Trefethen and Bau: Lecture #3

September 7, 2018

Aditya Vijaykumar

Problem 1

For something to be a vector norm it should satisfy three conditions. We list down these three conditions and see if $\|\cdot\|_W = \|Wx\|$ does indeed satisfy them,

- $||x||_W \ge 0$. This is automatically satisfied by the definition of the norm.
- $||x||_W = 0$ iff x = 0. As W is a nonsingular matrix by assumption, this property is satisfied as well.
- $\|\alpha x\|_W = |\alpha| \|x\|_W$. As α is just a multiplicative constant and W is indeed a matrix, this property is satisfied as well.

Hence, $\|\cdot\|$ is a vector norm.

Problem 2

By the definition of ||A||, $||A|| \ge ||Ax||$, \forall unit vectors x DO this problem

Problem 3

Part (a)

$$||x||_{\infty} = \sqrt{x_0^2} \le \sqrt{x_0^2 + \sum_{i \ne 0} x_i^2} \le ||x||_2$$

Equality is achieved for any vector having only one element.

Part (b)

$$||x||_2 = \sqrt{\sum_i x_i^2} \le \sqrt{m(\max x_i)^2} \le \sqrt{m}||x||_{\infty}$$

Equality is achieved for any vector having elements with the same absolute value.

Part (c)