Introduction to Compressed Sensing Sparse Recovery Guarantees

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Emmanuel Candes' and Prof. Wotao Yin's lecture notes

Underdetermined systems of linear equations

 \bullet $x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

When fewer equations than unknowns

- Fundamental theorem of algebra says that we cannot find x
- In general, this is absolutely correct

Special structure

If unknown is assumed to be

- sparse
- low-rank

then one can *often* find solutions to these problems by convex optimization

Compressive Sensing

http://bicmr.pku.edu.cn/~wenzw/courses/sparse_l1_example.m

Find the sparest solution

- Given n=256, m=128.
- A = randn(m,n); u = sprandn(n, 1, 0.1); $b = A^*u$;

Linear programming formulation

ℓ_0 minimization

 $\begin{array}{ll}
\min & ||x||_0 \\
s.t. & Ax = b
\end{array}$

Combinatorially hard

ℓ_1 minimization

 $\min_{s.t.} \|x\|_1$ $s.t. \quad Ax = b$ Linear program

minimize
$$\sum_{i} |x_i|$$

subject to $Ax = b$

is equivalent to

minimize
$$\sum_{i} t_{i}$$

subject to $Ax = b$
 $-t_{i} \le x_{i} \le t_{i}$

with variables $x, t \in \mathbb{R}^n$

$$x^*$$
is a solution

$$\Longrightarrow$$

$$(x^{\star}, t^{\star} = |x^{\star}|)$$
 is a solution

Compressed sensing

- Name coined by David Donoho
- Has become a label for sparse signal recovery
- But really one instance of underdetermined problems
- Informs analysis of underdetermined problems
- Changes viewpoint about underdetermined problems
- Starting point of a general burst of activity in
 - information theory
 - signal processing
 - statistics
 - some areas of computer science
 - ...
- Inspired new areas of research, e. g. low-rank matrix recovery

Sparsity in signal processing

1 megapixel image

Implication: can discard small coefficients without much perceptual loss

Sparsity and wavelet "compression"

Take a mega-pixel image

- Compute 1,000,000 wavelet coefficients
- Set to zero all but the 25,000 largest coefficients
- Invert the wavelet transform

1 megapixel image

25k term approximation

This principle underlies modern lossy coders

Comparison

Sparse representation = good compression

Why? Because there are fewer things to send/store

Compressive sensing

Restricted isometries: C. and Tao (04)

Definition (Restricted isometry constants)

For each $k = 1, 2, ..., \delta_k$ is the smallest scalar such that

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$

for all k-sparse x

- Note slight change of normalization
- When δ_k is not too large, condition says that all $m \times k$ submatrices are well conditioned (sparse subsets of columns are not too far from orthonormal)

Interlude: when does sparse recovery make sense?

- x is s-sparse: $||x||_0 \le s$
- can we recover x from Ax = b?

Perhaps possible if sparse vectors lie away from null space of A

Yes if any 2s columns of A are linearly independent

If
$$x_1$$
, x_2 s -sparse such that $Ax_1 = Ax_2 = b$
 $A(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 = 0 \Leftrightarrow x_1 = x_2$

Interlude: when does sparse recovery make sense?

- x is s-sparse: $||x||_0 \le s$
- can we recover x from Ax = b?

Perhaps possible if sparse vectors lie away from null space of A

In general, **No** if A has 2s linearly dependent columns

$$h \neq 0$$
 is 2s-sparse with $Ah = 0$
 $h = x_1 - x_2$ x_1, x_2 both s-sparse
 $Ah = 0 \Leftrightarrow Ax_1 = Ax_2$ and $x_1 \neq x_2$

Equivalent view of restricted isometry property

 δ_{2k} is the smallest scalar such that

$$(1 - \delta_{2k}) \|x_1 - x_2\|_2^2 \le \|Ax_1 - Ax_2\|_2^2 \le (1 + \delta_{2k}) \|x_1 - x_2\|_2^2$$

for all k-sparse vectors x_1, x_2 .

