

Attention Mechanism

- Input sequence X, encoder f_{enc} , and decoder f_{dec}
- $f_{enc}\left(X\right)$ produces hidden states h_{1}^{enc} , h_{2}^{enc} , ..., h_{N}^{enc}
- On time step t, we have decoder hidden state h_t
- Compute attention score $lpha_i = h_t^T h_i^{enc}$ //dot product attention
- Compute attention distribution $\hat{\alpha}_i = P_{att}(X_i) = softmax(\alpha_i)$
- Attention output: $h_{att}^{enc} = \sum_{i} \hat{\alpha}_{i} h_{i}^{enc}$
- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
 - Sample an output using both

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbac

Attention Mechanism

- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Self Attention

"I am going to the bank to deposit the cheque"

"The boat went down the river bank"

The vector representation used as input to RNN cannot differentiate context

Problems with RNNs: Sequential computation inhibits parallelization

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbac

Self Attention

- Self attention
 - Re-express representation in terms of the context the word occurs in
 - Construct Probability distribution of importance - Dot product and normalization with only the input
 - Re-express word vectors weighted by the probabilities as weights

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Self Attention

- Defining the Weight Matrices
 - Three matrices serve to project the inputs into query, key, and value components
- $\begin{array}{c|c}
 & W_q & q^{(1)} \\
 \hline
 & W_k & k^{(1)} \\
 \hline
 & V^{(1)} \\
 \end{array}$
- ullet Query sequence: $\mathbf{q}^{(i)} = \mathbf{W}_q \mathbf{x}^{(i)}$ for $i \in [1,T]$
- ullet Key sequence: $\mathbf{k}^{(i)} = \mathbf{W}_k \mathbf{x}^{(i)}$ for $i \in [1,T]$
- ullet Value sequence: $\mathbf{v}^{(i)} = \mathbf{W}_v \mathbf{x}^{(i)}$ for $i \in [1,T]$

 $q^{(2)}$. $k^{(1)}$

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbac

Self Attention

 Computing the Unnormalized Attention Weights

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

All similarities do not encode the same aspects Multi-head Attention: Each notion of similarity is represented by an attention head "He kicked the ball" He kicked the ball " Aspect: "who" Aspect: "did what" Prof. Monidipa Das, Department of CSE, UT (ISM) Dhanbad

Self Attention: Permutation Invariant!

- Self attention doesn't "know" the order of the vectors it is processing!
- But what if the ordering of the input vectors conveys information as well?
 - The position of a word in a sentence matters!

"The man ate a fish"

"The fish ate a man""

Solution: Positional Encoding

Self Attention: Permutation Invariant!

- Add positional embeddings to input embeddings
 - Same dimension
 - Can be learned or fixed

Options for pos(.)

- 1. Learn a lookup table:
 - ο Learn parameters to use for pos(t) for t ε [0, T)
 - Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

Desiderata of pos(.):

- 1. It should output a unique encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- Our model should generalize to longer sentences without any efforts. Its values should be bounded.
- It must be deterministic.

 $\sin(\omega_1,t)$ $\cos(\omega_1, t)$ $\sin(\omega_2,t)$ $\cos(\omega_2.t)$ pos(j) $\sin(\omega_{d/2}.\,t)$

 $\cos(\omega_{d/2},t)$.

 $10000^{2k/d}$

self-attention position encoding

Concatenate special positional encoding p to each input vector x

We use a function pos: N →R^d to process the position j of the vector into a d-dimensional vector

So, $p_i = pos(j)$

Advantages of Transformers

- · Great for modelling context
 - Each token can have access to all other tokens in the sequence
- A generic architecture:
 - Operates on any inputs that can be tokenized!
- Parallelizable
- Empirically shown to perform excellently at scale

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbac

Weaknesses of Transformers

- Quadratic complexity
 - Each token attends to every other token
 - N tokens → N2 operations
 - Prohibitive as the number of tokens increases!
- Most powerful language models are extremely expensive
- Large body of work on more efficient transformers.
- Transformers can overfit easily on smaller datasets

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

RNNs to Transformer

RNNs

- LSTMs work reasonably well for long sequences.
- Expects an ordered sequences of inputs
- Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

• Transformer:

- Good at long sequences. Each attention calculation looks at all inputs.
- Can operate over unordered sets or ordered sequences with positional encodings.
- Parallel computation: All alignment and attention scores for all inputs can be done in parallel
- Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head.

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbac

