News Article Classification Project Report

. Project Overview

In today's fast-paced digital world, large volumes of news articles are generated and shared across platforms. To improve content organization and user recommendations, it's essential to automatically classify articles into categories like **sports**, **politics**, and **technology**.

This project focuses on building a machine learning model that classifies news articles based on their content using Natural Language Processing (NLP) and supervised learning techniques.

1. Problem Statement

Develop a robust classifier that:

- Automatically categorizes news articles into predefined categories.
- Efficiently handles text preprocessing and feature extraction.
- Evaluates and compares multiple classification models.
- Provides accurate predictions for unseen articles.

2 data analysis

The dataset contains 50,000 news articles evenly distributed across 10 categories, each with 5,000 samples. The short_description column has a negligible number of missing values (only 6), ensuring overall data quality is high.

```
(50000, 3)
Index(['category', 'headline', 'short_description'], dtype='object')
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 50000 entries, 0 to 49999
    Data columns (total 3 columns):
                           Non-Null Count Dtype
     # Column
                    NOT 113
     0 category 50000 non-null object
1 headline 50000 non-null object
     2 short_description 49994 non-null object
    dtypes: object(3)
    memory usage: 1.1+ MB
                      count
            category
        WELLNESS
                       5000
        POLITICS
                       5000
     ENTERTAINMENT
                       5000
         TRAVEL
                       5000
     STYLE & BEAUTY
                       5000
        PARENTING
                       5000
      FOOD & DRINK
                       5000
      WORLD NEWS
                       5000
        BUSINESS
                       5000
```

3. Dataset Information

The dataset used data_news. consists of the following columns:

- category target label
- headline article title
- short_description brief content
- keywords metadata (not used in modeling)

I combined headline and short_description to create a new column called text, which was used for training.

_				
→ ▼		category	text	clean_text
	0	WELLNESS	143 Miles in 35 Days: Lessons Learned Resting	mile day lesson learned resting part training
	1	WELLNESS	Talking to Yourself: Crazy or Crazy Helpful? T	talking crazy crazy helpful think talking tool
	2	WELLNESS	Crenezumab: Trial Will Gauge Whether Alzheimer	crenezumab trial gauge whether alzheimers drug
	3	WELLNESS	Oh, What a Difference She Made If you want to	oh difference made want busy keep trying perfe
	4	WELLNESS	Green Superfoods First, the bad news: Soda bre	green superfoods first bad news soda bread cor

☐ 4. Data Preprocessing

Text data was cleaned and transformed using the following steps:

- Converted to lowercase
- Removed punctuation and special characters
- Removed stopwords (using NLTK)
- Tokenized and lemmatized words
- Created a new column clean_text

•

5. Exploratory Data Analysis (EDA)

- The dataset had multiple categories like **politics**, **entertainment**, **wellness**, etc.
- EDA revealed **imbalanced category distribution**, with some classes having significantly more articles than others.
- Visualized using bar plots and pie charts.

6. Feature Extraction

We used **TF-IDF vectorization** to convert cleaned text into numerical features:

python

tfidf = TfidfVectorizer(max_features=5000)

X = tfidf.fit_transform(df['clean_text']).toarray()

y = df['category']

7. Model Development

Three supervised models were trained and evaluated:

1. Logistic Regression

A linear model that estimates probabilities using the logistic function. It's simple, fast, and effective for high-dimensional text data like TF-IDF features.

Classification	Report:				
	precision	recall	f1-score	support	
	·				
BUSINESS	0.73	0.78	0.76	955	
ENTERTAINMENT	0.77	0.78	0.77	985	
FOOD & DRINK	0.86	0.82	0.84	1021	
PARENTING	0.77	0.76	0.77	1030	
POLITICS	0.80	0.74	0.77	1034	
SPORTS	0.87	0.89	0.88	995	
STYLE & BEAUTY	0.86	0.85	0.85	986	
TRAVEL	0.83	0.81	0.82	1008	
WELLNESS	0.72	0.75	0.74	1009	
WORLD NEWS	0.79	0.81	0.80	977	
accuracy			0.80	10000	
macro avg	0.80	0.80	0.80	10000	
weighted avg	0.80	0.80	0.80	10000	
Confusion Matri					
[[748 19 12	20 52 14	2 9 44	1 35]		
[22 765 14		32 15 28	17]		
[19 12 838		19 37 45	9]		
[27 36 10 7		26 16 85	5]		
[77 26 2	20 767 11	5 14 18	94]		
[16 28 3		10 7 8	13]		
[17 43 15	21 5 6 8		6]		
[25 29 38	21 6 11 3	18 814 23	23]		

