Introduction to Reinforcement Learning

March 25

Tailin Wu, Westlake University

Website: ai4s.lab.westlake.edu.cn/course

Image from: DeepMind

Class 2: Deep learning fundamentals

- 1. Principle 1: Model a hard transformation by composing simple transformations:
 - Multilayer Perceptron (MLP)
 - Backpropagation
- 2. Principle 2: Directly optimizing the final objective using maximum likelihood and information theory:
 - Maximum likelihood: MSE, uncertainty estimation
 - Information: cross-entropy, Information Bottleneck

3. Optimization

- Adam: combining momentum and per-dimension magnitude
- SAM (sharpness-aware minimization): $\max_{\epsilon \in N_{\theta}} \ell(\theta + \epsilon)$ finds flat and robust minima
- Federative learning: improves the data privacy by only sharing client models

Class 3: Frontiers in Generative modeling

- Generative models
 - VAE
 - GAN
 - Energy-based models
 - Diffusion models
 - Flows
- Application of diffusion models
 - Image, video, and shape generation
 - Simulation
 - Inverse design/inverse problem
 - Control/planning

Class 4: Frontiers in Foundation Models

- Principle 3 (the scaling law): All methods that leverage computation are ultimately the most effective way of improvements (from "The bitter lesson" by Rich Sutton)
- Principle 4 (the data law): Data is the ultimate way of regularization
- Principle 5 (consistency law): The more consistent between training and testing, the better the performance
- 1. Transformer and its improvements
- 2. Different kinds of SSL methods
- 3. Application of foundation models

Reinforcement learning

AlphaGo [1]

Controlled nuclear fusion [2]

Drone racing [3]

- [1] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.
- [2] Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through deep reinforcement learning." *Nature* 602.7897 (2022): 414-419.
- [3] Kaufmann, Elia, et al. "Champion-level drone racing using deep reinforcement learning." *Nature* 620.7976 (2023): 982-987.

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient, and actor-critic

Markov Decision Process (MDP): Setup

Goal: maximize the long-term expected reward w.r.t. to the policy $\pi(A_t|S_t)$

$$\max_{\pi(A_t|S_t)} \mathbb{E}_t[R_t]$$

Markov Decision Process (MDP): State and action

State: $\{s^{(1)}, s^{(2)}, \dots s^{(9)}\}$

Action:

 $a^{(1)}$: move upward

 $a^{(2)}$: move rightward

 $a^{(3)}$: move downward

 $a^{(4)}$: move leftward

 $a^{(5)}$: stay unchanged

Action space of a state: the set of all possible actions of a state. $\mathcal{A}(s^{(i)}) = \{a^{(i)}\}_{i=1}^{5}$.

State transition probability: e.g.,

$$p(s^{(2)}|s^{(1)},a^{(2)}) = 1.$$

 $p(s^{(i)}|s^{(1)},a^{(2)}) = 0, \quad \forall i \neq 2$

Grid world

^{*}We use subscript t in s_t , a_t to denote step t, and use superscript in $s^{(i)}$, $a^{(i)}$ to denote different choices of state or action. 8

Markov Decision Process (MDP): Policy

Policy $\pi(a|s)$:

E.g., for
$$s = s^{(1)}$$
,
 $\pi(a = a^{(1)}|s = s^{(1)}) = 0$
 $\pi(a = a^{(2)}|s = s^{(1)}) = 0.5$
 $\pi(a = a^{(3)}|s = s^{(1)}) = 0.5$
 $\pi(a = a^{(4)}|s = s^{(1)}) = 0$
 $\pi(a = a^{(5)}|s = s^{(1)}) = 0$

Tabular representation:

	a_1 (upward)	a_2 (rightward)	a_3 (downward)	a_4 (leftward)	a_5 (unchanged)
s_1	0	0.5	0.5	0	0
s_2	0	0	1	0	0
s_3	0	0	0	1	0
84	0	1	0	0	0
s_5	0	0	1	0	0
s_6	0	0	1	0	0
87	0	1	0	0	0
s 8	0	1	0	0	0
s 9	0	0	0	0	1

Markov Decision Process (MDP): Reward

Reward:

- If the agent attempts to get out of the boundary, $r_{bound} = -1$
- If the agent attempts to enter a forbidden cell, $r_{forbid} = -1$
- If the agent reaches the target cell, $r_{target} = +1$
- Otherwise, the agent gets a reward of r = 0.

