Impact of Ad Impressions on Dynamic Commercial **Actions: Value Attribution in Marketing Campaigns**

Joel Barajas UC, Santa Cruz Santa Cruz CA, USA jbarajas@soe.ucsc.edu

Ram Akella UC, Santa Cruz Santa Cruz CA, USA akella@soe.ucsc.edu

Marius Holtan **AOL** Research Palo Alto CA, USA marius.holtan@teamaol.com

Jaimie Kwon **AOL** Research Palo Alto CA, USA

Aaron Flores **AOL** Research Palo Alto CA, USA

Victor Andrei **AOL Research** Palo Alto CA, USA jaimie.kwon@teamaol.com aaron.flores@teamaol.com victor.andrei@teamaol.com

ABSTRACT

We develop a descriptive method to estimate the impact of ad impressions on commercial actions dynamically without tracking cookies. We analyze 2,885 campaigns for 1,251 products from the Advertising.com ad network. We compare our method with A/B testing for 2 campaigns, and with a public synthetic dataset.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sciences—*Economics*; G.3 [Mathematics of Computing]: Probability and Statistics—Time Series Analysis

General Terms

Algorithms, Economics, Management, Measurement

Keywords

Attribution, DLM, Marketing, Online Display Advertising

INTRODUCTION

Evaluating the effectiveness of marketing campaigns is a key problem in Online Display Advertising. Under the Cost-Per-Action (CPA) model, advertisers share the number of online commercial actions with the ad network. However, a significant number of users are not tracked because they either delete or reject cookies outright. Approximately 17% of Advertising.com users are not tracked via cookies¹.

We develop an interpretative method, based on Dynamic Linear Models (DLM)[3], to estimate the impact of ad impressions on actions without cookies. We incorporate persistence of campaign effects on actions assuming a decay factor. We relax the assumption of a linear impact of ads on actions using the log-transformation. We account for outliers with long-tail distributions fitted automatically for each observation[3]. Our method uses aggregate data and is simple to implement without expensive infrastructure. We measure model fitting and prediction with 4 model variants

Copyright is held by the author/owner(s). WWW 2012 Companion, April 16-20, 2012, Lyon, France. ACM 978-1-4503-1230-1/12/04.

for 2,885 campaigns and 1,251 products from the Advertising.com network. We compare our results with A/B testing, and validate our model with $PROMO^2$ dataset.

RELATED WORK

For reliable cookies, running experiments (A/B testing)[2], and correcting observational data[1] have been proposed to evaluate campaigns. These methods rely heavily on cookies, human intervention or user features. In contrast, we model the impact of ad impressions on actions to provide daily estimates without cookies or user features.

METHODOLOGY

We use the indices: t=1:T for time, c=1:N campaigns, s for samples, and k for steps ahead in forecast. We define: Y_t number of actions; X_t number of ad impressions; ξ_t cumulative effect of impressions on Y_t ; ψ_t impact contribution per impression; $\lambda \in \{0, 0.88\}$ decay rate of ξ_t (persistence). DLM variables: θ_t latent state; V_t noise variance for ν_t ; W_t covariance matrix of state evolution w_t . We define a DLM:

$$Y_t = F_t' \theta_t + \nu_t \qquad \nu_t \sim N(0, V_t)$$

$$\theta_t = G_t \theta_{t-1} + w_t \qquad w_t \sim N(0, W_t)$$
(1)

We define the model for
$$N$$
 campaigns:
$$Y_{t} = \sum_{c=1}^{N} \xi_{t}^{(c)} + \nu_{t}$$

$$\xi_{t}^{(c)} = \lambda^{(c)} \xi_{t-1}^{(c)} + \psi_{t}^{(c)} X_{t}^{(c)} + w_{t}^{(\xi,c)}$$

$$\psi_{t}^{(c)} = \psi_{t-1}^{(c)} + w_{t}^{(\psi,c)}$$
(2)

This is expressed by combining DLMs for each campaign c:

$$\begin{aligned} \theta_t^{\prime(c)} &= [\xi_t^{(c)}, \psi_t^{(c)}], & F^{\prime(c)} &= [1, 0] \\ G_t^{(c)} &= \begin{bmatrix} \lambda^{(c)} & X_t^{(c)} \\ 0 & 1 \end{bmatrix}, & W_t^{(c)} &= \begin{bmatrix} W_\xi^{(c)} + \left(X_t^{(c)}\right)^2 W_\psi^{(c)} & X_t^{(c)} W_\psi^{(c)} \\ X_t^{(c)} W_\psi^{(c)} & W_\psi^{(c)} \end{bmatrix} \end{aligned}$$

We expand this model, $M^{(0:N)}$, using 2 base models: a random walk and a seasonal weekly model. $M\log$ model uses the log transformation to relax the linear relationship between actions and impressions. Algorithm 1 shows the model $M\omega$ that handles outliers. Here, Γ and Mult are the Gamma and Multinomial distributions. Algorithm 2 shows the Gibbs sampling steps used to fit the model, and defines the variable sets of interest. We sample $\theta_{1:T}|\Phi,\Omega,D_{1:T}$ based on Forward Filtering Backward Sampling [3]. For $\Phi|\theta_{1:T}, \Omega, D_{1:T}$

^{*}Main contact.

¹AOL Research and Development internal memo.

²Available online at: http://www.causality.inf.ethz. ch/repository.php?id=2

Algorithm 1 Generative Model to Handle Outliers

Draw $p|\alpha \sim \overline{Dirichlet(\alpha)}$ for $t \leftarrow 1$ to T do Draw $\eta_t | p \sim Mult(1, p), \quad \omega_t | \eta_t \sim \Gamma(\frac{\eta_t}{2}, \frac{\eta_t}{2}), \quad V_t = \omega_t^{-1} V$ end for

Algorithm 2 Gibbs Sampling Algorithm

```
Define D_{1:T} = \left\{ Y_{1:T}, X_{1:T}^{(1:N)} \right\}, \Omega = \left\{ \omega_{1:T}, \eta_{1:T}, p \right\}
Define \Phi = \left\{ \lambda^{(1:N)}, W_{\psi}^{(1:N)}, W_{\xi}^{(1:N)}, W^{(0)}, V \right\}
for s \leftarrow 1 to N_0 + N_s do
     Draw \theta_{1:T}^s \sim p\left(\theta_{1:T}|\Phi^{s-1},\Omega^{s-1},D_{1:T}\right)
     Draw \Phi^s \sim p\left(\Phi | \theta^s_{1:T}, \Omega^{s-1}, D_{1:T}\right)
     Draw \Omega^s \sim p\left(\Omega|\theta_{1:T}^s, \Phi^s D_{1:T}\right)
end for
```


Figure 1: From top to bottom: model fitting results, daily number of impressions, proportion of actions attributed to impressions. X-axis is time in dates.

we use Inverse Gamma conjugate priors and Truncated Normals for λ . $\Omega|\theta_{1:T}, \Phi, D_{1:T}$ is sampled based on Algorithm 1. To sample η_t , we estimate the normalization constant. For evaluation, we estimate one step ahead forecast, $Y_t^{k=1}|D_{t-1}$. \hat{Y}_t and $\hat{\omega}_t$ are the posterior medians. We use mean relative squared error, MRSE, $e=(Y_t-\hat{Y}_t)/Y_t$. For attribution, we find the proportion of actions described by campaign c. We also estimate the variability attributed to a campaign, $R^2(c)$, respect to data variance, base model squared error $M^{(0)}$, and full model squared error without campaign c, $M^{(0:N\neg c)}$.

RESULTS

We test the models $M\omega$ and $M\omega$ log for the 2 base models defined. We analyze 2,885 campaigns associated with 1,251 products during six months. Fig 1 shows the model fitting and the proportion of actions attributed to campaign impressions. We use $M\omega\log$ with weekly seasonal base model. We observe that the peak in the first half of the action series is attributed to a gradual increase of daily impressions. Table 1 shows the fitting results. Better performance is reported when the log transformation is included suggesting a non-linear relationship between actions and impressions. This model reports the highest campaign percentage with non-significant effect according to Table 2. Table 3 depicts the mean and variance over campaigns for R^2 . Here, $R^{2}(c|var(Y_{t}))$ is lower for the weekly seasonal base model because actions are attributed to the day of the week.

We compare our method with A/B testing, which is expensive and requires significant human intervention, for 2

Table 1: Model evaluation results, scaled by 10^{-2} , averaged over products. 95% confidence intervals are shown.

Model	Fitted	Forecast	Fitted	Forecast		
			$\omega_t = 1$	$\omega_t = 1$		
	Random Walk Base model, MRSE					
$M\omega$	7.91 ± 1.85	61.77 ± 7.13	14.87 ± 2.40	72.13 ± 7.58		
$M\omega \log$	1.33 ± 0.32	$13.25{\pm}2.21$	5.49 ± 1.02	20.00 ± 2.57		
Weekly Seasonal Base model, MRSE						
$M\omega$	8.26 ± 2.13	61.13 ± 7.34	12.65 ± 2.11	70.75 ± 7.67		
$M\omega \log$	$0.72{\pm}0.14$	15.51 ± 2.81	$3.92{\pm}0.92$	21.20 ± 3.12		

Table 2: Averaged campaign evaluation results. Distribution of campaign effect significance (%)

tion of campaign enect signmeanee (70).						
Model	% attributed	Campaign Significance				
	(+)	(-)	(±)			
Random Walk Base model						
$M\omega$	14.07 ± 1.36	23.13	0.71	76.09		
$M\omega \log$	21.31 ± 1.63	18.65	0.58	80.71		
Weekly Seasonal Base model						
$M\omega$	10.39 ± 1.23	19.66	1.31	78.96		
$M\omega \log$	19.84 ± 1.64	14.83	0.60	83.98		

Table 3: Attributed variability results.

	Random Walk		Weekly Seasonal		
Measure	Mean	Std Dev	Mean	Std Dev	
$R^2(c var(Y_t))$	0.1241	0.2704	0.0667	0.1750	
$R^2(c M^{(0)})$	0.2804	0.3827	0.3002	0.3701	
$R^{2}(c M^{(0:N\neg c)})$	0.4967	0.4114	0.4703	0.3729	

Table 4: A/B testing results compared to the attribution given by $M\omega \log$ for the RandWalk base model.

Method	Campaign 1			Campaign 2		
	Low	Med	High	Low	Med	High
A/B	0.009	0.199	0.458	-0.034	0.115	0.312
$M\omega \log$	0.013	0.051	0.107	-0.049	0.347	0.809

campaigns in Table 4. Here, confidence intervals for A/B testing are not tight due to the sparsity of actions. Both methods report one positive significant campaign at 90% confidence level and one leaning towards positive effect. We also test our method with the PROMO dataset to compare with a ground truth. We use products with less than 6 relevant campaigns for 365 days. We detect 84.6% of effective campaigns correctly, and 73.2% of the days a campaign is effective per product.

DISCUSSION AND FUTURE WORK

We have presented a descriptive DLM based approach to measure the effects of campaigns on actions without tracking users. Our experiments show that a model in the log-scale is more suitable to describe the behavior of actions, and a seasonal base model gives less attribution to campaigns. We observed several campaigns with non-significant average effect on actions, which is consistent with A/B testing results. Our ultimate goal is to provide daily significant estimates of the effects of campaigns on sparse actions.

ACKNOWLEDGMENTS

This work is partially funded by CONACYT UC-MEXUS grant 194880, CITRIS and AOL Faculty Award.

- **7. REFERENCES** [1] D. Chan, R. Ge, O. Gershony, T. Hesterberg, and D. Lambert. Evaluating online ad campaigns in a pipeline: causal models at scale. In Proceedings of SIGKDD, pages 7-16. ACM, 2010.
- [2] R. A. Lewis, J. M. Rao, and D. H. Reiley. Here, there, and everywhere: correlated online behaviors can lead to overestimates of the effects of advertising. In Proceedings of WWW2011, pages 157–166. ACM, 2011.
- [3] G. Petris, S. Petrone, and P. Campagnoli. Dynamic Linear Models with R. use R! Springer-Verlag, 2009.