

Platinum Rated 720W AC/DC Reference Design

Universal Single Phase Input, Single Phase Output

Agenda

- CSCI and ENERGY STAR Standards
- System Overview
- Hardware Information
- System Software
- Advanced Features
- Additional Resources

CSCI Efficiency Standards

The Climate Saving Computing Initiative (CSCI) adds Platinum Efficiency standard as part of the ENERGY STAR specifications

- Dedicated to blade and volume server applications
- 500-1,000W Single Phase 90-264V AC-Input, 12V Single DC-Output
- Specification defines minimum efficiencies and power factors for certain load conditions
- ENERGY STAR members have to meet Platinum Specification by July 2013

CSCI Efficiency Levels

CSCI Efficiency Levels

Platinum-Rated AC/DC Reference Design

Input:

- 90~264Vac, 45-65 Hz
- Active PFC (PF up to 0.99)

Output:

- 12V DC / 60A (720W max)
- Load Regulation: ± 1.5%
- Line Regulation: ± 0.5%

Efficiency:

- Peak Efficiency: 94.1%
- Meets ENERGY STAR CSCI Platinum Level

Dimensions:

- 5U x 5U x 1U
- (222 x 222 x 44.45) mm

Platinum-Rated AC/DC Reference Design

Special Features:

- Full digital control
- Enhanced system monitoring & fault handling
- Load share bus for N+1 Redundancy

Efficiency Optimization:

- Switching Frequency Adaption
- Dynamic Bulk Voltage Adjustment
- Enhanced Sync Rectifier Control

Efficiency vs. Output Load

High-Level Block Diagram

Design Architecture

Interleaved PFC Stage

Interleaved 2-Switch Forward

Software Overview

Two independent software projects

- Primary Side (PFC)
- Secondary Side (DC-DC)

Interrupt based priority scheme

- High Priority Critical Power Control algorithms
- Medium priority Advanced algorithms
- Low priority Communications

UART Communication between primary and secondary for exchange of system information

System Software - Primary

Primary Control Loop

Primary Side Control Loop consists of three sub-sections

- Voltage Control Loop
- Current Control Loop
- Sine modulation of current and input feed-forward

Current Control Loops (x2)

- High speed PI algorithm
- Executed in ADC ISR (Highest priority)
- Independent control loops for each interleaved phase

Sine Modulation

- Modulates output of voltage loop into a sinusoidal shape
- Adds input voltage feed-forward
- Executed in Timer2 ISR (Medium priority)

Voltage Loop

- Controls output voltage using PI algorithm
- Executed in INT2 ISR (Medium priority) once every four Timer2 ISRs

Primary Control Loop

System Software - Secondary

Secondary Control Loop

Secondary Side Control Loop consists of three subsections

- Voltage Control Loop
- Current Control Loop
- Load Feed-forward

Current Control Loop

- High speed PI algorithm
- Executed in every other PWM Special Event ISR (High priority)

Voltage Loop

- High Speed PI algorithm
- Executed in every other PWM Special Event ISR (High priority)

Load Feed-Forward

- Executed in every other PWM Special Event ISR (High priority)
- Improves response to load transients

Secondary Control Loop

Advanced Features

Algorithm	Primary	Secondary
Frequency Reduction	X	Х
Frequency Jitter	X	Х
DCM Correction	X	
Bulk Voltage Reduction/Boost	X	
Synchronous Rectifier Control		Х
Power Derating		Х
Load Sharing		Х

Frequency Reduction

- Improved efficiency at light loads
- Frequency is reduced gradually in small steps until optimum frequency is reached
- When a load transient is detected, frequency is instantly increased to maximum to maintain good response

PRIMARY SIDE	Х
SECONDARY SIDE	X

Frequency Jitter

- Improves EMI performance of the system
- Jitter is applied to switching frequency at a slow rate after frequency reduction algorithm

PRIMARY SIDE	Χ
SECONDARY SIDE	Х

PFC Discontinuous Conduction Mode (DCM)

- Transfer function becomes non-linear in DCM mode
- Control system can compensate for different operating modes

Worst Case: 50-50% CCM and DCM operation

DCM Correction

- Transition between CCM mode and DCM mode for PFC causes waveform distortion
- A correction factor is added to current control algorithm to improve PF and THD at light loads due to DCM-CCM transitions

Bulk Voltage Reduction/Boost

- PFC Output Bulk voltage is reduced to improve efficiency
- At light loads, a reduced bulk voltage can still allow the DC-DC
- Output Bulk Voltage is increased instantaneously in the event of a load transient to maintain good response

Synchronous Rectifier Control

Synchronous Rectifier Control

- The system implements two pairs of sync. rectifiers
- One or both pairs can be disabled at light loads to save switching losses and improve efficiency
 - lout > 26A, all ON
 - 8A < lout < 24A, 1 pair ON
 - lout < 8A, both pairs OFF

Power De-rating

- AC Input voltage information is transmitted to secondary side
- If AC Input Voltage drops below 110V_{rms}, maximum output power of the system is de-rated
- De-rating is achieved by modifying the output current limit by a de-rating factor
- De-rating factor is proportional to (110V_{rms} – V_{in rms})

PRIMARY SIDE	
SECONDARY SIDE	Х

Parallel Operation (N+1 Redundancy)

ORing and Load Sharing

ORing and Load Sharing

- System supports N+1 redundancy through ORing circuitry
- In addition to OR-ing circuit, the software implements load sharing through an analog load share bus
- Software adjusts the power level delivered by the system to balance the loading between different systems

PRIMARY SIDE	
SECONDARY SIDE	Х

Efficiency Analysis

Efficiency Level Optimization

Test Conditions:

- 230Vac / 50Hz Input
- Red:
 CSCI Platinum Efficiency with given Reference
 Points
- Blue: Efficiency with no enhanced features enabled
- Green:
 Efficiency with enhanced features enabled

Additional Resources

- Platinum-rated AC/DC Reference Design Application Note (DS-01421)
- Efficiency Measurement Guidelines document
- Demo Instructions Document
- Schematics, PCB and BOM
- Primary and Secondary Firmware

Thank You