Tabular representation:

	a_1 (upward)	a_2 (rightward)	a_3 (downward)	a_4 (leftward)	a_5 (unchanged)
s_1	$r_{ m bound}$	0	0	$r_{ m bound}$	0
s_2	$r_{ m bound}$	0	0	0	0
s_3	$r_{ m bound}$	$r_{ m bound}$	$r_{ m forbid}$	0	0
s_4	0	0	$r_{ m forbid}$	$r_{ m bound}$	0
s_5	0	$r_{ m forbid}$	0	0	0
s_6	0	$r_{ m bound}$	$r_{ m target}$	0	$r_{ m forbid}$
87	0	0	$r_{ m bound}$	$r_{ m bound}$	$r_{ m forbid}$
s 8	0	$r_{ m target}$	$r_{ m bound}$	$r_{ m forbid}$	0
s 9	$r_{ m forbid}$	$r_{ m bound}$	$r_{ m bound}$	0	$r_{ m target}$

$s^{(1)}$	s ⁽²⁾	& ⁽³⁾
${oldsymbol{\mathcal{S}}}^{(4)}$	& ⁽⁵⁾	& ⁽⁶⁾
s ⁽⁷⁾	s ⁽⁸⁾	& ⁽⁹⁾

Grid world

Markov Decision Process (MDP): Return

Trajectory: a state-action-reward chain

$$\mathcal{S}(1) \xrightarrow{a^{(2)}} \mathcal{S}(2) \xrightarrow{a^{(3)}} \mathcal{S}(5) \xrightarrow{a^{(3)}} \mathcal{S}(8) \xrightarrow{a^{(2)}} \mathcal{S}(9)$$

Return: the sum of all the rewards collected along the trajectory:

return =
$$0 + 0 + 0 + 1 = 1$$

The trajectory can be infinite,

$$\mathcal{S}^{(1)} \xrightarrow{r=0}^{a^{(2)}} \mathcal{S}^{(2)} \xrightarrow{r=0}^{a^{(3)}} \mathcal{S}^{(5)} \xrightarrow{r=0}^{a^{(3)}} \mathcal{S}^{(8)} \xrightarrow{r=1}^{a^{(2)}} \mathcal{S}^{(9)} \xrightarrow{r=1}^{a^{(5)}} \mathcal{S}^{(9)} \xrightarrow{r=1}^{a^{(5)}} \mathcal{S}^{(9)} \cdots$$

Discounted return: given discounted rate γ ,

discounted return=
$$0 + \gamma 0 + \gamma^2 0 + \gamma^3 1 + \gamma^4 1 ... = \frac{\gamma^3}{1 - \gamma}$$

Trajectory

Markov Decision Process (MDP): Full components

• Sets:

- State: the set of states S
- **Action:** the set of actions $\mathcal{A}(s)$ is associated for state $s \in \mathcal{S}$.
- **Reward:** the set of rewards $\mathcal{R}(s, a)$.
- Probability distribution (or called system model):
 - State transition probability: at state s, taking action a, the probability to transit to state s' is p(s'|s,a)
 - Reward probability: at state s, taking action a, the probability to get reward r is p(r|s,a)
- **Policy:** at state s, the probability to choose action a is $\pi(a|s)$
- Markov property: memoryless property
 - $p(s_{t+1}|a_t, s_t, ..., a_0, s_0) = p(s_{t+1}|a_t, s_t)$
 - $p(r_{t+1}|a_t, s_t, ..., a_0, s_0) = p(r_{t+1}|a_t, s_t).$

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic

How we approach it

State value

State value: Suppose that we start with a state s and follow the policy $\pi(a|s)$, state value is the expected discounted return

$$v_{\pi}(s) := \mathbb{E}[G_t | S_t = s] = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

The state value function evaluates how good the policy π is.

