Список литературы

- 1) Э.Б. Винберг. Курс алгебры. Главы 5-8.
- 2) А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия.
- 3) А.И. Кострикин. Введение в алгебру, Часть II: Линейная алгебра.

Векторные пространства

Пусть K - основное поле. Элементы основного поля будем называть скалярами.

Например: $K = \mathbb{R}$, \mathbb{C} , \mathbb{Q} , \mathbb{Z}_p (p - простое). Первые три это числовые поля, а последнее - не числовое, именно поэтому мы будем называть элементы поля скалярами, а не числами.

Опр: 1. Векторное (линейное) пространство над полем K - это множество V, элементы которого называются векторами, на котором заданы две операции:

- 1) Сложение векторов: $V \times V \to V$, $(u, v) \mapsto w = u + v$;
- 2) Умножение векторов на скаляры: $K \times V \to V$, $(\lambda, v) \mapsto w = \lambda \cdot v$;

так, что выполняются аксиомы векторного пространства:

- (1) $u + v = v + u, \forall u, v \in V$;
- (2) $(u+v)+w=u+(v+w), \forall u, v, w \in V;$
- (3) $\exists 0 \in V : \forall v \in V, v + 0 = v$ (существует нудевой вектор), иногда будем обозначать $\overrightarrow{0}$;
- (4) $\forall v \in V, \exists w : v + w = 0, \text{ где } w \text{ называется противоположным вектором и обозначается } w = -v;$
- (5) $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v, \forall \lambda, \mu \in K, \forall v \in V;$
- (6) $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v, \ \forall \lambda \in K, \ \forall u, v \in V$
- (7) $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v, \forall \lambda, \mu \in K, \forall v \in V;$
- (8) $1 \cdot v = v, \forall v \in V$;

 \mathbf{Rm} : 1. По отношению к операции сложения V образует абелеву группу.

Примеры векторных пространств

1) Пространство геометрических векторов: $V = \{$ геометрические векторы в пространстве $\}, K = \mathbb{R}.$

Вектора: направленный отрезок, причем не закрепляем у него начальную точку (свободные векторы). Векторы, полученные параллельным переносом считаем одинаковыми.

Операции:

- (+): Правило параллелограмма: вектора откладываются от одного и того же начала, строим на них параллелограмм и берем вектор идущий по диагонали этого параллелограмма;
- (·): Соответствующий отрезок растягиваем или сжимаем в нужное число раз. Если коэффициент отрицательный \Rightarrow меняем направление. Если коэффициент нулевой \Rightarrow получаем нулевой вектор (вектор у которого начало и конец совпадают);

Рис. 1: Пространство геометрических векторов.

2) Арифметическое векторное пространство: $V = K^n$.

Вектора: упорядоченные наборы из n элементов основного поля: $x = (x_1, x_2, \dots, x_n), \forall i, x_i \in K$.

Операции: Определяются покомпонентно:

(+):
$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n);$$

$$(\cdot)$$
: $\lambda \cdot x = (\lambda \cdot x_1, \lambda \cdot x_2, \dots, \lambda \cdot x_n);$

3) Пространство матриц фиксированного размера: $V = Mat_{m \times n}(K)$ - можно отождествить с $K^{m \cdot n}$. Операции с матрицами мы рассматривали ранее в курсе алгебры.

 \mathbf{Rm} : 2. Матрицу всегда можно разложить в одну длинную строку: длиной mn.

4) Пространство функций: $V = \mathcal{F}(X, K) = \{f \colon X \to K\}.$

Операции:

$$(+)$$
: $\forall f, g \in \mathcal{F}(X, K), f + g \in \mathcal{F}(X, K)$: $(f + g)(x) = f(x) + g(x), \forall x \in X$;

$$(\cdot)$$
: $\forall f \in \mathcal{F}(X,K), \ \forall \lambda \in K, \ \lambda \cdot f \in \mathcal{F}(X,K)$: $(\lambda \cdot f)(x) = \lambda \cdot f(x), \ \forall x \in X$;

5) Пространство многочленов от переменной t: V = K[t]. Многочлены можно складывать, умножать на элементы поля снова будем получать многочлены \Rightarrow определены операции. Операции:

$$(+): \forall P(x), Q(x) \in K[t], P(x) + Q(x) \in K[t];$$

$$(\,\cdot\,)\colon\,\forall P(x)\in K[t],\,\forall\lambda\in K,\,\lambda\cdot P(x)\in K[t];$$

6) Расширение полей: пусть L - поле, $K \subseteq L$ - подполе, сложение умножение определены по определению поля, в частности, элементы поля L можно складывать между собой и умножать на элементы подполя $K \Rightarrow V = L$ - векторное пространство над K. Например, $\mathbb{R} \supset \mathbb{Q}$, $\mathbb{C} \supset \mathbb{R}$.

