Prediction in Joint Models

1 Description

This method is the Pyhton adaptation of R's survfitJM function. It computes $\pi(s+t|s)$ the probability at time s of surviving over time s+t.

The probability for a subject i we know alive at time s to survive over time s+t can be formulated by the following formula:

$$\pi_i(s+t|s) = \mathbb{P}(T_i^* \ge s+t|T_i^* > s, \mathcal{Y}_i(s); \theta)$$

$$= \int \frac{S_i(s+t|\mathcal{M}_i(s+t,b_i,\theta);\theta)}{S_i(s|\mathcal{M}_i(s,b_i,\theta);\theta)} * p(b_i|T_i^* > s, \mathcal{Y}_i(s);\theta)db_i$$

Where the different terms denotes:

- $\pi_i(x)$: Probability for subject i to be alive at time x
- \bullet s: time from when we know or we assume the subject is alive and from when we want to compute predictions of his future survival probabilities
- t: time horizon from s. The survival probability is given for time s+t
- T_i^* : Random variable representing time when subject i dies
- $\mathcal{Y}_i(x)$: Longitudinal measurement of subject i before time x
- θ : Parameters of joint model
- $S_i()$: Survival function of subject i
- $\mathcal{M}_i()$: Longitudinal history of subject i, approximated by the linear mixed-effects model
- b_i : Subject *i* random effects

2 Usage

Call .Survfit()

Ones your JointModel object is fitted, call object.Survfit(new_data, id_var). new_data and id_var are the only required arguments. The other arguments are optional.

Default values

- $surv_times = None$
- $last_time = None$
- ci = numpy.array([0.025, 0.975])
- M = 200
- scale = 1.6
- simulate = False

3 Arguments

• new_data: A pandas dataframe containing covariates used in both survival and linear mixed-effects models and longitudinal information ordered by increasing time for each subject. new_data must also containing a column that identifies different subjects. The names of covariates columns must be the same in new_data and in data used to fit the model. This dataframe is structured with one line for each longitudinal information. It could contains informations for several subjects. An exemple of a valid new_data is provided just below

id_subject	longitudinal var	Linear var 1	Surv var 1	Surv var 2
1	221	12	58	0
1	257	24	58	0
1	284	36	58	0
2	112	14	65	1
2	191	26	65	1

- *id_var*: Name of the column that identifies subjects in *new_data*.
- $surv_times$: Numerical numby array containing one or several times s+t of predictions. If $surv_times$ is None, s+t will be automatically generated.
- last_time: s time from when we know or assume a subject is alive and from when we want to predict at time s+t. last_time could be a character string or a numeric numpy array. If last_time is a string, the name of a column in new_data containing s time from which we predict is expected in input. If last_time is a numpy array, it must be a vector containing s time for each subject. If last_time is None, last longitudinal time in new_data will be taken as last_time. Warning each subject must have only one s time.
- ci: Numerical numpy array that specifies which quantiles to use for the computation of confidence interval for the predicted probabilities.

- \bullet M: Integer denoting how many loop are computed in Monte-Carlo method to estimate survival probabilities and compute a confidence interval.
- *scale* : A numeric scalar that controls the acceptance rate of the Metropolis-Hastings algorithm
- simulate: A boolean (True or False) that specifies if we estimate our survival probabilities using Monte-Carlo method or not. If simulate is True, survival probabilities will be computed by a Monte-Carlo method and a confidence interval will be provided. If simulate is False, probabilities will be computed without Monte-Carlo method and only ponctual estimation will be return.

4 Details

Estimation of $\pi_i(s+t|s)$ computation method will depend on *simulate* argument.

simulate = True Estimation will be based on following Monte-Carlo procedure :

Step1: Simulate $\theta^{(l)}$ vector of parameters values from a multivariate normal distribution $\mathcal{N}(\hat{\theta}, C(\hat{\theta}))$ where $\hat{\theta}$ are the fitted joint model's parameters estimated by MLE and $C(\hat{\theta})$ their variance-covariance matrix.

Step2: Simulate $b_i^{(l)}$ random effects of subject i from b_i posterior distribution given $T_i^* > s$, $\mathcal{Y}_i(s)$ and $\theta^{(l)}$. This is achieved using a Metropolis-Hastings algorithm with independent proposals from a properly centered and scaled multivariate t distribution. The *scale* argument controls the acceptance rate for this algorithm.

Step3: Compute:

$$\pi_i^{(l)}(s+t|s) = \frac{S_i(s+t|\mathcal{M}_i(s+t,b_i^{(l)},\theta^{(l)});\theta^{(l)})}{S_i(s|\mathcal{M}_i(s,b_i^{(l)},\theta^{(l)});\theta^{(l)})}$$

Steps 1-3 are repeated l = 1, ..., M times M is given by M argument of Survfit() method.

simulate = **False** Survival probabilities will be estimated by :

$$\tilde{\pi}_i(s+t|s) = \frac{S_i(s+t|\mathcal{M}_i(s+t,\hat{b}_i^{(s)},\hat{\theta});\hat{\theta})}{S_i(s|\mathcal{M}_i(s,\hat{b}_i^{(s)},\hat{\theta});\hat{\theta})}$$

Where the different terms denotes:

• $\tilde{\pi}_i(x)$: Estimated probability for subject i to be alive at time x

- s: time from when we know or we assume the subject is alive and from when we want to compute predictions of his future survival probabilities
- t: time horizon from s. The survival probability is given for time s+t
- $\hat{\theta}$: MLE of parameters of joint model
- $\hat{b}_i^{(s)}$: Mode of the conditional distribution $p(b_i|T_i^* > s, \mathcal{Y}_i(s); \hat{\theta})$ $S_i()$: Survival function of subject i
- $\mathcal{M}_i()$: Longitudinal history of subject i, approximated by the linear mixed-effects model

5 Value

A dictionary containing a pandas dataframe for each group inputed in new_data. Each dataframe provide estimated probabilities to survive at each s + t times. If simulate is True, the returned dataframe will contain a summary of M predictions containing: mean, median, low and high boundaries of confidence interval. And if simulate is False, only ponctual estimation will be returned.

6 References

Rizopoulos, D. (2012) Joint Models for Longitudinal and Time-to-Event Data: with Applications in R. Boca Raton: Chapman and Hall/CRC.