

UNIVERSIDAD AUTONOMA DE NUEVO LEON.

FACULTAD DE INGENIERIA MECÁNICA Y ELECTRICA.

TAREA 4: ALGORITMO HEURISTICO PARA PROBLEMA DE MOCHILA

PRESENTADO POR:

JESUS JAVIER MORENO VAZQUEZ 1619830

HORA: V4-V6

PROFESOR: DR. MARIA ANGELICA SALAZAR

DESCRIPCION GENERAL DEL PROBLEMA

Se tiene una lista de 'n' objetos, cada uno tiene un peso y un beneficio respectivamente, también se tiene una "mochila" la cual tiene una capacidad 'K_max'. El objetivo del problema es introducir tantos objetos a la mochila buscando aumentar al máximo el beneficio sin exceder la capacidad. Se presentan 9 casos para testear el algoritmo desarrollado:

CASO CLASE: Propuesto en Clase

Capacidad =	2000	
Objeto	Peso	Beneficio
Obj_1	100	15
Obj_2	2	10
Obj_3	150	12
Obj_4	56	20
Obj_5	2000	8
Obj_6	10	2
Obj_7	1000	6
Obj_8	50	20
Obj_9	150	6
Obj_10	5	8
Obj_11	10	6
Obj_12	300	8
Obj_13	500	10
Obj_14	100	1
Obj_15	20	5
Obj_16	15	1
Obj_17	30	6
Obj_18	15	1
Obj_19	9	2
Obj_20	150	6

CASO 1: 10 Objetos con una capacidad máxima de 165

Capacidad =	165	
Objeto	Peso	Beneficio
Obj_1	23	92
Obj_2	31	57
Obj_3	29	49
Obj_4	44	68
Obj_5	53	60
Obj_6	38	43
Obj_7	63	67
Obj_8	85	84
Obj_9	89	87
Obj_10	82	72

CASO 2: 5 objetos y una capacidad 26

Capacidad =	26	
Objeto	Peso	Beneficio
Obj_1	12	24
Obj_2	7	13
Obj_3	11	23
Obj_4	8	15
Obj_5	9	16

CASO 3: 6 objetos y una capacidad de 190

Capacidad =	190	
Objeto	Peso	Beneficio
Obj_1	56	50
Obj_2	59	50
Obj_3	80	64
Obj_4	64	46
Obj_5	75	50
Obj_6	17	5

CASO 4: 7 objetos y una capacidad de 50

Capacidad =	50	
Objeto	Peso	Beneficio
Obj_1	31	70
Obj_2	10	20
Obj_3	20	39
Obj_4	19	37
Obj_5	4	7
Obj_6	3	5
Obj_7	6	10

CASO 5: 8 objetos y una capacidad de 104

Capacidad =	104	
Objeto	Peso	Beneficio
Obj_1	25	350
Obj_2	35	400
Obj_3	45	450
Obj_4	5	20
Obj_5	25	70
Obj_6	3	8
Obj_7	2	5
Obj_8	2	5

CASO 6: 7 Objetos con una capacidad de 170

Capacidad =	170	
Objeto	Peso	Beneficio
Obj_1	41	442
Obj_2	50	525
Obj_3	49	511
Obj_4	59	593
Obj_5	55	546
Obj_6	57	564
Obj_7	60	617

CASO 7: 15 Objetos con una capacidad de 750

Capacidad =	750	
Objeto	Peso	Beneficio
Obj_1	70	135
Obj_2	73	139
Obj_3	77	149
Obj_4	80	150
Obj_5	82	156
Obj_6	87	163
Obj_7	90	173
Obj_8	94	184
Obj_9	98	192
Obj_10	106	201
Obj_11	110	210
Obj_12	113	214
Obj_13	115	221
Obj_14	118	229
Obj_15	120	240

