Danish Meteorological Institute

dmi.dk

Ministry of Transport

Technical Report 04-25

Carburettor Icing-probability

Monthly statistics generated from radiosonde data (WMO st. no. 06181, Jægersborg) using the "New Carburettor Icing-probability Chart"

Mette F. Nielsen, Kim Sarup, Mikael Scharling & Søren Brodersen

Colophon

Serial title:

Technical Report 04-25

Title:

Carburettor Icing-probability

Subtitle:

Monthly statistics generated from radiosonde data (WMO st. no. 06181, Jægersborg) using the "New Carburettor Icing-probability Chart"

Author(s):

Mette F. Nielsen, Kim Sarup, Mikael Scharling & Søren Brodersen

Other contributors:

Front page photo by Birgitte Knudsen

Responsible institution:

Danish Meteorological Institute, Ministry of Transport

Language:

English

Keywords:

Carburettor icing; radiosonde data; temperature; dew point temperature; dew point depression.

Url:

www.dmi.dk/dmi/tr04-25

ISSN:

1399-1388

Version:

November 2004

Website:

www.dmi.dk

Copyright:

Danish Meteorological Institute

Content:

Abstract	4
Introduction	5
Carburettor icing	5
Data	6
Methods	7
Results	8
Carburettor icing-probability at ground level (124.26 feet)	
Carburettor icing-probability at 1250 feet	10
Carburettor icing-probability at 2500 feet	
Carburettor icing-probability at 3750 feet	
Carburettor icing-probability at 5000 feet	
Carburettor icing-probability at 6250 feet	
Carburettor icing-probability at 7500 feet	
Summary	
Conclusions	
Comments and suggested recommendations	
Comments	
Suggested recommendations	
References	
Previous reports	
Appendix A	
Appendix B	
Appendix C	
Appendix D.	

Abstract

This report investigates and reports of the probability of carburettor icing, based on radiosonde data from WMO station no. 06181 Jægersborg, located 7 km north of Copenhagen.

The carburettor icing-probability has been calculated for 7 different heights including ground level based on measurements of temperature and dew point temperature. The carburettor icing-probability is determined by classifying observations into five icing-probability classes using *The New Carburettor Icing-Probability Chart* recommended by The Australian Transport Safety Bureau. Statistics have been generated for each month for nightly and daily measurements respectively. The risk of serious and moderate carburettor icing is present at all heights throughout the year. There are, however, variations with height and seasonal differences. The probability of serious and moderate carburettor icing generally decreases with height, while the seasonal variation increases with peak values in July and August.

Except from at ground level no major difference in distribution of the icing probability is observed when comparing daily (12 UTC) and nightly (00 UTC) values.

www.dmi.dk/dmi/tr04-25 page 4 of 44

Introduction

This report is written at the request of the Danish Accident Investigation Board. The purpose of the report is to quantify the probability of aircraft carburettor icing in Denmark. The resulting statistics will hopefully contribute to improved flight safety.

The carburettor icing probability statistics are generated from radiosonde data using observations of temperature and dew point temperature from WMO st. no. 06181 at Jægersborg. The radiosonde is sent up daily at 00 UTC and 12 UTC. The risk of carburettor icing is estimated using *The New Carburettor Icing-Probability Chart* (figure 1). More than 20 years of radiosonde data are used (1980 to 2004) to generate statistics describing the icing-probability for each month, for the seven heights of 124.26 feet (ground level), 1250, 2500, 3750, 5000, 6250 and 7500 feet, at both 00 UTC and 12 UTC.

Carburettor icing

Carburettor icing is the most common of several types of induction system icings. It occurs as a consequence of the sudden drop of temperature caused by the vaporization of the fuel and the pressure reduction in the carburettor venturi. The decline of temperature of up to 20-30 degrees Celsius causes the moist in the atmosphere to freeze, and the ice will gradually block the venturi tube. In extreme cases, at reduced power settings, the free movement of the throttle butterfly may be restricted. This will affect the fuel/air ratio and thereby progressively reduce the tractive force and eventually choke the engine.

Carburettor icing can occur at most temperatures likely to occur in Denmark. The probability of icing depends on both air temperature, air humidity, engine power and fuel type. The greatest risk and the most severe icing is found in air temperatures above freezing. The probability of icing increases with the relative humidity of the atmosphere. At reduced engine power there is a higher risk of carburettor icing caused by the lower intake temperature and the partly closed throttle valve. (Jørgensen, 2003; Civil Aviation Authority, 2000).

The probability of carburettor icing can be predicted from values of air temperature and dew point depression¹ by use of *The New carburettor Icing-Probability Chart* (figure 1).

-

¹ Dew Point depression = temperature – dew point temperature.

Figure 1: New carburettor icing-probability chart (Source: Watson (2004) at http://www.atsb.gov.au/aviation/editorial/images/carb_icing.pdf).

Data

The carburettor icing-probability is analysed using radiosonde and synoptic data from WMO station no. 06181 Jægersborg, located 7 km north of Copenhagen (map and details are shown in figure 2). The radiosonde is sent up every day at 00 and 12 UTC. It monitors pressure, humidity and temperature at various levels in the atmosphere and software uses the hypsometric equation to relate each of these measurements to a geopotential height which, in this lower part of the atmosphere, is almost identical with the geometric height. Observations from a synoptic station at ground level are used to relate heights and observations to a sea level reference.

Temperature and dew point temperature have been registered at the radiosonde station since 1973. However, since data from the 1970's are lacking both ground observations and a suitable temporal resolution in the upper air measurements, only data from 1980 to 2004 (June) are used in this report.

www.dmi.dk/dmi/tr04-25 page 6 of 44

Figur 2: Location and details of the WMO station no. 06181 radiosonde station.

Methods

Statistics illustrating the carburettor icing-probability for each of 7 heights have been generated for each month, for nightly (00 UTC) and daily (12 UTC) measurements respectively. At ground level (126.24 feet) observed values are used, and at 1250, 2500, 3750, 5000, 6250 and 7500 feet values of temperature and dew point temperature has been estimated using linear interpolation using the statistical software SPSS.

The New Carburettor Icing-Probability Chart (figure 1) was used to categorize the data into the probability classes shown in table 1. The chart was vectorized from a bitmap image using WinChips software. Data were categorized according to the 5 different probability classes (polygons) using values of temperature (x) and dew point depression (y) as coordinates. The last step of this procedure was performed in ArcView 3.2.

Carb	Carburettor icing-probability classes							
A	Serious icing, any power							
В	Moderate icing, cruise power / Serious icing, descent power							
C	Serious icing, descent power							
D	Light icing, cruise or descent power							
E	No icing							

Table 1: Carburettor icing-probability classes. See figure 1 for reference.

There are two drawbacks of using *The New Carburettor Icing-Probability Chart* for this purpose. During winter and at levels above ground level the air temperature can easily drop below the lower limit of -5 degrees Celsius. A reasonable assumption would be that the polygon representation class D ought to be extended to -8 degrees. Instead of modifying the graph it was decided to use the graph in its current form, as no information on the creation of the graph was available. Consequently some of the observations currently classified as class E (No icing) should probably have

www.dmi.dk/dmi/tr04-25 page 7 of 44

been classified as class D (Light icing). An updated version of this report based on a carburettor icing-probability chart modified to suit the Danish winter climate is expected by early spring 2005.

Also, *The New Carburettor Icing-Probability Chart* refers to conditions near MSL (Mean Sea Level). At higher levels the relative pressure reduction caused by induction is expected to be less than at ground level. This means that the risk of carburettor icing will be correspondingly less. However the extent of this effect is unknown and is therefore not considered in this report.

In a few cases missing values of temperature and dew point temperatures in heights below 1250 feet will cause errors in the interpolated values since the interpolation routine in SPSS will automatically generate an interpolated value from the nearest previous and preceding observed value. In those few cases where no observations are available in heights less than 1250 feet, the temperature and dew point temperature at 1250 feet will be calculated using the last observation from the previous date (in a height of ca.7 km). Hence the estimation of both temperature and dew point temperature will be much too low. This error will affect heights lower than that of the first measured value. These erroneous data are very few and easy to spot since they are all located in the lower left area of the plot. They all fall into the category of class E (no icing). It is unlikely that they would have fallen into class E if the interpolated values had been correct since the probability of carburettor icing in 1250 feet is generally high. The number of erroneous values is much too low (<0,1%) to affect the overall results.

Results

In this section the resulting statistics are briefly described in regard to variation with height, season and in respect to daily and nightly values. The statistics are presented in both graphs and tables. In this section fourteen bar charts are shown representing each of the seven heights for daily (12 UTC) and nightly (00 UTC) values respectively. The bar charts illustrates the relative distribution of the five carburettor icing-probability classes for each month

In Appendix A the frequencies of the five icing-probability classes are listed in both counts and percentage. In these tables the data are grouped according to month before heights. In order to ease overall comparison the yearly variations are summarized in Appendix B (See also tables 2a & 2b and 3a & 3b).

www.dmi.dk/dmi/tr04-25 page 8 of 44

Carburettor icing-probability at ground level (124.26 feet)

124.26 feet - 00 UTC

124.26 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 9 of 44

Carburettor icing-probability at 1250 feet

1250 feet - 00 UTC

1250 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 10 of 44

Carburettor icing-probability at 2500 feet

2500 feet - 00 UTC

2500 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 11 of 44

Carburettor icing-probability at 3750 feet

3750 feet - 00 UTC

3750 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 12 of 44

Carburettor icing-probability at 5000 feet

5000 feet - 00 UTC

5000 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 13 of 44

Carburettor icing-probability at 6250 feet

6250 feet - 00 UTC

6250 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 14 of 44

Carburettor icing-probability at 7500 feet

7500 feet - 00 UTC

7500 feet - 12 UTC

CARBURETTOR ICING-PROBABILITY CLASSES

A Serious icing, any power

B Moderate icing, cruise power / Serious icing, descent power

C Serious icing, descent power

D Light icing, cruise or descent power

E No icing

www.dmi.dk/dmi/tr04-25 page 15 of 44

Summary

In this section the results are briefly described on the basis of the generated charts and tables. To give a simplified overview the icing-probability classes A, B and C have been grouped to describe the risk of serious and moderate carburettor icing.

The risk of serious/moderate icing (Class A-C) is present at all heights throughout the year. There are, however, variations with height and seasonal differences. On average the carburettor icing-probability decreases with height. Generally the probability of carburettor icing is highest during the summer months due to the higher level of humidity in the air. The seasonal variation is most distinct in and above 2500 feet.

At ground level and at 1250 feet there is a very high probability of serious/moderate carburettor icing throughout the year (median > 90%) with only minor seasonal variations. At 2500 and 3750 feet the probability of serious/moderate icing is decreasing but still relatively high (median > 60%) and the seasonal variation more pronounced resulting in a bell shaped monthly distribution with peak values in July and August. At 5000, 6250 and 7500 feet the risk of serious/moderate icing gradually decreases while the season variation increases, making the bell shaped distribution even more pronounced. At 7500 feet the median has dropped to below 20%, with monthly values ranging from 3 to 50%.

