# The Vector Space Model

Debapriyo Majumdar Indian Statistical Institute debapriyo@isical.ac.in

# Basics of Ranking

- Boolean retrieval models simply return documents satisfying the Boolean condition(s)
  - Among those, are all documents equally "good"?
  - No
- Case: single term query
  - Not all documents containing the term are equally associated with that term
- From Boolean model to term weighting
  - Weight of a term in a document is 1 or 0 in Boolean model
  - Use more granular term weighting
- Weight of a term in a document: represent how much the term is important in the document and vice versa

# Term weighting — TF.iDF

- How important is a term t in a document d
- Intuition 1: More times a term is present in a document, more important it is
  - Term frequency (TF)
- Intuition 2: If a term is present in many documents, it is less important particularly to any one of them
  - Document frequency (DF)
- Combining the two: TF.iDF (term frequency × inverse document frequency)
  - Many variants exist for both TF and DF

# Formulation of term frequency (TF)

- 1. Simplest term frequency: Number of times a term t occurs in a document d: freq(t, d)
  - If a term a is present 10 times, b is present 2 times, is a 5 times more important than b in that document?
  - No, importance does not grow linearly with frequency
- 2. Logarithmically scaled frequency:  $1 + \log(\text{freq}(t, d))$ , or even  $1 + \log(1 + \log(\text{freq}(t, d)))$ 
  - Still, long documents on same topic would have the more frequency for the same terms
- 3. Augmented frequency: avoid bias towards longer documents

Half the score for just being present

$$TF(t,d) = 0.5 + \frac{0.5 \times \text{freq}(t,d)}{\max\{\text{freq}(w,d) \mid w \in d\}}$$
Rest is a function of frequency

for all t in d; 0 otherwise

# (Inverse) document frequency (iDF)

Inverse document frequency of a term t

$$iDF(t) = log \left[ \frac{N}{DF(t)} \right],$$

where N = total number of documents

DF(t) = number of documents in which t occurs

### Distribution of terms

**2** Zipf's law: Let  $T = \{t_1, ..., t_m\}$  be the terms, sorted by decreasing order of the number of documents in which they occur. Then

$$\mathrm{DF}(t_i) \propto \frac{1}{i}$$

• In other words,  $\log \mathrm{DF}(t_i) = \log c + (-1) \cdot \log i$  for some constant c



Zipf's law fitting for Reuter's RCV1 collection

# Vector space model

|             | $d_1$ | $d_2$ | $d_3$ | $d_4$ | $d_5$ | q |
|-------------|-------|-------|-------|-------|-------|---|
| diwali      | 0.5   | 0     | 0     | 0     | 0     |   |
| india       | 0.2   | 0.2   | 0     | 0.2   | 0.1   | 1 |
| flying      | 0     | 0.4   | 0     | 0     | 0     |   |
| population  | 0     | 0     | 0     | 0.5   | 0     |   |
| autumn      | 0     | 0     | 1     | 0     | 0     |   |
| statistical | 0     | 0.3   | 0     | 0     | 0.2   | 1 |

- Vector similarity: inverse of "distance"
- Euclidean distance?

Each term represents a dimension

Documents are vectors in the term-space

Term-document matrix: a very sparse matrix

Entries are scores of the terms in the documents (Boolean  $\rightarrow$  Count  $\rightarrow$  Weight)

Query is also a vector in the term-space

## Problem with Euclidean distance



### Problem

- Topic-wise  $d_3$  is closer to  $d_1$  than  $d_2$  is
- Euclidean distance wise  $d_2$  is closer to  $d_1$

Dot product seems to solves this problem

# Vector space model

|             | $d_1$ | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $\boldsymbol{q}$ |
|-------------|-------|-------|-------|-------|-------|------------------|
| diwali      | 0.5   | 0     | 0     | 0     | 0     |                  |
| india       | 0.2   | 0.2   | 0     | 0.2   | 0.1   | 1                |
| flying      | 0     | 0.4   | 0     | 0     | 0     |                  |
| population  | 0     | 0     | 0     | 0.5   | 0     |                  |
| autumn      | 0     | 0     | 1     | 0     | 0     |                  |
| statistical | 0     | 0.3   | 0     | 0     | 0.2   | 1                |
| $q^T d$     | 0.2   | 0.5   | 0     | 0.2   | 0.3   |                  |

Vector similarity: dot product

$$sim(q,d) = q^T d$$

Each term represents a dimension

Documents are vectors in the term-space

Term-document matrix: a very sparse matrix

Entries are scores of the terms in the documents (Boolean  $\rightarrow$  Count  $\rightarrow$  Weight)

Query is also a vector in the term-space

# Problem with dot product

# Term 2 $d_2 \longrightarrow d_3$ Term 1

### Problem

- Topic-wise  $d_2$  is closer to  $d_1$  than  $d_3$  is
- Dot product of  $d_3$  and  $d_1$  is greater because of the length of  $d_3$
- Consider angle
  - Cosine of the angle between two vectors
  - Same direction: 1 (similar)
  - Orthogonal: 0 (unrelated)
  - Opposite direction: -1 (opposite)

# Vector space model

|             | $d_1$ | $d_2$ | $d_3$ | $d_4$ | $d_5$ | $\boldsymbol{q}$ |
|-------------|-------|-------|-------|-------|-------|------------------|
| diwali      | 0.5   | 0     | 0     | 0     | 0     |                  |
| india       | 0.2   | 0.2   | 0     | 0.2   | 0.1   | 1                |
| flying      | 0     | 0.4   | 0     | 0     | 0     |                  |
| population  | 0     | 0     | 0     | 0.5   | 0     |                  |
| autumn      | 0     | 0     | 1     | 0     | 0     |                  |
| statistical | 0     | 0.3   | 0     | 0     | 0.2   | 1                |

Each term represents a dimension

Documents are vectors in the term-space

Term-document matrix: a very sparse matrix

Entries are scores of the terms in the documents (Boolean  $\rightarrow$  Count  $\rightarrow$  Weight)

Query is also a vector in the term-space

$$\sin_{\cos}(q, d) = \cos(\theta_{q, d}) = \frac{q^T d}{\|q\| \|d\|}$$

# References

<u>Christopher D. Manning</u>, <u>Prabhakar Raghavan</u> and <u>Hinrich Schütze</u>. "<u>Introduction to Information</u>
 <u>Retrieval</u>", Cambridge University Press. 2008.