Tarea de diferenciación e integración numérica. Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

1. Diferenciación numérica.

1.1. Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

X	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

1.2. Dados los siguientes datos

X	0.84	0.92	1.00	1.08	1.16
f(x)	0.431711	0.398519	0.367879	0.339596	0.312486

Calcula f''(1) con la mayor precisión posible.

1.3. La palanca AB de longitud R=90 mm está girando con velocidad angular constante $d\theta/dt=5000$ rev/min.

La posición del pistón C como se muestra, varía con el ángulo θ

$$x = R\left(\cos\theta + \sqrt{2.5^2 - \sin^2\theta}\right)$$

Escribe un programa en python que calcule mediante diferenciación numérica la aceleración del pistón en $\theta=0^\circ,5^\circ,10^\circ,\ldots,180^\circ$.

1.4. Las estaciones de radar A y B están separadas por una distancia a=500 m; rastrean el avión C registrando los ángulos α y β en intervalos de un segundo. Si hay tres lecturas sucesivas

1

t(s)	9	10	11
α	54.80°	54.06°	53.34°
β	65.59°	64.59°	63.62°

Figura 1: Estaciones de radar y el avión.

Calcula la velocidad v del avión y el ángulo de subida γ en t=10 segundos. Las coordenadas del avión las tomamos de

$$x = a \frac{\tan \beta}{\tan \beta - \tan \alpha}$$
 $y = a \frac{\tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$

- 1.5. Obtén la aproximación por diferencias centrales de f''(x) de orden $O(h^4)$ aplicando la extrapolación de Richardson a la aproximación por diferencias centrales de orden $O(h^2)$.
- 1.6. Obtén la primera aproximación por diferencias centrales para $f^4(x)$ a partir de la serie de Taylor.

2. Integración numérica.

2.1. Usa la regla del trapecio recursiva para evaluar

$$\int_0^{\frac{\pi}{4}} \ln(1+\tan(x))dx$$

Explica tus resultados.

2.2. La siguiente tabla indica la potencia P propocionada por las ruedas de un carro como función de la velocidad v. Si la masa del carro es m=2000 kg, calcula el tiempo Δt necesario para que el carro acelere de 1 m/s a 6 m/s. Usa la regla del trapecio para integrar. Tip:

$$\Delta t = m \int_{1s}^{6s} \left(\frac{v}{P}\right) dv$$

que se puede obtener de la ley de Newton F=m/(dv/dt) y por la definición de potencia, P=Fv.

2.3. La siguiente tabla proporciona el empuje F del arco como función del desplazamiento x. Si la cuerda tiene un desplazamiento de 0.5 m, calcula la velocidad de una flecha de 0.075 kg, cuando sale del arco. Tip: la energía cinética de la flecha es igual al trabajo hecho al estirar la cuerda, que es:

$$m\frac{v^2}{2} = \int_0^{0.5m} F dx$$

Figura 2: Flecha para el ejercicio

2.4. El período de un péndulo de longitud L es $\tau = 4\sqrt{\frac{L}{g}}h(\theta_0)$, donde g es la aceleración debida a la gravedad, θ_0 , representa la amplitud angular y

$$h(\theta_0) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \sin^2\left(\frac{\theta_0}{2}\right)\sin^2\theta}}$$

Calcular $h(15^{\circ})$, $h(30^{\circ})$ y $h(45^{\circ})$; compara esos valores con $h(0^{\circ}) = \frac{\pi}{2}$ (la aproximación usada para pequeñas amplitudes)

2.5. La fórmula de Debye para la capacidad calorífica C_v de un sólido, es $C_v = 9Nkg(u)$, donde

$$g(u) = u^3 \int_0^{1/u} \frac{x^4 e^x}{(e^x - 1)} dx$$

los términos de la ecuación son:

N = Número de partículas en el sólido

k = Constante de Boltzmann T = temperatura absoluta

$$u = \frac{T}{\Theta_D}$$
 $\Theta_D = \text{Temperatura de Debye}$

Calcular g(u) para u = 0 a 1.0 en intervalos de 0.05, grafica los resultados.

2.6. Una masa m está unida a un resorte de longitud b y rigidez k. Se puede demostrar que la aceleración de la masa es $\ddot{x} = -f(x)$, donde

$$f(x) = \mu g + \frac{k}{m}(\mu b + x) \left(1 - \frac{b}{\sqrt{b^2 + x^2}}\right)$$

Si la masa se libera del reposo en x=b, y la velocidad en x=0 está dada por

$$v_0 = \sqrt{2\int_0^b f(x)dx}$$

Figura 3: Masa unida a un resorte.

Calcular mediante integración numérica el valor de v_0 , usando m=0.8 k, b=0.4 m, $\mu=0.3,\ k=80$ N/m y g=9.81 $m/s^2.$