590 HW1

Austin Turvy Derek Holste Mason Carhart

4/13/2021

```
# Load packages
library(pacman)
p_load(readr, data.table, dplyr, janitor, haven, here,
       tidyverse, skimr, lfe, stargazer, quantreg, hrbrthemes,
       tinytex, kableExtra, broom)
# Load data
af = read_dta(here("afghanistan_anonymized_data.dta"))
# Create nonoutlier column
af <- af %>% mutate(nonoutlier= ifelse((f07_num_ppl_hh_cnt > 20 & f07_observed == 1) |
                                     (f07_jeribs_cnt > 10 & f07_observed == 1)|
                                     (f07_num_sheep_cnt > 50 \& f07_observed == 1)
                                       (s08_num_ppl_hh_cnt > 20 & s08_observed == 1)|
                                       (s08_jeribs_cnt > 10 & s08_observed == 1) |
                                       (s08_num_sheep_cnt > 50 & s08_observed == 1)
                                       ,0,1))
# Tabulating nonoutliers
non_outlier_tab <- af %>% group_by(nonoutlier) %>%
    summarise(count = n(), percentage = n()/nrow(.))
non_outlier_tab
## # A tibble: 2 x 3
   nonoutlier count percentage
##
         <dbl> <int>
                          <dbl>
## 1
              0
                   76
                          0.0421
## 2
              1 1728
                          0.958
There are 76 non-outliers in the data given the specifications prior.
# Run girls regression table 4 column 1 including outliers
reg3 = felm(f07_formal_school ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 f07_{observed} == 1))
# Run boys regression table 4 column lincluding outliers
reg4 = felm(f07_formal_school ~ treatment + chagcharan | 0 | 0 | clustercode,
```

f07 observed == 1))

data = af %>% filter(f07_girl_cnt == 0 &

```
# Run girls regression table 4 column 1 with controls
reg5 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 nonoutlier == 1 &
                                 f07_{observed} == 1))
# Run girls regression table 4 column 1 with controls
reg6 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 0 &
                                 nonoutlier == 1 &
                                 f07_observed == 1))
```

Question 3:

Question 4:

Question 4b:

```
# girls regression for column 6
reg11 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# boys regression for column 6
reg12 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 0 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# girls regression for column 7
reg13 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# boys regression for column 7
reg14 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 0 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
```

```
# Getting mean values for column 1
col_1 = af %>%
  filter(treatment == 1 & nonoutlier == 1 & f07_observed == 1) %>%
  select(
```

```
c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07 farsi cnt, f07 tajik cnt, f07 farmer cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Getting mean values for column 2
col 2 = af %>%
  filter(treatment == 0 & nonoutlier == 1 & f07_observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Create regression functions for column 3
reg_function_coef = function(x){
    reg = felm(x ~ treatment | 0 | 0 | clustercode,
               data = af %>% filter(nonoutlier == 1 & f07_observed == 1))
    coef = coef(reg)[2]
    return(coef)
}
# Regression function for SE
reg_function_se = function(x){
  reg = felm(x ~ treatment | 0 | 0 | clustercode,
             data = af %>% filter(nonoutlier == 1 & f07 observed == 1))
  se = sqrt(diag(vcov(reg)))[2]
  return(se)
# Obtain column 3 coefficients
col_3_coefs = af %>%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
```

```
c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07 farsi cnt, f07 tajik cnt, f07 farmer cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_coef)
  ) %>% head(., 1) %>% unlist(.)
# Obtain column 3 SE
col_3_se = af \%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_num_ppl_hh_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_se)
  ) %>% head(., 1) %>% unlist(.)
# Regression for column 7
col_7 = felm(f07_formal_school ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
               f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             \mid 0 \mid 0 \mid clustercode,
             data = af %>%
               filter(nonoutlier == 1 & f07_observed == 1 & treatment == 0))
# Regression for column 8
col_8 = felm(f07_both_norma_total ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             | 0 | 0 | clustercode,
             data = af \%
               filter(nonoutlier == 1 & f07_observed == 1 &
                        f07_test_observed == 1 & treatment == 0))
# further analysis regression
reg_fa = felm(f07_formal_school ~ f07_girl_cnt +
         f07_nearest_scl + f07_girl_cnt*f07_nearest_scl +
         I(f07_nearest_scl^2) | 0 | 0 | clustercode,
```

```
f07 observed == 1 &
                              nonoutlier == 1))
af = af %>% mutate(dist_near = if_else(f07_nearest_scl < 2, 1, 0),
               dist_close = if_else(f07_nearest_scl >= 2 & f07_nearest_scl < 3, 1, 0),</pre>
               dist_nclose = if_else(f07_nearest_scl >= 3 & f07_nearest_scl < 4, 1, 0),</pre>
               dist_far = if_else(f07_nearest_scl >= 4, 1, 0))
# Regression for near individuals
reg_near_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_near == 1
# Regression for close individuals
reg_close_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07 observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_close == 1
# Regression for not close individuals
reg_nclose_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_nclose == 1
                              ))
# Regression for far individuals
reg_far_g = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07 observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist far == 1
# Regression for near individuals
reg_near_b= felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
```

