Convolutional Neural Network 2025 Summer DL Session 5주차

목차

KUBIG 2025 Summer DL Session

- 01 들어가기 전에,,
- 02 MLP vs CNN
- 03 Convolutional Layer
- 04 Padding & Stride & Pooling Layer
- 05 다음주차 예고

01 들어가기전에,,

01. 들어가기 전에,,

4주차 과제 우수자

22기 이은서 님

22기 이세훈 님

모두 과제하느라 수고많으셨습니다!:)

01. 들어가기 전에,,

4주차 과제의 의도

- 1. Define Network (TwoLayerNet → MultiLayerNet: 가중치 초기화 및 감소 weight_decay)
 - 2. Layers(Affine, Relu, Softmax) + Sigmoid
 - 3. Optimizers (SGD, Momentum, AdaGrad) + Adam
 - 4. Regularization (BatchNormalization, Dropout)
- 5. MNIST 데이터에 정규화 기법 적용별 효과 비교 (정규화 기법 적용 전 vs 후) (정규화 기법별 비교)

5주차 학습 목표

MLP와 CNN의 차이를 알고, 이미지 처리에 강점을 가지는 CNN이 무엇인지 알아보자.

Convolutional Neural Network(CNN)

Image Recognition Task에 사용 특히, Image Classification에 많이 쓰임.

CNN의 가장 큰 특징

1. Weight Sharing by Convolution

Input image 사이즈가 너무 큰 경우 weight 수가 너무 많이 필요함. Input dimension이 너무 큰 경우 weight sharing을 하면 weight의 수를 어느정도 고정시킬 수 있음.

2. Solve Translation invariance by Max pooling

그림을 이동시켜도 실제로는 같은 그림. 하지만 컴퓨터 데이터는 픽셀별로 데이터를 인식하기에, 회정이나 변형이 조금만 가해져도 컴퓨터는 전혀 다른 이미지로 해석

Convolutional Neural Network(CNN)

Classification

CAT requires invariance

Object Detection

CAT, DOG, DUCK requires equivariance

Instance Segmentation

cat, Dog, Duck requires equvariance

Image data

픽셀로 따지면 가로 W개, 높이가 H개

- #(pixel) = H * W
- 픽셀 수 ↑, 화질(resolution) ↑
- 픽셀 값 = 밝기 값
- 0~255 사이, 0: 검정 255: 하양

Image data

Image data는 각 pixel당 3개의 RGB값을 가지고 있다

Image data

Image data

Why difficult?

각 텐서(RGB와 Pixel)의 위치가 곧 feature로 다루어지기 때문

기존의 MLP(Fully Connected Layer)로 처리하기엔 parameter수 가 기하급수적으로 커지게 된다.

또한 각 Pixel의 주변부 정보와의 관련성을 학습시키기 어렵다.

Image data

Why difficult?

이미지가 조금 차이 나더라도 input의 변화가 매우 크게 발생함.

Locality principle

- 1. 먼 지역의 내용(특징)은 무관하다.
- 2. 이미지의 특정 부분을 인식할 때,그 부분과 멀리 떨어진 다른 지역의 정보는 중요하지 않다고 간주된다.

이미지를 스캔하면서 각 Image patch(조각)에 점수를 매긴다.

- = 이미지의 구조는 국소적인 정보를 기반으로 처리될 수 있다.
- = Local Info(특정 영역의 특징)을 활용한 효율적인 학습을 목표.
- → CNN(Convolutional Neural Network)은 Locality Principle에 기반하여 이미지를 처리!

Spatial Invariance

- 1. 객체의 모습은 그 위치에 의존하지 않는다.
- 2. 같은 객체가 이미지의 어느 위치에 있든지 간에 시스템이 일관되게 그 객체를 인식할 수 있어야 한다.

Classification translation invariance

 $g_{\phi}(\mathcal{T}[\mathbf{x}]) = g_{\phi}(\mathbf{x})$

 ${\mathcal T}$ translation operation

Object detection 등 translation equivariance

 $f_{\theta}(\mathcal{T}[\mathbf{x}]) = \mathcal{T}[f_{\theta}(\mathbf{x})]$

 f_{θ} , g_{ϕ} models

평행이동 후에도 출력 결과가 동일 (Pooling)

➡ 사진 속 강아지가 이미지의 중앙, 왼쪽, 오른쪽 어디에 있든 <u>강아지</u>로 분류

평행이동이 입력과 출력에 동일하게 반영 (Convolution)

➡ 입력을 평행 이동하면, 출력도 동일한 방식으로 평행이동 (특정 map에서 동일한 이동 발생)

Locality principle

MLP가 이미지 처리에 가지는 한계

1. 계산 효율성 (학습 parameter의 수)

= input data size의 수가 너무 많아서 학습 parameter가 너무 많아짐.

