IS Canvas - Detecção de câncer de mama

Ana Carolina Dias Vilhena, André Fellipe Carvalho Silveira, Júlia Pimentel Miranda, Luiza Ávila Defranco Gonçalves, Stefany Gaspar Xavier França

¹Instituto de Ciências Exatas e Informática Pontifícia Universidade Católica - (PUC-MG) Belo Horizonte – MG – Brasil

1. Introdução

O câncer de mama é o tipo de câncer mais comum entre as mulheres, é causado pela multiplicação desordenada de células da mama, gerando células anormais que se multiplicam, formando um tumor.

Segundo dados do Instituto Nacional do Câncer [INCA 2021] o câncer de mama é o segundo tipo mais comum de câncer e o primeiro em letalidade, afeta prioritariamente as mulheres, também acomete homens, porém é raro, representando apenas 1% do total de casos da doença. Infelizmente ainda é crescente a taxa de mortalidade por esse tipo de câncer, como demonstrado no gráfico abaixo.

Taxas de mortalidade por câncer de mama feminina, específicas por faixas etárias, por 100.000 mulheres. Brasil, 1979 a 2019

Figura 1. Fonte: INCA

A forma mais eficiente de combate é a detecção precoce, que aumenta a possibilidade de tratamentos menos agressivos e com taxas de sucesso satisfatórias. Além do autoexame o Ministério da Saúde recomenda a mamografia de rastreamento que pode ajudar a reduzir a mortalidade por câncer de mama, mas também expõe a mulher a alguns riscos, como resultados incorretos:

- Suspeita de câncer de mama, sem que se confirme a doença (resultado falso positivo).
- Câncer existente, mas resultado normal (resultado falso negativo).

Esse trabalho tem o intuito de mostrar um projeto para melhorar a precisão do rastreamento do câncer de mama, reduzindo resultados falso positivo e falso negativo, através de um agente inteligente e *Machine Learning*.

2. IS Canvas

O quadro abaixo é referente ao IS Canvas da proposta do projeto de detecção de câncer de mama.

Ferramental de IA	Entradas	Proposiçã	o de valor	Equipe	Clientes
Um agente inteligente em software para análise de imagem e tomada de decisão Um algoritmo (Machine Learning) para calcular a probabilidade do paciente ter cancer de mama	A imagem do Raio X da paciente Idade e histórico médico dos familiares	processo de avaliação do Raio X		Cientista de Dados Engenheiro de Software Desenvolvedor de Software	Pacientes que realizaram uma mamografia
	Saídas Resultado positivo ou negativo sobre o raio x analisado Uma probabilidade irá ser calculada através do histórico familiar			Pesquisadores de câncer de mama ONG's e hospitais de combate ao câncer de mama	
Custos Equipamentos (Computador dedicado) Custos com a equipe Armazenamento de Dados em nuvem			Receitas Redução de falsos positivos e falsos negativos Diminuição do tempo de espera do resultado de uma mamografia.		

Figura 2. IS Canvas

3. Detalhamento

Nessa seção serão detalhadas todas as 9 caixas do IS Canvas.

3.1. Ferramental IA

Um agente inteligente em software para análise de imagem e tomada de decisão.

Redes neurais analisam os *pixels* das imagens cadastradas como câncer de mama, e, após treinamento, aprendem a identificá-lo nas imagens raio X.

Um algoritmo (*Machine Learning*) para calcular a probabilidade do paciente ter câncer de mama.

A partir da imagem, a rede retorna a probabilidade da imagem inserida ter apresentado câncer de mama.

3.2. Entradas

A imagem do Raio X da paciente.

A partir da imagem do raio X é possível identificar a existência ou não de nódulos.

Idade e histórico médico dos familiares.

A idade e histórico médico dos familiares são também fatores de grande importância para identificar o câncer de mama.

Mulheres mais velhas, sobretudo a partir dos 50 anos de idade, têm maior risco de desenvolver o câncer, devido o acúmulo de exposições ao longo da vida e as próprias alterações biológicas. E mulheres que possuem vários casos de câncer em parentes consanguíneos, podem ter predisposição genética e são consideradas de risco elevado para a doença.

3.3. Saídas

Resultado positivo ou negativo sobre o raio x analisado.

O paciente apresenta câncer ou não (em % de probabilidade).

Uma probabilidade irá ser calculada através do histórico familiar.

Realiza-se a combinação dos resultados anteriores e da análise do histórico familiar para produzir um veredito.

3.4. Proposição de valor

Diagnóstico do paciente.

Paciente possui a possibilidade ou não de ter câncer, a rede neural diagnostica de acordo, com maior porcentagem de certeza.

Agilizar o processo de avaliação do Raio X.

Retorno de maneira mais sucinta dos resultados de uma mamografia.

3.5. Equipe

Cientista de Dados.

Responsável pela coleta, armazenamento e o tratamento de dados.

Engenheiro de Software.

Responsável por projetar e guiar o desenvolvimento de programas, aplicativos e sistemas, de forma que atenda aos requisitos e cumpra as funções determinadas.

Desenvolvedor de Software.

Responsável pela programação de sistemas por meio da escrita de códigos digitais.

3.6. Stakeholders Chaves

Pesquisadores de câncer de mama.

Serão os que conseguirão decidir se está com uma boa acurácia.

ONG's e hospitais de combate ao câncer de mama.

Realizam o pagamento da pesquisa.

3.7. Clientes

Pacientes que realizaram uma mamografia.

Para obter os resultados e dados do paciente.

3.8. Custos

Equipamentos (Computador dedicado).

Para que a rede neural aprenda de forma eficaz, é necessário que uma grande quantidade de dados seja processado e analisado por uma grande quantidade de tempo (dias, semanas). Para isso, os computadores precisam ser de qualidade com bom armazenamento e CPU.

Custos com a equipe.

Gastos com as horas de uma equipe qualificada.

Armazenamento de Dados em nuvem.

Armazenamento dos dados necessários para a rede em um lugar seguro, além da rede em si. Compartilhamento de informações entre sedes e pesquisadores.

3.9. Receitas

Redução de falsos positivos e falsos negativos.

Resultado falso positivo: Suspeita de câncer de mama, sem que se confirme a doença. **Resultado falso negativo:** Câncer existente, mas resultado normal. Estudos mostraram que o sistema de IA pode identificar câncer com um grau de precisão semelhante aos radiologistas. [Bromberg 2021]

Diminuição do tempo de espera do resultado de uma mamografia.

Sistema mais rápido que o atual. Economiza tempo do tratamento.

Referências

```
[Bromberg 2021] Bromberg, S. (2021). Estudo diz que sistema do google pode melhorar a detecção do câncer de mama. "https://silviobromberg.com.br/inteligencia-artificial-do-google-pode-melhorar-deteccao-cancer-mama/#:~:text=Um%20sistema%20de%20intelig%C3%AAncia%20artificial,Unidos%20e%20do%20Reino%20Unido". (accessed: 12.06.2021).
```

```
[INCA 2021] INCA (2021). Câncer de mama. "https://www.inca.gov.br/tipos-de-cancer/cancer-de-mama#:~:text=0%20c%C3%A2ncer%20de%20mama%20%C3%A9,pode%20evoluir%20de%20diferentes%20formas.". (accessed: 10.06.2021).
```