Évaluation nº 10 Suites (2) et Dérivations (3)	durée $pprox$ 1h 45min	mars 2023
NOM:	○3C ○2A ○2B ○2C ○)1B2
Prénom:	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3$	
email : (si changement)	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5$	06 07 08 09
Aucun document n'est autorisé. L'usage de la calculatrice es La clarté de la rédaction sera prise en compte dans l Toute action volontaire rendant impossible ou difficile l'iden dégradation de la note finale.	a notation. Le total des points es	
Exercice 1		
1) Exprimer la somme $\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$ en fonction	on de $n \geqslant 1$.	
2) Déterminer $n \ge 1$ tel que $\sum_{i=1}^{n} i = 4$ 950.		
0 00.5 01 01.5 02 02.5 03 03.5	O4	Réservé
		<u></u>

+1/2/59+

Exercice 2 Soit (u_n) une suite arithmétique tel que $u_0 = 3$ et $u_4 = 23$.

- 1) Déterminer la raison r de la suite et écrire une relation de récurrence vérifiée par (u_n)
- 2) Donner la forme explicite de la suite (u_n)
- 3) Existe-t-il un terme de la suite égal à 387 ? Justifier votre réponse.

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5$ Réservé	

Exercice 3 Soit la suite v_n définie pour tout $n \in \mathbb{N}$ par $v_n = 5 \times 2^{3n+1}$.

- 1) Calculer v_0 , v_1 et v_2 .
- 2) Soit n un entier naturel. Exprimer v_{n+1} en fonction de n.
- 3) Montrer que (v_n) est une suite géométrique et donner sa raison.
- 4) Donner la relation de récurrence vérifiée par la suite (v_n) .
- 5) Montrer que $\sum_{i=1}^{25} v_i = k(8^{25} 1)$ ou k est une fraction à préciser.

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5 \bigcirc 5.5 \bigcirc 6$	Réservé

+1/4/57+

Exercice 4 On considère la suite géométrique (u_n) définie pour $n \ge 1$, de raison q. On suppose que $u_1 = 64$.

- 1) Exprimer u_2 et u_3 à l'aide de q
- 2) On suppose que $u_3-u_2=20.$ En déduire que q vérifie $16q^2-16q-5=0$.
- 3) Sachant que la suite (u_n) converge vers 0, déterminer q. Justifiez votre choix.
- 4) Donner une forme explicite de (u_n) et déterminer u_4 .

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5 \bigcirc 5.5 \bigcirc 6$ Ré	servé

Exercice 5 On considère la fonction g définie par $g(x) = \frac{x^2 + 9}{x - 4}$. On note par C_g sa courbe représentative. Le domaine de définition de la fonction g est : $\mathcal{D}_g =]-\infty$; $4 [\cup] 4$; $+\infty[$.

- 1) Étudier le signe de la fonction P définie sur \mathbb{R} par $P(x)=x^2-8x-9$.
- 2) Montrer que pour tout réel $x \in \mathcal{D}_g$; $g'(x) = \frac{x^2 8x 9}{(x 4)^2}$.
- 3) En déduire les variations de la fonction g et dresser son tableau de variations.
- 4) À l'aide du tableau de variation, déterminer les valeurs de k pour lesquelles l'équation f(x) = k n'a aucune solution.

 $\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5 \bigcirc 5.5 \bigcirc 6$

O 6	.5 07 07.5 08 08.5 09	Réservé

Évaluation nº 10 Suites (2) et Dérivations (3)	durée $pprox$ 1h 45min	mars 2023
NOM:	O3C O2A O2B O2C O)1B2
Prénom:	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3$	
email : (si changement)	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5$	O6 O7 O8 O9
Aucun document n'est autorisé. L'usage de la calculatrice es La clarté de la rédaction sera prise en compte dans Toute action volontaire rendant impossible ou difficile l'iden dégradation de la note finale.	la notation. Le total des points es	
Exercice 1		
1) Exprimer la somme $\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n$ en fonction	on de $n \geqslant 1$.	
2) Déterminer $n \ge 1$ tel que $\sum_{i=1}^{n} i = 4$ 950.		
	O4	Réservé

+2/2/53+

Exercice 2 Soit (u_n) une suite arithmétique tel que $u_0 = 3$ et $u_4 = 23$.

- 1) Déterminer la raison r de la suite et écrire une relation de récurrence vérifiée par (u_n)
- 2) Donner la forme explicite de la suite (u_n)
- 3) Existe-t-il un terme de la suite égal à 387 ? Justifier votre réponse.

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5$	Réservé

Exercice 3 Soit la suite v_n définie pour tout $n \in \mathbb{N}$ par $v_n = 5 \times 2^{3n+1}$.

- 1) Calculer v_0 , v_1 et v_2 .
- 2) Soit n un entier naturel. Exprimer v_{n+1} en fonction de n.
- 3) Montrer que (v_n) est une suite géométrique et donner sa raison.
- 4) Donner la relation de récurrence vérifiée par la suite (v_n) .
- 5) Montrer que $\sum_{i=1}^{25} v_i = k(8^{25} 1)$ ou k est une fraction à préciser.

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5 \bigcirc 5.5 \bigcirc 6$	Réservé

Exercice 4 k est un réel. (u_n) est une suite arithmétique tel que $u_1 = k + 4$, $u_2 = 4k - 2$ et $u_3 = k^2 - 2$.

- 1) Montrer que $k^2 7k + 6 = 0$.
- 2) Déterminer les valeurs possibles de k et la raison r de la suite pour chaque cas.
- 3) On suppose que la suite (u_n) est décroissante. Donner la forme explicite de la suite (u_n) .

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5 \bigcirc 5.5 \bigcirc 6$	Réservé

Exercice 5 On considère la fonction f définie sur l'intervalle $D_f =]-2$; $+\infty[$ par $f(x) = \frac{x^2 + x - 1}{x + 2}$.

On note C_f sa courbe représentative dans un repère orthogonal du plan. On admet que la fonction f est dérivable sur l'intervalle D_f et on note f' sa dérivée.

- 1) Étudier le signe de la fonction P définie sur \mathbb{R} par $P(x) = x^2 + 4x + 3$.
- 2) Montrer que pour tout réel x de l'intervalle]-2; $+\infty[$ on $f'(x)=\frac{P(x)}{(x+2)^2}$
- 3) En déduire les variations de f et dresser son tableau de variations sur] -2 ; $+\infty$ [.

Vous donnerez le minimum de la fonction f sur]-2; $+\infty[$ et la valeur exacte pour laquelle il est atteint.

 $\bigcirc 0 \ \bigcirc 0.5 \ \bigcirc 1 \ \bigcirc 1.5 \ \bigcirc 2 \ \bigcirc 2.5 \ \bigcirc 3 \ \bigcirc 3.5 \ \bigcirc 4 \ \bigcirc 4.5 \ \bigcirc 5 \ \bigcirc 5.5 \ \bigcirc 6$

4) Déterminer le coefficient directeur de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 2.

$\bigcirc 6.5 \bigcirc 7 \bigcirc 7.5 \bigcirc 8 \bigcirc 8.5 \bigcirc 9$	Réservé

