# Mecânica quântica para computação

Bento Montenegro











A computação quântica é uma das grandes tecnologias em emergência da nossa época. Mas por quê? E como funciona exatamente?



A computação quântica é uma das grandes tecnologias em emergência da nossa época. Mas por quê? E como funciona exatamente?

 Existem problemas que são extremamente difíceis (ou mesmo impossíveis!) de se resolver em um computador usual.



A computação quântica é uma das grandes tecnologias em emergência da nossa época. Mas por quê? E como funciona exatamente?

- Existem problemas que são extremamente difíceis (ou mesmo impossíveis!) de se resolver em um computador usual.
  - O exemplo mais comum é o algoritmo de Shor para fatoração em números primos.



A computação quântica é uma das grandes tecnologias em emergência da nossa época. Mas por quê? E como funciona exatamente?

- Existem problemas que são extremamente difíceis (ou mesmo impossíveis!) de se resolver em um computador usual.
  - O exemplo mais comum é o algoritmo de Shor para fatoração em números primos.

 Algoritmos de busca lineares também não são tão eficientes quanto sua contraparte quântica (algoritmo de Grover).



A computação quântica é uma das grandes tecnologias em emergência da nossa época. Mas por quê? E como funciona exatamente?

- Computadores quânticos também auxiliarão de forma extremamente eficiente:
  - Simulações em química envolvendo dinâmica molecular
  - Simulações em finanças e prospectos econômicos
  - Machine learning e desenvolvimento de IA's mais potentes

#### Índice

#### Parte I

- Bits e qubits
- MQ para computação
  - Vetores de estado
  - Superposição
  - Medições

#### Parte II

- Esfera de Bloch
- Múltiplos qubits e emaranhamento





• Bit clássico (= bit): 0, 1





• Bit clássico (= bit): 0, 1







Bit clássico (= bit): 0, 1

Números são representados como strings de 0's e 1's



$$2^{0} = 1$$
  $2^{5} = 32$   
 $2^{2} = 4$   $2^{6} = 64$   
 $2^{3} = 8$   $2^{7} = 128$   
 $2^{4} = 16$ 

$$150 = 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$
$$= 10010110$$

$$35 = 0 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= 00100011$$



Bit clássico (= bit): 0, 1



Computações são feitas de maneira similar ao ensino fundamental:



10111001 = 185



Bit quântico (= qubit): 0, 1, superposição de 0 e 1





Bit quântico (= qubit): 0, 1, superposição de 0 e 1



tantos porcento em 0

tantos porcento em 1

Fisicamente, qubits são átomos







Bit quântico (= qubit): 0, 1, superposição de 0 e 1



tantos porcento em 0

tantos porcento em 1









Bit quântico (= qubit): 0, 1, superposição de 0 e 1



tantos porcento em 0

tantos porcento em 1

Fisicamente, qubits são átomos



 A teoria física capaz de descrever o comportamento dos átomos é a mecânica quântica (MQ)





Bit quântico (= qubit): 0, 1, superposição de 0 e 1



- tantos porcento em 0
- tantos porcento em 1

- De acordo com a MQ, os átomos obedecem às seguintes propriedades
  - Interferência
  - Superposição
  - Emaranhamento
- Alem disso, coisas malucas acontecem quando
   "observamos" um átomo!





Bit quântico (= qubit): 0, 1, superposição de 0 e 1



tantos porcento em 0

tantos porcento em 1

- De acordo com a MQ, os átomos obedecem às seguintes propriedades
  - Interferência
  - Superposição
  - Emaranhamento
- Alem disso, coisas malucas acontecem quando
   "observamos" um átomo!



Computação quântica: explorar esses fatos para fazer computação





A MQ diz que quando medimos a energia de um átomo livre, podemos encontrar qualquer valor em um continuum







A MQ diz que quando medimos a energia de um átomo livre, podemos encontrar qualquer valor em um continuum



Até aqui nada de novo!

