

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites : Indigenous Microfossils, Minerals, or Modern Bio-Contaminants?

Richard B. Hoover

NASA/Marshall Space Flight Center VP-62
Huntsville, AL USA

Presentation for

SPIE Optics & Photonics

Instruments, Methods, and Missions for Astrobiology XIV
August 23, 2011, San Diego

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites

Detection of Valid Microfossils in Meteorites is Directly
Relevant to Fundamental Question of Astrobiology:
Is Life restricted to Earth or does Life exist elsewhere in the Cosmos?

Validity Criteria:

Biogenicity: *Are the putative microfossils unambiguously Biological?*
Must be large enough to be autonomous organisms with sufficient chemical and morphological complexity and differentiation to distinguish them from abiotic mineral crystals and coating artifacts

Indigeneity: *Are the putative microfossils undeniably Indigenous?*
Must be established that the possible microfossils are Indigenous and not Mineral Artifacts or Modern Bio-Contaminants

Instrumentation for Meteorite Study at NASA/MSFC - 1996-2011

ElectroScan Environmental Scanning Electron Microscope (ESEM)

Water vapor (10 Torr vacuum) 90-100,000X; SED; Noran EDS (Z> Boron)

Hitachi S-4100 Field Emission SEM (FESEM)

Cold cathode field emission electron gun; 20 - 300,000X;

Secondary Electron (SED) & Backscattered Electron Detector (BSED); KEVEX
EDS - Lithium Drifted Silicon detector (Z>Boron)

Hitachi S-3700N Variable Pressure Scanning Electron Microscope

Tungsten emitter electron gun; 5 - 300,000X; SED & BSED;

4 Pi EDS - Silicon Drifted Silicon Detector (Z>Boron)

FEI Quanta 600 (FESEM and ESEM)

Simultaneous SED and BSED images;

4 Pi EDS - Lithium Drifted Silicon detector (Z>Boron)

Olympus, Zeiss & Leitz Optical and Epifluorescence Microscopes

Filamentous Thiomicro Prokaryotes in Carbonaceous Meteorites **CONTAMINATION CONTROL**

Study Confined to Freshly Fractured Interior Surfaces

Optical Microscopy to Observe Surface Cracks

Meteorite Fusion Crust and Old Cracks Avoided

New Mount Stubs & Sterile Tools Used

Flame Sterilization of containers stubs & Tools

Long term storage in sealed vials @-80C or dessicator

Uncoated samples used - No contact with liquids

Sample into ESEM or FESEM chamber right after fracturing

Meteorites Investigated at NASA/MSFC

Carbonaceous Chondrites

CI1: Alais, Ivuna & Orgueil

C2 Ungrouped: Tagish Lake

CM2: Murchison, Mighei, Murray & Nogoya

CR: Acfer 324; CK4: Karoonda;

CO3: Rainbow, Dar al Gani 749 & Kainsaz

CV3: *Allende* & Efremovka

Stony Chondrites, Achondrites & Iron Meteorites

L4: Nikolskoye & Barratta; L/LL6: Holbrook;

Diogenite: *Tatahouhine*; Iron: *Henbury*; 20 Thiel Mt.

Italics: Remains of Microfossils Never Detected

Flamentous Thiomicro Prokaryotes in Carbonaceous Meteorites

Murchison CM2 Meteorite

Fall: 10:59 A.M.
9/18/1969 - Murchison,
Australia
>100 kg. recovered –
Chondrules Present
Magnetites U/Pb Age ~ 4.56 Gya
Cosmic Ray Exposure ~ 800 Kya

Murchison CM2 Meteorite

- CM2 Carbonaceous Chondrite with Chondrules
- Extensive Alteration by Water on Parent Body

Hydrous Phyllosilicates – Clay Minerals - Serpentines

*Chemically Primitive - Except for Volatiles the
Elemental Abundances ~ Solar Photosphere*

~2.5 wt. % Carbon; ~ 3-11% Extraterrestrial Water,

- Insoluble Organic Matter~Lignite Coal-Kerogen

- 74 Amino Acids - (α -Aib, Gly, β -Ala & IVal) - Abundant
Missing Amino Acids

(Phe, Tyr, Lys, His, Arg & Trp) -- Never Detected in
Murchison or Orgueil

Inconsistent with Modern Bio-Contaminants

Murchison CM2 Meteorite

SAMPLES INVESTIGATED

1 stone: (4.2 gm) E12391: *Sand Pits near Produce Stand*

Tr. Univ. Melbourne 3564 - *Nature Phys. Sci.* 230, 18-20

Courtesy: Dr. William Birch

1 stone (3.5 gm) E4806: *Near Murchison East*

Prof. J. Lovering 10-2-1971

1 stone (2.5 gm) E12314: *Near Abbington Farm, Murchison*

Courtesy: Dr. William Birch

*Victoria Museum,
Melbourne, Australia*

Orgueil CI1 Meteorite

Fall: May 14, 1864

Over 20 black stones 18 km EW Scatter Ellipse ($43^{\circ} 54' N$; $01^{\circ} 24' E$)
Villages of Orgueil (Tarn-et-Garonne), Campsas & Nohic, France

Orgueil CI1 Meteorite

- CI1 Carbonaceous Chondrite - No Chondrules
- Micro-regolith Breccia (Particulates 1 nm–100 μ)
- Extensive Aqueous Alteration on Parent Body
Silicate Minerals converted to Hydrous Phyllosilicates
Clay Minerals - Serpentines
- Primitive Chemistry – *Except for Volatiles the Elemental Abundances of Orgueil ~ Solar Photosphere*
- ~3.5 wt% C; ~ 17-22% Extraterrestrial Water,
62.5% Chlorite - $(\text{Fe}, \text{Mg}, \text{Al})_6(\text{Si}, \text{Al})_4\text{O}_{10}(\text{OH})_8$
- 6.7% Epsomite $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ & Ammonium Salts
- Insoluble Organic Matter ~ Bitumen or Kerogen

Orgueil CI1 Meteorite

SAMPLES INVESTIGATED

Musée Nationale d'Histoire Naturelle, Paris

1 stone: MNHP #S219: (0.5 gm). *Courtesy: Dr. Claude Perron*

2 stones: (0.6 gm & 0.3 gm). *Courtesy: Dr. Martine Rossignol-Strick*

1 stone: Monbequi MNHP#225: (0.305 gm). *Dr. Brigitte Zanda*

1 stone - Campsas MNHP#246 (0.03 gm). *Dr. Brigitte Zanda*

*DuPont Meteorite Collection
Planetary Studies Foundation, Chicago*

2 stones: (0.4 gm & 0.1 gm). *Courtesy: Dr. Paul Sipiera*

Filamentous Trichome

Prokaryotes in Carbonaceous

Meteorites

TRICHOMIC CYANOBACTERIA

Oxygenic Photosynthetic Prokaryotes

Photoautotrophs-Use H₂O as Photoreductant & CO₂ as Source of C for Energy & release Oxygen
Some are Facultative Chemoheterotrophs and use

PSII for *Anoxygenic Photosynthesis of H₂S*

Reproduce by Fragmentation & Hormogonia;
Binary Fission, Multiple Fission, Spores/Akinetes

Precise Size & Characteristics of Cells, Sheath,
Trichome & Filament Taxonomic Diagnostic

Flamentous Thienomic Prokaryotes in Carbonaceous Meteorites

MODERN CYANOBACTERIA Samples Investigated

Plectonema (Lyngbya) wollei–Lake Guntersville, Alabama
Hoover Collected, May, 2004 (Growing Environmental Sample)

Lyngbya (Leptolyngbya) subtilis – *Lake Michigan*, A. St. Amand,
Phycotech, Inc. (Fixed Environ. Sample)

Oscillatoria lud – *UTex Coll. LB 1953 (Axenic Culture at NSSTC)*

Arthrosphaera platensis– *Carolina Biological Axenic Culture at NSSTC*

Tolypothrix distort–*Carolina Biolical Axenic Culture at NSSTC*

Calothrix membranaceae–*Carolina Biolical Axenic Culture NSSTC*

Cylindrospermum sp. – *Carolina Biological Axenic Culture NSSTC*

Calothrix sp.–*Little White River, Oregon, A. St. Amand, Phycotech.*
(Fixed Environmental)

Microcoleus chthonoplastes–*L. Gerassimenko, INMI Axenic Culture*

Flamentous Thienomic Prokaryotes in Carbonaceous Meteorites

FOSSIL CYANOBACTERIA Samples Investigated

Phosphorite- Lower Cambrian, Khesen fm.,
Tommotian Stage, Khubsugul, Mongolia

Siphonophycus robustum (Schopf) Knoll et al. 1991

Tufa-genic rocks - Upper Archaean (Lopian),
Northern Karelia (2.8 Ga)

*Samples Courtesy: Dr. Alexei Yu. Rozanov,
Paleontological Institute, RAS, Moscow*

Cyanobacterial Morphology

- ***Trichome***: Linear Chain of Cells - Often in Sheath
- ***Sheath***: Slimy, mucilaginous, colloidal, non-cellular (fine, thick, or lamellated) envelope composed mainly of hydrated polysaccharides
- ***Filament***: Trichome with Polysaccharide Sheath
 - Filament can be Polarized, Uniseriate or Multiseriate, Unbranched; True or False Branching; Constricted; Isodiametric or Tapered*
- Reproduction by Hormogonia or Akinetes
- Nitrogen Fixation by Heterocysts
- Gliding Motility Leaves Twisted Hollow Sheaths

Trichome Cyanobacteria: Filaments and Hormogonia of Lyngbya

Taxonomy of Cyanobacteria

NON-FILAMENTOUS

Order Chroococcales: - Unicellular rods and cocci

(e.g., *Synechococcus*, *Microcystis* *Gloeothece*, *Aphanothece*)

Inconclusive Morphology---Convergence with many other Bacteria,
Archaea, Algae, and Abiotic Forms

PSEUDO-FILAMENTOUS

Order Pleurocapsales - Unicellular cyanobacteria

aggregated by shared outer wall layers:

(e.g., *Dermocarpa*, *Chroococcidiopsis*, *Pleurocapsa*)

Morphotypes of Order Chroococcales: Cyanobacteria in Murchison & Orgueil

Embedded Coccoidal &
Hemispherical (1-8 μ)
forms in Carbon Envelopes ~
Gleoeocapsa spp.

Common but not Definitive –
Simple Morphologies are not
Unambiguously Biological in
Origin

Morphotypes of Order: *Pleurocapsales* Cyanobacteria in Orgueil

Polygonal Coccoids in
Pseudo-filaments with
Terminal Hairs and
Carbonaceous Sheaths
~ Baeocytes

RARE-Found
only in one
Sample of Orgueil

Taxonomy of Cyanobacteria

FILAMENTOUS ORDERS

Order Oscillatoriales: Trichomic Nonheterocystous Isodiametric Uniseriate or Multiseriate Filamentous Cyanobacteria

(e.g., *Oscillatoria*, *Spirulina*, *Lyngbya*, *Microcoleus*, *Phormidium*)
Morphological Convergence with Trichomic Sulfur Bacteria

Order Nostocales: Isodiametric Trichomes that form Heterocysts
(e.g., *Anabaenopsis*; *Anabaena*, *Nostoc*; *Cylindrospermum*)

Tapered Trichomes that form Heterocysts at thick end of Trichome.
(e.g., *Calothrix*, *Rivularia*; *Tolypothrix*; *Gloeotrichia*)

Order Stigonematales: Heterocystous with Branched Trichomes
(e.g., *Stigonema*; *Fischerella*, *Mastigocladopsis* or *Chlorogloeopsis*)
Well-Defined Sizes/Recognizable Morphologies of Polarized Filaments, Trichomes, Sheaths & Specialized Differentiated Cells (Heterocysts, Akinetes, Hormogonia & Branching)

Morphotypes of *Oscillatoriales*: Living UTex *Oscillatoria lud*

C: 36%
O: 20%
N: 3.4%
S: 4.8%
Cl: 20%
Mg: 8%

2 μ m

Morphotypes of *Oscillatoriales*: Living *Lyngbya wollei*

Disk-shaped cells $30\mu\text{ dia.} \times 4\mu\text{ thick}$
O 58%; C 17%; Si 4%; N 3.2%;
S 2%; P .5%; O/C=3.4

