

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Takanobu NODA and Hirofumi HONDA

Serial no.

10/691,878

Filed

October 23,2003

For

FERTILIZER AND MANUFACTURING METHOD

OF THE FERTILIZER

Group Art Unit

Examiner

Docket

:

ADACHI P250US

The Commissioner for Patents P. O. Box 1450 Alexandria, VA 22313-1450

SUBMISSION OF CERTIFIED COPY

Dear Sir:

A claim for priority is hereby made under the provisions of 35 U.S.C. § 119 for the above-identified United States Patent Application based upon Japanese Patent Application No. 2002-311349 filed October 25, 2002. A certified copy of said Japanese application is enclosed herewith.

In the event that there are any fee deficiencies or additional fees are payable, please charge the same or credit any overpayment to our Deposit Account (Account No. 04-0213).

Respectfully subplitted.

Michael J. Bujold, Reg. No. 32,018

Customer No. 020210 Davis & Bujold, P.L.L.C.

Fourth Floor

500 North Commercial Street Manchester NH 03101-1151 Telephone 603-624-9220

Facsimile 603-624-9229

E-mail: patent@davisandbujold.com

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service, with sufficient postage, as First Class Mail in an envelope addressed to: Director of the United States Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. November 13, 2003.

Print Name:

Michael J. Bujøl

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年10月25日

出 願 番 号 Application Number:

特願2002-311349

[ST. 10/C]:

[J P 2 0 0 2 - 3 1 1 3 4 9]

出 願 人
Applicant(s):

富士シリシア化学株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年10月 2日

【書類名】 特許願

【整理番号】 PK559FUJ

【提出日】 平成14年10月25日

【あて先】 特許庁長官殿

【国際特許分類】 C05D 9/00

A01G 1/00

【発明者】

【住所又は居所】 愛知県春日井市高蔵寺町2丁目1846番地 富士シリ

シア化学株式会社内

【氏名】 野田 隆信

【発明者】

【住所又は居所】 愛知県春日井市高蔵寺町2丁目1846番地 富士シリ

シア化学株式会社内

【氏名】 本田 博文

【特許出願人】

【識別番号】 000237112

【氏名又は名称】 富士シリシア化学株式会社

【代理人】

【識別番号】 100082500

【弁理士】

【氏名又は名称】 足立 勉

【電話番号】 052-231-7835

【手数料の表示】

【予納台帳番号】 007102

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9723316

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 肥料、および肥料の製造方法

【特許請求の範囲】

【請求項1】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH4~8、温度40~100 \mathbb{C} の条件下でエージングすることによって得られるシリカヒドロゲルを主成分とすることを特徴とする肥料。

【請求項2】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH6~8、温度60~8 5 \mathbb{C} の条件下でエージングすることによって得られるシリカヒドロゲルを主成分とすることを特徴とする肥料。

【請求項3】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH4~8、温度40~100 \mathbb{C} の条件下でエージングし、さらにその後pHe2~6にすることによって得られるシリカヒドロゲルを主成分とすることを特徴とする肥料。

【請求項4】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、鉄イオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン、およびアンモニウムイオンの中から選ばれる一種または二種以上を含む溶液と接触させることによって得られるシリカヒドロゲルを主成分とすることを特徴とする肥料。

【請求項5】

前記シリカヒドロゲルが湿式粉砕されてペースト状にされていることを特徴と する請求項1~請求項4のいずれかに記載の肥料。

【請求項6】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH4~8、温度40~1 00℃の条件下でエージングすることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする肥料の製造方法。

【請求項7】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH6~8、温度60~8

5 ℃の条件下でエージングすることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする肥料の製造方法。

【請求項8】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH4~8、温度40~100 \mathbb{C} の条件下でエージングし、さらにその後pHを2~6にすることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする肥料の製造方法。

【請求項9】

アルカリケイ酸塩水溶液と鉱酸とを反応させた後、鉄イオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン、およびアンモニウムイオンの中から選ばれる一種または二種以上を含む溶液と接触させることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする肥料の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、肥料、および肥料の製造方法に関する。

