Lecture 4-1	
Linked List	
Teera Siriteerakul	
ieera Siirteerakui	
Data Structures & Algorithms 1	
Limitation of Array	
We have 45 bytes of memory but we cannot allocate an	
array of size 10. Now, how can we make a collection of data of size 10?	
var addr	
b 0	
Data Structures & Algorithms	
2	
Enter the Linked List	
A data structure where a unit of data contain the data itself and a reference to the next data.	

Made possible by class in JAVA
 Let see a simple example

Simple Example	5	2	3	6	2	17	7	4
Again, let's assume there are 64 bytes of dynamic memory		8	36					
Assume we want to store the following data: 5 3 7 2 8 4					4	null		
· Here is what we can do.								
• We will call each set of data and				<u> </u>				
address of the next data a node.				var	addre	ss		
Note: Only variable we have is head				head	0			
						\dashv		
						\dashv		
				FS 8	5 A1	GG		
				ES 8	à Al	LGC		
				ES 8	k Al	LGC		
				ES 8	ž Al	LGC		
				ES &	& A1	LGC		
				ES 8	g Al	LGC		
				ES &	à Al	LGC		
				ES &	k Al	LGC		

		~	3	6		17	/	4
Linked List								
· Typically, one unit of data is stored		8	36					
in a class call Node, like so					$\overline{}$			
public class Node {					4	null		
int data;								
Node next;								
,								
 Since we do not really care about 			1			7		
the addresses, we usually using arro	ow to r	efer to	the	var	address			
	ow to r	efer to	the	var head	address 0			
the addresses, we usually using arronext data unit. Like this:	ow to r	efer to	the	-				
the addresses, we usually using arro	ow to r	refer to	the	-				
the addresses, we usually using arronext data unit. Like this:	ow to r	refer to	the	-				
the addresses, we usually using arronext data unit. Like this:	ow to r	refer to	the	-				

Visualizing

Linked List Operations

- We are to analyze the following Linked List operations

 - Random access (retrieve/update)
 Add/Insert unordered/ordered array
 - Search in unordered/ordered array
 Delete unordered/ordered array

Data Structures & Algorithms

Adding Data into a Linked List

- Where should we put a new data?
 Two choices: at the head, or at the tail.

 - One of them is O(1), the other is O(n)
- The correct choice is at the head • because to get to the tail, we need O(n)
- The steps are simple:
 Create a new node, put the data in
 Point next of that node to head
 - Point head to that node
- Let implement it

10

11

14

Summary

- Linked List is a data structure where we only keep address of the first data node and each data node keep address of the next one.
- We can set/get at a specific index in O(n) times.
 - So, we do not typically do it.
- We can add a new data using O(1) time if we insert at the front.

DATA STRUCTURES & ALGORITHMS