BIG DATA

Running a data platform

Goals

- Evaluating the costs for a cloud/on-premises data platform
- Fill in this table

Cost	On-premises	On cloud
Hardware	?	?
Software	?	?

Reference architecture

Hardware

8 CPUs (144 total)
- Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

32GB RAM (576GB total)

- 2 x 16GB DIMM DDR4 2666 MHz

12TB HDD Disk (216TB total)

- 3 x 4TB ST4000DM004-2CV1

```
lshw -short -C cpu
lshw -short -C memory
lshw -short -C disk
```

Software

"Classic" Hadoop stack

SOLonprem	On-premises	On cloud
Hardware	?	?
Software	?	?

Hardware cost: ?

Refer to https://www.rect.coreto-europe.com/en/search.html?clearsearch=1

Hardware cost (up to Mar 05, 2021): 1767€ x 18 = 31806€

Amortization over 3 years (i.e., 10602€/year)

SOL _{onprem}	On-premises	On cloud
Hardware	10602€/year	?
Software	?	?

RECT™ WS-2270C	
	€
Main configuration	669.00
Configuration:	
Intel Core i7-10700K	+ 216.00
32 GB DDR4-3200 RAM	+ 146.00
Workstation-Mainboard with	+ 101.00
3 x 4 TB WD Blue	291.00
1x 2.5 Gbit LAN onboard	
Sound on board	
Solid black	
High-Efficiency Noctua CPU	+ 39.00
DVD-Writer 24x DVD	+ 13.00
High-efficiency 750W power	+ 79.00
1 x Your Operating System	30.00
with an individual capacity of	+ 35.00
36 months pick-up	+ 148.00
Complete Configuration	1,098.00
Current price	1,767.00
	Plus VAT
L	easingraten
1	
1 A	dd to cart
-	

SOL_onpremOn-premisesOn cloudHardware10602€/year?Software0€?

Software cost: ?

SOLonprem	On-premises	On cloud
Hardware	10602€/year	?
Software	0€	?

Software cost (up to 2020): 0€

- Free Cloudera Management System
- No software licensing (for research purpose)

SOLonprem	On-premises	On cloud
Hardware	10602€/year	?
Software	180000€/year	?

Software cost (up to Mar 05, 2021): 10000€/year x 18 = 180000€/year

- Cloudera is no more free, 10K€ per node
- https://www.cloudera.com/products/pricing.html#private-cloud-services
- https://www.cloudera.com/products/pricing/product-features.html
- No license for research purpose

"Houston we've had a problem!"

- We cannot update/extend the cluster anymore
- What about migrating to the cloud? (we only consider AWS)

Moving a Hadoop cluster to the cloud (we only consider AWS)

AWS price calculator https://calculator.aws/#/estimate

How do we start?

- We have already defined the hardware and the software stack
- Start with coarse tuning, identify the dominating costs first
 - Is it computing, storage, or processing?
- Identify a suitable budget, implement, refine later
 - Wrong refinements can do a lot of damage

SOL
cloud1On-premisesOn cloudHardware10602€/year?Software180000€/year?

Migrating the cluster as-is: ?

 Hint: add 18 EC2 instances satisfying the hardware requirements

SOL _{cloud1}	On-premises	On cloud
Hardware	10602€/year	162000\$/year
Software	180000€/year	?

SOL_{cloud1} migrating the cluster as-is: 13500\$/month = 162000\$/year

- 18 EC2 instances (t4g.2xlarge) with 12TB EBS storage each machine
- Still, we have no software configuration

https://calculator.aws/#/estimate?id=7757afffccc3cafdcfdeb212b74623ef02ed5a36

Pay attention to the region

- Different regions, different prices
- Different regions, different services
- Remember the GDPR and data locality

It makes no sense to move the cluster as-is

More machines ensure better (on-prem) scalability but higher costs

How do we proceed with the migration?

- We need minimum software requirements
- Try to achieve the smallest migration impact
 - Find the most similar cloud-based solution to a Hadoop cluster
 - Rethink applications (later) when you got the know-how
- Identify a suitable budget, implement, refine later
 - Wrong refinements can do a lot of damage

HDFS

- How much durability do we need?
 - HP₀: three replicas (we stick to this)
 - HP₁: decrease replicas for cold data
 - HP₂: move cold data to glacier or delete id
 - ...

