ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 118

- 1. Дайте определение случайной величины, которая имеет χ^2 -распределение с n степенями свободы. Запишите плотность χ^2 - распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с n степенями свободы. Найдите а) $\mathbb{P}(\chi^2_{20}>10.9)$, где χ^2_{20} -случайная величина, которая имеет χ^2 – распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы $\mathbb{P}(\chi_{20}^2 > 10.9) = 0.948775; \, \chi_{0.93}^2(5) = 1.34721.$
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,475 \leqslant Z \leqslant 4,811)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{3x}{16}, 0 \leqslant x \leqslant \frac{8}{3} \approx 2,667; \\ 1 \frac{4}{3x}, x \geqslant \frac{8}{3}; \end{cases}$ 2) Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x \leqslant 0; \\ 1 \frac{4}{3x}, x \geqslant \frac{8}{3}; \end{cases}$

- 3) вероятность равна: $\P(2,475 \leqslant Z \leqslant 4,811) = 0,25884$.
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 91,6667%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 59%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 30155888444737842659

- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i = 1...25. Все оценки известны $x_0 = 64$, $y_0 = 84$, $x_1 = 82$, $y_1 = 42$, $x_2 = 51$, $y_2 = 99$, $x_3 = 68$, $y_3 = 57$, $x_4 = 90$, $y_4 = 71$, $x_5 = 89$, $y_5 = 55$, $x_6 = 55$, $y_6 = 55$, $x_7 = 90$, $y_7 = 58$, $x_8 = 61$, $y_8 = 78$, $x_9 = 38$, $y_9 = 84$, $x_{10} = 56$, $y_{10} = 95$, $x_{11} = 86$, $y_{11} = 69$, $x_{12} = 71$, $y_{12} = 72$, $x_{13} = 35$, $y_{13} = 99$, $x_{14} = 82$, $y_{14} = 67$, $x_{15} = 79$, $y_{15} = 59$, $x_{16} = 83$, $y_{16} = 88$, $x_{17} = 45$, $y_{17} = 75$, $x_{18} = 70$, $y_{18} = 79$, $x_{19} = 89$, $y_{19} = 80$, $x_{20} = 33$, $y_{20} = 30$, $x_{21} = 63$, $y_{21} = 73$, $x_{22} = 55$, $y_{22} = 53$, $x_{23} = 31$, $y_{23} = 78$, $x_{24} = 50$, $y_{24} = 90$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
 - 1) Ковариация = -876.6667 2) Коэффициент корреляции = -4.7659
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	17	3	13
X = 300	21	23	23

Из Ω случайным образом без возвращения извлекаются 10 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.6 2) стандартное отклонение $\sigma(\bar{X})$: 257.2355
- 3) ковариацию $Cov(\bar{X}, \bar{Y})$: 0.7091
- 6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 4X_2 + X_3 + 4X_4}{10}, \hat{\theta}_1 = \frac{2X_1 + 3X_2 + 3X_3 + 2X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

Обе они несмещенные, потому что в числителе выходит в сумме 10. Какая-то точно должна быть, а может и нет....

Утверждаю: Первый заместитель руководителя департамента

Дата 01.06.2021

Феклин В.Г.