

AD A115019

1
CR 82.017

12

NAVAL CIVIL ENGINEERING LABORATORY
Port Hueneme, California

Sponsored by
NAVAL FACILITIES ENGINEERING COMMAND

A COMPENDIUM OF TENSION MEMBER PROPERTIES FOR INPUT
TO CABLE STRUCTURE ANALYSIS PROGRAMS

April 1982

An Investigation Conducted by
Western Instruments Corporation
540 Moulhardt Avenue
Oxnard, California

N68305-80-C-0004

BEST AVAILABLE COPY

Approved for public release; distribution unlimited

SELECTED
JUN 1 1982
H

METRIC CONVERSATION FACTORS

Approximate Conversions to Metric Measures

When You Know		Multiply by	To Find	Symbol	When You Know	Multiply by	To Find	Symbol
inches	feet	* 2.5	centimeters	cm	mm	millimeters	0.04	in
6	30	centimeters	cm	cm	centimeters	0.4	in	
10	0.9	meters	m	m	meters	3.3	ft	
15	1.6	kilometers	km	km	meters	1.1	yd	
20					kilometers	0.6	mi	
AREA		6.5	square centimeters	cm ²	square centimeters	0.16	square inches	in ²
ft ²	square feet	0.09	square meters	m ²	square meters	1.2	square yards	yd ²
Yd ²	square yards	0.8	square meters	m ²	square kilometers	0.4	square miles	mi ²
mi ²	square miles	2.6	square kilometers	km ²	hectares (10,000 m ²)	2.5	acres	
25	acres	0.4	hectares	ha	ha			
MASS (weight)		28	grams	g	grams	0.035	ounces	oz
oz	ounces	0.45	kilograms	kg	kg	2.2	pounds	lb
lb	pounds	0.9	tonnes	t	tonnes (1,000 kg)	1.1	short tons	
30	short tons (2,000 lb)							
VOLUME		4	ml	ml	milliliters	0.03	fluid ounces	fl. oz
teaspoons	5	milliliters	ml	ml	liters	2.1	pints	pt
tablespoons	15	milliliters	ml	ml	liters	1.06	quarts	qt
fl. oz	fluid ounces	30	liters	l	cubic meters	0.28	gallons	gal.
35	cups	0.24	liters	l	m ³	35	cubic feet	ft ³
40	pints	0.47	liters	l	m ³	1.3	cubic yards	yd ³
45	quarts	0.95	liters	l	m ³			
50	gallons	3.8	liters	l				
55	cubic feet	0.03	cubic meters	m ³				
60	cubic yards	0.76	cubic meters	m ³				
TEMPERATURE (exact)		0	°C	°C	Celsius temperature	9/5 (then add 32)	Fahrenheit temperature	°F
OF	Fahrenheit temperature	5/9 (after subtracting 32)	°C	°C				
1	2	3	4	5	6	7	8	9
inches	feet	yards	miles	centimeters	meters	kilometers	square centimeters	square meters
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	54
55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81
82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117
118	119	120	121	122	123	124	125	126
127	128	129	130	131	132	133	134	135
136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153
154	155	156	157	158	159	160	161	162
163	164	165	166	167	168	169	170	171
172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189
190	191	192	193	194	195	196	197	198
199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216
217	218	219	220	221	222	223	224	225
226	227	228	229	230	231	232	233	234
235	236	237	238	239	240	241	242	243
244	245	246	247	248	249	250	251	252
253	254	255	256	257	258	259	260	261
262	263	264	265	266	267	268	269	270
271	272	273	274	275	276	277	278	279
280	281	282	283	284	285	286	287	288
289	290	291	292	293	294	295	296	297
298	299	300	301	302	303	304	305	306
307	308	309	310	311	312	313	314	315
316	317	318	319	320	321	322	323	324
325	326	327	328	329	330	331	332	333
334	335	336	337	338	339	340	341	342
343	344	345	346	347	348	349	350	351
352	353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368	369
370	371	372	373	374	375	376	377	378
379	380	381	382	383	384	385	386	387
388	389	390	391	392	393	394	395	396
397	398	399	400	401	402	403	404	405
406	407	408	409	410	411	412	413	414
415	416	417	418	419	420	421	422	423
424	425	426	427	428	429	430	431	432
433	434	435	436	437	438	439	440	441
442	443	444	445	446	447	448	449	450
451	452	453	454	455	456	457	458	459
460	461	462	463	464	465	466	467	468
469	470	471	472	473	474	475	476	477
478	479	480	481	482	483	484	485	486
487	488	489	490	491	492	493	494	495
498	499	500	501	502	503	504	505	506
507	508	509	510	511	512	513	514	515
516	517	518	519	520	521	522	523	524
525	526	527	528	529	530	531	532	533
534	535	536	537	538	539	540	541	542
543	544	545	546	547	548	549	550	551
552	553	554	555	556	557	558	559	560
561	562	563	564	565	566	567	568	569
570	571	572	573	574	575	576	577	578
579	580	581	582	583	584	585	586	587
588	589	590	591	592	593	594	595	596
597	598	599	600	601	602	603	604	605
606	607	608	609	610	611	612	613	614
615	616	617	618	619	620	621	622	623
624	625	626	627	628	629	630	631	632
633	634	635	636	637	638	639	640	641
642	643	644	645	646	647	648	649	650
651	652	653	654	655	656	657	658	659
660	661	662	663	664	665	666	667	668
669	670	671	672	673	674	675	676	677
678	679	680	681	682	683	684	685	686
687	688	689	690	691	692	693	694	695
696	697	698	699	700	701	702	703	704
705	706	707	708	709	710	711	712	713
714	715	716	717	718	719	720	721	722
723	724	725	726	727	728	729	730	731
732	733	734	735	736	737	738	739	740
741	742	743	744	745	746	747	748	749
750	751	752	753	754	755	756	757	758
759	760	761	762	763	764	765	766	767
768	769	770	771	772	773	774	775	776
777	778	779	780	781	782	783	784	785
786	787	788	789	790	791	792	793	794
795	796	797	798	799	800	801	802	803
804	805	806	807	808	809	810	811	812
813	814	815	816	817	818	819	820	821
822	823	824	825	826	827	828	829	830
831	832	833	834	835	836	837	838	839
840	841	842	843	844	845	846	847	848
849	850	851	852	853	854	855	856	857
858	859	860	861	862	863	864	865	866
867	868	869	870	871	872	873	874	875
878	879	880	881	882	883	884	885	886
887	888	889	890	891	892	893	894	895
896	897	898	899	900	901	902	903	904
905	906	907	908	909	910	911	912	913
914	915	916	917	918	919	920	921	922
923	924	925	926	927	928	929	930	931
932	933	934	935	936	937	938	939	940
941	942	943	944	945	946	947	948	949
950	951	952	953	954	955	956	957	958
959	960	961	962	963	964	965	966	967
968	969	970	971	972	973	974	975	976
977	978	979	980	981	982	983	984	985
986	987	988	989	990	991	992	993	994
995	996	997	998	999	1000	1001	1002	1003

Wise, Paul, 200, Units of Weights and Measures, Price \$2.25, SD Catalog No. C13 10-286
1 mi = 2.56 versts). For other exact conversions and more detailed tables, see NBS

Auditory Cues in Non-Metric Measures

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER CR 82.017	2. GOVT ALLOCATION NO AD-A115019	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A Compendium of Tension Member Properties for Input to Cable Structure Analysis Programs		5. TYPE OF REPORT & PERIOD COVERED Final Nov 1980 - Nov 1981
7. AUTHOR(s) Joseph F. Wadsworth, III	6. PERFORMING ORG. REPORT NUMBER N68305-80-C-0004	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Western Instruments Corp. 540 Maulhardt Avenue Oxnard, CA 93030		10. PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS PE62759N YF59.556.091.01.402
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Civil Engineering Laboratory Port Hueneme, CA 93043		12. REPORT DATE April 1982
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 66
		15. SECURITY CLASS (of this report) Unclassified
		16. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of this report) Approved for public release; distribution unlimited.		
18. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
19. SUPPLEMENTARY NOTES		
20. ABSTRACT (continue on reverse side if necessary and identify by block number) This report is a collection and condensation of cable properties used in computer simulations of cable dynamics problems. Data were taken from a variety of sources, and includes weight per foot (in air and immersed), elastic modulus, breaking strength, cross-sectional area, and drag and added mass coefficients. Cable types include chain, wire rope, synthetic and electromechanical.		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 69 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Section I Properties of Fluids	2
- Kinematic Viscosity	2
- Density	2
Section II Properties of Flexible Tension Members	5
- Weight/Unit Length and Breaking Strength	5
- Wire Ropes	5
- Synthetic Fiber Ropes	16
- Chain	22
- Electromechanical Cables	29
- Stress-Strain Characteristics	38
- Wire Ropes	39
- Synthetic Fiber Ropes	41
- Chain	45
- Electromechanical Cables	47
Section III Drag Characteristics	49
- Drag Coefficients on Unfaired Cables	49
- Drag Coefficients of Faired Cables	56

INTRODUCTION

This report is intended for use by ocean engineers analyzing and designing ocean cable structures. It is particularly structured to assist users of the SEADYN and DECEL1 computer programs for cable structure analysis. The tables and figures in this report will give the user a starting place to complete the initial design and analysis. Many of the properties given in this report are based on average and estimated properties (such as average breaking strength) rather than critical values (such minimum breaking strength). The final analysis should be completed using the limiting or critical mechanical and hydrodynamic properties of the structural elements as called out in designs based on the preliminary analysis. This may be an iterative process, but the important point is to use the values of cable properties which are most critical to the design and analysis before procuring the components.

SECTION I
PROPERTIES OF FLUIDS

KINEMATIC VISCOSITY

The SEADYN, DECEL1, and SNAPLD programs require the input of drag coefficients (C_d) which are determined from the Reynolds Number (N_R) and the shape of the structural member. Determination of N_R requires that the kinematic viscosity (ν) of the surrounding fluid be known. Table 1 gives ν for sea water and fresh water over the range of likely temperatures and Table 2 does the same for air at standard atmospheric pressure.

DENSITY

DECEL1 and SEADYN require the density of the fluid to be entered. The density of sea water can be taken as $1.99 \frac{\text{lb-sec}^2}{\text{ft}^4}$ for $32 \leq {}^\circ\text{F} \leq 78$ and fresh water density is $1.94 \frac{\text{lb-sec}^2}{\text{ft}^4}$ for $32 \leq {}^\circ\text{F} \leq 76$. Table 2 gives density of air at various temperatures.

TABLE I. KINEMATIC VISCOSITY OF FRESH WATER AND
SEAWATER AT VARIOUS TEMPERATURES

Temperature, Deg F	Kinematic Viscosity of Fresh Water, $\frac{\text{ft}^2}{\text{sec}} \times 10^5$	Kinematic Viscosity of Sea Water, $\frac{\text{ft}^2}{\text{sec}} \times 10^5$	Temperature, Deg F	Kinematic Viscosity of Fresh Water, $\frac{\text{ft}^2}{\text{sec}} \times 10^5$	Kinematic Viscosity of Sea Water, $\frac{\text{ft}^2}{\text{sec}} \times 10^5$
32	1.9231	1.9681	59	1.2260	1.2791
33	1.8871	1.9323	60	1.2083	1.2615
34	1.8520	1.8974	61	1.1910	1.2443
35	1.8180	1.8637	62	1.1741	1.2275
36	1.7849	1.8309	63	1.1576	1.2111
37	1.7527	1.7991	64	1.1415	1.1951
38	1.7215	1.7682	65	1.1257	1.1794
39	1.6911	1.7382	66	1.1103	1.1640
40	1.6616	1.7091	67	1.0952	1.1489
41	1.6329	1.6807	68	1.0804	1.1342
42	1.6049	1.6532	69	1.0660	1.1198
43	1.5777	1.6263	70	1.0519	1.1057
44	1.5512	1.6002	71	1.0381	1.0913
45	1.5234	1.5748	72	1.0245	1.0783
46	1.5003	1.5501	73	1.0113	1.0650
47	1.4759	1.5259	74	0.9984	1.0520
48	1.4520	1.5024	75	0.9857	1.0392
49	1.4288	1.4796	76	0.9733	1.0267
50	1.4062	1.4572	77	0.9611	1.0145
51	1.3841	1.4354	78	0.9492	1.0025
52	1.3626	1.4142	79	0.9375	0.9907
53	1.3416	1.3935	80	0.9261	0.9791
54	1.3212	1.3732	81	0.9149	0.9678
55	1.3012	1.3535	82	0.9039	0.9567
56	1.2817	1.3343	83	0.8931	0.9457
57	1.2627	1.3154	84	0.8826	0.9350
58	1.2441	1.2970	85	0.8722	0.9245
			86	0.8621	0.9142

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FP0-1-77(9), Ocean Engineering and Construction Project Office, Naval Facilities Engineering Command, Chesapeake Division, February, 1977.

TABLE 2. DENSITY AND KINEMATIC VISCOSITY
OF AIR AT STANDARD ATMOSPHERIC PRESSURE

Temperature T , $^{\circ}$ F	Density $\rho \times 10^3$ Lb-Sec 2 /Ft 4	Kinematic Viscosity $v \times 10^4$ Ft 2 /Sec
-40	2.94	1.06
-20	2.80	1.16
0	2.68	1.26
10	2.63	1.31
20	2.57	1.36
30	2.52	1.42
40	2.47	1.46
50	2.42	1.52
60	2.37	1.58
70	2.33	1.64
80	2.28	1.69
90	2.24	1.74
100	2.20	1.80

After: Fluid Mechanics with Engineering Applications,
Daugherty, R.L., and Franzini, J.B., McGraw-Hill
Book Company, 1965.

SECTION II PROPERTIES OF FLEXIBLE TENSION MEMBERS

WEIGHT/UNIT LENGTH AND BREAKING STRENGTH

The cable dynamics and statics programs require inputs of the weight/unit length of the tension member. The user usually has an idea of the general breaking strength required and the type, material, and construction of the tension member desired. Tables of the most commonly used tension members have been enclosed to permit review and selection of the properties of the wire rope, synthetic line, chain, or cable which meets the design requirements.

Wire Ropes

Tables 3 to 15 give the breaking strengths and weights of the various constructions of wire rope manufactured by U.S. Steel which are usually used at sea and onshore. The weight in air of all ferritic and stainless steel constructions given can be converted to weight in sea water by multiplying the air value by 0.87. Those constructions with a fiber core are more difficult to convert to sea water weight due to their composite construction. Accurately calculating the weight in sea water for these fiber core ropes requires knowledge of the cross sectional areas of the steel and fiber as well as the type of fiber used. Natural fiber cores are usually treated sisal and synthetic fiber cores are polypropylene. As an approximation, the weight in sea water of fiber core ropes of 6 x 7, 6 x 19, and 6 x 37 construction may be obtained by multiplying the weight in air of an IWRC (Independent Wire Rope Core) rope of the same diameter by 0.75.

TABLE 3. 6x7 CLASSIFICATION HAULAGE ROPE

Rope Diameter Inches	Breaking Strength in Tons of 2,000 lb			Approximate Weight in Air Per Foot in lb	
	Monitor Steel IWRC	Monitor Steel Fiber Core	Plow Steel Fiber Core	IWRC	Fiber Core
1/4	2.84	2.64	2.3	0.1	0.094
5/16	4.41	4.1	3.56	0.16	0.15
3/8	6.3	5.86	5.1	0.23	0.21
7/16	8.52	7.93	6.9	0.32	0.29
1/2	11.1	10.3	8.96	0.42	0.38
9/16	14.0	13.0	11.3	0.53	0.48
5/8	17.1	15.9	13.9	0.65	0.59
3/4	24.4	22.7	19.8	0.92	0.84
7/8	33.0	30.7	26.7	1.27	1.15
1	42.7	39.7	34.5	1.65	1.5
1 1/8	53.5	49.8	43.3	2.09	1.9
1 1/4	65.6	61.0	53.0	2.57	2.34
1 3/8	78.6	73.1	63.6	3.12	2.84
1 1/2	92.7	86.2	75.0	3.72	3.38

From: United States Steel Corporation USS Tiger Brand Wire Rope Handbook

TABLE 4. 6x19 CLASSIFICATION HOISTING ROPE

Rope Diameter Inches	*Breaking Strength in Tons of 2,000 Lb (Bright & AMGAL)						Approximate Weight in Air Per Foot in Lb
	Monitor IWRC	Monitor Fiber Core	Monitor AA IWRC	Monitor AA Fiber Core	Monitor Fiber Core	IWRC	
1/4			3.40	3.02	2.94	2.74	0.105
5/16			5.27	4.69	4.58	4.26	0.164
3/8			7.55	6.71	6.56	6.10	0.236
7/16	11.2	.35	9.90	10.2	9.09	8.89	0.32
1/2	14.6	.46	12.9	13.3	11.8	11.5	0.42
9/16	18.5	.59	16.2	16.8	14.9	14.5	0.53
5/8	22.7	.72	20.0	20.6	18.3	17.9	0.66
3/4	32.3	1.07	28.6	29.4	26.2	25.6	0.95
7/8	43.8	1.47	38.6	39.8	35.4	34.6	1.42
1	57.5	1.91	50.0	51.7	46.0	44.9	1.85
1 1/8	71.5	2.42	63.0	65.0	57.9	56.5	2.34
1 1/4	87.9	2.98	77.5	79.9	71.0	69.4	2.89
1 3/8	106.	3.61	93.0	96.0	85.4	83.5	3.50
1 1/2	125.	4.30	111.	114.	101.	98.9	4.16
1 5/8	145.	5.04	129.	132.	118.	115.	4.88
1 7/8	168.	5.85	149.	153.	136.	133.	5.67
1 15/16	191.	6.71	169.	174.	155.	152.	6.50
2	218.	7.63	192.	198.	176.	172.	7.39
2 1/8					221.	197.	7.59
2 3/8					247.	220.	8.35
2 5/8					274.	244.	9.36
2 7/8					302.	269.	10.4
2 15/16					331.	288.	9.48
					361.	314.	11.6
						292.	14.0
							12.7

Galvanizing For 6x19 classification galvanized wire rope, deduct 10 percent from the listed strength of bright (uncoated) wire rope.

*Acceptance strength is not less than 2 1/2% below the nominal breaking strengths listed.

TABLE 5
USS 18-8 TYPE 304 CORROSION-RESISTING 6x19 AND 6x37 WIRE ROPES

Rope Diameter Inches	Breaking Strength in Lb		Approximate Weight Lb/100 Ft in Air	
	6x19 IWRC	6x37 IWRC	6x19 IWRC	6x37 IWRC
1/4		5,400		11.6
5/16		8,300		18.0
3/8		11,700		26.0
7/16	16,300	15,800	35.6	35.0
1/2	22,800	20,400	45.8	46.0
9/16	28,500	25,500	59.0	59.0
5/8	35,000	31,300	71.5	72.0
3/4	49,600	44,400	105.2	104.0
7/8	66,500	59,700	143.0	142.0
1	85,400	77,300	187.0	185.0
1 1/8	106,400	96,600	240.0	234.0
1 1/4	129,400	118,300	290.0	289.0
1 3/8	153,600	141,400	330.0	350.0
1 1/2	180,500	166,000	420.0	416.0

TABLE 6
GALVANIZED CARBON STEEL AIRCRAFT CABLES

Cable Diam. In.	Zinc-Coated Aircraft Cords				Zinc-Coated Aircraft Strands			Cable Diam. In.	
	7x19		7x7		No. of Wires	Break- ing Str. in Lb	Air Weight Lb Per 1,000 Ft		
	Break- ing Str. in Lb	Air Weight Lb Per 1,000 Ft	Break- ing Str. in Lb	Air Weight Lb Per 1,000 Ft					
1/32					7	185	2.5	1/32	
3/64					7	375	5.5	3/64	
1/16		480	7.5	19	500	8.5	1/16		
5/64		650	11.0	19	800	14.0	5/64		
3/32		920	16.0	19	1,200	20.0	3/32		
7/64		1,260	22.0	19	1,600	27.0	7/64		
1/8	2,000	29.0	1,700	28.0	19	2,100	35.0	1/8	
5/32	2,800	45.0	2,600	43.0	19	3,300	55.0	5/32	
3/16	4,200	65.0	3,700	62.0	19	4,700	77.0	3/16	
7/32	5,600	86.0	4,800	83.0	19	6,300	102.0	7/32	
1/4	7,000	110.0	6,100	106.0	19	8,200	135.0	1/4	
9/32	8,000	139.0	7,600	134.0	19	10,300	170.0	9/32	
5/16	9,800	173.0	9,200	167.0	19	12,500	210.0	5/16	
11/32	12,500	207.0	11,100	201.0	11/32	
3/8	14,400	243.0	13,100	236.0	3/8	

TABLE 7. USS 18-8 TYPE 304 AND TYPE 305 (HYCO-SPAN)
CORROSION-RESISTING STEEL AIRCRAFT CABLES

Cable Diam In.	7 x 19 Aircraft Cords			7 x 7 Aircraft Cords			Aircraft Strands		
	Breaking Str in Lb	Air Weight Lb Per 1,000 ft	Type 304	Breaking Str in Lb	Air Weight Lb Per 1,000 Ft	Type 305	No. Wires	Type 304	Air Weight Lb Per 1,000 Ft
1/32							7	150	2.5
1/16							7	375	5.5
5/64							19	500	8.5
3/32							19	800	14.0
7/64							19	1,200	20.0
1/8	1,760	1,300	29.0	1,260	22.0	19	19	1,600	27.0
5/32	2,400	2,000	45.0	2,400	28.0	19	19	2,100	35.0
3/16	3,700	2,900	65.0	3,700	43.0	19	19	3,300	55.0
1/4	5,000	3,800	86.0	4,800	62.0	19	19	4,700	44.00
9/32	6,400	4,900	110.0	6,100	83.0	19	19	6,300	6,000
5/16	7,800	6,100	139.0	7,600	106.0	19	19	8,200	7,800
11/32	9,000	7,600	173.0	9,000	134.0	19	19	10,300	135.0
3/8	10,500	9,300	207.0	10,500	167.0	19	19	12,500	170.0
	12,000	11,000	243.0	12,000	201.0			12,000	210.0
								236.0	236.0

From: United States Steel Corporation USS Tiger Brand Wire Rope Handbook

TABLE 8. 6x24 GALVANIZED MOORING LINE (FIBER CORE)

Rope Diameter Inches	Breaking Strength in Tons of 2,000 Lb		Air Wt/Ft in Lb
	Galvanized MONITOR Steel	Galvanized Plow Steel	
3/8	4.77	4.14	0.194
1/2	8.4	7.3	0.35
9/16	10.6	9.21	0.44
5/8	13.0	11.3	0.54
3/4	18.6	16.2	0.78
13/16	21.8	19.0	0.91
7/8	25.2	21.9	1.06
1	32.8	28.5	1.38
1 1/16	36.9	32.1	1.56
1 1/8	41.2	35.9	1.75
1 3/16	45.9	39.9	1.95
1 1/4	50.7	44.1	2.16
1 5/8	61.0	53.1	2.61
1 7/16	66.5	57.9	2.85
1 1/2	72.3	62.9	3.11
1 9/16	84.5	73.4	3.64
1 11/16	90.9	79.0	3.93
1 3/4	97.5	84.8	4.23
1 13/16	104.0	90.8	4.53
1 1/8	111.0	96.9	4.85
1 15/16	119.0	103.0	5.18
2	126.0	110.0	5.52
2 1/16	134.0	116.0	5.87
2 1/8	142.0	123.0	6.23
2 1/4	158.0	138.0	6.99
2 5/8	176.0	153.0	7.78
2 1/2	194.0	168.0	8.63

From: United States Steel Corporation USS Tiger Brand Wire
Rope Handbook

TABLE 9. 6x37 CLASSIFICATION HOISTING ROPE

Rope Diameter Inches	Breaking Strength in Tons of 2,000 Lb			Approximate Weight In Air Per Ft in Lb	
	Monitor AA Steel IWRC	Monitor Steel IWRC	Monitor Steel Fiber Core	Monitor and Monitor AA IWRC	Monitor Steel Fiber Core
1/4	3.2	2.78	2.59	0.116	0.105
5/16	4.98	4.33	4.03	0.18	0.164
3/8	7.14	6.2	5.77	0.26	0.236
7/16	9.67	8.41	7.82	0.35	0.32
1/2	12.6	11.0	10.2	0.46	0.42
9/16	15.9	13.9	12.9	0.59	0.53
5/8	19.6	17.0	15.8	0.72	0.66
3/4	27.9	24.3	22.6	1.04	0.95
7/8	37.8	32.9	30.6	1.42	1.29
1	49.1	42.8	39.8	1.85	1.68
1 1/8	61.9	53.9	50.1	2.34	2.13
1 1/4	76.1	66.1	61.5	2.89	2.63
1 3/8	91.7	79.7	74.1	3.5	3.18
1 1/2	108.0	94.5	87.9	4.16	3.78
1 5/8	127.0	111.0	103.0	4.88	4.44
1 3/4	146.0	128.0	119.0	5.67	5.15
1 7/8	168.0	146.0	136.0	6.5	5.91
2	190.0	165.0	154.0	7.39	6.72
2 1/8	214.0	186.0	173.0	8.35	7.59
2 1/4	239.0	207.0	193.0	9.36	8.51
2 3/8	264.0	230.0	214.0	10.4	9.48
2 1/2	292.0	254.0	236.0	11.6	10.5
2 5/8	321.0	279.0	260.0	12.8	11.6
2 3/4	350.0	305.0	284.0	14.0	12.7
2 7/8	382.0	333.0	310.0	15.3	13.9
3	414.0	360.0	335.0	16.6	15.1
3 1/8	448.0	389.0	362.0	18.0	16.4
3 1/4	483.0	419.0	390.0	19.5	17.7
3 3/8	518.0	451.0	420.0	21.0	19.1
3 1/2	555.0	483.0	449.0	22.7	20.6

Galvanizing: For 6 x 37 classification galvanized wire ropes, deduct 10 percent from the listed breaking strength of bright (uncoated) wire rope.

