Latex Template

Zih-Yu Hsieh

February 11, 2025

1

Question 1 Prove or disprove the statement that if k is any field, then $(X^2 + 1)$ is a maximal ideal of k[X].

Pf:

Consider $k = \mathbb{C}$. Then, notice that the following is true:

$$(X+i)(X-i) = X(X-i) + i(X-i) = (X^2 - ix) + (iX - i^2) = (X^2 - (-1)) = (X^2 + 1)$$

So, $(X^2 + 1) \subset (X + i)$, since $X^2 + 1 \in (X + i)$.

However, $(X^2+1)\subsetneq (X+i)$, since $X+i\notin (X^2+1)$: Suppose $X+i=(X^2+1)h(X)$ for some $h(X)\in \mathbb{C}[X]$, then since $X+i\neq 0$, then $h(X)\neq 0$; also, since $\mathbb{C}[X]$ is an integral domain, hence $1=\deg(X+i)=\deg(X^2+1)+\deg(h(X))\geq \deg(X^2+1)=2$ (Note: since $\deg(h(X))\geq 0$). However, this is a contradiction. Hence, $X+i\neq (X^2+1)h(X)$ for all $h(X)\in \mathbb{C}[X]$, showing that $X+i\notin (X^2+1)$.

Furthermore, $(X+i) \neq \mathbb{C}[X]$: Suppose $(X+i) = \mathbb{C}[X]$, then $1 \in (X+i)$, which there exists $h(X) \in \mathbb{C}[X]$, such that (X+i)h(X) = 1. However, since $1 \neq 0$, then $h(X) \neq 0$; also, since $\mathbb{C}[X]$ is an integral domain, then $0 = \deg(1) = \deg(X+i) + \deg(h(X)) \geq \deg(X+i) = 1$, which is a contradiction. Hence, $(X+i) \neq \mathbb{C}[X]$.

So, (X+i) is an ideal strictly containing (X^2+1) , while $(X+i) \neq \mathbb{C}[X]$, showing that (X^2+1) is not a maximal ideal of $\mathbb{C}[X]$.

 $\mathbf{2}$

Question 2 Prove that if k is a field, then the map $\phi: k[X] \to k$ given by $\phi(f(X)) = f(a)$ $(a \in k)$ defines an isomorphism of rings, $\phi': \frac{k[X]}{(X-a)} \tilde{\to} k$.

Pf:

(Note: Possibly need to show that it is a kernel)

(X-a) is the kernel:

Given the ring homomorphism $\phi: k[X] \to k$ defined as $\phi(f(X)) = f(a)$ $(a \in k)$, for all $f(X) \in (X - a)$, since there exists $h(X) \in k[X]$, with f(X) = (X - a)h(X). Hence:

$$\phi(f(X)) = f(a) = (a - a)h(a) = 0 \cdot h(a) = 0$$

This implies that $f(X) \in \ker(\phi)$, hence $(X - a) \subseteq \ker(\phi)$.

Similarly, for all $f(X) \in \ker(\phi)$ (which $f(X) = f_0 + f_1X + ... + f_nX^n$ for some $f_0, f_1, ..., f_n \in k$), since $\phi(f(X)) = f(a) = 0$, then the following is true:

$$f(a) = f_0 + f_1 a + \dots + f_n a^n$$
, $f(X) = f(X) - 0 = f(X) - f(a) = \sum_{j=0}^n f_j X^j - \sum_{j=0}^n f_j a^j$

$$f(X) = \sum_{j=0}^{n} f_j(X^j - a^j)$$

(Note: the above equation is true, since k[X] is commutative).

Now, notice that for all $m \in \mathbb{N}$ $(m \ge 2)$, the following is true:

$$(X-a)\left(\sum_{j=0}^{m-1} X^{j} a^{(m-1)-j}\right) = X \sum_{j=0}^{m-1} X^{j} a^{(m-1)-j} - a \sum_{j=0}^{m-1} X^{j} a^{(m-1)-j}$$

$$= \sum_{j=0}^{m-1} X^{j+1} a^{(m-1)-j} - \sum_{j=0}^{m-1} X^{j} a^{(m-1)-j+1}$$

$$= X^{m} a^{(m-1)-(m-1)} + \sum_{j=0}^{m-2} X^{j+1} a^{(m-1)-j} - \sum_{j=1}^{m-1} X^{j} a^{(m-1)-j+1} - X^{0} a^{(m-1)-0+1}$$

$$= X^{m} + \sum_{j=1}^{m-1} X^{j} a^{(m-1)-(j-1)} - \sum_{j=1}^{m-1} X^{j} a^{m-j} - a^{m}$$

$$= X^{m} + \sum_{j=1}^{m-1} X^{j} a^{m-j} - \sum_{j=1}^{m-1} X^{j} a^{m-j} a^{m}$$

$$= X^{m} - a^{m}$$

Hence, for $m \ge 2$, $X^m - a^m = (X - a)h_m(X)$ for some $h_m(X) \in k[X]$. (And, for m = 1, $(X - a) = (X - a) \cdot 1$, and for m = 0, since $(X^0 - a^0) = (1 - 1) = 0$, which let $h_1(X) = 1$ and $h_0(X) = 0$, we can generalize it to m = 1 and m = 0 case).