Bellman Equation: Derivation from state value definition

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} \dots) | S_t = s]$$

$$= \mathbb{E}[R_{t+1} | S_t = s] + \gamma \mathbb{E}[R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} \dots | S_t = s]$$
expected immediate reward remaining future reward

Here

$$\mathbb{E}[R_{t+1}|S_t = s] \coloneqq r_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r} p(r|s, a)r$$

Bellman Equation: Derivation

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} \dots) | S_t = s]$$

$$= \mathbb{E}[R_{t+1} | S_t = s] + \gamma \mathbb{E}[R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} \dots | S_t = s]$$

$$\mathbb{E}[R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} \dots | S_t = s]$$

$$= \sum_{s'} p_{\pi}(s'|s) \mathbb{E}[G_{t+1}|S_t = s, S_{t+1} = s']$$

$$= \sum_{s'} p_{\pi}(s'|s) \mathbb{E}[G_{t+1}|S_{t+1} = s']$$

$$= \sum_{s'} p_{\pi}(s'|s) v_{\pi}(s')$$

Here

$$p_{\pi}(s'|s) \coloneqq \sum_{a} \pi(a|s)p(s'|s,a)$$

is the transition probability under policy π .

Bellman Equation

s: state

a: action

r: reward

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum_{s'} p_{\pi}(s'|s) v_{\pi}(s')$$

Expanded form:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s') \right)$$

Matrix form:

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

$$v_{\pi} = [v_{\pi}(s_1), ... v_{\pi}(s_n)]^T \in R^n$$

 $r_{\pi} = [r_{\pi}(s_1), ... r_{\pi}(s_n)]^T \in R^n$
 $P_{\pi} \in R^{n \times n}, [P_{\pi}]_{ij} = p_{\pi}(s_j|s_i)$ is the state transition matrix

Bellman Equation: Example

Bellman equation:

$$\begin{bmatrix} v_{\pi}(s^{(1)}) \\ v_{\pi}(s^{(2)}) \\ v_{\pi}(s^{(3)}) \\ v_{\pi}(s^{(4)}) \end{bmatrix} = \begin{bmatrix} r_{\pi}(s^{(1)}|s^{(1)}) & p_{\pi}(s^{(2)}|s^{(1)}) & p_{\pi}(s^{(2)}|s^{(1)}) & p_{\pi}(s^{(3)}|s^{(1)}) & p_{\pi}(s^{(4)}|s^{(1)}) \\ p_{\pi}(s^{(1)}|s^{(2)}) & p_{\pi}(s^{(2)}|s^{(2)}) & p_{\pi}(s^{(3)}|s^{(2)}) & p_{\pi}(s^{(4)}|s^{(2)}) \\ p_{\pi}(s^{(1)}|s^{(2)}) & p_{\pi}(s^{(2)}|s^{(2)}) & p_{\pi}(s^{(3)}|s^{(2)}) & p_{\pi}(s^{(4)}|s^{(2)}) \\ p_{\pi}(s^{(1)}|s^{(3)}) & p_{\pi}(s^{(2)}|s^{(3)}) & p_{\pi}(s^{(3)}|s^{(3)}) & p_{\pi}(s^{(4)}|s^{(3)}) \\ p_{\pi}(s^{(1)}|s^{(3)}) & p_{\pi}(s^{(2)}|s^{(3)}) & p_{\pi}(s^{(3)}|s^{(3)}) & p_{\pi}(s^{(4)}|s^{(3)}) \\ p_{\pi}(s^{(1)}|s^{(4)}) & p_{\pi}(s^{(2)}|s^{(4)}) & p_{\pi}(s^{(3)}|s^{(4)}) & p_{\pi}(s^{(4)}|s^{(4)}) \end{bmatrix} \begin{bmatrix} v_{\pi}(s^{(1)}) \\ v_{\pi}(s^{(2)}) \\ v_{\pi}(s^{(3)}) \\ v_{\pi}(s^{(4)}) \end{bmatrix}$$

