WHAT IS CLAIMED IS:

1

2

7 8

9

10

11

12

13

1415

16

17 18

19

1. A compound, having the formula:

wherein, R is hydrogen or -C(O)H; R¹ is a member selected from the group consisting of hydrogen, a substituted C₁₋₂₀ alkyl group, an unsubstituted C₁₋₂₀ alkyl group, a saccharyl group, and a group represented by the formula -C(O)-[C(R³)(R⁴)]_n-COOH,

wherein each R^3 and R^4 independently is a member selected from the group consisting of hydrogen and a substituted C_{1-10} alkyl group, an unsubstituted C_{1-10} alkyl group; and n is a number from 1 to 5; R^2 is a member selected from the group consisting of hydrogen, a substituted C_{1-20} alkyl group, an unsubstituted C_{1-20} alkyl group, and a group represented by the formula $-(CH_2)_mCH(OH)(CH_2)_pOR^5$,

wherein m and p are independently 1 or 2, and R^5 is a substituted C_{2-20} alkyl group, or an unsubstituted C_{2-20} alkyl group, or a group represented by the formula

$$\begin{array}{c|c}
O & & & \\
OC & -R^6 \\
CH_2)_j & -CH - R^7
\end{array}$$

wherein j is 1-5, and R^6 and R^7 are independently selected from the group consisting of hydrogen, a substituted C_{1-20} alkyl group;

20 or a pharmacologically acceptable salt thereof.

1 2. The compound of claim 1 wherein the saccharyl group is a mono-2 or disaccharide.

- 1 3. The compound of claim 1 wherein the saccharyl group is a
- 2 glucuronic acid group.
- 1 4. The compound of claim 1 wherein R, R¹, and R² are hydrogens.
- The compound of claim 1 wherein R is hydrogen; R¹ is a saccharyl
- 2 group, wherein the saccharyl group is a glucuronic acid group; and R² is hydrogen.
- 1 6. The compound of claim 5 wherein the glucuronic acid group is a β-
- 2 D-glucuronic acid group.
- The compound of claim 1 wherein R is hydrogen; R¹ is represented
- by the formula $-C(O)-[C(R^3)(R^4)]_n$ -COOH wherein R^3 and R^4 are hydrogens and n is 2;
- 3 and R² is hydrogen.
- 1 8. The compound of claim 1 wherein R is hydrogen; R¹ is a saccharyl
- 2 group, wherein the saccharyl group is a glucuronic acid group; and R² is
- 3 (CH₂)_mCH(OH)(CH₂)_mOR⁵, wherein m is 1, and R⁵ is a substituted C₂₋₂₀ acyl group, or an
- 4 unsubstituted C₂₋₂₀ acyl group.
- 1 9. The compound of claim 8 wherein (CH₂)_mCH(OH)(CH₂)_mOR⁵ is a
- 2 1-O-acyl-sn-glyceryl group.
- 1 10. The compound of claim 9 wherein the acyl group is a member
- 2 selected from the group consisting of an acetyl group, an octanoyl group, and a
- 3 tetradecanoyl group.

4

- 1 11. The compound of claim 1 wherein R is hydrogen; R¹ is a saccharyl
- 2 group, wherein the saccharyl group is a glucuronic acid group; and R² is a group
- 3 represented by the formula

