Arithmetic-Logic Units (ALUs)

The four-bit adder

The basic four-bit adder always computes 5 = A + B + CI

- But by changing what goes into the adder inputs A, B and CI, we can change the adder output S
- This is also what we did to build the combined adder-subtractor circuit

It's the adder-subtractor again!

- Here the signal Sub and some XOR gates alter the adder inputs
 - When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder produces G = X + Y + 0, or just X + Y
 - When Sub = 1, the adder inputs are Y', X and 1, so the adder output is G = X + Y' + 1, or the two's complement operation X Y

The multi-talented adder

- So we have one adder performing two separate functions
- "Sub" acts like a function select input which determines whether the circuit performs addition or subtraction
- Circuit-wise, all "Sub" does is modify the adder's inputs A and CI

Modifying the adder inputs

- By following the same approach, we can use an adder to compute other functions as well
- We just have to figure out which functions we want, and then put the right circuitry into the "Input Logic" box

Some more possible functions

- We already saw how to set adder inputs A, B and CI to compute either
 X + Y or X Y
- How can we produce the increment function G = X + 1?

How about decrement: G = X - 1?

$$A = 1111 (-1), B = X, CI = 0$$

How about transfer: G = X?

$$A = 00000, B = X, CI = 0$$

This is almost the same as the increment function!

Table of arithmetic functions

- Here are some of the different possible arithmetic operations
- We'll need some way to specify which function we're interested in, so we've randomly assigned a selection code to each operation

S ₂	S ₁	S ₀	Arithmetic operation		
0	0	0	X	(transfer)	
0	0	1	X + 1	(increment)	
0	1	0	X + Y	(add)	
0	1	1	X + Y + 1		
1	0	0	X + Y'	(1C subtraction)	
1	0	1	X + Y' + 1	(2C subtraction)	
1	1	0	X - 1	(decrement)	
1	1	1	X	(transfer)	

Mapping the table to an adder

- This second table shows what the adder's inputs should be for each of our eight desired arithmetic operations
 - Adder input CI is always the same as selection code bit S₀
 - B is always set to X
 - A depends only on S_2 and S_1
- These equations depend on both the desired operations and the assignment of selection codes

Selection code		Desired arithmetic operation		Require	Required adder inputs		
S ₂	S ₁	S ₀	G	Α	В	CI	
0	0	0	X	(transfer)	0000	X	0
0	0	1	X + 1	(increment)	0000	X	1
0	1	0	X + Y	(add)	У	X	0
0	1	1	X + Y + 1		У	X	1
1	0	0	X + Y'	(1C subtraction)	У'	X	0
1	0	1	X + Y' + 1	(2C subtraction)	У'	X	1
1	1	0	X - 1	(decrement)	1111	X	0
1	1	1	X	(transfer)	1111	X	1

Building the input logic

- All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just S_2 and S_1)
- Here is an abbreviated truth table:

52	S ₁	Α
0	0	0000
0	1	У
1	0	У'
1	1	1111

• We want to pick one of these four possible values for A, depending on S_2 and S_1

Primitive gate-based input logic

- We could build this circuit using primitive gates
- If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table
 - The Y that appears in the output column (A) is actually an input

 S_2 S_1 Y_i A_i

- We make that explicit in the table on the right
- Remember A and Y are each 4 bits long!

			0	0	0	0
S ₂	S ₁	Α	0	0	1	0
0	0	0000	0	1	0	0
0	1	У	0	1	1	1
	0	y'	1	0	0	1
1	1	1111	1	0	1	0
			1	1	0	1
			1	1	1	1

Primitive gate implementation

 From the truth table, we can find an MSP:

			S ₁	
	0	0	1	0
S ₂	1	0	1	1
·		y _i		

$$A_i = S_2 Y_i' + S_1 Y_i$$

- Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0
- This completes our arithmetic unit

Bitwise operations

- Most computers also support logical operations like AND, OR and NOT, but extended to multi-bit words instead of just single bits
- To apply a logical operation to two words X and Y, apply the operation on each pair of bits X; and Y;

We've already seen this informally in two's-complement arithmetic,
 when we talked about "complementing" all the bits in a number

Defining a logic unit

- A logic unit supports different logical functions on two multi-bit inputs X and Y, producing an output G
- This abbreviated table shows four possible functions and assigns a selection code S to each

S ₁	S ₀	Output
0	0	$G_i = X_i Y_i$
0	1	$G_i = X_i + Y_i$
1	0	$G_i = X_i \oplus Y_i$
1	1	$G_i = X_i'$

- We'll just use multiplexers and some primitive gates to implement this
- Again, we need one multiplexer for each bit of X and Y

Our simple logic unit

- Inputs:
 - X (4 bits)
 - Y (4 bits)
 - 5 (2 bits)
- Outputs:
 - G (4 bits)

Our ALU function table

- This table shows a sample function table for an ALU
- All of the arithmetic operations have $S_3=0$, and all of the logical operations have $S_3=1$
- These are the same functions we saw when we built our arithmetic and logic units a few minutes ago
- Since our ALU only has 4 logical operations, we don't need S_2 . The operation done by the logic unit depends only on S_1 and S_0

S ₃	S ₂	S ₁	S ₀	Operation
0	0	0	0	G = X
0	0	0	1	G = X + 1
0	0	1	0	G = X + Y
0	0	1	1	G = X + Y + 1
0	1	0	0	G = X + Y'
0	1	0	1	G = X + Y' + 1
0	1	1	0	G = X - 1
0	1	1	1	G = X
1	X	0	0	G = X and Y
1	X	0	1	G = X or Y
1	X	1	0	$G = X \oplus Y$
1	X	1	1	G = X'

A complete ALU circuit

The / and 4 on a line indicate that it's actually four lines.

The arithmetic and logic units share the select inputs S1 and S0, but only the arithmetic unit uses S2.

The completed ALU

- This ALU is a good example of hierarchical design
 - With the 12 inputs, the truth table would have had 2^{12} = 4096 lines. That's an awful lot of paper.
 - Instead, we were able to use components that we've seen before to construct the entire circuit from a couple of easy-to-understand components
- As always, we encapsulate the complete circuit in a "black box" so we can reuse it in fancier circuits.

