Project: Customer Segmentation using K-Means Clustering

Done By: Mr. Aridweep Majumder, M. Tech

This project applies K-Means clustering to a marketing dataset to segment customers based on demographics and purchase behavior.

Dataset source: marketing_campaign.csv

Tools used: Python, Pandas, Matplotlib, Seaborn, Scikit-learn

1. Importing Necessary Libraries & Load Datasets

```
# Basic imports for analysis and modeling
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

# Enable inline plots
%matplotlib inline

# Load the dataset (already uploaded to Colab)
df = pd.read_csv('/content/marketing_campaign.csv')

# Check shape and preview
print(f"Total Rows: {df.shape[0]}")
print(f"Total Columns: {df.shape[1]}")
df.head(3)
```

Total Rows: 2240
Total Columns: 29

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	
0	5524	1957	Graduation	Single	58138.0	0	0	04-09-2012	58	
1	2174	1954	Graduation	Single	46344.0	1	1	08-03-2014	38	
2	4141	1965	Graduation	Together	71613.0	0	0	21-08-2013	26	

3 rows × 29 columns

2. Data Overview & Summary

```
# Quick look at column types and names
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2240 entries, 0 to 2239
    Data columns (total 29 columns):
     #
         Column
                              Non-Null Count Dtype
                              _____
    ---
                                             ----
     0
         ID
                              2240 non-null
                                              int64
         Year_Birth
     1
                              2240 non-null
                                              int64
     2
         Education
                              2240 non-null
                                              object
     3
         Marital_Status
                              2240 non-null
                                              object
         Income
                                             float64
     4
                              2216 non-null
     5
         Kidhome
                              2240 non-null
                                              int64
     6
         Teenhome
                              2240 non-null
                                              int64
     7
         Dt Customer
                             2240 non-null
                                              object
     8
                              2240 non-null
         Recency
                                              int64
     9
         MntWines
                              2240 non-null
                                              int64
     10
         MntFruits
                              2240 non-null
                                              int64
     11
         MntMeatProducts
                              2240 non-null
                                              int64
     12 MntFishProducts
                             2240 non-null
                                              int64
     13 MntSweetProducts
                            2240 non-null
                                              int64
     14 MntGoldProds
                              2240 non-null
                                              int64
     15 NumDealsPurchases
                              2240 non-null
                                              int64
                              2240 non-null
     16
         NumWebPurchases
                                              int64
     17
         NumCatalogPurchases 2240 non-null
                                              int64
     18 NumStorePurchases
                              2240 non-null
                                              int64
     19 NumWebVisitsMonth
                              2240 non-null
                                              int64
     20 AcceptedCmp3
                              2240 non-null
                                              int64
     21 AcceptedCmp4
                             2240 non-null
                                              int64
     22 AcceptedCmp5
                             2240 non-null
                                              int64
     23 AcceptedCmp1
                             2240 non-null
                                              int64
     24 AcceptedCmp2
                             2240 non-null
                                              int64
     25
        Complain
                              2240 non-null
                                              int64
     26 Z_CostContact
                              2240 non-null
                                              int64
     27 Z_Revenue
                              2240 non-null
                                              int64
                              2240 non-null
     28 Response
                                              int64
    dtypes: float64(1), int64(25), object(3)
    memory usage: 507.6+ KB
# Listing all columns
print("Columns:")
print(df.columns.tolist())
    Columns:
    ['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome', 'Teenhome', 'Dt_Custon'
# Check for missing values
print("Missing values in each column:")
print(df.isnull().sum())

→ Missing values in each column:
    ID
                            0
    Year_Birth
                            0
    Education
                            0
    Marital_Status
                            n
    Income
                           24
    Kidhome
                            0
    Teenhome
                            0
                            0
    Dt_Customer
    Recency
                            0
    MntWines
                            0
    MntFruits
                            0
    MntMeatProducts
                            0
                            0
```

MntFishProducts

MntSweetProducts	0
MntGoldProds	0
NumDealsPurchases	0
NumWebPurchases	0
NumCatalogPurchases	0
NumStorePurchases	0
NumWebVisitsMonth	0
AcceptedCmp3	0
AcceptedCmp4	0
AcceptedCmp5	0
AcceptedCmp1	0
AcceptedCmp2	0
Complain	0
<pre>Z_CostContact</pre>	0
Z_Revenue	0
Response	0
dtvpe: int64	

Basic statistical summary
df.describe()

→) ID		Year_Birth	Income	Kidhome	Teenhome	Recency	MntWines	Mntl
	count	2240.000000	2240.000000	2216.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.
	mean	5592.159821	1968.805804	52247.251354	0.444196	0.506250	49.109375	303.935714	26.
	std	3246.662198	11.984069	25173.076661	0.538398	0.544538	28.962453	336.597393	39.
	min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000	0.000000	0.
	25%	2828.250000	1959.000000	35303.000000	0.000000	0.000000	24.000000	23.750000	1.
	50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000	173.500000	8.
	75%	8427.750000	1977.000000	68522.000000	1.000000	1.000000	74.000000	504.250000	33.
	max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000	1493.000000	199.

