	Teste de Matemática A
	2023 / 2024
Teste N.º 4	
Matemática A	
Duração do Teste: 90 minutos	
10.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado. É permitido o uso de calculadora.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado.

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

1. Na figura estão representados, num referencial o.n. 0xy, parte dos gráficos das funções $f \in g$, e três pontos $A, B \in \mathcal{C}$.

Sabe-se que:

- g é uma função afim definida por g(x) = -2x + 4;
- A e B são os pontos de interseção dos gráficos de f e de g;
- o ponto C é o vértice da parábola que representa graficamente a função f.

Resolva os itens seguintes recorrendo exclusivamente a métodos analíticos.

- **1.1** Determine a equação reduzida da circunferência de diâmetro [AB].
- **1.2** Seja D o ponto do gráfico de g cuja ordenada é simétrica da sua abcissa. Escreva uma equação vetorial da reta CD.
- **2.** Na figura está representado, num referencial o.n. Oxyz, o prisma hexagonal reto [ABCDEFGHIJKL], cujas bases são hexágonos regulares.

Sabe-se que:

- os vértices A e B pertencem ao semieixo positivo Ox;
- o vértice F pertence ao semieixo positivo Oy;
- $\overline{OA} = \frac{3}{4}\overline{OF};$
- o ponto G tem coordenadas (0,4,12).

Resolva os itens 2.2 e 2.3 recorrendo exclusivamente a métodos analíticos.

2.1 Seja r a reta paralela ao eixo Oy que contém o ponto G.

Qual das seguintes equações corresponde a uma equação vetorial da reta r?

(A)
$$(x, y, z) = (0, 0, 12) + k(0, 1, 0), k \in \mathbb{R}$$

(B)
$$(x, y, z) = (0, 0, 12) + k(0, -1, -1), k \in \mathbb{R}$$

(C)
$$(x, y, z) = (0, 4, 12) + k(-1, -1, 0), k \in \mathbb{R}$$
 (D) $(x, y, z) = (0, 4, 12) + k(1, 0, 1), k \in \mathbb{R}$

(D)
$$(x, y, z) = (0, 4, 12) + k(1, 0, 1), k \in \mathbb{R}$$

2.2 Determine uma equação cartesiana do plano mediador de [BG].

Apresente a equação na forma ax + by + cz + d = 0, em que a, b, c e d são números reais.

2.3 Seja k um número real.

Considere um ponto P, não representado na figura, de coordenadas $(-8, -k-3, k^2+k)$. Determine o(s) valor(es) de k, de modo que P seja um ponto do terceiro octante e que pertença ao plano IJK.

3. De uma certa função f, sabe-se que o seu domínio é o intervalo [-6,3] e que o seu contradomínio \neq o intervalo [-3, 6].

Quais são o domínio e o contradomínio da função g tal que g(x) = -f(x-3) + 3?

(A)
$$D_g = [-3, 6]e D'_g = [-3, 6]$$

(B)
$$D_g = [-6,3]e D'_g = [-6,3]$$

(C)
$$D_q = [-3, 6] e D'_q = [-6, 3]$$

(D)
$$D_q = [-6, 3] e D'_q = [-3, 6]$$

4. Na figura está representada, num referencial o.n. Oxy, parte da parábola que é o gráfico de uma função f. Sabe-se que:

- a parábola interseta o eixo Oy no ponto de ordenada 6;
- o vértice da parábola tem coordenadas (1,8).

Qual das seguintes opções corresponde a uma expressão analítica da função f?

(B)
$$f(x) = -2x^2 + 4x + 6$$

(C)
$$f(x) = -x^2 + x + 4$$

(C)
$$f(x) = -x^2 + x + 4$$
 (D) $f(x) = -2x^2 + 2x + 8$

5. Seja g a função, de domínio \mathbb{R} , definida por:

$$g(x) = \begin{cases} x^2 - 5x + 2 & \text{se } x < 0 \\ 6 - 2x & \text{se } x \ge 0 \end{cases}$$

O valor de $\frac{-g(-1)}{a(0)-g(2)}$ é:

(C)
$$-1$$

6. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = -|x-5| + 4$$

- **6.1** Defina a função f sem recorrer ao símbolo de módulo.
- 6.2 Determine, por processos exclusivamente analíticos, o conjunto-solução da condição $f(x) \ge -2$. Apresente a sua resposta usando a notação de intervalos de números reais.
- **7.** Seia $A(x) = x^5 9x^4 + 26x^3 18x^2 27x + 27$.

Sabendo que 3 é uma raiz de A(x), a sua multiplicidade é:

(A) 1

(B) 2

(C) 3

(D) 4

- **8.** Relativamente a um polinómio P(x), sabe-se que:
 - P(x) é de grau 3;
 - P(x) é divisível por x-3;
 - P(-1) = P(-2) = 0;
 - o resto da divisão inteira de P(x) por $x 1 \neq 24$.

Resolva, por processos exclusivamente analíticos, a condição $P(x) \le 0$.

Apresente a sua resposta usando a notação de intervalos de números reais.

9. Considere, num referencial o.n. Oxy, as funções definidas, em \mathbb{R} , por:

$$f(x) = -15x + 25$$
 e $g(x) = -x^4 + x^3 + 5x^2 + 2x + 3$

Sabe-se que:

- A é o ponto de interseção do gráfico da função g com o eixo Ox, de maior abcissa.
- *B* é o ponto de interseção, de menor abcissa, dos gráficos das funções *f* e *g*;
- *C* tem abcissa nula e a mesma ordenada do ponto *B*.

Determine, recorrendo às capacidades da calculadora gráfica, a área do trapézio [OABC].

Na sua resposta:

- reproduza, num referencial, os gráficos das funções f e g, devidamente identificados;
- assinale os pontos A, B e C;
- apresente o desenho do trapézio [OABC];
- indique as coordenadas dos pontos A, B e C;
- apresente a área do trapézio [OABC].

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.1	1.2	2.1	2.2	2.3	3.	4.	5.	6.1	6.2	7.	8.	9.	Total
20	20	10	20	15	10	10	10	15	20	20	10	20	200