CMS/CS/EE 144

Networks: Structure and Economics

Administrivia

- 1) Turn in your add cards:)
- No class thursday
- 3) HW2 is due thursday.
 - → Your crawler will take time to run...don't leave it until the last minute!
 - → Remember to be polite with your crawlers!
- 4) Office hours
 - → Adam: Monday 3-4pm
 - \rightarrow TAs, 7-9pm today and tomorrow.
- 5) HW1 will be graded soon. Grades will go on moodle...

6) QUIZ 1 IS TODAY

So far:

Four "universal" properties of networks

- 1) A "giant" connected component
- 2) Small diameter
- 3) Heavy-tailed degree distribution
- 4) High clustering coefficient

We're trying to understand:

Why are these properties "universal"?

Last time:

Why is there a giant component?

$$p(n) = 0 p(n) = \frac{c}{n} p(n) = c$$

$$p(n) = \frac{c}{n^2} p(n) = \frac{\log n}{n} p(n) = 1$$

This time:

Why is the degree distribution heavy-tailed? Are heavy tails actually "normal"?

From **Newsweek** a few years ago...

"The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users send 60% of the tweets. These figures are always reported as shocking [...] as if anything but a bell curve were an aberration, but Pareto distributions pop up all over. Regarding them as anomalies prevents us from thinking clearly about the world."

Our plan:

Today → Heavy-tails in general

Next time → Heavy-tails in networks

So far to us → linear on a log-log scale

So far to us → linear on a log-log scale

More generally → a distribution with a "tail" that is "heavier" than an Exponential

So far to us → linear on a log-log scale

More generally → a distribution with a "tail" that is "heavier" than an Exponential

So far to us \rightarrow linear on a log-log scale

More generally \rightarrow a distribution with a "tail" that is "heavier" than an Exponential

<u>Definition</u>: A random variable is heavy-tailed iff $\forall s>0$, $\lim_{x\to\infty}e^{sx}\Pr(X>x)=\infty$

But things get confusing: fat tail, long tail, power law, ...

$$\Pr(X > x) = \overline{F}(x) = \left(\frac{x_{\min}}{x}\right)^{\alpha} \text{ for } x \ge x_{\min}$$
 density:
$$f(x) = \frac{\alpha x_{\min}^{\alpha}}{x^{\alpha+1}}$$

Extremely high variability: $Var[X] = \infty$ if $\alpha < 2$!

Linear on a log-log ccdf plot.

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student's t, Frechet, ...

$$X: \log X \sim Normal$$

$$Var[X] = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$$

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student's t, Frechet, ...

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student's t, Frechet, ...

k = 1: Exponential

k = 2: Rayleigh

k = 3.4: Approx Normal

 $k \rightarrow \infty$: Deterministic

k < 1: Heavy - tailed

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student's t, Frechet, ...

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student's t, Frechet, ...

So far to us → linear on a log-log scale

More generally → a distribution with a "tail" that is "heavier" than an Exponential

<u>Definition</u>: A random variable is heavy-tailed iff $\forall s > 0$, $\lim_{x \to \infty} e^{sx} \Pr(X > x) = \infty$

Heavy-tailed phenomena are treated as something

Our intuition is flawed because intro probability classes focus on light-tailed distributions

Heavy-tailed phenomena are treated as something

MYSTERIOUS, Surprising, & Controversial

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos
U.C. Riverside
Dept. of Comp. Science
michalis@cs.ucr.edu

Petros Faloutsos
U. of Toronto
Dept. of Comp. Science
pfal@cs.toronto.edu

IEEE/ACM TRANSACTIONS ON NET

Christos Faloutsos *
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

1999 Sigcomm paper – 4500+ citations!

On the Bias of Traceroute Sampling
or, Power-law Degree Distributions in Regular Graphs

Dimitris Achlioptas Microsoft Research Microsoft Corporation Redmond, WA 98052 optas@microsoft.com

David Kempe

Department of Computer Science
University of Southern California
Los Angeles, CA 90089

dkempe@usc.edu

Aaron Clauset
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
aaron@cs.unm.edu

2005, STOC

Cristopher Moore
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
moore@cs.unm.edu

Similar stories in electricity nets, citation nets....

