LINKÖPING UNIVERSITY
Department of Biomedical Engineering

Lecture Notes

Submitted with the written examination in

TBME08 Biomedical Modeling and Simulation

TBME08 - Lecture 2

Anna Lombardi

Computation of the INDEX for a linear DAE

 $E,F: \text{square matrices} \\ \dim E = n \times n \\ \text{rank}(E) = r, \quad r < n \\$

 $\left[\begin{array}{c} E_1 \\ E_2 \end{array}\right] \dot{z} + \left[\begin{array}{c} F_1 \\ F_2 \end{array}\right] z = \left[\begin{array}{c} G_1 \\ G_2 \end{array}\right] u \quad E_1, F_1, G_1: \text{have r rows}$

By rearranging the rows of E:

$$\left[\begin{array}{c} E_1 \\ 0 \end{array}\right] \dot{z} + \left[\begin{array}{c} F_1 \\ \tilde{F}_2 \end{array}\right] z = \left[\begin{array}{c} G_1 \\ \tilde{G}_2 \end{array}\right] u$$

LINKÖPING UNIVERSITY

Anna Lombardi

TBME08 - Lecture 4

Euler method

 $\frac{x_{n+1} - x_n}{h} \approx \dot{x}(t_n) = f(t_n, x_n)$

it gives

 $h = t_{n+1} - t_n$

 $x_{n+1} = x_n + hf(t_n, x_n)$

LINKÖPING UNIVERSITY

TBME08 - Lecture 2

Computation of the INDEX for a linear DAE

16

By derivating the lower part the system becomes

$$\left[\begin{array}{c} E_1 \\ \tilde{F}_2 \end{array}\right] \dot{z} + \left[\begin{array}{c} F_1 \\ 0 \end{array}\right] z = \left[\begin{array}{c} G_1 \\ 0 \end{array}\right] u + \left[\begin{array}{c} 0 \\ \tilde{G}_2 \end{array}\right] \dot{u}$$

If the matrix $\left\lceil rac{E_1}{ ilde{F}_2}
ight
ceil$ has full rank then the system can be expressed explicitly. In this case the system has INDEX=1.

Otherwise the procedure is repeated.

LINKÖPING UNIVERSITY

TBME08 - Lecture 4

Runge-Kutta method, order 4 - RK4

 $x_{n+1} = x_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$

where

$$= f(t_n, x_n)$$

$$k_2 = f(t_n + \frac{1}{2}h, x_n + \frac{1}{2}hk_1)$$

$$k_3 = f(t_n + \frac{1}{2}h, x_n + \frac{1}{2}hk_2)$$

$$k_4 = f(t_n + h, x_n + hk_3)$$

LINKÖPING UNIVERSITY

Anna Lombardi

18

Stability of numerical methods

 $h = t_{n+1} - t_n$ $\frac{x_{n+1} - x_n}{\dot{}} \approx \dot{x}(t_n) = f(t_n, x_n)$

 $x_{n+1} = x_n + hf(t_n, x_n)$

The method is numerically stable if:

 $x_n \to 0$ when $n \to \infty$ stable system UNstable system $x_n \to \infty$ when $n \to \infty$

LINKÖPING UNIVERSITY

LINKÖPING UNIVERSITY

Example: Heat Conduction

26

3(4)

TBME08 - Stochastic Modeling and Simulation

Non-uniformly Distributed RNG

- Inversion
 - An rnd (random number) is produced using the invers of the cumulative distribution function (cdf).
 - cdf is defined as

$$D(x) = P(X \le x) \equiv \int_{-\infty}^{x} P(\xi)d\xi$$

where P(x), the probability density function (pdf), is normalized to

$$\int_{-\infty}^{\infty} P(x)dx = 1$$

Pagė 2

@ Marcus Larsson

TBME08 - Stochastic Modeling and Simulation

Non-uniformly Distributed RNG

- Accept-reject
 - Numerical method (no analytical solution).
 - Based on "pairs of rnd":
 - Let x_{rnd} = rnd₁

 rnd_1 is $U(x_{min}, \dot{x}_{max})$

- If $P(x_{md}) \ge rnd_2$:

 rnd_2 is $U(0, P_{max})$

+ is true, accept x_{md}

+ is fals, reject and try again with two new rnd

Page 3

@ Marcus Larsson

Page 4 (4)