TITANIC PROBLEM

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

link to dataset: https://www.kaggle.com/c/titanic/data (https://www.kaggle.com/c/titanic/data (https://www.kaggle.com/c/titanic/data (https://www.kaggle.com/c/titanic/data (https://www.kaggle.com/c/titanic/data)

```
In [2]: gender=pd.read_csv('gender_submission.csv')
    gender.head()
```

Out[2]:

	Passengerld	Survived
0	892	0
1	893	1
2	894	0
3	895	0
4	896	1

In [3]: data=pd.read_csv('train.csv')
 data.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	С
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4											•

In [4]: data.describe()

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Assumptions

- 1.Female and children will survive more compared to male(age column changes)
- 2.sibsp and parch gives will give new features that passenger is alone or not and no.s doesnot matter
- 3.Rich people would have survived

```
In [5]: f,ax=plt.subplots(2,2,figsize=(18,8))
          sns.countplot('Survived',data=data,ax=ax[0][0])
          sns.countplot('Sex',hue='Survived',data=data,ax=ax[0][1])
          sns.countplot('Pclass',hue='Survived',data=data,ax=ax[1][0])
          sns.countplot('Embarked',hue='Survived',data=data,ax=ax[1][1])
          plt.show()
           500
                                                          400
           400
                                                           300
          300
           200
                                                          100
           100
                               Survived
           350
                                                           400
                                                          350
                                                          300
                                                          250
                                                         5 250
200
          를 200
           150
                                                          150
           100
                                                          100
                                2
Pclass
                                                                              C
Embarked
          sns.countplot('Embarked',hue='Pclass',data=data)
In [6]:
          plt.show()
          print("From Q there were very less Pclass 3 people hence survival rate is les
          s")
             350
                                                             Pclass
                                                                 1
             300
                                                                 2
                                                                3
             250
            200
             150
             100
              50
```

From Q there were very less Pclass 3 people hence survival rate is less

Ċ Embarked ġ

0

Ś

```
In [7]: #age
    plt.figure(figsize=(20,4))
    sns.countplot('Age',data=data)
    plt.show()
```


In [8]: data[data['Age']<1]</pre>

Out[8]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
78	79	1	2	Caldwell, Master. Alden Gates	male	0.83	0	2	248738	29.0000
305	306	1	1	Allison, Master. Hudson Trevor	male	0.92	1	2	113781	151.5500
469	470	1	3	Baclini, Miss. Helene Barbara	female	0.75	2	1	2666	19.2583
644	645	1	3	Baclini, Miss. Eugenie	female	0.75	2	1	2666	19.2583
755	756	1	2	Hamalainen, Master. Viljo	male	0.67	1	1	250649	14.5000
803	804	1	3	Thomas, Master. Assad Alexander	male	0.42	0	1	2625	8.5167
831	832	1	2	Richards, Master. George Sibley	male	0.83	1	1	29106	18.7500
4										>

In [9]: data['fmcount']=data['Parch']+data['SibSp']

```
In [10]: plt.figure(figsize=(20,4))
    sns.countplot('fmcount',hue="Survived",data=data)
    plt.show()
    print("Less the family size more the survival rate")
```


Less the family size more the survival rate

```
In [11]: data['Embarked'].fillna('S',inplace=True)
    data['Age'].fillna(data['Age'].median(),inplace=True)
    data[data['Age']<1]=data['Age'].median()
    data.head()</pre>
```

Out[11]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
0	1.0	0.0	3.0	Braund, Mr. Owen Harris	male	22.0	1.0	0.0	A/5 21171	7.2500	
1	2.0	1.0	1.0	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1.0	0.0	PC 17599	71.2833	
2	3.0	1.0	3.0	Heikkinen, Miss. Laina	female	26.0	0.0	0.0	STON/O2. 3101282	7.9250	
3	4.0	1.0	1.0	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1.0	0.0	113803	53.1000	C
4	5.0	0.0	3.0	Allen, Mr. William Henry	male	35.0	0.0	0.0	373450	8.0500	
◀											•