The positive lower bounds is that which really matters

 If lower bound does not hold, then we may have x₁ and x₂ both sparse and with disjoint supports, obeying

$$Ax_1 = Ax_2$$

 Lower bound guarantees that distinct sparse signals cannot be mapped too closely (analogy with codes)

With a picture

For all k-sparse x_1 and x_2

$$1 - \delta_{2k} \le \frac{\|Ax_1 - Ax_2\|_2^2}{\|x_1 - x_2\|_2^2} \le 1 + \delta_{2k}$$

Characterization of ℓ_1 solutions

Underdetermined system: $A \in \mathbb{R}^{m \times n}$, m < n

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{ s.t. } Ax = b$$

x is solution iff

$$||x + h||_1 > ||x||_1 \quad \forall h \in \mathbb{R}^n \text{ s.t. } Ah = 0$$

Notations: x supported on $T = \{i : x_i \neq 0\}$

$$||x + h||_1 = \sum_{i \in T} |x_i + h_i| + \sum_{i \in T^c} |h_i|$$

$$\geq \sum_{i \in T} |x_i| + \sum_{i \in T} \operatorname{sgn}(x_i) h_i + \sum_{i \in T^c} |h_i|$$

because $|x_i + h_i| \ge |x_i| + \operatorname{sgn}(x_i)h_i$

Necessay and sufficient condition for ℓ_1 recovery

For all $h \in \text{null}(A)$

$$\sum_{i \in T} \operatorname{sgn}(x_i) h_i \leq \sum_{i \in T^c} |h_i|$$

Why is this necessary? If there is $h \in null(A)$ with

$$\sum_{i \in T} \operatorname{sgn}(x_i) h_i > \sum_{i \in T^c} |h_i|$$

then

$$||x-h||_1 < ||x||_1.$$

Proof: There exists a small enough *t* such that

$$|x_i - th_i| = \begin{cases} x_i - th_i = x_i - t \operatorname{sgn}(x_i) h_i & \text{if } x_i > 0 \\ -(x_i - th_i) = -x_i - t \operatorname{sgn}(x_i) h_i & \text{if } x_i < 0 \\ t|h_i| & \text{otherwise} \end{cases}$$

Then

$$||x - th||_1 = ||x||_1 - t \sum_{i \in T} \operatorname{sgn}(x_i) h_i + t \sum_{i \in T^c} |h_i| < ||x||_1$$

Characterization via KKT conditions

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{ s.t. } \quad Ax = b$$

- f convex and differentiable Lagrangian
- $\mathcal{L}(x,\lambda) = f(x) + \langle \lambda, b Ax \rangle$

Ax = 0 if and only if x is orthogonal to each of the row vectors of A.

KKT condition

x is solution iff x is feasible and $\exists \lambda \in \mathbb{R}^m$ s.t.

$$\nabla_{x} \mathcal{L}(x, \lambda) = 0 = \nabla f(x) - A^{\top} \lambda$$

Geometric interpretation: $\nabla f(x) \perp \text{null}(A)$.

When f is not differentiable, condition becomes: x feasible and $\exists \lambda \in \mathbb{R}^m$ s.t.

 $A^{\top}\lambda$ is a subgradient of f at x

Subgradient

Definition

u is a subgradient of convex f at x_0 if for all x

$$f(x) \ge f(x_0) + u \cdot (x - x_0)$$

if f is differentiable at x_0 , the only subgradient is $\nabla f(x_0)$

Subgradients of $f(t) = |t|, t \in \mathbb{R}$

$$\begin{cases} \{\text{subgradients}\} = \{\text{sgn(t)}\} & t \neq 0 \\ \{\text{subgradients}\} = [-1, 1] & t = 0 \end{cases}$$

Subgradients of $f(x) = ||x||_1, x \in \mathbb{R}^n$: $u \in \partial ||x||_1$ (u is a subgradient) iff

$$\begin{cases} u_i = \operatorname{sgn}(x_i) & x_i \neq 0 \\ |u_i| \leq 1 & x_i = 0 \end{cases}$$

Optimality conditions II

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

$$(P) \qquad \min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad Ax = b$$

The dual problem is

$$\max_{\lambda} \quad \lambda^{\top} b, \quad \text{ s.t. } \|A^{\top} \lambda\|_{\infty} \leq 1$$

x optimal solution iff x is feasible and there exists $u = A^{\top} \lambda(u \perp \text{null}(A))$ with

$$\begin{cases} u_i = \operatorname{sgn}(x_i) & x_i \neq 0 \ (i \in T) \\ |u_i| \leq 1 & x_i = 0 \ (i \in T^c) \end{cases}$$

If in addition

- $|u_i| < 1$ when $x_i = 0$
- A_T has full column rank (implies by RIP)

Then x is the unique solution. We will call such a u or λ a dual certificate.

Uniqueness

Notation

- x_T : restriction of x to indices in T
- A_T: submatrix with column indices in T

If $supp(x) \subseteq T$,

$$Ax = A_Tx_T$$
.

Let $h \in null(A)$. Since $u \perp null(A)$, we have

$$\sum_{i \in T} \operatorname{sgn}(x_i) h_i = \sum_{i \in T} u_i h_i = \langle u, h \rangle - \sum_{i \in T^c} u_i h_i$$
$$= -\sum_{i \in T^c} u_i h_i < \sum_{i \in T^c} |h_i|$$

unless $h_{T^c} \neq 0$. Now if $h_{T^c} = 0$, then since A_T has full column rank,

$$Ah = A_T h_T = 0 \Rightarrow h_T = 0 \Rightarrow h = 0$$

In conclusion, for any $h \in \text{null}(A), \|x + h\|_1 > \|x\|_1$ unless $h \neq 0$

Sufficient conditions

- T = supp(x) and A_T has full column rank $(A_T^{\top} A_T \text{ invertible})$
- $sgn(x_T)$ is the sign sequence of x on T and set

$$\lambda = A_T (A_T^{\top} A_T)^{-1} \operatorname{sgn}(x_T) \text{ and } u := A^{\top} \lambda$$

- if $|u_i| \le 1$ for all $i \in T^c$, then x is solution
- if $|u_i| < 1$ for all $i \in T^c$, then x is the unique solution

Why?

• $u_i = \operatorname{sgn}(x_i)$ if $i \in T$, since

$$u_T = A_T^{\top} A_T (A_T^{\top} A_T)^{-1} \operatorname{sgn}(x_T) = \operatorname{sgn}(x_T)$$

• $u_i = A_i^{\top} \lambda$ if $i \notin T$.

So *u* is a valid dual certificate

RIP

• RIP: For each $k = 1, 2, ..., \delta_k$ is the smallest scalar such that

$$(1 - \delta_k) ||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta_k) ||x||_2^2$$

for all k-sparse x

• Define the constant $\theta_{S,S'}$ such that :

$$\langle A_T c, A_{T'} c' \rangle \le \theta_{S,S'} ||c|| ||c'||$$

holds for all disjoint sets T, T' of cardinality $|T| \leq S$ and $|T'| \leq S'$,

• For all S and S', we have

$$\theta_{S,S'} \le \delta_{S+S'} \le \delta_{S,S'} + \max\{\delta_S, \delta_{S'}\}$$

Why this dual certificate? Why $|u_i| < 1$ for all $i \in T^c$?

• Let $S \ge 1$ be such that $\delta_S + \theta_{S,S'} + \theta_{S,2S} < 1$. Then there exits a vector λ such that $\lambda^\top A_j = \operatorname{sgn}(x_j)$ for all $j \in T$ and for all $j \notin T$:

$$|u_j| = |\lambda^{\top} A_j| \le \frac{\theta_{S,S'}}{(1 - \delta_S - \theta_{S,2S})\sqrt{S}} \|\operatorname{sgn}(x)\| \le \frac{\theta_{S,S'}}{(1 - \delta_S - \theta_{S,2S})} < 1$$

- Assume $S \ge 1$ such that $\delta_S + \theta_{S,S'} + \theta_{S,2S} < 1$. Let x be a real vector supported on T such that $|T| \le S$. Let b = Ax. Then x is a unique minimizer to (P).
- Read Lemma 2.1 and Lemma 2.2 in "E. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51:4203–4215, 2005".

General setup

- x not necessarily sparse
- observe b = Ax
- recover by ℓ₁ minimization

$$\min \|\hat{x}\|_1$$
 s. t. $A\hat{x} = b$

Interested in comparing performance with sparsest approximation x_s :

$$x_s = \arg\min_{\|z\|_0 \le s} \|x - z\|$$

- x_s : s-sparse
- s-largest entries of x are the nonzero entries of x_s

General signal recovery

Theorem (Noiseless recovery (C., Romberg and Tao^a))

If $\delta_{2s} < \sqrt{2} - 1 = 0.414...$, ℓ_1 recovery obeys

$$\|\hat{x} - x\|_2 \lesssim \|x - x_s\|_1 / \sqrt{s}$$

 $\|\hat{x} - x\|_1 \lesssim \|x - x_s\|_1$

- Deterministic (nothing is random)
- Universal (applies to all x)
- Exact if x is s-sparse
- Otherwise, essentially reconstructs the s largest entries of x
- Powerful if s is close to m

General signal recovery from noisy data

Inaccurate measurements: z error term (stochastic or deterministic)

$$b = Ax + z$$
, with $||z||_2 \le \epsilon$

Recovery via the LASSO: ℓ_1 minimization with relaxed constraints

$$\min \|\hat{x}\|_1 \text{ s. t. } \|A\hat{x} - b\|_2 \le \epsilon$$

Theorem (C., Romberg and Tao)

