

1

SEQUENCE LISTING

<110> CHEUNG, WING Y. GAGNON, MARIE-JOSEE LAFOREST, MARTIN LANDRY, BENOIT S. <120> COMPOSITIONS AND METHODS FOR IDENTIFYING PLANTS HAVING INCREASED TOLERANCE TO IMIDAZOLINONE HERBICIDES <130> 15039-2 <140> <141> <150> 60/421,993 <151> 2002-10-29 <160> 116 <170> PatentIn Ver. 3.2 <210> 1 <211> 2083 <212> DNA <213> Brassica napus <220> <221> CDS <222> (25)..(1989) <400> 1 tcatcatctc tctctcctca aacc atg gcg gcg gca aca tcg tct tct ccg Met Ala Ala Thr Ser Ser Pro atc tcc tta acc gct aaa cct tct tcc aaa tcc cct cta ccc att tcc 99 Ile Ser Leu Thr Ala Lys Pro Ser Ser Lys Ser Pro Leu Pro Ile Ser 20 aga ttc tcc ctt ccc ttc tcc tta acc cca cag aaa gac tcc tcc cgt 147 Arg Phe Ser Leu Pro Phe Ser Leu Thr Pro Gln Lys Asp Ser Ser Arg ctc cac cgt cct ctc gcc atc tcc gcc gtt ctc aac tca ccc gtc aat 195 Leu His Arg Pro Leu Ala Ile Ser Ala Val Leu Asn Ser Pro Val Asn 50 gtc gca cct cct tcc cct gaa aaa acc gac aag aac aag act ttc gtc 243 Val Ala Pro Pro Ser Pro Glu Lys Thr Asp Lys Asn Lys Thr Phe Val 65

+ a a																
Ser	Arg 75	Tyr	Ala	Pro	gac Asp	gag Glu 80	Pro	cgc Arg	aag Lys	ggt	gct Ala 85	gat Asp	Ile	ctc Leu	gtc Val	291
gaa Glu 90		ctc Leu	gag Glu	cgt Arg	caa Gln 95	ggc	gtc Val	gaa Glu	acc Thr	gtc Val 100	Phe	gct Ala	tat Tyr	ccc Pro	gga Gly 105	339
ggt Gly	gct Ala	tcc Ser	atg Met	gag Glu 110	atc Ile	cac His	caa Gln	gcc Ala	ttg Leu 115	act Thr	cgc Arg	tcc Ser	tcc Ser	acc Thr 120	atc Ile	387
cgt Arg	aac Asn	gtc Val	ctt Leu 125	Pro	cgt Arg	cac His	gaa Glu	caa Gln 130	gga Gly	gga Gly	gtc Val	ttc Phe	gcc Ala 135	gcc Ala	gag Glu	435
ggt Gly	tac Tyr	gct Ala 140	cgt Arg	tcc Ser	tcc Ser	ggc Gly	aaa Lys 145	ccg Pro	gga Gly	atc Ile	tgc Cys	ata Ile 150	gcc Ala	act Thr	tcg Ser	483
ggt Gly	ccc Pro 155	gga Gly	gct Ala	acc Thr	aac Asn	ctc Leu 160	gtc Val	agc Ser	Gly 999	tta Leu	gca Ala 165	gac Asp	gcg Ala	atg Met	ctt Leu	531
gac Asp 170	agt Ser	gtt Val	cct Pro	ctt Leu	gtc Val 175	gcc Ala	att Ile	aca Thr	gga Gly	cag Gln 180	gtc Val	cct Pro	cgc Arg	cgg Arg	atg Met 185	579
atc Ile	ggt Gly	act Thr	gac Asp	gcc Ala 190	ttc Phe	caa Gln	gag Glu	aca Thr	cca Pro 195	atc Ile	gtt Val	gag Glu	gta Val	acg Thr 200	agg Arg	627
tct Ser	att Ile	acg Thr	aaa Lys 205	cat His	aac Asn	tat Tyr	ctg Leu	gtg Val 210	atg Met	gat Asp	gtt Val	gat Asp	gac Asp 215	ata Ile	cct Pro	675
agg Arg	atc Ile	gtt Val 220	caa Gln	gaa Glu	gca Ala	ttc Phe	ttt Phe 225	cta Leu	gct Ala	act Thr	tcc Ser	ggt Gly 230	aga Arg	ccc Pro	gga Gly	723
ccg Pro	gtt Val 235	ttg Leu	gtt Val	gat Asp	gtt Val	cct Pro 240	aag Lys	gat Asp	att Ile	cag Gln	cag Gln 245	cag Gln	ctt Leu	gcg Ala	att Ile	771
cct Pro 250	aac Asn	tgg Trp	gat Asp	caa Gln	cct Pro 255	atg Met	cgc Arg	ttg Leu	cct Pro	ggc Gly 260	tac Tyr	atg Met	tct Ser	agg Arg	ttg Leu 265	819
cct Pro	cag Gln	ccw Xaa	ccg Pro	gaa Glu 270	gtt Val	tct Ser	cag Gln	Leu	ggt Gly 275	cag Gln	atc Ile	gtt Val	agg Arg	ttg Leu 280	atc Ile	867

Ċ

Ł

tcg gag tct aag agg cct gtt ttg tac gtt ggt ggt gga agc ttg aac 915 Ser Glu Ser Lys Arg Pro Val Leu Tyr Val Gly Gly Ser Leu Asn tcg agt gaa gaa ctg ggg aga ttt gtc gag ctt act ggg atc cct gtt 963 Ser Ser Glu Glu Leu Gly Arg Phe Val Glu Leu Thr Gly Ile Pro Val 300 gcg agt acg ttg atg ggg ctt ggc tct tat cct tgt aac gat gag ttg 1011 Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr Pro Cys Asn Asp Glu Leu 315 tcc ctg cag atg ctt ggc atg cac ggg act gtg tat gct aac tac gct 1059 Ser Leu Gln Met Leu Gly Met His Gly Thr Val Tyr Ala Asn Tyr Ala 330 335 gtg gag cat agt gat ttg ttg ctg gcg ttt ggt gtt agg ttt gat gac Val Glu His Ser Asp Leu Leu Leu Ala Phe Gly Val Arg Phe Asp Asp 350 cgt gtc acg gga aag ctc gag gct ttc gct agc agg gct aaa att gtg 1155 Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg Ala Lys Ile Val 365 cac ata gac att gat tet get gag att ggg aag aat aag aca eet cac 1203 His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn Lys Thr Pro His 380 gtg tct gtg tgt ggt gat gta aag ctg gct ttg caa ggg atg aac aag 1251 Val Ser Val Cys Gly Asp Val Lys Leu Ala Leu Gln Gly Met Asn Lys 395 400 gtt ctt gag aac cgg gcg gag gag ctc aag ctt gat ttc ggt gtt tgg 1299 Val Leu Glu Asn Arg Ala Glu Glu Leu Lys Leu Asp Phe Gly Val Trp 410 415 agg agt gag ttg agc gag cag aaa cag aag ttc cct ttg agc ttc aaa 1347 Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys Phe Pro Leu Ser Phe Lys 435 acg ttt gga gaa gcc att cct ccg cag tac gcg att cag atc ctc gac 1395 Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr Ala Ile Gln Ile Leu Asp 450 gag cta acc gaa ggg aag gca att atc agt act ggt gtt gga cag cgt 1443 Glu Leu Thr Glu Gly Lys Ala Ile Ile Ser Thr Gly Val Gly Gln Arg 465 cag atg tgg gcg gcg cag ttt tac aag tac agg aag ccg aga cag tgg 1491 Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr Arg Lys Pro Arg Gln Trp 480

