第十四章 带权图及其应用

定理 14.1 设 $P_E=\{v\mid TE(v)$ 已算出 $\}$, $T_E=V-P_E$, 若 $T_E\neq\varnothing$, 则存在 $u\in T_E$, 使得 $\Gamma^-(u)\subseteq P_E$.

定理 **14.2** 设 $P_L = \{v \mid TL(v)\}$ 已算出 $\}$, $T_L = V - P_L$, 若 $T_L \neq \emptyset$, 则存在 $u \in T_L$, 使得 $\Gamma^+(u) \subseteq P_L$.

定理 14.3 $TS(v_i) = 0$ 当且仅当 v_i 处在关键路径上.

定理 14.4 C 是带正权无向连通图 $G = \langle V, E, W \rangle$ 中的最优投递路线当且仅当对应的欧拉图 G^* 满足:

- (1) G 的每条边在 G^* 中至多重复出现一次;
- (2) G 的每个圈上 G^* 中重复出现的边的权之和不超过该圈权的一半.

定理 14.5 设带正权无向连通图 $G = \langle V, E, W \rangle$, V' 为 G 中奇度顶点集,设 $|V'| = 2k(k \ge 0)$, $F = \{e \mid e \in E \land \ \text{在求} \ G$ 的最优回路时加了重复边 $\}$,则 F 的导出子图 G[F] 可以表示为以 V' 中顶点为起点与终点的 k 条不交的最短路径之并.

定理 14.6 设 T 是无向连通带权图 $G = \langle V, E, W \rangle$ 中的一棵生成树,则下面命题等价:

- (1) T 是 G 中的最小生成树;
- (2) 任意的 $e \in E(T)$, 设 e 对应的基本割集为 S_e , 都有 e 是 S_e 中带权最小的边;
- (3) 任意的 $e \in E(\overline{T})$ (\overline{T} 为 T 的余树), 设 C_e 是 e 对应的基本的回路, 都有 e 是 C_e 中带权最大的边.

定理 14.7 设 $G = \langle V, E, W \rangle$ 是无向连通带权图,C 为 G 中任意一个圈,e' 是 C 中带权最大的边,则 G - e' 中的最小生成树也是 G 中的最小生成树.

定理 14.8 设 $G=\langle V,E,W\rangle$ 为一个无向连通带权图. $S=(V_1,\overline{V}_1)$ 为 G 中一个断集, $e'\in S$ 且 $W(e')=\min_{e\in S}\{W(e)\}$,设 T' 是以 e' 为树枝的所有生成树中带权最小的,则 T' 是 G 的最小生成树.

定理 **14.9** 设 $G = \langle V, E, W \rangle$ 为一个无向连通带权图, $e \not\in G$ 非环且是带权最小的边. 则 G 中一定存在含 e 作为树枝的最小生成树 T^* .

定理 **14.10** 设 $G = \langle V, E, W \rangle$ 为一个无向连通带权图, $e \not\in G$ 中非环的带权最小的边,设 $G' \not\in G$ 中短接 e 的两个端后所得的图, $T' \not\in G'$ 中的最小生成树,在 G 中设 $T^* = G[E(T') \cup \{e\}]$,则 $T^* \not\in G$ 中的最小生成树.

定理 **14.11** 在带权为 $w_1 \leq w_2 \leq \cdots \leq w_t$ 的所有最优树中,一定存在以权为 w_1, w_2 的两顶点 v_1, v_2 为兄弟,且 v_1, v_2 的层数都是树高 h 的最优树.

定理 **14.12** (**Huffman** 定理) 设 T' 带权为 $w_1 + w_2, w_3, \dots, w_t$ 的最优二叉树, 其中 $w_1 \le w_2 \le \dots \le w_t$, 如果将 T' 中带权为 $w_1 + w_2$ 的树叶作为分支点, 使它带两个儿子, 带权分别为 w_1 和