МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА ПО ТЕМЕ «ИНТЕГРАЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»

по дисциплине

Математическая статистика

Вариант № 3

Выполнили:
Карташев Владимир, Р3215
Карабанов Андрей, Р3215
Преподаватель:
Кудрявцева Ирина Владимировна

г. Санкт-Петербург

2024 год

1. Постановка задачи.	2
2. Выполнение задачи	3
2.1 Определение размаха варьирования R.	3
2.2. Составление статистического ряда распределения частот СВ Х.	3
2.3 Составление интервальных статистических рядов частот и относительных частот.	4
2.4 Построение полигона и гистограммы относительных частот.	4
2.5 Нахождение эмпирической функции распределения и построение её графика	a 6
2.6 Вычисление выборочных значений числовых характеристик СВ Х.	6
2.7 Выбор закона распределения СВ X по виду полигона и гистограммы относительных частот.	7
2.8 Нахождение точечной оценки параметров предполагаемого распределения, запись функции распределения и плотности вероятности СВ X:	8
2.9 Проверка согласия эмпирической функции распределения с теоретический пр помощи критерия Колмогорова.	ри 8
2.10 Нахождение интервальных оценок параметров распределения.	9
2.11 Проверка гипотезы Н0: а = а0 и альтернативной гипотезы Н0: а < а0	10
2.12 Проверка гипотезы H0: σ 2 = σ 20 и альтернативной гипотезы H0: σ 2 != σ 20	11
3. MHK	12
3.1 Задание 1	12
3.2 Задание 2	14
4. Вывод	16

1. Постановка задачи.

Дан статический материал: 120 измерений диаметра цапф, которые дали следующие отклонения от номинального размера (в миллиметрах):

48	44	39	43	41	46	45	43	44	42	30	48
49	39	37	45	40	36	42	48	33	51	42	38
41	34	42	42	40	48	50	39	47	43	34	40
48	30	42	41	32	30	39	51	50	31	32	39
38	36	44	41	37	33	37	37	25	42	40	43
33	35	49	43	34	40	35	46	35	38	43	44
34	36	43	45	42	41	40	34	44	37	42	43
52	45	39	35	39	43	46	37	40	36	45	51
32	36	41	31	32	43	34	41	44	34	40	34
33	40	43	34	40	47	36	30	48	45	32	46

Используя статистический материал (результаты измерений), необходимо:

- 1) определить размах варьирования R;
- 2) составить статистический ряд распределения частот СВ X;
- 3) составить интервальные статистические ряды частот и относительных частот;
- 4) построить полигон и гистограмму относительных частот;
- 5) найти эмпирическую функцию распределения и построить её график;
- 6) вычислить выборочные значения числовых характеристик СВ X: математического ожидания M(X) , дисперсии $\mathcal{L}(X)$, среднего квадратического

отклонения $\sigma(X)$;

- 7) по виду полигона и гистограммы относительных частот сделать выбор закона распределения СВ X;
- 8) найти точечные оценки параметров предполагаемого распределения, записать функцию распределения и плотность вероятности СВ X;
- 9) проверить согласие эмпирической функции распределения $F^*(x)$ с теоретической F(x) при помощи критерия согласия 2—Пирсона или λ Колмогорова.

В случае нормального распределения СВ X по заданному уровню значимости а:

- 1) Найти интервальные оценки параметров распределения;
- 2) Проверить нулевую гипотезу о математическом ожидании при альтернативной гипотезе

2. Выполнение задачи

2.1 Определение размаха варьирования R.

 $X_{min} = 25$

 $X_{max} = 52$

 $R=X_{max}-X_{min}=52-25=27$ - размах варьирования (разность между крайними значениями вариант вариационного ряда), т.е. возможные значения СВ X (диаметр цапф) принадлежат отрезку [25;52]

2.2. Составление статистического ряда распределения частот CB X.

Составим статистический ряд распределения частот (таблицу 2).

Диаметр цапф хі, мм	Частота ті
25	1
30	4
31	2
32	5
33	4
34	9
35	4
36	6
37	6
38	3
39	7
40	8
41	7
42	9
43	11

44	6
45	6
46	4
47	2
48	6
49	4
50	2
51	3
52	1
	120

Таблица 2 - Вариационный ряд (столбец 1). Статистический ряд распределения частот (столбцы 1 и 3)

Контроль: $\sum_{i} x_i = 120$

2.3 Составление интервальных статистических рядов частот и относительных частот.

$$h = \frac{R}{1 + 3,21 \mathrm{g} \, n}$$
, где h - длина интервала, n = 120 объем выборки.

Число интервалов k равно округленному до целого R/h.

h	3,527853059
k	7,653379987
h*	4,5

Составим интервальные статистические ряды распределения частот и относительных частот (таблица 3, стб. 2;4 и 2;5). В столбцах 6-10 подсчитаны числа, нужные при выполнении следующих пунктов задачи.

2.4 Построение полигона и гистограммы относительных частот.

	Диап	азон	Частота	_	Накопле	Относит		Плотнос	Середи
Nº	ОТ	до	в интерва ле	Относ. частота wi	нная частота пх	ельная накопле нная частота	Плотнос ть частоты	ть относит ельной частоты	на интерва ла
1	25	29,5	1	0,008	1	0,008	0,222	0,002	27,25
2	29,5	34	15	0,125	16	0,133	3,333	0,028	31,75
3	34	38,5	28	0,233	44	0,367	6,222	0,052	36,25
4	38,5	43	31	0,258	75	0,625	6,889	0,057	40,75

5	43	47,5	29	0,242	104	0,867	6,444	0,054	45,25
6	47,5	52	16	0,133	120	1,000	3,556	0,030	49,75
	SUM	-	120	1,000	240	3,000	26,667	0,222	231

Таблица 3 - Интервальные статистические ряды

Контроль:
$$\sum_{i}^{6} n_{i} = 120, \sum_{i}^{6} w_{i} = 1$$

Построим полигон относительных частот (рисунок 1) по данным столбцов 5 и 10 (см. таблицу 3).

Рисунок 1

Площадь гистограммы относительных частот равна $\sum_{i=1}^{6} w_i = 1$.

По гистограмме и полигону относительных частот можно судить о форме эмпирической кривой распределения — графике функции $f^*(x)$ (эмпирической плотности вероятности).

Рисунок 2

2.5 Нахождение эмпирической функции распределения и построение её графика

По данным таблицы 3 (стб: 2, 7) найдем эмпирическую функцию распределения

Х	<=25	29,5	34	38,5	43	47,5	>52
F*(x)	0	0,008	0,133	0,367	0,625	0,867	1,000

Таблица 4 - Эмпирическая функция распределения

Построим график $F^*(x)$: сначала на интервалах (-∞;13,32) и (13,62;∞), а затем в указанных в таблице 4 точках. Учитывая непрерывность функции $F^*(x)$, полученные точки соединим (рисунок 3).

2.6 Вычисление выборочных значений числовых характеристик СВ X.

3.6 Находим
$$M_{\mathfrak{G}}(X) = \overline{X}$$
 по формуле

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{6} y_i \cdot n_i ,$$

где y_i — середина i-го интервала;

 n_i — его частота;

п — объём выборки (таблица 3, стб. 4, 10).

$$\mathcal{I}_{\varepsilon}(X) = \frac{1}{n} \sum_{i=1}^{6} \left(y_i - \overline{X} \right)^2 \cdot n_i.$$

i	yi	ni	yi * ni	(yi - M(X))^2 * ni
1	27,25	1	27,25	182,25
2	31,75	15	476,25	1215
3	36,25	28	1015	567
4	40,75	31	1263,25	0
5	45,25	29	1312,25	587,25
6	49,75	16	796	1296
SUM	231	120	4890	3847,5

Вычисленные значения				
M(X)	40,75			
D(X)	32,06			
σ(X)	5,66			

2.7 Выбор закона распределения СВ X по виду полигона и гистограммы относительных частот.

Полигон и гистограмма относительных частот (см. рисунки 1 и 2) напоминают нормальную кривую (рисунок 4, кривая Гаусса). Поэтому *предположим*, что распределение СВ Х(диаметра головки заклепки) является *нормальным*.

Рисунок 4. Кривая Гаусса

2.8 Нахождение точечной оценки параметров предполагаемого распределения, запись функции распределения и плотности вероятности СВ X:

Плотность вероятности и функция распределения СВ X, распределённой по нормальному закону, имеют вид:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{\frac{(x-a)^2}{2\sigma^2}};$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-a)^2}{2\sigma^2}} dt.$$

Найдем точечные оценки параметров a = M(X) и $\sigma = \sigma(X)$ нормального распределения:

Вспомогательные величины			
~a	40,24166667		
σ	5,66		

Следовательно, плотность вероятности предполагаемого распределения $N(a,\sigma)$ имеет вид:

Вычисленные значения		
f(x)	формула	
F(x)	формула	

её график изображен на рисунке 4.

2.9 Проверка согласия эмпирической функции распределения с теоретический при помощи критерия Колмогорова.

Проверим гипотезу о нормальном распределении с помощью критерия согласия – Колмогорова. Все вспомогательные расчеты, необходимые для нахождения выборочной характеристики, сведем в таблицу 5. Таблица 5 — Нахождение выборочного значения.

Nº	Диап	азон	Частота	nx	pi	F*(x) =	F(x) =	F*(x) -
145	ОТ	до	ni	IIX	ρι	nx/n	P(X < x)	F(x)
1	-Inf	29,5	1	1	0,0289	0,008	0,0289	0,0206
2	29,5	34	15	16	0,1063	0,133	0,1352	0,0018
3	34	38,5	28	44	0,4856	0,367	0,6208	0,2541
4	38,5	43	31	75	0,0661	0,625	0,6869	0,0619
5	43	47,5	29	104	0,2131	0,867	0,9001	0,0334

6	47,5	Inf	16	120	0,0999	1,000	1,0000	0,0000
	SUM		120	-	1,0000	-	-	-

Таблица - Нахождение выборочного значения λ

Вычисленные значения				
Д	0,2541			
λ набл	2,78390493			
Р	0,95			
λ 0,05	1,358			

2.10 Нахождение интервальных оценок параметров распределения.

Доверительные интервал, накрывающий математическое ожидание CB X с надежностью P=1 - а имеет вид:

$$\tilde{a} - t \frac{\sigma_{\epsilon}}{\sqrt{n}} < a < \tilde{a} + t \frac{\sigma_{\epsilon}}{\sqrt{n}}$$
.

По таблице квантилей распределения Стьюдента [1,приложения] по заданному уровню значимости a=0.05 и числу степеней свободы v=n-1=89 найдём квантиль

Вычислим точность оценки:

$$\delta = t \cdot \frac{\sigma_{\epsilon}}{\sqrt{n}}$$

$$\sigma$$
=1,0236

Искомый доверительный интервал для М(X) = а

Полуинтервал (39,73; 41,77] накрывает неизвестное M(x) с вероятностью P=0,95. Доверительный интервал, накрывающий среднее квадратическое отклонение CB X с надежностью P=1-a:

$$\sqrt{\frac{n-1}{\chi^2_{\frac{\alpha}{2},\ \nu}}} \cdot \sigma_{\epsilon} < \sigma < \sqrt{\frac{n-1}{\chi^2_{1-\frac{\alpha}{2},\ \nu}}} \cdot \sigma_{\epsilon}$$

или короче

$$j_1 \cdot \sigma_e < \sigma < j_2 \cdot \sigma_e$$
 ,

где
$$j_1=\sqrt{\frac{n-1}{\chi^2_{\frac{\alpha}{2},\,\nu}}}, \qquad j_2=\sqrt{\frac{n-1}{\chi^2_{1-\frac{\alpha}{2},\,\nu}}}\,.$$

По таблице распределения X^2 по заданной доверительной вероятности p=0,95 и числу степеней свободы v=89 найдем числа j_1 =0,8875 и j_2 =1,1454 Искомый доверительный интервал для параметра σ :

 $(5,0253 < \sigma < 6,4859)$

Полуинтервал (5,0253;6,4859] накрывает неизвестное $\sigma(x)$ с вероятностью p=0,95.

