

Main Product Characteristics

V _{(BR)DSS}	100V		
R _{DS(ON)}	7mΩ		
I _D	80A		

PPAK 5X6

Schematic Diagram

Features and Benefits

- Advanced MOSFET process technology
- Ideal for high efficiency switch mode power supplies
- Low on-resistance with low gate charge
- Fast switching and reverse body recovery

Description

The GSFP1080 utilizes the latest techniques to achieve high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in high efficiency switch mode power supply and a wide variety of other applications.

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol	Max.	Unit	
Drain-Source Voltage	V_{DS}	100	V	
Gate-Source Voltage	V_{GS}	±20	V	
Continuous Drain Current, @Steady-State (T _A =25°C)	ı	80	А	
Continuous Drain Current, @Steady-State (T _A =100°C)	l _D	58	А	
Pulsed Drain Current1	I _{DM}	320	А	
Power Dissipation(T _A =25°C)	D	105	W	
Derating Factor(T _A =25°C)	P_{D}	0.84	W/°C	
Single Pulse Avalanche Energy ⁴	E _{AS}	387	mJ	
Junction-to-Case Thermal Resistance @Steady-State	$R_{ heta JC}$	1.19	°C/W	
Operating Junction Temperature Range	T_J	-55 To +150	°C	
Storage Temperature Range	T _{STG}	-55 To +150	°C	

100V N-Channel MOSFET

Electrical Characteristics (T_A=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	100	-	-	V
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V	-	-	1	
		T _J =125°C	-	-	50	μΑ
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} =+20V	-	-	100	nA
		V _{GS} =-20V	-	-	-100	
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	6.4	7	mΩ
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$	2.0	3.0	4.0	V
Forward Transconductance	9 FS	V _{DS} =5V, I _D =40A	-	60	-	S
Input Capacitance	C _{lss}	V _{DS} =50V, V _{GS} =0V, F=1.0MHz	-	3070	-	pF
Output Capacitance	C _{oss}		-	290	-	
Reverse Transfer Capacitance	C _{rss}		-	23	-	
Total Gate Charge	Q_g		-	53	-	nC
Gate-Source Charge	Q_{gs}	V _{DS} =50V, I _D =40A, V _{GS} =10V	-	18	-	
Gate-to-Drain("Miller") Charge	Q_{gd}		-	16	-	
Turn-On Delay Time	t _{d(on)}	V_{DS} =50V, I_{D} =40A, R_{L} =1.3 Ω , V_{GS} =10V, R_{GEN} =1.6 Ω	-	15	-	nS
Rise Time	t _r		-	10	-	
Turn-Off Delay Time	t _{d(off)}		-	34	-	
Fall Time	t _f		-	8	-	
Source-Drain Ratings and Chara	cteristics					
Continuous Source Current (Body Diode) ²	I _S	MOSFET symbol showing the integral reverse p-n junction diode.	-	-	80	Α
Pulsed Source-Drain Current (Body Diode)	I _{SM}		-	-	160	А
Diode Forward Voltage	V_{SD}	I _S =40A, V _{GS} =0V	-	0.88	1.2	V
Reverse Recovery Time	t _{rr}	T _J =25°C, I _S =I _F =40A di/dt=100A/µs	1	60	-	nS
Reverse Recovery Charge	Q_{rr}		_	106	-	nC

Notes

- 1. Repetitive Rating: pulse width limited by maximum junction temperature.
- 2. Pulse test: Pulse Width≤300us, Duty cycle ≤2%.
- 3. Guaranteed by design
- 4. E_{AS} condition: T_J =25°C, V_{DD} =50V, V_G =10V, L=0.5mH, Rg=25 Ω .

Typical Electrical and Thermal Characteristic Curves

Figure 1. Typical Output Characteristics

Figure 3. Gate Charge

Figure 5. Source-Drain Diodes Forward

Figure 2. Transfer Characteristics

Figure 4. Normalized On-Resistance Vs. Junction Temperature

Figure 6. Typical Capacitance vs. Drain-to-Source Voltage

100V N-Channel MOSFET

Typical Electrical and Thermal Characteristic Curves

Firgure 7. Power Derating

Firgure 9. Safe Operation Area

Firgure 8. Current Derating

Square Wave Pluse Duration(sec)

Firgure 10. Normalized Maximum Transient Thermal Impedance

Typical Electrical and Thermal Characteristic Curves

Firgure 11. Unclamped Inductive Switching Test Circuit & Waveforms

Firgure 12. Resistive Switching Test Circuit & Waveforms

Firgure 13. Gate Charge Test Circuit & Waveform

Charge

Package Outline Dimensions (PPAK5X6-8L)

