Funções trigonométricas inversas

Inversa da função seno

O gráfico de $y=sen\ x$, abaixo, mostra que esta função não é bijetiva e portanto não admite inversa.

Entretanto a função $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to [-1,1]$ definida por $f(x)=sen\ x$ é bijetiva e portanto admite inversa.

Gráfico de f

A inversa de f é denotada por sen^{-1} ou arcsen e é chamada de inversa da função seno ou arco-seno.

Portanto
$$arcsen\ x = y \Leftrightarrow sen\ y = x\ e^{-\frac{\pi}{2}} \le y \le \frac{\pi}{2}$$

Assim, se $-1 \le x \le 1$, $arcsen\ x$ é o número y que pertence ao intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ e tal que $sen\ y=x$.

Gráfico de arcsen x

Observe que o domínio da função arco-seno é o intervalo [-1,1] e a imagem é o intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

De acordo com a definição da função arco-seno, temos:

$$arcsen(-1) = -\frac{\pi}{2}$$

$$arcsen\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$arcsen(0) = 0$$

$$arcsen\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$arcsen(1) = \frac{\pi}{2}$$

Inversa da função cosseno

O gráfico de $y=\cos x$, abaixo, mostra que esta função não é bijetiva e portanto não admite inversa.

Entretanto a função $f:[0,\pi]\to [-1,1]$ definida por $f(x)=\cos x$ é bijetiva e portanto admite inversa.

Gráfico de f

A inversa de f é denotada por cos^{-1} ou arccos e é chamada de inversa da função cosseno ou arco-cosseno.

Portanto $arccos x = y \Leftrightarrow cos y = x e 0 \le y \le \pi$

Assim, se $-1 \le x \le 1$, $arcsen\ x$ é o número y que pertence ao intervalo $[0,\pi]$ e tal que $cos\ y=x$.

Gráfico de arccos x

Observe que o domínio da função arco-cosseno é o intervalo [-1,1] e a imagem é o intervalo $[0,\pi]$

De acordo com a definição da função arco-cosseno, temos:

$$arccos(-1) = \pi$$

$$arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

$$arccos(0) = \frac{\pi}{2}$$

$$arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

$$arccos(1) = 0$$

Inversa da função Tangente

O gráfico de $y=tg\ x$, abaixo, mostra que esta função não é bijetiva e portanto não admite inversa.

Entretanto a função $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to R$ definida por $f(x)=tg\ x$ é bijetiva e portanto admite inversa.

Gráfico de f

A inversa de f é denotada por tg^{-1} ou arctg e é chamada de inversa da função tangente ou arco-tangente.

Portanto
$$arctg \ x = y \Leftrightarrow tg \ y = x \ e^{-\frac{\pi}{2}} < y < \frac{\pi}{2}$$

Assim, se $x \in R$, $arcsen\ x$ é o número y que pertence ao intervalo $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ e tal que $tg\ y=x$.

Gráfico de arctg x

Observe que o domínio da função arco-tangente é o é o conjunto de todos os números reais e a imagem é o intervalo $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

De acordo com a definição da função arco-tangente, temos:

$$arctg(-1) = -\frac{\pi}{4}$$

$$arctg(-\sqrt{3}) = -\frac{\pi}{3}$$

$$arctg(0) = 0$$

$$arctg(\sqrt{3}) = \frac{\pi}{3}$$

$$arctg(1) = \frac{\pi}{4}$$

Inversa da função Cotangente

O gráfico de $y=\cot g\ x$, abaixo, mostra que esta função não é bijetiva e portanto não admite inversa.

Entretanto a função $f:(0,\pi)\to R$ definida por $f(x)=\cot g\ x$ é bijetiva e portanto admite inversa.

Gráfico de f

A inversa de f é denotada por $cotg^{-1}$ ou arccotg e é chamada de inversa da função cotangente ou arco-cotangente.

Portanto $arccotg \ x = y \Leftrightarrow cotg \ y = x \in 0 < y < \pi$

Assim, se $x \in R$, arccot x é o número y que pertence ao intervalo $(0,\pi)$ e tal que $cot g \ y = x$.

Gráfico de arccotg x

Observe que o domínio da função arco-cotangente é o é o conjunto de todos os números reais e a imagem é o intervalo $(0,\pi)$

De acordo com a definição da função arco-cotangente, temos:

$$arccotg(-1) = \frac{3\pi}{4}$$
; $arccotg(-\sqrt{3}) = \frac{5\pi}{6}$; $arccotg(0) = \frac{\pi}{2}$; $arccotg(\sqrt{3}) = \frac{\pi}{6}$; $arccotg(1) = \frac{\pi}{4}$

Observação

Sabemos que
$$cotg\left(\frac{\pi}{2} - x\right) = tg x$$

Daí
$$cotg\left(\frac{\pi}{2} - arctg x\right) = tg (arctg x) = x$$
, e então

$$arccotg\left(cotg\left(\frac{\pi}{2} - arctg\ x\right)\right) = arccotg\ x$$

Assim
$$\frac{\pi}{2} - arctg \ x = arccotg \ x$$

Podemos então definir
$$arccotg \ x = \frac{\pi}{2} - arctg \ x$$

Inversa da função Secante

O gráfico de $y=\sec x$, abaixo, mostra que esta função não é bijetiva e portanto não admite inversa.

Entretanto a função $f: \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right) \to (-\infty, -1] \cup \left[1, +\infty\right)$ definida por $f(x) = \sec x$ é bijetiva e portanto admite inversa.

A inversa de f é denotada por sec^{-1} ou arcsec e é chamada de inversa da função secante ou arco-secante.

Portanto $arcsec \ x = y \Leftrightarrow sec \ y = x$ e

$$y \in (-\infty, -1] \cup [1, +\infty).$$

Assim, se

 $x \in (-\infty, -1] \cup [1, +\infty)$, $arcsec\ x \in o\ número\ y\ que\ pertence\ ao\ intervalo\ <math>\left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$ e tal que $sec\ y = x$.

Gráfico de arcsec x

Observe que o domínio da função arco-secante é $(-\infty,-1] \cup [1,+\infty)$ e a imagem é $\left[0,\frac{\pi}{2}\right) \cup \left[\pi,\frac{3\pi}{2}\right)$

De acordo com a definição da função arco-secante, temos:

$$arcsec(-2) = \frac{4\pi}{3}$$
; $arcsec(-1) = \pi$

$$arcsec(1) = 0$$
; $arcsec(2) = \frac{\pi}{3}$

Inversa da função Cossecante

O gráfico de $y=cossec\ x$, abaixo, mostra que esta função não é bijetiva e portanto não admite inversa.

Entretanto a função

 $f:\left(-\pi,-\frac{\pi}{2}\right]\cup\left(0,\frac{\pi}{2}\right]\to\left(-\infty,-1\right]\cup\left[1,+\infty\right)$ definida por $f(x)=cossec\ x$ é bijetiva e portanto admite inversa.

A inversa de f é denotada por $\cos ec^{-1}$ ou $\arccos ec$ e é chamada de inversa da função cossecante ou arco-cossecante.

Portanto $arccosec \ x = y \Leftrightarrow cosec \ y = x \ e \ y \in (-\infty, -1] \cup [1, +\infty).$

Assim, se $x \in (-\infty, -1] \cup [1, +\infty)$, $arcsec\ x \in o$ número y que pertence ao intervalo $\left(-\pi, -\frac{\pi}{2}\right] \cup \left(0, \frac{\pi}{2}\right]$ e tal que $cosec\ y = x$.

Gráfico de arccosec x

Observe que o domínio da função arco-cossecante é $(-\infty,-1]$ \cup $[1,+\infty)$ e a imagem é $\left(-\pi,-\frac{\pi}{2}\right]$ \cup $\left(0,\frac{\pi}{2}\right]$. De acordo com a definição da função arco-cossecante, temos: $arccosec(-2)=-\frac{5\pi}{6}$; $arccosec(-1)=-\frac{\pi}{2}$; $arccosec(1)=\frac{\pi}{2}$; $arccosec(2)=\frac{\pi}{6}$