

Верификация за нерегулярност

- Pumping Лема:
 - +: Лесно се прилага
 - -: Само необходимо условие
- □ Релацията на Нероуд
 - +: Необходимо и достатъчно условие $(R_L) = \infty$
 - -: Малко трудно се проверява

Релация на Нероуд

Пример: $L = \{a^n b^n : n \ge 1\}$

Твърдение: $\forall k > 1, j \neq k > 1 : [a^k b] \neq [a^j b]$

$$[a^k b] = \{a^k b, a^{k+1} b b, \ldots\} = \{a^{k+i} b^{i+1}\}$$

така винаги k-1 повече а-та от b-та.

Следователно $[a^kb]$ и $[a^jb]$ са непресичащи.

Релация на Нероуд

Пример:
$$L = \{c^m a^{\ell} b^{\ell} : m, \ell \ge 0\} \cup \{a, b\}^*$$

Твърдение: $\forall k > 1, j \neq k > 1 : [ca^k b] \neq [ca^j b]$

$$[ca^kb] = \{c^ma^{k+i}b^{1+i} : m \ge 0, i \ge 1\}$$

така винаги k-1 повече а-та от b-та.

Следователно $[ca^kb]$ и $[ca^jb]$ са непресичащи се.

1.1.6 Свойства на затвореност

Нека L, L' са регулярни езици.

Тогава и следните езици са регулярни:

 $L \cup L'$, L^* , $L \cdot L'$: по дефиниция на рег. израз.

 $ar{L}:=oldsymbol{\Sigma}^*ackslash L$: Да разгледаме DFA $A=(Q,\Sigma,\delta,s,F)$ с L(A)=L.

Нека $\bar{A}:=(Q,\Sigma,\delta,s,Q\setminus F)$. Тогава $L(\bar{A})=\bar{L}$.

 $L \cap L' = \overline{\bar{L} \cup \bar{L'}}$ (Де Морган)

 $L \setminus L' = L \cap \bar{L}'$

L^R: Упражнение. Упътване: Индукция по регулярен израз.

(Product abtomat)

Конструкции на DFA за

теоретико-мнжествените операции

L и L' са регулярни езици, дефинирани с DFAs

$$A = (Q, \Sigma, \delta, s, F),$$

$$A' = (Q', \Sigma, \delta', s', F').$$

Идея: Автоматът A_{\times} симулира поведението на A и A'.

Product abtomat: $A_{\times} := (Q \times Q', \Sigma, \delta_{\times}, (s, s'), F_{\times})$ c

$$\delta_{\times}((q,q'),a) = (\delta(q,a),\delta(q',a))$$

Дефинираме F в съответствие с операциите:

$$L \cup L'$$
: $F_{\times} := Q \times F' \cup F \times Q'$

$$L \cap L'$$
 $F_{\times} := F \times F'$

1.1.7 Разрешимост

на прости свойства на един краен автомат

Word problem

 $w \in L$?

Изброждаме DFA A.

Симулираме A с вход w.

Дали има крайно състояние, което е достижимо?

Линейно време, ако DFA ако е даден автоматът!

Проблемът за празнотата на езика

$$L = \emptyset$$
?

Представяне на DFA или NFA A:

$$L = \emptyset \Leftrightarrow \neg \exists f \in F : f \text{ е от } s \text{ достижимо}$$

→ търсене в дълбочина, линейно време, както и за NFA.

Пример

Проблемът за крайност на езика I-c Pumping Лемата

Нека n е числото от Pumping-Лемата за L - регулярен Твърдение: $|L(G)| = \infty \Leftrightarrow \exists z \in L(G) : n \leq |z| < 2n$ Д-во:

 $z \in L(G), n \leq |z| < 2n$ — Ритріпд лемата осигурява $|L| = \infty$.

Ако $|L(G)|=\infty$ да разгледаме $z\in L(G)$ с минимална дължина $|z|\geq n.$

Да допуснем, че $|z| \ge 2n$.

 $\stackrel{\text{Pumping }\Pi\text{ema}}{\longrightarrow} z = uvw,$

 $1 \le |v| \le |uv| \le n, uw \in L(G) \longrightarrow |uw| \ge n.$

Противоречие с минималността на |z|.

Проблемът за крайност на езика II — намиране на цикли

 $|L(A)|=\infty$? $\Leftrightarrow \exists$ приемащ път, съдържащ цикъл. Нека NFA има $F=\{f\}$. Нека $G_A=(Q,E),$ $E=\{(q,r):\exists a\in\Sigma\cup\{\varepsilon\}:r\in\delta(q,a)\}$

- 1. Махаме състоянията, от които f не е достижимо. Търсене в дълбочина в $\bar{G}_A = (Q, \{(q,r): (r,q) \in E\})$ за f.
- 2. Можем ли да достигнем цикъл от s? \Leftrightarrow Дали търсенето в дълбочина от s в G_A среща вече посетен възел?

Rückwärtskante im Tiefensuchbaum

Проблемът за пълнота

$$L(A) = \Sigma^*$$
?

 $\Leftrightarrow \neg \exists q \in Q \setminus F : q$ е достижимо от s?

→ търсене в дълбочина, линейно време, само за DFA!

(Еквивалентно: празнота на $ar{L}$)

Пълнота на NFA:

Трансформираме в DFA. Не е известен по-добър алгоритъм.

Проблемът за еквивалентност

L и L' са регулярни езици разпознавани от DFAs A, A'.

Въпрос L = L'?

 $\Leftrightarrow \neg \exists w : (w \in L \land w \not\in L') \lor (w \not\in L \land w \in L')$

 $\Leftrightarrow \neg \exists w : (w \in L \land w \in \bar{L}') \lor (w \in \bar{L} \land w \in L')$

 $\Leftrightarrow (L \cap \bar{L}') \cup (\bar{L} \cap L') = \emptyset$

за пример с product автомат

Проблем: бавно

Еквивалентност на DFA

L и L' са регулярни езици дефинирани от DFAs $A=(Q,\Sigma,\delta,s,F),\,A'=(Q',\Sigma,\delta',s',F').$

Идея: Минималният автомат е "'единствен"'.

→ минимизирайте двата автомата и дикажете, че са "'равни"'.

Проблем: Възможно е да са преименувани състоянията. Сложността на изоморфизъм между по-общи графи е отрит въпрос.

Еквиванетност на DFA

L и L' са регулярни езици дефинирани с DFA

 $A = (Q, \Sigma, \delta, s, F), A' = (Q', \Sigma, \delta', s', F')$. Нека $Q \cap Q' = \emptyset$.

Въпрос: L = L'?

Да разгледаме
$$A_{\cup} := (Q \cup Q', \Sigma, \delta_{\cup}, s, F \cup F'),$$
 $\delta_{\cup}(q,a) = \begin{cases} \delta(q,a) & \text{ако } q \in Q \\ \delta'(q,a) & \text{ако } q \in Q' \end{cases}$

Намерете класовете на еквивалентност от състояния за A_{\sqcup} . $L = L' \Leftrightarrow s \equiv s'$.

Пример

 $L \subseteq \{0,1\}^*$ език, всички думи с поне една нула

Алгоритъмът за маркиране на нееквивалентните двойки състояния ни дава:

$$\{q,r\},\{q,t\},\{s,r\},\{s,t\},\{u,r\},\{u,t\}$$

$$\rightsquigarrow q \equiv s$$