Myra spns snRNASeq May 2023

10/31/23

Table of contents

1	Clear memory and set working directory	3
2	Load libraries	3
3	3.1.1 Calculate the doublet cells using scDblFinder	7 8 8 10 10
4	4.1 combine all datasets	13 14
	4.5 Convert to Mouse Gene Symbols	$_{\rm TO}$

	4.6 Assign cluster labels	16
5	check gene markers	20
6	Proliferative cells	23
7	Sub cluster cell types7.1 sub cluster EC_Endocardium7.2 sub cluster FBs7.3 Transfer labels from different subclusters to the main clusters	25 26 29 30
8	Markers for each cluster and subclusters after cell assignment	34
9	Differential Expression Analysis using Libra	35
10	Number of cells in each cluster	37
11	Pathway analysis for Differential Genes in each cluster 11.1 Over representation Analysis	40 40 46
12	Graph for Number of DEGs	54
13	Heatmaps for all OFT and AV genes $13.0.1~{\rm AV~in~CM}~\dots \dots $	55
14	Transfer FB subclusters to combined_sct	60
15	Ligand recepetor analysis using Liana	62
16	Other Figures for Paper 16.1 Markers for ECs 16.2 Violin plot for notch1b 16.3 CM markers 16.4 All cell makers 16.5 Cell Number Graph	66 67 68 68 69 70

	Sankey diagram for pathways	2
17	Rdata and write session info	4

1 Clear memory and set working directory

```
rm(list = ls()) # clear the workspace
gc() # clear the memory
setwd("~/Myra_spns_snRNAseq_2023/") # set the working directory
getwd() # check the working directory

options(future.globals.maxSize = 40 * 1024 ^ 3) # for 20 Gb RAM # set the maximum size of the global environment for options(future.seed=TRUE) # set seed for reproducibility
```

2 Load libraries

```
# load the libraries
library(tidyverse)
library(Seurat)
library(scDblFinder)
library(patchwork)
library(SingleCellExperiment)
library(harmony)
library(BiocParallel)
library(repr)
library(Libra)
library(clusterProfiler)
library(dittoSeq)
library(ggrepel)
```

```
library(dittoSeq)
library(paletteer)
library(ggpattern)
library(future)
library(liana)
library(viridis)
library(enrichR)
library(ggsankey)
library(paletteer)
options(repr.plot.width=16, repr.plot.height=10) # change the size of the plots
RNGkind("L'Ecuyer-CMRG") # set the random number generator
set.seed(1) # set the seed for reproducibility
bp <- MulticoreParam( RNGseed=1234) # set the seed for reproducibility for BiocParallel
plan("multicore", workers = 4) # set the number of cores for parallel computing
options(ggrepel.max.overlaps = 20) # set the maximum number of overlaps for ggrepel</pre>
```

3 Load data

3.1 sib_1

```
# load the data for the first sample
sib_1_seurat<- Read10X('Cellranger_outs/sib_1_cellranger/outs/filtered_feature_bc_matrix/')
sib_1_seurat <- CreateSeuratObject(sib_1_seurat,project = "sib_1")
sib_1_seurat

# Calculate mitochondrial percentage
sib_1_seurat[["percent.mt"]] <- PercentageFeatureSet(sib_1_seurat, pattern = "^mt-")</pre>
```

```
sib_1_seurat@meta.data %>% head
median(sib_1_seurat@meta.data$percent.mt)
median(sib 1 seurat@meta.data$nCount RNA)
median(sib_1_seurat@meta.data$nFeature_RNA)
dim(sib_1_seurat@meta.data)
# plot the relation of the percentage mitochondria and the number of UMIs for the first sample
plot1 <- FeatureScatter(sib_1_seurat, feature1 = "nCount_RNA", feature2 = "percent.mt")</pre>
# plot the percentage of relation of the number of genes and the number of UMIs for the first sample
plot2 <- FeatureScatter(sib_1_seurat, feature1 = "nCount_RNA", feature2 = "nFeature RNA")</pre>
options(repr.plot.width=12, repr.plot.height=12)
plot1 + plot2
# plot the percentage of mitochondrial genes, number of genes and the number of UMIs for the first sample
VlnPlot(sib_1_seurat, features = c("nFeature RNA", "nCount_RNA", "percent.mt"), ncol = 3)
# filter the cells for the first sample based on the number of genes, the number of UMIs, the percentage of mitochond
sib_1_seurat <- subset(sib_1_seurat, subset = nFeature_RNA > 200 & nFeature_RNA < 5000 &
                    percent.mt < 20 & nCount_RNA <10000)</pre>
sib_1_seurat
# remove the mitochondrial genes
counts <- GetAssayData(sib_1_seurat, assay = "RNA")</pre>
non_mt_genes <- rownames(counts)[!grep1("^mt-", rownames(counts))]</pre>
sib_1_seurat <- subset(sib_1_seurat, features = non_mt_genes)</pre>
sib_1_seurat
sib_1_seurat[["percent.mt_after_removal"]] <- PercentageFeatureSet(sib_1_seurat, pattern = "^mt-") # calculate the pe
VlnPlot(sib_1_seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.mt_after_removal"), ncol = 3)
```

3.1.1 Calculate the doublet cells using scDblFinder

```
# normalize the data for the first sample using the SCTransform method
sib_1_seurat <- SCTransform(sib_1_seurat, verbose = FALSE, vars.to.regress = "percent.mt") %>%
    RunPCA(npcs = 50, verbose = FALSE)
# convert the Seurat object to SingleCellExperiment object to be used in the scDblFinder package
sce_sib_1 <- as.SingleCellExperiment(sib_1_seurat, slot="counts", reducedDims = "pca")</pre>
sce_sib_1
# convert the Seurat object to SingleCellExperiment object to be used in the scDblFinder package
sce sib 1 <- scDblFinder(sce sib 1, BPPARAM = bp)</pre>
# sce_sib_1 %>% str
sce_sib_1$scDblFinder.score %>% head
# port the resulting scores back to the Seurat object:
sib_1_seurat$scDblFinder.score <- sce_sib_1$scDblFinder.score</pre>
sib_1_seurat$scDblFinder.class <- sce_sib_1$scDblFinder.class</pre>
sib_1_seurat@meta.data %>% head
sib_1_seurat <- subset(sib_1_seurat, subset = scDblFinder.class == "singlet")</pre>
sib_1_seurat
```

3.2 Sib_2

```
# load the data for the first sample
sib 2 seurat<- Read10X('Cellranger outs/sib 2 cellranger/outs/filtered feature bc matrix/')</pre>
sib_2_seurat <- CreateSeuratObject(sib_2_seurat,project = "sib_2")</pre>
sib_2_seurat
sib_2_seurat[["percent.mt"]] <- PercentageFeatureSet(sib_2_seurat, pattern = "^mt-")</pre>
median(sib_2_seurat@meta.data$percent.mt)
median(sib_2_seurat@meta.data$nCount_RNA)
median(sib_2_seurat@meta.data$nFeature_RNA)
dim(sib_2_seurat@meta.data)
# plot the relation of the percentage mitochondria and the number of UMIs for the first sample
plot1 <- FeatureScatter(sib_2_seurat, feature1 = "nCount_RNA", feature2 = "percent.mt")</pre>
# plot the percentage of relation of the number of genes and the number of UMIs for the first sample
plot2 <- FeatureScatter(sib_2_seurat, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")</pre>
options(repr.plot.width=12, repr.plot.height=12)
plot1 + plot2
# plot the percentage of mitochondrial genes, number of genes and the number of UMIs for the first sample
VlnPlot(sib_2_seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
# filter the cells for the first sample based on the number of genes, the number of UMIs, the percentage of mitochond
sib_2_seurat <- subset(sib_2_seurat, subset = nFeature_RNA > 200 & nFeature_RNA < 5000 &
                    percent.mt < 20 & nCount_RNA <10000)
sib_2_seurat
counts <- GetAssayData(sib_2_seurat, assay = "RNA")</pre>
non mt genes <- rownames(counts)[!grepl("^mt-", rownames(counts))]</pre>
```

```
sib_2_seurat <- subset(sib_2_seurat, features = non_mt_genes)
sib_2_seurat
sib_2_seurat[["percent.mt_after_removal"]] <- PercentageFeatureSet(sib_2_seurat, pattern = "^mt-") # calculate the percent(sib_2_seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.mt_after_removal"), ncol = 3)
sib_2_seurat <- SCTransform(sib_2_seurat, verbose = FALSE, vars.to.regress = "percent.mt") %>%
RunPCA(npcs = 50, verbose = FALSE)
```

3.2.1 Calculate the doublet cells using scDblFinder

```
sce_sib_2 <- as.SingleCellExperiment(sib_2_seurat, slot="counts", reducedDims = "pca")
sce_sib_2 <- scDblFinder(sce_sib_2, BPPARAM = bp)
# port the resulting scores back to the Seurat object:
sib_2_seurat$scDblFinder.score <- sce_sib_2$scDblFinder.score
sib_2_seurat$scDblFinder.class <- sce_sib_2$scDblFinder.class
sib_2_seurat@meta.data %>% head

sib_2_seurat <- subset(sib_2_seurat, subset = scDblFinder.class == "singlet")
sib_2_seurat</pre>
```

3.3 mut_1

```
# load the data for the first sample
mut_1_seurat<- Read10X('Cellranger_outs/mut_1_cellranger/outs/filtered_feature_bc_matrix/')
mut_1_seurat <- CreateSeuratObject(mut_1_seurat,project = "mut_1")
mut_1_seurat</pre>
```

```
mut_1_seurat[["percent.mt"]] <- PercentageFeatureSet(mut_1_seurat, pattern = "^mt-")</pre>
median(mut_1_seurat@meta.data$percent.mt)
median(mut_1_seurat@meta.data$nCount_RNA)
median(mut_1_seurat@meta.data$nFeature_RNA)
dim(mut_1_seurat@meta.data)
# plot the relation of the percentage mitochondria and the number of UMIs for the first sample
plot1 <- FeatureScatter(mut_1_seurat, feature1 = "nCount_RNA", feature2 = "percent.mt")</pre>
# plot the percentage of relation of the number of genes and the number of UMIs for the first sample
plot2 <- FeatureScatter(mut_1_seurat, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")</pre>
options(repr.plot.width=12, repr.plot.height=12)
plot1 + plot2
# plot the percentage of mitochondrial genes, number of genes and the number of UMIs for the first sample
VlnPlot(mut_1_seurat, features = c("nFeature RNA", "nCount_RNA", "percent.mt"), ncol = 3)
# filter the cells for the first sample based on the number of genes, the number of UMIs, the percentage of mitochond
mut_1_seurat <- subset(mut_1_seurat, subset = nFeature_RNA > 200 & nFeature_RNA < 5000 &
                    percent.mt < 20 & nCount_RNA <10000)</pre>
mut_1_seurat
counts <- GetAssayData(mut_1_seurat, assay = "RNA")</pre>
non_mt_genes <- rownames(counts)[!grepl("^mt-", rownames(counts))]</pre>
mut_1_seurat <- subset(mut_1_seurat, features = non_mt_genes)</pre>
mut 1 seurat
mut_1_seurat[["percent.mt_after_removal"]] <- PercentageFeatureSet(mut_1_seurat, pattern = "^mt-") # calculate the pe</pre>
VlnPlot(mut_1_seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.mt_after_removal"), ncol = 3)
```

```
mut_1_seurat <- SCTransform(mut_1_seurat, verbose = FALSE,vars.to.regress = "percent.mt") %>%
    RunPCA(npcs = 50, verbose = FALSE)
```

3.3.1 Calculate the doublet cells using scDblFinder

```
sce_mut_1 <- as.SingleCellExperiment(mut_1_seurat, slot="counts", reducedDims = "pca")
sce_mut_1

sce_mut_1 <- scDblFinder(sce_mut_1, BPPARAM = bp)

# port the resulting scores back to the Seurat object:
mut_1_seurat$scDblFinder.score <- sce_mut_1$scDblFinder.score
mut_1_seurat$scDblFinder.class <- sce_mut_1$scDblFinder.class
mut_1_seurat@meta.data %>% head

mut_1_seurat <- subset(mut_1_seurat, subset = scDblFinder.class == "singlet")
mut_1_seurat</pre>
```

3.4 mut_2

```
# load the data for the first sample
mut_2_seurat<- Read10X('Cellranger_outs/mut_2_cellranger/outs/filtered_feature_bc_matrix/')
mut_2_seurat <- CreateSeuratObject(mut_2_seurat,project = "mut_2")
mut_2_seurat
mut_2_seurat[["percent.mt"]] <- PercentageFeatureSet(mut_2_seurat, pattern = "^mt-")</pre>
```

```
median(mut_2_seurat@meta.data$percent.mt)
median(mut_2_seurat@meta.data$nCount_RNA)
median(mut_2_seurat@meta.data$nFeature_RNA)
dim(mut_2_seurat@meta.data)
# plot the relation of the percentage mitochondria and the number of UMIs for the first sample
plot1 <- FeatureScatter(mut_2_seurat, feature1 = "nCount_RNA", feature2 = "percent.mt")</pre>
# plot the percentage of relation of the number of genes and the number of UMIs for the first sample
plot2 <- FeatureScatter(mut 2 seurat, feature1 = "nCount RNA", feature2 = "nFeature RNA")
options(repr.plot.width=12, repr.plot.height=12)
plot1 + plot2
# plot the percentage of mitochondrial genes, number of genes and the number of UMIs for the first sample
VlnPlot(mut_2_seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
# filter the cells for the first sample based on the number of genes, the number of UMIs, the percentage of mitochond
mut_2_seurat <- subset(mut_2_seurat, subset = nFeature_RNA > 200 & nFeature_RNA < 5000 &
                    percent.mt < 20 & nCount_RNA <10000)
mut_2_seurat
counts <- GetAssayData(mut_2_seurat, assay = "RNA")</pre>
non_mt_genes <- rownames(counts)[!grepl("^mt-", rownames(counts))]</pre>
mut_2_seurat <- subset(mut_2_seurat, features = non_mt_genes)</pre>
mut 2 seurat
mut_2_seurat[["percent.mt_after_removal"]] <- PercentageFeatureSet(mut_2_seurat, pattern = "^mt-") # calculate the pe
VlnPlot(mut_2_seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.mt_after_removal"), ncol = 3)
mut 2 seurat <- SCTransform(mut 2 seurat, verbose = FALSE, vars.to.regress = "percent.mt") %%
    RunPCA(npcs = 50, verbose = FALSE)
```

3.4.1 Calculate the doublet cells using scDblFinder

```
sce_mut_2 <- as.SingleCellExperiment(mut_2_seurat, slot="counts", reducedDims = "pca")
sce_mut_2

sce_mut_2 <- scDblFinder(sce_mut_2, BPPARAM = bp)

# port the resulting scores back to the Seurat object:
mut_2_seurat$scDblFinder.score <- sce_mut_2$scDblFinder.score
mut_2_seurat$scDblFinder.class <- sce_mut_2$scDblFinder.class
mut_2_seurat@meta.data %>% head

mut_2_seurat <- subset(mut_2_seurat, subset = scDblFinder.class == "singlet")
mut_2_seurat</pre>
```

