0.0.1 K_s^0 Reconstruction

The following cuts were used to select good K_S^0 candidates:

- 1. Pion Daughter Cuts
 - (a) $|\eta| < 0.8$
 - (b) SetTPCnclsDaughters(80)
 - (c) SetStatusDaughters(AliESDtrack::kTPCrefic)
 - (d) SetMaxDcaV0Daughters(0.3)
 - (e) $p_T > 0.15$
 - (f) DCA to prim vertex > 0.3
- 2. K_S⁰ Cuts
 - (a) $|\eta| < 0.8$
 - (b) $p_T > 0.2$
 - (c) m_{PDG} 13.677 MeV $< m_{inv} < m_{PDG} + 2.0323$ MeV
 - (d) Cosine of pointing angle > 0.9993
 - (e) OnFlyStatus = false
 - (f) Decay Length < 30 cm

As can be seen in Figure 1, some misidentified Λ and $\bar{\Lambda}$ particles contaminate our K_S^0 sample. Figure 1a shows the mass assuming Λ -hypothesis for the K_S^0 collection, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$. Figure 1b is similar, but shows the mass assuming $\bar{\Lambda}$ hypothesis for the collection, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$. The Λ contamination can be seen in 1a, and the $\bar{\Lambda}$ contamination in 1b, in the peaks around $m_{inv}=1.115~{\rm GeV/c^2}$. Additionally, the $\bar{\Lambda}$ contamination is visible in Figure 1a, and the Λ contamination visible in Figure 1b, in the region of excess around 1.65 $< m_{inv} < 2.1~{\rm GeV/c^2}$. This is confirmed as the number of misidentified Λ particles in the sharp peak of Figure 1a (misidentified $\bar{\Lambda}$ particles in the sharp peak of Figure 1b) approximately equals the excess found in the 1.65 $< m_{inv} < 2.1~{\rm GeV/c^2}$ region of Figure 1a (Figure 1b).

The peaks around $m_{inv}=1.115~{\rm GeV/c^2}$ in Figure 1 contain both misidentified Λ ($\bar{\Lambda}$) particles and good K_S^0 . If one simply cuts out the entire peak, some good K_S^0 particles will be lost. Ideally, the K_S^0 selection and $\Lambda(\bar{\Lambda})$ misidentification cuts can be selected such that the peak is removed from this plot while leaving the distribution continuous. To attempt to remove these Λ and $\bar{\Lambda}$ contaminations without throwing away good K_S^0 particles, the following misidentification cuts are imposed; a K_S^0 candidate is rejected if all of the following criteria are satisfied:

- $|m_{inv, \Lambda(\bar{\Lambda}) \ Hypothesis} m_{PDG, \Lambda(\bar{\Lambda})}| < 9.0 \ \mathrm{MeV/c^2}$
- Positive daughter passes $p^+(\pi^+)$ daughter cut implemented for $\Lambda(\bar{\Lambda})$ reconstruction
- Negative daughter passes $\pi^-(\bar{p}^-)$ daughter cut implemented by $\Lambda(\bar{\Lambda})$ reconstruction

(a) Mass assuming Λ -hypothesis for K_S^0 collection, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$.

(b) Mass assuming $\bar{\Lambda}$ -hypothesis for K_S^0 collection, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$.

Fig. 1: Mass assuming Λ-hypothesis (1a) and $\bar{\Lambda}$ -hypothesis (1b) for K_S^0 collection. The "NoMisID" distribution (black triangles) uses the V0 finder without any attempt to remove misidentified Λ and $\bar{\Lambda}$. The peak in the "NoMisID" distribution around $m_{inv}=1.115~{\rm GeV/c^2}$ contains misidentified Λ (1a) and $\bar{\Lambda}$ (1b) particles in our K_S^0 collection. "SimpleMisID" (pink squares) simply cuts out the entire peak, which throws away some good K_S^0 particles. "MisID_NoM_{inv}Comp" (green squares) uses the misidentification cut outlined in the text, but does not utilize the invariant mass comparison method. "MisID_M_{inv}Comp" (red circles) utilizes the full misidentification methods, and is currently used for this analysis. "N_{pass}/N_{ev}" is the total number of K_S^0 particles found, normalized by the total number of events. The purity of the collection is also listed. Also note, the relative excess of the "NoMisID" distribution around 1.65 < m_{inv} < 2.1 GeV/c² shows misidified $\bar{\Lambda}$ (1a) and Λ (1b) particles in our K_S^0 collection.

Fig. 2: Invariant mass (M_{inv}) distribution of all K_S^0 candidates immediately before the final invariant mass cut. This distribution is used to calculate the collection purity, $Purity(K_S^0) \approx 98\%$.