A JAN-2 Copy 2 1962

Radiological Health Data

VOLUME II, NUMBER 12 DECEMBER 1961

Monthly Report

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service

In August 1959, the President directed the Secretary of Health, Education, and Welfare to intensify Departmental activities in the field of radiological health. The Department was assigned responsibility within the Executive Branch for the collation, analysis and interpretation of data on environmental radiation levels. The Department delegated this responsibility to the Division of Radiological Health, Public Health Service.

MO

TA

SEC

Ra

Su

Ra

Radiological Health Data is published by the Public Health Service on a monthly basis. Data are provided to the Division of Radiological Health by other Federal agencies, State health departments, and foreign governments. Except where material is directly quoted or otherwise credited, summaries and abstracts are prepared by the Radiological Health Data and Reports Staff, Division of Radiological Health. The reports are reviewed by a Board of Editorial Advisors with representatives from the following Federal agencies:

Department of Health, Education, and Welfare Atomic Energy Commission Department of Defense Department of Commerce Department of Agriculture

For personal and extra subscriptions to Radiological Health Data, use the handy order form on inside back cover.

TABLE

SECTIO

Radiati

Ser

Daily Be Oc

Surface Fig (A

Radioa

Re Dail;

A 19

Prof Canadi

Fiss

Mon Co Fiss

the fare field was tive pretion onalth,

the cis. ori-tate nts. or acts ata ical ard ves

Sui

Ra

MO

TA

SEC

Rac

o

RADIOLOGICAL HEALTH DATA

MONTHLY REPORT

DECEMBER 1961

VOLUME II, NUMBER 12

TABLE OF CONTENTS

SECTION I.—AIR	SECTION I.—AIR—Continued
Radiation Surveillance Network, Public Health Service	Daily Record of Fission Product Gross Beta 8507 Radioactivity in Air, September 4 to October
Radioactivity of Particulates in Air (August and September, 1961)	
Daily Measurements of Fission Product Gross Beta Activity in Air at Selected Stations,	
October 1-31, 1961	and Drug Administration 55
Surface Air Radon (Rn ²²²), Thoron (Rn ²²⁰), and Fission Product Gross Beta Concentrations (August 14-September 8, 1961)	Tri-City Diet Study (Fourth Sampling, February-
Radioactivity Measurements in Air, U.S. Naval Research Laboratory	
Daily Record of Fission Product Gross Beta Activity Collected by Air Filtration (July 1961)	Milk Monitoring Program, Public Health Service 5: Radioactivity in Milk — Processed Milk Area
Profile of Beta Activity (July 1961)	512 Daily Iodine-131 Determination—Processed Milk
Canadian Radioactive Fallout Study Program Fission Product Gross Beta Radioactivity in	04 40443
Air, First Quarter 1961	513 Average Concentration of Strontium-90 and
Monthly Average Fission Product Gross Beta Concentrations in Air, First Quarter 1961	(10== 1001)
Fission Product Gross Beta Radioactivity in Precipitation, First Quarter 1961	Radioactivity in Milk (December 1960-April 1961),

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

Public Health Service

Division of Radiological Health

SECTION V.—OTHER DATA—Continued	
Registration of Radiation Producing Machines in the State of New Jersey (As of July 23, 1961), New Jersey Department of Health5 Survey of Radioactivity in Animal Feeds (1960),	-
Environmental Levels of Radioactivity at Atomic Energy Commission Installations 5 Argonne National Laboratory 5 Atomics International 5 Feed Materials Production Center 5	535 536 539
Announced Nuclear Detonations 5	544
	Registration of Radiation Producing Machines in the State of New Jersey (As of July 23, 1961), New Jersey Department of Health Survey of Radioactivity in Animal Feeds (1960), Food and Drug Administration Environmental Levels of Radioactivity at Atomic Energy Commission Installations Argonne National Laboratory Atomics International Feed Materials Production Center Environmental Monitoring in Alaska (September 1961), Atomic Energy Commission

Ra

lar op to inc tiv Di sta at so He ex re at

ai ea cradod da oj tii h k T la w m c c

SECTION I.—AIR

Radiation Surveillance Network

Page

534

535

543 544

545

Division of Radiological Health, Public Health Service

The Public Health Service Radiation Surveillance Network was established in 1956 in cooperation with the Atomic Energy Commission to provide a means of promptly determining increases in levels of environmental radioactivity due to fallout from nuclear weapons tests. During the period reported it consisted of 45 stations at urban locations (see figure 1) operated by State and local health department personnel with 2 of the stations operated by Public Health Service personnel. The Network was expanded during September 1961, following the resumption of nuclear weapons testing in the atmosphere by the USSR.

Measurements of gross beta radioactivity in air are taken because they provide one of the earliest and most sensitive indications of increases of activity in the environment and thus act as an "alert" system. A direct evaluation of biological hazards is not possible from these data alone. Field measurements enable the operator to estimate the amount of beta activity of particulates in air at the station five hours after collection by comparison with a known source using a portable survey meter. The filters are then forwarded to the central laboratory of the Radiation Surveillance Network in Washington, D.C., for a more refined measurement using a thin window proportional The station located at Atlanta. Georgia, conducts its own laboratory analyses.

During August 1961, air samplers were in operation at the 44 stations on an average of 70 percent of the week. Following the resumption of nuclear weapons testing in September, the Network was expanded to 49 stations, operating on a 7-day week. Air is drawn through a cellulose carbon-loaded dust filter using a high volume air sampler. The radioactive material in fallout adhering to small particles is retained on the filter. Some gaseous fission products are

FIGURE 1.—RADIATION SURVEILLANCE NETWORK SAMPLING STATIONS

adsorbed by the carbon. The contribution by gaseous fission products has represented only a small part of the total beta activity in these samples.

The average values for August 1961 as pre-

sented in table 1 are generally below limits of detection by present instrumentation. Table 2 presents the average values for the 49 stations operated during September 1961. These values reflect the increase in the air levels attributable to atmospheric weapons testing.

As a result of the resumption of atmospheric nuclear weapons testing, the results of field

measurements of gross beta radioactivity in surface air at RSN stations showing increased readings have been released by the Public Health Service and published almost daily by newspapers. Table 3 presents confirmed daily laboratory results for the period October 1-31, 1961 for stations selected to provide geographical coverage.

TAB

Alba

Anch

Jack
Lan
Los
Min
Nev

Spr Top Wa

Al

At Gr

TABLE 1.—RADIOACTIVITY OF PARTICULATES IN AIR, AUGUST 1961 GROSS BETA DETERMINATIONS

Stat	tion location	Number	Maxi-	Mini-	Aver-	Statio	on location	Number	Maxi-	Mini-	Aver-
City	State	samples	mum (μμc/m³)	инс/m³) (инс/m³) (и		City	State	samples	mum (μμε/m³)	mum (μμε/m³)	age ¹ (µµc/m
Anchorage	Alaska	23	< 0.10	< 0.10	<0.10	Minneapolis	Minnesota	8	0.21	< 0.10	<0.1
airbanks	Alaska	23	0.12	< 0.10	< 0.10	Pascagoula	Mississippi	18 24 23	0.12	< 0.10	<0.
uneau	Alaska	21	< 0.10	< 0.10	< 0.10	Jefferson City	Missouri	24	0.11	< 0.10	<0.
hoenix	Arizona	- 6	< 0.10	< 0.10	< 0.10	Helena	Montana	23	0.11	< 0.10	<0.
ittle Rock	Arkansas	22	< 0.10	< 0.10	< 0.10	Trenton	New Jersey	15	0.13	< 0.10	<0
erkeley	California	23	< 0.10	< 0.10	< 0.10	Santa Fe	New Mexico	18	< 0.10	< 0.10	<0
os Angeles	California	22	< 0.10	< 0.10	< 0.10	Albany	New York	29	0.24	< 0.10	<0
enver	Colorado	3	< 0.10	< 0.10	< 0.10	Gastonia	North Carolina	23	0.17	< 0.10	<0
artford	Connecticut	29	0.16	< 0.10	< 0.10	Oklahoma City	Oklahoma	22 24 23	0.20	< 0.10	<0
ashington acksonville	District of Columbia Florida	20 22	0.12	<0.10	<0.11	Ponca City	Oklahoma	24	< 0.10	< 0.10	<0
tlanta		11	<0.10 <0.10	<0.10 <0.10	<0.10	Portland Harrisburg	Oregon	23	0.17	< 0.10	<0
lonolulu	Georgia Hawaii	23	<0.10	<0.10	<0.10 <0.10	Providence	Pennsylvania Rhode Island	21	0.15	< 0.10	<0
oise	Idaho	6	0.10	<0.10	<0.10	Columbia	South Carolina	21	0.17	< 0.10	<0
pringfield	Illinois	8	0.12	<0.10	< 0.11	Pierre	South Carolina South Dakota	,	0.13	<0.10 <0.10	<(
ndianapolis	Indiana	28	0.24	<0.10	<0.14	Austin	Texas	21	0.19	<0.10	<(
owa City	Iowa	23	0.24	<0.10	<0.11	El Paso	Texas	19	0.12	<0.10	<(
opeka	Kansas	24	< 0.10	<0.10	<0.12	Salt Lake City	Utah	30	0.18	< 0.10	<
lew Orleans	Louisiana	2	< 0.10	<0.10	<0.10	Richmond	Virginia	99	<0.10	< 0.10	1
altimore	Maryland	23	0.13	<0.10	<0.10	Seattle	Washington	23	< 0.10	< 0.10	<(
awrence	Massachusetts	17	< 0.10	< 0.10	<0.10	Madison	Wisconsin	23 22 26	0.14	< 0.10	1 3
ansing	Michigan	10	V0.10	0.10	V0.10	Chevenne	Wyoming	8	< 0.14	<0.10	1 3

¹ Weighted average obtained by summing the products of individual sampling times and the corresponding activities, and dividing by the summation of the individual sampling times.

TABLE 2.—RADIOACTIVITY OF PARTICULATES IN AIR, SEPTEMBER 1961 GROSS BETA DETERMINATIONS

Stat	tion location	Number	Maxi-	Mini-	Aver-	Stati	on location	Number	Maxi-	Mini-	Aver-
City	State	samples	mum (μμc/m³)	mum (µµc/m³)	age ¹ (μμc/m ⁸)	City	State	samples	mum (μμc/m³)	mum (µµc/m³)	age ¹ (µµc/m³)
Anchorage Fairbanks Juneau Phoenix Little Rock Berkeley Los Angeles Denver Hartford Washington Jacksonville Miami Attlanta Honolulu Boise Springfield Indianapolis Iowa City Topeka Frankfort New Orleans Baltimore Lawrence Lamsing	Alaska Alaska Alaska Arizona Arkansas California California Colorado Connecticut District of Columbia Florida Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan	27 26 28 25 27 26 30 30 30 2 27 27 28 29 30 20 22 27 27 28 29 30 20 27 27 27 29 30 27 27 27 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	6.6 4.4 2.9 9.2 708.8 15.9 5.8 35.5 74.4 63.7 401.2 2.7 323.6 2.5 29.6 29.3 66.5 372.9 302.3 47.3 33.4 48.0 166.8	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2.0 1.1 0.7 1.4 43.9 2.9 1.8 3.8 7.8 9.6 22.1 1.6 21.5 1.6 4.8 12.0 23.0 23.0 23.0 23.0 4.6 9.2 4.6	Pascagoula Jefferson City Helena Trenton Santa Fe Albany Gastonia Bismarck Columbus Oklahoma City Portland Harrisburg Providence Columbia Pierre Nashville Austin El Paso Salt Lake City Richmond Seattle Madison Cheyenne	Mississippi Missouri Montana New Jersey New Mexico New York North Carolina Onio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Carolina South Carolina South Dakota Tennessee Texas Texas Utah Virginia Washington Wisconsin	244 277 277 300 300 227 177 4 288 300 277 274 25 25 15 300 30 30 277 24 26 26 26 26 26	561.9 584.4 12.2 69.8 29.0 81.9 106.5 7.1 15.8 250.7 196.1 10.9 43.5 59.9 79.2 160.6 155.0 6.7 24.8 101.9 43.5 250.7 260.6	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	42.2 37.7 2.2 10.0 4.10.1 11.2 2.9 16.10.2 2.7 7.6.2 29.1 14.1 40.1 12.1 1.1 2.1 3.3

¹ Weighted average obtained by summing the products of individual sampling times and the corresponding activities, and dividing by the summation of the individual sampling times.

TABLE 3.—DAILY MEASUREMENTS OF FISSION PRODUCT GROSS BETA ACTIVITY IN SURFACE AIR AT SELECTED STATIONS, OCTOBER 1–31, 1961

						[Concen	trations i	n μμc/m	[8]							
								Octob	er							
Station Location	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Albany, N. Y		14 * (21)	16 (20)	13 (23)	3.2 (17)	7.0 (20)	7.6 (23)	7.3 (36)	9.4 (27)	7.3 (26)	9.4 (26)	7.4 (33)	3.8 (42)	3.8 (29)	5.1 (33)	0.86 (40)
Anchorage, Alaska		2.0 (23)	2.1 (15)	1.3 (19)	2.3 (22)	5.3 (11)	4.1 (16)	4.1 (20)	6.6 (10)	6.8 (17)	7.4 (20)	3.0 (20)	15 (18)	12 (17)	9.4 (15)	3.8 (14)
Austin, Tex		1.5 (19)	2.7	5.8 (16)	12 (22)	8.5 (21)	12 (28)	12 (23)	12 (18)	4.4 (25)	3.1 (25)	2.9 (26)	4.5 (26)	4.2 (30)	4.6 (27)	b NS
Gastonia, N. C		7.5 (23)	23 (17)	19 (18)	2.9 (20)	5.3 (18)	7.9 (22)	6.1 (38)	12 (23)	12 (25)	10 (19)	7.9 (24)	7.4 (41)	5.8 (32)	5.1 (28)	5.8 (27)
Jacksonville, Fla		16 (20)	9.4 (18)	5.9 (20)	6.5	5.4 (19)	10 (26)	11 (28)	NS	9.9 (25)	11 (22)	7.5 (41)	7.4 (34)	4.6 (30)	0.70 (18)	7.5 (21)
Lansing, Mich		b NS	6.7	20 (17)	18 (11)	14 (20)	11 (31)	12 (31)	2.3 (30)	10 (25)	8.3 (22)	10 (27)	14 (26)	5.2 (26)	2.9 (23)	3.7 (22)
Los Angeles, Calif		8.8 (21)	9.6	11 (17)	11 (17)	N8	19 (25)	13 (29)	NS	NS	8.7 (28)	7.6 (29)	9.2 (34)	10 (30)	NS	NS
Minneapolis, Minn	******	7.0	18 (14)	8.7 (19)	9.5	14 (19)	4.9 (24)	9.2	9.1 (27)	5.7 (23)	0.74 (13)	6.5 (20)	2.2 (32)	3.4 (23)	4.1 (22)	5.7 (25)
New Orleans, La		3.7	1.9 (13)	1.6 (31)	9.9	9.8 (20)	10 (21)	8.5 (51)	3.5 (22)	5.7 (26)	8.2 (24)	7.5 (31)	7.1 (30)	5.9 (36)	3.6 (34)	9.2 (18)
Salt Lake City, Utah		26 (19)	16 (15)	11 (16)	15 (19)	12 (22)	8.2 (21)	7.9 (37)	6.5 (26)	1.9 (23)	4.2 (19)	5.1 (28)	5.3 (33)	3.2 (18)	1.8 (20)	1.6 (15)
Seattle, Wash		NS	3.6 (15)	8.2 (19)	8.7 (18)	3.7 (19)	NS	2.8 (27)	3.8 (19)	1.9 (29)	NS	2.0 (19)	NS	1.9 (14)	0.2	0.7
Springfield, Ill		1.5 (20)	19 (21)	13 (17)	13 (18)	13 (25)	11 (21)	16 (12)	11 (31)	NS	7.2 (28)	6.1 (29)	9.0 (26)	8.5 (30)	3.9 (21)	4.7 (25)
Topeka, Kans		1.7	3.2 (17)	9.7	18 (20)	12 (20)	11 (23)	12 (33)	9.0 (29)	5.0 (24)	4.6 (25)	6.7 (26)	4.5 (32)	2.6 (28)	4.5 (23)	5.0 (21)
Washington, D. C		18 (19)	23 (21)	18 (17)	5.7 (20)	5.9 (25)	7.6 (21)	8.0 (50)	9.0 (30)	9.5 (29)	12 (22)	6.3 (35)	NS	6.8 (36)	5.8 (28)	6.3 (20)
								Octo	ber							
Station Location	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Albany, N. Y	14 (18)	9.8 (13)	9.6 (17)	7.8 (17)	6.2 (20)	4.3 (19)	6.7 (25)	9.4 (37)	12 (32)	8.7 (38)	6.6 (30)	8.7 (13)	6.5 (19)	8.7 (19)	11 (26)	4.7 (27)
Anchorage, Alaska.	2.4	1.4	4.6	4.9	5.6	0.64	0.54	0.93	1.5	1.0	2.0	1.7	3.9	1.9	3.4	2.3

								Octo	ber							
Station Location	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Albany, N. Y	14 (18)	9.8 (13)	9.6 (17)	7.8 (17)	6.2 (20)	4.3 (19)	6.7 (25)	9.4 (37)	12 (32)	8.7 (38)	6.6 (30)	8.7 (13)	6.5 (19)	8.7 (19)	11 (26)	4.7 (27)
Anchorage, Alaska.	2.4 (22)	1.4 (26)	4.6 (20)	4.9 (21)	5.6 (21)	0.64	0.54	0.93	1.5 (38)	1.0 (47)	2.0 (43)	1.7 (44)	3.9 (33)	1.9 (16)	3.4 (31)	2.3
Austin, Tex	14 (23)	20 (20)	22 (18)	8.6 (22)	9.2 (21)	5.3 (28)	5.6 (38)	8.4 (21)	7.9 (26)	7.8 (35)	6.6 (34)	13 (17)	5.2 (28)	3.8 (31)	3.1 (24)	1.3 (29)
Gastonia, N. C	9.4 (29)	8.6 (18)	14 (15)	12 (16)	8.5 (22)	2.2 (32)	4.9 (23)	9.4 (41)	7.7 (23)	5.8 (37)	6.7 (25)	31 (10)	25 (20)	19 (20)	18 (20)	9.5
Jacksonville, Fla	12 (23)	21 (17)	17 (16)	22 (15)	NS	13 (23)	NS	1.8	6.6 (23)	7.6 (39)	7.0 (33)	18 (24)	49 (17)	43 (23)	15 (20)	23 (17)
Lansing, Mich	11 (20)	15 (13)	18 (14)	24 (15)	4.8 (21)	3.4 (40)	2.8 (30)	10 (37)	7.5 (30)	7.1 (26)	9.8 (16)	5.9 (18)	16 (22)	19 (31)	12 (29)	6.2
Los Angeles, Calif	2.9 (28)	1.9 (24)	1.5	2.6 (22)	2.4 (27)	2.0 (33)	7.3 (23)	12 (15)	18 (18)	18 (24)	NS	14 (23)	9.5 (25)	18 (18)	7.2 (22)	8.6 (26)
Minneapolis, Minn.	2.9 (20)	3.8 (20)	7.1 (18)	4.0 (18)	2.8 (21)	3.1 (18)	4.5 (24)	4.9	7.8 (16)	11 (22)	2.2 (29)	3.3 (23)	6.0 (32)	5.9 (26)	5.9 (15)	6.0 (19)
New Orleans, La	14 (24)	14 (18)	6.9 (23)	3.6 (35)	6.8 (24)	6.4 (24)	2.5 (32)	2.6 (32)	2.1 (28)	1.6 (43)	4.6 (26)	14 (24)	26 (22)	12 (25)	3.9 (27)	8.4 (26)
Salt Lake City, Utah	1.3 (30)	1.9 (27)	6.4 (13)	38 (12)	15 (14)	5.3 (17)	2.3 (12)	5.2 (26)	9.7 (23)	15 (18)	10 (25)	16 (14)	8.4 (17)	2.4 (13)	3.4 (23)	4.9
Seattle, Wash	1.5 (25)	4.2 (20)	3.1 (30)	4.2 (25)	2.7 (23)	2.2 (23)	2.3 (20)	1.0 (23)	2.7 (30)	NS	4.6 (15)	2.4 (25)	3.3 (19)	1.4	2.2 (15)	2.2 (25)
Springfield, Ill	6.1 (21)	8.4 (19)	13 (17)	11 (20)	3.8 (20)	1.8 (35)	1.9 (25)	2.4 (43)	2.7 (22)	3.1 (31)	15 (14)	4.3 (24)	12 (17)	19 (21)	13 (28)	1.9
Topeka, Kans	5.2 (20)	23 (11)	22 (18)	4.6 (20)	4.6 (23)	8.6 (23)	8.2 (43)	9.1 (24)	9.1 (28)	9.4 (22)	6.0 (41)	10 (16)	7.6 (26)	6.2 (21)	1.7 (33)	1.3
Washington, D. C	4.4 (20)	8.2 (16)	15 (17)	11 (18)	9.6 (21)	7.9 (11)	5.2 (23)	8.2 (37)	5.1 (25)	3.9 (31)	8.8 (18)	3.5 (21)	2.6 (15)	10 (23)	10 (26)	4.9

