SECTED TO LISTING

K110> JENTSCH, Thomas J. <120> NOVEL POTABSIUM CHANNELS AND GEMES ENCODING THESE POTASSIUM CHANNELS <130% 2818-127P <1405 <1410 <1600-41 H17(0) PatentIn Ver. 2.1 +:210:-1H2.11H 2335 RICER DINA +3213 · Homo sapiens 4223 -Humil - deme +122.5 + (1) ... (2335)+:220 + -2221 - CDS H282 + [33] .. (2170) $(4)) \rightarrow 1$ againstigage etetgagege decgagegeg deceegeded ggadegtged egggedeegg 60 tguetobage eeggegeege ee atg gee gag gee ees eeg ege ege ete gge 112 Met Ala Glu Ala Pro Pro Arg Arg Leu Gly 5 only age doe dog doe ggg gad god doe dgd gdg gag ota geg gdg dec Lea Gly Pro Pro Pro Gly Asp Ala Pro Arg Ala Glu Leu Val Ala Leu 20 15 acy got gtg bag ago gaa dag ggo gag gog ggo ggo ggo too dog 208 Thr Ala Val Gln Ser Glu Gln Gly Glu Ala Gly Gly Gly Ser Pro 40 35 30 256 age age ate age etc etg age age eec etg eeg eeg age geg eec etc Arg Arg Leu Gly Leu Gly Ser Pro Leu Pro Pro Gly Ala Pro Leu

50

4.5

	333	224	3.1.7		44 2	*	;;;	•	:	* ## *	333	331	1.3		1.24	• •
Fro	317	Fro	317	Sur	317	3er	J. ;	3er	A _ 3	7 y s	3-7	J.T.	Ar J	201	క⊖క్	
	έĴ					eξ					-					
~ ~ ~	~ ~ ~	75.7	aar		- 2 -	23.	3.3.3	35.4	JāJ	aac	taa	ata	tar	äâJ	gtg	352
- 9-2-3 - • • %	igiugi B`a		aay Tus	Les.	7	Arg	Ara	leu	Glr.	Asr.	Tro	Val	T.;:r	Asr.	Val	
75	nii		-10	*** 7	30		,			ŧŝ	-		-		90	
_																
atg	gāg	egg	323	ege.	ggo	tgg	g a a	tto	gt c	tac	3â3	gto	tto	ata		· 0 0
Leu	Glu	Arg	Pro	Arg	gly	Trr	Ala	Phe	Vāl	Tyr	His	Vā.	Phe	Ile	Phe	
				95										1.15		
														a + a	757	118
ttg	ctg	gto	tta	agc	tga	ctg	gtg	atg	tat	gtg	Tou	Sar	Thr	T'A	Gin	448
Leu	Leu	√a⊥	rne 110	ser	СУЗ	Leu	/dl	115	oe:	v a ⊥	204	001	120			
			_ 1 U													
gag	cac	cad	gaa	ott	qcc	aac	gag	tgt	ctc	ctc	atc	ttg	gaa	ttc	gtg	496
gag Glu	His	Gln	Glu	Leu	Āla	Asn	Glu	Cys	Leu	Leu	Ile	Leu	Glu	Phe	Val	
_		125					130					135				
																E 4 4
atg	atc	gtg	gtt	ttc	ggc	ttg	gag	tac	atc	gtc -	- cgg	gtc	tgg	tcc	gcc	544
Met			Val	Phe	Gly	Leu	Glu	Tyr	Ile	Val		Vāl	Trp	ser	Ala	
	140					145					150					
~ ~ -	+~~	+ ~ ~	+ 40		+20	cas	gda	taa	cad	aat	cas	ttc	cqc	ttt	gcc	592
gga G15	. Lyc	Cvs	Cvs	. ege Ara	Tvr	Arg	Glv	Tro	Glr.	Gly	Arg	Phe	Arg	Phe	Ala	
155		O Y O	0,0	5	160	,	_	•		165					170	
aga	aag	caa	ttc	tgt	gtc	atc	gac	ttc	atc	gtg	ttc	gtg	gco	tcg	gtg	640
Arç	, Lys	Pro	Phe			Ile	Asp	Phe			Phe	Val	A.la	Ser	Val	
				175					180					185		
				. ~ ~	~~+	200	ana	440	aac	a+c	++0	acc	adn	taa	aca	688
gc:	gtc v	ato Tin	gcc al-	, gcg . Ala	995 - 610	acc Thr	Gln	990 Glv	- Asn	Ile	Phe	Ala	Thr	Ser	Ala	
M_0	ı val	15	190		017			195					2:00			
atq	g dgd	ago	ato	g ege	tto	ctg	cag	atc	ctg	cgc	atg	gtg	cgc	: atg	gac	736
Let	ı Arç	g Ser	. Met	. Arg	Ph:	Leu		Ile	Leu	Arg	Met			Met	Asp	
		205	5				210					215				
								~+-	. ~~-	. +	~+·~	, A+ ~	· †=/		cat	784
cgo	c aga	e gge	e ggo	d acc	tg] . T∽-	, aag	- ctg	CTG	, ggc	, LUd , Sar	yug Val	ya. Val	. cat Tvr	- gog - Ala	cat	, , ,
Aro	g Arq 220		∫ ادا ۲	y int	ırç	р шуз 225		. <u>1</u>	, сту	Ser	230		y -			
	221	J				ديد										
ado	c aac	g gad	g cto	g ato	ac:	gac	: tgq	tac	ati	ggg	tts	ctç	g gto	g ata	atc	832
Se:	r Lys	s Glu	ı Let	ı Ile	e Th:	. Āla	Trp	туг	r Ile	e Gly	Phe	e Lei	ı Val	Let	ı Ile	
23					240					245					250	

