

BLOKEA 1 - Oinarrizko ezagutzak - Teoria 2

Zenbaki-multzo nagusiak ondorengoak dira:

 \mathbb{N} zenbaki arruntak: $\mathbb{N} = \{1, 2, 3, 4, ...\}$

 \mathbb{Z} zenbaki osoak: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

 \mathbb{Q} zenbaki arrazionalak: $\mathbb{Q}=\left\{\frac{a}{b}\colon a,b\in\mathbb{Z}\land b\neq 0\right\}$. Hartu kontuan $\frac{a}{b}=\frac{m}{n}$ dela baldin $a\cdot n=b\cdot m$ bada. Dezimal kopuru finitua duten zenbakiak arrazionalak dira (adibidez 1.12, 5.2, 5.673). Zenbaki arrazional baten adierazpen hamartarrak dezimal kopuru infinitua badu, orduan periodikoa izan behar du (adibidez $0.\widehat{3},\ 5.\widehat{12},\ 5.65\widehat{82}$). Hartu kontuan zenbaki arrazional batzuen adierazpen hamartarra bakarra ez dela: $1.\widehat{9}=2$, esate baterako.

I zenbaki irrazionalak: Zenbaki batzuk ezin dira adierazi bi zenbaki osoen zatidura gisan. $\sqrt{2}$, esate baterako. Beste erara esanda, arrazionalak ez diren zenbakiak existitzen dira. Zenbaki irrazionalak periodorik ez duten eta dezimal kopuru infinitua duten zenbakiak dira (adibidez $\sqrt{2}=1.41421...$, $\pi=3.141592...$).

 $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ dugu. Zenbaki errealen multzoa zenbaki arrazionalek eta irrazionalek osatzen duten multzoa da. \mathbb{R} multzoko elementuak zuzen baten puntuak bezala imajina ditzakegu. Zenbaki errealen edozein (a,b) tartetan infinitu zenbaki arrazional zein irrazional dauzka.

 \mathbb{C} zenbaki konplexuak: $\mathbb{C} = \{a+bi: a,b \in \mathbb{R}\}$. Zenbaki konplexuak zati erreala eta zati irudikaria duten zenbakiak dira. Zenbaki errealak konplexuak dira, ere. Beraz, $x \in \mathbb{R}$ guztietarako, $x = x + 0 \cdot i \in \mathbb{C}$. Hortaz, $\mathbb{R} \subset \mathbb{C}$.

Honako barnekotasun erlazio hauek betetzen dira ikusiriko zenbaki-multzoen artean:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

$$\mathbb{I} \subset \mathbb{R} \subset \mathbb{C}$$