

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

6-Amino-2-(pivaloylamino)pyridinium benzoate

Lilianna Chęcińska,^a Borys Ośmiałowski^b and Arto Valkonen^c*

^aStructural Chemistry and Crystallography Group, University of Lodz, Pomorska 163/165, PL-90-236 Łódź, Poland, ^bFaculty of Technology and Chemical Engineering, University of Technology and Life Sciences, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland, and ^cDepartment of Chemistry, University of Jyväskylä, PO Box 35, Fl-40014 Jyväskylä, Finland

Correspondence e-mail: lilach@uni.lodz.pl

Received 26 July 2013; accepted 23 August 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.066; wR factor = 0.141; data-to-parameter ratio = 16.9.

In the crystal structure of the title salt, $C_{10}H_{16}N_3O^+\cdot C_7H_5O_2^-$, the cations and anions are linked to each other $via~N-H\cdot\cdot\cdot O$ hydrogen bonds, forming infinite chains running along [010]. The crystal structure also features $C-H\cdot\cdot\cdot O$ and $\pi-\pi$ stacking interactions, which assemble the chains into supramolecular layers parallel to (100). The $\pi-\pi$ stacking interactions are observed between the pyridine rings of inversion-related cations with a centroid–centroid distance of 3.867 (2) Å.

Related literature

For co-crystallization of pharmaceuticals, see: Vishweshwar *et al.* (2006); Lemmerer (2012). For the crystal structures of related compounds, see: Ośmiałowski *et al.* (2010*b*); Aakeröy *et al.* (2006, 2010). For the role of steric effects in hydrogenbonded compounds, see Ośmiałowski *et al.* (2012*a,b*, 2010*a,b*). For the synthesis of 2-pivaloylamino-6-aminopyridine, see: Ośmiałowski *et al.* (2010*a*).

Experimental

Crystal data

 $C_{10}H_{16}N_3O^+\cdot C_7H_5O_2^ M_r = 315.37$ Monoclinic, $P2_1/c$ a = 15.1438 (4) Å b = 5.7099 (2) Å c = 18.7388 (6) Å $\beta = 91.967 (2)^{\circ}$ $V = 1619.38 (9) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 123 K $0.13 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Bruker-Nonius KappaCCD diffractometer with APEXII detector

Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.988$, $T_{\max} = 0.993$

10993 measured reflections 3724 independent reflections 2054 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.094$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.141$ S = 1.003724 reflections

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.24 \ {\rm e \ \mathring{A}^{-3}}$ $\Delta \rho_{\rm min} = -0.28 \ {\rm e \ \mathring{A}^{-3}}$

4 restraints

220 parameters

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
0.91 (2) 0.90 (2)	1.67 (2) 2.05 (2)	2.571 (2) 2.934 (3)	170 (2) 167 (2)
0.91 (2) 0.86 (2) 0.95	2.05 (2) 2.24 (2) 2.49	2.869 (3) 2.984 (3) 3.433 (3)	149 (2) 146 (2) 172
	0.91 (2) 0.90 (2) 0.91 (2) 0.86 (2)	0.91 (2) 1.67 (2) 0.90 (2) 2.05 (2) 0.91 (2) 2.05 (2) 0.86 (2) 2.24 (2)	0.91 (2) 1.67 (2) 2.571 (2) 0.90 (2) 2.05 (2) 2.934 (3) 0.91 (2) 2.05 (2) 2.869 (3) 0.86 (2) 2.24 (2) 2.984 (3)

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y, -z + 1.

Data collection: *COLLECT* (Bruker, 2008); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013* and *publCIF* (Westrip, 2010).

Financial support from the National Science Centre in Kraków (grant No. NCN204 356840) is gratefully acknowledged. Academy Professor Kari Rissanen (Academy of Finland grant Nos. 122350, 140718, 265328 and 263256) and the University of Jyväskylä (postdoc grant to AV) are also gratefully acknowledged for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2103).

References

Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.
Aakeröy, C. B., Rajbanshi, A., Li, Z. J. & Desper, J. (2010). CrystEngComm,
12, 4231–4239.

Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388

Lemmerer, A. (2012). CrystEngComm, 14, 2465–2478.

Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010b). J. Phys. Chem. A, 114, 10421–10426.

Ośmiałowski, B., Kolehmainen, E., Gawinecki, R., Dobosz, R. & Kaupinen, R. (2010a). J. Phys. Chem. A, 114, 12881–12887.

Ośmiałowski, B., Kolehmainen, E., Ikonen, S., Valkonen, A., Kwiatkowski, A., Grela, I. & Haapaniemi, E. (2012a). J. Org. Chem. 77, 9609–9619.

organic compounds

Ośmiałowski, B., Kolehmainen, E. & Kowalska, M. (2012b). J. Org. Chem. 77, 1653–1662.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). *J. Pharm. Sci.* **95**, 499–516.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2013). E69, o1483-o1484 [doi:10.1107/S1600536813023787]

6-Amino-2-(pivaloylamino)pyridinium benzoate

Lilianna Chęcińska, Borys Ośmiałowski and Arto Valkonen

1. Comment

Co-crystallization is used in the pharmaceutical industry to improve the shelf life of drugs (Vishweshwar *et al.*, 2006; Lemmerer, 2012). It is also used in many fields of chemistry, including material science. It is known that 2-acylamino-pyridine forms co-crystals with acids, while in 2-aminopyridine acid complexes proton transfer takes place, yielding salts (Aakeröy *et al.*, 2010; 2006). The current report deals with the competition between formation of a salt and co-crystal. It is worth pointing out that the 2-acylamino moiety prefers to form co-crystals, while the 6-amino moiety prefers salt formation. In 2-pivaloylamino pyridine, both groups are present in the same molecule. Moreover, the increased acidity of NH in the –NHCO— group, in general, increases the hydrogen bonding donation ability of the NH proton. On the other hand, we used the sterically demanding pivaloyl group to hinder the efficient NH···O=C interaction of the —NHCO— *t*Bu part of the title molecule. Thus the interacting acid is pushed to transfer the proton to the heterocyclic nitrogen and to form a salt with 2-pivaloylamino-6-aminopyridine. It is worth noting that the NH₂ group attached to C6 of the pyridine ring causes an increase of electron density at the ring nitrogen. More systematic studies on co-crystallization of 2-acylaminopyridine with benzoic acids are in progress. For the steric effects in hydrogen bonded compounds, refer to our previous publications (Ośmiałowski *et al.*, 2012*a,b*; 2010*a,b*).

As illustrated in Figure 1, the asymmetric unit of the title salt, (I), contains one protonated 2-pivaloylamino-6-amino-pyridine cation and one benzoate anion, both located in general positions.

The geometric parameters of the 2-pivaloylamino-6-aminopyridine cation are in good agreement with those found for the related structures (Ośmiałowski *et al.*, 2010*a,b*). In the benzoate anion the C—O distances, 1.268 (3) Å and 1.253 (3) Å, clearly indicate the delocalization of the negative charge within the carboxylate group.

In the crystal of the title salt, cations and anions are connected via four N—H···O hydrogen bonds (Table 1 and Figure 2). The protonated N1 atom and two nitrogen atoms (N6 and N7) interact with the carboxylate oxygen atoms (O13A and O13B; symmetry code (i): x, y + 1, z) and form hydrogen-bonded aggregates. Such structural motifs are further propagated into infinite chains running along b axis by N6—H6B···O13Bⁱⁱ [symmetry code (ii): -x + 1, y + 1/2, -z + 1/2] hydrogen bond. The crystal structure of (I) is further stabilized by an almost linear C4—H4···O8ⁱⁱⁱ interaction (Table 1 and Figure 2) and by π ··· π stacking interactions; both of which connect the adjacent one-dimensional-chains to produce (100) supramolecular sheets. The thickness of each separate layer is equal to the a unit cell constant. No direction-specific interactions have been found between the supramolecular sheets.

The aforementioned $\pi \cdots \pi$ stacking interactions are observed between the pyridine rings of inversion-related cations, with a $Cg \cdots Cg^{iv}$ distance of 3.867 (2) Å and interplanar distance of 3.455 (1) Å; Cg is the centroid of the N2/C2–C6 ring, symmetry code (iv): 1 - x, 1 - y, 1 - z.

