高等資料探勘與巨 量資料處理

Performance Evaluation

(a) A 50:20:30 split

(b) A 40:20:40 split

Figure: Using a validation set to avoid overfitting in iterative machine learning algorithms.

k-fold cross validation

The division of data during the k-fold cross validation process. Black rectangles indicate test data, and white spaces indicate training data.

leave-one-out cross validation

Fold 1	
Fold 2	
Fold 3	
Fold 4	
Fold 5	
	•
Fold <i>k-2</i> [
Fold <i>k-1</i>	
Fold k	

Common Performance Measure for Classification

Table: A sample test set with model predictions.

ID	Target	Pred.	Outcome	ID	Target	Pred.	Outcome
1	spam	ham	FN	11	ham	ham	TN
2	spam	ham	FN	12	spam	ham	FN
3	ham	ham	TN	13	ham	ham	TN
4	spam	spam	TP	14	ham	ham	TN
5	ham	ham	TN	15	ham	ham	TN
6	spam	spam	TP	16	ham	ham	TN
7	ham	ham	TN	17	ham	spam	FP
8	spam	spam	TP	18	spam	spam	TP
9	spam	spam	TP	19	ham	ham	TN
10	spam	spam	TP	20	ham	spam	FP

For binary prediction problems there are 4 possible outcomes:

- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

		Prediction		
		'spam'	'ham'	
Torgot	'spam'	6	3	
Target	'ham'	2	9	

Table: The structure of a confusion matrix.

		Prediction positive negative		
Torgot	positive	TP	FN	
Target	negative	FP	TN	

classification accuracy =
$$\frac{(\textit{TP} + \textit{TN})}{(\textit{TP} + \textit{TN} + \textit{FP} + \textit{FN})}$$

classification accuracy
$$=\frac{(6+9)}{(6+9+2+3)}=0.75$$

			iction negative				Predi <i>'spam'</i>	
Target	positive negative	TP FP	FN TN	Та	rget	'spam' 'ham'	6 2	3 9

precision =
$$\frac{TP}{(TP + FP)} = \frac{6}{(6+2)} = 0.75$$

recall = $\frac{TP}{(TP + FN)} = \frac{6}{(6+3)} = 0.667$

$$F_1$$
-measure = $2 \times \frac{(precision \times recall)}{(precision + recall)}$

$$F_{1}\text{-measure} = 2 \times \frac{\left(\frac{6}{(6+2)} \times \frac{6}{(6+3)}\right)}{\left(\frac{6}{(6+2)} + \frac{6}{(6+3)}\right)} = 0.706$$

precision =
$$\frac{TP}{(TP + FP)} = \frac{6}{(6+2)} = 0.75$$

recall = $\frac{TP}{(TP + FN)} = \frac{6}{(6+3)} = 0.667$

		Prediction positive negative		
Target	positive	TP	FN	
	negative	FP	TN	

$$ext{TPR} = rac{TP}{(TP + FN)}$$
 $ext{TNR} = rac{TN}{(TN + FP)}$
 $ext{FPR} = rac{FP}{(TN + FP)}$
 $ext{FNR} = rac{FN}{(TP + FN)}$

TPR
$$= \frac{6}{(6+3)} = 0.667$$

TNR $= \frac{9}{(9+2)} = 0.818$
FPR $= \frac{2}{(9+2)} = 0.182$
FNR $= \frac{3}{(6+3)} = 0.333$

Let's compare the following two models for the same problem, which one is better?

		Prediction		
		'non-churn' 'churn		
Target	'non-churn'	90	0	
	'churn'	9	1	

		Prediction		
		'non-churn'	'churn'	
Target	'non-churn'	70	20	
	'churn'	2	8	

Use Simple Accuracy for a Reference?

average class accuracy =
$$\frac{1}{|levels(t)|} \sum_{l \in levels(t)} recall_l$$
 ?

