

《油气人工智能基础及应用》

4.1人工神经网络算法概述

董少群
dshaoqun@163.com
理学院数学系

- 一、神经元及神经网络
- 二、人工神经网络
- 三、常用神经网络算法

一、神经元及神经网络

1. 神经元—即神经元细胞,是神经系统最基本的结构和功能单位。分为细胞体和突起两部分。细胞体由细胞核、细胞膜、细胞质组成,具有联络和整合输入信息并传出信息的作用。

一、神经元及神经网络

2.生物神经网络一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。

https://www.douyin.com/search/%E7%A5%9E%E7%BB%8F%E5%85%83?aid=a96dbf1d-f0e2-4127-b242-f3966c201660&publish_time=0&sort_type=0&source=normal_search&type=general

https://www.douyin.com/video/7041510300335525133

一、神经元及神经网络

3.神经元的工作机制

信号被输入到神经元中

细胞体判断信号之和

当信号之和大于神经 元固有的阈值时,神经元被激活,并向相 邻的神经元传递信号

1. 神经元 vs 人工神经元

该神经元有3个输入信号、 2个输出信号 箭头方向区分输入和输出,神经元的输出由两个箭头指出,其值是相同的

1. 神经元 vs 人工神经元

·1943年,McCulloch和Pitts将神经元模型抽象为简单模型, 称之为M-P模型 (M-P模型是对生物神经元的建模, 作为人工神经网络中的一个神经元)。

心理学家McCulloch

数学逻辑学家Pitts

M-P模型
$$y=f\left(\sum_{1}^{n}w_{i}x_{i}-\theta\right)$$

2. 人工神经元的工作机制(数学表示)

 w_1 、 w_2 、 w_3 是输入信号 x_1 、 x_2 、 x_3 对应的权重(weight), θ 是该神经元固有的 阈值。 $w_1x_1 + w_2x_2 + w_3x_3$ 为信号之和

神经元激活的判定条件:

无输出信号 (y=0) : $w_1x_1 + w_2x_2 + w_3x_3 < \theta$

有输出信号 (y = 1) : $w_1x_1 + w_2x_2 + w_3x_3 \ge \theta$

$$y = f (w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$

阶跃函数

3.激活函数

$$y = f (w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$

激活函数

激活函数 (Activation Function)也叫连接函数、传递函数、变换函数或者激励函数。

用来模拟神经元输出与具激活状态之间的联系:输入达到某个阈值后达到激活状态,否则为抑制态。

不同的激活函数,会使神经元具有不同的信息处理特性。对于神经网络来讲,激活函数的主要作用就是进行线性变换,增加系统的非线性表达能力。

3.激活函数

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

3.激活函数

Sigmoid函数与导函数

4.人工神经网络 (Artificial Neural Network, ANN)

特点:

- (1) 从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络;
- (2) 神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成;
- (3) 每个节点代表一种特定的输出函数, 称为激活函数 (Activation Function)。激 活函数是一种添加到人工神经网络中的函 数.

Artificial Neural Network 人工神经网络

5. 学科关系

人工智能(Artificial Intelligence)

为机器赋予人的智能

机器学习(Machine Learning)

一种实现人工智能的方法

神经网络 (Neural Networks)

一种机器学习的算法

深度学习 (Deep Learning)

一种实现机器学习的技术

多层神经网络

5. 发展历程

5. 发展历程

·1958年,美国心理学家Rosenblatt提出了感知机(Perceptron)算法。

从结构上说, 单层感 知机就是多个M-P模型 的累叠。

单层感知机相比M-P模 型、最主要的差别还 是引入了学习概念, 这也是为什么把感知 机称为最初的神经网 络模型而非M-P模型。

单层感知机模型

M-P模型

5. 发展历程

- ✓ 单层感知机的学习通过导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化(注意,1957年BP反向传播算法还未提出,所以只能训练一层网络)。
- ✓ 在结构上单层感知机和M-P模型没有太大区别,所以也只能划分线性可分问题,并 不能解决异或之类的线性不可分问题。

M-P模型

5. 发展历程

·1965年, Ivakhnenko (苏) 于1965年引入的MLP,即多层感知器,是一种前向结构的人工神经网络,映射一组输入向量到一组输出向量。

MLP可以被看做是一个有向图,由多个节点层组成,每一层全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元。MLP是感知器的推广,克服了感知器无法实现对线性不可分数据识别的缺点。

5. 发展历程

·1982年,加州理工学院生物物理教授的霍普菲尔德(John Hopfield)提出了一种新的神经网络,可以解决一 大类模式识别问题,给出一类组合优化问题的近似解, 这种神经网络模型后来被称为霍普菲尔德神经网络。

右图:霍普菲尔德神经网络

特点: (1) 只有单层;

(2) 神经元节点之间是全连接的;

(3) 只有输入,没有输出

核心:输入残缺的数据后,可以重建完整

数据的一个模型

5. 发展历程

·1986年, 计算机学家 Hinton等人提出误差反向传 播算法,解决了两层感知器 无法训练的问题, 打破了单 层感知器的局限性, 使得多 层神经网络进入实用阶段, 人工神经网络又重新引起了 人们的关注, Rumellhart等 人提出了用于多层网络训练 的BP算法、对ANN起到了 重大的推动作用。

5. 发展历程

·2006年, "神经网络之父" Geoffrey Hinton祭出神器, 一举解决了深层神经网络的训练问题, 这个神器就是"深度信念网络" (Deep Belief Network, 简称 DBN), 推动了深度学习的快速发展, 开创了人工智能的新局面, 并且在效果上优于SVM, 这让许多研究者的目光重新回到了神经网络。

5. 发展历程

· 2012年,深度神经网络逐渐发展起来,卷积神经网络(CNN)得到广泛应用,深度学习(Deep Learning)兴起。

5. 发展历程

·2019年,ACM (美国计算机协会)宣布,将2018年ACM A.M.图灵奖授予约书亚·本吉奥(Yoshua Bengio)、杰弗里·辛顿(Geoffrey Hinton)和杨乐昆(Yann LeCun)三位深度学习之父,以表彰他们给人工智能带来的重大突破,这些突破使深度神经网络成为计算的关键组成部分。

24

1. BP神经网络

2. 卷积神经网络CNN

3. 循环神经网络RNN

4. 生成对抗神经网络GAN

4.图像分割神经网络SegNet

(据Trokielewicz,2018)

(据Matlab2018a)

5.图像分割神经网络SegNet

利用深度学习进行图像分割,即将图像划分成不同的区域,同一区域为相同

事物。

本节课结束! 谢谢!