Trading Credit Conves

- o Modeling Defaultable Bouds
- · Modeling Credit
- o Default Producilities & CDS Pricing
- o Shape of Credit Conves
- o Forwards in Credit
- o Drivers of Pal is Conve Trades
- o Curve Trading Stategies
- · Rish Measurements

Valving Defaultable Bends

· Zero-Corper Bands (Now-defruitable)

Let B(t,T) = today (true-t) price of a 175kless zero europo Seval that pays out 21 at a future time to

Let R(t, T) = contrivorsly compounded yield to matrify as the above B(t, T) sound

3 $B(4,T) = \exp \left\{-R(4,T)(T-t)\right\}$

Note: owe can view B(t,T) as the time value of newly, and thus B(t,T) < 1, when t < T

· Now consider a send which is defaultable (risky)
Pros (T>t) > 0

where t = time to default (stopping time)

At materity T, relative to today, t

P(t)) \$1 (No defw1t)

Paynt (1-PG)7)
of making 0 (detw1t)

where P(t,T) = probability of survival from

(1-P(t,T)) = probability of default for

to T

Letting $\overline{B}(T,T) = \pi i s \log 5$ and s payout $(\Lambda(T))$ $E_{\pm}[\overline{B}(T,T)] = P(t,T) + (1 - P(t,T)) + 0$ = P(t,T)

where Et[.] = expectation funed on the bisis of intermetion available at true to, given the survey prosessility P(t, 7).

Dow, let's discount Et [B(T,T)] to the present time; two ways:

1) Discounting at a higher rate,

 $B(t,T) = 1 \cdot \exp \left\{ - \left(R(t,T) + S(t,T) \right) (T-t) \right\}$ = $B(t,T) \exp \left\{ - S(t,T) (T-t) \right\}$

where, S(t,T) > 0

2) Actificatel probability ('measure')

 $\overline{B}(t,T) = \exp\{-R(t,T)(T-t)\} \left[Q(t,T) * 1 + (1-Q(t,T)) * 0 \right]$ = B(t,T) Q(t,T)

where, (1-Q(t,T)) is the 'possisility'
attached to a detault by the send
issurer.

Note that

 $(1-Q(t,T)) \neq (1-P(t,T))$

prosint defent & posint defent

becase investors are risk averse! most investor's prefer the sure thing.

B(t,T) $E_{t}[B(T,T)] > B(t,T)$

B(t, T) P(t, T) > B(t, T) Q(t, T)

P(+,T) > Q(+,T)

actual probability > whiticial probability
of survival

if investors are risk neutral (indifferent about risk), then,

P(t,T) = Q(t,T)

this,

 $B(t,T)Q(t,T) = \overline{B}(t,T)$ (1)

Risk Neutrality implies that all westers are indufferent regarding risk. Also, it is a necessary anditren for the arsitrage andition of pricery financial Enstruments.

Curpon-paying Defautiste Bonds

For a two-period bond,

 $V^{B}(t,t+2) = B(t,t+1) C + B(t,t+2)(1+C)$ where $V^{B}(t,t+2) = value of the bond$ also,

VB(t, t+2) = B(t, t+1) Q(t, t+1) C + B(t, t+2) Q(t, t+2) (1+c)

Generalizing over a milti-peried sond

 $V^{B}(t,T_{N}) = \left[\sum_{i=1}^{N} (B(t_{i},T_{i})Q(t_{i},T_{i})C) + B(t_{i},T_{N})Q(t_{i},T_{N}) \right] F$

where, C = coupon rate

F = face value

Now zero Recovery

Let X = recovery value of a defaultable soud

Assuming X is now-random

for defust is the time spon [Ti-1, Ti)

discounted recovery between [Tin, Ti)

= B(t, Tin) [Q(t, Tin) - Q(t, Ti)] X

over all multi-periods

$$V^{\text{Rec}}(t) = \sum_{i=1}^{N} B(t_i, T_i) \left[q(t_i, T_{i-1}) - q(t_i, T_i) \right] X$$

and this firmly,

VB(t) = prosessify weighted (corpores + free value)

CAMPAD

Risky Boad spreads

Recall from page 3, $\overline{B}(t,T) = \exp\{-R(t,T)(T-t)\} Q(t,T)$ $= \exp\{-[R(t,T) + S(t,T)](T-t)\}$ which yields, $Q(t,T) = \exp\{-S(t,T)(T-t)\}$

Recovery Rates

TABLE 15.1 Historical Recovery Value Statistics (1970–1999)^a

Seniority/ security	1st			3rd			Std
	Min	quartile	Median	Mean	quartile	Max	dev
Sr. sec. loans	15.00	60.00	75.00	69.91	88.00	98.00	23.47
Eq. trust bds	8.00	26.25	70.63	59.96	85.00	103.00	31.08
Sr. sec. bds	7.50	31.00	53.00	52.31	65.25	125.00	25.15
Sr. unsec. bds	0.50	30.75	48.00	48.84	67.00	122.60	25.01
Sr. sub. bds	0.50	21.34	35.50	39.46	53.47	123.00	24.59
Sub. bds	1.00	19.62	30.00	33.17	42.94	99.13	20.78
Jr. sub. bds	3.63	11.38	16.25	19.69	24.00	50.00	13.85
Pref. stocks	0.05	5.03	9.13	11.06	12.91	49.50	9.09

Source: Moody's Investors Service

^aPrices of defaulted instruments approximately one month after default, expressed as a percent of the instrument's par value. Abbreviations: Eq. = equipment, Sr. = senior, sec. = secured, sub. = subordinated, Jr. = junior, pref. = preferred, bds = bonds.

Modeling Credit

$$Q(t_1,T) \equiv P_0 S_{t} \left[T > T \middle| T > t \right]$$

where $Q(t_1,T) \equiv p_0 S_{t} S_{t} I i t_1$ of survival

Forward Default Possibilities

$$\begin{aligned} &I - Q(t, T) = Prob_{t} \left[c \leq T \middle| c > t \right] \\ &P n b_{t} \left[T < c < T \middle| c > t \right] \\ &= P n b_{t} \left[c > T \middle| c > t \right] - P n b_{t} \left[c > T \middle| c > t \right] \\ &= Q(t, T) - Q(t, T) \Rightarrow unconditioned forward \\ &P n b_{t} \left[c > T \middle| c > t \right] \end{aligned}$$

Note: Using Bayes' rule:

$$PROS_{t}[\tau>\tau] \uparrow \tau>\tau = \frac{PROS_{t}[t>\tau][t>t]}{PROS_{t}[t>\tau][t>t]}$$

$$= \frac{Q(t,\tau)}{Q(t,\tau)}$$

and this,

$$P_{N}b_{t}\left[T \leq \overline{U} \mid t > T\right] = 1 - P_{N}b_{t}\left[t > \overline{U} \mid t > T\right]$$

$$= 1 - \frac{Q(t,\overline{U})}{Q(t,\overline{U})} = \frac{Q(t,\overline{T}) - Q(t,\overline{U})}{Q(t,\overline{T})}$$

$$= Q(t,\overline{T})$$

Forward Default Rates

Key Concept !!

default rate H(+,7) = Msk Newtral default posal. lity
length of time boxision

 $H(t_1,T) = \frac{Pob_t \left[c \leq T \mid t > t \right]}{T-t} = \frac{1-Q(t_1,T)}{T-t}$

 $H(t,T,T) = \frac{P_{N}S_{t}\left[\stackrel{?}{\Sigma} \leq U \middle| \stackrel{?}{\Sigma} > T \right]}{U-T}$ $= \frac{Q(t,T) - Q(t,U)}{Q(t,T)} \frac{1}{U-T}$

IF TET+AT

 $H(t,T,T+\Delta T) = -\frac{Q(t,T+\Delta t) - Q(t,T)}{\Delta t} \cdot \frac{1}{Q(t,T)}$

time-to instrutaneous forward default rate;

h(t, T) = lim H(t, T, T+AT)

h(t, T) = - 2Q(t, T) 1 2T Q(t, T)

finally
$$-\int_{T}^{T}h(t,r)dr = +\int_{T}^{T} \frac{\partial Q(t,r)}{\partial (t,r)}dr$$

$$= |\Lambda|Q(t,r)|_{T}^{T}$$

$$= |\Lambda|Q(t,r)$$

$$= |\Lambda|Q(t,r)$$

$$= |\Lambda|Q(t,r)$$

thus,
$$exp\left\{-\int_{-1}^{\tau}h(t,v)dv\right\} = \frac{Q(t,\tau)}{Q(t,\tau)}$$

$$PPS_{t}[\tau>\tau] = \frac{Q(t,\tau)}{Q(t,\tau)} = \exp\left\{-\int_{T}^{\tau}h(t,v)dv\right\}$$