## **Hourly Linear Model Summaries**

#### **Hourly Model 1 Usage Baseline 2017-2018:**

| Predictors | Estimate | Std. Error | t value | p-value    |
|------------|----------|------------|---------|------------|
| Intercept  | 251.7409 | 2.9452     | 85.475  | <2e-16 *** |
| HDD        | 14.5734  | 0.2213     | 65.843  | <2e-16 *** |
| CDD        | -1.0054  | 0.4809     | -2.091  | 0.0366 *   |

Note. HDD = Hourly value of heating degree days, CDD = Hourly value of cooling degree days. \* indicates statistical

significance. Model is fit to predict hourly sum Usage (kWh).

Residual standard error: 152.4 on 8757 degrees of freedom

Multiple R-squared: 0.4148, Adjusted R-squared: 0.4147

F-statistic: 3104 on 2 and 8757 DF, p-value: < 2.2e-16

#### **Hourly Model 2 Usage Baseline 2021-2022:**

| Predictors | Estimate | Std. Error | t value | p-value     |
|------------|----------|------------|---------|-------------|
| Intercept  | 219.5138 | 4.6743     | 46.962  | < 2e-16 *** |
| HDD        | 17.4565  | 0.3657     | 47.731  | < 2e-16 *** |
| CDD        | 2.1579   | 0.7324     | 2.946   | 0.00323 **  |

*Note.* HDD = Hourly value of heating degree days, CDD = Hourly value of cooling degree days. \* indicates statistical significance. Model is fit to predict hourly sum Usage (kWh).

Residual standard error: 237.4 on 8709 degrees of freedom Multiple R-squared: 0.2569, Adjusted R-squared: 0.2567

F-statistic: 1505 on 2 and 8709 DF, p-value: < 2.2e-16

#### **Hourly Model 3 Demand Baseline 2017-2018:**

| Predictors | Estimate  | Std. Error | t value | p-value    |
|------------|-----------|------------|---------|------------|
| Intercept  | 270.78243 | 3.13800    | 86.291  | <2e-16 *** |
| HDD        | 16.30835  | 0.23582    | 69.155  | <2e-16 *** |
| CDD        | -0.01732  | 0.51234    | -0.034  | 0.973      |

*Note.* HDD = Hourly value of heating degree days, CDD = Hourly value of cooling degree days. \* indicates statistical significance. Model is fit to predict hourly peak Demand (kW).

Residual standard error: 162.4 on 8757 degrees of freedom Multiple R-squared: 0.4306, Adjusted R-squared: 0.4305

F-statistic: 3312 on 2 and 8757 DF, p-value: < 2.2e-16

#### **Hourly Model 4 Demand Baseline 2021-2022**

| Predictors | Estimate | Std. Error | t value | p-value      |
|------------|----------|------------|---------|--------------|
| Intercept  | 239.0961 | 4.9505     | 48.30   | < 2e-16 ***  |
| HDD        | 19.4348  | 0.3873     | 50.17   | < 2e-16 ***  |
| CDD        | 3.4054   | 0.7757     | 4.39    | 1.15e-05 *** |

*Note.* HDD = Hourly value of heating degree days, CDD = Hourly value of cooling degree days. \* indicates statistical significance. Model is fit to predict hourly peak Demand (kW).

Residual standard error: 251.5 on 8709 degrees of freedom Multiple R-squared: 0.2713, Adjusted R-squared: 0.2711

F-statistic: 1621 on 2 and 8709 DF, p-value: < 2.2e-16

**Takeaways:** By evaluating these models on correlation coefficient or "Multiple R-squared", we see that none display an adequate fit. The 2017-2018 baseline period models (both Usage and Demand) boast much higher R values of 0.4148 and 0.4306 respectively, compared the 2021-2022 Usage and Demand model coefficients of 0.2569 and 0.2713. However, even the much higher 2017-2018 models fall far short of our desired level. These lower R-squared values mean that a lot of the variation in the data cannot be explained by the models.