5	ı	where	in j is 1; R^6 is a substituted C_{1-20} alkyl group, or an unsubstituted C_1 .
6	20 alkyl group;	and R	is a substituted C_{1-20} alkyl group, or an unsubstituted C_{1-20} alkyl
7	group.		
1		12.	The compound of claim 11 wherein R ⁷ is a substituted C ₁₁ alkyl
2	group, or an unsubstituted C11 alkyl group.		
1		13.	The compound of claim 1, wherein R ¹ is an alkyl group having the
2	formula –(CH	₂) _X COC	OR ⁸ , wherein R ⁸ is hydrogen, a substituted C ₁₋₂₀ alkyl group, or an
3	unsubstituted C ₁₋₂₀ alkyl group, wherein X is an integer from 1 to 7.		
1		14.	The compound of claim 13, wherein X is an integer from 2 to 4.
1		15.	A liposome vesicle comprising the compound of claim 1.
1		16.	A compound comprising an antigen covalently linked to the
2 .	compound of claim 1.		
1		17.	A vaccine composition comprising the compound of claim 16.
1		18.	A vaccine composition comprising an antigen and the compound of
2	claim 1.		
1		19.	The vaccine composition of claim 18 wherein the antigen is a
2	bacterial antigen.		
1		20.	The vaccine composition of claim 18 wherein the antigen is a viral
2	antigen.		
1		21.	The vaccine composition of claim 18 wherein the antigen is a
2	tumor associated antigen.		
1		22.	The vaccine composition of claim 18 wherein the antigen is a self-
2	antigen.		
1		23.	An adjuvant composition for potentiating the immunogenicity of an
2	antigen, comprising a suspension of water or an aqueous solution, wherein said		
3	suspension or solution comprises the compound of claim 1.		

1 24. The adjuvant composition of claim 23 wherein the suspension is an 2 oil-in-water emulsion. 1 25. The adjuvant composition of claim 21 wherein the suspension is a 2 water-in-oil emulsion. 26. The adjuvant composition of claim 23 wherein the suspension is a 1 micellar dispersion comprising at least one surfactant. 2. 27. The adjuvant composition of claim 26 wherein the surfactant 1 2 comprises dipalmitoyl phosphatidylcholine (DPPC). 28. A method for inducing or enhancing immunogenicity of an antigen 1 in a mammal, comprising administering to said mammal a vaccine composition 2 3 comprising the antigen and a vaccine adjuvant composition comprising an effective immunopotentiatory amount of the compound of claim 1. 4 29. The method of claim 28 wherein said vaccine composition is 1 2 administered orally, topically, epicutaneously, intramuscularly, intradermally, subcutaneously, intranasally, intravaginally, sublingually, or via inhalation. 3 1 30. A method for treating or preventing a disease in a mammal 2 comprising administering to said mammal a vaccine composition comprising an antigen and an effective immunopotentiatory amount of the compound of claim 1. 3 1 31. The method of claim 30 wherein the mammal is a human being. 1 32. The method of claim 30 wherein the disease is cancer, an 2 autoimmune disease, an allergy, or an infectious disease. The method of claim 32 wherein the infectious disease is a 1 33. 2 bacterial or viral infection. 1 34. The method of claim 30 wherein the effective amount ranges from 2 about 0.0001 to about 1.0 mg/kg of body weight. 1 35. The method of claim 34 wherein the effective amount ranges from

about 0.001 to about 0.1 mg/kg of body weight.

- 1 36. The method of claim 30 wherein the compound of claim 1 is 2 administered once weekly to once monthly for a period of up to about 6 months.
- 1 37. The method of claim 36 wherein the effective is administered once 2 monthly for a period of about 2-3 months.
- 1 38. A method for preparing an adjuvant or immunoeffector, said 2 method comprising:
 - contacting a first compound with the formula:

$$R^8O_2C$$

wherein R² and R⁸ are independently selected from the group consisting of hydrogen, a substituted C₁₋₂₀ alkyl group, an unsubstituted C₁₋₂₀

7 alkyl group, and a group having the formula –

8 $(CH_2)_mCH(OH)(CH_2)_pOR^5$

3

4

wherein m and p are independently 1 or 2, and R⁵ is a substituted C₂₋₂₀ acyl group, an unsubstituted C₂₋₂₀ acyl group, or a group having the formula:

12 $(CH_2)_1$ — CH_2 R13 wherein j is an integer from 1 to 5, and R^6 and R^7 are

independently selected from the group consisting of

hydrogen, a substituted C₁₋₂₀ alkyl group, and an

16 unsubstituted C₁₋₂₀ alkyl group,

with a second compound selected from the group comprising of: MX_n, wherein M is selected from the group consisting of Al³⁺, As³⁺, B³⁺, Fe²⁺, Fe³⁺, Ga³⁺,

