# Intro to Machine Learning 1

# Karina Cardenas, A16742606

# 2025-04-22

# Table of contents

| ntro to Machine learning           | 1 |
|------------------------------------|---|
| Clustering                         | 2 |
| K-means                            | 4 |
| Heirarchical Clustering            | 8 |
| Principal component Analysis (PCA) | 1 |
| barplot 1                          | 2 |
| barplot 2                          | 3 |
| Paris plot                         | 4 |
| PCA to the Rescue                  | 5 |

# Intro to Machine learning

There are different types of machine learning, a few notable mentions:

- Unsupervised learning: Finding structure in unlabeled data
- **Supervised learning**: Making predictions based on labeled data i.e regression/classification
- Reinforcement learning: Making decisions based on past experiences

Today we will explore **unsupervised machine learning** methods starting with clustering and dimensionality reduction.

# Clustering

To start let's make up some data to cluster where we know what the answer should be. The rnorm() function will help us here

```
hist(rnorm(10000, mean = 3))
```

# Histogram of rnorm(10000, mean = 3)



Return 30 numbers centered on -3

```
tmp <- c(rnorm(30, mean =-3),
rnorm(30, mean =+3))

x <- cbind(x = tmp, y = rev(tmp))
x</pre>
```

```
x y
[1,] -2.9767105 3.1114617
[2,] -4.8235034 3.5841082
[3,] -5.3020147 2.4749565
[4,] -4.2390199 3.5990991
[5,] -2.9852269 2.0641428
[6,] -2.3146612 1.3293529
```

- [7,] -1.8999455 4.0688101
- [8,] -1.7510140 3.2731864
- [9,] -3.7004737 2.5870029
- [10,] -1.9296286 2.3701207
- [11,] -3.2208503 3.2554209
- [12,] -2.3625383 4.2804249
- [13,] -1.7456592 3.4893401
- [14,] -4.2365031 2.9937973
- [15,] -3.9017569 3.4206261
- [16,] -3.0583619 2.7844152
- [17,] -3.3821010 4.4604195
- [18,] -1.7952746 2.2495290
- [19,] -4.2148528 2.6886318
- [20,] -3.8151237 3.5808544
- [21,] -1.8406185 1.9498786
- [22,] -3.5321962 3.3670303
- [23,] -5.2371504 2.2250322
- [24,] -2.6159083 4.4114858
- [25,] -3.3973083 3.4531332
- [26,] -0.7234705 4.4663621
- [27,] -4.0283540 2.5499375
- [28,] -3.5665264 2.0707579
- [29,] -4.4738736 3.3848688
- -
- [30,] -2.9342472 0.9060031
- [31,] 0.9060031 -2.9342472
- [32,] 3.3848688 -4.4738736
- [33,] 2.0707579 -3.5665264
- [34,] 2.5499375 -4.0283540
- [35,] 4.4663621 -0.7234705
- [36,] 3.4531332 -3.3973083
- [37,] 4.4114858 -2.6159083
- [38,] 2.2250322 -5.2371504
- [39,] 3.3670303 -3.5321962
- [40,] 1.9498786 -1.8406185
- [41,] 3.5808544 -3.8151237
- [42,] 2.6886318 -4.2148528
- [43,] 2.2495290 -1.7952746
- [44,] 4.4604195 -3.3821010
- [45,] 2.7844152 -3.0583619
- [46,] 3.4206261 -3.9017569
- [47,] 2.9937973 -4.2365031
- [48,] 3.4893401 -1.7456592
- [49,] 4.2804249 -2.3625383

```
[50,]
      3.2554209 -3.2208503
[51,]
      2.3701207 -1.9296286
[52,]
      2.5870029 -3.7004737
[53,]
      3.2731864 -1.7510140
[54,]
       4.0688101 -1.8999455
[55,]
      1.3293529 -2.3146612
[56,]
      2.0641428 -2.9852269
[57,]
      3.5990991 -4.2390199
[58,]
      2.4749565 -5.3020147
[59,]
      3.5841082 -4.8235034
[60,]
       3.1114617 -2.9767105
```

Make a plot of X

# plot(x)



## K-means

The main function in "base" R for K-means clustering is called kmeans():

```
#x = x
#centers = 2, # of groups

km <- kmeans(x, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 -3.200162 3.015006 2 3.015006 -3.200162

Clustering vector:

Within cluster sum of squares by cluster:

[1] 61.13703 61.13703 (between\_SS / total\_SS = 90.5 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

the kmeans() function returns a "list" with 9 components. You can see the named components of any list with the attributes function

```
attributes(km)
```

#### \$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

#### \$class

[1] "kmeans"

Q. How many points are in each cluster?

#### km\$size

[1] 30 30

Q. How do we get the cluster membership assignment?

#### km\$cluster

Q. Cluster centers?

#### km\$centers

```
x y
1 -3.200162 3.015006
2 3.015006 -3.200162
```

Q. Make a plot of our kmeans() results showing cluster assignment using different colors for each cluster/group of points and cluster centers?

