Diagrama de Forças, Sistemas de corpos e o cálculo da aceleração

O que é um diagrama de forças?

Um diagrama de forças é um esquema onde são expostas todas as forças que atuam sobre os corpos de um sistema.

Legenda:

A - Corpo A

B - Corpo B

F - Força externa aplicada ao corpo A

F_{AB} - Força que o corpo A faz sobre o B

F_{BA} - Força que o corpo B faz sobre o A

Vamos analisar primeiro o corpo B:

De onde surge a força aplicada em B (F_{AB}) ?

Quando a força F, aplicada sobre o corpo A, o empurra, a única forma desse corpo se mover é indo para a direita, mas para fazer isso o corpo A NECESSARIAMENTE tem que empurrar o corpo B, logo a força F_{AB} é a força que o A faz sobre o B.

Obs.: A força F está aplicada apenas sobre o corpo A, não sobre o corpo B.

Sendo assim a força resultante sobre o corpo B é a força F_{AB} !

Logo $F_{RB} = F_{AB}$ -> Força resultante em B (F_{RB}) é igual a força que A faz em B

E como é $F_{RB}=m_B$. a -> podemos concluir que $F_{AB}=m_B$.a!

onde "a" é a aceleração sofrida pelo corpo B e m_B é a massa do corpo B

Vamos analisar agora o corpo A:

Quais são as forças aplicadas em A?

$$F_{RA} = F - F_{BA}$$

Sobre o corpo A temos duas forças horizontais, a força F apontando para a direita e a força de reação do corpo B sobre o A (F_{BA}) , apontando para a esquerda.

Sendo assim a força resultante sobre o corpo A é a soma de duas forças, uma para a direita, que convencionamos positiva F, e uma para a esquerda que dizemos negativa F_{BA}.

E como $F_{RA} = m_A \cdot a$, temos que:

$$F-F_{BA}=m_A.a$$

F_{RA} -> Força resultante em A

m_A -> massa de A

a -> aceleração do corpo A

Lembrando aos desatentos: Se F_{RA} =F- F_{BA} e F_{RA} = m_{A} .a, logo F- F_{BA} = m_{A} .a

Voltando ao sistema inicial temos equações, uma para A e outra para B

Assim temos:

$$\left\{egin{aligned} F-F_{BA}=m_A.\,a\ F_{AB}=m_B.\,a \end{aligned}
ight.$$

Através deste sistema podemos calcular a aceleração "a" que os blocos sofrem!
OBS.: A aceleração a é a mesma para os dois blocos, pois eles jamais se separam!

Exemplo Resolvido

1. (0,5) Uma força horizontal F aplicada no corpo A, tem módulo 112 N e empurra o sistema de corpos representado na figura ao lado. As massas dos corpos A, B e C são respectivamente 6 kg, 10kg e 12 kg, desconsiderando os atritos existentes no sistema, calcule:

- b) A força que A exerce em B;
- c) E a força que B exerce em C.

Passo 1 - Diagrama de forças sobre cada corpo

Temos que ter em mente que:

A força F empurra o corpo;

O corpo A empurra o B ->F_{AB};

O corpo B empurra o C para frente ->F_{BC};

O corpo B reage e empurra o A para trás -> F_{BA};

O corpo C reage e empurra o B para trás -> F_{CB};

Estou desconsiderando a força Peso e a Normal em relação ao solo, mas eles existem e estão presentes, apenas se anulam!!

Analisando o corpo A, temos:

$$F_{RA} = F - F_{BA}$$
 ou seja:

$$m_A$$
 . $a=F-F_{BA}$

Analisando o corpo B, temos:

$$F_{RB} = F_{AB} - F_{CB}$$

ou seja:

$$m_B$$
 . $a=F_{AB}-F_{CB}$

Analisando o corpo C, temos:

$$F_{RC}=F_{BC}$$
 ou seja:

$$m_C$$
 . $a=F_{BC}$

Juntando todas as equações, temos:

$$egin{cases} m_A.\,a = F - F_{BA} \ m_B.\,a = F_{AB} - F_{CB} \ m_C.\,a = F_{BC} \end{cases}$$

Para resolver o sistema, recomendo a soma das equações.

A soma das equações que estão do lado esquerdo = a soma das que estão d<u>o lado direito</u>, assim temos:

$$m_A.\,a + m_B.\,a + m_C.\,a = F - F_{BA} + F_{AB} - F_{CB} + F_{BC}$$

Obs. 1: Notem que em um sistema de 2 corpos, tínhamos duas equações, agora com 3 corpos temos 3 equações, em um sistema de 4 corpos teríamos 4 equações e assim sucessivamente.

Obs. 2: As forças F_{AB} e F_{BA} são um par ação (F_{AB}) e reação F_{BA} , logo elas tem exatamente a mesma intensidade;

Obs. 3:As forças F_{BC} e F_{CB} são um par ação (F_{BC}) e reação F_{CBA} , logo elas tem exatamente a mesma intensidade;

$$m_A.\,a + m_B.\,a + m_C.\,a = F - F_{BA} + F_{AB} - F_{CB} + F_{BC}$$

A letra "a)" do exercício pede para descobrir a aceleração do sistema, achar o "a": Como m_A=6kg, m_B=10kg e m_C=12kg, do lado esquerdo da equação temos:

$$6kg. a + 10kg. a + 12kg. a = 28kg. a$$

Para o lado direto já sabemos que:

 $F_{AB} = F_{BA}$, logo elas se anulam!

F_{CB}=F_{BC}, logo elas se anulam!

$$28kg. a = F - F + F + F + F + F$$

ou seja: |28kq . a=F|

Mas como F=112N, temos:

$$28kg. a = 112N$$

Isolando a, fica:

$$a = \frac{112N}{28kg}$$

$$a=4m/s$$

UFA!!! FINALMENTE!!!

Calma, recém terminamos a letra "a)"

A letra "b)" pede para descobrirmos a força que A exerce em B, força F ou F_{RΔ} (já sabemos que são iguais)

Para descobrirmos F_{AB} temos de retornar ao sistema:

$$egin{cases} m_A.\,a=F-F_{BA} \ m_B.\,a=F_{AB}-F_{CB} \ m_C.\,a=F_{BC} \end{cases}$$

Vamos utilizar apenas a primeira equação, pois queremos saber F_{BA} e já temos todas as demais variáveis

Logo, temos:

Logo, temos:
$$6kg.4m/s=112N-F_{BA} \\ 24N=112N-F_{BA} \\ \longrightarrow \begin{array}{c} 24N-112N=-F_{BA} \\ -88N=-F_{BA} \end{array} \longrightarrow \begin{array}{c} F_{BA} \\ \longrightarrow \end{array}$$

$$lacksquare 24N-112N=- \ -88N=-F_{BA}$$

$$F_{BA} = 88N$$

A letra "c)" pede para descobrirmos a força que B exerce em C, força F_{BC} ou F_{CB} (já sabemos que são iguais) e de forma análoga a "letra b)", temos:

Retornando ao sistema:

$$\left\{egin{array}{l} m_A.\,a=F-F_{BA}\ m_B.\,a=F_{AB}-F_{CB}\ m_C.\,a=F_{BC} \end{array}
ight.$$

Vamos utilizar apenas a terceira equação, pois queremos saber F_{BC} e já temos todas as demais variáveis

Logo, temos:

$$12kg.4m/s=F_{BC}$$

AGORA SIM ACABOU \o/

Exemplo Resolvido

- No sistema representado na figura, as massas dos blocos A e B são respectivamente 3 kg e 1 kg. Despreze qualquer atrito. Determine:
 - a. A aceleração do sistema
 - b. A força de tração no fio que liga os dois corpos.

Diagrama de forças:

Desta forma as forças que nos

interessam são:

Força de tração da corda sobre os corpos ->FT

Força Peso sobre o corpo B -> P_B

Força Peso sobre o corpo A -> P_A Normal em relação ao solo no corpo A -> N_A

Quando na HORIZONTAL a Força peso e a normal em relação ao solo SEMPRE tem a mesma direção e intensidade, mas possuem sentidos opostos, logo se anulam!!

Obviamente a Força de tração sempre puxa os corpos no sentido da corda, assim como sempre exerce exatamente força de mesma intensidade nos dois extremos da corda!!

Analisando A, temos:

ou seja:

$$egin{aligned} F_{RA} &= F_T \ m_A \ldotp a &= F_T \end{aligned}$$

Analisando B, temos:

Montando o Sistema:

$$\left\{egin{aligned} m_A.\,a = F_T \ m_B.\,a = P_B - F_T \end{aligned}
ight.$$

Resolvendo o sistema por soma:

oor soma:
$$egin{aligned} igg| m_A.\,a &= F_T \ m_B.\,a &= P_B - F_T \ \hline m_A.\,a &+ m_B.\,a &= igg| + P_B - igg| \end{aligned}$$

um soma e o outro diminui, logo se anulam!

Então temos:
$$\, m_A .\, a + m_B .\, a = P_B \,$$

mas como: $P_B=m_B$. g

então: m_A . $a+m_B$. $a=m_B$. g

Resolvemos a letra "a)"

$$3kg. a + 1kg. a = 1kg.10m/s^2$$

$$4kg.\,a=10kg.\,m/s^{2}$$

$$a=rac{10kg.m/s^2}{4kq}$$

$$a=2,5m/s^{ t 2}$$

Letra "b)" qual é a F_⊤ -> Força de tração?

Essa é bastante simples, voltamos ao sistema:

$$egin{aligned} m_A.\,a &= F_T \ m_B.\, q &= P_B - F_T \end{aligned}$$

nos dá exatamente o que queremos!

Assim:

$$F_T=3kg.2,5m/s^{2} \ F_T=7,5N$$

$$F_T=7,5N$$

Esse foi fácil demais!!

Antes de olhar a resolução deste exemplo tente fazer sozinho(a) esse é com atrito! :D

Exemplo Resolvido:

Dois corpos A e B, de Massas M_A = 3kg e M_B = 2kg, estão ligados por uma corda de peso desprezível que passa sem atrito pela polia, como mostra a figura a seguir:

Entre A e a mesa existe atrito de coeficiente μ_c = 0,5, a aceleração da gravidade vale g=10m/s² e o sistema é mantido inicialmente em repouso. Qual aceleração atingem os blocos após o sistema ser liberado?

Já tentou? boa! Vamos ver se acertou!

Montando o diagrama:

T -> força de tração na corda

P_R -> Força peso em B

F_{ATC} -> Força de atrito cinético

(queremos saber a aceleração, então

o sistema deve estar em movimento)

Novamente estamos na horizontal, logo a normal com o solo sobre A e o seu peso irão se anular!

para A, temos:

então: $F_{RA} = T - F_{ATC}$

ou seja: M_A . $a=T-F_{ATC}$

Lembrando que $F_{ATC} = \mu_c.N$ e que no plano horizontal Normal = Peso

temos: M_A . $a=T-\mu_C$. M_A . g

para B, temos:

logo: $F_{RB}=P_B-T$

Por adotado: of sentino do no provincio de no provincio de no provincio de negativa!

sentido do movimento

$$M_A.\,a + M_B.\,a = T - \mu_C.\,M_A.\,g + M_B.\,g - T$$

as trações se anulam

Como:

$$M_B = 2kg$$

$$\mu_{\rm C}$$
=0,5

 $\mu_{\rm C} = 0.5$ g=10m/s² Temos: $3kg. a + 2kg. a = 2 - 0, 5.3kg. 10m/s^2 + 2kg. 10m/s^2 - 2 = 2 - 0, 5.3kg. 10m/s^2 + 2kg. 10m/s^2 - 2 = 2 + 2 + 2kg. 10m/s^2 - 2 = 2 + 2kg. 10m/s^2 - 2$

logo:
$$5kg. a = -15kg. m/s^2 + 20kg. m/s^2$$

$$5kg. \, a = 5kg. \, m/s^2$$

$$a=rac{5kg.m/s^2}{5kg}$$

 $a=1m/s^2$

Para achar a Tração (T), fazemos:

$$\left\{egin{aligned} M_A.\,a &= T - \mu_C.\,M_A.\,g \ M_B.\,a &= M_B.\,g - T \end{aligned}
ight.$$

pode-se escolher qualquer equação, escolhi a de baixo, pois tem uma variável a menos para digitar :P

logo:
$$2kg.1m/s^2=2kg.10m/s^2-T$$
 $2N=20N-T$ $2N-20N=-T$ $-18N=-T$

$$T=18N$$

Há uma lista de exercícios no sigaa sobre o tema!

Lista de exercícios: Clique Aqui!

