Automates et Langages

1. Notions de base

- **Alphabet (Σ)**: Ensemble fini de symboles (ex: {a, b, c}).
- Mot : Suite finie de symboles d'un alphabet (ex: "abc").
- Mot vide (ε): Chaîne de longueur 0.
- Langage (L) : Ensemble de mots sur un alphabet. Peut être fini ou infini.
- Langages particuliers:
 - Langage vide : ne contient aucun mot (∅).
 - Langage ne contenant que le mot vide : {ε}.
 - Langage universel : ensemble de tous les mots possibles (Σ^*).

2. Types de langages

- Langage régulier : Un langage est dit régulier s'il peut être construit à partir de trois éléments de base :
 - Le langage vide (ne contenant aucun mot): Ø.
 - Le langage contenant uniquement le mot vide {ε}.
 - o Tout langage constitué d'un seul symbole de l'alphabet L: {a}, {b}, etc
 - Puis, on peut combiner ces éléments en appliquant un nombre fini de fois les opérations sur les langages
- Langage algébrique (ou hors-contexte) : Peut être décrit par une grammaire algébrique et reconnu par un automate à pile.

3. Opérations sur les Langages

- Union: L1 ∪ L2 = Ensemble des mots appartenant à L1 ou L2.
 - Ex : Si L1 = $\{a, b\}$ et L2 = $\{b, c\}$, alors L1 \cup L2 = $\{a, b, c\}$.
- Intersection : L1 ∩ L2 = Ensemble des mots présents à la fois dans L1 et L2.
 - Ex : Si L1 = {a, b} et L2 = {b, c}, alors L1 ∩ L2 = {b}.
- **Différence**: L1 L2 = Ensemble des mots qui sont dans L1 mais pas dans L2.
 - Ex: Si L1 = {a, b} et L2 = {b, c}, alors L1 \ L2 = {a}.

- Complémentaire: L^c: Ensemble des mots qui ne sont pas dans L (relativement à un univers donné).
 - Ex : Si $\Sigma^* = \{a, b, c\}^*$ et L = $\{a, b\}$, alors L^c contient tous les mots possibles sauf "a" et "b".
- Concaténation: L1L2 = Ensemble des mots obtenus en accolant un mot de L1 avec un mot de L2.
 - Ex: Si L1 = {a, b} et L2 = {c, d}, alors L1L2 = {ac, ad, bc, bd}.
- Étoile de Kleene : L* = ensemble des mots obtenus par concaténation de 0, 1 ou plusieurs mots de L.
 - Ex : Si L = {ab}, alors L* = { ϵ , ab, abab, ababab, ...}.

Ordre de priorité des opérations :

- 1. Étoile de Kleene (*)
- 2. Concaténation.
- 3. Union, intersection, différence.

4. Automates Finis (AF)

- **Définition**: Un automate fini est défini par $(\Sigma, E, E0, F, \delta)$ avec :
 - \circ Σ : Alphabet.
 - E : Ensemble des états.
 - E0 : Ensemble des états initiaux.
 - F : Ensemble des états finaux.
 - \circ δ : Fonction de transition (définit le passage d'un état à un autre en lisant un symbole).
 - Exemple: $\delta(A,a) = B$ passage de A à B avec l'arrète a
- Automate Déterministe (AFD) :
 - Un seul état initial.
 - Une seule transition possible par symbole et par état.
- Automate Non Déterministe (AFN) :
 - Plusieurs transitions possibles pour un même symbole.
 - Peut être transformé en AFD.

5. Expressions Régulières

- Permettent de décrire des langages réguliers.
- Opérateurs :
 - \circ Union : a|b ("a" ou "b").
 - \circ Concaténation : ab ("a" suivi de "b").

- Étoile : a^* (répétition de "a" 0 ou plusieurs fois).
- \circ Plus : a^+ (répétition de "a" 1 ou plusieurs fois).

Exemples:

- $(a|b)c^*$: Mots commençant par "a" ou "b", suivis de zéro ou plusieurs "c".
- $0(01)^*$: Un "0" suivi de 0 ou plusieurs "01".
- a^+b^* : Un ou plusieurs "a" suivis de zéro ou plusieurs "b".

Regex (regex101)

Les expressions régulières sont des séquences de caractères qui forment un motif de recherche, principalement utilisées pour les opérations de recherche et de manipulation de texte. Voici quelques-unes des regex les plus couramment utilisées

Ancrages

- ^ : Début d'une ligne.
- \$: Fin d'une ligne.

Caractères Spéciaux

- . : N'importe quel caractère sauf un retour à la ligne.
- \d : N'importe quel chiffre (équivalent à [0-9]).
- \D : N'importe quel caractère non chiffre.
- \w : N'importe quel caractère alphanumérique ou underscore (équivalent à [a-zA-Z0-9_]).
- \w : N'importe quel caractère non alphanumérique.
- \s : N'importe quel espace blanc (espace, tabulation, retour à la ligne).
- \S : N'importe quel caractère non espace blanc.

Quantificateurs

- * : 0 ou plusieurs occurrences du caractère précédent.
- + : 1 ou plusieurs occurrences du caractère précédent.
- ?: 0 ou 1 occurrence du caractère précédent.
- {n} : Exactement n occurrences du caractère précédent.
- {n,} : n ou plus occurrences du caractère précédent.
- {n,m}: Entre n et m occurrences du caractère précédent.

Groupes et Alternances

- (...) : Groupe les sous-expressions.
- : Alternance (ou logique).

Flags

Les flags sont des options qui modifient le comportement de la recherche. Ils sont souvent ajoutés à la fin de l'expression régulière, après une barre oblique (/).

- g : Global. Trouve toutes les correspondances dans la chaîne, pas seulement la première.
- m : Multi-line. Traite la chaîne comme multi-lignes, affectant les ancrages ^ et \$.
- i : Insensible à la casse. Ignore la casse lors de la recherche.

Exemples

- \d{3}-\d{2}-\d{4}
 Correspond à un numéro de sécurité sociale américain (ex. 123-45-6789).
- [a-zA-Z]+@[a-zA-Z]+\.[a-zA-Z]+ : Correspond à une adresse e-mail simple.
- \b\w+\b : Correspond à un mot entier.

6. Grammaires Algébriques

- **Définition** : Une grammaire est définie par (Σ, V, P, S) avec :
 - \circ Σ : Alphabet ou symboles terminaux (en min.)
 - $\circ\ V$: Symboles non terminaux. (en maj.)
 - $\circ~S$: Axiome (symbole de départ).
 - $\circ~R$: Règles de production, sous la forme A o w
 - ullet A est un symbol non terminal
 - ullet w est une suite de symboles (terminaux ou non)

Exemple

- $G = (\Sigma, V, P, S)$
- $\Sigma = a, b$
- V = S, T
- Les règles:
 - $\circ \ S \to aS \mid bT \mid \varepsilon$
 - $\circ \ T \to bT \mid \varepsilon$

Dérivation:

7. Grammaire régulière

- Définition : Une grammaire est dite régulière si toutes ses règles de production sont de la forme :
 - \circ Grammaire régulière à droite : A o aB ou A o a ou A o arepsilon
 - \circ Grammaire régulière à gauche : A o Ba ou A o a ou A o arepsilon
- où A et B sont des symboles non terminaux, et a est un symbole terminal.

Correspondance en automate fini

- Chaque symbole non terminal (A) devient un état de l'automate
- L'axiome (S) et l'unique éta initial
- Les règles:
 - $\circ \ A
 ightarrow aB$ devient la transition $\delta(A,a)=B$
 - $\circ \ A
 ightarrow aB$ devient la transition $\delta(A,a) = cute{tatterminal}$
 - $\circ \ A
 ightarrow arepsilon$ donne un état terminal\$