用户手册

RIGOL

文件编号 UGA07007-1210 2008年8月

DS1000E, DS1000D 系列数字示波器 DS1102E, DS1052E, DS1102D, DS1052D

版权信息

- 1. 北京普源精电科技有限公司版权所有。
- 2. 本公司的产品受已获准及尚在审批的中华人民共和国专利的保护。
- 3. 本手册提供的信息取代以往出版的所有资料。
- 4. 本公司保留改变规格及价格的权利。
- 注: RIGOL 是北京普源精电科技有限公司的注册商标。

一般安全概要

了解下列安全性预防措施,以避免受伤,并防止损坏本产品或与本产品连接的任何产品。为避免可能的危险,请务必按照规定使用本产品。

只有经授权人员才能执行维修程序。

避免起火和人身伤害。

使用正确的电源线。

只有使用所在国家认可的本产品专用电源线。

正确插拔。

探头或测试导线连接到电压源时请勿插拔。

将产品接地。

本产品通过电源的接地导线接地。为避免电击,接地导体必须与地相连。在连接本产品的输入或输出端之前,请务必将本产品正确接地。

正确连接探头。

探头地线与地电势相同。请勿将地线连接高电压。

查看所有终端额定值。

为避免起火和过大电流的冲击,请查看产品上所有的额定值和标记说明,请在连接产品前查阅产品手册以了解额定值的详细信息。

请勿开盖操作。

外盖或面板打开时请勿运行本产品。

使用合适的保险丝。

只使用本产品指定的保险丝类型和额定指标。

避免电路外露。

电源接通后请勿接触外露的接头和元件。

怀疑产品出故障时,请勿进行操作。

如果您怀疑本产品已经出故障,可请合格的维修人员进行检查。

保持适当的通风。

请勿在潮湿环境下操作。

请勿在易燃易爆的环境下操作。

请保持产品表面的清洁和干燥。

所有型号的骚扰试验符合 A 类标准,基于 EN 61326: 1997+A1+A2+A3 的标准,但是不符合 B 类标准。

测量类别:

DS1000E, DS1000D 系列示波器可在测量类别 I 下进行测量。

测量类别定义:

测量类别 I 是在没有直接连接到主电源市电的电路上进行测量。例如,没有从主电源引出的电路,或者虽然从市电引出,但进过了特殊保护(内部)的电路。在后一种情况下,瞬间应力会发生变化:因此,用户应了解设备的瞬间承受能力。

警告:

IEC 测量类别。在 IEC 类别 I 安装条件下,可以将 HI 和 LO 输入终端连接到其线电压最大值为 300Vrms 的电路接线端。为避免电击的危险 ,请不要将输入端连接到线电压超过 300 Vrms 的电路。

瞬间过电压在与主电源隔离的电路中存在。DS1000E, DS1000D 系列数字示波器的设计可安全地承受偶发的最大 1000Vpk 的瞬间过电压。不要用本设备在瞬间过电压超过这个值的电路中测量。

安全术语和符号

本手册中的术语。以下术语可能出现在本手册中:

警告。警告性声明指出可能会危害生命安全的条件和行为。

注意。注意性声明指出可能导致此产品和其它财产损坏的条件和行为。

产品上的术语。以下术语可能出现在产品上:

危险表示您如果进行此操作可能会立即对您造成损害。

警告表示您如果进行此操作可能不会立即对您造成损害。

注意表示您如果进行此操作可能会对本产品或其它财产造成损害。

产品上的符号。以下符号可能出现在产品上:

高电压

注意请参阅手册 保护性接地端

壳体接地端

测量接地端

DS1000E, DS1000D 系列数字示波器简介

本书的说明和介绍涵盖下述 4 个型号的 DS1000E, DS1000D 系列数字示波器: DS1102E, DS1052E, DS1102D, DS1052D;

DS1000E, DS1000D 系列示波器实现了易用性, 优异的技术指标及众多功能特性的完美结合, 可帮助用户更快地完成工作任务。

DS1000E, DS1000D 系列示波器向用户提供简单而功能明晰的前面板,以进行所有的基本操作。各通道的标度和位置旋钮提供了直观的操作,完全符合传统仪器的使用习惯,用户不必花大量的时间去学习和熟悉示波器的操作,即可熟练使用。为加速调整,便于测量,用户可直接按 AUTO 键,立即获得适合的波形显现和档位设置。

除易于使用之外,DS1000E, DS1000D 系列示波器还具有更快完成测量任务所需要的高性能指标和强大功能。通过 1GSa/s 的实时采样和 25GSa/s 的等效采样,可在 DS1000E, DS1000D 系列示波器上观察更快的信号。强大的触发和分析能力使其易于 捕获和分析波形。清晰的液晶显示和数学运算功能,便于用户更快更清晰地观察和分析信号问题。

从下面给出的性能特点,可以了解此系列示波器如何满足您的测量要求。

- 双模拟通道,每通道带宽 100M(DS1102E、DS1102D), 50M (DS1052E、DS1052D)。
- 十六个数字通道,可独立接通或关闭通道,或以8个为一组接通或关闭(仅 DS1000D系列)
- 高清晰彩色液晶显示系统,320×234 分辨率
- 支持即插即用闪存式 USB 存储设备以及 USB 接口打印机,并可通过 USB 存储设备进行软件升级
- 模拟通道的波形亮度可调
- 自动波形、状态设置(AUTO)
- 波形、设置、CSV 和位图文件存储以及波形和设置再现
- 精细的延迟扫描功能,轻易兼顾波形细节与概貌
- 自动测量 20 种波形参数
- 自动光标跟踪测量功能
- 独特的波形录制和同放功能
- 内嵌 FFT

- 实用的数字滤波器,包含 LPF, HPF, BPF, BRF
- Pass/Fail 检测功能,光电隔离的 Pass/Fail 输出端口
- 多重波形数学运算功能
- 边沿、视频、斜率、脉宽、交替、码型和持续时间(仅 **DS1000D** 系列)触发功能
- 独一无二的可变触发灵敏度,适应不同场合下特殊测量要求
- 多国语言菜单显示
- 弹出式菜单显示,用户操作更方便、直观
- 中英文帮助信息显示
- 支持中英文输入

目 录

	一般安全概要	
	DS1000E, DS1000D 系列数字示波器简介	V
第	1 章 初级操作指南	1-1
	DS1000E, DS1000D 系列前面板和用户界面	1-2
	一般性检查	
	功能检查	
	探头补偿	
	使用数字探头(仅 DS1000D 系列)	1-9
	波形显示的自动设置	1-11
	初步了解垂直系统	1-12
	初步了解水平系统	1-14
	初步了解触发系统	1-16
第	2 章 高级操作指南	2-1
	设置垂直系统	2-2
	通道的设置	
	数学运算	2-11
	REF 功能	
	LA 通道的设置(仅 DS1000D 系列)	2-21
	选择和关闭通道	2-26
	垂直位移和垂直档位旋钮的应用	2-27
	设置水平系统	2-28
	设置触发系统	2-33
	触发控制	2-34
	边沿触发	2-35
	脉宽触发	2-36
	视频触发	2-37
	斜率触发	2-40
	交替触发	2-41
	码型触发(仅 DS1000D 系列)	2-45
	持续时间触发(仅 DS1000D 系列)	2-46
	触发设置	2-47
	设置采样系统	2-52
	设置显示系统	2-55
(C)	2008 RIGOL Technologies, Inc.	VII

RIGOL

	故障处 5 章 技术规	是示信息说明	4-14-35-1
	故障如	<u></u> 上理	4-1 4-3
∠ 4			4-1
/14	ブルル		
44	4 卓	系统提示及故障排除	4-1
竺			
	–	通过/失败测试数字信号触发	
		使用光标测定 FFT 波形	
	例七:	视频信号触发	
	, ,	X-Y 功能的应用	
	例四: 例五:	减少信号上的随机噪声 应用光标测量	
	例三:		
		观察正弦波信号通过电路产生的延迟和畸变	
	例一:	测量简单信号	3-1
第	3 章	使用实例	3-1
	使用抄	九行按钮	2-93
	_	动模式	
	-	幼侯式 踪模式	
		则量 动模式	
	-	间参数的自动测量	
		压参数的自动测量	
	自动测	则量	2-81
	***	i 选择	
		形录制	
		则 反直 印设置	
		过 / 失败测试 则设置	
		校正	
	- '	数设置	
	接	口设置	2-67
	辅助系	系统功能设置	
		『调出	

			RIGOL
第	6 章	附录	6-1
	附录 A:	DS1000E, DS1000D 系列数字示波器附件	6-1
		保修概要	
	附录 C:	保养和清洁维护	6-3
	附录 D:	联系我们	6-4
索	引		1

第 1 章 初级操作指南

本章主要阐述以下题目:

- 初步了解 DS1000E, DS1000D 系列的前面板和用户界面
- 一般性检查
- 功能检查
- 探头补偿
- 使用数字探头(仅 DS1000D 系列)
- 自动设置
- 初步了解垂直系统
- 初步了解水平系统
- 初步了解触发系统

DS1000E, DS1000D 系列前面板和用户界面

当您得到一款新型示波器时,首先需要了解示波器前操作面板,DS1000E, DS1000D 系列数字示波器也不例外。本章对于 DS1000E, DS1000D 系列的前面板的操作及功能 做简单的描述和介绍,使您能在最短的时间熟悉 DS1000E, DS1000D 系列示波器的使用。

DS1000E, DS1000D 系列向用户提供简单而功能明晰的前面板,以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为 1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

● DS1000E 系列前面板图:

● DS1000D 系列前面板图:

图 1-1 DS1000E, DS1000D 系列示波器前面板

图 1-2 DS1000E, DS1000D 系列面板操作说明图

本书表示定义:

本书对于按键的文字表示与面板上按键的标识相同。

值得注意的是,MENU 功能键的标识用一四方框包围的文字所表示,如 MEASURE ,代表前面板上的一个标注着 Measure 文字的透明功能键;

标识为◎的多功能旋钮,用(♥)表示;

两个标识为 POSITION 的旋钮,用@POSITION 表示:

两个标识为 SCALE 的旋钮,用 SCALE 表示;

标识为 LEVEL 的旋钮,用 ②LEVEL 表示;

菜单操作键的标识用带阴影的文字表示,如 波形存储 ,表示存储菜单中的存储波形 选项。

图 1-3 显示界面说明图(仅模拟通道打开)

显示界面说明图(模拟和数字通道同时打开)

一般性检查

当您得到一台新的 DS1000E, DS1000D 系列示波器时,建议您按以下步骤对仪器进行 检查。

1. 检查是否存在因运输造成的损坏。

如果发现包装纸箱或泡沫塑料保护垫严重破损,请先保留,直到整机和附件通过电性和机械性测试。

2. 检查附件。

关于提供的附件明细,在本说明书前述的"DS1000E, DS1000D 系列示波器附件"项目已经进行了说明。您可以参照此说明检查附件是否有缺失。

如果发现附件缺少或损坏,请和负责此业务的 **RIGOL** 经销商或 **RIGOL** 的当地办事处联系。

3. 检查整机。

如果发现仪器外观破损,仪器工作不正常,或未能通过性能测试,请和负责此业务的 **RIGOL** 经销商或 **RIGOL** 的当地办事处联系。

如果因运输造成仪器的损坏,请注意保留包装。通知运输部门和负责此业务的 **RIGOL** 经销商。**RIGOL** 会安排维修或更换。

(具体检测方法和步骤详见下一节之表述)

功能检查

做一次快速功能检查,以核实本仪器运行正常。请按如下步骤进行:

1. 接通仪器电源。

您可通过一条接地主线操作示波器,电线的供电电压为 100 伏交流电至 240 伏交流电,频率为 45Hz 至 440Hz。接通电源后,仪器执行所有自检项目,并确认通过自检,按 STORAGE 按钮,用菜单操作键从顶部菜单框中选择 存储类型 ,然后调出 出厂设置 菜单框。

警告:为避免电击,请确认示波器已经正确接地。

2. 示波器接入信号

DS1000E 系列为双通道输入加一个外触发输入通道的数字示波器。 DS1000D 系列为双通道输入加一个外触发输入通道以及十六个数字输入通道的数字示波器。

请按照如下步骤接入信号:

①. 用示波器探头将信号接入通道 1 (CH1): 将探头上的开关设定为 10X (图 1-6), 并将示波器探头与通道 1 连接。将探头连接器上的插槽对准 CH1 同轴电缆插接件 (BNC) 上的插口并插入,然后向右旋转以拧紧探头。

图 1-6 探头补偿连接

②. 示波器需要输入探头衰减系数。此衰减系数改变仪器的垂直档位比例,从而使得测量结果正确反映被测信号的电平。(默认的探头菜单衰减系数设定值为 1X。)设置探头衰减系数的方法如下:按 CH1 功能键显示通道 1 的操作菜单,应用与探头项目平行的 3 号菜单操作键,选择与您使用的探头同比例的衰减系数。此时设定应为 10X。

- ③. 把探头端部和接地夹接到探头补偿器的连接器上。按 **AUTO** (**自动设置**) 按钮。 几秒钟内,可见到方波显示。
- ④. 以同样的方法检查通道 2 (CH2)。按 OFF 功能按钮或再次按下 CH1 功能按钮 以关闭通道 1,按 CH2 功能按钮以打开通道 2,重复步骤 2 和步骤 3。

注意: 探头补偿连接器输出的信号仅作探头补偿调整之用,不可用于校准。

探头补偿

在首次将探头与任一输入通道连接时,进行此项调节,使探头与输入通道相配。未经补偿或补偿偏差的探头会导致测量误差或错误。若调整探头补偿,请按如下步骤:

- 1. 将探头菜单衰减系数设定为 **10X**,将探头上的开关设定为 **10X**,并将示波器探头与通道 **1** 连接。如使用探头钩形头,应确保与探头接触紧密。 将探头端部与探头补偿器的信号输出连接器相连,基准导线夹与探头补偿器的地线连接器相连,打开通道 **1**,然后按 AUTO 。
- 2. 检查所显示波形的形状。

图 1-9 探头补偿调节

- 3. 如必要,用非金属质地的改锥调整探头上的可变电容,直到屏幕显示的波形如上 图"补偿正确"。
- 4. 必要时,重复步骤。

警告:为避免使用探头时被电击,请确保探头的绝缘导线完好,并且连接高压源时请不要接触探头的金属部分。

使用数字探头(仅 DS1000D 系列)

- 1. 如有必要,可切断被测电路的电源。切断被测电路电源,可防止在连接探头时, 因不小心把两条线短路而造成电路损坏。由于探头上没有电压,因此示波器电源 可保持连接状态。
- 2. 把数字探头电缆连接到 DS1000D 系列示波器前面板的 D15-D0 数字信号输入端。数字探头电缆带有标识,因此只能以一个方向连接。在连接电缆时,不必切断示波器电源。

图 1-10 数字探头组件与示波器连接示意图

注意: 只适用于 DS1000D 系列示波器附带的、**RIGOL** 产品的型号为 FC1868、LH1116、TC1100 和 LC1150 的数字探头套件。

3. 把探钩连到一条探头线上,要确保连接地线。

图 **1-11** 数字探头的探钩示意

4. 把探钩连到需要测试的电路结点。

图 1-12 连接探钩到地测试点

5. 用探钩连接通道的接地线。

图 1-13 将探钩接地

波形显示的自动设置

DS1000E, DS1000D 系列数字示波器具有自动设置的功能。根据输入的信号,可自动调整电压倍率、时基、以及触发方式至最好形态显示。应用自动设置要求被测信号的频率大于或等于 50Hz,占空比大于 1%。

使用自动设置:

- 1. 将被测信号连接到信号输入通道。
- 2. 按下 AUTO 按钮。

示波器将自动设置垂直,水平和触发控制。如需要,可手工调整这些控制使波形显示 达到最佳。

初步了解垂直系统

如下图所示,在**垂直控制区(VERTICAL)**有一系列的按键、旋钮。下面的练习逐步引导您熟悉垂直设置的使用。

图 1-14 垂直控制系统

1. 使用垂直**②POSITION**旋钮在波形窗口居中显示信号。 垂直**③POSITION**旋钮控制信号的垂直显示位置。当转动垂直**③POSITION**旋钮时,指示通道地(**GROUND**)的标识跟随波形而上下移动。

测量技巧

如果通道耦合方式为 DC,您可以通过观察波形与信号地之间的差距来快速测量信号的直流分量。

如果耦合方式为 AC,信号里面的直流分量被滤除。这种方式方便您用更高的灵敏度显示信号的交流分量。

双模拟通道垂直位置恢复到零点快捷键

旋动垂直**②POSITION**旋钮不但可以改变通道的垂直显示位置,更可以通过按下该旋钮作为设置通道垂直显示位置恢复到零点的快捷键。

2. 改变垂直设置,并观察因此导致的状态信息变化。

您可以通过波形窗口下方的状态栏显示的信息,确定任何垂直档位的变化。转动垂直 ②SCALE 旋钮改变"Volt/div(伏/格)"垂直档位,可以发现状态栏对应通道的档位显示发生了相应的变化。

按 CH1 、CH2 、MATH 、REF 、LA (仅 DS1000D 系列),屏幕显示对应通道的操作菜单、标志、波形和档位状态信息。按 OFF 按键关闭当前选择的通道。

Coarse/Fine (粗调/微调) 快捷键

可通过按下垂直^⑤SCALE 旋钮作为设置输入通道的粗调/微调状态的快捷键,然后调节该旋钮即可粗调/微调垂直档位。

初步了解水平系统

如下图所示,在**水平控制区(HORIZONTAL)**有一个按键、两个旋钮。下面的练习逐渐引导您熟悉水平时基的设置。

图 **1**-**15** 水平控制区

1. 使用水平 ③ SCALE 旋钮改变水平档位设置,并观察因此导致的状态信息变化。 转动水平 ② SCALE 旋钮改变 "s/div(秒/格)"水平档位,可以发现状态栏对应通 道的档位显示发生了相应的变化。水平扫描速度从 2ns* 至 50s,以 1-2-5 的 形式步进。

Delayed(延迟扫描)快捷键

水平 ③SCALE 旋钮不但可以通过转动调整"s/div(秒/格)",更可以按下切换到延迟扫描状态。

*注:示波器型号不同,其水平扫描速度也有差别。

2. 使用水平**②POSITION**旋钮调整信号在波形窗口的水平位置。 水平**③POSITION**旋钮控制信号的触发位移。当应用于触发位移时,转动水平 **③POSITION**旋钮时,可以观察到波形随旋钮而水平移动。

触发点位移恢复到水平零点快捷键

水平**②POSITION**旋钮不但可以通过转动调整信号在波形窗口的水平位置,更可以按下该键使触发位移(或延迟扫描位移)恢复到水平零点处。

3. 按 MENU 按钮,显示 TIME 菜单。在此菜单下,可以开启/关闭延迟扫描或切换 Y-T、X-Y 和 ROLL 模式,还可以设置水平触发位移复位。

名词解释

触发位移:指实际触发点相对于存储器中点的位置。转动水平**②POSITION**旋 钮,可水平移动触发点。

初步了解触发系统

如下图所示,在**触发控制区(TRIGGER)**有一个旋钮、三个按键。下面的练习逐渐引导您熟悉触发系统的设置。

图 **1**-16 触发控制区

1. 使用**②LEVEL**旋钮改变触发电平设置。

转动**②LEVEL**旋钮,可以发现屏幕上出现一条桔红色的触发线以及触发标志,随旋钮转动而上下移动。停止转动旋钮,此触发线和触发标志会在约 5 秒后消失。在移动触发线的同时,可以观察到在屏幕上触发电平的数值发生了变化。

触发电平恢复到零点快捷键

旋动垂直^{©LEVEL}旋钮不但可以改变触发电平值,更可以通过按下该旋钮作为设置触发电平恢复到零点的快捷键。

2. 使用 MENU 调出触发操作菜单(见下图),改变触发的设置,观察由此造成的状态变化。

图 1-17

- ·按1号菜单操作按键,选择 边沿触发。
- ·按2号菜单操作按键,选择"信源选择"为 CH1。
- ·按3号菜单操作按键,设置"边沿类型"为 上升沿。
- ·按 4 号菜单操作按键,设置"触发方式"为 自动。
- ·按 5 号菜单操作按键,进入"触发设置"二级菜单,对触发的耦合方式,触发灵敏度和触发释抑时间进行设置。

注: 改变前三项的设置会导致屏幕右上角状态栏的变化。

- 3. 按 50% 按钮,设定触发电平在触发信号幅值的垂直中点。
- 4. 按 FORCE 按钮:强制产生一触发信号,主要应用于触发方式中的"普通"和"单次"模式。

名词解释

触发释抑:指重新启动触发电路的时间间隔。旋动多功能旋钮(**\verts**), 可设置触发释抑时间。

第 2 章 高级操作指南

到目前为止,您已经初步熟悉 DS1000E, DS1000D 系列示波器的垂直控制区 (VERTICAL)、水平控制区 (HORIZONTAL)、触发系统 (TRIGGER) 的操作,以及 前面板各功能区和按键、旋钮的作用。通过前一章的介绍,用户应该熟悉通过观察状态栏来确定示波器设置的变化。

本章主要阐述以下题目:

- 设置垂直系统 (CH1、CH2、MATH、REF、LA (仅 DS1000D 系列)、OFF 、垂直②POSITION、垂直③SCALE)
- 设置水平系统 (MENU、水平@POSITION、水平@SCALE)
- 设置触发系统 (②LEVEL、MENU、50% 、FORCE)
- 设置采样方式 (ACQUIRE)
- 设置显示方式 (DISPLAY)
- 存储和调出 (STORAGE)
- 辅助系统设置 (UTILITY)
- 自动测量 (MEASURE)
- 光标测量 (CURSOR)
- 使用执行按钮 (AUTO 、 RUN/STOP)

建议您详细阅读本章,了解DS1000E, DS1000D系列多样的测量功能和其它操作方法。

设置垂直系统

通道的设置

每个通道有独立的垂直菜单。每个项目都按不同的通道单独设置。

按 CH1 或 CH2 功能按键,系统显示 CH1 或 CH2 通道的操作菜单,说明见下表:

图 2-1 表 2-1 通道设置菜单

CH1
耦合
直流
带宽限制
美闭
探头
1X
数字滤波
1/2

功能菜单	设定	说明
耦合	交流 直流 接地	阻挡输入信号的直流成分。 通过输入信号的交流和直流成分。 断开输入信号。
带宽限制	打开 关闭	限制带宽至 20MHz,以减少显示噪音。 满带宽。
探头	1X 5X 10X 50X 100X 500X 1000X	根据探头衰减因数选取其中一个值,以 保持垂直标尺读数准确。
数字滤波		设置数字滤波(见表 2-4)
一 (下一页)	1/2	进入下一页菜单(以下均同,不再说明)

图 2-2 表 2-2 通道设置菜单

(上一页)	2/2	返回上一页菜单(以下均同,不再说明)
档位调节	粗调 微调	粗调按 1-2-5 进制设定垂直灵敏度。 微调则在粗调设置范围之间进一步细 分,以改善垂直分辩率。
反相	打开 关闭	打开波形反向功能。 波形正常显示。

1. 设置通道耦合

以 CH1 通道为例,被测信号是一含有直流偏置的正弦信号。

按 CH1 → 耦合 → 交流 ,设置为交流耦合方式。被测信号含有的直流分量被阻隔。波形显示如下图所示。

图 2-3 交流耦合设置

按 CH1 → 耦合 → 直流 ,设置为直流耦合方式。被测信号含有的直流分量和交流分量都可以通过。波形显示如下图所示。

图 2-4 直流耦合设置

按 CH1 → 耦合 → 接地 ,设置为接地方式。被测信号含有的直流分量和交流分量都被阻隔。波形显示如下图所示。

图 2-5 接地耦合设置

2. 设置通道带宽限制

以 CH1 通道为例,被测信号是一含有高频振荡的脉冲信号。

按 CH1 → 带宽限制 → 关闭 ,设置带宽限制为关闭状态。被测信号含有的高频分量可以通过。波形显示如下图所示。

图 2-6 关闭带宽限制

按 CH1 → 带宽限制 → 打开 ,设置带宽限制为打开状态。被测信号含有的大于 20MHz 的高频分量被阻隔。波形显示如下图所示。

图 2-7 打开带宽限制

3. 调节探头比例

为了配合探头的衰减系数,需要在通道操作菜单相应调整探头衰减比例系数。如探头衰减系数为 10:1, 示波器输入通道的比例也应设置成 10X , 以避免显示的档位信息和测量的数据发生错误。

下图的示例为应用 1000:1 探头时的设置及垂直档位的显示。

表 2-3 探头衰减系数菜单

探头衰减系数	对应菜单设置
1:1	1X
5:1	5X
10:1	10X
50:1	50X
100:1	100X
500:1	500X
1000:1	1000X

4. 档位调节设置

垂直档位调节分为粗调和微调两种模式。垂直灵敏度的范围是 2mV/div 至 10V/div(探头比例设置为 1X)。粗调是以 1-2-5 步进方式调整垂直档位。即以 2mV/div、5mV/div、10mV/div、20mV/div……10V/div 方式步进。

微调指在当前垂直档位范围内进一步调整。如果输入的波形幅度在当前档位略大于满刻度,而应用下一档位波形显示幅度稍低,可以应用微调改善波形显示幅度,以利于观察信号细节。

操作技巧

切换粗调/微调不但可以通过此菜单操作,更可以通过按下垂直^②SCALE 旋钮作为设置输入通道的粗调/微调状态的快捷键。

5. 波形反相的设置

波形反相:显示的信号相对地电位翻转 180 度。

图 2-10 未反相的波形

图 **2**-11 反相的波形

数字滤波

按 CH1 (第一页) → 数字滤波,系统显示 FILTER 数字滤波功能菜单,旋动多功能 旋钮(\checkmark) 设置频率上限和下限,设定滤波器的带宽范围。说明见表 2-4:

图 2-12 关闭数字滤波

图 2-14 表 2-4 滤波器设置菜单

功能菜单	设定	说明
数字滤波	关闭	关闭数字滤波器
30 1 1/10/00	打开	打开数字滤波器
	t—→f	设置滤波器为低通滤波
滤波类型	<u></u>	设置滤波器为高通滤波
<i>心似</i> 天至	<u></u>	设置滤波器为带通滤波
	₽Ģf	设置滤波器为带阻滤波
频率上限	も く上限频 率>	多功能旋钮(***)设置频率上限
频率下限	も く下限频 率>	多功能旋钮(***)设置频率下限
£		返回上一级菜单(以下均同,不再说明)

数学运算

数学运算(MATH)功能是显示 CH1、CH2 通道波形相加、相减、相乘以及 FFT 运算的结果。数学运算的结果同样可以通过栅格或游标进行测量。

图 2-15 数学运算界面

图 2-16 表 2-5 数学运算菜单说明

Math	
操作	
A+B	
信源A	
CH1	
信源B	
CH2	
反相	
美闭	
	l

功能菜单	设定	说明
	A+B	信源 A 与信源 B 波形相加
操作	A -B	信源 A 波形减去信源 B 波形
1朱TF	A×B	信源 A 与信源 B 波形相乘
	FFT	FFT 数学运算
信源 A	CH1	设定信源 A 为 CH1 通道波形
行 你 A	CH2	设定信源 A 为 CH2 通道波形
信源 B	CH1	设定信源 B 为 CH1 通道波形
行 / B D	CH2	设定信源 B 为 CH2 通道波形
反相	打开	打开数学运算波形反相功能
汉和	关闭	关闭反相功能

FFT 频谱分析

使用 FFT (快速傅立叶变换) 数学运算可将时域 (YT) 时域信号转换成频域信号。使用 FFT 可以方便地观察下列类型的信号:

- 测量系统中谐波含量和失真
- 表现直流电源中的噪声特性
- 分析振动

图 2-17 表 2-6 FFT 操作菜单说明

FFT	
操作	
FFT	
信源选择	2
CH1	J
窗函数	Ī
Rectang	
显示	Ī
分屏	J
垂直刻度	Ŧ
VRMS	J

功能菜单	设定	说明
	A+B	信源 A 与信源 B 波形相加
操作	A -B	信源 A 波形减去信源 B 波形
1朱TF	A×B	信源 A 与信源 B 波形相乘
	FFT	FFT 数学运算
信源选择	CH1	设定 CH1 为运算波形
信你处 件	CH2	设定 CH2 为运算波形
	Rectangle	设定 Rectangle 窗函数
窗函数	Hanning	设定 Hanning 窗函数
图图数	Hamming	设定 Hamming 窗函数
	Blackman	设定 Blackman 窗函数
显示	分屏	半屏显示 FFT 波形
並為	全屏	全屏显示 FFT 波形
垂直刻度	Vrms	设定以 Vrms 为垂直刻度单位
亚 旦 列 及	dBVrms	设定以 dBVrms 为垂直刻度单位

FFT 操作技巧

具有直流成分或偏差的信号会导致 FFT 波形成分的错误或偏差。为减少直流成分可以选择 交流 耦合方式。

为减少重复或单次脉冲事件的随机噪声以及混叠频率成分,可设置示波器的获取模式为平均获取方式。

如果在一个大的动态范围内显示 FFT 波形,建议使用 dBVrms 垂直刻度。dB 刻度应用对数方式显示垂直幅度大小。

选择 FFT 窗口

在假设YT波形是不断重复的条件下,示波器对有限长度的时间记录进行FFT变换。这样当周期为整数时,YT波形在开始和结束处波形的幅值相同,波形就不会产生中断。但是,如果YT波形的周期为非整数时,就引起波形开始和结束处的波形幅值不同,从而使连接处产生高频瞬态中断。在频域中,这种效应称为泄漏。因此为避免泄漏的产生,在原波形上乘以一个窗函数,强制开始和结束处的值为0。

表 2-7 FFT 窗函数说明

FFT 窗	特点	最合适的测量内容
Rectangle	最好的频率分辨, 最差的幅 度分辨率。	暂态或短脉冲,信号电平在此前后大致相 等。
	与不加窗的状况基本类似。	频率非常相近的等幅正弦波。
		具有变化比较缓慢波谱的宽带随机噪声
Hanning	与矩形窗比, 具有较好的频 率分辨率, 较差的幅度分辨 率。	正弦、周期和窄带随机噪声。
Hamming	Hamming 窗的频率分辨率 稍好于 Hanning 窗。	暂态或短脉冲,信号电平在此前后相差很 大。
Blackman	最好的幅度分辨, 最差的频 率分辨率。	主要用于单频信号,寻找更高次谐波

名词解释

FFT 分辨率: 定义为采样率与运算点的商。在运算点数固定时,采样率越低 FFT 分辨率就越好。

奈奎斯特频率: 对最高频率量为 F 的波形, 必须使用至少 2F 的采样率才能重建原波形。它也被称为奈奎斯特判则, 这里 F 是奈奎斯特频率, 而 2F 是奈奎斯特率。

REF 功能

在实际测试过程中,用 DS1000E, DS1000D 系列示波器测量观察有关组件的波形,可以把波形和参考波形样板进行比较,从而判断故障原因。此法在具有详尽电路工作点参考波形条件下尤为适用。

按下 REF 按钮显示参考波形菜单,设置说明如下:

图 2-18 表 2-8 选择内部存储位置

REF
信源选择
CH1
存储位置
内部
保存
导入/导出
47(14HI
复位

功能菜单	设定	说明
信源选择	CH1 CH2 MATH/FFT LA	选择 CH1 作为参考通道 选择 CH2 作为参考通道 选择 MATH /FFT 作为参考通道 选择 LA 作为参考通道(仅 DS1000D 系列)
存储位置	内部 外部	选择内部存储位置 选择外部存储位置
保存		将 REF 波形保存到内部存储区
导入/导 出		进入导入/导出菜单(见表 2-10)
复位		复位 REF 波形

图 2-19 表 2-9 选择外部存储位置

功能菜单	设定	说明
信源选择	CH1 CH2 MATH/FFT LA	选择 CH1 作为参考通道 选择 CH2 作为参考通道 选择 MATH /FFT 作为参考通道 选择 LA 作为参考通道(仅 DS1000D 系列)
存储位置	内部 外部	选择内部存储位置 选择外部存储位置
保存		将 REF 波形保存到外部存储区
导入		进入导入菜单(见表 2-14)
复位		复位 REF 波形

导入/导出操作:

按 REF → 导入/导出 进入下面所示菜单。

图 2-20 表 2-10 导入/导出菜单说明

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
导出		将用户保存到内部存储区的 REF 文件导出到外部存储器 (见表 2-11)
导入		将用户选定的 REF 文件导入到 内部存储区
删除文件		删除用户选定文件

导入/导出界面如下图所示:

图 2-21

导出操作

按 REF → 导入/导出 → 导出 进入下面所示菜单。

图 2-22 表 2-11 导入菜单说明

功能菜单	设定	说明
†		文件名称的输入焦点向上移动
+		文件名称的输入焦点向下移动
×		删除文件名称字符串或拼音字符串 (中文输入)中高亮显示的字符
保存		执行导出文件操作

图 2-23 导出操作界面

保存到外部存储区操作

按 REF → 保存 进入下面所示菜单。

图 2-24 表 2-12 保存菜单说明

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目录和 文件
新建文件 (目录)		文件系统焦点在路径和文件时,该 键用来新建文件,否则为新建目录 操作(见表 2-13)
删除文件		删除用户选定文件

图 2-25 保存操作界面

新建文件(或新建目录)操作

按 REF → 保存 → 新建文件 (或 新建目录) 进入下面所示菜单。

图 2-26 表 2-13 新建文件菜单说明

NEW FILE	
×	
保存	
1	

功能菜单	设定	说明
†		文件名称的输入焦点向上移动
+		文件名称的输入焦点向下移动
×		删除文件名称字符串或拼音字 符串(中文输入)中高亮显示 的字符
保存		执行保存文件操作

图 2-27 中文输入界面

导入文件操作

按 REF → 导入 进入下面所示菜单。

图 2-28 表 2-14 导入菜单说明

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
导入		将用户选定的 REF 文件导入到 内部存储区

图 2-29 导入操作界面

图 2-30 导入显示效果图

操作说明

- 1. 按下 REF 菜单按钮,显示参考波形菜单。
- 2. 按1号菜单操作键选择参考波形的 CH1 、 CH2 、 MATH 、 FFT 或 LA (仅 DS1000D系列)通道。
- 3. 旋转垂直**②POSITION**和垂直**③SCALE**旋钮调整参考波形的垂直位置和档位至适合的位置。
- 4. 按2号菜单操作键选择波形参考的存储位置。
- 5. 按3号菜单操作键保存当前屏幕波形到内部或外部存储区作为波形参考。

注意:

若以X一Y方式存储波形,此存储不适用于参考波形。

LA 通道的设置(仅 DS1000D 系列)

可以打开(或关闭)单个通道或一组(8个)通道,还可以设置波形大小。改变数字通道在屏幕上的显示位置以及选择门限类型。

按 LA 功能按键,系统显示 LA 通道的操作菜单,说明见下表:

图 2-31 表 2-15 LA 操作菜单说明

功能菜单	设定	说明
D7-D0		设置通道组 D7-D0 (见表 2-16)
D15-D8		设置通道组 D15-D8(见表 2-17)
当前通道	\ <d15-d0></d15-d0>	多功能旋钮(心)选择当前可被移动的数字通道
门限类型	TTL CMOS ECL 用户定义	选择所有数字通道的门限类型,用户定义 类型时可以设置门限电平值
用户定义	も <门限电平>	多功能旋钮(心)设置用户定义类型的门限电平值

1. 显示和重新排列数字通道:

- (1) 按 LA → D7-D0 或 D15-D8 , 进入通道组设置功能菜单, 开启或关闭数字 通道的显示。
- (2) 按 LA → 当前通道 , 令多功能旋钮 (◆) 选择数字通道有效,旋动多功能 旋钮选择数字通道,所选通道号在显示屏左端以红色显示(彩色液晶)。
- (3) 旋转垂直©POSITION, 所选通道在显示屏上重新定位。

菜单显示如下图所示。

图2-32 打开和排列数字通道

2. 设置数字通道的门限类型:

按 LA → 门限类型 ,选择预设的门限类型或 用户定义 设置您自己的门限电平。 菜单显示如下图所示。

图2-33 设置数字通道门限类型

门限说明

门限类型 门限电平

TTL 1.4V CMOS 2.5V ECL -1.3V

用户定义 在-8V 至+8V 之间变化

通道组设置

接 LA \rightarrow D7-D0 或 D15-D8 ,系统显示 D7-D0 或 D15-D8 通道组设置功能菜单,独立打开或关闭单个通道或以 8 个为一组控制通道的开关和设置波形大小。说明见表 2-16 和 2-17。

图 2-34 表 2-16 数字通道设置菜单

D7-D0
◆通道设置
D7-D0
全部关闭
波形大小
复位
1

功能菜单	设定	说明
通道设置	D7-D0	打开或关闭 D7-D0 内的单个通道
D7-D0	全部打开 全部关闭	强制打开或关闭 D7-D0 内的 8 个通道
波形大小	7 7	全屏显示 8 个通道 全屏显示 16 个通道
复位		复位 D7-D0 通道组中的波形

图 2-35 表 2-17 数字通道设置菜单

功能菜单	设定	说明
通道设置	D15-D8	打开或关闭 D15-D8 内的单个通道
D15-D8	全部打开 全部关闭	强制打开或关闭 D15-D8 内的 8 个通道
波形大小	7 7	全屏显示 8 个通道 全屏显示 16 个通道
复位		复位 D15-D8 通道组中的波形

1. 开启和关闭单个数字通道:

按 LA → D7-D0 → 通道设置 , 旋动多功能旋钮 (�), 选择要开启或关闭的数字通道, 按下 通道设置 1号菜单操作键或多功能旋钮开启或关闭通道。在通道开启时,通道设置菜单操作键中的方框被填充(■);通道关闭时方框未被填充(■)。

图 2-36 打开和关闭数字通道

2. 强制开启或关闭所有数字通道:

按 LA → D7-D0 → D7-D0 → 全部打开 或 全部关闭 , 或 D15-D8 → D15-D8 → 全部打开 或 全部关闭 , 将强制打开或关闭所选通道组中的所有数字通道。打开或关闭一个通道,旋动多功能旋钮(❤))选择所需通道,然后按下 通道 设置 1号菜单操作键或多功能旋钮。

3. 设置数字通道波形大小:

4. 复位数字通道波形显示:

按 LA → D7-D0 → 复位 , 或 D15-D8 → 复位 , 设置数字通道显示复位。

选择和关闭通道

DS1000E, DS1000D 系列的 CH1、CH2 以及 LA(仅 DS1000D 系列)为信号输入通道。此外,对于数学运算(MATH)和(REF)的显示和操作也是按通道等同处理。即在处理 MATH 和 REF 时,也可以理解为是在处理相对独立的通道。

欲打开或选择某一通道时,只需按其对应的通道按键。通道按键灯亮说明该通道已被激活,若希望关闭某个通道,再次按下该通道按键或此通道在当前处于选中状态时,按 OFF 按键也可将其关闭,通道按键灯灭。

表 2-18 通道打开和关闭的状态标志

通道类型	通道状态	状态标志
通道 1 (CH1)	打开 当前选中 关闭	CH1 (黄底黑字) CH1 (黑底黄字) 无状态标志
通道 2 (CH2)	打开 当前选中 关闭	CH2 (蓝底黑字) CH2 (黑底蓝字) 无状态标志
数学运算(MATH)	打开 当前选中 关闭	Math (紫底黑字) Math (黑底紫字) 无状态标志

注:示波器在屏幕左下角显示上述通道状态标志。 对 LA 进行操作,将关闭或打开所有数字通道。

垂直位移和垂直档位旋钮的应用

- 1. 垂直@POSITION 旋钮调整所有通道(包括数学运算,REF和LA)波形的垂直位置。这个控制钮的解析度根据垂直档位而变化(适用于DS1000D系列,对数字通道,根据所选的波形显示大小而变化),按下此旋钮使选中通道的位移立即回零(适用于DS1000D系列,该功能不包括数字通道)。
- 3. 需要调整的通道(包括数学运算,LA 和 REF)只有处于选中的状态(见上节所述),垂直《POSITION 和垂直《SCALE》旋钮才能调节此通道。REF(参考波形)的垂直档位调整对应其存储位置的波形设置。
- 4. 调整通道波形的垂直位置时,屏幕在左下角显示垂直位置信息。例如: POS: 32.4mV ,显示的文字颜色与通道波形的颜色相同,以"V"(伏)为单位。

设置水平系统

水平控制旋钮

使用水平控制钮可改变水平刻度(时基)、触发在内存中的水平位置(触发位移)。屏幕水平方向上的中点是波形的时间参考点。改变水平刻度会导致波形相对屏幕中心扩张或收缩。水平位置改变波形相对于触发点的位置。

水平 ③ POSITION:

调整通道波形(包括数学运算)的水平位置。这个控制钮的解析度根据时基而变化, 按下此旋钮使触发位置立即回到屏幕中心。

水平 ③SCALE.

调整主时基或延迟扫描(Delayed)时基,即秒/格(s/div)。当延迟扫描被打开时,将通过改变水平⑤SCALE旋钮改变延迟扫描时基而改变窗口宽度。详情请参看延迟扫描(Delayed)的介绍。

水平控制按键 MENU: 显示水平菜单。(见下表)

图 2-37

表 2-19 水平设置菜单

功能菜单	设定	说明
延迟扫描	打开 关闭	进入 Delayed 波形延迟扫描 关闭延迟扫描
	Y-T	Y-T方式显示垂直电压与水平时间 的相对关系
时基	X-Y	X-Y 方式在水平轴上显示通道 1 幅 值, 在垂直轴上显示通道 2 幅值
	Roll	Roll 方式下示波器从屏幕右侧到左侧滚动更新波形采样点
采样率		显示系统采样率
触发位移 复位		调整触发位置到中心零点

水平设置标志说明

标志说明:

- ①. 标志代表当前的波形视窗在内存中的位置。
- ②. 标识触发点在内存中的位置。
- ③. 标识触发点在当前波形视窗中的位置。
- ④. 水平时基(主时基)显示,即"秒/格"(s/div)。
- ⑤. 触发位置相对于视窗中点的水平距离。

名词解释

Y-T 方式: 此方式下 Y 轴表示电压量, X 轴表示时间量。

X-Y 方式: 此方式下 X 轴表示通道 1 电压量, Y 轴表示通道 2 电压量。

滚动方式: 当仪器进入滚动模式,波形自右向左滚动刷新显示。在滚动模式中,

波形水平位移和触发控制不起作用。一旦设置滚动模式, 时基控制设

定必须在 500ms/div, 或更慢。

慢扫描模式: 当水平时基控制设定在 50 ms/div 或更慢, 仪器进入慢扫描采样方式。

在此方式下,示波器先行采集触发点左侧的数据,然后等待触发,在触发发生后继续完成触发点右侧波形。应用慢扫描模式观察低频信号

时,建议将通道耦合设置成 直流。

秒/格(s/div): 水平刻度(时基)单位。如波形采样被停止(使用 RUN/STOP 键), 时基控制可扩张或压缩波形。

延迟扫描

延迟扫描用来放大一段波形,以便查看图像细节。延迟扫描时基设定不能慢于主时基的设定。

图 2-39 延迟扫描示意图

操作技巧

进入延迟扫描不但可以通过水平区域的 MENU 菜单操作,也可以直接按下此区域的水平 ②SCALE 旋钮作为延迟扫描快捷键,切换到延迟扫描状态。

X一Y方式

此方式只适用于通道 1 和通道 2。选择 X-Y 显示方式以后,水平轴上显示通道 1 电压,垂直轴上显示通道 2 电压。

图 2-40 X-Y 显示方式

注意:示波器在正常 Y-T 方式下可应用任意采样速率捕获波形。欲在 X-Y 方式下同样可以调整采样率和通道的垂直档位。X-Y 方式缺省的采样率是 100MSa/s。一般情况下,将采样率适当降低,可以得到较好显示效果的李沙育图形。

以下功能在 XY 显示方式中不起作用。

- LA 功能(仅 DS1000D 系列)
- 自动测量模式
- 光标测量模式
- 参考或数学运算波形
- 延迟扫描(Delayed)
- 矢量显示类型
- 水平**③POSITION** 旋钮
- 触发控制

设置触发系统

触发决定了示波器何时开始采集数据和显示波形。一旦触发被正确设定,它可以将不稳定的显示转换成有意义的波形。

示波器在开始采集数据时,先收集足够的数据用来在触发点的左方画出波形。示波器 在等待触发条件发生的同时连续地采集数据。当检测到触发后,示波器连续地采集足 够的数据以在触发点的右方画出波形。

示波器操作面板的触发控制区包括触发电平调整旋钮 ©LEVEL; 触发菜单按键 MENU; 设定触发电平在信号垂直中点的 50%; 强制触发按键 FORCE 。

②LEVEL: 触发电平设定触发点对应的信号电压,按下此旋钮使触发电平立即回零。

50%: 将触发电平设定在触发信号幅值的垂直中点。

FORCE: 强制产生一触发信号,主要应用于触发方式中的"普通"和"单次"模式。

MENU: 触发设置菜单键。(见下图)

图 2-41 触发系统设置界面

触发控制

触发方式有:边沿、脉宽、斜率、视频、交替、码型(仅 DS1000D 系列)和持续时间触发(仅 DS1000D 系列)。

边沿触发: 当触发输入沿给定方向通过某一给定电平时,边沿触发发生。

脉宽触发:设定一定的触发条件捕捉特定脉冲。

视频触发:对标准视频信号进行场或行视频触发。

斜率触发:根据信号的上升或下降速率进行触发。

交替触发:稳定触发不同步信号。

码型触发:码型触发通过查找指定码型识别触发条件。

持续时间触发: 在满足码型条件后的指定时间内触发。

下面分别对各种触发菜单进行说明。

边沿触发

边沿触发方式是在输入信号边沿的触发阈值上触发。在选取"边沿触发"时,即在输入信号的上升沿、下降沿或上升和下降沿触发。

图 2-42 表 2-20 边沿触发菜单

功能菜单	设定	说明
信源选择	CH1 CH2 EXT	设置通道1作为信源触发信号 设置通道2作为信源触发信号 设置外触发输入通道作为信源触发信号
行 <i>(</i> 水火 上 7年	AC Line D15-D0	设置市电触发 设置数字通道 D15-D0 中任一通道作为 信源触发信号(仅 DS1000D 系列)
边沿类型	★ (上升沿) ★ (下降沿) ↑ (上升&下降沿)	设置在信号上升边沿触发 设置在信号下降边沿触发 设置在信号上升沿和下降沿触发
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集 波形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波 形,然后停止
触发设置		进入触发设置菜单,详细说明见表 2-38

脉宽触发

脉宽触发根据脉冲的宽度来确定触发时刻。您可以通过设定脉宽条件捕捉异常脉冲。

图 2-43 表 2-21 脉宽触发菜单(第一页)

功能菜单	设定	说明
信源选择	CH1 CH2 EXT D15-D0	设置通道 1 作为信源触发信号 设置通道 2 作为信源触发信号 设置外触发输入通道作为信源 触发信号 设置数字通道 D15-D0 中任一通 道 作 为 信 源 触 发 信 号 (仅 DS1000D 系列)
脉冲条件	→ (正脉宽小于) → (正脉宽大于) → (正脉宽等于) → (负脉宽小于) → (负脉宽大于) + (负脉宽等于)	设置脉冲条件
脉宽设置	ህ <脉冲宽度>	设置脉冲宽度

图 2-44 表 2-22 脉宽触发菜单(第二页)

功能菜单	设定	说明
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波形设置只有满足触发条件时才采集波形设置当检测到一次触发时采样一个波形,然后停止
触发设置		进入触发设置菜单,详细说明见表 2-38

