Data Analysis and Visualization:

Programmer: Souparna Bose

Importing required libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import scipy as sipi
import matplotlib.pyplot as plt

%matplotlib inline
```

Loading dataset into a pandas DataFrame

```
In [2]: df = pd.read_csv('trainingData.csv')
```

Show important information about the dataset

```
df.columns
In [3]:
'old_dependents', 'young_dependents', 'home_ownership', 'type_of_house', 'occupants_count', 'house_area', 'sanitary_availability',
               'water_availabity', 'loan_purpose', 'loan_tenure', 'loan_installments',
               'loan_amount'],
              dtype='object')
In [4]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 40000 entries, 0 to 39999
        Data columns (total 21 columns):
        Ιd
                                40000 non-null int64
        city
                                38136 non-null object
                                40000 non-null int64
        age
                                40000 non-null object
        sex
        social class
                                34745 non-null object
        primary business
                                39974 non-null object
                                34759 non-null object
        secondary business
        annual_income
                                40000 non-null float64
        monthly_expenses
                                39880 non-null float64
        old_dependents
                                40000 non-null int64
        young_dependents
                                40000 non-null int64
        home ownership
                                39621 non-null float64
        type_of_house
                                39306 non-null object
        occupants_count
                                40000 non-null int64
        house_area
                                40000 non-null float64
        sanitary_availability
                                39792 non-null float64
        water_availabity
                                34747 non-null float64
        loan_purpose
                                39974 non-null object
        loan_tenure
                                40000 non-null int64
        loan installments
                                40000 non-null int64
        loan_amount
                                40000 non-null float64
        dtypes: float64(7), int64(7), object(7)
        memory usage: 6.4+ MB
```

```
df.dtypes
In [5]:
                                     int64
Out[5]:
        city
                                    object
                                     int64
        age
                                    object
        sex
        social_class
                                    object
        primary_business
                                    object
        secondary_business
                                    object
        annual_income
                                   float64
        monthly_expenses
                                   float64
        old dependents
                                     int64
        young_dependents
                                     int64
        home ownership
                                   float64
        type of house
                                    object
        occupants_count
                                     int64
        house_area
                                   float64
                                   float64
        sanitary_availability
        water_availabity
                                   float64
        loan_purpose
                                    object
        loan_tenure
                                     int64
        loan_installments
                                     int64
        loan amount
                                   float64
        dtype: object
```

From above, we can see that there are 3 formats of data types:

object: Object format indicates variables are categorical. Categorical variables in the dataset are city, sex, social_class, primary_business, secondary_business, type_of_house, loan_purpose.

int64: This represents integer variables. Integer variables in the dataset are Id, age, old_dependents, young_dependents, occupants_count, loan_tenure, loan_installments.

float64: This represents variables that have some decimal values involved. Float variables in the dataset are annual-income, monthly_expenses, home_ownership, house_area, sanitary_availability, water_availability, loan_amount.

Display all columns in the pandas DataFrame:

6]:	<pre>pd.set_option('display.max_columns',None)</pre>										
	df.head()										
		Id	city	age	sex	social_class	primary_business	secondary_business	annual_income	monthly_	
	0	1	Dhanbad	22	F	Mochi	Tailoring	Others	36000.0		
	1	2	Manjapra	21	F	ОВС	Tailoring	none	94000.0		
	2	3	Dhanbad	24	М	Nai	Beauty salon	Others	48000.0		
	3	4	NaN	26	F	ОВС	Tailoring	none	7000.0		
	4	5	Nuapada	23	F	ОВС	General store	Agriculture	36000.0		
	4									•	
	d-	df.tail()									
			Id	city	age	sex social_o	class primary_busi	iness secondary_busi	iness annual_inc	ome mo	

	ld	city	age	sex	social_class	primary_business	secondary_business	annual_income	mo
39995	39996	Pusad	45	F	Muslim	Buffalo rearing	none	78000.0	
39996	39997	Pusad	35	F	ST	Tailoring	none	48000.0	
39997	39998	Pusad	35	F	Sc	Goat rearing	none	48000.0	
39998	39999	Pusad	28	F	Sc	Goat rearing	none	48000.0	
39999	40000	Pusad	32	F	Sc	Goat rearing	none	72000.0	
4									•

Check co-relation among various variables:

In [9]: df.shape
Out[9]: (40000, 21)

In [10]: df.describe()

Out[11]:

Out[10]: ld $annual_income$ monthly_expenses old_dependents young_depender age 40000.00000 40000.00000 4.000000e+04 39880.000000 40000.000000 40000.000 count 20000.50000 3.764021e+04 3810.875401 0.044900 1.137 mean 55.15990 11547.14972 3830.35566 2.873912e+04 4592.958009 0.222003 1.073 std 1.00000 2.00000 0.000000e+00 2.000000 0.00000 0.000 min 25% 10000.75000 29.00000 1.440000e+04 2500.000000 0.00000 0.000 50% 20000.50000 35.00000 3.600000e+04 3500.000000 0.00000 1.000 5.600000e+04 75% 30000.25000 42.00000 4000.000000 0.00000 2.000 240000.000000 3.000000 7.000 max 40000.00000 766105.00000 1.200000e+06

In [11]: df.corr()

young_de	old_dependents	$monthly_expenses$	annual_income	age	Id	
	0.044053	-0.021413	0.472447	-0.004114	1.000000	Id
	-0.000691	-0.003101	-0.006414	1.000000	-0.004114	age
	0.062216	0.112499	1.000000	-0.006414	0.472447	annual_income
	-0.003522	1.000000	0.112499	-0.003101	-0.021413	monthly_expenses
	1.000000	-0.003522	0.062216	-0.000691	0.044053	old_dependents
	-0.093778	0.028754	0.239864	-0.005837	0.109523	young_dependents
	0.008586	-0.047173	0.011885	0.000937	0.095202	home_ownership

	Id	age	annual_income	monthly_expenses	old_dependents	young_de
occupants_count	0.007440	-0.000031	0.003999	0.001320	-0.000987	
house_area	0.037266	-0.000586	0.033902	-0.008270	0.010852	
sanitary_availability	0.003357	-0.007487	0.241509	0.059819	0.029027	
water_availabity	0.433107	-0.001627	0.280939	0.078061	-0.017931	
loan_tenure	-0.062596	-0.000233	-0.027618	-0.013020	-0.022390	
loan_installments	-0.225166	-0.003040	-0.119936	0.113914	-0.033921	
loan_amount	0.141249	-0.001969	0.085632	0.019569	0.006997	
4						>

Checking for missing data

