AUTHOR

kyle wodehouse

PUBLISHED February 14, 2025

grabbing the fit parameters from the paper sandler references and quickly plotting the curve

also note that the equations from the paper are given in the form

$$\Delta_{ ext{mix}} H = x(1-x) \left(h_0 + h_1(1-2x) + h_2(1-2x)^2
ight)$$

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def DeltaH_mix(x2, params):
   h0, h1, h2 = params
    return x2 * (1 - x2) * (h0 + h1 * (1 - 2*x2) + h2 * (1 - 2*x2)**2)
params_dict = {
    'H': (230, 578, 409),
    'F': (-1984, 1483, 1169),
    'Cl': (-2683, 929, 970),
    'Br': (-3087, 356, 696),
    'I': (-4322, -161, 324)
}
fig, ax = plt.subplots(figsize=(10,8), dpi=500)
for name in params_dict.keys():
   x = np.linspace(0,1,1000)
   y = DeltaH_mix(x, params_dict[name])
   ax.plot(x, y, label=name)
ax.legend()
ax.grid()
ax.set(xlim=(0,1), xlabel='x_{C_6F_5Y}, ylabel='\Delta_{mix} \{H\}');
```


 $rac{d}{dx_2}\Delta H_{
m mix} = (1-2x_2)(h_0+h_1(1-2x_2)+h_2(1-2x_2)^2) + x_2(1-x_2)(-2h_1-4h_2(1-2x_2))$

Cl Br

the derivative of the equations the paper provides are in this form

```
term1 = (1 - 2*x2) * (h0 + h1 * (1 - 2*x2) + h2 * (1 - 2*x2)**2)
   term2 = x2 * (1 - x2) * (-2 * h1 - 4 * h2 * (1 - 2*x2))
    return term1 + term2
fig, ax = plt.subplots(figsize=(10,8), dpi=500)
colors = plt.cm.tab10(np.linspace(0, 1, 5))
for color, name in zip(colors, params_dict.keys()):
   x = np.linspace(0,1,1000)
   y = d_DeltaH_mix(x, params_dict[name])
   ax.plot(x, y, label=name, color=color)
ax.legend()
ax.grid()
ax.set(xlim=(0,1), xlabel='x_{C_6F_5Y}', ylabel='\lambda_{mix} \{H\}', title='plot of de
                                        plot of derivatives
  4000
             F
```


- x: mole fraction C6F5Y (float or nparray) - params: the h0, h1, h2 fit parameters (tuple)

returns the difference between the partial molar properties and molar properties

```
- (1) difference for benzene
- (2) difference for the C6F5Y
```

return (delta_mix - x * derivative, delta_mix + (1 - x) * derivative)

```
composition = 0.333
benzenes, c6f5ys = [], []
for mixture, params in zip(['H', 'F', 'Cl', 'Br', 'I'], params_dict.keys()):
   diff_benzene, diff_c6f5 = differences(composition, params_dict[params])
   benzenes.append(diff benzene)
```

derivative = $d_DeltaH_mix(x, (h0, h1, h2))$ $delta_mix = DeltaH_mix(x, (h0, h1, h2))$

```
benzenes, c6f5ys = [], []
for mixture, params in zip(['H', 'F', 'Cl', 'Br', 'I'], params_dict.keys()):
   diff_benzene, diff_c6f5 = differences(composition, params_dict[params])
   benzenes.append(diff_benzene)
   c6f5ys.append(diff_c6f5)
df2 = pd.DataFrame({'composition':composition,
                   'Y':['H', 'F', 'Cl', 'Br', 'I'],
                   'benzene difference': benzenes,
                   'C6F5Y difference':c6f5ys})
```

df = pd.concat([df, df2])

benzene differences!!

returns:

h0, h1, h2 = params

c6f5ys.append(diff_c6f5)

df.pivot(index='composition', columns='Y')['benzene difference']

·	•	•				
Υ	Br	CI	F	Н	I	
composition	1					
0.333	-199.082911	-17.835391	184.271225	177.887603	-473.017385	
0.667	-1424.003857	-1200.267830	-836.973728	127.043932	-1994.638285	

C_6F_5Y differences !!

-330.776461

0.667

```
df.pivot(index='composition', columns='Y')['C6F5Y difference']
```

Υ	Br	CI	F	Н	1
composition					
0.333	-1529.168499	-1474.700279	-1275.061265	-43.700907	-1947.077871

-364.328594

-35.929454

-413.459347

```
# this is filler text. ignore please.
```

-361.496370