

The Primer

Key Ideas

- Thermodynamics says the world is organised by phases and phase transitions.
- Geometrically that means singularities and unfoldings.
- Singular Learning Theory connects both to learning machines.
- If neural network structure forms in discrete phase transitions like those of developmental biology, this should be a powerful language for **interpretability**.

The Primer

Key Ideas

• The **Free Energy Formula** is the main theoretical result of SLT. It expresses free energy in terms of energy and the learning coefficient

$$F_n = nL_n(w_0) + \lambda \log n$$

- The power of thermodynamics is that you can derive from a simple **fundamental relation**, using nothing more than first year calculus and algebra, nontrivial predictions about physical systems.
- **Aim of the Primer:** explain the Free Energy Formula, and demonstrate in an example of interest in AI alignment (Toy Models of Superposition) how to derive nontrivial statements from it.

References

- **The Gray Book,** S. Watanabe "Algebraic Geometry and Statistical Learning Theory", 2009.
- The Green Book, S. Watanabe "Mathematical Theory of Bayesian Statistics", 2018.
- **The WBIC paper**, S. Watanabe "A Widely Applicable Bayesian Information Criterion" JMLR 2013.
- The renormalizability paper, S. Watanabe "Asymptotic learning curve and renormalizable condition in statistical learning theory" Journal of Physics 2010.
- S. Watanabe "Cross Validation, Information Criterion and Phase Transition", talk 2023 (earlier talk Phase Transition and Prior Effect).

SLT High 1 Logic of Phase Transitions

- The Free Energy Formula
- Model selection as Coarse-Graining
- Internal model selection
- Thermodynamics
- Singular Learning Process

- Samples $X_1, ..., X_n$ are independently subject to a true distribution q(x). We denote by p(x | w) our model and $\varphi(w)$ our prior, on parameter space W.
- The log loss is $L_n(w) = -\frac{1}{n} \sum_{i=1}^n \log p(X_i | w)$
- The (Bayes) free energy is defined to be

$$F_n = -\log \prod_{i=1}^n p(X_i|w)\varphi(w)dw$$
$$= -\log \int \exp(-nL_n(w))\varphi(w)dw$$

For Neural Networks

- The true distribution is q(x, y) = q(y|x)q(x) with inputs $x \in \mathbb{R}^m$ and outputs $y \in \mathbb{R}^n$. We denote by p(x, y|w) = p(y|x, w)q(x) our model and $\varphi(w)$ our prior, on parameter space W. Suppose given samples $(X_1, Y_1), \ldots, (X_n, Y_n)$.
- The model is given by $p(y|x, w) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \|y f(x, w)\|^2\right)$ where f(x, w) is a neural network with weights w.
- In this case the log loss is the mean squared error (up to some constants).

For Neural Networks

$$L_n(w) = -\frac{1}{n} \sum_{i=1}^n \log p(X_i, Y_i | w)$$

$$= -\frac{1}{n} \sum_{i=1}^n \log \left[\frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \| Y_i - f(X_i, w) \|^2\right) q(X_i) \right]$$

$$= \frac{1}{2n} \sum_{i=1}^n \| Y_i - f(X_i, w) \|^2 - \frac{1}{n} \sum_{i=1}^n \log q(X_i) + \text{const.}$$

Mean squared error, i.e. "loss"

Empirical entropy of q(x)

For Neural Networks

$$L_n(w) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2} \| Y_i - f(X_i, w) \|^2 - \frac{1}{n} \sum_{i=1}^n \log q(X_i) + \text{const.}$$

$$F_n = -\log \prod_{i=1}^n p(X_i|w)\varphi(w)dw$$
$$= -\log \int \exp(-nL_n(w))\varphi(w)dw$$
$$= -\log Z_n$$

Partition function / model evidence

$$Z_n = \int \exp(-nL_n(w))\varphi(w)dw$$

Bayesian posterior

$$p(w \mid D_n) = \frac{1}{Z_n} \exp(-nL_n(w))\varphi(w)$$

Free Energy Formula

Precise Statement

- Assume *relative finite variance* [**Green**, §3.1] in addition to the fundamental conditions of [**Gray**] (excepting realisability) and that there is a point w_0 minimising L in the interior of W.
- Theorem (Watanabe): We have by [Green, §6.3], see also [WBIC, Renormalizability]:

$$F_n = nL_n(w_0) + \lambda \log n - (m-1)\log \log n + F_n^R + o_p(1)$$

• Here $\lambda \in \mathbb{Q}_{>0}$ is called the *learning coefficient,* $m \in \mathbb{N}$ is the *multiplicity* and F_n^R is a random variable which converges to a random variable in law.

Free Energy Formula

Friendly Statement

$$F_n = nL_n(w_0) + \lambda \log n + O_p(\log \log n)$$

Free Energy Formula

Really Friendly Statement

$$F_n = nL_n(w_0) + \lambda \log n + const$$

Model Selection

$$q(x), D_n$$

Model 1: p_1, W_1

$$F_{n}(W_{h}) = \int_{W_{1}}^{n} \int_{i=1}^{n} p_{1}(X_{h}) p_{1}(X_{h}) d\mu(w) d\mu(w) dw$$

Model 2: p_2, W_2

$$Ip_{n}(W_{n}) = \int_{W_{2}}^{n} \int_{i=1}^{n} p_{2}(X_{n}) dx_{n}(w) dx_{n}(w) dw$$

Dogma: prefer the model with lowest free energy.

Model Selection

Models As States

$$q(x), D_n$$

 $p, W = W_1 \sqcup W_2$

Model 1: p_1, W_1

Model 2: p_2, W_2

$$F_n(W_1) = -\log \int_{W_1} \prod_{i=1}^n p_1(X_i | w) \varphi(w) dw$$

$$F_n(W_2) = -\log \int_{W_2} \prod_{i=1}^n p_2(X_i | w) \varphi(w) dw$$

$$F_n(W) = -\log \left[\prod_{i=1}^n p_1(X_i | w) \varphi(w) dw = -\log \left[e^{-F_n(W_1)} + e^{-F_n(W_2)} \right] \right]$$

Model Selection

Models As States

 $q(x), D_n$

 $p, W = W_1 \sqcup W_2$

Model 1: p_1, W_1

Model 2: p_2, W_2

$$F_n(W_\alpha) = -\log \int_{W_\alpha} \prod_{i=1}^n p_1(X_i | w) \varphi(w) dw$$

$$F_n(W) = -\log \left[\prod_{i=1}^{n} p_1(X_i | w) \varphi(w) dw = -\log \left[\sum_{\alpha} e^{-F_n(W_{\alpha})} \right] \right]$$

Meta-prior

$$p(W_{\alpha} | D_n) = \frac{p(D_n | W_{\alpha})p(W_{\alpha})}{p(D_n)} = \frac{e^{-F_n(W_{\alpha})}\Phi_{\alpha}}{\sum_{\beta} e^{-F_n(W_{\beta})}\Phi_{\beta}}$$

Model evidence (in context)

	Fine-grained	Coarse-grained
Microstate	${\mathcal W}$	lpha
Microscopic energy	$nL_n(w) - \log \varphi(w)$	$F_n(W_\alpha) - \log \Phi_\alpha$
Boltzmann distribution	$e^{-nL_n(w)}\varphi(w)$	$e^{-F_n(W_{\alpha})}\Phi_{\alpha}$
Partition function	$\int_{W_{\alpha}} e^{-nL_n(w)} \varphi(w) dw = e^{-F_n(W_{\alpha})}$	$3_n = \sum_{\beta} e^{-F_n(W_{\beta})} \Phi_{\beta}$

$$p(W_{\alpha} | D_n) = \frac{p(D_n | W_{\alpha})p(W_{\alpha})}{p(D_n)} = \frac{e^{-F_n(W_{\alpha})}\Phi_{\alpha}}{\sum_{\beta} e^{-F_n(W_{\beta})}\Phi_{\beta}}$$

- Bayes Rule says that model selection is governed by the **coarse-grained Boltzmann distribution** with the free energy $F_n(W_\alpha)$ as the new microscopic Hamiltonian for the model index α (the emergent coordinate).
- For large differences in free energy, it's similar to just selecting the model α with the lowest free energy.
- This Boltzmann distribution is parametrised by n, and it's interesting to think about what happens as this parameter is varied.

	Fine-grained	Coarse-grained
Microstate	\mathcal{W}	lpha
Microscopic energy	$nL_n(w) - \log \varphi(w)$	$F_n(W_\alpha) - \log \Phi_\alpha$
Boltzmann distribution	$e^{-nL_n(w)}\varphi(w)$	$e^{-F_n(W_{\alpha})}\Phi_{\alpha}$
Partition function	$\int_{W_{\alpha}} e^{-nL_n(w)} \varphi(w) dw = e^{-F_n(W_{\alpha})}$	$3_n = \sum_{\beta} e^{-F_n(W_{\beta})} \Phi_{\beta}$

$$p(W_{\alpha} | D_n) = \frac{p(D_n | W_{\alpha})p(W_{\alpha})}{p(D_n)} = \frac{e^{-F_n(W_{\alpha})}\Phi_{\alpha}}{\sum_{\beta} e^{-F_n(W_{\beta})}\Phi_{\beta}}$$

$$\mathfrak{F}_{n} := -\log \mathfrak{Z}_{n}$$

$$= -\log \left[\sum_{\beta} \exp(-F_{n}(W_{\beta})) \right]$$

$$\approx -\max_{\beta} (-F_{n}(W_{\beta}))$$

$$= \min_{\beta} F_{n}(W_{\beta})$$

• The coarse-grained free energy \mathfrak{F}_n approximately minimises the free energy over the available models β .

- Model selection is usually thought of something that statisticians do.
- However, the story above about coarse-graining is mostly interesting because it happens **automatically** in Bayesian learning, **internally** to a single model.
- Given a model (p,q,φ) with parameter space W we refer to the emergent submodels W_{α} , between which this internal model selection chooses, as *phases*. A change in n or another hyperparameter which leads to a different choice is called a *phase transition*.

• Following Watanabe's talk on phase transitions, let $\{W_{\alpha}\}_{\alpha}$ be a finite collection of compact sets that cover W, where each W_{α} is semi-analytic, has non-empty interior, contains in its interior a point w_{α}^* that minimises L(w) on W_{α} and has relative finite variance. We assume that every point $w \in W$ lies in the interior of some W_{α} .

• Let $\{U_{\alpha,\gamma}\}_{\alpha,\gamma}$ be a finite open cover of W with the property that $U_{\alpha,\gamma} \subseteq W_{\alpha}$ for all γ and let $\rho_{\alpha,\gamma}$ be a partition of unity subordinate to this cover.

Set
$$\rho_{\alpha} = \sum_{\gamma} \rho_{\alpha,\gamma}$$
 and $\varphi_{\alpha}(w) = \rho_{\alpha}(w)\varphi(w)$.

$$F_{n} = -\log \int_{W} e^{-nL_{n}(w)} \varphi(w) dw$$

$$= -\log \sum_{\alpha} \int_{W_{\alpha}} e^{-nL_{n}(w)} \varphi_{\alpha}(w) dw$$

$$= -\log \sum_{\alpha} e^{-F_{n}(W_{\alpha})}$$

• Here $F_n(W_\alpha) = -\log \int_{W_\alpha} exp(-nL_n(w)) \varphi_\alpha(w) dw$ is the free energy of the submodel with parameter space W_α , prior φ_α , and the same model p, truth q as the original.

