蓝牙的版本演进及其发展史

在 5.0 之前, 蓝牙经过了多个版本的演进, 主要为 1.1、1.2、2.0、2.1、3.0、4.0、4.1 和 4.2。

蓝牙的版本演进			
版本	规范发布 日期	速率	增强功能
0.7	1998.10.19		Baseband、LMP
0.8	1999.1.12		HCL、L2CAP、RFCOMM
0.9	199.4.30		OBEX与IrDA的互通性
1.0 Draft	1999.7.5		SDP、TCS
1.0 A	1999.7.26		第一个正式版本
1.0 B	2000.10.1		安全性,厂商设备之间连接兼容性
1.1	2001.2.22	748-810Kbps	IEEE 802.15.1
1.2	2003.11.5	748-810Kbps	快速连接、自适应跳频、错误监测 和流程控制、同步能力
2.0+EDR	2004.11.9	1.8Mbps- 2.1Mbps	EDR传输率提升至2-3Mbps
2.1+EDR	2007.7.26	2.1Mbps	扩展查询响应、简易安全配对、 停与继续加密、Sniff省电
3.0+HS	2009.4.21	24Mbps	交替射频技术、802.11协议适配原 、电源管理、取消了UMB的应用
4.0+BLE	2010.6.30	24Mbps (3MB/s)	低功耗物理层和链路层、AES加密 、Attribute Protocol(ATT)、 Generic Attribute Profile(GATT)、 Security Manager(SM)
4.1	2013.12.6	24Mbps	1)与4G不构成干扰; 2)通过IPV6 连接到网络; 3)可同时发射和接收数据;
4.2	2014.12.4	是4.1版本的 2.5倍	FIPS 加密、安全连接、物联网
5.0	2016.6.16	是4.2版本的2 倍	室内立做、信物联网bank

EDR: 全称为 Enhanced Data Rate。通过提高多任务处理和多种蓝牙设备同时运行的能力, EDR 使得蓝牙设备的传输速度可达 3Mbps。

HS:全称为 High Speed。HS 使得 Bluetooth 能利用 WiFi 作为传输方式进行数据传输,其支持的传输速度最高可达 24Mbps。其核心是在 802.11 的基础上,通过集成 802.11 协议适配层,使得蓝牙协议栈可以根据任务和设备的不同,选择正确的射频。

BLE: 全称为 Bluetooth Low Energy。蓝牙规范 4.0 最重要的一个特性就是低功耗。BLE 使得蓝牙设备可通过一粒纽扣电池供电以维持续工作数年之久。很明显,BLE 使得蓝牙设备在钟表、远程控制、医疗保健及运动感应器等市场具有极光明的应用场景。

◆蓝牙 1.1 标准

1.1 为最早期版本,传输率约在 748^{8} 10 kb/s,因是早期设计,容易受到同频率之产品所干扰下影响通讯质量。

◆蓝牙 1.2 标准

1.2 同样是只有 $748^{8}10$ kb/s 的传输率,但在加上了(改善 Software)抗干扰跳频功能。

◆ 蓝牙 2.0 标准

 2.0 ± 1.2 的改良提升版,传输率约在 $1.8 \text{M/s}^2 2.1 \text{M/s}$,开始支持双工模式——即一面作语音通讯,同时亦可以传输档案/高质素图片,2.0 版本 当然也支持 Stereo 运作。

应用最为广泛的是 Bluetooth2. 0+EDR 标准,该标准在 2004 年已经推出,支持 Bluetooth2. 0+EDR 标准的产品也于 2006 年大量出现。

虽然 Bluetooth2. 0+EDR 标准在技术上作了大量的改进,但从 1. X 标准延续下来的配置流程复杂和设备功耗较大的问题依然存在。

◆ 蓝牙 2.1 标准

2007年8月2日,蓝牙技术联盟今天正式批准了蓝牙2.1版规范,即"蓝牙2.1+EDR",可供未来的设备自由使用。和2.0版本同时代产品,目前仍然占据蓝牙市场较大份额,相对2.0版本主要是提高了待机时间2倍以上,技术标准没有根本性变化。

◆ 蓝牙 3.0 标准

2009 年 4 月 21 日,蓝牙技术联盟(BluetoothSIG)正式颁布了新一代标准规范"BluetoothCoreSpecificationVersion3. 0HighSpeed"(蓝牙核心规范3.0版),蓝牙 3.0 的核心是"GenericAlternateMAC/PHY"(AMP),这是一种全新的交替射频技术,允许蓝牙协议栈针对任一任务动态地选择正确射频。

蓝牙 3.0 的数据传输率提高到了大约 24Mbps (即可在需要的时候调用 802.11WI-FI 用于实现高速数据传输)。在传输速度上,蓝牙 3.0 是蓝牙 2.0 的八倍,可以轻松用于录像机至高清电视、PC 至 PMP、UMPC 至打印机之间的资料传输,但是需要双方都达到此标准才能实现功能。

◆ 蓝牙 4.0 标准

蓝牙 4.0 规范于 2010 年 7 月 7 日正式发布,新版本的最大意义在于低功耗,同时加强不同 0EM 厂商之间的设备兼容性,并且降低延迟,理论最高传输速度依然为 24Mbps (即 3MB/s),有效覆盖范围扩大到 100 米(之前的版本为 10 米)。该标准芯片被大量的手机、平板所采用,如苹果 TheNewiPad

平板电脑,以及苹果 iPhone5、魅族 MX4、HTCOneX 等手机上带有蓝牙 4.0 功能。

◆ 蓝牙 4.1 标准

蓝牙 4.1 于 2013 年 12 月 6 日发布,与 LTE 无线电信号之间如果同时传输数据,那么蓝牙 4.1 可以自动协调两者的传输信息,理论上可以减少其它信号对蓝牙 4.1 的干扰。改进是提升了连接速度并且更加智能化,比如减少了设备之间重新连接的时间,意味着用户如果走出了蓝牙 4.1 的信号范围并且断开连接的时间不算很长,当用户再次回到信号范围中之后设备将自动连接,反应时间要比蓝牙 4.0 更短。最后一个改进之处是提高传输效率,如果用户连接的设备非常多,比如连接了多部可穿戴设备,彼此之间的信息都能即时发送到接接收设备上。

除此之外,蓝牙 4.1 也为开发人员增加了更多的灵活性,这个改变对普通用户没有很大影响,但是对于软件开发者来说是很重要的,因为为了应对逐渐兴起的可穿戴设备,那么蓝牙必须能够支持同时连接多部设备。

◆ 蓝牙 4.2 标准

2014年12月4日,最新的蓝牙4.2标准颁布。蓝牙4.2标准的公布,不仅改善了数据传输速度和隐私保护程度,还接入了该设备将可直接通过 IPv6和6LoWPAN接入互联网。

首先是速度方面变得更加快速。尽管蓝牙 4.1 版本已在之前的基础上提升了不少,但远远不能满足用户的需求,同 Wi-Fi 相比,显得优势不足。而蓝牙 4.2 标准通过蓝牙智能(Bluetooth Smart)数据包的容量提高,其可容纳的数据量相当于此前的 10 倍左右,两部蓝牙设备之间的数据传输速度提高了 2.5 倍。

其次,隐私保护程度地加强也获得众多用户的好评。我们知道,蓝牙4.1以及其之前的版本在隐私安全上存在一定的隐患——连接一次之后便无需再确认便自动连接,容易造成隐私泄露。而在蓝牙4.2新的标准下,蓝牙信号想要连接或者追踪用户设备必须经过用户许可,否则蓝牙信号将无法连接和追踪用户设备。

当然,最令人期待的还是新版本通过 IPv6 和 6LoWPAN 接入互联网的功能。早在蓝牙 4.1 版本时,蓝牙技术联盟便已经开始尝试接入,但由于之前版本传输率的限制以及网络芯片的不兼容新,并未完全实现这一功能。而据蓝牙技术联盟称,蓝牙 4.2 新标准已可直接通过 IPv6 和 6LoWPAN 接入互联网。相信在此基础上,一旦可 IPv6 和 6LoWPAN 广泛运用,此功能将会吸引更多的关注。

另外不得不提的是,对较老的蓝牙适配器来说,蓝牙 4.2 的部分功能将可通过软件升级的方式获得,但并非所有功能都可获取。蓝牙技术联盟称:"隐私功能或可通过固件升级的方式获得,但要视制造商的安装启用而定。速度提升和数据包扩大的功能则将要求硬件升级才能做到。"而到目前为止,蓝牙 4.0 仍是消费者设备最常用的标准,不过 Android Lollipop 等移动平台已经开始添加对蓝牙 4.1 标准和蓝牙 4.2 标准的原生支持。

|◆ 蓝牙 5.0 标准

美国时间 2016 年 6 月 16 日,蓝牙技术联盟(SIG)在华盛顿正式发布了第五代蓝牙技术(简称蓝牙 5.0),不仅速度提升 2 倍、距离远 4 倍,还优化 IoT 物联网底层功能。

性能方面,蓝牙 5.0 标准传输速度是之前 4.2LE 版本的两倍,有效距离则是上一版本的 4倍,即蓝牙发射和接收设备之间的理论有效工作距离增至 300 米。

另外, 蓝牙 5.0 还允许无需配对接受信标的数据, 比如广告、Beacon、位置信息等, 传输率提高了 8 倍。同时蓝牙 5.0 标准还针对 IoT 物联网进行底层优化, 更快更省电, 力求以更低的功耗和更高的性能为智能家居服务。蓝牙技术联盟称, 目前全球的蓝牙设备已经超过了 82 亿。并预计蓝牙 5.0 标准将于 2016 年年底或 2017 年年初正式推出, 搭载蓝牙 5.0 芯片的旗舰级手机将于 2017 年问世, 据称苹果将为成为第一批使用该项技术的厂商之一。

蓝牙技术的应用

智能穿戴设备(如蓝牙手环)

物联网

蓝牙音箱

蓝牙耳机

蓝牙键鼠

智能手机

平板电脑

高清电视

笔记本电脑

各种短距离无线传输应用(如打印机)

其他应用