Please use the LATEX template to produce your writeups. See the Homework Assignments page on the class website for details. Hand in at: https://webhandin.eng.utah.edu/index.php.

1 Variable Elimination

Perform variable elimination on the network below to figure out P(C) given F = f and $D = \sim d$. Show your work and list all of the intermediate factors formed. Assume we eliminate the variables in the following order: F, E, D, B, A.

To elimate the variables, we can sum over them all individually. This gives the equation

$$P(C) = P(f|C) \sum_{A} P(C|A)P(A) \sum_{B} P(B|A)P(\sim d|B) \sum_{E} P(E|B)$$

In using this, we can caluclate the values for c and $\sim c$, giving

$$P(c, \sim d, f) = 0.5(0.9 \cdot 0.5 + 0.7 \cdot 0.5)(0.8 \cdot 0.3 + 0.5 \cdot 0.8)(0.8)$$

$$= 0.2048$$

$$P(\sim c, \sim d, f) = 0.8(0.1 \cdot 0.5 + 0.3 \cdot 0.5)(0.8 \cdot 0.3 + 0.5 \cdot 0.8)(0.8)$$

$$= 0.0819$$

Now, solving for $P(c|\sim d,f)$ and $P(\sim c|\sim d,f)$ gives

$$P(c|\sim d, f) = \frac{P(c, f, \sim d)}{\sum_{C} P(c, f, \sim d)}$$

$$= \frac{0.2048}{0.2048 + 0.0819} = 0.7143$$

$$P(\sim c|\sim d, f) = \frac{P(\sim c, f, \sim d)}{\sum_{C} P(c, f, \sim d)}$$

$$= \frac{0.08192}{0.2048 + 0.0819} = 0.2857$$

2 Sampling

Consider the Bayes net below with corresponding CPTs.

1. Generate 2 samples using the following random numbers. The order for the random numbers is ABCD.

0.31 0.58 0.04 0.94 0.67 0.49 0.37 0.42	
---	--

A	P(A)
+a	0.8
-a	0.2

A	C	P(C A)
+a	+c	0.7
+a	-с	0.3
-a	+c	0.1
-a	-c	0.9

A	В	P(B A)
+a	+b	0.8
+a	-b	0.2
-a	+b	0.5
-a	-b	0.5

В	С	D	$P(D B, \overline{C})$
+b	+c	+d	0.3
+b	+c	-d	0.7
+b	-с	+d	0.1
+b	-с	-d	0.9
-b	+c	+d	0.2
-b	+c	-d	0.8
-b	-с	+d	0.9
-b	-с	-d	0.1

2. Given the samples below, answer the subsequent queries.

(a)
$$P(+d) = 3/10$$

(b)
$$P(+a, -b) = 2/10$$

(c)
$$P(-a, -b, -c, -d) = 1/10$$

- (d) P(-c|-d) = 4/7
- (e) P(+d|-a,-b) = 1/2
- 3. Consider the query P(-d|-a,-b). Using the same random numbers as before, generate samples and their weights using likelihood weighting.

- 4. Given the weighted samples below, answer the subsequent queries.
 - +a -b -c -d 0.3
 - -a +b +c -d 0.4
 - +a -b +c -d 0.1
 - +a +b -c -d 0.3
 - +a -b +c +d 0.4
 - -a -b -c +d 0.1
 - -a -b -c -d 0.2
 - +a +b +c -d 0.5
 - -a +b -c -d 0.7
 - +a +b -c +d 0.8
 - (a) P(+d)
 - (b) P(+a, -b)
 - (c) P(-a, -b, -c, -d)
 - (d) P(-c|-d)
 - (e) P(+d|-a,-b)