

FIG. 1A

AGACAGGGAACTAAGAAAAGAACAGGGCCTGTGGACAGAACATTATGTCAGACTCCCTG
 1 - - - + - - + - - + - - + - - + - - + - - + - - + - - +
 MetSerAspSerLeu

GTGGGTGTGCGAGGTAGACCCAGAGCTAACAGAAAAGCTGAGGAATTCCGCTTCGAAAA
 61 - - - + - - + - - + - - + - - + - - + - - + - - + - - +
 ValValCysGluValAspProGluLeuThrGluLysLeuArgLysPheArgGlnMetValValLeu

GAGACAGACAATGCCAGCCATCATATAATGAAGGTGGACAAAGACCGGCAGATGGTGGTGCTG
 121 - - - + - - + - - + - - + - - + - - + - - + - - + - - +
 GlutThrAspAsnAlaAlaIleMetIleMetLysValAspLysAspArgGlnMetValValLeu

GAGGAAGAATTTCAGAACATTTCCCAGAGGAGCTCAAAATGGAGTTGCCGGAGAGACAG
 181 - - - + - - + - - + - - + - - + - - + - - + - - +
 GluGluGluPheGlnAsnIleSerProGluGluLeuProGluArgGln

CCCAGGTTCTGGTTTACAGCTACAAGTACGTCATGACGGATGCCGAGTGTCCCTACCCCT
 241 - - - + - - + - - + - - + - - + - - + - - + - - +
 ProArgPheValValTyrSerTyrLysTyrValHisAspAspGlyArgValSerTyrPro

FIG. 1B

301 T TGTGTTCATCTTCTCCAGCCCTGGCTGGCAAGCGGAACAAACAGATGATGCA
LeuCysPheIlePheSerSerProValGlyCysLysProGluGlnGlnMetMetTyrAla 360

361 GGGAGTAAAACAGGCTGGTGCAGACAGCAGAGCTCACAAAGGTGTTCGAAATCCGGCACC
GlySerLysAsnArgLeuValGlnThrAlaGluLeuThrLysValPheGluIleArgThr 420

421 ACTGATGACCTCACTGAGGCCTGGCTCCAAGAAAAGTTGTCCTTCTTCGTTGATCTCTG
ThrAspAspLeuThrGluAlaTrpLeuGlnGluLysLeuSerPhePheArg 480

481 GGCTGGGACTGAATT CCTGATGTCAGTGACTGGGACTTGTGGAAACCCCT
540

541 AGGACCTGAACAACCAAGACTTAAATAAATT TTAAATGCAA AAAAAAA 600

FIG. 2

Query:	46	MSDSLVVCEVDPELTTEKLKRFRKRKETDNAAITIMKVVDKDRQMVVLEEEFQNISPEELKME	225
Sbjct:	MS+SLVVC+V	+L EKLKRFRKRKET+NAAITIMK+DKD++VWL+EE + ISP+ELK E	
	1	MSESLVVCDVAEDLVEKLKRFRKRKETNNAAITIMKIDDKRKLVLVDEELEGISPDELKDE	60
Query:	226	LPERQPRFVVSYPLCIFYDDGRVSYPLCFIFSSPVGCKPEQQMMYAGSKNRLVQTAELTKV	405
Sbjct:	LPERQPRF+VSYKY	HDDGRVSYPLCIFYSSPVGCKPEQQMMYAGSKN+LVQTAELTKV	
	61	LPERQPRFIVSYKYQHDDGRVSYPLCIFYSSPVGCKPEQQMMYAGSKNKLVQTAELTKV	120
Query:	406	FEIRTTDDLTEAWLQEKLSSFF	468
Sbjct:	FEIR T+DLTE WL+EKI FF		
	121	FEIRNTEDLTLREKLGGFF	141

Purification of Haemopoietic
Maturation Factor Protein

1. 10 λ Pure Protein
2. 5 λ Pure Protein
3. 2 λ Pure Protein
4. 10 λ Pure Protein (Dif.Prep.)
5. Crude Protein

FIG.3

ANALYSIS OF THE HAEMOPOIETIC MATURATION FACTOR EXPRESSION MEDIA USING
REVERSED-PHASE HPLC

FIG.4A

ANALYSIS OF THE HAEMOPOIETIC MATURATION FACTOR EXPRESSION MEDIA BY
REVERSED-PHASE HPLC AFTER PURIFICATION.

FIG.4B

QUANTIFICATION OF HUMAN MONOCYTE NORTHERN BLOT
PROBED WITH HAEMOPOIETIC MATURATION FACTOR

FIG.5

FIG.6A

FIG.6B