	CS-411- ASSIGNMENT 6	
PAR	(TI)	
(A)	Forward Texture mapping involves mapping the texture coordinates to the image coordinates where the texture texture is the source and image is the target.	
	Inverse mapping involves scanning the image and finding out Juhat the texture should give is.	
	Formard Manping -> P. 3 MP;	A
7.	Inverse Marping -> P; = M.P.	
	Forward majorg has the issue of holes and overlap, therefore inverse majoring is the preferred method of mapping because it avoids these issues.	
7		
B	$V_{1} = (1,2)$ $V_{2} = (4,2)$ $V_{3} = (4,6)$ $V_{1}' = (1,2)$ $V_{2}' = (1,4)$ $V_{3}' = (4,2)$	
60 110	Forward Map	
A disease	Inverse Map $\rightarrow P_1 \equiv M^- P_2$	
	where P' = P'	
	1 5/1 1/2	
• • • • • • • • • • • • • • • • • • • •	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T
	3	and and

so that it looks like it has bornes but it's profite. Given a bump image b(x,y) and n=(nx,ny,ny,nz)
we can compute the bump image using the d
following equations: where by by are the u. E. V derivative of the burns map. Nx = nx - bu Ny= (ny)- by PU(x) 4)=P(x+1,y)-P(x,y) b(x,y)=b(x,y+)+b(x,y) - modified nomal we need to add -by to the xideordinate (E) Sos 16 be = b (841, 4) -b (x,y) where x=4, y=5 :. bu= b (5,5) - b(4,5) = 25-25=5. : the displacement added to a coord is -5/1 Given (R.G., B) = (0:2, 0.3, 0.9) $2 = 0.2 \times 2 - 1 = -0.6$ $4 = 0.3 \times 2 - 1 = -0.4$ $2 = 0.3 \times 2 - 1 = -0.4$ 0.8Giten Po = [1,2,1] P= [4,2,2] P2=[4,6,3] (4, 4) = [1,2] (4, 4) = [1,4] (lez, 42) = [4,2] compute N T & B.

$$\begin{bmatrix}
T & B \\
A_{41} & A_{42} & A_{43} & A_{43} \\
A_{41} & Q_{1} & Q_{2} & A_{43} & A_{43}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{41} & Q_{1} & Q_{2} & A_{43} & A_{43} \\
A_{41} & Q_{1} & Q_{2} & A_{2} & Q_{2} & Q_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{41} & Q_{1} & Q_{2} & A_{43} & A_{43} \\
A_{41} & Q_{4} & Q_{4} & A_{43}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{41} & Q_{1} & Q_{2} & Q_{2} & Q_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{41} & Q_{1} & Q_{2} & Q_{2}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{41} & Q_{41} & Q_{41}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{41} &$$