Свойства векторов и операций над ними

Следствие 1. Нулевой вектор единственен.

 \square Пусть 0_1 и 0_2 - два нулевых вектора, сложим их:

$$0_1 = 0_1 + 0_2 = 0_2 \Rightarrow 0_1 = 0_2$$

где $0_1 + 0_2 = 0_2$, так как 0_1 - нулевой вектор и $0_1 + 0_2 = 0_1$, так как 0_2 - нулевой вектор.

Следствие 2. У каждого вектора $\exists!$ противоположный вектор.

 \square Пусть есть два противоположных вектора $w_1 \in V$ и $w_2 \in V$ вектору $v \in V$. Сложим их все и расставим скобки:

$$w_1 + 0 = w_1 + (v + w_2) = (w_1 + v) + w_2 = 0 + w_2 = w_2 \Rightarrow w_1 = w_2$$

Следствие 3. $\forall \lambda \in K, \ \lambda \cdot \overrightarrow{0} = \overrightarrow{0}$.

 $\lambda \cdot \overrightarrow{0} = \lambda \cdot \left(\overrightarrow{0} + \overrightarrow{0} \right) = \lambda \cdot \overrightarrow{0} + \lambda \cdot \overrightarrow{0} \Rightarrow + \left(-\lambda \cdot \overrightarrow{0} \right) \Rightarrow \overrightarrow{0} = \lambda \cdot \overrightarrow{0} + \overrightarrow{0} = \lambda \cdot \overrightarrow{0}$

Следствие 4. $\forall v \in V, \ 0 \cdot v = \overrightarrow{0}$.

 $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \Rightarrow +(-0 \cdot v) \Rightarrow +(-0 \cdot v) \Rightarrow \overrightarrow{0} = 0 \cdot v + \overrightarrow{0} = 0 \cdot v$

Следствие 5. $\forall v \in V, (-1) \cdot v = -v.$

□ Рассмотрим сумму:

$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = \overrightarrow{0} \Rightarrow (-1) \cdot v = -v$$

Rm: 3. Запись скалярного множителя слева или справа - не важно, потому что множители имеют разные типы. Иногда бывает удобно записывать умножение на скаляры справа:

$$\forall v \in V, \, \forall \lambda \in V, \, v \cdot \lambda \coloneqq \lambda \cdot v$$

В дальнейшем увидим, что это может быть достаточно удобно. При этом сохраняется вид аксиом векторного пространства, например, ассоциативность (воспользуемся коммутативностью умножения поля):

$$(v \cdot \lambda) \cdot \mu = \mu \cdot (\lambda \cdot v) = (\mu \cdot \lambda) \cdot v = (\lambda \cdot \mu) \cdot v = v \cdot (\lambda \cdot \mu)$$

Остальные аксиомы сохраняются тем более.

Линейная зависимость

Опр: 2. Динейная комбинация векторов $v_1, \ldots, v_m \in V$ с коэффициентами $\lambda_1, \ldots, \lambda_m \in K$ - это конечная сумма вида:

$$\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \ldots + \lambda_m \cdot v_m$$

Опр: 3. Линейная комбинация называется тривиальной, если: $\lambda_1 = \lambda_2 = \ldots = \lambda_m = 0$.

Опр: 4. Система векторов $S=(v_1,\dots v_m)$ называется <u>линейно зависимой</u>, если \exists нетривиальная (то есть $\exists \lambda_i \neq 0$) линейная комбинация векторов этой системы равная нулю:

$$\lambda_1 v_1 + \ldots + \lambda_m v_m = 0$$

В противном случае, она называется линейно независимой.

Теорема 1. (основная лемма о линейной зависимости) Пусть у нас есть две системы векторов:

$$S = (v_1, \dots, v_m), \quad T = (w_1, \dots, w_n)$$

причём $\forall v_i \in S$ является линейной комбинацией векторов из T и $m > n \Rightarrow S$ - линейно зависима.

Rm: 4. Можно переформулировать теорему следующим образом: если S линейно независима и линейно выражается через T, то $m \leq n$.

□ Доказывается в курсе алгебры первого семестра.

Опр: 5. Будем говорить, что система векторов S порождает векторное пространство V, если:

$$\forall v \in V, \exists v_1, \dots, v_n \in S, \exists \lambda_1, \dots, \lambda_n \in K : v = \lambda_1 v_1 + \dots + \lambda_n v_n$$

Утв. 1. Пусть $S=(v_1,\ldots,v_n)$ - конечная система векторов, тогда следующие условия эквивалентны:

- (1) S линейно независима и порождает V;
- (2) S является максимальной линейно независимой системой векторов в V

Опр: 6. Система векторов называется <u>максимальной</u>, если при добавлении к ней хотя бы одного вектора система становится линейно зависимой.

 $(1) \Rightarrow (2) \ \forall v \in V$ в силу линейной независимости верно:

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n \Rightarrow \lambda_1 v_1 + \ldots + \lambda_n v_n + (-1)v = 0, (-1) \neq 0$$

Система нетривиальна $\Rightarrow S \cup \{v\}$ - линейно зависима $\Rightarrow S$ - максимальная линейно независимая.

 $(2)\Rightarrow (1)\; \forall v\in V,\, S=(v_1,\ldots,v_n,v)$ - линейно зависима, тогда:

$$\exists \mu_i \neq 0 : \mu_1 v_1 + \ldots + \mu_n v_n + \mu_{n+1} v = 0 \Rightarrow \mu_{n+1} \neq 0$$

Если $\mu_{n+1}=0$, то мы бы получили, что система S - линейна зависима, а это не так. Тогда:

$$v = \left(-\frac{\mu_1}{\mu_{n+1}}\right) \cdot v_1 + \ldots + \left(-\frac{\mu_n}{\mu_{n+1}}\right) \cdot v_n$$

Получили, что вектор $v \in V$ выражается через векторы системы $S \Rightarrow S$ пораждает пространство V.

Опр: 7. Упорядоченная система векторов, удовлетворяющих эквивалентным условиям (1) и (2) из утверждения 1 называется базисом пространства V. Стандартное обозначение базиса:

$$e = (e_1, \dots, e_n)$$

Rm: 5. Также заметим, что мы работаем с конечными базисами, чтобы не разбираться с некоторыми теоретико-множественными трудностями бесконечномерных пространств. Далее ещё это обговорим.

Утв. 2. $\forall x \in V, \exists !$ разложение $x = x_1 \cdot e_1 + \dots x_n \cdot e_n, x_i \in K$ по базису e.

<u>Существование</u>: Поскольку базис это порождающая система векторов, то $\forall x \in V$ можно разложить в виде линейной комбинации базисных векторов: $\exists x_1, \dots, x_n \in K : x = x_1e_1 + \dots + x_ne_n$.

Единственность: Пусть \exists другое разложение $x = x_1' \cdot e_1 + \ldots + x_n' \cdot e_n$, следовательно вычтем одно разложение из другого:

$$(x_1 - x_1') \cdot e_1 + \ldots + (x_n - x_n') \cdot e_n = 0 \Rightarrow x_1 - x_1' = \ldots = x_n - x_n' = 0 \Rightarrow \forall i = \overline{1, n}, \ x_i = x_i'$$

где мы воспользовались определением базиса (вектора линейно независимы ⇒ равенство их линейной комбинации нулю возможно только в тривиальном случае). ■

Опр: 8. <u>Координатами вектора</u> x в базисе e называются $x_i \in K$ из его разложения $x = x_1 \cdot e_1 + \dots x_n \cdot e_n$. В дальнейшем удобно будет записывать разложение по базису в матричном виде:

$$x = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = e \cdot X$$

где X - столбец координат вектора x в базисе e.

Утв. 3. Во всех базисах пространства V одинаковое количество векторов.

□ Следует сразу из основной леммы о линейной зависимости: если бы было разное число, то тот базис, в котором векторов было бы больше он бы линейно выражался через тот базис, в котором векторов было бы меньше ⇒ базис в котором больше векторов был бы линейно зависим ⇒ противоречие. ■

Опр: 9. <u>Размерностью</u> векторного пространства V называется количество векторов в любом базисе этого пространства. **Обозначение**: $\dim V$.

Примеры базисов векторных пространств

(1) Арифметическое пространство: K^n .

Стандартный базис:
$$(e_1 \ldots e_n)$$
, где $\forall i = \overline{1, n}, e_i = (0 \ldots 0 \ 1 \ 0 \ldots 0)$.

 $\forall x=ig(x_1 \ldots x_nig)\in K^n,\, x=x_1\cdot e_1+\ldots+x_n\cdot e_n$, где x_i - координаты в стандартном базисе;

(2) Пространство матриц: $Mat_{m\times n}(K)$.

Стандартный базис:
$$E_{ij}=i\begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$
 - матричные единицы. j

$$\forall A \in Mat_{m \times n}(K), \ A = \sum_{\substack{i=1,\dots,m\\j=1,\dots,n}} a_{ij} E_{ij} = \sum_{i=1}^m \sum_{j=1}^n a_{ij} E_{ij},$$
 где a_{ij} - элементы матрицы A ;

(3) Поле комплексных чисел над полем вещественных чисел: $\mathbb{C} \supset \mathbb{R}$.

 $\underline{\textbf{Базис}}$: (1,i), то что это базис (существует и единственное разложение по базису) - свойство алгебраической формы записи комплексного числа.

$$\forall z \in \mathbb{C}, z = x + iy, x = \text{Re}(z) \in \mathbb{R}, y = \text{Im}(z) \in \mathbb{R}.$$

Рис. 2: Поле \mathbb{C} над \mathbb{R} .

(4) Пространство многочленов: K[t].

Конечный набор одночленов: $1, t, t^2, \ldots, t^n$ - линейно независимая система векторов при $\forall n$, поскольку две разные комбинации одночленов дают разные многочлены, если линейная комбинация равна 0, то только в тривиальном случае \Rightarrow есть сколь угодно большая линейно независимая система в заданном пространстве \Rightarrow нет конечного базиса;

Опр: 10. Векторное пространство V называется конечномерным, если в нём есть конечный базис и бесконечномерным в противном случае.

Изоморфизмы векторных пространств

Бывает так, что разные векторные пространства обладают одинаковыми свойствами с точки зрения линейной алгебры, то есть устроены одинаково.

Опр: 11. Изоморфизм векторных пространств это такое отображение $\varphi \colon V \to W$, где V и W - два векторных пространства над одним и тем же полем K, которое удовлетворяет двум свойствам:

- 1) φ биективно;
- 2) φ согласовано с операциями:

$$\varphi(x+y) = \varphi(x) + \varphi(y), \, \forall x, y \in V$$

$$\varphi(\lambda \cdot x) = \lambda \cdot \varphi(x), \, \forall \lambda \in K, \, \forall x \in V$$

Обозначение: $\varphi \colon V \xrightarrow{\sim} W$ или $\varphi \colon V \to W$.

Опр: 12. Пространства V и W изоморфны, если \exists изоморфизм $\varphi\colon V\xrightarrow{\sim} W$. **Обозначение**: $V\simeq W$.

Если между пространствами есть изоморфизм, то все свойства линейной алгебры, формулируемые в терминах операций над векторами, если выполнены в одном пространстве, то будут и в другом.

Теорема 2. Любое векторное пространство V над полем K, размерности $n < \infty$ изоморфно K^n .

 \square Выберем базис $e = (e_1 \ldots e_n)$ в пространстве V и построим отображение $\varphi \colon K^n \to V$ следующим образом:

$$\varphi \colon X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto x = e \cdot X$$

Проверим биективность:

1) Инъективность: следует из единственности разложения вектора по базису:

$$\varphi(a) = \varphi(b) \Rightarrow a_1 e_1 + \ldots + a_n e_n = b_1 e_1 + \ldots b_n e_n \Rightarrow a = b$$

2) Сюръективность: также следует из разложения вектора по базису:

$$\forall x \in V, \exists x_1, \dots, x_n \in K : x = x_1 e_1 + \dots + x_n e_n = e \cdot x = \varphi(x)$$

Следовательно, отображение - биективно. Согласованность с операциями - очевидна:

$$\forall a, b \in K^n, \ \varphi(a+b) = e(a+b) = (a_1 + b_1)e_1 + \dots + (a_n + b_n)e_n = a_1e_1 + \dots + a_ne_n + b_1e_1 + \dots + b_ne_n = ea + eb = \varphi(a) + \varphi(b)$$

$$\forall a \in K^n, \ \forall \lambda \in K, \ \varphi(\lambda a) = e(\lambda a) = \lambda a_1 e_1 + \dots \lambda a_n e_n = \lambda \cdot (a_1 e_1 + \dots + a_n e_n) = \lambda \varphi(a)$$

В результате, мы получаем, что отображение это изоморфизм.

<u>Пример</u>: Пространство геометрических векторов (направленных отрезков в пространстве) V имеет размерность $3 \Rightarrow V \simeq \mathbb{R}^3$.