ข้อสอบ

2.1 ในระบบ CDMA หากในเซลหนึ่งมีผู้ใช้ 3 ราย คือ A, B และ C ซึ่งได้ Chip sequence เป็น 10101010, 11001100 และ 10011001 ตามลำดับ หากในขณะหนึ่งมีข้อมูลของ A ซึ่งมีค่า 1 และข้อมูลของ C มีค่า 0 ต้องการส่งจาก Base Station ไปยังมือถือดังกล่าว อยากทราบว่า สัญญาที่ส่งจาก base station จะเป็นอย่างไร และมือถือในเซลจะรู้ได้อย่างไรว่ามีข้อมูลค่าอย่างไร ส่งมาให้ตัวเองแล้ว จงแสดงการคำนวนให้พอเข้าใจ นอกจากนั้นจงอธิบายข้อดีของระบบ CDMA นี้

จงอธิบายว่าทำไมจึงเรียกระบบโทรศัพท์เซลลูลาร์ 4G ว่าเป็น ALL IP network

หาสัญญาณที่ส่ง

Α																	
В	1	1	0	0	1	1	0	0	= ^	+1	+1	-1	-1	+1	+1	-1	-1
С	1	0	0	1	1	0	0	1	=>	+1	-1	-1	+1	+1	-1	-1	+1

จากโจทย์ ส่ง

A = 1 คือ

C = 0 คือ ส่วนกลับของ C จะได้

С	+1	-1	-1	+1	+1	-1	-1	+1
<u>C</u>	-1	+1	+1	-1	-1	+1	+1	-1

สัญญาณที่ส่งไปจะเท่ากับ S = A+<u>C</u> จะได้

Α	+1	-1	+1	-1	+1	-1	+1	-1
<u>C</u>	-1	+1	+1	-1	-1	+1	+1	-1
S	0	0	+2	-2	0	0	+2	-2

เมื่อฝั่งรับได้สัญญาณที่ส่งมา ฝั่งรับแต่ละอันจะเอาค่า Chip Sequence ของตนเองมา dot (คูณ) กับสัญญาณ และหารด้วยจำนวน Bit ของ Chip sequence เพื่อหาว่ามีสัญญาณส่งมาหาตนหรือไม่

1 = มีการส่งมาหาตนเป็นค่า 1

-1 = มีการส่งมาหาตนเป็นค่า 0

0 = ไม่มีการส่งมา

ดังนี้

A:

S	0	0	+2	-2	0	0	+2	-2
Α	+1	-1	+1	-1	+1	-1	+1	-1
S.A	0	0	2	2	0	0	2	0

นำค่าที่ได้มาบวกกัน จะได้ 2 + 2 + 2 + 2 = 8 หารจำนวน bit จะได้ 8/8 = 1 แสดงว่ามีค่าส่งมาให้ A = 1

B:

S	0	0	+2	-2	0	0	+2	-2
В	+1	+1	-1	-1	+1	+1	-1	-1
S.B	0	0	-2	2	0	0	-2	2

นำค่าที่ได้มาบวกกัน จะได้ (-2) + 2 + (-2) + 2 = 0 ;หารจำนวน bit จะได้ 0/8 = 0 แสดงว่าไม่มีการส่งค่ามาหา B

C:

S	0	0	+2	-2	0	0	+2	-2
С	+1	-1	-1	+1	+1	-1	-1	+1
S.C	0	0	-2	-2	0	0	-2	-2

นำค่าที่ได้มาบวกกัน จะได้ (-2) + (-2) + (-2) + (-2) = -8 หารจำนวน bit จะได้ -8/8 = -1 แสดงว่ามีการส่งค่ามาหา C = 0

ข้อดีของระบบ CDMA

คือ สามารถ reuse factory = 1 ได้ เนื่องจาก code มีคุณสมบัติตั้งฉากกัน จะไม่รบกวนกัน สามารถส่งความถี่เดียวกันได้ใน Cell ติดกัน

ทำไม 4G ถึงถูกเรียกว่า ALL IP Network

เนื่องจากต่อไปในยุค 4G อุปกรณ์ทุกอย่างจะเชื่อมต่อกันด้วย IP

 2.2 (17 คะแนน) จงอธิบายหลักการส่งสัญญาณของ Fiber optics และทำไมระบบนี้จึงสามารถส่ง ข้อมูลได้ความเร็วสูง นอกจากนั้นจากรูปข้างล่างนี้ จงอธิบายการเข้ารหัสสัญญาณข้อมูล (encoder, decoder) ของ 1000Base-LX

