Clustering and Cluster Evaluation

Josh Stuart
Tuesday, Feb 24, 2004
Read chap 4 in Causton

Clustering Methods

- Agglomerative
 - Start with all separate, end with some connected
- Partitioning / Divisive
 - Start with all connected, end with some separate
- Dimensional Reduction
 - Find dominant information in the data

Hierachical Clustering (HCA)

Algorithm

- Join 2 most similar genes.
- Merge genes into a new super gene
- Repeat until all merged

Group Proximity

- Single Linkage (Nearest Neighbor)
- Complete Linkage (Furthest Neighbor)
- Average Linkage (UPGMA)
- Euclidean distance between centroids

Hierarchical Clustering

Hierarchical Clustering

HCA: Eisen et al (1998)

height of branch gives an indication of how similar two genes are

Partitioning: k-means Clustering

 Guess what the cluster centers are and then fix.

Specify # clusters k

2. Randomly create *k* partitions

3. Calculate center of partitions

4. Associate genes to their closest center

5. Repeat until changes very little

Choice of k

 Informed by type of data (bi-state, time series)

Initialize from HCA

Try different values of k and pick best one

Fuzzy k-means

Don't hard assign genes to clusters.

Record distance to final clusters.

Self Organizing (Kohonen) Map

- Specify # of nodes (m X n)
- Map nodes to random expression profiles
- Choose a gene, assign it to its nearest node
- Adjust the position of all of the nodes
- Do for all of the genes

SOM - et al (1999)

New approaches

CAST – graph-theoretic based derisive approach based on finding minimum cut sets. (Ben Dor 2000)

Bi-clustering – cluster both the genes *and* the experiments simultaneously to find appropriate context for clustering (Lazzeroni & Owen 2000)

Bayesian Network – model observations as deriving from modules (gene clusters) and processes (experiment clusters). Search for most likely model. (Segal and Koller 2002).

Dimension Reduction: Principal Components Analysis (PCA)

Construct a new data set with fewer conditions

New conditions are linear combinations of original conditions

PCA

PCA

2nd Axis: 90° to 1st & maximize the rest of the Scatter.

PCA Example: Cell cycle

Holter et al. (2000)

 7 timepoints during yeast sporulation (Chu et al 1998): 0h, 30min, 2h, 5h, 7h, 9h, 11h

Projection	Principal Components						
On	1	2	3	4	5	6	7
condition							
T = 0	-0.0072	-0.0116	-0.0631	-0.2166	0.0764	-0.7433	0.625
T = .5	0.2076	-0.7524	-0.5373	0.2606	0.1545	-0.0683	-0.0756
T=2	0.2358	-0.4925	0.3296	-0.5935	-0.453	0.1713	0.0803
T = 5	0.3975	-0.1156	0.5612	-0.002	0.5919	-0.2532	-0.3151
T = 7	0.554	0.0862	0.1869	0.4959	-0.1112	0.2889	0.5559
T = 9	0.4671	0.2517	-0.153	0.1169	-0.5413	-0.4488	-0.4324
T = 11	0.4671	0.3273	-0.4748	-0.5229	0.3307	0.254	0.044
Eigenvalue	2.2928	0.401	0.1322	0.0594	0.0406	0.0288	0.025
% variance	76.9 %	13.5 %	4.4 %	2.0 %	1.4 %	1.0 %	0.8 %

Raychaudhuri et al (2000)

Clustering Method Comparision

Hierarchical slow (K-means fast)

K-means and SOMs have to choose # clusters

Clustering Software

- Cluster & TreeView
- http://rana.lbl.gov/EisenSoftware.htm

YORF EWEIGHT	NAME GWEIC	HT	spo0 spo30 1 1
YAL003W	EFB1	1	0.23 -1.79
YAL004W	YAL004W	1	0.41 -0.38
YAL005C	SSA1	1	0.61 -0.07
YAL010C	MDM10	1	0.16 -0.15
YAL012W	CYS3	1	0.03 1.39

Clustering Software

JavaTreeView

MapleView

- GeneXPress
 - http://genexpress.stanford.edu

Stretch Break (10 minutes)

Cluster Evaluation

Intrinsic

Extrinsic

Intrinsic Evaluation

 Measure cluster quality based on how "tight" the clusters are.

 Do genes in a cluster appear more similar to each other than genes in other clusters?

Intrinsic Evaluation Methods

- Sum of squares
- Silhouette
- Rand Index
- Gap statistic
- Cross-validation

Sum of squares

A good clustering yields clusters where genes have small within-cluster sum-of-squares (and high between-cluster sum-of-squares).

Within-cluster variance

B(k) = between cluster sum of squares W(k) = within cluster sum of squares Maximize CH(k) over the clusters:

$$CH(k) = \frac{B(k)/(k-1)}{W(k)/(n-k)}$$

Silhouette

 Good clusters are those where the genes are close to each other compared to their next closest cluster.

Silhouette

$$b(i) = min(AVGD_BETWEEN(i,k))$$

$$a(i) = AVGD_WITHIN(i)$$

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

Rand Index

Rand =
$$(a + d) / (a + b + c + d)$$

	clustered	clustered
clustered	а	b
not clustered clustered	С	d

Adjusted Rand Index

Adjusts the Rand index to make it vary between 0 and 1 according to expectation:

AdjRand = (Rand – expect) / (max – expect)

Gap statistic

Tibshirani et al. (2000)

Gap statistic

Computation of the Gap statistic

- 1. Cluster the observed data, varying the total number of clusters from k = 1, 2, ..., K, giving within dispersion measures $W_k, k = 1, 2, ..., K$.
- 2. Generate B reference datasets, using the uniform prescription (a) or (b) above, and cluster each one giving within dispersion measures W_{kb}^* , b = 1, 2, ..., B, k = 1, 2, ..., K. Compute the (estimated) Gap statistic:

$$\operatorname{Gap}(k) = (1/B) \sum_{b} \log(W_{kb}^*) - \log(W_k)$$

3. Let $\bar{l} = (1/B) \sum_b \log(W_{kb}^*)$, compute the standard deviation $\mathrm{sd}_k = [(1/B) \sum_b (\log(W_{kb}^*) - \bar{l})^2]^{1/2}$, and define $s_k = \mathrm{sd}_k \sqrt{1 + 1/B}$. Finally choose the number of clusters via

$$\hat{k} = \text{smallest } k \text{ such that } \operatorname{Gap}(k) \geq \operatorname{Gap}(k+1) - s_{k+1}$$

Cross-validation approaches

- Leave out *k* experiments (or genes)
- Perform clustering
- Measure how well clusters group in left out experiment(s)
- Or, measure agreement between test and training set.

Figure of Merit

$$FOM(e,k) = \sqrt{\frac{1}{n} * \sum_{i=1}^{k} \sum_{x \in C_i} (R(x,e) - \mu_{C_i}(e))^2}$$

$$FOM(k) = \sum_{e=1}^{m} FOM(e, k)$$

Figure of Merit

Random Data with 5 clusters

Yeung et al. (2001)

Figure of Merit

Yeung et al. (2001)

- Clustering as classification
- Split data into training and test set
- Apply clustering method to both and measure agreement
- Compute prediction strength of clustering

Tibshirani et al. (2001)

Prediction strength:

$$ps(k) = \min_{1 \le j \le k} \frac{1}{n_{kj}(n_{kj} - 1)} \sum_{i \ne i' \in A_{kj}} I(D[C(X_{tr}, k), X_{te}]_{ii'} = 1).$$

Synthetic data.

- Apply HCA
- On each split, perform k-means on test and training set
- Label each split with the prediction strength

Further Reading

- Yeung et al. (2001) Bioinformatics 17:309.
- Tibshirani et al. (2001). Stanford Technical Report. Go to http://www-stat.stanford.edu/~tibs/lab/publications.html
- Calinski & Harabasz (1974) Communications in Statistics 3:1-27.
- Kaufman & Rousseeuw (1990) Finding groups in data. New York, Wiley.
- Kim et al (2001) Science 293:2087
- Gasch & Eisen (2002) Genome Biol. 3(11):research0059