Research project meeting summary: Trajectory Module for Launcher MDAO

Jorge L. Valderrama 1 Dr. Annafederica Urbano 2 Dr. Mathieu Balesdent 3 Dr. Loïc Brevault 4

 $^1 \rm ISAE\text{-}SUPAERO, \, MSc.$ in Aerospace Engineering $^2 \rm ISAE\text{-}SUPAERO, \, DCAS$ $^3 \rm ONERA, \, DTIS$ $^4 \rm ONERA, \, DTIS$

November 16, 2020

Plan:

- Review of previous work
 - Updates on the use of Rocket CEA
 - Changes on Propulsion XDSM
 - Validation of Propulsion module
 - Overall optimization results
- 2 Key points discussed
- 3 Future actions

Updates on the use of Rocket CEA

• I switched from problem type "hp" to problem type "rocket". I was getting low values of γ when compared to Sutton - Rocket Propulsion Elements.

Updates on the use of Rocket CEA

- I switched from problem type "hp" to problem type "rocket". I was getting low values of γ when compared to Sutton Rocket Propulsion Elements.
- Chemical composition during nozzle expansion

Updates on the use of Rocket CEA

- I switched from problem type "hp" to problem type "rocket". I was getting low values of γ when compared to Sutton Rocket Propulsion Elements.
- Chemical composition during nozzle expansion

Sutton

- Frozen Equilibrium
- Shifting Equilibrium

IS a e 🔀

Updates on the use of Rocket CEA

- I switched from problem type "hp" to problem type "rocket". I was getting low values of γ when compared to Sutton Rocket Propulsion Elements.
- Chemical composition during nozzle expansion

Sutton

- Frozen Equilibrium
- Shifting Equilibrium

Rocket CEA

- Frozen
- Equilibrium

ISae 🔀

Updates on the use of Rocket CEA

- I switched from problem type "hp" to problem type "rocket". I was getting low values of γ when compared to Sutton Rocket Propulsion Elements.
- Chemical composition during nozzle expansion

Sutton

- Frozen Equilibrium
- Shifting Equilibrium

Rocket CEA

- Frozen
- Equilibrium
- Low values of mass ratio and high values of chamber pressure were creating discontinuities in the Rocket CEA output. I fixed it and now derivatives are not noisy.

Changes on Propulsion XDSM

• The propulsion model is now outside Dymos.

Changes on Propulsion XDSM

- The propulsion model is now outside Dymos.
- I decomposed the calculation of I_{sp} to have access to values of characteristic velocity (c*), thrust coefficient (C_f), etc...

Changes on Propulsion XDSM

- The propulsion model is now outside Dymos.
- I decomposed the calculation of I_{sp} to have access to values of characteristic velocity (c^*), thrust coefficient (C_f), etc...
- All values in the propulsion model are now calculated at the optimal point, i.e. $P_e = P_a$.

Validation of Propulsion module

Theoretical Chamber Performance of RP-1 / LOx

• Combustion chamber pressure: 1000 psia

Validation of Propulsion module

Theoretical Chamber Performance of RP-1 / LOx

- Combustion chamber pressure: 1000 psia
- Nozzle exit pressure: 14.7 psia

Validation of Propulsion module

Theoretical Chamber Performance of RP-1 / LOx

- Combustion chamber pressure: 1000 psia
- Nozzle exit pressure: 14.7 psia
- Mixture mass ratio: 2.24

Validation of Propulsion module

Theoretical Chamber Performance of RP-1 / LOx

- Combustion chamber pressure: 1000 psia
- Nozzle exit pressure: 14.7 psia
- Mixture mass ratio: 2.24
- Optimum expansion. Frozen equilibrium.

Isae 🔀

Validation of Propulsion module

	Sutton	Propulsion model	Error
$I_{sp}(s)$	285.4	285.97	0.2 %
$c^{\star}(m/s)$	1774	1769.95	0.2~%
$T_{c}(K)$	3571	3539.13	0.9~%
$\gamma_{ m t}()$	1.24	1.2217	1.5~%
$m_{\rm c}({ m g/mol})$	21.9	22.047	0.7 %

Overall optimization results

• Successfully optimized missions at 400km height for payload mass of 9, 11, 13, 15 and 20 Tons departing from the same initial guess. Optimization time between 70 and 240 s

- Successfully optimized missions at 400km height for payload mass of 9, 11, 13, 15 and 20 Tons departing from the same initial guess. Optimization time between 70 and 240 s
- The following optimization variables behave as I expected
 - Nozzle exit pressure
 - Mass ratio of propellants
 - Thrust

