Practical Deep Neural Networks

GPU computing perspective Introduction

Yuhuang Hu Chu Kiong Loo

Advanced Robotic Lab Department of Artificial Intelligence Faculty of Computer Science & IT University of Malaya

Outline

- Introduction
- Machine Learning Prequel
 - Linear Algebra
 - Basic concepts
- 3 Dataset Preparation
- Preprocessing
 - Data Standardization
 - Principle Components Analysis
 - ZCA Whitening
- 6 Gradient-based Optimization
- 6 Q&A

Objectives

- Light introduction of numerical computation.
- > Fundamentals of Machine Learning.
- Support Vector Machine, Softmax Regression.
- Feed-forward Neural Network.
- Convolutional Networks.
- Recurrent Neural Networks.

Prerequisites

- ★ Basic training in Calculus
- * Basic training in Linear Algebra
 - Matrix operations
 - Matrix properties: transform, rank, norm, determinant, etc
 - Eigendecomposition, Singular Value Decomposition.
- * Basic programming skills
 - If-else conditioning
 - Loops
 - Function, class, library
 - Source code control: Git (optional)

References

- ◆ Deep Learning: An MIT Press book in preparation Main reference in this workshop, still in development, awesome structure, awesome contents.
- Machine Learning: A probabilistic perspective
 One of the best Machine Learning books on the market.
- CS231n Convolutional Neural Networks for Visual Recognition Notes Nice structured, well written, loads of pictures.
- CS229 Machine Learning Course Materials For basic knowledge, well written, easy-to-read.

Software and Tools

- ★ Ubuntu 14.04
- ⋆ CUDA Toolkit 7
- ★ Python 2.7.9 (Why not 3.*?)
- * Theano
- * numpy, scipy, etc
- * Eclipse+PyDev

Reading List

A reading list is prepared for this workshop, all reading materials can be found at:

http://rt.dgyblog.com/ref/ref-learning-deep-learning.html

The list keeps expanding!!

Scalar, Vector, Matrix and Tensor

Matrix Operations

Matrix Properties

Singular Value Decomposition (SVD)

Optimization Problem: Hypothesis

Optimization Problem: Cost function

Dataset: How to split the data?

Dataset: Cross validation

MNIST

CIFAR-10

Mean subtraction

Unit variance

PCA

ZCA Whitening

SGD

Jacobian

Hessian

Q%A

THE PE WEENIES™

HOW YOU'LL KNOW WHEN YOU'VE TRULY SUCCEEDED IN THE FIELD OF A.I. RESEARCH.