

Berkeley Engineering BerkeleyHaas

Shopping Coupon Recommendation using **Ensemble Models**

VINITHA JEEVARATHNAM

August 2022

Professional Certificate in Machine Learning and Artificial Intelligence – Capstone Project

Agenda

- Introduction
- Business Objective
- Exploratory Data Analysis (EDA)
- Ensemble Modeling
- Conclusion
- Explainer Dashboard
- Future Recommendations

Introduction to Recommendation Systems

Benefits

- Increase in Conversion Rate
- Increases chances of upselling
- Customer Retention & Loyalty
- Customer Satisfaction
- Overall Revenue Growth

- ☐ Recommendation models play an important role in the success of e-commerce business
- ☐ Tailoring shopping recommendations to consumers and merchants assist in making a purchase decision
- ☐ Shopping personalization uses consumers past behavior to predict their future needs and offer products or services recommendations accordingly
- ☐ Personalization recommendation is increasingly becoming a must for consumers than a nice to have option
- ☐ McKinsey & Company 2021 <u>article</u> on personalization

Business Objective

In this capstone project, a customer ecommerce shopping transaction data from Kaggle is used to evaluate data and compare the performance of recommendations models that are built based on Ensemble Modeling concept. The business objective of this project is to identify the feature (like brand, product etc.) that influences the user to accept or reject coupons.

Dataset and Data Attributes

- Dataset (from Kaggle): A large multi-category eCommerce store user behavior data for one month (November 2019). Contains 42,448,764 records.
- Each row in the file represents a user event. All events are related to products and users. There are different types of events.
 - event_time: Time when event happened at (in UTC) Converted to shopping_time
 - event_type: (Typical funnel: view => cart => purchase)
 - view a user viewed a product
 - cart a user added a product to shopping cart
 - purchase a user purchased a product
 - product_id: ID of a product Dropped
 - category_id: Product's category ID Dropped
 - category code: multi-hierarchical name of Product's category
 - brand: Downcased string of brand name
 - **price:** Float price of a product
 - user_id: Permanent user ID Dropped
 - user_session: Temporary user's session ID. Same for each user's session. Is changed every time user come back to online store from a long pause
 Dropped
 - Coupon: synthetically generated feature to show whether the user used a coupon or not (with flags Yes or No)

EDA Outcomes

- Since the dataset is too large, stratified the data to create a sample of 53,121 records
- The 'event_type' column in time-series format is converted to 'shopping_time'
- Multilevel 'category' values are converted to single value (level 3)
- Used corr() and identified 'price' and 'shopping_time' has higher correlation
- Used seaborn and plotly charts to visualize data and inferred the following,
 - *Electronics* is the top shopping category
 - *Smartphone* is the top shopping product
 - Apple and Samsung are the top shopping brands
 - View-ing products is the top 'event type' and most 'shopping time' spent user action
 - Acceptance of 'coupon' is higher for this event type
 - Acceptance of 'coupon' is NOT influenced by 'shopping_time' spent by a user
 - Users spent more 'shopping_time' on electronics, auto, and appliances shopping category

- Used 'price' as the regressor target feature
- Among the categorical features, 'coupon' exhibits higher feature importance than 'event_type'
- For modeling, 'coupon' is used as the target feature

Feature Importance/Selection using RandomForestRegressor

Logistic Regression with GridSearchCV

	Metrics	Results
t	Mean Absolute Error (MAE)	0.39722
AdaBoost	Cross Val Score	0.60278
۸daE	R2 Score	-0.65897
1	TP, TN, FP, FN	0, 29244, 19271, 0
	Mean Absolute Error (MAE)	0.39722
/ith CV	Cross Val Score	0.60276
AdaBoost with GridSearchCV	R2 Score	-0.65897
aBoc idSea	Mean Fit Time	0.13806
Ada Gri	Best Params	{'max_iter': 30}
	TP, TN, FP, FN	0, 29244, 19271, 0

AdaBoostClassifier with GridSearchCV

	Metrics	Results
t	Mean Absolute Error (MAE)	0.39685
AdaBoost	Cross Val Score	0.60206
√daB	R2 Score	-0.65742
1	TP, TN, FP, FN	68, 29194, 19203 , 50
	Mean Absolute Error (MAE)	0.39722
ith CV	Cross Val Score	0.60192
AdaBoost with GridSearchCV	R2 Score	-0.65897
aBoc idSe	Mean Fit Time	0.99839
Ada Gri	Best Params	{'n_estimators': 30}
	TP, TN, FP, FN	3, 29241, 19268, 3

GradientBoostingClassifier with GridSearchCV

	Metrics	Results
	Mean Absolute Error (MAE)	0.39454
Gradient Boosting	Cross Val Score	0.60163
Grac Boos	R2 Score	-0.64778
	TP, TN, FP, FN	155, 29219, 19116, 25
/ith	Mean Absolute Error (MAE)	0.39705
ng w CV	Cross Val Score	0.60264
osti arch	R2 Score	-0.65828
ient Boosting GridSearchCV	Mean Fit Time	1.47587
Gradient Boosting with GridSearchCV	Best Params	{'n_estimators': 10}
Gra	TP, TN, FP, FN	8, 29244, 19263, 0