2. Experimental

For the synthesis of the title compound, equimolar ammounts of 2-pivaloylamino-6-aminopyridine and benzoic acid were mixed in methanol. The solution was left for a couple of days for slow evaporation and produced single crystals. The parent 2-pivaloylamino-6-aminopyridine was prepared according to a literature procedure (Ośmiałowski *et al.*, 2010*a*).

3. Refinement

All non-hydrogen atoms were refined anisotropically. H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N1—H1 (and N7—H7) = 0.88 (2) Å, N6—H6A (and N6—H6B) = 0.91 (2) Å and with $U_{iso}(H) = 1.2 U_{eq}(N)$. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(methyl C)$.

Computing details

Data collection: *COLLECT* (Bruker, 2008); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Figure 1
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

A part of the crystal structure of (I), showing the intermolecular interactions as dashed lines [symmetry codes: (i) x,y + 1,z; (ii)-x + 1,y + 1/2,-z + 1/2; (iii)-x + 1,-y,-z + 1].

6-Amino-2-(pivaloylamino)pyridinium benzoate

Crystal data

 $C_{10}H_{16}N_3O^+\cdot C_7H_5O_2^ M_r = 315.37$ Monoclinic, $P2_1/c$ a = 15.1438 (4) Å b = 5.7099 (2) Å c = 18.7388 (6) Å $\beta = 91.967$ (2)° V = 1619.38 (9) Å³ Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer with APEXII detector Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.988$, $T_{max} = 0.993$

F(000) = 672 $D_{\rm x} = 1.293~{\rm Mg~m^{-3}}$ ${\rm Mo~} K\alpha ~{\rm radiation}, \lambda = 0.71073~{\rm \mathring{A}}$ ${\rm Cell~parameters~from~} 4257~{\rm reflections}$ $\theta = 0.4-28.3^{\circ}$ $\mu = 0.09~{\rm mm^{-1}}$ $T = 123~{\rm K}$ ${\rm Block,~colourless}$ $0.13 \times 0.10 \times 0.08~{\rm mm}$

10993 measured reflections 3724 independent reflections 2054 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.094$ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$ $h = -19 {\to} 18$ $k = -7 {\to} 7$ $l = -24 {\to} 20$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.141$ S = 1.00 3724 reflections 220 parameters 4 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_\circ^2) + (0.0496P)^2]$ where $P = (F_\circ^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.24 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.28 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O8	0.69413 (12)	0.1535 (3)	0.54656 (10)	0.0370 (5)	
N1	0.57982 (12)	0.6015 (4)	0.39112 (11)	0.0205 (5)	
H1	0.6221 (14)	0.710(4)	0.3842 (13)	0.025*	
N6	0.48943 (14)	0.7758 (4)	0.30603 (12)	0.0278 (5)	
H6A	0.5311 (15)	0.882 (4)	0.2960 (14)	0.033*	
H6B	0.4404 (14)	0.774 (4)	0.2764 (13)	0.033*	
N7	0.68521 (13)	0.4637 (4)	0.47095 (11)	0.0231 (5)	
H7	0.7141 (15)	0.580(4)	0.4546 (13)	0.028*	
C2	0.60154 (15)	0.4307 (4)	0.43895 (13)	0.0223 (6)	
C3	0.54405 (15)	0.2505 (4)	0.45137 (14)	0.0249 (6)	
Н3	0.5582	0.1307	0.4850	0.030*	
C4	0.46378 (16)	0.2513 (4)	0.41222 (14)	0.0261 (6)	
H4	0.4225	0.1295	0.4200	0.031*	
C5	0.44278 (15)	0.4204 (4)	0.36334 (13)	0.0227 (6)	
H5	0.3881	0.4149	0.3369	0.027*	
C6	0.50276 (15)	0.6023 (4)	0.35252 (13)	0.0209 (6)	
C8	0.72715 (16)	0.3289 (4)	0.52242 (14)	0.0234 (6)	
C9	0.81731 (15)	0.4228 (4)	0.54969 (13)	0.0219 (6)	
C10	0.79992 (16)	0.5515 (5)	0.61949 (14)	0.0293 (6)	
H10A	0.7718	0.4443	0.6526	0.044*	
H10B	0.7608	0.6852	0.6096	0.044*	
H10C	0.8560	0.6072	0.6409	0.044*	
C11	0.87823 (17)	0.2125 (4)	0.56515 (16)	0.0326 (7)	
H11A	0.8896	0.1308	0.5204	0.049*	
H11B	0.8497	0.1049	0.5980	0.049*	
H11C	0.9342	0.2675	0.5869	0.049*	
C12	0.86140 (15)	0.5877 (5)	0.49737 (14)	0.0263 (6)	
H12A	0.8723	0.5037	0.4529	0.040*	
H12B	0.9176	0.6436	0.5185	0.040*	
H12C	0.8225	0.7216	0.4871	0.040*	

O13A	0.71169 (10)	-0.1201(3)	0.37777 (10)	0.0287 (5)
O13B	0.64016 (11)	0.0950(3)	0.29481 (10)	0.0289 (5)
C13	0.70775 (15)	0.0432 (4)	0.33191 (13)	0.0215 (6)
C14	0.79105 (15)	0.1829 (4)	0.32285 (13)	0.0203 (6)
C15	0.87128 (15)	0.0994 (4)	0.35068 (13)	0.0220 (6)
H15	0.8731	-0.0436	0.3766	0.026*
C16	0.94848 (16)	0.2232 (4)	0.34092 (14)	0.0255 (6)
H16	1.0031	0.1649	0.3600	0.031*
C17	0.94615 (16)	0.4311 (4)	0.30351 (14)	0.0271 (6)
H17	0.9992	0.5155	0.2966	0.033*
C18	0.86638 (16)	0.5174 (5)	0.27596 (14)	0.0279 (6)
H18	0.8647	0.6621	0.2509	0.033*
C19	0.78894 (16)	0.3920 (4)	0.28499 (13)	0.0245 (6)
H19	0.7345	0.4494	0.2652	0.029*

Atomic displacement parameters (\mathring{A}^2)

î—————————————————————————————————————						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O8	0.0319 (11)	0.0331 (11)	0.0450 (13)	-0.0155 (8)	-0.0117(9)	0.0167 (10)
N1	0.0153 (11)	0.0213 (11)	0.0248 (12)	-0.0069(8)	0.0000(8)	0.0002 (9)
N6	0.0206 (12)	0.0284 (13)	0.0339 (14)	-0.0070(9)	-0.0076 (10)	0.0059 (11)
N7	0.0175 (11)	0.0242 (12)	0.0275 (13)	-0.0068(9)	-0.0028(9)	0.0046 (10)
C2	0.0197 (13)	0.0264 (14)	0.0208 (14)	-0.0036 (10)	0.0006 (10)	-0.0012 (11)
C3	0.0208 (13)	0.0273 (15)	0.0266 (15)	-0.0069 (10)	0.0002 (11)	0.0067 (11)
C4	0.0202 (14)	0.0284 (14)	0.0297 (16)	-0.0106 (11)	0.0016 (11)	-0.0020 (12)
C5	0.0166 (12)	0.0281 (14)	0.0234 (14)	-0.0049 (10)	-0.0005 (10)	-0.0004 (11)
C6	0.0165 (12)	0.0254 (14)	0.0210 (14)	-0.0004 (10)	0.0029 (10)	-0.0029 (11)
C8	0.0235 (13)	0.0221 (14)	0.0246 (15)	-0.0043 (11)	-0.0006 (11)	0.0012 (11)
C9	0.0172 (12)	0.0227 (13)	0.0255 (14)	-0.0018 (10)	-0.0039 (10)	-0.0019 (11)
C10	0.0215 (13)	0.0354 (16)	0.0309 (15)	-0.0046 (11)	-0.0012 (11)	-0.0032(13)
C11	0.0264 (15)	0.0257 (16)	0.0449 (19)	0.0005 (11)	-0.0076 (12)	0.0017 (13)
C12	0.0171 (13)	0.0323 (15)	0.0295 (15)	-0.0046 (11)	-0.0007 (10)	-0.0001 (12)
O13A	0.0198 (9)	0.0276 (10)	0.0384 (12)	-0.0058(7)	-0.0032(8)	0.0102 (9)
O13B	0.0199 (9)	0.0326 (11)	0.0335 (11)	-0.0030(7)	-0.0069(8)	0.0078 (9)
C13	0.0201 (13)	0.0225 (14)	0.0220 (14)	-0.0029 (10)	0.0016 (10)	-0.0010 (12)
C14	0.0186 (13)	0.0227 (14)	0.0197 (14)	-0.0027 (10)	0.0022 (10)	-0.0021 (11)
C15	0.0214 (13)	0.0219 (13)	0.0227 (14)	-0.0017 (10)	0.0019 (10)	0.0010 (11)
C16	0.0192 (13)	0.0288 (15)	0.0287 (15)	-0.0016 (10)	0.0012 (10)	-0.0017 (12)
C17	0.0251 (14)	0.0302 (15)	0.0264 (15)	-0.0118 (11)	0.0062 (11)	-0.0010 (12)
C18	0.0329 (15)	0.0231 (14)	0.0278 (15)	-0.0058 (11)	0.0025 (12)	0.0051 (12)
C19	0.0264 (14)	0.0230 (14)	0.0242 (14)	-0.0012 (11)	-0.0008 (11)	0.0010 (12)