ctg tcg tca tca ggc ctc gga gct atg ggt ttt gga ctt cct gct gcg Leu Ser Ser Ser Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala Ala 490 att gga gcg tct gtg gcg aac cct gat gcg att gtt gtg gat att gac 1587 Ile Gly Ala Ser Val Ala Asn Pro Asp Ala Ile Val Val Asp Ile Asp 515 ggt gat gga agc ttc ata atg aac gtt caa gag ctg gcc aca atc cgt 1635 Gly Asp Gly Ser Phe Ile Met Asn Val Gln Glu Leu Ala Thr Ile Arg 525 gta gag aat ctt cct gtg aag ata ctc ttg tta aac aac cag cat ctt 1683 Val Glu Asn Leu Pro Val Lys Ile Leu Leu Leu Asn Asn Gln His Leu 540 545 ggg atg gtc atg caa tgg gaa gat cgg ttc tac aaa gct aac aga gct 1731 Gly Met Val Met Gln Trp Glu Asp Arg Phe Tyr Lys Ala Asn Arg Ala 555 560 cac act tat ctc ggg gac ccg gca agg gag aac gag atc ttc cct aac 1779 His Thr Tyr Leu Gly Asp Pro Ala Arg Glu Asn Glu Ile Phe Pro Asn 570 575 atg ctg cag ttt gca gga gct tgc ggg att cca gct gcg aga gtg acg Met Leu Gln Phe Ala Gly Ala Cys Gly Ile Pro Ala Ala Arg Val Thr 590 aag aaa gaa gaa ctc cga gaa gct att cag aca atg ctg gat aca cca 1875 Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln Thr Met Leu Asp Thr Pro gga cca tac ctg ttg gat gtg ata tgt ccg cac caa gaa cat gtg tta 1923 Gly Pro Tyr Leu Leu Asp Val Ile Cys Pro His Gln Glu His Val Leu 620 625 ccg atg atc cca aat ggt ggc act ttc aaa gat gta ata aca gaa ggg 1971 Pro Met Ile Pro Asn Gly Gly Thr Phe Lys Asp Val Ile Thr Glu Gly 635 gat ggt cgc act aag tac tgagagattm agctggtgat cgatcatatg 2019 Asp Gly Arg Thr Lys Tyr 650 gtaaaagact tagtttcagt ttccagtttc ttttgtgtgg taatttgggt ttgtcagttg 2079 ttgt 2083

<210> 2 <211> 2116

ŧ

<212> DNA

<213> Brassica napus

```
<220>
 <221> CDS
 <222> (43)..(1998)
 <220>
 <221> modified base
 <222> (1434)..(1434)
<223> a, c, g, t, other or unknown
<220>
<221> modified base
<222> (2113) .. (2113)
<223> a, c, g, t, other or unknown
<400> 2
ttcatcatmt ctctctcatt tctctctct tctcatctaa cc atg gcg gca
                                                                    54
                                                Met Ala Ala Ala
aca tcg tct tct ccg atc tcc tta acc gct aaa cct tct tcc aaa tcc
                                                                   102
Thr Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro Ser Ser Lys Ser
                      10
cct cta ccc att tcc aga ttc tcc ctt ccc ttc tcc tta acc cca cag
                                                                   150
Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser Leu Thr Pro Gln
aaa ccc tcc cgt ctc cac cgt cca ctc gcc atc tcc gcc gtt ctc
                                                                   198
Lys Pro Ser Ser Arg Leu His Arg Pro Leu Ala Ile Ser Ala Val Leu
aac tca ccc gtc aat gtc gca cct gaa aaa acc gac aag atc aag act
                                                                   246
Asn Ser Pro Val Asn Val Ala Pro Glu Lys Thr Asp Lys Ile Lys Thr
ttc atc tcc cgc tac gct ccc gac gag ccc cgc aag ggt gct gat atc
                                                                   294
Phe Ile Ser Arg Tyr Ala Pro Asp Glu Pro Arg Lys Gly Ala Asp Ile
ctc gtg gaa gcc ctc gag cgt caa ggc gtc gaa acc gtc ttc gct tat
                                                                   342
Leu Val Glu Ala Leu Glu Arg Gln Gly Val Glu Thr Val Phe Ala Tyr
 85
                                                             100
ccc gga ggt gcc tcc atg gag atc cac caa gcc ttg act cgc tcc tcc
                                                                   390
Pro Gly Gly Ala Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Ser
                105
                                    110
                                                         115
acc atc cgt aac gtc ctc ccc cgt cac gaa caa gga gga gtc ttc gcc
Thr Ile Arg Asn Val Leu Pro Arg His Glu Gln Gly Gly Val Phe Ala
            120
                                                     130
gcc gag ggt tac gct cgt tcc tcc ggc aaa ccg gga atc tgc ata gcc
Ala Glu Gly Tyr Ala Arg Ser Ser Gly Lys Pro Gly Ile Cys Ile Ala
        135
                            140
```

. .

act tog ggt occ gga got acc aac otc gto ago ggg tta goo gao gog 534 Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Ser Gly Leu Ala Asp Ala atg ctt gac agt gtt cct ctc gtc gcc atc aca gga cag gtc cct cgc 582 Met Leu Asp Ser Val Pro Leu Val Ala Ile Thr Gly Gln Val Pro Arg 170 175 cgg atg atc ggt act gac gcg ttc caa gag acg cca atc gtt gag gta 630 Arg Met Ile Gly Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val 190 acg agg tct att acg aaa cat aac tat ctg gtg atg gat gtt gat gac 678 Thr Arg Ser Ile Thr Lys His Asn Tyr Leu Val Met Asp Val Asp Asp 200 205 ata cct agg atc gtt caa gaa gca ttc ttt cta gct act tcc ggt aga 726 Ile Pro Arg Ile Val Gln Glu Ala Phe Phe Leu Ala Thr Ser Gly Arg 220 ccc gga ccg gtt ttg gtt gat gtt cct aag gat att cag cag ctt 774 Pro Gly Pro Val Leu Val Asp Val Pro Lys Asp Ile Gln Gln Leu 230 235 gcg att cct aac tgg gat caa cct atg cgc ttg cct ggc tac atg tct 822 Ala Ile Pro Asn Trp Asp Gln Pro Met Arg Leu Pro Gly Tyr Met Ser 245 250 agg ctg cct cag cca ccg gaa gtt tct cag tta ggc cag atc gtt agg 870 Arg Leu Pro Gln Pro Pro Glu Val Ser Gln Leu Gly Gln Ile Val Arg 270 ttg atc tcg gag tct aag agg cct gtt ttg tac gtt ggt gga agc 918 Leu Ile Ser Glu Ser Lys Arg Pro Val Leu Tyr Val Gly Gly Ser 280 285 ttg aac tcg agt gaa gaa ctg ggg aga ttt gtc gag ctt act ggg atc 966 Leu Asn Ser Ser Glu Glu Leu Gly Arg Phe Val Glu Leu Thr Gly Ile 300 cct gtt gcg agt acg ctg atg ggg ctt ggc tct tat cct tgt aac gat 1014 Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr Pro Cys Asn Asp 310 315 gag ttg tcc ctg cag atg ctt ggc atg cac ggg act gtg tat gct aac 1062 Glu Leu Ser Leu Gln Met Leu Gly Met His Gly Thr Val Tyr Ala Asn 325 330 335 tac gct gtg gag cat agt gat ttg ttg ctg gcg ttt ggt gtt agg ttt Tyr Ala Val Glu His Ser Asp Leu Leu Leu Ala Phe Gly Val Arg Phe 345 350

gat gac cgt gtc acg gga aag ctc gag gcg ttt gcg agc agg gct aag 1158 Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg Ala Lys att gtg cac ata gac att gat tct gct gag att ggg aag aat aag aca 1206 Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn Lys Thr cct cac gtg tct gtg tgt ggt gat gta aag ctg gct ttg caa ggg atg 1254 Pro His Val Ser Val Cys Gly Asp Val Lys Leu Ala Leu Gln Gly Met 390 395 aac aag gtt ctt gag aac cgg gcg gag gag ctc aag ctt gat ttc ggt 1302 Asn Lys Val Leu Glu Asn Arg Ala Glu Glu Leu Lys Leu Asp Phe Gly 405 gtt tgg agg agt gag ttg agc gag cag aaa cag aag ttc ccg ttg agc 1350 Val Trp Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys Phe Pro Leu Ser ttc aaa acg ttt gga gaa gcc att cct ccg cag tac gcg att cag gtc 1398 Phe Lys Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr Ala Ile Gln Val 440 cta gac gag cta acc caa ggg aag gca att atc agn act ggt gtt gga 1446 Leu Asp Glu Leu Thr Gln Gly Lys Ala Ile Ile Xaa Thr Gly Val Gly 455 cag cat cag atg tgg gcg gcg cag ttt tac aag tac agg aag ccg agg 1494 Gln His Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr Arg Lys Pro Arg 470 cag tgg ctg tcg tcc tca gga ctc gga gct atg ggt ttc gga ctt cct 1542 Gln Trp Leu Ser Ser Gly Leu Gly Ala Met Gly Phe Gly Leu Pro 485 gct gcg att gga gcg tct gtg gcg aac cct gat gcg att gtt gtg gac 1590 Ala Ala Ile Gly Ala Ser Val Ala Asn Pro Asp Ala Ile Val Val Asp 505 att gac ggt gat gga agc ttc ata atg aac gtt caa gag ctg gcc aca 1638 Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln Glu Leu Ala Thr 520 atc cgt gta gag aat ctt cct gtg aag ata ctc ttg tta aac aac cag 1686 Ile Arg Val Glu Asn Leu Pro Val Lys Ile Leu Leu Asn Asn Gln 540 cat ctt ggg atg gtc atg caa ttg gaa gat cgg ttc tac aaa gct aac 1734 His Leu Gly Met Val Met Gln Leu Glu Asp Arg Phe Tyr Lys Ala Asn 560

...

Ł

aga Arg 565	Ala	cac His	act Thr	tat Tyr	ctc Leu 570	G1y 999	gac Asp	ccg Pro	gca Ala	agg Arg 575	gag Glu	aac Asn	gag Glu	atc Ile	ttc Phe 580	1782
cct Pro	aac Asn	atg Met	ctg Leu	cag Gln 585	ttt Phe	gca Ala	gga Gly	gct Ala	tgc Cys 590	Gly ggg	att Ile	cca Pro	gct Ala	gcg Ala 595	aga Arg	1830
gtg Val	acg Thr	aag Lys	aaa Lys 600	gaa Glu	gaa Glu	ctc Leu	cga Arg	gaa Glu 605	gct Ala	att Ile	cag Gln	aca Thr	atg Met 610	ctg Leu	gat Asp	1878
aca Thr	cct Pro	gga Gly 615	ccg Pro	tac Tyr	ctg Leu	ttg Leu	gat Asp 620	gcc Ala	atc Ile	tgt Cys	ccg Pro	cac His 625	caa Gln	gaa Glu	cat His	1926
gtg Val	tta Leu 630	ccg Pro	atg Met	atc Ile	cca Pro	agt Ser 635	ggt Gly	ggc Gly	act Thr	ttc Phe	aaa Lys 640	gat Asp	gta Val	ata Ile	acc Thr	1974
gaa Glu 645	Gly 999	gat Asp	ggt Gly	cgc Arg	act Thr 650	aag Lys	tac Tyr	tgag	agat	ga a	ıgctg	ıgtga	it co	catco	gtatg	2028
gtaa	aaaga	ict t	agtt	tcag	ıt tt	tcag	tttc	: ttt	tgtg	ıtgg	taat	ttgg	gt t	tgto	agttg	2088
ttgt	tyte	jct t	ttgg	tttg	t to	ccnk	ac									2116
<212 <213 <220 <221 <222 <400	l> 20 2> DN 3> Br 3> CD 2> (2 2> 3	A assi S 5)	(198	9)												
tcat	catc	tc t	ctct	cctc	t aa	cc a M	tg g et A 1	cg g la A	cg g la A	ca a la T	ca t hr S 5	cg t er S	ct t er S	ct c er P	cg ro	51
atc Ile 10	tcc Ser	tta Leu '	acc (gct (Ala :	aaa Lys : 15	cct (Pro (tct Ser	tcc a Ser 1	aaa Lys	tcc Ser : 20	cct (Pro :	cta (Leu :	ccc Pro	att Ile	tcc Ser 25	99
aga Arg	ttc Phe	tcc (Ser]	ctt (Leu 1	ecc f Pro 1 30	ttc (Phe s	tcc (Ser)	tta a Leu '	acc o	cca (Pro (35	cag a	aaa q Lys <i>l</i>	gac (cc Ser	tcc (Ser 1	cgt Arg	147
ctc Leu	cac (His /	cgt (Arg)	ect o Pro 1 45	ctc (Leu 1	gcc a Ala 1	atc t [le s	cc g Ser 1	gcc g Ala V 50	gtt d /al 1	ctc a Leu A	aac (Asn S	ca o Ser 1	ecc g Pro 1	gtc a Val 1	aat Asn	195

ì

Ł

gtc Val	gca Ala	cct Pro 60	cct Pro	tcc Ser	cct Pro	gaa Glu	aaa Lys 65	acc Thr	gac Asp	aag Lys	aac Asn	aag Lys 70	act Thr	ttc Phe	gtc Val	243
tcc Ser	cgc Arg 75	tac Tyr	gct Ala	ccc Pro	gac Asp	gag Glu 80	ccc Pro	cgc Arg	aag Lys	ggt Gly	gct Ala 85	gat Asp	atc Ile	ctc Leu	gtc Val	291
gaa Glu 90	gcc Ala	ctc Leu	gag Glu	cgt Arg	caa Gln 95	ggc Gly	gtc Val	gaa Glu	acc Thr	gtc Val 100	ttt Phe	gct Ala	tat Tyr	ccc Pro	gga Gly 105	339
ggt Gly	gct Ala	tcc Ser	atg Met	gag Glu 110	atc Ile	cac His	caa Gln	gcc Ala	ttg Leu 115	act Thr	cgc Arg	tcc Ser	tcc Ser	acc Thr 120	atc Ile	387
cgt Arg	aac Asn	gtc Val	ctt Leu 125	ccc Pro	cgt Arg	cac His	gaa Glu	caa Gln 130	gga Gly	gga Gly	gtc Val	ttc Phe	gcc Ala 135	gcc Ala	gag Glu	435
ggt Gly	tac Tyr	gct Ala 140	cgt Arg	tcc Ser	tcc Ser	ggc Gly	aaa Lys 145	ccg Pro	gga Gly	atc Ile	tgc Cys	ata Ile 150	gcc Ala	act Thr	tcg Ser	483
ggt Gly	ccc Pro 155	gga Gly	gct Ala	acc Thr	aac Asn	ctc Leu 160	gtc Val	agc Ser	gjà aaa	tta Leu	gca Ala 165	gac Asp	gcg Ala	atg Met	ctt Leu	531
gac Asp 170	agt Ser	gtt Val	cct Pro	ctt Leu	gtc Val 175	gcc Ala	att Ile	aca Thr	gga Gly	cag Gln 180	gtc Val	cct Pro	cgc Arg	cgg Arg	atg Met 185	579
atc Ile	ggt Gly	act Thr	gac Asp	gcc Ala 190	ttc Phe	caa Gln	gag Glu	aca Thr	cca Pro 195	atc Ile	gtt Val	gag Glu	gta Val	acg Thr 200	agg Arg	627
tct Ser	att Ile	acg Thr	aaa Lys 205	cat His	aac Asn	tat Tyr	ttg Leu	gtg Val 210	atg Met	gat Asp	gtt Val	gat Asp	gac Asp 215	ata Ile	cct Pro	675
agg Arg	atc Ile	gtt Val 220	caa Gln	gaa Glu	gct Ala	ttc Phe	ttt Phe 225	cta Leu	gct Ala	act Thr	tcc Ser	ggt Gly 230	aga Arg	ccc Pro	gga Gly	723
ccg Pro	gtt Val 235	ttg Leu	gtt Val	gat Asp	gtt Val	cct Pro 240	aag Lys	gat Asp	att Ile	cag Gln	cag Gln 245	cag Gln	ctt Leu	gcg Ala	att Ile	771
cct Pro 250	aac Asn	tgg Trp	gat Asp	caa Gln	cct Pro 255	atg Met	cgc Arg	tta Leu	Pro	ggc Gly 260	tac Tyr	atg Met	tct Ser	agg Arg	ttg Leu 265	819

