Cap. 1- Funções reais de uma variável real

M.Elfrida Ralha (eralha@math.uminho.pt)

M.Isabel Caiado (icaiado@math.uminho.pt)

outubro 2016

1.4 Algumas funções importantes

Funções trigonométricas Funções trigonométricas inversas

Funções exponenciais e logarítmicas

Funções hiperbólicas Funções hiperbólicas inversas

A. Funções trigonométricas (diretas)

Seno

Cossecante

$$\begin{split} y &= \operatorname{sen} x, \\ \mathsf{D}_{\operatorname{sen}} &= \mathbb{R}, \\ \mathsf{CD}_{\operatorname{sen}} &= [-1, 1] \end{split}$$

Cosseno Secante

$$y = \cos x,$$
 $D_{\cos} = \mathbb{R},$ $CD_{\cos} = [-1, 1]$

 $\begin{aligned} y &= \sec x, \\ \mathsf{D}_{\mathsf{sec}} &= \{ x \in \mathbb{R} \, | \, x \neq k \, \frac{\pi}{2}, \, k \in \mathbb{Z} \}, \\ \mathsf{CD}_{\mathsf{sec}} &= \mathbb{R} \backslash] - 1, 1 [\end{aligned}$

Tangente

Cotangente

$$\begin{array}{ll} y = \operatorname{tg} x, & y = \operatorname{cotg} x, \\ \mathsf{D}_{\mathsf{tg}} = \{ x \in \mathbb{R} \, | \, x \neq \frac{\pi}{2} + k\pi, \, k \in \mathbb{Z} \}, & \mathsf{D}_{\mathsf{cotg}} = \{ x \in \mathbb{R} \, | \, x \neq k \, \pi, \, k \in \mathbb{Z} \}, \\ \mathsf{CD}_{\mathsf{tg}} = \mathbb{R} & \mathsf{CD}_{\mathsf{cotg}} = \mathbb{R} \end{array}$$

Algumas propriedades das funções trigonométricas

- As funções seno, cossecante, cosseno, secante, tangente e cotagente são contínuas;
- As funções seno, cossecante, cosseno e secante são periódicas de período 2π ;
- As funções tangente e cotangente são periódicas de período π ;
- A função cosseno é par;
- A função seno é ímpar;

lackbox Para quaisquer $x,\,y\,\in\mathbb{R}$ tem-se

(a)
$$\sin^2 x + \cos^2 x = 1$$

(fórmula fundamental da trigonometria)

- ▶ Para quaisquer $x, y \in \mathbb{R}$ tem-se
 - (a) $\mathrm{sen}^2 \, x + \mathrm{cos}^2 \, x = 1$ (fórmula fundamental da trigonometria)
 - (b) $1 + \operatorname{tg}^2 x = \sec^2 x$, $x \neq \frac{\pi}{2} + k \pi$, $k \in \mathbb{Z}$;
 - (c) $1 + \cot^2 x = \csc^2 x$, $x \neq k \pi$, $k \in \mathbb{Z}$;
 - (d) sen(x+y) = sen x cos y + sen y cos x (fórmula da adição para o seno)
 - (e) $\cos(x+y) = \cos x \cos y \sin x \sin y$ (fórmula da adição para o cosseno) Em particular,
 - (f) sen(2x) = 2 sen x cos x (fórmula da duplicação para o seno)
 - (g) $\cos(2x) = \cos^2 x \sin^2 x$ (fórmula da duplicação para o cosseno)
 - (h) sen(x y) = sen x cos y sen y cos x
 - (i) $\cos(x y) = \cos x \cos y + \sin x \sin y$

Recorde-se que

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sen x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

B. Funções trigonométricas inversas

 As funções seno, cossecante, cosseno, secante, tangente e cotangente são funções não bijetivas pelo que não possuem inversa.

 Considerando restrições apropriadas destas funções, é, no entanto, possível definir as correspondentes funções inversas.