O/C; C/N for Living *Lyngbya wollei* NSSTC

Nitrogen Content of Living
Cyanobacteria
~2-18%

10 μ m

C: 17%
O: 72%
N: 8.2%
P: 0.6%
S: 0.3%
Si: 0.9%

O/C = 4.3
C/N = 2.1

Morphotypes of Order *Oscillatoriales* in Murchison

Living
Microcoleus chthonoplastes
in cyanobacterial mat
Photo : L. Gerasimenko
INMI-RAS

Murchison Multiseriate
Microfossil-Morphotype
of *Microcoleus* sp.

Morphotypes of Order *Oscillatoriales* in Murchison

e

2D EDS X-Ray Maps of Indigenous Microfossils in Murchison

Morphotypes of Order *Oscillatoriales* in the Orgueil CI1 Meteorite

Lyngbya wollei filament with
emergent hormogonium &
Hollow Sheath

Orgueil Filament with
emergent hormogonium &
Hollow Flattened Sheath

Morphotypes of Order *Oscillatoriales* in the Orgueil CI1 Meteorite

Quantitative Results for Org_B_h03b, sheath
Analysis : Bulk Method: Standardless
Acquired 14-Jul-2004, 15.0 KeV @10 eV/channel

Element	Weight %	Std. Dev.	MDL	Atomic %
C	0.00	0.01	5.40	0.01
O	30.54	1.34	0.48	45.37
Mg	15.74	0.88	0.57	15.39
Al	0.00	0.00	1.92	0.00
Si	0.95	0.35	1.96	0.80
P	0.00	0.00	1.55	0.00
S	50.58	1.32	0.28	37.50
Ca	0.00	0.00	1.90	0.00
Cr	0.00	0.00	2.52	0.00
Fe	2.18	0.75	2.77	0.93
Ni	0.00	0.01	4.00	0.00
Total	100.00			

? These elements are statistically insignificant.

Sheath: Mg 15%; S 38%; O 45%; C < .1%; Fe 1%; O/C > 450

Cells in Thick Sheath of *Lyngbya* sp. Filament in Orgueil Meteorite

Internal Structures – Trichome with Cylindrical Cells ($2.5 \times 7.5 \mu$) in Thick Sheath (~*Lyngbya* sp.)

Morphotypes of Order *Oscillatoriales* in the Orgueil CI1 Meteorite

50 μ m

Spiral Filament (7 μ) of Uniseriate Trichomic (3 μ) Prokaryote
Morphotype of Cyanobacteria: *Lyngbya spiralis*

Morphotypes of *Oscillatoriales* in Orgueil & Living *Microcoleus*

a

Trichomes in common sheath of (a.) living *Microcoleus chthonoplastes* compared with (b.) Mineralized remains in Orgueil

Morphotypes of *Oscillatoriales*: *Microcoleus* Mat in Orgueil

10 μm

Trichomic Cyanobacterial Mat in Orgueil

Morphotypes of *Oscillatoriales*: *Microcoleus/Phormidium* Mat in Orgueil

*Mats of Oscillatoriales:
Microcoleus/Phormidium in
Orgueil Meteorite and in
French Polynesia*

Microbialites in a modern lagoonal environment:
nature and distribution, Tikehau atoll (French Polynesia)
S. Sprachta^{a,*}, G. Camoin^{a,b}, S. Golubic^c, Th. Le Campion^d

Morphotypes of *Oscillatoriales*: *Spirulina* Mat in Orgueil

Morphotypes of Trichomic *Spirulina* spp.

Morphotypes of *Oscillatoriales*: *Oscillatoria* Mat in Orgueil

Morphotypes in Orgueil of Filaments ~ *Phormidium* sp.
(Trichomes uniseriate: Cells ~ 1 μ Wide X 1.5-2 μ long)

Morphotypes of *Oscillatoriales*: *Microcoleus* Filaments in Orgueil

Embedded Filaments with Multiseriate Trichomes in Orgueil
Morphotypes of *Microcoleus chtonoplastes*

Morphotypes of *Oscillatoriales*: *Phormidium* Mat in Orgueil

Filaments with Emergent Hormogonia ~ *Phormidium* sp.;
O 42%; S 30%; Mg 14%; Fe 6%; C 5.4%

Morphotypes of *Oscillatoriales*: *Phormidium* sp. in Orgueil

Attached Terminal End (Diameter 3 μ) of 1.8 μ Hollow & Flattened Carbonized Sheath in Orgueil

Nanostructures in Orgueil Filaments: Fimbriae

Filaments with Lophotrichous Tufts of Fimbriae

Nanostructures in Orgueil Filaments: Fimbriae

Lophotrichous Tuft of Fimbriae @ 80kX

Carbonized Flattened/Twisted Sheath 10 μm Away From Mineralized Filament in Orgueil

Quantitative Results for Org_B_h19, loose sheath 1

Analysis: Bulk Method: Standardless
Acquired 21-Jul-2004, 5.0 KeV @10 eV/channel

Element	Weight %	Std. Dev.	MDL	Atomic %
C	36.09	1.48	0.33	54.79
N ?	0.00	0.00	3.98	0.00
O	11.74	0.79	0.50	13.39
F ?	0.00	0.00	2.51	0.00
Na ?	0.74	0.29	4.20	0.58
Mg	8.16	1.04	1.14	6.12
Al ?	0.93	0.37	3.80	0.63
Si	9.51	0.85	1.33	6.17
P ?	1.02	0.41	5.24	0.60
S	30.23	1.44	1.11	17.20
Cl ?	0.00	0.01	4.34	0.00
K ?	0.01	0.02	6.99	0.00
Fe ?	1.56	0.57	4.03	0.51
Ni ?	0.00	0.00	2.82	0.00
Total	100.00			Total 100.00

Atomic% - Flattened Sheath 10

C 54.8%; S 17.2; O 13.4; Mg 6.1; Si 6.2; Fe 0.5; N 0% - O/C 0.24

Atomic% - Filament 9

C 8.9%; S 33.8%; O 35.1; Mg 14.2; Si 4.0; Fe 3.1; N 0% - O/C 3.9

Indigenous Microfossils in Orgueil

Filaments and Sheaths Embedded in Orgueil Rock Matrix with
2D X-Ray Maps for Carbon, Oxygen, Silicon, Iron, Nitrogen & Sulfur

Morphotypes of Order *Nostocales* in Orgueil CI1 Meteorite : *Rivularia* ~ *Cylindrospermum* sp.

Morphotypes of Order *Nostocales* in Orgueil ~ *Calothrix* sp

Living *Calothrix* & Heterocystous Filament in Orgueil

Morphotypes of Order *Nostocales* in Orgueil ~ *Calothrix* sp.

h

Rivularian Morphotypes in Orgueil *Cylindrospermum* sp.

Morphotypes of Order *Nostocales* in Orgueil with Intercalary Heterocyst ~ *Nostoc* sp.

Hollow Sheath with Single Internal (0.8x1.4 micron) Cell

Morphotypes of Order *Nostocales* in Murchison with Hormogonium

Embedded Hollow Sheath, Emergent Trichomes & Coiling Hormogonia (H), Cross-Wall Constrictions (C), and Akinetes

Carbon Enrichment & Nitrogen Loss

Constrictions in Emergent Trichome & Flattened Sheath Indicate Spherical or Cylindrical Cells ~ 2 μ Diameter

Hormogonium: C/N>83; O/C=0.3

Meteorite Matrix: C/N>12; O/C=8.0

Morphotypes of Order *Stigonometales* in Orgueil

Epsomite infilled Cyanobacterial Filament (O/C=0.2) with Emergent Trichomes and Kerogenous Sheath (N< 0.3%; O/C=0.1)

Nitrogen in Meteorite Filaments, Modern Cyanobacteria & Ancient Biological Remains

Biomarkers in Orgueil and Murchison Meteorites

Purines & Pyrimidines: Stoks & Schwartz, *Nature*, **282**, 709, 1979

Chiral Amino Acids with Moderate to Strong L-Excess

Engel & Nagy, *Nature*, **296**, 837, 1982; Engel Andrus & Macko in *Perspectives in Astrobiology*, Klewer NY, 2005.

Only 8 of 20 Protein Amino Acids Present: (Glu, Asp, Pro, Gly, Leu, Sar, Ala, Val)

Missing Amino Acids

(Phe, Tyr, Lys, His, Arg & Trp) – Present in All Life Forms

But Absent in Hadrosaur Fossils & Never Detected in Murchison or Orgueil Carbonaceous Meteorites

Porphyrins, Phytane, Pristane & NorPristane

Kissin, *Geochm. Cosm. Acta*, **67**, 1723-1735, 2003

Pristane & Phytane - (2,6,10,14-tetramethylhexadecane) - C19 & C20 isoprenoid hydrocarbons derived from phytol chain of chlorophyll

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites

Conclusions: Evidence of Indigenicity:

Orgueil Microfossils are found embedded in freshly fractured surfaces of meteorite matrix

- EDS Data Indicate forms are Carbonized or Mineralized Similar to Meteorite Matrix.
- Some forms are Devoid of Carbon and Others have Very High Carbon Content (~ Kerogen)
- Pollen Grains & Bio-Contaminants Not Detected
- Many Orgueil forms are Rare Species (Some of Entirely Unknown Biological Affinities)

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites

Are the Meteorite Filaments Biogenic?

The Orgueil & Murchison Meteorites Contains a Large Suite of recognizable Cyanobacterial Filaments with Trichomes encased within External Sheaths

All 5 Orders of Cyanobacteria were Found Embedded in Freshly Fractured Meteorite Surfaces

- Filaments, Trichomes & Sheaths of Cyanobacteria with Cross-Wall Constrictions, Septae and Fimbriae
- Evidence of Motility: Twisted & Spiral Hollow Sheaths & Emergent Trichomes and Hormogonia
- Evidence of Mats, Colonies & Macrocolonies
- Evidence of Special Nitrogen Fixation Cells-Heterocysts

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites

Evidence of Reproduction: Dividing cells, Diplococci, Chains of Cells, Akinetes, Cysts, Spores, Emergent Trichomes and Hormogonia

- Evidence of Ecologically Consistent Assemblages ~ Cryoconite Communities from Antarctica

Morphotypes of known species of *Microcoleus*, *Phormidium*, *Calothrix*, *Lyngbya* and *Spirolina* with associated *Hormogonia*, *Heterocysts* and *Fimbriae*

The Recognizable Cyanobacterial Filaments Found in the Orgueil and Murchison Meteorites are Undeniably Biological in Origin

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites

Are the Meteorite Filaments Modern Bio-Contaminants?

The Orgueil & Murchison Filaments Typically Contain Nitrogen at Levels Below EDS Detectability (<0.5%)

Nitrogen is in All Amino Acids, Proteins, Enzymes, DNA and RNA Molecules in Living and Modern (<100,000 Yrs.) Organisms. Nitrogen Levels below 0.5% indicate Meteorite Filaments died long before Arrival on Earth.

Other Researchers have Detected only 8 of 20 Protein Amino Acids, 3 of 5 Nucleobases, no Ribose, Sugars or Chlorophyll in the Orgueil & Murchison Meteorites

Hence the Hypothesis of Bio-Contamination by Modern Cyanobacteria, Bacteria, Fungi, or Pollen is Rejected

Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites

ACKNOWLEDGEMENTS

- *Electron Microscopy Support* - Gregory Jerman & James Coston
- *Samples*: Claude Perron, M. Rossignol-Strick & Paul Sipiera
- *Micropaleontology Discussions*: Alexei Rozanov-Inst. Paleontology
- *Meteoritics*:

Claude Perron, MHNTP

Academician Eric Galimov, Vernadsky Institute, RAS

- *Microbiology and Cyanobacteria Discussions*:

Academician Georgi Zavarzin; Ludmilla Gerassimenko-Institute of Microbiology, RAS

Richard Castenholz-Univ. Washington

Ann St. Amand-Phycotech, Inc.

Rosemarie Rippka-Herdman - Institut Pasteur