Data Structure and Algorithm CS-102

Dr. Sambit Bakshi Dept. of CSE, NIT Rourkela

Operation on Linear Structure

- Traversal: Processing each element in the list
- Search: Finding the location of the element with a given value or the record with a given key
- Insertion: Adding a new element to the list
- · Deletion: Removing an element from the list
- Sorting: Arranging the elements in some type of order
- Merging: Combining two list into a single list

Array

Linear Arrays

- A linear array is a list of a finite number of n homogeneous data elements (that is data elements of the same type) such that
 - The elements of the arrays are referenced respectively by an index set consisting of n consecutive numbers
 - The elements of the arrays are stored respectively in successive memory locations

Linear Arrays

- The number n of elements is called the length or size of the array.
- The index set consists of the integer 1,
 2, ... n
- Length or the number of data elements of the array can be obtained from the index set by

Length = UB - LB + 1 where UB is the largest index called the upper bound and LB is the smallest index called the lower bound of the arrays

Linear Arrays

- Element of an array A may be denoted by
 - Subscript notation A_1 , A_2 ,, A_n
 - Parenthesis notation A(1), A(2), ..., A(n)
 - Bracket notation A[1], A[2],, A[n]
- The number K in A[K] is called subscript or an index and A[K] is called a subscripted variable

Computer Memory

- Let LA be a linear array in the memory of the computer
- LOC(LA[K]) = address of the element LA[K] of the array LA
- The element of LA are stored in the successive memory cells
- Computer does not need to keep track of the address of every element of LA, but need to track only the address of the first element of the array denoted by Base(LA) called the base address of LA

LOC(LA[K]) = Base(LA) + w(K - LB)
 where w is the number of words per
 memory cell of the array LA [w is the
 size of the data type]

Example 1

Find the address for LA[6] Each element of the array occupy 1 byte

200	LA[0]
201	LA[1]
202	LA[2]
203	LA[3]
204	LA[4]
205	LA[5]
206	LA[6]
207	LA[7]

$$LOC(LA[K]) = Base(LA) + w(K - lower bound)$$

$$LOC(LA[6]) = 200 + 1(6 - 0) = 206$$

Example 2

Find the address for LA[15] Each element of the array occupy 2 bytes

$$LOC(LA[K]) = Base(LA) + w(K - lower bound)$$

$$LOC(LA[15]) = 200 + 2(15 - 0) = 230$$

- Given any value of K, time to calculate LOC(LA[K]) is same
- Given any subscript K one can access and locate the content of LA[K] without scanning any other element of LA
- A collection A of data element is said to be indexed if any element of A called A_k can be located and processed in time that is independent of K

 Traversing is accessing and processing each element of the data structure exactly once.

2 Fxit

Inserting and Deleting

- Insertion: Adding an element
 - Beginning
 - Middle
 - End

- Deletion: Removing an element
 - Beginning
 - Middle
 - End

Insertion

1	Brown	1	Brown
2	Davis	2	Davis
3	Johnson	3	Johnson
4	Smith	4	Smith
5	Wagner	5	Wagner
6		6	Ford
7		7	
8		8	

Insert Ford at the End of Array

Insertion

Insert Ford as the 3rd Element of Array

Insertion is not Possible without loss of data if the array is FULL

Insertion Algorithm

- INSERT (LA, N, K, ITEM) [LA is a linear array with N elements and K is a positive integers such that $K \le N$. This algorithm inserts an element ITEM into the K^{th} position in LA]
 - 1. [Initialize Counter] Set J := N
 - 2. Repeat Steps 3 and 4 while J≥K
 - 3. [Move the J^{th} element downward] Set LA[J + 1] := LA[J]
 - 4. [Decrease Counter] Set J := J -1
 - 5 [Insert Element] Set LA[K] := ITEM
 - 6. [Reset N] Set N := N + 1;
 - 7. Exit

Deletion

1	Brown	1	Brown
2	Davis	2	Davis
3	Ford	3	Ford
4	Johnson	4	Johnson
5	Smith	5	Smith
6	Taylor	6	Taylor
7	Wagner	7	
8		8	

Deletion of Wagner at the End of Array

Deletion

Deletion of Davis from the Array

Deletion

1	Brown
2	Ford
3	Johnson
4	Smith
5	Taylor
6	Wagner
7	
8	

No data item can be deleted from an empty array

Deletion Algorithm

- DELETE (LA, N, K, ITEM) [LA is a linear array with N elements and K is a positive integers such that $K \le N$. This algorithm deletes K^{th} element from LA]
 - 1. Set ITEM := LA[K]
 - 2. Repeat for J = K+1 to N: [Move the J^{th} element upward] Set LA[J-1] := LA[J]
 - 3. [Reset the number N of elements] Set N := N 1;
 - 4. Exit

- One-Dimensional Array
- Two-Dimensional Array
- Three-Dimensional Array

Two-Dimensional Array

• A Two-Dimensional $m \times n$ array A is a collection of m. n data elements such that each element is specified by a pair of integers (such as J, K) called subscripts with property that

 $1 \le J \le m$ and $1 \le K \le n$

The element of A with first subscript J and second subscript K will be denoted by $A_{J,K}$ or A[J][K]