Understanding Internet Topology: Principles, Models, and Validation

David Alderson, Member, IEEE, Lun Li, Student Member, IEEE, Walter Willinger, Fellow, IEEE, and John C. Doyle, Member, IEEE

1205

Heavy-tailed phenomena are treated as something

Heavy-tailed distributions have many strange & beautiful properties

- The "Pareto principle": 80% of the wealth owned by 20% of the population, etc.
- Infinite variance or even infinite mean
- Events that are much larger than the mean happen "frequently"

These are driven by 3 "defining" properties

1) Scale invariance
2) The "catastrophe principle"
3) The residual life "blows up"

Scale invariance

F is scale invariant if there exists an x_0 and a g such that $\overline{F}(\lambda x) = g(\lambda)\overline{F}(x)$ for all λ , x such that $\lambda x \geq x_0$.

"change of scale"

Scale invariance

 ${\cal F}$ is scale invariant if there exists an x_0 and a g such that

$$\overline{F}(\lambda x) = g(\lambda)\overline{F}(x)$$
 for all λ , x such that $\lambda x \geq x_0$.

<u>Theorem</u>: A distribution is scale invariant if and only if it is Pareto.

Example: Pareto distributions

$$\bar{F}(\lambda x) = \left(\frac{x_{\min}}{\lambda x}\right)^{\alpha} = \bar{F}(x) \left(\frac{1}{\lambda}\right)^{\alpha}$$

Scale invariance

F is scale invariant if there exists an x_0 and a g such that $\overline{F}(\lambda x) = g(\lambda)\overline{F}(x)$ for all λ , x such that $\lambda x \geq x_0$.

Asymptotic scale invariance

F is asymptotically scale invariant if there exists a continuous, finite g such that $\lim_{x \to \infty} \frac{\bar{F}(\lambda x)}{\bar{F}(x)} = g(\lambda)$ for all λ .

Example: Regularly varying distributions

F is regularly varying if $\overline{F}(x) = x^{-\rho}L(x)$, where L(x) is slowly varying, i.e., $\lim_{x \to \infty} \frac{L(xy)}{L(x)} = 1$ for all y > 0.

<u>Theorem</u>: A distribution is asymptotically scale invariant iff it is regularly varying.

Asymptotic scale invariance

 ${\it F}$ is asymptotically scale invariant if there exists a continuous, finite ${\it g}$ such that

$$\lim_{x \to \infty} \frac{\bar{F}(\lambda x)}{\bar{F}(x)} = g(\lambda) \text{ for all } \lambda.$$

Example: Regularly varying distributions

F is regularly varying if $\overline{F}(x)=x^{-\rho}L(x)$, where L(x) is slowly varying, i.e., $\lim_{x\to\infty}\frac{L(xy)}{L(x)}=1$ for all y>0.

Regularly varying distributions are extremely useful. They basically behave like Pareto distributions with respect to the tail:

- → "Karamata" theorems
- → "Tauberian" theorems

Heavy-tailed distributions have many strange & beautiful properties

- The "Pareto principle": 80% of the wealth owned by 20% of the population, etc.
- Infinite variance or even infinite mean
- Events that are much larger than the mean happen "frequently"

These are driven by 3 "defining" properties

1) Scale invariance
2) The "catastrophe principle"
3) The residual life "blows up"

A thought experiment

Suppose that during lecture I polled <u>50 students</u> about their heights and the number of twitter followers they have...

The sum of the heights was ~300 feet.

The sum of the number of two ter followers was 1,025,000

What led to these large values?

A thought experiment

Suppose that during lecture I polled <u>50 students</u> about their heights and the number of twitter followers they have...

The sum of the heights was ~300 feet.

The sum of the number of twitter followers was 1,025,000

A bunch of people were probably just over 6' tall (Maybe the basketball teams were in the class.)

Conspiracy principle

One person was probably a twitter celebrity and had ~1 million followers.

"Catastrophe principle"

Example

Consider X_1+X_2 i.i.d Weibull. Given $X_1+X_2=d$, what is the marginal density of X_1 ?

Catastrophe principle"

$$\Pr(\max(X_1, \dots, X_n) > t) \sim \Pr(X_1 + \dots + X_n > t)$$

$$\Rightarrow \Pr(\max(X_1, \dots, X_n) > t | X_1 + \dots + X_n > t) \rightarrow 1$$

"Conspiracy principle" $\Pr(\max(X_1, ..., X_n) > t) = o(\Pr(X_1 + ... + X_n > t))$

"Catastrophe principle"

$$\Pr(\max(X_1, ..., X_n) > t) \sim \Pr(X_1 + ... + X_n > t)$$

 $\Rightarrow \Pr(\max(X_1, ..., X_n) > t | X_1 + ... + X_n > t) \rightarrow 1$

Extremely useful for random walks, queues, etc.

"Catastrophe principle"

$$\Pr(\max(X_1, \dots, X_n) > t) \sim \Pr(X_1 + \dots + X_n > t)$$

$$\Rightarrow \Pr(\max(X_1, \dots, X_n) > t | X_1 + \dots + X_n > t) \rightarrow 1$$

Subexponential distributions

F is subexponential if for i.i.d. X_i , $\Pr(X_1 + \dots + X_n > t) \sim n\Pr(X_1 > t)$

Subexponential distributions

F is subexponential if for i.i.d. X_i , $\Pr(X_1 + \dots + X_n > t) \sim n\Pr(X_1 > t)$

CMS/CS/EE 144

Networks: Structure and Economics

Administrivia

- 1) Turn in your add cards:)
- 2) No class Thursday
- 3) HW2 is due Thursday.
 - → Your crawler will take time to run...don't leave it until the last minute!
 - → Remember to be polite with your crawlers!
- 4) Office hours
 - → Adam: Mondays 3-4pm
 - → TAs, 7-9pm today and tomorrow.
- 5) HW1 will be graded soon. Grades will go on moodle...

6) QUIZ 1 IS TODAY

So far:

Four "universal" properties of networks

- 1) A "giant" connected component
- 2) Small diameter
- 3) Heavy-tailed degree distribution
- 4) High clustering coefficient

We're trying to understand:

Why are these properties "universal"?

This time:

Why is the degree distribution heavy-tailed? Are heavy tails actually "normal"?

From **Newsweek** a few years ago...

"The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users send 60% of the tweets. These figures are always reported as shocking [...] as if anything but a bell curve were an aberration, but Pareto distributions pop up all over. Regarding them as anomalies prevents us from thinking clearly about the world."

Our plan:

- 1) Heavy-tails in general
- 2) Heavy-tails in networks

What is a heavy-tailed distribution?

A distribution with a "tail" that is "heavier" than an Exponential

<u>Definition</u>: A random variable is heavy-tailed iff $\forall s > 0$, $\lim_{x \to \infty} e^{sx} \Pr(X > x) = \infty$

Heavy-tailed phenomena are treated as something

Our intuition is flawed because intro probability classes focus on light-tailed distributions

Heavy-tailed phenomena are treated as something

Heavy-tailed distributions have many strange & beautiful properties

- The "Pareto principle": 80% of the wealth owned by 20% of the population, etc.
- Infinite variance or even infinite mean
- Events that are much larger than the mean happen "frequently"

These are driven by 3 "defining" properties

1) Scale invariance
2) The "catastrophe principle"
3) The residual life "blows up"

A thought experiment

residual life

What happens to the expected remaining waiting time as we wait

...for a table at a restaurant?

...for a bus?

...for the response to an email?

The remaining wait drops as you wait

If you don't get it quickly, you never will...

The distribution of residual life

The distribution of remaining waiting time given you have already waited x time is $\bar{R}_{\chi}(t) = \frac{\bar{F}(\chi+t)}{\bar{F}(\chi)}$.

Examples:

Exponential:
$$\bar{R}_{\chi}(t) = \frac{e^{-\mu(x+t)}}{e^{-\mu x}} = e^{-\mu t}$$
 "memoryless"

Pareto:
$$\bar{R}_{x}(t) = \frac{\left(\frac{x_{\min}}{x+t}\right)^{\alpha}}{\left(\frac{x_{\min}}{x}\right)^{\alpha}} = \left(1 + \frac{t}{x}\right)^{-\alpha} \longrightarrow \text{Increasing in } x$$

The distribution of residual life

The distribution of remaining waiting time given you have already waited x time is $\bar{R}_{\chi}(t)=\frac{\bar{F}(\chi+t)}{\bar{F}(\chi)}$.

Heavy-tailed distributions "tend" to have decreasing hazard rates & increasing mean residual lives Light-tailed distributions "tend" to have increasing hazard rates & decreasing mean residual lives What happens to the expected remaining waiting time as we wait

...for a table at a restaurant?

...for a bus?

...for the response to an email?

<u>BUT</u>: not all heavy-tailed distributions have DHR / IMRL some light-tailed distributions are DHR / IMRL

Heavy-tailed distributions "tend" to have decreasing hazard rates & increasing mean residual lives Light-tailed distributions "tend" to have increasing hazard rates & decreasing mean residual lives

Long-tailed distributions

$$F$$
 is long-tailed if $\lim_{x \to \infty} \bar{R}_x(t) = \lim_{x \to \infty} \frac{\bar{F}(x+t)}{\bar{F}(x)} = 1$ for all t

<u>BUT</u>: not all heavy-tailed distributions have DHR / IMRL some light-tailed distributions are DHR / IMRL

<u>Heavy-tailed distributions</u> "tend" to have decreasing hazard rates & increasing mean residual lives <u>Light-tailed distributions</u> "tend" to have increasing hazard rates & decreasing mean residual lives

Long-tailed distributions

$$F$$
 is long-tailed if $\lim_{x \to \infty} \bar{R}_x(t) = \lim_{x \to \infty} \frac{\bar{F}(x+t)}{\bar{F}(x)} = 1$ for all t

Heavy-tailed phenomena are treated as something

We've all been taught that the <u>Normal is "normal"</u> ...because of the <u>Central Limit Theorem</u>

But the Central Limit Theorem we're taught is not complete!

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Law of Large Numbers (LLN): $\frac{1}{n}\sum_{i=1}^{n}X_{i} \to E[X_{i}] \ a.s.$ when $E[X_{i}] < \infty$

$$\sum_{i=1}^{n} X_i = nE[X_i] + o(n)$$

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Central Limit Theorem (CLT):
$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$
 when $\text{Var}[X_i] = \sigma^2 < \infty$.
$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

Two key assumptions

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Central Limit Theorem (CLT):
$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$
 when $Var[X_i] = \sigma^2 < \infty$.
$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(X_i)$$

What if $Var|X_i| = \infty$?

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Central Limit Theorem (CLT):
$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$
 when $Var[X_i] = \sigma^2 < \infty$.
$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

n

What if $Var|X_i| = \infty$?

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

isidel i.i.d.
$$\lambda_i$$
. How does $\sum_{i=1}^n \lambda_i$ grow:

Central Limit Theorem (CLT):
$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$
 when $Var[X_i] = \sigma^2 < \infty$.
$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

n

What if $Var[X_i] = \infty$?

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Central Limit Theorem (CLT):
$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$
 when $Var[X_i] = \sigma^2 < \infty$.

