ESCP 2023

Exercice 1 -

1. Je commence par calculer le carré de la matrice A :

$$A^{2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1+1 & 1 & 1 \\ 1 & 1+1 & 1 \\ 1 & 1 & 1+1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = A + 2I.$$

J'ai montré que $A^2 = A + 2I$. Alors $A^2 - A - 2I = 0_3$, matrice nulle d'ordre 3, ce qui signifie que le polynôme $x^2 - x - 2$, qui est bien de degré 2, est un polynôme annulateur de la matrice A.

2. a) Les valeurs propres possibles pour la matrice A sont parmi les racines d'un polynôme annulateur. Il me suffit donc de trouver les racines du polynôme $x^2 - x - 2$. Je calcule son discriminant : $\Delta = (-1)^2 - 4 \times 1 \times (-2) = 1 + 8 = 9 = 3^2 > 0$. Le polynôme admet donc deux racines :

$$x_1 = \frac{-(-1) + \sqrt{9}}{2 \times 1} = \frac{1+3}{2} = \frac{4}{2} = 2$$
 et $x_1 = \frac{1-3}{2} = \frac{-2}{2} = -1$.

Ainsi les deux valeurs propres possibles pour la matrice A sont -1 et 2.

b) En me servant du polynôme annulateur,

$$A^2-A-2I=0_3\quad\Longleftrightarrow\quad A^2-A=2I\quad\Longleftrightarrow\quad A\times\left(A-I\right)=2I\quad\Longleftrightarrow\quad A\times\left(\frac{1}{2}(A-I)\right)=I.$$

Grâce à cette équation, j'en déduis que la matrice *A* est inversible et que son inverse est donnée par

$$A^{-1} = \frac{1}{2} (A - I).$$

3. a) Je calcule les trois produits matriciels demandés :

$$AU = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+1 \\ 1+1 \\ 1+1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2U,$$

$$AV = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1-1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = -1 \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -V,$$

$$AW = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1-1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = -1 \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = -W.$$

Comme U est une matrice colonne non nulle telle que AU = 2U, alors 2 est effectivement valeur propre de A, associée au vecteur propre $U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

De même, comme V est une matrice colonne non nulle telle que AV = -V, alors -1 est effectivement valeur propre de A, associée au vecteur propre $V = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

Enfin pour les mêmes raisons, W est un autre vecteur propre associé à la valeur propre -1.

b) Je calcule puis compare les deux produits matriciels. Comme les colonnes de Q sont les vecteurs propres de la matrice A_Q ; alors je connais déjà les colonnes de la matrice AQ:

$$A \times Q = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
$$Q \times D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

Ainsi j'ai bien vérifié l'égalité matricielle AQ = QD.

c) Je calcule le produit matriciel QR:

$$Q \times R = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1+1+1 & 1-1 & 1-1 \\ 1+1-2 & 1+2 & 1-1 \\ 1-2+1 & 1-1 & 1+2 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = 3I.$$

Comme $Q \times R = 3I$, alors la matrice Q est inversible et son inverse est donnée par

$$Q^{-1} = \frac{1}{3}R.$$

- d) Comme la matrice Q est inversible, alors l'équation AQ = QD se réécrit $A = QDQ^{-1}$, où la matrice D est diagonale et la matrice Q est inversible. Il s'agit de la définition d'une matrice diagonalisable. Donc la matrice A est bien diagonalisable.
- 4. a) Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $A^n = QD^nQ^{-1}$.

Initialisation: Pour n = 0,

$$A^0 = I$$
 et $QD^0Q^{-1} = QIQ^{-1} = QQ^{-1} = I$.

Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $A^n = QD^nQ^{-1}$. Alors

$$A^{n+1} = A^n \times A = QD^nQ^{-1} \times QDQ^{-1} = QD^nIDQ^{-1} = QD^nDQ^{-1} = QD^{n+1}Q^{-1}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 0 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad A^n = QD^nQ^{-1}.$$

b) J'ai montré que pour tout entier $n \in \mathbb{N}$, $A^n = QD^nQ^{-1}$. Or je connais Q et Q^{-1} et comme D est une matrice diagonale, alors

$$D^{n} = \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix}.$$

Pour obtenir la matrice A^n , il me suffit de calculer le produit $A^n = QD^nQ^{-1}$. Ici, seule la première ligne est demandée.

$$Q \times D^{n} = \begin{pmatrix} 1 & 1 & 1 \\ * & * & * \\ * & * & * \end{pmatrix} \times \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} = \begin{pmatrix} 2^{n} & (-1)^{n} & (-1)^{n} \\ * & * & * \\ * & * & * \end{pmatrix},$$

$$A^{n} = QD^{n} \times Q^{-1} = \begin{pmatrix} 2^{n} & (-1)^{n} & (-1)^{n} \\ * & * & * \\ * & * & * \end{pmatrix} \times \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n} + (-1)^{n} + (-1)^{n} & 2^{n} + (-1)^{n} - 2 \times (-1)^{n} & 2^{n} - 2 \times (-1)^{n} + (-1)^{n} \\ * & * & * \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n} + 2 \times (-1)^{n} & 2^{n} - (-1)^{n} & 2^{n} - (-1)^{n} \\ * & * & * \end{pmatrix}.$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n} + 2 \times (-1)^{n} & 2^{n} - (-1)^{n} & 2^{n} - (-1)^{n} \\ * & * & * \end{pmatrix}.$$

Je retrouve la formule annoncée par l'énoncé pour la première ligne de la matrice A^n .

5. a) À l'instant 0, le jeton se trouve sur le sommet 1 et il se déplace de façon équiprobable sur l'un des deux autres sommets. Ainsi le jeton quitte le sommet 1 et a une chance sur deux d'arriver sur les sommets 2 et 3 :

$$P(X_1 = 1) = 0$$
, $P(X_1 = 2) = \frac{1}{2}$ et $P(X_1 = 3) = \frac{1}{2}$.

Alors comme $\{[X_1 = 2], [X_1 = 3]\}$ forme un système complet d'événements, en utilisant la formule des probabilités totales et le fait que le jeton a une probabilité $\frac{1}{2}$ d'aller sur chacun des autres sommets, j'obtiens bien les formules annoncées par l'énoncé :

$$P(X_{2} = 1) = P(X_{1} = 2) \times P_{[X_{1} = 2]}(X_{2} = 1) + P(X_{1} = 3) \times P_{[X_{1} = 3]}(X_{2} = 1) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2},$$

$$P(X_{2} = 2) = P(X_{1} = 2) \times P_{[X_{1} = 2]}(X_{2} = 2) + P(X_{1} = 3) \times P_{[X_{1} = 3]}(X_{2} = 2) = \frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4},$$

$$P(X_{2} = 3) = P(X_{1} = 2) \times P_{[X_{1} = 2]}(X_{2} = 3) + P(X_{1} = 3) \times P_{[X_{1} = 3]}(X_{2} = 3) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times 0 = \frac{1}{4}.$$

b) Je reprends un raisonnement similaire. Pour $n \ge 2$, $\{[X_n = 1], [X_n = 2], [X_n = 3]\}$ forme un système complet d'événements et pour tout $(i, j) \in [1, 3]^2$, les probabilités conditionnelles sont données par

$$P_{[X_n=i]}(X_{n+1}=j) = \begin{cases} 0 & \text{si } i=j, \\ \frac{1}{2} & \text{si } i \neq j. \end{cases}$$

Alors d'après la formule des probabilités totales,

$$P(X_{n+1} = 1) = \sum_{i=1}^{3} P(X_n = i) \times P_{[X_n = i]}(X_{n+1} = 1)$$

= $P(X_n = 1) \times 0 + P(X_n = 2) \times \frac{1}{2} + P(X_n = 3) \times \frac{1}{2} = \frac{1}{2}P(X_n = 2) + \frac{1}{2}P(X_n = 3)$

c) De la même manière, je peux démontrer que pour tout entier $n \ge 2$,

$$P(X_{n+1}=2) = \frac{1}{2}P(X_n=1) + \frac{1}{2}P(X_n=3)$$
 et $P(X_{n+1}=3) = \frac{1}{2}P(X_n=1) + \frac{1}{2}P(X_n=2)$.

Alors en posant B la matrice égale à $B = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} = \frac{1}{2} \times \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2}A$, j'obtiens bien que pour tout entier $n \geqslant 2$,

$$L_n \times B = (P(X_n = 1) \quad P(X_n = 2) \quad P(X_n = 3)) \times \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
$$= \frac{1}{2} (P(X_n = 2) + P(X_n = 3) \quad P(X_n = 1) + P(X_n = 3) \quad P(X_n = 1) + P(X_n = 2))$$
$$= (P(X_{n+1} = 1) \quad P(X_{n+1} = 2) \quad P(X_{n+1} = 3)) = L_{n+1}.$$

d) Je vérifie que $L_0 \times B$ soit bien égale à L_1 , puis que $L_1 \times B$ soit bien égale à L_2 :

$$L_0 \times B = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = L_1$$

$$L_1 \times B = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{2} + \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} = L_2$$

Ainsi l'égalité $L_{n+1} = L_n B$ est vérifiée pour tout entier $n \in \mathbb{N}$.

e) Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $L_n = L_0 B^n$.

Initialisation : Pour n = 0, $L_0 B^0 = L_0 \times I = L_0$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par hypothèse de récurrence, $L_n = L_0 B^n$.

Et grâce à la question précédente, $L_{n+1} = L_n B$. Alors directement

$$L_{n+1} = L_n B = L_0 B^n \times B = L_0 B^{n+1}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est vraie pour n = 0 et est héréditaire, alors par principe de récurrence, \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad L_n = L_0 B^n.$$

f) La loi de X_n est donnée par les trois coefficients de la matrice L_n .

D'après la question **5.e**), $L_n = L_0 B^n$. D'après la question **5.c**), $B = \frac{1}{2} A$. Donc

$$L_n = L_0 \times \left(\frac{1}{2}A\right)^n = \left(\frac{1}{2}\right)^n \times L_0 A^n.$$

En utilisant la question **4.b**), comme $L_0 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$, alors

$$L_0 \times A^n = \frac{1}{3} (2^n + 2 \times (-1)^n \quad 2^n - (-1)^n \quad 2^n - (-1)^n).$$

Et finalement, en multipliant par $\left(\frac{1}{2}\right)^n$,

$$L_n = \frac{1}{3} \left(1 + 2 \times \left(-\frac{1}{2} \right)^n \quad 1 - \left(-\frac{1}{2} \right)^n \quad 1 - \left(-\frac{1}{2} \right)^n \right).$$

Ainsi pour tout $n \in \mathbb{N}$, la loi de X_n est donnée par

$$P(X_1 = 1) = \frac{1}{3} + \frac{2}{3} \times \left(-\frac{1}{2}\right)^n$$
, $P(X_1 = 2) = \frac{1}{3} - \frac{1}{3} \times \left(-\frac{1}{2}\right)^n$ et $P(X_1 = 3) = \frac{1}{3} - \frac{1}{3} \times \left(-\frac{1}{2}\right)^n$.

Exercice 2 –

- 1.
- 2. a)
 - b)
- 3.
- 4. a)
 - b)
 - c)
- 5. a)
 - b)
 - c)

Exercice 3 –

- 1. a)
 - b)
 - c)
- 2. a)
 - b)
 - c)
 - d)
- 3.
- 4.
- 5.

Exercice 4 –

- 1. a)
 - b)
- 2.
- 3. a)
 - b)
- 4. a)
 - b)
 - c)
 - d)
- 5. a)
 - b)
 - c)
- 6. a)
 - b)
 - c)
 - d)