Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 12

A Job Scheduling Application

- Job scheduling
 - The key is the priority of the jobs in the queue
 - The job with the highest priority needs to be executed next
- Operations
 - Insert, remove maximum
- Data structures
 - Priority queues
 - Ordered array/list, unordered array/list

PQ Implementations & Cost

Worst-case asymptotic costs for a PQ with N items

	Insert	Remove max
ordered array	Ν	1
ordered list	Ν	1
unordered array	1	Ν
unordered list	1	Ν

Can we implement both operations efficiently?

Background on Trees

- Def: Binary tree = structure composed of a finite set of nodes that either:
 - Contains no nodes, or
 - Is composed of three disjoint sets of nodes: a root node, a left subtree and a right subtree

Special Types of Trees

• Def: Full binary tree = a binary tree in which each node is either a leaf or has degree (number of children) exactly 2.

• Def: Complete binary tree = a binary tree in which all leaves have the same depth and all internal nodes have degree 2.

Complete binary tree

The Heap Data Structure

- Def: A heap is a nearly complete binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node xParent(x) $\ge x$

It doesn't matter that 4 in level 1 is smaller than 5 in level 2

Heap

Definitions

- Height of a node = the number of edges on a longest simple path from the node down to a leaf
- Depth of a node = the length of a path from the root to the node
- Height of tree = height of root node
 = [Ign], for a heap of n elements

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of A[i] = A[[i/2]]
 - Heapsize[A] ≤ length[A]
- The elements in the subarray A[([n/2] + 1) .. n] are leaves
- The root is the maximum element of the heap

Heap Types

- Max-heaps (largest element at root), have the max-heap property:
 - for all nodes i, excluding the root:

$$A[PARENT(i)] \ge A[i]$$

- Min-heaps (smallest element at root), have the min-heap property:
 - for all nodes i, excluding the root:

 $A[PARENT(i)] \leq A[i]$

Operations on Heaps

- Maintain the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 - BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT
- Priority queue operations

Operations on Priority Queues

- Max-priority queues support the following operations:
 - INSERT(S, x): inserts element x into set S
 - EXTRACT-MAX(S): removes and returns element of
 S with largest key
 - MAXIMUM(S): returns element of S with largest key
 - INCREASE-KEY(S, x, k): increases value of element
 x's key to k (assume k ≥ current key value at x)

Maintaining the Heap Property

- Suppose a node is smaller than a child
 - Left and Right subtrees of i are maxheaps
- Invariant:
 - the heap condition is violated only at that node
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children

Maintaining the Heap Property

Assumptions:

- Left and Right subtrees of i are maxheaps
- A[i] may be smaller than its children

Alg: MAX-HEAPIFY(A, i, n)

- 1. $I \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- 3. if $l \le n$ and A[l] > A[i]
- 4. then largest ←
- 5. else largest ←i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. then largest ←r
- 8. if largest ≠ i
- 9. then exchange $A[i] \iff A[largest]$
- 10. MAX-HEAPIFY(A, largest, n)

Example

MAX-HEAPIFY(A, 2, 10)

 $A[2] \longleftrightarrow A[4]$

A[2] violates the heap property

A[4] violates the heap property

Heap property restored

MAX-HEAPIFY Running Time

- Intuitively:
 - A heap is an almost complete binary tree ⇒ must process O(lgn) levels, with constant work at each level
- Running time of MAX-HEAPIFY is O(Ign)
- Can be written in terms of the height of the heap, as being O(h)
 - Since the height of the heap is [Ign]

Building a Heap

- Convert an array A[1 ... n] into a max-heap
 (n = length[A])
- The elements in the subarray A[([n/2]+1) .. n] are leaves
- Apply MAX-HEAPIFY on elements between 1 and [n/2]

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow |n/2|$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)

Example:

Correctness of BUILD-MAX-HEAP

Loop invariant:

At the start of each iteration of the for loop, each node i + 1, i + 2,..., n is the root of a max-heap

Initialization:

- $i = \lfloor n/2 \rfloor$: Nodes $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n are leaves \Rightarrow they are the root of trivial max-heaps

Correctness of BUILD-MAX-HEAP

Maintenance:

- MAX-HEAPIFY makes node i a maxheap root and preserves the property that nodes i + 1, i + 2, ..., n are roots of max-heaps
- Decrementing i in the for loop reestablishes the loop invariant

Termination:

 $-i = 0 \Rightarrow$ each node 1, 2, ..., n is the root of a max-heap (by the loop invariant)

Running Time of BUILD MAX HEAP

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. **do** MAX-HEAPIFY**(***A*, i, n**)**

$$O(lan)$$
 $O(n)$

- ⇒ It would seem that running time is O(nlgn)
- This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

HEAPIFY takes O(h) ⇒ the cost of HEAPIFY on a node i
is proportional to the height of the node i in the tree

 $h_i = h - i$ height of the heap rooted at level i $n_i = 2^i$ number of nodes at level i CS 477/677 - Lecture 12

Running Time of BUILD MAX HEAP

$$T(n) = \sum_{i=0}^{n} n_i h_i$$

Cost of HEAPIFY at level i × number of nodes at that level

$$\sum_{i=1}^{n} 2^{i}(h-i)$$

 $\sum 2^i (h-i)$ Replace the values of $\mathbf{n_i}$ and $\mathbf{h_i}$ computed before

$$\lambda \sum_{i=0}^{h} \frac{h-i}{2^{h-i}} 2^{h}$$

$$2^{h} \sum_{k=0}^{h} \frac{k}{2^{k}}$$

$$\leq n \sum_{k=0}^{\infty} \frac{k}{2^k}$$

The sum above is smaller than the sum of all elements to ∞ and h = lgn

$$\mathbf{i}O(n)$$

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Operations on Priority Queues

- Max-priority queues support the following operations:
 - INSERT(S, x): inserts element x into set S
 - EXTRACT-MAX(S): removes and returns element of
 S with largest key
 - MAXIMUM(5): returns element of 5 with largest key
 - INCREASE-KEY(S, x, k): increases value of element
 x's key to k (assume k ≥ current key value at x)

HEAP-MAXIMUM

Goal:

Return the largest element of the heap

Alg: HEAP-MAXIMUM(A)

Running time: O(1)

1. return A[1]

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

 Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

- 1. if n < 1
- then error "heap underflow"

- 4. $A[1] \leftarrow A[n]$
- 5. MAX-HEAPIFY(A, 1, n-1)

> remakes heap

Running time: O(Ign)

Example: HEAP-EXTRACT-MAX

max = 16

Heap size decreased with 1

Call MAX-HEAPIFY(A, 1, n-1)

HEAP-INCREASE-KEY

Goal:

- Increases the key of an element i in the heap

• Idea:

- Increment the key of A[i] to its new value
- If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

- 1. **if** key < A[i]
- 2. **then error** "new key is smaller than current key"
- 3. $A[i] \leftarrow \text{key}$
- 4. **while** i > 1 and A[PARENT(i)] < A[i]
- 5. do exchange $A[i] \iff A[PARENT(i)]$
- 6. $i \leftarrow PARENT(i)$
- Running time: O(lgn)

Key [i] \leftarrow 15

Example: HEAP-INCREASE-KEY

$$Key[i] \leftarrow 15$$

MAX-HEAP-INSERT

Goal:

Inserts a new element into a max-heap

• Idea:

- Expand the max-heap with a new element whose key is -∞
- Calls HEAP-INCREASE-KEY to set the key of the new node to its correct value and maintain the 2 max-heap property

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)

Running time: O(Ign)

Example: MAX-HEAP-INSERT

Insert value 15: - Start by inserting -∞

Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

The restored heap containing the newly added element

CS 477/677 - Lecture 12

Summary

 We can perform the following operations on heaps:

- MAX-HEAPIFY	O(lgn)
---------------	--------

- BUILD-MAX-HEAP	0(n)
------------------	----	---	---

$$-$$
 HEAP-MAXIMUM $O(1)$

Readings

For this lecture

- Sections 6.3, 6,5
- Chapter 13

Coming next

- Chapter 17