

Update on Ara

05/04/2023
Matteo Perotti
Matheus Cavalcante

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Correlation between Performance and CVA6's \$-Misses

Performance drop mainly due to scalar cache size!

Barber's Pole Layout can be detrimental for medium vectors

Perturbate VRF access pattern

Increase the effective number of banks for short vector applications

Further Ara-optimizations

Further optimizing Ara does not boost performance much if not coupled with an improved CVA6 + Caches

ETH Zürich 4 |

Main Performance Drivers

CVA6 limits short vectors' performance, while scalar caches limit medium vectors'

ETH Zürich

5

16-FPU - Multi-Core System can overtake Single-Core ID-System

Multi-Core can overcome the issue-rate limitation

Overcome the Issue Rate Limitation

fmatmul - 16 FPUs

ETH Zürich

7