

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C08F 226/06, 26/06, C07D 233/90, C07H
21/00

(11) International Publication Number:

WO 99/52956

(43) International Publication Date:

21 October 1999 (21.10.99)

(21) International Application Number:

PCT/US99/02153

(22) International Filing Date:

1 February 1999 (01.02.99)

(30) Priority Data:

09/059,800

14 April 1998 (14.04.98)

US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

US Filed on 09/059,800 (CON) 14 April 1998 (14.04.98)

(71) Applicant (for all designated States except US): THE RE-GENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Wolverine Tower, Room 2071, 3003 S. State Street, Ann Arbor, MI 48109-1280 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RASMUSSEN, Paul, G. [US/US]; 2831 Daleview Drive, Ann Arbor, MI 48105 (US). REYBUCK, Sarah, E. [US/US]; 295 Ridgeway Drive, St. Joseph, MI 49085 (US). JOHNSON, David, M. [US/US]; 2285 Stone Road, Ann Arbor, MI 48105 (US). LAWTON, Richard, G. [US/US]; 2888 Daleview Drive, Ann Arbor, MI 48105 (US).

- (74) Agents: DESCHERE, Linda, M. et al.; Young & Basile,
 P.C., Suite 624, 3001 West Big Beaver Road, Troy, MI
 48084-3107 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: COMPOUNDS AND POLYMERS FORMED FROM IMIDAZOLES

(57) Abstract

In one embodiment, the invention provides a polymer comprising imidazole ring units having nitrogen at the 1 and 3 positions of the ring; a carbon at each of the 2, 4 and 5 positions of the ring; and radical substituents G1 and G2 carried at the 4 and 5 positions. G1 and G2 are each independently selected from cyano, sustituents derived from cyano, and substituents which replace cyano. The polymers formed by at least two of the cyclic imidazole units. In another embodiment, the invention provides new imidazole compounds usable as monomers to form the polymers. In still another embodiment, the invention provides a method for using the polymers as a coupling/activator for synthon synthesis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP.	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba '	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD.	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia .	LR	Liberia	SG	Singapore		

Compounds and Polymers Formed from Imidazoles

Field of the Invention

The present invention relates to compounds and polymers based on and formed from imidazoles and methods for preparing same.

10

15

20 .

25

30

35

5

Background of the Invention

Heterocyclic compounds are commonly used in Imidazoles are monocyclic heteroatomic ring industry. Derivatives of imidazoles are used for compounds. dewatering of aqueous suspensions of organic inorganic materials in waste water treatment. such as agricultural diverse purposes for used catalysts. The and insecticides, chemicals, Encyclopedia of Polymer Science and Engineering, Vol. 12 (1988) reports that it is very difficult to synthesize imidazole monomers. Imidazole polymers can also be very For this reason, imidazole difficult to synthesize. compounds and polymers are used in limited quantities and are very costly.

presently, there is a need for new polymers having heterocyclic monomer units which provide properties derived from their relatively low hydrogen content and relatively high nitrogen content. For example, polymers formed from heterocyclic compounds are expected to provide a number of useful characteristics including flame resistance. Other important uses are anticipated if such polymers are able to be synthesized cost-effectively.

5

10

15

20

25

30;

35

Summary of the Invention

It is an object of the present invention to provide a new family of cyclic imidazole ring compounds 2-vinyl-4,5new generally based on which are Another object is to provide dicyanoimidazoles. polymers and copolymers formed from such compounds. Another object is to provide methods of synthesis which permit production of the new compounds and polymers from and which are inexpensive precursors, relatively suitable for scale-up to commercial processing. another object is to provide methods for using the new compounds and polymers of the invention. In particular, another object is to provide a method for using the new polymers in oligonucleotide synthesis.

The invention provides new compounds having a cyclic imidazole ring structure with specialized functional groups carried on the ring. Such groups are included prior to polymerization or after. In one embodiment, a given group is included prior to polymerization, then removed, and replaced by another group after polymerization.

In one embodiment, the cyclic compound of the invention has the formula as per Figure 1, where R1 is characterized by being hydrogen or organic substituent that does not interfere with polymerization, and by cyclic compound being attachable to the It is preferred that the cyclic electrophilic agent. compound have the formula as shown in Figure 1, where R1 represents an organic group, or hydrogen, preferably an organic group having one or more carbon a substituted or Most preferably, R1 is atoms. 10 carbon atoms. unsubstituted alkyl having 1 to Preferably, R1 is selected from the group consisting of methyl, ethyl, propyl, isobutyl, benzyl, nonyl, and In a variation on the embodiment shown in carbamoyl.

Figure 1, the substituent carried at the 1-nitrogen position may be more generally represented as E, which is any substituent, and preferably is attachable to the nitrogen by an electrophilic agent, and is not necessarily hydrogen or organic.

Referring to Figure 2, the cyclic compound has the formula as shown where R1, R2 and R3 are identical or different and are each independently selected from hydrogen and organic consisting of group substituents having 1 to 10 carbon atoms. It is preferred that at least of R1 and R2 is selected from substituents organic of the class substituents do not interfere with polymerization. is preferred that R1 be any group attachable to the cyclic compound by an electrophilic agent. As in the case earlier described with respect to Figure 1, R1 may be a substituent such as hydrogen or an organic substituent, with R1 being E as per above.

20

15

5

10

In one preferred embodiment, R1 and R2 are each hydrogen or substituted or unsubstituted alkyls, with R2 having 1 to 4 carbon atoms and R1 having 1 to 10 carbon atoms. It is necessary that the substituent, whether hydrogen, organic (R), or more broadly E, is sterically non-hindering. In the most preferred embodiment, R3 is hydrogen and R2 is selected from the group of methyl, ethyl, propyl and butyl.

30

35

25

Polymers formed by monomeric units of the invention are the polymers exemplified in Figures 3, 3A, 4, 4A, 202 and 203. The polymer generally comprises cyclic imidazole units having nitrogen at the 1 and 3 positions; a carbon at each of the 2, 4 and 5 positions; and radical substituents G1 and G2 carried at respective 4 and 5 positions. In one embodiment, G1 and G2 are each independently selected from cyano, substituents derived from cyano, and substituents which replace

cyano. Polymers of the invention are formed by at least two of the cyclic imidazole units joined by linkage through any combination of linking carbon six and carbon seven carried on the ring at the 2 position carbon. Such linking carbons 6 and 7 are derived from vinyl carried at said 2 position carbon. In one embodiment the cyclic imidazole units are connected to a main polymer chain through linkage at the 2 position providing a polymer as exemplified in Figures 4, 4A, and 203.

5

10

15

20

25

30

35

In another embodiment, the polymer units are connected to one another by linkage through both the 1 and 7 positions. This is referred to in the art as "in chain linkage" or "ring in chain polymer". This is exemplified by Figures 3, 3A and 202.

invention provides polymer of the The surprising flexibility for substituents at the 1nitrogen and 4,5 positions on the ring. exemplified in Figures 3A and 4A. Referring to Figures 3A and 4A, G1 and G2 are each independently selected from cyano, derivatives of cyano, and substituents which replace cyano on an imidazole ring. Examples include cyano, carboxy, carbamoyl, amide, amine, carboxylic acid and carboxylic ester. Broadly, E is essentially any substituent, and desirably E is attachable to the nitrogen by an electrophilic agent. Advantageously, E may serve a variety of functional uses such as provide fluorescence in an assay, or facilitate crosslinking. Examples of substituents carried at the E position include hydrogen, organic group, organic group having up 10 carbon atoms, a catalytic substituent, hydrophobic modifier substituent, а fluorescent substituent, a hydrophilic modifier substituent, and a crosslinking substituent.

The compounds and polymers of the invention are useful in a variety of applications, including synthesis of oligonucleotides. It is particularly preferred to use a vinylic polymer of the invention as exemplified in Figures 4, 4A and 203 for facilitating chemical synthesis of oligonucleotides. For this purpose, it is preferred to use the polymer exemplified in the figures, with R1 being hydrogen, namely, poly[1-(1H-4,5-dicyano-2-imidazoyl)ethylene]. To promote the coupling reaction used in laboratory synthesis In a typical synthesis method which oligomers. exemplifies utility of the present polymer, deprotected nucleotide reacts with a protected monomer unit in a reaction mixture in the presence of a coupling agent. This forms a product of the reaction which is a 5'protected oligonucleotide having its length increased by joining the monomer unit to the oligonucleotide. desired product is separated from other reagents and unreacted substituents.

20

25

30

35

15

5

10

In accordance with the invention, the coupling agent is the polymer of the invention comprising cyclic imidazole units having nitrogen at the 1 and 3 positions; a carbon at each of the 2, 4 and 5 positions; and substituents G1 and G2 carried at respective 4 and 5 positions, where G1 and G2 are as defined earlier. It is preferred that each of G1 and G2 be an electronwithdrawing group, but need not necessarily be the same electron-withdrawing group. It is preferred that G1 and are each independently selected from a consisting of cyano, substituents derived from cyano, and substituents which replace cyano. It is most preferred that G1 and G2 each be cyano. As shown in Figure 203, the polymer comprises imidazole units connected to the main polymer chain through the 2 position. It is preferred that R1 be hydrogen also, as shown in Figure 203. With reference to Figure 203 for convenience of illustration, the designation "Im" is

used to represent alternate units of the 1H-4,5-dicyanoimidazole monomer unit.

5

10

15

20

invention provides new compounds and polymers based on such compounds. The polymers are formed from monomeric units which were heretofore unavailable. Advantageously, the specific monomers of invention are polymerizable by cost-effective methods to provide polymers having highly desirable properties. The invention advantageously provides new coupling agent (activator) for promoting phosphoramidite coupling reaction used in laboratory synthesis of invention advantageously provides oligomers. The relatively straight-forward and low-cost monomers, polymers, and synthesis methods which result relatively good yields of desirable compounds, all readily adaptable to scale-up for commercial processing.

These and other objects, features, and advantages will become apparent from the following description of the preferred embodiments, claims, and accompanying drawings.

5

10

15

20

Brief Description of the Drawings

Figure 1 is an illustration of a cyclic 2-vinyl imidazole compound.

