4CCS1ELA: Tutorial list 2 – Sample Solutions

1. Consider the formula

$$(P \vee \neg R) \rightarrow \neg (\neg Q \vee R)$$

- (i) 1. Write a conjunctive normal form (CNF) for this formula from its truth table.
 - 2. Write a disjunctive normal form (DNF) for this formula from its truth table.
- (ii) Transform this formula to a logically equivalent disjunctive normal form (DNF) using the rewrite rules.
- (iii) Find a disjunctive normal form for this formula using Quine's tree.

SOLUTION

(i)

P	Q	R	$(P \vee \neg R)$	\rightarrow	$\neg(\neg Q \lor R)$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	0	0
0	1	1	0	1	0
0	1	0	1	1	1
0	0	1	0	1	0
0	0	0	1	0	0

1. A disjunction of three literals is created for each line (for each interpretation of propositional variables) with a **false** (i.e. 0) value of the formula. For each propositional variable P, the literal P is added to the disjunction if I(P) = 0, and $\neg P$ is added to the disjunction if I(P) = 1. Such disjunction is false for the interpretation given by this line.

The corresponding CNF is :

$$(\neg P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor Q \lor R)$$

Here each disjunction has exactly 3 literals, one for each variables appearing in the formula. Such CNFs are called **full** CNFs.

2. A conjunction of three literals is created for each line (for each interpretation of propositional variables) with a true (i.e., 1) value of the formula. For each propositional variable P, the literal $\neg P$ is added to the conjunction if I(P)=0, and P is added to the conjunction is I(P)=1. Such conjunction is true for the interpretation given by this line.

The corresponding DNF is:

$$(P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R)$$

Here each conjunction has exactly 3 literals, one for each variables appearing in the formula. Such DNFs are called **full** DNFs.

(ii)

$$\begin{array}{cccc} (P \vee \neg R) \to \neg (\neg Q \vee R) & \Longrightarrow & (\text{ replacing } \to \text{ with } \vee) \\ \neg (P \vee \neg R) \vee \neg (\neg Q \vee R) & \Longrightarrow & (\text{De Morgan's laws}) \\ (\neg P \wedge \neg \neg R) \vee (\neg \neg Q \wedge \neg R) & \Longrightarrow & (\text{removing double negations}) \\ (\neg P \wedge R) \vee (Q \wedge \neg R) & (\text{DNF}) \end{array}$$

This is another DNF, which is logically equivalent to the previous one obtained in (i) 2:

$$(P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R)$$

Indeed,

$$(P \land Q \land \neg R) \lor (\neg P \land Q \land \neg R) \equiv (P \lor \neg P) \land (Q \land \neg R) \equiv (Q \land \neg R) \\ (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R) \equiv (Q \lor \neg Q) \land (\neg P \land R) \equiv (\neg P \land R)$$

(The associativity, commutativity and distributivity laws for \land and \lor have been used without mentioning.)

(iii) Agreements below: the occurrences of the variable that is substituted with a truth-value constant are underlined; for each internal node, the child on the left corresponds to the substitution with $\mathbf{1}$, the child on the right corresponds to the substitution with $\mathbf{0}$.

We can see from the tree that our formula is true under following interpretations:

$$I(P) = 1$$
, $I(R) = 0$, $I(Q) = 1$
 $I(P) = 0$, $I(R) = 1$, any value of Q
 $I(P) = 0$, $I(R) = 0$, $I(Q) = 1$

This conclusion leads to the following DNF

$$(P \land \neg R \land Q) \lor (\neg P \land R) \lor (\neg P \land \neg R \land Q),$$

which is equivalent to

$$(\neg R \land Q) \lor (\neg P \land R).$$

2. Rewrite the following propositional formula in (i) a logically equivalent conjunctive normal form, and (ii) a logically equivalent disjunctive normal form:

$$(P \to Q) \land \neg (S \to R).$$

SOLUTION

3. Which of the following propositional formulas are substitution instances of the formula

$$P \to (Q \to P)$$
?

If a formula is indeed a substitution instance, give the formulas substituted for P,Q.

- (i) $\neg R \rightarrow (R \rightarrow \neg R)$
- (ii) $\neg R \rightarrow (\neg R \rightarrow \neg R)$
- (iii) $\neg R \rightarrow (\neg R \rightarrow R)$

(iv)
$$(P \land Q \rightarrow P) \rightarrow ((Q \rightarrow P) \rightarrow (P \land Q \rightarrow P))$$

(v)
$$((P \rightarrow P) \rightarrow P) \rightarrow ((P \rightarrow (P \rightarrow (P \rightarrow P))))$$
?

SOLUTION

(i) **Yes.** $\neg R$ is substituted for P, R is substituted for Q, i.e., the substitution is $(P/\neg R, Q/R)$.

Let us note that since the formula $\neg R \to (R \to \neg R)$ is a tautology, every substitutional instance of this formula is also tautology, including $\neg R \to (R \to \neg R)$.

- (ii) **Yes.** $\neg R$ is substituted for P, $\neg R$ is substituted for Q, i.e., the substitution is $(P/\neg R, Q/\neg R)$. The result is a tautology.
- (iii) No. Two different occurrences of the same variable P are replaced with different formulas $\neg R$ and R.
- (iv) **Yes.** $(P \land Q \to R)$ is substituted for P, $(Q \to R)$ is substituted for Q, i.e., the substitution is $(P/(P \land Q \to R), \ Q/(Q \to R))$. The result is a tautology.
- (v) **No**. Two different occurrences of the same variable P are replaced with different formulas, $((P \to P) \to P)$ and $(P \to (P \to P))$. Let us note, that the second formula $(P \to (P \to P))$ is a tautology, but the first one is not.
- **4.** Let P|Q be defined as the wff with P and Q having the truth-table below:

P	Q	P Q
1	1	0
0	1	1
1	0	1
0	0	1

Define \land , \lor , \neg and \rightarrow using |.

Hint: Look at the truth-table for P|P too!

SOLUTION

As we have seen, the symbol | is known as the *Sheffer stroke*.

It is easy to see that that the truth-table for | is the negated version of the truth-table for \wedge , i.e., $v(P|Q) = v(\neg(P \wedge Q))$. That is why in boolean algebra this operation is known as "NAND".

This solves part of our problem, but we still need to eliminate the \neg in $\neg(P \land Q)$ in order to re-write $P \land Q$ in terms of | only. We can do this by negating it again, since $\neg \neg P \equiv P$.

The hint says that P|P behaves like $\neg P$. Therefore, to negate $\neg (P \land Q)$ (i.e., P|Q), all we have to do is to apply | again. This will give us (P|Q)|(P|Q). In order to check that $P \land Q$ can indeed be written as

(P|Q)|(P|Q), check that they produce exactly the same values using a truthtable.

Now the rest is easy. We know that $P\vee Q$ is equivalent to $\neg(\neg P\wedge\neg Q)$, which is then re-written as (P|P)|(Q|Q). Similarly, we know that $P\to Q$ is equivalent to $\neg P\vee Q$, so we want ((P|P)|(P|P))|(Q|Q) for $P\to Q$. (There are other (and shorter) ways of re-writing \to using the Sheffer stroke, for instance, notice that $P\to Q\equiv \neg(P\wedge\neg Q)$).