2015 级《高等数学》(下) 联考试卷

试卷 A,(A/B),考核方式 闭卷(闭卷/开卷),考试时间(120分钟)

题	号	_	 =	四	五	六	七	八	九	总分
分	数									
评考	人									

得 分 评卷人

一、单项选择题(本大题共5个小题,每小题3分,总计 15分)。

Γ

密

专业

学院

- 1. 二元函数 $z = 2016 \sqrt{x^2 + y^2}$ 的图像为(
- (A) 球面;
- (B) 双曲面;
- (C) 圆锥面;
- 2、函数 z = f(x, y) 在点 $P_0(x_0, y_0)$ 的所有一阶偏导数都存在是该函数

在该点可微的()。

- (A) 必要而非充分条件
- (B) 充分而非必要条件
- (C) 充分必要条件 (D) 既非充分, 又非必要条件

3、设
$$\Omega$$
由 $z = \frac{1}{2}(x^2 + y^2)$ 与 $z = 2$ 围成,则在柱坐标下 $\iint_{\Omega} f(x, y, z) dx dy dz =$

线 (A) $\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{0}^{\frac{1}{2}\rho^{2}} f(\rho \sin \theta, \rho \cos \theta, z) dz$

(B)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{\frac{1}{2}\rho^{2}}^{2} f(\rho \sin \theta, \rho \cos \theta, z) dz$$

(C)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{0}^{\frac{1}{2}\rho^{2}} f(\rho \cos \theta, \rho \sin \theta, z) dz$$

(D)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho d\rho \int_{\frac{1}{2}\rho^{2}}^{2} f(\rho \cos \theta, \rho \sin \theta, z) dz$$

1

- 4. 设有平面区域 $D = \{(x, y) | -1 \le x \le 1, x \le y \le 1\}$, $D_1 = \{(x, y) | 0 \le x \le 1, x \le y \le 1\}$ $(A) 2 \iint_{D_{1}} (xy + \cos x \sin y) d\sigma = (B) 2 \iint_{D_{1}} xy d\sigma;$ $(B) 2 \iint_{D_{1}} xy d\sigma;$ $(C) 4 \iint_{D_{1}} (xy + \cos x \sin y) d\sigma;$ (D) 0
- 5. 下列级数中,收敛的是(
- (A) $\sum_{n=1}^{\infty} n \sin \frac{\pi}{n}$ (B) $\sum_{n=1}^{\infty} \ln \left[\frac{n}{n+1} \right]$ (C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

得分 评卷人 二、填空题(本大题共五个小题,每小题3分,总计15分)

- 6. 已知向量 $\vec{a} = (1,1,0)$, $\vec{b} = (1,0,1)$,则 \vec{a} 与 \vec{b} 的夹角 $\theta = \underline{}$ 。
- 7. 已知函数 $f(x,y) = \begin{cases} \frac{(x^2 + y^2)}{\sqrt{x^2 + y^2 + 1} 1} &, x^2 + y^2 \neq 0 \\ k &, x^2 + y^2 = 0 \end{cases}$ 在 (0,0) 处连续,
- 8. 二次积分 $\int_0^1 dy \int_y^1 f(x,y) dx$ 改换积分次序为_____。
- 9. 设空间闭区域 Ω 的整个表面为 Σ ,其面积为 1008,则曲面积分 $\iint_{\Sigma} 2dS$ =_____。
- 10. (**交大的同学做**) 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ 的和函数为______。
- 10. (**重邮的同学做**)函数 f(x) 是以 2π 为周期的周期函数,它在 $[-\pi,\pi)$ 上的表 达式为 $f(x) = \begin{cases} x^2, & -\pi \le x < 0 \\ \pi x & 0 \le x < \pi \end{cases}$,则 f(x)的傅立叶级数在点 $x = \pi$ 处收敛

得 分 评卷人

评卷人 │ 三、计算题(本大题共两个小题,每小题5分,满分10分)

- 11. 设方程 $x^3 + y^3 + z^3 + xyz 6 = 0$ 确定了隐函数z = z(x, y),
- (1) 求 dz
- (2) 求曲面 $x^3 + y^3 + z^3 + xyz 6 = 0$ 在点(1,2,-1)处的切平面方程。

得 分	评卷人

四、计算题(本大题共两个小题,每小题5分,满分10分)

12. (1) 设
$$z = \sin(xy^2) + xy$$
,求 $\frac{\partial^2 z}{\partial x \partial y}$,

(2) 设 $z = f(xy, x^2 \sin y)$, f 具有一阶连续偏导数,求 $\frac{\partial z}{\partial x}$ 。

得分	评卷人

得分 评卷人 五、计算题 (本大题共 10 分)
$$13. 计算二重积分 $I = \iint_{D} (2017-4x^{2}) dx dy$,其中 $D = \{(x,y) | x^{2} + y^{2} \le 1\}$ 。$$

得 分	评卷人

z=0及z=1之间的部分的下侧。

得 分	评卷人

得分 评卷人 七、应用题 (本大题满分 10 分):

15. 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展成 x 的幂级数,并指出其收敛域。

得 分	评卷人

八、综合应用题(本大题共2小题,每小题5分,共10分)

- 16. 设曲线积分 $\int_{L} (6xy^2 y^3) dx + (6x^2y 3xy^2) dy$, 其中 L 为 xoy 平面上一条有向 曲线,
 - (1) 证明:该曲线积分在整个xoy平面上与路径无关,
- (2) 计算: $I = \int_{(1,2)}^{(3,4)} (6xy^2 y^3) dx + (6x^2y 3xy^2) dy$ 。

得分 评卷人

九、综合应用题(本大题共10分)

17. 某厂要用铁皮做成一个体积为 8 m^3 的有盖长方体水箱,问当水箱的长、宽、高各为取多少时,才能使用料最省。