TABLE 10. 6x37 GALVANIZED
TOWING HAWSER (FIBER CORE)

Rope Dia- meter Inches	Breaking Strength in Tons (2,000 Lb)	Approx. in Air Wt/Ft in Lb
$\frac{1}{2}$	9.18	0.42
$\frac{9}{16}$	11.6	0.53
$\frac{5}{8}$	14.2	0.66
$\frac{3}{4}$	20.3	0.95
$\frac{13}{16}$	23.8	1.11
$\frac{7}{8}$	27.5	1.29
1	35.8	1.68
$1\frac{1}{16}$	40.3	1.9
$1\frac{1}{8}$	45.1	2.13
$1\frac{3}{16}$	50.1	2.37
$1\frac{1}{4}$	55.4	2.63
$1\frac{1}{8}$	66.7	3.18
$1\frac{1}{16}$	72.8	3.47
$1\frac{1}{2}$	79.1	3.78
$1\frac{3}{8}$	92.7	4.44
$1\frac{11}{16}$	99.0	4.78
$1\frac{1}{4}$	107.0	5.15
$1\frac{13}{16}$	114.0	5.52
$1\frac{1}{8}$	122.0	5.91
$1\frac{15}{16}$	130.0	6.31
2	139.0	6.72
$2\frac{1}{16}$	147.0	7.15
$2\frac{1}{8}$	156.0	7.59
$2\frac{1}{4}$	174.0	8.51
$2\frac{5}{16}$	183.0	8.98
$2\frac{3}{8}$	193.0	9.48

From: United States Steel Corporation, USS Tiger Brand Wire Rope Handbook

TABLE 11. 3x7, 3x19 and 3x47 TORQUE-BALANCED ROPES WITH AND WITHOUT JACKETS

Size Inches	Con- struction	Bright or AMGAL MONITOR AA Torque-Balanced Rope			Polyurethane Jacketed Rope			Polyethylene Jacketed Rope		
		Weight in Air Lbs/Ft	Weight in Water Lbs/Ft	Breaking Load Pounds	Jacketed Rope	Weight in Air Lbs/Ft	Weight in Water Lbs/Ft	Weight in Air Lbs/Ft	Weight in Water Lbs/Ft	
5/32	3x7	.0402	.0349	2,800	.237	.056	.037	.052	.032	
3/16	3x19 Seale	.0586	.0509	4,000	.269	.078	.052	.073	.047	
1/4	3x19 Seale	.0997	.0867	6,750	.329	.126	.088	.119	.081	
5/16	3x19 Seale	.153	.133	10,300	.392	.188	.134	.179	.125	
3/8	3x19 Seale	.220	.191	14,800	.456	.265	.192	.253	.181	
7/16	3x19 Seale	.304	.264	20,000	.524	.361	.265	.346	.250	
1/2	3x19 Seale	.392	.341	25,700	.682	.512	.350	.482	.319	
9/16	3x19 Seale	.492	.428	32,500	.746	.631	.437	.596	.402	
5/8	3x19 Seale	.602	.523	40,300	.807	.760	.533	.720	.493	
3/4	3x19 Seale	.879	.764	57,800	.941	1.08	.774	1.03	.722	
7/8	3x19 Seale	1.21	1.05	78,000	1.077	1.46	1.06	1.40	.995	
1	3x19 Seale	1.56	1.36	100,600	1.201	1.87	1.36	1.79	1.28	
1-1/8	3x19 Seale	1.96	1.70	124,000	1.326	2.32	1.71	2.23	1.62	
1/2	3x46 Seale FW	.417	.362	25,700	.688	.539	.374	.508	.343	
9/16	3x46 Seale FW	.517	.449	32,500	.747	.657	.462	.621	.426	
5/8	3x46 Seale FW	.631	.548	40,300	.809	.790	.562	.749	.521	
3/4	3x46 Seale FW	.903	.785	57,800	.936	1.10	.799	1.05	.748	
7/8	3x46 Seale FW	1.27	1.10	78,000	1.078	1.52	1.12	1.46	1.05	
1	3x46 Seale FW	1.64	1.43	100,600	1.205	1.95	1.44	1.87	1.36	
1-1/8	3x46 Seale FW	2.07	1.80	124,000	1.332	2.44	1.82	2.34	1.72	
1-1/4	3x46 Seale FW	2.60	2.26	158,000	1.514	3.08	2.29	2.96	2.16	
1-3/8	3x46 Seale FW	3.10	2.69	188,000	1.637	3.65	2.72	3.51	2.58	
1-1/2	3x46 Seale FW	3.69	3.21	222,000	1.784	4.35	3.24	4.18	3.07	
1-5/8	3x46 Seale FW	4.43	3.85	265,000	1.938	5.19	3.88	5.00	3.69	
1-3/4	3x46 Seale FW	5.12	4.45	304,000	2.063	5.97	4.48	5.75	4.27	

From: USS Tiger Brand Torque-Balanced Wire Rope for Oceanographic and Marine Use, AD USS 55-4999-01, April, 1971

TABLE 12

3x7 TYPE 304 STAINLESS STEEL ROPE		
Size	Minimum Breaking Strength Lbs	Air Weight Lbs/Ft
5/32	2,800	.0406
11/64	3,300	.0491
3/16	3,900	.0578
7/32	5,000	.0745

TABLE 13

3x19 TYPE 304 STAINLESS STEEL ROPE		
Size	Minimum Breaking Strength Lbs	Air Weight Lbs/Ft
11/64	3,500	.0512
3/16	4,000	.0592
7/32	5,400	.0803

TABLE 14

3x19 TENELON STAINLESS STEEL		
Size	Minimum Breaking Strength Lbs	Air Weight Lbs/Ft
3/8	12,700	.221
7/16	17,200	.299
1/2	22,000	.388
9/16	28,000	.487

From: United States Steel Tiger Brand Torque-Balanced Wire Rope for
Oceanographic and Marine Use, AD USS 55-4999-01, April 1971

TABLE 15
8x19 CLASSIFICATION HOTSTING ROPE (FIBER CORE)

Rope Diameter Inches	Breaking Strength in Tons (2,000 Lb)		Approximate Wt/Ft in Air in Lb
	Monitor Steel	Plow Steel	
1/4	2.35	2.04	0.098
5/16	3.65	3.18	0.15
3/8	5.24	4.55	0.22
7/16	7.09	6.17	0.3
1/2	9.23	8.02	0.39
9/16	11.6	10.1	0.5
5/8	14.3	12.4	0.61
3/4	20.5	17.8	0.88
7/8	27.7	24.1	1.2
1	36.0	31.3	1.57
1 1/8	45.3	39.4	1.99
1 1/4	55.7	48.4	2.45
1 1/8	67.1	58.3	2.97
1 1/2	79.4	69.1	3.53

From: United States Steel Corporation, USS Tiger Brand Wire Rope Handbook

Synthetic Fiber Ropes

Fiber ropes used in cable structures are usually synthetic fiber with a non-rotating construction. The most common fibers used are nylon, polyester (Dacron and Duron), aramid (Kevlar 29 and 49), and polypropylene. The usual constructions are double-braided and single braided or plaited line. Aramid fiber lines are the exception as they are made in a wide variety of constructions. Natural fibers and rotating constructions of lines (e.g. three-strand line) have been omitted from this report since they are either rarely used or are generally unsuitable for use in cable structures. Table 16 presents the average breaking strengths and weights in air for various sizes of double-braided lines manufactured by Samson Ocean Systems, Inc. Table 17 gives the same information for Samson's single braided lines. A conversion factor is given for each type of line to convert weight in air to weight in sea water. This factor can be determined for other fluids as well by using the formula:

$$\text{Conversion Factor, } C = 1 - \frac{\text{specific gravity fluid}}{\text{specific gravity rope}}$$

Example: To determine the weight of 1½" diameter double braided nylon in sea water: 1. Find the rope size and type in Table 16. 2. The weight in air is 60 lbs/100 ft. 3. The conversion factor for this type rope is given in heading box as 0.10. 4. Weight of 1½" diameter double braided nylon in sea water is given by:

$$W_s = 60 \text{ lbs/100 ft} \times 0.10 = .06 \text{ lbs/ft}$$

Table 18 lists the characteristics of the standard aramid constructions available from Philadelphia Resins Corporation, Cortland Cable Company, and Samson Ocean Systems, Inc.

TABLE 16a. SIZE, AVERAGE BREAKING STRENGTH, WEIGHT, AND SPECIFIC GRAVITY OF
SAMSON DOUBLE BRAIDED SYNTHETIC ROPE

Brand Name Core-Cover Specific Gravity Sea Water Weight Conversion Factor*	2-in-1 Nylon Nylon-Nylon 1.14 0.10		Polyester-Polyester 1.38 0.25	Stable Braid Polyester-Polyester 1.38 0.25	Power Braid Nylon-Polypropylene 1.01 -0.02 (Buoyant)	
	Average Breaking Strength (lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ³)			Average Breaking Strength (lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ³)
1/4	2.3	1.65	2.6	2.3	2.3	1.65
5/16	3.4	2.6	3.9	3.4	3.4	2.6
3/8	4.9	3.7	5.2	4.6	4.4	3.3
7/16	6.6	5.1	7.3	6.4	5.9	4.5
1/2	8.5	6.6	9.4	8.3	7.6	5.9
9/16	11.7	9	12.4	10.9	10.2	8.2
5/8	15.2	12	15.3	13.3	13.0	10.4
3/4	19.1	15	19.1	16.8	16.4	13.2
13/16	23.5	18	22	22.0	20.0	16.2
7/8	28.3	22	27.8	25.5	24.0	19.7
1	33.6	26	36.3	33.6	28.4	23.4
1/16	39.3	31	—	37.0	33.0	27.5
1/8	45.0	36	44.7	42.5	38.0	32.0
1/4	52.0	41	53.0	51.5	43.4	37.0
5/16	59.0	47	58.6	57.0	49.0	42.0
1/2	74.0	60	69.2	68.0	61.3	53.0
5/8	91.0	74	84.0	85.0	75.0	65.0
3/4	110	89	101	101	90.0	79.0
2	131	106	118	120	106	94.0
2 1/8	153	124	140	144	123	110
2 1/4	177	144	161	168	142	127
2 1/2	202	165	182	192	162	146
2 5/8	230	188	203	216	183	166
2 3/4	257	212	224	240	204	188
3	285	233	266	288	227	211
3 1/4	322	294	327	360	276	260
3 5/8	384	356	387	432	329	315
4	451	423	427	480	387	374
4 1/4	523	497	506	576	453	411
4 5/8	599	576	584	672	524	514
5	680	662	662	768	594	538

* Multiply weight in air by this factor to obtain weight in sea water in lbs/ft x 10³

From: Samson Marine and Industrial Ropes Catalog, SBRC2-49, Samson Ocean Systems, Inc., Boston, MA

TABLE 16b. SIZE, AVERAGE BREAKING STRENGTH, WEIGHT, AND SPECIFIC GRAVITY OF
SAMSON DOUBLE BRAIDED SYNTHETIC ROPE

Brand Name Core-Cover Specific Gravity Sea Water Weight Conversion Factor	Diameter (in)	Nylon/Polyester		Kevlar/Duron Kevlar-Polyester		MFP* 2-in-1 MFP/MFP 0.91 -0.13		2-in-1 Nylon/Polyester Composite 1.21 0.17	
		Average Breaking Strength (lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ⁷)	Average Breaking Strength (lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ⁷)	Average Breaking Strength (lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ⁷)	Average Breaking Strength (lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ⁷)
1/4	1.94	1.87	2.91	4.21	5.74	7.49	10.2	13.3	16.0
5/16	2.60	3.88	5.20	6.70	9.00	11.6	14.5	17.7	20.8
3/8	3.88	5.20	6.70	9.00	11.6	14.5	17.7	21.2	25.2
7/16	5.20	7.49	10.2	13.3	17.0	20.8	25.2	30.0	35.2
1/2	6.70	7.49	10.2	13.3	17.0	20.8	25.2	30.0	35.2
9/16	9.00	10.2	13.3	17.0	20.8	25.2	30.0	35.2	40.0
5/8	11.6	13.3	17.0	20.8	25.2	30.0	35.2	40.0	45.0
3/4	14.5	16.9	20.8	25.2	30.0	35.2	40.0	45.0	49.0
13/16	17.7	20.8	25.2	30.0	35.2	40.0	45.0	49.0	53.0
7/8	21.2	25.2	30.0	35.2	40.0	45.0	50.0	55.0	59.0
1	25.2	30.0	35.2	40.0	45.0	50.0	55.0	60.0	65.0
1/16	29.1	35.2	40.0	45.0	50.0	55.0	60.0	65.0	70.0
1	33.5	40.8	46.8	52.0	58.0	64.0	70.0	76.0	82.0
1/4	38.2	46.8	52.0	58.0	64.0	70.0	76.0	82.0	88.0
1	43.2	53.3	60.0	67.4	75.0	83.2	92.0	100.0	108.0
1/2	54.0	67.4	75.0	83.2	92.0	101	112	123	134
1	5/8	66.0	83.2	101	112	123	132	143	154
1	7/8	79.1	93.3	130	141	152	163	174	185
2	1	93.3	109	141	156	171	180	195	206
2	1/8	109	125	163	174	187	206	221	232
2	1/4	125	143	187	206	221	235	250	261
2	1/2	143	160	213	235	252	275	290	305
2	5/8	160	180	241	265	281	305	320	335
2	3/4	180	200	270	297	312	334	350	365
3	1	200	244	333	412	368	443	422	400
3	1/4	244	290	403	485	527	563	496	461
3	5/8	290	480	403	485	563	646	575	541
4	1	337	733	619	718	733	646	658	627
4	1/4	733	825	718	825	825	820	748	720
4	5/8	825	825	825	825	825	820	748	720

* MFP = Multifilament Polypropylene

From: 1. Samson Special Braided Rope Constructions, M12-49, Samson Ocean Systems, Inc., Boston, MA
2. Samson Marine and Industrial Ropes Catalog, SBRC-49, Samson Ocean Systems, Inc., Boston, MA

TABLE 17. SIZE, AVERAGE BREAKING STRENGTH, WEIGHT, AND SPECIFIC GRAVITY OF
12 STRAND SINGLE BRAIDED SYNTHETIC ROPES

Braid Name Material Specific Gravity Sea Water Weight Conversion Factor*	Single Braid Kevlar Kevlar 29 1.44 0.28		Vl.5/Duron Polyester 1.38 0.25		Samson N-12 Polypropylene 0.90 -0.14		Hura-Plex Composite Polyester 1.20 0.17	
	Diameter (in)	Average Breaking Strength (Lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ⁷)	Average Breaking Strength (Lbs x 10 ⁻¹)	Weight in Air (lbs/ft x 10 ⁷)	Average Breaking Strength (Lbs x 10 ⁻³)	Weight in Air (lbs/ft x 10 ⁷)	Average Breaking Strength (Lbs x 10 ⁻³)
3/16	3.50	1.0			1.36	1.04	1.94	1.65
1/4	6.50	2.0			2.17	1.73	2.60	2.43
5/16	9.30	3.0			2.95	2.42	3.88	3.79
3/8	12.0	4.0			4.10	3.45	5.20	4.76
7/16	14.6	5.0			4.83	4.15	6.70	6.21
1/2	22.2	8.0			6.28	5.53	9.00	8.45
9/16	27.0	10.0			8.40	7.60	11.6	11.0
5/8	36.0	14.0			10.4	9.60	14.5	14.0
3/4	42.0	16.0			12.6	11.9	17.7	17.3
13/16	50.0	20.0			15.0	14.4	21.2	20.9
7/8	60.0	24.0			17.6	17.1	25.0	24.8
	70.0	30.0			20.4	20.0	29.1	29.2
	1/16	80.0			23.3	23.3	33.5	33.8
	8/8	92.0			26.5	26.7	38.2	38.8
	1/4	104			29.8	30.4	43.2	44.2
	5/16	116			36.9	38.5	54.0	55.9
	1/2	143			44.7	47.5	66.0	69.0
	5/8	173			53.2	57.5	79.1	83.5
	3/4	204			62.4	68.4	93.3	99.4
	2	238			72.2	80.3	109	117
	2 1/8	275			82.7	93.1	125	135
	2 1/4	313			93.8	107	143	155
	2 1/2				105	122	160	177
	2 5/8				117	137	180	199
	2 3/4				130	154	200	224
	3				159	190	244	276
	3 1/4				188	230	290	334
	3 5/8				220	274	337	398
	4							

* Multiply weight in air by this factor to obtain weight in lbs/ft

From: 1. Samson Special Braided Rope Constructions, M12-49, Samson Ocean Systems, Inc., Boston, MA
2. Samson Marine and Industrial Ropes Catalog, SBRC-49, Samson Ocean Systems, Inc., Boston, MA

TABLE 18. SIZE, MINIMUM BREAKING STRENGTH AND WEIGHT OF
VARIOUS KEVLAR 29 LINE CONSTRUCTIONS

Manufacturer	Manufacturer Designation Construction	DIA (in)	Min. Break Strength (lbs)	Weight in Air (Lbs/Ftx10 ³)	Comments
Cortland Cable Company, Inc.	B29 16x15	.085	850	1.8	Single Braided Line
	B29 24x15	.11	1,250	3.1	Single Braided Line
	B29 32x30	.19	3,500	8.0	Single Braided Line
	B29 12x150	.26	6,800	19	Single Braided Line
	B29 16x150	.30	9,000	24	Single Braided Line
	B29 32x150	.42	18,000	50	Single Braided Line
			1/8"	2,000	
			1/4"	8,000	
			3/8"	12,000	
			1/2"	20,000	
		1		60,000	270
					Diameter includes nylon braid extruded polyurethane jacket over a parallel fiber type line with a slight twist
Philadelphia Resins Corporation	PS29-19x7x.23	.23	6,000	18	19 strand with 7 yarns each cable laid line
	PS29-19x7x.33	.33	12,000	36	
	PS29-19x7x.45	.45	17,500	48	
	PS29-19x7x.51	.51	22,000	72	
	PS29-6x19x.58	.58	30,000	95	6 strands with 19 yarns each and independent Kevlar core
	PS29-6x19x.67	.67	36,000	115	
	PS29-6x19x.70	.70	42,000	135	
	PS29-6x19x.85	.85	55,000	186	
	PS29-S-48	.10	1,200	3.5	Single braided line
	PS29-S-75	.13	2,000	6.0	
	PS29-S-72	.21	4,500	12	
	PS29-S-146	.28	7,000	22	
Samson Ocean Systems, Inc.	See Table 17				

Chain

There are two basic types of chain, open link and studlink. Within these two basic types there are various materials, constructions, and heat treatments used to obtain desired strengths. The open link chains most commonly used are proof coil, BBB coil, high test, transport and alloy. Proof coil and BBB coil are made of low carbon steels, high test chain is made of high carbon steel, transport chain is high tensile heat-treated steel, and alloy chain is composed of heat-treated low alloy steel. Open link chain is also available in various corrosion resistant metals but these are rather unusual in application so are not included in this report.

Stud link chain of the various types and grades usually have the same weight and link dimensions although the materials and method of forming links may vary. Once again there are constructions of corrosion resistant steel for which data are not included due to the rarity of use. Table 21 lists the characteristics of the types of chain which will usually be found in surplus or Navy stocks (Di-lok was a Navy developed design). Table 22 lists the same information for grades of stud link chains established by the American Bureau of Shipping. Table 23 lists characteristics of chain designated as Oil Rig Quality by the American Petroleum Institute which is used on most drill ships and platforms.

Table 19 gives values of constants which can be used to approximate the weight and strength of chain for a known chain size (chain size for this formula is specified as the diameter of the bar forming the link). More often, the designer will select a chain for its strength and weight and

thus determines the "trade size" of chain required. Actual bar diameter is somewhat greater than trade size. Tables 20 and 21 are included for this purpose and for the larger chain sizes not covered by the formula in Table 19. Weights given are in air and must be multiplied by 0.87 to obtain sea water weight.

TABLE 19
WEIGHT AND STRENGTH OF CHAIN

LINK	GRADE	PARAMETER	AIR WEIGHT 1b/ft	PROOF STRENGTH 1b	ULTIMATE STRENGTH 1b
Stud ¹	Forged	Multiplier	10.51	84,090	128,500
		Exponent	1.929	1.928	1.916
Open ²	Proof Coil	Multiplier	10.22	37,670	65,920
		Exponent	1.918	1.851	1.851
Open ²	Heat Treated	Multiplier	10.39	61,000	106,800
		Exponent	1.879	1.767	1.767
Open ²	High Tensile	Multiplier	10.19	89,650	156,900
		Exponent	1.860	1.819	1.819
Open ²	Alloy Steel ³	Multiplier	9.651	98,800	172,900
		Exponent	1.915	1.883	1.883

Air Weight (Lb/ft) |
Proof Strength (Lb) | = Mult. *D ** Exp.,
Ultimate Strength (Lb) | where D = diameter of bar forming
 0.25 < D < 1.00

1 Baldt Anchor, Chain and Forge Div.,
The Boston Metals Co.

2 Reference 7, page 35

3 Suitable for overhead hoisting

From: A Short Compendium of the Physical Properties of Mooring Line Components,
CR80.0020, Civil Engineering Laboratory, Naval Construction Battalion
Center, May 1981

TABLE 20
SIZE, WIDTH, WEIGHT, AND BREAKING STRENGTH OF OPEN LINK CHAINS*

Trade Size (in)	Bar Diameter (in)	Proof-Coil		BBB-Coil		High-Tensile Quality		Alloy	
		Outside Link Width (in)	Weight in Air (Lbs/Ft)	Outside Link Width (in)	Weight in Air (Lbs/Ft)	Outside Link Width (in)	Weight in Air (Lbs/Ft)	Outside Link Width (in)	Weight in Air (Lbs/Ft)
3/16	7/32	0.84	0.42	700	0.81	0.46	800	0.95	0.54
1/4	9/32	1.06	0.76	1,175	0.99	0.81	1,325	0.80	0.42
5/16	11/32	1.18	1.15	1,750	1.19	1.20	1,950	1.17	0.73
3/8	13/32	1.43	1.66	2,450	1.43	1.73	2,750	1.37	1.23
7/16	15/32	1.68	2.25	3,250	1.62	2.31	3,625	1.59	2.00
1/2	17/32	1.87	2.86	4,250	1.81	2.96	4,750	1.81	2.50
9/16	19/32	2.06	3.55	5,250	1.97	3.66	5,875	2.00	2.25
5/8	21/32	2.31	4.25	6,375	2.18	4.47	7,250	2.21	2.73
3/4	25/32	2.68	6.05	9,125	2.56	6.40	10,250	2.62	3.00
7/8	28/32	3.18	8.11	10,750	3.06	8.50	12,000	3.15	3.40
1 1/32	3.56	10.5	12,000	3.43	10.9	15,500	3.55	3.75	4.00
1 8/8	5/32	4.06	13.2	15,600	3.93	13.6	19,500	4.15	4.40
1 1/4	9/32	4.43	16.2	19,200	4.31	16.6	24,000	4.15	4.25

* These are typical values to be used in analysis. Final design should use values obtained from the chain manufacturer as sizes, weights, and working load limits vary from one manufacturer to the next.

After: Handbook of Ocean and Underwater Engineering; Myers, Holms, and McAllister (ed); North American Rockwell Corporation, 1969, published by McGraw-Hill.

Table 21

Size, Weight (in-air), and Strength of Stud Link Chains
Common in Navy Stocks

Chain size	Link width	Weight per 15-fathom shot (approx.)	Wrought iron		Hi-strength		Di-Lok	
			In.	B. in.	Proof test, lb.	Break test, lb.	Proof test, lb.	Break test, lb.
1/2	2 1/8	505	22,680	33,980	34,680	48,550	48,000	75,000
1 1/8	2 1/8	600	26,600	39,872	40,430	56,600	56,000	86,500
2	3 1/8	688	30,800	46,200	46,630	65,280	64,000	98,000
1 1/8	3 1/8	705	35,392	53,088	53,280	74,590	74,000	113,500
1	3 1/8	900	40,320	60,480	60,360	84,500	84,000	129,000
1 1/8	3 1/4	1,020	45,472	68,096	67,850	91,990	95,000	145,000
1 1/8	4	1,140	50,960	76,440	75,770	106,080	106,000	161,000
1 1/8	4 1/4	1,275	56,840	85,120	84,120	117,770	118,000	179,500
1 1/8	4 1/2	1,415	63,000	94,360	92,910	130,070	130,000	198,000
1 1/8	4 3/4	1,560	69,440	104,160	102,090	142,930	143,500	216,500
1 1/8	4 1/2	1,705	76,120	114,240	111,660	156,330	157,000	235,000
1 1/8	5 1/8	1,865	83,160	124,600	121,720	170,430	171,000	257,500
1 1/8	5 1/8	2,035	90,720	131,488	132,190	185,060	185,000	280,000
1 1/8	5 1/8	2,195	98,336	137,536	143,050	200,270	200,500	302,500
1 1/8	5 1/8	2,345	106,400	148,060	154,310	216,030	216,000	325,000
1 1/8	6 1/8	2,530	114,800	160,720	165,960	232,360	232,500	352,500
1 1/8	6 1/8	2,720	123,480	172,760	178,000	249,210	249,000	380,000
1 1/8	6 1/8	2,925	132,440	185,360	190,430	266,620	267,000	406,000
1 1/8	6 1/8	3,125	141,680	198,240	203,250	284,540	285,000	432,000
1 1/8	7	3,335	151,200	211,680	216,430	303,000	303,500	460,000
2	7 1/8	3,525	161,280	225,792	230,000	322,000	322,000	488,000
2 1/8	7 1/8	3,750	171,360	239,904	243,930	341,510	342,000	518,000
2 1/8	7 1/8	3,975	182,000	254,800	258,240	361,530	362,000	548,000
2 1/8	7 1/8	4,215	192,920	269,920	272,910	382,060	382,500	579,100
2 1/8	8 1/8	4,460	204,120	285,600	287,930	403,100	403,000	610,000
2 1/8	8 1/8	4,710	215,600	301,810	303,320	424,630	425,000	642,500
2 1/8	8 1/8	4,960	227,360	318,304	319,050	446,660	447,000	675,000
2 1/8	8 1/8	5,210	239,458	335,180	335,130	469,180	469,500	709,500
2 1/8	9	5,528	252,000	352,800	351,560	492,190	492,000	744,000
2 1/8	9 1/4	5,810	261,408	365,960	368,440	515,670	516,000	778,500
2 1/8	9 7/8	6,105	270,816	379,120	385,140	539,620	540,000	813,000
2 1/8	9 7/8	6,410	280,224	392,280	402,890	564,040	565,000	849,000
2 1/8	9 7/8	6,725	290,632	405,410	420,660	588,930	590,000	885,000
2 1/8	10 1/8	7,040	298,816	418,320	438,700	614,260	615,000	925,000
2 1/8	10 1/8	7,365	308,224	431,480	457,190	640,070	640,000	965,000
2 1/8	10 1/8	7,696	317,408	444,360	475,910	666,310	666,500	1,005,000
3	10 1/8	8,035	326,592	457,184	495,000	693,000	693,000	1,045,000
3 1/8	11	8,379	335,552	469,728	514,180	720,130	720,500	1,086,500
3 1/8	11 1/4	8,736	344,400	482,160	531,060	747,680	748,000	1,128,000
3 1/8	11 1/4	9,093	353,248	494,480	554,050	775,670	776,050	1,169,000
3 1/8	11 1/4	9,460	361,984	506,688	574,340	804,070	804,100	1,210,000
3 1/8	11 1/4	9,828	370,496	518,560	594,920	832,890	833,150	1,253,000
3 1/8	12 1/8	10,210	378,810	530,320	615,900	862,130	862,200	1,296,000
3 1/8	12 1/8	10,599	386,980	541,632	636,970	891,770	892,100	1,339,580
3 1/8	12 1/8	10,998	395,136	553,056	658,140	921,810	922,000	1,383,100
3 1/8	13 1/8	11,807	410,253	570,688	702,750	984,600	1,021,000	1,566,000
3 1/8	13 1/8	12,626	425,370	588,320	747,070	1,046,900	1,120,000	1,750,000
3 1/8	14	13,340	442,300	618,600	793,000	1,100,200	1,205,000	1,883,400
4	14	14,100	455,000	636,000	840,000	1,176,000	1,298,000	1,996,500
4	14 1/2	15,000	461,550	646,000	863,900	1,209,400	1,347,400	2,062,500
4 1/2	15 1/2	15,900	468,100	655,000	888,000	1,243,200	1,393,700	2,134,000
4 1/2	15 1/2	16,860	492,200	688,400	987,000	1,381,700	1,569,700	2,398,000
4 1/2	16 1/2	17,840	502,700	703,100	1,037,800	1,452,900	1,672,000	2,508,000
4 1/2	16 1/2	18,840	510,300	713,700	1,089,600	1,525,400	1,775,000	2,675,000
4 1/2	17 1/2	19,840	518,500	725,300	1,142,000	1,599,000	1,870,000	2,805,000

From: Handbook of Ocean and Underwater Engineering; Myers, Holms, and McAllister (ed); North American Rockwell Corporation, 1969, published by McGraw-Hill Company.

Table 22
AMERICAN BUREAU OF SHIPPING

Stud Link Anchor Chain Proof and Break Tests

Chain Diameter in	Normal Strength Grade 1		High Strength Grade 2		Extra High Strength Grade 3		Minimum Wt Pounds Per 15 Fathoms lbs *
	Proof Load lbs	Breaking Load lbs.	Proof Load lbs.	Breaking Load lbs.	Proof Load lbs.	Breaking Load lbs.	
1/2	10685	15275	15275	21390	21390	30555	225
5/16	13505	19285	19285	26995	26995	38575	290
3/8	16620	23745	23745	33220	33220	47465	365
11/16	20050	28625	28625	40095	40095	57275	405
3/4	23790	33980	33980	47580	47580	67960	480
13/16	27845	39760	39760	55655	55665	79520	570
7/8	32165	45965	45965	64355	64355	91840	655
21/16	36825	52620	52620	73650	73650	105210	755
11/8	41775	59695	59695	81550	81550	119390	855
15/16	46985	67155	67155	94055	94055	134650	970
1/2	52640	75040	75040	105050	105050	150080	1085
3/16	58350	83440	83440	116700	116700	166770	1215
1/4	64510	92180	92180	129020	129020	184240	1345
13/16	70900	101250	101250	141800	141800	202500	1485
15/16	77510	110810	110810	155200	155200	221600	1625
17/16	84450	120740	120740	169000	169000	241470	1775
1/2	91230	131040	131040	183450	183450	262080	1935
19/16	99230	141800	141800	198500	198500	283600	2090
107940	152880	152880	213920	213920	305650	2235	
11/16	115020	166660	166660	229090	229090	326700	2410
21/16	123100	176180	176180	246620	246620	352240	2590
13/16	131820	188380	188380	263600	263600	376600	2785
14/16	140670	200900	200900	281300	281300	401900	2975
15/16	149500	213600	213600	299300	299300	426900	3175
1	159040	227100	227100	318100	318100	454400	3355
17/16	168580	240800	240800	337100	337100	481600	3570
21/16	178400	254800	254800	356700	356700	509600	3785
23/16	188440	269100	269100	376900	376900	538300	405
21/16	198600	283900	283900	396400	396400	569700	4245
23/16	209200	298900	298900	418400	418400	597700	4485
21/16	212000	314300	314300	439900	439900	628400	4725
23/16	230900	330000	330000	461900	461900	659800	4960
1	242100	346000	346000	484300	484300	691800	5265
17/16	251500	363300	363300	507200	507200	725600	5535
21/16	269200	378900	378900	530400	530400	737800	5815
23/16	277100	395800	395800	554200	554200	791600	6105
21/16	289200	415100	413100	578400	578400	826200	6405
23/16	301300	436700	437000	603000	603000	861400	6705
21/16	313900	448600	448600	628000	628000	897000	7015
23/16	326650	466700	466700	653500	653500	933900	7390
23/16	339600	485200	485200	679200	679200	970300	7650
21/16	352700	503900	503900	705400	705400	1007700	7980
21/16	365900	522900	522900	732100	732100	1045800	8320
21/16	379500	542200	542200	759000	759000	1084300	8660
21/16	399100	561700	561700	786500	786500	1123300	9010
21/16	407100	581500	581500	814100	814100	1163100	9380
21/16	421000	601700	601700	842500	842500	1203500	9725
21/16	435300	622000	622000	870800	870800	1244000	10095
21/16	449700	642700	642200	899900	899900	1285400	10475
21/16	464500	663500	663500	928800	928800	1326900	10860
21/16	479200	684500	684500	958400	958400	1369200	11250
21/16	509300	727600	727600	1018500	1018500	1455000	12025
21/16	540000	771500	771500	1080000	1080000	1542800	12850
21/16	555600	791700	793700	1111100	1111100	1587400	13275
21/16	571300	816100	816100	1142700	1142700	1632400	13700
21/16	603300	861800	861800	1206600	1206600	1723700	14560
21/16	638800	908300	908300	1271800	1271800	1816800	15350
21/16	669000	935700	935700	1338000	1338000	1911300	16200
21/16	702700	1003700	1003700	1405300	1405300	2007500	17100
21/16	736700	1052600	1052600	1473600	1473600	2105200	18000
21/16	771500	1102100	1102100	1542900	1542900	2204200	18900
21/16	789700	1127300	1127300	1578200	1578200	2254600	19400
21/16	806700	1152500	1152500	1613400	1613400	2304900	19900
21/16	842300	1201300	1201300	1684600	1684600	2406600	20900
21/16	878300	1254700	1254700	1756600	1756600	2509400	22000
21/16	896400	1280600	1280600	1792900	1792900	2561300	22500
21/16	970000	1385700	1385700	1940000	1940000	2771400	24500
21/16	1026000	1463800	1463800	2052100	2052100	2931500	26100
21/16	1092800	1546800	1546800	2165500	2165500	3093600	27600
21/16	1140100	1628700	1628700	2280200	2280200	3237400	29100

From: Vicinay Anchors and Chain Catalog, Vicinay International Company,
Inc., Houston, Texas

* weight in-air

Table 23
Size, Strength, and Weight of Oil Rig Quality
Stud Link Chain

Diameter	Proof load	Breaking load	Approx. weight*	
			15 Fathoms	1000 Feet
Inches	lbs	lbs	lbs	lbs
2	324000	489000	3528	39200
2 1/16	344000	518000	3748	41644
2 1/8	364000	548000	3971	44122
2 3/16	384000	579000	4218	46866
2 1/4	405000	611000	4454	49488
2 5/16	427000	643000	4749	52766
2 3/8	449000	676000	5016	55733
2 7/16	471000	710000	5285	58722
2 1/2	494000	744000	5580	62000
2 9/16	517000	779000	5878	65311
2 5/8	541000	815000	6176	68622
2 11/16	565000	852000	6471	71900
2 3/4	590000	889000	6782	75355
2 13/16	615000	927000	7111	79011
2 7/8	640000	965000	7435	82611
2 15/16	660000	1004000	7777	86411
3	693000	1044000	8116	90177
3 1/16	719000	1084000	8460	94000
3 1/8	747000	1125000	8815	97944
3 3/16	774000	1167000	9188	102088
3 1/4	802000	1209000	9543	106033
3 5/16	830000	1252000	9929	110322
3 3/8	859000	1295000	10314	114600
3 7/16	888000	1338000	10700	118888
3 1/2	918000	1383000	11102	123355
3 9/16	947000	1428000	11488	127644
3 5/8	977000	1473000	11878	131978
3 3/4	1039000	1566000	12661	140678
3 7/8	1101000	1660000	13446	149400
3 15/16	1133000	1708000	14097	156633
4	1165000	1756000	14324	159156
4 1/8	1231000	1855000	15272	169689
4 1/4	1297000	1955000	16405	182277
4 3/8	1365000	2057000	17441	193788
4 1/2	1433000	2160000	18477	205300
4 5/8	1503000	2265000	19260	214000
4 3/4	1574000	2372000	20263	225144
4 7/8	1645000	2479000	21642	240465
5	1718000	2589000	22766	252955
5 1/8	1791000	2700000	23902	265577
5 1/4	1865000	2811000	25100	278888
5 3/8	1941000	2925000	26371	293011
5 1/2	2016000	3038000	27500	305555
5 5/8	2093000	3154000	28700	318889
5 3/4	2170000	3270000	30054	333933
6	2325000	3505000	32567	361855

* Infrequent

*in-air

From: Ramnäs Anchor Chains, Reprint from 34th (1980-1981) Composite Catalog, Bulten - Kanthal AB, Ramnäs, Sweden

Electromechanical Cables

EM cables come in a wide variety of constructions. Table 24 gives a formula for calculating approximate cable weights and strengths based on the stock off-the-shelf cables available from the Rochester Corporation. Tables 25-27 are excerpts from the Rochester Catalog which gives the characteristics of the EM cables upon which Table 24 is based. Examples of Rochester custom designed EM cables are given in Table 28. Usually the designer will have a cable design and characteristics to use in the programs. The above tables will help if no cable design data are available and stock cable can be used.

If the cable construction is unusual the weight in air may be determined by calculating the weight of each component by:

$$\text{lbs in air/1000 ft} = A_{\text{cm}} \times 3.4 \times 10^{-4} \times \text{specific gravity}$$

A_{cm} = cross sectional area in circular mills of component

and summing the total. The weight in sea water would be performed similarly using:

$$\text{lbs in sea water/1000 ft} = A_{\text{cm}} \times 3.4 \times 10^{-4} \left(1 - \frac{1.03}{\text{specific gravity}}\right)$$

The Rochester catalog suggests the following relations for their cables.

1. Jacketed Cable

$$\text{lbs in sea water/1000 ft} = \text{lbs in air/1000 ft} - 349 D^2$$

2. Armoured Cable

$$\text{lbs in sea water/1000 ft} = \text{lbs in air/1000 ft} - 315 D^2$$

with D = diameter of cable in inches

Table 29 lists the specific gravities and application of the materials most commonly used in cable construction.

Table 24
WEIGHT AND STRENGTH OF UNJACKETED STEEL
DOUBLE ARMOR ELECTROMECHANICAL CABLES*

	AIR WEIGHT 1b/ft	SEAWATER WEIGHT 1b/ft	BREAKING STRENGTH 1b
Multiplier, M	1.424	1.092	62,940
Exponent, E	1.881	1.844	1.776

Air Weight, 1b/ft

Seawater Weight, 1b/ft = M * D ** E,

Breaking Strength, 1b

Where D is the outside diameter in inches:

0.1 < D < 1.0

* Based on 78 stock cables from Reference 6.

The formulas are accurate within 5% for typical cables.
Unusual selection of core conductors and/or number of
armor wires strongly affects accuracy.

From: A Short Compendium of the Physical Properties of Mooring Line
Components, CR80.0020, Civil Engineering Laboratory, Naval
Construction Battalion Center, May 1981

TABLE 25. OCEANOGRAPHIC ELECTRO-MECHANICAL CABLES
SINGLE CONDUCTOR-MECHANICAL CHARACTERISTICS

Type	Stock #	Armor OD - Inches	Inner Armor No. In.	Outer Armor No. Inches	Jacket Thk/Mat.-In.	Break Str. Lbs	Wt. Av	Wt. Sea Wtr	Min. Sheave Diam. - in.	Calc. Armor Ratio
1 H-100	10100	.102	12/.014	18/.014	—	1000	19	15	6	2.2
1 H-100 J	10162	"	"	"	030 PU	"	25	16	"	"
1 H-122	10112	"	"	"	—	1100	21.5	17	5	1.9
1 H-142	10142	"	"	"	.015 PE	"	23.9	17.5	"	1.7
1 H-172	10172	"	"	"	.030 Hy	"	28.9	19.6	"	1.9
1 H-150	10150	"	18/.012	14/.012	.019 PE	1000	20.0	12.9	"	1.17
				8 Fillers						
1 H-125	10124	.124	12/.017	18/.017	—	1500	27	22	7	2.2
1 H-209 J	10209	.169	18/.018	24/.018	.020 PE	2370	54	39	"	1.7
1 H-197 J	10197	.133	18/.018	none	.032 PE	950	33	19	7	N/A
1 H-0	10187	.185	18/.019	18/.0245	—	3000	55	44.5	10	2.5
1 H-186	10186	.184	"	18/.0245	—	2900	57	46	10	2.6
1 H-204	10204	.200	12/.030	23/.022	—	3700	69	56	12	1.6
1 H-254 J	10254	"	"	"	.025 PE	"	76	"	"	"
1 H-219	10219	.220	15/.0245	15/.035	—	4500	90	74	14	3.0
1 H-220 PP	10220	"	"	"	—	"	92	76	"	"
1 H-250 PP	10249	.254	18/.0245	18/.035	—	5900	106	86	"	2.5
1 H-250 R	10250	"	"	"	—	"	108	88	"	"
1 H-250 PE	10251	"	"	"	—	"	106	86	"	"
1 H-255	10255	"	12/.035	18/.035	—	6300	115	95	"	2.1
1 H-258	10258	.252	"	"	—	"	113	93	"	"
1 H-335 J	10335	.261	18/.028	24/.028	.037 PE	5200	123	84	11	1.4
1 H-293	10293	.294	18/.029	18/.040	—	7200	153	126	16	2.6
1 H-2 J	10385	.313	12/.0435	18/.0435	.036 PE	10000	198	146	17	2.0
1 H-3	10375	.375	12/.051	18/.051	—	13000	243	199	20	1.9

Note: All values are nominal.

Typical Construction of Single Conductor Armored Cable

From: Electromechanical Oceanographic Cables and Electrical Underwater Connectors, The Rochester Corporation, Culpepper, Virginia, 1975

TABLE 26. OCEANOGRAPHIC COAXIALS-MECHANICAL CHARACTERISTICS

Type	Stock #	Armor OD Inches	Core Dia. - Inches No./in.	Inner Armor No./in.	Outer Armor No./in.	Jacket Thk./in.	Inches	Calc. Armor Ratio	Air	Sea Water	Weight Lbs./1000	Break Str. Lbs.	Min. Sheave Dia.(in.)
2 H-160	20160	.160	.078	12/.024	23/.017			1.6	45	37	2300	9	
2 H-0	20188	.185	.06	18/.018	18/.0245			2.3	62	50	2900	10	
2 H-251	20251	.251	.147	22/.022	21/.030			2.3	104	84	4900	12	
2 H-252	20252	.252	.133	18/.0245	18/.035			2.3	107	87	5500	14	
2 H-255	20255	.255	.147	18/.027	24/.027			1.4	107	86	5000	11	
2 H-288 J	20288	.244	.190	23/.027	None	.025 PE			82	53	3000	11	
2 H-1	20291	.290	.157	18/.028	18/.0385			2.4	145	119	7200	16	
2 H-58U	20294	.294	.143	12/.0435	23/.032			1.5	146	119	7800	17	
2 H-300	20300	.304	.158	18/.032	24/.032			1.6	145	116	7400	13	
2 H-2	20327	.321	.170	18/.032	18/.0435			2.5	176	143	9200	"	
2 H-349	20349	.349	.202	18/.037	24/.037			1.6	225	187	9500	15	
2 H-371	20371	.294	.158	15/.037	24/.031	.038" Ht.		1.5	174	126	10000	15	
2 H-59U	20377	.377	.226	18/.0435	30/.032			1.4	212	167	10000	"	
2 H-4	20431	.434	.232	18/.0435	18/.0575			2.5	320	262	16000	23	
T-Mk-6	20470	.295	.161	18/.028	18/.0385	.058 Lead 030 Ny		2.4	497	420	6400	16	
2 H-477	20477	.477	.285	18/.054*	30/.042*			1.25	354	282	17000	22	
2 H-528	20528	.528	.304	18/.056	24/.056			1.5	434	346	20000	22	
20590	20590	.592	.368	24/.049	24/.063			2.0	562	452	24000	25	
2 H-213U	20609	.609	.404	22/.059	36/.0435			1.06	514	384	26000	24	
2 H-679	20679	.669	.417	24/.056	24/.070			2.0	680	539	32000	28	
2 H-680	20683	.680	.450	22/.065	36/.050			1.04	659	514	31000	26	
2 H-696	20696	.698	.350	24/.047	24/.059			1.05	824	671	45000	27	
2 H-726	20726	.726	.470	21/.074	36/.054			1.07	764	398	40000	30	
Triple Armor					27/.068								
#2 Coax	21148	1.148	.840	36/.070	36/.084			1.7	1925	1510	70000	34	
Tr. ex	30517	.517	.357	36/.030	-	.050" PE			232	139	5500	12	
Non Magnetic Magnetometer Cables - Beryllium Copper Armor													
2 H-161	20161	157	.089	18/.017	23/.017			1.9	46	38	1200	7	
HG-58 U	20372	302	.188	24/.025	24/.032	.035 PE		"	168	120	4000	13	

*Stainless Steel

NOTE All values are nominal

Typical Construction of Armored Coaxial

From: Electromechanical Oceanographic Cables and Electrical Underwater Connectors, The Rochester Corporation, Culpepper, Virginia, 1975

TABLE 27. OCEANOGRAPHIC ELECTRO-MECHANICAL CABLES
MULTI-CONDUCTOR MECHANICAL CHARACTERISTICS

Type	Stock *	Armor OD In.	Core Dia. In.	Inner Armor No. In.	Outer Armor No. In.	No. Conductors	AWG	Calc. Armor Ratio	Break Str. Lbs.	Wt. Air Lbs/1000'	Wt. Sea Wtr Lbs/1000'	Min. Sheave Diam. In.
3 H-0 PP	30182	.183	.098	18/.018	18/.0245	3	24	2.3	2900	57	46	10
3 H-187	30187	.191	.114	22/.017	22/.022	3	24	"	2900	57	47	9
3 H-230 J	30230	.166	.122	18/.022	None	3	22	N/A	1500	45	27	9
3 H-250	30250	.254	.134	18/.0245	18/.035	3	22	2.5	5500	109	88	14
3 H-1	30295	.295	.182	24/.0245	24/.032	3	20	1.9	6900	133	106	13
3 H-2	30322	.321	.170	18/.032	18/.0435	3	20	2.5	9200	170	137	18
3 H-3	30374	.371	.234	24/.030	24/.0385	3	18	2.0	10000	202	158	16
3 H-420	30420	.419	.262	24/.035	24/.0435	3	14	1.9	12500	271	216	18
3 H-460	30460	.460	.278	18/.051	30/.040	3	16	1.09	19600	316	250	20
3 H-520	30526	.526	.320	18/.058	30/.045	3	16	1.3	26800	404	318	23
4 H-0	40185	.183	.098	18/.018	18/.0245	4	24	2.6	2900	57	46	10
4 H-218	40218	.220	.116	18/.022	18/.030	4	24	2.7	4400	86	71	12
4 H-225	40225	.220	.116	18/.022	18/.030	4	24	2.5	4400	82	67	12
4 H-250	40250	.254	.134	18/.0245	18/.035	4	23	"	5500	107	85	14
4 H-292	40292	.282	.149	18/.028	18/.0385	4	22	2.6	7200	142	115	16
4 H-350	40349	.349	.201	18/.037	24/.037	4	19	1.6	9700	194	156	15
BRA 8	40352	.351	.201	18/.0377*	24/.0377*	4	19	"	10400	208	169	"
4 H-3	40375	.375	.199	18/.037	18/.051	4	22	2.6	11800	219	175	20
4 H-412	40412	.409	.256	24/.035	24/.0435	4	18	1.8	11500	255	203	17
7 H-2	70321	.323	.172	18/.032	18/.0435	7	22	2.4	9200	175	145	18
7 H-2	70325	.323	.172	18/.032	18/.0435	7	22	2.3	9200	174	141	18
7 H-3	70374	.375	.199	18/.037	18/.051	7	20	2.6	11800	243	196	20
7 H-420	70420	.420	.262	24/.035	24/.0435	7	18	1.9	12500	278	222	18
7 H-422 PP	70422	.421	.220	18/.0435	18/.0575	7	20	2.5	16000	305	249	23
7 H-4 PP	70463	.464	.289	24/.0385	24/.049	7	20	2.0	16000	322	253	20
8 H-75	80575	.589	.389	22/.0575	36/.0435	8	16	1.2	23000	499	380	23
10 H-165	90465	.463	.289	24/.0385	24/.049	10	22	2.0	16000	312	244	20
12 H-675	90675	.671	.417	24/.0575	24/.070	12	18	1.8	30000	667	521	28
12 H-13	1023	.1023	.561	21/.104	35/.077	37	19	1.13	72000	1508	1179	42

*Inches Stock

NOTE: All values are nominal

Typical Construction of a Multiconductor Armored Cable

From: Electromechanical Oceanographic Cables and Electrical Underwater Connectors, The Rochester Corporation, Culpepper, Virginia, 1975

TABLE 28a. CUSTOM DESIGNED OCEANOGRAPHIC CABLES
MECHANICAL CHARACTERISTICS

Stock *	Armor OD In.	Core Dia. Inches	Inner Armor No. In.	Outer Armor No. In.	Armor Jacket Thk/Mil - Inches	Calc. Armor Ratio	Break Str. Lbs.	Wt. Air Lbs./1000 ft.	Wt. Sea Wtr. Lbs./1000 ft.	Min. Sheave Diam. In.
30300	.300	.186	24/.025	24/.032		2.0	4700	169	141	13
			Beryllium Copper							
50519	.523	.328	24/.0435	24/.054	-	1.9	19000	397	312	22
60580	.240	.162	15/.039	-	.030 Nyl (3 armored coaxes w/lead fillers)	-	9200	600	477	24
80302	.302	.189	24/.0245	24/.032	-	1.9	6800	143	114	13
80464	.464	.289	24/.0385	24/.049	-	2.0	16000	347	279	20
90347	.347	.203	18/.037	24/.037	-	1.7	9700	196	159	15
90463	.463	.288	24/.0385	24/.049	-	2.0	16000	350	283	20
90552	.454	.390	36/.032	-	049 PU	N.A.	5000	276	169	13
90645	.645	.432	24/.0575	35/.049	-	1.17	26800	566	435	23
90653	.653	.440	24/.0575	35/.049	-	1.13	26,400	573	437	23
90667	.667	.489	36/.041	36/.048	-	1.5	21,600	600	460	19
90680	.675	.445	22/.065	36/.050	-	1.05	33000	655	511	26
			Stainless Steel							
90688	.688	.425	24/.0575	24/.074	-	1.9	35000	782	633	30
90786	.786	.450	18/.084	24/.084	--	1.7	45000	1034	840	34
90788	.788	.578	22/.077	36/.057	-	1.01	40000	902	707	31
90812	.812	.594	35/.051	35/.0575	--	1.7	33000	1015	809	20
90815	.815	.595	36/.051	36/.059	--	1.7	36000	868	659	24
91378	1.378	1.002	36/.084	36/.104	-	1.4	102000	2408	1810	42

NOTE All values are nominal

A Typical Compound Cable With Unique Features Stock #90680

From: Electromechanical Oceanographic Cables and Electrical Underwater Connectors, The Rochester Corporation, Culpepper, Virginia, 1975

TABLE 28b. CUSTOM DESIGNED OCEANOGRAPHIC CABLES
ELECTRICAL CHARACTERISTICS

Total # Conductors	Stock #	OD In.	No. Cdr	Cdt. AWG - Str.	Insul. Thk/Mil - In	Core Bell - In	Cdr. Ohms	DC Res/1000	Cap. ufd/Ht. Z Ohm	Att. db/1000	Freq. MHz	Special Feature Application
3	30300	.300	3	22-7 Coax #38 Br Shd	.013 PP None	015 PE	16 6	58 33				N00-PD-0870 Magnetometer cable
5	50519	.523	2	16-19	.019 PP	040	4.5	41	—			Faired Oceanographic
			3	22-7 Coax	.011 PP	PU	16.0 7	66 50				
3	60580	.593	3	20-7 Coax 24w Serv Shd	.040 PE .011 PE	—	10 1.8	34 50	4.1 1	1.2 .1		Weighted Oceanog "Nixie"
8	80302	.302	7	22-7	.014 PP		16 6.6 —	39 33 —	—	—		Instrument Tow
			1	18-7	.019 PP							
8	80464	.464	2	12-19	.027 PE	—	1.92	75				Transducer Mooring
			6	20-7	.014 PP		10.5	65				
9	90347	.347	8	22-7	.011 PP	.012	16 6.6 —	46 —	—	—		Ribbon Fairing Antenna Buoy Tow
			1	18-7	.020 PP	Ht						
9	90463	.463	3	18-7 Coax	.020 PP	—	6.6 16.0	57 39	6.1 1.7	1		Instrument Tow Side Scan Sonar
			3	22-7	.021 PP							
11	90552	.552	1	24-19 Coax	.064 PE	.030	27	22	75	2.8	1	TV Camera Pipe Inspection
			10	18-7	.015 PP	PU	6.5					
10	90645	.645	4	24 TSP	.011 PP	.045	28	27	15	1		Deep Tow
			1	22-7	.040 PE	PU	19 —	30	9.4 5	.5		Seismic
			1	20-7	.027 PP		11 —					
13	90653	.653	4	22-7 TSP	.011 PP	.035	16			17	5	Ribbon Fairied Tow Cable
			5	20-7	.015 PP	PP	11					
15	90667	.667	6	14-19	.022 PP	.038	2.9	25		.5	.015	Tow Acoustic Device
			6	20-7	.018 PP	Ht	10 7	16				
			3	18-7	.027 Tz							
12	90680	.675	3	14-19	.027 PE	.040	2.9	46				Faired Oceanographic
			3	22-7 Coax	.020 PE	PU	16.0 16.0	46 34	6.1	1		Buoy Mooring
			3	22-7	.011 PE							
9	90688	.688	3	10-19	.026 PP	.030	1.2	60		2.8	1	Ribbon Fairing
			1	22-7 Coax	.035 PP	Ht	16 10	31 3.2	50	1.7	.1	
			5	20-7	.016 PP		10	32		.5	.01	
14	90767	.786	34	22-7	.011 PP	.040	16.0 9	55	—	—	—	Sonar Tow Cable
			1	9-19	.024 PVC	PU						
14	90768	.786	1	20-19 Triax	.042 PP		12 4.8	30 5.9	53	4.2	1	Underground
			8	16-19	.028 PP					1.6	.1	Geophysical Logging
			4	20-19 Coax	.016 PP		12.8 6.4	57 28	28	1.2	.01	Cable
24	90812	.812	11	20-7 TSP	.014 Tz	.030	11.0 TzI	36	—	—	—	Water Blocked
				20-7 Drain								Hi-Temp Geothermal
				A1 Myl Cld								Well Logging
24	90815	.815	3	20-7 Coax	.044 PE	.045	10 PP	32 10	50			
			18	20-7	.018 PE							
29	91378	.1378	4	12-7	.044 PP		1.7					
			5	20-7	.018 PP		10					
			1	Brd shd	.060 PP							
			10	#18 TSP	.020 PP		6.6	1.2				

NOTE All values are nominal. Detailed design sheets available on request.

From: Electromechanical Oceanographic Cables and Electrical Underwater Connectors, The Rochester Corporation, Culpepper, Virginia, 1975

TABLE 29. SPECIFIC GRAVITY OF MATERIALS USED IN EM CABLES, ROPES AND CHAIN

Material	Specific Gravity	Use
Metals:		
Steel; rolled and IPS ; armour wire	7.85 7.80	Chain, wire rope, EM cable braids EM cable armour
Stainless Steel 302, 304, 305, 316; wire	8.02	Wire rope, EM cable braids
Iron; wrought bar	7.77	Chain
Copper; wire	8.92	EM cable conductor
Aluminum; hard drawn wire	2.70	EM cable conductor
Lead; sheathing	11.38	EM cable shield
Synthetic Fibers:		
Kevlar 29	1.44	Line, EM cable strength member
Kevlar 49	1.45	Line, EM cable strength member
Nylon	1.14	Line
Polyester	1.38	Line, EM cable braids
Polypropylene	0.90	Line, EM cable, wire rope core and jacket
Glass E	2.55	EM cable strength member
Glass S	2.50	EM cable strength member
Natural Fibers:		
Manilla	1.38	Line, wire rope core
Jute; dry fillers ; treated fillers ; asphalted serving	0.50 0.63 1.70	EM cable EM cable EM cable
Cotton; dry braid ; weatherproof braid	0.60 1.40	EM cable EM cable
Extruded Plastics:		
Vinyl	1.12-1.28	EM cable jacket, insulation
Nitrile Rubber	0.98-1.10	EM cable jacket
Neoprene	1.23-1.25	EM cable jacket
Nylon	1.07	EM cable jacket
Polyethylene; low density ; high density	0.92 0.95	EM cable insulation EM cable insulation
Polyurethane	1.06	EM cable, wire rope, and line jackets
PVC	1.2 -1.5	EM cable, insulation
Kynar	1.85	EM cable, insulation
Teflon	2.20	EM cable, insulation
Flexible Foams:		
Urethane; compressible ; non-compressible	0.50 0.58	EM cable buoyant jackets EM cable buoyant jackets

STRESS-STRAIN CHARACTERISTICS

The stress-strain characteristics of the tension member are especially significant inputs to the static and dynamic calculations of cable structure behavior. C and k are input from:

$$E = (T/C)^k \text{ where } E = \text{Strain or \% elongation}$$

T = Tension

C = AE

If $k = 1$ then the material behaves linearly and AE (the slope of the load vs % elongation or strain) curve is constant. AE is the product of cross sectional area of the load bearing portion of the member times E, the modulus of elasticity of the composite load bearing member. As an alternative to entering AE the actual tension and strain curve may be entered with the user specifying the number of tension and strain data pairs to be entered to define the curve.

In general the preliminary analysis may be carried out by assuming a linear stress-strain behavior of the member at the estimated load level. To do this one chooses a tension member and then expresses the estimated loads on it as a percentage of the member's breaking strength. The AE at that load level may then be obtained from the tables in this section and used to complete the analysis.

If the member is too elastic to safely assume a linear behavior over the probable load range then the tension - % elongation curve for that particular range of loads is required. This type of elastic behavior is usually confined to synthetic lines (excluding Kevlar) with a widely varying load due to dynamic loading.

Wire Rope

Table 30 lists the E for various wire rope constructions at load levels expressed as percent of breaking strength. Table 31 lists the approximate metallic area of most of these same ropes to permit determination of AE.

For example, assume we were designing a system which had an estimated 10,000 lbs of tension and we decided to use a factor of safety of 5 and 6 x 19 IWRC wire rope. From Table 4 we would choose 3/4" diameter rope in any of the three grades in which it is offered. The load level for these three grades would differ (20%, 17%, and 15%) due to different breaking strengths. Progressing to Table 3d, we see the E to use would be 13.5×10^6 for the higher grades and either 13.5 or 15×10^6 for the low grade 6 x 19. The cross-sectional metallic area of 3/4" 6 x 19 IWRC obtained from Table 31 is 0.26 in^2 . AE for the high grade wire ropes is thus $0.26 \text{ in}^2 \times 13.5 \times 10^6 \text{ lbs/in}^2 = 3.51 \times 10^6 \text{ lbs}$.

TABLE 30. APPROXIMATE MODULUS OF ELASTICITY OF WIRE ROPES FOR
VARIOUS PERCENTAGE LOADS WITH RESPECT TO BREAKING STRENGTH

Rope Construction	Modulus of Elasticity (psi x 10 ⁻⁶)		
	0-20% BS	20-65% BS	80% BS
6x7 Fiber Core	11.7	13.0	—
6x19 Fiber Core	10.8	12.0	—
6x37 Fiber Core	9.9	11.0	11.0
8x19 Fiber Core	8.1	9.0	—
6x19 IWRC	13.5	15.0	—
6x37 IWRC	12.6	14.0	—
3x19	—	—	21.8
3x46	—	—	20.0
7x7 Stainless Steel	—	—	13.7
7x7 Titanium	—	—	8.6

TABLE 31. APPROXIMATE METALLIC CROSS-SECTIONAL AREA OF WIRE ROPES

Rope Diameter (in)	Cross-Sectional Metallic Area (in ²)				
	6x7 FC	6x19 FC 6x37 FC	6x19 IWRC 6x37 IWRC	8x19 FC	3x19
1/4	.024	.025	.029	.022	.027
5/16	.037	.039	.045	.034	.042
3/8	.054	.046	.065	.049	.060
1/2	.095	.10	.12	.088	.11
5/8	.15	.16	.18	.14	.17
3/4	.21	.23	.26	.20	.24
7/8	.29	.31	.35	.27	.33
1	.38	.40	.46	.35	.43
1 1/8	.48	.51	.58	.44	.54
1 1/4	.60	.63	.72	.55	—
1 3/8	.72	.76	.87	.66	—
1 1/2	.86	.90	1.0	.79	—
1 3/4	—	1.2	1.4	—	—
2	—	1.6	1.8	—	—
2 1/2	—	2.5	2.9	—	—
3	—	3.6	4.1	—	—

From: Containerized Cable Stowage, TR71-05, Naval Ship Systems Command
Contract Report N00024-70-6-5474, March 1971

Synthetic Fiber Ropes

The stress-strain behavior of most synthetic fiber ropes are non-linear and thus AE varies as a function of the applied load. Table 32 supplies a method of determining the strain or AE on various double braided lines given the tension and nominal line diameter. Table 33 lists load dependent AE/BS values for some synthetic lines manufactured by Samson Ocean Systems, Inc. under various types and levels of loading. As an example use Table 33 to determine the AE of 1" diameter double braided nylon line at 6,000 lbs tension and cyclic loading in water. From Table 16 we find the breaking strength (BS) of 1" nylon to be 33,600 lbs. That makes the loading, $\frac{6,000}{33,600} \times 100$ or 18% of BS. Under wet, cyclic loading we find $\frac{AE}{BS} = 2.5$ for 15% BS load and 3.23 for 20% BS load. Interpolating gives $\frac{AE}{BS}$ at 18% = 2.94. Finally $AE = 2.94 \text{ BS} = 2.94 (33,600) = 9.88 \times 10^4 \text{ lbs.}$

If the probable range of loads does not justify assumption of a linear behavior then the tension and % elongation values must be input. These curves are sometimes included in catalogs but generally do not specify the types or conditions of loading. Tension - % elongation curves are available from manufacturers of synthetic lines for the particular line construction and composition.

Aramid (Kevlar) ropes are constructed of yarns consisting of filaments. A typical yarn used in rope and cable strength number construction is 1,500 denier yarn. 1,500 denier means the yarn weighs 1,500 grams for a 9,000 meter length. A 1,500 denier yarn consists of 1,000 filaments, each 12 microns (.00047 in) in diameter. Thus the A of 1,500 denier yarn is given

by:

$$A_{1500} = 1,000 \pi \frac{(.00047 \text{ in})^2}{4} = 1.73 \times 10^{-5} \text{ in}^2$$

The E of Kevlar 29 yarn is 12×10^6 lbs/in² and Kevlar 49 is 19×10^6 lbs/in².

The AE of individual yarns may thus be calculated. To calculate the AE of the rope the number of yarns (or 'ends') is multiplied by A of the yarn to obtain the load bearing area. The E of the rope will vary depending on the type of construction, being fairly close to yarn E for parallel fiber ropes and considerably less for cable laid and braided ropes.

It should be noted that recent tests have indicated that the AE of synthetic rope is dependent on the period of the dynamic load cycle. While conclusive numerical results are not yet available, this dependence is sufficiently significant to warrant caution in applying AE values by present practices.

TABLE 32
NON-LINEAR STRAIN OF DOUBLE BRAIDED* LINE

Let T = Line tension in lb

D = Nominal diameter in inches

e = Strain of line

$$e = \frac{T}{AE}$$

$$AE = aD^2 + bT$$

<u>OUTER BRAID</u>	<u>INNER BRAID</u>	<u>a lb/in²</u>	<u>b</u>
Nylon	Nylon	32,200	2.568
Nylon	Nylon	72,400	-0.811
Polyester	Polypropylene	58,500	2.454
Polypropylene	Polypropylene	67,800	-1.406

* Samson Cordage Works, Boston, Massachusetts

From: A Short Compendium of the Physical Properties of Mooring Line Components, CR80.0020, Civil Engineering Laboratory, Naval Construction Battalion Center, May 1981

Table 33. AE/BS for various Samson Synthetic Lines Under Various Load Levels and Loading Conditions

MATERIAL	DESCRIPTION	AE/BS for Various % BS					
		10% BS	15% BS	20% BS	25% BS	30% BS	35% BS
2 in 1 Nylon double braid Nylon	dry, cyclic loading	2.99	3.41	3.48	4.03	4.51	4.90
	wet, cyclic loading	1.87	2.50	3.23	3.91	—	—
	dry, static loading	1.59	2.38	2.67	3.21	3.75	4.38
	wet, static loading	1.30	1.95	2.35	2.63	3.19	3.57
Stable Braid double braid Polyester	wet or dry; cyclic loading	10.00	10.00	10.00	10.00	10.00	10.00
	wet or dry, static loading	4.35	4.69	4.69	4.69	4.69	4.69
	stabilized cyclic load	20.0	31.9	47.6	53.2	62.5	87.5
	new static load	8.33	12.4	17.0	21.2	26.6	29.7
VLS/DURON single braid Polyester	static loading	7.14	8.29	9.05	9.51	12.1	12.9
	cyclic loading	11.0	12.0	12.7	13.2	13.6	14.0
	static loading	6.06	6.98	8.70	10.0	11.2	12.4
	cyclic loading	10.0	11.8	13.3	15.1	17.2	21.3
DURON XLS	dry, cyclic loading	3.60	4.32	5.06	6.25	7.36	8.75
	wet, cyclic loading	2.65	3.37	4.15	4.88	5.38	6.83
	dry, static loading	2.67	3.33	3.83	4.50	5.06	5.38
	wet, static loading	2.03	2.58	3.03	3.37	3.65	—
2 in 1 NYSTRON double braid Nylon/Polyester composite	cyclic loading	5.56	7.14	7.94	9.29	10.1	10.7
	static loading	2.44	2.97	3.31	3.57	3.80	—
	cyclic loading	4.81	5.70	6.67	7.81	8.50	8.88
	static loading	2.35	2.74	3.14	3.46	3.87	—
N-12 single braid Polypropylene	dry, cyclic loading	3.51	4.23	5.06	5.78	6.56	7.65
	wet, cyclic loading	2.35	3.37	4.30	5.26	6.22	6.67
	dry, static loading	4.82	6.00	7.27	8.77	10.2	11.7
	wet, static loading	3.28	4.62	5.84	7.58	8.45	8.86
MFP 2 in 1 double braid multi filament Polypropylene	dry, cyclic loading	—	—	—	—	—	—
	wet, cyclic loading	—	—	—	—	—	—
	dry, static loading	—	—	—	—	—	—
	wet, static loading	—	—	—	—	—	—
POWER BRAID double braid Nylon cover/MFP core	dry, cyclic loading	—	—	—	—	—	—
	wet, cyclic loading	—	—	—	—	—	—
	dry, static loading	—	—	—	—	—	—
	wet, static loading	—	—	—	—	—	—

-44-

Calculated from load-elastic elongation curves supplied by Mr. Randy Longerich, Samson Ocean Systems -
Average behavior curves were used for above values

Chain

Table 34 lists formula for estimating the AE of stud link and open link chain. The stress-strain behavior of stud link chain is close to linear due to the stud preventing deformation of the link at higher loads. Open link chain can be treated similarly as long as the loading is below the proof load limit. Beyond that point the chain begins plastic deformation which changes the stress-strain behavior.

TABLE 34
ELASTICITY OF STEEL CHAIN

1. Forged Steel ¹ Stud Link	$AE = 8.595 D^2 \times 10^6 \text{ lb}$
2. Proof Coil ² Open Link	$AE = (2.827 D - 0.16) \times 10^6 \text{ lb}$

E = Young's Modulus, psi

D = Side Wire Diameter, Inches

k = Spring Constant = AE/L

- 1 "The Elasticity of Stud-link Chain in Tension, Baldt Anchor, Chain and Forge Division, The Boston Metals Company
- 2 Based on stress-strain curves for 3/8, 1/2, 5/8, and 3/4 inch chain samples provided by Mr. E.J. Crook, Vice President, Engineering, The Crosby Group, American Hoist and Derrick Company in a personal correspondence

Electromechanical Cables

EM cables are constructed such that the strength member carries most of the tension applied to the cable. For the purpose of determining stress-strain behavior it is assumed all load is carried by the strength member. External strength members are usually steel armour wires. Table 35 lists the wire sizes and diameters normally used in larger cable, Tables 25, 26, 27 and 28a used earlier in this report give wire diameters and the number of wires used in the stock Rochester EM cables. AE for these types of cables may be approximated by multiplying the metallic area of the armour wires times E for the cable. E for the cable may be approximated as 0.7E of the wire due to structural elasticity of the composite cable. This approximation will vary considerably depending on the actual cable construction and load level and should be used only for preliminary analysis.

TABLE 35
STEEL ARMOR WIRE

BWG Size	Diameter Inches	Approx. Air Weight lbs/1000 feet	Approx. Weight in Sea Water lbs/1000 feet	Approx. Breaking Strength (lbs.) Based on 100,000 psi
0	.340	313	272	9079
1	.300	244	212	7068
2	.284	218	189	6335
3	.259	182	158	5268
4	.238	153	133	4449
5	.220	131	114	3801
6	.203	112	97	3237
7	.180	87	76	2545
8	.165	74	64	2138
9	.148	60	52	1720
10	.134	49	43	1410
11	.120	39	34	1131
—	.112	33	29	985
12	.109	32	28	933
13	.095	25	22	709
—	.086	20	17	580
14	.083	19	16	541
15	.072	14	12	407
16	.065	11	10	332

From: Manual for Submarine Cables, Hydrospace Systems Division,
Simplex Wire and Cable Company, 1968

SECTION III
HYDRODYNAMIC INPUTS TO CABLE ANALYSIS

DRAG COEFFICIENTS ON UNFAIRED CABLES

Normal Drag, C_D

Table 36 lists normal drag coefficients for typical unfaired surfaces of cable, wire ropes, and synthetic lines. The range of Reynold's Number, R_n for which C_D is given covers the usual range experienced by cable structures in sea water and air. These coefficients do not include the effect of strumming which can increase the effective C_D up to 2.5 times as illustrated by Figure 1.

Figure 2 plots available drag coefficient data for open link and stud link chain. The effective diameter used to calculate R_n is the outside width of a link. This width data is included in Tables 20 and 21 in Section II. Note that the range of Reynolds Numbers, for which data on C_D is available, is not extensive. Over the range of R of 1.07×10^5 to 3.45×10^5 the C_D values for stud link chain averaged 0.82 with a maximum of 0.99 and a minimum of 0.60. A range of R_n from 1.4×10^4 to 1.09×10^5 with open link chain resulted in an average of 0.87 with a maximum of 0.96 and a minimum of 0.70.

Tangential Drag, C_t

Figure 3 illustrates typical tangential drag, C_t coefficients for various wire rope, cable, and synthetic line constructions. As can be seen from the figure, C_t is low compared to C_D , the values in the figure being less than .02. Figure 4 is the result of tow tank experiments conducted to obtain C_t for open link chain in the range of $10^4 < R_n < 1.5 \times 10^5$. An average value of $C_t = .083$ seems to hold over most of this range.

TABLE 36
NORMAL DRAG COEFFICIENTS FOR CABLES

Cable (1)	REYNOLDS NUMBER RANGE							
	10 ³ -10 ⁴			Number of tests (5)	10 ⁴ -10 ⁵			Number of tests (9)
	Min- imum (2)	Aver- age (3)	Maxi- mum (4)		Min- imum (6)	Aver- age (7)	Maxi- mum (8)	
Unjacketed stranded steel cable	0.98	1.54	2.47	65	0.30	1.29	3.60	115
Smooth jacketed steel cables	1.16	1.50	1.64	11	0.72	1.14	1.78	24
Synthetic line:								
Braided	1.11	1.14	1.15	3	1.11	1.14	1.16	5
Plaited	0.79	1.17	1.64	15	0.88	0.99	1.15	78

From: Undersea Suspended Cable Structures, Nordell, N.J., and Meggitt, D.J.,
Journal of the Structural Division, ASCE, Vol. 107, No. ST6, June 1981

Figure 1. Drag Coefficient of Strumming 0.7-Inch (1.8 cm)-Diameter Cable

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FPO-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Figure 2. Summary of Available Data for Chain

From: A Survey of Available Data on the Normal Drag Coefficient of Cables Subjected to Cross Flow,
CR78-001, Civil Engineering Laboratory, Naval Construction Battalion Center, August 1977

Figure 3. Tangential Drag Coefficient Versus Reynolds Number for Various Types of Cables

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FP0-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Figure 4
Drag Coefficients for Commercial Straight-Link Chain

From: Characteristics of the NRL Mark 3 Boat Type Buoy and Determination
of Mooring Line Sizes, Eisenberg, P., David Taylor Model Basin Report
550, September 1945

Drag Coefficients of Fairied Cables

Figure 5 plots C_D versus R_n for various streamlined fairings which are free to swivel on the cable. These curves are the result of DTNSRDC experiments performed on the shapes illustrated and described in Figure 6. Additional tests results on trailing fairings are given in Figure 7 with shapes described in Table 37.

Figure 8 presents C_D and D_t for cable with a helical wrap of bare wire. Figures 10 and 11 give C_D for cables with fringe fairings at different tensions. Finally Figure 12 plots results of tests for C_D on helically wrapped fringe fairings.

Figure 5
Drag Coefficient Versus Reynolds Number for Various Streamlined,
Free Swiveling Fairing Models

From: "Experimental Determination of Hydrodynamic Loading for Ten Cable
Fairing Models", Folb, R., DTNSRDC Report 4610, David Taylor-Naval
Ship Research and Development Center, November 1975

A. This represents fairings molded from rubbery materials with each segment about 50 cable diameters long. A metal conduit is molded in the nose to provide a free channel for the cable.

B. This represents fairings molded from rigid plastic in short sections about 3.5 cable diameters long. Each section has three parts: the plastic tail piece, a stamped metal nose piece, and a link to align the trailing edge of adjacent sections.

C. This is a modification of fairing B in which the gaps between the plastic tail pieces have been smoothly faired.

D. This is a further modification of fairing B, with the gaps between the metal nose pieces filled as well as the tail piece gaps.

E. The trailing piece of this fairing is molded, like Model A, from a long segment of rubbery material. It is attached to the cable by metal straps about 1 cable diameter wide at intervals of about 5 cable diameters, leaving the cable mostly exposed.

F. This trailing fairing has a shorter chord and smaller straps spaced farther apart than Model E. It has slightly less drag.

Figure 6
Description of Shapes Used to Obtain Curves in Figure 5

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FPO-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

From: A Short Compendium of the Physical Properties of Mooring Line Components, CR80.0020, Civil Engineering Laboratory, Naval Construction Battalion Center, May 1981

- G. This trailing fairing model replaces the straps on Model E with wire clips whose diameter is 1/4 the cable diameter, spaced about 6 cable diameters apart. Both normal and tangential drag are greater than for Model E.
- H. This trailing fairing follows the pattern of Model E. The chord/cable diameter is about 3.5, thirty percent less than for Model E, and the straps are 44 percent wider. The normal drag is substantially higher.

- I. This fairing is a radical change from Models A through H. It is designed to have a torque-free (non-metallic) strength member integrally molded into its nose. The continuous smooth, streamlined outer shape gives very low drag.

- J. This is not a streamlined fairing. Rubbery ribbons are threaded into the cable strands. They trail the wake, breaking up the energy-absorbing vortex street. Tests used a 2" diameter cable with 2.75" long, .0624" thick ribbons spaced 0.406" apart. Width of ribbons unspecified.

Figure 6 (continued)

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FPO-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

From: A Short Compendium of the Physical Properties of Mooring Line Components, CR80.0020, Civil Engineering Laboratory, Naval Construction Battalion Center, May 1981

Figure 7
Drag Coefficients for TMB Series B Trailing Fairings

From: Handbook on Hydrodynamic Characteristics of Moored Array Components,
FPO-1-77(9), Ocean Engineering and Construction Project Office,
Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Series B				
Designation	Thickness Ratio	Fineness Ratio c/t	Chord Length	
			(ft)	(cm)
B-1	0.6	2.875	0.28	8.5
B-2	0.6	3.875	0.38	11.6
B-3	0.6	4.875	0.47	14.3
B-4	0.8	2.875	0.28	8.5
B-5	0.8	3.875	0.38	11.6
B-6	0.8	4.875	0.47	14.3
B-7	1.0	2.875	0.28	8.5
B-8	1.0	3.875	0.38	11.6
B-9	1.0	4.875	0.47	14.3

TABLE 37. GEOMETRICAL PARAMETERS OF DTMB SERIES B SHAPES USED TO OBTAIN CURVES SHOWN IN FIGURE 7

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FPO-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Figure 8
Hydrodynamic Coefficients for Ribbon Faired Tow Cables
Compared to Bare Cable

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FPO-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Helical Wrap Basin & Sea Data

$h/d = 0.23$

- $p/D = 15$, Basin Data
- $p/D = 15$, Sea Data
- $p/D = 20$, Sea Data
- ◊ $p/D = 30$, Sea Data
- ▲ 0.84-inch (2.13cm) Bare Cable Sea Data

Figure 9
Hydrodynamic Coefficients for a Cable
With a Helical Wrap of Bare Wire

From: Handbook on Hydrodynamic Characteristics of Moored Array Components,
FPO-1-77(9), Ocean Engineering and Construction Project Office,
Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Figure 10
Drag Coefficient for Cable with Polypropylene Fringe Fairing

From: Handbook on Hydrodynamic Characteristics of Moored Array Components,
FPO-1-77(9), Ocean Engineering and Construction Project Office,
Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

Figure 11
Drag Coefficient for Cable with Monofilament Fringe Fairing

From: Handbook on Hydrodynamic Characteristics of Moored Array Components, FPO-1-77(9), Ocean Engineering and Construction Project Office, Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977

NOTE: Helically Wrapped
Fringe Fairing = Length 7 in. (18 cm), Spacing 0.875 in. (2.22 cm)
Pitch Ratio = 10
Fairing configurations are described in Table 3-6.

Figure 12
Drag Coefficients for Cable with Helically Wrapped Fringe Fairings

From: Handbook on Hydrodynamic Characteristics of Moored Array Components,
FPO-1-77(9), Ocean Engineering and Construction Project Office,
Chesapeake Division, Naval Facilities Engineering Command, Feb. 1977