- **CLT** (Central Limit Theorem): Draw a random sample of size n from any population with mean μ and finite standard deviation σ . When n is large, the sampling distribution of the sample mean is approximately $N(\mu, \frac{\sigma^2}{n})$.
- Confidence interval : estimate \pm margin of error. A confidence interval for μ is $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
- The confidence interval will have a specified **margin of error** E when the sample size is: $n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$
- A test statistic calculated from the sample data measures how far the data diverge from the null hypothesis H_0 . Define the test statistic $z = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}$

Decision Rule: Given fixed $\alpha = P(\text{Type-I Error})$.

 $H_a: \mu > \mu_0$, Reject H_0 if $z > z_\alpha$

 $H_a: \mu < \mu_0$, Reject H_0 if $z < -z_\alpha$

 $H_a: \mu \neq \mu_0$, Reject H_0 if $|z| > z_{\alpha/2}$

- If we reject H_0 when in fact H_0 is true, this is a **Type I error**.
- If we fail to reject H_0 when in fact H_a is true, this is a **Type II error**, also called β .

For one sided alternative test $(H_a: \mu > \mu_0 \text{ or } H_a: \mu < \mu_0)$: $\beta = P\left(Z \le z_\alpha - \frac{|\mu_0 - \mu_a|}{\sigma/\sqrt{n}}\right)$

For two sided alternative test $(H_a: \mu \neq \mu_0)$: $\beta = P\left(Z \leq z_{\alpha/2} - \frac{|\mu_0 - \mu_a|}{\sigma/\sqrt{n}}\right)$

• Power analysis (Sample size determination), where power = $1 - \beta$:

For one sided alternative test $(H_a: \mu > \mu_0 \text{ or } H_a: \mu < \mu_0)$: $n = \sigma^2 \frac{(z_\alpha + z_\beta)^2}{\Lambda^2}$

For two sided alternative test $(H_a: \mu \neq \mu_0)$: $n = \sigma^2 \frac{(z_{\alpha/2} + z_{\beta})^2}{\Delta^2}$

• The one-sample t statistic: $t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$ has the t distribution with n-1 degrees of freedom.

The p-value for a test of $H_0: \mu = \mu_0$ vs

 $H_a: \mu > \mu_0$ is p-value $= P(T \ge t)$

 $H_a: \mu < \mu_0$ is p-value $= P(T \le t)$

 $H_a: \mu \neq \mu_0$ is p-value $= 2P(|T| \geq |t|)$

• Confidence interval for μ is:

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$
 with $df = n - 1$

• Power analysis (2 Independent Samples):

for
$$(H_a: \mu_1 > \mu_2 \text{ or } H_a: \mu_1 < \mu_2)$$
:

$$n = \frac{2\sigma^2(z_{\alpha} + z_{\beta})^2}{\Lambda^2}$$

for $(H_a : \mu_1 \neq \mu_2)$:

$$n = \frac{2\sigma^2(z_{\alpha/2} + z_{\beta})^2}{\Lambda^2}$$

• Power analysis (Paired Samples):

for
$$(H_a: \mu_1 > \mu_2 \text{ or } H_a: \mu_1 < \mu_2)$$
:

$$n = \frac{\sigma_d^2 (z_\alpha + z_\beta)^2}{\Lambda^2}$$

for $(H_a: \mu_1 \neq \mu_2)$:

$$n = \frac{\sigma_d^2 (z_{\alpha/2} + z_\beta)^2}{\Delta^2}$$

Case 2: Two Numerical Variables - Population Standard Deviations unknown

	Independent Samples		
	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	Paired Samples
Parameters of Interest:	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$
Confidence	$\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ with df = $n-1$
Interval Formula:	$df = n_1 + n_2 - 2$, where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	$df = \frac{(n_1-1)(n_2-1)}{(1-c)^2(n_1-1)+c^2(n_2-1)}$, where $c = \frac{\frac{s_1^2}{n_1}}{\frac{s_1^2}{n_2}+\frac{s_2^2}{n_2}}$	where the subscript "d" denotes the calculation is performed on the differences "Sample1" – "Sample2"
Name of Hypothesis Test, H_0	Two-sample T Test, H_0 : $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$	Two-sample T Test, H_0 : μ_1 = μ_2 or H_0 : μ_1 - μ_2 =0	Paired T Test, $H_0: \mu_{\rm l}=\mu_{\rm l} \ \ {\rm or} \ \ H_0: \mu_{\rm l}-\mu_{\rm l}=0$
Test Statistic Formula:	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t' = rac{\overline{x_1} - \overline{x_2}}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$	$t = \frac{\overline{d}}{s_d/\sqrt{n}}$ with df = $n-1$
P-value:	$H_a: \mu_1 \neq \mu_2$, p -value = $2P(T \ge t)$ $H_a: \mu_1 > \mu_2$, p -value = $P(T \ge t)$ $H_a: \mu_1 < \mu_2$, p -value = $P(T \le t)$		$\begin{aligned} &H_a: \mu_1 \neq \mu_2 , p\text{-value} = 2P(T \geq \left t \right) \\ &H_a: \mu_1 > \mu_2 , p\text{-value} = P(T \geq t) \\ &H_a: \mu_1 < \mu_2 , p\text{-value} = P(T \leq t) \end{aligned}$

• NON-PARAMETRIC TESTS: For the population median: use SIGN TEST. For TWO Independent Samples: use WILCOXON RANK-SUM TEST. For TWO Dependent Samples: use WILCOXON SIGNED-RANK TEST