

# 30 MHz to 6 GHz RF/IF Gain Block

Data Sheet ADL5611

#### **FEATURES**

Fixed gain of 22.2 dB
Broad operation from 30 MHz to 6 GHz
High dynamic range gain block
Input and output internally matched to 50 Ω
Integrated bias circuit
OIP3 of 40.0 dBm at 900 MHz
P1dB of 21.0 dBm at 900 MHz
Noise figure of 2.1 dB at 900 MHz
Single 5 V power supply
Low quiescent current of 94 mA
Wide operating temperature range of -40°C to +105°C
Thermally efficient SOT-89 package
ESD rating of ±1.5 kV (Class 1C)

#### **GENERAL DESCRIPTION**

The ADL5611 is a single-ended RF/IF gain block amplifier that provides broadband operation from 30 MHz to 6 GHz. The ADL5611 provides a low noise figure of 2.1 dB with a very high OIP3 of 40.0 dBm simultaneously, which delivers a high dynamic range.

The ADL5611 provides a gain of 22.2 dB that is stable over frequency, temperature, and power supply, and from device to device. The amplifier is offered in the industry-standard SOT-89 package and is internally matched to 50  $\Omega$  at the input and output, making the ADL5611 easy to implement in a wide variety of applications.

#### **FUNCTIONAL BLOCK DIAGRAM**



Figure 1.

The only external parts required are the input and output ac coupling capacitors, power supply decoupling capacitors, and bias inductor.

The ADL5611 has a high ESD rating of  $\pm 1.5$  kV (Class 1C) and is fully specified for operation across a wide temperature range of  $-40^{\circ}$ C to  $+105^{\circ}$ C.

A fully populated RoHS compliant evaluation board is available.

### ADL5611\* PRODUCT PAGE QUICK LINKS

Last Content Update: 11/28/2017

### COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

### **EVALUATION KITS**

· ADL5611 Evaluation Board

### **DOCUMENTATION**

#### **Application Notes**

 AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers

#### **Data Sheet**

• ADL5611: 30 MHz to 6 GHz RF/IF Gain Block Data Sheet

### TOOLS AND SIMULATIONS 🖵

- · ADI RF Amplifier Library for Agilent ADS
- · ADL5611 S-Parameters

### REFERENCE MATERIALS 🖵

#### **Product Selection Guide**

- RF Source Booklet
- RF, Microwave, and Millimeter Wave IC Selection Guide 2017

### **DESIGN RESOURCES**

- · ADL5611 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

### **DISCUSSIONS**

View all ADL5611 EngineerZone Discussions.

### SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

### **TECHNICAL SUPPORT**

Submit a technical question or find your regional support number.

### DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

### **TABLE OF CONTENTS**

| Features 1                                   |
|----------------------------------------------|
| Functional Block Diagram1                    |
| General Description1                         |
| Revision History2                            |
| Specifications3                              |
| Typical Scattering Parameters (S-Parameters) |
| Absolute Maximum Ratings7                    |
| Thermal Resistance                           |
| ESD Caution                                  |
| Pin Configuration and Function Descriptions8 |
| Typical Performance Characteristics9         |
| 500 MHz to 6 GHz Frequency Band9             |
| REVISION HISTORY                             |
| 12/15—Rev. A to Rev. B                       |
| Updated Outline Dimensions16                 |
| 9/13—Rev. 0 to Rev. A                        |
| Added Figure 19; Renumbered Sequentially11   |
| Changes to Figure 2914                       |
| Updated Outline Dimensions 16                |

| 30 MHz to 500 MHz Frequency Band               | 10        |
|------------------------------------------------|-----------|
| General                                        | 11        |
| Applications Information                       | 13        |
| Basic Connections                              | 13        |
| Soldering Information and Recommended PCB Land | d Pattern |
|                                                | 14        |
| W-CDMA ACPR Performance                        | 14        |
| Evaluation Board                               | 15        |
| Outline Dimensions                             | 16        |
| Ordering Guide                                 | 16        |

### **SPECIFICATIONS**

 $V_{\text{POS}}$  = 5 V and  $T_{\text{A}}$  = 25°C, unless otherwise noted.

