阶微分方程

2. 可分离变量的一阶微分方程

3. 齐次微分方程

4. 一阶线性微分方程

变量已分离的一阶微分方程:

$$g(y)dy = f(x)dx$$

变量已分离的一阶微分方程:

$$g(y)dy = f(x)dx \iff g(y)\frac{dy}{dx} = f(x)$$

变量已分离的一阶微分方程:

$$g(y)dy = f(x)dx \iff g(y)\frac{dy}{dx} = f(x) \iff g(y)y' = f(x)$$

计算通解的方法: $g(y)dy = f(x)dx \implies$

计算通解的方法:
$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$
 \Longrightarrow

计算通解的方法:
$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$
 \Longrightarrow

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数,

计算通解的方法:
$$g(y)dy = f(x)dx$$
 \implies $\int g(y)dy = \int f(x)dx$ \implies $G(y) + C_1 = F(x) + C_2$ \implies

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数,

计算通解的方法:
$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$
$$\implies G(y) + C_1 = F(x) + C_2$$
$$\implies G(y) = F(x) + C$$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

计算诵解的方法: $g(y)dy = f(x)dx \implies g(y)dy = f(x)dx$ $G(v) + C_1 = F(x) + C_2$ \Longrightarrow G(v) = F(x) + C (不必写成 v = v(x))

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$ 其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

两边求 x 关于的导数:

G'(y).

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

两边求 *x* 关于的导数:

 $G'(y) \cdot y'$

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x)$$

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y'$$

计算通解的方法: $g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$ $\implies G(y) + C_1 = F(x) + C_2$ $\implies G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x)$$

计算通解的方法: g(y)dy = f(x)dx \Longrightarrow $\int g(y)dy = \int f(x)dx$ \Longrightarrow $G(y) + C_1 = F(x) + C_2$

$$\implies$$
 $G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x) \implies y' = \frac{f(x)}{g(y)}$$

计算诵解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$
$$\implies G(y) + C_1 = F(x) + C_2$$

$$\implies$$
 $G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证: 对关系式

$$G(y(x)) = F(x) + C$$

$$F'(x)$$
:

计算诵解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$
$$\implies G(y) + C_1 = F(x) + C_2$$

$$\implies$$
 $G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证: 对关系式

$$G(y(x)) = F(x) + C$$

两边求x关于的导数: $G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x) \implies y' = \frac{f(x)}{g(y)}$

 $\implies dy = \frac{f(x)}{g(y)}dx \implies g(y)dy = f(x)dx$

例 1 求 $(y + 1)dy = e^x dx$ 的通解

解

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^x dx \implies \frac{1}{2}y^2 + \frac{1}{2$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^x dx \implies \frac{1}{2}y^2 + y + y$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 =$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^x dx \implies \frac{1}{2}y^2 + y + C_1 = e^x + C_1$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 = e^x + C_2$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 1 求
$$(y + 1)dy = e^x dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 2 求 ydy = xdx 的通解

解

例 1 求
$$(y + 1)dy = e^x dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 2 求 ydy = xdx 的通解

$$\int y dy = \int x dx \implies$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 2 求 ydy = xdx 的通解

$$\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 =$$

例 1 求
$$(y + 1)dy = e^x dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 2 求 ydy = xdx 的通解

$$\int ydy = \int xdx \implies \frac{1}{2}y^2 + C_1 = \frac{1}{2}x^2 + C_2$$

$$\implies$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 2 求 ydy = xdx 的通解

$$\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 = \frac{1}{2}x^2 + C_2$$

$$\implies y^2 = x^2 + 2(C_2 - C_1)$$

例 1 求
$$(y + 1)dy = e^{x}dx$$
 的通解

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\stackrel{C=C_{2}-C_{1}}{\Longrightarrow} \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

例 2 求 ydy = xdx 的通解

$$\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 = \frac{1}{2}x^2 + C_2$$

$$\implies y^2 = x^2 + 2(C_2 - C_1)$$

$$\implies y^2 = x^2 + C$$

We are here now...

1. 变量分离的一阶微分方程

2. 可分离变量的一阶微分方程

3. 齐次微分方程

4. 一阶线性微分方程

$$\frac{dy}{dx} = f(x) \cdot g(y) \implies$$

$$\frac{dy}{dx} = f(x) \cdot g(y) \implies dy = f(x) \cdot g(y) dx$$

$$\frac{dy}{dx} = f(x) \cdot g(y) \implies dy = f(x) \cdot g(y) dx$$

$$\implies \frac{1}{g(y)} dy = f(x) dx$$

$$\implies$$

$$\frac{dy}{dx} = f(x) \cdot g(y) \implies dy = f(x) \cdot g(y) dx$$

$$\implies \frac{1}{g(y)} dy = f(x) dx$$

$$\implies \left[\frac{1}{g(y)} dy = \int f(x) dx \right]$$

解

$$\frac{dy}{dx} = -\frac{x}{y}$$
 \Longrightarrow

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies$$

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 =$$

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$
$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{1}{2}y^2 = -\frac{1}{2}y^2 =$$

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies$$

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1$$

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

解这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

所以

• 通解为 $x^2 + y^2 = C$ (C 为任意常数)

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 $x^2 + y^2 = C(C)$ 为任意常数)
- 当x = 1时y = 3,则

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 $x^2 + y^2 = C$ (C 为任意常数)

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 $x^2 + y^2 = C(C)$ 为任意常数)

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 $x^2 + y^2 = C(C)$ 为任意常数)
- 当 x = 1 时 y = 3, 则 $1^2 + 3^2 = C$ \Rightarrow C = 10 所以特解是 $x^2 + y^2 = 10$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies$$

例 2 求
$$y' = e^{2x-y}$$
 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies$$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies$$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{y=0} = 0$ 下的特解

解 这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

所以

• 通解为 $e^y = \frac{1}{2}e^{2x} + C(C$ 为任意常数)

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{y=0} = 0$ 下的特解

解 这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

- 通解为 $e^y = \frac{1}{2}e^{2x} + C(C)$ 为任意常数)
- 当 x = 0 时 y = 0,则

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

解这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C(C)$$
 为任意常数)

•
$$\exists x = 0 \text{ ff } y = 0, \text{ } \emptyset \text{ } 1 = \frac{1}{2} + C \Rightarrow$$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解

解这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C(C)$$
 为任意常数)

•
$$\exists x = 0 \text{ ff } y = 0, \text{ } \emptyset \text{ } 1 = \frac{1}{2} + C \Rightarrow C = \frac{1}{2}$$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{y=0} = 0$ 下的特解

解 这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C(C)$$
 为任意常数)

• 当
$$x = 0$$
 时 $y = 0$, 则 $1 = \frac{1}{2} + C$ \Rightarrow $C = \frac{1}{2}$ 所以特解是 $e^y = \frac{1}{2}e^{2x} + \frac{1}{2}$

例 3 求 $y' = -\frac{y}{x}$ 的通解

解

例 3 求
$$y' = -\frac{y}{x}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies$$

例 3 求
$$y' = -\frac{y}{x}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\implies xy = \pm e^{C_1} =$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\implies xy = \pm e^{C_1} = C$$

例 3 求
$$y' = -\frac{y}{y}$$
 的通解

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\implies xy = \pm e^{C_1} = C$$

所以通解就是

$$xy = C$$

解

$$\frac{dy}{dx} = 2x(y-3) \implies$$

例 4 求
$$y' = 2xy - 6x$$
 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \frac{1}{y-3}dy = 2xdx$$

例 4 求
$$y' = 2xy - 6x$$
 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| =$$

例
$$4 \, \bar{x} \, v' = 2xv - 6x$$
 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies$$

例
$$4 \, \bar{x} \, y' = 2xy - 6x$$
 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies |n|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} =$$

例
$$4 \, \bar{x} \, v' = 2xv - 6x$$
 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies$$

例 $4 \, \bar{x} \, v' = 2xv - 6x$ 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} =$$

例 $4 \, \bar{x} \, v' = 2xv - 6x$ 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} = Ce^{x^2}$$

$$\implies \Rightarrow$$

例 $4 \, \bar{x} \, y' = 2xy - 6x$ 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} = Ce^{x^2}$$

$$\implies y = C \cdot e^{x^2} + 3$$

例 $4 \, \bar{x} \, v' = 2xv - 6x$ 的通解

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies |n|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} = Ce^{x^2}$$

$$\implies y = C \cdot e^{x^2} + 3$$
所以通解就是
$$y = C \cdot e^{x^2} + 3$$

解

$$\frac{dy}{dx} + p(x)y = 0 \implies$$

$$\frac{dy}{dx} + p(x)y = 0 \implies \frac{1}{y}dy = -p(x)dx$$

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies$$

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$
$$\implies \ln|y| =$$

解这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies$$

解这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} =$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} =$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

