Lecture 5: Systems of nonlinear equations

COMP5930M Scientific Computation

Today

Notation

Newton's method

The Jacobian matrix

Efficiency

Next

Notation

► Single equation in a single unknown

$$F(x) = 0$$

n equations in n unknowns

$$F(x) = 0$$

 $\underline{\mathbf{x}}$ is a vector $\{x_1, x_2, ..., x_n\}$ of n unknown values $\underline{\mathbf{F}}$ is a set $\{F_1(\mathbf{x}), F_2(\mathbf{x}), ..., F_n(\mathbf{x})\}$ of n nonlinear equations

The nonlinear problem

Find the *n*-dimensional point $\{x_j^*\}$, j = 1, 2, ...n such that the set of functions

$$F_i(x_j^*) = 0$$
, $i = 1, 2, ...n$ simultaneously

Example: n = 2 system

Find (x_1^*,x_2^*) such that $F_1(x_1^*,x_2^*)=0$ and $F_2(x_1^*,x_2^*)=0$ simultaneously

$$F_1(x_1, x_2) = 3 x_1^2 + 4 x_1 x_2$$

 $F_2(x_1, x_2) = x_1^2 + 2 x_1 x_2^2$

Example: n = 2 system

$$\frac{\partial F_1}{\partial x_1} = 6 x_1 + 4 x_2, \qquad \frac{\partial F_1}{\partial x_2} = 4 x_1$$

$$\frac{\partial F_2}{\partial x_1} = 2x_1 + 2 x_2^2, \qquad \frac{\partial F_2}{\partial x_2} = 4 x_1 x_2$$

Newton's Method

- Assume we have access to the set of functions F(x)
- Assume we know an initial state x₀

These first two are the minimum information necessary

Assume we have access to all the partial derivatives of **F** with respect to **x**

$$\frac{\partial F_i}{\partial x_i}$$
, $i = 1, 2, ..., n$, $j = 1, 2, ..., n$

Derivation of Newton's method in the vectorial case

Given current iterate \mathbf{x}_k , find an increment $\delta \in \mathbb{R}^n$ s.t.

$$\mathbf{F}(\mathbf{x}_k + \delta) = 0. \tag{1}$$

If the function **F** is differentiable at \mathbf{x}_k , we can linearise it:

$$\mathbf{F}(\mathbf{x}_k + \delta) = \mathbf{F}(\mathbf{x}_k) + \frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_k)\delta + o(|\delta|^2).$$

Derivation of Newton's method in the vectorial case

Given current iterate \mathbf{x}_k , find an increment $\delta \in \mathbb{R}^n$ s.t.

$$\mathbf{F}(\mathbf{x}_k + \delta) = 0. \tag{1}$$

If the function **F** is differentiable at \mathbf{x}_k , we can linearise it:

$$\mathbf{F}(\mathbf{x}_k + \delta) = \mathbf{F}(\mathbf{x}_k) + \frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_k)\delta + o(|\delta|^2).$$

Dropping the second order terms, we can solve for δ from (1):

$$\mathbf{x}_{k+1} - \mathbf{x}_k = \delta = -\left[\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_k)\right]^{-1} \mathbf{F}(\mathbf{x}_k).$$

Derivation of Newton's method in the vectorial case

Given current iterate \mathbf{x}_k , find an increment $\delta \in \mathbb{R}^n$ s.t.

$$\mathbf{F}(\mathbf{x}_k + \delta) = 0. \tag{1}$$

If the function **F** is differentiable at \mathbf{x}_k , we can linearise it:

$$\mathbf{F}(\mathbf{x}_k + \delta) = \mathbf{F}(\mathbf{x}_k) + \frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_k)\delta + o(|\delta|^2).$$

Dropping the second order terms, we can solve for δ from (1):

$$\mathbf{x}_{k+1} - \mathbf{x}_k = \delta = -\left[\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_k)\right]^{-1} \mathbf{F}(\mathbf{x}_k).$$

The algorithm

Generate a sequence of approximations $\boldsymbol{x}_1, \ \boldsymbol{x}_2, \ \dots \ using$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x}_k)\right)^{-1} \mathbf{F}(\mathbf{x}_k)$$

starting from an initial guess \mathbf{x}_0 .

The Jacobian Matrix

The $n \times n$ matrix of partial derivatives is called the Jacobian, J, where $J_{ij} = \frac{\partial F_i}{\partial x_i}$

Newton's Method is more compactly written as

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1}\mathbf{F}(\mathbf{x}_k)$$

This implies the solution of an $n \times n$ linear system at every step

This is a costly part of the algorithm

Rewrite as 2-step algorithm

$$\mathbf{J}(\mathbf{x}_k)\delta = -\mathbf{F}(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \delta$$

Notes:

- Step 2 is trivial in this basic form
- Step 1 is a linear algebra problem: system of $n \times n$ linear equations with J a known $n \times n$ matrix at each iteration

Computational cost

	Function calls	Algorithmic
Evaluate J	?	n ²
Solve $\mathbf{J}\delta = -\mathbf{F}$	1	n^3
Update \mathbf{x}_{k+1}	0	n

Evaluating the Jacobian in practice

- Analytical Jacobian may be expensive to evaluate
- ► Numerical approximation of Jacobian requires 2*n*² evaluations
- Quasi-Newton methods rely on approximation of Jacobian that is updated at each step

Evaluating the Jacobian numerically

- ▶ We require $\frac{n^2}{n^2}$ values to fill the Jacobian matrix
- Numerical approximation term-by-term

$$\frac{\partial F_i}{\partial x_j} \approx \frac{F_i(x_1, ..., x_j + \delta_j, ..., x_n) - F_i(x_1, ..., x_n)}{\delta_j}$$

- Efficient implementation
 - \triangleright Can simultaneously perturb all the F_i with respect to x_i
 - Equivalent to n Matlab function calls
 - where a function call evaluates all the F_i

Jacobian for the n=2 system

```
% Vectorised version of the function F(x1,x2)
F=0(x1,x2)([3*x1.^2 + 4.*x1.*x2;
          x1.^2 + 2*x1.*x2.^2);
% Optimal choice of perturbation parameter h
h = 10 * sqrt(eps);
% Call F(x1,x2) once and store
Fx = F(x1, x2):
% Numerical Jacobian based on difference approximation
dFnum = [ (F(x1+h,x2) - Fx) / h ...
          (F(x1.x2+h) - Fx) / h:
```

Computational cost

	Function calls	Algorithmic
Evaluate J	n	n ²
Solve $\mathbf{J}\delta = -\mathbf{F}$	1	n ³
Update \mathbf{x}_{k+1}	0	n

Problems?

- More difficult to make the algorithm robust overall
 - There is no bisection method in higher dimensions
- For this reason damped Newton-like methods are preferred
 - ▶ Take steps in the direction $\frac{\delta}{||\delta||}$ but control the step size to avoid divergence when the Jacobian $\partial \mathbf{F}/\partial \mathbf{x} \approx \mathbf{0}$.
 - In some circumstances this allows global convergence of Newton-type algorithms

Next time...

Tutorial

- Solving nonlinear systems with MATLAB
- Problems with convergence of non-damped Newton's method

Lecture

- Line-search algorithms for Newton's method
- Computational algorithms for systems