# 67865 - Mathematical Tools In Computer Science

# February 20, 2024

# **Topics:**

The course is divided into 3 mini courses.

- 1. Probability. (Weeks 1-3)
  - (a) Rehersal
  - (b) Useful Tools In research and CS
  - (c) week 4 = break
- 2. Advanced topics in linear algebra. (Weeks 5-7/8)
- 3. Optimization. (Week 8/9 11)

# **Technicalities:**

- Exercise every week.
- Final grade is the average of the best (n-3) exercises.
- Every week of miluim is excemption from 1 exercise. At least 4 exercises must be submitted.
- There is no exam, and there are no quizzes. :)
- The topics are going to be quite similar to previous years, so notes apply. If Amit does anything different than previous years, he will publish notes.

# Part I

# **Probabilty**

# 1 Rehersal

#### **Today's Topics:**

- · Probablity spaces
- · Conditional Probablity
- Independence
- · Random Variables
- Expectation

## 1.1 Probablity Spaces (Rehersal)

**Definition 1.** (Probabilty Space/Merhav Histabrut) A <u>probabilty space</u> is a set  $\Omega$  (is finite or countable - in this course) and a function  $Pr: \Omega \to [0,1]$  s.t.  $\sum_{\omega \in \Omega} Pr(\omega) = 1$ 

#### **Terminology**

- $\omega \in \Omega$  is called an elementary/basic event.
- $A \subseteq \Omega$  is called an Event.
- Pr is extended to events by  $Pr(A) = \sum_{\omega \in A} P(\omega)$
- Pr is uniform if for any  $\omega \in \Omega$  it holds that  $Pr(\omega) = \frac{1}{|\Omega|}$

**Example.** Throwing a die:  $\Omega = \{1, 2, ..., 6\}$ ,  $Pr(i) = \frac{1}{6}$ Throwing a pair of dice:  $\Omega = \{1, ..., 6\}^2$ ,  $Pr((i, j)) = \frac{1}{36}$ 

## 1.2 Conditional Probablity (Rehersal)

**Definition 2.** (Conditional Probablity) Let  $A, B \subseteq \Omega$ , s.t. Pr(A) > 0. Define the conditional probablity of B given A:  $Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$ 

### 1.3 Independence (Rehersal)

**Definition 3.** (Independence)  $A, B \subseteq \Omega$  are independent if  $Pr(A \cap B) = Pr(A) \cdot Pr(B)$ .

Note: If Pr(A) > 0, then A, B are independent  $\iff P(B|A) = P(B)$ 

### 1.4 Random Variables (Rehersal)

**Definition 4.** (Random Variable) A random variable is a function  $X: \Omega \to \mathbb{R}$ .

#### **Terminology**

- If  $Range(X) \subseteq \{0, 1\}$  then X is called Indicator random variable.
- $(X+Y)(\omega) = X(\omega) + Y(\omega)$
- $(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$
- $(aX)(\omega) = aX(\omega)$
- $P(X = a) = P(\{\omega \in \Omega : X(\omega) = a\})$
- $P(X < Y) = P(\{\omega \in \Omega : X(\omega) = X(\omega)\})$
- $P(X=7:Y=3)=P(\{\omega\in\Omega:X(\omega)=7\}|\{\omega\in\Omega:Y(\omega)=3\})$

• :

**Fact.** If X is an indicator R.V.  $\mathbb{E}(X) = Pr(X = 1)$ .

**Definition 5.** (Independent Random Variables) Random Variables X,Y are independent if for any  $a,b\in\mathbb{R}$  the events  $\{\omega\in\Omega:X(\omega)=a\}$  and  $\{\omega\in\Omega:Y(\omega)=b\}$  are independent.

### 1.5 Expectation (Rehersal)

**Definition 6.** (Expectation) The expectation of a random variable X is  $\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot Pr(X = \omega)$ .

#### Example.

$$\begin{split} \Omega &= \{1,2,3\} \times \{1,2,3\}. \ Pr((i,j)) = \frac{1}{9}. \\ X((i,j)) &= i+j \\ \mathbb{E}(X) &= \frac{1}{9}(X((1,1)) + X((1,2)), ..., X((3,3))) = 4 \end{split}$$

**Lemma.** (Linearity Of Expectation) Let X, Y be random variables,  $a, b \in \mathbb{E}$ . then:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

**Example.** The expected number of fixed points in a random permutation.

- A fixed point in a permuation  $\pi:[n]\to [n]$  (1:1 function) is  $i\in [n]$  s.t.  $\pi(i)=i$ .
- $S_n = \{(\pi : [n] \rightarrow [n]) : \pi \text{ pi is a permutation}\}$

$$Pr(\pi) = \frac{1}{n!}$$

 $X(\pi)=|\{i:\pi(i)=i\}|$  (number of fixed points of pi) This is indeed a random variables.  $X:S_n\to\mathbb{R}$ .

Question: What is the expected value of X.

For every 
$$i \in [n]$$
, we define  $X_i(\pi) = \begin{cases} 1 & \pi(i) = i \\ 0 & otherwise \end{cases}$ .

So 
$$X = \sum_{i=1}^{n} X_i$$

$$\Rightarrow \mathbb{E}(X) \stackrel{*}{=} \sum_{i=1}^n \mathbb{E}(X_i) \stackrel{*}{=} \sum_{i=1}^n Pr(X_i = 1) = \sum_{i=1}^n \frac{1}{n} = 1$$

Where  $*_1$  is from linearity of expectation and  $*_2$  is from  $X_i$ 's being indicator random variables.

## 1.6 Inequalities (Rehersal)

#### 1.6.1 Union Bound

**Lemma.** (Union Bound) If  $A, ..., A_k \subseteq \Omega$  then:

$$Pr(\bigcup_{i=1}^{k} A_i) \le \sum_{i=1}^{k} Pr(A_i)$$

#### 1.6.2 Markov

**Theorem.** (Markov Inequality) Let  $X:\Omega\to\mathbb{R}_+$  (NON NEGATIVE!) be a R.V. then for any c>0:

$$Pr(X \ge c\mathbb{E}(X)) \le \frac{1}{c} \iff Pr(X \ge c) \le \frac{\mathbb{E}(X)}{c}$$

Proof.

$$\mathbb{E}[X] \stackrel{def}{=} \sum_{\omega \in \Omega} Pr(\omega) \cdot X(\omega)$$

$$\stackrel{*_1}{\geq} \sum_{X(\omega) \geq c \mathbb{E}[X]} Pr(\omega) \cdot X(\omega)$$

$$\geq \sum_{X(\omega) \geq c \mathbb{E}[X]} Pr(\omega) \cdot c \mathbb{E}[X]$$

$$= c \mathbb{E}[X] \cdot \sum_{X(\omega) \geq c \mathbb{E}[X]} Pr(\omega)$$

$$\stackrel{def}{=} c \mathbb{E}[X] \cdot Pr(X \geq c \mathbb{E}[X])$$

 $*_1$  is because X is non negative.

$$\Rightarrow Pr(X \ge c\mathbb{E}(X)) \le \frac{1}{c}$$

1.6.3 Chebyshev

**Definition 7.** (Variance and standard deviation) The Variance of R.V. X is:

$$Var(X) = \mathbb{E}(X - \mathbb{E}(X))^2 = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

The standard deviation of X is  $\sigma = \sqrt{Var(X)}$ .

Fact.

$$\begin{split} Var(X) = & \mathbb{E}(X - \mathbb{E}(X))^2 \\ = & \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) \\ = & \mathbb{E}(X^2) - \mathbb{E}(2X\mathbb{E}(X)) + \mathbb{E}(X)^2 \\ = & \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^2 \\ = & \mathbb{E}(X^2) - \mathbb{E}(X)^2 \end{split}$$

Fact.  $Var(X) \leq \mathbb{E}(X^2)$  ( $\leftarrow$  called second moment)

**Theorem.** (Chebychev inequality) Let X be a R.V. then:

$$Pr\left(|X - \mathbb{E}(X)| \geq c\sqrt{Var(X)}\right) \leq \frac{1}{c^2} \iff Pr\left(|X - \mathbb{E}(X)| \geq c\right) \leq \frac{Var(X)}{c^2}$$

Proof. Denote  $Y(\omega) = (X - \mathbb{E}(X))^2$ . By markov inequality:

$$Pr(Y \ge c^2 \mathbb{E}(Y)) \le \frac{1}{c^2}$$

$$\begin{split} Pr(Y \geq c^2 \mathbb{E}(Y)) = & Pr((X - \mathbb{E}(X))^2 \geq c^2 Var(X)) \\ = & Pr(X - \mathbb{E}(X) \geq c\sqrt{Var(X)}) \end{split}$$

# 2 Ramsey Theory & Probabalistic Method

# 2.1 Ramsey Theory

Ramsey theory tries to find the largest possible "island" of "order" in a "chaos".

**Definition 8.** A Coloring of a graph G = (V, E) is a function  $c : E \to \{Red(R), Black(B)\}$ .

**Definition 9.**  $S \subseteq V$  is Monochromatic w.r.t coloring c, if all edges whose both vertices are in S are in the same colors.

**Definition 10.** The Ramsey Number R(k) is the minimal number R s.t. for for each coloring of  $K_R$  (The complete graph of R vertices) there is a monochromtic set  $S \subseteq V$  of size k.

Claim. R(2) = 2 (trivial)

Claim. R(3) = 6

Proof. first, we can see that R(3) > 5 because of the following coutner example.



Now we will show that  $R(3) \le 6$ . We look at a verticie. 3 of it's edges have to be either black or red. assume they are red, now look at the 3 edges connecting the other vrtices of the red edges. if they are all black we won. if one of them is red there is a red triangle and we won.



Claim. R(4) = 18 (hard, discovered 1978)

Claim. R(5) = Unknown (between 43 and 48)

Theorem. (Ramsey)

$$2^{\frac{k}{2}-1} < R(k) < 2^{2k}$$

Proof. Upper bound in the tirgul: Generalization of  $R(3) \le 6$ .

Lower Bound: Using the probabilstic method.

Denote  $N=2^{\frac{k}{2}-1}$ . Let C be a random coloring of  $K_N$  (The complete graph of N vertices). Denote A the event that there is a mono set of size k:  $A=\{c:E\to\{R,B\}:$  there is a mono set of size  $k\}$ 

is is enough to show that Pr(A) < 1.

For  $S \subseteq V$  s.t. |S| = k, Denote  $A_S = \{c : S \text{ is mono w.r.t } c\}$ .

As such  $A = \bigcup_{S \subseteq V, |S| = k} A_s$ .

 $Pr(A_s) = 2^{-\binom{k}{2}+1}$  because there a  $\binom{k}{2}$  edges formed in S. and they all need to be the same color. the +1 is because they can all be either red or black.

By the union bound:

$$Pr(A) \leq \sum_{S \subseteq V, |S|=k} Pr(A_s)$$

$$= \sum_{S \subseteq V, |S|=k} 2^{-\binom{k}{2}+1}$$

$$= \binom{N}{k} \cdot 2^{-\binom{k}{2}+1}$$

$$\leq N^k \cdot 2^{-\binom{k}{2}+1}$$

$$= 2^{(\frac{k}{2}-1)k} \cdot 2^{-\binom{k}{2}+1}$$

$$= 2^{\frac{k^2}{2}-k-\frac{k(k-1)}{2}+1}$$

$$= 2^{-\frac{k}{2}+1}$$

$$\stackrel{*}{<} 1$$

\* is for  $k \geq 3$ , for k = 2, 1 the case is trivial.