注意: 脉冲宽度调节范围为 20ns ~ 10s。在信号满足设定条件时,将触发采样。

视频触发

选择视频触发以后,即可在 NTSC, PAL 或 SECAM 标准视频信号的场或行上触发。触发耦合预设为直流。

图 2-45 表 2-23 视频触发菜单(第一页)

Trigger
触发模式
视频触发
信源选择
CH1
视频极性
同步
指定行
1/2
•

功能菜单	设定	说明
信源选择	CH1 CH2 EXT	设置通道 1 作为信源触发信号 设置通道 2 作为信源触发信号 设置外触发输入通道作为信源触发信号
视频极性] 正极性) □ 负极性)	适用于黑色电平为低的视频信号 适用于黑色电平为高的视频信号
同步	所有行 指定行 奇数场 偶数场	设置在视频行上触发同步 设置在指定视频行上触发同步 设置在视频奇数场上触发同步 设置在视频偶数场上触发同步

图 2-46 表 2-24 视频触发菜单(第二页,同步为指定行)

功能菜单	设定	说明
指定行	も <行数设置>	设置同步的指定行数
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波 形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形, 然后停止
触发设置		进入触发设置菜单,详细说明见表 2-39

图 2-47 表 2-25 视频触发菜单(第二页,同步为所有行,奇数场和偶数场)

Trigger
2/2
视频标准
NTSC
触发方式
←自动
触发设置

功能菜单	设定	说明
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集 波形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波 形,然后停止
触发设置		进入触发设置菜单,详细说明见表 2-39

同步脉冲: 当选择"正极性"时,触发总是发生在负向同步脉冲上。如果视频信号具有 正向同步脉冲,则选择"负极性"。

图 2-48 视频触发: 行同步

图 2-49 视频触发:场同步

斜率触发

斜率触发是把示波器设置为对指定时间的正斜率或负斜率触发。

图 2-50 表 2-26 斜率触发菜单 (第一页)

Trigger
触发模式
《斜率触发
信源选择
< CH1
斜率条件
<u>₩</u>
时间设置
₩
1/2
-

功能菜单	设定	说明
信源选择	CH1 CH2 EXT	设置通道 1 作为信源触发信号 设置通道 2 作为信源触发信号 设置外触发输入通道作为信源触发信号
斜率条件		设置斜率条件
时间设置	ひ <设置时间 >	设置斜率时间

图 2-51 表 2-27 斜率触发菜单 (第二页)

功能菜单	设定	说明
垂直窗		选择能被 ②LEVEL 调节的触发电平
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集 波形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形, 然后停止
触发设置		进入触发设置菜单,详细说明见表 2-38

注: 斜率时间设置范围为 20ns ~ 10s。在信号满足设定条件时,将触发采样。可选择⑤LEVEL 键调节 LEVEL A,LEVEL B,或同时调节 LEVEL A 和 LEVEL B。

交替触发

在交替触发时,触发信号来自于两个垂直通道,此方式可用于同时观察两路不相关信号。您可在该菜单中为两个垂直通道选择不同的触发类型,可选类型有边沿触发,脉 宽触发,斜率触发和视频触发,两通道的触发电平等信息显示于屏幕右上角。

图 2-52 表 2-28 交替触发菜单(触发类型为边沿触发)

Trigger
触发模式
交替触发
通道选择
CH1
触发类型
(边沿触发
边沿类型
<u>-</u>
触发设置

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	边沿触发	设置垂直通道的触发类型为边沿触发
边沿类型	★ (上升沿) ★ (下降沿)	设置在信号上升边沿触发 设置在信号下降边沿触发
触发设置		进入触发设置菜单,详细说明见表 2-38

图 2-53 表 2-29 交替触发菜单(触发类型为脉宽触发,第一页)

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	脉宽触发	设置垂直通道的触发类型为脉宽触 发
脉冲条件		设置脉冲条件

图 2-54 表 2-30 交替触发菜单(触发类型为脉宽触发,第二页)

功能菜单	设定	说明
脉宽设置	も <脉冲宽度>	设置脉冲宽度
触发设置		进入触发设置菜单,详细说明见表 2-38

图 2-55 表 2-31 交替触发菜单(触发类型为斜率触发,第一页)

Trigger
触发模式
*交替触发
通道选择
CH1
触发类型
∢斜率触发
斜率条件
<u> </u>
1/2
+

功能菜单	设定	说明
通道选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发类型	斜率触发	设置垂直通道的触发类型为斜率触发
斜率条件		设置斜率条件

图 2-56 表 2-32 交替触发菜单(触发类型为斜率触发,第二页)

功能菜单	设定	说明
时间设置	も <设置时间>	设置斜率时间
垂直窗		选择能被 ②LEVEL 调节的触发电平
触发设置		进入触发设置菜单,详细说明见表 2-38

图 2-57 表 2-33 交替触发菜单(触发类型为视频触发,第一页)

功能	 比菜单	设定	说明
通道	 造选择	CH1 CH2	设置通道 1 的触发类型等信息 设置通道 2 的触发类型等信息
触发	文类型	视频触发	设置垂直通道的触发类型为视频触发
视频	 板性	Ⅱ (正极性) Ⅱ (负极性)	适用于黑色电平为低的视频信号 适用于黑色电平为高的视频信号

图 2-58 表 2-34 交替触发菜单(触发类型为视频触发,第二页)

	1	
功能菜单	设定	说明
	所有行	设置在视频行上触发同步
同步	指定行	设置在指定视频行上触发同步
門少	奇数场	设置在视频奇数场上触发同步
	偶数场	设置在视频偶数场上触发同步
指定行	も <行数设置>	设置同步的指定行数
→□ #至十二八件:	Ⅱ(正极性)	适用于黑色电平为低的视频信号
视频标准	Ⅱ(负极性)	适用于黑色电平为高的视频信号
视频标准	PAL/SECAM NTSC	设置同步和计数选择视频标准
触发设置		进入触发设置菜单,详细说明见表 2-39

码型触发(仅 DS1000D 系列)

码型触发通过查找指定码型识别触发条件。码型是各通道的逻辑与组合,每个通道都有高(H)、低(L)和忽略(X)值。可以指定码型中包括的一个通道的上升或下降沿。

图 2-59 表 2-35 码型触发菜单

功能菜单	设定	说明
通道选择	D15-D0	选择设置码型的数字通道
码型设置	H L X 4	高 低 忽略 上升沿 下降沿
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集波 形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形,然 后停止
触发设置		进入触发设置菜单,详细说明见表 2-40

要点说明:

- **H**(高): 把所选通道码型设置为高。高代表电压电平高于通道的门限电平。
- **L(低)**: 把所选通道码型设置为低。低代表电压电平低于通道的门限电平。
- **X**(**忽略**): 把所选通道码型设置为忽略。任何被设置为忽略的通道都被忽略,不作为码型的一部分。如果码型中所有通道均被设置为忽略,示波器将不触发。

上升沿(→)或下降沿(→): 把码型设置为所选通道上的一个边沿。码型中只能指定一个上升沿或下降沿。当指定边沿后,如果其他通道的码型设置均为真,示波器将在指定的边沿上触发。

如果未指定边沿, 示波器将在码型为真的最后一个边沿上触发。

指定码型中的边沿

在码型中您只能指定一个上升沿或下降沿项。如果您定义了一个边沿项,然后在码型中选择不同通道定义另一个边沿项,那么原先定义的边沿项就变成忽略。

持续时间触发(仅 DS1000D 系列)

在满足码型条件后的指定时间内触发。

图 2-60 表 2-36 持续时间触发 (第一页)

Trigger
触发模式
持续时间
通道选择
Ų.
D0
码型设置
X
限定符
< <
1/2

功能菜单	设定	说明
通道选择	D15-D0	选择设置码型的数字通道
码型设置	H L X	高 低 忽略
限定符	< > =	设置时间限定条件

图 2-61 表 2-37 持续时间触发(第二页)

Trigger
2/2
时间设置
Ų.
1.00us
触发方式
✓ 自动
触发设置

功能菜单	设定	说明
时间设置	し <时间设置>	设置持续时间限定符时间
触发方式	自动 普通 单次	设置在没有检测到触发条件下也能采集 形 设置只有满足触发条件时才采集波形 设置当检测到一次触发时采样一个波形, 然后停止
触发设置		进入触发设置菜单,详细说明见表 2-40

要点说明:

- **H**(高): 把所选通道码型设置为高。高代表电压电平高于通道的门限电平。
- L(低): 把所选通道码型设置为低。低代表电压电平低于通道的门限电平。
- **X**(忽略): 把所选通道码型设置为忽略。任何被设置为忽略的通道都被忽略,不作为码型的一部分。如果码型中所有通道均被设置为忽略,示波器将不触发。

限定符: 在满足码型条件后开始计时, 在限定符规定的时间上持续时间触发发生。

触发设置

进入触发设置菜单,使您可对触发的相关选项进行设置。针对不同的触发方式,可设置的触发选项有所不同。边沿触发和脉宽触发在信源选择为 D15-D0 时(仅 DS1000D 系列),仅能设置触发释抑,信源选择非数字通道和斜率触发时,可对触发耦合,灵敏度和触发释抑进行设置;视频触发时,可对灵敏度和触发释抑进行设置;交替触发时,根据已选的触发类型不同,可设置的相关选项不同;码型触发(仅 DS1000D 系列)和持续时间触发(仅 DS1000D 系列)时,仅能设置触发释抑。

图 2-62 表 2-38 触发设置菜单(可设置触发耦合,灵敏度和触发释抑)

功能菜单	设定	说明
耦合	交流 直流 低频抑制 高频抑制	设置阻止直流分量通过 设置允许所有分量通过 阻止信号的低频部分通过,只允许高 频分量通过 阻止信号的高频部分通过,只允许低 频分量通过
灵敏度	も <灵敏度设置>	设置触发灵敏度
触发释抑	り <触发释抑设置>	设置可以接受另一触发事件之前的时间量
触发释抑		设置触发释抑时间为 100ns
复位		

图 2-63 表 2-39 触发设置菜单(可设置灵敏度和触发释抑)

功能菜单	设定	说明
灵敏度	も <灵敏度设置>	设置触发灵敏度
触发释抑	も <触发释抑设 置>	设置可以接受另一触发事件之前的时间量
触发释抑		设置触发释抑时间为 100ns
复位		

图 2-64 表 2-40 触发设置菜单(仅能设置触发释抑)

功能菜单	设定	说明
触发释抑	も <触发释抑设 置>	设置可以接受另一触发事件之前的时间量
触发释抑 复位		设置触发释抑时间为 100ns

触发释抑

使用触发释抑控制可稳定触发复杂波形(如脉冲系列)。释抑时间是指示波器重新启 用触发电路所等待的时间。在释抑期间,示波器不会触发,直至释抑时间结束。例如, 一组脉冲系列,要求在该脉冲系列的第一个脉冲触发,则可以将释抑时间设置为脉冲 串宽度。如下图所示:

图 2-65 触发抑释示意图

操作说明

- 1. 按下触发 MENU 菜单按钮,显示触发菜单。
- 2. 按 触发设置 对应的菜单操作键,进入触发设置菜单。
- 3. 旋动多功能旋钮(**\veeta**) 改变释抑时间,直至波形稳定触发。
- 4. 按 触发释抑复位 对应的菜单操作键,释抑时间恢复至默认值。

名词解释

1. 信源:

触发可从多种信源得到: 输入通道(CH1、CH2、D15—D0(仅 DS1000D 系列)), 外部触发(EXT), AC Line(市电)。

输入通道:最常用的触发信源是输入通道(可任选一个)。被选中作为触发信源的通道,无论其输入是否被显示,都能正常工作。

外部触发: 这种触发信源可用于在两个通道上采集数据的同时在第三个通道上触发。例如,可利用外部时钟或来自待测电路的信号作为触发信源。**EXT** 触发源都使用连接至 **EXT TRIG** 接头的外部触发信号。

EXT 可直接使用信号, 您可在信号触发电平范围在 -1.2V 至 +1.2V 时使用 EXT。 AC Line: 即交流电源。这种触发信源可用来显示信号与动力电, 如照明设备和动力提供设备之间的关系。示波器将产生触发, 无需人工输入触发信号。 在使用交流电源作为触发信源时, 触发电平设定为 0 伏, 不可调节。

2. 触发方式:

决定示波器在无触发事件情况下的行为方式。本示波器提供三种触发方式:自动,普通和单次触发。

自动触发:这种触发方式使得示波器即使在没有检测到触发条件的情况下也能采样波形。当示波器在一定等待时间(该时间可由时基设置决定)内没有触发条件发生时,示波器将进行强制触发。

当强制进行无效触发时,示波器虽然显示波形,但不能使波形同步,则显示的波 形将不稳定。当有效触发发生时,显示器上的波形是稳定的。

可用自动方式来监测幅值电平等可能导致波形显示不稳定的因素,如动力供应输出等。

注意: 在扫描波形设定在 **50ms/div** 或更慢的时基上时,"自动"方式允许没有触发信号。

普通触发: 示波器在普通触发方式下只有当触发条件满足时才能采样到波形。在没有触发时,示波器将显示原有波形而等待触发。

单次触发: 在单次触发方式下,用户按一次"运行"按钮,示波器等待触发,当示波器检测到一次触发时,采样并显示一个波形,采样停止。

3. 耦合:

触发耦合决定信号的何种分量被传送到触发电路。耦合类型包括直流,交流,低频抑制和高频抑制。

直流: 让信号的所有成分通过。

交流: 阻挡直流成分并衰减 10Hz 以下信号。

低频抑制: 阻挡直流成分并衰减低于 8kHz 的低频成分。

高频抑制: 衰减超过 150kHz 的高频成分。

4. 预触发/延迟触发:

触发事件以前/后采样的数据。

触发位置通常设定在屏幕的水平中心。在全屏显示情况下,您可以观察到 6 格的预触发和延迟信息。您可以旋转水平@POSITION 调节波形的水平位移,查看更多的预触发信息,或者最多触发 1s 后的延迟触发信息。

通过观察预触发数据,可以了解触发以前的信号情况。例如捕捉到电路产生的毛刺,通过观察和分析预触发数据,可能会查出毛刺产生的原因。

5. 可变触发灵敏度:

为了排除现实世界信号噪声的影响,得到稳定的触发,触发电路引入了迟滞。 DS1000E, DS1000D 系列示波器,迟滞可调,范围是 0.1div-1.0div。

即当设置为 **1.0div** 时,触发电路对于任何峰—峰幅度≤**1.0div** 的信号,不做响应,从而排除噪声的影响。

设置采样系统

如下图所示,在 MENU 控制区的 ACQUIRE 为采样系统的功能按键。

图 2-66 采集功能按钮

使用 ACQUIRE 按钮弹出下图所示采样设置菜单。通过菜单控制按钮调整采样方式。

图 2-67 表 2-41 采集功能菜单

获取方式 平均 平均次数
平均次数
平均次数
<u> </u>
采样方式
等效采样
存储深度
长存储
Sinx/x
打开

功能菜单	设定	说明
获取方式	普通 平均 峰值检测	打开普通采样方式 设置平均采样方式 打开峰值检测方式
平均次数	2 256	以2的倍数步进,从2到256设置平均次数
采样方式	实时采样 等效采样	设置采样方式为实时采样 设置采样方式为等效采样
存储深度	长存储普通	设置存储深度为 500kpts 或 1Mpts 设置存储深度为 8kpts 或 16kpts
Sinx/x	打开 关闭	选择 Sinx/x 插值方式 选择线性插值方式

图 2-68 信号包含噪声,未应用平均采样的波形

图 2-69 64 次平均后,去除噪声影响的波形

注意:

观察单次信号请选用实时采样方式,

观察高频周期性信号请选用等效采样方式。

希望观察信号的包络避免混淆,请选用峰值检测方式(见下图)。

期望减少所显示信号中的随机噪声,请选用平均采样方式,平均值的次数可以选择。

图 2-70 峰值检测显示的波形效果

停止采样:运行在采样功能时,显示波形为活动状态。停止采样,则显示冻结波形。 无论处于上述哪一种状态,显示波形可用垂直控制和水平控制来度量或定位。

名词解释

实时采样: 实时采样方式在每一次采样采集满内存空间。实时采样率最高为 1GSa/s。在 50ns 或更快的设置下,示波器自动进行插值算法,即在采样点之间插入光点。

