Grafika Komputerowa — 22 czerwca 2020

Imię Nazwisko (indeks)

Czas testu 30 min. Nie można korzystać z materialów pomocniczych. W poniższej tabeli wpisz kod najbardziej pasujących odpowiedzi na poszczególne pytania.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

- 1. Przy rzutowaniu prostopadłym równe odcinki będą mieć tę samą długość na ekranie
- a) nigdy
- b) jeżeli sa równoległe
- c) jeżeli są równoległe i równoodległe od kamery
- d) zawsze
- e) jeżeli są równoodległe od kamery
- **2.** Wektor b w bazie (c, a) ma wpółrzędne:

- a) (-2, -1)
- i) (-1, -2)

- **b)** (2,-1)
- f) (-1,2)
- **j)** $(\frac{1}{2}, -\frac{1}{2})$

- (1,2)
- **k)** (1, -2)

- **d)** $\left(-\frac{1}{2},\frac{1}{2}\right)$
- g) (-2,1)h) $(-\frac{1}{2},-\frac{1}{2})$
- 1) (2, 1)
- 3. Który z poniżej wymienionych modeli syntezy barw jest modelem teoretycznym i pozwala opisać każdy (dowolny) kolor?
- a) YUV
- d) CIE XYZ
- g) żaden

- b) HSV (HSL)
- e) RGB
- c) CMYK
- f) każdy
- 4. Ile trójkatów zostanie wyrenderowano poleceniem glDrawArrays(GL_TRIANGLE_STRIP, 0, 6)
- **a**) 1
- **c**) 3
- **e**) 5
- g) 4

- **b**) 0
- **d**) 2
- **f**) 6
- **5.** Co to sa tekstury proceduralne w Blenderze?
- a) Sa to procedury wykonujące określoną procedurę związaną z danym obiektem
- b) Są to procedury które generują określony wzór graficzny na podstawie algorytmów wbudowanych w Blendera
- c) Są to tekstury, których zadaniem jest generowanie innych tekstur
- d) Są to tekstury, które tworzą procedury podczas renderowania
- 6. Zjawisko aliasinga występuje przy teksturowaniu
- a) w przypadku gdy rozdzielczość tekstury jest mniejsza od rozdzielczości monitora
- b) w przypadku gdy rozdzielczość tekstury jest większa od rozdzielczości monitora
- c) w obu przypadkach
- d) alisaing nie występuje przy teksturowaniu

- 7. Który z poniższych punktów zostanie wyświetlony przy rasteryzacji odcinka [(-17, -4), (17, 2)] algorytmem Bresenhama:
- a) (10, 1)
- **c)** (10,0)
- **e)** (10, 2)

- **b)** (10, 4)
- **d)** (10, 3)
- 8. Unit teksturowy w OpenGL względem programowania
 - a) tablica liczb całkowitych
 - b) adresem obszaru pamięci karty graficznej
 - c) tablica liczb rzeczysitych
- d) liczbą całkowitą
- e) liczbą rzeczysiatą
- 9. Do renderowania cienia w OpenGL używany jest
- a) algorytm malarza
- **b)** nadpróbkowanie
- c) algorytm Bresenhama
- d) algorytm buforu głębokości
- e) żadne z wymienionych
- 10. Co to jest obiekt Empty w Blenderze?
- a) jest to niewidzialny na renderach obiekt nie posiadający żadnych własności poza położeniem, macierzami obrotu oraz skalą
- b) jest to inaczej obiekt pusty w środku
- c) jest to dowolny obiekt o nazwie nadanej przez użytkownia, która brzmi "Empty"
- d) jest to każdy obiekt niewidoczny
- 11. Oś Oy w OpenGL wzgledem monitoru jest skierowana
- a) w górę

c) w dół

b) w prawo

- d) w lewo
- e) w kierunku użytkownika
- f) w kierunku przeciwnym od użytkownika
- g) odpowiedź zależy od implementacji sprzętowej
- 12. Stożek o kącie przy wierzchołku 2α i wysokości h jest zaparametryzowany w sposób następujący:

$$\begin{pmatrix} y \sin \alpha \sin \theta \\ y \\ y \sin \alpha \cos \theta \end{pmatrix},$$

gdzie $0 \le y \le h$, $0 \le \theta \le 360$. Które odwzorowanie określa współrzędne teksturowe dla stożka:

- a) $(\frac{\theta}{360}, \sin \alpha \frac{y}{h})$
- **d)** $(\alpha \frac{\theta}{360}, \alpha \frac{y}{h})$

b) $(\frac{\theta}{360}, \alpha \frac{y}{h})$

c) (θ, y)

 \mathbf{f}) $\left(\frac{\theta}{360}, \frac{y}{h}\right)$

13. Która z poniższych macierzy jest macierzą rzutowania prostopadłego

a)
$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{d}) \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\mathbf{e}) \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{c}) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

- f) żadna
- 14. Co jest przyczyną straty danych w formacie JPEG?
- a) dyskretna transformacja kosinusowa
- b) filtracja
- c) algorytm Adam7
- d) kwantyzacja
- e) stosowanie mapy kolorów
- f) żadne z wymienionych
- g) każde z wymienionych
- **15.** Natężenie światła odbitego zwieciadlanie w modelu Phonga zależy od
- a) kierunku do obserwatora
- b) wektora normalnego do powierzchni
- c) kierunku do źródła światła
- d) tylko dwóch z wymienionych wektorów
- e) wszystkich wymienionych wektorów

- f) nie zależy od wymienionych wektorów
- 16. Dla wektorów i, j, k bazy kartezjańskiej $k \times j$ jest równe
- $\mathbf{a}) k$
- **d**) 0
- **g**) *k*

- $\mathbf{b}) -i$
- **e**) *j*
- **h**) -1

- **c**) 1
- **f)** *i*
- **i**) −*j*
- 17. Barwa o współrzędnych $(\frac{1}{2},0,0)$ w przestrzeni RGB będzie miała w CMY współrzędne
- a) $(0, \frac{1}{2}, \frac{1}{2})$

c) $(\frac{1}{2},0,0)$

b) $(\frac{1}{2}, 1, 1)$

- **d)** $(1, \frac{1}{2}, \frac{1}{2})$
- **18.** Który z poniższych obrazków przedstawia układ współrzędnych w plikach svg:

- 19. Obrót odwzorujący osie $x \mapsto y \mapsto z \mapsto x$ jest obrotem
- **a)** o 90°

c) o 120°

b) o 30°

- **d)** o 60°
- **20.** Który z poniżej wymienionych formatów plików graficznych jest opary o XML?
- a) TIFF

e) EPS

b) JPEG

f) GIF

c) SVG

g) żaden

d) PNG

- b) zadenh) wszystkie
- Każda poprawna odpowiedź warta jest 1 pinkt. Zasady zaliczenia: 19–20 punktów: 5, 17–18 punktów: $4\frac{1}{2}$, 14–16 punktów: 4, 11–13 punktów: $3\frac{1}{2}$, 8–10 punktów: 3. Mniej niż 8 punktów: 2.

Wstęp do grafiki maszynowej — 6 lutego 2020 Imię Nazwisko (indeks)

Czas testu 30 min. Nie można korzystać z materiałów pomocniczych. W poniższej tabeli wpisz kod najbardziej pasujących odpowiedzi na poszczególne pytania.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

- 1. Dany jest wielobok o wierzchołkach (0,0), (1,3), (2,2), (4,3), (6,0), (3,-1) jaką ilość krawędzi będzie zawierała tablica aktywnych krawędzi po ostatiej pętli algorytmu wypełniania obszaru liniami poziomymi
- **a**) 2
- **c)** 5
- **e**) 0
- **g**) 6

- **b**) 4
- **d**) 3
- f) 1 CHUJ WIE
- ${\bf 2.}$ Krzywa Béziera o punktach kontrolnych $p_0,\;p_1,\;p_2,\;p_3$ jest styczna do odcinka
- a) p_1p_2

c) p_3p_2

b) p_0p_2

- d) żadne z wynienionych
- **3.** Przy rzutowaniu prostopadłym równe odcinki będą mieć tę samą długość na ekranie
- a) jeżeli są równoodległe od kamery
- b) zawsze
- c) jeżeli są rónoległe
- d) nigdy
- e) jeżeli są równoległe i równoodległe od kamery
- **4.** Obrót odwzorujący osie $x \mapsto y \mapsto z \mapsto x$ jest obrotem
- **a)** o 90°

c) o 60°

b) o 120°

- **d)** o 30°
- **5.** Wektor b w bazie (c, a) ma wpółrzedne:

- a) (-1,2)
- e) (2,1)
- i) (2,-1)

- **b)** (-1, -2)
- f) (-2, -1)
- **j**) $(\frac{1}{2}, -\frac{1}{2})$

- (1,2)
- **g)** $(-\frac{1}{2}, \frac{1}{2})$
- **k**) $(-\frac{1}{2} \frac{1}{2})$

- **d)** $(\frac{1}{2}, \frac{1}{2})$
- **h)** (-2,1)
- 1) (1, -2)
- 6. Algorytm Bresenhama jest wykorzystywany
- a) do antyaliasinga przy teksturowaniu w przypadku, gdy rozdzielczość tekstury jest większa od rozdzielczości ekranu
- b) do eliminacji zasłoniętych powierzchni
- c) do kompresji danych w formacie PNG
- d) do kompresji danych w formacie JPEG
- e) do rasteryzaji odcinka
- f) do antyaliasinga przy teksturowaniu w przypadku, gdy rozdzielczość tekstury jest mniejsza od rozdzielczości ekranu

- 7. Natężenie światła odbitego rozproszono w modelu Phonga zależy od
- a) wektora normalnego do powierzchni
- b) kierunku do źródła światła
- c) kierunku do obserwatora
- d) tylko dwóch z wymienionych wektorów
- e) nie zależy od wymienionych wektorów
- f) wszystkich wymienionych wektorów
- 8. Dane jest okno, ograniczone prostymi $12x+13y \le 44$, $13x-12y \le 4$ i $11y-21x \le 6$ oraz czworokąt o wierzchołkach (-5,0), (0,5), (4,1), (1,-1). Ile razy zostanie obliczone obcinanie wielokąta półpłaszczyzną w algorytmie Sutherlanda-Hodgmana?
- **a**) 2
- **c**) 0
- e) 3

- **b**) 1
- **d**) 4
- 9. γ jest krzywa Béziera o punktach kontrolnych (0,0), (1,1), (2,1), (3,0). Krzywą, gładko połączoną z γ jest krzywa Béziera o punktach kontrolnych
- **a)** (0,0), (0,1), (3,1), (3,0)
- **b)** (3,0), (4,1), (5,1), (6,0)
- c) (3,0), (4,-1), (6,-2), (8,0)
- **d)** (0,0), (-2,-2), (2,1), (0,3)
- e) żadna z wymienionych
- **10.** Dane jest okno $-1 \leqslant x \leqslant 1$, $-1 \leqslant y \leqslant 1$ oraz odcinek [(0.5,0),(0,0.5)]. Ile razy zostanie obliczone przecięcie odcinka krawędziami ekranu przy obcinaniu algorytmem Lianga-Barsky'ego?
- **a**) 5
- **c)** 2
- e) 4

- **b**) 3
- **d**) 1
- **f)** 0
- 11. Dla wektorów i,j,kbazy kartezjańskiej $k\cdot k$ jest równe
- **a**) -1
- $\mathbf{d}) i$
- $\mathbf{g}) k$

- b) -k
- **e**) 0
- **h**) *j*

- **c**) 1
- \mathbf{f}) -j
- **i**) *i*
- 12. Ile trójkątów zostanie wyrenderowano poleceniem glDrawArrays($GL_TRIANGLE_STRIP$, 0, 6)
- a) 2b) 6
- **c**) 4
- **e**) 3
- **d**) 1
- **f)** 0
- 13. Który z poniżej wymienionych formatów plików graficznych jest opary o XML?
- a) PNG

e) GIF

b) JPEG

f) SVG

c) TIFF

g) wszystkie

d) EPS

h) żaden

g) 5

- **14.** Dane są cztery punkty x_1, x_2, x_3, x_4 w przestrzeni dwuwymiarowej. Które z poniższych wyrażeń jest niezależne od wyboru układu współrzędnych:
- a) $\frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{4}x_3 + \frac{1}{4}x_4$
- **d)** $\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4$
- **b)** $x_1 + x_2 + x_3 + x_4$
- e) żadne
- c) $\frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + \frac{1}{3}x_4$
- f) każde
- ${\bf 15.}\,$ Który z poniższych obrazków przedstawia układ współrzędnych w plikach eps:

16. Stożek o kącie przy wierzchołku 2α i wysokości h jest zaparametryzowany w sposób następujący:

$$\begin{pmatrix} y \sin \alpha \sin \theta \\ y \\ y \sin \alpha \cos \theta \end{pmatrix}$$

gdzie $0 \le y \le h,\, 0 \le \theta \le 360$. Które odw
zorowanie określa współrzędne teksturowe dla stożka:

a) $\left(\frac{\theta}{360}, \frac{y}{h}\right)$

- d) $(\alpha \frac{\theta}{360}, \frac{y}{h})$
- **b)** $(\alpha \frac{\theta}{360}, \alpha \frac{y}{h})$
- e) $(\frac{\theta}{360}, \sin \alpha \frac{y}{h})$

c) (θ, y)

- \mathbf{f}) $(\frac{\theta}{360}, \alpha \frac{y}{h})$
- 17. Zielony w modelu CMY to
- **a)** (0,1,0)
- **d)** (1, 1, 1)
- **g)** (1, 1, 0)

- **b)** (0, 0, 0)
- e) (0,0,1)
- **h)** (0, 1, 1)
- **c)** (1,0,0) **f)** (1,0,1)
- 18. Który z poniższych punktów zostanie wyświetlony przy rasteryzacji odcinka [(-17,-1),(17,5)] algorytmem Bresenhama:
- **a)** (10,0)
- c) (10,4)
- **e)** (10, 3)

- **b)** (10, 2)
- **d)** (10, 1)
- 19. Rzutowanie perspektywiczne jest przekształceniem afinicznym

a) tak

- b) nie
- **20.** Krzywa Béziera o punktach kontrolnych (-1,0), (2,9), (8,3) pokrywa się z krzywa Béziera o punktach kontrolnych **a)** (-1,0), $(\frac{1}{2},4\frac{1}{2})$, (5,6), (8,3)
- **b)** (-1,0), (1,6), (4,7), (8,3)
- c) (-1,0), (0,3), (6,5), (8,3)
- **d)** (-1,0), (2,9), (8,9), (8,3)
- e) żadna z wymienionych

Każda poprawna odpowiedź warta jest 1 pinkt. Zasady zaliczenia: 19–20 punktów: 5, 17–18 punktów: $4\frac{1}{2}$, 14–16 punktów: 4, 11–13 punktów: $3\frac{1}{2}$, 8–10 punktów: 3. Mniej niż 8 punktów: 2.

Grafika Komputerowa — 22 czerwca 2020

Kovyrina Daryna (s19379)

Czas testu 30 min. Nie można korzystać z materiałów pomocniczych. W poniższej tabeli wpisz kod najbardziej pasujących odpowiedzi na poszczególne pytania.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

- 1. Co to jest obiekt Empty w Blenderze?
- a) jest to inaczej obiekt pusty w środku
- b) jest to niewidzialny na renderach obiekt nie posiadający żadnych własności poza położeniem, macierzami obrotu oraz skalą
- c) jest to dowolny obiekt o nazwie nadanej przez użytkownia, która brzmi "Empty"
- d) jest to każdy obiekt niewidoczny
- **2.** Wektor c w bazie (b, a) ma wpółrzedne:

- a) (-1, -2)
- e) $(-\frac{1}{2}, \frac{1}{2})$
- i) $(\frac{1}{2}, \frac{1}{2})$

- **b)** $\left(-\frac{1}{2}, -\frac{1}{2}\right)$
- f) (1,2)
- \mathbf{j}) (-2,1)

- c) (-1,2)
- (2,-1)
- **k)** (2,1)

- **d)** (-2, -1)
- **h)** $(\frac{1}{2}, -\frac{1}{2})$
- 1) (1, -2)
- **3.** Który z poniższych punktów zostanie wyświetlony przy rasteryzacji odcinka [(-17,-4),(17,5)] algorytmem Bresenhama:
- **a)** (10,0)
- **c)** (10, 3)
- **e)** (10, 2)

- **b)** (10, 1)
- **d)** (10, 4)
- **4.** Który z poniższych obrazków przedstawia układ współrzednych w plikach eps:

