Freemcqs.com Helping Material, | 16-Dec-2017 | Freemcqs.com

Subject: **Data Structures CS301** Test: Midterm past Paper questions **Total Questions:** 91 Total Mark Ques **Question Details** tion No. s ddd ddd dfdfdf dfd fdfdf 1 2 Deleting a leaf node in binary search tree involves setting pointer/s of that node's parent as null. 2 3 4 1 3 A node cannot be deleted, when the node to be deleted has both left and right subtrees. True **False** An array is a group of consecutive related memory locations. True False Consider the following infix expression: 3 + 5 * 6 - 7 * (8 + 5) Which of the following is a correct equivalent expression(s) for the above? 365+*758+-* 365758+*+-* 356+*785+-* 356*+785+*-

6		1
The	difference between a binary tree and a binary search tree is that ,a binary search tree has	
	two children per node whereas a binary tree can have none, one, or two children per node	
	in binary search tree nodes are inserted based on the values they contain	
	in binary tree nodes are inserted based on the values they contain	
	none of these	
7		1
We	can add elements in QUEUE From	
	Front	
\mathbf{M}	Rear	
	From Both Rare and Front	
	None of these	
8		1
Whic	ch of the following abstract data types are NOT used by Integer Abstract Data type group?	
	short	
	Int	
M	float	
	long	
9		1
Whic	ch one of the following statements is correct?	
\mathbf{M}	Array size is fixed once it is created	
	Link List size is fixed once it is created	
	Binary Search Tree size isfixed once it is created	
	AVL Tree size is fixed once it is created	
10		1
	ed lists are collections of data items "lined up in a row", insertions and deletions can be made	
only	at the front and the back of a linked list.	
	True	
Y	False	

11		1
In a	program a reference variable, say x, can be declared as	
Y	int &x	
	int *x ;	
	int x ;	
	None of the given options	
12		1
Whic	ch one of the following statement is NOT correct .	
\mathbf{M}	In linked list the elements are necessarily to be contiguous	
	In linked list the elements may locate at far positions in the memory	
	In linked list each element also has the address of the element next to it	
	In an array the elements are contiguous	
13		1
ls a	data structure that can grow easily dynamically at run time without having to copy existing	
elem	nents?	
	Array	
>	List	
	Both of these	
	None of these	
14 Quei	ue follows	1
	Last in First out	
	First in Last out	
V	First in First out	
	None of these	
15		1
_	meters in function call are passed using,	
	Stack	
	Queue	
	Binary Search Tree	
	AVL Tree	
	IVE 1100	

16		1
Whic	h statement of the following statements is incorrect?	
	Lists can be implemented by using arrays or linked lists	
	A list is a sequence of one or more data items	
	Stack is a special kind of list in which all insertions and deletions take place at one end	
	Stacks are easier to implement than lists	
17		1
The	operation for removing an entry from a stack is traditionally called:	
	delete	
	peek	
	рор	
	remove	
18		1
Supp	pose a pointer has been declared in main but has not assigned any variable address then	
	That pointer points to First byte in main function	
	That pointer contains a NULL value	
>	That pointer points to any memory address	
	None of these	
19		1
A Co	empound Data Structure is the data structure which can have multiple data items of same type	
or of	different types. Which of the following can be considered compound data structure?	
$\mathbf{\Sigma}$	Arrays	
	LinkLists	
	Binary Search Trees	
	All of the given options	
20		1
The	tree data structure is a	
	Linear data structure	
	Non-linear data structure	
	Graphical data structure	
	Data structure like queue	

21		1
Wh	ich one of the following is a valid postfix expression?	
	ab+c*d-	
~	abc*+d-	
	abc+*d-	
	(abc*)+d-	
22		1
Wh	en an operator is used in between two operands this is which type of notation	
	Prefix	
	Postfix	
~	Infix	
	None of the Above	
23		1
Wh	at will be the valid postfix notation of A+B*C-D	
	ABC+*D-	
Y	ABC*+D-	
	ABCD+-*	
	AB+D*C	
24		1
Tre	e data structure is a	
	Linear	
~	Non Linear	
	Circular	
	None of Above	
25		1
Nor	recursive calls are faster than the Recursive calls.	
$\mathbf{\underline{\vee}}$	True	
	False	