• We can apply the Free Energy Formula to the model $(p, q, \varphi_{\alpha}, W_{\alpha})$

$$F_n(W_\alpha) = nL_n(w_\alpha^*) + \lambda_\alpha \log n + c_\alpha$$

Then

$$F_n = -\log \sum_{\alpha} e^{-F_n(W_{\alpha})} \approx \min_{\alpha} F_n(W_{\alpha})$$

$$\approx \min_{\alpha} \left[nL_n(w_{\alpha}^*) + \lambda_{\alpha} \log n + c_{\alpha} \right]$$

• The Bayesian posterior **selects** phases on the basis of competition between *energy, complexity* and subleading terms (which include prior effects). When the index α changes as a function of n or hyperparameters, we say that there has been a *phase transition* in the Bayesian posterior.

• Now we take the **Free Energy Formula** and the principle of **Internal Model Selection** and do thermodynamics, that is, we deduce several interesting facts about learning machines from elementary manipulations of the formula

$$F_n = -\log \sum_{\alpha} e^{-F_n(W_{\alpha})} \approx \min_{\alpha} F_n(W_{\alpha})$$

$$\approx \min_{\alpha} \left[nL_n(w_{\alpha}^*) + \lambda_{\alpha} \log n + c_{\alpha} \right]$$

• We make two additional simplifying assumptions: replacing $L_n(w_\alpha^*)$ by the deterministic $L(w_\alpha^*)$ and assuming that $c_\alpha=0$.

• Now we take the **Free Energy Formula** and the principle of **Internal Model Selection** and do thermodynamics, that is, we deduce several interesting facts about learning machines from elementary manipulations of the formula

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

- Here $E_{\alpha} = L(w_{\alpha}^*)$ is the *energy* of the phase α and λ_{α} is the *learning coefficient* which is a measure of *complexity*.
- In the following indices $\alpha, \beta, \gamma, \dots$ stand for phases.

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

- If a phase α is dominated by a phase β both with respect to energy $E_{\alpha} > E_{\beta}$ and learning coefficient $\lambda_{\alpha} > \lambda_{\beta}$ then $F_n(W_{\alpha}) > F_n(W_{\beta})$ but there is **no phase transition** because this is true for all n.
- For there to be a phase transition in n between phases $\alpha \longrightarrow \beta$ we need both a critical dataset size $n = n_{cr}$ and for this transition to not be "screened" by others:

$$F_n(W_{\alpha}) < F_n(W_{\beta}) \qquad F_{n_{cr}}(W_{\alpha}) \approx F_{n_{cr}}(W_{\beta}) \qquad F_n(W_{\alpha}) > F_n(W_{\beta})$$

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

• Assume without loss of generality that $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$. Then

$$F_{n}(W_{\alpha}) = F_{n}(W_{\beta}) \iff nE_{\alpha} + \lambda_{\alpha} \log n = nE_{\beta} + \lambda_{\beta} \log n$$

$$\iff n(E_{\alpha} - E_{\beta}) = -\log n(\lambda_{\alpha} - \lambda_{\beta})$$

$$\iff \frac{n}{\log n} = -\frac{\lambda_{\beta} - \lambda_{\alpha}}{E_{\beta} - E_{\alpha}}$$

• The function $n/\log n$ is positive and increasing for n>e so this has a unique solution, which is the critical dataset size n_{cr} .

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

• If $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ then there is a (candidate) transition $\alpha \longrightarrow \beta$

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

• If $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ then there is a (candidate) transition $\alpha \longrightarrow \beta$

$$n_{cr} = \mathcal{N}\left(-\frac{\Delta\lambda}{\Delta E}\right)$$
 \mathcal{N} is inverse to $\frac{n}{\log n}$

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

• **Observation 1.** Assuming that $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ there is a (candidate) phase transition in the Bayesian posterior $\alpha \longrightarrow \beta$ at $n = n_{cr} = \mathcal{N}\left(-\frac{\Delta\lambda}{\Delta E}\right)$. We call this the critical dataset size for the transition.

Transition?	$E_{\alpha} > E_{\beta}$	$E_{\alpha} < E_{\beta}$
$\lambda_{\alpha} < \lambda_{\beta}$	$\alpha \longrightarrow \beta$	No
$\lambda_{\alpha} > \lambda_{\beta}$	No	$\beta \longrightarrow \alpha$

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

- **Observation 1.** Assuming that $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ there is a (candidate) phase transition in the Bayesian posterior $\alpha \longrightarrow \beta$ at $n = n_{cr} = \mathcal{N}\left(-\frac{\Delta\lambda}{\Delta E}\right)$. We call this the critical dataset size for the transition.
- **Observation 2.** Phase transitions in *n* that change the energy must *decrease* the energy and *increase* the learning coefficient.

"The learning process produces *more accurate* models that are *more complex,* sacrificing extra bits in the model description for fewer errors"

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n + c_{\alpha} \right]$$

• If $E_{\alpha}=E_{\beta}$ and the subleading terms are equal $c_{\alpha}=c_{\beta}$ then there is no transition

$$F_n(W_{\alpha}) = F_n(W_{\beta}) \iff 0 = \log n(\lambda_{\beta} - \lambda_{\alpha}) \iff \lambda_{\beta} = \lambda_{\alpha}$$

• Assume that $E_{\alpha}=E_{\beta}$ and $c_{\alpha}>c_{\beta}$. Then

$$F_n(W_{\alpha}) = F_n(W_{\beta}) \iff nE_{\alpha} + \lambda_{\alpha} \log n + c_{\alpha} = nE_{\beta} + \lambda_{\beta} \log n + c_{\beta}$$

$$\iff c_{\alpha} - c_{\beta} = \log n(\lambda_{\beta} - \lambda_{\alpha})$$

$$\iff -\frac{c_{\beta} - c_{\alpha}}{\lambda_{\beta} - \lambda_{\alpha}} = \log n$$

• This has a solution if and only if $\lambda_{\beta} > \lambda_{\alpha}$ in which case it is $n_{cr} = \exp\left(-\frac{\Delta c}{\Delta \lambda}\right)$.

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n + c_{\alpha} \right]$$

 $n_{cr} = \exp\left(-\frac{\Delta c}{\Delta \lambda}\right)$

• If $E_{\alpha} = E_{\beta}$ and $c_{\alpha} > c_{\beta}$ and $\lambda_{\beta} > \lambda_{\alpha}$ there is a (candidate) transition $\beta \longrightarrow \alpha$.

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

- Law 1. Assuming that $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ there is a (candidate) phase transition in the Bayesian posterior $\alpha \longrightarrow \beta$ at $n = n_{cr} = \mathcal{N}\left(-\frac{\Delta\lambda}{\Delta E}\right)$. We call this the *critical dataset size* for the transition.
- Law 2. Phase transitions in *n* that change the energy must *decrease* the energy and *increase* the learning coefficient.
- Law 3. Phase transitions in n that do not change the energy $E_{\alpha}=E_{\beta}$ must decrease the learning coefficient and increase the subleading term.

"Once the learning process reaches the set of optimal parameters, it undergoes transitions that *lower model complexity*"

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

"The learning process produces *more accurate* models that are *more complex,* sacrificing extra bits in the model description for fewer errors"

"Once the learning process reaches the set of optimal parameters, it undergoes transitions that *lower model complexity*"

Behaviour of Generalisation Error

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

- Suppose $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ and there is a phase transition $\alpha \longrightarrow \beta$.
- The generalisation error $\mathbb{E}[B_g]$ is affected by the phase transition, in one of two ways, depending on whether the generalisation errors of the two phases cross before or after the free energy:

$$E_{\alpha} + \frac{\lambda_{\alpha}}{n} = E_{\beta} + \frac{\lambda_{\beta}}{n} \iff \frac{1}{n} \left(\lambda_{\alpha} - \lambda_{\beta} \right) = E_{\beta} - E_{\alpha}$$

$$\iff n = -\frac{\Delta \lambda}{\Delta E}$$

$$F_n \approx \min_{\alpha} F_n(W_{\alpha}) \approx \min_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$$