fin g Fhw A			Ener					Ala								
tta t Phe S	soo Ser	too Ser	tad Tyr 271	goo Ala	gad Asp	toj Ser	oto Leu	tgg Trp 275	tgg Trp	31; 31;	acg Thr	ātī Tle	aca Thr 181	tig Leu		92. 8
add a	ile														7 7 7	aī ć
leu A	got Ala 300	got Ala	ggs Gly	tto Phe	goo Ala	tta Leu 305	ctg Leu	ggc Gly	ato Tie	tat Ser	tto Phe 310	ttt Phe	goo Ala	atg Leu	cot Pro	1024
gaa q Ala (315	GJ7. āđo	atc Ile	cta Leu	ggc Gly	tcc Ser 320	Glγ gġc	ttt Phe	gcc Ala	ctg Leu	aag Lys 325	gto Val	cag Gln	gag Glu	cag Glm	cac His 330	1072
egg (Arg (cag Gln	aag Lys	cac His	ttc Phe 335	gag Glu	aag Lys	cgg Arg	agg Arg	atg Met 340	cog Pro	gca Ala	gcc Ala	aac Asn	ctc Leu 345	atc Ile	1120
cag (Gln)	gct Ala	gcc Ala	tgg Trp 350	cg: Arg	ctg Leu	tac Tyr	tcc Ser	acc Thr 355	gat Asp	atg Met	agc Ser	cgg Arg	gcc Ala 360	Tyr	ctg Leu	1168
aca (gcc Ala	acc Thr 365	tga Trp	tac Tyr	tac Tyr	tat Tyr	gac Asp 370	agt Ser	atc Ile	ctc Leu	cca Pro	tcc Ser 375	ttc Phe	aga Arg	gag Glu	1216
ctg Leu	gcc Ala 380	ctc Leu	ttq Leu	ttt Phe	gag Glu	cac His 385	gtg Val	caa Gln	cgg Arg	gcc Ala	ogo Arg 390	aat Asn	ggg	ggc Gly	cta Leu	1264
egg Arg 395	aad Pro	ctg Leu	gaq Glu	gtg Val	cgg Arg 400	ogg Arg	gcg Ala	ccg Pro	gta Val	ccc Pro 406	gac Asp	gga Gly	gca Ala	ccc Pro	tos Ser 410	1312
egt Arg					Ala										Phe	1360
				Ser					Ile					Arg	atg Met	1408

317 s	der	1 11 Ser 445	nia Sin	oji Arg	ngu Arg	<u>.</u> .	445 460	est Pri	tor Ser	aaj Lys	31:.	3.1 3.5 400	ut Y David	dina Ala	ant Pro	1460
Fro 1	ada Thr	atg Met	ada Pro	add Thr	Ser	oda Pro Pro	ago Ser	Ser	gag Glu	cag Gln	353 Val 471	ggi 3ly	gāg Glu	goo Ala	acc Thr	1804
# 5 8ex	odd Pro	acc The	aag Lys	gtg Val	31% 31%	aag Lys	agc Ser	tgg Trp	āgo Ser	## D	aat Asn	gāc Asp	ogo Arg	acc Thr	490 A 90	1882
e e	ogg Arg	gca Ala	tot Ser	ctg Leu 495	aga Arg	ata Leu	aaa Lys	ace Pro	ogo Arg 500	acc	tot Ser	got Ala	gag Glu	gat Asp 505	ges Ala	1600
ccc Pro	tca Ser	gag Glu	gaa Glu 510	gta Val	gca Ala	gag Glu	gag Glu	aag Lys 515	agc Ser	tac Tyr	cag Gln	tgt Cys	gag Glu 520	ctc Leu	acg Thr	1648
gtg Val	gac Asp	gac Asp 525	atc Ile	atg Met	cct Pro	gct Ala	gtg Val 530	aag Lys	aca Thr	gtc Val	atc Ile	cgc Arg 535	toc Ser	atc Ile	agg Arg	1696
att Ile	ctc Leu 540	aag Lys	tto Phe	ctg Leu	gtg Val	gcc Ala 545	aaa Lys	agg Arg	aaa Lys	ttc Phe	aag Lys 550	gag Glu	aca Thr	ctg Leu	cgā Arg	1744
ccg Pro 555	tac Tyr	gac Asp	gtg Val	aag Lys	gac Asp 560	gtc Val	att Ile	gag Glu	cag Gln	tac Tyr 565	tca Ser	gca Ala	ggc Gly	cac His	ctg Leu 570	1792
gac Asp	atg Met	ctg Leu	ggc Gly	cgg Arg 575	atc Ile	aag Lys	agc Ser	atg Leu	caa Gln 530	Thr	cgg Arg	gtg Val	gac Asp	caa Gln 585		184)
gtg Val	ggt Gly	cag Arg	399 317 590	Pro	gly	gac Asp	agg Arg	aag Lys 595	Ala	cgg Arg	gag Glu	aag Lys	900 31A 3dc	Asp	aag Lys	1888
Gly	ccc Pro	toc Ser 605	Asp	gcg Ala	gag Glu	gtg Val	gtg Val 610	Asp	gaa Glu	atc Ile	agc Ser	atg Met 615	Met	gga	cgc Arg	1936
gtg Val	gtc Val 620	Lys	gtg Val	gag Glu	aag Lys	cag Gln 625	Val	cag Gln	tcc Ser	atc : Ile	gag Glu 630	His	: aag : Lys	atg Lev	gac Asp	1984

. .

