Entanglement Classification using Knots

PH3203 Term Project

Sagnik Seth 22MS026

Jessica Das 22MS157

Sayan Karmakar 22MS163

Instructor: Prof. Sourin Das

Department of Physics, IISER Kolkata

Basic Theoretical Background

Introduction to Knots

Introduction to Quantum Information

Peres-Horodecki Criterion

Classifying Entanglement using Knots

ullet Aravind, 1997 o modelled entanglement using knots.

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

Observations

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

• $|\Psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ in computational basis

Observations

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

• $|\Psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ in computational basis

Observations

• Measuring in Z basis: first particle measured, then remaining collapses to separable state \rightarrow separable \rightarrow

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

• $|\Psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ in computational basis

Observations

• Measuring in Z basis: first particle measured, then remaining collapses to separable state \rightarrow separable \rightarrow modelled by Borromean ring

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

- $|\Psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ in computational basis
- $\bullet \ |\Psi\rangle = \tfrac{|+\rangle}{\sqrt{2}} \left(\tfrac{|00\rangle |11\rangle}{\sqrt{2}} \right) + \tfrac{|-\rangle}{\sqrt{2}} \left(\tfrac{|00\rangle + |11\rangle}{\sqrt{2}} \right) \text{ in X basis}$

Observations

 Measuring in Z basis: first particle measured, then remaining collapses to separable state → separable→ modelled by Borromean ring

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

- $|\Psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ in computational basis
- $\bullet \ |\Psi\rangle = \tfrac{|+\rangle}{\sqrt{2}} \left(\tfrac{|00\rangle |11\rangle}{\sqrt{2}} \right) + \tfrac{|-\rangle}{\sqrt{2}} \left(\tfrac{|00\rangle + |11\rangle}{\sqrt{2}} \right) \text{ in X basis}$

Observations

- Measuring in Z basis: first particle measured, then remaining collapses to separable state → separable→ modelled by Borromean ring
- Measuring in X basis: first particle measured, then remaining collapses to an entangled state → remains entangled

- ullet Aravind, 1997 o modelled entanglement using knots.
- Used basis-dependent measurement as an analogy to 'cut the knots'.

Borromean Rings model:

- $|\Psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle-|111\rangle)$ in computational basis
- $\bullet \ |\Psi\rangle = \tfrac{|+\rangle}{\sqrt{2}} \left(\tfrac{|00\rangle |11\rangle}{\sqrt{2}} \right) + \tfrac{|-\rangle}{\sqrt{2}} \left(\tfrac{|00\rangle + |11\rangle}{\sqrt{2}} \right) \text{ in X basis}$

Observations

- Measuring in Z basis: first particle measured, then remaining collapses to separable state → separable → modelled by Borromean ring
- Measuring in X basis: first particle measured, then remaining collapses to an entangled state → remains entangled → modelled by 3-Hopf rings

Polynomial Approach to Entanglement

Obtaining a Link from given State

• In general, difficult to obtain state, given a link polynomial.

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $|2^N-1\rangle$

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $|2^N-1\rangle$
- An algorithm has been devised to obtain a general structure of the state from the link.

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are $2^{\it N}$ basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^{\it N}-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.
- But it only produces a mixed state only
 !

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $|2^N-1\rangle$
- An algorithm has been devised to obtain a general structure of the state from the link.
- But it only produces a mixed state only

 !

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^N-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.
- But it only produces a mixed state only
 \equiv !

Algorithm:

① Take a term t of the link polynomial $P(\{t\})$

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^N-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.
- But it only produces a mixed state only
 !

- **①** Take a term t of the link polynomial $P(\{t\})$
- ② t mapped to a state: $|E_q\rangle\otimes|S_q\rangle\otimes|Q_d\rangle$

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^N-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.
- But it only produces a mixed state only
 !

- ① Take a term t of the link polynomial $P(\{t\})$
- ② t mapped to a state: $|\mathrm{E_q}\rangle\otimes|\mathrm{S_q}\rangle\otimes|\mathrm{Q_d}\rangle$
 - ullet $|\mathrm{E_q}
 angle \longrightarrow$ entangled qubit of GHZ type, associated to ring variables in t.

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are $2^{\it N}$ basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^{\it N}-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.
- But it only produces a mixed state only
 !

- **①** Take a term t of the link polynomial $P(\{t\})$
- ② t mapped to a state: $|\mathrm{E_q}\rangle\otimes|\mathrm{S_q}\rangle\otimes|\mathrm{Q_d}\rangle$
 - ullet $|\mathrm{E_q}
 angle \longrightarrow$ entangled qubit of GHZ type, associated to ring variables in t.
 - $|S_q\rangle$ \longrightarrow separable qubit associated with ring variables not in t. Generally, large number of possibilities for this separable qubit.

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are $2^{ extstyle N}$ basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^{ extstyle N}-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.

- **1** Take a term t of the link polynomial $P(\{t\})$
- ② t mapped to a state: $|\mathrm{E_q}\rangle\otimes|\mathrm{S_q}\rangle\otimes|\mathrm{Q_d}\rangle$
 - ullet $|\mathrm{E_q}
 angle \longrightarrow$ entangled qubit of GHZ type, associated to ring variables in t.
 - $|S_q\rangle$ \longrightarrow separable qubit associated with ring variables not in t. Generally, large number of possibilities for this separable qubit.
 - $|Q_{\rm d}\rangle \longrightarrow$ qudit state associated with *artifically* introduced ring variable (alphabetical successor of the largest ring variable present). To be traced out later, hence is of less significance. Can be a random state, hence it becomes **mixed**.

- In general, difficult to obtain state, given a link polynomial.
- ullet Given N qubits, there are 2^N basis states, namely $|0\rangle$, $|1\rangle$, \dots $\left|2^N-1
 ight>$
- An algorithm has been devised to obtain a general structure of the state from the link.

- ① Take a term t of the link polynomial $P(\{t\})$
- 2 t mapped to a state: $|\mathrm{E_q}\rangle\otimes|\mathrm{S_q}\rangle\otimes|\mathrm{Q_d}\rangle$
 - ullet $|\mathrm{E_q}
 angle \longrightarrow$ entangled qubit of GHZ type, associated to ring variables in t.
 - $|S_q\rangle$ \longrightarrow separable qubit associated with ring variables not in t. Generally, large number of possibilities for this separable qubit.
 - $ullet |Q_{
 m d}
 angle \longrightarrow$ qudit state associated with *artifically* introduced ring variable (alphabetical successor of the largest ring variable present). To be traced out later, hence is of less significance. Can be a random state, hence it becomes **mixed**.
- ③ Full state $|\psi\rangle$ \longrightarrow sum of individual such states. Trace out d and obtain density matrix of reduced system.

$$P(a, b, c) = ab + ac$$

Let us take a look at a demonstration of the algorithm. Take:

$$P(a, b, c) = ab + ac$$

• Choose the term t = ab

$$P(a, b, c) = ab + ac$$

- Choose the term t = ab
- Two ring variables a and b, so 2 qubit GHZ state assigned to entangled part. $|\mathrm{E_q}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\equiv\left|2^1\right\rangle_{ab}$

$$P(a, b, c) = ab + ac$$

- Choose the term t = ab
- Two ring variables a and b, so 2 qubit GHZ state assigned to entangled part. $|E_{\rm q}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\equiv\left|2^1\right\rangle_{ab}$
- ullet Separable qubit associated with c, keep it general $|\mathrm{S_q}
 angle=|q_1
 angle_c$

$$P(a, b, c) = ab + ac$$

- Choose the term t = ab
- Two ring variables a and b, so 2 qubit GHZ state assigned to entangled part. $|E_{\rm q}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\equiv\left|2^1\right\rangle_{ab}$
- ullet Separable qubit associated with c, keep it general $|\mathrm{S_q}\rangle=|q_1\rangle_c$
- ullet Qudit state, take $|\mathrm{Q_d}
 angle = |0
 angle_d$

$$P(a, b, c) = ab + ac$$

- Choose the term t = ab
- Two ring variables a and b, so 2 qubit GHZ state assigned to entangled part. $|E_{\rm q}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\equiv\left|2^1\right\rangle_{ab}$
- ullet Separable qubit associated with c, keep it general $|\mathrm{S_q}\rangle=|q_1\rangle_c$
- ullet Qudit state, take $|\mathrm{Q_d}
 angle = |0
 angle_d$
- Full state becomes:

$$|\psi_1\rangle = \left|2^1\right\rangle_{ab} \otimes \left|q_1\right\rangle_c \otimes \left|0\right\rangle_d$$

Let us take a look at a demonstration of the algorithm. Take:

$$P(a, b, c) = ab + ac$$

• Choose the term t = ac

$$P(a, b, c) = ab + ac$$

- Choose the term t = ac
- Two ring variables a and c, so 2 qubit GHZ state assigned to entangled part. $|\mathrm{E_q}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\equiv\left|2^1\right\rangle_{ac}$

$$P(a, b, c) = ab + ac$$

- Choose the term t = ac
- Two ring variables a and c, so 2 qubit GHZ state assigned to entangled part. $|E_{\rm q}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\equiv\left|2^1\right\rangle_{ac}$
- ullet Separable qubit associated with b, keep it general $|{\rm S_q}\rangle = |q_1\rangle_b$

$$P(a, b, c) = ab + ac$$

- Choose the term t = ac
- Two ring variables a and c, so 2 qubit GHZ state assigned to entangled part. $|E_{\rm q}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\equiv\left|2^1\right\rangle_{ac}$
- ullet Separable qubit associated with b, keep it general $|{\rm S_q}\rangle = |q_1\rangle_b$
- ullet Qudit state, take $|\mathrm{Q_d}
 angle=|1
 angle_d$

$$P(a, b, c) = ab + ac$$

- Choose the term t = ac
- Two ring variables a and c, so 2 qubit GHZ state assigned to entangled part. $|E_{\rm q}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\equiv\left|2^1\right\rangle_{ac}$
- ullet Separable qubit associated with b, keep it general $|{\rm S_q}\rangle = |q_1\rangle_b$
- ullet Qudit state, take $|\mathrm{Q_d}
 angle=|1
 angle_d$
- ullet Full state becomes: $|\psi_2
 angle=\left|2^1
 ight
 angle_{ac}\otimes|q_2
 angle_b\otimes|1
 angle_d$

• Mixed state characterising the link: $|\psi\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle$

Figure: Schematic representation of the algorithm.

- Mixed state characterising the link: $|\psi\rangle=c_1|\psi_1\rangle+c_2|\psi_2\rangle$
- Then construct the density matrix accordingly for the state.

Figure: Schematic representation of the algorithm.

Some Examples...

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

Pure State: $\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

$$\rho_{abc} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ \end{bmatrix}$$

Pure State:
$$\left|3^{1}\right\rangle_{abc} = \frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc}\right)$$

$$\rho_{abc} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ \end{bmatrix}$$

$$D_{abc}^{T_a} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \end{bmatrix}$$

Pure State:
$$\left|3^{1}\right\rangle_{abc} = \frac{1}{\sqrt{2}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc}\right)$$

$$\rho_{\textit{abc}} =$$

$$\rho_{abc} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ \end{bmatrix}$$

Eigenvalues: 0.0, 0.5, -0.5

$$\rho^{\mathcal{T}_a}_{abc} =$$

$$= \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ \end{bmatrix}$$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

$$\rho_{abc} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\ \end{bmatrix}$$

- **Eigenvalues:** 0.0. 0.5. -0.5
- One eigenvalue is negative → Tripartite Entanglement

$$T_{a} = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \end{bmatrix}$$

Pure State:
$$\left|3^{1}\right\rangle_{abc} = \frac{1}{\sqrt{2}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc}\right)$$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

$$\rho_{ab} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

$$\rho_{ab} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

$$\rho_{ab}^{Ta} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

$$\rho_{ab} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

$$\rho_{ab}^{T_a} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

Eigenvalues:

$$0.0, 0.5 \geqslant 0$$

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

$$\rho_{ab} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

$$\rho_{ab}^{Ta} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

All eigenvalues are positive.

Pure State:
$$\left|3^{1}\right\rangle_{abc}=\frac{1}{\sqrt{2}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}\right)$$

• **Eigenvalues:** 0.0, 0.5 ≥ 0

$$\rho_{ab} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

$$\rho_{ab}^{T_a} \left[\begin{array}{ccccc} 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 \end{array} \right]$$

- All eigenvalues are positive.
- System completely separable after cut.

Pure State:
$$\left|3^2\right\rangle_{abc}=\frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}+\left|001\right\rangle_{abc}\right)$$

Pure State: $\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

$$\rho_{abc} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.33 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0$$

Pure State:
$$\left|3^2\right\rangle_{abc}=\frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}+\left|001\right\rangle_{abc}\right)$$

• Eigenvalues:

-0.471, 0.0, 0.333, 0.471, 0.666

	$\rho_{\textit{abc}} =$	Γ 0.333	0.333	0.0	0.0	0.0	0.0	0.0	0.333	1	
		0.333	0.333	0.0	0.0	0.0	0.0	0.0	0.333		
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
		0.333	0.333	0.0	0.0	0.0	0.0	0.0	0.333]	
	$ \rho_{abc}^{T_a} = $	Γ 0.333	0.333	0.0	0.0	0.0		0.0	0.0	0.0	
		0.333	0.333	0.0	0.0	0.0		0.0	0.0	0.0	
		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
		0.0	0.0	0.0	0.0	0.333		0.333	0.0	0.0	
		0.0	0.0	0.0	0.333	0.0		0.0	0.0	0.0	
		0.0	0.0	0.0	0.333	0.0		0.0	0.0	0.0	
		0.0	0.0	0.0	0.0	0	.0	0.0	0.0	0.0	
		0.0	0.0	0.0	0.0	0	.0	0.0	0.0	0.333	

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

• Eigenvalues:

-0.471, 0.0, 0.333, 0.471, 0.666

$$\rho_{abc} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 &$$

0.0

0.0 0.0 0.0

0.0

0.333

0.0

0.333

0.333

0.0 0.0 0.0 0.0

0.0

0.333

0.333

Pure State:
$$\left|3^2\right\rangle_{abc}=\frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}+\left|001\right\rangle_{abc}\right)$$

• Eigenvalues:

-0.471, 0.0, 0.333, 0.471, 0.666

-0.333, 0.0, 0.127, 0.333, 0.872

$$\rho_{abc} = \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.33$$

0.0

0.0 0.0 0.0

0.0

0.0 0.0 0.0 0.0 0.0

0.333

0.333

0.0

0.333

0.333

0.0 0.0 0.0 0.0

0.0

0.333

0.333

0.333

0.333

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

• Eigenvalues:

-**0.471**, 0.0, 0.333, 0.471, 0.666

-**0.333**, 0.0, 0.127, 0.333, 0.872

One eigenvalue is negative → Tripartite Entanglement

$$\rho_{abc}^{T_C} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Three Qubit System: 32 class: cut

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Three Qubit System: 32 class: cut

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

$$\rho_{ab} = \left[\begin{array}{cccc} 0.666 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.0 & 0.0 & 0.333 \end{array} \right]$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

$$\rho_{ab} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{ab}^{T_a} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

0.333

Three Qubit System: 32 class: cut

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

• Eigenvalues:

$$0.333, -0.333, 0.666$$

$$\rho_{ab} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{ab}^{T_a} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Pure State:
$$\left|3^2\right\rangle_{abc}=\frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}+\left|001\right\rangle_{abc}\right)$$

- Eigenvalues:
 0.333. -0.333. 0.666
- One eigenvalue is negative → Tripartite Entanglement

$$\rho_{ab} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.333 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.333 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{ab}^{T_a} = \begin{bmatrix} 0.666 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.333 & 0.0 \\ 0.0 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

$$\rho_{bc} = \left[\begin{array}{ccccc} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{array} \right]$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

$$\rho_{bc} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{bc}^{T_b} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Pure State:
$$\left|3^2\right\rangle_{abc} = \frac{1}{\sqrt{3}} \left(\left|000\right\rangle_{abc} + \left|111\right\rangle_{abc} + \left|001\right\rangle_{abc}\right)$$

Eigenvalues:0.0.0.333.0.666

$$\rho_{bc} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{bc}^{T_b} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Pure State:
$$\left|3^2\right\rangle_{abc}=\frac{1}{\sqrt{3}}\left(\left|000\right\rangle_{abc}+\left|111\right\rangle_{abc}+\left|001\right\rangle_{abc}\right)$$

- Eigenvalues:0.0, 0.333, 0.666
- No eigenvalue is negative → Separable

$$\rho_{bc} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

$$\rho_{bc}^{T_b} = \begin{bmatrix} 0.333 & 0.333 & 0.0 & 0.0 \\ 0.333 & 0.333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.333 \end{bmatrix}$$

Four Qubit System

• Different parties possessing entangled qubits, want to perform protocols with certain restrictions.

 Different parties possessing entangled qubits, want to perform protocols with certain restrictions.

- Different parties possessing entangled qubits, want to perform protocols with certain restrictions.
- If density operator of the subsystem consisting the parties wanting to perform the protocol is separable, then the protocol cannot be performed successfully.

- Different parties possessing entangled qubits, want to perform protocols with certain restrictions.
- If density operator of the subsystem consisting the parties wanting to perform the protocol is separable, then the protocol cannot be performed successfully.
- If another party (not participating in the protocol) does not divulge information about their local operations, then results of the protocol cannot be correlated.

Let us consider a four qubit network, where Alice, Bob, Charlie and Diana are the parties such that only the following parties can communicate:

Alice, Bob, and Charlie

- Alice, Bob, and Charlie
- Alice, Bob, and Diana

- Alice, Bob, and Charlie
- Alice, Bob, and Diana
- Alice and Charlie

- Alice, Bob, and Charlie
- Alice, Bob, and Diana
- Alice and Charlie

Let us consider a four qubit network, where Alice, Bob, Charlie and Diana are the parties such that only the following parties can communicate:

- Alice, Bob, and Charlie
- Alice, Bob, and Diana
- Alice and Charlie

We can easily see that the polynomial describing this network is $P(a,b,c,d) = abc + abd + ac \longrightarrow$

Let us consider a four qubit network, where Alice, Bob, Charlie and Diana are the parties such that only the following parties can communicate:

- Alice, Bob, and Charlie
- Alice, Bob, and Diana
- Alice and Charlie

We can easily see that the polynomial describing this network is $P(a,b,c,d) = abc + abd + ac \longrightarrow \text{a state can immediately be constructed} \\ \text{from the algorithm}.$

Conclusion