CREDIT CARD FRAUD DETECTION ANALYSIS REPORT

By:

Name - Saanya Jain Date - 05/13/2024

Table of contents

Sections	Page no.
Executive summary	3
Data description	4
Data cleaning	8
Variable creation	11
Feature selection	19
Model exploration	21
Final model performance	26
Financial curves	29
Summary	30
Appendix	32

Executive summary

In this project, a predictive model was developed, focusing on the identification of fraudulent transactions within the company's operations. A rigorous false discovery rate (FDR) of 3% was applied to the out-of-time (oot) sample, ensuring a high level of reliability in detecting fraud. This approach is projected to result in annual savings of approximately \$48 million. The significant financial impact stems from enhanced fraud detection capabilities, which serve to minimize losses and optimize resource allocation.

Data Description

Data overview:

The dataset contains transaction records from card payments, capturing a wide array of attributes including transaction amounts, merchant details, and fraud indicators. The data comes from real-world financial transactions over 1 year and includes both numerical and categorical fields. It contains 10 fields and 97,852 records and is designed for analytical exploration and fraud detection model development.

Statistics tables:

1. Numerical Fields Table

Field Name	Field Type	# Records Have Values	% Populated	# Zeros	Min	Max	Mean	Standard Deviation	Most Common
0 Amount	numeric	97852	100.0%		0.01	3102045.53	425.466438	9949.8	3.62

2. Categorical Fields Table

	Field Name	Field Type	# Records Have Values	% Populated	# Zeros	# Unique Values	Most Common
0	Date	categorical	97852	100.0%	0	365	2/28/10
1	Merchnum	categorical	94455	96.5%	0	13091	930090121224
2	Merch description	categorical	97852	100.0%	0	13126	GSA-FSS-ADV
3	Merch state	categorical	96649	98.8%	0	227	TN
4	Transtype	categorical	97852	100.0%	0	4	Р
5	Recnum	categorical	97852	100.0%	0	97852	1
6	Fraud	categorical	97852	100.0%	95805	2	0
7	Cardnum	categorical	97852	100.0%	0	1645	5142148452
8	Merch zip	categorical	93149	95.2%	0	4567	38118

Field distributions:

1. Field Name: Amount

Description: The dollar amount of the transaction varies widely from as little as \$0.01 to over \$3 million, showcasing a vast range of transaction values. The first graph shows the distribution of transaction amounts ranging from \$0 to \$1000 since the maximum number of transactions occurred in this range. The second graph shows a box plot with several high-value outliers.

2. Field Name: Date

Description: Date of the transaction, spanning a period from 1st January 2010 to 31st December 2010, with the most transactions recorded on 28th February. The first graph shows the top 15 dates when transactions occurred. The second graph visualizes the number of weekly transactions over time.

3. Field Name: Fraud

Description: Fraud identification label. Fraud = 0 (Not fraudulent), Fraud = 1 (Fraudulent). The total count of fraud = 0 is 95,805. The total count of fraud = 1 is 2,047.

Data Cleaning

- 1. Exclusions: The dataset reveals four distinct types of transactions: P (97,497), A (181), D (173), and Y (1). The majority are type P, which likely indicates a purchase, while the other types could signify authorizations or declined transactions. For clarity and focus in the analysis, only transactions categorized as type P will be considered, and all other types will be excluded.
- 2. Outlier Treatment: There's one record in the data with a transaction amount exceeding \$3,000,000, which significantly surpasses the next-highest transaction of \$47,900. This outlier stems from a transaction with a Mexican retailer and is not flagged as fraudulent. After careful consideration, it has been determined that this particular record will be removed from the analysis to avoid skewing the results.
- 3. Imputation process for the required fields:
 - 1) Merchnum: The dataset contains 3,279 records where the Merchnum field was absent, necessitating the estimation of reasonable values to fill these gaps. The Merch description field was used to assign the most fitting Merchnum to each corresponding description. For entries labeled as "RETAIL CREDIT ADJUSTMENT" and "RETAIL DEBIT ADJUSTMENT," the Merchnum was set as "unknown." To address the remaining records without a Merchnum, unique new Merchnum values were assigned based on the 515 unique

- Merch descriptions, ensuring complete data integrity in the Merchnum field.
- 2) Merch state: To address gaps in the Merch state field where 1,028 records were missing, a methodical imputation process was implemented using relationships between Merch zip codes and Merch state to establish a zip_state mapping. This initial step allowed for the imputation of several states, but subsequent mappings using Merchnum and Merch description yielded limited success. Entries categorized as "RETAIL CREDIT ADJUSTMENT" and "RETAIL DEBIT ADJUSTMENT" were explicitly labeled as "unknown" to handle non-standard transactions. Furthermore, non-U.S. locations were tagged as 'foreign' based on a list of U.S. states and territories, with remaining gaps ultimately labeled as "unknown" to ensure complete data coverage in the Merch state field.
- 3) Merch zip: To address the initial 4,347 missing Merch zip values in the dataset, a systematic imputation approach was employed, utilizing internal and external data sources for comprehensive coverage. Foundational mappings were created by linking Merchnum and Merch description to existing Merch zip records, which significantly reduced the number of missing values. Additional steps included designating "unknown" for specific entries such as "RETAIL CREDIT ADJUSTMENT,"

and using the most populous zip codes from known Merch states for further imputation. The process concluded with the remaining gaps being labeled "unknown," ensuring that no records in the dataset lacked a Merch zip field entry.

Variable creation

In the development of the predictive model for identifying fraudulent transactions, the creation of new variables was crucial to enrich the dataset and enhance the model's ability to discern patterns indicative of fraud. The variables were meticulously designed to capture various aspects of transaction behavior and entity profiles, reflecting both historical data trends and predictive indicators of fraud. This approach aimed to improve model accuracy by integrating a broader context and deeper insights into each transaction to identify fraudulent activities.

High-level description of reasoning:

- 1. Temporal Variables: These include day of the week and time of day, which were introduced based on the hypothesis that fraudulent activities could follow specific temporal patterns.
- 2. Risk Scoring Variables: Variables such as 'Risk for Day of Week' were generated to quantify the risk associated with transactions on particular days, derived from historical fraud incidence rates.
- 3. Transaction Frequency and Amount Variables: Multiple variables were crafted to monitor the frequency and amounts of transactions over different time windows (e.g., last 1, 3, 7, 14, 30, 60 days). These variables help in understanding the short-term and long-term spending behaviors of entities and detecting anomalies.

- 4. Categorical Encoding: Techniques like target encoding were applied to categorical fields such as merchant categories, turning potentially informative but unwieldy categorical data into a format suitable for modeling.
- 5. Specialized Financial Indicators: Variables like 'Transaction Count Ratios' and 'Transaction Amount Ratios' compare recent activity to historical patterns, highlighting unusual deviations.

Description	# Variables_Created
Day of week:	1
The name of the weekday	
extracted from the Date	
column, indicating the	
specific day on which a	
transaction occurred	
Risk for Day of week:	1
Risk score associated with	
each day of the week	
Target Encoded:	3
Numeric representations of	
categorical features based on	
the mean target (fraud)	
value per category	
Day Since:	23
Tracks days since the last	
transaction per entity	

Transaction County	161
Transaction Count:	161
Counts transactions per	
entity over the last {0, 1, 3, 7,	
14, 30, 60} days	
Average Transaction	161
Amount:	
Computes average spending	
per entity over the last {0, 1,	
3, 7, 14, 30, 60} days	
Maximum Transaction	161
Amount:	
Identifies the highest	
spending per entity in the	
past {0, 1, 3, 7, 14, 30, 60}	
days	
Median Transaction	161
Amount:	
Determines the median	
spending per entity in the	
last {0, 1, 3, 7, 14, 30, 60}	
days	
Total Transaction Amount:	161
Sums transaction amounts	
per entity over the last {0, 1,	
3, 7, 14, 30, 60} days	
3, 7, 14, 30, 00) days	

Transaction Amount Ratios:	644
Compares individual	
transactions in the last {0, 1,	
3, 7, 14, 30, 60} days to the	
average, max, median and	
total transactions in the last	
{0, 1, 3, 7, 14, 30, 60} days	
Transaction Count Ratios:	184
Number of transactions for	
all entities in the last {0, 1}	
days divided by the number	
of transactions for the	
entities in the last {7, 14, 30,	
60} days, normalized by the	
last {7, 14, 30, 60} days	
Total Transaction Amount	184
Total Transaction Amount Ratios:	184
	184
Ratios:	184
Ratios: Total transaction amount for	184
Ratios: Total transaction amount for all entities in in the last {0, 1}	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30,	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30,	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184
Ratios: Total transaction amount for all entities in in the last {0, 1} days divided by the total transaction amount for the entities in the last {7, 14, 30, 60} days, normalized by the	184

Transaction Velocity Ratios:	184
Ratios of transaction	
frequency over the last {0, 1}	
days compared to the	
recency of transactions	
normalized over the last {7,	
14, 30, 60} days for all	
entities	
Average Transaction	138
Variability:	
Measures the average	
difference in transaction	
amounts for each entity over	
the last {0, 1, 3, 7, 14, 30	
days}	
Maximum Transaction	138
Variability:	
Captures the largest single	
change in transaction	
amounts for each entity in	
the last {0, 1, 3, 7, 14, 30	
days}	
Median Transaction	138
Variability:	
Calculates the median	
difference in transaction	
amounts for each entity in	
the last {0, 1, 3, 7, 14, 30	
days}	

Unique Interaction Counts:	696
Variables measure the	030
unique interactions between	
pairs of entities in the last {1,	
3, 7, 14, 30, 60} days	104
Squared Transaction Count	184
Ratios:	
Number of transactions in	
the last {0, 1} days divided by	
the total number of	
transactions in the last {7,	
14, 30, 60} days, divided by	
the square of {7, 14, 30, 60}	
for each entity	
Amount Categories:	1
Segments transaction	
amounts into five evenly	
populated quantiles, labeled	
from 1 to 5	
Foreign Zip Codes:	1
Introduces a binary indicator	
to flag merchant zip codes	
not found in the US zip code	
database, distinguishing	
between domestic (0) and	
international (1) transactions	

New variable categories	
Time Weighted Transaction	23
Frequency:	
Calculates the frequency of	
transactions for each entity,	
adjusted by a decay factor	
that weights more recent	
transactions higher	
Weekday vs. Weekend	23
Spending Ratio:	
Computes the ratio of total	
spending on weekends to	
weekdays for each entity	
Change in Spending	23
Behavior Over Time:	
Measures the percentage	
change in transaction	
amounts over time for each	
entity	
High-Value Transaction Rate:	23
Identifies the proportion of	
transactions that are in the	
top 90 th percentile of	
amounts for each entity	
Average Transaction Value	23
Classification:	
Segments entities into	
categories based on their	
average transaction amount	
(low, medium, high)	

Loyalty Score:	23
Assesses the activity	
frequency relative to the	
lifespan of each entity's	
transactions	
Time of Day Analysis:	1
Categorizes transactions into	
time bands (morning,	
afternoon, evening, night)	
Days to Nearest Special	1
Date:	
Calculates the number of	
days until the next significant	
date (e.g., Christmas)	
Rolling Variability of	23
Transaction Amounts:	
Analyzes the 30-day rolling	
standard deviation of	
transaction amounts for each	
entity	
Most Common Transaction	23
Hour:	
Determines the hour of the	
day when most transactions	
occur for each entity	
New vs. Returning Customer	46
Analysis:	
Flags transactions as either	
from new or returning	
customers	

Feature Selection

Description:

The feature selection process played a crucial role in enhancing the predictive accuracy and efficiency of the fraud detection model. This process utilized a combination of filtering and multiple wrapper methods, including Random Forest, LightGBM, and Catboost, to refine the selection of the most effective predictors of fraudulent transactions. Initially, a large set of candidate variables was subjected to a filtering method based on their univariate scores, assessing each variable's individual predictive power. After filtering, various wrapper models were applied to evaluate the collective performance of the variables. Ultimately, the Catboost model, with num_filter=200 and num_wrapper=20, was selected for its superior ability to refine the selection and optimize the model's performance.

List of final variables with the univariate filter score:

wrapper order	variable	filter score
1	Cardnum_unique_count_for_card_state_1	0.47606661
2	Card_Merchdesc_total_3	0.31967518
3	card_state_max_3	0.34132338
4	card_state_max_1	0.33479740
5	Cardnum_vdratio_0by14	0.37903676
6	Card_dow_actual/max_7	0.34899988
7	Cardnum_count_14	0.44544343
8	card_state_max_14	0.30594589
9	Card_dow_unique_count_for_merch_state_60	0.32057982
10	card_merch_total_14	0.32902312
11	Cardnum_count_0_by_60_sq	0.31787144
12	Card_dow_unique_count_for_state_des_14	0.37433364
13	Cardnum_avg_0	0.36315040
14	Card_dow_avg_7	0.32609082
15	card_zip_total_7	0.32580738
16	merch_state_total_1	0.30489321
17	Merchnum_total_1	0.30486816
18	Card_dow_actual/toal_7	0.38928809
19	Cardnum_avg_1	0.35252902
20	Card_dow_count_30	0.39045359

Plot of performance vs number of variables:

Model exploration

High-level description:

1. Decision Tree: Decision trees are a type of supervised learning algorithm predominantly used for classification and regression tasks. They work by splitting the data into branches at decision nodes, which are based on feature values. Each decision node in the tree represents a test on a specific attribute, and each branch represents an outcome of that test. This process results in a tree-like structure of decisions, where each leaf node represents a class label or a continuous outcome. Decision trees are easy to interpret and can handle both numerical and categorical data, but they are prone to overfitting, especially with complex datasets.

2. Random Forest: An ensemble method that builds on the simplicity of decision trees, random forests improve model accuracy and robustness by creating a 'forest' of decision trees and merging their outputs. Each tree in a random forest is built from a random subset of data points and features, leading to high variance but low bias. The final prediction is typically made by averaging the predictions (for regression) or using a majority vote (for classification) from all trees. This technique is effective in reducing overfitting and is highly versatile for various types of data.

3. Neural Network: Neural networks are a set of algorithms modeled loosely after the human brain, designed to recognize patterns. They interpret sensory data through a kind of machine perception, labeling, or clustering raw input. The networks use layers of nodes, or neurons, each of which is a mathematical operation. Data passes through interconnected layers where the outputs of one layer become inputs for the next, thus 'learning' from data features. Neural networks are particularly powerful for complex problems like image recognition, natural language processing, and time series prediction, but require substantial data and computational power.

4. XGBoost: XGBoost (Extreme Gradient Boosting) is an advanced implementation of gradient boosting that is both efficient and effective in predictive accuracy. It uses a gradient boosting framework, constructing new models that predict the residuals or errors of prior models and then combining them into a final ensemble model. XGBoost is well-regarded for its performance and speed in training, capabilities of handling various types of predictive modeling problems, and its scalability across multiple scenarios. It has been successfully used in numerous machine learning competitions due to its ability to handle sparse data and its flexibility in tuning model parameters.

Table of tests:

Model		Parameters						erage FDR a	t 3%	
	Iteration penalty C solver		max_iter	Trn	Tst	ООТ				
	1 (default)	12	1	lbf	gs	100	0.683787	0.675251	0.464983	
Logistic Regression	2	12	0.01	liblir	near	100	0.684388	0.681365	0.469697	
Logistic Regression	3	I2	0.01	liblir	near	50	0.685658	0.678556	0.470707	
	4	l1	0.01	liblir	near	50	0.68221	0.679498	0.472054	*Best set of hyperparameters
	5	None	0.01	lbfgs		100	0.681466	0.679827	0.465657	
	Iteration	max_depth	min_samples_split	min_samples_leaf	criteri	ion	Trn	Tst	ООТ	
	1 (default)	None	2	1 gini		i	1	0.65498	0.383838	
Decision Tree	2	5	40	20	gini		0.709536	0.693863	0.487879	
Decision free	3	5	40	20	entro	ру	0.723638	0.707039	0.475758	
	4	5	50	25	entro	ру	0.724742	0.712436	0.482155	
	5	10	50	25	gini		0.784493	0.744269	0.535354	
	Iteration	n_estimators	max_depth	min_samples_split	min_samples_leaf	max_features	Trn	Tst	ООТ	
	1 (default)	100	None	2	1	sqrt	1	0.815368	0.545118	
Random Forest	2	100	10	40	20	sqrt	0.800958	0.752882	0.529293	
Kandom Forest	3	100	5	40	20	log2	0.728275	0.721602	0.487542	*Best set of hyperparameters
	4	300	10	40	20	sqrt	0.793343	0.760005	0.522896	
	5	200	10	50	25	sqrt	0.791589	0.745382	0.512795	
	Iteration	num_leaves	max_depth	learning_rate	n_estimators		Trn	Tst	ООТ	
	1 (default)	31	-1	0.1	100		0.984888	0.808584	0.510774	
LightGBM	2	31	10	0.01	100	1	0.839603	0.776373	0.536027	
LIGHTODIN	3	50	10	0.001	100	1	0.808371	0.760915	0.512121	
	4	30	5	0.01	100		0.78263	0.743032	0.547811	
	5	50	5	0.001	300		0.758806	0.741943	0.52862	*Best set of hyperparameter
	Iteration	hidden	_layer_sizes	activation	solver	learning_rate	Trn	Tst	OOT	
	1 (default)		(100,)	relu	adam	constant	0.799217	0.763179	0.523906	
Neural Network	2		(1,)	relu	adam	constant	0.684141	0.684818	0.47037	
	3		(100,)	relu	sgd	adaptive	0.694615	0.683059	0.474074	*Best set of hyperparameters
	4		(100,)	relu	lbfgs	adaptive	0.808769	0.764673	0.510438	
	5		(100,)	tanh	adam	constant	0.810706	0.758073	0.511111	
	Iteration	iterations	learning_rate	depth	bootstrap		Trn	Tst	ООТ	
	1 (default)	1000	None	6	Bayes	ian	0.928662	0.813864	0.543771	
Cathoost	2	1000	0.01	6	Bayes		0.810715	0.778627	0.513805	
	3	1000	0.01	6	Berno		0.812551	0.783077	0.514478	
	4	500	0.01	3	Bayes		0.725214	0.718544	0.482828	*Best set of hyperparameters
	5	1000	0.1	3	Bayes		0.837019	0.797159	0.525926	
	Iteration	booster	n_estimators	max_depth	learning	_rate	Trn	Tst	OOT	
	1 (default)	gbtree	100	6	0.3		0.980182	0.819913	0.503704	
XGB	2	gblinear	100	6	0.3		0.681479	0.681252	0.465657	
	3	gbtree	100	5	0.01	1	0.754919	0.730523	0.518855	*Best set of hyperparameters
	4	gbtree	200	3	0.1		0.816518	0.787114	0.50404	
	5	gbtree	200	3	0.01	1	0.722687	0.702626	0.486532	

Box plot:

Final model performance

For the final model in the project, an XGBoost classifier was employed, which is well-suited for handling large datasets and providing robust predictive power. Here's a detailed description of the model configuration and the non-default hyperparameters used:

Final Model: XGBoost Classifier

Hyperparameters:

1. booster: 'gbtree'

Description: Specifies the type of model to run at each iteration. 'gbtree' uses tree-based models as base learners. This is the default setting for XGBoost but is explicitly stated here to clarify the model choice.

2. n estimators: 70

Description: The number of boosting rounds or trees to build. Though the default is typically set around 100, it was adjusted to 70 in this model to balance overfitting and underfitting, optimizing the model's complexity and computational efficiency.

3. max_depth: 3

Description: The maximum depth of a tree. Limiting the depth to 3 helps prevent the model from becoming overly complex and overfitting to the training data. This is shallower than the default depth to ensure the model generalizes well over unseen data.

4. learning_rate: 0.1

Description: Also known as the "eta" parameter, the learning rate shrinks the feature weights to make the boosting process more conservative. A rate of 0.1 reduces the risk of overfitting and improves the final model's robustness. The default is typically set at 0.3, so this represents a more conservative approach to updating weights.

Summary tables:

1. Training

Training	# Records		# Goods		# Bads		Frauc	l Rate				
	59684		584	167	12	:17	0.020390724					
			Bin Statistics			Cum			nulative Statistics			
Population Bin %	# Records	# Goods	# Bads	% Goods	% Bads	Total# Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR
1	597	43	554	7.20%	92.80%	597	43	554	0.07%	45.52%	45.45	0.08
2	597	291	306	48.74%	51.26%	1194	334	860	0.57%	70.67%	70.09	0.39
3	597	496	101	83.08%	16.92%	1791	830	961	1.42%	78.96%	77.55	0.86
4	596	557	39	93.46%	6.54%	2387	1387	1000	2.37%	82.17%	79.8	1.39
5	597	580	17	97.15%	2.85%	2984	1967	1017	3.36%	83.57%	80.2	1.93
6	597	581	16	97.32%	2.68%	3581	2548	1033	4.36%	84.88%	80.52	2.47
7	597	583	14	97.65%	2.35%	4178	3131	1047	5.36%	86.03%	80.68	2.99
8	597	582	15	97.49%	2.51%	4775	3713	1062	6.35%	87.26%	80.91	3.5
9	597	585	12	97.99%	2.01%	5372	4298	1074	7.35%	88.25%	80.9	4
10	596	582	14	97.65%	2.35%	5968	4880	1088	8.35%	89.40%	81.05	4.49
11	597	581	16	97.32%	2.68%	6565	5461	1104	9.34%	90.71%	81.37	4.95
12	597	589	8	98.66%	1.34%	7162	6050	1112	10.35%	91.37%	81.02	5.44
13	597	591	6	98.99%	1.01%	7759	6641	1118	11.36%	91.87%	80.51	5.94
14	597	590	7	98.83%	1.17%	8356	7231	1125	12.37%	92.44%	80.07	6.43
15	597	592	5	99.16%	0.84%	8953	7823	1130	13.38%	92.85%	79.47	6.92
16	596	595	1	99.83%	0.17%	9549	8418	1131	14.40%	92.93%	78.54	7.44
17	597	594	3	99.50%	0.50%	10146	9012	1134	15.41%	93.18%	77.77	7.95
18	597	595	2	99.66%	0.34%	10743	9607	1136	16.43%	93.34%	76.91	8.46
19	597	594	3	99.50%	0.50%	11340	10201	1139	17.45%	93.59%	76.14	8.96
20	597	589	8	98.66%	1.34%	11937	10790	1147	18.45%	94.25%	75.79	9.41

2. Testing

O .												
Testing	# Records		rds # Goods		# B	ads	Frauc	d Rate				
	255	80	250	047	53	33	0.020836591					
			Bin Statistics					Cum	ulative Statis	tics		
Population Bin %	# Records	# Goods	# Bads	% Goods	% Bads	Total# Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR
1	256	37	219	14.45%	85.55%	256	37	219	0.15%	41.09%	40.94	0.17
2	256	130	126	50.78%	49.22%	512	167	345	0.67%	64.73%	64.06	0.48
3	255	206	49	80.78%	19.22%	767	373	394	1.49%	73.92%	72.43	0.95
4	256	240	16	93.75%	6.25%	1023	613	410	2.45%	76.92%	74.48	1.5
5	256	241	15	94.14%	5.86%	1279	854	425	3.41%	79.74%	76.33	2.01
6	256	247	9	96.48%	3.52%	1535	1101	434	4.40%	81.43%	77.03	2.54
7	256	247	9	96.48%	3.52%	1791	1348	443	5.38%	83.11%	77.73	3.04
8	255	250	5	98.04%	1.96%	2046	1598	448	6.38%	84.05%	77.67	3.57
9	256	249	7	97.27%	2.73%	2302	1847	455	7.37%	85.37%	77.99	4.06
10	256	249	7	97.27%	2.73%	2558	2096	462	8.37%	86.68%	78.31	4.54
11	256	252	4	98.44%	1.56%	2814	2348	466	9.37%	87.43%	78.06	5.04
12	256	254	2	99.22%	0.78%	3070	2602	468	10.39%	87.80%	77.42	5.56
13	255	254	1	99.61%	0.39%	3325	2856	469	11.40%	87.99%	76.59	6.09
14	256	255	1	99.61%	0.39%	3581	3111	470	12.42%	88.18%	75.76	6.62
15	256	251	5	98.05%	1.95%	3837	3362	475	13.42%	89.12%	75.7	7.08
16	256	256	0	100.00%	0.00%	4093	3618	475	14.44%	89.12%	74.67	7.62
17	256	256	0	100.00%	0.00%	4349	3874	475	15.47%	89.12%	73.65	8.16
18	255	251	4	98.43%	1.57%	4604	4125	479	16.47%	89.87%	73.4	8.61
19	256	253	3	98.83%	1.17%	4860	4378	482	17.48%	90.43%	72.95	9.08
20	256	254	2	99.22%	0.78%	5116	4632	484	18.49%	90.81%	72.31	9.57

3. OOT

ООТ	#Records #0			oods	# B	ade	Fraud Rate					
001	12232		11935		29		0.024280576					
			Bin Statistics		257				ulative Statis	tice		
Population Bin %	# Records	# Goods	# Bads	% Goods	% Bads	Total# Records	Cumulative Goods	Cumulative Cumulative		% Bads (FDR)	кѕ	FPR
1	122	25	97	20.49%	79.51%	122	25	97	0.21%	32.66%	32.45	0.26
2	123	75	48	60.98%	39.02%	245	100	145	0.84%	48.82%	47.98	0.69
3	122	82	40	67.21%	32.79%	367	182	185	1.52%	62.29%	60.76	0.98
4	122	97	25	79.51%	20.49%	489	279	210	2.34%	70.71%	68.37	1.33
5	123	114	9	92.68%	7.32%	612	393	219	3.29%	73.74%	70.44	1.79
6	122	113	9	92.62%	7.38%	734	506	228	4.24%	76.77%	72.53	2.22
7	122	118	4	96.72%	3.28%	856	624	232	5.23%	78.11%	72.89	2.69
8	123	121	2	98.37%	1.63%	979	745	234	6.24%	78.79%	72.55	3.18
9	122	118	4	96.72%	3.28%	1101	863	238	7.23%	80.13%	72.90	3.63
10	122	118	4	96.72%	3.28%	1223	981	242	8.22%	81.48%	73.26	4.05
11	123	121	2	98.37%	1.63%	1346	1102	244	9.23%	82.15%	72.92	4.52
12	122	121	1	99.18%	0.82%	1468	1223	245	10.25%	82.49%	72.24	4.99
13	122	119	3	97.54%	2.46%	1590	1342	248	11.24%	83.50%	72.26	5.41
14	122	122	0	100.00%	0.00%	1712	1464	248	12.27%	83.50%	71.24	5.90
15	123	121	2	98.37%	1.63%	1835	1585	250	13.28%	84.18%	70.89	6.34
16	122	122	0	100.00%	0.00%	1957	1707	250	14.30%	84.18%	69.87	6.83
17	122	122	0	100.00%	0.00%	2079	1829	250	15.32%	84.18%	68.85	7.32
18	123	122	1	99.19%	0.81%	2202	1951	251	16.35%	84.51%	68.16	7.77
19	122	122	0	100.00%	0.00%	2324	2073	251	17.37%	84.51%	67.14	8.26
20	122	120	2	98.36%	1.64%	2446	2193	253	18.37%	85.19%	66.81	8.67

Financial curves

Recommended cutoff:

Based on the plot, a recommended cutoff could be around 5%. This point maximizes savings while controlling costs, making it an optimal trade-off point.

Description of the logic:

The chosen cutoff is recommended due to its optimal balance between maximizing cost savings (as seen in the blue curve) and minimizing losses or costs (as seen in the red curve). The green curve supports this choice by showing that increases beyond this point do not yield significant additional benefits. This cutoff ensures that the model effectively identifies fraudulent transactions while maintaining operational efficiency and cost-effectiveness.

Summary

The project entailed developing a predictive model specifically tailored to detect fraudulent transactions within credit card operations. The process began with a thorough data description phase where transaction data was meticulously analyzed, including both numerical and categorical attributes related to transaction amounts, merchant details, and fraud indicators. Following this, the data cleaning phase addressed issues such as outlier removal and imputation for missing values in fields like Merchnum, Merch state, and Merch zip, ensuring data integrity for modeling.

Variable creation was strategically undertaken to enrich the dataset, including the development of variables to capture temporal patterns, risk scores, and transaction behaviors, which are critical for identifying fraud. The feature selection was robust, utilizing filtering and multiple wrapper methods, including Random Forest, LightGBM, and Catboost, to refine the variable set to those most predictive of fraud.

Model exploration involved evaluating several machine learning models, ultimately selecting the XGBoost model due to its superior performance. The chosen model was finetuned with specific hyperparameters such as the number of estimators and maximum depth, ensuring optimal model complexity and performance.

Model performance:

The final model, an XGBoost classifier, was configured with carefully selected hyperparameters to balance the detection of fraudulent transactions against the risk of overfitting. The model demonstrated high predictive accuracy, with a rigorous application of a 3% false discovery rate in out-of-time validation samples, reflecting its robustness and reliability. The implementation of this model is projected to save approximately \$48 million annually by enhancing fraud detection capabilities and optimizing resource allocation. The performance metrics from the training, testing, and out-of-time datasets underscored the model's effectiveness across various scenarios, confirming its practical utility in operational environments.

This comprehensive approach, from data preparation through to final model selection and validation, exemplifies a structured and data-driven methodology for tackling fraud detection in financial transactions.

Appendix

Data Description: The dataset contains transaction records from card payments, capturing a wide array of attributes including transaction amounts, merchant details, and fraud indicators. The data comes from real-world financial transactions over 1 year and includes both numerical and categorical fields. It contains 10 fields and 97,852 records and is designed for analytical exploration and fraud detection model development.

Summary Tables:

1. Numeric Fields Table

ı		Field Name	Field Type	# Records Have Values	% Populated	# Zeros	Min	Max	Mean	Standard Deviation	Most Common
	0	Amount	numeric	97852	100.0%	0	0.01	3102045.53	425.466438	9949.8	3.62

2. Categorical Fields Table

	Field Name	Field Type	# Records Have Values	% Populated	# Zeros	# Unique Values	Most Common
0	Date	categorical	97852	100.0%	0	365	2/28/10
1	Merchnum	categorical	94455	96.5%	0	13091	930090121224
2	Merch description	categorical	97852	100.0%	0	13126	GSA-FSS-ADV
3	Merch state	categorical	96649	98.8%	0	227	TN
4	Transtype	categorical	97852	100.0%	0	4	Р
5	Recnum	categorical	97852	100.0%	0	97852	1
6	Fraud	categorical	97852	100.0%	95805	2	0
7	Cardnum	categorical	97852	100.0%	0	1645	5142148452
8	Merch zip	categorical	93149	95.2%	0	4567	38118

Visualization of Each Field:

1) Field Name: Recnum

Description: Ordinal unique positive integer for each

transaction record, from 1 to 97,852.

2) Field Name: Cardnum

Description: Applicant's card number. The distribution shows the top 15 field values of card numbers. The most used card number is 5142148452, with a total count of 1,192.

3) Field Name: Date

Description: Date of the transaction, spanning a period from 1st January 2010 to 31st December 2010, with the most transactions recorded on 28th February. The first graph shows the top 15 dates when transactions occurred. The second graph visualizes the number of weekly transactions over time.

4) Field Name: Merchnum

Description: Merchant number. The distribution shows the top 15 merchants that received the most transactions by merchant number, and the most frequent merchant number having 9,419 transactions.

5) Field Name: Merch description

Description: Description of the merchant. The distribution shows the top 15 merchants that received the most transactions by merchant description, with 'GSA-FSS-ADV' appearing most frequently at 1,706 times.

6) Field Name: Merch state

Description: State where the merchant is located, with transactions occurring across 227 different states, most commonly in Tennessee.

7) Field Name: Merch zip

Description: ZIP code of the merchant, with 4,567 unique ZIP codes in the dataset, indicating a wide geographical spread.

8) Field Name: Transtype

Description: Type of transactions with four unique types.

The 'P' or purchase type is by far the most common, with over 97,000 transaction records.

9) Field Name: Amount

Description: The dollar amount of the transaction varies widely from as little as \$0.01 to over \$3 million, showcasing a vast range of transaction values. The first graph shows the distribution of transaction amounts ranging from \$0 to \$1000 since the maximum number of transactions occurred in this range. The second graph shows a box plot with several high-value outliers.

10) Field Name: Fraud

Description: Fraud identification label. Fraud = 0 (Not fraudulent), Fraud = 1 (Fraudulent). The total count of fraud = 0 is 95,805. The total count of fraud = 1 is 2,047.

