Пример с сферами (6 полусфер, 6 карт как бы, ну там конспект савелия вообщем)

Касательное пространство

 $p \in M, \dim M = m$

 $m=3: \vec{v}=(a,b,c) \leftrightarrow a rac{\partial}{\partial x}|_p + b rac{\partial}{\partial y}|_p + c rac{\partial}{\partial z}|_p$ - касательный вектор в точке p.

Рассмотрим гладкие функции на многообразии.

Определение. $Ecnu\ v: C^{\infty}(M) \to \mathbb{R}$ – такой линейный функционал на $C^{\infty}(M)$, что

$$v(fg) = f(p) \cdot v(g) + g(p) \cdot v(f),$$

то v называется касательным вектором κ многообразию M в точке p.

Замечание. v(const) = 0

$$v(1) = v(1 \cdot 1) = 1 \cdot v(1) + 1 \cdot v(1) = 2 \cdot v(1) \implies v(1) = 0$$

Касательные вектора образуют линейное пространство, обозначим его $\operatorname{Tp} M$.

Лемма 1.
$$\frac{\partial}{\partial x^i}|_p$$
, $i=1,\ldots,n$ – базис в $\operatorname{Tp} M$ $\frac{\partial}{\partial x^i}|_p(f)=\frac{\partial (f\circ\varphi^{-1})}{\partial x^i}|_{\varphi(p)}$

Доказательство. $f \in C^{\infty}(M), f \circ \varphi^{-1} \in C^{\infty}(\varphi(U))$

Дальше расписываем как-то, смотрите в конспекте савелия: $\frac{\partial}{\partial x^i}|_p(fg)=\ldots=f(p)\frac{\partial}{\partial x^i}|_p(g)+g(p)\frac{\partial}{\partial x^i}|_p(f)$

Дифференцирование координат попадает в касательное пространство.

Докажем, что набор частных производных координат образует базис.

Возьмём произвольный функционал, посмотрим пробные функции $\varphi^i(\cdot) = x^i \in C^{\infty}(M)$, точнее $\varphi^i \cdot \eta$ (продолжение функции, чтобы она была бесконечногладкой). $v(x^i) = v(x^i - \varphi^i(p)) =: a^i \in \mathbb{R}$

 η_1 – тождественная единица на отрезке от 0 до 1, тождественный ноль на луче от двух до бесконечности.

Срезка в пространстве $\mathbb{R}^n: \eta = \eta_1(\frac{\|\varphi(\cdot) - \varphi(p)\|}{2\delta}), \delta = B_{2\delta}(\varphi(p)) \subset \varphi(U)$

Докажем, что действие фукнционала на такую срезку совпадает с чем-то не услышал...

$$\begin{split} v(f\eta) &= v(f), \forall f \in C^{\infty}(M) \\ v(1-\eta) &= v(\sqrt{1-\eta^2}) = 2v(\sqrt{1-\eta})\sqrt{1-\eta}|_{\varphi(p)} = 0 \\ 0 &= v(1) = v(\eta+1-\eta) = v(\eta) + v(1-\eta) = v(\eta) \\ f &\in C^{\infty}(M), \ (f \circ \varphi^{-1})(x) = \ldots = f(p) + \sum_{i=1}^m g_i(x)(x^i - \varphi^i(p)), \ g(x) = (f \circ \varphi^{-1})'(\varphi(p) + \varphi(x) - \varphi(p))) \\ v(f) &= \ldots = \sum_{i=1}^m a^i \cdot g_i(\varphi(p)), \ a^i = v(\varphi^i(\cdot) - \varphi^i(p)) \end{split}$$

$$=\sum_{i=1}^m a^i rac{\partial}{\partial x^i}|_p(f)$$
 чтд

 $f\circ \varphi^{-1}=(f\circ \psi^{-1})\circ (\psi\circ \varphi^{-1})$, дифференцируем. Там сумму какую-то получаем.

$$\implies \frac{\partial}{\partial x^i}|_p = \sum_{j=1}^m \frac{\partial y^j}{\partial x^i} \frac{\partial}{\partial y^j}|_p$$
 – закон преобразования базиса.

$$\operatorname{Tp} M \ni v = \sum_{i=1}^m a^i \frac{\partial}{\partial x^i}|_p = \sum_{j=1}^m b^j \frac{\partial}{\partial y^j}|_p, \ a^i = \sum_{j=1}^m \frac{\partial x^i}{\partial y^j} b^j$$
 – контравариантный закон.

