深度学习的三个维度: Compactness, Speed, and Accuracy

颜水成

奇虎360 副总裁、首席科学家

NUS 副教授

•人工智能杂谈

- •深度学习研发的三个维度
 - 小、快、准
- 准: 人体与场景分割

人工智能>>>

理想 是丰满的

现实 是骨感的

Snap 336亿美金市值

美图 629亿港币市值

自动驾驶之梦

在灾难情况下, 没有方向盘怎办?

理想

现实 [Tesla AutoPilot]

情感机器人之梦

【Her】 她

理想

下午12:21
 (微信
 本の報子
 多少银子
 我不想说什么了
 夏威夷如何
 夏威夷如何
 (十么好)
 (投行公好东西)
 (少)
 (少)

【Ex Machina】 机械姬

无辜的小胖 【我没伤人】

人工智能研发的四个主要方向

人工智能研发的三种状态

初创公司

百亿美金级公司

千亿美金级公司

专注某一产品或着某一领域

拼搏

全方位支持公司多 类型的业务和创新

多维度

每个事业群有各自的有 侧重点的人工智能团队

经常PK较量

人工智能研发的两类问题

Soft-tasks

搜索、推荐等

Hard-tasks

监控、自动驾驶等

任何新的进展都会 带来很及时的效益 必须达到一个特定 的阈值才能商业化

人工智能研发的一个现状

深度学习已经逐步取代各领域的传统方法

- •人工智能杂谈
- •深度学习研发的三个维度
 - •小、快、准
- •准:人体与场景分割

深度学习研发的三个维度>>小、快、准

Part I: Deep Learning towards Compactness >> Model and Application

Network in Network

ICLR' 14

Compactness: Network in Network

NIN: complex-cell filters, pure convolutional, 1x1 convolution layers

Parameter # is reduced to 1/10 or less

Compactness: Network in Network

CNN NIN

Confidence map of each category

Fully convolutional [small-size model, well benefit remote model updating]

1x1 convolutional layer [complex semantic abstraction, no data matrix construction]

Core component for winning ImageNet Object Detection task in ILSVRC-2014

Network in Network: bring 1x1 convolution for the community

基于小模型的可高频更新的APP

技术原型: 准、稳、鲁棒

花椒直播: 美颜、萌颜

花椒相机: 美颜、萌颜

Part II: Deep Learning towards Efficiency>> Model and Application

More is Less

CVPR17

Efficiency: Matrix Decomposition

Low-rank-based Acceleration

Figure: Illustration of the decomposition. (a) An original layer with complexity $O(dk^2c)$. (b) An approximated layer with complexity reduced to $O(d'k^2c) + O(dd')$.

Efficiency: Limited Numerical Precision

- Fixed-point Computation
 - 16-bit or 8-bit Integer Representation

Original

Frequently, >40% outputs are zeros after the ReLU [max(0,x)] operation, and thus their exact convolution values before ReLU are meaningless.

Can these positions be roughly estimated with very low computational cost?

More is Less structure

Theoretically, model accuracy can be lossless, yet complexity is less.

If 1x1 or low-cost Conv1/2 outputs zero, then its corresponding convolution operation in conv1/2 is not required.

CIFAR-10

	Speedup Accuracy		
ResNet-20	34.9%	91.61%	
ResNet-56	41.8%	93.20%	
ResNet-110	34.2%	93.69%	
ResNet-164	29.1%	94.20%	

CIFAR-100

	Speedup	Accuracy
WRN-40-1	36.9%	68.68%
WRN-40-2	45.6%	73.09%
WRN-52-1	25.9%	70.45%

基于快模型的应用

Part III: Deep Learning towards Accuracy>> Model and Application

Less is More

Cross-layer knowledge sharing towards generalization capability

[Arxiv]

For a 3rd order Tensor:

$$x \approx \sum_{r=1}^{R} \mathcal{G}_r \times_1 C_r \times_2 B_r \times_3 A_r$$

 For a 4th order Tensor: (convolutional kernel)

> n=256: # output channels k=256: # input channels w=3: the width of the filter h=3: the high of the filter

$$x = \sum_{r=1}^{R} \mathcal{G}_r \times_2 C_r \times_1 D_r$$

$$\mathcal{G}_r \in \mathbb{R}^{m \times l \times w \times h}$$

$$C_r \in \mathbb{R}^{k \times l}$$

$$D_r \in \mathbb{R}^{n \times m}$$

$$x = R^{256 \times 256 \times 3 \times 3}$$

ResNeXt Structure

Accuracy: Share Cross-layer Knowledge

 $X = R^{1024x256x3x3}$

Accuracy: Share Cross-layer Knowledge

We share 6 layers @ 14x14, and fix all the other parts the same as ResNeXt to verify the effectiveness of our proposed method.

stage	stage output ResNet-50		ResNet-50	ResNeXt-50 (136x1d)	ResNeXt-50 (Nx1d)	Proposed-50 (136x1d @x14)	
conv1	112x112		7×7 , 64, stride 2	7×7 , 64, stride 2	7×7 , 64, stride 2	7×7 , 64, stride 2	
conv2	56-56	1	3×3 max pool, stride 2	3×3 max pool, stride 2	3×3 max pool, stride 2	3 × 3 max pool, stride 2	
	56x56		$\begin{bmatrix} 1X1, 64 \\ 3X3, 64, G=1 \\ 1X1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1x1, 136 \\ 3x3, 136, G=136 \\ 1x1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1x1, 136 \\ 3x3, 136, G=136 \\ 1x1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1x1, 136 \\ 3x3, 136, G=136 \\ 1x1, 256 \end{bmatrix} \times 3$	
conv3	28x28		$\begin{bmatrix} 1x1, 128 \\ 3x3, 128, G=1 \\ 1x1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1x1, 272 \\ 3x3, 272, G=136 \\ 1x1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1x1, 272 \\ 3x3, 272, G=272 \\ 1x1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1X1, 272 \\ 3X3, 272, G=136 \\ 1X1, 512 \end{bmatrix} \times 4$	
conv4	14x14		$\begin{bmatrix} 1x1, 256 \\ 3x3, 256, G=1 \\ 1x1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1x1, 544 \\ 3x3, 544, G=136 \\ 1x1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1x1, 544 \\ 3x3, 544, G=544 \\ 1x1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1x1, 624 \\ 3x3, 624, G=624 \\ 1x1, 624 \\ 1x1, 1024 \end{bmatrix} \times 6$	
conv5	7x7		$\begin{bmatrix} 1x1, 512 \\ 3x3, 512, G=1 \\ 1x1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1X1, 1088 \\ 3X3, 1088, G=136 \\ 1X1, 2048 \end{bmatrix} \times 3$	\[\begin{array}{c} 1x1, 1088 \\ 3x3, 1088, G=1088 \\ 1x1, 2048 \end{array} \times 3	$\begin{bmatrix} 1x1, 1088 \\ 3x3, 1088, G=136 \\ 1x1, 2048 \end{bmatrix} \times 3$	
	1x1	ľ	global average pool 1000-d fc, softmax	global average pool 1000-d fc, softmax	global average pool 1000-d fc, softmax	global average pool 1000-d fc, softmax	
# p	params	ľ	25.5×10^6	25.2×10^6	24.9×10^{6}	25.5×10^{6}	
FI	LOPs		4.1×10^9	4.3×10^{9}	4.3×10^{9}	4.9×10^{9}	

Accuracy: Share Cross-layer Knowledge

Name	Setting	Top-1
ResNet-50 [1]	1 x 64d	23.9
ResNet-200 [2]	1 x 64d	21.7
ResNeXt-50 [1]	2 x 40d	23.0
ResNeXt-50 [1]	32 x 4d	22.2
ResNeXt-50 (ours)	2 x 40d	22.8
ResNeXt-50 (ours)	32 x 4d	→ 22.2
ResNeXt-50 (ours)	136 x 1d	22.1
ResNeXt-50 (ours)	N x 1d	22.5
Proposed-50	32 x 4d @x14	21.9
Proposed-50	136 x 1d @x14	→ 21.7

Able to achieve comparable performance with ResNet-200 while has only the same model size as ResNet-50.

Name		Setting Model Size	224x224		320x320 / 299x299		
				Top-1	Top-5	Top-1	Top-5
	ResNet-101 [1]	1 x 64d	170 MB	22.0	6.0	-	-
	ResNeXt-101 [1]	32 x 4d	170 MB	21.2	5.6	-	-
	Proposed-101 @x28x14	32 x 4d	168 MB	20.6	5.4	19.3	4.7

■ 1x1 convolution kernel dominates the CNNs

Number of parameters @ conv4:

1x1:3x3

et-50 1:

60 · 1

Proposed-50 (136x1d @x14)

ResNext-50 (136x1d)

300:1

基于准模型的应用

9模型融合Top-5 错误率

2.77%

基于准模型的应用

1% FAR: TPR 77% → 98%

360小水滴摄像头人脸认证

- •人工智能杂谈
- •深度学习研发的三个维度
 - 小、快、准
- 准: 人体与场景分割

后备讨论:

给你一笔天使投资,你准备做款什 么样的爆款APP?

- 1. 是不是高频刚需 2. 技术是否成熟了
- 3. 是否有技术壁垒

深度学习研发的三个维度>>小、快、准

