Biggish Data: Tips and tricks for working with kinda big data in R

Jeff Hollister

repo: https://github.com/usepa/biggish_data_r

(requires GHE license)

2024-04-17

Corvallis Spatial Huddle

Biggish Data

- Most data not "Big"
- Lot of data "biggish"
 - Storage/Sharing challenges
 - Read/Write challenges
 - Analysis challenges
- Useful for all datasets
 - Less storage
 - Less CPU time
 - Less bandwidth
 - The "cloud" isn't free.

Outline

- The example
- Writing data
- Reading data
- File sizes
- Summarizing data
- S3

The example - Biggish National Lakes Assessment 2017

```
library(dplyr)
library (readr)
url <- "https://www.epa.gov/sites/default/files/2021-
04/nla 2017 water chemistry chla-data.csv"
nla17 <- read csv(url)</pre>
nla big <-
nla17[sample(1:nrow(nla17),10000000,replace=TRUE),]
nla big <- rename(nla big, state = STATE,
                   analyte = ANALYTE,
                   result = RESULT)
```

The example - Biggish National Lakes Assessment 2017

```
dim(nla_big)
[1] 10000000 23
format(object.size(nla_big), "Gb")
[1] "1.7 Gb"
```

Packages

```
library(data.table)
library(readr)
library(arrow)
library(tictoc) #Timing
```

- Apache Arrow
- Language independent file format(s) for columnar datasets
- parquet, geoparquet, feather, Arrow csv

Writing data

- utils::write.csv (.csv)
- readr::write csv (.csv)
- data.table::fwrite (.csv)
- arrow::write_csv_arrow (.csv)
- base::save (.rda)
- arrow::write_feather (.feather)
- arrow::write_parquet (.parquet)
- arrow::write_dataset (partions/multiple .parquet)

Writing data - utils::write.csv

```
tic()
write.csv(nla_big, "../data/nla_big.csv")
toc()
539.04 sec elapsed
```

Writing data - readr::write csv

```
tic()
write_csv(nla_big, "../data/nla_big.csv")
toc()
6.58 sec elapsed
```

Writing data - data.table::fwrite

```
tic()
fwrite(nla_big, "../data/nla_big.csv")
toc()
6.25 sec elapsed
```

Writing data - arrow: : write csv arrow

```
tic()
write_csv_arrow(nla_big, file = "../data/nla_big.csv")
toc()
23.28 sec elapsed
```

Writing data - base::save

```
tic()
save(nla_big, file = "../data/nla_big.rda")
toc()
159.36 sec elapsed
```

Writing data - arrow::write_feather

Writing data - arrow::write_parquet

Writing data - arrow::write_dataset multiple file format

```
tic()
nla_big |>
  group_by(state) |>
  write_dataset(path = "../data/nla_big", compression =
"zstd")
toc()
23.95 sec elapsed
```

Writing data - Times

function	time
utils::write.csv	539.0 [s]
base::save	159.4 [s]
arrow::write_parquet partition	23.9 [s]
arrow::write_csv_arrow	23.3 [s]
arrow::write_parquet	22.5 [s]
arrow::write_feather	10.0 [s]
readr::write_csv	6.6 [s]
data.table::fwrite	6.2 [s]

Writing data - File sizes

function	size
utils::write.csv	1825.1 [megabytes]
arrow::write_csv_arrow	1651.8 [megabytes]
readr::write_csv	1432.5 [megabytes]
data.table::fwrite	1378.0 [megabytes]
arrow::write_feather	642.2 [megabytes]
arrow::write_parquet 50 partitions	271.6 [megabytes]
base::save	221.9 [megabytes]
arrow::write_parquet	126.1 [megabytes]

Reading data

- utils::read.csv
- readr::read_csv
- data.table::fread
- arrow::read_csv_arrow
- arrow::read_feather
- arrow::read_parquet
- arrow::open_dataset multi-file parquet

Reading data - utils::read.csv

```
tic()
df <- read.csv("../data/nla_big.csv")
toc()
38.12 sec elapsed</pre>
```

Reading data - readr::read_csv

```
tic()
df <- read_csv("../data/nla_big.csv")
toc()
37.33 sec elapsed</pre>
```

Reading data - data.table::fread

```
tic()
df <- fread("../data/nla_big.csv")
toc()
12.01 sec elapsed</pre>
```

Reading data - arrow::read_csv_arrow

```
tic()
df <- read_csv_arrow("../data/nla_big.csv")
toc()
16.06 sec elapsed</pre>
```

Reading data - arrow::read_feather

```
tic()
df <- read_feather("../data/nla_big.feather")
toc()
4.01 sec elapsed</pre>
```

