EXHIBIT 11

US012245859B2

(12) United States Patent Bahney et al.

(54) PHYSIOLOGICAL MONITORING DEVICE

(71) Applicant: iRhythm Technologies, Inc., San

Francisco, CA (US)

(72) Inventors: **Timothy J. Bahney**, San Francisco, CA (US); **Hung H. Ho**, San Francisco, CA

(US); Shena H. Park, San Francisco, CA (US); Genaro S. Sepulveda, San Francisco, CA (US); Mark J. Day, San Francisco, CA (US); Yuriko Tamura,

Belmont, CA (US)

(73) Assignee: iRhythm Technologies, Inc., San

Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/787,937

(22) Filed: Jul. 29, 2024

(65) Prior Publication Data

US 2024/0382130 A1 Nov. 21, 2024

Related U.S. Application Data

(63) Continuation of application No. 18/301,881, filed on Apr. 17, 2023, which is a continuation of application (Continued)

(51) Int. Cl. A61B 5/00 A61B 5/05

(2006.01) (2021.01)

A61B 5/25 (2021.01)

(52) U.S. Cl.

(Continued)

(10) Patent No.: US 12,245,859 B2

(45) **Date of Patent:**

Mar. 11, 2025

(58) Field of Classification Search

CPC G01L 1/044; G01L 5/162; G01L 5/223; G06F 3/0338; H01L 2224/97;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

1,497,079 A 6/1924 Gullborg 2,179,922 A 11/1939 Dana (Continued)

FOREIGN PATENT DOCUMENTS

AU 2011252998 8/2015 AU 2014209376 6/2017 (Continued)

OTHER PUBLICATIONS

US 8,750,980 B2, 06/2014, Katra et al. (withdrawn) (Continued)

Primary Examiner — Joseph A Stoklosa
Assistant Examiner — Brian M Antiskay
(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear, LLP

(57) ABSTRACT

The present invention relates to a physiological monitoring device. Some embodiments of the invention allow for long-term monitoring of physiological signals. Further embodiments may also allow for the monitoring of secondary signals such as motion.

22 Claims, 17 Drawing Sheets

US 12,245,859 B2

Page 2

Related U.S. Application Data 5,082,851 A 1/1992 Appelbaum et al. Mueller et al. 5,086,778 A 2/1992 No. 16/786,831, filed on Feb. 10, 2020, now Pat. No. 5,191,891 A 3/1993 Righter 5,205,295 A 4/1993 Del Mar et al. 11.627.902, which is a continuation of application 5,226,425 A 7/1993 Righter No. 16/397,651, filed on Apr. 29, 2019, now Pat. No. 5,228,450 A 7/1993 Sellers 10,555,683, which is a continuation of application 5,230,119 A 7/1993 Woods et al. No. 16/006,719, filed on Jun. 12, 2018, now Pat. No. 5,289,824 A 3/1994 Mills et al. 10,271,754, which is a continuation of application 5,305,746 A 4/1994 Fendrock 5,309,909 A 5/1994 Gadsby No. 14/162,656, filed on Jan. 23, 2014, now aban-5,328,935 A 7/1994 Van Phan doned. 5,365,935 A 11/1994 Righter et al. 5,458,141 10/1995 Neil Provisional application No. 61/756,326, filed on Jan. 5,483,967 1/1996 Ohtake 24, 2013. 5,489,624 A 2/1996 Kantner et al. 5,511,548 A 4/1996 Riazzi et al. 5,511,553 A 4/1996 Segalowitz (52) U.S. Cl. 5,515,858 A 5/1996 Myllymaki CPC . A61B 2562/0219 (2013.01); A61B 2562/125 5,536,768 7/1996 Kantner et al. (2013.01); A61B 2562/164 (2013.01) 12/1996 5,581,369 A Righter et al. (58) Field of Classification Search 5,626,140 A 5/1997 Feldman et al. CPC A61B 5/282; A61B 5/259; A61B 5/0006; 5,634,468 A 6/1997 Platt et al. 5,645,063 A 7/1997 Straka A61B 5/6833; A61B 5/0205; A61B 5/25; 5,645,068 A 7/1997 Mezack et al. A61B 2560/0412; A61B 5/0024; A61B 5,730,143 A 3/1998 Schwarzberg 5/0245; A61B 5/6823; A61B 5/318; A61B 5,749,365 A 5/1998 Magill 2562/164; A61B 5/024; A61B 5/02438; 5,749,367 A 5/1998 Gamlyn et al. 5,771,524 A 6/1998 A61B 5/1118; A61B 5/02055; A61B Woods et al. 5,772,604 A 6/1998 Langberg et al. 2562/0215; A61B 5/02405; A61B 5/6831; 5,776,072 A 7/1998 Hsu et al A61B 5/6804 5,881,743 3/1999 Nadel USPC 438/50-51, 53 D408,541 S 4/1999 Dunshee et al. See application file for complete search history. 5,916,239 A 6/1999 Geddes et al. 5,931,791 A 8/1999 Saltzstein et al. 5,941,829 A 8/1999 Saltzstein et al. (56)References Cited 5,957,854 A 9/1999 Besson et al. 5,959,529 9/1999 Kail U.S. PATENT DOCUMENTS 1/2000 6,013,007 Root et al. 6,032,060 A 2/2000 Carim 2.201.645 A 5/1940 Epner 6,038,464 A 3/2000 Axelgaard et al. 2,311,060 A 2/1943 Lurrain 6,038,469 A 3/2000 Karlsson et al. 2,444,552 A 7/1948 Sigurd 6,044,515 A 4/2000 Zygmont 2,500,840 A 3/1950 Lyons 6,093,146 A 7/2000 Filangeri 11/1965 3,215,136 A Holter et al. D429,336 S 8/2000 Francis et al. 3,547,107 A 12/1970 Chapman et al. 6.102.856 A 8/2000 Groff et al. 3,697,706 A 10/1972 Huggard 6,117,077 9/2000 Del Mar et al. 3,870,034 A 3/1975 James 6,121,508 A 9/2000 Bischof 3,882,853 A 5/1975 Gofman 6,132,371 10/2000 Dempsey et al. 3,911,906 A 10/1975 Reinhold 6,134,480 A 10/2000 Minogue 4,023,312 A 5/1977 Stickney 6,136,008 10/2000 Becker et al. 4,027,664 A 6/1977 Heavner, Jr. et al. 6,161,036 A 12/2000 Matsumura et al 4,082,087 A 4/1978 Howson 6,169,915 B1 1/2001 Krumbiegel et al. 4,121,573 A 4,123,785 A 10/1978 Crovella et al. 6,178,357 B1 1/2001 Gliner et al. 10/1978 Cherry et al. 6,200,265 B1 3/2001 Walsh et al. 4,126,126 A 11/1978 Bare 6,225,901 B1 5/2001 Kail 4,202,139 A 5/1980 Hong et al. 6,232,366 B1 5/2001 Wang et al. 4,274,419 A 6/1981 Tam et al. 6,238,338 B1 DeLuca et al. 5/2001 4,274,420 A 6/1981 Hymes 6,248,115 B1 6/2001 Halk 4,286,610 A 9/1981 Jones 6,287,252 B1 9/2001 Lugo 4,333,475 A 6/1982 Moreno et al. 6,290,707 B1 9/2001 Street 4,361,990 A 4,381,792 A 12/1982 Link 6,315,719 B1 11/2001 Rode et al. 5/1983 Busch 6,379,237 B1 4/2002 Gordon 4,438,767 A 3/1984 Nelson 6,385,473 B1 5/2002 Haines et al. 4,459,987 A 7/1984 Pangburn 6,389,308 B1 5/2002 Shusterman 4,535,783 A 8/1985 Marangoni 6,416,471 B1 6,453,186 B1 7/2002 Kumar et al. 4,537,207 A 8/1985 Gilhaus 7/2002 Lovejoy et al. 4,572,187 A 2/1986 Schetrumpf 6,434,410 B1 8/2002 Cordero et al. 4,621,465 A 11/1986 Pangburn 6,441,747 B1 8/2002 Khair et al. 4,622,979 A 11/1986 Katchis et al. 6,454,708 B1 9/2002 Ferguson et al. 4,623,206 A 11/1986 Fuller H05K 3/301 6,456,871 B1 9/2002 Hsu et al. 439/500 6,456,872 B1 9/2002 Faisandier 4,658,826 A 4/1987 Weaver 6,464,815 B1 10/2002 Beaudry 4,712,552 A 12/1987 Pangburn 6,493,898 B1 12/2002 Woods et al. 4,736,752 A 4/1988 Munck et al. 6,496,705 B1 12/2002 Ng et al. 4,855,294 A 8/1989 Patel 6,510,339 B2 1/2003 Kovtun et al. 4,925,453 A 5/1990 Kannankeril

4.938.228 A

4,981,141 A

5,003,987 A

5,027,824 A

7/1990

1/1991

4/1991

Righter et al.

Segalowitz

Grinwald

7/1991 Dougherty et al.

6,546,285 B1

6,564,090 B2

6,569,095 B2

6,577,893 B1

4/2003

5/2003

5/2003

Owen et al.

Taha et al.

Eggers

6/2003 Besson et al.

(50)	D 8	CH. I	Denn 251		0/2000	DI 111
(56)	Referen	ices Cited	D600,351 7,587,237			Phillips et al. Korzinov et al.
U.S.	. PATENT	DOCUMENTS	7,630,756		12/2009	
6,580,942 B1	6/2003	Willshire	7,632,174 D607,570			Gringer et al. Phillips et al.
6,585,707 B2		Cabiri et al.	7,672,714	B2	3/2010	Kuo et al.
6,589,170 B1		Flach et al.	7,715,905 D618,357		5/2010 6/2010	Kurzweil et al.
6,589,187 B1 6,605,046 B1		Dimberger et al. Del Mar et al.	7,729,753			Kremliovsky et al.
6,615,083 B2		Kupper	7,733,224		6/2010	
6,622,035 B1		Merilainen	D621,048 7,815,494			Severe et al. Gringer et al.
6,626,865 B1 6,656,125 B2		Prisell Misczynski et al.	7,841,039	B1	11/2010	Squire
6,664,893 B1	12/2003	Eveland et al.	7,889,070			Reeves et al.
6,665,385 B2 6,690,959 B2		Rogers et al. Thompson	7,894,888 D634,431		2/2011 3/2011	Chan et al. Severe et al.
6,694,177 B2		Eggers et al.	7,904,133			Gehman et al.
6,701,184 B2		Henkin	7,907,956 7,907,996		3/2011	Uhlik Prystowsky et al.
6,711,427 B1 6,730,028 B2		Ketelhohn Eppstein	7,941,207			Korzinov
D492,607 S		Curkovic et al.	D639,437			Bishay et al.
6,773,396 B2		Flach et al.	7,970,450 7,979,111			Kroecker et al. Acquista
6,775,566 B2 6,801,137 B2	10/2004	Nissila Eggers	7,996,075		8/2011	Korzinov et al.
6,801,802 B2	10/2004	Sitzman et al.	7,996,187			Nanikashvili et al.
6,871,089 B2		Korzinov et al. Labounty et al.	8,002,701 D645,968			John et al. Kasabach et al.
6,871,211 B2 6,875,174 B2		Braun et al.	D650,911	S	12/2011	Odeh
6,881,191 B2	4/2005	Oakley et al.	8,077,042		12/2011 1/2012	
6,893,396 B2 6,897,788 B2		Schulze et al. Khair et al.	8,103,333 8,108,036		1/2012	
6,904,312 B2	6/2005		8,170,639	B2	1/2012	Hauge
6,925,324 B2		Shusterman	8,116,841 8,150,502			Bly et al. Kumar et al.
6,940,403 B2 6,954,163 B2	9/2005 10/2005	Toumazou et al.	8,156,945		4/2012	
6,957,107 B2		Rogers et al.	8,160,682			Kumar et al.
6,987,965 B2		Ng et al.	D659,836 8,200,319			Bensch et al. Pu et al.
7,002,468 B2 7,020,508 B2		Eveland et al. Stivoric et al.	D663,432			Nichols
7,024,248 B2	4/2006	Penner et al.	8,214,007			Baker et al.
7,031,770 B2		Collins et al. Andresen et al.	8,244,335 8,249,686			Kumar et al. Libbus et al.
7,072,708 B1 7,072,709 B2	7/2006		8,261,754	B2	9/2012	Pitstick
7,076,283 B2	7/2006	Cho et al.	8,265,907 RE43,767			Nanikashvili et al.
7,076,287 B2 7,076,288 B2		Rowlandson Skinner	8,280,749			Eggers et al. Hsieh et al.
7,076,289 B2		Sarkar et al.	8,285,356	B2		Bly et al.
7,079,977 B2		Osorio et al.	8,290,129 8,290,574			Rogers et al. Field et al.
7,082,327 B2 7,089,048 B2		Houben Matsumura et al.	8,301,219			Chen et al.
7,099,715 B2		Korzinov et al.	8,301,236			Baumann et al.
7,117,031 B2		Lohman et al.	8,311,604 8,315,687			Rowlandson et al. Cross et al.
7,120,485 B2 7,130,396 B2		Glass et al. Rogers et al.	8,315,695	B2	11/2012	Sebelius et al.
7,161,484 B2	1/2007	Tsoukalis	8,323,188		12/2012	Tran Rowlandson et al.
7,171,166 B2 7,179,152 B1	1/2007	Ng et al. Rhoades	8,326,394 8,326,407		12/2012	
7,186,264 B2		Liddicoat et al.	8,328,718	B2	12/2012	
7,193,264 B2		Lande	D674,009 8,343,116		1/2013 1/2013	Nichols Ignon
7,194,300 B2 7,206,630 B1	3/2007 4/2007	Korzinov Tarler	8,369,936			Farringdon et al.
7,212,850 B2		Prystowsky et al.	8,374,688			Libbus et al.
7,222,054 B2	5/2007		8,386,009 8,388,543			Lindberg et al. Chon et al.
7,242,318 B2 7,266,361 B2		Harris Burdett	8,406,843	B2		Tiegs et al.
7,316,671 B2	1/2008	Lastovich et al.	8,412,317		4/2013	
7,349,947 B1 D567,949 S		Slage et al. Lash et al.	8,417,326 8,425,414			Chon et al. Eveland
7,354,423 B2		Zelickson et al.	D682,437	S	5/2013	Olson et al.
7,387,607 B2	6/2008	Holt et al.	8,449,471		5/2013	
7,444,177 B2 D584,414 S	1/2008	Nazeri Lash et al.	8,452,356 8,460,189			Vestel et al. Libbus et al.
7,477,933 B2		Ueyama	8,473,039		6/2013	Michelson et al.
7,478,108 B2	1/2009	Townsend et al.	8,473,047			Chakravarthy et al.
7,481,772 B2 7,482,314 B2	1/2009	Banet Grimes et al.	8,478,418 8,483,809		7/2013	Fahey Kim et al.
7,482,314 B2 7,502,643 B2		Farringdon et al.	8,500,636		8/2013	
7,539,533 B2	5/2009	Tran	8,515,529	B2	8/2013	Pu et al.
7,542,878 B2	6/2009	Nanikashvili	8,525,673	B2	9/2013	Tran

