

Ⅲ. 데이터 마이닝 유형

데이터 마이닝은 크게 출력 변수의 존재 여부에 따라 지도학습과 자율학습으로 나눌 수 있음

	지도학습 (supervised learning)	자율학습 (unsupervised learning)		
의미	• 입력 데이터와 정답(Label)을 제공 받아 이를 통해 입력(독립)과 출력 (Label, 종속,타겟) 으로 매칭할 수 있는 규칙 생성 input output output 에. 카드번호, 성별, 나이,거래 내역 등 □ □ □ □ □ □ □ 도용 여부 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	•외부에서 정답(Label)이 주어지지 않음 •입력 데이터에서 패턴을 찾아내는 작업 input 예. 군집화: 주어 진 데이터를 3 개 의 그룹으로 나눔		
특징	•출력 변수가 존재함	•출력 변수가 존재하지 않음		
분석 기법	•의사결정나무, 회귀분석, 인공신경망, 판별분석 등	•군집분석, 연관성 분석 등		

및 지도학습 (supervised learning)

○ 입력변수와 출력변수와의 관계를 학습하여 알려지지 않은 값을 예측하는 학습방법

○ 예. 분류 (2개 이상의 범주(카테고리, 클래스)), 회귀(실수 혹은 연속된 값) 등

□ 자율학습 (unsupervised learning)

연령

- 예측이 아닌, 정답이 없는, 데이터 간의 관계를 찾아내는 학습방법
- 예. 군집화 (유사성이 높은 데이터들의 그룹으로 나눔), 연관성 분석(상품 구매와 같은 일련의 거래간의 규칙 발견) 등

2 데이터 마이닝 유형

• 사전에 정의된 범주 (클래스) 중 어디에 속하는지 결정 • 예 고객 이탈 어브

분류 Classification

• 예. 고객 이탈 여부, 고객 등급 상/중/하, 품질 양호/보통/불량 등

• 주어진 입력-출력 쌍을 학습한 후 새로운 입력값이 들어왔을 때 출력값 예측

• 예. 고객 기여도, 고객 생애가치, 와인 품질 등 회귀 Regression

지도학습

□ 분류 (Classification)

- 사전에 정의된 2개 이상의 범주 (클래스)로 분류할 수 있도록 해주는 모델(model)을 만드는 것
- 기존 데이터와 정답을 이용하여 모델을 만들고, 그 모델을 이용하여 새로운 데이터에 대해서 분류 수행

o 예

- 고객 신용 등급: 상 중 하, 고객 충성도: 유지, 이탈
- 클래스: 범주형 변수 (순서형 ordinal, 명목형 nominal)

이진 (binary) 분류

멀티클래스(multi-class) 분류

□ 신용 위험 (credit risk) 관리 사례

- 의사결정나무 기법을 이용하여 고객의 채무불이행 여부(class: no, yes)를 예측
- {IF (condition) Then (class)} 규칙 도출
- 의사결정나무 모델은 설명 가능하여 이해하기 쉬움

Name 이름	Balance 잔고	Age L 0	Default 채무불이행		Balance
Mike	123,000	30	Yes	학습	>50K
Mary	51,100	40	Yes		No. Ago
Bill	68,000	55	No		No
Jim	74,000	46	No		\dagger{45}
Mark	23,000	47	Yes		No Yes
Anne	100,000	49	No		110 165
학습 데이터 (training data)					분류 모델 (의사결정 나무)
Mark	88,000	40	?		IF Balance > 50K, Then 'No'
		테스트 데이	IEI (test data)	모델 적용	, , , , , , , , , , , , , , , , , , , ,

■ 회귀분석 (Regression)

- 입력 변수들을 이용하여 수치형인 출력 (타겟) 변수를 예측
- 예. 고객 기여도, 고객 생애가치, 소득 수준 등

기상조건에 따른 보르도(Bordeaux) 와인의 품질 예측

Y (와인 품질) = 12.145 + 0.00117 * X₁ (겨울 강우량)

+ 0.06140 * X₂(생장기 평균 기온)

average temperature during the growing season

- 0.00386 * X₃(추수기 강우량)

rainfall during the harvest months

Y: 보르도 와인 품질 (또는 평균 가격)

18개월 후

Orley Ashenfelter Professor of Economics at Princeton University 와인 평론가들이 시음해 보기도 전에 미래 가치 예측 가능

□ 군집화 (Clustering)

- 이질적인 모집단으로부터 다수의 동질적인 하위 군집으로 세분화하는 작업
- 분류 기준 없이 비슷한 것끼리 묶은 후, 군집 결과에 의미를 부여하는 것은 사용자의 몫임
- 다른 데이터 마이닝 기법을 적용하기 전 사전 작업으로 활용
- 예. 유사한 구매행동을 보이는 고객들이 한 그룹이 되도록 시장 세분화

