Image Enhancement

Image Enhancement

Simplest case: Neighbourhood is (x,y)

[g(.) depends only on the value of f at (x,y)]

Gray Level Transformation Functions

a b

FIGURE 3.2 Graylevel
transformation
functions for
contrast
enhancement.

Gray Level Transformation Functions

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.

Gray Level Transformation Functions

Negative image: Example: g(x,y) = 255 - f(x,y)

Gray Level Transformation Functions

Compressing dynamic range

$$s = c \log (1 + |r|)$$
 $c \longrightarrow Scaling factor$

Example: Displaying the Fourier Spectrum

a b FIGURE 3.5 (a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

Gray Level Transformation Functions

Power Function

$$s = cr^{\gamma}$$

C and γ are positive constants.

Often referred to as "gamma correction".

CRT –intensity-to-voltage response follows a power function (typical value of gamma in the range 1.5-2.5.)

Gray Level Transformation Functions

Power Function

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Gray Level Transformation Functions

Power Function

FIGURE 3.9
(a) Aerial image.
(b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0$, and 5.0, respectively.
(Original image for this example courtesy of NASA.)

Gray Level Transformation Functions

a b

monitor.

Power Function

r d

FIGURE 3.7

(a) Linear-wedge gray-scale image.
(b) Response of monitor to linear wedge.
(c) Gamma-corrected wedge.
(d) Output of

Gray Level Transformation Functions

Contrast stretching

$$r_1 = r_2$$

 $s_1 = 0$
 $s_2 = L-1$

Gray Level Transformation Functions

FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Histogram Processing

Histogram Examples

Histogram Examples

Histogram Equalization

FIGURE 3.16 A gray-level transformation function that is both single valued and monotonically

increasing.

Histogram Equalization

(i) T(r) is single valued and monotonically increasing in $0 \le r \le 1$

(ii)
$$0 \le T(r) \le 1$$
 for $0 \le r \le 1$
 $[0, 1] \xrightarrow{\mathsf{T}} [0, 1]$

Inverse transformation: $T^{-1}(s) = r$ $0 \le s \le 1$

 $T^{-1}(s)$ also satisfies (i) and (ii)

The gray levels in the image can be viewed as random variables taking values in the range [0,1].

Let $p_r(r)$: p.d.f. of input level r and let $p_s(s)$: p.d.f. of s

Histogram Equalization

r: Input gray level \in [0, 1]

s : Transformed gray level ∈ [0, 1]

s = T(r) T: Transformation function

We are interested in obtaining a transformation function T() which transforms an arbitrary p.d.f. to an uniform distribution

Histogram Equalization

Consider
$$s = T(r) = \int_{0}^{r} p_{r}(w) dw$$
 $0 \le r \le 1$

(Cumulative distribution function of r)

$$p_s(s) = p_r(r) \frac{dr}{ds}\Big|_{r=T^{-1}(s)}$$
;

$$\frac{ds}{dr} = \frac{d}{dr} \left[\int_{r}^{0} p_{r}(w) dw \right] = p_{r}(r)$$

$$\therefore p_s(s) = p_r(r) \frac{1}{p_r(r)} \Big|_{r=T^{-1}(s)} \equiv 1 \qquad 0 \le s \le 1$$

Histogram Equalization

$$p_r(r_k) = \frac{n_k}{n}$$
 $0 \le r_k \le 1$; $k = 0,1,...,L-1$

 $L \rightarrow$ Number of levels

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$

5 2	55	61	66	70	61	64	73
			90				
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
			59				
87	79	69	68	65	76	78	94

Histogram Equalization

52	1	
55	3	
58	2	
59	3	
60	1	
61	4	

144 63 154 64

$$h(v) = \text{round}\left(\frac{cdf(v) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L-1)\right)$$

$$h(v) = \text{round}\left(\frac{cdf(v) - 1}{63} \times 255\right)$$

Γ0	12	53	93	146	53	73	166
65	32	12	215	235	202	130	158
57	32	117	239	251	227	93	166
65	20	154	243	255	231	146	130
97	53	117	227	247	210	117	146
190	85	36	146	178	117	20	170
202	154	73	32	12	53	85	194
206	190	130	117	85	174	182	219

Digital Image Processing

Histogram Equalization

Histogram Equalization : Examples

a b c

FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.

Digital Image Processing

Digital Image Processing