Домашнее задание

по курсу

«Динамика летательного аппарата»

VIII семестр СМ1-81,89

МГТУ им. Н.Э Баумана Кафедра СМ1

- 2 -

Варианты домашнего задания

_		Γ					
Порядковый номер в	Схема ракеты	Номер варианта					
журнале старосты							
1	I	1					
2	П	1					
3	I	2					
4	П	2					
5	I	3					
6	П	3					
7	I	4					
8	П	4					
9	I	5					
10	П	5					
11	I	6					
12	П	6					
13	I	7					
14	11	7					
15	I	8					
16	11	8					
17	I	9					
18	11	9					
19	I	10					
20	II.	10					

Домашнее задание №1

- 1. Для заданного варианта определить две первых собственные частоты упругих поперечных колебаний корпуса ракеты.
- 2. Построить эпюры формы упругой линии и угла поворота сечений для каждого тона колебаний сечения.
- 3. Построить эпюры изгибающих моментов и поперечных сил.
- 4. Выполнить пункты №1 и №2 для полностью заправленной ракеты (момент старта) и «сухой» ракеты (момент выключения ДУ при стрельбе на максимальную дальность).
- 5. Вычислить значения приведенных масс для расчетных случаев.

Домашнее задание №2

При выполнении ДЗ №2 использовать результаты ДЗ №1.

- 1. Используя «универсальную диаграмму устойчивости» оценить устойчивость движения упругой ракеты по траектории.
- 2. Если полученный ответ отрицательный (движение неустойчиво), то:
 - уточнить границы смежной области неустойчивости
 - предъявить требования к АС.
- 3. Если полученный ответ положительный (движение устойчиво), то необходимо уточнить границы неустойчивости смежных областей.

При расчетах полагать, что ε =0.001.

Градиент управляющей силы вычислить по формуле: $R_{yp} = k_p * M_0 * g_0$, где

 M_0 — стартовая масса, g_0 — ускорение свободного падения, k_p — коэффициент, заданный в таблице.

Амплитуду АС для частоты большей, чем частота среза вычислять по формуле: $A_{AC} = 0.5*exp(0.01*(\omega_0-\omega))$

 $\phi_{AC} = -\pi(\omega_0 - \omega)/(\omega_0 - \omega_\pi) \qquad \text{для} \quad \omega_0 < \omega < \omega_\pi; \qquad \qquad \phi_{AC} = -\pi - \pi(\omega_\pi - \omega)/(\omega_\pi - \omega_{2\pi}) \qquad \text{для} \quad \omega_\pi < \omega < \omega_{2\pi};$

Схема №1

Nº	Координаты сечения [м]									Па	арам	етры	AC	M ₁	M_2	J ₀	Хгп
вар.	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	\mathbf{W}_0	Wp	W_{2p}	k p	[т]	[т]	$[TM^2]$	[M]
1	1.5	3.0	4.0	7.0	10.0	11.0	13.0	15.0	18.0	10	60	100	0.5	1.0	1.0	2.0	10.5
2	1.5	3.0	4.0	6.0	8.0	9.0	12.0	15.0	18.0	10	60	100	0.5	1.2	1.0	2.0	3.5
3	2.0	4.0	5.0	8.0	11.0	12.0	14.0	16.0	19.5	10	60	110	0.4	1.0	0.8	1.5	17.0
4	2.0	4.0	5.5	9.5	11.5	12.5	15.1	16.5	20.0	15	55	100	0.3	1.5	1.0	3.0	12.0
5	2.0	4.0	5.0	9.0	13.0	14.0	17.0	20.0	23.0	20	50	110	0.5	2.0	1.5	2.0	4.5
6	1.6	3.5	4.5	7.0	10.5	12.0	15.5	19.0	22.0	30	70	120	0.5	1.5	1.0	1.5	11.0
7	1.7	3.5	4.0	7.0	10.0	11.0	15.0	19.0	21.0	25	70	110	0.6	2.0	2.0	3.0	19.5
8	2.0	3.5	5.0	9.0	13.0	14.5	17.0	19.5	22.0	20	70	120	0.5	1.4	0.7	1.0	14.0
9	1.0	3.0	4.0	8.0	12.0	13.0	15.0	17.0	20.5	20	80	120	0.4	0.7	1.0	2.5	18.0
10	1.8	3.5	5.0	9.0	13.0	14.0	16.5	19.0	21.5	10	70	120	0.5	1.3	1.2	2.0	4.5

Схема №2

Nº	Координаты сечения [м]									Па	рам	етры	M ₁	M ₂	Хгп	
вар.	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	ωο	ωπ	ω2π	k p	[т]	[т]	[w]
1	1.5	3.0	4.0	7.0	10.0	13.0	15.0	16.0	18.5	10	60	100	0.5	1.0	1.0	3.5
2	1.5	3.0	4.0	6.0	8.0	12.0	16.0	17.5	19.0	15	60	100	0.5	1.2	1.0	3.5
3	2.0	4.0	5.0	8.0	12.0	14.0	16.0	18.0	19.5	20	60	110	0.4	1.0	0.8	17.0
4	2.0	4.0	5.5	9.5	11.5	15.5	16.5	17.5	20.0	15	55	100	0.3	1.5	1.0	17.0
5	2.0	4.0	5.0	9.0	13.0	17.0	21.0	22.0	24.0	20	50	110	0.5	2.0	1.5	4.5
6	1.6	3.5	4.5	7.0	9.5	13.5	18.5	19.0	21.0	15	70	120	0.5	1.5	1.0	4.0
7	1.7	3.5	4.0	7.0	10.0	13.0	16.0	18.0	20.0	15	70	110	0.6	2.0	2.0	17.0
8	2.0	3.5	5.0	9.0	13.0	16.5	20.0	21.5	23.0	10	70	120	0.5	1.4	0.7	4.0
9	1.0	3.0	4.0	8.0	12.0	15.0	18.0	19.0	20.5	20	80	120	1.0	0.7	1.0	3.5
10	1.8	3.5	5.0	9.0	13.0	16.0	19.0	20.5	22.5	15	70	120	0.5	1.3	1.2	4.5

- 6 -Схема №1

-₇₋ Схема №2

