Bosonic state preparation through coupling with semicon-spin qubit using numerically optimized pulse sequences

National University of Singapore

Lin Zhonglin Supervisor: Associate Professor Ng Huikhoon Co-supervisor: Dr Koh Teck Seng (NTU)

Motivation for **bosonic-modes-encoded qubits**

Challenges, QEC approaches	Long coherence time	Fast quantum computation	Good scalability
Traditional approach: encode 1 logical qubit into multiple physical qubits	Multiple physical qubits introduce more decoherence	Difficult to control multiple physical qubits at the same time	Less scalable
Alternative: encode 1 logical qubit into multiple bosonic modes (e.g. photonic modes in a superconducting cavity)	Bosonic modes stored in cavity have less loss channels, hence longer coherence	Only require control of one physical device	Potentially more scalable

Cavity dispersively coupled to a ancilla qubit for additional control over cavity state

Left figure: Quantum information processing with bosonic qubits in circuit QED, Atharv Joshi et al. 2021 Right figure: Quantum control of bosonic modes with superconducting circuits, Ma, 2021

Motivation for semiconductor-spin control qubit over superconducting control qubit

- 1. Possibly larger (coherence time) / (single gate time limit) ratio
 - a. Semicon-control qubits generally have more control channels than superconducting ones

Qubit type	Characteristic timescales (s)				Quantum consing	
	Characteristic timescales (s)		Quantum computation		Quantum sensing	
	T ₁	T _{2DD}	Single-qubit gate time	Single-qubit fidelity	Quantity	Sensitivity
Gated charge	30 ns (REF. ²⁷³)	7 ns (REF. ¹¹)	~0.1 ns (REF. ¹²)	86% ²⁷³	Charge	~ $10^{-4} \text{ e/}\sqrt{\text{(Hz)}} \text{ at } 1 \text{ Hz (REF.}^{11})$
Gated spin	57 s (REF. ⁵⁴)	28 ms (REF. ²⁴)	25 ns (REF. ²⁵)	99.96%*274	Magnetic field gradients	50 pT/√Hz (REFS ^{24,167})
Shallow dopants (electron)	>1h (REF. ¹⁰¹) (ens), 10 s (REF. ¹²⁰)	10 s (REF. ¹⁰⁴) (ens), 0.56 s (REF. ¹²⁴)	~100 ns (REF. ⁸²)	99.94%*127	Magnetic field (AC)	$18 \text{pT/}\sqrt{\text{Hz}} (\text{REF.}^{124})$
Shallow dopants (nucleus)	>days ⁶⁶	3 h (REF. ¹¹¹) (ens), 35.6 s ¹²⁴	~20 µs (REF. ⁶⁶)	99.98%*126	Magnetic field (AC)	$2 \text{nT} / \sqrt{\text{Hz}} (\text{REF.}^{131})$
Colour centres	>1h (NV ⁻ diamond) ¹⁷⁵	1s (NV ⁻ diamond) ¹⁷⁵	<20 ns (REF. ¹⁷³)	99.995%* (NV ⁻ diamond) ²⁷⁵	Magnetic field (DC)	50 pT/ $\sqrt{\text{Hz}}$ (REF. ²⁴⁴) (ens), 500 nT/ $\sqrt{\text{Hz}}$ (REF. ²⁴³)
					Magnetic field (AC)	32 pT/ $\sqrt{\text{Hz}}$ (REF. ²⁷⁶) (ens), 4.3 nT/ $\sqrt{\text{Hz}}$ (REF. ²⁴⁵)
	10 s (SiV SiC) ²⁷⁷ >20 ms (SiV SiC) ²⁷⁷		99.984%* (divacancy SiC) ²²¹	Temperature	$100\text{mK/}\sqrt{\text{Hz}}(\text{REFS}^{250,251})$ (SiV in diamond, SiC)	
				510)	Electric field	$10^{-5}\textrm{V}\cdot\textrm{\mu}\textrm{m}^{-1}\textrm{/}\sqrt{\textrm{(Hz)}}\textrm{(REF.}^{278}\textrm{)}$

Table 1 Current state of the art for semiconductor qubits

Table from: Semiconductor qubits in practice, Anasua Chatteriee

Cavity with Double Quantum Dots (DQD) ancilla

Single spin DQD Hamiltonian

$$H_{\text{DQD}} = \underbrace{\frac{1}{2}\epsilon\tau_z + t_c\tau_x}_{\text{orbital}} + \underbrace{B_z\sigma_z}_{\text{Zeeman}} + \underbrace{B_x\sigma_x\tau_z}_{\text{spin-orbit}}$$

- \blacktriangleright Electric dipole interaction $H_{\mathrm{int}} = g_c(a+a^{\dagger})\tau_z$
 - couples spin-charge hybridized states in DQD eigenbasis

