STA 5820 Chapter 3 lab: Linear Regression

魏上傑

2023-04-22

Some supplemental codes for linear models.

library(MASS) # Boston data

Boston Data set

```
head(Boston) # median value of homes by town
##
        crim zn indus chas
                                              dis rad tax ptratio black lstat
                            nox
                                       age
## 1 0.00632 18
                2.31
                        0 0.538 6.575 65.2 4.0900
                                                    1 296
                                                             15.3 396.90
                                                                         4.98
## 2 0.02731 0
               7.07
                      0 0.469 6.421 78.9 4.9671
                                                   2 242
                                                            17.8 396.90 9.14
## 3 0.02729 0
               7.07
                       0 0.469 7.185 61.1 4.9671
                                                            17.8 392.83 4.03
                                                   2 242
## 4 0.03237
               2.18
                     0 0.458 6.998 45.8 6.0622
                                                   3 222
                                                            18.7 394.63 2.94
## 5 0.06905
                2.18
                       0 0.458 7.147 54.2 6.0622
                                                   3 222
                                                            18.7 396.90 5.33
## 6 0.02985 0 2.18
                        0 0.458 6.430 58.7 6.0622
                                                    3 222
                                                             18.7 394.12 5.21
##
    medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7
```

```
# see help for definition of variables
attach(Boston)
```

Scatter plot for crime rate vs. median house value

plot(crim, medv)


```
hist(crim, breaks = seq(0, 90, 5))
```


hist(medv, breaks = seq(0,50,5))

The crime rate is a skewed right, and needs a concave transformation to make the relationship between the two variables more linear.

```
plot(log(crim), medv)
```


While the median house values seem to be truncated at 50 (\$50,000), the crime rate and the median house value has roughly a linear relationship.

Fitting a linear model

```
LM1 <- lm(medv~ log(crim))</pre>
summary(LM1)
##
## Call:
## lm(formula = medv ~ log(crim))
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                          Max
## -17.303
                     -2.427
                               2.666
                                       33.271
             -5.159
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
```

54.23

<2e-16 ***

0.3877

21.0246

(Intercept)

```
## log(crim)
               -1.9325
                        0.1688 -11.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.201 on 504 degrees of freedom
## Multiple R-squared: 0.2064, Adjusted R-squared: 0.2048
## F-statistic: 131.1 on 1 and 504 DF, p-value: < 2.2e-16
medv = -1.93log(crim) + 21 + \epsilon
e^{medv} = crim \times e^{-1.93}
# confidence band, prediction band
confint(LM1, level = 0.99) # 99% confidence interval (default=95%)
##
                  0.5 %
                           99.5 %
## (Intercept) 20.02222 22.026930
## log(crim)
             -2.36900 -1.496093
CI <- predict(LM1, interval="confidence") # confidence interval
head(CI)
##
          fit
                   lwr
                            upr
## 1 30.81106 29.22008 32.40205
## 2 27.98271 26.80467 29.16076
## 3 27.98413 26.80589 29.16237
## 4 27.65422 26.52041 28.78803
## 5 26.19013 25.23775 27.14250
## 6 27.81085 26.65608 28.96562
PI <- predict(LM1, interval = "prediction") #prediction interval
## Warning in predict.lm(LM1, interval = "prediction"): predictions on current data refer
head(PI)
##
          fit
                   lwr
                            upr
## 1 30.81106 14.61967 47.00245
## 2 27.98271 11.82668 44.13875
## 3 27.98413 11.82808 44.14018
## 4 27.65422 11.50135 43.80710
## 5 26.19013 10.04897 42.33128
## 6 27.81085 11.65649 43.96521
```

```
ORD <- order(crim) # index for crim in increasing order
head(ORD)</pre>
```

```
## [1] 1 285 286 342 56 55
```

```
plot(log(crim), medv, ylim = c(-10, 60))
matlines(log(crim)[ORD], CI[ORD,], type="l", col=c(1,2,2), lty=c(1,2,2))
matlines(log(crim)[ORD], PI[ORD,], type="l", col=c(1,3,3), lty=c(1,2,2))
```


Roughly 95% of the observations are within the prediction bands (green). As there are many (506) observations, the confidence band (red) is narrow, indicating that the estimated regression line (black) is reasonably accurate.

leverage

```
# plot and leverage
hist(hatvalues(LM1))
```

Histogram of hatvalues(LM1)


```
sort(hatvalues(LM1))[501:506] # 6 largest hat values
```

405 415 411 406 419 381 ## 0.01058067 0.01095391 0.01139357 0.01256163 0.01290060 0.01373612

There are no extreme hatvalues, compared to the others.

```
which.max(hatvalues(LM1)) # point with largest leverage
```

381 ## 381

MAX3 <- order(hatvalues(LM1))[504:506] # points with 3 largest leverages
MAX3

[1] 406 419 381

```
library(car) # for pointLabel
```

Loading required package: carData

```
plot(log(crim), medv)
pointLabel(x=log(crim)[MAX3], y=medv[MAX3], labels = as.character(MAX3))
```


plot(dis, medv)

plot(nox, medv)

ANOVA (Analysis of Variance)

summary(LM2)

LM2 <- lm(medv~ log(crim)+dis+nox)</pre>


```
##
## Call:
## lm(formula = medv ~ log(crim) + dis + nox)
##
## Residuals:
                   Median
##
       Min
                1Q
                                 3Q
                                        Max
  -17.784
           -5.255
                    -2.090
                              2.773
                                     31.970
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                40.6757
                            3.9767
                                     10.228 < 2e-16 ***
## log(crim)
                -1.5398
                            0.2733 -5.635 2.92e-08 ***
## dis
                -1.1342
                            0.2700
                                    -4.201 3.15e-05 ***
## nox
               -27.1141
                                    -4.646 4.34e-06 ***
                            5.8364
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

```
##
## Residual standard error: 8.012 on 502 degrees of freedom
## Multiple R-squared: 0.2455, Adjusted R-squared: 0.241
## F-statistic: 54.45 on 3 and 502 DF, p-value: < 2.2e-16
anova(LM2)
## Analysis of Variance Table
##
## Response: medv
             Df Sum Sq Mean Sq F value
## log(crim)
                  8816 8816.2 137.3245 < 2.2e-16 ***
## dis
              1
                   286
                         286.1
                               4.4565
                                         0.03526 *
## nox
                  1386 1385.6 21.5823 4.336e-06 ***
              1
## Residuals 502 32228
                          64.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
LM2b <- lm(medv~ log(crim)+dis+nox)</pre>
# change of order doesn't matter here
summary(LM2b)
##
## Call:
## lm(formula = medv ~ log(crim) + dis + nox)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -17.784 -5.255 -2.090 2.773 31.970
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.6757
                          3.9767 10.228 < 2e-16 ***
## log(crim)
              -1.5398 0.2733 -5.635 2.92e-08 ***
                       0.2700 -4.201 3.15e-05 ***
## dis
               -1.1342
                         5.8364 -4.646 4.34e-06 ***
             -27.1141
## nox
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.012 on 502 degrees of freedom
```

```
## Multiple R-squared: 0.2455, Adjusted R-squared: 0.241
## F-statistic: 54.45 on 3 and 502 DF, p-value: < 2.2e-16
anova(LM2b) # change of order matters in ANOVA
## Analysis of Variance Table
##
## Response: medv
##
             Df Sum Sq Mean Sq F value Pr(>F)
## log(crim)
             1
                  8816 8816.2 137.3245 < 2.2e-16 ***
                        286.1 4.4565
## dis
              1
                   286
                                         0.03526 *
                  1386 1385.6 21.5823 4.336e-06 ***
## nox
              1
## Residuals 502 32228
                          64.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(LM1, LM2) # see if LM2 is significantly better than LM1
## Analysis of Variance Table
##
## Model 1: medv ~ log(crim)
## Model 2: medv ~ log(crim) + dis + nox
##
    Res.Df
             RSS Df Sum of Sq
                                  F
                                       Pr(>F)
## 1
       504 33900
## 2
       502 32228 2
                       1671.7 13.019 3.073e-06 ***
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1