2. Solve $u_t = u_{xx}$ in $[0, \pi] \times [0, \infty)$ with u(0, t) = 0 and $u(\pi, t) = 0$ for all t and u(x,0)=1 for $x\in(0,\pi)$. In what sense the solution takes the initial data and prove it is unique.

Our solution is given by

$$u(x,t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right) \exp\left(-\frac{n^2\pi^2}{L}t\right)$$

$$= \sum_{n=1}^{\infty} a_n \sin(nx) \exp\left(-\frac{n^2\pi^2}{L}t\right)$$

where
$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} \sin(nx) f(x) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$=\frac{2}{\pi}\left(-\frac{1}{n}\cos(nx)\right)\Big|_{0}^{\pi}=-\frac{2}{\pi n}\left(\cos(\pi n)-1\right)$$

$$= -\frac{2}{\pi}\left(\left(-1\right)^{2}-1\right)$$

We need to show uniqueness. Let V be another solution, & let W= U-V. Then Wt = Wxx. Multiply both sides by W and integrate over (0, TT):

$$W = W_{xx}$$

$$\int_{0}^{T} W dx dx = \int_{0}^{T} W W_{xx} dx$$

$$\int_{0}^{T} \left(\frac{U^{2}}{2} \right)_{t} dx = W W_{x} \Big|_{0}^{T} - \int_{0}^{T} W_{x}^{2} dx$$

$$= - \int_{0}^{T} W_{x}^{2} dx$$

$$\leq 0$$

$$\Rightarrow \int_{0}^{T} \left(\frac{U^{2}}{2} \right)_{t} dx \leq 0$$

and we must have equality because the integrand is positive. It follows by the initial conditions w(x,0) = 0 and w(0,t) = w(tt,t) = 0 that $w \equiv 0$; thus u = V & we are done.