Coisas do dia-a-dia também se



Entretanto, quando medimos a energia de um átomo confinado, apenas certos valores discretos são observados







Entretanto, quando medimos a energia de um átomo confinado, apenas certos valores discretos são observados





Fisicamente isso é uma consequência da dualidade onda-partícula



Por isso, dizemos que a energia do átomo é quantizada





Mais ainda: experimentalmente, é possível confinar um átomo de tal maneira que só seja possível medir dois valores de energia





- Isto é, quando fazemos um experimento:
  - $\circ$  Se o resultado for  $E_1$ , descobrimos que o estado do átomo é  $|0\rangle$
  - $\circ$  Se o resultado for  $E_2$ , descobrimos que o estado do átomo é  $|1\rangle$



- Isto é, quando fazemos um experimento:
  - $\circ$  Se o resultado for  $E_1$ , descobrimos que o estado do átomo é  $|0\rangle$
  - $\circ$  Se o resultado for  $E_2$ , descobrimos que o estado do átomo é  $|1\rangle$
- É conveniente organizar estes dois estados como dois vetores ortogonais







Assim, quando observamos o átomo, ou ele colapsa no estado zero



ou ele colapsa no estado um





Princípio da superposição: antes de ser observado, o átomo pode estar em qualquer combinação linear de seu conjunto de estados acessíveis



Princípio da superposição: antes de ser observado, o átomo pode estar em qualquer combinação linear de seu conjunto de estados acessíveis

Por exemplo, antes de ser observado, o átomo de dois níveis pode estar no estado

Zero

 $\circ$  Um

Zero e um ao mesmo tempo





Princípio da superposição: antes de ser observado, o átomo pode estar em qualquer combinação linear de seu conjunto de estados acessíveis

Por exemplo, antes de ser observado, o átomo de dois níveis pode estar no estado

Zero

O Um

Zero e um ao mesmo tempo





Princípio da superposição: antes de ser observado, o átomo pode estar em qualquer combinação linear de seu conjunto de estados acessíveis

- Por exemplo, antes de ser observado, o átomo de dois níveis pode estar no estado
  - Zero
  - o Um
  - Zero e um ao mesmo tempo!





Mas sabemos que apenas um valor de energia é medido

O que acontece então?

Antes de medir:

$$|q
angle = a|0
angle + b|1
angle$$
  $|0
angle$ 



Mas sabemos que apenas um valor de energia é medido

O que acontece então?

#### Antes de medir:



#### Medição











Mas sabemos que apenas um valor de energia é medido

O que acontece então?

#### Antes de medir:









A medição **destrói** a superposição!

#### Medições



 Suponha agora que um átomo de vários níveis está no seguinte estado superposto

$$|\psi
angle = a_0|0
angle + a_1|1
angle + a_2|2
angle + a_3|3
angle + \ldots$$

#### Medições



 Suponha agora que um átomo de vários níveis está no seguinte estado superposto

$$|\psi
angle = a_0|0
angle + a_1|1
angle + a_2|2
angle + a_3|3
angle + \ldots$$

- Sabemos que uma medição destrói a superposição
  - O Mas destrói como exatamente?



### Medições



 Suponha agora que um átomo de vários níveis está no seguinte estado superposto

$$|\psi
angle = a_0|0
angle + a_1|1
angle + a_2|2
angle + a_3|3
angle + \ldots$$

Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  com probabilidade  $\ket{a_i}^2$ 



Regra de Born: a medição colapsa o átomo no estado |i
angle com

probabilidade  $\left|a_i
ight|^2$ 

$$|1
angle$$
  $|q
angle=\sqrt{rac{2}{3}}|0
angle+\sqrt{rac{1}{3}}|1
angle$   $|0
angle$ 



Regra de Born: a medição colapsa o átomo no estado |i
angle comprobabilidade  $|a_i|^2$ 







Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  com

probabilidade  $\left|a_i
ight|^2$ 

$$|1
angle |q
angle = rac{1}{\sqrt{2}}|0
angle + rac{1}{\sqrt{2}}|1
angle |0
angle$$



Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  comprobabilidade  $\ket{a_i}^2$ 







Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  com

probabilidade  $\left|a_i
ight|^2$ 

$$|q
angle = a|0
angle + b|1
angle$$
  $|0
angle$ 



Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  com probabilidade  $\ket{a_i}^2$ 







Regra de Born: a medição colapsa o átomo no estado |i
angleprobabilidade  $\left|a_i
ight|^2$ 

Antes de medir:





É por isso que dizemos que a Mo é probabilística!





Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  comprobabilidade  $\ket{a_i}^2$ 

 Importante: como "medir o estado i" é um evento mutuamente excludente com "medir o estado j" (i ≠ j), e a soma de todas as probabilidades deve ser 1, temos a seguinte condição:

$$\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{N}\right|^{2}=1$$



Regra de Born: a medição colapsa o átomo no estado  $\ket{i}$  com probabilidade  $\ket{a_i}^2$ 

 Importante: como "medir o estado i" é um evento mutuamente excludente com "medir o estado j" (i ≠ j), e a soma de todas as probabilidades deve ser 1, temos a seguinte condição:

$$|a_1|^2 + |a_2|^2 + \ldots + |a_N|^2 = 1$$

Vetores de estado devem ser normalizados!

# Regras básicas da MQ



#### Resumo da ópera

1. Átomos podem estar em uma superposição de estados



### Regras básicas da MQ



#### Resumo da ópera

- 1. Átomos podem estar em uma superposição de estados
- 2. Medições destroem essa superposição segundo a regra de Born







Logo mais aprenderemos a simular qubits e medições usando Qiskit!

```
In [11]: from qiskit import QuantumCircuit

qc = QuantumCircuit(1, 1) # Criando um circuito de 1 qubit e 1 bit
qc.h(0) # Pondo o qubit em uma superposição

qc.measure(0, 0) # Medindo o estado do qubit e armazenando no bit
qc.draw('mpl')

Out[11]:
Out[11]:
```





Logo mais aprenderemos a simular qubits e medições usando Qiskit!

# Circuitos de 1 qubit (prévia)



Logo mais aprenderemos a simular qubits e medições

usando Qiskit!

```
In [12]: from giskit import Aer, execute
         from giskit.visualization import plot distribution
         # Simulando o circuito criado como em um computador quântico sem ruído
         backend = Aer.get_backend('aer_simulator')
         job = execute(qc, backend, shots = 1024)
         result = job.result()
         counts = result.get counts()
         # Plotando um histograma de probabilidades
         plot distribution(counts)
Out[12]:
                                                                       0.51
                               0.49
              0.45
          Quasi-probability
             0.15
              0.00
```



- Uma maneira muito útil de se representar o estado de um qubit é a esfera de Bloch
- ullet Colocamos os estados |0
  angle e |1
  angle ao longo do ullet eixo z de uma esfera







- Uma maneira muito útil de se representar o estado de um qubit é a esfera de Bloch
- Os estados  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$  e  $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$  ficam ao longo do eixo x







- Uma maneira muito útil de se representar o estado de um qubit é a esfera de Bloch
- Os estados  $|+i\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)$  e  $|-i\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)$  ficam ao longo do eixo y







Podemos representar um sistema de vários qubits em várias esferas de Bloch





Suponha então que fazemos o seguinte experimento:

**I.** Preparamos 5 qubits, cada um no estado superposto  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ 



Estado conjunto:  $|+\rangle|+\rangle|+\rangle|+\rangle$ 



Suponha então que fazemos o seguinte experimento:

- **I.** Preparamos 5 qubits, cada um no estado superposto  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- II. Medimos cada qubit



Estado conjunto:  $|+\rangle|+\rangle|+\rangle|+\rangle$ 

Estado conjunto: |1
angle |0
angle |1
angle |1
angle



Suponha então que fazemos o seguinte experimento:

- I. Preparamos 5 qubits, cada um no estado superposto  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- II. Medimos cada qubit



Estado conjunto:  $|+\rangle|+\rangle|+\rangle|+\rangle$ 

Resultado: geramos o número binário 10011!!

= 38, em decímais

Estado conjunto: |1
angle |0
angle |0
angle |1
angle |1
angle





ullet Mas **cuidado**: cada qubit colapsa em  $|0\rangle$  ou  $|1\rangle$  com uma certa **probabilidade** 



Estado conjunto:  $|+\rangle|+\rangle|+\rangle|+\rangle$ 

Estado conjunto: |1
angle |0
angle |0
angle |1
angle |1
angle

Qiskit | Fall Fest 2023



- ullet Mas **cuidado**: cada qubit colapsa em |0
  angle ou |1
  angle com uma certa **probabilidade**
- Logo, se repetimos o mesmo experimento, o resultado pode ser outro número binário de 5 dígitos



Estado conjunto:  $|+\rangle|+\rangle|+\rangle|+\rangle$ 

Resultado: geramos o número binário 11010!!

= 50, em decimais

Estado conjunto: |1
angle |1
angle |0
angle |1
angle |0
angle





- Para gerar todas as possibilidades podemos repetir o experimento um número muito grande de vezes (1000 por ex.)
  - Experimentalmente, isso pode ser feito em frações de segundos!



