비전하 실험 보고서

서울대학교 전기정보공학부 2018-12432 박정현* (Dated: September 12, 2023)

본 실험에서는 물질의 특성에 따른 전기전도도를 확인하고, 여러가지의 금속에 대한 전기화학적 서열을 확인한다. 또한 다니엘 전지를 제작한 후 농도에 따른 기전력을 측정해 네른스트 식을 검증하고 이해한다. 화학전지를 이용해 염의 용해도곱 상수를 직접 계산하여 화학전지와 용해도곱상수에 대한 이해도를 높인다.

I. INTROUDCTION

A. Thermonic Emission

금속에 충분한 열이 가해져 온도가 높아지면 전자가 방출되게 된다. 이러한 현상을 thermonic emission이라고 하며이 때 방출되는 전류는 금속의 conduction band로부터 금속의 일함수를 넘어 자유전자가 되어 나타나는 전류이다. 이러한 전류는 페르미 분포를 따르는 전자중 충분한 에너지를 가지고 있는 전자가 넘어가는 전류와 터널링 현상을 통해 넘어가는 전류 두 종류가 있으며 아래와 같이 나타난다.[1] 여기서 A는 Richard 상수이며 T는 온도, 그리고 φ 는 일함수에 해당한다. 충분히 높은 전압에서 가열된 금속의 온도가 높아짐에 따라 방출되는 전류 값이 증가함을 알 수 있다.

$$J = AT^2 \exp\left(-\frac{-\varphi}{kT}\right) \tag{1}$$

B. Helmholtz Coil

반지름 R을 가지는 코일이 중심으로부터 x의 거리에 만드는 자기장은 아래와 같다.

$$B_z = \frac{\mu_0}{2} \frac{R^2 I}{\left(x^2 + R^2\right)^{\frac{3}{2}}} \tag{2}$$

쿨롱 게이지에서 원형코일을 포함한 xy평면에서의 vector potential \vec{A} 는 아래와 같다.

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r'})}{2} d^3 \vec{r'}$$
 (3)

해당 식은 아래와 같이 전개된다. 단, $\rho = r/R$ 이며 r은 중심으로부터 벗어난 거리이다. 그리고 $P_l(x)$ 는 르장드르 다항식에 해당한다.

$$= \frac{\mu_0}{4\pi R} \int \frac{\vec{J}(\vec{r'})}{\sqrt{1 + \rho^2 - 2\rho\cos\theta}} d^3 \vec{r'} \tag{4}$$

$$= \frac{\mu_0}{4\pi R} \sum \int \vec{J}(\vec{r'}) \rho^l P_l(\cos \theta) d^3 \vec{r'}$$
 (5)

 \vec{J} 가 $I/\pi a^2 \delta(\vec{r}-\vec{r'})$ 형태를 가지므로 식은 아래와 같아진다.

$$= \hat{\varphi} \frac{\mu_0 I}{4\pi} \sum_{l} \int_0^{2\pi} \rho^l P_l(\cos \theta) \cos \theta d\theta \tag{6}$$

(7)

르장드르 다항식이 짝수차수에서 우함수이므로 적분값이 0이되다. 따라서 3차항까지만 고려했을 때 식은 아래와 같다.

$$\vec{A}(\vec{r}) \simeq \hat{\varphi} \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \rho \cos^2 \theta + \rho^3 \left(\frac{5\cos^3 \theta - 3\cos \theta}{2} \right) \cos \theta d\theta \tag{8}$$

$$=\hat{\varphi}\frac{\mu_0 I}{4}\left(\rho + \frac{3}{8}\rho^3\right) \tag{9}$$

$$=\hat{\varphi}\frac{\mu_0 I}{4} \left(\frac{r}{R} + \frac{3}{8} \left(\frac{r}{R}\right)^3\right) \tag{10}$$

따라서 원형 코일 근처에서 자기장은 아래와 같아지며 중심으로부터 멀어질수록 자기장의 세기가 강해짐을 알 수있으나 반지름 15cm의 코일에 대해서 r=3cm인 경우 약0.03만큼의 오차가 발생하여 해당 항은 큰 기여를 하지 못함을 알 수 있다.

$$B_z(r) \simeq \frac{\mu_0 I}{2} \left(1 + \frac{3r^2}{4R^2} \right)$$
 (11)

따라서 거리가 2x만큼 떨어진 헬름홀츠 코일 중심 근방 크게 벗어나지 않는 곳에서의 자기장은 아래와 같이 나타난 다고 가정하여도 무방하다.

$$B_z \simeq \frac{\mu_0 N R^2 I}{(x^2 + R^2)^{\frac{3}{2}}} \tag{12}$$

C. Electron in B field

자기장에서 운동하는 전자의 운동방정식은 아래와 같이 기술된다.

$$m\ddot{\vec{r}} = e\dot{\vec{r}} \times \vec{B} \tag{13}$$

 $\vec{B}=B_0\hat{z}$ 으로 기술된다고 가정하고 초기 속도가 $(v\cos\theta,v\sin\theta)$ 로 주어질 때 아래와 같이 운동을 기술할 수 있다.

$$\frac{mv^2\cos^2\theta}{R} = ev\cos\theta B_0 \tag{14}$$

^{*} alexist@snu.ac.kr

 $B_0 = CI$ 로 주어지는 경우 식은 아래와 같이 정리할 수 $mv^2/2 = eV$ 이므로 해당식은 다시 아래와 같이 정리된다. 있다.

$$I^{2} = \frac{m^{2}}{C^{2}e^{2}} \frac{v^{2}\cos^{2}\theta}{R^{2}}$$

$$= \frac{m}{e} \frac{2V\cos^{2}\theta}{R^{2}}$$
(16)

$$=\frac{m}{e}\frac{2V\cos^2\theta}{R^2}\tag{17}$$

II. REFERENCE

$$I = \frac{m}{Ce} \frac{v \cos \theta}{R}$$
 (15) [1] Semiconductor SZE