Linear models II

Classification

How can we...

model nonlinear relationships using linear models?

use linear models for classification?

choose the parameters to fit a linear classification model to training data?

Can we model nonlinear relationships?

Linear models are linear in the parameters

A linear combination is quantity where a set of terms are added together, each multiplied by a constant (parameter) and adding the results

They can model **nonlinear relationships** between features and targets through **feature transformations**

Limitations of linear decision boundaries

Classify the features in this *X*-space

$$\hat{f}_{x}(x) = \begin{cases} 1 & \mathbf{w}^{T} \mathbf{x} > 0 \\ 0 & else \end{cases}$$

Transformations of features

Consider a digits example...

$$\mathbf{x} = [x_1, x_2, x_3, ..., x_{64}]$$

We could **design features** based on the original features. For example:

$$\mathbf{z} = [x_5 x_{11}, x_{14}^2, \frac{x_{64}}{x_{14}}]$$

Which can be written simply as variables in a new feature space:

$$\mathbf{z} = [z_1, z_2, z_3]$$

Source: Abu-Mostafa, Learning from Data, Caltech

So how do we use linear models for classification?

How do we fit linear models for classification?

Moving from regression to classification

Regression

$$y = \sum_{i=0}^{p} w_i x_i$$

Classification (perceptron)

$$y = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$y = sign\left(\sum_{i=0}^{p} w_i x_i\right) \qquad y = \begin{cases} 1 & \sum_{i=0}^{p} w_i x_i > 0 \\ -1 & else \end{cases}$$

where

$$sign(x) = \begin{cases} 1 & x > 0 \\ -1 & else \end{cases}$$

Source: Abu-Mostafa, Learning from Data, Caltech

Moving from regression to classification

Linear Regression

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i$$

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

Source: Abu-Mostafa, Learning from Data, Caltech

Sigmoid function

Definition

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Useful properties

$$\sigma(-x) = 1 - \sigma(x)$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

Moving from regression to classification

Linear Regression

Linear Classification

Perceptron

Logistic Regression

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i$$

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i \qquad \qquad \hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right) \qquad \qquad \hat{f}(\mathbf{x}) = \sigma\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$\hat{f}(\mathbf{x}) = \sigma\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$sign(x) = \begin{cases} 1 & x > 0 \\ -1 & else \end{cases}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Source: Abu-Mostafa, Learning from Data, Caltech

We fit our model to training data

- 1. Choose a hypothesis set of models to train
- 2. Identify a **cost function** to measure the model fit to the training data
- 3. Optimize model parameters to minimize cost

For linear regression the steps were (i.e. OLS):

- a. Calculate the gradient of the cost function
- b. Set the gradient to zero
- c. Solve for the model parameters

When this approach is not an option, we often use **gradient descent**

For classification we COULD try the same cost function as regression

Assume the cost function is mean square error

$$C(\mathbf{w}) \triangleq E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{f}(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

Plug in our model

$$C(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\sigma(\mathbf{w}^T \mathbf{x}_n) - y_n)^2$$

 $\hat{f}(\mathbf{x}_n, \mathbf{w}) = \boldsymbol{\sigma}(\mathbf{w}^T \mathbf{x}_n)$

Calculate the gradient

$$\nabla_{w}C(w) = \frac{2}{N} \sum_{n=1}^{N} [\sigma(w^{T}x_{n}) - y_{n}] \sigma(w^{T}x_{n}) [1 - \sigma(w^{T}x_{n})] x_{n}$$

Set the gradient to zero and minimize to solve for \boldsymbol{w}

$$\nabla_{w}C(w) = 0$$

But does MSE make sense for classification?

MSE for classification

Intuition: With a mean squared error cost function, bigger classification mistakes are not penalized that much more

MSE is not convex for logistic regression Convex function guarantees a global minimum

$$E(x_i) = \hat{f}(x_i) - y_i$$

Mean Squared Error Cost:

$$C(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{f}(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

We need a different cost function for logistic regression...

Is there a better cost function we could use for classification problems...?

Another interpretation of logistic regression

Our model:
$$\hat{y} = \hat{f}(x) = \sigma(\mathbf{w}^T x)$$

$$\sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Logistic regression models the

conditional probability that a sample belongs to a class

What's linear about logistic regresion?

$$\hat{f}(x) = \hat{y} = \sigma(\mathbf{w}^T x)$$

$$\hat{y} = \frac{1}{1 + e^{-\mathbf{w}^T x}}$$

$$\frac{1}{\hat{y}} = 1 + e^{-\mathbf{w}^T x}$$

$$\frac{1}{\hat{v}} - 1 = e^{-w^T x}$$

$$\frac{1}{\hat{v}} - \frac{\hat{y}}{\hat{v}} = e^{-w^T x}$$

$$\frac{1-\hat{y}}{\hat{y}} = e^{-w^T x}$$

$$\rightarrow \frac{1-\hat{y}}{\hat{y}} = e^{-w^T x}$$

$$\log\left(\frac{1-\hat{y}}{\hat{y}}\right) = \log\left(e^{-w^Tx}\right)$$

$$\log\left(\frac{1-\hat{y}}{\hat{y}}\right) = -\boldsymbol{w}^T\boldsymbol{x}$$

$$-\log\left(\frac{1-\hat{y}}{\hat{y}}\right) = \boldsymbol{w}^T \boldsymbol{x}$$

$$\log\left(\frac{\hat{y}}{1-\hat{y}}\right) = \boldsymbol{w}^T \boldsymbol{x}$$

If we interpret our target variable, \hat{y} , as the probability of class 1, then $\mathbf{w}^T \mathbf{x}$ models the log odds ratio

$$\hat{y} = P(Y = 1 | \mathbf{x})$$

$$\log \left[\frac{P(Y=1|\mathbf{x})}{1 - P(Y=1|\mathbf{x})} \right] = \mathbf{w}^T \mathbf{x}$$

$$\log \left[\frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})} \right] = \mathbf{w}^T \mathbf{x}$$

Interpretation of the odds ratio

 $P(y_i|x_i)$

0.8
0.6
0.4
0.2
0.91 $P(y_i = 1 | x_i) = \sigma(w^T x_i)$ 0.5
0.5
0.5
0.09

-2

-4

 $P(y_i = 0 | \boldsymbol{x}_i) = 1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i)$

Log-odds ratio: ratio of positive class probability to the negative class

$$\log \left[\frac{P(y_i = 1 | x_i)}{P(y_i = 0 | x_i)} \right]^{2} \frac{10^2 = 100}{10^{10^1} = 10}$$

0.0

The log-odds ratio is a linear function of the features

 $\boldsymbol{x_i}$

So how do we fit our model to the data in this case?

Our model:
$$\hat{y} = \hat{f}(x) = \sigma(w^T x)$$

$$\sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Logistic regression models the

conditional probability that a sample belongs to a class

Sidebar: Maximum Likelihood Estimation

We want to determine the underlying probability of the coin landing on "heads"; the coin could be biased.

We flip the coin 1,000 times

...in other words, we have N = 1,000 independent Bernoulli trials

Coin flips, binary outcomes

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p$

Goal: find the value of p that maximizes the likelihood function

Interpretation of likelihood: a function of a parameter we want optimize for, given our data: L(p|x)

Goal: find the value of p that maximizes the likelihood of our data

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p$

For a **single observation**, the likelihood is:

$$L(p|x_i) = P(x_i|p) = p^{x_i}(1-p)^{1-x_i}$$

For multiple independent observations, the likelihood is:

For independent random events, the probability of both events is the product of their individual probabilities: P(A and B) = P(A)P(B)

$$L(p|\mathbf{x}) = P(\mathbf{x}|p) = \prod_{i=1}^{N} P(x_i|p)$$

$$= p^{\sum_{i=1}^{N} x_i} (1-p)^{N-\sum_{i=1}^{N} x_i}$$

Goal: find the value of p that maximizes the likelihood of our data

$$L(p) = p^{\sum x_i} (1-p)^{N-\sum x_i}$$
 Here, $L(p)$ is short for $L(p|x)$

Maximizing the likelihood is equivalent to maximizing the log-likelihood

$$\ln[L(p)] = \ln[p^{\sum x_i} (1-p)^{N-\sum x_i}]$$

$$\ln[L(p)] = \ln(p) \sum_{i=1}^{N} x_i + \ln(1-p) \left[N - \sum_{i=1}^{N} x_i \right]$$

To maximize the likelihood, we take the derivative of this log likelihood and set it to zero, then solve for p

Goal: find the value of p that maximizes the likelihood of our data

We take the derivative of this log likelihood and set it to zero, then solve for p

$$\ln[L(p)] = \ln(p) \sum_{i=1}^{N} x_i + \ln(1-p) \left[N - \sum_{i=1}^{N} x_i \right]$$

$$\frac{\partial \ln[L(p)]}{\partial p} = \frac{\sum_{i=1}^{N} x_i}{p} - \frac{N - \sum_{i=1}^{N} x_i}{1 - p} = 0$$

This results in our estimate being the mean of our observations:

$$\hat{p} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Applying this to logistic regression...

Our model:
$$\hat{y} = \hat{f}(x) = \sigma(w^T x)$$

$$\sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Logistic regression models the

conditional probability that a sample belongs to a class

Note these are both functions of our parameters, **w**

The interpretation of the Likelihood

With class labels $y_1, y_2, ..., y_N$ and corresponding to $x_1, x_2, ..., x_N$

The likelihood for **one observation**:

$$L(\mathbf{w}|y_i, \mathbf{x}_i) = P(y_i = 1|\mathbf{x}_i)^{y_i} P(y_i = 0|\mathbf{x}_i)^{1-y_i}$$

The likelihood for all observations:

We're interested in the likelihood of the model as a function of the model parameters, \mathbf{w} . So $P(y_i|\mathbf{x}_i)$ is a function of \mathbf{w} .

$$L(w) \triangleq P(y|X)$$

$$L(\mathbf{w}|\mathbf{y},\mathbf{X}) = P(y_1, y_2, ..., y_N|\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) = \prod_{i=1}^N P(y_i|\mathbf{x}_i)$$

Source: Malik Magdon-Ismail, Learning from Data

The likelihood for all observations:

$$L(\mathbf{w}|\mathbf{y},\mathbf{X}) = \prod_{i=1}^{N} P(y_i|\mathbf{x}_i) = \prod_{i=1}^{N} P(y_i = 1|\mathbf{x}_i)^{y_i} P(y_i = 0|\mathbf{x}_i)^{1-y_i}$$

Substituting:
$$P(y_i = 1 | x_i) = \sigma(\mathbf{w}^T x_i)$$
$$P(y_i = 0 | x_i) = 1 - \sigma(\mathbf{w}^T x_i)$$

$$= \prod_{i=1}^{N} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} [1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})]^{1-y_{i}}$$

We want to MAXIMIZE the likelihood (minimize its negative)

We can take the **logarithm**, negate it to get our **cost function**, then minimize it (using the gradient)

$$L(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{X}) = \prod_{i=1}^{N} \sigma(\boldsymbol{w}^{T}\boldsymbol{x}_{i})^{y_{i}} [1 - \sigma(\boldsymbol{w}^{T}\boldsymbol{x}_{i})]^{1-y_{i}}$$

A little algebra

$$= \prod_{i=1}^{N} \hat{y}_i^{y_i} [1 - \hat{y}_i]^{1-y_i} \quad \text{assuming} \quad \hat{y}_i \triangleq \sigma(\mathbf{w}^T \mathbf{x}_i)$$

If we take the log of both sides:

$$\log L(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \log \left[\prod_{i=1}^{N} \hat{y}_{i}^{y_{i}} [1 - \hat{y}_{i}]^{1-y_{i}} \right] = \sum_{i=1}^{N} \log(\hat{y}_{i}^{y_{i}} [1 - \hat{y}_{i}]^{1-y_{i}})$$

$$= \sum_{i=1}^{N} y_{i} \log(\hat{y}_{i}) + (1 - y_{i}) \log(1 - \hat{y}_{i})$$
Recall that
$$\log(ab) = \log(a) + \log(b)$$

$$\log(a^{b}) = b \log(a)$$

$$\log L(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{X}) = \sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

We can define our

cost function: $C(w) = -\log L(w|y,X)$

$$C(\mathbf{w}) = -\left[\sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)\right]$$

This quantity is often normalized by dividing by N for interpreting the results as **mean cost per sample**

For logistic regression, $\hat{y}_i \triangleq \sigma(\mathbf{w}^T \mathbf{x}_i)$

This is the cross entropy cost function

Cross Entropy

$$C(\mathbf{w}) = -\frac{1}{N} \left[\sum_{i=1}^{N} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

$$-y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

When
$$y_i = 0$$

$$-y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

The cost is:

$$-\log(1-\hat{y}_i)$$

When
$$y_i = 1$$

$$-y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$
1

The cost is:

$$-\log(\hat{y}_i)$$

Cross Entropy

$$C(\mathbf{w}) = -y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

Single sample cost

Target label

CE Cost

$$y_{i} = 1$$

$$-\log(\hat{y}_i)$$

Progressively worse predictions

$$\hat{y}_i = 0.4$$

$$\hat{y}_i = 0.1$$

$$\hat{y}_i = 0.001$$

$$C(w) = 0.91$$

$$C(w) = 2.3$$

$$C(w) = 6.9$$

$$y_i = 0$$

$$-\log(1-\hat{y}_i)$$

$$\hat{y}_i = 0.6$$

$$C(w) = 0.91$$

$$\hat{y}_i = 0.9$$

$$C(\mathbf{w}) = 2.3$$

$$\hat{y}_i = 0.999$$

$$C(\mathbf{w}) = 6.9$$

Cross Entropy vs MSE

If a model is wrong, but is highly confident, it faces exponentially larger penalties with cross-entropy

Cross-entropy as a loss function provides a stronger error penalty for incorrect predictions

Logistic regression does not have a closed-form solution like linear regression did

We need a new approach to optimize the parameters...

Gradient descent

Minimize $y = x^2$

We start at an initial point and want to "roll" down to the minimum

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \eta \mathbf{v}$$
Learning Direction rate to move in

Gradient descent

Minimize $f(x) = x^2$

The gradient points in the direction of steepest **positive** change

$$\frac{df(x)}{dx} = 2x$$

We want to move in the **opposite** direction of the gradient

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

Gradient descent

Derivative:
$$\frac{df(x)}{dx} = 2x$$

Gradient descent update equation:

$$\boldsymbol{x}^{(i+1)} = \boldsymbol{x}^{(i)} - \eta \nabla f \left(\boldsymbol{x}^{(i)}\right)$$

Minimize
$$f(x) = x^2$$

Assume $x^{(0)} = 2$ and $\eta = 0.25$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - (0.25)(2\mathbf{x}^{(i)})$$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - (0.5)\mathbf{x}^{(i)}$$

 $i \quad x^{(i)} \quad y^{(i)}$

0 2 4

1 1 1

2 0.5 0.25

3 0.25 0.0625

4 0.125 0.0156

Takeaways

Transformations of features (**feature extraction**) may help to overcome nonlinearities

Logistic regression is suited for classification

For classification problems, we typically apply cross entropy loss as the cost function

Logistic regression parameters require a different optimization strategy than OLS; one method for that optimization is **gradient descent**