Syntax and Parsing

- Syntax: the form of a program
- Semantics: the meaning of a program
- Two parts to syntax analysis:
 - lexical rules: define legal characters and how they can be combined to form symbols

("lexemes").

 syntax rules: define how categories of lexemes ("tokens") can be combined to form legal programs.

Compiler Front End

Syntax Analysis

• We won't make a strict distinction, but will generally deal with syntax rules.

How to Describe the Syntax of a Language?

- English description
 - lengthy, tedious, ambiguous
- Formal description
 - recognizer: given a string, a recognizer for a langu tells whether or not the string is in L
 - generator: a generator for L will produce an arbitration string in L on demand.
- Recognition and generation are useful for differe things, but are closely related.
- First, we'll talk about an important generation too BNF.

BNF

- Backus-Naur Form (BNF) is a metalanguage for describing the syntax of programming languages.
 - developed by John Backus and Peter Naur
 - first used to describe ALGOL60
- A language description in BNF is called a grammar.

Grammars

A grammar is made up of productions, or rules,

```
<sentence> --> <subject><verb><obj>
<verb> --> see | hit
<subject> --> |
<object> --> him | her
```

Four components:

- -->: "is defined as"
- _ |: "or"
- terminals: see, hit, I, him, her.
- non-terminals: <sentence>, <verb>, <subject>,

Recursion

Need recursion to define strings of indefinite length:

A 1

(1-kl. 4k 1-11) 1

Derivations

The steps in generating a string from a grammar called a derivation.

Each step produces a sentential form.

Left-Most and Right-Most Derivations

- How to choose which non-terminal to replace next:
 - left-most derivation: replace left-most NT first
 - right-most derivation: replace right-most NT first
- Need not be either of these
 - random replacement OK

can't affect language generated

Parse Trees

Show the <u>syntactic</u> structure of sentences.

Ambiguous Grammars

- A grammar is ambiguous if it generates a sentence for which there are two or more parse trees.
- Another parse tree for A * B + C:

Disambiguating the Grammar

To disambiguate this grammar, change to:

This gives * higher precedence than +, although |
 generates the same language as the first gramm;

Another Ambiguous Grammar

```
<stmt> --> <assign> | <if_stmt> <assign> --> <id> := <exp> <if_stmt> --> | F <bool> THEN <stmt> | IF <bool> THEN <stmt> ELSE <stmt>
```

Exercise:

- Prove that this is ambiguous.
- Write a grammar for the <u>same</u> language that is not ambiguous.

Limitations of Context Free Grammars

- Productions must always apply, regardless of confin which string appears.
- Can't handle some things:

Need "static semantics" . . .

Recognizers

- How to generate a recognizer from a grammar?
 - automatically (YACC)
 - by hand
- There are many types of parsers:
 - LL(0)
 - LL(k)
 - LR
 - LALR
 - recursive descent

Extended BNF

• [...] optional

<if> --> IF <bool> THEN <stmt> [ELSE <stmt>]

• {...} zero or more times

<ones> --> 1 {<ones>}

• (...|...) or (:::) local choice

Syntax and Parsing Summary

- Recognizer vs. generator
- BNF
 - Four components
 - Recursion
- Derivation
- Ambiguous grammars
- Extended BNF

Semantics of Programming Languages

- How to define the meaning of programs?
- Three approaches:
 - Operational
 - Axiomatic
 - Denotational

Operational Semantics

- Gives a program's meaning in terms of its implementation on a real or virtual machine
- Define two parts:
- machine
 - high level
 - low level
- translation from source code to "machine" code

Example

Pascal	Operational Semantic
for i := x to y do begin	i := x loop: if i>y goto out
•	•
•	
end	i := i + 1 goto loop
	out:

Operational semantics could be much lower le e.g.,

```
mov i,r1
mov y,r2
jmpifless(r2,r1,out)
...
out: ...
```

5

Advantages and Disadvantages of Operational Semantics

Advantages:

- May be simple, intuitive for small examples
- Useful for implementation

Disadvantages

- Very complex for large programs
- Lacks mathematical rigor

· Uses:

- Vienna Definition Language (VDL) used to define PL/I
 (Wegner 1972)
- Compiler work

Axiomatic Semantics

 Based on predicate calculus. Use assertions to certain properties of programs.

