Modèle Moyenne-Variance et Extensions

P. Hénaff

Version: 28 déc. 2021

Optimisation de Portefeuille: Notation (1)

Rendement

$$R_i \sim N(\mu_i, \sigma_i^2)$$

 $cov(R_i, R_j) = \sigma_{i,j}$

Allocation exprimée en fraction de la richesse initiale

$$\sum_{i} w_{i} = 1$$

Espérance de rendement du portefeuille

$$\mathbf{w}^T \mu = \mu_{\mathbf{p},\mathbf{w}}$$

Variance du portefeuille

$$w^T \Sigma w = \sigma_{p,w}^2$$

Optimisation de Portefeuille: Notation (2)

▶ Distribution du rendement du portefeuille

$$R_{p,w} \sim N(\mu_{p,w}, \sigma_{p,w}^2)$$

Covariance entre deux portefeuilles

$$cov(R_{p,w_1}, R_{p,w_2}) = w_1^T \Sigma w_2$$

Données

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	KO
Observations	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000
NAs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Minimum	-0.1792	-0.1278	-0.1171	-0.2500	-0.0984	-0.0896	-0.1395	-0.1295	-0.0822	-0.0790	-0.0867
Quartile 1	-0.0077	-0.0094	-0.0073	-0.0103	-0.0038	-0.0047	-0.0068	-0.0055	-0.0067	-0.0046	-0.0047
Median	0.0010	0.0008	0.0005	0.0000	0.0006	0.0010	0.0001	0.0008	0.0006	0.0004	0.0007
Arithmetic Mean	0.0012	0.0015	0.0008	0.0005	0.0004	0.0006	0.0001	0.0004	0.0008	0.0004	0.0005
Geometric Mean	0.0010	0.0012	0.0006	0.0001	0.0003	0.0005	0.0000	0.0003	0.0006	0.0003	0.0004
Quartile 3	0.0112	0.0123	0.0088	0.0106	0.0056	0.0070	0.0073	0.0070	0.0082	0.0055	0.0059
Maximum	0.1390	0.2695	0.1860	0.2952	0.1452	0.1216	0.1719	0.0988	0.1407	0.1021	0.1388
SE Mean	0.0003	0.0004	0.0003	0.0005	0.0002	0.0002	0.0003	0.0002	0.0003	0.0002	0.0002
LCL Mean (0.95)	0.0005	0.0006	0.0002	-0.0005	0.0000	0.0002	-0.0004	-0.0001	0.0002	0.0000	0.0001
UCL Mean (0.95)	0.0019	0.0023	0.0013	0.0014	0.0008	0.0011	0.0006	0.0009	0.0013	0.0007	0.0009
Variance	0.0004	0.0006	0.0003	0.0007	0.0001	0.0002	0.0002	0.0002	0.0003	0.0001	0.0001
Stdev	0.0196	0.0243	0.0170	0.0266	0.0121	0.0130	0.0150	0.0140	0.0162	0.0109	0.0113
Skewness	-0.2151	1.4889	0.4319	0.7627	0.1379	-0.0084	0.4199	-0.3815	0.5114	0.0555	0.5004
Kurtosis	6.2706	16.8872	10.2176	20.9458	15.2824	7.3976	15.4203	7.3856	6.4641	8.1017	14.3236

Un portefeuille avec 2 actifs

On choisit PG (faible vol) et AAPL (forte vol)

	PG	AAPL
mu	0.0933800	0.3019870
sigma	0.1735107	0.3118083
rho	0.3150221	NA

Rendement et Risque de deux actifs

Frontière de deux actifs

Calcul du Portefeuille de Variance Minimale (1)

```
min w^T \Sigma w
s.t.
\mathbf{1}^T w = 1
```

Solution Analytique

```
n <- 2
A.mat <- matrix(rep(1,n), ncol=1)
w.min <- solve(2*sig2, A.mat)
w.min <- w.min / sum(w.min)
names(w.min) <- assets</pre>
```

PG 0.8599089 AAPL 0.1400911

Utilisation de solve.QP - Solution Numérique

```
PG 0.8599089
AAPL 0.1400911
```

Portefeuille de Variance Minimale (2)

Frontière en fonction de la corrélation

Modèle de Markowitz

$$\begin{aligned} & \text{min} \quad \boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w} \\ & \text{s.t.} \\ & \quad \boldsymbol{\mu}^T \boldsymbol{w} = \boldsymbol{\mu}^* \\ & \quad \boldsymbol{1}^T \boldsymbol{w} = 1 \end{aligned}$$

Voir note pour solution analytique et théorème de séparation des fonds.

Utilisation dans l'industrie

Figure 1: Diagramme Moyenne / Ecart Type (www.quantalys.com)

Ajout d'un actif sans risque (1)

Portefeuille Tangent (1)

Portefeuille sur la frontière efficiente qui maximise le ratio de Sharpe:

$$\max_{w} \frac{w^{T} \mu - r_{f}}{(w^{T} \Sigma w)^{\frac{1}{2}}}$$
s.t.

 $\mathbf{1}^T w = 1$

$$w = \frac{\Sigma^{-1}(\mu - r_f \mathbf{1})}{\mathbf{1}^T \Sigma^{-1}(\mu - r_f \mathbf{1})}$$

Optimisation Moyenne/Variance: Procédure de calcul

- Déterminer les espérances de rendement des actifs et la matrice de covariance
- Définir des contraintes du portefeuille (ex: encours max par ligne)
- Résoudre
- ► Faire varier *r** pour dessiner la frontière efficiente et le portefeuille tangent
- Choisir l'allocation en fonction de la tolérance au risque de l'investisseur

Optimisation M/V - avecR (1)

```
idx <- (time(daily.ret) >= dmy("01jan2014")) &
    (time(daily.ret) <= dmy("01jan2016"))
ret <- daily.ret[idx,]
# covariance matrix
Sigma <- cov(ret) * 252
# expected return
mu <- colMeans(ret) * 252</pre>
```

Portefeuille à Variance Minimale (1)

```
A.mat <- matrix(rep(1,length(mu)), ncol=1)
b <- 1
qp <- solve.QP(2*Sigma, mu*0, A.mat, b, meq=1)
```

Portefeuille à Variance Minimale (2)

	allocation		Min Var Portfolio
AAPL	0.0204498	return	0.0507792
AMZN	0.0006842	stdev	0.1164107
MSFT	-0.0644735		
F	-0.0195378		
SPY	0.8323712		
QQQ	-0.2902213		
XOM	-0.0805829		
MMM	0.0161995		
HD	0.0301382		
PG	0.3006411		
KO	0.2543316		

Frontière

min
$$w^T \Sigma w$$

s.t.
$$\mu^T w = \mu^*$$
$$\mathbf{1}^T w = 1$$

Calcul de la Frontière (Long/Short)

Allocation en fonction du risque

Calcul de la Frontière (Long)

Allocation le long de la Frontière

Ajout d'un actif sans risque

Allocation le long de la droite de marché

Bibliographie

Grinhold, R.C. and Kahn, R. Active Portfolio Management, Mc Graw-Hill, 2000