Geometric parameters (Å, °)

O8—C8	1.214 (3)	C10—H10B	0.9800
N1—C6	1.352 (3)	C10—H10C	0.9800
N1—C2	1.358 (3)	C11—H11A	0.9800
N1—H1	0.905 (16)	C11—H11B	0.9800
N6—C6	1.330 (3)	C11—H11C	0.9800
N6—H6A	0.899 (17)	C12—H12A	0.9800

N6—H6B	0.913 (16)	C12—H12B	0.9800
N7—C8	1.373 (3)	C12—H12C	0.9800
N7—C2	1.396 (3)	O13A—C13	1.268 (3)
N7—H7	0.859 (17)	O13B—C13	1.253 (3)
C2—C3	1.373 (3)	C13—C14	1.507 (3)
C3—C4	1.398 (3)	C14—C19	1.389 (3)
C3—H3	0.9500	C14—C15	1.390 (3)
C4—C5	1.361 (3)	C15—C16	1.384 (3)
C4—H4	0.9500	C15—H15	0.9500
C5—C6	1.400 (3)	C16—C17	1.379 (4)
C5—H5	0.9500	C16—H16	0.9500
C8—C9	1.538 (3)	C17—C18	1.388 (4)
C9—C12	1.529 (3)	C17—H17	0.9500
C9—C10	1.531 (3)	C18—C19	1.389 (3)
C9—C11	1.536 (3)	C18—H18	0.9500
C10—H10A	0.9800	C19—H19	0.9500
C6—N1—C2	122.7 (2)	C9—C10—H10C	109.5
C6—N1—H1	121.5 (16)	H10A—C10—H10C	109.5
C2—N1—H1	115.6 (16)	H10B—C10—H10C	109.5
C6—N6—H6A	123.2 (17)	C9—C11—H11A	109.5
C6—N6—H6B	119.4 (17)	C9—C11—H11B	109.5
H6A—N6—H6B	116 (2)	H11A—C11—H11B	109.5
C8—N7—C2	128.1 (2)	C9—C11—H11C	109.5
C8—N7—H7	117.2 (17)	H11A—C11—H11C	109.5
C2—N7—H7	114.7 (17)	H11B—C11—H11C	109.5
N1—C2—C3	120.7 (2)	C9—C12—H12A	109.5
N1—C2—N7	112.5 (2)	C9—C12—H12B	109.5
C3—C2—N7	126.9 (2)	H12A—C12—H12B	109.5
C2—C3—C4	117.0 (2)	C9—C12—H12C	109.5
C2—C3—H3	121.5	H12A—C12—H12C	109.5
C4—C3—H3	121.5	H12B—C12—H12C	109.5
C5—C4—C3	122.3 (2)	O13B—C13—O13A	124.6 (2)
C5—C4—H4	118.9	O13B—C13—C14	118.9 (2)
C3—C4—H4	118.9	O13A—C13—C14	116.5 (2)
C4—C5—C6	119.1 (2)	C19—C14—C15	119.4 (2)
C4—C5—H5	120.4	C19—C14—C13	120.5 (2)
C6—C5—H5	120.4	C15—C14—C13	120.0 (2)
N6—C6—N1	117.5 (2)	C16—C15—C14	120.4 (2)
N6—C6—C5	124.3 (2)	C16—C15—H15	119.8
N1—C6—C5	118.2 (2)	C14—C15—H15	119.8
08—C8—N7	122.5 (2)	C17—C16—C15	120.0 (2)
08—C8—C9	122.4 (2)	C17—C16—H16	120.0
N7—C8—C9	115.0 (2)	C15—C16—H16	120.0
C12—C9—C10 C12—C9—C11	110.1 (2)	C16—C17—C18	120.1 (2) 119.9
C12—C9—C11 C10—C9—C11	109.3 (2)	C16—C17—H17 C18—C17—H17	119.9
C10—C9—C11 C12—C9—C8	109.5 (2) 113.8 (2)	C18—C17—H17 C17—C18—C19	119.9
C12—C9—C8 C10—C9—C8	105.9 (2)	C17—C18—H18	120.0 (2)
C10—C9—C0	103.9 (4)	С1/—С10—П10	120.0

