

SAP SE / DHBW Mannheim

Summer term 2020

Agenda for this Unit

Bayesian Regression	4
Introduction	4
Kernel Ridge Regression	5
Introduction	5
Woodbury Matrix Identity	6
Example	9
Gaussian Process Regression	10
Introduction	10
Learning a Gaussian Process Model	12

Example	15
Learning the Hyper-Parameters	20
upport Vector Regression	21
Introduction	21
Optimization	25
Karush-Kuhn-Tucker Conditions	29
Example	31

Bayesian Regression

Introduction

•

Kernel Ridge Regression

Introduction

ullet In ridge regression, the optimal parameters $oldsymbol{ heta}$ can be found using the **normal equation**:

$$\boldsymbol{\theta} = (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{y} \tag{1}$$

- In the above formula, Φ denotes the design matrix (regressor matrix), y is the label vector and λ is the regularization parameter.
- In order to apply kernels, we have to rephrase this equation in terms of dot products of the input features.
 Replacing these dot products by kernels avoids operating in feature space.
- This can be achieved by using the Woodbury matrix identity.

Woodbury Matrix Identity

• For the prediction y_q of a new query data point x_q , we have to calculate:

$$y_q = \varphi(x_q)^\mathsf{T} \theta \tag{2}$$

Step $\mathbf{0}$: Insert normal equation \Rightarrow eq. (1):

$$= \varphi(x_q)^{\mathsf{T}} (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{y}$$
(3)

Step 9: Apply Woodbury matrix identity:

$$= \varphi(x_q)^{\mathsf{T}} \mathbf{\Phi}^{\mathsf{T}} (\mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} + \lambda \mathbf{I})^{-1} y \tag{4}$$

 The formula given in ⇒ eq. (4) exclusively uses dot products of input features and is therefore susceptible to kernels Replace the dot products by kernel functions:

Rewrite of $\varphi(\boldsymbol{x}_a)^{\mathsf{T}} \boldsymbol{\Phi}^{\mathsf{T}}$:

$$\varphi(\boldsymbol{x}_{q})^{\mathsf{T}}\boldsymbol{\Phi}^{\mathsf{T}} = \varphi(\boldsymbol{x}_{q})^{\mathsf{T}} \begin{bmatrix} \varphi(\boldsymbol{x}^{(1)})^{\mathsf{T}} \\ \vdots \\ \varphi(\boldsymbol{x}^{(n)})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathcal{K}(\boldsymbol{x}_{q}, \boldsymbol{x}^{(1)}) \\ \vdots \\ \mathcal{K}(\boldsymbol{x}_{q}, \boldsymbol{x}^{(n)}) \end{bmatrix} = \boldsymbol{K}_{*}(\boldsymbol{x}_{q})$$
(5)

Rewrite of $\Phi\Phi^{T}$:

$$\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathsf{T}} = \begin{bmatrix} \varphi(\boldsymbol{x}^{(1)})^{\mathsf{T}} \\ \vdots \\ \varphi(\boldsymbol{x}^{(n)})^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \varphi(\boldsymbol{x}^{(1)})^{\mathsf{T}} \\ \vdots \\ \varphi(\boldsymbol{x}^{(n)})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathcal{K}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}) & \dots & \mathcal{K}(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(1)}) \\ \vdots & \ddots & \vdots \\ \mathcal{K}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(n)}) & \dots & \mathcal{K}(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(n)}) \end{bmatrix} = \boldsymbol{K}$$
(6)

The kernel matrices K and K* must fulfill Mercer's condition and therefore have to be positive-semi
definite (psd). Famous choices: Polynomial kernel or radial basis function (RBF) kernel.

• The final kernel ridge regression formula is given by:

$$y_q = \mathbf{K}_*(\mathbf{x}_q)(\mathbf{K} + \lambda \mathbf{I})^{-1}\mathbf{y} \tag{7}$$

• Like all kernel methods, it is a **non-parametric** approach.

Kernel methods do not work well for very large data sets (> 10,000 data points), since we have to calculate all pairwise similarities!

Example

Figure 1: Result of kernel ridge regression

Gaussian Process Regression

Introduction

- Similarly to kernel ridge regression, Gaussian processes do not make any assumptions about the type of regression function (e.g. linear, quadratic, ...)
- It is non-parametric and a form of supervised learning:

$$h(\mathbf{x}) = \mathfrak{GP}(m(\mathbf{x}), \mathcal{K}(\mathbf{x}, \mathbf{x}'))$$
(8)

- In \Rightarrow eq. (8), m(x) denotes the mean function, whereas $\mathcal{K}(x,x')$ denotes the kernel function, which in the context of Gaussian processes is referred to as the covariance function.
- Definition of a Gaussian process:
 Formally, a Gaussian process is a collection of random variables, any finite number of which has a joint Gaussian distribution.

- Instead of modeling a distribution over parameters (cf. Bayesian regression), we model a distribution over possible regression functions.
- Thus, Gaussian processes extend multivariate Gaussian distributions to infinite dimensions.
 - E.g. a function $f: \mathbb{R} \mapsto \mathbb{R}$ can be thought of as a sample from some infinite Gaussian distribution.
 - Pick the function which maximizes the posterior distribution over functions.
- The mean of the prior m(x) distribution is usually set to 0 everywhere.
- In practice, the squared exponential function (≘ RBF-kernel) is frequently used:

$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \sigma_f^2 \cdot \exp\left\{\frac{-\|\boldsymbol{x} - \boldsymbol{x}'\|^2}{2 \cdot l^2}\right\} \tag{9}$$

- Hyper-Parameters:
 - σ_f^2 denotes the maximum allowable covariance. It should be high for functions covering a broad range of the y-axis. If $x \approx x'$, $\mathcal{K}(x, x')$ approaches this maximum.
 - l (landmark) controls how much the data points influence each other.

Learning a Gaussian Process Model

• We are given a training data set \mathcal{D} comprising n observations:

$$\mathcal{D} = \{(\boldsymbol{x}^{(1)}, y^{(1)}), (\boldsymbol{x}^{(2)}, y^{(2)}), \dots, (\boldsymbol{x}^{(n)}, y^{(n)})\} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^n$$

- Also, we have a query data point x_q , for which y_q has to be predicted.
- To do so, we compute the covariance between all example pairs.
- This results in three matrices K (matrix), K_* (vector) and K_{**} (scalar).

The matrices have the following form:

$$K = \begin{bmatrix} \mathcal{K}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}) & \mathcal{K}(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(1)}) & \dots & \mathcal{K}(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(1)}) \\ \mathcal{K}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}) & \mathcal{K}(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(2)}) & \dots & \mathcal{K}(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{K}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(n)}) & \mathcal{K}(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(n)}) & \dots & \mathcal{K}(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(n)}) \end{bmatrix}$$
(10)

$$\mathbf{K}_* = \begin{bmatrix} \mathcal{K}(\mathbf{x}_q, \mathbf{x}^{(1)}) & \mathcal{K}(\mathbf{x}_q, \mathbf{x}^{(2)}) & \dots & \mathcal{K}(\mathbf{x}_q, \mathbf{x}^{(n)}) \end{bmatrix}^\mathsf{T}$$
(11)

$$\mathbf{K}_{**} = \mathcal{K}(\mathbf{x}_q, \mathbf{x}_q) \tag{12}$$

K is a matrix (contains the similarities of training data pairs), K_* is a vector (contains similarities of the query data point with the training data), while K_{**} is actually a scalar (comparison of data point x_q to itself)!

• Since we assume that the data can be modeled as a sample from a multivariate Gaussian distribution, we can model the Gaussian process prior as follows:

$$\begin{bmatrix} y \\ y_q \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K & K_*^{\mathsf{T}} \\ K_* & K_{**} \end{bmatrix} \right) \tag{13}$$

- What we actually want is the **posterior distribution** $p(y_q|y)$: 'Given the data, what is y_q ?'
- For Gaussian distributions, the posterior distribution can be computed analytically:

$$y_q | y \sim \mathcal{N}(\underbrace{K_* K^{-1} y}_{\text{Matrix of regr. coeff.}} \underbrace{K_{**} - K_* K^{-1} K_*^{\mathsf{T}}}_{\text{Schur complement}})$$
(14)

- The mean of the posterior distribution is given by the matrix of regression coefficients, its variance can be computed using the Schur complement.
- \bullet We can compute confidence intervals (e. g. $90\,\%$ | $95\,\%$ | $99\,\%$):

$$(1.65 \mid 1.96 \mid 2.58) \cdot \sqrt{var(y_q)} \tag{15}$$

Example

×	У
-1.50	-1.60
-0.25	0.50
0.00	0.80
1.00	-2.00
5.00	0.00
5.50	1.00
10.50	3.00
11.50	3.00
•	

Figure 2:

Example data set for a Gaussian process

- Suppose $\sigma_f = 1.27$, l = 1.00. What is y_q for $x_q = 8$?
- Let's plot the prior distribution first.

Prior distribution

Figure 3: Prior distribution for the Gaussian process

- Naturally, the prior does not fit the data well (we have not fitted the model yet).
- We have zero mean everywhere.

Posterior distribution

Figure 4:

Posterior distribution for the Gaussian process

Wait a minute: Isn't this model overfitting the training data?

- The model clearly overfits the data as can be seen from the previous slide (the regression line goes through each training data point perfectly).
- This is because the model assumes the data to be **noise-free**.
- It is possible to add a little bit of noise, in order to deal with this easily (σ_n is the variance of the noise):

$$K_{\sigma_n} \longleftarrow K + \sigma_n I \tag{16}$$

- The updated formulas look like this:
 - Matrix of regression coefficients (same result as in kernel ridge regression):

$$K_* K_{\sigma_n}^{-1} y \tag{17}$$

– Schur complement:

$$K_{**} - K_* K_{\sigma_n}^{-1} K_*^{\mathsf{T}} \tag{18}$$

Prior distribution (with noise)

Figure 5:

Posterior distribution for the Gaussian process with noise

Learning the Hyper-Parameters

- The results of Gaussian process regression depend heavily on the parameters $\{\sigma_f, l\}$, which is why these parameters should be optimized for the task at hand.
- This can be down by maximizing the marginal likelihood (e.g. by using gradient ascent).

The exact procedure is very involved and out of scope for this lecture.

Support Vector Regression

Introduction

- Support vector machines can be extended to regression problems, while preserving the property of sparseness.
- In ordinary least squares, we minimize a regularized error function given by:

$$\mathcal{J}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (\hat{h}(\boldsymbol{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \|\boldsymbol{w}\|^{2}$$
(19)

- In the following, $\theta = \{ \boldsymbol{w}, b \}$ and $\hat{h}(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}} \varphi(\boldsymbol{x}) + b$.
- To obtain sparse solutions, the quadratic error is replaced by an ε -insensitive error function, which gives zero error if the absolute difference between the prediction and the target is less than ε :

$$\ell_{\varepsilon}(\widehat{h}(\boldsymbol{x}) - y) = \begin{cases} 0 & \text{if } |\widehat{h}(\boldsymbol{x}) - y| < \varepsilon \\ |\widehat{h}(\boldsymbol{x}) - y| - \varepsilon & \text{otherwise} \end{cases}$$
 (20)

Figure 6: An ε -insensitive error function (red) compared to the quadratic error function (blue)

• We therefore minimize a regularized error function given by:

$$\mathcal{J}(\boldsymbol{\theta}) = C \sum_{i=1}^{n} \ell_{\varepsilon}(\hat{h}(\boldsymbol{x}^{(i)}) - y^{(i)}) + \frac{1}{2} \|\boldsymbol{w}\|^{2}$$
(21)

