

VinMin = 5.0V VinMax = 5.0V Vout = 12.0V lout = 0.2A Device = LMR62014XMF/NOPB Topology = Boost Created = 2017-12-27 07:08:34.710 BOM Cost = \$0.85 BOM Count = 9 Total Pd = 0.34W

WEBENCH® Design Report

Design: 2374553/21 LMR62014XMF/NOPB LMR62014XMF/NOPB 5.0V-5.0V to 12.00V @ 0.2A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cf	Samsung Electro- Mechanics	CL21C331JBANFNC Series= C0G/NP0	Cap= 330.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Cin	MuRata	GRM188R61A225KE34D Series= X5R	Cap= 2.2 uF ESR= 9.637 mOhm VDC= 10.0 V IRMS= 1.24283 A	1	\$0.02	0603 5 mm ²
3.	Cout	MuRata	GRM21BR61E475MA12L Series= X5R	Cap= 4.7 uF ESR= 2.0 mOhm VDC= 25.0 V IRMS= 7.29 A	1	\$0.03	0805 7 mm ²
4.	D1	Fairchild Semiconductor	MBR1020VL	VF@Io= 340.0 mV VRRM= 20.0 V	1	\$0.07	SOD-123F 12 mm ²
5.	L1	Bourns	SRN3015-100M	L= 10.0 μH DCR= 276.0 mOhm	1	\$0.14	SRN3015 16 mm ²
6.	Rfbb	Vishay-Dale	CRCW040213K7FKED Series= CRCWe3	Res= 13.7 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7.	Rfbt	Vishay-Dale	CRCW0402118KFKED Series= CRCWe3	Res= 118.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
8.	Rp	Vishay-Dale	CRCW0402976KFKED Series= CRCWe3	Res= 976.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9.	U1	Texas Instruments	LMR62014XMF/NOPB	Switcher	1	\$0.55	DBV0005A 15 mm ²

Operating Values

	9			
#	Name	Value	Category	Description
1.	Cin IRMS	48.757 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	265.576 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	632.768 mA	Current	Peak switch current in IC
4.	lin Avg	547.7 mA	Current	Average input current
5.	L lpp	168.9 mA	Current	Peak-to-peak inductor ripple current
6.	BOM Count	9	General	Total Design BOM count
7.	FootPrint	70.0 mm ²	General	Total Foot Print Area of BOM components
8.	Frequency	1.6 MHz	General	Switching frequency
9.	Mode	CCM	General	Conduction Mode
10.	Pout	2.4 W	General	Total output power
11.	Total BOM	\$0.85	General	Total BOM Cost
12.	D1 Tj	40.301 degC	Op_Point	D1 junction temperature
13.	Vout Actual	11.824 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
14.	Duty Cycle	63.525 %	Op_point	Duty cycle
15.	Efficiency	87.64 %	Op_point	Steady state efficiency
16.	IC Tj	45.497 degC	Op_point	IC junction temperature
17.	IOUT_OP	200.0 mA	Op_point	lout operating point
18.	VIN_OP	5.0 V	Op_point	Vin operating point
19.	Vout p-p	1.266 mV	Op_point	Peak-to-peak output ripple voltage
20.	Cin Pd	22.91 μW	Power	Input capacitor power dissipation
21.	Cout Pd	141.061 μW	Power	Output capacitor power dissipation
22.	Diode Pd	51.507 mW	Power	Diode power dissipation
23.	IC Pd	193.712 mW	Power	IC power dissipation
24.	L Pd	92.0 mW	Power	Inductor power dissipation
25.	Total Pd	338.479 mW	Power	Total Power Dissipation
26.	Vout Tolerance	3.879 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	200.0 m	Maximum Output Current
2.	VinMax	5.0	Maximum input voltage
3.	VinMin	5.0	Minimum input voltage
4.	Vout	12.0	Output Voltage
5.	base_pn	LMR62014X	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. LMR62014X Product Folder: http://www.ti.com/product/LMR62014: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.