§ 14. ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ, СОДЕРЖАЩИХ ОПЕРАЦИЮ ИЗВЛЕЧЕНИЯ КВАДРАТНОГО КОРНЯ

Вынесите множитель из-под знака корня:

14.1. a)
$$\sqrt{36\cdot 5}$$
; b) $\sqrt{\frac{2}{25}}$; b) $\sqrt{2\cdot 144}$; r) $\sqrt{\frac{121}{10}}$.

6)
$$\sqrt{\frac{2}{25}}$$
;

$$B) \sqrt{2 \cdot 144}$$

r)
$$\sqrt{\frac{121}{10}}$$

14.2. a)
$$\sqrt{\frac{25}{16 \cdot 2}}$$
; 6) $\sqrt{\frac{36 \cdot 2}{169 \cdot 5}}$; B) $\sqrt{\frac{6 \cdot 49}{121}}$; Γ) $\sqrt{\frac{144 \cdot 3}{7 \cdot 25}}$.

6)
$$\sqrt{\frac{36 \cdot 2}{169 \cdot 5}}$$
;

B)
$$\sqrt{\frac{6\cdot 49}{121}}$$
;

$$\Gamma) \sqrt{\frac{144 \cdot 3}{7 \cdot 25}}$$

14.3. a)
$$\sqrt{12}$$
; 6) $\sqrt{275}$; B) $\sqrt{20}$; r) $\sqrt{108}$.

6)
$$\sqrt{275}$$
;

B)
$$\sqrt{20}$$
;

$$r) \sqrt{108}$$

14.4. a)
$$\frac{2}{3}\sqrt{45}$$
; 6) $\frac{1}{2}\sqrt{120}$; B) $\frac{1}{10}\sqrt{200}$; Γ) $\frac{1}{5}\sqrt{150}$.

6)
$$\frac{1}{2}\sqrt{120}$$
;

B)
$$\frac{1}{10}\sqrt{200}$$

r)
$$\frac{1}{5}\sqrt{150}$$
.

14.5. a)
$$\sqrt{\frac{8}{27}}$$
; 6) $\sqrt{10\frac{1}{8}}$; b) $\sqrt{\frac{40}{63}}$; r) $\sqrt{1\frac{13}{32}}$.

6)
$$\sqrt{10\frac{1}{8}}$$
;

B)
$$\sqrt{\frac{40}{63}}$$
;

$$\Gamma$$
) $\sqrt{1\frac{13}{32}}$

14.6. Сравните значения выражений:

a)
$$A = 3\sqrt{50}$$
, $B = 2\sqrt{98}$; B) $A = 4\sqrt{48}$, $B = 5\sqrt{27}$;

B)
$$A = 4\sqrt{48}, B = 5\sqrt{27}$$
;

6)
$$A = 3\sqrt{\frac{8}{9}}$$
, $B = \frac{1}{2}\sqrt{48}$

6)
$$A = 3\sqrt{\frac{8}{9}}$$
, $B = \frac{1}{2}\sqrt{48}$; r) $A = \frac{1}{7}\sqrt{80}$, $B = 2\sqrt{\frac{24}{49}}$.

Вынесите множитель из-под знака корня *:

14.7. a)
$$\sqrt{4a}$$
; 6) $\sqrt{a^3}$; B) $\sqrt{49d}$; Γ) $\sqrt{c^7}$.

б)
$$\sqrt{a^3}$$

B)
$$\sqrt{49d}$$
;

$$\Gamma$$
) $\sqrt{c^7}$

14.8. a)
$$\sqrt{x^{15}y^2}$$
; 6) $\sqrt{100x^3}$; B) $\sqrt{x^8t^9}$; Γ) $\sqrt{32y^4}$.

6)
$$\sqrt{100x^3}$$
;

B)
$$\sqrt{x^8t^9}$$
;

$$\Gamma$$
) $\sqrt{32y^4}$

14.9. a)
$$\sqrt{\frac{x^3}{8v^3}}$$
; 6) $\sqrt{\frac{50m^4n^3}{9r^4}}$; B) $\sqrt{\frac{81c^6}{a^3}}$; Γ) $\sqrt{\frac{72a^6b^7}{49v^8}}$.

6)
$$\sqrt{\frac{50m^4n^3}{9r^4}}$$

B)
$$\sqrt{\frac{81c^6}{a^3}}$$
;

$$\Gamma) \ \sqrt{\frac{72a^6b^7}{49u^8}}$$

Внесите множитель под знак корня:

14.10. a)
$$2\sqrt{3}$$
; 6) $-11\sqrt{3}$; B) $5\sqrt{2}$; Γ) $-6\sqrt{2}$.

б)
$$-11\sqrt{3}$$
;

в)
$$5\sqrt{2}$$

$$\Gamma$$
) $-6\sqrt{2}$.

14.11. a)
$$\frac{1}{4}\sqrt{32}$$
; 6) $-\frac{2}{3}\sqrt{15}$; B) $-\frac{5}{2}\sqrt{8}$; r) $\frac{4}{7}\sqrt{35}$.

6)
$$-\frac{2}{3}\sqrt{15}$$
;

B)
$$-\frac{5}{2}\sqrt{8}$$
;

г)
$$\frac{4}{7}\sqrt{35}$$
.

^{*}Всюду в этом параграфе предполагается, что переменные принимают только положительные значения.

Внесите множитель под знак корня:

14.12. a)
$$x\sqrt{12}$$
; 6) $-b\sqrt{10}$; B) $z\sqrt{5}$; r) $-d\sqrt{3}$.

6)
$$-b\sqrt{10}$$

B)
$$z\sqrt{5}$$
;

r)
$$-d\sqrt{3}$$
.

14.13. a)
$$3x\sqrt{2x}$$
; B) $0.2y\sqrt{5y}$;

в)
$$0.2y\sqrt{5y}$$
;

6)
$$-3x^2\sqrt{\frac{1}{3}}$$
; r) $-5m^6\sqrt{5m}$.

$$\Gamma) -5m^6\sqrt{5m}.$$

014.14. Расположите в порядке возрастания числа:

a) 6,
$$2\sqrt{8}$$
, 5, $\sqrt{26}$;

a) 6,
$$2\sqrt{8}$$
, 5, $\sqrt{26}$; B) 4, $3\sqrt{2}$, $4\frac{1}{2}$, $\sqrt{19}$;

6) 2,
$$\sqrt{7}$$
, $2\sqrt{3}$, 3

6) 2,
$$\sqrt{7}$$
, $2\sqrt{3}$, 3; r) 1, $\frac{\sqrt{7}}{3}$, $\frac{1}{2}\sqrt{3}$, 0,7.

14.15. Внесите множитель под знак корня, если известно, что

a)
$$a\sqrt{12}$$
;

б)
$$-a\sqrt{5}$$
;

B)
$$3a\sqrt{2}$$

б)
$$-a\sqrt{5}$$
; в) $3a\sqrt{2}$; г) $-2a\sqrt{7}$.

Упростите выражение:

14.16. a)
$$\sqrt{216} - 2\sqrt{6}$$
;

B)
$$\sqrt{20} + \sqrt{125}$$
;

6)
$$5\sqrt{3} - \sqrt{300} - \sqrt{27}$$
;

6)
$$5\sqrt{3} - \sqrt{300} - \sqrt{27}$$
; r) $2\sqrt{125} + 2\sqrt{20} - \frac{1}{2}\sqrt{80}$.

14.17. a)
$$\sqrt{9a} + \sqrt{25a} - \sqrt{36a}$$
;

6)
$$5\sqrt{3x} + \frac{1}{2}\sqrt{12x} - 10\sqrt{0.03x}$$
;

B)
$$\sqrt{5b} - 2\sqrt{20b} - 3\sqrt{80b}$$
;

r)
$$3\sqrt{2y} - \sqrt{8y} + 0,1\sqrt{200y}$$
.

14.18. a) $\sqrt{a^3b} + \frac{2}{3a}\sqrt{a^5b}$;

6)
$$\sqrt{m^5} + 4m\sqrt{m^3} - m^2\sqrt{m}$$
;

B)
$$2a\sqrt{a^{7}b} - \sqrt{a^{9}b}$$
;

r)
$$\sqrt{81d^3} - 5d\sqrt{d} + \frac{3}{d}\sqrt{4d^5}$$
.

Упростите выражение:

14.19. a)
$$(6\sqrt{12} - \sqrt{75}) \cdot \sqrt{3}$$
;

B)
$$(2\sqrt{50} - 5\sqrt{2}) \cdot \sqrt{2}$$
;

6)
$$(12\sqrt{45} - 6\sqrt{20}) : 3\sqrt{5};$$
 r) $(4\sqrt{75} + 2\sqrt{12}) : 2\sqrt{3}.$

r)
$$(4\sqrt{75} + 2\sqrt{12}) : 2\sqrt{3}$$
.

14.20. a)
$$\sqrt{x}(\sqrt{a} - \sqrt{x})$$
;

$$\mathbf{B}) \sqrt{mn} (\sqrt{m} + \sqrt{n});$$

6)
$$(a + \sqrt{b})(2a - 3\sqrt{b})$$

6)
$$(a + \sqrt{b})(2a - 3\sqrt{b});$$
 r) $(\sqrt{m} - 2\sqrt{n})(\sqrt{m} - \sqrt{n}).$

Выполните действия, используя формулы сокращённого умножения:

14.21. a)
$$(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5});$$
 b) $(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2});$

B)
$$(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})$$

6)
$$(7-5\sqrt{2})(7+5\sqrt{2})$$
:

6)
$$(7-5\sqrt{2})(7+5\sqrt{2})$$
; r) $(8+3\sqrt{7})(8-3\sqrt{7})$.

14.22. a)
$$(a + \sqrt{b})(a - \sqrt{b});$$
 B) $(\sqrt{x} - 1)(\sqrt{x} + 1);$

B)
$$(\sqrt{x}-1)(\sqrt{x}+1)$$

6)
$$(\sqrt{2x} - 3)(\sqrt{2x} + 3)$$

6)
$$(\sqrt{2x} - 3)(\sqrt{2x} + 3)$$
; Γ) $(\sqrt{3p} - \sqrt{q})(\sqrt{3p} + \sqrt{q})$.

14.23. a)
$$(\sqrt{a} + \sqrt{b})^2$$
; B) $(\sqrt{m} - \sqrt{n})^2$;

B)
$$\left(\sqrt{m} - \sqrt{n}\right)^2$$
:

6)
$$(\sqrt{x} - 3\sqrt{y})^2$$
; Γ $(\sqrt{t} + 2\sqrt{x})^2$.

$$\Gamma$$
) $\left(\sqrt{t}+2\sqrt{x}\right)^2$

14.24. a)
$$(\sqrt{2} + 4)^2$$
; b) $(2 + \sqrt{17})^2$;

B)
$$(2 + \sqrt{17})^2$$
:

6)
$$(\sqrt{5} - 1)^2$$

6)
$$(\sqrt{5}-1)^2$$
; r) $(3-\sqrt{8})^2$.