8 rows × 26 columns

3. Data Cleaning and Preprocessing

data = df.copy() # Make a copy to avoid modifying the original dataframe
data.isnull().sum() # Checking again for missing values

0

dtype: int64

```
# 'Income' has some missing values - dropping those rows
data = data.dropna(subset=['Income'])

# Convert 'Dt_Customer' to datetime format
data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'], format='%d-%m-%Y')
```

```
# Create a new feature: year the customer joined
data['Customer_Year'] = data['Dt_Customer'].dt.year
# Create a new feature: year the customer joined
data['Customer Year'] = data['Dt Customer'].dt.year
# Drop unused or duplicate columns for clustering
data = data.drop(['ID', 'Dt_Customer'], axis=1)
/tmp/ipython-input-139-3013036707.py:5: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/">https://pandas.pydata.org/pandas-docs/stable/user_guide/</a>
       data['Dt Customer'] = pd.to datetime(data['Dt Customer'], format='%d-%m-%Y')
     /tmp/ipython-input-139-3013036707.py:8: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/">https://pandas.pydata.org/pandas-docs/stable/user_guide/</a>
       data['Customer_Year'] = data['Dt_Customer'].dt.year
     /tmp/ipython-input-139-3013036707.py:12: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/">https://pandas.pydata.org/pandas-docs/stable/user_guide/</a>
       data['Customer_Year'] = data['Dt_Customer'].dt.year
# Convert 'Education' and 'Marital_Status' to numeric using one-hot encoding
data = pd.get dummies(data, columns=['Education', 'Marital Status'], drop first=True)
# Convert all boolean columns to integer (so True/False becomes 1/0)
data = data.astype(int)# Final structure check
print(f"Data shape after cleaning: {data.shape}")
data.head(4)
```

→ Data shape after cleaning: (2216, 37)

	•		•						
	Year_Birth	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFish
(1957	58138	0	0	58	635	88	546	
1	1954	46344	1	1	38	11	1	6	
2	1965	71613	0	0	26	426	49	127	
3	1984	26646	1	0	26	11	4	20	

4 rows × 37 columns

```
# Final structure check
print(f"Data shape after cleaning: {data.shape}")
data.head()
```

\rightarrow	Data	shape	after	cleaning:	(2216,	37)
---------------	------	-------	-------	-----------	--------	-----

	Year_Birth	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFish
0	1957	58138	0	0	58	635	88	546	
1	1954	46344	1	1	38	11	1	6	
2	1965	71613	0	0	26	426	49	127	
3	1984	26646	1	0	26	11	4	20	
4	1981	58293	1	0	94	173	43	118	

5 rows × 37 columns

4. Feature Selection for Clustering

```
# Selecting numerical features for clustering
features = data.copy()

# Standardizing the data to bring all features to the same scale
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)

# Convert back to DataFrame for easier inspection if needed
scaled_df = pd.DataFrame(scaled_features, columns=features.columns)
scaled_df.head(4)
```

→		Year_Birth	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFi
	0	-0.986443	0.234063	-0.823039	-0.928972	0.310532	0.978226	1.549429	1.690227	
	1	-1.236801	-0.234559	1.039938	0.909066	-0.380509	-0.872024	-0.637328	-0.717986	
	2	-0.318822	0.769478	-0.823039	-0.928972	-0.795134	0.358511	0.569159	-0.178368	
	3	1.266777	-1.017239	1.039938	-0.928972	-0.795134	-0.872024	-0.561922	-0.655551	

4 rows × 37 columns

5. Finding Optimal Clusters (Elbow Method)

```
# Trying different values of K to see where inertia drops sharply
inertia = []
k_range = range(1, 11)

for k in k_range:
    model = KMeans(n_clusters=k, random_state=42)
    model.fit(scaled_df)
    inertia.append(model.inertia_)

# Plotting the elbow curve
plt.figure(figsize=(8, 5))
```

```
plt.plot(k_range, inertia, marker='o')
plt.title('Elbow Method - Optimal K')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('Inertia')
plt.grid(True)
plt.show()
```


6. Apply K-Means Clustering & Visualize Clusters

```
# Let's choose 4 clusters (you can change this based on the elbow plot)
k = 4
# Fit the model
kmeans = KMeans(n_clusters=k, random_state=42)
clusters = kmeans.fit predict(scaled df)
# Add cluster labels to original data
data['Cluster'] = clusters
# Visualizing clusters using PCA
pca = PCA(n components=2)
pca_data = pca.fit_transform(scaled_df)
# DataFrame for plotting
pca_df = pd.DataFrame(data=pca_data, columns=['PCA1', 'PCA2'])
pca_df['Cluster'] = clusters
plt.figure(figsize=(8, 6))
sns scatternlot(data=nca df x='PCA1' v='PCA2' hue='Cluster'
                                                                                 s=70)
                                                               nalette='tah10'
```

```
plt.title('Customer Segments Visualized (PCA)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.legend(title='Cluster')
plt.grid(True)
plt.show()
```