- 5. Obrót odwzorujący osie $x \mapsto y \mapsto z \mapsto x$ jest obrotem
- **a)** o 60°

c) o 30°

b) o 120°

- **d)** o 90°
- **6.** W OpenGL do eliminacji zasłoniętych powierzchni używany jest
- a) algorytm buforu głębokości
- b) algorytm malarza
- c) nadpróbkowanie

- d) algorytm Bresenhama
- e) żadne z wymienionych
- 7. Receptory czopkowe w oku ludzkim
- a) reagują już przy niskim poziomie oświetlenia i nie pozwalają na rozróżnianie barw
- b) reagują dopiero przy wyższym poziomie oświetlenia i odpowiadają za powstawanie wrażenia barwy
- **c)** reagują dopiero przy wyższym poziomie oświetlenia i nie pozwalają na rozróżnianie barw
- d) reagują już przy niskim poziomie oświetlenia i odpowiadają za powstawanie wrażenia barwy
- 8. Dla wektorów i, j, k bazy kartezjańskiej $j \times k$ jest równe
- **a**) 0
- d) -
- **g**) 1

- $\mathbf{b}) i$
- **e**) *j*
- $\mathbf{h)} \ -j$

- **c**) k
- **f)** -1
- i) -k
- 9. Ile trójkątów zostanie wyrenderowano poleceniem glDrawArrays(GL_TRIANGLES, 0, 6)
- **a**) 5
- **c**) 0
- e) 4
- **g**) 3

- **b**) 1
- **d**) 6
- **f**) 2
- 10. Co jest przyczyną straty danych w formacie JPEG?
- a) stosowanie mapy kolorów
- b) algorytm Adam7
- c) filtracja
- d) kwantyzacja
- e) dyskretna transformacja kosinusowa
- f) każde z wymienionych
- g) żadne z wymienionych
- 11. Format PNG pozwala na wyszukiwanie informacji tekstowej
- a) tak

- b) nie
- 12. Który z poniżej wymienionych modeli syntezy barw jest podstawa formatu plików JPEG?
- a) CMY
- c) RGB
- e) YUV

- **b)** YCbCr
- d) HSV (HSL)
- f) CIE XYZ
- 13. Unit teksturowy w OpenGL względem programowania jest
- a) liczba całkowita
- b) adresem obszaru pamięci karty graficznej
- c) tablicą liczb rzeczysitych
- d) liczbą rzeczysiatą
- $\mathbf{e})$ tablicą liczb całkowitych

14. Która z poniższych macierzy jest macierzą rzutowania prostopadłego

$$\mathbf{a}) \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{d}) \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\mathbf{b}) \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{e}) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{c}) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- f) żadna
- 15. Co to są tekstury proceduralne w Blenderze?
- a) Są to tekstury, które tworzą procedury podczas renderowania
- b) Są to procedury wykonujące określoną procedurę związaną z danym obiektem
- ${\bf c})$ Są to tekstury, których zadaniem jest generowanie innych tekstur
- d) Są to procedury które generują określony wzór graficzny na podstawie algorytmów wbudowanych w Blendera
- 16. Oś Ox w OpenGL wzgledem monitoru jest skierowana
- a) w dół

c) w górę

b) w lewo

- d) w prawo
- e) odpowiedź zależy od implementacji sprzętowej
- f) w kierunku przeciwnym od użytkownika

- g) w kierunku użytkownika
- 17. Stożek o kącie przy wierzchołku 2α i wysokości h jest zaparametryzowany w sposób następujący:

$$\begin{pmatrix} y \sin \alpha \sin \theta \\ y \\ y \sin \alpha \cos \theta \end{pmatrix},$$

gdzie $0 \le y \le h$, $0 \le \theta \le 360$. Które odwzorowanie określa współrzędne teksturowe dla stożka:

a) (θ, y)

- **d)** $(\frac{\theta}{360}, \alpha \frac{y}{h})$
- **b)** $(\frac{\theta}{360}, \sin \alpha \frac{y}{h})$
- e) $\left(\frac{\theta}{360}, \frac{y}{h}\right)$
- c) $(\alpha \frac{\theta}{360}, \frac{y}{h})$