Class A - 00 U	JTC				
Height (feet)	max	min	median	mean	stdv
124.26	99	68	87	86	11
1250	91	47	68	68	14
2500	87	28	58	57	21
3750	78	17	47	47	24
5000	69	9	29	34	24
6250	56	4	19	24	19
7500	41	1	11	15	14

Class A - 12 U	TC				
Height (feet)	max	min	median	mean	stdv
124.26	94	21	67	62	25
1250	90	47	62	66	14
2500	88	27	60	58	22
3750	81	17	47	48	26
5000	72	8	28	34	25
6250	55	3	17	22	19
7500	38	1	9	13	13

Table 2a & 2b: Descriptive statistics summarizing the monthly values (%) of Class A (serious icing, any power).

Class A+B+C	- 00 U	JTC			
Height (feet)	max	min	median	mean	stdv
124.26	100	80	99	95	7
1250	100	61	92	86	14
2500	99	42	80	76	22
3750	95	26	65	64	26
5000	85	15	43	48	28
6250	74	9	30	36	25
7500	58	4	20	24	20

Class A+B+C - 12 UTC										
Height (feet)	max	min	median	mean	stdv					
124.26	100	85	98	95	6					
1250	100	62	91	86	14					
2500	99	39	81	76	23					
3750	96	25	64	63	28					
5000	87	14	42	47	30					
6250	74	8	29	35	26					
7500	55	3	18	23	19					

Table 3a & 3b: In this table Class A, B & C are summed to provide an overview of the frequency of serious and moderate icing-probability (all in %).

The relative distribution of the five probability classes are generally similar when comparing results for each height based on daily (12 UTC) and nightly (00 UTC) observations respectively. The only marked difference is at ground level (124.26 feet) during the months April to October. In these months the relative distribution of probability Class A and B differs significantly. At 00 UTC the risk of serious icing 'at any power' (Class A) is present in averagely 86% of the time when viewing the year as a whole with monthly values ranging from 68-99% (see table 2a & 2b). The highest frequencies are found in spring and autumn, but the seasonal variation is generally low.

At 12 UTC the average frequency of Class A is significantly lower (62%) and the variation in the monthly values much higher (21-94%) as seen in table 2a & 2b (numbers highlighted in bold). Especially during the months April to September the share of values classified at Class A are significantly lower at 12 UTC than at 00 UTC. The share of values classified as Class B are correspondingly higher during these months, and when Class A, B & C are grouped this difference between night and day is much lees marked (see table 3a & 3b first row).

Conclusions

The risk of serious/moderate carburettor icing is present at all heights throughout the year. There are, however, variations with height and seasonal differences. The probability of serious/moderate carburettor icing generally decreases with height, while the monthly variation increases. At ground level the probability of serious/moderate icing is very high (median > 95%) and the monthly variation low (80-100%). At 7500 feet the probability of serious/moderate icing has decreased to an average of 20% (median) ranging from 3 to57%. The seasonal variation is most pronounced in and above 2500 feet. Generally the probability of carburettor icing is highest during the summer months, the distribution of monthly values becoming increasingly bell shaped with height, generally with peak values in July and August.

Except from at ground level no major difference in distribution of the icing probability is observed when comparing daily (12 UTC) and nightly (00 UTC) values.

The New Carburettor Icing-Probability Chart is designed to consider air temperatures between -5 and 45° C. As described on page 7 this may have an effect on the classification of observations representing air temperatures below - 5 ° C: the frequency of class D (Light icing) may be higher, and the frequency of class E (No icing) correspondingly lower, than suggested in this analysis. This will be dealt with in a later version of this report.

Comments and suggested recommendations

By Søren Brodersen

Comments

The finding that the probability of carburettor icing is highest during the summer months is important, as the majority of the pilot community would probably have expected the reverse tendency.

Also, it is worth noting that the probability class "No Icing" exclusively relates to the risk of Carburettor icing, as the air temperature falls below ca. -10 $^{\circ}$ C. In these cases the relative humidity may well be up to 100%, indicating that clouds or precipitation is present at temperatures below 0 $^{\circ}$ C.

Using data at 00 UTC and 12 UTC exclusively should not lead to the impression, that 00 UTC represents night flying, and 12 UTC represents daytime flying. In general, the 00 UTC sounding represents morning weather conditions better than the 12 UTC sounding.

Suggested recommendations

This report concludes, that weather conditions favourable for carburettor icing are present at virtually all the time, especially at low levels and levels in which take-off and landing procedures are executed or prolonged VFR-cruising over land takes place.

The use of the carburettor icing chart requires knowledge of air temperature and dew point and these data are only available (to the pilot) at ground levels. Forecasting air temperature and dew point at various flight levels is not possible, as variations in three dimensions and time are very complex. Therefore, the pilot focus should not be on the temperature, the dew point, the relative humidity nor the carburettor icing chart. The focus should primarily be on timely and routinely monitoring engine performance (RPM & Manifold Pressure) followed by proper and consequent use of carburettor heating.

The leaflet PISTON ENGINE ICING provided by UK-CAA (Civil Aviation Authority, 2000) gives recommendations of pilot procedures in order to minimize the risk of carburettor icing. The leaflet can be found at the URL:

http://www.caa.co.uk/docs/33/SRG_GAD_SSL14.PDF

A summary of the leaflet is provided in Appendix D.

www.dmi.dk/dmi/tr04-25 page 18 of 44

References

Civil Aviation Authority (2000). *Civil Aviation Safety Sense 14A*. Piston Engine Icing. Westward documedia Limited, Cheltenham UK.

Jørgensen, Knud (2003) Karburatoris. *OY-SIK* (2) 2003 p.14-18. Statens Lufthavnsvæsen. (Danish Civil Aviation Administration).

GASIL (4) Dec. 2002, p.35. Carburettor icing – it's the humidity!

Watson, M. (2004) "New carburettor icing-probability chart" in Melting moments: understanding carburettor icing. Editorial, Australian Transport Safety Bureau (ATSB), the Australian Government. http://www.atsb.gov.au/aviation/editorial/images/carb_icing.pdf

Previous reports

Previous reports from the Danish Meteorological Institute can be found on: http://www.dmi.dk/dmi/dmi-publikationer.htm

www.dmi.dk/dmi/tr04-25 page 19 of 44

Appendix A

The following tables list the frequencies of the analysed data categorized into the 5 carburettor icing probability classes. The first two tables (A1 & A2) list the frequencies in counts at 00 UTC and 12 UTC respectively. The next two tables (A3 & A4) list the corresponding frequencies in percentages. For explanation of probability classes and methods see the section "Methods" in the report.

www.dmi.dk/dmi/tr04-25 page 20 of 44

Frequen	cies (coun	its) — 00	O UTC				
Probabil	ity class	\boldsymbol{A}	В	С	D	E	Total
Month	Height						
1	124.26	503	0	79	42	81	705
	1250	416	1	87	63	186	753
	2500	263	0	113	83	294	753
	3750	157	0	96	85	415	753
	5000	81	0	54	44	574	753
	6250	42	0	39	29	643	753
	7500	17	0	22	17	697	753
2	124.26	442	0	80	53	79	654
	1250	325	1	97	85	186	694
	2500	193	1	96	76	328	694
	3750	121	0	60	75	438	694
	5000	65	0	41	25	563	694
	6250	41	0	23	20	610	694
	7500	22	0	20	16	636	694
3	124.26	593	0	73	35	20	721
	1250	398	7	128	123	105	761
	2500	248	4	127	117	265	761
	3750	153	0	115	82	411	761
	5000	69	0	62	61	569	761
	6250	30	0	44	37	650	761
	7500	6	0	25	21	709	761
4	124.26	621	4	42	14	2	683
	1250	428	27	150	70	58	733
	2500	326	21	143	101	142	733
	3750	243	9	151	98	232	733
	5000	138	1	105	91	398	733
	6250	72	0	74	69	518	733
	7500	26	0	45	52	610	733
5	124.26	715	6	4	0	0	725
	1250	517	92	109	28	20	766
	2500	468	71	140	43	44	766
	3750	429	34	148	70	85	766
	5000	298	6	164	88	210	766
	6250	211	1	108	105	341	766
	7500	120	0	87	95	464	766
6	124.26	661	37	0	0	0	698
	1250	584	125	22	6	3	740
	2500	574	102	43	9	12	740
	3750	534	61	85	16	44	740
	5000	440	16	123	55	106	740
	6250	315	8	155	67	195	740
	7500	194	2	125	92	327	740

Probabili	·	А	D	C	D	E	Totat
Month	Height						
1	124.26	544	0	78	56	49	727
	1250	414	0	82	89	182	767
	2500	258	2	113	85	309	767
	3750	145	0	89	78	455	767
	5000	70	0	45	48	604	767
	6250	37	0	37	34	659	767
	7500	13	0	20	23	711	767
2	124.26	465	0	102	53	46	666
	1250	328	0	104	82	188	702
	2500	188	0	86	86	342	702
	3750	122	0	54	68	458	702
	5000	57	0	38	37	570	702
	6250	30	0	29	19	624	702
	7500	9	0	15	17	661	702
3	124.26	538	12	108	46	14	718
	1250	398	5	141	104	116	764
	2500	240	2	149	108	265	764
	3750	151	1	103	88	421	764
	5000	70	0	49	80	565	764
	6250	22	0	47	57	638	764
	7500	9	0	21	32	702	764
4	124.26	433	117	100	28	18	696
	1250	423	28	152	76	63	742
	2500	340	22	158	106	116	742
	3750	227	13	154	126	222	742
	5000	109	2	98	123	410	742
	6250	46	0	80	95	521	742
	7500	20	0	30	64	628	742
5	124.26	345	319	41	14	3	722
	1250	462	160	101	29	14	766
	2500	489	92	113	42	30	766
	3750	444	31	130	68	93	766
	5000	299	4	147	87	229	766
	6250	203	0	111	103	349	766
	7500	108	1	89	100	468	766
6	124.26	295	391	10	3	0	699
	1250	552	170	15	0	3	740
	2500	589	115	23	2	11	740
	3750	568	52	69	17	34	740
	5000	459	18	133	39	91	740
	6250	309	8	158	92	173	740
	7500	174	3	125	141	297	740
		4.		`			

Frequencies (counts) – 12 UTC Probability class A B

C

D

Total

E

(table continued on the next page)

(table continued on the next page)

