ສະຫຼຸບບົດຮຽນ ບົດທີ 6 ການຈັດການຄວາມສ່ຽງ

l.ຄວາມສ່ຽງ ແລະ ການຈັດການຄວາມສ່ຽງ

1. ຄວາມສ່ຽງ

ຄວາມສ່ຽງ ແມ່ນຄວາມເປັນໄປໄດ້ຂອງການເກີດເຫດການທີ່ເຮັດໃຫ້ເກີດຄວາມເສຍ ຫາຍຕໍ່ໂຄງການທີ່ອາດຈະເປັນໄປໄດ້ຂອງເຫດການດັ່ງກ່າວ.

- 2. ການຈັດການຄວາມສ່ຽງ
 - ການຈັດການຄວາມສ່ຽງ ເປັນຂະບວນການທີ່ປະກອບໄປດ້ວຍກິດຈະກຳຕ່າງໆຄື:
 - 1. ບອກຄວາມສ່ຽງທີ່ອາດຈະເກີດຂຶ້ນ (ກຳນົດປັດໃຈສ່ຽງ).
 - 2. ປະເມີນຫາຄວາມສ່ຽງທີ່ມີຜືນກະທົບຮ້າຍແຮງ.
 - 3. ກະກຽມວາງແຜນເພື່ອລຸດລະດັບຄວາມສ່ຽງຮ້າຍແຮງໃຫ້ສາມາດຄວບຄຸມໄດ້.
 - 4. ກະກຽມປ້ອງກັນບໍ່ໃຫ້ເກີດຄວາມສ່ຽງຕ່າງໆຂື້ນອີກ.

ການຈັດການຄວາມສ່ຽງ:

- Reactive ເປັນການຈັດການກັບຄວາມສ່ຽງໃນທັນທີທີ່ມັນເກີດຂື້ນ.
- Proactive ເປັນການປ້ອງກັນບໍ່ໃຫ້ຄວາມສ່ຽງເກີດຂື້ນ.

II. ປະເພດຂອງຄວາມສ່ຽງ

- 1. ປະເພດຄວາມສ່ຽງຂອງໂຄງການ (Project Risk)
 - ເປັນຄວາມສ່ຽງທີ່ສິ່ງຜົນກະທົບຕໍ່ຕາຕະລາງການເຮັດວຽກຂອງໂຄງການ ແລະ ຊັບພະຍາກອນທີ່ຕ້ອງໃຊ້.
 - 2. Product Risk
 - ເປັນຄວາມສ່ຽງທີ່ຜົນກະທົບຕໍ່ຄຸນນະພາບ
 - ອາດຈະເກີດຈາກສ່ວນປະກອບຍ່ອຍຂອງຊອບແວຣ໌ບໍ່ມີຄຸນນະພາບ

3. Business Risk

ເປັນຄວາມສ່ຽງທີ່ສິ່ງຜົນກະທົບຕໍ່ທຸລະກິດຂອງອົງກອນ ແລະ ອາດສິ່ງຜົນ ກະທົບຕໍ່ຜະລິດຕະພັນ ຫຼື ໂຄງການໄດ້

• ຄູ່ແຂ່ງເອົາຊອບແວຣ໌ອອກວາງຈຳໜ່າຍກອ່ນ, ຜະລິດຊອບແວຣ໌ທີ່ບໍ່ຖືກຕາມ ຄວາມຕ້ອງການຂອງຕະຫຼາດ.

III. ຂັ້ນຕອນການຈັດການຄວາມສ່ຽງ

- 1. ການກຳນິດປັດໃຈສ່ຽງ
- 2. ການວິເຄາະຄວາມສ່ຽງ
- 3. ການວາງແຜນຄວາມສ່ຽງ
- 4. ການຕິດຕາມຄວາມສ່ຽງ
- 5. ການແກ້ບັນຫາຄວາມສ່ຽງ
- 1. ການກຳນົດປັດໃຈສ່ຽງ
 - + ເປັນການຄົ້ນຫາປັດໃຈສ່ຽງທັງໝົດທີ່ອາດຈະເກີດຂື້ນ
 - + ຈັດກຸ່ມຂອງປັດໃຈສ່ຽງ
 - ປັດໃຈສ່ຽງດ້ານເທັກໂນໂລຍີ່
 - ປັດໃຈສ່ຽງດ້ານບຸກຄະລາກອນ
 - ປັດໃຈສ່ຽງດ້ານອົງກອນ
 - ປັດໃຈສ່ຽງດ້ານເຄື່ອງມື
 - ປັດໃຈສ່ຽງດ້ານຄວາມຕ້ອງການ
 - ປັດໃຈສ່ຽງດ້ານການປະເມີນ
 - 2. ການວິເຄາະຄວາມສ່ຽງ
 - ເປັນການປະມານ ແລະ ປະເມີນ ຄວາມສ່ຽງຈາກລາຍການຄວາມສ່ຽງ
 - ກຳນຶດ ຄວາມອາດຈະເປັນໄປໄດ້ທີ່ຈະເກີດຄວາມສ່ຽງຂື້ນ
- 3. ການວາງແຜນຄວາມສ່ຽງ
 - + ເປັນຂັ້ນຕອນການພິຈາລະນາຄວາມສ່ຽງແຕ່ລະລາຍການທີ່ໄດ້ຮັບຈາກການ ຄັດ ເລືອກມາແລ້ວ ມາກຳນົດວິທີເພື່ອຈັດການ
 - + ວິທີຈັດການຄວາມສ່ຽງແບ່ງອອກເປັນ 3 ຊະນິດ:
 - ການຍອມຮັບ
 - ການປ້ອງກັນ
 - ການໂອນຍ້າຍ
- 4. ການຕິດຕາມຄວາມສ່ຽງ

- ເປັນການຕິດຕາມວ່າຈະເກີດຄວາມສ່ຽງຂື້ນ ຫຼື ບໍ່, ເມື່ອໃດ ແລະ ແນວໃດ,
 ເມື່ອເກີດແລ້ວມີການປ່ຽນແປງ ຫຼື ບໍ່
- 5. ການແກ້ໄຂບັນຫາຄວາມສ່ຽງ
 - ເປັນຂັ້ນຕອນໃນການກຳຈັດຄວາມສ່ຽງໃຫ້ໝົດໄປ ຫຼື ໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດ
 - ຜົນຈາກການແກ້ໄຂບັນຫາຄວາມສ່ຽງແມ່ນຈະເກີດຄວາມສ່ຽງຂື້ນ ຫຼື ເກີດຂຶ້ນ
 ແຕ່ລຸດລະດັບຄວາມຮຸນແຮງລົງເປັນລະດັບທີ່ຍອມຮັບໄດ້

ບິດທີ 7 ຄວາມຕ້ອງການດ້ານຊອບແວຣ໌

l.ຄວາມຕ້ອງການດ້ານຊອບແວຣ໌

- + ຄວາມຕ້ອງການຂອງລູກຄ້າ ຫຼື ຜູ້ໃຈເປັນຕົວກຳນົດໜ້າທີ່ການເຮັດວຽກ, ຮຸບຮ່າງ, ຄວາມ ສາມາດ ແລະ ລາຍລະອຽດອື່ນໆ ຂອງລະບົບ ແລະ ຊອບແວຣ໌
- + ຄວາມຕ້ອງການມີ 3 ລະດັບ
- ຄວາມຕ້ອງການຂອງໃຊ້
- ຄວາມຕ້ອງການຂອງລະບົບ
- ຄວາມຕ້ອງການດ້ານຊອບແວຣ໌

II. ປະເພດຂອງຄວາມຕ້ອງການດ້ານຊອບແວຣ໌

- 1. ຄວາມຕ້ອງການທີ່ເປັນໜ້າທີ່ຫຼັກ (Function Requirement)
 - ແມ່ນຄວາມຕ້ອງການໃຫ້ຊອບແວຣ໌ເຮັດວຽກເຫຼົ່ານັ້ນໄດ້ຕາມທີ່ກຳນຶດເອົາໄວ້
 - ຕົວຢ່າງລະບົບລົງທະບຽນຂອງມະຫາວິທະຍາໄລ ໂດຍມີຜູ້ໃຊ້ແມ່ນ ນັກສຶກສາ
 , ອາຈານສອນ ແລະ ພະລັງງານລົງທະບຽນທີ່ຕ້ອງການໃຫ້ຊອບແວຣ໌ເຮັດວຽກ
 ໄດ້
 - 2. ຄວາມຕ້ອງການທີ່ບໍ່ເປັນໜ້າທີ່ຫຼັກ (Non-Functional Requirement
 - ເປັນຄວາມຕ້ອງການທີ່ບໍ່ໄດ້ກ່ຽວຂ້ອງໂດຍກິງກັບໜ້າທີ່ຫຼັກຂອງລະບົບ
 - 3. ຄວາມຕ້ອງການທາງດ້ານທຸລະກິດ

- ເປັນຄວາມຕ້ອງການທີ່ກ່ຽວຂ້ອງກັບວຽກງານທາງທຸລະກິດທີ່ຕ້ອງການຊອບ ແວຣ໌ມາສະໜັບສະໜູນສະເພາະ
- ໂດຍທີ່ສາມາດເປັນໄປໄດ້ທັງຄວາມຕ້ອງການທີ່ເປັນໜ້າທີ່ຫຼັກຂອງລະບົບ, ເປັນເງື່ອນໄຂຕ່າງໆໃຫ້ແກ່ການຄຳນວນຫາຄ່າຕ່າງໆຂອງລະບົບ

III. ຄວາມຕ້ອງການຂອງຜູ້ໃຊ້

- ເປັນຄວາມຕ້ອງການຂອງຜູ້ໃຊ້ທີ່ມີຕໍ່ລະບົບຊຶ່ງກຳນົດໂດຍຜູ້ໃຊ້ລະບົບ ດ້ວຍ
 ສ່ວນທີ່ເປັນໜ້າທີ່ຫຼັກ ແລະ ສຳຮອງຂອງຂອງລະບົບ ດ້ວຍພາສາທີ່ຜູ້ໃຊ້ອ່ານ ແລ້ວເຂົ້າໃຈໄດ້ງ່າຍ
- ເປັນຄວາມຕ້ອງການລະດັບສູງ ຊຶ່ງບໍ່ໄດ້ກຳນິດລາຍລະອຽດ ແລະ ເງື່ອນໄຂ
- ຫຼັກການສໍາລັບການຂຽນຄວາມຕ້ອງການຂອງຜູ້ໃຊ້
 - ກຳນົດມາດຕະຖານຮູບແບບເອກະສານ ເຊັ່ນ: ຕົວອັກສອນ, ຂະໜາດ, ສີຕົວອັກສອນ, ການເນັ້ນຂໍ້ຄວາມ, ການຂີດກ້ອງ, ຕົວເນີ້ງ,...
 - ຈຳແນກຄວາມຈຳເປັນຂອງການ ໂດຍແບ່ງອອກເປັນ "ຄວາມ ຕ້ອງການທີ່ຈຳເປັນ ແລະ ຄວາມຕ້ອງການທີ່ເປັນຄວາມປາຖະໜາ
 - ໃນເອກະສານຄວນເນັ້ນຂໍ້ຄວາມທີ່ເປັນປະເດັນສຳຄັນຂອງຄວາມ ຕ້ອງການ
 - ພະຍາຍາມຫຼີກລ້ຽງການໃຊ້ຄຳສັບ ຫຼື ຮູບທາງເທັກນິກ

IV. ຄວາມຕ້ອງການດ້ານລະບົບ

- ເປັນການກຳນິດຄວາມຕ້ອງການຂອງການເຮັດວຽກ, ໜ້າທີ່ ແລະ ການ ບໍລິການຕ່າງໆຂອງລະບົບໃນລາຍລະອຽດ
- ເປັນຄວາມຕ້ອງການທີ່ໄດ້ມາຈາກການວິເຄາະຄວາມຕ້ອງການຂອງຜູ້ໃຊ້(ດ້ວຍ
 ຂະບວນການທາງວິສະວະກຳ) ວ່າລະບົບຈະຕ້ອງເຮັດຫັຍງ ແລະ ມີເງື່ອນໄຂ
 ແນວໃດແດ່ທີ່ລະບົບຄວນເຮັດ ຫຼື ບໍ່ຄວນເຮັດ
- ການຂຽນຄວາມຕ້ອງການຂອງລ/ະບົບ ຄວນໃຊ້ພາສາທີ່ເຂົ້າໃຈງ່າຍເຊັ່ນ:
 - ຂໍ້ກຳນົດການໃຊ້ພາສາໂຄ້ງສ້າງ (Structure Language Specification

ປົດທີ່ 8 ວິສະວະກຳຄວາມຕ້ອງກັນ

1 ຄວາມໝາຍຂອງວິສະວະກຳຄວາມຕ້ອງກັນ

ໝາຍເຖິງຂະບວນການທີ່ຈະເຮັດໃຫ້ວິສະວະກອນຊອບແວເຂົ້າໃຈ ແລະ ຮຸ້ ແຈ້ງເຖິງຄວາມຕ້ອງການຂອງລຸກຄ້າຢ່າງແທ້ຈິງ ດ້ວຍການລວບລວມຄວາມ ຕ້ອງການ, ກວດສອບ ແລະ ນິຍາມຄວາມຕ້ອງການ ເພື່ອນຳໄປສ້າງເປັນຂໍ້ກຳ ໝົດຄວາມຕ້ອງການຂອງລະບົບຫຼືຊອບແວຣ໌ທີ່ຈະໃຊ້ເປັນຈຸດເລີ່ມຕົ້ນໃນ ການພັດທະນາລະບົບ

2 ຂະບວນການວິສະວະກາຄວາມຕ້ອງກັນ

- . ການລວບລວມຄວາມຕ້ອງການ(Requirement Elicitation)
- . ການວິເຄາະຄວາມຕ້ອງການ (Requirement Analysis)
- . ການກາໜິດຄວາມຕ້ອງການ (Requirement Specification)
- . ການກວດສອບຄວາມຕ້ອງການ (Requirement Validation)

3 ການລອບລວມຄວາມຕ້ອງກັນ

- ວິທີການໃນການລວບລວມຄວາມຕ້ອງການ
 - 1. ການສຳພາດ
 - 2. ການສະແດງລຳດັບເຫດການການເຮັດວຽກ
 - 3. ສ້າງຕົ້ນແບບໃຫ້ຜູ້ໃຊ້ເລືອກ
 - 4. ການປະຊຸມເພື່ອຂໍຄວາມຄິດເຫັນ
 - 5. ການສັງເກດ

4 ການວິເຄາະຄວາມຕ້ອງການ

• ເປັນການເອົາຄວາມຕ້ອງການທີ່ລວບລວມໄດ້ມາວິເຄາະ ຫຼື ປະເມີນເພື່ອຈັດ ກຸ່ມຄວາມຕ້ອງການ ແລ້ວ ຈັດລຳດັບຄວາມສຳຄັນ, ເບິ່ງຄວາມຖືກຕ້ອງຊອດ ຄ່ອງ ແກ້ໄຂຄວາມຄັດແຍ່ງກັນ

- ເອົາຄວາມຕ້ອງການດັ່ງກ່າວໄປສ້າງແບບຈຳລອງ ແລະ ອອກແບບສະຖາປັດຕະຍະກຳເບື້ອງ ຕື່ນ ເພື່ອທິດສອບການຍອມຮັບຂອງລູກຄ້າ
- ເມື່ອລູກຄ້າຍອມຮັບໃນຂໍ້ກຳໜົດຄວາມຕ້ອງການ ຈະໄດ້ ເອກະສານຄວາມຕ້ອງການທັງໝົດ ຊຶ່ງເປັນຂໍ້ຕົກລົງທີ່ທັງສອງຝ່າຍເຫັນດີຮ່ວມກັນ
- 💠 ການວິເຄາະຄວາມຕ້ອງການມີຈຸດປະສິງດັ່ງນີ້
- 1. ເພື່ອຊອກຫາ ແລະ ແກ້ໄຂຄວາມຄັດແຍ່ງລະຫວ່າງຄວາມຕ້ອງການແຕ່ອັນ
- ເພື່ອຊອກຫາຂອບເຂດຂອງຊອບແວຣ໌ ແລະ ການເຮັດວຽກກັບສະພາບແວດລ້ອມ
 ເພື່ອສຶກສາຄວາມຕ້ອງການຂອງລະບົບຢ່າງລະອຽດ ເພື່ອໃຊ້ກາໜົດຄວາມຕ້ອງການນອກລະບົບ

6 ການການິດຄວາມຕອນການ

ຂອງຊອບແວຣ໌

ແມ່ນການສ້າງເອກະສານຄວາມຕ້ອງການເພື່ອສະແດງລາຍລະອຽດຂອງ ຊອບແວຣ໌ທີ່ສາມາດກວດສອບ, ປະເມີນຄ່າ ແລະ ຍອມຮັບໄດ້ ໄດ້ແກ່ ນິ ຍາມຂອງລະບົບ, ຄວາມຕ້ອງການຂອງຊອບ ແວຣ໌

- ເອກະສານນິຍາມລະບົບ
 - ເປັນເອກະສານບັນທຶກຄວາມຕ້ອງການດ້ານລະບົບຂອງຜູ້ໃຊ້
 - ສະແດງລາຍການຄວາມຕ້ອງການດ້ານລະບົບຕາມຫລັກການ, ເຫດຜົນ ຫຼື ທີ່ມາຂອງ ລະບົບ ຊຶ່ງຕ້ອງຊອດຄ່ອງກັບຈຸດປະສິ່ງຂອງລະບົບ
 - ສະແດງລາຍລະອຽດສະພາບແວດລ້ອມພາຍນອກລະບົບ
 - ຂໍ້ຈຳກັດ, ຂໍ້ສົມມຸດ ຄວາມຕ້ອງການທີ່ບໍ່ເປັນໜ້າທີ່ຫລັກ
 - ອາດຈະມີແບບຈຳລອງຄວາມຕ້ອງການໃນລະດັບສູງຕິດຂັດມານຳ

7 ການກວດສອບຄວາມຕ້ອງກັນ

ເປັນການວິເຄາະ ແລະ ກວດສອບຄວາມຕ້ອງການຄືນວ່າຍັງມີຂໍ້ຜິດພາດ ຫຼື ບັນຫາທີ່ອາດຈະເກີດຈາກການທັບຊ້ອນຂອງຄວາມຕ້ອງການ

- 💠 ການກວດສອບເອກະສານຂໍ້ກຳໜິດຄວາມຕອ້ງການ
 - 1. ກວດສອບຄວາມຖືກຕ້ອງ, ຄວາມທ່ຽງຕຶງ, ຄວາມສະເໝີພາບ
 - 2. ກວດສອບຄວາມຊອດຄ່ອງ
 - 3. ກວດສອບຄວາມຄົບຖ້ວນສົມບູນ
 - 4. ກວດສອບຄວາມເປັນໄປໄດ້
 - 5. ສາມາດພິສູດໄດ້

8 ການຈັດການຄວາມຕ້ອງກັນ

ແມ່ນຂະບວນການສ້າງຄວາມເຂົ້າໃຈ ແລະ ຄວບຄຸມການປ່ຽນແປງຄວາມ ຕ້ອງການຂອງລະບົບ

ບິດທີ່ 9 ການອອກແບບຊວ

1 ຄວາມໝາຍຂອງການອອກແບບຊອບແວຣ໌

🤝 ການອອກແບບລະບົບ

- ເປັນການເອົາຄວາມຕ້ອງການຂອງຜູ້ໃຊ້ມາປ່ຽນເປັນແມ່ແບບ
- ສິ່ງທີ່ໄດ້ຈາກການອອກແບບແມ່ນ ເອກະສານຂໍ້ກຳໜິດກ່ຽວກັບການອອກແບບ
 (Design Specification Document) ທີ່ປະກອບດ້ວຍແບບຈຳລອງຂອງສ່ວນ ປະກອບທີ່ຈະລວມເຂົ້າເປັນລະບົບ

💠 ການອອກແບບຊອບແວຣ໌

ປະສານງານ ແລະ ລັກສະນະອື່ນໆຂອງລະບົບ ຊຶ່ງເປັນການເອົາຄວາມ ຕ້ອງການຂອງຜູ້ໃຊ້ມາກຳໜົດລາຍລະອຽດໂຄງສ້າງພາຍໃນຂອງຊອບ ແວຣ໌

ສິ່ງທີ່ໄດ້ຈາກການອອກແບບຄື ແບບຈຳລອງຂອງການອອກແບບ

(Design Model)

2 ຂະບວນການອອກແບບຊອບແວຣ໌

- ຂະບວນການອອກແບບຊອບແວຣ໌ຈະເປັນການເຮັດວຽກແບບຊໍ້າໆ
- 💠 ຂະບວນການອອກແບບຊອບແວຣ໌ແບ່ງອອກເປັນ 2 ລະດັບ
 - ການອອກແບບສະຖາປັດຕະຍະກຳ
 ເປັນການກາໜິດລັກສະນະໂຄງສ້າງຂອງລະບົບ ຫຼື ຊອບແວຣ໌ ຊຶ່ງສະແດງໃຫ້
 ເຫັນສ່ວນປະກອບຕ່າງໆຂອງຊອບແວຣ໌ໃນການເບີ່ງລະດັບເທິງ (ເປັນ
 ການສະແດງໃຫ້ເຫັນສ່ວນປະກອບຕ່າງໆຂອງຊອບແວຣ໌)
 - ການອອກແບບໃນລາຍລະອຽດ (Detailed Design)
 ເປັນການອະທິບາຍລາຍລະອຽດຂອງແຕ່ລະສ່ວນປະກອບຂອງຊອບແວຣ໌ເພື່ອ
 ສະດວກໃຫ້ແກ່ການຂຽນໂປຣແກຣມ

3 ສະຖາປັດຕະຍະກາ ແລະ ໂຄງສ້າງສະຖາປັດຕະຍະກາຊອບແວຣ໌

- ສະຖາປັດຕະຍະກຳຊອບແວຣ໌ໝາຍເຖິງການອະທິບາຍການພົວພັນລະຫວ່າງ ລະບົບຍ່ອຍ ແລະ ສ່ວນປະກອບຂອງມັນເພື່ອກຳໜິດໂຄງສ້າງຫຼືລະບົບພາຍ ໃນຊອບແວຣ໌
- ໂຄງສ້າງສະຖາປັດຕະຍະກຳແມ່ນການກຳໜົດລາຍລະອຽດ ໃນແຕ່ລະດ້ານຂອງຊອບ ແວຣ໌ແລ້ວເອົາມາປະກອບເຂົ້າກັນເປັນຊອບແວຣ໌
- ໂຄງສ້າງສະຖາປັດຕະຍະກໍໄດ້ແບ່ງຮູບແບບຂອງສະຖາປັດຕະຍະກຳ (Architecture Style) ອອກເປັນຫລາຍກຸ່ມ ແຕ່ລະກຸ່ມມີລັກສະນະໂຄງສ້າງ ແລະ ຈຸດປະສິງທີ່ແຕກຕ່າງກັນ
- ຮູບແບບຂອງສະຖາປັດຕະຍະກຳເປັນຂໍ້ບັງຄັບກິດເກັນທາງດ້ານສະຖາປັດຕະຍະກຳ ທີ່ສ້າງຂຶ້ນມາເພື່ອຈຳແນກກຸ່ມຫຼືໜວດໜູ່ຂອງສະຖາປັດຕະຍະກຳຊອບແວຣ໌
 - 🗸 ຮູບແບບສະຖາປັດຕະຍະກຳແບ່ງອອກເປັນ 5 ຮູບແບບ
 - ສະຖາປັດຕະຍະກຳແບບໂຄງສ້າງທົ່ວໄປ (Layer, Pipe and Filter, Blackboard)
 - ສະຖາປັດຕະຍະກຳລະບົບແບບກະຈາຍ (Client/Server, ThreeTiers, Broker)

- ສະຖາປັດຕະຍະກຳລະບົບແບບ (Model-View-Controller,Presentation-Abstraction-Control)
- ສະຖາປັດຕະຍະກຳລະບົບທີ່ສາມາດດັດແປງໄດ(Micro-Kernel, Reflection)
- ສະຖາປັດຕະຍະກຳລະບົບແບບອື່ນໆ (Batch, Interpreter, ProcessControl, Rule Based)

4 ຄຸນນະພາບ ແລະ ການປະເມີນຄຸນນະພາບການອອກແບບຊອບແວຣ໌

- ຄຸນລັກສະນະຂອງຄຸນນະພາບ(Quality Attribute)
 - ການເຮັດວຽກຂອງໂປຣແກຣມ (Functionality)
 - ເບິ່ງຈາກ ຈຳນວນ Feature ແລະ ຄວາມສາມາດຂອງໂປຣແກຣມ
 - ເບິ່ງຈາກໜ້າທີ່ທົ່ວໄປຂອງໂປຣແກຣມ ແລະ ຄວາມປອດໄພ
 - ຄວາມສາມາດໃນການໃຊ້ງານ (Usability)
 - ບິ່ງຈາກການ feedback ຈາກການໃຊ້ງານຂອງຜູ້ໃຊ້ວ່າມັນໃຊ້ງ່າຍບໍ່ ແລະຮຽນຮູ້ງ່າຍບໍ່
 - ຄວາມໜ້າເຊື່ອຖື (Reliability)
 - ເບິ່ງຈາກການນັບຄວາມຖີ່ ແລະ ຄວາມຮຸນແຮງຂອງຄວາມຜິດພາດທີ່
 ເກີດຂຶ້ນ, ຄວາມຖືກຕ້ອງຂອງຜົນຮັບທີ່ໄດ້, ເວລາສະເລ່ຍຂອງຄວາມ
 ບໍ່ສຳເລັດ, ຄວາມສາມາດໃນການກູ້ຄືນລະບົບ ແລະ ຄວາມສາມາດ
 ໃນການຄາດການໄດ້ຂອງໂປຣແກຣມ
- ຈົວເຄາະ ແລະ ປະເມີນຄຸນນະພາບ (Quality Analysis and Evaluation) ການວິເຄາະ ແລະ ປະເມີນຄຸນນະພາບເປັນກິດຈະກາທີ່ຊ່ວຍໃຫ້ໝັ້ນໃຈວ່າ ຊອບແວຣ໌ທີ່ໄດ້ອອກແບບໄວ້ມີຄຸນນະພາບ

I. ພາສວນສື່ສານກັບຜູ້ໃຊ້ ແລະ ຫຼັກການໃນການອອກແບບ

- ແມ່ນການອອກແບບໜ້າຈໍເພື່ອໃຫ້ຜູ້ໃຊ້ສູ້ສື່ສານກັບລະບົບ.
- ການອອກແບບພາກສ່ວນສື່ສານກັບຜູ້ໃຊ້ຄວນຄຳນຶງເຖິງຫຼັກການອອກແບບຕ່າງໆ.
- ຫຼັກການການອອກແບບຂອງ Theo Mandel ປະກອບດ້ວຍຂໍ້ບັງຄັບ 3 ຢ່າງ
 - 1. ໃຫ້ຜູ້ໃຊ້ສາມາດຄວບຄຸມການເຮັດວຽກບາງຢ່າງໄດ້.
 - 2. ລຸດປະລິມານຂອງສິ່ງທີ່ຜູ້ໃຊ້ຕ້ອງຈື່ຈຳ.
 - 3. ພາກສ່ວນສື່ສານຕ້ອງຊອດຄ່ອງກັນ.
- ໃຫ້ຜູ້ໃຊ້ສາມາດຄວບຄຸມການເຮັດວຽກບາງຢ່າງໄດ້.
- ລຸດປະລິມານຂອງສິ່ງທີ່ຜູ້ໃຊ້ຕ້ອງຈື່ຈຳ.
- 💠 ພາກສ່ວນສື່ສານຕ້ອງຊອດຄ່ອງກັນ.

II. ຊະນິດຂອງພາກສ່ວນສື່ສານກັບຜູ້ໃຊ້

- ຊະນິດຂອງພາກສ່ວນສື່ສານກັບຜູ້ໃຊ້ໝາຍເຖິງ ບົດລາຍງານ, ເອກະສານ, ການປ້ອນ ຂໍ້ມູນ ແລະ ການໂຕ້ຕອບກັບລະບົບ ຊຶ່ງໄດ້ແບ່ງອອກເປັນອອກເປັນ 2 ພາກສ່ວນຄື: ຮູບແບບການໂຕ້ຕອບລະຫ່ວາງຜູ້ໃຊ້ກັບລະບົບ ແລະ ຮູບແບບການນຳສະເໜີຂໍ້ມູນ ຂ່າວສານ.
- ຮູບແບບການໂຕ້ຕອບລະຫວ່າງຜູ້ໃຊ້ກັບລະບົບ.
 - ການໂຕ້ຕອບກັບລະບົບໂດຍກົງ (Direct Manipulation).
 - ການເລືອກເມນູຄຳສັ່ງ (Menu Selection).
 - ການປ້ອນຂໍ້ມູນລົງໄປໃນຟອມ (Form Fill- In).
 - ການໂຕ້ຕອບດ້ວຍພາສາທຳມະຊາດ (Natural Language).
- ການນຳສະເໜີຂໍ້ມູນຂ່າວສານໃຫ້ຜູ້ໃຊ້.

III. ຂະບວນການອອກແບບສ່ວນປະສານກັບຜູ້ໃຊ້

ປະກອບດ້ວຍກິດຈະກຳຍ່ອຍດັ່ງນີ້

- ການວິເຄາະຜູ້ໃຊ້ (User Analysis).
 - ຄວາມຕ້ອງການພາກສ່ວນສື່ສານຂອງຜູ້ໃຊ້.
 - ວິເຄາະວຽກທີ່ຜູ້ໃຊ້ເຮັດໃນແຕ່ລະວັນ.
 - ວິເຄາະຂໍ້ມູນຂ່າວສານທີ່ຕ້ອງການນຳສະເໜີ.
 - ວິເຄາະສະພາບແວດລ້ອມການເຮັດວຽກຂອງຜູ້ໃຊ້.
- ສ້າງຕົ້ນແບບພາກສ່ວນສື່ສານ (Interface Prototyping).
 - ຈຸດປະສົງຂອງການສ້າງຕົ້ນແບບກໍ່ເພື່ອໃຫ້ຜູ້ໃຊ້ໄດ້ທົດລອງໃຊ້ລະບົບກ່ອນການໃຊ້ຕົວຈິງ.
 - ຂັ້ນຕອນໃນການສ້າງແບບຈຳລອງ ເຊັ່ນ: ແຕ້ມແບບໃສ່ເຈ້ຍແລ້ວໃຫ້ຜູ້ໃຊ້ປະ ເມີນຕົ້ນແບບນັ້ນ.
 - ວິທີ Storyboard ເປັນວິທີໜຶ່ງທີ່ໃຊ້ສ້າງຕົ້ນແບບ ໂດຍການແຕ້ມລັກສະນະ ຂອງພາກສ່ວນປະສານງານກັບຜູ້ໃຊ້ລົງໃນເຈ້ຍຕາມລຳດັບການໂຕ້ຕອບລະຫ່ວາງຜູ້ໃຊ້ກັບລະບົບເພື່ອໃຫ້ຜູ້ໃຊ້ປະເມີນ.
 - ວິທີ Wizard of Oz ເປັນການສ້າງຕົ້ນແບບດ້ວຍການໃຊ້ຊອບແວຣ໌ຈາລອງ ເພື່ອໃຫ້ໂຕ້ຕອບກັບຜູ້ໃຊ້ເໜືອນຈິງ
- ການປະເມີນພາກສ່ວນສື່ສານ (Interface Evaluation) ແມ່ນໃຫ້ຜູ້ໃຊ້ປະເມີນ ຕາມຕົ້ນແບບທີ່ເຮັດຂື້ນມາວ່າຖືກຕ້ອງຕາມຄວາມຕ້ອງການ ຫຼື ບໍ່, ມີຂໍ້ຜິດພາດອັນ