Table 1.

| Parameter                            | Test Conditions/Comments                                        | Min  | Тур   | Max  | Unit |
|--------------------------------------|-----------------------------------------------------------------|------|-------|------|------|
| OVERALL FUNCTION                     |                                                                 |      |       |      |      |
| Frequency Range                      |                                                                 | 30   |       | 6000 | MHz  |
| FREQUENCY = 30 MHz                   |                                                                 |      |       |      |      |
| Gain                                 |                                                                 |      | 21.8  |      | dB   |
| Output 1 dB Compression Point (P1dB) |                                                                 |      | 16.0  |      | dBm  |
| Output Third-Order Intercept (OIP3)  | $\Delta f = 1$ MHz, output power ( $P_{OUT}$ ) = 0 dBm per tone |      | 27.6  |      | dBm  |
| Noise Figure <sup>1</sup>            |                                                                 |      | 3.9   |      | dB   |
| FREQUENCY = 140 MHz                  |                                                                 |      |       |      |      |
| Gain                                 |                                                                 |      | 18.9  |      | dB   |
| vs. Frequency                        | ±10 MHz                                                         |      | ±0.42 |      | dB   |
| vs. Temperature                      | $-40$ °C $\leq T_A \leq +105$ °C                                |      | ±0.45 |      | dB   |
| vs. Supply                           | 4.75 V to 5.25 V                                                |      | ±0.09 |      | dB   |
| Output 1 dB Compression Point        |                                                                 |      | 16.3  |      | dBm  |
| Output Third-Order Intercept         | $\Delta f = 1 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$    |      | 27.2  |      | dBm  |
| Noise Figure <sup>1</sup>            | ·                                                               |      | 3.3   |      | dB   |
| FREQUENCY = 350 MHz                  |                                                                 |      |       |      |      |
| Gain                                 |                                                                 |      | 22.0  |      | dB   |
| vs. Frequency                        | ±10 MHz                                                         |      | ±0.04 |      | dB   |
| vs. Temperature                      | $-40$ °C $\leq T_A \leq +105$ °C                                |      | ±0.28 |      | dB   |
| vs. Supply                           | 4.75 V to 5.25 V                                                |      | ±0.06 |      | dB   |
| Output 1 dB Compression Point        |                                                                 |      | 20.9  |      | dBm  |
| Output Third-Order Intercept         | $\Delta f = 1 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$    |      | 34.0  |      | dBm  |
| Noise Figure <sup>1</sup>            | ·                                                               |      | 2.4   |      | dB   |
| FREQUENCY = 700 MHz                  |                                                                 |      |       |      |      |
| Gain                                 |                                                                 |      | 22.2  |      | dB   |
| vs. Frequency                        | ±50 MHz                                                         |      | ±0.02 |      | dB   |
| vs. Temperature                      | $-40$ °C $\leq$ T <sub>A</sub> $\leq$ $+105$ °C                 |      | ±0.26 |      | dB   |
| vs. Supply                           | 4.75 V to 5.25 V                                                |      | ±0.08 |      | dB   |
| Output 1 dB Compression Point        |                                                                 |      | 21.0  |      | dBm  |
| Output Third-Order Intercept         | $\Delta f = 1 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$    |      | 39.6  |      | dBm  |
| Noise Figure <sup>1</sup>            | ·                                                               |      | 2.1   |      | dB   |
| FREQUENCY = 900 MHz                  |                                                                 |      |       |      |      |
| Gain                                 |                                                                 | 21.2 | 22.2  | 23.2 | dB   |
| vs. Frequency                        | ±50 MHz                                                         |      | ±0.02 |      | dB   |
| vs. Temperature                      | $-40$ °C $\leq$ T <sub>A</sub> $\leq$ $+105$ °C                 |      | ±0.25 |      | dB   |
| vs. Supply                           | 4.75 V to 5.25 V                                                |      | ±0.10 |      | dB   |
| Output 1 dB Compression Point        |                                                                 |      | 21.0  |      | dBm  |
| Output Third-Order Intercept         | $\Delta f = 1 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$    |      | 40.0  |      | dBm  |
| Noise Figure <sup>1</sup>            | · ·                                                             |      | 2.1   |      | dB   |
| FREQUENCY = 1900 MHz                 |                                                                 |      |       |      |      |
| Gain                                 |                                                                 | 20.4 | 21.4  | 22.4 | dB   |
| vs. Frequency                        | ±50 MHz                                                         |      | ±0.07 |      | dB   |
| vs. Temperature                      | $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$        |      | ±0.34 |      | dB   |
| vs. Supply                           | 4.75 V to 5.25 V                                                |      | ±0.20 |      | dB   |
| Output 1 dB Compression Point        |                                                                 |      | 20.6  |      | dBm  |
| Output Third-Order Intercept         | $\Delta f = 1 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$    |      | 37.0  |      | dBm  |
| Noise Figure <sup>1</sup>            |                                                                 |      | 2.4   |      | dB   |