Frequen	cies (cour	nts — co	ntinue	d) - 00	UTC		
Probabil	ity class	A	В	С	D	Ε	Total
Month	Height						
7	124.26	553	149	0	0	1	703
	1250	512	226	11	2	1	752
	2500	546	161	32	6	7	752
	3750	568	83	58	10	33	752
	5000	519	32	90	27	84	752
	6250	423	18	116	66	129	752
	7500	306	5	125	88	228	752
8	124.26	544	145	0	0	1	690
	1250	509	211	8	1	1	730
	2500	557	143	22	5	3	730
	3750	573	79	44	13	21	730
	5000	491	29	90	35	85	730
	6250	367	13	137	53	160	730
	7500	251	6	124	81	268	730
9	124.26	647	15	0	0	1	663
	1250	643	51	10	2	2	708
	2500	614	45	35	6	8	708
	3750	525	20	69	23	71	708
	5000	387	7	118	45	151	708
	6250	288	5	96	64	255	708
	7500	187	0	104	67	350	708
10	124.26	643	0	4	2	0	649
	1250	661	7	35	11	10	724
	2500	575	15	67	26	41	724
	3750	420	13	109	67	115	724
	5000	275	5	101	82	261	724
	6250	192	2	83	77	370	724
	7500	136	0	63	56	469	724
11	124.26	584	0	33	9	6	632
	1250	543	1	85	41	33	703
	2500	384	2	114	83	120	703
	3750	263	2	120	85	233	703
	5000	144	1	88	89	381	703
	6250	86	0	69	54	494	703
	7500	43	0	43	52	565	703
12	124.26	518	0	53	28	42	641
	1250	445	0	103	74	94	716
	2500	295	0	106	92	223	716
	3750	180	0	82	84	370	716
	5000	88	0	68	39	521	716
	6250	46	0	46	38	586	716
	7500	23	0	23	35	635	716

Frequen	cies (cour	nts - coi	ntinue	d) – 12	UTC		
Probablil		A	В	C	D	E	Total
Month	Height						
7	124.26	144	531	24	1	0	700
	1250	465	275	5	2	2	749
	2500	575	156	13	4	1	749
	3750	588	77	47	16	21	749
	5000	540	27	82	26	74	749
	6250	413	18	126	44	148	749
	7500	282	9	124	98	236	749
8	124.26	144	531	16	1	0	692
	1250	459	271	4	1	2	737
	2500	576	148	9	2	2	737
	3750	595	66	49	7	20	737
	5000	508	32	96	28	73	737
	6250	373	15	135	56	158	737
	7500	239	5	134	88	271	737
9	124.26	419	243	0	0	1	663
	1250	639	58	12	0	0	709
	2500	627	41	25	6	10	709
	3750	547	29	62	13	58	709
	5000	384	15	111	56	143	709
	6250	254	5	126	80	244	709
	7500	160	2	104	88	355	709
10	124.26	621	25	11	1	0	658
	1250	657	13	41	16	8	735
	2500	557	20	85	33	40	735
	3750	421	17	98	71	128	735
	5000	269	3	114	74	275	735
	6250	170	0	110	66	389	735
	7500	100	1	75	60	499	735
11	124.26	592	1	32	14	0	639
	1250	552	0	78	52	32	714
	2500	396	2	119	68	129	714
	3750	264	4	124	85	237	714
	5000	134	0	88	77	415	714
	6250	81	0	61	61	511	714
10	7500	37	0	44	46	587	714
12	124.26	549 450	0	49 105	26	19	643
	1250	459	0	105	72	91	727
	2500	285	0	126	88	228	727
	3750 5000	184 75	0	82 62	97 65	364 525	727
	5000 6250	75 44	0	62 41	65 40	525 602	727 727
	7500	24	0	23	24	656	727 727
	7300	24	U	23	24	050	121

Freque	ncies (%)	– 00 T	JTC				
Probab	ility	A	В	С	D	E	Total
class							
Month	Height						
1	124.26	71,3	0,0	11,2	6,0	11,5	100
	1250	55,2	0,1	11,6	8,4	24,7	100
	2500	34,9	0,0	15,0	11,0	39,0	100
	3750	20,8	0,0	12,7	11,3	55,1	100
	5000	10,8	0,0	7,2	5,8	76,2	100
	6250	5,6	0,0	5,2	3,9	85,4	100
	7500	2,3	0,0	2,9	2,3	92,6	100
2	124.26	67,6	0,0	12,2	8,1	12,1	100
	1250	46,8	0,1	14,0	12,2	26,8	100
	2500	27,8	0,1	13,8	11,0	47,3	100
	3750	17,4	0,0	8,6	10,8	63,1	100
	5000	9,4	0,0	5,9	3,6	81,1	100
	6250	5,9	0,0	3,3	2,9	87,9	100
	7500	3,2	0,0	2,9	2,3	91,6	100
3	124.26	82,2	0,0	10,1	4,9	2,8	100
	1250	52,3	0,9	16,8	16,2	13,8	100
	2500	32,6	0,5	16,7	15,4	34,8	100
	3750	20,1	0,0	15,1	10,8	54,0	100
	5000	9,1	0,0	8,1	8,0	74,8	100
	6250	3,9	0,0	5,8	4,9	85,4	100
	7500	0,8	0,0	3,3	2,8	93,2	100
4	124.26	90,9	0,6	6,1	2,0	0,3	100
	1250	58,4	3,7	20,5	9,5	7,9	100
	2500	44,5	2,9	19,5	13,8	19,4	100
	3750	33,2	1,2	20,6	13,4	31,7	100
	5000	18,8	0,1	14,3	12,4	54,3	100
	6250	9,8	0,0	10,1	9,4	70,7	100
	7500	3,5	0,0	6,1	7,1	83,2	100
5	124.26	98,6	0,8	0,6	0,0	0,0	100
	1250	67,5	12,0	14,2	3,7	2,6	100
	2500	61,1	9,3	18,3	5,6	5,7	100
	3750	56,0	4,4			11,1	100
	5000	38,9	0,8 0,1		11,5 13,7	27,4	100
	6250 7500	27,5 15,7	0,1	14,1 11,4	13,7	44,5 60,6	100 100
6	124.26	94,7		0,0		0,0	
	124.20	78,9	5,3 16,9	3,0	$0,0 \\ 0,8$	0,0	100 100
	2500	77,6	13,8	5,8	1,2	1,6	100
	3750	77,0	8,2	11,5	2,2		100
	5000	59,5	2,2		7,4	14,3	100
	6250	42,6	1,1	20,9	9,1	26,4	100
	7500	26,2	0,3		12,4	44,2	100
	7300	20,2	0,5	10,7	12,4	++,∠	100

Frequencies (%) – 12 UTC							
Probab	lilty	A	В	С	D	E	Total
class							
Month	Height						
1	124.26	74,8	0,0	10,7	7,7	6,7	100
	1250	54,0	0,0	10,7	11,6	23,7	100
	2500	33,6	0,3	14,7	11,1	40,3	100
	3750	18,9	0,0	11,6	10,2	59,3	100
	5000	9,1	0,0	5,9	6,3	78,7	100
	6250	4,8	0,0	4,8	4,4	85,9	100
	7500	1,7	0,0	2,6	3,0	92,7	100
2	124.26	69,8	0,0	15,3	8,0	6,9	100
	1250	46,7	0,0	14,8	11,7	26,8	100
	2500	26,8	0,0	12,3	12,3	48,7	100
	3750	17,4	0,0	7,7	9,7	65,2	100
	5000	8,1	0,0	5,4	5,3	81,2	100
	6250	4,3	0,0	4,1	2,7	88,9	100
	7500	1,3	0,0	2,1	2,4	94,2	100
3	124.26	74,9	1,7	15,0	6,4	1,9	100
	1250	52,1	0,7	18,5	13,6	15,2	100
	2500	31,4	0,3	19,5	14,1	34,7	100
	3750	19,8	0,1	13,5	11,5	55,1	100
	5000	9,2	0,0	6,4	10,5	74,0	100
	6250	2,9	0,0	6,2	7,5	83,5	100
	7500	1,2	0,0	2,7	4,2	91,9	100
4	124.26	62,2	16,8	14,4	4,0	2,6	100
	1250	57,0	3,8	20,5	10,2	8,5	100
	2500	45,8	3,0	21,3	14,3	15,6	100
	3750	30,6	1,8	20,8	17,0	29,9	100
	5000	14,7	0,3	13,2	16,6	55,3	100
	6250	6,2	0,0	10,8	12,8	70,2	100
	7500	2,7	0,0	4,0	8,6	84,6	100
5	124.26	47,8	44,2	5,7	1,9	0,4	100
	1250	60,3	20,9	13,2	3,8	1,8	100
	2500	63,8	12,0	14,8	5,5	3,9	100
	3750	58,0	4,0	17,0	8,9	12,1	100
	5000	39,0	0,5	19,2	11,4	29,9	100
	6250	26,5	0,0	14,5	13,4	45,6	100
	7500	14,1	0,1	11,6	13,1	61,1	100
6	124.26	42,2	55,9	1,4	0,4	0,0	100
	1250	74,6	23,0	2,0	0,0	0,4	100
	2500	79,6	15,5	3,1	0,3	1,5	100
	3750	76,8	7,0	9,3	2,3	4,6	100
	5000	62,0	2,4	18,0	5,3	12,3	100
	6250	41,8	1,1	21,4	12,4	23,4	100
	7500	23,5	0,4	16,9	19,1	40,1	100

(table continued on the next page)

(table continued on the next page)

Frequencies (% - continued) – 00 UTC							
Probab	ility	A	В	C	D	E	Total
class							
Month	Height						
7	124.26	78,7	21,2	0,0	0,0	0,1	100
	1250	68,1	30,1	1,5	0,3	0,1	100
	2500	72,6	21,4	4,3	0,8	0,9	100
	3750	75,5	11,0	7,7	1,3	4,4	100
	5000	69,0	4,3	12,0	3,6	11,2	100
	6250	56,3	2,4	15,4	8,8	17,2	100
	7500	40,7	0,7	16,6	11,7	30,3	100
8	124.26	78,8	21,0	0,0	0,0	0,1	100
	1250	69,7	28,9	1,1	0,1	0,1	100
	2500	76,3	19,6	3,0	0,7	0,4	100
	3750	78,5	10,8	6,0	1,8	2,9	100
	5000	67,3	4,0	12,3	4,8	11,6	100
	6250	50,3	1,8	18,8	7,3	21,9	100
	7500	34,4	0,8	17,0	11,1	36,7	100
9	124.26	97,6	2,3	0,0	0,0	0,2	100
	1250	90,8	7,2	1,4	0,3	0,3	100
	2500	86,7	6,4	4,9	0,8	1,1	100
	3750	74,2	2,8	9,7	3,2	10,0	100
	5000	54,7	1,0	16,7	6,4	21,3	100
	6250	40,7	0,7	13,6	9,0	36,0	100
	7500	26,4	0,0	14,7	9,5	49,4	100
10	124.26	99,1	0,0	0,6	0,3	0,0	100
	1250	91,3	1,0	4,8	1,5	1,4	100
	2500	79,4	2,1	9,3	3,6	5,7	100
	3750	58,0	1,8	15,1	9,3	15,9	100
	5000	38,0	0,7	14,0	11,3	36,0	100
	6250	26,5	0,3	11,5	10,6	51,1	100
	7500	18,8	0,0	8,7	7,7	64,8	100
11	124.26	92,4	0,0	5,2	1,4	0,9	100
	1250	77,2	0,1	12,1	5,8	4,7	100
	2500	54,6			11,8	17,1	100
	3750	37,4	0,3	17,1	12,1	33,1	100
	5000	20,5	0,1	12,5	12,7	54,2	100
	6250	12,2	0,0	9,8	7,7	70,3	100
	7500	6,1	0,0	6,1	7,4	80,4	100
12	124.26	80,8	0,0	8,3	4,4	6,6	100
	1250	62,2	0,0	14,4	10,3	13,1	100
	2500	41,2	0,0	14,8	12,8	31,1	100
	3750	25,1	0,0	11,5	11,7	51,7	100
	5000	12,3	0,0	9,5	5,4	72,8	100
	6250	6,4	0,0	6,4	5,3	81,8	100
	7500	3,2	0,0	3,2	4,9	88,7	100

Freque	ncies (% -	- contir	nued) –	- 12 U'	ГС		
Probabl		\overline{A}	В	С	D	E	Total
class	J						
Month	Height						
7	124.26	20,6	75,9	3,4	0,1	0,0	100
	1250	62,1	36,7	0,7	0,3	0,3	100
	2500	76,8	20,8	1,7	0,5	0,1	100
	3750	78,5	10,3	6,3	2,1	2,8	100
	5000	72,1	3,6	10,9	3,5	9,9	100
	6250	55,1	2,4	16,8	5,9	19,8	100
	7500	37,7	1,2	16,6	13,1	31,5	100
8	124.26	20,8	76,7	2,3	0,1	0,0	100
	1250	62,3	36,8	0,5	0,1	0,3	100
	2500	78,2	20,1	1,2	0,3	0,3	100
	3750	80,7	9,0	6,6	0,9	2,7	100
	5000	68,9	4,3	13,0	3,8	9,9	100
	6250	50,6	2,0	18,3	7,6	21,4	100
	7500	32,4	0,7	18,2		36,8	100
9	124.26	63,2	36,7	0,0	0,0	0,2	100
	1250	90,1	8,2	1,7	0,0	0,0	100
	2500	88,4	5,8	3,5	0,8	1,4	100
	3750	77,2	4,1	8,7	1,8	8,2	100
	5000	54,2	2,1	15,7	7,9	20,2	100
	6250	35,8	0,7	17,8	11,3	34,4	100
	7500	22,6	0,3	14,7	12,4	50,1	100
10	124.26	94,4	3,8	1,7	0,2	0,0	100
	1250	89,4	1,8	5,6	2,2	1,1	100
	2500	75,8	2,7	11,6	4,5	5,4	100
	3750	57,3	2,3	13,3	9,7	17,4	100
	5000	36,6	0,4	15,5	10,1	37,4	100
	6250	23,1	0,0	15,0	9,0	52,9	100
	7500	13,6	0,1	10,2	8,2	67,9	100
11	124.26	92,6	0,2	5,0	2,2	0,0	100
	1250	77,3	0,0	10,9	7,3	4,5	100
	2500	55,5	0,3	16,7	9,5	18,1	100
	3750	37,0	0,6	17,4	11,9	33,2	100
	5000	18,8	0,0	12,3	10,8	58,1	100
	6250	11,3	0,0	8,5	8,5	71,6	100
	7500	5,2	0,0	6,2	6,4	82,2	100
12	124.26	85,4	0,0	7,6	4,0	3,0	100
	1250	63,1	0,0	14,4	9,9	12,5	100
	2500	39,2	0,0	17,3	12,1	31,4	100
	3750	25,3	0,0	11,3	13,3	50,1	100
	5000	10,3	0,0	8,5	8,9	72,2	100
	6250	6,1	0,0	5,6	5,5	82,8	100
	7500	3,3	0,0	3,2	3,3	90,2	100

Appendix B

Summary statistics (max., min., mean, median and std. var.) of monthly values (all in %) for each of the five probability classes and class A, B & C summarized. Tables to the left are based on nightly values (00 UTC) and tables on the right on daily values (12 UTC). For explanation of probability classes and methods see the section "Methods" in the report.

www.dmi.dk/dmi/tr04-25 page 25 of 44

Class A - 00 UTC							
height	max	min	median	mean	stdv		
124.26	99	68	87	86	11		
1250	91	47	68	68	14		
2500	87	28	58	57	21		
3750	78	17	47	47	24		
5000	69	9	29	34	24		
6250	56	4	19	24	19		
7500	41	1	11	15	14		

Class A - 12 UTC							
height	max	min	median	mean	stdv		
124.26	94	21	67	62	25		
1250	90	47	62	66	14		
2500	88	27	60	58	22		
3750	81	17	47	48	26		
5000	72	8	28	34	25		
6250	55	3	17	22	19		
7500	38	1	9	13	13		

Class B - 00	Class B - 00 UTC							
height	max	min	median	mean	stdv			
124.26	21	0	0	4	8			
1250	30	0	2	8	11			
2500	21	0	2	6	8			
3750	11	0	2	3	4			
5000	4	0	0	1	2			
6250	2	0	0	1	1			
7500	1	0	0	0	0			

Class B - 12 UTC							
height	max	min	median	mean	stdv		
124.26	77	0	10	26	31		
1250	37	0	3	11	14		
2500	21	0	3	7	8		
3750	10	0	2	3	4		
5000	4	0	0	1	2		
6250	2	0	0	1	1		
7500	1	0	0	0	0		

Class C - 00 UTC							
height	max	min	median	mean	stdv		
124.26	12	0	3	5	5		
1250	20	1	12	10	7		
2500	20	3	14	12	6		
3750	21	6	12	13	5		
5000	21	3	11	11	6		
6250	18	3	10	10	5		
7500	17	3	7	9	6		

Class C - 12 UTC							
height	max	min	median	mean	stdv		
124.26	15	0	5	7	6		
1250	20	1	11	9	7		
2500	21	1	13	11	7		
3750	21	6	11	12	5		
5000	19	5	13	12	5		
6250	21	4	13	12	6		
7500	18	2	8	9	6		

Class D - 00 UTC							
height	max	min	median	mean	stdv		
124.26	8	0	1	2	3		
1250	16	0	5	6	5		
2500	15	1	8	7	6		
3750	13	1	10	8	5		
5000	13	4	7	8	3		
6250	14	3	8	8	3		
7500	12	2	8	8	4		

Class D - 12 UTC							
height	max	min	median	mean	stdv		
124.26	8	0	2	3	3		
1250	14	0	6	6	5		
2500	14	0	8	7	6		
3750	17	1	10	8	5		
5000	17	3	8	8	4		
6250	13	3	8	8	3		
7500	19	2	8	9	5		

Class E - 00 UTC							
height	max	min	median	mean	stdv		
124.26	12	0	0	3	5		
1250	27	0	4	8	10		
2500	47	0	11	17	17		
3750	63	3	24	28	23		
5000	81	11	45	45	27		
6250	88	17	61	57	27		
7500	93	30	73	68	23		

Class E - 12	Class E - 12 UTC							
height	max	min	median	mean	stdv			
124.26	7	0	0	2	3			
1250	27	0	3	8	10			
2500	49	0	11	17	18			
3750	65	3	24	28	24			
5000	81	10	46	45	28			
6250	89	20	62	57	27			
7500	94	32	75	69	24			

Class A+B+	-C - 00	UTC			
height	max	min	median	mean	stdv
124.26	100	80	99	95	7
1250	100	61	92	86	14
2500	99	42	80	76	22
3750	95	26	65	64	26
5000	85	15	43	48	28
6250	74	9	30	36	25
7500	58	4	20	24	20

Class A+B+	C - 12 U	JTC			
height	max	min	median	mean	stdv
124.26	100	85	98	95	6
1250	100	62	91	86	14
2500	99	39	81	76	23
3750	96	25	64	63	28
5000	87	14	42	47	30
6250	74	8	29	35	26
7500	55	3	18	23	19

www.dmi.dk/dmi/tr04-25 page 27 of 44

Appendix C

Summary statistics (05, 25, 50, 75, 95 & 99 percentiles) of temperature, dew point temperature and dew point depression for nightly (00 UTC) and daily values (12 UTC).

www.dmi.dk/dmi/tr04-25 page 28 of 44

Tempera	ture 00	UTC						
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N
1	124.26	-9,0	-2,3	0,8	3,2	6,3	8,0	N=705
	1250	-8,5	-3,5	-0,3	2,5	5,3	7,4	N=753
	2500	-10,3	-5,2	-1,7	1,1	5,3	8,2	N=753
	3750	-11,9	-6,5	-3,2	0,1	5,0	7,5	N=753
	5000	-13,9	-8,7	-5,3	-1,8	3,8	5,8	N=753
	6250	-16,2	-10,6	-7,0	-3,3	1,8	3,9	N=753
	7500	-19,0	-12,9	-8,9	-5,1	-0,5	2,6	N=753
2	124.26	-7,1	-2,7	-0,1	3,0	6,5	9,0	N=654
	1250		-4,1		1,8	5,7	8,6	N=694
	2500	-10,6	-5,9	-2,5	0,2	5,8	8,3	N=694
	3750	-11,9	-7,2	-3,8	-0,2	4,8	7,7	N=694
	5000	-14,3	-9,5	-6,0	-2,2	3,2	6,4	N=694
	6250	-16,1	-11,5	-7,8	-3,7	1,4	4,9	N=694
	7500	-18,6	-13,8	-10,0	-5,6	-0,6	1,8	N=694
3	124.26	-3,3	-0,5	1,6	3,8	7,2	9,0	N=721
	1250	-5,0	-2,1	0,8	3,4	7,0	9,8	N=761
	2500	-7,6	-4,4	-1,6	1,7	6,3	9,7	N=761
	3750	-9,5	-5,9	-3,0	0,3	5,1	8,1	N=761
	5000	-12,2	-8,6	-5,3	-1,8	2,9	6,9	N=761
	6250	-14,8	-10,3	-6,9	-3,6	0,9	5,0	N=761
	7500	-17,1	-12,6	-9,2	-5,4	-1,1	1,9	N=761
4	124.26	0,0	3,0	4,6	7,0	10,4	13,2	N=683
	1250	-1,2	1,7	4,1	7,1	12,3	18,5	N=733
	2500	-4,5	-1,0	2,0	5,3	10,4	17,2	N=733
	3750	-6,8	-2,9	0,3			14,1	N=733
	5000	-10,2	-5,9	-2,5	1,0	5,9		N=733
	6250	-12,9	-7,9			3,6	6,3	N=733
	7500		-10,2					N=733
5	124.26	4,5	7,0				15,6	N=725
	1250	3,0	6,2			16,0	18,5	N=766
	2500	0,1	3,6			15,1	17,2	N=766
	3750	-1,8	1,8		8,5	12,6	14,2	N=766
	5000	-5,2	-1,2			9,3		
	6250		-3,0				8,7	
	7500	-10,0	-5,1	-2,2	1,1	4,4	6,6	N=766
6	124.26	8,2	10,8	12,2	14,2	17,0	18,6	N=698
	1250	7,0	9,3	11,3	14,0	18,6	21,1	N=740
	2500	3,5	6,3	8,8	12,1	16,9	20,1	N=740
	3750	1,9	4,5	7,0	10,0	14,4	17,0	N=740
	5000	-1,0	1,6	4,2	7,2	11,3	14,1	N=740
	6250	-3,3	-0,5	2,3	5,4	9,5	12,3	N=740
	7500	-5,8	-2,8	-0,1	3,3	7,2	9,9	N=740

