IV - Matrices inversibles

Révisions

Résolution de systèmes par méthode du pivot de Gauss.

Exercice 1. On considère le système d'équations

$$(S) \begin{cases} 2x + 3y &= 5 \\ -x + 7y &= 6 \end{cases}.$$

- 1. Résoudre le système (S) en utilisant la méthode du pivot de Gauss.
- **2.** Écrire matriciellement le système (S).

I - Inversibilité

Définition 1 - Matrice inversible

Une matrice A d'ordre p est inversible s'il existe une matrice B telle que $AB = I_p$. La matrice B est l'inverse de A et notée A^{-1} .

Exemple 1 - Matrices inversibles et non inversibles

- On pose $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Comme $AB = I_2$, alors A est inversible et $A^{-1} = B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.
- Comme $I_p \times I_p = I_p$, alors I_p est inversible et son inverse est I_p .
- Comme $0_p \times A = 0_p \neq I_p$ pour toute matrice carrée A, alors la matrice nulle n'est pas inversible.

Exercice 2. Soit
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 & -3 \\ 1 & 1 & 3 \\ -3 & 3 & -3 \end{pmatrix}$.

- **1.** Calculer AB.
- **2.** En déduire que A est inversible et déterminer A^{-1} .

Proposition 1 - Inversibilité et produit

Soit A et B deux matrices carrées d'ordre p.

- Si $AB = I_p$, alors $BA = I_p$. Ainsi, $A^{-1} = B$ et $B^{-1} = A$.
- Si A est inversible, alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- Si A et B sont inversibles, alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

Exemple 2

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

On peut vérifier que $A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ et $B^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$.

Ainsi, $AB = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ est inversible et son inverse vaut

$$(AB)^{-1} = B^{-1}A^{-1}$$

= $\begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$.

Exercice 3. (
$$\mathfrak{S}_{\mathbf{a}}^{\mathbf{a}}$$
) Soit $M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- **1.** Calculer $M^2 2M + I_3$.
- **2.** En déduire que M est inversible et déterminer M^{-1} .

Chapitre IV - Matrices inversibles

II - Calculs de puissance

Théorème 1 - Puissance et relation PDP^{-1}

Soit A une matrice carrée d'ordre p. On suppose qu'il existe une matrice P inversible d'ordre p et une matrice diagonale D d'ordre p telles que $A = PDP^{-1}$. Alors, pour tout n entier naturel, $A^n = PD^nP^{-1}$.

Exercice 4. On considère les matrices

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **1.** En notant $Q = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, calculer le produit PQ. En déduire que P est inversible.
- **2.** Vérifier que $A = PDP^{-1}$.
- **3.** Montrer par récurrence que, pour tout n entier naturel, $A^n = PD^nP^{-1}$.
- **4.** En déduire, pour tout n entier naturel, une expression des coefficients de A^n en fonction de n.

III - Critères d'inversibilité

III.1 - Cas des matrices diagonales

Proposition 2 - Inversibilité des matrices diagonales

Soit D une matrice diagonale.

- Si *D* possède au moins un 0 sur la diagonale, alors *D* n'est pas inversible.
- Si tous les coefficients diagonaux de D sont non nuls, alors D est inversible. Alors, D^{-1} est la matrice diagonale dont

les coefficients diagonaux sont les inverses de ceux de D.

Exemple 3

- Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. La matrice D est diagonale et ses coefficients diagonaux sont 1, 2 et 3. Comme ils sont tous non nuls, la matrice D est inversible et $D^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}.$
- Soit $D = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. La matrice D est diagonale et ses coefficients diagonaux sont 1 et 0. La matrice D n'est pas inversible.

Exercice 5. Soit
$$A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

Pour chacune de ces matrices, déterminer si elle est inversible et, le cas échéant, exprimer son inverse.

III.2 - Cas des matrices triangulaires

Proposition 3 - Inversibilité des matrices triangulaires

Soit T une matrice triangulaire.

- Si T possède au moins un 0 sur la diagonale, alors T n'est pas inversible.
- Si tous les coefficients diagonaux de T sont non nuls, alors T est inversible.

Chapitre IV - Matrices inversibles

Exemple 4

- Soit $T = \begin{pmatrix} 1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. La matrice T est triangulaire inférieure et ses coefficients diagonaux (1, -1, 2) sont non nuls. Ainsi, T est inversible.
- Soit $T = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Les coefficients diagonaux de T sont 1 et 0. Comme T est triangulaire supérieure et que 0 est un coefficient diagonal de T, alors T n'est pas inversible.

Exercice 6. Parmi les matrices suivantes, déterminer lesquelles sont inversibles et lesquelles ne le sont pas :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & -3 & -1 \end{pmatrix} \text{ et } C = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 0, 01 & 0 \\ 0 & -3 & -1 \end{pmatrix}.$$

III.3 - Cas des matrices carrées d'ordre 2

Proposition 4 - Inversibilité des matrices d'ordre 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice d'ordre 2.