:: 184 635	i j Leu	 Deta	447 My	File	tat Tyr Kall	1)d Jeg	ndin Ang	1.42 278	Leu	040 Arg 648	n n Ser	11. 21.y	ann Tha	J-2 :	400 514 680	2 82
ago Ser	oty Leu	gly gga	Ala	gtg Tal 608	daa Glm	gtg Val	aag Pro	atg Leu	tta Phe 660	gas Asp	000 Pro	gad Asp	ati Tie	acc Thr éés	too Ser	2080
gao Asp	tac Tyr	cac His	ago Ser	oot Pro	gtg Val	gac Asp	cac His	gag Glu ens	gac	ato Ile	too Ser	Val	too Ser del	goa Ala	cag Gln	2129
aog Thr	ata Leu	ags Ser 685	atc Ile	taa Ser	aga Arg	tog Ser	gto Val 690	agc Ser	acc Thr	aac Asn	atg Met	gac Asp 695	tga			2170
ggga	actto	ctc a	agagg	gcagç	gg ca	igcac	cacgo	g dda	agcco	cege	ggcs	etgge	aac :	cega	ctgcc	2230
atat	gago	gaa t	cegg	gacto	ed to	etegt	actt	c ga	actca	actc	aato	caegg	ggg a	agaga	gacca	2290
cacç	gcagi	tat t	gago	otgo:	ct ga	agtgo	ggcgt	t gg	tacct	tgat	gtg	gg				2335
<:21: <:21: <:21:		95 RT omo :	sapie	ens												
:Met	O · .2 Ala	Glu	Ala	Pro 5	Pro	Arg	Arg	Leu	Gly 10		Gly	Pro	Pro	Pro 15	Gly	
1 Asp	Ala	Pro		Ala	Glu				Leu		Ala	Val	Gln 30	Ser	Glu	
31n	Gly	Glu 35	Ala					Ser		Arg	Arg	Leu 45		Leu	Leu	
Gly	3er 5)	Pro		Pro	Pro	Gly 55		Pro	, Leu	Pro	Gly 60		Gly	Ser	Gly	
65					7].					75				Arg	80	
				85					90					Arg 95		
Trp	Ala	. Phe	Val 100		His	Val	Phe	11e		Leu	Leu	Val	Ph·9	Ser	Cys	
		115					120)				125		Leu		
Asn	. Glu 130		Leu	. Leu	ı Ile	Leu 135		ı Ph∈	e Val	. Met	11e		Val	Phe	Gly	
Ten			· ile	Val	. Aro	r Val	Trp	Ser	r Ala	Gly	. Cys	Cys	Cys	Arg	Tyr	

14:					1.	_				111	-				
		Y Y .		165					- :					1 1	
Ile	Asp	Fhe	110	∵ā:	Phe	Tāl	Aļā	Ser 188	Val	Ala	∵ai	ile	Ala 191	Alā	317
Thr	31r.	Gly 198		ile	Phe	Ālā	Thr		Alā	Leu	Arg	Ser 205		Arg	Pt.e
Len	Gln 210	Tie	leu	Arg	Met	Tal 215	Arg	Met	Asp	Arg	Arg 220	31y	Gly	Thr	Trp
Lys	Leu	Leu	317	Ser	∵al	Val	Tyr	Ala	His	Ser	Lys	Glu	Leu	ile	Thr
215					230					235					2:10
Ala	Trp	Tyr	Ile	Gly 245	Fhe	Leu	Val	Leu	Ile 250	Phe	Ala	Ser	Phe	Leu 255	Val
Tyr	Leu	Ala	Glu 260	Lys	Asp	Ala	Asn	Ser 265	Asp	Phe	Ser	Ser	Tyr 270	Ala	Asp
Ser	Leu	Trp 278	Trp	Gly	Thr	Ile	Th.r 280	Leu	Thr	Thr	Ile	Gly 285	Tyr	Gly	Asp
Lys	Thr 290	Pro	His	Thr	Trr	Leu 295	Gly	Arg	Val	Leu	Ala 300	Ala	Gly	Phe	Ala
Leu 305		Gly	Ile	Ser	Phe		Ala	Leu	Pro	Ala 315	Gly	Ile	Leu	Gly	Ser 320
	Phe	Ala	Leu	Lys 325		Glr.	Glu	Gln	His 330		Gln	Lys	His	Phe	Glu
L;;s	Arg	Arq	Met 340		Alā	Alá	Asn	Leu 345		Gln	Ala	Ala	Trp 350	Arg	Leu
Tyr	Ser	Th: 355		Met	Ser	Arg	Ala 360		Leu	Thr	Ala	Thr 365		Tyr	Tyr
Tyr	Asp	3e∷	Ile	Leu	Pro	Ser 375	Phe	Arg	Glu	Leu	Ala 380	Leu	Leu	Phe	Glu
His 335		3ln	Arg	Ala	Arg 390			Gly	Leu	Arg 395		Leu	Gl:	Val	Arg 400
	Ala	Pro	Val	Pro 4)E		Gly	Ala	Pro	Ser 410	Arg	Tyr	Pro	Pro	Val 415	Ala
Thr	lys	His	Arg 420		Gly	Ser	Thr	Ser 4.25		Cys	Pro	Gly	Gl 43:	Ser	Ser
Arg	Met	31 y 43 E		Lys	Asp	Arg	Ile 440	Arg		Gly	Ser	Ser 445		Arg	Arg
Tar	Gly 450	Pro	Ser	Lys	Gln	31n 455	Lei		Pro	Pro	Thr 460	Met	Pro	Thr	Ser
Pro 465		Ser	Glu	Gln	7al 470	Gly		Ala	Thr	Ser 475		Thr	Lys	Val	Gln 480
	Jer	Trp	Ser	Phe 485	Asn		Arg	Tnr	Arg 490	Phe		Ala	Ser	Leu 495	
Leu	Lys	Pro	Arg 500	Thr		Ala	. Glu	. Asp 505	Ala		Ser	Glu	Glu 510	Val	
Glu	Glu	Lys 515	Ser		Gln	Cys	51u 520	Leu		Val	Asp	Asp 525	Ile		Pro
Ala	Val	Lys		Val	Ile	Arg			Arg	· Ile	Leu			Leu	Val

i

```
Ala Lys Arg Lys Ene Lys Glu Thr Leu Arg Fr. Tyr Asp Val Lys Asp
Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met Leu Gly Arg Ile
Lys Ser Leu Gin Thr Arg Wal Asp Gin Ile Wal Gly Arg Gly Pro Gly
          580 585
Asp Arg Lys Ala Arg Glu Lys Gly Asp Lys Gly Pro Ser Asp Ala Glu
                         600
Val Val Asp Glu Ile Ser Met Met Gly Arg Val Val Lys Val Glu Lys
Glm Val Glm Ser Ile Glu His Lys Leu Asp Leu Leu Leu Gly Phe Tyr
                                   635
                  630
Ser Arg Cys Leu Arg Ser Gly Thr Ser Ala Ser Leu Gly Ala Val Gln
                             650
           645
Val Erc Leu Phe Asp Pro Asp Ile Thr Ser Asp Tyr His Ser Pro Val
           660 665
Asp His Glu Asp Ile Ser Val Ser Ala Gln Thr Leu Ser Ile Ser Arg
    675 680
Ser Val Ser Thr Asn Met Asp
                      695
    690
· 210 · 3
· 1111: 24
- 11121- ENA
+213: Artificial Sequence
- 226 -
+113 - Description of Artificial Sequence: PCR Primer
4100 - 3
                                                             24
mangingticte tgagegesee gage
+ 210 + 4
- 211 - . 4
+ 211 + TNA
- 113 - Artificial Sequence
-:220-
 223 Description of Artificial Sequence: PCR Primer
+:4∋j + 4
                                                             24
aggesagget tgegegggga aaeg
```

+u1.+5	
<u> </u>	
S212 DBA	
k213. Artificial Sequence	
K2201	
R223: Description of Artificial Sequence: FCR Frimer	
NAZDO DESDITOTOR OF MITTIPLAT SEQUENTER FOR FILMET	
<400: 5	
pagowbagag otgtaabtoo agg	23
<210% 6	
K211:- 21	
H2120 ENA	
+:213: Artificial Sequence	
+12201+	
+2233+ Rescription of Artificial Sequence: PCR Primer	
+140 C1+ 16	0.1
Randigetet etgagedatg g	21
+21C+ 7	
+2:11:-20	
+1212 + ENA	
+22130 Artificial Sequence	
F201.4	
HAMPH Description of Artificial Sequence: PCE Primer	
*(40); < 7	
rotaggtoog ogotatgado	20
nsing roog egecycgaee	20
*M13.4 * 6 **********************************	
+211+20	
+M12 + INA	
+313 + Artificial Sequence	
Hall? - Description of Artificial Sequence: PCF Primer	
<:400.4 8	
ggtotocagg gtoagagtog	20

organisation of the Community of the Com	
52.2 - 1MA	
k213 - Artificial Seguence	
,	
<u> </u>	
<223 - Description of Artificial Sequence: POR Primer	
<400 + 9	
toogigtoog tgogoggggt â	
<210 13 421	
K211 - 21	
- 212 - DNA	
- 213 - Artificial Sequence	
120	
223 - Description of Artificial Sequence: PCR Primer	
+ 400 + 10	
paganagood ototgacoto g	
+ A1C + 11	
+111 + 21	
+:12 + DNA	
13 - Artificial Sequence	
+ 0.20 +	
-223 - Description of Artificial Sequence: PCR Primer	
+ 400 + 11	
Table thtoo ogtgtggaag C	
# .Sc. Letteck Gegegegg aag G	
· 211 · 12	
+21. + 12 +211 + 21	
+ BIL + DNA	
+21% + Artificial Sequence	
+ 22. +	
-22: Description of Artificial Sequence: PCR Primer	
-:401 · 12	

RUID RIMA	
kC13 - Artificial Sequence	
Kilo ki jililiai Segaenes	
<u> </u>	
K223 Description of Artificial Sequence: PCR Primer	
<400 ± 13	
	in a
ootoktgato aggotootas s	
K210 14	
K211 - 19	
213 - Artificial Sequence	
- 220 ·	
- 223 - Description of Artificial Sequence: PCR Primer	
+400 + 14	
	19
atgtqtgaca ggggtgagc	
4.01C + 15	
- 0.11 + 20	
+ ::12 + DNA	
-213 - Artificial Sequence	
- 223 - Description of Artificial Sequence: PCR Primer	
+ 40(+ 15	
saggstgggg acadeettge	20
11941e9999	
-210 - 16	
- 211 - 18	
-211 - DNA	
-213 - Artificial Sequence	
. 22 .	
(22) Description of Artificial Sequence: PCR Primer	
₹400 × 16	
acacagggtt gacacacc	18

e 4

3 110 % DMA	
Kulish Artificial Sequence	
N221Y	
K223: Description of Artificial Sequence: FOR Primer	
K400% 17	
gotongggta abbbababt g	
<210 × 18	
K211 + 21	
+ 212 + DNA	
-212 - Artificial Sequence	
. 22.4	
- [2] - Description of Artificial Sequence: PCR Primer	
.431.18	
intopeotgg gagedatdad d	21
1.: 19	
- 111 - 20	
11 - ENA	
11- Artificial Sequence	
· LI: · Mittitolal bequence	
·	
-12: Lescription of Artificial Sequence: PCR Primer	
-12: Lescription of Artificial Dequence. For France	
	20
tpagetbagg agototgtgb	
200 - 20	
- AMI - 21	
- USS - DNA	
- 21: - Artificial Sequence	
- 27.1 -	
-201 - Description of Artificial Sequence: PCR Primer	
•	
400 ≥ 20	
acccacgaag tggctgaagg C	21
according aggregation	

. .

x111 x 1	
SALLS CMA	
w213% Artificial Sequence	
kalan	
K223% Description of Artificial Sequence: FCR Primer	
K400% 21	
gtggtaagtg aggtttgtgg	
gudu, aaguu aguuunguu	
<210: 22	
· 211>: 20	
+ 212: TNA	
+213: Artificial Sequence	
· 22t:	
<2230 lescription of Artificial Sequence: PCR Primer	
$\sim 400 \times 22$	
hoticagoogg cootogatog	20
×21x 13	
- 211 · 20	
+31u + TNA	
- 11 Artificial Sequence	
. 23 - Lescription of Artificial Sequence: PCR Primer	
- 400 · 23	20
twotatactg gtggtttggc	20
+.:10+24	
+ 211 + 20	
- LIR - INA	
H213 - Artificial Sequence	
-1220 -	
4223 - Description of Artificial Sequence: PCR Primer	
4400 + 24	
ctcctgacct caagtgatcc	20