- Analogously to support vector machines for classification, C denotes the (inverse) regularization parameter.
- Again, we introduce slack variables:
 - We now need two slack variables $\xi_i\geqslant 0$ and $\widehat{\xi}_i\geqslant 0$ for each data point $x^{(i)}$.
 - $\xi_i > 0$ corresponds to a point for which $y^{(i)} > \hat{h}(x^{(i)}) + \varepsilon$.
 - $-\widehat{\xi}_i \geqslant 0$ corresponds to a point for which $y^{(i)} < h(x^{(i)}) \varepsilon$.
- The error function for support vector regression can then be rewritten as:

$$\mathcal{J}(\boldsymbol{\theta}) = C \sum_{i=1}^{n} (\xi_i + \hat{\xi}_i) + \frac{1}{2} \| \boldsymbol{w} \|^2$$
 (22)

Illustration of SVM regression, showing the regression curve together with the ϵ -insensitive 'tube'. Also shown are examples of the slack variables ϵ and $\hat{\epsilon}$.

Points above the $\epsilon\text{-tube}$ have $\xi>0$ and $\widehat{\xi}=0,$ points below the tube have $\xi=0$ and $\widehat{\xi}>0.$ Points inside the tube are characterized by $\xi=\widehat{\xi}=0.$

Figure 7:

Illustration of support vector regression

Optimization

The cost function given by ⇒ eq. (22) must be minimized subject to the constraints:

$$\xi_i \geqslant 0 \tag{23}$$

$$\hat{\xi}_i \geqslant 0 \tag{24}$$

$$y^{(i)} \leqslant h(\boldsymbol{x}^{(i)}) + \varepsilon + \xi_i \tag{25}$$

$$y^{(i)} \geqslant h(\boldsymbol{x}^{(i)}) - \varepsilon - \widehat{\boldsymbol{\xi}}_i$$
 (26)

• This can be achieved by introducing Lagrange multipliers $\alpha_i\geqslant 0$, $\widehat{\alpha}_i\geqslant 0$, $\mu_i\geqslant 0$ and $\widehat{\mu}_i\geqslant 0$:

$$\mathcal{L} = C \sum_{i=1}^{n} (\xi_{i} + \widehat{\xi}_{i}) + \frac{1}{2} \| \boldsymbol{w} \|^{2} - \sum_{i=1}^{n} (\mu_{i} \xi_{i} + \widehat{\mu}_{i} \widehat{\xi}_{i})$$

$$- \sum_{i=1}^{n} \alpha_{i} (\varepsilon + \xi_{i} + \widehat{h}(\boldsymbol{x}^{(i)}) - y^{(i)}) - \sum_{i=1}^{n} \widehat{\alpha}_{i} (\varepsilon + \widehat{\xi}_{i} - \widehat{h}(\boldsymbol{x}^{(i)}) + y^{(i)})$$
(27)

Derivatives of \mathcal{L}

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}} \stackrel{!}{=} 0 \qquad \Rightarrow \qquad \boldsymbol{w} = \sum_{i=1}^{n} (\alpha_{i} - \widehat{\alpha}_{i}) \varphi(\boldsymbol{x}^{(i)})$$
 (28)

$$\frac{\partial \mathcal{L}}{\partial b} \stackrel{!}{=} 0 \qquad \Rightarrow \qquad \sum_{i=1}^{n} (\alpha_i - \widehat{\alpha}_i) = 0 \tag{29}$$

$$\frac{\partial \mathcal{L}}{\partial \xi_i} \stackrel{!}{=} 0 \qquad \Rightarrow \qquad \alpha_i + \mu_i = C \tag{30}$$

$$\frac{\partial \mathcal{L}}{\partial \hat{\mathcal{E}}_i} \stackrel{!}{=} 0 \qquad \Rightarrow \qquad \hat{\alpha}_i + \hat{\mu}_i = C$$
 (31)

We can use these results to obtain the dual formulation which has to be maximized.

Dual formulation

• The dual formulation is given by:

$$\mathcal{L}(\boldsymbol{\alpha}, \widehat{\boldsymbol{\alpha}}) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i - \widehat{\alpha}_i)(\alpha_j - \widehat{\alpha}_j) \mathcal{K}(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}) - \varepsilon \sum_{i=1}^{n} (\alpha_i + \widehat{\alpha}_i) + \sum_{i=1}^{n} (\alpha_i - \widehat{\alpha}_i) \boldsymbol{y}^{(i)}$$
(32)

- The dual is expressed in terms of a kernel function $\mathcal{K}(x, x')$.
- Maximize the dual function: $\max_{\alpha \in \widehat{\alpha}} \mathcal{L}(\alpha, \widehat{\alpha})$
- Again, this is a constraint optimization problem which is optimized subject to:

$$0 \leqslant \alpha_i \leqslant C \tag{33}$$

$$0\leqslant\widehat{\alpha}_i\leqslant C \tag{34}$$

 We again have the box constraints which directly follow from the fact that the Lagrange multipliers have to be ≥ 0 together with ⇒ eq. (30) and ⇒ eq. (31). • Substituting \Rightarrow eq. (28) into $\hat{h}(x)$, we see that predictions for new inputs can be made using:

$$\widehat{h}(\boldsymbol{x}) = \sum_{i=1}^{n} (\alpha_i - \widehat{\alpha}_i) \mathcal{K}(\boldsymbol{x}, \boldsymbol{x}^{(i)}) + b$$
(35)

- The support vectors are those data points for which $\alpha_i \neq 0$ or $\hat{\alpha}_i \neq 0$. Such points either lie on the boundary of the ε -tube or outside the tube. All points within the tube have $\alpha_i = \hat{\alpha}_i = 0$.
- It is again a sparse solution, since we only need the support vectors for the prediction.

Karush-Kuhn-Tucker Conditions

- The Karush-Kuhn-Tucker (KKT) conditions state that at the solution, the product of dual variables and constraints must vanish.
- The KKT conditions for support vector regression are given by:

$$\alpha_i(\varepsilon + \xi_i + \widehat{h}(\boldsymbol{x}^{(i)}) - y^{(i)}) = 0$$
(36)

$$\widehat{\alpha}_i(\varepsilon + \widehat{\xi}_i - \widehat{h}(\boldsymbol{x}^{(i)}) + y^{(i)}) = 0$$
(37)

$$\frac{\mu_i}{(C - \alpha_i)} \xi_i = 0 \tag{38}$$

$$\underbrace{(C - \hat{\alpha}_i)}_{\hat{\mu}_i} \hat{\xi}_i = 0$$
(39)

We can derive useful results from the KKT conditions (cf. next slide).

- First of all, we note that α_i can only be **non-zero**, if $\varepsilon + \xi_i + \widehat{h}(x^{(i)}) y^{(i)} = 0$. This implies that the data point either lies on the upper boundary of the ε -tube $(\xi_i = 0)$ or above it $(\xi_i > 0)$.
- Analogous: $\widehat{\alpha}_i$
- The two constraints $\varepsilon + \xi_i + \widehat{h}(x^{(i)}) y^{(i)}$ and $\varepsilon + \widehat{\xi}_i \widehat{h}(x^{(i)}) + y^{(i)}$ are incompatible. This can be seen by adding them together and noting that ξ_i , $\widehat{\xi}_i$ are non-negative and ε is strictly positive. So for every data point $x^{(i)}$, either α_i or $\widehat{\alpha}_i$ (or both) must be zero.
- Parameter b in \Rightarrow eq. (35) can be found by considering a data point for which $0 < \alpha_i < C$ ($\hat{=}$ support vector). From \Rightarrow eq. (38) it must have $\xi_i = 0$. Therefore, according to \Rightarrow eq. (36) it must satisfy $\varepsilon + \widehat{h}(\boldsymbol{x}^{(i)}) y^{(i)} = 0$.
- For b we obtain:

$$b = y^{(i)} - \varepsilon - \boldsymbol{w}^{\mathsf{T}} \varphi(\boldsymbol{x}^{(i)}) \tag{40}$$

$$= y^{(i)} - \varepsilon - \sum_{j=1}^{n} (\alpha_j - \widehat{\alpha}_j) \mathcal{K}(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$$
 (41)

• In practice, it is better to consider all support vectors to find b (average).

Example

Figure 8:

Example of support vector regression using scikit-learn