2.11 Проверка гипотезы H_0 : $a = a_0$ и альтернативной гипотезы H_0 : $a < a_0$

Правило 3. Пусть H_0 : $a=a_0$ и альтернативная гипотеза H_a : $a< a_0$. По правилу 2 находят вспомогательное критическое значение $U_{\kappa p}$, полагают $U_{\kappa p}^* = -U_{\kappa p}$. (граница левосторонней критической области). Если $U_{\text{набл.}} > -U_{\text{кр.}}$, H_0 отвергают

24

(наблюдаемое значение U-критерия попадает в критическую область) и принимают альтернативную гипотезу H_a .

Рисунок 7

Уровень значимости а=0,05

Из таблицы имеем $a_0=a_2=39,73$. Надо проверить нулевую гипотезу, против альтернативной.

 $\Phi(U_{\mbox{\tiny KP}})$ =0,45, $U_{\mbox{\tiny KP}}$ =1,645, $U_{\mbox{\tiny Haбn}}$ = 1,715 $U_{\mbox{\tiny KP}}$ > $U_{\mbox{\tiny Haбn}}$ => Гипотеза H_0 принимается

2.12 Проверка гипотезы H_0 : $\sigma^2 = \sigma^2_0$ и альтернативной гипотезы H_0 : $\sigma^2 != \sigma^2_0$

Правило 5. Пусть $H_0:\sigma^2=\sigma_0^2$ и альтернативная гипотеза $H_a:\sigma^2\neq\sigma_0^2$. Находят критические левую и правую точки $\chi^2_{\text{лев. кр.}}=\chi^2_{1-\frac{\alpha}{2},\nu}$ и $\chi^2_{\text{прав. кр.}}=\chi^2_{\frac{\alpha}{2},\nu}$ по таблице распределения χ^2 —Пирсона.

Рисунок 9

Eсли $\chi^2_{\rm nee.kp.} < \chi^2_{\rm нaбл.} < \chi^2_{\rm npas.kp.}$ (наблюдаемое значение критерия попало в область допустимых значений), то нулевую гипотезу H_0 принимают. Если $\chi^2_{\rm нaбл.} < \chi^2_{\rm nee.kp.}$ или $\chi^2_{\rm nab.kp.} > \chi^2_{\rm npas.kp.}$, то отклоняют H_0 в пользу альтернативной гипотезы H_a .

$$\sigma_0 = \sigma_1 = 6,4859$$
 $X^2_{_{\text{Лов. Кр.}}} = 90,67, \;\; X^2_{_{\text{прав. Кр..}}} = 90,67, \;\; X^2_{_{\text{набл.}}} = 90,67$ $X^2_{_{\text{прав. Кр..}}} < X^2_{_{\text{прав. Кр..}}} < X^2_{_{\text{набл.}}} = 90,67 = >$ Гипотеза Н0 принимается.

3. MHK

3.1 Задание 1

В таблице приведены данные о расходе топлива (y, π) на 100 км) автомобиля с двигателем объемом 1,5 литра с автоматической трансмиссией в зависимости от скорости движения (x, κ) 4).

x_i	10	20	40	60	90	110	130	140	150	160
y_i	3,8	4	4,2	4,8	5,5	6	7	8,1	10	12

В предположении, что между х и у существует линейная зависимость, определить параметры линейной регрессии

23

y = kx + b методом наименьших квадратов. Спрогнозировать расход топлива при скорости 170 км/ч.

$$y = kx + b$$

170 - ?

1. Введем в таблицу согласно варианта эмпирические данные. Произведем необходимые вычисления сумм.

Nº	хі	yi	x^2	x*y	y pac.i	δ	δ^2
1	10	3,8	100	38	2,91	0,89	0,80
2	20	4	400	80	3,36	0,64	0,41
3	40	4,2	1600	168	4,25	-0,05	0,00
4	60	4,8	3600	288	5,15	-0,35	0,12
5	90	5,5	8100	495	6,50	-1,00	0,99
6	110	6	12100	660	7,39	-1,39	1,94
7	130	7	16900	910	8,29	-1,29	1,66
8	140	8,1	19600	1134	8,74	-0,64	0,41
9	150	10	22500	1500	9,19	0,81	0,66
10	160	12	25600	1920	9,63	2,37	5,60
SUM	910	65,4	110500	7193	-	-	12,59

2. Составим и запишем систему уравнений для нахождения коэффициентов k и b

Вспомогательные величины				
Δ	276900			
Δ1	12416			
Δ2	681070			

3. Неизвестные k и b найдем по формуле Крамера.

Вычисленные величины				
k	0,04			
b	2,46			

4. Составим и запишем уравнение y=kx+b

Вычисленный у при х = 170				
x	у			
170	10,08			

5. Построим график исходных данных.

6. Изобразим прямую регрессию на построенном графике. Построим график функции.

3.2 Задание 2

В таблице приведены данные о времени работы (t, y.e.) некоторого алгоритма в зависимости от количества его элементов (x).

x_i	9	12	14	16	18	20	21	23	24	25
$t_{\rm i}$	152	280	380	500	630	780	860	1025	1130	1225

В предположении, что между х и у существует квадратич-

28

ная зависимость, определить параметры регрессии $t=a_2x^2+a_1+a_0$ методом наименьших квадратов. Спрогнозировать время работы алгоритма, состоящего из 30 элементов. $t=a_2*x^2+a_1*x+a_0$

30 - ?

1. Введем исходные данные. Произведем необходимые вычисления.

Nº	xi	yi	x^2	x^3	x^4	x*y	x^2 * y	y pac
1	9	152	81	729	6561	1368	12312	154,16
2	12	280	144	1728	20736	3360	40320	277,67
3	14	380	196	2744	38416	5320	74480	379,67
4	16	500	256	4096	65536	8000	128000	497,42

5	18	630	324	5832	104976	11340	204120	630,91
6	20	780	400	8000	160000	15600	312000	780,14
7	21	860	441	9261	194481	18060	379260	860,65
8	23	1025	529	12167	279841	23575	542225	1 033,49
9	24	1130	576	13824	331776	27120	650880	1 125,81
10	25	1225	625	15625	390625	30625	765625	1 222,07
SUM	182	6962	3572	74006	1592948	144368	3109222	6 962,00

2. Составим и запишем систему уравнений для нахождения коэффициентов a2,a1,a0;

$$\begin{cases} \left(\sum_{i=1}^{n} \chi_{i}^{y}\right) \cdot \alpha + \left(\sum_{i=1}^{n} \chi_{i}^{3}\right) \cdot \beta + \left(\sum_{i=1}^{n} \chi_{i}^{2}\right) C = \sum_{i=1}^{n} \chi_{i}^{2} y_{i} \\ \left(\sum_{i=1}^{n} \chi_{i}^{3}\right) \alpha + \left(\sum_{i=1}^{n} \chi_{i}^{2}\right) \cdot \beta + \left(\sum_{i=1}^{n} \chi_{i}\right) \cdot C = \sum_{i=1}^{n} \chi_{i} \cdot y_{i} \\ \left(\sum_{i=1}^{n} \chi_{i}^{2}\right) \alpha + \left(\sum_{i=1}^{n} \chi_{i}\right) \cdot \beta + Cn = \sum_{i=1}^{n} y_{i} \end{cases}$$

Вспомогательные величины				
Δ	13800648			
Δ1	27152000			
Δ2	-2059352			
Δ3	-53203056			

3. Найдем неизвестные коэффициенты а2,а1,а0

Вычисленные величины	
a2	1,97
a1	-0,15
a0	-3,86

4. Составим и запишем уравнение. В рассматриваемом случае получаем уравнение:

Вычисленный у при х = 30	
x	у
30	1 762,37

5. Построим график исходных данных. По графику убедиться в возможной квадратичной зависимости между х и у.

6. Изобразим линию регрессию на построенном графике.

4. Вывод

В ходе работы были определены размах варьирования и составлен статистический ряд распределения частот. Также были построены полигон и гистограмма относительных частот, найдена эмпирическая функция распределения. Были вычислены выборочные значения математического ожидания, дисперсии и среднеквадратического отклонения. По виду полигона и гистограммы был выбран закон распределения. После этого были найдены точечные оценки параметров распределения и записана функция распределения и плотность вероятности. Наконец, была проведена проверка согласия эмпирической функции распределения с теоретической функцией при помощи критерия согласия Колмогорова.