A FIRST COURSE

IN

ANALYSIS

A FIRST COURSE

IN

ANALYSIS

MAT2006 Notebook

Lecturer

Prof. Weiming Ni The Chinese University of Hongkong, Shenzhen

Tex Written By

Mr. Jie Wang

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	vii
Notat	tions	ix
1	Week1	1
1.1	Wednesday	1
1.1.1	Introduction to Set	1
1.2	Quiz	5
1.3	Friday	6
1.3.1	Proof of Schroder-Berstein Theorem	6
1.3.2	Connectedness of Real Numbers	10
2	Week2	13
2.1	Wednesday	13
2.1.1	Review and Announcement	13
2.1.2	Irrational Number Analysis	13
2.2	Friday	21
2.2.1	Set Analysis	21
2.2.2	Set Analysis Meets Sequence	22
2.2.3	Completeness of Real Numbers	23
3	Week3	27
3.1	Tuesday	27
3.1.1	Application of Heine-Borel Theorem	27
3.1.2	Set Structure Analysis	29
3.1.3	Reviewing	31

3.2	Friday	33
3.2.1	Review	. 33
3.2.2	Continuity Analysis	. 34
4	Week4	41
4.1	Wednesday	41
4.1.1	Function Analysis	. 41
4.1.2	Continuity Analysis	. 46

Acknowledgments

This book is taken notes from the MAT2006 in fall semester, 2018. These lecture notes were taken and compiled in LATEX by Jie Wang, an undergraduate student in Fall 2018. Prof. Weiming Ni has not edited this document.

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

1.3. Friday

Before we give a proof of Schroder-Berstein theorem, we'd better review the definitions for one-to-one mapping and onto mapping.

Definition 1.4 [One-to-One/Onto Mapping] If $f : A \mapsto B$, then

ullet f is said to be **onto** mapping if

$$\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b;$$

ullet f is said to be **one-to-one** mapping if

$$\forall a, b, \in A, f(a) = f(b) \implies a = b.$$

The Fig.(1.1) shows the examples of one-to-one/onto mappings.

1.3.1. Proof of Schroder-Berstein Theorem

Before the proof, note that in this lecture we abuse the notation fg to denote the composite function $f \circ g$, but in the future fg will refer to other meanings.

Intuition from Fig.(1.2). The proof for this theorem is constructive. Firstly Fig.(1.2) gives us the intuition of the proof for this theorem. Let $f : A \mapsto B$ and $g : B \mapsto A$ be two one-to-one mappings, and D,C are the image from A,B respectively. Note that

if the set $B \setminus D$ is empty, then D = B = f(A) with f being the one-to-one mapping, which implies f is one-to-one onto mapping. In this case the proof is complete.

Hence it suffices to consider the case $B \setminus D$ is non-empty. Thus $B \setminus D$ is the "**trouble-maker**". To construct a one-to-one onto mapping from A, we should study the subset $g(B \setminus D)$ of A (which can also be viewed as a *trouble-maker*). Moreove, we should study

Figure 1.1: Illustrations of one-to-one/onto mappings

Figure 1.2: Illustration of Schroder-Berstein Theorem

the subset $gf[g(B \setminus D)]$ (which is also a *trouble-maker*)... so on and so forth. Therefore, we should study the *union of these trouble makers*, i.e., we define

$$A_1 := g(B \setminus D), \quad A_2 := gf(A_1), \quad \cdots, \quad A_n := gf(A_{n-1}),$$

Then we study the union of infinite sets

$$S := A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n \bigcup \cdots$$

Define

$$F(a) = \begin{cases} f(a), & a \in A \setminus S \\ g^{-1}(a), & a \in S \end{cases}$$

We claim that $F: A \mapsto B$ is one-to-one onto mapping.

F is onto mapping. Given any element $b \in B$, it follows two cases:

- 1. $g(b) \in S$. It implies $F(g(b)) = g^{-1}(g(b)) = b$.
- 2. $g(b) \notin S$. It implies $b \in D$, since otherwise $b \in B \setminus D \implies g(b) \in g(B \setminus D) \subseteq S$, which is a contradiction. $b \in D$ implies that $\exists a \in A \text{ s.t. } f(a) = b$.

Then we study the relationship between gf(S) and S. Verify by yourself that

$$S = g(B \setminus D) \bigcup gf(S)$$

With this relationship, we claim $a \notin S$, since otherwise $a \in S \implies gf(a) \in S$, but $gf(a) = g(b) \notin S$, which is a contradiction.

Hence,
$$F(a) = f(a) = b$$
.

Hence, for any element $b \in B$, we can find a element from A such that the mapping for which is equal to b, i.e., F is onto mapping.

F is one-to-one mapping. Assume not, verify by yourself that the only possibility is that $\exists a_1 \in A \setminus S$ and $a_2 \in S$ such that $F(a_1) = F(a_2)$, i.e., $f(a_1) = g^{-1}(a_2)$, which follows

$$gf(a_1) = a_2 \in S = A_1 \bigcup A_2 \bigcup \cdots \tag{1.1}$$

We claim that Eq.(1.1) is false. Note that $gf(a_1) \notin A_1 := g(B \setminus D)$, since otherwise $f(a_1) \in B \setminus D$, which is a contradiction; note that $gf(a_1) \notin A_2$, since otherwise $gf(a_1) \in gfg(B \setminus D) \implies a_1 \in g(B \setminus D) = A_1 \subseteq S$, which is a contradiction.