Proved assumptions

- 1.rich passengers with pclass-3 survived
- 2.women survived more wrt to men

New conclusions

- 1.Less family size more survival rate
- 2.Age range of 14-24 has more survival rate
- 3.people boarding in southhampton has more survival rate

```
In [12]: #binning age and fare
          data['Fare_Bin']=pd.qcut(data['Fare'],6)
          data.groupby(['Fare_Bin'])['Survived'].mean().to_frame()
          data['Fare cat']=0
          data.loc[data['Fare']<=7.775,'Fare_cat']=0</pre>
          data.loc[(data['Fare']>7.775)&(data['Fare']<=8.662), 'Fare_cat']=1</pre>
          data.loc[(data['Fare']>8.662)&(data['Fare']<=14.454),'Fare cat']=2</pre>
          data.loc[(data['Fare']>14.454)&(data['Fare']<=26.0), 'Fare_cat']=3</pre>
          data.loc[(data['Fare']>26.0)&(data['Fare']<=52.369), 'Fare_cat']=4</pre>
          data.loc[data['Fare']>52.369,'Fare cat']=5
          data['Age_cat']=0
          data.loc[data['Age']<=16,'Age_cat']=0</pre>
          data.loc[(data['Age']>16)&(data['Age']<=32),'Age cat']=1</pre>
          data.loc[(data['Age']>32)&(data['Age']<=48), 'Age_cat']=2</pre>
          data.loc[(data['Age']>48)&(data['Age']<=64), 'Age_cat']=3</pre>
          data.loc[data['Age']>64,'Age_cat']=4
          data[['Age cat', 'Fare cat']].head()
```

Out[12]:

	Age_cat	Fare_cat
0	1	0
1	2	5
2	1	1
3	2	5
4	2	1

```
In [13]: data['Sex'].replace(['male','female'],[0,1],inplace=True)
   data['Embarked'].replace(['S','C','Q'],[0,1,2],inplace=True)
```

In [14]: #dropping data=data.drop(columns=['PassengerId', 'Name', 'SibSp','Parch', 'Ticket', 'Cab in','Age','Fare_Bin']) data.head()

Out[14]:

	Survived	Pclass	Sex	Embarked	fmcount	Fare_cat	Age_cat
0	0.0	3.0	0.0	0.0	1.0	0	1
1	1.0	1.0	1.0	1.0	1.0	5	2
2	1.0	3.0	1.0	0.0	0.0	1	1
3	1.0	1.0	1.0	0.0	1.0	5	2
4	0.0	3.0	0.0	0.0	0.0	1	2

```
In [15]: plt.figure(figsize=(10,4))
          sns.heatmap(data.corr(),annot=True,cmap='cubehelix r')
          plt.show()
                                                                                            - 1.0
                        1
                                          0.98
                                                   0.95
                                                            0.82
                                                                      0.14
                                                                               -0.038
            Survived
                                 0.9
                                                                                            0.8
                       0.9
                                 1
                                          0.91
                                                   0.91
                                                            0.79
                                                                      -0.16
                                                                               -0.16
              Pclass
                                                                                            0.6
                       0.98
                                0.91
                                           1
                                                   0.96
                                                            0.84
                                                                      0.12
                                                                               -0.046
                Sex
                       0.95
                                0.91
                                          0.96
                                                    1
                                                            0.79
                                                                     0.053
                                                                               -0.045
           Embarked ·
                                                                                            - 0.4
                       0.82
                                0.79
                                          0.84
                                                   0.79
                                                             1
                                                                               -0.14
             fmcount
                                                                                           - 0.2
                       0.14
                                -0.16
                                          0.12
                                                   0.053
                                                                       1
                                                                               0.13
            Fare_cat
                                                                                           - 0.0
                      -0.038
                                -0.16
                                         -0.046
                                                   -0.045
                                                            -0.14
                                                                      0.13
             Age cat
                                                 Embarked
                     Survived
                                Pclass
                                          Sex
                                                           fmcount
                                                                    Fare cat
                                                                              Age cat
In [16]: data.columns
Out[16]: Index(['Survived', 'Pclass', 'Sex', 'Embarked', 'fmcount', 'Fare_cat',
                   'Age_cat'],
                 dtype='object')
In [17]:
          from sklearn.model selection import train test split
          from sklearn.metrics import r2 score
          from sklearn.metrics import mean squared error
          from sklearn.model_selection import cross_val_score
          x=data[['Pclass', 'Sex', 'fmcount', 'Fare_cat', 'Age_cat', 'Embarked']]
          y=data['Survived']
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state
          =44)
          print("training data set:",x_train.shape)
           print("testing data set:",x test.shape)
          training data set: (596, 6)
          testing data set: (295, 6)
In [18]: | data['Embarked'].isnull().value_counts()
Out[18]: False
                    891
          Name: Embarked, dtype: int64
          results=pd.DataFrame(columns=['Classifier','MSE'])
In [19]:
          results.head()
Out[19]:
             Classifier MSE
```

```
In [20]: from sklearn.linear_model import LinearRegression

lm=LinearRegression()
lm.fit(x_train,y_train)
yhat=lm.predict(x_test)
mse=mean_squared_error(yhat,y_test)
print('Mean squared error:',mse)
results=results.append(pd.Series(['Regression',mse],index=results.columns ),ig
nore_index=True)
```