2. Locality 문제

pixel 하나는 정보값 X, pixel은 독립적으로 정보를 주는 게 아니라 주변의 pixel과 합쳐져서 정보를 주게 됨 = Spatial relation

- → Flatten해서 나열해버리면 위치정보가 사라지게 됨. (Serialization의 2차원 벡터로 표현)
- →+여기에다가 weight sum을 하면, 위치정보가 또 사라지게 됨.

3. Translation 문제

Translation = 일부 변형을 주더라도 같은 그림으로 인식하는 것 (예시: 한쪽에 치우쳐진 사진 -> 같은 그림으로 인식 X) if) 10000장의 데이터에 대해 학습을 시킨다면

- → 각각의 case에 대해 일일이 학습을 시켜야 함. (한쪽에 치우쳐진 거, 사이즈 바꾼 거, noise 있는 거, 회전된 거, 등등)
- = 각 augmentation에 대해 각 데이터를 모두 학습을 시켜야 함.
- → 학습이 너무 어렵기 때문에, Translation을 할 수 있는 모델을 써야 함.

1. 계산 효율성 (학습 parameter의 수)

= input data size의 수가 너무 많아서 학습 parameter가 너무 많아짐.

Convolution에서는 filter를 사용

* filter : surrounding pixel을 같이 학슴

Parameter 수가 filter에 dependent함

2. Locality 문제

pixel 하나는 정보값 X, pixel은 독립적으로 정보를 주는 게 아니라 주변의 pixel과 합쳐져서 정보를 주게 됨 = Spatial relation

- → Flatten해서 나열해버리면 위치정보가 사라지게 됨. (Serialization의 2차원 벡터로 표현)
- →+여기에다가 weight sum을 하면, 위치정보가 또 사라지게 됨.

3. Translation 문제

Translation = 일부 변형을 주더라도 같은 그림으로 인식하는 것 (예시: 한쪽에 치우쳐진 사진 -> 같은 그림으로 인식 X)

- if) 10000장의 데이터에 대해 학습을 시킨다면
- → 각각의 case에 대해 일일이 학습을 시켜야 함. (한쪽에 치우쳐진 거, 사이즈 바꾼 거, noise 있는 거, 회전된 거, 등등)
- = 각 augmentation에 대해 각 데이터를 모두 학습을 시켜야 함.
- → 학습이 너무 어렵기 때문에, Translation을 할 수 있는 모델을 써야 함.

Max pooling으로 해결

(translation invariance 특성을 사용)

CNNº Architecture

CNN이 이미지를 인식하는 단계

1단계: 가로, 동그라미, 세모, 부드러움

2단계 : 눈, 코, 귀, 발

3**단계 :고양이!**

CNN이 이미지를 인식하는 단계

What is convolution?

what is convolution? cross correlation?

합성곱:
$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)\,d\tau$$

교차상관:
$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t+\tau)\,d au$$

1,	1,0	1,,1	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

What is convolution?

1D Conv
$$[\mathbf{f} * \mathbf{x}](i) = \sum_{p} \mathbf{f}(p) \mathbf{x}(i+p)$$

2D Conv
$$[\mathbf{f} * \mathbf{x}](i,j) = \sum_{p,q} \mathbf{f}(p,q) \mathbf{x}(i+p,j+q)$$

3D Conv
$$[\mathbf{f} * \mathbf{x}](i, j, k) = \sum_{p,q,r} \mathbf{f}(p, q, r) \mathbf{x}(i + p, j + q, k + r)$$

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

$$\begin{array}{c} h_1 \\ h_2 \\ = \sum_{|p| \leq \Delta} \mathbf{f}(p)\mathbf{x}(1+p) \in \text{ 1st patch} \\ h_2 \\ = \sum_{|p| \leq \Delta} \mathbf{f}(p)\mathbf{x}(2+p) \in \text{ 2nd patch} \\ \vdots \\ h_i \\ = \sum_{|p| \leq \Delta} \mathbf{f}(p)\mathbf{x}(i+p) \in i\text{-th patch} \\ \end{array}$$

$$\begin{array}{c} h_1 \\ h_2 \\ = \sum_{|p| \leq \Delta} \mathbf{f}(p) \mathbf{x} (1+p) \in \text{ 1st patch} \\ h_2 \\ = \sum_{|p| \leq \Delta} \mathbf{f}(p) \mathbf{x} (2+p) \in \text{ 2nd patch} \\ \vdots \\ h_i \\ = \sum_{|p| \leq \Delta} \mathbf{f}(p) \mathbf{x} (i+p) \in i\text{-th patch} \end{array}$$

Convolution 연산

Convolution 연산

Convolution 연산

03. Convolution Layer

Convolution 연산

03. Convolution Layer

03. Convolution Layer

채널 간 합성곱 연산

같은 input image에 다른 filter 적용하면 다른 종류의 feature map이 나옴. Depending on the element values, a kernel can cause a wide range of effects:

Operation	Kernel ω	Image result g(x,y)
Identity	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$	
Ridge or edge detection	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$	
Gaussian blur 5 × 5 (approximation)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 4 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convolutional layer의 4가지 hyperparameter

1. filters (filter 개수)

Convolution2D(64, (3,3), strides=1, padding="same", ...)

- kenerl_size (convolution window: h*w)
- 3. strides (kernel 간 간격)
- 4. padding (valid=no padding, same= zero-padding, input과 같은 size로 ouput을 만들어줌)

3*3 kernel 사용하면 stride 1여도 되는데 5*5 kernel 사용하면 stride 2여야 함.

Padding?

Stride?

$$O_h = \left\lfloor rac{I_h - K_h + 2P}{S_h} + 1
ight
floor$$
 $O_w = \left\lfloor rac{I_w - K_w + 2P}{S_w} + 1
ight
floor$

 O_h : 출력 이미지의 높이(Height)

 O_w : 출력 이미지의 너비(Width)

 I_h : 입력 이미지의 높이

 I_w : 입력 이미지의 너비

 K_h : 컨볼루션 커널의 높이

 K_w : 컨볼루션 커널의 너비

P: 패딩(padding)의 양

 S_h : 스트라이드(stride)의 높이

 S_w : 스트라이드(stride)의 너비

Pooling?

점진적으로 spatial resolution 을 줄여준다.

- aggregate information
- downsampling
- parameter-free operator
- locally translation invariance

Pooling?

점진적으로 spatial resolution 을 줄여준다.

- aggregate information
- downsampling
- parameter-free operator
- locally translation invariance

5	2	3	4		
2	1	0	_1-	 최대값 충력	
3	7	9	5	출력	5-4
1	4	1	-8-	 	7 9

Pooling을 통해서 차원을 축소

Max Pooling, Mean Pooling

Conv 계산처럼 Stride가 존재

Pooling의 종류

1. Maximum pooling

```
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
```

2. Average pooling

pool2d(X, (2, 2), 'avg')

Output

Input

2 x 2 Average Pooling

ETC.

Parameter 개수 비교

시나리오

- 입력 이미지의 크기: 32x32 픽셀
- 입력 이미지의 채널 수 : 3 (RGB)
- MLP의 hidden layer: 1개, 뉴런의 수는 128개
- CNN의 convolution layer: 32ro 필터, 각 필터의 크기 3x3

MLP의 파라미터 계산:

CNN의 파라미터 계산 :

ETC.

ResNet

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Figure 2. Residual learning: a building block.

ETC.

Summary

MLP

- 전통적인 신경망 구조로, 입력층, 하나 이상의 은닉
 층, 그리고 출력층으로 구성된다.
- 각 층의 모든 뉴런은 이전 층의 모든 뉴런과 연결되어 있다.
- 이미지와 같은 고차원 데이터에서는 매개변수의 수
 가 매우 많아질 수 있어 비효율적일 수 있다.

CNN

- 이미지 처리에 최적화된 신경망 구조로, 합성곱층
 과 풀링층을 통해 특징을 추출한다.
- 가중치 공유를 통해 훨씬 적은 수의 매개변수를 사용한다.
- 이미지의 공간적 계층 구조를 인식할 수 있어 이미
 지 인식과 분류에 매우 효과적이다.

05 다음 주차 예고

05. 다음 주차 예고

05. 다음 주차 예고

5주차 과제

공부 과제

코드 과제

d2l

9장, **10**장

RNN, LSTM

논문 리뷰

ResNet

슬랙 공지로 추후 전달 예정

Thank You 2025 DL Session 5주차 끝!

