```
9 3
```

May 13, 2016

0.1 Точный доверительный интервал для a при известном σ^2

Обозначим Z_{γ} квантиль уровня γ нормального стандартного распределения. Доверительным интервалом для a будет $(\overline{X}-Z_{\alpha}\frac{\sigma}{\sqrt{n}},\overline{X}+Z_{\alpha}\frac{\sigma}{\sqrt{n}}),$ где $\alpha=\frac{1+\gamma}{2}$

In [158]: draw_plot(get_interval_a_with_sigma_lower_bound, get_interval_a_with_sigma_upper_bound, r'\$a\$

0.2 Точный доверительный интервал для σ^2 при известном a

Как известно, в этом случае доверительный интервал будет $(\frac{n\overline{(X-a)^2}}{z_{\alpha}^2},(\frac{n\overline{(X-a)^2}}{z\beta^2})$, где $\alpha=\frac{1+\gamma}{2},\,\beta=\frac{1-\gamma}{2},$ z_{ϵ} — квантиль хи-квадрат распределения с n степенями свободы.

In [160]: draw_plot(get_interval_sigma_with_a_lower_bound, get_interval_sigma_with_a_upper_bound, r'\$\s:

0.3 Точный доверительный интервал для a при неизвестном σ^2

Точный доверительный интервал равен $(\overline{X}-Z_{\alpha}\frac{S(X)}{\sqrt{n}};\overline{X}-Z_{\alpha}\frac{S(X)}{\sqrt{n}})$, где Z_{α} квантиль уровня α распределение Стьюдента, причем $\alpha=\frac{1+\gamma}{2}$

```
In [161]: alpha = (1+gamma)/2
    def get_interval_a_with_unknown_sigma_lower_bound(sample):
        n = len(sample)
        Z = stats.t.ppf(alpha, df = n-1)
        S = np.average(sample**2) - (np.average(sample))**2
        return np.average(sample) - Z * S / np.sqrt(n)

def get_interval_a_with_unknown_sigma_upper_bound(sample):
        n = len(sample)
        Z = stats.t.ppf(alpha, df = n-1)
        S = np.average(sample**2) - (np.average(sample))**2
        return np.average(sample) + Z * S / np.sqrt(n)
```

In [162]: draw_plot(get_interval_a_with_unknown_sigma_lower_bound, get_interval_a_with_unknown_sigma_upplications are signed to the control of the control o

0.4 Точный доверительный интервал для σ^2 при неизвестном a

Обозначим квантиль уровня ϵ распределенения хи-квадрат (n-1) степени свободы через Z_ϵ . Доверительный интервал равняется $(\frac{(n-1)S^2(X)}{Z_\alpha}, \frac{(n-1)S^2(X)}{Z_\beta}), \ \beta = \frac{1-\gamma}{2}, \alpha = \frac{1+\gamma}{2}$

In [176]: draw_plot(get_interval_sigma_unknown_a_lower_bound, get_interval_sigma_unknown_a_upper_bound,

0.5 Доверительная область для ($a \; ; \; \sigma^2)$

Построить точную доверительную область не получилось.

Вывод. Линейная регрессия помогла найти квантили для доверительных интервалов оценок параметром $N(a,\sigma^2)$. С ростом n вне зависимости от метода доверительный интервал сосредоточен вокруг a=0 и $\sigma^2=1$. Причем при $n\geq 20$ доверительные интервалы для соответствующих оценок с известным или неизвестным вторым параметром практически не отличаются.