$$v_{\pi}$$

$$v_{\pi}$$

$$v_{\pi}$$

$$v_{\pi}$$

$$v_{\pi}$$

$$v_{\pi}$$

$$v_{\pi}$$

$$v_{\pi}$$

For the specific policy in this grid world:

$$\begin{bmatrix} v_{\pi}(s^{(1)}) \\ v_{\pi}(s^{(2)}) \\ v_{\pi}(s^{(3)}) \\ v_{\pi}(s^{(4)}) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{\pi}(s^{(1)}) \\ v_{\pi}(s^{(2)}) \\ v_{\pi}(s^{(3)}) \\ v_{\pi}(s^{(4)}) \end{bmatrix}$$

2×2 grid world

Bellman Equation: Solution

Bellman Equation:

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

Solution:

$$v_{\pi} = (1 - \gamma P_{\pi})^{-1} r_{\pi}$$

Iterative solution:

$$v_{k+1} = r_{\pi} + \gamma P_{\pi} v_k$$
, $k = 1, 2, ...$

It can be proved that when $k \to +\infty$, $v_k \to v_\pi$.

Action value: Definition

$$q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

The average return the agent can get starting from a state and taking an action, and then following the policy π .

Action value: Relation with state value

s: state

a: action

r: reward

Bellman equation:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s') \right)$$

$$q_{\pi}(s,a)$$

So we have:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \, q_{\pi}(s,a)$$

action value ⇒ state value

$$q_{\pi}(s,a) = \sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s')$$

state value ⇒ action value

Optimal policy: Definition

A policy π^* is optimal if $v_{\pi^*}(s) \geq v_{\pi}(s)$ for all states s and for any other policy π .

Bellman Optimality Equation

Recall Bellman Equation:

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

Bellman Optimality Equation:

$$v_{\pi} = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi})$$

Here the maximization of $\pi(a|s)$ is performed elementwise:

	a_1 (upward)	a_2 (rightward)	a_3 (downward)	a_4 (leftward)	a_5 (unchanged)
s_1	0	0.5	0.5	0	0
s_2	0	0	1	0	0
s_3	0	0	0	1	0
s_4	0	1	0	0	0
s_5	0	0	1	0	0
s_6	0	0	1	0	0
87	0	1	0	0	0
s 8	0	1	0	0	0
s 9	0	0	0	0	1

The solution v^* is the optimal state value, and π^* is an optimal policy.

Bellman Optimality Equation: Proof

For any policy
$$\pi$$
: $v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$

$$v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*) = r_{\pi^*} + \gamma P_{\pi^*} v^* \ge r_{\pi} + \gamma P_{\pi} v^*$$

Therefore:

$$v^* - v_{\pi} \ge (r_{\pi} + \gamma P_{\pi} v^*) - (r_{\pi} + \gamma P_{\pi} v_{\pi}) = \gamma P_{\pi} (v^* - v_{\pi})$$

Repeatedly applying:

$$v^* - v_{\pi} \ge \lim_{n \to 0} \gamma^n P_{\pi}^n (v^* - v_{\pi}) = 0$$

Greedy optimal policy

$$v_{\pi} = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi})$$

After obtaining v^* , we can obtain action value from state value:

$$q^*(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v^*(s')$$

Then the optimal policy π^* is

$$\pi^*(a|s) = \begin{cases} 1, & a = \operatorname{argmax}_a q^*(s, a) \\ 0, & a \neq \operatorname{argmax}_a q^*(s, a) \end{cases}$$

Bellman (optimality) equation: Summary

State value:

$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$

Action value:

$$q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

Bellman Equation:

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

Bellman Optimality Equation:

$$v_{\pi} = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi})$$

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- · Value function approximation, policy gradient methods, and actor-critic

Value iteration and policy iteration: How we approach it

Value iteration

Bellman Optimality Equation:

$$v_{\pi} = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi})$$

Value iteration:

Iterate

1. Policy update: Given v_k , update π_{k+1} . $\pi_{k+1} = \operatorname{argmax}_{\pi}(r_{\pi} + \gamma P_{\pi} v_k)$

2. Value update: Given π_{k+1} , update v_{k+1} .

$$v_{k+1} = r_{\pi_{k+1}} + \gamma P_{\pi_{k+1}} v_k$$

Policy iteration

Bellman Optimality Equation:

$$v_{\pi} = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi})$$

Policy iteration:

1. Policy evaluation: Given π_k , solve v_{π_k} .

$$v_{\pi_k} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}$$

2. Policy improvement: Given v_{π_k} , update π_{k+1} . $\pi_{k+1} = \operatorname{argmax}_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$

$$\pi_{k+1} = \operatorname{argmax}_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$$

Policy iteration & value iteration: Comparison

	Policy iteration algorithm	Value iteration algorithm
1) Policy	π_0	N/A
2) Value	$v_{\pi_0} = r_{\pi_0} + \gamma P_{\pi_0} v_{\pi_0}$	$v_0 \coloneqq v_{\pi_0}$
3) Policy	$\pi_1 = \operatorname{argmax}_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_0})$	$\pi_1 = \operatorname{argmax}_{\pi}(r_{\pi} + \gamma P_{\pi} v_0)$
4) Value	$v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}$	$v_1 = r_{\pi_1} + \gamma P_{\pi_1} v_0$
5) Policy	$\pi_2 = \operatorname{argmax}_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_1})$	$\pi_2' = \operatorname{argmax}_{\pi}(r_{\pi} + \gamma P_{\pi} v_1)$
	•••	•••

The 4th step becomes different:

- In policy iteration, solving $v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}$ requires an iterative algorithm (an infinite number of iterations)
- In value iteration, $v_1 = r_{\pi_1} + \gamma P_{\pi_1} v_0$ is a one-step iteration

Policy iteration & value iteration: Comparison

^{*}The truncated policy iteration algorithm computes a finite number of iterations

Value iteration and policy iteration: Summary

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic

Temporal difference learning: How we approach it

Bellman equation (BE): An expectation form

Recall Bellman equation:

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum_{s'} p_{\pi}(s'|s) v_{\pi}(s')$$

Bellman equation (expectation form):

$$v_{\pi}(s) = \mathbb{E}[R + \gamma v_{\pi}(S')|S = s]$$

Temporal difference learning

Bellman equation (expected form):

$$v_{\pi}(s) = \mathbb{E}[R + \gamma v_{\pi}(S')|S = s]$$

Temporal difference (TD) learning:

$$v_{t+1}(s_t) = v_t(s_t) + \alpha_t(s_t) \Big[\Big(r_{t+1} + \gamma v_t(s_{t+1}) \Big) - v_t(s_t) \Big]$$
new estimate current estimate
TD error

• It uses boostrapping, since $r_{t+1} + \gamma v_t(s_{t+1})$ is a better estimate of $v_{\pi}(s_t)$ than $v_t(s_t)$.

TD target

SARSA

Bellman expectation equation:

$$q_{\pi}(s, a) = \mathbb{E}[R + \gamma q_{\pi}(S', A') | S = s, A = a]$$

SARSA:

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \alpha_t(s_t, a_t) \left[\left(r_{t+1} + \gamma q_t(s_{t+1}, a_{t+1}) \right) - q_t(s_t, a_t) \right]$$

It is named SARSA because each step of the algorithm involves $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$.