| Parameter                     | Test Conditions/Comments                                        | Min Typ Max | Unit |
|-------------------------------|-----------------------------------------------------------------|-------------|------|
| FREQUENCY = 2140 MHz          |                                                                 |             |      |
| Gain                          | Gain                                                            |             |      |
| vs. Frequency                 | ±50 MHz                                                         | ±0.05       | dB   |
| vs. Temperature               | $-40$ °C $\leq T_A \leq +105$ °C                                | ±0.38       | dB   |
| vs. Supply                    | 4.75 V to 5.25 V                                                | ±0.23       | dB   |
| Output 1 dB Compression Point |                                                                 | 20.6        | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone                  | 35.8        | dBm  |
| Noise Figure <sup>1</sup>     |                                                                 | 2.6         | dB   |
| FREQUENCY = 2600 MHz          |                                                                 |             |      |
| Gain                          |                                                                 | 20.7        | dB   |
| vs. Frequency                 | ±50 MHz                                                         | ±0.06       | dB   |
| vs. Temperature               | $-40^{\circ}$ C $\leq$ T <sub>A</sub> $\leq$ $+105^{\circ}$ C   | ±0.55       | dB   |
| vs. Supply                    | 4.75 V to 5.25 V                                                | ±0.25       | dB   |
| Output 1 dB Compression Point |                                                                 | 19.4        | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone                  | 32.3        | dBm  |
| Noise Figure <sup>1</sup>     | ·                                                               | 2.8         | dB   |
| FREQUENCY = 3500 MHz          |                                                                 |             |      |
| Gain                          |                                                                 | 20.3        | dB   |
| vs. Frequency                 | ±50 MHz                                                         | ±0.03       | dB   |
| vs. Temperature               | $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$ | ±1.05       | dB   |
| vs. Supply                    | 4.75 V to 5.25 V                                                | ±0.26       | dB   |
| Output 1 dB Compression Point |                                                                 | 17.4        | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone                  | 28.6        | dBm  |
| Noise Figure <sup>1</sup>     |                                                                 | 3.1         | dB   |
| FREQUENCY = 4000 MHz          |                                                                 |             | 45   |
| Gain                          |                                                                 | 20.0        | dB   |
| vs. Frequency                 | ±50 MHz                                                         | ±0.13       | dB   |
| vs. Temperature               | $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$        | ±1.55       | dB   |
| vs. Supply                    | 4.75 V to 5.25 V                                                | ±0.27       | dB   |
| Output 1 dB Compression Point | 4.75 V to 5.25 V                                                | 16.2        | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone                  | 27.4        | dBm  |
| Noise Figure <sup>1</sup>     | Zi = 1 Mi12, 1 001 = 0 dbitt per totic                          | 3.2         | dB   |
| FREQUENCY = 5000 MHz          |                                                                 | 3.2         | ub   |
| Gain                          |                                                                 | 16.3        | dB   |
|                               | ±50 MHz                                                         | ±0.16       | dB   |
| vs. Frequency                 |                                                                 |             |      |
| vs. Temperature               | $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$        | ±1.49       | dB   |
| vs. Supply                    | 4.75 V to 5.25 V                                                | ±0.28       | dB   |
| Output Third Order Intercent  | Af _ 1 MU = D                                                   | 16.0        | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, $P_{OUT} = 0$ dBm per tone                  | 27.0        | dBm  |
| Noise Figure <sup>1</sup>     |                                                                 | 4.4         | dB   |
| FREQUENCY = 5800 MHz          |                                                                 | 112         | 15   |
| Gain                          | . 50 MH-                                                        | 14.3        | dB   |
| vs. Frequency                 | ±50 MHz                                                         | ±0.11       | dB   |
| vs. Temperature               | $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$        | ±1.67       | dB   |
| vs. Supply                    | 4.75 V to 5.25 V                                                | ±0.23       | dB   |
| Output 1 dB Compression Point |                                                                 | 12.8        | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$    | 23.0        | dBm  |
| Noise Figure <sup>1</sup>     |                                                                 | 6.0         | dB   |