解这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

其中 P(x) 是 p(x) 的一个原函数。所以通解就是

$$y = Ce^{-P(x)}$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

其中 P(x) 是 p(x) 的一个原函数。所以通解就是

$$y = Ce^{-P(x)}$$

注 上述的诵解也写作

$$v = Ce^{-\int p(x)dx}$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

其中 P(x) 是 p(x) 的一个原函数。所以通解就是

$$y = Ce^{-P(x)}$$

注 上述的诵解也写作

$$v = Ce^{-\int p(x)dx}$$

这里 $\int p(x)dx$ 仅表示 p(x) 的一个原函数,不含积分常数。

We are here now...

1. 变量分离的一阶微分方程

2. 可分离变量的一阶微分方程

3. 齐次微分方程

4. 一阶线性微分方程

计算通解步骤:

1. 作变量代换

计算通解步骤:

1. 作变量代换
$$u = u(x) = \frac{y(x)}{x}$$
, 并代入原方程:

计算通解步骤:

1. 作变量代换
$$u = u(x) = \frac{y(x)}{x}$$
, 并代入原方程:
$$= f(u)$$

计算通解步骤:

1. 作变量代换
$$u = u(x) = \frac{y(x)}{x}$$
, $y = xu$, 并代入原方程:
$$= f(u)$$

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies$$

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x \frac{du}{dx}$$

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x\frac{du}{dx} = f(u)$$

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x \frac{du}{dx} = f(u) \implies x \frac{du}{dx} = f(u) - u$$

计算通解步骤:

1. 作变量代换
$$u = u(x) = \frac{y(x)}{x}$$
, $y = xu$, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x\frac{du}{dx} = f(u) \implies x\frac{du}{dx} = f(u) - u$$

2. 分离变量:

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x \frac{du}{dx} = f(u) \implies x \frac{du}{dx} = f(u) - u$$

2. 分离变量:

$$\frac{du}{f(u)-u} = \frac{dx}{x}$$

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x\frac{du}{dx} = f(u) \implies x\frac{du}{dx} = f(u) - u$$

2. 分离变量:

$$\frac{du}{f(u)-u} = \frac{dx}{x} \implies \int \frac{du}{f(u)-u} = \int \frac{dx}{x}$$

计算通解步骤:

1. 作变量代换 $u = u(x) = \frac{y(x)}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = f(u) \implies u + x \frac{du}{dx} = f(u) \implies x \frac{du}{dx} = f(u) - u$$

2. 分离变量:

$$\frac{du}{f(u)-u} = \frac{dx}{x} \implies \int \frac{du}{f(u)-u} = \int \frac{dx}{x}$$

3. 还原变量: 求出积分后,将 $\frac{y}{y}$ 代替 u

We are here now...

1. 变量分离的一阶微分方程

2. 可分离变量的一阶微分方程

3. 齐次微分方程

4. 一阶线性微分方程

$$\frac{dy}{dx} + p(x)y = q(x)$$

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$			
$y' = y \sin x + e^x$			
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$			
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓		
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	√	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	√		

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	✓	$-\frac{2}{x+1}$	

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	<i>p</i> (<i>x</i>)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	√	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	V	$-\frac{2}{x+1}$	0

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	✓	$-\frac{2}{x+1}$	0

• 当
$$q(x) \equiv 0$$
 时,

$$\frac{dy}{dx} + p(x)y = 0$$

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

例

	是否一阶线性?	<i>p</i> (<i>x</i>)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	✓	$-\frac{2}{x+1}$	0

$$\frac{dy}{dx} + p(x)y = 0$$

称为一阶齐次线性微分方程

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数。

例

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	√ (齐次)	$-\frac{2}{x+1}$	0

$$\frac{dy}{dx} + p(x)y = 0$$

称为一阶齐次线性微分方程

利用常数变易法求解,步骤:

利用常数变易法求解,步骤:

1. 求解齐次部分:

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0$$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \qquad \frac{dy}{y} = -p(x)dx$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow$$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' +$$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易:假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx}$$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$, 代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$
$$\Rightarrow u'(x)e^{-\int p(x)dx} = q(x)$$

求解一阶线性微分方程: $\frac{\partial y}{\partial x} + p(x)y = q(x)$

利用常数变易法求解, 步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$, 代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x)$$
 ⇒ $\left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$ ⇒ $u'(x)$ = $q(x)e^{\int p(x)dx}$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

$$\Rightarrow u'(x) = q(x)e^{\int p(x)dx}$$

$$\Rightarrow u(x) = \int \left[q(x) e^{\int p(x) dx} \right] dx + C$$

利用常数变易法求解, 步骤:

1. 求解齐次部分:
$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{dy}{v} = \int -p(x)dx \implies y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设
$$y = u(x)e^{\int -p(x)dx}$$
,代入原方程:

$$\frac{1}{2} \frac{\partial^2 x}{\partial x^2} = \frac{1}{2} \frac{\partial^2 x}{\partial x} = \frac{1}$$

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

$$\frac{1}{x} + p(x)y = q(x) \Rightarrow (u(x)e^{-y(x)ax}) + p(x)u(x)e^{-y(x)ax}$$

$$\Rightarrow u'(x) = q(x)e^{\int p(x)dx}$$

$$\Rightarrow u(x) - \int \left[q(x)e^{\int p(x)dx} \right] dx + dx$$

$$\Rightarrow u(x) = \int \left[q(x) e^{\int p(x) dx} \right] dx + C$$

$$\therefore y = u(x)e^{\int -p(x)dx} = \left(\int \left[q(x)e^{\int p(x)dx}\right]dx + C\right)e^{\int -p(x)dx}$$

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解

解

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{1}{x} - \frac{1}{x+1} = 0$$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \frac{1}{y}dy = \frac{2}{x+1}dx$$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx$$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 0$$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

§9.2 一阶微分方程

- $\frac{dy}{dx} \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2\ln|x+1| + C_1$
- 2. 常数变易:

19/24 <

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

 $\Rightarrow v = C(x+1)^2$

解 1. 先求解齐次部分 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$

§9.2 一阶微分方程

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2\ln|x+1| + C_1$$

$$\implies y = C(x+1)^2$$

2. 常数变易: 假设 $y = u(x) \cdot (x+1)^2$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{g}{dy} = \frac{2y}{x+1} = 0$$
 $\Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

 $\Rightarrow v = C(x+1)^2$

§9.2 一阶微分方程

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$$

$$\Rightarrow y = C(x+1)^2$$

2. 常数变易:假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u\cdot(x+1)^2\right]'-$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' -$$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

 $\Rightarrow v = C(x+1)^2$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\Rightarrow \left[u \cdot (x+1)^2\right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2$

- 解 1. 先求解齐次部分

- $\frac{dy}{dx} \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

- - 2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$, 代入原方程

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{g}{dy} = \frac{2y}{1 - dy} = 0 \Rightarrow \int_{0}^{1} \frac{1}{1 - dy} = \int_{0}^{1} \frac{$$

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$

XTI	Jy	$\int X + 1$	
	$\Rightarrow y = C(x)$	$(+1)^2$	
	$\frac{2y}{x} - \frac{2y}{x+1} = 0$	·(x + 1) ² ,代入原方程 (x + 1) ⁵ / ₂	

$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^2$$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

$$\frac{g}{dx}$$
 1. 先求解齐次部分 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$

 $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$, 代入原方程

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

 $\Rightarrow v = C(x+1)^2$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

- $\frac{dy}{dx} \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

- 2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$, 代入原方程

- §9.2 一阶微分方程

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解解 1. 先求解齐次部分

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

 $\Rightarrow v = C(x+1)^2$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx =$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

- 2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$, 代入原方程

§9.2 一阶微分方程

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解解 1. 先求解齐次部分

 $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$, 代入原方程

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$$

§9.2 一阶微分方程

$$\frac{d}{d}$$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = (x+1)^{\frac{3}{2}}$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解解 1. 先求解齐次部分

 $\Rightarrow y = C(x+1)^2$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$,代入原方程

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = \frac{2}{3}(x+1)^{\frac{3}{2}}$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解解 1. 先求解齐次部分

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$ $\Rightarrow y = C(x+1)^2$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$ $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$ $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

