Hierarchical Online Instance Matching for Person Search

Di Chen^{1,3}, Shanshan Zhang¹, Wanli Ouyang², Jian Yang¹, Bernt Schiele³

¹Nanjing University of Science and Technology, ²The University of Sydney, ³Max-Planck Institute for Informatics

Task & Challenge

Person Search:

- Find a query person among a set of scene images
- A hybrid task of pedestrian detection and reidentification

The Challenge:

- Contradictory objectives of detection (find person commonness) and re-ID (find person uniqueness)
- Make use of unlabeled persons and hard mining

The Joint Model

Ablation & Analysis

Method	mAP(%)	top-1(%)	$\Delta(\%)$
OIM	75.5	78.7	
OIM-base	83.6	87.4	(+1.5, +0.2)
+ Focal Loss	85.1	87.6	
+ SMR	85.5	88.2	(+0.4, +0.6)
HOIM	89.7	90.8	(+4.2, +2.6)

HOIM and SMR improves performance over a strong baseline

 HOIM yields better detection performance than the baseline

	RPN		Faster R-CNN	
Method	Recall(%)	AP (%)	Recall(%)	AP (%)
detector	89.27	69.07	93.12	87.02
OIM-base HOIM	-9.1 -0.73	-21.69 -12.66	-12.01 -1.36	-11.18 -1.35

- HOIM embeddings are more robust under false detections
- HOIM embeddings are more discriminative

Basic Idea

The HOIM Loss

$$\begin{split} \mathcal{L}_{\text{HOIM}} &= \mathcal{L}_{\text{det}} + \lambda \mathcal{L}_{\text{OIM}} \\ \text{where:} \\ \mathcal{L}_{\text{det}} &= -y \log(P_{\text{person}}) - (1-y) \log(P_{\text{bg}}) \\ \mathcal{L}_{\text{OIM}} &= -\mathbb{E}[\log(P_{\text{id}=t})], \quad t = 1, 2, \dots, N \\ \lambda &= 2P_{\text{person}}^2 \end{split}$$

Selective Memory Refreshment

Pop out embeddings with low $\omega {\rm eights}$

$$\omega = \frac{\text{sim w/ known persons}}{\text{sim w/ unknown persons}} \cdot k^{\iota}$$

$$\tilde{\omega} = \frac{\text{sim w/ all persons}}{\text{sim w/ bg clutters}} \cdot k^{\iota}$$

Performance Comparison

	CUHK	K-SYSU	PRW	
Method	mAP	top-1	mAP	top-1
DPM + IDE w. CWS	-	-	20.5	48.3
CNN + MGTS	83.0	83.7	32.6	72.1
CNN + CLSA	87.2	88.5	38.7	65.0
OIM	75.5	78.7	21.3	49.9
IAN	76.3	80.1	23.0	61.9
NPSM	77.9	81.2	24.2	53.1
RCAA	79.3	81.3	-	-
CTXGraph	84.1	86.5	33.4	73.6
QEEPS	88.9	89.1	37.1	76.7
Ours	89.7	90.8	39.8	80.4

