Assignment - 2

EEC201 - Signals, Systems, and Networks (Monsoon 2024) Department of Electrical Engineering, IIT (ISM) Dhanbad

Due: 24.10.2024

1. Find the Laplace Transforms of the following (attempt ANY eight):

(a)
$$(t + e^{-t} + t^2 e^{-t} + (t - 4)e^{2t})u(t)$$
 (b) $(\sin^2 t)u(t)$

(b)
$$(\sin^2 t)u(t)$$

(c)
$$\frac{\sin kt}{t}u(t)$$

(d)
$$\cosh(t + \theta)u(t)$$

(e)
$$(1-(1-t)e^{-3t})u(t)$$

(f)
$$|t|e^{-|t|}$$

(g)
$$x(t) = \begin{cases} t & 0 \le t < e^t & t \ge 1 \\ 0 & \text{else} \end{cases}$$

(g)
$$x(t) = \begin{cases} t & 0 \le t < 1 \\ e^t & t \ge 1 \\ 0 & \text{else} \end{cases}$$
 (h) $x(t) = \begin{cases} t - \pi & \pi \le t < 2\pi \\ 0 & \text{else} \end{cases}$ (i) $(t \sin t) u(t)$

(i)
$$(t \sin t) u(t)$$

(j)
$$x(t) = \begin{cases} 1 & 0 \le t < 2 \\ t^2 - 4t + 4 & t \ge 2 \\ 0 & \text{else} \end{cases}$$
 (k) $x(t) = \begin{cases} \cos(\pi t) & 0 < t < 4 \\ 0 & \text{else} \end{cases}$

(k)
$$x(t) = \begin{cases} \cos(\pi t) & 0 < t < 4 \\ 0 & \text{else} \end{cases}$$

2. Find the Inverse Laplace Transforms of the following (attempt ANY eight):

(a)
$$\frac{24}{s^4} - \frac{9}{s^2 + 9}$$

(b)
$$\frac{8}{s^3 + 4s}$$

(c)
$$\frac{1 + e^{-2s}}{s^2 + 6}$$

(a)
$$\frac{24}{s^4} - \frac{9}{s^2 + 9}$$
 (b) $\frac{8}{s^3 + 4s}$ (c) $\frac{1 + e^{-2s}}{s^2 + 6}$ (d) $\frac{2s + 3}{s^2 + 4s + 13}$

(e)
$$\frac{1}{(s+1)(s^2-1)}$$
 (f) $\frac{s^2-2s}{s^4+5s^2+4}$ (g) $\frac{e^{-3s}}{s-2}$ (h) $\frac{5(s+2)^2}{s(s+1)^3}$

(f)
$$\frac{s^2 - 2s}{s^4 + 5s^2 + 4}$$

$$(g) \frac{e^{-3s}}{s-2}$$

(h)
$$\frac{5(s+2)^2}{s(s+1)^3}$$

(i)
$$\frac{2s+5}{s^2+5s+6}e^{-2s}$$
 (j) $\frac{s}{(s-3)^5}$ (k) $\frac{3+e^{-(s-1)}}{s^2-2s+5}$ (l) $\frac{9+s}{4-s^2}$

(j)
$$\frac{s}{(s-3)^5}$$

(k)
$$\frac{3 + e^{-(s-1)}}{s^2 - 2s + 5}$$

$$(1) \ \frac{9+s}{4-s^2}$$

3. Verify the Initial value theorem and the Final value theorem for the following (attempt all):

(a)
$$e^{-t}(t+2)^2 u(t)$$

(b)
$$(1 + e^{-t}(\sin t + \cos t)) u(t)$$

(c)
$$t^2 e^{-3t} u(t)$$

(d)
$$u(t-T)$$

4. Solve the following differential equations (attempt ANY six):

(a)
$$y' + 3y = t^2 e^{-3t} + t e^{-2t} + t$$
 with $y(0) = 1$

(b)
$$y'' + 4y = 0$$
 with $y(0) = 1$, $y'(0) = 6$

(c)
$$y'' + 4y' + 8y = e^{-t}$$
 with $y(0) = y'(0) = 0$

(d)
$$y''' - y' = 2$$
 with $y(0) = y'(0) = y''(0) = 4$

(e)
$$y'' + 2y' + 5y = 0$$
 with $y(0) = 2$, $y'(0) = 0$

(f)
$$v'' + 4v' + 3v = 10\cos(t)$$
 with $v(0) = 1$, $v'(0) = 2$

(g)
$$y'' + 4y' + 4y = 3te^{-2t}$$
 with $y(0) = 0$, $y'(0) = 1$

(h)
$$y'''' + y = 0$$
 with $y(0) = y'(0) = y''(0) = y'''(0) = 1$

- **5.** Using KCL/KVL and Nodal/Mesh Analysis, answer the following (attempt ANY twenty):
 - (a) What are the node voltages in this circuit?

(b) Calculate the node voltages and the current I_0 in the circuit below:

(c) What is the power dissipated by the 10 Ohm resistor?

(d) Calculate the current I_0 in the circuit:

(e) If $x(t) = te^{-t}u(t)$, calculate y(t):

(f) If the switch is open for a long time and suddenly closed at t = 0, calculate $y_1(t)$ and $y_2(t)$:

(g) What is the transfer function of this circuit?

(h) What is the transfer function of this circuit?

(i) What is the current I_x flowing out of the voltage source?

(j) What is the voltage $v_0(t)$ across the capacitor?

(Hint: Convert the circuit to phasor domain, solve the equations and convert back to the time domain)

(k) What are the node voltages $v_1(t)$ and $v_2(t)$?

(1) If $i_L(0^-) = 1A$ and $v_C(0^-) = 3V$, calculate the voltage y(t) for $t \ge 0$.

(m) Assuming zero initial conditions and $\omega_0^2 = \frac{1}{LC}$, calculate the current y(t) if

 $x(t) = (A \sin \omega_0 t + B \cos \omega_0 t) u(t)$

(n) What should be the value of V_x so that no current flows through the impedance 8 + 8j?

(o) What is the power dissipated or supplied by the voltage source?

(p) What is the power dissipated by the 30 Ohm resistor?

(q) If the switch is at "a" for a long time and suddenly moved to "b" at t = 0, calculate y(t):

(r) What is the current flowing through the 6 Ohm resistor?

(s) Assuming zero initial conditions and R = 2 Ohms and L = 2 H, calculate the current i(t) in the circuit:

(t) What is the voltage across the 6 Ohm resistor?

(u) Calculate the current flowing through the 4 Ohm resistor:

(v) Calculate all the node voltages in the circuit below:

(w) Calculate the current i in the circuit below:

