COMP2610/COMP6261 - Information Theory

Tutorial 10

Manish Kumar (manish.kumar@anu.edu.au)

Question 1.

Channel capacity. Consider the discrete memoryless channel $Y = X + Z \pmod{11}$, where

$$Z = \left(\begin{array}{ccc} 1, & 2, & 3\\ 1/3, & 1/3, & 1/3 \end{array}\right)$$

and $X \in \{0, 1, ..., 10\}$. Assume that Z is independent of X.

- (a) Find the capacity.
- (b) What is the maximizing $p^*(x)$?

Question 2.

Erasures and errors in a binary channel. Consider a channel with binary inputs that has both erasures and errors. Let the probability of error be ϵ and the probability of erasure be α , so the the channel is as illustrated below:

- (a) Find the capacity of this channel.
- (b) Specialize to the case of the binary symmetric channel ($\alpha = 0$).
- (c) Specialize to the case of the binary erasure channel ($\epsilon = 0$).

Question 3.

Binary multiplier channel

- (a) Consider the channel Y=XZ where X and Z are independent binary random variables that take on values 0 and 1. Z is Bernoulli(α), i.e. $P(Z=1)=\alpha$. Find the capacity of this channel and the maximizing distribution on X.
- (b) Now suppose the receiver can observe Z as well as Y. What is the capacity?

Question 4.

Can signal alternatives lower capacity? Show that adding a row to a channel transition matrix does not decrease capacity.