# An Identifiability Perspective on Representation Learning

Yash Sharma

#### Outline

- Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
  - a. Identifiability w/ assumptions derived from natural video

#### Outline

- Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
  - a. Identifiability w/ assumptions derived from natural video
- 2. Contrastive Learning Inverts the Data Generating Process
  - a. Identifiability & InfoNCE

#### Outline

- Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
  - a. Identifiability w/ assumptions derived from natural video
- 2. Contrastive Learning Inverts the Data Generating Process
  - a. Identifiability & InfoNCE
- Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
  - a. Identifiability when augmentations leave factors invariant

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

- 1. Problem Statement
  - a. What is disentanglement?

- 1. Problem Statement
  - a. What is disentanglement?

#### 1. Problem Statement

- a. What is disentanglement?
- b. What do we need to solve disentanglement?

#### Problem Statement

- a. What is disentanglement?
- b. What do we need to solve disentanglement?
- c. Can we find what we need in natural video?

#### 1. Problem Statement

- a. What is disentanglement?
- b. What do we need to solve disentanglement?
- c. Can we find what we need in natural video?

#### 2. Theoretical Contributions

a. A prior based on natural statistics provably enables disentanglement

#### Problem Statement

- a. What is disentanglement?
- b. What do we need to solve disentanglement?
- c. Can we find what we need in natural video?

#### 2. Theoretical Contributions

a. A prior based on natural statistics provably enables disentanglement

#### 3. Empirical Contributions

 a. Qualitative and quantitative results on existing and contributed datasets demonstrate outperformance in aggregate

#### State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position

#### State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position



data generating process

#### State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position



#### Observations, **x**:



#### State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position





representation learning

#### Observations, **x**:



#### State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position





## Non-identifiability

State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position

independent & unknown



Observations, **x**:



representation learning

## Non-identifiability

State of the world, z:

- shape
- scale
- orientation
- x position
- y position

independent & unknown



representation learning

Observations, **x**:



## Non-identifiability

State of the world, z:

- shape
- scale
- orientation
- x position
- y position

independent & unknown









#### Observations, **x**:



independent identically distributed (i.i.d.)

Locatello et al. (2018) Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations Hyvärinen & Pajunen (1999) Nonlinear independent component analysis: Existence and uniqueness results

## Nonlinear Disentanglement

State of the world, **z**:

- shape
- scale
- orientation
- x position
- y position

independent & unknown



Observations, **x**:



Model assumptions

Locatello et al. (2020) Weakly-Supervised Disentanglement Without Compromises
Hyvärinen & Morioka (2017) Nonlinear ICA of Temporally Dependent Stationary Sources
Hyvärinen & Morioka (2016) Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA

## Natural Video



## Natural Video





#### Natural Video







- scale
- x position
- y position

## Natural Data Analysis



## Natural Sprites

- Images generated online using renderer
- Simple, well-controlled objects
- Transitions sampled from YouTube-VOS



#### KITTI Masks

- Pedestrian masks extracted directly from autonomous recorded videos
- Realistic objects & transitions



State of the world, **z**:

{shape, scale, orientation, x position, y position}

State of the world, **z**:

{shape, scale, orientation, x position, y position}

#### And dynamics:







State of the world, **z**:

{shape, scale, orientation, x position, y position}



And dynamics:







State of the world, z:

{shape, scale, orientation, x position, y position}

And dynamics:







## $\Rightarrow$ g(z) $\Rightarrow$

Observations:











 $\mathbf{X}_{t-1}$   $\mathbf{X}_{t}$ 



State of the world, z:

{shape, scale, orientation, x position, y position}

#### And dynamics:





## Identifiability Proof Intuition



## Identifiability Proof Intuition



## **Prior:**objects in nature change sparsely



**Prior:**objects in nature change sparsely





# **Prior:**objects in nature change sparsely





# **Prior:**objects in nature change sparsely









True Model



**Prior:**objects in nature change sparsely



x position







True Model





**Prior:**objects in nature change sparsely



x position







True Model







x position







**Prior:** objects in nature change sparsely



True Model















**Prior:**objects in nature change sparsely



True Model Learned Model g\*(**z**)  $g(\mathbf{z})$ 





**Prior:**objects in nature change sparsely





# Slow Variational Autoencoder at time t-1



# Slow Variational Autoencoder at time t-1



### **Data**











### **Data**























### SlowVAE (Latent Walk)



# SlowVAE (Latent Walk) Shape Scale Position Position

### SlowVAE (Latent Walk)











# Results on Natural Data

### **KITTI-Masks**

| 1  | 1        | \$ | 4  | ŧ | * | ŧ  | *        |
|----|----------|----|----|---|---|----|----------|
|    | <b>3</b> | *  | }  |   |   | ,  |          |
|    | 1        | ŧ  | j. | j | j | j. | <b>)</b> |
| ţ  | ,        | ,  | 1  | ŧ |   |    | ì        |
|    | ŧ        | į  |    | t |   |    | t        |
| ŧ. | ŧ.       |    | 1  |   |   |    | <b>‡</b> |

## Results on Natural Data

### **KITTI-Masks**



### **Disentanglement Performance**



# Results - KITTI-Masks



Objects in natural scenes have **sparse** marginal transition statistics







Objects in natural scenes have **sparse** marginal transition statistics







Intuitive proof for **identifiability** in Nonlinear ICA & Disentanglement



Objects in natural scenes have **sparse** marginal transition statistics







Intuitive proof for **identifiability** in Nonlinear ICA & Disentanglement



Empirical results using a **Flow** and a **VAE** based implementation of the theoretical model



Objects in natural scenes have **sparse** marginal transition statistics



Two challenging new **datasets** to push disentanglement towards **natural** video





Intuitive proof for **identifiability** in Nonlinear ICA & Disentanglement



Empirical results using a **Flow** and a **VAE** based implementation of the theoretical model







# Overview

1. Theoretical Connection between InfoNCE & Nonlinear ICA

# Overview

- Theoretical Connection between InfoNCE & Nonlinear ICA
- 2. Empirical Test on robustness to mismatch (in assumptions)

## Overview

- Theoretical Connection between InfoNCE & Nonlinear ICA
- 2. Empirical Test on robustness to mismatch (in assumptions)
- 3. Identifiability on 3DIdent

### Overview

- Theoretical Connection between InfoNCE & Nonlinear ICA
- 2. Empirical Test on robustness to mismatch (in assumptions)
- 3. Identifiability on 3DIdent
  - a. complex, high-resolution images

#### Nonlinear ICA

generative factors
(state of the world)

mixing
(rendering process)

disentangling
(optimization goal)

observations
(images)



**Theorem 2.** Let  $\mathcal{Z} = \mathbb{S}^{N-1}$ , the ground-truth marginal be uniform, and the conditional a vMF distribution (cf. Eq. 2).  $\mathbb{E}_{(\mathbf{x}, \tilde{\mathbf{x}}) \sim p_{\mathsf{pos}}}$  Let the mixing function g be differentiable and injective. If  $\{\mathbf{x}_i^-\}_{i=1}^M \stackrel{\text{i.i.d.}}{\sim} p_{\mathsf{data}}$   $\left[ -\log \frac{e^{f(\mathbf{x})^\mathsf{T} f(\tilde{\mathbf{x}})/\tau}}{e^{f(\mathbf{x})^\mathsf{T} f(\tilde{\mathbf{x}})/\tau} + \sum\limits_{i=1}^M e^{f(\mathbf{x}_i^-)^\mathsf{T} f(\tilde{\mathbf{x}})/\tau}} \right]$ . the assumed form of  $q_h$ , as defined above, matches that of p, and if f is differentiable and minimizes the CL loss (1), then for fixed  $\tau > 0$  and  $M \to \infty$ ,  $h = f \circ g$  is linear, i.e., f recovers the latent sources up to orthogonal linear transformations.

