MLS	Dataset				BST(HQIC) I	BST(GMDL)
Ridge	automobile	19.69(3)	19.69(3)	19.69(3)	19.69(3)	19.69(3)
	fertility	106.37(3)	106.37(3)	106.37(3)	106.37(3)	106.37(3)
	flow	64.26 (3)	64.26(3)	64.26 (3)	64.26 (3)	64.26 (3)
	forest	102.12(3)	102.12(3)	102.12(3)	102.12(3)	102.12(3)
	servo	61.49(3)	61.49(3)	61.49(3)	61.49(3)	61.49(3)
	slump	86.94(3)	86.94(3)	86.94(3)	86.94(3)	86.94(3)
	traffic	42.79(2)	42.79(2)	44.92(4)	42.79(2)	44.92(4)
	wine_red	65.09(3)	65.09(3)	65.09 (3)	65.09(3)	65.09(3)
	wine_white	72.58(3)	72.58(3)	72.58(3)	72.58(3)	72.58(3)
Avg. Rank		(2.89)	(2.89)	(3.17)	(2.89)	(3.17)
SVR	automobile	21.27(3)	21.27(3)	21.27(3)	21.27(3)	21.27(3)
	fertility	102.54(3)	102.54(3)	102.54(3)	102.54(3)	102.54(3)
	flow	78.77(4)	78.77(4)	71.30(1)	78.77(4)	71.30(1)
	forest	111.18(3)	111.18(3)	111.18(3)	111.18(3)	111.18(3)
	servo	16.73(3)	16.73(3)	16.73(3)	16.73(3)	16.73(3)
	slump	116.36(3)	116.36(3)	116.36(3)	116.36(3)	114.93 (1)
	traffic	58.21(3)	58.21(3)	58.21(3)	58.21(3)	58.21(3)
	wine_red	62.81 (1)	62.81(1)	67.35(4)	64.77(3)	67.35(4)
	wine_white	57.57 (2)	57.57(2)	57.57(2)	57.57(2)	70.46(5)
Avg. Rank		(2.94)	(2.94)	(3.00)	(3.11)	(3.00)
RF	automobile	18.08(3)	18.08(3)	18.08(3)	18.08(3)	18.08(3)
	fertility	91.98(2)	91.70(1)	94.35(4)	91.98(2)	94.35(4)
	flow	62.59 (3)	62.59(3)	62.59(3)	62.59(3)	62.59 (3)
	forest	116.29(3)	116.29(3)	116.29(3)	116.29(3)	116.29(3)
	servo	19.71(3)	19.71(3)	19.71(3)	19.71(3)	19.71(3)
	slump	63.94(3)	63.94(3)	63.94(3)	63.94(3)	63.94(3)
	traffic	50.82(3)	50.82(3)	50.82(3)	50.82(3)	50.82(3)
	wine_red	60.08(3)	60.08(3)	60.08(3)	60.08(3)	60.08(3)
	wine_white	60.02(3)	60.02(3)	60.02(3)	60.02(3)	60.02(3)
Avg. Rank		(2.94)	(2.78)	(3.17)	(2.94)	(3.17)
Mean Ranl	ς	(2.93)	(2.87)	(3.11)	(2.98)	(3.11)

Table 24: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when BST, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RF) and the HB sampling strategy.