| Parameter         | Test Conditions/Comments                                 | Mir | т Тур | Max  | Unit |
|-------------------|----------------------------------------------------------|-----|-------|------|------|
| POWER INTERFACE   |                                                          |     |       |      |      |
| Supply Voltage    | V <sub>POS</sub>                                         | 4.7 | 5 5   | 5.25 | V    |
| Supply Current    |                                                          |     | 94    | 124  | mA   |
| vs. Temperature   | $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$ |     | -7/+1 | 4    | mA   |
| Power Dissipation | $V_{POS} = 5 V$                                          |     | 470   |      | mW   |

<sup>&</sup>lt;sup>1</sup> Noise figure specified includes printed circuit board (PCB) traces losses.

### **TYPICAL SCATTERING PARAMETERS (S-PARAMETERS)**

 $V_{POS} = 5 \text{ V}$  and  $T_A = 25 ^{\circ}\text{C}$ .

Table 2.

| Frequency | S11            |           | S21            | S21       |                | S12       |                | S22       |  |
|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|--|
| (MHz)     | Magnitude (dB) | Angle (°) |  |
| 30        | -19.413        | -26.158   | +21.776        | +172.769  | -27.133        | +0.556    | -11.297        | -165.214  |  |
| 50        | -13.165        | +18.866   | +20.450        | +161.606  | -28.149        | -13.136   | -7.839         | -163.448  |  |
| 100       | -7.702         | -16.728   | +17.424        | +169.845  | -31.453        | -6.433    | -5.303         | -189.380  |  |
| 200       | -10.283        | -70.711   | +20.615        | +170.893  | -28.530        | -3.592    | -7.558         | -220.163  |  |
| 300       | -13.623        | -97.401   | +21.750        | +153.718  | -27.648        | -17.328   | -9.628         | -229.758  |  |
| 400       | -16.531        | -116.624  | +22.133        | +137.323  | -27.393        | -29.469   | -10.723        | -234.863  |  |
| 500       | -13.489        | -133.038  | +21.878        | -227.398  | -27.654        | -30.240   | -9.139         | -242.984  |  |
| 600       | -15.012        | -155.101  | +22.109        | -242.602  | -27.407        | -41.040   | -9.456         | -252.814  |  |
| 700       | -16.953        | -173.278  | +22.166        | -258.309  | -27.340        | -52.626   | -9.852         | -259.624  |  |
| 800       | -18.750        | -191.016  | +22.175        | -273.359  | -27.310        | -63.591   | -10.087        | -266.406  |  |
| 900       | -20.402        | -209.005  | +22.157        | -287.987  | -27.272        | -74.251   | -10.220        | -273.138  |  |
| 1000      | -22.020        | -226.338  | +22.123        | -302.271  | -27.262        | -84.772   | -10.281        | -280.106  |  |
| 1100      | -23.568        | -243.133  | +22.077        | -316.366  | -27.273        | -94.790   | -10.316        | -286.874  |  |
| 1200      | -25.331        | -258.964  | +22.018        | -330.209  | -27.269        | -104.782  | -10.341        | -293.925  |  |