- Si ad cb = 0, alors la matrice A n'est pas inversible.
- Si $ad cb \neq 0$, alors la matrice A est inversible et

$$A^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Exemple 5 - 🚓

Soit $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$. Comme $2 \times 4 - 3 \times 1 = 5$ est non nul, alors A

est inversible et

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}.$$

Exercice 7. Déterminer si les matrices suivantes sont inversibles et, le cas échéant, déterminer leur inverse :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}.$$

III.4 - Non inversibilité

Proposition 5

Soit A une matrice inversible d'ordre p et B, C deux matrices carrées d'ordre p.

- Si AB = AC, alors B = C.
- Si BA = CA, alors B = C.

Exemple 6 - Preuve de non inversibilité 🛩

- Soit $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$.

 On remarque que AB = AC. Supposons par l'absurde que A soit inversible. Alors, B = C. Cependant, $B \neq C$. Ainsi, A n'est pas inversible.
- Soit $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On remarque que $N \times N = 0_2$. Supposons par l'absurde que N soit inversible. Comme $N \times N = N \times 0_2$, alors $N = 0_2$. On obtient ainsi une contradiction et N n'est pas inversible.

Exercice 8. Soit
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$
.

- 1. Calculer $A^2 3A$.
- **2.** En déduire qu'il existe une matrice B non nulle telle que $AB = 0_3$.
- 3. En déduire que A n'est pas inversible.

IV - Systèmes linéaires

IV.1 - Résolution de systèmes

Théorème 2 - Inversibilité & Systèmes linéaires

Soit un système écrit sous forme matricielle AX = Y. Le système admet une unique solution si et seulement si A est inversible. Alors, $X = A^{-1}Y$.

Exemple 7 - 🚓

Nous cherchons à résoudre le système $\begin{cases} x + 2y = 4 \\ 3x + 4y = -1 \end{cases}$

En posant $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $Y = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, le système s'écrit AX = Y.

Comme $1 \times 4 - 3 \times 2 = -2 \neq 0$, la matrice A est inversible et $A^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$. Ainsi, le système possède une unique solution et

$$X = \begin{pmatrix} x \\ y \end{pmatrix} = A^{-1}Y = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 18 \\ -13 \end{pmatrix}.$$

Ainsi, x = -9 et $y = \frac{13}{2}$.

Exercice 9. Utiliser la stratégie précédente pour résoudre le système $\begin{cases} -x + 3y &= 11 \\ x + 2y &= 9 \end{cases}$

IV.2 - Calculs d'inverses

Théorème 3 - Inverse & Système linéaire

Soit A une matrice carrée d'ordre p. La matrice A est inversible si et seulement s'il existe une matrice B telle que pour toutes X, Y matrices colonnes, le système X = AY s'écrit Y = BX. Alors, $A^{-1} = B$.

Exemple 8 - Inverse par résolution de AX = Y, $\mathbf{C}_{\mathbf{s}}^{\mathbf{p}}$

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
. On pose $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. En utilisant la méthode du pivot de Gauss.

$$AX = Y$$

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x+z+y = a \\ 2z+2y = a+b \Leftrightarrow \\ y = a-c \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2}a - \frac{1}{2}b \\ z = -\frac{1}{2}a + \frac{1}{2}b + c \\ y = a-c \end{cases}$$

En posant
$$B = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1 & 0 & -1 \\ -1/2 & 1/2 & 1 \end{pmatrix}$$
, alors $Y = BX$. D'où,

$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0\\ 1 & 0 & -1\\ -1/2 & 1/2 & 1 \end{pmatrix}.$$

Chapitre IV - Matrices inversibles

Exercice 10. Déterminer l'inverse de la matrice $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exemple 9 - Inverse par pivot sur I, 🐾

On place les matrices A et I côte à côte. On transforme la matrice A en la matrice I à l'aide d'opérations élémentaires sur les lignes. On effectue les mêmes opérations sur I.

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 & L_2 \leftarrow L_2 + L_1 \\ 0 & -1 & 0 & -1 & 0 & 1 & L_3 \leftarrow L_3 - L_1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 \\ 0 & 2 & 2 & 1 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 & 2 & L_3 \leftarrow 2L_3 + L_2 \end{vmatrix}$$

$$\begin{vmatrix} 2 & 2 & 0 & 3 & -1 & -2 & L_1 \leftarrow 2L_1 - L_3 \\ 0 & 2 & 0 & 2 & 0 & -2 & L_2 \leftarrow L_2 - L_3 \\ 0 & 0 & 2 & -1 & 1 & 2 & L_2 \leftarrow L_2 - L_3 \\ 0 & 0 & 2 & -1 & 1 & 2 & L_4 \leftarrow L_1 - L_2 \\ 0 & 2 & 0 & 2 & 0 & -2 & L_4 \leftarrow L_1 - L_2 \\ 0 & 2 & 0 & 2 & 0 & -2 & L_4 \leftarrow L_1 - L_2 \\ 0 & 0 & 2 & -1 & 1 & 2 & L_4 \leftarrow L_1 - L_2 \\ 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & L_1 \leftarrow \frac{1}{2}L_1 \\ 0 & 1 & 0 & 1 & 0 & -1 & L_2 \leftarrow \frac{1}{2}L_2 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 1 & L_3 \leftarrow \frac{1}{2}L_3$$

On obtient ainsi

$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0\\ 1 & 0 & -1\\ -1/2 & 1/2 & 1 \end{pmatrix}$$