Année Universitaire 2012/2013

ECOLE NATIONALE DES SCIENCES APPLIQUEES (b) Facilit Cycle Intégré Préparatoire aux Formations d'Ingénieurs

Physique 3 : Électromagnétisme

T.D N° 3: Actions magnétiques et induction électromagnétique

(Les exercices supplémentaires ne seront pas traités pendant les séances de TD)

Exercice 3.1.

Un carré conducteur indéformable, de coté L, de résistance R, se déplace à vitesse, $\vec{v}(t) = v(t)\vec{e}_x$, le long de l'axe (Ox). Le carré reste dans le plan (O,x,y). Dans l'exercice, on ne cherchera pas à calculer v(t), mais on supposera v(t) 0 0 à chaque instant.

Un champ magnétique \vec{B} règne dans l'espace comme suit :

- $\vec{B} = \vec{0}$ dans le demi-espace x M 0,
- $\vec{B} = B_0 \vec{e}_z$ dans le demi-espace $x \in \mathcal{B}_0$ une constante.

On considère les trois situations suivantes :

- (i) le carré conducteur est entièrement dans le demi-espace $x \bowtie 0$,
- (ii) le carré conducteur en train de passer du demi-espace $x \bowtie 0$ au demi-espace $x \bowtie 0$,
- (iii) le carré conducteur est entièrement dans le demi-espace $x \circ 0$.

Dans les trois situations (i), (ii) et (iii), répondre aux questions suivantes (on ne cherche pas à calculer v(t)) :

- **3.1.1-** Écrire le flux de \vec{B} à travers le circuit en fonction de l'abscisse $x_B(t)$ du point B.
- **3.1.2-** Déterminer le courant induit I(t) dans le carré conducteur en fonction de v(t), B_0 et la résistance R du conducteur. Faire un schéma indiquant le sens de I.
- **3.1.3-** Calculer la force magnétique sur chaque coté du conducteur. Représenter ces forces sur le schéma. Quelle est la force totale sur le conducteur ? Cette force est-elle motrice ou de freinage ?

Exercice 3.2.

Sur un tore à section rectangulaire (rayon intérieur R_1 , rayon extérieur R_2 , hauteur h) sont enroulés N tours de fils régulièrement répartis (N 00 1).

- **3.2.1-** Calculer le champ magnétique créé à l'intérieur et à l'extérieur lorsque le tore est parcouru par un courant d'intensité *I*.
- **3.2.2-** Calculer l'auto-inductance L du tore en utilisant la définition ($\Phi_{totale}(\vec{B}) = L.I = \iint_{(S)} \vec{B}.\overrightarrow{dS}$) puis

en utilisant l'énergie magnétique ($W = \frac{1}{2}LI^2 = \frac{1}{2}\iiint\limits_{V}\vec{B}^2.dV$).

3.2.3- Un fil rectiligne infini est placé sur l'axe du tore. Calculer la mutuelle inductance *M* entre le fil et le tore.

Exercice 3.3. (Exercice supplémentaire)

Un câble coaxial est constitué de deux <u>surfaces</u> cylindriques coaxiales métalliques de rayons R_1 et $R_2 > R_1$, (la densité de courant est surfacique). Le conducteur intérieur est parcouru par un courant d'intensité I parallèle à l'axe des cylindres. Le conducteur extérieur, servant de fil de retour, est parcouru par la même intensité mais en sens contraire.

- **3.3.1-** Calculer l'auto-inductance par unité de longueur du câble de deux farçons, l'une en utilisant directement la définition et l'autre en utilisant l'énergie du champ magnétique.
 - 3.3.2- Calculer aussi la capacité par unité de longueur du câble
 - 3.3.3- Calculer le produit de ces deux quantités et conclure.

Exercice 3.4. (Exercice supplémentaire)

Un solénoïde infini d'axe (Oz), de rayon R, comporte n spires jointives par unité de longueur, parcourues par une intensité $i(t) = I_0 \cos \tilde{S}t$.

- **3.4.1-** Calculer la f.é.m. induite e(t) qui apparait dans un conducteur filiforme (\mathscr{C}) à une seule boucle de forme quelconque entourant le solénoïde (on néglige l'auto-inductance de (\mathscr{C}).
- **3.4.2-** Calculer le champ électrique \vec{E} en tout point extérieur au solénoïde, en négligeant l'influence du conducteur (\mathscr{C}) (on commencera par simplifier la forme de \vec{E} en utilisant des arguments de symétrie, puis on utilisera le théorème de Gauss et la loi de Faraday). Que vaut la circulation de \vec{E} le long du conducteur (\mathscr{C})?
- 3.4.3- On considère maintenant un conducteur filiforme (\mathscr{C}) contenu dans un plan z = constante ((\mathscr{C}) dans un plan perpendiculaire à (Oz)) et placé entièrement a l'intérieur du solénoïde. Calculer la f.é.m. induite e(t) qui apparait dans (\mathscr{C}). Calculer le champ électrique \vec{E} à l'intérieur du solénoïde en négligeant l'influence de (\mathscr{C}). Que vaut la circulation de \vec{E} le long de (\mathscr{C})?