CASO 8: 24 Objetos y una capacidad de 6404180

Capacidad =	6404180	
Objeto	Peso	Beneficio
Obj_1	382745	825594
Obj_2	799601	1677009
Obj_3	909247	1676628
Obj_4	729069	1523970
Obj_5	467902	943972
Obj_6	44328	97426
Obj_7	34610	69666
Obj_8	698150	1296457
Obj_9	823460	1679693
Obj_10	903959	1902996
Obj_11	853665	1844992
Obj_12	551830	1049289
Obj_13	610856	1252836
Obj_14	670702	1319836
Obj_15	488960	953277
Obj_16	951111	2067538
Obj_17	323046	675367
Obj_18	446298	853655
Obj_19	931161	1826027
Obj_20	31385	65731
Obj_21	496951	901489
Obj_22	264724	577243
Obj_23	224916	466257
Obj_24	169684	369261

ALGORITMO PROPUESTO:

- 1.- Lectura de Datos
- 2.- Sacar el promedio de los pesos.
- 3.- Ordenar objetos en una nueva lista respecto al beneficio de manera descendiente sin tomar en cuenta aquellos objetos cuyos pesos excedan el promedio.
- 4.- Agregar los objetos restantes (aquellos que exceden el promedio) pero ahora respecto al peso de manera ascendente.
- 5.- Seleccionar el primer elemento que no haya sido seleccionado.
- 6.- Asignar dicho elemento si y solo si no excede la capacidad
- 7.- Si aún hay espacio, sigue introduciendo objetos (paso 5), si no, termina la ejecución.
- 8.- Reportar resultados.

RESULTADOS

Clase:

```
C:\WINDOWS\system32\cmd.exe
Los objetos en la mochila son:
Obj_4 con un peso de objeto de 56 y con un beneficio de 20
Obj_8 con un peso de objeto de 50 y con un beneficio de 20
Obj_1 con un peso de objeto de 100 y con un beneficio de 15
Obj_3 con un peso de objeto de 150 y con un beneficio de 12
Obj_2 con un peso de objeto de 2 y con un beneficio de 10
Obj_10 con un peso de objeto de 5 y con un beneficio de 8
Obj_9 con un peso de objeto de 150 y con un beneficio de 6
Obj_11 con un peso de objeto de 10 y con un beneficio de 6
Obj_17 con un peso de objeto de 30 y con un beneficio de 6
Obj_20 con un peso de objeto de 150 y con un beneficio de 6
Obj_15 con un peso de objeto de 20 y con un beneficio de 5
Obj_6 con un peso de objeto de 10 y con un beneficio de 2
Obj_19 con un peso de objeto de 9 y con un beneficio de 2
Obj 14 con un peso de objeto de 100 y con un beneficio de 1
Obj_16 con un peso de objeto de 15 y con un beneficio de 1
Obj_18 con un peso de objeto de 15 y con un beneficio de 1
Obj_12 con un peso de objeto de 300 y con un beneficio de 8
Obj_13 con un peso de objeto de 500 y con un beneficio de 10
 Con un peso en la mochila de 1672 y un beneficio maximo de 139
Tiempo de ejecución : 0.003427608602223943
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso1:

Eficiencia =
$$100 - \left(\frac{309 - 277}{309} \times 100\right) = 89.6 \%$$

```
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso1
La capacidad máxima es: 165
Los objetos en la mochila son:

Obj_1 con un peso de objeto de 23 y con un beneficio de 92
Obj_4 con un peso de objeto de 44 y con un beneficio de 68
Obj_5 con un peso de objeto de 53 y con un beneficio de 60
Obj_2 con un peso de objeto de 31 y con un beneficio de 57

Con un peso en la mochila de 151 y un beneficio maximo de 277
Tiempo de ejecución: 0.0012042865277232591

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso2:

$$Eficiencia = 100 - \left(\frac{51-44}{51} \times 100\right) = 86.27\%$$

```
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso2
La capacidad máxima es: 26
Los objetos en la mochila son:

Obj_5 con un peso de objeto de 9 y con un beneficio de 16
Obj_4 con un peso de objeto de 8 y con un beneficio de 15
Obj_2 con un peso de objeto de 7 y con un beneficio de 13

Con un peso en la mochila de 24 y un beneficio maximo de 44
Tiempo de ejecución : 0.000808650010627883

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso3:

$$Eficiencia = 100 - \left(\frac{150 - 105}{150} \times 100\right) = 70 \%$$

```
C:\USers\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso3
La capacidad máxima es: 190
Los objetos en la mochila son:

Obj_1 con un peso de objeto de 56 y con un beneficio de 50
Obj_6 con un peso de objeto de 17 y con un beneficio de 5
Obj_2 con un peso de objeto de 59 y con un beneficio de 50
Con un peso en la mochila de 132 y un beneficio maximo de 105
Tiempo de ejecución : 0.000493382009554234

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso4:

$$Eficiencia = 100 - \left(\frac{107 - 79}{107} \times 100\right) = 73.83 \%$$

```
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso4
La capacidad máxima es: 50
Los objetos en la mochila son:

Obj 2 con un peso de objeto de 10 y con un beneficio de 20
Obj 7 con un peso de objeto de 6 y con un beneficio de 10
Obj 5 con un peso de objeto de 4 y con un beneficio de 7
Obj 6 con un peso de objeto de 3 y con un beneficio de 5
Obj 4 con un peso de objeto de 19 y con un beneficio de 37

Con un peso en la mochila de 42 y un beneficio maximo de 79
Tiempo de ejecución: 0.0005501674861255704

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso5:

Eficiencia =
$$100 - \left(\frac{900 - 858}{900} \times 100\right) = 95.33\%$$

```
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso5

La capacidad máxima es: 104
Los objetos en la mochila son:

Obj_4 con un peso de objeto de 5 y con un beneficio de 20
Obj_6 con un peso de objeto de 3 y con un beneficio de 8
Obj_7 con un peso de objeto de 2 y con un beneficio de 5
Obj_8 con un peso de objeto de 2 y con un beneficio de 5
Obj_5 con un peso de objeto de 25 y con un beneficio de 70
Obj_1 con un peso de objeto de 25 y con un beneficio de 350
Obj_2 con un peso de objeto de 35 y con un beneficio de 400

Con un peso en la mochila de 97 y un beneficio maximo de 858
Tiempo de ejecución: 0.0010537894996516847

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso6:

Eficiencia =
$$100 - \left(\frac{1735 - 1478}{1735} \times 100\right) = 85.18 \%$$

```
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso6
La capacidad máxima es: 170
Los objetos en la mochila son:

Obj_2 con un peso de objeto de 50 y con un beneficio de 525
Obj_3 con un peso de objeto de 49 y con un beneficio de 511
Obj_1 con un peso de objeto de 41 y con un beneficio de 442

Con un peso en la mochila de 140 y un beneficio maximo de 1478
Tiempo de ejecución : 0.0005026911040741252

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso7:

Eficiencia =
$$100 - \left(\frac{1458 - 1249}{1458} \times 100\right) = 85.66 \%$$

```
C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>python mochila.py

Ingrese el nombre del archivo [Clase],[Caso1],[Caso2]....[Caso'n']
Caso7
La capacidad máxima es: 750
Los objetos en la mochila son:

Obj_8 con un peso de objeto de 94 y con un beneficio de 184
Obj_7 con un peso de objeto de 87 y con un beneficio de 173
Obj_6 con un peso de objeto de 87 y con un beneficio de 163
Obj_5 con un peso de objeto de 82 y con un beneficio de 156
Obj_4 con un peso de objeto de 80 y con un beneficio de 150
Obj_3 con un peso de objeto de 77 y con un beneficio de 149
Obj_2 con un peso de objeto de 73 y con un beneficio de 139
Obj_1 con un peso de objeto de 70 y con un beneficio de 139
Con un peso en la mochila de 653 y un beneficio maximo de 1249
Tiempo de ejecución: 0.0010630985941715758

C:\Users\PC\Documents\Semestre Enero-Junio 2017\TSO\Mochila>
```

Caso8:

$$Eficiencia = 100 - \left(\frac{14,395,640 - 11,717,356}{14,395,640} \times 100\right) = 81.39 \%$$

CARACTERISTICAS DEL SISTEMA

Procesador: Intel® Core i5-4590 CPU @ 3.30 GHz

Memoria Instalada (RAM): 8.00 GB (7.88 GB utilizable)

Sistema Operativo: Windows 10 Pro

Tipo de sistema: Sistema operativo de 64 bits, procesador x64

CONCLUSIONES

Este algoritmo fue mucho más sencillo de codificar que los realizados anteriormente, no se presentó ninguna dificultad.

BIBLIOGRAFIA

• https://www.python.org/doc/