^{*} Figures in parentheses denote age of fission products in days.
b NS—No sample received (i.e., motor, power or filter failure).

in

blic by aily -31,

3

verige¹ ic/m²)

<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.11
<0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<

the

NS

verge¹ c/m³)

 $\begin{array}{c} 42.6 \\ 37.5 \\ 2.5 \\ 10.2 \\ 4.5 \\ 10.6 \\ 6.6 \\ 11.9 \\ 2.6 \\ 6.6 \\ 6.6 \\ 10.1 \\ 2.1 \\ 7.6.7 \\ 29.7 \\ 14.9 \\ 40.6 \\ 11.2 \\ 4.7 \\ 9.3 \\ 1.2 \\ 1.8 \\ 3.2 \end{array}$

n of

Surface Air Radon, Thoron, and Fission Product Gross Beta Concentrations at Cincinnati, Ohio

Robert A. Taft Sanitary Engineering Center, Public Health Service

Natural background radioactivity in our atmosphere is an important public health consideration because the exposure levels from natural radiation can be used as a base for comparative evaluations of exposures from artificially produced radionuclides. Natural radioactivity in surface air is attributed to a number of unstable nuclides other than those produced The earth's crust contains trace by man. amounts of uranium and thorium that occur naturally and which decay through a series of their daughter products. These decay products of uranium and thorium are introduced into surface air through their rare gas daughters, radon (radon-222) and thoron (radon-220), which in turn continue to decay through the uranium and thorium series, respectively. The radon and thoron content of air depends on the escape of these rare radioactive gases from the earth. Concentrations depend on prevailing atmospheric conditions such as ambient temperature, humidity, and pressure, and on soil conditions such as moisture, porosity and temperature.

Most of the natural radioactivity in surface air is due to radon (Rn²²²) and its daughters. Thoron (Rn²²⁰) and its daughters contribute much less because of thoron's short half-life and hence, a lower diffusion rate from the soil.

Radiological Health Research Activities, Research Branch, Division of Radiological Health, Public Health Service, performs a continuous daily sampling program for radon (Rn²²²), thoron (Rn²²⁰), and gross beta fission product

concentrations in surface air. The gross beta activity of atmospheric particulates, when measured several days after sample collection, is principally due to artificially produced radio-nuclides.

Augus

Septe

Aver

Ra

U.S

ple

Me

Re

fin

tiv

an

an

Radon-222 concentrations are determined from alpha measurements made immediately after the sampling period (24 to 72 hours) has ceased. Radon-222 (a.m.) concentrations have been corrected for any radon-220 daughter interferences. Radon-222 (p.m.) concentrations are derived from alpha measurements made in the afternoon (3 p.m.) approximately 7 hours after the new sampling period has begun. These values are from the same filters that are counted at 8 a.m. the following day. Radon-222 (p.m.) concentrations are uncorrected for any radon-220 daughter interferences. Radon-220 concentrations are determined from alpha measurements made on the sample used to evaluate the corrected radon-222 (a.m.) concentrations, but are counted 7 hours after the sampling period has ceased. Reported values are corrected to the time of removal of the filter holder,

The data are computed by an electronic data processing system which is programmed for thirteen four-week periods per calendar year. The data for the period August 14-September 8, 1961, appears in table 1.

REFERENCE

Setter, L. R. and Coats, G. I., "The Determination of Airborne Radioactivity," American Industrial Hygiene Association Journal, Vol. 22, No. 1, Feb. 1961.

Table 1.—SURFACE AIR RADON (Rn^{220}), THORON (Rn^{230}), AND FISSION PRODUCT GROSS BETA CONCENTRATIONS, AUGUST 14—SEPTEMBER 8, 1961

	Continu	ous sample c	ollection				
End of sampling period	Sample change time	Sample period (hours)	Volume (m³)	Rn ²²³ 8 a.m. (μμc/m ³)	Rn ²²³ 3 p.m. (μμc/m³)	$\frac{\mathrm{Rn}^{220}}{(\mu\mu\mathrm{c}/\mathrm{m}^3)}$	Beta activity (µµc/m²)
Angust 14	. 0806 0820 0810 0800 0810 0800	72.0 24.1 23.8 23.9 24.0 24.0 24.0 24.0 24.0 24.0 24.2 23.8 23.8 96.1 23.8 24.1 23.8	86.3 29.4 28.6 28.3 27.7 82.2 28.3 27.8 27.8 82.8 27.7 28.6 28.4 27.7 110.2 27.9 29.7	630 810 1000 860 470 540 310 1090 710 1000 200 950 730 240	190 190 180 170 220 230 190 280 130 90 170 220 90 90 180 130	7.6 8.3 8.8 8.1 6.9 4.9 6.5 5.7 3.6 2.4 4.7 8.5 2.8 10.1 5.7	0.06 0.07 0.13 0.11 0.01 0.06 0.06 0.06 0.06 0.00 0.00
Average		*****		660	170	6.0	0.0
Range of counting errors (2σ) Maximum Minimum	1	*********		60 25	30 15	1.1 0.4	0.0

Radioactivity Measurements In Air

U.S. Naval Research Laboratory

eta nen on, lio-

ely
has
ave
inons
in
urs
ese
ted
h.)

onas-

ns,

ng

or-

er,

ita

or

ar.

er

Radioactivity measurements of air-filter samples collected at various sites near the 80th Meridian (West) are made by the U.S. Naval Research Laboratory under a program partially financed by the Atomic Energy Commission.

The daily record of fission product beta activity during July 1961 is presented in table 1, and the radioactivity profile for the same month and the first and second quarters of 1961 are

shown in figure 2. This figure illustrates the data plotted in semilogarithmic coordinates. The abscissa is expressed in micromicrocuries per cubic meter of surface air. The concentrations in table 1 are expressed in disintegrations per minute per cubic meter of air at the collecting site (2.2 disintegrations per minute per cubic meter equals 1 micromicrocurie per cubic meter).

FIGURE 1. — ATMOSPHERIC RADIOACTIVITY SAMPLING STATIONS NEAR THE 80TH MERIDIAN (W)

(1) Average based on one month.

FIGURE 2.—PROFILE OF BETA ACTIVITY, AVERAGE MEASUREMENTS OF SURFACE AIR AT STATIONS NEAR THE 80TH MERIDIAN (WEST), FIRST QUARTER, SECOND QUARTER AND JULY 1961

 $\begin{array}{c} {\rm Table} \ 1. - {\rm DAILY} \ {\rm RECORD} \ {\rm OF} \ {\rm FISSION} \ {\rm PRODUCT} \ {\rm GROSS} \ {\rm BETA} \ {\rm ACTIVITY} \ {\rm COLLECTED} \ {\rm BY} \ {\rm AIR} \ {\rm FILTRATION}, \\ {\rm JULY} \ 1961 \end{array}$

[Disintegrations/minute per cubic meter]

Day	Punta Arenas, Chile	Puerto Montt, Chile	Antofa- gasta, Chile	Chacal- taya, Bolivia	Lima, Peru	Guaya- quil, Ecuador	Miraflores, Panama Canal Zone	Miami, Florida	Washing- ton, D. C.	Moosonee, Ontario, Canada	Thule, Greenland
1	0.03		0.04	0.03			0.04	0.08	0.19	0.18	0.02
2	0.03		0.04	0.03			0.04	0.08	0.19	0.18	0.02
3	0.03		0.04	0.03			0.04	0.08	0.19	0.18	0.02
4	0.03		0.06	0.06		0.01	0.02	0.15	0.22	0.09	0.02
5	0.03		0.06	0.06		0.01	0.02	0.15	0.22	0.09	0.08
6	0.02	0.04	0.06	0.06		0.01	0.02	0.15	0.22	0.09	0.08
7	0.02	0.04	0.06	0.06		0.01	0.02	0.15	0.22	0.09	0.08
8	0.05	0.05	0.06	0.06	0.15	0.01	0.02	0.15	0.22	0.90	0.08
9	0.05	0.05	0.06	0.06	0.15	0.01	0.02	0.15	0.22	0.09	0.08
0	0.05	0.05	0.06	0.06	0.15	0.01	0.02	0.15	0.22	0.09	0.08
1	0.06	0.03	0.07	0.09	0.02	0.01	0.03	0.08	0.19	0.10	0.08
2	0.06	0.03	0.07	0.09	0.02	0.01	0.03	0.08	0.19	0.10	0.08
3	0.02	0.01	0.07	0.09	0.02	0.01	0.03	0.08	0.19	0.10	0.06
	0.02	0.01	0.07	0.09	0.02	0.01	0.03	0.08	0.19	0.10	0.06
3	0.03	0.02	0.07	0.09	0.02	0.01	0.03	0.12	0.19	0.10	0.06
3	0.03	0.02	0.07	0.09	0.02	0.01	0.03	0.12	0.19	0.10	0.06
7	0.03	0.02	0.07	0.09	0.02	0.01	0.03	0.12	0.19	0.10	0.08
3	0.02	0.03	0.09	0.04	0.05	0.01	0.04	0.11	0.15	0.12	0.06
)	0.02	0.03	0.09	0.04	0.05	0.01	0.04	0.11	0.15	0.12	0.12
)	0.02	0.05	0.09	0.04	0.05	0.01	0.04	0.07	0.15	0.12	0.12
	0.02	0.05	0.09	0.04	0.05	0.01	0.04	0.07	0.15	0.12	0.12
2	0.02	0.02	0.09	0.04	0.05	0.01	0.04	0.07	0.15	0.12	0.12
3	0.02	0.02	0.09	0.04	0.05	0.01	0.04	0.07	0.15	0.12	0.12
	0.02	0.02	0.09	0.04	0.05	0.01	0.04	0.07	0.15	0.12	0.12
5	0.02	0.03	0.07	0.05	0.07	0.02	0.03	0.09	0.14	0.06	0.13
B	0.02	0.03	0.07	0.05	0.07	0.02	0.03	0.09	0.14	0.06	0.10
7	0.02	0.06	0.07	0.05	0.07	0.02	0.03	0.09	0.14	0.06	0.10
3	0.02	0.06	0.07	0.05	0.07	0.02	0.03	0.09	0.14	0.06	0.10
	0.02	0.09	0.07	0.05	0.07	0.02	0.03	0.10	0.14	0.06	0.10
)	0.02	0.09	0.07	0.05	0.07	0.02	0.03	0.10	0.14	0.06	0.10
	0.02	0.09	0.07	0.05	0.07	0.02	0.03	0.10	0.14	0.06	0.10
lean (dpm/m³)	0.028	0.040	0.069	0.057	0.060	0.012	0.031	0.103	0.176	0.101	0.08
lean (μμc/m³)	0.013	0.018	0.031	0.026	0.027	0.005	0.014	0.046	0.079	0.045	0.00

Canadian Radioactive Fallout Study Program

Department of National Health and Welfare, Dominion of Canada

As part of its radioactive fallout study program, the Radiation Protection Division, Department of National Health and Welfare, Dominion of Canada, conducts air and precipitation sampling programs.

The nationwide air sampling program is conducted for two main purposes: (1) To provide a convenient method for the early detection of changes in the fission product concentration in the air and therefore of likely changes in the deposition products on the ground, and (2) To obtain data to show the day-to-day and stationto-station variations. This may be useful to meteorologists for obtaining better understanding of the mechanisms involved in radioactive fallout distribution in the atmosphere.

A more detailed discussion of the sampling procedures, methods of analysis, and interpretation of results of the Department's radioactive fallout program is contained in the "Annual Report for 1959", Report Number CNHW (RP-3).

With the permission of the Department of National Health and Welfare, Dominion of Canada, Radiological Health Data published data on fission product gross beta activity in air and precipitation in Volume II, Numbers 1, 4, and 8, covering the periods July 1959-June

TABLE 1.—FISSION PRODUCT GROSS BETA RADIO-ACTIVITY IN AIR, FIRST QUARTER 1961

[Average concentration in µµc/m³]

Station location	January	February	March
Calgary	0.14	0.10	0.12
Chatham	0.10	0.14	0.12
Coral Harbour	0.11	0.14	0.18
Edmonton	0.12	0.15	0.13
Fort Churchill	0.10	0.13	0.15
Fort William	0.12	0.14	0.16
Fredericton	0.09	0.09	0.13
Goose Bay	0.09	0.13	0.14
Inuvik	0.10	0.12	0.18
Kapuskasing	0.11	0.14	0.17
Montreal	0.10	0.12	0.14
Moosonee	0.10	0.12	0.17
Ottawa	0.11	0.13	0.11
Regina	0.11	0.13	0.13
Resolute	0.06	0.10	0.09
Saskatoon	0.11	0.16	0.14
Shearwater	0.08	0.13	0.10
Torbay	0.07	0.10	0.09
Toronto	0.11	0.12	0.14
Vancouver	0.05	0.03	0.06
Whitehorse	0.13	0.13	0.14
Windsor	0.12	0.13	0.14
Winnipeg	0.15	0.15	0.15
Yellowknife	0.11	0.14	0.16

TABLE 2.—MONTHLY AVERAGE FISSION PRODUCT GROSS BETA CONCENTRATIONS IN AIR, FIRST QUARTER 1961

[Radioactivity in µµc/m2]

Month	Number of stations operating 50% of the time	Minimum average of all stations	Maximum average of all stations	Overall average
January	24	0.05	0.15	0.10
February	24	0.03	0.16	0.12
March	23	0.06	0.18	0.14

Table 3.—FISSION PRODUCT GROSS BETA RADIOACTIVITY IN PRECIPITATION, FIRST QUARTER 1961

	Jan	uary	Febr	uary	Ma	reh
Station location	μμc/liter	Inches	μμc/liter	Inches	μμc/liter	Inches
Calgary	62.3	0.22	25.1 15.7	1.21	381.5 16.7	0.10
Chatham	153.5	0.21	27.2	0.76	98.8	0.20
Edmonton	22.8	0.34	25.8	0.74	77.5	0.18
Fredericton	18.2	3.29	19.8	3.03	6.1	3.00
Fort Churchill	10.6	0.83	9.9	0.60	10.6	1.60
Fort William	15.2	0.51	trace	1.06	47.1	1.4
Joose Bay	4.6	3.18	3.1	0.61	9.1	1.43
nivuk	62.3	0.17	48.2	0.49	28.9	0.60
Kapuskasing	30.4	0.76	7.0	2.87	30.4	2.4
Montreal	354.2	a 0.03	40.3	1.45	15.2	2.7
Moosonee	6.1	1.00	8.4	1.46	4.6	3.40
Ottawa	24.3	0.57	14.9	2.65	18.2	2.4
Regina	179.4	0.40	14.9	0.57	145.9	0.2
Resolute		b NS		NS	**********	NS
Saskatoon	27.4	0.50	84.5	0.38	139.8	0.3
ShearwaterTorbay	27.4	3.65		NS	13.7	4.2
	15.2	3.59	16.7	4.03	12.2	8.1
Toronto	45.6 4.6	1.11 8.30	10.6	3.34 NS	41.6	1.5
VancouverWhitehorse		0.46	88.0	0.59	47.1 18.2	4.5
	48.6	0.40	23.7	2.90	31.9	2.6
	83.6	0.11	17.5	1.64	141.4	0.5
Winnipeg Yellowknife	12.2	1.55	13.4	0.88	10.6	0.9
A verage	54.9		25.7		58.6	

January 16-23 only.
 NS—No sample.

ER-AT

ER

ON.

le, land

0.02 0.02 0.02 0.02 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06 0.06 0.06 0.12

0.10

0.036

1960 and the third and fourth quarters 1960 respectively. Similar data are presented for the first quarter 1961 in tables 1, 2, and 3. Table 4 presents the daily results of gross beta radioactivity in air for the period September 4 to October 15, 1961. The results reflect an increase in the air levels due to the resumption of nuclear weapons testing in the atmosphere.

The overall monthly average levels shown in table 2 are higher than in the previous quarter

and apparently increase from month to month in the quarter. This is the usual pattern and is probably associated with meteorological phenomena. The values in table 1, 2, and 4 are in $\mu\mu c/m^3$ whereas previously reported data has been in dpm/m³.

The results in table 3 show that the overall monthly averages of total beta radioactivity in precipitation are about the same as the previous quarter.

