

Sequential Systems - ch. 7

Definitions

▼

Big Ideas

▼ Serial Decimal Adder

▼ example

Resources

https://s3-us-west-2.amazonaws.c om/secure.notion-static.com/8355 1610-59dc-4bcf-a102-b4843422b 2ef/ch7.pdf

least-significant digit first (at t=0)

▼ state description

$$\begin{array}{ll} \text{Input:} & x(t), y(t) \in \{0,1,...,9\} \\ \text{Output:} & z(t) \in \{0,1,...,9\} \\ \text{State:} & s(t) \in \{0,1\} \text{ (the carry)} \\ \text{Initial state:} & s(0) = 0 \\ \\ \text{Functions:} & \text{The transition and output functions are} \\ & s(t+1) = \begin{cases} 1 & \text{if} \quad x(t) + y(t) + s(t) \geq 10 \\ 0 & \text{otherwise} \end{cases} \\ & z(t) = (x(t) + y(t) + s(t)) \ mod \ 10 \end{cases} \\ \text{Example:} \\ & \frac{t}{\mathbf{x}(t)} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \mathbf{x}(t) & 3 & 5 & 7 & 8 & 3 & 6 & 1 \\ \hline y(t) & 5 & 2 & 4 & 2 & 5 & 6 & 3 \\ \hline \hline \mathbf{x}(t) & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ z(t) & 8 & 7 & 1 & 1 & 9 & 2 & 5 \end{cases}$$

▼ State Description (Finite State Machines)

▼ e.g. state description of odd/even function

```
\label{eq:total_continuity} \begin{array}{ll} \text{Time-behavior specification:} \\ & \text{Input:} \quad x(t) \in \{a,b\} \\ & \text{Output:} \quad z(t) \in \{0,1\} \\ & \text{Function:} \quad z(t) = \begin{cases} 1 \quad \text{if} \quad x(0,t) \text{ contains an even number of } b\text{'s} \\ 0 \quad \text{otherwise} \end{cases} \\ & \text{I/O sequence:} \\ & \frac{t}{x,z} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a,1 & b,0 & b,1 & a,1 & b,0 & a,0 & b,1 & a,1 \\ \end{array}
```

state description (PS = previous state)

 $x(t) \in \{a,b\}$ Input: Output: $z(t) \in \{0, 1\}$ State:

 $s(t) \in \{\text{even, odd}\}$

Initial state: s(0) = EVEN

Functions: Transition and output functions

PS	x(t) = a	x(t) = b
EVEN	EVEN, 1	odd, 0
ODD	odd, 0	EVEN, 1
	NS,	z(t)

▼ state diagram

 $\label{eq:Figure 7.4: (a) State diagram representation. (b) Simplified state diagram notation.}$

ightharpoonup state transition table \iff state diagram

Figure 7.5: State diagram for Example 7.6.

▼ e.g. recursive subpatterns

Example 7.11

Input: $x(t) \in \{0, 1\}$ Output: $z(t) \in \{0,1\}$

Function: $z(t) = \begin{cases} 1 & \text{if } x(t-3,t) = 1101 \\ 0 & \text{otherwise} \end{cases}$

 $\mathsf{pattern}\ \mathsf{detector} \Rightarrow \mathsf{detect}\ \mathsf{subpatterns}$

State | indicates that

 S_{init} Initial state; also no subpattern S_1 First symbol (1) of pattern has been detected

 S_{11} | Subpattern 11 has been detected S_{110} | Subpattern 110 has been detected

Figure 7.8: State diagram for Example 7.11

▼ Mealy and Moore **Machines**

▼ function descriptions (future state descriptions)

Mealy machine

$$z(t) = H(s(t), x(t)) \,$$

$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

▼ moore sequential system

Input: $x(t) \in \{a,b,c\}$ Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: Transition and output functions:

PS	Input			
	a	b	c	
$\overline{S_0}$			S_1	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3	S_0	1
S_3	S_0	S_1	S_2	0
	NS			Output

▼ moore state diagram

Figure 7.6: State diagram for Example 7.5

▼ Controllers

- ▼ Finite state machines that produce a control signal
- ▼ control signals determine actions of other systems → autonomous
- ▼ state diagram

 $Figure \ 7.10: \ Autonomous \ controller: \ State \ diagram.$

▼ e.g. candy machine

▼ Equivalent Sequential Systems (reduced FSM)

▼ e.g. function → state transition table → reduced state diagram

▼ states that are not distinguishable by steps in between

• k-distinguishable states: diff. output sequences

$$z(x(t,t+k-1),S_v) \neq z(x(t,t+k-1),S_w)$$

Example:

$$\begin{array}{cccc} \mathsf{State} & x(3,7) & z(3,7) \\ S_1 & 0210 & 0011 \\ S_3 & 0210 & 0001 \end{array}$$

- ullet k-equivalent states: not distinguishable for sequences of length k
- $-P_{\boldsymbol{k}}$ partition of states into k-equivalent classes
- Equivalent states
- not distinguishable for any \boldsymbol{k}

ightharpoonup e.g. state transition table ightharpoonup new state

 $\begin{array}{ll} \text{Input:} & x(t) \in \{a,b,c\} \\ \text{Output:} & z(t) \in \{0,1\} \end{array}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Function: The transition and output functions are

PS	x = a	x = b	x = c	
\overline{A}	E,0	D, 1	B, 0	
B	F, 0	D, 0	A, 1	
C	E, 0	B, 1	D, 0	
D	F, 0	B, 0	C, 1	
E	C, 0	F, 1	F, 0	
F	B, 0	C, 0	F, 1	
	NS, z			

 $\bullet \quad A \ {\rm and} \ B \ {\rm are} \ {\rm 1-distinguishable} \ {\rm because}$

$$z(b,A) \neq z(b,B)$$

 $\bullet \quad A \ {\rm and} \ C \ {\rm are} \ 1{\rm -equivalent} \ {\rm because}$

$$z(x(t),A)=z(x(t),C),\quad for\ all\ x(t)\in I$$

 $\bullet \quad A \text{ and } C \text{ are also 2-equivalent because} \\$

$$\begin{aligned} z(aa,A) &= z(aa,C) &= 00 \\ z(ab,A) &= z(ab,C) &= 01 \\ z(ac,A) &= z(ac,C) &= 00 \\ z(ba,A) &= z(ba,C) &= 10 \\ z(bc,A) &= z(bc,C) &= 11 \\ z(ca,A) &= z(ca,C) &= 00 \\ z(ca,A) &= z(ca,C) &= 00 \\ z(cb,A) &= z(cb,C) &= 00 \\ z(cb,A) &= z(cc,C) &= 01 \end{aligned}$$