Assume $\delta_{2s} < \sqrt{2} - 1$, then

$$\|\hat{x} - x\|_2 \lesssim \frac{\|x - x_s\|_1}{\sqrt{s}} + \epsilon = approx.error + measurement error$$

(numerical constants hidden in \leq are explicit)

- When $\epsilon = 0$ (no noise), earlier result
- Says when we can solve underdetermined systems of equations accurately

Proof of noisy recovery result

Let $h = \hat{x} - x$. Since \hat{x} and x are feasible, we obtain

$$||Ah||_2 \le ||A\hat{x} - b||_2 + ||b - Ax||_2 \le 2\epsilon$$

The RIP gives

$$|\langle Ah_T,Ah\rangle| \leq ||Ah_T||_2||Ah||_2 \leq 2\epsilon\sqrt{1+\delta_{2s}}||h_T||_2.$$

Hence,

$$||h||_{2} \le C_{0} \frac{||x - x_{s}||_{1}}{\sqrt{s}} + C_{1} \frac{|\langle Ah_{T}, Ah \rangle|}{||h_{T}||_{2}}$$
 lemma 4
 $\le C_{0} \frac{||x - x_{s}||_{1}}{\sqrt{s}} + C_{1} 2\epsilon \sqrt{1 + \delta_{2s}}$

Let $\Sigma_k = \{x \in \mathbb{R}^n \mid x \text{ has } k \text{ nonzero components}\}$

- If $u \in \Sigma_k$, then $||u||_1/\sqrt{k} \le ||u||_2 \le \sqrt{k}||u||_{\infty}$. Proof: $||u||_1 = |\langle u, \operatorname{sgn}(u) \rangle| \le ||u||_2||\operatorname{sgn}(u)||_2$.
- 2 Let u, v be orthogonal vectors. Then $||u||_2 + ||v||_2 \le \sqrt{2}||u + v||_2$. **Proof**: Apply the first statement with $w = (||u||_2, ||v||_2)^{\top}$
- **1** Let A satisfies RIP of order 2k. then for any $x, x' \in \Sigma_k$ with disjoint supports

$$|\langle Ax, Ax' \rangle| \leq \delta_{s+s'} ||x||_2 ||x'||_2$$

Proof: Suppose x and x' are unit vectors as above. Then $||x+x'||_2^2=2$, $||x-x'||_2^2=2$ due to the disjoint supports. The RIP gives

$$2(1 - \delta_{s+s'}) \le ||Ax \pm Ax'||_2^2 \le 2(1 + \delta_{s+s'})$$

Parallelogram identity

$$|\langle Ax, Ax' \rangle| = \frac{1}{4} |||Ax + Ax'||_2^2 - ||Ax - Ax'||_2^2 | \le \delta_{s+s'}$$

• Let T_0 be any subset $\{1,2,\ldots,n\}$ such that $|T_0| \leq s$. For any $u \in \mathbb{R}^n$, define T_1 as the index set corresponding to the s entries of $u_{T_0^c}$ with largest magnitude, T_2 as indices of the next s largest coefficients, and so on. Then

$$\sum_{j\geq 2} \|u_{T_j}\|_2 \leq \frac{\|u_{T_0^c}\|_1}{\sqrt{s}}$$

Proof: We begin by observing that for $j \ge 2$,

$$||u_{T_j}||_{\infty} \leq \frac{||u_{T_{j-1}}||_1}{s}$$

since the T_j sort u to have decreasing magnitude. Using Lemma 1.1, we have

$$\sum_{j\geq 2} \|u_{T_j}\|_2 \leq \sqrt{s} \sum_{j\geq 2} \|T_j\|_{\infty} \leq \sum_{j\geq 1} \frac{\|u_{T_j}\|_1}{\sqrt{s}} = \frac{\|u_{T_0^c}\|_1}{\sqrt{s}}$$

• Let A satisfies the RIP with order 2s. Let T_0 be any subset $\{1,2,\ldots,n\}$ such that $|T_0| \leq s$ and $h \in \mathbb{R}^n$ be given. Define T_1 as the index set corresponding to the s entries of $h_{T_0^c}$ with largest magnitude, and set $T = T_0 \cup T_1$. Then

$$||h_T||_2 \le \alpha \frac{||h_{T_0^c}||_1}{\sqrt{s}} + \beta \frac{|\langle Ah_T, Ah \rangle|}{||h_T||_2}$$

where
$$\alpha = \frac{\sqrt{2}\delta_{2s}}{1-\delta_{2s}}$$
 and $\beta = \frac{1}{1-\delta_{2s}}$

