Movimento harmônico simples

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

15 de Dezembro de 2020

Sumário

- Oscilador harmônico
- 2 Aplicações
- 3 Apêndice

Sistema massa-mola

Físico Robert Hooke.

Sistema massa-mola.

Força restauradora (\vec{F}_R)

Obriga o sistema retornar para a sua posição de equilíbrio (x_0) .

Prof. Flaviano W. Fernandes IFPR-Irati

Lei de Hooke

00000

Aceleração a em função do deslocamento x.

k: constante elástica (depende das propriedades do material):

Se $x_0 = 0$, pela Lei de Hooke $\vec{F} = -k\vec{x}$.

$$\vec{F} = m\vec{a}$$

$$\vec{a} = -\frac{\kappa}{m}\vec{x}$$

Corollary

A aceleração do objeto e a força restauradora possuem sentidos contrários ao deslocamento.

Movimento harmônico simples (MHS)

Quatro etapas de um ciclo completo do MHS.

Amplitude (x_m) : Máximo deslocamento da mola;

Período (T): Tempo de cada ciclo;

Frequência (f): Núm. de ciclos por segundo.

Corollary

Na ausência de atrito, o objeto realiza por tempo infinito um Movimento Harmônico Simples (MHS) a uma frequência de f ciclos por unidade de tempo,

$$f=\frac{1}{T}$$

Sistema massa-mola e movimento circular uniforme (MCU)

Representação das quatro etapas do MHS no MCU.

Se $\theta = \omega t$, onde ω é a frequência angular,

$$x(t) = x_m cos(\theta),$$

$$\omega = 2\pi t = \frac{2\pi}{T}.$$

Pelo MCU a aceleração centrípeta a_{cpt} é dada por

$$a_{cpt}(t) = \omega^2 x_m$$

MHS e movimento circular uniforme

Pela Lei de Hooke, a aceleração má- portanto xima do objeto é dado por

$$a_m = \frac{k}{m} x_m.$$

Foi mostrado anteriormente que

$$a_{cpt} = \omega^2 x_m$$

$$\omega = \sqrt{\frac{k}{m}}.$$

Levando em consideração que $\omega = \frac{2\pi}{\tau}$.

Período de oscilação do sistema massa-mola

$$T=2\pi\sqrt{\frac{m}{k}}.$$

Pêndulo simples

Pêndulo simples.

Se $\theta \ll 1$ temos $sen(\theta) \approx \theta = \frac{x}{T}$,

$$egin{aligned} F_{R} &= - m g sen\left(heta
ight), \ orall a &= - rac{g}{L} x, \ a &= - rac{g}{L} x. \end{aligned}$$

Comparando com o sistema massa-mola temos $a = -\omega^2 x$, ou seja,

$$\omega^2 = \frac{g}{I}$$
.

Pêndulo simples (continuação)

Sabendo que o quadrado da frequência angular de oscilação do pêndulo simples equivale a $\omega^2=\frac{g}{t}$ temos

$$\omega = \sqrt{\frac{g}{L}}.$$

Porém, foi mostrado anteriormente que $\omega=\frac{2\pi}{T}$, portanto

$$rac{2\pi}{T} = \sqrt{rac{g}{L}}.$$

Período de oscilação do pêndulo simples

$$T=2\pi\sqrt{rac{L}{g}}.$$

Corollary

O período de oscilação do pêndulo depende somente do comprimento L do fio.

Aplicações envolvendo pêndulo simples

Pêndulo de Foucault.

Relógio de pêndulo.

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

10 ms =
$$10 \times 10^{(-1) \times 3}$$
 s $\to 10 \times 10^{-3}$ s

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5~\text{m}^2 = 2,5 \times 10^{(2) \times 3}~\text{mm}^2 \rightarrow 2,5 \times 10^6~\text{mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times \textcolor{red}{3}} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

Alfabeto grego

Alfa Α α В Beta Gama Delta Δ **Epsílon** Ε ϵ, ε Zeta Eta Н Θ Teta lota K Capa ĸ Lambda Mi Μ μ

Ni Ν ν Csi ômicron 0 Ρi П π Rô ρ Sigma σ Tau Ípsilon 7) Fi Φ ϕ, φ Qui χ Psi Ψ ψ Ômega Ω ω

Aplicações Apêndice

○○○ OOOO●

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes IFPR-Irati

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.