Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*

Test 13

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că modulul numărului complex $z = \frac{1+2i}{1-2i}$ este egal cu 1.
- **5p** 2. Arătați că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (\sqrt{2} + 1)^x + (\sqrt{2} 1)^x$ este pară.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+2} = x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă ambele cifre divizibile cu 3.
- **5.** În triunghiul isoscel ABC cu AB = AC, ecuația mediatoarei laturii AC este y = 3x + 1 și ecuația perpendicularei din A pe BC este 2y = x + 7. Determinați coordonatele centrului cercului circumscris triunghiului ABC.
- **5p** 6. Determinați $x \in \left(0, \frac{\pi}{2}\right)$, știind că $\sin x \cos(\pi x) \sin(\pi x)\cos x = -1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & \ln a \\ 0 & 1 \end{pmatrix}$, unde $a \in (0, +\infty)$.
- **5p** a) Arătați că $\det(A(a)) = 1$, pentru orice $a \in (0, +\infty)$.
- **5p b**) Demonstrați că $A(a) \cdot A(b) = A(ab)$, pentru orice $a, b \in (0, +\infty)$.
- **5p** c) Determinați $a \in (0, +\infty)$, astfel încât $A(a) \cdot A(a) \cdot A(a) = \begin{pmatrix} 1 & 2020 \\ 0 & 1 \end{pmatrix}$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = \frac{1}{3}xy + x + y$.
- **5p** a) Demonstrați că $x \circ y = \frac{1}{3}(x+3)(y+3)-3$, pentru orice numere reale x și y.
- **5p b**) Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 3. Arătați că $f(xy) = f(x) \circ f(y)$, pentru orice numere reale x si y.
- **5p** c) Demonstrați că $x_1 \circ x_2 \circ ... \circ x_n = \frac{(x_1 + 3)(x_2 + 3) \cdot ... \cdot (x_n + 3) 3^n}{3^{n-1}}$, pentru orice $n \in \mathbb{N}$, $n \ge 2$ și orice numere reale $x_1, x_2, ..., x_{n-1}$ și x_n .

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(1,+\infty)\to\mathbb{R}$, $f(x)=\sqrt{\frac{x+1}{x-1}}$.
- **5p a)** Arătați că $f'(x) = -\frac{1}{(x-1)\sqrt{x^2-1}}, x \in (1,+\infty).$
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 2$, situat pe graficul funcției f.
- $|\mathbf{5p}|$ c) Determinați coordonatele punctului de intersecție a celor două asimptote ale graficului funcției f.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + \frac{x}{\sqrt{x^2 + 9}}$.
- **5p** a) Arătați că $\int_{0}^{1} \left(f(x) \frac{x}{\sqrt{x^2 + 9}} \right) dx = \frac{1}{3}.$
- **5p b)** Calculați $\int_{0}^{4} (f(x) f(-x)) dx$.
- **5p** c) Determinați numărul real a, a > 4, astfel încât $\int_{4}^{a} \frac{f(x)}{x} dx = 10 + \ln \frac{a + \sqrt{a^2 + 9}}{9}$.