ST4234: Bayesian Statistics

Tutorial 4, AY 19/20

Instructions: For each group who were scheduled to present on Tuesday, 18 February, please upload one copy of your solutions to the folder "Tutorial submission" by **6pm Tuesday**, **18 February**.

- 1. Answer the following questions:
 - (a) Let $Y \sim \text{Binomial}(n, \theta)$ where $0 < \theta < 1$. Identify Jeffreys prior distribution $p_J(\theta)$ for this model.
 - (b) Reparameterize the binomial sampling model with $\psi = \log \frac{\theta}{1-\theta}$ and show that $p(y|\psi) = \binom{n}{y} \mathrm{e}^{\psi y} (1 + \mathrm{e}^{\psi})^{-n}$. Show that Jeffreys prior distribution for this model is

$$p_J(\psi) \propto \frac{\mathrm{e}^{\psi/2}}{1 + \mathrm{e}^{\psi}}, \ \psi \in \mathbb{R}.$$

- (c) Take the prior distribution from (a) and apply the change of variables formula to obtain the induced prior density on ψ . This density should be the same as the one derived in (b). This consistency under reparametrization is the defining characteristic of Jeffreys prior.
- (d) Plot $p_J(\theta)$ and $p_J(\psi)$.
- 2. Let $Y \sim \text{Poisson}(\theta)$ where $\theta > 0$.
 - (a) Obtain Jeffreys prior distribution for this model. Is this a proper prior for θ ? In other words, can $\sqrt{I(\theta)}$ be proportional to an actual probability density for $\theta > 0$?
 - (b) Obtain the form of the function $f(\theta, y) = \sqrt{\theta} \times p(y|\theta)$. What probability density for θ is $f(\theta, y)$ proportional to? Can we think of $f(\theta, y) / \int f(\theta, y) d\theta$ as a posterior density of θ given Y = y?

- 3. Suppose that $Y \sim N(\theta, v)$ where the mean θ and variance v are both unknown.
 - (a) Show that Jeffreys prior for this model is $p_J(\theta, v) \propto v^{-3/2}$. (Hint: You may refer to the derivation on page 58 of Chapter 3 notes, but with (θ, v) as the parameters instead of (θ, σ) .)
 - (b) Let $\mathbf{y} = (y_1, \dots, y_n)$ be the observed values of an i.i.d. sample from $N(\theta, v)$.
 - (i) Find a probability density $p_J(\theta, v|\mathbf{y})$ such that $p_J(\theta, v|\mathbf{y}) \propto p_J(\theta, v)p(\mathbf{y}|\theta, v)$. It may be convenient to write this joint density as $p_J(\theta|v,\mathbf{y}) \times p_J(v|\mathbf{y})$. (Hint: You may refer to page 30 of Chapter 3 notes and the handwritten notes.)
 - (ii) Find the marginal posterior distribution of θ up to a proportionality constant. By making a change of variable, show that the marginal posterior for $t = \frac{\theta \bar{y}}{s'/\sqrt{n}}$ is a Student's t distribution with n degrees of freedom, where $s'^2 = \sum_{i=1}^n (y_i \bar{y})^2/n$.
 - (iii) How would your answers to (i) and (ii) change if instead of the Jeffreys prior, we adopt a "reference prior", $p(\theta, v) \propto 1/v$, which is the product of the prior $p(\theta) \propto 1$ for θ and $p(v) \propto 1/v$ for v.