Limits and Continuity of Functions (Ch 6.4,6.5 & 6.7)

Dr. Priyanka Sharma

October 12, 2020

Dr. Priyanka Sharma (SSB)

Limits of a function

Consider $f: X \to \mathbb{R}$, where $X \subset \mathbb{R}$ and a converging $\{x_n\} \in X$.

- $\{f(x_n)\}\in\mathbb{R}$ is the corresponding sequence of images of this function.
- If as $x_n \to a$, $f(x_n) \to L$, then $\lim_{x \to a} f(x) = L$
 - $\lim_{x \to a} f(x) = L$ is read as "L is the limit of f(x) as x approaches a".
- When we say "x approaches a", x can approach a from either values lower than a or greater than a.
 - If x approaches a from values less than a (left hand side), then L is the left-side limit of f(x).
 - If x approaches a from values higher than a (right hand side), then L is the right-side limit of f(x).

Calculating Limits

Method 1 Graphically

Method 2 Numerically

Practice Problems

Find the left-side limits and the right-side limits of the following functions.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}, x \neq 2$$

2

$$\lim_{x \to 0} f(x) = \begin{cases} 1 & \text{for } x \le 0 \\ 2 & \text{for } x > 0 \end{cases}$$

3

$$\lim_{x \to 4} f(x) = \begin{cases} 1 & \text{for } x \neq 4 \\ -1 & \text{for } x = 4 \end{cases}$$

2 Observations from last practice problems

- It is not necessary that $a \in X$ and $L \in f[X]$.
- It is not necessary that

$$\underset{x \to a^{-}}{\lim} f(x) = L_{1}$$

equals

$$\lim_{x\to a^+} f(x) = L_2$$

• However, if $L_1 = L_2 = L$ or

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

then we say that "f(x) has a limit L as x approaches a and write

$$\lim_{x \to a} f(x) = L$$

Practice Problem

Find the limits of the following functions.

- $\lim_{x \to a} c$
- $\lim_{x \to a} x$

Two useful results about limits

- $\lim_{x \to a} c = c \text{ at every point } a.$
- $\lim_{x \to a} x = a \text{ at every point } a.$

Limit Theorems Involving Two Functions

Consider $f_1(x)$ and $f_2(x)$ such that $\lim_{x\to a}f_1(x)=L_1$ and $\lim_{x\to a}f_2(x)=L_2$ where L_1 and L_2 are two finite numbers then

1. Sum-difference limit theorem

$$\lim_{x \to a} (f_1(x) \pm f_2(x)) = L_1 \pm L_2$$

2. Product limit theorem

$$\lim_{x \to \infty} (f_1(x).f_2(x)) = L_1.L_2$$

3. Quotient limit theorem

$$\lim_{x \to a} \left(\frac{f_1(x)}{f_2(x)} \right) = \frac{L_1}{L_2} \quad (L_2 \neq 0)$$

Calculating limits through direct substitution

Find the limits of the following functions as $x \to 0$

1

$$f(x) = 7 - 9x + x^2$$

2

$$f(x) = (x+2)(x-3)$$

3

$$f(x) = \frac{3x+5}{x+2}$$

Calculating limits using factorization

Find the limits of the following functions:

1

$$\lim_{x\to 2} \frac{x^2-4}{x-2}, x\neq 2$$

2

$$\lim_{x \to 2} \frac{(x+2)^3 - 8}{x}, x \neq 0$$

If the functions f and g are equal for all x close to a (but not necessarily at x=a) then $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$ whenever either limits exists.

Calculating limits using conjugates

Conjugates: Change the sign in the middle of two terms.

- conjugate of a + b is a b and vice versa.
- $a \pm \sqrt{b}$ are conjugates.

Find the limit of

$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}$$

Finite limits of a function

• A function f(x) has a **finite limit** L **as** $x \to a$, a **finite** if, any $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in (a - \delta, a + \delta)$, or equivalently $|x - a| < \delta$ then $|f(x) - L| < \epsilon$. Then we write,

$$\lim_{x \to a} f(x) = L$$

- Question: What does it mean to say that f(x) does not tend to the number L as x tends to a?
 - If we can find an $\epsilon>0$ such that for all $\delta>0$, there exists a number x such that $|x-a|<\delta$ and $|f(x)-L|\geq\epsilon$

Practice Problem

Using $\epsilon\delta$ definition of limits, show that

$$\lim_{x\to 3}(3x-2)=7$$

Limits and Asymptotes

• The function f(x) has a **finite limit as** |x| **becomes infinite** if, for every $\epsilon > 0$, $\exists \delta > 0$ such that if $|x| > \delta$ then $|f(x) - L| < \epsilon$. Then we write,

$$\lim_{x\to(\pm)\infty}f(x)=L$$

- The horizontal line y = L is a horizontal asymptote of f as x tends to $(\pm)\infty$.
- A function f(x) has an **infinite limit as** $x \to a$, a **finite** if, any $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in (a \delta, a + \delta)$, then $|f(x)| > \epsilon$. Then we write,

$$\lim_{x\to a} f(x) = (\pm)\infty$$

• The vertical line x = a is a vertical asymptote for the graph of f.

