华中科技大学化学与化工学院 2016-2017 学年度第 一 学期"基础化学(二)"试卷(A卷)

主考教		1月; 胡永祥; 李泽预防; 医检; 景		考试方	式:闭卷	
学生姓	名:	学号: _		专业班级:		得分
注意:		必须写在答题纸 ₋ 题纸必须全部上3				
一、单	项选择题 (从	下列各题四个备选	答案中选出-	-个正确答案。	每小题1分,	共50分)
		45g 乳酸 CH ₃ CH		容液中,水的 D. 0.)
A.	可溶液为稀薄 葡萄糖溶液 蔗糖溶液		B. 蛋		的是()	
mol·k	kg ⁻¹ Na ₂ SO ₄ 。 □)0.100mol·kg ⁻¹ 的 司温度下,蒸汽压 B. ①>②>③	医由大到小的岬	顺序是()		[aCl、③0.100
		见则,32.8×0.32÷2 . 0.420 C		吉果为 : () I		
5. 下列 A. C.	溶液中红细胞 9 g·L ⁻¹ NaCl 溶 100 g·L ⁻¹ 葡萄	发生溶血现象的; 序液 j糖溶液	是 () B. D.	50 g·L-1 葡萄		勺溶液
				氢钠	D. 乳酸钠	
		へ一定量的 NaCl			70,000	
A.	活度增大	B. 活度减小	C. 活度不	「变 D. A	舌度系数增大	
8. 下列	哪一种物质溶	序液的 pH 与浓度	基本无关?		()
A.	NaOH	B. Na ₃ PO ₄	C. NaAc	D. NH ₄	CN	
9. 0.1	mol·L ⁻¹ NaA 濱	系液(HA 的 Ka= 1	1.0×10 ⁻⁵)的p	H为	()
Α.	2.0	B. 3.0	C. 9.0	D. 11	.0	
10. A	l(OH) ₃ 的溶解	度(S)与溶度积常数。	-			()
A.	$S = \left(K_{\rm sp}\right)^{1/2}$	B. $S = (\frac{1}{4})^{-1}$	$(K_{\rm sp})^{1/2}$	$S = (K_{\rm sp})^{1/3}$	D. $S = ($	$\frac{1}{27}K_{\rm sp})^{1/4}$

11.	已知某弱酸 HA 的浓度 c (HA) 为 0.1 mol·L ⁻¹ ,测得该溶液在 37 ℃时的渗	透压力为
283	5.5kPa ,则该物质的解离度为	()
	A. 1% B. 5% C. 10% D. 20% 三元弱酸 H_3PO_4 的三对共轭酸碱对 K_a 和 K_b 的关系式中,正确的是() A. $K_{a1} \times K_{b1} = K_w$ B. $K_{a1} \times K_{b2} = K_w$ C. $K_{a1} \times K_{b3} = K_w$ D. $K_{a2} \times K_{b3} = K_w$ 人体血液的 pH 总是维持在 $7.35 \sim 7.45$ 这一狭小的范围内,其中主要原因是由于	()
	A. 血液中的 HCO_3^- 和 H_2CO_3 只允许维持在一定的比率范围内	
	B. 人体内有大量的水分(约占体重的70%)	
	C. 排出的CO ₂ 气体一部分溶在血液中	
	D. 排出的酸性物质和碱性物质溶在血液中	
14.	将下列各对溶液等体积混和后,不是缓冲溶液的是 ()
	A. 0.1 mol·L ⁻¹ NaAc溶液与0.1 mol·L ⁻¹ NaCl溶液	
	B. 0.2 mol·L ⁻¹ NH ₃ ·H ₂ O溶液和0.1 mol·L ⁻¹ HCl溶液	
	C. 0.2 mol·L ⁻¹ H ₃ PO ₄ 溶液和0.1 mol·L ⁻¹ NaOH溶液	
	D. 0.2 mol·L ⁻¹ Na ₂ CO ₃ 溶液和0.2 mol·L ⁻¹ NaHCO ₃ 溶液	
15.	影响缓冲容量的主要因素是 ()
	A. 缓冲溶液的总浓度和缓冲比 B. 弱酸的pK _a 和缓冲比	
	C. 弱酸的 pK_a 和缓冲溶液的总浓度 D. 弱酸的 pK_a 和其共轭碱的 pK_b	
16.	在相同条件下,NaCl、KNO ₃ 、K ₃ [Fe(CN) ₆]、Na ₂ SO ₄ 对正溶胶的聚沉能力相对	强弱的顺
序是		()
	A. $Na_2SO_4 > K_3[Fe(CN)_6] > KNO_3 > NaCl$ B. $K_3[Fe(CN)_6] > Na_2SO_4 > NaCl > KNO_3$ C. $K_3[Fe(CN)_6] > Na_2SO_4 > NaCl = KNO_3$ D. $K_3[Fe(CN)_6] > KNO_3 > Na_2SO_4 > NaCl$ E. $NaCl > KNO_3 > Na_2SO_4 > K_3[Fe(CN)_6]$	
17.	一封闭体系,当状态从 A 到 B 发生变化时,经历二条任意的途径,则)
	A. $Q_1=Q_2$ B. $W_1=W_2$ C. $Q_1+W_1=Q_2+W_2$ D. $Q_1-W_1=Q_2-W_2$	
18.	影响化学平衡常数的因素有 ()
	A. 产物的浓度 B. 反应物的浓度 C. 反应温度 D. 催化剂	
19.	已知 298K 时,NaCl(s)在水中的溶解度为 6 mol·L-1,在此温度下,如果将 1 mol·L-1	ol NaCl(s)
加)	入到 1L 水中,则过程是 ()

20. 若反应 $H_2(g)+S(s)=H_2S(g)$ 平衡常数为 K_1^{Θ} , $S(s)+O_2(g)=SO_2(g)$ 的平衡		ı Κ [⊖] 2
则反应 H_2 (g) $+SO_2$ (g) $=O_2$ (g) $+H_2S$ (g) 的平衡常数 K^Θ 等于	()
A. $K_1^{\ominus} - K_2^{\ominus}$ B. $\frac{K_1^{\ominus}}{K_2^{\ominus}}$ C. $K_1^{\ominus} \cdot K_2^{\ominus}$ D. $K_1^{\ominus} + K_2^{\ominus}$		
21. 将固体 NH_4NO_3 溶于水,溶液变冷,则该过程的 ΔG 、 ΔH 、 ΔS 的符号依次	(是()
A. +, -, - B. +, +, - C, +, - D, +, +		
22. 已知 $NO(g) + CO(g) \rightarrow 1/2O_2(g) + CO_2(g)$. $\Delta_r H_m^{\theta} = -373.4 \text{kJ·mol}^{-1}$,要使有	宇害气体	NO
和 CO 转化率最大,其最适宜的条件是	()
A. 高温高压 B. 低温高压 C. 高温低压 D. 低温低压		
23. 一个反应的活化能为 83.68kJ·mol ⁻¹ ,在室温 27℃时,温度每增加 1K,反应	立速率常	数增
加的百分数为 ()		
A. 4% B. 11% C. 20% D. 50%		
24. 某反应的反应热 ΔU 为 $-100 \mathrm{kJ \cdot mol}^{-1}$,则其活化能	()
A. 必定等于或小于 100kJ·mol ⁻¹ B. 必定等于或大于 100kJ·mo	ol ⁻¹	
C. 可以小于或大于 100kJ·mol ⁻¹ D. 只能小于 100kJ·mol ⁻¹		
25. 升高温度能提高化学反应速率的主要原因是	()
A. 降低了反应活化能 B. 增大了活化分子百分数		
C. 改变了反应途径 D. 提高了反应级数		
26. 下列原电池中, 电动势最大的是()		
A. (-) $Zn Zn^{2+}(1mol\cdot L^{-1}) Cu^{2+}(1mol\cdot L^{-1}) Cu^{2+}(1m$		
B. (-) $Zn Zn^{2+}(1mol\cdot L^{-1}) Cu^{2+}(0.1mol\cdot L^{-1}) Cu^{(+)} $		
$C. (-) Zn Zn^{2+}(0.1mol\cdot L^{-1}) Cu^{2+}(1mol\cdot L^{-1}) Cu^{(+)} $		
$D. \text{ (-) } Zn Zn^{2+}(0.001 \text{mol} \cdot \text{L}^{-1}) \ Cu^{2+}(0.1 \text{mol} \cdot \text{L}^{-1}) Cu \text{ (+)}$		
27. 已知 φ^{\ominus} (Cu ²⁺ /Cu) = 0.3419 V, φ^{\ominus} (Ag ⁺ /Ag) = 0.7996 V,将这两个!	电对组	成原
电池,则电池的标准电动势为()		

A. $\Delta G > 0$, $\Delta S > 0$ B. $\Delta G < 0$, $\Delta S > 0$ C. $\Delta G > 0$, $\Delta S < 0$ D. $\Delta G < 0$, $\Delta S < 0$

	A. 1.2509 V	B. 0.1158 V	C. 0.6287 V	D. 0.4577 V
28.	对于电池反应 C	$u^{2+} + Fe \longrightarrow Cu + 1$	Fe ²⁺ ,下列说法正确的	內是()
	A. $\stackrel{\text{def}}{=} c(Cu^{2+})$	=c(Fe ²⁺)时,电池	反应达到平衡。	
	B. 当 Cu ²⁺ , I	Fe ²⁺ 均处于标准态时	时,电池反应达到平征	 新 。
	C. 当原电池的	勺标准电动势为0	时,电池反应达到平	衡。
	D. 当原电池的	的电动势为0时,	电池反应达到平衡。	
29.	在不改变其他条	件的情况下,为了	了使电对 MnO ₄ /Mn ²⁺	的电极电位增大,可
采	用的方法是 ()		
	A. 增大 pH	B. 降低 pH	C. 增大 Mn ²⁺ 浓度	D. 降低 MnO ₄ 浓度
30.	己知, φ^{Θ} (Fe ³⁺ /	$(Fe^{2+}) = 0.771 \text{ V},$	$\varphi^{\Theta}(\mathrm{Cu}^{2+}/\mathrm{Cu}) = 0.341$	19 V, $\varphi^{\ominus}(Fe^{2+}/Fe) =$
-0.	447 V, $\varphi^{\ominus}(\operatorname{Sn}^4)$	$^{+}/\mathrm{Sn}^{2+}) = 0.151 \text{ V}$	。标准状态下,下列	J反应能正向进行的是
()。			
	A. Sn^{4+} + Cu \rightleftharpoons	\Rightarrow Sn ²⁺ + Cu ²⁺	B. $Cu^{2+} + Sn^{2+}$	$Cu + Sn^{4+}$
	C. $2Fe^{2+} + Sn^{2+} = $	$\operatorname{Sn}^{4+} + 2\operatorname{Fe}$	D. $\operatorname{Sn}^{4+} + \operatorname{Fe}^{2+} \longrightarrow$	$\mathrm{Sn}^{2+} + \mathrm{Fe}^{3+}$
31.	下列关于标准电	极电位的关系式不	下正确的是()。	
	A. φ^{\ominus} (Ag ₂ S/Ag	g) $< \varphi^{\ominus} (Ag^{+}/Ag)$	B. φ^{\ominus} (Ag(CN) ₂	$(2^{-}/Ag) < \varphi^{\ominus} (Ag^{+}/Ag)$
	C. φ^{\ominus} (Cu ²⁺ /CuI	$\rangle > \varphi^{\ominus} \left(\mathrm{Cu}^{2+} / \mathrm{Cu}^{+} \right)$	D. φ^{\ominus} (Cu(NH ₃)	ρ_4^{2+}/Cu $> \varphi^{\ominus} (\mathrm{Cu}^{2+}/\mathrm{Cu})$
32.	在标准状态下,	H ₂ O ₂ 不能氧化	Co ²⁺ 为 Co ³⁺ ,却能氧	貳化[Co(NH ₃) ₆] ²⁺ 为[Co
(NH ₃) ₆] ³⁺ 。由此 ^豆	「知,[Co (NH ₃) ₆] ²	⁺ 的稳定常数 K [⊖] 与[Co	o (NH ₃) ₆] ³⁺ 的稳定常数
1	K_{f2}^{Θ} 的关系是()。		
	A. $K_{f1}^{\Theta} < K_{f2}^{\Theta}$	B. $K_{f1}^{\Theta} > K$	$C_{f2} \qquad C. K_{f1}^{\Theta} = K_{f2}^{\Theta}$	D. 不能确定
33.	0.1 mol·L ⁻¹ K ₃ [Fe	e(CN)6]溶液的渗透	養浓度是	()
	A. 100 mmol·L	B. 200 mmol	·L ⁻¹ C. 400 mmol·	L ⁻¹ D. 600 mmol·L ⁻¹

34. 某一电子有下列成套量子数(n, l, m, s),其中不可能存在的是 ()

A. 3, 2, 2, 1/2 B. 3, 1, -1, 1/2 C. 1, 0, 0, -1/2 D. 2, -1, 0, 1/2

35.	基态 24Cr 的	电子组态是				()	
	A. $[Ar]4s^23c^2$	l ⁴ B. [K	$r] 3d^44s^2$	C. [A	$xr] 3d^54s^1$	D. [Xe]4s	¹ 3d ⁵	
36.	下图中表示基	态 Fe 原子的	3d 和 4s 轨:	道中8个电	已子排布正确	的是	(()
	A. 1	3d	4s	В. [3d ↑↓ ↑↓ ↑	4s		
	C.	3d	4s	D. [3d	4s 1]	
37.	20. Fe ³⁺ 离子的	J电子组态是				(()	
	A. [Ar]3d ³ 4s	B. [Ar]3	$8d^64s^0$	C. [Ar]3d ⁵	4s ⁰ D. [$[Ar]3d^54s^1$		
38.	组态为(电子层有 2 个)						介电子
39.	A. 3d ³ 3s ² 4d ¹ 电子最可能 A. 4, 3, 2, 1/		l、m、s)的	的组成是:	()	D. 4d ⁵ 5s		2
40.	K、Mg、S、C A. K、Mg、 C. S、Cl、F	S、Cl	中,原子半		ト排列的顺序 B. Cl、S、M D. Mg、S、	Mg、K		
41.	关于 PF ₅ 分子	•	极性,下列		•)	
	A. 键和分子	子都是极性的		B. 键和2	分子都是非核	及性的		
	C. 键是极性	生的,分子是非	极性的	D. 键是	非极性的 , タ	分子是极性 的	勺	
42.	下下列分子或	这离子中, 最稳	定的是			()		
	A. N_2^{2+}	B. N ₂ ⁺	C. N ₂	D. N ₂	! !			
43.	下列分子或离	5子中,键角为	180°的是				()	
	A. NO ₂	B. NO ₂ +	C. N	O_2^-	D. NO ₃			
44.	下列物质中,	只需克服色散	力就能沸腾	善 的是			()	
	A. CCl ₄	B. CH ₃ C	1 C	. H ₂ O	D. CH ₃ OI	H		
45.	H ₂ Se 分子的空	ど 间构型和中心	原子S的熱	杂化类型分	别为		()
	A. 直线	說形,sp 杂化	В.	平面三角	形,sp ² 杂化	ے ک		
	C. V 字	形,不等性 sp	³ 杂化 D	. V 字形,	不等性 sp ² 点	於化		

