

Civilization Diplomacy v2.0

Presented by: Noah Brestel, Daniil Marozau, Luis Sandoval

This document aims to explain civilization diplomacy simulation logic in detail and propose a hypothesis we want to evaluate.

- 1. Introduction
 - Definitions
- 2. Core Components and Variables
 - 2.1 Starting resources
 - 2.1 Population and Growth
 - 2.2 Economy and Resources
 - 2.3 Technology
 - 2.4 Culture
 - 2.5 Military
- 3. Interactions
 - 3.1 Trade Relations
 - 3.2 Conflict
 - 3.3 War
- 4. Turn logic

Modeling scenarios

- 5. Hypotheses
- 6. User guide (duplicated from readme.md)
- 7. Team Work

Commit history:

1. Introduction

This simulation represents the development and interactions of several civilizations over several planets in a common space setting. Each civilization has military strength, culture, technology, population, economy, and resource assets. The main objective is to exhibit how those factors affect:

- · Population growth and economic development,
- Trade and resource exchange,
- · Diplomatic relationships,
- · Conflict initiation and resolution,
- Technological and cultural evolution.

The simulation examines emerging behaviors generated through these dynamics and explores parameters and conditions under which civilizations thrive, cooperate, or go to war.

Definitions

Symbol	Meaning	Example
f_c	Food consumption per capita	1 unit per 1000 people
e_c	Energy consumption per capita	1 unit per 10000 people
$lpha_T$	Energy per unit tech	0.1
$lpha_M$	Energy per unit military	0.1
m_c	Minerals per military unit	0.3
eta_P	Tech growth scaling by population	0.5
eta_E	Tech growth scaling by energy	0.3
heta	Aggressiveness after victory multiplier	0.15

eta_f	Cultural pacification rate	0.1
ϵ_r	Weight for the resource pressure	0.5
ϵ_p	Weight for the population pressure	0.5
Resource interval	The minimum and maximum possible resource values	[100, 500]
Population cap interval	The minimum and maximum possible population cap values	[1000, 3000]

2. Core Components and Variables

2.1 Starting resources

Each planet will have the following resources:

- S_p : Planet size cap of the population, fixed cap
- M_p : Minerals resource critical for military
- E_p : Energy boosts military and tech
- F_p : Food boost population, availability decreases as population increases.

Each **civilization** will have the following resources:

- T_i : **Tech** boosts over time with population growth and gets an additional boost if energy is present
- W_i : Military represents a percentage of the population + military boost which is tech + minerals
- P_i : Population starting is 1000 people
- $R_i=(M_i,F_i,E_i)$: Resources a tuple of resources that are available to this civilization based on which planets they control. Example:

resources = ['Energy': 10, 'Food': 15, ...]

- C_i : Culture an abstract resource that represents how developed civilization is. Consists of population + tech + resources, when culture reaches maximum, civilization wins
- Fr_i : Friendliness an abstract value that represents how likely this civilization is to attack another civilization, the more victories a civilization has, the less its friendliness, assigned randomly
- V_i : Victories the number of victories civilization has (default is 0)
- D_i : **Desperation score** Calculated based on population pressure and resource pressure
- $Diplomacy_i$: **Diplomacy**, stores values [12':1, 12':0] which mean that civilization 12 is at war with civilization i and civilization 2 is at peace. Default values are all 0. (All at peace).

2.1 Population and Growth

Population *P* represents the labor force and production capacity.

$$P_i(t+1) = P_i(t) + g_i(t) \cdot P_i(t)$$

Where $g_i(t)$ is a growth rate determined by:

$$g_i(t) = g_{max} \cdot min(1, rac{F_i(t)/P_i(t)}{f_c})$$

$$g_{max} = 0.01 + 0.0005*tahn(rac{T_i}{100})$$

If food per capita is insufficient, growth slows proportionally.

2.2 Economy and Resources

· Food demand:

$$d_i F(t) = f_c \cdot P_i(t)$$

Energy demand:

$$d_e E(t) = e_c \cdot P_i(t) + lpha_T \cdot T_i(t) + lpha_M \cdot M_i(t)$$

Minerals demand:

$$d_i W(t) = m_c \cdot M_i(t)$$

2.3 Technology

Technology evolves based on population-driven innovation and energy investment:

$$T_i(t+1) = T_i(t) + eta_P \cdot log(P_i(t)) + eta_E \cdot rac{E_i(t)}{P_i(t)}$$

2.4 Culture

Culture integrates population, technology, and resources:

$$C_i(t) = \delta_P \cdot P_i(t) + \delta_T \cdot T_i(t) + \delta_R \cdot R_i(t)$$

2.5 Military

Military strength combines population, technology, and minerals:

$$W_i(t) = \sigma_P \cdot P_i(t) + \sigma_T \cdot T_i(i) + \sigma_M \cdot R_i^M(t)$$

3. Interactions

3.1 Trade Relations

Trade exchanges surplus resources for scarce ones:

- Surplus and deficit defined as:
 - $\circ \ \ surplus_{i,k} = max(0, r_{i,k} d_{i,k}),$
 - $\circ \ deficit_{i,k} = max(0, d_{i,k} r_{i,k})$
 - lacksquare Where $d_{i,k}$ is a demand of civilization i for the resource k
 - Where $r_{i,k}$ are current holdings (both controlled + imported)

Per-turn logic:

For each civilization C_i

- 1. Calculate demand and surplus for each resource type
- 2. For each resource \emph{k} where $deficit_{i,k}>0$:
 - a. Search for the closet civilization with
 - i. $surplus_{i,k} > 0$
 - ii. Is in range to trade with C_i
 - b. Rank candidates as:
 - i. All C_i that are NOT at war with C_i
 - ii. Proximity (closer the better)
 - iii. Cultural similarity as $sim_{i,j} = 1 \dfrac{|C_i C_j|}{max(C_i, C_j)}$
 - iv. Friendliness
 - v. Mutual needs (if C_j also needs something from C_i)
 - c. Select the best partner C_j
 - d. Establish trade deal:
 - i. Amount: $min(deficit_{i,k}, surplus_{i,k})$
 - ii. If there is a mutual need, do same for the deficit resource
 - iii. If there is **no** mutual need, C_i gets boost tech
- 3. Execute the deal (update resources and tech)

3.2 Conflict

War probability

War is a probabilistic even which is decided by various factors.

