main

June 25, 2023

Projete um rachador de troncos de madeira que seja seguro e que possua as seguintes características: - Que possa ser guinchado a velocidades de rodovia atrás de uma caminhonete grande - Um motor a gasolina de 8 HP - Que acomode troncos de madeira de 2ft de comprimento - Que gere 15 toneladas de força de corte - Que tenha uma gaiola de segurança que cubra a área do tronco durante a divisão para prevenir ferimentos no operador.

```
[]: import sympy as sy
import numpy as np
import pandas as pd
from IPython.display import display, Math, Image
from math import radians, degrees, ceil
```

Neste projeto, a principal referência para os cálculos e configuração da caixa de redução é o Shigley's Mechanical Engineering Design

```
[]: Image('exemplo_shigley.png')
[]:
```


Todas as notações utilizadas nos cálculos seguem a mesma numeração da figura acima.

```
[]: Image('motor.png')

# https://produto.mercadolivre.com.br/

△MLB-2868528523-motor-a-gasolina-buffalo-bfg-7hp-1800rpm-4t-com-redutor-b7r-_JM
```

[]:

Motor A Gasolina Buffalo Bfg
7hp 1800rpm 4t Com Redutor B7r

MAIS VENDIDO 12° em Motores Estacionários Buffalo

R\$ 1.498 48
em 12x R\$ 14528

Ver os melos de pagamento

Chegará grátis sexta-feira
Comprando dentro das próximas 11 h 45 min
Ver mais formas de entrega

Retire grátis a partir de quinta-feira em uma agência Mercado Livre
Comprando dentro das próximas 11 h 45 min
Ver no mapa

Estoque disponível

```
[]: # Dados
H = 7  #hp - Potência nominal (motor mais próximo encontrado)
2 = 1800  #RPM - Rotação do eixo motor
5 = 30  #RPM - Rotação do eixo movido
display(f'Rotação de entrada (2): {sy.latex(2)} RPM')
display(f'Rotação de saída (5): {sy.latex(5)} RPM')
```

'Rotação de entrada (2): 1800 RPM'

'Rotação de saída (5): 30 RPM'

$$e = \frac{1}{60.0} = \frac{N_2}{N_3} \frac{N_4}{N_5}$$

$$\frac{N_2}{N_3} = \frac{N_4}{N_5} = \sqrt{\frac{1}{60.0}} = \frac{1}{7.74596669241483}$$

```
[]: # Número de dentes
     N2 = N4 = 16
     N3 = ceil(mG*(N2)) # ceil() arredonda pro int acima
     N5 = N3
     display(Math(f'N_2 = N_4 = {sy.latex(N2)} teeth'))
     display(Math(f'N_3 = N_5 = {sy.latex(N3)} teeth'))
    N_2 = N_4 = 16 teeth
    N_3 = N_5 = 124 teeth
[]: # Razão também é levemente arredondada
     mG = N3/N2
[]: # Recalculando rotação de saída
     5 = ((N2/N3)**2 * 2).evalf(4)
     display(Math(f'\\omega_5 = {sy.latex(5)} RPM'))
    \omega_5 = 29.97RPM
[]: 3 = 4 = (N2/N3)*1800
     display(Math('\\omega_3 = \\omega_4 = %s RPM'%sy.latex(3.evalf(3))))
```

 $\omega_3=\omega_4=232.0RPM$

Determinando torques usando a relação de potência:

$$H = T_2 \omega_2 = T_5 \omega_5$$

```
[]: T2 = (H/2)*((550))*(1/(2*np.pi))*(60)
display(Math(f'T_2 = {T2:.2f} lbf.ft'))
```

 $T_2 = 20.42lbf.ft$

```
[]: T3 = T2 * (2/3)
display(Math(f'T_3 = {T3:.2f} lbf.ft'))
```