. . .

kullik 21	
SILLS DIA	
K213> Artificial Sequence	
N. 2.2.1.X	
<pre></pre>	
<u> </u>	
<400% 25	^ -
gatagbaaag agatggagag g	2 -
K210N-26	
K211X-21	
+ 2120+ INA	
+ 213: Artificial Sequence	
- Light Middle Dougle	
- 2200	
- 223: Lescription of Artificial Sequence: PCR Primer	
· 400 · 26	
wactragitg cagcagtgag c	21
+010 + 27	
+011 + 21	
-1.12 - LNA	
- 113 - Artificial Sequence	
\sim , $20 imes$	
193 - Description of Artificial Sequence: PCR Primer	
•	
+ 100 + 17	
	21
ngorttete etteateagg e	
- 210 - 38	
+u11 + 30	
+ 212 + UNA	
- 213 - Artificial Sequence	
-223 - Description of Artificial Sequence: PCR Primer	
- 12 165011pc10m 01 mc111c1d1 boque.eo, 10m 111m1	
-:401 + 28	20
aacgcatcot coccatgtca	20

COLLY DIA	
küläs Artiridial Sequende	
•	
k1210	
KILIN Description of Artificial Seguence: FCR Frimer	
K4000-29	
tttg:gottg:gottg:goagataagg	<u>-</u> 2
H210H30	
- 2110 24	
+ 212: DNA	
- 213: Artificial Sequence	
- 220.·	
- 223 - Sescription of Artificial Sequence: PCR Primer	
. 223 - Eastription of Artificial Sequence. Tok 174.00	
+ 4CO + 3C	C: 4
ngtgagggag tgagttcaag tacg	2.4
- 210 · 31	
- 211 - 24	
+ 212 + INA	
-213 - Artificial Sequence	
. 220 -	
223 - Lescription of Artificial Sequence: PCR Primer	
and hoselfperon of the section of	
400 + 31	24
aghanchgat ggagegeet eteg	24
- 210 - 12	
- 211 + 14	
- 212 + 1 NA	
-213 - Artificial Sequence	
- 220 ·	
4223 · Description of Artificial Sequence: PCR Primer	
•	
-:400 + 32	
	24
toatopapeg taageteasa etgg	

1.111 × 6.56

kliur FRT

k2135 Homo sapiens

<4115 33

Met Ala Ala Ala Ser Ser Pro Pro Arg Ala 31m Arg Lys Arg Trp Gly

Trp Gly Arg Leu Fra Gly Ala Arg Arg Gly Ser Ala Gly Leu Ala Lys

Lys Cys Pro Phe Ser Leu Glu Leu Ala Glu Gly Gly Pro Ala Gly Gly 35 40 45

Ala Leu Tyr Ala Pro Ile Ala Pro Gly Ala Pro Gly Pro Ala Pro Pro 50 55 60

Ala Ser Pro Ala Ala Pro Ala Ala Pro Pro Val Ala Ser Asp Leu Gly 65 70 75 80

Pro Arg Pro Pro Val Ser Leu Asp Pro Arg Val Ser Ile Tyr Ser Thr 85 90 95

Arg Arg Pro Val Leu Ala Arg Thr His Val Gln Gly Arg Val Tyr Asn 100 105 110

Phe Leu Glu Arg Pro Thr Gly Trp Lys Cys Phe Val Tyr His Phe Ala 115 120 125

Val Phe Leu Ile Val Leu Val Cys Leu Ile Phe Ser Val Leu Ser Thr 130 135 140

Ile Val Leu Val Val Phe Phe Gly Thr Glu Tyr Val Val Arg Leu Trp 165 170 175

Ser Ala Gly Cys Arg Ser Lys Tyr Val Gly Leu Trp Gly Arg Leu Arg 180 185 190

Phe Ala Arg Lys Pro Ile Ser Ile Ile Asp Leu Ile Val Val Val Ala 195 200 205

Ser Met Val Val Leu Cys Val Gly Ser Lys Gly Gln Val Phe Ala Thr 210 215 220 Der Ala 110 Art dig 110 Art the Dea Min 110 Dea Art Met Dea His Wal Asp Arg Bin Bly Bly Thr Trp Arg Leu Leu Bly Ser Wal Wal Fhe 245 255 Die His Arg Bin Bid Led Die Thr Thr Led Tyr Die Bly Fhe Led Bly 265 271 Led Ile Phe Ser Ser Tyr Phe Wal Tyr Led Ala 31d 1ys Asp Ala Wal 253 258 Asn Glu Ser Gly Arg Val Glu Phe Gly Ser Tyr Ala Asp Ala Leu Trp 298 298 300 Trp Gly Val Val Thr Val Thr Thr Ile Gly Tyr Gly Asp Lys Val Pro 305 310 315 Gln Thr Trp Val Gly Lys Thr Ile Ala Ser Cys Phe Ser Val Phe Ala 325 330 335 Ile Ser Phe Phe Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala 340 345 350 Leu Lys Val Gln Gln Lys Gln Arg Gln Lys His Phe Asn Arg Gln Ile 355 360 365 Pro Ala Ala Ala Ser Leu Ile Gln Thr Ala Trp Arg Cys Tyr Ala Ala 370 375 380 Glu Asn Pro Asp Ser Ser Thr Trp Lys Ile Tyr Ile Arg Lys Ala Pro 395 390 395 Arg Ser His Thr Leu Leu Ser Pro Ser Pro Lys Pro Lys Ser Val 405 416 415 Val Val Lys Lys Lys Phe Lys Leu Asp Lys Asp Asn Gly Val Thr 420 425 430 Pro Gly Glu Lys Met Leu Thr Val Pro His Ile Thr Cys Asp Pro Pro 445 435 440 Glu Glu Arg Arg Leu Asp His Phe Ser Val Asp Gly Tyr Asp Ser Ser **4**50 **4**55 **4**€0 Val Arg Lys Ser Pro Thr Leu Leu Glu Val Ser Met Pro His Phe Met 470 475 480

Art The Ash for the A. . Wil Asp Let Asp Leg Sig Sig Sig The Let 48. 48. Led Thr Pro Ile Thr His Ile Ser 3lm Led Arg 3ld His His Arg Ala 817 818 The lie lys Wal lie Arg Arg Met Gln Tyr Phe Wal Ala Lys Lys The Gin Gin Ala Arg Lys Pro Tyr Asp Val Arg Asp Val Ile Glu Gin 535 540 Tyr Ser Gln Gly His Leu Asn Leu Met Val Arg Ile Lys Glu Leu Gln 543 580 555 563 Arg Arg Leu Asp Gln Ser Ile Gly Lys Pro Ser Leu Phe Ile Ser Val 575 575 Ser Glu Lys Ser Lys Asp Arg Gly Ser Asn Thr Ile Gly Ala Arg Leu 580 585 590 Asn Arg Val Glu Asp Lys Val Thr Gln Leu Asp Gln Arg Leu Ala Leu 595 600 605 Ile Thr Asp Met Leu His Gln Leu Leu Ser Leu His Gly Gly Ser Thr 610 615 620 Fro Gly Ser Gly Gly Pro Pro Arg Glu Gly Gly Ala His Ile Thr Gln €25 630 635 640 Fro Tys Gly Ser Gly Ser Val Asp Pro Glu Leu Phe Leu Pro Ser 645 650 655 Asn Thr Leu Pro Thr Tyr Glu Gln Leu Thr Val Pro Arg Arg Gly Pro

660 665 670

Asp Glu Gly Ser

675

<210> 34
<211> 844
<212: PRT</pre>

4213: Homo sapiens

Met Val Gln Lys Ser Arg Ash Gly Gly Val Tyr Pro Gly Pro Ser Gly

1 5 10 15

Old dys dys ded dys val bly the Val Bly Ded Asp Fro bly Ala Fro Dl

. , . .

- Asp Ser Thr Arg Asp Sly Ala Leu Leu Ile Ala Sly Ser Slu Ala Pro
- Lys Arg Gly Ser Ile Leu Ser Lys Bro Arg Ala Gly Gly Ala Gly Ala 81 61
- Gly Lys Pro Pro Lys Arg Asn Ala Fne Tyr Arg Lys Leu Gln Asn Phe
- Leu Tyr Asn Val Leu Glu Arg Pro Arg Gly Trp Ala Phe Ile Tyr His 85 90 95
- Ala Tyr Val Phe Leu Leu Val Phe Ser Cys Leu Val Leu Ser Val Phe 100 105 110
- Ser Thr Ile Lys Glu Tyr Glu Lys Ser Ser Glu Gly Ala Leu Tyr Ile 115 120 125
- Leu Glu Ile Val Thr Ile Val Val Phe Gly Val Glu Tyr Phe Val Arg 130 135 140
- Ile Trp Ala Ala Gly Cys Cys Cys Arg Tyr Arg Gly Trp Arg Gly Arg145150
- Leu Lys Phe Ala Arg Lys Pro Phe Cys Val Ile Asp Ile Met Val Leu 165 170 175
- Ile Ala Ser Ile Ala Val Leu Ala Ala Gly Ser Gln Gly Asn Val Phe 180 185 190
- Ala Thr Ser Ala Leu Arg Ser Leu Arg Phe Leu Gln Ile Leu Arg Met 195 200 205
- Ile Arg Met Asp Arg Arg Gly Gly Thr Trp Lys Leu Leu Gly Ser Val 210 215 220
- Val Tyr Ala His Ser Lys Glu Leu Val Thr Ala Trp Tyr Ile Gly Phe 225 230 235 240
- Leu Cys Leu Ile Leu Ala Ser Phe Leu Val Tyr Leu Ala Glu Lys Gly 245 250 255
- Glu Asn Asp His Phe Asp Thr Tyr Ala Asp Ala Leu Trp Trp Gly Leu 260 265 270

The Thr Lea The Thr Ile Bly Tyr Bly Asy Lys Tyr Er. Bin Thr Try <u>__</u>1 Ash Bly Arg Leu Leu Ala Ala Thr The Thr Leu Ile Bly Val Ser The 295 295 311 The Ala Leu Pro Ala Gly Ile Leu Gly Ser Gly Phe Ala Leu Lys Wal 315 315 Bin Blu Bin His Arg Gln Lys His Phe Glu Lys Arg Arg Asn Pro Ala 325 331 335 Ala Gly Leu Ile Gln Ser Ala Trp Arg Phe Tyr Ala Thr Asn Leu Ser 340 345 350 Arg Thr Asp Leu His Ser Thr Trp Gln Tyr Tyr Glu Arg Thr Val Thr 355 360 Val Pro Met Tyr Arg Leu Ile Pro Pro Leu Asn Gln Leu Glu Leu Leu 370 375 380 Arg Ash Leu Lys Ser Lys Ser Gly Leu Ala Phe Arg Lys Asp Pro Pro 385 390 395 400 Pro Glu Pro Ser Pro Ser Gln Lys Val Ser Leu Lys Asp Arg Val Phe 405 410 Ser Ser Pro Arg Gly Val Ala Ala Lys Gly Lys Gly Ser Pro Gln Ala 4.10 425 Gln Thr Val And And Ser Pro Ser Ala Asp Gln Ser Leu Glu Asp Ser 435 440 445 Pro Ser Lys Val Pro Lys Ser Trp Ser Phe Gly Asp Arg Ser Arg Ala 450 455 460 Arg Gln Ala Phe Arg Ile Lys Gly Ala Ala Ser Arg Gln Asn Ser Glu 465 470 475 480 Glu Ala Ser Leu Pro Gly Glu Asp Ile Val Asp Asp Lys Ser Cys Pro 435 490 495 Cys Glu Phe Val Thr Glu Asp Leu Thr Pro Gly Leu Lys Val Ser Ile 500 505 510 Arg Ala Val Cys Val Met Arg Phe Leu Val Ser Lys Arg Lys Phe Lys 515 525