 1000Base-LX

 8 × 125 Mbps

 8 × 125 Mbps

 8 × 125 Mbps

 8 × 125 Mbps

 1.25 Gbps

 1.25 Gbps

หลักการส่งสัญญาณของ Fiber optics

ฝั่งส่ง

- เป็น LED แปลงไฟฟ้าเป็นแสง

ฝั่งร้าเ

- Photodiode แปลงแสงเป็นไฟ้ฟ้า

ฝั่งส่งสามารถส่งสัญญาณความถี่สูง 10¹⁴ Hz แต่ฝั่งรับสามารถรับได้แค่ 10¹⁰ - 10¹² ดังนั้นจึงต้องใช้หลักการ WDM เป็นหลักการแบบ ปิซิมรวมแสง และส่งไปพร้อมๆ กัน คล้ายแบบ FDM แต่เป็นแสง

เนื่องจาก Fiber optics ทำมาจากแก้วที่มีเนื้อสารบริสุทธิ์ ทำให้แสงสามารถเดินทางผ่านได้ดี ประกอบด้วยโครงสร้าง 2 ชั้น

- 1. ส่วนที่อยู่ตรงกลาง ซึ่งแสงจะใช้ในการเดินทางเรียกว่าส่วนคอร์ (Core)
- 2. ส่วนแก้วอีกชั้นที่ล้อมอยู่โดยรอบ เรียกว่าแคลดดึ้ง (Cladding) เป็นตัวช่วยทำให้แสงไม่สามารถกระจายออกมาได้

ทำให้สามารถส่งข้อมูลได้ในจำนวนมาก เนื่องจากใช้ความถี่สูงถึง 10¹⁴ ทำให้ Bandwidth กว้าง และส่งข้อมูลได้รวดเร็วเพราะแสงสามารถเดินทางได้เร็วที่สุด ข้อมูลที่ถูกส่งออกไปจะเป็นในรูปของแสง มีความปลอดภัยในระดับหนึ่ง เพราะไม่มีสัญญาณไฟฟ้าหรือสนามแม่เหล็ก ทำให้การถูกขโมยข้อมูลหรือดึงข้อมูลออกไปเป็นเรื่องที่ยากมาก

จากรูป 1000Base-LX

- ใช้สาย Fiber หรือ STPS 2 เส้นทำการเข้ารหัสด้วย NRZ รับ
- ความถี่ทางไฟฟ้าคือ 1.25 Gbps ข้อมูลเข้า 8 Bit เข้ามา 125 ครั้ง/วินาที คือ 8 x 125 = 1000 Mbps และส่งออก 10 Bit ดังนั้นจะเท่ากับ 10 x 125 = 1.25 Gbps

4. (35 คะแนน)

4.1 (16 คะแนน) จงอธิบายความแตกต่างระหว่าง router และ switch layer 2 ให้พอเข้าใจโดยอธิบาย ทั้งแง่มุมของหน้าที่การใช้งาน และหลักการส่งข้อมูลของอุปกรณ์ทั้งสอง โดยอาจอาศัยรูปข้างล่างนี้ ประกอบคำอธิบาย

จากรูป

Switch ทำงานโดย การนำ MAC Address มาหา Port ที่ต้องส่งออกไปในตารางของ Switch และทำการส่งออกไปตาม Port ตัวอย่างเช่น

ต้องการส่งข้อมูลจาก A ไปยัง E มีขั้นตอนดังนี้

- 1. A ทำการส่ง Frame ที่มี MAC Address ของ E (E5-BB-47-21-D3-56) ไปยัง Switch 1
- 2. เมื่อถึง Switch 1 จะทำการหาใน Table ว่าหากต้องการส่งข้อมูลให้กับ MAC Address E ต้องออก Port ไหนซึ่งใน Table ของ switch 1 จะได้ port 5 จึงทำส่ง Frame ออกไปยัง port 5 ไปยัง switch 2
- 3. เมื่อถึง switch 2 จะทำการตรวจสอบที่ Table switch 2 จะได้ port 7 (switch 2 ส่งออกทาง port 7 ไปยัง switch 3)
- 4. เมื่อถึง switch 3 จะทำการตรวจสอบที่ Table switch 3 ซึ่งจะได้ว่า E อยู่ที่ port 6 จึงทำการส่ง Frame ให้ E ทาง port 6

ต่างจาการทำงานของ Router คือ

เมื่อ Router ได้รับ Address มาจะต้องเอามาทำการ AND กับ Subnet mark เพื่อหา Network และจึงนำ Network ที่ได้ไปหาใน routing table ว่าต้องทำการส่งออกทาง Node ไหน

Question:

Ethernet LAN ให้บริการส่งข้อมูลแบบ Connection oriented หรือ Connectionless และเป็นชนิด reliable หรือ unreliable เพราะเหตุใด

Solution:

เป็นแบบ Connectionless และเป็นชนิด unreliable เนื่องจากมี Noise น้อย

Question:

จงอธิบายถึงความหมายของคำว่า 1000Base LX และมาตราฐาน 1000 Base LX กับ 1000 Base SX แบบใดสามารถส่งข้อมูลได้ไกลกว่า เพราะเหตใด

Solution:

1000 Base SX

อักษร S ในที่นี้ยอมาจาก "Short" ซึ่งในที่นี้หมายถึงแสงที่มีความยาวคลื่นสั้น (Short Wavelength) 1000 IFFF ที่กำหนดให้ใช้สายใยแก้ว Base-SX เป็นมาตรฐาน 802.3z นำแสงแบบมัลติโหมดและใช้แสงเลเซอร์แบบความยาวคลื่นสั้นเป็นสัญญาณส่งข้อมล แสงที่มีความยาวคลื่นสั้นในที่นี้จะหมายถึงแสงที่มีความยาวคลื่นที่ 850 10-9) เมตร สายไฟเบอร์แบบมัลติโหมดที่ใช้อาจเป็นได้ทั้งสองขนาดคือ ขนาด 50 ไมครอน และขนาด 62.5 ไมครอน สายใยแก้วนำแสดงขนาด 50 ไมครอน สามารถรับสงขอมูลได้ที่ความเร็ว 1 Gbps และส่งได้ใกลสด 550 เมตร สวนสายใยแก้วนำแสงขนาด 62.5 ไมครอน สามารถส่ง ได้ไกลสุด 250 เมตร

1000 Base LX

อักษร L ในที่นี้จะหมายถึงแสงเลเซอรที่มีความยาวคลื่นยาว (Long Wavelength Laser)ดังนั้น 1000 Base-LX จะใชคลื่นแสงที่มีความยาวคลื่นที่ประมาณ 1,300 nm ส่วน สายสัญญาณที่ใช้จะเป็นสายแบบมัลติโหมด ทั้งขนาด 50 ไมครอน และ 62.5 ไมครอน หรือจะ เป็นสายซิลเกิลโหมดขนาด 8.3 ไมครอนก็ได้ถ้าใช้สายขนาด 50 ไมครอน ความยาวสูงสุด ยังอยูที่ 550 เมตรแต่ถ้าใช้สายขนาด 62.5 ไมครอน ความยาวสายจะยาวสุดไดถึง 440 เมตร ซึ่ง จะยาวกว่าเมื่อใช้สายนี้กับ 1000 Base-SX ส่วนสายแบบซิงเกิลโหมดขนาด 8.3 ไมครอนนี้ จะส่งข้อมูลได้ไกลสุดถึง 5 กิโลเมตรอย่างไรก็ตามสายประเภทนี้จะมีชั้นตอนการผลิตที่ยาก ดังนั้นจึงเป็นสายที่มีราคาแพงมาก

หากจำไม่ได้ก็

1000 Base SX

1000 หมายถึงส่งข้อมูลได้ 1000 Mbps หรือ 1 Gbps

S หมายถึง Short Wavelength เป็นสัญญาณในการรับส่งข้อมูล

เป็น Gigabit Ethernet โดยส่งผ่านสาย Fiber Optic แบบ Multimode จะสามารถส่งได้อยู่ในช่วง 250 - 550 เมตร ขึ้นอยู่กับขนาดของสาย

1000 Base LX

1000 หมายถึงส่งข้อมูลได้ 1000 Mbps หรือ 1 Gbps

L หมายถึง Long Wavelength ใช้เป็นสัญญาณในการรับส่งข้อมูล

โดยส่งผ่านสาย Fiber Optic แบบ Multimode หรือ แบบ Singlemode จะสามารถส่งได้อยู่ในช่วง 440 - 5000 เมตร ขึ้นอยู่กับขนาดของสาย และรูปแบบของสาย

สรป แบบ 1000 Base LX สามารถส่งข้อมูลได้ใกลกว่า SX เนื่องจากใช้แสงที่มีความยาวคลื่นยาว

Question:

อธิบายความแตกต่างระหว่าง Hub กับ Switch ให้พอเข้าใจ

Solution:

Hub

- เป็นแบบ Aggregate คือมีการ Shared Bandwidth กันระหว่าง 2 Station
- ไม่สามารถทำการแบ่ง VLAN ได้
- ส่งข้อมูลแบบ Broadcast ไปในทุก port

Switch

- เป็นแบบ Individual คือไม่มีการ Shared Bandwidth กัน หากความเร็ว 10 Mbps ก็จะได้ station ละ 10 Mbps
- สามารถทำการแบ่ง VLAN ได้ ทั้ง Switch Layer 2 และ Switch Layer 3
- ทำงานแบบ learning มีการเก็บ มีการเก็บข้อมูล MAC Address ไว้ใน Table ทำให้ไม่ต้องทำการ Broadcast ส่งข้อมูล