Estado conjunto:  $|+\rangle|+\rangle|+\rangle|+\rangle$ 

Resultado: geramos o número binário 11010!!

= 50, em decimais

Estado conjunto: |1
angle |1
angle |0
angle |1
angle |0
angle





- Suponha então que queremos calcular as seguintes operações
  - 0 100 + 111
  - 0 101 + 101
  - o 100 + 110



- Suponha então que queremos calcular as seguintes operações
  - 0 100 + 111
  - o 101 + 101
  - o 100 + 110
- Um computador clássico procederia gerando cada número e fazendo uma operação de cada vez



- Suponha então que queremos calcular as seguintes operações
  - 0 100 + 111
  - o 101 + 101
  - o 100 + 110
- Um computador clássico procederia gerando cada número e fazendo uma operação de cada vez
- Um computador quântico poderia proceder da seguinte forma:





- Suponha então que queremos calcular as seguintes operações
  - o 100 + 111
  - o 101 + 101
  - o 100 + 110
- Um computador clássico procederia gerando cada número e fazendo uma operação de cada vez
- Um computador quântico poderia proceder da seguinte forma:







- Suponha então que queremos calcular as seguintes operações
  - 0 100 + 111
  - o 101 + 101
  - o 100 + 110
- Um computador clássico procederia gerando cada número e fazendo uma operação de cada vez
- Um computador quântico poderia proceder da seguinte forma:







- Suponha então que queremos calcular as seguintes operações
  - o 100 + 111
  - o 101 + 101
  - o 100 + 110
- Um computador clássico procederia gerando cada número e fazendo uma operação de cada vez
- Um computador quântico poderia proceder da seguinte forma:





- Suponha então que queremos calcular as seguintes operações
  - 0 100 + 111
  - o 101 + 101
  - o 100 + 110
- Um computador clássico procederia gerando cada número e fazendo uma operação de cada vez
- Um computador quântico poderia proceder da seguinte forma:



Entretanto, um computador clássico realizaria este exemplo de maneira suficientemente eficiente.

Logo, não há nenhuma grande vantagem em utilizar um computador quântico.







$$|q_0
angle=rac{1}{\sqrt{2}}(|0
angle+|1
angle)$$



$$|q_1
angle=|1
angle$$



$$|q_1
angle=|1
angle$$
  $|q_2
angle=\sqrt{rac{2}{3}}|0
angle+\sqrt{rac{1}{3}}|1
angle$ 





$$|q_2q_1q_0
angle=|q_2
angle|q_1
angle|q_0
angle$$





$$egin{aligned} ig|q_2q_1q_0ig
angle &= ig|q_2ig
angleig|q_1ig
angleig|q_0ig
angle \ &= ig(\sqrt{rac{2}{3}}ig|0
angle + \sqrt{rac{1}{3}}ig|1
angleig).ig|1
angle.rac{1}{\sqrt{2}}(ig|0
angle + ig|1
angle) \end{aligned}$$





$$egin{aligned} ig|q_2q_1q_0ig> &= ig|q_2ig>ig|q_1ig>ig|q_0ig> \ &= ig(\sqrt{rac{2}{3}}|0
angle + \sqrt{rac{1}{3}}|1
angleig).\ket{1}.rac{1}{\sqrt{2}}(\ket{0}+\ket{1}) \ &= ig(\sqrt{rac{2}{3}}|0
angle\ket{1}+\sqrt{rac{1}{3}}|1
angle\ket{1}.rac{1}{\sqrt{2}}(\ket{0}+\ket{1}) \end{aligned}$$





$$egin{aligned} ig|q_2q_1q_0ig> &= ig|q_2ig> ig|q_1ig> ig|q_0ig> \ &= ig(\sqrt{rac{2}{3}}ig|0ig> + \sqrt{rac{1}{3}}ig|1ig> ig). ig|1ig>. ig>. ig|1ig>. ig>. ig>. ig|1ig>. ig>. ig>.$$



Podemos organizar o estado de um sistema de vários qubits "multiplicando" cada estado linearmente



$$|q_0
angle=rac{1}{\sqrt{2}}(|0
angle+|1
angle)$$



$$|q_1
angle=|1
angle$$



$$|q_2
angle=\sqrt{rac{2}{3}}|0
angle+\sqrt{rac{1}{3}}|1
angle$$

Convenção do Qiskit 
$$|q_2q_1q_0
angle = |q_2
angle|q_1
angle|q_0
angle = \left(\sqrt{rac{2}{3}}|0
angle + \sqrt{rac{1}{3}}|1
angle|.|1
angle. \frac{1}{\sqrt{2}}(|0
angle + |1
angle) = \left(\sqrt{rac{2}{3}}|0
angle|1
angle + \sqrt{rac{1}{3}}|1
angle|1
angle. \frac{1}{\sqrt{2}}(|0
angle + |1
angle) = \sqrt{rac{1}{3}}|0
angle|1
angle|1
angle |0
angle + \sqrt{rac{1}{3}}|0
angle|1
angle|1
angle + \frac{1}{\sqrt{6}}|1
angle|1
angle|1
angle$$



 Podemos organizar o estado de um sistema de vários qubits "multiplicando" cada estado linearmente



$$\begin{split} \left|q_2 q_1 q_0\right\rangle &= \left|q_2\right\rangle \left|q_1\right\rangle \left|q_0\right\rangle \\ &= \left(\sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{1}{3}}|1\rangle\right) . \left|1\rangle . \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ &= \left(\sqrt{\frac{2}{3}}|0\rangle |1\rangle + \sqrt{\frac{1}{3}}|1\rangle |1\rangle\right) . \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ &= \sqrt{\frac{1}{3}}|010\rangle + \sqrt{\frac{1}{3}}|011\rangle + \frac{1}{\sqrt{6}}|110\rangle + \frac{1}{\sqrt{6}}|111\rangle \end{split}$$



• De maneira geral, o estado composto de um sistema de N qubits nos estados  $|q_0\rangle$ ,  $|q_1\rangle$ ,  $|q_2\rangle$ , ...,  $|q_N\rangle$ é dado por

$$|q_N
angle \ldots |q_2
angle |q_1
angle |q_0
angle \equiv |q_N\ldots q_2q_1q_0
angle$$



A "ordem reversa" é uma convenção

#### Por exemplo:

$$|q_0
angle=rac{1}{\sqrt{2}}(|0
angle+|1
angle) \ igodots |q_1
angle=|1
angle \ |q_1q_0
angle=rac{1}{\sqrt{2}}(|01
angle+|11
angle)$$



• De maneira geral, o estado composto de um sistema de N qubits nos estados  $|q_0\rangle$ ,  $|q_1\rangle$ ,  $|q_2\rangle$ , ...,  $|q_N\rangle$ é dado por

$$|q_N
angle \ldots |q_2
angle |q_1
angle |q_0
angle \equiv |q_N\ldots q_2q_1q_0
angle$$



• De maneira geral, o estado composto de um sistema de N qubits nos estados  $|q_0\rangle$  ,  $|q_1\rangle$  ,  $|q_2\rangle$  , ...,  $|q_N\rangle$  é dado por

$$|q_N
angle \ldots |q_2
angle |q_1
angle |q_0
angle \equiv |q_N\ldots q_2q_1q_0
angle$$



A "ordem reversa" é uma convenção



A generalização da regra de Born é intuitiva:





Probabilidade ⅓ de medir 010

Probabilidade ⅓ de medir 011

% de medir 110

Probabilidade Probabilidade % de medir 111



 Uma das coisas mais malucas da MQ é que existem certos vetores de estado de sistemas compostos que não são separáveis



- Uma das coisas mais malucas da MQ é que existem certos vetores de estado de sistemas compostos que não são separáveis
- Como assim?
  - Considere, por exemplo, um sistema de dois qubits no estado

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$



- Uma das coisas mais malucas da MQ é que existem certos vetores de estado de sistemas compostos que não são separáveis
- Como assim?
  - Considere, por exemplo, um sistema de dois qubits no estado

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

Agora tente encontrar a, b, c e d tais que

$$rac{1}{\sqrt{2}}(|00
angle+|11
angle)=(a|0
angle+b|1
angle)(c|0
angle+d|1
angle)$$



- Uma das coisas mais malucas da MQ é que existem certos vetores de estado de sistemas compostos que não são separáveis
- Como assim?
  - Considere, por exemplo, um sistema de dois qubits no estado

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

Agora tente encontrar a, b, c e d tais que

Agora tente encontrar a, b, c e d tais que 
$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})=(a\ket{0}+b\ket{1})(c\ket{0}+d\ket{1}) \longrightarrow egin{cases} ac=rac{1}{\sqrt{2}}\ ad=0\ bc=0\ bd=rac{1}{\sqrt{2}} \end{cases}$$

$$egin{array}{l} ac-\overline{\sqrt{2}}\ ad=0\ bc=0 \end{array}$$



- Uma das coisas mais malucas da MQ é que existem certos vetores de estado de sistemas compostos que não são separáveis
- Como assim?
  - Considere, por exemplo, um sistema de dois qubits no estado

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

Agora tente encontrar a, b, c e d tais que

Agora tente encontrar a, b, c e d tais que 
$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=(a|0\rangle+b|1\rangle)(c|0\rangle+d|1\rangle) \longrightarrow \begin{cases} ac=\frac{1}{\sqrt{2}}\\ad=0\\bc=0\\bd=\frac{1}{\sqrt{2}} \end{cases}$$
 Sistema sem solução!  $bd=\frac{1}{\sqrt{2}}$ 

$$egin{aligned} ac &= rac{1}{\sqrt{2}} \ ad &= 0 \ bc &= 0 \ bd &= rac{1}{\sqrt{2}} \end{aligned}$$



ullet Conclusão: não existem estados  $|q_0
angle$  ,  $|q_1
angle$  tais que

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})=\ket{q_1}\ket{q_0}$$





ullet Conclusão: não existem estados  $|q_0
angle$  ,  $|q_1
angle$  tais que

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})=\ket{q_1}\ket{q_0}$$

 Em outras palavras, não existe o estado de cada qubit separadamente. Os dois qubits estão emaranhados





ullet Conclusão: não existem estados  $|q_0
angle$  ,  $|q_1
angle$  tais que

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})\,=\ket{q_1}\ket{q_0}$$

 Em outras palavras, não existe o estado de cada qubit separadamente. Os dois qubits estão emaranhados





Os exemplos mais famosos de estados emaranhados são os estados de Bell

$$|\Phi_{+}
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle) \hspace{1.5cm} |\Psi_{+}
angle=rac{1}{\sqrt{2}}(|01
angle+|10
angle)$$

$$|\Phi_{-}
angle=rac{1}{\sqrt{2}}(|00
angle-|11
angle) \hspace{1.5cm} |\Psi_{-}
angle=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$





Os exemplos mais famosos de estados emaranhados são os estados de Bell

$$|\Phi_{+}
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle) \hspace{1.5cm} |\Psi_{+}
angle=rac{1}{\sqrt{2}}(|01
angle+|10
angle)$$

$$|\Phi_{-}
angle=rac{1}{\sqrt{2}}(|00
angle-|11
angle) \hspace{1.5cm} |\Psi_{-}
angle=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

- Aplicações mais importantes:
  - Teleporte quântico (possível simular com Qiskit)
  - Criptografia
  - Computação quântica! Yey!



- Bits vs Qubits
  - Bit: 0, 1
  - Qubit: 0, 1, qualquer combinação linear de 0 e 1



- Bits vs Qubits
  - o Bit: 0, 1
  - Qubit: 0, 1, qualquer combinação linear de 0 e 1
- Sistemas quânticos podem estar em estados superpostos

$$|\psi
angle = a_0|0
angle + a_1|1
angle + a_2|2
angle + a_3|3
angle + \ldots$$



- Bits vs Qubits
  - o Bit: 0, 1
  - Qubit: 0, 1, qualquer combinação linear de 0 e 1
- Sistemas quânticos podem estar em estados superpostos

$$|\psi
angle = a_0|0
angle + a_1|1
angle + a_2|2
angle + a_3|3
angle + \ldots$$

Regra de Born: a medição colapsa o sistema no estado |i
angle com probabilidade  $|a_i|^2$ 

Ex. 
$$|q
angle=rac{1}{\sqrt{2}}|0
angle+rac{1}{\sqrt{2}}|1
angle$$

Ex. 
$$|q\rangle=rac{1}{\sqrt{2}}|0
angle+rac{1}{\sqrt{2}}|1
angle \qquad |0
angle ext{ Com probabilidade } \left|rac{1}{\sqrt{2}}\right|^2=rac{1}{2}$$

$$\left|1
ight
angle$$
 Com probabilidade  $\left|rac{1}{\sqrt{2}}
ight|^2=rac{1}{2}$ 



Sistemas compostos podem estar em estados emaranhados!



# Thank you

