Universidade Federal de Goiás Instituto de Informática Introdução à Programação - 2020 - 1 Lista de Exercícios L4 - Matrizes

Prof. Celso Gonçalves Camilo Júnior Prof. Edmundo Sergio Spoto Prof. Prof. Gilmar Ferreira Arantes Prof. Gustavo Teodoro Laureano Prof. Thierson Rosa Couto Prof. Vagner José do Sacramento Rodrigues

Sumário

1	Determinante 2x2 (+)	3
2	Diagonal Principal (+)	4
3	Diagonal Secundária	5
4	Ler e imprimir	7
5	Matriz xadrez (+)	8
6	Quadrado de matriz 2x2	9
7	Ampulheta	10
8	Desenha bordas (++)	12
9	Matriz xadrez numerada (++)	13
10	Operações matriciais (++)	14
11	Cadê o Wally?	15
12	Cidade Segura	17
13	Desenha quadrados (+++)	18
14	Frequencia do Maior e Menor	20
15	Imprime matriz em espiral (+++)	21

16	Logotipo na TV da vovó	23
17	Loteria	25
18	Matriz Ordenada	26
19	Potência de matrizes	27
20	Troca Maior e Menor	28
21	Turismo (+++)	29
22	Valida Sudoku	30

1 Determinante 2x2 (+)

Escreva um programa em C que leia uma matrix de dimensão 2×2 e calcule o seu determinante. Seja a matriz $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ o determinante de A é |A| = ad - bc.

Entrada

Uma sequência de 4 números reais.

Saída

A saída deve conter 1 linha, contendo o determinante da matriz com 2 casas decimais.

Entrada	Saída
0 5	-55.00
11 2	

2 Diagonal Principal (+)

Faça um programa que receba uma matriz quadrada e imprima os elementos de sua diagonal principal.

Entrada

A entrada contem apenas em caso de teste. A primeira linha ha um inteiro N, $1 < N \le 1000$, representando a dimensão das matrizes. A seguir haverá N linhas com N inteiros em cada linha separados por um espaço em branco cada, representando os elementos da matriz A.

Saída

A saída consiste de N linhas com um inteiro em cada linha. Na primeira linha haverá o elemento da diagonal principal da primeira linha da matriz, na segunda linha haverá o elemento da diagonal principal da segunda linha da matriz e assim por diante até o n-ésino elemento da diagonal principal da n-ésima linha da matriz. Após o último elemento impresso quebre uma linha.

Entrada	Saída
3	1
1 2 3	5
4 5 6	9
7 8 9	

Entrada	Saída
2	34
34 23	98
56 98	

3 Diagonal Secundária

Crie um programa que receba uma matriz quadrada e imprima os elementos de sua diagonal secundária.

Entrada

Na primeira linha ha um inteiro n, $1 \le n \le 1000$, representando a ordem da matriz quadrada. A seguir haverá N linhas com N inteiros em cada linha separados por um espaço em branco cada, representando os elementos da matriz quadrada.

Saída

A saída consiste de n linhas com um inteiro em cada linha. Na primeira linha haverá o elemento da diagonal secundária da primeira linha da matriz, na segunda linha haverá o elemento da diagonal secundária da segunda linha da matriz e assim por diante até o n-ésino elemento da diagonal secundária da n-ésima linha da matriz. Após o último elemento impresso quebre uma linha.

Entrada	Saída
3	3
1 2 3	5
4 5 6	7
7 8 9	

Entrada	Saída
5	0
1 0 0 0 0	0
0 1 0 0 0	1
0 0 1 0 0	0
0 0 0 1 0	0
0 0 0 0 1	

Entrada	Saída
20 59 18 45 66	66
59 34 96 26 30	26
24 41 0 63 94	0
32 63 0 50 55	63
76 49 50 66 45	76

Entrada	Saída
1	100
100	

4 Ler e imprimir

Escreva um programa em C que armazene elementos inseridos pelo usuário em uma matriz A de dimensão máxima 10x10, e em seguida os imprima na forma matricial. O programa deve ler dois números inteiros válidos referentes às quantidades de linhas e colunas da matriz.

Entrada

Uma sequência de números inteiros com dois números válidos, m-linhas e n-colunas, para a definição da dimensão da matriz. Em seguida o programa deve ler $m \times n$ números inteiros.

Saída

A saída deve conter m linhas, cada linha iniciando com o texto "linha i:", onde i é o número da linha, e uma sequência de n elementos, separados por ',', correspondendo aos elementos (i,j), onde $j=0,1,\ldots,n-1$.

Entrada	Saída
0	linha 1: 1,2
5	linha 2: 3,4
11	linha 3: 5,6
2	linha 4: 7,8
1 2 3 4 5 6 7 8 9 10	linha 5: 9,10

5 Matriz xadrez (+)

Uma matriz xadrez é uma matriz (quadrada ou retangular) composta de 0s e 1s. O padrão reticulado inicia em 1 (branco) e é alternado com 0(preto). Uma matriz xadrez de 8 linhas e 8 colunas está representado na Figura 1.

Figura 1: Exemplo de uma matriz xadrex 8×8 .

Entrada

Dois números inteiros que representam o número de linhas e colunas da matriz xadrez.

Saída

Uma matriz xadrez de *m* linhas e *n* colunas.

Entrada	Saída
1 1	1

Entrada	Saída
3 4	1010
	0101
	1010

6 Quadrado de matriz 2x2

Faça um programa que leira uma matriz 2×2 e imprima o seu quadrado. O quadrado de uma matriz $\bf A$ é dado pela operação: $\bf A^2=\bf A\bf A$.

Entrada

O programa deve ler 4 números reais.

Saída

O programa deve imprimir a matriz resultante com precisão de 3 casas decimais.

Observação

Utilize apenas o tipo double para variáveis de ponto flutuante.

Entrada	Saída
1 0	1.000 0.000
0 1	0.000 1.000

Entrada	Saída
5 8	81.000 48.000
7 1	42.000 57.000

7 Ampulheta

O objetivo desse execício é identificar um conjunto de elementos cuja somatória seja o maior valor entre todos os conjuntos definidos por um padrão na forma de ampulheta, em uma matriz de inteiros, quadrada, e de ordem 6. Cada elemento da matriz está no intervalo [-9, 9]. Uma "ampulheta" é formada pelos valores

que estão posicionados de acordo com a seguinte configuração: $\begin{vmatrix} a & b & c \\ & d \\ e & f & g \end{vmatrix}$.

O valor de uma ampulheta é a soma de todos os valores presentes nas respectivas posições. Seu programa deve retornar o maior valor entre todos os valores de ampulheta possíveis na matriz.

Entrada

Uma matriz quadrada de ordem 6.

Saída

Um único inteiro que corresponde à maior soma de todos os valores de ampulheta. Após imprimir o valor quebre a linha.

Entrada	Saída
1 1 1 0 0 0	7
0 1 0 0 0 0	
1 1 1 0 0 0	
0 0 0 0 0 0	
0 0 0 0 0 0	
0 0 0 0 0	

Entrada	Saída
1 1 1 0 0 0	19
0 1 0 0 0 0	
1 1 1 0 0 0	
0 0 2 4 4 0	
0 0 0 2 0 0	
0 0 1 2 4 0	

Entrada	Saída	
0 0 0 0 0 0	0	
0 0 0 0 0 0		
0 0 0 0 0 0		
0 0 0 -1 0 0		
0 0 0 0 0		
0 0 0 0 0 1		

Entrada	Saída
5 5 -1 -4 1 6	30
-2 -3 3 -2 3 -7	
9 -4 -5 3 8 -9	
-2 -2 7 3 5 -9	
-8 -7 6 -3 -2 8	
1 9 7 0 3 -2	

Entrada	Saída	
-9 -9 -9 -9 -9	-63	
-9 -9 -9 -9 -9		
-9 -9 -9 -9 -9		
-9 -9 -9 -9 -9		
-9 -9 -9 -9 -9		
-9 -9 -9 -9 -9		

Entrada	Saída	
9 9 9 9 9	63	
9 9 9 9 9 9		
9 9 9 9 9 9		
9 9 9 9 9 9		
9 9 9 9 9		
9 9 9 9 9		

8 Desenha bordas (++)

Faça um programa que gere uma matriz de zeros, de tamanho definido pelo usuário, de no máximo 100×100 , com uma borda de largura k de valor x.

Entrada

O programa deve ler quatro números inteiros, os dois primeiros relacionados à largura e altura da matriz, o terceio a largura da borda e o por último o valor da borda.

Saída

O programa deve apresentar a matriz como uma imagem PGM, ou seja, seguindo a sequência:

```
P2
largura altura
255
<dados da matriz>
```

Os dados da matriz devem ser impressos sempre com um espaço à direita e seguido de quebra de linha ao final de cada linha da matriz.

Observações

Para testar seu código, você pode redirecionar a saída padrão do seu programa para um arquivo com extensão ".pgm", usando o comando "./programa > img.pgm".

Entrada	Saída
5 5 1 2	P2
	5 5
	255
	2 2 2 2 2
	2 0 0 0 2
	2 0 0 0 2
	2 0 0 0 2
	2 2 2 2 2

9 Matriz xadrez numerada (++)

Uma matriz xadrez numerada é uma matriz (quadrada ou retangular) composta de números inteiros. O padrão reticulado inicia em 0 (preto) e é alternado com um número sequencial maior a zero (branco).

Entrada

Dois números inteiros que representam o número de linhas e colunas da matriz xadrez.

Saída

Uma matriz xadrez de *m* linhas e *n* colunas.

Entrada	Saída
5 5	0 1 0 2 0
	3 0 4 0 5
	0 6 0 7 0
	8 0 9 0 10
	0 11 0 12 0

Entrada	Saída
3 6	0 1 0 2 0 3
	4 0 5 0 6 0
	070809

10 Operações matriciais (++)

Faça um programa que, dada uma matriz quadrada A de dimensões N x N realize a seguinte operação:

$$tr(\mathbf{A}) \cdot \mathbf{A} + \mathbf{A}^{\mathsf{T}} \tag{1}$$

Onde:

- A é a matriz de entrada;
- **A**^T é a matriz transposta de **A**;
- tr é o traço da matriz, ou seja, a soma dos elementos na diagonal principal;

Entrada

A entrada contém apenas um caso de teste. A primeira linha há um inteiro N, $1 < N \le 1000$, representando a dimensão das matrizes. A seguir haverão N linhas com N inteiros em cada linha separados por um espaço em branco cada, representando os elementos da matriz A.

Saída

A saída consiste de N linhas com N inteiros em cada linha separados por um espaço em branco cada, representando o resultado da Equação 1.

Entrada	Saída
3	16 34 52
1 2 3	62 80 98
4 5 6	108 126 144
7 8 9	

Entrada	Saída
2	4522 3092
34 23	7415 13034
56 98	

11 Cadê o Wally?

Wally costuma morar em um ambiente representado por uma matriz bidimensional de números inteiros de ordem n x m (n linhas e m colunas). Ele é único no ambiente e é representado na matriz por quatro números, distribuidos da seguinte forma:

	4	
0	1111	0
	8	

O número 1111 representa a camisa listrada em vermelho e branco, e o número 4 representa seu gorro das mesmas cores. Os números zero e oito representam suas extremidades. A matriz representa um ambiente bidimensional circular:

- Para o índice i=0, a celula à esquerda está no índice m-1.
- Para o índice i=m-1, a celula à direita está no índice 0.
- Para o índice j=0, a celula superior está no índice n-1.
- Para o índice j=n-1, a celula inferior está no índice 0.

Crie um programa que permita imprimir os índices i,j (da matriz) onde está a camisa do Wally. Caso o Wally não estiver na matriz mostre a seguinte mensagem: "WALLY NAO ESTA NA MATRIZ". Na seguinte matriz de 7 linhas e 6 colunas, a camisa do Wally está nos índices i=3, j=0.

0	1111	0	1	0	0
0	0	0	0	1111	0
4	0	1	3	45	53
1111	0	89	211	87	0
8	4	56	4	55	98
0	222	0	11	0	5
0	8	23	8	66	3

Entrada

Dois valores inteiros, n e m, seguidos dos elementos inteiros da matriz de ordem n x m, com n>=3 e m>=3.

Saída

Se o Wally estiver na matriz: o índice i,j da localização do Wally. Caso contrário "WALLY NAO ESTA NA MATRIZ" (sem acentos)

Entrada	Saída
3	1 0
7	
477777	
1111 0 7 7 7 7 0	
8 7 7 7 7 7	

Entrada	Saída
5	4 2
4	
5 5 8 5	
5 5 5 5	
5 5 5 5	
5 5 4 5	
5 0 1111 0	

Entrada	Saída
3	1 1
3	
1 4 1	
0 1111 0	
1 8 1	

Entrada	Saída
3	WALLY NAO ESTA NA MATRIZ
3	
0 0 0	
0 0 0	
0 0 0	

12 Cidade Segura

Com o aumento da violencia na cidade o prefeito decidiu instalar câmeras de vigilância em todas as esquinas. A cada mês, um mapa atualizado com as câmeras em funcionamento é disponibilizado no site da prefeitura. A secretaria de segurança considera que uma esquina é segura se existem câmeras em funcionamento, pelo menos, duas de suas quatro esquinas. Nesta cidade todas as quadras são quadrados de mesmo tamanho. Sua tarefa é, dado o mapa das câmeras em funcionamento nas esquinas, indicar o status de todas as quadras da cidade.

Entrada

A primeira linha da entrada tem um inteiro positivo N ($1 \le N \le 100$). Nas próximas N+1 linhas, existem N+1 números, que indicam, para cada esquina, a presença de uma câmera em funcionamento ou de uma câmera defeituosa. O número 1 indica que existe uma câmera funcionando na esquina, enquanto o número zero indica que não há câmera funcionando.

Saída

A saída é dada em N linhas. Cada linha tem N caracteres, indicando se a quadra correspondente é segura ou insegura. Se uma quadra é segura, mostre o caractere S, caso contrário mostre o caractere U. Após a última linha não se esqueça de saltar uma linha.

Entrada	Saída
1	U
1 0	
0 0	

Entrada	Saída
2	SU
1 0 0	SS
1 1 0	
0 0 1	

Entrada	Saída	
3	SSS	
1 1 0 1	SUS	
1 0 1 0	SSS	
1 0 0 1		
0 1 1 0		

13 Desenha quadrados (+++)

Faça um programa que gere uma imagem PGM com quadrados definidos pelo usuário. A imagem deve ter o fundo preenchido por uma cor, $C \in \{0,255\}$, definida pelo usuário e ter dimensão de no máximo 200×200 *pixels*. O programa deve ler as coordenadas do ponto central do quadrado, a cor (0,255), o raio e o estilo (1 para borda, 2 para preenchido). O programa encerra quando o as coordenadas do quadrado são x = -1 e y = -1. Os quadrados que excedem as dimensões da imagem não devem ser desenhados.

Entrada

O programa deve ler o tamanho da imagem, um valor para a cor de fundo $C \in \{0,255\}$ e uma sequência de linhas, cada uma composta de números que definem a posição x e y do quadrado, o raio r e o estilo de desenho, sendo 1 para somente borda e 2 para preenchido. Por exemplo, a linha "10 20 8 4 2" é a instrução para desenhar um quadrado preenchido com a cor 8 na linha 20, coluna 10, aresta de tamanho $4 \times 2 + 1$, sendo 4 pontos à esquerda mais 4 prontos à direita do centro do quadrado mais o ponto central. A Figura 2 mostra um exemplo de saída visualizada como uma imagem PGM.

Figura 2: Exemplo de resultado para uma imagem 200x200, cor de fundo 8 e 300 quadrados gerados aleatoriamente.

Saída

O programa deve apresentar a matriz como uma imagem PGM, ou seja, seguindo a sequência:

```
P2
200 200
255
<dados da matriz>
```

Os dados da matriz devem ser impressos sempre com um espaço à direita e seguido de quebra de linha ao final de cada linha da matriz.

Observações

Para testar seu código, você pode redirecionar a saída padrão do seu programa para um arquivo com extensão ".pgm", usando o comando "./programa > img.pgm".

Entrada	Saída
10 0	P2
5 5 4 10 2	10 10
1 1 4 1 1	255
5 5 8 2 2	4 4 4 0 0 0 0 0 0
-1 -1	4 0 4 0 0 0 0 0 0
	4 4 4 0 0 0 0 0 0
	0 0 0 8 8 8 8 8 0 0
	0 0 0 8 8 8 8 8 0 0
	0 0 0 8 8 8 8 8 0 0
	0 0 0 8 8 8 8 8 0 0
	0 0 0 8 8 8 8 8 0 0
	0 0 0 0 0 0 0 0 0
	000000000

14 Frequencia do Maior e Menor

Dada uma matriz A de dimensões N x M contendo apenas números inteiros positivos, verifique o maior e o menor valor da matriz e conte quantas vezes estes valores aparecem.

Entrada

A entrada contem apenas em caso de teste. A primeira linha há dois números inteiros N e M, tais que 1 < N, $M \le 1000$, representando as dimensões da matriz A. A seguir haverão N linhas com M inteiros em cada linha separados por um espaço em branco cada, representando os elementos da matriz A. Cada elemento de A é um número inteiro tal que $0 \le a$ ij ≤ 1000 ;

Saída

A saída consiste de duas linhas: a primeira deve conter o menor valor da matriz A, um espaço, a porcentagem correspondente à frequência dele na matriz, com duas casas após a vírgula e em seguida o símbolo de porcentagem. A segunda linha é semelhante, contendo o maior valor de A e a porcentagem correspondente à sua frequência na matriz. Após a impressão do último valor, quebre uma linha.

Observação

Utilize apenas variáveis do tipo double para armazenar valores em ponto flutuante.

Entrada	Saída
2 3	2 50.00%
2 5 9	9 16.67%
2 6 2	

Entrada	Saída
3 3	0 33.33%
1 2 3	4 11.11%
2 0 4	
1 0 0	

15 Imprime matriz em espiral (+++)

Faça um programa que leia uma matriz de inteiros de no máximo 10x10 elementos e a imprima de forma espiral. Por exemplo, dada a matriz abaixo, a ordem de impressão é expressa pela linha que forma uma espiral.

Entrada

A quantidade de linhas e colunas da matriz seguido dos elementos da matriz.

Saída

Uma linha contendo os elementos da matriz impressos na ordem de espiral. Caso a quantidade de linhas e colunas seja inválida, imprima a mensagem "Dimensao invalida\n"e finalize o programa.

Entrada	Saída				
11 -2	Dimensao invalida				

Entrada	Saída
1 5	1 2 3 4 5
1 2 3 4 5	

Entrada	Saída
2 2	1 2 4 3
1 2	
3 4	

Entrada	Saída
4 2	1 2 4 6 8 7 5 3
1 2	
3 4	
5 6	
7 8	

Entrada	Saída
4 3	1 2 3 6 9 2 1 0 7 4 5 8
1 2 3	
4 5 6	
7 8 9	
0 1 2	

Entrada	Saída
4 4	1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
01 02 03 04	
05 06 07 08	
09 10 11 12	
13 14 15 16	

Entrada										S	aída	a						
6 3	1	2	3	6	9	12	15	18	17	16	13	10	7	4	5	8	11	14
01 02 03																		
04 05 06																		
07 08 09																		
10 11 12																		
13 14 15																		
16 17 18																		

16 Logotipo na TV da vovó

A Vovó está preocupada com seu netinho que passa o dia inteiro assistindo televisão, pois ela percebeu que durante o desenho animado, aparece um logotipo publicitário na tela e ela não está muito contente com isso. O netinho e a Vovó gravaram alguns programas e agora desejam verificar se o logotipo aparece durante o desenho animado. Faça um programa que, dado uma imagem codificada em números inteiros e um logotipo codificado do mesmo jeito, decida se o logotipo aparece na imagem. A matriz do logotipo é sempre de dimensões menores que as matrizes da imagem.

Entrada

A entrada possui apenas um caso de teste. O caso de teste inicia com a descrição da matriz que representa o logotipo. A primeira linha contém um numero inteiro X que representa o número de linhas e colunas da matriz do logotipo ($1 \le X \le 10$). As X linhas seguintes da entrada contém X números inteiros cada, descrevendo o valor de cada ponto da matriz do logotipo. Após a descrição do logotipo, é descrita a matriz que representa a imagem do vídeo gravado. A primeira linha da descrição possui um número inteiro Y que indica o número de linhas e colunas da matriz da imagem gravada pela Vovó ($1 \le Y \le 320$). Cada pixel é um número p com $0 \le p \le 255$.

Saída

A saída consiste apenas de uma linha, contendo a palavra "sim" caso o logotipo apareça na imagem ou "nao", caso contrario. Em ambos os casos a palavra deve ser impressa apenas com letras minúsculas e sem acentos. Após a impressão, quebre uma linha.

Entrada	Saída	
2	nao	
1 1		
2 3		
5		
0 0 0 2 3		
0 1 1 0 0		
1 3 3 0 1		
3 0 0 0 2		
0 0 0 1 1		

Entrada	Saída
2	sim
9 9	
9 1	
4	
2 9 9 2	
3 9 1 8	
8 7 9 0	
9 9 2 9	

17 Loteria

A Mega-Sena é a maior loteria do Brasil. Para ganhar o prêmio máximo é necessário acertar a sena, o que significa obter coincidência entre seis dos números apostados e os seis números sorteados, de um total de sessenta dezenas (de 01 a 60), independentemente da ordem da aposta ou da ordem do sorteio. O concurso prevê também a chance de ganhar parte do prêmio, acertando a quina ou a quadra. A Mega-Sena foi lançada em março de 1996 e já premiou mais de 200 ganhadores na faixa principal. Os prêmios correspondem a 32,2% da renda das apostas ao imposto de renda correspondem 13,8% de todas as apostas. Os vencedores têm 90 dias para retirar o prêmio, se o período expirar, o dinheiro do prêmio será transferido ao Tesouro Nacional e investido em programas educacionais. Vale lembrar que a probabilidade de acerto em uma única aposta de 6 dezenas é de 1 em 50.063.860, o que representa um percentual de 0,000002%. Faça um programa que receba todas as apostas e as seis dezenas sorteadas de um concurso e mostre quantos vencedores para sena, quina e quadra houve.

Entrada

O programa receberá um inteiro N, $1 \le N \le 50000$, representando a quantidade de apostas. Em seguida, em cada uma das N linhas haverá as seis dezenas de cada aposta, sendo que as dezenas estão no intervalo entre 1 e 60 e sem repetição de dezenas por apostas. Ao final das N apostas, haverá uma linha com as seis dezenas sorteadas.

Saída

A saída consiste de 3 linhas contando uma das seguintes frases: "Houve K acertador(es) da sena" ou "Houve K acertador(es) da quina" ou ainda "Houve K acertador(es) da quadra", onde K é quantidade de acertadores para a faixa. Caso não haja acertadores a seguinte frase deve ser apresentada: "Nao houve acertador para sena" ou "Nao houve acertador para quina" ou ainda "Nao houve acertador para quadra". Ao exibir a última frase quebre uma linha.

Entrada	Saída
5	Nao houve acertador para sena
23 19 8 12 60 18	Houve 1 acertador(es) da quina
14 60 12 44 54 10	Houve 2 acertador(es) da quadra
8 3 12 19 33 10	
33 15 7 60 12 10	
22 12 19 23 33 11	
23 12 33 19 10 8	

18 Matriz Ordenada

Faça um programa que, dada uma matriz A de dimensões N x N, ordene de forma crescente as colunas da matriz.

Entrada

A entrada contém apenas um caso de teste. A primeira linha ha um inteiro $N,\,1 < N \le 1000$, representando a dimensão das matrizes. A seguir haverão N linhas com N inteiros em cada linha separados por um espaço em branco cada, representando os elementos da matriz A.

Saída

A saída consiste de N linhas com N inteiros em cada linha separados por um espaço em branco cada, representando a matriz A após o processo de ordenação de suas colunas. Após a última linha da matriz quebre uma linha.

Entrada	Saída
3	1 2 6
1 2 11	5 8 9
5 10 6	7 10 11
7 8 9	

Entrada	Saída
2	34 8
34 23	56 23
56 8	

19 Potência de matrizes

Faça um programa que leira uma matriz quadrada $\mathbf{A}_{N\times N}$, sendo 0 < N <= 10, e imprima o resultado de \mathbf{A}^k , onde k é uma potência inteira maior que zero. A potência k de uma matriz é dada pela operação: $\mathbf{A}^k = \prod_{i=1}^k \mathbf{A}$.

Entrada

O programa deve ler o valor de N, o valor de k, em seguida $N \times N$ números reais.

Saída

O programa deve imprimir a matriz resultante com precisão de 3 casas decimais.

Observação

Utilize apneas variáveis do tipo double para armazenar valores em ponto flutuante.

Entrada	Saída
2	1.000 0.000
4	0.000 1.000
1 0	
0 1	

Entrada	Saída
2	81.000 48.000
2	42.000 57.000
5 8	
7 1	

20 Troca Maior e Menor

Faça um programa que localize o maior e o menor elemento de uma matriz de dimensão MxN com números inteiros e troque-os de posição. Assuma que só existe uma ocorrência do maior e do menor valor na matriz e que eles aparecem em coordenadas distintas da matriz.

Entrada

A entrada contem apenas um caso de teste. A primeira linha há dois inteiros M e N, 1 < M, $N \le 1000$, representando as dimensões da matriz. A seguir haverá M linhas com N inteiros em cada linha, separados por um espaço em branco cada, representando os elementos da matriz.

Saída

A saída consiste da matriz modificada. Apresente a matriz em M linhas com N valores em cada linha, separados por um espaço em branco cada. Você pode deixar um espaço em branco após o último elemento de cada linha da matriz. Após a impressão da segunda linha quebre uma linha.

Entrada	Saída
2 2	34 98
34 23	56 23
56 98	

Entrada	Saída
2 2	34 98
34 23	56 23
56 98	

21 Turismo (+++)

Os acessos e distâncias entre 6 cidades são listadas pela Tabela 1. Cada célula da tabela mostra a distância, em quilômetros, entre a cidade de cada linha com as cidades de cada coluna. O caracter '-' indica que não há acesso entre as cidades, partindo da cidade da linha correspondente.

Lacerda Cárceres **Bugres** Cuiabá Várzea Tangará Cárceres **Bugres** Cuiabá Várzea Tangará Lacerda

Tabela 1: Tabela de distâncias e acessos entre cidades.

Tendo conhecimento dessa tabela, uma agencia de turismo gostaria de ter um programa que, dada uma rota, verifique se a rota é válida e que calcule e apresente a distância da rota fornecida.

As cidades Cárceres, Burgres, Várzea, Tangará e Lacerda são representadas pelos números 0, 1, 2, 3, 4, 5 respectivamente. Desse modo, uma rota pode ser representada por um vetor de inteiros que indica o translado entre as cidades listadas.

Por exemplo, o vetor {1, 2, 3} indica que a rota válida que inicia pela cidade de Bugres, passa pela cidade de Cuiabá e termina em Várzea, totalizando 170 km. Uma rota é inválida se a sequência do vetor atinge um elemento da matriz com o caracter '-'.

Entrada

O programa deve ler um número inteiro N, correspondente ao tamanho da rota, sendo $0 < N \le 100$, e um vetor de inteiros com N elementos.

Saída

O programa deve apresentar a distância total da rota percorrida ou a mensagem "rota invalida!"caso a rota seja inválida.

Entrada	Saída
3	170
1 2 3	

Entrada	Saída
3	rota invalida!
0 4 1	

22 Valida Sudoku

(++++)

O jogo de Sudoku espalhou-se rapidamente por todo o mundo, tornando-se hoje um dos passatempos mais populares em todo o planeta. Muitas pessoas, entretanto, preenchem a matriz de forma incorreta, desrespeitando as restrições do jogo. Sua tarefa neste problema é escrever um programa que verifica se uma matriz preenchida é ou não uma solução para o problema. A matriz do jogo é uma matriz de inteiros 9 x 9. Para ser uma solução do problema, cada linha e coluna deve conter todos os números de 1 a 9 sem repetições. Além disso, se dividirmos a matriz em 9 regiões 3 x 3, cada uma destas regiões também deve conter os números de 1 a 9. O exemplo abaixo mostra uma matriz que é uma solução do problema.

Entrada

Cada entrada possui apenas um caso de teste. O caso é um tabuleiro de sudoku padrão de 9x9 completamente preenchido. Todas os espaços possuem um numero inteiro entre 1 e 9, como no jogo.

Saída

A saída consiste apenas de uma linha, contendo a palavra "valido" caso o jogo esteja correto ou "invalido", caso contrario. Em ambos os casos a palavra deve ser impressa apenas com letras minúsculas e sem acentos. Após a impressão, quebre uma linha.

Entrada	Saída
1 3 2 5 7 9 4 6 8	valido
4 9 8 2 6 1 3 7 5	
7 5 6 3 8 4 2 1 9	
6 4 3 1 5 8 7 9 2	
5 2 1 7 9 3 8 4 6	
9 8 7 4 2 6 5 3 1	
2 1 4 9 3 5 6 8 7	
3 6 5 8 1 7 9 2 4	
8 7 9 6 4 2 1 5 3	

Entrada	Saída
1 3 2 5 7 9 4 6 8	invalido
4 9 8 2 6 1 3 7 5	
7 5 6 3 8 4 2 1 9	
6 4 3 1 5 8 7 9 2	
5 2 1 7 9 3 8 4 6	
9 8 7 4 2 6 5 3 1	
2 1 4 9 3 5 6 8 7	
3 6 5 8 1 7 9 2 4	
8 7 9 6 4 2 1 3 5	