cct Pro	cag Gln	cct Pro	ccg Pro	gaa Glu 270	Val	tct Ser	cag Gln	tta Leu	ggt Gly 275	Gln	g ato	gtt Val	agg Arg	ttg Leu 280	atc Ile	867
tcg Ser	gag Glu	tct Ser	aag Lys 285	Arg	cct Pro	gtt Val	ttg Leu	tac Tyr 290	Val	ggt Gly	ggt Gly	gga Gly	agc Ser 295	Leu	aac Asn	915
tcg Ser	agt Ser	gaa Glu 300	Glu	ctg Leu	gly aaa	aga Arg	ttt Phe 305	gtc Val	gag Glu	ctt Leu	act Thr	ggg Gly 310	Ile	ccc Pro	gtt Val	963
gcg Ala	agt Ser 315	Thr	ttg Leu	atg Met	gly aaa	ctt Leu 320	Gly	tct Ser	tat Tyr	cct Pro	tgt Cys 325	Asn	gat Asp	gag Glu	ttg Leu	1011
tcc Ser 330	ctg Leu	cag Gln	atg Met	ctt Leu	ggc Gly 335	atg Met	cac His	GJÀ aaa	act Thr	gtg Val 340	tat Tyr	gct Ala	aac Asn	tac Tyr	gct Ala 345	1059
gtg Val	gag Glu	cat His	agt Ser	gat Asp 350	ttg Leu	ttg Leu	ctg Leu	gcg Ala	ttt Phe 355	ggt Gly	gtt Val	agg Arg	ttt Phe	gat Asp 360	gac Asp	1107
cgt Arg	gtc Val	acg Thr	gga Gly 365	aag Lys	ctc Leu	gag Glu	gct Ala	ttc Phe 370	gct Ala	agc Ser	agg Arg	gct Ala	aaa Lys 375	att Ile	gtg Val	1155
cac His	ata Ile	gac Asp 380	att Ile	gat Asp	tct Ser	gct Ala	gag Glu 385	att Ile	Gly 999	aag Lys	aat Asn	aag Lys 390	aca Thr	cct Pro	cac His	1203
gtg Val	tct Ser 395	gtg Val	tgt Cys	ggt Gly	gat Asp	gta Val 400	aag Lys	ctg Leu	gct Ala	ttg Leu	caa Gln 405	Gly aaa	atg Met	aac Asn	aag Lys	1251
gtt Val 410	ctt Leu	gag Glu	aac Asn	cgg Arg	gcg Ala 415	gag Glu	gag Glu	ctc Leu	aag Lys	ctt Leu 420	gat Asp	ttc Phe	ggt Gly	gtt Val	tgg Trp 425	1299
agg Arg	agt Ser	gag Glu	ttg Leu	agc Ser 430	gag Glu	cag Gln	aaa Lys	cag Gln	aag Lys 435	ttc Phe	cct Pro	ttg Leu	agc Ser	ttc Phe 440	aaa Lys	1347
acg Thr	ttt Phe	gga Gly	gaa Glu 445	gcc Ala	att Ile	cct Pro	Pro	cag Gln 450	tac Tyr	gcg Ala	att Ile	cag Gln	atc Ile 455	ctc Leu	gac Asp	1395
gag Glu	cta Leu	acc Thr 460	gaa Glu	G1 y 999	aag Lys	Ala	att Ile 465	atc Ile	agt Ser	act Thr	ggt Gly	gtt Val 470	gga Gly	cag Gln	cat His	1443

cag Gln	atg Met 475	tgg Trp	gcg Ala	gcg Ala	cag Gln	ttt Phe 480	tac Tyr	aag Lys	tac Tyr	agg Arg	aag Lys 485	ccg Pro	aga Arg	cag Gln	tgg Trp	1491
ctg Leu 490	tcg Ser	tca Ser	tca Ser	ggc Gly	ctc Leu 495	gga Gly	gct Ala	atg Met	ggt Gly	ttt Phe 500	gga Gly	ctt Leu	cct Pro	gct Ala	gcg Ala 505	1539
att Ile	gga Gly	gcg Ala	tct Ser	gtg Val 510	gcg Ala	aac Asn	cct Pro	gat Asp	gcg Ala 515	att Ile	gtt Val	gtg Val	gat Asp	att Ile 520	gac Asp	1587
ggt Gly	gat Asp	gga Gly	agc Ser 525	ttc Phe	ata Ile	atg Met	aac Asn	gtt Val 530	caa Gln	gag Glu	ctg Leu	gcc Ala	aca Thr 535	atc Ile	cgt Arg	1635
gta Val	gag Glu	aat Asn 540	ctt Leu	cct Pro	gtg Val	aag Lys	ata Ile 545	ctc Leu	ttg Leu	tta Leu	aac Asn	aac Asn 550	cag Gln	cat His	ctt Leu	1683
ggg Gly	atg Met 555	gtc Val	atg Met	caa Gln	tgg Trp	gaa Glu 560	gat Asp	cgg Arg	ttc Phe	tac Tyr	aaa Lys 565	gct Ala	aac Asn	aga Arg	gct Ala	1731
cac His 570	act Thr	tat Tyr	ctc Leu	glà aaa	gac Asp 575	ccg Pro	gca Ala	agg Arg	gag Glu	aac Asn 580	gag Glu	atc Ile	ttc Phe	cct Pro	aac Asn 585	1779
atg Met	ctg Leu	cag Gln	ttt Phe	gca Ala 590	gga Gly	gct Ala	tgc Cys	Gly 333	att Ile 595	cca Pro	gct Ala	gcg Ala	aga Arg	gtg Val 600	acg Thr	1827
aag Lys	aaa Lys	gaa Glu	gaa Glu 605	ctc Leu	cga Arg	gaa Glu	gct Ala	att Ile 610	cag Gln	aca Thr	atg Met	ctg Leu	gat Asp 615	aca Thr	cca Pro	1875
gga Gly	cca Pro	tac Tyr 620	ctg Leu	ttg Leu	gat Asp	gtg Val	ata Ile 625	tgt Cys	ccg Pro	cac His	caa Gln	gaa Glu 630	cat His	gtg Val	tta Leu	1923
ccg Pro	atg Met 635	atc Ile	cca Pro	agt Ser	ggt Gly	ggc Gly 640	act Thr	ttc Phe	aaa Lys	gat Asp	gta Val 645	ata Ile	aca Thr	gaa Glu	gly aaa	1971
gat Asp 650	ggt Gly	cgc Arg	act Thr	aag Lys	tac Tyr 655	tgag	gagat	ga a	igctg	ıgtga	ıt c <u>c</u>	jatca	ıtatç	Į		2019
gtaa	aaga	ct t	agtt	tcag	jt tt	ccag	tttc	ttt	tgtg	ıtgg	taat	ttgg	ıgt t	tgto	agttg	2079
ttgt																2083

```
<210> 4
 <211> 2116
 <212> DNA
 <213> Brassica napus
 <220>
 <221> CDS
 <222> (43)..(1998)
 <220>
 <221> modified base
 <222> (21)..(21)
<223> a, c, g, t, other or unknown
<400> 4
ttmmacatct ctctctatt ncactctctc cctcatctaa cc atg gcg gca
                                                                    54
                                                Met Ala Ala Ala
aca tcg cct tct ccg atc tcc tta acc gct aaa cct tct tcc aaa tcc
                                                                    102
Thr Ser Pro Ser Pro Ile Ser Leu Thr Ala Lys Pro Ser Ser Lys Ser
cct cta ccc att tcc aga ttc tcc ctt ccc ttc tcc tta acc cca cag
                                                                    150
Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser Leu Thr Pro Gln
                                      30
aaa ccc tcc tcc cgt ctc cac cgt cca ctc gcc atc tcc gcc gtt ctc
                                                                    198
Lys Pro Ser Ser Arg Leu His Arg Pro Leu Ala Ile Ser Ala Val Leu
                                  45
aac tca ccc gtc aat gtc gca cct gaa aaa acc gac aag atc aag act
                                                                    246
Asn Ser Pro Val Asn Val Ala Pro Glu Lys Thr Asp Lys Ile Lys Thr
ttc atc tcc cgc tac gct ccc gac gag ccc cgc aag ggt gct gat atc
                                                                    294
Phe Ile Ser Arg Tyr Ala Pro Asp Glu Pro Arg Lys Gly Ala Asp Ile
                          75
ctc gtg gaa gcc ctc gag cgt caa ggc gtc gaa acc gtc ttc gct tat
                                                                    342
Leu Val Glu Ala Leu Glu Arg Gln Gly Val Glu Thr Val Phe Ala Tyr
                     90
                                          95
                                                             100
ccc gga ggt gcc tcc atg gag atc cac caa gcc ttg act cgc tcc tcc
                                                                   390
Pro Gly Gly Ala Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Ser
                105
                                     110
                                                         115
acc atc cgt aac gtc ctc ccc cgt cac gaa caa gga gga gtc ttc gcc
                                                                   438
Thr Ile Arg Asn Val Leu Pro Arg His Glu Gln Gly Gly Val Phe Ala
            120
                                 125
                                                     130
gcc gag ggt tac gct cgt tcc tcc ggc aaa ccg gga atc tgc ata gcc
Ala Glu Gly Tyr Ala Arg Ser Ser Gly Lys Pro Gly Ile Cys Ile Ala
        135
                            140
```

