

Lecture 11

Syntax Analysis

Awanish Pandey

Department of Computer Science and Engineering Indian Institute of Technology Roorkee

February 12, 2025

Parser State

- Parser State
- Agumentation of the Grammar

- Parser State
- Agumentation of the Grammar
- LR(0) items

- Parser State
- Agumentation of the Grammar
- LR(0) items
- Start State

- Parser State
- Agumentation of the Grammar
- LR(0) items
- Start State
- Closure

- Parser State
- Agumentation of the Grammar
- LR(0) items
- Start State
- Closure
- Action

- Parser State
- Agumentation of the Grammar
- LR(0) items
- Start State
- Closure
- Action
- Goto

- Parser State
- Agumentation of the Grammar
- LR(0) items
- Start State
- Closure
- Action
- Goto
- Parse Table creation

Applying symbols in a state

Applying symbols in a state

 Create new state and include all the items that have appropriate input symbol just after the "."

Applying symbols in a state

- Create new state and include all the items that have appropriate input symbol just after the "."
- Advance "." in those items and take closure

ullet Goto(I,X), where I is a set of items and X is a grammar symbol

- Goto(I, X), where I is a set of items and X is a grammar symbol
 - ▶ is closure of set of item $A \rightarrow \alpha X.\beta$

- Goto(I, X), where I is a set of items and X is a grammar symbol
 - ▶ is closure of set of item $A \rightarrow \alpha X.\beta$
 - ▶ such that $A \rightarrow \alpha.X\beta$ is in I

- Goto(I, X), where I is a set of items and X is a grammar symbol
 - ▶ is closure of set of item $A \rightarrow \alpha X.\beta$
 - such that $A \to \alpha.X\beta$ is in I
- Intuitively if I is a set of items for some valid prefix α then goto(I,X) is set of valid items for prefix αX

- Goto(I, X), where I is a set of items and X is a grammar symbol
 - ▶ is closure of set of item $A \rightarrow \alpha X.\beta$
 - ▶ such that $A \rightarrow \alpha.X\beta$ is in I
- Intuitively if I is a set of items for some valid prefix α then goto(I, X) is set of valid items for prefix αX
- If I is $E' \rightarrow E$. $E \rightarrow E \cdot + T$ then goto(I,+) is $E \rightarrow E + \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow id$

Sets of items

- ullet C : Collection of sets of LR(0) items for grammar G'
- $C = closure (S' \rightarrow .S)$ repeat

until no more additions

```
for each set of items I in C
    and each grammar symbol X
    such that goto (I,X) is not empty and not in C
    ADD goto(I,X) to C
```

initially, add start state (set of items corresponding to the start state) and then add other set of items (states) by using GOTO operation.

• Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.

- Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.
- If A o lpha.aeta is in I_i and $goto(I_i,a) = I_j$ then action[i,a] = shift j

- Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.
- If $A \to \alpha.a\beta$ is in I_i and $goto(I_i, a) = I_i$ then action[i,a] = shift j
- If $A \to \alpha$. is in I_i then action[i,a] = reduce $A \to \alpha$ for all a in follow(A)

- Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.
- If $A \to \alpha.a\beta$ is in I_i and $goto(I_i,a) = I_j$ then action[i,a] = shift j
- If $A \to \alpha$. is in I_i then action[i,a] = reduce $A \to \alpha$ for all a in follow(A)
- If $S' \to S$. is in I_i then action[i,\$] = accept

- Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.
- If $A \to \alpha.a\beta$ is in I_i and $goto(I_i, a) = I_i$ then action[i,a] = shift j
- If $A \to \alpha$. is in I_i then action[i,a] = reduce $A \to \alpha$ for all a in follow(A)
- If $S' \to S$. is in I_i then action[i,\$] = accept
- If goto(I_i, A) = I_j
 then goto[i, A] = j for all non terminals A

- Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.
- If $A \to \alpha.a\beta$ is in I_i and $goto(I_i, a) = I_i$ then action[i,a] = shift j
- If $A \to \alpha$. is in I_i then action[i,a] = reduce $A \to \alpha$ for all a in follow(A)
- If $S' \to S$. is in I_i then action[i,\$] = accept
- If goto(I_i, A) = I_j
 then goto[i, A] = j for all non terminals A
- All entries not defined are errors

- Construct $C = I_0, \dots, I_n$ the collection of sets of LR(0) items.
- If A o lpha.aeta is in I_i and $goto(I_i,a) = I_j$ then action[i,a] = shift j
- If $A \to \alpha$. is in I_i then action[i,a] = reduce $A \to \alpha$ for all a in follow(A)
- If $S' \to S$. is in I_i then action[i,\$] = accept
- If goto(I_i, A) = I_j
 then goto[i, A] = j for all non terminals A
- All entries not defined are errors

SLR is too weak to handle most languages!

parse table creation for SLR(1)

Homework

• Create SLR Parse table for the following grammar (homework)

 $S' \to S$

 $S \rightarrow L = R$

 $S \rightarrow R$

 $L \rightarrow *R$

 $L \rightarrow id$

 $R \rightarrow L$

Parse Table

SLR parse table for the grammar

	=	*	id	\$	S	L	R
0		s4	<i>s</i> 5		1	2	3
1				acc			
2	s6,r6			r6			
3				r3			
4		s4	<i>s</i> 5			8	7
5	r5			r5			
6		s4	<i>s</i> 5			8	9
7	r4			r4			
8	r6			r6			
9				r2			

The table has multiple entries in action[2,=]

• No sentential form of this grammar can start with $R = \cdots$

- No sentential form of this grammar can start with $R = \cdots$
- However, the reduce action in action[2,=] generates a sentential form starting with $R=\cdots$

- No sentential form of this grammar can start with $R = \cdots$
- ullet However, the reduce action in action[2,=] generates a sentential form starting with R= \cdots
- Therefore, the reduce action is incorrect

- No sentential form of this grammar can start with $R = \cdots$
- However, the reduce action in action[2,=] generates a sentential form starting with $R=\cdots$
- Therefore, the reduce action is incorrect
- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \to \alpha$ if I_i contains $[A \to \alpha]$ and "a" is in follow(A)

- No sentential form of this grammar can start with $R = \cdots$
- However, the reduce action in action[2,=] generates a sentential form starting with $R=\cdots$
- Therefore, the reduce action is incorrect
- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \to \alpha$ if I_i contains $[A \to \alpha]$ and "a" is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta\alpha$ on the stack may be such that $\beta\alpha$ can not be followed by symbol "a" in any right sentential form

- No sentential form of this grammar can start with $R = \cdots$
- ullet However, the reduce action in action[2,=] generates a sentential form starting with R= \cdots
- Therefore, the reduce action is incorrect
- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \to \alpha$ if I_i contains $[A \to \alpha]$ and "a" is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta\alpha$ on the stack may be such that $\beta\alpha$ can not be followed by symbol "a" in any right sentential form
- ullet Thus, the reduction by the rule $A \to \alpha$ on symbol "a" is invalid

Both SR and RR conflict can occur in SLR parsing.

- No sentential form of this grammar can start with $R = \cdots$
- ullet However, the reduce action in action[2,=] generates a sentential form starting with R= \cdots
- Therefore, the reduce action is incorrect
- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \to \alpha$ if I_i contains $[A \to \alpha]$ and "a" is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta\alpha$ on the stack may be such that $\beta\alpha$ can not be followed by symbol "a" in any right sentential form
- ullet Thus, the reduction by the rule A
 ightarrow lpha on symbol "a" is invalid
- SLR parsers cannot remember the left context

ullet Carry extra information in the state so that wrong reductions by A o lpha will be ruled out

- ullet Carry extra information in the state so that wrong reductions by A o lpha will be ruled out
- Redefine LR items to include a terminal symbol as a second component (look ahead symbol).

- ullet Carry extra information in the state so that wrong reductions by A o lpha will be ruled out
- Redefine LR items to include a terminal symbol as a second component (look ahead symbol).
- The general form of the item becomes $[A \to \alpha.\beta, a]$ which is called LR(1) item.

- ullet Carry extra information in the state so that wrong reductions by A o lpha will be ruled out
- Redefine LR items to include a terminal symbol as a second component (look ahead symbol).
- The general form of the item becomes $[A \to \alpha.\beta, a]$ which is called LR(1) item.
- Item $[A \to \alpha., a]$ calls for reduction only if next input is a. The set of symbols "a"s will be a subset of Follow(A)

Closure(I)

```
repeat for each item [A \to \alpha.B\beta, a] in I for each production B \to \gamma in G' and for each terminal b in First(\beta a) add item [B \to .\gamma, b] to I until no more additions to I
```

follow (B) is made first (beta a) follow (B) may contain follow (A)

• Consider the following grammar

$$S' \rightarrow S$$

$$S \rightarrow CC$$

$$C \rightarrow cC|d$$

• Consider the following grammar

$$S' \to S$$

$$S \to CC$$

$$C \to cC|d$$

• Compute closure(I) where $I = [S' \rightarrow .S, \$]$ $S \rightarrow .S, \$$

• Consider the following grammar

$$S' \to S$$

$$S \to CC$$

$$C \to cC|d$$

• Compute closure(I) where $I = [S' \rightarrow .S, $]$ $S \rightarrow .S, $$ $S \rightarrow .CC, $$

• Consider the following grammar

$$S' \rightarrow S$$

 $S \rightarrow CC$
 $C \rightarrow cC|d$

• Compute closure(I) where $I = [S' \rightarrow .S, \$]$

$$S \rightarrow .S,$$
 \$ $S \rightarrow .CC,$ \$ $C \rightarrow .cC,$ \$

• Consider the following grammar

$$S' \to S$$
$$S \to CC$$

$$C \rightarrow cC|d$$

• Compute closure(I) where $I = [S' \rightarrow .S, \$]$

$$S \rightarrow .S$$
, \$

$$S \rightarrow .CC$$
, \$

$$C \rightarrow .cC, \quad c$$

$$C \rightarrow .cC$$
, d

• Consider the following grammar

$$S' \rightarrow S$$

 $S \rightarrow CC$
 $C \rightarrow cC|d$

• Compute closure(I) where $I = [S' \rightarrow .S, \$]$

$$S \rightarrow .S$$
, \$
 $S \rightarrow .CC$, \$
 $C \rightarrow .cC$, c
 $C \rightarrow .cC$, d

 $C \rightarrow .d$, c

Consider the following grammar

$$S' \rightarrow S$$

 $S \rightarrow CC$
 $C \rightarrow cC|d$

• Compute closure(I) where $I = [S' \rightarrow .S, \$]$

$$S \rightarrow .S$$
, \$
 $S \rightarrow .CC$, \$
 $C \rightarrow .cC$, c
 $C \rightarrow .cC$, d
 $C \rightarrow .d$, c

$$C \setminus d$$

