KVSort: Drastically Improving LLM Inference Performance via KV Cache Compression

Baixi Sun¹, Dr. Xiaodong Yu² Dr. Dingwen Tao³, Dr. Fengguang Song¹

¹Indiana University Bloomington, ²Stevens Institute of Technology, ³Institute of Computing Technology, Chinese Academy of Sciences

Background & Motivation

Large Language Model (LLM) Inference

- Prefill: Tokenize input text, compute key and value vectors.
- o **Decode:** Generates output tokens autoregressively.
- KV Cache improves LLM inference performance via avoiding repeated computation.

KV Cache Size is Enormous.

Model Name	Weight Size (GB)	KV Cache Size (GB)	Weight size and KV cache size in GB on existing LLMs using bf16 precision, context length 2048 and inference batch size 32.
Llama-3-8B	16	69	
MPT-30B	60	206	
Llama-3-70B	140	344	
BLOOM-176B	352	526	

Problem 1: KV Cache Size Exceeds GPU memory size. **Problem 2:** Reading KV Cache from storage is slow.

Error-bounded Lossy Compression

- [Lossless] Predictor: Use surrounding points for prediction and store difference.
- [Lossy] Quantizer: Quantizes a floating value to represent using fewer bits.
- [Lossless] Encoder: Further reduces the bits to represent via merging repetitions.

KVSort Design

Sorting Drastically Improves Compression Ratio (CR)

Predicted

Value Difference

- Observation 1: There are similar but discrete distributed values along the embedding dimension.
- Implication 1.1: Sorting Improves CR.

Single Prediction

 Implication 1.2: Sorting on the embedding dimension achieves higher CR compared to the Token dimension.

This is because sorting improves

the effectiveness of prediction,

Challenge of Applying Sorting: Index storage requires additional bits. For example, an 512x2048 bf16 tensor requires at least 20 bits for index after sorting.

Design 1: Sort the embedding dimension only, according to Implication 1.2. **Observation 2:** Attention block's keys and values within a model shares the pattern shown above.

Design 2: Sorted index sharing across tokens. Specifically, we sort the first block and record the sorted index and re-order the next *k* tokens.

Design 3: Integrate compression/decompression into inference workflow.

Evaluation

- Environment: AMD EPYC 7742 CPU, 40GB NVIDIA A100 GPU, and 256GB RAM
- Baseline: Q-Hitter [1] is the state-of-the-art KV cache compression approach that prunes the less important KV vectors.
- Model & Dataset: Llama3-8B-Instruct [2] on GSM8K [3].

Inference Accuracy

Increasing error-bound up to 1E-2 does not affect inference accuracy.

 Error Bound
 No compression
 1.00E-03
 4.00E-03
 8.00E-03
 1.00E-02
 3.00E-02
 2.5E-02
 1.00E-01
 2.5E-02
 5.00E-01
 5.00E-01

Compression Ratios When Preserving Accuracy

- 1. Increasing the error bound improves compression ratio.
- 2. Significant Index storage overhead without index sharing (k=1).
- 3. Up to 52x CR compared to Q-Hitter 20x CR.

End-to-End Performance Improvement

Using off-load mode

1. Up to 6.8x speedup.

2. Scaling with context length.

Future Work

Apply KVSort to Purne-based KV Cache Compression Approaches: Attention block's keys and values within a model shares the pattern shown above. **Dynamic Index Sharing Mechanism:** For error-bounded lossy compressors, the compression ratio can be estimated efficiently via sampling [4]. This enables KVSort to online determine the parameter k to share the sorted index. KVSort will increase k until the estimated compression ratio significantly drops. **System Design for Long Context Length:** Efficiently utilize multi-layer storage (e.g., CPU RAM, GPU HBM, and SSD) to manage KVSort algorithm and develop an end-to-end LLM inference serving system.

Reference

[1] Zhang, Zhenyu, et al. "Q-Hitter: A Better Token Oracle for Efficient LLM Inference via Sparse-Quantized KV Cache." Proceedings of Machine Learning and Systems 6 (2024): 381-394.
[2] Al@Meta, "Llama 3 model card." 2024 (Online].

Available: https://github.com/meta-llama3/blob/main/MODELCARD.md.

[3] Oobbe, Kari, et al. "Training verifier sto solve math word problems." arXiv preprint arXiv:2110.14168 (2021).
[4] Sian Jin, Sheng Di, Jiannan Tian, Suren Byna, Dingwen Tao, and Franck Cappello. "Significantly Improving Prediction-Based Lossy Compression Via Ratio-Quality Modeling." IEEE International Conference on Data Engineering 2022. (Virtual Kujala Lummur, Malaysia, May 9-May 12, 2023.