HelmholtzZentrum münchen

German Research Center for Environmental Health

Assessment and prediction of ODE solver performance for biological processes

Philipp Städter Neuherberg, 27.05.2019

Topics

- Theory:
 - Need for efficient ODE solver performance?
 - Mathematical approach
 - Bibliography
- Study:
 - Collection of ODE models
 - ODE settings
- Predictor model for solver performance

Theory

Why do we need efficient ODE solver performance?

Simulate ODE lots of times

```
• Have: \dot{x} = f(x, \theta), f is known, \theta unknown
```

Have: experimental data

```
=> Want: \theta^* (specific \theta, where the solution of the equation fits data the best)
```

```
=> Use: optimisation method e.g.: "Least squares"
```


Why do we need efficient ODE solver performance?

- Simulate ODE / system of ODEs lots of times
- Have: $\dot{x} = f(x, \theta)$, f is known, θ unknown
- Have: experimental data D
 - => Want: θ^* (specific θ , where the **solution** the equation fits data the best)
 - => Method: Least squares
- Get: $\theta^*(D)$ is optimal solution

Mathematical Approach

• Goal: Prediction of numerical behaviour

Example: Adams(-Moulton) vs. BDF

Application: stiff differential equations

Stiff Differential Equation

Definition(1):

The ODE is stiff, if **explicit** single step methods are **inefficient** in solving the ODE compared to **implicit** single step methods

• Definition(2):

Let y'(t) = A*y(t), A matrix let λ_j be the eigenvalues of A, let $\sigma \le \text{Re}(\lambda_j) \le \tau$

Define the **stiffness-quotient:** $r_s = \sigma / \tau$

Then the ODE is stiff, if: $Re(\lambda_j) < 0 \forall j$ and $r_s \gg 1$

Mathematical Approach

- Goal: Prediction of numerical behaviour
- Example: Adams(-Moulton) vs. BDF
- Application: stiff differential equations

- Used for: solving ODE by numerical integration
- Type: implicit
- Method: linear multistep

• IVP:
$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

Adams - Moulton

- Approach: approximate $f(t_{n+1}, y_{n+1})$ by $q_{n,1}(t_{n+1})$
- General Formula for s steps:

$$y_{n+1} = y_n + h \sum_{k=0}^{s} b_k f(t_{n+1-k}, y_{n+1-k})$$

- Properties: zero-stable for all s
 - A-stable until s < 2
 - not $A(\alpha)$ -stable
 - order of consistency: s + 1
- => Application: non-stiff differential equations

BDF

- Approach: approximate $f(t_{n+1}y_{n+1})$ by $p'_{n,1}(t_{n+1})$
- General Formula for s steps:

$$y_{n+1} = \sum_{k=0}^{s} a_k y_{n-k} + h \beta_{-1} f(t_{n+1}, y_{n+1})$$

- Properties: zero-stable until s < 7
 - A-stable until s < 3
 - $A(\alpha)$ -stable until s < 7
 - order of consistency: s
- => Application: **stiff** differential equations

Stabiliy region of the Adams-Moulton Method

Stabiliy region of the BDF Method

HelmholtzZentrum münchen
German Research Center for Environmental Health

Bibliography

 Quarteroni, Alfio et. al.: Numerische 	
Mathematik 2, Springer, 2002	[1]
 Lambert, J.: Numerical Methods of ordinary differentiable systems, Wiley, 1991 	[2]
 Hairer, Ernst, Wanner, Gerhard: Solving Ordinary Differential Equations II, Stiff problems, 	
Springer, 1987	[3]

Study

Collection of ODE models

- JWS (+ Benchmark models + BioModels Database)
- JWS: 293 SEDML models with 710 SBML models
- => SBML to AMICI: 329 SBML models (~ 46%)
 Time period / state variables / observables extracted from SEDML
- => Problem: state variables < 100
 - reactions < 100
 - parameters < 150
- Benchmark + BioModels Database:
 - Models with high number of state variables
 - E.g.: Smallbone2013
 - State variables ~ 400
 - Parameters ~ 3000

ODE settings

• absolute / relative tolerances: combinations of 1e-6,..., 1e-16

• linear solver: Dense, KLU, GMRES, BICGSTAB, SPTFQMR

(non-linear solver): Newton-type, functional

solver algorithm: Adams-Moulton, BDF

- Additional properties:
 - –Compare time difference: built-in timing vs external timing
 - -Repeat 100 times + take median
 - => to omit single "out-of-order" values
 - Type of right-hand-site $f(x, \theta)$: **stiff**, polynomial

Intern vs Extern Timekeeping

Predictor model for solver performance

- Goal: predict most promissing setting before simulation
- Method: study as original investigation
 - (linear) Regression for key data
 - collect key data of new models [stiff, polynomial, state variables, parameters]

- Output: most promissing numerical setting [atol, rtol, linear solver, solver algorithm]
- => Run simulation and check for correctness

Any Questions?