Санкт-Петербургский Политехнический Университет _{им.} Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №7

3 курс, группа 3630102/70301

Студент Лебедев К.С.

Преподаватель Баженов А. Н.

Содержание

1.	Список таблиц	3
2.	Постановка задачи	4
3.	Теория	4
	3.1. Метод максимального правдоподобия	4
	3.2. Критерий согласия Пирсона	4
4.	Реализация	5
5 .	Результаты	5
	5.1. Метод максимального правдоподобия	5
	5.2. Критерий Пирсона	5
6.	Выводы	5
7.	Список литературы	5
8.	Приложения	6

1	Список	таблиц

2 Постановка задачи

Необходимо сгенерировать выборку объемом 100 элементов для нормального распределения N(x;0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x, \mathring{\mu}, \mathring{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ . В качестве ровня значимости взять $\alpha = 0,05$. Привести таблицу вычислений χ^2 .

3 Теория

3.1 Метод максимального правдоподобия

Метод максимального правдоподобия – метод оценивания неизвестного параметра путём максимимзации функции правдоподобия.

$$\hat{\theta}_{\text{MII}} = argmax \mathbf{L}(x_1, x_2, \dots, x_n, \theta) \tag{1}$$

Где ${\bf L}$ это функция правдоподобия, которая представляет собой совместную плотность вероятности независимых случайных величин X_1, x_2, \ldots, x_n и является функцией неизвестного параметра θ

$$\mathbf{L} = f(x_1, \theta) \cdot f(x_2, \theta) \cdot \dots \cdot f(x_n, \theta)$$
 (2)

Оценкой максимального правдоподобия будем называть такое значение $\hat{\theta}_{\text{МП}}$ из множества допустимых значений параметра θ , для которого функция правдоподобия принимает максимальное значение при заданных x_1, x_2, \ldots, x_n .

Тогда при оценивании математического ожидания m и дисперсии σ^2 нормального распределения $N(m,\sigma)$ получим:

$$\ln(\mathbf{L}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - m)^2$$
 (3)

3.2 Критерий согласия Пирсона

Разобьём генеральную совокупность на k неперсекающихся подмножеств $\Delta_1, \Delta_2, \ldots, \Delta_k, \Delta_i = (a_i, a_{i+1}], p_i = P(X \in \Delta_i), i = 1, 2, \ldots, k$ – вероятность того, что точка попала в iый промежуток.

Так как генеральная совокупность это \mathbb{R} , то крайние промежутки будут бесконечными: $\Delta_1 = (-\infty, a_1], \ \Delta_k = (a_k, \infty), \ p_i = F(a_i) - F(a_{i-1})$

 n_i – частота попадания выборочных элементов в $\Delta_i,\ i=1,2,\ldots,k.$

В случае справедливости гипотезы H_0 относительно частоты $\frac{n_i}{n}$ при больших n должны быть близки к p_i , значит в качестве меры имеет смысл взять:

$$Z = \sum_{i=1}^{k} \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 \tag{4}$$

Тогда

$$\chi_B^2 = \sum_{i=1}^k \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$
 (5)

Для выполнения гипотезы H_0 должны выполняться следующие условия [4]:

$$\chi_B^2 < \chi_{1-\alpha}^2(k-1) \tag{6}$$

где $\chi^2_{1-\alpha}(k-1)$ – квантиль распределения χ^2 с k-1 степенями свободы порядка $1-\alpha$, где α заданный уровень значимости.

Реализация

Работы была выполнена на языке Python3.7. Для генерации выборок использовался модуль [1]. Для построения графиков использовалась библиотека matplotlib [2]. Функции распределения обрабатывались при помощи библиотеки scipy.stats [3]

5 Результаты

Метод максимального правдоподобия

При подсчете оценок параметров закона нормального распределения методом максимального правдоподобия были получены следующие значения:

$$\hat{m}_{\rm MII} = -0.1235
\hat{\sigma}_{\rm MII}^2 = 0.9877$$
(7)

Критерий Пирсона 5.2

Таблица 1: Таблица вычислений χ^2

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.6605]$	5	0.0517	5.1670	-0.1670	0.0054
2	(-1.6605, -0.7749)	17	0.1950	19.4966	-2.4966	0.3197
3	(-0.7749, 0.1108)	40	0.3390	33.8962	6.1038	1.0991
4	(0.1108, 0.9965)	27	0.2778	27.7824	-0.7824	0.0220
5	$(0.9965, \infty)$	11	0.1284	12.8411	-1.8411	0.2640
Σ		100	1	100	0	1.8665

$$\chi_B^2 = 1.8665$$

6 Выводы

В данной работе получено значение критерия согласия Пирсона χ_B^2 = 1.8665. Табличное значение квантиля $\chi_{1-\alpha}^2(k-1)=\chi_{0.95}^2(4)$ = 9,4877 [5]. Значит $\chi_B^2<\chi_{0.95}^2(4)$, из этого следует, что основная гипотеза H_0 соотносится с

выборкой на уровне $\alpha = 0.05$.

7 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] https://en.wikipedia.org/wiki/Pearson%27s chi-squared test

[5] Таблица значений χ^2 - https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%B8_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%-BD%D0%B8%D1%8F_%D1%85%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%-82%D0%B2%D0%B0%D0%B4%D1%80%D0%B4%D1%80%D0%B0%D1%82

8 Приложения

MatStatLab5/MatStatLab7.py

Koд отчёта: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab7.tex
Код лаборатрной: https://github.com/MisterProper9000/MatStatLabs/blob/master/