Evidencia de aprendizaje 3 – Implementación del Data Mart

Jhon Jader Benítez ValderramaEstudiante

Víctor Hugo Mercado Docente

Curso:

Bases de Datos II

Grupo: PREICA2501B010095

Institución Universitaria Digital de Antioquia

Fecha: 28/03/2025

Medellín – Antioquia

1.Introducción

En este documento se presenta la implementación final del Data Mart para la base de datos Jardinería. A partir del modelo estrella diseñado previamente y la base de datos Staging creada en la Evidencia de Aprendizaje 2, se construye el Data Mart con el objetivo de facilitar la consulta y análisis de datos de ventas.

La correcta implementación del Data Mart permitirá optimizar la toma de decisiones empresariales mediante la consolidación de datos limpios y estructurados para la inteligencia de negocios.

2,Objetivos

- Implementar el Data Mart basado en el modelo estrella diseñado previamente.
- Poblar las tablas del Data Mart con datos extraídos y transformados desde la base Staging.
- Validar la correcta carga y estructura del Data Mart mediante consultas SQL.
- Generar respaldos de la base de datos implementada.

3. Planteamiento del Problema

A pesar de la consolidación de datos en la base Staging, aún se requiere un modelo optimizado para análisis, con consultas eficientes y estructuración adecuada para reportes gerenciales. La solución es la implementación de un Data Mart basado en un esquema estrella que centralice la información relevante.

4. Implementación del Data Mart

4.1. Creación de la Base de Datos DataMart_Jardineria

La base de datos **DataMart_Jardineria** contendrá una tabla de hechos y sus respectivas dimensiones:

4.2. Estructura del Data Mart

Tabla de Hechos: Hechos_Ventas

Campo	Tipo de Dato	Descripción
id_venta	INT (PK)	Identificador único de la venta
id_producto	INT (FK)	Producto vendido
id_categoria	INT (FK)	Categoría del producto
id_tiempo	INT (FK)	Fecha de la venta
cantidad_vendida	a INT	Cantidad de productos vendidos
precio_unidad	DECIMAL(15,2)) Precio por unidad
total_venta	DECIMAL(15,2)) Monto total de la venta

Tabla Dim_Producto

Campo	Tipo de Dato
id_producto	INT (PK)
nombre_producto	VARCHAR
codigo_producto	VARCHAR
precio_venta	DECIMAL

Tabla Dim_Categoria

CampoTipo de Datoid_categoriaINT (PK)desc_categoriaVARCHAR

Tabla Dim_Tiempo

Campo Tipo de Dato

id_tiempo INT (PK)

fecha DATE

año INT

Campo Tipo de Dato

mes VARCHAR

trimestre VARCHAR

5. Población de Datos

Para poblar las tablas del Data Mart, se extraen datos desde la base Staging mediante consultas SQL de transformación y carga.

5.1. Carga de la tabla de hechos

INSERT INTO Hechos_Ventas (id_venta, id_producto, id_categoria, id_tiempo, cantidad_vendida, precio_unidad, total_venta)

SELECT dp.codigo_pedido, dp.codigo_producto, p.id_categoria, t.id_tiempo, dp.cantidad, dp.precio_unidad, (dp.cantidad * dp.precio_unidad)

FROM Stg DetallePedido dp

JOIN Stg_Producto p ON dp.codigo_producto = p.codigo_producto

JOIN Dim Tiempo t ON dp.codigo pedido = t.id tiempo;

5.2. Carga de dimensiones

Carga de productos:

INSERT INTO Dim_Producto (id_producto, nombre_producto, codigo_producto, precio_venta)

SELECT DISTINCT codigo_producto, nombre_producto, codigo_producto, precio_venta FROM Stg_Producto;

Carga de categorías:

INSERT INTO Dim_Categoria (id_categoria, desc_categoria) SELECT DISTINCT id_categoria, desc_categoria FROM Stg Producto;

Carga de tiempo:

INSERT INTO Dim_Tiempo (id_tiempo, fecha, año, mes, trimestre) SELECT DISTINCT codigo_pedido, fecha_pedido, YEAR(fecha_pedido), MONTHNAME(fecha_pedido),

CASE

WHEN MONTH(fecha_pedido) IN (1, 2, 3) THEN 'Q1' WHEN MONTH(fecha_pedido) IN (4, 5, 6) THEN 'Q2' WHEN MONTH(fecha_pedido) IN (7, 8, 9) THEN 'Q3' ELSE 'Q4'

END FROM Stg_Pedido;

6. Validación de Datos

Para garantizar la correcta carga de datos, se ejecutan consultas de verificación:

```
SELECT COUNT(*) FROM Hechos_Ventas;
SELECT COUNT(*) FROM Dim_Producto;
SELECT COUNT(*) FROM Dim_Categoria;
SELECT COUNT(*) FROM Dim_Tiempo;
```

7. Generación de Respaldos

Se generan dos respaldos en formato .sql desde MySQL Workbench o phpMyAdmin:

- backup_staging.sql (Base de datos Staging)
- backup_datamart.sql (Base de datos Data Mart)

8. Conclusiones

- Se implementó correctamente un Data Mart basado en el modelo estrella diseñado en entregas anteriores.
- Se poblaron las tablas con datos transformados desde Staging.
- La estructura optimizada facilita el análisis eficiente de ventas y categorías.
- La validación de los datos garantiza su integridad y calidad.

9. Anexos

- Scripts SQL con creación y carga de datos.
- Backups de bases de datos.
- Capturas de pantalla de validación.

10. Bibliografía

Kimball, R. (2002). The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. Wiley.

MySQL Documentation. https://dev.mysql.com/doc/

American Psychological Association. (2020). Manual de publicaciones APA, 7^a edición.