So, the original function f(X) can be rewrite as:

$$f(X) = \sum_{j=0}^{n} f_j(X^j - a^j) = \sum_{j=0}^{n} f_j(X - a)h_j(X) = (X - a)\left(\sum_{j=0}^{n} f_jh_j(X)\right)$$

Hence, $f(X) \in (X - a)$, showing that in fact $\ker(\phi) = (X - a)$.

Image of the map is k:

For all $c \in k$, since $c \in k[X]$, then $\phi(c) = c$, showing that ϕ is surjective.

Then, by First Isomorphism Theorem of Rings, we can conclude that $\frac{k[X]}{(X-a)} = \frac{k[X]}{\ker(\phi)} \cong \phi(k[X]) = k$, which the ring homomorphism ϕ defines a ring isomorphism ϕ' (projection map) between $\frac{k[X]}{(X-a)}$ and k.

Question 3 Let $R = \mathbb{R}[X_1, X_2]$. Prove or disprove that $(X_1^2 + 1)$ is a maximal ideal of R.

Pf:

Consider the ideal $(X_1^2 + 1, X_2)$: Notice that since $X_1^2 + 1 \in (X_1^2 + 1, X_2)$, so $(X_1^2 + 1) \subset (X_1^2 + 1, X_2)$; yet, $X_2 \notin (X_1^2 + 1)$:

Suppose $X_2 \in (X_1^2 + 1)$, then $X_2 = (X_1^2 + 1)h(X_1, X_2)$ for some $h(X_1, X_2) \in \mathbb{R}[X_1, X_2]$. However, if evaluate $X_2 = 1$, then we get the following:

$$1 = (X_1^2 + 1)h(X_1, 1)$$

Notice that since $1 \neq 0$, then $h(X_1, 1) \neq 0$; hence, with $h(X_1, 1), (X_1^2 + 1) \in \mathbb{R}[X_1]$, the following is true:

$$0 = \deg(1) = \deg(X_1^2 + 1) + \deg(h(X_1, 1)) \ge \deg(X_1^2 + 1) = 2$$

Which is a contradiction. Hence, the assumption is false, $X_2 \notin (X_1^2 + 1)$.

Hence, we can conclude that $(X_1^2 + 1) \subsetneq (X_1^2 + 1, X_2)$.

Also, notice that $(X_1^2 + 1, X_2) \neq \mathbb{R}[X_1, X_2]$: Suppose the two are the same, then $1 \in (X_1^2 + 1, X_2)$, so there exists $h_1(X_1, X_2), h_2(X_1, X_2) \in \mathbb{R}[X_1, X_2]$ with $1 = (X_1^2 + 1)h_1(X_1, X_2) + X_2h_2(X_1, X_2)$.

Yet, if evaluate $X_2 = 0$, we'll get the following:

$$1 = (X_1^2 + 1)h_1(X_1, 0)$$

Which $h_1(X_1,0) \in \mathbb{R}[X_1]$. Then, since $1 \neq 0$, then $h_1(X_1,0) \neq 0$; then again, based on the degree of the polynomial, we yield:

$$0 = \deg(1) = \deg(X_1^2 + 1) + \deg(h_1(X_1, 0)) \ge \deg(X_1^2 + 1) = 2$$

Which again is a contradiction. Hence, we can't have $(X_1^2 + 1, X_2) = \mathbb{R}[X_1, X_2]$.

So, the above shows that $(X_1^2 + 1) \subsetneq (X_1^2 + 1, X_2) \subsetneq \mathbb{R}[X_1, X_2]$, showing that $(X_1^2 + 1)$ is not a maximal ideal.

4

Question 4 Let n be a positive integer with decimal representation $a_k a_{k-1}...a_1 a_0$. Show that n is divisible by 9 if and only if $\sum_{i=0}^k a_i$ is divisible by 9.

Pf:

Powers of 10 modulo 9:

Notice that since $10 \equiv 1 \pmod{9}$, then for all $n \in \mathbb{N}$, $10^n \equiv 1^n \pmod{9}$, hence $10^n \equiv 1 \pmod{9}$.

Now, notice that for any $n \in \mathbb{N}$, if the decimal representation is $a_k a_{k-1} ... a_1 a_0$ (with $a_0, a_1, ..., a_k \in \{0, 1, ..., 9\}$), it can also be rewritten as:

$$n = \sum_{j=0}^{k} a_j 10^j$$

Hence, n is divisible by 9, if and only if $\sum_{j=0}^{k} a_j 10^j$ is divisible by 9, or $\sum_{j=0}^{k} a_j 10^j \equiv 0 \pmod{9}$. Then, based on the ring property of \mathbb{Z}_9 , the following is true:

$$\left(\sum_{j=0}^{k} a_j 10^j\right) \mod 9 = \sum_{j=0}^{k} (a_j \mod 9)(10^j \mod 9) = \sum_{j=0}^{k} (a_j \mod 9) = \left(\sum_{j=0}^{k} a_j\right) \mod 9$$

(Note: the above is true, since $10^j \equiv 1 \pmod{9}$ for all $j \in \mathbb{N}$).

Hence, we can conclude that $\sum_{j=0}^{k} a_j 10^j \equiv 0 \pmod{9}$ if and only if $\left(\sum_{j=0}^{k} a_j\right) \equiv 0 \pmod{9}$, or $\left(\sum_{j=0}^{k} a_j\right)$ is divisible by 9.

Therefore, we can conclude that n is divisible by 9, if and only if $\left(\sum_{j=0}^{k} a_j\right)$ is divisible by 9.

Question 5 Let m and n be positive integers which are relative prime. Prove or disprove that the rings \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ are isomorphic.

Pf:

Consider the following map $\phi: \mathbb{Z} \to \mathbb{Z}_m \times \mathbb{Z}_n$, by $\phi(k) = (k \mod m, k \mod n)$.

It is a ring homomorphism, because for all $a, b \in \mathbb{Z}$, the following is true:

$$\phi(a+b) = ((a+b) \mod m, (a+b) \mod n) = (a \mod m, a \mod n) + (b \mod m, b \mod n) = \phi(a) + \phi(b)$$

$$\phi(ab) = ((ab) \bmod m, (ab) \bmod n) = (a \bmod m, a \bmod n) \cdot (b \bmod m, b \bmod n) = \phi(a) \cdot \phi(b)$$

(Note: the addition and multiplication is defined coordinate wise).

So, the map is in fact a ring homomorphism.

Kernel of ϕ :

Now, consider $\ker(\phi)$: For all $k \in \ker(\phi)$, since $(k \mod m, k \mod n) = (0,0)$, the $m \mid k$ and $n \mid k$, hence $lcm(m,n) \mid k$; however, since m,n are assumed to be coprime, then $lcm(m,n) = \frac{mn}{\gcd(m,n)} = mn$ (since $\gcd(m,n) = 1$). Hence, $mn \mid k$, showing that $\ker(\phi) \subseteq mn\mathbb{Z}$.

The converse is also true, since for all $k \in mn\mathbb{Z}$, $k = l \cdot mn$ for some $l \in \mathbb{Z}$, which:

$$\phi(k) = (l \cdot mn \ mod \ m, l \cdot mn \ mod \ n) = (0, 0)$$

Hence, $k \in \ker(\phi)$, or $mn\mathbb{Z} \subseteq \ker(\phi)$. Then, $\ker(\phi) = mn\mathbb{Z}$.

ϕ is Surjective:

Since m, n are coprime, the by Bezout's Lemma, there exists $s, t \in \mathbb{Z}$, with ms + tn = 1. Then, ms = -tn + 1, which $\phi(ms) = (ms \mod m, ms \mod n) = (0, -tn + 1 \mod n) = (0, 1)$; also, since tn = -ms + 1, which $\phi(tn) = (tn \mod m, tn \mod n) = (-ms + 1 \mod m, 0) = (1, 0)$.

Then, for all $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$, the following is true:

$$(a,b) = a(1,0) + b(0,1) = a \cdot \phi(tn) + b \cdot \phi(ms) = \phi(atn + bms)$$

Hence, we can conclude that ϕ is a surjective ring homomorphism.

Now, with the above conditions, by First Isomorphism of Rings, we can conclude the following:

$$\mathbb{Z}_{mn} \cong \mathbb{Z}/mn\mathbb{Z} = \mathbb{Z}/\ker(\phi) \cong \phi(\mathbb{Z}) = (\mathbb{Z}_m \times \mathbb{Z}_n)$$

Which, \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ are isomorphic as rings.

6

Question 6

Pf: