10-es számrendszer	2-es számrendszer	16-os számrendszer
0	0000b	0h
1	0001b	1h
2	0010b	2h
3	0011b	3h
4	0100b	4h
5	0101b	5h
6	0110b	6h
7	0111b	7h
8	1000b	8h
9	1001b	9h
10	1010b	Ah
11	1011b	Bh
12	1100b	Ch
13	1101b	Dh
14	1110b	Eh
15	1111b	Fh

A konkrét példák megoldása előtt nézzük át az alábbi táblázatot:

Átváltás 10-esről 2-es számrendszerre

58 átváltása 2-es számrendszerbeli számra. Először is nézzük meg hány db számjegyre lesz szükségünk. Mivel 2⁶ az 64, és az 58 ennél kisebb, viszont 2⁵=32 ennél viszont nagyobb, ezért a legnagyobb helyi érték 2⁵, így 6 számjegyre lesz szükségünk. Most azt nézzük meg, hogy az egyes helyi értékekből hányat kell venni. Ez 0 vagy 1 lehet, mivel 2-es számrendszerben ez a kettő használatos számérték van.

$$2^{5}(32)$$
 $2^{4}(16)$ $2^{3}(8)$ $2^{2}(4)$ $2^{1}(2)$ $2^{0}(1)$
1 1 0 1 0

Az 58=32+16+8+2 összegeként írható fel tehát a 25-nek az 111010b 2-es számrendszeri szám felel meg.

Más módszerrel is elvégezhetjük ezt az átalakítást. A 10-es számrendszerbeli számot sorozatosan elosztjuk 2-vel, a hányadost az osztandó alá írjuk a maradékot pedig az osztandó mellé. Ezt egészen addig csináljuk, amíg az osztandó 0 lesz. Ekkor a maradékokat alulról felfelé összeolvasva megkapjuk a 2-es számrendszerbeli számot. Nézzük az előző példánkat:

osztandó	maradék		
58	0		
29	1		
14	0		
7	1		
3	1		
1	1		
0			

Az előző módszerhez hasonlóan az átalakítás eredményeként a 2-es számrendszerbeli szám az 111010b lesz.

Átváltás 10-esről 16-os számrendszerre

78 átváltása 16-os számrendszerbeli számra. Itt is azzal kezdjük, hogy megnézzük hány számjegyre lesz szükségünk. Mivel 16² 256, ezért a legnagyobb helyi érték 16¹, így 2 számjegyre lesz szükség. Következő lépésként azt adjuk meg, hogy az egyes helyi értékekből hányat kell venni. Ez 0 és F között 16 számértéket jelenthet.

$$16^{1} (16) 16^{0} (1)$$
4 E(14)

A 78= 16*4+1*14 összegként írható fel, tehát a 78-nak a 4Eh 16-os számrendszerbeli szám felel meg.

Az előzőekben leírt másik módszerrel is nézzük meg az átalakítást. A 10-es számrendszerbeli számot sorozatosan elosztjuk 16-tal, a hányadost az osztandó alá írjuk a maradékot pedig az osztandó mellé. Ezt egészen addig csináljuk, amíg az osztandó 0 lesz. Ekkor a maradékokat alulról felfelé összeolvasva megkapjuk a 16-os számrendszerbeli számot.

Az előző módszerhez hasonlóan az átalakítás eredményeként a 16-os számrendszerbeli szám az 4Eh lesz.

Átváltás 2-esről 10-es számrendszerre

110011b átváltása 10-es számrendszerbeli számra. Itt azt csináljuk, hogy amelyik helyi értéknél 1-es szerepel, a nekik megfelelő 10-es számrendszerbeli számértékeket összeadjuk. és megkapjuk a 10-es számrendszerbeli számot. Tehát:

2^5	2^4	2^3	2^2	2^1	2^{0}	
1	1	0	0	1	1	
32	16	8	4	2	1	

32+16+2+1=51, vagyis az 110011b 2-es számrendszerbeli számnak, az 51 10-es számrendszerbeli szám felel meg.

Átváltás 2-esről 16-os számrendszerre

1011011b átváltása 16-os számrendszerbeli számra. A legkisebb helyi értéktől kiindulva 4-es bitcsoportokra bontjuk a számot és a fejezet elején közölt táblázatból behelyettesítjük a 16-os számrendszerbeli számjegyet. Ha a legnagyobb helyi értékű 4-es bitcsoportban nincs 4 db 2-es számrendszerbeli számjegy, akkor kiegészítjük 0-kkal. Nézzük a példánkat: a legkisebb helyi értéktől kiindulva 101 1011 4-es bitcsoportra tudjuk bontani a számunkat. A legnagyobb helyi értékű 4-s bitcsoportnál csak 3 számjegy van, ezért ezt kiegészítjük egy 0-val a legnagyobb helyi érték előtt. Így a 2-es számrendszerbeli számunk 0101 1011 lesz és a fejezet ele-

jén lévő táblázatból behelyettesítjük a 4-es bitcsoportoknak megfelelő 16-os számrendszerbeli számjegyeket. A 1011011b 2-es számrendszerbeli számnak az 5Bh,16-os számrendszerbeli szám felel meg.

Átváltás 16-osról 2-es számrendszerre

3Fh átváltása 2-es számrendszerbeli számra. Egy 16-os számrendszerbeli számjegynek 4 db 2-es számrendszerbeli számjegy felel meg. Vagyis a fejezet elején lévő táblázatban megadottaknak megfelelően, a 3h-nak 0011b, míg az Fh-nak 1111b felel meg, így a 3Fh-nak a 00111111b 2-es számrendszerbeli szám felel meg.

Átváltás 16-osról 10-es számrendszerre

B9h átváltása 10-es számrendszerbeli számra. Az adott helyi értéknél szereplő számjegy 10-es számrendszerbeli megfelelőjét megszorozzuk a helyi értéknek megfelelő 10-es számrendszerbeli számértékkel, és hozzáadjuk a következő helyi értéknél képzett szorzathoz. Az így kapott összeg lesz a 10-es számrendszerbeli szám. Vagyis:

B 9 16¹ 16⁰ 16 1

16*B+1*9=16*11+1*9=176+9=185. Tehát a B9h 16-os számrendszerbeli számnak, a 185 10-es számrendszerbeli szám felel meg.

Kidolgozott példák:

10-es számrendszer	16-os számrendszer	2-es számrendszer
67	43h	1000011b
29	1Dh	11101b
126	7Eh	1111110b
93	5Dh	1011101b
89	59h	1011001b
77	4Dh	1001101b
35	23h	100011b
178	B2h	10110010b
40	28h	101000Ь
334	14Eh	101001110b