1. 3.2.5.	
2. 3.2.7.	
3. 3.2.11.	
4. 3.2.15.	
5. 3.2.17.	
6. 3.2.19.	
 7. 3.2.25.	
8. 3.2.27, 29, 31, 33 (3.2.27 in 5 E).	
9. 3.2.39 (3.2.33 in 5E).	
10. 4.1.1.	
11. 4.1.5.	
12. 4.1.7.	

1. 3.2.5.
$$\begin{vmatrix} 1 & S & -4 & | & A_{21} & R_{1} & | & 1 & S & -4 & | & R_{3} - 2 & R_{2} & | & 1 & S & -4 & | & 1 & S & -1 & | & 1 & S & -4 & | & 1 & S & -1 & | & 1 & S & -4 & | & 1 & S & -1 & | & 1 & S & -4 & | & 1 & S & -1 & | & 1 & S & -4 & | & 1 & S & -1 & | & & 1 & S & -1 & | & 1 & S & -1 &$$

$$3. \ \ 3.2.11. \ \ \begin{vmatrix} 3 & 4 & -3 & -1 \\ 3 & 0 & 1 & -3 \\ -6 & 0 & -4 & 3 \\ 6 & 8 & -4 & -1 \end{vmatrix} \xrightarrow{\beta_3 + \beta_4} \begin{vmatrix} 3 & 4 & -3 & -1 \\ 0 & -4 & 4 & -2 \\ 0 & 8 & -8 & 2 \end{vmatrix} \xrightarrow{\beta_4 + \beta_4} \begin{vmatrix} 3 & 4 & -3 & -1 \\ 0 & -4 & 4 & -2 \\ 0 & 8 & -8 & 2 \end{vmatrix} \xrightarrow{\beta_4 + \beta_4} \begin{vmatrix} -4 & 4 & -2 \\ 0 & -4 & 4 & -2 \\ 0 & 8 & -8 & 2 \end{vmatrix} \xrightarrow{\beta_4 + \beta_4} \begin{vmatrix} -4 & 4 & -2 \\ 0 & -4 & 4 & -2 \\ 0 & 8 & -8 & 2 \end{vmatrix} \xrightarrow{\beta_4 + \beta_4} \begin{vmatrix} -4 & 4 & -2 \\ 0 & -4 & 4 & -2 \\ 0 & 8 & -8 & 2 \end{vmatrix} \xrightarrow{\beta_4 + \beta_4} \begin{vmatrix} -4 & 4 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{vmatrix} \xrightarrow{\beta_4 + \beta_4} \begin{vmatrix} -4 & 4 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{vmatrix}$$

4. 3.2.15.
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7. \quad \begin{vmatrix} a & b & c \\ d & e & f \\ 3g & 3h & 3i \end{vmatrix}$$
 by 12 to Produce B, then det B = Kdet A, so $7 \times 3 = 21$

5. 3.2.17.
$$\begin{vmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{vmatrix}$$
 If a multiple of one row of A is added to another row to produce a matrix B, then

6. 3.2.19. 19.
$$\begin{vmatrix} a & b & c \\ 2d+a & 2e+b & 2f+c \\ g & h & i \end{vmatrix} = \frac{2R_2 + R_1}{2R_2 + R_1}$$
 So $det = 14$ because of the 2 rules listed in 3.2.15 \(\frac{1}{4}\) 3.2.17

7. 3.2.25. **25.**
$$\begin{bmatrix} 7 \\ -4 \\ -6 \end{bmatrix}, \begin{bmatrix} -8 \\ 5 \\ 7 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 7 \\ 0 \\ -15 \end{bmatrix}$$

$$\begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 7 \\ 0 \\ 0$$

8. 3.2.27, 29, 31, 33

27. If the row replacement operation is simply taking one row & adding to another, then I

29. T, if columns of A are LI, then det \$0

31. F, one interchange yields the negative determinant, so 3 would Also be the negative determinant

33. F. you would have to cold Matrices A&B together, completely changing the determinant, so Adding the detA +detB is not the same. However det(AB) = detA.detB

_ 10. 4.1.1	a. The sum of U &V, denoted by U+V is in V.
	Let V be the first quadrant in the xy -plane; that is, let If they are individually $\frac{1}{2}$
$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$	$V = \{ \begin{bmatrix} y \end{bmatrix} : x \ge 0, y \ge 0 \}$ in V , their sums are too
	 a. If u and v are in V, is u + v in V? Why? b. Find a specific vector u in V and a specific scalar c such that cu is not in V. (This is enough to show that V is not a vector space.)
	(U=[-1] x ≠0, 3 ≠0, so not in V
11. 4.1.5.	
an appro	ises 5–8, determine if the given set is a subspace of \mathbb{P}_n for priate value of n . Justify your answers. Polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} .
-	$\alpha = 0$, $\rho(\xi) = 0$ $\rho_2(\xi) = \alpha_2 \xi^2 \rightarrow (\alpha_1 + \alpha_2) \xi^2 $
•	(E)= C(al2)= (Ca) 62 /
12. 4.1.7	Let H be the set of all vectors of the form $\begin{bmatrix} s \\ 3s \\ 2s \end{bmatrix}$. Find a
	vector \mathbf{v} in \mathbb{R}^3 such that $H = \operatorname{Span}\{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^3 ?
	1/5 () C C () This shows that
Stanta	S(S(3):SER) This shows that H is a subspace because contains 0 vector
	when S=O, Closed addition & closed scalor multiplication