 $\mathrm{TM}=\{(p,v)\mid p\in M,v\in\mathrm{Tp}\,M\}$ - касательное расслоение. M - база расслоения $\pi:\mathrm{TM}\to M\quad \pi(p,v)=p$

Определение. $f:M\to \mathrm{TM}$ $:\pi\circ f=id_M$ - сечение касательного расслоения. $M=U\subset \mathbb{R}^n$ $f:U\to \mathbb{R}^n$ $\mathrm{TM}=M\times \mathbb{R}^n$

Определение. $v \in C^{\infty}(M, TM) : \pi \circ f = id_M$ – гладкие сечения.

$$v(x) = \sum_{i=1}^{m} a^{i}(x) \frac{\partial}{\partial x^{i}} = \sum_{j=1}^{m} b^{j}(y) \frac{\partial}{\partial y^{j}}, \quad a^{i} \in C^{\infty}(\varphi(U)), b^{j} \in C^{\infty}(\psi(V))$$

Дифф формы на многообразии

$$F^0(M) = C^{\infty}(M)$$

 ${
m Tp}^* M = ({
m TM}\, M)^*$ – кокасательное пространство в точке p.

$$dx^i,\ i=1,\ldots,m$$
 – базис, дуальный к $rac{\partial}{\partial x^i}$

$$dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$$

 $T^*M = \{(p,w) \mid w \in \operatorname{Tp}^*M\}$ – кокасательное расслоение

$$\pi(p, w) = p$$

 $F^1(M) = \{ w \in C^\infty(M, T^*M) \mid \pi \circ w = id_M \}$ – гладкие сечения $T^*M = 1$ -формы на M.

$$w = \sum_{i=1}^{n} a_i(x) dx^i = \sum_{j=1}^{n} b_j(y) dy^j$$

$$a_i \in C^{\infty}(\varphi(U))$$

$$dx^i = \sum_{j=1}^m \frac{\partial x^i}{\partial y^j} dy^j, \quad a_i^{(*)} = \sum_{j=1}^m \frac{\partial y^j}{\partial x^i} (*) b_j(y(x))$$
 – ковариантный закон $F^l(M) = \{ w \in C^\infty(M, \bigwedge^l T^*M) \mid \pi \circ w = id_M \}, \bigwedge^l T^*M = \{ (p, w) \mid w \in \bigwedge^l \operatorname{Tp}^*M \}$ $w = \sum_H a_H(x) dx^H = \sum_K b_K(y) dy^k$

Внешняя производная на многообразии

 $df = \sum_{i=1}^m rac{\partial f}{\partial x^i} dx^i$ в локальных координатах.

Это определение не зависит от выбора координатной окрестности.

Не успеваю переписать, конспект савелия!

$$df = \sum_{j=1}^{m} \frac{\partial (f \circ \psi^{-1})}{\partial y^j}$$

Индуцированное отображение на многообразии

 $\varphi = C^{\infty}(M,N)$ я совсем не успеваю

Свойства:

- 1. Аддитивность
- 2. Действие на произведение покомпонентно: $\varphi^*(\lambda \wedge \mu) = (\varphi^*\lambda) \wedge (\varphi^*\mu)$
- 3. Перестановка производных: $d\varphi^*w=\varphi^*dw$

Далее примеры.

Интегрирование дифференциальных форм

 \mathbb{R}^n

 $U\subset\mathbb{R}^n$ открыто и измеримо по Жордану, $w\in F^n(U)$

$$w(x) = a(x)dx^1 \wedge \dots dx^n : \int_U w := \int_U a.$$

M - гладкое многообразие размерности $m, w \in F^n(M), n \leq m, C \subset M$

Определение. Множество C допускает гладкую параметризацию, если существует открытое $D \subset \mathbb{R}^n$, $\varphi \in C^{\infty}(D,M)$: $C = \varphi(D)$, (D,φ) – параметризация. φ не обязан быть диффеоморфизмом.

Определение. $(\Delta_1, \varphi_1) \sim (D_2, \varphi_2)$, если существует диффеоморфизм $g: D_1 \to D_2:$ $\det g' > 0, \ \varphi_1 = \varphi_2 \circ g.$

Определение. $C \subset M$ допускает параметризацию $(D, \varphi), \ D \subset \mathbb{R}^n, \ w \in F^n(M)$. $\int_C w := \int_D \varphi^* w$

Корректность: . . .

Симплекс

0-симплекс – точка

1-симплекс – отрезок (направленный)

2-симплекс – треугольник

3-симплекс – тетраэдр

Определение. n-симплекс $\{p = \alpha_0 p_0 + \alpha_1 p_1 + \dots \alpha_n p_n \mid \sum_{i=0}^n \alpha_i = 1, \ \alpha_i \geq 0\} \subset \mathbb{R}^n$ – замкнутая выпуклая оболочка.

Определение. Цепь - формальная сумма (конечная) $c = \sum_i \alpha_i S_i$

Определение. $\delta(p_0,\ldots,p_n) = \sum_{i=0}^n (-1)^i(p_0,\ldots,p_{i-1},p_{i+1},\ldots,p_n)$

Для отрезка: $p_1 - p_0$, треугольника: $(p_1, p_2) - (p_0, p_2) + (p_0, p_1)$, тетраэдра: $(p_1 p_2 p_3) - (p_0 p_2 p_3) + (p_0 p_1 p_3) - (p_0 p_1 p_2)$ $\delta(\delta(\text{тетраэдр})) = 0$

Теорема 1. $\delta(\delta C) = 0 \quad \forall C$

Доказательство. $\delta \delta C = \sum_{i,k} \pm (p_0, \dots, p_{i-1}, p_{i+1}, \dots, p_{k-1}, p_{k+1}, \dots, p_n)$, каждое слагаемое появляется дважды и с разными знаками

