Unentscheidbarkeit

Kodierung TM

$$M = (\{0,1,2,\ldots,n\},\{0,1\},\{0,1,2,\ldots,k\},\Delta,2,0,1,2)$$

• Kodierung Übergang $(q, \gamma) \rightarrow (q', \gamma', d) \in \Delta$

$$\operatorname{code}((q,\gamma) \to (q',\gamma',d)) = 1^q 01^{\gamma} 01^{q'} 01^{\gamma'} 01^{\operatorname{bin}'(d)} 0$$

$$\operatorname{bin}'(d) = \begin{cases} 1 & \text{falls } d = \triangleleft \\ 2 & \text{falls } d = \lozenge \\ 3 & \text{sonst} \end{cases}$$

Kodierung TM

$$\mathsf{code}(\mathit{M}) = \prod_{\delta \in \Delta} \mathsf{code}(\delta)$$

4/29

6/29

Unentscheidbarkeit

Beispiel

$$M = (\{0,1,2,3,4,5,6,7\},\{0,1\},\{0,1,2\},\Delta,2,0,1,2)$$

mit Übergängen 🛆

$$(0,0) \to (3,2,\triangleright)$$
 $(0,1) \to (4,2,\triangleright)$ $(0,2) \to (1,2,\diamond)$

$$(3,0) \rightarrow (3,0,\triangleright)$$
 $(3,1) \rightarrow (3,1,\triangleright)$ $(3,2) \rightarrow (5,2,\triangleleft)$

$$(4,0) \to (4,0,\triangleright)$$
 $(4,1) \to (4,1,\triangleright)$ $(4,2) \to (6,2,\triangleleft)$

$$(5,0) \to (7,2,\triangleleft)$$
 $(6,1) \to (7,2,\triangleleft)$

$$(7,0) \rightarrow (7,0,\triangleleft)$$
 $(7,1) \rightarrow (7,1,\triangleleft)$ $(7,2) \rightarrow (0,2,\triangleright)$

$$code(M) = \underbrace{001^301^201^30}_{(0,0)\to(3,2,\triangleright)} \underbrace{01^101^401^201^30}_{(0,1)\to(4,2,\triangleright)} \cdots$$

Unentscheidbarkeit

Beispiel

$$M = (\{q_0, q, q_a, q_a', q_b, q_b', q_+, q_-\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, q_+, q_-)$$

mit Übergängen 🛆

$$(q_0,a)
ightarrow (q_a,\Box,\rhd) \hspace{0.5cm} (q_0,b)
ightarrow (q_b,\Box,\rhd) \hspace{0.5cm} (q_0,\Box)
ightarrow (q_+,\Box,\diamondsuit) \ (q_a,a)
ightarrow (q_a,a,\rhd) \hspace{0.5cm} (q_a,b)
ightarrow (q_a,b,\rhd) \hspace{0.5cm} (q_a,\Box)
ightarrow (q'_a,\Box,\lhd) \ (q_b,a)
ightarrow (q_b,b)
ightarrow (q_b,b,\rhd) \hspace{0.5cm} (q_b,\Box)
ightarrow (q'_b,\Box,\lhd) \ (q'_a,a)
ightarrow (q,\Box,\lhd) \hspace{0.5cm} (q'_b,b)
ightarrow (q,\Box,\lhd)$$

 $(g,a) \rightarrow (g,a,\triangleleft) \qquad (g,b) \rightarrow (g,b,\triangleleft) \qquad (g,\square) \rightarrow (g_0,\square,\triangleright)$

Unentscheidbarkeit

Konvention

- Zustände nummeriert ab 0
- Initialzustand 0, akzeptierender Zustand 1, ablehnender Zustand 2
- ullet Arbeitssymbole nummeriert ab 0; Eingabesymbole $\mathfrak{B}=\{0,1\}$
- Blanksymbol 2
- Betrachten bereinigte TM
 (jeder Zustand & jedes Symbol an mind. 1 Übergang beteiligt)
- \bullet Ausnahme Zustände & Symbole $\{0,1,2\}$ immer vorhanden
- ullet Sequenz #=00000 kommt in keiner gültigen Kodierung vor

5/29

Unentscheidbarkeit

§9.1 Definition (Dekodierung; decoding)

Sei $\widehat{\mathcal{M}}$ beliebige bereinigte det. TM über \mathfrak{B} und decode: $\mathfrak{B}^* \to \big\{ \mathit{M} \mid \mathit{M} \text{ bereinigte det. TM über } \mathfrak{B} \big\}$ mit

$$\operatorname{decode}(w) = egin{cases} \mathcal{M} & \operatorname{falls} \ \operatorname{code}(\mathcal{M}) = w \ \widehat{\mathcal{M}} & \operatorname{sonst} \end{cases}$$
 für alle $w \in \mathfrak{B}^*$