Overall formula is:

$$WarScore_{i,j} = w_1 \cdot (1 - F_i) + w_2 \cdot Pp_i + w_3 \cdot Rp_i + w_4 \cdot \triangle C_{i,j}$$

Where w_1, w_2, w_3, w_4 are weights with values: 0.3, 0.3, 0.2, 0.2 respectively.

1. F_i - friendliness of the attacking civilization

2.
$$Pp_i = max(0, rac{P_i - Cap_i}{Cap_i})$$
 - Population pressure

3.
$$Rp_i = rac{\sum_k Deficit_{i,k}}{\sum_k Demand_{i,k}}$$
 - Resource pressure

4.
$$riangle C_{i,j} = rac{|C_i - C_j|}{max(C_i,C_j)}$$
 - Cultural differences

Friendliness

at t = 0:
$$F_i(0) = Uniform[0,1]$$

other t:

$$F_i(t+1) = max(0, F_i(t) - \theta \cdot V_i(t))$$

where $V_i(t)$ is the number of victories by the civilization at that time.

Cultural smoothing effect

$$F_i(t+1) = F_i(t) + eta_f \cdot (rac{C_i(t)}{C_{max}})$$

Where eta_f is a cultural pacification rate

3.3 War

War, once declared, doesn't end until one civilization or the other seizes to exist.

Per-turn logic:

For each civilization C_i we check all civilization it can reach C_j and:

- 1. Calculate the $WarScore_{i,j}$
- 2. If the $WarScore_{i,j}$ > random.random() then C_i declares war on civilization C_j ,
 - a. invades ALL planets they can reach that C_i controls:
 - i. if $W_i > W_i$ then C_i wins (same way if <)

- ii. if C_i (attacker) wins:
 - 1. C_i gains control of planet P it invaded. C_j looses planet P which means:
 - a. C_i gets all the resources planet P has. C_j looses them
 - b. C_i looses from 5 to 10% of the population due to war, C_j looses from 5 to 10% of population due to war
 - c. C_i gains from 50 to 60% of the CAP population of planet P, C_j looses THAT amount
 - 2. V_i increments by 1 (victory) which influences friendliness
- 3. If C_i (defender) wins:
 - a. C_j looses from 3 to 7% of their population due to war
 - b. C_i looses from 5 to 10% of their population due to war (since they are the aggressor)
 - c. C_j gets to keep the planet
 - d. V_{j} increments by 1 (victory) which influences friendliness

4. Turn logic

- 1. At the beginning of each turn for each civilization C_i do:
 - a. Calculate all their properties for this turn t
 - b. If C_i is considered desperate (D_i > 0.6) then it first searches for war opportunities (As per **3.3**) $D_i=\epsilon_p\cdot Pp_i+\epsilon_r\cdot Rp_i$
 - i. War happens, civilizations' involved properties are recalculated
 - ii. Trade happens with those C_i that C_i is not in war with
 - c. Else, civilization will look for trade opportunities first.
 - i. Trade happens, civilizations' involved properties are recalculated
 - ii. C_i proceeds to attack those C_j that it is in war with

2. At the end of turn, check for culture victory and for the military victory

Modeling scenarios

We have decided to construct following scenarios:

- Friendzone
 - Everyone is friendly at the beginning of the game
- Thunderdome
 - Everyone is unfriendly at the beginning of the game
- Juggernaunt
 - One civilization gets excess of resources and is unfriendly
- Wolf
 - Where everyone is friendly, one civilization is unfriendly

5. Hypotheses

- H1: Rapid tech growth accelerates military power, increasing war initiation risk.
- H2: Economic desperation increases war probability to acquire resources.
- **H3:** Population pressure acts as a catalyst for conflict when civilizations cannot expand territorially.
- **H4:** Cultural similarity promotes diplomacy and trade, reducing conflicts.
- **H5:** Civilizations with higher initial friendliness and cultural development are more likely to establish enduring trade networks, leading to long-term stability and growth.
- H6: Repeated victories decrease friendliness and increase aggressiveness, potentially triggering a cycle of escalating conflicts that can destabilize even well-resourced civilizations.

6. User guide (duplicated from readme.md)

1. Unpack zip into an empty folder

- 2. After unpacking, make sure you have installed: numpy, json, re, myplotlib, unittest, random, collections, pandas, ast, os, time, seaborn, shutil
- 3. Then open terminal and run python3 init.py or python init.py
- 4. Follow the UI.
 - a. In case errors "folder output not found" or "folder logs not found" or "folder plots" not found
 - b. Create folder output/ and logs/ and plot/ INSIDE the output/ folder as:

- 5. 5. Enjoy! :)
- P.S. Visualization is saved as .gif

7. Team Work

We believe, everyone had worked equally during this project and committed their time and resources equally. Zones of responsibility:

- Daniil Marozau: Overall idea, documentation, presentation, initial setup, UI, analyses.
- Noah Brestel: Implementation: simulation logic, bug fixing, idea corrections, agent implementation.
- Luis Sandoval: Implementation: visualization, bug fixing, idea corrections, agent modification, analyses visualization

Commit history:

Up unitl June 2nd:

June 2nd - June 5th:

