ount nean std min 25%	HP MPG VOL SP WT 81.00000 81.00000 81.00000 81.00000 81.00000 117.469136 34.422076 98.765432 121.540272 32.412577 57.113502 9.131445 22.301497 14.181432 7.492813 49.00000 12.101263 50.00000 99.564907 15.712859 84.00000 27.856252 89.00000 113.829145 29.591768 100.00000 35.152777 101.000000 118.208698 32.734518 140.00000 39.531633 113.00000 126.404312 37.392524
max cars. l 0 Fal 1 Fal 2 Fal 3 Fal	140.00000 39.531633 113.00000 126.404312 37.392524 322.00000 53.70681 160.00000 169.598513 52.997752 HP MPG VOL SP WT Iss False False False False False Iss False False False False False Iss False False False False
4 Fal 6 Fal 7 Fal 8 Fal 9 Fal 0 Fal	lise False False False False False False Ise False False False False
HP IPG /OL SP WT	HP MPG VOL SP VOL SP WT 1.00000 -0.725038 0.077459 0.973848 0.076513 -0.725038 1.000000 -0.529057 -0.687125 -0.526759 0.077459 -0.529057 1.000000 0.102170 0.999203 0.973848 -0.687125 0.102170 1.000000 0.102439 0.076513 -0.526759 0.999203 0.102439 1.000000 t the background style of the plot
#MPG sns.s sns.d	<pre>t the background style of the plot is dependent variable set_style('whitegrid',{'axes.grid' : False}) distplot(cars['MPG'],bins=20) Subplot:xlabel='MPG'></pre>
#pair	MPG rplot to check linearity of dependent and independent variables set_style('whitegrid', {'axes.grid' : False}) pairplot(cars) orn.axisgrid.PairGrid at 0x26a7f4939d0>
200 150 100 50 50 40	
160 140 120 100 80 60	
160 140 120 100 50 40	
impor	ate model and fit it rt statsmodels.formula.api as smf l=smf.ols('MPG-HP+VOL+SP+WT', data=cars).fit()
nterope DL P T type: #t and print nterope DL	-0.205444 -0.336051 0.395627 0.400574 : float64 and p-Values t(model.tvalues, '\n', model.pvalues) cept 2.058841 -5.238735 -0.590970
OL P T type: Inter OL P T type:	-0.590970 2.499880 0.236541 : float64 rcept
rsq_h /if_h rsq_w /if_w rsq_v /if_v	culating VIF np = smf.ols('HP-WT+VOL+SP', data=cars).fit().rsquared np = 1/(1-rsq_hp) # 16.33 wt = smf.ols('WT-HP+VOL+SP', data=cars).fit().rsquared wt = 1/(1-rsq_wt) # 564.98 vol = smf.ols('VOL-WT+SP+HP', data=cars).fit().rsquared vol = 1/(1-rsq_vol) # 564.84 sp = smf.ols('SP-WT+VOL+HP', data=cars).fit().rsquared sp = 1/(1-rsq_sp) # 16.35
/if_s / Sto l1 = /if_f /if_f	sp = 1/(1-rsq_sp) # 16.35 pring vif values in a data frame {'Variables':['Hp', 'WT', 'VOL', 'SP'], 'VIF':[vif_hp,vif_wt,vif_vol,vif_sp]} frame = pd.DataFrame(d1) frame iables
loc est	dule Validation t for Normality of Residuals (Q-Q Plot) plot rt statsmodels.api as sm pt=sm.qqplot(model.resid,line='45') title("Normal Q-Q plot of residuals") show()
15 10 5 0	Normal Q-Q plot of residuals -5 0 5 10 15
lef grolls.	Theoretical Quantiles 10 15 Sidual Plot for Homoscedasticity get_standardized_values(vals): return (vals - vals.mean())/vals.std() Scatter(get_standardized_values(model.fittedvalues), get_standardized_values(model.resid)) title('Residual Plot') klabel('Standardized_Fitted values')
olt.yolt.s	<pre>klabel('Standardized Fitted values') ylabel('Standardized residual values') show() Residual Plot</pre>
ig = ig =	-2 -1 0 1 Standardized Fitted values Sidual Vs Regressors = plt.figure(figsize=(15,8)) = sm.graphics.plot_regress_exog(model, "VOL", fig=fig) show() Regression Plots for VOL
60 50 40 30 20 10	Y and Fitted vs. X Residuals versus VOL Do not be a serification of the desired property of the desi
15 10 5 0	60 80 100 120 140 160 60 80 100 120 140 160 Partial regression plot CCPR Plot Order 100 120 140 160 Order 100 120 140 140 160 Order 100 140 140 140 140 140 140 Order 100 140 140 140 140 140 140 Order 100 140 140 140 140 140 140 140 140 140