Notizen

- Invertierung Binärdarstellung
- Liefert Standard-TM für ungültige Binärdarstellungen

8/29

10/29

Unentscheidbarkeit

§9.3 Definition (spez. Halteproblem; special halting problem)

Spezielle Halteproblem ist Sprache

$$\underline{H} = \{ w \in \mathfrak{B}^* \mid \mathsf{TM} \; \mathsf{decode}(w) \; \mathsf{h\"alt} \; \mathsf{auf} \; \mathsf{Eingabe} \; w \}$$

d.h. hält geg. TM decode(w) auf (potentiell) eigener Kodierung w?

Charakteristische Funktion $\chi_H \colon \mathfrak{B}^* \to \mathfrak{B}$

$$\chi_{\underline{H}}(w) = \begin{cases} 1 & \text{falls TM decode}(w) \text{ auf } w \text{ hält} \\ 0 & \text{sonst} \end{cases}$$

Unentscheidbarkeit

§9.2 Definition (Halteproblem; halting problem)

Halteproblem ist Sprache

(# = 00000)

$$H = \left\{ c \# w \mid c \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{ \# \} \mathfrak{B}^*, \, \mathsf{TM} \, \, \mathsf{decode}(c) \, \, \mathsf{h\"alt} \, \, \mathsf{auf} \, \, w \in \mathfrak{B}^*
ight\}$$

d.h. hält geg. bereinigte det. TM decode(c) auf Eingabe $w \in \mathfrak{B}^*$? (erreicht decode(c) mit Eingabe w Endzustand)

Charakteristische Funktion $\chi_H \colon \mathfrak{B}^* \to \mathfrak{B}$

$$\chi_{H}(v) = egin{cases} 1 & ext{falls } v = c \# w ext{ mit } c \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{\#\} \mathfrak{B}^*, \ w \in \mathfrak{B}^* ext{ und } \\ & ext{decode}(c) ext{ auf } w ext{ hält } \\ 0 & ext{sonst} \end{cases}$$

Unentscheidbarkeit

§9.4 Theorem (universelle TM; universal Turing machine)

Det. TM U die bei Eingabe u#w det. TM $\operatorname{decode}(u)$ auf w simuliert

Notizen

- Universelle Turingmaschine *U*
- U hält auf u#w gdw. decode(u) auf w hält
- U produziert auf u#w gleiche Ausgabe wie decode(u) auf w

$$T(U) = \{(u \# w, v) \mid (w, v) \in T(\operatorname{decode}(u))\}$$

9/29

11/29

Unentscheidbarkeit

§9.5 Theorem

Spezielles Halteproblem <u>H</u> unentscheidbar

Beweis (1/2)

Sei spezielles Halteproblem \underline{H} entscheidbar. Dann existiert det. TM M für charakteristische Funktion $\chi_{\underline{H}}$. Sei P äquivalentes While-Programm. Betrachte Programm P'

 $\begin{array}{ll} P & \text{(berechne $\chi_{\underline{H}}$ von Eingabe)} \\ \textbf{IF}(x_1 \neq 0) \, \{ \dots \textit{Endlosschleife} \dots \} & \text{(falls decode}(x_1) \text{ auf } x_1 \text{ hält)} \\ \textbf{ELSE} \, \{x_1 = 1\} & \text{(liefere 1 falls decode}(x_1) \text{ auf } x_1 \text{ nicht hält)} \end{array}$

Programm P' berechnet

$$\rho_{\underline{\overline{H}}}(w) = \begin{cases} 1 & \text{falls } \chi_{\underline{H}}(w) = 0 \\ \text{undef sonst} \end{cases}$$

12/29

Unentscheidbarkeit

- Beweis nutzt Diagonalisierung
- Illustration Halteverhalten

$M \setminus w$	f(0)	f(1)	f(2)	f(3)		w' = code(M')
decode(f(0))	X	X	✓	✓		✓
decode(f(1))	X	✓	✓	X		✓
decode(f(2))	X	X	✓	X		×
decode(f(3))	✓	✓	X	✓		✓
•••	• • •	• • •	• • •	• • •	• • •	• • •
M' = decode(w')	✓	X	X	X		3

M' hält auf $w \iff \operatorname{decode}(w)$ auf w nicht hält

Unentscheidbarkeit

Beweis (2/2)