4 Batch correction using Seurat

4.1 combine all datasets

 $According to benchmarking-LIGER, HARMONY and Seurat are all good.\ https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1850-9$

```
all_samples_list <- list(sib_1_seurat, sib_2_seurat, mut_1_seurat, mut_2_seurat) # create a list of all samples
all_samples_list

names(all_samples_list) <- c("sib_1", "sib_2", "mut_1", "mut_2") # name the samples
all_samples_list</pre>
```

4.2 Clustering

```
combined_sct <- RunUMAP(combined_sct, reduction = "pca", dims = 1:30, verbose = FALSE) # calculate the UMAP for the i combined_sct <- FindNeighbors(combined_sct, reduction = "pca", dims = 1:30) # find the neighbors for the integrated s combined_sct <- FindClusters(combined_sct, resolution = c(0.1,0.15,0.2, 0.4, 0.6, 0.8, 1, 1.2), verbose = TRUE) # find
```

4.3 UMAP with no annotation and showing normalizaton across datasets

```
DimPlot(combined_sct, reduction = "umap", group.by = "orig.ident", label = TRUE, repel = TRUE) # print the UMAP plot

# check all resolutions for the integrated samples
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.15", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.1", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.2", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.4", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.6", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.8", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.1", label = TRUE, repel = TRUE)
DimPlot(combined_sct, reduction = "umap", group.by = "integrated_snn_res.1.2", label = TRUE, repel = TRUE)

Idents(combined_sct, reduction = "umap", group.by = "integrated_snn_res.0.4" # set the resolution to 0.4

DimPlot(combined_sct, reduction = "umap", label = TRUE, repel = TRUE) # print the UMAP plot for the resolution 0.4
```

4.4 Find Cluster Markers

```
all_markers <- FindAllMarkers(combined_sct, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.2) # find the marker

# check the markers for all clusters
all_markers %>% group_by(cluster) %>% slice_max(n = 5, order_by = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_

# make a directory called results_seurat
dir.create("results_seurat")

# write the results to a csv file
all_markers %>% group_by(cluster) %>% slice_max(n = Inf, order_by = avg_log2FC) %>% ungroup() %>% arrange(cluster, decomposite)
```

4.5 Convert to Mouse Gene Symbols

```
# Basic function to convert zebrafish to mouse gene names
zgGenes <- sib_1_seurat@assays$RNA %>% rownames() %>% unique() # get the zebrafish gene names
# This function uses biomaRt to convert zebrafish gene names to mouse gene names.
# This is done by using the zebrafish and mouse ensembl mart datasets.
# The function takes a vector of zebrafish gene names as input and returns
# a data frame of zebrafish and mouse gene names.
convertDanioGeneList_Mouse <- function(x){</pre>
  require("biomaRt") # load biomaRt package
 mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl", host = "https://dec2021.archive.ensembl.org/") # use
 danio = useMart("ensembl", dataset = "drerio_gene_ensembl", host = "https://dec2021.archive.ensembl.org/") # use zeb
 genesV2 = getLDS(attributes = c("ensembl_gene_id", "zfin_id_symbol"),
                   filters = "zfin_id_symbol", # get zebrafish gene names
                   values = x , # use the zebrafish gene names
                   mart = danio, # use the zebrafish mart
                   attributesL = c("mgi_symbol", "ensembl_gene_id", "description"), # get mouse gene names
                   martL = mouse, uniqueRows=T) # use the mouse mart
  colnames(genesV2)[colnames(genesV2)== "Gene.stable.ID"] <- "EnsmblID_Zebrafish" # rename columns</pre>
  colnames(genesV2)[colnames(genesV2)== "Gene.stable.ID.1"] <- "EnsmblID Mouse" # rename columns</pre>
  # Check if the gene is not found
 if (length(genesV2) == 0) {
   print("No gene found for this input")
 } else {
   return(genesV2) # return the genes
}
```

```
# Run the function
Mouse_Genes <- convertDanioGeneList_Mouse(zgGenes)
# print the first 6 genes
head(Mouse_Genes)

all_markers_mouse <- merge(all_markers, Mouse_Genes, by.x = "gene", by.y = "ZFIN.symbol", all.x = TRUE) # merge the m
dim(all_markers_mouse)
dim(all_markers)
head(all_markers_mouse)

# arrange all_markers_mouse by cluster and log2FC
all_markers_mouse <- all_markers_mouse %>% group_by(cluster) %>% slice_max(n = Inf, order_by = avg_log2FC) %>% ungrou
head(all_markers_mouse)
all_markers_mouse %>% write.csv("results_seurat/all_markers_mouse_mt_removed.csv")
```

4.6 Assign cluster labels

```
DimPlot(combined_sct, reduction = "umap", label = TRUE, repel = TRUE, label.size= 8)

## markers from Junker's Fibroblast paper: https://www.nature.com/articles/s41588-022-01129-5

FB <- c("col1a2", "mdka", "col1a1a", "col1a1b", "col5a1", "dpt", "fn1b", "ccl25b", "sparc", "clu", "dcn", "mfap5", "p
## markers for Valve Fibroblasts

VF <- c("zgc:153704", "abi3bpb", "krt4", "angpt17", "igfbp5b", "cyp26b1", "tnfaip6", "mgp", "rspo1", "fibinb", "aif11
## markers for Endothelial cells (apnln)

EC_apln <- c("apnln", "hbegfb", "admb", "apln", "si:ch211-195b11.3", "sele", "itga2b", "thbs1b", "fgl2a", "F0681357.1
## markers for Endothelial cells (lyve1)

EC_lyve1 <- c("cxcl12a", "CU929150.1", "thy1", "lyve1a", "selenop", "cdh6", "si:dkey-203a12.9", "lyve1b", "id1", "si:
## markers for Endothelial cells (plvapb)

EC_plvapb <- c("wu:fj16a03", "cxcl12b", "rbp2a", "plvapb", "cldn5b", "rgcc", "fabp11a", "id1", "tmsb1", "ldb2a", "tci
```

```
CM_dediff <- c("nppa", "nppb", "hsp90aa1.1", "ttn.2", "ttn.1", "myh6", "atp2a2a", "xirp1", "si:ch211-131k2.3", "hspb1
## markers for Cardiomyocytes (Atrium)
CM atrium <- c("tnnc1b", "myh6", "si:ch211-270g19.5", "tcap", "tnni1b", "aldoab", "tnnt2a", "smtnl1", "cmlc1", "gapdh
## markers for Cardiomyocytes (Ventricle)
CM_ventricle <- c("tnni4a", "CR926459.1", "fabp3", "myl7", "ak1", "cmlc1", "actc1a", "actc1b", "myh71", "ndufa4", "ga
## markers for Endocardium (Atrium)
encar_endo_atrium <- c("zgc:158343", "spock3", "im:7152348", "ptgs2a", "ptgs2b", "id2b", "vcam1b", "aqp8a.1", "mycb",
## markers for Endocardium (frzb)
encar frzb <- c("vwf", "si:ch211-153b23.5", "c2cd4a", "edn2", "cfd", "frzb", "ecscr", "glulb", "efemp2b", "calm1a", "</pre>
## markers for Endocardium (Ventricle)
encar_endo_ventricle <- c("si:ch73-86n18.1", "aqp8a.1", "spock3", "mb", "fabp11a", "epas1b", "ramp2", "si:ch211-145b1
## markers for Epicardium (Atrium)
EPIC_atrium <- c("gstm.3", "s100a10a", "fn1b", "krt15", "mmp2", "si:ch211-105c13.3", "krt4", "frzb", "mme11", "anxa2a
## markers for Epicardium (Ventricle)
EPIC_ventricle <- c("si:ch211-106h4.12", "gstm.3", "krt15", "postnb", "s100a10a", "fn1b", "endouc", "mmp2", "tfa", "k
## markers for Macrophages
MACROPHAGES <- c("grn1", "grn2", "ccl35.1", "cd74a", "c1qb", "ctsd", "c1qc", "lygl1", "lgals3bpb", "si:ch211-147m6.2"
## markers for Monocytes
MONOCYTES <- c("ccl35.1", "epdl1", "si:ch211-214p16.1", "si:busm1-266f07.2", "si:ch211-214p16.2", "ccl35.2", "CU45909
## markers for Myelin cells
MYELIN_CELLS <- c("scn4ab", "cd59", "mbpa", "mpz", "mbpb", "plp1b", "BX936284.1", "anxa131", "apoeb", "si:rp71-19m20.
## markers for Neuronal cells
NEURONAL CELLS <- c("vipb", "elav14", "stmn1b", "syt1a", "tuba1c", "gap43", "snap25a", "stmn2a", "sncga", "rtn1b", "m
## markers for Neutrophils
NEUTROPHILS <- c("lyz", "lect21", "BX908782.2", "npsn", "si:ch211-117m20.5", "mmp13a.1", "si:ch211-9d9.1", "scpp8", "
## markers for Perivascular cells
PERIVASCULAR CELLS <- c("TCIM", "cxcl12b", "pdgfrb", "rasl12", "BX901920.1", "kcne4", "rgs5b", "rgs4", "agtr2", "TPM1
## markers for Proliferating cells
PROLIFERATING CELLS <- c("pcna", "stmn1a", "hmgb2b", "DUT", "sumo3b", "rrm2.1", "si:ch211-288g17.3", "rpa3", "banf1",
## markers for Smooth muscle cells
SMOOTH_MUSCLE_CELLS <- c("rgs5a", "acta2", "TPM1", "C11orf96", "tagln", "myh11a", "krt91", "itih1", "myl6", "myl9a",
```

markers for Cardiomyocytes (dediff.)

```
## markers for T-cells
T_CELLS <- c("si:ch211-214p16.1", "ccl34b.4", "ccl36.1", "ccl38.6", "DNAJA4", "ccr9a", "CR936442.1", "cxcr4b", "hspbp
# render the plot to be bigger
options(repr.plot.width=18, repr.plot.height=32)
# make a heatmap usingd DoHeatmap using the markers mentioned above
DoHeatmap(object = combined_sct, features = c(FB, VF, EC_apln, EC_lyve1, EC_plvapb, CM_dediff, CM_atrium, CM_ventricl
options(repr.plot.width=12, repr.plot.height=12)
options(repr.plot.width=12, repr.plot.height=12)
# Valve genes according to: https://www.nature.com/articles/s42003-021-02571-7-- by myra
valve_markers_nat <- unique(c("fgfr2","tgfb2", "fn1b", "wt1a", "fgfr4", "smad6b", "fgfr3", "gata5", "bmpr2b", "piezo2</pre>
# Epicardial markers according to : https://www.sciencedirect.com/science/article/pii/S1534580720300551
epicardial_markers <- unique(c("fstl1a", "fstl1b", "cav1", "aldh1a2", "tcf21", "tgm2b", "sema3fb", "tbx18", "adma", "ja
VlnPlot(object = combined sct, features = valve markers nat, stack = TRUE, group.by = "integrated snn res.0.4") + NoL
VlnPlot(object = combined_sct, features = epicardial_markers, stack = TRUE, group.by = "integrated_snn_res.0.4") + No
genes_to_annotate <- c("myh6", "cdh5", "pecam1", "pdgfra", "mslnb", "myh11a", "kcnj8", "adgre1", "itgal", "naaa", "s1
VlnPlot(object = combined_sct, features = genes_to_annotate, stack = TRUE, group.by = "integrated snn_res.0.4") + NoL
# check the number of cells
table(combined sct@meta.data$integrated snn res.0.4, combined sct@meta.data$orig.ident)
# cluster
           name
# 0 CM_1
# 1 Neurons
# 2 CM 2
# 3 EC Endocardium
# 4 Erythrocytes
```

```
# 5 CM 3
# 6 FB_1
# 7 FB 2
# 8 epicardium
# 9 Immune cells
# 10 Neurons?
# 11 Skeletal muscle
# 12 unknown 2
# 13 epithelial cells
# allocate cell types to the clusters
combined sct@meta.data$cell type <- NULL
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 0] <- "CM_1"</pre>
combined sct@meta.data$cell type[combined sct@meta.data$integrated snn res.0.4 == 1] <- "Neurons"
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated snn res.0.4 == 2] <- "CM 2"</pre>
combined sct@meta.data$cell type[combined sct@meta.data$integrated snn res.0.4 == 3] <- "EC Endocardium"
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 4] <- "Erythrocytes"</pre>
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 5] <- "CM_3"
combined sct@meta.data$cell_type[combined sct@meta.data$integrated snn res.0.4 == 6] <- "FB_1"
combined sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 7] <- "FB 2"
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 8] <- "epicardium"
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 9] <- "Immune cells"
combined sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 10] <- "Neurons?"
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 11] <- "Skeletal muscle"</pre>
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 12] <- "unknown 2"
combined_sct@meta.data$cell_type[combined_sct@meta.data$integrated_snn_res.0.4 == 13] <- "epithelial cells"
```

Idents(combined_sct) <- combined_sct@meta.data\$cell_type</pre>

```
# change the plot size
options(repr.plot.width=12, repr.plot.height=12)
DimPlot(combined_sct, reduction = "umap", label = TRUE, label.size = 6, repel = TRUE, pt.size = 2)
```