Figure 2 is an illustration of another embodiment of a cyclic 2-vinyl imidazole compound.

Figure 3 is an illustration of a polyimidazole, with the cyclic imidazole monomers joined to a main polymer chain by linkage at the 7 position carbon and 1 position nitrogen, forming an "in-chain" polyimidazole.

Figure 3A is similar to Figure 3, but the cyano groups at the 4 and 5 positions have been replaced by generic functional groups, independently selected G1 and G2.

Figure 4 is an illustration of a polyimidazole, with the cyclic imidazole monomers joined to a main polymer chain by linkage at the 2 position carbon forming a poly [1-(2-imidazolyl)ethylene].

Figure 4A is similar to Figure 4, but the cyano groups at the 4 and 5 positions have been replaced by generic functional groups, independently selected G1 and G2; and generic group E replaces R1 at the 1 position nitrogen.

Figure 101 is an illustration of a basic reaction for preparing N-(cis-1,2-dicyano-2-aminoviny1)-2-propenimine (acrodamn), a starting material used to form monomers and polymers of the invention.

BEST AVAILABLE CORY

25

30

Figure 102 - is an illustration of a basic reaction for preparing N-(cis-1,2-dicyano-2-aminovinyl)-2-methyl-propenimine (methacrodamn), a starting material used to form monomers and polymers of the invention.

5

Figure 103 - is an illustration of a basic reaction for preparing N-(cis-1,2-dicyano-2-aminoviny1)-2-butenimine (crotodamn), a starting material used to form monomers and polymers of the invention.

10

reaction for preparing 2-vinyl-4,5-dicyanoimidazole given the name Vinazene (trademark). Here, acrodamn of Figure 101 is oxidized to 1-H-2-vinyl-4,5-dicyanoimidazole.

15

Figure 202 shows the monomer of Figure 201 under thermolysis to achieve Michael-type addition polymerization to form the polymer with the imidazole "in-chain". The linkage is achieved through the 7 carbon and the 1 nitrogen.

20

Figure 203 shows the monomer of Figure 201 after free radical polymerization. Here, alternate imidazole rings are abbreviated as Im, for clarity. The rings are pendant to a backbone by linkage at the 2 position carbon.

25

Figure 204 shows the monomer alkylated to form methyl Vinazene (trademark), also 1-methyl-2-vinyl-4,5 dicyanoimidazole. Then the 1-protected monomer undergoes vinylic polymerization by AIBN initiator.

30

Figure 205 shows that the varying substituents R1, R2 and R3 are usable to form starting materials, similar to that illustrated by Figures 101-103; and to form monomers and polymers carrying such substituents.

35

Figure 206 shows an example of forming a cyclic dicyanoimidazole compound using Schiff base derived from N-ethyl DAMN (diaminomaleonitrile).

5

Figure 207 shows a reaction to form a Michaeltype polymer using triethylamine and benzonitrile.

10

Figure 501 is a mass spectrum of 1-H-2-vinyl-4,5 dicyanoimidazole.

Figure 502 is a KBr-type IR spectra of 1-H-2-vinyl-4,5 dicyanoimidazole.

15

Figure 503 is a proton-type NMR of 1-H-2-vinyl-4,5 dicyanoimidazole.

Figure 504 is a mass spectrum of 1-methyl-2-vinyl-4,5 dicyanoimidazole.

20

Figure 505 is a proton-type NMR of 1-methyl-2-vinyl-4,5 dicyanoimidazole.

25

Figures 506 and 507 contain viscosimetric plots and data for molecular weight measurement of poly[1-(1-methyl-4,5-dicyano-2-imidazolyl)ethylene], also referred to as poly[methyl Vinazene].

30

Figure 508 shows the results of TGA (thermal gravimetric analysis) trace for the polymer formed by reaction in Figure 202, a Michael-type poly(Vinazene).

35

Figure 509 shows the results of DSC (differential scanning calorimeter) analysis of Vinazene (trademark). The trace shows Vinazene forming Michaeltype poly(Vinazene).

reaction using a variation of the cyclic imidazole monomer. Here, the Schiff base of 1-methyl-2-amino-4,5-dicyanoimidazole is formed and it behaves very differently from Vinazene and N-methyl Vinazene.

Figure 601 shows another comparative dicyanoimidazole derivative which behaves differently from the monomers and polymers of the present invention.

10

5

Figure 700 is a schematic of a reaction sequence for synthesis of oligonucleotides.

15

Figure 701 shows a general structure of a representative oligonucleotide synthesized by a method according to the invention where the coupling agent is the polymer of the invention.

20

Figure 702 shows a general structure of a 5'protected monomer unit which is usable to form a block
of oligonucleotides (growing nucleotide chain) prepared
by the synthesis methods of the invention.

25

Figure 703 shows a reaction sequence for synthesis of oligomers by the steps of detritylation; coupling; capping of unreacted material; and oxidation of coupled material. The coupling/activating agent (χ) of the invention is shown with reference to Figures 4, 4A and 203.

30

5

10

15.

20

<u>Detailed Description of the</u> <u>Preferred Embodiments</u>

The invention provides a new class of cyclic imidazole ring compounds which are generically based on new 2-vinyl-4,5-dicyanoimidazoles. The new compounds are usable as monomers to form polymers and copolymers. Specialized functional groups are carried on the ring. Such groups are included prior to polymerization or In another embodiment, a given group may be after. included prior to polymerization, then removed and replaced by another group after polymerization. cyclic imidazole ring compounds have a formula as shown Preferably R1 is hydrogen if the in Figure 1. polymerization is to be by thermalization. In the case of free radical polymerization, R1 may be hydrogen or an organic substituent that does not interfere with polymerization. In the case of anionic polymerization, R1 is an organic substituent that does not contain an not interfere with proton does and acidic In another aspect, R1 is an organic polymerization. substituent attachable to the cyclic ring structure by an electrophilic agent. It is preferred that R1 is a substituted or unsubstituted alkyl having 1-10 carbon It is desirable that R1 is an organic group atoms. having 1-10 carbon atoms. It is most preferred that R1 is selected from the group consisting of methyl, ethyl, propyl, isobutyl, benzyl, nonyl, and carbamoyl.

30

35

25

In one embodiment, the cyclic compound has the formula as shown in Figure 2, where R1, R2 and R3 are identical or different, and are each independently selected from the group consisting of hydrogen and organic radicals; provided that at least one of said R1 and R2 is selected from the organic substituents. The selection of substituents is limited to those that do not interfere with polymerization. The proviso that such substituents do not interfere with polymerization

is understood in the art as exemplified by USPN 5,138, 007. It is desirable that R1 is any group attachable to the cyclic compound by an electrophilic agent. desirable that R1 is selected from the aforesaid groups In one embodiment, R1 and R2 are described earlier. each substituted or unsubstituted alkyls, with R2 having 1-4 carbon atoms, and R1 having 1-10 carbon atoms. aforesaid selection criteria for the organic substituent requires that it be sterically nonhindering, so that the organic substituent is sterically nonhindering upon It is preferred that R3 be hydrogen. polymerization. It is preferred that R2 be selected from the group of methyl, ethyl, propyl, butyl and other simple alkyls. It should be noted that the terms "organic radical", "organic group", and "organic substituent", are used herein interchangeably.

5

10

15

20

25

30

35

In another aspect, the invention provides a comprising cyclic imidazole units having polymer nitrogen at the "1" and "3" positions; a carbon at each of the "2", "4", and "5" positions; where at least two of the cyclic imidazole units are connected to one another by linkage between any combination of: at the 7 position, and nitrogen at the 1 position; or at least two of the cyclic imidazole units are joined to form a polymer by linkage between any combination of the aforesaid carbon at the 7 position and carbon at the 6 It is preferred that the polymer further comprise cyano groups carried at the respective 4 and 5 positions of the ring units. Aside from cyano groups, radical groups G1 and G2 may be carried at respective 4 and 5 positions, where G1 and G2 are each independently consisting group from the selected substituents derived from cyano, and substituents which Preferably, G1 and G2 are each replace cyano. independently selected from cyano, carboxy, carbamoyl, and derivatives of cyanos, such as amides, amino, and carboxylic acids and carboxylic esters.

In one embodiment, G1 and G2 are, in the first instance, cyano groups which are carried into the reaction by DAMN or a DAMN derivative. Cyano groups are quite strongly electron withdrawing, and influence the properties of the imidazole. However, cyano groups also offer reactivity by which they can be readily converted to other groups. Thus, by action of acid or base, they may be hydrolyzed singly or together, to afford amide groups, carboxylic acid groups, or by alcoholysis, carboxylic ester groups. These groups are all somewhat electron withdrawing to the imidazole ring. Cyano groups also permit modification by Hoffman type reaction to afford electron-donating amine groups. Examples of conversion of cyano groups on imidazoles to other functional groups are known.

5

10

15

20

25

30

35

A polymer comprising repeat units of a monomer of the invention is exemplified by the formula of Figure 3, where R4 and R5 are each independently selected from the group consisting of hydrogen and substituted or unsubstituted alkyls having 1-4 carbon atoms. case where each of R4 and R5 are alkyl, this is poly[(1dicyano-2-N(4,5 ethylene alkyl) alkyl-2-R5 Another embodiment is shown by the imidazolyl)]. polymer of Figure 4, where R1, R2, and R3 are defined as immediately above. In the case where R1, R2 and R3 are each alkyl, this is poly[(1-(N-R1 alkyl-4,5-dicyano-2imidazolyl)-1-R2-alkyl-2-R3 alkyl ethylene]. Referring to Figure 3(A), groups G1 and G2 may be cyano groups, or groups which replace the cyano groups. embodiment shown in Figure 4(A), substituent group E Preferably, E is a functional group replaces the R1. position nitrogen by an to 1 the attachable In one embodiment, E is electrophilic agent. catalytically active group which renders the polymer In another embodiment, E useful as a catalytic agent. may be a fluorescent group, where the polymer might be used for assay purposes. In still another embodiment,

E may be a hydrophobic modifier. In still another embodiment, E may be a crosslinking agent that is a bifunctional electrophile or bifunctional epoxide. In one preferred embodiment, the bifunctional electrophile is 1,6-dibromohexane.