14.25. a)
$$(2\sqrt{3} - 3\sqrt{2})^2$$
; b) $(3\sqrt{5} - 5\sqrt{3})^2$;

B)
$$(3\sqrt{5}-5\sqrt{3})^2$$
;

6)
$$\left(\sqrt{6} + \sqrt{5}\right)^2 - \sqrt{120}$$
; r) $\left(6 - \sqrt{2}\right)^2 + 3\sqrt{32}$.

r)
$$\left(6-\sqrt{2}\right)^2+3\sqrt{32}$$
.

14.26. a)
$$(\sqrt{m} - \sqrt{n})(m + \sqrt{mn} + n)$$
;

6)
$$(c+\sqrt{d})(c^2-\sqrt{d}+d);$$

B)
$$(\sqrt{r} - 2\sqrt{n})(r + 2\sqrt{rn} + 4n);$$

r)
$$(2\sqrt{s} + 3t)(4s - 6t\sqrt{s} + 9t^2)$$
.

014.27. Раскройте скобки:

a)
$$(\sqrt{3} + \sqrt{2} + 1)^2$$
; B) $(\sqrt{6} + \sqrt{2} - 1)^2$;

B)
$$(\sqrt{6} + \sqrt{2} - 1)^2$$

6)
$$(\sqrt{5} - \sqrt{2} - 1)^2$$
; r) $(\sqrt{3} - \sqrt{2} + \sqrt{5})^2$.

c)
$$\left(\sqrt{3}-\sqrt{2}+\sqrt{5}\right)^2$$

Освободите дробь от иррациональности в знаменателе:

14.28. a)
$$\frac{x}{\sqrt{7}}$$
; 6) $\frac{2}{3\sqrt{2}}$; B) $\frac{y}{\sqrt{y}}$; Γ) $\frac{42}{5\sqrt{n}}$.

6)
$$\frac{2}{3\sqrt{2}}$$
;

B)
$$\frac{y}{\sqrt{u}}$$
;

$$\Gamma) \ \frac{42}{5\sqrt{p}}.$$

14.29. a)
$$\frac{3}{\sqrt{a+b}}$$
; 6) $\frac{a+3}{\sqrt{a^2-9}}$; B) $\frac{1}{\sqrt{c-d}}$; $\frac{b-2}{\sqrt{4-b^2}}$.

6)
$$\frac{a+3}{\sqrt{a^2-9}}$$

$$\mathbf{B}) \ \frac{1}{\sqrt{c-d}};$$

$$\Gamma) \ \frac{b-2}{\sqrt{4-b^2}}.$$

14.30. a)
$$\frac{5}{\sqrt{x} + \sqrt{y}}$$
; B) $\frac{3}{\sqrt{m} - \sqrt{n}}$;

$$B) \frac{3}{\sqrt{m}-\sqrt{n}};$$

6)
$$\frac{1}{(\sqrt{a}-\sqrt{b})^2}$$
; r) $\frac{6}{(\sqrt{p}+\sqrt{q})^3}$.

$$\Gamma) \ \frac{6}{\left(\sqrt{p} + \sqrt{q}\right)^3}.$$

14.31. a)
$$\frac{4}{\sqrt{7}-\sqrt{3}}$$
; 6) $\frac{\sqrt{3}-1}{1+\sqrt{3}}$; B) $\frac{6}{\sqrt{15}+\sqrt{12}}$; Γ) $\frac{2+\sqrt{2}}{2-\sqrt{2}}$.

6)
$$\frac{\sqrt{3}-1}{1+\sqrt{3}}$$

B)
$$\frac{6}{\sqrt{15} + \sqrt{12}}$$

$$\Gamma) \; \frac{2+\sqrt{2}}{2-\sqrt{2}}.$$

14.32. a)
$$\frac{1}{\sqrt{a+3}-2}$$
; B) $\frac{2}{3-\sqrt{2x-1}}$;

B)
$$\frac{2}{3-\sqrt{2x-1}}$$
;

6)
$$\frac{y-3}{\sqrt{4-y+1}}$$
;

6)
$$\frac{y-3}{\sqrt{4-y}+1}$$
; r) $\frac{3-b}{2-\sqrt{b+1}}$.

014.33. a)
$$\frac{p - \sqrt{pq} + q}{\sqrt{p} - \sqrt{q}}$$
; B) $\frac{x - 3\sqrt{x} + 9}{\sqrt{x} - 3}$;

$$B) \frac{x-3\sqrt{x}+9}{\sqrt{x}-3};$$

$$6) \ \frac{4+2\sqrt{t}+t}{2+\sqrt{t}}$$

014.34. a)
$$\frac{10}{\sqrt{5} - \sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{80}}$$
;

6)
$$\frac{1}{\sqrt{2} + \sqrt{3} + 1}$$
;

B)
$$\frac{\sqrt{6}}{\sqrt{3}-\sqrt{6}-\sqrt{24}-\sqrt{48}+\sqrt{108}};$$

r)
$$\frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}}$$
.

Разложите выражение на множители методом вынесения общего множителя за скобки:

14.35. a)
$$5 + \sqrt{5}$$
; 6) $\sqrt{b} - b$; B) $3 - \sqrt{3}$; r) $\sqrt{a} + a$.

