Oblig 4 inf1080

Elsie Mestl

September 15, 2015

Oppgave 6.3:

a

For at S_1 skal være refleksiv må $\langle x, x \rangle$ for alle $x \in S_1$. Ser at vi mangler det ordnede paret $\langle c, c \rangle$ for at S_1 skal være en refleksiv relasjon

b

En mengde, R, er symetrisk om for alle x, y er $\langle x,y\rangle$ og $\langle y,x\rangle$ elementer i R. Ser at S_2 mangler det ordnede paret $\langle b,a\rangle$ for å være symetrisk.

\mathbf{c}

En mengde, R, er transitiv om for alle x, y, z hvor hvis $\langle x,y\rangle$ og $\langle y,z\rangle$ er elemter i R. Så er $\langle x,z\rangle$ element i R. Ser at S_3 mangler det ordnede paret $\langle a,c\rangle$ for å være transitiv.

\mathbf{d}

En mengde, R, er antisymetisk hvis $\langle x, y \rangle$ og $\langle y, x \rangle$ er elementer i R. Slik at x = y for alle x,y. For at S_4 skal være antisymetisk må minst enten $\langle a, b \rangle$ eller $\langle b, a \rangle$ fjernes.

\mathbf{e}

En mengde, R, er irrefleksiv, hvs for alle x så er aldri $\langle x, x \rangle$ et element i R. For at S_5 skal være irrrefleksiv, må elementer $\langle a, a, \rangle$ fjernes.

\mathbf{f}

 S_1 er: antisymetrisk.

 S_2 er: refleksiv, antisymetrisk

 S_3 er: antisymetsik S_4 er: refleksiv S_5 er: ingenting

Oppgave 7.8:

a

Injektiv

b

Injektiv

 \mathbf{c}

Hverken injektiv eller surjektiv

 \mathbf{d}

Bijektiv

 \mathbf{e}

Bijektiv

 \mathbf{f}

Injektiv

Oppgave 7.9: EKSTRAOPPGAVE :P

La f,g være to funksjoner gitt ved:

$$f: A \to B \quad g: B \to C$$

 \mathbf{a}

Har at

$$f\circ g:A\to C$$

som er definert ved

$$(f \circ g)(a) = f(g(a)), \quad \forall a \in A$$

Siden at både f, g er injektive, har vi at:

 $a,b \in A$ hvor $a \neq b$ så er $f(a) \neq f(b)$. Og siden $f(a),f(b) \in B$ og $f(a) \neq f(b)$ må $g(f(a)) \neq g(f(b))$ siden g er injektiv. Ser at dette tilsvarer $f \circ g$. Altså er $f \circ g$ injektiv om både f og g er det.