Theoretische Informatik I, Übung 7

Universität Potsdam, WiSe 2024/25

1 DTM analysieren

Gegeben sei die folgende DTM $M = (\{q_0, q_1, \dots, q_6, f\}, \{a, b\}, \{a, b, *\}, \delta, q_0, \{f\}),$ mit

δ	a	b	*
q_0	$(q_1, *, R)$	$(q_3, *, R)$	(f,*,R)
q_1	(q_1, a, R)	(q_1, b, R)	$(q_2, *, L)$
q_2	$(q_5, *, L)$		
q_3	(q_3, a, R)	(q_3, b, R)	$(q_4, *, L)$
q_4		$(q_5,*,L)$	
q_5	(q_5, a, L)	(q_5,b,L)	$(q_0, *, R)$

- 1. Werten Sie die Abarbeitung des Wortes *abba* schrittweise aus. (Nutzen Sie Konfigurationsübergänge.) Wird das Wort akzeptiert?
- 2. Beschreiben Sie kurz und informal, was in jedem Zustand passiert.
- 3. Geben Sie nun die von M akzeptierte Sprache L(M) an.

2 DTM konstruieren

Geben Sie eine DTM an, die folgende Sprache akzeptiert: $L = \{ w \in \{a,b\}^* \mid |w|_a = |w|_b \}$. Nutzen Sie eine formale Beschreibung der DTM.

3 NTM konstruieren

Wir wollen nun eine Turing-Maschine entwickeln, die prüfen kann, ob ein gegebenes Wort $W \in \{a, b\}^*$ in einer beliebig langen Liste von Wörtern w_1, w_2, \dots, w_n vorkommt.

Konstruieren Sie eine NTM, die als Eingabe $W # w_1 # w_2 # \dots # w_n$ erhält und genau dann akzeptiert, wenn $W \in \{w_1, w_2, \dots, w_n\}$. Eine informale Beschreibung der NTM genügt, solange diese den Vorgaben aus der Vorlesung entsprechen.

(Tipp: Versuchen Sie zuerst eine DTM zu konstruieren, welche genau w#w akzeptiert.)