act Thr	tcg Ser 150	ggt Gly	ccc Pro	gga Gly	gct Ala	acc Thr 155	aac Asn	ctc Leu	gtc Val	agc Ser	ggg Gly 160	tta Leu	gcc Ala	gac Asp	gcg Ala	534
atg Met 165	ctt Leu	gac Asp	agt Ser	gtt Val	cct Pro 170	ctc Leu	gtc Val	gcc Ala	atc Ile	aca Thr 175	gga Gly	cag Gln	gtc Val	cct Pro	cgc Arg 180	582
cgg Arg	atg Met	atc Ile	ggt Gly	act Thr 185	gac Asp	gcg Ala	ttc Phe	caa Gln	gag Glu 190	acg Thr	cca Pro	atc Ile	gtt Val	gag Glu 195	gta Val	630
acg Thr	agg Arg	tct Ser	att Ile 200	acg Thr	aaa Lys	cat His	aac Asn	tat Tyr 205	ctg Leu	gtg Val	atg Met	gat Asp	gtt Val 210	gat Asp	gac Asp	678
ata Ile	cct Pro	agg Arg 215	atc Ile	gtt Val	caa Gln	gaa Glu	gca Ala 220	ttc Phe	ttt Phe	cta Leu	gct Ala	act Thr 225	tcc Ser	ggt Gly	aga Arg	726
ccc Pro	gga Gly 230	ccg Pro	gtt Val	ttg Leu	gtt Val	gat Asp 235	gtt Val	cct Pro	aag Lys	gat Asp	att Ile 240	cag Gln	cag Gln	cag Gln	ctt Leu	774
gcg Ala 245	att Ile	cct Pro	aac Asn	tgg Trp	gat Asp 250	caa Gln	cct Pro	atg Met	cgc Arg	ttg Leu 255	cct Pro	ggc Gly	tac Tyr	atg Met	tct Ser 260	822
agg Arg	ctg Leu	cct Pro	cag Gln	cca Pro 265	ccg Pro	gaa Glu	gtt Val	tct Ser	cag Gln 270	tta Leu	ggc Gly	cag Gln	atc Ile	gtt Val 275	agg Arg	870
ttg Leu	atc Ile	tcg Ser	gag Glu 280	tct Ser	aag Lys	agg Arg	cct Pro	gtt Val 285	ttg Leu	tac Tyr	gtt Val	ggt Gly	ggt Gly 290	gga Gly	agc Ser	918
ttg Leu	aac Asn	tcg Ser 295	agt Ser	gag Glu	gaa Glu	ctg Leu	300 999	aga Arg	ttt Phe	gtc Val	gag Glu	ctt Leu 305	act Thr	Gly 999	atc Ile	966
cct Pro	gtt Val 310	gcg Ala	agt Ser	acg Thr	ttg Leu	atg Met 315	gly ggg	ctt Leu	ggc Gly	tct Ser	tat Tyr 320	cct Pro	tgt Cys	aac Asn	gat Asp	1014
gag Glu 325	ttg Leu	tcc Ser	ctg Leu	cag Gln	atg Met 330	ctt Leu	ggc Gly	atg Met	cac His	999 Gly 335	act Thr	gtg Val	tat Tyr	gct Ala	aac Asn 340	1062
tac Tyr	gct Ala	gtg Val	gag Glu	cat His 345	agt Ser	gat Asp	ttg Leu	ttg Leu	ctg Leu 350	gcg Ala	ttt Phe	ggt Gly	gtt Val	agg Arg 355	ttt Phe	1110

gat Asp	gac Asp	cgt Arg	gtc Val 360	acg Thr	gga Gly	aag Lys	ctc Leu	gag Glu 365	gcg Ala	ttt Phe	gcg Ala	agc Ser	agg Arg 370	gct Ala	aag Lys	1158
att Ile	gtg Val	cac His 375	ata Ile	gac Asp	att Ile	gat Asp	tct Ser 380	gct Ala	gag Glu	att Ile	Gly aaa	aag Lys 385	aat Asn	aag Lys	aca Thr	1206
cct Pro	cac His 390	gtg Val	tct Ser	gtg Val	tgt Cys	ggt Gly 395	gat Asp	gta Val	aag Lys	ctg Leu	gct Ala 400	ttg Leu	caa Gln	Gly 999	atg Met	1254
aac Asn 405	aag Lys	gtt Val	ctt Leu	gag Glu	aac Asn 410	cgg Arg	gcg Ala	gag Glu	gag Glu	ctc Leu 415	aag Lys	ctt Leu	gat Asp	ttc Phe	ggt Gly 420	1302
gtt Val	tgg Trp	agg Arg	agt Ser	gag Glu 425	ttg Leu	agc Ser	gag Glu	cag Gln	aaa Lys 430	cag Gln	aag Lys	ttc Phe	ccg Pro	ttg Leu 435	agc Ser	1350
ttc Phe	aaa Lys	acg Thr	ttt Phe 440	gga Gly	gaa Glu	gcc Ala	att Ile	cct Pro 445	ccg Pro	cag Gln	tac Tyr	gcg Ala	att Ile 450	cag Gln	gtc Val	1398
cta Leu	gac Asp	gag Glu 455	cta Leu	acc Thr	caa Gln	gly aaa	aag Lys 460	gca Ala	att Ile	atc Ile	agt Ser	act Thr 465	ggt Gly	gtt Val	gga Gly	1446
cag Gln	cat His 470	cag Gln	atg Met	tgg Trp	gcg Ala	gcg Ala 475	cag Gln	ttt Phe	tac Tyr	aag Lys	tac Tyr 480	agg Arg	aag Lys	ccg Pro	agg Arg	1494
cag Gln 485	tgg Trp	ctg Leu	tcg Ser	tcc Ser	tca Ser 490	gga Gly	ctc Leu	gga Gly	gct Ala	atg Met 495	ggt Gly	ttc Phe	gga Gly	ctt Leu	cct Pro 500	1542
gct Ala	gcg Ala	att Ile	gga Gly	gcg Ala 505	tct Ser	gtg Val	gcg Ala	aac Asn	cct Pro 510	gat Asp	gcg Ala	att Ile	gtt Val	gtg Val 515	gac Asp	1590
att Ile	gac Asp	ggt Gly	gat Asp 520	gga Gly	agc Ser	ttc Phe	ata Ile	atg Met 525	aac Asn	gtt Val	caa Gln	gag Glu	ctg Leu 530	gcc Ala	aca Thr	1638
atc Ile	cgt Arg	gta Val 535	gag Glu	aat Asn	ctt Leu	cct Pro	gtg Val 540	aag Lys	ata Ile	ctc Leu	ttg Leu	tta Leu 545	aac Asn	aac Asn	cag Gln	1686
cat His	ctt Leu 550	gly aaa	atg Met	gtc Val	Met	caa Gln 555	tgg Trp	gaa Glu	gat Asp	cgg Arg	ttc Phe 560	tac Tyr	aaa Lys	gct Ala	aac Asn	1734