**Table 1 Predicted Usage/Demand vs Observed:** 

| month      | sum_predictedUsage | sum_Usage  | AvoidedUsage | predictedDemand | Demand  | AvoidedDemand |
|------------|--------------------|------------|--------------|-----------------|---------|---------------|
| 0022-07-01 | 180508.2828        | 40428.315  | 140079.9678  | 289.8632022     | 586.8   | -296.9367978  |
| 0022-08-01 | 181787.748         | 162540.585 | 19247.16305  | 320.6859851     | 790.38  | -469.6940149  |
| 0022-09-01 | 188191.8015        | 143834.94  | 44356.86155  | 434.029023      | 747.36  | -313.330977   |
| 0022-10-01 | 239983.5924        | 130066.335 | 109917.2574  | 656.8010946     | 781.2   | -124.3989054  |
| 0022-11-01 | 306683.6753        | 261417.915 | 45265.76025  | 692.0271322     | 1221.66 | -529.6328678  |
| 0022-12-01 | 376866.9393        | 351773.505 | 25093.43426  | 904.1987758     | 1302.66 | -398.4612242  |
| 0023-01-01 | 360649.5409        | 320979.78  | 39669.76087  | 774.5473871     | 1341.9  | -567.3526129  |
| 0023-02-01 | 311020.6504        | 245099.115 | 65921.5354   | 764.2731261     | 1272.42 | -508.1468739  |
| 0023-03-01 | 314194.2586        | 231119.28  | 83074.97859  | 728.557838      | 1074.42 | -345.862162   |
| 0023-04-01 | 236547.4816        | 109159.29  | 127388.1916  | 578.0317603     | 662.58  | -84.54823968  |
| 0023-05-01 | 200670.414         | 127842.345 | 72828.06897  | 508.558186      | 597.06  | -88.50181397  |

Note. sum\_predictedUsage = Monthly sums of predicted Usage, sum\_Usage = Monthly sums of observed Usage, Avoided Usage = (sum\_predictedUsage - sum\_Usage), predictedDemand = Monthly peak predicted Demand, Demand = Monthly peak observed Demand, AvoidedDemand = (predictedDemand - Demand). Both predicted Usage and Demand are determined by 2017-2018 baseline models.

**Graph 2 Observed Hourly Sum Usage vs Predicted Usage:** 



Note. Predicted Demand and Predicted Usage are determined by the 2017-2018 baseline models.

Takeaways: Our main variables of interest from Table 1 are AvoidedUsage/Demand. These variables depict the difference or savings between model predicted Usage/Demand values and observed Usage/Demand values after solar installation. We expect all Avoided values to be positive as the post installation period should lead to less energy usage than the model (which does not account for the installed system benefits) predicts. While this is the case for AvoidedUsage, AvoidedDemand has all negative values. After analyses and graphing, we can infer this difference is due to the way Demand is predicted/recorded compared to Usage. Demand is a monthly maximum value, which means outliers will become a major influence. While Usage is a monthly sum value, meaning there is less emphasis on outliers and more on mean values. As we can see from Graph 1 and Graph 2, observed demand and usage ranges from 0 to roughly 1300, while predicted demand/usage falls between roughly 250 and 900. With only a few predictor variables and a lot of variation it's hard for a regression model to accurately predict a wide range of values, this is seen from our subpar R-squared coefficients. However, both predicted demand and usage have a higher mean than observed. This is why we see higher predicted Usage values than observed (which is a sum value) but not higher predicted Demand values than observed (a maximum/outlier value). Based on the low R-squared coefficients and the negative AvoidedDemand values, we can assume the hourly models can not represent enough of the variation in the dataset and are not a good fit.

## **Monthly Linear Model Summaries**

#### **Monthly Model 1 Usage Baseline 2017-2018:**

| Predictors | Estimate | Std. Error | t value | p-value      |
|------------|----------|------------|---------|--------------|
| Intercept  | 155,000  | 24,450     | 6.341   | 0.000134 *** |
| sum_HDD    | 16.70    | 2.536      | 6.585   | 0.000101 *** |
| sum_CDD    | 8.464    | 6.049      | 1.399   | 0.195246     |

Note. sum\_HDD = Monthly sum value of heating degree days, sum\_CDD = Monthly sum value of cooling degree days.

\* indicates statistical significance. Model is fit to predict monthly sum Usage (kWh).

Residual standard error: 27220 on 9 degrees of freedom

Multiple R-squared: 0.9017, Adjusted R-squared: 0.8799

F-statistic: 41.29 on 2 and 9 DF, p-value: 2.924e-05

### **Monthly Model 2 Usage Baseline 2021-2022:**

| Predictors | Estimate  | Std. Error | t value | p-value      |
|------------|-----------|------------|---------|--------------|
| Intercept  | 67591.899 | 20598.861  | 3.281   | 0.008270 **  |
| sum_HDD    | 24.626    | 2.528      | 9.742   | 2.02e-06 *** |
| sum_CDD    | 27.987    | 4.958      | 5.645   | 0.000214 *** |

Note. sum\_HDD = Monthly sum value of heating degree days, sum\_CDD = Monthly sum value of cooling degree days.

\* indicates statistical significance. Model is fit to predict monthly sum Usage (kWh).

Residual standard error: 29290 on 10 degrees of freedom

Multiple R-squared: 0.9073, Adjusted R-squared: 0.8888

F-statistic: 48.94 on 2 and 10 DF, p-value: 6.844e-06

#### **Monthly Model 3 Demand Baseline 2017-2018:**

| Predictors | Estimate  | Std. Error | t value | p-value      |
|------------|-----------|------------|---------|--------------|
| Intercept  | 554.15137 | 66.89564   | 8.284   | 1.67e-05 *** |
| sum_HDD    | 0.04931   | 0.00694    | 7.105   | 5.63e-05 *** |
| sum_CDD    | 0.03991   | 0.01655    | 2.411   | 0.0392 *     |

Note. sum\_HDD = Monthly sum value of heating degree days, sum\_CDD = Monthly sum value of cooling degree days.

\* indicates statistical significance. Model is fit to predict monthly peak Demand (kW).

Residual standard error: 74.48 on 9 degrees of freedom

Multiple R-squared: 0.897, Adjusted R-squared: 0.8741

F-statistic: 39.18 on 2 and 9 DF, p-value: 3.616e-05

#### **Monthly Model 4 Demand Baseline 2021-2022**

| Predictors | Estimate   | Std. Error | t value | p-value      |
|------------|------------|------------|---------|--------------|
| Intercept  | 876.870497 | 116.787025 | 7.508   | 2.04e-05 *** |
| sum_HDD    | 0.057004   | 0.014331   | 3.978   | 0.00261 **   |
| sum_CDD    | -0.009355  | 0.028107   | -0.333  | 0.74614      |

Note. sum\_HDD = Monthly sum value of heating degree days, sum\_CDD = Monthly sum value of cooling degree days.

\* indicates statistical significance. Model is fit to predict monthly peak Demand (kW).

Residual standard error: 166.1 on 10 degrees of freedom

Multiple R-squared: 0.7796, Adjusted R-squared: 0.7356

F-statistic: 17.69 on 2 and 10 DF, p-value: 0.0005196

**Takeaways:** By evaluating these models on correlation coefficient or "Multiple R-squared", we see that all display an adequate fit. Most models display an R-squared value around 0.9, while 2021-2022 Demand falls to 0.78. However, each model falls above our desired level of 0.75. These higher R-squared values mean that a lot of the variation in the data can be explained by the models.

**Table 1 Predicted Usage/Demand vs Observed:** 

| month      | predictedUsage17 | predictedDemand21 | Demand  | sum_Usage  | AvoidedUsage17 | AvoidedDemand21 |
|------------|------------------|-------------------|---------|------------|----------------|-----------------|
| 0022-07-01 | 223555.8204      | 801.1213504       | 586.8   | 40428.315  | 183127.5054    | 214.3213504     |
| 0022-08-01 | 213465.7132      | 812.2737877       | 790.38  | 162540.585 | 50925.12816    | 21.89378768     |
| 0022-09-01 | 191360.0383      | 846.448992        | 747.36  | 143834.94  | 47525.09835    | 99.08899198     |
| 0022-10-01 | 198167.1858      | 977.2728406       | 781.2   | 130066.335 | 68100.85079    | 196.0728406     |
| 0022-11-01 | 272259.2868      | 1267.036754       | 1221.66 | 261417.915 | 10841.37177    | 45.37675351     |
| 0022-12-01 | 343982.7402      | 1521.752204       | 1302.66 | 351773.505 | -7790.764811   | 219.0922042     |
| 0023-01-01 | 323135.2         | 1450.65487        | 1341.9  | 320979.78  | 2155.419993    | 108.7548703     |
| 0023-02-01 | 285817.8707      | 1323.22047        | 1272.42 | 245099.115 | 40718.75575    | 50.80047036     |
| 0023-03-01 | 262888.903       | 1241.98705        | 1074.42 | 231119.28  | 31769.62296    | 167.5670496     |
| 0023-04-01 | 194227.1189      | 981.1214911       | 662.58  | 109159.29  | 85067.82889    | 318.5414911     |
| 0023-05-01 | 183322.049       | 867.5865036       | 597.06  | 127842.345 | 55479.70399    | 270.5265036     |

Note. predictedUsage17 = Monthly sums of predicted Usage from 2017-2018 baseline model, sum\_Usage = Monthly sums of observed Usage, AvoidedUsage17 = (predictedUsage17 - sum\_Usage), predictedDemand21 = Monthly peak predictedDemand from 2021-2022 baseline model, Demand = Monthly peak observed Demand, AvoidedDemand21 = (predictedDemand21 - Demand). 07/22 is an incomplete month for observed usage and demand.



**Takeaways:** Our main variables of interest from Table 1 are AvoidedUsage/Demand. These variables depict the difference or savings between model predicted Usage/Demand values and observed Usage/Demand values after solar installation. We expect all Avoided values to be positive as the post installation period should lead to less energy usage than the model (which does not account for the installed system benefits) predicts. Unlike our hourly models, the monthly models have accurately depicted this. Every value of Avoided Usage/Demand is now positive (except 12/22 when there was an error with the system). We can see this in the boxplots as well, which align much better than the hourly ones and have higher predicted means as well as maximum values than observed. Based on the table/graph results and our high correlation coefficients, it is safe to say that these monthly models account for much more variation in the data and are good fits.

## **GHI Effect Monthly Linear Model Summaries**

#### **GHI Monthly Model 1 Usage 2022-2023:**

| Predictors | Estimate  | Std. Error | t value | p-value      |
|------------|-----------|------------|---------|--------------|
| Intercept  | 26560     | 1.954e+04  | 1.359   | 0.21632      |
| sum_GHI    | 1.802e-01 | 1.304e-01  | 1.382   | 0.20944      |
| sum_HDD    | 2.791e+01 | 1.757e+00  | 15.883  | 9.51e-07 *** |
| sum_CDD    | 1.661e+01 | 3.745e+00  | 4.435   | 0.00303 **   |

Note. sum\_GHI = Monthly sum value of Global Horizontal Irradiation, sum\_HDD = Monthly sum value of heating degree days, sum\_CDD = Monthly sum value of cooling degree days. \* indicates statistical significance. Model is fit to predict monthly sum

Residual standard error: 16960 on 7 degrees of freedom

Multiple R-squared: 0.9782, Adjusted R-squared: 0.9688

F-statistic: 104.6 on 3 and 7 DF, p-value: 3.54e-06

#### **GHI Monthly Model 2 Usage 2022-2023:**

| Predictors      | Estimate   | Std. Error | t value | p-value    |
|-----------------|------------|------------|---------|------------|
| Intercept       | 1.082e+05  | 5.214e+04  | 2.075   | 0.07667 .  |
| sum_GHI         | -6.386e-01 | 3.993e-01  | -1.599  | 0.15378    |
| sum_GHI:sum_HDD | 3.140e-04  | 6.338e-05  | 4.955   | 0.00165 ** |
| sum_GHI:sum_CDD | 1.546e-04  | 6.448e-05  | 2.399   | 0.04757 *  |

*Note.* sum\_GHI = Monthly sum value of Global Horizontal Irradiation, sum\_GHI:sum\_HDD = interaction effect (product) of GHI and HDD, sum\_GHI:sum\_CDD = interaction effect (product) of GHI and CDD. \* indicates statistical significance. Model is fit to predict monthly sum Usage (kWh).

Residual standard error: 49960 on 7 degrees of freedom

Multiple R-squared: 0.8107, Adjusted R-squared: 0.7295

F-statistic: 9.992 on 3 and 7 DF, p-value: 0.006346

#### **GHI Monthly Model 3 Demand 2022-2023:**

| Predictors | Estimate   | Std. Error | t value | p-value      |
|------------|------------|------------|---------|--------------|
| Intercept  | 6.003e+02  | 1.032e+02  | 5.815   | 0.000654 *** |
| sum_GHI    | -3.093e-04 | 6.886e-04  | -0.449  | 0.666874     |
| sum_HDD    | 7.632e-02  | 9.283e-03  | 8.222   | 7.65e-05 *** |
| sum_CDD    | 3.551e-02  | 1.978e-02  | 1.795   | 0.115767     |

*Note.* sum\_GHI = Monthly sum value of Global Horizontal Irradiation, sum\_HDD = Monthly sum value of heating degree days, sum\_CDD = Monthly sum value of cooling degree days. \* indicates statistical significance. Model is fit to predict monthly peak Demand (kW).

Residual standard error: 89.6 on 7 degrees of freedom

Multiple R-squared: 0.9379, Adjusted R-squared: 0.9113

F-statistic: 35.24 on 3 and 7 DF, p-value: 0.0001356

#### **GHI Monthly Model 4 Demand 2022-2023:**

| Predictors      | Estimate   | Std. Error | t value | p-value      |
|-----------------|------------|------------|---------|--------------|
| Intercept       | 7.707e+02  | 1.053e+02  | 7.320   | 0.000160 *** |
| sum_GHI         | -2.575e-03 | 8.063e-04  | -3.193  | 0.015205 *   |
| sum_GHI:sum_HDD | 9.591e-07  | 1.280e-07  | 7.493   | 0.000138 *** |
| sum_GHI:sum_CDD | 4.294e-07  | 1.302e-07  | 3.298   | 0.013161 *   |

Note. sum\_GHI = Monthly sum value of Global Horizontal Irradiation, sum\_GHI:sum\_HDD = interaction effect (product) of GHI and HDD, sum\_GHI:sum\_CDD = interaction effect (product) of GHI and CDD. \* indicates statistical significance. Model is fit to predict monthly peak Demand (kW).

Residual standard error: 100.9 on 7 degrees of freedom

Multiple R-squared: 0.9212, Adjusted R-squared: 0.8875

F-statistic: 27.3 on 3 and 7 DF, p-value: 0.0003092

**Takeaways:** By looking at the t-values and corresponding p-values we can judge the significance of each predictor term. Starting with GHI, we see this variable is non-significant in terms of predicting Demand/Usage on its own. However, GHI does have a significant interaction effect with HDD and CDD on Usage/Demand.

**Table 2 Correlation Coefficients between Variables:** 

|        | Usage      | Demand     | GHI        | HDD       | CDD        |
|--------|------------|------------|------------|-----------|------------|
| Usage  | 1          | 0.9489734  | -0.3720799 | 0.9352285 | -0.4187249 |
| Demand | 0.9489734  | 1          | -0.5217088 | 0.9529475 | -0.5359837 |
| GHI    | -0.3720799 | -0.5217088 | 1          | -0.577299 | 0.6557167  |
| HDD    | 0.9352285  | 0.9529475  | -0.577299  | 1         | -0.689609  |
| CDD    | -0.4187249 | -0.5359837 | 0.6557167  | -0.689609 | 1          |

# **GHI Interaction Plots:**



Note. Plotting the monthly sum of GHI (x-axis) and the monthly sum of CDD (y-axis).



Note. Plotting the monthly sum of GHI (x-axis) and the monthly sum of HDD (y-axis).



Note. Plotting the monthly sum of GHI (x-axis) and the monthly sum of Usage (y-axis).

Takeaways: While GHI may not have a significant direct effect on Usage or Demand, it does seem to have significant interactions with HDD and CDD on Usage/Demand. We can see from the correlation coefficient table and graph, that GHI and CDD have a positive relationship (this makes sense as solar radiance increases temperatures rise and so does CDD). We also see that GHI has a negative relationship with HDD (again as solar radiance increases temperatures rise and HDD decreases). I included a third graph showing GHI and Usage, it appears to show a fairly strong negative relationship but what I think this graph is really doing is mimicking GHI and HDD (GHI has an inverse relationship with HDD which has a strong direct relationship with Usage). So while GHI on its own may not help predict Usage/Demand its interaction/product with CDD and HDD can.