 $T_3 = 158.29lbf.ft$

 $T_5 = 1226.77 lbf.ft$

Foi necessário definir um valor máximo pra altura da caixa. Como neste projeto, em relação às dimensões, o único requisito é que seja transportado numa caminhonete, para uma caixa de reduções existem infinitas possibilidades. Arbitrariamente, escolheu-se 25in para a altura Y, de acordo com a figura abaixo.

```
[]: Image('exemplo_shigley.png')
[]:
```


Nota-se que

$$Y = d_3 + \frac{d_2}{2} + \frac{d_5}{2} + \frac{2}{P} + folga + espessura$$

$$Y = \frac{N_3}{P} + \frac{N_2}{2P} + \frac{N_5}{2P} + \frac{2}{P} + folga + espessura$$

Como escolheu-se Y = 41in, folga = 0.5in e espessura = 1in, pode-se resolver essa equação para P afim de encontrar o passo diametral mínimo para esta altura de caixa.

Obs.: espessura da parede da caixa

```
[]: # Dimensões pensadas para a caixa (in)
Y = 41  # Altura
folga = 0.5  # Folga no interior da caixa para não dar interferência
espessura = 1  # Espessura da caixa
```

```
[]: # Estimou-se o passo diametral mínimo com base na altura Y
P_min = (N3 + N2/2 + N5/2 + 2) / (Y - folga - espessura)
display(f'P_min = {P_min} teeth/in')
```

 $'P_min = 4.96202531645570 \text{ teeth/in'}$

```
[]: # Arredondou-se para o próximo passo diametral padrão acima do mínimo obtido.

P = 5  # TODO: Caso altere valores no projeto, conferir P

d2 = d4 = N2 / P

display(Math(f'd_2 = d_4 = {sy.latex(d2)} in'))

d3 = d5 = N3 / P

display(Math(f'd_3 = d_5 = {sy.latex(d3.evalf())} in'))
```

```
dp = d2
    d_2 = d_4 = 3.2in
    d_3 = d_5 = 24.8in
[]: # Velocidade na linha primitiva
     V23 = (np.pi*d2*2/12)
     display(Math('V_{23}) = %s ft/min'%sy.latex(V23)))
     V45 = (np.pi*d5*5/12)
     display(Math('V_{45} = %s ft/min'%sy.latex(V45)))
    V_{23} = 1507.9644737231 ft/min
    V_{45} = 194.575849997023 ft/min
[]: # Carga transmitida
     W23 = (33000*(H/V23))
     display(Math("W^t_{23} = %s lbf"%W23))
     W45 = (33000*(H/V45))
     display(Math("W^t_{45}) = %s lbf"%W45))
    W_{23}^t = 153.18663272594927lbf
    W_{45}^t = 1187.19769181805lbf
```

0.1 Desgaste da Engrenagem 4

0.1.1 Está é a engrenagem mais crítica do projeto, que transmite a maior carga

```
[]: mN = 1 # para este tipo de engrenagem

\Phi = radians(20)

I = ((np.cos(\Phi)*np.sin(\Phi))/(2*mN))*(mG / (mG+1))

display(Math(f'I = {I:.5f}'))
```

I = 0.14233

A AGMA define um conjunto de números de qualidade, Q_v . Números de qualidade de 3 a 7 incluem maior parte das engrenagens comerciais. De 8 a 12 inclui engranens de extrema precisão. Neste projeto, escolheu-se $Q_v=7$.

```
[]: [Image('qv.png')
[]:
```



```
[]: # Kv - Fator Dinamico

Qv = 7

B = 0.25*(12 - Qv)**(2/3)
A = 50+56*(1-B)

Kv = ((A + sy.sqrt(V45)) / A)**B
display(Math(f'K_v = {Kv}'))
```

 $K_v = 1.15256735362156$

```
[]: # Largura de face
F = 3*(np.pi/P)
display(Math(f'F = {sy.latex(F)} in'))

# Arredondou-se F = 2in
F = 2  #TODO: Conferir caso haja alteração
display(Math(f'F = {sy.latex(F)} in'))
```

```
F = 1.88495559215388in
```

F = 2in

[]: Image('table14-9.png') # Utilizado em Cma

[]:

Table 14-9

Empirical Constants *A*, *B*, and *C* for Eq. (14–34), Face Width *F* in Inches*

Source: ANSI/AGMA
2001-D04.

Condition	A	В	С
Open gearing	0.247	0.0167	$-0.765(10^{-4})$
Commercial, enclosed units	0.127	0.0158	$-0.930(10^{-4})$
Precision, enclosed units	0.0675	0.0128	$-0.926(10^{-4})$
Extraprecision enclosed gear units	0.00360	0.0102	$-0.822(10^{-4})$

^{*}See ANSI/AGMA 2101-D04, pp. 20-22, for SI formulation.

 $C_{ma} = 0.158228$

 $K_m = 1.208228$

[]: Image('table14-8.png')

[]:

Table 14–8

Elastic Coefficient C_p (Z_E), $\sqrt{\text{psi}}$ ($\sqrt{\text{MPa}}$) Source: AGMA 218.01

		Gear Material and Modulus of Elasticity E _G , lbf/in² (MPa)*					
Pinion Material	Pinion Modulus of Elasticity E _p psi (MPa)*	Steel 30 × 10 ⁶ (2 × 10 ⁵)	Malleable Iron 25×10^6 (1.7×10^5)	Nodular Iron 24 × 10 ⁶ (1.7 × 10 ⁵)	Cast Iron 22 × 10 ⁶ (1.5 × 10 ⁵)	Aluminum Bronze 17.5×10^6 (1.2×10^5)	Tin Bronze 16×10^6 (1.1×10^5)
Steel	30×10^6	2300	2180	2160	2100	1950	1900
	(2×10^5)	(191)	(181)	(179)	(174)	(162)	(158)
Malleable iron	25×10^6	2180	2090	2070	2020	1900	1850
	(1.7 × 10 ⁵)	(181)	(174)	(172)	(168)	(158)	(154)
Nodular iron	24×10^6	2160	2070	2050	2000	1880	1830
	(1.7 × 10 ⁵)	(179)	(172)	(170)	(166)	(156)	(152)
Cast iron	22×10^6	2100	2020	2000	1960	1850	1800
	(1.5 × 10 ⁵)	(174)	(168)	(166)	(163)	(154)	(149)
Aluminum bronze	17.5×10^6	1950	1900	1880	1850	1750	1700
	(1.2×10^5)	(162)	(158)	(156)	(154)	(145)	(141)
Tin bronze	16×10^6	1900	1850	1830	1800	1700	1650
	(1.1 × 10 ⁵)	(158)	(154)	(152)	(149)	(141)	(137)

Poisson's ratio = 0.30.

Figure 14-15

Pitting resistance stress-cycle factor Z_N . (ANSI/AGMA 2001-D04.)


```
[]: # Fator de vida ZN = 1.4488*L4**-0.023 display(Math(f'Z_N = \{ZN:.3f\}')) Z_N = 0.937
[]: # Fator de confiabilidade, temperatura e razão de dureza KR = KT = CH = 1
[]: # Considerou-se fator de projeto de 1.2 SH = 1.2 SC = SH*c / ZN display(Math(f'S_c = \{int(SC)\} psi')) S_c = 125448psi
[]: Image('table14-6.png')
[]:
```