ໃດບໍ່ ໂດຍທີມງານຈະເກັບກຳຄວາມຄິດເຫັນຂອງຜູ້ໃຊ້ໃນການປະເມີນໃຫ້ໄດ້ຫຼາຍທີ່ ສຸດເພື່ອນຳໄປປັບປຸງຕົ້ນແບບໃຫ້ສົມບູນ.

ວິຊາ ວິສະວະກຳຊອບແວຣ໌

ບົດທີ 11 ການຂຽນໂປຣແກມ

ມາດຕະຖານການຂຽນໂປຣແກມ

- ເພື່ອໃຫ້ການປະກອບຊອບແວຣ໌, ການເຮັດເອກະສານ ແລະ ການບຳລຸງຮັກສາງ່າຍຂຶ້ນ ຈຳເປັນຈະຕ້ອງມີມາດຕະຖານ ແລະ ຂະບວນການເຮັດວຽກເພື່ອຄວບຄຸມການເຮັດ ວຽກຂອງໂປຣແກຣມເມີໃຫ້ຊອດຄ່ອງ, ມີລະບຽບ ແລະ ເປັນໄປຕາມທິດທາງດຽວ ກັນ
- ໄປຣແກຣມເມີທຸກຄົນຈະຕ້ອງຮັບຮູ້ ແລະ ເຂົ້າໃຈໃນມາດຕະຖານ ແລະ ຂະບວນ ການທຢ່າງຖືກຕ້ອງ ແລະ ກົງກັນ
- ປະໂຫຍດຕໍ່ໂປຣແກຣມເມີ
 - ຊ່ວຍໃຫ້ໂປຣແກຣມເມີຈັດລຳດັບຄວາມຄິດໄດ້ຢ່າງເປັນລະບົບ
 - ຊວ່ຍໃຫ້ໂປຣແກຣມເມີເຮັດວຽກໄດ້ງ່າຍຂຶ້ນ
 - ຫຼິກລ້ຽງຂໍ້ຜິດພາດໃນເບື້ອງຕົ້ນ ເຊັ່ນ: ການກຳນິດຊື່ຕົວປ່ຽນ,ຊື່ຖານຂໍ້ມູນທີ່ບໍ່ກົງກັນກັບທີມອື່ນ
- ປະໂຫຍດຕໍ່ບຸກຄົນອື່ນ
 - ເຮັດໃຫ້ການປະກອບ ແລະ ທຶດສອບຊອບແວຣ໌ດ້ວຍໂປຣແກຣມເມີຄົນອື່ນງ່າຍຂຶ້ນ

II. ຫຼັກການໃນການຂຽນໂປຣແກຣມ

- 💠 ໂຄງສ້າງການວຄວບຄຸມການເຮັດວຽກຂອງໂປຣແກຣມ
 - ການຄວບຄຸມການເຮັດວຽກຂອງໂປຣແກຣມຍ່ອຍຂອງຊອບແວຣ໌ມີຫຼາຍຮູບ ແບບເຊັ່ນ: Call and Returen, Event-Based Control ແລະ broadcast Model
 - ການຄວບຄຸມການເຮັດວຽກຂອງໂປຣແກຣມຍ່ອຍມີຄວາມສຳຄັນຫຼາຍເນື່ອງຈາກມັນເຮັດໃຫ້ໂປຣແກຣມເຮັດວຽກໄດ້ໄປຕາມທິດທາງທີ່ຕ້ອງການໄດ້

- ວິທີການຂຽນໂປຣແກຣມທີ່ຊ່ວຍໃຫ້ການອ່ານໂຄດໃຫ້ງ່າຍນັ້ນມີ 2 ວິທີການຄື:
- 1 ຂຽນໂຄດຈາກເທິງລົງລຸ່ມ
- 2 ແບ່ງໂປຣແກຣມອອກເປັນໂມດູນ

III. ການເຮັດເອກະສານກ[່]ຽວກັບໂປຣແກຣມ

- ການເຮັດເອກະສານພາຍໃນ
 - ເປັນເອກະສານສະແດງລາຍລະອຽດຂອງໂຄດທັງໝົດຂອງຊອບແວຣ໌ ແລະລວມໝາຍເຫດຂອງໂປຣແກຣມນຳ
- ❖ Header Comment Block
 - ເປັນການຂຽນໝາຍເຫດໄວ້ໃນສ່ວນຫົວຂອງໂປຣແກຣມ, ເປັນສ່ວນສະແດງທີ່ມາ, ໜ້າທີ່ ແລະ ການໃຊ້ງານໂປຣແກຣມ

ບິດທີ່ 12 ການທິດສອບຊອບແວຣ໌

1. ຄວາມຮູ້ເບື້ອງຕຶ້ນຂອງການທິດສອບຊອບແວຣ໌

- ເປັນກິດຈະກຳທີ່ເຮັດຂຶ້ນເພື່ອປະເມີນ ແລະ ປັບປຸງຄຸນນະພາບຂອງຊອບແວຣ໌ ໂດຍ ການກວດຫາຂໍ້ຜິດພາດ ແລະ ບັນຫາໃຫ້ຖືກຕ້ອງ
- ຈຸດປະສິງຂອງການທຶດສອບຊອບແວຣ໌ແມ່ນເພື່ອພິສູດວ່າຊອບແວຣ໌ເຮັດວຽກໄດ້ຄົບ ທຸກໜ້າທີ່ຕາມຂໍ້ກຳນິດຄວາມຕ້ອງການ ແລະ ແຕ່ລະໜ້າທີ່ສາມາດປະມວນຜົນຂໍ້ມູນ ໄດ້ຢ່າງຖືກຕ້ອງ
- ຄຳສັບທີ່ຄວນຮູ້ຈັກ
 - Error ໝາຍເຖິງຄ່າຈິງທີ່ໄດຈາກການເຮັດວຽກບໍ່ກຶງກັບຄ່າຖືກຕ້ອງ ແລະ ລວມເຖິງຜົນການຕັດສິນໃຈຜິດຈາກຄວາມຕ້ອງການ

- Fault ໝາຍເຖິງສະພາບທີ່ຂະບວນການປະມວນຜົນຂອງຊອບແວຣ໌ບໍ່ ປົກກະຕິ
- Failure ໝາຍເຖິງຊອບແວຣ໌ ຫຼື ຮາດແວຣ໌ບໍ່ສາມາດເຮັດວຽກຕາມໜ້າທີ່ໃດ ໜຶ່ງ ລວມເຖິງບໍ່ສາມາດແຈ້ງເຕືອນຂໍ້ຜິດພາດ

💠 ລະດັບການທຶດຊອບແວຣ໌

- ການທຶດສອບໃນລະດັບຫົວໜ່ວຍຍ່ອຍ
 - ເປັນການທຶດສອບແຕ່ລະພາກສ່ວນຍ່ອຍສຸດຂອງຊອບແວຣ໌ ເພື່ອປະເມີນການເຮັດວຽກໃນດ້ານຕ່າງໆ
- ການທົດສອບໃນລະດັບລວມ
 - ເປັນການທິດສອບການເຮັດວຽກຂອງກຸ່ມໂປຣແກຣມ ຊຶ່ງເປັນການ ທິດສອບຫຼັງຈາກທີ່ເອົາແຕ່ລະພາກສ່ວນຍ່ອຍມາລວມເຂົ້າກັນ
- ການທຶດສອບລະບິບ
 - ເປັນການທຶດສອບຊອບແວຣ໌ເມື່ອເອົາມາລວມເຂົ້າກັບອົງປະກອບອື່ນຂອງລະບົບ

💠 ວິທີທາງໃນການທຶດສອບຊອບແວຣ໌

- ວິທີທາງໃນການທຶດສອບຊອບແວຣ໌ທີ່ດີທີ່ສຸດແມ່ນການທຶດສອບຕາມຮອບ ຂອງການສ້າງຊອບແວຣ໌ໂດຍເລີ່ມຈາກການທຶດສອບເທື່ອລະໂມດູນ ເອີ້ນວິທີ ການນີ້ວ່າ Incremental Testing Approach ຄືດັ່ງລຸ່ມນີ້:

ຜິນການທິດສອບ

2. ການທຶດສອບການລວມຫົວໜ່ວຍຍ່ອຍ

- ເປັນການທົດສອບການເຮັດວຽກຂອງກຸ່ມໂປຣແກຮມ ຫຼື ທົດສອບການລວມໂປຣແກຮມຍ່ອຍເຂົ້າດ້ວຍກັນ ໂດຍເຮັດໜ້າທີ່ໃດໜຶ່ງຮ່ວມກັນ
- ເປັນການທົດສອບພາກສ່ວນສື່ສານການເຮັດວຽກຮ່ວມກັນລະຫ່ວາງແຕ່ລະສ່ວນຍ່ອຍ
- ສ່ວນທີ່ຈະຖືກທົດສອບມີ 2 ຢ່າງຄື: ພາກສ່ວນສື່ສານ ແລະ ຜົນການເຮັດວຽກຂອງພາກສ່ວນລວມ

3. ການທຶດສອບລະບົບ

- ເປັນການທຶດສອບການເຮັດວຽກຂອງລະບົບເມື່ອເອົາຊອບແວຣ໌ມາລວມເຂົ້າກັບອົງປະກອບອື່ນໆໄດ້ແກ່ ອຸປະກອນ, ບຸກຄະລາກອນ ແລະ ຂໍ້ມູນ
- 💠 ການທຶດສອບລະບົບແບ່ງອອກເປັນ 2 ລັກລະນະ
 - Alpha and Beta Testing
 - Runtime Operation Testing
- Alpha and Beta Testing
 - Alpha Testing ເປັນການທຶດສອບລະບົບໂດຍຜູ້ໃຊ້ຢູ່ສະຖານທີ່ຜະລິດ ຊອບແວຣ໌ໂດຍຜູ້ໃຊ້ງານພາຍໃຕ້ສະຖານະການຈຳລອງຂື້ນ
 - Beta Testing ເປັນການນຳເອົາຊອບແວຣ໌ໄປໃຫ້ຜູ້ໃຊ້ໄດ້ທົດລອງໃຊ້ງານ ຊອບແວຣ໌ໃນສະຖານທີ່ຈິງດ້ວຍຕຶນເອງໂດຍບໍ່ມີທີມງານຄອຍສັງເກດ
- Runtime Operation Testing
 - ເປັນການທຶດສອບຂະນະທີ່ລະບົບກຳລັງເຮັດວຽກຢູ່
 - ສິ່ງທີ່ຕ້ອງທຶດສອບມີດັ່ງນີ້
 - ທິດສອບການກູ້ຄືນ
 - o ທິດສອບໃນກໍລະນີຂັບຂັນ (Stress Testing) ເປັນການທິດສອບ ໃນສະຖານະການບໍ່ປົກກະຕິ ໂດຍລະບົບຈະຕ້ອງເຮັດວຽກຕໍ່ໄປໄດ້
 - ທຶດສອບສະມັດຕະພາບ

