CHAPTER - 19 THEORY OF PROBABILITY

JEE MAIN - SECTION I

1. Digits = 3, 3, 4, 4, 4, 5, 5

Total 7 digit numbers = $\frac{7!}{2!2!3!}$

Number of 7 digit number divisible by 2 Last digit = 4.

Γ				Ī		1			Г	4
3,	3	,	4	,	4	,	5	,	5	

Now 7 digit numbers which are divisible by 2

$$=\frac{6!}{2!2!2!}$$

Required probability =
$$\frac{\frac{6!}{2!2!2!}}{\frac{7!}{3!2!2!}} = \frac{3}{7}$$
.

2. C

W	M	No.of committees
4	0	$5C_4 \times 10C_0 = 5$
3	1	$5C_3 \times 10C_1 = 100$
2	2	$5C_2 \times 10C_2 = 450$
1	3	$5C_1 \times 10C_3 = 600$

Total number of committees = 1155

Number of favourable = 5+100=105

Brilliant STUDY CENTRE

3.
$$P(B/A \cup B') = \frac{P(A \cap (A \cup B'))}{P(A \cup B')} = -\frac{P(A \cap B)}{P(A) + P(B') - P(AB')}$$
$$= \frac{P(A) - P(AB')}{0.7 + 0.6 + 0.5} = \frac{0.7 - 0.5}{0.8} = \frac{1}{4}$$

4.
$$b^{2}-4ac = q^{2}-3q-4 \ge 0$$
$$(q+1)(q-4) \ge 0$$

Favourable $\Rightarrow -10 \le q \le 1 \cup 4 \le q \le 10$

$$P = \frac{17}{21}$$

Favourable

t	2	2	4	ລຸກ
2	3 8 5	2	3 07 5	3 or 5

No of favourable cases = 2ⁿ

$$P = \frac{2^n}{4^{2n-1}} = \frac{2^n}{2^{4n}} \times 4 = 4 \times 2^{-3n}$$

6. Total ways =
$${}^{2n+1}C_3 = \frac{(2n+1)\cdot 2n\cdot (2n-1)}{1\cdot 2\cdot 3} = \frac{n(4n^2-1)}{3}$$

Let the three numbers a,b,c are drawn, where a < b < c and given a,b and c are in AP.

$$\therefore 2b = a + c \qquad \dots (1)$$

It is clear from eqs. (1) that a and c both are odd or both are even.

:. Favourable ways =
$${}^{n+1}C_2 + {}^{n}C_2 = \frac{(n+1)n}{1 \cdot 2} + \frac{n(n-1)}{1 \cdot 2} = n^2$$

$$\therefore \text{ Required probability} = \frac{n^2}{\underline{n(4n^2 - 1)}} = \frac{3n}{(4n^2 - 1)}.$$

⇒ Statement-II is false,

In statement-I, $2n+1=21 \implies n=10$

: Required probability =
$$\frac{3 \times 10}{4(10)^2 - 1} = \frac{30}{399} = \frac{10}{133}$$

:. Statement-I is true

7.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.8 = 0.6 + 0.4 - P(A \cap B)$$

$$P(A \cap B) = 0.2$$

$$P(A \cup B \cup C) = \sum P(A) - \sum P(A \cap B) + P(A \cap B \cap C)$$

$$\alpha = 1.5 - (0.2 + 0.3 + \beta) + 0.2$$

$$\alpha = 1.2 - \beta \in [0.85, 0.95] \text{ (where } \alpha \in [0.85, 0.95])$$

$$\beta \in [0.25, 0.35].$$

8.
$$P_1 + P_2 + P_5 + P_6 = 1 - K$$

Brilliant STUDY CENTRE

$$P_{2} + P_{3} + P_{4} + P_{6} = 1 - 2K$$

$$P_{1} + P_{3} + P_{4} + P_{5} = 1 - K$$

$$P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} = \frac{(1 - K) + (1 - 2K) + (1 - K) + K^{2}}{2}$$

$$= \frac{2K^{2} - 4K + 3}{2} = \frac{2(K - 1)^{2} + 1}{2}$$

$$\frac{2K^{2} - 4K + 3}{2} = \frac{2(K - 1)^{2} + 1}{2}$$

$$=(K-1)^2+\frac{1}{2}>\frac{1}{2}$$

Since sum of two numbers is even so either both are odd or both are even. Hence number
of elements in reduced samples space

$$= {}^{5}C_{2} + {}^{6}C_{2}$$

So, required probability =
$$\frac{{}^5C_2}{{}^5C_2 + {}^6C_2}$$
.