PCA Component 1

6

7. Cluster Analysis

-4

-2

```
# Mean profile of each cluster
cluster_profile = data.groupby('Cluster').mean(numeric_only=True).round(2)
cluster_profile.T # Transposed for easier reading
```

-2

Cluster	0	1	2	3
Year_Birth	1972.44	1969.62	1969.09	1966.21
Income	37261.54	38559.86	81055.89	69113.32
Kidhome	0.71	0.71	0.05	0.07
Teenhome	0.48	0.56	0.15	0.53
Recency	47.41	49.10	48.05	49.79
MntWines	92.84	96.33	863.22	524.26
MntFruits	7.75	5.82	55.62	53.81
MntMeatProducts	38.91	34.30	465.02	318.65
MntFishProducts	9.99	8.91	82.08	75.77
MntSweetProducts	7.36	5.84	64.61	53.59
MntGoldProds	25.09	20.87	77.81	73.78
NumDealsPurchases	2.48	2.55	1.14	2.27
NumWebPurchases	2.88	2.87	5.44	5.85
NumCatalogPurchases	0.94	0.82	6.07	4.97
NumStorePurchases	3.83	3.82	8.23	8.63
NumWebVisitsMonth	6.53	6.44	3.11	3.90
AcceptedCmp3	0.10	0.06	0.15	0.06
AcceptedCmp4	0.02	0.04	0.38	0.06
AcceptedCmp5	0.00	0.00	0.83	0.00
AcceptedCmp1	0.01	0.00	0.49	0.05
AcceptedCmp2	0.01	0.00	0.13	0.00
Complain	0.01	0.01	0.01	0.01
Z_CostContact	3.00	3.00	3.00	3.00
Z_Revenue	11.00	11.00	11.00	11.00
Response	0.16	0.08	0.58	0.12
Customer_Year	2013.08	2013.07	2013.03	2012.95
Education_Basic	0.06	0.04	0.00	0.00
Education_Graduation	0.51	0.48	0.52	0.53
Education_Master	0.15	0.19	0.16	0.14
Education_PhD	0.20	0.19	0.24	0.25
Marital_Status_Alone	0.01	0.00	0.00	0.00
Marital_Status_Divorced	0.00	0.13	0.08	0.12
Marital_Status_Married	0.00	0.51	0.42	0.37
Marital_Status_Single	0.98	0.00	0.20	0.19
Marital_Status_Together	0.00	0.33	0.25	0.26

```
# Number of customers in each cluster
cluster_counts = data['Cluster'].value_counts().sort_index()
print("Number of customers per cluster:")
print(cluster_counts)
Number of customers per cluster:
    Cluster
    0
         294
         993
    1
    2
         195
    3
         734
    Name: count, dtype: int64
# Visualize average spending per cluster
spending_features = [
    'MntWines', 'MntFruits', 'MntMeatProducts',
    'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'
]
avg_spending = data.groupby('Cluster')[spending_features].mean()
plt.figure(figsize=(10, 6))
avg_spending.T.plot(kind='bar', figsize=(12, 6))
plt.title('Average Spending per Product Category by Cluster')
plt.xlabel('Product Category')
plt.ylabel('Average Amount Spent')
plt.xticks(rotation=45)
plt.legend(title='Cluster', loc='upper right')
plt.grid(True)
```

0.00

0.01

0.03

0.00

0.05

0.00

0.05

0.00

Marital_Status_Widow

Marital_Status_YOLO

plt.tight_layout()

plt.show()


```
# Comparing income distribution by cluster visual
plt.figure(figsize=(8, 5))
sns.boxplot(data=data, x='Cluster', y='Income', palette='Pastel1')
plt.title('Income Distribution by Cluster')
plt.ylim(0, 150000) # Adjustable the upper limit as needed
plt.grid(True)
plt.show()
```

/tmp/ipython-input-149-3784089105.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign sns.boxplot(data=data, x='Cluster', y='Income', palette='Pastel1')


```
#Cluster vs Web Activity
plt.figure(figsize=(8, 5))
sns.barplot(data=data, x='Cluster', y='NumWebPurchases', ci=None, palette='Set3')
plt.title('Average Web Purchases per Cluster')
plt.grid(True)
plt.show()
```

```
/tmp/ipython-input-150-486649454.py:3: FutureWarning:
```

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(data=data, x='Cluster', y='NumWebPurchases', ci=None, palette='Set3')
/tmp/ipython-input-150-486649454.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign sns.barplot(data=data, x='Cluster', y='NumWebPurchases', ci=None, palette='Set3')

