

Experimento 07

Laboratório de Princípios de Comunicação

Autoria
Pedro Henrique Dornelas Almeida

Matrícula 18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

8 de abril de 2021

Versão do GNU Radio Companigon: 3.8.1.0 (Python 3.8.5).

1 Introdução

Para este experimento iremos estudar maneiras de quantizar um sinal, método utilizado para a transformação de sinais analógicos em digitais e também para a recuperação do sinal, transformando o sinal digital em um sinal analógico novamente. Para isso existem duas maneiras diferentes de se realizar, utilizando quantização linear e também quantização não linear, abordaremos os dois métodos no experimento.

2 Desenvolvimento

AR 01

Foi necessário então criar a estrutura de blocos para que o experimento pudesse ser realizado e foi implementado da seguinte maneira:

Fig. 1.1 - Área de Trabalho

Em que os sistemas foram separados para facilitar o entendimento.

Em seguida pôde-se observar as formas de onda para os sinais, para esta parte, desativamos a parte e entradas do ruído pois não se desejava visualizálo:

Fig. 1.2a - n = 3

Fig. 1.2b - n = 8

Também foi possível visualizar os espectros dos sinais, lembrando que ainda mantemos a parte do ruído desligada:

Fig. 1.3a - n = 3

Para conseguir visualizar melhor cada um dos espectros foram tirados prints separadamente(n=3):

Figura: n = 3

Note das figuras acima que o espectro do sinal quantizado contém ruído em outras frequências e pelo fato de que o n(bits) é relativamente baixo este ruído tende a aparecer mais, e como veremos mais a frente, será possível identificar este ruído.

Fig. 1.3b - n = 8

Da mesma maneira, separamos para que fosse possível observar mais claramente cada um dos espectros(n=8):

Note das figuras acima que foi possível ver que com o aumento do número de bits por amostra foi possível diminuir a potência do ruído no espectro do sinal quantizado.

Passamos agora para analisar justamente o ruído e como ele se deu no circuito, para isso, fizemos como na imagem abaixo para separar o ruído do sinal mensagem e podê-lo observar melhor:

Ruído

E então foi possível observar as formas de onda para o ruído:

Fig. 1.4a - n=3

Fig. 1.4b - n = 8

A1a)

Note que para n=8 a amplitude do ruído é 10 vezes menor que para n=3, o que realmente era para acontecer, pois temos uma maior possibilidade de valores para cada amostra, tornando o sinal quantizado mais próximo do sinal mensagem, diminuindo assim o ruído interferente no sinal.

Para preencher as tabelas foi necessário calcular a potência dos sinais mensagens, para isso, foi adicionado ao circuito o seguinte sistema, para que pudesse ser possível calcular este valor e depois conseguirmos colocar um conversor de W para dBm e ser possível preencher a tabela 1.1.

Circuito para calcular a potência

E com o circuito montado também foi possível obter o valor em dB para o cálculo do RSR, então pela interface gráfica foi possível obter estes valores para o preenchimento dos valores experimentais da tabela 1.2

T_{1a})

O custo para a melhoria da razão sinal ruído é proporcional ao aumento do número de bits por amostra, quanto maior o número de bits por amostra, melhor a razão sinal ruído.

A1b)

AR 02

Aqui devemos montar o esquemático de acordo com a figura abaixo:

Fig. 2.1 - Área de Trabalho

Por meio deste esquemático foi possível obter os valores RSR_q em um osciloscópio:

 RSR_q para n=3

 RSR_q para n=8

Seguindo, foi possível observar também as formas de onda dos sinais:

Fig. 2.1a - n = 3

Fig. 2.1b - n = 8

Nas fotos acima não é possível ver com clareza o sinal mensagem, então

vou deixá-lo registrado aqui também:

Sinal Mensagem

Neste ponto foi preciso descobrir a banda passante que contém 99,9% da potência do sinal, para isso, foi montado o circuito abaixo:

Banda Passante

E foi possível assim alterar a frequência de corte para obter a banda que contém 99.9% do sinal e preencher a tabela 2.1.

A2a)

É possível notar que para n=3 é possível escutar um ruído claramente a partir de quando o sinal é comprimido, neste ponto o sinal é bem ruidoso, parecendo um som metálico. Quando o sinal é expandido, o chiado é amenizado, porém ainda existe, e quando passa-se pelo filtro passa baixas ainda permanece uma certa quantidade de ruído.

Quando aumentamos para n=8 a percepção de ruído no sinal expandido e no sinal filtrado é bem menor, se parecendo muito com o som do sinal original.

Seguindo o experimento neste momento usaremos o bloco ¡Constellation¿ para visualizar como a razão sinal ruído estava variando conforme a potência do sinal original variava, então, foi possível observar conforme a figura a seguir:

Fig. 2.4

Tabela 1.1 – Potência da onda original

Potência	$de x_1(t) em dBm$	Potência de $x_2(t)$ em dBm	
Teórico	Experim.	Teórico	Experim.
20	20,014	28	28,020

Tabela 1.2 – Parâmetros da quantização linear

			$RSR_q ext{ de } x_1(t) ext{ em dB}$		$RSR_q ext{ de } x_2(t) ext{ em dB}$	
n	L	R_b	Teórico	Experim.	Teórico	Experim.
3	8			13,24		21,40
4	16			19,26		26,95
5	32			24,58		32,90
6	64			30,97		39,26
7	128			37,11		45,88
8	256			42,83		49,55

Tabela 2.1 – Potência, frequência de maior DEP de LB do sinal original

Potência[dBm]	Frequência de maior	Largura de banda[Hz]	
	DEP[Hz]	$LB_{99,9\%}$	
-40,85	2150	3000	

Tabela 2.2 – RSR_q média da quantização não linear para lei- $\mu(\mu=255)$

	$RSR_q \text{ de } x(t) \text{ em dB}$		
n	Teórico	Experim.	
3		-6,70	
4		-12,99	
5		-19,64	
6		-25,09	
7		-31,53	
8		-37,14	

Tabela 2.3 – RSR_q média da quantização não linear para $\mu=20$ e 1000

		$RSR_q \text{ de } x(t) \text{ em dB}$	
μ	n	Teórico	Experim.
20	3		-10,11
20	8		-25,10
1000	3		-4,40
1000	8		-36,12

3 Conclusão

Aqui concluímos que foi possível observar no experimento diferentes maneiras de se quantizar um sinal, cada um com suas vantagens e desvantagens, porém, os dois foram feitos com sucesso. Assim, foi possível estudar e aprender sobre quantizações uniformes ou lineares e também não uniformes ou não lineares e como isso se dá na prática, ou seja, vendo que sempre existirá um ruído de quantização provocado pela amostragem dos sinais.

Então o que concluímos do experimento é que sempre devemos buscar uma eficiência entre o nível de detalhamento das amostras, aumentando-se o número de bits, e o que se deseja obter no receptor, e ajustando isso, teremos um sinal que nos proporcione identificar a mensagem no receptor com uma quantidade de ruído que não atrapalhe esta identificação.