Computer Graphics (CS 4731) Lighting

Joshua Cuneo

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Variation in the color of an object gives perception of structure.

This variation in color is due to the changing light conditions on the object's surface.

The orientation of the surface relative to the light source(s) is what makes up most color variation.

How can lighting be modeled in tessellated geometry?

What Causes Shading?

Global Illumination (Lighting) Model

For each light in scene
Emit 1,000,000,000 photons
For each photon
Find what geometry photon hits
Color photon
Scatter photon
Find what photon hits next

Pray photon hits camera CCD Light pixel that CCD micro-square represents

Light pixel that CCD micro-square represents

Light Sources

- General light sources are difficult to model (e.g. light bulb)
- Why? We must compute effect of light coming from all points on light source

Light Sources Abstractions

Point light

Spot light

Directional light

Area light

Diffuse Light Calculation

Receive more light

Receive less light

Diffuse Lighting

$$I_d = L_d k_d \hat{l} \cdot \hat{n}$$

$$0 < I < 1$$

L_d= light intensity

k_d= material diffuse coefficient

Diffuse Lighting

$$\begin{split} I_{dr} &= L_{dr} k_{dr} \hat{\mathbf{I}} \bullet \hat{\mathbf{n}} \\ I_{dg} &= L_{dg} k_{dg} \hat{\mathbf{I}} \bullet \hat{\mathbf{n}} \\ I_{db} &= L_{db} k_{db} \hat{\mathbf{I}} \bullet \hat{\mathbf{n}} \\ 0 &< I_{dx} < 1 \end{split}$$

$$L_{dx} = \text{light channel intensity}$$

k_{dx}= material diffuse coefficient for channel

Diffuse Lighting

$$I_{dr} = L_{dr}k_{dr}\hat{I} \cdot \hat{n}$$

$$I_{dg} = L_{dg}k_{dg}\hat{I} \cdot \hat{n}$$

$$I_{db} = L_{db}k_{db}\hat{I} \cdot \hat{n}$$

$$0 < I_{dx} < 1$$

 L_{dx} = light channel intensity

k_{dx}= material diffuse coefficient for channel

Diffuse Lighting Example

Specular light example

Specular?
Bright spot
on object

Surface Roughness

- Smooth surfaces: more reflected light concentrated in mirror direction
- Rough surfaces: reflects light in all directions

Specular Highlights

Mirror Direction?

Angle of reflection = angle of incidence

$$I_s \simeq L_s k_s \left(\hat{\mathbf{v}} \cdot \hat{\mathbf{r}} \right)^a$$

 L_s = specular intensity

a = shininess

k_s = material specular coefficient

The Shininess Coefficient, α

- ullet α controls falloff sharpness
- High α = sharper falloff = small, bright highlight
- Low $\alpha =$ slow falloff = large, dull highlight
 - α between 100 and 200 = metals
 - α between 5 and 10 = plastic look

Specular light: Effect of 'α'

$$\alpha = 10$$

$$\alpha = 90$$

$$\alpha = 270$$

Ambient Lighting

$$I_a = L_a k_a$$

La= ambient intensity

k_a = material ambient coefficient

Ambient Light Example

Ambient: background light, scattered by environment

Coefficients for Real Materials

Material	Ambient Kar, Kag,kab	Diffuse Kdr, Kdg,kdb	Specular Ksr, Ksg,ksb	Exponent, α
Black plastic	0.0	0.01	0.5	32
	0.0	0.01	0.5	
	0.0	0.01	0.5	
Brass	0.329412	0.780392	0.992157	27.8974
	0.223529	0.568627	0.941176	
	0.027451	0.113725	0.807843	
Polished	0.23125	0.2775	0.773911	89.6
Silver	0.23125	0.2775	0.773911	
	0.23125	0.2775	0.773911	

Figure 8.17, Hill, courtesy of McReynolds and Blythe

Phong Lighting Model

$$I = I_a + I_d + I_s$$

 $I_a =$ ambient intensity

 I_d = diffuse intensity

 I_s = specular intensity

Interpolation

Where to apply the lighting model?

Flat Interpolation

Where to apply the lighting model?

Normals supplied per face Lighting calculated for face Color constant across face

Flat Shading

Mach Band Effect

Human eyes amplify discontinuity at the boundary

Smooth shading

Gouraud Interpolation

Where to apply the lighting model?

Henri Gouraud

Normals supplied per vertex Lighting calculated at vertex Color interpolated across face

Lighting?

Shading?

Rasterization Find pixels belonging to each object

Shading (done in hardware during rasterization)

Gouraud Shading

Calculating Normals for Meshes

$$\mathbf{n} = (\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4) / |\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|$$

Gouraud Shading Problem

Phong Interpolation

Where to apply the lighting model?

Bui Tuong Phong

Normals supplied per vertex
Normals interpolated across face
Color & lighting calculated per pixel

Phong Shading (Per Fragment)

Normal interpolation (also interpolate l,v)

At each pixel, need to interpolate Normals (n) and vectors v and I

Toon (or Cel) Shading

- Non-Photorealistic (NPR) effect
- Shade in bands of color