解 1. 先求解齐次部分
$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2 \ln|x+1| + C_1$$

$$\Rightarrow y = C(x+1)^2$$
2. 常数变易: 假设 $y = u(x) \cdot (x+1)^2$,代入原方程

$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$$

$$(x+1)^{2} \Big]' - \frac{2}{x+1} \cdot u \cdot (x+1)^{2} = (x+1)^{\frac{5}{2}}$$

$$(x+1)^{2} = (x+1)^{\frac{5}{2}} \implies u' = (x+1)^{\frac{1}{2}}$$

$$\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$$

$$\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$

解

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \frac{1}{y}dy = \frac{1}{x}dx$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \Rightarrow \int \frac{1}{y}dy = \int \frac{1}{x}dx \Rightarrow \ln|y| =$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

例 2 求微分方程
$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$
 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' -$$

例 2 求微分方程
$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$
 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x$$

例 2 求微分方程
$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$
 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易: 假设 $y = u(x) \cdot x$, 代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

例 2 求微分方程
$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$
 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程 dv = 1

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\Rightarrow u(x) = \int \frac{1}{x} \ln x dx =$$

例 2 求微分方程
$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$
 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程 dv = 1

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x =$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程 $\frac{dy}{dx} = \frac{1}{x}$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x = \frac{1}{2} (\ln x)^2 + C$$

例 2 求微分方程 $\frac{dy}{dx} - \frac{1}{x}y = \ln x$ 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \Rightarrow \int \frac{1}{y}dy = \int \frac{1}{x}dx \Rightarrow \ln|y| = \ln|x| + C_1$$

$$\Rightarrow y = Cx$$

→ y = c/

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程

 $\Rightarrow u' \cdot x = \ln x$ $\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x = \frac{1}{2} (\ln x)^2 + C$

因此
$$y = u(x) \cdot x =$$

§9.2 一阶微分方程

例 2 求微分方程
$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$
 的通解

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \Rightarrow \int \frac{1}{y}dy = \int \frac{1}{x}dx \Rightarrow \ln|y| = \ln|x| + C_1$$

 $\Rightarrow y = Cx$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

 $\Rightarrow u' \cdot x = \ln x$

§9.2 一阶微分方程

 $\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x = \frac{1}{2} (\ln x)^2 + C$ 因此 $y = u(x) \cdot x = \left[\frac{1}{2}(\ln x)^2 + C\right]x$

解

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0$$

$$\frac{dy}{dx} - y = 0 \implies \frac{1}{y} dy = dx$$

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx$$

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| =$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易: 假设 $y = u(x) \cdot e^x$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^x \sin x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' -$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^{x} \sin x$$
$$(u(x) \cdot e^{x})' - u(x)$$

$$\Rightarrow (u(x) \cdot e^x)' - u(x) \cdot e^x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$,代入原方程

 \Rightarrow

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = 0$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = -\cos x + C$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$,代入原方程

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = -\cos x + C$$

因此 $y = u(x) \cdot e^x =$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易: 假设 $y = u(x) \cdot e^x$,代入原方程

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

 $\Rightarrow u(x) = \int \sin x dx = -\cos x + C$

例 $4 \, \bar{x} \, x^2 y' + xy + 1 = 0$ 的满足初始条件 y(2) = 1 的特解。

解

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

例 4 求
$$x^2y' + xy + 1 = 0$$
 的满足初始条件 $y(2) = 1$ 的特解。

2. 先求解齐次部分
$$\frac{dy}{dx} + \frac{y}{x} = 0 \Rightarrow$$

化为标准形式
$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

 $\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \frac{1}{y} dy = -\frac{1}{x} dx$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = 0$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \Rightarrow \int \frac{1}{y} dy = \int -\frac{1}{x} dx \Rightarrow \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \Rightarrow \int \frac{1}{y} dy = \int -\frac{1}{x} dx \Rightarrow \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow y = \frac{C}{y}$$

3. 常数变易: 假设 $y = \frac{u(x)}{x}$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' +$$

 $\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \implies \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x}$$