Fig = Fig = Olt.s	-1.5
50 40 30 20 10 0	100 110 120 130 140 150 160 170 100 110 120 130 140 150 160 170 Partial regression plot CCPR Plot
10 5 0 -5	-10.0 -7.5 -5.0 -2.5 0.0 25 5.0 100 110 120 130 140 150 160 170
fig =	= plt.figure(figsize=(15,8)) = sm.graphics.plot_regress_exog(model, "HP", fig=fig) show() Regression Plots for HP Y and Fitted vs. X Residuals versus HP
20 10 0	50 100 150 200 250 300 50 100 150 200 250 300 Partial regression plot CCPR Plot
ig =	= plt.figure(figsize=(15,8)) = sm.graphics.plot_regress_exog(model, "WT", fig=fig) show() Regression Plots for WT
60 50 40 30 20	Y and Fitted vs. X Residuals versus WT To MPG titled To Description of the property of the
15 10 5 0	15 20 25 30 35 40 45 50 Partial regression plot CCPR Plot
loc INI Co	del Deletion Diagnostics FLUENCE pok's Distance
nodel (c, _ fig = olt.s olt.x	igh Influence Points L_influence = model.get_influence() _) = model_influence.cooks_distance t the influencers values using stem plot = plt.subplots(figsize=(20, 7)) stem(np.arange(len(cars)), np.round(c, 3)) klabel('Row index') ylabel('Cooks Distance') show()
0.8	
nflu	statsmodels.graphics.regressionplots import influence_plot show() 76
4 3 3 2 1 0 -1 -2	Influence Plot 0 79 78 65 69 8 80 17 11 70
c = c n = c ever om th cars1 cars1	0.05
0 49 1 59 2 55 3 70 4 53 2 162 3 140 4 140	9 53.700681 89 104.185353 28.762059 5 50.013401 92 105.461264 30.466833 5 50.013401 92 105.461264 30.193597 0 45.696322 92 113.461264 30.632114 3 50.504232 92 104.461264 29.889149 1
7 238 rows rows tagainodel tAgainodel (c_v,	5 18.762837 129 132.864163 42.778219 8 19.197888 115 150.576579 37.923113 6 × 5 columns in build new model 11=smf.ols('MPG-HP+VOL+SP+WT', data=cars1).fit() in check for influencers 1_influence_V = model1.get_influence() 1, _) = model_influence_V.cooks_distance
olt.s olt.x	<pre>plt.subplots(figsize=(20,7)) stem(np.arange(len(cars1)),np.round(c_V,3)); xlabel('Row index') ylabel('Cooks Distance');</pre>
0.6	0 10 20 30 40 50 60 70
node 0.856 re(Row index ck for accuracy ell.rsquared, model1.aic) 69558504981126, 406.0655455898309) dicting for new data data for prediction elata=pd.DataFrame({'HP':53, "VOL":92, "SP":104, "WT":29}, index=[1])
nodel zype: nodel zype: zype:	11.predict(new_data) 43.736808 : float64 11.predict(cars1.iloc[0:5,]) 45.496455 44.169166 44.115832 43.867092 44.133189 : float64 _y = model1.predict(cars1)
ored_ 2 3 4 5 7 ength	45.496455 44.169166 44.115832 43.867092 44.133189 22.145207 20.545911 23.310018 18.857466 11.615921 h: 76, dtype: float64
Dep	Cl. Stepression Sesults P. Variable: MPG R-squared: 0.771 Model: OLS Adj. R-squared: 0.758 Method: Least Squares F-statistic: 63.80 Date: Sat, 22 May 2021 Prob (F-statistic): 1.54e-23 Time: 22:17:55 Log-Likelihood: -233.96 Servations: 81 AIC: 477.9 Residuals: 76 BIC: 489.9
tercep H VO S W	Df Model: 4 coef std err t P> t [0.025 0.975] pt 30.6773 14.900 2.059 0.043 1.001 60.354 pt -0.2054 0.039 -5.239 0.000 -0.284 -0.127 pt 0.3361 0.569 -0.591 0.556 -1.469 0.796 pt 0.4006 1.693 0.237 0.814 -2.972 3.773 commibus: 10.780 Durbin-Watson: 1.403
otes: Stan	Omnibus: 10.780 Durbin-Watson: 1.403 Omnibus: 0.005 Jarque-Bera (JB): 11.722 Skew: 0.707 Prob(JB): 0.00285 Kurtosis: 4.215 Cond. No. 6.09e+03 Indiard Errors assume that the covariance matrix of the errors is correctly specified. condition number is large, 6.09e+03. This might indicate that there are multicollinearity or other numerical problems.
.ჟ n	