Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem Examination May-2024

CE3CO24 Hydraulic Engineering

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of ne

			ll instead of only a, b, c or d. Assume suitable data	i
ecessa	ary. No	otations and symbols h	ave their usual meaning.	
Q.1	i.	The Froude's number	r for a flow in a channel section is less than 1.	1
		What type of flow is	t?	
		(a) SubCritical	(b) Critical	
		(c) Supercritical	(d) Tranquil	
	ii.	Calculate the mean h	ydraulic depth of a channel having top width of	1
		6m and cross-section	al area of 30m^2 :	
		(a) 4 m (b) 6 m	(c) 5 m $(d) 7 m$	
	iii.	For a channel to be	economical which of the following parameters	1
		should be minimum-		
		• •	(b) Wetted area	
		* *	(d) Hydraulic depth	
	iv.		nt of water measured with respect to the datum is	1
		called as		
		(a) Total energy	(b) Specific energy	
		(c) Velocity head	(d) Datum head	
	v.	Hydraulic jump depe	-	1
		(a) Temperature	(b) Pressure	
		•	(d) Volumetric changes	
	vi.			1
		(a) Negative surge	(b) Positive surge	
		` '	(d) Accelerated surge	_
	vii.			1
		(a) 1.5 (b) 2.5		_
	viii.	Major external forces	_	1
		(a) Ice pressure	(b) Uplift pressure	
		(c) Wind pressure	(d) Water pressure	

P.T.O.

[2]

	ix.	The central core of the zoned embankment type earth dam- (a) Checks the seepage (b) Prevents piping (c) Gives stability to the central impervious fills (d) Distribute the load over a large area	1
	х.	Stone pitching or rip-rap is generally provided to avoid (a) Over-topping (b) Erosion of U/s and d/s face (c) Cacking due to frost action (d) Gully formation	1
Q.2	i. ii. iii.	Write down the comparison between open channel flow and pipe flow. Explain the classification of open channel flow. Derive an expression for Chezy's Formula.	2 3 5
OR	iv.	Derive all the conditions for most economical rectangular channel section.	5
Q.3	i. ii.	Define critical depth and critical velocity. What is specific energy curve? Derive an expression for specific energy curve with diagram.	8
OR	iii.	Derive the equation for gradually varied flow for a rectangular channel section.	8
Q.4	i. ii.	Explain hydraulic jump with its types. Derive an expression for hydraulic jump in rectangular channel section.	3 7
OR	iii.	What is meant by energy dissipaters? Explain energy dissipaters for various cases with basic principle of energy dissipater.	7
Q.5	i. ii. iii.	Define gravity dam. Explain various causes of failure of gravity dam. Explain various forces acting on gravity dam.	2 3 5
OR	iv.	Design the practical profile of a gravity dam of stone masonry given the following data- R.L. of base of dam=1450m. R.L. of FRL=1480.5m Specific gravity of the masonry=2.4 Safe compressive stress for masonry=1200 kN/m² Height of wave=1m.	5

		[3]	
Q.6	i.	Define earthen dam with diagram.	2
	ii.	Explain the type of earthen dam.	3
	iii.	Explain the causes of failure of earthen dam.	5
OR	iv.	For the earth dam of homogeneous section with a horizontal filter, draw the top flow line. If the coefficient of permeability of the soil material used in the dam is $5*10^{-4}$ cm/sec. Find the seepage flow per unit length of dam.	5

[4]

Marking Scheme

Hydraulic Engineering (T) - CE3CO24(T)

Q.1	i)	The Froude's number for a flow in a channel section is less than 1. What type of flow is it? a)SubCritical	1
	ii)	Calculate the mean hydraulic depth of a channel having top width of 6m and cross-sectional area of 30m2. C)5m	1
	iii)	For a channel to be economic which of the following parameters should be minimum. A) Wetted perimeter	1
	iv)	Energy per unit weight of water measured with respect to the datum is called as b) Specific energy	1
	v)	Hydraulic jump depends upon	1
	vi)	C) Initial fluid speed When the hydraulic jump is in a moving form it is called B) Positive surge	1
	vii)	Factor of safety against overturning should not be less than (A) 1.5	1
	viii)	Major external forces acting on dam (D) water pressure	1
	ix)	The central core of the zoned embankment type earth dam (A) checks the seepage	1
	x)	Stone pitching or riprap is generally provided to avoid	1
		(B) erosion of U/s and d/s face	
Q.2	i.	Comparison between open channel flow and pipe flow? Each type give 1 Mark*2=2 Marks	2
	ii.	Explain the classification of open channel flow?	3
	iii.	Each classification give 1 Mark *3=3Marks Derive an expression For Chezy's Formula? 4 Marks	5
		Diagram 1 Marks	
OR	iv.	First conditions 2.5 Marks	5
		Second condition 2.5Marks	

Q.3	i.	Critical depth 1 Mark	2
	ii.	Critical velocity 1 Mark What is Specific Energy Curve 3 Mar	
OR	iii.	Derivation 5 Mar Derivation for gradually varied flow Derivation 6 Mark Daigram 2 Mark	8
Q.4	i.	Hydraulic Jump 1 Mar Types 2 Mar	k 3
OP	ii. 	Expression for hydraulic jump Diagram 6 Mark 1 Mar	as 7 k
OR	iii.	What is meant by energy dissipaters? 2 Mar Explain energy dissipaters for various cases with basic principle energy dissipater? Each case one Mark=5*1Mark=5Marks	of
Q.5	i. ii.	Define Gravity Dam Each causes of failure of Gravity Dam gives 1 Mark=1*3=3Mark	3
	iii.	Derive an expression for elementary profile of gravity dam Derivation 4 Mark Diagram 1 Mark	5
OR	iv	Check for low gravity dam or high gravity dam Calculation of top width Calculation of u/s face Calculation of base width 1 Mark	5
Q.6	i.	Define Earthen dam 1 Mark Diagram 1 Mark Each two of Forther dam 1 Marks each 1*2 2 Mark	ks
	ii. iii.	Each type of Earthen dam Each causes of failure of Earthen dam 1 Marks each=1*3=3Mar 1 Marks each=1*5=5 Mark	5
OR	iv.	For the earth dam of homogeneous sction section with a horizon filter, draw the top flow linbe. If the coefficient of permeability the soil material used in the dam is 5*10^-4, Find the seepage floper unit length of dam. for formula 2 Mark for correct ans 3 Mark	tal 5 of ow

P.T.O.

[2]