Old Ser Led Ary Fr. Tyr Asp Mal Met Asp Mal The Glo Olm Tyr Ser Ala Bly His Leu Asp Met Leu Ser Arg Tie Lys Ser Leu Bin Ser Arg 5.60 Val Asp Gin lie Val Gly Arg Gly Pro Ala lie Thr Asp Lys Asp Arg 5.65 5.71 5.75 Thr Lys Gly Fro Ala Glu Ala Glu Leu Pro Glu Asp Pro Ser Met Met 8.8.0 Gly Arg Leu Gly Lys Val Glu Lys Gln Val Leu Ser Met Glu Lys Lys 600 Leu Asp Phe Leu Val Asn Ile Tyr Met Gln Arg Met Gly Ile Pro Pro 615 623 Thr Glu Thr Glu Ala Tyr Phe Gly Ala Lys Glu Pro Glu Pro Ala Pro 630 635 640 Pro Tyr His Ser Prc Glu Asp Ser Arg Glu His Val Asp Arg His Gly 645 650 655 Cys Ile Val Lys Ile Val Arg Ser Ser Ser Ser Thr Gly Gln Lys Asn 665 670 660 Phe Ser Ala Pro Pro Ala Ala Pro Pro Val Gln Cys Pro Pro Ser Thr 683 685 Ser Trp Gln Pro Gln Ser His Pr: Arg Gln Gly His Gly Thr Ser Pro 690 695 700 Val Gly Asp His Gly Ser Leu Val Arg Ile Pro Pro Pro Pro Ala His 705 710 715 720 Glu Arg Ser Leu Ser Ala Tyr Gly Gly Gly Asn Arg Ala Ser Met Glu 725 730 735 Phe Leu Arg Gln Glu Asp Thr Pro Gly Cys Arg Pro Pro Glu Gly Thr 740 745 750 Leu Arg Asp Ser Asp Thr Ser Ile Ser Ile Pro Ser Val Asp His Glu 755 763 765 Glu Leu Glu Arg Ser Phe Ser Gly Phe Ser Ile Ser Gln Ser Lys Glu 770 775 780

Ash Led Asp Ala Led Ash Jer Dys Tyr Ala Ala Val Ala Pro Dys Ala 198 mas Lys Val Arg Fro Tyr Ile Ala Glu Gly Glu Ser Asp Thr Asp Ser Asp Leu Cys Thr Pro Cys Gly Pro Pro Pro Arg Ser Ala Thr Gly Glu Gly 825 831 Pro Phe Siv Asp Val Siy Trp Ala Siy Pro Arg Lys 840 +:210:+ 35 +12111-872 +1212 + PRT +1213 · Homo sapiens +:400 × 35 Met Gly Leu Lys Ala Arg Arg Ala Ala Gly Ala Ala Gly Gly Gly 1 5 10 15 Asp Gly Gly Gly Gly Gly Gly Ala Ala Asn Pro Ala Gly Gly Asp 20 25 30 Ala Ala Ala Gly Asp Glu Glu Arg Lys Val Gly Leu Ala Pro Gly Asp Val Glu Gln Val Thr Leu Ala Leu Gly Ala Gly Ala Asp Lys Asp 50 55 60 Gly Thr Leu Leu Glu Gly Gly Gly Arg Asp Glu Gly Gln Arg Arg 65 70 75 80 Thr Pro Gln Gly Ile Gly Leu Leu Ala Lys Thr Pro Leu Ser Arg Pro 95 90 95 Val Lys Arg Asn Asn Ala Lys Tyr Arg Arg Ile 3ln Thr Leu Ile Tyr 100 105 110 Asp Ala Leu Glu Arg Pro Arg Gly Trp Ala Leu Leu Tyr His Ala Leu 115 120 125 Val Phe Leu Ile Val Leu Gly Cys Leu Ile Leu Ala Val Leu Thr Thr

. . .

Phe Lys Glu Tyr Glu Thr Val Ser Gly Asp Trp Leu Leu Leu Glu

130 135 140

141					<u>.</u> .					1:::					`
The	Fhe	Ala	Ile	1 n 1 6 f		lhe	317	Ala	31u 170	Fhe	F.1.1	lea	Arş	115	T viv
Ala	Alā	Gly	Tys 1=1	Tys	lys	Arg	Tyr	Lys 188	31;	Trr	Arg	317	Arg 191	<u>l</u> au	i.js
Phe	Ala	Arg	Lys	Pro	Leu	Oys	Met 200	Leu	Asp	110	Phe	Val 215	Leu	Tie	Alā
Ser	Val 210	Fro	∵al	Val	Alā	Val 215	Gly	Asn	Gln	Gly	Asn 220	Val	Leu	Ala	Thr
Ser 225	Leu	Arg	Ser	Leu	Arg 230	Phe	Leu	Gln	Ile	Leu 235	Arg	Met	Leu	Arg	Met 240
Asp	Arg	Arg	Gly	Gly 245	Thr	Trp	Lys	Leu	Leu 250	Gly	Ser	Ala	Ile	Cys 255	Ala
His	Ser	Lys	Glu 260	Leu	Ile	Thr	Ala	Trp 265	Tyr	Ile	Gly	Phe	Leu 270	Thr	Leu
Ile	Leu	Ser 275	Ser	Phe	Leu	Val	Tyr 280	Leu	Val	Glu	Lys	Asp 285		Pro	Glu
Val	Asp 290	Ala	Gln	Gly	Glu	Glu 295	Met	Lys	Glu	Glu	Phe	Glu	Thr	Tyr	Ala
Asp 305	Ala	Leu	Trp	Trp	Gly 310		Ile	Thr	Leu	Ala 315	Thr	Ile	Gly	Tyr	31y 320
Asp	Lys	Thr	Pro	Lys 325	Thr	Trp	Glu	Gly	Arg 330	Leu	Ile	Ala	Ala	Thr 335	Ph∈
Ser	Leu	Ile	31у 340		Ser	Phe	Phe	Ala 345	Leu	Pro	Ala	Gly	11e 350		Gly
Ser	Gly	Leu 355	Ala	Leu	Lys	Val	Gln 360	. 3lu	Gln	His	Arg	Gln 365		His	Ph∈
Glu	Lys 370	Arg	Arg	Lys	Pro	Ala 375		. Glu	Leu	Ile	Gln 380		. Ala	Trp	Arç
Tyr 385	Tyr	Ala	Thr	Asn	Pro 390		Arg	ı Ile	Asp	Leu 395		Ala	. Thr	Trp	Arç 400
Ph.e	Tyr	Glu	Ser	Vāl	Vāl	Ser	Phe	e Pro	Phe	Phe	Arg	Lys	: Glu	Gln	. Let

