Improvements in modelling the diurnal temperature amplitude in ACCESS

Eva Kowalczyk, Lauren Stevens, lan Harman and Vanessa Haverd

Diurnal Temperature Range

Nd

DTR =
$$\sum_{d=1}^{\infty} (\max_{max} T_{d} - \min_{max} T_{d}) / N_{d}$$

maxTd and minTd are the daily max, min and Nd is of days

maxTd is largely determined by:

- shortwave forcing, cloud cover & precipitation, stability of the atmosphere
- evapotranspiration, soil moisture availability, surface parameters affecting surface exchange processes (albedo & rougness)

min Td is largely determined by:

- incoming longwave affected by cloud cover, stability of the atmosphere, roughness length

Seasonal Mean Screen Temperature Bias (K)

-2

-3

-8

0

2

5

o ustralian Weather and Climate Research ween CSIRO and the Bureau of Meteorology

Impact of precipitation on diurnal amplitude in ACCESS

Diurnal amplitude for DJF left column and JJA right column

In A1.3 HadGEM3' settings include PC2 cloud scheme

Seasonal minimum screen temperature biases for A1.0 and A1.1 AMIP simulations

Seasonal maximum screen temperature biases for A1.0 and A1.1 AMIP simulations

ACCESS1.0 evaluated against ERA-Interim for \DJF (left column) and JJA (right column).

ACCESS1.1 simulation

Tmax difference, ACCESS1.1 minus ACCESS1.0

Model improvements

- Evapotranspiration and soil moisture availability
 - Changes to restrict transpiration/photosynthesis in dry conditions (Vanessa Haverd)
 - Setting more stringent criteria to maintain water balance
 - Soil evaporation cut off below the soil wilting value
 - Increased surface runoff in areas of high topography
 - Increased speed of drainage for coarse texture soil
- Surface roughness length for bare ground
 - New formula for bare ground roughness length as a function of friction velocity and leaf area index (lan Harman)

Rescaling the minimum stomatal resistance with soil availability modifier (Venessa Harverd)

Kruger DJF Qle

Roughness length (z0) of sand / bare ground

Constant value of z0soil in UM/CABLE produced cool bias in Tmean over arid and semi arid areas:

- low value of z0 = 1.e-6 gives reasonable Tmin but Tmax and Tmean are underestimated
- high value of z0 =1.e-2 gives reasonable Tmax but Tmin and Tmean is severely underestimated.

D09205

PRIGENT ET AL.: GLOBAL ROUGHNESS LENGTHS FROM SATELLITE

Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. Prigent et al., 2005, JGR

Roughness length (z0) of sand / bare ground

C

Saltation is downwind movement of particles in a series of jumps or skips.

- advected mass flow of sand increases with friction velocity U*3
- vertical velocity of the grain is proportional to U*
- the height to which particuce rises is proportional to $U*^2$ / grav

So the soil roughness length is also proportional to U_{\star}^2 / grav

Chamberlain BLM 1983

ROUGHNESS LENGTH OF SEA, SAND, AND SNOW BLM 1983, A. CHAMBERLAIN

Fig. 2. Roughness length during blowing of sand or snow.

$$z0 = a * (U* * U*) / grav + b * min(1,lai)$$

where $a = 0.02$, $b = 0.01$

DTR over Australia in UM/CableV2.0 & V2.2 DJF

hydrology related updates V2.0

new roughness length V2.2

DTR over Australia in UM/CableV2.0 & V2.2 JJA

original V2.0

hydrology related updates V2.0

Meteorology

Future work related to Tmax and Tmin

- Further increase in surface runoff in areas of high topography
- Increase speed of drainage for coarse texture soil
- Rescaling of canopy vcmax parameter consistently with the carbon budget

Amplitude bias V2.2

