Graph Algorithms

Topological Sort

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

- Think of original DAG as a partial order.
- Want a total order that extends this partial order.

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- **3. return** the linked list of vertices

Time: $\Theta(V + E)$.

- Tasks that have to be done to eat breakfast:
 - get glass, pour juice, get bowl, pour sugar, pour milk, get spoon, eat.
- Certain events must happen in a certain order (ex: get bowl before pouring milk)
- For other events, it doesn't matter (ex: get bowl and get spoon)

Order: glass, juice, bowl, sugar, milk, spoon, eat.

Topological Sort

consider reverse order of finishing times: spoon, bowl, sugar, milk, glass, juice, eat

What if we started with juice?

consider reverse order of finishing times: spoon, bowl, sugar, milk, glass, juice, eat

Graph Algorithms

Minimum Spanning Tree

Definition of MST

- Let G=(V,E) be a connected, undirected graph.
- For each edge (u,v) in E, we have a weight w(u,v) specifying the cost (length of edge) to connect u and v.
- We wish to find a (acyclic) subset T of E that connects all of the vertices in V and whose total weight is minimized.
- Since the total weight is minimized, the subset T must be acyclic.
- Thus, T is a tree. We call it a minimum spanning tree.
- The problem of determining the tree T is called the minimumspanning-tree problem.

Minimum Spanning Trees

- Spanning Tree
 - A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph
- Minimum Spanning Tree
 - Spanning tree with the minimum sum of weights

- Spanning forest
 - If a graph is not connected, then there is a spanning tree for each connected component of the graph

Application of MST: an example

- In the design of electronic circuitry, it is often necessary to make a set of pins electrically equivalent by wiring them together.
- Connecting Telephone wires to a set of houses. What's the least amount of wire needed to still connect all the houses?

Problem: Laying Telephone Wire

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

EXAMPLE OF MST

 Here is an example of a connected graph and its minimum spanning tree:

• Notice that the tree is not unique: replacing (b,c) with (a,h) yields another spanning tree with the same minimum weight.

Generic Algorithm

```
GENERIC_MST(G,w)

1 A:={}

2 while A does not form a spanning tree do

3 find an edge (u,v) that is safe for A

4 A:=A∪{(u,v)}

5 return A
```

- Set A is always a subset of some minimum spanning tree.
- An edge (u,v) is a safe edge for A if by adding (u,v) to the subset A, we still have a minimum spanning tree.

How to find a safe edge

We need some definitions and a theorem.

- A cut (S,V-S) of an undirected graph G=(V,E) is a partition of V.
- An edge crosses the cut (S,V-S) if one of its endpoints is in S and the other is in V-S.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

How to find a safe edge

- This figure shows a cut (S,V-S) of the graph.
- The edge (d,c) is the unique light edge crossing the cut.

Algorithms of Kruskal and Prim

- The two algorithms are elaborations of the generic algorithm.
- They each use a specific rule to determine a safe edge in the GENERIC_MST.
- In Kruskal's algorithm,
 - The set A is a forest.
 - The safe edge added to A is always a least-weight edge in the graph that connects two distinct components.
- In Prim's algorithm,
 - The set A forms a single tree.
 - The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree.

Kruskal's algorithm

- Basic idea:
 - Grow many small trees
 - Find two trees that are closest (i.e., connected with the lightest edge), join them with the lightest edge
 - Terminate when a single tree forms

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

Kruskal's algorithm in words

- Procedure:
 - Sort all edges into non-decreasing order
 - Initially each node is in its own tree
 - For each edge in the sorted list
 - If the edge connects two separate trees, then
 - join the two trees together with that edge

Disjoint-Set

- Keep a collection of sets S₁, S₂, .., S_k
 - Each S_i is a set, e,g, $S_1 = \{v_1, v_2, v_8\}$.
- Three operations
 - Make-Set(x)-creates a new set whose only member is x.
 - Union(x, y) –unites the sets that contain x and y, say, S_x and S_y , into a new set that is the union of the two sets.
 - Find-Set(x)-returns a pointer to the representative of the set containing x.

Algorithm for Disjoint-Set Forest

MAKE-SET(x)

- 1. $p[x] \leftarrow x$
- 2. $rank[x] \leftarrow 0$

UNION(x,y)

1. LINK(FIND-SET(x),FIND-SET(y))

LINK(x,y)

- 1. if rank[x] > rank[y]
- 2. then $p[y] \leftarrow x$
- 3. else $p[x] \leftarrow y$
- 4. **if** rank[x]=rank[y]
- 5. **then** rank[y]++

FIND-SET(x)

- 1. if $x \neq p[x]$
- 2. **then** $p[x] \leftarrow FIND-SET(p[x])$
- 3. return p[x]

Kruskal's Algorithm

```
MST-Kruskal(G, w)
1 A \leftarrow \emptyset
2
    for each vertex v \in V[G] do
3
        Make-Set (v) //creates set containing v (for initialization)
    sort the edges of E
4
5
    for each (u,v) \in E do
6
      if Find-Set(u) \neq Find-Set(v) then // different component
          A \leftarrow A \cup \{(u,v)\}
8
          Union(Set(u), Set(v)) // merge
9
    return A
```


c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

Running Time of Kruskal's Algorithm

for loop in lines 2-3.

for loop in lines 5-8.

for loop in lines 5-8.

