

稳恒 NB-IoT_低功耗机制与业务场景说明

文件版本: V1.2.0

目 录

稳	恒 NB-Io	r 低功耗机制与业务场景说明	1
1.	NB-IoT	是如何实现低功耗?	3
	1.1.	低功耗概述	3
	1.2.	PSM 模式说明	3
	1.3.	eDRX 模式说明	4
2.	NB-IoT	低功耗机制是怎么样的?	5
3.	怎么判践	断我的卡支持的低功耗参数?	7
4.	对应不同	司的场景如何配置低功耗模式?	9
5.	NB-IOT	'适用场景介绍	10
	5.1.	NB-IoT 适宜场景分析	10
	5.2.	NB-IoT 场景分类	11
	5.2	1. 监控上报类	11
	5.2	.2. 下发控制类业务	12
	5.2	.3. 综合定制类	13
6.	信号强度	度关系说明	14
	6.1.	信号覆盖强度与信号质量关系	14
	6.2.	信号覆盖强度与时延关系	14
	6.3.	信号覆盖强度与模组能耗及功耗关系	14
7.	其他常见问题		
	7.1.	为什么要使用 IOT 平台	15
	7.2.	关于 eDRX 及 DRX 模式下服务器主动下发数据	15
	7.3.	关于中国电信传输时延	16
8.	联系方式	式	17
9.	免责声明	明	18
10	百主	新历中	10

1. NB-IoT 是如何实现低功耗?

1.1. 低功耗概述

为满足安装环境没有电源供电,需要使用电池,为了满足电池达到 5 到 10 年寿命的需求,NB-IoT 网络引入了 PSM 和 eDRX 技术极大降低了终端功耗,可以使得设备在生命周期绝大部分时间处于极地功耗状态,从而保证电池的使用寿命。

NB-IoT 业务规模发展与所承载业务模型密切相关,其能适用场景是"小流量,上报为主,长期休眠,功耗敏感性,低移动性"应用。为了实现 NB-IOT 网络承载海量的低功耗终端,其最为重要的技术为: PSM 和 eDRX。

1.2. PSM 模式说明

PSM 状态是指用户终端进入功率节省状态(Power Saving Mode),处于 PSM 状态终端关闭收发信号机,不监听无线侧寻呼,与网络没有任何消息交互,处于最省电状态,最大程度降低功耗。当终端处于 PSM 状态时,平台发送给终端任何数据,网络都不会立即下发给终端。只有当用户终端离开 PSM 状态进入到连接状态时,平台侧下发的数据才会发送给终端。因此,对于使用 PSM 模式终端,如果平台需要下发数据,需等待终端主动上传数据时,才能进行数据下发。

进入 PSM 状态: 当终端上传数据完成后,无线基站启动"不活动计时器"(默认 20 秒),如果终端在这个定时器时间内一直没有接收和发送数据,基站 将释放终端无线连接(核心网用户会话信息保持,终端 IP 地址不变),终端进 入 Idle 状态并启动激活定时器(Active-Timer),当激活定时器超时后,终端进 入 PSM 状态。

在 PSM 模式下,激活定时器(Active-Timer)是可以根据客户业务需要单独 设置,可设置的范围: 1 秒到 186 分钟。基站侧的"不活动计时器",是全国规 划,默认为 20 秒,可根据业务需求优化。

离开 PSM 状态:终端离开 PSM 状态可由两种情况触发,分别为"用户数据 上报"触发和"位置更新"触发。

- 1) 用户数据上报:终端有数据需要上报时,会主动激活网络连接,离开 PSM 状态,进入连接状态,传输数据。终端进入连接态的周期取决于终端数据上报周期。
- 2) 位置更新: 4G 终端均具备"位置更新"功能,当周期位置更新定时器 (TAU Timer)超时时,终端会主动上报网络当前位置信息。每次终端周 期位置更新定时器超时后,终端会离开 PSM 状态,进入连接状态,上 报终端位置信息。通过减少终端位置更新次数,可降低终端功耗,因此 可考虑设置较大"周期位置更新"定时器。NB 终端用户可根据客户业 务场景进行调整,最大可以设置 310 小时,最小 54 分钟。

1.3. eDRX 模式说明

eDRX 模式: 为进一步减少终端在空闲状态监听网络下发数据的寻呼次数, 可以启用 eDRX 模式,通过 扩展终端监听网络寻呼的周期,减少终端监听网络 寻呼的时间,从而降低终端功耗。