One advantageous feature of the invention is the broad range of the substituent, E or R1, on the 1-N of 2-vinyl-4,5-dicyanoimidazole; and the role of E or R1 on the polymer derived from the above monomer. location of E, R1 on the monomer makes it unlikely that even moderately bulky groups will interfere with the vinylic polymerization by either free radical anionically induced polymerization. The thermal polymerization of 1-H-2-vinyl-4,5-dicyanoimidazole is a special case and is described separately. Thus, R1 can be nearly any organic group which can be put on by reaction with an electrophilic reagent. In some cases, might be chosen to afford certain solubility characteristics to the polymer. For example, if R1 is a relatively long chain such as nonyl, the polymer would be solubilized in the less polar organic solvents. R1 is a small group such as methyl, its steric influence on polymer properties and backbone would be minimized. It is noteworthy that the presence of any group R1 makes the molecule behave differently from 1-H because of the acidity of the H. Attempts to polymerize 1-H-2-vinyl-4,5-dicyanoimidazole by anionic methods would lead to deprotonation and no polymerization.

30

351

25

5

10

15

20

In some cases, R1 could be chosen because of its ease of removal. However, unlike the protecting groups commonly employed on imidazoles, dicyanoimidazoles are not well protected by silylation or acylation. Silyl groups or acyl groups come off too readily. Additional protecting groups which may be useful in various applications are ethyl, isopropyl,

PCT/US99/02153 WO 99/52956

methyloxymethyl, methoxybenzyl, sec-butyl, benzyl, carbamoyl, etc.

5

10

15

20

30 i

35

After polymerization and deprotection of the 1-N, this site is again available for functionalization. A variety of electrophiles could be chosen to attach groups which provide specialized functions. Such reactions on polymers are usually called grafting. Functional groups (E) which have been grafted onto exceedingly wide range cover an polymers They can allow catalytically active possibilities. groups, fluorescent groups, hydrophobic or hydrophilic modifiers, etc. Another important use of the 1-N site is its potential for crosslinking. A bifunctional electrophile such as 1,6-dibromohexane or bifunctional epoxides commonly used for urethane crosslinking, could be applied to this system.

Methods for forming the novel monomers and polymers of the invention will now be described.

There are two general routes to prepare the 4,5-dicyanoimidazoles from diaminomaleonitrile (DAMN). It is possible to start from an electrophile which is an 25 acid or masked acid such as an orthoformate. method was originally described by Woodward in USPN 2,534,331 (1950), which is incorporated herein by reference in its entirety. Alternatively, one can start from a mono Schiff base and carry out oxidative ring This is similar to a method as described in closure. USPN 4,220,466 (1980), by Patel, which is incorporated herein by reference in its entirety.

In one embodiment, the methodology begins by reaction of DAMN with acrolein or simple substituted acroleins such as methacrolein and crotonaldehyde. The oxidation of these acyclic monoanils leads directly to The parent monomer of 2-vinyl-4,5-dicyanoimidazoles.

this family is 1-H-2-vinyl-4, 5-dicyanoimidazole, and has the empirical formula $C_7H_4N_4$. It contains approximately 39% nitrogen by weight. These initial materials, acrodamn, and substituted variations crotodamn and methacrodamn, are prepared by processes given directly below, also described in USPN 5,712,408 (Rasmussen et al 1/27/98), incorporated herein by reference in its entirety. See also PCT/US97/14093, which is PCT of USPN 5,712,408, also incorporated by reference.

10

5

N-(cis-1,2-dicyano-2-aminovinyl)-2-butenimine (Crotodamn)

15

25

20

30

35

solution was prepared comprising milliliters (40.0 mmol) of crotonaldehyde and 10 drops of 1 molar hydrochloric acid in 40 milliliters of The solution was cooled to tetrahydrofuran. temperature of approximately 0°C. A second solution was comprising 4.015 grams (37.1 diaminomaleonitrile 100 milliliters of in tetrahydrofuran, also cooled to a temperature approximately 0°C. The diaminomaleonitrile solution was solution containing the added to crotonaldehyde while stirring. After 5 minutes, the mixed solution was poured over 500 milliliters of ice The resulting precipitate was collected cold hexane. and dried and yielded 3.867 grams of a white, fluffy The mother liquor was stripped powder (Figure 103). down to give an additional 1.862 grams of a light yellow powder, providing a total yield of approximately of 96.5 recrystallized was The powder percent. yellow powdery white/light to give ether/hexane Upon sublimation at reduced pressure, clear yellow needle-shaped crystals were formed. The product exhibited a melting point of approximately 109°C to 112°C, infrared characteristics 3457, 3349 (-NH2), 2950 (alkyl), 2239, 2206 (-CN), 1638, 1620, 1606, 1587, 1563, 1370, and 985 cm-1. NMR analysis using DMSO solvent

revealed δ 1.9 (d, 3H), δ .3 (m, 1H), δ .6 (m, 1H), 7.6 (s, 2H), and 7.9 (d, 1H). The calculated product was analyzed to have a formula $C_BH_BN_A$ corresponding to the following weight percents: carbon, δ 0.0; hydrogen, 5.0; and nitrogen, 35.0. Actual analysis revealed: carbon, δ 0.8; hydrogen, 5.1; and nitrogen, 33.9, verifying the formula of the product N-(cis-1,2-dicyano-2-ethylaminovinyl)-2-butenimine (Crotodamn).

N-(cis-1,2-dicyano-2-aminovinyl)-2-propenimine (Acrodamn)

A similar method of preparation was conducted using the acrolein precursor to prepare N-(cis-1,2dicyano-2-aminoviny1)-2-propenimine (Figure 101). This product exhibited infrared pattern at 3416, 3297, 3170 evidencing an amine (-NH₂), 2232, 2214 (-CN), 1630, 1587, 1381, 1350, 992, and 965 cm⁻¹. NMR analysis conducted in DMSO revealed 65.9 (d, 1H), 6.1 (d, 1H), 6.6 (m, 1H), 7.9 (s, 2H), and 8.0 (d, 1H). Compositional analysis for the C7H6N4 product was calculated on a weight percent basis to be carbon, 57.5; hydrogen, 4.1; and nitrogen, carbon, 57.8; Actual analysis revealed: 38.4. hydrogen, 4.4; and nitrogen, 38.2, evidencing a compound N-(cis-1,2-dicyano-2-aminoviny1)-2formula of the. propenimine (Acrodamn).

N-(cis-1,2-dicyano-2-aminovinyl)-2-methylpropenimine (Methacrodamn)

A compound designated as N-(cis-1,2-dicyano-2-aminovinyl)-2-methylpropenimine was also prepared utilizing the methacrolein precursor (Figure 102). The resulting product was found to have a melting point of approximately 118°C to 120°C. It exhibited infrared values at 3451, 3418, 3306 evidencing an amine (-NH₂), 2959 (-alkyl); 2244, 2207 (-CN), 1614, 1595, 1389, 1350, and 909 cm⁻¹. Analysis by NMR in DMSO solvent revealed

5

10

15

20

25

30

PCT/US99/02153 WO 99/52956

 δ 1.9 (s, 3H), 5.76 (s, 1H), 5.80 (s, 1H), 7.7 (s, 2H), and 7.9 (s, 1H). The product had a calculated general formula of C_eH_eN₄ with constituents present in the following weight percents: carbon, 60.0; hydrogen, 5.0; The actual analysis revealed and nitrogen, 35.0. and nitrogen 5.2; 60.3; hydrogen, carbon, evidencing a compound of the formula N-(cis-1,2-dicyano-2-aminovinyl)-2-methylpropenimine.

10

5

In accordance with the above, the methodology makes use of the unsaturated monoanils of DAMN as starting materials for the preparation of 2-vinyl-4,5-The monoanils can be oxidatively dicyanoimidazoles. ring closed using oxidants such as lead tetraacetate to 15 afford the vinyl imidazoles. For example, the acrodamn compound is oxidized to 1-H-2-vinyl-4,5-dicyanoimidazole as shown in Figure 201. For discussion purposes, this oxidation product has been given the trivial name "Vinazene" (trademark).

20

It is somewhat surprising that this oxidation method can be applied to acrodamn to effect oxidative ring closure to produce 2-vinyl-4,5-dicyanoimidazole without inducing polymerization. The mechanism probably cyclization which from equilibrium involves aromatization proceeds by irreversible dehydrogenation. The unoptimized yields for this oxidation, which must be run carefully, are over 80%.

30

351

25

Detailed characterization data for this new compound are provided later below. This parent monomer polymerizes in two ways. Under thermolysis it undergoes Michael-type addition polymerization to form the polymer with the imidazole "in-chain" as shown in Figure 202. DSC and TGA are given below. If however the same monomer is treated with free radical initiator, such as benzoyl peroxide, a vinylically derived free radical polymerization is induced in which the cyanoimidazole

PCT/US99/02153 WO 99/52956

rings are pendant to a polymethylene backbone, as shown in Figure 203. In this polymer the acidic hydrogen at the one position remains and the polymer can be dissolved and processed by dissolving it in base. backbone has opportunity for 1,3 hydrogen bonding to occur both interchain and along the chain repeats.

Another aspect of the invention concerns the fact that the monomer described above, can be alkylated or otherwise protected without inducing polymerization. Thus for example, it can be methylated as shown in Figure 204. The resulting 1-protected monomer, methyl Vinazene, also undergoes vinylic polymerization, for example by the initiator AIBN as in Figure 204. In this 15 example, a polymer of viscosity average molecular weight 140,000 was prepared at 65°C in acetonitrile. Examples of polymer stability assayed by thermogravimetric analysis are provided in the accompanying data.

This same monomer can be polymerized by anionic initiation, for example, by the use of fluorenyl This initiator, which is known to initiate acrylonitrile, but not styrene, places the monomer among those polymerized by mild anionic methods. This placement suggests the possibility of readily forming copolymers and perhaps block copolymers of this and related monomers, with styrene, acrylonitrile, and other large volume monomers which are initiated under similar conditions.

The monomer(s) are easily modified by using at the 1-nitrogen various substituents (R1), However, by varying the starting described above. materials, the substituents R2, and R3 can also be varied, as per Figure 205.