 $[0\ 0\ 0\ 2\]$

【従来の技術】

従来から、シリカゲルを主成分とする肥料が知られている(例えば、特許文献 1参照。)。下記特許文献1には、シリカヒドロゲルからシリカキセロゲルに至 るすべての状態のシリカゲルが、肥料の主成分として利用できる旨の記載がある

[0003]

【特許文献1】

特開平10-114588号公報

 $[0\ 0\ 0\ 4]$

【発明が解決しようとする課題】

しかし、シリカヒドロゲルは、70~80%程度の水分を含有しており、長時

間が経過するとシリカヒドロゲルから多量の水分が脱離する。そのため、このよ うなシリカヒドロゲルが主成分とされた肥料を包装容器に詰めると、シリカヒド ロゲルから脱離した多量の水分が包装容器の下部に溜まってしまうことが問題と なった。

[0005]

すなわち、シリカヒドロゲルから脱離した多量の水分が包装容器の下部に溜ま ってしまうと、開封方法によっては包装容器から多量の水が流れ出して周囲を濡 らしてしまう恐れがある。また、包装容器から多量の水が流れ出さないように慎 重に開封することも不可能ではないが、そのような慎重な開封作業を強いられる のでは、開封作業時の作業性が悪くなるという問題がある。さらに、流通・販売 の段階で包装容器の下部に多量の水が溜まっていると、肥料の品質に何らかの変 化があったのではないかとの誤解を招くなど、商品イメージが損なわれるという 問題もある。したがって、これらの問題を解決するためには、シリカヒドロゲル から脱離する水分の量を、できる限り減少させるための対策を講ずることが重要 であった。

$[0\ 0\ 0\ 6\]$

本発明は、上記問題を解決するためになされたものであり、その目的は、シリ カヒドロゲルを主成分としているにもかかわらず、時間経過に伴って脱離する水 分が従来品以上に少ない肥料と、その肥料の製造方法を提供することにある。

[0007]

【課題を解決するための手段、および発明の効果】

上述の目的を達成するために、上記請求項1に記載の肥料は、アルカリケイ酸 塩水溶液と鉱酸とを反応させた後、pH4~8、温度40~100℃の条件下で エージングすることによって得られるシリカヒドロゲルを主成分とすることを特 徴とする。

[0008]

また、上記請求項2に記載の肥料は、アルカリケイ酸塩水溶液と鉱酸とを反応 させた後、pH6~8、温度60~85℃の条件下でエージングすることによっ て得られるシリカヒドロゲルを主成分とすることを特徴とする。

また、上記請求項3に記載の肥料は、アルカリケイ酸塩水溶液と鉱酸とを反応させた後、 $pH4\sim8$ 、温度 $40\sim100$ \mathbb{C} の条件下でエージングし、さらにその後 $pHe2\sim6$ にすることによって得られるシリカヒドロゲルを主成分とすることを特徴とする。

[0009]

また、上記請求項4に記載の肥料は、アルカリケイ酸塩水溶液と鉱酸とを反応させた後、鉄イオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン、およびアンモニウムイオンの中から選ばれる一種または二種以上を含む溶液と接触させることによって得られるシリカヒドロゲルを主成分とすることを特徴とする。

[0010]

さらに、上記請求項5に記載の肥料は、上記請求項1~請求項4のいずれかに 記載の肥料において、前記シリカヒドロゲルが湿式粉砕されてペースト状にされ ていることを特徴とする。

また、請求項6に記載の肥料の製造方法は、請求項1に記載した肥料の製造方法であり、アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH4~8、温度 40~100 \mathbb{C} の条件下でエージングすることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする。

[0011]

また、請求項7記載の肥料の製造方法は、請求項2に記載した肥料の製造方法であり、アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH6~8、温度60~85 \mathbb{C} の条件下でエージングすることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする。

$[0\ 0\ 1\ 2\]$

また、請求項8に記載の肥料の製造方法は、請求項3に記載した肥料の製造方法であり、アルカリケイ酸塩水溶液と鉱酸とを反応させた後、pH4~8、温度40~100℃の条件下でエージングし、さらにその後pHe2~6にすることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする。

5/

[0013]

また、請求項9に記載の肥料の製造方法は、請求項4に記載した肥料の製造方法であり、アルカリケイ酸塩水溶液と鉱酸とを反応させた後、鉄イオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン、およびアンモニウムイオンの中から選ばれる一種または二種以上を含む溶液と接触させることによってシリカヒドロゲルを得て、該シリカヒドロゲルを主成分として肥料を調製することを特徴とする。

$[0\ 0\ 1\ 4]$

これらの肥料、およびその製造方法において、アルカリケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウムなどすべてのケイ酸塩を用いることができるが、より安価なシリカヒドロゲルを製造するためには、ケイ酸ナトリウムを用いるのが望ましい。また、鉱酸としては、硫酸、塩酸、硝酸などあらゆる酸を用いることができるが、安価に製造するためには硫酸を用いるのが望ましい。

[0015]

上記請求項1~請求項5に記載した肥料によれば、主成分として採用されているシリカヒドロゲルが、各請求項に記載されたとおりの特徴的な処理を施されたものとなっているので、一般的なシリカヒドロゲルとは異なり、長時間が経過してもシリカヒドロゲルから多量の水分が脱離することはなく、水分がまったく脱離しないか、あるいは、水分が脱離してもその量が従来品よりも少なくなる。

$[0\ 0\ 1\ 6]$

具体的には、一般的なシリカゲルの製造工程で中間生成物として製造されるシリカヒドロゲルは、分液ロート、ふるい、またはその他のフィルター等で水切りした後に48時間程度静置すると、静置前の自重に対する重量比で5%以上の液状成分(主に水分)が脱離するが、上記各請求項に記載したシリカヒドロゲルは、水切りした後に48時間程度静置しても、静置前の自重に対する重量比で5%未満の液状成分しか脱離せず、あるいは、液状成分がまったく脱離しないこともある。

$[0\ 0\ 1\ 7]$

そのため、このようなシリカヒドロゲルが主成分とされた肥料は、包装容器に

詰めた状態で長時間が経過しても、包装容器の下部に多量の水分が溜まることはない。したがって、そのような多量の水分が開封時に包装容器から流れ出すことはなく、それ故、過度に慎重な開封作業を強いられることもないので開封時の作業性は良好になり、さらに、余計な水分が包装容器内に溜まっていないので商品イメージが損なわれることもない。

[0018]

なお、上記各肥料において、液状成分が分離しにくくなるのは、次のような理由からではないかと考えられる。すなわち、 $pH4\sim8$ 、温度 $40\sim100$ $\mathbb C$ の条件下でエージングすると、シリカヒドロゲルの構造上、水として脱離しやすい不安定な状態になっていた部分が水として脱離し、その結果、水として脱離しにくい安定な部分だけが固形分中に残るため、そのような安定な固形分が大部分を占めるシリカヒドロゲルが得られることになり、その結果、多量の水が脱離するような現象が抑制されるのではないかと考えられる。この傾向は、 $pH6\sim8$ 、温度 $60\sim85$ $\mathbb C$ の条件下でエージングすると、さらに高くなるので望ましい。また、 $pH4\sim8$ 、温度 $40\sim100$ $\mathbb C$ の条件下でエージングした上で、さらにその後pH6 $\mathbb C$ $\mathbb C$ にしても、水が脱離しなくなる傾向を高めることができるので望ましい。また、鉄イオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン、およびアンモニウムイオンの中から選ばれる一種または二種以上を含む溶液と接触させた場合は、これらのイオンとシラノール基とのイオン交換により、シリカゾル表面に水不溶性の複合物が生成し、これが水の脱離を阻害するため、多量の水が脱離しなくなるのではないかと考えられる。

[0019]

以上説明した肥料は、シリカヒドロゲルを主成分としているので、公知のケイカル肥料よりも格段にケイ酸供給能力が高く、さらに、シリカキセロゲルを主成分とする肥料と比較しても、ケイ酸供給能力が高い。具体的には、ケイ酸は、通常、中性域の水中において50ppm程度で飽和し平衡状態となるが、シリカヒドロゲルは、他のケイ酸化合物よりも速やかに上述の平衡状態に達する。そのため、ケイ酸の吸収速度がきわめて速い植物を施肥対象にする場合でも、安定的に十分なケイ酸を供給することができる。

[0020]

シリカヒドロゲルのケイ酸供給能力が、他のケイ酸化合物よりも高い理由は、明確に特定されている訳ではないが、例えば、シリカヒドロゲルはシリカキセロゲルよりもシリカからなる骨格が安定しておらず、水中においてケイ酸が溶脱しやすいのが一因となっているのではないかと考えられる。また、シリカヒドロゲルの場合、シリカキセロゲルとは異なり、シリカからなる骨格が形成する細孔内に閉じ込められた水分中に多くのケイ酸モノマーが存在するため、そのモノマーが容易に水中に放出されることも、ケイ酸供給能力が高くなる理由の一つであると考えられる。いずれにしても、上記各請求項に記載した肥料であれば、シリカヒドロゲルが優れたケイ酸供給源となるのは確かなので、農地に施用することにより、農作物に効率よくケイ酸を吸収させることができる。

$[0\ 0\ 2\ 1]$

施用方法としては、農作物に潅水する際に、あらかじめ水源となるタンク中に上記肥料を投入しておくか、水源からの経路の途中で上記肥料中を通水させることにより、ケイ酸濃度を高めてから農作物に潅水するようにすればよい。あるいは、水田に施用する場合には、上記肥料を水口に留置してもよく、例えば、籠状の容器に上記肥料を投入して水口に沈めるとか、網目状の袋に上記肥料を投入して水口に沈めるといった方法をとってもよい。また、水耕栽培においては、上記と同様の方法でケイ酸濃度を高めた水を液肥として供給してもよいし、水耕栽培ベッドの底部に上記肥料を設置するのも有効である。さらに、シリカヒドロゲルが湿式粉砕されてペースト状にされている場合には、ペースト状物を射出可能な装置を使って肥料を地面に注入することができるので、例えば田植機を使って苗の植え付けを行う際に、苗と同時に肥料を地面に注入するようなことも可能である。

$[0\ 0\ 2\ 2]$

なお、以上説明した肥料は、シリカヒドロゲルを主成分とするものであるが、 この主成分以外に、公知の肥料用組成物を何種類か含んでいてもよいことはもち ろんである。

[0023]

【発明の実施の形態】

次に、本発明の実施形態について、いくつかの実施例を挙げて説明する。

[実施例1]

ケイ酸ナトリウムと硫酸とを反応させ生成したシリカヒドロゲルを、pH7、 温度65℃の水洗水を用い、水量約150リットル/minで12時間水洗した 。水洗終了時の排水のpHは7であった。

[0024]

この条件により製造したシリカヒドロゲル1kgを分液ロートに入れて48時間静置した。静置後、分液ロートの下部コックを開けたが、脱離した水分は認められなかった。

一方、比較のため、上記と同様にケイ酸ナトリウムと硫酸を反応させ生成したシリカヒドロゲル1kgを、そのまま分液ロートに入れて48時間静置した。静置後、分液ロートの下部コックを開けて固液分離し、脱離した水分の量を測定した。その結果、1kgのシリカヒドロゲルより、50gの水分(すなわち、静置前の自重に対する重量比で5%の水分)が分離されていた。

[0025]

以上の結果から、ケイ酸ナトリウムと硫酸を反応させた後、上記のような特定の処理を加えると、シリカヒドロゲルからの水分の脱離を抑制できることがわかる。したがって、このようなシリカヒドロゲルを主成分とする肥料を調製すれば、シリカヒドロゲルから脱離する多量の水分が包装容器内に溜まってしまうという問題を招かない。

[0026]

「実施例2]

実施例1で製造したシリカヒドロゲルを、網目状の袋に入れ水田の水口に10kg投入し、慣行に従い水稲を栽培した(シリカヒドロゲル区)。

また、比較のため、シリカヒドロゲルを投入しない点を除き、他の条件は同条件にして、慣行に従い水稲を栽培した(無施用区)。

[0027]

収穫期のわら中のケイ酸濃度を測定したところ、シリカヒドロゲル区のわらケ

イ酸濃度は、無施用区のわらケイ酸濃度に比べ、1%増加した。試験環境および 試験結果を下記表1にまとめて示す。

[0028]

【表1】

試験場所 : 岡山県倉敷市

試験面積 : 20a

供試品種 :こしひかり

栽培条件 : 慣行

沙ルドロゲル

施用量 : 10kg

施用方法 : 30×30cmの網目状の袋(シリカヒドロゲルが

外部に出ない網目)にシリカヒドロゲルを入れ、袋

ごと水口に投入する。

試験結果 :無施用区のわらケイ酸濃度 9%

シリカヒドロゲル区のわらケイ酸濃度 10%

[0029]

「実施例3〕

シリカヒドロゲルを投入したときの水耕苗の生育について試験した。

水稲育苗法の中で、水耕溶液中で育苗するロールマット苗の生育にシリカヒドロゲルを施用した。試験環境を下記表2に示す。

[0030]

【表2】

供試品種 : コシヒカリ

播種暈 :乾籾200g(箱相当)

育苗期間 : 平成13年5月10日~5月24日

各処理区 : 1 試験区90cmベッド

培養液6リットル 反復なし シリカトセロゲル区 :シリカゲルSiO2(99. 7%)300gを

不織布の下に設置

シリカヒドロゲル区:シリカ30%(水分70%)1000gを

不織布の下に設置

無ケイ酸区 :水道水のみ

(慣行区)

(共通)

[0031]

施肥は、播種5日後に市販の肥料3種の混合物(大塚ハウス1号:大塚ハウス 2号:健太郎=4:4:2、いずれも大塚化学株式会社製)を用い、EC(elec tric conductivity;電気伝導度)で、水に対する増加分が2.5mS/mだけ 高くなるように1回施肥した。苗の調査は、葉令や草丈等について各区20個体 を調査し、乾物重は1区20または100個体を調査した。ケイ酸の分析は、苗 は重量法(硫酸、過酸化水素分析法)で、培養液はモリブデン青法で行った。

[0032]

以上の試験の結果、シリカヒドロゲルを施用した場合、育苗初期から後期まで 培養液中のシリカ濃度は50~65ppmと高い濃度が維持された(図1参照) 。また水耕苗中のケイ酸含有量は、シリカ資材を添加した区では生育後期になる ほど高くなり、14日後にはケイ酸含量が10%を超えた(図2参照)。

[0033]

出来た苗を見ると、葉令や草丈、根長には大きな差異はなかったが、シリカ資 材を施用した区では、やや苗が硬い傾向が認められた(下記表3参照)。

以上シリカヒドロゲルの投入によって、培養液中のシリカ濃度は高く維持され 、慣行と同等な葉令や草丈、シリカ含量の高い苗が育苗できた。

[0034]

【表3】

	葉令	草丈	根長	根数	乾物量(g/100本)	
		(cm)	(cm)		地上部	根部
シリカキセロゲル区	3.1	10.5	5.6	6.9	0.82	0.29
沙水下 旷 水区	3.2	9.9	7.4	6.3	0.81	0.27
無ケイ酸区	3.3	9.0	7.0	6.6	0.75	0.10

[0035]

「実施例4]

従来法に従ってケイ酸ナトリウムと硫酸を反応させて製造したシリカヒドロゲル500gをビーカーに取り、下記表4の条件で試料1~6を調製した。

[0036]

【表4】

試料 1 試料 2	無処理 硫酸アルミニウム20gを水500mlに溶解して添加
試料3	塩化鉄20gを水500mlに溶解して添加
試料4	塩化カルシウム20gを水500mlに溶解して添加塩化マグネシウム20gを水500mlに溶解して添加
試料 5 試料 6	1%アンモニア水を添加

[0037]

これらの試料1~6を常温で30分程度放置した後、0.3mmのふるいを用いて固液分離し、シリカヒドロゲルを密閉容器内で静置した。48時間後、再度固液分離を行い、脱離した水分を比較した。結果を表5に示す。

[0038]

	試料1	試料 2	試料 3	試料4	試料5	試料 6
4 8 時間後 脱離水量 (g)	31.2	8.5	10.3	13.8	15.2	2.6

[0039]

以上の結果から、ケイ酸ナトリウムと硫酸を反応させた後、上記のような特定の陽イオンを含む水溶液と接触させてシリカヒドロゲルを得ると、シリカヒドロゲルからの水分の脱離を抑制できることがわかる。したがって、このようなシリカヒドロゲルを主成分とする肥料を調製すれば、シリカヒドロゲルから脱離する多量の水分が包装容器内に溜まってしまうという問題を招かない。

[0040].

[実施例5]

実施例1で製造したシリカヒドロゲルを、ペースト状もしくはスラリー状に加工することを試みた。

まず、シリカヒドロゲル2kgと水1.8kgまたは3.6kgとを秤量し、それらを顔料分散機(特殊機化工業株式会社製、T.K.COLLOID MILL)に、供給口における粉砕状況を確認しながら、適量ずつ投入し続ける操作を行った。顔料分散機の回転数は、6rpmまたは60rpmに設定した。

[0041]

粉砕が終了した後、得られたシリカヒドロゲルと水との混合物を、再び顔料分散機の供給口に投入して2回目の粉砕を行った。その後、さらに、得られたシリカヒドロゲルと水との混合物を、再び顔料分散機の供給口に投入して3回目の粉砕を行った。

[0042]

上記の加工工程において、シリカヒドロゲルと水との混合物の粘度を、水1.8kgの場合と水3.6kgの場合について、粉砕回数毎に測定した。測定結果を下記表6に示す。

【表 6】

シリカ ヒドロゲル (kg)	水 (kg)	粉砕回数	粘	度
2	1.8	1	6 r p m 6 0 r p m T. l. 値	8 8 1 0 0 6 3 4 0 1 3. 9
		2	6 r p m 6 0 r p m T. I. 値	9 8 1 0 -
		3	6 r p m 6 0 r p m T. I. 値	- - -
2	3.6	1	6rpm 60rpm T.I.値	3 4 0 0 5 4 0 6. 3
	·	2	6 r p m 6 0 r p m T. ! . 値	4 4 0 0 5 7 0 7. 7
		3	6 r p m 6 0 r p m T. I. 値	4900 610 8.0

(-) 測定限界以上又は算出不能

[0044]

上記表6に示したとおり、実施例1で製造したシリカヒドロゲルは、任意の粘度に調整することができるので、ペースト肥料、液状肥料に容易に加工することができる。

したがって、ペースト状肥料に加工して作物の根元に直接注入したり(局所施肥)、液状肥料に加工してスプレーガンで葉面に直接散布したり、あるいは、水耕栽培溶液中に分散もしくは溶解させるなど、多様な形態に加工して利用することができる。

以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施 形態に限定されず、この他にも種々の形態で実施することができる。

【図面の簡単な説明】

- 【図1】 培養液中のケイ酸濃度の推移を表すグラフである。
- 【図2】 各試験区の苗のケイ酸含有量の推移を表すグラフである。

【書類名】 図面

【図1】

【図2】

【要約】

【課題】 シリカヒドロゲルを主成分としているにもかかわらず、時間経過に伴って脱離する水分が従来品以上に少ない肥料を提供すること。

【解決手段】 アルカリケイ酸塩水溶液と鉱酸とを反応させた後、下記(1) \sim (4) のいずれかの処理を加えることによって得られるシリカヒドロゲルを主成分として肥料を調製する。(1) $pH4\sim8$ 、温度 $40\sim100$ \mathbb{C} の条件下でエージングする。(2) $pH6\sim8$ 、温度 $60\sim85$ \mathbb{C} の条件下でエージングする。(3) $pH4\sim8$ 、温度 $40\sim100$ \mathbb{C} の条件下でエージングし、さらにその後 pH6 \mathbb{C} (4) 鉄イオン、マグネシウムイオン、カルシウムイオン、アルミニウムイオン、およびアンモニウムイオンの中から選ばれる一種または二種以上を含む溶液と接触させる。

【選択図】 なし

ري

特願2002-311349

出願人履歴情報

識別番号

[000237112]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所 氏 名 愛知県春日井市高蔵寺町2丁目1846番地

富士デヴィソン化学株式会社

2. 変更年月日

1993年 3月 1日

[変更理由]

名称変更

住 所

愛知県春日井市高蔵寺町2丁目1846番地

氏 名 富士シリシア化学株式会社