Laboratory Report Cover Sheet

SRM Institute of Science and Technology
College of Engineering and Technology
Department of Electronics and Communication
Engineering

18ECE231J IOT SYSTEM DESIGN Fourth Semester, 2020-21 (Even semester)

Name : S. Lalith Kishore

Register No. : RA1911043010014

Day / Session : 1

Venue : Virtual

Title of Experiment: SMOKE DETECTOR (MINI PROJECT)

Date of Submission: 14/05/2021

Particulars	Max. Marks	Marks Obtained
Pre lab and Post lab	10	
Lab Performance	10	
Simulation and results	10	
Total	30	

REPORT VERIFICATION

Staff Name: Dr.P.Eswaran Signature

:

Experiment 9(Mini Project) SMOKE DETECTOR

GROUP MEMBERS:

RA1911043010013 - Shailendra Sudakar

RA1911043010014 - Lalith Kishore

9.1 INTRODUCTION

The purpose of this experiment is to design a smoke detector, which detects smoke in the environment and triggers the alarm. In this experiment the alarm goes off when the smoke detector level reaches 40%

9.2 Hardware Requirement

SL no	Description	Qty
1.	Cisco Packet Tracer (Software Installed in PC)	7.2 or above
2.	Smoke detector	1
3.	Switch	1
4.	PC	1
5.	Server	1
6.	Old Car	1
7.	Copper straight through cable	3

9.3 Background and Architecture:

Theory:

A smoke detector is an electronic fire-protection device that automatically senses the presence of smoke, as a key indication of fire, and sounds a warning to building occupants.

Commercial and industrial smoke detectors issue a signal to a fire alarm control panel as part of a building's central fire alarm system. By law all workplaces must have a smoke detection system.

Household smoke detectors, or smoke alarms, issue an audible and/or visual alarm locally from the detector itself. They can be battery-powered single units or several interlinked hardwired (mains-powered) devices backed up by batteries. The latter must be installed in all new buildings and after major refurbishments.

Smoke detector

SWITCH

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Down	1		0007.EC85.C601
FastEthernet0/2	Down	1	3-4-5	0007.EC85.C602
FastEthernet0/3	Down	1	1500	0007.EC85.C603
FastEthernet0/4	Down	1	(4 75.72 3)	0007.EC85.C604
FastEthernet0/5	Down	1		0007.EC85.C605
FastEthernet0/6	Down	1	2 	0007.EC85.C606
FastEthernet0/7	Down	1	* *	0007.EC85.C607
FastEthernet0/8	Down	1	0 	0007.EC85.C608
FastEthernet0/9	Down	1		0007.EC85.C609
FastEthernet0/10	Down	1	9 4 4 6	0007.EC85.C60A
FastEthernet0/11	Down	1	* *** **	0007.EC85.C60B
FastEthernet0/12	Down	1	(0007.EC85.C60C
FastEthernet0/13	Down	1		0007.EC85.C60D
FastEthernet0/14 FastEthernet0/15 FastEthernet0/16 FastEthernet0/17 FastEthernet0/18	Down	1	86	0007.EC85.C60E
	Down	1	** ****** **	0007.EC85.C60F
	Down	1	9 7.7 9	0007.EC85.C610
	Down	1		0007.EC85.C611
	Down	1	8 4 46	0007.EC85.C612
FastEthernet0/19	Down	1	11 111 11	0007.EC85.C613
FastEthernet0/20	Down	1	(55)	0007.EC85.C614
FastEthernet0/21	Down	1		0007.EC85.C615
FastEthernet0/22	Down	1	2 	0007.EC85.C616
FastEthernet0/23	Down	1		0007.EC85.C617
FastEthernet0/24	Down	1	0 	0007.EC85.C618
GigabitEthernet0/1	Down	1		0007.EC85.C619
GigabitEthernet0/2	Down	1	8 4.4 6	0007.EC85.C61A
Vlan1	Down	1	<not set=""></not>	0002.4A53.5846
Hostname: Switch				

PC

• OLD CAR

SERVER

9.4 Procedure

- 1. Launch Cisco packet tracer form the start menu/shortcut icon in desktop.
- 2. From file menu select New file.
- 3. Work in logical window in packet tracer.
- 4. Add the required devices from the network components space.
- 5. Select components required for building the logical network, by simple drag and drop.
- 6. Connect the server, switch, smoke detector and PC using copper straight wires.
- 7. Configure the smoke detector and connect the server.
- 8. Select the server, go to desktop and select web browser.
- 9. Enter the IP address in the URL of the web browser.
- 10. Create the credentials and sign in.
- 11. Now we can check the status of the alarm and the level of smoke in the web browser.
- 12. To check whether the smoke detector is working, we place an old car and turn ON so that it emits smoke.

9.5 Observations

- Circuit Diagram
- Circuit when there is no smoke.

· Circuit when there is smoke.

• Level of smoke detected by sensor.

Level of smoke decreases when the car is turned off.

Alarn is turned off when the smoke reaches safe level.

9.6 RESULT

The singuist has accessed all			المراجع والمراجع والبير	. 4
The circuit has successfull	v detected the a	amount of smoke	when the car is	s turned on.