Musterlösung zum 1. Übungstest

Aufgabe 1: (4 Punkte)

Betrachten Sie das folgende Cauchy-Problem:

$$uu_x + u_y = 2$$
 für $(x, y) \in \mathbb{R}^2$,
 $u(x, y) = x$ auf $x = y$.

- (i) Bestimmen Sie die Charakteristiken (x(s,t),y(s,t)). (2 Punkte)
- (ii) Geben Sie (wo möglich) eine Lösung für das Cauchy-Problem an. (2 Punkte)
- (i) Das charakteristische System lautet

$$\frac{dx}{ds} = u, \quad \frac{dy}{ds} = 1, \quad \frac{du}{ds} = 2$$

 $x(0,t) = t, \ y(0,t) = t, \ u(0,t) = t$

Dadurch ergibt sich

$$u(s,t) = 2s + t, \quad y(s,t) = s + t.$$

Einsetzen in die Differentialgleichung für x ergibt

$$\frac{dx}{ds} = 2s + t.$$

Integrieren und Einsetzen der Anfangsbedingung führt auf

$$x(s,t) = s^2 + st + t.$$

(ii) Nach s und t auflösen ergibt für $y \neq 1$

$$s = \frac{x - y}{y - 1},$$
$$t = \frac{y^2 - x}{y - 1},$$

und daher die gesuchte Lösung

$$u(x,y) = \frac{y^2 - 2y + x}{y - 1}.$$

Aufgabe 2: (4 Punkte)

- (i) Sei $\phi \in \mathcal{D}(\mathbb{R})$.
 - (a) Zeigen Sie, dass durch $(\sin(x)x^2 + \exp(x^3))\delta'$ ein Element aus $\mathcal{D}'(\mathbb{R})$ definiert ist. (0,5 Punkte)
 - (b) Sei $\phi_n(x) = \phi(x + \frac{1}{n})$ für $n \in \mathbb{N}$. Zeigen Sie, dass $(\phi_n \phi) \to 0$ in $\mathcal{D}(\mathbb{R})$. (1,5 Punkte)
 - (c) Berechnen Sie

$$\lim_{n \to \infty} \langle (\sin(x)x^2 + \exp(x^3))\delta', \phi_n - \phi \rangle.$$

(1 Punkt)

- (ii) Sei $H: \mathbb{R} \to \mathbb{R}$, H(x) = 0 für $x \leq 0$, H(x) = 1 für x > 0 die Heaviside Funktion. Berechnen Sie die erste Ableitung von $H(x) \exp(x)$ im distributionellen Sinn. (1 Punkt)
- (i) (a) Die Funktion $f: x \mapsto (\sin(x)x^2 + \exp(x^3))$ liegt in $C^{\infty}(\mathbb{R})$, δ' ist als Ableitung einer Distribution wiederum eine Distribution, damit ist auch das Produkt $f\delta'$ in $\mathcal{D}'(\mathbb{R})$.
 - (b) Für die Konvergenz in $\mathcal{D}(\mathbb{R})$ müssen die folgenden zwei Bedingungen gezeigt werden:
 - (A) $\exists K \subset \mathbb{R}$ kompakt sodass supp $(\phi_n \phi) \subset K$ für alle $n \in \mathbb{N}$.
 - (B) Für alle $k \in \mathbb{N}_0$ gilt

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |(\phi_n - \phi)^{(k)}(x)| = 0.$$

Da $\phi \in \mathcal{D}(\mathbb{R})$ existiert eine kompakte Menge K_{ϕ} sodass supp $\phi \subset K_{\phi}$. Für ϕ_n gilt, dass supp $\phi_n = \text{supp } \phi - \frac{1}{n}$. Seien $a, b \in \mathbb{R}$ so, dass $K_{\phi} \subset [a, b]$, dann ist (A) für K = [a-1, b] erfüllt.

Es gilt $\phi_n^{(k)}(x) = \phi^{(k)}(x + \frac{1}{n})$, und unter Verwendung des Mittelwertsatzes $\phi_n^{(k)}(x) - \phi^{(k)}(x) = \phi^{(k+1)}(\xi(x))\frac{1}{n}$. Damit folgt

$$\sup_{x \in \mathbb{R}} |(\phi_n - \phi)^{(k)}(x)| \le \frac{1}{n} \cdot \sup_{x \in \mathbb{R}} |\phi^{(k+1)}(x)| \to 0,$$

für alle $k \in \mathbb{N}_0$.

- (c) Per Definition sind Distributionen stetig bezüglich der Konvergenz in $\mathcal{D}(\mathbb{R})$, also ist das Ergebnis 0.
- (ii) Für $\phi \in \mathcal{D}(\mathbb{R})$ gilt

$$\langle (H \cdot \exp)', \phi \rangle = -\langle H \cdot \exp, \phi' \rangle = -\int_0^\infty \exp(x)\phi'(x)dx = \phi(0) + \int_0^\infty \exp(x)\phi(x)dx,$$

wobei die letzte Gleichheit aus partieller Integration und dem kompakten Träger von ϕ folgt. Damit gilt $(H \cdot \exp)' = \delta + H \cdot \exp$ in $\mathcal{D}'(\mathbb{R})$.

Aufgabe 3: (4 Punkte) Betrachten Sie die Folge von Funktionen

$$f_n(x) = \begin{cases} n & \text{für } 0 < x < \frac{1}{n}, \\ 0 & \text{sonst.} \end{cases}$$

- (i) Bestimmen Sie den Grenzwert $\lim_{n\to\infty}f_n$ in $\mathcal{D}'(\mathbb{R}).$ (2 Punkte)
- (ii) Existiert der Grenzwert $\lim_{n\to\infty}f_n^2$ in $\mathcal{D}'(\mathbb{R})?$ (2 Punkte)
- (i) Sei $\phi \in \mathcal{D}(\mathbb{R})$, dann gilt

$$\langle f_n, \phi \rangle = n \int_0^{1/n} \phi(x) dx = \int_0^1 \phi\left(\frac{y}{n}\right) dy.$$

Der Integrand besitzt die integrierbare Majorante $\|\phi\|_{\infty}$, damit kann nach dem Satz von Lebesgue Limes und Integration vertauscht werden. Es folgt

$$\langle f_n, \phi \rangle \to \int_0^1 \phi(0) dy = \phi(0) = \langle \delta, \phi \rangle.$$

Dies gilt für alle $\phi \in \mathcal{D}(\mathbb{R})$, daher ist der gesuchte Grenzwert die Delta-Distribution.

(ii) Sei $\phi \in \mathcal{D}(\mathbb{R})$ mit $\phi(x) \equiv 1$ für $x \in (0,1)$. Dann gilt

$$\langle f_n^2, \phi \rangle = n^2 \int_0^{1/n} \phi(x) dx = n^2 \cdot \frac{1}{n} = n \to \infty,$$

also existiert der Grenzwert nicht.

Aufgabe 4: (6 Punkte)

Betrachten Sie den Differentialoperator

$$Lu := \frac{du}{dx} + \frac{x}{2}u$$
 für $u \in \mathcal{D}(\mathbb{R})$.

(i) Geben Sie eine Bedingung an die Konstanten $a, b \in \mathbb{R}$ an, sodass durch die Funktion

$$U_{\xi}(x) = \begin{cases} a \cdot u_{hom}(x) & \text{für } x < \xi, \\ b \cdot u_{hom}(x) & \text{für } x > \xi, \end{cases}$$

eine Fundamentallösung von L mit Pol an $\xi \in \mathbb{R}$ definiert wird, wobei u_{hom} die Lösung der homogenen Differentialgleichung Lu = 0 ist. (3 Punkte)

- (ii) Gilt der Zusammenhang $\tau_{-\xi}U_0 = U_{\xi}$? Falls nicht, warum ist dies kein Widerspruch zu dem aus der VO bekannten Resultat? (1 Punkt)
- (iii) Bestimmen Sie eine Greensche Funktion für den Differentialoperator L auf $\Omega = (-\infty, 0)$. (2 Punkte)
- (i) Die allgemeine Lösung der homogenen Gleichung Lu = 0 lautet $u_{hom}(x) = c \cdot \exp(-x^2/4)$ mit $c \in \mathbb{R}$. Damit U_{ξ} eine Fundamentallösung ist, muss $LU_{\xi} = \delta_{\xi}$ im distributionellen Sinn erfüllt sein. Wir berechnen also für $\phi \in \mathcal{D}(\mathbb{R})$

$$\langle LU_{\xi}, \phi \rangle = \langle U_{\xi}, L^* \phi \rangle$$

$$= a \int_{-\infty}^{\xi} \exp(-x^2/4)(-\phi'(x) + \frac{x}{2}\phi(x))dx + b \int_{\xi}^{\infty} \exp(-x^2/4)(-\phi'(x) + \frac{x}{2}\phi(x))dx$$

$$= -a \exp(-x^2/4)\phi(x) \Big|_{-\infty}^{\xi} - b \exp(-x^2/4)\phi(x) \Big|_{\xi}^{\infty}$$

$$= (b - a) \exp(-\xi^2/4)\phi(\xi) \stackrel{!}{=} \phi(\xi).$$

Daher ist U_{ξ} eine Fundamentallösung wenn $b = a + \exp(\xi^2/4)$.

(ii) Aus (i) folgt

$$\tau_{-\xi}U_0(x) = \begin{cases} a \cdot \exp(-x^2/4 + (x\xi)/2 - \xi^2/4) & \text{für } x < \xi, \\ (a+1) \cdot \exp(-x^2/4 + (x\xi)/2 - \xi^2/4) & \text{für } x > \xi. \end{cases}$$

Offensichtlich gilt also nicht $\tau_{-\xi}U_0 = U_{\xi}$, und $\tau_{-\xi}U_0$ ist keine Fundamentallösung. Dies steht nicht im Widerspruch zu dem Resultat aus der VO, da der Koeffizient x/2 in L nicht konstant ist.

(iii) Eine Greensche Funktion muss für alle $y \in \Omega = (-\infty, 0)$ erfüllen, dass

$$LG(\cdot, y) = \delta_y$$
 in Ω , $G(\cdot, y) = 0$ auf $\partial\Omega$.

Da G für jedes feste y eine Fundamentallösung mit Pol in y sein muss, verwenden wir den Ansatz $G(x,y)=U_y(x)$ und bestimmen die Konstante a so, dass die Randbedingung G(0,y)=0 erfüllt ist. Da y>0 gilt

$$G(0,y) = a + \exp(y^2/4) \stackrel{!}{=} 0,$$

woraus $a = -\exp(y^2/4)$ folgt. Die Greensche Funktion lautet also

$$G(x,y) = \begin{cases} -\exp((y^2 - x^2)/4) & \text{für } x < y, \\ 0 & \text{für } x > y. \end{cases}$$

Aufgabe 5: (2 Punkte)

Betrachten Sie das Randwertproblem

$$\Delta u = x^2 + y^2 + 5 \quad \text{für } (x,y) \in \Omega,$$

$$u(x,y) = \sin(x)x^2 + \exp(y^3) \quad \text{auf } \partial \Omega.$$

Zeigen Sie mit dem Maximumsprinzip für den Laplace-Operator, dass für $\Omega = B_1(0)$ (offene Einheitskreisscheibe) maximal eine klassische Lösung existiert. (2 Punkte)

Angenommen es existieren zwei klassische Lösungen des RWPs $u_1,u_2\in C^2(\Omega)\cap C^0(\overline{\Omega})$. Dann erfüllt $w:=u_1-u_2$ das RWP

$$\Delta w = 0 \quad \text{für } (x,y) \in \Omega,$$

$$w(x,y) = 0 \quad \text{auf } \partial \Omega.$$

Aus dem Maximumsprinzip für den Laplace-Operator folgt damit (da Ω beschränktes Gebiet, $w \in C^2(\Omega) \cap C^0(\overline{\Omega})$ und $\Delta w = 0$)

$$\sup_{(x,y)\in\Omega}w(x,y)=\sup_{(x,y)\in\partial\Omega}w(x,y)=0, \inf_{(x,y)\in\Omega}w(x,y)=\inf_{(x,y)\in\partial\Omega}w(x,y)=0,$$

und damit $w \equiv 0$, also $u_1 = u_2$.