5 check gene markers

```
# read marker genes from Burkhard et al. 2018-- https://elifesciences.org/articles/31515
# read sheet Ventricle
Burkhard_ventricle <- openxlsx::read.xlsx("Burkhard_et_al_fig4.xlsx", sheet="Ventricle")
# make first row as column names
colnames(Burkhard_ventricle) <- Burkhard_ventricle[1,]</pre>
# remove first row
Burkhard_ventricle <- Burkhard_ventricle[-1,]</pre>
# convert to numeric
Burkhard_ventricle$`PValue` <- as.numeric(Burkhard_ventricle$`PValue`)</pre>
Burkhard_ventricle$`logFC` <- as.numeric(Burkhard_ventricle$`logFC`)</pre>
Burkhard_ventricle %>% head
# count how many genes are significant
sum(Burkhard ventricle$`PValue` < 0.05)</pre>
# read marker genes from Burkhard et al. 2018
# read sheet Atrium
Burkhard_atrium <- openxlsx::read.xlsx("Burkhard_et_al_fig4.xlsx", sheet="Atrium")
# make first row as column names
colnames(Burkhard_atrium) <- Burkhard_atrium[1,]</pre>
# remove first row
```

```
Burkhard_atrium <- Burkhard_atrium[-1,]</pre>
# convert to numeric
Burkhard atrium$`PValue` <- as.numeric(Burkhard atrium$`PValue`)</pre>
Burkhard_atrium$`logFC` <- as.numeric(Burkhard_atrium$`logFC`)</pre>
Burkhard_atrium %>% head
# count how many genes are significant
sum(Burkhard atrium$`PValue` < 0.05)</pre>
# read marker genes from Burkhard et al. 2018
# read sheet AV canal
Burkhard_AV_canal <- openxlsx::read.xlsx("Burkhard_et_al_fig4.xlsx", sheet="AV canal")</pre>
# make first row as column names
colnames(Burkhard_AV_canal) <- Burkhard_AV_canal[1,]</pre>
# remove first row
Burkhard_AV_canal <- Burkhard_AV_canal[-1,]</pre>
# convert to numeric
Burkhard_AV_canal$`PValue` <- as.numeric(Burkhard_AV_canal$`PValue`)</pre>
Burkhard_AV_canal$`logFC` <- as.numeric(Burkhard_AV_canal$`logFC`)</pre>
Burkhard_AV_canal %>% head
# count how many genes are significant
sum(Burkhard_AV_canal$`PValue` < 0.05)</pre>
# read marker genes from Burkhard et al. 2018
# read sheet SA region
Burkhard SA region <- openxlsx::read.xlsx("Burkhard_et_al_fig4.xlsx", sheet="SA region")
# make first row as column names
```

```
colnames(Burkhard_SA_region) <- Burkhard_SA_region[1,]</pre>
# remove first row
Burkhard_SA_region <- Burkhard_SA_region[-1,]</pre>
# convert to numeric
Burkhard SA region PValue <- as.numeric (Burkhard SA region PValue)
Burkhard_SA_region$`logFC` <- as.numeric(Burkhard_SA_region$`logFC`)</pre>
Burkhard_SA_region %>% head
# count how many genes are significant
sum(Burkhard_SA_region$`PValue` < 0.05)</pre>
#get genes which are significant in all 4 regions and convert them to vector
Burkhard ventricle %>%
 filter(`PValue` < 0.05) %>%
 dplyr::pull(`Gene ID`) %>%
  as.character() -> ventricle_genes
Burkhard atrium %>% filter(`PValue` < 0.05) %>% dplyr::pull(`Gene ID`) %>% as.character() -> atrium_genes
Burkhard_AV_canal %>% filter(`PValue` < 0.05) %>% dplyr::pull(`Gene ID`) %>% as.character() -> AV_canal_genes
Burkhard_SA_region %>% filter(`PValue` < 0.05) %>% dplyr::pull(`Gene ID`) %>% as.character() -> SA region genes
ventricle genes %>% head
# render the plot to be bigger
options(repr.plot.width=18, repr.plot.height=32)
# make a heatmap usingd DoHeatmap using the markers mentioned above
DoHeatmap(object = combined_sct, features = c(ventricle_genes, atrium_genes, AV_canal_genes, SA_region_genes), group.
DoHeatmap(object = combined sct, features = c(ventricle genes, atrium genes, AV canal genes, SA region genes))
options(repr.plot.width=12, repr.plot.height=12)
```

```
# CM_1 Ventricle
# CM_2 Atrium

DotPlot(object = combined_sct, features = c("has2", "bmp4", "tbx2b", "nppa", "vmhc", "myh6", "myh7", "tbx5", "vcana")

DoHeatmap(object = combined_sct, features = c("has2", "bmp4", "tbx2b", "nppa", "vmhc", "myh6", "myh7", "tbx5", "vcana

VlnPlot(object = combined_sct, features = c("has2", "bmp4", "tbx2b", "nppa", "vmhc", "myh6", "myh7", "tbx5", "vcana")

VlnPlot(object = combined_sct, features = c("has2", "bmp4", "tbx2b", "nppa", "vmhc", "myh6", "myh7", "tbx5", "vcana")

DotPlot(object = combined_sct, features = c("has2", "bmp4", "tbx2b", "nppa", "vmhc", "myh6", "myh7", "elnb", "isl1",

VlnPlot(object = combined_sct, features = c("has2", "bmp4", "tbx2b", "nppa", "vmhc", "myh6", "myh7", "elnb", "isl1", "f
```

6 Proliferative cells

```
martL = zebrafish, # zebrafish is the biomart object created above
                uniqueRows=T) # only return unique rows
# Print the first 6 genes found to the screen
print(head(genesV2))
return(genesV2)
s.genes_mouse <- convertHumanGeneList(s.genes)</pre>
g2m mouse <- convertHumanGeneList(g2m.genes)</pre>
# calculate cell cycle scores using the mouse genes
combined_sct <- CellCycleScoring(combined_sct, s.features = s.genes_mouse$ZFIN.symbol, g2m.features = g2m_mouse$ZFIN.</pre>
# calculate the percentage of cycle in each cell type according to condition
cell_type_percentages_cell_cycle <- prop.table(table(combined_sct@meta.data$cell_type, combined_sct@meta.data$Phase,
cell_type_percentages_cell_cycle <- as.data.frame(cell_type_percentages_cell_cycle)</pre>
cell_type_percentages_cell_cycle %>% head
cell_type_percentages_cell_cycle <- cell_type_percentages_cell_cycle %>% dplyr::rename(cell_type = Var1, cell_cycle =
cell_type_percentages_cell_cycle %>% head
# plot these percentages using ggplot2
ggplot(cell_type_percentages_cell_cycle, aes(x = cell_type, y = Freq, fill = cell_cycle)) +
  geom_bar(stat = "identity", position = "fill") +
 theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
 labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")+facet_grid(~condition)
ggplot(cell_type_percentages_cell_cycle, aes(x = cell_type, y = Freq, fill = cell_cycle)) +
  geom_bar(stat = "identity", position = "dodge") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
  labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")+facet grid(~condition)
```

```
write.csv(cell_type_percentages_cell_cycle, file = "results_seurat/cell_type_percentages_cell_cycle.csv") # save the
```

7 Sub cluster cell types

```
CM_cells <- subset(combined_sct, subset = cell_type == "CM_1" | cell_type == "CM_2" | cell_type == "CM_3")
CM_cells
CM_cells@meta.data %>% head
```

A data.frame: 6×24

orig.ide@oumtFeRtNeeceMeratemtCou	ımte (1868/1791/1868/1868/1868/1869/1869	odals <u>s</u> senu	a tinete.	lgusita etae	s <u>k ris</u> ttee	greetshad tasqoso) i tricep ol	10c2558co162M.Bcmse
$<$ chr \times dbl \times int \times dbl \times dbl \times dbl	\times int \times dbl \times chr \times fct $>$	<fc< th=""><th>:×fc</th><th>t><fc< th=""><th>t≫fc</th><th>t×chr×ch</th><th>r×ch</th><th>nr×dbl×dbl×chr></th></fc<></th></fc<>	:×fc	t> <fc< th=""><th>t≫fc</th><th>t×chr×ch</th><th>r×ch</th><th>nr×dbl×dbl×chr></th></fc<>	t≫fc	t×chr×ch	r×ch	nr×dbl×dbl×chr>
AAA GIA G CI9A G CI7 A A 0 C1056 795 484	400 0.03564681e2	3	2	2	2	CM_2ib	1	G1
1_1								0.010 564024 03101
AAA &A<u>G</u>C59ATT0A IAG C37 6 6 998 582	492 0.325 7042865	9	6	4	6	CM _3 ib	1	0.01378628
1_1								0.010335917
AAA&& <u>G</u> A&T6C63BC@@A@0000 510	332 0.10627141760	2	1	1	1	$CM_{\underline{}}$ ib	1	- 0.008 752M3 0
1_1								0.003298153
AAA GG<u>A</u>AGAT G 392 A CA927 536 538	390 0.132 71.95165	9	6	4	6	CM_3ib	1	- 0.048 487M 2
1_1								0.011213720
AAAGGAC46AC358AG76382979 472	357 0.028 \$77785	12	6	4	6	CM_3ib	1	- 0.022 67311 9
1_1								0.006596306
AAA& GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	310 0.067@%@@@@	8	1	1	1	$CM_{\underline{}}$ ib	1	0.01972295\$
1_1								0.007235142

```
CM_cells <- SCTransform(CM_cells, verbose = FALSE)
CM_cells <- RunPCA(CM_cells, verbose = FALSE, npcs = 50)
ElbowPlot(CM_cells,ndims = 50)</pre>
```

```
CM_cells <- RunUMAP(CM_cells, dims = 1:50)</pre>
CM_cells <- FindNeighbors(object = CM_cells)</pre>
CM cells <- FindClusters(CM cells, resolution = c(0.2, 0.4, 0.6, 0.8, 1.0, 1.2))
DimPlot(CM_cells, reduction = "umap", group.by = "orig.ident", label = TRUE, repel = TRUE)
# CM cells@meta.data %>% head
DimPlot(CM_cells, reduction = "umap", group.by = "SCT_snn_res.0.2", label = TRUE, repel = TRUE)
DimPlot(CM_cells, reduction = "umap", group.by = "SCT_snn_res.0.4", label = TRUE, repel = TRUE)
DimPlot(CM_cells, reduction = "umap", group.by = "SCT_snn_res.0.6", label = TRUE, repel = TRUE)
DimPlot(CM_cells, reduction = "umap", group.by = "SCT_snn_res.0.8", label = TRUE, repel = TRUE)
DimPlot(CM_cells, reduction = "umap", group.by = "SCT_snn_res.1", label = TRUE, repel = TRUE)
DimPlot(CM_cells, reduction = "umap", group.by = "SCT_snn_res.1.2", label = TRUE, repel = TRUE)
AV_canal_genes_GO <-c("anxa5b", "apcdd11", "aplnra", "aplnrb", "axin2", "bmp4", "cldn5a", "cldn5b", "cthrc1a", "cthrc
DoHeatmap(object = CM 3 cells, features = c(AV canal genes GO))
```

7.1 sub cluster EC_Endocardium

```
EC_Endo_cells <- subset(combined_sct, subset = cell_type == "EC_Endocardium" )
EC_Endo_cells</pre>
```

```
EC_Endo_cells <- SCTransform(EC_Endo_cells, verbose = FALSE)</pre>
EC Endo cells <- RunPCA(EC Endo cells, verbose = FALSE, npcs = 50)
ElbowPlot(EC_Endo_cells,ndims = 50)
EC_Endo_cells <- RunUMAP(EC_Endo_cells, dims = 1:50)</pre>
EC_Endo_cells <- FindNeighbors(object = EC_Endo_cells)</pre>
EC Endo cells <- FindClusters(EC Endo cells, resolution = c(0.2, 0.4, 0.6, 0.8, 1.0, 1.2))
DimPlot(EC Endo_cells, reduction = "umap", group.by = "orig.ident", label = TRUE, repel = TRUE)
DimPlot(EC Endo_cells, reduction = "umap", group.by = "SCT_snn_res.0.2", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(EC_Endo_cells, reduction = "umap", group.by = "SCT_snn_res.0.4", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(EC Endo cells, reduction = "umap", group.by = "SCT snn res.0.6", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(EC_Endo_cells, reduction = "umap", group.by = "SCT_snn_res.0.8", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(EC Endo cells, reduction = "umap", group.by = "SCT snn res.1", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(EC_Endo_cells, reduction = "umap", group.by = "SCT_snn_res.1.2", label = TRUE, repel = TRUE, label.size = 6)
Idents(EC_Endo_cells) <- "SCT_snn_res.0.6"</pre>
DimPlot(EC Endo cells, reduction = "umap", group.by = "SCT snn res.0.6", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(EC_Endo_cells, reduction = "umap", label = TRUE, repel = TRUE, label.size = 6)
EC Endo_cells markers <- FindAllMarkers(EC Endo_cells, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
EC_Endo_cells_markers %>% head
EC Endo_cells markers %% group by(cluster) %% top_n(n = 5, wt = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_
EC Endo_cells markers %% group by(cluster) %% arrange(cluster, desc(avg_log2FC)) %>% write.csv(file = "results_seur
FeaturePlot(EC_Endo_cells, features = c("notch1b"), label=TRUE, reduction = "umap", label.size = 6)
VlnPlot(EC_Endo_cells, features = c("notch1b"), split.by = "condition")
```

```
# render the plot to be bigger
# options(repr.plot.width=18, repr.plot.height=32)
# make a heatmap usingd DoHeatmap using the markers mentioned above
DoHeatmap(object = EC Endo cells, features = c(FB, VF, EC apln, EC lyve1, EC plvapb, CM dediff, CM atrium, CM ventric
# options(repr.plot.width=12, repr.plot.height=12)
DoHeatmap(object = EC_Endo_cells, features = c(VF, valve_markers_nat))
options(repr.plot.width=12, repr.plot.height=12)
DoHeatmap(object = EC Endo cells, features = c(VF, valve markers nat, "spns1", "spns2"), group.by = "condition")
DotPlot(object = EC_Endo_cells, features = unique(c(VF, valve_markers_nat, "spns1", "spns2")), group.by = "SCT_snn_re
# VlnPlot(object = combined sct, features = genes to annotate, stack = TRUE, group.by = "integrated snn res.0.4") + N
EC_Endo_cells@meta.data$EC_identity <- NULL
EC Endo_cells@meta.data$EC_identity[EC_Endo_cells@meta.data$`SCT_snn_res.0.6`==0] <- "EC_1"
EC Endo_cells@meta.data$EC_identity[EC_Endo_cells@meta.data$`SCT_snn_res.0.6`==1] <- "EC_2"
EC Endo_cells@meta.data$EC_identity[EC_Endo_cells@meta.data$`SCT_snn_res.0.6`==2] <- "Valve_cells"
EC Endo_cells@meta.data$EC_identity[EC_Endo_cells@meta.data$`SCT_snn_res.0.6`==3] <- "EC_3"
EC Endo_cells@meta.data$EC_identity[EC_Endo_cells@meta.data$`SCT_snn_res.0.6`==4] <- "EC_4"
head(EC_Endo_cells@meta.data)
DimPlot(EC Endo cells, group.by = "EC identity", label = TRUE, repel = TRUE, label.size = 6)
table(EC_Endo_cells@meta.data$condition)
table(EC_Endo_cells@meta.data$condition, EC_Endo_cells@meta.data$`EC_identity`)
Idents(EC_Endo_cells) <- "EC_identity"</pre>
```

```
DefaultAssay(EC_Endo_cells) = "RNA"

DEG_Libra_edger_lrt_broad_EC_endo <- run_de(input = EC_Endo_cells, meta=meta, replicate_col = "replicate", cell_type_label_col = "condition", n_threads = 8)

DefaultAssay(EC_Endo_cells) <- "integrated"

DEG_Libra_edger_lrt_broad_EC_endo <- DEG_Libra_edger_lrt_broad_EC_endo %>% group_by(cell_type) %>% arrange(desc(abs(a DEG_Libra_edger_lrt_broad_EC_endo)) %>% head

write.csv(DEG_Libra_edger_lrt_broad_EC_endo, "results_seurat/mut_vs_sib_libra_EdgeR_Lrt_broad_mt_removed_EC_endo.csv"
```

7.2 sub cluster FBs

```
FB_cells <- subset(combined_sct, subset = cell_type == "FB_1" | cell_type == "FB_2" )
FB_cells
FB_cells <- SCTransform(FB_cells, verbose = FALSE)
FB_cells <- RunPCA(FB_cells, verbose = FALSE, npcs = 50)
ElbowPlot(FB_cells,ndims = 50)

FB_cells <- RunUMAP(FB_cells, dims = 1:50)
FB_cells <- FindNeighbors(object = FB_cells)
FB_cells <- FindClusters(FB_cells, resolution = c(0.2, 0.4, 0.6, 0.8, 1.0, 1.2))

DimPlot(FB_cells, reduction = "umap", group.by = "orig.ident", label = TRUE, repel = TRUE)

DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.0.2", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.0.4", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.0.6", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.0.8", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.1", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.1", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.1", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.1.2", label = TRUE, repel = TRUE, label.size = 6)
```

```
Idents(FB_cells) <- "SCT_snn_res.0.4"
DimPlot(FB_cells, reduction = "umap", group.by = "SCT_snn_res.0.4", label = TRUE, repel = TRUE, label.size = 6)
DimPlot(FB_cells, reduction = "umap", label = TRUE, repel = TRUE, label.size = 6)

FB_cells_markers <- FindAllMarkers(FB_cells, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
FB_cells_markers %>% head
FB_cells_markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% write.csv(file = "results_seurat/FBFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% write.csv(file = "results_seurat/FBFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% write.csv(file = "results_seurat/FBFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% write.csv(file = "results_seurat/FBFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_log2FC) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% ungroup() %>% arrange(cluster, avg_log2FFB_cells_markers %>% group_by(cluster) %>% arrange(cluster, desc(avg_log2FC)) %>% ungroup() %>% arrange(cluster, desc(avg_log2FFB_cells_mar
```

7.3 Transfer labels from different subclusters to the main clusters

```
combined_sct@meta.data$cell_name <- rownames(combined_sct@meta.data)
combined_sct@meta.data %>% head()

EC_Endo_cells@meta.data$cell_name <- rownames(EC_Endo_cells@meta.data)
EC_Endo_cells %>% head()
```

```
EC_Endo_cells@meta.data[,c("cell_name", "EC_identity")] %>% head
DimPlot(EC_Endo_cells, label = TRUE)
combined_sct@meta.data <- combined_sct@meta.data[,!colnames(combined_sct@meta.data) %in% c('EC_identity.x','EC_identi
combined_sct@meta.data %>% names()
combined sct@meta.data <- merge(combined sct@meta.data, EC Endo cells@meta.data[,c("cell name", "EC identity")], by =
rownames(combined_sct@meta.data) <- combined_sct@meta.data$cell_name
combined_sct@meta.data %>% head
# replace cell_type in combined sct@meta.data dataframe with entried of EC identity wherever EC identity is not NA
combined_sct@meta.data$cell_type EC <- combined_sct@meta.data$cell_type</pre>
combined_sct@meta.data$cell_type_EC[!is.na(combined_sct@meta.data$EC_identity)] <- combined_sct@meta.data$EC_identity
combined sct@meta.data %>% head
combined_sct@meta.data$cell_type %>% unique()
combined_sct@meta.data[combined_sct@meta.data$cell_type=="EC_Endocardium",] %>% head(10)
combined_sct@meta.data$cell_type_EC %>% unique()
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "CM_1"] <- "Ventricle"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "CM_2"] <- "Atrium"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "CM_3"] <- "AV_canal"</pre>
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "FB_2"] <- "SMC_BA"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "Neurons"] <- "unknown_1"</pre>
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "Neurons?"] <- "Neurons"
combined sct@meta.data$broad_class <- combined_sct@meta.data$cell_type_EC
```

```
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC)== "Atrium"] <- "Myocardial_cells"</pre>
combined sct@meta.data$broad class[(combined_sct@meta.data$cell_type EC)== "AV_canal"] <- "Myocardial_cells"</pre>
combined sct@meta.data$broad class[(combined sct@meta.data$cell_type_EC) == "EC_1"] <- "Endocardial_cells"
combined sct@meta.data$broad class[(combined sct@meta.data$cell type EC) == "EC 2"] <- "Endocardial cells"
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC)== "EC_3"] <- "Endocardial_cells"
combined sct@meta.data$broad class[(combined sct@meta.data$cell type EC) == "EC 4"] <- "Endocardial cells"
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC)== "epicardium"] <- "Epithelial_cells"</pre>
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC)== "epithelial cells"] <- "Epithelial_cells"</pre>
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC) == "Erythrocytes"] <- "Erythrocytes"
combined sct@meta.data$broad class[(combined sct@meta.data$cell type EC) == "FB 1"] <- "Fibroblast cells"
combined sct@meta.data$broad class[(combined_sct@meta.data$cell_type EC)== "Immune cells"] <- "Immune_cells"</pre>
combined sct@meta.data$broad class[(combined sct@meta.data$cell_type_EC) == "Neurons"] <- "Neuronal_cells"
combined sct@meta.data$broad class[(combined sct@meta.data$cell_type_EC) == "Skeletal muscle"] <- "Muscle_cells"
combined sct@meta.data$broad class[(combined sct@meta.data$cell_type_EC) == "SMC_BA"] <- "Muscle_cells"
combined sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC) == "unknown 1"] <- "Unknown"
combined sct@meta.data$broad class[(combined sct@meta.data$cell_type_EC) == "unknown 2"] <- "Unknown"
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC)== "Valve_cells"] <- "Endocardial cells"</pre>
combined_sct@meta.data$broad_class[(combined_sct@meta.data$cell_type_EC)== "Ventricle"] <- "Myocardial cells"</pre>
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "Atrium"] <- "CM_Atrium"
combined sct@meta.data$cell type EC[(combined sct@meta.data$cell type EC)== "AV canal"] <- "CM AV canal"
combined sct@meta.data$cell type EC[(combined sct@meta.data$cell type EC)== "EC 1"] <- "EnC 1"
combined sct@meta.data$cell type EC[(combined sct@meta.data$cell type EC)== "EC 2"] <- "EnC 2"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "EC_3"] <- "EnC_3"
combined sct@meta.data$cell type EC[(combined sct@meta.data$cell type EC)== "EC 4"] <- "EnC 4"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "epicardium"] <- "Ep_epicardium"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "epithelial cells"] <- "Ep epithelial cel
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "Erythrocytes"] <- "Erythrocytes"
```

combined sct@meta.data\$cell_type_EC[(combined_sct@meta.data\$cell_type_EC) == "Neurons"] <- "Neurons"

combined sct@meta.data\$cell_type EC[(combined sct@meta.data\$cell_type_EC)== "FB_1"] <- "FB"</pre>

combined_sct@meta.data\$cell_type_EC[(combined_sct@meta.data\$cell_type_EC)== "Immune_cells"] <- "Immune_cells"

combined sct@meta.data\$cell_type EC[(combined sct@meta.data\$cell_type EC)== "Skeletal muscle"] <- "Mus_Skeletal muscl

```
combined sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "SMC_BA"] <- "Mus_SMC_BA"
combined sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "unknown_1"] <- "unknown_1"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "unknown_2"] <- "unknown_2"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC)== "Valve_cells"] <- "EnC_Valve_cells"
combined_sct@meta.data$cell_type_EC[(combined_sct@meta.data$cell_type_EC) == "Ventricle"] <- "CM_Ventricle"
DimPlot(combined sct, reduction = "umap", group.by = "cell type EC", label = TRUE, repel = TRUE, label.size = 6)
# change order of combined_sct@meta.data to keep sib first then mutant
combined sct@meta.data$condition <- factor(combined sct@meta.data$condition,levels = c("sib", "mut"))
combined_sct@meta.data$orig.ident <- factor(combined_sct@meta.data$orig.ident,levels = c("sib_1","sib_2", "mut_1", "m
unique(combined_sct@meta.data$orig.ident)
unique(combined_sct@meta.data$condition)
combined sct@meta.data<- combined sct@meta.data[order(match(combined sct@meta.data$cell name,names(combined sct@activ
identical(combined_sct@meta.data$cell_name,names(combined_sct@active.ident))
Idents(combined sct) <- "cell type EC"</pre>
DimPlot( combined sct, label = TRUE, repel = TRUE, label.size = 6)
DimPlot( combined_sct, group.by = "broad_class", label = TRUE, repel = TRUE, label.size = 6)
# save seurat object for shiny app
saveRDS(combined sct, "results seurat/combined sct.rds")
```

8 Markers for each cluster and subclusters after cell assignment

```
# Find markers with all the labels
all_markers_cell_assigned <- FindAllMarkers(combined_sct, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
all_markers_cell_assigned %>% head
# arrange by descending log2fc and cell name and write to csv file
all_markers_cell_assigned %>% arrange(cluster, desc(avg_log2FC)) %>% write.csv("results_seurat/cell_assigned/all_mark
all_markers_cell_assigned_mouse <- merge(all_markers_cell_assigned, Mouse_Genes[!duplicated(Mouse_Genes$ZFIN.symbol),
head(all_markers_cell_assigned_mouse)
all markers cell assigned mouse %>% arrange(cluster, desc(abs(avg log2FC))) %>% write.csv("results seurat/cell assign
# make plot bigger
options(repr.plot.width=24, repr.plot.height=36)
all_markers_cell_assigned %>%
   group_by(cluster) %>%
   top_n(n = 20, wt = avg_log2FC) \rightarrow top10
dev.copy(pdf, "results_seurat/cell_assigned/all_markers_cell_assigned.pdf", width = 24, height = 36)
DoHeatmap(combined_sct, features = top10$gene) + NoLegend()
dev.off()
# make plots small again
options(repr.plot.width=12, repr.plot.height=12)
```

9 Differential Expression Analysis using Libra

```
DefaultAssay(combined_sct) = "RNA"
DEG Libra_edger_lrt_cell_assigned<- run_de(input = combined_sct, meta=meta, replicate_col = "replicate", cell_type_co
      label_col = "condition", n_threads = 8)
DefaultAssay(combined_sct) <- "integrated"</pre>
DEG_Libra_edger_lrt_cell_assigned <- DEG_Libra_edger_lrt_cell_assigned %>% group_by(cell_type) %>% arrange(desc(abs(a
DEG_Libra_edger_lrt_cell_assigned%>% head
write.csv(DEG_Libra_edger_lrt_cell_assigned, "results_seurat/cell_assigned/mut_vs_sib_libra_EdgeR_Lrt_cell_assigned.c
# plot heatmaps for significant genes for each cell type with padj < 0.05
cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort
cell_type
for (i in 1:length(cell_type)){
genes_to_plot <- DEG_Libra_edger_lrt_cell_assigned$gene[DEG_Libra_edger_lrt_cell_assigned$p_val_adj<=0.05 & DEG_Libra
print(paste0("genes significant in ",cell_type[i], " are:"))
genes_to_plot %>% print
if(length(genes_to_plot)==0){
   print(paste0("no significant genes in cluster ", cell_type[i]))
   next
}
heatmaps <- DoHeatmap(subset(combined sct, idents = cell type[i]), features = genes to plot, group.by= "condition", ass
print(heatmaps)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/heatmaps_significant_genes_mut_vs_sib/",cell_type[i],"_heatmap_signif
```

```
width = 10,
           height = 10
            dev.off ()
}
# plot heatmaps for significant genes for each cell type with pval<=0.05
cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort
cell_type
for (i in 1:length(cell_type)){
genes_to_plot <- DEG_Libra_edger_lrt_cell_assigned$gene[DEG_Libra_edger_lrt_cell_assigned$p_val<=0.05 & DEG_Libra_edger_lrt_cell_assigned$p_val<=0.05 & DEG_Libra_edger_lrt_ce
print(paste0("genes significant (", length(genes_to_plot),") in ",cell_type[i], " are (printing top 20):" ))
genes_to_plot %>% head(20) %>% print
if(length(genes_to_plot)==0){
            print(paste0("no significant genes in cluster ", cell_type[i]))
            next
}
heatmaps <- DoHeatmap(subset(combined_sct, idents = cell_type[i]), features = genes_to_plot, group.by= "condition", ass
print(heatmaps)
dev.copy(
            pdf,
           file = paste0("results_seurat/cell_assigned/heatmaps_significant_genes_mut_vs_sib_pva05/",cell_type[i],"_heatmap_
           width = 10,
           height = 10
            dev.off ()
}
```

```
# merge with Mouse genes
DEG_Libra_edger_lrt_cell_assigned_mouse <- merge(DEG_Libra_edger_lrt_cell_assigned, Mouse_Genes, by.x = "gene", by.y
DEG_Libra_edger_lrt_cell_assigned_mouse <- DEG_Libra_edger_lrt_cell_assigned_mouse %>% arrange(cell_type, p_val_adj,
DEG_Libra_edger_lrt_cell_assigned_mouse %>% write.csv("results_seurat/cell_assigned/mut_vs_sib_libra_EdgeR_Lrt_cell_as
DEG_Libra_edger_lrt_cell_assigned_mouse <- merge(DEG_Libra_edger_lrt_cell_assigned, Mouse_Genes[!duplicated(Mouse_Genes_Libra_edger_lrt_cell_assigned_mouse %>% arrange(cell_type, p_val_adj,
DEG_Libra_edger_lrt_cell_assigned_mouse %>% head
```

10 Number of cells in each cluster

```
combined_sct@meta.data$condition <- NULL
combined_sct@meta.data$condition[grepl("sib",combined_sct@meta.data$orig.ident)] <- "sib"
combined_sct@meta.data$condition[grepl("mut",combined_sct@meta.data$orig.ident)] <- "mut"
combined_sct@meta.data$condition %>% unique()

table(combined_sct@meta.data$cell_type, combined_sct@meta.data$orig.ident)
table(combined_sct@meta.data$cell_type, combined_sct@meta.data$condition)

cell_type_numbers <- table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$orig.ident)
cell_type_numbers <- as.data.frame(cell_type_numbers)
cell_type_numbers %>% head
cell_type_numbers <- cell_type_numbers %>% dplyr::rename(cell_type = Var1, sample_name = Var2)
cell_type_numbers$sample_name <- factor(cell_type_numbers$sample_name, levels = c("sib_1","sib_2", "mut_1", "mut_2"))
cell_type_numbers %>% write.csv("results_seurat/cell_type_numbers.csv")
cell_type_numbers %>% head
```

```
# plot these percentages using ggplot2
# save the graph as a pdf file
# dev.copy(pdf, "results_seurat/cell_type_percentages_normalized.pdf", width = 10, height = 10)
ggplot(cell type percentages, aes(x = cell type, y = Freq, fill = sample name)) +
  geom_bar(stat = "identity", position = "fill") +
 theme(axis.text.x = element text(angle = 90, hjust = 1, vjust = 0.5)) +
 labs(x = "Cell type", y = "Percentage of cells", fill = "Sample name")
# dev.off()
# calculate the percentage of cell in each cell type according to condition
cell_type_percentages <- prop.table(table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$orig.ident))*10
cell_type_percentages <- as.data.frame(cell_type_percentages)</pre>
cell type percentages %>% head
cell_type_percentages <- cell_type_percentages %>% dplyr::rename(cell_type = Var1, sample_name = Var2)
cell_type_percentages$sample_name <- factor(cell_type_percentages$sample_name, levels = c("sib_1", "sib_2", "mut_1", "</pre>
cell_type percentages %>% write.csv("results_seurat/cell_type_percentages.csv")
cell_type_percentages %>% head
# plot these percentages using ggplot2
# save the graph as a pdf file
dev.copy(pdf, "results seurat/cell_type_percentages_normalized.pdf", width = 10, height = 10)
ggplot(cell_type_percentages, aes(x = cell_type, y = Freq, fill = sample_name)) +
 geom_bar(stat = "identity", position = "fill") +
 theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
 labs(x = "Cell type", y = "Percentage of cells", fill = "Sample name")
dev.off()
# calculate the percentage of cell in each cell type according to condition
# save the graph as a pdf file
dev.copy(pdf, "results_seurat/cell_type_percentages.pdf", width = 10, height = 10)
ggplot(cell_type_percentages, aes(x = cell_type, y = Freq, fill = sample_name)) +
 geom_bar(stat = "identity", position = "dodge") +
```

```
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
 labs(x = "Cell_type", y = "Percentage of cells", fill = "Sample name")
dev.off()
cell_type_cond_numbers <- table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$condition)</pre>
cell_type_cond_numbers <- as.data.frame(cell_type_cond_numbers)</pre>
cell type cond numbers <- cell type cond numbers %>% dplyr::rename(cell type = Var1, sample name = Var2)
cell_type_cond_numbers$sample_name <- factor(cell_type_cond_numbers$sample_name, levels = c("sib", "mut"))</pre>
cell type cond numbers %>% write.csv("results seurat/cell type cond numbers.csv")
cell_type_cond_numbers
# calculate the percentage of cell in each cell type according to condition
cell_type_percentages_cond <- prop.table(table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$condition)
cell_type_percentages_cond <- as.data.frame(cell_type_percentages_cond)</pre>
cell_type_percentages_cond %>% head
cell_type_percentages_cond <- cell_type_percentages_cond %>% dplyr::rename(cell_type = Var1, condition = Var2)
cell_type_percentages_cond$condition <- factor(cell_type_percentages_cond$condition, levels = c("sib", "mut"))</pre>
cell_type_percentages_cond %>% write.csv("results_seurat/cell_type_percentages_cond.csv")
cell_type_percentages_cond %>% head
# plot these percentages using ggplot2
# save the graph as a pdf file
dev.copy(pdf, "results seurat/cell_type_percentages_cond_normalized.pdf", width = 10, height = 10)
ggplot(cell_type_percentages_cond, aes(x = cell_type, y = Freq, fill = condition)) +
  geom_bar(stat = "identity", position = "fill") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
  labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")
  dev.off()
# calculate the percentage of cell in each cell type according to condition
# plot these percentages using ggplot2
# save the graph as a pdf file
```

```
dev.copy(pdf, "results_seurat/cell_type_percentages_cond.pdf", width = 10, height = 10)
ggplot(cell_type_percentages_cond, aes(x = cell_type, y = Freq, fill = condition)) +
    geom_bar(stat = "identity", position = "dodge") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
    labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")
    dev.off()
```

11 Pathway analysis for Differential Genes in each cluster

```
cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort cell_type

DEG_Libra_edger_lrt_cell_assigned_mouse <- merge(DEG_Libra_edger_lrt_cell_assigned, Mouse_Genes[!duplicated(Mouse_Genes_Libra_edger_lrt_cell_assigned_mouse %>% arrange(cell_type, p_val_adj, DEG_Libra_edger_lrt_cell_assigned_mouse %>% head

cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort cell_type
```

11.1 Over representation Analysis

```
pval_enrich <- 0.2
cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort
cell_type
# Loop through each cell type
for(i in cell_type){
    # Print message indicating which cell type is being analyzed
    message(paste0("Molecular function Enrichments for Cell type: ", i))
```

```
# Perform GO enrichment analysis for DEG for the current cell type
compGO_MF_diff <- enrichGO(gene = DEG_Libra_edger_lrt_cell_assigned_mouse$MGI.symbol[DEG_Libra_edger_lrt_cell_ass
                     pAdjustMethod = "BH",OrgDb = "org.Mm.eg.db", ont = "MF")
# If no enriched pathways are found, print message and move on to next cell type
if(is.null(compGO_MF_diff)){
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
}
if(sum(compGO_MF_diff@result$p.adjust<pval_enrich)==0){</pre>
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
}
# Generate dotplot of enriched pathways for the current cell type
print(dotplot(compGO_MF_diff, showCategory = 15, title = pasteO("GO Pathway Enrichment Analysis for DEG \n Molecu
      font.size = 12)+ scale_colour_viridis(option = "plasma", direction = 1))
# Save dotplot as pdf file
dev.copy(
pdf,
file = paste0("results_seurat/cell_assigned/pathways_DEG_pval05/Molecular_function/",i,"_GO_MF_pathways_pval05_pl
width = 10,
height = 8
dev.off ()
# Convert enriched pathways data to data frame and calculate decimal ratios
```

```
compGO_MF_diff_df <- as.data.frame(compGO_MF_diff)</pre>
   compGO MF diff df$GeneRatio decimal <- compGO MF diff df$GeneRatio</pre>
   compGO_MF_diff_df$GeneRatio_decimal <- sapply(compGO_MF_diff_df$GeneRatio_decimal,
                                               function(x) (eval(parse(text = as.character(x)))))
   compGO_MF_diff_df$BgRatio_decimal <- compGO_MF_diff_df$BgRatio</pre>
   compGO_MF_diff_df$BgRatio_decimal <- sapply(compGO_MF_diff_df$BgRatio_decimal,
                                             function(x) (eval(parse(text = as.character(x)))))
   compGO_MF_diff_df <- compGO_MF_diff_df %>% tidyr::separate_rows(geneID, sep = "/", convert = FALSE) %>%
     arrange(desc(GeneRatio_decimal))
   # Print the first few rows of the enriched pathways data frame
   compGO_MF_diff_df %>% head
   # Save enriched pathways data frame as CSV file
   write.csv(compGO_MF_diff_df, paste0("results_seurat/cell_assigned/pathways_DEG_pval05/Molecular_function/",i,"_GO
   # Print message indicating that analysis for the current cell type is complete
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
}
# Loop through each cell type
for(i in cell type){
   # Print message indicating which cell type is being processed
   message(paste0("Cellular component Enrichments for Cell type: ", i))
   # Perform GO enrichment analysis for DEG for cellular components
   compGO_CC diff <- enrichGO(gene = DEG_Libra_edger_lrt_cell_assigned_mouse$MGI.symbol[DEG_Libra_edger_lrt_cell_ass
                             pvalueCutoff = pval_enrich,
                             keyType = "SYMBOL",
                             pAdjustMethod = "BH",
```

```
OrgDb = "org.Mm.eg.db",
                     ont = "CC")
# If there are no enriched pathways, skip to the next cell type
if(is.null(compGO_CC_diff)){
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
if(sum(compGO_CC_diff@result$p.adjust<pval_enrich)==0){</pre>
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
# Generate a dotplot of enriched pathways for cellular components
print(dotplot(compGO_CC_diff,
           showCategory = 15,
           title = paste0("GO Pathway Enrichment Analysis for DEG \n Cellular components for ",i, " Cells"),
           font.size = 12)+ scale_colour_viridis(option = "plasma", direction = 1))
# Save the dotplot as an pdf file
# dev.new()
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/pathways_DEG_pval05/Cellular_component/",i,"_GO_CC_pathways_pval0
   width = 10,
   height = 8
dev.off ()
```

```
# Convert the enriched pathways data to a data frame
   compGO_CC_diff_df <- as.data.frame(compGO_CC_diff)</pre>
   # Convert GeneRatio and BgRatio to decimal format
   compGO_CC_diff_df$GeneRatio_decimal <- compGO_CC_diff_df$GeneRatio</pre>
   compGO_CC_diff_df$GeneRatio_decimal <- sapply(compGO_CC_diff_df$GeneRatio_decimal,
                                              function(x) (eval(parse(text = as.character(x)))))
   compGO_CC_diff_df$BgRatio_decimal <- compGO_CC_diff_df$BgRatio</pre>
   compGO_CC_diff_df$BgRatio_decimal <- sapply(compGO_CC_diff_df$BgRatio_decimal,
                                             function(x) (eval(parse(text = as.character(x)))))
   # Separate gene IDs and arrange by GeneRatio_decimal in descending order
   compGO_CC_diff_df <- compGO_CC_diff_df %>%
       tidyr::separate_rows(geneID, sep = "/", convert = FALSE) %>%
       arrange(desc(GeneRatio_decimal))
   # Print the first few rows of the enriched pathways data frame
   compGO_CC_diff_df %>% head
   # Save the enriched pathways data frame as a CSV file
   write.csv(compGO_CC_diff_df, paste0("results_seurat/cell_assigned/pathways_DEG_pval05/Cellular_component/",i,"_GO
   # Print message indicating that the cell type is done processing
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
# Loop through each cell type
for(i in cell_type){
   # Print message indicating which cell type is being processed
```

```
message(paste0("Biological pathways Enrichments for Cell type: ", i))
# Perform GO enrichment analysis for DEG for biological pathways
compGO_BP_diff <- enrichGO(gene = DEG_Libra_edger_lrt_cell_assigned_mouse$MGI.symbol[DEG_Libra_edger_lrt_cell_ass
                     pAdjustMethod = "BH",OrgDb = "org.Mm.eg.db", ont = "BP")
# If there are no enriched pathways, skip to the next cell type
if(is.null(compGO_BP_diff)){
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
if(sum(compGO_BP_diff@result$p.adjust<pval_enrich)==0){</pre>
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
# Create a dotplot of the enriched pathways
print(dotplot(compGO_BP_diff, showCategory = 15, title = pasteO("GO Pathway Enrichment Analysis for DEG \n Biolog
      font.size = 12)+ scale_colour_viridis(option = "plasma", direction = 1))
# Save the dotplot as an pdf file
dev.copy(
pdf,
file = paste0("results_seurat/cell_assigned/pathways_DEG_pval05/Biological_pathways/",i,"_GO_BP_pathways_pval05_p
width = 10,
height = 8
dev.off ()
```

```
# Convert the enriched pathways data to a dataframe and calculate decimal ratios
   compGO_BP_diff_df <- as.data.frame(compGO_BP_diff)</pre>
   compGO BP_diff_df$GeneRatio_decimal <- compGO BP_diff_df$GeneRatio</pre>
   compGO BP diff df$GeneRatio decimal <- sapply(compGO BP diff df$GeneRatio decimal,
                                              function(x) (eval(parse(text = as.character(x)))))
   compGO_BP_diff_df$BgRatio_decimal <- compGO_BP_diff_df$BgRatio</pre>
   compGO_BP_diff_df$BgRatio_decimal <- sapply(compGO_BP_diff_df$BgRatio_decimal,</pre>
                                             function(x) (eval(parse(text = as.character(x)))))
   # Separate the gene IDs into separate rows and sort by descending GeneRatio_decimal
   compGO_BP_diff_df <- compGO_BP_diff_df %>% tidyr::separate_rows(geneID, sep = "/", convert = FALSE) %>%
     arrange(desc(GeneRatio_decimal))
   # Print the first few rows of the enriched pathways dataframe
   compGO_BP_diff_df %>% head
   # Save the enriched pathways dataframe as a CSV file
   write.csv(compGO_BP_diff_df, paste0("results_seurat/cell_assigned/pathways_DEG_pval05/Biological_pathways/",i,"_G
   # Print message indicating that the cell type is done processing
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
}
```

11.2 Geneset Enrichment Analysis

```
cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort
cell_type
```

```
pval_enrich <- 0.2</pre>
cell_type <- DEG_Libra_edger_lrt_cell_assigned$cell_type %>% unique %>% as.character %>% sort
cell_type
# Loop through each cell type
for(i in cell_type){
   # Print message indicating which cell type is being analyzed
   message(paste0("Molecular function Enrichments for Cell type: ", i))
   # create gene list for the current cell type
   gene_list_df <- DEG_Libra_edger_lrt_cell_assigned_mouse[DEG_Libra_edger_lrt_cell_assigned_mouse$cell_type==i & DE
   gene_list_df <- gene_list_df %>% arrange(desc(avg_logFC))
   gene_list_df <- gene_list_df[!is.na(gene_list_df$MGI.symbol),]</pre>
   gene_list_df <- gene_list_df[!duplicated(gene_list_df$MGI.symbol),]</pre>
   gene_list <- gene_list_df %>% pull(avg_logFC)
   names(gene_list) <- gene_list_df %>% pull(MGI.symbol)
   gene_list <- gene_list[!duplicated(gene_list)]</pre>
    if(is.null(gene_list)|length(gene_list)==0){
      message(paste0("Cell type: ", i, " done"))
      message(paste0("\n"))
      next
   # Perform GO enrichment analysis for DEG for the current cell type
   compGO_MF_diff <- gseGO(gene = gene_list, pvalueCutoff = pval_enrich,keyType = "SYMBOL",</pre>
                         pAdjustMethod = "BH",OrgDb = "org.Mm.eg.db", ont = "MF")
   # If no enriched pathways are found, print message and move on to next cell type
   if(is.null(compGO_MF_diff)|nrow(compGO_MF_diff@result)==0){
      message(paste0("Cell type: ", i, " done"))
      message(paste0("\n"))
      next
```

```
if(sum(compGO_MF_diff@result$p.adjust<pval_enrich)==0){</pre>
    message(paste0("Cell type: ", i, " done"))
    message(paste0("\n"))
    next
# Generate dotplot of enriched pathways for the current cell type
print(dotplot(compGO_MF_diff, showCategory = 15, title = paste0("GO Pathway Geneset Enrichment Analysis for DEG \n
        font.size = 12) + facet_grid(.~.sign)+ scale_colour_viridis(option = "plasma", direction = 1))
# Save dotplot as pdf file
dev.copy(
pdf,
file = paste0("results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Molecular_function/",i,"_gse_GO_MF_pathways_p
width = 10,
height = 8
dev.off ()
 # Convert enriched pathways data to data frame and calculate decimal ratios
 # Generate dotplot of enriched pathways for the current cell type
    compGO_MF_diff_df <- as.data.frame(compGO_MF_diff)</pre>
    compGO_MF_diff_df
compGO_MF_diff_df <- compGO_MF_diff_df %% tidyr::separate rows(core enrichment, sep = "/", convert = FALSE) %>%
  arrange((p.adjust))
 # Save enriched pathways data frame as CSV file
write.csv(compGO_MF_diff_df, paste0("results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Molecular_function/",i,
```

```
# Print message indicating that analysis for the current cell type is complete
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
}
# Loop through each cell type
for(i in cell_type){
   # Print message indicating which cell type is being processed
   message(paste0("Cellular component Enrichments for Cell type: ", i))
    # create gene list for the current cell type
   gene_list_df <- DEG_Libra_edger_lrt_cell_assigned_mouse[DEG_Libra_edger_lrt_cell_assigned_mouse$cell_type==i & DE
   gene_list_df <- gene_list_df %>% arrange(desc(avg_logFC))
   gene_list_df <- gene_list_df[!is.na(gene_list_df$MGI.symbol),]</pre>
   gene_list_df <- gene_list_df[!duplicated(gene_list_df$MGI.symbol),]</pre>
   gene_list <- gene_list_df %>% pull(avg_logFC)
   names(gene_list) <- gene_list_df %>% pull(MGI.symbol)
   gene_list <- gene_list[!duplicated(gene_list)]</pre>
   gene_list <- gene_list[!duplicated(gene_list)]</pre>
    if(is.null(gene_list)|length(gene_list)==0){
      # print("trace_gene_if")
      message(paste0("Cell type: ", i, " done"))
      message(paste0("\n"))
      next
   # Perform GO enrichment analysis for DEG for cellular components
   compGO_CC_diff <- gseGO(gene = gene_list,</pre>
```

```
pvalueCutoff = pval_enrich,
                      keyType = "SYMBOL",
                      pAdjustMethod = "BH",
                      OrgDb = "org.Mm.eg.db",
                      ont = "CC")
# If there are no enriched pathways, skip to the next cell type
if(is.null(compGO_CC_diff)|nrow(compGO_CC_diff@result)==0){
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
if(sum(compGO_CC_diff@result$p.adjust<pval_enrich)==0){</pre>
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
   next
# Generate a dotplot of enriched pathways for cellular components
print(dotplot(compGO_CC_diff,
           showCategory = 15,
           title = paste0("GO Pathway Geneset Enrichment Analysis for DEG \n Cellular components for ",i, " Ce
           font.size = 12)+ facet_grid(.~.sign)+ scale_colour_viridis(option = "plasma", direction = 1))
# Save the dotplot as an pdf file
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Cellular_component/",i," gse_G0_CC_pathwa
   width = 10,
   height = 8
```

```
dev.off ()
   # Convert the enriched pathways data to a data frame
   compGO_CC_diff_df <- as.data.frame(compGO_CC_diff)</pre>
   compGO_CC_diff_df <- compGO_CC_diff_df %>%
       tidyr::separate_rows(core_enrichment, sep = "/", convert = FALSE) %>%
       arrange(p.adjust)
   # Print the first few rows of the enriched pathways data frame
   compGO_CC_diff_df %>% head
   # Save the enriched pathways data frame as a CSV file
   write.csv(compGO_CC_diff_df, paste0("results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Cellular_component/",i,
   # Print message indicating that the cell type is done processing
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
}
# Loop through each cell type
for(i in cell type){
   # Print message indicating which cell type is being processed
   message(paste0("Biological pathways Enrichments for Cell type: ", i))
   gene_list_df <- DEG_Libra_edger_lrt_cell_assigned_mouse[DEG_Libra_edger_lrt_cell_assigned_mouse$cell_type==i & DE
   gene_list_df <- gene_list_df %>% arrange(desc(avg_logFC))
   gene_list_df <- gene_list_df[!is.na(gene_list_df$MGI.symbol),]</pre>
   gene_list_df <- gene_list_df[!duplicated(gene_list_df$MGI.symbol),]</pre>
   gene_list <- gene_list_df %>% pull(avg_logFC)
```

```
names(gene_list) <- gene_list_df %>% pull(MGI.symbol)
gene_list <- gene_list[!duplicated(gene_list)]</pre>
gene list %>% head
gene_list %>% length
gene_list_df %>% head()
gene_list <- gene_list[!duplicated(gene_list)]</pre>
if(is.null(gene_list)|length(gene_list)==0){
  # print("trace_gene_if")
  message(paste0("Cell type: ", i, " done"))
  message(paste0("\n"))
  next
# Perform GO enrichment analysis for DEG for biological pathways
compGO_BP_diff <- gseGO(gene = gene_list, pvalueCutoff = pval_enrich,keyType = "SYMBOL",</pre>
                  pAdjustMethod = "BH", OrgDb = "org.Mm.eg.db", ont = "BP")
# If there are no enriched pathways, skip to the next cell type
if(is.null(compGO_BP_diff)|nrow(compGO_BP_diff@result)==0){
  message(paste0("Cell type: ", i, " done"))
  message(paste0("\n"))
  next
if(sum(compGO_BP_diff@result$p.adjust<pval_enrich)==0){</pre>
  message(paste0("Cell type: ", i, " done"))
  message(paste0("\n"))
  next
```

```
# Create a dotplot of the enriched pathways
   print(dotplot(compGO_BP_diff, showCategory = 15, title = pasteO("GO Pathway Geneset Enrichment Analysis for DEG \
           font.size = 12)+ facet_grid(.~.sign)+ scale_colour_viridis(option = "plasma", direction = 1))
   # Save the dotplot as an pdf file
   dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Biological_pathways/",i,"_gse_GO_BP_pathways_
   width = 10,
   height = 8
   dev.off ()
   # Convert the enriched pathways data to a dataframe and calculate decimal ratios
   compGO_BP_diff_df <- as.data.frame(compGO_BP_diff)</pre>
   # Separate the gene IDs into separate rows and sort by descending GeneRatio_decimal
   compGO_BP_diff_df <- compGO_BP_diff_df %% tidyr::separate_rows(core_enrichment, sep = "/", convert = FALSE) %%
     arrange(p.adjust)
   # Print /the first few rows of the enriched pathways dataframe
   compGO_BP_diff_df %>% head
   # Save the enriched pathways dataframe as a CSV file
   write.csv(compGO_BP_diff_df, pasteO("results_seurat/cell_assigned/pathways_DEG_pvalO5_GSE/Biological_pathways/",i
   # Print message indicating that the cell type is done processing
   message(paste0("Cell type: ", i, " done"))
   message(paste0("\n"))
}
```

12 Graph for Number of DEGs

```
broad_sub_cluster_names <- combined_sct@meta.data %>% dplyr::select(cell_type_EC, broad_class) %>% distinct() %>% arr
rownames(broad sub cluster names) <- NULL
broad_sub_cluster_names
# filter the data for signicant values with padj <= 0.05
DEG_Libra_edger_lrt_cell_assigned_sig_padj05 <- DEG_Libra_edger_lrt_cell_assigned %>% filter(p_val_adj<=0.05)
# count how many genes are significant for each cell type
num_of_DEG_padj05 <- DEG_Libra_edger_lrt_cell_assigned_sig_padj05 %>% group_by(cell_type) %>% summarise(n=n()) %>% ar
num_of_DEG_padj05
# filter the data for signicant values with padj <= 0.05
DEG_Libra_edger_lrt_cell_assigned_sig_pval05 <- DEG_Libra_edger_lrt_cell_assigned %>% filter(p_val<=0.05)
# count how many genes are significant for each cell type
num_of_DEG_pval05 <- DEG_Libra_edger_lrt_cell_assigned_sig_pval05 %>% group_by(cell_type) %>% summarise(n=n()) %>% ar
num_of_DEG_pval05
num_of_DEG_pval05 <-merge(num_of_DEG_pval05, broad_sub_cluster_names, by.x = "cell_type", by.y = "cell_type_EC", all.
head(num_of_DEG_pval05)
num_of_DEG_pval05 <- num_of_DEG_pval05 %>% group_by(broad_class) %>% arrange(desc(n),cell_type,broad_class, .by_group_by(broad_class) %>% arrange(desc(n),cell_type,broad_class, .by_group_by(broad_class))
num_of_DEG_pval05
# plot a bar graph coloring the bars by broad_class arrange descending in each group
num_of_DEG_pval05 %>% group_by(broad_class) %>% arrange(desc(n),cell_type,broad_class, .by_group = TRUE) %>% ggplot
```

13 Heatmaps for all OFT and AV genes

```
OFT_related_genes_all <- c("axin2", "acvr11", "atf2", "bmp4", "bmp7a", "bmp7b", "bmpr1aa", "bmpr1ab", "bmpr2a", "bmpr
# change graph size
options(repr.plot.width=24, repr.plot.height=24)
dittoHeatmap(subset(combined_sct, subset = (cell_type_EC %in% c( 'EnC_1', 'EnC_2', 'EnC_3', 'EnC_4', 'EnC_Valve_cells
   annot.by = c("cell_type_EC", "condition"), complex = TRUE,
   heatmap.colors = PurpleAndYellow(50),
   # scaled.to.max=TRUE,
   # scale='none',
   heatmap.colors.max.scaled = PurpleAndYellow(50))
AV related genes_all <- c("acvr11", "adamts5", "anxa5b", "apcdd11", "aplnra", "aplnrb", "axin2", "bgna", "bmp2a", "bm
# change graph size
options(repr.plot.width=24, repr.plot.height=24)
DoHeatmap(combined sct, features= AV related genes all) + NoLegend() + ggtitle("AV related genes")
DoHeatmap(combined_sct, features= AV_related_genes_all,assay = "RNA",slot = "counts") + ggtitle("AV related genes")
# change graph size
options(repr.plot.width=24, repr.plot.height=24)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/OFT_related_genes_in_Endocardial_cells_normalized_data.pdf"),
   width = 10,
   height = 18
dittoHeatmap(subset(combined_sct,subset = (cell_type_EC %in% c( 'EnC_1', 'EnC_2', 'EnC_3', 'EnC_4', 'EnC_Valve_cells
   annot.by = c("cell_type_EC", "condition"), complex = TRUE,
```

```
heatmap.colors = PurpleAndYellow(50),
# scaled.to.max=TRUE,
# scale='none',
use_raster=TRUE,
heatmap.colors.max.scaled = PurpleAndYellow(50),
main= "OFT_related_genes_all (normalized data)")
dev.off()
```

13.0.1 AV in CM

```
# change graph size
options(repr.plot.width=24, repr.plot.height=24)
dev.copy(
    pdf,
   file = pasteO("results_seurat/cell_assigned/AV_related_genes_in_CM_cells_normalized_data.pdf"),
    width = 10,
   height = 18
dittoHeatmap(subset(combined_sct, subset = (cell_type_EC %in% c( 'CM_Ventricle', 'CM_Atrium', 'CM_AV_canal' ))), isGe
    annot.by = c("cell_type_EC", "condition"), complex = TRUE,
    heatmap.colors = PurpleAndYellow(50),
    # scaled.to.max=TRUE,
    # scale='none',
   use_raster=TRUE,
   heatmap.colors.max.scaled = PurpleAndYellow(50),
   main= "AV_related_genes_all in CM cells (normalized data)")
dev.off()
```

```
options(repr.plot.width=24, repr.plot.height=18)
dev.copy(
   pdf,
   file = pasteO("results_seurat/cell_assigned/AV related_genes_in_CM_cells_raw_counts.pdf"),
   width = 10,
   height = 18
dittoHeatmap(subset(combined_sct, subset = (cell_type_EC %in% c( 'CM_Ventricle', 'CM_Atrium', 'CM_AV_canal' ))),
            isGene(OFT_related_genes_all,combined_sct, assay = "RNA",return.values = TRUE),
            assay = "RNA",
            slot = "counts",
            annot.by = c("cell_type_EC", "condition" ), complex = TRUE,
            scaled.to.max = TRUE,
            scale = 'row',
            use_raster=TRUE,
           heatmap.colors = PurpleAndYellow(50),
           heatmap.colors.max.scaled = PurpleAndYellow(25),
           main = "AV_related_genes_all in CM cells (raw counts)",
   ) %>% print
dev.off ()
# change graph size
options(repr.plot.width=24, repr.plot.height=24)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/OFT_related_genes_in_BA_FB_cells_normalized_data.pdf"),
   width = 10,
   height = 18
```

```
dittoHeatmap(subset(combined_sct, subset = (cell_type_EC %in% c( 'Mus_SMC_BA', 'FB' ))), isGene(OFT_related_genes_all
   annot.by = c("cell_type_EC", "condition"), complex = TRUE,
   heatmap.colors = PurpleAndYellow(50),
    # scaled.to.max=TRUE,
   # scale='none',
   use_raster=TRUE,
   heatmap.colors.max.scaled = PurpleAndYellow(50),
   main= "OFT_related_genes_all in BA_FB cells (normalized data)")
dev.off()
options(repr.plot.width=24, repr.plot.height=18)
dev.copy(
    svg,
   file = paste0("results_seurat/cell_assigned/OFT_related_genes_in_BA_FB_cells_raw_counts.svg"),
   width = 10,
   height = 18
dittoHeatmap(subset(combined sct, subset = (cell_type_EC %in% c( 'Mus_SMC_BA', 'FB' ))),
            isGene(OFT_related_genes_all,combined_sct, assay = "RNA",return.values = TRUE),
            assay = "RNA",
            slot = "counts",
            annot.by = c("cell_type_EC", "condition" ), complex = TRUE,
            scaled.to.max = TRUE,
            scale = 'row',
            use_raster=TRUE,
           heatmap.colors = PurpleAndYellow(50),
           heatmap.colors.max.scaled = PurpleAndYellow(25),
           main = "OFT related genes in Mus_SMC_BA and FB cells (raw counts)",
   ) %>% print
dev.off ()
```

```
# change graph size
options(repr.plot.width=24, repr.plot.height=24)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/OFT_related_genes_in_BA_Skeletal_muscle_cells_normalized_data.pdf"),
   width = 10,
   height = 18
dittoHeatmap(subset(combined_sct,subset = (cell_type_EC %in% c( 'Mus_SMC_BA', 'Mus_Skeletal_muscle' ))), isGene(OFT_
   annot.by = c("cell_type_EC", "condition"), complex = TRUE,
   heatmap.colors = PurpleAndYellow(50),
   # scaled.to.max=TRUE,
   # scale='none',
   use_raster=TRUE,
   heatmap.colors.max.scaled = PurpleAndYellow(50),
   main= "OFT related genes_all in BA_Skeletal_muscle cells (normalized data)")
dev.off()
options(repr.plot.width=24, repr.plot.height=18)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/OFT_related_genes_in_BA_Skeletal_muscle_cells_raw_counts.pdf"),
   width = 10,
   height = 18
dittoHeatmap(subset(combined_sct,subset = (cell_type_EC %in% c( 'Mus_SMC_BA', 'Mus_Skeletal_muscle' ))),
            isGene(OFT_related_genes_all,combined_sct, assay = "RNA",return.values = TRUE),
            assay = "RNA",
            slot = "counts",
            annot.by = c("cell_type_EC", "condition" ), complex = TRUE,
            scaled.to.max = TRUE,
```

```
scale = 'row',
    use_raster=TRUE,
    heatmap.colors = PurpleAndYellow(50),
    heatmap.colors.max.scaled = PurpleAndYellow(25),
    main = "OFT related genes in BA and Skeletal muscle cells (raw counts)",
) %>% print
dev.off ()
```

14 Transfer FB subclusters to combined_sct

```
FB_cells@meta.data$FB_identity <- paste0("FB_",(FB_cells@meta.data$SCT_snn_res.0.4)) %>% factor
FB_cells@meta.data %>% head

combined_sct@meta.data$cell_name <- rownames(combined_sct@meta.data)
combined_sct@meta.data %>% head()
FB_cells@meta.data$cell_name <- rownames(FB_cells@meta.data)
FB_cells meta.data$cell_name <- rownames(FB_cells@meta.data)
FB_cells %>% head()

combined_sct@meta.data <- merge(combined_sct@meta.data, FB_cells@meta.data[,c("cell_name", "FB_identity")], by = "cell rownames(combined_sct@meta.data) <- combined_sct@meta.data$cell_name
combined_sct@meta.data %>% head

combined_sct@meta.data$cell_type_FB <- combined_sct@meta.data$cell_type_EC
combined_sct@meta.data$cell_type_FB[!is.na(combined_sct@meta.data$FB_identity)] <- combined_sct@meta.data$FB_identitype_FB <- factor(combined_sct@meta.data$cell_type_FB)
combined_sct@meta.data$cell_type_FB <- factor(combined_sct@meta.data$cell_type_FB)
combined_sct@meta.data %>% head
```

```
combined sct@meta.data$cell_type FB <- as.character(combined sct@meta.data$cell_type FB)</pre>
  # change graph size
  options(repr.plot.width=24, repr.plot.height=24)
  dev.copy(
      pdf,
      file = paste0("results_seurat/cell_assigned/AV_related_genes_in_FBs_and_unknown_2_normalized_data.pdf"),
      width = 10,
      height = 18
  dittoHeatmap(subset(combined_sct,subset = (cell_type_FB %in% c( 'FB_0','FB_1','FB_2','FB_3','unknown_2' ))), isGene(
      annot.by = c("cell_type_FB", "condition"), complex = TRUE,
      heatmap.colors = PurpleAndYellow(50),
      # scaled.to.max=TRUE,
      # scale='none',
      use_raster=TRUE,
      heatmap.colors.max.scaled = PurpleAndYellow(50),
      main= "AV related genes all in FBs and unknown 2 cells (normalized data)")
  dev.off()
svg: 3
png: 2
  options(repr.plot.width=24, repr.plot.height=18)
  dev.copy(
      pdf,
      file = paste0("results_seurat/cell_assigned/AV_related_genes_in_FBs_and_unknown_2_raw_counts.pdf"),
      width = 10,
      height = 18
      )
  dittoHeatmap(subset(combined_sct,subset = (cell_type_EC %in% c( 'FB_0','FB_1','FB_2','FB_3','unknown_2' ))),
```

```
isGene(AV_related_genes_all,combined_sct, assay = "RNA",return.values = TRUE),
    assay = "RNA",
    slot = "counts",
    annot.by = c("cell_type_EC","condition"), complex = TRUE,
    scaled.to.max = TRUE,
    scale = 'row',
    use_raster=TRUE,
    heatmap.colors = PurpleAndYellow(50),
    heatmap.colors.max.scaled = PurpleAndYellow(25),
    main = "AV_related_genes_all in FBs and unknown_2 cells (raw counts)",
    ) %>% print
dev.off()
```

15 Ligand recepetor analysis using Liana

```
liana_res_mut <- liana_mut %>%
  liana_aggregate()
liana res mut %>%
  liana_dotplot(source_groups = c("CM_Ventricle"),
                target_groups = c("EnC_Valve_cells", "CM_AV_canal"),
                ntop = 20)
liana_res_mut %>%
  liana_dotplot(source_groups = c("CM_Atrium"),
                target_groups = c("EnC_Valve_cells", "CM_AV_canal"),
                ntop = 20)
liana_sib <- liana_wrap(subset(combined_sct, subset = (condition %in% c( 'sib' ))), resource = 'custom', # resource h</pre>
                        external_resource = ortholog_resource)
liana_sib %>% dplyr::glimpse()
liana_res_mut_sig <- liana_res_mut %>% filter(aggregate_rank < 0.05)</pre>
liana_res_sib_sig <- liana_res_sib %>% filter(aggregate_rank < 0.05)</pre>
liana_res_mut_sig %>% head
liana_res_sib_sig %>% head
# add a row to liana_res_mut_sig with source = CM_AV_canal and target = EnC_3 so that columns are not missing in gra
liana_res_mut_sig_1 <- liana_res_mut_sig %>% add_row(source = "CM_AV_canal", target = "EnC_3",ligand.complex = "angpt
source <- c( "CM_Ventricle", "CM_Atrium", "CM_AV_canal")</pre>
target <- c("EnC_Valve_cells", "EnC_1", "EnC_2", "EnC_3", "EnC_4")</pre>
cond <- "mut"
dev.copy(pdf, paste0("results_seurat/cell_assigned/LR_analysis/liana_", cond,"_", paste0(source, collapse="_"), "__T
```

```
liana_res_mut_sig_1 %>%
 liana_dotplot(source_groups = source,
                target_groups = target,
                specificity = "natmi.edge_specificity",
                magnitude = "aggregate_rank",
                colour.label = "Aggregate Rank \nPval",
                ntop = 20) +
                # rotate x axis labels
                 theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+ scale_colour_viridis(option = "pl
dev.off()
cond <- "sib"</pre>
dev.copy(pdf, paste0("results_seurat/cell_assigned/LR_analysis/liana_", cond,"_", paste0(source, collapse="_"), "__T
liana_res_sib_sig %>%
 liana_dotplot(source_groups = source,
                target_groups = target,
                specificity = "natmi.edge_specificity",
                magnitude = "aggregate_rank",
                colour.label = "Aggregate Rank \nPval",
                ntop = 20) +
                # rotate x axis labels
                 theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+ scale_colour_viridis(option = "pl
dev.off()
source <- c("EnC_Valve_cells", "EnC_1", "EnC_2", "EnC_3", "EnC_4")</pre>
target <- c( "CM Ventricle", "CM Atrium", "CM AV canal")</pre>
cond <- "mut"</pre>
dev.copy(pdf, paste0("results_seurat/cell_assigned/LR_analysis/liana_", cond,"_", paste0(source, collapse="_"), "__T
liana_res_mut_sig %>%
 liana_dotplot(source_groups = source,
                target_groups = target,
```

```
specificity = "natmi.edge_specificity",
                magnitude = "aggregate_rank",
                colour.label = "Aggregate Rank /npval",
                ntop = 20) +
                # rotate x axis labels
                 theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
dev.off()
cond <- "sib"</pre>
dev.copy(pdf, paste0("results_seurat/cell_assigned/LR_analysis/liana_", cond,"_", paste0(source, collapse="_"), "__T
liana_res_sib_sig %>%
 liana_dotplot(source_groups = source,
                target_groups = target,
                specificity = "natmi.edge_specificity",
                magnitude = "aggregate_rank",
                colour.label = "Aggregate Rank /npval",
                ntop = 20) +
                # rotate x axis labels
                 theme(axis.text.x = element text(angle = 45, vjust = 1, hjust=1))
dev.off()
write.csv(liana_res_mut, file = "results_seurat/cell_assigned/LR_analysis/liana_mut.csv")
write.csv(liana res sib, file = "results seurat/cell assigned/LR analysis/liana sib.csv")
write.csv(liana_res_mut_sig, file = "results_seurat/cell_assigned/LR_analysis/liana_mut_sig_agg05.csv")
write.csv(liana_res_sib_sig, file = "results_seurat/cell_assigned/LR_analysis/liana_sib_sig_agg05.csv")
```

16 Other Figures for Paper

```
# in cell_type_EC change unknown_1 to "neuronal progenitors" and unkown 2 to "chondrocytes"
combined sct@meta.data$cell_type_EC[combined_sct@meta.data$cell_type_EC== "unknown_1"] <- "Neuronal Progenitors"
combined_sct@meta.data$cell_type_EC[combined_sct@meta.data$cell_type_EC== "unknown_2"] <- "Chondrocytes"
factor(combined_sct@meta.data$cell_type_EC, levels = sort(unique(combined_sct@meta.data$cell_type_EC))) %>% head
combined_sct@meta.data$cell_type_EC <- factor(combined_sct@meta.data$cell_type_EC, levels = sort(unique(combined_sct@
combined sct@meta.data <- combined sct@meta.data[match(names(Idents(combined sct)),rownames(combined sct@meta.data)),
combined_sct@meta.data %>% head
Idents(combined_sct) %>% head
Idents(combined_sct) <- "cell_type_EC"</pre>
dir.create("results_seurat/cell_assigned/figures/", showWarnings = FALSE)
dev.copy(pdf, "results_seurat/cell_assigned/figures/umap_subclusters_25072023_nolabel.pdf",
width = 20, height = 12)
# DimPlot(combined sct, reduction = "umap", label = TRUE, repel = TRUE, label.size=6, pt.size=1
# ) + geom_text_repel( max.overlaps = 20)+NoLegend()
dittoDimPlot(object = combined_sct, var= "ident", reduction = "umap", do.label= FALSE, labels.repel= TRUE, labels.siz
dev.off ()
Idents(combined sct) <- as.character(combined sct@meta.data$cell type FB)</pre>
```

```
combined_sct@meta.data$cell_type_FB <- factor(combined_sct@meta.data$cell_type_FB, levels = c(unique(sort(combined_sct@meta.data$cell_type_FB))</pre>
```

16.1 Markers for ECs

```
EnC_cells <- subset(combined_sct, subset= (cell_type_EC%in% c("EnC_1", "EnC_2", "EnC_3", "EnC_4", "EnC_Valve_cells")))
EnC cells
EnC_cells@meta.data$cell_type_EC <- factor(EnC_cells@meta.data$cell_type_EC, levels = unique(sort(EnC_cells@meta.data
EnC_cells@meta.data$cell_type_EC %>% head
EnC_cells@meta.data$condition <- factor(EnC_cells@meta.data$condition, levels = c("sib", "mut"))</pre>
EnC_cells@meta.data$condition %>% head
Idents(EnC cells) <- factor(EnC cells@meta.data$cell_type_EC, levels= sort(unique(EnC cells@meta.data$cell_type_EC)
Idents(EnC_cells) %>% head
# Idents(EnC_cells) %>% unique
Idents(EnC cells) <- factor(EnC cells@meta.data$cell_type_EC, levels= sort(unique(EnC cells@meta.data$cell_type_FB)
Idents(EnC_cells) %>% head
options(repr.plot.width=10, repr.plot.height=8)
dev.copy(
   pdf,
   file = paste0("results seurat/cell assigned/figures/EnC cells markers dot plot magma reordered 25072023 alphabeti
   width = 12,
   height = 8
DotPlot(object = EnC_cells, features = c("id2b", "egf17", "esama", "doc2b", "hapln1b", "ednraa", "zfpm1", "slit3", "s
#cols=c( "blue", "red"),
dev.off()
```

16.2 Violin plot for notch1b

```
options(repr.plot.width=8, repr.plot.height=10)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/figures/EnC_cells_Notch1b_dittovln_no_box_mut_sib_11102023.pdf"),
   width = 9,
   height = 6
   )
dittoPlot(object = EnC_cells, var = c("notch1b"), group.by = "condition", split.by = "cell_type_EC",
   plots=c("vlnplot", "jitter"), split.nrow =1 )
dev.off()
```

16.3 CM markers

```
options(repr.plot.width=10, repr.plot.height=8)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/figures/CM_cells_markers_dot_plot_new_24072023.pdf"),
   width = 12,
   height = 8
   )
DotPlot(object = EnC_CM_BAcells, features = c("alcama", "bmpr2b", "cd9a", "col1a1a", "col1a2", "desma", "doc2b", "edn
dev.off()

options(repr.plot.width=10, repr.plot.height=8)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/figures/CM_EnC_cells_markers_dot_plot_new_24072023.pdf"),
   width = 12,
```

```
height = 8
)
DotPlot(object = EnC_CM_BAcells, features = c("elnb", "mylka", "nrp1a", "tgfb2", "fn1a", "notch1b", "ednraa", "smad6b
dev.off()

options(repr.plot.width=12, repr.plot.height=18)
dev.copy(
   pdf,
   file = paste0("results_seurat/cell_assigned/figures/CM_EnC_cells_markers_violin_plot_new_24072023.pdf"),
   width = 12,
   height = 18
   )

VlnPlot(object = EnC_CM_BAcells, features = c("elnb", "mylka", "nrp1a", "tgfb2", "fn1a", "notch1b", "ednraa", "smad6b
dev.off()
```

16.4 All cell makers

```
Idents(combined_sct) <- factor(combined_sct@meta.data$cell_type_EC, levels= sort(unique(combined_sct@meta.data$cell
Idents(combined_sct) %>% head

options(repr.plot.width=18, repr.plot.height=12)
dev.copy(
    pdf,
    file = paste0("results_seurat/cell_assigned/figures/All_cells_markers_dot_plot_magma_25072023_alphabetical_revers
    width = 18,
    height = 12
    )
DotPlot(object = combined_sct, features = c("col11a2", "col2a1a", "col9a1a", "myh6", "smtnl1", "rgs6", "myh7", "slc25a
dev.off()
```

```
CM_cells <- subset(combined_sct, subset= (cell_type_EC%in% c( "CM_Atrium", "CM_AV_canal", "CM_Ventricle")))
# CM_cells
CM_cells@meta.data$cell_type_EC %>% unique
Idents(CM_cells) %>% unique
Idents(CM_cells) <- factor(CM_cells@meta.data$cell_type_EC, levels= sort(unique(CM_cells@meta.data$cell_type_EC, de
Idents(CM_cells) <- factor(CM_cells@meta.data$cell_type_EC, levels= sort(unique(CM_cells@meta.data$cell_type_EC), d
Idents(CM_cells) %>% head

options(repr.plot.width=10, repr.plot.height=8)
dev.copy(
    pdf,
    file = paste0("results_seurat/cell_assigned/figures/CM_cells_markers_dot_plot_new_magma_25072023_alphabetical_rev
    width = 10,
    height = 8
    )
DotPlot(object = CM_cells, features = c("ptpn13", "mybpc3", "zfpm1", "alcama", "nrp2b", "zfpm2b", "cd9a", "piezo2a.2"
dev.off()
```

16.5 Cell Number Graph

```
cell_type_cond_numbers <- table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$condition)
cell_type_cond_numbers <- as.data.frame(cell_type_cond_numbers)
cell_type_cond_numbers <- cell_type_cond_numbers %>% dplyr::rename(cell_type = Var1, sample_name = Var2)
cell_type_cond_numbers$sample_name <- factor(cell_type_cond_numbers$sample_name, levels = c("sib","mut"))
# cell_type_cond_numbers %>% write.csv("results_seurat/cell_type_cond_numbers_neuronal_prog.csv")
cell_type_cond_numbers

# calculate the percentage of cell in each cell type according to condition
cell_type_percentages_cond <- prop.table(table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$condition)
cell_type_percentages_cond <- as.data.frame(cell_type_percentages_cond)</pre>
```

```
cell_type_percentages_cond %>% head
cell_type percentages_cond <- cell_type percentages_cond %>% dplyr::rename(cell_type = Var1, condition = Var2)
cell_type_percentages_cond$condition <- factor(cell_type_percentages_cond$condition, levels = c("sib","mut"))</pre>
# calculate the percentage of cell in each cell type according to condition
cell_type_percentages_cond <- prop.table(table(combined_sct@meta.data$cell_type_EC, combined_sct@meta.data$condition)
cell_type_percentages_cond <- as.data.frame(cell_type_percentages_cond)</pre>
cell type percentages cond %>% head
cell_type_percentages_cond <- cell_type_percentages_cond %>% dplyr::rename(cell_type = Var1, condition = Var2)
cell type percentages cond$condition <- factor(cell type percentages cond$condition, levels = c("sib", "mut"))
cell_type_percentages_cond %>% write.csv("results_seurat/cell_type_percentages_cond_neuronal_prog.csv")
cell_type_percentages_cond %>% head
# plot these percentages using ggplot2
# save the graph as a pdf file
dev.copy(pdf, "results_seurat/cell_type_percentages_cond_normalized_neuronal_prog_pattern_flipped.pdf", width = 10, h
# ggplot(cell_type percentages_cond, aes(x = cell_type, y = Freq, fill = condition)) +
   geom_bar(stat = "identity", position = "fill") +
# theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
# labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")
ggplot(cell_type_percentages_cond, aes(x = cell_type, y = Freq, fill = cell_type, pattern=condition)) +
  scale_colour_paletteer_d("ggthemes::Tableau_20")+
 scale_fill_paletteer_d("ggthemes::Tableau_20")+
  geom bar pattern(
 # aes(pattern_colour= cell_type),
 colour= '#5e5d5d',
  pattern fill= '#4d4d4d',
  pattern_alpha=0.2,
 pattern_angle= 0,
 stat = "identity", position = "fill", pattern_spacing= 0.01) +
 scale_pattern_manual(values=c('none', 'crosshatch')) +
  theme_bw()+
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
```

```
labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")+coord flip()
  dev.off()
# calculate the percentage of cell in each cell type according to condition
# plot these percentages using ggplot2
# save the graph as a pdf file
dev.copy(pdf, "results_seurat/cell_type_percentages_cond_neuronal_prog_pattern_flipped.pdf", width = 10, height = 10)
ggplot(cell_type_percentages_cond, aes(x = cell_type, y = Freq, fill = cell_type, pattern=condition)) +
 scale_colour_paletteer_d("ggthemes::Tableau_20")+
 scale_fill_paletteer_d("ggthemes::Tableau_20")+
  geom bar pattern(
 # aes(pattern_colour= cell_type),
  colour= '#5e5d5d',
 pattern_fill= '#4d4d4d',
 pattern_alpha=0.2,
 pattern_angle= 0,
 stat = "identity", position = "dodge", pattern_spacing= 0.01) +
 scale_pattern_manual(values=c('none', 'crosshatch')) +
 theme_bw()+
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
 labs(x = "Condition", y = "Percentage of cells", fill = "Cell type")+coord flip()
  dev.off()
```

16.6 Sankey diagram for pathways

```
GSE_pathways_files <- list.files(path = "results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Cellular_component", pa
GSE_pathways_files
```

```
GSE names <- gsub("results_seurat/cell_assigned/pathways_DEG_pval05_GSE/Cellular_component/", "", GSE_pathways_files)
GSE_names <- gsub("_gse_GO_CC_pathways_pval05.csv", "", GSE_names)</pre>
GSE_names
names(GSE_pathways_files) <- GSE_names</pre>
GSE_pathways_files
pathway_rbind <- purrr::map_df(GSE_pathways_files,</pre>
                              read.csv, .id = 'id')
pathway_rbind$id <- gsub('unknown_2', 'Neuronal_progentiors', pathway_rbind$id)</pre>
pathway_rbind$id <- gsub('unknown_1', 'Neurons', pathway_rbind$id)</pre>
pathway_rbind %>% head()
pathway_rbind %>% dim()
pathway_rbind %>% distinct(id)
pathway_rbind %>% distinct(Description)
pathway_rbind %>% distinct(Description) %>% as.character()
cell_type <- combined_sct@meta.data$cell_type_EC %>% unique
cell_type
lysosome related pathways <- c("endosome", "lysosome", "lytic vacuole", "vacuolar membrane", "late endosome",
pathway_numbers_selected <-pathway_rbind %>% filter(Description %in% lysosome_related_pathways)
pathway_numbers_sankey <- pathway_numbers_selected %>%
add_row(id=cell_type[!(cell_type %in% .$id)]) %>%
make_long(id, Description)
pathway numbers sankey <- pathway numbers sankey %>% dplyr::arrange(next node, node)
pathway numbers_sankey$node <- factor(pathway numbers_sankey$node, levels = c(as.character(cell_type[order(cell_type,
```

```
pathway_numbers_sankey$x <- gsub("id", "Cell Type", pathway_numbers_sankey$x)</pre>
pathway_numbers_sankey$x <- gsub("Description", "Pathway", pathway_numbers_sankey$x)</pre>
pathway_numbers_sankey <- pathway_numbers_sankey %>% filter(!is.na(node))
p <- ggplot(pathway_numbers_sankey, aes(x = x,</pre>
               next_x = next_x,
               node = node,
               next_node = next_node,
               fill=node,
               label = node
               ) +
  geom_sankey(width=0.05, flow.alpha = .6, type= "sankey") +
 theme_sankey(base_size = 32) +
 theme(legend.position = "none")+
NULL
dev.copy(pdf, "results seurat/cell assigned/figures/pathway sankey graph labels gse resordered nolablels.pdf", width
print(p)
dev.off()
```

17 Save Rdata and write session info

```
save.image(file = "Myra_spns_snRNAseq_26052023_mt_removed_seurat_integration_25072023.RData")
load("Myra_spns_snRNAseq_26052023_mt_removed_seurat_integration_25072023.RData")
sessionInfo()
```

R version 4.3.1 (2023-06-16)

Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.2 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

Random number generation:

RNG: L'Ecuyer-CMRG
Normal: Inversion
Sample: Rejection

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=de_CH.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=de_CH.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C

time zone: Europe/Zurich
tzcode source: system (glibc)

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] viridis_0.6.3 viridisLite_0.4.2
[3] liana_0.1.12 future_1.33.0
[5] ggpattern_1.1.0-0 paletteer_1.5.0
[7] ggrepel_0.9.3 dittoSeq_1.12.0
[9] clusterProfiler_4.8.1 Libra_1.0.0

```
[11] repr_1.1.6
                                 BiocParallel_1.34.2
                                 Rcpp_1.0.11
[13] harmony 0.1.1
[15] patchwork_1.1.2
                                 scDblFinder_1.14.0
[17] SingleCellExperiment 1.22.0 SummarizedExperiment 1.30.2
[19] Biobase_2.60.0
                                 GenomicRanges_1.52.0
[21] GenomeInfoDb 1.36.1
                                 IRanges 2.34.1
[23] S4Vectors_0.38.1
                                 BiocGenerics_0.46.0
[25] MatrixGenerics_1.12.2
                                 matrixStats_1.0.0
[27] SeuratObject_4.1.3
                                 Seurat_4.3.0.1
[29] lubridate_1.9.2
                                 forcats_1.0.0
[31] stringr_1.5.0
                                 dplyr_1.1.2
[33] purrr_1.0.1
                                 readr_2.1.4
[35] tidyr_1.3.0
                                 tibble_3.2.1
[37] ggplot2_3.4.2
                                 tidyverse_2.0.0
loaded via a namespace (and not attached):
  [1] progress_1.2.2
                                goftest_1.2-3
  [3] Biostrings 2.68.1
                                vctrs_0.6.3
  [5] spatstat.random_3.1-5
                                shape_1.4.6
  [7] digest_0.6.32
                                png_0.1-8
  [9] OmnipathR_3.9.6
                                IRdisplay_1.1
 [11] deldir 1.0-9
                                parallelly 1.36.0
[13] MASS_7.3-60
                                reshape2_1.4.4
[15] httpuv_1.6.11
                                foreach_1.5.2
 [17] qvalue_2.32.0
                                withr_2.5.0
 [19] xfun_0.39
                                ggfun_0.0.9
[21] ellipsis_0.3.2
                                survival_3.5-5
[23] memoise_2.0.1
                                ggbeeswarm_0.7.2
[25] gson_0.1.0
                                tidytree_0.4.2
[27] zoo_1.8-12
                                GlobalOptions_0.1.2
 [29] pbapply_1.7-2
                                IRkernel_1.3.2
[31] prettyunits_1.1.1
                                rematch2 2.1.2
 [33] KEGGREST_1.40.0
                                promises_1.2.0.1
 [35] httr_1.4.6
                                downloader_0.4
```

[37]	restfulr_0.0.15	globals_0.16.2
[39]	fitdistrplus_1.1-11	miniUI_0.1.1.1
[41]	generics_0.1.3	DOSE_3.26.1
[43]	base64enc_0.1-3	dir.expiry_1.8.0
[45]	curl_5.0.1	zlibbioc_1.46.0
[47]	ScaledMatrix_1.8.1	ggraph_2.1.0
[49]	polyclip_1.10-4	<pre>GenomeInfoDbData_1.2.10</pre>
[51]	xtable_1.8-4	doParallel_1.0.17
[53]	evaluate_0.21	S4Arrays_1.0.4
[55]	hms_1.1.3	irlba_2.3.5.1
[57]	colorspace_2.1-0	filelock_1.0.2
[59]	ROCR_1.0-11	readxl_1.4.2
[61]	reticulate_1.30	spatstat.data_3.0-1
[63]	magrittr_2.0.3	lmtest_0.9-40
[65]	later_1.3.1	ggtree_3.8.0
[67]	lattice_0.21-8	spatstat.geom_3.2-2
[69]	future.apply_1.11.0	scattermore_1.2
[71]	XML_3.99-0.14	scuttle_1.10.1
[73]	shadowtext_0.1.2	cowplot_1.1.1
[75]	RcppAnnoy_0.0.21	pillar_1.9.0
[77]	nlme_3.1-162	iterators_1.0.14
[79]	compiler_4.3.1	beachmat_2.16.0
[81]	stringi_1.7.12	tensor_1.5
[83]	minqa_1.2.5	GenomicAlignments_1.36.0
[85]	plyr_1.8.8	crayon_1.5.2
[87]	abind_1.4-5	BiocIO_1.10.0
[89]	scater_1.28.0	blme_1.0-5
[91]	gridGraphics_0.5-1	locfit_1.5-9.8
[93]	sp_2.0-0	<pre>graphlayouts_1.0.0</pre>
[95]	bit_4.0.5	fastmatch_1.1-3
[97]	codetools_0.2-19	BiocSingular_1.16.0
[99]	<pre>GetoptLong_1.0.5</pre>	plotly_4.10.2
[101]	mime_0.12	splines_4.3.1
[103]	circlize_0.4.15	basilisk_1.13.2

```
[105] sparseMatrixStats_1.12.2 HDO.db_0.99.1
[107] cellranger 1.1.0
                                knitr_1.43
[109] blob_1.2.4
                                utf8_1.2.3
[111] clue 0.3-64
                                pbdZMQ 0.3-9
[113] lme4_1.1-34
                                 checkmate 2.2.0
                                DelayedMatrixStats_1.22.1
[115] listenv 0.9.0
[117] logger_0.2.2
                                ggplotify_0.1.0
[119] Matrix_1.5-4.1
                                statmod_1.5.0
[121] tzdb_0.4.0
                                tweenr_2.0.2
[123] pkgconfig_2.0.3
                                pheatmap_1.0.12
[125] tools_4.3.1
                                cachem_1.0.8
[127] RSQLite_2.3.1
                                rvest_1.0.3
[129] DBI_1.1.3
                                numDeriv_2016.8-1.1
[131] rmarkdown_2.23
                                fastmap_1.1.1
[133] scales_1.2.1
                                grid_4.3.1
[135] pbmcapply_1.5.1
                                ica 1.0-3
[137] Rsamtools_2.16.0
                                RANN_2.6.1
[139] farver 2.1.1
                                tidygraph_1.2.3
[141] scatterpie_0.2.1
                                yaml_2.3.7
[143] rtracklayer 1.60.0
                                cli_3.6.1
[145] tester_0.1.7
                                leiden_0.4.3
[147] lifecycle 1.0.3
                                uwot 0.1.16
[149] glmmTMB_1.1.7
                                backports_1.4.1
[151] bluster_1.10.0
                                timechange_0.2.0
[153] gtable_0.3.3
                                rjson_0.2.21
[155] ggridges_0.5.4
                                progressr_0.13.0
[157] parallel_4.3.1
                                ape_5.7-1
[159] limma_3.56.2
                                 jsonlite_1.8.7
[161] edgeR_3.42.4
                                bitops_1.0-7
[163] bit64_4.0.5
                                xgboost_1.7.5.1
[165] Rtsne_0.16
                                yulab.utils_0.0.6
[167] spatstat.utils 3.0-3
                                BiocNeighbors_1.18.0
[169] metapod_1.8.0
                                GOSemSim_2.26.0
[171] dqrng_0.3.0
                                lazyeval_0.2.2
```

[179]	ahin: 1 7 /	h+m]+aa]a
	shiny_1.7.4	htmltools_0.5.5
	enrichplot_1.20.0	GO.db_3.17.0
[177]	sctransform_0.3.5	rappdirs_0.3.3
[179]	basilisk.utils_1.13.2	glue_1.6.2
[181]	XVector_0.40.0	RCurl_1.98-1.12
[183]	treeio_1.24.1	scran_1.28.1
[185]	gridExtra_2.3	boot_1.3-28
[187]	igraph_1.5.0	TMB_1.9.4
[189]	R6_2.5.1	DESeq2_1.40.1
[191]	labeling_0.4.2	cluster_2.1.4
[193]	aplot_0.1.10	nloptr_2.0.3
[195]	DelayedArray_0.26.6	tidyselect_1.2.0
[197]	vipor_0.4.5	xml2_1.3.4
[199]	ggforce_0.4.1	AnnotationDbi_1.62.1
[201]	rsvd_1.0.5	munsell_0.5.0
[203]	KernSmooth_2.23-21	data.table_1.14.8
[205]	htmlwidgets_1.6.2	fgsea_1.26.0
[207]	ComplexHeatmap_2.16.0	RColorBrewer_1.1-3
[209]	rlang_1.1.1	spatstat.sparse_3.0-2
[211]	spatstat.explore_3.2-1	<pre>lmerTest_3.1-3</pre>
[213]	uuid_1.1-0	fansi_1.0.4
[215]	beeswarm_0.4.0	