Lecture 2 Unemployment, Inflation, and Interest Rate

Fei Tan

Department of Economics Chaifetz School of Business Saint Louis University

Macroeconomics 201

January 21, 2025

The Road Ahead...

Measuring Unemployment

Measuring Inflation

How to Measure Unemployment?

- Bureau of Census conducts Current Population Survey (CPS) to classify people as
 - employed (N): people who have job
 - unemployed (U): people who don't have job but are actively looking for one
 - not in labor force: neither, e.g. discouraged worker
- Bureau of Labor Statistics (BLS) uses CPS data to calculate
 - labor force (L) = N + U
 - unemployment rate (u) = U / L imes 100% (series U-3)
 - participation rate = L / working-age population (civilian noninstitutional population) \times 100%

Working-Age Population

Employment status, April 2017 (source: BLS)

Broader Measure of Unemployment

- Series U-6 = U-3 + discouraged + part-time (source: BLS)
- ▶ Official U-3 is not exact measure of joblessness

Types of Unemployment

- We identify three types of unemployment
 - frictional: temporary unemployment due to process of matching workers with jobs
 - structural: longer unemployment due to mismatch b/w worker's skills/attributes and job requirements
 - cyclical: unemployment due to business cycle recession
- When cyclical unemployment drops to zero
 - economy is at full employment
 - ightharpoonup natural rate of unemployment (u_n)
 - ▶ general consensus for U.S.: b/w 4% and 5%
- ▶ Why unemployment rate never falls to zero?

U.S. Unemployment Rate

- ▶ U.S. unemployment rate, 1950-2016 (source: BLS)
- ightharpoonup u rises during recessions and falls during expansions

The Road Ahead...

Measuring Unemployment

2 Measuring Inflation

How to Measure Inflation

- ▶ Three common measures of price level
 - ► GDP deflator (broadest)
 - consumer price index (CPI): price of basket of goods and services purchased by consumer (cost of living)
 - producer price index (PPI): price received by producers of goods and services at all stages of production
- Changes in PPI signifies future movements in CPI
- ▶ Inflation rate is percentage increase in price level

$$\pi_t = \frac{P_t - P_{t-1}}{P_{t-1}} \times 100\%$$

CPI Market Basket

- ► CPI market basket, December 2016 (source: BLS)
- Housing, transportation, and food make up about 75%

Calculating CPI

	1999		2020	2021
Product	Quantity	Price	Price	Price
Eye examinations	1	\$50	\$100	\$85
Pizzas	20	\$10	\$ 15	\$14
Books	20	\$25	\$25	\$27.5

- ► Assume base year is 1999
- ► Calculate CPI for year 2020 & 2021

$$\mathsf{CPI} = \frac{\mathsf{expenditures} \; \mathsf{in} \; \mathsf{current} \; \mathsf{year}}{\mathsf{expenditures} \; \mathsf{in} \; \mathsf{base} \; \mathsf{year}} \times 100$$

Answer:
$$P_{2020} = 120$$
, $P_{2021} = 122$

▶ 2021 inflation: $\pi_{2021} = (122 - 120)/120 \times 100\% \approx 1.7\%$

Purchasing Power

Year	Nominal Average Hourly Earnings	CPI (1982-1984=100)
2020	\$19.73	230
2021 2022	\$20.14 \$20.60	233 237

- Nominal variables are values in current-year dollars
- ► Calculate real values for years 2020-2022

$$\text{real variable} = \frac{\text{nominal variable}}{\text{current-year price index}} \times 100$$

Answer:
$$W_{2020} = \$8.59$$
, $W_{2021} = \$8.65$, $W_{2022} = \$8.70$

Compare growth rates in nominal and real values

The Road Ahead...

Measuring Unemployment

Measuring Inflation

- Interest rate is cost of borrowing funds
 - nominal interest rate (i): expressed in terms of units of national currency; borrowing \$1 this year requires repaying \$(1+i) next year
 - \Rightarrow this year's <u>price</u> of one dollar relative to next year
 - real interest rate (r): expressed in terms of baskets of goods; borrowing one basket this year requires repaying (1+r) baskets next year
 - \Rightarrow this year's price of one basket relative to next year
- ightharpoonup Borrowers/lenders care about r rather than i
- ► A useful (Fisher) relation

$$r_t pprox i_t - \pi^e_{t+1}$$
 for small i_t and π^e_{t+1}

U.S. Interest Rates

- i= interest rate on 3-month U.S. Treasury bills, $\pi=$ percentage change in CPI (source: FRED)
- ex-ante versus ex-post real interest rates

Readings & Exercises

- Readings
 - ► HO: chapter 9
 - ▶ BJ: lecture 1 (sec. 2, 3, 4), lecture 5 (sec. 1), 12 (sec. 1) (supplementary)
- Exercises
 - ► HO: problem 1.7, 3.2, 4.6, 5.5, 6.6, D9.2
 - Derive Fisher relation