2D Arrays

The elements of a 2-dimensional array a is shown as below

a[0][0]	a[0][1]	a[0][2]	a[0][3]
a[1][0]	a[1][1]	a[1][2]	a[1][3]
a[2][0]	a[2][1]	a[2][2]	a[2][3]

Rows Of A 2D Array

```
\frac{a[0][0]}{a[1][0]} = \frac{a[0][1]}{a[1][2]} = \frac{a[0][3]}{a[1][0]} = row 0
\frac{a[1][0]}{a[1][1]} = \frac{a[1][2]}{a[1][2]} = a[1][3] = row 1
\frac{a[2][0]}{a[2][1]} = \frac{a[2][2]}{a[2][3]} = row 2
```

Columns Of A 2D Array

column 0 column 1 column 2 column 3

2D Array

- Let A be a two-dimensional array $m \times n$
- The array A will be represented in the memory by a block of m x n sequential memory location
- Programming language will store array A either
 - Column by Column (Called Column-Major Order) Ex: Fortran, MATLAB
 - Row by Row (Called Row-Major Order) Ex: C, C++, Java

2D Array in Memory

A	Subscript	A	Subscript
	(1,1)		(1,1)
	(2,1) Column 1		(1,2) Row 1
	(3,1)		(1,3)
	(1,2)		(1,4)
	(2,2) Column 2		(2,1)
	(3,2)		(2,2)
	(1,3)		(2,3) Row 2
	(2,3) Column 3		(2,4)
	(3,3)		(3,1)
	(1,4)		(3,2) Row 3
	(2,4) Column 4		(3,3)
	(3,4)		(3,4)

2D Array

LOC(LA[K]) = Base(LA) + w(K -1)

LOC(A[J,K]) of A[J,K]
 Column-Major Order
 LOC(A[J,K]) = Base(A) + w[m(K-LB) + (J-LB)]
 Row-Major Order
 LOC(A[J,K]) = Base(A) + w[n(J-LB) + (K-LB)]

2D Array (Row Major)

$$LOC(A[J,K]) = Base(A) + w[n(J-LB) + (K-LB)]$$

2D Array (Column Major)

$$LOC(A[J,K]) = Base(A) + w[m(K-LB) + (J-LB)]$$

2D Array Example

- Consider a 25 x 4 array A. Suppose the Base(A) = 200 and w = 2. Suppose the programming stores 2D array using rowmajor. Compute LOC(A[12,3])
- LOC(A[J,K]) = Base(A) + w[n(J-LB) + (K-LB)]
- LOC(A[12,3]) = 200 + 2[4(12-1) + (3 -1)] = 292

• An n-dimensional $m_1 \times m_2 \times \times m_n$ array B is a collection of $m_1.m_2...m_n$ data elements in which each element is specified by a list of n integers indices – such as $K_1, K_2,, K_n$ – called subscript with the property that $1 \le K_1 \le m_1$, $1 \le K_2 \le m_2$, $1 \le K_n \le m_n$

The Element B with subscript K_1 , K_2 , ..., K_n will be denoted by

 $B_{K_1,K_2,...,K_n}$ or $B[K_1,K_2,...,K_n]$

- Let C be a n-dimensional array
- Length L_i of dimension i of C is the number of elements in the index set

$$L_i = UB_i - LB_i + 1$$

• For a given subscript K_i , the effective index E_i of K_i is the number of indices preceding K_i in the index set

$$E_i = K_i - LB_i$$

• Address LOC($C[K_1, K_2,, K_n]$) of an arbitrary element of C can be obtained as Column-Major Order

Base(C) + w[(((... (
$$E_NL_{N-1} + E_{N-1}$$
) $L_{N-2} + E_{N-2}$) + + E_3) L_2 + E_2) L_1 + E_1]

Row-Major Order

Base(C) + w[(... ((
$$E_1L_2 + E_2$$
) $L_3 + E_3$) L_4 + + E_{N-1}) $L_N + E_N$]

Column-Major Order

Base (c) +
$$\omega$$
 $\sum_{i=N}^{1} \left(E_{i} \begin{pmatrix} 1 \\ \overline{\Lambda} \\ j \geq i \end{pmatrix} \right)$

Row-Major Order

Base (c) +
$$w$$

$$= \frac{N}{i=1} \left(E_i \left(\frac{N}{N} L_j \right) \right)$$

$$= \frac{1}{J \leq N} \left(\frac{N}{J \leq N} L_j \right)$$

Example

- MAZE(2:8, -4:1, 6:10)
- Calculate the address of MAZE[5, -1,8]
- Given: Base(MAZE) = 200, w = 4, MAZE
 is stored in Row-Major order
- L1 = 8-2+1 = 7, L2 = 6, L3 = 5
- E1 = 5 2 = 3, E2 = 3, E3 = 2

Example Contd ..

- Base(C) + w[(... (($E_1L_2 + E_2$) $L_3 + E_3$) $L_4 + E_{N-1}$) $L_N + E_N$]
- $E_1L_2 = 3.6 = 18$
- $E_1L_2 + E_2 = 18 + 3 = 21$
- $(E_1L_2 + E_2)L_3 = 21.5 = 105$
- $(E_1L_2+E_2)L_3 + E_3 = 105 + 2 = 107$
- MAZE[5,-1,8] = 200 + 4(107) = 200 + 428 = 628