

Apresentação do Projeto Dirigido

Um sistema para auxiliar na aprendizagem da disciplina Linguagens Formais e Autômatos

Rafael Cardoso da Silva 21048012

A Disciplina

MCTA015-13 - Linguagens Formais e Autômatos (3-1-4)

8º quadrimestre							
MCTA004-13 - Arquitetura de Computadores	MCTA002-13 - Algoritmos e Estruturas de Dados II	MCTA027-13 - Teoria dos Grafos	MCTA005-13 - Banco de Dados	MCTAO14-13 - Inteligência Artificial			
9º quadrimestre							
MCTA022-13 - Redes de Computadores	MCTA026-13 - Sistemas Operacionais	MCTA015-13 - Linguagens Formais e Autômata	MCTA010-13 - Engenharia de <i>Software</i>	BCS0002-15 - Projeto Dirigido	Livre		
10° quadrimestre							
MCTA019-13 - Projeto de Graduação em Computação I	MCTA025-13 - Sistemas Distribuídos	MCTA007-13 - Compiladores	MCTA016-13 - Paradigmas de Programação	Opção limitada			

Fonte: bcc.ufabc.edu.br/grade-curricular/estrutura-da-grade.html

Ementa:

- Conceitos básicos.
- Linguagens regulares:
 - Autômatos determinísticos
 - Autômatos não-determinísticos
 - Expressões regulares.
- Linguagens livres de contexto:
 - Gramática
 - Autômatos a pilha.
- Linguagens recursivamente enumeráveis:
 - Máquinas de Turing determinísticas e não-determinísticas.
- •

Autômato Finito Determinístico

Definido por: $M = (Q, \Sigma, \delta, s, F)$

- conjunto n\u00e3o vazio de estados Q;
- um alfabeto Σ;
- um estado inicial s ∈ Q;
- um conjunto de estados de aceitação F ⊆ Q;
- uma função de transição δ : Q \times $\Sigma \rightarrow$ Q.

Autômato Finito Determinístico

$$\widehat{\delta}$$
: $\mathbf{Q} \times \mathbf{\Sigma}^* \to \mathbf{Q}$

- i. $\hat{\delta}(q, \varepsilon) = q$ para todo estado $q \in Q$;
- ii. $\hat{\delta}(q, \sigma) = \delta(q, \sigma)$ para todo estado $q \in Q$ e símbolo $\sigma \in \Sigma$;
- iii. $\hat{\delta}(q, \sigma_1 \cdot \cdot \cdot \sigma_k) = \delta(\hat{\delta}(q, \sigma_1 \cdot \cdot \cdot \sigma_{k-1}), \sigma_k)$ para todo estado $q \in Q$ e símbolos $\sigma_1, \ldots, \sigma_k \in \Sigma$.

Autômato Finito Determinístico

 A linguagem reconhecida por um autômato é o conjunto de palavras que são aceitas por esse autômato, ou seja, é definida pelo conjunto:

L(autômato) =
$$\{w \in \Sigma^* : \hat{\delta}(s, w) \in F\}$$

Exemplo M₁

 $L(M_1) = \{ w \in \Sigma^* : w \text{ tem número par de símbolos } a \}.$

•
$$Q = \{S_1, S_2\}$$

•
$$\Sigma = \{a, b\}$$

- $s = S_1$
- $F = \{S_1\}$
- δ a b $S_1 S_2 S_1 S_2 S_2 S_1 S_2 S_1 S_2$

Figura 1: Autômato M₁.

Outro Exemplo

Figura 2: Autômato M₂.

São Equivalentes!

Figura 3: Autômato M_1 a esquerda e Autômato M_2 a direita.

O PROBLEMA

Decidir se dois autômatos finitos determinísticos reconhecem a mesma linguagem.

A Solução

- É um problema bem resolvido!
- dois estados q₁ e q₂ são equivalentes se, para toda palavra w ∈ Σ* vale:

$$\hat{\delta}$$
 (q₁, w) \in F \iff $\hat{\delta}$ (q₂, w) \in F

UFABC Métodos

- Esse problema está intimamente relacionado com o problema de minimização de AFDs
- Os primeiros algoritmos desenvolvidos:
 - (HUFFMAN, 1954)
 - (MOORE, 1956)
- Complexidade O(n²)

- O algoritmo mais eficiente conhecido para minimização de autômatos executa em tempo $O(n \log n)$ (HOPCROFT, 1971).
- Posteriormente Hopcroft e Karp desenvolveram um algoritmo linear para testar a equivalência de autômatos (HOPCROFT; KARP, 1971).

O Sistema

Interface

Figura 4: FSMdesigner desenvolvido por Evan Wallace.

Feedback

- Correto
- Incorreto
 - Palavra que os distinguiram
- Salvo com Rascunho

Objetivos e Metodologia

- Estudar e implementar o algoritmo de Moore para minimização e equivalência de AFDs (MOORE, 1956);
- Estudar e implementar o algoritmo de Hopcroft e Karp para testar a equivalência de AFDs (HOPCROFT; KARP, 1971);
- Desenvolvimento do sistema de apoio a aprendizagem da disciplina Linguagens Formais e Autômatos;
- Reuniões semanais com o orientador, afim de acompanhar o progresso do desenvolvimento do sistema e esclarecer eventuais dúvidas.

UFABC

Cronograma

- 1. Leitura da bibliografia (capítulos de livros e artigos citados).
- 2. Implementação dos algoritmos em C++.
- 3. Adequação do FSM Designer às necessidades deste projeto.
- 4. Elaboração do relatório parcial.
- 5. Desenvolvimento do sistema.
 - 5.1. Levantamento de requisitos, análise e projeto do sistema.
 - 5.2. Implementação do sistema.
- 6. Confecção dos exercícios no sistema.
- 7. Aplicação numa turma experimental.
- 8. Elaboração do relatório final.

Cronograma

Tabela 1: Cronograma.

	ago	set	out	nov	dez	jan	fev	mar	abr	mai	jun	jul
1	X	X	X	X	X	X	X					
2	X	X	X	X								
3				X	X							
4					X	X	X					
5						X	X	x	X	X		
5.1						X						
5.2							X	x	X	X		
6									X	X		
7										X	X	x
8									X	X	X	x

Orçamento

Tabela 2: Orçamento para a execução deste projeto.

CUSTEIO					
Serviços de Terceiro					
(5 meses) Hospedagem do Site R\$ 74,50 (R\$ 14,90* cada mês					
(1 ano) Registro de Domínio	R\$ 49,90*				
TOTAL	R\$ 124,40				

^{*} valores obtidos com base nos pacotes oferecidos no site da LocaWeb1 .

¹ Acessado dia 29/10/2016, disponível em http://www.locaweb.com.br/hospedagem-de-sites/

Referências

SIPSER, M. Introduction to the Theory of Computation. [S.I.]: Cengage Learning, 2012.

HUFFMAN, D. A. The synthesis of sequential switching circuits. I, II. J. Franklin Inst., v. 257, p. 161–190, 275–303, 1954. ISSN 0016-0032.

MOORE, E. F. Gedanken-experiments on sequential machines. In: Automata studies. [S.l.]: Princeton University Press, Princeton, N. J., 1956, (Annals of mathematics studies, no. 34). p. 129–153.

HOPCROFT, J. An n log n algorithm for minimizing states in a finite automaton. In: Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971). [S.I.]: Academic Press, New York, 1971. p. 189–196.

HOPCROFT, J. E.; KARP, R. M. A linear time algorithm for testing equivalence of finite automata. Technical report of Cornell University, p. 71–114, 1971.

WALLACE, E. Finite State Machine Designer. 2010. http://madebyevan.com/fsm/. [Online; acessado 29 de outubro de 2016].

OBRIGADO PELA ATENÇÃO