data = af %>% filter(treatment==0 &

```
f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_near == 1
                              ))
# Regression for close individuals
reg_close_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist close == 1
                              ))
# Regression for not close individuals
reg_nclose_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_nclose == 1
# Regression for far individuals
reg_far_b = felm(f07_formal_school ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_far == 1
                              ))
# Regression for near individuals
reg_test_near_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_near == 1
                              ))
# Regression for close individuals
reg_test_close_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
```

```
dist_close == 1
# Regression for not close individuals
reg_test_nclose_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_nclose == 1
# Regression for far individuals
reg_test_far_g = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 1 &
                              dist_far == 1
                              ))
# Regression for near individuals
reg_test_near_b= felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_near == 1
# Regression for close individuals
reg_test_close_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_close == 1
                              ))
# Regression for not close individuals
reg_test_nclose_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_nclose == 1
                              ))
```

```
# Regression for far individuals
reg_test_far_b = felm(f07_both_norma_total ~ treatment +
                   chagcharan | 0 | 0 | clustercode,
         data = af %>% filter(
                              f07_observed == 1 &
                              nonoutlier == 1 &
                              f07_girl_cnt == 0 &
                              dist_far == 1
# Table 4.1
stargazer(reg1, reg2, reg5, reg6, reg7, reg8, reg9, reg10,
          keep.stat = c('n', 'rsq'),
          column.labels = c("
                                  ", " ", "
          title = "Table 4: Treatment Effects by Gender",
          covariate.labels = c('Treatment', "chagcharan",
                               "Household head's child", "Age",
                               "Years family in village", "Farsi",
                               "Tajik", "Farmers", "Age of household head",
                               "Years of education of household head", "Number of people in Household",
                               "Jeribs of land", "Number of sheep",
                               "Distance to nearest formal school"),
          dep.var.labels = c("Formaly Enroled", "Fall Test Scores"),
          \#dep.var.labels = c(""),
          type = 'latex', header = F, float = TRUE,
          font.size = "small",
          column.sep.width = "-15pt",
          omit.stat=c("f", "ser"),
          notes = c("S.E Clustered by village"), notes.append = FALSE)
# Table 4b
stargazer(reg11, reg12, reg13, reg14,
          keep.stat = c('n', 'rsq'),
          title = "Table 4b: Treatment Effects by Gender",
          covariate.labels = c('Treatment', "chagcharan"),
          \#dep.var.labels = c(""),
          omit = c("s08_heads_child_cnt", "s08_girl_cnt", "s08_age_cnt",
                   "s08_duration_village_cnt", "s08_farsi_cnt",
                   "s08_tajik_cnt", "s08_farmer_cnt", "s08_age_head_cnt",
                   "s08_yrs_ed_head_cnt", "s08_num_ppl_hh_cnt",
                   "s08_jeribs_cnt", "s08_num_sheep_cnt", "s08_nearest_scl",
                   "chagcharan"),
          type = 'latex', header = F, float = TRUE,
          notes =c("S.E Clustered by village"), notes.append = FALSE)
# Table 2
stargazer(col_7, col_8,
          keep.stat = c('n', 'rsq'),
          title = "Table 2: Demographic Characteristics By Research Groups",
          covariate.labels = c("Household head's child", "Girl",
                               "Age", "Years family in village", "Farsi",
```

