Engenharia de Dados

Exercícios:

1) Cenário

A empresa quer disponibilizar um banco de dados PostgreSQL para uso em produção. Temos um time pequeno de dados e esse banco não pode ter downtime. Ele será utilizado por colaboradores em São Paulo, Nova York e Londres com alta frequência de leitura e gravação.

Tarefa

Quais aspectos e configurações devem ser levadas em consideração na disponibilização desse banco de dados? Explique-os.

2) Cenário

Uma asset manager está expandindo sua operação de gestão de investimentos e precisa de um sistema robusto para gerenciar seus ativos, clientes, portfólios e transações. O sistema deve ser capaz de armazenar informações detalhadas sobre os ativos sob gestão, incluindo diferentes tipos de investimentos como ações, títulos de dívida (bonds) e fundos imobiliários. Além disso, deve gerenciar as contas dos clientes, os portfólios atribuídos a cada cliente, e todas as transações realizadas.

Requisitos Específicos

- Clientes: O sistema deve armazenar informações básicas de cadastro dos clientes.
- Ativos: Os ativos devem incluir as informações do ativo como nome, preço atual e moeda.
- **Portfólios:** Cada cliente pode ter um ou mais portfólios. Um portfólio pode incluir diversos ativos. É necessário registrar o peso ou a porcentagem de cada ativo no portfólio.
- Transações: Todas as compras e vendas de ativos devem ser registradas.
- **Rendimentos:** O sistema deve ser capaz de registrar os rendimentos dos ativos, como dividendos para ações e fundos imobiliários, ou pagamento de cupons para bonds.

Tarefa

Baseando-se nos requisitos acima, crie um modelo Entidade-Relacionamento (ER) detalhado para o sistema de gestão de investimentos da asset manager. Seu modelo deve incluir todas as entidades mencionadas, seus atributos específicos e os relacionamentos entre elas. Considere as melhores práticas de normalização para evitar redundâncias e garantir a integridade dos dados.

Entregáveis

- Um diagrama do modelo ER, mostrando entidades, atributos e relacionamentos.
- Uma breve descrição de cada entidade e relacionamento no seu modelo.

3) Cenário

Você é um analista de dados que foi encarregado de otimizar o armazenamento de dados para análises de vendas de uma grande rede de varejo. A empresa possui um sistema de banco de dados relacional tradicional, com um modelo Entidade-Relacionamento (ER) que inclui as seguintes entidades principais: Produtos, Vendas, Clientes, Funcionários e Lojas.

Requisitos Específicos

- **Produtos:** Armazena informações sobre os produtos vendidos, incluindo ID do Produto, Nome, Categoria, Preço Unitário e Estoque.
- **Vendas:** Registra cada venda, incluindo ID da Venda, ID do Produto, ID do Cliente, ID do Funcionário, ID da Loja, Data da Venda, Quantidade e Valor Total.
- Clientes: Contém dados dos clientes, como ID do Cliente, Nome, E-mail e Telefone.
- **Funcionários:** Mantém informações sobre os funcionários, incluindo ID do Funcionário, Nome, Cargo e ID da Loja em que trabalham.
- Lojas: Detalha as lojas da rede, com ID da Loja, Nome, Localização e Gerente.

Tarefa

A partir do modelo ER fornecido, desenvolva um Star Schema para otimizar as análises de vendas da empresa.

Entregáveis

- Um diagrama do Star Schema, identificando claramente a tabela de fatos e as dimensões.
- Uma breve descrição de cada tabelas
- Explique brevemente como você transformou o modelo ER em um Star Schema, destacando as decisões de design mais importantes.

4) Cenário

Todo dia às 03h um arquivo .txt com 50gb é disponibilizado em um bucket S3 contendo informação de todas as operações que aconteceram no dia anterior. Esses dados precisam ser tratados e disponibilizados em um data warehouse para que os indicadores estejam disponíveis as 05h para os clientes consumirem.

Tarefa

Monte a arquitetura de um pipeline que faça a ingestão, tratamento e disponibilização desses dados de forma estruturada para consumo via queries e via dashboard.

Entregáveis

- Desenho da arquitetura contendo as ferramentas utilizadas
- Breve descrição do motivo da escolha das ferramentas

5) Cenário

Os valores de ativos listados na B3 são disponibilizados em tempo real em um tópico Kafka para consulta. Esses dados precisam estar disponíveis para a área de investimento conseguir tomar as decisões de compra ou venda de ativos.

Tarefa

Monte a arquitetura de um pipeline que faça a ingestão, tratamento e disponibilização desses dados de forma estruturada para consumo via queries e via dashboard.

Entregáveis

- Desenho da arquitetura contendo as ferramentas utilizadas
- Breve descrição do motivo da escolha das ferramentas

Database Administration

Exercícios:

- 1) Explique, sucintamente, a diferença entre *BEGIN/END* dentro de um objeto de linguagem procedural PL/pgSQL e o *BEGIN* que se executa no cliente *psqI* para execução de uma simples DML, como um update.
- 2) Assinale a alternativa que corretamente concatena as palavras 'ABC' e 'def' para formar 'ABCdef'.

```
A. SELECT 'ABC' . 'def';
B. SELECT cat('ABC', 'def') FROM pg_operator;
C. SELECT 'ABC' + 'def' FROM dual;
D. SELECT 'ABC' + 'def' FROM dual;
E. SELECT 'ABC' || 'def';
```

- 3) O PostgresQL pode usar índices para acessar uma tabela, assinale duas alternativas erradas sobre índices:
 - A. Um índice é criado pelo 'CREATE INDEX' e eliminado pelo 'DROP INDEX'.
 - B. Quando a query usa o índice, ela pode retornar as linhas de forma muito mais rápida.
 - C. Os tipos de índices são B-TREE, Hash, R-TREE e GiST.
 - D. Quando se cria um índice, a query que usa aquela coluna indexada fica sempre mais rápida.
 - E. Criar um índice que não esteja sendo utilizado por nenhuma query não altera de forma alguma o desempenho do banco de dados.

4) Assinale duas afirmações corretas sobre VIEWS no PostgreSQL:

- A. Uma VIEW é criada pelo comando 'DECLARE VIEW' e eliminada pelo comando 'DROP VIEW'
- B. Uma VIEW é uma tabela virtual que não existe no disco.
- C. Uma VIEW ajuda a simplificar queries complicadas.
- D. Uma VIEW pode ser criada com o mesmo nome de uma tabela no esquema em questão.
- E. Uma VIEW só existe enquanto o processo postmaster está rodando, sendo eliminada quando o servidor para.

5) Baseado na tabela *EMPREGADOS* abaixo, escreva uma query (suando sub query) que retorna o *ID*, o *FIRST_NAME*, o *MANGER_ID* e o *SALARY* de todos os empregados que tem salário maior que o maior salário dos empregados com *MANAGER_ID* igual a 100. Ordene o resultado pelo salário.

+	+	+	+	++		+	++	+
ID	FIRST_NAME	LAST_NAME	HIRE_DATE	SALARY	COMMISSION_PCT	MANAGER_ID	DEPARTMENT_ID	
100 101	Marcelo	Goncalves Macaranduba	1997-04-17 1997-05-18 1997-06-19	20000.00 17000.00	0.00 0.00	101	80 90 90	 - -
300	Geraldo 	 Silva +	2001-10-01	8300.00		0.00 2	205 110	

6) Baseado na pergunta anterior, responda V para verdadeiro e F para falso na afirmações abaixo:

- A. () Um índice compostos nas colunas (manager id, salary) é recomendado.
- B. () A query requisitada será sempre lenta, não importando como está indexada a tabela.
- C. () O PostgreSQL sempre fará a ordenação em disco, independente do índice usado.
- D. () Um índice de função (índice com expressão) deixaria a query mais rápida.
- E. () O PostgreSQL permite que se use tabelas temporárias para evitar o uso de subqueries.

7) Assinale a alternativa incorreta sobre PostgreSQL:

- A. O PostgreSQL possui recurso para permitir execução de queries em paralelo.
- B. O PostgreSQL possui recurso para permitir criação de índices de forma *ONLINE*, sem bloquear escrita.
- C. Na criação de um banco de dados é obrigatório definir o proprietário com a palavra chave *OWNER* do banco.
- D. Define-se o esquema que deseja trabalhar com *search_path* para evitar usar o nome do esquema nas tabelas o tempo todo.
- E. Os valores do search_path podem conter esquemas separados por vírgula