$$\mathcal{L}_{\text{contr}}(f; \tau, M) := \tag{1}$$

$$\mathbb{E}_{\substack{(\mathbf{x}, \tilde{\mathbf{x}}) \sim p_{\text{pos}} \\ \{\mathbf{x}_{i}^{-}\}_{i=1}^{M} \stackrel{\text{i.i.d.}}{\sim} p_{\text{data}}}} \left[ -\log \frac{e^{f(\mathbf{x})^{\mathsf{T}} f(\tilde{\mathbf{x}})/\tau}}{e^{f(\mathbf{x})^{\mathsf{T}} f(\tilde{\mathbf{x}})/\tau} + \sum_{i=1}^{M} e^{f(\mathbf{x}_{i}^{-})^{\mathsf{T}} f(\tilde{\mathbf{x}})/\tau}} \right].$$

$$p(\mathbf{z}) = |\mathcal{Z}|^{-1}, \qquad p(\mathbf{z}|\tilde{\mathbf{z}}) = C_p^{-1} e^{\kappa \mathbf{z}^{\top} \tilde{\mathbf{z}}}$$
with  $C_p := \int e^{\kappa \mathbf{z}^{\top} \tilde{\mathbf{z}}} d\tilde{\mathbf{z}} = \text{const.}, \quad \mathbf{x} = g(\mathbf{z}).$  (2)

$$q_{
m h}( ilde{\mathbf{z}}|\mathbf{z}) = C_h( ilde{\mathbf{z}})^{-1}e^{h( ilde{\mathbf{z}})^{\sf T}h(\mathbf{z})/ au}$$
 with  $C_h(\mathbf{z}) := \int e^{h( ilde{\mathbf{z}})^{\sf T}h(\mathbf{z})/ au}\,\mathrm{d}\mathbf{z},$ 

**Theorem 1** ( $\mathcal{L}_{contr}$  converges to the cross-entropy between latent distributions). If the ground-truth marginal distribution p is uniform, then for fixed  $\tau > 0$ , as the number of negative samples  $M \to \infty$ , the (normalized) contrastive loss converges to

$$\lim_{M \to \infty} \mathcal{L}_{contr}(f; \tau, M) - \log M + \log |\mathcal{Z}| = \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} [H(p(\cdot|\mathbf{z}), q_h(\cdot|\mathbf{z}))]$$
(14)

where H is the cross-entropy between the ground-truth conditional distribution p over positive pairs and a conditional distribution  $q_h$  parameterized by the model f, and  $C_h(\mathbf{z}) \in \mathbb{R}^+$  is the partition function of  $q_h$  (see Appendix A.1.1):

$$q_{h}(\tilde{\mathbf{z}}|\mathbf{z}) = C_{h}(\mathbf{z})^{-1} e^{h(\tilde{\mathbf{z}})^{\mathsf{T}} h(\mathbf{z})/\tau}$$
with  $C_{h}(\mathbf{z}) := \int e^{h(\tilde{\mathbf{z}})^{\mathsf{T}} h(\mathbf{z})/\tau} d\tilde{\mathbf{z}}.$  (15)

**Proposition 1** (Minimizers of the cross-entropy maintain the dot product). Let  $\mathcal{Z} = \mathbb{S}^{N-1}$ ,  $\tau > 0$  and consider the ground-truth conditional distribution of the form  $p(\tilde{\mathbf{z}}|\mathbf{z}) = C_p^{-1} \exp(\kappa \tilde{\mathbf{z}}^{\top} \mathbf{z})$ . Let h map onto a hypersphere with radius  $\sqrt{\tau \kappa}$ . Consider the conditional distribution  $q_h$  parameterized by the model, as defined above in Theorem 1, where the hypothesis class for h is assumed to be sufficiently flexible such that  $p(\tilde{\mathbf{z}}|\mathbf{z})$  and  $q_h(\tilde{\mathbf{z}}|\mathbf{z})$  can match. If h is a minimizer of the cross-entropy  $\mathbb{E}_{p(\tilde{\mathbf{z}}|\mathbf{z})}[-\log q_h(\tilde{\mathbf{z}}|\mathbf{z})]$ , then  $p(\tilde{\mathbf{z}}|\mathbf{z}) = q_h(\tilde{\mathbf{z}}|\mathbf{z})$  and  $\forall \mathbf{z}, \tilde{\mathbf{z}} : \kappa \mathbf{z}^{\top} \tilde{\mathbf{z}} = h(\mathbf{z})^{\top} h(\tilde{\mathbf{z}})$ .

**Proposition 2** (Extension of the Mazur-Ulam theorem to hyperspheres and the dot product). Let  $\mathcal{Z} = \mathbb{S}^{N-1}$ . If  $h: \mathcal{Z} \to \mathcal{Z}$  maintains the dot product up to a constant factor, i.e.,  $\forall \mathbf{z}, \tilde{\mathbf{z}} \in \mathcal{Z} : \kappa \mathbf{z}^{\top} \tilde{\mathbf{z}} = h(\mathbf{z})^{\top} h(\tilde{\mathbf{z}})$ , then h is an orthogonal linear transformation.

**Theorem 5.** Let  $\mathcal{Z}$  be a convex body in  $\mathbb{R}^N$ ,  $h = f \circ g$ :  $\mathcal{Z} \to \mathcal{Z}$ , and  $\delta$  be a metric. Further, let the ground-truth marginal distribution be uniform and the conditional distribution be as (5). Let the mixing function g be differentiable and injective. If the assumed form of  $q_h$  matches that of p, i.e.,

$$q_{h}(\tilde{\mathbf{z}}|\mathbf{z}) = C_{q}^{-1}(\mathbf{z})e^{-\delta(h(\tilde{\mathbf{z}}),h(\mathbf{z}))/\tau}$$
with  $C_{q}(\mathbf{z}) := \int e^{-\delta(h(\tilde{\mathbf{z}}),h(\mathbf{z}))/\tau} d\tilde{\mathbf{z}},$  (7)

and if f is differentiable and minimizes the  $\mathcal{L}_{\delta\text{-contr}}$  objective in (6) for  $M \to \infty$ , we find that  $h = f \circ g$  is invertible and affine, i.e., we recover the latent sources up to affine transformations.

$$p(\mathbf{z}) = |\mathcal{Z}|^{-1}, \qquad p(\mathbf{z}|\tilde{\mathbf{z}}) = C_p^{-1} e^{-\delta(\mathbf{z},\tilde{\mathbf{z}})}$$
with  $C_p(\mathbf{z}) := \int e^{-\delta(\mathbf{z},\tilde{\mathbf{z}})} d\tilde{\mathbf{z}}, \quad \mathbf{x} = g(\mathbf{z}),$ 
(5)

$$\mathcal{L}_{\delta\text{-contr}}(f;\tau,M) := \frac{e^{-\delta(f(\mathbf{x}),f(\tilde{\mathbf{x}}))/\tau}}{\left\{\mathbf{x}_{i}^{-}\right\}_{i=1}^{M} \stackrel{\text{i.i.d.}}{\sim} p_{\text{data}}} \left[ -\log \frac{e^{-\delta(f(\mathbf{x}),f(\tilde{\mathbf{x}}))/\tau}}{e^{-\delta(f(\mathbf{x}),f(\tilde{\mathbf{x}}))/\tau} + \sum_{i=1}^{M} e^{-\delta(f(\mathbf{x}_{i}^{-}),f(\tilde{\mathbf{x}}))/\tau}} \right].$$

**Theorem 3.** Let  $\delta$  be a semi-metric and  $\tau, \lambda > 0$  and let the ground-truth marginal distribution p be uniform. Consider a ground-truth conditional distribution  $p(\tilde{\mathbf{z}}|\mathbf{z}) = C_p^{-1}(\mathbf{z}) \exp(-\lambda \delta(\tilde{\mathbf{z}}, \mathbf{z}))$  and the model conditional distribution

$$q_{h}(\tilde{\mathbf{z}}|\mathbf{z}) = C_{h}^{-1}(\mathbf{z})e^{-\delta(h(\tilde{\mathbf{z}}),h(\mathbf{z}))/\tau}$$
with  $C_{h}(\mathbf{z}) := \int_{\mathcal{Z}} e^{-\delta(h(\tilde{\mathbf{z}}),h(\mathbf{z}))/\tau} d\tilde{\mathbf{z}}.$  (61)

Then the cross-entropy between p and  $q_h$  is given by

$$\lim_{M \to \infty} \mathcal{L}_{\delta\text{-contr}}(f; \tau, M) - \log M + \log |\mathcal{Z}| = \underset{\mathbf{z} \sim p(\mathbf{z})}{\mathbb{E}} \left[ H(p(\cdot|\mathbf{z}), q_{\mathrm{h}}(\cdot|\mathbf{z})) \right], \tag{62}$$

which can be implemented by sampling data from the accessible distributions.

**Theorem 4.** Let  $\mathcal{Z} = \mathcal{Z}'$  be a convex body in  $\mathbb{R}^N$ . Let the mixing function g be differentiable and invertible. If the assumed form of  $q_h$  as defined in (4) matches that of p, and if f is differentiable and minimizes the cross-entropy between p and  $q_h$ , then we find that  $h = f \circ g$  is affine, i.e., we recover the latent sources up to affine transformations.

**Theorem 6.** Let  $\mathcal{Z}$  be a convex body in  $\mathbb{R}^N$ ,  $h: \mathcal{Z} \to \mathcal{Z}$ , and  $\delta$  be an  $L^{\alpha}$  metric for  $\alpha \geq 1, \alpha \neq 2$ . Further, let the ground-truth marginal distribution be uniform and the conditional distribution be as (5), and let the mixing function g be differentiable and invertible. If the assumed form of  $q_h(\cdot|\mathbf{z})$  matches that of  $p(\cdot|\mathbf{z})$ , i.e., both use the same metric  $\delta$  up to a constant scaling factor, and if f is differentiable and minimizes the  $\mathcal{L}_{\delta\text{-contr}}$  objective in (6) for  $M \to \infty$ , we find that  $h = f \circ g$  is a composition of input independent permutations, sign flips and rescaling.

**Theorem D.** Suppose  $1 \le \alpha \le \infty$  and  $\alpha \ne 2$ . An  $n \times n$  matrix  $\mathbf{A}$  is an isometry of  $L^{\alpha}$ -norm if and only if  $\mathbf{A}$  is a generalized permutation matrix, i.e.,  $\forall \mathbf{z} : (\mathbf{A}\mathbf{z})_{\mathbf{i}} = \alpha_{\mathbf{i}}\mathbf{z}_{\sigma(\mathbf{i})}$ , with  $\alpha_{\mathbf{i}} = \pm 2$  and  $\sigma$  being a permutation.

*Proof.* See Li & So (1994). Note that this can also be concluded from the Banach-Lamperti Theorem (Lamperti et al., 1958).

$$p(\mathbf{z}) = |\mathcal{Z}|^{-1}, \qquad p(\mathbf{z}|\tilde{\mathbf{z}}) = C_p^{-1} e^{-\delta(\mathbf{z},\tilde{\mathbf{z}})}$$
 with  $C_p(\mathbf{z}) := \int e^{-\delta(\mathbf{z},\tilde{\mathbf{z}})} d\tilde{\mathbf{z}}, \quad \mathbf{x} = g(\mathbf{z}),$  (5)

$$\mathcal{L}_{\delta\text{-contr}}(f;\tau,M) := \frac{e^{-\delta(f(\mathbf{x}),f(\tilde{\mathbf{x}}))/\tau}}{\sum_{\substack{(\mathbf{x},\tilde{\mathbf{x}})\sim p_{\mathsf{pos}}\\ \{\mathbf{x}_{i}^{-}\}_{i=1}^{M} \stackrel{\text{i.i.d.}}{\sim} p_{\mathsf{data}}}} \frac{e^{-\delta(f(\mathbf{x}),f(\tilde{\mathbf{x}}))/\tau}}{e^{-\delta(f(\mathbf{x}),f(\tilde{\mathbf{x}}))/\tau} + \sum_{i=1}^{M} e^{-\delta(f(\mathbf{x}_{i}^{-}),f(\tilde{\mathbf{x}}))/\tau}} \right].$$

## Different Assumptions, Different Losses

# **Empirical Results**

| Generative process g |            |                           | Model $f$ |                          |    | $R^2$ Score [%]  |                  |                  |
|----------------------|------------|---------------------------|-----------|--------------------------|----|------------------|------------------|------------------|
| Space                | $p(\cdot)$ | $p(\cdot \cdot)$          | Space     | $q_{\rm h}(\cdot \cdot)$ | M. | Identity         | Supervised       | Unsupervised     |
| Sphere               | Uniform    | $vMF(\kappa=1)$           | Sphere    | $vMF(\kappa=1)$          | 1  | $66.98 \pm 2.79$ | $99.71 \pm 0.05$ | $99.42 \pm 0.05$ |
| Sphere               | Uniform    | $vMF(\kappa=10)$          | Sphere    | $vMF(\kappa=1)$          | ×  | ——II——           | ——II——           | $99.86 \pm 0.01$ |
| Sphere               | Uniform    | Laplace( $\lambda$ =0.05) | Sphere    | $vMF(\kappa=1)$          | ×  | —— II ——         | ——II——           | $99.91 \pm 0.01$ |
| Sphere               | Uniform    | Normal( $\sigma$ =0.05)   | Sphere    | $vMF(\kappa=1)$          | X  | ————             | ——II——           | $99.86 \pm 0.00$ |
|                      |            |                           |           |                          |    |                  |                  |                  |

| Sphere | Uniform | Laplace( $\lambda$ =0.05) | Sphere    | $vMF(\kappa=1)$    | X | <del></del>      | ————             | $99.91 \pm 0.01$ |
|--------|---------|---------------------------|-----------|--------------------|---|------------------|------------------|------------------|
| Sphere | Uniform | Normal( $\sigma$ =0.05)   | Sphere    | $vMF(\kappa=1)$    | X | ——II——           | ——II——           | $99.86 \pm 0.00$ |
| Box    | Uniform | Normal( $\sigma$ =0.05)   | Unbounded | Normal             | X | $67.93 \pm 7.40$ | $99.78 \pm 0.06$ | $99.60 \pm 0.02$ |
| Box    | Uniform | Laplace( $\lambda$ =0.05) | Unbounded | Normal             | X | ——II——           | ——II——           | $99.64 \pm 0.02$ |
| Box    | Uniform | Laplace( $\lambda$ =0.05) | Unbounded | $GenNorm(\beta=3)$ | X | ——u—             | ——II——           | $99.70 \pm 0.02$ |
|        |         |                           |           |                    |   |                  |                  |                  |

| ~ F    | ·                    | ()                        |           |                      | 8 |                  |                  |                  |
|--------|----------------------|---------------------------|-----------|----------------------|---|------------------|------------------|------------------|
| Box    | Uniform              | Normal( $\sigma$ =0.05)   | Unbounded | Normal               | X | $67.93 \pm 7.40$ | $99.78 \pm 0.06$ | $99.60 \pm 0.02$ |
| Box    | Uniform              | Laplace( $\lambda$ =0.05) | Unbounded | Normal               | X | ——II——           | <del></del>      | $99.64 \pm 0.02$ |
| Box    | Uniform              | Laplace( $\lambda$ =0.05) | Unbounded | $GenNorm(\beta=3)$   | X | ——II——           | ——II——           | $99.70 \pm 0.02$ |
| Box    | Uniform              | Normal( $\sigma$ =0.05)   | Unbounded | GenNorm( $\beta$ =3) | × | ——II——           | <del></del>      | $99.69 \pm 0.02$ |
| Sphere | Normal( $\sigma$ =1) | Laplace( $\lambda$ =0.05) | Sphere    | $vMF(\kappa=1)$      | X | $63.37 \pm 2.41$ | $99.70 \pm 0.07$ | $99.02 \pm 0.01$ |

| DOX       | Cimorin                | Laplace(A=0.00)           | Choodhaca | Horman               | , |                  |                  | 33.04 ± 0.02     |
|-----------|------------------------|---------------------------|-----------|----------------------|---|------------------|------------------|------------------|
| Box       | Uniform                | Laplace( $\lambda$ =0.05) | Unbounded | $GenNorm(\beta=3)$   | X | ——II——           | ——II——           | $99.70 \pm 0.02$ |
| Box       | Uniform                | Normal( $\sigma$ =0.05)   | Unbounded | GenNorm( $\beta$ =3) | × | <del></del>      | <del></del>      | $99.69 \pm 0.02$ |
| Sphere    | Normal( $\sigma$ =1)   | Laplace( $\lambda$ =0.05) | Sphere    | $vMF(\kappa=1)$      | X | $63.37 \pm 2.41$ | $99.70 \pm 0.07$ | $99.02 \pm 0.01$ |
| Sphere    | Normal( $\sigma$ =1)   | Normal( $\sigma$ =0.05)   | Sphere    | $vMF(\kappa=1)$      | × | ——II——           | ————             | $99.02 \pm 0.02$ |
| Unbounded | Laplace( $\lambda$ =1) | Normal( $\sigma$ =1)      | Unbounded | Normal               | X | $62.49 \pm 1.65$ | $99.65 \pm 0.04$ | $98.13 \pm 0.14$ |

| DOX       | Omform                 | Norman(0=0.05)            | Ollooullaca | Genivorin( $\beta$ =3) | ^ |                  |                  | 99.09 ± 0.02     |
|-----------|------------------------|---------------------------|-------------|------------------------|---|------------------|------------------|------------------|
| Sphere    | Normal( $\sigma$ =1)   | Laplace( $\lambda$ =0.05) | Sphere      | $vMF(\kappa=1)$        | X | $63.37 \pm 2.41$ | $99.70 \pm 0.07$ | $99.02 \pm 0.01$ |
| Sphere    | Normal( $\sigma$ =1)   | Normal( $\sigma$ =0.05)   | Sphere      | $vMF(\kappa=1)$        | × | ——II——           | ——II——           | $99.02 \pm 0.02$ |
| Unbounded | Laplace( $\lambda$ =1) | Normal( $\sigma$ =1)      | Unbounded   | Normal                 | X | $62.49 \pm 1.65$ | $99.65 \pm 0.04$ | $98.13 \pm 0.14$ |
| Unbounded | $Normal(\sigma=1)$     | $Normal(\sigma=1)$        | Unbounded   | Normal                 | X | $63.57 \pm 2.30$ | $99.61 \pm 0.17$ | $98.76 \pm 0.03$ |

## **Empirical Results**



## **Empirical Results**

| Generative process q |                               |                                                                                                                                                  |                                     | Model f                                  | MCC Score [%] |                                        |                                        | ]                                                        |
|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|---------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|
| Space                | $p(\cdot)$                    | $p(\cdot \cdot)$                                                                                                                                 | Space                               | $q_{ m h}(\cdot \cdot)$                  | M.            | Identity                               | Supervised                             | Unsupervised                                             |
| Box<br>Box           | Uniform<br>Uniform            | $\begin{array}{c} \text{Laplace}(\lambda{=}0.05)\\ \text{GenNorm}(\beta{=}3;\lambda{=}0.05) \end{array}$                                         | Box<br>Box                          | Laplace GenNorm( $\beta$ =3)             | 1             | $46.55 \pm 1.34$                       | 99.93 ± 0.03                           | $98.62 \pm 0.05$<br>$99.90 \pm 0.06$                     |
| Box<br>Box<br>Box    | Uniform<br>Uniform<br>Uniform | $\begin{aligned} & \text{Normal}(\sigma{=}0.05) \\ & \text{Laplace}(\lambda{=}0.05) \\ & \text{GenNorm}(\beta{=}3;\lambda{=}0.05) \end{aligned}$ | Box<br>Box<br>Box                   | Normal<br>Normal<br>Laplace              | X<br>X<br>X   | —————————————————————————————————————— | — II — I | $99.77 \pm 0.01$<br>$99.76 \pm 0.02$<br>$98.80 \pm 0.02$ |
| Box<br>Box           | Uniform<br>Uniform            | Laplace( $\lambda$ =0.05)<br>GenNorm( $\beta$ =3; $\lambda$ =0.05)                                                                               | Unbounded<br>Unbounded              | Laplace<br>GenNorm(β=3)                  | ×             | — II — — — — — — — — — — — — — — — — — | 99.97 ± 0.03                           | $98.57 \pm 0.02$<br>$99.85 \pm 0.01$                     |
| Box<br>Box<br>Box    | Uniform<br>Uniform<br>Uniform | Normal( $\sigma$ =0.05)<br>Laplace( $\lambda$ =0.05)<br>Normal( $\sigma$ =0.05)                                                                  | Unbounded<br>Unbounded<br>Unbounded | Normal<br>Normal<br>GenNorm( $\beta$ =3) | X<br>X<br>X   | — II—<br>— II—                         | — II—<br>— II—                         | $58.26 \pm 3.00$<br>$59.67 \pm 2.33$<br>$43.80 \pm 2.15$ |

### KITTI Masks

Table 3. KITTI Masks. Mean  $\pm$  standard deviation over 10 random seeds.  $\overline{\Delta t}$  indicates the average temporal distance of frames used.

|                               | Model   | Model Space | MCC [%]        |
|-------------------------------|---------|-------------|----------------|
|                               | SlowVAE | Unbounded   | $66.1 \pm 4.5$ |
|                               | Laplace | Unbounded   | $77.1 \pm 1.0$ |
| $\overline{\Delta t} = 0.05s$ | Laplace | Box         | $74.1 \pm 4.4$ |
|                               | Normal  | Unbounded   | $58.3 \pm 5.4$ |
|                               | Normal  | Box         | $59.9 \pm 5.5$ |
|                               | SlowVAE | Unbounded   | $79.6 \pm 5.8$ |
|                               | Laplace | Unbounded   | $79.4 \pm 1.9$ |
| $\overline{\Delta t} = 0.15s$ | Laplace | Box         | $80.9 \pm 3.8$ |
|                               | Normal  | Unbounded   | $60.2 \pm 8.7$ |
|                               | Normal  | Box         | $68.4 \pm 6.7$ |

## 3Dldent



## 3Dldent

| Dataset          | $Model\ f$ |                         | Model f |                 |                  | Identity [%]     | Unsupervised [%] |  |  |
|------------------|------------|-------------------------|---------|-----------------|------------------|------------------|------------------|--|--|
| $p(\cdot \cdot)$ | Space      | $q_{ m h}(\cdot \cdot)$ | M.      | $R^2$           | $R^2$            | MCC              |                  |  |  |
| Normal           | Box        | Normal                  | /       | $5.25 \pm 1.20$ | $96.73 \pm 0.10$ | $98.31 \pm 0.04$ |                  |  |  |
| Normal           | Unbounded  | Normal                  | X       | ——II——          | $96.43 \pm 0.03$ | $54.94 \pm 0.02$ |                  |  |  |
| Laplace          | Box        | Normal                  | X       | ——II——          | $96.87 \pm 0.08$ | $98.38 \pm 0.03$ |                  |  |  |
| Normal           | Sphere     | vMF                     | X       | ——II——          | $65.74 \pm 0.01$ | $42.44 \pm 3.27$ |                  |  |  |

- 1. Extend framework to object-centric methods
  - a. MONet, IODINE, Slot Attention etc.

- Extend framework to object-centric methods
  - a. MONet, IODINE, Slot Attention etc.
- 2. Extend framework to data augmentations
  - a. Content & Style Disambiguation
  - b. Invariant factors == delta conditional

# Self-supervised learning with data augmentations provably isolates content from style

Formalise generation x = f(z) and augmentation  $\tilde{x} = f(\tilde{z})$  processes as latent variable model with a content-style partition z = (c, s):

- invariant content c: always shared between pairs  $(x, \tilde{x})$  of views;
- varying style s: may change across pairs  $(x, \tilde{x})$  of views.

Allow causal dependence of style on content (Causal3DIdent dataset):

augmented view  $\tilde{x}$  = counterfactual under soft style intervention on x.

<u>Theory:</u> Can identify\* invariant content partition in generative and discriminative learning with entropy maximisation (e.g., SimCLR).



Figure 2: (Left) Causal graph for the Causal3DIdent dataset. (Right) Two samples from each object class.



with Julius von Kügelgen\*, Yash Sharma\*, Luigi Gresele\*, Wieland Brendel, Michel Besserve, Francesco Locatello



<sup>\*</sup>up to invertible transformation

- 1. Extend framework to object-centric methods
  - a. MONet, IODINE, Slot Attention etc.
- 2. Extend framework to data augmentations
  - a. Content & Style Disambiguation
  - b. Invariant factors == delta conditional
- 3. Extend framework for causal discovery
  - a. Robustness in downstream tasks?

## Thank you for your attention!



David Klindt



Lukas Schott



Roland Zimmermann



Steffen Schneider



Ivan Ustyuzhaninov



Wieland Brendel



Matthias Bethge



Dylan Paiton

**Funding:** 





AI CENTER



If you are interested in this research, feel free to reach out!

Mail: ysharma1126@gmail.com

Twitter: @yash\_j\_sharma