

Testing Hypothesis

Gonzalo G. Peraza Mues April 4, 2017

Non numerical inference. Choosing between two hypothesis

Useful when we need to choose between two conflicting theories.

Examples:

- assess whether the lifetime of a certain type of ball bearing deviates or does not deviate from the lifetime guaranteed by the manufacturer
- an engineer wants to know whether dry drilling is faster or the same as wet drilling
- a gynecologist wants to find out whether smoking affects or does not affect the probability of getting pregnant
- the Allied Forces want to know whether the German war production is equal to or smaller than what Allied intelligence agencies reported

A war example: Allied intelligence reports on German war production.

Problem: Reported production was a lot higher than was observed by serial numbers:

- Observed serial numbers: 61 19 56 24 16.
- Reported production: 350 tanks.

We want to choose between two propositions:

- Null Hypothesis H_0 : N = 350.
- Alternative Hypothesis H_1 : N < 350.

If we reject H_0 , we accept H_1 . H_1 must be chosen carefully. Options: $N \neq 350$, N > 350.

Quick exercises

In the drilling example, suppose the data on drill times for dry drilling are modeled as a realization of a random sample from a distribution with expectation μ_1 , and similarly the data for wet drilling correspond to a distribution with expectation μ_2 . We want to know whether dry drilling is faster than wet drilling. To this end we test the null hypothesis $H_0: \mu_1 = \mu_2$ (the drill time is the same for both methods). What would you choose for H_1 ?

To decide whether H_0 is false we use a statistical model.

Test Statistic: Suppose the dataset is modeled as the realization of random variables $X_1.X_2,...,X_n$. A test statistic is any sample statistic $T = h(X_1, X_2,...,X_n)$, whose numerical value is used to decide whether we reject H_0 .

Statistical model

Serial numbers are modeled as a realization of random variables X_1, X_2, \ldots, X_5 representing five draws without replacement from the numbers $1, 2, \ldots, N$.

Test statistic:
$$T = \max\{X_1, X_2, \dots, X_5\}$$
.
$$\mathsf{E}[T] = n\frac{N+1}{n+1} = \frac{5}{6}(N+1)$$

Values in favor of H_1	Values in favor of H_0	Values against both H_0 and H_1
5	292.5	350

Fig. 25.1. Values of the test statistic T.

From the data: $t = \max\{61, 19, 56, 24, 16\} = 61$

Quick exercise

Another possible test statistic would be \bar{X}_5 . If we use its values as a credibility scale for H_0 , then what are the possible values of \bar{X}_5 , which values of \bar{X}_5 are in favor of H_1 : N < 350, and which values are in favor of H_0 : N = 350?

Tail probabilities

Can we reach the conclusion that H_0 is false beyond reasonable doubt?

Values of T that provide stronger evidence against H0 than 61 are to the left of 61.

$$P(T \le 61) = P(\max\{X_1, X_2, \dots, X_5\})$$
$$= \frac{61}{350} \frac{60}{349} \frac{59}{348} \frac{58}{347} \frac{57}{346} = 0.0014$$

This probability is so small that we view the value 61 as strong evidence against the null hypothesis.

The tail probability expresses how likely it is to obtain a value of the test statistic T at least as extreme as the value t observed for the data. Such a probability is called a p-value.

7/10

Quick exercise

Suppose that the Allied intelligence agencies had reported a production of 80 tanks, so that we would test H_0 : N=80 against H_1 : N<80. Compute the p-value corresponding to 61. Would you conclude H_0 is false beyond reasonable doubt?

Type I and Type II Errors

	H₀ is true	H_1 is true
Reject H ₀	Type I error	Correct decision
Not reject H_0	Correct decision	Type II error

What amount of risk one is willing to take to falsely reject H_0 ?

As a rule of thumb 0.05 is used as the level where reasonable doubt begins.

Always report the p-value.

Quick exercise

Suppose we adopt the following decision rule about the null hypothesis: "reject $H_0: N=350$ whenever $T\leq 250$." Using this decision rule, what is the probability of committing a type I error?