```
df.isnull().sum()
In [12]:
                                       0
Out[12]:
          city
                                    1864
          age
          sex
          social_class
                                    5255
          primary_business
                                      26
          secondary business
                                    5241
          annual_income
                                       0
          monthly_expenses
                                     120
          old_dependents
                                       0
          young dependents
                                       0
          home_ownership
                                     379
          type_of_house
                                     694
          occupants_count
                                       0
          house_area
                                       0
          sanitary_availability
                                     208
          water_availabity
                                    5253
          loan purpose
                                      26
          loan_tenure
                                       0
          loan_installments
                                       0
          loan amount
                                       0
          dtype: int64
```

Visualizing individual features: Uni/Bi/Multivariate data analysis

```
In [13]:
           df.head(2)
Out[13]:
             ld
                                     social_class primary_business secondary_business
                      city age sex
                                                                                    annual_income monthly_
                 Dhanbad
                            22
                                  F
                                         Mochi
                                                        Tailoring
                                                                            Others
                                                                                          36000.0
                 Manjapra
                            21
                                           OBC
                                                        Tailoring
                                                                                          94000.0
                                                                              none
           sns.set_style('whitegrid')
In [14]:
In [15]:
           plt.figure(figsize=(16,5))
           sns.countplot(df['age'])
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x297ab506b88>


```
In [16]: sns.countplot(df['sex'])
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x297ab638e88>


```
In [17]: sns.countplot(df['old_dependents'])
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x297abe0d6c8>


```
In [18]: sns.countplot(df['young_dependents'])
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x297ab7a5f48>

In [19]: sns.countplot(df['type_of_house'])

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x297a9f31788>


```
In [20]: plt.figure(figsize=(16,5))
    sns.countplot(df['occupants_count'])
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x297ab7b3788>


```
In [21]: sns.scatterplot(x='annual_income',y='age',data=df)
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x297abf7ff48>

In [22]: sns.scatterplot(x='annual_income',y='age',data=df,hue='sex')

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x297ab8104c8>

In [23]: sns.scatterplot(x='monthly_expenses',y='age',data=df,hue='sex')

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x297ac0d9e08>


```
In [24]: sns.scatterplot(x='loan_amount',y='annual_income',data=df)
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x297abdc87c8>


```
In [25]: plt.figure(figsize=(10,5))
    sns.scatterplot(x='loan_amount',y='annual_income',data=df,hue='sex')
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x297b4925d88>


```
In [26]: plt.figure(figsize=(10,5))
    sns.scatterplot(x='loan_amount',y='monthly_expenses',data=df,hue='sex')
```

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x297ac2e4e88>


