Examination Scheduling

Alexander Eckl, Maximilian Fiedler, Mickael Grima, Roland Halbig

Technische Universität München

March 21, 2016

Konstanten

 $s_i := \mathsf{Anzahl} \; \mathsf{der} \; \mathsf{Studenten}, \; \mathsf{die} \; \mathsf{für} \; \mathsf{Pr\"{u}fung} \; i \; \mathsf{angemeldet} \; \mathsf{sind}$

 $c_k := \mathsf{Anzahl} \; \mathsf{der} \; \mathsf{nutzbaren} \; \mathsf{Sitzpl\"{a}tzein} \; \mathsf{Raum} \; k$

Q := Kollisionsmatrix

 $q_{i,j} := \left\{ egin{array}{ll} 0, & ext{falls Pr\"ufung i und j gleichzeitig stattfinden k\"onnen} \ 1, & ext{sonst} \end{array}
ight.$

T := Sperrmatrix

 $t_{i,j} := \left\{ egin{array}{ll} 1, & ext{falls Raum k zum Zeitintervall I geöffnet ist} \ 0, & ext{sonst} \end{array}
ight.$

 $h_I := \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{Stunden} \ \mathsf{von} \ \mathsf{Periode} \ I \ \mathsf{nach} \ \mathsf{Beginn} \ \mathsf{des} \ \mathsf{Pr\"{u}fungszeitrau}$

Variablen

$$x_{i,k} := \left\{ \begin{array}{l} 1, & \text{wenn Pr\"{u}fung } i \text{ in Raum } k \text{ stattfindet} \\ 0, & \text{sonst} \end{array} \right.$$

$$y_{i,l} := \left\{ \begin{array}{l} 1, & \text{wenn Pr\"{u}fung } i \text{ im Zeitinterval } l \text{ stattfindet} \\ 0, & \text{sonst} \end{array} \right.$$

Dimensionen:

n : AnzahlderPrfungen

r : AnzahlderRume

p : AnzahlderZeitintervalle

Zielfunktion

$$\min \sum_{i=1}^{n} \sum_{k=1}^{r} s_{i} x_{i,k} - \gamma \sum_{i=1,j>i}^{n} q_{i,j} \left| \sum_{l=1}^{p} h_{l} (y_{i,l} - y_{j,l}) \right|$$

Resolving the absolute value: Define $\Delta h_{i,j} := \sum_{l=1}^p h_l(y_{i,l} - y_{j,l})$.

$$\begin{aligned} \min \sum_{i=1}^{n} \sum_{k=1}^{r} s_{i} x_{i,k} - \gamma \sum_{i=1,j>i}^{n} q_{i,j} z_{i,j} \\ s.t. \ \ z_{i,j} &\leq \Delta h_{i,j} + \delta_{i,j} (h_{p} - h_{1}) \quad \forall i,j \in [n] \\ z_{i,j} &\leq -\Delta h_{i,j} + (1 - \delta_{i,j}) (h_{p} - h_{1}) \quad \forall i,j \in [n] \\ z_{i,j} &\leq \Delta h_{i,j} \quad \forall i,j \in [n] \\ -z_{i,j} &\leq \Delta h_{i,j} \quad \forall i,j \in [n] \end{aligned}$$

http://lpsolve.sourceforge.net/5.1/absolute.htm

Constraints

Jede Prüfung wird auf genau einem Zeitinterval eingeplant

$$\sum_{l=1}^{p} y_{i,l} = 1 \quad \forall i \in [n]$$

2 Alle Studierenden bekommen einen Platz

$$\sum_{k=1}^{r} c_k x_{i,k} \geq s_i \quad \forall i \in [n]$$

3 Jedem Raum wird je Zeit maximal eine Prüfung zugeteilt

$$\sum_{i=1}^{n} x_{i,k} y_{i,l} \leq t_{k,l} \quad \forall k \in [r], \forall l \in [p]$$

Konfliktvermeidung

$$\sum_{i=1,j>i}^{n} q_{i,j} y_{i,l} y_{j,l} = 0 \quad \forall l \in [p]$$

Linear Constraints

1 Jede Prüfung wird auf genau einem Zeitinterval eingeplant

$$\sum_{l=1}^{p} y_{i,l} = 1 \quad \forall i \in [n]$$

2 Alle Studierenden bekommen einen Platz

$$\sum_{i=1}^{r} c_k x_{i,k} \geq s_i \quad \forall i \in [n]$$

3 Jedem Raum wird je Zeit maximal eine Prüfung zugeteilt

$$x_{i,k} + y_{i,l} + x_{j,k} + y_{j,l} \le 3, \ \forall i,j \in [n], j > i \forall k \forall l$$

 $x_{i,k} + y_{i,l} \le 1, \ \forall i \in [n] \forall k, l \text{ such that } t_{k,l} = 0$

4 Konfliktvermeidung

$$\sum_{j=1, j \neq i}^{n} q_{i,j} y_{j,l} \leq (1 - y_{i,l}) \sum_{\nu=1}^{n} q_{i,\nu} \quad \forall l \in [p] \forall i \in [n]$$

Variablen

$$\begin{aligned} x_{i,k,l} &:= \left\{ \begin{array}{l} 1, & \text{wenn Pr\"ufung } i \text{ zum Zeitpunkt } l \text{ in Raum } k \text{ stattfindet} \\ 0, & \text{sonst} \end{array} \right. \\ y_{i,l} &:= \left\{ \begin{array}{l} 1, & \text{wenn Pr\"ufung } i \text{ im Zeitinterval } l \text{ stattfindet} \\ 0, & \text{sonst} \end{array} \right. \end{aligned}$$

Dimensionen:

n : AnzahlderPrfungen

r : AnzahlderRume

p : AnzahlderZeitintervalle

Zielfunktion

$$\min \sum_{i=1}^{n} \sum_{k=1}^{r} \sum_{l=1}^{p} s_{i} x_{i,k,l} - \gamma \sum_{i=1,j>i}^{n} q_{i,j} \left| \sum_{l=1}^{p} h_{l} (y_{i,l} - y_{j,l}) \right|$$

Resolving the absolute value: Define $\Delta h_{i,j} := \sum_{l=1}^p h_l(y_{i,l} - y_{j,l})$.

$$\begin{aligned} \min \sum_{i=1}^{n} \sum_{k=1}^{r} s_{i} x_{i,k} - \gamma \sum_{i=1,j>i}^{n} q_{i,j} z_{i,j} \\ s.t. \ \ z_{i,j} &\leq \Delta h_{i,j} + \delta_{i,j} (h_{p} - h_{1}) \quad \forall i,j \in [n] \\ z_{i,j} &\leq -\Delta h_{i,j} + (1 - \delta_{i,j}) (h_{p} - h_{1}) \quad \forall i,j \in [n] \\ z_{i,j} &\leq \Delta h_{i,j} \quad \forall i,j \in [n] \\ -z_{i,j} &\leq \Delta h_{i,j} \quad \forall i,j \in [n] \end{aligned}$$

http://lpsolve.sourceforge.net/5.1/absolute.htm

Constraints

Verknüpfung der Variablen

$$\sum_{k=1}^{r} x_{i,k,l} \le y_{i,l} \cdot r \quad \forall i \in [n] \forall l \in [p]$$

$$\sum_{k=1}^{r} x_{i,k,l} \ge y_{i,l} \quad \forall i \in [n] \forall l \in [p]$$

Jede Prüfung wird auf genau einem Zeitinterval eingeplant

$$\sum_{l=1}^{p} y_{i,l} = 1 \quad \forall i \in [n]$$

3 Konfliktvermeidung

$$\sum_{j=1,j>i}^{n} q_{i,j} y_{j,l} \leq (1 - y_{i,l}) \sum_{\nu=1}^{n} q_{i,\nu} \quad \forall i \in [n], \forall l \in [p]$$

5 Alle Studierenden bekommen einen Platz

$$\sum_{l=1}^{p} \sum_{k=1}^{r} c_k x_{i,k,l} \ge s_i \quad \forall i \in [n]$$

o Jedem Raum wird je Zeit maximal eine Prüfung zugeteilt

$$\sum_{i=1}^{n} x_{i,k,l} \le t_{k,l} \quad \forall k \in [r], \forall l \in [p]$$

T Eine Prüfung in mehreren Räumen findet gleichzeitig statt

$$\sum_{m=1,m\neq l}^{p} \sum_{k=1}^{r} x_{i,k,m} \leq r(1-y_{i,l}) \quad \forall i \in [n] \forall l \in [p]$$

Modellvergleich

Modell	Anzahl Variablen	Anzahl Nebenbedingungen
2D		
(mit abs)	nr + np	2n + rp + p
2D linear		
(mit abs)	$nr + np + 2n^2$	$2n + \frac{1}{2}nrp(n-1) + nT + np + 4n^2$
2D linear		_
(ohne abs)	nr + np	$2n+\frac{1}{2}nrp(n-1)+nT+np$
3D		
(mit abs)	$nrp + 2rn^2$	$2n + rp + nrp + nrp + 4rn^2$
3D		
(ohne abs)	nrp	2n + rp + nrp + nrp

Modellvergleich - In Zahlen

Problemdimensionen:

- *n* ≈ 1200
- $r \approx 70$
- *p* ≈ 70
- *T* ≈ 400

Modell	Anzahl Variablen	Anzahl Nebenbedingungen
2D (mit abs)	$0.17 \cdot 10^6$	7370
2D linear (mit abs)	3 · 10 ⁶	$3.5 \cdot 10^9$
2D linear (ohne abs)	$0.17 \cdot 10^6$	$3.5 \cdot 10^9$
3D (mit abs)	207 · 10 ⁶	415 · 10 ⁶
3D (ohne abs)	$6 \cdot 10^6$	12 · 10 ⁶