CS4801: Bayesian Decision Theory

Sahely Bhadra 16/8/2017

- 2. Bayes decision rule
 - 1. Classification error
 - 2. Minimum error rate classification
 - 1. Two category
 - 2. Multi category

Probabilistic Decision Boundary

likelihood /

Bayes Classifier

Bayes Classifier

Probabilistic Decision Boundary

 $P(C_1/x_t)$

posterior

 $p(x_t/C_2) P(C_2)$

 $\overline{P(C_2/x_t)}$

 $p(x_1/C_1) P(C_1)$

joint

error

Classification on posterior

$$\begin{aligned} \text{Label} &= 1 \\ &\quad \text{if } P(C_1/x_t) > P(C_2/x_t) \\ \text{Label} &= -1 \\ &\quad \text{if } P(C_2/x_t) > P(C_1/x_t) \end{aligned}$$

P(error/x)=
$$\frac{P(C_1/x_t)}{P(C_2/x_t)}$$
 if decide C_1

P(error/x)= min { $P(C_1/x_t)$, $P(C_2/x_t)$ }

The Bayes rule is optimum, that is, it minimises the average probability error!

More general theory

- Use more than one features. [x₁,x₂,...,x_d]
- Allow more than two categories. [C₁,C₂,....C_k]
- Employ a more general error function (i.e., "risk" function) by associating a "cost" ("loss" function) with each error (i.e., wrong action).
- $L_{ij} = cost(A_i / C_j)$
- = cost of incorrectly taking action "i" (A_i) when the correction action is "j" (C_j)

The conditional risk (or **expected loss**) with taking action (A_i)

$$R(A_i/x) = \sum_{j=1}^k cost(A_i/C_j)P(C_j/x)$$

Overall Risk (R) =
$$\int_{-\infty} R(A(x)/x) p(X) dx$$

Bayes Decision Rule

Overall Risk (R) =
$$\int_{x} R(A(x)/x)$$

The Bayes decision rule minimises R by:

- (i) Computing $R(A_i/x)$ for every (A_i) given an x
- (ii) Choosing the action (A_i) with the minimum $R(A_i/x)$

The resulting minimum overall risk is called **Bayes** risk and is the **best** (i.e., optimum) performance that can be achieved

Naive Bayes

P(Ch =Y/Flu =Y)=3/5 P(Ch =N/Flu =Y)=2/5 P(Ch =Y/Flu =N)=1/3 P(Ch =N/Flu =N)=2/3

- Use more than one features. [x₁,x₂,...,x_d]
- Features are independent

FLU	chills	headache	fever
N	Υ	М	Υ
Y	Υ	Ν	Ν
Y	Υ	S	Υ
Y	N	М	Υ
N	Ν	N	Ν
Y	N	S	Υ
N	N	S	Ν
Y	Υ	М	Υ
?	Υ	М	Ν

P(Ha=M/Flu=Y)=2/5 P(Ha=N/Flu=Y)=1/5 P(Ha=S/Flu=Y)=2/5 P(Ha=M/Flu=N)=1/3 P(Ha=N/Flu=N)=1/3 P(Ha=S/Flu=N)=1/3
P(Fe=Y/Flu=Y)=4/5 P(Fe=N/Flu=Y)=1/5 P(Fe=Y/Flu=N)=1/3 P(Fe=N/Flu=N)=2/3

z=P(Ch =Y,Ha=M,Fn=N)

P(Flu=Y)=5/8P(Flu=N)=3/8

P(Flu=Y/Ch =Y,Ha=M,Fn=N)

= P(Ch =Y,Ha=M,Fn=N /Flu=Y) P(Flu=Y)/z

= P(Ch =Y/Flu=Y)P(Ha=M//Flu=Y)P(Fn=N /Flu=Y)P(Flu=Y)/z =3/5*2/5*1/5 *5/8=3/100z

P(Flu=N/Ch =Y,Ha=M,Fn=N)

= P(Ch =Y,Ha=M,Fn=N /Flu=N) P(Flu=N)/z

= P(Ch = Y/Flu = N)P(Ha = M//Flu = N)P(Fn = N /Flu = N)P(Flu = N)/Z

=1/3*1/3*2/3*3/8=1/36z

P(Flu=Y/Ch =Y,Ha=M,Fn=N) > P(Flu=N/Ch =Y,Ha=M,Fn=N)

Next Class

- 21/8
 - Logistic Regression
 - Parzen window: density estimation
 - Perceptron classifier
- 22/8
 - short quite + solving assignment