Soal dan Solusi UAS Pengantar Peluang 2023

Wildan Bagus Wicaksono

Математіка 2022

Question 1

Misalkan X_1, X_2, \dots, X_n merupakan variabel acak yang saling independen dan $Y = \sum_{i=1}^{n} X_i$. Manakah dari kalimat berikut merupakan pernyataan yang salah?

- (A) Jika X_i berdistribusi Binomial $Bin(m_i, p)$ maka Y bertdistribusi Binomial $Bin\left(\sum_{i=1}^n m_i, p\right)$.
- (B) Jika X_i berdistribusi Poisson $Poi(\lambda_i)$ maka Y berdistribusi Poisson $Poi\left(\sum_{i=1}^n \lambda_i, p\right)$.
- (C) Jika X_i berdistribusi Negatif Binomial $NB(r_i, p)$ maka Y berdistribusi Negatif Binomial $NB\left(\sum_{i=1}^n r_i, p\right)$.
- (**D**) Jika X_i berdistribusi Negatif Binomial $NB(r_i, p)$ maka Y berdistribusi Negatif Binomial $NB\left(\sum_{i=1}^n r_i, p\right)$.
- (E) Jika X_i berdistribusi Geometrik Geo(p) maka Y berdistribusi Geometrik Geo(np).

Penyelesaian.

Akan diperiksa masing-masing pernyataan menggunakan FPM. Karena X_1, X_2, \cdots, X_n saling bebas, maka berlaku

$$M_Y(t) = M_{X_1 + X_2 + \dots + X_n}(t) = M_{X_1}(t)M_{X_2}(t) \cdots M_{X_n}(t).$$

(A) Karena $X_i \sim Bin(m_i, p)$, maka FPM dari X_i adalah $M_{X_i}(t) = (pe^t + q)^{m_i}$ di mana q = 1 - p. Dari sini diperoleh

$$M_Y(t) = (pe^t + q)^{m_1} (pe^t + q)^{m_2} \cdots (pe^t + q)^{m_n} = (pe^t + q)^{m_1 + m_2 + \cdots + m_n}$$

Ini menunjukkan $Y \sim Bin(m_1 + m_2 + \cdots + m_n, p)$ sehingga pernyataan ini benar.

(B) Karena $X_i \sim Poi(\lambda_i)$, maka FPM dari X_i adalah $M_{X_i}(t) = e^{\lambda_i \left(e^t - 1\right)}$. Dari sini diperoleh $M_Y(t) = e^{\lambda_1 \left(e^t - 1\right)} e^{\lambda_2 \left(e^t - 1\right)} \cdots e^{\lambda_n \left(e^t - 1\right)} = e^{\lambda_1 \left(e^t - 1\right) + \lambda_2 \left(e^t - 1\right) + \cdots + \lambda_n \left(e^t - 1\right)} = e^{(\lambda_1 + \lambda_2 + \cdots + \lambda_n) \left(e^t - 1\right)}.$ Ini menunjukkan bahwa $Y \sim Poi(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$ sehingga pernyataan ini benar.

(C) Karena $X_i \sim NB(r_i, p)$, maka FPM dari X_i adalah $M_{X_i}(t) = \left(\frac{pe^t}{1-qe^t}\right)^{r_i}$ di mana q=1-p. Dari sini diperoleh

$$M_Y(t) = \left(\frac{pe^t}{1 - qe^t}\right)^{r_1} \left(\frac{pe^t}{1 - qe^t}\right)^{r_2} \cdots \left(\frac{pe^t}{1 - qe^t}\right)^{r_n} = \left(\frac{pe^t}{1 - qe^t}\right)^{r_1 + r_2 + \cdots + r_n}.$$

Ini menunjukkan bahwa $Y \sim NB(r_1 + r_2 + \cdots + r_n, p)$ sehingga pernyataan ini benar.

- (D) Sebagaimana pada C.
- (E) Karena $X_i \sim Geo(p)$, maka FPM dari X_i adalah $M_{X_i}(t) = \frac{pe^t}{1-qe^t}$ di mana q=1-p. Dari sini diperoleh

$$M_Y(t) = \left(\frac{pe^t}{1 - qe^t}\right) \left(\frac{pe^t}{1 - qe^t}\right) \cdots \left(\frac{pe^t}{1 - qe^t}\right) = \left(\frac{pe^t}{1 - qe^t}\right)^n.$$

Ini menunjukkan bahwa $Y \sim NB(n,p)$ sehingga pernyataan ini salah.

Jadi, jawaban yang tepat adalah $\boxed{\mathbf{E}}$.

Jika Y_1 dan Y_2 variabel acak bebas stokastik yang berdistribusi eksponensial dengan FKP gabungan

$$f(y_1, y_2) = \begin{cases} \lambda^2 e^{-\lambda(y_1 + y_2)}, & y_1 > 0, y_2 > 0 \\ 0, & \text{selainnya} \end{cases}.$$

Jacobian dari transformasi $X_1 = Y_1 + Y_2$ dan $X_2 = e^{Y_1}$ adalah

(A)
$$|J| = X_1$$

(C)
$$|J| = \frac{1}{X_2}$$

(B)
$$|J| = \frac{X_2}{X_1}$$

(D)
$$|J| = \frac{1}{X_2^2}$$

Penyelesaian.

Perhatikan bahwa $Y_1=\ln(X_2)$ dan $Y_2=X_1-Y_1=X_1-\ln(X_2)$ serta $X_2=e^{Y_1}>1\implies X_2>1$. Jacobian dari transformasi tersebut adalah

$$|J| = \left| \det \begin{bmatrix} \frac{\partial Y_1}{\partial X_1} & \frac{\partial Y_1}{\partial X_2} \\ \frac{\partial Y_2}{\partial X_1} & \frac{\partial Y_2}{\partial X_2} \end{bmatrix} \right| = \left| \det \begin{bmatrix} 0 & \frac{1}{X_2} \\ 1 & -\frac{1}{X_2} \end{bmatrix} \right| = \left| 0 - \frac{1}{X_2} \right| = \frac{1}{X_2}$$

karena $X_2 > 0$. Jadi, jawaban yang benar adalah $\boxed{\mathbf{C}}$.

Tes diagnostik untuk mengetahui adanya suatu penyakit mempunyai dua kemungkinan hasil: 1 untuk ada penyakit dan 0 untuk tidak ada penyakit. Misalkan X menunjukkan keadaan penyakit pasien, dan Y menunjukkan keadaan penyakit pasien, dan Y menunjukkan hasil tes diagnostik. Fungsi probabilitas dari X dan Y diberikan sebagai berikut:

$$\mathbb{P}(X = 0, Y = 0) = 0.800,$$

$$\mathbb{P}(X=1,Y=0)=0.050$$

$$\mathbb{P}(X=0, Y=1) = 0.025,$$

$$\mathbb{P}(X=1,Y=1)=0.125$$

Hitung $Var(Y \mid X = 1)$.

(E)
$$0.71$$

Penyelesaian.

Perhatikan bahwa

$$Var(Y \mid X = 1) = \mathbb{E}[Y^2 \mid X = 1] - \mathbb{E}[Y \mid X = 1]^2.$$

Akan ditentukan

$$\mathbb{E}[Y^2 \mid X = 1] = 0^2 \cdot \mathbb{P}(Y = 0 \mid X = 1) + 1^2 \cdot \mathbb{P}(Y = 1 \mid X = 1) = \mathbb{P}(Y = 1 \mid X = 1).$$

Akan ditentukan

$$\mathbb{E}[Y \mid X = 1] = 0 \cdot \mathbb{P}(Y = 0 \mid X = 1) + 1 \cdot \mathbb{P}(Y = 1 \mid X = 1) = \mathbb{P}(Y = 1 \mid X = 1).$$

Tinjau fungsi peluang marginal X saat X = 1 adalah

$$\mathbb{P}(X=1) = \mathbb{P}(X=1, Y=0) + \mathbb{P}(X=1, Y=1) = 0.050 + 0.125 = 0.175.$$

Dari sini diperoleh

$$\mathbb{P}(Y=1 \mid X=1) = \frac{\mathbb{P}(X=1, Y=1)}{\mathbb{P}(X=1)} = \frac{0,125}{0,175} = \frac{5}{7}.$$

Oleh karena itu, $\mathbb{E}\left[Y^2\mid X=1\right]=\frac{5}{7}$ dan $\mathbb{E}\left[Y\mid X=1\right]=\frac{5}{7}$ sehingga diperoleh $Var(Y\mid X=1)=\frac{5}{7}-\frac{25}{49}=\frac{10}{49}\approx 0,20$. Jadi, jawaban yang benar adalah $\boxed{\mathbf{C}}$.

Diketahui variabel acak $X \sim N(0,1)$. Dengan menggunakan teknik fungsi pembangkit momen, dapatkan distribusi dari transformasi Y = aX - b.

(A)
$$Y \sim N(a, b^2)$$

(C)
$$Y \sim N(-a, b^2)$$

(E) Semua jawaban salah

(B)
$$Y \sim N(-b, a^2)$$

(D)
$$Y \sim N(-b, a)$$

Penyelesaian.

Perhatikan bahwa FPM dari suatu variabel random $A \sim N\left(\mu,\sigma^2\right)$ mempunyai FPM $M_A(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$. Oleh karena itu, FPM dari X adalah $M_X(t) = e^{0 \cdot t + \frac{1}{2} \cdot 1^2 \cdot t^2} = e^{\frac{1}{2}t^2}$. Maka FPM dari Y adalah

$$M_Y(t) = M_{aX-b}(t) = e^{-bt} M_{aX}(t) = e^{-bt} e^{\frac{1}{2}(at)^2} = e^{-bt + \frac{1}{2}a^2t^2}$$

yang menunjukkan bahwa $\mu_Y = -b$ dan $\sigma_Y^2 = a^2$. Jadi, $Y \sim N\left(-b, a^2\right)$ sehingga jawaban yang benar adalah $\boxed{\mathbf{B}}$.

Diberikan fungsi probabilitas gabungan dari X dan Y sebagai berikut:

		Y		
		0	1	4
	1	0,10	0,05	0,15
X	3	0,05	0,20	0,25
	5	0,15	0,00	0,05

Manakah dari pernyataan berikut adalah benar?

- (A) Nilai fungsi marjinal X untuk X=3 adalah 0,45
- (B) X dan Y independen
- (C) $\mathbb{P}(X < 5 \mid Y = 4) = 0.67$
- (D) $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$
- **(E)** $\mathbb{E}[X \mid Y = 4] \approx 2.44$

Penyelesaian.

Akan diperiksa masing-masing pernyataan.

(A) Nilai fungsi marjinal X untuk X = 3 adalah

$$\mathbb{P}(X=3) = \mathbb{P}(X=3, Y=0) + \mathbb{P}(X=3, Y=1) + \mathbb{P}(X=3, Y=4) = 0.05 + 0.20 + 0.25 = 0.5$$
 sehingga pernyataan ini salah.

(B) Perhatikan bahwa fungsi peluang marjinal Y untuk Y=0 adalah

$$\mathbb{P}(Y=0) = \mathbb{P}(X=1,Y=0) + \mathbb{P}(X=3,Y=0) + \mathbb{P}(X=5,Y=0) = 0,10 + 0,05 + 0,15 = 0,3.$$

Karena $\mathbb{P}(X=3)\mathbb{P}(Y=0) = 0,15 \neq 0,05 = \mathbb{P}(X=3,Y=0) \implies \mathbb{P}(X=3)\mathbb{P}(Y=0) \neq \mathbb{P}(X=3,Y=0)$, ini menunjukkan bahwa X dan Y dependen. Jadi, pernyataan ini salah.

(C) Perhatikan bahwa

$$\mathbb{P}(X < 5 \mid Y = 4) = \frac{\mathbb{P}(X < 5, Y = 4)}{\mathbb{P}(Y = 4)} = \frac{\mathbb{P}(X = 1, Y = 4) + \mathbb{P}(X = 3, Y = 4)}{\mathbb{P}(Y = 4)}.$$

Tinjau fungsi peluang marjinal Y saat Y = 4 adalah

$$\mathbb{P}(Y=4) = \mathbb{P}(X=1,Y=4) + \mathbb{P}(X=3,Y=4) + \mathbb{P}(X=5,Y=4) = 0.15 + 0.25 + 0.05 = 0.45.$$
 Jadi,
$$\mathbb{P}(X<5 \mid Y=4) = \frac{0.15 + 0.25}{0.45} = \frac{0.40}{0.45} = \frac{8}{9} \approx 0.88.$$
 Jadi, pernyataan ini salah.

- (D) Karena X dan Y dependen, maka berlaku $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ sehingga pernyataan ini benar.
- (E) Tinjau

$$\mathbb{E}[X \mid Y = 4] = 1 \cdot \mathbb{P}(X = 1 \mid Y = 4) + 3 \cdot \mathbb{P}(X = 3 \mid Y = 4) + 5 \cdot \mathbb{P}(X = 5 \mid Y = 4).$$

Perhatikan bahwa $\mathbb{P}(X=x\mid Y=4)=\frac{\mathbb{P}(X=x,Y=4)}{\mathbb{P}(Y=4)}=\frac{\mathbb{P}(X=x,Y=4)}{0.45}$. Dari sini diperoleh

$$\mathbb{P}(X=1\mid Y=4) = \frac{0.15}{0.45} = \frac{15}{45}, \quad \mathbb{P}(X=3\mid Y=4) = \frac{0.25}{0.45} = \frac{25}{45}, \quad \mathbb{P}(X=5\mid Y=4) = \frac{0.05}{0.45} = \frac{5}{45}.$$

Jadi,

$$\mathbb{E}[X \mid Y = 4] = \frac{15}{45} + 3 \cdot \frac{25}{45} + 5 \cdot \frac{5}{45} = \frac{15 + 75 + 25}{45} = \frac{115}{45} = \frac{23}{9} \approx 2{,}55.$$

Jadi, pernyataan ini salah.

Jadi, jawaban yang benar adalah $\boxed{\mathbf{D}}$.

 X_1, X_2 , dan X_3 merupakan variabel acak yang memiliki varians sama, namun memiliki koefisien korelasi $\rho_{12}=0.3, \; \rho_{13}=0.5, \; {\rm dan} \; \rho_{23}=0.2.$ Dapatkan koefisien korelasi dari fungsi linier $Y=X_1+X_2 \; {\rm dan} \; Z=X_2+X_3.$

(A) 0,50

(B) 0,60

(C) 0.70

(D) 0,80

(E) 0,90

Penyelesaian.

Misalkan $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2$. Tinjau

$$0.3 = \rho_{12} = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}} = \frac{Cov(X_1, X_2)}{\sigma^2} \implies Cov(X_1, X_2) = 0.3\sigma^2.$$

Dengan cara yang sama, $Cov(X_1, X_3) = 0.5\sigma^2$ dan $Cov(X_2, X_3) = 0.2\sigma^2$. Perhatikan bahwa kovarians dari Y dan Z adalah

Cov(Y, Z)

$$= Cov(X_1 + X_2, X_2 + X_3)$$

$$= \mathbb{E}[(X_1 + X_2)(X_2 + X_3)] - \mathbb{E}[X_1 + X_2]\mathbb{E}[X_2 + X_3]$$

$$= \mathbb{E}\left[X_1 X_2 + X_1 X_3 + X_2^2 + X_2 X_3\right] - \left(\mathbb{E}[X_1] + \mathbb{E}[X_2]\right) \left(\mathbb{E}[X_2] + \mathbb{E}[X_3]\right)$$

$$= \mathbb{E}[X_1 X_2] + \mathbb{E}[X_1 X_3] + \mathbb{E}[X_2^2] + \mathbb{E}[X_2 X_3] - \mathbb{E}[X_1] \mathbb{E}[X_2] - \mathbb{E}[X_1] \mathbb{E}[X_3] - \mathbb{E}[X_2]^2 - \mathbb{E}[X_2] \mathbb{E}[X_3]$$

$$= (\mathbb{E}[X_1 X_2] - \mathbb{E}[X_1] \mathbb{E}[X_2]) + (\mathbb{E}[X_1 X_3] - \mathbb{E}[X_1] \mathbb{E}[X_3]) + (\mathbb{E}[X_2^2] - \mathbb{E}[X_2]^2) + (\mathbb{E}[X_2 X_3] - \mathbb{E}[X_2] \mathbb{E}[X_3])$$

$$= Cov(X_1, X_2) + Cov(X_1, X_3) + Var(X_2) + Cov(X_2, X_3)$$

$$=0.3\sigma^2+0.5\sigma^2+\sigma^2+0.2\sigma^2$$

 $=2\sigma^2$.

Perhatikan bahwa varians dari Y adalah

$$\sigma_V^2 = Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2) = \sigma^2 + \sigma^2 + 2 \cdot 0.3\sigma^2 = 2.6\sigma^2.$$

Perhatikan bahwa varians dari Z adalah

$$\sigma_Z^2 = Var(X_2 + X_3) = Var(X_2) + Var(X_3) + 2Cov(X_2, X_3) = \sigma^2 + \sigma^2 + 2 \cdot 0.2\sigma^2 = 2.4\sigma^2.$$

Maka koefisien korelasi dari Y dan Z adalah

$$\rho_{YZ} = \frac{Cov(Y, Z)}{\sigma_Y \sigma_Z} = \frac{2\sigma^2}{\sqrt{2.6}\sigma \cdot \sqrt{2.4}\sigma} \approx 0.80.$$

Jadi, jawaban yang benar adalah $\boxed{\mathbf{A}}$.

Diketahui X dan Y merupakan variabel acak dengan fungsi peluang gabungan

$$f(x,y) = \begin{cases} 2e^{-(x+y)}, & 0 \le x < y < \infty \\ 0, & \text{selainnya} \end{cases}.$$

Tentukan FKP marjinal dari Y.

(A)
$$f(y) = 2e^{-2y} (1 - e^{-y}), y > 0$$

(D)
$$f(y) = e^{-y} (1 - e^{-y}), y > 0$$

(B)
$$f(y) = 2e^{-2y} (1 - e^{-2y}), y > 0$$

(C)
$$f(y) = 2e^{-2y}, y > 0$$

(E) Semua jawaban salah

Penyelesaian.

FKP marginal dari Y adalah

$$f(y) = \int_{0}^{y} 2e^{-(x+y)} dy = \left[-2e^{-(x+y)} \right]_{x=0}^{x=y} = -\left(-2e^{-2y} - 2e^{-y} \right) = 2e^{-y} - 2e^{-2y}$$

di mana y > 0. Jadi, jawaban yang benar adalah $\boxed{\mathbf{E}}$.

Asumsikan bahwa X dan Y adalah variabel acak yang **bebas stokastik** dan diketahui $X \sim UNIFORM(-1,1)$ dan $Y \sim UNIFORM(0,1)$. Peluang bahwa persamaan kuadrat $t^2 + 2Xt + Y = 0$ mempunyai solusi bilangan real adalah

(A) $\frac{2}{3}$

(C) $\frac{1}{4}$

(E) Semua jawaban salah

(B) $\frac{3}{4}$

(D) $\frac{1}{3}$

Penyelesaian.

Diperoleh bahwa FKP dari X dan Y berturut-turut adalah

$$f_X(x) = \begin{cases} \frac{1}{2}, & -1 < x < 1 \\ 0, & \text{selainnya} \end{cases} \quad \text{dan} \quad f_Y(y) = \begin{cases} 1, & 0 < y < 1 \\ 0, & \text{selainnya} \end{cases}.$$

Karena X dan Y bebas stokastik maka berlaku $f(x,y) = f_X(x)f_Y(y)$ yang berarti

$$f(x,y) = \begin{cases} \frac{1}{2}, & -1 < x < 1, 0 < y < 1 \\ 0, & \text{selainnya} \end{cases}.$$

Tinjau $t^2 + 2Xt + Y = 0$ memiliki solusi real apabila $(2X)^2 - 4(1)(Y) \ge 0 \iff X^2 \ge Y$. Himpunan semua titik (x,y) yang memenuhi $x^2 \ge y$ di mana $(x,y) \in (-1,1) \times (0,1)$ dinyatakan sebagai daerah yang diarsir berikut.

Maka peluang yang diminta menggunakan pengintegralan $dy\ dx$ adalah

Jadi, jawaban yang benar adalah $\boxed{\mathbf{A}}$

X dan Y merupakan variabel acak dengan fungsi peluang gabungan $f(x,y)=\frac{ay}{x^2},\ x\geq 1,$ $0\leq y\leq 1.$ Tentukan nilai harapan Y bersyarat $X,\ \mathbb{E}[Y\mid X].$

(A) $\frac{1}{3}$

(C) $\frac{2}{3}$

(E) Semua jawaban salah

(B) $\frac{1}{2}$

(D) $\frac{3}{4}$

Penyelesaian.

Karena f(x,y) merupakan fungsi peluang, maka

$$1 = \int_{1}^{\infty} \int_{0}^{1} \frac{ay}{x^{2}} \, dy \, dx = \int_{1}^{\infty} \left[\frac{ay^{2}}{2x^{2}} \right]_{0}^{1} \, dx = \int_{1}^{\infty} \frac{a}{2x^{2}} \, dx = \lim_{n \to \infty} \int_{1}^{n} \frac{a}{2x^{2}} \, dx = \lim_{n \to \infty} \left[-\frac{a}{2x} \right]_{1}^{n} = -\left(0 - \frac{a}{2}\right) = \frac{a}{2}$$

sehingga a=2. Ini berarti $f(x,y)=\frac{2y}{x^2}$ dan fungsi peluang marjinal X adalah

$$f_X(x) = \int_0^1 f(x,y) \ dy = \int_0^1 \frac{2y}{x^2} \ dy = \left[\frac{y^2}{x^2}\right]_{y=0}^{y=1} = \frac{1}{x^2}.$$

Ini berarti

$$f(y \mid x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{2y}{x^2}}{\frac{1}{x^2}} = 2y.$$

Maka

$$\mathbb{E}[Y \mid X] = \int_{0}^{1} y f(y \mid x) = \int_{0}^{1} 2y^{2} dy = \left[\frac{2y^{3}}{3}\right]_{0}^{1} = \frac{2}{3} - 0 = \frac{2}{3}.$$

Jadi, jawaban yang benar adalah $\boxed{\mathbf{C}}$.

Pandang X_1 dan X_2 sebagai variabel acak independen. Selanjutnya, X_1 dan $Y=X_1+X_2$ masing-masing berdistribusi khi-kuadrat dengan derajat bebas r_1 dan r, di mana $r_1 < r$. Tentukan distribusi dari X_2 .

(A)
$$\chi^2_{(r-r_1)}$$

(C)
$$\chi^2_{(r/r_1)}$$

(E) Semua jawaban salah

(B)
$$\chi^2_{(r_1/r)}$$

(D)
$$\chi^2_{(r_1+r)}$$

Penyelesaian.

Akan diselesaikan menggunakan FPM. Perhatikan bahwa FPM dari X_1 dan Y berturut-turut adalah

$$M_{X_1}(t) = \frac{1}{(1-2t)^{r_1/2}}$$
 dan $M_Y(t) = \frac{1}{(1-2t)^{r/2}}$.

Karena X_1 dan X_2 independen, maka

$$\frac{1}{(1-2t)^{r/2}} = M_Y(t) = M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_2}(t) = \frac{1}{(1-2t)^{r_1/2}}M_{X_2}(t)$$

yang memberikan $M_{X_2}(t) = \frac{1}{(1-2t)^{(r-r_1)/2}}$. Ini menunjukkan $X_2 \sim \chi^2_{(r-r_1)}$ sehingga jawaban yang benar adalah \mathbf{A} .