Arco-seno

▶ Para a função seno a restrição bijetiva "padrão" é

Arco-seno

Para a função seno a restrição bijetiva "padrão" é

A inversa desta restrição, que se designa por arco-seno – lê-se arco (cujo) seno – é a função

$$\begin{array}{ccc} \operatorname{arcsen}: & [-1,1] & \longrightarrow & \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ & y & \longmapsto & \operatorname{arcsen} y \end{array}$$

onde arcsen y indica o único arco/ângulo do intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ cujo seno é igual a y. Assim,

$$x = \operatorname{arcsen} y \,, \,\, y \in [-1,1] \quad \Longleftrightarrow \quad y = \operatorname{sen} x \,, \,\, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \,.$$

Arco-cossecante

Para a função cossecante a restrição bijetiva padrão é

$$\begin{array}{ccc} \mathsf{cosec} \colon & \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \, \setminus \, \{0\} & \longrightarrow & \mathbb{R} \, \backslash \,] -1, 1[\\ & x & \longmapsto & \mathsf{cosec} \, x \end{array}$$

Arco-cossecante

Para a função cossecante a restrição bijetiva padrão é

cosec:
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\} \longrightarrow \mathbb{R} \setminus]-1, 1[$$
 $x \longmapsto \operatorname{cosec} x$

A sua inversa, que se designa por arco-cossecante – lê-se arco (cuja) cossecante – é a função

onde arccosec y indica o único arco/ângulo do intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\setminus\{0\}$ cuja cossecante é igual a y. Assim,

$$x = \operatorname{arccosec} y \,,\; y \in \mathbb{R} \setminus \,]-1,1[\iff y = \operatorname{cosec} x \,,\; x \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \setminus \{0\}.$$

Arco-seno

Arco-cossecante

$$y = arcsen x,$$

$$D_{arcsen} = [-1, 1],$$

$$\mathsf{CD}_{\mathsf{arcsen}} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$y = \operatorname{arccosec} x$$
,

$$\mathsf{D}_{\mathsf{arccosec}} = \mathbb{R} \setminus]-1,1[$$
,

$$\mathsf{CD}_{\mathsf{arccosec}} = \left[-rac{\pi}{2}, rac{\pi}{2}
ight] \setminus \{0\}$$

Arco-cosseno

▶ Relativamente à função cosseno, a restrição bijetiva padrão é

$$\begin{array}{cccc} \cos: & [0,\pi] & \longrightarrow & [-1,1] \\ & x & \longmapsto & \cos x \end{array}$$

Arco-cosseno

Relativamente à função cosseno, a restrição bijetiva padrão é

$$\begin{array}{cccc} \cos: & [0,\pi] & \longrightarrow & [-1,1] \\ & x & \longmapsto & \cos x \end{array}$$

A sua inversa, que se designa por arco-cosseno – lê-se arco (cujo) cosseno – é a função

onde $\arccos y$ indica o único $\arccos/{\rm angulo}$ do intervalo $[0,\pi]$ cujo cosseno é igual a y. Assim

$$x = \arccos y \,,\; y \in [-1,1] \iff y = \cos x \,,\; x \in \, [0,\pi] \,.$$

Arco-secante

Para a função secante a restrição bijetiva padrão é

Arco-secante

Para a função secante a restrição bijetiva padrão é

$$\sec : \quad [0,\pi] \setminus \left\{ \frac{\pi}{2} \right\} \quad \longrightarrow \quad \mathbb{R} \setminus]-1,1[$$

$$x \qquad \longmapsto \quad \sec x$$

A sua inversa, que se designa por arco-secante – lê-se arco (cuja) secante – é a função

$$\begin{array}{ccc} \operatorname{arcsen}: & \mathbb{R} \setminus]-1,1[& \longrightarrow & [0,\pi] \setminus \left\{\frac{\pi}{2}\right\} \\ & y & \longmapsto & \operatorname{arcsec} y \end{array}$$

onde arcsec y indica o único arco/ângulo do intervalo $[0,\pi]\setminus\left\{\frac{\pi}{2}\right\}$ cuja secante é igual a y. Assim,

$$x = \operatorname{arcsec} y \,,\; y \in \mathbb{R} \setminus]-1,1[\iff y = \sec x \,,\; x \in [0,\pi] \setminus \left\{\frac{\pi}{2}\right\}.$$

