Name: Date:

Topic: 4.1 Triangle Angle Side Relationship and Triangle Inequality

- 1. What is the Pythagorean Theorem? Write the general formula.
- 2. Draw a right triangle $\triangle ABC$ with $\angle ABC = 90^{\circ}$, $\overline{AB} = 3$, and $\overline{BC} = 4$.
 - Find side \overline{AC} . (Hint: Use the Pythagorean Theorem)
 - Fill out the table below.

I III out the table below.	
\overline{AB}	$\overline{AC} + \overline{BC}$
BC	$\overline{AB} + \overline{AC}$
AC	$\overline{AB} + \overline{BC}$

- What pattern do you notice?
- 3. Draw an isosceles triangle $\triangle XYZ$ where $\overline{XY} = 6$, $\overline{YZ} = 6$, and $\overline{XZ} = 8$.
 - Fill out the table below.

I in our the table below.	
\overline{XY}	$\overline{YZ} + \overline{XZ}$
\overline{YZ}	$\overline{XY} + \overline{XZ}$
\overline{XZ}	$\overline{XY} + \overline{YZ}$

- What pattern do you notice?
- 4. Draw any equilateral triangle $\triangle DEF$.
 - Fill out the table below.

\overline{DE}	$\overline{EF} + \overline{DF}$
\overline{EF}	$\overline{DE} + \overline{DF}$
\overline{DF}	$\overline{DE} + \overline{EF}$

- What pattern do you notice?
- 5. Using what you've learned, make a general theory about the relationship of the sides of any triangle.