Given E_1, E_2, E_3 are pairwise independent events

So,
$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$$
 and $P(E_2 \cap E_3) = P(E_2) \cdot P(E_3)$

and
$$P(E_3 \cap E_1) = P(E_3) \cdot P(E_1)$$
 and $P(E_1 \cap E_2 \cap E_3) = 0$

Now,
$$P\left(\frac{\overline{E}_2 \cap \overline{E}_3}{E_1}\right) = \frac{P[E_1 \cap (\overline{E}_2 \cap \overline{E}_3)]}{P(E_1)}$$

$$= \frac{P(E_1) - [P(E_1 \cap E_2) + P(E_1 \cap E_3) - P(E_1 \cap E_2 \cap E_3)]}{P(E_1)}$$

$$= \frac{P(E_1) - P(E_1) \cdot P(E_2) - P(E_1) P(E_3) - 0}{P(E_1)}.$$

$$= 1 - P(E_2) - P(E_3) = [1 - P(E_3)] - P(E_2) = P(E_3^C) - P(E_2)$$

- 11. 4 Required probability = P(first 9 items contains 3 defective) × P(10th item is defective) $\begin{bmatrix} {}^{9}C_{3} \times \frac{4}{15} \times \frac{3}{14} \times \frac{2}{13} \end{bmatrix} \times \left(\frac{1}{12}\right) = \left(\frac{9 \cdot 8 \cdot 7}{6} \times \frac{1}{15 \times 7 \times 13}\right) = \frac{4}{65}$
- 12. Probability that none of $A_1, A_2, ..., A_n$ occur $= P(\overline{A}_1 \cap \overline{A}_2 \cap \cap \overline{A}_n) = P(\overline{A}_1) \cdot P(\overline{A}_2) P(\overline{A}_n)$ $= [1 - P(A_1)][1 - P(A_2)] [1 - P(A_n)]$ $= \left[1 - \frac{1}{2}\right] \left[1 - \frac{1}{3}\right] \left[1 - \frac{1}{4}\right] \left[1 - \frac{1}{n+1}\right]$ $= \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) \left(\frac{3}{4}\right) \left(\frac{n}{n+1}\right) = \frac{n!}{(n+1)!}$
- - D = Defective G = Good
- Experiment will end in 5th throw

$$A = 4'4'4'44$$

 $B = 44'4'44$
 $C = 4'44'44$
 $A = face 4$
 $A' = face not 4$

$$P = P(A) + P(B) + P(C) = \frac{175}{6^5}$$

- 15. $P = \frac{4C_1 \times 4C_1 + 9C_1 \times 9C_1}{13C_1 \times 12C_1} = \frac{97}{169}$
- 16. 2 Mean = $E(x) = \sum x_i P(x_i)$

$$PCni)$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3^2}$ $\frac{1}{3^2}$ $\frac{1}{3^2}$ $\frac{1}{3^2}$ $\frac{1}{3^2}$ $\frac{1}{3^2}$. . .

Mean =
$$0 \times \frac{1}{2} + 1 \times \frac{1}{3} + 2 \times \frac{1}{3^2} + 3 \times \frac{1}{3^3} + \dots$$

Brilliant STUDY CENTRE

$$=0+\frac{1}{3}+2\times\frac{1}{3^2}+3\times\frac{1}{3^3}+...$$

$$=\frac{1}{3}\left[1+2\times\frac{1}{3}+3\times\frac{1}{3^2}+....\right]$$

$$= \frac{1}{3} \left[\frac{1}{1 - \frac{1}{3}} + \frac{1 \times \frac{1}{3}}{\left(1 - \frac{1}{3}\right)^2} \right]$$

$$= \frac{1}{3} \left[\frac{3}{2} + \frac{1}{3} \frac{9}{4} \right] = \frac{1}{3} \left[\frac{3}{2} + \frac{3}{4} \right]$$

$$=\frac{1}{3} \times \frac{9}{4} = \frac{3}{4} \Rightarrow \text{mean} = \frac{3}{4}$$

$$X \Rightarrow 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \dots$$

$$(X + ive and even) = 2, 4, 6, 8, ...$$

$$P[x + ive \text{ and even}] = P(2) + P(4) + P(6) + P(8) +$$

$$= \frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^6} + \frac{1}{3^8} + \dots = \frac{1}{3^2} \left[1 + \frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^8} + \dots \right]$$

$$= \frac{1}{9} \left[\frac{9}{1 - r} \right] = \frac{1}{9} \left[\frac{1}{1 - \frac{1}{3^2}} \right] = \frac{1}{9} \left[\frac{1}{1 - \frac{1}{9}} \right]$$

$$=\frac{1}{9} \times \frac{9}{8} = \frac{1}{8}$$

17. Let the coin be tossed n times

$$P(H) = P(T) = \frac{1}{2}$$

P(7 heads) =
$${}^{n}C_{7} \left(\frac{1}{2}\right)^{n-7} \left(\frac{1}{2}\right)^{7} = \frac{{}^{n}C_{7}}{2^{n}}$$

P(9 heads) =
$${}^{n}C_{9} \left(\frac{1}{2}\right)^{n-9} \left(\frac{1}{2}\right)^{9} = \frac{{}^{n}C_{9}}{2^{n}}$$
.

$$P(7 \text{ heads}) = P(9 \text{ heads})$$

$$^{n}C_{7} = ^{n}C_{9} \implies n = 16$$

P(2 heads) =
$${}^{16}C_2 \left(\frac{1}{2}\right)^{14} \left(\frac{1}{2}\right)^2 = \frac{15 \times 8}{2^{16}}$$

$$P(2 \text{ heads}) = \frac{15}{2^{13}}$$
.

$$P(R) = \frac{5}{7} \times \frac{4}{7} + \frac{2}{7} \times \frac{6}{7} = \frac{32}{49}$$

 Let A be the event of drawing red and E be the event that the person will say that the ball is red.

Then
$$P(E) = P(A) \cdot P(E/A) + P(\overline{A}) \cdot P(E/A)$$

$$=\left(\frac{1}{5}\times\frac{3}{4}\right)+\left(\frac{4}{5}\times\frac{1}{4}\right)=\frac{7}{20}$$
.

20. 1 Let B_1 be the event where Box-I is selected and B_2 where box-II selected

$$P(B_1) = P(B_2) = \frac{1}{2}$$

Let E be the event where selected card is non-prime

For B₁: Prime numbers: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

For B_2 : Prime numbers: $\{31, 37, 41, 43, 47\}$

$$P(E) = P(B_1) \times P\left(\frac{E}{B_1}\right) + P(B_2) \times P\left(\frac{E}{B_2}\right) = \frac{1}{2} \times \frac{20}{30} + \frac{1}{2} \times \frac{15}{20}.$$

Required probability: $P\left(\frac{B_1}{E}\right) = \frac{\frac{1}{2} \times \frac{20}{30}}{\frac{1}{2} \times \frac{20}{30} + \frac{1}{2} \times \frac{15}{20}} = \frac{\frac{2}{3}}{\frac{2}{3} + \frac{2}{4}} = \frac{8}{17}$.

SECTION II (NUMERICAL)

21. Let p = probability (white) = $\frac{a}{a+b}$ and q = probability (black) = $\frac{b}{a+b}$ Given P(A): P(B) = $3:1 \Rightarrow 1:q = 3:1$

$$\Rightarrow \frac{1}{q} = \frac{3}{1} \Rightarrow \frac{a+b}{b} = 3 \Rightarrow \frac{a}{b} = 2$$

22. $1 \quad ax^2 + bx + c = 0$

$$\alpha + \beta = \frac{-b}{a} \qquad \alpha \beta = \frac{c}{a}$$

$$\alpha^2 + \beta^2 = \frac{-b}{a} \qquad \alpha^2 \beta^2 = \frac{c}{a}$$

$$\Rightarrow \left(\frac{c}{a}\right)^2 = \left(\frac{c}{a}\right); c = 0 \text{ or } c = a$$

$$c = 0 \Rightarrow \alpha\beta = 0$$

$$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$$

$$\left(\frac{b}{a}\right)^2 = \frac{-b}{a} + 0 \Rightarrow \left(\frac{b}{a}\right)^2 + \left(\frac{b}{a}\right) = 0$$

$$\frac{b}{a}\left(1+\frac{b}{a}\right)=0 \Rightarrow b=0 \Rightarrow \frac{b}{a}=-1 \Rightarrow b=-a$$

$$b = 0 \text{ or } b = -a$$

$$c = a \Rightarrow \alpha \beta = 1$$

$$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$$

$$\left(\frac{b}{a}\right)^2 = \frac{-b}{a} + 2$$

$$\left(\frac{b}{a}\right)^2 + \left(\frac{b}{a}\right) - 2 = 0 \Rightarrow \frac{b^2}{a^2} + \frac{b}{a} - 2 = 0$$

$$\frac{b^2 + ab - 2a^2}{a^2} = 0 \implies b^2 + ab - 2a^2 = 0$$
 Q.E in b

$$b = \frac{-a \pm \sqrt{a^2 + 8a^2}}{2} = \frac{-a \pm 3a}{2}$$

$$b = \frac{-a + 3a}{2} = a$$
 or $b = \frac{-4a}{2} = -2a$

$$b = a$$
 or $b = -2a$

а	b	С	Equation		b²-4ac
а	0	0	ax ² =0	x ² =0	b ² -4ac=0
а	-a	0	ax²-ax=0	x²-x=0	1+4 ≠ 0
а	а	а	ax²+ax+a=0	x ² +x+1=0	1-4≠ 0
а	-2a	а	ax²-2ax+a=0	x ² -2x+1=0	4-4=0

