Física Computacional

Ano lectivo 2018/2019

TPC2 - Sistemas de equações

O trabalho de casa é para ser feito no período entre as 16h de Sexta-feira (12/04/2019) e as 24:00 de Domingo (14/04/2019) com a excepção dos alunos que acordaram com o regente outro período por incompatibilidades. O trabalho é individual mas é encorajada a troca de ideias, a discussão e a procura e leitura de referências. A avaliação é de $\{0,1,2\}$ valores.

1. Exercício

Considere um sistema de N massas acopladas entre si e a duas paredes fixas com N+1 molas:

$$m_i \frac{d^2 X_i}{dt^2} = -k_i (X_i - X_{i-1}) + k_{i+1} (X_{i+1} - X_i)$$

onde $X_0 = 0$ e $X_{N+1} = L$. Podemos usar como unidades de comprimento a distância entre as paredes, com unidade de massa o valor médio das massas e como unidade de tempo

$$\tau = \sqrt{\frac{\overline{m}}{\overline{k}}}$$

onde \overline{m} é a massa média do sistema e \overline{k} a constante média das molas.

- 1. Escreva uma rotina que resolva um sistema de equações usando uma eliminação de Gauss com pivotagem parcial.
- 2. Considerando massas iguais e molas iguais,
 - (a) Em que condições o sistema está em equilíbrio? Resolva o correspondente sistema de equações e obtenha as posições de equilíbrio (X_i^{eq}) .
 - (b) Verifique que no equilíbrio as distâncias entre massas são sempre iguais e iguais a 1/(N+1).
- 3. Gere aleatoriamente valores de m_i usando uma distribuição gaussiana com largura igual a um décimo do valor médio. Mudaram as distâncias entre as posições de equilíbrio?
- 4. Gere aleatoriamente valores de k_i usando a mesma distribuição gaussiana. Faça um histograma das diferenças de entre as posições de equilíbrio de massas consecutivas para uma sistema com $N=2^{10}$.
- 5. Fazendo a mudança de variável, $x_i = X_i X_i^{eq}$ podemos transformar o sistema de equações diferenciais em,

$$\frac{d^2x_i}{dt^2} = A_{ij}x_j \quad \text{com } 1 \le i \le N$$

onde é usada a convenção de índices repetidos e a matriz A é simétrica e tridiagonal.

(a) Note que sabendo os valores próprios do sistema de A, λ_{β} , e os respectivos vectores próprios v_i^{β} (devidamente normalizados $\sum_i v_i^{\beta} v_i^{\alpha} = \delta_{\alpha\beta}$), podemos construir um novo conjunto de variáveis,

$$f_{\beta} = U_{\beta i}^T x_i$$

onde U é uma matriz ortogonal com os vectores propríos, v_i^β , em cada coluna e U^T é a sua transposta ($U_{j\alpha}U_{\alpha i}=\delta_{ji}$). Note-se ainda, que

$$\sum_{i,j} U_{\beta i}^T A_{ij} U_{j\alpha} = D_{\alpha\beta}$$

onde D é a matriz diagonal com os valores, $D_{\alpha\alpha}=\lambda_{\alpha}$. Fazendo a mudança de coordenadas associada a esta transformação ortogonal, obtemos o seguinte sistema equivalente

$$\frac{d^2 f_{\beta}}{dt^2} = D_{\beta\alpha} f_{\alpha}.$$

Como D é diagonal as equações desacoplam, i.e.

$$\frac{d^2 f_{\beta}}{dt^2} = \lambda_{\beta} f_{\beta},$$

que admitem soluções da forma

$$f_{\beta} = A_{\beta} e^{t\sqrt{\lambda_{\beta}}} + B_{\beta} e^{-t\sqrt{\lambda_{\beta}}}$$

Logo a diagonalização da matriz A permite a solução do sistema de equações no tempo. Utilize a decomposição QR para obter, quer os valores próprios, quer os vectores próprios de uma matriz com m_i e k_i aleatórios como descrito anteriormente (N=10).

(b) Sabendo a forma das equações próprias do sistema, as a evolução temporal nas coordenadas $x_i(t)$ é dada por

$$x_i = U_{i\beta} A_{\beta} e^{t\sqrt{\lambda_{\beta}}} + U_{i\beta} B_{\beta} e^{-t\sqrt{\lambda_{\beta}}}$$

Logo para determinar a evolução temporal, apenas falta definir as contantes A_{β} e B_{β} a partir das condições iniciais. Tome como condição inicial as velocidades nulas e as posições aleatórias com $x \in]-1/(N+1),1/(N+1)[$. Obtenha as constantes A_{β} e B_{β} .

(c) Represente no tempo a posição de cada das massas a partir das condições iniciais da alínea anterior.

2. Exercício

Considere o sistema de massas discutido na pergunta anterior e aplique uma força na massa k dada por,

$$F_{k} = Fe^{i\omega t}$$

$$m\frac{d^{2}x_{i}}{dt^{2}} = -k_{i}(x_{i} - x_{i-1}) + k_{i+1}(x_{i+1} - x_{i}) + \delta_{ik}Fe^{i\omega t}$$

Fazendo a transformada de Fourier, desta equação obtemos

$$-m\omega^{2}x(\omega) = -k_{i}(x_{i}(\omega) - x_{i-1}(\omega)) + k_{i+1}(x_{i+1}(\omega) - x_{i}(\omega)) + \delta_{ik}F$$

onde para cada ω obtemos uma solução.

- 1. Considerando o sistema aleatório com N=10 e F=0.001 e k=0, represente num gráfico com as ordenadas em escala logaritmica as soluções $|x_i(\omega)|$ como função de ω . Todas as curvas têm os mesmos máximos?
- 2. Identifique na alínea anterior a posição dos valores próprios do sistema livre. Discuta o resultado.
- 3. Escolha algumas das frequências onde existem os picos e as respectivas soluções x_i . Para cada uma das soluções escolhidas, normalize-a e transforme as suas coordenadas calculando,

$$f_{\beta} = U_{\beta i}^T x_i.$$

Represente cada um dos $|f_{\beta}|$ que obteve. Que conclusões pode tirar?

4. Repita o procedimento anterior adicionando uma força para k=9 igual a -0.001 na equação da transformada de Fourier. O que observa?

Boa Sorte