

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) Publication number:

0 141 377

A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84112827.5

(51) Int. Cl. 4: C 09 B 44/02

(22) Date of filing: 24.10.84

C 09 B 45/14, G 03 G 9/08

(30) Priority: 04.11.83 JP 205879/83
04.11.83 JP 205880/83
08.11.83 JP 208256/83
08.11.83 JP 208257/83

(72) Inventor: Suzuki, Nobuo c/o Hodogaya Chemical Co.,Ltd.
Chuo Kenkyusho Tokyo Bunshitsu
7-6, Kamiya 3-chome Kita-ku Tokyo(JP)

(43) Date of publication of application:
18.05.85 Bulletin 85/20

(72) Inventor: Kurahashi, Takeo c/o Hodogaya Chemical Co.,Ltd.
Chuo Kenkyusho Tokyo Bunshitsu
7-6, Kamiya 3-chome Kita-ku Tokyo(JP)

(44) Designated Contracting States:
BE DE FR GB

(71) Applicant: HODOGAYA CHEMICAL CO., LTD.
4-2, Toranomon 1 Chome Minato-ku
Tokyo(JP)

(72) Inventor: Motohashi, Katsuichi Hodogaya Chemical Co.,Ltd.
Chuo Kenkyusho Tokyo Bunshitsu
7-6, Kamiya 3-chome Kita-ku Tokyo(JP)

(72) Inventor: Sugiyama, Genpei c/o Hodogaya Chemical Co.,Ltd.
Chuo Kenkyusho Tokyo Bunshitsu
7-6, Kamiya 3-chome Kita-ku Tokyo(JP)

(74) Representative: Wächtershäuser, Günter, Dr.
Ta 29
D-8000 München 2(DE)

(64) Metal complexes.

(67) A symmetric 2 : 1 metal complex represented by the general formula:

where R is a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, an alkoxy group having from 1 to 4 carbon atoms, an alkoxy carbonyl group having from 2 to 5 carbon atoms, an acyl group having from 2 to 5 carbon atoms, an aminocarbonyl group, an alkylaminocarbonyl group having from 2 to 5 carbon atoms, an alkylsulfonyl group having from 1 to 3 carbon atoms, an aminosulfonyl group, an acylamino group having from 2 to 5 carbon atoms, a nitro group, a cyano group or a halogen atom, m is an integer of from 1 to 4, when m is 2 or more, the plurality of R may be the same or different substituents, Q is -NHCO-Y-Z or -CONH-Y-Z (where Y is an alkylene group having from 1 to 4 carbon atoms, and Z is a quaternary ammonium group), M is a chromium atom or a cobalt atom, and X⁻ is an anion.

EP 0 141 377 A2

Croydon Printing Company Ltd.

BEST AVAILABLE COPY

- 1 -

METAL COMPLEXES

The present invention relates to a metal complex and an electrophotographic toner containing the metal complex.

5 In electrophotography, it is common to employ a method which comprises forming an electrostatic latent image on a photoconductor made of e.g. a photoconductive material, then developing the latent image with a powder developer to form a visible image, and further fixing the
10 image by heat or a solvent.

As the developer for such electrophotography, it is common to use a mixture comprising fine powder composed of a resin and a coloring agent, which is generally called a toner, and fine glass beads or iron powder,
15 which is generally called a carrier.

The present invention relates to this developing powder called a toner and a novel metal complex useful for the toner.

A photoconductive layer can be positively or
20 negatively charged, and a positively or negatively

charged electrostatic latent image can be formed in the photoconductive layer by exposing it with an original overlaid thereon. When a negatively charged electrostatic latent image is developed with a positively charged toner, a positive-positive image corresponding to the original will be formed. However, when a positively charged electrostatic latent image is developed with a negatively charged toner, a negative image of the original, i.e. a positive-negative image, where the black and white tones are reversed, will be obtained. Thus, as electrophotographic toners, there are two types of toners. i.e. one being a positively charged toner and the other being a negatively charged toner.

The present invention relates to a positively chargeable toner.

In general, such a toner is fine powder obtained by mixing a coloring agent such as a dyestuff or a pigment, to a synthetic resin.

In order to positively charge the toner, the electrostatic characteristics of the dyestuff play an important role so that the dyestuff serves not only as a coloring agent but also as an electric charge-controlling agent.

As a positive charge-controlling agent, basic dyestuffs such as Nigrosine have been employed. However, the conventional dyestuffs such as Nigrosine have drawbacks such that there is a substantial variation in the electric chargeability among production lots, and

when formed into a toner the durability of the toner for continuous repeated use for photocopying is not good.

The present inventors have conducted extensive researches to solve the above problems, and have found certain metal complexes having a positive charge-controlling ability and good compatibility with resins. It is thereby possible to obtain excellent toners free from the above-mentioned problems.

Namely, the present invention provides a symmetric 2 : 1 metal complex represented by the general formula:

15

20 where R is a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, an alkoxy group having from 1 to 4 carbon atoms, an alkoxycarbonyl group having from 2 to 5 carbon atoms, an acyl group having from 2 to 5 carbon atoms, an aminocarbonyl group, an alkylaminocarbonyl

group having from 2 to 5 carbon atoms, an alkylsulfonyl group having from 1 to 3 carbon atoms, an aminosulfonyl group, an acylamino group having from 2 to 5 carbon atoms, a nitro group, a cyano group or a halogen atom, m is an integer of from 1 to 4, when m is 2 or more, the plurality of R may be the same or different substituents, Q is -NHCO-Y-Z or -CONH-Y-Z (where Y is an alkylene group having from 1 to 4 carbon atoms, and Z is a quaternary ammonium group), M is a chromium atom or a cobalt atom, and X⁻ is an anion.

The present invention also provides an electrophotographic toner containing the metal complex of the formula I as an electric charge-controlling agent or a coloring agent.

Now, the present invention will be described in detail with reference to the preferred embodiments.

The metal complex of the formula I of the present invention may be prepared in good yield by diazotizing a diazo component represented by the general formula:

20

where R and m are as defined above, by a conventional method, then coupling the resulting diazo compound with a coupling component represented by the general formula:

5 where X^- and Q are as defined above, by a conventional method, to obtain a monoazo compound represented by the general formula:

10 where R, m, X^- and Q are as defined above, and then heat-treating this monoazo compound with a chromium-introducing agent or a cobalt-introducing agent in water or in an organic solvent by a conventional method. As the diazo component of the formula II which may be used
15 in the present invention, there may be mentioned, for instance, 3-chloro-2-aminophenol, 4-chloro-2-aminophenol, 4-bromo-2-aminophenol, 5-bromo-2-aminophenol, 4-iodo-2-aminophenol, 3,5-dichloro-2-aminophenol, 4,6-dichloro-2-aminophenol, 3,4,6-trichloro-2-aminophenol, 4-nitro-2-
20 aminophenol, 5-nitro-2-aminophenol, 6-chloro-4-nitro-2-aminophenol, 4-chloro-5-nitro-2-aminophenol, 4-chloro-6-nitro-2-aminophenol, 6-bromo-4-nitro-2-aminophenol, 4-methyl-2-aminophenol, 4-t-butyl-2-aminophenol, 4-t-octyl-2-aminophenol, 4,5-dimethyl-2-aminophenol,

4-methoxy-2-aminophenol, 4-methyl-5-nitro-2-aminophenol,
4-bromo-5-methyl-2-aminophenol, 4-cyano-2-aminophenol,
4-acetyl-2-aminophenol, 4-methoxycarbonyl-2-amino-
phenol, 4-aminocarbonyl-2-aminophenol, 4-ethylamino-
5 carbonyl-2-aminophenol, 4-aminosulfonyl-2-aminophenol and
4-propylsulfonyl-2-aminophenol.

As the coupling component of the formula III where Q
is -NHCO-Y-Z, there may be mentioned N,N,N-trimethyl-N-[N'-(7-hydroxy-1-naphthyl)carbamoyl]methylammonium
chloride, N,N,N-trimethyl-N-[N'-(6-hydroxy-1-naphthyl)-
10 carbamoyl]methylammonium chloride, N,N,N-triethyl-N-[N'-(7-hydroxy-1-naphthyl)carbamoyl]methylammonium chloride,
N,N-dimethyl-N-ethyl-N-[N'-(7-hydroxy-1-naphthyl)-
carbamoyl]methylammonium iodide, N,N-dimethyl-N-n-butyl-
15 N-[N'-(7-hydroxy-1-naphthyl)carbamoyl]methylammonium
bromide, N,N-dimethyl-N-n-butyl-N-[N'-(6-hydroxy-1-
naphthyl)carbamoyl]methylammonium chloride, N,N,N-
trimethyl-N-[N'-(7-hydroxy-1-naphthyl)carbamoyl]propyl-
ammonium chloride, N,N,N-trimethyl-N-[N'-(6-hydroxy-1-
20 naphthyl)carbamoyl]propylammonium chloride, N,N-dimethyl-
N-benzyl-N-[N'-(7-hydroxy-1-naphthyl)carbamoyl]methyl-
ammonium chloride, N-methyl-N-[N'-(7-hydroxy-1-naphthyl)-
carbamoyl]propylpiperidinium bromide, N-methyl-N-[N'-(7-
hydroxy-1-naphthyl)carbamoyl]methylmorpholinium chloride,
25 N-[N'-(7-hydroxy-1-naphthyl)carbamoyl]methylpyridinium
chloride, and N-[N'-(6-hydroxy-1-naphthyl)carbamoyl]-
methylpyridinium chloride.

Further, as the coupling component of the formula III where Q is -CONH-Y-Z, there may be mentioned N,N,N-trimethyl-N-2-(3-hydroxy-2-naphthamido)ethylammonium chloride, N,N,N-triethyl-N-2-(3-hydroxy-2-naphthamido)-ethylammonium chloride, N,N,N-trimethyl-N-3-(3-hydroxy-2-naphthamido)propylammonium bromide, N,N-dimethyl-N-ethyl-N-3-(3-hydroxy-2-naphthamido)propylammonium chloride, N,N,N-trimethyl-N-4-(3-hydroxy-2-naphthamido)-butylammonium chloride, N,N-dibutyl-N-methyl-N-3-(3-hydroxy-2-naphthamido)propylammonium chloride, N-3-(3-hydroxy-2-naphthamido)propylpiperidinium bromide, N-methyl-N-3-(3-hydroxy-2-naphthamido)propylmorpholinium chloride and N-2-(3-hydroxy-2-naphthamido)ethylpyridinium chloride.

The metal complex of the formula I of the present invention thus obtained, has a positive chargeability and excellent compatibility with resins, for example, a polymer of styrene or a substituted styrene such as poly-styrene or polyvinyl toluene, a styrene-substituted styrene copolymer, a styrene-acrylate copolymer, a styrene-methacrylate copolymer, a styrene-acrylonitrile copolymer, a polyvinyl chloride resin, a polyethylene, a silicone resin, a polyester, a polyurethane, a polyamide, an epoxy resin, a modified rosin or a phenol resin.

Thus, the metal complex can uniformly be dispersed in such a resin and further pulverized into fine powder. Such a fine powder also has positive chargeability.

On the other hand, the metal complex of the present invention has little solubility in water, and scarcely affected by the environmental humidity, thus being capable of maintaining the positive chargeability for a long period of time.

In the formula I, X^{\ominus} is preferably a halogen ion such as a chlorine, bromine, fluorine or iodine ion.

The toner of the present invention may be prepared by melt-mixing from 1 to 50% by weight of the metal complex of the formula I with 50 to 99% by weight of a synthetic resin, and after the solidification, pulverizing the solidified product by means of a ball mill or other pulverizer. Alternatively, it may be prepared by adding a polymerization initiator to a synthetic resin monomer, incorporating from 1 to 50%, by weight of the monomer, of the metal complex of the formula I thereto, and polymerizing the mixture in a suspended state in water. Other coloring agents or carbon black may also be incorporated. The toner thus obtained will provide an electric charge in a quantity suitable for the development of an electrostatic image due to the friction with the carrier, whereby the quantity of the electric charge can be maintained at a constant level during repeated development operations. The distribution of the electric charge is uniform and can be maintained in a stabilized condition for a long period of time.

Accordingly, an image developed by means of this toner, is uniform and has a constant image density, and it is very sharp as compared with the image where a conventional positive toner is used.

5 Now, the present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is by no means restricted by these specific Examples.

In the Examples, "parts" means "parts by weight".

10 EXAMPLE 1:

14.4 Parts of 4-chloro-2-aminophenol was mixed with 26 parts of concentrated hydrochloric acid and 400 parts of water, and the mixture was cooled with ice to a temperature of from 0 to 5°C. After an addition of 6.9
15 parts of sodium nitrite, the mixture was stirred at the same temperature for 2 hours for diazotization. The diazo compound thus obtained was subjected to a coupling reaction by pouring it into a solution of a mixture comprising 300 parts of water, 10 parts of sodium
20 hydroxide and 29.3 parts of N,N,N-trimethyl-N-[N'-(7-hydroxy-1-naphthyl)carbamoyl] methylammonium chloride at a temperature of from 0 to 5°C. Then, a monoazo compound having the following structure was isolated.

5 This monoazo compound was dissolved in 120 parts of ethylene glycol, and 17.4 parts of sodium chromium salicylate was added thereto. The mixture was stirred at a temperature of from 85 to 90°C for a chromium-introducing reaction. Then, the mixture was cooled to 30°C, and
10 hydrochloric acid was added to acidify the mixture to an acidity confirmed by Congo Red. Then, the product was isolated at room temperature, and dried under reduced pressure at 50 to 60°C to obtain 45 parts of chromium complex of the following formula as a blackish blue fine
15 powder:

The wavelength at the maximum absorption by this chromium complex was 581 nm as measured in a dimethylformamide solvent.

The coupling component used in this Example was prepared by chloroacetyating 8-amino-2-naphthol in glacial acetic acid with chloroacetic acid chloride by using sodium acetate as an acid binding agent, to obtain 8-chloroacetylarnino-2-naphthol, dissolving isolated 8-chloroacetylarnino-2-naphthol in acetone, and then blowing gaseous trimethylamine into the solution.

EXAMPLE 2:

53.8 Parts of a monoazo dyestuff represented by the formula:

15 obtained in the same manner as in Example 1, was dissolved in 200 parts of methyl cellosolve, and after an addition of 18.2 parts of sodium chromium salicylate, the mixture was stirred at a temperature of from 100 to 105°C for 2 hours for a chromium-introducing reaction. Then, 20 the mixture was cooled to 20°C, and then treated in the same manner as in Example 1 to obtain 51.2 parts of a chromium complex of the following formula as a black powder:

5

10 The wavelength at the maximum absorption by this chromium complex was 594 nm as measured in a dimethylformamide solvent.

15 The coupling component used in this Example was readily prepared by heating 5-chloroacetylaminonaphthol in pyridine.

EXAMPLES 3 to 32:

In the same manner as in Examples 1 and 2, symmetric 2 : 1 metal complexes were obtained. The structures, the wavelengths at the maximum absorption (in dimethylformamide) and outer appearance are shown in Table 1.

Examples	Monoozo compound D-OCHN- A-N=N- HO	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance
3	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$ Cl^-	Cr	Ethylene glycol	576	Black powder
4	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$ Cl^-	Cr	Dimethyl-formamide	593	Blackish purple powder
5	A : B : $-\text{CH}_2\text{N}(\text{C}_2\text{H}_5)_2^+$ Cl^-	Cr	Ethylene glycol	592	Black powder
6	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_2^+$ Cl^-	Cr	Water	597	Blackish purple powder

Examples	Mononzo compound	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance	
7	 A :	B : $-\text{C}_2\text{H}_4\text{N}(\text{CH}_3)_3^+$ Cl^-	Co	Water	562	Black powder
8	 A :	B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$ C_2H_5 Cl^-	Cr	Methyl cellosolve	585	Black powder
9	 A :	B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$ OH Cl^-	Co	n-Butanol	560	Black powder
10	 A :	B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$ Cl Cl^-	Cr	Dimethyl sulfide	592	Black powder

014137

Examples	Monoazo compound A—N=N—Ar—B	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance
11	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$, Cl_2^{\ominus}	Cr	Formamide Water	612	Black powder
12	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$, I^{\ominus}	Cr	Ethylene glycol	587	Blackish purple powder
13	A : B : $-\text{C}_3\text{H}_6\text{N}(\text{CH}_3)_3^+$, $\text{CH}_3\text{SO}_4^{\ominus}$	Cr	Ethylene glycol	613	Black powder
14	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3^+$, OH , Cl_2^{\ominus}	Cr	Water Dimethylformamide	608	Black powder

0141377

Examples	Mononazo compound 	Central metal A-N=N-OH	Complexing solvent 	Wavelength at the maximum absorption (nm)	Outer appearance
15	A :	B : $-\text{CH}_2\overset{\oplus}{\text{N}}(\text{C}_4\text{H}_9)_2$ $\text{CH}_3 \quad \text{I}^-$	Cr	Ethylene glycol	580 Black powder
16	A :	B : $-\text{CH}_2\overset{\oplus}{\text{N}}(\text{CH}_3)_3$ $\text{OH} \quad \text{Cl}^-$	Cr	Ethylene glycol	590 Blackish purple powder
17	A :	B : $-\text{CH}_2\overset{\oplus}{\text{N}}(\text{C}_4\text{H}_9)_2$ $\text{OH} \quad \text{Cl}^-$	Cr	Water	593 Blackish blue powder
18	A :	B : $-\text{C}_6\text{H}_5\overset{\oplus}{\text{N}}(\text{CH}_3)_3$ $\text{OH} \quad \text{Cl}^-$	Co	Ethylene glycol	559 Blackish purple powder 44372

Examples	Monoazoo compound B : <chem>Oc1ccc(cc1)-N(A)c2ccc(O)cc2</chem>	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance
19	A : <chem>Cc1ccc(O)cc1</chem>	B : <chem>[CH2N+]([CH3]C2CC[C@H](C2)[CH3])ClO4-</chem>	Cr	Methyl cellosolve	592 Black powder
20	A : <chem>SC(=O)(=O)Cc1ccc(O)cc1</chem>	B : <chem>[CH2N+]([CH3]C2CC[C@H](C2)[CH3])ClO4-</chem>	Cr	Diethylene glycol	588 Blackish blue powder
21	A : <chem>Ic1ccc(O)cc1</chem>	B : <chem>[CH2N+]([CH3]C2CC[C@H](C2)[CH3])CH3SO4-</chem>	Cr	Ethylene glycol	596 Blackish purple powder
22	A : <chem>O=[N+]([O-])c1ccc(O)cc1Br</chem>	B : <chem>[CH2N+]([CH3]C2CC[C@H](C2)[CH3])_3BrO4-</chem>	Cr	Methyl cellosolve	592 Black powder

O 1 4 1 3 7 7

Examples	Monoozo compound A—N=N— HO	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance	
23	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3$ ClO_4^-	Cr	Trilethanolamine	582	Black powder	
24	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3$ ClO_4^-	Cr	n-Butanol	587	Blackish blue powder	
25	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3$ CH_3SO_4^-	Cr	Ethylene glycol	594	Black powder	
26	A : B : $-\text{CH}_2\text{N}(\text{CH}_3)_3$ ClO_4^-	Cr	Ethylene glycol	593	Black powder	O 141377

Examples	Mononazo compound A - N=N - B	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appear- ance
27		Cr	n-Butanol	592	Black powder
28		Cr	Ethylene glycol	586	Blackish purple powder
29		Cr	Methyl cellosolve	590	Blackish blue powder
30		Cr	Methyl cellosolve	593	Black powder

C 1377

Examples	Mononato compound A—N—N—B	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appear- ance
31	A : B : $-\text{C}_3\text{H}_6\text{N}(\text{CH}_3)_3^+$ Cu^\ominus	Cr	Ethylene glycol	585	Black powder
32	A : B : $-\text{CH}_2\text{N}(\text{C}_2\text{H}_5)_3^+$ Br^\ominus	Cr	Dimethylformamide	616	Black powder

EXAMPLE 33:

15.4 Parts of 5-nitro-2-aminophenol was mixed with 26 parts of concentrated hydrochloric acid and 250 parts of water, and the mixture was cooled with ice to a 5 temperature of from 0 to 5°C. After an addition of 6.9 parts of sodium nitrite, the mixture was stirred at the same temperature for 1.5 hours for diazotization. The diazo compound thus obtained was subjected to a coupling reaction by pouring it into a solution comprising 400 10 parts of water, 10 parts of sodium hydroxide and 39.9 parts of N,N,N-trimethyl-N-3-(3-hydroxy-2-naphthamido)-propylammonium methylsulfate at a temperature of from 0 to 5°C. Then, a monoazo compound represented by the formula:

15

was isolated. This monoazo compound was dissolved in 150 20 parts of methyl cellosolve, and 17.5 parts of sodium chromium salicylate was added thereto. The mixture was stirred at from 90 to 95°C for 2 hours for a chromium-introducing reaction. Then, the reaction mixture was cooled to 25°C, and hydrochloric acid was added to 25 acidify the mixture. Then, the product was isolated and dried under reduced pressure at a temperature of from 50

to 60°C to obtain 56 parts of a chromium complex having the following formula as a blackish purple powder:

The visible ray absorption spectrum of this chromium complex was measured in a dimethylformamide solvent, whereby the wavelength at the maximum absorption was 599 nm.

The coupling component used in this Example was obtained by reacting methyl 2-hydroxy-3-naphthoate with dimethylamino propylamine in toluene to obtain N,N-dimethyl-N-3-(3-hydroxy-2-naphthamido)propylamine, and converting the amide compound isolated by filtration, with dimethylsulfuric acid in methanol, to a quaternary ammonium form. Further, the amide compound may also be readily prepared via 2-hydroxy-3-naphthoic acid chloride.

EXAMPLE 34:

62.8 Parts of a monoazo dyestuff of the formula:

5

obtained in the same manner as in Example 33, was
 10 dissolved in 200 parts of dimethylformamide, and after an addition of 30.5 parts of chromium acetate (45% solution), the mixture was stirred at a temperature of from 100 to 105°C for 3 hours for a chromium-introducing reaction. Then, the mixture was treated in the same
 15 manner as in Example 33 to obtain 54.3 parts of a chromium complex of the following formula as a blackish purple fine powder:

The visible ray absorption spectrum of this chromium complex was measured in a dimethylformamide solvent, whereby the wavelength at the maximum absorption was 602 nm.

5 EXAMPLES 35 to 58:

In the same manner as in Examples 33 and 34, metal complexes were prepared. The structures, the wavelengths at the maximum absorption and the outer appearances of these metal complexes are shown in Table 2.

Table 2

Examples	Munizido compound	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance
35 A :		A - N=N-HO CONH-B	Cr $B : -C_3H_6N(CH_3)_3$ C_2^{\ominus}	Ethylene glycol 595	Black powder
36 A :			Cr $B : -C_3H_6N(CH_3)_3$ C_2^{\ominus}	Ethylene glycol 591	Blackish blue powder
37 A :			Cr $B : -C_2H_4N(C_2H_5)_3$ C_2^{\ominus}	Dimethylformamide 601	Blackish purple powder
38 A :			Cr $B : -C_3H_6N^+(C_6H_5)_2$ C_6^{\ominus}	Ethylene glycol 587	Black powder 4137

Examples	Mononzo compound A—N=N— HO CONH-B	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appear- ance	
39	A :	B : $-\text{C}_4\text{H}_9\text{N}(\text{CH}_3)_3^+$ Cl_2^-	Cr	Water Ethylene glycol	598	Blackish blue powder
40	A :	B : $-\text{C}_2\text{H}_5\text{N}(\text{CH}_3)_3^+$ Cl_2^-	Co	Ethylene glycol	572	Blackish blue powder
41	A :	B : $-\text{C}_2\text{H}_5\text{N}(\text{C}_2\text{H}_5)_2^+$ CH_3Cl_2^-	Cr	n-Butanol	587	Black powder
42	A :	B : $-\text{C}_2\text{H}_5\text{N}(\text{CH}_3)_3^+$ Cl_2^-	Cr	Ethylene glycol	586	Black powder

0141377

Examples	Mononzo compound 	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance
43	A : B : $-\text{C}_3\text{H}_6\text{N}(\text{CH}_3)_2^+$ CH_3SO_4^-	Cr	Ethyleneglycol	593	Blackish blue powder
44	A : B : $-\text{C}_3\text{H}_6\text{N}(\text{CH}_3)_2^+$ CH_3O^-	Co	Methyl cellosolve	571	Blackish purple powder
45	A : B : $-\text{C}_3\text{H}_6\text{N}(\text{CH}_3)_2^+$ $\text{C}_2\text{H}_5\text{O}^-$	Cr	n-Butanol	590	Black powder
46	A : B : $-\text{C}_2\text{H}_4\text{N}(\text{CH}_3)_2^+$ CH_3O^-	Cr	Ethyleneglycol	610	Black powder

0141377

Examples	Monoazo compound	A - N=N -	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance
47	A :	B : $-\text{C}_2\text{H}_5\text{N}^+ \text{O}^- \text{Cl}^-$	Cr	Ethylene glycol	587	Black powder
48	A :	B : $-\text{C}_3\text{H}_6\text{N}^+ \text{CH}_3 \text{O}^- \text{Cl}^-$	Cr	Ethylene glycol	602	Blackish blue powder
49	A :	B : $-\text{C}_3\text{H}_6\text{N}^+ (\text{C}_3\text{H}_7)_2 \text{O}^- \text{Cl}^-$	Cr	Dimethylformamide	595	Blackish blue powder
50	A :	B : $-\text{C}_3\text{H}_6\text{N}^+ (\text{CH}_3)_2 \text{O}^- \text{Cl}^-$	Co	Triethanolamine	568	Blackish purple powder

014137

Examples	Malonozo compound A - N=N- HO CONH-B	Central metal SO ₂ CH ₃	Complexing solvent B : -C ₃ H ₆ N(CH ₃) ₃ OH	Wavelength at the maximum absorption (nm)	Outer appear- ance
51	A : 	Cr	Water Cl ⁻	590	Black powder
52	A : 	Cr	Ethylene glycol C ₁₈ H ₃₇ Cl ⁻	598	Black powder
53	A : 	Cr	Dihethylene glycol C ₂ H ₄ OH Cl ⁻	586	Blackish purple powder
54	A : 	Cr	Ethyleneglycol Br ⁻	593	Black powder

0141377

Examples	Mononzo compound	A - N=N-HO-C(=O)NH-B	Central metal	Complexing solvent	Wavelength at the maximum absorption (nm)	Outer appearance	
55	A :		B :	$-C_3H_6N^{\oplus}/O^-$	Cr	Dimethylformamide 588	Black powder
56	A :		B :	$-C_2H_4N^{\oplus}(\text{C}_2\text{H}_4\text{OH})_2/\text{CH}_3\text{C}_2\text{O}_4^-$	Cr	Water 592	Black powder
57	A :		B :	$-C_2H_4N^{\oplus}(\text{CH}_3)_2/\text{C}_{12}\text{H}_{25}\text{C}_2\text{O}_4^-$	Cr	Dimethylformamide 600	Black powder
58	A :		B :	$-C_2H_4N^{\oplus}(\text{C}_2\text{H}_5)_3/\text{C}_2\text{H}_5\text{SO}_4^-$	Cr	Ethylene glycol 594	Blackish blue powder 141377

Now, the following Application Examples are given to illustrate the toners of the present invention.

Application Example 1:

To 5 parts of the chromium complex obtained in
5 Example 1, 100 parts of a styrene-n-butyl methacrylate copolymer and 5 parts of carbon black were added and thoroughly mixed. Then, the mixture was kneaded while heating and melting it. After cooling, the mixture was roughly pulverized in a mixer, and then finely pulverized
10 by a high speed centrifugal pulverizer to obtain a positively chargeable fine toner. The toner was mixed with iron powder having a particle size of from 100 to 150 μm in a weight ratio of 5 : 100, and the mixture was used for a commercially available copying machine
15 employing a zinc oxide photosensitive material, whereby a clear image free from fogging was obtained. The quantity of the electric charge of the toner was 22 $\mu\text{c/g}$ on an average as measured by a blow off method, and the electric charge distribution was substantially uniform at
20 a level of from 22 to 23 $\mu\text{c/g}$.

Application Examples 2 to 13:

In the same manner as in Application Example 1, toners containing metal complexes and having compositions as identified in Table 3 were prepared. The electric
25 chargeability of these toners was measured. The results are also shown in Table 3.

0141377

Table 3

Application Examples	Composition of the developer	Other components		Electric charge-ability (μc/q)
		Metal complex		
2	<p>Styrene-n-butyl methacrylate copolymer 20 parts 1 part</p> <p>Carbon black</p> <p>Iron powder carrier</p> <p>0.2 part</p> <p>500 parts</p>			18.3
3	<p>Phenol resin Polyester resin Carbon black</p> <p>Iron powder carrier</p> <p>0.5 part</p> <p>500 parts</p>			16.8

Application Examples	Composition of the developer	Electric charge-ability ($\mu\text{C/g}$)
Metal complex	Other components	0141377
$(\text{CH}_3)_3\text{NH}_2\text{COCHN}-\text{O}-\text{N}=\text{N}-\text{O}-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-$ $\text{Cr}^{+3} \quad \text{O} \quad \text{O} \quad \text{O}$ $\text{O}_2\text{N}-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{N}=\text{N}-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{NHCOCH}_2\text{N}(\text{CH}_3)_3$ CrO_4^{\ominus}	Polyethylene wax Ethylene-vinyl acetate copolymer Magnetite 1 part	50 parts 40 parts 50 parts 17.3
$\text{H}_2\text{NO}_2\text{S}-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{N}=\text{N}-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{NHCOCH}_2\text{N}(\text{CH}_3)_3$ $\text{Cr}^{+3} \quad \text{O} \quad \text{O} \quad \text{O}$ $\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{N}=\text{N}-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{C}_6\text{H}_3(\text{O}_2\text{N})_2-\text{SO}_2\text{NH}_2$	Styrene-ethylhexyl methacrylate copolymer Polyester resin Silicone wax Carbon black 0.1 part	700 parts 10.3

Application Examples	Composition of the developer	Electric charge-ability ($\mu\text{C/g}$)
Metal complex	Other components	
 6	Styrene-acryl copolymer Carbon black Glass beads carrier	20 parts 2 parts 16.4
 7	Styrene-ethyl methacrylate copolymer Iron powder carrier	100 parts 13.2 2000 parts

0141377

Applica- tion Ex- amples	Composition of the developper	Other components	Electric- charge- ability ($\mu\text{C}/\text{q}$)	
	<p>Metal complex</p> <p>Iron powder carrier</p> <p>1500 parts</p>	<p>Styrene-butadiene copolymer 50 parts</p> <p>Carbon black 5 parts</p> <p>Na_2SO_4 2 parts</p>	18.9	0141377
	<p>Metal complex</p> <p>Iron powder carrier</p> <p>500 parts</p>	<p>Styrene-n-butyl methacrylate copolymer 12 parts</p> <p>C.I. pigment blue-15 0.1 part</p>	17.4	

Application Examples	Composition of the developer	Electric chargeability (μC/g)
Metal complex	Other components	
 10	Polyester resin Carbon black Iron powder carrier	50 parts 5 parts 1500 parts
 11	Styrene-methyl acrylate copolymer C.I. pigment black 1 Iron powder carrier	50 parts 3 parts 1500 parts

0141377

Applica- tion Ex- amples	Composition of the developer		Electric charge- ability (μc/g)
	Metal complex	Other components	
12	<p>0.5 part</p>	<p>Epoxy resin Carbon black</p> <p>30 parts 3 parts</p> <p>Iron powder carrier</p> <p>1000 parts</p>	11.1
13	<p>0.5 part</p>	<p>Polyvinyl butyral resin Carbon black</p> <p>10 parts 1 part</p> <p>Iron powder carrier</p> <p>250 parts</p>	14.2

Application Example 14:

To 1 part of a chromium complex represented by the formula:

5

- 10 100 parts of a styrene-n-butyl methacrylate copolymer and 8 parts of carbon black were added and thoroughly mixed. The mixture was then kneaded while heating and melting it. After cooling, the mixture was roughly pulverized in a mixer, and then finely pulverized by a high speed
- 15 centrifugal pulverizer to obtain a positively chargeable fine toner. The toner was mixed with iron powder having a particle size of from 100 to 150 μm in a weight ratio of 5 : 100, and the mixture was used for a commercially available copying machine employing a zinc oxide
- 20 photosensitive material, whereby a clear image free from fogging was obtained. The quantity of the electric charge of the toner was 17.5 $\mu\text{c/g}$ on an average as measured by a blow off method, and the electric charge distribution was substantially uniform at a level of from
- 25 17.0 to 18.3 $\mu\text{c/g}$.

Application Examples 15 to 29:

In the same manner as in Example 14, toners containing metal complexes and having compositions as identified in Table 4 were obtained. The electric chargeability of these toners were measured. The results are also shown in the Table 4.

Table 4

0144377

Application Examples	Composition of the developer		Electric chargeability ($\mu\text{c/g}$)
	Metal complex	Other components	
15	 $(\text{C}_2\text{H}_5)_2\text{NH}_2\text{C}_2\text{HNO}_2$ CH_3	Styrene-ethylhexyl methacrylate 40 parts Polyester resin 5 parts Silicone wax 3 parts Carbon black 2 parts Iron powder carrier 1000 parts 0.2 part	14.8
16	 CH_3 $\text{NH}_2\text{C}_2\text{HNO}_2$	Styrene-acryl copolymer 30 parts Carbon black 3 parts Glass beads carrier 1000 parts Br^-	18.9

Application Examples	Composition of the developer	Other components	Electric chargeability (qc/g)
17	<p>Metal complex</p> <p>Sytrene-methyl methacrylate copolymer 50 parts</p> <p>Silicone resin-coated iron powder carrier 1500 parts</p> <p>16.3</p>		
18	<p>Polyvinyl butyral resin 200 parts</p> <p>Carbon black 10 parts</p> <p>Iron powder carrier 2000 parts</p> <p>17.4</p>		

0141377

014137

Application Examples	Composition of the developer		Electric chargability (μc/g)
	Metal complex	Other components	
19	<p style="text-align: center;">+ 19</p>	Bisphenol type epoxy resin Carbon black Iron powder carrier 1000 parts	18.6
20	<p style="text-align: center;">+ 20</p>	Styrene resin Carbon black Iron powder carrier 1000 parts	14.0

014137

Application Examples	Composition of the developer		Electric chargeability ($\mu\text{C/g}$)
	Metal complex	Other components	
21	 $(\text{CH}_3)_3\text{NH}_2\text{C}_3\text{HNO}_2$	Styrene-butyl methacrylate copolymer 30 parts 2 parts Carbon black Iron powder carrier 800 parts	15.0
22	 $(\text{C}_2\text{H}_5)_3\text{NHC}_3\text{HNO}_2$	Phenol resin Polyester resin Carbon black Silicon resin-coated iron powder carrier 700 parts	21.3

0141372

Application Examples	Composition of the developer		Reactive chargeability (uc/g)
	Metal complex	Other components	
23	<p>1 part</p>	Polyethylene wax Ethylene-vinyl acetate copolymer Magnetite	18.5
24	<p>0.6 part</p>	Styrene-ethylhexyl methacrylate copolymer Carbon black Iron powder carrier	23.2 600 parts

0141377

Application Examples	Composition of the developer	Other components	Electric chargeability (uc/E)
25	<p>Metal complex</p> <p>(CH₃)₃NH₂C₂HNO₂</p> <p>0.2 part</p>	<p>Maleic acid resin Carbon black</p> <p>Iron powder carrier</p> <p>1000 parts</p>	<p>50 parts 5 parts</p> <p>16.4</p>
26	<p>Metal complex</p> <p>(CH₃)₃NH₂C₂HNO₂</p> <p>0.1 part</p>	<p>Styrene-ethyl methacrylate copolymer Carbon black</p> <p>Iron powder carrier</p> <p>500 parts</p>	<p>30 parts 3 parts</p> <p>18.3</p>

014137

Application Examples	Composition of the developer		Electric chargeability (qc/g)
	Metal complex	Other components	
27	 $\text{Co}^{+} \left[\text{L}_1 \text{L}_2 \text{L}_3 \text{L}_4 \right]$	Styrene-butadiene copolymer 50 parts Carbon black 5 parts Iron powder carrier 1500 parts CO_4^-	16.7
28	 $\text{Cr}^{+} \left[\text{L}_1 \text{L}_2 \text{L}_3 \text{L}_4 \right]$	Polyester resin C.I. pigment blue-15 12 parts 0.2 part Silicone resin-coated iron powder carrier 400 parts I^-	18.5

0141377

Application Examples	Composition of the developer	Other components	Electric chargeability (μc/g)
Metal complex	 $\text{H}_3\text{C}_6\text{HNOC}_6\text{N}(\text{C}_2\text{H}_5)_2\text{CH}_3 \quad \text{Cr}^{3+} \quad (\text{C}_2\text{H}_5)_2\text{NH}_2\text{C}_6\text{HNOC}_6\text{N}(\text{C}_2\text{H}_5)_2\text{CH}_3$	<p>Styrene-butyl methacrylate copolymer 100 parts 5 parts</p> <p>Carbon black</p> <p>Iron powder carrier</p> <p>300 parts</p>	17.2

CLAIMS:

1. A symmetric 2 : 1 metal complex represented by the general formula:

5

- 10 where R is a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, an alkoxy group having from 1 to 4 carbon atoms, an alkoxy carbonyl group having from 2 to 5 carbon atoms, an acyl group having from 2 to 5 carbon atoms, an aminocarbonyl group, an alkylaminocarbonyl group having from 2 to 5 carbon atoms, an alkylsulfonyl group having from 1 to 3 carbon atoms, an aminosulfonyl group, an acylamino group having from 2 to 5 carbon atoms, a nitro group, a cyano group or a halogen atom, m is an integer of from 1 to 4, when m is 2 or more, the plurality of R may be the same or different substituents,
15 Q is -NHCO-Y-Z or -CONH-Y-Z (where Y is an alkylene group
20

- 49 -
- having from 1 to 4 carbon atoms, and Z is a quaternary ammonium group), M is a chromium atom or a cobalt atom, and X^{\ominus} is an anion.
2. The metal complex according to Claim 1, wherein X^{\ominus} is
5 a halogen ion.
3. An electrophotographic toner containing the metal complex of the formula I as defined in Claim 1, as an electric charge-controlling agent or a coloring agent.
4. The electrophotographic toner according to Claim 3,
10 which comprises from 1 to 50% by weight of the metal complex of the formula I and from 50 to 99% by weight of a resin.
5. The electrophotographic toner according to Claim 4,
wherein the resin is a styrene polymer, a substituted
15 styrene polymer, a styrene-substituted styrene copolymer, a styrene-acrylate copolymer, a styrene-methacrylate copolymer, a styrene-acrylonitrile copolymer, a polyvinyl chloride resin, a polyethylene resin, a silicone resin, a polyester resin, a polyurethane resin, a polyamide resin,
20 an epoxy resin, a modified rosin or a phenol resin.
phenol resin.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.