- f) $(\alpha \frac{\theta}{360}, \alpha \frac{y}{h})$
- ${\bf 18.}$ Natężenie światła odbitego rozproszono w modelu Phonga ${\bf nie}$ zależy od
- a) kierunku do obserwatora
- b) wektora normalnego do powierzchni
- c) kierunku do źródła światła
- d) dwóch z wymienionych wektorów
- e) wszystkich wymienionych wektorów
- 19. Barwa o współrzędnych $(\frac{1}{2},0,0)$ w przestrzeni RGB będzie miała w CMY współrzędne
- a) $(1, \frac{1}{2}, \frac{1}{2})$

c) $(\frac{1}{2}, 1, 1)$

b) $(0,\frac{1}{2},\frac{1}{2})$

- **d)** $(\frac{1}{2},0,0)$
- **20.** Przy rzutowaniu prostopadłym równe odcinki będą mieć tę samą długość na ekranie
- a) nigdy
- b) jeżeli są równoodległe od kamery
- c) jeżeli są równoległe i równoodległe od kamery
- d) zawsze
- e) jeżeli są równoległe

Każda poprawna odpowiedź warta jest 1 pinkt. Zasady zaliczenia: 19–20 punktów: 5, 17–18 punktów: $4\frac{1}{2}$, 14–16 punktów: 4, 11–13 punktów: $3\frac{1}{2}$, 8–10 punktów: 3. Mniej niż 8 punktów: 2.

Grafika Komputerowa — 30 czerwca 2021

Saja Mikołaj (s21476)

Czas testu 30 min. Nie można korzystać z materiałów pomocniczych. W poniższej tabeli wpisz kod najbardziej pasujących odpowiedzi na poszczególne pytania.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

- 1. Unit teksturowy w OpenGL względem programowania iest
- a) tablicą liczb rzeczysitych
- b) liczbą całkowitą
- c) tablicą liczb całkowitych
- d adresem obszaru pamięci karty graficznej
- e) liczbą rzeczysiatą
- 2. Co jest przyczyną straty danych w formacie PNG?
- a) stosowanie mapy kolorów
- kwantyzacja
- c) algorytm Adam7
- d) filtracja
- e) dyskretna transformacja kosinusowa
- f) każde z wymienionych
- g) żadne z wymienionych
- **3.** Krzywa Béziera o punktach kontrolnych $p_0,\ p_1,\ p_2,\ p_3$ jest styczna do odcinka
- **a)** p_3p_2

 $\nearrow p_0 p_2$

b) p_1p_2

- d) żadne z wynienionych
- 4. Zielony w modelu CMY to
- **a)** (0,0,1)
- (1,1,0)
- \mathbf{g}) (0,1,0)

- **b)** (0, 1, 1)
- **e)** (1,0,0)
- \mathbf{c}) (0,0,0)
- f) (1,0,1)
- **h**) (1, 1, 1)
- 5. Ile trójkątów zostanie wyrenderowano poleceniem glDrawArrays(GL_TRIANGLE_FAN, 0, 6)
- a) 4
- **c**) 3
- e) 1
- **g)** 0

- **b**) 6
- **d**) 5
- **f**) 2
- **6.** Który z poniższych punktów zostanie wyświetlony przy rasteryzacji odcinka [(-17,-1),(17,5)] algorytmem Bresenhama:
- **a)** (10, 1)
- **c)** (10,0)
- **e)** (10, 2)

- **b)** (10, 3)
- **d)** (10, 4)
- 7. Korekcja gamma służy
- a) do usuwania zniekształceń wprowadzonych przez monitor
- b) do usuwania zniekształceń wprowadzonych przez zjawisko rozbłysku gamma
- c) do usuwania zniekształceń wprodawzonych przez używanie stratnej kompresji
- d) do usuwania zniekształceń wprodawzonych przez używanie projekcji perspektywicznej

- 8. Zjawisko aliasinga występuje przy teksturowaniu
- a) w przypadku gdy rozdzielczość tekstury jest mniejsza od rozdzielczości monitora
- b) w obu przypadkach
- c) alisaing nie występuje przy teksturowaniu
- d) w przypadku gdy rozdzielczość tekstury jest większa od rozdzielczości monitora
- 9. Natężenie odbitego światła naturalnego w modelu Phonga zależy od
- kierunku do źródła światła
- b) kierunku do obserwatora
- c) wektora normalnego do powierzchni
- d) tylko dwóch z wymienionych wektorów
- e) wszystkich wymienionych wektorów
- f) nie zależy od wymienionych wektorów
- 10. Szary obszar z obrazka jest wypełniany algorytmem z wykorzystaniem stosu zawieszonych zadań.