26		1
Follo	wing are the linear data structures:-	
	Stacks	
	Queues	
>	Both Stacks and Queues	
	None of the above	
27 High	est Operators Precedence is of the following operator:-	1
	Plus	
	Minus	
Y	Multiply	
	Exponentiation	
28		1
Each	n node in a BST has Pointers:-	
	1	
>	2	
	3	
	4	
29 After	creation of an array:-	1
	Size can be increase but can not be decreased.	
	Size can be decreased but can not be increased.	
>	Size can neither be increased nor be decreased.	
	Size can be increased and can also be decreased	
30		1
BST	is a Structure:-	
	Linear	
Y	Non Linear	
	Circular	
	None of Above	

31		1
To cl	heck the depth of an AVL tree following time will be taken:-	
	1.66 Log2n	
Y	1.44 Log2n	
	Log2 (n+1)-1	
	1.66 Log2n (n+1)	
32		1
	AVL tree to delete a parent with two childs in a straight line following rotations will be	
requi	ired	
	Single	
	Double	
	Triple	
	None.of the given options	
33		1
Whic	ch of the following is a non linear data structure?	
	Linked List	
	Stack	
	Queue	
\mathbf{Y}	Tree	
34		1
	sider the following infix expression. 5 + 6/2 If one converts the above expression into postfix,	
what	t would be the resultant expression?	
	56/ + 2	
\mathbf{M}	562/+	
	/62 + 5	
	56/2+	
35		1
Ther	re is/are case/s for rotation in an AVL tree,	
	1	
	2	
	3	
Y	4	

36		1
Sear	ching an element in an AVL tree take maximum in AVL tree,	
	Log2(n+1) time (where n is no. of nodes	
	Log2(n+1) -1	
>	1.44 Log2n	
	1.66 Log2n	
37		1
Whic	th of the following is "TRUE" about arrays,	
	We can increase the size of arrays after their creation.	
	We can decrease the size of arrays after their creation.	
	We can increase but can't decrease the size of arrays after their creation.	
Y	We can neither increase nor decrease the array size after their creation.	
38		1
Four	statements about trees are below. Three of them are correct. Which one is INCORRECT?	
	Trees are recursively defined multi-dimensional data structures tree	
	The order of a tree indicates a maximum number of children allowed at each node of the	
	A search tree is a special type of tree where all values (i.e. keys) are ordered	
Y	If Tree1's size is greater than Tree2's size, then the height of Tree1 must also be greater	
	than Tree2's height.	
39		1
Whic	ch one of the following operators has higher priority than all of others?	
	Multiplication operator	
	Minus operator	
	Plus operator	
	Exponentiation operator	
40		1
A qu	eue is a data structure, whereas a stack is adata structure.	
M	FIFO, LIFO	
	LIFO,FIFO	
	both given options	
	None of these	

Suppose that the class declaration of SomeClass includes the following function prototype. bool LessThan(SomeClass anotherObject); Which of the following tests in the client code correctly compares two class objects alpha and beta? if (alpha < beta) if (alpha.LessThan(beta)) if (LessThan(alpha, beta))
LessThan(SomeClass anotherObject); Which of the following tests in the client code correctly compares two class objects alpha and beta? If (alpha < beta) if (alpha.LessThan(beta))
compares two class objects alpha and beta? if (alpha < beta) if (alpha.LessThan(beta))
if (alpha < beta) if (alpha.LessThan(beta))
if (alpha.LessThan(beta))
if (LessThan(alpha, beta))
((
if (LessThan(alpha).beta)
42
Which one of the following statements is NOT correct?
Array size can be changed after its creation.
Link List size can be changed after its creation
Binary Search Tree size can be changed after its creation
AVL Tree size can be changed after its creation
43
Which one of the following calling methods does not change the original value of the argument in
the calling function?
None of the given options
Call by passing the value of the argument
Call by passing reference of the argument
Call by passing the address of the argument
44
In an array list the current element is
The first element
The middle element
The last element
The element where the current pointer points to
45
In an array we can store data elements of different types.
True
False

46		1
An a	rray is a group of consecutive related memory locations.	
>	True	
	False	
47		1
The	following are statements related to queues. (i) The last item to be added to a queue is the first	
item	to be removed (ii) A queue is a structure in which both ends are not used (iii) The last	
	ent hasn't to wait until all elements preceding it on the queue are removed (iv)A queue is said	
	e a last-in-first-out list or LIFO data structure.	
Whic	ch of the above is/are related to normal queues?	
	(iii) and (ii) only	
	(i), (ii) and (iv) only	
	(ii) and (iv) only	
>	None of the given options	
48		1
Whic	ch of the following can be used to reverse a string value,	
>	Stack	
	Queue	
	Both of these	
	None of these	
49	is the maximum number of nodes that you can have on a stack-linked list?	1
	Zero	
	2n (where n is the number of nodes in linked list)	
>	Any Number	
	None of these	
50		1
	sider the following sequence of push operations in a stack: stack.push('7'); stack.push('8');	
stack	k,push('9'); stack.push('10'); stack.push('11'); stack.push('12');	
>	7 8 9 10 11 12	
	9 8 11 10 7 12	
	9 10 8 11 12 7	
	9 10 8 12 7 11	

51		1
The	operation for removing an entry from a stack is traditionally called:	
	delete	
	peek	
>	рор	
	remove	
52		1
The	operation for adding an entry to a stack is traditionally called :	
	add	
	append	
	insert	
>	push	
53		1
In C	what is the operation that you can not do with primitive types?	
	Assign a value to primitive type using a literal	
	Declare primitive types to be constant using the Const keyword	
Y	Create a new instance of primitive type with New keyword	
	None of these	
54		1
Supp	pose that the class declaration of SomeClass includes the following function prototype. bool	
	Than(SomeClass anotherObject); Which of the following tests in the client code correctly	
comp	pares two class objects alpha and beta?	
Ш	if (alpha < beta)	
\leq	if (alpha.LessThan(beta))	
	if (LessThan(alpha, beta))	
	if (LessThan(alpha).beta)	
55		1
	pose currentNode refers to a node in a linked list (using the Node class with member	
	bles called data and nextNode). What boolean expression will be true when cursor refers to	
the ta	ail node of the list?	
M	(currentNode == null)	
	(currentNode->nextNode == null)	
	(nextNode.data == null)	
	(currentNode.data == 0.0)	

56		1
A tre	ee is an AVL tree if	
	Any one node fulfills the AVL condition	
	At least half of the nodes fulfill the AVL condition	
\leq	All the nodes fulfill the AVL condition	
	None of the given options	
57		1
In w	hich of the traversal method, the recursive calls can be used to traverse a binary tree?	
	In preorder traversal only	
	In inorder traversal only	
	In postorder traversal only	
	All of the given options	
58		1
Doul	bly Linked List always has one NULL pointer.	
	True	-
\mathbf{M}	False	
59		1
A su	bscript of an array may be an integer or an integer expression.	
	True	
	False	
60 " <u>+</u> " is	s aoperator.	1
	Not an	
	Unary	
	Binary	
	Ternary	1
61 "+" is	s aoperator.	
	Not an	-
	Unary	
	Binary	
$ \bigcup$	Ternary	

62	1
A binary search tree should have minimum of one node/s at each level,	
One	
Two	
Three	
Four	
63	1
We access elements in AVL Tree in,	
Linear way only	
Mon Linear way only	
Both linear and non linear ways	
None of the given options	
64	1
The nodes with no successor are called	
Root Nodes	
Leaf Nodes	
Both of these	
None of these	
65	1
Consider the following tree.	
14	
2 11	
/ \	
1 3 10 30	
7 40	
How many of the nodes have at least one sibling?	
□ 8 □	
□ 7	_
5	_
6	

66		1
I hav	ve implemented the queue with a linked list, keeping track of a front pointer and a rear pointer.	
Whic	ch of these pointers will change during an insertion into an EMPTY queue?	
	Neither changes	
	Only front pointer changes.	
Y	Only rear pointer changes.	
	Both change.	
67		1
Each	node in doubly link list has,	
	1 pointer	
\leq	2 pointer	
	3 pointer	
	4 pointer	
68		1
Whic	ch one is a self- referential data type?	
	Stack	
	Queue	
	Link list	
Y	All of these	
69 A qu	eue where the de-queue operation depends not on FIFO, is called a priority queue	1
\Box	False	
	True	
70	Truc .	1
	pose currentNode refers to a node in a linked list (using the Node class with member	
	ables called data and nextNode). What statement changes currentNode so that it refers to the	
next	node?	
	currentNode ++;	
	currentNode = nextNode;	
	currentNode += nextNode;	
Y	currentNode = currentNode->nextNode;	

