浙江工业大学 2020/2021 学年 第一学期概率论与数理统计期末考试试卷

	学号:		姓名:			
			任课教师:			
	题号	_	三	Ξ	总分	
	得分					
分位点数据	:					
$t_{0.05}$ (1	15) = 1.7	$53, \ t_{0.05}(16)$	$= 0.9505, \qquad \Phi$ $= 1.746, t_{0.02}$			
一、填空题.(包		·	+11 宏 D(4)	1 p/p) 1 r	ill D(A \overline{D}\	
	件产品中		相容, $P(A) =$ 品. 每次取 1			 又到次品的概率
	X 只能 EX =		,且取到这 3 ′	个值的概率之比	比为 1:2:3,	则 $P(X=0)=$
4. 设随机变概率是_	量 X 服/ 	从指数分布 E	xp(ln 3), 则关于	于 t 的方程 4t ²	+4Xt+X+	- 2 = 0 有实根的
5. 设随机变 则 P(X <			(x) 满足: f(1	+x) = f(1 -	$x), \ \mathbb{H} \ P(0 <$	X < 2) = 0.8,
		最从二项分れ (Y ≥ 1) = _		服从泊松分布	i P(p). 若 F	$P(X \ge 1) = \frac{3}{4},$

7. 设随机变量 X,Y 相互独立,均服从均匀分布 U(0,1),则 $E(XY) = _____, Var(XY) =$

8. 设二维随机变量 (X,Y) 的联合分布表为

X	x_1	x_2	x_3
y_1	$\frac{1}{18}$	$\frac{1}{9}$	b
y_2	$\frac{1}{9}$	a	c

若 X,Y 相互独立,则 $a = ____, c - b = ____.$

9. 设总体 $X \sim N(0, \sigma^2), X_1, X_2, \dots, X_8$ 是 X 的简单样本, 若

$$T = C \frac{X_1^2 + X_2^2 + X_3^2}{(X_4 + X_5 + X_6 + X_7 + X_8)^2}$$

服从 F 分布, 其自由度为 _____, C = _____.

二、选择题.(每小题3分, 共12分)

1. 设随机变量 X 与 Y 都相互独立且都服从标准正态分布 N(0,1), 则)

- (A) $P(X+Y \ge 0) = \frac{1}{4}$
- (B) $P(X Y \ge 0) = \frac{1}{4}$
- (C) $P(\max\{X,Y\} \ge 0) = \frac{1}{4}$ (D) $P(\min\{X,Y\} \ge 0) = \frac{1}{4}$

2. 将一枚均匀硬币连掷 100 次, 由中心极限定理, 出现正面次数大于 60 的概率约为 (

- (A) 0.0121
- (B) 0.0228
- (C) 0.1587
- (D) 0.2280

3. 设 X_1, X_2, X_3 是来自总体 X 的简单样本,则在下列 EX 的估计量中,最有效的无偏估计 量是 (

- (A) $\frac{1}{4}(X_1 + 2X_2 + X_3)$
- (B) $\frac{1}{3}(X_1 + X_2 + X_3)$
- (C) $\frac{1}{5}(X_1 + 3X_2 + X_3)$
- (D) $\frac{1}{5}(2X_1 + 2X_2 + X_3)$

4. 设 X_1, X_2, \ldots, X_9 是来自正态总体 $N(\mu, \sigma^2)$ 的简单样本, \overline{X} 是样本均值, S^2 是样本方差, 则以下结论正确的是)

(A) $\frac{9S^2}{\sigma^2} \sim \chi^2(9)$

(B) $\frac{9S^2}{\sigma^2} \sim \chi^2(8)$

- (C) $\frac{9(\overline{X}-\mu)^2}{S^2} \sim F(1,9)$
- (D) $\frac{9(\overline{X}-\mu)^2}{S^2} \sim F(1,8)$

三. 解答题 (共 60 分)

1.(10 分) 某厂有甲, 乙, 丙三个车间生产同一种产品, 各车间的产量分别占全厂总产量的 20%, 30%, 50%. 根据过去产品质量检验记录知道甲, 乙, 丙车间的次品率分别为 4%, 3%, 2%.

- (1) 从该厂产品中任取一件, 求其为次品的概率;
- (2) 若从该厂的产品中任取一件, 发现其为次品, 问该产品为乙车间生产的概率是多少?

2. (10 分)设连续型随机变量 X 的概率密度函数为:

$$f(x) = \begin{cases} Ax, & 0 \le x \le 1, \\ A(2-x), & 1 < x \le 2, \\ 0, & \sharp \text{ th.} \end{cases}$$

求: (1) 常数 A; (2) F(1.5), 其中 F(x) 为 X 的分布函数.

3. (12 分) 设二维随机向量 (X,Y) 在矩形 $G = \{(x,y): 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布, 定义

$$U = \begin{cases} 0, & \text{ ät } X \le Y, \\ 1, & \text{ ät } X > Y, \end{cases} \qquad V = \begin{cases} 0, & \text{ ät } X \le 2Y, \\ 1, & \text{ ät } X > 2Y, \end{cases}$$

- (1) 求(U,V)的联合分布律和边缘分布律;
- (2) 判断*U*, *V*是否独立?
- (3) 求U和V的相关系数 ρ .

4. (8 分) 设二维随机向量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} \frac{1}{4} e^{-\frac{1}{2}(x+y)}, & x > 0, \ y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

求: (1) X的边缘密度函数; (2) (X,Y)的联合分布函数.

5.(10~ 分) 已知某机器生产出的零件长度 X (单位: cm) 服从正态分布 $N(\mu, \sigma^2)$, 现抽取容量为 16 的样本, 测得样本均值 $\overline{x}=10$, 样本方差 $s^2=0.16$.

- (1) 求总体均值 μ 置信水平为 0.95 双侧置信区间;
- (2) 在显著水平为 0.05 下, 检验假设 $H_0: \mu = 9.7, \ H_1: \mu \neq 9.7.$

6. (10 分) 设随机变量 X 的分布函数为

$$F(x; \alpha, \beta) = \begin{cases} 1 - \left(\frac{\alpha}{x}\right)^{\beta}, & x > \alpha, \\ 0, & x \le \alpha, \end{cases}$$

其中 $\alpha > 0$, $\beta > 1$, $X_1, X_2, \cdots X_n$ 为 总体 X 的简单样本.

- (1) 当 $\alpha = 1$ 时, 求 β 的矩估计量;
- (2) 当 $\beta = 2$ 时, 求 α 的极大似然估计量.