Quiz: Linear Regression with multiple variables

Question 1: Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	(midterm exam) ²	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2, \text{ where } x_1 \text{ is the midterm score and } x_2 \text{ is (midterm score)}^2.$ Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(2)}$? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

Results: Incorrect

Question 2:

2. You run gradient descent for 15 iterations

with lpha=0.3 and compute J(heta) after each

iteration. You find that the value of $J(\theta)$ increases over

time. Based on this, which of the following conclusions seems

most plausible?

Rather than use the current value of α , it'd be more promising to try a larger value of α (say $\alpha=1.0$).

lpha=0.3 is an effective choice of learning rate.

Rather than use the current value of α , it'd be more promising to try a smaller value of α (say $\alpha=0.1$).

Results: Correct

Question 3:

← Linear Regression with Multiple Variables

1	3.	Suppose you have $m=28$ training examples with $n=4$ features (excluding the
point		additional all-ones feature for the intercept term, which you should add). The normal
		equation is $ heta = (X^TX)^{-1}X^Ty$. For the given values of m and n , what are the
		dimensions of θ , Y , and θ in this equation?

X	İs	28	X	4	η	is	28	X	1.	θ	is4	Х	1

$$X$$
 is 28×5 , y is 28×5 , θ is 5×5

$$X$$
 is 28×4 , y is 28×1 , θ is 4×4

$$\bigcirc$$
 X is 28×5 , y is 28×1 , θ is 5×1

Results: Correct

Question 4

4. Suppose you have a dataset with m=1000000 examples and n=200000 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

\bigcirc	The normal equation,	since	gradient	descent	might l	be ur	nable t	to f	find	the
	optimal θ .									

- Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.
- Gradient descent, since it will always converge to the optimal heta.
- The normal equation, since it provides an efficient way to directly find the solution.

Results: Correct

Question 5

5.	Which of the following are reasons for using feature scaling?					
		It speeds up solving for $ heta$ using the normal equation.				
		It is necessary to prevent gradient descent from getting stuck in local optima.				
		It prevents the matrix X^TX (used in the normal equation) from being non-invertable (singular/degenerate).				
		It speeds up gradient descent by making it require fewer iterations to get to a good solution.				

Results: Correct