| 1300      | -27.267        | -272.170  | +21.957        | -343.987  | -27.264        | -114.842  | -10.329        | -300.962  |  |
| 1400      | -29.729        | -280.677  | +21.882        | -357.634  | -27.273        | -124.700  | -10.350        | -308.089  |  |
| 1500      | -33.265        | -281.069  | +21.812        | -371.163  | -27.273        | -134.354  | -10.363        | -314.919  |  |
| 1600      | -35.854        | -260.621  | +21.737        | -384.666  | -27.266        | -144.166  | -10.357        | -321.662  |  |
| 1700      | -34.321        | -226.683  | +21.648        | -398.040  | -27.267        | -154.033  | -10.400        | -328.324  |  |
| 1800      | -29.745        | -218.694  | +21.569        | -411.423  | -27.245        | -163.652  | -10.392        | -334.645  |  |
| 1900      | -26.887        | -221.152  | +21.438        | -424.771  | -27.233        | -173.766  | -10.531        | -341.717  |  |
| 2000      | -24.113        | -228.131  | +21.331        | -438.049  | -27.225        | -183.324  | -10.566        | -347.988  |  |
| 2100      | -21.301        | -235.040  | +21.256        | -451.001  | -27.272        | -193.034  | -10.674        | -352.991  |  |
| 2200      | -19.164        | -245.484  | +21.164        | -464.099  | -27.274        | -202.461  | -10.724        | -358.726  |  |
| 2300      | -17.568        | -257.372  | +21.078        | -477.290  | -27.248        | -212.036  | -10.708        | -364.342  |  |
| 2400      | -16.338        | -268.596  | +20.965        | -490.408  | -27.207        | -221.732  | -10.706        | -370.531  |  |
| 2500      | -15.187        | -279.362  | +20.863        | -503.418  | -27.219        | -231.237  | -10.737        | -376.605  |  |
| 2600      | -14.370        | -290.528  | +20.734        | -516.421  | -27.195        | -240.889  | -10.755        | -383.283  |  |
| 2700      | -13.733        | -301.461  | +20.606        | -529.269  | -27.127        | -250.483  | -10.775        | -390.170  |  |
| 2800      | -13.062        | -311.936  | +20.519        | -541.969  | -27.084        | -259.695  | -10.809        | -397.037  |  |
| 2900      | -12.653        | -322.355  | +20.435        | -554.516  | -26.970        | -269.348  | -10.888        | -404.594  |  |
| 3000      | -12.418        | -332.177  | +20.380        | -567.048  | -26.772        | -279.469  | -11.086        | -412.962  |  |
| 3100      | -12.019        | -342.619  | +20.411        | -579.843  | -26.724        | -289.424  | -11.163        | -420.818  |  |
| 3200      | -11.809        | -354.255  | +20.422        | -592.914  | -26.607        | -299.778  | -11.348        | -430.470  |  |
| 3300      | -11.972        | -366.792  | +20.411        | -606.400  | -26.511        | -309.746  | -11.533        | -440.976  |  |
| 3400      | -12.388        | -377.671  | +20.419        | -619.528  | -26.359        | -320.482  | -12.017        | -452.391  |  |
| 3500      | -12.849        | -390.154  | +20.412        | -633.251  | -26.200        | -331.064  | -12.489        | -465.304  |  |