б)
$$\sqrt{b} - b$$

B)
$$3 - \sqrt{3}$$
;

r)
$$\sqrt{a} + a$$
.

14.36. a)
$$\sqrt{3} + 15$$
: B) $14 - \sqrt{7}$:

B)
$$14 - \sqrt{7}$$
;

6)
$$8-4\sqrt{2}$$
;

6)
$$8-4\sqrt{2}$$
; r) $45-9\sqrt{5}$.

Разложите выражение на множители методом вынесения общего множителя за скобки:

14.37. a)
$$\sqrt{10} - \sqrt{6}$$
; B) $\sqrt{14} + \sqrt{35}$;

B)
$$\sqrt{14} + \sqrt{35}$$

6)
$$2 + \sqrt{6} - \sqrt{2}$$

6)
$$2 + \sqrt{6} - \sqrt{2}$$
; r) $7 + \sqrt{14} - \sqrt{7}$.

14.38. a)
$$a - 2\sqrt{a}$$
; B) $\sqrt{a} - 2a$;

B)
$$\sqrt{a} - 2a$$
:

6)
$$\sqrt{3b} - b$$
; r) $a + \sqrt{ab}$.

$$\Gamma$$
) $a + \sqrt{ab}$

14.39. a)
$$a + b + \sqrt{a + b}$$
; B) $3a - 3b - 2\sqrt{a - b}$;

B)
$$3a - 3b - 2\sqrt{a - b}$$
;

6)
$$\sqrt{a^2-b^2} - \sqrt{a+b}$$
:

6)
$$\sqrt{a^2-b^2}-\sqrt{a+b}$$
; r) $a\sqrt{a-b}+\sqrt{a^2-b^2}$.

14.40. Разложите выражение на множители способом группировки:

a)
$$a\sqrt{a} + b\sqrt{b} + a\sqrt{b} + b\sqrt{a}$$
; B) $a\sqrt{b} - \sqrt{a} + \sqrt{ab} - 1$;

B)
$$a\sqrt{b} - \sqrt{a} + \sqrt{ab} - 1$$
;

6)
$$2+b\sqrt{a}-2\sqrt{ab}-\sqrt{b}$$

6)
$$2 + b\sqrt{a} - 2\sqrt{ab} - \sqrt{b}$$
; r) $ab + a\sqrt{a} + b\sqrt{b} + \sqrt{ab}$.

Разложите выражение на множители, используя формулу разности квадратов:

14.41. a)
$$a^2 - 5$$
; b) $25 - p$; b) $11 - b^2$; r) $m - 100$.

б)
$$25 - p$$

$$(a) 11 - b^2$$

$$r) m - 100$$

14.42. a)
$$b-3$$
; b) $16z-5$; b) $a-c$; r) $7-64t$.

б)
$$16z - 5$$
:

B)
$$a - c$$

r)
$$7 - 64t$$

Представьте выражение в виде квадрата двучлена:

14.43. a)
$$1 - 2\sqrt{p} + p$$
; B) $c - 2\sqrt{cd} + d$;

B)
$$c - 2\sqrt{cd} + d$$

6)
$$x + 6y\sqrt{x} + 9y^2$$
; r) $q + 4p\sqrt{q} + 4p^2$.

$$\mathbf{r}) \ q + 4p \sqrt{q} + 4p^2.$$

14.44. a)
$$49a - 14\sqrt{ab} + b$$
; B) $9m - 6\sqrt{mn} + n$;

B)
$$9m - 6\sqrt{mn} + n$$

6)
$$3c^2 + 10c\sqrt{3} + 25$$
; r) $2a + 2b\sqrt{2a} + b^2$.

$$\Gamma) \ 2a + 2b\sqrt{2a} + b^2.$$

14.45. a)
$$4 + 4\sqrt{3} + 3$$
; b) $2 + 2\sqrt{2} + 1$;

B)
$$2 + 2\sqrt{2} + 1$$
;

6)
$$3-2\sqrt{2}$$
; r) $7-4\sqrt{3}$.

r)
$$7-4\sqrt{3}$$
.

14.46. Сократите дробь:

a)
$$\frac{a^2-7}{a-\sqrt{7}}$$

$$6) \ \frac{b+\sqrt{3}}{3-b^2}$$

a)
$$\frac{a^2-7}{a-\sqrt{7}}$$
; 6) $\frac{b+\sqrt{3}}{3-b^2}$; B) $\frac{c^2-11}{c-\sqrt{11}}$; r) $\frac{b+\sqrt{21}}{21-b^2}$.

$$\Gamma) \frac{b+\sqrt{21}}{21-b^2}$$

Сократите дробь:

14.47. a)
$$\frac{x-9}{\sqrt{x}+3}$$
; 6) $\frac{m-n}{\sqrt{m}-\sqrt{n}}$; B) $\frac{9-\sqrt{t}}{t-81}$; Γ) $\frac{\sqrt{r}+\sqrt{s}}{r-s}$.

$$6) \frac{m-n}{\sqrt{m}-\sqrt{n}}$$

B)
$$\frac{9-\sqrt{t}}{t-81}$$
;

$$\Gamma) \frac{\sqrt{r} + \sqrt{s}}{r - s}.$$

14.48. a)
$$\frac{3\sqrt{x}-4\sqrt{y}}{9x-16y}$$
; B) $\frac{25a-49b}{5\sqrt{a}+7\sqrt{b}}$;

$$B) \frac{25a-49b}{5\sqrt{a}+7\sqrt{b}};$$

6)
$$\frac{121a^2 - 144b}{12\sqrt{b} - 11a}$$
; r) $\frac{9\sqrt{ab} - 4\sqrt{c}}{16c - 81ab}$.

$$\Gamma) \ \frac{9\sqrt{ab} - 4\sqrt{c}}{16c - 81ab}.$$

B)
$$\frac{\sqrt{6} + \sqrt{3}}{\sqrt{2} + 1}$$
;

6)
$$\frac{\sqrt{10} - \sqrt{6}}{\sqrt{15} - 3}$$

6)
$$\frac{\sqrt{10} - \sqrt{6}}{\sqrt{15} - 3}$$
; r) $\frac{\sqrt{15} + \sqrt{10}}{\sqrt{21} + \sqrt{14}}$.