Proof: Since $h_T \in \Sigma_{2s}$, the RIP gives

$$(1 - \delta_{2s}) \|h_T\|_2^2 \le \|Ah_T\|_2^2.$$

Continue: Proof Lemma 3

Define T_j as Lemma 2. Since $Ah_T = Ah - \sum_{j \geq 2} Ah_{T_j}$, we have

$$(1 - \delta_{2s}) \|h_T\|_2^2 \le \|Ah_T\|_2^2 = - 2} Ah_{T_j} >$$

Lemma 1.3 gives

$$|\langle Ah_{T_i}, Ah_{T_j} \rangle| \leq \delta_{2s} ||Ah_T||_2 ||Ah||_2$$

Note that $||h_{T_0}||_2 + ||h_{T_1}||_2 \le \sqrt{2}||h_T||_2$, we have

$$\begin{split} | < Ah_{T_{i}} \sum_{j \geq 2} Ah_{T_{j}} > | &= | \sum_{j \geq 2} < Ah_{T_{0}}, Ah_{T_{j}} > + \sum_{j \geq 2} < Ah_{T_{1}}, Ah_{T_{j}} > | \\ \leq & \delta_{2s} (\|h_{T_{0}}\|_{2} + \|h_{T_{1}}\|_{2}) \sum_{j \geq 2} \|h_{T_{j}}\|_{2} \leq \sqrt{2} \delta_{2s} \|h_{T}\|_{2} \sum_{j \geq 2} \|h_{T_{j}}\|_{2} \\ \leq & \sqrt{2} \delta_{2s} \|h_{T}\|_{2} \frac{\|u_{T_{0}^{c}}\|_{1}}{\sqrt{s}} \end{split}$$

• Let A satisfies the RIP with order 2s with $\delta_{2s} < \sqrt{2} - 1$. Let x, \hat{x} be given and define $h = \hat{x} - x$. Let T_0 denote the index set corresponding to the s entries of x with largest magnitude. Define T_1 be the index set corresponding to the s entries of $h_{T_0^c}$. Set $T = T_0 \cup T_1$. If $\|\hat{x}\|_1 \le \|x\|_1$. Then

$$||h||_2 \le C_0 \frac{||x - x_s||_1}{\sqrt{s}} + C_1 \frac{|\langle Ah_T, Ah \rangle|}{||h_T||_2}$$

where
$$C_0=2rac{1-(1-\sqrt{2})\delta_{2s}}{1-(1+\sqrt{2})\delta_{2s}}$$
 and $C_1=rac{2}{1-(1+\sqrt{2})\delta_{2s}}$

Proof: Note that $h = h_T + h_{T^c}$, then $||h||_2 \le ||h_T||_2 + ||h_{T^c}||_2$. Let T_j be defined similarly as Lemma 2, then we have

$$||h_{T^c}||_2 = ||\sum_{j\geq 2} h_{T_j}||_2 \leq \sum_{j\geq 2} ||h_{T_j}||_2 \leq \frac{||h_{T_0^c}||_1}{\sqrt{s}}$$

Continue: Proof Lemma 4

Since $\|\hat{x}\|_1 \leq \|x\|_1$, we obtain

$$||x||_1 \ge ||x_{T_0} + h_{T_0}||_1 + ||x_{T_0^c} + h_{T_0^c}||_1 \ge ||x_{T_0}||_1 - ||h_{T_0}||_1 + ||h_{T_0^c}||_1 - ||x_{T_0^c}||_1.$$

Rearranging and again applying the triangle inequality

$$||h_{T_0^c}||_1 \leq ||x||_1 - ||x_{T_0}||_1 + ||h_{T_0}||_1 + ||x_{T_0^c}||_1 \leq ||x - x_{T_0}||_1 + ||h_{T_0}||_1 + ||x_{T_0^c}||_1.$$

Hence, we have $||h_{T_0^c}||_1 \le ||h_{T_0}||_1 + 2||x - x_s||_1$. Therefore,

$$||h_{T^c}||_2 \leq \frac{||h_{T_0}||_1 + 2||x - x_s||_1}{\sqrt{s}} \leq ||h_{T_0}||_2 + \frac{2||x - x_s||_1}{\sqrt{s}}.$$