| Frequency | S11            | S11 S21   |                |           | S12            |           | S22            |           |
|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|
| (MHz)     | Magnitude (dB) | Angle (°) |
| 3600      | -13.681        | -403.841  | +20.385        | -647.042  | -26.068        | -341.857  | -13.141        | -480.219  |
| 3700      | -14.819        | -418.280  | +20.334        | -661.029  | -25.962        | -352.974  | -13.812        | -497.201  |
| 3800      | -16.480        | -433.535  | +20.321        | -675.145  | -25.829        | -364.326  | -14.683        | -517.273  |
| 3900      | -18.415        | -450.193  | +20.283        | -689.975  | -25.641        | -375.829  | -15.473        | -540.432  |
| 4000      | -20.901        | -481.302  | +20.107        | -704.970  | -25.735        | -388.338  | -15.539        | -563.571  |
| 4100      | -22.899        | -530.706  | +19.930        | -719.959  | -25.751        | -400.117  | -15.329        | -589.891  |
| 4200      | -20.175        | -574.613  | +19.528        | -735.700  | -25.987        | -412.869  | -14.226        | -611.397  |
| 4300      | -16.107        | -607.497  | +18.987        | -750.647  | -26.349        | -424.046  | -12.606        | -631.788  |
| 4400      | -12.487        | -632.642  | +18.248        | -764.216  | -26.734        | -433.978  | -10.710        | -651.154  |
| 4500      | -9.908         | -655.826  | +17.627        | -775.099  | -26.846        | -442.104  | -9.069         | -671.887  |
| 4600      | -8.294         | -676.352  | +17.415        | -785.594  | -26.704        | -451.707  | -7.925         | -691.567  |
| 4700      | -7.462         | -692.336  | +17.300        | -797.596  | -26.413        | -463.172  | -7.360         | -709.087  |
| 4800      | -6.742         | -707.212  | +17.180        | -810.719  | -26.495        | -473.259  | -6.944         | -725.426  |
| 4900      | -6.341         | -719.044  | +16.938        | -823.703  | -26.376        | -485.497  | -6.709         | -738.970  |
| 5000      | -5.850         | -730.317  | +16.723        | -836.856  | -26.732        | -496.442  | -6.431         | -752.403  |
| 5100      | -5.683         | -740.078  | +16.407        | -849.613  | -26.564        | -506.443  | -6.520         | -764.449  |
| 5200      | -5.393         | -749.333  | +16.142        | -862.399  | -26.637        | -518.454  | -6.474         | -775.847  |
| 5300      | -5.255         | -757.862  | +15.797        | -874.886  | -26.764        | -527.731  | -6.577         | -787.719  |
| 5400      | -4.941         | -766.095  | +15.601        | -886.816  | -26.723        | -538.802  | -6.816         | -798.987  |
| 5500      | -4.762         | -775.169  | +15.423        | -899.572  | -26.813        | -550.352  | -7.136         | -810.139  |
| 5600      | -4.751         | -783.296  | +15.212        | -912.138  | -26.836        | -560.482  | -7.707         | -821.411  |
| 5700      | -4.718         | -791.495  | +15.016        | -925.031  | -26.865        | -570.790  | -8.420         | -832.448  |
| 5800      | -4.803         | -798.324  | +14.811        | -937.622  | -26.711        | -581.237  | -9.417         | -843.000  |
| 5900      | -4.815         | -805.589  | +14.640        | -950.405  | -26.625        | -592.240  | -10.700        | -853.572  |
| 6000      | -4.846         | -812.180  | +14.474        | -963.642  | -26.496        | -603.172  | -12.335        | -863.102  |

### **ABSOLUTE MAXIMUM RATINGS**

Table 3.

| Parameter                                                      | Rating          |
|----------------------------------------------------------------|-----------------|
| Supply Voltage, V <sub>POS</sub>                               | 6.5 V           |
| Input Power (50 $\Omega$ Impedance)                            | 20 dBm          |
| Internal Power Dissipation (Pad Soldered to Ground)            | 800 mW          |
| ESD Human Body Model (HBM) Rating (ESDA/<br>JEDEC JS-001-2011) | ±1.5 kV         |
| Maximum Junction Temperature                                   | 150°C           |
| Operating Temperature Range                                    | -40°C to +105°C |
| Storage Temperature Range                                      | −65°C to +150°C |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

#### THERMAL RESISTANCE

Table 4 lists the junction-to-air thermal resistance ( $\theta_{JA}$ ) and the junction-to-case thermal resistance ( $\theta_{JC}$ ) for the ADL5611.

