

BIM/GIS and Modelica Framework for building and community energy system design and operation

Task 1

Michael Wetter, LBNL, Berkeley, CA

August 5, 2017

Activity 1.1- Modelica library Scope

Scope:

Develop and distribute a well documented, vetted and validated open-source Modelica library that serves as the core of future building simulation programs.

Modelica libraries for design and operation (WP 1.1); and for Model Predictive Control (WP 1.2)

Modelica IBPSA library

Continue and expand collaboration from Annex 60, Activity 1.1

Restructure library into IBPSA. Air and IBPSA. Water for more intuitive use.

Work on scalability to large system models.

Add

- components (borefield, combined heat and power, absorption chiller, ...)
- template HVAC systems
- control sequences

Activity 1.1- Modelica library

Approach

- standardize how component and system models are represented, both as data-model and as mathematical models that formalize the physics, dynamics and control algorithms,
- agree upon the physics that should be included in components for whole building simulation
- Conduct distributed development through https://github.com/ibpsa/modelica-ibpsa/modelica-ibpsa/modelica-ibpsa/wiki

Selection of use cases

District energy systems — building tools needed by urban developers and cities to prioritize investment and policy decisions

GIS to Modelica for performance analysis, visualization and optimization of district energy systems.

Source: RWTH Aachen

Analysis of novel, modular extensible energy networks with decentralized energy hubs and bi-directional flow networks that share heating, cooling and waste heat among energy hubs and buildings.

Source: LBNL

Spawn of EnergyPlus — Modularize EnergyPlus based on open standards to address complexity of design & operation

Links design and operation

Supports insertion of custom models and computing modules

Inter-operability with control workflows and product development

Reduces technology lag

Built on open standards (Modelica and FMI)

Modular design allows component-wise upgrades

OpenBuildingControl — Design and implement control sequences error-free and at lower cost to owner

Codify best practice

Design

Implement

Verify against original design intent

BACnet standardizes communication.

OpenBuildingControl will standardize

- basic functional building blocks that are used to compose sequences and tests,
- expressing control sequences,
- expressing functional verification tests,

for bidding, automatic implementation and automated functional testing.

Key requirements for all of these uses cases

Robust, comprehensible library.

Good, well tested and robust template models.

Ability to generate system models from third party applications

- BIM/GIS
- OpenStudio
- Schematic diagram editors

Modelica libraries for design and operation (WP 1.1) How to contribute

Follow the style guide and the workflow for code changes on https://github.com/ibpsa/modelica-ibpsa/wiki

In summary:

- Additions are done if they are useful for typical users no experimental code will be released.
- Discussions will be done primarily through the issue tracker and conference calls.
- Each feature needs a validation test.
- Every class needs documentation.
- Follow the style guide.
- All code must be reviewed and approved by a core developer.
- All development happens on development branches
 (the master branch must always be ready for release, or for others to base their library on).

WP 1.2: Modelica approaches and library for MPC

Goal:

Enable MPC for buildings and district energy systems at scale.

WP 1.2: Modelica approaches and library for MPC

New activity that emerged from Annex 60 collaboration.

Key questions

- 1. How to best conduct MPC for building and district energy systems, and for providing services to the electrical grid, in a way that scales industry-wide.
 - 1.Linear, piece-wise linear, non-linear?
 - 2.If design model is present, how can it be reused?
 - 3. White-box, grey-box, black-box model?
 - 4. Deterministic vs stochastic optimization?
 - 5. How to conduct state and parameter identification?
- 2. How to encode models in a library that supports 1)?
- 3. How to develop frameworks that allow 1)?
- 4. How to benchmark different approaches need "BESTEST" for MPC that covers set up requirements, model identification and MPC.

?