Goal

- In 1984 the Japanese newspaper Nokilist Monthly published in a section called hobbies *Sūji wa dokushin ni kagiru* (" the numbers must be alone"). *It was Kaji Maki, president of Nikoli, who gave it the name. The name was shortened to Sūdoku (sū = number, doku = alone)*
- The standard Sudoku puzzle consists of a 9x9 grid, broken into nine 3x3 boxes
- Each of the eighty-one squares must be filled in with a number between 1 and 9
- Some cells already contain numbers, known as "givens" or "tracks"
- The aim is to fill the empty cells with a number in each, so that each column, row and region contains the numbers 1-9 only once
- Each number in the solution appears only once in each of the three "directions"
 - Hence "the numbers must be alone" evoking the name of the game

Data for a specific problem

5 6 4 3 1 7 8 2 9 8 9 7 6 4 2 5 3 1 3 1 2 8 9 5 4 7 6 6 4 5 9 7 3 1 8 2 2 8 1 5 6 4 7 9 3 7 3 9 1 2 8 6 4 5 4 5 6 2 8 9 3 1 7 9 7 3 4 5 1 2 6 8 1 2 8 7 3 6 9 5 4

A board of 9x9 composed of regions of 3x3

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	ო	4	8
1	9	8	ო	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

7		8				3		
			2		1			
5								
	4						2	6
3				8				
			1				9	
	9		6					4
				7		5		

Strategy (I)

 Rule 1: Complete a row or column or box when only one cell is open and eight digits have been filled in already

					5	9	4
4	2	9	5	1	6	3	8
						2	7
							6
							3
							5
							1
							9

Strategy (II)

5 6 4 3 1 7 8 2 9 8 9 7 6 4 2 5 3 1 3 1 2 8 9 5 4 7 6 6 4 5 9 7 3 1 8 2 2 8 1 5 6 4 7 9 3 7 3 9 1 2 8 6 4 5 9 7 3 6 2 8 6 4 5 9 7 3 6 2 8 6 4 5 9 7 3 6 2 8 6 4 5

Rule 2: Write a digit in a box where it can go in

only one place

Strategy (III)

- If a Sudoku can be solved with the previous techniques, this is an easy Sudoku
 - At each step there is only one possibility
- Rule 3: For more complex Sudokus it is necessary to annotate
 - Pair

Strategy (IV)

For more complex Sudokus it is necessary to

annotate

Two pairs

3	3			3

			7		
			3		
			5		
	7-				
	7-				
	7-	_			

Strategy (V)

• For more complex Sudokus it is necessary to annotate

Double pairs

Strategy (VI)

- Despite these simple rules there are 6,670,903,752,021,072,936,960 valid Sudokus
- There are different strategies that are effective to solve this problem
- The brute force algorithm is the simplest (and a general algorithm)
 - Try all combinations until you find one that works
 - It works because computers are fast
 - Although it is not optimized...

Strategy (VII)

 5
 6
 4
 3
 1
 7
 8
 2
 9

 8
 9
 7
 6
 9
 5
 3
 1
 7
 6
 4
 7
 6

 6
 4
 5
 9
 7
 3
 1
 8
 2
 2

 7
 3
 9
 1
 2
 8
 6
 4
 7
 9
 3
 1
 7
 3
 1
 7
 3
 1
 7
 3
 1
 7
 3
 1
 7
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1
 7
 3
 4
 3
 1

- In the example, we have reached a dead
- When the search reaches a not applicable end, it returns to the previous cell that was trying to fill in and tries the next digit
- We would back up to the cell with a 2 and that turns out to be a dead end as well so we back up again
 - That way, the algorithm needs to remember what number to try next
- Now in the cell with the 2. We try 3 and move forward again. Since 3 does not work either, we try 4 and move forward again

7	1	8	1			3		
			2		1			
5								
	4						2	6
3				8				
			1				9	
	9		6					4
				7		5		

Strategy (VIII)

- Brute force algorithms are pretty slow but easy to implement
 - Backtracking is an example of a brute force algorithm
- There are not very clever
 - For example we know that in the middle-top box there can not be a one in either the first or the third column but the algorithm still tries it
- After trying placing a digit in a cell we want to solve the new Sudoku board
 - It is a smaller (or a simpler version) of the same problem we started with
- We will use recursive backtracking
 - Recursive because later versions of the problem are just slightly simpler versions of the original
 - Backtracking because we may have to try different alternatives

Examples of use

The Sudoku game

Strategy (IX)

 board array that represents the board

7		8				3		
			2		1			
5								
	4						2	6
3				8				
			1				9	
	9		6					4
				7		5		

- int [][] board= new int [n][n]
 - board[x][y]=0 cell (x y) has not been calculated
 - board[x][y]=i cell (x, y) has been calculated
- $i \rightarrow$ value of the digit (from 1 to 9)
- x, y → coordinates of the last value in the Sudoku board
- Initial board[0][0]

Strategy (X)

- Valid values on the board
 - Check row
 - checkIfRowHasValue(value)
 - Check column
 - checkIfColumnHasValue(value)
 - Check subtable (region)
 - checkIfRegionHasValue(value)

Pseudocode

Examples of use

```
public boolean findSolution(int i, int j){
       boolean hasSolution= false;
       if (j == 9) { j = 0; i++; }//when a column ends, go to the next row
       if (i == 9) return true; //check if it is solution (you got the end)
       if (cells[i, j] == 0) //skip cells already occupied
                for (int val= 1; val<=9 && !hasSolution; val++) {</pre>
                         if (legal(i, j, val, cells)) { //check if it is a
                                                            valid state
                                  cells[i][j] = val;
                                  findSolution (i, j+1, cells);
                                 cells[i,j] = 0;
                        }//if
                }//end (for)
       } //end (if)
       return hasSolution;
```

Examples of use

The Sudoku game

Solution

7		8				თ		
			2		1			
5								
	4						2	6
3				8				
			1				9	
	9		6					4
				7		5		

7	2	8	9	4	6	3	1	5
9	З	4	2	5	1	6	7	8
5	1	6	7	3	8	2	4	9
1	4	7	5	9	3	8	2	6
3	6	9	4	8	2	1	5	7
8	5	2	1	6	7	4	9	3
2	9	3	6	1	5	7	8	4
4	8	1	3	7	9	5	6	2
6	7	5	8	2	4	9	3	1