1

AI1103 - Assignment 2

G Vojeswitha - AI20BTECH11024

Download all python codes from

https://github.com/Vojeswitha05/

Probability_AI1103/blob/main/Assignment_2/simulation 2.py

and latex-tikz codes from

https://github.com/Vojeswitha05/

Probability_AI1103/blob/main/Assignment_2/Latex 2.tex

1 Problem 5.28

Let X denote the number of hours you study during a randomly selected school day. The probability that X can take the values x, has the following form, where k is some unknown constant.

$$\Pr(X = x) = \begin{cases} 0.1, & \text{if } x = 0\\ kx, & \text{if } x = 1 \text{ or } 2\\ k(5 - x), & \text{if } x = 3 \text{ or } 4\\ 0, & \text{otherwise} \end{cases}$$
 (1.0.1)

- a) Find the value of k.
- b) What is the probability that you study at least two hours? Exactly two hours? At-most two hours?

2 Solution

Expanding the given form, we get:

Probability of studying x number of hours is as follows when x varies from 0 to 4, and is 0 for all other values of x.

X	0	1	2	3	4
Pr(X = x)	0.1	1k	2k	2k	k

TABLE 2: Probabilities in terms of k

We know by definition,

$$\sum_{x=0}^{4} \Pr(X = x) = 1$$
 (2.0.1)

By substituting the probabilities in (2.0.1) we get,

$$\implies 0.1 + k + 2k + 2k + k = 1$$
 (2.0.2)

$$\implies 6k = 0.9 \tag{2.0.3}$$

Therefore, from (2.0.3)

$$k = 0.15 \tag{2.0.4}$$

Therefore the probability for x hours of study where $0 \le x \le 4$, is as follows:

X	0	1	2	3	4
Pr(X = x)	0.1	0.15	0.3	0.3	0.15

TABLE 2: Probabilities after finding k

Fig. 2: Probability Mass Function (PMF)

We know that, Cumulative Distributive Function (CDF)

$$F(x) = \Pr(X \le x) \tag{2.0.5}$$

X	0	1	2	3	4
F(X)	0.1	0.25	0.55	0.85	1

TABLE 2: CDF

Fig. 2: Cumulative Distributive Function (CDF)

Fig. 3: Comparison of theoretical and simulation values

1) Probability of studying at least two hours

$$= \sum_{x=2}^{4} \Pr(X = x)$$
 (2.0.6)
= $\Pr(X = 2) + \Pr(X = 3) + \Pr(X = 4)$ (2.0.7)
= $\Pr(1 < X \le 4)$ (2.0.8)
= $F(4) - F(1)$ (2.0.9)

Substituting CDF values of (2) in (2.0.9)

$$= 1 - 0.25 \tag{2.0.10}$$

$$= 0.75$$
 (2.0.11)

2) Probability of studying exact two hours

$$= \Pr(X = 2) \tag{2.0.12}$$

$$= 0.3$$
 (2.0.13)

3) Probability of studying at most two hours

$$= \sum_{x=0}^{2} \Pr(X = x)$$
 (2.0.14)
= $\Pr(X = 0) + \Pr(X = 1) + \Pr(X = 2)$ (2.0.15)
= $F(2)$ (2.0.16)

By substituting probabilities in (2.0.16)

$$= 0.55$$
 (2.0.17)

Final solution:

$\Pr(X \ge 2)$	Pr(X=2)	$\Pr(X \le 2)$	
0.75	0.3	0.55	
Case1	Case2	Case3	
at-least 2 hrs	Exactly 2 hrs	at-most 2 hrs	