Block Ciphers

Outline

- Block Ciphers
- Pseudo Random Functions (PRFs)
- Pseudo Random Permutations (PRPs)
- DES Data Encryption Standard
- AES Advanced Encryption Standard

Block Ciphers: crypto work horse

Canonical examples:

• **DES**: $n = 64 \text{ bits}, \quad k = 56 \text{ bits}$

• **3DES**: $n = 64 \text{ bits}, \quad k = 168 \text{ bits}$

• **AES**: n=128 bits, k=128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m) is called a round function

for 3DES (I=48), for AES-128 (I=10)

Performance: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>Cipher</u>	Block/key size	Speed (MB/sec)
Si	RC4		126
stream	Salsa20/12		643
	Sosemanuk		727
block	3DES	64/168	13
ock	AES-128	128/128	109

Abstractly: PRPs and PRFs

• Pseudo Random Function (PRF) defined over (K,X,Y):

$$F: K \times X \rightarrow Y$$

such that there exists "efficient" algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP) defined over (K,X):

E:
$$K \times X \rightarrow X$$

such that:

- 1. There exists "efficient" deterministic algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is **one-to-one** (for every k)
- 3. There exists "efficient" inversion algorithm D(k,y)

Running example

• Example PRPs: 3DES, AES, ...

AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- Functionally, any PRP is also a PRF.
 - A PRP is a PRF where X=Y and is efficiently invertible.

Secure PRFs

• Let F: $K \times X \rightarrow Y$ be a PRF. Set some notation:

Funs[X,Y]: the set of **all** functions from X to Y $S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y]$

 Intuition: a PRF is secure if a random function in Funs[X,Y] is "indistinguishable" from a random function in S_F

Secure PRF: definition

• Consider a PRF $\mathbf{F}: \mathbf{K} \times \mathbf{X} \rightarrow \mathbf{Y}$. For b=0,1 define experiment EXP(b) as:

Definition: F is a secure PRF if for all "efficient" adversary A:

$$Adv_{PRF}[A,F] := Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible".

Secure PRPs (secure block cipher)

```
• Let E: K \times X \rightarrow X be a PRP  \begin{cases} \text{Perms}[X]: \text{ the set of all one-to-one } \text{functions } \text{from } X \text{ to } X \\ \text{(i.e., permutations)} \end{cases}   S_E = \{ E(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Perms}[X]
```

• Intuition: a PRP is secure if a random function in Perms[X] is "indistinguishable" from a random function in S_E

Secure PRP (secure block cipher)

• Consider a PRP $E: K \times X \rightarrow X$. For b=0,1 define experiment EXP(b) as:

Definition. E is a secure PRP if for all "efficient" adversary A:

$$Adv_{PRP}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible".

Data Encryption Standard (DES)

The Data Encryption Standard (DES)

- Early 1970s: **Horst Feistel** designs Lucifer at IBM key-length = 128 bits; block-length = 128 bits
- 1973: NBS (nowadays called NIST) asks for block cipher proposals. IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard key-length = 56 bits; block-length = 64 bits
- 1997: DES broken by exhaustive search (*brute-force attack*)
 - The problem of short keys
- 2000: NIST adopts Rijndael as AES to replace DES

DES: core idea – Feistel Network

Given functions $f_1, ..., f_d: \{0,1\}^n \rightarrow \{0,1\}^n$ (not necessarily invertible)

Goal: build an **invertible** function $\mathbf{F}: \{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$

In symbols:
$$R_i = f_i(R_{i-1}) \bigoplus L_{i-1}$$

 $L_i = R_{i-1}$

Feistel network is invertible

Claim: for all (arbitrary) $f_1, ..., f_d$: $\{0,1\}^n \longrightarrow \{0,1\}^n$

Feistel network $\mathbf{F}: \{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$ is invertible

Proof: construct inverse

Feistel network is invertible

Claim: for all (arbitrary) $f_1, ..., f_d$: $\{0,1\}^n \longrightarrow \{0,1\}^n$

Feistel network F: $\{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$ is **invertible** $R_{i-1} = L_i$

Proof: construct inverse

$$L_{i-1} = f_i(L_i) \oplus R_i$$

Decryption circuit

- Inversion is basically the same circuit, with $f_1, ..., f_d$ applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

DES: 16 round Feistel network

$$f_1, ..., f_{16}$$
: $\{0,1\}^{32} \rightarrow \{0,1\}^{32}$, $f_i(x) = F(k_i, x)$
 k 56 bits

 k 48 bits each

 k 16 round

Feistel network

To invert, use keys in reverse order output

The function $f_i(x) = F(k_i, x)$

S-box: function $\{0,1\}^6 \longrightarrow \{0,1\}^4$, implemented as look-up table.

