Leveraging Phase Polynomials for Quantum Circuits Optimization

Zihan Chen*, Henry Chen*, Xiangyu Gao°, Yuwei Jin, Minghao Guo*, Enhyeok Jang[†], Jiakang Li^{*}, Caitlin Chan^{*}, Won Woo Ro[†], Eddy Z. Zhang^{*}

* Rutgers University, Oniversity of Washington, JPMorgan Chase, Yonsei University

Main Contribution:

PhasePoly: A holistic quantum circuits optimization framework via Phase Polynomials.

1. Background and Motivation

Background

- Quantum circuits optimization is critical for reducing error and improving fidelity
- We can construct a phase polynomials circuit using {CNOT, Rz}.
- Phase polynomial circuits can be represented as *sum-over-path*^[2]:

$$U|x_1,\ldots,x_n\rangle=e^{ip(x_1,\ldots,x_n)}|g(x_1,\ldots,x_n)\rangle$$

- Phase parity network: p(x)
- Output state CNOT network: g(x)

Motivation

- Phase polynomials are key building block
 - ♦ 75% of gates are {CNOT, Rz} in selected circuits
 - Commonly used in Clifford+T circuits optimization

- ♦ Current phase polynomial approaches^[3-5]
 - Only optimize phase parity network and single phase polynomial block independently
- Local equivalent subcircuit rewriting approaches^[6] struggle with scalability

Block 3

 $q_0 \oplus q_2 \oplus q_3$

 $q_0 \oplus q_2 \oplus q_3''$ $R_Z(\theta_4)$ $R_Z(\theta_5)$

Block 2;

(a) Synthesis Block by Block

(b) Synthesis After Renaming and Block Merging

Hardware-aware phase polynomials optimization

- → Embed hardware constraints and qubit mapping cost into synthesis
- → Maintain valid sum-over-path representation

Fault-tolerant friendly phase polynomials optimization

- → Improve full-program FTQC performance via logical-level gains
- → Optimize T gate placement via phase polynomials, potentially improve magic state scheduling, and facilitate qubit reuse

2. Our Approach: holistic phase polynomials optimization

Phase Polynomials Co-Optimization

A* search in logical circuit optimization

- To evaluate each state after applying a CNOT from the active row pair set
 - Phase parity cost $h_1(n)$: Hamming weight of the phase parity matrix; estimates CNOTs needed for phase gates.
 - Output state parity cost $h_2(n)$: Estimated CNOTs for Gaussian elimination in output state recovery.
 - \circ Actual cost g(n): Cumulative CNOT count from root to current state.

$$f(n) = g(n) + h_1(n) + h_2(n)$$

Reference:

- [1] Chen, Zihan, et al. PhasePoly: An Optimization Framework for Phase Polynomials in Quantum Circuits. (2025).
- [2] Amy, Matthew, et al. Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. (2014).
- [3] Amy, Matthew, et al. On the CNOT-complexity of CNOT-PHASE circuits. (2017).
- [4] Nam, Yunseong, et al. Automated optimization of large quantum circuits with continuous parameters. (2018).
- [5] Vandaele, Vivien, et al. Phase polynomials synthesis algorithms for NISQ architectures and beyond. (2022). [6] Xu, Amanda, et al. Synthesizing quantum-circuit optimizers. (2023).

Extensible phase polynomials optimization

Results and Evaluation

- Benchmarks: Clifford+T benchmarks from prior work^[3-6], as well as additional near-term and fault-tolerant quantum applications.
- Metrics: Total gate count and CNOT count.
- ♦ Baselines: GRAY-SYNTH^[3] (with T gate optimizations) and QUESO^[6], a state-of-the-art equivalent-subcircuit rewriting optimizer.
- Verification: Results passed equivalence checking by Qiskit and MQT QCEC
- Results: PhasePoly outperforms both prior frameworks individually, and achieves the best results when combined with QUESO, reducing up to 50% total gate and 48.57% CNOT reduction. (averaging 35.83% and 27.9%, respectively)

Multi-block phase polynomials optimization

 $q_0 \oplus q_2$

(a) Without SSA-style IR renaming. The term $qo \otimes q2$, cannot be reused due to block boundaries

Block 1

 $q_2 - R_Z(\theta_2) - R_Z(\theta_1)$

 $q_0 \oplus q_2 \oplus q_3$

 $q_0 \oplus q_2 \oplus q_3$

(b) After renaming, the blocks merge into a single phase polynomial block, reducing CNOT gates from 10 to 8 through the reuse of qoxq2

Circuit	Org.	GRAY-SYNTH	QUESO	PhasePoly.	QUESO+PhasePoly.
	# Gates CXs	# CXs	# Gates CXs	# Gates CXs	# Gates CXs
rc_adder_6	200 93	71	176 79	152 71	152 71
tof_10	255 102	70	175 70	175 70	175 70
hwb6	259 116	110	218 103	200 96	199 95
mod_red_21	278 105	86	198 79	180 77	179 76
qaoa_n8_p4	440 96		244 92	240 88	240 88
ham15-low	443 236	208	343 200	336 198	333 195
qcla_com_7	443 186	136	295 127	256 120	256 120
barenco_tof_10	450 192	144	262 128	248 114	248 114
qcla_adder_10	521 233	214	443 207	391 176	391 176
grover_5	831 288	226	589 208	455 202	455 202
qcla_mod_7	884 382	360	778 356	628 289	620 281
adder_8	900 409	359	628 301	565 270	561 270
ham15-med	1272 534	357	773 374	658 327	654 323
mod_adder_1024	4285 1720	1390	2837 1237	2565 1217	2550 1202
ham15-high	5308 2149	1502	4653 2134	2792 1363	2786 1357
shor_15_7	36598 14858	-	34969 13308	31113 12014	31113 12814
Geo. Mean Reduction	-	16.70%	26.34% 19.96%	35.61% 27.46%	35.83% 27.90%