C11—C9—C8	108.1 (2)	C19—C18—H18	120.0
C9—C10—H10A	109.5		120.0 (2)
C9—C10—H10B	109.5	C14—C19—H19	120.0 (2)
H10A—C10—H10B	109.5	C18—C19—H19	120.0
111071 610 1110B	107.5		120.0
C6—N1—C2—C3	-1.4 (4)	O8—C8—C9—C10	-79.0 (3)
C6—N1—C2—N7	178.4 (2)	N7—C8—C9—C10	98.3 (3)
C8—N7—C2—N1	178.5 (2)	O8—C8—C9—C11	38.3 (3)
C8—N7—C2—C3	-1.8 (4)	N7—C8—C9—C11	-144.3 (2)
N1—C2—C3—C4	0.7 (4)	O13B—C13—C14—C19	12.4 (4)
N7—C2—C3—C4	-179.1 (2)	O13A—C13—C14—C19	-167.2 (2)
C2—C3—C4—C5	0.6 (4)	O13B—C13—C14—C15	-165.7(2)
C3—C4—C5—C6	-1.1 (4)	O13A—C13—C14—C15	14.7 (3)
C2—N1—C6—N6	-178.5(2)	C19—C14—C15—C16	0.1 (4)
C2—N1—C6—C5	0.8 (4)	C13—C14—C15—C16	178.2 (2)
C4—C5—C6—N6	179.6 (3)	C14—C15—C16—C17	0.1 (4)
C4—C5—C6—N1	0.4 (4)	C15—C16—C17—C18	0.4 (4)
C2—N7—C8—O8	1.0 (4)	C16—C17—C18—C19	-1.1 (4)
C2—N7—C8—C9	-176.4 (2)	C15—C14—C19—C18	-0.8(4)
O8—C8—C9—C12	159.9 (2)	C13—C14—C19—C18	-178.9 (2)
N7—C8—C9—C12	-22.8 (3)	C17—C18—C19—C14	1.3 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H <i>A</i>	D··· A	<i>D</i> —H··· <i>A</i>
N1—H1···O13 <i>A</i> ⁱ	0.91(2)	1.67 (2)	2.571 (2)	170 (2)
$N6$ — $H6A$ ···O13 B^i	0.90(2)	2.05 (2)	2.934 (3)	167 (2)
N6—H6 <i>B</i> ···O13 <i>B</i> ⁱⁱ	0.91(2)	2.05(2)	2.869 (3)	149 (2)
N7—H7···O13 <i>A</i> ⁱ	0.86(2)	2.24(2)	2.984(3)	146 (2)
C4—H4···O8 ⁱⁱⁱ	0.95	2.49	3.433 (3)	172

Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, -y, -z+1.