The Generalized Central Limit Theorem (GCLT):

$$\frac{1}{a_n} \left(\sum_{i=1}^n X_i - b_n \right) \to Z \begin{cases} Normal(0, \sigma^2) \\ Regularly \ varying \ \alpha \in (0, 2) \end{cases}$$

$$\sum_{i=1}^n X_i = nE[X_i] + n^{1/\alpha}Z + o(n^{1/\alpha})$$

What if $Var[X_i] = \infty$?

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Central Limit Theorem (CLT):
$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$
 where $Var[X_i] = \sigma^2 < \infty$.

The Generalized Central Limit Theorem (GCLT):

$$\frac{1}{a_n} \left(\sum_{i=1}^n X_i - b_n \right) \to Z \begin{cases} Normal(0, \sigma^2) \\ Regularly \ varying \ \alpha \in (0, 2) \end{cases}$$

Finite variance → Light-tailed (Normal)
Infinite variance → Heavy-tailed (power law)

Returning to our original question...

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Either the Normal distribution <u>OR</u> a power-law distribution can emerge!

Returning to our original question...

Consider i.i.d. X_i . How does $\sum_{i=1}^n X_i$ grow?

Either the Normal distribution <u>OR</u> a power-law distribution can emerge!

...but this isn't the only question one can ask about $\sum_{i=1}^{n} X_i$.

What is the distribution of the "ruin" time?

The ruin time is always heavy-tailed!

The distribution of ruin time satisfies $\Pr(T > x) \sim \frac{\sqrt{2/\pi}}{\sqrt{x}}$

What is the distribution of the "ruin" time?

The ruin time is always heavy-tailed!

We've all been taught that the <u>Normal is "normal"</u> ...because of the <u>Central Limit Theorem</u>

Heavy-tails are more "normal" than the Normal!

- 1. Additive Processes
- 2. Multiplicative Processes
- 3. Extremal Processes

A simple multiplicative process

 $P_n = Y_1 \cdot Y_2 \cdot ... \cdot Y_n$, where Y_i are i.i.d. and positive

Ex: incomes, populations, fragmentation, twitter popularity...

"Rich get richer"

Multiplicative processes almost always lead to heavy tails

An example:

$$Y_1, Y_2 \sim Exponential(\mu)$$

 $\Pr(Y_1 \cdot Y_2 > x) \geq \Pr(Y_1 > \sqrt{x})^2$
 $= e^{-2\mu\sqrt{x}}$
 $\Rightarrow Y_1 \cdot Y_2 \text{ is heavy-tailed!}$

Multiplicative processes almost always lead to heavy tails

$$P_n = Y_1 \cdot Y_2 \cdot \dots \cdot Y_n$$

$$\log P_n = \log Y_1 + \log Y_2 + \dots + \log Y_n$$
 Central Limit Theorem
$$X_n$$

$$\log P_n = n \ E[X_i] + \sqrt{n}Z + o(\sqrt{n}), \text{ where } Z \sim Normal(0, \sigma^2) \\ \text{ when } \text{Var}[X_i] = \sigma^2 < \infty.$$

$$\left(\frac{Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n}{\mu}\right)^{1/\sqrt{n}} \rightarrow H \sim LogNormal(0, \sigma^2) \\ \text{ where } \mu = e^{E[\log Y_i]} \\ \text{ and } \text{Var}[\log Y_i] = \sigma^2 < \infty.$$

Multiplicative central limit theorem

$$\left(\frac{Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n}{\mu}\right)^{1/\sqrt{n}} \to H \sim \underbrace{LoaNormal(0, \sigma^2)}_{\text{where } \mu = e^{E[\log Y_i]}}_{\text{and } \text{Var}[\log Y_i] = \sigma^2 < \infty.}$$

Satisfied by all distributions with finite mean and many with infinite mean.

Multiplicative central limit theorem

$$\left(\frac{Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n}{\mu} \right)^{1/\sqrt{n}} \to H \sim LogNormal(0, \sigma^2)$$
 where $\mu = e^{1/[\log Y_i]}$ and $\text{Var}[\log Y_i] = \sigma^2 < \infty$.