等效采样:即重复采样方式。等效采样方式利于细致观察重复的周期性信号,使用等效采样方式可得到比实时采样高得多的 **40ps** 的水平分辨率,即等效 **25GSa/s**。

普通: 示波器按相等的时间间隔对信号采样以重建波形。

平均获取方式:应用平均值获取方式可减少所显示信号中的随机或无关噪音。在实时 采样或等效采样方式下采样数值,然后将多次采样的波形平均计算。

峰值检测方式:通过采集采样间隔信号的最大值和最小值,获取信号的包络或可能丢失的窄脉冲。在此获取方式下,可以避免信号的混淆,但显示的噪声比较大。

设置显示系统

如下图所示,在 MENU 控制区的 DISPLAY 为显示系统的功能按键。

图 2-71 显示功能按钮

使用 DISPLAY 按钮弹出下图所示设置菜单。通过菜单控制按钮调整显示方式。

图 2-72 表 2-42 显示设置菜单 (第一页)

功能菜单	设定	说明
显示类型	矢量 点	采样点之间通过连线的方式显示 直接显示采样点
清除显示		清除所有屏幕显示波形
波形保持	关闭 无限	记录点以高刷新率变化 记录点一直保持,直至波形保持 功能被关闭
波形亮度	も < 波形亮度 >	设置波形亮度

图 2-73

表 2-43 显示设置菜单(第二页)

功能菜单	设定	说明
屏幕网格		打开背景网格及坐标 关闭背景网格 关闭背景网格及坐标
网格亮度	も < 网格亮度 >	设置网格亮度
菜单保持	1s 2s 5s 10s 20s 无限	设置隐藏菜单时间。菜单 将在最后一次按键动作后 的设置时间内隐藏。

要点说明:

显示类型:显示类型包含矢量和点显示。矢量显示模式下,示波器采取数字内插的方式连接采样点,并且包含线性和 sin(x)/x 两种模式。sin(x)/x 内插方式适用实时采样方式,并且在 50ns 或更快时基下有效。

刷新率:刷新率是数字示波器的一项重要指标,它是指示波器每秒刷新屏幕波形的次数。刷新率的快慢将影响示波器快速观察信号动态变化的能力。

调节波形亮度

多功能旋钮(♥)在未指定任何功能时,旋动此旋钮均是调节模拟通道波形亮度值。

存储和调出

如下图所示,在 MENU 控制区的 STORAGE 为存储系统的功能按键。

图 2-74 存储功能按钮

使用 STORAGE 按钮弹出下图存储设置菜单。您可以通过该菜单对示波器内部存储 区和 USB 存储设备上的波形和设置文件进行保存和调出操作,也可以对 USB 存储设备上的波形文件、设置文件、位图文件以及 CSV 文件进行新建和删除操作,不能删除仪器内部的存储文件,但可将其覆盖。操作的文件名称支持中英文输入。

图 2-75 表 2-44 存储设置菜单(存储类型为波形存储和设置存储)

STORAGE
存储类型
· 设置存储
内部存储
外部存储
磁盘管理

功能菜单	设定	说明
存储类型	波形存储 设置存储 位图存储 CSV 存储 出厂设置	设置保存、调出波形操作 设置保存、调出设置操作 设置新建、删除位图文件操作 设置新建、删除 CSV 文件操作 设置调出出厂设置操作
内部存储		进入内部存储菜单(见表 2-48)
外部存储		进入外部存储菜单(见表 2-49)
磁盘管理		进入磁盘管理菜单(见表 2-50)

图 2-76 表 2-45 存储设置菜单(存储类型为出厂设置)

STORAGE 存储类型
出厂设置
 调出
磁盘管理

功能菜单	设定	说明
存储类型	波形存储 设置存储 位图存储 CSV 存储 出厂设置	设置保存、调出波形操作 设置保存、调出设置操作 设置新建、删除位图文件操作 设置新建、删除 CSV 文件操作 设置调出出厂设置操作
调出		调出出厂设置或指定位置的存储文件
磁盘管理		进入磁盘管理菜单(见表 2-50)

图 2-77 表 2-46 存储设置菜单(存储类型 CSV 存储)

CTOD ACE
STORAGE
存储类型
CSV存储
数据长度
屏幕
参数保存
美闭
外部存储
磁盘管理

功能菜单	设定	说明
	波形存储	设置保存、调出波形操作
	设置存储	设置保存、调出设置操作
存储类型	位图存储	设置新建、删除位图文件操作
	CSV 存储	设置新建、删除 CSV 文件操作
	出厂设置	设置调出出厂设置操作
数据长度	屏幕	CSV 文件存储屏幕显示的波形数据
数据	内存	CSV 文件存储内存的波形数据
参数保存	打开	设置在保存 CSV 文件时,是否
多数休任	关闭	以同一名字保存示波器参数文件
外部存储		进入外部存储菜单(见表 2-49)
磁盘管理		进入磁盘管理菜单(见表 2-50)

存储类型为时,菜单如下所示:

图 2-78 表 2-47 存储设置菜单(存储类型为位图存储)

功能菜单	设定	说明
	波形存储	设置保存、调出波形操作
存储类型	设置存储 位图存储	设置保存、调出设置操作 设置新建、删除位图文件操作
1 付 個 天 至	CSV 存储	设置新建、删除位置文件操作 设置新建、删除 CSV 文件操作
	出厂设置	设置调出出厂设置操作
参数保存	打开	设置在保存位图文件时,是否
2 XV IV II	关闭	以同一名字保存示波器参数文件
外部存储		进入外部存储菜单(见表 2-49)
磁盘管理		进入磁盘管理菜单(见表 2-50)

内部存储

按 STORAGE → 内部存储 进入下面所示菜单。

图 2-79 表 2-48 内部存储菜单

功能菜单	设定	说明
	Int_00 (N)	
 存储位置	•	设置、波形在内部存储区内
1十1年12.11		的存储位置
	Int_09 (N)	
调出		调出内部存储区指定位置的
		波形和设置文件
保存		保存波形和设置文件到内部
		存储区的指定位置
删除文件		删除选中的文件

外部存储

按 STORAGE → 外部存储 进入下面所示菜单。

图 2-80 表 2-49 外部存储菜单

EXTERNAL
浏览器
文件
新建文件
删除文件
调出
1

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目录 和文件
新建文件 (目录)		新建文件或目录(见表 2-13)
删除文件		删除用户选定文件
调出		调出 USB 存储设备上的波形和 设置文件

图 2-81 文件系统说明图

磁盘管理

按 STORAGE → 磁盘管理 进入下面所示菜单。

图 2-82 表 2-50 磁盘管理菜单(第一页)

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
新建目录		新建目录(与新建文件类似, 见表 2-13)
删除文件		删除用户选定文件
调出		调出 USB 存储设备上的波形、设置、波形录制和 Pass/Fail 文件

图 2-83 表 2-51 磁盘管理菜单(第二页)

功能菜单	设定	说明
重命名		对文件重命名(见表 2-52)
磁盘信息		显示磁盘信息

重命名

按 STORAGE → 磁盘管理 → 重命名 进入下面所示菜单。

图 2-84 表 2-52 重命名菜单

功能菜单	设定	说明
†		文件名称的输入焦点向上移动
+		文件名称的输入焦点向下移动
×		删除文件名称字符串或拼音字符 串(中文输入)中高亮显示的字符
确定		执行重命名文件操作

图 2-85 重命名操作界面

出厂设置

示波器出厂前已为各种正常操作进行了预先设定。任何时候用户都可根据需要调出厂 家设置。

存储位置

指定存储器地址,以存储/调出当前波形或设置。

调出

示波器可调出已保存的波形、设置、出厂设置。

保存

保存当前的波形、设置到指定位置。

注意:

- 1. 选择**波形存储**不但可以保存当前通道的波形,同时还可以存储当前的状态设置。
- 2. 更改设置后,请至少等待 5 秒才关闭示波器,以保证新设置得到正确的储存。用户可在示波器的存储器里永久保存 10 种设置,并可在任意时刻重新写入设置。

辅助系统功能设置

如下图所示,在 MENU 控制区的 UTILITY 为辅助系统功能按键。

图 2-86 系统功能设置按钮

使用UTILITY按钮弹出辅助系统功能设置菜单。

图 2-87

功能菜单	设定	说明
接口设置		进入接口设置菜单
声音	● (打开声音) ● ×(关闭声音)	打开/关闭按键声
频率计	关闭 打开	关闭频率计功能 打开频率计功能
Language	简体中文 繁体中文 English Japanese Français	选择界面语言。(新的软件版本可能增加更多语言选择。)

图 2-88 表 2-54 系统功能设置菜单(第二页)

UTILITY
2/3
通过测试
波形录制
打印设置
2/3

功能菜单	设定	说明
通过测试		设置通过测试操作
波形录制		设置波形录制操作
打印设置		设置打印设置操作

图 2-89 表 2-55 系统功能设置菜单(第三页)

,,
UTILITY
3/3
参数设置
自校正
-7.4+ H- 6
系统信息

功能菜单	设定	说明
参数设置		进入参数设置菜单
自校正		执行自校正操作
系统信息		查看系统信息

要点说明:

自校正: 指示波器自动校正垂直系统(CH1, CH2, Ext), 水平系统和触发系统的各 项参数,以保证示波器在不同环境变化均能满足指标要求。

接口设置

按 UTILITY → 接口设置 进入下面所示菜单。

图 2-90 表 2-56 接口设置菜单

功能菜单	显示	说明
RS-232 波特率	300 38400	RS-232 波特率的选择值为: 300,2400,4800,9600, 19200,38400。
GPIB#	0~30	设置 GPIB 地址

参数设置

按UTILITY → 参数设置 进入下面所示菜单。

图 2-91 表 2-57 参数设置菜单

功能菜单	显示	说明
屏幕保护	1 min 5 hour 关闭	设置示波器屏幕保护时间
扩展参考	接地电平屏幕中心	设置模拟信号垂直扩展参考
粘滯		设置 CH1、CH2、Math、Ref,Trig Level 和 Trig Offset 的粘滞状态
界面方案	经典 传统 现代 简洁	设置示波器的界面方案

要点说明:

屏幕保护:如果示波器在指定的时间内闲置,可打开示波器的屏幕保护功能。该功能打开时,可延长示波器背光灯的使用寿命。

扩展参考:在改变模拟通道的垂直档位设置时,可以选择围绕信号接地点或屏幕中心进行信号扩展或压缩。选择接地电平后,改变伏/格设置时,波形的接地电平将保持在显示屏的同一点,波形非接地部分将扩展或压缩;选择屏幕中心后,改变伏/格设置时,波形将围绕屏幕中心扩展或压缩。

粘滞: CH1、CH2、Math、Ref, Trig Level 和 Trig Offset 的粘滞状态打开时,调节 上述通道的垂直位置,触发电平或触发位移位置至零点时,将粘滞不动。此功能对快速将波形定位于中心位置很方便。

自校正

自校正程序可迅速地使示波器达到最佳状态,以取得最精确的测量值。您可在任何时候执行这个程序,但如果环境温度变化范围达到或超过 5 个摄氏度时,您必须执行这个程序。

若要进行自校准,应将所有探头或导线与输入连接器断开。然后,按**UTILITY**(辅助系统功能)钮,选择自校正,此时屏幕会显示自校正菜单,如下图所示。

图 **2**-**92** 自校正界面

注意:

运行自校正程序以前,请确定示波器已预热或运行达30分钟以上。

通过/失败测试

通过测试功能通过判断输入信号是否在创建规则范围内,以输出通过或失败波形,用以监测信号变化情况。

按 UTILITY → 通过测试 ,进入下面所示菜单。

图 2-93 表 2-58 通过/失败测试菜单(第一页)

PASS/FAIL
允许测试
美闭
信源选择
CH1
操作
显示信息
美闭
1/3

功能菜单	设定	说明
通过测试	打开	打开通过测试功能
迪 拉测试	关闭	关闭通过测试功能
信源选择	CH1 CH2	选择通过测试信号输入通道
操作	▶ (运行)	运行通过测试
採作	■ (停止)	停止通过测试
显示信息	打开	打开/关闭波形通过/失败次数信
亚小卢尼	关闭	息

图 2-94 表 2-59 通过/失败测试菜单(第二页)

功能菜单	设定	说明
输出	失败 通过	检测波形失败时输出 检测波形通过时输出
输出即停	打开 关闭	设置检测输出即停止采样 设置检测输出并继续采样
规则设置		进入规则设置菜单

规则设置

按 UTILITY → 通过测试 → 规则设置 ,进入下面所示菜单。

图 2-95 表 2-60 规则设置菜单(第一页)

MASK
水平调整
Ð
0.20div
垂直调整
(+)
0.20div
创建规则
存储位置
外部
1/2
1

功能菜单	设定	说明
水平调整	\U < x div>	设置水平容限范围 (0.04div-4.00div)
垂直调整	•	设置垂直容限范围 (0.04div-4.00div)
创建规则		根据调整创建水平和垂直的失 败/通过容限范围
存储位置	内部 外部	设置规则文件的存储位置

图 2-96 表 2-61 规则设置菜单(第二页,存储位置为内部时)

功能菜单	设定	说明
保存		将规则设置文件保存到内部存储 区
调出		调出内部存储区的规则设置文件
导入/导出		进入导入/导出菜单,同 REF 导入/ 导出菜单类似(见表 2-10)

图 2-97 表 2-62 规则设置菜单(第二页,存储位置为外部时)

功能菜单	设定	说明
保存		进入保存菜单,同 REF 保存菜 单类似(见表 2-12)
调出		进入调出菜单(见表 2-63)
导入		进入导入菜单,同 REF 导入菜 单类似(见表 2-14)

调出

按 UTILITY → 通过测试 → 规则设置 → 调出 ,进入下面所示菜单。

图 2-98 表 2-63 调出菜单

功能菜单	设定	说明
浏览器	路径 目录 文件	切换文件系统显示的路径、目 录和文件
调出		调出用户选定的文件

注意:

在时基为 X-Y 模式下,不能运行通过/失败检测功能。

通过/失败输出物理连接

在 DS1000E, DS1000D 系列示波器中,通过/失败测试输出电路采用了光电隔离技术。用户需外接一部份电路,实现该功能,最大电流不超过 100mA,最大电压不超过 400V。此电路输出级使用光电继电器,无极性限制,可任意极性连接。

图 2-99 通过/失败输出示意图

打印设置

DS1000E, DS1000D 系列示波器支持打印功能。

按 UTILITY → 打印设置 ,进入下面所示菜单。

图 2-100

表 2-64 打印设置菜单

功能菜单	设定	说明
打印		执行打印操作
反相	打开 关闭	控制打印时颜色是否反相
打印颜色	灰度 彩色	设置打印颜色

波形录制

波形录制不仅可录制通道 1 和通道 2 输入的波形,还可以录制通过/失败检测输出的波形。您可以设置帧一帧之间的时间间隔,最大录制 1000 帧波形,并通过回放和保存功能达到更好的波形分析效果。

按 UTILITY → 波形录制 → 模式 → 录制 。进入下列菜单。

波形录制: 以指定的时间间隔录制波形,直至达到设置的终止帧数。 具体描述参见下表:

图 2-101 表 2-65 波形录制菜单 (第一页)

模式
录制
信源选择
CH1
终止帧
_ \ \$
操作
1/2
•

功能菜单	设定	说明
	录制	设置录制功能菜单
壮 士————————————————————————————————————	回放	设置回放功能菜单
模式	存储	设置存储功能菜单
	关闭	关闭所有录制功能
	CH1	
信源选择	CH2	设置录制信号源
	P/F-OUT	
终止帧	\ <1-1000>	设置波形录制的最大帧数
	● (录制)	开始录制波形
操作	■ (停止)	停止录制波形

