

$$h_{2+}^{\#1} + \alpha \beta \boxed{\alpha^2 \beta^2}$$

$$\mathcal{F}_{2+}^{\#1} + \alpha \beta \boxed{\frac{\sigma^2 \beta^2}{\alpha^2 \beta^2}}$$

(No source constraints)

$$\mathcal{F}_{0+}^{\#1} \qquad \mathcal{F}_{0+}^{\#2} \qquad \rho_{0+}^{\#1}$$

$$\mathcal{F}_{0+}^{\#1} \dagger \qquad \frac{16 \beta^{4} - 39 \beta^{2} k^{2} + 9 k^{4}}{40 \alpha^{2} \beta^{6}} \qquad -\frac{24 \beta^{4} - 17 \beta^{2} k^{2} + 3 k^{4}}{40 \alpha^{2} \beta^{6}} \qquad \frac{i k (\beta^{2} + 3 k^{2})}{20 \alpha \beta^{5}}$$

$$\mathcal{F}_{0+}^{\#2} \dagger \qquad -\frac{24 \beta^{4} - 17 \beta^{2} k^{2} + 3 k^{4}}{40 \alpha^{2} \beta^{6}} \qquad \frac{16 \beta^{4} - 7 \beta^{2} k^{2} + k^{4}}{40 \alpha^{2} \beta^{6}} \qquad \frac{i (\beta - k) k (\beta + k)}{20 \alpha \beta^{5}}$$

$$\rho_{0+}^{\#1} \dagger \qquad -\frac{i k (\beta^{2} + 3 k^{2})}{20 \alpha \beta^{5}} \qquad \frac{i k (-\beta^{2} + k^{2})}{20 \alpha \beta^{5}} \qquad \frac{5 \beta^{2} + k^{2}}{10 \beta^{4}}$$

	$h_{1}^{\#1}{}_{\alpha}$	$h_{1-\alpha}^{\#2}$
h ₁ ^{#1} † ^α	0	$-\sqrt{5} \alpha^2 \beta^2$
h ₁ +2 †α	$-\sqrt{5} \alpha^2 \beta^2$	$4 \alpha^2 \left(-\beta^2 + k^2\right)$

	Massive particle		
	Pole residue:	$\frac{1}{\alpha^2} > 0$	
?	Polarisations:	7	
•		_	

Square mass:	$\beta^2 >$
Spin:	3
Parity:	Ddd

$$\frac{\alpha < 0 \mid\mid \alpha > 0 \&\& \beta < 0 \mid\mid \beta > 0}{\alpha < 0 \mid\mid \alpha > 0 \&\& \beta < 0 \mid\mid \beta > 0}$$

(No massless particles)