离散数学(2023)作业 17-代数系统与半群

离散数学教学组

Problem 1

设S为n元集,问:

- I. 集合 S 上可以定义多少个不同的二元运算?
- 2. 其中有多少个二元运算是可交换的?
- 3. 其中有多少个二元运算是幂等的?
- 4. 其中有多少个二元运算是既不可交换又不幂等的?

Problem 2

设 $A = \{a, b, c\}$, $a, b, c \in \mathbb{R}$, 能否确定 a, b, c 的值, 使得:

- I. A 对普通加法封闭?
- 2. A对普通乘法封闭?

Problem 3

判断下列集合对所给的二元运算是否封闭:

- Ⅰ. 整数集合 ℤ 和普通的减法运算
- 2. 非零整数集合 Z* 和普通的除法运算
- 3. 全体 $n \times n$ 实数矩阵集合 $M_n(\mathbb{R})$ 和矩阵加法及乘法运算,其中 $n \geq 2$
- 4. 全体 $n \times n$ 实可逆矩阵集合关于矩阵加法和乘法运算,其中 $n \geq 2$
- 5. 正实数集合 ℝ+和∘运算,其中∘运算定义为:

$$\forall a, b \in \mathbb{R}^+, a \circ b = ab - a - b$$

6. $A = \{a_1, a_2, ..., a_n\}, n \geq 2,$ 其中 \circ 运算定义如下:

$$\forall a,b \in \mathbb{A}, a \circ b = b$$

- 7. S = {0,1} 关于普通加法和乘法运算
- 8. $S = \{x | x = 2^n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算
- 9. $\mathbb{S} = \{x | x = \ln n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算

Problem 4

 \mathbb{R} 为实数集,定义以下 4 个函数 f_1, f_2, f_3, f_4 . $\forall x, y \in \mathbb{R}$ 有

$$f_1((x,y)) = x \cdot y,$$
 $f_2((x,y)) = x - y,$ $f_3((x,y)) = \max(x,y),$ $f_4((x,y)) = |x-y|.$

- I. 判断上述二元运算是否为可交换, 可结合, 幂等的;
- 2. 求上述二元运算的单位元,零元以及每一个可逆元素的逆元;
- 3. 设 $A = \{a, b\}$,试给出A上一个不可交换,也不可结合的二元运算。

Problem 5

设 $S = \{1, 2, ..., 10\}$,问下面定义的运算能否与 S 构成代数系统 $\langle S, * \rangle$?如果能,则说明 * 运算是否满足交换律、结合律,并给出单位元和零元。

- I. $x * y = \gcd(x, y)$, $\gcd(x, y)$ 是 x = y 的最大公约数;
- 2. x * y = lcm(x, y), lcm(x, y) 是 x 与 y 的最小公倍数;
- 3. $x * y = \max(x, y)$;
- 4. x * y = 质数 p 的个数,其中 $x \le p \le y$ 。

Problem 6

设 A 是一个非空集合, 定义 \circ : $a \circ b = a, \forall a, b \in A$ 。试证明: $\langle A, \circ \rangle$ 是一个半群。

Problem 7

设(S,*)是一个半群, $a \in S$,在S上定义 \circ : $x \circ y = x * a * y, \forall x, y \in S$ 。证明: (S, \circ) 也是一个半群。

Problem 8

设 (S,*) 是一个半群,如果对所有的 $a,b \in S$,只要 $a \neq b$,必有 $a*b \neq b*a$,证明:

- I. $\forall a \in S$, 有a * a = a;
- 2. $\forall a, b \in S$, 有 a * b * a = a;
- 3. $\forall a, b, c \in S$, 有 a * b * c = a * c。

Problem 9

设代数系统 (A,*) 是一个有限的半群,证明 A 中必存在某个元素 a,使得 a*a=a。

Problem 10

设 $\langle A, \oplus \rangle$ 和 $\langle B, \odot \rangle$ 是两个代数系统,f 是 $\langle A, \oplus \rangle$ 到 $\langle B, \odot \rangle$ 的同构映射。证明:

- Ⅰ. 如果 ⊕ 是可结合的, 那么 ⊙ 也是可结合的;
- 2. 如果 $e \in \langle A, \oplus \rangle$ 的单位元,那么 $f(e) \in \langle B, \odot \rangle$ 的单位元;
- 3. 如果在 $\langle A, \oplus \rangle$ 中 $b \neq a$ 的逆元,那么在 $\langle B, \odot \rangle$ 中 $f(a) \neq f(b)$ 的逆元。