Since $||h_{T_0}||_2 \le ||h_T||_2$, we have

$$||h||_2 \le 2||h_T||_2 + \frac{2||x - x_s||_1}{\sqrt{s}}$$

Continue: Proof Lemma 4

Lemma 3 gives

$$||h_{T}||_{2} \leq \alpha \frac{||h_{T_{0}^{c}}||_{1}}{\sqrt{s}} + \beta \frac{|\langle Ah_{T}, Ah \rangle|}{||h_{T}||_{2}}$$

$$\leq \alpha \frac{||h_{T_{0}}||_{1} + 2||x - x_{s}||_{1}}{\sqrt{s}} + \beta \frac{|\langle Ah_{T}, Ah \rangle|}{||h_{T}||_{2}}$$

$$\leq \alpha ||h_{T_{0}}||_{2} + 2\alpha \frac{||x - x_{s}||_{1}}{\sqrt{s}} + \beta \frac{|\langle Ah_{T}, Ah \rangle|}{||h_{T}||_{2}}$$

Using $||h_{T_0}||_2 \le ||h_T||_2$ gives

$$(1-\alpha)\|h_T\|_2 \le 2\alpha \frac{\|x-x_s\|_1}{\sqrt{s}} + \beta \frac{|\langle Ah_T, Ah \rangle|}{\|h_T\|_2}.$$

Dividing by $1-\alpha$ gives

$$||h||_2 \le \left(\frac{4\alpha}{1-\alpha} + 2\right) \frac{||x - x_s||_1}{\sqrt{s}} + \frac{2\beta}{1-\alpha} \frac{|\langle Ah_T, Ah\rangle|}{||h_T||_2}$$

Spark

First questions for finding the sparsest solution to Ax = b

- Can sparsest solution be unique? Under what conditions?
- Given a sparse x, how to verify whether it is actually the sparsest one?

Definition (Donoho and Elad 2003)

The spark of a given matrix A is the smallest number of columns from A that are linearly dependent, written as spark(A).

rank(A) is the largest number of columns from A that are linearly independent. In general, $spark(A) \neq rank(A) + 1$; except for many randomly generated matrices.

Rank is easy to compute, but spark needs a combinatorial search.

Spark

Theorem (Gorodnitsky and Rao 1997)

If Ax = b has a solution x obeying $||x||_0 < spark(A)/2$, then x is the sparsest solution.

• **Proof idea**: if there is a solution y to Ax = b and $x - y \neq 0$, then A(x - y) = 0 and thus

$$||x||_0 + ||y||_0 \ge ||x - y||_0 \ge spark(A),$$
 or $||y||_0 \ge spark(A) - ||x||_0 > spark(A)/2 > ||x||_0$

- The result does not mean this x can be efficiently found numerically.
- For many random matrices $A \in \mathbb{R}^{m \times n}$, the result means that if an algorithm returns x satisfying $||x||_0 < (m+1)/2$, then x is optimal with probability 1.
- What to do when spark(A) is difficult to obtain?

General Recovery - Spark

- Rank is easy to compute, but spark needs a combinatorial search.
- However, for matrix with entries in general positions, spark(A) = rank(A)+1.
- For example, if matrix $A \in \mathbb{R}^{m \times n}$ (m < n) has entries $A_{ij} \sim \mathcal{N}(0, 1)$, then rank(A) = m = spark(A) 1 with probability 1.
- In general, any full rank matrix $A \in \mathbb{R}^{m \times n}$ (m < n), any m + 1 columns of A is linearly dependent, so

$$spark(A) \le m + 1 = rank(A) + 1$$

Coherence

Definition (Mallat and Zhang 1993)

The (mutual) coherence of a given matrix A is the largest absolute normalized inner product between different columns from A. Suppose $A = [a_1, a_2, \ldots, a_n]$. The mutual coherence of A is given by

$$\mu(A) = \max_{k,j,k\neq j} \frac{|a_k^{\top} a_j|}{\|a_k\|_2 \cdot \|a_j\|_2}$$

- It characterizes the dependence between columns of A
- For unitary matrices, $\mu(A) = 0$
- \bullet For recovery problems, we desire a small $\mu(A)$ as it is similar to unitary matrices.
- For $A=[\Psi,\Phi]$ where Φ and Ψ are $n\times n$ unitary, it holds $n^{-1/2}\leq \mu(A)\leq 1.$ Note $\mu(A)=n^{-1/2}$ is achieved with [I, Fourier], [I, Hadamard]. ($|a_k^{\top}a_j|=1, \|a_j\|=\sqrt{n}$)
- if $A \in \mathbb{R}^{m \times n}$ where n > m, then $\mu(A) \geq m^{-1/2}$