Arco-cosseno Arco-secante

$$y = \arccos x$$
,

$$\mathsf{D}_{\mathsf{arccos}} = [-1,1],$$

$$\mathsf{CD}_{\mathsf{arccos}} = [\mathsf{0}, \pi]$$

$$y = \operatorname{arcsec} x,$$

$$\mathsf{D}_{\mathsf{arcsec}} = \mathbb{R} \, \backslash \,] - 1, 1 [\text{,}$$

$$\mathsf{CD}_{\mathsf{arcsec}} = [0,\pi] \setminus \left\{ rac{\pi}{2}
ight\}$$

Arco-tangente

Para a função tangente considera-se a restrição bijetiva

$$\begin{array}{ccc} \operatorname{tg}: & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{tg} x \end{array}$$

Arco-tangente

Para a função tangente considera-se a restrição bijetiva

$$\operatorname{tg}: \quad \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\quad \longrightarrow \quad \mathbb{R} \\ x \quad \longmapsto \quad \operatorname{tg} x$$

A sua inversa, designada por arco-tangente – lê-se arco (cuja) tangente – é a função

$$\begin{array}{ccc} \operatorname{arctg}: & \mathbb{R} & \longrightarrow & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ & y & \longmapsto & \operatorname{arctg} y \end{array}$$

onde $\arctan y$ indica o único $\arctan o$ angulo do intervalo $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ cuja tangente é igual a y. Assim

$$x = \operatorname{arctg} y \,,\; y \in \mathbb{R} \;\iff\; y = \operatorname{tg} x \,,\; x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\,.$$

Arco-cotangente

► Relativamente à função cotangente, considera-se a restrição bijetiva

$$\begin{array}{ccc} \operatorname{cotg}: &]0,\pi[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{cotg} x \end{array}$$

Arco-cotangente

Relativamente à função cotangente, considera-se a restrição bijetiva

$$\cot g: \quad]0, \pi[\quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \cot g x$$

cuja inversa é a função arco-cotangente – lê-se arco (cuja) cotangente – definida por

$$\begin{array}{cccc} \operatorname{arccotg}: & \mathbb{R} & \longrightarrow &]0,\pi[\\ & y & \longmapsto & \operatorname{arccotg} y \end{array}$$

onde arccotg y indica o único arco/ângulo do intervalo $]0,\pi[$ cuja cotangente é igual a y. Então

$$x = \operatorname{arccotg} y \,,\; y \in \mathbb{R} \iff y = \operatorname{cotg} x \,,\; x \in \]0,\pi[\,.$$

Arco-tangente

$$y = \operatorname{arctg} x$$
,

 $\mathsf{D}_{\mathsf{arctg}} = \mathbb{R}$

$$\mathsf{CD}_{\mathsf{arctg}} = \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$$

Arco-cotagente

$$y=\mathop{\rm arccotg}\nolimits x,$$

$$\mathsf{D}_{\mathsf{arccotg}} = \, \mathbb{R}$$

$$\mathsf{CD}_{\mathsf{arccotg}} =]0, \pi[$$

C. Funções exponenciais e logarítmicas

Propriedades da função exponencial

Para quaisquer $x,z\in\mathbb{R}$, a função exponencial de base a, a^x , a>0 verifica

- (a) é uma função contínua;
- (b) $a^{x+z} = a^x a^z$;
- (c) $(a^x)^z = a^{xz}$;
- (d) se b > 0, $(a b)^x = a^x b^x$;
- (e) se a > 1, é crescente;
- (f) se a=1, é constante;
- (g) se 0 < a < 1, é decrescente.

$$1 < a < b$$
e $0 < c < 1$

▶ Para todo¹ o $y \in]0, +\infty[$ e $a \in \mathbb{R}^+ \setminus \{1\}$, define-se a função logaritmo na base a, denotando-se $\log_a y$, como a função inversa da função exponencial de base a, isto é

$$x = \log_a y \iff a^x = y \quad \forall y \in]0, +\infty[, \forall x \in \mathbb{R}.$$

¹Para a=1 a função a^x não é bijetiva, logo não admite inversa.

► Propriedades da função logaritmo

Para quaisquer $x>0,\ z>0$ e $\alpha\in\mathbb{R}$, a função logaritmo de base $a,\ \log_a x,\ a>1$ verifica

- (a) é uma função contínua;
- (b) $\log_a(xz) = \log_a x + \log_a z$;
- (c) $\log_a \frac{x}{z} = \log_a x \log_a z$;
- (d) $\log_a x^{\alpha} = \alpha \log_a x$.

