Ezoteryczne Kartki Tabela potęgowa

Jakub Bachurski

wersja 1.0.2.2

1 Wstęp

Tym razem będziemy rozważać strukturę najczęściej wykorzystywaną do rozwiązywania statycznej wersji problemu RMQ – Range Minimum Query (przedziałowe zapytania o minimum w pewnym ciągu). Łatwo jest to rozwiązać drzewem przedziałowym z konstrukcją w czasie O(n) i zapytaniami $O(\log n)$. Jednakże, tabela potęgowa (sparse table, czasem spotyka się także nazwę słownik podsłów bazowych) rozwiąże ten problem z czasem konstrukcji $O(n\log n)$ i zapytaniami O(1).

	Drzewo przedziałowe	Pierwiastki	Tabela potęgowa
Konstrukcja	O(n)	O(n)	$O(n \log n)$
Pamięć	O(n)	O(n)	$O(n \log n)$
Zapytania	$O(\log n)$	$O(\sqrt{n})$	O(1)

2 Idea

Algorytmicy lubią potęgi dwójki. Skupimy się na dwóch własnościach tychże:

• Podwojenie potęgi dwójki daje kolejną potęgę dwójki.

$$2^k + 2^k = 2^{k-1}$$

• W ogólności, $2^{\lfloor \log_2 n \rfloor}$ jest największą potęgą dwójki nieprzekraczającą n. Podwojenie takich potęg dwójki przekracza n:

$$2^{\lfloor \log_2 n \rfloor} + 2^{\lfloor \log_2 n \rfloor} > n$$

Nie są to zbyt skomplikowane własności, pozostaje nam tylko znaleźć dla nich zastosowanie. Weźmy nasz ciąg $a=(a_1,a_2,...,a_n)$. Powiedzmy, że chcemy preprocessować minima dla wszystkich przedziałów długości potęg dwójki. Własność pierwsza pozwoli nam to szybko zrobić, a za pomocą własności drugiej będziemy odpowiadać na zapytania.

3 Konstrukcja

Tabela potęgowa utrzymuje tablice $T_k(i)$, przechowujące minimum na przedziale $[i,i+2^k)$ dla każdego $0 \le k \le \log_2 n$ (większe k przechowywałyby przedziały dłuższe niż ciąg). Spamiętywane są wszystkie indeksy $0 \le i \le n-2^k$ (inne ponownie wykraczałyby poza ciąg). Oczywistym jest, że $T_0(i) = a_i$. Natomiast z pomocą własności pierwszej z radością stwierdzamy, że:

$$\min(T_k(i), T_k(i+2^k)) = T_{k+1}(i)$$

A zatem, aby obliczyć wszystkie $T_k(i)$, wystarczy iterować się od najmniejszych potęg dwójki, i odwoływać się do wcześniej policzonej tablicy. W podobny sposób robimy to w drzewie przedziałowym, lecz tym razem robimy to dla wszystkich indeksów, a nie tylko dla ustalonych.

4 Zapytania

Otrzymujemy zapytanie o minimum na przedziale [l,r) – musimy policzyć:

$$\min(a_l, a_{l+1}, ..., a_{r-2}, a_{r-1})$$

Oznaczmy jego długość jako d=r-l i przyjrzyjmy się własności drugiej. Wynika z niej, że aby pokryć cały przedział [l,r) wystarczą nam dwa przedziały wielkości $2^{\lfloor \log_2 d \rfloor}$. Skąd pokrywanie? Stąd, że możemy wykorzystać przydatną własność minimum – idempotentność:

$$\min(\min(a, b), \min(b, c)) = \min(a, b, c)$$

Zatem możemy wybrać pewne przedziały, na których znamy minimum, i z tych wartości wziąć minimum. W ten sposób otrzymamy minimum na zakresie będącym sumą wszystkich przedziałów, które właśnie wzięliśmy. W tym wypadku chcemy otrzymać minimum na [l,r).

Zastanówmy się, jaką wybrać strategię pokrycia przedziału. Zauważmy, że nie możemy wybrać przedziału niedotykającego jednego z końców (l i r - 1), bo w ten sposób powstałe na końcach przedziały musiałyby zostać jeszcze raz zostać zapełnione. Rozważmy to na przykładzie podciągu $(a_3, a_4, ..., a_9)$:

$$a_3$$
 a_4 a_5 a_6 a_7 a_8 a_9

Mamy $l=3,\ r=10,\ d=r-l=7,\ {\rm zatem}\ 2^{\lfloor \log_2 d \rfloor}=4.$ Spróbujmy wykorzystać przedział [4,8).

$$a_3$$
 a_4 a_5 a_6 a_7 a_8 a_9

Widać, że zgubiliśmy (a_3) oraz (a_8,a_9) . Pozostaje jedyny słuszny wniosek: wykorzystać przedziały zaczepione na **początku** oraz na <u>końcu</u>.

$$a_3$$
 a_4 a_5 a_6 a_7 a_8 a_9

A zatem pokazaliśmy, że wystarczające jest wykorzystać dwa przedziały. Oznaczmy $e = \lfloor \log_2 d \rfloor$. Wystarczy wykorzystać $T_e(l)$ oraz $T_e(r-2^e)$.

5 Podsumowanie

5.1 Wybór operacji

Wykonywaną operacją nie musi być minimum. Możemy wykonywać dowolną operację o, o ile spełnia ona następujące własności:

- $a \circ a = a$ po pierwsze, idempotentność. Wielokrotna aplikacja tego samego argumentu nie zmienia wyniku. Jest potrzebna, bo przedziały wykorzystywane przy odpowiadaniu na zapytanie będą się pokrywały.
- $a \circ b = b \circ a$ przemienność.
- $(a \circ b) \circ c = a \circ (b \circ c)$ łączność.

Przykłady takich operacji (idempotentnych):

- Minimum
- Maksimum
- Największy wspólny dzielnik (gcd), tudzież najmniejsza wspólna wielokrotność (lcm)
- or bitowy
- and bitowy

5.2 Dynamiczność

Niestety, ponieważ duża liczbie komórek tablic T_k zależy od danego indeksu, nie da się efektywnie modyfikować tabeli potęgowej.

5.3 Implementacja

- Aby liczyć podłogę logarytmu dwójkowego, możemy go preprocesować w oddzielnej tablicy, lecz możemy także wykorzystać funkcję std::__lg.
- \bullet Lepiej uważać na zużycie pamięci sparse table zbudowane na ciągu 10^6 liczb 32-bitowych zużyje około 75MB.

5.4 Wielowymiarowa tabela potęgowa

Można napisać dwuwymiarową tabelę potęgową, działającą na prostokątnej tablicy $n \times m$, z konstrukcją w czasie $O(nm \log n \log m)$. W tym wypadku kluczem jest procesowanie wszystkich prostokątów wielkości $2^k \times 2^l$. Przy zapytaniach o prostokąt należy wykorzystywać prostokąty zaczepione w rogach prostokąta z zapytania.

6 Zadanka

Podobnie jak w przypadku innych struktur danych, kluczem do wykorzystania tabeli potęgowej jest sprowadzenie problemu do czegoś, co umie ona rozwiązać: zapytań o funkcję idempotentną na przedziałach statycznego ciągu. Warto zauważyć, że można z nią np. wyszukiwać binarnie.

Tabela potęgowa ma inną ciekawą cechę: jeżeli uda nam się w czas rozwiązania wepchnąć jej konstrukcję, to może nam znacząco uprościć implementację. Na przykład, gdy robimy algorytm z gąsienicą, zamiast utrzymywać dodatkowe zmienne utrzymujące wynik pewnej operacji na przedziale, możemy po prostu odwoływać się do struktury. Niestety, takie uproszczenie ma swoją cenę – narzut czasowy i zużycie pamięci.

- [SPOJ] Range Minimum Query na przetestowanie struktury
- [XXVI OI] Klubowicze 2
- [Codeforces] CGCDSSQ
- [Wrocławskie Sparingi] Problem plecakowy (Submit)

Spora lista zadań znajduje się tutaj: https://cp-algorithms.com/data_structures/sparse-table.html#toc-tgt-5.