Aufgabe

Problem 1. (a) Zeige: Die Kurve $f:[0,1]\to\mathbb{R}^2$,

$$f(t) := \begin{cases} (t, t \cos(\pi/t)) : & t > 0, \\ (0, 0) : & t = 0 \end{cases}$$

ist stetig, aber nicht rektifizierbar.

(b) Zeige: Für jede rektifizierbare Kurve $f:[a,b]\to\mathbb{R}^2$ gibt es einen Punkt x im Einheitsquadrat $[0,1]^2$, der nicht im Bild von f liegt. Bemerkung: Also sind die Peano-Kurven aus Aufgabe 5 nicht rektifizierbar.

Lösung

Teil (a):

Wir zeigen zunächst, dass f stetig ist, und anschließend, dass f nicht rektifizierbar ist.

Stetigkeit: Für t > 0 ist $f(t) = (t, t\cos(\pi/t))$ als Komposition stetiger Funktionen stetig. Es bleibt zu zeigen, dass f auch bei t = 0 stetig ist.

Wir müssen zeigen, dass $\lim_{t\to 0^+} f(t) = f(0) = (0,0)$. Betrachten wir die beiden Komponenten:

- Erste Komponente: $\lim_{t\to 0^+} t = 0$. Dies ist offensichtlich.
- Zweite Komponente: $\lim_{t\to 0^+} t\cos(\pi/t) = 0$.

Da $|\cos(\pi/t)| \le 1$ für alle t > 0, gilt:

$$|t\cos(\pi/t)| \le |t| = t \to 0$$
 für $t \to 0^+$.

Nach dem Sandwich-Kriterium folgt $\lim_{t\to 0^+} t \cos(\pi/t) = 0$.

Somit ist $\lim_{t\to 0^+} f(t) = (0,0) = f(0)$, und f ist stetig auf [0,1].

 ${\it Nicht-Rektifizierbarkeit:}$ Wir zeigen, dass die Bogenlänge von f unendlich ist.

Betrachten wir die Partition $P_n = \{0, \frac{1}{n}, \frac{1}{n-1}, \dots, \frac{1}{2}, 1\}$ des Intervalls [0, 1]. Für $k \geq 2$ berechnen wir den Abstand zwischen aufeinanderfolgenden Punken:

$$||f(1/k) - f(1/(k+1))|| = \left\| \left(\frac{1}{k}, \frac{1}{k} \cos(\pi k) \right) - \left(\frac{1}{k+1}, \frac{1}{k+1} \cos(\pi (k+1)) \right) \right\|$$

Da $\cos(\pi k) = (-1)^k$ und $\cos(\pi (k+1)) = (-1)^{k+1} = -(-1)^k$, erhalten wir:

$$f(1/k) = \left(\frac{1}{k}, \frac{(-1)^k}{k}\right) \text{ und } f(1/(k+1)) = \left(\frac{1}{k+1}, \frac{(-1)^{k+1}}{k+1}\right)$$

Für die zweite Komponente gilt:

$$\left| \frac{(-1)^k}{k} - \frac{(-1)^{k+1}}{k+1} \right| = \left| \frac{(-1)^k}{k} + \frac{(-1)^k}{k+1} \right| = \frac{1}{k} + \frac{1}{k+1}$$

Daher ist:

$$||f(1/k) - f(1/(k+1))|| \ge \left| \frac{(-1)^k}{k} - \frac{(-1)^{k+1}}{k+1} \right| = \frac{1}{k} + \frac{1}{k+1} > \frac{1}{k+1}$$

Die Länge der Kurve bezüglich der Partition P_n ist somit mindestens:

$$L(f, P_n) \ge \sum_{k=2}^{n} \frac{1}{k+1} = \sum_{j=3}^{n+1} \frac{1}{j}$$

Da $\sum_{j=1}^{\infty} \frac{1}{j}$ divergiert, folgt $L(f, P_n) \to \infty$ für $n \to \infty$. Somit ist die Bogenlänge von f unendlich, und f ist nicht rektifizierbar. Teil (b):

Sei $f:[a,b]\to\mathbb{R}^2$ eine rektifizierbare Kurve mit Bogenlänge $L<\infty$.

Nach einem Satz aus der Maßtheorie hat das Bild einer rektifizierbaren Kurve das zweidimensionale Lebesgue-Maß null. Dies kann wie folgt eingesehen werden:

Für jedes $\varepsilon > 0$ kann das Bild von f durch endlich viele Rechtecke überdeckt werden, deren Gesamtfläche kleiner als $\varepsilon \cdot L$ ist. Dies folgt aus der Definition der Rektifizierbarkeit und der gleichmäßigen Stetigkeit von f auf dem kompakten Intervall [a, b].

Genauer: Da f gleichmäßig stetig ist, existiert zu jedem $\delta > 0$ ein $\eta > 0$, sodass für alle $s, t \in [a, b]$ mit $|s - t| < \eta$ gilt: $||f(s) - f(t)|| < \delta$.

Wähle eine Partition $a = t_0 < t_1 < \ldots < t_n = b$ mit $t_{i+1} - t_i < \eta$ für alle i. Dann kann $f([t_i, t_{i+1}])$ in einem Rechteck mit Seitenlängen höchstens δ und $||f(t_{i+1}) - f(t_i)|| + 2\delta$ enthalten werden.

Die Gesamtfläche dieser Rechtecke ist höchstens:

$$\sum_{i=0}^{n-1} \delta \cdot (\|f(t_{i+1}) - f(t_i)\| + 2\delta) \le \delta \cdot L + 2\delta^2 \cdot n$$

Wählt man δ hinreichend klein, kann diese Fläche beliebig klein gemacht

Da das Einheitsquadrat $[0,1]^2$ das Lebesgue-Maß 1 hat und das Bild von fMaß null hat, existieren Punkte in $[0,1]^2$, die nicht im Bild von f liegen.

Bemerkung: Dies zeigt insbesondere, dass die Peano-Kurven aus Aufgabe 5, die das gesamte Einheitsquadrat ausfüllen, nicht rektifizierbar sein können.