Project proposal

Due next Friday (March 31st)

1 page description of what you plan to focus on for your final project.

Graphical Concepts

Spring 2023
PCfB Class 9
March 24, 2023

Dudas et al. 2017, Nature

Grubaugh et al. 2017, Nature

Objectives

Overview of graphical concepts

Exposure to editing programs

Types of digital images

vector-based

pixel-based

Vector-based images

- Composed of independent shapes
- Each shape editable as a unit

Pixel-based images (raster)

 Composed of squares of different colors

 Only editable by changing the colors of individual squares

Use vectors whenever possible!

Maintain clarity at any size

Easy to edit

Can always convert to pixels

Searchable

1st exception = photographs

2nd exception = complex figures

How to generate vector images

Draw images from scratch

Trace a photograph

Export from most programs

Know your file formats!

Working with vectors

Adobe Illustrator

Working with pixels

Adobe Photoshop

GIMP

Objective

Familiarize yourself with both vector-based and pixel-based graphics editing programs

BioRender

PRIMER

The first few days of a SARS-CoV-2 infection viewed at single-cell resolution

Tom Gallagher 1*, Paul B. McCray, Jr 2

Fig 1. Single-cell resolution of SARS-CoV-2 infection. Primary cultures of well-differentiated bronchial epithelial cells, grown on permeable supports at ALIs, are infected with SARS-CoV-2, then separated for subsequent single-cell RNA sequencing. Using t-SNE statistical methods, cells with similar transcriptome profiles are group-clustered on two-dimensional plots. Individual cells containing SARS-CoV-2 RNAs and antiviral interferon transcripts are identified within clusters. Images were created with BioRender.com. ALI, air-liquid interface; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; t-SNE, t-distributed stochastic neighbor embedding.

Fig 1. Predicting zoonotic potential using genomic signatures. Characterizing the diversity of viruses infecting non-human animals (i.e., the animal 'virosphere') is a critical component of pandemic prevention. However, current approaches for in-depth characterization cannot keep pace with the rate of sequence-based viral discovery driven by metagenomics. In this issue, Mollentze and colleagues present machine learning models that can prioritize novel viruses for follow-up studies based only on genomic signatures of zoonotic potential. Figure was created with BioRender.com.

BioRender Demo