- Suppose $E_{\alpha} > E_{\beta}$ and $\lambda_{\alpha} < \lambda_{\beta}$ and there is a phase transition $\alpha \longrightarrow \beta$.
- **Definition.** We say the transition $\alpha \longrightarrow \beta$ is *standard* if the generalisation error for phase β is lower than that of α at the transition. Otherwise it is a *lagging* transition.
- Lemma. If a transition is lagging then $n_{cr} < e$.
- Proof: With $r = -\frac{\Delta \lambda}{\Delta E}$ we have $r < n_{cr} = \mathcal{N}(r)$ implies $n_{cr} < \mathcal{N}(n_{cr})$ implies $n_{cr} \log n_{cr} < n_{cr}$ implies $n_{cr} < e$.
- Hence lagging transitions are essentially unobservable (or are they!).

Singular Learning Process

Gray Book, Section 7.6.

Fig. 7.6. Learning curve with singularities

Singular Learning Process

Singular Learning Process

Phase Structure

A Dummy's Theory of Scaling Laws

- We explore a simple model of *phase structure* meaning how the energy and complexity of the available phases vary with the phase index α . We assume there are a large number of phases, and take the indices α to be positive integers.
- Following Law 1 we assume that for $\alpha < \beta$ we have $E_{\beta} < E_{\alpha}$ and $\lambda_{\beta} > \lambda_{\alpha}$. For there to be an "unscreened" transition $\alpha \longrightarrow \alpha + 1$ we must have that the critical dataset size $n_{cr}(\alpha) = \mathcal{N}\left(-\frac{\Delta\lambda}{\Delta E}\right) = \mathcal{N}\left(-\frac{\lambda_{\alpha+1} \lambda_{\alpha}}{E_{\alpha+1} E_{\alpha}}\right)$ is an increasing function of α .
- One simple model is to take $E_{\alpha} = \frac{1}{\alpha}$ and $\lambda_{\alpha} = \alpha$. Then $\Delta \lambda = a$ and $\Delta E = \frac{-1}{\alpha(\alpha+1)}$ so $-\frac{\Delta \lambda}{\Delta E} = \alpha(\alpha+1) > 0$.

Phase Structure

A Dummy's Theory of Scaling Laws

- So our phase structure is $E_{\alpha} = \frac{1}{\alpha}$ and $\lambda_{\alpha} = \alpha$.
- To compute the dominant phase $\alpha(n)$ as a function of n we take $\alpha(n) = \operatorname{argmin}_{\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right]$, which we can compute by differentiating:

$$0 = \frac{d}{d\alpha} \left[nE_{\alpha} + \lambda_{\alpha} \log n \right] = \frac{-n}{\alpha^2} + \log n \Rightarrow \frac{n}{\log n} = \alpha^2$$

• Hence $\alpha(n) = \sqrt{\frac{n}{\log n}}$. This tells us the dominant phase at dataset size n, using which we can compute the overall behaviour of generalisation error.

Phase Structure

A Dummy's Theory of Scaling Laws

$$\mathbb{E}[B_g(n)] = E_{\alpha(n)} + \frac{\lambda_{\alpha(n)}}{n}$$

$$= \frac{1}{\alpha(n)} + \frac{\alpha(n)}{n}$$

$$= \sqrt{\frac{\log n}{n}} + \frac{1}{n} \sqrt{\frac{n}{\log n}}$$

$$= \sqrt{\frac{\log n}{n}} \left[1 + \frac{1}{\log n} \right]$$

$$\approx \left(\frac{\log n}{n} \right)^{1/2}$$