23. 5

Number of local maximum points = $2 P = \frac{2}{5}$; $\therefore 5P = 5$

Numbe of local minimum points = 3

Total number of extreme points = 5

24. 6 Let
$$P(E_1) = a P(E_2) = b P(E_3) = c$$

 $\alpha = a(1-b)(1-c) \beta = b(1-a)(1-c)$
 $\gamma = c(1-a)(1-b) P = (1-a)(1-b)(1-c)$

Now put α, β, γ and P in the given equations

25. $10 y = ax^2 - bx = x(ax - b) \Rightarrow x = 0x = \frac{b}{a}$

$$a^3 - ab < b \Rightarrow a^3 < b + ab$$

$$a^3 < b(a+1) \Rightarrow b > \frac{a^3}{a+1}$$

Total
$$\Rightarrow$$
 9C₁ × 9C₁ = 81

$$(a,b) \in \{1,2,3,4,5,6,7,8,9\}$$

$$P = \frac{19}{81}$$

$$81P - 9 = 19 - 9 = 10$$

JEE ADVANCED LEVEL SECTION III

- 26. C $f'(x) \ge 0 \Rightarrow 3x^2 + 2ax + b \ge 0$ for all x, ie $a^2-3b \le 0$, which happens for the orderpairs (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), and <math>(4, 6) hence the required probability = 4/9.
- 27. C Value of determinant = -4(Use sarrus method and $e^{i\theta} = (\cos \theta + i \sin \theta)$

$$\therefore n = -4 \implies -n = 4; P(x) = \frac{nC_x}{2^n}$$

$$P(3) = \frac{4C_3}{2^4} = \frac{1}{4}$$

28. B s_1 , s_2 denote the events that he solves the 1st and 2nd problems.

$$P(s_1) = \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{3}{5} + \frac{1}{3} \times \frac{4}{5} = \frac{19}{30}$$

$$P(s_2) = \frac{1}{3} \times \left(\frac{1}{2}\right)^2 + \frac{1}{3} \times \left(\frac{3}{5}\right)^2 + \frac{1}{3} \times \left(\frac{4}{5}\right)^2 = \frac{125}{300}$$
; now $P\left(\frac{s_2}{s_1}\right) = \frac{25}{38}$

29. D
$$\frac{5 \times 5}{{}^{10}C_2} \times \frac{4 \times 4}{{}^{8}C_2} \times \frac{3 \times 3}{{}^{6}C_2} \times \frac{2 \times 2}{{}^{4}C_2}$$

30. D A.M. =
$$E(x) = \sum x_i p(x_i)$$

SECTION IV (More than one correct)

31. A,C
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \ge \frac{3}{4}$$

$$\therefore 1 \ge P(A) + P(B) - P(A \cap B) \ge \frac{3}{4}$$

As the minimum value of $P(A \cap B) \ge \frac{1}{8}$, we get

$$P(A) + P(B) - \frac{1}{8} \ge \frac{3}{4} \Rightarrow P(A) + P(B) \ge \frac{1}{8} + \frac{3}{4} = \frac{7}{8}$$

As the maximum value of $P(A \cap B) = \frac{3}{8}$, we get

$$1 \ge P(A) + P(B) - \frac{3}{8} \Rightarrow P(A) + P(B) \le 1 + \frac{3}{8} = \frac{11}{8}$$

32. B,C

$$\begin{split} P &= P_1 + P_4 + P_6 + P_7 \, ; \ b = P_2 + P_4 + P_5 + P_7 \, ; \ c = P_3 + P_5 + P_6 + P_7 \\ P_1 &+ P_2 + P_3 + P_4 + P_5 + P_6 + P_7 = 0.75 \, ; \ P_4 + P_5 + P_6 + P_7 = 0.5 \\ P_4 &+ P_5 + P_6 = 0.7 \end{split}$$

