A Book of Abstract Algebra (2nd Edition)

	_	hlom	
Chapter AA, Problem 14E		Bookmark	Show all steps: On

Problem

Prove the following:

If $A \subseteq B$, then $A \cap B = A$. Conversely, if $A \cap B = A$, then $A \subseteq B$.

Step-by-step solution

Step 1 of 3 Objective:-The objective is to prove that if $A \subseteq B$, then $A \cap B = A$. Conversely, if $A \cap B = A$, then $A \subseteq B$. Comment

Step 2 of 3

Proof:-

Let *A* and *B* are two sets. Let $x \in A \subseteq B$.

Subsets:-If sets A and B are such that every elements of A are also elements of B, then A is said to be subset of B.

$$A \subseteq B \Leftrightarrow \big\{ x \in A \Rightarrow x \in B \big\}$$

So the set B contains the set A and set A completely lies within set B.

The intersection of two sets A and B is:-

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Since set B contains the set A, the intersection of set A and B is same as the set A.

Hence,

If
$$A \subseteq B$$
, then $A \cup B = A$.

Proved

Comment

Step 3 of 3

Conversely:-

The union of two sets A and B is:-

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

If $A \cap B = A$, then set B completely contains the set A.

Subsets:-If sets *A* and *B* are such that every elements of *A* are also elements of *B*, then *A* is said to be subset of *B*.

$$A\subseteq B \Leftrightarrow \left\{x\in A\Rightarrow x\in B\right\}$$

According to this definition A is subset of B.

Hence,

if
$$A \cap B = A$$
, then $A \subseteq B$.

Proved	
Comment	