310 Ala Ala Ser Ser Sin Lys Leo Sly Leo Leo Asp Ard Val Arg Leo 425 430 Ser Asn Pro Arg Gly Ser Asn Thr Lys Gly Lys Leu Phe Thr Pro Leu 438 448 Ash Val Asp Ala Ile Glu Glu Ser Pro Ser Lys Glu Pro Lys Pro Val 450 455 460 Gly Leu Asn Asn Lys Glu Arg Phe Arg Thr Ala Phe Arg Met Lys Ala 475 480 465 Tyr Ala Phe Trp Gln Ser Ser Glu Asp Ala Gly Thr Gly Asp Pro Met 490 495 485 Ala Glu Asp Arg Gly Tyr Gly Asn Asp Phe Pro Ile Glu Asp Met Ile 500 505 510 Pro Thr Leu Lys Ala Ala Ile Arg Ala Val Arg Ile Leu Gln Phe Arg 515 520 525 Leu Tyr Lys Lys Lys Phe Lys Glu Thr Leu Arg Pro Tyr Asp Val Lys 530 535 540 Asp Val Ile Glu Gln Tyr Ser Ala Gly His Leu Asp Met Leu Ser Arg
 545
 550
 555
 560
 Ile Lys Tyr Leu Gln Thr Arg Ile Asp Met Ile Phe Thr Pro Gly Pro 565 570 575 Pro Ser Thr Pro Lys His Lys Lys Ser Gln Lys Gly Ser Ala Phe Thr 580 585 590 Phe Pro Ser Gln Gln Ser Pro Arg Asn Glu Pro Tyr Val Ala Arg Pro 595 600 605 Ser Thr Ser Glu Ile Glu Asp Gln Ser Met Met Gly Lys Phe Val Lys 610 620 Val Glu Arg Gln Val Gln Asp Met Gly Lys Lys Leu Asp Phe Leu Val 625 630 635 640 Asp Met His Met Gln His Met Glu Arg Leu Gln Val Gln Val Thr Glu 650 655 645

Tyr Tyr Pro Thr Lys Gly Thr Ser Ser Pro Ala Glu Ala Glu Lys Lys

Glu Asp Asr. Arg Tyr Ser Asp Leu Lys Thr Ile Ile Tys Asr. Tyr Ser 605 681 685

ee ee

31u Thr 31y Pro Pro Slu Pro Pro Tyr Ser Phe His 31n Val Thr Ile 891 891

Asp Lys Val Ser Pro Tyr Gly Phe Fne Ala His Asp Pro Val Asn Leu 718 - 720

Fro Arg Sly Gly Pro Ser Ser Gly Lys Val Gln Ala Thr Pro Pro Ser 730 735

Ser Ala Thr Thr Tyr Val Glu Arg Pro Thr Val Leu Pro Ile Leu Thr 740 745 750

Leu Leu Asp Ser Arg Val Ser Cys His Ser Gln Ala Asp Leu Gln Gly 755 760 765

Pro Tyr Ser Asp Arg Ile Ser Pro Arg Gln Arg Arg Ser Ile Thr Arg 770 775 780

Asp Ser Asp Thr Fro Leu Ser Leu Met Ser Val Asn His Glu Glu Leu 785 790 795 800

Glu Arg Ser Pro Ser Gly Phe Ser Ile Ser Gln Asp Arg Asp Tyr 805 810 815

Val Phe Gly Pro Asn Gly Gly Ser Ser Trp Met Arg Glu Lys Arg Tyr 821 825 830

Leu Ala Glu Gly Glu Thr Asp Thr Asp Thr Asp Pro Phe Thr Pro Ser 335 840 845

Gly Ser Met Pro Leu Ser Ser Thr Gly Asp Gly Ile Ser Asp Ser Val 850 855 860

Trp Thr Pro Ser Asn Lys Pro Ile 865 870

::210:- 36

.:211:- 21

+:212: DNA

<:213: Artificial Sequence</pre>

4220>

· ·
- Call to less repaire of Artificial Copense: F.F. Ereror
+4.15 36
aaggotggat cagtocattg g
kains 37
<211> 21
<212> DNA
<213> Artificial Sequence
K220%
k223> Description of Artificial Sequence: FCR Primer
<:400:- 37
aggtuggeag getgttgetg g
H:2100- 38
+:211:+ 21
C2180 DNA
-:::13:- Artificial Sequence
-:220 ·
<pre>00.23 - Lescription of Artificial Sequence: PCR Primer</pre>
· (400 + 30 ·)
guesngqeae etecocogtg g
40210 + 39

. .

21

21

<21) + 4)
<211 + 14
<212 + DNA
<213 + Artificial Sequence
<220>

-	•	4	٠

out to leading to not Artificial Coquencer ECE Frince	
N400 + 4 ocaaggaang kassatangt agos	<u> </u>
<pre>kalib 41 kalib 24 kalib DNA kalib Artificial Sequence</pre>	
<pre>klille k223> Description of Artificial Sequence: FCR Primer</pre>	
<400> 41 cagaagagto aagatgggoa ggao	24