# More About Lifelong Learning

楊舒涵



# Lifelong Learning Programme

Just joking!











#### Gutline

Hebbian Theory

Long-term Potentiation(LTP)

**Hebbian Theory** 

Competitive Hebbian Learning

- Knowledge Distillation
- Memory Aware Synapses : Learning what (not) to forget (MAS)
- Learning without Forgetting (LwF)
- Large Scale Incremental Learning (BiC)

Few-Shot Class-Incremental Learning (FSCIL)

LLL Nowadays & Future(?)

Hebbian Theory
(Humans & Machine Learning)

#### 長期增強效應 (LTP)

- ▶ 學習與記憶一般被認為是透過過改變突觸強度進行的
- ▶ LTP最早被發現於兔子的海馬迴,後來在生物的小腦、大腦 皮質、杏仁核都發現到此現象
- ▶ LTP和構成、強化學習與記憶相關
- > 突觸可塑性說明突觸強度是會改變的
- ▶ LTP是突觸可塑性的例子之一:透過長期高頻率的刺激讓突觸強度增強的現象 (1966實驗於兔子海馬迴)



#### 赫布理論 (Hebbian Theory)

- ▶ 解釋了在學習過程中腦神經所發生的變化的神經科學理論
- ▶ 赫布理論描述了突觸可塑性:突觸前神經元向突觸後神經元的持續重複刺激,可以導致突觸傳遞效能的增加
- ▶ 在NN中,可將神經突觸間傳遞作用的變化看作是weight的 變化

 $w_{ij} = x_i x_j\,$  ,  $w_{ij}$  : weight between node j and node i  $x_i$  : input of node I

Or

$$w_{ij} = rac{1}{p} \sum_{k=1}^p x_i^k x_j^k$$
 ,  $p$  : number of training patterns

# Competitive Hebbian Learning

- ▶ 非監督式學習, input傳入後,神經元群體會競爭對外界刺激的響應能力
- ▶ 競爭取勝的神經元的weight變化往對這個刺激模式競爭更為 有力的方向進行
- ► 任何時候output layer的神經元中有「恰好一個」是active (output最大者)
- ▶ 只有一個active: 適合用於classification和clustering

Knowledge Distillation

#### Problem Statement

訓練model和使用model的需求不同、model compression





#### Problem Statement

訓練model和使用model的需求不同、model compression

訓練時想達到好成效的方法:

- 1. 利用多種不同方法,再平 均各方法的結果
- 2. 單一模型使用大量的 dataset





### 2s it possible?

Class Label **BERT** 差不多效 小模型  $\mathsf{E}_\mathsf{N}$ Tok M [SEP] Sentence 2 Sentence 1 測試用 訓練結果

# What is "Knowledge"?

Knowledge:平時可能會覺得是整個模型的參數、或機器學習算法,但這裡會將其認為是學習把input vector映射到output vector

儘管正常model在學習後大多能夠在正確的類別上有最大的機率 (判斷正確),但還是會有判定錯誤的時候,而不同model判定錯 誤的機率也會有差





# Knowledge Distillation

一般model的class probabilities通常都使用softmax output layer將算式的2i經考慮所有類別的情況後轉換成機率qi,以此和其他2i component作比較

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

T又被稱為temperature(蒸餾的溫度),當 T= 1時,即為普通的 softmax function

# What is "Temperature" for?

可以在此對 
$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$
 做觀察:

若現在2=[3,10],則在不同蒸餾溫度下呈現的類別機率為:

T= 1時,類別機率陣列: [0.091%, 99.91%]

T=5時,類別機率陣列:[19.78%, 80.22%]

T = 10時,類別機率陣列: [33.18%, 66.82%]

由上面的觀察中,可以看出蒸餾溫度T越大,機率會越接近。 換言之,T越大,function會越soft

# Knowledge Distillation

由前一頁的結論,可定義出soft targets (由蒸餾法算出的class probability)和hard targets (softmax生成的class probability)

這裡可以想到一個方法達成knowledge distillation:可由大model產生soft targets 當成小model的ground truth 訓練小model,而soft targets含有更高的資訊量(entropy),故能使小model用更少的樣本、更大的learning rate去學到接近大model的表現

最後,把小model在 soft targets 上訓練後的cross entropy loss,加上在hard targets上訓練後的cross entropy loss乘上 1/T^2 相加得到 overall loss (Hard targets 上面乘1/T^2是因为 soft targets 生成過程中蒸餾法求導函數會產生1/T^2,而為了保持兩個loss 的影響接近才這麼做的)

### Why knowledge distillation works?

可以想成T越大,class probabilties就越相近,使訓練上更嚴格,而切換回一般softmax就回歸容易模式,故效果較佳。



平時訓練綁鉛塊的小李(辛苦)



比試時拿掉鉛塊的小李(輕盈)

Memory Aware Lynapses: Learning
what(not) to forget
(MAS)

#### Problem Statement

本篇要解決的課題為:隨著學習新tasks,不斷累積新知 改善災難性遺忘

Model-Based:在訓練過程中不會額外新增參數,也不會使用到過去的資料。Loss function部分,除了原有的loss,還會新增一項代表各參數的重要性的正則項。

Ex:  $L(\theta) = L_n(\theta) + \sum_{i,j} \Omega_{ij} (\theta_{ij} - \theta_{ij}^*)^2$  一般新task的 loss function 不管學數的重 的差值 要性

#### 達成項目

- 1. Constant Memory: Model佔用的内存應為constant,避免内存的使用隨著任務的數量進行增加
- 2. Problem Agnostic: Model通常來說,不該被限制在某種特定類型的task (Ex: 只做分類)
- 3. On Pretrained:可以在已有的優良pretrained model上,根據一己需求使用並並調整些微參數
- 4. Unlabelled Data:能夠用於unlabeled data和unsupervised learning (第一篇達成者)
- 5. Adaptive:對於固定capacity的NN来说,能夠適當調整必須保留的參數量即可為之後更多新的tasks保留更多學習的capacity

### Concepts

過去包含EWC等論文, importance的定義通常和參數改變對loss的敏感程度相關, 而MAS則有所不同:

$$F(x_k; \theta + \delta) - F(x_k; \theta) \approx \sum_{i,j} g_{ij}(x_k) \delta_{ij}$$

上式中的F為此model訓練出的學習函數; $x_k$ 為input的點;

heta 為此 $\mathsf{model}\,F$  的各個參數; $\delta$  為微小的參數改變

根據像是泰勒展開的公式,而在  $g_{ij}(x_k) = \frac{\partial (F(x_k;\theta))}{\partial \theta_{ij}}$ 下,可完成上面的簡化。

意思為: 更動參數對「model自己學得的 learning function」影響 是否敏感

### Concepts

根據計算上的方便和後續推展(左右都取L2-square),可將 $g_{ij}(x_k)$ 重新定義為:

$$g_{ij}(x_k)$$
重新定義為:  
 $g_{ij}(x_k) = \frac{\partial [\ell_2^2(\bar{F}(x_k;\theta))]}{\partial \theta_{ij}}$ 

對Scalar加總比對vector加總容易處理,而其重要性權重為:

$$\Omega_{ij} = \frac{1}{N} \sum_{k=1}^{N} ||g_{ij}(x_k)||, N$$
 為所有點的數量

最終可得到: 
$$L(\theta) = L_n(\theta) + \lambda \sum_{i,j} \Omega_{ij} (\theta_{ij} - \theta_{ij}^*)^2$$

# fearned function vs. foss



Importance和learned function

Importance和loss相關: 新型所屬的學術學與一個一個一個 古典學術學的學術學的 古典學術學的 Truthear red function為 mapping function,故不一定要ground truth (可添加unlabelled data— 起訓練)

一個learned function F 可以以每一層為單位分開拆解成

$$F(x) = F_L(F_{L-1}(...(F_1(x))))$$

下圖為示意圖





Layer I 
$$y^{l-1} = \{y_i^{l-1}\}$$
  $y^l = \{y_j^l\}$   $y_j^l$   $y^{l-1} = F_{l-1}(...(F_1(x)))$ 

Local function :  $F_{l}$ 

$$\ell_2^2(F_l(y^{l-1}; \theta_l + \delta_l)) - \ell_2^2(F_l(y^{l-1}; \theta_l)) \approx \sum_{i,j} g_{ij}(x) \delta_{ij}$$

A fully connected layer with I \* J parameters :

$$egin{aligned} y_j^l &= ReLU(out_j^l) \; out_j^l = \sum_{h=1}^I heta_{hj} * y_h^{l-1} \ g_{ij}(x) &= rac{\partial [\ell_2^2(F_l(y^{l-1}; heta_l))]}{\partial heta_{ij}} \ &= rac{\partial [\sum_{o=1}^J (y_o^l)^2]}{\partial heta_{ij}} = \sum_{o=1}^J rac{\partial ((y_o^l)^2)}{\partial heta_{ij}} \end{aligned}$$

Since  $\frac{\partial ((y_o^l)^2)}{\partial \theta_{ij}} = 0$  when  $o \neq j$ , we get

$$g_{ij}(x) = \frac{\partial ((y_j^l)^2)}{\partial \theta_{ij}} = 2*y_j^l*\frac{\partial (y_j^l)}{\partial \theta_{ij}} = 2*y_j^l*\frac{\partial (ReLU(out_j^l))}{\partial \theta_{ij}}$$

1. if  $out_j^l > 0$ ,  $ReLU(out_j^l) = out_j^l$  and (ReLU)' =1 :

$$\begin{split} \frac{\partial (ReLU(out_{j}^{l}))}{\partial \theta_{ij}} &= \frac{\partial (ReLU(out_{j}^{l}))}{\partial out_{j}^{l}} \frac{\partial (out_{j}^{l})}{\partial \theta_{ij}} = \frac{\partial (out_{j}^{l})}{\partial \theta_{ij}} \\ &= \frac{\partial (\sum_{h=1}^{I} \theta_{hj} * y_{h}^{l-1})}{\partial \theta_{ij}} = \frac{\partial (\theta_{ij} * y_{i}^{l-1})}{\partial \theta_{ij}} = y_{i}^{l-1} \\ &\Rightarrow g_{ij}(x) = 2 * y_{j}^{l} * y_{i}^{l-1} \end{split}$$

2. in the other case,  $ReLU(out_j^l) = 0$  and (ReLU)' = 0, so

$$g_{ij}(x) = 0$$

At the same time,

$$ReLU(out_j^l)=0 \Rightarrow y_j^l=0$$
 and  $2*y_j^l*y_i^{l-1}=0$ 

Hence

$$g_{ij}(x) = 2*y_j^l*y_i^{l-1} = 0$$

綜合
$$1 \cdot 2$$
,可得到  $g_{ij}(x) = 2 * y_i^{l-1} * y_j^l$ 

和前述介紹的Hebbian Theory  $w_{ij}=x_ix_j$  相像

#### Contribution

MAS estimates importance weights for all the network parameters in an unsupervised and online manner, allowing adaptation to unlabeled data.

They show how a local variant of MAS is linked to the Hebbian learning scheme.

在當時,超越state-of-the-art

Learning without forgetting

# Briginal Model

#### (a) Original Model



上圖是 AlexNet, $\theta_s$ 為前 5 層的convolutional layers + 後2層 full connected layers;最後一層是和class相關的output layer,以 $\theta_o$ 表示。若加入新的分類任務,則把 new task 的參數先隨機初始化,並令其為 $\theta_n$ 。

# fine-tunung



 $\theta_s$ 和 $\theta_o$ 都進行優化,其中將 $\theta_o$ 固定。使用low learning rate學習 $\theta_n$ 。另一種可能是把 $\theta_s$ 中的前5層參數固定,避免overfitting,而微調所有full connected layers的參數,本文稱此實驗為**Finetune-FC**。

微調因為沒有舊任務樣本而在舊任務上表現變差。

# feature fxtraction

(c) Feature Extraction

Input:

new task image

new task

new task

new task

 $heta_s$ 和 $heta_o$ 都不變,自NN中的一個或多個中間層的輸出被用來訓練新任務的參數 $heta_n$ 

ground truth

Feature extraction通常在新任務上表現不佳,因为共享參數不能表示 一些new tasks獨有的特徵表示

# Joint Training

#### (d) Joint Training



所有參數 $\theta_s$ 、 $\theta_o$ 、 $\theta_n$ 都進行學習優化,通常這個方法產生的結果是最好的,所以一般視為增量學習方法的性能上界(upper bound)

Joint Training的問題為:以前的數據可能因為隱私問題得不到,而且 network的capacity也會不斷增加

# Learning without forgetting

(e) Learning without Forgetting



使用带有regularization的 SGD 訓練network

首先固定 $\theta_s$ 、 $\theta_o$ 不變,然後使用new task的dataset訓練 $\theta_n$ 直至收斂 (warm-up step);接著,再聯合訓練所有參數( $\theta_s$ 、 $\theta_o$ 、 $\theta_n$ )直到收斂 有點類似Joint Training,但只需要new task的dataset

## foss function

Loss 1: 一般針對new task的誤差估算

$$\mathcal{L}_{new}(\mathbf{y}_n, \mathbf{\hat{y}}_n) = -\mathbf{y}_n \cdot \log \mathbf{\hat{y}}_n$$

Loss 2:針對old task的knowledge distillation loss function (第一個在LLL引入)

$$\mathcal{L}_{old}(\mathbf{y}_o, \hat{\mathbf{y}}_o) = -H(\mathbf{y}'_o, \hat{\mathbf{y}}'_o)$$
$$= -\sum_{i=1}^l y'_o(i) \log \hat{y}'_o(i)$$

$$y_o^{\prime(i)} = \frac{(y_o^{(i)})^{1/T}}{\sum_j (y_o^{(j)})^{1/T}}, \quad \hat{y}_o^{\prime(i)} = \frac{(\hat{y}_o^{(i)})^{1/T}}{\sum_j (\hat{y}_o^{(j)})^{1/T}}$$

Total loss: 
$$\theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \underset{\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n}{\operatorname{argmin}} \left( \lambda_o \mathcal{L}_{old}(Y_o, \hat{Y}_o) + \mathcal{L}_{new}(Y_n, \hat{Y}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n) \right)$$

Regularization項

# fwf Algorithm

#### LEARNINGWITHOUTFORGETTING:

#### Start with:

 $\theta_s$ : shared parameters

 $\theta_o$ : task specific parameters for each old task

 $X_n$ ,  $Y_n$ : training data and ground truth on the new task

#### Initialize:

$$Y_o \leftarrow \text{CNN}(X_n, \theta_s, \theta_o)$$
 // compute output of old tasks for new data  $\theta_n \leftarrow \text{RANDINIT}(|\theta_n|)$  // randomly initialize new parameters

#### Train:

Define 
$$\hat{Y}_o \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_o)$$
 // old task output
Define  $\hat{Y}_n \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_n)$  // new task output
$$\theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \underset{\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n}{\text{argmin}} \left( \lambda_o \mathcal{L}_{old}(Y_o, \hat{Y}_o) + \mathcal{L}_{new}(Y_n, \hat{Y}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n) \right)$$

使用同一個dataset對new task進行監督式學習、old task進行非監<mark>督式學</mark>習從而得到可以在new/old task都表現良好的( $\theta_s$ 、 $\theta_o$ ) $\theta_n$ )

Large Scale Incremental Learning

#### Problem

Incremental learning methods have been proposed to retain the knowledge acquired from the old classes, by using knowledge distilling and keeping a few exemplars from the old classes.

However, these methods struggle to scale up to a large number of classes.

- (1) The data imbalance between the old and new classes
- (2) The increasing number of visually similar classes



當classes數目增加時,除了本篇以外的2個 incremental learning methods的performance都明顯地下降

## Hypothesis

The last fully connected (FC) layer is biased as the weights that are not shared across classes. (結果特別偏袒new classes)



左圖為由incremental learning methods面對由80個類別增至100個類別時,沒有做FC調整的結果

#### Bit (bias correction) Method



The data, including exemplars from the old classes and samples from the new classes, are split into a training set for the first stage and a validation set for the second stage.

The bias correction layer is learned at the second stage, after learning the convolution layers and FC layer at the first stage.

Note that  $val_{old}$  and  $val_{new}$  are balanced.

# Stage 1

#### Old model



the samples of the new classes :  $X^{m} = \{(x_{i}, y_{i}), 1 \leq i \leq M, y_{i} \in [n + 1, ..., n + m]\}$ 

M is the number of new samples,  $x_i$  and  $y_i$  are the image and the label, respectively.

The selected exemplars from the old n classes :  $\hat{X}^n = \{(\hat{x}_j, \hat{y}_j), 1 \leq j \leq N_s, \hat{y}_j \in [1, ..., n]\}$ , where  $N_s$  is the number of selected old images  $(N_s/n \ll M/m)$ .

# Stage 1

the output logits of the old classifiers :  $\hat{\mathbf{o}}^n(x) = [\hat{o}_1(x), ..., \hat{o}_n(x)]$ 

the output logits of the new classifiers:

$$\mathbf{o}^{n+m}(x) = [o_1(x), ..., o_n(x), o_{n+1}(x), ..., o_{n+m}(x)]$$

Distilling loss:

$$L_d = \sum_{x \in \hat{X}^n \cup X^m} \sum_{k=1}^n -\hat{\pi}_k(x) \log[\pi_k(x)],$$

T: 蒸餾溫度

$$\hat{\pi}_k(x) = \frac{e^{\hat{o}_k(x)/T}}{\sum_{j=1}^n e^{\hat{o}_j(x)/T}}, \quad \pi_k(x) = \frac{e^{o_k(x)/T}}{\sum_{j=1}^n e^{o_j(x)/T}}$$

Total loss:  $L = \lambda L_d + (1-\lambda)L_c$  Classifiacation error

The scalar  $\lambda$  is set to  $\frac{n}{n+m}$ , where n and m are the number of old and new classes.

## Stage 2

Keep the output logits for the old classes (1, ..., n) and apply a linear model to correct the bias on the output logits for the new classes (n + 1, ..., n + m) as follows

 $q_k = \begin{cases} o_k & 1 \le k \le n \\ \alpha o_k + \beta & n+1 \le k \le n+m \end{cases}$ 

where  $\alpha$  and  $\beta$  are the bias parameters on the new classes and  $o_k$  is the output logits for the k-th class.

When optimizing the bias parameters, the convolution and FC layers are frozen. The classification loss (softmax with cross entropy) is used to optimize

the bias parameters as follows

$$L_b = -\sum_{k=1}^{n+m} \delta_{y=k} \log[softmax(q_k)]$$

#### Results



隨著類別數增加,有無進行bias correction的差別便越顯著

## Results

| Variations  | cls loss | distilling loss | bias removal | FC retrain | 20    | 40    | 60    | 80    | 100   |
|-------------|----------|-----------------|--------------|------------|-------|-------|-------|-------|-------|
| baseline-1  | <b>√</b> |                 |              |            | 84.40 | 68.30 | 55.10 | 48.52 | 39.83 |
| baseline-2  | ✓        | ✓               |              |            | 85.05 | 72.22 | 59.41 | 50.43 | 40.34 |
| BiC(Ours)   | ✓        | ✓               | ✓            |            | 84.00 | 74.69 | 67.93 | 61.25 | 56.69 |
| upper bound | ✓        | ✓               |              | ✓          | 84.39 | 76.15 | 69.51 | 64.03 | 60.93 |



## Few-Shot Class-Incremental Learning

此方法也是為了解決new/old class imbalance的問題,而其作用在小樣本上,因此不平衡的情況會很嚴重(傾向於樣本多的資料)

以Neural gas (NG)取代knowledge distillation,認為後者最主要的問題在於new/old task的不平衡,且distilling loss和classification loss會彼此影響

應用拓撲學和生理神經相關的Hebbian learning做為發想(神經元之間的連結若原本的拓撲結構被破壞,則容易遺忘),提出TOpology-Preserving knowledge InCrementer (TOPIC)架構。

#### 大致概念



Explanation of NG stabilization and adaptation.

每一個node會進行competitive learning,而node的增加代表class的增加。在此一演算法中,要根據data提供的ground truth對model 進行調整,且必須維持model的topology structure。 fff Nowadays & Future (?)

# fff Nowadays & Future (?)

目前LLL相關研究普遍還是以學術為主,商業方面近乎沒有:曾經問過一位Google相關的高層主管,認為當前企業在擁有大量的data下,會傾向於花更多資源將models分別訓練(相較於LLL)並得到效果更佳的model (如同對unlabelled data training的想法)

然而,也許未來會因為對適應大規模信息量的model有所需求而使這項技術被業界所關注等等也不一定(?) (傳統的深度學習演算法大多只關注於小樣本內的非類等工作,對大數據環境缺乏適應力)

現在看似沒有實際應用價值的技術未必真的沒有用,也許只是還沒想到或時機未到!