{P} statement {Q}

Compute precondition from postcondition:

$$\{P\} \quad x := y + 1 \quad \{X>0\}$$

- Possible Ps:

$$y > 5$$

 $y = 37$
 $y \ge 0$ Weakest Precondition (WP)
etc.

 WP -> identifies all possible cases for which postcondition holds!

Finding the Weakest Precondition

Define function:

wp: Stmt x Postcondition --> weakest precondition

So:

wp (x := y+1, x > 0)
= x > 0
$$_{x \to y+1}$$

= y+1 > 0
= y \ge 0

- basically, "undoing" the assignment and solving for y

Sequences of Statements

{P} S1; S2 {Q}

Just apply wp twice

wp
$$(x := y + 1; z := x + y, z > 5)$$

wp (z := x + y, P1) where
P1 = z > 5
$$_{x \to y + 1}$$

= x + y > 5

wp
$$(x := y + 1, x + y > 5)$$

= $x + y > 5_{x \to y + 1}$
= $y + 1 + y > 5$
= $y > 2$

Loops

- {P} while B do S end {Q}
- Need loop invariant I such that:
 - P ==> 1
 - {I} B {I}
 - {I & B} S {I}
 - (I & (not B)) ==> Q
 - and the loop terminates

Finding Loop Invariants

Work backwards through a few iterations and lead a pattern.

while
$$y <> x \text{ do } y := y+1 \{y = x\}$$

wp
$$(y := y + 1, \{y = x\}) = \{y = x\}_{y \to y + 1}$$

= $y = x - 1$ -- last time

wp (y := y + 1, {y = x - 1}) = {y = x-1}
$$_{y \to y+1}$$

= y = x - 2 -- next to k

$$I = \{y \le x\}$$
 -- by exten

· This also satisfies loop termination, so

$$P = I = \{y \le x\}$$

• It's not always this easy!

Finding Loop Invariants (cont.)

$\{P\}$ while y < x + 1 do $y := y + 1 \{y>5\}$

$$y>5_{y-y+1} => y>4$$

 $y>4_{y-y+1} => y>3$
etc.

- really tells us *nothing* relative to x because x is not in $Q \equiv \{y > 5\}$
- Try Using Boolean

Do the 4 Axioms hold?

Advantages, Disadvantages, and Uses of Axiomatic Semantics

Advantages

- Can be very abstract
- May be useful in proofs of correctness
- Solid theoretical foundations

Disadvantages

- Predicate transformers are hard to define
- Hard to give complete meaning
- Does not suggest implementation

Uses of Axiomatic Semantics

- Semantics of Pascal
- Reasoning about correctness

HOMEWORK FOR AXIOMATIC SEMANTICS

Consider

$$\{P\} x := x * 3 \{X^2 = 36\}$$

Determine Weakest Precondition for {P}

Denotational Semantics

- Define a function that maps a program (a syntation object) to its meaning (a semantic object).
- Sort of like a high-level operational semantics.
 - → machine is gone
 - \rightarrow language is λ-calculus
- More abstract.

Example: Decimal Numbers

Valuation function: V: Number --> Integers ▲

syntax

meaning

Syntax:

- Semantics:
 - \rightarrow Let n ∈ <num>, d ∈ <digit>

$$V \llbracket nd \rrbracket = 10 * V \llbracket n \rrbracket + V \llbracket d \rrbracket$$
 $V \llbracket 0 \rrbracket = 0$ integers as we know them
$$V \llbracket 1 \rrbracket = 1$$

Consider V [237] :

$$V[[237]] = 10 * V[[23]] + V[[7]]$$

$$= 10 * (10 * V[[2]] + V[[3]]) + V[[7]]$$

$$= 10 * (10 * 2 + 3) + 7$$

$$= 10 * (20 + 3) + 7$$

$$= 10 * (23) + 7$$

$$= 230 + 7$$

$$= 237$$

Expressions

But for real programming languages we need noting

E: Expression --> Integer

$$E[[x]] = ?$$
 where x is a variable

Depends on the current state

→ STATE = <mem, input, output>

mem: Identifier --> Integer

input: Integer *

output: Integer *

Now

E: Expression x STATE --> Integer

E([[x]], s) = mem([[x]]) where s = < mem, i, o >

$$E(\llbracket e_1 + e_2 \rrbracket, s) = E(\llbracket e_1 \rrbracket, s) + E(\llbracket e_2 \rrbracket, s)$$

Statements

Expressions denote a value, but statements denote a state.

ST
$$([x := e], s) = \text{-mem'}, i,o> \text{ where}$$

$$s = \text{-mem}, i,o>$$

$$mem'[[x]] = E([[e],s)$$

$$mem'[[y]] = mem[[y]] \qquad \text{for all } y \neq x$$

ST (
$$\llbracket \text{write}(e) \rrbracket$$
, s) = where
s =
o' = o • (E ($\llbracket e \rrbracket$, s))

Sequences of Statements

Basic (sequential statement evaluation)

$$ST([stmt_1; stmt_2], s) =$$
 $ST([stmt_2], s') \text{ where}$
 $s' = ST([stmt_1], s)$

Parallel statement evaluation

Example

P:
$$\begin{cases} x := 5; \\ P': \{ y := x + 1; \\ write(x * y); \} P'' \end{cases}$$

→ Initial state s = <mem,i,o>

$$ST([P], s) = ST([P], (ST([x := 5], s)))$$

s' = where
$$mem'([[x]]) = 5$$

$$mem'([[z]]) = mem([[z]]) \quad \text{for all } z \neq x$$

$$i' = i, o' = o$$

Example (continued)

$$ST(\llbracket P' \rrbracket, s') = ST(\llbracket P' \rrbracket, \underbrace{(ST(\llbracket y := x + 1 \rrbracket, s'))}_{S''})$$

$$s'' = \langle mem'', i'', o'' \rangle \text{ where}$$

$$mem''(\llbracket y \rrbracket) = E(\llbracket x + 1 \rrbracket, s') = 6$$

$$mem''(\llbracket z \rrbracket) = mem'(\llbracket z \rrbracket) \text{ for all } z \neq y$$

$$i'' = i', o'' = o'$$

$$ST([[P']], s'') = ST([[write (x * y)]], s'') = s'''$$

$$s''' = < mem''', i''', o'''> where$$

$$mem''' = mem'', i''' = i''$$

$$o''' = o'' • E([[x * y]], s'') = o'' • 30$$

⇒ So,
ST (
$$\llbracket P \rrbracket$$
, s) = where
mem'''($\llbracket y \rrbracket$) = 6
mem'''($\llbracket x \rrbracket$) = 5
mem'''($\llbracket z \rrbracket$) = mem($\llbracket z \rrbracket$) for all $z \neq x,y$
i''' = i
o''' = o • 30

Advantages, Disadvantages, and Uses of Denotational Semantics

- Advantages (of denotational semantics)
 - compact and precise
 - → may help with implementation
 - → solid mathematical foundations
- Disadvantages
 - → Hard for programmer to use
- Uses
 - → Semantics for Algol-60, Pascal, etc.
 - → Compiler generation and optimization

HOMEWORK FOR DENOTATIONAL SEMANTICS

Prefatory Consideration:

Prog. Langs. have conditional statements, e.g.

- 1) if b then stmt1, else stmt2
- 2) if b then exp1, else exp2

Assuming that conditionals only support expres evaluation and have no side effects, let's give meaning to 1) above:

ST([[if b then stmt, else stmt2]], s) =

if $E(\llbracket b \rrbracket$, s) then

ST([[stmt1]] , s) else

ST([[stmt2]], s).

Note: use of previous defns T/F Assessment like introduction of "IF THEN ELSE" in denotational language

UNDERSTAND/STUDY

1) ST ([[if b then stmt1 else stmt2]], s)

definition and elaboration

2) Give denotational semantics for repeat until stmt

REPEAT stmt UNTIL b

You will need conditional statement like that specified above

HINT:

on RHS you ight find recursive defn