Sei M' äquivalente det. TM zu P'. Betrachte Eingabe $w' = \operatorname{code}(M')$

$$\begin{array}{lll} \textit{M}' = \mathsf{decode}(\textit{w}') \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; \textit{w}' \\ \iff \rho_{\underline{H}}(\textit{w}') = 1 & (\mathsf{da} \; \textit{M}' \; \rho_{\underline{H}} \; \mathsf{berechnet}) \\ \iff \chi_{\underline{H}}(\textit{w}') = 0 & (\mathsf{Def.} \; \rho_{\underline{H}}) \\ \iff \textit{w}' \notin \underline{H} & (\mathsf{Def.} \; \chi_{\underline{H}}) \\ \iff \mathsf{decode}(\textit{w}') \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; \textit{w}' \; \mathsf{nicht} & (\mathsf{Def.} \; \underline{H}) \end{array}$$

Widerspruch &

13 / 29

Problem-Reduktionen

Komposition oder Verkettung (§3.4)

• Komposition $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ ist $(f;g): \Sigma_1^* \dashrightarrow \Sigma_3^*$

$$(f;g)(w)=gig(f(w)ig)=egin{cases} ext{undef} & ext{falls } f(w)= ext{undef} \ gig(f(w)ig) & ext{sonst} \end{cases}$$

§9.6 Theorem

(f;g) berechenbar falls $f: \Sigma_1^* \dashrightarrow \Sigma_2^*$ und $g: \Sigma_2^* \dashrightarrow \Sigma_3^*$ berechenbar

Beweis

Verkettung det. TM für f und g (Se

(Sequenz While-Programme)

Problem-Reduktionen

§9.7 Theorem

Sei $f: \Sigma^* \to \Gamma^*$ total und berechenbar und $K \subseteq \Gamma^*$. Falls K entscheidbar, dann $f^{-1}(K)$ entscheidbar

Beweis

Da K entscheidbar, ist $\chi_K \colon \Gamma^* \to \{0,1\}$ berechenbar. Gemäß Theorem §9.6 ist $(f;\chi_K) \colon \Sigma^* \to \{0,1\}$ berechenbar.

$$(f; \chi_K)(w) = \chi_K(f(w)) = \begin{cases} 1 & \text{falls } f(w) \in K \\ 0 & \text{sonst} \end{cases}$$
$$= \begin{cases} 1 & \text{falls } w \in f^{-1}(K) \\ 0 & \text{sonst} \end{cases} = \chi_{f^{-1}(K)}(w)$$

Also $f^{-1}(K)$ entscheidbar

Problem-Reduktionen

Notizen

- Kontraposition von Theorem §9.7 ebenso interessant:
 - Sei $f: \Sigma^* \to \Gamma^*$ total & berechenbar und $K \subseteq \Gamma^*$. Falls $f^{-1}(K)$ unentscheidbar, dann K unentscheidbar
- Betrachte berechenbare totale Funktion f
 - Sprache K entscheidbar \rightarrow Urbild $f^{-1}(K)$ entscheidbar
 - Urbild $f^{-1}(K)$ unentscheidbar \rightarrow Sprache K unentscheidbar

17 / 29

Problem-Reduktionen

§9.8 Definition (Reduktion; reduction)

Problem $L \subseteq \Sigma^*$ reduzierbar auf $K \subseteq \Gamma^*$, geschrieben $L \preceq K$, falls (totale) berechenbare Funktion $f: \Sigma^* \to \Gamma^*$ existiert mit $L = f^{-1}(K)$

Notizen

• $L = f^{-1}(K)$ entspricht Aussage

 $w \in L$ gdw. $f(w) \in K$ für alle $w \in \Sigma^*$

- f übersetzt Instanz Problem L in Instanz Problem K
 (Bestimmung "w ∈ L" per Bestimmung "f(w) ∈ K")
- L ≤ K bedeutet "L höchstens so schwer wie K" (aktuell 2 Schwierigkeiten: entscheidbar & unentscheidbar)
- Berechenbarkeit & Totalität von f essentiell

Problem-Reduktionen

§9.9 Theorem

Seien $L \subseteq \Sigma^*$ und $K \subseteq \Gamma^*$ mit $L \preceq K$

- Falls K entscheidbar, dann L entscheidbar (entscheidbar falls leichter als entscheidbares Problem)
- Falls L unentscheidbar, dann K unentscheidbar (unentscheidbar falls schwerer als unentscheidbares Problem)

