Azure Public Load Balancer with VMs, Bastion, NAT Gateway, VNet, and Subnets

Project Architecture Overview

You will be deploying the following:

- A Virtual Network (VNet) with 3 subnets:
 - BackendSubnet for VMs
 - AzureBastionSubnet for Bastion host (required name)
 - NATGatewaySubnet for outbound NAT access
- Two Virtual Machines (VM1 & VM2) in BackendSubnet
- A Public Load Balancer distributing HTTP (port 80) traffic between VMs
- A **Health Probe** to monitor backend VM availability
- Load Balancing Rule to forward traffic from the frontend (public IP) to backend VMs
- Azure Bastion to securely access VMs without exposing public IPs
- A NAT Gateway to provide outbound internet access from private VMs

1 Create Resource Group

Why?

Grouping related resources simplifies management, RBAC control, and billing.

Steps:

- 1. Go to Azure Portal → Search for Resource Groups
- 2. Click + Create
- 3. Fill:
 - Name: LoadBalancerProjectRG
 - Region: (e.g., East US)
- 4. Click Review + Create → Create

2 Create Virtual Network and Subnets

Why?

A virtual network is required for communication between VMs, Bastion, NAT Gateway, and Load Balancer.

Steps:

- 1. Go to Virtual Networks \rightarrow Click + Create
- 2. Fill:
 - Name: LBVNet
 - Address space: 10.0.0.0/16
- 3. Add Subnets:
 - BackendSubnet → 10.0.1.0/24
 - AzureBastionSubnet \rightarrow 10.0.2.0/24 (Name must be exact!)
 - NATGatewaySubnet → 10.0.3.0/24
- 4. Create the network

3 Create Two Virtual Machines (VM1 & VM2)

Why?

The VMs will serve as backend pool members for the Load Balancer.

Repeat the process twice:

- 1. Go to Virtual Machines → + Create
- 2. Under Basics:
 - Name: VM1 (and VM2 later)
 - Region: Same as VNet
 - Image: Ubuntu 20.04 LTS (or Windows if preferred)
 - Size: Standard B1s
 - Authentication: Password or SSH
- 3. Networking Tab:
 - VNet: LBVNet
 - Subnet: BackendSubnet
 - Public IP: None (Bastion will be used)
- 4. Review + Create → Create

4 Create Azure Bastion Host

Why?

Azure Bastion provides secure and seamless RDP/SSH access to VMs without exposing public IPs.

Steps:

- 1. Search for **Bastion** → Click + **Create**
- 2. Fill:

```
• Name: AzureBastionHost
```

• VNet: LBVNet

• Subnet: AzureBastionSubnet (must be named exactly)

• Region: Same

3. Create new Public IP: BastionPublicIP

4. Review + Create → Create

Connect to VM:

- Go to VM1 → Connect > Bastion
- Enter credentials \rightarrow Open browser-based terminal

5 Create Public Load Balancer

Why?

A public Load Balancer distributes traffic across multiple backend VMs.

Steps:

- 1. Go to Load Balancers → Click + Create
- 2. Basics:

Name: PublicLBType: Public

• SKU: Standard (required for private VMs & health probes)

• Public IP: Create new → PublicLB-IP

3. Review + Create → Create

6 Configure Backend Pool (Attach VMs)

Why?

This links VM NICs to the Load Balancer for traffic routing.

Steps:

- 1. Go to $PublicLB \rightarrow Backend pools$
- 2. Click + Add
- 3. Name: BackendPool
- 4. Virtual Network: LBVNet
- 5. Add VM1 and VM2's NICs to the pool
- 6. Click Add

7 Create Health Probe

Why?

Health probes determine which VMs are available to receive traffic.

Steps:

```
    Go to PublicLB → Health Probes
    Click + Add
```

3. Fill:

Name: HTTP-ProbeProtocol: HTTPPort: 80

Interval: 5 secondsUnhealthy threshold: 2

4. Click **OK**

8 Add Load Balancing Rule

Why?

This rule maps the frontend port (80) to the backend pool and ensures load distribution.

Steps:

- 1. Go to PublicLB \rightarrow Load balancing rules
- 2. Click + Add
- 3. Fill:

• Name: LBRule

• Frontend IP: PublicLB-IP

• Protocol: TCP

Port: 80 → Backend Port: 80
 Backend Pool: BackendPool
 Health Probe: HTTP-Probe
 Session Persistence: None

4. Click Add

9 Install Web Server on VMs

Why?

To test the Load Balancer, you need an app (e.g., Apache/Nginx/IIS) listening on port 80.

Steps (Ubuntu):

1. Connect via **Bastion** to **VM1** and run:

```
sudo apt update
sudo apt install apache2 -y
echo "<h1>Welcome to VM1</h1>" | sudo tee /var/www/html/index.html
```

2. Repeat for **VM2**, change message:

echo "<h1>Welcome to VM2</h1>" | sudo tee /var/www/html/index.html

10 Test Load Balancer

- 1. Copy Public IP of PublicLB
- 2. Open in a browser
- 3. Refresh multiple times you should see:
 - "Welcome to VM1"
 - "Welcome to VM2"

This confirms successful load balancing.

11 Optional: Configure NAT Gateway

Why?

NAT Gateway ensures **secure**, **scalable outbound internet** access from private VMs.

Steps:

- Search "NAT Gateway" → Click + Create
- 2. Basics:
 - Name: NATGWRegion: Same
 - Public IP: Create new → NATGW-IP
- 3. Subnet:
 - Attach to: NATGatewaySubnet
- 4. Create

Associate NAT Gateway:

• Go to BackendSubnet → Select **NAT Gateway**: NATGW

Final Setup Summary

Component	Purpose
VNet + Subnets	Network separation
2 VMs	Backend servers
Azure Bastion	Secure remote access
NAT Gateway	Outbound internet without public IPs

Public Load Balancer	Distributes traffic across backend VMs
Health Probe	Checks backend health
LB Rule	Routes incoming HTTP traffic to backend pool