Table 1: Table 4: Treatment Effects by Gender

			Depende	nt varia	ble:		
	Formal	y Enrole	ed		Fall Te	st Score	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
							0.400*** (0.091)
			0.086 (0.088)				0.118 (0.075)
						-0.156 (0.168)	0.125 (0.098)
							0.367*** (0.021)
							-0.003 (0.002)
						-0.115 (0.097)	0.094 (0.141)
							0.173*** (0.052)
							-0.082 (0.113)
						-0.001 (0.004)	0.005 (0.003)
d		0.003 (0.005)	0.002 (0.004)			0.026** (0.011)	0.048*** (0.011)
						0.007 (0.007)	-0.001 (0.014)
						0.016 (0.030)	0.018 (0.032)
		0.006 (0.004)	0.004 (0.003)			0.008 (0.008)	0.013** (0.005)
						0.001 (0.050)	-0.070 (0.049)
		-0.168	0.082 -			-2.421**	
693 0.339	797 0.164	693 0.371	797 0.245	667 0.167	707 0.045	667 0.357	707 0.404
	(1) 0.521** (0.091) 0.176** (0.085) 0.084* (0.050)	(1) (2) 0.521**0.371*** (0.091)(0.101) 0.176** 0.081 (0.085)(0.096) d.d 0.084*0.325*** (0.050)(0.058)	Formaly Enrole (1) (2) (3) 0.521**0.371***0.515**** (0.091)(0.101) (0.082) 0.176** 0.081 0.154* (0.085)(0.096) (0.082) -0.043 (0.051) 0.037** (0.016) -0.001 (0.001) -0.082 (0.051) -0.063 (0.068) -0.017 (0.035) -0.0000 (0.002) ad 0.003 (0.005) 0.007 (0.006) -0.009 (0.013) 0.006 (0.004) -0.007 (0.002) 0.084*0.325*** -0.168 (0.050)(0.058) (0.249)	Formaly Enroled (1) (2) (3) (4) 0.521**0.371***0.515**** 0.347**** (0.091)(0.101) (0.082) (0.094) 0.176** 0.081 0.154* 0.086 (0.085)(0.096) (0.082) (0.088) -0.043 0.022 (0.051) (0.051) 0.037** 0.065*** (0.016) (0.019) -0.001 -0.0001 (0.001) (0.002) -0.082 0.019 (0.051) (0.063) -0.063 0.077*** (0.068) (0.030) -0.017 -0.082** (0.035) (0.039) -0.00004-0.003 (0.002) (0.002) ad 0.003 0.002 (0.005) (0.004) 0.007 -0.001 (0.006) (0.009) -0.009 0.016 (0.013) (0.011) 0.006 0.004 (0.004) (0.003) -0.007 -0.059** (0.022) (0.024) 0.084*0.325*** -0.168 0.082 (0.050)(0.058) (0.249) (0.239)	Formaly Enroled (1) (2) (3) (4) (5) 0.521**0.371***0.515**** 0.347**** 0.691**** (0.091)(0.101) (0.082) (0.094) (0.130) 0.176** 0.081	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formaly Enroled Fall Test Scores (1) (2) (3) (4) (5) (6) (7) 0.521**0.371***0.515*** 0.347*** 0.691***0.424***0.654*** (0.091)(0.101) (0.082) (0.094) (0.130) (0.107) (0.123) 0.176** 0.081 0.154* 0.086 0.282** 0.113 0.275** (0.085)(0.096) (0.082) (0.088) (0.123) (0.104) (0.117) -0.043 0.022 -0.156 (0.051) (0.051) (0.168) 0.037** 0.065*** 0.243*** (0.016) (0.019) (0.030) -0.001 -0.0001 -0.0001 (0.001) (0.002) (0.002) -0.082 0.019 -0.115 (0.051) (0.063) (0.097) -0.063 0.077*** -0.005 (0.068) (0.030) (0.079) -0.017 -0.082** 0.0002 (0.035) (0.039) (0.076) -0.0004 -0.003 -0.001 (0.002) (0.002) (0.004) ad 0.003 0.002 0.026** (0.005) (0.004) (0.011) 0.007 -0.001 0.007 (0.006) (0.009) (0.007) -0.009 0.016 0.016 (0.013) (0.011) (0.030) 0.006 0.004 0.008 (0.004) (0.003) (0.008) -0.007 -0.059** 0.001 (0.005) (0.004) (0.008) -0.006 0.004 0.008 (0.004) (0.003) (0.008) -0.007 -0.059** 0.001 (0.0022) (0.024) (0.050) 0.084*0.325*** -0.168 0.082 -0.486**0.267***-2.421*** (0.050)(0.058) (0.249) (0.239) (0.097) (0.091) (0.600)

Table 2: Table 4b: Treatment Effects by Gender

		Depende	nt variable:	
		s08_both_	_normatotal	L
	(1)	(2)	(3)	(4)
Treatment	0.735^{***} (0.093)	$0.380^{***} (0.129)$	0.661*** (0.090)	$0.413^{***} (0.099)$
chagcharan	-0.458^{***} (0.066)	0.281*** (0.089)	-3.052^{***} (0.460)	-3.144^{***} (0.302)
Observations \mathbb{R}^2	689 0.165	712 0.042	687 0.378	709 0.410

Note:

S.E Clustered by village

"Years of education of household head", "Number of people in household",

"Estimated Difference SE"), caption = "Table 2: Demographic Characteristi

"Tajik", "Farmers", "Age of household head",

"Control Avg", "Estimated Diff",

col_1_df %>% kbl(col.names = c("Name", "Treatment Avg",

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

[%] Date and time: Wed, Apr 28, 2021 - 3:07:59 PM

Table 3: Table 2: Demographic Characteristics By Research Groups

	Dependent variable:		
	Formal enrollment	Test Scores	
	(1)	(2)	
Household head's child	0.038	-0.090	
	(0.061)	(0.113)	
Girl	-0.208***	-0.682***	
	(0.080)	(0.102)	
m Age	0.046***	0.287***	
	(0.017)	(0.018)	
Years family in village	-0.001	-0.005**	
	(0.001)	(0.002)	
Farsi	-0.039	0.074	
	(0.074)	(0.119)	
Tajik	-0.006	0.042	
	(0.078)	(0.065)	
Farmers	-0.050	-0.020	
	(0.081)	(0.120)	
Age of household head	-0.004	-0.004**	
	(0.003)	(0.002)	
Years of education of household head	0.001	0.036***	
	(0.006)	(0.007)	
Number of people in household	0.004	-0.004	
	(0.006)	(0.011)	
Jeribs of land	0.022***	0.056***	
	(0.008)	(0.011)	
Number of sheep	0.010***	0.016**	
	(0.002)	(0.007)	
Distance to nearest formal school	-0.060	-0.089**	
	(0.043)	(0.037)	
Constant	0.246	-1.649^{***}	
	(0.324)	(0.369)	
Observations	708	653	
$\frac{R^2}{R^2}$	0.155	0.401	
Note:	*p<0.1; **p<0.	05; ***p<0.01	

 $^{*}p<0.1; *^{*}p<0.05; *^{**}p<0.01$ S.E Clustered by village

Table 4: Table 2: Demographic Characteristics By Research Groups

Name	Treatment Avg	Control Avg	Estimated Diff	Estimated Difference SE
Household head's child	0.9347826	0.9110169	0.0237657	0.0148157
Girl	0.4744246	0.4548023	0.0196223	0.0198052
Age	8.3209719	8.3121469	0.0088250	0.0399960
Years family in village	30.3024297	27.5939266	2.7085031	1.6051614
Farsi	0.2084399	0.2090395	-0.0005997	0.0544541
Tajik	0.2429668	0.2076271	0.0353396	0.0489753
Farmers	0.7173913	0.7274011	-0.0100098	0.0335306
Age of household head	40.1419437	39.9703390	0.1716048	1.1006431
Years of education of household head	3.3145780	3.0755650	0.2390130	0.4416666
Number of People in Household	8.3989770	7.8177966	0.5811804	0.3399672
Jeribs of land	1.3446292	1.2740113	0.0706179	0.1069723
Number of sheep	7.5524297	5.6313559	1.9210737	1.5041764
Distance to nearest formal school	2.9099495	3.1628723	-0.2529228	0.3492530

Table 5: Further Analysis: Distance Effect on Enrollment

	Dependent variable:
	Enrollment
Girl	-0.350***
	(0.098)
Distance to Nearest Formal School	-0.147
	(0.280)
Girl Distance Interaction	0.008
	(0.030)
Distance Squared	0.047
•	(0.033)
Constant	0.741
	(0.605)
Observations	708
R^2	0.080
Adjusted R ²	0.074
Residual Std. Error	0.427 (df = 703)
Note:	*p<0.1; **p<0.05; ***p<0.01

S.E Clustered by village

Table 6: Further Analysis: Distance Effect on Enrollment

			D	ependen	t variab	le:		
		Whethe	er or not th	e Indivi	dual is i	in a Forma	l School	
	Short	Med-Short	t Med-Long	Long	Short	Med-Short	Med-Long	g Long
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Treatment	0.448***	0.528***	0.696***	0.481***	0.319*	0.447***	0.235**	0.504***
	(0.122)	(0.140)	(0.073)	(0.066)	(0.190)	(0.160)	(0.093)	(0.092)
chagcharan	0.404***	0.192	-0.156	0.368***	0.377**	0.028	0.058	0.153
	(0.069)	(0.117)	(0.126)	(0.064)	(0.150)	(0.152)	(0.111)	(0.094)
Constant	0.128	0.022	0.072	0.049	0.357*	0.332***	0.414***	0.094
	(0.124)	(0.026)	(0.067)	(0.046)	(0.203)	(0.063)	(0.060)	(0.084)
Observation	s 94	272	204	123	88	328	232	149
\mathbb{R}^2	0.173	0.400	0.403	0.420	0.225	0.213	0.068	0.310

Note:

*p<0.1; **p<0.05; ***p<0.01 S.E Clustered by village 1-4 (Female), 5-8 (Male). Both groups have increasing distance as the number increases.