As described above, there were prepared Schiff base derivatives of DAMN using different aldehydes, for

35

30

5

10

20

example, methacrodamn, R2 = methyl, R3 = H; crotodamn, R2 = H, R3 = methyl. Schiff bases derived from N-ethyl DAMN (R1 = ethyl) can also be oxidized by the methods described above to afford the corresponding cyanoimidazole derivatives. Thus, for example, N-ethylmethacrodamn is oxidized to 1-ethyl-2-[1-methyl vinyl]-4,5-dicyanoimidazole, as per Figure 206.

The new polymers are useful in applications which call for higher thermal and oxidative stability than conventional vinylic polymers. The nitrogen monomer, 1-H-2-vinvl-4,5parent of the dicyanoimidazole, and its polymers is, for example, 39% This high nitrogen content, along with the intrinsic stability of the imidazole ring system, gives the polymers potential for providing inhibition of flammability, higher softening temperatures, and greater char yields than conventional materials. A summary of the advantages found in pursuing applications for these new polymers are described here below.

There is a moderate cost structure. Synthesis of monomers occurs in one or two steps from starting materials that are nearly commodities. Although polymers directly derived from acrolein are uncommon, this material has a current world production estimated at 125,000 tonnes per year. DAMN is a stable solid, marketed by Nippon Soda Co. at moderate prices. monomers polymerize very readily by thermal or chemical initiation at very moderate temperatures to afford These polymers have high thermal stability and they decompose with low gas evolution. cyclization to imidazole takes place, the heteroaromatic stability long associated with this ring system in polymer chemistry provides very robust materials. stoichiometric composition of the materials, with their very high nitrogen and low hydrogen content, suggests their use as flame retardants, protective coatings, and

5

10

15

20

25

30

in specialty materials which demand high oxidation resistance.

The monomers or the polymers are easily modified. The family of derivatives appears to be limited only by the range of electrophiles which will readily attach to the 1-N. Since cyanoimidazole anion is a good leaving group, the 1,3 sites can function together in a catalytic mode for the transfer of attached groups. Grafting reactions should also be very facile. The cyano groups can be hydrolyzed before or after polymerization to afford amides or carboxylic acid. This may prove to be a highly economical route to cation exchange resins or metal ion sequestering polymers.

Synthesis of Monomers and Polymers

2-Vinyl-4.5-dicyanoimidazole

20

25

30

35

5

10

15

The acrodamn, prepared as per the earlier described method, was used in this present synthesis. The acrodamn (7.00g) was dissolved in 150 ml of distilled acetonitrile, yielding an orange solution. A solution of 22.5g of lead (IV) tetraacetate and 300 ml distilled acetonitrile was placed in a room The acrodamn/acetonitrile temperature water bath. solution was poured, in one portion, into the lead (IV) The colorless lead solution tetraacetate solution. immediately darkened to an orange-red solution and a white, voluminous precipitate with a metallic sheen The solution was allowed to stir for 10 The resulting precipitate minutes, and then filtered. was washed via filtration until no more color was The filtrate was then liberated in the filtrate. rotovapped and stripped with a vacuum pump. resulting residue, 400 ml of ether was added and allowed to stir overnight. The ether solution was filtered and

THE AVAILABLE COPY

rotovapped to yield 5.63g of 2-vinyl-4,5-dicyanoimidazole (82%) as a reddish solid. This crude product shows very small traces of unidentified impurity and may be purified by dissolving in a minimum of ethyl acetate, pouring the ethyl acetate into ether, filtering the precipitate, and evaporating the filtrate to recover the product for essentially quantitative recovery.

Mp 168-170°C, IR 3310 (-NH), 2241 (-CN), 1640, 1619, 1510, 1431, 1405, 1300, 1069, 1003 cm-1; NMR (DMSO-d₆) δ 5.2 (dd, J = 10.95, 2.06 Hz, 1H), 5.9 (dd, J = 17.61, 2.06 Hz, 1H), 6.5 (dd, 17.61, 10.95 Hz, 1H, H_a).

1-Methyl-2-vinyl-4,5-dicyanoimidazole

15

20

25

30

35

10

5

To a solution of 0.602 g (4.17 mmol) of 2vinyl-4,5-dicyanoimidazole in distilled THF (15 mL) at 0°C under nitrogen was added slowly while stirring 0.22 mL (2.32 mmol) of dimethyl sulfate and 0.60 mL (4.30 mmol) triethylaminine via syringe. The reaction solution was allowed to come to room temperature and was The reaction solution was stirred for 15 hours. concentrated down under a stream of nitrogen and This solution was washed dissolved in 10 mL CH2Cl2. twice with a 10% solution of NaOH and twice with a CH2Cl2 was stripped off, saturated solution of NaCl. This oil was dissolved in leaving a brown oil. approximately 1 mL of THF and precipitated out in The precipitate was vacuum filtered and dried to yield 0.345 g (52.4% yield) of a light brown, fluffy This powder was dissolved in 100 mL of ether and vacuum filtered to remove undissolved particles. 20 mL of hexane was added to the ether solution, and the solution was cooled to 0°C. White, needle-shaped crystals were formed and vacuum filtered.

Mp 96-99°C; ir 2237 (-CN), 1492, 1464, 1420, 1378, 1328, 986, 948, and 765 cm-1; nmr (DMSO- d_6) δ 3.8 (s, 3H, -CH₃), 5.8 (dd, J = 10.89, 1.09 Hz, 1H), 6.3 (dd, J = 17.35, 1.09 Hz, 1H), 6.9 (dd, J = 17.35, 10.89, 1H, H_a).

1-Ethyl-2-Vinyl-4,5-Dicyanoimidazole

A flask equipped with a magnetic stirbar was charged with 6.26 g of 2-vinyldicyanoimidazole. this, 75 ml of distilled THF and 6.1 ml of triethylamine were added with stirring. After 5 minutes stirring, 5.7 ml of diethyl sulphate was added. This mixture was Analysis by TLC (50/50 allowed to stir for 2 days. hexane/ethyl acetate, UV visualization) showed the reaction was complete (starting material rf 0.3, product The THF solution was rotovapped and the rf 0.6). residue was dissolved in ethyl acetate. The ethyl acetate was washed with 10% aqueous sodium hydroxide. The combined aqueous layers were back extracted with The combined organic layers were methylene chloride. dried with magnesium sulphate and rotovapped to dryness. The crude residue was triturated with ether. The ether extracts were rotovapped and the residue recrystallized with ether/hexanes to yield 3.124 g of the product, mp 66-70°C as yellow needles. A second crop yielded 1.72 g for a combined yield of 65%.

H NMR: 6.95δ, 1H (dd J=17.04, 10.99 Hz);

6.36δ, 1H (dd J=17.04, 1.38 Hz); 5.81δ, 1H (dd J=10.99,

1.38 Hz); 4.28δ, 2H (q J=7.14 Hz); 1.33δ, 3H (t J=7.14 Hz)

35

5

10

15

20

PCT/US99/02153 WO 99/52956

Poly[1-(1-methyl-4.5-dicyano-2-imidazolyl) ethylenel

Poly[1-(4,5-dicyano-1-methyl-2-imidazolyl) ethylene] Free Radical Initiation

5

10

15

1-Methyl-2-vinyl-4,5-dicyanoimidazole (0.356 g, 2.25 mmol) and AIBN (0.005 g, 0.03 mmol) were added to 0.5 mL distilled MeCN in a 10 mL thick-walled test tube with a side arm and stir bar. The test tube was covered with a septum and connected to a vacuum/nitrogen line via the side arm. After cooling the test tube to -78°C in dry ice/acetone, the contents of the test tube were evacuated and filled with nitrogen three times. The test tube was allowed to come to room temperature and then placed into a 60-65°C oil bath for 16 hours. Upon removal from the oil bath, the reaction mixture was a brown/yellow viscous material. Upon removal of THF, a brown/yellow glassy solid resulted which was somewhat soluble in MeCN and DMSO, but not THF or H₂SO₄: 20 nmr (DMSO) δ 1.6, 2.0, 2.8, 3.6; viscosity $[\eta] = 0.59$ dL/q. The product was as per Figures 4 and 4(A).

Anionic Initiation

25

1-Methyl-4,5-dicyano-2-vinylimidazole (0.100 g. 0.633 mmol) was added to 1.0 mL of distilled THF in a 10 mL thick-walled test tube with a side arm (oven dried). Fluorene (0.055 g, 0.33 mmol) was added to 1.0 mL of distilled THF in a separate 10 mL side arm test Both test tubes were covered with a septum and 30 tube. connected to a vacuum/nitrogen line via their side arms. The test tubes and their contents were cooled to -78°C in a dry ice/acetone bath and were evacuated and filled with nitrogen three times. While still at -78°C, 0.2 mL of a 1.58 M solution of butyllithium was added to the fluorene solution which immediately turned an orange A syringe was used to transfer 0.1 mL of the color. fluorenyl lithium solution to the test tube with 1-

methyl-4.5-dicyano-2-vinylimidazole. The reaction mixture immediately turned a darker color and a brown Methanol (1.0 mL) was added to precipitate formed. quench the anion and the solution turned an orange The precipitate was filtered and washed with ether yielding a light orange powder which was insoluble in THF but still soluble in acetonitrile; NMR δ 1.6, 2.0, 2.8, 3.6, 8.8 (partial hydrolysis of nitriles). The product was as per Figures 4 and 4A.

10

15

20

5

Poly[1-(1-H-4,5-dicyano-2-imidazolyl)ethylene]

To a solution of 280 mg of 2-vinyl-4,5dicyanoimidazole in 2 ml of DMF was added 7 mg of benzoyl peroxide. The solution was degassed using three cycles of the freeze-pump-thaw method, and placed in a constant temperature bath (120°C) overnight (12 hours). The solvent was removed by high vacuum evacuation. polymer was characterized by NMR, and shown to contain a very small portion of monomer, as well as residual solvent. H NMR (DMSO- $d_{\rm e}$) δ 1.7 (v br). The product was as per Figure 203.

Synthesis of Michael-type polymer

25

A test tube fit with a schlenk sidearm was charged with 0.23 g (1.59 mmol) or 4,5-dicyano-2vinylimadazole. A magnetic spine vane was added and the test tube was sealed with a septum. Via cannulation, 2 30 | ml of benzonitrile was added to the test tube and 0.26 ml (1.87 mmol, 18% excess) of triethylamine was added via a syringe. The test tube was placed in a hot oil bath (110°C) and allowed to stir overnight. overnight heating and stirring, the heat bath was removed and the contents of the schlenk test tube were rinsed into a round bottom flask with acetone. solution was rotovapped until no more solvent was liberalized and then placed in a hot water bath (65°C)

under high vacuum. This treatment afforded a dark tacky solid. The process and product polymer are as per Figure 207.

5 Characterization of Monomers and Polymers

Figures 501, 502 and 503 are respectively Mass, Infrared, and Proton NMR spectra of 2-vinyl-4,5-dicyanoimidazole.

10

15

20

Figure 501 is the mass spectrum for Vinazene. The parent peak occurs at 144, the mass necessary for C,H₄N₄. A relatively intense peak occurs at 143, corresponding to loss of hydrogen from the 1-position of the aromatic ring. A peak occurs at 108, corresponding to loss of a CN functionality.

Figure 502 shows the infrared spectrum of Vinazene. The hydrogen-bonding pattern from approximately 3200 to 2400 is consistent with a 1,3-hydrogen-bonding pattern from a 2-substituted dicyanoimadazole ring. A sharp peak at 2250 is indicative of the nitrile.

resonance spectrum of Vinazene. Three peaks at 5.7d, 6.2d, and 6.6d have three coupling constants between them. This is consistent with a singly-substituted vinyl group. These signals integrate to one proton each, consistent with the proposed structure. The peak at 2.5 is incompletely dueterated NMR solvent, DMSO. The peak at 3.3d is residual water in the NMR solvent.

Figures 504 and 505 are respectively Mass and 35 Proton NMR spectra of 1-methyl-2-vinyl-4,5-dicyanoimidazole.

PCT/US99/02153 WO 99/52956

Figure 504 shows the mass spectrum for 1-Figure 501 is the mass spectrum for methylvinazene. The parent peak occurs at 158, the mass Vinazene. necessary for C.H.N. A relatively intense peak occurs at 157, corresponding to loss of hydrogen from the 1position of the aromatic ring. A peak occurs at 132, corresponding to loss of a CN functionality.

5

10

25

30

35

Figure 505 shows the proton nuclear magnetic resonance spectrum of 1-methylvinazene. Three peaks at 7.0d, 6.4d, and 5.8d have three coupling constants This is consistent with a singlybetween them. An additional peak at 3.8d substituted vinyl group. corresponds to the methyl group at the 1-position of the The integrals on this spectra are 15 aromatic ring. incorrectly labeled to 0 each. The peak at 2.5 is incompletely dueterated NMR solvent, DMSO. The peak at 3.3d is residual water in the NMR solvent.

Figures 506 and 507 contain viscosimetric 20 plots and data for molecular weight measurement of poly[1-(1-methyl-4,5-dicyano-2-imidazolyl)ethylene], also referred to as poly[methyl Vinazene].

Figures 508 and 509 are respectively TGA and DSC plots for monomers and polymers.

Summarization, Applications, and Advantages

In polymer chemistry, there are relatively few families of useful vinylic monomers. Since the steric and electronic properties of a good monomer are quite well known, and a terminal vinyl group can only have two functionalities, one might be justified in assuming that all the simply prepared vinylic monomers have already been discovered. The present invention shows that this is not the case, based on a new family of monomers based on 2-vinyl-4,5-dicyanoimidazole. The parent monomer is

PCT/US99/02153 WO 99/52956

prepared by oxidation of acrodamn, which is the mono Schiff base of diaminomaleonitrile (DAMN) and acrolein. Since DAMN is the tetramer of hydrogen cyanide and acrolein is prepared by oxidation of propene, one can prepare 2-vinyl-4,5-dicyanoimidazole and its derivatives from readily available, moderately priced, starting materials. Once the oxidative cyclization occurs, the highly stable imidazole ring system prevents reverse In spite of high nitrogen content, these polymers lose very little HCN or cyanogen by thermal processes.

5

10

15

35

dicyanoimidazole ring system The conjugation with the 2-vinyl group, and this heterocycle has electron withdrawing effects similar to, slightly weaker than, a simple cyano substituent. Thus, 2-vinyl-4,5-dicyanoimidazole behaves sterically like styrene and electronically like acrylonitrile or acrylic The monomers polymerize very readily by free radical, or if substituted at 1-N, by anionic initiation 20 to produce high molecular weight polymers. styrene, for which the vinylic group deactivates the ring, 2-vinyl-4,5-dicyanoimidazole is easily substituted at the 1-nitrogen by electrophiles before or after polymerization. Thus, an enormous variety of structural \parallel 25 In addition to the changes are feasible. flexibility offered by substitution at the 1-nitrogen, the nitriles of 4,5-dicyanoimidazole can also easily be modified to amides, carboxylic acids, or Finally, the ease of polymerization of the 2-vinyl-4,5-; 30 dicyanoimidazole family of monomers suggests that copolymers will readily form.

High nitrogen, low hydrogen stoichiometries; confer some special properties. Typically, molecules are electron acceptors and have low base strength. They are often quite oxidation resistant and flame resistant. Certain combinations can have very

high thermal stability as well. Thus, high nitrogen materials are replacing halogen compounds, which have undesirable environmental effects, as flame retardants. Low hydrogen content has another benefit. Compounds with numerous cyano groups do not readily evolve HCN when H content is low. In fact, total gas evolution can be low and char yield and nitrogen retention is remarkably high, even up to 900°C under nitrogen.

To this point, there have been only a very 10 on HCN. based number of polymers limited polyacrylates are generally · and Polyacrylonitrile derivatives of HCN, and their place among the important polymers has been established for many years. cyanogen and the HCN: certain compounds, such as 15 tetramer, diaminomaleonitrile (DAMN), have not led to important polymers, in spite of considerable effort. Despite this, the present invention provides several key discoveries which allow the synthesis of a new family of polymeric materials. The present methodology starts by 20 the reaction of DAMN with acrolein or simple substituted: acroleins such as methacrolein and crotonaldehyde. These aldehydes are readily available and like DAMN: itself, can be obtained at moderate prices in large The oxidation of these acylic mono anils 25 quantities. leads directly to 2-vinyl-4,5-dicyanoimidazoles. 1-H-2-vinyl-4,5family, of this monomer dicyanoimidazole, has the empirical formula C,H,N, and contains 39% nitrogen by weight.

30

35

5

Additionally, there are some rather subtle inductive effects which control the reactions of DAMN. For example, if one attempts to prepare monomethyl DAMN by direct alkylation, it is difficult to stop the reaction at this stage. Instead, the first methylation activates the nitrogen towards a second addition, and the two methyls activate the second nitrogen towards addition of a third methyl. Thus, the result of slow,

cold addition of one equivalent of methylation agent to dilute DAMN solution is trimethylDAMN. In sharp contrast to the methylation results, at zero degrees, with dilute acid catalyst, reaction of DAMN with acrolein forms only the mono-anil. The Schiff base formation at one nitrogen deactivates the second nitrogen towards forming the bis anil. On the other hand, the double bond, which now lies in conjugation to the DAMN end of the molecule, is highly activated.

10

15

5

To clarify the reactions of the Schiff base monomers, an anil was prepared from 1-methyl-2-amino-4,5-dicyanoimidazole (Figure 600). This monomer has no nucleophilic sites which can react with the activated double bond and indeed behaves very differently from Vinazene and N-methyl Vinazene.

As stated earlier, there are two general routes to prepare the 4,5-dicyanomidazoles from DAMN. One can start from an electrophile, which is an acid or 20 masked acid such as orthoformate. Alternatively, one can start from a mono Schiff base and carry out oxidative ring closure. This latter method applied to acrodamn carries out an oxidative ring closure to produce 2-viny1-4,5-dicyanoimidazole, without inducing 25 The mechanism probably involves polymerization. from which aromatization cyclization equilibrium dehydrogenation. The irreversible by unoptimized yields for this oxidation, which must be run carefully, are currently at 82%. The acidic imidazole 30 (pK-5) which results can be readily alkylated in high yield without interference from the other functional: This reaction is a prototype for the groups. substitution of many other electrophiles onto the 1position of the ring. 35

This present application refers to these monomers by the trivial names: Vinazene (trademark),

for the 1-H-2-vinyl-4,5-dicyanoimidazole; and methyl Vinazene (trademark), etc., for its N-substituted derivatives. These monomers are fully characterized and are crystalline, air-stable, solids. However, they show a very interesting contrast in their thermal behavior. Vinazene has a potential Michael nucleophile at the 1-nitrogen, while methyl Vinazene does not. The DSC of Vinazene shows an exotherm following melting at 196°C, which is very similar to that of acrodamn, though not nearly as sharp. The TGA shows no weight loss in this region, and the ultimate char yield, starting from monomer, is very high.

5

10

15

20

25

30

This behavior closely mimics the behavior of the acyclic Schiff base derivatives of DAMN. One may interpret these results as evidence for a conjugate addition, step growth, type of polymerization in which the imidazole moiety is in the main chain, as shown below. However, Vinazene also polymerizes in a vinylic mode by earlier radical initiation, and this polymer has a very different structure and thermal signature in the TGA, in which the char yield is lower.

on the other hand, methyl Vinazene shows no exotherm in the DSC after the melting point, and no indication of thermally induced polymerization, at least to the limit of the scan. Thus, methyl Vinazene should behave like a normal vinylic monomer carrying an electron withdrawing group. The electron withdrawing character of dicyano substitution on imidazole is here known, but it is worth noting that dicyanoimidazole is nearly nine orders of magnitude more acidic than imidazole itself, pK~ 14.

35 These electron withdrawing effects have now been confirmed by several ancillary synthesis. The 1-methyl-2-fluoro-4,5-dicyanoimidzole can be used in nucleophilic aromatic substitution reactions. It reacts

smoothly with most nucleophiles to allow the preparation of 2-substituted cyanoimidazoles of Figure 601. The secondary amine has a pK-4, and the tertiary amine is nearly planar at nitrogen in its crystalline structure.