- Fala-se em função exponencial natural quando a base da função exponencial é o número de Euler e: e^x .
- ▶ O logaritmo natural de y, denotado ln y, é função inversa da função e^x , isto é

$$x = \ln y \qquad \Longleftrightarrow \qquad e^x = y \qquad \forall y \in]0, +\infty[, \ \forall x \in \mathbb{R};$$

Funções exponencial e logarítmica de base \emph{e}

D. Funções hiperbólicas diretas

 A função seno hiperbólico é a função real de variável real definida por

$$\begin{array}{cccc} \operatorname{sh}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{sh} \, x = \frac{e^x - e^{-x}}{2} \end{array}$$

► A função cossecante hiperbólica é a função real de variável real definida por

$$\begin{array}{cccc} \operatorname{cosech}: & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{cosech} \ x = \frac{2}{e^x - e^{-x}} \end{array}$$

Seno hiperbólico

$$y = \operatorname{sh} x$$
,

$$\mathsf{D}_{\mathsf{sh}} = \mathbb{R}$$

$$\mathsf{CD}_{\mathsf{sh}} = \mathbb{R}$$

Cossecante hiperbólica

$$y = \operatorname{cosech} x$$
,

$$D_{cosech} = \mathbb{R} \setminus \{0\}$$

$$\mathsf{CD}_\mathsf{cosech} = \mathbb{R}$$

 A função cosseno hiperbólico é a função real de variável real definida por

$$\begin{array}{cccc} \mathrm{ch}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \mathrm{ch}\, x = \frac{e^x + e^{-x}}{2} \end{array}$$

 A função secante hiperbólica é a função real de variável real definida por

Cosseno hiperbólico

$$y = \operatorname{ch} x = \frac{e^x + e^{-x}}{2},$$

$$D_{ch} = \mathbb{R}$$

$$CD_{ch} = [1, +\infty[$$

Secante hiperbólica

$$y = \mathrm{sech}\, x = \frac{2}{e^x + e^{-x}},$$

$$\mathrm{D}_{\mathrm{sech}} = \mathbb{R}$$

$$\mathrm{CD}_{\mathrm{sech}} =]0,1]$$

A função seno hiperbólico é

- ímpar;
- estritamente crescente;
- ightharpoonup $D_{sh}=\mathbb{R};$
- ightharpoonup $\mathsf{CD}_{\mathsf{sh}} = \mathbb{R}$.

A função cosseno hiperbólico é

- par;
- não monótona mas
 - estritamente decrescente em $]-\infty,0];$
 - estritamente crescente em $[0, +\infty[$;
- ightharpoonup $D_{ch}=\mathbb{R}$
- ightharpoonup $CD_{ch} = [1, +\infty[$.

A função cossecante hiperbólica é

- ímpar;
- é não monótona mas é decrescente em $]-\infty,0[$ e em $]0,+\infty[;$
- ▶ $D_{cosech} = \mathbb{R} \setminus \{0\};$
- $ightharpoonup \mathsf{CD}_\mathsf{cosech} = \mathbb{R}.$

A função secante hiperbólica é

- par;
- não monótona mas
 - estritamente crescente em $]-\infty,0];$
 - estritamente decrescente em $[0, +\infty[;$
- ightharpoonup $D_{sech} = \mathbb{R}$
- ightharpoonup CD_{sech} =]0,1].

