Time Dependent ARMA for Automatic Recognition of Fear-Type Emotions in Speech

<u>J.C. Vásquez-Correa</u>¹, J.R Orozco-Arroyave^{1,2}, J.D Arias-Londoño¹, J.F Vargas-Bonilla¹, L.D. Avendaño³, Elmar Nöth²

¹ Faculty of Engineering, University of Antioquia UdeA
² Pattern Recognition Lab, Friedrich Alexander Universität, Erlangen-Nürnberg
³ Mechanical & Aeronautical Engineering, University of Patras

Outline

- 1. Introduction
- 2. Methodology
- 3. Databases and experiments
- 4. Results
- 5. Conclusion

Recognition of emotion in speech:

- ✓ Call centers
- ✓ Emergency services
- ✓ psychological therapy
- ✓ Intelligent vehicles
- ✓ Surveillance

UNIVERSIDAD DE ANTIOQUIA

Outline

- 1. Introduction
- 2. Methodology
- 3. Databases and experiments
- 4. Results
- 5. Conclusion

UNIVERSIDAD DE ANTIOQUIA

UNIVERSIDAD DE ANTIOQUIA

Segmentation

Two types of segments are analyzed:

- ✓ Syllables
- ✓ Unvoiced

UNIVERSIDAD DE ANTIOQUIA

SP-TARMA modeling

UNIVERSIDAD DE ANTIOQUIA

Characterization

Feature set 1

From model Coefficients:

- ✓ Mean
- √ Stadard deviation
- ✓ Skewness
- ✓ Kurtosis
- ✓ Maximum
- ✓ Minimum
- ✓ Log-energy

Feature set 2

From reconstructed signal:

✓ 12 MFCC

UNIVERSIDAD DE ANTIOQUIA

Classification

Classification

Classification

Optimization parameters

- ✓ Leave One Speaker Out Cross-validation
- √ # of Gaussian components: 2-8
- ✓ Diagonal covariance matrix

$$\checkmark 10^{-1} < C < 10^4$$

$$\checkmark 10^{-2} < \gamma < 10^2$$

Outline

- 1. Introduction
- 2. Methodology
- 3. Databases and experiments
- 4. Results
- 5. Conclusion

3. Databases

Database	# recordings		Sampling frequency
Berlin	534	10	16000 Hz
Enterface05	1317	44	44100 Hz

Multi-class

3. Experiments

Berlin DB

Enterface05 DB

Anger Disgust Fear

Anger Disgust Fear

Outline

- 1. Introduction
- 2. Methodology
- 3. Databases and experiments
- 4. Results
- 5. Conclusion

4. Results

Multi-class experiment

Feature Set	Berlin dat	Berlin database		Enterface05 database		
	UV	Syllables	UV	Syllables		
Feature set 1	62 ± 7	70 ± 9	40 ± 4	41 ± 6		
Feature set 2	59 ± 11	78 ± 8	55 ± 5	59 ± 5		
Multi-class SVM	65 ± 9	82 ± 14	55 ± 5	60 ± 8		

4. Results

Multi-class experiment

	Berlin Database			Enterface05 Database			
	Fear	Disgust	Anger	Fear	Disgust	Anger	
Fear	80.3	10.1	8.9	58.3	16.2	16.8	
Disgust	15.2	76.7	8.9	21.4	59.8	21.6	
Anger	4.5	13.3	82.2	20.3	24.0	61.6	

4. Results

2-class Experiment

Feature Set	Frames	Berlin database			Enterface05 database		
		Acc	Sens	Spec	Acc	Sens	Spec
Feature set 1	UV	80.1	82.9	75.3	55.3	55.5	54.8
Feature set 2	UV	77.8	80.2	70.6	54.0	62.1	37.5
SVM-multi-class	UV	85.6	86.4	78.2	68.2	68.2	67.9
Feature set 1	Syll	84.2	85.0	78.2	56.0	60.9	46.2
Feature set 2	Syll	76.3	79.2	67.4	53.9	55.0	31.0
SVM-multi-class	Syll	86.3	86.9	81.5	67.9	68.2	63.6

Outline

- 1. Introduction
- 2. Methodology
- 3. Databases and experiments
- 4. Results
- 5. Conclusion

5. Conclusion

- 1. New method to characterize non-stationary process in speech.
- 2. Unvoiced and syllables are characterized.
- 3. Multi-class and 2-class experimets are considered

5. Conclusion

- 4. The method is more suitable to characterize syllables instead of unvoiced frames in multi-class.
- 5. There is no significative diference in 2-class
- 6. The second classification provides an improvement in the general accuracy rate relative to the separately classification

5. Conclusion

- 7. Features proposed could be used as complement to classical features for speech analysis.
- 8. More features from the TARMA should be analyzed

Thanks!

Time Dependent ARMA for Automatic Recognition of Fear-Type Emotions in Speech

<u>J.C. Vásquez-Correa</u>¹, J.R Orozco-Arroyave^{1,2}, J.D Arias-Londoño¹, J.F Vargas-Bonilla¹, L.D. Avendaño³, Elmar Nöth²

¹ Faculty of Engineering, University of Antioquia UdeA
² Pattern Recognition Lab, Friedrich Alexander Universität, Erlangen-Nürnberg
³ Mechanical & Aeronautical Engineering, University of Patras