Dokumentace projektu do předmětu Paralelní a distribuované systémy Implementace algoritmu Bucket sort

Tomáš Aubrecht

1. Úvod

Cílem tohoto projektu bylo implementovat řadící algoritmus Bucket sort v jazyce C++ s využitím knihovny Open MPI. Bylo potřeba také vytvořit řídící skript, který vypočítá počet procesorů na základě vstupního parametru počtu hodnot v řazené posloupnosti a nad touto posloupností spustí implementovaný algoritmus.

2. Rozbor a analýzu algoritmu

Bucket sort se paralelní řadící algoritmus, který pracuje na stromové architektuře.

Algoritmus Bucket sort při řazení postupuje tak, že v prvním kroce rovnoměrně rozdělí hodnoty vstupní posloupnosti mezi listové procesory. Ty je v dalším kroce seřadí optimálním sekvenčním řadícím algoritmem. Následující krok představuje spojení dvou seřazených posloupností od svých synů nelistovými procesory. Toto spojování probíhá iterativně od největší úrovně $(log_2(log_2(n)) - 1)$ směrem ke kořenu. V posledním kroce uloží kořenový procesor výslednou seřazenou posloupnost do paměti.

Asymptotická časová složitost tohoto algoritmu je O(n), kde n je počet řazených prvků. Časová složitost vychází z toho, že každý listový procesor čte $n/log_2(n)$ prvků, kde při použití optimálního sekvenčního řadícího algoritmu se složitostí $O(x \cdot log_2(x))$ dostaneme složitost $O((n/log_2(n)) \cdot log_2(n/log_2(n)))$, která odpovídá lineární časové složitosti O(n).

- 3. Implementace
- 4. Experimenty
- 5. Komunikační protokol
- 6. Závěr