The S-boxes (substitution boxes)

$$S_i: \{0,1\}^6 \longrightarrow \{0,1\}^4$$

S ₅		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits		0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

the column
$$S_5(\underbrace{011011}_{\text{the row}}) \longrightarrow 1001$$

Choosing the S-boxes and P-box

- Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after $\approx 2^{24}$ outputs)
- Several rules are used in the choice of S and P boxes:
 - No output bit should be close to a linear func. of the input bits
 - S-boxes are 4-to-1 maps (4 pre-images for each output)
 - ...

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,3 find key k.

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,..,3 find key k.

```
Lemma: Suppose DES is an ideal cipher ( 2^{56} random invertible functions \Pi_1, ..., \Pi_{2^{56}}: \{0,1\}^{64} \rightarrow \{0,1\}^{64}) Then \forall m, c there is at most <u>one</u> key k s.t. c = DES(k, m) with prob. \geq 1 - 1/256 \approx 99.5\%
```

Proof:

```
Pr[∃ k'≠ k: c=DES(k,m)=DES(k',m)] ≤ \sum_{k' \in \{0,1\}}^{56} Pr[DES(k,m) = DES (k',m)] ≤ 2^{56} \times 1/(2^{64}) = 1/(2^8) = 1/256
```

Exhaustive Search for block cipher key

For two DES pairs
$$(m_1, c_1=DES(k, m_1))$$
, $(m_2, c_2=DES(k, m_2))$
unicity prob. $\approx 1 - 1/2^{71}$

For AES-128: given two input/output pairs, unicity prob. $\approx 1 - 1/2^{128}$

⇒ two input/output pairs are enough for exhaustive key search.

Exhaustive Search Attacks

DES challenge

Goal: find $k \in \{0,1\}^{56}$ s.t. DES $(k, m_i) = c_i$ for i=1,2,3 and decrypt $c_4, c_{5...}$

1997: Internet search -- 3 months

1998: EFF machine (deep crack) -- 3 days (250K \$)

1999: combined search -- 22 hours

2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)

⇒ 56-bit ciphers should not be used !!

Strengthening DES against exhaustive search

Method 1: Triple-DES

Method 2: DESX

• General construction that can be applied to other block ciphers as well.

Triple DES

Consider a block cipher

$$E: K \times M \longrightarrow M$$

$$D: K \times M \longrightarrow M$$

• Define **3E**: $K^3 \times M \longrightarrow M$ as

$$3E(k_1,k_2,k_3,m) = E(k_1,D(k_2,E(k_3,m)))$$

- For 3DES (or Triple DES)
 - **key length** = 3×56 = **168 bits**.
 - 3×slower than DES.
 - $k_1=k_2=k_3 \Rightarrow \text{ single DES}$
 - simple attack in time ≈ 2¹¹⁸ (more on this later ...)

Why not double DES?

- Given a block cipher E, define 2E(k_1, k_2, m) = E($k_1, E(k_2, m)$)
- Double DES: 2DES(k_1, k_2, m) = $E(k_1, E(k_2, m))$ key-length = 112 bits for 2DES
- Attack: Given m and c the goal is to

find
$$(k_1, k_2)$$
 s.t. $E(k_1, E(k_2, m)) = c$ or equivalently
find (k_1, k_2) s.t. $E(k_2, m) = D(k_1, c)$

Meet in the middle (MITM) attack

• Attack: Given m and c the goal is to

Attack involves TWO STEPS

Step 1:

- build table.
- sort on 2nd column

Step 2:

• for each $k \in \{0,1\}^{56}$ do:

test if D(k, c) is in the 2nd column of the table If so, then $E(k^i,m) = D(k,c) \Rightarrow (k^i,k) = (k_2,k_1)$

$k^0 = 0000$ $k^1 = 0001$	E(k ⁰ , m) E(k ¹ , m)
•	:
k ⁱ = 00	E(k ⁱ , m)
k ^N = 1111	E(k ^N , m)

Time =
$$2^{56} \log(2^{56}) + 2^{56} \log(2^{56}) < 2^{63} << 2^{112}$$
,
build + sort table search in table

Space
$$\approx 2^{56}$$

Same attack on 3DES:

Time =
$$2^{118}$$
, space $\approx 2^{56}$

Time =
$$2^{56}\log(2^{56}) + 2^{112}\log(2^{56}) < 2^{118}$$

build + sort table search in table

DESX

Consider a block cipher

$$E: K \times M \longrightarrow M$$

$$D: K \times M \longrightarrow M$$

• Define **EX** as

$$EX(k_1, k_2, k_3, m) = k_1 \oplus E(k_2, m \oplus k_3)$$

- For **DESX**
 - key-len = 64+56+64 = 184 bits $k_1 \oplus E(k_2, m \oplus k_3)$
 - ... but easy attack in time $2^{64+56} = 2^{120}$
- Note: $k_1 \oplus E(k_2, m)$ and $E(k_2, m \oplus k_1)$ insecure!! (XOR outside) or (XOR inside) \Rightarrow As weak as E w.r.t. exhaustive search

Few other attacks on block ciphers

Linear attacks on DES

A tiny bit of linearly in S_5 lead to a 2^{43} time attack.

Total attack time $\approx 2^{43}$ (<< 2^{56}) with 2^{42} random inp/out pairs

Quantum attacks

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function.

Goal: find $x^* \in X$ s.t. $f(x^*)=1$.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover '96]: time = $O(|X|^{1/2})$

Quantum exhaustive search

Given \mathbf{m} and $\mathbf{c} = \mathbf{E}(\mathbf{k}, \mathbf{m})$ define

For
$$k \in K$$
, $f(k) = \begin{cases} 1 & \text{if } E(k,m) = c \\ 0 & \text{otherwise} \end{cases}$

Grover \Rightarrow quantum computer can find k in time O($|K|^{1/2}$)

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$ Quantum computer \Rightarrow 256-bits key ciphers (e.g., AES-256)

Advanced Encryption Standard (AES)

The AES process

- 1997: **NIST** (the National Institute of Standards and Technology, https://www.nist.gov/) publishes a request for proposals.
 - Goal: replace DES for both government and private-sector encryption.
 - The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128- bits and key sizes of 128-, 192-, and 256-bits.
- 1998: NIST selects 15 AES candidate algorithms.
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)
 - Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES

- Is <u>not</u> a Feistel cipher.
 - It works somehow in parallel over the whole input block.
- Designed to be efficient both in hardware and software across a variety of platforms.
- Is a block cipher which works iteratively
 - Block size: 128 bits (but also 192 or 256 bits)
 - Key length: 128, 192, or 256 bits
 - Number of rounds: 10, 12 o 14
 - Key scheduling: 44, 52 or 60 subkeys having length = 32 bits
- Each **round** (except the last one) is a uniform and parallel composition of 4 steps
 - SubBytes (byte-by-byte substitution using an S-box)
 - ShiftRows (a permutation, which cyclically shifts the last three rows in the State)
 - MixColumns (substitution that uses Galois Fields, corps de Galois, GF(2^8) arithmetic)
 - Add Round key (bit-by-bit XOR with an expanded key)

AES Parameters

• Block size: 128 bits (Nb=4 words)

• 1 word = 32 bit

	Key Length (Nk words)	Block Size (Nb words)	Number of Rounds (Nr)
AES-128	4	4	10
AES-192	6	4	12
AES-256	8	4	14

AES keys

```
With 128 bits: 2^{128} = 3.4x 10^{38} possible keys

- A PC that tries 2^{55} keys per second needs 149.000 billion years to break AES

With 192 bits: 2^{192} = 6.2x 10^{57} possible keys

- ...

With 256 bits: 2^{256} = 1.1x 10^{77} possible keys

- ...
```

Probably AES will stay secure for at least 20 years

AES is a Substitution—permutation Network (not Feistel)

The round function

- ByteSub: a 1 byte S-box. 256 byte table (easily computable)
 - Apply S-box to each byte of the 4x4 input A, i.e., A[i,j] = S[A[i,j]], for $1 \le i,j \le 4$
- ShiftRows:

• MixColumns:

Attacks

Best key recovery attack:
 four times better than ex. search [BKR'11]

• Related key attack on AES-256: [BK'09]

Given 2^{99} inp/out pairs from **four related keys** in AES-256 can recover keys in time $\approx 2^{99}$