```
#different colors for each cluster/group
plot(x, col = km$cluster)

#cluster centers: col = color, pch = shape, cex = character size
points(km$centers, col = "blue", pch = 15, cex = 2)
```



Q. Run kmeans() again on x and this time cluster it into 4 groups/clusters and plot the same result figure as above.

```
km4 <- kmeans(x, centers = 4 )
km4</pre>
```

K-means clustering with 4 clusters of sizes 14, 16, 10, 20

#### Cluster means:

x y
1 2.911037 -2.209519
2 3.105980 -4.066976
3 -1.897872 3.188849
4 -3.851308 2.928085

#### Clustering vector:

Within cluster sum of squares by cluster:

[1] 23.05224 12.03994 14.07955 21.16475 (between\_SS / total\_SS = 94.5 %)

Available components:



**keypoint**: K -means clustering is super popular but can be misused. one big limitarion is that it can impose a clustering pattern on your data even if clear natural grouping doesn't exist - i.e it does what you tell it to do in terms of centers

### **Heirarchical Clustering**

The main function in "base" R for hierarchical clustering is called hclust().

You can't just pass our input dataset as is into hclust() as we did with kmeans(). You must give "distance matrix" as input. We can get this from the dist() function in R.

```
#calculating distance matrix
d <- dist(x)

#clustering d/x
hc <- hclust(d)

#printing hc
hc</pre>
```

Call:
hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

The results of hclust() dont have a useful print() method but do have a special plot() method.

```
#x = hc
plot(hc)

#adds a horizontal line to cut the tree
abline(h = 8, col = "red")
```

# **Cluster Dendrogram**



d hclust (\*, "complete")

To get out main cluster assignment ( membership vector ), we need to "cut" the tree at the big line.

```
#cutree = function, hc = plot/data, h = height at cutting
grps <- cutree(hc, h = 8)
grps</pre>
```

```
#table function
table(grps)
```

```
#plotting x, with hc grps
plot(x, col = grps)
```



Hierarchical Clustering is distinct in that the dendrogram (tree figure) can reveal the potential grouping in your data (unlike k-means).

# Principal component Analysis (PCA)

PCA is a common and highly useful dimensionality reduction technique used in many fields - particularly bioinformatics.

Here we will analyze some data from the UK on food consumption.

```
#Reading csv file
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
head(x)</pre>
```

|   | Х             | England | Wales | Scotland | N.Ireland |
|---|---------------|---------|-------|----------|-----------|
| 1 | Cheese        | 105     | 103   | 103      | 66        |
| 2 | Carcass_meat  | 245     | 227   | 242      | 267       |
| 3 | Other_meat    | 685     | 803   | 750      | 586       |
| 4 | Fish          | 147     | 160   | 122      | 93        |
| 5 | Fats_and_oils | 193     | 235   | 184      | 209       |
| 6 | Sugars        | 156     | 175   | 147      | 139       |

we need to change the first column to be the names of the foods and not numbered. There are several ways to do so, but this way is inefficient and destructive.

```
rownames(x) <- x[,1]  
#overwriting x by removing a column everytime it is ran x <- x[,-1]  
head(x)
```

|               | England | Wales | ${\tt Scotland}$ | ${\tt N.Ireland}$ |
|---------------|---------|-------|------------------|-------------------|
| Cheese        | 105     | 103   | 103              | 66                |
| Carcass_meat  | 245     | 227   | 242              | 267               |
| Other_meat    | 685     | 803   | 750              | 586               |
| Fish          | 147     | 160   | 122              | 93                |
| Fats_and_oils | 193     | 235   | 184              | 209               |
| Sugars        | 156     | 175   | 147              | 139               |

However, this way changes the row names of the first column without removing the country columns.