- At resonance: effective two-level Jaynes-Cummings Hamiltonian
 - tunable spin-photon coupling $g_{\rm s}$
 - Independent tuning knobs for spin-photon coupling and Rabi driving

Displacement operator gate (D) and SNAP gate (S)

- 1. Displacement gate:
 - a. Direct unitary transformation on the oscillator
 - b. Generated by a linear drive on the cavity
- Selective Number-dependent Arbitrary Phase gate
 - Indirect control on the oscillator through ancilla
 - b. To realize SNAP gates, weakly drive the ancilla with multiple frequency components

$$D(\alpha) = \exp(\alpha a^{\dagger} - \alpha^* a),$$

$$H_{\rm C} = \epsilon_{\rm C}(t) {\rm e}^{{\rm i}\omega_{\rm C}t} a^{\dagger} + {\rm H.c.}$$

with $\alpha = -{\rm i}\int \epsilon_{\rm C}(t){
m d}t$.

$$S(\vec{\varphi}) = \sum_{n=0}^{\infty} e^{i\varphi_n} |n\rangle\langle n|,$$

$$H_{\rm T} = \epsilon_{\rm T}(t) {\rm e}^{{\rm i}\omega_{\rm T}t} |g\rangle\langle e| + {\rm H.c.}$$

with
$$\epsilon_{\mathrm{T}}(t) = \sum_{n} \Omega e^{\mathrm{i}(\phi_{n}(t) - n\chi t)}$$

State preparation using D, S gates: analytic VS numerical

analytical

numerically optimized

Figure 2.7: **Geometric phase on the Bloch sphere**. By performing a set of rotations which bring the energy eigenstates back to themselves, we effectively perform a rotation around the z axis, with angle given by the enclosed area. Unlike the cavity case, the phase is state-specific. This imparts one phase to the state $|g\rangle$, and the opposite phase to the state $|e\rangle$.

Figures taken from: Controlling Error-Correctable Bosonic Qubits, Philip Reinhold PhD thesis, 2019 Quantum control of bosonic modes with superconducting circuits, Ma et al. 2021 Universal control of an oscillator with dispersive coupling to a qubit, Stefan Krastanov et al. 2015

My tentative main task: bosonic state preparation through numerically-optimized pulse sequences

- 1. GRadient Ascent Pulse Engineering (GRAPE)
 - a. numerical optimization algorithm
- QuTiP
 - a. Open-source software for simulating the dynamics of open quantum systems

Possible further tasks

- Arbitrary bosonic state preparation
 - a. through analytic D, S-pair pulse sequences
 - b. Through numerically optimized pulse sequences
- 2. Unitary gate design
 - a. Choose a 2-qubit gate (e.g. C-NOT gate)
 - i. -> gate matrix in logical qubit basis
 - ii. -> find gate matrix in physical qubit basis (dependent on QEC code)
 - iii. -> find the physical implementation of such a gate on my physical system (sequences of control pulses)

Thank you!

References:

- 1. Introductory Quantum Optics, Christopher C. Gerry and Peter L. Knight
- 2. Controlling Error-Correctable Bosonic Qubits, Philip Reinhold PhD thesis, 2019
- 3. Optimal dispersive readout of a spin qubit with a microwave resonator, B. D'Anjou and Guido Burkard, 2019
- 4. Quantum control of bosonic modes with superconducting circuits, Ma et al. 2021
- Universal control of an oscillator with dispersive coupling to a qubit, Stefan Krastanov et al. 2015
- 6. Quantum information processing with bosonic qubits in circuit QED, Atharv Joshi et al. 2021

Kitten code (simplest binomial code)

- Quantum error correction
 - Uses redundancy of a large Hilbert space of many physical two-level systems

- Bosonic QEC
 - Uses same redundancy, but in infinitely large Hilbert space of a single physical system
 i.e. one quantum harmonic oscillator, e.g. 3D cavity or 2D planar superconducting resonator
- Kitten code:

$$\begin{cases} |0_L\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |4\rangle) \\ |1_L\rangle = |2\rangle \end{cases}$$

- Designed to correct single photon loss errors
- Error maps even to odd parity states, enables recovery

$$|\psi_L\rangle = \alpha|0_L\rangle + \beta|1_L\rangle$$
 photon loss:
$$\hat{a}|\psi_L\rangle = \sqrt{2}\left(\alpha|3\rangle + \beta|1\rangle\right) \underset{\text{recovery}}{\longrightarrow} \sqrt{2}\left(\alpha|0_L\rangle + \beta|1_L\rangle\right) \propto |\psi_L\rangle$$

Same mean photon number protects against dephasing – environment does not gain information about state

Example DQD device

Figure: Scanning electron microscopy image of a kind of DQD device