2. Naive Bayes (Multinomial)

A probabilistic classifier based on Bayes' theorem with a strong (naive) independence assumption.

It performs well on text classification due to its efficiency and simplicity, especially with sparse data

• Naive Bayes Results Accuracy: 0.7822 Classification Report:						
CIG22111CGCIOII	•		£4			
	precision	recarr	f1-score	support		
BUSINESS	0.71	0.74	0.72	955		
ENTERTAINMENT	0.79	0.74	0.76	985		
FOOD & DRINK	0.82	0.85	0.84	1021		
PARENTING	0.69	0.74	0.71	1030		
POLITICS	0.79	0.73	0.76	1034		
SPORTS	0.87	0.86	0.86	995		
STYLE & BEAUTY	0.85	0.84	0.84	986		
TRAVEL	0.79	0.81	0.80	1008		
WELLNESS	0.72	0.72	0.72	1009		
WORLD NEWS	0.80	0.81	0.80	977		
accuracy			0.78	10000		
macro avg	0.78	0.78	0.78	10000		
weighted avg	0.78	0.78	0.78	10000		

3. Support Vector Machine (LinearSVC)

Train-test split (80-20) was applied for model evaluation.

SVM ResultsAccuracy: 0.7892Classification Report:						
	precision	recall	f1-score	support		
BUSINESS	0.73	0.80	0.77	955		
ENTERTAINMENT	0.78	0.76	0.77	985		
FOOD & DRINK	0.83	0.83	0.83	1021		
PARENTING	0.76	0.75	0.76	1030		
POLITICS	0.78	0.72	0.75	1034		
SPORTS	0.87	0.91	0.89	995		
STYLE & BEAUTY	0.84	0.85	0.84	986		
TRAVEL	0.81	0.78	0.79	1008		
WELLNESS	0.72	0.71	0.71	1009		
WORLD NEWS	0.77	0.79	0.78	977		
accuracy			0.79	10000		
macro avg	0.79	0.79	0.79	10000		
weighted avg	0.79	0.79	0.79	10000		

8. Model Evaluation

Each model was evaluated using:

- Accuracy
- Classification Report (Precision, Recall, F1-score)
- Confusion Matrix

Logistic Regression

Accuracy: 80%

Well-balanced performance across all classes.

Naive Bayes:

Accuracy: 78.5%

Faster but slightly less accurate; struggles with complex sentences.

SVM:

Accuracy: 78%

Best overall performance, especially on smaller classes.

9. Cross-Validation

Cross-validation (k=5) was used for robust evaluation of Logistic Regression:

This ensured the model's generalization ability across folds.

10. Final Model Selection

Based on accuracy and F1-score:

Model Accuracy F1-Score Notes

Logistic Regression 80 % Good Balanced and fast

Naive Bayes 78.5% Excellent Best over all accuracy

SVM 79% good Balanced and fast

SVM was selected as the best model for deployment.

Compare the performance of different models and select the best one for

classification

Logistic Regression is selected as the best model for this news classification task because:

- It achieved the highest accuracy (80%) among all models.
- It offered a good balance between training time and performance.
- It handled multi-class text classification efficiently using TF-IDF features.

11. Conclusion

This project successfully demonstrates the use of **machine learning and NLP** techniques for automated news classification. It highlights the importance of preprocessing, feature extraction, model comparison, and evaluation

Video explanation

https://drive.google.com/file/d/1Ylp-b9yp_HS47smuJ5stPWpVqKZ9oQcS/view?usp=sharing

https://drive.google.com/file/d/1Ylpb9yp HS47smuJ5stPWpVqKZ9oQcS/view?usp=drive link