Ile pikseli będzie zawierał stos po ostatniej iteracji algorytmu?

- a) połowę ilości szarych pikseli na obrazku
- **b**) 0
- zależy od piksela początkowego
- **d**) 1
- e) tyle, ile jest szarych pikseli na obrazku
- 11. Z czego składa się mesh sześcianu?
- a) 12 vertices, 6 faces, 6 edges
- **b)** 8 vertices, 6 faces, 16 edges
- c) 8 vertices, 6 faces, 12 edges
- d) 6 vertices, 8 faces, 16 edges
- 12. Dla wektorów i,j,kbazy kartezjańskiej $i\times i$ jest równe
- **a)** 0
- **d**) -1
- $\mathbf{g}) j$

- b) -k
- **e**) j
- $\mathbf{h}) -i$

- **c**) k
- **f**) 1
- **i)** *i*

- 13. Która funkcja odwzorowuje przedział [-1,1]na przedział $[-\pi,\pi]?$
- a) $y = -\pi \frac{x-1}{-2} + \pi \frac{x+1}{2}$
- $\mathbf{d)} \ y = \pi x$
- **b)** $y = -\pi + \pi(x+1)$
- e) wszystkie
- c) $y = \pi + \pi(x 1)$
- **X** żadna
- 14. Macierz przesunięcia równoległego o wektor (1,2,3) to

e) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

- $\mathbf{f}) \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$
- $\mathbf{g)} \ \left(1 \quad 2 \quad 3\right)$

- $\mathbf{h)} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- i) tej transformacji nie da się określić macierzą
- 15. Oś Ox w OpenGL wzgledem monitoru jest skierowana
- a) w prawo

c) w dół

b) w górę

- d) w lewo
- e) w kierunku przeciwnym od użytkownika
- f) w kierunku użytkownika
- g) odpowiedź zależy od implementacji sprzętowej
- ${\bf 16.}$ Rzutowanie prostopadłe jest przekształceniem afinicznym
- a) tak

- b) nie
- 17. Wektor $\overrightarrow{B_1 A_4}$ ma wpółrzędne:

 B_1 B_2 A_3 A_1 A_2 B_3 B_4 B_2 B_3 A_4 A_4 A_5 A_5 A_5 A_6 A_7 A_8 A_8 A_8 A_9 A_9

 B_{4}

 B_3

a) (-2,2,-2)

 \mathbf{q}) (-2,0,0)

- **b)** (0, 2, 2)
- \mathbf{j}) (2,0,-2)
- r) (-2,0,2)

- c) (0,-2,-2)
- **k)** (2, -2, -2)
- s) (2,0,0)

- **d)** (-2,0,-2)**e)** (0,2,-2)
- 1) (-2, -2, 0)m) (0, -2, 0)
- 3) (2,0,0)

- (2,0,2)
- (-2,2,0)
- **t)** (2, 2, 0)

- g) (-2, -2, 2)
- o) (2,2,2)
- **u)** (0,0,2)

- **h)** (2, -2, 0)
- **p)** (0, -2, 2)
- \mathbf{v}) (0,0,-2)
- **18.** Który z poniższych obrazków przedstawia krzywą Béziera trzeciego stopnia:

- **a)** d
- e) ad
- i) żaden
- m) ac

n) bd

- b) ac) cd
- f) bg) ab
- j) abd
- k) abc
- d) abcd h) c
 - c
- **W**bc
- o) bcd
- 19. Do renderowania cienia w OpenGL używany jest
- a) nadpróbkowanie
- 🔪 algorytm buforu głębokości
- c) algorytm Bresenhama
- d) algorytm malarza
- e) żadne z wymienionych
- **20.** Format DjVu pozwala na wyszukiwanie informacji tekstowej
- a) nie

b) tak

Każda poprawna odpowiedź warta jest 1 pinkt. Zasady zaliczenia: 19–20 punktów: 5, 17–18 punktów: $4\frac{1}{2}$, 14–16 punktów: 4, 11–13 punktów: $3\frac{1}{2}$, 8–10 punktów: 3. Mniej niż 8 punktów: 2.