PAT-NO:

JP405007356A

DOCUMENT-IDENTIFIER: JP 05007356 A

TITLE:

IMAGE RECORDING/REPRODUCING DEVICE

PUBN-DATE:

January 14, 1993

INVENTOR-INFORMATION:

NAME

YAMADA, HIDETOSHI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

OLYMPUS OPTICAL CO LTD

N/A

APPL-NO:

JP03156817

APPL-DATE:

June 27, 1991

INT-CL (IPC): H04N005/92, H04N005/91, H04N007/13

ABSTRACT:

PURPOSE: To convert an encoded moving image into a still image data so as to edit/reproduce and record in common medium.

CONSTITUTION: This device is provided with a moving image input means 20 for inputting a moving image signal, a data compressing means 2 for datacompressing an inputted moving image signal by a high efficient encoding, a recording means 1 for recording encoded moving image and still image signals, an expanding means 3 for decoding encoded moving image and still image signals and a convering means 4 for converting an encoded moving image signal into a still picture signal. To encode a core frame of a moving image signal, the same encoding method as that for a still image is used.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-7356

(43)公開日 平成5年(1993)1月14日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 4 N	5/92	Н	8324-5C		
	5/91	J	8324-5C		
	7/13	Z	4228-5C		

審査請求 未請求 請求項の数1(全 7 頁)

		番査請求 未請求 請求項の数1(全 7 貝)
(21)出願番号	特顯平3-156817	(71)出願人 000000376 オリンパス光学工業株式会社
(22)出願日	平成3年(1991)6月27日	東京都波谷区幡ケ谷2丁目43番2号 (72)発明者 山田 秀俊 東京都波谷区幡ケ谷2丁目43番2号 オリ
		ンパス光学工業株式会社内 (74)代理人 弁理士 鈴江 武彦

(54) 【発明の名称 】 画像記録再生装置

(57)【要約】

変換でき、編集・再生や共通の媒体への記録などを行うことができる画像記録再生装置を提供することにある。 【構成】 動画像信号を入力する動画入力手段20と、入力された動画像信号を高能率符号化によりデータ圧縮するデータ圧縮手段2と、符号化された動画像信号と符号化された動画像信号と符号化された動画像信号とを記録する記録手段1と、符号化された動画像信号とを復号する伸張手段3と、符号化された動画像信号を静止画像信号に変換する変換手段4とを備え、動画像信号のコアフレームを符号化する際に、静止画の符号化と同じ方式により符号化する。

【目的】 符号化された動画像を静止画像データとして

【特許請求の範囲】

【請求項1】 動画像信号を入力する動画入力手段と、入力された動画像信号を高能率符号化によりデータ圧縮するデータ圧縮手段と、符号化された動画像信号と符号化された静止画像信号とを記録する記録手段と、符号化された動画像信号と符号化された静止画像信号とを復号する伸張手段と、符号化された動画像信号を静止画像信号に変換する変換手段とを備え、動画像信号のコアフレームを符号化する際に、静止画の符号化と同じ方式により符号化することを特徴とする画像記録再生装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は静止画および動画をデータ圧縮して記録し、再生表示する画像記録再生装置に関する。

[0002]

【従来の技術】パーソナルコンピューター上で、テキス トデータのほか画像信号、音声信号といった多種の情報 を自由に扱える、いわゆるマルチメディアが使用される ようになっている。このような装置では、画像としては 20 静止画像および動画像の双方が扱えることが望ましい。 また、画像をデジタルデータとして記憶する場合、その データ量は膨大なものとなる。そこで、多くの画像情報 を限られた記憶容量の範囲で記録しようとするには、画 像信号に対し何らかの圧縮を行なう必要がある。高能率 な画像データの圧縮方式として、直交変換と可変長符号 化を組み合わせた符号化方法が広く知られている。たと えば、静止画圧縮方式の国際標準として検討されている 方式(JPEG方式)の概略は次のようなものである。 まず画像データを所定の大きさのブロック(8×8の画 素よりなるブロック)に分割し、分割されたブロック毎 に直交変換として2次元のDCT(離散コサイン変換) を行なう。次に各周波数成分に応じた線形量子化を行な い、この量子化された値に対し可変長符号化としてハフ マン符号化を行なう。この時、直流成分に関しては近傍 ブロックの直流成分との差分値をハフマン符号化する。 交流成分はジグザグスキャンと呼ばれる低い周波数成分 から高い周波数成分へのスキャンを行ない無効(値が 0)の成分の連続する個数とそれに続く有効な成分の値 との組に対してハフマン符号化を行なう。

【0003】また動画圧縮方式としては、MPEG方式が国際標準として検討されている。即ちこの方式では、フレーム内圧縮(静止画としての圧縮)とフレーム間圧縮(連続するフレーム間の予測を用いた圧縮)とを組み合わせている。フレーム内圧縮では基本的にはさきに述べたJPEG方式と同様に、直交変換と可変長符号化とを組み合わせて符号化する。このような静止画としての圧縮をおこなうフレームをコアフレームと称し、連続するフレーム間に適当な間隔で配置する。このようなフレームをIピクチャーと称する。

【0004】一方、フレーム間圧縮では、近くの参照フレームから予測値を算出し、符号化しようとするフレームとその予測値との差を直交変換と可変長符号化とを組み合わせて符号化する。近くのフレームから予測値を求めるには、画面の動きを検出して予測することがおこなわれる。即ち、参照フレームと符号化フレームとを、所定の大きさのブロック毎に最も似かよう位置関係を求め、その位置ずれを動きベクトルとする。動きベクトルも符号の一部として符号化される。

2

10 【0005】参照フレームとして過去のフレームだけでなく、未来のフレームを用いる方式がある。つまり動き補償フレーム予測として過去のフレームによるフォワード予測、未来のフレームによるバックワード予測、さらに両者の平均値予測の三種類の予測方法が考えられる。MPEG方式では、フォワード予測によるフレーム(Pビクチャー)と、フォワード予測、バックワード予測、両者の平均値予測の三つの予測値の中から最適の予測を選択して用いるフレーム(Bビクチャー)とを用いている。

0 [0006]

【発明が解決しようとする課題】前述したように、マルチメディアに用いられる画像記録再生装置においては、高能率で画像データの圧縮が行なえることが望まれる。このような要求を満たす圧縮方式として上述のJPEG方式とMPEG方式がある。しかしながら、この静止画像に対する符号化方式と動画像に対する符号化方式とはその基本部分は共通するものの、両者の変換を行うことは考慮されていない。このため、たとえば動画として符号化した画像は動画としてしか再生できず、動画中のあるコマを静止画として抜き取り、編集・記録・再生するようなことは不可能であった。これは、本来多種の情報を自由に扱えるというマルチメディアの利点を損なうものである。

【0007】そこで、本発明の目的とするところは、このような欠点を除き、符号化された動画像を静止画像データとして変換でき、編集・再生や共通の媒体への記録などを行うことができる画像記録再生装置を提供することにある。

[0008]

40 【課題を解決するための手段】上記の目的を達成するために、本発明の画像記録再生装置は、動画像信号を入力する動画入力手段と、入力された動画像信号を高能率符号化によりデータ圧縮するデータ圧縮手段と、符号化された動画像信号と符号化された静止画像信号とを記録する記録手段と、符号化された動画像信号とを復号する伸張手段と、符号化された動画像信号を静止画像信号に変換する変換手段とを備え、動画像信号のコアフレームを符号化する際に、静止画の符号化と同じ方式により符号化する。

50 [0009]

3

【作用】すなわち、本発明においては、動画像信号のコ アフレームを符号化する際に、静止画の符号化と同じ方 式により符号化して、フォーマット変換により静止画デ - 夕を得るものである。

[0010]

【実施例】以上の原理を用いた本発明の実施例を説明す る。図1に本発明による画像記録再生装置を備えたマル チメディアシステムの構成図を示す。 1 は画像データが 記録されるメモリで、磁気ディスク記録装置により構成 される。2は画像データを圧縮する符号化回路、3は圧 10 縮された動画像データを伸張する復号化回路、4はフォ ーマット変換回路、5は画像を表示するモニタである。 【0011】符号化回路2は図2に示すように、動画像 信号が入力される入力端子20、アナログ信号をデジタ ル信号に変換するA/D変換器21、デジタル化された 信号を記憶するフレームメモリ22、符号量予測回路2 3、減算回路24、DCT量子化回路25、ハフマン符 号化回路26、フレーム間予測回路27、適応選択回路 28、逆量子化IDCT回路29、バッファメモリ30 とを備える。符号量予測回路23は符号化されるフレー 20 ムの発生符号量を算出し、これをもとに量子化幅を設定 するものである。直交変換 (DCT) 量子化回路25 は、フレームメモリ22から出力されるブロック化処理 された画像データを、各ブロックごとに直交変換として DCTを行ない、さらに各周波数成分ごとに予め設定さ れた各周波数成分毎の量子化幅を用いて線形量子化を行 なう。ハフマン符号化回路26は、量子化された変換係 数をハフマン符号化するものである。フレーム間予測回 路27は参照フレームと符号化フレームとの間の動きべ クトルを求める。適応選択回路28は符号化するフレー 30 ムの種類(I、P、Bピクチャー)に応じて参照フレー ムを選択する。逆量子化IDCT回路29は量子化され たDCT係数を代表値に変換し、さらに逆DCT変換を 行って画像データを復元する。バッファメモリ30はハ フマン符号化されたデータを蓄積する。

【0012】以上のように構成された画像記録再生装置 の動作について説明する。たとえばテレビカメラから動 画の映像信号が入力端子20に入力され、A/D変換器 21によりデジタル信号に変換されてフレームメモリ2 2に記憶される。記憶された画像データはフレームメモ 40 リ22から8×8のサイズにブロック化処理が行なわれ て減算回路24に入力される。 コアフレームについては ここで〇が減算され(すなわち原信号のまま) DCT量 子化回路25に出力される。DCT量子化回路25で は、各ブロックごとにDCTが行なわれた後、各周波数 成分毎の量子化幅を用いて線形量子化が行なわれる。こ こで量子化幅としては、バッファメモリ30に蓄積され るデータ量情報に応じて、データの過不足が生じないよ うに、符号量予測回路23による予測値が用いられる。 符号量予測回路23ではフレームメモリ22からのデー 50 画像データが適応選択回路28からフレーム間予測回路

タに対しアクティビティ (高周波成分量を示すパラメ タ)を求める。アクティビティは符号量と相関があるた め、この値からデータを過不足なく符号化するための最 適な量子化幅が設定され、使用される。

【0013】量子化された変換係数は、ハフマン符号化 回路26によりハフマン符号化される。この時、直流成 分DCに関しては、近傍ブロックの直流成分との差分値 をそのビット長に応じてグループ化し、そのグループを 示すハフマン符号化と差分値とを合わせて符号化データ とする。交流成分ACはジグザグスキャンと呼ばれる低 い周波数成分から高い周波数成分へのスキャンを行な い、値が0の成分の連続する個数 (零のラン数)と、そ れに続く値が0でない成分の値のグループ番号との組に 対しハフマン符号化が行なわれ、得られた符号語と付加 ビットを合わせて符号化データとする。

【0014】上記の処理が順次各ブロック毎に、1フレ ーム分のブロックの処理が終了するまで行なわれる。こ こでコアフレームの圧縮時には、1フレーム分の全ブロ ックに対し同一の量子化幅を保って符号化する。

【0015】次に、符号化フレームがPピクチャーの場 合には、フレームメモリ22からフレーム間予測回路2 7に符号化フレームデータが入力され、参照フレームと の間の動きベクトルが求められる。参照フレームとして はその前の I ピクチャーが用いられる。 すなわちDCT の後に線形量子化されたデータが逆量子化IDCT回路 29により代表値に変換され、さらに逆DCT変換によ り復元された画像データが適応選択回路28からフレー ム間予測回路27に入力される。フレーム間予測回路2 7では符号化フレームであるPピクチャーと参照フレー ムである I ピクチャーとの間で、所定の大きさのブロッ ク毎に相関値が最大となる位置関係を求め、その位置ず れを動きベクトルとして求め、動きベクトルを符号化す る。その後、フレーム間予測回路27は参照フレームで あるIピクチャーを求められた動きベクトルにより動き 補償し、減算回路24に出力する。減算回路24で符号 化フレームであるPピクチャーと参照フレームである I ピクチャーとが減算され、DCT量子化回路25に出力 される。

【0016】DCT量子化回路25では、各ブロックご とにDCTが行なわれた後、各周波数成分毎の量子化幅 を用いて線形量子化が行なわれる。量子化された変換係 数は、ハフマン符号化回路26によりDC、ACの区別 なくハフマン符号化する。

【0017】また、符号化フレームがBピクチャーの場 合には、Pピクチャーの場合と同様にフレームメモリ2 2からフレーム間予測回路27に画像データが入力さ れ、参照フレームとの間の動きベクトルが求められる。 参照フレームとしてはその前後の I ピクチャーまたはP ピクチャーが用いられる。該当する参照フレームの復元

27に入力される。フレーム間予測回路27では符号化 フレームであるBピクチャーと参照フレームであるIピ クチャーまたはPピクチャーとから、過去のフレーム、 未来のフレーム、さらに両者の平均値の三種類の動きべ クトルを求め、評価値により最適の予測を選択する。選 択された参照フレームが求められた最適予測の動きベク トルにより動き補償され、減算回路24に出力される。 減算回路24で符号化フレームであるBピクチャーと参 照フレームとが減算され、DCT量子化回路25に出力 DCTが行なわれた後、各周波数成分毎の量子化幅を用 いて線形量子化が行なわれる。量子化された変換係数 は、ハフマン符号化回路26によりコアフレームの時と 同様にハフマン符号化される。

【0018】以上の処理が順次おこなわれ、入力された 動画信号が符号化されるとともに符号化されたデータに MPE G方式で規定されたデータヘッダが付加される。 すなわちMPEG方式でのファイルは、図3(A)に示 すような構成となっているが、ここでビデオシーケンス には、画素数や量子化マトリックスなどを含む画像のフ ォーマットに関するヘッダが付加される。グループオブ ピクチャには編集情報の、ピクチャには再生順序と符号 化タイプの、スライスには量子化のスケールファクタ の、マクロブロックには位置と符号化タイプのヘッダが それぞれ付加される。ヘッダが付加された符号データは バッファメモリ30からメモリ1(図2)に転送、記録 される。

【0019】続いて、圧縮された動画像データ中のある コマを静止画として利用する場合の動作を説明する。メ モリ1に記録されている圧縮された動画像データが復号 30 化回路3に送られ、次の動作により再生される。 すなわ ち、図4に示される符号化回路3の回路構成において、 復号化回路内のバッファメモリ31に一時蓄積されたデ ータはハフマン復号化回路32に送られ、直流成分と交 流成分が復号される。復号されたデータは逆量子化 ID CT回路33において量子化されたDCT係数が代表値 に変換され、さらに逆DCT変換される。復元されたデ ータは、コアフレームの場合にはそのままの値が適応選 択回路34に出力される。またPピクチャあるいはBピ クチャの場合には加算回路35において参照フレームデ 40 ータと加算される。ここで参照フレームとしてはすでに 復号されたIピクチャまたはPピクチャが適応選択回路 34から出力され、動き補償回路36において動き補償 されて用いられる。

【0020】以上のようにして復号された画像はモニタ 5に再現されるが、この中で静止画として抜き出したい 画像があった場合には、それに対応するコアフレームが 選択される。このコアフレームの符号化データがバッフ ァメモリ31からフォーマット変換回路4に出力され

6 いるコアフレームデータをJPEG規格に対応させる。 すなわちJPEGファイルには図3(B)に示すよう に、画像データの初めを示すSOIコード、符号化タイ プや画素数情報を含むフレームヘッダ、量子化マトリッ クスを定義するDQTコード、ハフマン符号表を定義す るDHTコード、色成分の対応を示すスキャンヘッダ、 画像データの終わりを示すEOIコード等が必要なの で、これらのヘッダが作成されメモリ1に出力される。 【0021】一方、符号化データについては、量子化さ される。DCT量子化回路25では、各ブロックごとに 10 れた変換係数がハフマン符号で表される。量子化された 変換係数は、ハフマン符号化回路26によりハフマン符 号化される。この時、直流成分DCに関しては、近傍ブ ロックの直流成分との差分値をそのビット長に応じてグ ループ化し、そのグループを示すハフマン符号化と差分 値とを合わせて符号化データとする。交流成分ACはジ グザグスキャンと呼ばれる低い周波数成分から高い周波 数成分へのスキャンを行ない、値が0の成分の連続する 個数 (零のラン数) と、それに続く値が0でない成分の 値のグループ番号との組に対しハフマン符号化が行なわ 20 れ、得られた符号語と付加ビットを合わせて符号化デー タとする。このようにJPEGのデータ構造はMPEG のコアフレームと同一の表現なので、容易に変換でき

> 【0022】このようにしてメモリ1に記録された静止 画圧縮データは、静止画圧縮用の規格に従っており、通 常の静止画から圧縮されたデータと全く同じように編集 や再生を行うことができる。なお、先の説明において符 号量予測回路23ではアクティビティを用いて最適な量 子化幅を設定するものとしたが、これはアクティビティ に限らず、たとえば実際の符号量を求めてこれにより最 適な量子化幅を設定するようにしてもよい。

> 【0023】次に、本発明の第2の実施例について説明 する。図5は第2の実施例の画像記録再生装置の構成図 を示す。本例では、画像データを記録するメモリとし て、磁気ディスク記録装置からなるメモリ1のほか、半 導体メモリを内蔵したメモリカード40が付加されてお り、メモリカード40は画像記録再生装置の本体に設け られたソケットに着脱自在にされている。このメモリカ ード40は、静止画を撮像する電子カメラの記録媒体と して使用されている。2は画像データを圧縮する符号化 回路、3は圧縮された動画像データを伸張する復号化回 路、4はフォーマット変換回路、5は画像を表示するモ ニタである。6は静止画像データを伸張する復号化回路 である。符号化回路や復号化回路の内部構成は第1の実 施例と同様なので説明を省略する。

【0024】図5の画像記録再生装置の動作について図 2を参照して説明する。動画の映像信号が入力され、A /D変換器21によりデジタル信号に変換されてフレー ムメモリ22に記憶される。記憶された画像データはフ る。フォーマット変換回路4ではハフマン符号化されて 50 レームメモリ22からブロック化処理が行なわれて減算

回路24に入力される。 コアフレームについては原信号 のままDCT量子化回路25に出力される。DCT量子 化回路25では、各ブロックごとにDCTが行なわれた 後、各周波数成分毎の量子化幅を用いて線形量子化が行 なわれる。ここで量子化幅としては、バッファメモリ3 0に蓄積されているデータ量情報に応じて、データの過 不足が生じないような量子化幅が設定され使用される。 量子化された変換係数は、ハフマン符号化回路26によ りハフマン符号化される。上記の処理が順次各ブロック 毎に、1フレーム分のブロックの処理が終了するまで行 10 なわれる。ここでコアフレームの圧縮時には、1フレー ム分の全ブロックに対し同一の量子化幅で符号化する。 【0025】次に、符号化フレームがPピクチャーの場 合には、フレームメモリ22からフレーム間予測回路2 7に符号化フレームデータが入力され、参照フレームと の間の動きベクトルが求められる。参照フレームとして はその前のIピクチャーが用いられる。フレーム間予測 回路27は参照フレームである I ピクチャーを求められ た動きベクトルにより動き補償し、減算回路24に出力 する。減算回路24で符号化フレームであるPピクチャ 20 ーと参照フレームであるIピクチャーとが減算され、D CT量子化回路25に出力される。DCT量子化回路2 5では、各ブロックごとにDCTが行なわれた後、各周 波数成分毎の量子化幅を用いて線形量子化が行なわれ る。量子化された変換係数は、ハフマン符号化回路26 によりコアフレームの時と同様にハフマン符号化され る.

【0026】また、符号化フレームがBピクチャーの場合には、Pピクチャーの場合と同様にフレームメモリ22からフレーム間予測回路27に画像データが入力され、参照フレームとの間の動きベクトルが求められる。参照フレームとしてはその前後のIピクチャーまたはPピクチャーが用いられる。選択された参照フレームが求められた最適予測の動きベクトルにより動き補償され、減算回路24に出力される。減算回路24で符号化フレームであるBピクチャーと参照フレームとが減算され、DCT量子化回路25に出力される。DCT量子化回路25では、各ブロックごとにDCTが行なわれた後、各周波数成分毎の量子化幅を用いて線形量子化が行なわれる。量子化された変換係数は、ハフマン符号化回路26によりコアフレームの時と同様にハフマン符号化される。

【0027】以上の処理が順次おこなわれ、入力された動画信号が符号化される。符号化されたデータはMPE G方式で規定されたデータヘッグが付加され、バッファメモリ30からメモリ1(図5)に記録される。またここで、圧縮された動画データをメモリカード40に転送、記録してもよい。メモリカード40の記録容量は数メガバイトであり、数秒間の動画像を記録することができる。メモリカード40への動画符号化データの記録に50

おいて、データ構成の単位であるグループオブピクチャ 毎に記録するようにすれば、記録や編集、再生等を効率 的に行うことができる。

8

【0028】一方、圧縮された動画像データ中のあるコマを静止画として利用する場合の動作を説明する。メモリ1に記録されている圧縮された動画像データが復号化回路3内のバッファメモリに一時蓄積される。復号化回路3により復号された画像はモニタ5に再現され、この中で静止画として抜きだされた画像は、それに対応するコアフレームが選択される。このコアフレームの符号化データがバッファメモリからフォーマット変換回路4に出力される。フォーマット変換回路4ではハフマン符号化されているコアフレームデータをJPEG規格に対応させ、さらに量子化幅情報等を含むデータへッダを作成してバッファメモリ30に出力する。得られた静止画符号データは、所定のメモリカードに転送記録される。

【0029】本実施例においては、記録媒体として、通常電子カメラの記録媒体として使用されているメモリカードを使用している。このため、メモリカードを挿入し、復号化回路6により復号することにより、電子カメラで撮像した画像を、モニタ5上で簡単に再生することができる。また動画像中のコマを静止画に変換して静止画用のメモリカードに記録できる。さらに圧縮した動画像をメモリカードに記録することもでき、マルチメディ

【0030】以上より明らかなように、本発明においては、動画像信号のコアフレームを符号化する際に、静止画の符号化と同じ方式により符号化することで、フォーマット変換により静止画データを得る。たとえば動画像30をMPEG方式により圧縮する場合、通常のMPEG方式ではフレーム内で量子化幅を一定に保つことは考慮されていないが、本発明ではコアフレームの圧縮時に量子化幅を変えないで符号化することでJPEG方式に対応した静止画データが得られる。

アの特徴をより活かすことができる。

[0031]

【発明の効果】以上説明したように、本発明の画像記録 再生装置では、動画像の中のコマを、通常の静止画から 圧縮されたデータと全く同じように記録、編集や再生を 行うことができる。本発明の方式によればデータを符号 化された状態で動画から静止画への変換を行うため、一 旦動画を復号化した後に静止画として再度圧縮する場合 のように圧縮の繰り返しによる画質劣化が生じない。

【図面の簡単な説明】

【図1】本発明による画像記録再生装置の構成図。

【図2】図2は本発明の画像記録再生装置の符号化回路の構成図。

【図3】図3(A)はMPEG方式でのデータファイル 構成を示す図であり、図3(B)はJPEG方式でのデ ータファイル構成を示す図。

50 【図4】図4は本発明の画像記録再生装置の復号化回路

9

の構成図。

【図5】図5は本発明の第2実施例の画像記録再生装置の構成図。

【符号の説明】

1…メモリ、2…符号化回路、3…復号化、4…フォーマット変換回路、5…モニタ、6…復号化回路。

10

【図5】

【図3】

