

Master on Foundations of Data Science

Recommender Systems

Graph Based Models

Santi Seguí | 2019-2020

Graph models for Neighborhood-Based Methods

- Sparsity of observed ratings causes a major problem in the computation of similarity in neighborhood-based methods.
- Graph-models can be used in order to define similarity in the neighborhood-based methods
 - using either structural transitivity or ranking techniques
- Provide a structural representation of the relationships among various users and/or items

User-Item Graphs

- More effective than Pearson Correlation when dealing with very sparse datasets
- User-Item graph defined as an undirected and bipartite graph:

$$G = (N_u \cup N_i, A)$$

User-Item Graphs

Items

Gladiator	GoodFather	3en-Hur	GoodFellas	ScarFace	Spartacus
(7)	Q Q	Be	Ö	Sc	Š

U1	1			5		2
U2		5			4	
U3	5	3		1		
U4			3			4
U5				3	5	
U6	5		4			

User-User Graphs

 User-user Graph based on 2-hop connectivity between users

	Gladiator	GoodFath	Ben-Hur	GoodFella
U1	1			5
U2		5		
U3	5	3		1
U4			3	
U5				3
U6	5		4	

Jer

Item-Item Graphs

Items

_	ther		llas
Gladiator	GoodFathe	Ben-Hur	GoodFellas
<u>(1)</u>	Ö	Be	Ğ

U1	1			5
U2		5		
U3	5	3		1
U4			3	
U5				3
U6	5		4	

PageRank

The idea is:

If you navigate as a random walk using the weight as probabilities move from one node to the other, how many times each node will be visited?

PageRank

- The PageRank algorithm was first proposed in the context of Web Search
- The PageRank algorithm generalizes the notion of citation-based ranking in a recursive way

$$x' = (1-\alpha)Ax + \alpha \frac{1}{n}S$$
 — Know as **restart** Matrix

where:

A is the adjacency matrix, S is a matrix of ones and α is a damping factor, generally fixed to 0.15

Solution with Power Iteration Method

X

1			5		2
	5			4	
5	3		1		
		3			4
			3	5	
5		4			

x1

x1'
x2'
x3'
x4'
x5'
x6'

1st (and important) Step: First Normalize your Adjancecy Matrix

1/11			5/9		2/6	
	5/8			4/9		
5/11	3/8		1/9			
		3/7			4/6	
			3/9	5/9		
5/11		4/7				

x1
x2
хЗ
x4
x5
х6

X

x1'	
x2'	
x3'	
x4'	
x5'	
x6'	

1/11			5/9		2/6		1		0,98
	5/8			4/9			1		1,07
5/11	3/8		1/9			\ <u>/</u>	1		0,94
		3/7			4/6	X	1	=	1,10
			3/9	5/9			1		0,89
5/11		4/7					1		1,03

2nd Step: Initialize your vector and compute

2nd iteration update x values

1/11			5/9		2/6
	5/8			4/9	
5/11	3/8		1/9		
		3/7			4/6
			3/9	5/9	
5/11		4/7			

0,98
1,07
0,94
1,1
0,98
1,03

X

1,04
1,10
0,97
1,09
0,91
0,98

3rd iteration update x values

1/11			5/9		2/6
	5/8			4/9	
5/11	3/8		1/9		
		3/7			4/6
			3/9	5/9	
5/11		4/7			

1,04
1,1
0,97
1,09
0,91
0,98

X

1,03
1,09
1,01
1,07
0,87
1,03

4th iteration update x values

1/11			5/9		2/6		1,03		1,03
	5/8			4/9			1,09		1,07
5/11	3/8		1/9			V	1,01		1,00
		3/7			4/6	X	1,07	=	1,12
			3/9	5/9			0,87		0,84
5/11		4/7					1,03		1,05

and iterate until convergence

More about PageRank and Power Iteration:

https://www.youtube.com/watch?v=VpiyOxiVmCg

Page Rank: How graph must be constructed?

Gladiator
GoodFather
Ben-Hur
GoodFellas
ScarFace
Spartacus

U1	1			5		2
U2		5			4	
U3	5	3		1		
U4			3			4
U5				3	5	
U6	5		4			

Page Rank: Extended graph

x1 x2 xm y1 y2

Page Rank: How graph must be constructed?

U1	1			5		2
U2		5			4	
U3	5	3		1		
U4			3			4
U5				3	5	
U6	5		4			

User/User graph

User Weight?

is not directly a recommendation approach

it is Not personalized

Defining Neighborhoods

- The neighborhood of a user is defined by the set of users that are encountered frequently in a random walk starting at that user.
- How can we measure similarity between users/items using a graph?
 - Katz measure
 - Personalized PageRank
 - SimRank method

Personalized PageRank

- PageRank is an excellent mechanism to find popular nodes in terms of the linkage structure, however it does little for finding items that are well-matched to interest of specific users.
- The notion of personalized PageRank is designed to find popular nodes, which are also similar to specific node in the network
- A node receives an amount of rank from every node which points to it and in turn transfer an amount of its rank to the node it refers to.

Personalized PageRank

- Two main methods:
 - Random walk with restart at a particular item in order to determine the relevant neighborhoods
 - **ItemRank**. For each user *i*, a different PageRank restart vector is used.

Personalized PageRank Random Walk

The restart matrix only contain non-zero values to **the column and row** correspoding to **item i**

Personalized PageRank

- **ItemRank**. For each user *i*, a different PageRank restart vector is used.
 - PageRank equations are specific to user i and one need to solve this system m times in order to determine the preferences of all users.

$$E(j) = \begin{cases} 1/n & \text{if } j \text{ in } I_u \\ 0 & \text{otherwise} \end{cases}$$

Personalized PageRank Item Rank

Task #3

- Problem: JOKES recommendations
- Methods to implement:
 - · Graph-Based recommender system
 - Any other method that you think will be the best for the task
- Evaluation:
 - OFFLINE: MSE
- · What to deliver:
 - Jupyter notebook
- Deadline:
 - May 30th

Overview

Description

Evaluation

- Jester dataset includes user ratings ranging from -10 to +10 for 100 jokes.
- NOTE: original dataset has been modified with noise and data perturbation
- · RMSE will be used for evaluation.
- Once you submit a result, it will list you in the leaderboard based on the best score of your submissions.

TEAMS are allowed. From 1-3 persons

https://www.kaggle.com/c/jesterdsub2020

Jester 5.0

Jokes for *your* sense of humor

First rate two jokes.

Q: If a person who speaks three languages is called "trilingual," and a person who speaks two languages is called "bilingual," what do you call a person who only speaks one language?

A: American!

Less Funny More Funny

Next