4개의 동질적인 하위그룹(cluster)

데이터 마이닝 유형: 연관성 분석

● 연관성 분석 (Association Rules)

- 동시에 발생하는 데이터로부터 변수간의 규칙 생성
- 대표적인 사례는 장바구니 분석으로 동시 구매 가능성이 높은 품목에 대한 규칙을 찾는 방법 (기저귀와 맥주)

Add all three to List

Frequently bought together

- This item: Mostly Harmless Econometrics: An Empiricist's Companion by Joshua D. Angrist Paperback \$39.47
- ✓ Mastering 'Metrics: The Path from Cause to Effect by Joshua D. Angrist Paperback \$30.48
- Field Experiments: Design, Analysis, and Interpretation by Alan S. Gerber Paperback \$45.74

Customers who bought this item also bought

Econometric Analysis
Cross Section and Pan
Data (The MIT Press)
Jeffrey M. Wooldridge
★★★☆☆ 46

아마존: 함께 판매된 제품간의 관계를 기반으로 관련 제품 추천

규칙번호	제품1	제품 2	지지도	신뢰도	향상도	
1	간호사 스프링 집게 가위 집게줄	간호사 주머니 널스포켓 8 color	0.091	0.374	2.333	
2	간호사 스프링 집게 가위 집게줄	널쓰리 포켓 5 컬러 (대용량널스포켓)	0.053	0.218	2.083	
3	널쓰리 포켓 5 컬러 (대용량널스포켓)	간호사 스프링 집게 가위 집게줄	0.053	0.508	2.083	
4	의료용 가위 일자형 간호사 기위	간호사 스프링 집게 가위 집게줄	0.052	0.563	2.309	
6	똑딱이 네임펜 3color/노크식 네임펜	간호사 스프링 집게 가위 집게줄	0.050	0.523	2.144	
7	간호사 스프링 집게 가위 집게줄	똑딱이 네임펜 3color/노크식 네임펜	0.050	0.206	2.144	
8	간호사 테이프걸이 릴홀더 캐릭터 / 아크릴	간호사 스프링 집게 가위 집게줄	0.040	0.453	1.859	
9	간호사 테이프걸이 릴홀더 캐릭터 / 파스텔	간호사 스프링 집게 가위 집게줄	0.040	0.525	2.151	
10	간호사 테이프걸이 릴홀더 캐릭터 / 일반	간호사 스프링 집게 가위 집게줄	0.036	0.602	2469	
:						
112	간호사 스프링 집게 가위 집게줄	간호화 (뽀너스 국내생산 가볍고 푹신한 시그니처 운동화형 간호화 남여공용)	0.010	0.042	0.499	
112	간호사 스프링 집게 가위 집게줄		0.010	0.042		

[제품간 연관성 분석 결과]

⇒ 뽀너스는 고년차 간호사들의 업무경험에 따라 연관구매가 빈번한 것으로 판단되는 '간호아이디어 제품'을 중심으로 세트제품을 기획하고, 단체구매 조직문화로 연관구매가 잘 일어나지 않는 '간호화' 와 추가구매가 가능한 제품을 발굴하기로 했다. 또한 자사몰 2차 리뉴얼시 연관구매가 빈번히 발생 하는 제품들 간의 이동거리를 최소화하는 방향으로 자사몰 기능을 개선하는 방안을 고려 중이다.

뽀너스: 간호사를 위한 온라인 쇼핑몰

□ 이상치 또는 특이값 (anomaly) 탐지

- 다른 데이터 포인트들과 크게 차이가 나는 데이터 식별
- 신용카드 사기탐지(fraud detection)

□ 시계열 예측

- 동일한 변수의 과거 값들을 기준으로 하여 미래 값을 예측
- 평균화(averaging) 또는 평활화(smoothing)

┗ 텍스트 마이닝

●입력 데이터가 문서, 메시지, 이메일, 웹페이지 형식과 같은 텍스트인 경우

■ 특징 선택 (feature selection)

● 데이터의 속성(feature)들을 매우 중요한 몇 개의 속성들로 줄이는 과정

□ 데이터 마이닝 프로세스의 일반적인 순서 (대표적인 데이터 마이닝 프레임워크 : CRISP-DM)

- 1. 비즈니스 이해 (Business Understanding)
- 2. 데이터 이해 (Data Understanding)
- 3. 데이터 준비 (Data Preparation)
- 4. 모델링 (Modeling)
- 5. 모델 평가 (Evaluation)
- 6. 전개 (Deployment, 실제 시스템에 사용 배포)