5

10

Thus, it is reasonable to place methyl Vinazene among the other vinylic monomers carrying electron withdrawing groups such as acrylonitrile, acrylic esters, or perhaps cyano substituted styrenes. Thus, the vinyl dicyanoimidazoles are a new family of monomers, prepared by a novel synthesis starting from DAMN, and have many useful properties.

The polymerization of the parent monomer,

Vinazene, by a thermally induced Michael addition process, gives an imidazole in-chain structure. However, it also polymerizes vinylically by initiation at 110°C with benzoyl peroxide to give viscous solutions which form free-standing films upon evaporation. This vinylic polymer has several unusual properties.

The Vinazene monomer, like other dicyanoimidazoles, has a 1-H that is quite acidic, pK ~ 5.0, and gives a pattern in its infrared spectrum which is characteristic of strong 1,3 hydrogen bonding. In the vinylic homopolymer, this hydrogen bonding will persist either in intramolecularly along the chain backbone, or intramolecularly, having the effect of locking the chains together.

30

35

25

In the cartoon of Figure 203, an idealized intramolecular hydrogen bonding pattern is shown for a syndiotactic chain with alternate imidazole rings abbreviated, Im, for clarity. While this orderly array is not possible for an atactic random coil structure, the likelihood of strong intra or intermolecular 1,3 hydrogen bonding is high, since this feature is evident in crystal structures done on small cyanoimidazole

molecules. The polymer is, however, readily soluble in base, and one might hope that, by forming a concentrated dope of polymer in base, one could then spin the dope into acid, precipitating polymer fiber.

5

10

The 1-H polymer, with its facile reactions at the one nitrogen, can be envisaged as a site for grafting, crosslinking, or as a site for acylation In fact, imidazoles are commonly transfer catalysis. used for this latter purpose, but it would be extremely convenient to have a polymer immobilized version of such Appropriately grafted long chain branches a catalyst. improved solubility, hydrocarbon confer could opportunities side for chain processability, or functionality of almost any type. All that is needed for their synthesis is a suitable electrophilic reagent. Crosslinking reagents of different lengths could establish aspects of chain microstructure and provide for different degrees of stiffness in the products.

20

25

30

35

15

substituted Vinazenes alkyl the Since polymerize so readily, an alternative way to prepare the is by a protection, polymerization, 1-H polymer deprotection sequence analogous to the preparation of This approach might be useful for polyvinyl alcohol. preparing copolymers of 1-protected monomer with other monomers. The masked form would be more compatible with acrylonitrile, for example. or copolymerization, the protecting group could be removed, or modified, to afford the desired functionality, which could be used for crosslinking, or other grafting This approach to polymer modification has reactions. polybenzimidazoles, in application seen cyanoimidazoles are more facile leaving groups and offer substitution possibilities. different range of Nitrile functionalities are readily hydrolyzed to carboxylic acids, so another use of this polymer could be as a carboxylic acid cation exchange resin.

As noted above, the Vinazene monomer can be cleanly alkylated in high yield without inducing polymerization. An initial polymerization attempt on this monomer, using AIBN in acetonitrile, led to poly(methyl Vinazene), a hard, pale yellow polymer, in good yield. The structure is readily discerned from the NMR and IR spectra to be a normal polymethylene chain structure. The intrinsic viscosity in DMSO was $[\eta] = 0.6 \, dL/g$, and using styrene values for the Mark Houwink constants, $M_v = 140,000$.

5

10

Although polymerization of methyl Vinazene can be accomplished using free radical initiation, this monomer also polymerizes by anionic initiation. experiments take advantage of the electron withdrawing 15 power of the cyanoimidazole ring, and the initiator Fluorene, (pK~25) is among the mildest fluorenyl Li. carbanions used for inducing anionic polymerization and acrylonitrile, but not will initiate Interestingly, methyl Vinazene is initiated by Li 20 solution. Optimized in acetonitrile fluorenyl conditions for an anionic polymerization could lead to copolymers with styrene or acrylonitrile. Stereoregular polymerization is also a possibility, since the steric properties of the monomer are similar 25 to styrene, and syndiotactic polystyrene is now known.

Use of the Novel Compounds in Oligomer Synthesis

of the in state current The 30 oligonucleotide synthesis is automated solid phase synthesis of oligonucleotides by the phosphoramidite method, which is illustrated in Figure 700. and Iyer (1992) Tetrahedron 48:2223-2311; Zon and Geiser (1991) Anti-Cancer Drug Design 6:539-568: Matteucci and 35 Caruthers (1981) J. Am. Chem. Soc. 103:3185-3191). General background for this technology using tetrazol condensing agent is also found in articles by M.H.

PCT/US99/02153 WO 99/52956

Caruthers, Science, 1985, 281 and J. Chem. Ed., Vol. 66, Briefly, the 3'-terminal No. 7, July, 1989, 577. nucleoside of the oligonucleotide to be synthesized is attached to a solid support and the oligonucleotide is synthesized by addition of one nucleotide at a time while remaining attached to the support. As depicted in Figure 700, a nucleoside monomer is protected (P1) and prepared (1).phosphoramidite is phosphoramidite (referred to as the 5'-protected monomer is then covalently attached to the growing oligonucleotide chain (2), via a phosphite triester linkage, through the 5'-hydroxy group of the ribose ring of the growing oligonucleotide chain to yield the oligonucleotide product (3), in which the majority of the growing oligonucleotide chain has been extended by The product (3) is then oxidized to one nucleotide. yield the phosphate triester (4). Prior to the addition of the next base to the growing nucleotide chain, the 5'-hydroxyl group must be deprotected. As can be seen in Figure 700 (compound 4), however, not all of the reactive sites on the solid support react with the 5'-These unreacted sites (referred to protected monomer. as failure sequences) must, therefore, be protected (referred to as capping) (5) prior to deprotection of the 5'-hydroxyl group (6). Subsequent monomers, which converted protected and been phosphoramidite, are then sequentially added by coupling the 5'-end of the growing oligomer to the 3'-end of the extends the coupling reaction Each monomer. oligonucleotide by one monomer via a phosphite triester 30 When the synthesis is complete, the desired oligonucleotide 6, the n+1 sequence, is deprotected and cleaved from the resin, together with all of the failure sequences (n, n-x).

35

5

10

15

20

25

In the most preferred embodiment of invention, the monomer unit consists of a 5'-protected phosphoramidite or H-phosphonate, wherein the protecting

group is a substituted trityl group, levulinic acid group or silyl ether group. The preferred substitution on the protecting group is a diene functionality, which can react, via a Diels-Alder reaction, with a solid support, such as a resin, membrane or polymer that has been derivatized with a dienophile. In this embodiment, the unreacted oligonucleotide starting material is separated from the reacted nucleotide product based on the selective or specific covalent reaction of the 5'-protecting group with a derivatized resin.

5

10

35

Certain terms used to describe the invention herein are defined as follows:

15 "Nucleoside" means either a deoxyribonucleoside or a ribonucleoside or any chemical modifications thereof. Modifications of the nucleosides include, but are not limited to, 2'-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitution of 5-bromo-uracil, and the like.

"Oligonucleotide" refers to either DNA or RNA
or any chemical modifications thereof. The
oligonucleotides synthesized by the method of this
invention are depicted generally as in Figure 701. In
one embodiment, n = 1 to 1,000, A is a 2'-sugar
substituent, B is a nucleobase, and the phosphorous (P)
is double bonded to oxygen (O) or sulfur (S).

A "solid support" as used herein refers to a resin, membrane, phase, polymer, polymer precursor, or soluble polymer that can undergo phase transition. A solid support also refers to a resin, membrane, phase, polymer, polymer precursor, or soluble polymer that has been derivatized.

5

10

15

20

25

30

35

Another example of "5'-protected monomer unit" Figure 702, including in as generally conventional number for the ribose ring. In Figure 702, B is a nucleobase; A and A' are 2'-sugar substituents; W is independently selected from the group consisting of H-phosphonate, phosphotriester. phosphoramidite, phosphoramidate, protected oligonucleotide and methylphosphonate; and D-E is an alcohol (hydroxyl) protecting group(s) which serves as an anchor for partitioning the successfully reacted oligonucleotide product away from the unreacted oligonucleotide starting material. preferred embodiment of the invention: W is a phosphoramidite or H-phosphonate; A and A' are independently selected. (See PCT/US96/16668 (WO 97/14706 published 24 April 1997) taking priority from USSN 60/005,619 filed 17 October 1996, "Method for Solution Phase Synthesis of Oligonucleotides", and PCT/IB96/01185 (WO 97/14710 published 24 April 1997) taking priority from USSN 08/546,198 filed 20 October 1995, "Preparation Phosphorothicate Oligomers", each of which is incorporate herein by reference in its entirety as a background teaching tool).

In another embodiment the 5'-deprotected oligonucleotide is not required to be attached to a support. Instead, a material is used to interact selectively with the 5'-protecting group (D-E) of Figure 702. For example, the product is captured or retained on a solid resin support by covalent reaction of the 5'-protecting group constituent with the resin. Then, unreacted starting material not carrying the 5'-protecting group is washed away.

"Starting material" as used herein refers to the compound that is reacted with the 5'-protected monomer unit during each cycle of synthesis to produce an oligomer that has been extended by one of more nucleotides. The starting material can be designed to

produce a [5',3'] linkage between nucleotides or a [3',3'] linkage between nucleotides, depending on the desired oligonucleotide product. In the first instance, the starting material is a 5'-deprotected otherwise protected oligonucleotide of length n, in the second case the starting material is a 3'-deprotected otherwise protected oligonucleotide of length n, wherein n is an integer from 1-1000. The starting material is 2',3'protected by protecting groups, such as base labile groups, that are compatible with the reaction of the 5'protected monomer units with the starting material and with 5'-deprotection reactions. Additionally, because the process consists of the controlled and sequential polymerization of an oligonucleotide, the starting material of one cycle is typically the deprotected product from the previous cycle. Because in one embodiment, the process does not require that the 3'terminal nucleotide be anchored to a solid support, the non-nucleoside include can starting material Non-nucleoside modifications can be modifications. introduced to the 3'-terminus which would not ordinarily be possible by solid phase synthesis. Non-nucleoside modifications to the 3'-terminus of the material include, but are not limited to, the use of polyethylene glycol mono-methylether (molecular weight 5,000 to 100,000) (PEG) or other high molecular weight non-immunogenic units as the 3'-terminal monomer for with improved oligonucleotides of preparation pharmacokinetic properties.

