

Amendment to the Claims

Please amend claims 1, 2, 6 and 11 as set forth below. A complete listing of the claims in accordance with 37 CFR 1.121 is set forth below.

1. (Currently Amended) A compound of the formula 1 or 2:

or a pharmaceutically acceptable salt, solvate or prodrug thereof wherein:

the dashed lines in formulas 1 and 2 indicate an optional second bond connecting C-3 and C-4 of the quinolin-2-one rings;

Z is ~~an aromatic 4 to 10 membered heterocyclic group a pyridine or a thiophene group optionally substituted with 1 to 4 R³ substituents;~~

R¹ is selected from H, C₁-C₁₀ alkyl, -(CR¹¹R¹²)_qC(O)R¹⁰, -(CR¹¹R¹²)_qC(O)OR⁹, -(CR¹¹R¹²)_qOR¹⁰, -(CR¹¹R¹²)_qC(R¹¹)(R¹²)SO₂R⁹, -(CR¹¹R¹²)_t(C₃-C₁₀ cycloalkyl), -(CR¹¹R¹²)_t(C₆-C₁₀ aryl), and -(CR¹¹R¹²)_t(4 to 10 membered heterocyclic), wherein each t is independently an integer from 0 to 5 and each q is independently an integer from 1 to 5; said cycloalkyl, aryl and heterocyclic R¹ groups are optionally fused to a C₆-C₁₀ aryl group, a C₅-C₈ saturated cyclic group, or a 4 to 10 membered heterocyclic group; and the foregoing R¹ groups, except H but including any optional fused rings referred to above, are optionally substituted with 1 to 4 R³ groups;

R² is halo, cyano, -C(O)OR¹⁰, or a group selected from the substituents provided in the definition of R¹⁰;

each R³, R⁴ and R⁵ is independently selected from H, R¹⁰, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, halo, cyano, nitro, trifluoromethyl, trifluoromethoxy, azido, -OR¹⁰, -C(O)R¹⁰, -C(O)OR¹⁰, -NR¹¹C(O)OR¹⁰, -OC(O)R¹⁰, -NR¹¹SO₂R¹⁰, -SO₂NR¹⁰R¹¹, -NR¹¹C(O)R¹⁰, -C(O)NR¹⁰R¹¹, -NR¹⁰R¹¹, -CH=NOR¹⁰, -S(O)_jR¹⁰, -(CR¹¹R¹²)C≡CR¹⁰, and -(CR¹¹R¹²)C≡CR¹³, wherein each t is independently an integer from 0 to 5 and each j is independently an integer from 0 to 2; said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and heterocyclic moieties of the foregoing R³, R⁴, and R⁵ groups are optionally substituted by 1 to 3 substituents independently selected from halo, cyano, nitro, trifluoromethyl, trifluoromethoxy, azido, -NR¹¹SO₂(C₁-C₆ alkyl), -SO₂NR¹¹R¹², -C(O)R¹⁰, -C(O)OR¹⁰, -OC(O)R¹⁰, -NR¹¹C(O)OR¹⁰, -NR¹¹C(O)R¹⁰, -C(O)NR¹¹R¹², -NR¹¹R¹², hydroxy, C₁-C₆ alkoxy, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀

alkynyl, $-(CR^{11}R^{12})_t(C_6-C_{10}$ aryl), $-(CR^{11}R^{12})_t(C_3-C_{10}$ cycloalkyl), and $-(CR^{11}R^{12})_t(4$ to 10 membered heterocyclic), wherein each t is independently an integer from 0 to 5;

R^6 is H, cyano, $-(CR^{11}R^{12})_t(4$ to 10 membered heterocyclic) wherein t is an integer from 0 to 5, $-OR^{10}$, $-OC(O)R^{10}$, $-NR^{10}R^{11}$, $-NR^{11}C(O)H$, $-C(O)OR^{10}$, or $-SR^{10}$, wherein heterocyclic groups of said R^6 groups are optionally substituted by 1 to 4 R^3 groups;

R^7 is $-(CR^{11}R^{12})_t(imidazolyl)$ or $-(CR^{11}R^{12})_t(pyridinyl)$, wherein each t is an integer from 0 to 5 and said imidazolyl and pyridinyl moieties are optionally substituted by up to 2 R^3 substituents;

R^8 is phenyl or an aromatic 4 to 10 membered heterocyclic group, and said R^8 group is optionally substituted by 1 to 4 R^3 substituents;

each R^{10} is independently selected from H, C_1-C_{10} alkyl, $-(CR^{11}R^{12})_t(C_3-C_{10}$ cycloalkyl), $-(CR^{11}R^{12})_t(C_6-C_{10}$ aryl), and $-(CR^{11}R^{12})_t(4$ to 10 membered heterocyclic); wherein each t is independently an integer from 0 to 5 and said cycloalkyl, aryl and heterocyclic R^{10} groups are optionally fused to a C_6-C_{10} aryl group, a C_5-C_8 saturated cyclic group, or a 4 to 10 membered heterocyclic group; and the foregoing R^{10} substituents, except H but including any optional fused rings, are optionally substituted by 1 to 3 substituents independently selected from halo, cyano, nitro, trifluoromethyl, trifluoromethoxy, azido, $-C(O)R^{11}$, $-C(O)OR^{11}$, $-OC(O)R^{11}$, $-NR^{11}C(O)R^{12}$, $-C(O)NR^{11}R^{12}$, $-NR^{11}R^{12}$, hydroxy, C_1-C_6 alkyl, and C_1-C_6 alkoxy;

each R^{11} and R^{12} is independently H or C_1-C_6 alkyl, and where R^{11} and R^{12} are as $-(CR^{11}R^{12})_q$ or $-(CR^{11}R^{12})_t$, each is independently defined for each iteration of q or t in excess of 1;

R^{13} is selected from the list of substituents provided in the definition of R^{10} and $-SiR^{14}R^{15}R^{16}$; and,

R^{14} , R^{15} and R^{16} are each independently selected from the substituents provided in the definition of R^{10} except at least one of R^{14} , R^{15} and R^{16} is not H.

2. (Currently Amended) A compound according to claim 1 wherein said compound is a compound of formula 1, Z is a pyridine or a thiophene group, including pyridine or thiophene groups substituted with from 1 to 4 R^3 substituents; R^1 is H, C_1-C_6 alkyl, or cyclopropylmethyl; R^2 is H; and R^6 is $-NR^{10}R^{11}$, $-OR^{10}$, or a heterocyclic group selected from triazolyl, imidazolyl, pyrazolyl, and piperidinyl, wherein said heterocyclic group is optionally substituted by an R^3 group.

3. (Original) A compound according to claim 1 wherein said compound is a compound of formula 1, R^7 is imidazolyl optionally substituted by C_1-C_6 alkyl; R^6 is hydroxy, amino, or triazolyl; R^8 is phenyl substituted by 1 to 2 R^3 groups; and R^4 , and R^5 are each independently selected from H and halo.

4. (Original) A compound according to claim 1 wherein said compound is a compound of formula 1, R¹ is -(CR¹¹R¹²)(C₃-C₁₀ cycloalkyl) wherein t is an integer from 0 to 3; R² is H; and R⁶ is -NR¹⁰R¹¹, -OR¹⁰, or a heterocyclic group selected from triazolyl, imidazolyl, pyrazolyl, and piperidinyl, wherein said heterocyclic group is optionally substituted by an R³ group.

5. (Original) A compound according to claim 1 wherein R⁷ is imidazolyl optionally substituted by C₁-C₆ alkyl; R⁶ is hydroxy, amino, or triazolyl.

6. (Currently Amended) A compound according to claim 1 wherein said compound is a compound of formula 2, Z is a pyridine or a thiophene group, including pyridine or thiophene groups substituted with from 1 to 4 R³ substituents; R² is H; R⁶ is -NR¹⁰R¹¹, -OR¹⁰ or triazolyl.

7. (Original) A compound according to claim 1 wherein said compound is a compound of formula 2, R⁷ is imidazolyl optionally substituted by C₁-C₆ alkyl; R⁶ is hydroxy or amino; R⁸ is phenyl substituted by 1 to 2 R³ groups; and R⁴ and R⁵ are each independently selected from H and halo.

8. (Original) A compound according to claim 1 wherein said compound is selected from the group consisting of:

(4-Chloro-phenyl)-[2-methoxy-4-(5-methyl-thiophen-2-yl)-quinolin-6-yl]-3-methyl-3H-imidazol-4-yl)-methanol;

6-[(4-Chloro-phenyl)-hydroxy-(3-methyl-3H-imidazol-4-yl)-methyl]-1-methyl-4-(5-methyl-thiophen-2-yl)-1H-quinolin-2-one;

6-[Amino-(4-chloro-phenyl)-(3-methyl-3H-imidazol-4-yl)-methyl]-1-methyl-4-(5-methyl-thiophen-2-yl)-1H-quinolin-2-one;

6-[(4-Chloro-phenyl)-hydroxy-(3-methyl-3H-imidazol-4-yl)-methyl]-4-(5-chloro-thiophen-2-yl)-1-methyl-1H-quinolin-2-one;

and the pharmaceutically acceptable salts, solvates and prodrugs of the foregoing compounds.

9. (Original) A method of preparing a compound of formula 1 according to claim 1, wherein R¹ of formula 1 is H, which comprises hydrolysing a compound of formula 2'

wherein R is C₁-C₆ alkyl and Z, R², R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined for formula 1 in claim 1.

10. (Original) A method of treating abnormal cell growth in a mammal in need of such treatment which comprises administering to said mammal a therapeutically effective amount of a compound according to claim 1.

11. (Currently Amended) A pharmaceutical composition ~~for the treatment of abnormal cell growth in a mammal~~ which comprises a therapeutically effective amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.