图 2-102 表 2-66 波形录制菜单 (第二页)

功能菜单	设定	说明
时间间隔	\ <1.00ms-1000s>	设置时间间隔

录制回放:回放当前的录制波形或调出的录制存储波形。具体设置描述可参见下表:

图 2-103 表 2-67 波形回放菜单 (第一页)

RECORD
模式
回放
操作
回放模式
جے
时间间隔
1.00ms
1/2
-

功能菜单	设定	说明
操作	▶ (运行)	开始回放波形
	■ (停止)	停止播放波形
回放模式	ċ	循环回放录制波形
	ightharpoons	播放录制波形而后停止
时间间隔	\(\begin{align*} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	设置回放帧-帧的时间间隔

图 2-104 表 2-68 波形回放菜单 (第二页)

功能菜单	设定	说明
起始帧	\) <1-1000>	设置起始回放帧
当前帧	\(\frac{\frac{1}{1}}{1}\)	设置当前屏幕显示帧数
终止帧	\(\frac{\frac{1}{1}}{1}\)	设置回放的终止帧数

注:可执行 RUN/STOP 键停止或继续波形回放功能。

录制存储:根据当前设置帧数存储当前录制的波形。具体设置描述参见下表:

图 2-105 表 2-69 录制波形存储菜单(第一页)

RECORD
模式
存储
起始帧
Ų
终止帧
ৠ
存储位置
外部
1/2
-

功能菜单	设定	说明
起始帧	\) <1-1000>	设置开始存储的帧数
终止帧	\ <1-1000>	设置结束存储的帧数
存储位置	外部 内部	设置录制波形的存储位置

图 2-106 表 2-70 录制波形存储菜单(第二页,存储位置为内部时)

功能菜单	设定	说明
保存		将波形录制文件保存到内部存储 区
调出		调出内部存储区的波形录制文件
导入/导出		进入导入/导出菜单,同 REF 导入/导出菜单类似(见表 2-10)

图 2-107 表 2-71 录制波形存储菜单(第二页存储位置为外部时)

功能菜单	设定	说明
保存		进入保存菜单,同 REF 保存菜单
沐 行		类似(见表 2-12)
调出		进入调出菜单,同规则设置文件
加山山		的调出菜单类似(见表 2-63)
导入		进入导入菜单,同 REF 导入菜单
可八		类似(见表 2-14)

语言选择

DS1000E, DS1000D 系列示波器配备多国语言的用户接口,由用户自选。

欲选择显示语言,请按下 UTILITY 菜单按钮,然后按语言菜单项(Language)以选择适当的语言。

选择操作系统显示语言的调整方法如下:

按 UTILITY → Language: 按 4 号菜单操作键,直至出现目标语言显示。

图 2-108 系统语言设置菜单

自动测量

如下图所示,在 MENU 控制区的 MEASURE 为自动测量功能按键。下面的介绍使您逐渐熟悉 DS1000E, DS1000D 系列强大的测量功能。

图 2-109 自动测量功能按钮

菜单说明

按 MEASURE 自动测量功能键,系统显示自动测量操作菜单。本示波器具有 20 种自动测量功能。包括峰峰值、最大值、最小值、顶端值、底端值、幅值、平均值、均方根值、过冲、预冲、频率、周期、上升时间、下降时间、正占空比、负占空比、延迟 $1 \rightarrow 2^{\frac{1}{2}}$ 、延迟 $1 \rightarrow 2^{\frac{1}{2}}$ 、正脉宽、负脉宽的测量,共 10 种电压测量和 10 种时间测量。

图 2-110 表 2-72 测量功能菜单

功能菜单	显示	说明
信源选择	CH1 CH2	设置被测信号的输入通道
电压测量		选择测量电压参数
时间测量		选择测量时间参数
清除测量		清除测量结果
全部测量	关闭 打开	关闭全部测量显示 打开全部测量显示

1. 电压测量

图 2-111 表 2-73 电压测量项目 (第一页)

[1,71,7] [♣
最大值
* ~\\
最小值
בורער ב
峰峰值
TJUL
顶端值

功能菜单	显示	说明
最大值		测量信号最大值
最小值		测量信号最小值
峰峰值		测量信号峰峰值
顶端值		测量方波信号顶端值

图 2-112 表 2-74 电压测量项目 (第二页)

功能菜单	显示	说明
底端值		测量方波信号底端值
幅度		测量信号幅度值
平均值		测量信号平均值
均方根值		测量信号均方根值

图 2-113 表 2-75 电压测量项目(第三页)

功能菜单	显示	说明
过冲		测量沿信号过冲值
预冲		测量沿信号预冲值

2. 时间测量

图 2-114 表 2-76 时间测量项目(第一页)

功能菜单	显示	说明
周期		测量信号的周期
频率		测量信号的频率
上升时间		测量上升沿信号上升时间
下降时间		测量下降沿信号下降时间

图 2-115

表 2-77 时间测量项目(第二页)

功能菜单	显示	说明
正脉宽		测量脉冲信号的正脉宽
负脉宽		测量脉冲信号的负脉宽
正占空比		测量脉冲信号的正占空比
负占空比		测量脉冲信号的负占空比

图 2-116

表 2-78 时间测量项目(第三页)

功能菜单	显示	说明
延迟 1 → 2 5		测量 CH1, CH2 信号在上升沿 处的延迟时间
延迟 1 → 2₹		测量 CH1, CH2 信号在下降沿处的延迟时间

注意: 自动测量的结果显示在屏幕下方,最多可同时显示3个。当显示已满时,新的 测量结果会导致原结果左移,从而将原屏幕最左端的结果挤出屏幕之外。

操作说明

- ①. 选择被测信号通道: 根据信号输入通道不同,选择 CH1 或 CH2。 按钮操作顺序为: MEASURE → **信源选择** → CH1 或 CH2。
- ②. 获得全部测量数值:如下图菜单所示,按5号菜单操作键,设置"全部测量"项状态为 打开。18种测量参数值显示于屏幕下方。
- ③. 选择参数测量:按 2 号或 3 号菜单操作键选则测量类型,查找感兴趣的参数所在的分页。按钮操作顺序为: MEASURE → 电压测量 、时间测量 → 最大值 、最小值 ……
- ④. 获得测量数值:应用 2、3、4、5 号菜单操作键选择参数类型,并在屏幕下方直接读取显示的数据。若显示的数据为"****",表明在当前的设置下,此参数不可测。
- ⑤. 清除测量数值:如下图菜单所示,按 4 号菜单操作键选择 清除测量 。此时,所有屏幕下端的自动测量值从屏幕消失。

图 2-117 打开/关闭测量参数的参数

电压参数的自动测量

DS1000E, DS1000D 系列可以自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了一系列电压参数的物理意义。

峰峰值 (Vpp): 波形最高点波峰至最低点的电压值。

最大值(Vmax): 波形最高点至 GND(地)的电压值。

最小值(Vmin):波形最低点至GND(地)的电压值。

幅值(Vamp):波形顶端至底端的电压值。

顶端值(Vtop):波形平顶至GND(地)的电压值。

底端值(Vbase): 波形平底至GND(地)的电压值。

过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。

预冲 (Preshoot): 波形最小值与底端值之差与幅值的比值。

平均值(Average):单位时间内信号的平均幅值。

均方根值(Vrms):即有效值。依据交流信号在单位时间内所换算产生的能量,对应 于产生等值能量的直流电压,即均方根值。

时间参数的自动测量

图 2-119 时间参数示意图

DS1000E, DS1000D 系列可以自动测量信号的频率、周期、上升时间、下降时间、正脉宽、负脉宽、延迟 $1\rightarrow 2^{\frac{1}{2}}$ 、延迟 $1\rightarrow 2^{\frac{1}{2}}$ 、正占空比,负占空比十种时间参数的自动测量。

上升时间(RiseTime): 波形幅度从10%上升至90%所经历的时间。

下降时间(FallTime): 波形幅度从90%下降至10%所经历的时间。

正脉宽(+Width): 正脉冲在 50%幅度时的脉冲宽度。

负脉宽 (-Width): 负脉冲在 50%幅度时的脉冲宽度。

延迟 $1\rightarrow 2^f$ (Delay $1\rightarrow 2^f$): 通道 1、2 相对于上升沿的延时。

延迟 $1\rightarrow 2^{\frac{1}{2}}$ (Delay $1\rightarrow 2^{\frac{1}{2}}$): 通道 1、2 相对于下降沿的延时。

正占空比(+Duty):正脉宽与周期的比值。

负占空比(-Duty): 负脉宽与周期的比值。

光标测量

如下图所示,在 MENU 控制区的 CURSOR 为光标测量功能按键。

光标模式允许用户通过移动光标进行测量。光标测量分为3种模式:

1. 手动方式:

光标 X 或 Y 方式成对出现, 并可手动调整光标的间距。显示的读数即为测量的电压或时间值。当使用光标时, 需首先将信号源设定成您所要测量的波形。

2. 追踪方式:

水平与垂直光标交叉构成十字光标。十字光标自动定位在波形上,通过旋动多功能旋钮(**划**)可以调整十字光标在波形上的水平位置。示波器同时显示光标点的坐标。

3. 自动测量方式:

通过此设定,在自动测量模式下,系统会显示对应的电压或时间光标,以揭示测量的物理意义。系统根据信号的变化,自动调整光标位置,并计算相应的参数值。

注意: 此种方式在未选择任何自动测量参数时无效。

手动模式

图 2-121 表 2-79 手动测量菜单

CURSOR
光标模式 手动
 光标类型
Х
信源选择
CH1 Cure:
±)
CurB
ಳ

功能菜单	设定	说明
光标模式	手动	手动调整光标间距以测量X或Y参数
光标类型	X Y	光标显示为垂直线,用来测量水平方 向上的参数。 光标显示为水平线,用来测量垂直方 向上的参数。
信源选择	CH1 CH2 MATH/ FFT LA	选择被测信号的输入通道 (LA 只适用于 DS1000D 系列)

手动光标测量方式是测量一对 X 光标或 Y 的坐标值及二者间的增量。

操作步骤如下:

- ①. 选择手动测量模式: 按键操作顺序为: CURSOR > 光标模式 > 手动 。
- ②. 选择被测信号通道:根据被测信号的输入通道不同,选择 CH1 或 CH2。按键操作顺序为:**信源选择 → CH1** 、CH2 、MATH (FFT)或 LA (仅 DS1000D 系列)。
- ③. 选择光标类型:根据需要测量的参数分别选择 X 或 Y 光标。按键操作顺序为:光 标类型 → X 或 Y 。
- ④. 移动光标以调整光标间的增量:(见下表)

表 2-80 光标操作说明

光标	增量	操作
CurA	X	旋动多功能旋钮(ひ)使光标 A 左右移动
(光标 A)	Y	旋动多功能旋钮(ひ)使光标 A 上下移动
CurB	X	旋动多功能旋钮(ひ)使光标 B 左右移动
(光标 B)	Y	旋动多功能旋钮(ひ)使光标 B 上下移动

注:只有当前菜单为光标功能菜单时,才能移动光标。

⑤. 获得测量数值:

光标 1 位置(时间以触发偏移位置为基准,电压以通道接地点为基准)

光标 2 位置(时间以触发偏移位置为基准,电压以通道接地点为基准)

光标 1、2 的水平间距 (ΔX): 即光标间的时间值。

光标 1、2 水平间距的倒数 $(1/\Delta X)$ 。

光标 1、2 的垂直间距 (ΔY): 即光标间的电压值。

如果信源选择为 LA(仅 DS1000D 系列),测量数值为:

光标 1 位置(时间以触发偏移位置为基准)

光标 2 位置(时间以触发偏移位置为基准)

光标 1 的数字通道数值(十六进制形式)。

光标 1 的数字通道数值(二进制形式)。

光标 2 的数字通道数值(十六进制形式)。

光标 2 的数字通道数值(二进制形式)。

注: 当光标功能打开时,测量数值自动显示于屏幕右上角。

名词解释

Y光标: Y 光标是进行垂直调整的水平虚线,通常指 Volts 值,当信源为数学函数时,测量单位与该数学函数相对应。

X光标:是进行水平调整的垂直虚线,通常指示相对于触发偏移位置的时间。当信源为FFT时,X光标代表频率。

追踪模式

图 2-122 表 2-81 追踪测量菜单

功能菜单	设定	说明
光标模式	追踪	设定追踪方式,定位和调整十字 光标在被测波形上的位置。
光标 A	CH1 CH2 无光标	设定追踪测量通道1的信号 设定追踪测量通道2的信号 不显示光标A
光标 B	CH1 CH2 无光标	设定追踪测量通道 1 的信号 设定追踪测量通道 2 的信号 不显示光标 B
CurA (光标 A)	¢	设定旋动多功能旋钮(\U) 调整 光标 A 的水平坐标
CurB (光标 B)	¢	设定旋动多功能旋钮(\U) 调整 光标 B 的水平坐标

光标追踪测量方式是在被测波形上显示十字光标,通过移动光标的水平位置,光标自动在波形上定位,并显示当前定位点的水平、垂直坐标和两光标间水平、垂直的增量。 其中,水平坐标以时间值显示,垂直坐标以电压值显示。

操作步骤如下:

- ①. 选择光标追踪测量模式:按键操作顺序为: CURSOR → 光标模式 → 追踪 。
- ②. 选择光标 A、B 的信源:根据被测信号的输入通道不同,选择 CH1 或 CH2 。若不希望显示此光标,则选择 无光标 。

按键操作顺序为: 光标 A 或 光标 B → CH1 、 CH2 或 无光标。

③. 移动光标在波形上的水平位置:(见下表)

表 2-82 光标操作说明

光标	操作
光标 A	旋动多功能旋钮(ひ) 使光标 A 在波形上水平移动
光标 B	旋动多功能旋钮(心)使光标 B 在波形上水平移动

注意:

只有当前菜单是光标追踪菜单时,才能水平移动光标。在其它菜单状态下,十字光标 在当前窗口的水平位置不会改变,垂直光标可能因为波形的瞬时变化而上下摆动。

④. 获得测量数值:

光标 1 位置(时间以触发偏移位置为基准,电压以通道接地点为基准)

光标 2 位置(时间以触发偏移位置为基准,电压以通道接地点为基准)

光标 1、2 的水平间距 (ΔX): 即光标间的时间值。(以"秒"为单位)

光标 1、2 水平间距的倒数 $(1/\Delta X)$ 。(以"赫兹"为单位)

光标 1、2 的垂直间距 (ΔY): 即光标间的电压值。(以"伏"为单位)

自动模式

图 2-123 表 2-83 自动测量菜单

CURSOR 光标模式 自动测量			

功能菜单	设定	说明
光标模式	自动测量	显示当前自动测量的参数所应 用的光标。(见下图)

图 2-124 频率自动测量光标示意图

光标自动测量模式显示当前自动测量参数所应用的光标。若没有在 MEASURE 菜单下选择任何的自动测量参数,将没有光标显示。

本示波器可以自动移动光标测量 MEASURE 菜单下的所有 20 种参数。

使用执行按钮

执行按键包括 AUTO (自动设置)和 RUN/STOP (运行/停止)

AUTO(自动设置): 自动设定仪器各项控制值,以产生适宜观察的波形显示。 按 **AUTO** (自动设置)钮,快速设置和测量信号。按 **AUTO** 后,菜单显示如下:

图 2-125 表 2-84 自动设置菜单

功能菜单	设定	说明
J.I.I.I.L 多周期		设置屏幕自动显示多个周期信号
」「 」「 単周期		设置屏幕自动显示单个周期信号
上升沿		自动设置并显示上升时间
下降沿		自动设置并显示下降时间
(撤消)		撤消自动设置,返回前一状态

自动设定功能项目

表 2-85 自动设定项目

功能	设定
显示方式	Y-T
获取方式	普通
垂直耦合	根据信号调整到交流或直流
垂直"V/div"	调节至适当档位
垂直档位调节	粗调
带宽限制	关闭(即满带宽)
信号反相	关闭
水平位置	居中
水平"s/div"	调节至适当档位
触发类型	边沿
触发信源	自动检测到有信号输入的通道
触发耦合	直流
触发电平	中点设定
触发方式	自动
②POSITION 旋钮	触发位移

