Final

MAT-2910: Analyse Numérique pour ingénieur

Hiver 2018

- L'examen est noté sur 100 points et compte pour 30.0% de la note finale.
- Donner tous les développements et calculs. Pour recevoir des points, toute réponse doit être convenablement JUSTIFIÉE.
- Seules les calculatrices avec l'auto-collant de la Faculté sont autorisées.
- Répondre aux questions sur le questionnaire. Utiliser le verso des feuilles si nécessaire.
- Un aide mémoire se retrouve à la fin du questionnaire, vous pouvez le détacher.
- N'oubliez pas d'identifier chaque page.

Je suis bien l'étudiant dont le nom et le numéro de dossier sont écrits ci-dessous.				
J'ai lu et compris les directives et je m'engage à les respecter.				
Nom:				
Prénom:				
Matricule:				
Signature:				

À remplir par le(s) correcteur(s)

Q1 (/15)	Q2 (/20)	Q3 (/10)	Q4 (/10)	Q5 (/20)	Q6 (/15)	Q7 (/10)	Total

Pour l'approximation de $\int_0^1 f(x)dx$, on considère la formule de quadrature suivante:

$$Q(f) = \alpha f(0) + \beta f(1) + \gamma f'(0)$$

- a) Déterminer les coefficients réels α, β et γ tels que la formule soit exacte pour les polynômes de degré 2 (et moins).
- b) Cette formule de quadrature est-elle exacte pour les polynômes de degré 3 ?

Le but de cet exercice est d'obtenir une approximation de

$$I = \int_0^1 \frac{1}{1 + x^6} dx \tag{1}$$

- a) Déterminer une approximation de I en utilisant la quadrature de Gauss-Legendre à 2 points.
- b) Déterminer une approximation de I en utilisant la formule des trapèzes composée, avec 5 points.

c) Sachant qu'on a obtenu l'approximation suivante avec la méthode des trapèzes et $h=\frac{1}{8},$

$$\int_0^1 \frac{1}{1+x^6} dx \approx 0.90181$$

déterminer une nouvelle approximation d'ordre au moins 3.

d) Sachant que $|f''(x)| \le 5, \forall x \in [0,1]$, déterminer le nombre de points d'intégration nécessaire pour garantir une erreur inférieure à 10^{-5} avec la méthode des trapèzes.

On considère la fonction suivante définie sur [0, 7]:

On veut interpoler cette fonction à l'aide d'un polynôme passant par les 4 points x_0 , x_1 , x_2 et x_3 .

- a) Déterminer le polynôme de degré minimal qui interpole la fonction précédente aux points x_0 , x_1 , x_2 et x_3 .
- b) Ajouter 3 points sur la figure précédente (les dessiner par des croix) qui permettraient une meilleure interpolation.

suite de la question 3, page suivante...

c) On décide d'interpoler à l'aide de 12 points sur [-1,1] la fonction f tracée (en ligne pleine) sur le graphique ci-dessous. Le polynôme d'interpolation est tracé en pointillé. Expliquez brièvement les oscillations observées ? (on pourra utiliser l'expression de l'erreur d'interpolation).

d) Quelle solution proposeriez-vous pour supprimer ces oscillations tout en interpolant f de façon précise ?

- a) On considère les points (0,1) et (1,3). Déterminer le polynôme d'interpolation de Lagrange.
- b) On interpole à l'aide d'une spline cubique naturelle les points (-1,1), (0,2) et (1,-1):

$$S(x) = \begin{cases} S_0(x) = a + b(x+1) + c(x+1)^2 - (x+1)^3 \text{ pour } -1 \le x \le 0\\ S_1(x) = 2 - x - 3x^2 + x^3 \text{ pour } 0 \le x \le 1 \end{cases}$$

Déterminer a, b et c.

a) Déterminer une approximation de y(2) avec la méthode d'Euler et h=0.5 sachant que y est la solution de l'équation différentielle

$$y'(t) + y(t) - t^2 = 0,$$
 $y(1) = 2.$

b) Déterminer une approximation de y(1) et y'(1) avec la méthode d'Euler et h=0.5 sachant que y est la solution de

$$y''(t) = -y(t) + t^2, \quad y(0) = 2, \quad y'(0) = 3.$$

On cherche à interpoler une fonction f inconnue par un polynôme p, dont on connaît les valeurs et les valeurs des dérivées en deux points, 0 et 1. On cherche donc p tel que:

$$p(0) = f(0) = 1,$$
 $p'(0) = f'(0) = 2$
 $p(1) = f(1) = 3,$ $p'(1) = f'(1) = -1$ (2)

On le cherche de la forme :

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

- a) Justifier le degré du polynôme choisi.
- b) Écrire les conditions (2) portant sur le polynôme p sous forme d'un système linéaire. À la manière de la méthode de Vandermonde vue en cours on trouvera une matrice A telle que:

$$A \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ -1 \end{pmatrix}$$

suite de la question 6, page suivante...

- c) On peut montrer que det(A) = -1. Que pouvez-vous en conclure?
- d) On introduit les 4 polynômes suivants:

$$p_1(x) = 2x^3 - 3x^2 + 1$$
 tel que $p_1(0) = 1$, $p_1(1) = 0$, $p'_1(0) = p'_1(1) = 0$
 $p_2(x) = 3x^2 - 2x^3$ tel que $p_2(0) = 0$, $p_2(1) = 1$, $p'_2(0) = p'_2(1) = 0$

et

$$\tilde{p}_1(x) = x^3 - 2x^2 + x$$
 tel que $\tilde{p}_1(0) = \tilde{p}_1(1) = 0$, $\tilde{p}'_1(0) = 1$, $\tilde{p}'_1(1) = 0$
 $\tilde{p}_2(x) = x^3 - x^2$ tel que $\tilde{p}_2(0) = \tilde{p}_2(1) = 0$, $\tilde{p}'_2(0) = 0$, $\tilde{p}'_2(1) = 1$

Construire le polynôme d'interpolation p vérifiant (2) à partir des polynômes p_1 , p_2 , \tilde{p}_1 et \tilde{p}_2 (ces polynômes joueront un rôle similaire aux polynômes L_i dans l'interpolation de Lagrange).

On considère le programme Matlab suivant:

```
function [t, y] = methode(f, t0, y0, h, nmax)
1
 ^{2}
3
        nbeq = length(y0);
4
        y0 = y0';
        y = zeros(nmax, nbeq);
5
6
        n = 1;
7
        t(1) = AAA;
8
        y(1,:) = y0';
9
        BBB(n \le nmax),
           fy0 = f(t(n), y0);
10
           yint = y0 + h*fy0;
11
           t(n+1) = t(n) + CCC;
12
           fyint = f(t(n+1), yint);
13
           y0 = y0 + h/2*(fy0 + fyint);
14
15
           y(n+1,:) = y0';
16
           n\ =\ n\!+\!1;
17
        end
```

- a) Quelle est cette méthode numérique?
- b) Dans un script séparé, on souhaite utiliser notre fonction avec f(t, y(t)) = t + y(t) (en matlab f=Q(t,y) t+y) avec pour condition initiale y(0) = 1, un pas de temps de 0.1, et en faisant au plus 50 itérations. Donner un exemple d'appel de la fonction methode dans le script.

c) Par quoi doit-on remplacer chacune des triples lettres? Choisissez parmi les 3 options proposées en encerclant votre choix.

AAA: 1) 0 2) t0 3) 1 **BBB**: 1) while 2) for 3) do **CCC**: 1) 1 2) n 3) h

Aide-mémoire MAT-2910

Chapitre 5

• Différences divisées: $f[x_i] = f(x_i)$,

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}, \quad f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{(x_{i+2} - x_i)}, \quad \text{etc.}$$

• Erreur d'interpolation:

$$E_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n) \text{ pour } \xi(x) \in]x_0, x_n[$$

Chapitre 6

Dérivée première:

Avant	f'(x)	_	$\frac{f(x+h) - f(x)}{h} + O(h)$		
d'ordre 1	$\int \int dx$	_	n		
Arrière	f'(x) =		$\frac{f(x) - f(x - h)}{h} + O(h)$		
d'ordre 1			h		
Avant	f'(x) =		$= \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h)$		
d'ordre 2			$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
Centrée	f'(x)	f(x+h) - f(x+h)	$\frac{f(x+h)-f(x-h)}{2}+O(h^2)$		
d'ordre 2	$\int f'(x) =$		$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
Arrière	f'(x)		$\frac{3f(x) - 4f(x-h) + f(x-2h)}{2h} + O(h^2)$		
d'ordre 2	$\int f'(x)$	_	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		

Dérivées supérieure:

Arrière d'ordre 1	f''(x)	=	$\frac{f(x-2h) - 2f(x-h) + f(x)}{h^2} + O(h)$
Avant d'ordre 1	f''(x)	=	$\frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h)$
Centrée d'ordre 2	f''(x)	=	$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$

- Extrapolation de Richardson: $Q_{exa} = \frac{2^n Q_{app}(\frac{h}{2}) Q_{app}(h)}{(2^n 1)} + O(h^{n+1})$
- Formule des trapèzes:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left(f(x_0) + 2 \left[f(x_1) + \dots + f(x_{n-1}) \right] + f(x_n) \right) - \frac{(b-a)}{12} f''(\eta) h^2$$

• Formule de Simpson 1/3:

$$\int_{a}^{b} f(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 4f(x_{2n-3}) + 2f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n}) - \frac{(b-a)}{180}f''''(\eta)h^4$$

• Formule de Simpson 3/8:

$$\int_{a}^{b} f(x)dx = \frac{3h}{8}(f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + \cdots + 2f(x_{3n-3}) + 3f(x_{3n-2}) + 3f(x_{3n-1}) + f(x_{3n}) - \frac{(b-a)f''''(\eta)}{80}h^4$$

• Intégration de Gauss (voir plus bas pour les w_i et t_i):

$$\int_{a}^{b} f(x)dx = \frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{(b-a)t + (a+b)}{2}\right) dt = \frac{(b-a)}{2} \int_{-1}^{1} g(t)dt \simeq \frac{(b-a)}{2} \sum_{i=1}^{n} w_{i}g(t_{i})$$

Table des valeurs des points et des poids pour Gauss-Legendre à n points:

n	t_i	w_i		
1	0	2		
2	-0.57735	1		
	0.57735	1		
3	-0.77460	0.55556		
	0	0.88889		
	0.77460	0.55556		
4	-0.86114	0.34785		
	-0.33998	0.65215		
	0.33998	0.65215		
	0.86114	0.34785		
5	-0.90618	0.23693		
	-0.53847	0.47863		
	0	0.56889		
	0.53847	0.47863		
	0.90618	0.23693		

Chapitre 7

$$\begin{cases} y'(t) = f(t, y), \\ y(t_0) = y_0 \end{cases}$$

• Taylor (ordre 2):
$$y_{n+1} = y_n + hf(t_n, y_n) + \frac{h^2}{2} \left(\frac{\partial f(t_n, y_n)}{\partial t} + \frac{\partial f(t_n, y_n)}{\partial y} f(t_n, y_n) \right)$$

• Euler modifiée (ordre 2): $\hat{y} = y_n + hf(t_n, y_n)$

$$y_{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_n + h, \hat{y}))$$

• Point milieu (ordre 2): $k_1 = hf(t_n, y_n)$

$$y_{n+1} = y_n + hf\left(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

• Runge-Kutta d'ordre 4:

$$k_{1} = hf(t_{n}, y_{n})$$

$$k_{2} = hf(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2})$$

$$k_{3} = hf(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2})$$

$$k_{4} = hf(t_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$