Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

09 de abril de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Pensamento

Pensamento

Frase

A gente não faz amigos, reconhece-os.

Quem?

Vinicius de Moraes (1913-80) Diplomata e compositor brasileiro.

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Avisos

Questão Avaliada 01 no Canvas

Já pontuada!

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Computação em um AFN

Seja N um autômato finito não-determinístico e w uma cadeia sobre o alfabeto Σ . Então N aceita w se podemos escrever w como $w=y_1y_2\ldots y_m$, em que cada y_i é um membro de Σ_ϵ e existe uma sequência de estados r_0, r_1, \ldots, r_n em Q com três condições:

- $0 r_0 = q_0$
- ② $r_{i+1} \in \delta(r_i, y_{i+1})$, para i = 0, 1, ..., m-1, e
- \circ $r_m \in F$.

Qual linguagem este AFN reconhece?

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Qual linguagem este AFN reconhece?

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Expressões Regulares

Digamos que R é uma expressão regular (ER) se R for:

- \bullet a, para algum $a \in \Sigma$,
- $\mathbf{2} \epsilon$,
- **③** ∅,
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares,
- \circ (R_1^*) , em que R_1 é uma expressão regular.

Exemplos de ER

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Estratégia

Utilizar para realizar a prova um autômato finito não-determinístico generalizado.

Autômato Finito Não-Determinístico Generalizado

Um autômato finito não-determinístico generalizado (AFNG) é uma 5-upla $(Q, \Sigma, \delta, q_{inicio}, q_{aceita})$, de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $\delta: (Q \{q_{aceita}\}) \times (Q \{q_{inicio}\}) \rightarrow R$ é a função de transição,
- $ullet q_{aceita} \in Q$ é o estado de aceitação.

Autômatos Finitos Não-Determinístico Generalizado

Linguagens Não-Regulares

Existem linguagens que não são regulares como

$$A = \{0^n 1^n \mid n \ge 0\}.$$

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n > 0\}.$

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento do bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:

- \bullet para cada $i \geq 0, xy^i z \in A$,
- |y| > 0, e
- $|xy| \le p.$

Lista de Exercícios 02

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 1.4 (a, d, g);
- 1.7 (a, d, g);
- 1.15;
- 1.31.

Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

09 de abril de 2014