```
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

|               | England | Wales | Scotland | N.Ireland |
|---------------|---------|-------|----------|-----------|
| Cheese        | 105     | 103   | 103      | 66        |
| Carcass_meat  | 245     | 227   | 242      | 267       |
| Other_meat    | 685     | 803   | 750      | 586       |
| Fish          | 147     | 160   | 122      | 93        |
| Fats_and_oils | 193     | 235   | 184      | 209       |
| Sugars        | 156     | 175   | 147      | 139       |

# barplot 1

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```



# barplot 2

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))



# Paris plot

One conventional plot that can be useful is called a "paris" plot.

```
#paris = type of plot, x = data, col = color, pch = style of marker pairs(x, col=rainbow(10), pch=16)
```



# PCA to the Rescue

The main function in base R for PCA is called  ${\tt prcomp}()$ .

#t = transpose, make the countries be the rows and cheese be the columns t(x)

|           | Cheese  | Carcass  | meat  | Other  | meat  | Fish | Fats_and  | _oils   | Sugars |
|-----------|---------|----------|-------|--------|-------|------|-----------|---------|--------|
| England   | 105     |          | 245   |        | 685   | 147  |           | 193     | 156    |
| Wales     | 103     |          | 227   |        | 803   | 160  |           | 235     | 175    |
| Scotland  | 103     |          | 242   |        | 750   | 122  |           | 184     | 147    |
| N.Ireland | 66      |          | 267   |        | 586   | 93   |           | 209     | 139    |
|           | Fresh_p | potatoes | Fresl | h_Veg  | Other | _Veg | Processe  | d_potat | toes   |
| England   |         | 720      | )     | 253    |       | 488  |           |         | 198    |
| Wales     |         | 874      | ŀ     | 265    |       | 570  |           |         | 203    |
| Scotland  |         | 566      | 3     | 171    |       | 418  |           |         | 220    |
| N.Ireland |         | 1033     | 3     | 143    |       | 355  |           |         | 187    |
|           | Process | sed_Veg  | Fresh | _fruit | Cere  | als  | Beverages | Soft_d  | drinks |
| England   |         | 360      |       | 1102   | 2     | 1472 | 57        |         | 1374   |
| Wales     |         | 365      |       | 1137   | 7     | 1582 | 73        |         | 1256   |
| Scotland  |         | 337      |       | 957    | 7     | 1462 | 53        |         | 1572   |
| N.Ireland |         | 334      |       | 674    | l :   | 1494 | 47        |         | 1506   |

# Alcoholic\_drinks Confectionery England 375 54 Wales 475 64 Scotland 458 62 N.Ireland 135 41

```
#pca = anlaysis
pca <- prcomp(t(x))

#overview of pca results
summary(pca)</pre>
```

## Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 2.921e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

The prcomp function returns a list object of our results with fivee attributes/components

#### attributes(pca)

```
$names
[1] "sdev"          "rotation" "center"          "scale"          "x'
$class
[1] "prcomp"
```

The two main "results" in here are pca\$x and pca\$rotation. The first set of (pcs\$x) contains the scores of the data on the new PC acis - we use these to make our PCA plot.

## pca\$x

|           | PC1        | PC2         | PC3        | PC4           |
|-----------|------------|-------------|------------|---------------|
| England   | -144.99315 | -2.532999   | 105.768945 | -9.152022e-15 |
| Wales     | -240.52915 | -224.646925 | -56.475555 | 5.560040e-13  |
| Scotland  | -91.86934  | 286.081786  | -44.415495 | -6.638419e-13 |
| N.Ireland | 477.39164  | -58.901862  | -4.877895  | 1.329771e-13  |

```
library(ggplot2)
library(ggrepel)

ggplot(pca$x) +
   aes(PC1, PC2, label = rownames(pca$x)) +
   geom_point() +
   geom_text_repel()
```



The plot utilizes **PCA** to display the similarities that are observed within scotland, England and wales using summarized components. Within this plot, N.Ireland is observed as an outleir, but fails to specify what food category creates this disparity.

The second major result is contained in the pca\$rotation object/component

```
ggplot(pca$rotation) +
  aes(PC1, rownames(pca$rotation)) +
  geom_col() +
  labs(title = "PCA", x = "PC1", y = "Food types")
```



Tells us how the original variables contribute to PCA. Anything to the right side of the plot (positive values) is what abundantly consumed in Ireland. It visually displays the differences of Ireland previously not visible with just the data.