 $\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$

例 4 求 $x^2y' + xy + 1 = 0$ 的满足初始条件 y(2) = 1 的特解。

 $\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \Rightarrow \int \frac{1}{y} dy = \int -\frac{1}{x} dx \Rightarrow \ln|y| = -\ln|x| + C_1$$

$$\Rightarrow y = \frac{C}{x}$$

3. 常数变易:假设 $y = \frac{u(x)}{y}$,代入原方程

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$

$$u(x) = \int -\frac{1}{x^2} dx = \frac{1}{x^2} dx = \frac{1}{x^$$

$$\Rightarrow u(x) = \int -\frac{1}{x} dx =$$

例 4 求 $x^2y' + xy + 1 = 0$ 的满足初始条件 y(2) = 1 的特解。

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

3. 常数变易:假设 $y = \frac{u(x)}{x}$,代入原方程

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$
$$\Rightarrow u(x) = \int -\frac{1}{x} dx = -\ln|x| + C$$

例 4 求 $x^2y' + xy + 1 = 0$ 的满足初始条件 y(2) = 1 的特解。

形式
$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

3. 常数变易:假设
$$y = \frac{u(x)}{x}$$
,代入原方程

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$
$$\Rightarrow u(x) = \int -\frac{1}{x} dx = -\ln|x| + C$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

:

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \Rightarrow$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \implies 1 =$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \implies 1 = \frac{1}{2}(-\ln 2 + C)$$

:

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \implies 1 = \frac{1}{2}(-\ln 2 + C) \implies C = 2 + \ln 2$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1$$
 \Rightarrow $1 = \frac{1}{2}(-\ln 2 + C)$ \Rightarrow $C = 2 + \ln 2$ 。所以

:

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1$$
 \Rightarrow $1 = \frac{1}{2}(-\ln 2 + C)$ \Rightarrow $C = 2 + \ln 2$ 。所以

$$y = \frac{u(x)}{x} =$$

因此
$$y = \frac{1}{y}(-\ln|x| + C)$$

4.
$$y(2) = 1$$
 ⇒ $1 = \frac{1}{2}(-\ln 2 + C)$ ⇒ $C = 2 + \ln 2$ 。 所以

$$y = \frac{u(x)}{x} = \frac{1}{x}(-\ln|x| + 2 + \ln 2)$$

解

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0$$

- 2. 求解齐次部分
- 3. 常数变易:

例 5 求微分方程
$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0$$
 的通解

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y}$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0$
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易: 假设 $x = u(y) \cdot y^3$

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dy} \frac{3}{y} = -\frac{1}{2}y$

例 5 求微分方程
$$(y^2 - 6x) \frac{dy}{dx} + 2y = 0$$
 的通解

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dy} \frac{3}{y} = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2}$

例 5 求微分方程
$$(y^2 - 6x) \frac{dy}{dx} + 2y = 0$$
 的通解

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dy} \frac{3}{y} = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2} \Rightarrow u = \frac{1}{2}y^{-1} + C$

例 5 求微分方程
$$(y^2 - 6x) \frac{dy}{dx} + 2y = 0$$
 的通解

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

$$\Rightarrow \frac{dx}{dy} = -\frac{3}{y}x = -\frac{1}{2}y$$

2. 求解齐次部分 $\frac{dx}{dy} - \frac{3}{y}x = 0 \Rightarrow x = Cy^3$

3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dy} - \frac{3}{y} = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2} \Rightarrow u = \frac{1}{2}y^{-1} + C$

因此 $x = uy^3 =$

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \quad \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

2. 求解齐次部分
$$\frac{dx}{dx} - \frac{3}{2}x = 0 \Rightarrow$$

2. 求解齐次部分
$$\frac{dx}{dy} - \frac{3}{y}x = 0 \Rightarrow x = Cy^3$$

3. 常数变易: 假设 $x = u(y) \cdot y^3$, 代入方程

$$\frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y \implies u' = -\frac{1}{2}y^{-2} \implies u = \frac{1}{2}y^{-1} + C$$

§9.2 一阶微分方程

因此 $x = uy^3 = \left[\frac{1}{2}y^{-1} + C\right]y^3$

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

2. 求解齐次部分 $\frac{dx}{dy} - \frac{3}{y}x = 0 \Rightarrow x = Cy^3$

§9.2 一阶微分方程

3. 常数变易: 假设
$$x = u(y) \cdot y^3$$
,代入方程

$$\frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y \implies u' = -\frac{1}{2}y^{-2} \implies u = \frac{1}{2}y^{-1} + C$$