CLAIMS

What is claimed is:

1	1. A computing system, comprising:
2	a first approximation apparatus to approximate the term 2^X , wherein X is
3	a real number;
4	a memory to store a computer program that utilizes the first
5	approximation apparatus; and
6	a central processing unit (CPU) to execute the computer program, the
7	CPU is cooperatively connected to the first approximation apparatus and the
8	memory.
1	2. The system of claim 1, wherein the first approximation apparatus
2	includes:
3	a rounding apparatus to accept an input value (X) that is a real number
4	represented in floating-point format, and to compute a rounded value ($[X]_{integer}$)
5	by rounding the input value (X) toward minus infinity, wherein the rounded
6	value ($[X]_{integer}$) is represented in an integer format.
1	3. The system of claim 1, wherein the first approximation apparatus
2	includes:
3	an integer-to-floating-point converter to accept as input a first rounded
4	value ($[X]_{integer}$) represented in an integer format, and to convert the first
5	rounded value ($[X]_{integer}$) to a second rounded value ($[X]_{floating-point}$) represented
6	in floating-point format.
1	4. The system of claim 1, wherein the first approximation apparatus
2	includes:

)

42390P10416 -20-PAT. APPL. 6

- a floating-point subtraction operator to compute the difference between an input value (X) and \[\lambda \rightarrow \] floating-point which is the input value (X) rounded toward minus infinity and is represented in floating-point format.
- 5. The system of claim 1, wherein the first approximation apparatus includes a shift-left logical operator to generate a shifted \[\text{X} \]_{integer} value by shifting a rounded value (\[\text{X} \]_{integer}) to the left by a predetermined number of bit positions.
- 1 6. The system of claim 1, wherein the first approximation apparatus 2 includes:
- a second approximation apparatus to accept ΔX as input, to approximate $2^{\Delta X}$, and to return an approximation of $2^{\Delta X}$, wherein $\Delta X = X \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input value (X) rounded toward minus infinity and is
- 7. The system of claim 6, wherein the second approximation
 apparatus computes the approximation of 2^{ΔX} by applying Horner's method in
- 3 calculating a sum of a plurality of elements of a series in the equation

$$4 \qquad 2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{N}}{N!}.$$

represented in floating-point format.

- 1 8. The system of claim 1, wherein the first approximation apparatus 2 includes:
- an integer addition operator to accept a shifted \[X \]_integer value and an
- 4 approximation of $2^{\Delta X}$ as input, and to perform an integer addition operation on
- 5 the shifted $\lfloor X \rfloor_{integer}$ value and the approximation of $2^{\Delta X}$ to generate an
- 6 approximation of 2^{X} , wherein $\Delta X = X \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the input

12.

value comprises:

12

7	value (X) rounded toward minus infinity and is represented in floating-point
8	format.
1	9. The system of claim 1, further comprising:
2	a third approximation apparatus to approximate a term C^Z , wherein C is a
3	constant and a positive number and Z is a real number,
4	the third approximation apparatus using a floating-point multiplication
5	operator to compute a product of $\log_2 C \times Z$, and feeding the product of $\log_2 C \times Z$
6	Z into the first approximation apparatus to generate an approximation of C^Z .
1	10. A method comprising:
2	generating a first rounded value and a second rounded value;
3	subtracting the second rounded value from an input value (X) to generate
4	ΔX ;
5	generating an approximation of $2^{\Delta X}$;
6	performing a bit-wise left shift to the first rounded value to generate a
7	shifted value; and
8	approximating 2^X by performing an integer addition operation to add the
9	shifted value to the approximation of $2^{\Delta X}$.
1	11. The method of claim 10, wherein generating the first rounded value
2	comprises:
3	rounding an input value (X) downward to generate the first rounded
4	value represented in an integer format.

42390P10416 -22- PAT. APPL.

The method of claim 10, wherein generating the second rounded

- converting the first rounded value represented in an integer format to the
 second rounded value represented in floating-point format.
- 1 13. The method of claim 10, wherein generating an approximation of 2 $2^{\Delta X}$ comprises:
- 3 applying Horner's method in calculating a sum of a plurality of elements
- 4 of a series in the equation $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{N}}}{N!}$.
- 1 14. The method of claim 10, wherein performing a bit-wise left shift 2 operation to the first rounded value comprises:
- shifting the first rounded value to the left by a predetermined number of bit positions so that the first rounded value occupies bit positions reserved for an exponent of a floating-point value.
- 15. The method of claim 10, wherein approximating 2^X comprises:
 performing an integer addition operation to add the shifted value to the
 approximation of 2^{ΔX}, such that the first rounded value is added to an exponent
 value of the approximation of 2^{ΔX}.
- 1 16. A machine-readable medium comprising instructions which, when executed by a machine, cause the machine to perform operations comprising:

 a first code segment to perform computations to approximate the term 2^X, wherein X is a real number.
- 1 17. The machine-readable medium of claim 16, wherein the first approximation apparatus includes:
- a second code segment to accept an input value (X) that is a real number represented in floating-point format, to compute a rounded value ($[X]_{integer}$) by

42390P10416 -23- PAT. APPL.

- 5 rounding the input value (X) toward minus infinity, and to return the rounded
- 6 value ([X]_{integer}) which is represented in an integer format.
- 1 18. The machine-readable medium of claim 17, wherein the second
- 2 code segment computes the approximation of $2^{\Delta X}$ by applying Horner's method
- 3 in calculating a sum of a plurality of elements of a series in the following
- 4 equation, $2^{\Delta X} = \sum_{N=0}^{\infty} \frac{(\Delta X \ln 2)^{\frac{N}{N}}}{N!}$.
- 1 19. The machine-readable medium of claim 16, wherein the first code
- 2 segment includes:
- 3 a third code segment to accept ΔX as input and to generate an
- 4 approximation of $2^{\Delta X}$, wherein $\Delta X = X \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the
- 5 input value (X) rounded and is represented in floating-point format.
- 1 20. The machine-readable medium of claim 16, wherein the first code
- 2 segment includes:
- a fourth code segment to accept a shifted \[\text{X} \]_{integer} value and an
- 4 approximation of $2^{\Delta X}$ as input, and to generate an approximation 2^{X} by
- 5 performing an integer addition operation on the shifted $\lfloor X \rfloor_{integer}$ value and the
- 6 approximation of $2^{\Delta X}$, wherein $\Delta X = X \lfloor X \rfloor_{\text{floating-point}}$ and $\lfloor X \rfloor_{\text{floating-point}}$ is the
- 7 input value (X) rounded and is represented in floating-point format.
- 1 21. The machine-readable medium of claim 16, further includes:
- a fifth code segment to approximate a term $C^{\mathbb{Z}}$, wherein C is a constant
- 3 and a positive number and Z is a real number, the fifth code segment computing
- 4 a product of log₂ C x Z and feeding the product of log₂ C x Z into the first code
- $\label{eq:continuous} 5 \quad \text{ segment to generate an approximation of } C^Z.$