Pml Labsheet 5: Diabetes Classification Using Logistic Regression

Name: Ezhilarasan C

Roll number: 225229151

Step 1 Understand Data

Out[2]:	
---------	--

:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
- 0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
ε	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1
10	4	110	92	0	0	37.6	0.191	30	0
11	10	168	74	0	0	38.0	0.537	34	1
12	10	139	80	0	0	27.1	1.441	57	0
13	1	189	60	23	846	30.1	0.398	59	1
14		166	72	19	175	25.8	0.587	51	1
15		100	0	0	0	30.0	0.484	32	1
16		118	84	47	230	45.8	0.551	31	1
17		107	74	0	0	29.6	0.254	31	1
18		103	30	38	83	43.3	0.183	33	0
19		115	70	30	96	34.6	0.529	32	1
20		126	88	41	235	39.3	0.704	27	0
21		99	84	0	0	35.4	0.388	50	0
22		196	90	0	0	39.8	0.451	41	1
23		119	80	35	0	29.0	0.263	29	1
24		143	94	33	146	36.6	0.254	51	1
25		125	70	26	115	31.1	0.205	41	1
26		147	76	0	0	39.4	0.257	43	1
27 28		97	66 82	15	140	23.2	0.487	22	0
29		145 117	92	19	110	22.2 34.1	0.245 0.337	57 38	0
738		99		 17	160	36.6	0.453	 21	
739		102	74	0	0	39.5	0.293	42	1
740		120	80	37		42.3	0.785	48	1
741		102	44	20	94	30.8	0.400	26	0
742		109	58	18		28.5	0.219	22	0
743		140	94	0		32.7	0.734	45	1
744		153	88	37		40.6	1.174	39	0
745	12	100	84	33	105	30.0	0.488	46	0
746		147	94	41	0	49.3	0.358	27	1
747	1	81	74	41	57	46.3	1.096	32	0
748	3	187	70	22	200	36.4	0.408	36	1
749	6	162	62	0	0	24.3	0.178	50	1
750	4	136	70	0	0	31.2	1.182	22	1
751	1	121	78	39	74	39.0	0.261	28	0
752	3	108	62	24	0	26.0	0.223	25	0
753	0	181	88	44	510	43.3	0.222	26	1
754	. 8	154	78	32	0	32.4	0.443	45	1
755	1	128	88	39	110	36.5	1.057	37	1
756	7	137	90	41	0	32.0	0.391	39	0
757	0	123	72	0	0	36.3	0.258	52	1
758	1	106	76	0	0	37.5	0.197	26	0
759	6	190	92	0	0	35.5	0.278	66	1
760	2	88	58	26	16	28.4	0.766	22	0
761	9	170	74	31	0	44.0	0.403	43	1

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
762	9	89	62	0	0	22.5	0.142	33	0
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

In [3]: M e.head()

Out[3]: Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome

0 6 148 72 35 0 33.6 0.627 50 1

0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

In [4]: M e.tail()

Out[4]: Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome 763 10 101 76 180 32.9 764 2 122 70 27 0 36.8 0.340 27 0 765 5 121 72 23 112 26.2 0.245 30 0 766 126 60 0 0 30.1 0.349 47 1 767 93 70 31 0 30.4 0.315 23 0

In [5]: ► M e.shape

In [6]: ▶ e.columns

Out[5]: (768, 9)

dtype='object')

Out[7]: pandas.core.frame.DataFrame

In [8]: ▶ e.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767

Data columns (total 9 columns):
Pregnancies 768 non-null int64

Glucose 768 non-null int64 BloodPressure 768 non-null int64 SkinThickness 768 non-null int64 Insulin 768 non-null int64 BMT 768 non-null float64 ${\tt DiabetesPedigreeFunction}$ 768 non-null float64 Age 768 non-null int64 Outcome 768 non-null int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

```
In [9]:  e.value_counts()
                                                      Traceback (most recent call last)
            <ipython-input-9-18b854b8467d> in <module>()
            ----> 1 e.value counts()
            C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\pandas\core\generic.py in __getattr__(s
            elf, name)
               4370
                                if self._info_axis._can_hold_identifiers_and_holds_name(name):
               4371
                                    return self[name]
                                return object.__getattribute__(self, name)
            -> 4372
               4373
               4374
                        def __setattr__(self, name, value):
            AttributeError: 'DataFrame' object has no attribute 'value_counts'
```

Step 2: Build Logistic Regression Model

```
In [10]:

X=e.drop('Outcome',axis=1)

In [11]: ► X.head()
   Out[11]:
                                 BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age
               Pregnancies Glucose
             0
                             148
                                                      35
                                                             0 33.6
                                                                                   0.627
                                                                                          50
             1
                              85
                                          66
                                                      29
                                                             0 26.6
                                                                                          31
                       1
                                                                                   0.351
             2
                       8
                             183
                                          64
                                                       0
                                                             0 23.3
                                                                                          32
                                                                                   0.672
                              89
                                          66
                                                      23
                                                             94 28.1
                                                                                   0.167
                                                                                          21
                              137
                                          40
                                                      35
                                                            168 43.1
                                                                                   2.288
In [12]: N y=e['Outcome'].values
Out[13]: array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
                   1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
                                                                       0, 0, 0, 1,
                   0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                                                                       0,
                                                                          0, 1, 0,
                   1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
                   1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                   1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
                   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                      1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
                                                  1, 0, 0, 0, 0, 1, 1,
                                                                       0, 0, 0, 1,
                   0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
                   1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1,
                                                                       1, 0, 1, 1,
                   1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
                      1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
                      0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                   0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
                      1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0,
                                                                       1, 0, 1, 0,
                   0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                      0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
                      1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,
                   0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
                                             1, 0, 1, 0, 0, 0, 0, 0, 1,
                                                                       0,
                      1, 0, 0, 0, 0, 1, 1, 0,
                      0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                      1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                   1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                      0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                                                     1, 1,
                                                           1, 0, 0, 1,
                                                                       1, 0, 0,
                      0, 0, 0,
                              0, 0,
                                    0, 0, 0,
                                             0, 1,
                                                  1, 0, 0, 0, 0, 0, 0,
                      0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
                      1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
                   0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
                      0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,
                                                                       0, 0, 0, 1,
                      1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
                                                                       1, 0, 0, 1,
                   0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
                   0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
                   0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                   1, 1, 1, 0,
                              0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0],
                  dtvpe=int64)
In [14]:
```

```
In [16]: ► d.get_n_splits(X,y)
  Out[16]: 4
In [17]: ▶ from sklearn.model_selection import train_test_split
          \textbf{X\_train,X\_test,y\_train,y\_test=train\_test\_split(X,y,stratify=y,test\_size=.25,random\_state=42)}
LOR=LogisticRegression(penalty='12',C=10.0)
          LOR=LOR.fit(X_train,y_train)
In [19]:  ▶ y_pred=LOR.predict(X_test)
          y_pred
  0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
                1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1,
                0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1,
                0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], dtype=int64)
       Step-3. Predict on a new sample
```

```
In [20]: N
new=LOR.predict([[6,200,90,10,25,23.3,.672,42]])
if new==0:
    print("Non-diabetic patient",new)
else:
    print("Diabetic patient",new)
Diabetic patient [1]
```

Step-3. Compute Classification Metrics

Precision

```
In [23]: M from sklearn.metrics import precision_score
print(precision_score(y_test,y_pred))
```

0.6481481481481481

Recall

0.5223880597014925

AUC scores

0.6851940298507463

Step 4. Understand Correlation

Step-5. Normalization using MinMaxScaler and rebuild LOR

```
In [28]: ▶ from sklearn.preprocessing import MinMaxScaler
             mm=MinMaxScaler()
             mm_X_train=mm.fit_transform(X_train)
             mm_X_train
   Out[28]: array([[0.05882353, 0.6080402, 0.63934426, ..., 0.58122206, 0.07884187,
                     0.11666667],
                    [0.70588235, \ 0.44221106, \ 0.60655738, \ \dots, \ 0.52608048, \ 0.13095768,
                     0.45
                     [0.05882353, 0.54271357, 0.49180328, ..., 0.5290611, 0.14743875,
                               ٦,
                    [0.05882353,\ 0.48743719,\ 0.57377049,\ \dots,\ 0.56780924,\ 0.0596882\ ,
                     0.15
                    [0.52941176, 0.7839196, 0.70491803, ..., 0.51117735, 0.4922049,
                     0.35
                               ٦,
                    [0.23529412, 0.72361809, 0.47540984, ..., 0.43964232, 0.09042316,
                     0.26666667]])
In [29]: ► mm_X_test=mm.transform(X_test)
             mm\_X\_test
   Out[29]: array([[0.76470588, 0.52261307, 0.59016393, ..., 0.46497765, 0.16971047,
                     .
0.28333333],
                     [0.23529412, 0.63819095, 0.72131148, ..., 0.51415797, 0.22895323,
                     0.11666667],
                    [0.11764706, 0.47236181, 0.62295082, ..., 0.4709389, 0.25167038,
                     0.03333333],
                    [0.
                                , 0.53266332, 0.57377049, ..., 0.58718331, 0.23207127,
                     0.01666667],
                     [0.29411765, 0.62311558, 0.60655738, ..., 0.50670641, 0.06057906,
                     0.28333333],
                    [0.17647059, 0.64321608, 0.59016393, \ldots, 0.4828614, 0.20712695,
                     0.1
In [30]: | mm_lor=LogisticRegression()
             mm_lor=mm_lor.fit(mm_X_train,y_train)
```

```
Pml_labsheet_5_51 - Jupyter Notebook
In [31]: | mm_y_pred=mm_lor.predict(mm_X_test)
         mm_y_pred
  0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
               1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1,
               0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
               0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
               0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,
               0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], dtype=int64)
       Accuracy
return sum(actual==pred)/float(actual.shape[0])
accuracy_score
  Out[33]: 0.73958333333333334
       Precision
0.688888888888889
       Recall
In [35]:  print(recall_score(y_test,mm_y_pred))
          0.4626865671641791
       AUC Score
```

```
In [36]:  M mm_auc=print(roc_auc_score(y_test,mm_y_pred))
             mm auc
             0.6753432835820895
```

Step-6: Normalization using StandardScaler and rebuild LOR

```
In [37]: ▶ from sklearn.preprocessing import StandardScaler
              ss=StandardScaler()
             ss\_X\_train = ss.fit\_transform(X\_train)
             ss\_X\_train
   Out[37]: array([[-0.85547074, 0.00732864, 0.47259835, ..., 0.88301955,
                      -0.65845729, -0.46648591],
                     [ 2.46780492, -1.03224482, 0.2585074 , ..., 0.41193433,
                      -0.30699915, 1.21865604],
                     [-0.85547074, -0.4022003, -0.49081095, ..., 0.43739839,
                      -0.19585426, -0.8035143 ],
                     [-0.85547074, -0.74872478, 0.04441644, ..., 0.76843126,
                      -0.78762567, -0.29797171],
                     [\ 1.56145701,\ 1.10990656,\ 0.90078026,\ \ldots,\ 0.28461399,
                       2.12917653, 0.71311346],
                     [ 0.05087717, 0.73187984, -0.59785643, ..., -0.3265236, -0.58035548, 0.29182797]])
```

Accuracy

Precision

Recall

AUC Score

0.6811940298507462

Step-7. Plot ROC Curve

```
In [48]: ▶ import matplotlib.pyplot as plt
             plt.plot(fpr1,tpr1,linestyle='--',color='blue',label='MinMaxScaler values')
   Out[48]: [<matplotlib.lines.Line2D at 0x1b224e23780>]
```


Step-8. Comparison with KNN classifier

```
In [49]: ▶ from sklearn.neighbors import KNeighborsClassifier
             knn=KNeighborsClassifier(n_neighbors=4)
             knn=knn.fit(X_train,y_train)
In [50]: N knn_y_pred=knn.predict(X_test)
In [51]: ▶ from sklearn.preprocessing import MinMaxScaler
             m=MinMaxScaler()
             m_X_train=m.fit_transform(X_train)
            m_X_train
   Out[51]: array([[0.05882353, 0.6080402, 0.63934426, ..., 0.58122206, 0.07884187,
                     0.11666667],
                    [0.70588235, 0.44221106, 0.60655738, ..., 0.52608048, 0.13095768,
                    0.45
                              ],
                    [0.05882353, 0.54271357, 0.49180328, ..., 0.5290611, 0.14743875,
                    0.05
                    [0.05882353, 0.48743719, 0.57377049, ..., 0.56780924, 0.0596882,
                    0.15
                    [0.52941176,\ 0.7839196\ ,\ 0.70491803,\ \dots,\ 0.51117735,\ 0.4922049\ ,
                    [0.23529412, 0.72361809, 0.47540984, ..., 0.43964232, 0.09042316,
                    0.26666667]])
m_X_test
   Out[52]: array([[0.76470588, 0.52261307, 0.59016393, ..., 0.46497765, 0.16971047,
                    0.28333333],
                    [0.23529412, 0.63819095, 0.72131148, ..., 0.51415797, 0.22895323,
                    0.11666667],
                    [0.11764706,\ 0.47236181,\ 0.62295082,\ \dots,\ 0.4709389\ ,\ 0.25167038,
                    0.03333333],
                    [0.
                               , 0.53266332, 0.57377049, ..., 0.58718331, 0.23207127,
                    0.01666667],
                    [0.29411765, 0.62311558, 0.60655738, ..., 0.50670641, 0.06057906,
                    0.28333333],
                    [0.17647059, 0.64321608, 0.59016393, \ldots, 0.4828614, 0.20712695,
                    0.1
In [53]:  M m_knn=KNeighborsClassifier()
             m_knn=m_knn.fit(m_X_train,y_train)
```

Classification Metrics

Accuracy

Precision

Recall

AUC Scores

```
In [59]: | knn_auc=print(roc_auc_score(y_test,m_y_pred))
knn_auc

0.6646567164179105
```

Step-9. Update ROC Curve

Step-10. Regularization

AUC SCORE OF L1

```
In [82]: M from sklearn.metrics import roc_auc_score
l1_auc = roc_auc_score(y_test, rg_y_pred1)
l1_auc = (' LOR L1 MINMAX AUC', l1_auc)
l1_auc
```

Out[82]: (' LOR L1 MINMAX AUC', 0.6811940298507462)

AUC SCORE OF L2

Step 11: Update ROC curve

In []: 🕨