 S_n – стандартный симплекс в \mathbb{R}^n

Симплексы на многообразии

Определение. $\sigma \subset M$ – n-симплекс на многообразии M, $\dim M = m$, если $\exists U \subset \mathbb{R}^n$ u симплекс $S \subset U$, а также такое $\varphi \in C^{\infty}(U,M)$, что $\sigma = \varphi(S) \subset M$

$$\varphi(\delta S) = \delta \sigma$$

Граница симлпекса на многообразии - граница на многообразии, можем интегрировать:

$$\sigma = (u, s, \varphi)$$
 $\int_{\sigma} w = \int_{S} \varphi^* w$, $\int_{C} w = \sum$ ой

Теорема Стокса

Теорема 2. $w \in F^p(M), c - (p+1)$ -цепь

$$\int_{\delta C} w = \int_{C} dw$$

Доказательство. ну короче всё понятно я считаю

Криволинейные интегралы

$$\gamma \in C([a,b],\mathbb{R}^n)$$
 – путь

$$\gamma \in C^{\infty}([a,b],\mathbb{R}^n)$$
 – гладкий путь

$$\gamma_1 \sim \gamma_2 \iff \exists \varphi \in C([a_1, b_1], [a_2, b_2]) : \gamma_1 = \gamma_2 \circ \varphi$$

регулярный путь: $\gamma'(t) \neq 0 \ \forall t$

Простой путь: $t_1 \neq t_2 \implies \gamma(t_1) \neq \gamma(t_2)$

Замкнутый: $\gamma(a)=\gamma(b)$

Кривая - одномерное многообразие, вложенное в \mathbb{R}^n . $\gamma'(x) = 0$. Погружение: $\gamma(x_1) \neq \gamma(x_2) \ \forall x_1, x_2$

$$\frac{d}{dt}|_p \leftrightarrow \frac{d\gamma}{dt}(t) \in \mathbb{R} \quad p = \gamma(t)$$

$$dl = \|\frac{d\gamma}{dt}\|dt \in F^1(M_\gamma) - 1\text{-форма на } M_\gamma - \text{форма длины}.$$

$$\|\gamma'(t)\|dt = \|\widetilde{\gamma}'(s)\|ds$$

$$dt = \frac{dt}{ds}ds, \quad t(s) = \gamma^{-1} \circ \widetilde{\gamma}$$

$$\frac{d\gamma}{dt} = \frac{d(\widetilde{\gamma}(s(t)))}{dt} = \frac{d\widetilde{\gamma}}{ds} \cdot \frac{ds}{dt}$$

$$l(\widetilde{PQ}) = \int_{\widetilde{PQ}} dl = \int_{\gamma^{-1}(P)}^{\gamma^{-1}(Q)} \gamma^* dl = \int_p^q \|\frac{d\gamma}{dt}(t)\|dt$$

$$\widetilde{PQ} - \text{ участок кривой}.$$

Определение. $f \in C^{\infty}(M_{\gamma}): \int_{P}^{Q} f \cdot dl = \int_{p}^{q} (f \circ \gamma)(t) \| \frac{d\gamma}{dt}(t) \| dt - \kappa риволинейный интеграл первого рода (или наоборот непон)$

Определение. $w\in F^1(M_\gamma):\int_P^Q w=\int_{\widetilde{PW}} w$ — криволинейный интеграл второго рода

$$w \in F^1(U), \ U \subset \mathbb{R}^n$$
 открытое, $M_\gamma \subset U$ $w = a_1(x)dx^1 + \ldots + a_n(x)dx^n$ $id: M_\gamma \to U$ $id^*: F^1(U) \to F^1(M_\gamma)$ $id^*w = a_1(x)dx^1 + \ldots + a_n(x)dx^n$ $\int_P^Q a_1(x)dx^1 + \ldots + a_n(x)dx^n = \int_{\widetilde{PQ}} id^*w = \ldots = \int_p^q (a(\gamma(t)), \tau(\gamma(t)))dl = \int_p^q (a,\tau)dl$ - выражение инт второго рода через первого рода (или наоборот непон) $\tau(p) = \frac{\gamma'(t)}{\|\gamma'(t)\|}, dl = \|\gamma'(t)\|dt$

Поверхностные интегралы

Гладкое многообразие с краем или без края, вложенное в \mathbb{R}^n

$$x(t) = \varphi^{-1}(t)$$

ВСЁ. я устал. дальше конспект савелия.

Вектор нормали в \mathbb{R}^3 :

$$N=rac{\partial x}{\partial u} imesrac{\partial x}{\partial r}=\left(\detrac{D(x^2,x^3)}{D(u,v)},\detrac{D(x^3,x^1)}{D(u,v)},\detrac{D(x^1,x^2)}{D(u,v)}
ight)$$
 $n=rac{N}{\|N\|}$ — единичный вектор нормали. $\|N\|=\sqrt{\det q}$

ВСЁ. я устал. дальше конспект савелия. . . .

Формула Грина

Формула Стокса

Теорема Остроградского-Гаусса