 A função tangente hiperbólica é a função real de variável real definida por

$$\begin{array}{ccc} \operatorname{th}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{array}$$

➤ A função cotangente hiperbólica é a função real de variável real definida por

$$\begin{array}{ccc} \coth: & \mathbb{R}\backslash\{0\} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \coth x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \end{array}$$

Tangente hiperbólica

$$y = \operatorname{th} x$$
,

$$\mathsf{D}_{\mathsf{th}} = \mathbb{R}$$

$$CD_{th} =]-1,1[$$

Cotangente hiperbólica

$$y = \coth x$$
,

$$D_{coth}=\mathbb{R}\backslash\{0\}$$

$$\mathsf{CD}_\mathsf{coth} = \mathbb{R} ackslash [-1,1]$$

A função tangente hiperbólica é

- ímpar;
- estritamente crescente;
- ightharpoonup $D_{th} = \mathbb{R}$
- ▶ $CD_{th} =]-1,1[.$

A função cotangente hiperbólica é

- ímpar;
- estritamente decrescente;
- ightharpoonup $D_{coth} = \mathbb{R} \setminus \{0\};$
- $\blacktriangleright \ \mathsf{CD}_{\mathsf{coth}} = \mathbb{R} \backslash [-1,1].$

Observação

 Para a função seno hiperbólico, sh, também se usa a notação senh;

 De modo análogo, para a função cosseno hiperbólico, ch, também se usa a notação cosh;

Algumas propriedades das funções hiperbólicas

Para todo o $x,y\in\mathbb{R}$ tem-se

- ightharpoonup $\cosh x + \sinh x = e^x$
- $ightharpoonup \mathrm{ch}^2 x \mathrm{sh}^2 x = 1$ (análogo à fórmula fundamental da trigonometria)
- $1 \operatorname{th}^2 x = \operatorname{sech}^2 x$

Algumas propriedades das funções hiperbólicas

Para todo o $x,y\in\mathbb{R}$ tem-se

(análogo à fórmula fundamental da trigonometria)

$$1 - \operatorname{th}^2 x = \operatorname{sech}^2 x$$

Em particular

$$ightharpoonup \operatorname{sh}(2x) = 2\operatorname{sh} x \operatorname{ch} x$$

(fórmula da duplicação para o seno hiperbólico)

(fórmula da duplicação para o cosseno hiperbólico)

- ightharpoonup ch $(x-y) = \operatorname{ch} x \operatorname{ch} y \operatorname{sh} x \operatorname{sh} y$

E. Funções hiperbólicas inversas

- Argumento do seno hiperbólico
- Argumento da cossecante hiperbólica
- Argumento do cosseno hiperbólico
- Argumento da secante hiperbólica
- Argumento do tangente hiperbólica
- Argumento do cotangente hiperbólica

Argumento do seno hiperbólico

A função seno hiperbólico é bijetiva.

Argumento do seno hiperbólico

- A função seno hiperbólico é bijetiva.
- A sua inversa, que se designa por argumento do seno hiperbólico, é a função

$$\begin{array}{ccc} \text{argsh:} & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & y & \longmapsto & \text{argsh} \ y \end{array}$$

Assim,

$$x = \operatorname{argsh} y, \ y \in \mathbb{R} \Longleftrightarrow \operatorname{sh} x = y, \ x \in \mathbb{R}$$

$$\operatorname{argsh} y \ = \ \ln \left(y + \sqrt{y^2 + 1} \ \right), \quad \forall y \in \mathbb{R}.$$

Como definir $\operatorname{argsh} y$?

Para $x \in \mathbb{R}$, tem-se

$$\begin{split} y = \sh x \Leftrightarrow y &= \frac{e^x - e^{-x}}{2} \ \Leftrightarrow y = \frac{e^{2x} - 1}{2e^x} \\ &\Leftrightarrow e^{2x} - 2ye^x - 1 = 0 \\ &\Leftrightarrow e^x = y \pm \sqrt{y^2 + 1} \,. \end{split} \qquad \text{equação do 2.\"i}_{\mathcal{L}} \frac{1}{2} \text{ grau em } e^x$$

A solução com o sinal + é a única admissível, pois

$$e^x > 0$$
, $\forall x \in \mathbb{R}$ e $y - \sqrt{y^2 + 1} < 0$, $\forall y \in \mathbb{R}$.

Mas

$$e^x = y + \sqrt{y^2 + 1} \iff x = \ln\left(y + \sqrt{y^2 + 1}\right),$$

donde

$$\operatorname{argsh} y \ = \ \ln \left(y + \sqrt{y^2 + 1} \ \right), \quad \forall y \in \mathbb{R}.$$

Argumento da cossecante hiperbólica

A função cossecante hiperbólica é bijetiva.