Other temporal difference learning: Unified view

We also have Bellman equation (BE) and Bellman optimality equation (BOE) for the action value q(s, a), and have corresponding TD learning algorithm:

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \alpha_t(s_t, a_t) [\overline{q}_t - q_t(s_t, a_t)]$$

Algorithm	Equation and expression of \overline{q}_t		
Sarsa	BE: $q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) S_t = s, A_t = a]$		
	$\bar{q}_t = r_{t+1} + \gamma q(s_{t+1}, a_{t+1})$		
n-step Sarsa	BE: $q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^n q_{\pi}(S_{t+n}, A_{t+n}) S_t = s, A_t = a]$		
	$\bar{q}_t = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^n q(s_{t+n}, a_{t+n})$		
Q-learning	BOE: $q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a} q_{\pi}(S_{t+1}, a) S_t = s, A_t = a]$		
	$\overline{q}_t = r_{t+1} + \gamma \max_{a} q(s_{t+1}, a)$		
Monte Carlo	BE: $q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots S_t = s, A_t = a]$		
	$\bar{q}_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} \dots$		

Temporal difference learning: Summary

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic
 - Value function approximation: $\hat{v}(s; w)$
 - Policy gradient methods
 - Actor-critic

Value function approximation: How we approach it

DQN by DeepMind (2015): A new paradigm emerges

AlphaGo by DeepMind (2016): A historical breakthrough

AlphaGo - The Movie | Full award-winning documentary

Value function approximation

Previous Now

 $v(s) \rightarrow \hat{v}(s; w)$

State s: discrete \rightarrow continuous

Representation: tabular → function

 $\hat{v}(s; w)$ can be a neural network (MLP, transformer, CNN, GNN, etc.), w is its weights

TD learning with function approximation

TD learning (tabular):
$$v_{t+1}(s_t) = v_t(s_t) + \alpha_t(s_t) \Big[\Big(r_{t+1} + \gamma v_t(s_{t+1}) \Big) - v_t(s_t) \Big]$$
 new estimate current estimate TD error

TD learning (with function approximation):

$$w_{t+1} = w_t + \alpha_t \Big[\Big(r_{t+1} + \gamma \hat{v}(s_{t+1}; w_t) \Big) - \hat{v}(s_t; w_t) \Big] \nabla_w \hat{v}(s_t; w_t)$$
new estimate current estimate

SARSA with function approximation

SARSA (tabular):

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \alpha_t(s_t, a_t) \left[\left(r_{t+1} + \gamma q_t(s_{t+1}, a_{t+1}) \right) - q_t(s_t, a_t) \right]$$

SARSA (with function approximation):

$$w_{t+1} = w_t + \alpha_t \left[\left(r_{t+1} + \gamma \hat{q}(s_{t+1}, a_{t+1}; w_t) \right) - \hat{q}(s_t, a_t; w_t) \right] \nabla_w \hat{q}(s_t, a_t; w_t)$$

SARSA with function approximation: Algorithm

Aim: Search a policy that can lead the agent to the target from an initial state-action pair (s_0, a_0) .

For each episode, do

If the current s_t is not the target state, do

Take action a_t following $\pi_t(s_t)$, generate r_{t+1}, s_{t+1} , and then take action a_{t+1} following $\pi_t(s_{t+1})$

Value update (parameter update):

$$w_{t+1} = w_t + \alpha_t \Big[r_{t+1} + \gamma \hat{q}(s_{t+1}, a_{t+1}, w_t) - \hat{q}(s_t, a_t, w_t) \Big] \nabla_w \hat{q}(s_t, a_t, w_t)$$

Policy update:

$$\pi_{t+1}(a|s_t) = 1 - \frac{\varepsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)|-1) \text{ if } a = \arg\max_{a \in \mathcal{A}(s_t)} \hat{q}(s_t, a, w_{t+1})$$
 $\pi_{t+1}(a|s_t) = \frac{\varepsilon}{|\mathcal{A}(s)|} \text{ otherwise}$

Q-learning with function approximation

Q-learning (tabular):