Practice Problems

Find the limits of the following functions

$$\lim_{x\to 0} \frac{1}{x}$$

$$\lim_{x\to 2}\frac{1}{\sqrt{2-x}}$$

$$\lim_{c \to \infty} \frac{1}{x}$$

Infinite Limits of a function

• The function f(x) has an **infinite limit as** |x| **becomes infinite** if, for every $\epsilon > 0$, $\exists \delta > 0$ such that if $|x| > \delta$ then $|f(x)| > \epsilon$. Then we write,

$$\lim_{x \to (\pm)\infty} f(x) = (\pm)\infty$$

One-sided Limits

Left-hand limit

The left hand limit of a function f(x) as x approaches a is a number L_1 such that for any $\epsilon>0$, there exists a $\delta>0$ such that if $x\in(a-\delta,a)$, then $|L_1-f(x)|<\epsilon$. Then we write,

$$\lim_{x\to a^-} f(x_n) = L_1$$

Right-hand limit

The left hand limit of a function f(x) as x approaches a is a number L_2 such that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in (a, a + \delta)$, then $|L_2 - f(x)| < \epsilon$. Then we write,

$$\lim_{x\to a^+} f(x_n) = L_2$$

Continuity

Continuity at a point

Suppose a function is defined on a domain that includes an open interval around a. Then f is said to be continuous at x = a if

$$\lim_{x \to a} f(x) = f(a)$$

A function $f: X \to \mathbb{R}$ is said to be continuous at x = a if the following three conditions are met:

- $\mathbf{0}$ $a \in X$.
- $\lim_{x \to a} f(x) = L \text{ exists and is finite.}$
- $\lim_{x \to a} f(x) = f(a)$

For a function to be continuous at a, it has to be the case that L is finite and $(a, L) \in Gr(f)$

Practice Problems

Check whether each of the following functions is continuous at x = a

1

$$f(x) = \frac{x^2 - 4}{x - 2}, x \neq 2, a = 2$$

2

$$f(x) = x + 2, a = 2$$

3

$$f(x) = \begin{cases} 1 & \text{for } x \le 0 \\ 2 & \text{for } x > 0 \end{cases}, a = 0$$

4

$$f(x) = \begin{cases} 1 & \text{for } x \neq 4 \\ -1 & \text{for } x = 4 \end{cases}, a = 4$$

5

$$f(x) = \frac{1}{x}, a = 0$$

Continuous Function

Continuous Function

A $f: X \to \mathbb{R}$ is continuous if it is continuous at all $x \in X$.

A function is said to be **continuous on the interval (a,b)** if it is continuous at all points $x \in (a, b)$.

Practice Problems

Check if the following functions are continuous at all x in their domains.

•

$$f(x) = \frac{x^2 - 4}{x - 2}, x \neq 2$$

0

$$f(x) = x + 2$$

All rational functions are continuous, wherever they are defined.

Properties of continuous functions

Consider functions $f:X\to\mathbb{R}$ and $g:X\to\mathbb{R}$ which are continuous at x=a. Then

- ② $f g : X \to \mathbb{R}$ is continuous at x = a.
- **3** $f.g: X \to \mathbb{R}$ is continuous at x = a.

Intermediate Value Theorem

Intermediate Value Theorem

Let f be a function that is continuous for all x in the closed interval [a,b], and assume that $f(a) \neq f(b)$. As x varies between a and b, so f(x) takes on every value between f(a) and f(b).

An immediate and useful consequence of the intermediate-value theorem is the following:

Corollary to IVT

Let f be a function that is continuous for all x in the closed interval [a,b], and assume that f(a) and f(b) have different signs (either f(a) < 0 < f(b) or f(a) > 0 > f(b)). Then, \exists at least $c \in (a,b)$ such that f(c) = 0.

Practice Problems

• Prove that the following equation has at least one solution between 0 and 1: $x^6 + 3x^2 - 2x - 1 = 0$.

② Prove that for any positive number a, the equation $x^3 = a$ has a unique positive solution x = c.

Extreme Value Theorem

- If f(x) has domain D, then
 - $c \in D$ is a **maximum point** for $f \iff f(x) \le f(c)$ for all $x \in D$.
 - $d \in D$ is a minimum point for $f \iff f(x) \ge f(d)$ for all $x \in D$.
- The maximum and minimum points can also be referred as extreme points.
- f(c) is called the maximum value.
- f(d) is called the minimum value.

The Extreme Value Theorem

If a function is continuous in a closed, bounded interval [a, b], then f attains both a maximum value and a minimum value in [a, b].

Practice Problem

Explain why function f defined for all $x \in [0, 5]$ by

$$f(x) = \frac{x^6 + 5x^3 - 2x + 8}{x^4 + 10}$$

has both a maximum and a minimum value. (Do not try to find these values.)

One-sided continuity

Left-continuous at a

Suppose f is defined on a domain including the half-open interval (c, a]. f is left-continuous at a if

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Right-continuous at a

Suppose f is defined on a domain including the half-open interval [a, d). f is right-continuous at a if

$$\lim_{x \to a^+} f(x) = f(a)$$

A function is continuous at *a* if and only if it is both left- and right-continuous at *a*.

Practice Problem

Check which of the following functions are left-continuous at x=a, and which functions are right-continuous at x=a.

1

$$f(x) = \frac{x^2 - 4}{x - 2}, x \neq 2, a = 2$$

2

$$f(x) = x + 2, a = 2$$

3

$$f(x) = \begin{cases} 1 & \text{for } x \le 0 \\ 2 & \text{for } x > 0 \end{cases}, a = 0$$

$$f(x) = \begin{cases} 1 & \text{for } x \ne 4 \\ -1 & \text{for } x = 4 \end{cases}, a = 4$$

_

$$f(x) = \frac{1}{x}, a = 0$$