Problem-Reduktionen

§9.10 Theorem

Allgemeines Halteproblem *H* unentscheidbar

Beweis

Reduktion spezielles Halteproblem H auf H

 $\underline{H} = \{ w \mid \text{decode}(w) \text{ hält auf } w \} \quad H = \{ c \# w \mid \text{decode}(c) \text{ hält auf } w \}$

Benötigen berechenbare Funktion $f\colon \mathfrak{B}^* \to \mathfrak{B}^*$, die Elemente von \underline{H} in Elemente von H übersetzt. Sei f(w) = c # w für alle $w \in \mathfrak{B}^*$ mit c = w falls $w \in \mathfrak{B}^* \setminus \mathfrak{B}^* \{\#\} \mathfrak{B}^*$ und $c = \operatorname{code}(\widehat{M})$ sonst (klar berechenbar). Für alle $w \in \mathfrak{B}^*$ gelten $\operatorname{decode}(c) = \operatorname{decode}(w)$ und

$$w \in \underline{H} \iff \operatorname{decode}(w) \text{ h\"alt auf } w \iff c\#w = f(w) \in H$$

Damit $\underline{H} = f^{-1}(H)$, $\underline{H} \leq H$ und H unentscheidbar (Theorem §9.9)

20/29

Problem-Reduktionen

§9.11 Theorem

Leerband-Halteproblem $\{c \mid \mathsf{decode}(c) \; \mathsf{h\"alt} \; \mathsf{auf} \; \varepsilon\}$ unentscheidbar

Beweis

Wir reduzieren allgemeines Halteproblem H auf H_{ε} .

 $H = \{c \# w \mid \operatorname{decode}(c) \text{ hält auf } w\}$ $H_{\varepsilon} = \{c \mid \operatorname{decode}(c) \text{ hält auf } \varepsilon\}$

Sei $f(c\#w) = \operatorname{code}(M'_{c,w})$ für alle $c \in \mathfrak{B}^* \setminus \mathfrak{B}^*\{\#\}\mathfrak{B}^*$ und $w \in \mathfrak{B}^*$, wobei $M'_{c,w}$ det. TM die w auf Band schreibt, zurückläuft und $\operatorname{decode}(c)$ simuliert. Sonst sei $f(v) = \operatorname{code}(M_{\perp})$ mit M_{\perp} det. TM die nie hält (es gilt $v \notin H$ und $f(v) \notin H_{\varepsilon}$). Für alle $c \in \mathfrak{B}^* \setminus \mathfrak{B}^*\{\#\}\mathfrak{B}^*$ und $w \in \mathfrak{B}^*$ $c\#w \in H \iff \operatorname{decode}(c)$ hält auf $w \iff \operatorname{code}(M'_{c,w}) \in H_{\varepsilon}$

Damit $H = f^{-1}(H_{\varepsilon}), H \leq H_{\varepsilon}$ und H_{ε} unentscheidbar (Thm. §9.9)

21/29

Problem-Reduktionen

§9.12 Theorem (Satz von Rice)

Sei \mathcal{R} Klasse aller berechenbaren partiellen Funktionen und $\mathcal{F} \subseteq \mathcal{R}$ mit $\emptyset \subseteq \mathcal{F} \subseteq \mathcal{R}$. Dann $\mathcal{C}(\mathcal{F})$ unentscheidbar

$$\mathcal{C}(\mathcal{F}) = \{ w \in \mathfrak{B}^* \mid T(\mathsf{decode}(w)) \in \mathcal{F} \}$$

(Kodierungen aller det. TM, die Funktionen in ${\mathcal F}$ berechnen)

Henry Gordon Rice (* 1920; † 2003)

- Amer. Logiker & Mathematiker
- Bewies berühmten Satz in Dissertation
- Arbeitete zuletzt bei Computer Science Cooperation

Problem-Reduktionen

Beweis (1/3)

Sei $\bot = \emptyset \in \mathcal{R}$ überall undefinierte partielle Funktion auf \mathfrak{B}^* , die berechenbar ist und entweder $\bot \in \mathcal{F}$ oder $\bot \notin \mathcal{F}$.

Sei $\bot \in \mathcal{F}$. Da $\mathcal{F} \subsetneq \mathcal{R}$ existiert berechenbare partielle Funktion $g \in \mathcal{R} \setminus \mathcal{F}$. Sei \mathcal{M} det. TM die g berechnet.