Mean squared error: 0.191275579175187

```
In [21]: from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt

xlaxes,x2axes=[],[]

for i in range(1,12):
    neigh = KNeighborsClassifier(n_neighbors=i)
    neigh.fit(x_train,y_train)
    yhat=neigh.predict(x_test)
    x2axes.append(mean_squared_error(yhat,y_test))

plt.plot(list(range(1,12)),x2axes,label="MSE")
    plt.xlabel('k')
    plt.ylabel('mean squared error')
    plt.legend()
    plt.show()
```


In [22]: results=results.append(pd.Series(['K nearest neighbours',min(x2axes)],index=re
 sults.columns),ignore_index=True)

```
In [23]: from sklearn.tree import DecisionTreeClassifier
         clf = DecisionTreeClassifier(random state=0)
         clf.fit(x train,y train)
         yhat=clf.predict(x test)
         mse=mean_squared_error(yhat,y_test)
         print('Mean squared error:',mse)
         print("cross val score:",cross val score(clf, x train, y train, cv=10).mean())
         results=results.append(pd.Series(['Decision Tree',mse],index=results.columns
         ), ignore index=True)
         Mean squared error: 0.2542372881355932
         cross val score: 0.7786624796798599
         C:\Users\vivek\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\mo
         del selection\ split.py:652: Warning: The least populated class in y has only
         4 members, which is too few. The minimum number of members in any class canno
         t be less than n splits=10.
           % (min groups, self.n splits)), Warning)
In [24]: from sklearn.linear model import LogisticRegression
         lr = LogisticRegression(random state=0,C=1.0, solver='lbfgs',multi class='mult
         inomial')
         lr.fit(x train, y train)
         yhat=lr.predict(x_test)
         mse=mean squared error(yhat,y test)
         print('Mean squared error:',mse)
         results=results.append(pd.Series(['Logistic Regression',mse],index=results.col
         umns ),ignore_index=True)
         print("score:",lr.score(x_train, y_train))
         Mean squared error: 0.2440677966101695
         score: 0.8104026845637584
         C:\Users\vivek\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\li
         near model\logistic.py:758: ConvergenceWarning: lbfgs failed to converge. Inc
         rease the number of iterations.
           "of iterations.", ConvergenceWarning)
In [25]: from sklearn.svm import SVC
         svc = SVC(gamma='auto')
         svc.fit(x_train, y_train)
         yhat=svc.predict(x_test)
         mse=mean_squared_error(yhat,y_test)
         results=results.append(pd.Series(['SVC',mse],index=results.columns),ignore ind
         ex=True)
         print('Mean squared error:',mse)
         Mean squared error: 0.2
```

```
In [26]:
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.datasets import make_classification
         rnd = RandomForestClassifier(n estimators=100, max depth=3,
                                       random_state=0)
         rnd.fit(x_train, y_train)
         yhat=rnd.predict(x_test)
         mse=mean_squared_error(yhat,y_test)
         results=results.append(pd.Series(['Random forest',mse],index=results.columns),
         ignore_index=True)
         print('Mean squared error:',mse)
```