如上图左侧,在传统网络中,为了节省功耗终端,可使用 DRX 技术,在一个 DRX 寻呼周期,终端只在 寻呼时刻监控寻呼指示信道,其他时刻终端是不监控寻呼信道的,这样就节省了终端的功耗。由于传统网络要 兼容终端低功耗和业务及时性要求,所以在传统网络中 DRX 周期默认设置为 2.56s。

如上图右侧,为了适应物联网更低功耗、时延更不敏感的业务特点,在省电方面提出了eDRX 技术,通过 扩展现有 DRX 周期可以达到分钟、小时级别(eDRX 周期为 10.24s~10.24s*210,最大约为 2.913 小时)。使 用 eDRX 功能的终端只需要在寻呼周期(PTW)内寻呼窗口才需要监听网络下发寻呼消息。如果寻呼周期越大, 那么终端在大部分时间内不需要监听网络,从而达到节省功耗的效果。

处于 eDRX 状态下终端是可支持下行数据的接收。如果平台在寻呼窗口内下发数据,终端可以很快接收数 据。如果下发数据时刻,终端寻呼窗口尚未到来,网络侧会将平台下发的数据缓存(仅1个报文),直到用户 寻呼窗口时间到达时,再寻呼用户,并下数据。因此,平台数据下发到终端接收到数据的最大时延为一个寻呼 周期。因此, eDRX 模式适宜具备一定时延容忍度, 又有节电需求的场景。

对于时延特别敏感的客户应用,可以考虑只使用传统的 DRX 模式(DRX 寻呼周期最短 1.28 秒),从 而缩短数据下发到终端的时延。但是如果大量终端采用 DRX 模式,平台同时下发数据到大量终端时,会导致 NB 资源耗尽,出现无法正常下发数据到终端的情况。因此,平台在对终端下发数据时,应充分考虑分散下发 时间点,避免集中时刻下发。

2. NB-IoT 低功耗机制是怎么样的?

首先看下 NB73 实测的个状态的功率消耗情况:

终端状态	功率消耗	供电电压
Active 状态下发射电流	最大 268mA	3.8V
Active 状态下接收电流	平均 50mA	3.8V
IDLE 状态下	平均 1mA	3.8V
PSM 状态下	平均 5uA	3.8V

NB73 在发送一次数据的时候依次需要建立连接发送数据->监听网络数据->进入 IDLE->进入 PSM 模式,整个的电流状态表现如下:

其中我们可以对比下表进行分析:

首先,连接状态中数据传输对应 Connected 发射电流,数据发送完成后进入无数据传输的连接状态,此时对应 Connected 接收电流,这部分存在一个不活动定时器,这个定时器有核心网配置,目前约 20 秒时间,随后进入 IDLE 模式,在该模式中存在一个 Active 定时器,这个定时器在上面章节有过描述,有运营商通过 APN 可以配置,该定时器到达时间后进入 PSM 状态。

当进入 PSM 模式就关闭了射频部分,完全不能接收到服务器的消息,那么此时有两种方式可以重新建立和网络的通讯,一种是主动发送一条消息,另一种就是 TAU,如下图所示的 T3412 定时器,当一次连接结束的时候启动 T3412 定时器,当该定时器时间到达后会再次询问网络是否有数据下发。这个定时器同 Active 定时器一样由运营商配置。

下面是我的电信 SIM 卡的 TAU 是 10 分钟,那么对应的电流显示可以看到每间隔 10 分钟会有一次电流的变化:

3. 怎么判断我的卡支持的低功耗参数?

通过上面章节我们了解到,NB 应用的低功耗机制和 SIM 卡运营商的配置密不可分,那么我们怎么确定我的卡所支持的低功耗机制呢?因为模块的低功耗机制是一定的,只是其中几个关键定时器的值是动态的,而这几个值是这张卡在注册网络时同步下来的,那么我们可以通过 CGREG 这个指令获取网络分配的定时器值,我们通过看 AT 指令手册可以看到这个指令的相关描述:

	本 0 开 1 .
	整型。 0 禁用网络注册自动回复。 1 网络注册自动回复。+CEREG: <statt>。 2 网络注册和位置信息自动回复。+CEREG:<stat>[,[<tac>],[<ci>],[<act>]]。 3 网络注册、位置信息、EMM 信息等自动回复。</act></ci></tac></stat></statt>
⟨n⟩₽	+CEREG: <stat>[,[<tac>],[<ci>],[<cause_type>,<reject_cause>]]。 4 对于 UE 的请求 PSM,启用网络注册和位置信息自动回复。 +CEREG:<stat>[,[<tac>],[<ci>],[<act>][,,[,[<active-time>],[<periodic-tau>]]]]。</periodic-tau></active-time></act></ci></tac></stat></reject_cause></cause_type></ci></tac></stat>
	5 对于 UE 的请求 PSM ,启用网络注册,位置信息和 EMM 信息自动回复。 +CEREG: <stat>[,[<tac>],[<ci>],[<act>][,[<cause_type>],[<reject_cause>][,[<act_ivetime>],[<periodic-tau>]]]]。</periodic-tau></act_ivetime></reject_cause></cause_type></act></ci></tac></stat>

举例说明:

首先设置 AT+CGREG=5,设置显示方式如上图所示的 5

然后进行查询: AT+CEREG?

得到 Active TIME 是: 0000001 TAU 是: 00101010

我们需要通过 3GPP 当中的规定对参数进行解析:

Timer value (octet 2)

Bits 5 to 1 represent the binary coded timer value.

Bits 6 to 8 defines the timer value unit for the GPRS timer as follows:

Bits

876

- 0 0 0 value is incremented in multiples of 2 seconds
- 0 0 1 value is incremented in multiples of 1 minute
- 0 1 0 value is incremented in multiples of decihours
- 1 1 1 value indicates that the timer is deactivated.

Other values shall be interpreted as multiples of 1 minute in this version of the protocol.

那么对应解析之后 Active TIME (T3324) 为 2 秒, TAU (T3412) 为 10 分钟。知道了这俩参数之后就可以结合下图知道自己的低功耗机制了:

4. 对应不同的场景如何配置低功耗模式?

通过上面的章节我们了解到,不同的用户场景有不同的低功耗模式,也就是其 Active-Timer 和 TAU-Timer 两个定时器的值是根据不同场景进行不同的设置,现阶段只能通过运营商对其卡的业务类型进行配置,也就是 我们需要何种低功耗模式是需要提前和运营商沟通,由运营商在服务端进行配置。将来运营商可能会开放其接 口由终端自行配置。下表是电信运营商针对不同的业务类型提前准备的模板,默认的话将会采用 CTNB 这种低 功耗方式。

NB卡默认签约APN为 "ctnb",终端不需要设置,由网络下发。不同的APN对应不同的 定时器参数,根据业务需要选择合适的定时器参数

APN名称	APN描述	PSM	eDRX	激活定时器	eDRX周期	寻呼窗口
ue.prefer.ctnb	用户设置为准、使用用户上报的参数为准配置	终端上 报	终端上报	终端上报	终端上报	终端上报
ctnb	监测上报类,立即PSM(2秒),不启用eDRX	开启	关闭	2秒	-	18
psmA.eDRX0.ctnb	监测上报类,立即PSM(2秒),不启用eDRX	开启	关闭	2秒	*	(4
psmC.eDRX0.ctnb	监测上报类,稍后PSM(60秒),不启用eDRX	开启	关闭	60秒	5	2
psmF.eDRXC.ctnb	监测上报类,稍后PSM(180秒),启用eDRX,寻呼周期20秒	开启	开启	180秒	20.48s	10.48s
psm0.eDRXH.ctnb	下发控制类,美闭PSM。启用eDRX,下发时延(15分钟)	关闭	开启		655.36s	10.24 s
psm0.eDRXD.ctnb	下发控制类,美闭PSM,启用eDRX,下发时延(1分钟)	关闭	开启	-	40.96 s	10.24 s
psm0.eDRXC.ctnb	下发控制类,关闭PSM。启用eDRX,下发时延(30秒)	关闭	开启	*	20.48 s	10.24 s
psm0.eDRX0.ctnb	下发控制类,美闭PSM、启用DRX、下发时延(10秒)	关闭	美闭(DRX)		2.56s	

5. NB-IOT 适用场景介绍

5.1. NB-IoT 适宜场景分析

根据前面 NB-IoT 技术特点描述,适宜在 NB-IoT 网络开展业务的特点总结如下:

特点	NB 技术特点	具体取值范围
小数据量	空口资源有限(180khz),适宜	50 字节~200 字节为宜,越小越
小剱16里	小数据	好
		按天上报,每天 1~2 次较为合
 低频次、长周期	大部分终端应长期处于休眠状	适。
	态,上报数据频次低	高频次上报(例如 30 分钟),
		对 网络容量占用大。上报频次越高,
低功耗	NB 网络 PSM 模式功耗最低	功耗敏感应用优选
低移动性	NB 适宜慢速移动	小于 30km/h
深度覆盖	NB 覆盖能力较好	可支持地下室等场景覆盖

以下几种业务需求是不适宜在 NB 网络承载:

- 1) 由于 NB 速率只有 15kbps 左右,带宽型大速率的业务是不能使用 NB 承载。
- 2) 由于 NB 不支持切换,对于高速移动数据业务是不能使用 NB 承载。
- 3) 由于 NB 传输时延普遍较长,对于时延特别敏感类业务是不适宜使用 NB 承载,应充分测试评估。 下面是几种适宜的行业场景:

市场类别	行业场景
	井盖监控
	路灯监控
	消防栓监控
	水质监测
	大气监测
一类市场	建筑能耗监测
天巾吻	公共自行车
	智能燃气表
	智能水表
	智能热表
	智慧停车
	智能电表
	光伏发电
二类市场	电池监控
	商用空调

	货物跟踪
	电动自行车
	智慧大棚
	智慧养殖
	管网监控
	配电设施监控
	智能家电
	智慧门禁
三类市场	智能家居
二矢甲功	医疗健康

5.2. NB-IoT 场景分类

结合目前 NB 业务的特点,我们采用分类场景方式规划为 3 类: 监控上报类,下发控制类,综合定制 类。下表是根据不同的场景分类需要对低功耗机制的功能需求:

场景分类	PSM 功能	DRX/eDRX 功能
监控上报类	开启	关闭/启用
下发控制类	关闭	启用
综合定制类	根据客户场景定制	根据客户场景定制

5.2.1. 监控上报类

业务场景: 主要用于客户终端主动上报数据场景,客户终端上报数据结束 后,很快进入 PSM 状态直 至终端再次上报数据。如果平台有数据下发需求,应该在终端有上报数据发生后,再次进入 PSM 状态之 前进行数据下发。因此,监控 上报类主要满足 2 类场景需求: 只有上报数据需求, 或者有上报数据需求、 同时有时延不敏感数据下发需求。

技术特点:采用 PSM 模式,关键参数设置包括激活定时器(Active-Timer)和位置更新定时器(TAU Timer).

激活定时器(Active-Timer)设置: 客户可以通过设置 Active-Timer 来实现快速进入 PSM 或者延缓进 入 PSM 状态的时间。例如,如果客户只有上传数据业 务,可以将 Active-Timer 设置为 2 秒,那么终端 没有数据上传后,将很快进入 PSM 态;如果客户希望终端上传数据后,进行一些数据的下发更新(版本 升级), 可以将 Active-Timer 设置大一些,满足数据下发需求。

位置更新定时器(TAU Timer)设置: PSM 最大时间周期一方面取决于位置 更新定时器时间, 一方面 取决于用户上报周期。如果位置更新周期大于用户数据上报周期,则当用户数据上报后,位置更新定时器 会重置,可节省一次位置更新上报周期,从而更加省电,建议将位置更新定时器设置大于客户数据上报 周 期。

根据客户业务数据上报周期差异,将监控上报类分为"监控上报类-长周期" 和"监控上报类-短周期"。

(1) 监测上报类 - 长周期 (井盖、消防栓、烟雾报警、建筑倾斜等) 通信行为: (年/月)零星事 件上报+每日上报 应用描述:对物体的正常状态进行监控,若发生异常事件,及时向平台汇报;

若未发生异常事件,定期向平台上报正常数据,证明本终端处于正常运行状态, 通常是每天上报一到

两次。

数据上传为主:终端主动上行通信非常重要,通常需应用平台立即回复确认, 若未收到确认,终端上 行重发。

下发控制较少:应用平台主动下发终端数据的场景非常少。下行通信通常通过收到上行数据包后紧接着进行数据下发实现。

应用举例:

井盖: 当井盖发生倾斜、移动,发送数据至应用平台;每天发送签到数据至应用平台。

消防栓: 当消防栓的管道开关被打开,管道中发生水的流动,发送数据 至应用平台;每天发送签到数据至应用平台。

建筑倾斜: 高楼、桥梁、堤坝、陡坡等建筑的倾斜角度若发生变化,发送数据至应用平台;每天发送签到数据至应用平台。

(2) 监测上报类 - 短周期(抄表、动物监测、停车、环境监测等)通信行为: (小时)周期或离散数据上报

应用描述:对物体的传感数据定期进行上报,上报周期既可以由应用预先配置(如抄表),也可由传感事件触发(如停车位管理)。

数据上传为主: 终端主动上行通信后,若单次数据比较重要,终端等待应用 平台的下行回复确认,未确认则上行重发;若单次数据不太重要,可不等待平台 下行回复,以降低终端耗电。

下发控制较少:应用平台主动下发终端数据的场景非常少。下行通信通常通过收到上行数据包后紧接着进行数据下发实现。

应用举例:

远程抄表:水表、电表、气表、热表的定期数据上报,每个表具作为一个 NB-IoT 终端,每天发送一次或若干次数据至应用平台。

动物监控: 畜牧业的动物位置跟踪、行为特征监测,每个动物佩戴一个 NB-IoT 终端,如每一小时或每两小时发送一次数据至应用平台。

路边停车位管理: 当终端所监控的一个车位出现车辆驶入、驶出,发送 一次数据至应用平台。

5.2.2.下发控制类业务

业务场景:主要满足客户希望对终端下发控制需求,为了使客户终端能够相对快的接收到下发消息,默 认不使用 PSM 模式,只使用 eDRX 模式或者 DRX 模式。

技术特点:对于时延特别敏感的场景,可以使用 DRX 模式,使用最小的寻 呼周期。对于控制实时性要求不高的场景,可以使用 eDRX 模式,设置较大的寻呼周期,达到降低功耗的要求,寻呼周期越大,越有利于终端省电。

通信行为:应用平台主动下发指令到终端。

应用描述:应用平台对终端实时发送指令,要求终端立即执行所需动作。 上报数据特点:终端主动上行通信后,若单次数据比较重要,终端等待应用平台的下行回复确认,未确认则上行重发;若单次数据不太重要,可不等待应用平台下行回复,以降低终端耗电。

下发控制需求:应用平台主动下发数据频次通常每天若干次。不同应用对控制指令下发和终端响应之间的时延有不同的容忍程度。

应用举例:

路灯:应用平台可随时向路灯下发指令(开、关、亮度 30%、亮度 50% 等),路灯在几十秒内执行该指令所要求的动作。路灯定时或按需上报 路灯终端的数据(电流、电压、外挂传感器数据)。

空调:应用平台可随时向空调下发指令(状态查询、开、关、温度、风向等),空调在几十秒内或立即执

行该指令所要求的动作。空调定时上 报终端的数据。

共享单车:应用平台可随时向自行车下发指令(开锁等),自行车立即 执行该指令所要求的动作。

5.2.3. 综合定制类

业务场景: 主要用于客户终端需要同时使用 PSM 或者 eDRX 的 复杂业务场景。将来,NB-IoT 终端关键定时器(Active-Timer,寻呼周期等)在终端侧可以进行设置,现阶段我们提供基本业务定时器参数模板,具体参数模板见表 13(数据上报类)和表 14(下发控制类)。可以根据客户业务数据上报需求,业务控制时延需求,功耗要求综合选择合适参数模板。参数模板选择基本原则:

- 1. 数据上报类:功耗敏感应用优选监控上报类,使用 PSM 方式,Active-Timer 选择 2 秒,数据传输完成后"立即休眠"。如果有数据需要下发,可选择"稍后休眠"方式。位置更新定时器设置尽量大于客户的数据上报周期。对于上报周期短(小于 1 小时)的情况,需要进行测试评估。
- 2. 下发控制类:针对不同的时延容忍度,选择合适的模板,对于下发时延 要求高的应用,可以使用 DRX 模式。对于具有一定时延容忍,且有功 耗需求的应用,可以选择 eDRX 模式;对于下发频次高的应用,需要进 行测试评估。
 - 3. 其他特殊场景:可根据特定场景制定特殊定时器需求。

6. 信号强度关系说明

6.1. 信号覆盖强度与信号质量关系

信号强度、信噪比、信号接收质量均与信号覆盖强度成正比。

6.2. 信号覆盖强度与时延关系

- 1. 模组搜到基站时长与信号覆盖强度成反比,但变化值较小。
- 2. 注网成功时长与信号覆盖强度成反比; 信号覆盖强度越低, 注网成功时长值跨度越大。
- 3. Connect、eDRX、PSM 状态回环延时与信号覆盖强度成反比;信号覆盖强度越低,各状态 回环延时值 跨度越大。

6.3. 信号覆盖强度与模组能耗及功耗关系

- 1. 模组注网能耗、上报数据能耗与信号覆盖强度成反比;信号覆盖强度越低,比值越大。注 网能耗较小于上报数据能耗。
 - 2. Idle、eDRX 状态平均功耗与信号覆盖强度成反比。Idle 状态平均功耗小于 eDRX 状态平均功 耗;
 - 3. PSM 状态平均功耗与信号覆盖强度无明显变化关系。

7. 其他常见问题

7.1. 为什么要使用 IOT 平台

目前电信对于私有 IP 无法访问,数据必须要走电信的 IOT 平台,解释如下:

• 免心跳接入

免心跳终端寻址 机制,降低应用 系统开销和终端 功耗,亿级可靠 联接

・双向通信准实时

平台离线托管行业应用下发的命令,应用无需同步等待命令结果降低系统开销

·高并发系统稳定

数据上下行拥塞 控制,提供跨应 用的全网流量控制,根据网络状况对消息进行调度,确保物联网应用系统整体稳定运行

·省电的传输加密

采用优化的轻量 级DTLS加密方 式,在保持同等 安全等级下,加 密的电池能耗节 省50%

·端到端传输安全

提供安全的传输 通道和可信的接 入并对关键的接 口提供证书+密 码或短信+密码 的双因认证,确 保通信安全

7.2. 关于 eDRX 及 DRX 模式下服务器主动下发数据

对于通过服务器北向控制有一定实时性要求,又倾向于尽可能少的减少"心跳包"的应 用,如:路灯,家电,共享单车等,设备端可以使用 eDRX 或 DRX 的工作模式,做到长时间 监听小区的寻呼请求又不发送额外的上行数据。

但是需要注意的是:由于 UDP 通信方式,终端通过核心网 EPC 与其他公网的服务器通信时,EPC 会将内网的 IP 映射成一个外网的 IP 加端口,这一映射关系存在老化机制。实际测试 发现:如果成功入网的设备超过 2 分钟不与公网服务器进行数据交互,则上次通信的 IP 及端 口映射关系失效,此时即便终端处于 eDRX 甚至 DRX 工作模式,公网的服务器无法通过上次 成功通信的 IP 及端口与终端进行通信,除非终端进入 PSM后重新上报数据。

如果一定需要实现这些应用需求,可以使用 IoT 平台通信链路进行应用设计,由于 IoT 平台与 EPC 深度结合,能够通过一些机制保证 IP 和端口映射长时间不老化(目前是 30 分钟,11 月后会升级到 24h),即终端仅需再非常长的时间内上报一次数据即可保证 AS 的下行通信链路畅通,下行控制随时可达。目前透传云已经完成 IOT 平台对接,可以实现数据主动下发功能。

注意:由于 NB-IoT 是一个窄带通信协议,并发性有限,不建议频繁通信占用带宽。

7.3. 关于中国电信传输时延

下表为电信给出的网络时延参考值:

终端状态	业务场景	空口时延
空闲状态	终端上报数据	最理想状态下无线链路建立时延: 730ms
	基站下发数据	最理想状态下寻呼到终端需要: 750ms
连接状态	终端上报数据	最理想状态下无线空口时延: 400ms
	基站下发数据	最理想状态下无线空口时延: 400ms
eDRX 模式	终端上报数据	空口时延+专网到客户服务器之间的时延
	基站下发数据	空口时延750ms + eDRX 寻呼周期(最大为2.92 小时)
PSM 模式	终端上报数据	空口时延+专网到客户服务器之间的时延
	基站下发数据	空口时延+专网到客户服务器之间的时延+PSM 最长休
		眠周期(最大310 小时)

8. 联系方式

公 司: 上海稳恒电子科技有限公司

地 址: 上海市闵行区秀文路 898 号西子国际五号楼 611 室

网 址: www.mokuai.cn

邮 箱: sales@mokuai.cn

电 话: 021-52960996 或者 021-52960879

使命: 做芯片到产品的桥梁

愿景: 全球有影响力的模块公司

价值观: 信任 专注 创新

产品观:稳定的基础上追求高性价比

9. 免责声明

本文档提供有关稳恒 NB-IoT 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

10. 更新历史

2017-11-18 版本 V1.0.0 创立 2018-02-10 版本 V1.10 修改 IDLE 模式的功耗 2018-12-26 版本 V1.2.0 排版