71		1
A tre	ee is an AVL tree if	
	Any one node fulfills the AVL condition	
	At least half of the nodes fulfill the AVL condition	
>	All the nodes fulfill the AVL condition (
	None of the given options	
72		1
	ch one of the following calling methods does not change the original value of the argument in calling function?	
	None of the given options	
>	Call by passing the value of the argument	
	Call by passing reference of the argument	
	Call by passing the address of the argument	
73		1
Each	operator in a postfix expression refers to the previous operand(s).	
	One	
Y	Two	
	Three	
	Four	
74		1
Whic	ch one of the following statement is NOT correct .	
>	In linked list the elements are necessarily to be contiguous	
	In linked list the elements may locate at far positions in the memory	
	In linked list each element also has the next to it	
	In an array the elements are contiguous	
75		1
AVL	Tree is,	
S	Non Linear data structure	
	Linear data structure	
	Hybrid data structure (Mixture of Linear and Non Linear)	
	None of the given options.	

		1
76 We access elements in AVL Tree in,		
	Linear way only	
	Non Linear way only	
	Both linear and non linear ways	
	None of the given options.	
77		1
Cons	sider the following binary search tree (BST):	
If no	de A in the BST is deleted, which two nodes are the candidates to take its place?	
	J and I	
	H and E	
	D and E	
>	L and M	
78		1
	is a binary tree where every node has a value, every node's left subtree contains only	
	es less than or equal to the node's value, and every node's right subtree contains only values are greater then or equal?	
	Strictly Binary Tree	
	Binary Search tree	
	AVL tree	
	All of these	1
79 The	expression AB+C* is called?	1
	Prefix expression	
	Postfix expression	
	Infix expression	
	None of these	

80		1
Supp	oose we have a circular array implementation of the queue class, with ten items in the queue	
store	d at data[2] through data[11]. The CAPACITY is 42, i.e., the array has been declared to be of	
size	42. Where does the push member function place the new entry in the array?	
	data[1]	
	data[2]	
	data[11]	
>	data[12]	
81		1
	e linked list implementation of the stack class, where does the push member function places	
the n	ew entry on the linked list?	
>	At the head	
	At the tail	
	After all other entries that are smaller than the new entry.	
	After all other entries that are greater than the new entry.	
82		1
Supp	ose n is the number of nodes in a complete Binary Tree then maximum steps required for a	
searc	ch operation are,	
>	Log2 (n+1) -1	
	Log2 (n+1)	
	Log2 (n) – 1	
	Log2 (n)	
83		1
What	t is the maximum depth of recursive calls a function may make?	
	1	
	2	
	n (where n is the argument)	
	There is no fixed maximum	

84	1
Here is the start of a C++ class declaration: class foo { public: void x(foo f); void y(const foo f);	
void z(foo f) const; Which of the three member functions can alter the PRIVATE member variables of the foo object that activates the function?	
Only x can alter the private member variables of the object that activates the function.	-
Only y can alter the private member variables of the object that activates the function.	-
Only z can alter the private member variables of the object that activates the function.	-
Two of the functions can alter the private member variables of the object that activates the	
function.	1
When should you use a const reference parameter?	
When should you use a const reference parameter?	
Whenever the parameter has huge size.	-
Whenever the parameter has huge size, the function changes the parameter within its body,	
and you do NOT want these changes to alter the actual argument.	-
Whenever the parameter has huge size, the function changes the parameter within its body, and you DO want these changes to alter the actual argument.	
Whenever the parameter has huge size, and the function does not change the parameter	
within its body.	
86	1
The tree data structure is a	
Linear data structure	
Non-linear data structure	
Graphical data structure	
Data structure like queue	
87	1
In the call by value methodology, a copy of the object is passed to the called function.	
True	
False	1

88		1
Cons	sider the function X as under	
int X	(int& Value)	
{		
retur	n Value;	
}		
	a and b are integers in a calling function. Which one of the following is a valid call to the	
	e function	
X.		
	a = X (b);	
	a = X (&b);	
	a = X (*b);	
	None of the given options	
89		1
The	data of the problem is of 2GB and the hard disk is of 1GB capacity, to solve this problem we	
shou	ld .	
	Use better data structures	
	Increase the hard disk space	
	Use the better algorithm	
	Use as much data as we can store on the hard disk	
90		1
A qu	eue where the de-queue operation depends not on FIFO, is called a priority queue	
>	True	
	False	
No Qu	No Question Found	
	No option found!	
	No option found!	

Proprietary license by Freemcqs.com Inc. More Information at http://Freemcqs.com

Signature: