

Tutorial 2

Implementazione modello numerico del flusso delle acque sotterranee e raffinamento locale della griglia con SID&GRID

parte 1

Rudy Rossetto Iacopo Borsi

Unione europea Fondo sociale europeo

r.rossetto@sssup.it borsi@math.unifi.it

Introduzione

Questo tutorial presenta alcune delle funzionalità del modello idrologico SID&GRID. Nel tutorial si effettua la costruzione di un modello idrogeologico e sua simulazione con il codice MODFLOW-2005 modificato (ovvero *mflgr_sidgrid*) nel progetto *SID&GRID http://sidgrid.isti.cnr.it*

Per lo svolgimento dell'esercizio sono necessarie conoscenze di base di utilizzo di applicativi GIS e di modellistica numerica idrogeologica ed in particolare del codice MODFLOW.

Nella cartella *dati* sono presenti *9 cartelle* contenenti i dati geografici di partenza già pronti per essere implementati nel modello.

Il ciclo completo di modellazione prevede anche una fase di elaborazione dei dati grezzi, prevalentemente geografici, non oggetto di questo tutorial.

Il tutorial, pur prendendo le mosse da un caso reale, non è affatto rappresentativo dello stesso e tutti i dati geografici originali, ove utilizzati, sono stati appositamente modificati.

Il tempo stimato necessario al completamento del tutorial è di circa otto ore. Questo tutorial è stato terminato con successo su OS Win Xp utilizzando gvSIG CE, e su Win7 utilizzando sia gvSIG CE e gvSIG Desktop 1.12.

Obiettivo dell'esercizio – parte 1

Dopo aver espresso il modello concettuale, implementeremo un modello numerico per la simulazione del campo di moto delle acque sotterranee in un acquifero alluvionale in sabbie e ghiaie.

Simuleremo il campo di moto indisturbato, la messa in opera di un campo pozzi idropotabile per un periodo di 90 giorni e la chiusura dello stesso per successivi 30 giorni.

La simulazione verrà effettuata su 3 stress period (SP) con il primo in stato stazionario e gli altri in transitorio.

Valuteremo l'estensione e l'entità della risalità della falda che si verifica in seguito alla chiusura del campo pozzi confrontandola con lo stato stazionario indisturbato.

Si analizzi infine il bilancio idrico al fine di trarre indicazioni sulle interazioni tra l'acquifero s.s. e alcuni corpi idrici superficiali.

Prima di svolgere questo tutorial si consiglia l'utente di leggere attentamente almeno i Cap. 1, 2, 3, 4 del Manuale utente.

Durante lo svolgimento è consigliata la consultazione dei Cap. 5, 6, 7, 8, 11, 12 e 15.

Dominio di studio

Terminazione est della pianura di Lucca –Alveo del Lago di Bientina (Provincia di Lucca)

Elementi idrologici principali (caso simulato):

Acquifero in connessione con reticolo idraulico costituito da Canale di Altopascio e Canale Rogio (dreno)

Campo pozzi idropotabile (4 pozzi)

Geologia di sottosuolo/idrostratigrafia

Assetto idrodinamico/1

Assetto idrodinamico/2

UI1 (cop. superficiale – limi sabbiosi)
UI2 (acquifero - sabbie e ghiaie)

Condizioni al contorno:

Flusso imposto nullo: base UI2

Flusso imposto (.well): in ingresso al limite est ed ovest (variabile nel tempo)

Flusso imposto (.rch): ricarica meteorica efficace (variabile nel tempo)

Flusso dip. da carico (.riv): Canale d'Altopascio (variabile nel tempo)

Flusso dip. da carico (.ghb): limite nord e sud (variabile nel tempo)

Flusso dip. da carico (.drn): Canale Rogio

Termine di pozzo:

.well: pozzi idropotabili (Q emunta variabile nel tempo)

Condizioni iniziali

Poiché il modello è in stato stazionario utilizziamo un valore elevato (30 m) al fine di evitare difficoltà iniziali nell'utilizzo del modulo *rewetting*

Implementazione modello numerico

Andiamo adesso ad implementare il modello numerico del flusso delle acque sotterranee, ovvero nella zona satura (tutti i processi idrologici che avvengono prima di tale comparto dovranno essere trattati separatamente).

Discretizzazione orizzontale (in pianta)= Celle 100X100 m

Discretizzazione verticale = 2 layer

Estensione dominio

N/S 5800 m

E/O 7000 m

58 righe

70 colonne

Creiamo in C:// la cartella **git** ed in questa le cartelle:

- **shape_temp**: vi salveremo tutti i file di lavoro che verranno creati durante l'implementazione del modello;
- **input**: vi salveremo tutti i file di testo necessari alla simulazione con il codice MODFLOW – vi verrà salvato anche il file .lst (list file) al termine della simulazione

File necessari per l'implementazione del modello

(cartella dati)

in C://git copiare la cartella dati che contiene dati geografici già processati

- Map (topografia georiferita)
- Domain (dominio di studio)
- No-flow (estensione celle inattive)
- cartella Geometry:
 - top_layer1.tiff (modello digitale del terreno)
 - bot lay1 100.tiff (base della copertura limoso sabbiosa)
 - bot_lay_2.tiff (base dell'acquifero in sabbie e ghiaie)
- kui (distribuzione in .shp poligonale dei par. idrodinamici della UI2)
- ghb_linea.shp (linee per la definizione del limite sud del modello)
- sp_ghb_nord e_sud.dbf (tabella di appoggio per la condizione ghb)
- river.shp (linea rappresentante il Canale d'Altopascio)
- sp_river.dbf (tabella di appoggio per la condizione riv)
- drain.shp (linea rappresentante il Canale Rogio)
- sp_drain.dbf (tabella di appoggio per la condizione drn)
- well.shp (punti dei pozzi utilizzati per simulare il limite est/ovest ed i pozzi idropotabili)

Avvio del programma

(dall'icona sul desktop oppure C:\GVSIGxxx\bin) >>>Cliccare su file .bat GVSIG

Si crea una **VISTA** >>>Rinominarla **git**

Selezionata la vista, impostare il sistema di riferimento (*Proprietà>–Proiezione attuale>Tipo>EPSG>Cerca> 3003>Accetta*)

Si crea un oggetto **MODELLO** (*hydrological modelling*) >>>Rinominarlo git

Da **Proprietà** si apre la finestra >>>**Proprietà del modello**

Impostiamo:

Working directory file modello: C://git/input

Time unit: days **Map**: meters **SP**= 3

Applica

Creazione del database

Dobbiamo adesso creare <u>un nuovo database</u> in cui verranno immagazzinati tutti i dati:

>SG Data Base

Att.ne!!! Impostare la connessione al db laddove fosse mancante

(aprire pg admin e "selezionare la spina" – richiede una password)

Crea DB (nominarlo git)

... è il database del modello: è necessario dargli il nome del progetto (non usare maiuscole!)

Ok Appare la scritta: Database creato correttamente

E' bene adesso salvare il progetto GIS: file> salva come>git_gis (nella cartella git)

Dalla **VISTA** aprire **git** (la vista è al momento priva di dati)

Importiamo la cartografia di base: Map> 1053.tif

Definizione della griglia di calcolo

Si aggiunge alla vista il **layer vettoriale del dominio di studio** ed effettuare uno zoom su tale layer

(.../git/data/domain)

Avendo selezionato il layer domain:

SG Configure>Griglia>Crea griglia

Risoluzione x: 100 m

Risoluzione y: 100 m

Quota layer (top) =20 m

Quota layer (bottom) = 10 m

(Successivamente andremo a sostituire con file appropriati le superfici limite dei layer del modello)

Data Base: git

Progetto modello: git

Esegui

Salvare nel database? Si (vengono esportati gli elementi nel geodatabase)

Si è generata la griglia del modello visibile nel model layer 1

Griglia di calcolo

Dominio attivo/inattivo del modello/1

Definiamo il **dominio attivo** del modello

```
Caricare il file no_flow.shp (contiene l'estensione delle celle inattive nel modello)
Selezionare no_flow.shp (il poligono si colora in giallo)
```

Vogliamo adesso selezionare le celle del model_layer_1 da porre inattive

Attiviamo e portiamo in editazione lo .shp model_layer_1

Da Vista > seleziona per/con layer

Completare la finestra indicando che gli elementi

sono contenuti in .shp no_flow

Nuovo insieme

Dominio attivo/inattivo del modello/2

Una volta selezionate le celle:

- togliamo la visualizzazione del layer no_flow
- entriamo in editazione del model_layer1 e apriamo la tabella degli attributi
- editiamo il campo ACTIVE assegnando alle celle selezionate il valore 0 (zero=inattivo) (ovvero, selezionare il campo ACTIVE >>>strumento Espressione: Campo ACTIVE=0)

Andiamo quindi a disattivare l'opzione **rewetting** dalle celle inattivate:

Espressione> Drywet=0

Una volta effettuate queste operazioni terminare l'editazione.

Visualizziamo quindi con differenti colori le celle attive e quelle inattive.

(salvare ...)

Dominio attivo e dominio inattivo

Definizione delle proprietà del model_layer1

Selezionare il model_layer_1

Da **SG Configure >Griglia >>Model layers**

Si apre la finestra Model Layers (verificare che il geodb sia git)

Model layer selezionare model_layer_1

Completare la tabella inserendo:

Layer type = convertible

Layeravg = harmonic

Constant anysotropy = SI Anysotropy value = 1

Layer VKA = 0

Layer wet = active

Aggiungiamo quindi un secondo model_layer, che utilizzeremo per rappresentare la UI2 (acquifero in sabbie e ghiaie).

Aggiungi

Definizione delle proprietà del model_layer2

Compiliamo le proprietà come fatto con il model_layer_1

Nella tabella **inserire**:

confined Layer type

Layerag harmonic

Anisotropia costante SI Val. anisotropia

Layer VKA

Layer wet inactive

(dopo aver verificato che il Geodatabase sia git)

Esegui

Abbiamo così creato e salvato il *model_layer_2* nel geodatabase.

SIDEGRID Verificare che il model layer 2 abbia ereditato dal model layer1 gli stessi record del campo *active* e *drywet*.

Definizione delle proprietà del model_layer2

<u>Se i record predetti non corrispondono</u>, inattiviamo le celle del *model_layer2* con la stessa distribuzione spaziale del *model_layer_1* e disattiviamo l'opzione DRYWET a

Da SG Configure> Strumenti> Importa parametri> Copia

Esegui (attendere la voce Eseguito)

Visualizzando il **model_layer2** utilizzando il campo **Active** si può osservare come gli attributi del **model_layer1** siano stati copiati anche sul **model_layer2.**

Geometria del dominio di studio/1

Andiamo a definire la geometria tridimensionale dei due layer attribuendo a ciascun layer le superfici limite, ovvero di tetto e di letto, delle unità idrostratigrafiche individuate nel modello concettuale

Attenzione!!!

Se si vuole aggiungere ulteriori model_layer (ad es. tra i due appena creati) sarà necessario generare un nuovo modello oppure andare a effettuare modifiche sulla **tabella LPF** (chiarimenti sul manuale)

Caricare nella Vista i raster delle superfici limite (cartella Geometry: top_layer1, bot_lay1_100; bot_lay2)

Importiamo nel model_layer_1 il dato di Top e Bottom

SG Configure >> **Strumenti** >> **Importa parametri** >> **Da raster** Si apre la finestra **Da raster**

Per ogni raster da importare è necessario selezionare:

- il dato raster da utilizzare (*Dato raster*)
- il layer dove andare a eseguire l'import (*Layer Modello*)

Geometria del dominio di studio/2

E' possibile che i raster creati, a causa della regionalizzazione di dati con diversità densità spaziale, vadano a intersecarsi.

E' necessario fare pertanto una verifica ed effettuare le necessarie modifiche:

in SID&GRID questo avviene utilizzando comuni funzionalità GIS.

- Portare in editazione il model layer 1
- Effettuare una sottrazione tra TOP e BOTTOM utilizzando il campo NE
- Ordinare il campo in ordine crescente
- Selezionare le celle per cui la differenza è minore di 1 e
- Portarsi sul campo BOTTOM e per le celle selezionate scrivere l'espressione BOTTOM=TOP-1

(ovvero desideriamo che lo spessore minimo del model_layer_1 sia pari ad 1 m)

- Chiudere e salvare l'editazione

Il TOP del model_layer_2 dovrà in questo caso essere copiato dal BOTTOM del model_layer_2 utilizzando SG Configure> Strumenti> Importa parametri> Copia

Si effettua infine la stessa operazione eseguita sul model layer1 per specificare l'andamento geometrico delle superfici per il model layer2

Alla fine della procedura eliminare dalla visualizzazione i dati raster

Geometria del dominio di studio/3

Terminate queste operazioni specifichiamo adesso i quali sono i model_layer che compongono gli strati del modello idrogeologico (**Ground Water Model layers**)

Gestore di progetto >> Hydrological model

Selezionare Proprietà dalla finestra iniziale

Portare i model layer_1 e _2 nella finestra **Selezionato**

Applica

Una volta eseguita l'operazione, tornare sulla Vista.

selezionare ait

Implementazione delle proprietà idrodinamiche/1

Assegniamo i parametri idrodinamici ai due *model_layer* importando .shp poligonali che contengono le informazioni relative ai valori da attribuire a:

Circa la UI1 non si hanno a disposizione stime della conducibilità idraulica o dell'immagazzinamento derivanti da prove sperimentali.

Per tale motivo si utilizzano valori unici per l'intero *model_layer_1* coerenti con i sedimenti che lo caratterizzano.

Per il **model_layer_1** utilizzeremo le comuni funzionalità GIS editando i campi relativi alla conducibilità idraulica ed ai parametri dell'immagazzinamento:

$$Ss=10^{-4} 1/m$$
 $Sy=5*10^{-2}$

Implementazione delle proprietà idrodinamiche/2

Per il *model_layer_2* importeremo i dati dallo .shp poligonale kui:

SG Configure >> Strumenti>> Importa parametri >> Da poligoni

Assegniamo i valori di k_x , k_y e k_z applicando la corrispondenza tra i campi dei due file (MAX_Kx con Kx, MAX_Ky con Ky e MAX_Kz con Kz)

Esegui

(l'attribuzione termina con **Eseguito**)

Implementazione delle proprietà idrodinamiche/3

Assegniamo i parametri dell'immagazzinamento al **model_layer_2** utilizzando le comuni funzionalità GIS ed editando i campi relativi:

$$Ss=10^{-3} 1/m$$

$$Sy=10^{-1}$$

Assegnazione delle condizioni iniziali

Assegniamo le condizioni iniziali al model_layer_1 e _2

Entriamo in editazione nella tabella di ciascuno dei due *model_layer* andando a **completare** il campo

$$STRT = 30 (m)$$

Definizione della discretizzazione temporale

Dobbiamo adesso specificare la discretizzazione temporale del modello che stiamo implementando

Da SG Configure >> Tempo >> Definisci Stress Period

Creare e completare la tabella come segue:

Verificare che il database sia git

Aggiungere tre righe (corrispondenti ognuna ad uno SP)

Lenght = 1, 90, 30 (giorni)

Time step = 1, 9, 3

Multiplier = 1, 1, 1

State = *ST (SP=1), TR (SP=2,3)*

Applica

NB:

importando (carica) un file .xls la prima riga verrà saltata e considerata la riga dell'intestazione delle colonne

Con questa ultima operazione sono terminate le seguenti fasi del processo di modellazione:

- -Discretizzazione spaziale (implementazione della geometria 3D del dominio di studio);
- -Discretizzazione temporale;
- -Parametrizzazione idrodinamica
- -Assegnazione delle condizioni iniziali

Limite sud e nord del dominio/1

Simuliamo i potenziali deflussi attraverso il limite nord e sud del dominio utilizzando il package

General Head Boundary (GHB)

Utilizzeremo il valore del carico idraulico lungo due isopieze distanti circa 400 m rispettivamente dal limite nord e sud

Caricare il file .shp lineare ghb.shp

Da **Gestore progetto > Tabelle**,

carichiamo le tabelle: sp_ghb_nord.dbf e sp_ghb_sud.dbf

Si deve eseguire la seguente procedura per ogni singola linea del GHB:

Attivare il layer *qhb.shp* e selezionare la linea *NORD*.

Con selezione attiva:

SG Configure >> Strumenti >> Crea Dati Modello >> Crea Dati GHB

Usare shape ghb.shp e tabella sp_ghb_nord.dbf Inserire valori come in figura

Esegui

(l'attribuzione termina con Eseguito)

Si è creato il layer *ghb_point_tmp*; esportarlo come shape: ghb_1.shp, e salvarlo nella cartella *shape_temp*

Limite sud e nord del dominio/2

Tornare sulla Vista, selezionando ora la linea SUD

RIPETERE la procedura fatta per il limite nord, tranne che stavolta dentro la finestra occorre:

- inserire **sp_ghb_sud.dbf** come tabella dei parametri.
- al campo [xyz] Par assegnare il valore: 2

Salvare poi lo .shp temporaneo come .shp dal nome ghb_2.shp nella cartella shape_temp

Adesso: selezionare *ghb_1.shp* e aprire il **Toolbox Sextante**, cercando la funzione *MERGE* Fare *merge* fra *ghb_1.shp* e *ghb_2.shp*.

Il file temporaneo creato deve essere esportato e rinominato *ghb_merge.shp*.

Salvarlo come shp nella cartella shape_temp

(N.B. Questo ultimo salvataggio non è strettamente necessario, ma è comunque consigliabile. Eviterà infatti di dover ripetere la procedura di cui sopra, nel caso di una successiva editazione del modello, ad esempio a seguito di un errore.)

Limite sud e nord del dominio/3

Da Sg Configure >> Strumenti >> Crea dati modello>> da punti a celle Modello

Point layer: specificare il layer da trasformare in celle (ghb_merge)

Layer modello: specificare la griglia da cui prendere le informazioni (*model_layer_1*)

Esegui

Si è così generato un **file MDO** (contenente le informazioni spaziali e temporali secondo la discretizzazione impostata) **point_cell_temp** che deve essere salvato come .shp file (**Layer>Esporta>shp, es. ghb_git**) e caricato nella Vista del progetto di gvSIG (eliminare quindi il file ghb point).

Si esporta il file nel geodatabase:

SG Data base >> Importa Model Layer

Selezionare il file ed il database appropriato

Point to Model cell

ghb_merge

model_layer_1

Point layer

Model layer

Close

분 🗵

Run

Canale d'Altopascio/1

Simuliamo i rapporti tra il Canale d'Altopascio e il sistema idrogeologico utilizzando il package

River

- **Carichiamo** lo .shp river (dalla cartella river)
- Carichiamo la tabella sp river dalla sezione Tabella del Gestore di progetto
- Da **SG configure** >> Crea Dati Modello>> Crea Dati River
- Importare il file caricato e la relativa tabella nella finestra specificando:

Lunghezza = Lunghezza **Dim. cella=100 m** (dimensione cella) Width= 15m Layer num= 1

Viene così creato un .shp puntuale temporaneo che deve essere esportato e rinominato:

riv_tmp.shp (Att.ne! Verificare che in ogni cella cada un solo punto!)

Figure 6–6. Idealization of riverbed conductance in an individual cell. (From McDonald and Harbaugh, 1988.)

$$QRIV_{n} = CRIV_{n} (HRIV_{n} - h_{i,j,k})$$

 $QRIV_n = CRIV_n (HRIV_n - h_{i,j,k}), \qquad h_{i,j,k} > RBOT_n$

 $QRIV_n = CRIV_n \big(HRIV_n - RBOT_n \big), \qquad \qquad h_{i,j,k} \! \leq \! RBOT_n \, .$

Figure 6–7. Cross sections showing the relation between head at the bottom of the riverbed layer and head in the cell. Head in the cell is equal to the water-table elevation. (Modified from McDonald and Harbaugh, 1988.)

Il file di input del *RIV* richiede che siano inserite le seguenti informazioni per ciascuna cella a cui viene assegnata tale condizione al contorno:

• River Stage:

elevazione delle acque superficiali (è un dato che può variare nel tempo);

• Riverbed Bottom (RBOT):

elevazione del fondo dello strato semipermeabile che separa il sistema idrogeologico dal corpo d'acqua superficiale;

• Conductance:

parametro numerico che rappresenta la resistenza al flusso tra il corpo d'acqua superficiale e le acque sotterranee dovuta alla presenza dello strato semipermeabile.

Canale d'Altopascio/2

Da SG Configure >> Strumenti >> Crea dati modello >> da punti a celle Modello

Point layer: specificare il layer da trasformare in celle (riv_tmp)

Layer Modello: specificare una griglia di riferimento (model_layer_1)

Esegui

Si deve esportare e rinominare il file MDO così creato (ad es. riv_git.shp)

Si esporta il file nel geodatabase:

SG Data base >> Importa Model Layer

Selezionare il file ed il database appropriato

Esegui

Canale Rogio/1

Simuliamo l'effetto della presenza del Canale Rogio (in sostanza un dreno) sul sistema idrogeologico utilizzando il package

Drain

Se il livello piezometrico salirà oltre un certo valore, le acque sotterranee verranno rimosse dal dominio

- Carichiamo lo .shp drain (dalla cartella drain)
- Carichiamo la tabella sp_drain dalla Tabella del gestore di progetto
- Da SG configure >> Strumenti>> Crea Dati Modello >> Crea Dati Drain
- Importare il file caricato e la relativa tabella nella finestra specificando:

Lunghezza= Lunghezza

Dim. cella=100m (dimensione cella)

Width= 8 m

Layer num= 1

Esegui

Viene così creato un .shp puntuale temporaneo da esportare e rinominare: **drn tmp.shp**

Rudy Rossetto/Iacopo Borsi/Claudio Schifani

Condizioni al contorno/7

Canale Rogio/2

E' possibile che su alcune celle si vada a trovare più di un punto. E' perciò necessario verificare e quindi eventualmente cancellare uno dei due punti presenti portando in editazione il layer geografico appena creato.

Terminata questa operazione si va a creare il file MDO per il dreno:

da SG Configure >> Strumenti >> Crea dati modello >> da punti a celle Modello

Point layer: specificare il layer da trasformare in celle (drn_tmp)

Layer Modello: specificare il layer ove effettuare l'operazione (model_layer_1)

Esegui

Si deve esportare e rinominare il file MDO così creato (ad es. *drn_git.shp*)

Si esporta il file nel geodatabase:

SG Data base >> Importa Model Layer

Selezionare il file ed il database appropriato

Condizioni al contorno/8

Ricarica efficace meteorica

Andiamo ad assegnare un valore di ricarica efficace a ciascun SP, creando un MDO cui verrà attribuito un valore di ricarica per ogni SP.

La ricarica sarà omogeneamente distribuita sul dominio in analisi ad ogni SP.

Da Sg Configure >> Strumenti >> Crea Dati Modello >> Crea Dati Recharge

Specificare:

Geodatabase, Model layer Time Table

Esegui

Portare in editazione il layer così creato e **assegnare** ai campi SP1, SP2, SP3 i seguenti valori:

Condizioni al contorno/9

Limite est/ovest del dominio e pozzi idropotabili (termine di pozzo)

I limiti est ed ovest del dominio ed i pozzi idropotabili vengono importati contemporaneamente in quanto simulati entrambi con il pacchetto **Well**

Aggiungere alla **Vista** il file **well.shp**, che contiene tutte le informazioni necessarie a questa implementazione

Da SG configure >> Strumenti>> Crea Dati Modello >> Crea Dati Well

Implementare la tabella nella finestra specificando:

Progetto Modello=git

Geo DB=git

Time Table=stressperiod

Point Layer (layer puntuale dei punti di prelievo/immissione)

Layer Modello=model_layer1

Esegui

Salvare il file nel database. Viene così creato il file MDO.

Aprirlo in editing e selezionare:

Campo from lay = 2

Campo to_lay = 2 per assegnare questi punti al model_layer_2

Al campo sp_1: inserire il valore = [head1], al campo sp_2: inserire il valore = [head2],

al campo sp 3: inserire il valore = [head3]

Chiudere la sessione di editing

Processamento dei dati per la simulazione/1

In questa fase passiamo a processare i dati implementati ed a scrivere i file necessari per la simulazione con il codice MODFLOW *mflgr_sidgrid* .

Dobbiamo definire una iparametri che ci permetteranno la scrittura dei file per una serie di pacchetti base.

SG Model packages >> Pacchetti base

Global --- controllare che sia selezionato *model_layer_1* come *top layer* e che il progetto modello sia *git*

Basic --- definire dove si trovano le initial head (condizioni iniziali):

selezionare il campo STRT

Dis --- selezionare la tabella degli stress period (**Stressperiod**)

LPF --- selezionare la tabella *lpf*

- --- indicare il parametro HDRY= -999
- --- **WETFCT= 1**
- --- **IWETIT= 1**
- --- **IHDWET=1**

Processamento dei dati per la simulazione/2

Parametri del solutore

```
PCG--- definire le impostazioni del solver
```

Outer iteration = 50

Inner iteration = 100

H close = 0.001

Rclose = 0.001

Esegui

Si è così effettuata la scrittura dei seguenti file per la simulazione con il codice MODFLOW (i file di testo generati si trovano nella cartella *input* precedentemente indicata come Directory)

.dis

.bas

.lpf

.pcg

.OC

Processamento dei dati per la simulazione/3

Si vanno a scrivere i package per cui abbiamo implementato dati

SG Model packages >> Ghb

River

Drain

Recharge

Well

Generalmente dovrà essere indicato:

Progetto modello

MDO specifico per il package da tradurre

Campo relativo al primo SP da cui far partire la lettura del dato temporale

NB: per il Rch package indicare Recharge to the highest active cell

Esegui

Si può andare a verificare la scrittura dei file nella cartella input, la cui directory è stata specificata nelle proprietà del modello.

I file prodotti sono: .ghb, .riv, .drn, .rch e . wel.

Simulazione/1

Per l'effettuazione della simulazione sarà necessario passare alla sezione *Hydrological model*

Mostra >> Gestore di progetto >> Hydrological Model>>git>> Apri

Si apre la **Dashboard**

Selezionare i file generati che si intendono utilizzare nella simulazione

Inserire in **Process** la Directory in cui si trova il codice *mflgr_sidgrid*

(si suggerisce di archiviarlo in C://Programmi/mflgr_sidgrid)

Inserire in **Editor** la Directory in cui si trovall'editor di testo

Simulazione/2

Sulla colonna di sinistra sono visualizzati i file dei pacchetti base: se la loro generazione non è andata a buon fine invece di un **flag verde** compare una crocetta rossa.

Nella finestra centrale è presentata la lista dei file attivabili con la presente versione della piattaforma: solo quelli generati sono attivi.

Selezionare i file generati che si intendono utilizzare nella simulazione (.wel, .pcg, .rch,

.riv, .ghb, .drn).

Si crea il file .NAM:

Create.NAM

Verificare il .nam (Open NAM)

Eseguire la simulazione (tasto Play)

Open report per verificare l'andamento della simulazione.

(tempo necessario alla simulazione 2/5 secondi)

Da **Open report** si apre il file **git.lst**

Visualizziamo il budget alla fine dello SP1

Cerca VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 IN STRESS PERIOD 1

Visualizziamo il budget alla fine dello SP2

Cerca VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 6 IN STRESS

PERIOD 2

8158 1				
8159	VOLUMETRIC BUDGET FOR I	ENTIRE MODEL AT	END OF TIME STEP 9 IN S	STRESS PERIOD 2
8160				
8161				
8162	CUMULATIVE VOLUMES	L**3	RATES FOR THIS TIME STEE	L**3/T
8163				
8164				
8165	IN:		IN:	
8166				
8167	STORAGE =	88361.0078	STORAGE =	268.3419
8168	CONSTANT HEAD =	0.0000	CONSTANT HEAD =	0.0000
8169	WELLS =	1312168.0000	WELLS =	14500.0000
8170	DRAINS =	0.0000	DRAINS =	0.0000
8171	RIVER LEAKAGE =	387879.1563	RIVER LEAKAGE =	4601.3911
8172	HEAD DEP BOUNDS =	423317.5625	HEAD DEP BOUNDS =	4568.8970
8173				
8174	TOTAL IN =	2211725.7500	TOTAL IN =	23938.6289
8175				
8176	OUT:		OUT:	
8177				
8178	STORAGE =	543438.0000	STORAGE =	5356.3896
8179	CONSTANT HEAD =	0.0000	CONSTANT HEAD =	0.0000
8180	WELLS =	546000.0000	WELLS =	6000.0000
8181	DRAINS =	650152.6875	DRAINS =	7370.1787
8182	RIVER LEAKAGE =	2666.1885	RIVER LEAKAGE =	17.4108
8183	HEAD DEP BOUNDS =	469447.8750	HEAD DEP BOUNDS =	5194.5122
8184				
8185	TOTAL OUT =	2211705.0000	TOTAL OUT =	23938.4902
8186				
8187	IN - OUT =	20.7500	IN - OUT =	0.1387

Da SG Configure > > Strumenti >> Visualizza risultati

- •• Carica dati= permette di caricare i risultati della simulazione -una volta caricati, i file dei risultati che vogliamo visualizzare dovranno essere selezionati
- ••Visualizza risultati= importa i risultati selezionati nella Vista
- •Importiamo la distribuzione del carico idraulico nel layer 2 allo Step 1 Period 1, allo Step 9 Period 2 ed allo Step 3 Period 3.

•Utilizzando gli strumenti di analisi di dati raster offerti da gvSIG e da Sextante sarà possibile procedere alla visualizzazione e redazione di elaborati cartografici come

illustrato nelle figure seguenti.

Andamento del carico idraulico allo SP 1 nel model_layer2

Andamento del carico idraulico allo SP 2 TS 9 nel model_layer2

Differenza tra il carico idraulico allo SP1 e allo SP3 TS3

