

Introduction to Deep Learning Fall 2018

Images and the Visual System

Binary Image: 2^{number_of_pixels}

Grayscale: 256^{number_of_pixels}

HD image: (256)⁽³⁾^{3,145,728}

That's a lot of parameters!

Seeing feels easy...

But it is hard!

3 Stages of processing

- 1. Retina (in the eyes)
- 2. Lateral geniculate nuclues (in the thalamus)
- 3. Visual Cortex (in the cerebrum)

3 Stages of processing

- 1. Retina (in the eyes) COMPRESSION
- 2. Lateral geniculate nuclues (in the thalamus) PREPROCESSING
- 3. Visual Cortex (in the cerebrum) FEATURE LEARNING

Retina

Photoreceptor Mosaic

- Photoreceptors to transduce light into neural signal
- 100 Milliion receptors per eye
- BIG Data!

Retinal Layers

Retinal Ganglion Cells

Center-Surround Response

Structure of Natural Images

This is *not* random

1/f² Distribution

Spatial Frequency

Low Spatial frequency

High Spatial Frequency

Spatial Frequency

The Visual System

Decorrelation and Whitening

PCA / Whitening. Left: Original toy, 2-dimensional input data. Middle: After performing PCA. The data is centered at zero and then rotated into the eigenbasis of the data covariance matrix. This decorrelates the data (the covariance matrix becomes diagonal). Right: Each dimension is additionally scaled by the eigenvalues, transforming the data covariance matrix into the identity matrix. Geometrically, this corresponds to stretching and squeezing the data into an isotropic gaussian blob.

Location Invariance in cortical neurons

Visual Cortex

Figure 1. Maps of reported areas in primate visual cortex. Maps are shown on the flattened cortical surface from right hemisphere (light gray, gyri; dark gray, sulci). A shows areas in macaque reported by Van Essen and colleagues, and B shows the macaque areas reported by Ungerleider and collaborators (adapted from Van Essen et al., 2001). C shows areas in human visual cortex, as described in the text. Consensus is highest in lower-tier (generally, left-most) areas; such areas tend to be evolutionarily more conserved, and the retinotopy is more easily resolved.

Learning Features to reduce dimensionality

Visual Hierarchy

Primary Visual Cortex

Feature detectors in V1 have the properties of:
•Localized

- Oriented
- •Oriented
- \bullet Bandpass

Gabors

Sensitive to spatially and frequency-localized features

High-level features

Fusiform Face Area

Neural Specialization

Neural Specialization

Neural Specialization

Quiroga et al (2005)

Receptive field size increases leading to spatial invariance

Multisensory Cortex

Multisensory Cortex

Convolutional Neural Networks