Argumento da cossecante hiperbólica

- A função cossecante hiperbólica é bijetiva.
- ► A sua inversa, que se designa por argumento da cossecante hiperbólica, é a função

$$\begin{array}{ccc} \text{argcosech:} & \mathbb{R} & \longrightarrow & \mathbb{R} \setminus \{0\} \\ & y & \longmapsto & \text{argcosech } y \end{array}$$

Assim.

$$x = \operatorname{argcosech} y, \ y \in \mathbb{R} \iff \operatorname{cosech} x = y, \ x \in \mathbb{R} \setminus \{0\}$$

$$\operatorname{argcosech} y \ = \ \ln \left(\frac{1}{y} + \sqrt{\frac{1}{y^2} + 1} \ \right), \quad \forall y \in \mathbb{R} \setminus \{0\}.$$

Argumento do seno hiperbólico

$$y = \operatorname{argsh} x$$
,

$$\mathsf{D}_{\mathsf{argsh}} = \mathbb{R}$$

$$\mathsf{CD}_{\mathsf{argsh}} = \mathbb{R}$$

Argumento da cossecante hiperbólica

$$y = \operatorname{argcosech} x\,,$$

$$\mathsf{D}_{\operatorname{argcosech}} = \mathbb{R} \, \setminus \{\mathsf{0}\}$$

$$\mathsf{CD}_{\mathsf{argcosech}} = \mathbb{R}$$

Argumento do cosseno hiperbólico

 A função cosseno hiperbólico não é bijetiva mas é possível considerar a sua restrição bijetiva

$$\begin{array}{cccc} \text{ch:} & [0,+\infty[& \longrightarrow & [1,+\infty[\\ x & \longmapsto & \text{ch} \, x \end{array}]$$

Argumento do cosseno hiperbólico

 A função cosseno hiperbólico não é bijetiva mas é possível considerar a sua restrição bijetiva

ch:
$$[0, +\infty[$$
 \longrightarrow $[1, +\infty[$ $x \mapsto \operatorname{ch} x$

 A inversa desta restrição, que se designa por argumento do cosseno hiperbólico, é a função

$$\begin{array}{ccc} \text{argch:} & [1,+\infty[& \longrightarrow & [0,+\infty[\\ & y & \longmapsto & \text{argch} \ y \end{array}$$

Assim,

$$x=\operatorname{argch} y,\ y\in [1,+\infty[\iff\operatorname{ch} x=y,\ x\in [0,+\infty[$$

$$\operatorname{argch} y = \ln\left(y + \sqrt{y^2 - 1}\right), \ y \in [1, +\infty[$$

Argumento da secante hiperbólica

 A função secante hiperbólica não é bijetiva mas é possível considerar a sua restrição bijetiva

Argumento da secante hiperbólica

 A função secante hiperbólica não é bijetiva mas é possível considerar a sua restrição bijetiva

sech:
$$[0, +\infty[\longrightarrow]0, 1]$$
 $x \longmapsto \operatorname{sech} x$

► A inversa desta restrição, que se designa por argumento da secante hiperbólica, é a função

$$\begin{array}{ccc} \text{argsech:} &]0,1] & \longrightarrow & [0,+\infty[\\ & y & \longmapsto & \text{argsech} \, y \end{array}$$

Assim,

$$x = \operatorname{argsech} y, \ y \in]0,1] \iff \operatorname{sech} x = y, \ x \in [0,+\infty[$$

$$\operatorname{\mathsf{argsech}} y \ = \ \ln \left(\frac{1}{y} + \sqrt{\frac{1}{y^2} - 1} \ \right), \ y \in \,]0,1]$$

Argumento do cosseno hiperbólico

$$y = \operatorname{argch} x$$
,

$$D_{argch} = [1, +\infty[$$

$$\mathsf{CD}_{\mathsf{argch}} = [0, +\infty[$$

Argumento da secante hiperbólica

$$y = \operatorname{argsech} x$$
,

$$D_{argsech} =]0,1]$$

$$\mathsf{CD}_{\mathsf{argsech}} = [0, +\infty[$$

A função argumento do seno hiperbólico é

- contínua;
- estritamente crescente;
- $ightharpoonup D_{\mathsf{argsh}} = \mathbb{R}$
- ightharpoonup CD_{argsh} = \mathbb{R} .

