

Frequentists and Bayesian methods to incorporate recruitment rate stochasticity at the design stage of a clinical trial

Pilar Pastor

Supervision by Malgorzata Roos

Why recruitment rates?

According to Carter (2004)

- Timely recruitment vital to the success of a clinical trial
- Inadequate number of subjects → lack of power
- Recruitment period too long → competing treatments
- Recruitment of patients varies at each stage

Target Population

Target Population

Eligibility

Enrollment

Randomization

Statistical Analysis

Patient Leakage

Definitions

- Recruitment rate = Per time-unit (Piantadosi, 2024)
- Accrual = Cumulative Recruitment
- Aleatory uncertainty: randomness inherent and unpredictable
- Epistemic uncertainty: arises from limited knowledge about parameters

Models for Counts

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C = \lambda$	λ	0	No	No
Poisson	$C \sim Po(\lambda)$	λ	λ	Yes	No
Negative Binomial	$C \sim Po(\Lambda); \Lambda \sim G(\alpha, \beta)$	$\frac{\alpha}{B}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Table: Moments, aleatory and epistemic uncertainty in recruitment shown by different models for counts.

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim Po(\lambda t)$	λt	λt	Yes	No
Negative Binomial	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$??	??	Yes	Yes

Table: Moments, aleatory and epistemic uncertainty in accrual shown by different models for counts.

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days
- Models for Counts:
 - **Expectation**: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - − **Poisson**: $C(t) \sim Po(\lambda t)$

Accrual at time point t

- Expectation:
$$EC(t) = \underbrace{EC + \ldots + C}_{t \text{ times}} = tEC = \lambda t$$
- Poisson: $\underbrace{Po(\lambda) + \ldots + Po(\lambda)}_{t \text{ times}} = Po(\lambda t)$

t times

Accrual of 1 study

Master Thesis Biostatistics

Accrual of 1 study

Accrual of 2 studies

Accrual of 2 studies

Accrual of 100 studies

Poisson's uncertainty bands

Poisson's exact PMF at time point t = 550 with

 $\lambda = 0.591$

Poisson's exact CDF at time point t = 550 with

 $\lambda = 0.591$

Cummulative Distribution Function

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{\textit{Counts}}{\textit{Time}} = 0.591$ per day
- Time t = 550 days
- Models for Counts:
 - Negative Binomial: $C \sim Po(\Lambda)$; $\Lambda \sim G(\alpha, \beta)$
 - $\alpha = 325$
 - $-\beta = 548$
 - $E\Lambda = \frac{\alpha}{\beta} = 0.591 = \lambda$

Negative binomial derived from Poisson-Gamma model (t=1)

Let
$$C|\Lambda \sim Po(\Lambda)$$
 and $\Lambda \sim G(\alpha, \beta)$

$$p(c) = \int_0^\infty p(c|\lambda)p(\lambda)d\lambda$$

$$= \int_0^\infty \frac{\lambda^c \exp(-\lambda)}{c!} \left[\lambda^{\alpha-1} \exp(-\beta\lambda) \frac{\beta^{\alpha}}{\Gamma(\alpha)} \right] d\lambda$$

$$= \frac{\beta^{\alpha}}{c!\Gamma(\alpha)} \int_0^\infty \lambda^{\alpha+c-1} \exp(-\lambda) \exp(-\lambda\beta) d\lambda$$

$$= \frac{\beta^{\alpha}\Gamma(\alpha+c)}{c!\Gamma(\alpha)(\beta+1)^{\alpha+c}} \underbrace{\int_0^\infty \frac{(\beta+1)^{\alpha+c}}{\Gamma(\alpha+c)} \lambda^{\alpha+c-1} \exp(-(\beta+1)\lambda) d\lambda}_{=1}$$

$$= \beta^{\alpha} \binom{\alpha+c-1}{\alpha-1} \left(\frac{1}{\beta+1} \right)^{\alpha+c}$$

$$= \binom{\alpha+c-1}{\alpha-1} \left(\frac{1}{\beta+1} \right)^c \left(\frac{\beta}{\beta+1} \right)^{\alpha}, C|\Lambda \sim NBin \left(\alpha, \frac{\beta}{\beta+1} \right)$$

Expectation and Variance

Using the expressions of iterated expectation and variance (Held and Bové, 2014)

$$EC = E_{\Lambda}[E_{C}(C|\Lambda)] = E_{\Lambda}[\Lambda] = \alpha/\beta$$

$$\begin{aligned} \operatorname{Var}(\boldsymbol{C}) &= \operatorname{Var}_{\Lambda}[\operatorname{E}_{\boldsymbol{C}}(\boldsymbol{C}|\Lambda)] + \operatorname{E}_{\Lambda}[\operatorname{Var}_{\boldsymbol{C}}(\boldsymbol{C}|\Lambda)] \\ &= \operatorname{Var}_{\Lambda}[\Lambda] + \operatorname{E}_{\Lambda}[\Lambda] \\ &= \alpha/\beta^{2} + \alpha/\beta = \frac{\alpha(\beta+1)}{\beta^{2}} \end{aligned}$$

Gamma Prior

$$\Lambda \sim G(\alpha, \beta)$$

Probability Density Function

Comparison between Poisson and Negative Binomial

Probability Mass Function

Comparison between Poisson and Negative Binomial

Cummulative Distribution Function

Summary

- Extension of Carter's approach based on MC simulations
- Exact models for counts
- Unified notation
- Visualization of study accrual and uncertainty bands
- Sensitivity analysis

Next steps

- Extend Negative Binomial proof for accrual
- Compare exact models for counts to those provided by Carter (2004)
- Models for time
 - Exact models
 - Compare them to those provided by Carter
- Shiny App
- Apply theoretical results to dataset

References

- Carter, R. E. (2004). Application of stochastic processes to participant recruitment in clinical trials. *Controlled clinical trials*, 25(5):429–436.
- Held, L. and Bové, D. S. (2014). Applied statistical inference. *Springer, Berlin Heidelberg, doi*, 10(978-3):16.
- Piantadosi, S. (2024). *Clinical trials: a methodologic perspective*. John Wiley & Sons.

Thank you for your attention