ì

. 11

aga gct cac act tat ctc ggg gac ccg gca agg gag aac gag atc ttc 1782 Arg Ala His Thr Tyr Leu Gly Asp Pro Ala Arg Glu Asn Glu Ile Phe 565 570 cct aac atg ctg cag ttt gca gga gct tgc ggg att cca gct gcg aga Pro Asn Met Leu Gln Phe Ala Gly Ala Cys Gly Ile Pro Ala Ala Arg 585 590 gtg acg aag aaa gaa ctc cga gaa gct att cag aca atg ctg gat 1878 Val Thr Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln Thr Met Leu Asp 600 605 aca cct gga ccg tac ctg ttg gat gtc atc tgt ccg cac caa gaa cat 1926 Thr Pro Gly Pro Tyr Leu Leu Asp Val Ile Cys Pro His Gln Glu His 615 620 gtg tta ccg atg atc cca agt ggt ggc act ttc gaa gat gta ata acc 1974 Val Leu Pro Met Ile Pro Ser Gly Gly Thr Phe Glu Asp Val Ile Thr 630 635 gaa ggg gat ggt cgc act aag tac tgagagatga agctggtgat ccatcatatg Glu Gly Asp Gly Arg Thr Lys Tyr 645 650 gtaaaagact tagtttcagt ttacagtttc ttttgtgtgg taatttgggt ttgtcagttg 2088 ttgttctgct tttggtttgt tcccwkac 2116 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 5 ttatctcggg gacccggcaa 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 6 gacccggcaa gggagaacga 20

<210> 7 <211> 20 <212> DNA <213> Art	n Fificial Sequence			
<220>	cription of Artificial	Seguence:	Synthetic	
	gonucleotide	1	27	
	a gatetteeet			20
<210> 8 <211> 20 <212> DNA <213> Art	ificial Sequence			
<220> <223> Des	cription of Artificial a	Sequence:	Synthetic	
<400> 8 gatetteed	t aacatgctgc			20
<210> 9 <211> 20 <212> DNA <213> Art	ificial Sequence			
<220> <223> Des	cription of Artificial a	Sequence:	Synthetic	
<400> 9 aacatgctg	c agtttgcagg			20
<210> 10 <211> 20 <212> DNA <213> Art	ificial Sequence			
<220> <223> Des oli	cription of Artificial S gonucleotide	Sequence:	Synthetic	
<400> 10 agtttgcag	g agcttgcggg			20

<210><211><211><212>	20	
(213)	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	11	
agctt	gcggg attccagctg	20
<210>	12	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	12	
attcca	agctg cgagagtgac	20
<210>	13	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	13	
cgagag	gtgac gaagaaagaa	20
<210>	14	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	14	
gaagaa	agaa gaactccgag	20

<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gaact	15 ccgag aagctattca	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> aagct	16 attca gacaatgctg	20
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gacaa	17 tgctg gatacaccag	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gataca	18 accag gaccatacct	20

<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gacca	19 tacct gttggatgtg	20
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gttgga	20 atgtg atatgtccgc	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> atatgt	21 Eccgc accaagaaca	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	22 gaaca tgtgttaccg	20

<210><211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	23	
tgtgt	taccg atgatcccaa	20
		20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
catctt	tgaa agtgccacca	20
-210-		
<210>		
<211><212>		
	Artificial Sequence	
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	25	
tctgtt	atta catctttgaa	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
accatc	ccct tctgttatta	20

<210> 27 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 27 acttagtgcg accatecect	20
<210> 28 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 28 atctctcagt acttagtgcg	20
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 29 caccagcttc atctctcagt	20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 30 tatgatcgat caccagcttc	20

ò

<210> 31 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 31	
tcttttacca tatgatcgat	20
<210> 32	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 32	
tgaaactaag tettttacca	20
<210> 33 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 33	
aactggaaac tgaaactaag	20
<210> 34	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 34 acacaaaaga aactggaaac	
2	20

•

<210> 35 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 35 ccaaattacc acacaaaga	20
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 36 actgacaaac ccaaattacc	20
<210> 37 <211> 20 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 37 tagtacaaca actgacaaac	20
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 38 caaccaaaag tagtacaaca	20

<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> cgtct	39 gggaa caaccaaaag	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> acagc	40 gagta cgtctgggaa	20
<220>	20	
<400>	oligonucleotide	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> aaaaag	42 ggaaa caaaacaaca	20

Ŋ

<210><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> atgato	43 cccaa gtggtggcac t	21
<210><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> agtgco	44 Cacca cttgggatca t	21
<220>	21 DNA Artificial Sequence	
	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> atgato	45 :ccaa atggtggcac t	21
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> agtgcc	46 acca tttgggatca t	21

<210>	47	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
12237	oligonucleotide	
	Oligonacieotide	
<400>	47	
ctcag	gactc ggagctatgg	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	4.8	
	tatgg gttteggaet	
33-3-	20023 200033400	20
<210>	49	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	49	
gtttc	ggact teetgetgeg	20
		~ ~
<210>	50	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
	- Service - Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
-2237	oligonucleotide	
	origonacieocide	
<400>	5.0	
	- •	
cucugo	tgcg attggagcgt	20

<210> <211> <212>	20 DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
attgga	agogt ctgtggcgaa	20
<210>		
<211><212>		
	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	52	
ctgtgg	rcgaa ccctgatgcg	20
<210>	53	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
ccctga	tgcg attgttgtgg	20
<210>		
<211>		
<212> :	DNA Artificial Sequence	
~2132	Arciliciai Sequence	
<220>		
<223>]	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
attgtt	gtgg acattgacgg	20

<210> 55 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 55 acattgacgg tgatggaagc	20
<210> 56 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 56 tgatggaagc ttcataatga	20
<210> 57 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 57 ttcataatga acgttcaaga	20
<210> 58 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 58 acgttcaaga gctggccaca	20

<210>	59	
<211>	20	
<212>		
<213>	Artificial Sequence	
-220-		
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	59	
gctgg	ccaca atccgtgtag	20
		20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
12237	oligonucleotide	
<400>	60	
atccgt	gtag agaatcttcc	20
		20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	3	
<400>	61	
agaato	ttcc tgtgaagata	20
<210>	62	
<210><211>		
<211>		
	Artificial Sequence	
-213/	Arcticial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		
tgtgaa	gata ctcttgttaa	20

<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ctctt	63 gttaa acaaccagca	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> acaac	64 cagca tcttgggatg	20
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> tcttg	65 ggatg gtcatgcaat	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ctttgt	66 Lagaa ccgatettee	20

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	67	
gctct	gttag ctttgtagaa	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	68	
ataag	tgtga gctctgttag	20
		20
<210>	69	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	69	
ggtcc	ccgag ataagtgtga	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	70	
tccctt	gccg ggtccccgag	20

<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gatct	71 cgttc tcccttgccg	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> tgttag	72 gggaa gatctcgttc	20
<210><211><211><212><213>	20	
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> aactgo	73 Cagca tgttagggaa	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	74 tgca aactgcagca	20

<210>	75	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	75	
gaatc	ccgca agctcctgca	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		
ctcgca	agctg gaatcccgca	20
<210>	77	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
_	Description of Artificial Sequence: Synthetic	
12237	oligonucleotide	
	01190	
<400>	77	
	cact ctcgcagctg	20
J.		20
<210>	78	
<211>	20	
<212>	DNA	
	Artificial Sequence	
	*	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		
gttctt	cttt cttcqtcact	20

<210> 79 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 79 gcttctcgga gttcttcttt	20
<210> 80 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 80 tgtctgaata gcttctcgga	20
<210> 81 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 81 tatccagcat tgtctgaata	20
<210> 82 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 82 ggtccaggtg tatccagcat	20