(table continued on the next page)

www.dmi.dk/dmi/tr04-25 page 29 of 44

Tempera	ture 00	UTC (d	ontinu	ed)				
Month	Height	P 05		Median	P 75	P 95	P 99	Valid N
7	124.26	11,0	13,0	14,6	16,2	19,2	21,4	N=702
	1250	9,4	11,6	13,7	16,5	20,3	23,2	N=752
	2500	6,3	9,0	11,6	14,8	18,9	21,6	N=752
	3750	4,4	7,1	9,5	12,4	16,7	18,5	N=752
	5000	1,5	4,1	6,4	9,3	13,2	15,0	N=752
	6250	-0,9	2,2	4,5	7,6	11,4	13,1	N=752
	7500	-3,3	0,0	2,3	5,4	8,8	10,7	N=752
8	124.26	10,6	12,6	14,5	16,4	18,6	20,0	N=690
	1250	9,7	11,7	13,9	16,7	20,5	22,5	N=730
	2500	6,6	8,8	11,4			21,0	N=730
	3750	4,6	6,7				18,7	N=730
	5000	1,2	3,9		9,6			N=730
	6250	-0,9	2,2					N=730
	7500	-3,4	-0,1			8,6		N=730
9	124.26	7,4	10,0					N=663
	1250		9,0		12,4			N=708
	2500	3,5	6,1		10,2			N=708
	3750	1,3	4,1		8,5			N=708
	5000	-1,6	1,2					N=708
	6250	-3,4	-0,5					N=708
	7500	-6,0	-2,6			6,7		N=708
10	124.26	2,2	5,8					
	1250	1,8	5,0		9,6	12,8		N=724
	2500	-1,1	2,6					N=724
	3750	-3,1	0,7					N=724
	5000	-6,0	-2,0			9,0	12,7	N=724
	6250	-8,1	-4,0	-0,5		7,5	10,3	N=724
	7500	-10,7	-6,1		1,4		7,6	N=724
11	124.26	-1,7	2,0			9,1		N=632
	1250	-3,0	0,6	3,2		8,0	10,2	N=703
	2500	-5,7	-1,8					N=703
	3750	-7,5	-3,4		2,7	7,3		N=703
	5000	-10,3	-5,7				8,8	N=703
	6250		-7,6				6,7	
- 10	7500	-14,2	-9,6	-6,4		1,8	4,7	N=703
12	124.26	-5,7	-0,7	1,6	4,2	7,4	9,3	N=641
	1250	-5,9	-2,2	0,3	2,8	6,3	8,2	N=716
	2500	-8,2	-4,0	-1,3	1,6	5,7	8,4	N=716
	3750	-9,8	-5,6	-2,8	0,6	5,3	8,4	N=716
	5000	-12,9	-8,1	-4,8	-1,4	3,9	6,8	N=716
	6250	-15,2	-9,9	-6,4		2,6	4,9	N=716
	7500	-17,5	-12,2	-8,3	-4,4	0,5	2,7	N=716

www.dmi.dk/dmi/tr04-25 page 30 of 44

Temperatu	re 12 UT	C						
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N
1	124.26	-5,5	-1,1	1,6	4,2	7,0	8,9	N=727
	1250	-8,0	-3,4	-0,1	2,4	5,4	7,6	N=767
	2500	-10,1	-4,9	-1,9	0,8	5,6	9,1	N=767
	3750	-11,4	-6,4	-3,3		5,5	7,5	N=767
	5000	-13,9		-5,6		3,8	6,2	N=767
	6250		-10,8	-7,2			4,4	N=767
	7500		-13,3	-9,2			3,0	N=767
2	124.26		-1,1	1,4	4,2	8,2	10,8	N=666
	1250	-8,4	-4,0	-0,9	2,4	6,0	8,6	N=702
	2500	-10,6	-6,1	-2,4	0,8	5,8	9,1	N=702
	3750	-12,3	-7,2	-3,7	-0,1	5,3	8,5	N=702
	5000	-13,8	-9,7	-5,9	-1,8	3,8	6,7	N=702
	6250		-11,4	-7,7	-3,0	2,2	5,2	N=702
	7500		-13,7	-9,8	-5,1	0,3	3,3	N=702
3	124.26	-0,9	1,8	4,2	6,6	10,8	13,8	N=718
	1250	-4,8	-1,8	1,0	3,6	7,4	10,1	N=764
	2500		-4,3	-1,6	1,6	6,1	10,0	N=764
	3750		-6,0		0,4			N=764
	5000		-8,4	-5,1				N=764
	6250		-10,3	-6,8		1,6	4,8	N=764
	7500		-12,5	-9,0				N=764
4	124.26	2,8	6,2	9,0				N=696
	1250	-1,1	2,4	4,6	7,8			N=742
	2500	-4,8	-0,9	1,9	5,5		16,2	N=742
	3750	-7,1	-3,0	-0,1	3,5	8,4	13,0	N=742
	5000	-10,7	-6,0	-2,4		5,9	8,9	N=742
	6250	-13,0	-7,9	-4,3	-1,1	4,2	6,2	N=742
	7500		-10,4	-6,5	-3,1	1,9	4,2	N=742
5	124.26 1250	7,8	11,8	14,6	17,8 12,8	22,0	24,0	N=722
	2500	4,2	7,3 3,9	9,7		16,7		N=766
	3750	0,4 -1,9	1,5	7,0 4,7	10,3 8,0	14,7 12,1	17,6 14,3	N=766 N=766
	5000	-5,3	-1,4	2,0	5,3			N=766
	6250		-3,2	0,3			8,8	
	7500	-10,1	-5,3	-1,9	1,3	4,4	6,7	N=766
6	124.26	11,6	14,4	17,0	19,8	24,6	27,4	N=699
	124.20	8,0	10,2	12,4	15,0	19,4	23,2	N=740
	2500	3,9	6,7	9,2	12,3	16,8	20,6	N=740
	3750	1,9	4,5	6,8	9,8	14,1	17,1	N=740
	5000	-1,5	1,5	3,9	6,8	10,7	13,8	N=740
	6250	-3,5	-0,7	2,3	5,1	9,0	12,1	N=740
	7500	-5,8	-2,9	0,2	2,7	6,8	9,7	N=740

(table continued on the next page)

www.dmi.dk/dmi/tr04-25 page 31 of 44

Temperatu	re 12 UT	C (cont	inued)					
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N
7	124.26	14,2	17,0	19,4	22,2	26,4	28,4	N=700
	1250	10,4	12,7	14,8	17,2	21,6	23,7	N=749
	2500	6,3	9,2	11,5	14,7	18,9	21,7	N=749
	3750	4,3	7,0	9,1	11,8	16,3	18,3	N=749
	5000	1,2	4,0	6,4	9,1	13,0	15,2	N=749
	6250	-0,7	2,1	4,5	7,4	11,0	13,1	N=749
	7500	-3,1	-0,2	2,3	5,1	9,0	12,5	N=749
8	124.26	14,6	16,8	19,0	21,6	25,8	28,0	N=692
	1250	10,9	12,7	14,7	17,6	21,3	24,1	N=737
	2500	6,6	9,2	11,6	14,9	18,9	22,0	N=737
	3750	4,5	6,8	9,0	12,2	15,5	19,6	N=737
	5000	1,0	3,6	6,5	9,4	12,4	15,5	N=737
	6250	-1,2	1,9	4,8	7,7	10,7	13,0	N=737
	7500	-3,6	-0,3			8,6	10,7	N=737
9	124.26	11,2	13,6	15,2		20,6	22,8	N=663
	1250	7,5	9,9	11,4	13,2		19,1	N=709
	2500	4,0	6,5	8,2	10,4	15,1	17,7	N=709
	3750	1,5	4,1	6,1	8,5	13,1	15,8	N=709
	5000	-1,6	1,3	3,5	6,5		13,1	N=709
	6250	-3,6	-0,5	2,1	5,0	9,5	11,2	N=709
	7500	-5,8	-2,7	0,2	3,1	7,2	9,5	N=709
10	124.26	5,4	8,8	10,8	12,8	16,0	18,8	N=658
	1250	1,6	5,4	7,8	9,9	13,0	16,1	N=735
	2500	-1,3	2,3	4,9	7,7	12,7	16,8	N=735
	3750	-3,2	0,5	3,2	6,2	11,4	15,2	N=735
	5000	-6,6	-2,1	1,1	4,8	9,5	12,5	N=735
	6250	-8,5	-3,8	-0,4		8,0	10,4	N=735
	7500	-10,6	-6,0	-2,2	1,6	5,5	8,2	N=735
11	124.26	0,4	3,6	6,0	8,0	10,4	11,7	N=639
	1250	-2,7	0,7	3,4	5,5	8,0	10,0	N=714
	2500 3750	-5,7 -7,3	-1,9 -3,4	0,9 -0,4	3,8 2,5	7,5 6,9	10,2 9,8	N=714 N=714
	5000	-10,3	-5,6	-0,4	0,6	5,3	7,6	N=714 N=714
	6250	-10,3	-7,2					N=714 N=714
	7500		-7,2	- 4 ,2 -6,1	-2,5	1,9	4,9	N=714 N=714
12	124.26	-3,5	0,4	2,6	4,8	8,0	10,0	N=643
12	124.20	-6,3	-1,8	0,6	3,1	6,0	8,5	N=727
	2500	-8,6	-3,9	-1,1	1,3	5,3	8,1	N=727 N=727
	3750	-10,2	-5,5	-2,4	0,4	4,8	7,4	N=727
	5000	-12,9	-7,9	-2, 4 -4,6	-1,3	3,8	6,4	N=727
	6250	-15,0	-9,9	-6,2	-2,7	2,3	5,1	N=727
	7500	-17,2		-8,2	-4,4	0,3	3,6	N=727

