Eigenvalues, Eigenvectors & Diagonalisation

Eigenvalues & Eigenvectors

Let A be a square matrix of order n.

A non-zero column vector $u \in \mathbb{R}^n$ is called an eigenvector of A if $Au = \lambda u$ for some scalar λ .

The scalar λ is called an eigenvalue of A and u is said to be an eigenvector of A associated with the eigenvalue λ .

Basic Properties

Let A be a square matrix.

- 1. If λ is an eigenvalue of A , λ^n is an eigenvalue of A^n .
- 2. If λ is an eigenvalue of A , $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- 3. A and A^T have the same eigenvalues.