**Table 4. Thermal Resistance** 

| Package Type         | $\theta_{JA}^1$ | <b>θ</b> JC <sup>2</sup> | Unit |
|----------------------|-----------------|--------------------------|------|
| 3-Lead SOT-89 (RK-3) | 52              | 9                        | °C/W |

<sup>&</sup>lt;sup>1</sup> Measured on the ADL5611 evaluation board. For more information about board layout, see the Soldering Information and Recommended PCB Land Pattern section.

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

<sup>&</sup>lt;sup>2</sup> Based on simulation with a standard JEDEC board per JESD51.

### PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

**Table 5. Pin Function Descriptions** 

| Pin No. | Mnemonic | Description                                                                                                                                                                                      |  |  |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1       | RFIN     | RF Input. This pin requires a dc blocking capacitor.                                                                                                                                             |  |  |
| 2       | GND      | Ground. Connect this pin to a low impedance ground plane.                                                                                                                                        |  |  |
| 3       | RFOUT    | RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to the external power supply. The RF path requires a dc blocking capacitor.                  |  |  |
|         | EPAD     | Exposed Pad. The exposed pad encompasses Pin 2 and the tab at the top side of the package. Solder the exposed pad to a low impedance ground plane for electrical grounding and thermal transfer. |  |  |

### TYPICAL PERFORMANCE CHARACTERISTICS

### **500 MHz TO 6 GHz FREQUENCY BAND**



Figure 3. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency



Figure 4. Gain vs. Frequency and Temperature



 $\textit{Figure 5. OIP3} \ \textit{and P1dB vs. Frequency and Temperature}$ 



Figure 6. OIP3 vs. Output Power (Pout) and Frequency



Figure 7. Output Return Loss (S22), Input Return Loss (S11), and Reverse Isolation (S12) vs. Frequency



Figure 8. Noise Figure vs. Frequency and Temperature

#### 30 MHz TO 500 MHz FREQUENCY BAND



Figure 9. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency, Low Frequency Configuration



Figure 10. Gain vs. Frequency and Temperature, Low Frequency Configuration



Figure 11. OIP3 and P1dB vs. Frequency and Temperature, Low Frequency Configuration



Figure 12. OIP3 vs. Output Power (P<sub>OUT</sub>) and Frequency, Low Frequency Configuration



Figure 13. Output Return Loss (S22), Input Return Loss (S11), and Reverse Isolation (S12) vs. Frequency, Low Frequency Configuration



Figure 14. Noise Figure vs. Frequency and Temperature, Low Frequency Configuration

#### **GENERAL**



Figure 15. Supply Current vs. Temperature



Figure 16. Gain Distribution at 900 MHz



Figure 17. Gain Distribution at 1900 MHz



Figure 18. Supply Current vs. Pout at 900 MHz



Figure 19. Supply Current vs.  $P_{OUT}$  for Various Temperatures,  $V_{CC} = 5 V$  at 900 MHz



Figure 20. Gain Distribution at 2600 MHz



Figure 21. Gain Distribution at 4000 MHz



Figure 22. P1dB Distribution at 900 MHz



Figure 23. OIP3 Distribution at 900 MHz,  $P_{OUT} = 0$  dBm per Tone



Figure 24. Noise Figure Distribution at 900 MHz



Figure 25. Single-Tone Harmonics vs. Frequency,  $P_{OUT} = 0 dBm$ 

## APPLICATIONS INFORMATION BASIC CONNECTIONS

Figure 26 shows the basic connections for operating the ADL5611. The device supports operation from 30 MHz to 6 GHz. However, for optimal performance at lower frequency bands, the board configuration must be adjusted. Table 6 lists the recommended board configuration to operate the device at various frequency bands.



Figure 26. Basic Connections

A 5 V dc bias is supplied to the amplifier through the bias inductor connected to RFOUT (Pin 3). Decouple the bias voltage using 68 pF, 1.2 nF, and 1  $\mu$ F power supply decoupling capacitors. The typical current consumption for the ADL5611 is 94 mA.

At low frequencies, the device exhibits improved performance with the suggested setup configuration listed in Table 6. Figure 27 and Figure 28 provide a comparison of the performance of the device at the 30 MHz to 500 MHz band when driven with the optimal setup configuration and the default setup configuration.