Table 7: Further Analysis: Distance Effect on Test Scores

			j	Dependent	t variable	? :		
			Total Norr	nalized T	est Score	, Fall 2007		
	Short	Med-Short	Med-Long	Long	Short	Med-Short	Med-Long	Long
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Treatment	1.126***	0.789***	0.853***	0.563***	0.103*	0.512***	0.202*	0.895***
	(0.262)	(0.233)	(0.198)	(0.065)	(0.061)	(0.159)	(0.116)	(0.152)
chagcharan	0.773***	0.360^{*}	-0.277	0.445***	-0.027	0.146	-0.111	0.371***
	(0.248)	(0.184)	(0.197)	(0.066)	(0.053)	(0.114)	(0.194)	(0.121)
Constant	-1.169***	-0.496***	-0.399**	-0.559***	0.396***	0.281***	0.497***	-0.351***
	(0.295)	(0.134)	(0.177)	(0.070)	(0.048)	(0.040)	(0.121)	(0.080)
Observations	91	259	196	121	81	290	198	138
\mathbb{R}^2	0.217	0.212	0.174	0.193	0.002	0.069	0.006	0.221

Note:

*p<0.1; **p<0.05; ***p<0.01

S.E Clustered by village 1-4 (Female), 5-8 (Male).

Both groups have increasing distance as the number increases.

Table 8: Column 1 and 2 With Outliers

	Dependent variable:				
	Formal	School			
	(1)	(2)			
treatment	0.510***	0.386***			
	(0.087)	(0.099)			
chagcharan	0.176**	0.071			
	(0.080)	(0.093)			
Constant	0.082^{*}	0.321***			
	(0.049)	(0.057)			
Observations	730	830			
\mathbb{R}^2	0.325	0.171			
Adjusted R ²	0.323	0.169			
Residual Std. Error	0.410 (df = 727)	0.453 (df = 827)			
Note:	*p<0.1; **p<0.05; ***p<0.01				

16

Written Questions:

Outlier question 1:

An outlier observation is someone who had more than 50 sheep or goats owned by the household in 2007 and observed in the fall of 2007 or had more than 10 jeribs of land owned by the household and was observed in the fall of 2007 or had more than 20 people in the headcount in fall of 2007 or a person that has number of people in a household greater than 20 and are observed in summer of 2008. They are also an outlier if the number of jeribs of land counted is more than 10 and are observed in summer of 2008. Lastly if the number of sheep and goats is above 50 and they are observed in summer of 2008.

Table 4 Column 1 Question 5:

Both of our coefficient estimates were very similar as the treatment for girls and boys were exactly the same to the thousandth degree. The standard error for women was exactly the same while the standard error for men is unknown from table four.

Table 4 Column 1 Question 6:

The coefficients on all estimates are minimally different with the largest change being an increase in the treatment coefficient between boys of .15. For women the coefficient decreased by .11 when including outliers. The standard errors are also negligibly different.

Table 4 Column 2 Question 6:

Like in table 4, both treatments are statically significant. For girls, the only statistically significant control is the child's age in the fall of 2007 (5%). For The males there were more statistically significant controls. The age of the child, (1% level) if the child's family speaks Tajik, (5% level) if the head of household is a farmer or not, (10% level) and lastly the nearest schools distance, (5% level). For both genders the child's age was significant and positive which means that as the child grows older, they are more likely to get a better test score.

Further Analysis:

To start looking at the relationship between schooling and attendance we regressed formal enrollment on the distance to the nearest school, whether the child was a girl, an interaction between the two and a variable for distance squared to control for any quadratic patterns. Surprisingly the only statistically significant variable in that regression was whether or not the child was a girl. This means that being farther away does not affect formal enrollment and distance does not affect girls more than boys. The regression output does implicate that women do attend school less than their boy counterparts. Now when re-looking at formal enrollment based on four distance types, short, medium short, medium long, and long, we can see that for girls, the amount of distance does not change the fact that treatment is significantly increasing enrollment and test scores. More specifically as distance increases, the effect of the treatment on tests for girls decreases, while it increases for men. Meaning that the treatment is most effective for girls who live close and boys who live farther away. Interestingly when looking at formal enrollment the treatment for both boys and girls are mostly similar for each distance type except when the schools were a medium long distance away meaning that distance does not play a significant role in how the treatment will affect the sexes. Overall it seems as though distance is a more important variable when looking at the test scores for boys and girls and not as much for their attendance rates.