SOLUTION Informed Search - Prac Sheet

Last modified on Sunday, 21 March 2021 by f.maire@qut.edu.au

This prac is a preparation for the first assignment. In the first assignment, the main task is to define and implement a class derived from the *search.Problem* class in order to solve a planning problem. In this prac, you also define and implement a class derived from the *search.Problem* as a way to find optimal sequences of actions, but on a much simpler problem.

Exercise 1 – A* implementation

Edit the file *W04_search.py* to implement the function *astar_graph_search*.

Hint: look at the implementation of astar tree search.

See file SOLUTION_W04_search.py

Exercise 2 – Creating your own search.Problem class

Create a class derived from the *search.Problem* class to solve the "pancake puzzle" introduced in Week 03 lecture. Implement a search heuristic function for this problem. Once your *PancakePuzzle* class is completed, compare BFS and A* search.

Recall that in Week 03 prac, you used code that defined a class *Sliding_puzzle*. This class gives you a good example of the definition of a derived class of the *search.Problem* class.

See file SOLUTION_pancake_puzzle.py

Exercise 3 – Admissible heuritics (non-programming exercise)

Assuming that h1 and h2 are admissible, which of the following expressions are also guaranteed to be admissible?

- (i) h1 + h2 no, consider $h1=h2=h^*$ 2 h^* is not smaller or equal to h^*
- (ii) h1 * h2 no, same counter example as for (i)
- (iii) max(h1, 0.3*h2) yes, both expressions smaller than h*
- (iv) min(h1, 3*h2) yes, same reason as for (iii)
- (v) 0.94*h1 + 0.08*h2 no, same counter example as for (i)