- Successfully optimized missions at 400km height for payload mass of 9, 11, 13, 15 and 20 Tons departing from the same initial guess. Optimization time between 70 and 240 s
- The following optimization variables behave as I expected
 - Nozzle exit pressure
 - Mass ratio of propellants
 - Thrust
- The combustion chamber pressure reaches its upper bound always. How can we constrain it?
 - Maximum value of response surface: 17 (MPa)
 - Merlin 1D engine value: 10 (MPa)

- Successfully optimized missions at 400km height for payload mass of 9, 11, 13, 15 and 20 Tons departing from the same initial guess. Optimization time between 70 and 240 s
- The following optimization variables behave as I expected
 - Nozzle exit pressure
 - Mass ratio of propellants
 - Thrust
- The combustion chamber pressure reaches its upper bound always. How can we constrain it?
 - Maximum value of response surface: 17 (MPa)
 - Merlin 1D engine value: 10 (MPa)
- Results in following slides are for payload mass of 11 Tons

ISae 🔀

Isae 🚧

	Merlin 1D	Opt results	Opt results- limited
$P_{c}(MPa)$	9.7	17	10
$I_{\mathrm{sp}}(\mathrm{s})$	348	355.9	347.2
$Ae(m^2)$	8.5 ?	8.5	8.5
$\dot{\mathrm{m}}(\mathrm{kg/s})$	287.3?	226.3	233.6
ϵ	165	357.9	204.9
Thrust(kN)	981	790.1	795.9

Overall optimization results

I also worked on the optimization of the propulsion module of first and second stage.

Overall optimization results

I also worked on the optimization of the propulsion module of first and second stage.

 \bullet From the same initial guess used before (11ton - 400 km x 400 km)

Overall optimization results

I also worked on the optimization of the propulsion module of first and second stage.

- \bullet From the same initial guess used before (11ton 400 km x 400 km)
- \bullet Limiting P_c and thrust to the values of Falcon 9

Overall optimization results

I also worked on the optimization of the propulsion module of first and second stage.

- \bullet From the same initial guess used before (11ton 400 km x 400 km)
- Limiting P_c and thrust to the values of Falcon 9
- Using its maximum GTO payload, 8.3 ton

Overall optimization results

I also worked on the optimization of the propulsion module of first and second stage.

- \bullet From the same initial guess used before (11ton 400 km x 400 km)
- Limiting P_c and thrust to the values of Falcon 9
- Using its maximum GTO payload, 8.3 ton

The optimizer converges for:

- GTO mission (36 000 km x 145 km)
- Mass at lift-off near that of Falcon 9 (549 ton)

Some Falcon - 9 GTO missions are almost "in-plane" missions

ISae 🔀

```
Vehicle paramaters
Pavload mass (kg):
                                         8300.0
Fairing mass (kg):
                                         1900.0
First stage:
    Structural mass (kg):
                                         28000.0
    Propellants mass (kg):
                                         397650.23
    Structural coef ():
                                         0.07
    Thrust (N):
                                         8500000.0
    Isp (opt) (s):
                                         283.59
    S (m^2):
                                         37.5
    Ae t (m^2):
                                         6.03
Second stage:
    Structural mass (kg):
                                         4700.0
    Propellants mass (kg):
                                         122597.11
    Structural coef ():
                                         9.94
    Thrust (N):
                                         1000000.0
    Isp (opt) (s):
                                         330.68
    S (m^2):
                                         37.5
    Ae t (m^2):
                                         8.5
First stage flight with fairing:
    Tw_ratio ():
                                         1.54
Second stage flight with fairing:
    Tw ratio ():
                                         0.74
Objective:
                                         value
Initial mass (ton):
                                         563,147
Initial guess:
                                         initial guess/F9 11Ton 400km prop 2.db
Performance:
Message:
                                         Optimization terminated successfully.
Number of iterations:
                                         244
Number of gradient evaluations:
                                         244
Number of function evaluations:
                                         480
Optimization time (s):
                                         259.88
```

ISae 🔀

Key points discussed

- Calculation of propulsion parameters at optimal expansion leads to the design of the engine at that point. Design at vacuum is preferred.
- As all the variables are optimized at the same level, feedback loops should be managed with constraints. We will evaluate this in the N2 diagrams.

Future actions

- Try coupling for variables in charged of mass of propellants for the disciplines of trajectory and propulsion
- Correct propulsion module as discussed