Mean squared error: 0.19661016949152543

In [27]: results

Out[27]:

	Classifier	MSE
0	Regression	0.191276
1	K nearest neighbours	0.244068
2	Decision Tree	0.254237
3	Logistic Regression	0.244068
4	SVC	0.200000
5	Random forest	0.196610

```
In [28]: test_data=pd.read_csv('test.csv')
         test data.head()
         print(test_data.shape)
```

(418, 11)

```
In [29]: | test data['fmcount']=test data['Parch']+test data['SibSp']
         test data['Embarked'].fillna('S')
         test data['Age'].fillna(test data['Age'].median())
         test data['Fare Bin']=pd.qcut(test data['Fare'],6)
         test_data['Fare cat']=0
         test data.loc[test data['Fare']<=7.775, 'Fare cat']=0
         test_data.loc[(test_data['Fare']>7.775)&(test_data['Fare']<=8.662),'Fare_cat']</pre>
         =1
         test data.loc[(test data['Fare']>8.662)&(test data['Fare']<=14.454),'Fare cat'
         test data.loc[(test data['Fare']>14.454)&(test data['Fare']<=26.0),'Fare cat']
         =3
         test_data.loc[(test_data['Fare']>26.0)&(test_data['Fare']<=52.369),'Fare_cat']</pre>
         test data.loc[test data['Fare']>52.369,'Fare cat']=5
         test data['Age cat']=0
         test_data.loc[test_data['Age']<=16,'Age_cat']=0</pre>
         test data.loc[(test data['Age']>16)&(test data['Age']<=32),'Age cat']=1
         test_data.loc[(test_data['Age']>32)&(test_data['Age']<=48),'Age_cat']=2</pre>
         test data.loc[(test data['Age']>48)&(test data['Age']<=64),'Age cat']=3
         test data.loc[test data['Age']>64,'Age cat']=4
         test_data['Sex'].replace(['male', 'female'],[0,1],inplace=True)
         test data['Embarked'].replace(['S','C','Q'],[0,1,2],inplace=True)
In [30]:
         #dropping
         test data=test data.drop(columns=['PassengerId', 'Name', 'SibSp','Parch', 'Tic
         ket', 'Cabin', 'Fare', 'Age'])
         test data.head()
         print(test data.columns)
         Index(['Pclass', 'Sex', 'Embarked', 'fmcount', 'Fare_Bin', 'Fare_cat',
                 'Age cat'],
                dtype='object')
```

```
In [31]:
        x=test data[['Pclass', 'Sex', 'fmcount', 'Fare cat', 'Age cat', 'Embarked']]
         lm score=lm.predict(x)
         svc predict=svc.predict(x)
         lr predict=lr.predict(x)
         clf predict=clf.predict(x)
         rnd predict=rnd.predict(x)
         print(svc predict)
         [0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 0.
          1. 0. 1. 0. 0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0.
          1. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0.
          1. 0. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 0. 0. 0.
          1. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1.
          1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0.
          0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 1. 1. 1. 0. 0. 1. 0. 0.
          1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0.
          1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.
          1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1.
          1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1.
          0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0.
          0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 1. 0. 0.
          0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 1. 0. 0.
          0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 0. 1. 0. 1. 0. 1.
          0. 1. 1. 0. 1. 0. 1. 1. 1. 0. 0. 1. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1.
          0. 1. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0.
          1. 1. 1. 1. 0. 1. 0. 0. 1.
In [32]:
        test data=pd.read csv('test.csv')
         li=[]
         li1=[]
         for cnt,pass id in enumerate(test data['PassengerId']):
             li1.append(pass id)
             li1.append(int(svc predict[cnt]))
             li.append(li1)
             li1=[]
         # importing the csv module
         import csv
         # data rows of csv file
         rows =li
         fields = ['PassengerId', 'Survived']
         filename = "lr.csv"
         # writing to csv file
         with open(filename, 'w') as csvfile:
             csvwriter = csv.writer(csvfile)
             csvwriter.writerow(fields)
             csvwriter.writerows(rows)
         print("sucessfully saved csv file")
```

sucessfully saved csv file