Mg²⁺, Sb³⁺, Sb⁵⁺, Sn²⁺, Sn⁴⁺, Ti²⁺, Ti³⁺, Ti⁴⁺, and Zn²⁺, wherein n is an

20 integer from 2 to 5, MgX₂-OEt₂, BX₃·SMe₂, Et₂AlCl, EtAlCl₂, monoalkyl

21 boronhalides, dialkyl boronhalides, and monoaryl boronhalides, diaryl

boronhalides, wherein X is selected from the group consisting of: Cl, I, F, and Br,
under conditions sufficient to form a third compound or a pharmacologically

acceptable salt thereof with the formula of:

$$O_2R^2$$

26

1

2223

24

25

39. The method of claim 38, wherein said first compound is:

2

- 40. The method of claim 38, wherein \mathbb{R}^2 is methyl.
- 1 41. The method of claim 38, wherein R² is hydrogen.
- 1 42. The method of claim 38, wherein the second compound is selected
- 2 from the group consisting of: AlCl₃, AlI₃, AlF₃, AlBr₃, Et₂AlCl, EtAlCl₂, AsCl₃, AsI₃,
- $3 \qquad AsF_3,\, AsBr_3,\, BCl_3,\, BBr_3,\, BI_3,\, BF_3,\, BCl_3\cdot SMe_2,\, BI_3\cdot SMe_2,\, BF_3\cdot SMe_2,\, BBr_3\cdot SMe_2,\, FeCl_3,\, BR_3\cdot SMe_2,\, BR_3\cdot SM$
- $4\qquad FeBr_3,\,FeI_3,\,FeF_3,\,FeCl_2,\,FeBr_2,\,FeI_2,\,FeF_2,\,GaCl_3,\,GaI_3,\,GaF_3,\,GaBr_3,\,MgCl_2,MgI_2,\,GaP_3,$
- 5 MgF₂, MgBr₂, MgCl₂-OEt₂, MgI₂-OEt₂ MgF₂-OEt₂ MgBr₂-OEt₂, SbCl₃, SbI₃, SbF₃,
- 6 SbBr₃, SbCl₅, SbI₅, SbF₅, SbBr₅, SnCl₂, SnI₂, SnF₂, SnBr₂, SnCl₄, SnI₄, SnF₄, SnBr₄,
- 7 TiBr₄, TiCl₂, TiCl₃, TiCl₄, TiF₃, TiF₄, TiI₄, ZnCl₂, ZnI₂, ZnF₂, and ZnBr₂.
- 1 43. The method of claim 38 wherein R² is (CH₂)_mCH(OH)(CH₂)_mOR⁵,
- wherein m is 1, and R^5 is a substituted C_{2-20} acyl group, or an unsubstituted C_{2-20} acyl
- 3 group.
- 1 44. The method of claim 43, wherein (CH₂)_mCH(OH)(CH₂)_mOR⁵ is a
- 2 1-O-acyl-sn-glyceryl group.

- 1 45. The method of claim 44, wherein the acyl group is a member
- 2 selected from the group consisting of acetyl, octanoyl, and tetradecanoyl groups.
- 1 46. The method of claim 38, wherein R² is a group represented by the
- 2 formula

$$\begin{array}{c|c}
O & O \\
OC & R^6 \\
CH_2) & CH & R^7
\end{array}$$

3 wherein j is 1; R^6 is a substituted C_{1-20} alkyl group, or an unsubstituted C_{1-20} alkyl group

- and R^7 is a substituted C_{1-20} alkyl group, or an unsubstituted C_{1-20} alkyl group.
- 1 47. The method of claim 46 wherein R⁷ is a substituted C₁₁ alkyl
- 2 group, or an unsubstituted C₁₁ alkyl group.