- Kruskal's Algorithm consists of two stages.
 - Initializing the set A in line 1 takes O(1) time.
 - Sorting the edges by weight in line 4.
 - takes *O*(*E* lg *E*)
 - Performing
 - | V | MakeSet() operations
 - |*E*| FindSet(),
 - |V| 1 Union(),
 - which takes O(E lg E)
 - willen takes O(L ig L)
- The total running time is
 - $-O(E \lg E)$
 - Observing that $|E| < |V|^2$, we have |g| |E| = O(|g|V)
 - So total running time becomes O(E lg V).

Claim

- If edge (u, v) is the lightest among all edges, (u, v) is in a MST
- Proof by contradiction:
 - Suppose that (u, v) is not in any MST
 - Given a MST T, if we connect (u, v), we create a cycle
 - Remove an edge in the cycle, have a new tree T'
 - W(T') < W(T)

By the same argument, the second, third, ..., lightest edges, if they do not create a cycle, must be in MST

Prim's algorithm

- Basic idea:
 - Start from an arbitrary single node
 - A MST for a single node has no edge
 - Gradually build up a single larger and larger MST

Prim's algorithm

- Basic idea:
 - Start from an arbitrary single node
 - A MST for a single node has no edge
 - Gradually build up a single larger and larger MST

Prim's Algorithm

```
MST-Prim (G, r)
01 \ Q \leftarrow V[G]
02 for each u \in O
03 key[u] \leftarrow \infty
04 key[r] \leftarrow 0
05 \pi [r] \leftarrow NIL
06 while Q \neq \emptyset do
07
   u \leftarrow ExtractMin(Q)
0.8
            for each v \in Adj[u] do
09
                if v \in Q and w(u,v) < key[v] then
10
                    \pi[v] \leftarrow u
                    \text{key[v]} \leftarrow \text{w(u,v)}
11
```


V	а	b	С	d	е	f	g	h	i
Т	1	0	0	0	0	0	0	0	0
Key	0	-	-	-	-	-	-	-	-
π	-1	1	-	-	-	-	-	-	-

V	а	b	С	d	е	f	g	h	i
Т	1	0	0	0	0	0	0	0	0
Key	0	4	-	-	-	-	-	8	1
π	-1	a	-	-	-	-	-	a	1

Important: Update Key[v] only if T[v]==0

V	а	b	С	d	е	f	g	h	i
Τ	7	1	0	0	0	0	0	0	0
Key	0	4	8	-	-	-	-	8	1
π	-1	а	b	-	-	1	-	a	1

V	а	b	С	d	е	f	g	h	i
Т	~	1	1	0	0	0	0	0	0
Key	0	4	8	7	1	4	-	8	2
π	-1	a	b	С	-	С	-	a	С

V	а	b	С	d	е	f	g	h	i
Τ	1	1	1	0	0	0	0	0	1
Key	0	4	8	7	-	4	6	7	2
π	-1	a	b	С	ı	C	i	i	С

V	а	b	С	d	е	f	g	h	i
Τ	1	1	1	0	0	1	0	0	1
Key	0	4	8	7	10	4	2	7	2
π	1	a	b	С	f	С	f	i	С

V	а	b	С	d	е	f	g	h	i
Τ	1	1	1	0	0	1	1	0	1
Key	0	4	8	7	10	4	2	1	2
π	-1	a	b	С	f	С	f	g	С

V	а	b	С	d	е	f	g	h	ij
Τ	1	1	1	0	0	1	1	1	1
Key	0	4	8	7	10	4	2	1	2
π	-1	a	b	C	f	С	f	g	С

V	а	b	С	d	е	f	g	h	i
Τ	1	1	1	1	0	1	1	1	1
Key	0	4	8	7	9	4	2	1	2
π	-1	а	b	С	d	С	f	g	С

V	а	b	С	d	е	f	g	h	i
Τ	1	1	1	1	1	1	1	1	1
Key	0	4	8	7	9	4	2	1	2
π	-1	а	b	С	d	С	f	g	С

Complexity: Prim's Algorithm

```
MST-Prim(G,r)
01 Q \leftarrow V[G]
02 for each u \in O
                                                                                 O(V)
03 l
     \text{key[u]} \leftarrow \infty
04 \text{ key[r]} \leftarrow 0
05 \pi [r] \leftarrow NIL
                                                                                 O(V)
06 while Q \neq \emptyset do
07
       u \leftarrow ExtractMin(0)
                                                                        Heap: O(lgV)
0.81
            for each v ∈ Adj[u] do
                                                                         Overall: O(E)
09
                 if v \in Q and w(u,v) < key[v] then
10
                     \pi[v] \leftarrow u
                     \text{key}[v] \leftarrow w(u,v)
11
                                                                Decrease Key: O(lgV)
```

Overall complexity: $O(V)+O(V \lg V+E \lg V) = O(E \lg V)$

Summary

Kruskal's algorithm

- Select the shortest edge in a network
- Select the next shortest edge which does not create a cycle
- 3. Repeat step 2 until all vertices have been connected

Prim's algorithm

- 1. Select any vertex
- Select the shortest edge connected to that vertex
- Select the shortest edge connected to any vertex already connected
- 4. Repeat step 3 until all vertices have been connected