RUN/STOP (运行/停止):运行和停止波形采样。

注意: 在停止的状态下,对于波形垂直档位和水平时基可以在一定的范围内调整,相当于对信号进行水平或垂直方向上的扩展。

第 3 章 使用实例

例一:测量简单信号

观测电路中一未知信号,迅速显示和测量信号的频率和峰峰值。

1. 欲迅速显示该信号,请按如下步骤操作:

- (1) 将探头菜单衰减系数设定为 10X, 并将探头上的开关设定为 10X。
- (2) 将通道1的探头连接到电路被测点。
- (3) 按下 AUTO (自动设置) 按钮。

示波器将自动设置使波形显示达到最佳。在此基础上,您可以进一步调节垂直、水平 档位,直至波形的显示符合您的要求。

2. 进行自动测量

示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤 操作:

(1) 测量峰峰值

按下 MEASURE 按钮以显示自动测量菜单。

按下1号菜单操作键以选择信源 CH1。

按下2号菜单操作键选择测量类型: 电压测量。

在电压测量弹出菜单中选择测量参数: 峰峰值。

此时,您可以在屏幕左下角发现峰峰值的显示。

(2) 测量频率

按下 3 号菜单操作键选择测量类型: 时间测量。 在时间测量弹出菜单中选择测量参数: 频率。 此时,您可以在屏幕下方发现频率的显示。

注意:测量结果在屏幕上的显示会因为被测信号的变化而改变。

例二:观察正弦波信号通过电路产生的延迟和畸变

与上例相同,设置探头和示波器通道的探头衰减系数为 10X。将示波器 CH1 通道与电路信号输入端相接,CH2 通道则与输出端相接。

操作步骤如下:

- 1. 显示 CH1 通道和 CH2 通道的信号:
- (1) 接下 AUTO (自动设置) 接钮。
- (2) 继续调整水平、垂直档位直至波形显示满足您的测试要求。
- (3) 按 CH1 按键选择通道 1, 旋转垂直(VERTICAL)区域的垂直 POSITION 旋 钮调整通道 1 波形的垂直位置。
- (4) 按 CH2 按键选择通道 2,如前操作,调整通道 2 波形的垂直位置。使通道 1、2 的波形既不重叠在一起,又利于观察比较。
- 2. 测量正弦信号通过电路后产生的延时,并观察波形的变化。
- (1) 自动测量通道延时

按下 | MEASURE | 按钮以显示自动测量菜单。

按下1号菜单操作键以选择信源 CH1。

按下3号菜单操作键选择 时间测量。

在时间测量选择测量类型: 延迟 1→25。

(2) 观察波形的变化(见下图)

图 3-1 波形畸变示意图

例三: 捕捉单次信号

方便地捕捉脉冲、毛刺等非周期性的信号是数字示波器的优势和特点。

若捕捉一个单次信号,首先需要对此信号有一定的先验知识,才能设置触发电平和触发沿。例如,如果脉冲是一个 TTL 电平的逻辑信号,触发电平应该设置成 2 伏,触发沿设置成上升沿触发。如果对于信号的情况不确定,可以通过自动或普通的触发方式先行观察,以确定触发电平和触发沿。

操作步骤如下:

- 1. 如前例设置探头和 CH1 通道的衰减系数。
- 2. 进行触发设定。
- (1) 按下触发(TRIGGER)控制区域 MENU 按钮,显示触发设置菜单。
- (2) 在此菜单下分别应用 $1\sim5$ 号菜单操作键设置触发类型为 边沿触发 、边沿类型 为 上升沿 、信源选择为 CH1 、触发方式 单次 、 触发设置 \rightarrow 耦合为 直流 。
- (3) 调整水平时基和垂直档位至适合的范围。
- (4) 旋转触发(TRIGGER)控制区域©LEVEL旋钮,调整适合的触发电平。
- (5) 按 RUN/STOP 执行按钮,等待符合触发条件的信号出现。如果有某一信号达到设定的触发电平,即采样一次,显示在屏幕上。

利用此功能可以轻易捕捉到偶然发生的事件,例如幅度较大的突发性毛刺:将触发电平设置到刚刚高于正常信号电平,按 RUN/STOP 按钮开始等待,则当毛刺发生时,机器自动触发并把触发前后一段时间的波形记录下来。通过旋转面板上水平控制区域(HORIZONTAL)的水平 POSITION 旋钮,改变触发位置的水平位置可以得到不同长度的负延迟触发,便于观察毛刺发生之前的波形。

例四:减少信号上的随机噪声

如果被测试的信号上叠加了随机噪声,您可以通过调整本示波器的设置,滤除或减小噪声,避免其在测量中对本体信号的干扰。(波形见下图)

图 3-2 叠加噪声的波形

操作步骤如下:

- 1. 如前例设置探头和 CH1 通道的衰减系数。
- **2.** 连接信号使波形在示波器上稳定地显示。 操作参见前例,水平时基和垂直档位的调整见前章相应描述。
- 3. 通过设置触发耦合改善触发。
- (1) 按下触发(TRIGGER)控制区域 MENU 按钮,显示触发设置菜单。
- (2) 触发设置 → 耦合选择 低频抑制 或 高频抑制。

低频抑制是设定一高通滤波器,可滤除 8kHz 以下的低频信号分量,允许高频信号分量通过。

高频抑制是设定一低通滤波器,可滤除 150kHz 以上的高频信号分量(如 FM 广播信号),允许低频信号分量通过。通过设置 低频抑制 或 高频抑制 可以分别抑制低频或高频噪声,以得到稳定的触发。

4. 通过设置采样方式和调整波形亮度减少显示噪声。

(1) 如果被测信号上叠加了随机噪声,导致波形过粗。可以应用平均采样方式,去除随机噪声的显示,使波形变细,便于观察和测量。取平均值后随机噪声被减小而信号的细节更易观察。

具体的操作是:按面板 **MENU** 区域的 **ACQUIRE** 按钮,显示采样设置菜单。按 1 号菜单操作键设置**获取方式**为 平均 状态,然后按 2 号菜单操作键调整平均次数,依次由 2 至 256 以 2 倍数步进,直至波形的显示满足观察和测试要求。(见下图)

图 3-3 减少噪声后的波形

(2) 减少显示噪声也可以通过减低波形亮度来实现。

注意: 使用平均采样方式会使波形显示更新速度变慢, 这是正常现象。

例五:应用光标测量

本示波器可以自动测量 20 种波形参数。所有的自动测量参数都可以通过光标进行测量。使用光标可迅速地对波形进行时间和电压测量。

测量 Sinc 第一个波峰的频率

欲测量信号上升沿处的 Sinc 频率,请按如下步骤操作:

- 1. 按下 CURSOR 按钮以显示光标测量菜单。
- 2. 按下1号菜单操作键设置光标模式为 手动。
- 3. 按下 2 号菜单操作键设置光标类型为 X 。
- 4. 旋动多功能旋钮(**划**)将光标 1 置于 Sinc 的第一个峰值处。
- 5. 旋动多功能旋钮(**\U**) 将光标 2 置于 Sinc 的第二个峰值处。

图 3-4 测量第一个波峰的频率

注意: 光标菜单中显示出增量时间和频率 (测得的 Sinc 频率)。

测量 Sinc 第一个波峰的幅值

欲测量 Sinc 幅值,请按如下步骤操作:

- 1. 按下 CURSOR 按钮以显示光标测量菜单。
- 2. 按下1号菜单操作键设置光标模式为 手动。
- 3. 按下 2 号菜单操作键设置光标类型为 Y。
- 4. 旋动多功能旋钮(**\U)** 将光标 1 置于 Sinc 的第一个峰值处。
- 5. 旋动多功能旋钮 (♦) 将光标 2 置于 Sinc 的第二个峰值处。

光标菜单中将显示下列测量值:

- 增量电压(Sinc 的峰一峰电压)
- 光标 1 处的电压
- 光标 2 处的电压

图 **3**-5 测量第一个波峰的幅值

例六: X-Y 功能的应用

查看两通道信号的相位差:测试信号经过一电路网络产生的相位变化。

将示波器与电路连接, 监测电路的输入输出信号。

欲以 X-Y 坐标图的形式查看电路的输入输出,请按如下步骤操作:

- 1. 将探头菜单衰减系数设定为 10X, 并将探头上的开关设定为 10X。
- 2. 将通道1的探头连接至网络的输入,将通道2的探头连接至网络的输出。
- 3. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。
- 4. 接下 AUTO (自动设置) 接钮。
- 5. 调整垂直 ③SCALE 旋钮使两路信号显示的幅值大约相等。
- 6. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。
- 7. 按下**时基**菜单框按钮以选择 X-Y。 示波器将以李沙育(Lissajous)图形模式显示网络的输入输出特征。
- 8. 调整垂直 SCALE、垂直 POSITION 和水平 SCALE 旋钮使波形达到最佳效果。
- 9. 应用椭圆示波图形法观测并计算出相位差。(见下图)

© 2008 RIGOL Technologies, Inc.

根据 $sin\theta = A/B$ 或 C/D,其中 θ 为通道间的相差角,A, B, C, D 的定义见上图。因此可以得出相差角,即:

θ =±arcsin (A/B)或±arcsin(C/D).

如果椭圆的主轴在I、III象限内,那么所求得的相位差角应在I、IV象限内,即在($0\sim n/2$)或($3n/2\sim 2n$)内。如果椭圆的主轴在II、IV象限内,那么所求得的相位差角应在II、III象限内,即在($n/2\sim n$)或($n\sim 3n/2$)内。

例七:视频信号触发

观测一 DVD 机中的视频电路,应用视频触发并获得稳定的视频输出信号显示。

视频场触发

欲在视频场上触发, 请按如下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按钮以显示触发菜单。
- 2. 按下1号菜单操作键选择 视频触发 。
- 3. 按下 2 号菜单操作键设置**信源选择**为 CH1 。
- 4. 按下 3 号菜单操作键选择视频极性为。
- 5. 按下 4 号菜单操作键选择同步为 奇数场 或 偶数场 。
- 6. 调整 LEVEL 旋钮使触发电平位于视频同步脉冲,以得到良好的触发状态。
- 7. 应用水平控制区域的水平 SCALE 旋钮调整水平时基,以得到清晰的波形显示。

图 3-7 视频场触发示意图

本示波器可指定在视频奇数场或偶数场触发,从而避免奇偶视频场同时触发造成的混淆。只需按上述步骤 5 选择 奇数场 或 偶数场 即可。

视频行触发

欲在视频行上触发,请按如下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按钮以显示触发菜单。
- 2. 按下1号菜单操作键选择 视频触发。
- 3. 按下 2 号菜单操作键设置**信源选择**为 CH1 。
- 4. 按下 3 号菜单操作键选择视频极性为。
- 5. 按下 4 号菜单操作键选择同步为 指定行。
- 6. 旋动多功能旋钮(**\U)**以在感兴趣的某一行处触发。
- 7. 调整 LEVEL 旋钮以得到良好的触发状态。
- 8. 应用水平控制区域的水平 ⑤ SCALE 旋钮调整水平时基,以得到清晰的波形显示。

图 3-8 视频行触发示意图

例八: 使用光标测定 FFT 波形

- 1. 按 CURSOR 按钮显示光标测量菜单。
- 2. 按 2 号菜单操作按钮,选择光标类型为 X 或 Y。
- 3. 按 3 号菜单操作按钮,选择信源为 FFT,菜单将转移到 FFT 窗口。
- **4.** 旋动多功能旋钮(**\(\fo)**) 移动光标至感兴趣的波形位置。

图 3-9 光标测量 FFT 幅值实例

图 3-10 光标测量 FFT 频率实例

例九:通过/失败测试

检测通道输入信号是否在规则范围之内,超出范围即为失败,反之则为通过,并且可以通过内置的,可设置的,光电隔离的输出端口输出失败或通过信号。

欲执行通过/失败检测, 按以下步骤操作:

- 1. 按 UTILITY → 通过测试 ,显示 PASS/FAIL 菜单。
- 2. 打开允许测试: 进入 PASS/FAIL (1/2)菜单,按 1 号菜单操作按钮,选择打开。
- 3. 创建规则:进入 PASS/FAIL (2/2)菜单,按 4 号菜单操作按钮,进入 MASK 菜单。在 MASK (1/2)菜单中,按 1 号和 2 号菜单操作按钮,设置水平和垂直的容限范围,最后按 3 号操作键创建规则;也可在 MASK (2/2)菜单中,按 3 号操作按钮调出已经保存的规则。
- 4. 设置输出方式: 进入 PASS/FAIL (2/2)菜单,按 2 号菜单操作按钮,设置输出选项。
- 5. 开始检测: 进入 PASS/FAIL (1/2)菜单,按 3 号菜单操作按钮,运行。

图 **3**-11 通过/失败测试

例十: 数字信号触发

码型和持续时间触发是专门用来对**数字信号**进行触发时使用的触发方式。这两种触发方式只能针对数字信号进行触发,而不能在触发模拟信号时使用。

码型触发

欲对数字信号进行码型触发,请按以下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按钮以显示触发菜单。
- 2. 按下1号菜单操作键选择 码型触发。
- 3. 旋动功能键 (♥),选择需要设置通道 (D0~D15)。
- **4.** 按下 **3** 号功能键选择**码型设置**(**H**、**L**、**X**、**→** 或 **→**)。
- 5. 按下 4 号功能键选择触发方式为:自动、普通或单次。
- 6. 按下 5 号功能键进行触发设置,调整**触发释抑**,以使信号达到稳定显示。

图 3-12 码型触发数字信号

持续时间触发

欲对数字信号进行持续时间触发,请按以下步骤操作:

- 1. 按下触发控制区域(TRIGGER)的 MENU 按钮以显示触发菜单。
- 2. 按下1号菜单操作键选择 持续时间触发。
- 3. 旋动功能键 (**ひ**),选择需要设置通道 (D0~D15)。
- 4. 按下 3 号功能键选择码型设置 (H、L或 X)。
- 5. 按下 4 号功能键选择限定符为: <、>或=。
- 6. 按下5号功能键进入菜单第二页。
- 7. 按下 2 号功能按键进行持续时间设置。
- 8. 按下3号功能按键选择触发方式为:自动、普通或单次。
- 9. 按下 4 号功能键进行触发设置,调整触发释抑,以使信号达到稳定显示。

图 3-14 持续时间触发数字信号

第 4 章 系统提示及故障排除

系统提示信息说明

设置已到极限:提示在当前状态下,设置已然达到极限,不能再调整。

触发电平已到极限:提示在当前档位触发电平已经达到设置极限,不能再调整。

触发位移已到极限: 提示触发位置已在内存的开始或结束位置,不能再调整。

电压档位已到极限:提示电压垂直档位已达到 2mV/div 最低档位或 10V/div 最高档位, 不能再继续调整。

电压位移已到极限: 若旋转垂直 ②POSITION 旋钮调整通道垂直位置过高或过低,系统会弹出提示信息。

没有激活的光标: 在光标测量时,因未定义某光标的信源,所以在调整对应光标的位置时,系统将提示此信息。

延迟扫描已到极限: 当在延迟扫描模式下,扩展水平时基至最高或最低档位,继续调整系统将提示此信息。

延迟扫描位移已到极限:在延迟扫描模式(**Delayed**)下,水平移动扩展的波形窗口 至内存的起始或结尾位置,系统将提示此信息。

功能不能使用:提示在某些工作状态组合之下,某个调整功能无意义,或者该功能为固定值,不可调整。

采样档位已到极限: 在 X-Y 模式, 提示采样率已达最高或最低档位。

实时档位已到极限: 提示实时采样时, 水平档位已达最高时间分辨率。

时间档位已到极限: 提示等效采样时, 水平档位已达最高时间分辨率。

内存位移已到极限: 当移动内存到起始或结尾位置时,系统提示此信息。

存储已完成: 提示已完成存储波形或设置。

空的存储单元: 若试图在未存储波形或设置的内存位置调出对应的波形或设置,系统将提示此信息。

测量已被选择:在自动测量时,对选择重复测量参数的操作进行提示。

功能无定义: 在一些特殊模式下,系统不支持进行某些功能的设置。

仅能用点显示:提示在高灵敏度的水平档位或 X-Y 模式下,其波形必须应用点的方式显示。

文件操作失败: 提示在对 USB 存储设备上的文件进行操作时失败。

打印失败:在执行打印动作时提示失败。 **升级失败**:利用 U 盘进行升级时,提示失败。

文件被覆盖:存储波形文件到内部存储区时,覆盖原有存储区的波形文件,系统将提

示此信息。

故障处理

1. 如果按下电源开关示波器仍然黑屏,没有任何显示:

- (1) 检查电源接头是否接好。
- (2) 检查电源开关是否按实。
- (3) 做完上述检查后,重新启动仪器。
- (4) 如果仍然无法正常使用本产品,请与 RIGOL 联络,让我们为您服务。

2. 采集信号后,画面中并未出现信号的波形:

- (1) 检查探头是否正常接在信号连接线上。
- (2) 检查信号连接线是否正常接在 BNC (即通道连接器) 上。
- (3) 检查探头是否与待测物正常连接。
- (4) 检查待测物是否有讯号产生(可将有讯号产生的通道与有问题的通道接在一起来确定问题所在)。
- (5) 再重新采集信号一次。

3. 测量的电压幅度值比实际值大 10 倍或小 10 倍:

检查通道衰减系数是否与实际使用的探头衰减比例相符。

4. 有波形显示, 但不能稳定下来:

- (1) 检查触发面板的信源选择项是否与实际使用的信号通道相符。
- (2) 检查触发类型: 一般的信号应使用 边沿触发 方式,视频信号应使用 视频触发 方式。只有应用适合的触发方式,波形才能稳定显示。
- (3) 尝试改变 耦合 为 高频抑制 和 低频抑制 显示,以滤除干扰触发的高频或低频 噪声。
- (4) 改变触发灵敏度和触发释抑设置。

5. 按下 RUN/STOP 键无任何显示:

检查触发面板(TRIGGER)的**触发方式**是否在 普通 或 单次 档,且触发电平超出波形范围。如果是,将触发电平居中,或者设置**触发方式**为 自动 档。另外,按自动设置 AUTO 按钮可自动完成以上设置。

6. 选择打开平均采样方式时间后,显示速度变慢:

正常。

7. 波形显示呈阶梯状:

此现象正常。可能水平时基档位过低,增大水平时基以提高水平分辨率,可以改善显示。

8. 可能**显示类型**为 矢量 ,采样点间的连线,可能造成波形阶梯状显示。将**显示类** 型设置为 点 显示方式,即可解决。

第 5 章 性能指标

除非另有说明,所用技术规格都适用于衰减开关设定为 10X 的探头和 DS1000E, DS1000D 系列数字示波器。示波器必须首先满足以下两个条件,才能达到这些规格标准:

- 仪器必须在规定的操作温度下连续运行三十分钟以上。
- 如果操作温度变化范围达到或超过 5 个摄氏度,必须打开系统功能菜单,执行"自校正"程序。
- 除标有"典型值"字样的规格以外,所用规格都有保证。

技术规格

采样			
采样方式	实时采样	等	效采样
采样率	1GSa/s,200MSa/s ^[1]	DS1102X	DS1052X
木件 华	1G5d/S, 200M5d/S	25GSa/s	10GSa/s
亚拉店	所有通道同时达到 N 次采样后, N	次数可在2、4、	8、16、32、64、
平均值	128 和 256 之间选择		

输入	
输入耦合	直流、交流或接地(DC、AC、GND)
输入阻抗	1MΩ±2%,与 15pF±3pF 并联
探头衰减系数设定	1X, 5X, 10X, 50X, 100X, 500X, 1000X
最大输入电压	400V (DC+AC 峰值、 1MΩ 输入阻抗)
取入制八电压	40V (DC+AC 峰值) ^[1]
通道间时间延迟(典型值)	500ps

水平				
采样率范围	实时: 13.65Sa/s ~1GSa/s 等效: 13.65Sa/s ~25GSa/s			
波形内插	Sin (x) / x			
	通道模式	采样率	存储深度 (普通)	存储深度 (长存储)
	单通道	1GSa/s	16kpts	N.A.
存储深度	单通道	500MSa/s 或更低	16kpts	1Mpts
	双通道	500MSa/s 或更低	8kpts	512kpts
扫速范围(s/div)	2ns/div-50s/div, DS1102X 5ns/div-50s/div, DS1052X 1-2-5 进制			
采样率和延迟时间精 确度	±50ppm(任何≥1ms 的时间间隔)			
时间间隔 (ΔT) 测量 精确度 (满带宽)	单次: ±(1 采样间隔时间+50ppm×读数+0.6ns) >16 个平均值: ±(1 采样间隔时间+50ppm×读数 +0.4ns)			

垂直	
模拟数字转换器 (A/D)	8 比特分辨率,两个通道同时采样[2]

灵敏度(伏 / 格)范 围(V/div)	2mV/div~10V/div(在输入 BNC 处)
最大输入	模拟通道最大输入电压 CAT I 300Vrms, 1000Vpk; 瞬态过压 1000Vpk CAT II 100Vrms, 1000Vpk 使用 RP2200 10:1 探头时: CAT II 300Vrms 使用 RP3200 10:1 探头时: CAT II 300Vrms 使用 RP3300 10:1 探头时: CAT II 300Vrms
位移范围	±40V(500mV/div~10V/div),±2V(2mV/div~100mV/div)
等效带宽	100MHz (DS1102D,DS1102E) 50MHz (DS1052D, DS1052E)
单次带宽	80MHz (DS1102D, DS1102E) 50MHz (DS1052D, DS1052E)
可选择的模拟带宽 限制(典型值)	20MHz
低频响应 (交流耦合,-3dB)	≤5Hz(在 BNC 上)
上升时间(BNC 上 典型值,等效采样 时)	<3.5ns,<7ns 分别在带宽(100M,50M)上
直流增益精确度	2mV/div~5mV/div,±4%(采样或平均值采样方式) 10 mV/div~10V/div, ±3%(采样或平均值采样方式)
直流测量精确度 (平均值采样方式)	垂直位移为零,且 N≥16 时: ±(直流增益精确度×读数+0.1 格+1mV) 垂直位移不为零,且 N≥16 时: ±[直流增益精确度×(读数+垂直位移读数)+(1%×垂直位移读数)+0.2 格]设定值从 2mV/div 到 200 mV/div 加 2mV。设定值从 > 200 mV/div 到 10V/div 加 50 mV。
电压差 (ΔV) 测量 精确度 (平均值采 样方式)	在同样的设置和环境条件下,经对捕获的≥16个波形取平均值后波形上任两点间的电压差(ΔV): ±(直流增益精确度×读数+0.05格)

触发			
触发灵敏度	0.1div ~ 1.0div,用户可调节		
触发电平范围	内部	距屏幕中心±5格	
無 次 电 范围	EXT	±1.2V	
触发电平精确度(典型值)适用于上升和	内部	±(0.3div×V/div) (距屏幕中心±4div 范围内)	
下降时间≥20ns 的 信号	EXT	±(6%设定值+200mV)	
触发位移	正常模式:	预触发 (262144/采样率), 延迟触发 1s	
用出入了工作夕	慢扫描模式	: 预触发 6div, 延迟触发 6div	
释抑范围	100ns ~1.5	ōs	

RIGOL

输入信号频率≥50Hz 条件下的操作发
升、下降、上升+下降
大于、小于、等于)正脉宽,(大于、小于、等于)负脉宽
ns ~ 10s
持标准的 NTSC、PAL 和 SECAM 广播制式,行数范围是
/525 (NTSC) 和 1-625 (PAL/SECAM)
大于、小于、等于)正斜率,(大于、小于、等于)负斜率
ns ~10s
沿、脉宽、视频、斜率
沿、脉宽、视频、斜率
~D15 选择 H、L、X、┛、₹
·
~ D15 选择 H、L、X
于、小于、等于
ns ~ 10s

测量		
	 手动模式	光标间电压差 (ΔV) 光标间时间差 (ΔT)
光标	7 33 1002	Δ T 的倒数 (Hz) (1/Δ T)
	追踪模式	波形点的电压值和时间值
	自动测量模式	允许在自动测量时显示光标
	峰峰值、幅值、	最大值、最小值、顶端值、底端值、平均值、
自动测量	均方根值、过冲、预冲、频率、周期、上升时间、下降时间、	
	正脉宽、负脉宽	、正占空比、负占空比、延迟 1→25、延迟 1→24
	的测量	

- [1] DS1000D 系列逻辑分析仪指标。
- [2] 采样率为 1GSa/s 时,只有 1 个通道可用。

一般技术规格

显示	
显示类型	对角线为 145 毫米(5.7 英寸)的 TFT 液晶显示
显示分辩率	320 水平×RGB×234 垂直像素
显示色彩	64k 色
对比度(典型值)	150:1
背光强度(典型值)	300 nit

探头补偿器输出	
输出电压(典型值)	约 3V,峰峰值
频率(典型值)	1kHz

电源	
电源电压	100~240 VAC _{RMS} , 45~440Hz, CAT II
耗电	小于 50W
保险丝	2A, T级, 250V

环境	
温度范围	操作: 10℃~+40℃
個及祖団	非操作: -20℃~+60℃
冷却方法	风扇强制冷却
湿度范围	+35℃以下: ≤90%相对湿度
並及犯団	+35℃~+40℃: ≤60%相对湿度
海拔高度	操作 3,000 米以下
	非操作 15,000 米以下

机械规格		
尺寸	宽	303 毫米
	高	154 毫米
	深	133 毫米
重量	不含包装	2.3 千克
	含包装	3.5 千克

IP 防护	
IP2X	

第6章 附录

附录 A: DS1000E, DS1000D 系列数字示波器附件

标准附件:

- 两支 1:1 (10:1) 无源探头。 当开关处于 1X 位置时,此无源探头具有 6MHz 带宽,属 150V CAT II级。 当开关处于 10X 位置时,探头具有满足示波器上限的带宽,属 300 V CAT II级。
- 一根符合所在国标准的电源线。
- 一根 USB 数据线。
- 一条数据排线。
- 一个有源逻辑探头。
- 20 个逻辑测试夹。
- 20 根逻辑测试线。
- 一张光盘(《用户手册》、上位机应用软件)。
- 一本《用户指南》。
- 一份《产品保修卡》。

选购附件:

- BNC 电缆
- RS232 电缆
- DS1000E, DS1000D 系列专用便携软包

所有附件(标准件和选购件),请向当地的 RIGOL 代表处订购。

附录 B: 保修概要

RIGOL(北京普源精电科技有限公司)保证其生产及销售的产品,在授权经销商发货之日起三年内,无任何材料和工艺缺陷。如产品在保证期内证明有缺陷,**RIGOL**将根据保修单的详细规定予以修理和更换。

若欲安排维修或索取保修单全文,请与最近的 RIGOL 销售和维修处联系。

除本概要或其他适用的保修单所提供的保证以外,**RIGOL** 公司不提供其他任何明示或暗示的保证,包括但不局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任何情况下,**RIGOL** 公司对间接的,特殊的或继起的损失不承担任何责任。

附录 C: 保养和清洁维护

一般保养

请勿把仪器储存或放置在液晶显示器会长时间受到直接日照的地方。

小心

请勿让喷雾剂、液体和溶剂沾到仪器或探头上,以免损坏仪器或探头。

清洁

- 1. 根据操作情况经常对仪器和探头进行检查。按照下列步骤清洁仪器外表面: 请用质地柔软的布擦拭仪器和探头外部的浮尘。清洁液晶显示屏时,注意不要划 伤透明的 LCD 保护屏。
- 2. 用潮湿但不滴水的软布擦试仪器,请注意断开电源。可使用柔和的清洁剂或清水擦洗。请勿使用任何腐蚀性的化学清洗剂,以免损坏仪器或探头。

警告: 在重新通电使用前,请确认仪器已经干透,避免因水分造成电气短路甚至 人身伤害。

附录 D: 联系我们

如您在使用此产品的过程中有任何问题或需求,在中国大陆可直接和北京普源精电科技有限公司(**RIGOL** Technologies, Inc.)联系:

Tel: (86-10) 8070 6688 Fax: (86-10) 8070 5070

服务与支持热线: 800 810 0002

或者通过电子邮件与我们联系。我们的邮件地址是:

service@rigol.com

时间:北京时间星期一至星期五,上午九时至下午五时地址:北京市昌平区沙河镇踩河村156号(102206)

中国大陆以外地区的服务与支持,请与当地的 **RIGOL** 经销商或销售中心联系。请登录我们的网站以获得最新的产品和服务资讯: http://www.rigol.com

索引

数字	捕捉单次信号3-3
50% 按钮1-17	采样系统 2-52, 5-2
	测量简单信号3-1
字母	场同步2-49
AC Line2-50	持续时间触发2-46
ACQUIRE2-52	出厂设置2-64
AUTO 2-93	触发电平1-16
CURSOR 2-87	触发耦合2-50
DISPLAY 2-55	触发设置2-47
EXT2-50	触发释抑2-47, 2-49
FFT 分辨率2-13, 2-23	触发系统1-16, 2-33, 5-3
FFT 频谱分析2-12	垂直档位调节2-7
FORCE1-17, 2-33	垂直系统1-12, 2-2, 5-2
HORIZONTAL 1-14	粗调/细调1-13, 2-7
MEASURE 2-81	存储和调出2-57
OFF2-26	打印设置2-75
REF 功能2-14	带宽限制2-5
RS-2322-67	单次触发2-50
RUN/STOP2-93	等效采样2-54
STORAGE2-57	底端值2-85
TRIGGER 1-16	电压光标2-89
UTILITY2-65	电源5-5
VERTICAL 1-12	调出2-64
X-Y方式2-30, 2-32	顶端值2-82, 2-85
X-Y功能3-8	峰峰值2-81, 2-85
Y-T方式2-30	峰值检测2-54
	辅助系统功能2-65
中文	负脉宽2-83, 2-86
保存2-64	功能检查1-6
保修概要6-2	故障处理4-3
边沿触发2-35	光标测定 FFT 波形3-12
标准附件6-1	光标测量2-87, 3-6
波形反相2-8	光标手动方式2-87, 2-88
波形录制2-76	光标追踪方式2-87
© 2008 RIGOL Technologies, Inc.	

RIGOL

光标追踪模式2-90	通道耦合 2-3, 2-21, 2-22, 2-25
光标自动测量方式2-87, 2-92	通道设置 2-2, 2-24
滚动模式2-30	通道延迟2-86
减少信号上的随机噪声3-4	通过测试2-70, 2-71, 2-73, 2-74, 2-75
交替触发2-41	通过失败3-13
接口设置 2-15, 2-67	同步脉冲2-38
均方根值2-85	外部触发2-50
联系我们6-4	系统提示4-1
录制存储2-78	下降时间2-86
录制回放2-77	显示类型2-56, 2-66
码型触发2-45	显示设置2-55
脉宽触发2-36, 2-41, 2-45	显示系统5-5
秒/格(S/div)2-30	斜率触发2-40
奈奎斯特频率2-13	信源2-50
频率2-82	行同步2-38
平均获取2-54	选择和关闭通道2-26
平均值2-85	延迟扫描2-31
屏幕网格 2-55, 2-56	一般保养6-3
普通触发2-50	一般性检查1-5
清洁6-3	语言选择2-80
上升时间2-86	预触发2-51
时间光标2-89	正脉宽2-83, 2-86
实时采样2-54	执行按钮2-93
视频触发2-37, 2-40, 2-46, 3-10	周期2-83
输入通道5-2	自动测量2-81
数学运算2-11	自动触发2-50
数字滤波 2-9, 2-24	自动设定功能项目2-94
刷新率2-56	自动设置 1-9, 1-11
水平系统1-14, 2-28, 5-2	自校正2-69
探头补偿1-8	最大值2-81, 2-85
探头衰减比例2-6	最小值2-81, 2-85
停止采样2-54	