Table 4.—Daily record of fission product gross beta radioactivity in Air, september 4 to october 15, 1961

IClass		A	inna	in		/our 2]
Cor	rcer.	TEST	10118	111	BLACE!	Tillel

										Sej	ptembe	er									
Station location	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
klavik	0.05	0.05	0.05	0.14	2.8	0.21	2.5	0.9	0.45	6.8	3.8	0.14	0.45	1.9	7.2	1.6	92.2	45.9	37.4	15.8	21.5
algary	0.05	0.37	0.37	0.02	0.38	1.8	2.3	3.5	0.40	0.9	2.4 0.04	11.7	32.8 74.2	3.4 72.0	7.0 40.5	9.4 49.5	2.7 78.8	0.9	5.2 105.8	2.0 39.2	39.
dmonton	0.04	_	0.09	3.4	0.07	3.5	0.12	1.1	0.22	0.09	0.5	7.0	0.7	4.5	4.0	3.1	8.1	2.9	153.0	7.4	2.
ort Churchill	0.06	0.06	0.06	0.06	0.07	0.5	0.01	0.04	0.04	0.7	0.8	0.32	8.1	6.3	1.8	3.3	2.5	0.7	7.4	25.6	24.
ort William	0.04	0.05	0.05	0.05	0.11	0.12	0.05	0.32	1.0	1.1	0.14	7.4	184.5	55.4	5.4		270.0	450.0	72.0	3.6	33
redericton	0.01	0.04	0.04	0.04	0.07	0.09	0.14	0.36	0.36	0.6	0.09	5.2	87.8 45.9	46.8 19.8	30.2 43.6	82.4 11.2	135.0	8.6	27.0 67.5	4.7 54.9	20
oose Bay	0.04	0.04	0.04	0.04	0.12	0.06	0.04	0.6	0.18	0.09	1.8	1.4	69.8	155.2	166.5	155.2	155.2	180.0	177.8	44.6	33
ontreal	0.09	0.04	0.04	0.04	0.07	0.11	0.13	0.27	0.36	2.6	0.6	0.6	1.1	52.2	45.9	39.2	36.0	157.5	171.0	162.0	42
loosonee	0.05	0.09	0.09	0.09	0.10	-	-	0.36	2.4	1.2	1.4	4.0	85.5	85.5	85.5	99.0	99.0	252.0	148.5	1.3	72
ttawa	0.08	0.07	0.07	0.07	0.14	0.15	0.17	0.18	1.8	0.6	0.22	2.1	56.2	38.2	63.0	34.2	45.0	265.5	227.2	121.5	20
legina	0.03	0.03	0.03	0.05	0.11	0.9	1.3	1.4	8.6	7.6	5.2	5.2	4.3	17.1	18.0	3.3	12.2	9.0	21.6	63.0	49
Resolute	0.01	0.01	0.07	0.00		0.7	_	0.04	0.04	0.45	3.2	4.0	16.4	4.7	3.9	11 7	4.0	32.4	146.2	52.2	0
askatoon	0.01	0.01	0.07	< 0.08	1.1	0.7	0.5	5.9 0.32	18.0	1.4	0.18	4.0	238.5	56.2	69.3	11.7 71.1	37.8	45.0	44.6	16.2	0 2
Shearwater Forbay	0.04	0.07	0.07	0.07	0.10	0.10	0.12	0.14	0.14	1.4	0.22	2.0	122.4		6.8	25.2	69.8	37.8	18.0	36.0	29
Coronto	0.08	0.06	0.06	0.06	0.06	0.13	0.19	0.27	0.36	0.5	0.6	2.2		319.5	102.6	51.8	40.0	112.5	14.0	126.0	7
ancouver	0.02	0.02	0.02	0.09	0.10	0.09	1.6	3.8	3.1	3.3	3.9	2.2	32.8	3.6	1.2	1.0	1.4	1.8	2.2	1.7	4
Whitehorse	0.11	0.03	0.03	0.06	1.1	1.1	3.4	1.9	3.6	3.5	1.3	9.4	0.27		2.5	1.5	2.4	2.8	2.2	4.5	25
Vindsor	0.04	0.06	0.06	0.06	0.18	0.20	0.23	0.14	0.40	0.5	0.18	2.6		117.0	121.5	81.0	32.8	60.8	256.5	27.4	2
Vinnipeg	0.04	0.04	0.04	0.92	0.15	0.13	0.32	0.09	0.40	0.32	0.9	49.0 9.1	26.1 2.9	9.9 8.1	8.1	7.1	0.04	81.0	28,4 162.0	99.0 38.7	23
Average	0.05	0.06	0.07	0.25	0.39	0.95	0.73	1.0	2.2	1.7	1.5	6.2	50.3	51.3	38.1	36.3	51.8	88.6	86.3	43.1	22
					-																
			Septe	mber										Octobe	г						
Station location	25	26	Septe	mber 28	29	30	1	2	3	4	5	6	7	Octobe 8	9	10	11	12	13	14	1.
	25	26			29	30	1 6.3	2 8.6	3 4.5	4 3.1	5 6.3	6		1	1	10	3.2	12	13	14	1 5
Aklavik	0.1 23.4		27 1.4 9.4	28 1.6 8.1	2.4 7.5	2.8 28.8	6.3	8.6 25.2	4.5	3.1 15.4	6.3	5.0 7.6	7 6.5 5.0	8 5.0 10.8	9 44.1 7.3	4.3 20.2	3.2 2.5	1.9	2.0	4.5	80.00
Aklavik Calgary Chatham, N. B Coral Harbour	0.1 23.4 9.0	1.0 9.4 5.0	27 1.4 9.4 4.1	28 1.6 8.1 4.5	2.4 7.5 11.7	2.8 28.8 4.8	6.3 30.2 5.4	8.6 25.2 41.0	4.5 18.7 83.2	3.1 15.4 15.3	6.3 34.2 2.7	5.0 7.6 63.9	6.5 5.0 29.7	5.0 10.8 18.9	9 44.1 7.3 10.6	4.3 20.2 10.0	3.2 2.5 7.2	1.9 11.7 17.6	2.0 17.6	4.5 2.3 5.6	3 3 17
Aklavik Calgary Chatham, N. B. Coral Harbour Edmonton	0.1 23.4	1.0 9.4 5.0 - 9.5	27 1.4 9.4 4.1 9.1	28 1.6 8.1 4.5 12.6	2.4 7.5 11.7 10.8	2.8 28.8 4.8 9.9	6.3 30.2 5.4 — 20.0	8.6 25.2 41.0 19.8	4.5 18.7 83.2 20.7	3.1 15.4 15.3 10.8	6.3 34.2 2.7 29.7	5.0 7.6 63.9 — 14.8	7 6.5 5.0 29.7 7.4	5.0 10.8 18.9 7.2	9 44.1 7.3 10.6 	4.3 20.2 10.0 -	3.2 2.5 7.2 12.2	1.9 11.7 17.6	2.0 17.6 12.6	4.5 2.3 5.6 4.1	17
Aklavik Calgary Chatham, N. B. Coral Harbour Edmonton Fort Churchill	0.1 23.4 9.0 35.6	1.0 9.4 5.0 9.5	27 1.4 9.4 4.1 9.1 3.2	28 1.6 8.1 4.5 	2.4 7.5 11.7 10.8 1.6	2.8 28.8 4.8 - 9.9 1.0	6.3 30.2 5.4 20.0 2.1	8.6 25.2 41.0 — 19.8 8.1	4.5 18.7 83.2 20.7 5.6	3.1 15.4 15.3 10.8 8.6	6.3 34.2 2.7 29.7 0.4	5.0 7.6 63.9 14.8 5.7	6.5 5.0 29.7 7.4 7.7	5.0 10.8 18.9 7.2 8.0	9 44.1 7.3 10.6 - 18.0 3.3	4.3 20.2 10.0 10.4 3.5	3.2 2.5 7.2 12.2 17.6	1.9 11.7 17.6 10.4 2.1	2.0 17.6 12.6 4.2	4.5 2.3 5.6 4.1 36.9	17
Aklavik	0.1 23.4 9.0 35.6 —	1.0 9.4 5.0 9.5 - 12.2	1.4 9.4 4.1 9.1 3.2 24.3	1.6 8.1 4.5 	2.4 7.5 11.7 10.8 1.6 21.2	2.8 28.8 4.8 - 9.9 1.0 9.0	6.3 30.2 5.4 20.0 2.1 18.0	8.6 25.2 41.0 - 19.8 8.1 40.5	4.5 18.7 83.2 — 20.7 5.6 15.5	3.1 15.4 15.3 - 10.8 8.6 97.6	6.3 34.2 2.7 29.7 0.4 21.8	5.0 7.6 63.9 — 14.8 5.7 9.9	6.5 5.0 29.7 7.4 7.7 19.9	5.0 10.8 18.9 7.2 8.0 18.9	9 44.1 7.3 10.6 - 18.0 3.3 3.2	4.3 20.2 10.0 10.4 3.5 0.1	3.2 2.5 7.2 12.2 17.6 13.1	1.9 11.7 17.6 10.4 2.1 14.1	2.0 17.6 12.6 4.2 1.2	4.5 2.3 5.6 4.1 36.9 3.0	111111111111111111111111111111111111111
Aklavík Calgary Chatham, N. B. Coral Harbour Edmonton Fort Churchill Fort William Fredericton	0.1 23.4 9.0 35.6 - 18.1 9.2	1.0 9.4 5.0 - 9.5 - 12.2 3.7	1.4 9.4 4.1 9.1 3.2 24.3 3.0	1.6 8.1 4.5 12.6 0.3 7.6 13.1	2.4 7.5 11.7 10.8 1.6 21.2 33.8	2.8 28.8 4.8 - 9.9 1.0 9.0 4.7	6.3 30.2 5.4 — 20.0 2.1 18.0 14.8	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4	4.5 18.7 83.2 20.7 5.6	3.1 15.4 15.3 - 10.8 8.6 97.6 0.4	6.3 34.2 2.7 29.7 0.4 21.8 16.6	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6	5.0 10.8 18.9 - 7.2 8.0 18.9 11.7	9 44.1 7.3 10.6 — 18.0 3.3 3.2 7.3	4.3 20.2 10.0 	3.2 2.5 7.2 12.2 17.6 13.1 12.2	1.9 11.7 17.6 10.4 2.1 14.1 12.6	2.0 17.6 12.6 4.2 1.2 13.5	4.5 2.3 5.6 4.1 36.9 3.0 16.2	15
Aklavik Calgary Chatham, N. B., Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay	0.1 23.4 9.0 35.6 —	1.0 9.4 5.0 9.5 - 12.2	1.4 9.4 4.1 9.1 3.2 24.3	1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9	2.8 28.8 4.8 - 9.9 1.0 9.0	6.3 30.2 5.4 20.0 2.1 18.0 14.8 5.0	8.6 25.2 41.0 - 19.8 8.1 40.5	4.5 18.7 83.2 20.7 5.6 15.5 23.8	3.1 15.4 15.3 - 10.8 8.6 97.6	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7	5.0 7.6 63.9 — 14.8 5.7 9.9	6.5 5.0 29.7 7.4 7.7 19.9	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8	9 44.1 7.3 10.6 - 18.0 3.3 3.2 7.3 4.9 4.5	4.3 20.2 10.0 	3.2 2.5 7.2 12.2 17.6 13.1	1.9 11.7 17.6 10.4 2.1 14.1 12.6 14.4 14.2	2.0 17.6 	4.5 2.3 5.6 4.1 36.9 3.0 16.2	3 3 17 4 12 4
Aklavik Calgary Chatham, N. B., Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal	0.1 23.4 9.0 35.6 - 18.1 9.2 5.0 31.5 11.6	1.0 9.4 5.0 - 9.5 - 12.2 3.7 1.4 16.6 8.1	1.4 9.4 4.1 - 9.1 3.2 24.3 3.0 0.2	1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9	6.3 30.2 5.4 20.0 2.1 18.0 14.8 5.0 36.0	8.6 25.2 41.0 	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0	3.1 15.4 15.3 - 10.8 8.6 97.6 0.4 4.0	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9	5.0 7.6 63.9 14.8 5.7 9.9 23.4 0.2	7 6,5 5,0 29.7 7.4 7.7 19.9 10.6 3.6	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8	9 44.1 7.3 10.6 - 18.0 3.3 3.2 7.3 4.9	4.3 20.2 10.0 	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3	1.9 11.7 17.6 10.4 2.1 14.1 12.6 14.4	2.0 17.6 	4.5 2.3 5.6 4.1 36.9 3.0 16.2 4 12.4	3 3 17 4 12 4
Aklavik Dalgary Datham, N. B. Doral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee	0.1 23.4 9.0 35.6 - 18.1 9.2 5.0 31.5 11.6 90.9	1.0 9.4 5.0 - 9.5 - 12.2 3.7 1.4 16.6 8.1 11.3	1.4 9.4 4.1 	1.6 8.1 4.5 — 12.6 0.3 7.6 13.1 4.2 — 29.7	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8	2.8 28.8 4.8 - 9.9 1.0 9.0 4.7 5.9 6.1	6.3 30.2 5.4 — 20.0 2.1 18.0 14.8 5.0 — 36.0 18.4	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9	3.1 15.4 15.3 — 10.8 8.6 97.6 0.4 4.0 24.8 12.4	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1	1.9 11.7 17.6 — 10.4 2.1 14.1 12.6 14.4 14.2 10.8	2.0 17.6 	4.5 2.3 5.6 - 4.1 36.9 3.0 16.2 4 12.4 7.2 15.3	15
Aklavik Calgary Chatham, N. B. Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Mosoonee Ottawa	0.1 23.4 9.0 35.6 - 18.1 9.2 5.0 31.5 11.6 90.9 7.9	1.0 9.4 5.0 - 9.5 - 12.2 3.7 1.4 16.6 8.1 11.3 4.3	1.4 9.4 4.1 9.1 3.2 24.3 3.0 0.2 16.6 2.9 27.9	1.6 8.1 4.5 	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1	6.3 30.2 5.4 — 20.0 2.1 18.0 14.8 5.0 — 36.0 18.4 40.5	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0 — 8.3	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5	3.1 15.4 15.3 - 10.8 8.6 97.6 0.4 4.0 24.8 12.4 - 11.2	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 18.2	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6 24.3	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4 25.2	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 9.8	1.9 11.7 17.6 10.4 2.1 14.1 12.6 14.4 14.2 10.8	2.0 	4.5 2.3 5.6 4.1 36.9 3.0 16.2 4 12.4 7.2 15.3 -	15
Aklavik Calgary Datham, N. B. Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee Ottawa Regina	0.1 23.4 9.0 35.6 - 18.1 9.2 5.0 31.5 11.6 90.9	1.0 9.4 5.0 - 9.5 - 12.2 3.7 1.4 16.6 8.1 11.3	1.4 9.4 4.1 	1.6 8.1 4.5 — 12.6 0.3 7.6 13.1 4.2 — 29.7	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8	2.8 28.8 4.8 - 9.9 1.0 9.0 4.7 5.9 6.1	6.3 30.2 5.4 — 20.0 2.1 18.0 14.8 5.0 — 36.0 18.4	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9	3.1 15.4 15.3 — 10.8 8.6 97.6 0.4 4.0 24.8 12.4	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1	1.9 11.7 17.6 10.4 2.1 14.1 12.6 14.4 14.2 10.8	2.0 	4.5 2.3 5.6 - 4.1 36.9 3.0 16.2 4 12.4 7.2 15.3	15
Aklavik Dalgary Datham, N. B. Coral Harbour Cort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee Ottawa Regina Resolute	0.1 23.4 9.0 35.6 - 18.1 9.2 5.0 31.5 11.6 90.9 7.9	1.0 9.4 5.0 	1.4 9.4 4.1 9.1 3.2 24.3 3.0 0.2 16.6 2.9 27.9	1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2 29.7 12.2 15.8	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8	2.8 28.8 4.8 - 9.9 1.0 9.0 4.7 5.9 - 6.1 - 36.9 32.4	6.3 30.2 5.4 — 20.0 2.1 18.0 14.8 5.0 — 36.0 18.4 40.5	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0 — 8.3	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5	3.1 15.4 15.3 - 10.8 8.6 97.6 0.4 4.0 24.8 12.4 - 11.2	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 18.2	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6 24.3	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4 25.2	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 - 9.8 9.2	1.9 11.7 17.6 	2.0 17.6 12.6 4.2 1.2 13.5 0.00 0.3 25.2 18.0 8.6	4.5 2.3 5.6 - 4.1 36.9 3.0 12.4 7.2 15.3 - 39.6 21.6	15
Aklavik Calgary Chatham, N. B. Coral Harbour Edmonton Fort Churchill Fort William Fredericton 10008 Bay Kapuskasing Montreal Mossonee Ottawa Regina Resolute Saskatoon	0.1 23.4 9.0 35.6 	1.0 9.4 5.0 - 9.5 - 12.2 3.7 1.4 16.6 8.1 11.3 4.3	1.4 9.4 4.1 -9.1 3.2 24.3 3.0 0.2 16.6 2.9 -27.9 8.5	1.6 8.1 4.5 	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8 11.0 15.8	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1	6.3 30.2 5.4 20.0 2.1 18.0 5.0 36.0 18.4 40.5 37.8	8,6 25,2 41.0 19.8 8.1 40.5 77.4 13.5 54.0 41.0 8.3 21.2	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5 44.1	3.1 15.4 15.3 	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 18.2 14.0	5.0 7.6 63.9 14.8 5.7 9.9 23.4 0.2 17.1 14.0 53.1 45.0	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6	5.0 10.8 18.9 7.2 8.0 11.7 0.8 11.7 0.8 25.6 24.3	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4 25.2 12.6	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8 9.0	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 9.8 9.2 2.7	1.9 11.7 17.6 	2.0 	4.5 2.3 5.6 - 4.1 36.9 3.0 16.2 4 12.4 7.2 15.3 - 39.6 21.6	15
Aklavík Calgary Chatham, N. B., Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee Ottawa Regina Regina Resolute Saskatoon Shearwater Torbay	0.1 23.4 9.0 35.6 — 18.1 9.2 5.0 31.5 11.6 90.9 7.9 12.4 — 23.9 0.8 2.5	1.0 9.4 5.0 — 9.5 — 12.2 3.7 1.4 16.6 8.1 11.3 4.3 26.6 — 7.6 5.4 2.1	1.4 9.4 4.1 -9.1 3.2 24.3 3.0 0.2 16.6 2.9 27.9 8.5 -16.2 5.8 7.6	1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2 29.7 12.2 15.8 12.6 5.4	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 - 7.8 - 11.0 15.8 - 10.1 14.8 1.6	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1 36.9 32.4 26.8 4.7, 9.0	6.3 30.2 5.4 ———————————————————————————————————	8.6 25.2 41.0 19.8 8.1 40.5 77.4 13.5 54.0 41.0 8.3 21.2 36.0 65.2 4.6	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.9 22.5 44.1 13.5 18.0	3.1 15.4 15.3 — 10.8 8.6 97.6 0.4 4.0 24.8 12.4 — 11.2 28.8 0.8 13.0	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.99.7 25.2 18.2 14.0 21.6 14.8	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6 4.1 15.8 44.1	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6 - 24.3 4.1 10.8 13.5 17.6	9 44.1 7.3 10.6 	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8 9.0 6.3 12.2 10.8	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 - 9.8 9.2 - 2.7 14.00 5.4	1.9 11.7 17.6 -10.4 2.1 14.1 12.6 14.4 14.2 10.8 -17.1 3.6 -22.0	2.0 	4.5 2.3 5.6 - 4.1 36.9 3.0 16.2 12.4 7.2 15.3 - 39.6 21.6 21.6 13.5	12
Aklavik Calgary Chatham, N. B. Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee Outlawa Regina Resolute Saskatoon Shearwater Torbay Toronto	0.1 23.4 9.0 35.6 18.1 9.2 5.0 31.5 11.6 90.9 7.9 12.4 23.9 0.8 2.5 5.0	1.0 9.4 5.0 	1.4 9.4 4.1 9.1 3.2 24.3 3.0 0.2 16.6 2.9 27.9 8.5 16.2 5.8 7.6 14.0	28 1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2 29.7 12.2 15.8 13.5 12.6 5.4 19.1	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8 11.0 15.8 10.1 14.8 1.6 37.4	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1 36.9 32.4 26.8 4.7 9.0 189.0	6.3 30.2 5.4 20.0 2.1 18.0 14.8 5.0 36.0 18.4 40.5 37.8 15.3 5.8 4.5	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 — 8.3 21.2 36.0 65.2 4.6 3.4	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5 44.1 13.5 18.0 45.0	3.1 15.4 15.3 	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 18.2 14.0 21.6 14.8 1.4	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6 4.1 15.8 44.1 24.3	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6 24.3 4.1 10.8 13.5 17.6 936.9	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4 25.2 12.6 9.2 6.8 4.4 27.0	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8 9.0 6.3 12.2 10.8 22.7	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 9.8 9.2 2.7 14.0 5.4 26.8	1.9 11.7 17.6 10.4 2.1 14.1 12.6 14.4 14.2 10.8 - 17.1 3.6 22.0 - 17.6	2.0 17.6 4.2 1.2 13.5 0.0 0.3 25.2 18.0 8.6 9.4 17.6	4.5 2.3 5.6 4.1 36.9 3.0 16.2 4.12.4 7.2 15.3 - 39.6 21.6 21.6 13.5 - 7.6	12
Aklavik Calgary Chatham, N. B., Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee Ottawa Regina Resolute Saskatoon Shearwater Torbay Toronto	0.1 23.4 9.0 35.6 	1.0 9.4 5.0 — 9.5 — 12.2 3.7 1.4 16.6 8.1 11.3 26.6 — 7.6 5.4 2.1 2.2 16.2	27 1.4 9.4 4.1 - 9.1 3.2 24.3 3.0 0.2 16.6 2.9 - 27.9 8.5 - 16.2 5.8 7.6 14.0 11.9	28 1.6 8.1 4.5 — 12.6 0.3 7.6 13.1 4.2 — 29.7 — 12.2 15.8 — 13.5 12.6 5.4 19.1 10.4	2.4 7.5 11.7 — 10.8 1.6 21.2 33.8 0.9 — 7.8 — 11.0 15.8 — 10.1 14.8 1.6 37.4 1.7	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1 	6.3 30.2 5.4 —20.0 2.1 18.0 14.8 5.0 —36.0 18.4 40.5 37.8 —15.3 5.8 4.5 29.7 13.1	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0 — 8.3 21.2 — 36.0 65.2 4.6 3.4	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5 44.1 35.1 13.5 18.0 45.0 17.6	3.1 15.4 15.3 	6.3 34.2 2.7 — 29.7 0.4 21.8 16.6 0.9 29.7 25.2 — 18.2 14.0 — 21.6 14.8 1.4 23.4 17.6	5.0 7.6 63.9 14.8 5.7 9.9 23.4 0.2 17.1 14.0 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6 4.1 15.8 44.1 24.3 27.0	5.0 10.8 18.9 7.2 8.0 11.7 0.8 19.8 25.6 24.3 4.1 10.8 13.5 17.6 36.9 14.8	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4 — 9.2 6.8 4.4 27.0 12.1	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8 9.0 -6.3 12.2 10.8 22.7 25.0	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 - 9.8 9.2 - 2.7 14.0 5.4 26.8	1.9 11.7 17.6 -10.4 2.1 14.1 12.6 14.4 14.2 10.8 -17.1 3.6 -22.0 -17.6 13.5	2.0 	4.5 2.3 5.6 4.1 36.9 3.0 16.2 4 12.4 7.2 15.3 39.6 21.6 8.6 13.5	12
Aklavik Calgary Chatham, N. B. Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Moosonee Ottawa Regina Regina Resolute Saskatoon Shearwater Torbay Toronto Vancouver Whitehorse	0.1 23.4 9.0 — 35.6 — 18.1 9.2 5.0 31.5 11.6 90.9 12.4 — 23.9 2.5 5.0 8.1 18.1	1.0 9.4 5.0 	1.4 9.4 4.1 9.1 3.2 24.3 3.0 0.2 16.6 2.9 27.9 8.5 7.6 14.0 11.9 4.0	1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2 29.7 12.2 15.8 13.5 12.6 5.4 19.1 10.4 14.8	2.4 7.5 11.7 — 10.8 1.6 21.2 33.8 0.9 — 7.8 — 11.0 15.8 — 10.1 14.8 1.6 37.4 1.6 37.4 1.6	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1 	6.3 30.2 5.4 20.0 2.1 18.0 14.8 5.0 36.0 18.4 40.5 37.8 4.5 29.7 13.1 8.3	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0 — 36.0 65.2 4.6 3.4 10.4	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5 44.1 13.5 18.0 45.0 17.6	3.1 15.4 15.3 10.8 8.6 97.6 4.0 24.8 12.4 11.2 28.8 0.8 13.0 20.7 4.0	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 14.0 21.6 14.8 23.4 17.6 5.0	5.0 7.6 63.9 14.8 5.7 9.9 23.4 0.2 17.1 14.0 15.3 18.4 18.0 42.3 22.5 7.2	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6 4.1 15.8 44.1 124.3 27.0 7.6	5.0 10.8 18.9 7.2 8.0 11.7 0.8 19.8 25.6 24.3 4.1 10.8 13.5 17.6 36.9 14.8 5.3	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.5 25.4 25.2 12.6 9.2 6.8 4.4 27.0 12.1	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8 9.0 	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 9.8 9.2 - 2.7 14.0 5.4 26.8 11.7 6.8	1.9 11.7 17.6 	2.0 17.6 4.2 11.2.6 4.2 13.5 0.0 0.3 25.2 18.0 8.6 9.4 17.6 10.1 3.8 10.1 3.8	4.5 2.3 5.6 4.1 36.9 3.0 16.2 4 7.2 15.3 39.6 21.6 8.6 13.5 7.6 1.7	122
Aklavik Calgary Chatham, N. B., Coral Harbour Edmonton Fort Churchill Fort William Fredericton Goose Bay Kapuskasing Montreal Mossonee Ottawa Regina Resolute Saskatoon Shearwater Torbay Toronto Vancouver Whitehorse	0.1 23.4 9.0 35.6 	1.0 9.4 5.0 	1.4 9.4 4.1 3.2 24.3 3.0 0.2 16.6 2.9 8.5 	28 1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2 29.7 12.2 15.8 13.5 12.6 5.4 19.1 10.4 14.8 15.8	2.4 7.5 11.7 10.8 1.6 21.2 33.8 0.9 7.8 11.0 15.8 1.6 37.4 1.7 14.8 37.4 1.7	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1 36.9 32.4 — 26.8 4.7 9.0 0 189.0 5.4 4.0 32.4	6.3 30.2 5.4 20.0 2.1 18.0 5.0 36.0 18.4 40.5 37.8 15.3 5.8 29.7 13.1 8.3 9.2	8.6 25.2 41.0 19.8 8.1 40.5 77.4 13.5 54.0 41.0 	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5 44.1 	3.1 15.4 15.3 10.8 8.6 97.6 0.4 4.0 24.8 12.4 11.2 28.8 13.0 0.8 13.0 13.0 15.3 0.7 4.0	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 14.0 21.6 14.8 1.4 23.4 17.6 5.0 33.3	5.0 7.6 63.9 	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6 4.1 15.8 44.1 24.3 27.0 7.6 19.8	5.0 10.8 18.9 7.2 8.0 18.9 11.7 0.8 19.8 25.6 24.3 4.1 10.8 13.5 17.6 36.9 14.8 5.3	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.9 4.5 25.4 25.2 12.6 9.2 6.8 4.4 27.0 12.1	4.3 20.2 10.0 10.4 3.5 0.1 11.2 3.9 4.5 26.8 9.0 6.3 12.2 10.8 22.7 25.0 10.4	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 9.8 9.2 2.7 14.0 5.4 426.8 11.7 6.8	1.9 11.7 17.6 	2.0 17.6 12.6 4.2 1.2 13.5 0.0 0.3 25.2 18.0 8.6 9.4 17.6 10.1 3.8 29.7 9.0	4.5 2.3 5.6 4.1 36.9 3.0 16.2 12.4 7.2 15.3 39.6 21.6 13.5 7.6 1.7 10.8	122
Aklavik Dalgary Datham, N. B. Oral Harbour Sort Churchill Fort William Predericton Hoose Bay Kapuskasing Montreal Mosonee Ditawa Regina Regina Resolute Baskatoon Shearwater Torbay Toronto Vancouver Whitehorse	0.1 23.4 9.0 — 35.6 — 18.1 9.2 5.0 31.5 11.6 90.9 12.4 — 23.9 2.5 5.0 8.1 18.1	1.0 9.4 5.0 	1.4 9.4 4.1 9.1 3.2 24.3 3.0 0.2 16.6 2.9 27.9 8.5 7.6 14.0 11.9 4.0	1.6 8.1 4.5 12.6 0.3 7.6 13.1 4.2 29.7 12.2 15.8 13.5 12.6 5.4 19.1 10.4 14.8	2.4 7.5 11.7 — 10.8 1.6 21.2 33.8 0.9 — 7.8 — 11.0 15.8 — 10.1 14.8 1.6 37.4 1.6 37.4 1.6	2.8 28.8 4.8 9.9 1.0 9.0 4.7 5.9 6.1 	6.3 30.2 5.4 20.0 2.1 18.0 14.8 5.0 36.0 18.4 40.5 37.8 4.5 29.7 13.1 8.3	8.6 25.2 41.0 — 19.8 8.1 40.5 77.4 13.5 54.0 41.0 — 36.0 65.2 4.6 3.4 10.4	4.5 18.7 83.2 20.7 5.6 15.5 23.8 36.0 39.2 36.9 22.5 44.1 13.5 18.0 45.0 17.6	3.1 15.4 15.3 10.8 8.6 97.6 4.0 24.8 12.4 11.2 28.8 0.8 13.0 20.7 4.0	6.3 34.2 2.7 29.7 0.4 21.8 16.6 0.9 29.7 25.2 14.0 21.6 14.8 23.4 17.6 5.0	5.0 7.6 63.9 14.8 5.7 9.9 23.4 0.2 17.1 14.0 15.3 18.4 18.0 42.3 22.5 7.2	7 6.5 5.0 29.7 7.4 7.7 19.9 10.6 3.6 31.5 29.7 20.0 30.6 4.1 15.8 44.1 124.3 27.0 7.6	5.0 10.8 18.9 7.2 8.0 11.7 0.8 19.8 25.6 24.3 4.1 10.8 13.5 17.6 36.9 14.8 5.3	9 44.1 7.3 10.6 18.0 3.3 3.2 7.3 4.5 25.4 25.2 12.6 9.2 6.8 4.4 27.0 12.1	4.3 20.2 10.0 10.4 3.5 0.1 111.2 3.9 4.5 26.8 9.0 6.3 12.2 10.8 22.7 25.0 10.4 36.0 5.6	3.2 2.5 7.2 12.2 17.6 13.1 12.2 6.3 3.4 8.1 - 9.2 - 2.7 14.0 5.4 26.8 11.7 6.8 23.4 2.3	1.9 11.7 17.6 10.4 2.1 14.1 12.6 14.4 14.2 10.8 	2.0 17.6 4.2 1.2.6 4.2 1.2.2 13.5 0.0 0.3 25.2 	4.5 2.3 5.6 4.1 36.9 3.0 16.2 4 17.2 15.3 — 39.6 21.6 21.6 13.5 7.6 1.7 10.8 9.0 5.6	122

