Bsp. 3.38. Exporenhel représ $F_{\times p(2)} := \sum_{k=0}^{\infty} \frac{2^k}{k!}$ konverguert for Jedes ZEC Set 9k - = 2k. $\frac{Q_{k-1}}{Q_k} = \frac{2^{k+1}}{2^k} \frac{k!}{2^k} = \frac{2}{k+1}$ Also lim | alkel = [in | 2 | = 0 / | VIECE

topo | ak | k-30 | k+1 | DNach Satz 3.37(1) ist 2 konegant Wir werden dorauf strick kommen.

B) Für welche ZE C konument 2 2 k k l = 1 k k

Satz 3.39. (Wurzelkintenum).

Set (an) eine Folge in IR oder (T) Falls limsup & pk) <1 so

konverguert 20

Zak (I) Tells limsup Max > 1 50 diegert Servers: Doing 1) L 21 Seix went.

Bereis: Doing 1) L >1 div.

Ber 5 (n) 2 bonnegiert, da Octaterer Soitz 1st ganz fundamental Im Studium der Potenzreiten. Potenzreihen sind urchtig weil sie analyhsche Finlehonen darstellen

1.5

Destitation gibt kein Information Directly fant = 1 => Jim Anf (and \land) Trage: Warm bentien un Quobintentent; Ant Martinel 1st Heinficher anzuwenden!	•				(1)	(3)
(limsup Tant = 1 => Im Inf [and] < 1) (itrage: Warm bentien um Quohentenkent? Ant Marchimal ist yeinfecher anzuwenden!	2) Wurtelk	nterm	gibt	bein	Dyform	ch
(limsup Tant = 1 => Jim Shif [ani < 1) (i Frage: Warm bentren um Quohenkent (Ant Mardinal ist yeinfecher anzuwenden!	=) Quot.	knteum	grbt	kein	Defor	nelis
Ant Marchand ist Veinfecher anzuwenden!	(limsup Tan		Jim	Inf (a	nal (
	OFFRE We	um be	nhen	ur	Quohent	enknt (
ες 	Ant Marchimal	1st Veir	fecher	202	wende	
		ls		<u> </u>	,	
		(1)			* - §	
					11	
	0					
						1.
	:r				ř	
	,					
					g Table	A.1
; ;	17 %					

~

Benerleng! Das M. Warrellentenen liefert eine Entscheidig der divergenz auch venn Im sip West >1 den limsip Vani > 1 = 5 an duegent.

da, limsip Vani > 1 = 3 liman + 0. beuris: Imsop Van >1) Y ko EIN Sop Val >1
k>ko => + koein, gibt es donn ein k > ko

mt

[[ak] = 1 = (ax) >1 => lim ax +0 => 5 q duegat. dh per des Worzelbestern cire Entsheiding der Dreigen zu um zu l'éfern. Ist es hinrethand dess limsup Mant > 1

BSP 3.42. Zeta Frikhion For s >0 betrochten wir die Reite nzi ps und fragen noch Konvergen z. (1) For $0 \le \le 1$ gift $\frac{1}{k^s} \ge \frac{1}{k}$ also $\frac{\pi}{k} = \frac{\pi}{k} = \frac{\pi}{k}$ $\frac{\pi}{k} = \frac{\pi}{k} = \frac{\pi}{k}$ Mo for ocs s1, tot g(s) dangent. (IT) For SSI, SET ak=1/ks-Dann haben wir aker = (£) 3/ 9k (ker) and $\sqrt{q_k} = \frac{1}{(k^{1/k})^5}$ Also finkhonieren weder Duokentinkenterun wich Uhrel kinterim

93-6 Absolve Konvegerz von Reihen Wir haben schon geseten, ders 51 ist nicht konvegent und Z(-1)² ist konvergent. Ut lønnen desholb hertetten dass Zankony & 5 /and konverget Definition 3.43 Die Reihe Zak konvergiert absolut, folls du Reite 5 [ak] konneguet worm sind absolut konegent Reiten

The standard of the solution of the standard of the solution of the standard of the standar Frage-Wenn wir eine Deihe haben, können wir in sehr unterschliedlichen weise Summieren? Kammf es auf die Reihenfolge an? Antwest: Jal Fs konnt auf du Reiherfolge

BSP 3-44 Die Reihe 5 (-1) k

konvergiert jedoch Ist 5 1 duergent

k=1 2k Wöhlt mon zu lEIN den index ke so, dos $\frac{k_{k}}{\sum_{k=1}^{k} \frac{1}{2k}} > \ell + \sum_{k=1}^{k} \frac{1}{2k-1}$ Ond ordnet non die Folge 5(-1) k nun so um, dess auf die ersten if positiven Folgenglieder jeweils das j-te negative Glied folgt JEIN, dann erhölt mon für die so ungerdneten alternierenden hamorische Reihe 05(-1) k 11-1 2 kg $\frac{1}{2(k_1+1)} + \frac{1}{2k_2} = \frac{1}{3}$ $+\frac{1}{2(k_{e-1}+1)}$ $2k_{e}$ 2e-1

Bsp 3.47 = kg 1st fiv 19/61 abs- konvegret (2.B Quo-kntin $\frac{1}{2} + q^{2} + q^{3} + q^{4} + q$ t 9² [| t 9 + ...] $=\frac{2}{2}\left(q^{2}\sum_{k=0}^{\infty}q^{k}\right)=\frac{2}{2}\left(\frac{1}{1-q}\right)=\left(\frac{2}{1-q}\right)^{2}$ $=\frac{1}{2}\left(q^{2}\sum_{k=0}^{\infty}q^{k}\right)=\frac{2}{2}\left(\frac{1}{1-q}\right)=\left(\frac{2}{1-q}\right)^{2}$ Umordning der Simmehon: Stett J wird -s simmert

 $\frac{1}{n!} \sum_{k=0}^{\infty} {\binom{n}{k}} \times y^{n-k} = (x+y)$

Andog kann men auch beweisen dass 50+2350 Y X E 112 $Exp(x) = \lim_{N \to \infty} \left(\frac{1+x}{n} \right)^n$ Sc+ 7 3.49 3) Fxp(1)-e1 Exp(x+y) = (Expx) (Expy) $= \sum_{n} \frac{1}{E \times p(n)} = \frac{1}{E \times p(1)} \frac{1}{E \times p(n-1)}$ e.e. e = e TheN 1= Exp(0)= Exp(n) Exp(-n) $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n$ on Exp(n)=en Ynt7c Facin , Exp(1) =1e19 Da e= Exp(1) = Exp(q= 1) $\frac{1}{2} \left[\frac{1}{4} \right] - \frac{1}{4} \left[\frac{1}{4} \right]$