Prädikatenlogik

by

Dr. Günter Kolousek

Motivation

- Argument
 - Alle Menschen sind sterblich.
 - Sokrates ist ein Mensch.
 - Also: Sokrates ist sterblich.
- ► Intuitiv: deduktiv gültig
- Aber: mit AL nicht nachzuweisen
 - V(p) = Alle Menschen sind sterblich.
 - ightharpoonup V(q) =Sokrates ist ein Mensch.
 - V(r) =Sokrates ist sterblich.
 - r folgt in AL sicher nicht aus p und q!

Erweiterungen zur Aussagenlogik

- ► Eigenschaften zu einem Objekt
 - z.B., dass Sokrates ein Grieche ist
- ► Beziehungen zwischen Objekten beschreiben
 - z.B., dass Maxi mit Mini verheiratet ist
- existentielle Aussagen treffen: es gibt ein x, so dass...
 - z.B., dass es mindestens Griechen, der Sokrates heißt
- universelle Aussagen treffen: für jedes x gilt, dass...
 - z.B., dass alle Menschen sterblich sind

Begriffe

- einfache Aussagen
 - Satzgegenstand: Subjekte, Individuen
 - z.B. Sokrates, Maxi, Mini
 - Alle betrachteten Gegenstände (Objekte, Individuen) werden in einer Menge zusammengefasst: Individuenbereich
 - Satzaussage: Prädikate
 - z.B. sterblich, ist verheiratet mit
- komplexe Aussagen
 - Verknüpfung mittels und, oder, nicht
- quantifizierende Aussagen
 - ► Alle...
 - Es existiert ein..

Die Syntax der Prädikatenlogik

- ▶ Grundzeichen
- ▶ Terme
- ▶ Formeln
- Freie und gebundene Variablen

Syntax - Grundzeichen

- Individuenkonstanten: a, b, c,... wenn nötig mit Indizes $a_1, a_2,...$
- Individuenvariablen: x, y, z, wenn nötig mit Indizes
 - Achtung: diese haben nichts mit den aussagenlogischen Variablen gemein!
- Funkionssymbole: f, g, ...
- ▶ Prädikatssymbole: *P*, *Q*, *R*..., wenn mit Indizes
- Jedem Funktionssymbol bzw. Prädikatssymbol ist eine Stelligkeit zugeordnet
- ▶ Junktoren: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Quantorenzeichen:
 - ► Allquantor: ∀
 - ► Existenzquantor: ∃
- Hilfszeichen: (,)

Syntax - Terme

- Definition eines Terms
 - Jede Konstante ist ein Term
 - ► Jede Variable ist ein Term
 - Ist f ein n-stelliges Funktionssymbol und sind $t_1, t_2, ..., t_n$ Terme, dann ist auch $f(t_1, t_2, ..., t_n)$ ein Term.
- Beispiele für Terme, wenn natürliche Zahlen Konstanten sind und Addition ("add") und Multiplikation ("mul") Funktionen sind:
 - **▶** 42
 - ightharpoonup add(x,7)
 - ightharpoonup add(3, mul(4, 2))

Syntax - Formeln

- ▶ Definition einer Formel (Zeichen: A, B, C, D, E, F, G)
 - Ist P ein n-stelliges Prädikatensymbol und sind $t_1, t_2, ..., t_n$ Terme, so ist $P(t_1, t_2, ..., t_n)$ eine (atomare) Formel.
 - Für jede Formel F ist auch $\neg F$ eine Formel.
 - ▶ Für alle Formeln F und G sind auch $F \land G$, $F \lor G$, $F \to G$ oder $F \leftrightarrow G$ Formeln.
 - ► Ist x eine Variable und F eine Formel, so sind auch $\exists x : F$ und $\forall x : F$ Formeln.
- Beispiele für Formeln, wenn "even" ein einstelliges und "equal" ein zweistelliges Prädikat sind:
 - ▶ even(42)
 - ightharpoonup equal(42, add(2, mul(4, 10))
 - $\triangleright \forall x : even(mul(2, x))$
 - $\exists x : (\forall y : \mathsf{equal}(\mathsf{add}(x,y),y))$

Syntax - Freie & gebundene Var.

Jede Gegenstandsvariable x, die im Bereich eines Quantors $\forall x$: oder $\exists x$: liegt, heißt *gebundene Variable*, anderenfalls *freie Variable*. Eine Variable kann in einer Formel sowohl frei als auch gebunden vorkommen:

$$\forall x: (\exists y: (P(x,y) \land Q(y,z,x)) \rightarrow R(y,x)) \Leftrightarrow S(x,z)$$

Eine Formel, die keine freien Variablen enthält, nennt man geschlossene Formel.

Die Semantik der Prädikatenlogik

- Allgemeines
- Beispiel einer Interpretation

Semantik - Allgemeines

- Grundzüge ähnlich der AL
- Anstatt Bewertung gibt es die Interpretation I:
 - Angabe einer nichtleeren Menge D, die den Bereich festlegt, auf den sich die Quantoren beziehen.
 - Zuordnung von Individuenkonstante zu Gegenstand aus D.
 - ► Bedeutung der Prädikatbuchstaben
 - Jedem einstelligen Prädikat wird eine Eigenschaft zugeordnet, die Individuen aus D haben können.
 - Jedes mehrstelliges Prädikat legt eine Beziehung zwischen Individuen aus D fest.
 - D.h. Prädikate sind n-stellige Relationen über dem Individuenbereich D.
- Wie bei AL hängt die Wahrheit eines Satzes von PL immer von der Interpretation ab.

Semantik - Bsp. einer Interpretation

- Interpretation I:
 - ► *D* = Menge der natürlichen Zahlen
 - a : 1
 - ▶ b:2
 - ► c:3
 - ► d:4
 - ▶ e:5
 - ightharpoonup P(x), even(x) : x ist eine gerade Zahl
 - ightharpoonup Q(x), odd(x): x ist eine ungerade Zahl
 - ightharpoonup R(x), prim(x): x ist eine Primzahl
 - \triangleright S(x,y), less(x,y): x ist kleiner als y
 - ightharpoonup T(x,y), greater(x,y): x ist größer als y
 - $\vdash U(x,y)$, divisible(x,y): x ist teilbar durch y
 - V(x, y, z): x ist die Summe von y und z
- ▶ ~ Weitere Formalisierung der Semantik wird weggelassen

Äquivalenzen und Konsequenzen

Äquivalenzen

- $ightharpoonup \neg \forall x : A \Leftrightarrow \exists x : \neg A$
 - $\blacktriangleright \forall x : P(x) \Leftrightarrow \neg \exists x : \neg P(x)$
 - ► 'Alle Menschen haben eine Mutter' ⇔ 'Es gibt keinen Mensch, der keine Mutter hat'.
- $ightharpoonup \neg \exists x : A \Leftrightarrow \forall x : \neg A$
- $ightharpoonup \exists x : A \lor \exists x : B \Leftrightarrow \exists x : (A \lor B)$
- $\blacktriangleright \forall x : (\forall y : A) \Leftrightarrow \forall y : (\forall x : A)$
- $\exists x : (\exists y : A) \Leftrightarrow \exists y : (\exists x : A)$

Konsequenzen

Schlüsse

Analog zu den aussagenlogischen Schlüssen lassen sich auch prädikatenlogischen Schlussregeln finden, wie z.B.:

- $A \wedge \forall x : (A \to B) \Rightarrow B$

Übergang zur PL höherer Stufe

- Prädikatenlogik erster Stufe
 - Die Individuenvariable generalisiert über Individuen
 - Für Prädikate gibt es keine Variable!
- Prädikatenlogik höherer Stufe
 - Auch über Prädikate wird generalisiert
 - ► Für alle Eigenschaften gilt,...
 - Es gibt ein Prädikat...