Постановка

Чиновнику необходимо проверить состояние всех дорог в определенном районе города. Задача состоит в том, что необходимо объехать все дороги в районе за минимальное количество времени.

Для каждой дороги задана её длина. Дороги соединяются на перекрестках. До каждой дороги можно добраться. Маршрут может начинаться с любого перекрестка.

Задан граф дорог, необходимо определить маршрут следования чиновника.

Входные данные

Первая строка содержит следующие 2 числа: количество перекрестков (n), количество дорог (m).

Следующие m строк содержат числа a_i , b_i и c_i . a_i и b_i перекрестки между которыми построена i-я дорога, а c_i - длина i-ой дороги.

Все дороги двусторонние и между двумя перекрестками не более одной дороги.

Выходные данные

Вывести последовательность перекрестков маршрута.

Пример 1

Входные данные	Выходные данные
5 5	
0 1 1	014230
1 4 3	011200
422	
232	
301	

Входные данные	Выходные данные
7 7	
0 6 2	
611	061425356
6 5 42	
143	
422	
255	
531	

Постановка

Жак решил посетить всех своих друзей в городе. На каждой улице у него по другу. Жак решил сделать дорогу как можно короче и решил, что надо просто ехать по каждой улице только 1 раз. Так же он хочет в конце путешествия вернутся домой, откуда и отправлялся.

В городе n дорог и m развязок. Все развязки имеют разные номера. Каждая улица соединяет ровно 2 развязки. В городе нет улиц с одинаковыми номерами. Если можно было спланировать несколько поездок, то Жак выбирал лексикографически минимальный путь.

Помогите ему найти путь туда и обратно.

Входные данные

В первой строке указано количество дорог n. Далее идут n строк с описанием дороги. Первое и второе число - это соединяемые развязки, а третье число - это номер дороги.

Выходные данные

Вывести номера дорог указывающие маршрут туда и обратно. Если такого пути не существует, то необходимо вывести None.

Пример 1

Входные данные	Выходные данные
6	
121	123546
232	123546
316	
125	
233	
3 1 4	

Входные данные	Выходные данные
4	
1 2 1	None
2 3 2	
133	
2 4 4	

Задача З

Постановка

Имеется связный граф с n вершинами и m ребрами. Два игрока p_1 и p_2 играют в игру с этим графом. Другой человек равномерно случайно выбирает ребро и удаляет его. Если количество вершин в двух не пусных компонентах связности графа ЧЕТНОЕ, то выигрывает p_1 иначе p_2 . Необходимо найти вероятность выигрыша для обоих игроков.

Можно выбрать только те ребра, которые делят граф на две не пустые компоненты связности после их удаления. Если в графе нет такого ребра, то вероятность выигрыша может быть равна 0 для обоих игроков.

Входные данные

В первой строке записано два целых числа n, m, обозначающие соответственно количество вершин и ребер графа соответственно.

В следующих m строках содержится описание ребер. Мост описывается двумя числами b_i, e_i - номера соединенных вершин.

Выходные данные

Необходимо вывести 2 числа представляющих вероятность выигрыша игроков p_1 и p_2 соответственно.

Входные данные	Выходные данные
6 7	
1 2	
2 3	0 1
3 1	
45	
5 6	
6 4	
1 4	

Постановка

Компания создает новую телефонную сеть. Им необходимо соединить n мест. Все места имеют уникальный номер. Лини являются двунаправленными. Из любого места можно получить связь с другим местом (не обязательно прямое соединение).

Проблема состоит в том, что может происходить сбой питания и тогда некоторые места могут быть недоступны из других мест. Надо найти все места в которых в случае сбоя призойдёт обрыв связи между некоторыми из мест.

Входные данные

В первой строке записано два целых числа n, p, обозначающие соответственно количество вершин и количество дальнейших строк соответственно.

В следующих p строках содержится описание соединений. Соединение описывается так: первое число - некоторая вершина, а остальные числа - места с которыми вершина имеет прямое соединение.

Выходные данные

Необходимо вывести номера критических мест.

Пример 1

Входные данные	Выходные данные
5 1	5
51234	_

Входные данные	Выходные данные
6 2	5.2
213	52
5 4 6 2	

Постановка

Город построен на группе островов, которые соединены мостами. В данном городе имеется проблема, что если какой-то остров утонет, то части города могут отсоединится. Необходимо найти количество островов, которые могут привести к данным событиям. Изначально из любого острова можно было проложить проложить путь до любого другого.

Входные данные

В первой строке записано два целых числа n, m, обозначающие соответственно количество островов и мостов соответственно.

В следующих m строках содержится описание мостов. Мост описывается двумя числами $b_i,\,e_i$ - номера островов на концах моста.

Выходные данные

Необходимо вывести количество островов которые могут разделить город.

Пример 1

Входные данные	Выходные данные
3 3	_
1 2	0
2 3	
1 3	

Входные данные	Выходные данные
68	
13	
6 1	1
63	
4 1	
6 4	
5 2	
3 2	
35	

Постановка

Страна Кири состоит из N городов и дорог M. I-я дорога проходит между разными городами A_i и B_i в обоих направлениях. Ни одна пара городов не связана напрямую более чем одной дорогой, но каждая пара городов соединена хотя бы одним путем дорог. Король хотел бы разместить двух своих солдат в двух разных городах, чтобы подготовиться к надвигающемуся штурму, однако он будет выбирать города наугад.

Единственная реальная проблема, то, что его враги используют стратегию "разделяй и властвуй". Его солдаты восприимчивы к этому типу атак, если существует хоть одна дорога, которая в случае блокировки не позволит им добраться друг до друга по любой системе соединенных дорог. Необходимо определить вероятность того, что король будет побежден.

Входные данные

В первой строке записано два целых числа n, m, обозначающие соответственно количество городов и дорог соответственно.

В следующих m строках содержится описание дорог. Дорога описывается двумя числами $b_i,\,e_i$ - номера городов на концах моста.

Выходные данные

Необходимо вернуть вероятность того, что король проиграет. Вероятность выводить с 5 знаками после запятой

Пример 1

Входные данные	Выходные данные
4 4	
1 2	0.50000
13	
2 4	
4 1	

Входные данные	Выходные данные
7 8	
1 2	
2 3	0.71429
2 4	
3 4	
35	
5 6	
6 7	
5 7	