

Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback

Mingrui Zhang¹, Lin Chen¹, Hamed Hassani² and Amin Karbasi¹

¹Yale University and ²University of Pennsylvania

1. Submodular Functions

Submodularity is an intuitive diminishing returns property: a discrete set function $f: 2^V \to \mathbb{R}_+$ is **submodular** if for all sets $A \subseteq B \subseteq V$ and $x \notin B$, we have

$$f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$$
$$f(A \cup \{x\}) - f(A) \ge f(A \cup \{x\}) - f(A) \ge f(A \cup \{x\}) - f(A \cup \{x\})$$

Submodular function f is monotone if for all $A\subseteq B$: $f(A)\leq f(B)$

Continuous analogue: a differentiable function $F: \mathcal{X} \to \mathbb{R}_{\geq 0}$ defined on a box $\mathcal{X} \triangleq \prod_{i=1}^d \mathcal{X}_i$, where each \mathcal{X}_i is a closed interval of $\mathbb{R}_{\geq 0}$. We say that F is Continuous DR-submodular [1] if for every $x, y \in \mathcal{X}$ that satisfy $x \leq y$ and every $i \in [d] \triangleq \{1, \ldots, d\}$, we have

$$\frac{\partial F}{\partial x_i}(x) \geq \frac{\partial F}{\partial x_i}(y).$$

Example: $F(x_1,x_2)\stackrel{\text{1.0}}{=} x_1(1-x_2) + (1-x_1)x_2$.

2. Bandit Optimization

Online optimization is a repeated two-player game. At each round $oldsymbol{t}$:

- lacksquare The learner chooses an action x_t from a convex set $\mathcal{K} \subseteq \mathbb{R}^n$;
- The adversary chooses a reward function F_t from \mathcal{F} , a family of real-valued functions;
- lacktriangle The learner receives a reward $F_t(x_t)$, and observes feedback.

The aim is to maximize the **regret**: the gap between her accumulated reward and the reward of the best single choice in hindsight

$$\mathcal{R}_T riangleq \max_{x \in \mathcal{K}} \sum_{t=1}^T F_t(x) - \sum_{t=1}^T F_t(x_t).$$

In the bandit setting, the feedback is only a single real number $F_t(x_t)$.

Bandit Problems (source: http://www.primarydigit.com/blog/multi-arm-bandits-explorationexploitation-trade-off)

However, even in the offline scenario, continuous DR-submodular maximization problem cannot be approximated within a factor of $(1-1/e+\epsilon)$ for any $\epsilon>0$ in polynomial time, unless RP=NP [1]. Therefore, we consider the (1-1/e)-regret

$$\mathcal{R}_{1-1/e,T} riangleq (1-1/e) \max_{x \in \mathcal{K}} \sum_{t=1}^T F_t(x) - \sum_{t=1}^T F_t(x_t).$$

3. Our Contribution

We studied the following three problems:

- ► OCSM: the Online Continuous DR-Submodular Maximization problem,
- ▶ BCSM: the Bandit Continuous DR-Submodular Maximization problem, and
- RBSM: the Responsive Bandit Submodular Maximization problem.

Comparison of previous and our proposed algorithms:

Setting	Algorithm		# of grad. evaluations	(1-1/e)-regret
	Meta-FW[3]	No	$T^{1/2}$	$O(\sqrt{T})$
OCSM	VR-FW[2]	Yes	$oldsymbol{T}^{3/2}$	$O(\sqrt{T})$
	Mono-FW (this work)	Yes	1	$O(T^{4/5})$
BCSM	Bandit-FW (this work)	-	_	$O(T^{8/9})$
RBSM	Responsive-FW (this work)	_	_	$O(T^{8/9})$

4. One-shot Online Continuous DR-Submodular Maximization

Offline Frank-Wolfe (FW) method for maximizing monotone continuous DR-submodular functions: at k-th iteration, solves a linear optimization problem

$$v^{(k)} \leftarrow rg \max_{v \in \mathcal{K}} \langle v,
abla F(x^{(k)})
angle$$

which is used to update $x^{(k+1)} \leftarrow x^{(k)} + \eta_k v^{(k)}$, where η_k is the step size. We extended it to online setting.

- **Obstacle 1:** To obtain $v_t^{(k)}$, we have to know the gradient in advance. **Solution:** Use K no-regret online linear maximization oracles $\{\mathcal{E}^{(k)}\}, k \in [K]$, with $\langle \cdot, d_t^{(k)} \rangle$ being the objective function, and $v_t^{(k)}$ being the output, where $d_t^{(k)}$ is an estimation of $\nabla F_t(x_t(k))$.
- ▶ Obstacle 2: To obtain a one-shot algorithm, we need to reduce K from $T^{3/2}$ [2, 3] to 1.

Solution: Proposed the blocking procedure and the permutation methods.

5. Bandit Continuous DR-Submodular Maximization

One-point Gradient Estimator: define the δ -smoothed version of a function F as $\hat{F}_\delta(x) \triangleq \mathbb{E}_{v \sim B^d}[F(x+\delta v)]$. Then we have

$$abla \hat{F}_{\delta}(x) = \mathbb{E}_{u \sim S^{d-1}} \left[rac{d}{\delta} F(x + \delta u) u
ight].$$

▶ Obstacle: The point $x + \delta u$ may fall outside of $\mathcal K$. Solution: Introduce the notion of δ -interior. A set $\mathcal K'$ is a δ -interior of $\mathcal K$ if it is a *subset* of

$$\operatorname{int}_{\delta}(\mathcal{K}) = \left\{x \in \mathcal{K} | \inf_{s \in \partial \mathcal{K}} d(x,s) \geq \delta
ight\}.$$

 ${}_{ ext{(a)}}\mathsf{Example}\ \mathsf{of}\ oldsymbol{\delta} ext{-interior}$

(b) Construct a δ -interior

Also define the **discrepancy** between ${\mathcal K}$ and ${\mathcal K}'$ by

$$d(\mathcal{K},\mathcal{K}') = \sup_{x \in \mathcal{K}} d(x,\mathcal{K}'),$$

When F_t is Lipschitz and $d(\mathcal{K}, \mathcal{K}')$ is small, we can approximate the optimal total reward on \mathcal{K} by that on \mathcal{K}' .

Lemma 1: Under some regularization assumptions, $\mathcal{K}' = (1 - \alpha)\mathcal{K} + \delta 1$ is a δ -interior of \mathcal{K} with $d(\mathcal{K}, \mathcal{K}') \leq [\sqrt{d}(\frac{R}{r} + 1) + \frac{R}{r}]\delta$.

6. Bandit Submodular Set Maximization

▶ Obstacle: If there is a rounding scheme $\mathrm{round}_{\mathcal{I}}:[0,1]^d \to \mathcal{I}$ satisfying the following unbiasedness condition

$$\mathbb{E}[f(\operatorname{round}_{\mathcal{I}}(x))] = F(x), \quad orall x \in [0,1]^d$$

for any submodular set function f within the matroid constraint \mathcal{I} and its multilinear extension F, we can solve the discrete bandit problem by applying Bandit-FW on F_t . However, this kind of rounding schemes does NOT exist (Lemma 2).

Solution: Study the **responsive** model. If $X_t \notin \mathcal{I}$, we can still observe the function value $f_t(X_t)$ as feedback, while the received reward at round t is 0.

7. References

- [1] An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, and Andreas Krause. Guaranteed non-convex optimization: Submodular maximization over continuous domains. In *AISTATS*, February 2017.
- [2] Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online optimization with stochastic gradient: From convexity to submodularity. In *ICML*, pages 813–822, 2018.
- [3] Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular maximization. In *AISTATS*, pages 1896–1905, 2018.