Autómatas con transiciones sin lectura

Clase 05

IIC 2223

Prof. Cristian Riveros

Mapa actual de nuestros modelos de computación

Para demostrar ExpReg ⊆ NFA, primero necesitamos un nuevo modelo

Outline

 $\epsilon\text{-NFA}$

NFA versus ϵ -NFA

Outline

 $\epsilon\text{-NFA}$

NFA versus *∈*-NFA

Autómata finito no-determinista con ϵ -transiciones

¿qué tiene de nuevo este autómata?

- 1. tiene transiciones no deterministas y
- 2. tiene transiciones leyendo la palabra ϵ :

$$p \stackrel{\epsilon}{\rightarrow} q$$

¿Importancia?

- modelo muy útil para construir nuevos autómatas y
- NO agrega más poder de computación a los NFA.

Autómata finito no-determinista con ϵ -transiciones

Definición

Un autómata finito no-determinista con ϵ -transiciones (ϵ -NFA) es:

$$A = (Q, \Sigma, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

+

■ $\Delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ es la relación de transición.

Autómata finito no-determinista con ϵ -transiciones

Para ϵ -NFA veremos una **forma alternativa** para definir las nociones de ejecución y aceptación.

Sea $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ un ϵ -NFA.

Definiciones

- Un par $(q, w) \in Q \times \Sigma^*$ es una configuración de A.
- Una configuración (q, w) es inicial si $q \in I$.
- Una configuración (q, w) es **final** si $q \in F$ y $w = \epsilon$.

"Intuitivamente, una configuración (q, aw) representa que $\mathcal A$ se encuentra en el estado q procesando la palabra aw y leyendo a."

Sea $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ un ϵ -NFA.

Definición

Se define la relación $\vdash_{\mathcal{A}}$ de siguiente-paso entre configuraciones de \mathcal{A} :

$$(p,u) \vdash_{\mathcal{A}} (q,v)$$

si, y solo si, existe $(p, c, q) \in \Delta$ con $c \in \Sigma \cup \{\epsilon\}$ tal que $u = c \cdot v$.

Sea $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ un ϵ -NFA.

Definición

Se define la relación $\vdash_{\mathcal{A}}$ de **siguiente-paso** entre configuraciones de \mathcal{A} :

$$(p,u) \vdash_{\mathcal{A}} (q,v)$$

si, y solo si, existe $(p, c, q) \in \Delta$ con $c \in \Sigma \cup \{\epsilon\}$ tal que $u = c \cdot v$.

Notar que
$$\vdash_{\mathcal{A}} \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$$
.

Se define $\vdash_{\mathcal{A}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{A}}$:

para toda configuración
$$(q,w)$$
: $(q,w) \vdash_{\mathcal{A}}^{*} (q,w)$

$$\operatorname{si}(p,u) \vdash_{\mathcal{A}} (p',w) \operatorname{y}(p',w) \vdash_{\mathcal{A}}^{*} (q,v): (p,u) \vdash_{\mathcal{A}}^{*} (q,v)$$

 $(p,u) \vdash_{\mathcal{A}}^{*} (q,v)$ si uno puede ir de (p,u) a (q,v) en **0 o más pasos**.

Se define $\vdash_{\mathcal{A}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{A}}$:

para toda configuración
$$(q,w)$$
: $(q,w) \vdash_{\mathcal{A}}^{*} (q,w)$

$$\operatorname{si} (p, u) \vdash_{\mathcal{A}} (p', w) \operatorname{y} (p', w) \vdash_{\mathcal{A}}^{*} (q, v) : (p, u) \vdash_{\mathcal{A}}^{*} (q, v)$$

 $(p,u) \vdash_{\mathcal{A}}^* (q,v)$ si uno puede ir de (p,u) a (q,v) en $\mathbf{0}$ o más pasos.

Lenguaje aceptado por un ϵ -NFA

Sea
$$\mathcal{A} = (Q, \Sigma, \Delta, I, F)$$
 un ϵ -NFA y $w \in \Sigma^*$.

Definiciones

A acepta w si existe una configuración inicial (q_0, w) y una configuración final (q_f, ϵ) tal que:

$$(q_0, w) \vdash_{\mathcal{A}}^* (q_f, \epsilon)$$

■ El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

OJO: si $\mathcal A$ no tiene ϵ -transiciones o no-determinismo, esta es una forma **alternativa** para definir ejecución para NFA y DFA.

Lenguaje aceptado por un ϵ -NFA

Outline

€-NFA

NFA versus ϵ -NFA

Equivalencia entre NFA y ϵ -NFA

Teorema

Para todo autómata finito no-determinista con ϵ -transiciones \mathcal{A} , existe un autómata no-determinista \mathcal{A}' tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, NFA $\equiv \epsilon$ - NFA.

¿cómo simulamos las ϵ -transiciones, esto es, sin leer el input?

Demostración

Para demostrar este teorema, mostraremos como construir un autómata no-determinista a partir de un ϵ -NFA removiendo las ϵ -transiciones.

Desde un ϵ -NFA a un NFA

Construcción

Dado un ϵ -NFA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se define el NFA:

$$\mathcal{A}^{\not =} = (Q, \Sigma, \Delta^{\not =}, I, F^{\not =})$$

- para todo $p, q \in Q$, $(p, a, q) \in \Delta^{f}$ si, y solo si, existe $p' \in Q$ tal que:
 - $(p,\epsilon) \vdash_{\mathcal{A}}^{*} (p',\epsilon)$ y

 $p \sim p \rightarrow q$

- $(p', a, q) \in \Delta$.
- $F^{\not \epsilon} = \left\{ p \in Q \mid \exists q \in F. (p, \epsilon) \vdash_{\mathcal{A}}^* (q, \epsilon) \right\}$

Por definición, si $(p, a, q) \in \Delta$ entonces $(p, a, q) \in \Delta^{\neq}$ para todo $a \in \Sigma$.

Desde un ϵ -NFA a un NFA

¿cuál es el autómata
$$\mathcal{A}^{\ell}$$
 para cada caso?

1. $\xrightarrow{a,b}$ \xrightarrow{b} $\xrightarrow{a,\epsilon}$ \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a}

Desde un ϵ -NFA a un NFA

Teorema

Dado un ϵ -NFA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se tiene que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not e})$$

Demostración

Demostrar que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not e}. (p, w) \vdash_{\mathcal{A}^{\not e}}^{*} (q', \epsilon)$

De aquí **concluimos** que \mathcal{A} acepta w si, y solo si, $\mathcal{A}^{\not l}$ acepta w.

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not e})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not e}. (p, w) \vdash_{\mathcal{A}^{\not e}}^{*} (q', \epsilon)$

Por inducción sobre el largo de w.

Caso base: Para $w = \epsilon$:

- (⇒) Sea $q \in F$ tal que $(p, \epsilon) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$. Por definición de F^{ℓ} , se tiene que $p \in F^{\ell}$.
 - Por lo tanto, $(p, \epsilon) \vdash_{A\epsilon}^{*} (p, \epsilon)$.
- (\Leftarrow) Sea $q' \in F^{\not \epsilon}$ tal que $(p,\epsilon) \vdash_{\mathcal{A}_{\not \epsilon}}^* (q',\epsilon)$.
 - Como $\mathcal{A}^{\not \epsilon}$ no tiene ϵ -transiciones, entonces p=q' y $p\in F^{\not \epsilon}.$
 - Por definición de F^{ℓ} , existe $q \in F$ tal que $(p, \epsilon) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$.

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not l})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. \ (p,w) \vdash_{\mathcal{A}}^{*} (q,\epsilon) \quad \text{si, y solo si,} \quad \exists q' \in F^{\not \epsilon}. \ (p,w) \vdash_{\mathcal{A}^{\not \epsilon}}^{*} (q',\epsilon)$$

Caso inductivo: Sea $w = a \cdot u \text{ y } p \in Q$:

$$(\Leftarrow)$$
 Sea $q' \in F^{\not \epsilon}$ tal que $(p, au) \vdash_{\mathcal{A}^{\not \epsilon}}^* (q', \epsilon)$.

Por definición de $\vdash_{\mathcal{A}^{\not i}}^*$ existen $p' \in Q$ tal que:

$$(p,au) \vdash_{\mathcal{A}^{\not \epsilon}} (p',u) \vdash_{\mathcal{A}^{\not \epsilon}}^* (q',\epsilon)$$

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{f})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not e}. (p, w) \vdash_{\mathcal{A}^{\not e}}^{*} (q', \epsilon)$

Caso inductivo: Sea $w = a \cdot u \lor p \in Q$:

$$(\Leftarrow)$$
 Sea $q' \in F^{\not =}$ tal que $(p, au) \vdash_{A \not =}^* (q', \epsilon)$.

Por definición de $\vdash_{A \notin}^*$ existen $p' \in Q$ tal que:

$$(\textit{p},\textit{au}) \ \overset{(1)}{\vdash_{\mathcal{A}^{\not \epsilon}}} \ (\textit{p}',\textit{u}) \ \overset{(2)}{\vdash_{\mathcal{A}^{\not \epsilon}}} \ (\textit{q}',\epsilon)$$

Por (1) sabemos que
$$(p, au) \vdash_{\mathcal{A}}^{*} (p', u)$$
. (?)

Como
$$|u| < |au|$$
 y (2), **por HI** existe $q \in F$: $(p', u) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$. (4)

Juntando (3) y (4), tenemos que
$$(p, au) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
.

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not l})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. \ (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon) \quad \text{si, y solo si,} \quad \exists q' \in F^{\not \epsilon}. \ (p, w) \vdash_{\mathcal{A}^{\not \epsilon}}^{*} (q', \epsilon)$$

Caso inductivo: Sea $w = a \cdot u \ y \ p \in Q$:

(⇒) Sea
$$q \in F$$
 tal que $(p, au) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$.

Por definición de $\vdash^*_{\mathcal{A}}$ existen $p', p'' \in Q$ tal que:

$$(p, au) \vdash_{\mathcal{A}}^{*} (p', au) \vdash_{\mathcal{A}} (p'', u) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{f})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not \epsilon}. (p, w) \vdash_{\mathcal{A}^{\not \epsilon}}^{*} (q', \epsilon)$

Caso inductivo: Sea $w = a \cdot u \ y \ p \in Q$:

 (\Rightarrow) Sea $q \in F$ tal que $(p, au) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$.

Por definición de $\vdash_{\mathcal{A}}^*$ existen $p', p'' \in Q$ tal que:

$$(\textit{p},\textit{au}) \overset{(1)}{\vdash_{\mathcal{A}}^{*}} (\textit{p}',\textit{au}) \overset{(2)}{\vdash_{\mathcal{A}}} (\textit{p}'',\textit{u}) \overset{(3)}{\vdash_{\mathcal{A}}^{*}} (\textit{q},\epsilon)$$

Por (1) tenemos que
$$(p, \epsilon) \vdash_{\mathcal{A}}^{*} (p', \epsilon)$$
. (4)

Por (2) tenemos que
$$(p', a, p'') \in \Delta$$
. (5)

Por (4) y (5), sabemos que
$$(p, a, p'') \in \Delta^{f}$$
 y $(p, a \cdot u) \vdash_{\mathcal{A}^{f}} (p'', u)$. (6)

Como
$$|u| < |au|$$
 y (3), **por HI** existe $q' \in F^{\not\in}$: $(p'', u) \vdash_{A \not\in}^* (q', \epsilon)$. (7)

Juntando (6) y (7), tenemos que
$$(p, au) \vdash_{A^{\ell}}^{*} (q', \epsilon)$$
.

Mapa actual de nuestros modelos de computación

Próxima clase demostraremos que todos definen el mismo conjunto de lenguajes.