

MTH 528 TOPOLOGY II MIDTERM EXAM

March 28, 2019

Name:								
UB Person Number: Instructions:								
OD Ferson Number: Instructions:								
								 Each problem is worth 20 points.
0 1 2 3 4 5 6 7 8 9	① ① ① ③ ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	①①①②③④(5)(6)(7)(8)(9)	34567	① ① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	①①①②③④(5)(6)(7)(8)(9)	①①①②③④(5)(6)(7)(8)(9)	(a) (b) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	 Textbooks, calculators and any other electronic devices are not permitted You may use one sheet of notes. For full credit solve each problem fully showing all relevant work.

1. Let A be a matrix and \mathbf{v} be a vector given as follows:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

- a) Determine if v is in Col(A), where Col(A) is the column space of A.
- **b)** Determine if v is in Nul(A), where Nul(A) is the null space of A.
- c) Find an explicit description of Nul(A) by listing vectors that span the null space.

2. Consider the following matrices:

$$B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 3 \\ 0 & 2 & 2 \end{bmatrix}$$

- a) Compute the inverse of B.
- **b)** Find the matrix A such that $(BA)^T = C$.

MTH-309T-F19-EX1-005-P01

3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which first reflects points through the line $x_1 = x_2$ and then reflects points through the x_1 -axis.

- a) Find the standard A matrix of T.
- **b)** Find all vectors $\mathbf{v} \in \mathbb{R}^2$ such that $\mathbf{v} \in \text{Nul}(A)$.

4. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Let b = 7. Express w as a linear combination of vectors v_1 , v_2 , v_3 .
- c) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

MTH-309T-F19-EX1-005-P01

- **5.** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A, B are 2×2 matrices such that AB = 0 is the zero matrix (e.i. the matrix with all entries equal to zero) then either A or B must be the zero matrix.
- **b)** If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v+w\}$ must be linearly independent.
- c) If A is a 2×2 matrix and \mathbf{u} , \mathbf{v} are vectors in \mathbb{R}^2 such that $A\mathbf{u}$, $A\mathbf{v}$ are linearly dependent then \mathbf{u} , \mathbf{v} also must be linearly dependent.
- **d)** If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ are vectors such that \mathbf{u} is in Span(\mathbf{v}, \mathbf{w}) then \mathbf{u} must be also in Span($T(\mathbf{v}), T(\mathbf{w})$).