Bandits

Weizi Li

Department of Computer Science University of Memphis

Outline 1

- Introduction
- Action-value Method
- Incremental Method

- Problem setting: repeatedly choose among *k* different actions. After each action you receive a numerical reward. Actions have no further influence.
- Goal: maximize the expected total reward over some time steps (e.g., 1000 action selections).
- Example with four arms:
 - ► Machine 1 (50%)
 - ► Machine 2 (70%)
 - ► Machine 3 (35%)
 - ► Machine 4 (45%)

- When estimating action values, at any time step, there is always one "optimal" action.
- Exploitation: acting greedily to the "optimal" action (short-term benefits).
- Exploration: choosing new actions (potential long-term benefits).
- RL requires a balance between the two.

- Current estimates of the action values
- System uncertainties (e.g., stationary vs non-stationary)
- Number of available steps
- Easy to solve if we have the following:
 - actual action values
 - no system uncertainty
 - ▶ infinite number of steps

Action-value Method

- Estimating action value by averaging the received rewards.
- $lue{}$ Choosing action according to either greedy or ϵ -greedy strategies. The latter approach can work surprisingly well, but the performance is task-dependent.
- Solution is approximated, since we do not have infinite number of time steps.

- \blacksquare First sample $\mathcal{N}(0,1)$ to get the actual expected action values $\{\mathit{Q}(\mathit{a})\}_{\mathit{a}=1}^{10}$
- Execute the action $a \in [1, 10]$ to receive $\mathcal{N}(\textit{Q}(\textit{a}), 1)$ reward
- Run for 1000 steps

Incremental Method

Estimate action value incrementally, instead of computing the average in the end:

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

$$= \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$$

$$= \frac{1}{n} \left(R_n + (n-1) Q_n \right)$$

$$= Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

■ Choosing action according to either greedy or ϵ -greedy strategies.

- ullet Q(a) changes over time. So, it's better to put more weight to recent rewards than to long-past rewards.
- We can use a constant (or dynamic) step-size parameter (α) .

$$Q_{n+1} = Q_n + \alpha \left[R_n - Q_n \right]$$