Operations on Sets

刘铎

liuduo@bjtu.edu.cn

- □ 设 U 为全集, $A \times B$ 为 U 的两个子集, 则:
 - (a) A 与 B 的交集 (intersection)

$$A \cap B = \{ x \mid x \in A \perp \exists x \in B \};$$

■ (b) A 与 B 的 并集 (union)

$$A \cup B = \{ x \mid x \in A \text{ } \vec{\mathbf{x}} \in B \};$$

- (c) B 关于 A 的相对补(complement of B with respect to A) 或 A 与 B 的差集(difference)A-B 定义为 A-B = { $x \mid x \in A$ 且 $x \notin B$ },也记作 $A \setminus B$;
- (d) A 关于全集 U 的相对补称作A的绝对补或补集 (complement),记作 \overline{A} (或 $\sim A$),即 $\overline{A} = \{x | x \in U \mid 1\}$
- (e) $A \subseteq B$ 的**对称差(symmetric difference)** $A \oplus B$ 定义为 $A \oplus B = \{ x \mid x \in A \text{ 或} x \in B \text{ 且} x \text{ 不同时属于} A \text{ 和} B \}$ 。

- $\Box U = \{0, 1, ..., 9\},$ $A = \{0, 1, 2, 3\}, B = \{1, 3, 5, 7, 9\}$ $\Box A \cup B = \{0, 1, 2, 3, 5, 7, 9\}$ $\Box A \cap B = \{1, 3\}$
- $\Box A B = \{0, 2\}$
- $\Box \overline{A} = \{4, 5, 6, 7, 8, 9\}$
- $\Box \overline{B} = \{0, 2, 4, 6, 8\}$
- $\Box A \oplus B = \{0,2,5,7,9\}$

- □交运算、并运算也可以扩展到多个 集合上
 - $□A \cup B \cup C = \{ x \mid x \in A \text{ of } x \in B \text{ of } x \in C \}$
 - $\Box A \cap B \cap C = \{ x \mid x \in A \perp \exists x \in B \perp \exists x \in C \}$
 - $\square \bigcup_{i=1}^n A_i$
 - $\square \bigcap_{i=1}^n A_i$

- □交换律
 - $\blacksquare A \cup B = B \cup A$
 - $\blacksquare A \cap B = B \cap A$
- □结合律
 - $\blacksquare (A \cup B) \cup C = A \cup (B \cup C)$
 - $\blacksquare (A \cap B) \cap C = A \cap (B \cap C)$

□分配律

- $\blacksquare A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\blacksquare A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- □吸收律
 - $\blacksquare A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- □幂等律
 - $\blacksquare A \cup A = A$, $A \cap A = A$

- □双重否定律
 - $\overline{\overline{A}} = A$
- □矛盾律
 - $\blacksquare A \cap \overline{A} = \emptyset$
- □排中律
 - $\blacksquare A \cup \overline{A} = U$
- □余补律

- □零律
 - $\blacksquare A \cup U = U$, $A \cap \varnothing = \varnothing$
- □同一律
 - $\blacksquare A \cup \varnothing = A$, $A \cap U = A$

□德 摩根律

- $\blacksquare \overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\blacksquare \overline{A \cap B} = \overline{A} \cup \overline{B}$
- $\blacksquare A (B \cup C) = (A B) \cap (A C)$
- $\blacksquare A (B \cap C) = (A B) \cup (A C)$

$$U-(B\cup C)=(U-B)\cap (U-C)$$

 $U-(B\cap C)=(U-B)\cup (U-C)$

□例

设 $A \setminus B \setminus C$ 为任意集合,证明 $A-(B\cap C)=(A-B)\cup (A-C).$

- □ 证明. 证明两个集合 X 和 Y 相等的一般方法是分别证明 $X \subseteq Y$ 和 $Y \subseteq X$ 。
 - (1) 首先证明 $(A-B) \cup (A-C) \subseteq A-(B\cap C)$ 。
 - □ 假设 $x \in (A-B) \cup (A-C)$, 由定义有 $x \in A-B$ 或 $x \in A-C$
 - □ 若 $x \in A B$ 则有 $x \in A$ 且 $x \notin B$,于是 $x \notin B \cap C$
 - □ 若 $x \in A C$ 则有 $x \in A$ 且 $x \notin C$,于是 $x \notin B \cap C$
 - □ 总之有 $x \in A$ 且 $x \notin B \cap C$, 故得 $x \in A (B \cap C)$, 因此

$$(A-B) \cup (A-C) \subseteq A-(B \cap C)$$

- (2) 接着证明 A-(B∩C) \subseteq (A-B) \cup (A-C)
- □ 综合(1)和(2), 即得A-(B∩C)=(A-B) \cup (A-C)

□练习

- 证明若 $A \subseteq C$ 且 $B \subseteq C$ 则
 - $\Box A \cap B \subseteq C$
 - $\Box A \cup B \subset C$
 - $\Box A \oplus B \subseteq C$
- 证明若 $A \subseteq C$ 且 $B \subseteq D$ 则
 - $\Box A \cap B \subseteq C \cap D$
 - $\Box A \cup B \subset C \cup D$

End