www.dmi.dk/dmi/tr04-25 page 32 of 44

Dew poi	Dew point temperature 00 UTC										
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N			
1	124.26	-11,2	-4,1	-0,1	1,9	5,3	6,9	N=705			
	1250	-15,7	-7,6	-2,6	0,4	3,9	6,2	N=753			
	2500	-23,5	-10,5	-5,3		2,9	4,9	N=753			
	3750	-28,2	-14,8	-8,5	-4,0	1,4	4,1	N=753			
	5000	-32,8	-21,2	-12,7	-6,9	-1,0	2,0	N=753			
	6250	-35,9	-24,2		-9,8	-3,0	0,5	N=753			
	7500	-39,8	-27,7	-19,2	-12,5	-4,7	-1,1	N=753			
2	124.26	-10,2	-4,2	-1,1	1,9	4,9	7,9	N=654			
	1250	-14,2	-7,8	-3,6	-0,1	4,1	6,6	N=694			
	2500	-22,3	-11,7	-6,6	-2,6	2,8	6,2	N=694			
	3750	-28,7	-16,3	-10,0	-5,1	1,3	4,6	N=694			
	5000	-34,0	-22,5	-14,2	-8,4	-0,8	1,9	N=694			
	6250		-26,2		-11,4	-2,8	0,9	N=694			
	7500	-42,4	-29,4	-21,2	-14,2	-4,4	-1,1	N=694			
3	124.26	-6,9	-2,3	-0,1	1,9	5,9	7,8	N=721			
	1250	-11,7	-6,1	-2,5	0,4	4,2	6,4	N=761			
	2500	-19,7	-9,4	-5,4	-2,0	2,2	4,4	N=761			
	3750	-27,7	-13,2	-8,1	-3,8	0,6	3,3	N=761			
	5000	-33,2	-20,7	-12,2	-6,8	-1,6	0,4	N=761			
	6250	-38,2	-25,2	-15,7	-9,4	-3,6	-1,3	N=761			
	7500	-40,7	-28,4	-18,9	-12,0	-5,8	-3,4	N=761			
4	124.26	-4,1	-0,1	2,7	4,9	7,9	9,9	N=683			
	1250	-10,1	-4,1	-0,6	2,2	6,1	8,0	N=733			
	2500	-13,4	-6,8	-3,1	0,3	4,6	7,5	N=733			
	3750	-17,7	-9,6	-4,8	-1,1	3,0	5,9	N=733			
	5000	-26,3	-14,3	-8,1	-4,1	0,4	3,3	N=733			
	6250	-32,9	-19,2	-11,7	-6,4	-1,2	1,5	N=733			
	7500	-36,3	-22,7	-14,7	-9,1	-3,6	-0,8	N=733			
5	124.26	0,8	3,9	6,0	8,9	10,9	12,9	N=725			
	1250	-5,4	-0,1	2,9	5,9	9,1	11,4	N=766			
	2500	-8,1	-2,4	0,9	3,9	7,8	9,9	N=766			
	3750	-11,1	-4,6	-1,1	2,3	6,4	8,7	N=766			
	5000	-19,9	-8,6	-3,8	-0,2	3,9	6,5	N=766			
	6250	-28,1	-13,3	-7,1	-2,4	2,1	5,4	N=766			
	7500	-32,6	-18,2	-10,3	-5,1	-0,3	3,1	N=766			
6	124.26	5,0	7,9	9,9	11,7	14,9	16,3	N=698			
	1250	0,6	4,4	6,5	8,9	11,9	14,4	N=740			
	2500	-2,4	1,6	4,0	6,4	10,4	12,8	N=740			
	3750	-8,0	-0,8	1,9	4,4	8,6	10,7	N=740			
	5000	-15,9	-4,5	-1,3	1,8	6,2	8,6	N=740			
	6250	-21,9	-9,1	-3,8	-0,3	4,4	7,3	N=740			
	7500	-28,2	-13,7	-6,6	-2,7	2,4	4,9	N=740			

(table continued on the next page)

www.dmi.dk/dmi/tr04-25 page 33 of 44

Dew poi	int temper	ature 00	UTC (c	ontinued)				
Month	Height	P 05		Median	P 75	P 95	P 99	Valid N
7	124.26	7,9	10,6	11,9	13,9	16,9	18,0	N=702
	1250	2,9	6,4	8,8	10,9	13,9	15,9	N=752
	2500	-0,2	3,9	6,3	8,7	12,2	14,2	N=752
	3750	-5,0	1,3	4,0	6,9	9,9	12,4	N=752
	5000	-13,0	-2,1	1,1	3,9	7,9	10,0	N=752
	6250	-17,2	-5,6	-1,4	1,9	5,6	8,1	N=752
	7500	-22,0	-9,8	-4,1	-0,5	2,9	5,6	N=752
8	124.26	7,9	10,1	11,9	13,9	16,9	17,9	N=690
	1250	3,8	6,9	8,9	11,1	14,2	15,9	N=730
	2500	0,9	4,2	6,4	8,9	11,9	14,4	N=730
	3750	-4,1	1,6	4,2	6,9	10,3	12,6	N=730
	5000	-12,7	-2,9	0,6	4,0	7,6	10,3	N=730
	6250	-18,6	-6,8	-2,3	1,6	5,6	8,1	N=730
	7500	-23,7	-11,3	-5,1	-1,1	3,3	5,4	N=730
9	124.26	4,9	7,9	9,9	11,9	13,9	15,5	N=663
	1250	0,9	4,4	6,9	8,9	11,9	13,9	N=708
	2500	-2,7	1,6	4,0	6,6	9,9	11,9	N=708
	3750	-13,2	-1,6	1,6	4,6	8,1	10,4	N=708
	5000	-22,1	-6,4			5,4	7,8	N=708
	6250	-26,0	-12,5		-0,3	3,4	5,1	N=708
	7500	-29,5	-16,9		-2,8	1,4	3,1	N=708
10	124.26	-0,1	4,0	6,9	9,8	12,4	12,9	N=649
	1250	-3,8	1,3	4,4	7,4	10,4	12,3	N=724
	2500	-9,6	-1,6	1,6	4,7	8,9	10,4	N=724
	3750	-18,7	-5,6	-1,1	2,7	6,9	8,9	N=724
	5000	-25,1	-11,7	-4,9	-0,6	4,4	6,7	N=724
	6250	-29,2	-16,2	-8,1	-2,4	2,9	5,4	N=724
	7500	-33,2	-20,3			0,6	3,2	N=724
11	124.26	-4,1	-0,1	2,9	5,6	7,9	9,9	N=632
	1250	-	-2,6		3,4	6,4	8,4	N=703
	2500		-6,1			4,9	7,6	N=703
	3750		-9,1				6,2	N=703
	5000	-29,6	-14,7	-8,1	-3,8	0,7	4,4	N=703
	6250		-20,2	-11,9		-0,8	2,9	N=703
10	7500	-37,2	-23,2	-15,7	-8,6	-2,7	0,5	N=703
12	124.26	-8,1	-2,1	0,7	2,9	6,5	7,9	N=641
	1250	-11,5	-5,1	-1,6	1,1	5,0	7,1	N=716
	2500 3750	-22,7 -27,9	-8,4 -12,9	-4,5 7,6	-1,1 3 1	3,2	6,1 5.0	N=716 N=716
	5000	-27,9	-12,9	-7,6	-3,1 -6,3	2,4 0,1	5,0	N=716 N=716
	6250	-32,4 -36,6	-18,4	-11,7 -15,5	-0,5 -8,6	-2,1	3,2 1,2	N=716 N=716
	7500			-13,3			-0,9	N=716 N=716
	/300	-39,1	-20,2	-18,2	-11,3	-4,1	-0,9	1N=/10

www.dmi.dk/dmi/tr04-25 page 34 of 44

Dew poin	nt temper	ature 12	UTC					
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N
1	124.26	-9,5	-3,1	-0,1	2,3	5,5	6,9	N=727
	1250	-15,2	-7,6	-2,6	0,4	3,6	5,9	N=767
	2500	-23,4	-10,9	-5,6	-1,8	2,4	4,4	N=767
	3750	-29,0	-16,2	-9,1				N=767
	5000	-35,7	-22,4	-13,7	-7,8	-1,5	0,9	N=767
	6250	-38,2	-26,5		-10,2		-0,4	N=767
	7500	-40,7	-29,2	-20,5	-13,7	-5,5	-2,3	N=767
2	124.26	-9,1	-4,1	-1,1	1,9	5,9	7,8	N=666
	1250	-14,7	-8,1	-3,6	-0,1	4,4	5,9	N=702
	2500	-22,9	-12,2	-7,1	-2,7	2,6	5,0	N=702
	3750	-28,1	-17,2	-10,4	-5,2	1,1	4,0	N=702
	5000	-33,2	-21,7		-8,6			N=702
	6250	-36,5	-25,7	-17,5	-11,2	-3,4	-0,8	N=702
	7500	-39,2	-28,8	-20,7	-14,2	-6,1	-2,9	N=702
3	124.26	-7,1	-2,1	0,2	2,9	6,9	7,9	N=718
	1250	-11,7	-6,6	-2,6		4,4		N=764
	2500	-18,6	-9,6	-5,3				N=764
	3750	-27,4	-14,3	-8,4	-4,0		3,3	N=764
	5000	-34,1	-20,7	-12,7	-7,1	-2,1	0,7	N=764
	6250	-38,2	-24,7	-16,3	-9,5	-3,8	-0,7	N=764
	7500	-41,5	-28,7		-11,9	-5,8	-2,9	N=764
4	124.26		-0,1	2,9	5,9	8,9		N=696
	1250		-4,1	-0,6	2,4		8,9	N=742
	2500			-2,6			6,9	N=742
	3750		-9,1	-5,1				N=742
	5000	_ , , ,	-14,7	-8,6			2,9	N=742
	6250	-32,3	-18,8	-11,9		-2,4		N=742
	7500		-23,2	-15,2	-9,6			
5	124.26	-0,1	3,9	6,9				
	1250	-5,1	0,4	2,9		9,0		
	2500	-7,1	-1,6	1,2	4,2			N=766
	3750	-13,9	-4,4	-0,9		5,9		N=766
	5000	-21,7	-9,1	-4,2				N=766
	6250	-28,0	-13,9	-7,1	-2,7	1,6	4,6	N=766
	7500	-31,7	-18,8	-10,3	-5,3	-0,6	2,2	N=766
6	124.26	4,9	7,9	10,6	12,4	15,9	17,8	N=699
	1250	0,9	4,3	6,8	8,9	12,3	14,4	N=740
	2500	-1,1	1,9	4,5	6,9	10,2	12,2	N=740
	3750	-6,1	-0,4	2,1	4,4	8,2	10,3	N=740
	5000	-15,3	-4,1	-1,1	1,5	5,7	7,8	N=740
	6250	-20,5	-7,6	-3,8	-0,4	3,9	6,0	N=740
	7500	-24,7	-11,7	-6,8	-3,1	1,6	3,5	N=740

(table continued on the next page)

www.dmi.dk/dmi/tr04-25 page 35 of 44

Dew poi	nt temper	ature 12	UTC (co	ontinued)				
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N
7	124.26	7,6	10,9	12,9	14,9	17,6	19,9	N=700
	1250	3,4	6,7	8,9	10,9		15,6	N=749
	2500	1,7	4,7	6,9	8,6	11,7	13,8	N=749
	3750	-4,0	1,9	4,4	6,6	9,9	11,7	N=749
	5000	-12,7	-1,8	0,9	3,5	6,9	8,9	N=749
	6250	-18,5	-5,6	-1,6	1,3	5,1	7,5	N=749
	7500	-22,9	-10,5	-4,6	-1,3	2,9	6,0	N=749
8	124.26	7,9	10,8	12,9	14,9	17,3	19,2	N=692
	1250	3,9	6,9	8,9	10,9	13,9	16,1	N=737
	2500	-,-	4,6		9,2			N=737
	3750		1,9	4,4		10,1		
	5000	, .		0,6		7,4		
	6250			-2,1				
	7500		-12,2			2,9		N=737
9	124.26	4,6	8,0	10,2	12,2			N=663
	1250	0,9	4,6	6,9		11,9		
	2500	-2,2	1,9	4,3		9,7		
	3750	-10,2	-1,1	1,9	4,4			N=709
	5000	-20,4		-1,8				N=709
	6250		-11,2	-4,6				N=709
	7500		-16,7			1,1		N=709
10	124.26	0,9	4,9		9,9			N=658
	1250		0,9	4,4				
	2500	-,.	-1,8	1,2		8,2		
	3750		-6,1	-1,1				N=735
	5000	-26,2		-5,1				
	6250	27,1	10,7	-8,6				N=735
1.1	7500			-12,6				
11	124.26 1250	-4,1 -8,1	0,5 -2,6	3,9 0,9				N=639 N=714
	2500	-0,1		-2,4				N=714 N=714
	3750	-14,2	-10,2	-2,4 -4,6				N=714 N=714
	5000	-30,2	-16,0		-4,3			N=714 N=714
	6250		-20,6					
	7500	-36,2	-24,2	-16,6	-9,1	-3,1	-0,1	N=714
12	124.26	-6,1	-1,8	0,9	3,9	5,9	8,9	N=643
12	1250	-11,1	-5,1	-1,6	1,4	4,9	7,2	N=727
	2500	-19,7	-8,6	-4,6	-1,1	3,4	5,7	N=727
	3750	-27,2	-13,0	-7,3	-3,1	1,9	4,7	N=727
	5000	-34,0	-18,7	-11,9	-6,6	-0,8	2,3	N=727
	6250	-37,8	-23,2	-15,2	-9,1	-2,5	1,5	N=727
	7500	-39,0	-26,2	-18,5		-4,5	-0,6	N=727

www.dmi.dk/dmi/tr04-25 page 36 of 44

Dew poin	Dew point depression 00 UTC										
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N			
1	124.26	-0,1	0,5	1,1	2,0	3,9	5,7	N=705			
	1250	0,1	0,8	1,8	3,9	10,4	26,5	N=753			
	2500	0,0	0,9	2,4	6,4	19,4	35,6	N=753			
	3750	0,0	1,2	3,9	9,8	25,5	37,9	N=753			
	5000	0,1	1,6	5,8	14,4	28,6	37,1	N=753			
	6250	0,2	2,2	8,0	16,0	29,6	35,4	N=753			
	7500	0,4	2,5	8,9	17,3	30,3	36,0	N=753			
2	124.26	0,0	0,6	1,2	2,3	4,2	6,0	N = 654			
	1250	0,2	0,9	2,1	4,0	9,7	19,0	N=694			
	2500	0,0	1,0	2,7	6,7	20,5	30,1	N=694			
	3750	0,0	1,3	4,3	12,0	26,6	33,6	N=694			
	5000	0,1	1,8	6,8	16,3		36,1	N=694			
	6250	0,3	2,5	8,8	17,6			N=694			
	7500	0,3	3,0	10,4	19,7		39,0	N=694			
3	124.26	0,1	0,8	1,7	2,9	4,9	7,0	N=721			
	1250	0,3	1,3	2,8	5,2	11,0	17,8	N=761			
	2500	0,1	1,3	3,3	7,0	17,6	32,2	N=761			
	3750	0,1	1,5	4,0	9,5	24,5	35,3	N=761			
	5000	0,1	1,7	5,5	15,2	29,4	37,6	N=761			
	6250	0,4	2,3	7,5	17,5	32,5	41,8	N=761			
	7500	0,4	2,7	8,7	18,7	32,5	42,3	N=761			
4	124.26	0,1	1,1	2,1	3,8	7,0	9,6	N=683			
	1250	0,4	2,2	4,8	8,5	14,6	19,4	N=733			
	2500	0,2	2,0	5,0	9,0	15,6	21,4	N=733			
	3750	0,2	2,0	5,0	9,3	17,7		N=733			
	5000	0,2	2,0	4,8	10,5	25,2	37,1	N=733			
	6250	0,2	2,1	5,8	12,7		38,5	N=733			
	7500	0,3	2,3	6,8	15,0	30,4	39,1	N=733			
5	124.26	0,3	1,3	2,7	4,4	7,3	9,0	N=725			
	1250	0,6	3,0	5,5	9,5	15,6	20,5	N=766			
	2500	0,4	2,8	5,6	9,8	15,5	24,0	N=766			
	3750	0,4	2,8	5,5	9,3	16,6	28,0	N=766			
	5000 6250	0,3	2,3	5,3	9,5	24,2	33,7	N=766 N=766			
			2,5	5,9	12,9	28,1	35,5				
	7500	0,3	2,6	7,0	16,6	30,5	37,2	N=766			
6	124.26	0,5	1,3	2,3	3,5	6,0	7,1	N=698 N=740			
	1250	0,8	2,5	4,4	7,2	13,8	17,5	N=740			
	2500 3750	0,4	2,3	4,5	7,9	14,3	21,5	N=740			
	3750 5000	0,5	2,4	4,6	8,5	16,8	32,2	N=740			
	5000 6250	0,4	2,0	4,8 5.4	8,8	22,3	34,2 37,0	N=740 N=740			
	6250	0,3	2,2	5,4	10,9	26,3		N=740			
	7500	0,3	2,2	5,6	13,5	28,9	36,8	N=740			

(table continued on the next page)

www.dmi.dk/dmi/tr04-25 page 37 of 44

Dew poi	nt depre	ssion (0 UT(C (continu	ıed)			
Month	Height			Median	P 75	P 95	P 99	Valid N
7	124.26	0,5	1,3	2,3	3,4	5,7	8,1	N=702
	1250	1,0	2,6	4,7	7,6	14,0	17,1	N=752
	2500	0,5	2,6	4,8	8,4	14,4	20,0	N=752
	3750	0,4	2,7	4,8	8,1	16,7	30,3	N=752
	5000	0,4	2,3	4,4	8,9	22,5	31,8	N=752
	6250	0,6	2,4	5,1	10,6	24,0	33,4	N=752
	7500	0,5	2,4	5,7	12,6	26,3	36,0	N=752
8	124.26	0,5	1,1	1,9	3,1	5,3	7,0	N=690
	1250	1,0	2,9	4,7	7,3	12,7	16,1	N=730
	2500	0,7	2,9	4,7	7,7	13,2	18,1	N=730
	3750	0,7	2,8	4,6	7,5			N=730
	5000	0,7	2,7	5,0	9,5			N=730
	6250	0,7	2,9	5,7				N=730
	7500		2,8					N=730
9	124.26	-	0,9	1,5	2,5	4,7		N=663
	1250		2,1	3,6		9,5		N=708
	2500	0,2	1,8	3,8	6,2	11,0		N=708
	3750	0,3	2,0	4,2	7,4		32,0	N=708
	5000	0,2	1,9	4,5				N=708
	6250	0,2	2,1	5,6	14,5			N=708
	7500	0,2	2,0	7,0	17,5	31,4		N=708
10	124.26	0,1	0,7	1,1	2,1			N=649
	1250	0,4	1,5	2,7		7,9		N=724
	2500	0,1	1,5	3,1	5,4			N=724
	3750	0,1	1,6	3,6	8,0		31,6	N=724
	5000	0,1	1,5	4,3	12,2		36,3	N=724
	6250	0,1	1,7	6,5	14,7		36,8	N=724
	7500		2,1	7,9	17,3			N=724
11	124.26	0,1	0,6	1,3	2,2	4,3	5,6	N=632
	1250		1,0	2,0	3,7			N=703
	2500	0,0	0,9	2,4	5,0		24,2	N=703
	3750	-	1,1	3,3	7,7			N=703
	5000		1,4	4,3	10,7	28,3		N=703
	6250		1,8				38,6	
- 10	7500	0,4	2,5	7,9	16,0	31,6	41,3	N=703
12	124.26	-0,1	0,5	1,1	2,0	4,1	7,3	N=641
	1250	0,1	0,7	1,7	3,2	8,4	15,2	N=716
	2500	0,0	0,7	2,2	5,7	19,7	33,8	N=716
	3750	0,1	1,0	3,4	9,6	25,4	35,7	N=716
	5000	0,2	1,3	5,4	13,3	28,3	35,9	N=716
	6250	0,3	1,7	7,6	15,9	30,9	37,0	N=716
	7500	0,4	2,3	8,6	17,2	30,3	38,3	N=716

www.dmi.dk/dmi/tr04-25 page 38 of 44

Dew point	depressi	on 12 l	UTC					
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N
1	124.26	0,0	0,7	1,6	2,8	5,0	8,0	N=727
	1250	0,1	0,9	2,0	4,0	10,4	18,2	N=767
	2500	0,0	1,0	2,7	6,6	19,8	32,0	N=767
	3750	0,1	1,4	4,5	10,8	27,5	36,2	N=767
	5000	0,3	2,2	7,1		30,5	40,8	N=767
	6250	0,5	2,8	9,0	18,8	33,3	40,8	N=767
	7500	0,6	3,4	10,2	19,3	33,7	43,8	N=767
2	124.26	0,0	1,1	2,2	3,7	6,9	8,0	N=666
	1250	0,2	1,1	2,2	4,3	10,1	22,0	N=702
	2500	0,0	0,9	2,9	7,5	21,0	31,1	N=702
	3750	0,1	1,4	4,6	12,5	26,4	35,0	N=702
	5000	0,3	2,1	6,9	16,3	29,9	38,0	N=702
	6250	0,3	3,0	8,6	17,7	31,0	37,7	N=702
	7500	0,7	3,6	9,8	19,5	31,3	41,8	N=702
3	124.26	0,3	1,7	3,8	6,3	10,0	12,0	N=718
	1250	0,4	1,7	3,5	5,9	11,3	15,6	N=764
	2500	0,3	1,4	3,2	6,3	18,3	27,5	N=764
	3750	0,3	1,6	4,3	10,1	23,6	37,4	N=764
	5000	0,6	2,3	6,6	15,0	30,5	38,4	N=764
	6250	0,7	2,7	8,4	17,1	32,2	41,0	N=764
	7500	0,8	3,2	9,7	18,5	32,9		N=764
4	124.26	0,7	3,9		9,7		18,4	N=696
	1250	0,6	2,9	5,7		14,5	18,0	N=742
	2500	0,3	2,0	4,8	8,2	14,4	18,8	N=742
	3750	0,4	2,1	4,7	8,7	19,3	35,1	N=742
	5000	0,4	2,1	5,1	10,8	26,3	34,5	N=742
	6250	0,7	2,7	6,1		29,3	36,6	N=742
	7500	0,9	2,9	7,4	15,8	30,8	38,3	N=742
5	124.26	1,1	5,0	8,0	11,0	16,0	19,2	N=722
	1250	1,0	3,9	6,8	10,2	14,6	18,0	N=766
	2500	0,6	2,6	5,5	9,4	14,1	22,0	N=766
	3750	0,5	2,3	5,1	9,0	18,9	29,0	N=766
	5000	0,5	2,3	5,3	10,8	24,1	36,7	N=766
	6250	0,7	2,5	6,2		29,0	36,1	N=766
	7500	0,9	2,9	7,3	16,5	28,9	35,6	N=766
6	124.26	1,1	4,3	7,0 5,6	9,1	14,2	17,0	N=699 N=740
	1250	1,2	3,5	5,6	8,3	13,0	15,6	N=740
	2500 3750	0,6	2,4 2,2	4,3 4,2	7,5	13,0 15,1	17,8	N=740 N=740
		0,5			7,5		26,0	
	5000 6250	0,4 0,5	2,0 2,1	4,4 4,9	8,0 10,3	22,0 25,5	32,8 35.1	N=740 N=740
							35,1	
	7500	0,4	2,5	5,7	12,2	27,2	36,1	N=740

(table continued on the next page)

www.dmi.dk/dmi/tr04-25 page 39 of 44

Dew point depression 12 UTC (continued)											
Month	Height	P 05	P 25	Median	P 75	P 95	P 99	Valid N			
7	124.26	1,3	4,8	7,1	9,5	13,0	15,6	N=700			
	1250	1,5	4,0	6,1	8,4	13,2	15,3	N=749			
	2500	0,7	2,6	4,6	7,3	12,8	16,6	N=749			
	3750	0,5	2,4	4,3	7,7	16,2	21,0	N=749			
	5000	0,6	2,6	4,7	8,4	21,9	32,0	N=749			
	6250	0,7	2,9	5,2	10,6	25,0	34,3	N=749			
	7500	0,7	3,1	6,4	13,1	27,1	35,3	N=749			
8	124.26	1,3	4,7	6,9	9,0	12,2	16,1	N=692			
	1250	1,6	4,3	6,1	8,2	12,3	15,4	N=737			
	2500	0,7	2,7	4,7	7,1	12,4	14,9	N=737			
	3750	0,6	2,3	4,4	7,1	15,4	24,1	N=737			
	5000	0,6	2,4	4,8	8,6	19,8	31,7	N=737			
	6250	0,7	2,8	5,8		24,2	32,5	N=737			
	7500	0,8	3,0	6,8	14,8	26,2	36,0	N=737			
9	124.26	0,9	3,1	5,3	7,3	10,2	12,5	N=663			
	1250	0,8	2,9					N=709			
	2500	0,5	2,2	4,0	6,0	10,5	16,3	N=709			
	3750	0,4	2,1	3,9	7,0	17,3	31,9	N=709			
	5000	0,4	2,1	4,5			35,3	N=709			
	6250	0,5	2,6	6,5			34,2	N=709			
	7500	0,5	2,5	8,0				N=709			
10	124.26	0,3	1,9				9,9	N=658			
	1250	0,5	1,8	3,2			12,0	N=735			
	2500	0,3	1,5	3,2	5,6	14,0	21,6	N=735			
	3750	0,2	1,6	3,7			33,9	N=735			
	5000	0,2	2,0	4,8	12,4		37,9	N=735			
	6250	0,2	2,4	6,9			39,8	N=735			
	7500	0,3	3,2	9,5	17,8		38,2	N=735			
11	124.26	0,1	1,0	2,1				N=639			
	1250	0,3	1,1	2,2	3,8		11,9	N=714			
	2500	0,1	1,0	2,4	5,4		25,7	N=714			
	3750	0,1	1,3	3,3	7,8	21,5	31,4	N=714			
	5000	0,2	1,8	5,1			38,9	N=714			
	6250				16,5						
10	7500	0,6	2,8	8,5	17,3	31,1	37,4	N=714			
12	124.26	0,1	0,6	1,5	2,5	4,7	8,4	N=643			
	1250	0,1	0,8	1,7	3,5	8,1	17,7	N=727			
	2500	0,0	0,8	2,1	5,5	17,9	33,6	N=727			
	3750	0,1	1,2	3,4	9,5	23,6	37,5	N=727			
	5000	0,2	1,9	6,3	13,6	29,6	39,9	N=727			
	6250	0,2	2,3	7,5	16,0	30,1	39,3	N=727			
	7500	0,4	2,8	8,8	17,5	31,0	39,6	N=727			

www.dmi.dk/dmi/tr04-25 page 40 of 44

Appendix D

The leaflet PISTON ENGINE ICING provided by UK-CAA (Civil Aviation Authority, 2000) gives recommendations of pilot procedures in order to minimize the risk of carburettor icing. The leaflet can be found at the URL:

http://www.caa.co.uk/docs/33/SRG_GAD_SSL14.PDF

A summary of the leaflet is provided here.

www.dmi.dk/dmi/tr04-25 page 41 of 44

PISTON ENGINE ICING (Civil Aviation Authority, 2000)

SUMMARY

- Icing forms stealthily.
- Some aircraft/engine combinations are more susceptible than others.
- Icing may occur in warm humid conditions and is a possibility at any time of the year in the UK.
- Mogas makes carb icing more likely.
- Low power settings, such as in a descent or in the circuit, are more prone to give carb icing.
- Use full carb heat frequently when flying in conditions where carb icing is likely.
 Remember that the RPM gauge is your primary indication for a fixed pitch
- propeller; manifold pressure for variable pitch.
- Treat the carb heat as an ON/OFF control either full hot or full cold.
- It takes time for the heat to work and the engine may run roughly while the ice is clearing.
- Timely use of appropriate procedures can PREVENT THIS PROBLEM.

FINALLY:

In the event of carb heat system failure in flight:

- Keep out of icing conditions.
- Maintain high throttle setting full throttle if possible.
- Weaken the mixture slightly.
- Land as soon as reasonably possible.

PREVENTION IS BETTER THAN CURE

5 PILOT PROCEDURES

a Maintenance

Periodically check the carb heating system and controls for proper condition and operation. Pay particular attention to the condition of seals which may have deteriorated allowing the hot air to become diluted by cold air.

b Start Up

Start up with the carb heat control in the **COLD** position.

c Taxying

Generally, the use of carb heat is not recommended while taxying because the air is usually unfiltered when in the **HOT** position. However, if it is necessary – USE IT.

d Ground Run-Up

Check that there is a **significant** power decrease when hot air is selected (typically 75–100 rpm or 3–5" of manifold pressure) and that power is regained when cold air is reselected.

If it is suspected that ice is present, the hot position should be selected until the ice has cleared and normal power is restored.

e Immediately Prior to Take-Off
Since icing can occur when taxying
with low power settings, or when the
engine is idling, select carb heat ON
for 5 seconds and then OFF,
immediately before take off to clear
any build-up. If the aircraft is kept
waiting at the holding point in
conditions of high humidity, it may
be necessary to carry out the run-up
drill more than once to clear ice
which may have formed.

f Take-Off

Take-off should **only** be commenced when you are sure the engine is developing full power. When at full power and as airspeed is building, you must check that the full throttle rpm and/or manifold pressure is as expected. **Carburettor heat must NOT be used during take-off** unless specifically authorized in the Flight Manual or Pilots Operating Handbook.

q Climb

Be alert for symptoms of carb icing, especially when visible moisture is present or if conditions are in the high probability ranges in the chart.

h Cruise

Monitor appropriate engine instruments for any changes which could indicate icing. Make a carb heat check at least every 10 minutes, (more frequently if conditions are conducive to icing). Use full heat and note the warning of para 4 (e), it may take up to 15 seconds to clear the ice and the engine will continue to run roughly as the ice melts and passes through the engine. If the icing is so severe that the engine has died, keep the hot air selected as residual heat in the rapidly cooling exhaust **may** be effective. In all cases, it is vital to select carb heat before any selector valves or linkages are frozen solid by an accumulation of ice around them. Avoid clouds as much as possible, note; that few piston engined aircraft are cleared for flight in icing conditions.

i Descent and Approach Carb icing is much more likely at reduced power, so select hot air before, rather than after, power is

reduced for the descent, and especially for a practice forced landing or a helicopter autorotation, ie, before the exhaust starts to cool. (This also allows a check that no ice is present and that the carb heat is still working.) Maintain FULL heat during long periods of flight with reduced power settings. At intervals of about 500 ft or more frequently if conditions require, increase power to cruise setting to warm the engine and to provide sufficient heat to melt any ice.

j Downwind

Ensure that the downwind check includes the following check:

- Note the RPM/Manifold Pressure
- Apply Full Carb heat for about 15 seconds and note the reduced indication.
- Return Carb heat to Cold. The RPM/Manifold Pressure will return to the earlier indication if there

was no icing. If it is higher – icing was present.

k Base Leg and Final Approach
Unless otherwise stated in the Pilot's
Operating Handbook or
Flight Manual, the HOT position
should be selected on base leg when
power is reduced. On some engine
installations, to ensure better engine
response and to permit a go-around
to be initiated without delay, it is
recommended that the carb heat be
returned to COLD at about 200/300 ft
on finals.

I Go-around or Touch and Go Ensure the carb heat is COLD, ideally before, or simultaneously as power is applied for a go-around.

m After Landing
Return to the COLD setting before taxying, if not already set COLD, (para k).

page 44 of 44

www.dmi.dk/dmi/tr04-25