<210>	63	
<211>	20	
<212>	DNA	
	Artificial Sequence	
\215/	Attitital sequence	
000		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	5	
<400>	83	
Caaca	ggtac ggtccaggtg	20
<210>	84	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
1000	oligonyalostida	
	oligonucleotide	
<400>	84	
agatg	acatc caacaggtac	20
	55 - 44	20
.010.	0.5	
<210>		
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
	The state of the s	
222		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	-	
<400>	85	
greate	gcaat gggaagatcg g	21
<210>	86	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
/	oligonularia	
	oligonucleotide	
<400>		
ccgato	ttcc cattgcatga c	21
_	J	21

.

```
<210> 87
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 87
gtcatgcaat tggaagatcg g
                                                                    21
<210> 88
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 88
ccgatcttcc aattgcatga c
                                                                    21
<210> 89
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 89
tacatctttg aaagtgcca
                                                                    19
<210> 90
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 90
ggcgtttggt gttaggtttg a
                                                                    21
```

```
<210> 91
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 91
cgtctgggaa caaccaaaag t
                                                                    21
<210> 92
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 92
ggaaagctcg aggctttcgc t
                                                                    21
<210> 93
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 93
atcaccagct tcatctctca gt
                                                                    22
<210> 94
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 94
ggaaagctcg aggcgtttgc g
                                                                    21
```

.

```
<210> 95
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 95
gtgttaccga tgatcc
                                                                     16
<210> 96
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 96
gggatggtca tgcaat
                                                                     16
<210> 97
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 97
caagtggtgg
                                                                     10
<210> 98
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 98
caaatggtgg
                                                                    10
```

9

9

```
<210> 99
 <211> 9
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
 <400> 99
 gggaagatc
 <210> 100
 <211> 9
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       primer
 <400> 100
 tggaagatc
<210> 101
 <211> 655
 <212> PRT
 <213> Brassica napus
 <220>
 <221> MOD RES
 <222> (268)..(268)
 <223> Variable amino acid
 <400> 101
 Met Ala Ala Ala Thr Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro
                   5
 Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser
 Leu Thr Pro Gln Lys Asp Ser Ser Arg Leu His Arg Pro Leu Ala Ile
 Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Pro Ser Pro Glu
 Lys Thr Asp Lys Asn Lys Thr Phe Val Ser Arg Tyr Ala Pro Asp Glu
                      70
 Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly
                  85
```

- Val Glu Thr Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His 100 105 110
- Gln Ala Leu Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His 115 120 125
- Glu Gln Gly Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly
 130 135 140
- Lys Pro Gly Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu 145 150 155 160
- Val Ser Gly Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala 165 170 175
- Ile Thr Gly Gln Val Pro Arg Arg Met Ile Gly Thr Asp Ala Phe Gln
 180 185 190
- Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile Thr Lys His Asn Tyr 195 200 205
- Leu Val Met Asp Val Asp Asp Ile Pro Arg Ile Val Gln Glu Ala Phe 210 215 220
- Phe Leu Ala Thr Ser Gly Arg Pro Gly Pro Val Leu Val Asp Val Pro 225 230 235 240
- Lys Asp Ile Gln Gln Leu Ala Ile Pro Asn Trp Asp Gln Pro Met
 245 250 255
- Arg Leu Pro Gly Tyr Met Ser Arg Leu Pro Gln Xaa Pro Glu Val Ser 260 265 270
- Gln Leu Gly Gln Ile Val Arg Leu Ile Ser Glu Ser Lys Arg Pro Val 275 280 285
- Leu Tyr Val Gly Gly Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg 290 295 300
- Phe Val Glu Leu Thr Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu 305 310 315 320
- Gly Ser Tyr Pro Cys Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met 325 330 335
- His Gly Thr Val Tyr Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu 340 345 350
- Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu 355 360 365
- Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala 370 375 380

- Glu Ile Gly Lys Asn Lys Thr Pro His Val Ser Val Cys Gly Asp Val
 385 390 395 400
- Lys Leu Ala Leu Gln Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu 405 410 415
- Glu Leu Lys Leu Asp Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln
 420 425 430
- Lys Gln Lys Phe Pro Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro 435 440 445
- Pro Gln Tyr Ala Ile Gln Ile Leu Asp Glu Leu Thr Glu Gly Lys Ala 450 455 460
- Ile Ile Ser Thr Gly Val Gly Gln Arg Gln Met Trp Ala Ala Gln Phe 465 470 475 480
- Tyr Lys Tyr Arg Lys Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly
 485 490 495
- Ala Met Gly Phe Gly Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn 500 505 510
- Pro Asp Ala Ile Val Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met 515 520 525
- Asn Val Gln Glu Leu Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys 530 535 540
- Ile Leu Leu Leu Asn Asn Gln His Leu Gly Met Val Met Gln Trp Glu
 545 550 555 560
- Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro
 565 570 575
- Ala Arg Glu Asn Glu Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala 580 585 590
- Cys Gly Ile Pro Ala Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu
 595 600 605
- Ala Ile Gln Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val 610 615 620
- Ile Cys Pro His Gln Glu His Val Leu Pro Met Ile Pro Asn Gly Gly 625 630 635 640
- Thr Phe Lys Asp Val Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr 645 650 655

<210> 102

<211> 652

<212> PRT

<213> Brassica napus

<220>

<221> MOD RES

<222> (464)..(464)

<223> Variable amino acid

<400> 102

Met Ala Ala Ala Thr Ser Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro 1 5 10 15

Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser 20 25 30

Leu Thr Pro Gln Lys Pro Ser Ser Arg Leu His Arg Pro Leu Ala Ile 35 40 45

Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Glu Lys Thr Asp
50 55 60

Lys Ile Lys Thr Phe Ile Ser Arg Tyr Ala Pro Asp Glu Pro Arg Lys 65 70 75 80

Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly Val Glu Thr 85 90 95

Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His Gln Ala Leu 100 105 110

Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His Glu Gln Gly
115 120 125

Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly Lys Pro Gly 130 135 140

Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Ser Gly
145 150 155 160

Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala Ile Thr Gly
165 170 175

Gln Val Pro Arg Arg Met Ile Gly Thr Asp Ala Phe Gln Glu Thr Pro 180 185 190

Ile Val Glu Val Thr Arg Ser Ile Thr Lys His Asn Tyr Leu Val Met 195 200 205

Asp Val Asp Asp Ile Pro Arg Ile Val Gln Glu Ala Phe Phe Leu Ala 210 215 220

- Thr Ser Gly Arg Pro Gly Pro Val Leu Val Asp Val Pro Lys Asp Ile
 225 230 235 240
- Gln Gln Gln Leu Ala Ile Pro Asn Trp Asp Gln Pro Met Arg Leu Pro 245 250 255
- Gly Tyr Met Ser Arg Leu Pro Gln Pro Pro Glu Val Ser Gln Leu Gly 260 265 270
- Gln Ile Val Arg Leu Ile Ser Glu Ser Lys Arg Pro Val Leu Tyr Val 275 280 285
- Gly Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg Phe Val Glu 290 295 300
- Leu Thr Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr 305 310 315 320
- Pro Cys Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met His Gly Thr 325 330 335
- Val Tyr Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu Leu Ala Phe 340 345 350
- Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala 355 360 365
- Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly 370 375 380
- Lys Asn Lys Thr Pro His Val Ser Val Cys Gly Asp Val Lys Leu Ala 385 390 395 400
- Leu Gln Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu Glu Leu Lys 405 410 415
- Leu Asp Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys 420 425 430
- Phe Pro Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr 435 440 445
- Ala Ile Gln Val Leu Asp Glu Leu Thr Gln Gly Lys Ala Ile Ile Xaa 450 455 460
- Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr 465 470 475 480
- Arg Lys Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly Ala Met Gly 485 490 495
- Phe Gly Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn Pro Asp Ala 500 505 510

Ile Val Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln 515 520 525

Glu Leu Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys Ile Leu Leu 530 535 540

Leu Asn Asn Gln His Leu Gly Met Val Met Gln Leu Glu Asp Arg Phe 545 550 555 560

Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro Ala Arg Glu
565 570 575

Asn Glu Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala Cys Gly Ile 580 585 590