(56)	Referen	ces Cited	9,355,215	В2	5/2016	Vlach
			D759,653	S		Toth et al.
U.S.	PATENT	DOCUMENTS	9,357,939 9,364,150			Nosrati Sebelius et al.
8,535,223 B2	9/2013	Corroy et al.	9,364,155	B2	6/2016	Bardy et al.
8,538,503 B2		Kumar et al.	9,398,853 9,408,545			Nanikashvili Felix et al.
8,540,731 B2 8,560,046 B2	9/2013	Kay Kumar et al.	9,408,551			Bardy et al.
8,562,527 B2		Braun et al.	9,408,576		8/2016	Chon et al.
8,571,645 B2		Wu et al.	9,414,753 9,414,786			Chon et al. Brockway et al.
8,588,908 B2 8,591,430 B2		Moorman et al. Amurthur et al.	D766,447			Bishay et al.
8,591,599 B1	11/2013	Kaliki	9,433,367			Felix et al.
8,594,763 B1	11/2013		9,433,380 9,439,566			Bishay et al. Arne et al.
8,626,262 B2 8,639,319 B2		McGusty et al. Hugh et al.	9,439,599			Thompson et al.
8,668,643 B2	3/2014	Kinast	9,445,719			Libbus et al.
8,684,900 B2 8,684,925 B2	4/2014	Tran Amurthur et al.	9,451,890 9,451,975			Gitlin et al. Sepulveda et al.
8,688,189 B2		Shennib	9,474,445	B2	10/2016	Eveland
8,688,190 B2	4/2014	Libbus et al.	9,474,461			Fisher et al. Lapetina et al.
8,688,202 B2 8,718,742 B2		Brockway et al. Beck et al.	9,478,998 D773,056		11/2016	
8,718,752 B2		Libbus et al.	9,492,084			Behar et al.
8,718,753 B2		Chon et al.	9,504,423 D775,361			Bardy et al. Vosch et al.
8,731,632 B1 8,738,118 B2		Sereboff et al. Moon et al.	9,510,764		12/2016	
8,744,561 B2	6/2014		9,510,768		12/2016	
8,755,876 B2		Chon et al.	9,526,433 9,545,204			Lapetina et al. Bishay et al.
8,782,308 B2 8,789,727 B2	7/2014 7/2014	Viach Mortazavi	9,545,228	B2		Bardy et al.
8,790,257 B2		Libbus et al.	9,554,715	B2	1/2017	
8,795,174 B2		Manicka et al.	9,579,020 D780,914			Libbus et al. Kyvik et al.
8,818,481 B2 8,823,490 B2		Bly et al. Libbus et al.	9,585,584	B2		Marek et al.
8,838,218 B2	9/2014		9,597,004		3/2017	Hughes et al.
8,858,450 B2		Chon et al.	9,615,763 9,615,793		4/2017 4/2017	Felix et al. Solosko et al.
8,874,185 B2 D719,267 S		Sonnenborg Vaccarella	9,619,660			Felix et al.
8,903,477 B2	12/2014	Berkner	9,642,537			Felix et al.
8,903,484 B2 8,909,328 B2	12/2014 12/2014		9,655,518 9,655,537		5/2017 5/2017	Bardy et al.
8,909,330 B2		McCombie et al.	9,655,538	B2	5/2017	Felix
8,909,332 B2		Vitali et al.	9,662,030 9,675,264		5/2017 6/2017	Thng et al. Acquista et al.
8,909,333 B2 8,909,832 B2	12/2014	Rossi Vlach et al.	9,700,227			Bisĥay et al.
8,926,509 B2	1/2015	Magar et al.	9,706,938		7/2017	Chakravarthy et al.
8,945,019 B2	2/2015	Prystowsky et al.	9,706,956 9,713,428		7/2017	Brockway et al. Chon et al.
8,948,854 B2 8,954,129 B1	2/2015 2/2015		D793,566		8/2017	Bishay et al.
8,956,293 B2	2/2015		D794,812		8/2017	Matsushita
8,968,195 B2	3/2015		9,717,432 9,717,433		8/2017 8/2017	Bardy et al. Felix et al.
8,972,000 B2 8,979,755 B2		Manera Szydlo-Moore et al.	9,730,593	B2	8/2017	Bardy et al.
9,014,777 B2	4/2015	Woo	9,730,604			Li et al.
9,015,008 B2		Geva et al. Raptis et al.	9,730,641 9,736,625			Felix et al. Landgraf et al.
9,017,255 B2 9,017,256 B2		Gottesman	9,737,211	B2	8/2017	Bardy et al.
9,021,161 B2	4/2015	Vlach et al.	9,737,224 D797,301		8/2017 9/2017	Bardy et al.
9,021,165 B2 9,026,190 B2	4/2015 5/2015	Vlach Shenasa et al.	D797,301 D797,943		9/2017	
9,037,223 B2		Oral et al.	D798,170	S	9/2017	Toth et al.
9,044,148 B2		Michelson et al.	D798,294 9,775,534			Toth et al. Korzinov et al.
9,084,548 B2 9,095,274 B2		Bouguerra Fein et al.	9,775,536			Felix et al.
9,101,264 B2		Acquista	9,782,095			Ylostalo et al.
9,138,144 B2	9/2015		9,782,132 9,788,722			Golda et al. Bardy et al.
9,149,228 B2 9,173,670 B2	10/2015 11/2015	Kinast Sepulveda et al.	9,801,562		10/2017	Host-Madsen
9,179,851 B2	11/2015	Baumann et al.	9,820,665			Felix et al.
D744,659 S		Bishay et al.	9,839,363 D810,308		12/2017	Albert Lind et al.
9,211,076 B2 9,226,679 B2	12/2015 1/2016		D810,308 D811,610			Abel et al.
9,241,649 B2	1/2016	Kumar et al.	D811,611	S	2/2018	Lind et al.
9,241,650 B2		Amirim	D811,615			Lind et al.
9,277,864 B2 9,282,894 B2		Yang et al. Banet et al.	9,888,866 9,901,274			Chon et al. Bishay et al.
9,282,894 B2 9,307,921 B2		Friedman et al.	9,901,274			Friedman et al.
9,345,414 B1		Bardy et al.	9,936,875			Bardy et al.

(56)	Referen	nces Cited	11,051,738			Bahney et al.
U.S.	PATENT	DOCUMENTS	11,051,743 11,062,804	B2	7/2021	Felix et al. Selvaraj et al.
9,955,885 B2	5/2018	Felix et al.	11,083,371 11,141,091		8/2021 10/2021	Szabados et al. Uday et al.
9,955,887 B2	5/2018	Hughes et al.	11,172,882			Upadhya et al.
9,955,888 B2		Felix et al.	11,246,523 11,246,524		2/2022 2/2022	
9,955,911 B2 9,968,274 B2		Bardy et al. Korzinov et al.	11,253,185		2/2022	Szabados et al.
9,986,921 B2		Chon et al.	11,253,186		2/2022	Szabados et al.
10,004,415 B2		Bishay et al.	11,276,491 11,289,197		3/2022	Petterson et al. Park et al.
D823,466 S D824,526 S		Marogil Ramjit et al.	11,324,420		5/2022	Selvaraj et al.
10,045,709 B2		Bardy et al.	11,324,441			Bardy et al.
10,052,022 B2		Bardy et al.	11,331,034 11,337,632		5/2022 5/2022	Rapin et al. Abercrombie, II et al.
10,076,257 B2 10,095,841 B2		Lin et al. Dettinger et al.	11,350,864		7/2022	
10,098,559 B2		Hughes et al.	11,350,865		7/2022	Abercrombie, II et al.
10,111,601 B2		Bishay et al.	11,375,941 11,382,555		7/2022 7/2022	Szabados et al. Szabados et al.
10,123,703 B2 10,154,793 B2		Bardy et al. Felix et al.	11,399,760			Abercrombie, II et al.
10,165,946 B2	1/2019	Bardy et al.	11,445,967		9/2022 11/2022	Felix et al.
10,172,534 B2		Felix et al.	11,497,432 11,504,041			Szabados et al. Abercrombie, II et al.
10,176,575 B2 10,251,575 B2		Isgum et al. Bardy et al.	11,589,792	B1	2/2023	Abercrombie, II et al.
10,251,576 B2	4/2019	Bardy et al.	11,605,458			Park et al.
10,264,992 B2 10,265,015 B2		Felix et al. Bardy et al.	11,627,902 11,660,037			Bahney et al. Felix et al.
10,203,013 B2 10,270,898 B2		Soli et al.	D988,518	S	6/2023	Levy et al.
10,271,754 B2	4/2019	Bahney et al.	11,678,832			Boleyn et al.
10,271,755 B2 10,271,756 B2		Felix et al. Felix et al.	11,751,789 11,756,684			Abercrombie, II et al. Park et al.
10,278,603 B2		Felix et al.	11,806,150	B2	11/2023	Abercrombie, II et al.
10,278,606 B2	5/2019	Bishay et al.	D1,012,295			Peremen et al. Szabados et al.
10,278,607 B2 10,299,691 B2		Prystowsky et al. Hughes et al.	11,925,469 12,133,731			Abercrombie, II et al.
10,321,823 B2		Chakravarthy et al.	12,133,734	B2	11/2024	Kumar et al.
10,327,657 B2		Spencer et al.	2001/0056262 2002/0007126		1/2001	Cabiri et al.
D852,965 S D854,167 S		Bahney et al. Bahney et al.	2002/0026112			Nissila et al.
10,362,467 B2		Landgraf et al.	2002/0067256		6/2002	
10,368,808 B2		Lee et al.	2002/0082491 2002/0087167		6/2002 7/2002	Nissila Winitsky
10,376,172 B2 10,390,700 B2		Kuppuraj et al. Bardy et al.	2002/0180605		12/2002	Ozguz et al.
10,398,344 B2	9/2019	Felix et al.	2003/0069510 2003/0083559		4/2003	Semler Thompson
10,405,799 B2 10,413,205 B2		Kumar et al. Bardy et al.	2003/0085339		7/2003	
10,426,634 B1		Al-Jazaeri et al.	2003/0149349		8/2003	
10,433,743 B1		Felix et al.	2003/0176795 2003/0195408			Harris et al. Hastings
10,433,748 B2 10,433,751 B2		Bishay et al. Bardy et al.	2003/0199811		10/2003	Sage, Jr. et al.
10,441,184 B2	10/2019	Baumann et al.	2003/0212319		11/2003	Magill
10,463,269 B2 10,478,083 B2		Boleyn et al.	2004/0032957 2004/0068195			Mansy et al. Massicotte et al.
10,478,083 B2 10,499,812 B2		Felix et al. Bardy et al.	2004/0077954	A1	4/2004	Oakley et al.
10,517,500 B2	12/2019	Kumar et al.	2004/0082843 2004/0187297		4/2004 9/2004	Menon
10,555,683 B2 10,561,326 B2		Bahney et al. Felix et al.	2004/0199063		10/2004	
10,561,328 B2		Bishay	2004/0215091	A1	10/2004	Lohman et al.
10,568,533 B2		Soli et al.	2004/0236202 2004/0254587		11/2004 12/2004	
10,588,527 B2 10,595,371 B2		McNamara et al. Gopalakrishnan et al.	2004/0260189			Eggers et al.
10,602,942 B2		Shakur et al.	2005/0096513	A1	5/2005	Ozguz et al.
10,602,977 B2		Bardy et al.	2005/0101875 2005/0118246			Semler et al. Wong et al.
10,624,551 B2 10,660,520 B2	5/2020	Bardy et al.	2005/0119580			Eveland
10,667,712 B2		Park et al.	2005/0165323			Montgomery et al.
10,729,361 B2		Hoppe et al.	2005/0204636 2005/0277841		9/2005	Azar et al. Shennib
10,758,139 B2 10,772,521 B2		Rapin et al. Korzinov et al.	2005/0280531			Fadem et al.
10,779,744 B2	9/2020	Rapin et al.	2006/0030781			Shennib
10,813,565 B2 10,827,938 B2		Park et al. Fontanarava et al.	2006/0030782 2006/0047215			Shennib Newman et al.
10,827,938 B2 10,866,619 B1		Bushnell et al.	2006/004/213		4/2006	
10,869,610 B2	12/2020	Lu et al.	2006/0142648	A1	6/2006	Banet et al.
10,987,018 B2		Aga et al.	2006/0142654		6/2006	
11,004,198 B2 11,017,887 B2		Isgum et al. Finkelmeier et al.	2006/0149156 2006/0155173			Cochran et al. Anttila et al.
11,026,632 B2		Narasimhan et al.	2006/0155183			Kroecker et al.

(56)	Belomon	oos Citod	2011/0087083	A 1	4/2011	Poeze et al.
(56)	kereren	ces Cited	2011/008/083			Pandia et al.
U.S.	PATENT	DOCUMENTS	2011/0119212 2011/0144470			De Bruin et al. Mazar et al.
2006/0155199 A1	7/2006	Logier et al.	2011/0144470			Wang et al.
2006/0155200 A1		Ng et al.	2011/0166468			Prystowsky et al.
2006/0161064 A1		Watrous et al.	2011/0190650 2011/0218415		8/2011 9/2011	McNair Chan
2006/0161065 A1 2006/0161066 A1	7/2006 7/2006		2011/0218413			Parker, III et al.
2006/0161067 A1	7/2006		2011/0237924		9/2011	McGusty et al.
2006/0161068 A1		Hastings et al.	2011/0251504 2011/0306862		10/2011 12/2011	Tereshchenko et al. Hayes-Gill
2006/0167353 A1 2006/0224072 A1	7/2006	Nazeri Shennib	2012/0029307			Paquet et al.
2006/0264767 A1		Shennib	2012/0071730		3/2012	
2007/0003695 A1		Tregub et al.	2012/0071731 2012/0071743		3/2012	Gottesman Todorov et al.
2007/0010729 A1 2007/0027388 A1	2/2007	Virtanen Chou	2012/0083670			Rotondo et al.
2007/0027368 A1 2007/0088419 A1		Florina et al.	2012/0088999			Bishay et al.
2007/0156054 A1		Korzinov et al.	2012/0101396 2012/0108917		4/2012	Solosko et al. Libbus et al.
2007/0208266 A1 2007/0225611 A1		Hadley Kumar et al.	2012/0108917			Bly et al.
2007/0249946 A1		Kumar et al.	2012/0110226		5/2012	Vlach et al.
2007/0255153 A1		Kumar et al.	2012/0110228 2012/0133162		5/2012 5/2012	Vlach et al. Sgobero
2007/0270678 A1 2007/0285868 A1		Fadem et al. Lindberg et al.	2012/0172676		7/2012	
2007/0293776 A1		Korzinov et al.	2012/0197150	A1		Cao et al.
2007/0299325 A1	12/2007		2012/0209102 2012/0209126			Ylotalo et al. Amos et al.
2008/0039730 A1 2008/0091089 A1		Pu et al. Guillory et al.	2012/0209120			Kumar et al.
2008/0108890 A1		Teng et al.	2012/0220835	A1	8/2012	Chung
2008/0114232 A1	5/2008	Gazit	2012/0259233		10/2012 10/2012	Chan et al.
2008/0139953 A1 2008/0167567 A1		Baker et al. Bashour et al.	2012/0271141 2012/0310070			Kumar et al.
2008/0107307 A1 2008/0214901 A1		Gehman et al.	2012/0316532	A1	12/2012	McCormick
2008/0275327 A1	11/2008	Faarbaek et al.	2012/0323257 2012/0330126		12/2012	Sutton
2008/0281215 A1 2008/0288026 A1		Alhussiny Cross et al.	2013/0023816			Hoppe et al. Bachinski et al.
2008/0309287 A1	12/2008		2013/0041273	A1	2/2013	Houben et al.
2009/0048556 A1	2/2009	Durand	2013/0046151		2/2013	
2009/0062670 A1		Sterling et al.	2013/0085347 2013/0096395			Manicka et al. Katra et al.
2009/0062671 A1 2009/0073991 A1		Brockway Landrum et al.	2013/0116533	A1	5/2013	Lian et al.
2009/0076336 A1	3/2009	Mazar et al.	2013/0116585			Bouguerra
2009/0076340 A1 2009/0076341 A1		Libbus et al. James et al.	2013/0144146 2013/0150698		6/2013 6/2013	Hsu et al.
2009/0076341 A1 2009/0076342 A1		Amurthur et al.	2013/0158494		6/2013	Ong
2009/0076343 A1		James et al.	2013/0172763		7/2013 7/2013	Wheeler Aali et al.
2009/0076344 A1 2009/0076345 A1		Libbus et al. Manicka et al.	2013/0184662 2013/0191035			Chon et al.
2009/0076345 A1 2009/0076346 A1	3/2009		2013/0225938	A1	8/2013	Vlach
2009/0076349 A1		Libbus et al.	2013/0225967		8/2013	Esposito
2009/0076350 A1 2009/0076364 A1		Bly et al. Libbus et al.	2013/0226018 2013/0245415			Kumar et al. Kumar et al.
2009/0076397 A1		Libbus et al.	2013/0245472	A1	9/2013	Eveland
2009/0076401 A1		Mazar et al.	2013/0253285 2013/0274584			Bly et al. Finlay et al.
2009/0076559 A1 2009/0182204 A1		Libbus et al. Semler et al.	2013/02/4384		11/2013	
2009/0253975 A1	10/2009		2013/0300575			Kurzweil et al.
2009/0283300 A1		Grunthaner	2013/0324868 2013/0331663			Kaib et al. Albert et al.
2009/0292193 A1 2009/0292194 A1		Wijesiriwardana Libbus et al.	2013/0331665			Bly et al.
2009/0306485 A1	12/2009		2013/0338448			Libbus et al.
2010/0001541 A1		Sugiyama	2014/0012154 2014/0058280		1/2014	Mazar Chefles et al.
2010/0022864 A1 2010/0042113 A1	2/2010	Cordero Mah	2014/0088394		3/2014	
2010/0049006 A1		Magar et al.	2014/0094676			Gani et al.
2010/0051039 A1		Ferrara	2014/0094709 2014/0100432			Korzinov et al. Golda et al.
2010/0056881 A1 2010/0057056 A1		Libbus et al. Gurtner	2014/0171751			Sankman et al.
2010/0076533 A1		Dar et al.	2014/0116825			Kurzweil et al.
2010/0081913 A1		Cross et al.	2014/0206976			Thompson et al.
2010/0145359 A1 2010/0191310 A1	6/2010 7/2010		2014/0206977 2014/0243621			Bahney et al. Weng et al.
2010/0191910 A1 2010/0234716 A1	9/2010		2014/0275827			Gill et al.
2010/0249625 A1	9/2010	Lin	2014/0275840	A1	9/2014	
2010/0268103 A1		McNamara et al.	2014/0275928			Acquista et al.
2010/0312131 A1 2010/0331711 A1		Naware et al. Krauss et al.	2014/0330136 2015/0005854		1/2014	Manicka et al. Said
2011/0021937 A1		Hugh et al.	2015/0022372		1/2015	

(56)	Referen	ces Cited	2018/0161211 A 2018/0242876 A		Beckey Hughes et al.
U.S.	PATENT	DOCUMENTS	2018/0257346 A		Austin
			2018/0260706 A 2018/0289274 A		Galloway et al. Bahney et al.
2015/0057512 A1 2015/0073252 A1	3/2015	Kapoor Mazar	2018/0374576 A		Dettinger et al.
2015/0081959 A1		Vlach et al.	2019/0021671 A		Kumar et al.
2015/0082623 A1		Felix et al.	2019/0038148 A 2019/0046066 A		Valys Hughes et al.
2015/0087921 A1 2015/0087922 A1		Felix et al. Bardy et al.	2019/0069788 A		Coleman et al.
2015/0087922 A1		Bardy et al.	2019/0090769 A	1 3/2019	Boleyn et al.
2015/0087933 A1		Gibson et al.	2019/0097339 A 2019/0098758 A		Lim et al. Hassemer et al.
2015/0087948 A1 2015/0087949 A1		Bishay et al. Felix et al.	2019/0099132 A		Mulinti et al.
2015/0087950 A1		Felix et al.	2019/0167143 A		Li et al.
2015/0087951 A1		Felix et al.	2019/0209022 A 2019/0246928 A	_	Sobol Bahney et al.
2015/0088007 A1 2015/0088020 A1		Bardy et al. Dreisbach et al.	2019/0274574 A		Hughes et al.
2015/0094556 A1		Geva et al.	2019/0282178 A		Volosin et al.
2015/0148637 A1		Golda et al.	2019/0290147 A 2019/0298201 A		Persen et al. Persen et al.
2015/0157273 A1 2015/0173671 A1	6/2015	An et al. Paalasmaa et al.	2019/0298201 A		Persen et al.
2015/0193595 A1		McNamara et al.	2019/0298272 A		
2015/0223711 A1		Raeder et al.	2019/0374163 A 2019/0378617 A		Faabaek et al. Charles et al.
2015/0238107 A1 2015/0289814 A1		Acquista et al. Magar et al.	2020/0060563 A		Boleyn
2015/0297134 A1		Albert et al.	2020/0093388 A	1 3/2020	Bouguerra et al.
2015/0327781 A1		Hernandez-Silverira et al.	2020/0100693 A 2020/0108260 A		Velo Haddad et al.
2015/0351689 A1 2015/0351799 A1	12/2015 12/2015		2020/0108200 A 2020/0121209 A		Kumar et al.
2015/0374244 A1	12/2015		2020/0170529 A	1 6/2020	Bahney et al.
2016/0022161 A1	1/2016		2020/0178825 A		
2016/0029906 A1 2016/0066808 A1	2/2016 3/2016	Tompkins et al.	2020/0178828 A 2020/0193597 A		Bahney et al. Fan et al.
2016/0085927 A1		Dettinger et al.	2020/0196897 A	1 6/2020	Biswas et al.
2016/0085937 A1	3/2016	Dettinger et al.	2020/0214563 A		Lin
2016/0086297 A1 2016/0098536 A1		Dettinger et al. Dettinger et al.	2020/0214584 A 2020/0237309 A		McNamara et al. Golda et al.
2016/0098537 A1 2016/0098537 A1		Dettinger et al.	2020/0289014 A	1 9/2020	Park et al.
2016/0113520 A1	4/2016	Manera	2020/0337608 A		
2016/0120433 A1 2016/0120434 A1		Hughes et al. Park et al.	2020/0352489 A 2020/0367779 A		Hoppe et al. Korzinov et al.
2016/0120434 A1 2016/0128597 A1		Lin et al.	2020/0397313 A	1 12/2020	Attia et al.
2016/0135746 A1		Kumar et al.	2021/0038102 A		Boleyn et al. Krebs et al.
2016/0149292 A1 2016/0157744 A1		Ganton Wu et al.	2021/0059612 A 2021/0085215 A		Auerbach et al.
2016/0166155 A1		Banet et al.	2021/0085255 A	1 3/2021	Vule et al.
2016/0192852 A1		Bozza et al.	2021/0125722 A 2021/0153761 A		Sherkat et al.
2016/0192855 A1 2016/0192856 A1	7/2016 7/2016	Geva et al.	2021/0133701 A 2021/0217519 A		Jung et al. Park et al.
2016/0192836 A1 2016/0198972 A1		Lee et al.	2021/0244279 A	1 8/2021	Szabados et al.
2016/0232807 A1	8/2016	Ghaffari et al.	2021/0269046 A		Hashimoto et al.
2016/0262619 A1	9/2016	Marcus et al. Bardy et al.	2021/0298688 A 2021/0304855 A		Banerjee et al. Ansari et al.
2016/0278658 A1 2016/0287177 A1		Huppert et al.	2021/0315470 A	1 10/2021	Wu et al.
2016/0287207 A1	10/2016	Xue	2021/0315504 A		Kumar et al.
2016/0296132 A1 2016/0302725 A1		Bojovic et al. Schultz et al.	2021/0361218 A 2021/0369178 A		Szabados et al. Szabados et al.
2016/0302725 A1 2016/0302726 A1	10/2016		2021/0374502 A	1 12/2021	Roth et al.
2016/0317048 A1	11/2016	Chan et al.	2021/0378579 A		Doron et al.
2016/0317057 A1 2016/0359150 A1		Li et al. de Francisco Martin et al.	2021/0393187 A 2022/0022798 A		Amos et al. Soon-Shiong et al.
2016/0359130 A1 2016/0361015 A1		Wang et al.	2022/0031223 A	1 2/2022	Li et al.
2016/0367164 A1	12/2016	Felix et al.	2022/0039719 A		Abercrombie, II et al.
2016/0374583 A1	12/2016 2/2017	Cerruti et al.	2022/0039720 A 2022/0079497 A		Abercrombie, II et al. Bardy et al.
2017/0042447 A1 2017/0055896 A1		Al-Ali et al.	2022/0093247 A		Park et al.
2017/0056682 A1	3/2017	Kumar	2022/0095982 A		de Saint Victor et al.
2017/0065823 A1		Kaib et al.	2022/0142493 A 2022/0142495 A		Albert De Marco et al.
2017/0076641 A1 2017/0188872 A1	3/2017 7/2017		2022/0160285 A		Szabados et al.
2017/0188971 A1	7/2017	Hughes et al.	2022/0167905 A		Szabados et al.
2018/0049698 A1	2/2018		2022/0280093 A		Abercrombie, II et al. Abercrombie, II et al.
2018/0049716 A1 2018/0064388 A1		Rajagopal et al. Heneghan et al.	2022/0296144 A 2022/0330874 A		Szabados et al.
2018/0110266 A1		Lee et al.	2022/0330875 A		Szabados et al.
2018/0125387 A1		Hadley et al.	2022/0361793 A		Abercrombie, II et al.
2018/0144241 A1 2018/0146875 A1		Liu et al. Friedman et al.	2023/0056777 A 2023/0172511 A		Abercrombie, II et al. Abercrombie, II et al.
2016/01408/3 Al	3/2018	i neuman et al.	2025/01/2511 A	1 0/2023	Abereromore, if et al.

		Page 8			
(56)	References Cited	JP	2007-097822	4/2007	
(00)		JP	2007-296266	11/2007	
	U.S. PATENT DOCUMENTS	JP	2008-532596	8/2008	
		JP	2008-200120	9/2008	
	0172518 A1 6/2023 Szabados et al.	JP	2009-518099	5/2009	
	0200702 A1 6/2023 Sepulveda et al.	JP JP	2009-525816 2011-516110	7/2009 5/2011	
	0207122 A1 6/2023 Park et al.	JP	2011-519583	7/2011	
	0248288 A1 8/2023 Bahney et al. 0371873 A1 11/2023 Abercrombie, II et al.	JP	2013-521966	6/2013	
	0371874 A1 11/2023 Abercrombie, II et al.	JP	5203973	6/2013	
	0145080 A1 5/2024 Park et al.	JP	1483906 S	10/2013	
	0321455 A1 9/2024 Hytopoulos et al.	JP	2014-008166	1/2014	
2024/0	0331875 A1 10/2024 Hytopoulos et al.	JP	5559425	7/2014	
	0382131 A1 11/2024 Bahney et al.	JP	2014-150826	8/2014	
	0398309 A1 12/2024 Kumar et al.	JP JP	2014-236982 2015-530225	12/2014 10/2015	
2024/0	0398310 A1 12/2024 Kumar et al.	JP	2015-531954	11/2015	
	PODELON DATENT DOOLD (ENTE	JP	2016-504159	2/2016	
	FOREIGN PATENT DOCUMENTS	JP	2013-517053	5/2016	
ATT	2021218704 2/2024	JP	2016-523139	8/2016	
AU CA	2021218704 2/2024 2 752 154 8/2010	JP	2017-136380	8/2017	
CA	2 898 626 7/2014	JP	6198849	9/2017	
CA	2 797 980 8/2015	JP	2017-209482	11/2017	
CA	2 651 203 9/2017	JP JP	2018-504148 2018-508325	2/2018 3/2018	
CA	2 966 182 6/2020	JP	2018-513702	5/2018	
CA	3 171 482 3/2024	JP	6336640	5/2018	
CN	102038497 7/2012	JP	D1596476	8/2018	
CN	102883775 12/2014	JP	2018-153651	10/2018	
CN	103997955 11/2016	JP	2018-174995	11/2018	
CN CN	303936805 11/2016 107205679 9/2017	JP	2019-503761	2/2019	
CN	107203079 9/2017	JP	6491826	3/2019	
CN	109363659 2/2019	JP JP	6495228	3/2019	
CN	110491500 11/2019	JP	2019-140680 2019-528511	8/2019 10/2019	
$^{\rm CN}$	110766691 2/2020	JP	2020-058819	4/2020	
CN	110890155 3/2020	JP	2020-509840	4/2020	
CN	110974217 4/2020	JP	6766199	9/2020	
CN	115426940 12/2022	JP	2021-003591	1/2021	
CN CN	116322498 6/2023 116530951 8/2023	JP	6901543	6/2021	
EM	001857966-0001 5/2011	JP	2021-525616	9/2021	
EM	003611714-0001 1/2017	JP JP	2021-166726 2022-501123	10/2021 1/2022	
EM	003611714-0002 1/2017	JP	2022-037153	3/2022	
EM	003611714-0003 1/2017	JP	2022-037155	3/2022	
EM	003611714-0004 1/2017	JP	2022-126807	8/2022	
EM	003611714-0005 1/2017	JP	2023-508235	3/2023	
EP EP	0509689 4/1992	JP	2023-074267	5/2023	
EP	1738686 6/2006 1782729 5/2007	JP	2023-100210	7/2023	
EP	1981402 10/2008	JP	2023-536981	8/2023	
EP	2262419 12/2010	JP JP	2023-536982 7406001	8/2023 12/2023	
EP	2395911 12/2011	JP	2024-009608	1/2024	
\mathbf{EP}	2568878 3/2013	JP	2024-502335	1/2024	
EP	2635179 9/2013	JP	2024-021061	2/2024	
EP EP	2635180 9/2013 2048050 12/2015	JP	2024-026058	2/2024	
EP	2948050 12/2015 2983593 2/2016	JP	7431777	2/2024	
EP	3165161 5/2017	JP	2024-050777	4/2024	
EP	3212061 9/2017	JP JP	2024-521799 2024-087811	6/2024 7/2024	
EP	3753483 12/2020	JP	2024-08/811	8/2024	
EP	3387991 6/2022	JP	7551696	9/2024	
\mathbf{EP}	4103051 12/2022	JP	2024-164285	11/2024	
GB	2 299 038 9/1996	KR	3003784570000	3/2005	
GB	2 348 707 10/2000 002592907-0001 12/2014	KR	1020050055072	6/2005	
IN JP	S61-137539 6/1986	KR	1020140050374	4/2014	
JP	H05-329123 12/1993	KR	10-1513288	4/2015	
JP	H08-317913 3/1996	KR KR	3008476060000 3008476090000	3/2016 3/2016	
JP	H08-322952 12/1996	KR KR	3008476090000	3/2016	
JP	2000-126145 5/2000	KR	3008482960000	6/2016	
JP	2001-057967 3/2001	KR	3008953750000	2/2017	
JP	2003-275186 9/2003	KR	3008953760000	2/2017	
JP	2004-121360 4/2004	KR	3008987790000	3/2017	
JP JP	2006-110180 4/2006 2006-136405 6/2006	KR	1020170133527	12/2017	
JP JP	2006-136405 6/2006 2006-520657 9/2006	KR	3009445870000	2/2018	
JP	2007-045967 2/2007	KR	3009547690000	4/2018	
JP	2007-503910 3/2007	KR	3009547710000	4/2018	
JP	2007-504917 3/2007	KR	10-2019-0114694	10/2019	

US 12,245,859 B2

Page 9

(56)	Refer	ences Cited	WO WO 2020/008864 1/2020
(50)	Keler	ences encu	WO WO 2020/013895 1/2020
	FOREIGN PAT	ENT DOCUMENTS	WO WO 2020/041363 2/2020
			WO WO 2020/058314 3/2020
KR	10-2563372	7/2023	WO WO 2020/224041 11/2020
KR	10-2023-0119036	8/2023	WO WO 2020/0226852 11/2020
WO	WO 99/023943	5/1999	WO WO 2020/262403 12/2020 WO WO 2021/150122 7/2021
WO	WO 01/016607	3/2001	WO WO 2021/130122 //2021 WO WO 2021/163331 8/2021
WO WO	WO 2003/043494	5/2003 11/2004	WO WO 2021/103331 0/2021 WO WO 2021/200245 10/2021
WO	WO 2004/100785 WO 2005/025668	3/2005	WO WO 2021/200764 10/2021
wo	WO 2005/025008 WO 2005/037946	4/2005	WO WO 2021/205788 10/2021
WO	WO 2005/084533	9/2005	WO WO 2021/210592 10/2021
WO	WO 2006/094513	9/2006	WO WO 2021/241308 12/2021
WO	WO 2007/049080	3/2007	WO WO 2021245203 12/2021
WO	WO 2007/036748	4/2007	WO WO 2022034045 2/2022 WO WO 2022093709 5/2022
WO	WO 2007/063436	6/2007	WO WO 2022093709 5/2022 WO WO 2022/147520 7/2022
WO	WO 2007/066270	6/2007	WO WO 2022/251636 12/2022
WO WO	WO 2007/071180	6/2007	WO WO 2023/114742 6/2023
WO	WO 2007/072069 WO 2007/092543	6/2007 8/2007	WO WO 2024/102663 5/2024
wo	WO 2008/005015	1/2008	
WO	WO 2008/005016	1/2008	OTHER BURLICATIONS
WO	WO 2008/057884	5/2008	OTHER PUBLICATIONS
WO	WO 2008/120154	10/2008	Nichards at all OverTale with 14th //www.tale.com/wat.10
WO	WO 2009/055397	4/2009	Nintendo et al. (YouTube video https://www.youtube.com/watch?
WO	WO 2009/074928	6/2009	v=hzybDNChNeU). Aug. 2010. (Year: 2010).*
WO	WO 2009/112972	9/2009	3M Corporation, "3M Surgical Tapes—Choose the Correct Tape"
WO	WO 2009/112976	9/2009	quicksheet (2004).
WO WO	WO 2009/112979 WO 2009/134826	9/2009 11/2009	Altini, et al., An ECG Patch Combining a Customized Ultra-Low-
WO	WO 2009/134820 WO 2010/014490	2/2010	Power ECG SOC With Bluetooth Low Energy for Long Term
wo	WO 2010/014490 WO 2010/104952	9/2010	Ambulatory Monitoring, Conference: Proceddings of Wireless Health
WO	WO 2010/105203	9/2010	2011, WH 2011, Oct. 10-13, 2011.
WO	WO 2010/107913	9/2010	British-Made Early Warning Monitor a "Game Changer", healthcare-
WO	WO 2010/093900	10/2010	in-europe.com, Mar. 31, 2014.
WO	WO 2011/077097	6/2011	Comstock, Proteus Digital Health Quietly Launches Consumer-
WO	WO 2011/084636	7/2011	Facing Wearable for Athletes, Mobile Health News, Oct. 29, 2014.
WO	WO 2011/112420	9/2011	Coxworth, Small Adhesive Partch Outperforms Traditional Tech for
WO WO	WO 2011/143490 WO 2011/149755	11/2011 12/2011	Detecting Arrhythmia, Scripps, iRhythm Technologies, Jan. 3, 2014.
WO	WO 2011/149/33 WO 2012/003840	1/2012	Del Mar et al.; The history of clinical holter monitoring; A.N.E.; vol.
wo	WO 2012/009453	1/2012	10; No. 2; pp. 226-230; Apr. 2005.
WO	WO 2012/061509	5/2012	Enseleit et al.; Long-term continuous external electrocardiogramg:
WO	WO 2012/061518	5/2012	a review; Eurospace; vol. 8; pp. 255-266; 2006.
WO	WO 2012/125425	9/2012	Feng-Tso Sun et al., "PEAR: Power efficiency through activity
WO	WO 2012/140559	10/2012	recognition (for ECG-based sensing)", Pervasive Computing Tech-
WO	WO 2012/160550	11/2012	nologies for Healthcare (PervasiveHealth) 2011 5th International
WO	WO 2013/065147	5/2013	Conference on, IEEE, May 23, 2011. pp. 115-122.
WO WO	WO 2013/179368 WO 2014/047032	12/2013 3/2014	Hoefman et al.; Optimal duration of event recording for diagnosis
wo	WO 2014/047032 WO 2014/047205	3/2014	
WO	WO 2014/051563	4/2014	of arrhythmias in patients with palpitations and light-headedness in
WO	WO 2014/055994	4/2014	the general practice; Family Practice; Dec. 7, 2006.
WO	WO 2014/116825	7/2014	Huyett "Keystock & Shim Stock Catalog" p. 9 Feb. 2014. found at
WO	WO 2014/168841	10/2014	https://issuu.com/glhuyett/docs/gl-huyett-keystock-catalog/20 (Year:
WO	WO 2014/197822	12/2014	2014).
WO	WO 2015/089484	6/2015	Ikeda Y. et al., "A Method for Transmission Data Reduction for
WO WO	WO 2016/044514 WO 2016/044515	3/2016 3/2016	Automated Monitoring System via CNN Distribution Process",
WO	WO 2016/044519	3/2016	Proceedings of the Symposium of Multi-media, Distribution, Coor-
wo	WO 2016/057728	4/2016	dination, and Mobile (DOCOMO2019), Jul. 2019.
wo	WO 2016/070128	5/2016	International Preliminary Report on Patentability and Written Opin-
WO	WO 2016/130545	8/2016	ion in PCT Application No. PCT/US2014/012749, dated Aug. 6,
WO	WO 2016/172201	10/2016	2015.
WO	WO 2016/181321	11/2016	International Search Report and Written Opinion in PCT Applica-
WO	WO 2017/039518	3/2017	tion No. PCT/US2014/012749, dated Mar. 21, 2014.
WO	WO 2017/041014	3/2017	Kennedy et al.; The history, science, and innovation of holter
WO WO	WO 2017/043597 WO 2017/043603	3/2017 3/2017	technology; A.N.E.; vol. 11; No. 1; pp. 85-94; 2006.
WO	WO 2017/043603 WO 2017/108215	3/2017 6/2017	"Mayo Alumni", Mayo Clinic, Rochester, MN, Spring 2011, in 24
WO	WO 2017/108215 WO 2017/159635	9/2017	pages.
wo	WO 2017/153033 WO 2018/164840	9/2018	Medtronic Launches SEEQ Wearable Cardiac Monitoring System
WO	WO 2018/218310	12/2018	in United States, Diagnostic and Interventional Cardiology, Oct. 7,
WO	WO 2019/070978	4/2019	2014.
WO	WO 2019/071201	4/2019	Mundt et al. "A Multiparameter Wearable Physiologic Monitoring
WO	WO 2019/188311	10/2019	System for Space and Terrestrial Applications" IEEE Transactions
WO	WO 2019/191487	10/2019	on Information Technology in Biomedicine, vol. 9, No. 3, pp.
WO	WO 2019/233807	12/2019	382-384, Sep. 2005.

US 12,245,859 B2

Page 10

(56) References Cited

OTHER PUBLICATIONS

Prakash, New Patch-Based Wearable Sensor Combines Advanced Skin Adhesives and Sensor Technologies, Advantage Business Marketing, Jul. 17, 2012.

Rajpurkar et al., "Cardiologist-Level Arrhythmia Detection with Convolutinal Neural Networks," arxiv.org, https://arxiv.org/abs/1707.01836, Jul. 6, 2017 in 9 pages.

Redjem Bouhenguel et al, "A risk and Incidence Based Atrial Fibrillation Detection Scheme for Wearable Healthcare Computing Devices," Pervasive Computer Technologies for Healthcare, 2012 6th International Conference on, IEEE, pp. 97-104, May 21, 2012. Reiffel et al.; Comparison of autotriggered memory loop recorders versus standard loop recordersversus 24-hour holter monitors for arrhythmia detection; Am. J. Cardiology; vol. 95; pp. 1055-1059; May 1, 2005.

Request for Reexamination of U.S. Pat. No. 7,020,508 under 35 U.S.C. §§ 311-318 and 37 C.F.R. § 1.913 as submitted Sep. 14, 2012 in 78 pages.

Scapa Medical product listing and descriptions (2008) available at http://www.caapana.com/productlist.jsp and http://www.metplus.co.rs/pdf/prospekti/Samolepljivemedicinsketrake.pdf; retrieved via WayBack Machine Sep. 24, 2012.

Strong, Wearable Technologies Conference 2013 Europe—Notes and Roundup, Wearable Technologies Conference, Feb. 8, 2013. Sumner, Stanford Engineers Monitor Heart Health Using Paper-Thin Flexible 'Skin', Stanford Report, May 14, 2013.

Ward et al.; Assessment of the diagnostic value of 24-hour ambulatory electrocardiographic monitoring; Biotelemetry Patient monitoring; vol. 7; 1980.

Ziegler et al.; Comparison of continuous versus intermittent monitoring of atrial arrhythmias; Heart Rhythm; vol. 3; No. 12; pp. 1445-1452; Dec. 2006.

Zimetbaum et al.; The evolving role of ambulatory arrhythmia monitoring in general clinic practice; Ann. Intern. Med.; vol. 130; pp. 846-8556; 1999.

Zimetbaum et al.; Utility of patient-activated cardiac event recorders in general clinical practice; The Amer. J. of Cardiology; vol. 79; Feb. 1, 1997.

Akram, Muhammad Usman, "Application of Prototype Based Fuzzy Classifiers for ECG based Cardiac Arrhythmia Recognition", Jan. 1, 2008 retrieved from faculty.pieas.edu.pk/Fayyaz/_static/pubfiles/student/usman_thesis.pdf [retrieved on Feb. 17, 2015] in 93 pages. International Search Report and Written Opinion received in PCT Application No. PCT/US2022/081409, dated May 4, 2023 in 24 pages.

International Search Report and Written Opinion received in PCT Application No. PCT/US2023/078848, dated May 7, 2024 in 18 pages.

Behind the Design: How iRhythm Built Its New Zio Monitor. Online, published date Oct. 4, 2023. Retrieved on Jun. 18, 2024 from URL: https://www.mddionline.com/cardiovascular/behind-the-design-how-irhythm-built-its-new-zio-monitor.

Japanese Office Action received in JP Application No. 2023-173428 dated Dec. 3, 2024.

^{*} cited by examiner

U.S. Patent Mar. 11, 2025 Sheet 1 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 2 of 17

U.S. Patent Mar. 11, 2025 Sheet 3 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 4 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 5 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 6 of 17 US 12,245,859 B2

Mar. 11, 2025

Sheet 7 of 17

US 12,245,859 B2

FIG. 30

Mar. 11, 2025

Sheet 8 of 17

US 12,245,859 B2

Mar. 11, 2025

Sheet 9 of 17

US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 10 of 17 US 12,245,859 B2

FIG. 4

U.S. Patent Mar. 11, 2025 Sheet 11 of 17 US 12,245,859 B2

Mar. 11, 2025

Sheet 12 of 17

US 12,245,859 B2

FIG. 5B

U.S. Patent Mar. 11, 2025 Sheet 13 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 14 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 15 of 17 US 12,245,859 B2

U.S. Patent Mar. 11, 2025 Sheet 16 of 17 US 12,245,859 B2

Mar. 11, 2025

Sheet 17 of 17

US 12,245,859 B2

FIG. 9A

FIG. 9D

FIG. 9B

FIG. 9E

FIG. 9C

FIG. 9F

1

PHYSIOLOGICAL MONITORING DEVICE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 18/301,881, filed Apr. 17, 2023, which is a continuation of U.S. patent application Ser. No. 16/786,831, filed Feb. 10, 2020, which is a continuation of U.S. patent application Ser. No. 16/397,651, filed Apr. 29, 2019, which is a continuation of U.S. patent application Ser. No. 16/006, 719, filed Jun. 12, 2018, which is a continuation of Ser. No. 14/162,656, filed, Jan. 23, 2014, which claims the benefit of U.S. Provisional Application No. 61/756,326, filed Jan. 24, MONITORING 15 entitled PHYSIOLOGICAL DEVICE. The contents of the aforementioned applications are hereby incorporated by reference in their entireties as if fully set forth herein. The benefit of priority to the foregoing provisional application is claimed under the appropriate legal basis, including, without limitation, under 35 U.S.C. \S 20 119 (e).

BACKGROUND

Field of the Invention

The invention relates generally to medical devices. More specifically, the invention relates to a physiological monitoring device and method for use.

Description of the Related Art

Abnormal heart rhythms, or arrhythmias, may cause various types of symptoms, such as loss of-consciousness, palpitations, dizziness, or even death. An arrhythmia that 35 causes such symptoms is often an indicator of significant underlying heart disease. It is important to identify when such symptoms are due to an abnormal heart rhythm, since treatment with various procedures, such as pacemaker implantation or percutaneous catheter ablation, can success- 40 fully ameliorate these problems and prevent significant symptoms and death.

Since the symptoms listed above can often be due to other, less serious causes, a key challenge is to determine when any of these symptoms are due to an arrhythmia. Oftentimes, 45 arrhythmias occur infrequently and/or episodically, making rapid and reliable diagnosis difficult. Currently, cardiac rhythm monitoring is primarily accomplished through the use of devices, such as Holter monitors, that use shortduration (<1 day) electrodes affixed to the chest. Wires 50 connect the electrodes to a recording device, usually worn on a belt. The electrodes need daily changing and the wires are cumbersome. The devices also have limited memory and recording time. Wearing the device interferes with patient movement and often precludes performing certain activities 55 while being monitored, such as bathing. All of these limitations severely hinder the diagnostic usefulness of the device, the compliance of patients using the device and the likelihood of capturing all important information. Lack of compliance and the shortcomings of the devices often lead 60 to the need for additional devices, follow-on monitoring or other tests to make a correct diagnosis.

Current methods to correlate symptoms with the occurrence of arrhythmias, including the use of cardiac rhythm monitoring devices, such as Holter monitors and cardiac 65 event recorders, are often not sufficient to allow an accurate diagnosis to be made. In fact, Holter monitors have been 2

shown to not lead to a diagnosis up to 90% of the time ("Assessment of the Diagnostic Value of 24-Hour Ambulatory Electrocariographic Monitoring", by D E Ward et al. Biotelemetry Patient Monitoring, vol. 7, published in 1980).

Additionally, the medical treatment process to actually obtain a cardiac rhythm monitoring device and initiate monitoring is typically very complicated. There are usually numerous steps involved in ordering, tracking, monitoring, retrieving, and analyzing the data from such a monitoring device. In most cases, cardiac monitoring devices used today are ordered by a cardiologist or a cardiac electrophysiologist (EP), rather than the patient's primary care physician (PCP). This is of significance since the PCP is often the first physician to see the patient and determine that the patient's symptoms could be due to an arrhythmia. After the patient sees the PCP, the PCP will make an appointment for the patient to see a cardiologist or an EP. This appointment is usually several weeks from the initial visit with the PCP, which in itself leads to a delay in making a potential diagnosis as well as increases the likelihood that an arrhythmia episode will occur and go undiagnosed. When the patient finally sees the cardiologist or EP, a cardiac rhythm monitoring device will usually be ordered. The monitoring period can last 24-48 hours (Holter monitor) or up to a 25 month (cardiac event monitor or mobile telemetry device). Once the monitoring has been completed, the patient typically must return the device to the clinic, which itself can be an inconvenience. After the data has been processed by the monitoring company or by a technician on-site at a hospital 30 or office, a report will finally be sent to the cardiologist or EP for analysis. This complex process results in fewer patients receiving cardiac rhythm monitoring than would ideally receive it.

To address some of these issues with cardiac monitoring, the assignee of the present application developed various embodiments of a small, long-term, wearable, physiological monitoring device. One embodiment of the device is the Zio® Patch (www.irhythmtech.com). Various embodiments are also described, for example, in U.S. Pat. Nos. 8,150,502, 8,160,682 8,244,335, 8,560,046, and 8,538,503, the full disclosures of which are hereby incorporated by reference. Generally, the physiological monitors described in the above references fit comfortably on a patient's chest and are designed to be worn for at least one week and typically two to three weeks. The monitors detect and record cardiac rhythm signal data continuously while the device is worn, and this cardiac rhythm data is then available for processing and analysis.

These smaller, long-term physiological monitoring devices provided many advantages over prior art devices. At the same time, further improvements are desired. One of the most meaningful areas for improvement exists around increasing fidelity of the recorded ECG signal. This is particularly important for single-channel embodiments where a second vector of ECG is not available to clarify whether aberrances in signal are due to arrhythmia or signal artifact. Increases in signal to noise ratio as well as reduction of motion artifact improve efficiency in both algorithmic and human analysis of the recorded ECG signal.

Signal quality is important throughout the duration of wear, but it is particularly critical where the patient marks the record, indicating an area of symptomatic clinical significance. Marking the record is most easily enabled through a trigger located on the external surface of the device. However, since the trigger is part of a skin-contacting platform with integrated electrodes, the patient can introduce significant motion artifacts when feeling for the trigger.

3

A desirable device improvement would be a symptom trigger that can be activated with minimal addition of motion artifact

Secondly, patient compliance and device adhesion performance are two factors that govern the duration of the 5 ECG record and consequently the diagnostic yield. Compliance can be increased by improving the patient's wear experience, which is affected by wear comfort, device appearance and the extent to which the device impedes the normal activities of daily living. Given that longer ECG 10 records provide greater diagnostic yield and hence value, improvements to device adhesion and patient compliance are desirable.

Finally, it is desirable for the device to be simple and cost effective to manufacture, enabling scalability at manufacturing as well as higher quality due to repeatability in process. Simplicity of manufacture can also lead to ease of disassembly, which enables the efficient recovery of the printed circuit board for quality-controlled reuse in another device. Efficient reuse of this expensive component is critical for decreasing the cost of the diagnostic monitor. At least some of the objectives will be met by the embodiments described below.

BRIEF SUMMARY

Embodiments described herein are directed to a physiological monitoring device that may be worn continuously and comfortably by a human or animal subject for at least one week or more and more typically two to three weeks or 30 more. In one embodiment, the device is specifically designed to sense and record cardiac rhythm (i.e., electrocardiogram, ECG) data, although in various alternative embodiments one or more additional physiological parameters may be sensed and recorded. The physiological monitoring device includes a number of features to facilitate and/or enhance the patient experience, to make diagnosis of cardiac arrhythmias more accurate, and to make manufacture of the device more simple and cost effective.

In some embodiments, an electronic device for monitor- 40 ing physiological signals in a mammal comprises:

- at least two flexible wings extending laterally from a rigid housing, wherein the flexible wings comprise a first set of materials which enable the wings to conform to a surface of the mammal and the rigid housing comprises 45 a second set of materials;
- a printed circuit board assembly housed within the rigid housing, wherein the rigid housing is configured to prevent deformation of the printed circuit board in response to movement of the mammal;
- at least two electrodes embedded within the flexible wings, the electrodes configured to provide conformal contact with the surface of the mammal and to detect the physiological signals of the mammal;
- at least two electrode traces embedded within the wings 55 and mechanically decoupled from the rigid housing, the electrode traces configured to provide conformal contact with the surface of the mammal and transmit electrical signals from the electrodes to the printed circuit board assembly; and,
- at least one hinge portion connecting the wings to the rigid housing, the hinge portions configured to flex freely at the area where it is joined to the rigid housing.

In certain embodiments, each wing may comprise an adhesive. In embodiments, the electrodes can be in the same 65 plane as the adhesive. In certain embodiments, each wing comprises at least one rim, wherein the rim is thinner than

4

an adjacent portion of each wing. The rigid housing may further comprise dimples configured to allow for airflow between the rigid housing and the surface of the mammal. In certain embodiments, the rim is configured to prevent the release of a portion of the wing from the surface of the mammal. In some embodiments, an electronic device for monitoring physiological systems may comprise a measuring instrument configured to detect motion signals in at least one axis. This measuring instrument may be an accelerometer that can be configured to detect motion signals in three

In embodiments, the motion signals can be collected in time with the physiological signals. In certain embodiments, a motion artifact is identified when the physiological signals and the motion signals match. Further embodiments may call for an event trigger coupled to the printed circuit board assembly. In some embodiments, the event trigger input is supported by the rigid housing so as to prevent mechanical stress on the printed circuit board when the trigger is activated. The event trigger may be concave and larger than a human finger such that the event trigger is easily located. In certain embodiments, the electrode traces are configured to minimize signal distortion during movement of the mammal. In particular embodiments, gaskets may be used as a means for sealable attachment to the rigid housing.

In certain embodiments, a method for monitoring physiological signals in a mammal may comprise:

- attaching an electronic device to the mammal, wherein the device comprises:
- at least two electrodes configured to detect physiological signals from the mammal,
- at least one measuring instrument configured to detect secondary signals, and
- at least two electrode traces connected to the electrodes and a rigid housing; and,
- comparing the physiological signals to the secondary signals to identify an artifact.

In certain embodiments, identification of an artifact comprises a comparison between the frequency spectrum of the
physiological signals and the frequency spectrum of the
secondary signals. In embodiments, the secondary signals
comprise motion signals that may be used to derive the
activity and position of the mammal. In certain embodiments, the secondary signals are collected in three axes. In
some embodiments, a tertiary signal may also be collected.
In certain embodiments, the secondary signals comprise
information about the connection between the electronic
device and the mammal. In some embodiments, the secondary signals may be used to detect when the mammal is
sleeping.

In some embodiments, a method of removing and replacing portions of a modular physiological monitoring device may comprise

- applying the device of claim 1 to a mammal for a period of time greater than 7 days and collecting physiological data;
- using the device of claim 1 to detect a first set of physiological signals;
- removing the device of claim 1 from the surface of the mammal;
- removing a first component from the device of claim 1; and,
- incorporating the first component into a second physiological monitoring device, the second physiological monitoring device configured to detect a second set of physiological signals.

US 12,245,859 B2

5

In some embodiments, the first component is electrically connected to other device components without the use of a permanent connection. In some embodiments, the device may further comprise spring connections. In certain embodiments, the first component may be preserved for a second use by a rigid housing to prevent damage. In particular embodiments, the first component is secured within a device by a mechanism that is capable of re-securing a second component once the first component is removed.

These and other aspects and embodiments of the invention are described in greater detail below, with reference to the drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are perspective and exploded views, respectively, of a physiological monitoring device, according to one embodiment;

FIGS. 2A and 2B are top perspective and bottom perspective views, respectively, of a printed circuit board ²⁰ assembly of the physiological monitoring device;

FIGS. 3A-E are perspective and exploded views of a flexible body and gasket of the physiological monitoring device:

FIG. 4 is an exploded view of a rigid housing of the 25 physiological monitoring device;

FIG. 5A-B is a perspective view of a battery holder of the physiological monitoring device;

FIGS. 6A and 6B are cross sectional views of the physiological monitoring device;

FIG. 7 is an exploded view of the physiological monitoring device including a number of optional items, according to one embodiment;

FIGS. **8**A and **8**B are perspective views of two people wearing the physiological monitoring device, illustrating ³⁵ how the device bends to conform to body movement and position; and

FIGS. 9A-9F illustrate various steps for applying the physiological monitor to a patient's body, according to one embodiment.

DETAILED DESCRIPTION

The following description is directed to a number of various embodiments. The described embodiments, how- 45 ever, may be implemented and/or varied in many different ways without departing from the scope of the invention. For example, the described embodiments may be implemented in any suitable device, apparatus, or system to monitor any of a number of physiological parameters. For example, the 50 following discussion focuses primarily on long-term, patchbased cardiac rhythm monitoring devices. In one alternative embodiment, a physiological monitoring device may be used, for example, for pulse oximetry and diagnosis of obstructive sleep apnea. In various alternative embodiments, 55 one size of physiological monitor may be used for adult patients and another size may be used for pediatric patients. The method of using a physiological monitoring device may also vary. In some cases, a device may be worn for one week or less, while in other cases, a device may be worn for at least seven days and/or for more than seven days, for example between fourteen days and twenty-one days or even longer. Many other alternative embodiments and applications of the described technology are possible. Thus, the following description is provided for exemplary purposes 65 only. Throughout the specification, reference may be made to the term "conformal." It will be understood by one of skill

6

in the art that the term "conformal" as used herein refers to a relationship between surfaces or structures where a first surface or structure fully adapts to the contours of a second surface or structure.

Referring to FIGS. 1A and 1B, perspective and exploded views of one embodiment of a physiological monitoring device 100 are provided. As seen in FIG. 1A, physiological monitoring device 100 may include a flexible body 110 coupled with a watertight, rigid housing 115. Flexible body 110 (which may be referred to as "flexible substrate" or "flexible construct") typically includes two wings 130, 131, which extend laterally from rigid housing 115, and two flexible electrode traces 311, 312, each of which is embedded in one of wings 130, 131. Each electrode trace 311, 312 is coupled, on the bottom surface of flexible body 110, with a flexible electrode (not visible in FIG. 1A). The electrodes are configured to sense heart rhythm signals from a patient to which monitoring device 100 is attached. Electrode traces 311, 312 then transmit those signals to electronics (not visible in FIG. 1A) housed in rigid housing 115. Rigid housing 115 also typically contains a power source, such as one or more batteries.

As will be explained in further detail below, the combination of a highly flexible body 110, including flexible electrodes and electrode traces 311, 312, with a very rigid housing 115 may provide a number of advantages. For example, flexible body 110 includes a configuration and various features that facilitate comfortable wearing of device 100 by a patient for fourteen (14) days or more without removal. Rigid housing 115, which typically does not adhere to the patient in the embodiments described herein, includes features that lend to the comfort of device 100. Rigid housing 115 also protects the electronics and power source contained in housing 120, enhances the ability of a patient to provide an input related to a perceived cardiac event, and allows for simple manufacturing and reusability of at least some of the contents of housing 115. These and other features of physiological monitoring device 100 are described in greater detail below.

Referring now to FIG. 1B, a partially exploded view of physiological monitoring device 100 illustrates component parts that make up, and that are contained within, rigid housing 115 in greater detail. In this embodiment, rigid housing 115 includes an upper housing member 140, which detachably couples with a lower housing member 145. Sandwiched between upper housing member 140 and lower housing member 145 are an upper gasket 370, and a lower gasket 360 (not visible on FIG. 1B but just below upper gasket 370). Gaskets 370, 360 help make rigid housing member 115 watertight when assembled. A number of components of monitoring device 100 may be housed between upper housing member 140 and lower housing member 145. For example, in one embodiment, housing 115 may contain a portion of flexible body 110, a printed circuit board assembly (PCBA) 120, a battery holder 150, and two batteries 160. Printed circuit board assembly 120 is positioned within housing 115 to contact electrode traces 311, 312 and batteries 160. In various embodiments, one or more additional components may be contained within or attached to rigid housing 115. Some of these optional components are described further below, in reference to additional drawing figures.

Battery holder 150, according to various alternative embodiments, may hold two batteries (as in the illustrated embodiment), one battery, or more than two batteries. In other alternative embodiments, other power sources may be used. In the embodiment shown, battery holder 150 includes

7

multiple retain tabs 153 for holding batteries 160 in holder 150. Additionally, battery holder 150 includes multiple feet 152 to establish correct spacing of batteries 160 from the surface of PCBA 120 and ensure proper contact with spring fingers 235 and 236. Spring fingers 235 and 236 are used in 5 this embodiment rather than soldering batteries 160 to PCBA 120. Although soldering may be used in alternative embodiments, one advantage of spring fingers 235 and 236 is that they allow batteries 160 to be removed from PCBA 120 and holder 150 without damaging either of those 10 components, thus allowing for multiple reuses of both. Eliminating solder connections also simplifies and speeds up assembly and disassembly of monitoring device 100.

In some embodiments, upper housing member 140 may act as a patient event trigger. When a patient is wearing 15 physiological monitoring device 100 for cardiac rhythm monitoring, it is typically advantageous for the patient to be able to register with device 100 (i.e., log into the device's memory) any cardiac events perceived by the patient. If the patient feels what he/she believes to be an episode of heart 20 arrhythmia, for example, the patient may somehow trigger device 100 and thus provide a record of the perceived event. At some later time, the patient's recorded perceived event could be compared with the patient's actual heart rhythm, recorded by device 100, and this may help determine 25 whether the patient's perceived events correlate with actual cardiac events. One problem with patient event triggers in currently available wearable cardiac rhythm monitoring devices, however, is that a small trigger may be hard to find and/or activate, especially since the monitoring device is 30 typically worn under clothing. Additionally, pressing a trigger button may affect the electronics and/or the electrodes on the device in such a way that the recorded heart rhythm signal at that moment is altered simply by the motion caused to the device by the patient triggering. For example, pressing 35 a trigger may jar one or both of the electrodes in such a way that the recorded heart rhythm signal at that moment appears like an arrhythmia, even if no actual arrhythmia event occurred. Additionally, there is a chance that the trigger may be inadvertently activated, for instance while sleeping or 40 laying on the monitoring device.

In the embodiment shown in FIGS. 1A and 1B, however, rigid housing 115 is sufficiently rigid, and flexible body 110 is sufficiently flexible, that motion applied to housing 115 by a patient may rarely or ever cause an aberrant signal to be 45 sensed by the electrodes. In this embodiment, the central portion of upper housing member 140 is slightly concave and, when pressed by a patient who is wearing device 100, this central portion depresses slightly to trigger a trigger input on PCBA 120. Because the entire upper surface of 50 rigid housing 115 acts as the patient event trigger, combined with the fact that it is slightly concave, it will generally be quite easy for a patient to find and push down the trigger, even under clothing. Additionally, the concave nature of the button allows it to be recessed which protects it from 55 inadvertent activations. Thus, the present embodiment may alleviate some of the problems encountered with patient event triggers on currently available heart rhythm monitors. These and other aspects of the features shown in FIGS. 1A and 1B will be described in further detail below.

Referring now to FIGS. 2A and 2B, printed circuit board assembly 120 (or "PCBA") may include a top surface 220, a bottom surface 230, a patient trigger input 210 and spring contacts 235, 236, and 237. Printed circuit board assembly 120 may be used to mechanically support and electrically 65 connect electronic components using conductive pathways, tracks or electrode traces 311, 312. Furthermore, because of

8

the sensitive nature of PCBA 120 and the requirement to mechanically interface with rigid body 115, it is beneficial to have PCBA 120 be substantially rigid enough to prevent unwanted deflections which may introduce noise or artifact into the ECG signal. This is especially possible during patient trigger activations when a force is transmitted through rigid body 115 and into PCBA 120. One way to ensure rigidity of the PCBA is to ensure that the thickness of the PCBA is relatively above a certain value. For example, a thickness of at least about 0.08 cm is desirable and, more preferably, a thickness of at least about 0.17 cm is desirable. In this application, PCBA 120 may also be referred to as, or substituted with, a printed circuit board (PCB), printed wiring board (PWB), etched wiring board, or printed circuit assembly (PCA). In some embodiments, a wire wrap or point-to-point construction may be used in addition to, or in place of, PCBA 120. PCBA 120 may include analog circuits and digital circuits.

Patient trigger input 210 may be configured to relay a signal from a patient trigger, such as upper housing member 140 described above, to PCBA 120. For example, patient trigger input 210 may be a PCB switch or button that is responsive to pressure from the patient trigger (i.e., the upper surface of upper housing portion 140). In various embodiments, patient trigger input 210 may be a surface mounted switch, a tactile switch, an LED illuminated tactile switch, or the like. In some embodiments, patient trigger input 210 may also activate an indicator, such as an LED.

One important challenge in collecting heart rhythm signals from a human or animal subject with a small, twoelectrode physiological monitoring device such as device 100 described herein, is that having only two electrodes can sometimes provide a limited perspective when trying to discriminate between artifact and clinically significant signals. For example, when a left-handed patient brushes her teeth while wearing a small, two-electrode physiological monitoring device on her left chest, the tooth brushing may often introduce motion artifact that causes a recorded signal to appear very similar to Ventricular Tachycardia, a serious heart arrhythmia. Adding additional leads (and, hence, vectors) is the traditional approach toward mitigating this concern, but this is typically done by adding extra wires adhered to the patient's chest in various locations, such as with a Holter monitor. This approach is not consistent with a small, wearable, long term monitor such as physiological monitoring device 100.

An alternate approach to the problem described above is to provide one or more additional data channels to aid signal discrimination. In some embodiments, for example, device **100** may include a data channel for detecting patch motion. In certain embodiments, an accelerometer may provide patch motion by simply analyzing the change in magnitude of a single axis measurement, or alternatively of the combination of all three axes. The accelerometer may record device motion at a sufficient sampling rate to allow algorithmic comparison of its frequency spectrum with that of the recorded ECG signal. If there is a match between the motion and recorded signal, it is clear that the device recording in that time period is not from a clinical (e.g., cardiac) source, and thus that portion of the signal can be confidently marked as artifact. This technique may be particularly useful in the tooth brushing motion example aforementioned, where the rapid frequency of motion as well as the high amplitude artifact is similar to the heart rate and morphology, respectively, of a potentially life-threatening arrhythmia like Ventricular Tachycardia.

9

In some embodiments, using the magnitude of all three axes for such an analysis would smooth out any sudden changes in values due to a shift in position rather than a change in activity. In other embodiments, there may be some advantage in using a specific axis of measurement such as a along the longitudinal axis of the body to focus on a specific type of artifact introduced by upward and downward movements associated with walking or running. In a similar vein, the use of a gyroscope in conjunction with the accelerometer may provide further resolution as to the nature of the motion experienced. While whole body movements may be sufficiently analyzed with an accelerometer on its own, specific motion of interest such as rotational motion due to arm movement is sufficiently complex that an accelerometer alone might not be able to distinguish.

In addition to detecting motion artifact, an accelerometer tuned to the dynamic range of human physical activities may provide activity levels of the patient during the recording, which can also enhance accuracy of algorithmic true arrhythmia detection. Given the single-lead limitation of 20 device 100, arrhythmias that require observation of less prominent waves (e.g. P-wave) in addition to rate changes such as Supraventricular Tachycardia pose challenges to both computerized algorithms as well as the trained human eye. This particular arrhythmia is also characterized by the 25 sudden nature of its onset, which may be more confidently discriminated from a non-pathological Sinus Tachycardia if a sudden surge in the patient's activity level is detected at the same time as the increase in heart rate. Broadly speaking, the provision of activity information to clinical professionals 30 may help them discriminate between exercise-induced arrhythmia versus not. As with motion artifact detection, a single-axis accelerometer measurement optimized to a particular orientation may aid in more specifically determining the activity type such as walking or running. This additional 35 information may help explain symptoms more specifically and thereby affect the subsequent course of therapeutic

In certain embodiments, an accelerometer with 3 axes may confer advantages beyond what magnitude of motions 40 can provide. When the subject is not rapidly moving, 3-dimensional accelerometer readings may approximate the tilt of PCBA 120, and therefore body orientation relative to its original orientation. The original body orientation can be assumed to be in either an upright or supine position which 45 is required for appropriate positioning and application of the device to the body. This information may aid in ruling out certain cardiac conditions that manifest as beat-to-beat morphology changes, such as cardiac alternans where periodic amplitude changes are observed, often in heart failure cases. 50 Similar beat-to-beat morphology changes are observable in healthy subjects upon shift in body position due to the shift in heart position relative to the electrode vector, for example from an upright to a slouching position. By design, the single-channel device 100 does not have an alternate ECG 55 channel to easily rule out potential pathological shifts in morphology, however, correlation with shifts in body orientation will help explain these normal changes and avoid unnecessary treatment due to false diagnosis.

In other embodiments, the accelerometer may also be 60 used as a sleep indicator, based on body orientation and movement. When presenting clinical events (e.g., pauses), it is diagnostically helpful to be able to present information in a manner that clearly separates events that occurred during sleep from those during waking hours. In fact, certain 65 algorithms such as for ECG-derived respiratory rate only make sense to run when the patient is in a relatively

10

motionless state and therefore subtle signal modulation introduced by chest movement due to breathing is observable. Respiratory rate information is useful as one channel of information necessary to detect sleep apnea in certain patient populations.

In certain embodiments, the accelerometer may also be used to detect free-falls, such as fainting. With an accelerometer, device 100 may be able to mark fainting (syncope) and other free-fall events without relying on patient trigger. In order to allow timely detection of such critical events, yet considering the battery and memory limitations of a small, wearable device such as device 100, acquisition of accelerometer readings may be done in bursts, where only interesting information such as a potential free fall is written to memory at a high sampling rate. An expansion of this event-trigger concept is to use specific tapping motions on device 100 as a patient trigger instead of or in conjunction with the button previously described. The use and detection of multiple types of tapping sequences may provide better resolution and accuracy into what exactly the patient was feeling, instead of relying on the patient to manually record their symptom and duration in a trigger log after the fact. An example of such added resolution is to indicate the severity of the symptom by the number of sequential taps.

Alternatively, in other embodiments, an optical sensors may be used to distinguish between device motion and patient body motion. Further, in additional embodiments, the device may not require a button or trigger.

Another optional data channel that may be added to physiological monitoring device 100 is a channel for detecting flex and/or bend of device 100. In various embodiments, for example, device 100 may include a strain gauge, piezoelectric sensor or optical sensor to detect motion artifact in device 100 itself and thus help to distinguish between motion artifact and cardiac rhythm data. Yet another optional data channel for device 100 may be a channel for detecting heart rate. For example, a pulse oximeter, microphone or stethoscope may provide heart rate information. Redundant heart rate data may facilitate discrimination of ECG signals from artifact. This is particularly useful in cases where arrhythmia such as Supraventricular Tachycardia is interrupted by artifact, and decisions must be made whether the episode was actually multiple shorter episodes or one sustained episode. Another data channel may be included for detecting ambient electrical noise. For example, device 100 may include an antenna for picking up electromagnetic interference. Detection of electromagnetic interference may facilitate discrimination of electrical noise from real ECG signals. Any of the above-described data channels may be stored to support future noise discrimination or applied for immediate determination of clinical validity in real-time.

With reference now to FIGS. 3A and 3B, flexible body 110 is shown in greater detail. As illustrated in FIG. 3A, flexible body 110 may include wings 130, 131, a thin border 133 (or "rim" or "edge") around at least part of each wing 130, 131, electrode traces 311, 312, and a hinge portion 132 (or "shoulder") at or near a junction of each wing 130, 131 with rigid housing 115. Also shown in FIG. 3A is upper gasket 370, which is not considered part of flexible body 110 for this description, but which facilitates attachment of flexible body 110 to rigid housing 115.

Hinge portions 132 are relatively thin, even more flexible portions of flexible body 110. They allow flexible body 110 to flex freely at the area where it is joined to rigid housing 115. This enhances comfort, since when the patient moves, housing 115 can freely lift off of the patient's skin. Electrode traces 311, 312 are also very thin and flexible, to allow for

US 12,245,859 B2

patient movement without signal distortion. Borders 133 are portions of flexible body 110 that is thinner than immediately adjacent portions and that provide for a smooth transition from flexible body 110 to a patient's skin, thus preventing edge-lift and penetration of dirt or debris below 5 flexible body 110.

11

As shown in greater detail in FIG. 3B, flexible body 110 may include multiple layers. As mentioned previously, upper gasket 370 and lower gasket 360 are not considered part of flexible body 110 for the purposes of this description but are 10 shown for completeness of description. This distinction is for case of description only, however, and should not be interpreted to limit the scope of the claimed invention. Flexible body 110 may include a top substrate layer 300, a bottom substrate layer 330, an adhesive layer 340, and 15 flexible electrodes 350. Top and bottom substrate layers 300, 330 may be made of any suitable, flexible material, such as one or more flexible polymers. Suitable flexible polymers can include, but are not limited to, polyurethane, polyethylene, polyester, polypropylene, nylon, teflon and carbon 20 impregnated vinyl. The material of substrate layers 300, 330 may be selected based on desired characteristics. For example, the material of substrate layers 300, 330 may be selected for flexibility, resilience, durability, breathability, moisture transpiration, adhesion and/or the like. In one 25 embodiment, for example, top substrate layer 300 may be made of polyurethane, and bottom substrate layer 330 may be made of polyethylene or alternatively polyester. In other embodiments, substrate layers 300, 330 may be made of the same material. In yet another embodiment, substrate layer 30 330 may contain a plurality of perforations in the area over adhesive layer 340 to provide for even more breathability and moisture transpiration. In various embodiments, physiological monitoring device 100 may be worn continuously by a patient for as many as 14-21 days or more, without 35 removal during the time of wear and with device 100 being worn during showering, exercising and the like. Thus, the material(s) used and the thickness and configuration of substrate layers 300, 330 may be essential to the function of physiological monitoring device 100. In some embodiments, 40 the material of substrate layers 300, 330 acts as an electric static discharge (ESD) barrier to prevent arcing

Typically, top and bottom substrate layers 300, 330 are attached to one another via adhesive placed on one or both layers 300, 330. For example, the adhesive or bonding 45 substance between substrate layers 300, 330 may be an acrylic-based, rubber-based, or silicone-based adhesive. In other alternative embodiments, flexible body 110 may include more than two layers of flexible material.

In addition to the choice of material(s), the dimensions— 50 thickness, length and width—of substrate layers 300, 330 may be selected based on desired characteristics of flexible body 110. For example, in various embodiments, the thickness of substrate layers 300, 330 may be selected to give flexible body 110 an overall thickness of between about 0.1 55 mm to about 1.0 mm. According to various embodiments, flexible body 110 may also have a length of between about 7 cm and 15 cm and a width of about 3 cm and about 6 cm. Generally, flexible body 110 will have a length sufficient to provide a necessary amount of separation between electrodes 350. For example, a distance from the center of one electrode 350 to the center of the other electrode 350 should be at least about 6.0 cm and more preferably at least about 8.5 cm. This separation distance may vary, depending on the application. In some embodiments, substrate layers 300, 330 65 may all have the same thickness. Alternatively, the two substrate layers 300, 330 may have different thicknesses.

12

As mentioned above, hinge portions 132 allow the rigid body 115 to lift away from the patient while flexible body 110 remains adhered to the skin. The functionality of hinge portions 132 is critical in allowing the device to remain adhered to the patient throughout various activities that may stretch and compress the skin. Furthermore, hinge portions 132 allow for significantly improved comfort while wearing the device. Generally, hinge portions 132 will be sufficiently wide enough to provide adequate lift of rigid body 115 without creating too large of a peel force on flexible body 110. For example, in various embodiments, the width of hinge portion 132 should be at least about 0.25 cm and more preferably at least about 0.75 cm.

Additionally, the shape or footprint of flexible body 110 may be selected based on desired characteristics. As seen in FIG. 3A, wings 130, 131 and borders 133 may have rounded edges that give flexible body 110 an overall "peanut" shape. However, wings 130, 131 can be formed in any number of different shapes such as rectangles, ovals, loops, or strips. In the embodiment shown in FIGS. 3A and 3B, the footprint top substrate layer 300 is larger than the footprint of bottom substrate layer 330, with the extension of top substrate layer 300 forming borders 133. Thus, borders 133 are made of the same polyurethane material that top layer 300 is made of. Borders 133 are thinner than an adjacent portion of each wing 130, 131, since they includes only top layer 300. The thinner, highly compliant rim 133 will likely enhance adherence of physiologic monitoring device 100 to a patient, as it provides a transition from an adjacent, slightly thicker portion of wings 130, 131 to the patient's skin and thus helps prevent the edge of device 110 from peeling up off the skin. Border 133 may also help prevent the collection of dirt and other debris under flexible body 110, which may help promote adherence to the skin and also enhance the aesthetics of device 110. In alternative embodiments, the footprint of substrate layers 300, 330 may be the same, thus eliminating borders 133.

While the illustrated embodiments of FIGS. 1A-3B include only two wings 130, 131, which extend from rigid housing 115 in approximately opposite directions (i.e., at a 180-degree angle relative to each other), other configurations are possible in alternative embodiments. For example, in some embodiments, wings 130, 131 may be arranged in an asymmetrical orientation relative to one another and/or one or more additional wings may be included. As long as sufficient electrode spacing is provided to permit physiological signal monitoring, and as long as wings 130, 131 are configured to provide extended attachment to the skin, any suitable configuration and number of wings 130, 131 and electrode traces 311, 312 may be used. The embodiments described above have proven to be advantageous for adherence, patient comfort and accuracy of collected heart rhythm data, but in alternative embodiments it may be possible to implement alternative configurations.

Adhesive layer 340 is an adhesive that is applied to two portions of the bottom surface of bottom substrate layer 330, each portion corresponding to one of wings 130, 131. Adhesive layer 340 thus does not extend along the portion of bottom substrate layer 330 upon which rigid housing 115 is mounted. Adhesive layer 340 may be made of any suitable adhesive, although certain adhesives have been found to be advantageous for providing long term adhesion to patient skin with relative comfort and lack of skin irritation. For example, in one embodiment, adhesive layer 340 is a hydrocolloid adhesive. In another embodiment, the adhesive layer 340 is comprised of a hydrocolloid adhesive that US 12,245,859 B2

13

contains naturally-derived or synthetic absorbent materials which take up moisture from the skin during perspiration.

Each of the two portions of adhesive layer 340 includes a hole, into which one of electrodes 350 fits. Electrodes 350 made of flexible material to further provide for overall 5 conformability of flexible body 110. In one embodiment, for example, flexible electrodes 350 may be made of a hydrogel 350. Electrodes 350 generally provide conformal, nonirritating contact with the skin to provide enhanced electrical connection with the skin and reduce motion artifact. In some 10 embodiments, hydrogel electrodes 350 may be punched into adhesive layer 340, thus forming the holes and filling them with hydrogel electrodes 350. In one alternative embodiment, electrodes 350 and adhesive 340 may be replaced with an adhesive layer made of a conductive material, such that 15 the entire adhesive layer on the underside of each wing 130, 131 acts as an electrode. Such an adhesive layer may include a hybrid adhesive/conductive substance or adhesive substance mixed with conductive elements or particles. For example, in one embodiment, such an adhesive layer may be 20 a hybrid of a hydrogel and a hydrocolloid adhesive.

As discussed above, in some embodiments, adhesive layer 340 may cover a portion of the underside of lower substrate layer 330, such that at least a portion of the bottom side of flexible body 110 does not include adhesive layer 340. As 25 seen in FIG. 3A, hinges 132 may be formed in the flexible body 110 as portions of each wing 130, 131 on which adhesive layer 340 is not applied. Hinge portions 132 are generally located at or near the junction of flexible body 110 with rigid housing 115, and thus provide for flexing of 30 device 100 to accommodate patient movement. In some embodiments, hinge portions 132 may have a width that is less than that of adjacent portions of wings 130, 131, thus giving device 100 its "peanut" shape mentioned above. As shown in FIG. 8, as a subject moves, device 100 flexes along 35 with patient movement. Device flexion may be severe and is likely to occur many times during long term monitoring. Hinge portions 132 may allow for dynamic conformability to the subject, while the rigidity of rigid housing 115 may allow housing 115 to pop up off the patient's skin during 40 device flexion, thus preventing peeling of the device 100 off of the skin at its edge.

Flexible body 110 further includes two electrode traces 311, 312 sandwiched between upper substrate layer 300 and lower substrate layer 330. Each electrode trace 311, 312 may 45 include an electrode interface portion 310 and an electrocardiogram circuit interface portion 313. As illustrated in FIGS. 3C and 3D, ECG circuit interface portions 313 are in physical contact with spring fingers 237 and provide electrical communication with PCBA 120 when device 100 or 50 zoomed-in device portion 101 is assembled. Electrode interface portions 310 contact hydrogel electrodes 350. Thus, electrode traces 311, 312 transmit cardiac rhythm signals (and/or other physiological data in various embodiments) from electrodes 350 to PCBA 120.

The material and thickness of electrode traces 311, 312 are important for providing a desired combination of flexibility, durability and signal transmission. For example, in one embodiment, electrode traces 311, 312 may include a combination of silver (Ag) and silver chloride (AgCl). The 60 silver and silver chloride may be disposed in layers. For example, one embodiment of electrode traces 311, 312 may include a top layer of silver, a middle layer of carbon impregnated vinyl, and a bottom (patient-facing) layer of silver chloride. In another embodiment, both top and bottom 65 layers of electrode traces 311, 312 may be made of silver chloride. In one embodiment, the top and bottom layers may

14

be applied to the middle layer in the form of silver ink and silver chloride ink, respectively. In an alternative embodiment, each electrode trace may include only two layers, such as a top layer of silver and a bottom layer of silver chloride. In various embodiments, the material of a bottom layer of each electrode trace 311, 312, such as AgCl, may be selected to match the chemistry of the hydrogel electrodes 350 and create a half-cell with the body of the subject.

The thickness of the electrode traces 311, 312 may be selected to optimize any of a number of desirable properties. For example, in some embodiments, at least one of the layers of electrode traces 311, 312 can be of a sufficient thickness to minimize or slow depletion of the material from an anode/cathode effect over time. Additionally, the thickness may be selected for a desired flexibility, durability and/or signal transmission quality. Flexible electrode traces 311, 312 generally may help provide conformal contact with the subject's skin and may help prevent electrodes 350 from peeling or lifting off of the skin, thereby providing strong motion artifact rejection and better signal quality by minimizing transfer of stress to electrodes 350.

As mentioned above, in some embodiments, top gasket 370 and bottom gasket 360 may be attached upper substrate 300 and lower substrate 330 of flexible body 110. Gaskets 360, 370 may be made of any suitable material, such as urethane, which provides a water tight seal between the upper housing member 140 and lower housing member 145 of rigid housing 115. In one embodiment, top gasket 370 and/or bottom gasket 360 may include an adhesive surface. FIG. 3E depicts yet another embodiment where top gasket 370 includes tabs 371 that protrude away from the profile of top housing 140 while still being adhered to upper substrate 300. The tabs 371 cover a portion of electrode traces 311, 312 and provide a strain relief for the traces at the point of highest stress where the flexible body meets the rigid

With reference now to FIG. 4, upper housing member 140 and lower housing member 145 of rigid housing 115 are shown in greater detail. Upper and lower housing members 140, 145 may be configured, when coupled together with gaskets 360, 370 in between, to form a watertight enclosure for containing PCBA 120, battery holder 150, batteries 160 and any other components contained within rigid housing 115. Housing members 140, 145 may be made of any suitable material to protect internal components, such as water resistant plastic. In one embodiment, upper housing member 140 may include a rigid sidewall 440, a light pipe 410 to transmit visual information from the LEDs on the PCBA through the housing member, a slightly flexible top surface 420, and an inner trigger member 430 extending inward from top surface 420. Top surface 420 is configured to be depressed by a patient when the patient perceives what he or she believes to be an arrhythmia or other cardiac event. When depressed, top surface 420 depresses inner trigger 55 member 430, which contacts and activates trigger input 210 of PCBA 120. Additionally, as discussed previously, top surface 420 may have a concave shape (concavity facing the inside of housing 115) to accommodate the shape of a finger. It is believed that the design of upper housing member 140 isolates activation of the trigger input 210 from electrodes 350, thereby minimizing artifact in the data recording.

With continued reference to FIG. 4, lower housing member 145 may be configured to detachably connect with upper housing member 140 in such a way that housing members 140, 145 may be easily attached and detached for reusability of at least some of the component parts of monitoring device 100. In some embodiments, a bottom surface 445 (patient 15

facing surface) of lower housing member 145 may include multiple dimples 450 (or "bumps," "protrusions" or the like), which will contact the patient's skin during use. Dimples 450 may allow for air flow between bottom surface 445 and the patient's skin, thus preventing a seal from forming between bottom surface 445 and the skin. It is believed that dimples 450 improve comfort and help prevent a perception in currently available devices in which the patient feels as if monitoring device 100 is falling off when it housing 115 lifts off the skin and breaks a seal with the skin. In yet another embodiment the bottom surface 445 of lower housing member 450 may include multiple divots (recesses instead of protrusions) to prevent a seal from forming.

Referring now to FIG. 5A, battery holder 150 is shown in 15 greater detail. Battery holder 150 may be made of plastic or other suitable material, is configured to be mounted to PCBA 120 and subsequently attached to rigid housing 115, and is capable of holding two batteries 160 (FIG. 1B). In alternative embodiments, battery holder 150 may be con- 20 figured to hold one battery or more than two batteries. A plurality of protrusions 152 provide a stable platform for batteries 160 to be positioned a fixed distance above the surface of PCBA 120, avoiding unwanted contact with sensitive electronic components yet providing for adequate 25 compression of spring contacts 235 (FIG. 5B). Protrusions 153 lock batteries 160 into position and resist the upward force on the batteries from spring contacts 235. Battery holder 150 also positions batteries appropriately 160 to provide for adequate compression of spring contacts 236. 30 Use of battery holder 150 in conjunction with spring contacts 235 and 236 allows for batteries 160 to be electrically connected to PCBA 120 while still having additional electronic components between batteries 160 and PCBA 120 and maintain a very compact assembly. Battery holder 150 may 35 include a flexible hook 510 which engages a corresponding rigid hook 440 of upper housing member 140. Under normal assembly conditions the flexible hook 510 remains securely mated with rigid hook 440. For disassembly, flexible hook 510 can be pushed and bent using an appropriate tool passed 40 through top housing 140 causing it to disengage from rigid hook 440 and subsequently allow top housing 140 to be removed.

With reference now to FIGS. 6A and 6B, physiological monitoring device 100 is shown in side view cross-section. 45 As shown in 6A, physiological monitoring device 100 may include flexible body 110 coupled with rigid housing 115. Flexible body 110 may include top substrate layer 300, bottom substrate layer 330, adhesive layer 340 and electrodes 350. Electrode traces 311, 312 are also typically part 50 of flexible body 110 and are embedded between top substrate layer 300 and bottom substrate layer 330, but they are not shown in FIG. 6. Flexible body 110 forms two wings 130, 131, extending to either side of housing 115, and a border 133 surrounding at least part of each wing 130, 131. 55 Rigid housing 115 may include an upper housing member 140 coupled with a lower housing member 145 such that it sandwiches a portion of flexible body 110 in between and provides a watertight, sealed compartment for PCBA 120. Upper housing member 140 may include inner trigger 60 member 430, and PCBA may include patient trigger member 210. As discussed previously, lower housing member 145 may include multiple dimples 450 or divots to enhance the comfort of the monitoring device 100.

It is desirable that PCBA 120 is sufficiently rigid to 65 prevent bending and introducing unwanted artifact into the signal. In certain embodiments, an additional mechanism to

reduce and prevent unwanted bending of PCBA 120 may be used. This mechanism is shown in FIG. 6B. Support post 460 is integral to lower housing 145 and is positioned directly under patient trigger input 210. During patient symptom triggering, upper housing member 140 is depressed, engaging inner trigger mechanism 430 and transmitting a force through patient trigger input 210 into PCBA 120. The force is further transmitted through PCBA 120 and into support post 460 without creating a bending moment, thus avoiding unwanted artifact.

16

Referring to FIG. 7, in some embodiments, physiological monitoring device 100 may include one or more additional, optional features. For example, in one embodiment, monitoring device 100 may include a removable liner 810, a top label 820, a device identifier 830 and a bottom label 840. Liner 810 may be applied over a top surface of flexible member 110 to aid in the application of device 100 to the subject. As is described in further detail below, liner 810 may help support borders 133 of flexible body 110, as well as wings 130, 131, during removal of one or more adhesive covers (not shown) that cover adhesive surface 340 before use. Liner 810 may be relative rigid and/or firm, to help support flexible body 110 during removal of adhesive covers. In various embodiments, for example, liner 810 may be made of cardboard, thick paper, plastic or the like. Liner 810 typically includes an adhesive on one side for adhering to the top surface of wings 130, 131 of flexible body 110.

Labels 820, 840 may be any suitable labels and may include produce name(s), manufacturer name(s), logo(s), design(s) and/or the like. They may be removable or permanently attached upper housing member 140 and/or lower housing member 145, although typically they will be permanently attached, to avoid unregulated reuse and/or resale of the device by an unregistered user. Device identifier 830 may be a barcode sticker, computer readable chip, RFID, or the like. Device identifier 830 may be permanently or removably attached to PCBA 120, flexible body 110 or the like. In some embodiments, it may be beneficial to have device identifier 830 stay with PCBA 120.

Referring now to FIGS. 8A and 8B, physiological monitoring device 100 generally includes hinge portions 132 at or near the juncture of each wing 130, 131 with rigid housing 115. Additionally, each wing 130, 131 is typically adhered to the patient via adhesive layers 340, while rigid body 115 is not adhered to the patient and is thus free to "float" (i.e., move up and down) over the patient's skin during movement and change of patient position. In other words, when the patient's chest contracts, rigid housing pops up or floats over the skin, thus minimizing stress on device 100, enhancing comfort, and reducing the tendency of wings 130, 131 to peel off of the skin. The advantage provided by the combination of the floating rigid body 115 and the adhered wings 130, 131 is illustrated in FIGS. 8A and 8B. In FIG. 8A, a patient is sleeping, and in FIG. 8B, a patient is playing golf. In both examples, monitoring device 100 is squeezed together by the patient's body, causing rigid housing 115 to float above the skin as wings 130, 131 move closer together. This advantage of a floating, non-attached portion of a physiological monitoring device is described in further detail in U.S. Pat. No. 8,560,046, which was previously incorporated by reference.

Referring now to FIGS. 9A-9F, one embodiment of a method for applying physiological monitoring device 100 to the skin of a human subject is described. In this embodiment, before the first step shown in FIG. 9A, the patient's skin may be prepared, typically by shaving a small portion of the skin on the left chest where device 100 will be placed and then

, ,

abrading and/or cleaning the shaved portion. As shown in FIG. 9A, once the patient's skin is prepared, a first step of applying device 100 may include removing one or both of two adhesive covers 600 from adhesive layers 340 on the bottom surface of device 100, thus exposing adhesive layers 5 **340**. As illustrated in FIG. **9**B, the next step may be to apply device 100 to the skin, such that adhesive layer 340 adheres to the skin in a desired location. In some embodiments, one adhesive cover 600 may be removed, the uncovered adhesive layer 340 may be applied to the skin, and then the 10 second adhesive cover 600 may be removed, and the second adhesive layer 340 may be applied to the skin. Alternatively, both adhesive covers 600 may be removed before applying device 100 to the skin. While adhesive covers 600 are being removed, liner 810 acts as a support for flexible body 110, 15 provides the physician or other user with something to hold onto, and prevents flexible body 110 and borders 133 of flexible body 110 from folding in on themselves, forming wrinkles, etc. As described above, liner 810 may be made of a relatively stiff, firm material to provide support for flexible 20 body 110 during application of device 100 to the skin. Referring to FIG. 9C, after device 100 has been applied to the skin, pressure may be applied to flexible body 110 to press it down onto the chest to help ensure adherence of device 100 to the skin.

17

In a next step, referring to FIG. 9D, liner 810 is removed from (peeled off of) the top surface of flexible body 110. As shown in FIG. 9E, once liner 810 is removed, pressure may again be applied to flexible body 110 to help ensure it is adhered to the skin. Finally, as shown in FIG. 9F, upper 30 housing member 140 may be pressed to turn on physiological monitoring device 140. This described method is only one embodiment. In alternative embodiments, one or more steps may be skipped and/or one or more additional steps may be added.

When a desired monitoring period has ended, such as about 14-21 days in some cases, a patient (or physician, nurse or the like) may remove physiological monitoring device 100 from the patient's skin, place device 100 in a prepaid mailing pouch, and mail device 100 to a data 40 processing facility. At this facility, device 100 may be partially or completely disassembled, PCBA 120 may be removed, and stored physiological data, such as continuous heart rhythm information, may be downloaded from PCBA 120. The data may then be analyzed by any suitable method 45 and then provided to a physician in the form of a report. The physician may then discuss the report with the patient. PCBA 120 and/or other portions of device 100, such as rigid housing 115, may be reused in the manufacture of subsequent devices for the same or other patients. Because device 50 100 is built up as a combination of several removably coupled parts, various parts may be reused for the same embodiment or different embodiments of device 100. For example, PCBA 120 may be used first in an adult cardiac rhythm monitor and then may be used a second time to 55 construct a monitor for sleep apnea. The same PCBA 120 may additionally or alternatively be used with a differently sized flexible body 110 to construct a pediatric cardiac monitor. Thus, at least some of the component parts of device 100 may be interchangeable and reusable.

Advantageously, physiological monitoring device 100 may provide long term adhesion to the skin. The combination of the configuration of flexible and conformal body 110, the watertight, low profile configuration of rigid housing 115, and the interface between the two allows device 100 to 65 compensate for stress caused as the skin of the subject stretches and bends. As a result, device 100 may be worn

continuously, without removal, on a patient for as many as 14-21 days or more. In some cases, device 100 may be worn for greater or less time, but 14-21 days may often be a desirable amount of time for collecting heart rhythm data and/or other physiological signal data from a patient.

18

In various alternative embodiments, the shape of a particular physiological monitoring device may vary. The shape, footprint, perimeter or boundary of the device may be circular, an oval, triangular, a compound curve or the like, for example. In some embodiments, the compound curve may include one or more concave curves and one or more convex curves. The convex shapes may be separated by a concave portion. The concave portion may be between the convex portion on the rigid housing and the convex portion on the electrodes. In some embodiments, the concave portion may correspond at least partially with a hinge, hinge region or area of reduced thickness between the body and a wing.

While described in the context of a heart monitor, the device improvements described herein are not so limited. The improvements described in this application may be applied to any of a wide variety of physiological data monitoring, recording and/or transmitting devices. The improved adhesion design features may also be applied to devices useful in the electronically controlled and/or time released delivery of pharmacological agents or blood testing, such as glucose monitors or other blood testing devices. As such, the description, characteristics and functionality of the components described herein may be modified as needed to include the specific components of a particular application such as electronics, antenna, power supplies or charging connections, data ports or connections for down loading or off loading information from the device, adding or offload-35 ing fluids from the device, monitoring or sensing elements such as electrodes, probes or sensors or any other component or components needed in the device specific function. In addition or alternatively, devices described herein may be used to detect, record, or transmit signals or information related to signals generated by a body including but not limited to one or more of ECG, EEG and/or EMG.

While the above embodiments disclose the invention with respect to a data channel for collecting a single physiological signal, it is contemplated that additional data channels can be include to collect additional data, for example, device motion, device flex or bed, heart rate and/or ambient electrical noise.

Various embodiments of a physiological monitoring device and methods for using it have been disclosed above. These various embodiments may be used alone or in combination, and various changes to individual features of the embodiments may be altered, without departing from the scope of the invention. For example, the order of various method steps may in some instances be changed, and/or one or more optional features may be added to or eliminated from a described device. Therefore, the description of the embodiments provided above should not be interpreted as unduly limiting the scope of the invention as it is set forth in the claims.

Various modifications to the implementations described in this disclosure may be made, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.

19

Certain features that are described in this specification in the context of separate embodiments also can be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment also can be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed 10 combination may be directed to a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all 15 illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically 20 illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. Moreover, the separation of various system components in the embodiments described above should not be interpreted as requiring such separation 25 in all embodiments. Additionally, other embodiments are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

What is claimed is:

- 1. A physiological monitoring device configured to monitor cardiac rhythm data of a patient, the physiological monitoring device comprising:
 - a first housing portion and a second housing portion, ³⁵ wherein the first housing portion detachably couples to the second housing portion;
 - a first spring contact configured to electrically couple a battery to a circuit board assembly housed within the first housing portion;
 - a flexible substrate coupled to the second housing portion, wherein the flexible substrate comprises a border portion that is thinner than an interior portion of the flexible substrate;
 - an electrode embedded within a portion of the flexible ⁴⁵ substrate and configured to detect physiological signals of the patient to obtain the cardiac rhythm data; and
 - a flexible electrode trace embedded in the flexible substrate and configured to electrically couple the electrode to the circuit board assembly, wherein at least a portion of the flexible electrode trace is in electrical contact with a second spring contact, and wherein the second spring contact is further configured to electrically couple the flexible electrode trace to the circuit board assembly.
- 2. The physiological monitoring device of claim 1, wherein the second spring contact is in physical contact with an electrocardiogram circuit interface.
- 3. The physiological monitoring device of claim 1, further comprising a support post configured such that force from 60 interaction with a trigger is applied to the support post.

20

- **4.** The physiological monitoring device of claim **3**, wherein the force from interaction with the trigger is transmitted through the circuit board assembly to the support post.
- 5. The physiological monitoring device of claim 3, wherein the support post is further configured to remain rigid during depression of the trigger.
- 6. The physiological monitoring device of claim 3, wherein the support post is positioned below the trigger.
- 7. The physiological monitoring device of claim 3, wherein the support post is positioned between the circuit board assembly and a housing portion.
- 8. The physiological monitoring device of claim 7, wherein the housing portion comprises the second housing portion.
- 9. The physiological monitoring device of claim 7, wherein the support post is integral with the housing portion.
- 10. The physiological monitoring device of claim 3, wherein the force is transmitted to the support post without creating a bending moment.
- 11. The physiological monitoring device of claim 1, wherein the first housing portion comprises a rigid housing configured to prevent deformation of the circuit board assembly in response to movement of the patient.
- 12. The physiological monitoring device of claim 1, wherein the flexible substrate comprises an electrode-supporting section.
- 13. The physiological monitoring device of claim 1, further comprising a gasket configured to make a housing watertight, wherein the housing comprises at least the first housing portion and the second housing portion.
 - 14. The physiological monitoring device of claim 1, wherein the flexible electrode trace is sandwiched between a first layer and a second layer of the flexible substrate.
 - 15. The physiological monitoring device of claim 1, wherein the circuit board assembly is substantially rigid.
 - 16. The physiological monitoring device of claim 1, further comprising a trigger configured to cause a signal to be relayed to the circuit board assembly in response to user interaction with the trigger.
 - 17. The physiological monitoring device of claim 16, wherein the trigger comprises a button.
 - 18. The physiological monitoring device of claim 1, further comprising an adhesive layer located on at least a portion of the flexible substrate and configured to adhere to skin of the patient.
 - 19. The physiological monitoring device of claim 18, wherein the adhesive layer is configured to adhere to the skin of the patient for at least 7 days enabling the physiological monitoring device to monitor the cardiac rhythm data of the patient for at least 7 days.
 - 20. The physiological monitoring device of claim 1, further comprising an LED indicator configured to indicate activation.
 - 21. The physiological monitoring device of claim 1, further comprising a second electrode embedded within a second portion of the flexible substrate.
 - 22. The physiological monitoring device of claim 1, wherein the flexible electrode trace electrically couples the electrode to the circuit board assembly via the second spring contact.

* * * * *