Table 14-6

Repeatedly Applied Contact Strength S_c at 10^7 Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Material Designation	Heat Treatment	Minimum Surface Hardness ¹	Allowable C Grade 1	ontact Stress Num Grade 2	ber,² 5 _c , psi Grade 3
Steel ³	Through hardened4	See Fig. 14-5	See Fig. 14–5	See Fig. 14-5	_
	Flame ⁵ or induction	50 HRC	170 000	190 000	_
	hardened ⁵	54 HRC	175 000	195 000	_
	Carburized and	See Table 9*	180 000	225 000	275 000
	hardened			1	
	Nitrided ⁵ (through	83.5 HR15N	150 000	163 000	175 000
	hardened steels)	84.5 HR15N	155 000	168 000	180 000
2.5% chrome (no aluminum)	Nitrided ⁵	87.5 HR15N	155 000	172 000	189 000
Nitralloy 135M	Nitrided ⁵	90.0 HR15N	170 000	183 000	195 000
Nitralloy N	Nitrided ⁵	90.0 HR15N	172 000	188 000	205 000
2.5% chrome (no aluminum)	Nitrided ⁵	90.0 HR15N	176 000	196 000	216 000

```
[]: SC = 150000
[]: # Fator de Segurança recalculado
nc = (SC*ZN) / c
display(Math(f'n_c = {nc}'))
```

 $n_c = 1.43485270922380 \,$

0.2 Flexão engrenagem 4

```
[]: Image('figure14-6.png')
# Fator de geometria J
```

[]:

Figure 14-6

Spur-gear geometry factors *J. Source:* The graph is from AGMA 218.01, which is consistent with tabular data from the current AGMA 908-B89. The graph is convenient for design purposes.

```
[]: J = 0.27

[]: = W45*Kv*(P/F)*((Km)/J)
display(Math(f'\sigma = { :.0f} psi'))

σ = 15308psi

[]: Image('figure14-14.png')
[]:
```

Figure 14-14

Repeatedly applied bending strength stress-cycle factor Y_N . (ANSI/AGMA 2001-D04.)


```
[]: YN = 1.6831*L4**-0.0323
display(Math(f'Y_N = {YN:.3f}'))
```

 $Y_N = 0.913$

[]: Image('table14-3.png')

[]:

Table 14-3

Repeatedly Applied Bending Strength S_t at 10^7 Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Material	Heat	Minimum Surface	Allowable I	ending Stress psi	Number 5 _{t,} 2
Designation	Treatment	Hardness ¹	Grade 1	Grade 2	Grade 3
Steel ³	Through-hardened Flame ⁴ or induction hardened ⁴ with type A pattern ⁵	See Fig. 14–2 See Table 8*	See Fig. 14–2 45 000	See Fig. 14–2 55 000	_
	Flame ⁴ or induction hardened ⁴ with type B pattern ⁵	See Table 8*	22 000	22 000	_
	Carburized and hardened	See Table 9*	55 000	65 000 or 70 000 ⁶	75 000
	Nitrided ^{4,7} (through- hardened steels)	83.5 HR15N	See Fig. 14–3	See Fig. 14–3	_
Nitralloy 135M, Nitralloy N, and 2.5% chrome (no aluminum)	Nitrided ^{4,7}	87.5 HR15N	See Fig. 14–4	See Fig. 14–4	See Fig. 14–4

```
[]: Image('figure14-3.png')
```

[]:

Figure 14-3

Allowable bending stress number for nitrided through-hardened steel gears (i.e., AISI 4140, 4340), S_t . The SI equations are: $S_t = 0.568H_B + 83.8$ MPa, grade 1, and $S_t = 0.749H_B + 110$ MPa, grade 2. (Source: ANSI/AGMA 2001-D04 and 2101-D04.)


```
[]: St = 82.3*325 + 12150
_all = St*YN
display(Math('\\sigma_{all} = %s psi'%(_all)))

\sigma_{all} = 35515.5801174513psi
[]: # Fator de segurança para flexão da engrenagem 4
n = _all /
display(Math(f'n = {n}'))

n = 2.32008776977278
```

