MATHEMATICAL PHYSICS: A COMPLETE GUIDE

PHYS 435

August 29, 2021

ELIJAH THOMPSON, PHYSICS AND MATH HONORS

Solo Pursuit of Learning

Contents

I	Con	ipiex Analysis	2
1	Pro 1.1 1.2 1.3 1.4 1.5	Elementary Definitions	3 3 3 3 3
2		wer Series and Laurent Series	4
	2.1	Power Series Fundamentals	4
	2.2	Laurent Series	4
	2.3	Series Operations	4
3	Co	mplex Integration	5
	3.1	Complex Integral	5
	3.2	Cauchy's Theorems	5
	3.3	Residue Theorem	5
	3.4	Contour Integrals	5
4	Ap	plications of Complex Functions	6
_	4.1	Complex Potentials	6
	4.2	Finding Zeros	6
	4.3	Inverse Laplace	6
	4.4	Stokes' Equations and Airy Integrals	6
	4.5	WKB Methods, and Integral Approximations	6
II	PD	Es	7
5	Ge	neral and Particular Solutions	8
·	5.1	Important Examples and Motivation	8
		General Forms of Solutions	8
	5.3	Wave and Diffusion Equations	8
	5.4	Existence and Uniqueness	8
6	For	ırier Series	9
	6.1	Initial Definitions and Dirichlet Conditions	9
	6.2	Symmetry Conditions	9
	6.3	Discontinuous and Non-Periodic Functions	9
	6.4	Integration and Differentiation	9

6.5	Complex Fourier Series	9		
7 Se	paration of Variables and Other Methods	10		
7.1	Separation of Variables	10		
7.2	Integral Transforms	10		
7.3	Inhomogeneous Problems	10		
Appendices				

Part I Complex Analysis

Properties of Complex Functions

- 1.1.0 Elementary Definitions
- 1.2.0 Multivalued Functions and Branch Cuts
- **1.3.0** Analytic Functions and the Cauchy-Riemann Equations
- 1.4.0 Singularities and Zeros
- 1.5.0 Conformal Mappings

Power Series and Laurent Series

- 2.1.0 Power Series Fundamentals
- 2.2.0 Laurent Series
- **2.3.0** Series Operations

Complex Integration

- 3.1.0 Complex Integral
- 3.2.0 Cauchy's Theorems
- 3.3.0 Residue Theorem
- 3.4.0 Contour Integrals

Applications of Complex Functions

- 4.1.0 Complex Potentials
- 4.2.0 Finding Zeros
- 4.3.0 Inverse Laplace
- 4.4.0 Stokes' Equations and Airy Integrals
- 4.5.0 WKB Methods, and Integral Approximations

Part II

PDEs

General and Particular Solutions

- **5.1.0** Important Examples and Motivation
- **5.2.0** General Forms of Solutions
- **5.3.0** Wave and Diffusion Equations
- **5.4.0** Existence and Uniqueness

Fourier Series

- **6.1.0** Initial Definitions and Dirichlet Conditions
- **6.2.0** Symmetry Conditions
- 6.3.0 Discontinuous and Non-Periodic Functions
- **6.4.0** Integration and Differentiation
- 6.5.0 Complex Fourier Series

Separation of Variables and Other Methods

- 7.1.0 Separation of Variables
- 7.2.0 Integral Transforms
- 7.3.0 Inhomogeneous Problems

Appendices