33. A,B
$$P\left(\frac{X}{Y}\right) = \frac{P(X \cap Y)}{P(Y)} = \frac{1}{2} \text{ and } \frac{P(X \cap Y)}{P(X)} = \frac{1}{3}$$

$$P(X \cap Y) = \frac{1}{6} \Rightarrow P(Y) = \frac{1}{3} \text{ and } P(X) = \frac{1}{2}$$
Clearly X and Y are indipendent.
Also, $P(X \cup Y) = \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{2}{3}$

34. B,D

$$P_{1} = \frac{9}{32} \quad P_{5} = \frac{3}{32}$$

$$P_{2} = \frac{3}{32} \quad P_{6} = \frac{1}{32}$$

$$P_{3} = \frac{3}{32} \quad P_{7} = \frac{1}{32}$$

$$P_{4} = \frac{3}{32}$$

$$\begin{split} &P_{1} = P\left(x_{1}x_{1}'x_{3}'\right), P_{2} = P\left(x_{2}x_{1}'x_{2}'\right) \\ &P_{3} = P\left(x_{3}x_{1}'x_{2}'\right), \ P_{4} = P\left(x_{1}x_{2}x_{3}'\right); \ P_{5} = P\left(x_{2}x_{3}x_{1}'\right), P_{6} = P\left(x_{1}x_{3}x_{2}'\right) \\ &P_{7} = P\left(x_{1} \ x_{2}x_{3}\right) \end{split}$$

35. B,C,D

A)
$$P(W) = \sum P(ui)P(w/ui)$$

$$P(ui) = \frac{1}{n} P(w/ui) = \frac{i}{n+1}$$

B)
$$P(ui) = c \Rightarrow c = \frac{1}{n}$$

$$P(un/w) = \frac{P(un)P(w/un)}{P(w)}; P(w) = \frac{1}{2} P(un/w) = \frac{n}{n+1}; C) P(E) = \frac{1}{2}$$

$$P(W/E) = \frac{P(WnE)}{P(E)} = \frac{P(wnu_2) + P(wnu_4) + \dots + P(wnun)}{\left(\frac{1}{2}\right)}$$

$$= 2[P(u_2)P(w/u_2) + P(u_4)P(w/u_4) + \dots] = \frac{n+2}{2(n+1)}$$

D)
$$P(ui) = Ki \Rightarrow \sum Ki = 1 \Rightarrow K = \frac{2}{n(n+1)}$$

$$P(ui) = \frac{2i}{n(n+1)}$$
 and $P(w) = \sum P(ui)P(w/ui)$

SECTION V - (Numerical type)

36. For the first draws, following events may occur

 E_1 = both balls are white

 E_2^1 = first is white and second is black E_3 = first is black and second is white

 E_{\star} = both balls are black

Let E represent the event that the third ball is black. Then,

$$P(E) = P(E_1)P\left(\frac{E}{E_1}\right) + \dots + P(E_4)P\left(\frac{E}{E_4}\right) = \frac{1}{6} \times \frac{3}{2} + \frac{1}{3} \times \frac{3}{4} + \frac{1}{5} \times \frac{3}{4} + \frac{3}{10} \times \frac{4}{6} = \frac{23}{30}$$

Required probability is

$$P = \frac{1}{2} \left[\frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} \right] + \frac{1}{4} \left[\frac{1}{4} - \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \times \frac{1}{4}, \frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \right] = \frac{27}{128}$$

38. 6 By total prob theorem the req probability = $\frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{7}{10} = \frac{13}{25}$

$$P[Green at origin | Green at B] = \frac{P[Green at origin and Green at B]}{P[Green at B]}$$

$$= \frac{P[ggg \text{ or } gRg]}{P[ggg \text{ or } gRg \text{ or } RRg \text{ or } Rgg]}$$

SECTION VI - (Matrix match type)

40. B Imaginary roots
$$\Rightarrow b^2 - 4ac < 0$$

$$P^2 - 4q < 0$$

$$\therefore P^2 < 4q$$

9

10

36

40

$P^2 < 4q$ 4q q 4 1 1 1,2 2 1,2,3 3 12 1,2,3 16 4 1, 2, 3, 4 5 20 1, 2, 3, 4 24 6 1, 2, 3, 4, 5 7 1,2,3,4,5 32

Number of favourable = 38

1,2,3,4,5

1, 2, 3, 4, 5, 6

$$Total = 10C_1 \times 10C_1 = 100$$

$$P(Imaginary roots) = \frac{38}{100} = 0.38$$

$$P(\text{Real roots}) = 1 - 0.38 = 0.62$$

$$P(\text{Real and equal}) = \frac{3}{100} = 0.03$$