0.3 Flexão e Desgaste da Engrenagem 5

0.3.1 Quase tudo é o mesmo que a Engrenagem 4, exceto J, Y_N, Z_N

```
[]: Image('14-6-2.png')
[]:
```



```
[]: = W45*Kv*(P/F)*((Km)/J)
     display(Math(f'\sigma = { :.0f} psi'))
    \sigma = 9612psi
[]: nc = (SC*ZN) / c
     display(Math(f'n_c = {nc}'))
    n_c = 1.50404657502894
[]: all = St*YN
     display(Math('\\sigma_{all} = %s psi'%(_all)))
    \sigma_{all} = 37944.0244351238psi
[]: n = _all /
     display(Math(f'n = {n}'))
    n = 3.94760403814920
    0.4 Desgaste Engrenagem 2
[]: # Kv - Fator Dinamico
     Qv = 7
     B = 0.25*(12 - Qv)**(2/3)
     A = 50+56*(1-B)
     Kv = ((A + sy.sqrt(V23)) / A)**B
     display(Math(f'K_v = \{Kv\}'))
    K_v = 1.40794142055001
[]:  # Reduziu-se para F = 1.5in já que essa engrenagem é menos requisitada
                    #TODO: Conferir caso haja alteração
     display(Math(f'F = {sy.latex(F)} in'))
    F = 1.5in
[]: # Fator de distribuição de carga Km
     Cpf = ((F)/(10*(dp))) - 0.0375 + 0.0125*(F)
     display(Math('C_{pf}) = %s'%Cpf))
     Cmc = 1
     Cpm = 1
     Cma = 0.127 + 0.0158*(F) + (-0.930*10**-4)*(F)**2
     display(Math('C_{ma} = %s'%Cma))
     Ce = 1
```

```
Km = 1 + Cmc*(Cpf*Cpm + Cma*Ce)
     display(Math('K_m = %s'%Km))
    C_{nf} = 0.0281250000000000004
    C_{ma} = 0.15049075
    K_m = 1.17861575
[]: c = Cp*sy.sqrt(W23*Ko*Kv*Ks*(Km/(dp*F))*(Cf/I))
     display(Math(f'\sigma_c = {int(c)} psi'))
    \sigma_c = 44365 psi
[]: L2 = 12000*60*2
     display(Math(f'L_2 = {(L2*10**-9):.3f} *10 rev'))
    L_2 = 1.296 * 10^9 rev
[]: ZN = 1.4488*L2**-0.023
     display(Math(f'Z_N = \{ZN:.3f\}'))
    Z_N = 0.894
[]: SC = SH*c / ZN
     display(Math(f'S_c = {int(SC)} psi'))
    S_c = 59539psi
[]: Image('table14-6.png')
```

[]:

Table 14-6

Repeatedly Applied Contact Strength S_c at 10⁷ Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Minimum Allowable Contact Stress Number, 2 Sc. psi Material Heat Surface **Designation Treatment** Hardness¹ Grade 1 Grade 2 Grade 3 Steel3 See Fig. 14-5 See Fig. 14-5 Through hardened4 See Fig. 14-5 Flame⁵ or induction 190 000 50 HRC 170 000 hardened5 54 HRC 175 000 195 000 Carburized and See Table 9* 180 000 225 000 275 000 Nitrided5 (through 83.5 HR15N 150 000 163 000 175 000 hardened steels) 84.5 HR15N 155 000 168 000 180 000 2.5% chrome Nitrided5 87.5 HR15N 155 000 172 000 189 000 (no aluminum) Nitrided5 170 000 Nitralloy 135M 90.0 HR15N 183 000 195 000 Nitralloy N Nitrided5 90.0 HR15N 172 000 188 000 205 000 2.5% chrome Nitrided5 90.0 HR15N 176 000 196 000 216 000 (no aluminum)

```
[]: SC = 150000
```

 $n_c = 3.02318200262943 \,$

0.5 Flexão Engrenagem 2

```
[]: J = 0.27 # Assim como engrenagem 5
YN = 1.6831*L2**-0.0323
display(Math(f'Y_N = {YN:.3f}'))
```

 $Y_N=0.855$

```
[ ]: = W23*Kv*(P/F)*((Km)/J)
display(Math(f'\sigma = { :.0f} psi'))
```

 $\sigma=3138psi$

[]: Image('table14-3.png')

[]:

Table 14-3

Repeatedly Applied Bending Strength S_t at 10^7 Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Material Designation	Heat Treatment	Minimum Surface Hardness ¹	Allowable I	ending Stress psi Grade 2	Number $S_{t,}^2$ Grade 3
Steel ³	Through-hardened Flame ⁴ or induction hardened ⁴ with type A pattern ⁵	See Fig. 14–2 See Table 8*	See Fig. 14–2 45 000	See Fig. 14–2 55 000	_
	Flame ⁴ or induction hardened ⁴ with type B pattern ⁵	See Table 8*	22 000	22 000	_
	Carburized and hardened	See Table 9*	55 000	65 000 or 70 000 ⁶	75 000
	Nitrided ^{4,7} (through- hardened steels)	83.5 HR15N	See Fig. 14–3	See Fig. 14–3	_
Nitralloy 135M, Nitralloy N, and 2.5% chrome (no aluminum)	Nitrided ^{4,7}	87.5 HR15N	See Fig. 14–4	See Fig. 14–4	See Fig. 14–4

```
[]: all = St*YN
display(Math('\\sigma_{all} = %s psi'%(_all)))
```

 $\sigma_{all} = 33242.56050678136psi$

```
[]: n = _all /
     display(Math(f'n = {n:.3f}'))
    n = 10.593
```

0.6 Desgaste e Flexão Engrenagem 3

```
[]: # Fator de distribuição de carga Km
     Cpf = ((F)/(10*(dp))) - 0.0375 + 0.0125*(F)
     display(Math('C_{pf}) = %s'%Cpf))
     Cmc = 1
     Cpm = 1
     Cma = 0.127 + 0.0158*(F) + (-0.930*10**-4)*(F)**2
     display(Math('C_{ma} = %s'%Cma))
     Ce = 1
     Km = 1 + Cmc*(Cpf*Cpm + Cma*Ce)
     display(Math('K_m = %s'%Km))
    C_{nf} = 0.0281250000000000004
    C_{ma} = 0.15049075
    K_m = 1.17861575
[]:] J = 0.43
     L3 = 12000*60*3
     display(Math(f'L_3 = {(L3*10**-8):.3f} *10 rev'))
     YN = 1.6831*L3**-0.0323
     display(Math(f'Y_N = {YN:.3f}'))
     ZN = 1.4488*L3**-0.023
     display(Math(f'Z_N = {ZN:.3f}'))
     c = Cp*sy.sqrt(W23*Ko*Kv*Ks*(Km/(dp*F))*(Cf/I))
     display(Math(f'\sigma_c = {int(c)} psi'))
      = W23*Kv*(P/F)*((Km)/J)
     display(Math(f'\sigma = { :.0f} psi'))
     SC = SH*c / ZN
     display(Math(f'S_c = {int(SC)} psi'))
     all = St*YN
     display(Math('\\sigma_{all} = %s psi'%(_all)))
```

```
nc = (SC*ZN) / c
     display(Math(f'n_c = {nc}'))
     n = _all /
     display(Math(f'n = {n:.3f}'))
    L_3 = 1.672 * 10^8 rev
    Y_N = 0.913
    Z_N = 0.937
    \sigma_c = 44365 psi
    \sigma=1971 psi
    S_c = 56800 psi
    \sigma_{all} = 35515.5801174513 psi
    n_c = 1.200000000000000
    n = 18.023
    Resumo:
    P = 5
[]: display(Math(f'd_2 = \{d2\} in, F = 1.5 in, 16 teeth'))
     display(Math(f'd_3 = {d3.evalf(3)}) in, F = 1.5in, 124 teeth'))
     display(Math(f'd_4 = {d4}) in, F = 2 in, 16 teeth'))
     display(Math(f'd_5 = \{d5.evalf(3)\} in, F = 2 in, 124 teeth'))
    d_2=3.2in, F=1.5in, 16 teeth \\
    d_3 = 24.8in, F = 1.5in, 124teeth
    d_4 = 3.2in, F = 2in, 16teeth
    d_5 = 24.8in, F = 2in, 124 teeth
```