```
In [27]: plt.figure(figsize=(10,5))
sns.heatmap(df.corr(),annot=True,cmap='magma')
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x297ac2e6888>


```
In [28]: plt.figure(figsize=(12,8))
    sns.scatterplot(x='loan_amount',y='loan_purpose',data=df)
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x297b5f095c8>


```
In [29]: plt.figure(figsize=(12,5))
    sns.scatterplot(x='loan_amount',y='house_area',data=df)
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x297b5f7d288>


```
In [30]: plt.figure(figsize=(12,5))
    sns.scatterplot(x='loan_amount',y='age',data=df,hue='sex')
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x297b5ff75c8>


```
In [31]: plt.figure(figsize=(12,5))
    sns.scatterplot(x='loan_amount',y='sex',data=df)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x297b66dad48>


```
In [32]: plt.figure(figsize=(16,5))
sns.barplot(x='loan_amount',y='sex',data=df)
```

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x297b62c8a08>

Checking outliers for key features:

```
In [33]: plt.figure(figsize=(12,4))
    sns.boxplot(x=df['annual_income'])
```

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x297b6342048>


```
In [34]: plt.figure(figsize=(12,4))
    sns.boxplot(x=df['monthly_expenses'])
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x297b62dea88>


```
In [35]: plt.figure(figsize=(12,4))
sns.boxplot(x=df['house_area'])
```

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x297b6bb3088>


```
In [36]: plt.figure(figsize=(12,4))
    sns.boxplot(x=df['loan_amount'])
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x297b6342b08>

Checking value counts for all categorical data

```
df['social_class'].value_counts()
In [37]:
Out[37]: OBC
                              10683
          SC
                               3136
          ST
                               2616
          General
                               2299
          Muslim
                               1743
          Madivlar shetty
          Kumhaar
                                  1
          ONT
                                  1
          Gowda shettru
                                  1
          Gen- BPL
          Name: social_class, Length: 519, dtype: int64
          df['city'].value_counts()
In [38]:
         Pusad
                        3154
Out[38]:
          Bahoriband
                        1979
          PUSAD
                        1776
          Shantipur
                        1727
          Imphal
                        1699
```

```
nilgiri
                           1
          Munidih
                           1
          Vandazhy
                           1
         Singjakmei
                           1
         Raina
                           1
         Name: city, Length: 856, dtype: int64
In [39]:
          df['sex'].value_counts()
                37622
Out[39]:
                 2371
          TG
                    7
         Name: sex, dtype: int64
          df['primary_business'].value_counts()
In [40]:
         Tailoring
                                                                 3971
Out[40]:
         Goat rearing
                                                                 2268
         Cow Rearing
                                                                 2077
         Handloom Work
                                                                 2068
          Vegetable cultivation
                                                                 1704
         Stove Making
                                                                    1
          Kerosine
                                                                    1
          Cycle Shop
                                                                    1
          Agricultural inputs to small and marginal farmers
                                                                    1
         Chumki stiching
                                                                    1
         Name: primary_business, Length: 441, dtype: int64
          df['secondary_business'].value_counts()
In [41]:
Out[41]:
         none
                                  27366
          Others
                                   2564
         Daily wage labourer
                                   2545
          Agriculture
                                   2105
          Livestock rearing
                                    179
         Name: secondary_business, dtype: int64
In [42]:
          df['type_of_house'].value_counts()
                17715
         T2
Out[42]:
                15092
          T1
                 6499
          R
         Name: type_of_house, dtype: int64
          df['loan_purpose'].value_counts()
In [43]:
         Apparels
                                              7064
Out[43]:
         Agro Based Businesses
                                              4729
                                              4421
         Animal husbandry
          Meat Businesses
                                              4302
         Handicrafts
                                              4230
          Farming/ Agriculture
                                              3284
          Education Loan
                                              2100
         Retail Store
                                              1963
          Eateries
                                              1831
         Business Services - II
                                               854
          Tobacco Related Activities
                                               853
          Construction Related Activities
                                               661
         Retail Sale
                                               614
          Artifical Jewellry Selling
                                               556
          Carpentery work
                                               299
          Food Items
                                               285
         Business Services - I
                                               276
```

Transportation Services	245
Flower Business	238
Beauty Salon	204
Repair Services	192
Laundry Services	162
Agarbatti Business	107
Utensil Selling	104
Sanitation	101
Recycling/ Waste Management	100
Others	62
Vocational Loans	40
Jewellry Shop	30
Training	23
Miscellaneous	19
Cyber Caf_	7
Tent Services	6
Cable TV Services	5
Tuition Centre	3
Professional	3
Manufacturing	1
Name: loan_purpose, dtype: int64	

In []: