Doda Digital Logic Design.

Derived (NOR)

Logic Circuit main difference of combinational circuit & Sequential

Circuit is,

Combinational - output only depont

Combinational - output only depend

Sequential - output only depend

On Previous & current input

Sequential

Combinational

Luse an III logic gates

Luse a

The memory elements are circuit to capable of Storing binary information

* The binary information Store In these memory element of any given time define the State of the Sequential Circuit at that time

* The external output of a sequen — tial circuit depends both on the present input and the previous output State.

Steps of Design a combinational Circuit.

or truth table 02, Minimization 03. Logic Diagram

Boolean' Algebra

Drioms .

0+0=0

0.0 =0.

111=1

101=1

001=100=0

140 = 0 +1 = 1

X=03 X=1

single variable theorom.

. 2.0=0

1. 1201=R

" 2+0 = 2.

R . X = Q

Rtn=R

2.2 = 0

· 2 tx = 1

1. 瓦二双

commulative LOW.

x.y = y.7

2+4 = 4+2.

associative Low

x. (y. Z) - (x.y) Z

x+ (y+Z) = (2 + 49)+Z,

Distributive LOW:

20 (y+z) = xy + 2Z

2+ y. z = (2+y). (2+z)

Absorption.

x+x.y= x.

De Morgan's theorem

Proof.

					r.		V		
al	4	Ñ	G	2.4	204	2+4	xty	· ~+ ÿ	£. 9
0	0	1	1	. 0	1	0	1	1	. 1
0	1	0	1	0			0		0
ţ i	1	0	0	. 1	0.	1	0.	0	0,
1		1	-		1	·	3.	1	
			0 0	Q.9.	= d+ 3 = Ro	1			

Consensus.

Number System..

01. Binary number System...
02. Documal number System
03. Octal number System
04. Hexa-Decimal number System.

Sign bit Magnitude: MSB=1 MSB=0 1000 0011 vale. Magnitude Magnitude Chegative. CPOSitive) '010. The way of showing negtive numbers 1"5 complement , ex= +9-> 0000 1001. PS complement -> 1111 0110, ·· -9 -> 1111.01.10. 295 complement 2?5 complement = 1's complement + 1. ex +9 -> 0000 100@1 1'5 C -> + 1111 0110. 25c > 12 1111 0111. ·· -9 -> 1111 0111

. .. in any grand or

are to a constitution of

d, the man (LA) C

War and the manager of the parties of the same

Half Adder.

truth table.

.1			
Ð	B	Sum	carray
0	. 0	0,	6.7
0	1	1	0 9
- [0	1	0
1	1	0	1
		7	, ,
		AOB	+ A.B.
		C	XOR)

A Three inputs

* Two output

A	B	Cin	Sum	carry
0	G	0	0	0
0	0	5 19	. (1.)	0
0	1	0	ı	0
0	1	1	0	- , - frv*.
1	G	0	10	0.
1	0	1	0	1
1	1	O	0	. 1
1	1		1	1
	usi	ng 50	P Ffc.	

Sam

FECT+ FELTERE 1. FIBCI+ DET + LA DC L+ NBC HAB.C.

Carry

BBC+BBC+BBC+BBC.

Using K-map

PBC	00	01	111	110
0	0	1	0	J
1	t	0	1	0.
		no gr	oups	

": Sum- FBC+ ABC+ABC+ AB(. = C(BB+AB)+C(AGB).

1	APC.	00	01	11	10			
	O	0	0	Tri	0	٠.,		
	1	0	1					
		Ca	irry	1=	A	Bt	A(+6	(

logic Glate for Sum.

Logic gate for carry

Half Substractor

* Two poutput - Different "in

A	В	1	B.
	0	0	0.

full Substractor

B. Bin D. Bo	The second of th
1 0 0 1 0 0	

1 . The contribute of Control Inventor.

- () } - - } - ()

Multiplexer

It is a combinational circuit that select binary information from one to mary input line and directit to output line.

In maltiplexer, always have one output.

nd vantageous/

L Reduce number of wires.

L reduce Circuit complexity of cost.

I Implementation of various circuit using mattiplexer.

number of selector variable on,

$$m = log n$$

$$n = 2^m$$

n = number of input variage - bie.

ex: numper of input. 4,

$$m=2$$

4x1 multiplexer

y= \$752Io+5, S2I1+ S, S2 I3 + S, S, I3.

Combinational Circuit.

truth table for 4x1.

So	Y
0	Io
0	I1 I2
	50

4 C be couse we convert

2 2x1 mailipiexer

this is number of eximultiplexer we get

how to get selector value.

"4 get by 4x 1 multiplexe "struth table,

thinks If we wants y = Io, was (0.0).

To rocheat the for out Io So Should be of Ctraths table.

In So = 0 | Y = Io

In So | Output.

becouse in truth table. In So =0,

then, from Jo. and Iz, we want to out Io,

according to truth table,.

Si So So we keep SI=0.

Shannon's Expansion Theorom.

Shannon's Expansion theorem express a given Logic function in learn of selectingut and data input required for logic Synthesis using a maitiplexer.

f(NI,NQ -- NO) = Wi.f(O, WQ > Wg -- WD) + W.G. o Neo -- WD)
ex:

ex= emplement f= wing + wing + wing cising 2+01
maltiplexer.

according to shannon's expressions

f. wiffon we was) of wif (10 we was)

now create function,

f = WI (10 W3 + 00 W2 + 00 W3) + NI (00, W3+ 10 W3+ 10); = WI (W3) + WI (W2+ W3).

example 02

I (WID WEDWO) - WIND + WIND + WEND

= \$ wif (on wearnes) + wif (1, wear wa)

- Der Carties + 10 m2

= wil (0xw2+0. w3+ 0xw2.w3) wil 1xw2+ w01xw3

f = willy two was decomposition using wigives,
with fanction of the sing wigives,

f= w1w2 + w1w3 + w2w3

= Wif (0, w2, Ng) + w1 (1, w2, wg).

= WI (Orwa + Orwa + wa wa) + WI (IX WE + IX W 3 + WEND)

= WI (w2 w3) + WI (N2 + W3 + W2N3)

= WI (W2W3) + WI (WW. W2(1+W3)+W3)

= WI (W2 W3) + WI (W2+W3)

Let simplyfy this only using maitiplexer,

00

let 9 = w2w3 expand both 9 Otwa W3 & h function. WexO + W3 N'2 = W2(0) + W2(W3) :459ng w2 here selector is wo, / - Shannons h = Wetwa = W2XI + W2 (W3) J= wing + we was decomposition using wigives. m1 (mg + w2mg) + w1 (m2mg) = WI (. W2+W3).+WI (W2 W3) h= w2 w3 watwa Worlt w2 (w3). = w2w3 f w2 (0) (2x1 martiplexer).

if we mant to show of usen 41 changes of winwa f = WIWS tIWEWS = wil wo (102 wg) + winge (42 m) + = WING , + W2N3 White for f = wiwer (NI = 00 W2 = 0) 7 00 40 and mi mo = f (ni = 0 2 mo = 1) } - 1 0-81080 900mm w/ w2 = f (w1 = 10 w2-0) WI W2 = f (Wi= 12 W2=1) wiws (w3) + win2 (w3 + w9) + win2 (0+0) + w1w2 (. w3) = WIW2(W3) + WIW2(1) + WIW2(0)+WIW2(W3 (this is not match

WI

Decoders

- * Decord Decoder Circuit are used to decode encoded information.
 - + Decoders are also combinational Circuit
 - * ninput -> 2" out put

E call Enable pin, it is not relavent.
There are three input (Ion II) Iz.) lets make.
truth table.

4	inpu	it —	\rightarrow	_	- 0	ut 1	24-				_ ,	-	-1
	I,	I,	Io	01	06	05	04	03	02	0,	00	1	1:
	0	0	0	0	0	0	0	0	0	0	0		
	0	0	ı	0	0	0	0	0	0	1	Q	· ·	
	0	1	G	0	0	0	0	0	1	Ô	0		
	0	1	1	0	0	0	0	t	0	0	0		
ĺ	1	0	0	0	0	0	f	0	0	0	0		
	1	O	1	0	0	١	D	0	0	0	0	1	
	1	1	0	0	1	0	0	0	0	0	0		
	1	1	1	.4	0	0	Ō	0	0	0	0		
¥.					-				t	1			

truth table.

WC
wj.
W2

7		1		1		
E	WI	wo	43	42	91	40
l	0	0	Ó	O	0	-1
1	0	1.	0	0	1	0
1	1	0	O	1	8	Ó
1	1	1	1	0	0	0
0	X	X	0	0	0	0

3 to 8 decorder - 2 to 4 decoder Example.

one input, Many output

- n -> number of output line.
 m -> Selector. variable

Encoders

27: nout -> n out put

27 binary encoder

· 4 to 2 binary encorder

truth table.

W2	MI	NO	41	yo
0	0	1	0	.0
0	1	0	0	1
1	0	10	1	0
1 0	0	0-0	1	1
	0	0 0	000	0 0 0 0 0

here, y 1= w3+w2

w₂ y₁ y₀ .

po Priority Encoders,

& each input has priority level associated with it.

assame)

A & D Rencoder

Priori

-ty

Priori

truth table.

	()					L.
Ws	Ne	wi	Mo	y,	40	ð
0	O	0	0	X	X	4 when all the input are zero output is
0	0	0	1:	Ò	Ó.	E when conois 1 9 yil 19270
0	0	1	X.	O	I.	when wiss then we don't core checoal priority of wiswo)
0	1	X	X	1	0	E when wais of then win wa
1	χ	X	Χ	1	Ú.	we > winwa
						,,,,,,,

lets make equation for yo and y, using kanage

toryo

wow of the poist of the

yo = N3 + W2 N1

Let the output of provity encorder of.

Z = wotwitws two core of the input is i

The outputs

Z= wawawiwot wawawit wawat wa

