

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Curso TÉCNICO EM DESENVOLVIMENTO DE SISTEMAS

Relatório Comparativo para Plataforma de Streaming de Música

Nycolle Kauany Caetano Barbosa

Sorocaba Novembro – 2024

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Nycolle Kauany Caetano Barbosa

Relatório Comparativo para Plataforma de Streaming de Música

Relatório Comparativo de uma plataforma de streaming de música Prof. Emerson Magalhães

Sorocaba Novembro – 2024

HISTÓRICO DE VERSÕES

Data	Versão	Descrição	Autor
11/11/2024	1.0	Relatório Comparativo das características de banco de dados relacionais e não-relacionais.	Nycolle K. C. Barbosa

SUMÁRIO

1.	REL	ATORIO COMPARATIVO	4
1	.1.	Relacionais (MySQL)	4
		Não-Relacionais (MongoDB)	
		Justificativa da Escolha	
		NFIGURAÇÃO DO AMBIENTE	
		GRAMA DE MODELAGEM	
3	.1.	(MER)	7
		(DER)	
		NCO DE DADOS NORMALIZADO	
		IONÁRIO DE DADOS	

Relatório Comparativo para Plataforma de Streaming de Música

1. RELATORIO COMPARATIVO

1.1. Relacionais (MySQL)

- Estrutura: Utiliza tabelas para armazenar dados.
- Modelo de dados: Estruturado, com relações definidas por chaves primarias e estrangeiras.
- Integridade: Garante integridade referencial e ACID (Atomicidade, Consistência, Isolamento, Durabilidade).
- Exemplos: Dados transacionais, como registros de usuários, playlists e transições financeiras.

1.2. Não-Relacionais (MongoDB)

- Estrutura: Utiliza coleções de documentos (JSON/BSON).
- Modelo de dados: Flexível, permitindo esquemas variados e aninhados.
- Escalabilidade: Horizontal, ideal para grandes volumes de dados não estruturados.
- Linguagem de Consulta: Utiliza consultas JSON.
- Exemplos: Histórico de reprodução, feedbacks de usuários, interação do suporte.

1.3. Justificativa da Escolha

MySQL para dados estruturados: Ideal para armazenar informações estruturadas como dados de usuários, playlists e transições financeiras, pois fornece forte integridade de dados e suporte a transações ACID.

MongoDB para dados não-estruturados: Adequado para dados não estruturados e flexíveis, como histórico de produção, feedbacks e interações de

suporte, devido à sua capacidade de armazenar dados em documentos JSON flexíveis e escalar horizontalmente.

2. CONFIGURAÇÃO DO AMBIENTE

```
CREATE DATABASE streaming musica;
          USE streaming_musica;
4 • @ CREATE TABLE Usuarios (
5
           id INT auto_increment primary key,
           nome VARCHAR(100),
6
7
           email VARCHAR(100),
           senha VARCHAR(10)
8
9
           );
10
11 • @ CREATE TABLE Playlists (
          id INT auto_increment primary key,
          nome VARCHAR(100),
13
14
           usuarlo_id INT,
          FOREIGN KEY (usuario_id) REFERENCES usuarios(id)
16
         );
17
18 • CREATE TABLE TransiçõesFinanceiras (
         id INT auto_increment primary key,
19
          data_transicao DATE,
20
         valor DECIMAL(10,5),
22
          usuario_id INT,
          FOREIGN KEY (usuario_id) REFERENCES usuarios(id)
23
24
         );
25
26 • select * from Usuarios
```

3. DIAGRAMA DE MODELAGEM

3.1. (MER)

3.2. (DER)

4. BANCO DE DADOS NORMALIZADO

```
1 • CREATE DATABASE streaming musica;
2 • USE streaming_musica;
3
4 • G CREATE TABLE Usuarios (
          id INT auto_increment primary key,
6
           nome VARCHAR(100),
           email VARCHAR(100),
7
           senha VARCHAR(10)
8
9
           );
11 • @ CREATE TABLE Playlists (
           id INT auto_increment primary key,
13
          nome VARCHAR(100),
14
          usuario_id INT,
          FOREIGN KEY (usuario_id) REFERENCES usuarios(id)
16
         );
17
18 • CREATE TABLE TransiçõesFinanceiras (
19
          id INT auto_increment primary key,
          data_transicao DATE,
20
         valor DECIMAL(10,5),
22
          usuario_id INT,
23
          FOREIGN KEY (usuario_id) REFERENCES usuarios(id)
         ):
25
26 • select * from Usuarios
```

5. DICIONÁRIO DE DADOS

6. CONCLUSÃO

A implementação de um novo sistema de banco de dados para a plataforma de streaming de música foi um grande passo para lidar com o aumento de dados e usuários. Escolhemos o MySQL para dados estruturados como usuários e transações financeiras porque ele é super confiável e mantem tudo organizado. Para os dados estruturados e não estruturados, como históricos de reprodução e feedbacks, escolhemos o MongoDB, que é flexível e comporta o necessário.

A configuração foi simplificada, com instruções simples. Os diagramas de modelagem (MER e DER) foram essenciais para entender a estrutura dos dados. A criação do banco normalizado assegurou a eliminação de redundâncias, e o dicionário documentou tabelas, colunas e relacionamentos, destacando a organização.

Essa abordagem integrada permitiu uma experiencia de usuário personalizada e eficiente, otimizando análises e recomendações.