30

35

25

5

10

15

. 20

as used herein refers to "Product" oligonucleotide that is produced by the covalent reaction of the 5'-protected monomer unit with the As stated above, starting material during each cycle. 5'-deprotected is а material starting the if oligonucleotide of length n and the 5'-monomer unit is a single nucleotide, the product of the reaction will be a 5'-protected oligonucleotide of length n+1. If the

5'-protected monomer unit is an oligonucleotide block of length m, the product of the reaction will be a 5-protected oligonucleotide of length n+m. The product from a particular cycle is then 5'-deprotected and becomes the starting material for the next cycle.

A "failure sequence" refers to the starting material from a particular cycle that fails to react with the 5'-protected monomer unit during that cycle.

10

15

20

25

30

35

5

The growing oligonucleotide chain or block refers to either a 5'-deprotected oligonucleotide chain or a 5'-protected oligonucleotide chain that has been prepared by the sequential addition of nucleotides (N) beginning with the 3'-terminal nucleotide of the desired nucleotide using the method of this invention. After each reaction cycle of the process, the growing oligonucleotide increases in length by at least one oligonucleotide, and becomes the starting material for the next reaction cycle. As used herein, the term can refer to either starting material or product, and one of ordinary skill in the art will recognize what is intended by the term in a particular context.

In a representative synthesis method, a 5'protected monomer unit, such as phosphoramidite, is added to a starting material in solution, in the presence of an activator, to yield a product to which one nucleotide has been added via a phosphite triester linkage. In a preferred embodiment, the activator is a polymer according to the invention. The starting is a 5'-deprotected otherwise protected material oligonucleotide of length n, wherein n is an integer between 1 and 1000, and the product is a 5'-protected The 5'-deprotected oligonucleotide of length n+1. oligonucleotide starting material need not be anchored to a solid support, but rather, using standard methods, is simply 2', 3'-protected by protecting groups, such as

base labile groups, that are compatible with the reaction of the 5'-protected monomer units with the starting material and with 5'-deprotection reactions. Thus, modifications can be introduced to the 3'-terminus which are not possible by solid phase synthesis. This includes, but it not limited to, the use of polyethylene glycol mono-methylether (molecular weight 5,000 to 100,000) or other high molecular weight non-immunogenic units.

10

15

20

25

5

After completion of the reaction between the 5'-protected monomer unit and starting material, the reaction mixture contains three species: unreacted 5'protected monomer unit, unreacted starting material, and the product of the reaction, compound, which is a 5'protected olionucleotide of length n+1. As discussed above, any of the starting material (a 5'-deprotected oligonucleotide of length n) which fails to react with the 5'-protected monomer unit, is referred to as the failure sequence, as this sequence was not extended. The product of the reaction, compound, is a 5'-protected oligonucleotide chain extended by one nucleotide (length n+1), by the covalent reaction of the 5'-hydroxy group of starting material, an oligonucleotide of length n with the 3'-phosphoramidite group of the 5'-protected The product, compound, is the major monomer unit. component, and the 5'-protected monomer unit and the starting material that did not react are present only in minor amounts.

30

35

At this stage of the process, it is necessary to remove the unreacted 5'-protected monomer unit from the reaction mixture, both to purify the materials, and to recover the monomer starting material. According to this embodiment, non-reacted monomer is reacted to form an easily removable ionic species. Oxidation of the phosphite triester to phosphate triester may be carried out in the same reaction flask simply by addition of an

oxidizing agent. In situ oxidation gives the desired oligonucleotide product, the phosphate salt of monomer, as well as unreacted oligonucleotide starting material. The monomer phosphate salt is the only free salt in the is easily reaction mixture and thus removed techniques known to those in the art, including but not limited to, filtration through an anion exchange resin or membrane or extraction with an aqueous phase. alternate variation of this embodiment of the invention, the 3'-terminal monomer is a polyethylene glycol monomethylether of molecular weight 5,000 to 100,000, In this case, a simply molecular preferably 20,000. weight cut-off membrane can be used to remove monomer. After the unreacted monomer has been removed from the reaction mixture, the remaining filtrate may then be partitioned in any manner suitable to separate the "oligonucleotide product" from the "failure sequence."

Example of Oligomer Synthesis

20

25

30

35

15

5

10

This example shows the utility of polymers derived from 1-H-2-vinyl-4,5-dicyanoimidazole in promoting the phosphoramidite coupling reaction used in the laboratory synthesis of oligomers. The method of synthesis using the new activating agent of the invention will be exemplified by synthesis of DNA.

The chemical synthesis of DNA which proceeds by cycles of addition of deoxymononucleotide, is shown in Figure 703. Figure 703 shows a reaction sequence for synthesis of oligomers by the steps of detritylation; coupling; capping of unreacted material; and oxidation of coupled material. The coupling/activating agent (χ) of the invention is shown with reference to Figures 4, 4A and 203. In this embodiment, a support is used, but is optional per embodiments described above. In step 1, protected bound and detritylation of a support nucleotide occurs, typically, by treatment

dichloroacetic acid in an inert solvent such as methylene chloride. The deprotected nucleotide is carefully washed and dried with acetonitrile.

In step 2, the deprotected nucleotide reacts with a protected doxynucleoside 3'-phosphoramidite. The synthesis proceeds in the presence of the preferred polymer activator with preferably R1=H (Figure 203). This polymer is poly[1-(1H-4,5-dicyano-2-imidazoly1) The polymer is added as a solid or on a ethylene]. support such as silica. The polymer condenses with the free 5'-hydroxyl, and then promotes the reaction of the phosphoramidate to effect coupling with the loss of This salt is usually washed away in isopropylamine. conventional methods absent the polymer activator of the In the case of the polymer promoter/ invention. activator, a polymeric salt is formed. The polymeric salt can be removed by filtration and regenerated by treatment with strong acid, and used again.

20

25

30

35

15

5

10

Steps 3 and 4, the final two steps in the synthesis cycle, are capping and oxidation. The capping reaction, step 3, is carried out with acetic anhydride and dimethylaminopyridine, and its purpose is to acylate any DNA segments that fail to react during coupling. These unreacted oligomers, if not capped, might get involved in subsequent steps where their removal would be more difficult to achieve. The oxidation step uses I_2 in 2,6-lutidine/water/tetrahydrofuran (2:2:1 v/v/v) to phosphite triester to the triester. After the sequential addition of nucleotides is completed, the DNA is freed of any remaining protecting groups, the beta-cyanoethyl protecting group on the phosphorous atoms is removed, and the ester linkage connecting the DNA to the support is hydrolyzed.

Note that the beta-cyanoethyl protecting group is a chiral auxiliary which has left- and right-handed

features to aid in alignment of units to enhance chain formation. Such chiral auxiliary groups are known in the art for being hand-like mirror images that are not superimposable.

5

While this invention has been described in terms of certain embodiments thereof, it is not intended that it be limited to the above description, but rather only to the extent set forth in the following claims.

10

The embodiments of the invention in which an exclusive property or privilege is claimed are defined in the following claims.

Claims:

1.

A polymer comprising imidazole ring units having nitrogen at the 1 and 3 positions of the ring; a carbon at each of the 2, 4 and 5 positions of the ring; linking carbons 6 and 7 derived from a vinyl group at said 2 position carbon; and radical substituents G1 and G2 carried at respective said 4 and 5 positions where G1 and G2 are each independently selected from the group consisting of cyano, substituents derived from cyano, and substituents which replace cyano; where said polymer is formed by at least two of said cyclic imidazole units joined by linkage through any combination of: carbon at said 2 position and nitrogen at said 1 position.

2.

The polymer according to claim 1 wherein G1 and G2 are each cyano groups.

3.

The polymer according to claim 1 wherein said G1 and G2 are each independently selected from the group consisting of cyano, carboxy, amide, amine, carboxylic acid and carboxylic ester.

4.

The polymer according to claim 1 wherein said G1 and G2 are each hydrolysis derivatives of cyano.

5.

The polymer according to claim 1 wherein each of said units is connected to a main polymer chain through said linking carbons; providing a polymer of formula

where R1 is hydrogen or a group attachable to said cyclic compound by an electrophilic agent; R2 is hydrogen or an organic group that doesn't interfere with polymerization; and R3 is hydrogen.

6.

The polymer according to claim 5 wherein R1 is a substituted or unsubstituted alkyl having one to ten carbon atoms, and R2 is hydrogen or a substituted or unsubstituted alkyl having up to four carbon atoms.

7.

The polymer according to claim 5 wherein R1 is hydrogen or is selected from the group consisting of methyl, ethyl, propyl, isobutyl, benzyl, nonyl and carbamoyl; and wherein R2 is selected from the group of methyl, ethyl, propyl and butyl.

8.

The polymer according to claim 5 wherein R1 is hydrogen or methyl and each of G1 and G2 is cyano; providing a polymer of one of the formulas

9.

The polymer according to claim 5 wherein R1 is methyl and each said G1 and G2 is a hydrolysis product of cyano providing a polymer of one of the formulas

10.

The polymer according to claim 1 wherein each said unit is connected to another said unit by linkage through both said 1 and 7 positions; providing a polymer of the formula

where R4 and R5 are each independently selected from the group consisting of hydrogen and substituted or unsubstituted alkyls having 1-4 carbon atoms.

11.

A polymer comprising repeat units of the Formula

where R4 and R5 are each independently selected from the group consisting of hydrogen and substituted or unsubstituted alkyls having one to four carbon atoms; and where G1 and G2 are each independently selected from the group consisting of cyano, substituents derived from cyano, and substituents which replace cyano.

12.

The polymer according to claim 11 wherein G1 and G2 are each cyano groups.

13.

The polymer according to claim 11 wherein G1 and G2 are each independently selected from the group consisting of cyano, carboxy, carbamoyl, amide, amine, carboxylic acid and carboxylic ester.

14.

The polymer according to claim 11 wherein said G1 and G2 are each hydrolysis derivatives of cyano.

15.

A polymer comprising repeat units of formula

where:

- a) E is hydrogen, or an organic or inorganic substituent attachable to the nitrogen by an electrophilic agent;
- b) R2 is a substituted or unsubstituted alkyl having 1-4 carbon atoms;
- c) R3 is hydrogen; and
- d) G1 and G2 are each independently selected from the group consisting of cyano, substituents derived from cyano, and substituents which replace cyano.

16.

The polymer according to claim 15 where E is a bifunctional electrophile or epoxide.

17.

The polymer according to claim 15 where E is selected from the group consisting of an organic group having 1 to 10 carbon atoms; a catalytic substituent; a fluorescent substituent; a hydrophobic modifier substituent; a hydrophilic modifier substituent; and a crosslinking substituent.

18.

A cyclic compound having the formula

where R1, R2 and R3 are identical or different and are each independently selected from the group consisting of hydrogen and organic substituents having 1 to 10 carbon atoms; provided that at least one of said R1 and R2 is selected from said organic substituents; and further provided that said substituent does not interfere with polymerization.

19.

The cyclic compound according to claim 18, further provided that said organic substituent does not contain an acidic proton.

20.

The cyclic compound according to claim 18 wherein R1 is any group attachable to said cyclic compound by an electrophilic agent.

21.

The cyclic compound according to claim 18 wherein R1 is selected from the group consisting of methyl, ethyl, propyl, isobutyl, benzyl, nonyl and carbamoyl.

22.

The cyclic compound according to claim 18 wherein R1 and R2 are each substituted or unsubstituted alkyls, with R2 having one to four carbon atoms, and R1 having one to ten carbon atoms.

23.

The cyclic compound according to claim 18 wherein said organic substituent is sterically nonhindering.

24.

The cyclic compound according to claim 18 further characterized by being polymerizable, and wherein said organic substituent is sterically nonhindering upon said polymerization.

25.

The cyclic compound according to claim 18 wherein R3 is hydrogen.

26.

The cyclic compound according to claim 18 wherein R2 is selected from the group of methyl, ethyl, propyl and butyl.

27.

A cyclic compound having the formula

where R1 is characterized by being an organic substituent that does not interfere with polymerization, and by being attachable to said cyclic compound by an electrophilic agent.

28.

A cyclic compound according to claim 27 wherein R1 is a substituted or unsubstituted alkyl having one to ten carbon atoms.

29.

A cyclic compound according to claim 27 wherein R1 is an organic group having one or more carbon atoms.

30.

The cyclic compound according to claim 27 wherein R1 is selected from the group consisting of methyl, ethyl, propyl, isobutyl, benzyl, nonyl and carbamoyl.

In a method for the synthesis of oligonucleotides comprising:

- a) reacting a 5'-protected monomer unit with an oligonucleotide unit in the presence of a coupling agent to form a reaction mixture containing a product, said product of said reaction being a 5'-protected oligonucleotide having its length increased by joining said monomer unit to said oligonucleotide unit; and
- b) partitioning the product from the unreacted starting material, unreacted 5'-protected monomer unit, side products, and reagent; the improvement comprising:

said coupling agent being a polymer comprising cyclic imidazole units having nitrogen at the 1 and 3 positions; a carbon at each of the 2, 4 and 5 positions; and radical substituents G1 and G2 carried at respective said 4 and 5 positions, where G1 and G2 are each independently selected from the group of electron-withdrawing substituents; wherein each of said imidazole units is connected to the main polymer chain through said 2 position; providing a polymer of the formula:

where R1 is hydrogen or a substituted or unsubstituted alkyl having up to 10 carbon atoms, R2 is hydrogen or a substituted or unsubstituted alkyl having up to 4 carbon atoms, and R3 is hydrogen.

32.

The method according to claim 31 wherein R1 is hydrogen, and G1 and G2 are each cyano, and said polymer has the formula:

33.

The method according to claim 31 wherein said G1 and G2 are each independently selected from the group consisting of cyano, carboxy, amide, carboxylic acid and carboxylic ester.

34.

The method according to claim 31 where G1 and G2 are each independently selected from the group consisting of cyano, substituents derived from cyano, and substituents which replace cyano.

35.

The method according to claim 31 wherein the 5'protected monomer unit is a single nucleotide (N), the
oligonucleotide unit is a block of multiple units (N >
1), and the product is a 5'-protected oligonucleotide
having a length of N + 1.

36.

The method according to claim 31 wherein the 5'protected monomer unit is an oligonucleotide of block
length M, the oligonucleotide unit is an oligonucleotide
of block length N, and the product of reaction is a 5'protected oligonucleotide of length N + M.

37.

The method according to claim 31 wherein the 5'protected monomer unit has the following general
formula:

wherein B is a nucleobase; A and A' are 2'-sugar substituents; W is independently selected from the group consisting of a phosphoramidite, a H-phosphonate, a phosphoramidate and a protected oligonucleotide, wherein said protected oligonucleotide has a 3'-terminal group selected from the group consisting of a phosphoramidite, a H-phosphonate, a phosphate triester, a methyl phosphonate, phosphoramidate; and D-E is an alcohol protecting group(s).

38.

In a method for the synthesis of oligonucleotides by reacting deprotected nucleotide with a protected deoxynucleoside 3'-phosphoramidite in the presence of an coupling agent, the improvement comprising: said coupling agent being a polymer having the formula:

The method according to claim 38 wherein the deprotected nucleotide has the general formula

where R is a chiral auxiliary protecting group; Z is a hydroxyl- protecting group, a link to a solid support, or a non-immunogenic group; Q is oxygen or sulphur; and B1 and B2 each represent a nucleobase.

40.

The method according to claim 38 wherein the protected deoxynucleoside 3'-phosphoramidite has the general formula

where R is a chiral auxiliary protecting group; B3 represents a nucleobase; and DE is a hydroxyl-protecting group.

FIG.1

FIG.4

FIG.4A

NC CN NC CN
$$+ H_2C = CH - CHO$$
 $+ H_2O$ $+ H_2$

FIG. 101

FIG. 102

FIG. 103

NC

FIG.204

PCT/US99/02153

FIG.506

Polymer soin. conc. (g/cm^3)	Relative	Inherent	Specific	Reduced
	Viscosity	Viscosity	Viscosity	Viscosity
0.0150	2.242	53.825	1.2420	82.80
0.0125	2.001	55.492	1.0010	80.08
0.0107	1.818	55.789	0.8180	76.35
0.0094	1.690	55.971	0.6900	73.60

FIG.507

FIG.509

FIG. 600

$$H_3C$$
 H
 H_3C
 H_3
 H_3C
 H_3C

FIG.601

FIG.700

FIG.701

FIG.702

INTERNATIONAL SEARCH REPORT

Inter inal Application No PCT/US 99/02153

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C08F226/06 C08F26/06 CO7D233/90 CO7H21/00 According to International Patent Classification (IPC) or to both national classification and IPC 8. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO8F CO7D CO7H IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category 1 EP 0 042 938 A (AMERICAN CYANAMID CO) X 6 January 1982 see examples see claim 1 1 - 30Α see claims 18,22-24 THEOPHIL EICHER, DIETER LERCH: "Zur X Reaktionsweise des 3-Ethoxy-1,2-Diphenyl-Cyclopropenyliumkati ons mit bifunkzionellen aromatischen Aminen" TETRAHEDRON LETTERS, vol. 21, 1980, pages 3751-3754, XP002102685 1-30 see page 3753, line 6 Α -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X X "T" later document published after the international filing date or priority date and not in conflict with the application but Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the International search report Date of the actual completion of the international search 09/07/1999 17 May 1999 BEST AVAILABLE COPY Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Pollio, M

3

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/US 99/02153

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category '	Citation of document, with indication, where appropriate, of the relevant passages	
X	WO 97 14706 A (NEXSTAR PHARMACEUTICALS INC; PIEKEN WOLFGANG (US); MCGEE DANNY (US) 24 April 1997 cited in the application see page 20, line 28 - page 21, line 5 see figures	31
A	WO 96 26229 A (BASF AG ;SCHADE CHRISTIAN (DE); SCHNEIDER KARL HEINRICH (DE)) 29 August 1996 see claim 1	1-30
A	US 5 646 296 A (IPPOLITI J THOMAS ET AL) 8 July 1997 see claims	1-30
A	JP 49 134676 A (KURARAY CO., LTD) 25 December 1974 & CHEMICAL ABSTRACTS, vol. 82, no. 25, 1975 Columbus, Ohio, US; abstract no. 170924, HOSOGAI,TAKEO;NISHIDA, TAKASHI;ITOI, KAZUO: "2-substituted 4,5-dicyanoimidazoles" see abstract	18, 22-25, 27
		AVAILABLE COPY
	BEST	AVAILABLE OOI
		,

3

. ;

INTERNATIONAL SEARCH REPORT

information on patent family members

Interr 1al Application No PCT/US 99/02153

Patent document cited in search report		Publication date	1	Patent family member(s)	Publication date
EP 0042938	A	06-01-1982	US JP	4299939 A 57044610 A	10-11-1981 13-03-1982
WO 9714706	A	24-04-1997	AU CA EP	7451896 A 2234159 A 0863910 A	07-05-1997 24-04-1997 16-09-1998
WO 9626229	A	29-08-1996	DE DE EP ES JP US	19505750 A 59600966 D 0811025 A 2124627 T 11500170 T 5804662 A	22-08-1996 21-01-1999 10-12-1997 01-02-1999 06-01-1999 08-09-1998
US 5646296	Α	08-07-1997	US US US EP JP WO	5455359 A 5637728 A 5605994 A 0723543 A 9503766 T 9509854 A	03-10-1995 10-06-1997 25-02-1997 31-07-1996 15-04-1997 13-04-1995
JP 49134676	Α	25-12-1974	. JP	1139238 C 57028704 B	11-03-1983 18-06-1982