(NATURAL SCIENCE)

주체105(2016)년 제62권 제11호

Vol. 62 No. 11 JUCHE105 (2016).

반환에서 덜기합동관계와 덜기이데알사이관계

량금히, 한성철

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《이미 일정한 토대가 있고 전망이 확고한 연구대상들에 힘을 넣어 세계패권을 쥐며 그 성과를 확대하는 방법으로 과학기술을 빨리 발전시켜야 합니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》 단행본 39폐지)

론문에서는 반환에서 덜기합동관계의 특성을 연구한다.

선행연구[7]에서 반환의 개념이 처음으로 도입되였으며 그 최초의 실례는 단위원소를 가진 가환환의 이데알전부가 이루는 반환이였다.

반환은 환과 분배속을 둘 다 일반화한 대수계이며 최근에 그라프와 최량화, 자동체, 형식언어, 알고리듬, 부호리론, 암호학 등 여러 분야들에서 광범히 응용되고있다.

임의의 환에서는 합동관계들과 이데알들사이에 매 합동관계에 그 령합동류를 대응시키는 완전단일넘기기가 존재한다. 그러나 반환에 대하여 이러한 사실은 성립되지 않는다.[3, 4]

선행연구[4]에서는 B_1 - 대수 즉 표수 1인 반환에서 포화이데알들과 우수합동관계들 사이에 완전단일넘기기가 존재한다는것을 증명하였다.

선행연구[8]에서는 더하기제곱같기인 반환에서 아래모임인 이데알들과 정칙합동관계들사이에 1:1대응이 존재한다는것을 증명하였다.

사실 표수 1인 반환은 더하기제곱같기인 가환반환이며[5] 포화이데알은 덜기이데알이다. 더우기 선행연구[3]에서는 더하기제곱같기인 반환에서 아래모임인 이데알은 다름아닌덜기이데알이라는것을 증명하였다.

론문에서는 임의의 반환에 대하여 덜기합동관계 즉 k-합동관계의 개념을 도입하고 k-합동관계의 판정기준들을 설정하였으며 k-합동관계들과 k-이데알들사이에 포함관계를 보존하는 완전단일넘기기가 존재한다는것을 증명하고 령원소가 존재하기 위한 한가지 동등한 조건을 구하였다.

또한 반환이 k-단순하기 위해서는 k-합동관계단순할것이 필요하고 충분하다는것을 밝혔다.

론문에서 R 는 반환 $(R, +, \cdot)$ 을 표시한다. 다시말하여 (R, +) 는 가환반군이고 (R, \cdot) 은 반군이며 곱하기는 더하기에 관하여 량쪽분배법칙을 만족시킨다.

R 가 더하기중성원소 0을 가지고 모든 $r \in R$ 에 대하여 0r = r0 = 0이면 0을 R의 령원소라고 부른다. R 가 령원소를 가질 때 $0 \in R$ 로 표시한다.

R가 급하기중성원소 1을 가지면 1을 R의 단위원소라고 부른다.

R의 비지 않은 부분모임 A를 모든 $a,b \in A$ 와 $r \in R$ 에 대하여 $a+b,ra,ar \in A$ 이면 R의 이데알이라고 부른다.

R와 $0 \in R$ 인 경우 $\{0\}$ 을 R의 자명한 이데알이라고 부른다.

R의 이데알전부의 족을 I(R)로 표시한다.

R의 이데알 A에 대하여 모임 $\overline{A} = \{x \in R \mid \exists a, b \in A, x + a = b\}$ 를 R에서 A의 덜기페 포 또는 k-페포라고 부른다.

그러면 \overline{A} 는 R의 이데알이고 $A \subset \overline{A}$ 와 $(\overline{A}) = \overline{A}$ 가 성립된다.

R의 이데알 A. B에 대하여 $A \subset B$ 이면 $\overline{A} \subset \overline{B}$ 이다.

R의 이데알 $A \leftarrow A = \overline{A}$ 이면 R의 덜기이데알 또는 k-이데알이라고 부른다.

만일 A가 R의 이데알이면 \overline{A} 는 R의 k-이데알이다.

R 자체는 R의 k-이데알이고 $0 \in R$ 이면 $\{0\}$ 도 R의 k-이데알이다. R의 k-이데알 전부의 족을 KI(R)로 표시한다.

R 우의 동등관계 \equiv 를 임의의 $a, b, c \in R$ 에 대하여 $a \equiv b$ 이면

 $a+c \equiv b+c$, $ac \equiv bc$, $ca \equiv cb$

일 때 R 우의 합동관계라고 부른다. R 우의 합동관계전부의 족을 C(R)로 표시한다.

R 우의 합동관계 θ 가 주어지면 그 합동류전부로 이루어지는 상모임

$$R/\theta = \{ [x] | x \in R \}$$

는 x, y∈R에 대하여 [x]+[y]=[x+y]와 [x]·[y]=[xy]로 정의되는 산법들에 관하여 반환 을 이룬다.

이 반환 R/θ 를 θ 에 의한 R의 잉여반환이라고 부른다.

만일 $0 \in R$ 이면 [0]은 R/θ 의 령원소이다.

R의 이데알 $A \leftarrow x \kappa_A y \Leftrightarrow \exists a, b \in A, x + a = y + b$ 에 의하여 R 우의 합동관계 κ_A 를 정의하다.

그러면 A의 k-페포 \overline{A} 는 잉여반환 R/κ_A 의 령원소이며 더우기 $\kappa_A = \kappa_{\overline{A}}$ 이다.

앞으로 자명한 경우들을 피하기 위하여 |R≥2라고 가정한다.

보조정리 1 θ 가 R우의 합동관계이고 R/θ 가 령원소 0을 가지면 0은 R의 k-이 데알이다.

증명 $a, b \in 0$ 이면

$$[a+b] = [a] + [b] = 0 + 0 = 0$$

이므로 $a+b \in 0$ 이며 $a \in 0$ 이고 $r \in R$ 이면

$$[ar] = [a] \cdot [r] = 0 \cdot [r] = 0$$

이고 류사하게 [ra]=0이므로 $ar, ra \in 0$ 이다. 또한 $x+b \in 0$ 이고 $b \in 0$ 이면

$$[x] = [x] + 0 = [x] + [b] = [x + b] = 0$$

이다. 따라서 $x \in 0$ 이다.(증명끝)

정의 1 R 우의 합동관계 θ 를 R 의 이데알 A 가 있어서 $\theta = \kappa_A$ 일 때 덜기합동관계 또는 k-합동관계라고 부른다. R 우의 k-합동관계전부의 족을 KC(R)로 표시한다.

정리 1 R 우의 합동관계 θ 에 대하여 다음의 조건들은 서로 동등하다.

- i) θ 는 k-합동관계이다.
- ii) R/θ 는 령원소 0을 가지고 $\theta \subseteq \kappa_0$ 이다.
- iii) R/θ 는 령원소 0을 가지고 $\theta = \kappa_0$ 이다.

증명 ${
m i})\Rightarrow {
m ii})$ R의 이데알 A에 대하여 $heta=\kappa_A$ 라고 가정하면 k-페포 \overline{A} 는 R/ heta의 령원소이다.

만일 $x\theta y$ 이면 어떤 $a, b \in A$ 에 대하여 x+a=y+b이고 $A \subseteq \overline{A}$ 이므로 $x\kappa_{\overline{A}} y$ 이다.

ii)⇒iii) 보조정리 1에 의하여 0은 R의 이데알이다.

 $\kappa_0 \subseteq \theta$ 임을 보여주자.

만일 $x\kappa_0 y$ 이면 어떤 $a, b \in 0$ 에 대하여 x+a=y+b이고

$$[x] = [x] + 0 = [x] + [a] = [x + a] = [y + b] = [y] + [b] = [y] + 0 = [y]$$

이므로 $x\theta y$ 이다. 따라서 $\theta = \kappa_0$ 이다.

iii)⇒i) 보조정리 1로부터 나온다.(증명끝)

실례 $R = \{0, a, b, c, 1\}$ 을 그림과 같은 하쎄도식을 가진 분배속이라고 하면 합동류들이 $\{0\}$ 과 $\{1, a, b, c\}$ 인 (R, \lor, \land) 우의 합동관계 θ 는 k—합동관계가 아니다. 사실 R/θ 의 령원소는 $0_{\theta} = \{0\}$ 이고 $a\theta b$ 이지만 $a \lor 0 \neq b \lor 0$ 이다.

보조정리 1과 정리 1에 의하여 함수 $\iota: KC(R) \to KI(R)$ 를 $\iota(\theta) = 0_{R/\theta}$ 로 정의할수 있다. 여기서 $0_{R/\theta}$ 는 R/θ 의 령원소이다.

그림. 하쎄도식

또한 함수 $\kappa: I(R) \to C(R)$ 를 $\kappa(A) = \kappa_A$ 로써 정의한다.

그러면 정리 1로부터 다음의 결론을 얻는다.

보조정리 2 θ 가 R우의 k-합동관계이면 $\kappa(\iota(\theta)) = \theta$ 이다.

보조정리 3 R의 이데알 A가 R의 k-이데알이기 위해서는 $\iota(\kappa(A))=A$ 일것이 필요하고 충분하다.

정리 2 i) κ 의 KI(R)에로의 축소는 KI(R)로부터 KC(R)우로의 포함관계를 보존하는 완전단일넘기기이다.

ii) $KI(R) \subseteq F \subseteq I(R)$ 이고 κ 가 F 우에서 1:1이면 F = KI(R) 이다.

증명 i) 보조정리 2, 3으로부터 나온다.

ii) 만일 $A \in F$ 이면 $\overline{A} \in KI(R) \subseteq F$ 이다. $\kappa(A) = \kappa_A = \kappa_{\overline{A}} = \kappa(\overline{A})$ 이고 κ 가 F 우에서 1:1이므로 $A = \overline{A}$ 이고 따라서 $A \in KI(R)$ 이다.(증명끝)

주의 1 표수 1인 반환은 단위원소 1을 가지는 1+1=1인 가환반환 R이다.[4, 5] 분명히 모든 $r \in R$ 에 대하여 r+r=r이다. 따라서 표수 1인 반환들은 더하기제곱같기이다.

주의 2 R 를 더하기제곱같기반환이라고 하면 A 가 R 의 이데알이고 $x, y \in R$ 일 때 어떤 $a, b \in A$ 가 있어서 x+a=y+b 라는 조건으로부터 어떤 $c \in A$ 가 있어서 x+c=y+c 이다.

사실 $c=a+b\in A$ 로 놓으면

x + c = x + a + b = x + a + a + b = y + b + a + b = y + a + b = y + c.

주의 1, 2는 정리 2의 i)이 선행연구[4]의 정리 3.8과 선행연구[8]의 정리 5의 일반화임을 보여준다.

주의 3 $\kappa_R = R \times R$ 이므로 $R \times R$ 는 늘 R 우의 k — 합동관계이다. 그러나 id_R 는 꼭 R 우의 k — 합동관계인것은 아니다.

정리 3 R가 령원소 0을 가지기 위해서는 id_R 가 R우의 k-합동관계일것이 필요하고 충분하다. 이 경우에 $\kappa_{\{0\}}=id_R$ 이다.

즘명 (필요성) 만일 R가 령원소 0을 가지면 $\{0\}$ 은 R의 이데알이고 $\kappa_{\{0\}}=id_R$ 이다.

(충분성) 만일 id_R 가 R우의 k-합동관계이면 매 합동류는 한원소모임이다.

정리 1에 의하여 R/id_R 는 령원소 $[a]=\{a\}$ 를 가진다. 여기서 $a \in R$ 이다.

a가 R의 령원소임을 보여주자.

임의의 $x \in R$ 에 대하여

$$[x+a] = [x] + [a] = [x]$$

이고 따라서 x+a=x이다.

또한 $[xa] = [x] \cdot [a] = [a]$ 이고 류사하게 [ax] = [a]이다.

따라서 xa = a = ax 이다.(증명끝)

정의 2 R는 $R \times R$ 와 $0 \in R$ 인 경우 id_R 를 제외하고는 k-합동관계를 허용하지 않으면 k-합동관계단순하다고 말한다.

R 가 비자명한 k — 이데알들을 가지지 않으면 k — 단순 또는 단순하다고 하며[1, 6] 2개의 합동관계만을 가지면 합동관계단순하다고 말한다.[2]

R가 비자명한 이데알들을 가지지 않으면 이데알없다고 말한다.[6]

분명히 합동관계단순한 반환들은 k-합동관계단순하며 이데알없는 반환들은 k-단순하다.

점리 4 R가 k-단순하기 위해서는 k-합동관계단순할것이 필요하고 충분하다.

참 고 문 헌

- [1] A. K. Bhuniya et al.; Southeast Asian Bull. Math., 36, 309, 2012.
- [2] T. Kepka et al.; Semigroup Forum, 75, 588, 2007.
- [3] S. C. Han; J. Algebra Appl., 14, 10, 1250195, 2015.
- [4] P. Lescot; J. Pure Appl. Algebra, 215, 1782, 2011.
- [5] P. Lescot; Osaka J. Math., 52, 721, 2015.
- [6] H. E. Stone; Trans. Amer. Math. Soc., 233, 339, 1977.
- [7] H. S. Vandiver; Bull. Amer. Math. Soc., 40, 914, 1934.
- [8] B. Zhou et al.; Basic Sci. J. Textile Univ., 24, 253, 2011.

주체105(2016)년 7월 5일 원고접수

Relation between Subtractive Congruences and Subtractive Ideals on Semirings

Ryang Kum Hui, Han Song Chol

For any semiring we introduce the concept of subtractive congruences i.e. k – congruences, establish criteria for k – congruences, prove that there is an inclusion-preserving bijection between k – congruences and k – ideals, and present an equivalent condition for the existence of a zero. In addition, we show that a semiring is k – simple if and only if it is k – congruence-simple.

Key words: semiring, subtractive congruence, subtractive ideal