Compendium MAT260

Anita Gjesteland

21. juni 2018

1 Preliminaries

1.1 Norms

Definition 1. Let V be a linear spave over \mathbb{R} . A function $\|\cdot\|: V \to \mathbb{R}$ is a norm on V if it satisfies the following:

(i)
$$\|\lambda x\| = |\lambda| \|x\| \quad \forall x \in \mathbb{R}$$

(ii)
$$x + y \le ||x|| + ||y|| \ \forall x, y \in V$$

(iii)
$$||x|| = 0 \Leftrightarrow x = 0$$

Example 1. p - $norm: ||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$

$$p = 2$$
: $||x||_2 = (\sum_{i=1}^n |x_i|^2)^{1/2}$

$$p = \infty \colon ||x||_{\infty} = \max_{i \in \{1, \dots, n\}} |x_i|$$

1.1.1 Matrix norms

A matrix norm has the following properties:

(i)
$$\|\lambda A\| = |\lambda| \|A\| \ \forall \lambda \in \mathbb{R}, \ \forall A \in \mathbb{R}^{\kappa,\kappa}$$

(ii)
$$||A + B|| \le ||A|| + ||B|| \quad \forall A, B \in \mathbb{R}^{\kappa, \kappa}$$

(iii)
$$||A|| = 0 \rightarrow A = 0_n$$

(iv)
$$||AB|| \le ||A|| ||B|| \quad \forall A, B \in \mathbb{R}^{\kappa, \kappa}$$

Example 2. 1. $||A||_1 = \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$. Max column sum

2.
$$||A||_{\infty} = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|$$
. Max row sum

3.
$$\|A\|_2 = \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$$
. Also: $\sqrt{\rho(A^T A)}$, ρ is the spectrum of A . Euclidean norm

4.
$$||A||_F = (\sum_i^n \sum_j^n |a_{ij}|^2)^{1/2}$$
. Frobenius norm

1.1.2 Function norm

Function norms we have used in this course are among others:

1. $||f||_p = (\int_a^b |f(x)|^2 \omega(x) dx)^{1/p}$ where $\omega(x)$ is some weight function.

$$2. \ \|f\|_{\infty} = \max_{a \le x \le b} \left| f(x) \right|$$

1.2 Banach stuff

Definition 2 (Banach space). A Banach space is a normed space that is complete. I.e every Cauchy sequence is convergent (to an element of the space).

Theorem 1. Let $(X, \|\cdot\|)$ be a Banach space and let $U \subseteq X$ be a subset of X and $f: U \to X$ be a function. If

- (i) U is closed
- (ii) f is a contraction
- (iii) $f(U) \subseteq U$

then f has a unique fixed point $x^* \in U$, i.e $x^* = f(x^*)$. Moreover, the sequence $x_n = f(x_{n-1})$, with $x_0 \in U$ arbitrary, converges to x^* .

1.3 Inner product

Definition 3. Let V be a vector space. $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}(\mathbb{C})$ is called an inner product on V over $\mathbb{R}(\mathbb{C})$ if:

- (i) $\langle x, x \rangle \ge 0 \, \forall x \in \mathbb{R}(\mathbb{C})$
- (ii) $\langle x, x \rangle = 0 \Rightarrow x = 0$
- (iii) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \quad \forall \alpha \beta \in \mathbb{R}(\mathbb{C}), \quad \forall x, y, z \in V$
- (iv) $\langle x, y \rangle = \overline{\langle y, x \rangle}$