Estatística experimental

Davi Vitti

2023-09-12

Contents

1	Inti	rodução	5
2	Rel	embrando a Estatística geral	7
	2.1	Medidas de posição	7
	2.2	Medidas de dispersão	7
	2.3	Exercicíos	7
3	Pla	nejamento e princípios básicos	9
	3.1	Aplicação no R studio	9
	3.2	Exercicíos	9
4	Del	ineamento inteiramente casualizado	11
	4.1	Aplicação no R studio	16
	4.2	Exercicíos	22
5	Cor	nparação de médias	25
	5.1	Teste de Tukey	26
	5.2	Teste de Duncan	26
	5.3	Teste de Dunnett	26
	5.4	Teste de Scheffé	26
	5.5	Contrastes ortogonais	26

4 CONTENTS

6	\mathbf{Reg}	ressão polinomial	27
	6.1	Anova	27
	6.2	Aplicação no R studio	27
	6.3	Exercicíos	27
7	Del	ineamento em blocos casualizados	29
	7.1	Anova	29
	7.2	Aplicação no R studio	29
	7.3	Exercicíos	29
8	Deli	ineamento quadrado latino	31
	8.1	Anova	31
	8.2	Aplicação no R studio	31
	8.3	Exercicíos	31
9	Exp	perimento fatorial	33
	9.1	Anova	33
	9.2	Aplicação no R studio	33
	9.3	Exercicíos	33
10	Exp	perimento em parcelas subdivididas e em faixas	35
	10.1	Anova	35
	10.2	Aplicação no R studio	35
	10.3	Exercicíos	35

Introdução

Relembrando a Estatística geral

- 2.1 Medidas de posição
- 2.2 Medidas de dispersão

Média

Variância

Desvio-padrão

Coeficiente de Variação

- 2.2.1 Aplicação no R studio
- 2.3 Exercicios

Planejamento e princípios básicos

- 3.1 Aplicação no R studio
- 3.2 Exercicios

```
knitr::opts_chunk$set(comment = "", prompt = TRUE)
```

Delineamento inteiramente casualizado

O delineamento inteiramente casualizado (DIC) é o mais simples dos delineamentos, pois considera apenas dois dos princípios básicos da experimentação: a repetição e a casualização. Neste, os tratamentos são aleatoriamente atribuídos ao material experimental, sem o esforço de se restringir os tratamentos a alguma porção de área, material ou espaço. Ainda como característica, como não há uso do controle local o número de repetições por tratamento pode variar. É geralmente utilizado quando a variação do material experimental é relativamente pequena, o que geralmente ocorre em laboratórios e casas de vegetação. Como vantagens de sua utilização temos que é um experimento de fácil planejamento e que permite o número máximo de graus de liberdade do Resíduo. Em termos de análise é a mais simples quando comparado aos demais delineamentos experimentais e não apresentará confundimento caso os tratamentos tenham números diferentes de repetições. Entretanto, como desvantagens temos que o delineamento inteiramente casualizado é adequado aos experimentos com baixo número de tratamentos e material experimental homogêneo, o que nem sempre se consegue. Quando um grande número de tratamentos é utilizado, há um crescimento no material experimental, que pode inflacionar a variação experimental. Nesses casos o Delineamento Inteiramente Casualizado não é indicado.

Obtendo um croqui para um DIC

Para obtermos um croqui para um experimento com I tratamentos em um DIC, sendo o iésimo tratamento repetido ni vezes e o número total de parcelas $n = \sum_{i=1}^{I} n_i$

- (i) Enumerar as parcelas $1, 2, \ldots, n$
- (ii) Criar o delineamento sistemático, ou seja, alocar o tratamento 1 às parcelas $1, 2, \ldots, n1$ alocar o tratamento 2 às parcelas $n1 + 1, n1 + 2, \ldots$

, n1 + n2 e assim até as repetições do tratamento I.

(iii) Escolha uma permutação de 1, 2, . . . , n e aplique ao delineamento.

Exemplo

Suponha que desejamos comparar a produtividade de três variedades de soja, com três, quatro e três repetições respectivamente. O plano de casualização para o delineamento sistemático é dado por:

Ordem Padrão	1	2	3	4	5	6	7	8	9	10
Variedade	A	A	A	В	В	В	В	С	С	С

Uma permutação:

Parcelas	7	1	8	10	3	2	4	6	9	5
Ordem Padrão	1	2	3	4	5	6	7	8	9	10

E o plano de casualização é dado por:

Parcela	1	2	3	4	5	6	7	8	9	10
Variedade	В	A	С	С	A	A	В	В	С	A

Análise dos dados

Entende-se como objetivo inicial de um experimento a verificação dos efeitos de tratamentos. Aqui será utilizada a Análise de Variância (ANOVA) para tal verificação. A ANOVA é utilizada na comparação de médias de dois ou mais tratamentos ou teste para a variância dos tratamentos, por meio do teste F (Fisher). Trata-se de uma extensão do teste t de Student, permitindo que o pesquisador compare qualquer número de médias, quando o efeito de tratamentos é fixo.

Modelo estatistico

O modelo estatístico para a análise dos dados oriundos de um DIC com um único fator de tratamentos é dado pela Equação 1.

$$y_{ij} = \mu + \tau_i + e_{ij} = \mu_i + e_{ij}$$

em que:

• y_{ij} é o valor observado na jésima repetição do iésimo tratamento, com:

$$-i = 1, ..., I e$$

$$-j = 1, \dots, ni$$

- μ é uma constante inerente a todas as observações, geralmente a média geral,
- τ_i é o efeito do iésimo tratamento,
- eij é o erro experimental, tal que $Eijiid \sim N(0, \sigma^2)$.

Realizando-se a ANOVA, testamos as hipóteses:

$$H0: \tau 1 = \tau 2 = ... = \tau I = 0$$

$$H1=Ha$$
 : $\tau i6=0$ para algum i.

Havendo uma reparametrização do modelo apresentado na Equação 1, tal que $\mu + \tau_i = \alpha i$ em que αi é a média do iésimo tratamento, e:

$$yij = \alpha i + eij$$
, (2)

as hipóteses de interesse passam a ser

$$H0: \alpha 1 = \alpha 2 = ... = \alpha I = \mu$$

H1 = Ha: pelo um contraste de médias difere de zero.

Neste momento assumiremos que as pressuposições de normalidade e independência dos erros, bem a homogeneidade de suas variâncias garantidas. Assim, assumimos que eij corresponde a uma realização da variável Eij , tal que $Eijiid \sim N(0,\sigma^2)$ e os demais termos no modelo 1 são fixos. Cabe sailentar que o modelo citado é o modelo maximal, ou seja, aquele modelo mais complicado a ser considerado na análise. Desse modo, a esperança da variável aleatória Yij será

$$E(Yij) = E(\mu + \tau_i + Eij) = \mu + \tau_i + 0 = \mu + \tau_i$$

Análise de variância

A proposta da ANOVA consiste em decompor a variância total dos dados em parte atribuída aos efeitos de tratamentos e parte ao acaso.

Tabela 1: Esquema da análise de variância considerando-se um delineamento inteiramente casualizado, com I tratamentos, sendo cada um repetido ni vezes e $n=\sum_i ni$

Fontes de Variação	graus de liberdade
Total	n-1
Tratamentos	I-1
Resíduo	n-I

Sabemos que a variância dos dados é dada por:

Denotamos por Soma de Quadrados do Total (SQ Total) o numerador da expressão 3. Observe que a decomposição mencionada anteriormente será:

em que SQ Tratamentos e SQ Resíduo correspondem às Soma de Quadrados de Tratamentos e Soma de Quadrados de Resíduo, respectivamente. As expressões apresentadas em 4 e 5, podem ser reescritas conforme segue.

A SQ Resíduo (6) pode ser obtida por diferença, ou seja, SQ Resíduo = SQ Total SQ Tratamentos.

Para encontrarmos a estatística apropriada para o teste F temos que obter as Esperanças dos Quadrados Médios relacionados a cada fonte de variação na ANOVA. Os quadrados médios, denotados usualmente por QM, são definidos pelo quociente entre a soma de quadrados e o respectivo número de graus de liberdade relacionados a uma fonte de varição, isto é:

Exemplo

Considere os dados abaixo referentes à produtividade de milho (kg/100m²) de quatro diferentes variedades, em um experimento instalado segundo o delineamento inteiramente casualizado, com cinco repetições.

(Variedades)	1	2	3	4	5	total	media
\overline{A}	25	26	20	23	21	115	23,00
B	31	25	28	27	24	135	27,00
C	22	26	28	25	29	130	26,00
D	33	29	31	34	28	155	31,00

(Variedades)	1	2	3	4	5	total
V1	y11	y12	y13	y14	y15	$y1 \cdot = T1$
V2	y21	y22	y23	y24	y25	$y2 \cdot = T2$
V3	y31	y32	y33	y34	y35	$y3 \cdot = T3$
V4	y41	y42	y43	y44	y45	$y4 \cdot = T4$

Análise descritiva:

Análise	A	В	\mathbf{C}	D
Soma	115,00	135,00	130,00	155,00
Média	23,00	27,00	26,00	31,00
Variância	$6,\!50$	7,50	7,50	$6,\!50$
Desvio-padrão	2,55	2,74	2,74	2,55

Tabela da ANOVA:

Fontes	Graus de liberdade	Soma de Quadrados	Quadrado Médio	Fcal	Ftab
Tratamen	tos3	163,75	54,5833	7,80	
residuo	16	112,00	7,0000		
Total	19	275,75			

F tabelado:

```
> # Defina o nível de significância desejado (por exemplo, 0.05 para um nível de 5%)
> nivel_de_significancia <- 0.05
>
> # Defina os graus de liberdade do numerador (df1) e do denominador (df2)
> df1 <- 3  # Graus de liberdade do numerador
> df2 <- 16  # Graus de liberdade do denominador
> 
> # Encontre o valor crítico da distribuição F para o nível de significância especificado
> valor_critico <- qf(1 - nivel_de_significancia, df1, df2)
> # Imprima o valor crítico
> cat("Valor crítico da distribuição F:", valor_critico, "\n")
```

Valor crítico da distribuição F: 3.238872

Como F=7.80>3.24= FTab ($\alpha=0.05,\,3,\,16$), há evidências para rejeitarmos H_0 ao nível de 5% de significância. Desse modo, não podemos afirmar que todas as médias são iguais.

Coeficiente de variação

número de repetições pode estar associado ao número de graus de liberdade do resíduo ; (

$$gl_{Res} \ge 12$$

)

O CV é adimensional, pode-se comparar a dispersão de variáveis com diferentes unidades de medida.

$$CV_{\%} = 100 \frac{\hat{\sigma}}{\hat{\mu}} = 100 \frac{\sqrt{QM_{Res}}}{\bar{y}}$$

CV\$<\$10% : baixo 10% < CV > 20% :médio 20% < CV > 30% :alto CV > 30% : muito alto

16

4.1

Planejamento e Croqui

Aplicação no R studio

```
> #' # Planejamento de um experimento
> set.seed(1234)
> sample(rep(c("A", "B", "C", "D"), 5))
 [1] "D" "A" "D" "C" "A" "C" "B" "D" "B" "C" "B" "B" "C" "D" "A" "D" "A" "A" "B"
[20] "C"
> #' ## Usando a biblioteca agricolae
> # Instalando
> # install.packages("agricolae",
                     dependencies = TRUE)
> # Habilitando as funções
> library(agricolae)
> trt = LETTERS[1:4]
> delineamento <- design.crd(trt,
                             r = 5,
                             serie = 0)
> delineamento
$parameters
$parameters$design
[1] "crd"
$parameters$trt
[1] "A" "B" "C" "D"
$parameters$r
[1] 5 5 5 5
$parameters$serie
[1] 0
$parameters$seed
[1] 1407173775
$parameters$kinds
[1] "Super-Duper"
$parameters[[7]]
```

[1] TRUE

```
$book
  plots r trt
1
      1 1 C
2
      2 1 B
      3 1 D
3
      4 2
4
          D
          В
5
      5 2
6
      6 2
           C
7
      7 3
          В
      8 3
8
           D
      9 4
9
           В
     10 4
10
           D
     11 5
           В
11
12
     12 1
           Α
     13 2
13
           Α
14
     14 3
           С
15
     15 3
           Α
16
     16 4
           Α
     17 5
17
           D
18
     18 4
           C
     19 5
19
            Α
20
     20 5 C
> # Graficamente
> # install.packages("agricolaeplotr",
                   dependencies = TRUE)
> library(agricolaeplotr)
```

The legacy packages maptools, rgdal, and rgeos, underpinning the sp package, which was just loaded, will retire in October 2023.

Please refer to R-spatial evolution reports for details, especially https://r-spatial.org/r/2023/05/15/evolution4.html.

It may be desirable to make the sf package available; package maintainers should consider adding sf to Suggests:.

The sp package is now running under evolution status 2 (status 2 uses the sf package in place of rgdal)

Attaching package: 'agricolaeplotr'

The following object is masked from 'package:base':

summary


```
> # Para montar um croqui precisamos de um gride, definido por linhas e colunas
> delineamento$book$Linha <- rep(1:5, each = 4)
> delineamento$book$Coluna <- rep(1:4, times = 5)
>
> delineamento$book
```

```
plots r trt Linha Coluna
      1 1
                 1
1
            С
                        1
2
      2 1
                        2
            В
3
      3 1
            D
                 1
                        3
      4 2
                        4
4
            D
                 1
5
      5 2
                 2
                        1
            В
6
      6 2
           C
                 2
                        2
7
      7 3
                 2
                        3
          В
8
      8 3
           D
                 2
                        4
      9 4
                 3
                        1
9
          В
10
   10 4 D
                 3
                        2
```

```
11
    11 5
         В
             3
                  3
12
    12 1
        Α
             3
                  4
    13 2
             4
13
                  1
        Α
14
    14 3 C
            4
                  2
    15 3 A 4
                  3
15
16
    16 4 A 4
                  4
17
    17 5 D 5
                 1
18
    18 4 C
            5
                  2
    19 5 A
                  3
19
             5
20
    20 5 C
             5
                  4
```

Importando dados de excel .xlsx

```
> #Deve-se importar os arquivos .xlsx para o Rstudio
> library(readxl)
> dados1 <- read_xlsx("dados/aula2.2.xlsx")
> knitr::kable(dados1)
```

trat	y 25
A	25
A	26 20
A A A B B B	20
A	23 21
A	21
В	31
В	25 28 27
В	28
В	27
B C C C C C D	24 22 26
С	22
С	26
С	28
\overline{C}	25
С	29
D	33
D	29
D	31
D	34
D	28

Análise descritiva dos dados

```
> library(ggplot2)
```

> ggplot(dados1,


```
> ggplot(dados1,
+          aes(x = trat,
+          y = y)) +
+          geom_boxplot()
```



```
> #' ## Estatísticas descritivas
> n <- with(dados1, tapply(y,trat, length))
> soma <- with(dados1, tapply(y,trat,sum))
> media <- with(dados1, tapply(y,trat,mean))
> variancia <- with(dados1, tapply(y,trat,var))
> desv.padr <- with(dados1, tapply(y,trat,sd))
> dist.int <- with(dados1, tapply(y,trat,IQR))</pre>
```

```
> #' Criando uma função que calcula a amplitude
> f1 <- function(x) max(x)-min(x)
> amplitude <- with(dados1, tapply(y,trat,f1))
>
> resumo <- rbind(n, soma, media, variancia,
+ desv.padr, amplitude,dist.int)
> rownames(resumo) <- c("n", "Soma", "Média",
+ "Variância", "Desvio-padrão",
+ "Amplitude", "Amplitude Interquartílica")
> round(resumo,3)
```

	Α	В	C	D
n	5.00	5.000	5.000	5.00
Soma	115.00	135.000	130.000	155.00
Média	23.00	27.000	26.000	31.00
Variância	6.50	7.500	7.500	6.50

```
Desvio-padrão 2.55 2.739 2.739 2.55
Amplitude 6.00 7.000 7.000 6.00
Amplitude Interquartílica 4.00 3.000 3.000 4.00
```

Análise da variância (ANOVA)

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

4.2 Exercicíos

1) Os dados apresentados na Tabela 1 são referentes ao peso de espigas de milho, em kg/10m², em cada parcela (10 m²). São apresentados os dados de 5 genótipos avaliados em um delineamento inteiramente casualizado (DIC) com 4 repetições.

Genótipos	Ι	II	III	IV
A	5,95	6,21	5,40	5,18
В	5,07	6,71	5,46	4,98
\mathbf{C}	$4,\!82$	5,11	4,68	4,52
D	3,87	4,16	4,11	4,84
E	$5,\!53$	5,82	4,29	4,70

Considere os dados apresentados na Tabela. a) Faça um possível croqui de instalação para um novo experimento com o mesmo número de tratamentos (genótipos) e de repetições; b) Faça a análise exploratória dos dados de peso de espigas; c) Faça a análise de variância e interprete o resultado do teste F considerando o nível de significância 5%;

2) Em um experimento de competição de dez cultivares de arroz para avaliar a produtividade, instalado em um delineamento inteiramente casualizado, os resultados (parciais) para a ANOVA foram os seguintes:

Fonte	GL	SQ	QM	F Cal	F Tab
cultivar	X	17564523	X	9.31	2.39
Resíduo	X	X	X	X	X
Total	29	X	X	X	X

- a) Complete o quadro da ANOVA
- b) Com base no resultado da ANOVA escreva as hipóteses e a conclusão

Comparação de médias

- 5.1 Teste de Tukey
- 5.1.1 Aplicação no R studio
- 5.1.2 Exercicíos
- 5.2 Teste de Duncan
- 5.2.1 Aplicação no R studio
- 5.2.2 Exercicíos
- 5.3 Teste de Dunnett
- 5.3.1 Aplicação no R studio
- 5.3.2 Exercicíos
- 5.4 Teste de Scheffé
- 5.4.1 Aplicação no R studio
- 5.4.2 Exercicíos
- 5.5 Contrastes ortogonais
- 5.5.1 Aplicação no R studio
- 5.5.2 Exercicíos

Regressão polinomial

- 6.1 Anova
- 6.2 Aplicação no R studio
- 6.3 Exercicíos

Delineamento em blocos casualizados

- 7.1 Anova
- 7.2 Aplicação no R studio
- 7.3 Exercicíos

Delineamento quadrado latino

- 8.1 Anova
- 8.2 Aplicação no R studio
- 8.3 Exercicíos

Experimento fatorial

- 9.1 Anova
- 9.2 Aplicação no R studio
- 9.3 Exercicíos

Experimento em parcelas subdivididas e em faixas

- 10.1 Anova
- 10.2 Aplicação no R studio
- 10.3 Exercicíos