

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Peak Envelope Detection

Detection - Classification

Peak Envelope Detection

RC: Detector Load LPF

$$\left(\frac{1}{\omega_0 c}\right) \ll R \quad \left(\frac{1}{\Omega_{\max} c}\right) \gg R$$

- Principle:
 - 1 Diode unilateral conductivity
 - ② RC Time constant Charge $R_dC \ll RC$ Discharge

 R_d : D Resistance

Peak Envelope Detection

Classification

- 1 Diagonal Distortion (Inert)
- ② Negative Peak Clipping Distortion
- 3 Nonlinear Distortion
- 4 Frequency Distortion

Diagonal Distortion

Reason:

Time constant RC is very big C discharge is slow v_{C} cannot catch v_{im}^{\prime}

Method:

$$\frac{\frac{dv_{c}}{dt}}{\frac{dv_{im}}{dt}} > \frac{\frac{dv_{im}}{dt}}{\frac{1 - m_{a}^{2}}{m_{a}}}$$

$$\Omega_{max}RC \leq \frac{\sqrt{1 - m_{a}^{2}}}{m_{a}}$$

Engineering $\Omega_{max}RC \leq 1.5$

Diagonal Distortion

Negative Peak Clipping

Reason:

$$C_C$$
 \uparrow , voltage $\approx V_{im}$
$$V_R = \frac{R}{R + R_a} V_{im}$$

$$V_R > V_{im}(1-m_a)$$

Blocking Capactor C_C D i V_R C_C C

Negative Peak Clipping

Method:

$$V_{im}(1-m_a) > V_R = \frac{R}{R+R_g} V_{im}$$

$$m_a < \frac{R_g}{R+R_g} = \frac{R \parallel R_g}{R} = \frac{R}{R}$$
DC Resistance

Envelope Detection Distortion - Nonlinear Distortion

Reason:

Nonlinear Diode

Method:

 \triangleright R big enough

Envelope Detection Distortion - Frequency Distortion

 $C_c \approx \text{several } \mu F$

Reason2: Blocking $C_{\mathcal{C}}$ influences Ω_{min}

Method:

$$\frac{1}{\Omega_{min}C_c} \ll R_g$$

Reason1: High-pass filter C influences Ω_{max}

Method:

$$\frac{1}{\Omega_{max}C}\gg R$$

 $C \approx 0.01 \mu F$

Summary

Synchronous Detection

Detection - Classification

Synchronous Detection - Multiplication

(DSB-SC): $v_s = V_s \cos \Omega t \cos \omega_0 t$

 $v_s \longrightarrow v_1$ $v_s \longrightarrow v_2 = \frac{1}{2} V_s V_0 \cos \Omega t$ Modulated v_r

$$v_r = V_0 \cos \omega_0 t$$

Synchronous

Synchronous Detection - Multiplication

Synchronous Detection - Superposition

Synchronous Detection using Diode

Summary