Pro Ala Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln
595 600 605

Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Ala Ile Cys Pro 610 615 620

His Gln Glu His Val Leu Pro Met Ile Pro Ser Gly Gly Thr Phe Lys 625 630 635 640

Asp Val Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr 645 650

<210> 103

<211> 655

<212> PRT

<213> Brassica napus

<400> 103

Met Ala Ala Ala Thr Ser Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro 1 5 10 15

Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser 20 25 30

Leu Thr Pro Gln Lys Asp Ser Ser Arg Leu His Arg Pro Leu Ala Ile 35 40 45

Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Pro Ser Pro Glu
50 55 60

Lys Thr Asp Lys Asn Lys Thr Phe Val Ser Arg Tyr Ala Pro Asp Glu 65 70 75

Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly 85 90 95

Val Glu Thr Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His 100 105 110

- Gln Ala Leu Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His 115 120 125
- Glu Gln Gly Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly 130 135 140
- Lys Pro Gly Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu 145 150 155 160
- Val Ser Gly Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala 165 170 175
- Ile Thr Gly Gln Val Pro Arg Arg Met Ile Gly Thr Asp Ala Phe Gln 180 185 190
- Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile Thr Lys His Asn Tyr 195 200 205
- Leu Val Met Asp Val Asp Asp Ile Pro Arg Ile Val Gln Glu Ala Phe 210 215 220
- Phe Leu Ala Thr Ser Gly Arg Pro Gly Pro Val Leu Val Asp Val Pro 225 230 235 240
- Lys Asp Ile Gln Gln Leu Ala Ile Pro Asn Trp Asp Gln Pro Met 245 250 255
- Arg Leu Pro Gly Tyr Met Ser Arg Leu Pro Gln Pro Pro Glu Val Ser
- Gln Leu Gly Gln Ile Val Arg Leu Ile Ser Glu Ser Lys Arg Pro Val 275 280 285
- Leu Tyr Val Gly Gly Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg 290 295 300
- Phe Val Glu Leu Thr Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu 305 310 315 320
- Gly Ser Tyr Pro Cys Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met 325 330 335
- His Gly Thr Val Tyr Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu 340 345 350
- Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu 355 360 365
- Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala 370 375 380
- Glu Ile Gly Lys Asn Lys Thr Pro His Val Ser Val Cys Gly Asp Val 385 390 395 400

Lys Leu Ala Leu Gln Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu 405 410 415

Glu Leu Lys Leu Asp Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln
420 425 430

Lys Gln Lys Phe Pro Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro 435 440 445

Pro Gln Tyr Ala Ile Gln Ile Leu Asp Glu Leu Thr Glu Gly Lys Ala 450 455 460

Ile Ile Ser Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Phe 465 470 475 480

Tyr Lys Tyr Arg Lys Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly
485 490 495

Ala Met Gly Phe Gly Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn 500 505 510

Pro Asp Ala Ile Val Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met 515 520 525

Asn Val Glu Leu Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys 530 535 540

Ile Leu Leu Asn Asn Gln His Leu Gly Met Val Met Gln Trp Glu 545 550 555 560

Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro 565 570 575

Ala Arg Glu Asn Glu Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala 580 585 590

Cys Gly Ile Pro Ala Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu 595 600 605

Ala Ile Gln Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val 610 615 620

Ile Cys Pro His Gln Glu His Val Leu Pro Met Ile Pro Ser Gly Gly 625 630 635 640

Thr Phe Lys Asp Val Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr 645 650 655

<210> 104

<211> 652

<212> PRT

<213> Brassica napus

<400> 104

- Met Ala Ala Ala Thr Ser Pro Ser Pro Ile Ser Leu Thr Ala Lys Pro
 1 5 10 15
- Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser 20 25 30
- Leu Thr Pro Gln Lys Pro Ser Ser Arg Leu His Arg Pro Leu Ala Ile 35 40 45
- Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Glu Lys Thr Asp 50 55 60
- Lys Ile Lys Thr Phe Ile Ser Arg Tyr Ala Pro Asp Glu Pro Arg Lys
 65 70 75 80
- Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly Val Glu Thr 85 90 95
- Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His Gln Ala Leu 100 105 110
- Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His Glu Gln Gly 115 120 125
- Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly Lys Pro Gly 130 135 140
- Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Ser Gly
 145 150 155 160
- Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala Ile Thr Gly
 165 170 175
- Gln Val Pro Arg Arg Met Ile Gly Thr Asp Ala Phe Gln Glu Thr Pro 180 185 190
- Ile Val Glu Val Thr Arg Ser Ile Thr Lys His Asn Tyr Leu Val Met 195 200 205
- Asp Val Asp Asp Ile Pro Arg Ile Val Gln Glu Ala Phe Phe Leu Ala 210 215 220
- Thr Ser Gly Arg Pro Gly Pro Val Leu Val Asp Val Pro Lys Asp Ile 225 230 235 240
- Gln Gln Gln Leu Ala Ile Pro Asn Trp Asp Gln Pro Met Arg Leu Pro 245 250 255
- Gly Tyr Met Ser Arg Leu Pro Gln Pro Pro Glu Val Ser Gln Leu Gly
 260 265 270

- Gln Ile Val Arg Leu Ile Ser Glu Ser Lys Arg Pro Val Leu Tyr Val 275 280 285
- Gly Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg Phe Val Glu 290 295 300
- Leu Thr Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr 305 310 315 320
- Pro Cys Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met His Gly Thr 325 330 335
- Val Tyr Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu Leu Ala Phe 340 345 350
- Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala 355 360 365
- Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly 370 375 380
- Lys Asn Lys Thr Pro His Val Ser Val Cys Gly Asp Val Lys Leu Ala 385 390 395 400
- Leu Gln Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu Glu Leu Lys
 405 410 415
- Leu Asp Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys
 420 425 430
- Phe Pro Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr 435 440 445
- Ala Ile Gln Val Leu Asp Glu Leu Thr Gln Gly Lys Ala Ile Ile Ser 450 455 460
- Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr 465 470 475 480
- Arg Lys Pro Arg Gln Trp Leu Ser Ser Gly Leu Gly Ala Met Gly
 485 490 495
- Phe Gly Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn Pro Asp Ala 500 505 510
- Ile Val Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln 515 520 525
- Glu Leu Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys Ile Leu Leu 530 535 540
- Leu Asn Asn Gln His Leu Gly Met Val Met Gln Trp Glu Asp Arg Phe 545 550 555 560

Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro Ala Arg Glu 565 Asn Glu Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala Cys Gly Ile 580 590 Pro Ala Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val Ile Cys Pro 615 His Gln Glu His Val Leu Pro Met Ile Pro Ser Gly Gly Thr Phe Glu 635 Asp Val Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr <210> 105 <211> 10 <212> PRT <213> Brassica napus <400> 105 Ile Pro Ser Gly Gly Thr Phe Lys Asp Val 5 <210> 106 <211> 30 <212> DNA <213> Brassica napus <400> 106 atcccaagtg gtggcacttt caaaqatgta 30 <210> 107 <211> 21 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic primer

<400> 107 catctttgaa agtgccacca c

21

```
<210> 108
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 108
Ile Pro Asn Gly Gly Thr Phe Lys Asp Val
<210> 109
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 109
atcccaaatg gtggcacttt caaagatgta
                                                                     30
<210> 110
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 110
catctttgaa agtgccacca t
                                                                    21
<210> 111
<211> 10
<212> PRT
<213> Brassica napus
<400> 111
Met Gln Trp Glu Asp Arg Phe Tyr Lys Ala
<210> 112
<211> 30
<212> DNA
<213> Brassica napus
```

```
<400> 112
atgcaatggg aagatcggtt ctacaaagct
                                                                    30
<210> 113
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 113
ctttgtagaa ccgatcttcc c
                                                                    21
<210> 114
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 114
Met Gln Leu Glu Asp Arg Phe Tyr Lys Ala
<210> 115
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 115
atgcaattgg aagatcggtt ctacaaagct
                                                                    30
<210> 116
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     primer
```

<400> 116 ctttgtagaa ccgatcttcc a