Reading data - arrow::read_parquet

```
tic()
df <- read_parquet("../data/nla_big.parquet")
toc()
12.39 sec elapsed</pre>
```

Reading data - arrow::open_dataset multi-file parquet

```
tic()
df <- open_dataset("../data/nla_big")
toc()
0.17 sec elapsed</pre>
```

Reading data - Times

function	time
utils::read.csv	38.1 [s]
readr::read_csv	37.3 [s]
arrow::read_csv_arrow	16.1 [s]
arrow::read_parquet	12.4 [s]
data.table::fread	12.0 [s]
arrow::read_feather	4.0 [s]
arrow::open_dataset	0.2 [s]

Summarizing data

- Take our 10 million rows and
 - group on state and analyte
 - provide state average for each analyte
 - count number of samples per group
 - Result:
 - 4 columns
 - state, analyte, avg_result, group_n
 - 919 rows

Summarizing data

- readr::read_csv
- data.table::fread
- arrow::read_feather
- arrow::read_parquet
- arrow::open_dataset

Summarizing data - readr::read_csv

```
tic()
df <- read csv(".../data/nla big.csv")</pre>
df f sum <- df |>
  group by (state, analyte) |>
  summarize(avg result = round(mean(result), 2),
            group n = n()) >
 ungroup()
toc()
class(df)
48.48 sec elapsed
[1] "spec tbl df" "tbl df"
                                  "tbl"
"data.frame"
```

Summarizing data - data.table::fread

```
tic()
df <- fread("../data/nla big.csv")</pre>
df f sum <- df |>
  group by (state, analyte) |>
  summarize(avg result = round(mean(result), 2),
            group n = n())
  ungroup()
toc()
class(df)
13.31 sec elapsed
[1] "data.table" "data.frame"
```

Summarizing data - arrow::read_feather

```
tic()
df <- read feather("../data/nla big.feather")</pre>
df f sum <- df |>
  group by (state, analyte) |>
  summarize(avg result = round(mean(result), 2),
            group n = n())
 ungroup()
toc()
class(df)
5.36 sec elapsed
[1] "tbl df" "tbl"
                               "data.frame"
```

Summarizing data - arrow::read_parquet

```
tic()
df <- read parquet("../data/nla big.parquet")</pre>
df f sum <- df |>
  group by (state, analyte) |>
  summarize(avg result = round(mean(result), 2),
            group n = n())
 ungroup()
toc()
class(df)
11.17 sec elapsed
[1] "tbl df" "tbl"
                               "data.frame"
```

Summarizing data - arrow::open_dataset parquet multiple partitions

```
tic()
df <- open dataset("../data/nla big")</pre>
df f sum <- df |>
  group by (state, analyte) |>
  summarize(avg result = round(mean(result), 2),
            group n = n()) >
  ungroup() |>
  collect()
toc()
class(df)
3.4 sec elapsed
[1] "FileSystemDataset" "Dataset"
                                               "ArrowObject"
[4] "R6"
```

Summarizing data - Times

function	time
readr::read_csv	48.5 [s]
data.table::fread	13.3 [s]
arrow::open_dataset	11.2 [s]
arrow::read_feather	5.4 [s]
arrow::open_dataset multiple partitions	3.4 [s]

Another example - NYC Taxi on S3

• OK, this might be "big" data...

```
library(arrow)
bucket <- s3 bucket("voltrondata-labs-datasets",</pre>
                      anonymous = TRUE,
                      region = 'us-east-2')
tic()
nyc taxi <- open dataset(bucket$path("nyc-taxi"))</pre>
nrow(nyc taxi)
[1] 1672590319
toc()
159.16 sec elapsed
```

Big Data Summarize - NYC Taxi on S3

```
tic()
years <- nyc taxi |>
 group by (year) |>
  summarize(n = n()) >
  collect()
head (years, 2)
\# A tibble: 2 × 2
   year
  <int> <int>
1 2009 170896055
2 2010 169001153
toc()
51.05 sec elapsed
```

Total time

- Jeff's EISD Laptop: 8 cores, 16GB RAM
 - 16.55 [min]
- DMAP xLarge: 4 cores, 16GB RAM
 - 7.11 [min]
- DMAP 4xLarge: 16 cores, 64GB RAM
 - 6.53 [min]
- DMAP Mem Int 16xLarge: 64 cores, 976GB RAM
 - 8.22 [min]

Jeff's Hot Takes

- Default to feather
 - Smaller than csv
 - Fastest to read
 - Faster to write
- When use case requires switch to parquet
 - Smallest files
 - Partitions for smaller individual files
- DMAP is your friend (if you have access...)
 - Don't always need tons of RAM