

EEE 51: Second Semester 2017 - 2018Lecture 1

Introduction

Administrative Stuff

Sections:

- THQ, THR, THU, THX, WFX
- Instructors
 - Louis Alarcon (louis.alarcon@eee.upd.edu.ph)
 - Maria Theresa de Leon (theresa.de.leon@eee.upd.edu.ph)
 - Rico Jossel Maestro (rico.maestro@eee.upd.edu.ph)
 - Christopher Santos (christopher.santos@eee.upd.edu.ph)

Class Webpage:

- www.up-microlab.org/resources/classes
- Lecture notes, handouts, homeworks, announcements
- EEE account is needed to access the files

Grading

- Midterm Exam (30%)
 - Saturday, March 24, 2018, 1-4pm

- Comprehensive Final Exam (40%)
 - Thursday, May 24, 2018, 1-4pm

- Homeworks (30%)
 - Approximately 1 per week

EEE 51 Prerequisites

- Semiconductor device basics (EEE 41)
 - Diodes
 - Transistors (BJT, MOSFET)
- Circuit Analysis (EEE 31, 33, 35)
 - KCL, KVL
 - R, RC, RLC
 - DC and transient analysis
- Math!

Electronic Circuits

- Semiconductor Electronic Circuits
 - BJTs, MOSFETs
 - Small, fast, low power

Babbage Analytical Engine (1837) – never built

ENIAC (1946): 167 m² [Wikipedia] 100 kHz, 150 kW, 30 tons

Core i7 (2012): 3.4 GHz 50 W, 160 mm²

Analog vs. Digital

Analog Signals

- Contains an "infinite" amount of information
- Limited by noise and other non-idealities

Digital Signals

- Contains a limited amount of information
 - This is intentional
- Usually just 1 "bit"

Continuous Time vs. Discrete Time

- Continuous Time
 - Valid all the time

- Discrete Time
 - Signals are valid only at certain times

[New Electronics, UK]

Linear vs. Nonlinear

- Linear circuits
 - Utilize the linear relationships between voltages and currents

EEE 51 at a glance...

- Analog, continuous-time, linear, semiconductor electronic circuits
 - Amplifiers and sinusoidal oscillators
- Translinear circuits

- Analysis
 - Circuit → Parameters/performance → Metrics → Comparison/Evaluation
- Design
 - Specifications → Metrics → Parameters → Circuit

How do I pass EEE 51?

- EEE 51 provides the tools to enable you to analyze and design electronic circuits
- Your task:
 - Understand and know when and how to apply these tools to achieve a certain goal (analysis and/or design)
- Memorization alone does not work
- Exams problems
 - Yes, these are <u>problems</u> not questions
 - Test your understanding of how to apply these tools

How do I pass EEE 51 exams?

- You need to understand the concepts and apply them to solve any (EEE 51) problem
 - This is how you pass EEE 51
 - And this mindset is what differentiates a great engineer from a mediocre one

How do we go from EEE 41 (and 31, 33, 35, etc.)...

To this? → For example: The LM741 Operational Amplifier

Transistors: Our Building Blocks

- Transistors
- Single-Stage Amplifiers
- Cascaded Amplifiers
- Current Sources
- Differential Amplifiers
- Frequency Response of Amplifiers
- Feedback Amplifiers
- Sinusoidal Oscillators
- Translinear Circuits

Next Meeting

- Transistor models
- Linearization
- Two-Port Networks