46.	卜列各组分子间,同时存在取向力	、诱导力、	色散力和氢银	建的是		()
	A. C ₆ H ₆ 和 CCl ₄ B. H ₂ O 和 C	C ₂ H ₅ OH	C. CH ₃ F 和	НСНО	D. O ₂ 和	N ₂	
47.	AB ₃ 分子中,中心原子 A 有 3 个价的	电子,配位	原子 B 各提供	共1个价电	子,其空	间构	型为
()						
	A. 平面正三角形 B. ∠	BAB < 90 ⁰	的三角锥体				
	C. T形 D. ∠I	$BAB = 90^{\circ}$	的三角锥体				
48. 🕏	利用生成配合物而使难溶电解质溶解	解时,下面	哪一种情况最	有利于沉	淀的溶解	()
	A. $\lg K_{\rm s}$ 愈大, $K_{\rm sp}$ 愈小	B. lg K _s 愈小	、, K _{sp} 愈大				
	$C. \lg K_s$ 愈小, K_{sp} 愈小). lgK _s 愈大	, K _{sp} 也大				
	已知,[Co(NH ₃) ₆] ³⁺ 的 lgK _s =35.2,[C	$[Co(NH_3)_6]^{2+}$	的 lgK _s =5.11,		o ³⁺ /Co ²⁺)	与	φ^\ominus
([Co	(NH ₃) ₆] ³⁺ /[Co(NH ₃) ₆] ²⁺)的关系是	13+/50	27+)	()			
	A. $\varphi^{\Theta}(\text{Co}^{3+}/\text{Co}^{2+}) > \varphi^{\Theta}([\text{Co}(\text{N})])$						
	B. $\varphi^{\Theta}(\text{Co}^{3+}/\text{Co}^{2+}) < \varphi^{\Theta}([\text{Co}(\text{N})])$.,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	C. φ^{Θ} (Co ³⁺ /Co ²⁺) = φ^{Θ} ([Co(D. 以上说法都不正确	NH ₃) ₆] ³⁺ /[C	$\operatorname{Co}(\operatorname{NH}_3)_6]^{2^+}$				
50.	对 K_s 的正确描述是					()
	A. 配离子的 K_s 值愈大,配离	子愈不稳定					
	B. 可利用 $K_{\rm s}$ 值直接比较同种	类型配离子	产的稳定性				
	C . 一般来说, $K_{\rm s}$ 值与温度有关	き	离子的种类、	配体的种类	类无关		
	$D.K_s$ 值是各级累积稳定常数之	和					
二、	简答题(每题4分,共20分)						

- 1、某元素的原子序数为 26,写出其核外电子排布式,并指出它在周期表中属于哪一周期、哪一族、什么区。
- 2、将 0.02mol·L⁻¹的 KCl 溶液 12 mL 和 0.05 mol·L⁻¹的 AgNO₃溶液 100mL 混合以制备 AgCl 溶胶,试写出此溶胶的胶团结构式。
- 3、一级反应完成99.9%时所需要的时间大约相当于其半衰期的多少倍?
- 4、用 VSEPR 法判断下列分子的空间构型,指出其杂化轨道类型和分子极性
 - (1) SiF_4 (2) BCl_3 (3) H_2S (4) BrF_5

5、已知[PdCl₄]²-为平面四方形结构, [Pd(CN)₄]²-为四面体结构, 根据价键理论分析它们的成键杂化轨道,并指出配离子是顺磁性还是抗磁性。

三、计算题(每题6分,共30分)

- 1、在 $c(\Gamma) = c(C\Gamma) = 0.0100 \text{ mol} \cdot L^{-1}$ 溶液中滴加 AgNO₃,哪种离子先沉淀?求第二种离子 刚沉淀时第一种离子浓度。
- 2、今欲配制 37 °C 时,近似 pH 为 7.40 的生理缓冲溶液,计算在 Tris 和 Tris-HCl 浓度均为 0.050mol·L^{-1} 的溶液 100 mL 中,需加入 0.050mol·L^{-1} HCl 的体积(mL)。在此溶液中需加入 固体 NaCl 多少克,才能配成与血浆等渗的溶液? (已知 Tris-HCl 在 37 °C 时的 pK_a=7.85, 忽略离子强度的影响,等渗的渗透浓度以 300 mmol·L^{-1} 计)
- 3、在某细胞内 ADP 和 H_3PO_4 浓度分别为 3.0 $mmol\cdot L^{-1}$ 和 1.0 $mmol\cdot L^{-1}$ 。ATP 的水解反应为:

ATP
$$\frac{H_2O}{}$$
 ADP + H_3PO_4

- 在 310.15K 时, $\Delta_r G_m^{\Theta}$ =-31.05kJ·mol⁻¹,试求 ATP 在细胞内的平衡浓度,如实际上 ATP 的浓度是 10 mmol·L⁻¹,求反应的 $\Delta_r G_m$.
- 4、例 己知φ (Pb²⁺/Pb) = -0.126 2V, K_a (HAc)=1.76×10⁻⁵, 有原电池:

 (-) Pb | Pb²⁺(1mol L⁻¹) | H⁺(1mol L⁻¹) | H₂(100kPa),Pt (+)
 问: (1)在标准态下, 2H⁺ + Pb H₂ + Pb²⁺反应能发生吗?
 (2)若在 H⁺溶液中加入 NaAc, 且使平衡后 HAc 及 Ac⁻浓度均为 1mol L⁻¹, H₂的分压为 100kPa, 反应方向是否发生变化?
- 5、已知: $K_{sp}(AgCl)=1.77\times10^{-10}$, $K_{s}([Ag(NH_3)_2]^+)=1.12\times10^7$ 。向 0.1 $mol\cdot L^{-1}AgNO_3$ 溶液 50mL 中加入质量分数为 $18.3\%(\rho=0.929kg\cdot L^{-1})$ 的氨水 30.0mL,然后用水稀释到 100mL,求:
- (1) 溶液中 Ag⁺、[Ag(NH₃)₂]⁺、NH₃的浓度;
- (2) 加 0.100 mol·L⁻¹KCl 溶液 10.0mL 时,是否有 AgCl 沉淀生成?通过计算指出,溶液中无 AgCl 沉淀生成时,NH₃ 的最低平衡浓度应为多少?

华中科技大学化学与化工学院 2014 -2015 学年度第 一 学期"基础化学(二)"试券(A 券)答 题 纸

考试时间: 2015 年 1 月 **考试方式:** 闭卷

主考教师: 高中洪; 胡永祥; 李海玲; 周军**考试专业:** 临床; 预防; 医检; 影像; 法医

学生姓名: _____ 学号: ____ 专业班级: ____ 得分___

题号	一 .单项选择 (每题 1 分; 共 50 分)	二 . 简答题 (每题 4 分; 共 20 分)	三. 计算 (每题 6 分; 共 30 分)	总分
分数				

注意: 所有答案必须写在答题纸上(注明题号), 试卷和答题纸均须上交, 否则作舞弊处理。

一、单项选择题(将正确答案的圈涂黑)

- 1. (A) (B) (C) (D) 2. (A) (B) (C) (D) 3. (A) (B) (C) (D) 4. (A) (B) (C) (D)
- 5. A B C D 6. A B C D 7. A B C D 8. A B C D
- 9. (A) (B) (C) (D) 10. (A) (B) (C) (D) 11. (A) (B) (C) (D) 12. (A) (B) (C) (D)
- 13. (A) (B) (C) (D) 14. (A) (B) (C) (D) 15. (A) (B) (C) (D) 16. (A) (B) (C) (D)
- 17. (A) (B) (C) (D) 18. (A) (B) (C) (D) 19. (A) (B) (C) (D) 20. (A) (B) (C) (D)
- 21. (A) (B) (C) (D) 22. (A) (B) (C) (D) 23. (A) (B) (C) (D) 24. (A) (B) (C) (D)
- 25. (A) (B) (C) (D) 26. (A) (B) (C) (D) 27. (A) (B) (C) (D) 28. (A) (B) (C) (D)
- 29. (A) (B) (C) (D) 30. (A) (B) (C) (D) 31. (A) (B) (C) (D) 32. (A) (B) (C) (D)
- 33. (A) (B) (C) (D) 34. (A) (B) (C) (D) 36. (A) (B) (C) (D)
- 37. (A) (B) (C) (D) 38. (A) (B) (C) (D) 39. (A) (B) (C) (D) 40. (A) (B) (C) (D)
- 41. (A) (B) (C) (D) 42. (A) (B) (C) (D) 43. (A) (B) (C) (D) 44. (A) (B) (C) (D)
- 45. (A) (B) (C) (D) 46. (A) (B) (C) (D) 47. (A) (B) (C) (D) 48. (A) (B) (C) (D)
- 49. (A) (B) (C) (D) 50. (A) (B) (C) (D)

=,	简答题	(标明题号)	三、计算题	(标明题号)

 (
(不够请在反面作答)