Wir reduzieren vom Komplement Halteproblem $\overline{H_{\varepsilon}}$ auf leerem Band. Sei $f: \mathfrak{B}^* \to \mathfrak{B}^*$ mit $f(w) = \operatorname{code}(M_w)$ für alle $w \in \mathfrak{B}^*$ und M_w det. 2-Band-TM die bei Eingabe $v \in \mathfrak{B}^*$

- 1. decode(w) auf leerem zweiten Band simuliert
- 2. Bei Akzeptanz danach TM M auf Eingabe v simuliert

$$T(\mathcal{M}_w) = \begin{cases} \bot & \text{falls decode}(w) \text{ auf } \varepsilon \text{ nicht h\"{a}lt (d.h. } w \notin H_\varepsilon) \\ g & \text{sonst (d.h. } w \in H_\varepsilon) \end{cases}$$

22/29 23/29

Problem-Reduktionen

Beweis (2/3)

Funktion f berechenbar. Wir zeigen $w \in \overline{H_{\varepsilon}}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei $w \notin \overline{H_{\varepsilon}}$. Dann $T(M_w) = g$ und $T(M_w) \notin \mathcal{F}$. Also $code(M_w) \notin C(\mathcal{F})$, womit $f(w) \notin C(\mathcal{F})$.
- Sei $w \in \overline{H_{\varepsilon}}$. Dann $T(M_w) = \bot$ und $T(M_w) \in \mathcal{F}$. Also $code(M_w) \in \mathcal{C}(\mathcal{F})$, womit $f(w) \in \mathcal{C}(\mathcal{F})$.

Also gilt Hilfsaussage, $\overline{H_{\varepsilon}} \leq \mathcal{C}(\mathcal{F})$ und $\mathcal{C}(\mathcal{F})$ unentscheidbar da $\overline{H_{\varepsilon}}$ unentscheidbar (wäre $\overline{H_{\varepsilon}}$ entscheidbar, so wäre H_{ε} entscheidbar per Theorem §8.6; dies widerspricht Theorem §9.11)

> 24/29 25/29

Problem-Reduktionen

Notizen

- F (nicht-triviale) Eigenschaft partieller Funktionen (z.B. total, surjektiv; nicht Eigenschaft der TM)
- ullet Unentscheidbar, ob geg. TM Funktion mit Eigenschaft ${\mathcal F}$ berechnet
- Sehr m\u00e4chtige Aussage
- Kein Programm kann Korrektheit (Äguivalenz) oder Termination (Reduktion von Akzeptanz) beliebiger Programme entscheiden

Problem-Reduktionen

Beweis (3/3)

Sei $\perp \notin \mathcal{F}$. Da $\emptyset \subseteq \mathcal{F}$ existiert partielle Funktion $g \in \mathcal{F}$. Sei M det. TM die *q* berechnet.

Wir reduzieren vom Halteproblem H_{ϵ} auf leerem Band und verwenden gleiche Funktion f wie vorher. Wir zeigen $w \in H_{\varepsilon}$ gdw. $f(w) \in \mathcal{C}(\mathcal{F})$

- Sei $w \in H_{\varepsilon}$. Dann $T(M_w) = g$ und $T(M_w) \in \mathcal{F}$. Also $code(M_w) \in \mathcal{C}(\mathcal{F})$, womit $f(w) \in \mathcal{C}(\mathcal{F})$.
- Sei $w \notin H_{\varepsilon}$. Dann $T(M_{w}) = \bot$ und $T(M_{w}) \notin \mathcal{F}$. Also $code(M_w) \notin C(\mathcal{F})$, womit $f(w) \notin C(\mathcal{F})$.

Damit gilt Hilfsaussage, $H_{\varepsilon} \prec \mathcal{C}(\mathcal{F})$ und $\mathcal{C}(\mathcal{F})$ unentscheidbar da H_{ε} unentscheidbar (nach Theorem §9.11)

Problem-Reduktionen

§9.13 Theorem (Konsequenzen Satz von Rice)

Folgende Probleme unentscheidbar

- Universell akzeptierend { w | T(decode(w)) total } (Berechnet decode(w) Funktion?)
- Singulär akzeptierend $\{w \mid T(\text{decode}(w)) \neq \emptyset\}$ (Liefert decode(w) mind. 1 Ausgabe?)
- f-äquivalent $\{w \mid T(\text{decode}(w)) = f\}$ für berechenbares f(Berechnet decode(w) genau partielle Funktion f?)
- Konstant $\{w \mid \exists u : T(\text{decode}(w))(\{0,1\}^*) = \{u\}\}$ (Berechnet decode(w) konstante partielle Funktion?)
- Nicht verkürzend $\{w \mid \forall v \forall u \in T(\text{decode}(w))(\{v\}) : |u| \geq |v|\}$ (Ist Ausgabe immer mind. so lang wie Eingabe?)