- ດ ທຶດສອບການຮັກສາຄວາມປອດໄພ
- ການທຶດສອບການເຮັດເອກະສານ

ບົດທີ 13 ການບຳລຸງຮັກສາຊອບແວຣ

ການບຳລຸງຮັກສາຊອບແວຣ໌

- ແມ່ນການປ່ຽນແປງຊອບແວຣ໌ພາຍຫຼັງການສິ່ງມອບ ເພື່ອແກ້ໄຂຂໍ້ຜິດພາດ, ປັບປຸງ ປະສິດທິພາບ ຫຼື ດັດແປງຊອບແວຣ໌ໃຫ້ເໝາະສົມກັບສະພາບແວດລ້ອມທີ່ປຽ່ນແປງ ແລະ ຍັງເປັນການປັບປຸງແກ້ໄຂໂຄດ ແລະ ເອກະສານໃຫ້ຖືກຕ້ອງ ເມື່ອມີຂໍ້ຜິດພາດ ເກີດຂື້ນ ຫຼື ເມື່ອມີການຮ້ອງຂໍໃຫ້ປັບປຸງ
- ຄວາມສຳຄັນຂອງການບຳລຸງຮັກສາ
 - ການປ່ຽນແປງເປັນເຫດໃຫ້ມີການບໍາລຸງຮັກສາຊອບແວຣ໌
 - ເນື່ອງຈາກຊອບແວຣ໌ຕ້ອງເຮັດວຽກຢູ່ພາຍໄຕ້ສະພາບແວດລ້ອມຕ່າງໆທີ່ມີ ການປ່ຽນແປງຕະຫຼອດເວລາ
 - ເພື່ອໃຫ້ແນ່ໃຈວ່າຊອບແວຣ໌ຍັງຄົງເຮັດໄດ້ກົງກັບຄວາມຕ້ອງການຂອງໃຊ້
 - ການເລືອກລະຫວ່າງບຳລຸງຮັກສາ ແລະ ສ້າງຂື້ນໃໝ່
 - ເມື່ອມີການປ່ຽນແປງແກ້ໄຂຊອບແວຣ໌ ໝາຍເຖິງອົງກອນຈະຕ້ອງໄດ້ຈ່າຍເງິນ ຄ່າປັບປຸງສະນັ້ນ ອົງກອນຈະຕ້ອງໄດ້ພິຈາລະນາ ຕັດສິນໃຈເລືອກລະຫວ່າງ ການບຳຮັກສາ ແລະ ການພັດທະນາຂື້ນໃໝ່ວ່າ ອັນໃດຄຸ້ມຄ່າກ່ວາກັນ
 - ປະເພດຂອງການບຳລຸງຮັກສາ
- ການບຳລຸງຮັກສາມີລັກສະນະສຳຄັນ 4 ປະການດັ່ງນີ້
 - ຄວບຄຸມການເຮັດວຽກຂອງແຕ່ລະ Function ຂອງຊອບແວຣ໌ໃຫ້ ຖືກຕ້ອງເປັນປະຈຳທຸກວັນ
 - ຄວບຄຸມການປັບປຸງຊອບແວຣ໌
 - ຮັກສາສະພາບຄວາມສົມບຸນຂອງ Function ຂອງຊອບແວຣ໌ໄວ້
 ສະເໜີ
 - ປ້ອງກັນບໍ່ໃຫ້ປະສິດທິພາບຂອງຊອບແວຣ໌ລຸດລົງເກີນລະດັບທີ່ສືມຄວນ

💠 ການບຳລຸງຮັກສາມີ 4 ປະເພດ

- Corrective Maintenance ເປັນການແກ້ໄຂຂໍ້ຜິດພາດທັນທີທີ່
 ພົບ
- Adaptive Maintenance ເປັນການດັດແປງສ່ວນທີ່ໄດ້ຮັບຜົນ
 ກະທົບ
- Perfective Maintenance ເປັນການປັບປຸງປະສິດທິພາບການ ເຮັດວຽກ
- Preventive Maintenance ເປັນການປ່ຽນແປງເພື່ອປ້ອງກັນບໍໃຫ້ເຮັດວຽກຜິດພາດ

II. ບັນຫາຂອງການບຳລຸງຮັກສາຊອບແວຣ໌

- ການບຳລຸງຮັກສາບໍ່ໃຫ້ກະທົບຕໍ່ທຸລະກິດຂອງລູກຄ້າ
 - ການບຳລຸງຮັກສາຊອບແວຣ໌ເປັນເລື່ອງຍຸ້ງຍາກ
 - ຕ້ອງເຮັດໃນຄະນະທີ່ຜູ້ໃຊ້ກຳລັງໃຊ້ງານຢູ່
 - ອາດເຮັດໃຫ້ເກີດຄວາມເສຍຫາຍຕໍ່ທຸລະກິດຂອງຜູ້ໃຊ້
 - ບໍ່ເຮັດໃຫ້ການເຮັດວຽກຂອງຜູ້ໃຊ້ຢຸດສະງັກ
- ບັນຫາດ້ານເງິນທີມງານ
- ບັນຫາດ້ານເທັກນິກ
- 💠 ບັນຫາຈາກການປານີປານອມ
- ບັນຫາດ້ານຕົ້ນທຶນ

III. ຂັ້ນຕອນໃນການບຳລຸງຮັກສາຊອບແວຣ໌

ແຜນວາດສະແດງຂັ້ນຕອນໃນການບຳລຸງຮັກສາຊອບແວຣ໌

- ການສະເໜີປ່ຽນແປງແກ້ໄຂ(Modification Request)
- 💠 ການຈຳແນກ ແລະ ກຳນົດປະເພດການບຳລຸງຮັກສາ
- ການວິເຄາະ
- 💠 ການອອກແບບ
- ການດຳເນີນງານການບຳລຸງຮັກສາ
- ກາທຶດສອບລະບົບ
- ການທຶດສອບການຍອມຮັບ
- ການສິ່ງມອບ

IV. ເທັກນິກ ແລະ ເຄື່ອງມືໃນການບຳລຸງຮັກສາຊອບແວຣ໌

- ເທັກນິກໃນການບຳລຸງຮັກສາຊອບແວຣ໌
 - ການສ້າງຄວາມເຂົ້າໃຈໂປຣແກຣມ
 - ການຟື້ນຟູສະພາບຂອງຊອບແວຣ໌
- ການປັບປຽນເອກະສານໃໝ່
- ການປັບປ່ຽນໂຄງສ້າງໃໝ່
- ການເຮັດວິສະວະກຳຍ້ອນກັບ
- ການປັບປຽນວິສະວະກຳໃໝ່
- ເຄື່ອງມືໃນການບຳລຸງຮັກສາຊອບແວຣ໌