Preserved Structure Across Vector Space Representations

Andrei Amatuni, Estelle He, Elika Bergelson

{andrei.amatuni, estelle.he, elika.bergelson}@duke.edu
417 Chapel Dr. Durham, NC 27708 USA
Department of Psychology and Neuroscience
Duke University

Abstract

Certain concepts, words, and images are intuitively more similar than others (dog vs. cat, dog vs. spoon), though quantifying such similarity is notoriously difficult. Indeed, this kind of computation is likely a critical part of learning the category boundaries for words within a given language. Here, we use a set of items (n= 27, e.g. 'dog') that are highly common in young infants' input, and use both image- and word-based algorithms to independently compute similarity among these items. We find three key results. First, the pair-wise item similarities derived within image-space and word-space are correlated, suggesting evidence of preserved structure among these extremely different representational formats. Second, the closest 'neighbors' for each item, within each space, showed significant overlap (e.g. both image- and word-space found 'egg' as a neighbor of 'apple')). Third, items with the most overlapping neighbors are later-learned by infants and toddlers. We conclude that this approach, which does not rely on human ratings of similarity, may nevertheless reflect stable within-class structure across these two spaces. We speculate that such invariance, in turn, might aid in lexical acquisition, by serving as an informative marker of category boundaries.

Keywords: vector space models; semantic similarity; word learning

Introduction

Infants are presented with a challenge to carve the world into distinct lexical entities in the process of learning their first language. They're provided with little supervision while mapping a territory that William James (1890) famously dubbed a "great blooming, buzzing confusion". How they determine which aspects of the world to attend to in service of this goal is an area of ongoing research and debate (Mareschal & Quinn, 2001). Relatedly, features of objects and their environments are varyingly informative with regards to object segmentation and category structure. Some researchers have suggested that categorization is along fundamentally perceptual grounds and that only later in development is conceptual knowledge incorporated into these nascent perceptual categories (Quinn & Eimas, 1997, 2000; Quinn, Johnson, Mareschal, Rakison, & Younger, 2000). Others suggest that there are in fact two distinct processes at work, such that perceptual categories are computed automatically by the sensory systems, while conceptual categories are independently formed through conscious action (Mandler, 2000). Träuble and Pauen (2007) provide evidence of functional information (regarding the animacy of objects) influencing early category judgements. Gelman and Markman (1986) explicitly set these two sources of category cues against each other (i.e. functional vs. perceptual), and find that preschoolers can override perceptual overlap in reasoning about functional similarity, in natural kinds.

The degree to which conceptual and perceptual information are separable, both in early learning, and in adult experts, is an important open question. Any model which hopes to explain the mechanics of human categorization must address how these potentially disparate information-sources interface in mental representations, and to what degree they interact. Indeed, evidence from human learners suggests they integrate perceptual and linguistic information during categorization and learning (REFS e.g. some of ref 12-19 in Waxman and Gelman 2009). Here we take first steps in a deliberately different approach. We separate computations over images and words, and then compare the overlap in the similarity among items that these systems deduce. Using a set of highly familiar and common words and concepts from a large infant corpus, we compare the output of an image-based similarity analysis, and a word co-occurrence similarity analysis for these same items. We use algorithms that learn feature representations without hand engineering, purely as a byproduct of their particular (and separate) training objectives (e.g. natural language processing or object recognition in images). Comparing the representations these algorithms learn, we gain a window into the structure of visual and semantic forms.

The terminlogy in this area of research can be challenging. Delineating the differences between words, concepts, and categories in the abstract, and the processes underlying identifying, understanding, or comparing particular instances of them in the world is not trivial. For present purposes, we stick to concrete, 'basic level' nouns that are early-acquired, since our underlying question concerns how such words are learned. We assume that nouns refer to concepts, which have categorical boundaries (such that cats are not in the 'dog' category), while acknowledging that multiple nouns can refer to a given concept, and different concepts can be called to mind by a given word. We further assume that specific instances of words in natural language production, and specific images of the concept a word picks out are both used by learners to inform their understanding of what the word means, and what the category boundaries of the concept are. Hereafter we use the term 'item' to refer to the words/concepts we examine.

Intuitively, word similarity and image similarity are likely to overlap to some degree, since they describe the same underlying entity. Here we explore whether the similarity spaces generated by two disparate algorithms give rise to *similar* similarities among our high-frequency items. If they do, it lends credence to the notion of an underlying invariance across representational formats that is capturable by these models. We further examine whether the same close items

are picked out within these two spaces. One might imagine that the properties that render images similar and words similar are different enough that the overlap will be minimal; in contrast, high overlap would again suggest a true invariance being captured by both word- and image-tokens, as measured here. Finally, we examine whether having more neighbors within word- and image-space influences early learning. Given that similarity makes word-learning and category-learning more difficult (Rosch & Lloyd, 1978, Stager & Werker (1997)), we hypothesize that items with more neighbors will be later-learned (or put otherwise, known by fewer children of a given age.)

Methods

Items

The 27 items analyzed here were selected due to their high frequency in infants' early visual and linguistic input, aggregated as part of the SEEDLingS project, which gathered longitudinal audio and video data of infants' home environments from 6-17 months (E. Bergelson, 2016a, 2016b). We describe this larger study in brief, simply to relay how the items we analyze were chosen; the details of this larger study are not critical to the present work. In the larger study, 44 infants were tested every other month (from 6-18 months) on common nouns, using a looking-while-listening eyetracking design in which two images are shown on a screen, and one is named. The words for these experiments were chosen by dint of being high frequency or well known across infants in other samples (e.g. Brent Corpus, WordBank (Brent & Siskind, 2001; Frank, Braginsky, Yurovsky, & Marchman, 2017)), or by being one of the top 10 concrete nouns heard in each infants' own home audio and video recordings in the preceding two months.

The images displayed when these words were tested were chosen from a library of prototypical images of a given word (e.g. dog), along with images of infants' own versions of the items, as seen in their home videos (e.g. a given infant's cat, specific bottle, etc.). To enter the current analysis, images had to occur 9 or more times in this image library of high frequency concrete nouns (image counts: mean=18.85, sd=10.89, word frequency: mean=2034.85, sd=1540.22). Thus, the words and images used here were highly common across our 500+ daylong audio-recordings and 500+ hourlong video-recordings from 44 infants, providing an ecologically-valid item-set for present modeling purposes.

The images of the 27 items used to derive average category image-vectors were all 960x960 pixel photos of a single object on a gray background. All items correspond to words found on WordBank (Frank et al., 2017), a compilation of the MacArthur-Bates Communicative Development Inventory, which we use as a proxy for age of acquisition below (Dale & Fenson, 1996).

Vector Representations

We generate two sets of vector representations for a common set of early-learned items. The first set of vectors are taken from a pretrained set of GloVe representations (Pennington, Socher, & Manning, 2014), a modern distributional semantic vector space model. The second set is taken from the final layer activations of a pretrained image recognition model, Google's Inception V3 convolutional neural network (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). Both of these representations are generally referred to as "embeddings". They map objects from one medium (e.g. images or words) into a metric space where distances between points can be computed and function as a measure of similarity between objects.

Word Vectors In the case of our word vectors, the GloVe algorithm instantiates the distributional hypothesis, which proposes that words which co-occur with each other share similar meaning (Firth, 1957; Harris, 1954), whereby capturing the covariance of tokens in large text corpora, captures aspects of their semantic structure. We use the set of vectors pretrained by the GloVe authors on the Common Crawl corpus with 42 billion tokens, resulting in 300 dimensional vectors for 1.9 million unique words¹. Such vectors have shown promise in modeling early semantic networks (Amatuni & Bergelson, 2017). Thus, in word vector space (hereafter word-space), each of our 27 items is represented as a 300-dimensional vector, with each word assigned a unique point in a common vector space. ²

Image Vectors The image embeddings are taken from the final layer of activations in a convolutional neural network, whose objective function tunes network parameters in service of object recognition, computing loss in reference to a set of labeled training images (Russakovsky et al., 2015). These tuned parameters determine the value of our vectors, operating over and transforming our input image signal as it passes through the network. The final layer of this network encodes the most abstract and integrated visual features, serving as the basis for classification into 1000 different classes.

Unlike for the word vectors we use, different images containing the same type of item will have varying vector representations after passing through the layers of a neural network. This presents a problem in comparing the two forms of representation. We must first define the most prototypical (or average) image vector for any given category of object, which will generate our 2048-dimensional representation for each of the 27 items, in image vector space (hereafter image-space).

Given a set of images S_c containing objects belonging to a single category c (e.g. cat, dog, chair), we define our prototypical vector \hat{x}_c of S_c as the generalized median within a

https://nlp.stanford.edu/projects/glove/

 $^{^2}$ While the Common Crawl corpus is best-suited to our goal of modelling 'how words behave' writ large, we also conducted the analyses below with vectors trained on the North American English CHILDES corpora (which is \sim 4000x smaller). We observe the same qualitative patterns with both corpora.

representational space U. This is the vector with minimal sum of distances between it and all the other members of set S_c in U. If x and y are vectors in space U, products of images in S_c being passed through a neural network, then

$$\hat{x}_c = \underset{x \in U}{\operatorname{arg\,min}} \sum_{y \in U} d(x, y)$$

We define our d(x, y) to be the cosine similarity measure:

$$d(x,y) = 1 - \frac{x \cdot y}{\|x\| \|y\|}$$

Our d(x,y) is not a metric in the strict sense, but is less susceptible to differences in L^2 norm influencing our measure of similarity, unlike Euclidean distance. Thus in principle, cosine similarity corrects for frequency effects in training data. All code used for generating these vectors and for the subsequent analysis can be found on Github³.

Comparing spaces

Having computed our two sets of vectors (i.e. those from word-space and those from image-space), we can compare all the pairwise distances between objects, both within a single space and across the two. When comparing across the two spaces, a correlation in pairwise distances implies that inter-object distances have been conserved. For example, if "dog" and "cat" are close together in word space and mutually far apart from "chair" and "table" in that same space, maintaining this relationship for all pairwise distances in the other vector space means that the global inter-object structure is preserved across this mapping, despite being in radically different spaces, both in terms of dimensionality (300 for words, and 2048 for images in our case) and by virtue of using completely different algorithms and inputs to establish the vector representations for objects. So while their absolute locations might have been radically transformed, this correlation would be a measure of the degree of invariance in their positioning relative to each other.

Results

To test whether image- and word-based similarity converged for this set of 27 items, we conducted several analyses. First, we tested whether the pairwise cosine distances for all items in word-space correlated with those same pairwise distances in the image-space (see Figure 1). Indeed, we find a significant correlation among the 351 pairs of distances ((R = 0.30, p < 1.5e - 08)). ⁴

Next, we examined the degree to which our set of 27 words shared overlapping neighbors in the two vector spaces (see Table 1). We defined 'neighbor' by first determining the

mean similarity between each item and the 26 other items. Any items whose distance to this 'target **say something clear here** was considered a neighbor. With this normalized neighborhood threshold, we find that the majority of items have at least 1 neighbor which is shared across representational spaces. Within word-space, items had on average 3.29 neighbors (R=1-5). Within image-space, items had 2.51 neighbors (R=0-6). **add SD, e.g.** (**SD=XX, R=0-6**)

We find that neighbor 'overlap' across the spaces (i.e. how many of the neighbors overlapped, divided by how many neighbors there were) is significantly greater than 0 (Mean(SD) Overlap XX, p< XX by Wilcoxon test). This complements the correlational analysis, showing not just that the distances for any given pair tended to have similar values in image-space and word-space, but that the *most* similar words/images for each of the 27 items were also consistent across these spaces.

Connecting with Learnability

While some degree of convergence across image and word spaces is to be expected given that these are two different manifestations of the same underlying concept/word/item, we next queried whether this invariance related to learnability. We hypothesized that words with more overlapping neighbors would be harder for children to learn, since both the visual and linguistic spaces they occur in are more 'cluttered.' To test this, we looked at the relative rates of acquisition of our 27 items in WordBank (Frank et al., 2017), using the 6945 children's data from English. Since we did not have firm predictions about specific ages, or of tradeoffs between comprehension and production, we used both. That is, we used comprehension norms (from MCDI-Words and Gestures, averaging over 8-18 months) and production norms (from MCDI-Words and Sentences, averaging over 16-30 months).

We found that the number of overlapping neighbors a given word had was negatively correlated with the proportion of children who were reported to understand the word (stats) and produce the word (stats); see Figure 2. That is, words with more overlapping neighbors are later-learned (or put otherwise, known but fewer children) than words with fewer overlapping neighbors. To test whether this was specific to overlap, we examined the number of image-only, word-only, and total neighbors; none of these measures correlated with word knowledge (all p>.05).

Discussion

The results above revealed a significant correspondence between representations learned by two different algorithms operating over inputs in two fundamentally different encoding formats (i.e. visual and linguistic). We find that not only are the relative distances among these 27 common, early-learned items correlated across word- and image-space, but that even at the item-level, the 'closest' words in both spaces overlap as well. What is most noteworthy here is that the only immediate common ground between these representations are

 $^{^3}$ https://github.com/BergelsonLab/preserved_structure

⁴since distances are identical for cat-dog and dog-cat, and since we omit an item's distance to itself (0), there are (27*27-27)/2) pairs of distances. For simplicty, we report Pearson's R and plot a linear fit on Figure 1, but note that non-parametric correlations (e.g. Spearman's ρ) reveal the same pattern.

word	ratio	neighbors
apple	0.167	egg, puppy, milk, car, book, bear
baby	0	elephant, frog, cow, pig, train, puppy, dog, monkey, bear
ball	0	fish, frog, spoon, cow, dog, monkey
bear	0.222	monkey, elephant, puppy, cow, frog, baby, duck, dog, cat
block	0	egg, fish, train, duck, cow, puppy, water, ball, truck
book	0	fish, monkey, pig, puppy, car, baby, dog, train, cat
bottle	0.333	water, milk, egg, spoon, baby, cup
car	0.5	truck, train
cat	0	elephant, train, truck, dog, puppy, monkey
chair	0	frog, spoon, giraffe, baby, ball, dog, cat
cow	0.222	elephant, monkey, frog, egg, fish, giraffe, pig, dog, milk
cup	0.143	egg, duck, fish, spoon, milk, water, bottle
dog	0	cow, frog, puppy, cat
duck	0.143	fish, giraffe, cow, pig, egg, frog, elephant
egg	0	elephant, train, cow, duck, fish, milk, spoon
elephant	0.25	cow, giraffe, train, fish, egg, monkey, frog, bear
fish	0.25	duck, pig, cow, monkey, giraffe, frog, egg, water
frog	0.1	monkey, cow, giraffe, baby, puppy, elephant, fish, pig, duck, bear
giraffe	0.429	monkey, frog, cow, puppy, fish, elephant, baby
milk	0.2	water, bottle, egg, cow, cup
monkey	0.375	cow, frog, pig, giraffe, puppy, fish, elephant, cat
pig	0.125	monkey, puppy, fish, train, cow, duck, frog, dog
puppy	0	pig, monkey, cow, bear, giraffe, dog, baby, cat
spoon	0	frog, ball, giraffe, egg, cup, fish, milk, bottle
train	0.25	truck, elephant, car, dog
truck	0.5	train, car
water	0.25	milk, egg, bottle, fish

Table 1: Neighbors in image- and word-space. Neighbors in bold and red are shared between across spaces; italicised words are image-neighbors only, underlined words are word-neighbors only. Overlap ratio reflects shared neighbors over total neighbors. See text for details.

Figure 1: Relative cosine distance between points in word embedding space (x-axis) and image embedding space (y-axis), for every item pair. Fitted line reflects linear fit with SE; the correlation is significant (R = 0.30, p < 1.5e - 08).

the real life concepts they both aim to model. This is particularly notable given the enormous dimensionality of our feature spaces, and the fact that these algorithms are placed under no pressure to find homologous representations.

The notion that we can make inferences about one aspect of an object given another aspect, is not surprising or controversial. Rather than considering multiple dimensions of a word or concept at once, as real learners must, here we show that even with the experiences parcelled out separately into visual and linguistic spaces, what counts as 'similar' is conserved to some degree.

Through what metrics can a learning algorithm, or indeed a human, establish gradations of likeness? Are these necessarily the same metrics which form the basis of category boundaries? These are fundamental questions which have enjoyed a long history in the field (Edelman, 1998; Hahn, Chater, & Richardson, 2003; Kemp, Bernstein, & Tenenbaum, 2005; Shepard & Chipman, 1970; Tversky, 1977). While our current work is not sufficient to support a specific mechanism

Figure 2: Proportion of children in WordBank reported to understand (left, averaged over 8-18 months) or produce (right, averaged over 16-30 months) the 27 items, as a function of how many overlapping neighbors (i.e. in both image- and word-space) they have. Line indicates linear fit with SE confidence band.

responsible for the observed regularity, it might be indicative of the special role of invariance, given that the unifying thread between our algorithms and inputs are the common objects they represent. Underneath the diversity of visual statistics and token distributions lie stable entities in the world which, by virtue of their invariant actuality, give rise to regularity across measurements at different vantage points (i.e. modalities), an idea dating back to Helmholtz (1878). Recent work examining the mechanics of generalization in deep neural networks lends modern support to this notion (Achille & Soatto, 2017; Shwartz-Ziv & Tishby, 2017). That said, many things that 'go together' are not visually similar, but rather have hiearchical, functional, or associative relations (e.g. carrot/vegetable, skateboard/board, carrot/bunny, respetively). What we suggest here is that perhaps among early-learned words, the doubled influence of visual and linguistic similarity slows early learning. Indeed, such an account is in keeping with infant and toddler research that finds that for displays of semantically-similar items, word comprehension is reduced (Arias-Trejo & Plunkett, 2010; E. Bergelson & Aslin, 2017).

The results here provide in-principle proofs that vector space models of words and images can fruitfully be combined and linked to early language and concept learning. Indeed, our approach could readily be extended to examine properties known to be relevant to early learning like animacy, shape, and color **refs**. Indeed, in an exploratory analyses with these items, we find that splitting item-pairs into animate, inanimate, and mixed categories suggests that the

image- and word-based correlation is particularly strong for the inanimate items, though with only 27 items, further conclusions are as-yet unwarranted. However, one can imagine that in a larger database of childrens' visual and linguistic experiences, tests of overlapping similarity may provide fruitful leverage for predicting age of acquisition across the early vocabulary.

Conclusion

We find evidence of links between visual and semantic features learned by two distinct machine learning algorithms which operate over drastically different inputs, and are trained in the service of seemingly unrelated ends. These links suggest conserved structure between these two separable sources of information (i.e. visual and linguistic). Indeed, it seems that not only do these algorithms converge on which words are 'closer' in similarity, within a group of oft-heard and seen concrete nouns, but human learners too are sensitive to these overlapping cross-word relationships. While the process that created the word- and image-vector spaces we examine here is certainly not cognitively viable, our approach provides promising new avenues for uncovering cross-representational influences on early word and concept learning.

Acknowledgements

We thank the SEEDLingS team, and NIH DP5-OD019812.

References

Achille, A., & Soatto, S. (2017). On the emergence of invariance and disentangling in deep representations. *ArXiv Preprint ArXiv:1706.01350*.

Amatuni, A., & Bergelson. (2017). Semantic networks generated from early linguistic input. In *Proceedings of the 39th annual conference of the cognitive science society* (pp. 1538–1543).

Arias-Trejo, N., & Plunkett, K. (2010). The effects of perceptual similarity and category membership on early word-referent identification. *Journal of Experimental Child Psychology*, 105(1-2), 63–80.

Bergelson, E. (2016a). Bergelson seedlings homebank corpus. http://doi.org/10.21415/T5PK6D

Bergelson, E. (2016b). SEEDLingS corpus. Retrieved January 26, 2018, from https://nyu.databrary.org/volume/228

Bergelson, E., & Aslin, R. N. (2017). Nature and origins of the lexicon in 6-mo-olds. *Proceedings of the National Academy of Sciences*, 114(49), 12916–12921.

Brent, M. R., & Siskind, J. M. (2001). The role of exposure to isolated words in early vocabulary development. *Cognition*, 81(2), B33–B44.

Dale, P. S., & Fenson, L. (1996). Lexical development norms for young children. *Behavior Research Methods, Instruments, & Computers*, 28(1), 125–127.

Edelman, S. (1998). Representation is representation of similarities. *Behavioral and Brain Sciences*, 21(4), 449–467.

Firth, J. R. (1957). A synopsis of linguistic theory, 1930-

- 1955. Studies in Linguistic Analysis.
- Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. *Journal of Child Language*, 44(3), 677–694.
- Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. *Cognition*, 23(3), 183–209.
- Hahn, U., Chater, N., & Richardson, L. B. (2003). Similarity as transformation. *Cognition*, 87(1), 1–32.
- Harris, Z. S. (1954). Distributional structure. *Word*, *10*(2-3), 146–162.
- Helmholtz, H. (1878). The facts of perception. *Selected Writings of Hermann Helmholtz*, 1–15.
- James, W. (1890). *The principles of psychology*. Henry Holt; Company.
- Kemp, C., Bernstein, A., & Tenenbaum, J. B. (2005). A generative theory of similarity. In *Proceedings of the 27th annual conference of the cognitive science society* (pp. 1132–1137).
- Mandler, J. M. (2000). Perceptual and conceptual processes in infancy. *Journal of Cognition and Development*, *1*(1), 3–36.
- Mareschal, D., & Quinn, P. C. (2001). Categorization in infancy. *Trends in Cognitive Sciences*, 5(10), 443–450.
- Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp)* (pp. 1532–1543).
- Quinn, P. C., & Eimas, P. D. (1997). A reexamination of the perceptual-to-conceptual shift in mental representations. *Review of General Psychology*, *1*(3), 271.
- Quinn, P. C., & Eimas, P. D. (2000). The emergence of category representations during infancy: Are separate perceptual and conceptual processes required? *Journal of Cognition and Development*, *I*(1), 55–61.
- Quinn, P. C., Johnson, M. H., Mareschal, D., Rakison, D. H., & Younger, B. A. (2000). Understanding early categorization: One process or two? *Infancy*, *I*(1), 111–122.
- Rosch, E., & Lloyd, B. B. (1978). Cognition and categorization.
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, 115(3), 211–252. http://doi.org/10.1007/s11263-015-0816-y
- Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. *Cognitive Psychology*, *1*(1), 1–17.
- Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. *ArXiv Preprint ArXiv:1703.00810*.
- Stager, C. L., & Werker, J. F. (1997). Infants listen for more phonetic detail in speech perception than in word-learning tasks. *Nature*, *388*(6640), 381.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z.

- (2016). Rethinking the inception architecture for computer vision. In *Proceedings of the ieee conference on computer vision and pattern recognition* (pp. 2818–2826).
- Träuble, B., & Pauen, S. (2007). The role of functional information for infant categorization. *Cognition*, 105(2), 362–379.
- Tversky, A. (1977). Features of similarity. *Psychological Review*, 84(4), 327.