HBase has marginal effects on the pricing (100GB << 50TB)

For simplicity, we can omit it

Overall: 50TB storage/year

Processing takes place each time that ESA provides a satellite image

- Some days no images are available
- Some days up to 10 images are available
- Spark jobs are always executed with the same parameters

Image processing

4 machines, 2 cores, 10GB RAM at least

Weather processing is negligible

	On-premises	On cloud
Hardware	2356€/year	36000\$/year
Software	100000€/year	?

Assuming 1 Executor = 1 Machine

Compare 4 machines on-premises vs on cloud

On-premises

- 4 machines: 10602€/year / 18 machines x 4 machines = 2356€/year
- Cloudera requires at least 10 nodes: 100000€/year

AWS

■ 4 EC2 instances: 162000\$/year / 18 machines x 4 machines = 36000\$/year

AWS

- Still, we have no software stack configuration
- Which is the major cost?

AWS

- Still, we have no software stack configuration
- Which is the major cost?

S3 standard

S3 Infrequent Access

Unit conversions

S3 Standard storage: 50 TB per month x 1024 GB in a TB = 51200 GB per month

Calcolo dei prezzi

Tiered price for: 51200 GB

51200 GB x 0.0230000000 USD = 1177.60 USD

Costo totale del piano = 1177.6000 USD (S3 Standard storage cost)

1.000 PUT requests for S3 Storage x 0,000005 USD per request = 0,005 USD (S3 Standard PUT requests cost)

1.000 GET requests in a month x 0,0000004 USD per request = 0,0004 USD (S3 Standard GET requests cost)

1.177,60 USD + 0,0004 USD + 0,005 USD = 1.177,61 USD (Total S3 Standard Storage, data requests, S3 select cost)

S3 Standard cost (monthly): 1,177.61 USD

Unit conversions

S3 One Zone-IA storage: 50 TB per month x 1024 GB in a TB = 51200 GB per month

Calcolo dei prezzi

51.200 GB x 0,01 USD = 512,00 USD (S3 One Zone-IA storage cost)

1.000 PUT requests for S3 One Zone-IA Storage x 0,00001 USD per request = 0,01 USD (S3 One Zone-IA PUT requests cost)

1.000 GET requests for S3 One Zone-IA Storage x 0,000001 USD per request = 0,001 USD (S3 One Zone-IA GET requests cost)

1.000 lifecycle request count for S3 One Zone-IA x 0,00001 USD per request = 0,01 USD (S3 One Zone-IA lifecycle requests cost)

10 GB x 0,01 USD = 0,10 USD (S3 One Zone-IA data retrievals cost)

512,00 USD + 0,01 USD + 0,001 USD + 0,01 USD + 0,10 USD = 512,121 USD (Total S3 One Zone-IA Storage and other costs)

S3 One Zone - Infrequent Access (S3 One Zone-IA) cost (monthly): 512.12 USD

Motivation

Amazon EMR (Elastic Map Reduce)

Provides a managed Hadoop framework

Some features

- Service integration
 - Automatically control EC2 instances
 - Transparently use S3 storage
- Pricing:
 - Low Hourly Pricing
 - Amazon EC2 Spot Integration

EMR Cluster

Provision as much capacity as you need

Deploy Multiple Clusters

Add or remove capacity at any time

Resize a Running Cluster

EMR Cluster

EMR cluster

Master group controls the cluster

- Coordinate the work distribution
- Manage the cluster state

Core groups

Core instances run Data Node daemons

(Optional) Task instances

EMR Cluster

The central component of Amazon EMR is the cluster

- A collection of Amazon Elastic Compute Cloud (Amazon EC2) instances
- Each instance is called a node

The **node type** identifies the role within the cluster

- Master node coordinates the distribution of data and tasks among other nodes
 - Every cluster has (at least) a master node
 - Always active
- Core node runs tasks and store data in the Hadoop Distributed File System (HDFS)
 - Multi-node clusters have at least one core node
 - Always active, contains the data node daemon
- Task node only runs tasks
 - Task nodes are optional
 - Decoupling processing and storage, we lose data locality

On-Demand Instance

- Pay for compute capacity by the hour (minimum of 60 seconds)
- No long-term commitments

Spot Instance

- Unused EC2 instance that is available for less than the on-demand price
- Hourly price is called spot price
 - Adjusted based on long-term supply and demand for spot instances
- Run the instance when capacity is available and price is below threshold
 - When data-center resources are low, spot instances are dropped
 - Mainly suitable for batch workloads

Spot Instance cost strategies

Capacity-optimized strategy

- Allocated instances into the most available pools
- Look at real-time capacity data, predict which are the most available
- Works well for workloads such as big data and analytics
- Works well when we have high cost of interruption