14.50. a)
$$\frac{4a+4\sqrt{3}}{3-a^2}$$
; B) $\frac{x-25}{3\sqrt{x}+15}$;

B)
$$\frac{x-25}{3\sqrt{x}+15}$$
;

6)
$$\frac{x-y}{\sqrt{5y}-\sqrt{5x}}$$
; Γ) $\frac{\sqrt{mn}+n}{m-n}$.

$$\Gamma) \frac{\sqrt{mn} + n}{m - n}$$

14.51. a)
$$\frac{x + 2\sqrt{xy} + y}{\sqrt{x} + \sqrt{y}}$$
; B) $\frac{x^2 - 6x\sqrt{y} + 9y}{3\sqrt{y} - x}$;

$$B) \frac{x^2-6x\sqrt{y}+9y}{3\sqrt{y}-x};$$

$$6) \ \frac{x + 4\sqrt{xy} + 4y}{x - 4y}$$

6)
$$\frac{x+4\sqrt{xy}+4y}{x-4y}$$
; r) $\frac{x^2-5y}{x^2+5y-x\sqrt{20y}}$.

14.52. a)
$$\frac{\sqrt{a^3} + \sqrt{b^3}}{\sqrt{a} + \sqrt{b}}$$
; B) $\frac{\sqrt{c^3} - \sqrt{d^3}}{c + \sqrt{cd} + d}$;

$$B) \frac{\sqrt{c^3} - \sqrt{d^3}}{c + \sqrt{cd} + d};$$

6)
$$\frac{x\sqrt{x}-8}{\sqrt{x}-2}$$

6)
$$\frac{x\sqrt{x}-8}{\sqrt{x}-2}$$
; r) $\frac{27+a\sqrt{a}}{3+\sqrt{a}}$.

14.53. Упростите выражение:

a)
$$\frac{\sqrt{x}-\sqrt{y}}{\sqrt{5y}}-\frac{\sqrt{x}}{\sqrt{5y}}$$
;

6)
$$\frac{11\sqrt{x} - 2\sqrt{y}}{4\sqrt{x}} + \frac{2\sqrt{x} - 3\sqrt{y}}{4\sqrt{x}} - \frac{\sqrt{x} - \sqrt{y}}{4\sqrt{x}};$$

$$\text{B) } \frac{\sqrt{m}}{\sqrt{2mn}} - \frac{\sqrt{m} + 2\sqrt{n}}{\sqrt{2mn}};$$

$$\Gamma) \ \frac{2\sqrt{c}-\sqrt{d}}{5\sqrt{c}}-\frac{8\sqrt{c}+6\sqrt{d}}{5\sqrt{c}}+\frac{\sqrt{c}-3\sqrt{d}}{5\sqrt{c}}.$$

Упростите выражение:

14.54. a)
$$\frac{\sqrt{a}}{\sqrt{a}+3} + \frac{3}{\sqrt{a}+3}$$
; B) $\frac{4}{\sqrt{q}-4} - \frac{\sqrt{q}}{\sqrt{q}-4}$;

$$\text{B) } \frac{4}{\sqrt{q}-4}-\frac{\sqrt{q}}{\sqrt{q}-4};$$

6)
$$\frac{\sqrt{n}}{\sqrt{n-13}} + \frac{13}{13-\sqrt{n}};$$
 r) $\frac{\sqrt{t}}{3-\sqrt{t}} + \frac{3}{\sqrt{t-3}}.$

$$\Gamma) \ \frac{\sqrt{t}}{3-\sqrt{t}} + \frac{3}{\sqrt{t}-3}$$

14.55. a)
$$\frac{a}{\sqrt{a}-3} - \frac{9}{\sqrt{a}-3};$$
 B) $\frac{c}{\sqrt{c}+9} - \frac{81}{\sqrt{c}+9};$

B)
$$\frac{c}{\sqrt{c}+9}-\frac{81}{\sqrt{c}+9}$$
;

6)
$$\frac{c}{\sqrt{c}-10} - \frac{20\sqrt{c}-100}{\sqrt{c}-10};$$
 r) $\frac{d}{\sqrt{d}+7} + \frac{14\sqrt{d}+49}{\sqrt{d}+7}.$

$$\Gamma$$
) $\frac{d}{\sqrt{d}+7} + \frac{14\sqrt{d}+49}{\sqrt{d}+7}$.

14.56. a)
$$\frac{\sqrt{z}}{\sqrt{xy}} + \frac{\sqrt{x}}{\sqrt{yz}}$$
;

$$\mathrm{B)} \ \frac{\sqrt{m}}{\sqrt{cd}} - \frac{\sqrt{c}}{\sqrt{dm}};$$

6)
$$\frac{\sqrt{m}-\sqrt{n}}{\sqrt{mn}}+\frac{\sqrt{n}-\sqrt{r}}{\sqrt{nr}};$$
 Γ) $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{c}}{\sqrt{bc}}.$

$$\Gamma) \ \frac{\sqrt{a} + \sqrt{b}}{\sqrt{ab}} + \frac{\sqrt{b} - \sqrt{c}}{\sqrt{bc}}$$

014.57. a)
$$\frac{4}{\sqrt{a}-5} + \frac{1}{\sqrt{a}};$$
 B) $\frac{\sqrt{b}+1}{\sqrt{b}-2} - \frac{\sqrt{b}+3}{\sqrt{b}};$

B)
$$\frac{\sqrt{b}+1}{\sqrt{b}-2}-\frac{\sqrt{b}+3}{\sqrt{b}}$$
;

6)
$$\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{x}}{\sqrt{x} + \sqrt{y}};$$
 Γ) $\frac{\sqrt{d}}{\sqrt{c} - \sqrt{d}} - \frac{\sqrt{d}}{\sqrt{c}}.$

$$\Gamma) \frac{\sqrt{d}}{\sqrt{c} - \sqrt{d}} - \frac{\sqrt{d}}{\sqrt{c}}.$$

O14.58. a)
$$\frac{\sqrt{x}-1}{3\sqrt{x}-12} - \frac{\sqrt{x}-2}{2\sqrt{x}-8}$$
; B) $\frac{\sqrt{c}-2}{3\sqrt{c}+3} - \frac{3\sqrt{c}-4}{7\sqrt{c}+7}$;

B)
$$\frac{\sqrt{c}-2}{3\sqrt{c}+3}-\frac{3\sqrt{c}-4}{7\sqrt{c}+7}$$
;

6)
$$\frac{\sqrt{p}+1}{p-\sqrt{pq}}-\frac{\sqrt{q}+1}{\sqrt{pq}-q};$$
 r) $\frac{\sqrt{d}+3}{\sqrt{cd}+d}-\frac{\sqrt{c}-3}{\sqrt{cd}+c}.$

$$\Gamma) \frac{\sqrt{d}+3}{\sqrt{cd}+d} - \frac{\sqrt{c}-3}{\sqrt{cd}+c}$$

014.59. Проверьте равенство:

a)
$$\frac{2}{5+2\sqrt{6}}+\frac{2}{5-2\sqrt{6}}=20;$$

6)
$$\frac{6}{7-4\sqrt{3}} - \frac{6}{7+4\sqrt{3}} = \frac{144}{\sqrt{3}}$$
;

B)
$$\frac{3}{5\sqrt{2}-7} + \frac{3}{5\sqrt{2}+7} = 30\sqrt{2}$$
;

$$\Gamma \frac{1}{9+4\sqrt{5}} - \frac{1}{9-4\sqrt{5}} = -2\sqrt{80}.$$

Докажите, что верно равенство:

014.60. a)
$$\sqrt{3+2\sqrt{2}} = 1+\sqrt{2}$$
;

6)
$$\sqrt{23-4\sqrt{15}} = 2\sqrt{5}-\sqrt{3}$$
;

B)
$$2-\sqrt{3}=\sqrt{7-4\sqrt{3}}$$
;

r)
$$\sqrt{5} + 3\sqrt{2} = \sqrt{23 + 6\sqrt{10}}$$
.

014.61. a)
$$(3 + 2\sqrt{2})(1 - \sqrt{2})^2 = 1$$
;

6)
$$(\sqrt{3} - 1)^2 (4 + 2\sqrt{3}) = 4;$$

B)
$$(7 + 4\sqrt{3})(2 - \sqrt{3})^2 = 1;$$

r)
$$(\sqrt{2}-3)^2(11+6\sqrt{2})=49.$$

014.62. a)
$$\sqrt{2-\sqrt{3}} = \frac{\sqrt{3}-1}{\sqrt{2}}$$
;

6)
$$\sqrt{2-\sqrt{3}}(2+\sqrt{3})(\sqrt{6}-\sqrt{2})=2;$$

B)
$$\sqrt{2+\sqrt{3}} = \frac{\sqrt{3}+1}{\sqrt{2}}$$
;

r)
$$\sqrt{2+\sqrt{3}}(\sqrt{3}-2)(\sqrt{2}+\sqrt{6})=-2$$
.

- **014.63.** а) Докажите, что $(1-\sqrt{2})^2=3-2\sqrt{2}$. Можно ли на основании этого утверждать, что $\sqrt{3-2\sqrt{2}} = 1 - \sqrt{2}$?
 - б) Докажите, что $(\sqrt{2}-1)^2=3-2\sqrt{2}$. Можно ли на основании этого утверждать, что $\sqrt{3-2\sqrt{2}} = \sqrt{2} - 1$?
- 014.64. Какое из данных равенств верно? Ответ объясните.

a)
$$\sqrt{28-10\sqrt{3}} = \sqrt{3}-5$$

a)
$$\sqrt{28-10\sqrt{3}} = \sqrt{3}-5$$
; 6) $\sqrt{28-10\sqrt{3}} = 5-\sqrt{3}$.

- **41.** Постройте график функции $y = -\sqrt{x-1} + 2$. По графику найдите:
 - а) область определения и множество значений функции;
 - б) наибольшее и наименьшее значения функции на отрезке [5; 10];
 - в) корни уравнения y(x) = 1;
 - г) решение неравенства y(x) < 0.
- 42. Решите графически уравнение:

a)
$$\sqrt{x-3} = 1$$
;

B)
$$3 - \sqrt{x+2} = 0$$
;

6)
$$-\sqrt{x+1} = 4 - 2x$$
;

a)
$$\sqrt{x-3} = 1;$$

b) $3 - \sqrt{x+2} = 0;$
c) $-\sqrt{x+1} = 4 - 2x;$
r) $\sqrt{x+3} = \frac{1}{3}x + 1.$

43. Решите графически систему уравнений:

a)
$$\begin{cases} y = x^2 - 6x + 5 \\ y = \sqrt{x - 3} - 4 \end{cases}$$

a)
$$\begin{cases} y = x^2 - 6x + 5, \\ y = \sqrt{x - 3} - 4; \end{cases}$$
 6)
$$\begin{cases} y = -\sqrt{x + 1} - 1, \\ y = \frac{2}{x - 1}. \end{cases}$$

44. Используя график данной функции, определите, при каких значениях x выполняется неравенство $y \ge b$, y < b, если:

a)
$$y = \sqrt{x+3} - 1$$
, $b = 0$;
b) $y = -\sqrt{x} + 2$, $b = 0$;
6) $y = -\sqrt{x-1}$, $b = -2$;
r) $y = \sqrt{x} + 3$, $b = 5$.

B)
$$y = -\sqrt{x} + 2$$
, $b = 0$;

6)
$$y = -\sqrt{x-1}, b = -2$$

r)
$$y = \sqrt{x} + 3$$
, $b = 5$.

Постройте график функции:

45. a)
$$y = |x|$$
;

B)
$$y = |x| - 3$$

6)
$$y = |x + 1|$$
;

45. a)
$$y = |x|$$
; B) $y = |x| - 3$; 6) $y = |x + 1|$; P) $y = |x - 3| + 1$.

46. a)
$$y = -|x|$$
;

$$\mathbf{B}) \ y = -|x-2|;$$

a)
$$y = -|x|$$
;
b) $y = -|x - 2|$;
6) $y = -|x + 4| - 2$;
r) $y = 2 - |x|$.

$$\mathbf{r)} \ y = 2 - |x|.$$

- **47.** Постройте график функции y = |x 4| 5. Найдите:
 - а) наименьшее значение функции;
 - б) промежутки монотонности функции;
 - в) нули функции;
 - г) значения аргумента, при которых y > 0, y < 0.
- **48.** Постройте график функции y = -|x + 3| + 4. Найдите:
 - а) наибольшее значение функции;
 - б) промежутки монотонности функции;
 - в) нули функции;
 - г) значения аргумента, при которых y > 0, y < 0.

Упростите выражение:

014.70. a)
$$\left(2 + \frac{\sqrt{t}}{\sqrt{t}+1}\right) \cdot \frac{3t + 3\sqrt{t}}{12\sqrt{t}+8}$$
;

6)
$$\left(\frac{\sqrt{x}-2\sqrt{y}}{\sqrt{xy}}+\frac{1}{\sqrt{x}}\right)\cdot\frac{xy}{\sqrt{x}-\sqrt{y}}$$
.

014.71. a)
$$\left(\sqrt{a} - \frac{a}{\sqrt{a} + 1}\right) \cdot \frac{a - 1}{\sqrt{a}};$$

6)
$$\frac{1-2\sqrt{b}}{2\sqrt{b}+1} + \frac{b+3\sqrt{b}}{4b-1} : \frac{3+\sqrt{b}}{4\sqrt{b}+2};$$

B)
$$\frac{\sqrt{cd}-d}{c+d}\cdot\left(\frac{\sqrt{c}}{\sqrt{c}+\sqrt{d}}+\frac{\sqrt{d}}{\sqrt{c}-\sqrt{d}}\right);$$

$$\Gamma) \frac{a-16}{\sqrt{a}+3} \cdot \frac{1}{a+4\sqrt{a}} - \frac{\sqrt{a}+4}{a-3\sqrt{a}}.$$

Докажите тождество:

014.72. a)
$$\left(\frac{\sqrt{m}}{n-\sqrt{mn}}+\frac{\sqrt{n}}{m-\sqrt{mn}}\right)\cdot\frac{\sqrt{mn}}{\sqrt{n}+\sqrt{m}}=-1;$$

6)
$$\left(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\cdot\frac{a-b}{a^2+ab}=\frac{1}{a};$$

B)
$$\left(\frac{1}{\sqrt{y}} - \frac{2}{\sqrt{x} + \sqrt{y}}\right) : \left(\sqrt{x} - \frac{x+y}{\sqrt{x} + \sqrt{y}}\right) = \frac{1}{y};$$

r)
$$\frac{z+2\sqrt{z}}{\sqrt{z}-2}:\left(\frac{\sqrt{z}}{\sqrt{z}-2}-\frac{z-12}{z-4}-\frac{4}{z+2\sqrt{z}}\right)=\frac{z}{2}.$$

014.73. a)
$$\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{ab}}{b-a}\right)\cdot\left(\sqrt{a}-\frac{\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\right)=\sqrt{a}+\sqrt{b};$$

6)
$$\frac{\sqrt{z}-2}{4z-16\sqrt{z}+16}:\left(\frac{\sqrt{z}}{2\sqrt{z}-4}-\frac{z-12}{2z-8}-\frac{2}{z+2\sqrt{z}}\right)=\frac{\sqrt{z}}{4(\sqrt{z}+2)}.$$

014.74. Упростите выражение:

a)
$$\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right)\cdot\left(\sqrt{a}+\sqrt{b}-\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)^{-1}$$
;

6)
$$\left(\sqrt{c} - \sqrt{d} + \frac{2\sqrt{cd}}{\sqrt{c} - \sqrt{d}}\right)^{-1} \cdot \left(\frac{\sqrt{c} + \sqrt{d}}{\sqrt{c} - \sqrt{d}} - \frac{\sqrt{d}}{\sqrt{c}}\right)$$

014.75. Упростите выражение:

a)
$$\frac{\frac{x}{x-\sqrt{2}} - \frac{\sqrt{2}}{x+\sqrt{2}}}{\frac{x^2+2}{x^2+x\sqrt{2}}};$$
 6) $\frac{\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}} - \frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}}{\frac{a^2+ab}{a-b}}.$

014.76. Найдите значение выражения

$$\frac{1}{4} \cdot (xa^{-1} - ax^{-1}) \cdot \left(\frac{a^{-1} - x^{-1}}{a^{-1} + x^{-1}} - \frac{a^{-1} + x^{-1}}{a^{-1} - x^{-1}}\right)$$
при $a = \sqrt{2} + \sqrt{3}, \quad x = 0,2(13).$

014.77. Найдите значение выражения

$$\frac{1+ax^{-1}}{a^{-1}x^{-1}}\cdot\frac{a^{-1}}{a^{-1}x-ax^{-1}}:\frac{ax^{-1}}{x-a}\cdot x^{-2}$$
при $a=-2,785,\ x=\sqrt{13}-1.$

014.78. Докажите тождество

$$\left(\left(\frac{\sqrt{a+1}}{\sqrt{a-1}}\right)^{-4}+1\right):\left(\frac{\sqrt{a+1}}{\sqrt{a^2+1}}\right)^{-2}=\left(\sqrt{\frac{a+1}{2}}\right)^{-2}.$$

Упростите выражение:

●14.79. a)
$$\sqrt{\frac{x}{x-a^2}} : \left(\frac{\sqrt{x} - \sqrt{x-a^2}}{\sqrt{x} + \sqrt{x-a^2}} - \frac{\sqrt{x} + \sqrt{x-a^2}}{\sqrt{x} - \sqrt{x-a^2}}\right);$$

6) $\left(\frac{1}{\sqrt{a} - \sqrt{a-b}} + \frac{1}{\sqrt{a} + \sqrt{a+b}}\right) : \left(1 + \sqrt{\frac{a+b}{a-b}}\right).$

O14.80. a)
$$\left(\frac{a\sqrt{a} + b\sqrt{b}}{\sqrt{a} + \sqrt{b}}\right)$$
: $(a - b) + \frac{\sqrt{b}}{\sqrt{a} - \sqrt{b}}$;
6) $\left(\left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right) : \left(\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} - 2\right)\right) : \left(1 + \sqrt{\frac{b}{a}}\right)$.

014.81. Вычислите при заданном значении х:

$$\frac{2a\sqrt{1+x^2}}{x+\sqrt{1+x^2}}, \ \ x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right), \ a>0, \ b>0.$$

014.82. Найдите значение выражения:

a)
$$x^2 - 2x\sqrt{2} + 2$$
, если $x = \sqrt{2} + 1$;

б)
$$2a^2 - ab - b^2$$
 при $a = \sqrt{5} + 1$ и $b = \sqrt{5} - 1$;

в)
$$3b^2 + 2b\sqrt{3} + 1$$
, если $b = 3\sqrt{3}$;

г)
$$2a^2 - 5ab + 2b^2$$
 при $a = \sqrt{6} + \sqrt{5}$ и $b = \sqrt{6} - \sqrt{5}$.

О14.83. Сравните значения числовых выражений A и B:

a)
$$A = \frac{1}{3\sqrt{3}-5} + \frac{1}{3\sqrt{3}+5}$$
; $B = \sqrt{30}$;

6)
$$A = \frac{2}{4 + 2\sqrt{5}} - \frac{2}{4 - 2\sqrt{5}}$$
; $B = \sqrt{24}$;

B)
$$A = \frac{3}{2\sqrt{6}-3} + \frac{3}{2\sqrt{6}+3}$$
; $B = \sqrt{3}$;

r)
$$A = \frac{1}{2+3\sqrt{2}} - \frac{1}{2-3\sqrt{2}}$$
; $B = \sqrt{2}$.

014.84. Упростите выражение:

a)
$$\sqrt{36-10\sqrt{11}}$$
; 6) $\sqrt{25+4\sqrt{34}}$.

6)
$$\sqrt{25+4\sqrt{34}}$$

Проверьте равенство:

•14.85. a)
$$\sqrt{9-4\sqrt{5}} + \sqrt{14-6\sqrt{5}} = 1$$
;

6)
$$\sqrt{11-4\sqrt{7}} + \sqrt{16-6\sqrt{7}} = 1$$
.

•14.86.
$$\left(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2=8.$$

$$ullet$$
 14.87. Упростите выражение $\sqrt{10 + 8\sqrt{2 + \sqrt{9 + 4\sqrt{2}}}}$.

●14.88. Докажите тождество

$$\frac{b^2-3b-(b-1)\sqrt{b^2-4}+2}{b^2+3b-(b+1)\sqrt{b^2-4}+2}\cdot\sqrt{\frac{b+2}{b-2}}=\frac{1-b}{1+b},$$

если b > 2.