Harmonic Mean

average class accuracy_{HM} =
$$\frac{1}{\frac{1}{|levels(t)|} \sum_{l \in levels(t)} \frac{1}{|recall_l|}}$$

$$\frac{1}{\frac{1}{2}\left(\frac{1}{1.0} + \frac{1}{0.1}\right)} = \frac{1}{5.5} = 18.2\%$$

$$\frac{1}{\frac{1}{2}\left(\frac{1}{0.778} + \frac{1}{0.800}\right)} = \frac{1}{1.268} = 78.873\%$$

What about the outcomes are not equally important?

Which one is better?

Model A

Model B

		Predic 'good'				Predic 'good'	
Target	'good'	57	3	Toract	'good'	43	17
	'bad'	10	30	Target	'bad'	3	37

Exercise: Please compute Average Class Accuracy in terms of Harmonic Mean?

Employ a profit matrix:

		Prediction positive negative		
Target	positive	TP _{Profit}	FN _{Profit}	
	negative	FP_{Profit}	TN_{Profit}	

The profit matrix for the pay-day loan credit scoring problem.

		Prediction 'good' 'bad'		
Target	'good'	140 -14		
	'bad'	-700	0	

Model A			Model B					
		Prediction 'good' 'bad'				Predic		
			Daa			'good'	Dad	_
Target	'good'	57	3	Target	'good'	43	17	
	'bad'	10	30		'bad'	3	37	

		Predic 'good'				Predic 'good'	
Target	'good'	57	3	Torget	'good'	7 980	-420
	'bad'	10	30	Target	'bad'	-7000	0
	Zuu		00		Profit		560

		Predic 'good'				Predic 'good'	tion 'bad'
Target	'good'	57	3	Target	'good'	6 020	-2380
	'bad'	10	30		'bad'	-2100	0
	Duu		00		Profit		1 540

Performance Measures: Multinomial Targets

ID	Target	Prediction	ID	Target	Prediction
1	durionis	fructosus	16	ficulneus	ficulneus
2	ficulneus	fructosus	17	ficulneus	ficulneus
3	fructosus	fructosus	18	fructosus	fructosus
4	ficulneus	ficulneus	19	durionis	durionis
5	durionis	durionis	20	fructosus	fructosus
6	pseudo.	pseudo.	21	fructosus	fructosus
7	durionis	fructosus	22	durionis	durionis
8	ficulneus	ficulneus	23	fructosus	fructosus
9	pseudo.	pseudo.	24	pseudo.	fructosus
10	pseudo.	fructosus	25	durionis	durionis
11	fructosus	fructosus	26	pseudo.	pseudo.
12	ficulneus	ficulneus	27	fructosus	fructosus
13	durionis	durionis	28	ficulneus	ficulneus
14	fructosus	fructosus	29	fructosus	fructosus
15	fructosus	ficulneus	30	fructosus	fructosus

Table: The structure of a confusion matrix for a multinomial prediction problem with *I* target levels.

		Prediction					Recall			
		level1	level2	level3	• • •	levell	necali			
	level1	-	-	-		-	-			
	level2	-	-	-		-	-			
Target	level3	-	-	-		-	-			
	:				٠		:			
	levell	-	-	-		-	-			
	Precision	-	-	-		-				

precision(I) =
$$\frac{TP(I)}{TP(I) + FP(I)}$$
$$recall(I) = \frac{TP(I)}{TP(I) + FN(I)}$$

			Recall			
		'durionis'				
	'durionis'	5	0	2	0	0.714
Torget	'ficulneus'	0	6	1	0	0.857
Target	'fructosus'	0	1	10	0	0.909
	'pseudo.'	0	0	2	3	0.600
	Precision	1.000	0.857	0.667	1.000	

$$\frac{1}{\frac{1}{4}\left(\frac{1}{0.714} + \frac{1}{0.857} + \frac{1}{0.909} + \frac{1}{0.600}\right)} = \frac{1}{1.333} = 75.000\%$$