Lista de Exercícios - Repetição Parte I - Laços Determinados

- 1. Leia um valor inteiro n e mostre na tela a sua tabuada (n x 1 até n x 10).
- 2. Leia um valor inteiro n. Apresente todos os números de 1 a 100 que divididos por n dão resto igual a 2.

Exemplo	de	Entrada	Exemplo	de	Saída
13			2		
			15		
			28		
			41		

3. Leia 2 valores inteiros x e y (suponha que x>y). A seguir, calcule e mostre quantos números ímpares existem entre eles.

Exemplo	de	Entrada	Exemplo	de	Saída
12			5		
1					

4. Leia um valor inteiro n, que representa o número de casos de teste que vem a seguir. Cada caso de teste consiste de 3 valores reais. Faça um programa que leia os 3 valores de cada caso de teste e apresente a média ponderada para cada caso, sendo que o primeiro valor tem peso 2, o segundo valor tem peso 3 e o terceiro valor tem peso 5.

${\tt Exemplo}$	de Entrada	${\tt Exemplo}$	de	Saída
3				
6.5 4.3	6.2	5.7		
5.1 4.2	8.1	6.3		
8.0 9.0	10.0	9.3		

- 5. Construa um programa que leia um número inteiro positivo n, verifique e informe se o mesmo é perfeito ou não. Dizemos que n é perfeito se a soma de todos os divisores positivos próprios excluindo ele mesmo é igual a n. Exemplo: 28 é perfeito, pois 1 + 2 + 4 + 7 + 14 = 28.
- 6. Faça um programa para ler um valor n. Calcular e imprimir seu respectivo fatorial. Fatorial de n = n * (n 1) * (n 2) * (n 3) * ... * 1. Até qual valor de n seu programa apresenta resultados consistentes?
- 7. A seguinte sequência de números 0 1 1 2 3 5 8 13 21... é conhecida como série de Fibonacci. Nessa sequência, cada número, depois dos 2 primeiros, é igual à soma dos 2 anteriores. Escreva um algoritmo que leia um inteiro n e mostre os n primeiros números dessa série.

8. O número 3025 possui a seguinte característica: 30 + 25 = 55 - > 55 * 55 = 3025. Fazer um programa para obter todos os números de 4 algarismos com a mesma característica do número 3025.