Inne techniki ATM, IP QoS, MPLS

- Technika (technologia) STM i ATM
- Podstawy techniki ATM
- Ogólna charakterystyka źródeł ruchu
- Czy istnieje konieczność ewolucji sieci IP do sieci IP QoS?
- Architektury sieci IP QoS
- Sieć IP QoS z IntServ
- Sieć IP QoS z DiffServ
- Struktura sieci IP QoS
- Kilka uwag końcowych o IP QoS
- Dlaczego MPLS?
- Podstawowe składniki MPLS
- Format pakietu MPLS

Technika (technologia) STM i ATM

- Dotychczas omawiana sieć telekomunikacyjna realizowana jest na bazie techniki PCM i ma tą cechę, że zasoby sieci są wykorzystywane w sposób synchroniczny dla realizacji połączenia. Synchronizm ten został wymuszony przez zasadę tworzenia strumienia PCM dla telefonii.
- W związku z tym okres udostępniania zasobów dla połączenia wynosi 125 mikrosekund. W tej sieci TKM podstawowym zasobem jest szczelina czasowa na której realizowany jest kanał B o przepływności 64kbit/s.
- Zestawienie połączenia związane jest z jednoznacznym przydzieleniem szczelin czasowych w łańcuchu połączeniowym od abonenta do abonenta. Przydzielone szczeliny czasowe są dostępne tylko i wyłącznie dla tego połączenia.
- Wykorzystanie przydzielonych zasobów na przesyłanie informacji użytkowej w zależności od rodzaju usługi może być stosunkowo małe, a więc koszt usługi jest znaczny, gdy w sieci tych zasobów brak.

- Synchroniczne pojawianie się szczelin czasowych dla danego połączenia wymusza na źródle informacji dostarczania tej informacji także w sposób synchroniczny.
- Przyjęta zasada jest wygodna w przypadku, gdy mamy źródła typu mowa i stosujemy technikę PCM.
- Niestety w miarę rozwoju sieci i usług ten wymóg staje się ograniczeniem dla rozwoju sieci telekomunikacyjnej w sensie otwartości na potrzeby zgłaszane przez abonentów oraz możliwości jakie oferują nowe technologie.
- Szczególnie widoczne to jest w dotychczasowym ograniczeniu maksymalnej przepływności jaka może być przydzielona dla danego połączenia. Ponieważ podstawowy styk węzła komutacyjnego wynika także z rozwiązania PCM to przepływność ta nie może być większa niż 30B.
- To niestety jest zbyt mała przepływność dla usług szerokopasmowych, które wymagają przepływności powyżej 30B.

Symbolicznie pokazano te ograniczenia na rysunku, zarówno dla strony abonenta jak i międzywęzłowej.

Dwie drogi rozwiązania problemu!

- Początkowo zajęto się rozwiązaniami, które umożliwiłyby usunąć przyczynę ograniczającą możliwość rozwoju usług, tzn. przepływność kanału, gdyż taka była potrzeba.
- Mianowicie w ramach tej samej technologii, tzn. technologii zakładającej synchroniczność dostarczania i transportu informacji, zwiększono przepływności dopasowując się do przepływności stosowanych w systemach transmisyjnych PDH.
- Wprowadzono zatem styk U_B abonenta B-ISDN o przepływności do 600Mbit/s. Jednocześnie opracowano węzły komutacyjne, które umożliwiały komutowanie strumieni o tak dużych przepływnościach.
- Takie rozwiązania miały swoje instalacje próbne, np. projekt BERKOM zrealizowany w Berlinie Zachodnim w latach osiemdziesiątych.
- Niestety technologia w której zastosuje się podejście synchroniczne jest mało elastyczna na zmiany związane z zmieniającym się zapotrzebowaniem na przepływność.
- Są dwie przyczyny tych zmian: rozwój usług oraz postęp w technikach przetwarzania i kodowania informacji.

- Różnorodność usług generuje różne przepływności strumieni informacji dla których ta zmienność może być wręcz ciągła.
- Z kolei rozwój technik przetwarzania i kodowania informacji zmierza do ciągłego zmniejszania przepływności strumienia przy zachowaniu jakości usług.
- Takie postępowanie jest uzasadnione minimalizacją kosztów przez zmniejszanie zasobów niezbędnych dla realizacji kanału.
- To powoduje, że wczorajsza usługa wymaga dzisiaj mniejszej przepływności.
- Sieć telekomunikacyjna powinna być do tego dostosowana.
- Niestety rozważane sieci nie potrafią się do tego dostosować, gdyż żądają dostarczania informacji w sposób synchroniczny i to o określonej przepływności.
- Wynika to z rozwiązań zastosowanych w tej technologii, która to technologia otrzymała nazwę <u>STM (Synchronous Transfer Mode)</u>.

Alternatywnym rozwiązaniem było wprowadzenie nowej technologii!

- Aby przezwyciężyć tę trudność należało zaproponować rozwiązanie nie narzucające konieczności dostarczania przez źródło strumienia informacji w sposób synchroniczny.
- Ponieważ rozwój usług i technologii spowodował, że strumień generowany przez źródło jest w ogólności asynchroniczny to oczywistym staje się założenie, że sieć telekomunikacyjna powinna także pracować asynchronicznie.
- Tą technikę (technologię) działania sieci nazwano w odróżnieniu od poprzedniej techniką <u>ATM (Asynchronous Transfer Mode)</u>.
- Rozwój i wprowadzenie technologii ATM był możliwy ze względu na znaczne zwiększenie szybkości pracy układów cyfrowych oraz znaczne zwiększenie przepływności systemów transmisyjnych.
- Pierwszy z czynników umożliwił zrealizowanie węzłów komutacyjnych o dużych możliwościach przełączania, drugi z kolei został osiągnięty przez wprowadzenie w sieci teletransmisyjnej optycznych systemów SDH.
- Zatem można było zaproponować nową technologię realizacji sieci telekomunikacyjnej otwartej na dowolne usługi telekomunikacyjne.

- W związku z powyższymi faktami nastąpiło zaniechanie prac i rozwijania sieci B-ISDN opartej na technologii STM.
- W połowie lat osiemdziesiątych rozpoczęto intensywne prace nad realizacją sieci B-ISDN opartej na technologii ATM. Często używa się skrótu sieć B-ISDN ATM.
- Wdrażanie tej sieci rozpoczęto w połowie lat dziewięćdziesiątych.

- Proszę zwrócić uwagę na fakt, że:
 - technologia ATM z punktu widzenia realizacji połączeń i właściwości kanałów jest asynchroniczna
 - ale składnikiem sieci telekomunikacyjnej z tą technologią jest sieć teletransmisyjna SDH zrealizowana w technologii STM.

Możliwe technologie realizacji sieci B-ISDN

STM

- wymóg synchronicznego dostarczania informacji przez źródło do sieci
- synchroniczny transport informacji w sieci telekomunikacyjnej
- sieć zorientowana połączeniowo
- przydział zasobów sieci telekomunikacyjnej na czas trwania połączenia tylko dla tego połączenia
- "dyskretny" przydział pasma (nx64kbit/sek)
- prostszy algorytm sterowania połączeniem i zarządzania zasobami sieci
- mała elastyczność w dostosowaniu się do potrzeb abonenta (potrzeb źródła ruchu)
- brak możliwości gradacji jakości usług sieć jest projektowana na jakość usług wymaganą dla usługi o najwyższej jakości

- obsługa asynchroniczności dostarczania informacji przez źródło do sieci
- zapewnienie dowolnego rodzaju transportu informacji w sieci telekomunikacyjnej (synchroniczny, asynchroniczny)
- sieć zorientowana połączeniowo
- przydział fizycznych zasobów tylko w chwili przesyłania informacji czyli ma miejsce współdzielenie zasobów przez większą liczbę połączeń
- "ciągły" przydział pasma
- złożony algorytm sterowania połączeniem i zarządzania zasobami sieci
- pełna elastyczność w dostosowaniu się do potrzeb ruchowych abonenta (potrzeb źródła ruchu)
- możliwość gradacji jakości usług od usługi do usługi oraz od połączenia do połączenia

Przykład rozwiązania w zarzuconej technologii dołączenia abonenta do sieci B-ISDN STM i realizacja węzła komutacyjnego

Podstawy techniki ATM

- W technice ATM podstawowym i niepodzielnym elementem przenoszącym informację (komutowanym i transmitowanym) jest <u>komórka</u> (cell) o długości 53 bajtów.
- Długość komórki została wybrana na zasadzie kompromisu.
- Komórka składa się z dwóch podstawowych pól:
 - nagłówka (header) 5 bajtów
 - pola informacji (information field) 48 bajtów

- <u>Nagłówek</u> przeznaczony jest do realizacji funkcji sterowania,
- **pole informacji** do przenoszenia informacji.
- Wyróżniono dwie podstawowe struktury komórek:
 - na styku abonent sieć (UNI User Node Interface),
 - na styku węzeł węzeł (NNI Network Node Interface).
- Komórki te różnią się strukturą pierwszego bajtu w nagłówku:
 - GFC Generic Flow Control (sterowanie strumieniem do sieci),
 - VPI -Virtual Path Identifier (identyfikator wirtualnej ścieżki).

bajt
 GFC
 VPI
 dla UNI
 bajt
 VPI
 dla NNI

Struktura nagłówka komórki

komórka na styku abonent-sieć (UNI)

komórka na styku węzeł-węzeł (NNI)

GFC - pole sterowania przepływem komórek na styku abonent-węzeł, VPI - identyfikator ścieżki wirtualnej, VCI - identyfikator kanału wirtualnego, PT - typ zawartości pola informacji użytkowej komórki, CLP - priorytet utraty (straty) komórki, HEC - pole kontrolne do wykrywania błędów nagłówka komórki

Ogólna koncepcja sieci B-ISDN ATM

🐨 sieć B-ISDN ATM jest:

- siecią czasu rzeczywistego,
- siecią otwartą na obsługę różnego rodzaju źródeł ruchu,
- siecią otwartą na usługi,
- siecią w której elementem przenoszącym informację jest komórka (nazywana też ramką ATM),
- siecią ze stratami zarówno na poziomie zgłoszeń jak i poziomie komórek,
- siecią w której opóźnienie transportu komórki jest zmienne.

Węzeł komutacyjny B-ISDN ATM

- Podobnie jak węzeł komutacyjny (B-)ISDN STM węzeł komutacyjny B-ISDN ATM musi realizować funkcje:
 - komutacji (łączenia),
 - utrzymania,
 - użytkowania,
 - zarządzania.
- Struktura ogólna węzła komutacyjnego B-ISDN ATM jest podobna (identyczna) z strukturą węzła komutacyjnego ISDN STM. Inna jest technika i technologia realizacji wyżej wymienionych funkcji.

Ogólna charakterystyka źródeł ruchu

Z uwagi na odmienne podejście do obsługi generowanych strumieni informacji (bitów) przedstawimy ogólny opis źródeł ruchu wskazując na istotne wielkości charakteryzujące te źródła ruchu. Wielkości te mają istotny wpływ na organizację i projektowanie sieci ATM.

Poziomy opisu strumieni

- Mamy trzy poziomy opisu strumieni:
 - 1. zgłoszeń (połączeń), 2. Wybuchów, 3. komórek.

Klasyfikacja źródeł ruchu

- Z punktu widzenia poziomu "burst" lub poziomu komórek wyróżniamy źródła typu:
 - CBR Constant Bit Rate (stały strumień bitów),
 - VBR Variable Bit Rate (zmienny strumień bitów).
- Wprowadzono także określenia strumieni:
 - ABR Available Bit Rate (dostępny strumień bitów),
 - UBR Unspecified Bite Rate (niewyspecyfikowany strumień bitów),
 - GFR Guaranteed Frame Rate (gwarantowana przepływność ramek).
- Ostatnie trzy określenia dotyczą raczej kategorii usług realizowanych przez sieć niż klasy źródła ruchu i nie są to jedyne klasy.
- Ponieważ były dwa ciała standaryzacyjne (ATM Forum i ITU-T) to w miarę rozwoju tej techniki uzyskano różny podział na klasy.
- W ramach klasy VBR wyróżniono VBR-rt i VBR-nrt (rt real time, nrt non real time).

Czy istnieje konieczność ewolucji sieci IP do sieci IP QoS?

- Jeżeli założymy, że IP ma być w przyszłości platformą dla wszystkich usług to odpowiedź jest trywialna, tzn. brzmi TAK.
- Dlaczego zatem IP chce i może pretendować do tej roli?
- Aby dać na to odpowiedź rozważmy główne grupy działające na rzecz realizacji usług komunikacji i informacji.
- Są to:
 - telekomunikacja,
 - techniki komputerowe (Internet z przyległościami),
 - media (dostawcy zawartości, głównie programy TV i TV kablowa).

Spróbujmy podać cechy, które są wspólne dla każdej z nich i możliwie dobrze je charakteryzują.

- Są to:
 - jakość usług,
 - szerokość pasma udostępniana usłudze,
 - elastyczność do zmian.
- <u>Telekomunikacja</u>: wysoka jakość, małe pasmo, mała elastyczność.
- <u>Techniki komputerowe</u>: żadna jakość, jako takie pasmo, wysoka elastyczność.
- *Media*: dość duża jakość, szerokie pasmo, żadna elastyczność.

Jeżeli chcemy aby te trzy grupy zainteresowań mogły działać na wspólnej platformie technologicznej to wymienione cechy muszą gdzieś się spotkać.

Jeżeli już istnieje konieczności przekształcenia sieci IP w sieć IP QoS to co ma wpływ na sposób podejścia do jej realizacji?

- Są to przede wszystkim:
 - charakter ruchu w sieci IP,
 - zmiany ruchu w sieci IP.
- Jednocześnie chce się zachować większość dotychczasowych cech sieci IP, które określają jej atrakcyjność. Są to:
 - prostota realizacji sieci,
 - możliwość dynamicznej zmiany struktury sieci,
 - możliwość maksymalnego wykorzystania zasobów sieci,
 - różnorodność sprzętowa,
 - niskie koszty eksploatacji,
 - niskie koszty usług komunikacji.

Charakter i zmiany ruchu w PSTN/ISDN

- obsługuje ruch, który jest przede wszystkim ruchem wynikającym z obsługi "mowy",
- jeżeli nawet weźmiemy pod uwagę usługi wynikające z:
 - sieci ISDN,
 - istnienia FAX'ów,
 - istnienia MODEM'ów

to i tak udział "mowy" znacznie przewyższa udział "danych",

- przyrost ruchu jest nieduży, zatem
- przyrost dochodu także nie będzie duży (nie mylić z wielkością dochodu!),
- modele ruchu są w miarę proste i sprawdziły się w praktyce inżynierskiej, tzn. zdały egzamin w projektowania sieci telekomunikacyjnej.

Charakter i zmiany ruchu w Internecie

- obsługuje ruch, który jest przede wszystkim ruchem wynikającym z obsługi "danych",
- ruch ma charakter fraktalny (samopodobny),
- mamy asymetrię ruchu,
- częste stany natłoku z uwagi na "www",
- następuje gwałtowny przyrost ruchu, który wynika z rozwoju aplikacji i to dla różnych dziedzin działalności,
- daje to nadzieję na duży przyrost dochodów (chociaż aktualnie z samej sieci jest nieduży!),
- brak modeli ruchu przydatnych w praktyce inżynierskiej, zatem otwarty jest problem projektowania sieci czyli wymiarowania jej zasobów!

Zmiany ruchu PSTN/ISDN i internetowego

Weźmiemy zatem pod uwagę: złożoność ruchu, składnik ruchu "mowa", składnik ruchu "dane"

Próba porównania PSTN/ISDN z Internetem

- świat telekomunikacji i świat internetu to dwa różne światy,
- startowały z różnych technologii i potrzeb usługowych,
- świat telekomunikacji metodycznie zauważył potrzebę zmian
 - i zaproponował, opracował i zrealizował sieci BISDN w technologii ATM,
 - technologia ta była pomyślana jako jednolita wspólna platforma dla wcześniej wymienionych trzech podmiotów,
 - początkowo świat internetu zaakceptował technologię ATM,
- jednakże z upływem czasu świat internetu odrzucił technologię ATM uważając, że jest ona obciążona cechami telekomunikacji z rodowodem "mowy",
- uważa się, że docelowa sieć Internetu nie będzie miała tej cechy,
- zatem musi ona być przede wszystkim dostosowana do swoich potrzeb
- i w jej ramach także obsłużyć "mowę", a nie odwrotnie.

- będziemy budować platformę opartą na IP starając się zachować jej dotychczasowe cechy
- dodamy jakość usług
- i obsłużymy także mowę

Architektury sieci IP QoS

- Dotychczasowa sieć IP stosuje podejście "best effort" czyli "przekażę najlepiej jak potrafię"
- inaczej mówiąc:
 - rutery IP przesyłają pakiety według zasady FIFO,
 - w przypadku przepełnienia bufora odrzucają nadmiarowe pakiety,
 - najlepiej jak potrafię to nie oznacza optymalizację wykorzystania zasobów,
 - a na ogół oznacza to że można by lepiej,
- czyli sieć ta nie rozróżnia klasy pakietów a tym samym nie może zróżnicować ich obsługi!
- W związku z tym jeżeli chcemy mieć sieć IP QoS to mamy dwa rozwiązania:
 - pozostawiamy brak rozróżnienia klas ale to wymaga aby sieć była dostosowana do klasy o najwyższej wymaganej jakości usługi,
 - różnicujemy pakiety w zależności od wymagań na jakość obsługi i obsługujemy pakiety w zależności od żądanej jakości obsługi.

Zauważmy, że nic nowego nie wymyślono!

- Tą drogę przeszła telekomunikacja:
 - pierwsze podejście zastosowano w sieci PSTN/ISDN,
 - drugie w sieci BISDN/ATM.
- Z tych doświadczeń korzystają propagatorzy IP QoS.
- Zauważmy, że fakt wprowadzenia zróżnicowania pakietów generuje konieczność dwóch poziomów obsługi:
 - poziomu żądań usługi (zgłoszeń) muszę stwierdzić czy mam wystarczające zasoby aby spełnić wymagania użytkownika lub co mu mogę zapewnić,
 - poziomu przekazu pakietów obsługuję w sieci w zależności od jakości (klasy).
- Muszą więc być zastosowane odpowiednie mechanizmy dla każdego z poziomów obsługi.

Mechanizmy te można scharakteryzować następująco:

- dla poziomu żądań usługi wprowadzono funkcję Admission Control (AC), która w oparciu o kontrakt i stan zasobów określa możliwość realizacji tego kontraktu lub określa co można zapewnić użytkownikowi,
- dla poziomu przekazu pakietu muszą być przede wszystkim:
 - zdefiniowane klasy usług sieciowych,
 - zdefiniowane parametry QoS dla każdej klasy (jeżeli są),
 - zasady przydzielania zasobów dla danej klasy,
 - mechanizmy rozróżniające w ruterach IP QoS klasy pakietów,
 - ustalone zasady obsługi klas pakietów w ruterach IP QoS,
- a ponieważ istnieje związek między obu poziomami i QoS to muszą być realizowane funkcje:
 - **AC.**
 - sprawdzania parametrów uzgodnionych dla usługi,
 - niedopuszczenie do sieci ruchu niezgodnego z ustalonymi parametrami.

Jak widać jest to identyczne podejście, przynajmniej gdy chodzi o ogólne zasady, z wypracowanym i stosowanym w sieci BISDN/ATM.

- Zatem czy jest różnica i gdzie, która ma wpływ na rozwiązania mechanizmów QoS i ich skuteczność?
- Otóż są dwie istotne różnice:
 - brak wirtualnych połączeń w sieci (także wirtualnych ścieżek),
 - długość przesyłanych pakietów jest zmienna.
- ☐ Tak więc należy się spodziewać, że sterowanie jakością w sieci IP QoS będzie mniej efektywne niż w sieci ATM.

Zaproponowano dwa modele, dwie architektury sieci IP QoS

- **architektura** <u>Integrated Services</u> (IntServ) usług zintegrowanych
- architektura <u>Differentiated Services</u> (DiffServ) usług zróżnicowanych
- rozwiązania te są naturalną konsekwencją założeń i celów jakie chcemy uzyskać w tej sieci oraz wniosków z sieci BISDN/ATM
- IntServ zakłada podobne podejście jak w sieci BISDN/ATM, tzn. każda aplikacja żądająca usługi jest indywidualnie obsługiwana i dla niej realizowana jest rezerwacja zasobów.
- DiffServ jest nowym podejściem w którym sieć nie widzi (nie obsługuje) indywidualnej aplikacji żądającej usługi a widzi i obsługuje strumienie ruchu, których klasyfikacja wynika z wprowadzonych usług sieciowych (klas). Zatem obsługa jest zależna od usługi a nie konkretnej aplikacji (żądania).

Sieć IP QoS z IntServ

- Ze względu na dwie cechy:
 - indywidualną obsługę żądania oraz
 - rezerwację zasobów dla tego żądania
- konieczne jest wprowadzenie do sieci IP QoS sygnalizacji.
- Na poziomie zgłoszenia dotychczas w sieci telekomunikacyjnej były wyróżniane trzy fazy: zgłoszenia, połączenia i rozłączenia.
- W sieci IP QoS z IntServ przyjęto koncepcję w której *użytkownik* musi co określony czas *odnawiać rezerwację zasobów*. Zatem mamy fazę:
 - zgłoszenia i rezerwacji zasobów,
 - wymiany pakietów,
 - odnawiania rezerwacji zasobów jeżeli ona nie ma miejsca to nastąpi rozłączenie.

Protokół RSVP ReSource reserVation Protocol

- Protokołem przewidzianym dla sieci IP QoS z IntServ jest RSVP mający następujące cechy:
 - jest protokołem sygnalizacyjnym,
 - żądanie rezerwacji jest generowane przez nadawcę (pakietów),
 - rezerwacja jest realizowana na żądanie odbiorcy (pakietów)!!!,
 - rezerwacja musi być odnawiana okresowo!!!,
 - w ruterach IP QoS musi być przechowywana informacja o pojedynczych strumieniach (dla pojedynczej aplikacji lub dla zagregowanych aplikacji).
- Dla zrealizowania IntServ oprócz RSVP każdy element sieci musi mieć zaimplementowane następujące mechanizmy (funkcje):
 - sterowanie przyjęciem zgłoszenia (Admission Control),
 - klasyfikacji pakietów do określonego strumienia (Traffic Classification),
 - sprawdzania zgodności z zawartym kontraktem ruchowym (Traffic Policing),
 - obsługi pakietów każdego strumienia (Scheduling).

Zadania każdego z mechanizmów

Funkcja AC

 w oparciu o informacje opisujące usługę oraz stan zasobów podejmuje decyzję o przyjęciu lub odrzuceniu żądania usługi

Klasyfikacja pakietów

 w oparciu o pola nagłówka dokonuje określenia przynależności do strumienia i tym samym determinuje jakość obsługi

Sprawdzania zgodności

- strumień (pakiet) zgodny z kontraktem ruchowym jest obsługiwany według zasad ustalonych dla tego strumienia,
- natomiast niezgodny może być obsługiwany jako best effort lub odrzucony

Obsługa pakietów

- określa w jaki sposób przebiega obsługa pakietu należącego do danego strumienia
- i ta obsługa ma zagwarantować określone QoS,
- stosuje się kolejki z priorytetami, obsługę RR (Round Robin) lub WFQ (Weighted Fair Queuing)

Ogólny schemat powiązań mechanizmów QoS w elemencie sieci IP QoS z IntServ

Jeszcze kilka uwag o QoS i zasobach

- z rezerwacją zasobów wiąże się problem określenia związków między wielkościami opisującymi QoS a zasobami sieci (w ogólności problem jest dużo bardziej złożony niż w technologii ATM)
- wielkości opisujące QoS to:
 - minimalna i maksymalna przepływność,
 - opóźnienie i jego zmienność.
- zasoby to:
 - przepływność łączy,
 - wielkość buforów,
 - moc przetwarzania węzłów (ruterów).
- M należy pamiętać, że rezerwacja realizowana jest tylko w jednym kierunku!

Sieć IP QoS z DiffServ

- Ograniczenia architektury IntServ:
 - obsługa strumienia dla konkretnej aplikacji,
 - pamiętanie w ruterach informacji o każdym indywidualnym strumieniu,
 - brak skalowalności, tzn. trudności przy realizacji sieci o dużej liczbie strumieni i dużych przepływnościach,
- skłoniły twórców do zaproponowania nowego podejścia nazwanego architekturą DiffServ, która nie ma tych cech i tym samym wad z punktu widzenia założeń sieci IP QoS.
- Zauważmy, że to co dla twórców sieci BISDN/ATM było podstawowym założeniem jest w sieci IP QoS z IntServ wadą.

Podstawowym problemem jaki ma rozwiązać architektura DiffServ to maksymalne uproszczenie funkcji wewnątrz sieci i skupienie ich na brzegu sieci.

- Aby <u>rdzeń sieci</u> mógł obsługiwać dużą liczbę strumieni i być jednocześnie prostym funkcjonalnie należało w nim:
 - rozróżniać i obsługiwać tylko kilka klas,
 - w obrębie klasy mielibyśmy zagregowany jeden strumień, składający się z nierozróżnialnych wielu indywidualnych strumieni,
 - obsługa tego zagregowanego strumienia (klasy) byłaby dostosowana do wymagań jakościowych tej klasy i określała usługę sieciową (jej rodzaj).
- Na <u>brzegu sieci</u> natomiast mają być realizowane złożone funkcje takie jak:
 - klasyfikacja,
 - analiza zgodności,
 - znakowanie,
 - obsługa.

Ogólna struktura takiej sieci IP QoS z DiffServ

Wszystkie pakiety należące do tej samej klasy mają w sieci ten sam DSCP (Differentiated Service Code Point)

- Przydział DSCP odbywa się w ruterze brzegowym.
- Pole DS w którym zapisuje się DSCP zajmuje miejsce:
 - pola Type Of Service w IP v.4,
 - pola Traffic Class w IP v.6,
 - aktualnie wykorzystywanych jest 6 bitów 16 bitowego pola DS.
- **Zbiór pakietów mających ten sam DSCP nazywamy Behavior Aggregate** (BA).
- Zbiór reguł obsługi i przekazywania pakietu dalej nazywamy Per-Hop Behavior (PHB).
- Jednemu DSCP przyporządkowany jest jeden PHB.
- PHB jest realizowany przy pomocy:
 - odrzucania pakietów,
 - kolejkowania priorytetowego,
 - mechanizmów szeregowania obsługi wielu kolejek (np. WFQ).

Ruter brzegowy - realizowane funkcje

- Klasyfikacja pakietów na podstawie jednego lub kilku pól nagłówka, np.
 - adres IP źródła i przeznaczenia,
 - numer portu źródła i przeznaczenia,
 - identyfikator protokółu (TCP, UDP),
- Określenie zgodności pakietu z porozumieniem uzgodnionym między użytkownikiem a dostawcą usługi (domeną z DiffServ).
- Znakowanie pakietów, w oparciu o klasyfikację i zgodność, poprzez przyporządkowanie DSCP.
- Obsługa pakietu (może być także realizowana funkcja kształtowania ruchu):
 - odrzucanie pakietów,
 - kolejkowanie priorytetowe,
 - mechanizm szeregowania obsługi wielu kolejek (np. WFQ).

Ruter brzegowy - struktura funkcjonalna

Ruter rdzeniowy - realizowane funkcje

- Klasyfikacja pakietów na podstawie DSCP i określenie przynależności do BA.
- W zależności od BA zastosowanie odpowiedniego PHB czyli odpowiedniej obsługi poprzez:
 - odrzucanie pakietów,
 - kolejkowanie priorytetowe (PQ),
 - mechanizm szeregowania obsługi wielu kolejek (np. WFQ).

Ruter rdzeniowy - struktura funkcjonalna

Klasy usług i klasy PHB dotychczas zdefiniowane przez IETF

- Expedited Forwarding (EF) ma przyporządkowaną jedną wartość DSCP.
- **Assured Forwarding** (AF) ma cztery klasy obsługi (AF1, AF2, AF3 i AF4) a w każdej z nich trzy poziomy odrzucania pakietów, co daje dwanaście wartości DSCP.
- Oprócz tych dwóch klas usług istnieje domyślne PHB odpowiadające dotychczasowej usłudze "best effort" (BE), która jest też nazywana usługą niesklasyfikowaną.
- Zakres usług sieciowych oferowanych użytkownikom na bazie PHB w danej domenie z DS pozostaje w gestii operatora sieci IP.

EF PHB

- Został zaproponowany dla zapewnienia jakości obsługi wymagającej:
 - gwarancji określonego pasma,
 - niewielkich strat pakietów,
 - niewielkiego opóźnienia,
 - małej wariancji opóźnienia.
- Nie definiuje ilościowo a jedynie jakościowo QoS.
- Dla zrealizowania tych cech pakiety nie powinny być kolejkowane.
- Maksymalna przepływność EF BA musi być mniejsza od dostępnego dla EF BA pasma łącza w każdym ruterze domeny z DS.
- **EF PHB musi być niezależny od ruchu innego niż EF przechodzącego przez ruter.**
- Pakiety EF PHB mają być umieszczane w kolejce o najwyższym priorytecie.

AF PHB

- Został zaproponowany dla zapewnienia obsługi pakietów na zasadzie "better than best-effort".
- To jak będzie realizowana obsługa zależy od:
 - przydzielonych zasobów dla danej klasy AF,
 - chwilowego obciążenia w klasie,
 - poziomu odrzucania pakietów.
- Z góry o jakości obsługi tego PHB nie możemy nic powiedzieć.
- Nie zdefiniowano żadnych parametrów ilościowych określających QoS dla poszczególnych PHB.
- Ogólna zasada jest taka, że i te PHB zapewnia inne QoS niż i+1 sze
 PHB.
- Zakłada się, że ruch zgodny z profilem osiągnie odbiorcę z prawdopodobieństwem nie mniejszym niż ustalony próg.
- Aby to zrealizować każda klasa AF musi mieć niezależny bufor z kolejką FIFO oraz wielkość przydzielonego pasma niezależną od pozostałych klas.

Ruter rdzeniowy - struktura funkcjonalna po uwzględnieniu EF PHB i AF PHB

Proponowane rozwiązanie szeregowania obsługi pakietów dla wszystkich zdefiniowanych klas PHB

Struktura sieci IP QoS

Kilka uwag końcowych o IP QoS

Czy przedstawione rozwiązania umożliwiają realizację QoS tak jak to dotychczas rozumiała telekomunikacja?

- Miestety odpowiedź na to pytanie jak na razie nie jest zadawalająca.
- Zaproponowane mechanizmy dotyczą pracy ruterów.
- Nic nie mówi się w jaki sposób określa się pasmo i przydziela je usługom sieciowym.
- Nic nie mówi się o sterowaniu na poziomie sieci (domeny).
- Nic nie mówi się o właściwościach end-to-end, a to jest to co odczuwa klient i za to płaci.
- W związku z tym pojawia się pytanie jak projektować takie sieci (wymiarować zasoby) bo przecież to jest konieczne w działalności komercyjnej.
- ☑ Jak widać pytań jest dużo i problemów do rozwiązania także.
- ⊠ Są one aktualnie analizowane, badane i rozwiązywane.

W czym widzi się nadzieję w przezwyciężeniu tych problemów?

- W rozwiązaniu realizacji funkcji AC (Admission Control).
- W zastosowaniu MPLS (MultiProtocol Label Switching); przy czym należy pamiętać, że sam MPLS nie rozwiąże problemów. (zostanie krótko omówiona w dalszej części tego wykładu)
- W opracowaniu algorytmów rutingu w powiązania z MPLS.
- A więc w opracowaniu

Inżynierii Ruchu

na miarę potrzeb platformy IP QoS.

Zatem pojawia się pytanie: Czy po rozwiązaniu tych wszystkich problemów platforma IP QoS będzie nadal prosta i tym samym tania?

- Dokładną odpowiedź na to pytanie otrzymamy chyba w niedalekiej przyszłości.
- Ale biorac pod uwagę doświadczenia z rozwoju technologii ATM i narastania problemów oraz złożoności rozwiązań w niej występujących wydaje się, że trudno będzie utrzymać obecny stan fascynacji technologią IP QoS.
- Aktualnie ma ona problemy z zagwarantowaniem jako takiej jakości dla mowy, a gdzie są usługi o większych wymaganiach jak np. video, TV.
- Obserwuje się korygowanie oczekiwań i rozwiązań technologii IP QoS, tak aby była zachowana w stosunku do klienta zasada
 - "Płaci i oczekuję z tego tytułu określonego towaru".

Dlaczego MPLS?

- W każdej sieci musi być realizowana funkcja rutingu oraz komutacji.
- W przypadku sieci z komutacją pakietów obie funkcje są umieszczone w warstwie trzeciej - warstwie sieciowej.
- Kierowanie przybyłego pakietu oparte jest o tablice z których odczytuje się kolejne łącze na podstawie nagłówka tego pakietu.
- Na ogół proces ten jest realizowany programowo.
- Wraz ze wzrostem ruchu i powiększaniem się sieci czas niezbędny na realizację tej funkcji zwiększa się co powoduje ograniczenie wydajności węzła (rutera).
- Jednocześnie sieć przekształca się w sieć wielousługową w której różnorodność usług wymaga różnorodnej obsługi.
- To z kolei powoduje, że konieczne jest uwzględnienie zarówno w procesie rutingu jak i komutacji dodatkowych informacji znajdujących się w nagłówku (ale nie tylko) co jeszcze bardziej wydłuża realizację tych funkcji.

- **Wymaga to dużej mocy przetwarzania co nie jest możliwe do uzyskania** przy dzisiejszym stanie technologii!
- W konsekwencji powoduje to trudności w realizacji takich funkcji w sieci jak:
 - sterowania ruchem,
 - sterowania jakością usług,
 - zarządzania zasobami.
- Jednym ze sposobów na rozwiązanie tych trudności jest uproszczenie realizacji funkcji komutacji w taki sposób aby można było łatwo zaimplementować tą funkcję sprzętowo uniezależniając się od złożoności i różnorodności dotychczas stosowanych nagłówków pakietu.
- Jest to zatem powrót do koncepcji, która była wcześniej z powodzeniem sprawdzona w rozwiązaniach wykorzystywanych w technice STM i ATM.
- Oczywiście w tym przypadku musi być ona dostosowana do potrzeb komutacji pakietów i właściwości tych sieci.
- Tą propozycją jest właśnie MPLS MultiProtocol Label Switching czyli Wieloprotokołowa Komutacja Etykietowa.

Co to jest MPLS?

- Jest to określona przez IETF koncepcja, która umożliwia efektywniejszą realizację w sieć takich funkcji jak: ruting, komutacja i tym samym obsługi ruchu (przekazywania pakietów).
- Jej istotne cechy to to, że:
 - ma mechanizmy umożliwiające zarządzanie przepływem ruchu o różnorodnym stopniu rozdrobnienia, czyli ruchem między różnym sprzętem, różnymi maszynami (stacjami), różnymi aplikacjami,
 - jest niezależna od protokołów warstwy drugiej i trzeciej,
 - udostępnia sposoby mapowania adresów warstwy trzeciej (np. IP) w proste o stałej długości etykiety,
 - jest dostosowany do istniejących protokołów rutingu i rezerwacji zasobów,
 - wspomaga protokoły warstwy drugiej dla IP, ATM i FR,
 - może być wykorzystany przez dowolne protokoły warstwy trzeciej, stąd nazwa "wieloprotokołowa".

Podstawowe składniki MPLS

- W MPLS przenoszenie danych od źródła do odbiorcy ma miejsce wzdłuż etykietowo przełączanej ścieżki LSP (Label-Switched Path).
- Fizycznie ścieżka ta utworzona jest przez szereg połączonych węzłów LSR (Label Switching Router) (ruterów).
- Rozróżnia się dwa typy węzłów LSR:
 - brzegowe (edge),
 - wejściowy (ingress),
 - wyjściowy (egress),
 - komutujące nie brzegowe.
- **Domena MPLS** to zbiór połączonych węzłów (ruterów), które są węzłami MPLS i należą do jednego obszaru administracyjnego.
- FEC (Forwarding Equivalent Class klasy równoważności przekazywania) jest to grupa pakietów (np. IP), które nie są rozróżnialne w sieci MPLS, tzn. są przenoszone przez tą samą ścieżkę i obsługiwane według tych samych zasad.
- Etykieta L jest krótkim identyfikatorem, który jest wykorzystany do identyfikacji FEC oraz realizacji funkcji komutacji.

Istota komutacji etykietowej to:

- Klasyfikacja pakietu (np. IP) w węźle brzegowym (wejściowym) do określonego FEC.
- Na podstawie FEC określenie etykiety L i dołączenie jej do pakietu.
- Określenie następnego węzła LSR w oparciu o etykietę L.
- Wysłanie pakietu MPLS do następnego LSR przy wykorzystaniu protokołu warstwy drugiej.
- W LSR odbiór pakietu MPLS i na podstawie etykiety L realizacja komutacji do następnego LSR z jednoczesną wymianą etykiety.
- Powtarzanie ostatniej czynności aż pakiet MPLS osiągnie LSR, który będzie węzłem brzegowy (wyjściowym).
- Przekazanie pakietu do warstwy trzeciej.
- Aby można było zrealizować funkcję komutacji w węzłach LSR to w tablicach tych LSR musi być wcześniej zapisana informacja wiążąca etykiety między sobą aby w ten sposób była utworzona ścieżka LSP dla danego FEC.

Ogólna postać tablicy dla realizacji funkcji komutacji MPLS

- Etykieta MPLS jest niewystarczająca aby można było zrealizować funkcję komutacji.
- W LSR musi być tablica(e), która zawiera adres wyjściowego łącza oraz nową wartość etykiety.
- Tablica ta może być przyporządkowana do wejściowego łącza lub być wspólna dla wielu takich łączy.
- Etykieta MPLS przyjściowego pakietu oraz numer łącza są adresem (wejściem) do tej tablicy.
- Odczytana z tablicy wartość etykiety wyjściowej jest wstawiana w miejsce odebranej etykiety, a adres łącza wyjściowego jest wykorzystany do zrealizowania funkcji komutacji pakietu na to łącze.

Czy i w czym tkwi istota różnic w stosunku do techniki ATM?

- W technice MPLS pakiet ma dowolną długość i otrzymuje jednoczęściowy adres (etykietę), natomiast w technice ATM komórka ma ustaloną długość oraz dwuczęściowy adres składający się z VPI i VCI.
- W technice MPLS unikalny ciąg etykiet L (ścieżka LSP) przyporządkowany jest do konkretnego FEC i pakiet, gdy należy do tego FEC niezależnie od tego kto go nadał otrzymuje etykietę L, natomiast w przypadku ATM z punktu widzenia połączenia abonenta otrzymuje ono indywidualny unikalny ciąg par (VPI,VCI).
- W technice MPLS nie można mówić o połączeniu z punktu widzenia abonenta, gdyż jest to technika bezpołączeniowa.
- Zarówno w jednej jak i drugiej technice abonent nie ma bezpośredniego wpływu na przebieg drogi połączeniowej, mimo iż w technice ATM istnieje Faza I (wywołania, realizacji połączenia).
- W technice MPLS istnienie ścieżki LSP odpowiada ścieżce określonej przez ciąg VPI w technice ATM.
- **Zarówno w jednej jak i w drugiej technice ścieżki te są ustalane przez** niezależną od abonentów funkcję.

Na kolejnych rysunkach pokazano model warstwowy dla obu technik

Jakie podstawowe problemy muszą być rozwiązane?

- Opis klas FEC, czyli określenie wielkości jakie należy brać pod uwagę dla utworzenia danej klasy aby uzyskać kompatybilność usługową w obrębie domeny lub kilku domen MPLS.
- Wiązanie FEC z etykietą.
- Określenie sposobu przeprowadzania powiązań etykiet, które to powiązania określają ścieżkę przełączanych etykiet (LSP).
- Określenie sposobu rozprowadzania w sieci etykiet i ich powiązań.

Mależy pamiętać, że technika MPLS ma wspierać IP QoS co powoduje, że praktyczne rozwiązanie tych problemów staje się trudniejsze.

- kreacji i rozprowadzania (dystrybucja) etykiet,
- budowania odpowiednich baz informacji w każdym węźle (ruterze),
- tworzenia ścieżek przełączanych etykietami (komutowanych),
- wstawiania etykiet do tablic (lookup table) koniecznych dla realizacji funkcji komutacji w węźle (ruterze).
- W konsekwencji zbiór tych funkcji umożliwia wykonanie ostatniej funkcji jaką jest

Wieloprotokołowa Komutacja Etykietowa MPLS

która gwarantuje transport pakietu od wejścia do wyjścia domeny MPLS zgodnie z właściwościami opisanymi przez FEC do której ten pakiet należy.

Poglądowa ogólna ilustracja działań w domenie MPLS:

- kreacja etykiet,
- rozsyłanie (dystrybucja) etykiet,
- przekazywanie (przesyłanie) pakietów użytkowników.

Format pakietu MPLS

- Pole MPLS SHIM ma długość będącą wielokrotnością 32 bitów (4 oktety).
- W polu o długości 32 bitów zapisana jest między innymi etykieta L (stos etykiet L to wielokrotność 32 bitów).
- Pole to może tworzyć stos co umożliwia zagłębianie sieci MPLS.
- Długość pakietu jest zależna od protokołu warstwy trzeciej.
- Tak utworzony pakiet jest przenoszony przez protokół warstwy drugiej, przy czym sposób przenoszenia i odwzorowania tego pakietu jest zależny od warstwy drugiej.
- ✓ Uwaga: z angielskiego słowo "shim" to po polsku "klin".

Struktura pola MPLS SHIM

- Przeznaczenie poszczególnych pól jest następujące:
 - etykieta L ma długość 20 bitów i zawiera kod etykiety,
 - Exp jest przeznaczone dla celów eksperymentalnych i ma długość 3 bitów,
 - S koduje spód stosu i ma długość 1 bitu (S=1 to dno stosu),
 - TTL ma długość 8 bitów i koduje czas życia (Time to Live).
- Na rysunku pokazano pole MPLS SHIM składające się ze stosu czterech etykiet. Góra stosu jest na początku (lewa strona), a dół na końcu tego pola.

Podstawowe odwzorowania MPLS SHIM w protokół warstwy drugiej

a) w komórki ATM

b) w ramki FR

c) w ramkę PPP/SDH

PPP

shim pakiet

d) w ramkę LAN MAC

MAC

shim pakiet
shim pakiet

GMPLS - Generalized MPLS

- Duży obserwowany i przewidywany przyrost ilości przesyłanych danych w stosunku do mowy spowodował, że dotychczasowe podejście do rozwoju sieci telekomunikacyjnej musiało ulec modyfikacji, tym bardziej, gdy zaczęło brakować nitek światłowodowych.
- To zintensyfikowało prace, które doprowadziły do koncepcji i opanowania nowej techniki zwielokrotnienia określanej skrótem DWDM.
- Z kolei technika DWDM spowodowała postęp w technologii rozwiązań urządzeń optycznych zarówno w transmisji jak i w komutacji.
- Stwierdzono w związku z tym, że sieć telekomunikacyjna powinna w swej znacznej większości być zrealizowana w technologii optycznej.
- Co więcej większość funkcji także powinna być realizowana po stronie optycznej a nie elektrycznej.
- Powstał więc problem usuwania warstw elektrycznych w modelu warstwowym sieci telekomunikacyjnej i realizacji ich dotychczasowych funkcji w warstwach optycznych.

Przewidywana ewolucja sieci w kierunku fotoniki (przy założeniu, że platformą dla wszystkich usług będzie IP QoS)

\$\frac{dane}{dane}: rozumie się przez to strumienie obejmujące dowolne usługi.

- Ponieważ w swej pierwotnej postaci to uogólnienie dotyczyło tylko samej części optycznej, a dokładnie długości fali jako etykiety, to nazywane było ono MPLambdaS (MPλS).
- Aktualnie zakłada się, że w swej ostatecznej wersji sieć telekomunikacyjna będzie oparta tylko na technologiach: IP, MPLS i DWDM.
- Konieczne było więc wprowadzenie do MPLS wielu rozszerzeń i uwzględnienie specyfiki DWDM.
- Dotyczą one:
 - rozszerzenia protokołów RSVP-TE i CR-LDP uwzględniające cechy zarówno sieci optycznych jak i innych rozwiązań,
 - rozszerzenia protokołów OSPF i IS-IS uwzględniających atrybuty nowych technologii sieciowych (przede wszystkim optycznej),
 - uwzględnienia faktu, że sieci optyczne są dwukierunkowe,
 - wprowadzenie nowego protokołu zarządzania łączami optycznymi,
 - uwzględnienia mechanizmów niezawodnościowych w tym także protekcji i odtwarzania,
 - hierarchizacji sieci w odniesieniu do różnych technologii sieciowych (światłowodowej, długości fali, czasowej i pakietowej).

Hierarchizacja GMPLS

Oznaczenia i skróty do rysunku Hierarchizacja GMPLS

- Switch OEO
- S Switch/Mux SDH
- Ruter LSR
- **Swiatłowód**
- **STM-64**
- **STM-4**
- od Ggabit Ethernet (~500m)

- **■** FSC Fiber Switch Capable
- \bullet λ SC λ Switch Capable
- TDM Time Division Multiplexing
- PSC Packet Switch Capable
- LSP Label Switched Path