Static-3

Title

Overhanging beam analysis

Description

An H(I)-section beam is supported as shown below and loaded on the overhangs with uniformly distributed loads.

Determine the maximum displacements and the stresses of the beam.

Only a half model may be analyzed due to symmetry.

(a) Cantilever beam under uniformly distributed loads

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis (X-Z plane)

Unit System

in, lbf

Dimension

Length 240.0 in

Element

Beam element

Material

Modulus of elasticity $E = 30.0 \times 10^6 \text{ psi}$

Section Property

Area $A = 7.0 \text{ in}^2$

Moment of inertia $I_{yy} = 7892.0 \text{ in}^4 \text{ (Strong axis)}$

Boundary Condition

Node 1; Constrain Dx and Ry. (Symmetry) Node 2; Constrain Dx and Dz. (Hinged node)

Load Case

A uniformly distributed load, 833.333 lbf/in is applied to the element **②** in the −Z direction.

Results

Displacements

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
-	1	CASE1	0,000000	0,000000	0,182463	0,000000	0,000000	0,000000
	2	CASE1	0,000000	0,000000	0,000000	0,000000	0,003041	0,000000
	3	CASE1	0,000000	0,000000	-0,456158	0,000000	0,004055	0,000000

Stresses

	Elem	Load	Part	Axial (lbf/in*)	Shear-Y (lbf/in*)	Shear-Z (lbf/in*)	Bend(+Y) (lbf/in*)	Bend(-Y) (lbf/in*)	Bend(+Z) (lbf/in*)	Bend(-Z) (lbf/in*)
•	1	CASE1	i	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	1,14e+004	-1,14e+004
	1	CASE1	1/4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	1,14e+004	-1,14e+004
	1	CASE1	2/4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	1,14e+004	-1,14e+004
	1	CASE1	3/4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	1,14e+004	-1,14e+004
	1	CASE1	j	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	1,14e+004	-1,14e+004
	2	CASE1	i	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	1,14e+004	-1,14e+004
	2	CASE1	1/4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	6,41e+003	-6,41e+003
	2	CASE1	2/4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,85e+003	-2,85e+003
	2	CASE1	3/4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	7,13e+002	-7,13e+002
	2	CASE1	j	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000

Stress of the structure (Element 1)

Comparison of Results

Unit: in, psi

Result	Theoretical	MIDAS/Civil		
Maximum deflection(δ_{max})	0.182	0.182		
Maximum stress(σ_{max})	11404.0	11404.0		

Reference

Timoshenko, S., "Strength of Materials, Part I, Elementary Theory and Problems", 3rd Ed., D. Van Nostrand Co., Inc., New York, 1956, p. 98.