Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования ПСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт инженерных наук

Кафедра информационно-коммуникационных технологий

ЛАБОРАТОРНАЯ РАБОТА №2

ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЙ

Вариант 13

по дисциплине «Моделирование»

Выполнила: Разгонова Е.В.

Группа: 0432-04

Проверил: Миронов Т.С.

Задание 2.1. Точечные оценки математического ожидания.

Точечные оценки дисперсии

Задание: необходимо найти состоятельные несмещенные оценки математического ожидания $M[\xi]$ и дисперсии $D[\xi]$ случайной величины ξ по приведенным выборочным значениям, заданным следующей таблицей, где x – выборочные значения, а n – их количество, встречающихся в выборке.

x	128	74	11	2	79	80	15	100	7	66	201	49	54	13
n	8	4	1	7	4	2	3	1	1	2	1	5	5	2

Рисунок 1. Фрагмент рабочего документа MathCAD

Пояснение:

<u>Оценка параметра</u> — это любая функция от значений выборки $\theta = f(x_1, x_2, x_3, ..., x_n)$. Стоит заметить, что оценки параметров обладают рядом свойств, которые обеспечивают в некотором смысле оптимальное извлечение

информации из выборок, следовательно, чем больше выборка, тем точнее будет оценка.

Точечная оценка математического ожидания — выборочное среднее наблюдаемых значений — это состоятельная и несмещённая оценка. Она не является истинным значением параметра, а оценённым по выборке значением.

<u>Несмещённой</u> оценкой называется оценка параметров выборки, мат. ожидание которой равно оцениваемому параметру, т.е. $M[\theta_n] = \theta$, в противном случае она считается <u>смещённой</u>, следовательно имеется систематическая ошибка.

<u>Состоятельной</u> называется такая оценка, которая при увеличении числа измерений приближается к точному значению параметра θ .

<u>Дисперсия</u> — число, характеризующее насколько значения отклоняются от средней величины (математического ожидания) в данной выборке. Следовательно, чем больше дисперсия, тем больше разброс значений.

Точечной оценкой дисперсии является выборочная дисперсия. Она рассчитывается как сумма отклонения каждого значения от среднего, возводимое в квадрат (чтобы избежать взаимоуничтожение отклонений) и делённая на объём выборки.

Вывод: вычисления, произведённые в Mathcad, показали, что состоятельная смещённая оценка дисперсии дает заниженное значение.

<u>Примечание к рабочему документу</u>: встроенная переменная *ORIGIN* — начало нумерации элементов в векторах и матрицах; матричная функция *stack* — итог: матрица, сформированная слиянием матриц-аргументов сверху вниз,

т.е. в данной работе, с помощью этой функции, для удобства, объединяется две части матрицы в одну цельную выборку.

Задание 2.2. Точечная оценка вероятности события

<u>Задание:</u> смоделировать несколько выборок значений случайной величины, имеющей распределение Бернулли с заданным значением параметра p=0.33.

$$\underbrace{\text{ORIGIN}}_{k} := 1 \quad k := 1..100$$

$$P_{k} := \frac{\text{rbinom}(1, 10k, 0.33)_{1}}{10k}$$

Рисунок 2. Рабочий документ MathCAD с вычислениями

Пояснение: Биномиальное распределение — распределение количества «успехов» в последовательности из п независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них постоянна и равна р.

Задача состоит в получении оценки неизвестного параметра распределения p по результатам серии n случайных экспериментов. При заданном числе испытаний n количество благоприятных исходов m в серии испытаний — случайная величина, имеющая распределение Бернулли.

Для расчёта этой вероятности в Mathcad используется функция rbinom(k,n,p), которая формирует вектор из k случайных чисел, каждое из которых равно числу успехов в серии из n независимых испытаний с вероятностью успеха p в каждом.

Вывод: график оценки вероятности p показывает, что с увеличением объёма выборки, оценка случайной величины p приближается к заданному параметру p=0.33.

<u>Примечание</u>: т.к. значение функции является вектором, число успехов в серии испытаний с вероятностью успеха p в каждом испытании содержится в первой компоненте вектора rbinom(k,n,p), т.е. число успехов равно $rbinom(k,n,p)_1$.

Задание 2.3. Точечная оценка параметров равномерного распределения

Задание: смоделировать несколько выборок разного объема значений случайной величины, имеющей равномерное распределение на отрезке $[0,\theta]$ для значения $\theta = N/2$ (N — номер варианта), и найдите оценки $\hat{\theta}^{(1)}$ и $\hat{\theta}^{(3)}$ параметра θ . Постройте график зависимости $\hat{\theta}^{(1)}$ и $\hat{\theta}^{(3)}$ от объема выборки.

$$\begin{array}{ll} & \text{ORIGIN} \coloneqq 1 & k \coloneqq 1..20 & \text{N} \coloneqq 13 & \theta \coloneqq \frac{N}{2} & \theta = 6.5 \\ & & \text{T1}_k \coloneqq \frac{2}{10 \cdot k} \cdot \sum \text{runif} \left(10 \cdot k, 0, 6.5\right) & & \text{T1}_{17} = 6.755 \\ & & \text{T3}_k \coloneqq \frac{10 \cdot k + 1}{10 \cdot k} \cdot \max(\text{runif} \left(10 \cdot k, 0, 6.5\right)\right) & & \text{T3}_{17} = 6.493 \end{array}$$

Рисунок 3. Рабочий документ MathCAD с вычислениями

Пояснение:

<u>Равномерное распределение</u> – распределение, в котором значения случайной величины с двух сторон ограничены и в границах интервала имеют одинаковую вероятность. Это означает, что в данном интервале плотность вероятности постоянна.

Для моделирования выборки значений случайной величины, имеющей равномерное распределение на отрезке, предназначена функция runif(k,a,b), которая формирует вектор из k случайных чисел, каждое из которых – значение равномерно распределенной на отрезке [a;b] случайной величины.

Вывод: в процессе выполнения вычислений можно заметить, что выборке соответствует оценка $\theta_1=6.755$ (при проценте отклонения в $\approx 4\%$), в то время как $\theta_3=6.493$ (процент отклонения $\approx 1\%$). Следовательно, второй метод имеет более точную оценку при минимальном отклонении, чем оценка первого, так как истинное значение параметра $\theta=6.5$.