Applying the similar trick, we wil show that $gf(a_1) \notin A_k$ for $k \ge 1$. Hence, Eq.(1.1) is false, the proof is complete.

- Example 1.1 Given two sets A := (0,1] and B := [0,1). Now we apply the idea in the proof above to construct a one-to-one onto mapping from A to B:
 - Firstly we construct two one-to-one mappings:

$$f:A \mapsto B$$
 $g:B \mapsto A$
 $f(x) = \frac{1}{2}x$ $g(x) = x$

• It follows that $B \setminus D = (\frac{1}{2},1)$, $gf(B \setminus D) = (\frac{1}{4},1)$, so on and so forth.

$$S = (\frac{1}{2}, 1) \bigcup (\frac{1}{4}, 1) \bigcup \cdots$$

• Hence, the one-to-one onto mapping we construct is

$$F(x) = \begin{cases} \frac{1}{2}x, & x \in A \setminus S \\ x, & x \in S \end{cases}$$

• Conversely, to construct the inverse mapping, we define

$$f(x) = x \quad g(x) = \frac{1}{2}x$$

• It follows that D=(0,1), $B\setminus D=\{1\}$. Then

$$S = \left\{\frac{1}{2}\right\} \bigcup \cdots = \left\{\frac{1}{2}, \frac{1}{4}, \cdots\right\}$$

• Hence, the function we construct for inverse mapping is

$$F(x) = \begin{cases} x, & x \neq \frac{1}{2^m} \\ 2x, & x = \frac{1}{2^m} \end{cases} \quad (m = 1, 2, 3, \dots)$$

1.3.2. Connectedness of Real Numbers

There are two approaches to construct real numbers. Let's take $\sqrt{2}$ as an example.

1. The first way is to use **Dedekind Cut**, i.e., every non-empty subset has a least upper bound. Therefore, $\sqrt{2}$ is actually the least upper bound of a non-empty subset

$$\{x \in \mathbb{Q} \mid x^2 < 2\}.$$

2. Another way is to use **Cauchy Sequence**, i.e., every Cauchy sequence is convergent. Therefore, $\sqrt{2}$ is actually the limit of the given sequence of decimal approximations below:

$$\{1,1.4,1.41,1.414,1.4142,\dots\}$$

We will use the second approach to define real numbers. Every real number r essentially represents a collection of cauchy sequences with limit r, i.e.,

$$r \in \mathbb{R} \implies \left\{ \left\{ x_n \right\}_{n=1}^{\infty} \middle| \lim_{n \to \infty} x_n = r \right\}$$

Let's give a formal definition for cauchy sequence and a formal definition for real number.

Definition 1.5 [Cauchy Sequence]

• Any sequence of rational numbers $\{x_1, x_2, \cdots\}$ is said to be a **cauchy sequence** if for every $\epsilon > 0$, $\exists N$ s.t. $|x_n - x_m| < \epsilon$, $\forall m, n \geq N$

- Two cauchy sequences $\{x_1, x_2, \dots\}$ and $\{y_1, y_2, \dots\}$ are said to be **equivalent** if for every $\epsilon > 0$, there $\exists N$ s.t. $|x_n y_n| < \epsilon$ for $\forall n \geq N$.
- A real number is a collection of equivalent cauchy sequences. It can be represented by a cauchy sequence:

$$x \in \mathbb{R} \sim \{x_1, x_2, \dots, x_n, \dots\},$$

where x_i is a rational number.

Let ξ_Q denote a collection of any cauchy sequences. Then once we have equivalence relation, the whole collection ξ_Q is partitioned into several disjoint subsets, i.e., equivalence classes. Hence, the real number space $\mathbb R$ are the equivalence classes of ξ_Q .

The real numbers are well-defined, i.e., given two real numbers $x \sim \{x_1, x_2, ...\}$ $y \sim \{y_1, y_2, ...\}$, we can define add and multiplication operator.

$$x + y \sim \{x_1 + y_1, x_2 + y_2, \dots\}$$

 $x \cdot y \sim \{x_1 \cdot y_1, x_2 \cdot y_2, \dots\}$

We will show how to define x > 0 in next lecture, this construction essentially leads to the lemma below:

Proposition 1.2 \mathbb{Q} are dense in \mathbb{R} .

In the next lecture we will also show the completeness of \mathbb{R} :

Theorem 1.2 \mathbb{R} is complete, i.e., every cauchy sequence of real numbers converges.

Recommended Reading:

Prof. Katrin Wehrheim, MIT Open Course, Fall 2010, Analysis I Course Notes, Online avaiable:

https://ocw.mit.edu/courses/mathematics

/18-100b-analysis-i-fall-2010/readings-notes/MIT18_100BF10_Const_of_R.pdf