AutoML: Gaussian Processes

The Bayesian Linear Model

<u>Bernd Bischl</u> Frank Hutter Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Review: The Bayesian Linear Model I

Let $\mathcal{D}_{\text{train}} = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(n)}, y^{(n)})\}$ be a training set of i.i.d. observations from some unknown distribution.

Let $\mathbf{y} = (y^{(1)},...,y^{(n)})^{\top}$ and $\mathbf{X} \in \mathbb{R}^{n \times p}$ be the design matrix where the i-th row contains vector $\mathbf{x}^{(i)}$.

Review: The Bayesian Linear Model II

The linear regression model is defined as

$$y^{(i)} = f(\mathbf{x}^{(i)}) + \epsilon^{(i)} = \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \epsilon^{(i)}, \text{ for all } i \in \{1, \dots, n\}.$$

The observed values $y^{(i)}$ differ from the function values $f(\mathbf{x}^{(i)})$ by some additive noise, which is assumed to be i.i.d. Gaussian

$$\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2).$$

Review: The Bayesian Linear Model III

Let us assume we have **prior beliefs** about the parameter θ that are represented in a prior distribution $\theta \sim \mathcal{N}(\mathbf{0}, \tau^2 \mathbf{I}_p)$.

Whenever data points are observed, we update the parameters' prior distribution according to Bayes' rule

$$\underbrace{p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})}_{\text{posterior}} = \underbrace{\frac{p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})}{p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})}}_{\text{marginal}} \underbrace{\frac{p(\mathbf{y} \mid \mathbf{X})}{p(\mathbf{y} \mid \mathbf{X})}}_{\text{marginal}}$$

Review: The Bayesian Linear Model IV

The posterior distribution of the parameter θ is again normal distributed (the Gaussian family is self-conjugate):

$$oldsymbol{ heta} \mid \mathbf{X}, \mathbf{y} \sim \mathcal{N}(\sigma^{-2} oldsymbol{A}^{-1} \mathbf{X}^{ op} \mathbf{y}, oldsymbol{A}^{-1})$$
, where $oldsymbol{A} := \sigma^{-2} \mathbf{X}^{ op} \mathbf{X} + rac{1}{ au^2} oldsymbol{I}_p$.

Note: If the posterior distributions $p(\theta \mid \mathbf{X}, \mathbf{y})$ are in the same probability distribution family as the prior $q(\theta)$, the prior and posterior are then called **conjugate distributions**, and the prior is called a **conjugate prior** for the likelihood function $p(\mathbf{y} \mid \mathbf{X}, \theta)$.

Note: The Gaussian family is **self-conjugate** with respect to a Gaussian likelihood function: choosing a Gaussian prior for a Gaussian likelihood ensures that the posterior is also Gaussian.

Review: The Bayesian Linear Model V

Theorem:

- For a Gaussian prior on $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \tau^2 \boldsymbol{I}_p)$, and
- a Gaussian likelihood $y \mid \mathbf{X}, \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{X}^{\top} \boldsymbol{\theta}, \sigma^2 \boldsymbol{I}_n)$,

the resulting posterior is Gaussian: $\mathcal{N}(\sigma^{-2}\boldsymbol{A}^{-1}\mathbf{X}^{\top}\mathbf{y},\boldsymbol{A}^{-1})$, with $\boldsymbol{A}:=\sigma^{-2}\mathbf{X}^{\top}\mathbf{X}+\frac{1}{\tau^2}\boldsymbol{I}_p$.

Proof:

Plugging in Bayes' rule and multiplying out yields

$$p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) q(\boldsymbol{\theta}) \propto \exp \left[-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^\top (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) - \frac{1}{2\tau^2} \boldsymbol{\theta}^\top \boldsymbol{\theta} \right]$$

$$= \exp \left[-\frac{1}{2} \left(\underbrace{\sigma^{-2} \mathbf{y}^\top \mathbf{y}}_{\text{doesn't depend on } \boldsymbol{\theta}} - 2\sigma^{-2} \mathbf{y}^\top \mathbf{X} \boldsymbol{\theta} + \sigma^{-2} \boldsymbol{\theta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\theta} + \tau^{-2} \boldsymbol{\theta}^\top \boldsymbol{\theta} \right) \right]$$

This expression resembles a normal density - except for the term in red!