Figure 27. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency, 30 MHz to 500 MHz, Comparison of Performance with the Optimized Settings and the Default Configuration



Figure 28. Output Return Loss (S22), Input Return Loss (S11), and Reverse Isolation (S12), 30 MHz to 500 MHz, Comparison of Performance with the Optimized Settings and the Default Configuration

**Table 6. Recommended Components for Basic Connections** 

|                   | AC Coupling Ca | pacitors (0402) | DC Bias Inductor (0603HP) |
|-------------------|----------------|-----------------|---------------------------|
| Frequency Band    | C1 (nF)        | C2 (nF)         | L1 (nH)                   |
| 500 MHz to 6 GHz  | 100            | 100             | 43                        |
| 30 MHz to 500 MHz | 100            | 100             | 1000                      |

### SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN

Figure 29 shows the recommended land pattern for the ADL5611. To minimize thermal impedance, the exposed pad on the underside of the SOT-89 package is soldered to a ground plane, along with Pin 2. If multiple ground layers exist, stitch the layers together using vias.



Figure 29. Recommended Land Pattern

The land pattern on the ADL5611 evaluation board provides a measured thermal resistance ( $\theta_{JA}$ ) of 52°C/W. To measure  $\theta_{JA}$ , the temperature at the top of the SOT-89 package is sensed with an IR temperature gun.

Thermal simulation suggests a junction temperature that is  $10^{\circ}\text{C}$  higher than the top of package temperature. With additional measurements of the ambient temperature and input/output power,  $\theta_{JA}$  can be determined.

#### W-CDMA ACPR PERFORMANCE

Figure 30 shows a plot of the adjacent channel power ratio (ACPR) vs.  $P_{OUT}$  for the ADL5611. The signal type used is a single wideband code division multiple access (W-CDMA) carrier (Test Model 1-64) at 2140 MHz. This signal is generated by a very low ACPR source. ACPR is measured at the output by a high dynamic range spectrum analyzer that incorporates an instrument noise correction function.



Figure 30. ACPR vs. Роит, Single W-CDMA Carrier (Test Model 1-64) at 2140 MHz

The ADL5611 achieves an ACPR of -79 dBc at an output power level of -5 dBm, at which point the device noise and not distortion begins to dominate the power in the adjacent channels. At an output power level of 5 dBm, ACPR is still very low at -62 dBc.

### **EVALUATION BOARD**

Figure 31 shows the ADL5611 evaluation board layout. Figure 32 shows the schematic for the evaluation board. The board is powered by a single 5 V supply. Table 7 lists the components used on the evaluation board. Power can be applied to the board through clip on terminals (VCC and GND).



Figure 31. Evaluation Board Layout (Top)



**Table 7. Evaluation Board Configuration Options** 

| Component   | Description                        | Default Value                                        |
|-------------|------------------------------------|------------------------------------------------------|
| C1, C2      | AC coupling capacitors             | C1, C2 = 100 nF, 0402                                |
| L1          | DC bias inductor                   | L1 = 43 nH, 0603 (Coilcraft 0603HP or equivalent)    |
| R5          | Bias resistor                      | $R5 = 0 \Omega$ , 0402                               |
| VCC and GND | Clip on terminals for power supply | Not applicable                                       |
| C4, C5, C6  | Power supply decoupling capacitors | C4 = 68 pF, 0603; C5 = 1.2 nF, 0603; C6 = 1 μF, 1206 |

### **OUTLINE DIMENSIONS**



Figure 33. 3-Lead Small Outline Transistor Package [SOT-89] (RK-3) Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description                                                | Package Option |
|--------------------|-------------------|--------------------------------------------------------------------|----------------|
| ADL5611ARKZ-R7     | −40°C to +105°C   | 3-Lead Small Outline Transistor Package [SOT-89], 7" Tape and Reel | RK-3           |
| ADL5611-EVALZ      | −40°C to +105°C   | Evaluation Board                                                   |                |

 $<sup>^{1}</sup>$  Z = RoHS Compliant Part.