## 2018 Brevet de fin d'études moyennes (BFEM)

#### Epreuve DE SCIENCES PHYSIQUES

## Exercice 1 (4 points)

1.1. Recopie puis complète les phrases suivantes : (8 x 0,25 pt)

Les hydrocarbures sont des composés organiques uniquement constitués des élèments ..... et .... L'éthane, de formule brute ...... et le ...... de formule brute  $CH_4$  sont des hydrocarbures appartenant à la famille des ..... L'hydrocarbure de formule  $C_2H_4$  appartient à la famille des ..... alors que l'...... de formule brute  $C_2H_2$  est de la famille des ........

- 1.2. Réponds par Vrai ou Faux (4 x 0,25 pt)
- 1.2.1. Le dioxygène de l'air n'attaque pas l'aluminium à froid.
- 1.2.2. La réaction entre une solution acide et une solution basique est exothermique
- 1.2.3. Le bleu de bromothymol est bleu en milieu neutre.
- 1.2.4. L'acide chlorhydrique dilué et à froid réagit avec le fer.

### Exercice 2 (4 points)

Le dakin est un antiseptique liquide utilisé pour le lavage des plaies. Sur l'étiquette d'un flacon  $F_1$  de ce produit, on peut lire "Dakin : solution contenant du permanganate de potassium  $KMnO_4$  à  $6,4.10^{-5}$   $mol.L^{-1}$  responsable de sa coloration rose et surtout de sa stabilité vis-à vis de la lumière"

Une infirmière, par soucis d'économie, prépare à partir d'un volume du contenu du flacon un autre flacon  $F_2$  de 50 mL de Dakin à  $4,0.10^{-5}$   $mol.L^{-1}$  de permanganate de potassium.

- 2.1. Rappelle la définition des termes : solution, soluté et solvant. (0,75 pts)
- 2.2. Calcule la masse de permanganate de potassium contenu dans le flacon (01 pts)
- 2.3. Calcule le volume  $V_1$  que l'infirmière doit prélever du flacon  $F_1$  pour réaliser sa préparation (01,25 pts)
- 2.4. Décris briévement le protocole expérimental de la préparation. (01 pts)

On donne : masse molaire du permanganate de potassium :  $M=158 \ q.mol^{-1}$ 





# Exercice 3 (6 points)

3.1. Recopie et complète le tableau ci-dessus. (8 x 0,25 pt)

| Grandeur physique | Unité dans le système International | Symbole de l'unité |
|-------------------|-------------------------------------|--------------------|
| Force             |                                     |                    |
|                   | Kilogramme                          |                    |
|                   |                                     | A                  |
| Vergence          |                                     |                    |

- 3.2. Dans un chantier de construction de bâtiment à plusieurs étages, les sacs de ciment, les briques et les autres matériaux sont remontés à l'aide d'une grue.
- 3.2.1 Une grue maintient immobile une charge de masse 200 kg à 20 m du sol . Précise la forme d'énergie que possède la charge dans cette position. Trouve sa valeur. (01 pts)
- 3.2.2 Que devient la valeur de cette énergie si la charge est remontée jusqu'à 35 m du sol? Calcule la variation d'énergie. (01,5 pts)
- 3.2.3 Calcule le travail du poids lors du déplacement de la charge. Compare ce travail à la variation d'énergie précèdemment calculée. On donne l'intensité de la pesanteur :  $g=9,8N.kg^{-1}$  (01,5 pts)

## Exercice 4 (6 points)

En travaux pratiques, un groupe d'élèves, sous la supervision de leur professeur, se propose de vérifier la loi d'Ohm pour un résistor (conducteur ohmique). Pour ce faire, les élèves mesurent la tension U aux bornes du dipôle pour différentes valeurs de l'intensité I du courant électrique qui le traverse. Les résultats obtenus sont consignés dans le tableau ci-après :

| I(mA) | 0 | 50   | 100  | 148  | 200  | 300  |
|-------|---|------|------|------|------|------|
| U(v)  | 0 | 0,75 | 1,50 | 2,22 | 3,00 | 4,50 |

- 4.1. Fais l'inventaire du matériel nécessaire pour réaliser ces mesures. (02 pts)
- 4.2. Montre que les résultats obtenus par le groupe d'élèves vérifient bien la loi d'Ohm. (02 pts)
- 4.3. Détermine la résistance R du résistor. (02 pts)





