Simulation Result 1: $C\sim Exp(0.2)$

Yi

2023-03-04

Table 1: Summary of the estimated SAUC(2) in Biomarker1 when the true censored time is distributed as Exp(0.2).

			p = 0.7	p = 0.5	p = 0.3
Patients	N	Method	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
50-150	20	HZ_P HZ_O $Prop$ CR	74.97 (73.45, 76.48) 76.30 (74.32, 78.03) 75.61 (73.01, 77.96) 64.19	74.78 (73.43, 75.97) 76.51 (74.57, 78.51) 74.93 (72.29, 77.54) 60.48	74.68 (73.69, 75.66) 77.03 (75.15, 79.14) 74.16 (71.10, 77.02) 56.21
	30	HZ_P HZ_O $Prop$ CR	74.79 (73.58, 75.95) 75.89 (74.27, 77.41) 75.17 (73.51, 77.07) 73.32	74.59 (73.54, 75.58) 76.22 (74.54, 77.85) 74.64 (72.59, 76.81) 69.48	74.52 (73.76, 75.32) 77.01 (75.42, 78.57) 74.31 (72.02, 76.51) 65.89
	50	HZ_P HZ_O $Prop$ CR	74.68 (73.78, 75.58) 75.76 (74.67, 76.93) 75.09 (73.56, 76.57) 81.3	74.60 (73.73, 75.38) 76.27 (75.06, 77.32) 74.64 (73.06, 76.21) 77.1	74.52 (73.85, 75.12) 76.79 (75.60, 78.07) 74.10 (72.27, 76.01) 72.77
	100	HZ_P HZ_O $Prop$ CR	74.54 (73.87, 75.17) 75.53 (74.75, 76.31) 74.84 (73.79, 76.08) 90.5	74.53 (73.96, 75.05) 76.13 (75.32, 76.94) 74.64 (73.50, 76.19) 85.7	74.42 (73.93, 74.82) 76.80 (75.93, 77.54) 74.16 (72.88, 75.45) 83.6
50-300	20	HZ_P HZ_O $Prop$ CR	75.87 (74.66, 77.07) 76.73 (75.22, 78.36) 75.45 (72.75, 77.47) 59.05	75.73 (74.79, 76.82) 77.29 (75.65, 78.87) 75.24 (72.37, 77.46) 57.93	75.73 (74.99, 76.53) 77.90 (76.18, 79.45) 73.91 (35.05, 76.41) 55.61
	30	HZ_P HZ_O $Prop$ CR	75.85 (74.85, 76.88) 76.77 (75.43, 77.98) 75.89 (74.14, 77.43) 71.8	75.68 (74.84, 76.53) 77.02 (75.77, 78.34) 75.58 (73.74, 77.40) 65.06	75.69 (75.03, 76.33) 77.79 (76.19, 79.14) 74.68 (71.10, 76.78) 61.18
	50	HZ_P HZ_O $Prop$ CR	75.76 (74.96, 76.51) 76.51 (75.48, 77.45) 75.82 (74.65, 77.09) 77.1	75.61 (75.04, 76.22) 76.75 (75.81, 77.69) 75.63 (74.47, 76.90) 70.1	75.59 (75.08, 76.07) 77.40 (76.36, 78.48) 75.19 (73.71, 76.45) 64
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	74.54 (73.87, 75.17) 75.53 (74.75, 76.31) 74.84 (73.79, 76.08) 90.5	74.53 (73.96, 75.05) 76.13 (75.32, 76.94) 74.64 (73.50, 76.19) 85.7	74.42 (73.93, 74.82) 76.80 (75.93, 77.54) 74.16 (72.88, 75.45) 83.6

Table 2: Summary of the estimated SAUC(2) in Biomarker 2 when the true censored time is distributed as Exp(0.2).

			p = 0.7	p = 0.5	p = 0.3
Patients	N	Method	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
50-150	20	HZ_P HZ_O $Prop$ CR	57.63 (56.66, 58.69) 59.42 (58.40, 60.64) 59.03 (57.81, 60.32) 85.31	57.75 (56.92, 58.65) 60.69 (59.44, 61.90) 59.80 (58.00, 61.35) 85.34	57.68 (57.09, 58.42) 61.96 (60.72, 63.21) 60.79 (57.71, 62.38) 84.46
	30	HZ_P HZ_O $Prop$ CR	57.80 (56.95, 58.56) 59.64 (58.67, 60.63) 59.21 (57.99, 60.25) 90.46	57.77 (57.03, 58.42) 60.64 (59.74, 61.60) 59.90 (58.13, 61.22) 87.86	57.78 (57.24, 58.27) 61.89 (60.92, 62.90) 60.76 (57.48, 62.24) 88.93
	50	HZ_P HZ_O $Prop$ CR	57.74 (57.09, 58.33) 59.59 (58.88, 60.38) 59.20 (58.26, 60.06) 95.2	57.73 (57.17, 58.24) 60.67 (59.98, 61.41) 59.87 (57.76, 61.02) 93.98	57.73 (57.32, 58.15) 62.01 (61.22, 62.73) 61.10 (57.42, 62.21) 92.17
	100	HZ_P HZ_O $Prop$ CR	57.71 (57.31, 58.19) 59.63 (59.13, 60.14) 59.47 (58.77, 60.04) 97.7	57.72 (57.36, 58.10) 60.68 (60.14, 61.21) 59.77 (57.40, 60.80) 92.57	57.74 (57.44, 58.02) 62.00 (61.44, 62.53) 61.33 (57.36, 62.15) 94.68
50-300	20	HZ_P HZ_O $Prop$ CR	57.91 (57.09, 58.64) 59.27 (58.31, 60.07) 58.55 (57.51, 59.59) 69.43	57.90 (57.31, 58.54) 60.07 (59.24, 60.89) 59.20 (57.65, 60.29) 76.38	57.93 (57.50, 58.38) 61.06 (60.10, 61.97) 60.12 (57.97, 61.51) 78.03
	30	HZ_P HZ_O $Prop$ CR	57.95 (57.24, 58.59) 59.34 (58.58, 60.05) 58.47 (57.63, 59.30) 74.13	57.87 (57.37, 58.37) 60.08 (59.44, 60.82) 59.18 (57.69, 60.28) 77.44	57.92 (57.52, 58.33) 61.07 (60.30, 61.81) 60.41 (57.78, 61.47) 83.91
	50	HZ_P HZ_O $Prop$ CR	57.95 (57.47, 58.40) 59.35 (58.82, 59.91) 58.31 (57.62, 59.05) 77.27	57.95 (57.50, 58.35) 60.11 (59.55, 60.68) 58.77 (57.54, 59.99) 81.08	57.93 (57.60, 58.23) 61.10 (60.50, 61.64) 60.41 (57.75, 61.32) 88.59
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	57.71 (57.31, 58.19) 59.63 (59.13, 60.14) 59.47 (58.77, 60.04) 97.7	57.72 (57.36, 58.10) 60.68 (60.14, 61.21) 59.77 (57.40, 60.80) 92.57	57.74 (57.44, 58.02) 62.00 (61.44, 62.53) 61.33 (57.36, 62.15) 94.68

Table 3: Summary of the estimated SAUC(2) in Biomarker1 when the true censored time is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7	p = 0.5	p = 0.3
Patients	N	Method	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
50-150	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	75.07 (73.54, 76.47) 76.30 (74.15, 78.10) 75.91 (73.29, 78.22) 44.34	74.95 (73.75, 76.05) 76.81 (74.77, 78.67) 74.89 (72.17, 77.25) 37.7	75.01 (74.04, 75.88) 77.66 (75.62, 79.53) 73.65 (71.08, 76.54) 35.3
	30	HZ_P HZ_O $Prop$ CR	75.05 (73.89, 76.20) 76.24 (74.85, 77.58) 75.80 (74.04, 77.93) 50.6	74.92 (73.98, 75.91) 76.76 (75.36, 78.17) 75.29 (73.05, 77.68) 43.5	74.88 (74.06, 75.66) 77.27 (75.81, 78.85) 73.98 (71.48, 76.50) 39.3
	50	HZ_P HZ_O $Prop$ CR	74.94 (73.92, 75.78) 75.95 (74.84, 77.03) 75.63 (74.16, 77.11) 58.5	74.81 (74.04, 75.59) 76.31 (75.05, 77.39) 74.61 (72.94, 76.29) 50.8	74.80 (74.21, 75.36) 76.98 (75.87, 78.08) 73.82 (72.14, 75.81) 48.1
	100	HZ_P HZ_O $Prop$ CR	74.81 (74.14, 75.41) 75.81 (74.98, 76.59) 75.38 (74.31, 76.49) 72	74.77 (74.27, 75.28) 76.32 (75.54, 77.10) 74.82 (73.67, 76.20) 61.4	74.76 (74.30, 75.19) 77.03 (76.18, 77.76) 74.02 (72.73, 75.27) 58.1
50-300	20	HZ_P HZ_O $Prop$ CR	76.22 (75.28, 77.32) 77.13 (75.76, 78.71) 75.74 (73.75, 78.07) 29.73	76.13 (75.17, 77.04) 77.74 (76.27, 79.15) 75.46 (71.23, 77.56) 28.7	75.97 (75.20, 76.64) 78.24 (76.67, 79.81) 73.97 (36.01, 76.37) 32.33
	30	HZ_P HZ_O $Prop$ CR	76.08 (75.08, 76.99) 76.99 (75.62, 78.19) 76.06 (74.47, 77.57) 33.6	75.98 (75.14, 76.71) 77.50 (76.27, 78.79) 75.48 (73.63, 77.33) 31.3	75.82 (75.30, 76.36) 78.15 (76.64, 79.48) 75.18 (73.03, 76.92) 31.7
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	75.97 (75.23, 76.61) 76.72 (75.82, 77.63) 76.16 (75.09, 77.16) 39	75.93 (75.36, 76.50) 77.31 (76.24, 78.24) 76.16 (74.56, 77.05) 36.3	75.82 (75.34, 76.26) 77.80 (76.50, 79.06) 75.30 (73.69, 76.60) 37.8
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	74.81 (74.14, 75.41) 75.81 (74.98, 76.59) 75.38 (74.31, 76.49) 72	74.77 (74.27, 75.28) 76.32 (75.54, 77.10) 74.82 (73.67, 76.20) 61.4	74.76 (74.30, 75.19) 77.03 (76.18, 77.76) 74.02 (72.73, 75.27) 58.1

Table 4: Summary of the estimated SAUC(2) in Biomarker 2 when the true censorcensored time is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7	p = 0.5	p = 0.3
Patients	N	Method	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
50-150	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	57.77 (56.84, 58.68) 59.81 (58.64, 60.87) 59.28 (57.75, 60.66) 67.17	57.80 (56.95, 58.64) 61.09 (59.91, 62.16) 60.42 (58.29, 61.82) 69.18	57.79 (57.16, 58.39) 62.47 (61.29, 63.67) 61.76 (58.35, 63.26) 72.58
	30	HZ_P HZ_O $Prop$ CR	57.72 (56.99, 58.42) 59.79 (58.98, 60.71) 59.23 (57.82, 60.36) 70.9	57.79 (57.14, 58.40) 61.08 (60.16, 61.92) 60.38 (57.96, 61.62) 70.91	57.82 (57.29, 58.32) 62.52 (61.65, 63.44) 61.98 (57.94, 63.12) 79.68
	50	HZ_P HZ_O $Prop$ CR	57.90 (57.27, 58.43) 59.97 (59.30, 60.62) 59.32 (58.01, 60.29) 75.78	57.84 (57.34, 58.29) 61.10 (60.49, 61.76) 60.32 (57.68, 61.41) 79.22	57.79 (57.37, 58.16) 62.43 (61.72, 63.12) 62.12 (59.19, 62.99) 82.72
	100	HZ_P HZ_O $Prop$ CR	57.82 (57.37, 58.21) 59.85 (59.38, 60.32) 59.25 (57.81, 60.11) 75.85	57.80 (57.47, 58.17) 61.12 (60.64, 61.59) 60.52 (57.56, 61.35) 80.62	57.81 (57.54, 58.08) 62.45 (61.98, 62.94) 62.31 (60.99, 62.88) 91.06
50-300	20	HZ_P HZ_O $Prop$ CR	58.01 (57.28, 58.74) 59.52 (58.69, 60.39) 58.94 (57.62, 60.18) 49.54	57.90 (57.33, 58.50) 60.33 (59.50, 61.11) 59.44 (57.87, 60.72) 51.78	58.00 (57.50, 58.45) 61.39 (60.52, 62.25) 61.07 (58.97, 62.20) 60.81
	30	HZ_P HZ_O $Prop$ CR	57.97 (57.37, 58.56) 59.50 (58.84, 60.14) 58.63 (57.57, 59.72) 51.22	57.96 (57.43, 58.41) 60.41 (59.67, 61.00) 59.13 (57.54, 60.63) 55.91	57.91 (57.58, 58.30) 61.33 (60.65, 61.98) 61.01 (58.15, 61.82) 72.5
	50	HZ_P HZ_O $Prop$ CR	57.94 (57.50, 58.43) 59.47 (58.97, 59.99) 58.31 (57.55, 59.30) 49.03	57.93 (57.51, 58.30) 60.35 (59.83, 60.86) 58.47 (57.37, 60.18) 55.02	57.94 (57.66, 58.22) 61.36 (60.79, 61.83) 60.87 (57.34, 61.72) 74.42
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \ & \operatorname{CR} \end{aligned}$	57.82 (57.37, 58.21) 59.85 (59.38, 60.32) 59.25 (57.81, 60.11) 75.85	57.80 (57.47, 58.17) 61.12 (60.64, 61.59) 60.52 (57.56, 61.35) 80.62	57.81 (57.54, 58.08) 62.45 (61.98, 62.94) 62.31 (60.99, 62.88) 91.06