Lowest-price strategy

Allocates instances in pools with lowest price at time of fulfillment

Creating the cluster

EMR

Choose to launch master, core, or task on Spot Instances

- The master node controls the cluster.
 - When terminated, the cluster ends
 - Use spot instances if you are running a cluster where sudden termination is acceptable
- Core nodes process data and store information using HDFS
 - When terminated, data is lost
 - Use spot instances when partial HDFS data loss is tolerable
- Task nodes process data but do not hold persistent data in HDFS
 - When terminated, computational capacity is lost
 - The effect of spot instances on the cluster is "minimal"

EMR

Application Scenario	Master Node Purchasing Option	Core Nodes Purchasing Option	Task Nodes Purchasing Option
Long-Running Clusters and Data Warehouses	On-Demand	On-Demand or instance-fleet mix	Spot or instance-fleet mix
Cost-Driven Workloads	Spot	Spot	Spot
Data-Critical Workloads	On-Demand	On-Demand	Spot or instance-fleet mix
Application Testing	Spot	Spot	Spot

Add some storage

Amazon EMR provides two main file systems

- HDFS and EMRFS, specify which file system to use by the prefix
- hdfs://path (or just `path`)
 - HDFS is used by the master and core nodes
 - AWS EBS volume storage is used for HDFS data
 - Is fast, best used for caching the results produced by intermediate job-flow steps, why?
 - It's ephemeral storage which is reclaimed when the cluster ends
- s3://DOC-EXAMPLE-BUCKET1/path (EMRFS)
 - An implementation of the Hadoop file system atop Amazon S3
 - We can avoid EBS storage

	On-premises	On cloud
Hardware	2356€/year	?
Software	100000€/year	

Migrating cluster to EMR: ?

Given the software requirements, we need

- (At least) 1 x Master Node (to manage the cluster)
 (At least) 1 x Core node (with HDFS/EBS)
- 4 x Task Nodes (to compute)

	On-premises	On cloud
Hardware	2356€/year	8000€/year
Software	100000€/year	

Migrating cluster to EMR: ~8000€/year

https://calculator.aws/#/estimate?id=c3780b12bb43b593d05def5a1d5218d9764b8a65

	On-premises	On cloud
Hardware	2356€/year	14710€/year
Software	100000€/year	

Migrating cluster to EMR: 14710€/year

- S3 Infrequent Access storage (50 TB per month): 640€
- 1 x Master EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
 - 75 h/month = 15min/task x 10task/day x 30day/month / 60min/hour
- 1 x Core EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
- 4 x Task EMR nodes, EC2 (m4.4xlarge), Utilization (75 h/month): 72€
- 4 x EC2 on demand (task node): 174.83€
 - Storage amount (30 GB)
 - Workload (Daily, Duration of peak: 0 Hr 15 Min)
 - Instance type (m4.xlarge)
- 2 x EC2 on demand (master and core nodes): 330€
 - Storage amount (30 GB)
 - Instance type (m4.xlarge)

	On-premises	On cloud
Hardware	2356€/year	13445€/year
Software	100000€/year	

Migrating cluster to EMR: 13445€/year

- S3 Infrequent Access storage (50 TB per month): 640€
- 1 x Master EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
 - 75 h/month = 15min/task x 10task/day x 30day/month / 60min/hour
- 1 x Core EMR nodes, EC2 (m4.xlarge), Utilization (75 h/month): 4.5€
- 4 x Task EMR nodes, EC2 (m4.4xlarge), Utilization (75 h/month): 72€
- 4 x EC2 spot (task node): 69.55€
 - Storage amount (30 GB)
 - Workload (Daily, Duration of peak: 0 Hr 15 Min)
 - Instance type (m4.xlarge)
- 2 x EC2 on demand (master and core nodes): 330€
 - Storage amount (30 GB)
 - Instance type (m4.xlarge)

Summing up

- We estimated the cluster costs
 - On-premises solution with 18 machines: no go
 - Cloud solution with 18 EC2 instances: no go, we miss the software configuration
- We reduced the cluster based on software requirements
 - On-premises solution with 4 machines: no go
 - Cloud solution with 4 EC2 instances: no go, we miss the software configuration
- We moved the cluster to AWS EMR + spot instances + S3 storage

Can we do better?

- Pick ad-hoc cloud services (AWS Lambda e AWS Batch)
- ... to re-think the applications (food for thoughts)