Amendments to the claims:

Please amend the claims as follows:

What is claimed is:

1. (Currently Amended) A device having an interface for controlling <u>radio</u> <u>frequency</u>—RF transceiver circuitry, the interface comprising:

a plurality of connectors for controlling the <u>radio frequency</u>RF transceiver circultry including providing control information for changing the mode of operation of the transceiver, said modes including a transmit mode and a receive mode;

a first connector and a second connector, at least first and second further connectors wherein in a first mode, one of said first connector and said second connector first and second connector supplies data to the transceiver and the other connector of said first connector and said second connector is operable to perform a first function and wherein, in a the second mode, one of said first connection and said second connector first and second connectors receives data from said radio frequency RF-module and the other connector of said first connector and said connector is operable to perform a second different function.

- 2. (Original) A device as claimed in claim 1 wherein said first function is the provision of a first control signal to the transceiver
- 3. (Original) A device as claimed in claim 2 wherein the first control signal is a time critical control signal.

- 4. (Currently Amended) A device as claimed in [any preceding] claim 1 wherein the first function is controlling a the power amplifier of a the transmitter portion of the transceiver.
- (Previously Presented) A device as claimed in claim 1 wherein said second function is the provision of a second control signal to the transceiver.
- 6. (Original) A device as claimed in claim 5 wherein the second control signal is a time critical control signal.
- 7. (Currently Amended) A device as claimed in claim 1 wherein the second function is controlling do estimation of the data received by a the receiving portion of the transceiver.
- 8. (Currently Amended) A device as claimed in claim 1 wherein said second function is the reception of data from the transceiver.
- 9. (Previously Presented) A device as claimed in claim 1 wherein the first connector is bi-directional and supplies data in the first mode and receives data in the second mode.
- 10. (Previously Presented) A device as claimed in claim 1 wherein predetermined time critical control signals are not provided via said plurality of connectors.

- 11. (Currently Amended) A device as claimed in claim 1 wherein the first mode is a the transmit mode for the transceiver.
- 12. (Currently Amended) A device as claimed in claim 1 wherein the second mode is a the receive mode of the transceiver.
- 13. (Previously Presented) A device as claimed in claim 1 wherein the plurality of connectors includes a connector for transferring data to and from the device, a connector for providing an enable signal from the device and a connector for providing a clock signal from the device.
- 14. (Previously Presented) A device as claimed in claim 1 wherein the plurality of connectors are used to read from and write to registers in the transceiver.
- 15. (Previously Presented) A device as claimed in claim 1 wherein the plurality of connectors are a serial interface having at least one connector via which data is transmitted serially, said data including a device address, a bit indicating whether data is for writing or is to be read, a local address and a variable data portion.
- 16. (Currently Amended) A device as claimed in claim 1, further comprising first control circuitry and a processor, wherein the first control circuitry is arranged to control the <u>radio frequency</u>RF circuitry via the plurality of connectors and/or the first and second further connectors and the processor is arranged to control the <u>radio frequency</u>RF circuitry only via the plurality of connectors.

- 17. (Previously Presented) A device as claimed in claim 15 wherein the data portion varies between 1 and 32 bits.
- 18. (Previously Presented) A device as claimed in claim 1 wherein the plurality of connectors are coupled to at least one other device.
- 19. (Previously Presented) A device as claimed in claim 1 comprising a connector for receiving a clock signal from the transceiver.
- 20. (Previously Presented) A device as claimed in claim 1 comprising a third connector for powering down components of the transceiver.
- 21. (Currently Amended) Transceiver circuitry having an interface for connection to a device having baseband circuitry, the interface comprising:

a plurality of connectors for providing control information for changing the mode of operation of the transceiver, said modes including a transmit mode and a receive mode;

a first connector and a second connector, at least first and second connectors wherein in a first mode, data is received at one of said first connector and said second connector first and second connectors and the other connector of said first connector and said second connector performs a first function and wherein, in a the second mode, data is provided at one of said first connector and said second connector first and second connectors for transfer to the device and the other connector of said first connector and said second

function different from to the first function.

- 22. (Previously Presented) Transceiver circuitry as claimed in claim 21 comprising a power amplifier, wherein the first function is the reception of a first control signal for controlling the power amplifier.
- 23. (Previously Presented) Transceiver circuitry as claimed in claim 21 comprising DC estimation circuitry wherein the second function is the reception of a second different control signal for controlling the dc estimation circuitry.
- 24. (Original) Transceiver circuitry as claimed in claim 21 or 22 wherein the second function is the provision of received data.
- 25. (Original) A method of interfacing a device having baseband circuitry to transcelver circuitry, the device having means for controlling whether the transceiver is in a transmitting mode or a receiving mode and first and second connectors, comprising the steps of:

controlling the transceiver to enter the transmitting mode;
providing data from the device to the transceiver via the first connector; and
controlling the power amplifier in the transceiver via the second connector.

26. (Currently Amended) A method of interfacing a device having a baseband circuitry to a transceiver, the device having means for controlling whether the transceiver is in a transmitting mode or a receiving mode and a first connector and a second connector first and second connectors, comprising the steps of:

controlling the transceiver to enter the receiving mode; receiving data at the device from the transceiver via the first connector; and controlling the dc estimation in the transceiver via the second connector.