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \alpha_t(s_t, a_t) \left[r_{t+1} + \gamma \max_{a} q_t(s_{t+1}, a) - q_t(s_t, a_t) \right]$$

Q-learning (with function approximation):

$$w_{t+1} = w_t + \alpha_t \left[r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a; w_t) - \hat{q}(s_t, a_t; w_t) \right] \nabla_w \hat{q}(s_t, a_t; w_t)$$

Deep Q-Network (DQN) for human-level Atari games

Starting from the Bellman equation:

$$q_{\pi}(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a} q_{\pi}(S_{t+1}, a) | S_{t} = s, A_{t} = a\right]$$

It aims to minimize the Bellman optimality error:

$$J(w) = \mathbb{E}\left[\left(R + \gamma \max_{a} \hat{q}\left(S_{t+1}, a; w\right) - \hat{q}(S_{t}, a; w)\right)^{2}\right]$$

Deep Q-Network (DQN): Challenges

Objective:

$$J(w) = \mathbb{E}\left[\left(R + \gamma \max_{a} \hat{q}\left(S_{t+1}, a; w\right) - \hat{q}(S_{t}, a; w)\right)^{2}\right]$$

How to optimize? Challenges:

1. w appears in both $\hat{q}(S_t, a; w)$ and the target $R + \gamma \max_{a} \hat{q}(S_{t+1}, a; w)$.

Furthermore,
$$\nabla_w \left(R + \gamma \max_a \hat{q} \left(S_{t+1}, a; w \right) \right) \neq \max_a \nabla_w \hat{q} \left(S_{t+1}, a; w \right)$$
.

2. Expectation \mathbb{E} assumes that the state-action pair (S, A) is uniform. However, they are generated consecutively by certain policies, and have **strong correlations**.

Deep Q-Network (DQN): Innovation

Objective:

$$J(w) = \mathbb{E}\left[\left(R + \gamma \max_{a} \hat{q}(S_{t+1}, a; w_{T}) - \hat{q}(S_{t}, a; w)\right)^{2}\right]$$

Two key innovations:

1. **Two networks:** Use a main network $\hat{q}(S_t, a; w)$ for learning, and a target network $\hat{q}(S_t, a; w_T)$ as target which stops gradient from passing through. Every K steps, update the $w_T \leftarrow w$.

2. Experience replay

Store samples $\{(s, a, r, s')\}$ in a buffer, and in each step of training we draw a minibatch from the replay buffer.

Value function approximation: Summary

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic
 - Value function approximation: $\hat{v}(s; w)$
 - Policy gradient methods: $\pi(a|s;\theta)$
 - Actor-critic

Policy gradient: How we approach it

Policy gradient: Define metrics

d(s) is the weight for state s, $\sum_{s \in S} d(s) = 1$

Metric	Expression 1	Expression 2	Expression 3
average value $ar{v}_{\pi}$	$\sum_{s \in \mathcal{S}} d(s) v_{\pi}(s)$	$\mathbb{E}_{S\sim d}[v_{\pi}(S)]$	$\lim_{n\to\infty} \mathbb{E}\left[\sum_{t=0}^n \gamma^t R_{t+1}\right]$
average reward $ar{r}_{\!\pi}$	$\sum_{s\in\mathcal{S}}d(s)r_{\pi}(s)$	$\mathbb{E}_{S\sim d}[r_{\pi}(S)]$	$\lim_{n\to\infty} \frac{1}{n} \mathbb{E}\left[\sum_{t=0}^{n-1} R_{t+1}\right]$

Recall in <u>Bellman Equation section</u> section:

- State value: $v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$
- Immediate reward: $r_{\pi}(s) = \mathbb{E}[R_{t+1}|S_t = s]$

Policy gradient: Gradient expression

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s;\theta) q_{\pi}(s,a)$$
$$= \mathbb{E}_{S \sim \eta, A \sim \pi(S;\theta)} [\nabla_{\theta} \ln \pi(A|S;\theta) q_{\pi}(S,A)]$$

Here $\eta(s)$ is a distribution of the states

REINFORCE algorithm

From
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{S \sim \eta, A \sim \pi(S; \theta)} [\nabla_{\theta} \ln \pi(A|S; \theta) q_{\pi}(S, A)]$$

We let

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t | s_t; \theta_t) q_t(s_t, a_t)$$

Initialization: Initial parameter θ ; $\gamma \in (0,1)$; $\alpha > 0$.

Goal: Learn an optimal policy to maximize $J(\theta)$.

For each episode, do

Generate an episode $\{s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T\}$ following $\pi(\theta)$.

For $t = 0, 1, \dots, T - 1$:

Value update: $q_t(s_t, a_t) = \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k$

Policy update: $\theta \leftarrow \theta + \alpha \nabla_{\theta} \ln \pi(a_t|s_t,\theta) q_t(s_t,a_t)$

Outline

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic
 - Value function approximation: $\hat{v}(s; w)$
 - Policy gradient methods: $\pi(a|s;\theta)$
 - Actor-critic: Combine $\pi(a|s;\theta)$ and $\hat{v}(s;w)$

From REINFORCE to actor-critic

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{S \sim \eta, A \sim \pi(S; \theta)} [\nabla_{\theta} \ln \pi(A|S; \theta) q_{\pi}(S, A)]$$

$$= \mathbb{E}_{S \sim \eta, A \sim \pi(S; \theta)} [\nabla_{\theta} \ln \pi(A|S; \theta) (q_{\pi}(S, A) - b(S))] \text{ here } b(S) \text{ can be any function. We choose one that } \mathbf{reduces \ variance}.$$

REINFORCE:
$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t; \theta_t) q_t(s_t, a_t)$$

Advantage Actor-critic (A2C):

Policy update:
$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta \ln \pi(a_t|s_t;\theta_t) \Big(\underbrace{r_{t+1} + \gamma v(s_{t+1};w_t) - v_t(s_t;w_t)}_{\text{Advantage}} \Big)$$

Value update:
$$w_{t+1} = w_t + \alpha_t [(r_{t+1} + \gamma \hat{v}(s_{t+1}; w_t)) - \hat{v}(s_t; w_t)] \nabla_w \hat{v}(s_t; w_t)$$

This value update is the same as in TD learning with function approximation

Actor-critic: Interpretation

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t | s_t; \theta_t) (r_{t+1} + \gamma v(s_{t+1}; w_t) - v_t(s_t; w_t))$$

Summary

- Markov Decision Process (MDP) setup
- Bellman equation and Bellman optimality equation
- Value iteration and policy iteration
- Temporal difference learning
- Value function approximation, policy gradient methods, and actor-critic

Bellman equation & Bellman optimality equation

BE:
$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi}$$

BOE:
$$v_{\pi} = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi})$$

value iteration: $v_0 \rightarrow \pi_1 \rightarrow v_1 \rightarrow \pi_1 \dots \rightarrow v_k$

policy iteration: $\pi_0 \to v_{\pi_k} \to \pi_1 \to v_{\pi_1} \to \cdots \to \pi_k$

 $q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \alpha_t(s_t, a_t)[\bar{q}_t - q_t(s_t, a_t)]$

BE or BOE determines \bar{q}_t

Value iteration & policy iteration

Temporal Difference learning

Value function approximation, policy gradient, and actor-critic

TD with function approximation: $w_{t+1} = w_t + \alpha_t \left[\left(r_{t+1} + \gamma \hat{v}(s_{t+1}; w_t) \right) - \hat{v}(s_t; w_t) \right] \nabla_w \hat{v}(s_t; w_t)$

REINFORCE: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t; \theta_t) q_t(s_t, a_t)$

Actor-critic: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t;\theta_t) (r_{t+1} + \gamma v(s_{t+1};w_t) - v_t(s_t;w_t))$

Useful materials

- 课程:强化学习的数学原理(西湖大学赵世钰): https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning
- Useful code: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail