Vertex of the Quadratic

 $r_1 = -\frac{b}{2a}$ namely $c(r_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{r}_{1^+}\mathsf{h}$, namely

Given a quadratic $c(r) = a r^2 + b r + c$ compute its value at

 $c(r_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = c(r_1 + h) - c(r_1) = ah^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1.

 $c(r) = 4 r^2 + 24 r + 64$ 1000 500 Secant

