An integer is even if and only if it is divisible by 2 Yx E Z even(x) (divisible_by_2(x) even(x) <>> 2, | x Vx EZ 2 divides x to prove this, you need to show that it works for all values of x $\exists \times \ell(\times)$ $A \times b(x)$ Provide one example Proof -induction -direct proof Prove Same as proving

VX TP(x)

VProof Counter Dispare Proving negation

(3x

All students in 3203 have red hair	
A counter example would be	
"Ryan does not have red hair"	
	_
There exists a natural number that is both prime and even	

Translate to FOL, the Golhach Conjecture sun-of-two-primes(n) even(n) I Vn E IN even(n) 1 nr3 => Sun-..(n)

Don't use Sum_of_two_prines(n) as a predicate (this means you need to compose it as it would be w/o predicates, using variables P-19 = 79-7-7 Contrapositive Proof by enumeration
When the domain is small,

A× FD b(x)

Example: 4x EZ 1 <x < 5=72/x v3/x Predicate

2/X v end of proof Proof by Enumeration X = 2 ×=3 2 / / X=Y

Prove that for any $n \le 3$ and n is a positive integer that $n! < 2^n$ $\forall n \in \mathbb{Z}$ $0 < n \le 3 \implies n! < 2^n$ $n = 1 \implies n! \ 2^n$ $n = 2 \implies n! < 2^n$ $n = 3 \implies n! < 2^n$ $n = 3 \implies n! < 2^n$

1. Direct Proof
$$\forall x \in D \ \rho(x) \Rightarrow q(x)$$

$$\forall x \forall y \ \rho(x,y) \Rightarrow q(x,y)$$

The Sum of two even integers is an even integer (invent variables)

Ex. Proof

Vx E Z/ Vy E Z

even(x) \wedge even(y) \rightarrow even(x+y)