Electrolysis-Agent-Report

System Architecture

The system is built using **n8n** and consists of the following components:

- 1. Webhook- Accepts free-text requests from users.
- 2. **Mistral API Integration** Sends the user's input to a hosted **LLM model** (e.g., Mistral) that interprets the request.
- 3. **Parse Mistral API Response** Extracts structured information from the LLM's response, including:
 - intent (either "predict_run" Or "summarize_best")
 - relevant numeric parameters such as voltage and temperature
- 4. **Switch** Directs the workflow based on the extracted intent.
- 5. **1.1 Prediction Branch** Implements a pre-trained linear regression model with fixed coefficients.
 - **2.1 HTTP Requestre** trieves a public CSV file of 50 experimental runs.
 - **2.2 Summarizer Branch** parses the CSV content by splitting the string into rows and columns, converting each row into a JSON object, identifying the row with the **highest efficiency_%**.
- 6. **Respond to Webhook** Returns JSON output to the user.

Electrolysis-Agent-Report 1

Linear Regression Model

★ Data Preprocessing Steps

- 1. Source: Dataset imported from external CSV URL.
- 2. Column Standardization: Renamed the following columns for consistency:
 - voltage_V → voltage
 temperature_°C → temperature
 efficiency_% → efficiency
 catalyst_mg/cm² → catalyst
- 3. Missing Data Handling: Dropped all rows with missing values using dropna().
- 4. Feature Selection:
 - Features used: voltage , temperature
 - Target variable: efficiency
- 5. Train-Test Split:
 - 80% training data, 20% test data
 - random_state=42 for reproducibility
- 6. Standardization:

• Input features were standardized using StandardScaler to ensure zero mean and unit variance.

7. Regression Model:

• Applied LinearRegression from scikit-learn wrapped in a pipeline.

Regression Model Performance

• **Model**: StandardScaler + LinearRegression

Test Set RMSE:

(Root Mean Squared Error on hold-out test set)

• Cross-Validation RMSE (5-Fold):

{cv_rmse.mean():.2f}

(Mean RMSE across 5 shuffled splits using K-Fold CV)

Model 1 (There is another model I try)

Test RMSE: 1.04

5-Fold CV RMSE: 0.87

• Coefficient Summary (Real Scale):

Term	Coefficient
Intercept	22.1581
Voltage	10.294
Temperature	0.1918

Example Inputs & Outputs

Prompt	Response
Predict run at 1.85V and 80C	{"prediction": "58.53%", "parameters": {"voltage": 1.85, "temperature": 80}}
Summarize the best efficiency run	{"best_experiment": {"voltage_V": 2.07, "efficiency_%": 62.2,}}
What is the expected efficiency at 1.7V and	[{"prediction": "51.17%", "parameters": {"voltage": 1.7, "temperature": 60}, "model_info": "Linear Regression

Electrolysis-Agent-Report 3

Prompt	Response
60°C?	(voltage & temp)"}]

Electrolysis-Agent-Report 4