a (-) indicates no sample.

SECTION II. — FOOD OTHER THAN MILK

Survey of Radioactivity in Food

Food and Drug Administration

The Food and Drug Administration conducts a continuing surveillance to determine the concentrations of certain radionuclides in a variety of different food items, domestic and foreign. The following tabulations present the results of surveillance of foods for strontium-90 and cesium-137. These samples were collected by representatives of Food and Drug Administration Districts.

In table 1 are assembled analyses of vegetables, fruits, nuts, dairy products, grains, and baby foods for cesium-137 with corresponding strontium-90 analyses where available. Although there are numerous exceptions, it appears generally that the cesium-137 level is comparatively higher than the strontium-90 level. However, correlation between these nuclides is very poor and it may be concluded that these results offer little encouragement to the use of the more readily determinable cesium-137 levels as meaningful indicators of strontium-90 levels in foods.

Table 2 gives the results of a survey of 1958 and 1959 tea samples imported from the countries indicated. Each sample represents, on the average, a pooling of about 5 to 10 individually-ashed tea samples. It is to be noted that the Indian, Japanese, and Formosan teas carry the highest levels of strontium-90 and by comparison, the African and South American teas, much lower levels. Of interest is the finding that soluble teas contain very much lower con-

centrations of strontium-90. This is in general agreement with some laboratory studies which have shown that the beverage prepared from contaminated tea leaves carries over only about 20 percent of the strontium-90.

Table 3 lists 8 categories of foods for which a number of strontium-90 analyses have been completed. Because of the relatively small number of samples originating from the same geographical areas, it is not possible at this time to draw any significant conclusions on this point. Differences between categories, however, are at once apparent as exemplified in the relatively high strontium-90 levels in wheat, and dairy products. With the exception of the dried fruits, the fresh fruits in general contain less strontium-90 than the vegetables do. This difference can also be observed in the baby foods. Of considerable interest are the differences between raw (fresh) and processed foods. Reference should be made to those items identified in the footnotes as originating from the same lot. It is notable that processing causes a considerable removal of strontium-90 from the raw product. Of particular interest is flour originating from contaminated wheat. Here the reduction in strontium-90 content is even greater. But, as has been observed elsewhere. the bran carries an even higher strontium content than the wheat kernel.

Similar FDA data on radioactivity in food were presented in *Radiological Health Data*, Volume II, Numbers 1, 8, and 9.

TABLE 1.—RADIOANALYSES OF RAW AND PROCESSED FOODS

[Concentrations in µµc/kg original material]

Seafe

W

		Origin	1	Date harvested		
Category	Product	County or city	State or country	or processed	Cesium-137	Strontium-9
Vegetables	Snap beans Green beans (canned) Green beans Cabbage Cabbage Cabbage Celery	Rhodedale Mercer Shawnee Monterey Rogers Van Buren	Md. Ohio Kans. Calif. Minn. Mich.	Sept. 7, 1960 Sept. 26, 1960 1960 Aug. 29, 1960 1960 July 14, 1960— Sept. 28, 1960	7.5 ND 2 422 33 7 ND ND	7.1 1.1 4.4
	Celery Celery Carrots (raw) Carrots (canned) Corn (shelled) Lettuce Onions Oulons	Imlay City Middlesex Wayne Wayne Cranford Montgomery Montgomery El Dorado Newaygo	Mich. Mass. N. J. N. J. III. Md. Md. Md. Md. Md. Mid. Mich.	Sept. 28, 1960 Sept. 26, 1960 Sept. 8, 1960 Sept. 26, 1960 Sept. 26, 1960 Oct. 18, 1960 Spring 1960 Spring 1960 Sept. 15, 1960 Aug. 25, 1960	ND 81 371 6 2.2 <5 ND ND	1.1 0.31 2.6 8.0
	Onions Potatoes. Potatoes. Sweet potatoes. Spinach (canned)	Brooks Johnson Stockton Ashville Muskegon	Oreg. Kans. Calif. N. C. ¹ Mich.	Sept. 20, 1960 Sept. 15, 1960 July 4, 1960 Aug. 17, 1960 Jan. 10, 1960 ¹ June 20, 1960	ND 0.7 ND 49 ND	0.4
Fruits	Apples. Apples. Applesauce (strained). Apricots (dried). Bananas (strained). Peaches. Peaches (strained). Peaches. Peaches. Peaches. Teaches. Peaches. Tomatoes. Tomatoes. Tomatoes. Tomatoes (canned).	Okanogan Lockport Kent, Mason & Ocean San Jose San Jose Carroll Franksburg Cross Junction Fremont Hancock Salem Greenville Madison	Wash. N. Y. ¹ Mich. Calif. ¹ Mex. Calif. Calif. Md. Md. Md. Md. Va. Va. Ohio ¹ Ark. ¹	Oct. 1960 Oct. 30, 1960 Oct. 30, 1960 Oct. 15, 1959 July 14, 1960 Jan. 24, 1961 Aug. 12, 1960 Sept. 20, 1960 Aug. 23, 1960 Aug. 24, 1960 Aug. 25, 1960 Sept. 1, 1960 Aug. 31, 1960 Jan. 9, 1961	ND 4.0 9.1 <10 ND ND ND ND 108 67 ND 22 11 20 ND	4.9 0.43 0.17 6.6 1.5 1.2 2.6 1.5
Nuts	Cashews Walnuts Pecans Walnuts Pecans	Lake Orangeburg Marion Lincoln	S. India Calif. S. C. Oreg. ¹ Okla. ¹	1960 Oct. 1, 1961 Fall 1960 Fall 1960 Apr. 6, 1961 ¹	ND 17 ND ND ND	
Dairy products	Milk (powdered) Milk (evaporated) Milk (evaporated) Milk (evaporated) Cheese Cheese Cheese Cheese (cheddar) Cheese (cheddar) Cheese (cheddar) Eggs (liquid) Eggs (shell)	Bongards E. Aurora Pocatello Mt. Angel Pike Bongards	Idaho Oreg.¹ Mo.¹ Colo. Idaho Minn.¹ N. Y.¹ Idaho¹ Oreg.¹ Mo. Minn.¹ Minn.	1961 Dec. 20, 1960 ¹ Dec. 26, 1960 ¹ Dec. 16, 1960 ¹ Dec. 30, 1960 ¹ Sept. 15, 1960 ¹ Sept. 15, 1960 ¹ Jan. 4, 1961 ¹ Jan. 3, 1960 ¹ Jan. 23, 1960 ¹ Jan. 24, 1961 ¹ Feb. 27, 1961 Feb. 27, 1961	1.6 ND 25 ND ND ND ND ND ND ND ND ND 26 6.8 21	24 12 104 27
Grain & grain products.	Oat flour Oat flour Corn flour Oat flour Flour Corn Meal Flour Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Flour	Cedar Rapids Cedar Rapids Milwaukee Cedar Rapids Penn Yan Crawford Montezuma Gardner Montgomery Roseville Taylor Summerville	Iowa Iowa Wis. Iowa¹ N. Y.¹ Ill. Colo. Kans.¹ Ill. Calif. Tex. Mo.¹ Mont. Wyo. Ark. Ark. S. D. S. D.	1959 ¹ 1960 ¹ Sept. 8, 1960 ¹ Dec. 27, 1960 ¹ Oct. 18, 1960 ¹ Sept. 12, 1960 ¹ 1960 1960 Jan. 11, 1961 ¹ Dec. 8, 1960 Jan. 12, 1961 ¹ Oct. 1, 1960 Aug. 1960 Aug. 1960 Aug. 1960 Aug. 1960	70 70 70 5.2 23 ND 5.9 1.4 82 105 16 <25 56 ND 52 ND 60 128 53	2.6 0.09 0.17 20 19 7.5 7.0 50
Baby foods	Beets (jr. food)	Transylvania &	Minn. ¹ N. C.	Apr. 13, 1960 ¹ July 21, 1960	125 40	1.4
	Green beans (strained) Green beans (strained) Peas (strained). Spinach (strained). Squash (strained). Veal (jr. food) Pork (strained). Lamb & Broth (strained).	Genesee & Livingston Orleans & Genesee Orleans & Genesee Newaygo & Muskegon St. Paul St. Paul	Mich. N. Y. N. Y. Mich. Minn. Minn. Minn.	Aug. 24, 1960 ¹ Aug. 22, 1960 July 18, 1960 June 7, 1960 Sept. 7, 1960 July 19, 1960 May 24, 1960 June 10, 1960	5.3 8.7 3.6 16 2.6 65 35 22	15 8.6 2.4 7.5 4.4 0.8 0.13 0.46

TABLE 1.—RADIOANALYSES OF RAW AND PROCESSED FOODS—Continued

[Concentrations in µµc/kg original material]

		Origin		Date harvested		
Category	Product	County or city	State or country	or processed	Cesium-137	Strontium-90
Seafood	Sardines Tuna Fish	San Francisco	Calif. Japan	July 14, 1960 1960	ND 38	1.2 0.3

 $^{^{\}text{l}}$ City processing location; all other locations are counties where produce originated. $^{\text{l}}$ ND—Not detectable. $^{\text{l}}$ Processed from same wheat crop.

Table 2.—RADIOANALYSIS FOR STRONTIUM-90 IN TEAS HARVESTED IN 1958 AND 1959 [Concentration in \(\mu\mu\)c/kg original material]

		Number of	Strontiu	ım-90
Form	Country	samples	Average	Range
Leaf	India Japan Formosa Indonesia Ceylon Pakistan Tanganyika Kenya Belgian Congo Mauritius Brazil	5 7 8 2 1 1 2 3	632 591 353 125 186 719 48 188 70 175	235-1,094 227-1,662 236- 448 63- 419 66- 354 707- 731 146- 230 54- 94
Soluble	Manufacturer A		14 32 30	

Table 3.—STRONTIUM-90 CONTENT OF VARIOUS FOODS HARVESTED IN 1960

[Concentrations in $\mu\mu c/kg$ original material]

		4	Area		Strontium-
Category	Product ¹	County	State or country	Harvest month	90
Wheat & Derivatives	Wheat (a) Flour (a) Wheat (b) Bran (b) Flour (b) Wheat (c) Bran (c) Wheat (d) Bran (d) Wheat bran (e) Flour (e) Wheat Wheat Wheat Wheat Wheat Wheat Wheat Bran Bran	Texas Texas Greenbrier Greenbrier Greenbrier Cache Cache Camas Camas Walworth Walworth Monroe Johnson Johnson Wayne Walla Walla Randolph Kimball	Mo. Mo. W. Va. W. Va. W. Va. Utah Utah Idaho Idaho S. D. S. D. Mich. Kans. Kans. N. Y. Wash. Mo. Nebr.	July July October October October August September September August July June July June July July July July July July July July	50 7.6 58 74 5.5 3.4 53 5.7 7.7 23 4.9 19 20 18 3.6 54
Vegetables	Celery Celery Celery Celery Celery Celery Celery Celery Onions Onions Onions Onions Green beans, fresh (f) Green beans, fresh (f) Green beans, fresh Green beans, fresh Green beans, fresh Caren beans, fresh Caren beans, fresh Carrots, canned Carrots, canned Carrots, raw Carrots, raw Carrots, raw (g) Carrots, fresh Carrots, raw (h) Carrots, raw Spinach, fresh Spinach, fresh Spinach, fresh Spinach, fresh Spinach, fresh	Dorchester Oconto Manitowoc Hidalgo Wayne Spokane Yakima Yakima Walla Walla Clackamas McHenry McHenry Marquette Washington Manitowoc Yates Yates	N. Y. N. Y. Calif. Calif. Wash. Ohlo N. Y. Wis. N. Y. N. Y. N. Y. Md. Wis. Wis. Tex. N. Y. Wash. Wash. Wash. Wash. Wash. Wash. Wash. Wis. Wis. Tex. N. Y. Calif.	September September September September October September September September September September September September September September August August November October October October October March	3.3 9.3 0.76 1.5 2.0 4.2 0.65 0.27 2.7 5.0 0.42 3.4 14 10 6.0 3.5 1.1 3.3 2.0 1.0 1.7 2.4 7.1 3.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3

TABLE 3.—STRONTIUM-90 CONTENT OF VARIOUS FOODS HARVESTED IN 1960—Continued

Tr

Jose Hea

of Yo tin Th sei in pr II,

> go cit ly in tu ar gı ar ci CC ty f p f 'n iı

[Concentrations in µµc/kg original material]

Cotonom	Decdrott	,	Area	Howard month	Strontium-
Category	Product ¹	County	State or country	Harvest month	90
	Spinach, frozen. Cabbage Cabbage Cabbage	San Diego Johnson Hennepin Monterey	Calif. Kans. Minn. Calif.	March 1960 ² July August	3.5 7.1 4.4 1.1
Fruits*	Peaches, fresh (i) Peaches, canned (i) Peaches, canned (i) Peaches, fresh. Peaches, fresh. Peaches, fresh. Peaches, fresh. Peaches, canned. Peaches, fresh. Peaches, canned. Tomatoes, canned. Tomatoes, canned. Tomatoes, canned. Tomatoes, fresh (j) Tomatoes, fresh (k) Tomatoes, fresh (k) Tomatoes, fresh Apples, whole, fresh Apples, pulp (m) Apples, peel (m) Apples, peel (n) Apples, core (n) Apples, core (n) Apples, core (o)	Valencia Luzerne Luzerne Luzerne Niagara Niagara	N. Y. N. Y. N. Y. Va. Mich. Mich. Mich. Mich. N. Mex. Utah Md. N. Y. V.	September September September August September October October October October October October September October October October October October September September September September September	0.45 0.74 3.6 1.5 1.2 1.4 3.1 8.9 0.45 0.52 6.6 0.82 0.21 0.53 0.57 0.58 1.9 0.80 1.9 0.80 1.9 1.2 1.3 1.2 1.0 0.88 1.1 1.3 1.4 0.63 1.0 0.44 0.63 1.0 0.44 0.63 1.0 0.44 0.65 1.8 2.1
Dried fruits	Raisins Raisins Raisins Figs Figs Figs Figs Figs Fig paste Fig paste Fig paste Dates Dates Dates	Fresno Madera Tulare	Calif. Calif. Calif. Greece Greece Greece Turkey Turkey Turkey Portugal Portugal Iraq Iraq	September September May 1960 ² September 1960 ² October November October 1960 ² 1960 ²	3.9 2.0 2.5 7.7 6.8 9.3 2.1 7.8 7.7 9.4 8.7 0.5 1.5
Seafoods	SardinesSardinesSardinesHaddockHaddockHaddock		Calif. Calif. Calif. Calif. Atlantic Coast Atlantic Coast Atlantic Coast Chesapeake Bay Chesapeake Bay	October Calif. 1960 1960 1960 October February November November	0.5· 1.22 0 0 0.3· 0.1· 2.1· 0.4· 4.6
Dairy products	Milk, evaporated Milk, evaporated Cheese, cheddar Cheese, cheddar Cheese, cheddar		Oreg, Wis. Minn. Minn. Oreg.	December November January 1960	12 12 51 27 104
Baby food	Applesauce Applesauce Peaches Peaches Bananas Green beans Green beans Green beans Lamb Beets Lamb Lamb & lamb broth Pork Beef & beef broth Oat flour Corn flour			1960 1960 1960 1960 1960 1960 1960 1960	1.1 1.2 0.1 0.4 0.1 22 15 8.6 7.5 4.4 2.8 0.3 0.4 0.1 0.8

Code letters in parentheses indicate same lots of crop, i.e., flour (a) derived from Texas, Mo. wheat (a).
 Month not available.
 Where designated fresh, fruit is unpeeled.

Tri-City Diet Study

ım-

Joseph Rivera
Health and Safety Laboratory, U.S. Atomic Energy Commission

The dietary survey of strontium-90 content of average diets of individuals living in New York City, San Francisco and Chicago was continued by the Health and Safety Laboratory. The results of the fourth sampling are presented in table 1. Previous data were reported in HASL-90 (1), 111 (2), and 113 (3) and presented in Radiological Health Data, Volume II, Numbers 4, 6 and 10.

Selected foods, representing 19 food categories, are purchased at each of these three cities about every three months and are analyzed for strontium-90 and stable calcium. Using data from the U.S. Department of Agriculture, "Household Food Survey of 1955," the annual consumption by an individual can be grouped into the same 19 food categories. The annual dietary intake of strontium-90 and calcium can then be estimated by summing the contributions from each category. Some food types are assumed to be representative of larger food categories, such as liquid milk for dairy products in general. Hence, in the tables that follow, the values shown for food consumption may not be directly related to the original data in the source document.

The data indicate that there has been no sub-

stantial change in the relative contributions of the various foods to the total intake, or in the total intake of strontium-90 since the last sampling. Contributions of this element from tap water are not included in table 1. However, recent measurements show the contributions from tap water to have 132, 176, and 132 $\mu\mu c$ of strontium-90 per year at New York City, Chicago and San Francisco, respectively. It was assumed in making these estimates that the average daily intake of tap water is 1.2 liters.

Using the totals given in table 1, the following average concentrations in µµc Sr⁹⁰/gm Ca may be derived for the year: New York, 9.3; Chicago, 9.1; San Francisco, 3.9.

No seasonal effect on the strontium-90 levels in food can yet be observed. Due to the resumption of atmospheric testing of nuclear weapons, it will be difficult to determine how the levels might have varied with season had the moratorium been continued.

REFERENCES

- (1) Quarterly Summary Report, HASL-30, August 18, 1960
- (2) Quarterly Summary Report, HASL 111, April 1, 1961
- (3) Data from Quarterly Summary Report, HASL-113, July 1, 1961

TABLE 1.—STRONTIUM-90 LEVELS OF DIET—FOURTH SAMPLING

Food type	Annual consumption	New Yo	ork City ry 1961	Chie April		San Francisco April 1961		
	(kg/yr)	μμc/kg	μμе/уг	μμc/kg	µµс/уг	μμc/kg	µµс/уг	
Whole grain products Refined grain flour G	37 43 221 45 3 3 200 443 17 26 68 3 16 8 1	6.4 8.7 5.8 7.9 4.6 3.6 19.4 2.5 3.5 4.4 2.2 2.3 6.5 0.1 1.3 0.7 0.9 0.7	70 322 251 1,735 207 11 58 50 151 75 58 43 442 0 21 5 1	16.6 9.7 8.2 5.3 4.2 4.0 20.4 6.6 9.5 9.5 1.1 3.5 4.1 1.9 1.7 0.4 0.5 0.3	183 358 351 1,164 189 12 61 132 416 155 29 66 279 6 26 279 6 28 1 23	12. 5 6. 5 0. 5 2. 1 2. 8 3. 5 1. 3 0. 9 2. 4 3. 6 2. 0 2. 3 3. 1. 7 2. 0 0. 3 0. 3 0. 9 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0	133 244 22 466 124 11 10 6 6 2 3 3 15	

SECTION III.—MILK

Milk Monitoring Program

Division of Radiological Health, Public Health Service

There have been two Public Health Service Milk Monitoring Programs since the first quarter of 1960. The original network was established to develop sampling and radiochemical analytical proficiencies under conditions which would remain similar over a period of time in regard to the source of milk. During the operation of this program it became apparent that a broader sampling program more directly related to the milk consumed by the population was necessary. The result was a transition from the program of sampling raw milk, collected from milksheds of limited size, to a sampling program designed to be representative of the processed milk consumed in a given municipality. The establishment of the processed milk area sampling stations did not preclude the need for further raw milk sampling from the selected milkshed serving the same city. It was important that both networks be in operation for a sufficient period of time to provide an overlap for the purpose of a comparative study.

The processed milk area sampling stations provide adequate information as to the radio-nuclide content of milk. There has now been a sufficient period of overlap in the two sampling programs. Therefore, the reporting of the results of the raw milk sampling stations in Radiological Health Data was terminated with the publication of the June 1961 results in Volume II, Number 11.

Publication of the data from the program will normally follow about four months after sample collection because of the time required for shipment, processing, decay-product build-up, compilation of the data, and clearance and publication procedures.

Processed Milk Area Sampling Stations

During 1960, a processed milk surveillance program of about 60 stations was established to provide information on levels of radioactivity in fluid milk consumed by the public. These stations were established in cooperation with State and local health and milk sanitation agencies. Each city was selected to provide adequate coverage with respect to production areas and the consuming population. The emphases of this expanded sampling and radioassay program are:

- 1. to measure the levels of radioactivity of the milk consumed by the public in various regions of the country by obtaining samples of pasteurized and homogenized milk at the processing plant, and
- to provide one sampling point within each State with additional points when indicated by widely varying conditions of the milk supply or the need to provide coverage of large population groups.

FIGURE 1.—PROCESSED MILK AREA SAMPLING STATIONS

 $\begin{array}{c} \textbf{Table 1.--RADIOACTIVITY IN MILK--PROCESSED MILK AREA SAMPLING STATIONS, SECOND QUARTER \\ \textbf{AND JULY 1961} \end{array}$

[Radioactivity concentrations in µµc/liter]

	Calc (gm/		Stronti	um-90	Cesiu	m-137		Calc (gm/		Stronti	um-90	Cesius	m-137
Area	Second quarter	July	Second quarter	July	Second quarter	July	Area	Second quarter	July	Second quarter	July	Second quarter	July
lbuquerque, N.M.	1.06	1.08	5	2	5	<5	Memphis, Tenn	1.30	1.26	13	10	10	1
tlanta, Ga	1.29	1.20	10	10	20	20	Milwaukee, Wis	1.19	1.20	6	5	20	2
ustin, Tex	1.24	1.18	3 8	2	5	<5	Minneapolis, Minn	1.07	1.04	7	10	10	3
altimore, Md	1.23	1.14	8	12	15	25	New Orleans, La	1.30	1.27	13	12	20	
oston, Mass	1.21	1.17	11	12	35	40	New York, N. Y	1.17	1.14	9	10	25	
uffalo, N. Y	1.22	1.13	8	8	15	15	Norfolk, Va	1.26	1.20	9	10	20	
urlington, Vt	1.22	1.19	8	10	15	20	Oklahoma City, Ok	1.22	1.16	8	6	5	4
harleston, S. C	1.25	1.19	12	10	25	25	Omaha, Nebr	1.07	1.30	6	9	1.0	
harleston, W. Va.	1.20	1.19	9	10	15	10	Palmer, Alaska	1.03	1.05	9	7	5	
harlotte, N. C	1.26	1.20	12	12	15	15	Philadelphia, Pa	1.18	1.18	9	10	15	
hattanooga, Tenn	1.33	1.24	11	11	15	15	Phoenix, Ariz	0.97	1.01	5	3	5	
hicago, Ill		1.12	8 9	6	10	20	Pittsburgh, Pa		1.15	12	14	20	
incinnati, Ohio		1.19	9	10	10	<5	Portland, Me	1.26	1.16	10	11	40	
leveland, Ohio		1.24	8	6	10	8	Portland, Oreg	1.05	1.05	12	12	30	
allas, Tex	1.24	1.18	9	8	10	20	Providence, R. I	1.17	1.19	10	12	40	
enver, Colo	1.01	1.04	6	5	5	10	Sacramento, Calif.	1.05	1.05	5	5	<5	
es Moines, Iowa	1.01	1.10	7	7	5	10	Salt Lake City, Utah	1.01	1.18	5	3	10	
etroit, Mich	1.17	1.15	8	7	15	<5	San Francisco, Cal.	1.04	1.10	5	4	10	
rand Rapids, Mich	1.25	1.18	7	6	15	10	San Juan, P. R		1.16	4	4	5	
artford, Conn		1.13	9	10	30	20	Seattle, Wash	1.03	1.02	9	14	25	
elena, Mont	1.02	1.07	6	7	10	15	Spokane, Wash		1.05	8	8	15	
onolulu, Hawaii	0.96	1.00	4	5	10	10	St. Louis, Mo	1.09	1.10	8	7	20	
laho Falls, Idaho.	1.04	1.06	5	9	10	10	Syracuse, N. Y	1.19	1.18	7	7	15	
dianapolis, Ind	1.23	1.18	8	6	10	20	Tampa, Fla	1.23	1.19	6	6	110	
ekson, Miss	1.35	1.26	14	10	15	20	Trenton, N. J	1.17	1.16	9	8	15	
ansas City, Mo	a 1.08	1.06	a 12	11	8 15	10	Tampa, Fla Trenton, N. J Washington, D. C	1.18	1.12	8	8	20	
aramie, Wyo	1.00	1.01	5	8	10	10	Wichita, Kans	1.01	1.21	8	14	10	
as Vegas, Nev	1.00	1.02	3	3	5	8	Wilmington, Del	1.20	1.18	10	8	1.5	
ittle Rock, Ark	1.21	1.22	19	17	25	15							-
ouisville, Ky	1.18	1.10	11	9	10	<5	Average	1.16	1.14	8	8	1.5	
lanchester, N. H	1.23	1.20	12	10	4.5	55							

Average based on two Months' samples.

m

er ed

nd

8

ce

ed ty se th on de on he

of us nlk

ch lihe r-

The processed milk sampling program was designed to sample processed fluid milk (pasteurized and homogenized) rather than the raw product. The sampling procedure was originally developed to provide a sample from one day's sales per month in a community which would be as representative of the total supply as can be achieved under practical conditions. Each sample is a composite of those plants supplying not less than 90 percent of a city's milk supply. The contribution from each plant to the total sample is approximately proportional to the volume of milk sold. Due to the resumption of weapons testing, the frequency of sampling was increased during September and October.

The samples from the processed milk stations are collected with the assistance of the various State and local health and milk sanitation agencies and are shipped for analyses to either the Southeastern or Southwestern Radiological Health Laboratory. The Southeastern Radiological Health Laboratory processes samples

from the 30 states generally east of the Mississippi, and the Southwestern Radiological Health Laboratory processes samples from the western states. Figure 1 shows the locations of these stations.

Se

M

19

ar

SI

W

in

01

m

pa

S

c]

p

to

a

c

b

a

d

Radioassays for Sr^{90} , Cs^{137} , Sr^{89} , Ba^{140} , and I^{131} are performed. The values for Sr^{89} , Ba^{140} , and I^{131} for July 1961 were below the levels of detection by present instrumentation and are therefore not shown in table 1. The lower level of detection for Sr^{89} is 5 $\mu\mu$ c/liter, and for Ba^{140} and I^{131} , 10 $\mu\mu$ c/liter. Other radionuclides of concern to public health agencies will be included for assay as necessary for a more complete monitoring of the milk supply.

The program of daily sampling for I¹³¹ analyses was continued at selected stations. Table 2 presents daily laboratory results from October 11-31, 1961, for those stations. *Radiological Health Data*, Volume II, Number 11, presented the daily I¹³¹ results for the period September 19 through October 10, 1961.

Table 2.—Daily Iodine-131 Determinations, Processed Milk Area Sampling Stations, October 11-31, 1961

Con	anond	mer 6	iona	Em	 /liter1

	October																				
Area	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Atlanta, Ga. Austin, Tex Charleston, S. C Chicago, III Denver, Colo. ackson, Miss Milwaukee, Wis. New Orleans, La. New York, N. Y. Dmaha, Nebr Palmer, Alaska Pascagoula, Miss Sacramento, Calif. Salt Lake City, Utah Seattle, Wash St. Louis, Mo.	150 100 100 140 90 110 240 - 80 <10 120	20 70 150 — 110 140 80 — 300 — 110 <10 130 90	90 120 60 100 — 120 <10 120 110	20 60 80 140 70 90		320 80 	120 20 20 110 100 60 130 50 80 260 	80 250 80 120 90	130 	60 30 50 120 90 60 130 60 90 — 70 — 100 90	20 50 80 90 100	100	2.60	40 20 50 120 50 120 40 100 150 220 40 100	40 60 40 130 50 130 80 120 150 - 30 - 120 80	70 20 70 110 60 50 180 60 90 170 150 70	50 180 60 90 - 70 - 130 150	160 70 	50 		3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Vashington, D. C. Vichita, Kans	80	70	=	70	=	50	120 40 100	30 50	20 60	110 50 50 140	150 40 140	=	40 50	120 30 60 120	110 50 80 120	70 80	50 70	80	-	100 40 60 100	

Raw Milk Sampling Stations

The June 1961 data presented in Radiological Health Data, Volume II, Number 11, are the last regular publication of the results from the raw milk sampling program. The limitations inherent in the size of the program and the procedures used for collecting milk samples have made necessary the broader program more directly related to the milk consumed by the population. The establishment of the Processed Milk Area Sampling Stations resulted

from this need, and, after a period of overlap, obviated the necessity for continued publication of the raw milk data. Collection and analyses of samples of raw milk will continue in connection with research on factors influencing the levels of radionuclides in milk and the results will be made available from time to time.

The following discussion by personnel of Milk and Food Research, and Radiological Health Research Activities, Robert A. Taft Sanitary Engineering Center, Public Health Service, summarizes the results of the Raw Milk Sampling Program.

SUMMARY RESULTS FROM RAW MILK SAMPLING PROGRAM

is-

lth

ern

ese

nd

140

of

are

vel

140

of

in-

m-

ly-

ble

oer

cal

ted

oer

31

30 50

130 50

ap,

ion

ses

ec-

the

ılts

of

cal

aft

lth

The Public Health Service undertook early in 1957 an investigation to determine the amounts and kinds of fission products in foods in response to increasing awareness that the nuclear weapons tests of various nations were resulting in the discharge of ever-increasing amounts of radioactive contaminants into the environment and in recognition of the damaging capabilities of "high" concentrations of at least some of these products.

Milk was chosen as the first item of the diet to be surveyed. Reasons for this choice includes: (a) evidence indicates that milk was probably a major contributor of Sr⁹⁰ to the total diet, (b) milk is consumed extensively by almost all segments of the population, especially children, (c) milk is produced on a year-round basis in almost every area of the United States and, (d) this food item offers the possibility of developing one set of methods that would be equally applicable to all samples.

Preliminary examination of several market milk supplies using methods of analysis available at the time showed that cesium-137, iodine-131, strontium-89, strontium-90, and barium-140 were present in significant concentrations and led to the decision that all of them should be routinely determined. With this in mind, a sequential system of analysis for these fission products was developed (3.5.6). was given particularly to the development of simple and relatively fool-proof methods which could be successfully carried out by well trained but non-professional personnel and which were suitable for use with large numbers of samples. A technique was developed by which milk could be transported from distant locations to a central laboratory for analysis by the addition of 4 ml of 40% formaldehyde per gallon of milk and using air parcel post for transportation. Samples handled in this manner almost without exception will remain in a fluid state without obvious decomposition and will be satisfactory for radionuclide analysis for over one week.

Monthly collections of raw milk samples were taken from discrete geographical areas within specified milksheds serving large urban populations in different regions of the United States. The following criteria were used in developing each of these stations:

1. The milk represented in each sample was from a group of farms milking a total of at least 1,000 cows.

2. The number of individual farms was small enough so that collection of collateral field data from each farm was feasible.

3. The milk samples were from a supply that was part of a metropolitan milkshed.

4. The conditions under which the milk was received were such that each sample was representative of the same farms in the production area.

Analysis of samples collected in this manner provided the information necessary for research on the factors influencing the levels of radionuclides in milk as well as some notion regarding radionuclide exposure of population groups in the various metropolitan areas.

During the first year of operation five areas were selected for surveillance: New York, Cincinnati, St. Louis, Salt Lake City, and Sacramento. In the second year stations were added at Atlanta, Chicago, Fargo-Moorhead, Austin, and Spokane. Continuous monthly samples have been received from all stations since their initiation except for Fargo-Moorhead which discontinued participation in January 1960.

Methods

One-gallon raw milk samples are taken monthly from collecting stations in each area under surveillance, preserved with 4 ml of 40% formaldehyde, and forwarded to the Robert A. Taft Sanitary Engineering Center for radionuclide analysis. Each sample collected in a manner to meet the specification previously outlined is representative of lots of milk ranging from 2,000 to 90,000 gallons of the total milk supply of the designated area. The concentrations of iodine-131, barium-140, and cesium-137 are measured by gamma scintillation spectroscopy (4) while total radioactive strontium and strontium-90 are determined following radiochemical separation (6,7). The amount of strontium-90 is determined by counting, in a low-background anti-coincidence counter, the

build-up of yttrium-90 after a two-week ingrowth period. The total radioactive strontium is determined in a shielded proportional counter and the difference between this figure and that determined for strontium-90 is reported as strontium-89. Stable calcium and potassium are also determined routinely on all samples (9,10).

Since initiation of the project, several of the analytical procedures have been improved or simplified. Prior to use for surveillance activities each new procedure has been shown to have a precision and sensitivity equal to or better than the method replaced, thus making all of the data obtained in connection with the Raw Milk Sampling Stations comparable with one exception. The initial radiochemical procedure for cesium-137 was found to include a contribution from the beta-emitting rubidium-87 which is not seen by the gamma-spectrometer. Accordingly, the cesium-137 values from May 1957 to January 1959 may be high by as much as 15-20 µµc per liter of milk.

Results and Discussion.

Results of analysis for all the samples collected in the Raw Milk Sampling Program from May 1957 through June 1961 have been published elsewhere (1,2,11) and accordingly are not tabulated in connection with this summary. Considerations of these results have been limited to the gross relationship between fallout and the occurrence of some of these fission products in milk as influenced by time and geographical location. For purposes of convenience the results have been divided into two groups based upon the half-lives of the radionuclides. The first group consists of strontium-90 and cesium-137, both with half-lives of about 28 years, while the second group consists of iodine-131, barium-140, strontium-89, having half-lives of approximately 8, 13, and 63 days respectively.

Table 3 summarizes the average yearly concentrations of Sr⁹⁰ in the monthly milk samples from each of the locations of the Raw Milk Sampling Program. Based on an analysis of variance of the data obtained during 1959, the cities have been grouped to indicate significant differences between geographical locations. It is seen that there is no significant difference in the average strontium-90 concentration in the milk from Sacramento, Austin, and Salt Lake City. The levels of strontium-90 in the milk from Chicago and New York is higher than the first group of cities, but significantly lower than the concentrations observed in the samples from Cincinnati, Spokane, Atlanta, and Fargo-Moorhead. However, the average concentration of strontium-90 in milk from the portions of the milksheds serving St. Louis is significantly higher than that from any other area. This type of statistical treatment is dependent on the observed variation in the sample and does not infer biologically significant differences.

It is evident also from these data that the relative levels of strontium-90 in milk have remained constant with respect to geographical location throughout the entire study.

Levels of strontium-90 within a given milkshed, however, are not constant. Analysis of the variance, applied to these data, oftentimes revealed significant differences which appeared to be associated with the seasons of the year

Table 3.—AVERAGE CONCENTRATION OF STRONTIUM-90 AND CESIUM-137 IN MONTHLY RAW MILK SAMPLES

[Concentrations in uuc/liter]

		Str	90	Cesium-137						
Station	1957	1958	1959	1960	ь 1961	1957	1958	1959	1960	ь 1961
Sacramento, Calif	n 4.4	5.1 a 3.5	5.0	3.3	3.7	* 46	34 a 23	23 33	9	
Salt Lake City, Utah	a 4.7	4.3 a 7.6	6.7 8.6	6.0 9.4	3.5 6.5	a 57	a 40	37 47	30	
New York, N. Y	* 5.8 * 5.9	6.5 8.5	9.3	9.4	8.0 9.0	a 43	41 48	39 37	26 23	
Spokane, WashAtlanta, Ga		* 8.8 * 11.3	12.2 15.5	11.2 14.6	7.5 12.7		a 50 a 44	67 66	36 35	
Fargo-Moorhead, N. D	a 9.4	* 13.6 13.2	14.4 22.2	18.0	17.3	a 50	* 65 57	52 74	29	

Approximately last half of year.
b Through June 1961.

n-

ut

of

lg

YS

n-

P.G

lk

of

10

nt

It

in

1e

ke lk

1e

28

0-

a-

18

fi-

a.

nt

ıd

r-

1e

al

of

28

ed

ır

1

FIGURE 2.—CONCENTRATIONS OF STRONTIUM-90 IN MILK (NEW YORK)

and independent of weapons tests. An example is seen in figure 2. Here, the levels of strontium-90 observed in the milk samples obtained from the New York milkshed have been plotted as a function of time-month. It is seen that there is a pronounced increase in concentration of strontium-90 during the spring months (statistically significant during 1959 and 1960) and again during the fall. Similar variations have been observed in most of the other milksheds although in many cases these differences are not significant.

In table 3, the annual average concentrations of cesium-137 in the monthly milk samples are summarized. In a general way the variations observed with this radionuclide are similar to those observed for strontium-90.

An analysis of variance applied to the 1959 findings indicated that the milk from Sacramento contained significantly less cesium-137 than that from any other area while milk from St. Louis had a significantly higher concentra-The remaining geographical areas fell into one of two intermediate groups as indicated. Seasonal variations as seen in figure 3 were observed in all locations and the samples produced during the spring of 1959 contained significantly more cesium-137 than samples produced at other times. Although there is no clear association between the concentrations of this radionuclide and weapons test activities. the concentration of cesium-137 has decreased at a more rapid rate than strontium-90 in all geographical locations since cessation of weapons tests in October 1958. This is also seen in figure 3 in which the levels of strontium-90 and cesium-137 observed in the samples from Atlanta have been plotted with respect to time. The probable reason for this difference in behavior is related to the differential absorption of strontium-90 and cesium-137 through the root systems of plants although the half-lives of these two radionuclides are approximately the same.

In contrast to the findings with the long halflife radionuclides, correlation between weapons tests and the occurrence of the short half-life radionuclides in milk was observed for all

FIGURE 3.—CONCENTRATIONS OF STRONTIUM-90 AND CESIUM-137 IN MILK (ATLANTA)

FIGURE 4.—CONCENTRATIONS OF SHORT HALF-LIFE RADIONUCLIDES IN RAW MILK

areas. In figure 4 the radioactivity contributed by iodine-131, barium-140, and strontium-89 has been summed and plotted as a function of time since May 1957 for the samples received from St. Louis, Sacramento, and New York milksheds. At the foot of the graph, the number of weapons tests conducted inside and outside the continental United States has been marked on the same time scale. Although it is clear that the highest levels of radioactivity coincide with the periods of weapons tests, the relationship cannot be established precisely as the number of tests do not reflect fission yield of the explosions and the collection of the samples in the Raw Milk Sampling Stations was made independently of the testing program. This is especially evident during the last period of the continental tests in which most of the explosions were of low fission yield. The pattern of activity observed for New York and St. Louis samples appears to be true for all of the areas studied with the exception of Sacramento in which the concentration of the short-life radionuclides is relatively non-responsive to continental weapons tests.

This difference is presumably related to the location of the milkshed with respect to the Nevada Test Site and the prevailing west to east movement of the air. In all locations, no iodine-131 or barium-140 was observed in any milk samples by the end of 1958 or about 3 months after the last weapons test which coincides well with predictions based on the halflives of these two radionuclides. The half-life of strontium-89 is sufficiently long that measurable concentrations were expected and observed through the fall of 1959 or about a year after the last test and the seasonal variations previously mentioned were also observed here. Although no weapons tests were conducted in the period under consideration after October 1958, the levels of strontium-89 were found to increase steadily from January 1959 to reach a peak in the spring coinciding with the maximum concentration found in strontium-90 in the same period, thus indicating that additional strontium-89 was deposited during the period or otherwise made available to the cattle. After the spring peak the levels of strontium-89 were found to have decreased at a rate approximately equal to its half-life.

BIBLIOGRAPHY

 Campbell, J. E., Murthy, G. K., Goldin, A. S., Robinson, H. B., Straub, C. P., Weber, F. J., and Lewis, K. H. The Occurrence of Strontium-90, Iodine-131, and Other Radionuclides in Milk. Am. J. Pub. Health. 49:225. 1959.

Campbell, J. E., Murthy, G. K., Straub, C. P., Lewis, K. H., and Terrill, J. G. Radionuclides in Milk. Agri.

and Food Chem. 9:117. 1961.

3. Brenson, B. M., Hagee, G. R. Goldin, A. S., Karches, G. J., and Straub, C. P. Assembly and Operation of Low Level Counting Facility. J. Am. Water Works Assoc. 51:438, 1959.

Hagee, G. R., Karches, G. J., and Goldin, A. S. Determination of I¹⁸¹, Cs¹³⁷, and Ba¹⁴⁰ in Fluid Milk by Gamma Spectroscopy. Talanta 5:36. 1960.

Murthy, G. K. and Campbell, J. E. A Method for the Rapid Ashing of Milk for Radionuclide Analysis. J. Dairy Sci. 32:1288. 1959.

Murthy, G. K., Jarnagin, L. P., and Goldin, A. S. A Method for the Determination of Radionuclides in Milk Ash. J. Dairy Sci. 32:1276. 1959.

7. Murthy, G. K., Coakley, J. E., and Campbell, J. E. A Method for the Elimination of Ashing in Strontium-90 Determination of Milk. J. Dairy Sci. 33:151. 1960.

8. Murthy, G. K. and Campbell, J. E. A Simplified Method for the Determination of Iodine131 in Milk. J. Dairy Sci. 33:1042. 1960.

9. Murthy, G. K., and Whitney, R. McL. A Plan for the Rapid Determination of Major Cations in Milk. J. Dairy Sci. 39:364. 1956.

10. Overman, O. R., Keirs, R. J. and Craine, E. M. Composition of Herd Milk of the Brown Swiss Breed. Illinois Agr. Expt. Sta. Bull. 567. 1953.

11. Radiological Health Data, U.S. Department of Health Education and Welfare, Public Health Service, Volume I, Numbers 1-9 and Volume II, Numbers

Radioactivity In Milk

Health and Safety Laboratory, U.S. Atomic Energy Commission

The results of analyses of milk by the Atomic Energy Commission's Health and Safety Laboratory at four locations in the United States for December 1960 and January through April 1961

are presented in table 1. Data for previous months appear in Radiological Health Data Volume I, Numbers 1, 2, 3, 5, 7, and 8, and Volume II, Numbers 3 and 6.

Table 1.—STRONTIUM-90 AND CALCIUM IN MILK SAMPLES, DECEMBER 1960-APRIL 1961 1

	S	trontium-9	0	Calc	eium		8	trontium-9	0	Calc	ium
Sampling station and month	µµc/ liter	µµc/kg	μμε/gm Ca	gm/liter	gm/kg	Sampling station and month	μμc/ liter	µµc/kg	μμε/gm Ca	gm/liter	gm/kg
Perry, New York (powdered milk) December 1960		49 65 65 59 65	4.8 6.5 7.0 6.5 7.2		10.3 10.1 9.3 9.0 9.1	Mandan, North Dakota (powdered butter- milk) December 1960		90 114 122 122 140	10.6 10.4 11.6 10.9 12.2		8.8 11.0 10.8 11.2
New York City (liquid milk) December 1960 January 1961 February 1961 March 1961 April 1961.	7.1 7.5 7.8 9.4 8.6		6.3 6.7 7.3 8.1 6.5	1.14 1.11 1.08 1.15 1.31		Honolulu, Hawaii ² (liquid milk) December 1960 January 1961 February 1961 March	3.4 2.4 2.0 3.0 2.1 3.6 1.9 3.2 2.8		3.2 3.2 1.8 2.7 2.4 3.5 1.9 3.1 2.0 2.8	1.07 1.05 1.12 1.12 0.88 1.03 1.01 1.03 0.96 1.00	

Data from Quarterly Summary Reports, Hasl-113, July 1961 and HASL-115, October 1961.
 Two results per month represents milk from two dairies.

Strontium-90 in Canadian Dried Milk Products

Department of National Health and Welfare, Dominion of Canada

The following table presents the results of measurements of strontium-90 in Canadian dried milk for the months of January, February, and March, 1961. This table was included in the "Quarterly Report of the Radio-Active Fallout Study Program," dated August 1961, published by the Radiation Protection Division of the Department of National Health and Welfare, Ottawa, Canada. Figure 1 shows the sampling locations. The samples were collected

FIGURE 1.—MILK SAMPLING STATIONS IN CANADA

by inspectors of the Marketing Division, Department of Agricuture.

Data for the year of 1960 were published in Radiological Health Data, Volume I, Numbers 6 and 9, and Volume II, Numbers 4 and 8.

TABLE 1.—STRONTIUM-90 CONTENT OF CANADIAN DRIED MILK POWDER SAMPLES

[Concentrations in µµc/gm calcium]

Station	January 1961	February 1961	March 1961
Calgary	6.9	7.2	6.8
Charlottetown	11.5	10.5	NS:
Chicoutimi	10.6	10.2	13.3
E. Florenceville	NS	N8	NS
Edmonton	8.1	8.3	8.8
Granby	6.6	6.2	6.0
Halifax 1	11.2	8.7	8.7
La Durantye	16.0	11.6	14.9
London	4.3	4.4	4.0
Megantic	12.7	12.9	12.7
Moneton 2	12.4	10.1	10.0
Ottawa	7.5	6.2	4.1
Saskatoon 2	8.3	7.1	5.1
Sussex	14.1	8.3	10.7
Vancouver	8.9	9.4	10.1
Walkerton	4.7	6.8	4.8
Winnipeg ²	5.5	7.1	4.9
Average	9.3	8.4	8.3

Nat

Divi

ates Fed stat diss pol

the

Sta

zat At cat suj rea tri are Bo tie im 30 is re

> ph re na fo 15

> > 01 SU

New Station. Natural strontium concentration not yet determined. A factor of 1.06 was used for correction of the sample. The results of all other stations were corrected for natural strontium in the sample. This determination was made by neutron activation at A.E.C.L. Chalk River.
 Buttermilk sample. All other samples are skim milk.
 NS—No milk powder manufactured for the month.

SECTION IV. — WATER

National Water Quality Network

Division of Water Supply and Pollution Control, Public Health Service

The National Water Quality Network operates under the provision of Section 4 (c) of the Federal Water Pollution Control Act, which states "... The Secretary shall... collect and disseminate basic data... (relating) to water pollution and the prevention and control thereof."

This Network, operated in cooperation with State and local agencies, and industrial organizations commenced operations in October 1957. At present, there are 90 sampling stations located on major waterways used for public water supply, propagation of fish and wildlife, recreational purposes, and for agricultural, industrial, and other uses. Some of these stations are on interstate, coastal, and International Boundary waters, and waters on which activities of the Federal Government may have an impact. Ultimately, total of approximately 300 stations will be in operation. Radioactivity is not yet being reported for a few of the more recently established stations.

Samples of water are examined for chemical, physical, and biological quality insofar as these relate to pollution. Samples for some determinations are taken weekly, others monthly, and for some, continous composite samples of 10 to 15 days are obtained.

Gross alpha and beta measurements are made on both suspended and dissolved solids in raw surface water samples. The levels of radioactivity associated with dissolved solids provide a rough measure of the levels which may be found in a treated water, where such water treatment removes substantially all of the suspended matter. Naturally-occurring radioactive substances in the environment are the source of essentially all of the alpha activity. The contamination of the environment from . man-made sources is the major contributor to the beta activity. It should be noted that with the cessation of weapons testing for a period of three years, the beta activity in most raw waters generally has approached a level attributable solely to natural sources. Natural beta activity can be two or three times the natural alpha activity based on the presence of the same nuclides. The resumption of nuclear weapons testing in the atmosphere by the USSR is expected ultimately to raise the level of radioactivity in surface waters again, but no significant increase had been noted to October 1, 1961.

For the first two years of the network operations, beta determinations were made on weekly samples. Alpha determinations were reported generally on composites of more than one weekly sample.

Beginning January 1, 1960, the frequency of beta determinations varied depending on the status of each particular station. For the first operating year of each new station, analyses were being conducted weekly. Weekly analyses were to be continued indefinitely from all stations which may be affected by waste discharges from nuclear installations. Semimonthly determinations on composites of 2 or 3 weekly samples were conducted for stations which still showed some beta activity above background. Monthly determinations on composities of all samples received from a station during the month were conducted on samples from streams where beta activity was at background levels.

Beginning January 1, 1960, the frequency of alpha determinations also was changed. For the first operating year of each new station, analyses were to be done weekly. Weekly determinations, or semimonthly determinations on composites of 2 or 3 weekly samples, were conducted at some collecting points on the Animas and Colorado Rivers. The remainder of the stations had determinations made quarterly on composites of all samples taken during that quarter. Schedules of determinations were so arranged that each river basin had one gross alpha determination each month.

The following changes were instituted on

September 1, 1961, following resumption of nuclear weapons testing:

- 1. Gross beta counts are to be made on all samples collected. (Compositing weekly samples for monthly or semimonthly gross alpha and beta counting will cease.)
- 2. Beginning with samples collected October 1, 1961, strontium-90 determinations are to be made on a three-month composite of weekly samples.

Gross alpha counts are to be made on one sample for each station each month, unless there is evidence of alpha activity. In the latter instance, an alpha determination will be made on a weekly or bi-weekly basis depending on what is considered the norm for a particular station.

Yun

Bon Clat McN Conne Delaw Mar Phi Escan Great But Det Por Gai Mil Sau Du

Huds Illino Kana Klan Little

Do No Miss W B Y O St K S

Po I

All data reported in table 1 represent the average of all information available for the month indicated. Reported strontium-90 data are the results of determinations on three-month composite samples for a period ending in the month shown. The data were determined on

As of August 14, 1961

FIGURE 1.—NATIONAL WATER QUALITY NETWORK SAMPLING STATIONS

TABLE 1.—RADIOACTIVITY IN RAW SURFACE WATERS

of

all ekly thly will

ber are e of

one less tter ade on

the the ata eein on

.

SS.

[Concentrations in µµc/liter]

	Quarter ending June 30, 1961			June	1961			
Station	Strontium-		Beta activity	ta activity		.lpha activity	rity	
*	90	Suspended	Dissolved	Total	Suspended	Dissolved	Tota l	
egheny River: Pittsburgh, Pa	0.2	0 2	0	0	0 <1	<1	<	
imas River: Cedar Hill, N. Mexkansas River:			6	8		40		
Coolidge, Kansas	0.7	17	3 12	20 12	5	46	1	
Sioux River: Sioux Falls, S. Dak	_	0	4	4	<1	3 2		
attahoochie River: Atlanta, Galorado River:	0.3	<1	<1	1		-		
Loma, Col	2.3	7 25	3 <1	10 26	20	4		
Page, Ariz	2.0	0	Ô	0	0	11		
Parker Dam, Ariz-Calif	_	3 0	1 0	4 0	0 <1	8 9		
lumbía River:						0		
Wenatchee, Wash	=	0 7	0 41	0 48	0	0		
Bonneville Dam, Oreg	_	24	19	43	0	0		
Clatskanie, Oreg	1.1	12 12	15 42	27 54	0	0		
nnecticut River: Northfield, Mass	-	0	0	0	0	0		
laware River: Martins Creek, Pa	0.4	0	0	0	0	0		
Philadelphia, Pa		0	0	0	0	0		
cambia River: Century, Flaeat Lakes:	_	0	0	0	1	0		
Buffalo, N. Y	-	0	0	0	0	0		
Detroit, MichPort Huron, Mich	=	0	0	0	0	0		
Bary, Ind		0	0	0	0	0 <1		
Milwaukee, Wisault Ste, Marie, Mich	0.3	0	0	0	<1 0	0		
Duluth, Minn	-	0	0	0	0	0		
dson River: Poughkeepsie, N. Ynois River: Peoria, Ill	0.5	1 0	12	3 12	0 <1	<1		
nawha River: Winfield Dam, W. Va	_	0	0	0	0	0		
amath River: Copco, Oregttle Miami River: Cincinnati, Ohio	0.3	<1 0	<1 <1	<1	<1	<1		
errimac River: Lowell, Mass	_	0	0	0	0	0		
ssissippi River: Minneapolis, Minn	_	0	0	0	0	0		
Dubuque, Iowa	_	0	0	0	0	0		
Burlington, Iowa E. St. Louis, Ill		0 6	0	0	0	0		
Cape Girardeau, Mo	_	0	0	0	8 3	1		
West Memphis, ArkDelta, La.		1	2	8 3	9	2		
New Orleans, La		6	2	8	4	<1		
issouri River: Williston, N. Dak	_	. 19	4	23	13	3		
Bismarck, N. Dak	0.6		0	0	0	3		
Yankton, S. DakOmaha, Nebr		5	8 12	8	3	4		
St. Joseph, Mo	_	20 22	0	20 22	18	0		
Kansas City, Kans St. Louis, Mo		24	0 3	27	29	4		
onongahela River: Pittsburgh, Pa		- 0	0	0	0	0		
hio River: East Liverpool, Ohio	_	- 0		0		0		
Huntington, W. Va.		0	<1	0 2				
Louisville, KyEvansville, Ind			0	0	1	2		
Cairo, Illotomac River:		- 0	0	0	10	3		
Williamsport, Md				0				
ed River North: Grand Forks, N. Daked River, South:	- 1.0	5 0	0	0	0	2		
Index, Ark	_	- 0		0				
Denison, Tex		- 0		0		6 5		
io Grande River:								
Alamosa, ColoEl Paso, Tex	- =	- 0		21		1 12		
Laredo, Tex		- 14	0	14	23	3		
Brownsville, Tex	0.			1		4 0		
abine River: Ruliff, Text. Lawrence River: Massena, N. Y	-	- 0	0	(<1	<1		
chuylkill River: Philadelphía, Paavannah River:	-	- 0	0	() (
Port Wentworth, Ga	0.			7				
North Augusta, S. C	0.	5 (1		
outh Platte River: Julesburg, Colo	-	- (30				
usquehanna River:) (0		

TABLE 1.—RADIOACTIVITY IN RAW SURFACE WATERS—Continued

[Concentrations in µµc/liter]

				June	1961		
Station	Strontium-		Beta activity		A	Alpha activity	1
	90	Suspended	Dissolved	Total	Suspended	Dissolved	Total
Tennessee River: Chattanooga, Tenn. Bridgeport, Ala. Yakima River: Richland, Wash. Yellowstone River: Sidney, Mont.	0.9	0 0 <1 41	50 56 0 2	50 56 <1 43	1 0 <1 2	0 0 0 1	<

a Dash denotes no sample received or no determinations made.

analytical schedules in effect till September 1,

Additional information and data may be obtained from the following sources:

(1) National Water Quality Network Annual Compilaof Data, PHS Publication. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. Price \$1.50.

(2) "Report on National Water Quality Control Network," submitted by Dr. F. J. Weber, Chief, Division

of Radiological Health, PHS, at the Joint Committee

on Atomic Energy Hearings on Fallout from Nuclear Weapons Tests, Vol. 1, May 1959, pages 167-169.

(3) Setter, L. R., Regnier, J. E., and Diephaus, A., "Radioactivity of Surface Waters in the United States," J. AWWA 51, 1377 (1959).

(4) Straub, C. P., Setter, L. R., Goldin, S., and Hallbach, P. F., "Strontium-90 in Surface Waters," J. AWWA 52, 756 (1960).

(5) Setter, L. R., and Baker, S. L., "Radioactivity of Surface Waters in the United States," Radiological Health Data, Vol. I, No. 7 (1960).

Strontium-90 in Tap Water

Health and Safety Laboratory U.S. Atomic Energy Commission

The Atomic Energy Commission's Health and Safety Laboratory performs analyses for strontium-90 concentrations in tap water for Richmond, California, and New York City on a monthly basis. Previous data were presented in Radiological Health Data, Volume I. Numbers 1, 5, and 9, and Volume II, Numbers 4 and 9. Table 1 gives the data for the first quarter 1961 and the yearly averages for 1959 and 1960.

TABLE 1.—STRONTIUM-90 IN TAP WATER 1 FIRST QUARTER 1961

Location	Month	Activity (μμε/liter)
Richmond, California (40 liters per sample)	Average 1959 Average 1960	0.20 0.20
	January 1961 February March	0.29 0.32 0.33
New York City (100-200 liters per sample)	Average 1959 Average 1960	0.40
	January 1961 February March	0.30 0.31 0.37

Data from Quarterly Summary Report, HASL-115, dated October 1. 1961.

SECTION V. — OTHER DATA

External Gamma Activity

otal

clear 9. A., nited

Hall-

y of gical

y er)

0.29 0.26 0.29 0.32 0.33 0.40 0.47 0.36 0.31 0.37

er 1,

Radiation Surveillance Network, Public Health Service

Portable survey instruments are available at stations of the Radiation Surveillance Network for recording levels of external gamma radiation. Measurements are made daily approximately three feet above the ground. These readings are not precise but are sufficiently accurate to illustrate any significant variations above background. The values shown in the following table do not show an increase in the external gamma levels as a result of atmospheric nuclear weapons testing.

TABLE 1.—EXTERNAL GAMMA ACTIVITY, SEPTEMBER 1961

Station location	Average (mr/hr)	Station location	Average (mr/hr)
Anchorage, Alaska Fairbanks, Alaska Juneau, Alaska Phoenix, Ariz Little Rock, Ark Berkeley, Calif Los Angeles, Calif Denver, Colo Hartford, Conn District of Columbia Jacksonville, Fla Miami, Fla Atlants, Ga Honolulu, Hawaii Boise, Idaho Springfield, Ill Indianapolis, Ind Iowa City, Iowa Topeka, Kans Frankfort, Ky New Orleans, La Baltimore, Md Lawrence, Mass Lansing, Mich	0.01 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01	Minneapolis, Minn Pascagoula, Miss Jefferson City, Mo Helena, Mont. Trenton, N. J Santa Fe, N. Mex Albany, N. Y Gastonia, N. C Bismarck, N. D Oklahoma City, Okla Ponca City, Okla Portland, Oreg Harrisburg, Pa Providence, R. I Columbia, S. C Pierre, S. D Nashville, Tenn Austin, Tex El Paso, Tex Salt Lake City, Utah Richmond, Va Seattle, Wash Madison, Wis Cheyenne, Wyo	0.0 0.0 0.0 0.0 0.0 0.0

Registration of Radiation Producing Machines in the State of New Jersey

Radiological Health Program
New Jersey Department of Health

In 1958, the New Jersey State legislature enacted the "Radiation Protection Act" (Chapter 116, Public Law 1958). Among other provisions, it required the registration of all radiation sources. The first registration of radiation producing machines was begun during November 1959 and was in effect from December 1, 1959, for an indefinite period. The

following tables present the results of the registration of radiation producing machines as of July 23, 1961. These tables give the age, type, and the use of the machines according to professional category of the user. The registration of radioactive materials was required during April 1960.

Su

Foo

die

mi

st

T

fe

TABLE 1.—TYPES OF RADIATION PRODUCING MACHINES

Category	Radiographic	Fluoroscopie	Radiographic and fluoroscopic	Therapeutic	Electron microscope	Particle accelerator	Spectroscope or fluoroscopic unit	Other	Total	Percent of total
Industry	204 321 2,975 172 174 71 405 24	446 0 1 0 2 76 3	33 888 0 18 3 45 217	0 161 0 0 0 1 1 95	18 0 0 0 0 0 0 0	13 0 0 0 0 0 0 0 7	96 0 0 0 0 0 0	306 1 0 0 0 0 0	674 1,817 2,975 191 177 119 793 51	9.9 26.7 43.8 2.8 2.6 1.8 11.7 0.7
Total	4,346	532	1,207	257	20	20	107	308	6,797	
Percent of total	63.9	7.8	17.8	3.8	0.3	0.3	1.6	4.5		100

Table 2.—USES OF RADIATION PRODUCING MACHINES

Category	Diagnostic	Therapeutic	Diagnostic & therapeutic	Industrial	Not stated	Tota!	Percent of total
Industry Physicians Dentists Chiropraetors Chiropodists Veterinarians Institutions Schools	74 1,644 2,975 190 177 117 698 21	0 165 0 0 0 2 2 95 0	0 5 0 1 0 0	600 0 0 0 0 0 0 0	0 3 0 0 0 0	674 1,817 2,975 191 177 119 793 51	9.9 26.7 43.8 2.6 1.8 11.7
Total	5,896	262	6	630	3	6,797	
Percent of total	86.7	3.9	0.1	9.2	0.04		100

TABLE 3.—AGE OF RADIATION PRODUCING MACHINES

Category	Prior to 1930	1930-1939	1940-1949	1950-1959	1960-1961	Not stated	Total	Percent of total
Industry Physicians Dentists Chiropractors Chiropodists Veterinarians Institutions Schools	2 17 123 2 0 0 0 8	3 94 364 4 3 2 42	116 614 965 29 41 33 222 12	364 932 1,167 124 125 52 405	45 75 276 25 5 3 88	144 85 80 7 3 29 28	1,817 2,975 191 177 119 793 51	9.5 26. 43. 2.5 2.1.
Total	155	513	2,032	3,190	523	384	6,797	0,
Percent of total	2.3	7.5	29.9	46.9	7.7	5.6		100

Survey of Radioactivity in Animal Feeds

Food and Drug Administration

as

to

ed

A part of the continuing surveillance of radioactivity in foods by the Food and Drug Administration is concerned with the levels of strontium-90 and cesium-137 in animal feeds. The following table presents the results of feeds collected in 1960 by representatives of the

Food and Drug Administration Districts. Previous data concerned with levels of radioactivity in animal feeds and fodders were given in Radiological Health Data, Volume I, Numbers 2 and 9, and Volume II, Number 9.

TABLE 1.—RADIOANALYSES OF ANIMAL FEEDS, 1960

[Concentrations in µµc/kg original material]

Product	County or City	State	Date harvested or processed	CS187	Sr ⁹⁰
Alfalfa hay	Boulder	Colo.	August		98
Malfa hay	Boulder	Colo.	July		41 65 61 231 529 960 447 507 912 733
Alfalfa hay		Colo.	July	*******	65
Alfalfa hay	Conejos	Colo.	August	**********	61
lfalfa hay	Roanoke	Va.	September	**********	231
espedeza hay		Va.	October	*******	529
espedeza hay		Mo.	September	*******	960
espedeza Hay	Wake	N. C.	September		447
eanut hay	Hertford	N. C.	October		507
eanut hay	Edgecombe	N. C.	October		912
eanut hay	Irwin	Ga.	August	********	733
Oried beet pulp	Grant	Kans.	November		3.
Oried beet pulp	Washakie	Wyo.	October		55 52 12
Oried beet pulp	Logan	Colo.	October		52
Cotton seed meal		Calif.	November		12
Cotton seed meal	Terry, Garza, Lynn, Lubbock, Hockley, Crosby	Tex.	October		3.
Frass		Md.	July 18	194	145
Iay		Md.	June 1	N.D. 1	2.20
orn silage	Dunn	Wis.	August, September,	2.7	
ANTI SHORD	Dum	*****	October		
Cotton seed meal	Raleigh 2	N. C.	July 14	81	
Ootton seed meal	Chow Chilla 2	Calif.	Jan. 20, 1961	34	
Cotton seed meal		Calif.	November	531	
Soyabeans	0111	Minn.	October	N.D.	17
Sugar beet pulp		Kans.	Nov. 17	1.1	3.

¹ N.D.—Not detectable. ² Processing location.

Environmental Levels of Radioactivity at Atomic Energy **Commission Installations**

The U.S. Atomic Energy Commission transmits to the Public Health Service quarterly reports on the environmental levels of radioactivity in the vicinity of major Commission installations. The reports include data from routine monitoring programs where operations are of such a nature that plant perimeter surveys are required.

Summaries of the environmental radioactivity data for 18 AEC installations have appeared in *Radiological Health Data*, Volume I, Numbers 8 and 9; and Volume II, Numbers 1 through 11. Summaries follow for Argonne National Laboratory, Atomics International, and Feed Materials Production Center, for the first and second quarters of 1961.

The measured concentrations of radioactive substances in air and water may be compared with the Maximum Permissible Concentration (MPC) of that substance as recommended by the National Committee on Radiation Protection and Measurements (NCRP). For the general population, the applicable MPC's are one-tenth of the occupational values for continuous exposure as given in National Bureau of Standards Handbook 69.

For the purpose of clarity and perspective, a few of the applicable environmental MPC values are listed in table 1. Such values are intended as guides only. For further clarification, Handbook 69 should be consulted.

The establishment of MPC's does not imply that each nuclide may be present at 100% of its MPC concentration. If the concentration of each nuclide is expressed in terms of percent of its MPC, then the sum of all the percent values should not exceed 100%.

In the following reports, the use of nonspecific terms such as "total activity," "total alpha," and "gross beta" do not in themselves suggest any one MPC value. Often, when concentrations are low a laboratory will assign an MPC value that is more restrictive than necessary. This avoids the more costly isotopic analyses necessary to justify a less restrictive value. References to table 1 will be made to designate the appropriate MPC's if reported by the laboratory.

TABLE 1.—SELECTED ENVIRONMENTAL MPC VALUES PERTAINING TO AEC INSTALLATION REPORTS IN THIS SUBSECTION

		Environme	ntal MPC's
Line no.	Radioactive substance	Water (µµc/liter)	Air (μμε/m³)
1	Cerium-144	10,000	300
2 3	Cesium-137	20,000	500
3	Cobalt-58	90,000	2,000
4 5 6 7 8	Cobalt-60	30,000	300 300
6	Iodine-131 Plutonium-239	2,000 5,000	0.06
7	Ruthenium-106-rhodium-106	10,000	200
8	Strontium-90	10,000	10
9	Thorium-234-protactinium-234	20,000	1.000
10	Uranium-natural	20,000	2
11	If Sree, Il ²⁹ , Pb ²¹⁰ , Po ²¹⁰ , At ²¹¹ , Ra ²²³ , Ra ²²⁴ , Ra ²²⁶ , Ac ²²⁷ , Ra ²²⁶ , Th ²³⁰ , Pa ²³¹ , Th ²³² ,		
	and Th-nat are not present1	3,000	
12	If Sree, Pb216, Ra226, Ra228 are not present1.	600	
13	If Ra ²²⁸ , Ra ²²⁸ are not present ¹		
14	Mixture of unidentified nuclides	10	0.04
15 16	If α emitters and Ac227 are not present1		1.0
10	If α emitters and Pb ²¹⁰ , Ac ²²⁷ , Ra ²²⁸ , and Pu ²⁴¹ are not present ¹		10
17	If a emitters and Sr ⁰⁰ , I ¹³⁹ , Pb ¹¹⁰ , Ac ²²⁷ , Ra ²³⁰ , Pa ¹³⁰ , Pu ³⁴¹ , and Bk ²⁴⁰ are not		10
	present1		100

b

g

Argonne National Laboratory

University of Chicago Lemont, Illinois

Issued September 1961

Environmental levels of radioactivity at the Argonne National Laboratory (ANL) for 1959 and 1960 were reported in *Radiological Health Data*, Volume I, Number 9 and Volume II, Numbers 4 and 7 The following report presents a summary of the data for the first and second quarters of 1961.

Air Monitoring

Air filter samples were collected continuously at seven locations on the ANL site as shown in figure 1 and at four off-site locations at Aurora (west of ANL site), Hinsdale (northeast), Joliet (southwest), and Tinley Park

^{1 &}quot;Not present" implies the concentration of the nuclide is small compared with its appropriate MPC. According to recent FRC recommendations a group of nuclides may be considered not present if the ratio of each nuclide is equal to or less than 1/10 of its appropriate MPC and if the sum of these ratios for the group in question is equal to or less than 1/4.

es n-

in

ic

7e

to

d

06

FIGURE 1.—ON-SITE SAMPLING LOCATIONS, ARGONNE NATIONAL LABORATORY

(southeast). The quarterly averages of alpha, beta, and several nuclide concentrations are given in table 2.

The data shows little difference between offsite and on-site measurements for alpha activity and most of the nuclides indicating that ANL does not contribute significant quantities of these activities to the atmosphere. However, a significant difference in on-site and off-site beta activity correlates with the

FIGURE 2.—SITE LOCATION OF ARGONNE NATIONAL LABORATORY (INCLUDING SOME OFF-SITE SAMPLING STATIONS)

even more significant difference for iodine-131 for the first quarter.

During February and March considerable quantities of I^{131} were released to the atmosphere in the exhaust air from two of the ANL buildings. The highest concentration, 16.7 $\mu\mu c/m^3$ (5.6% of environmental MPC) was recorded on March 17 near one of the points of release. During February, the I^{131} concentrations in off-site filter samples were below the minimum level of detection, (0.035 $\mu\mu c/m^3$). Two of the four off-site stations did record some activity during March, the higher of the

TABLE 2.—ACTIVITIES IN AIR FILTER SAMPLES, ANL

	Relative location	First qua	rter 1961	Second quarter 1961		
Type of activity		Number of samples	Average concentration (µµc/m³)	Number of samples	Average concentration (μμc/m²)	
Total alpha	On-site	73	0.0035	78	0.0041	
	Off-site	42	0.0035	47	0.0041	
Total beta	On-site	73	0.103	78	0.117	
	Off-site	42	0.052	47	0.104	
Ce144	On-site	73	0.0086	78	0.013	
	Off-site	42	0.0084	47	0.012	
Cg1#	On-site	73	0.0085	78	0.012	
	Off-site	42	0.0080	47	0.009	
[181	On-site	73	1.7	78	<0.035	
	Off-site	42	0.078	47	<0.035	
Ru ¹⁰⁶ Rh ¹⁰⁶	On-site	73	0.065	78	0.075	
	Off-site	42	0.063	47	0.068	

two concentrations being 0.041 $\mu\mu c/m^3$ (0.14% of environmental MPC). During the second quarter all of the samples, both off-site and onsite, showed I¹³¹ concentrations to be less than 0.035 $\mu\mu c/m^3$.

Neglecting the effect from I¹³¹, the second quarter beta activity was roughly twice that recorded during the first quarter. This was true at all sampling locations, and is attributed to the usual Spring increase in the fall-out rate of stratospheric debris from past nuclear detonations.

Water Monitoring

ANL waste water is discharged into Sawmill Creek, a stream that runs through the Argonne grounds and enters in the Des Plaines River about 500 yards downstream from the waste water discharge. Sampling locations on Sawmill Creek and Des Plaines River are shown in figures 1 and 2 respectively.

On Sawmill Creek samples are collected weekly upstream and three times a week downstream from the waste water outfall. The upstream flow is roughly equal to the waste water flow yielding a dilution factor of one half. The data in table 3 show significantly higher con-

centrations downstream than upstream, a clear indication of the radioactivity contributed to the stream by ANL. A comparison of the downstream concentrations with the environmental MPC's listed in table 1 shows that all concentrations are quite low. The highest percent of MPC is that for Sr⁹⁰ for the first quarter, 1.6%.

TAB

Total

Tota

U-na

n

The data in table 4 do not show any significant difference in activity in Des Plaines River samples taken upstream and downstream from its junction with Sawmill Creek.

Soil and Grass Analysis for Iodine-131

Samples of surface soil and grass were collected on March 29 and 30, primarily to assess the deposition of iodine-131 to these materials from the I¹³¹ concentrations in air occurring during February and March. In order to relate the soil and grass data with that of air, the concentrations as measured on the date of collection were extrapolated back to March 17, the date that the highest I¹³¹ concentration was found in air samples. The measured and extrapolated values are tabulated in table 5. The sample location codes refer to the grid markings in figure 1. Off-site locations were

Table 3.—ACTIVITIES IN SAWMILL CREEK UPSTREAM AND D OWNSTREAM FROM WASTE WATER OUTFALL ANL

[Average concentrations in µµc/liter]

		First qua	arter 1961	Second quarter 1961		
Type of activity	Sampling location		Concentration	Number of samples	Concentration	
Total alpha	Upstream Downstream	13 39	2.3 7.7	13 38	2.0 8.7	
Total beta	Upstream Downstream	13 39	6.9 20.5	13 38	6.6 24.0	
U-natural	Upstream Downstream	7 39	1.3 6.4	6 38	1.3 6.9	
Pu ³⁸⁶	Upstream Downstream	3 39	<0.05 0.08	3 38	<0.0	
Γh ²⁸⁴ -Pa ²⁸⁴	Upstream Downstream	7 39	1.0 5.1	3 38	1.0 6.0	
Sree	Upstream Downstream	3 39	<0.5 1.6	3 38	<0.5	
Cg1#	Upstream Downstream	3 39	<0.5 1.7	3 38	<0.5 2.7	
[18]	Upstream Downstream	4 39	<2.0 10.8	3	<2.0 <2.0	
C0 ⁶⁰	Upstream Downstream	2 12	<1.0 1.0	0	*******	
Com.	Upstream Downstream	3 30	<10 <10	1 23	<10 81	

$\begin{array}{c} {\rm Table}\ 4. \\ {\rm -ACTIVITIES}\ {\rm IN}\ {\rm THE}\ {\rm DES}\ {\rm PLAINES}\ {\rm RIVER}\ {\rm UPSTREAM}\ {\rm AND}\ {\rm DOWNSTREAM}\ {\rm FROM}\ {\rm SAWMILL}\ {\rm CREEK}, \\ {\rm ANL} \end{array}$

[Average concentrations in uuc/liter]

		First qua	arter 1961	Second quarter 1961		
Type of activity	Sampling location	Number of samples	Average concentration	Number of samples	Average concentration	
Total alpha	Upstream Downstream	8 8	2.2 2.2	12 13	2.4 2.2	
Total beta	Upstream Downstream	8 8	9.4 9.5	12 13	8.8	
U-natural	Upstream Downstream	4 8	1.4 1.5	6 13	1.7	
I:n.	Upstream Downstream	0 2	<1.0	1 2	<1.0 <1.0	

TABLE 5.—IODINE-131 ACTIVITY IN SOIL AND GRASS, ANL, 1961

[Concentrations in µµc/gram]

	Sa	mples collected	March 29 and 30				
Location (See fig. 1)	Concentration at time of collection		Calculated co		Concentrations in grass on dates of collection		
	Soil	Grass	Soil	Grass	May 11, 12	June 5	June 28
12 G 12 H 11 G 10 H 11 B 15 F 15 L 6 K 12 E	27 (4) 10 (4) 6.5 <0.3 <0.3 <0.3 <0.3 <0.3	5,650 862 616 376 5 <1 <1 4.9	85 (4) 31 (4) 20 <1 <1 <1 <1 <1	17,850 (4) 2,670 (4) 1,740 1,140 1,140 3.7 <3.7 15	7.3 (4) — 26.0 — —	2.7 (4) — 7.0 (4) — —	1.0 (4
All off site points	-	<1 (5)	-	<3.7 (5)	-	-	-

Indicates no samples taken.
 Numbers in parentheses indicates number of samples.

Lemont, Joliet, Downers Grove, Lombard, and Tinley Park.

A cursory comparison of the data reveals that grass is a much more sensitive indicator of I¹³¹ than soil. No I¹³¹ was detected in soil more than 150 yards from the point of release, southeast corner of square 12G, figure 1. Small amounts of I¹³¹ were detected in grass samples

taken at the western (11B) and southern (6K) edges of the ANL site.

Because of its higher sensitivity only grass samples were taken during May and June as a followup of the March 29-30 test. The May and June data, also shown in table 5 reflect the rapid decay of I¹³¹ and the much lower air concentrations during that time.

Atomics International

Canoga Park, California Issued September 1961

r

0

ul

f

ys

0

rfehnd

de

L

Environmental levels of radioactivity at the Atomics International facilities have not been previously reported in *Radiological Health Data*. The following report presents a summary of the data for calendar year 1960, and the first two quarters of 1961.

The Nuclear Development Field Laboratory

(NDFL) and the World Headquarters Facility (WHF) are operated for AEC by Atomics International (AI), Canoga Park, California. The locations of the two facilities are shown in figure 3.

The NDFL facilities include a 20 megawatt SRE power reactor; several smaller experi-

FIGURE 3.—ATOMICS INTERNATIONAL FACILITIES AND VICINITY

mental reactor facilities such as critical facilities, SNAP reactor, shield test facilities, and others; and extensive rolling and fuel fabrication operations. The major activities at the WHF are of the administrative type. However, a small amount of fuel fabrication is conducted at the site. For that reason the WHF area is included in the Atomics International environmental monitoring program.

Air Monitoring

Environmental air sampling is conducted continuously at the WHF and NDFL sites by automatic twenty-four hour step cycle air monitors. Airborne particulates are collected on a fixed filter tape which is moved, after each twenty-four hour period, to place the new sample beneath a thin window G. M. detector.

At pre-set intervals, usually twenty minutes, the number of counts observed by the scaler during the interval is recorded. Chats

Ange

The

Soil

forty

the

sites

ten 1

vege

Fee

Natio

Issue

10

Fee

for

logi

the

Bas

Na

So

It has been determined that for this type of instrument twice the counting rate after 18.6 hours decay minus the counting rate after 8 hours decay closely approximates the long-lived contribution. This counting rate can be converted easily to the average long-lived airborne activity ($\mu\mu c/m^a$) during the sampling period. The minimum detection limit, which varies somewhat between instruments, is on the order of 0.04 $\mu\mu c/m^a$. The average concentrations of long-lived airborne beta emitters are shown in table 6.

When abnormally high activities are observed, the data are plotted to determine the presence of short-lived activities other than radon and thoron daughters. If fallout is suspected, samples are removed to the laboratory where their decay is observed for a period of several days to several weeks. If the activity decays as a function of t-1.2, the data is extrapolated in order to find the date of origin. This date is then compared with the dates of announced nuclear detonations in order to demonstrate that the abnormal airborne activity was not caused by Atomics International operations.

Water Monitoring

Two water wells at the Nuclear Development Field Laboratory are sampled monthly. Monthly surface samples are collected at the

Table 6.—AVERAGE CONCENTRATIONS OF RADIOACTIVITY IN AIR, WATER, SOIL, AND VEGETATION IN THE ATOMICS INTERNATIONAL ENVIRONMENT

Type of sample	Location		1960		First quarter 1961		Second quarter 1961	
		Activity	No. of samples	Average	No. of samples	Average	No. of samples	Average
Air (μμc/m³)	WHF NDFL	β-γ β-γ	182 44	0.24 0.44	95 42	0.25 0.40	(a) 47	0.25
Water (μμc/liter)	NDFL wells	α β-γ	12 19	0.14 2.0	1 6	0.05 3.6	6 6	0.08 2.5
	Chatsworth Reservoir	α β-γ	0		0	**********	15 15	0.39 7.7
Soil (µµc/gram)	On-site	α β-γ	104 114	0.45 23.0	17 30	0.32 37.0	30 30	0.47 35.0
	Off-site	α β- γ	324 360	0.36 19.0	45 96	0.30 24.0	112 112	0.35 24.0
Vegetation (μμc/gram ash)	On-site	α β- γ	89 113	0.41 136.0	13 30	0.24 167.0	30 30	0.32 152.0
	Off-site	α β- γ	281 358	0.28 135.0	48 96	0.19 156.0	113 113	0.35 135.0

a Data not available.

Chatsworth Reservoir, owned by the Los Angeles City Department of Water and Power. The average water activity is shown in table

Soil and Vegetation Sampling

S,

er

of

6

8

y-

e

r-

g

h

le

e.

)-

e

5-

y

f

У

-

1.

f

0

ıl

e

15

Soil and vegetation are sampled monthly at forty-eight locations. Ten of these are within the boundaries of the Atomics International sites; the remaining thirty-eight are within a ten mile radius of the sites. Data for soil and vegetation are shown in table 6.

Feed Materials Production Center

National Lead Company of Ohio, Fernald, Ohio Issued September 1961

Environmental levels of radioactivity at the Feed Materials Production Center (FMPC) for 1959 and 1960 were reported in *Radiological Health Data*, Volume II, Numbers 4 and 6. The following report presents a summary of the data for the first and second quarters of 1961.

The FMPC, located in the Great Miami River Basin in southwestern Ohio, is operated by National Lead Company of Ohio (NLO) for

SHANDON
ROSS
BUTLER CO.
HAMILTON CO.
HARRISON FERNALD.

NEW
BALTIMORE

O 1 2 3 4
Miles

CINCINNATI

FIGURE 4.—AREA MAP OF FEED MATERIALS PRODUCTION CENTER

Surface soil types available for sampling range from decomposed granite to clay and sandy loam. Collected samples represent the top one-half inch layer of ground surface.

Vegetation samples obtained in the field at each station are of the same plant type wherever possible, and are generally sunflower or wild tobacco plant leaves. These plant types maintain an active rate of growth during the dry season, a characteristic uncommon to most other plant types indigenous to the area.

AEC. The location, as related to populated areas, is shown in figure 4.

Operations at this project deal with the processing of high-grade uranium ores and ore concentrates to produce metallic uranium and the fabrication of the metal into fuel elements. Some details of the processes were reported in the issues referred to above.

To check the effectiveness of dust collectors and waste treatment processes, an environmental survey program of air and water sampling is maintained.

Air Monitoring

FMPC uses dust collectors such as bag collectors, electrostatic precipitations, and scrubbing towers which remove nearly all of the airborne particulates generated during the many involved processes. The environmental air sampling program provides an indication of the amount of material released into the atmosphere.

On-site samples were taken by four permanent sampling stations located at the four corners of the production area shown in figure 5. Off-site samples were taken by a mobile unit operated at various distances and directions from the plant. The data for the off-site samples are averaged in groups according to distance from the production area. Concentrations of uranium and total activity of airborne particulates sampled at on-site and off-site locations are given in table 7.

TABLE 7.—RADIOACTIVITY OF AIRBORNE PARTICULATES, FMPC

[Average concentrations in µµc/m³]

	F	rst quarter 1961	ı	Second quarter 1961		
Location	Number of samples	Uranium	Total activity	Number of samples	Uranium	Total activity
On-site: Southwest Northwest Northeast Southeast		0.16 0.07 0.13 0.12	0.20 0.14 0.23 0.27	12 12 12 12 12	0.13 0.09 0.15 0.21	0.5 0.2 0.2 0.2 0.3
All on-site samples	35	0.11	0.21	48	0.19	0.3
Off-site: 0-2 miles from FMPC 2-4 miles from FMPC 4-8 miles from FMPC 8-10 miles from FMPC	22 10	0.29 0.21 0.26 0.48	0,52 0,33 0,43 0,09	6 18 16 6	0.15 0.05 0.13 0.11	0.2 0.3 0.3 0.3
All off-site samples	40	0.25	0.37	46	0.11	0.3

Water Monitoring

Continuous daily samples, collected from the combined sewer leading from the FMPC site to the Great Miami River are analyzed for uranium and total activity. The combined sewage is composed of treated liquid effluent from the production plants, water treatment plants waste effluent, storm sewer discharge, and treated sanitary sewage. Using the data from the combined sewage samples and stream flow data for the Great Miami River, the FMPC contribution to radioactivity concentrations in the river may be calculated. To check the calculated results, weekly upstream and downstream spot samples are taken. Table 8 presents a comparison of the calculated and the spot checked river concentrations. Sampling points are shown in figure 5.

Envi

Projec

In Ener enviring plow Cree Tl and appropriate on at

ton and

feet

duce

2.00

abo

plos

abo

ent

ber

wei

Sept

Oct

FIGURE 5.—AIR AND WATER SAMPLING STATIONS, FEED MATERIALS PRODUCTION CENTER

TABLE 8.—CONCENTRATIONS OF URANIUM AND TOTAL ACTIVITY IN THE GREAT MIAMI RIVER, OHIO [Average concentrations in μμικ/m³]

Location Method of determ		First quarter 1961			Second quarter 1961		
	Method of determination	Number of samples	Uranium	Total activity	Number of samples	Uranium	Total activity
Sewer outfall	Calculated from sewer concentrations and stream data (continuous sampling).	90	7	Б	91	2	1
Upstream Downstream	Spot samples	15 15	10 12	34 51	15 15	12 10	3:

Note: Please make the following correction in the November 1961 issue (Radiological Health Data, Volume II, No. 11): In footnote 1 of table 3 on page 502 change "20 $\mu\mu$ c/liter" to read "20,000 $\mu\mu$ c/liter."

Environmental Monitoring in Alaska

Project Chariot
Atomic Energy Commission

al ty

0.35

0.28 0.30 0.30 0.37

0.30

SS

10

II,

In May 1959, the United States Atomic Energy Commission approved a program of environmental studies to be conducted in conjunction with a proposed excavation project using nuclear explosives (Project Chariot, Plowshare Program) at the mouth of Ogotoruk Creek in northwestern Alaska.

The proposed project, which is under study and for which the detonations have not been approved, would involve the simultaneous detonation of five nuclear devices. Four 20 kiloton devices would be buried to about 400 feet, and one 200 kiloton device buried to about 800 feet. The detonation would be expected to produce a channel about 900 feet wide and about 2,000 feet long, with an additional basin of about 1,800 feet in diameter resulting from explosion of the larger device. It is expected that about 95 percent of the fission products will be entrapped underground.

After the USSR resumed testing on September 1, 1961, four fallout monitoring stations were activated at Cape Thompson, Kivalina,

Kotzebue and Point Hope, as shown in figure 1. The following tables present the first results from this monitoring.

FIGURE 1.—SAMPLING LOCATIONS FOR PROJECT CHARIOT

Table 1.—GROSS BETA ACTIVITY IN ALASKAN AIR SAMPLES, SEPTEMBER, 1961

	Cape Thompson		Kivalina		Kotzebue		Point Hope	
End of sampling period	Sampling time (hours)	Gross beta (μμc/m³)	Sampling time (hours)	Gross beta (μμc/m³)	Sampling time (hours)	Gross beta (µµc/m³)	Sampling time (hours)	Gross beta (μμε/m³)
eptember 22 23 24 25 26 27 28 29 30	16.17 23.25 29.50 24.33 25.78 23.22	<0.10 3.64 0.15 1.76 1.18 11.2	2.08 2.33 3.58 4.42 3.42 2.08 3.75 5.00 3.42	<0.10 <0.10 0.62 0.71 0.78 44.7 7.27 5.75 17.0	19.92 21.00 24.17 24.08 24.17 23.25 24.17 26.58	0.39 0.71 0.67 3.40 4.82 49.3 16.2	7.00 13.00 7.00 6.50 14.75 15.17 12.92 11.58	<0.10 1.78 0.11 5.22 22.2 7.86 4.56 3.20

Table 2.—GAMMA SCAN OF ALASKA WATER SAMPLES, SEPTEMBER, 1961

Location	Date of sampling	Type of sample	Ba ¹⁴⁰ -La ¹⁴⁰ (μμc/liter)
Ogotoruk Creek Kivalina	September 18September 22	Surface water	* 4°
Kotzebue Point Hope Camp Chariot	September 27 September 29 September 18–21	Tap water Surface water Rain water	1,3

a Trace amounts of Zros_Nb also observed.

Announced Nuclear Detonations

Radiological Health Data, Volume II, Numbers 10 and 11 published the dates of the Union of Soviet Socialist Republics announced nuclear detonations through November 2, 1961. The following table gives information on the last reported test in this series as

well as data on reported United States underground tests through December 3, 1961. Low yield range has been announced as meaning about a nominal (20 kiloton) yield; low-intermediate to mean between a nominal and one megaton yield.

Test number	Location	Date	Size	Type of test
		ANNOUNCED U.S.S.R.	. SHOTS	
31	Novaya-Semlya	November 4	Several megatons	Atomospheric
		ANNOUNCED U.S.	SHOTS	
1 2 3 4 5	Nevada Test Site Nevada Test Site Nevada Test Site Nevada Test Site Nevada Test Site	September 15	Low yield Low yield Low yield Low yield Low yield Low yield	Underground Underground Underground Underground Underground

Subje AIR Ca

und ange inal be-

ORDER BLANK FOR RHD

To: Superintendent of Documents Government Printing Office Washington 25, D.C.

Please enter my Subscription for Radiological Health Data. I am enclosing Money Order \Box Check \Box for this subscription. (\$5.00 a year; \$1.50 additional for foreign mailing.)

Please address the RHD as follows:

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 25, D.C. 1961

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 26, D.C. Subscription price \$5.00 a year, \$1.50 additional for foreign mailing.

Price for a single copy of this issue is 50 cents.

U. S. DEPARTMENT OF
HEALTH, EDUCATION AND WELFARE
PUBLIC HEALTH SERVICE

WASHINGTON 25. D. C.

OFFICIAL BUSINESS

POSTAGE AND FEES PAID U. S. DEPARTMENT OF H. E. W.

If you do not desire to continue receiving this publication, please CHECK HERE ; tear off this label and return it to the above address. Your name will then be promptly removed from the appropriate mailing list.

Jennings Wood Chief Exchange & Gift Div Serial The Library of Congress Washington 25 D C RH-4 2-a

80