- 데이터 마이닝 프로세스는 일회적이 아닌 반복적으로 수행되어야 함
- 비즈니스와 데이터에 대한 이해, 데이터 준비에 시간을 더 많이 투자해야 함

CRISP-DM(Cross Industry Standard Process for Data Mining)

Business Data Data Deployment Modeling Evaluation Understanding Understanding Preparation Plan Deployment Determine Collect Initial Data Select Data Select Modeling **Evaluate Results Business Objectives** Initial Data Collection Rationale for Inclusion/ Deployment Plan Techniques Assessment of Data Modeling Technique Background Report Exclusion Mining Results w.r.t. **Business Objectives Business Success** Plan Monitoring and Modeling Business Success Describe Data Clean Data Assumptions Maintenance Criteria Data Cleaning Report Criteria Data Description Approved Models Monitoring and **Generate Test Design** Maintenance Plan Report **Assess Situation** Review Process Construct Data Test Design **Produce Final Report** Derived Attributes Inventory of Resources **Explore Data** Review of Process Generated Records **Build Model** Final Report Requirements, Data Exploration Final Presentation **Determine Next Steps** Assumptions, and Report Parameter Settings List of Possible Actions Constraints **Integrate Data** Models Merged Data Model Descriptions Risks and Verify Data Quality Decision Review Project Data Quality Report Contingencies Experience Documentation **Format Data** Assess Model Terminology Costs and Benefits Model Assessment Reformatted Data Revised Parameter Determine Dataset Settings **Data Mining Goals** Dataset Description Data Mining Goals Data Mining Success Criteria **Produce Project Plan** Project Plan Initial Assessment of Tools and Techniques

Figure 3: Generic tasks (bold) and outputs (italic) of the CRISP-DM reference model

데이터 마이닝 프로세스 단계

1. 현장 업무 이해 (Business Understanding)

- 비즈니스 문제를 데이터 과학의 문제로 전환하는 단계
- 정확히 비즈니스 문제를 이해하여 데이터 과학으로 어떻게 해결하는지를 정의하는 단계 (반드시 현업 책임자와 커뮤니케이션 필요)

2. 데이터 이해 (Data Understanding)

- 비즈니스 문제를 해결하기 위한 데이터 획득여부와 가용여부 판단하는 단계
- 분석에 적절한 데이터 구조를 파악하는 단계

Business Understanding Data Preparation Deployment Data Evaluation

3. 데이터 준비 (Data Preparation)

- 데이터 정제, 새로운 데이터 생성, 데이터 업데이트 등 원천 데이터를 분석에 적합한 형태로 변환하는 단계로 가장 시간을 많이 투자해야 하는 단계
- 예. 결측치 (missing value), 데이터 유형 및 전환 (data type and conversion), 특이값 (outlier) 처리 등
- 텍스트,이미지 등의 사용 증가로 인해 비정형데이터를 다룰 수 있는 관련 알고리즘 개발이 활발해 짐

4. 모델링 (Modeling)

- 비즈니스 문제를 해결하기 위해 가장 적합한 기법 선택 및 유의미한 모형 구축 단계
- 예. 의사결정나무, 인공신경망, 군집 분석 등

5. 평가 (Evaluation)

- 분석 모델의 결과를 평가하고, 다음 단계로 넘어가도 되는지 모델의 신뢰성을 확인하는 단계임
- 모델의 정확성 뿐 아니라 비즈니스에서의 적합성도 살펴봐야 함
- 모델 생성 뿐 아니라 시스템화 후의 모델 평가도 포함 (모델의 주기 파악)

6. 전개 (Deployment)

- 검토가 끝난 모델을 실제 현업에 적용하는 단계
- 완성된 마이닝 프로세스를 자동화/시스템화 하는 과정
- 모델링 까지는 데이터 과학팀, 시스템화 부터 운영 및 유지 등은 개발팀의 책임

다른 데이터 마이닝 프레임워크

- SEMMA(Sample, Explore, Modify, Model, Assess)
- DMAIC(Define, Measure, Analyze, Improve, Control)
- KDD(Knowledge Discovery in Databases, Selection, Preprocessing, Transformation, Data Mining, Interpretation, and Evaluation framework)

3 정리

□ 데이터 마이닝 정의

- 데이터 속의 유용한 패턴(규칙, 관계)을 찾고 이를 일반화하는 프로세스
- 관측 데이터에 적합한 모델을 구축하는 과정

□ 데이터 마이닝 유형

- 지도학습과 자율학습의 차이
- 분류, 회귀, 군집화, 연관성 분석, 텍스트 마이닝 등

□ 데이터 마이닝 프로세스

● 최적의 모델과 결과를 얻기 위해서는 비즈니스 이해, 데이터 이해, 데이터 준비, 모델링, 평가, 전개의 단계를 반복적으로 수행