XGBClassifier with GridSearchCV

	Metrics	Results
ier	Mean Absolute Error (MAE)	0.39559
XGBClassifier	Cross Val Score	0.60233
BCla	R2 Score	-0.65217
ЭX	TP, TN, FP, FN	102, 29221, 19169, 23
l	Mean Absolute Error (MAE)	0.39648
witl	Cross Val Score	0.60235
iBClassifier wi GridSearchCV	R2 Score	-0.65587
lass	Mean Fit Time	0.70548
XGBClassifier with GridSearchCV	Best Params	{'n_estimators': 10}
	TP, TN, FP, FN	46, 29234, 19225, 10

HistGradientBoostingClassifier with GridSearchCV

	Metrics	Results
ıtB	Mean Absolute Error (MAE)	0.39654
HistGradientB oosting	Cross Val Score	0.60256
tGra	R2 Score	-0.65613
His	TP, TN, FP, FN	47, 29230, 19224, 14
ng V	Mean Absolute Error (MAE)	0.39654
HistGradientBoosting with GridSearchCV	Cross Val Score	0.60276
ntBc Sear	R2 Score	-0.65613
adie Grid	Mean Fit Time	0.17934
istGra with (Best Params	{'max_iter': 10}
H	TP, TN, FP, FN	47, 29230, 19224, 14

DecisionTreeClassifier with GridSearchCV

	Metrics	Results
eCl	Mean Absolute Error (MAE)	0.07985
DecisionTreeCl assifier	Cross Val Score	0.53311
cisio assi	R2 Score	0.66650
Dec	TP, TN, FP, FN	16868, 27773, 2403, 1471
er V	Mean Absolute Error (MAE)	0.07985
ioTreeClassifie GridSearchCV	Cross Val Score	0.53287
eCla Sear	R2 Score	0.66650
oTre Grid	Mean Fit Time	5.83084
DecisioTreeClassifier with GridSearchCV	Best Params	{'n_estimators': 100}
٥	TP, TN, FP, FN	16868, 27773, 2403, 1471

ExtraTreeClassifier with GridSearchCV

	Metrics	Results
assi	Mean Absolute Error (MAE)	0.07985
ExtraTreeClassi fier	Cross Val Score	0.53060
raTro fio	R2 Score	0.66650
Ext	TP, TN, FP, FN	16857, 27784, 2414, 1460
vith	Mean Absolute Error (MAE)	0.07985
ExtraTreeClassifier with GridSearchCV	Cross Val Score	0.53041
TreeClassifier GridSearchCV	R2 Score	0.66650
eeCla idSe	Mean Fit Time	1.09442
aTre Gri	Best Params	{'n_estimators': 100}
Ext	TP, TN, FP, FN	16857, 27784, 2414, 1460

VotingClassifier-HardVoting with GridSearchCV

	Metrics	Results
ng	Mean Absolute Error (MAE)	0.39722
dVoti ICV	Cross Val Score	0.60278
r - Har earch	R2 Score	-0.65897
ssifie GridS	Mean Fit Time	2.54453
VotingClassifier - HardVoting with GridSearchCV	Best Params	{'lrC': 1.0, 'rfn_estimators': 10}
Vo	TP, TN, FP, FN	0, 29244, 19271, 0

VotingClassifier-SoftVoting with GridSearchCV

	Metrics	Results
ng	Mean Absolute Error (MAE)	0.3517262702257034
dVoti ICV	Cross Val Score	0.5979800061836545
ssifier - HardV. GridSearchCV	R2 Score	-0.46897989365213943
ssifie GridS	Mean Fit Time	5.701870036125182
VotingClassifier - HardVoting with GridSearchCV	Best Params	{'lrC': 1.0, 'rfn_estimators': 200}
Vo	TP, TN, FP, FN	2207, 29244, 17064, 0

StackingClassifier with GridSearchCV

	Metrics	Results
	Mean Absolute Error (MAE)	0.39721735545707515
r with V	Cross Val Score	0.602782644542925
ssifie archC	R2 Score	-0.658972780741349
ingCla ridSe	Mean Fit Time	3.0968246459960938
StackingClassifier with GridSearchCV	Best Params	{'rfn_estimators': 5}
	TP, TN, FP, FN	0, 29244, 19271 , 0

Conclusion

In this capstone project, we have evaluated LogisticRegression and 9 Ensemble Models using Boosting, Bagging, Voting and Stacking Classifiers. Based on the metrics collected, the following models performed well,

- 1. Bagging DecisionTreeClassifier WITH/WITHOUT GridSearchCV
- 2. Bagging ExtraTeeClassifier WITH/WITHOUT GridSearchCV
- 3. Soft VotingClassifer WITH GridSearchCV

Based on the other metrics like fit_time, FP, FN, etc, we can conclude that option 1 is the appropriate model to select based on the dataset and project business objective.

Explainer Dashboard

Feature Importance

Model Performance Metrics

Metric	Score
accuracy	0.92
precision	0.92
recall	0.95

Metric	Score
f1	0.935
roc_auc_score	0.983
pr_auc_score	0.989
log_loss	0.273

Confusion Matrix

Future Recommendations

- ☐ The ensemble models can be applied to 'event_type' to understand whether the model accuracy improves
- Adding more data around user profile like age, sex, education, job etc. will further improve the targeting of coupons to users
- ☐ Adding Merchant Catalog or Coupon information will further enhance the recommendation of coupons to the users as well as improves revenue generation for the merchants

Thank You

Vinitha Jeevarathnam

vinitha.Jeevarathnam@gmail.com

GitHub: https://github.com/vinithajeeva/ai-ml-capstone-project

