Лекция 11

11. Преобразование областей под действием фазового потока. Теорема Пуанкаре-Бендиксона

Продолжая изучение системы уравнений вида

$$\dot{u} = f(u, v); \tag{1}$$

$$\dot{v} = g(u, v), \tag{2}$$

мы рассмотрим вопрос о том, как изменяются площади областей на фазовой плоскости под воздействием фазового потока. Также будет сформулировано важное утверждение о возможных типах поведения траекторий, заключенных в ограниченной области фазовой плоскости

11.1 Преобразование фазового объема под действием фазового потока.

Как уже указывалось раньше, правые части этой системы задают на фазовой плоскости фазовый поток V. Изучим, как изменяется площадь конечной области Ω под воздействием фазового потока. Напомним следующую классическую теорему:

Формула Грина: Пусть Ω - конечная область на плоскости (u,v), причем $\partial\Omega$ - кусочно-гладкий замкнутый контур. Пусть функции P(u,v),Q(u,v) непрерывны на замкнутом множестве \bar{G} , а их частные производные существуют и непрерывны в Ω . Тогда

$$\int\limits_{\partial\Omega} P \ du + Q \ dv = \iint\limits_{\Omega} \left\{ \frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} \right\} \ du dv$$

Теорема 0.1 (о фазовом объеме) Пусть Ω_0 - конечная область на плоскости (u,v), ограниченная кусочно-гладким контуром $\partial\Omega_0$. Пусть f(u,v) и g(u,v) - дифференцируемые функции, и Ω_t - множество, получающееся в результате действия фазового потока за время t на Ω_0 . Пусть S(t) - площадь Ω_t . Тогда справедлива формула

$$\dot{S}(t) = \int_{\Omega_t} \left(\frac{\partial f}{\partial u} + \frac{\partial g}{\partial v} \right) du dv \tag{3}$$

Рис.1. К доказательству теоремы о фазовом объеме

Несмотря на то, что в названии теоремы звучит слово "объем", изучая фазовые потоки на плоскости, мы, конечно, будем говорить о площадях, а не об объемах. Вместе с тем, теорема допускает обобщение на многомерный случай и именно этим объясняется ее название.

Доказательство. Воспользуемся тем, что площадь области Ω на плоскости (u,v), ограниченной контуром $\partial\Omega$, равна

$$S = \iint_{\Omega} du dv = \frac{1}{2} \int_{\partial \Omega} -v \ du + u \ dv \tag{4}$$

(последнее равенство следует непосредственно из формулы Грина). Применим формулу (4) к Ω_t . Будем считать (для простоты), что на контуре $\partial\Omega_t$ можно ввести единую параметризацию $u(\xi),\ v(\xi),$ $\xi\in[a;b).$ Имеем

$$S(t) = \frac{1}{2} \int_{a}^{b} \left(-v(\xi)u'(\xi) + u(\xi)v'(\xi) \right) d\xi$$

Здесь штрих означает производную по ξ .

Рассмотрим теперь область $\Omega_{t+\Delta t}$, полученную действием фазового потока на область Ω_t за время Δt (Puc.1). Опустим доказательства того что (a) это именно *область*, т.е. связное открытое множество; (б) кусочно гладкая граница $\partial \Omega_t$ перейдет в кусочно гладкую границу $\partial \Omega_{t+\Delta t}$. Для площади области $\Omega_{t+\Delta t}$ имеем

$$S(t+\Delta t) = \frac{1}{2} \int_{\partial \Omega_{t+\Delta t}} -v \ du + u \ dv$$

Каждая точка (\tilde{u}, \tilde{v}) границы $\partial \Omega_{t+\Delta t}$ является результатом воздействия фазового потока за время Δt на какую-то точку (u, v) границы $\partial \Omega_t$, причем

$$\tilde{u} = u + f(u, v)\Delta t + o(\Delta t), \quad \tilde{v} = v + g(u, v)\Delta t + o(\Delta t)$$

Введем на $\partial\Omega_{t+\Delta t}$ параметризацию. Это будем делать так: используем тот же параметр $\xi\in[a;b)$, причем точке (\tilde{u},\tilde{v}) будет сопоставлять то же значение ξ , которое соответствовало *прообразу* этой точки при действии фазового потока, т.е. точке (u,v), лежащей на границе $\partial\Omega_t$. Имеем

$$S(t + \Delta t) =$$

$$= \frac{1}{2} \int_{a}^{b} \left[-(v + g(u, v))\Delta t \right) \cdot (u' + (f_{u}(u, v)u' + f_{v}(u, v)v')\Delta t) +$$

$$+ (u + f(u, v)\Delta t) \cdot (v' + (g_{u}(u, v)u' + g_{v}(u, v)v')\Delta t) \right] d\xi + o(\Delta t)$$

Здесь всюду предполагается, что $u=u(\xi),\,v=v(\xi)$ и использованы формулы для полной производной по ξ от $f(u(\xi),v(\xi))$ и $g(u(\xi),v(\xi))$. Далее

$$S(t + \Delta t) = \frac{1}{2} \int_{a}^{b} \left[-vu' + uv' \right] d\xi +$$

$$+ \frac{\Delta t}{2} \int_{a}^{b} \left[-g(u, v)u' - f_{u}(u, v)u'v - f_{v}(u, v)v'v + f(u, v)v' + g_{u}(u, v)u'u + g_{v}(u, v)v'u \right] d\xi + o(\Delta t)$$

Переходя к интегралам второго рода, имеем

$$S(t + \Delta t) = \frac{1}{2} \int_{\partial \Omega_t} -v \ du + u \ dv +$$

$$+ \frac{\Delta t}{2} \int_{\partial \Omega_t} (-g(u, v) - f_u(u, v)v + g_u(u, v)u) \ du +$$

$$+ (f(u, v) - f_v(u, v)v + g_v(u, v)u) \ dv + o(\Delta t)$$

Первый из двух интегралов в правой части равен S(t). Ко второму интегралу применим формулу Грина. Так как

$$\frac{\partial}{\partial u}(f(u,v) - f_v(u,v)v + g_v(u,v)u) =$$

$$= f_u(u,v) - f_{uv}(u,v)v + g_v(u,v) + g_{uv}(u,v)u$$

$$\frac{\partial}{\partial v}(-g(u,v) - f_u(u,v)v + g_u(u,v)u) =$$

$$= -g_v(u,v) - f_{uv}(u,v)v - f_u(u,v) + g_{uv}(u,v)u$$

то две пары членов взаимно уничтожатся, а $f_u(u,v)$ и $g_v(u,v)$ удвоятся. Окончательно, получим

$$S(t + \Delta t) - S(t) = \Delta t \int_{\Omega_t} (f_u(u, v) + g_v(u, v)) \ dudv + o(\Delta t)$$

откуда и следует формула (3). ■

Замечание. Под интегралом в формуле (3) стоит дивергенция div F двухкомпонентного векторного поля F = (f(u, v), g(u, v)).

Следствие 1. Если $f_u(u,v)+g_v(u,v)>0$ или $f_u(u,v)+g_v(u,v)<0$ в некоторой области G плоскости (u,v), то система (1)-(2) не имеет замкнутых траекторий в этой области. Действительно, если бы такая траектория имелась, то фазовый поток либо с ростом t, либо с его уменьшением, увеличивал бы площадь охватываемой ей области, а это неизбежно бы привело к пересечению траекторий.

Cnedcmeue 2. Фазовый поток гамильтоновой системы сохраняет площади. Действительно, для гамильтоновой системы имеем

$$\dot{u} = H_v(u, v)$$

$$\dot{v} = -H_u(u, v)$$

Таким образом

$$f_u(u,v) + g_v(u,v) = H_{vu}(u,v) - H_{uv}(u,v) = 0$$

Таким образом, для площади любой конечной области Ω_t , преобразуемой фазовым потоком, имеем $\dot{S}(t)=0$.

11.2. Теорема Пуанкаре-Бендиксона

Анализируя приведенные выше примеры фазовых портретов, можно выделить различные типы траекторий, которые на этих портретах наблюдались. В частности, мы сталкивались с траекториями, которые на фазовой плоскости "уходили на бесконечность" (u и/или v неограниченно росли по модулю), входили в состояние равновесия или выходили из него, соединяли два состояния равновесия и т.д. В некоторых примерах возникали замкнутые траектории, соответствующие периодическим решениям. Естественно возникает следующий вопрос: насколько сложной в принципе может быть траектория, описываемая системой (1)-(2)? Вопрос этот достаточно серьезен: в дальнейшем мы столкнемся с тем, что системы дифференциальных уравнений могут описывать очень сложную хаотическую динамику.

Однако для автономных систем второго порядка вида (1)-(2) имеется строгий результат, "запрещающий" очень сложное поведение траекторий. Этот результат формулируется следующим образом.

Теорема 0.2 (Пуанкаре-Бендиксона) Пусть

- $\bar{\Omega}$ замкнутое и ограниченное подмножество плоскости (u,v);
- функции f(u, v) и g(u, v) непрерывно дифференцируемы в некотором открытом множестве, включающем $\bar{\Omega}$;
- ullet система (1)-(2) не имеет в $\bar{\Omega}$ состояний равновесия;
- имеется решение (u(t),v(t)) системы (1)-(2), которому при t>0 на фазовой плоскости соответствует траектория γ , причем $(u(t),v(t))\in \bar{\Omega}$ при всех t>0.

Тогда γ либо сама является замкнутой траекторией, либо γ неограниченно приближается к некоторой замкнутой траектории при $t \to +\infty$.

Доказательство теоремы Пуанкаре-Бендиксона нетривиально и выходит за пределы нашего курса.

Задачи:

1. На фазовой плоскости выделена конечная область. Она преобразуется фазовым потоком, задаваемым системой уравнений

$$\dot{u} = u + \sin 2v; \quad \dot{v} = v + \sin 2u.$$

Определите, через какое время t площадь области удвоится.

2. Выясните поведение траекторий вблизи неподвижной точки (0;0) для системы уравнений

$$\dot{u} = v + u\sqrt{u^2 + v^2}; \quad \dot{v} = -u + v\sqrt{u^2 + v^2}.$$

3. Выясните поведение траекторий вблизи неподвижной точки (0;0) для системы уравнений

$$\dot{u} = -v + u^3; \quad \dot{v} = u + v^3.$$

4. Выясните, возможны ли замкнутые траектории на фазовой плоскости для системы уравнений

$$\dot{u} = -u - uv; \quad \dot{v} = u - v + \frac{1}{2}v^2$$

5. Выясните, возможны ли замкнутые траектории, целиком лежащие в первом квадранте фазовой плоскости для системы уравнений

$$\dot{u} = u + u^3 v; \quad \dot{v} = v + u v^3$$

- **6.** Придумайте систему, у которой имеется ровно одна неподвижная точка и ровно три замкнутых траектории.
- 7. Покажите, что уравнение $\ddot{u} = F(u)$ не может иметь ровно два состояния равновесия, каждое из которых имеет тип "седло".