Trabajo Práctico 4 - Números Reales.

- 1. Si $a, b, c \in \mathbb{R}$ demostrar las siguientes propiedades, teniendo en cuenta el orden en que han sido presentadas en la teoría.
 - (a) $a \cdot 0 = 0$.
 - (b) -(a-b) = b a.
 - (c) a+b=a-(-b).
 - (d) $(-a) \cdot b = -a \cdot b = a \cdot (-b)$
 - (e) $(a+b) \cdot (a-b) = a^2 b^2$.
 - (f) $a^2 = 1 \Leftrightarrow a = 1 \lor a = -1$.
 - (g) $-1 = (-1)^{-1}$.
 - (h) Si $a \neq 0$ entonces $a = (a^{-1})^{-1}$.
 - (i) $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$.
- 2. Expresar en cada caso de forma factorizada, utilizando las propiedades recién demostradas:
 - (a) $a^2 4$
 - (b) $1 x^2$
 - (c) $64 b^6$
 - (d) $25 + 10 \cdot z + z^2$
 - (e) $25 10 \cdot y + y^2$
 - (f) $-25 + 10 \cdot a a^2$
- 3. Si $a, b, c, d, x, z \in \mathbb{R}$ demostrar las siguientes identidades.
 - (a) Si $a \neq 0$ y $b \neq 0$ entonces $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$.
 - (b) Si $b \neq 0$ y $c \neq 0$ entonces $\frac{a}{b} = \frac{a \cdot c}{b \cdot c}$
 - (c) Si $b \neq 0$ entonces $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$.
 - (d) Si $b \neq 0$ y $d \neq 0$ entonces $\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm b \cdot c}{b \cdot d}$.
 - (e) $\frac{25 + 10z + z^2}{5 + z} = 5 + z.$
 - (f) $\frac{10z^2 15z^5 + 5z^3}{10z^5 + 5z^2} = \frac{2 3z^3 + z}{2z^3 + 1}.$
 - (g) $\frac{64-x^6}{(8-x^3)} = (8+x^3).$
- 4. Si $a, b, c, d \in \mathbb{R}$ demostrar las siguientes propiedades.
 - (a) $a < b \Leftrightarrow -b < -a$.
 - (b) Si a < 0 y b < 0 entonces $a \cdot b > 0$.
 - (c) Si $a < b \ v \ c < 0$ entonces $a \cdot c > b \cdot c$.
 - (d) Si $a \cdot b < 0$ entonces a < 0 y b > 0, ó a > 0 y b < 0.
 - (e) Si $a \cdot b > 0$ entonces a < 0 y b < 0, ó a > 0 y b > 0.

- 5. Resolver las siguientes inecuaciones, aplicando las propiedades demostradas e indicar el conjunto solución.
 - (a) $3 \cdot (x-2) < 5$.
 - (b) $-2 \cdot (-x+6) > -10$.
 - (c) $25 10 \cdot x + x^2 < 0$.
 - (d) $64 x^6 > 0$
- 6. Si $a, b \in \mathbb{R}$ demostrar las siguientes propiedades:
 - (a) Designaldad Triangular $|a+b| \le |a| + |b|$.
 - (b) (\bigstar) Siendo a > 0, $|b| = a \Leftrightarrow b = -a \vee b = a$.
 - (c) (\star) Siendo a > 0, $|b| \le a \Leftrightarrow -a \le b \land b \le a$. (Esta útima proposición pueden encontrarla en la literatura simplemente como $-a \le b \le a$, y debe entenderse como la conjunción original)
 - (d) (\bigstar) Siendo a > 0, $|b| > a \Leftrightarrow b < -a \lor a < b$.

Los ítems indicados con (★) serán de gran utilidad para resolver las inecuaciones del ejercicio siquiente.

- 7. Encontrar los subconjuntos de R para los cuáles se verifican las siguientes inecuaciones. Graficar en la recta real.
 - (a) $|2 \cdot x + 5| \le 6$,
- (b) $|2 \cdot x + 5| \le -6$,
- (c) $|2 \cdot x + 5| \ge 6$,
- (d) $|2 \cdot x + 5| \ge -6$,

(e)
$$\left| \frac{-2 \cdot x - 5}{5} \right| \le 6,$$

(f)
$$\left| \frac{-5 \cdot x - 5}{3} \right| + 4 \le 8,$$

(e)
$$\left| \frac{-2 \cdot x - 5}{5} \right| \le 6$$
, (f) $\left| \frac{-5 \cdot x - 5}{3} \right| + 4 \le 8$, (g) $\left| -\frac{5}{3} \cdot (x - 3) \right| - 4 \ge 0$, (h) $\left| -\frac{5}{3} \cdot (x - 3) \right| \le 0$.

$$(h) \left| -\frac{5}{3} \cdot (x-3) \right| \le 0$$

- 8. Dados $a, b \in \mathbb{R}$, ¿cuáles de las siguientes afirmaciones son verdaderas o falsas? Justificar la respuesta.
 - (a) $a^2 = b^2 \Rightarrow a = b$.
 - (b) $a^2 = b^2 \Rightarrow a = -b$.
 - (c) $a^2 = b^2 \Rightarrow a = -b \lor a = b$.
 - (d) $a^2 = b^2 \Rightarrow a = -b \land a = b$.
- 9. Analizar la validez de la siguiente demostración:

Teorema: Para todo $a \in \mathbb{R}$ se cumple que a = 0.

$$a^{2} = a^{2}$$

$$a^{2} - a^{2} = a^{2} - a^{2}$$

$$(a - a) \cdot (a + a) = a \cdot (a - a)$$

$$a + a = a$$

$$a = 0$$

- 10. Demostrar que para cualquier número real a se cumple que $a^2 \le 1 \Leftrightarrow -1 \le a \le 1$.
- 11. Sean a y b reales positivos. Probar:

(a)
$$\frac{a}{b} + \frac{b}{a} \ge 2$$
.

- 12. Analizar el valor de verdad de las siguientes proposiciones:
 - (a) $\exists x \in \mathbb{R} : 3 \cdot x + 5 = 2 \cdot (x 1) + x$.
 - (b) $\exists x \in \mathbb{R} : x^2 + x + 1 = 0$.
 - (c) $\forall x \in \mathbb{R}, x^2 + 2 \cdot x + 1 > 0$.
 - (d) $\forall x \in \mathbb{R}, x^2 + 3 \cdot x + 2 = 0.$
 - (e) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x^2 + y^2 = (x + y)^2$.
- 13. Resolver las siguientes inecuaciones en \mathbb{R} :

- (a) x-5 > 7.
- (b) $4 \cdot x + 1 < 2 \cdot x$.
- (c) $2 \cdot x^2 3 \cdot x < -2$.
- (d) $\frac{x}{2} + \frac{x}{3} > 5$.
- (e) $-7 < 5 \cdot x 13 < 4$.
- 14. Determinar si los siguientes subconjuntos de $\mathbb R$ son vacíos.
 - (a) $A = \{x \in \mathbb{R} : |-x| \le 2 \land 2 \cdot x + 1 < -4\}.$
 - (b) $B = \{x \in \mathbb{R} : |-x+1| > 5 |x| \le -4\}.$
 - (c) $C = \{x \in \mathbb{R} : |3 \cdot x + 1| < 8 \land |x| > -3\}.$
 - (d) $D = \left\{ x \in \mathbb{R} : \frac{|x+3|}{|x-1|} < 1 \right\}.$
 - (e) $E = \{x \in \mathbb{R} : |2 \cdot x 2| \ge 1 \land x = -1\}.$
 - $\star\star\star\star\star\star\star\star\star\star\star\star$ *Ejercicios Complementarios* $\star\star\star\star\star\star\star\star\star\star\star\star\star$

 $(2 \cdot a) \cdot a^{-1} = a^2 \cdot a^{-1}$ $2 \cdot (a \cdot a^{-1}) = a \cdot (a \cdot a^{-1})$

1. Analizar la validez de las siguientes resoluciones:

(a)

Dada la ecuación multiplicando ambos ambos miembros por a^{-1} , por definición de potencia y asociatividad del producto por existencia de elemento inverso por existencia de elemento neutro

Con lo que el Conjunto solución resultante es $S = \{2\}$.

(b)

Dada la inecuación $|x-2| \le 5$ utilizando la propiedad demostrada en el ejercicio 6 $x-2 \le -5 \lor 5 \le x-2$ $x \le -5+2 \lor 5+2 \le x$ $x \le -3 \lor 7 \le x$

Con lo que el Conjunto solución resultante es $S = (-\infty, -3] \cup [7, +\infty)$.

(c)

Dada la inecuación $|-3\cdot x+5| \geq 5$ utilizando la propiedad demostrada en el ejercicio 6 $-3\cdot x+5 \leq -5 \vee 5 \leq -3\cdot x+5$ $-3\cdot x \leq -5-5 \vee 5-5 \leq -3\cdot x$ $-3\cdot x \leq -10 \vee 0 \leq -3\cdot x$ $x \leq \frac{-10}{-3} \vee \frac{0}{-3} \leq x$

$$x \le \frac{10}{3} \lor 0 \le x$$

Con lo que el Conjunto solución resultante es $S = (-\infty, 10/3] \cup [0, +\infty)$.

2. Encontrar los subconjuntos de R para el cual se verifican las siguientes inecuaciones. Graficar en la recta real.

(a)
$$\left| -5 \cdot x - \frac{3}{4} \right| \le 3$$
, (b) $\left| \frac{2 \cdot x + 5}{3 \left[\left(\frac{3}{7} \right)^{-1} - \left(\frac{8}{3} : \frac{3}{4} \right) : \frac{27}{32} \cdot \frac{1}{3} \right]} \right| \le 1$, (c) $3 \cdot x^2 - 3 \ge 0$, (d) $3 \cdot (x+1) \cdot (x+2) \le 0$.

3

3. Sean a y b reales positivos. Probar:

(a) Si
$$a+b=1$$
 entonces $\left(\frac{1}{a}-1\right)\cdot\left(\frac{1}{b}-1\right)=1.$