Forma estándar de un programa lineal

Sin pérdida de generalidad, todo programa lineal se puede escribir como:

- Objetivo: minimizar
- ► Todas las desigualdades como ecuaciones
- ► Todas las variables mayores o iguales que cero

Convertir un Programa Lineal a la Forma Estándar

- ▶ Añadir una variable de holgura $s_i \ge 0$ a cada desigualdad i de signo \le
- ▶ Substraer una variable de exceso $e_i \ge 0$ de cada desigualdad i de signo \ge
- ▶ Sustituir x_i sin restricción de signo por $x_i' x_i''$, x_i' , $x_i'' \ge 0$

Algoritmo Simplex

Dantzig(1947)

- ► Fase I. Encontrar una solución básica factible inicial o concluir que el problema es no factible
- ▶ Fase II. Usar la solución básica inicial de la fase I para determinar (1) la solución mínima óptima o (2) que el problema es no acotado.

Soluciones factibles, básicas

Ρ

$$min cx (1)$$

$$s.t Ax = b (2)$$

$$x \ge 0 \tag{3}$$

- ▶ Una solución factible de **(P)** es el vector $x = \{x_1, x_2, ..., x_n\}$ que satisface **(??)** y **(??)**.
- Una matriz básica es una matriz no singular mxn formada por m columnas de A (Rango(A)=m)
- ► Una solución básica de un programa lineal es el vector único determinado al escoger una matriz básica, asignar un valor de cero a las n — m variables asociadas con las columnas que no están en la matriz básica y resolver el sistema no singular resultante para las m variables restantes

Soluciones básicas factibles

- Una solución básica factible de (P) es aquella cuyas variables son todas no-negativas.
- ▶ Una solución básica factible de no degenerada tiene exactamente *m* variables positivas.
- ► Una solución optima de (P) es una solución factible que también minimiza Z en (??)

Teorema fundamental programación lineal

Teorema 1.

La región factible de cualquier programa lineal es un conjunto convexo. Si un PL tiene solución óptima, debe existir un vértice de dicha región que es óptimo.

Teorema 2.

Para todo PL, existe un único vértice de la región factible el cual corresponde a cada solución básica factible. Igualmente, al menos una de las soluciones básicas factibles corresponde a cada vértice la región factible.

La búsqueda del óptimo se limita a los vértices de la región factible

Algoritmo Simplex

- 1. Convertir el PL a la forma estándar
- 2. Obtener una solución básica factible de la forma estándar
- 3. Determinar si la solución básica factible actual es óptima
- 4. Si la sbf actual no es óptima, determine cuál variable no básica debe convertirse en básica y cuál variable básica debe convertirse en no básica, con el fin de encontrar una nueva solución básica factible con un mejor valor de la función objetivo
- Aplicar operaciones elementales de filas para encontrar la nueva solución básica factible con mejor valor para la función objetivo

Algoritmo Simplex Fase II

Paso 0. Dada una secuencia básica factible *B* :

- $ightharpoonup A_B, c_B, x_B$ submatrices asociadas con la base B
- ▶ A_N , c_N , x_N submatrices asociadas con las variables no básicas N ($x_N = 0$).

$$\begin{array}{rcl} \min \ c_B x_B + c_N x_N \\ \mathrm{sujeto} \ \mathrm{a}: \ A_B x_B + A_N x_N & = \ b \\ x_B, x_N & \geq \ 0 \end{array}$$

Algoritmo Simplex Fase II

Paso 1. Calcule la solución básica actual y verifique la optimalidad

$$\bar{x} = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} A_B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} \bar{b} \\ 0 \end{pmatrix}$$

- \bar{y} : vector de precios (Dual) $\bar{y} = c_B A_B^{-1}$
- \bar{c} : vector de costos reducidos $\bar{c} = c \bar{y}A$

Si $\bar{c} \geq 0$, deténgase. \bar{x} es el óptimo global de **(P)**.

Algoritmo Simplex Fase II

Paso 2. Si $\bar{c} < 0$, seleccione la variable que entrará a la base: Encuentre t $(t = 1 \dots n)$ tal que $\bar{c}_t < 0$.

Paso 3. Seleccione la variable que saldrá de la base:

Calcule $\bar{A}_{\cdot t} = A_B^{-1} A_{\cdot t}$

Si \bar{A} contiene sólo variables no positivas (< 0), deténgase. (P) es no acotado.

De lo contrario, encuentre $r \ (r = 1 \dots n)$ tal que:

$$\frac{\bar{b}_r}{A_{rt}} = \min_{i \ni \bar{A}_{it} \ge 0} \{ \frac{\bar{b}_i}{\bar{A}_{it}} \}.$$

Algoritmo Simplex Fase II)

Paso 4. Reemplace el índice r en B por t. Calcule la matriz de permutación P; $A_B^{-1} \leftarrow P * A_B^{-1}$

Regresar al paso 1.

$$\min x_1 - 2x_2$$
sujeto a: $x_1 + x_2 - x_3 = 2$

$$-x_1 + x_2 - x_4 = 1$$

$$x_2 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$A = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix},$$

$$c = \begin{pmatrix} 1 & -2 & 0 & 0 & 0 \end{pmatrix}.$$

Dado
$$B = \{1, 2, 5\}, A_B^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ -1/2 & -1/2 & 1 \end{pmatrix}$$

 A_B^{-1} se obtiene realizando operaciones elementales en las filas del

sistema original:
$$A_B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

- Estamos resolviendo el sistema $A_Bx_B + A_Nx_N = b$ ó $A_Bx_B = b$ ($x_N = 0$).
- ▶ Premultiplicando por A_B^{-1} , $A_B^{-1}A_Bx_B = A_B^{-1}b$ obtenemos $lx_B = A_B^{-1}b = (1/2, 3/2, 3/2)$.
- ▶ El valor actual de la función objetivo z es:

$$z = cx = c_B \bar{x}_B + c_N \bar{x}_N = c_B \bar{x}_B =$$

$$\begin{pmatrix} 1 & -2 & 0 \end{pmatrix} * \begin{pmatrix} 1/2 \\ 3/2 \\ 3/2 \end{pmatrix} = -5/2$$

Los precios duales son $\bar{v} = c_0 A^{-1} = 0$

$$ar{y} = c_B A_B^{-1} =$$

$$\left(\begin{array}{ccc} 1 & -2 & 0 \end{array} \right) * \left(\begin{array}{ccc} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ -1/2 & -1/2 & 1 \end{array} \right) =$$

$$\left(\begin{array}{ccc} -1/2 & -3/2 & 0 \end{array} \right).$$

► Los costos reducidos son:

$$\begin{split} \overline{c} &= c - \overline{y} A = \left(\begin{array}{ccccc} 1 & -2 & 0 & 0 & 0 \end{array} \right) - \\ \left(\begin{array}{cccccc} -1/2 & -3/2 & 0 \end{array} \right) \left(\begin{array}{cccccc} 1 & 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right) = \\ \left(\begin{array}{ccccccc} 0 & 0 & -1/2 & -3/2 & 0 \end{array} \right). \end{aligned}$$

 $ightharpoonup ar{c} = \left(egin{array}{ccc} 0 & 0 & -1/2 & -3/2 & 0 \end{array}
ight) < 0. \ ar{x}_B \ ext{no es optima}.$

$$z = c_B \bar{x}_B + c_N \bar{x}_N \text{ (Objetivo)}$$

$$A_B x_B + A_N x_N = b \text{ (Restricciones)}$$

$$A_B^{-1} A_B x_B + A_B^{-1} A_N x_N = A_B^{-1} b \text{ (Premultiplicando por } A_B^{-1} \text{)}$$

$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N.$$

$$z = c_B (A_B^{-1} b - A_B^{-1} A_N x_N) + c_N x_N = \text{(Reemplazando } x_B \text{ en } Z\text{)}$$

$$z = c_B A_B^{-1} b + (c_N - c_B A_B^{-1} A_N) x_N$$

- ► Los coeficientes "efectivos" de x_B son cero. Los coeficientes "efectivos" de x_N son $c_N c_B A_B^{-1} A_N$.
- ▶ Entrar una variable no-básica a la base mejora el valor de z.

Ejemplo Algoritmo Simplex

Paso 2.

Seleccionar una variable de entrada, por ejemplo,

$$c_4 = -3/2(t = 4)$$

Paso 3.

Actualizar la columna de la variable de entrada, con el fin de seleccionar la variable de salida:

$$\bar{A}_{\cdot t} = A_B^{-1} A_{\cdot t}.$$

$$\bar{A}_{.4} = A_B^{-1} A_{.4} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ -1/2 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1/2 \end{pmatrix}$$

- Las entradas positivas de $\bar{A}_{.4}$ garantizan que el problema es acotado en esta iteración.
- La variable de salida se selecciona con la prueba del cociente mínimo:

$$\begin{aligned} & \frac{\bar{b}_r}{\bar{A}_{rt}} = \min_{i \ni \bar{A}_{it} \ge 0} \{ \frac{\bar{b}_i}{\bar{A}_{it}} \} = \min \{ -0.5/0.5, *, 1.5/0.5 \} = 1. \\ & x_1 + 0.5 x_4 = 0.5, \ x_1 = 0.5 - 0.5 x_4 \ge 0, \ x_4 \le 1 \\ & x_5 + 0.5 x_4 = 1.5, \ x_5 + 1.5 - 0.5_x 4 \ge 0, \ x_4 \le 3 \end{aligned}$$

▶ Al remover x_1 , x_4 puede tomar el mayor de los valores posibles. El índice de la variable de salida es r=1 (primera entrada del vector)

► Nueva base: {4,2,5}

Paso 4. Matriz de permutación

$$P = \begin{pmatrix} 1/0.5 & 0 & 0 \\ --0.5/0.5 & 1 & 0 \\ -0.5/0.5 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
A_B^{-1} \leftarrow P * A_B^{-1} \\
2 & 0 & 0 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{pmatrix} * \begin{pmatrix}
0.5 & -0.5 & 0 \\
0.5 & 0.5 & 0 \\
-0.5 & -0.5 & 1
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 0 \\
1 & 0 & 0 \\
-1 & 0 & 1
\end{pmatrix}$$

Regresar al paso 1

Algoritmo Simplex Fase I

Encontrar la solución básica factible inicial o determinar que el problema es no factible (restricciones inconsistentes)

- ▶ Aumentar el problema en forma estándar para incluir un conjunto de variables artificiales $x_{n+1}, x_{n+2}, \ldots, x_{n+m}$, que generan una base para el sistema aumentado
- ▶ Realizar operaciones Simplex Fase II en el sistema aumentado de forma que las variables artificiales se vuelvan cero: minimizar $w = x_{n+1} + x_{n+2} + ... + x_{n+m}$
- Si al terminar la Fase II del simplex en el sistema aumentado hay variables artificiales en la solución, el problema es no factible

Fase I Algoritmo Simplex

Para encontrar la solución básica factible inicial de:

$$\max -x_1 + 2x_2$$

 \sup sujeto a: $x_1 + x_2 \ge 2$
 $-x_1 + x_2 \ge 1$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

► Escribir la forma estándar del problema

-min
$$x_1 - 2x_2$$

sujeto a: $x_1 + x_2 - x_3 = 2$
 $-x_1 + x_2 - x_4 = 1$
 $x_2 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Fase I Algoritmo Simplex

$$A = \left(\begin{array}{rrrrr} 1 & 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

- ▶ La columna $A_{.5}$ de la variable de exceso x_5 corresponde a la columna (0 0 1) de I_3
- ▶ Agregar variables artificiales $a_1, a_2 \ge 0$ correspondientes a las columnas(1 0 0) y (0 1 0) de I_3

$$A = \left(\begin{array}{cccccc} 1 & 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

Fase I Algoritmo Simplex

- ▶ Empezar con una solución en la cual las variables estructurales son no básicas. Base: $\{x_5, a_1, a_2\}$
- ► Reorganizando *A*

$$A = \left(\begin{array}{cccccc} x_1 & x_2 & x_3 & x_4 & a_1 & a_2 & x_5 \\ 1 & 1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{array}\right) b = \left(\begin{array}{c} 2 \\ 1 \\ 3 \end{array}\right)$$

- ▶ Penalizar las variables artificiales en el objetivo de forma que no entren en la base. Los coeficientes de nueva función objetivo, min cx, son $c = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$
- ▶ Realizar iteraciones Simplex en el sistema artificial hasta que a_1 , a_2 salgan de la base o hasta que se alcance la optimalidad
- Si se obtiene una solución básica factible (todas las variables en la base son estructurales), empezar la Fase II de Simplex
- ➤ Si la solución óptima de la fase I contiene una o más variables artificiales, el problema no es factible.

