

Features

- Uses CRM(CQ) advanced SkyMOS4 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Product Summary

V_{DS}	100V
$R_{DS(on).typ}$	$1.26 m\Omega$
I_D	320A

100% DVDS Tested 100% Avalanche Tested

Applications

- Motor control and drive
- Battery management System
- UPS (Uninterrupible Power Supplies)

CRSZ016N10N4Z

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRSZ016N10N4Z	SZ016N10N4Z	TOLL	Tape&Reel	N/A	N/A	2000pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	100	V
Continuous drain current			
T _C = 25°C (Silicon limit)	, T	320	Α
$T_C = 25$ °C (Package limit)	I_D	370	
T _C = 100°C (Silicon limit)		205	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	$I_{D\;pulse}$	1280	А
Avalanche energy, single pulse (ID = 88A, Rg=25 Ω) ^[1]	E _{AS}	1921	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	293	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

X. Notes:

^{1.}EAS is tested at starting Tj = 25° C, L = 0.5mH, IAS =88A, VGS = 10V.

^{2.}Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C.

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.4	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	65	- C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Parameter	Symbol				Hait	Took Condition
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition
Static Characteristic						
Drain-source breakdown	D) /	100	-	-	V	V _{GS} =0V, I _D =250μA
voltage	BV_{DSS}	100	-	-	V	V_{GS} =0 V , I_{D} =1 mA
Gate threshold voltage	V _{GS(th)}	2.2	3.0	3.8	V	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$
Zero gate voltage drain current	I _{DSS}	-	-	1 100	μΑ	V_{DS} =100V, V_{GS} =0V T_{j} =25°C T_{j} =125°C
Gate-source leakage current	I_{GSS}	0	-	±100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$
Drain-source on-state resistance	$R_{DS(on)}$	-	1.26	1.60	mΩ	VGS=10V, ID=95A
Transconductance	g_{fs}	121.5	243.0	486	S	V_{DS} =5V, I_{D} =95A
Dynamic Characteris	tic				•	
Input Capacitance	C_{iss}	8409	12614	18920		
Output Capacitance	C _{oss}	1226	1838	2758	pF	V_{GS} =0V, V_{DS} =50V, f =1MHz
Reverse Transfer Capacitance	C _{rss}	15	30	60		
Gate Total Charge	Q_{G}	118	177	266		
Gate-Source charge	Q_{gs}	45	67	101	nC	$V_{GS} = 10V, V_{DS} = 50V,$ $I_{D} = 95A$
Gate-Drain charge	Q_{gd}	11	22	45		
Turn-on delay time	t _{d(on)}	18	35	71		
Rise time	t _r	47	71	107		V_{GS} =10V, V_{DD} =50V, R_{G_ext} =2.7 Ω
Turn-off delay time	t _{d(off)}	67	101	151	ns	
Fall time	t _f	25	38	57		

Gate resistance

1.8

9.05

0

 R_{G}

 $V_{GS}=0V$, $V_{DS}=0V$,

f=1MHz

SkyMOS4 N-MOSFET 100V, $1.26m\Omega$, 320A

Body Diode Characteristic

Parameter	Symbol	Value			llmit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Unit	rest condition	
Body Diode Forward Voltage	V _{SD}	-	0.84	1.4	V	V _{GS} =0V,I _{SD} =95A	
Body Diode Reverse Recovery Time	t _{rr}	53	106.2	212		I _F =95Α dI/dt=100A/μs	
Body Diode Reverse Recovery Charge	Q _{rr}	145	290.0	580	nC		

华润微电子(重庆)有限公司

Typical Performance Characteristics

rypical Periormanice Characteris

Fig 2: Transfer Characteristics

Fig 3: Rds(on) vs Drain Current and Gate Voltage

Fig 4: Rds(on) vs Gate Voltage

Fig 5: Rds(on) vs. Temperature

Fig 6: Vgs(th) vs. Temperature

Tj - Junction Temperature (°C)

Fig 8: Capacitance Characteristics

Fig 9: Gate Charge Characteristics

Fig 10: Body-diode Forward

Fig 11: Power Dissipation

Fig 12: Drain Current Derating

Fig 13: Safe Operating Area

Fig 14: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TOLL

SIDE VIEW

Symbol Dimensions In Millimeters			Dimension	ns In Inches
Syllibol	Min.	Max.	Min.	Max.
Α	2.15	2.45	0.085	0.096
b	0.60	0.90	0.024	0.035
b1	9.65	9.95	0.380	0.392
С	0.35	0.65	0.014	0.026
D	10.18	10.70	0.401	0.421
D1	3.15	3.45	0.124	0.136
E	9.70	10.10	0.382	0.398
E1	7.35	8.45	0.289	0.333
е	1.10	1.30	0.043	0.051
Н	11.45	11.95	0.451	0.470
H1	6.55	7.50	0.258	0.295
L	1.35	2.10	0.053	0.083
L1	0.50	0.90	0.020	0.035
L2	0.40	0.80	0.016	0.031
L3	0.95	1.35	0.037	0.053

Marking

NOTE:

NXBBAAAAY

N —Wire Bond code

X —Assembly location code

BB —Fab code AAAA —Lot code Y —Bin code

SkyMOS4 N-MOSFET 100V, 1.26mΩ, 320A

Revision History

Revision	Date	Major changes
1.0	2023/8/5	Release of Preliminary version.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qualified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.