Coherence

Theorem (Donoho and Elad 2003)

$$spark(A) \ge 1 + \mu^{-1}(A)$$

Proof Sketch

- $\bar{A} \leftarrow A$ with columns normalized to unit 2-norm
- $p \leftarrow spark(A)$
- $B \leftarrow a \ p \times p \ \text{minor of} \ \bar{A}^{\top} \bar{A}$
- ullet $|B_{ii}|=1$ and $\sum_{j
 eq i}|B_{ij}|\leq (p-1)\mu(A)$
- Suppose $p < 1 + \mu^{-1}(A) \Rightarrow 1 > (p-1)\mu(A) \Rightarrow |B_{ii}| > \sum_{j \neq i} |B_{ij}|, \forall i$
- Then $B \succ 0$ (Gershgorin circle theorem) $\Rightarrow spark(A) > p$. Contradiction.

Coherence-base guarantee

Corollary

If Ax = b has a solution x obeying $||x||_0 < (1 + \mu^{-1}(A))/2$, then x is the unique sparsest solution.

Compare with the previous

Theorem (Gorodnitsky and Rao 1997)

If Ax = b has a solution x obeying $||x||_0 < spark(A)/2$, then x is the sparsest solution.

- For $A \in \mathbb{R}^{m \times n}$ where m < n, $(1 + \mu^{-1}(A))$ is at most $1 + \sqrt{m}$ but spark can be 1 + m. spark is more useful.
- Assume Ax = b has a solution with $||x||_0 = k < spark(A)/2$. It will be the unique ℓ_0 minimizer. Will it be the ℓ_1 minimizer as well? Not necessarily. However, $||x||_0 < (1 + \mu^{-1}(A))/2$ is a sufficient condition.

Coherence-based $\ell_0 = \ell_1$

Theorem (Donoho and Elad 2003, Gribonval and Nielsen 2003)

If A has normalized columns and Ax = b has a solution x satisfying $||x||_0 \le (1 + \mu^{-1}(A))/2$, then x is the unique minimizer with respect to both ℓ_0 and ℓ_1 .

Proof Sketch

- Previously we know x is the unique ℓ_0 minimizer; let S := supp(x)
- Suppose y is the ℓ_1 minimizer but not x; we study h := y x
- h must satisfy Ah=0 and $\|h\|_1<2\|h_S\|_1$ since $0>\|y\|_1-\|x\|_1=\sum_{i\in S^c}|y_i|+\sum_{i\in S}(|y_i|-|x_i|)\geq \|h_{S^c}\|_1-\sum_{i\in S}|y_i-x_i|=\|h_{S^c}\|_1-\|h_S\|_1$
- $A^{\top}Ah = 0 \Rightarrow |h_j| \leq (1 + \mu(A))^{-1}\mu(A)\|h\|_1, \ \forall j. \ (\mathsf{Expand}\ A^{\top}A \ \mathsf{and} \ \mathsf{use}\ \|h\|_1 = \sum_{k \neq j} |h_k| + |h_j|)$
- the last two points together contradict the assumption

Result bottom line: allow $||x||_0$ up to $O(\sqrt{m})$ for exact recovery

- Definition: $||x||_p = (\sum_i |x_i|^p)^{1/p}$
- Lemma: Let $0 . If <math>\|(y x)_{S^c}\|_p > \|(y x)_S\|_p$, then $\|x\|_p < \|y\|_p$. Proof: Let h = y - x. $\|y\|_p^p = \|x + h\|_p^p = \|x_S + h_S\|_p^p + \|h_{S^c}\|_p^p =$

$$\|x\|_p^p + (\|h_{S^c}\|_p^p - \|h_S\|_p^p) + (\|x_S + h_S\|_p^p - \|x_S\|_p^p + \|h_S\|_p^p))$$

The last term is nonnegative for $0 . Hence, a sufficient$

- condition is $||h_{S^c}||_p^p > ||h_S||_p^p$.
- If the condition holds for $0 , it also holds for <math>q \in (0, p]$.
- **Definition** (null space property $NSP(k, \gamma)$). Every nonzero $h \in \mathcal{N}(A)$ satisfies $||h_S||_1 < \gamma ||h_{S^c}||_1$ for all index sets S with $|S| \leq k$.

Theorem (Donoho and Huo 2001, Gribonval and Nielsen 2003)

 $\min \|x\|_1$, s.t. Ax = b uniquely recovers all k-sparse vectors x^o from measurements $b = Ax^o$ if and only if A satisfies NSP(k, 1).

Proof:

• Sufficiency: Pick any k-sparse vector x^o . Let $S := supp(x^o)$. For any non-zero $h \in \mathcal{N}(A)$, we have $A(x^o + h) = Ax^o = b$ and

$$||x^{0} + h||_{1} = ||x_{S}^{o} + h_{S}||_{1} + ||h_{S^{c}}||_{1}$$

$$\geq ||x_{S}^{o}||_{1} - ||h_{S}||_{1} + ||h_{S^{c}}||_{1}$$

$$= ||x_{S}^{o}||_{1} - (||h_{S}||_{1} - ||h_{S^{c}}||_{1})$$

• Necessity. The inequality holds with equality if $sgn(x_S^o) = -sgn(h_S)$ and h_S has a sufficiently small scale. Therefore, basis pursuit to uniquely recovers all k-sparse vectors x^o , NSP(k, 1) is also necessary.

• Another sufficient condition (Zhang [2008]) for $||x||_1 < ||y||_1$ is

$$||x||_0 < \frac{1}{4} \left(\frac{||y - x||_1}{||y - x||_2} \right)^2$$

Proof:

$$||h_S||_1 \le \sqrt{|S|} ||h_S||_2 \le \sqrt{|S|} ||h||_2 = \sqrt{||x||_0} ||h||_2.$$

Then, the above inequality and the sufficient condition gives $||y-x||_1 > 2||(y-x)_S||_1$ which is $||(y-x)_{S^c}||_1 > ||(y-x)_S||_1$.

Theorem (Zhang, 2008)

 $\min \|x\|_1$, s.t. Ax = b recovers x uniquely if

$$||x||_0 < \min \left\{ \frac{1}{4} \left(\frac{||h||_1}{||h||_2} \right)^2, \quad h \in \mathcal{N}(A) \setminus \{0\} \right\}$$

- $\bullet \ 1 \le \frac{\|v\|_1}{\|v\|_2} \le \sqrt{n}, \quad \forall v \in \mathbb{R}^n \setminus \{0\}$
- Garnaev and Gluskin established that for any natural number p < n, there exist p-dimensional subspaces $V_p \subset \mathbb{R}^n$ in which

$$\frac{\|\nu\|_1}{\|\nu\|_2} \ge \frac{C\sqrt{n-p}}{\sqrt{\log(n/(n-p))}}, \forall \nu \in V_p \setminus \{0\},\$$

- vectors in the null space of A will satisfy, with high probability, the Garnaev and Gluskin inequality for $V_p = \text{Null}(A)$ and p = n m.
- for a random Gaussian matrix A, \bar{x} will uniquely solve ℓ_1 -min with high probability whenever

$$\|\bar{x}\|_0 < \frac{C^2}{4} \frac{m}{\log(n/m)}.$$

Formal equivalence

Suppose there is an *s*-sparse solution to Ax = b

- $\delta_{2s} < 1$ solution to combinatorial optimization (min ℓ_0) is unique
- $\delta_{2s} < 0.414$ solution to LP relaxation is unique **and the same**

Comments:

- RIP needs a matrix to be properly scaled
- the tight RIP constant of a given matrix A is difficult to compute
- the result is universal for all s-sparse
- ∃ tighter conditions (see next slide)
- all methods (including ℓ_0) require $\delta_{2s} < 1$ for universal recovery; every s-sparse x is unique if $\delta_{2s} < 1$
- the requirement can be satisfied by certain A (e.g., whose entries are i.i.d samples following a subgaussian distribution) and lead to exact recovery for $||x||_0 = O(m/\log(m/k))$.

More Comments

- (Foucart-Lai) If $\delta_{2s+2} < 1$, then \exists a sufficiently small p so that ℓ_p minimization is guaranteed to recovery any s-sparse x
- (Candes) $\delta_{2s} < \sqrt{2} 1$ is sufficient
- (Foucart-Lai) $\delta_{2s} < 2(3-\sqrt{2})/7 \sim 0.4531$ is sufficient
- RIP gives $\kappa(A_S) \leq \sqrt{(1+\delta_s)/(1-\delta_s)}$, $\forall |S| \leq k$. so $\delta_{2s} < 2(3-\sqrt{2})/7$ gives $\kappa(A_S) \leq 1.7$, $\forall |S| \leq 2m$, very well-conditioned.
- (Mo-Li) $\delta_{2s} < 0.493$ is sufficient
- (Cai-Wang-Xu) $\delta_{2s} < 0.307$ is sufficient
- (Cai-Zhang) $\delta_{2s} < 1/3$ is sufficient and necessary for universal ℓ_1 recovery