```
In [1]: import pandas as pd
    df = pd.read_csv("salaries.csv")
    df.head()
```

Out[1]:

	company	job	degree	salary_more_than_100k
0	google	sales executive	bachelors	0
1	google	sales executive	masters	0
2	google	business manager	bachelors	1
3	google	business manager	masters	1
4	google	computer programmer	bachelors	0

```
In [2]: input_data = df.drop('salary_more_than_100k',axis=1)
    target=df['salary_more_than_100k']
```

```
In [3]: target.head()
```

```
Out[3]: 0 0
```

- 1 0
- 2 1
- 3 1
- л a

Name: salary_more_than_100k, dtype: int64

```
In [9]: input_data['company_n'] = company_LE.fit_transform(input_data['company'])
    input_data['job_n'] = job_LE.fit_transform(input_data['job'])
    input_data['degree_n'] = degree_LE.fit_transform(input_data['degree'])
    input_data.head()
```

Out[9]:

company		job	degree	company_n	job_n	degree_n
0	google	sales executive	bachelors	1	2	0
1	google	sales executive	masters	1	2	1
2	google	business manager	bachelors	1	0	0
3	google	business manager	masters	1	0	1
4	google	computer programmer	bachelors	1	1	0

```
In [10]: input_data.company.unique()
```

Out[10]: array(['google', 'walmart', 'facebook'], dtype=object)

In [11]: input_data.company_n.unique()

Out[11]: array([1, 2, 0])

In [12]: input_data

Out[12]:

	company	job	degree	company_n	job_n	degree_n
0	google	sales executive	bachelors	1	2	0
1	google	sales executive	masters	1	2	1
2	google	business manager	bachelors	1	0	0
3	google	business manager	masters	1	0	1
4	google	computer programmer	bachelors	1	1	0
5	google	computer programmer	masters	1	1	1
6	walmart	sales executive	masters	2	2	1
7	walmart	computer programmer	bachelors	2	1	0
8	walmart	business manager	bachelors	2	0	0
9	walmart	business manager	masters	2	0	1
10	facebook	sales executive	bachelors	0	2	0
11	facebook	sales executive	masters	0	2	1
12	facebook	business manager	bachelors	0	0	0
13	facebook	business manager	masters	0	0	1
14	facebook	computer programmer	bachelors	0	1	0
15	facebook	computer programmer	masters	0	1	1

In [14]: input_data_n = input_data.drop(['company','job','degree'],axis=1)
input_data_n.head()

Out[14]:

	company_n	job_n	degree_n
0	1	2	0
1	1	2	1
2	1	0	0
3	1	0	1
4	1	1	0

In [15]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(input_data_n,target,test_size=0)

```
In [25]:
         from sklearn import tree
         model = tree.DecisionTreeClassifier()
         model.fit(x_train,y_train)
Out[25]:
         ▼ DecisionTreeClassifier
          DecisionTreeClassifier()
In [17]: len(x_train)
Out[17]: 12
In [18]: len(y_train)
Out[18]: 12
In [26]: model.score(x train,y train)
Out[26]: 1.0
In [27]: model.score(x_test,y_test)
Out[27]: 0.75
In [28]: y pred = mode.predict(x test)
         from sklearn.metrics import confusion matrix
         confusion_matrix(y_test,y_pred)
Out[28]: array([[1, 0],
                [1, 2]], dtype=int64)
In [29]: |#if salary of Google, Computer Engineer, Bachelor Degree
         model.predict([[1,1,1]])
         C:\Users\DELL\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X d
         oes not have valid feature names, but DecisionTreeClassifier was fitted with fe
         ature names
           warnings.warn(
Out[29]: array([1], dtype=int64)
In [30]: |model.predict([[1,1,0]])
         C:\Users\DELL\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X d
         oes not have valid feature names, but DecisionTreeClassifier was fitted with fe
         ature names
           warnings.warn(
Out[30]: array([0], dtype=int64)
```

```
In [31]: model.classes_
Out[31]: array([0, 1], dtype=int64)
In [32]:
       import matplotlib.pyplot as plt
        fig = plt.figure(figsize=(25,20))
        tree.plot_tree(model)
        plt.title(f'Decision tree trained on all the features')
        plt.show
Out[32]: <function matplotlib.pyplot.show(close=None, block=None)>
                                    Decision tree trained on all the features
                       x[0] \le 0.5
                      gini = 0.486
samples = 12
                      value = [5, 7]
                                  x[2] \le 0.5
             gini = 0.0
                                 gini = 0.408
           samples = 5
                                  samples = 7
           value = [0, 5]
                                 value = [5, 2]
                                              x[1] <= 1.5
                        gini = 0.0
                                              gini = 0.444
                       samples = 4
                                             samples = 3
                      value = [4, 0]
                                             value = [1, 2]
                                    gini = 0.0
                                                           gini = 0.0
                                  samples = 2 | samples = 1
                                                        value = [1, 0]
                                 value = [0, 2]
In [ ]:
```