A simple multiplicative process

 $P_n = Y_1 \cdot Y_2 \cdot ... \cdot Y_n$, where Y_i are i.i.d. and positive

A simple multiplicative process

 $P_n = Y_1 \cdot Y_2 \cdot ... \cdot Y_n$, where Y_i are i.i.d. and positive

Ex: incomes, populations, fragmentation, twitter popularity...

Multiplicative process with a lower barrier

$$P_n = \min(P_{n-1}Y_n, \epsilon)$$

Multiplicative process with noise

$$P_n = P_{n-1}Y_n + Q_n$$

Distributions that are approximately power-law emerge

A simple multiplicative process

 $P_n = Y_1 \cdot Y_2 \cdot ... \cdot Y_n$, where Y_i are i.i.d. and positive

Ex: incomes, populations, fragmentation, twitter popularity...

Multiplicative process with a lower barrier

$$P_n = \min(P_{n-1}Y_n, \epsilon)$$

Under minor technical conditions, $P_n \to F$ such that

$$\lim_{x \to \infty} \frac{\log \bar{F}(x)}{\log x} = s^* \text{ where } s^* = \sup(s \ge 0 | E[Y_1^s] \le 1)$$

"Nearly" regularly varying

We've all been taught that the <u>Normal is "normal"</u> ...because of the <u>Central Limit Theorem</u>

Heavy-tails are more "normal" than the Normal!

- 1. Additive Processes
- 2. Multiplicative Processes
- 3. Extremal Processes

A simple extremal process

$$M_n = \max(X_1, X_2, \dots, X_n)$$

Ex: engineering for floods, earthquakes, etc. Progression of world records

"Extreme value theory

$$M_n = \max(X_1, X_2, ..., X_n)$$
How does M_n scale? $\frac{M_n - b_n}{a_n}$

A simple example

$$X_i \sim Exponential(\mu)$$

$$\Pr(\max(X_1, ..., X_n) < a_n t + b_n) = F(a_n t + b_n)^n$$

$$a_n = 1, b_n = \log n$$

$$= (1 - e^{-a_n t - b_n})^n$$

$$= (1 - e^{-t - \log n})^n$$

 $\rightarrow e^{-e^{-t}}$: Gumbel distribution

"Extremal Central Limit Theorem"

$$\frac{M_n - b_n}{a_n} \to Z \begin{cases} Frechet & \longrightarrow \text{Heavy-tailed} \\ Weibull & \longrightarrow \text{Heavy or light-tailed} \\ Gumbel & \longrightarrow \text{Light-tailed} \end{cases}$$

$$M_n = \max(X_1, X_2, ..., X_n)$$
How does M_n scale? $\frac{M_n - b_n}{a_n}$

"Extremal Central Limit Theorem"

$$\frac{M_n - b_n}{a_n} \to \mathbf{Z} \begin{cases} Frechet & \longrightarrow \text{ iff } X_i \text{ are regularly varying} \\ Weibull & \longrightarrow \text{ e.g. when } X_i \text{ are Uniform} \\ Gumbel & \longrightarrow \text{ e.g. when } X_i \text{ are LogNormal} \end{cases}$$

A simple extremal process

$$M_n = \max(X_1, X_2, \dots, X_n)$$

Ex: engineering for floods, earthquakes, etc. Progression of world records

...but this isn't the only question one can ask about M_n .

What is the distribution of the time until a new "record" is set?

The time until a record is always heavy-tailed!

$$T_k$$
: Time between $k \& k + 1^{st}$ record
$$\Pr(T_k > n) \sim \frac{2^{k-1}}{n}$$

What is the distribution of the time until a new "record" is set?

The time until a record is always heavy-tailed!

We've all been taught that the <u>Normal is "normal"</u> ...because of the <u>Central Limit Theorem</u>

Heavy-tails are more "normal" than the Normal!

- 1. Additive Processes
- 2. Multiplicative Processes
- 3. Extremal Processes

Heavy-tailed phenomena are treated as something

We've all been taught that the Normal is "normal"
because of the Central Limit Theorem, BUT
Heavy-tails are more "normal" than the Normal!

Heavy-tailed phenomena are treated as something

MYSTERIOUS, Surprising, & Controversial

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos U.C. Riverside Dept. of Comp. Science michalis@cs.ucr.edu Petros Faloutsos
U. of Toronto
Dept. of Comp. Science
pfal@cs.toronto.edu

Christos Faloutsos *
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

1999 Sigcomm paper – 4500+ citations!

IEEE/ACM TRANSACTIONS ON NET

Similar stories in electricity nets, citation nets, ...

On the Bias of Traceroute Sampling

or, Power-law Degree Distributions in Regular Graphs

Dimitris Achlioptas Microsoft Research Microsoft Corporation Redmond, WA 98052 optas@microsoft.com

David Kempe
Department of Computer Science
University of Southern California
Los Angeles, CA 90089
dkempe@usc.edu

Aaron Clauset
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
aaron@cs.unm.edu

2005, STOC

Cristopher Moore
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
moore@cs.unm.edu

Understanding Internet Topology: Principles, Models, and Validation

David Alderson, Member, IEEE, Lun Li, Student Member, IEEE, Walter Willinger, Fellow, IEEE, and John C. Doyle, Member, IEEE

1205

Heavy-tailed phenomena are treated as something

MYSTERIOUS, Surprising, & Controversial

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos U.C. Riverside Dept. of Comp. Science michalis@cs.ucr.edu Petros Faloutsos
U. of Toronto
Dept. of Comp. Science
pfal@cs.toronto.edu

Christos Faloutsos *
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

1999 Sigcomm paper – 4500+ citations!

IEEE/ACM TRANSACTIONS ON NET

Similar stories in electricity nets, citation nets, ...

On the Bias of Traceroute Sampling

or, Power-law Degree Distributions in Regular Graphs

Dimitris Achlioptas Microsoft Research Microsoft Corporation Redmond, WA 98052 optas@microsoft.com

David Kempe
Department of Computer Science
University of Southern California
Los Angeles, CA 90089
dkempe@usc.edu

Aaron Clauset
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
aaron@cs.unm.edu

2005, STOC

Cristopher Moore
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
moore@cs.unm.edu

Understanding Internet Topology: Principles, Models, and Validation

David Alderson, Member, IEEE, Lun Li, Student Member, IEEE, Walter Willinger, Fellow, IEEE, and John C. Doyle, Member, IEEE

1205

"frequency plot"

This simple change is extremely important...

This simple change is extremely important...but it's not enough

The data is from an Exponential!

This mistake has happened **A LOT!**

This mistake has happened **A LOT!**

This simple change is extremely important... But, this is still an error-prone approach

Regression \Rightarrow Estimate of tail index (α)

Linear ⇒

Power-law tail

...other distributions can be nearly linear too

•••

This simple change is extremely important... But, this is still an error-prone approach

Regression \Rightarrow Estimate of tail index (α)

...assumptions of regression are not met ...tail is much noisier than the body

A completely different approach: Maximum Likelihood Estimation (MLE)

What is the α for which the data is most "likely"?

$$L(x; \alpha) = \prod_{i=1}^{n} \frac{\alpha x_{\min}^{\alpha}}{x_{i}^{\alpha+1}}$$
$$\log L(x; \alpha) = \sum_{i=1}^{n} \log(\alpha x_{\min}^{\alpha}) - \log x_{i}^{\alpha+1}$$

not so A completely different approach: Maximum Likelihood Estimation (MLE)

Weighted Least Squares Regression (WLS)

asymptotically for large data sets, when weights are chosen as $w_i = 1/(\log x_i - \log x_0)$.

$$\hat{\alpha}_{WLS} = \frac{-\sum_{i=1}^{n} \log(\hat{r}_i/n)}{\sum_{i=1}^{n} \log(x_i/x_0)}$$

$$\sim \frac{n}{\sum_{i=1}^{n} \log(x_i/x_0)}$$

$$= \hat{\alpha}_{MLE}$$

not so A completely different approach: Maximum Likelihood Estimation (MLE)

Weighted Least Squares Regression (WLS)

asymptotically for large data sets, when weights are chosen as $w_i = 1/(\log x_i - \log x_0)$.

"Listen to your body"

A quick summary of where we are:

Suppose data comes from a power-law (Pareto) distribution $\overline{F}(x) = \left(\frac{x_0}{x}\right)^{\alpha}$. Then, we can identify this visually with a log-log plot, and we can estimate α using either MLE or WLS.

What if the data is not exactly a power-law? What if only the tail is power-law?

Suppose data comes from a power-law (Pareto) distribution $\bar{F}(x) = \left(\frac{x_0}{x}\right)^{\alpha}$.

Then, we can identify this visually with a \log - \log plot, and we can estimate α using either MLE or WLS.

Can we just use MLE/WLS on the "tail"?

But, where does the tail start?

Impossible to answer...

An example

Suppose we have a mixture of power laws:

$$\bar{F}(x) = q\bar{F}_1(x) + (1-q)\bar{F}_2(x)$$

$$\alpha_1 < \alpha_2$$

We want $\hat{\alpha}_{MLE} \to \alpha_1$ as $n \to \infty$.

...but, suppose we use x_{\min} as our cutoff:

$$\frac{1}{\hat{\alpha}_{MLE}} \rightarrow \frac{q\bar{F}_1(x_{\min})}{\alpha_1\bar{F}(x_{\min})} + \frac{(1-q)\bar{F}_2(x_{\min})}{\alpha_2\bar{F}(x_{\min})} \neq \alpha_1$$

Identifying power-law distributions "Listen to your body"

V.S.

Returning to our example

Suppose we have a mixture of power laws:

$$\bar{F}(x) = q\bar{F}_1(x) + (1-q)\bar{F}_2(x)$$

$$\alpha_1 < \alpha_2$$

We want $\hat{\alpha}_{MLE} \rightarrow \alpha_1$ as $n \rightarrow \infty$.

...but, suppose we use x_{min} as our cutoff:

$$\frac{1}{\hat{\alpha}_{MLE}} - \frac{q\bar{F}_1(x_{\min})}{\alpha_1\bar{F}(x_{\min})} + \frac{(1-q)\bar{F}_2(x_{\min})}{\alpha_2\bar{F}(x_{\min})}$$

The bias disappears as $x_{\min} \rightarrow \infty$!

 $\widehat{\alpha}(k,n) o \alpha$ as $n o \infty$ if k(n)/n o 0 & $k(n) o \infty$ throw away nearly all the data,

but keep enough data for consistency

Throw away everything except the outliers!

Choosing \boldsymbol{k} in practice: The Hill plot

Choosing k in practice: The Hill plot

Choosing k in practice: The Hill plot

log-log scale

...but the hill estimator has problems too

This data is from TCP flow sizes!

Identifying power-law distributions ———— MLE/WLS "Listen to your body"

Identifying power-law tails

Hill estimator

"Let the tail do the talking"

It's dangerous to rely on any one technique!

Long-tailed distributions

Heavy-tailed distributions have many beautiful & strange properties

- 1) Scale Invariance → Regularly Varying distributions
- 2) The "catastrophe principle" → Subexponential distributions
- 3) Residual lives "blow up" → Long-tailed distributions

We've all been taught that the Normal is "normal"
because of the Central Limit Theorem, BUT
Heavy-tails are more "normal" than the Normal!

...and now back to networks:

Why do we see heavy-tailed degree distributions?