A função argumento do cosseno hiperbólico é

- contínua;
- estritamente crescente;
- $D_{argch} = [1, +\infty[;$
- $\qquad \qquad \mathsf{CD}_{\mathsf{argch}} = [0, +\infty[.$

Argumento da tangente hiperbólica

 A função tangente hiperbólica não é sobrejetiva mas é possível considerar a sua restrição bijetiva

th:
$$\mathbb{R} \longrightarrow]-1,1[$$
 $x \longmapsto \operatorname{th} x$

Argumento da tangente hiperbólica

 A função tangente hiperbólica não é sobrejetiva mas é possível considerar a sua restrição bijetiva

th:
$$\mathbb{R} \longrightarrow]-1,1[$$
 $x \longmapsto \operatorname{th} x$

► A inversa desta restrição, que se designa por argumento da tangente hiperbólica, é a função

$$\begin{array}{ccc} \text{argth:} &]-1,1[& \longrightarrow & \mathbb{R} \\ & y & \longmapsto & \text{argth}\, y \end{array}$$

onde

$$x=\operatorname{argth} y,\ y\in\]-1,1[\ \Longleftrightarrow\operatorname{th} x=y,\ x\in\mathbb{R}$$

е

$$\operatorname{argth} y \ = \ \ln \left(\sqrt{\frac{1+y}{1-y}} \, \right), \ y \in \]-1,1[\ .$$

Argumento da cotangente hiperbólica

A função coth : $\mathbb{R}\setminus\{0\}\longrightarrow\mathbb{R}$ não é sobrejetiva mas é possível considerar a sua restrição bijetiva

$$\begin{array}{ccc} \operatorname{coth:} & \mathbb{R} \backslash \left\{ 0 \right\} & \longrightarrow & \mathbb{R} \backslash \left[-1, 1 \right] \\ & x & \longmapsto & \operatorname{coth} x \end{array}$$

Argumento da cotangente hiperbólica

A função coth : $\mathbb{R}\setminus\{0\}\longrightarrow\mathbb{R}$ não é sobrejetiva mas é possível considerar a sua restrição bijetiva

$$\begin{array}{ccc} \operatorname{coth:} & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \setminus [-1, 1] \\ & x & \longmapsto & \operatorname{coth} x \end{array}$$

► A inversa desta restrição, que se designa por argumento da cotangente hiperbólica, é a função

$$\begin{array}{ccc} \operatorname{argcoth:} & \mathbb{R} \setminus [-1,1] & \longrightarrow & \mathbb{R} \setminus \{0\} \\ & y & \longmapsto & \operatorname{argcoth} y \end{array}$$

onde

$$x = \operatorname{argcoth} y, \ y \in \mathbb{R} \setminus [-1, 1] \iff \operatorname{coth} x = y, \ x \in \mathbb{R} \setminus \{0\}.$$

$$\operatorname{argcoth} y = \ln \bigg(\sqrt{\frac{y+1}{y-1}} \hspace{0.1cm} \bigg), \,\, y \in \mathbb{R} \backslash \, [-1,1]$$

Argumento da tangente hiperbólica

$$y = \operatorname{argth} x$$
,

$$\mathsf{D}_{\mathsf{argth}} =]-1,1[,$$

$$\mathsf{CD}_{\mathsf{argth}} = \mathbb{R}$$

Argumento da cotangente hiperbólica

$$y = \operatorname{argcoth} x$$
,

$$\mathsf{D}_{\mathsf{argcoth}} = \mathbb{R} \backslash \left[-1, 1 \right]$$

$$\mathsf{CD}_{\mathsf{argcoth}} = \mathbb{R} \backslash \left\{ 0 \right\}$$

A função argumento da tangente hiperbólica é

- contínua;
- estritamente crescente;
- ▶ $D_{argth} =] 1, 1[$
- ightharpoonup CD_{argth} = \mathbb{R} .

A função argumento da cotangente hiperbólica é

- contínua;
- decrescente;
- ightharpoonup $D_{argcoth} = \mathbb{R} \setminus [-1, 1];$
- ightharpoonup CD_{argcoth} = $\mathbb{R}\setminus\{0\}$.