Матричная запись

• Линейная комбинация векторов;

- Линейная комбинация векторов;
- Зависимые и независимые наборы векторов.

Линейная комбинация

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Линейная комбинация

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Пример. Вектор
$$\binom{4}{5}$$
 — это линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Линейная комбинация: геометрия

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Аналогично, любой вектор $\mathbf{v} \in \mathbb{R}^3$ представим в виде:

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Линейная зависимость

Определение

Набор A из двух и более векторов называется линейно зависимым, если хотя бы один вектор является линейной комбинацией остальных.

Набор $A = \{ \mathbf{0} \}$ из одного нулевого вектора также называется линейно зависимым.

Линейная зависимость: геометрия

Набор $\{{f a},{f b},{f c}\}$ — линейно зависим.

Набор $\{{f a},{f b},{f d}\}$ — линейно независим.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 — линейно зависимый:

$$\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Если вектор ${\bf v}_2$ выражен через ${\bf v}_1$ и ${\bf v}_3$, ${\bf v}_2=\alpha_1{\bf v}_1+\alpha_3{\bf v}_3$, то искомая нулевая линейная комбинация имеет вид:

$$\alpha_1 \mathbf{v}_1 + (-1)\mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}.$$

Линейная оболочка

• Линейная оболочка векторов;

- Линейная оболочка векторов;
- Базис линейной оболочки векторов;

- Линейная оболочка векторов;
- Базис линейной оболочки векторов;
- Размерность линейной оболочки векторов.

Линейная оболочка

Определение

Множество векторов M, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$M = \mathsf{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Линейная оболочка векторов: картинка

Вектор $\mathbf c$ лежит в плоскости Span $\{\mathbf a, \mathbf b\}$. Вектор $\mathbf d$ не лежит в плоскости Span $\{\mathbf a, \mathbf b\}$.

Базис линейной оболочки

Определение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_d\}$ незывается базисом линейной оболочки ${\sf Span}\{{f x}_1,{f x}_2,...,{f x}_k\}$, если:

- $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_d\}=\operatorname{Span}\{\mathbf{x}_{,}\mathbf{x}_2,\dots,\mathbf{x}_k\};$
- Набор векторов A линейно независим.

Базис линейной оболочки: картинка

Для линейной оболочки $\mathrm{Span}\{\mathbf{a},\mathbf{b},\mathbf{c}\}$ базисами будут $A_1=\{\mathbf{a},\mathbf{b}\}, A_2=\{\mathbf{b},2\mathbf{c}\}, A_3=\{3\mathbf{a},5\mathbf{c}\}.$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$M = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right\}$$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$M=\operatorname{Span}\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}3\\0\end{pmatrix},\begin{pmatrix}0\\4\end{pmatrix}\right\}$$
 Набор $A=\left\{\begin{pmatrix}0\\2\end{pmatrix},\begin{pmatrix}3\\4\end{pmatrix}\right\}$ — базис для $M.$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$M=\operatorname{Span}\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}3\\0\end{pmatrix},\begin{pmatrix}0\\4\end{pmatrix}\right\}$$
 Набор $A=\left\{\begin{pmatrix}0\\2\end{pmatrix},\begin{pmatrix}3\\4\end{pmatrix}\right\}$ — базис для $M.$ Набор $A=\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}7\\-4\end{pmatrix}\right\}$ — базис для $M.$

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Утверждение

Если наборы векторов A и B — являются базисами для линейной оболочки M, то наборы A и B содержат одинаковое количество векторов.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Утверждение

Если наборы векторов A и B — являются базисами для линейной оболочки M, то наборы A и B содержат одинаковое количество векторов.

Утверждение

Если набор A содержит k векторов, то базис линейной оболочки Span A содержит k элементов или меньше.

Размерность линейной оболочки

Определение

Если базис линейной оболочки M содержит d элементов, то число d называется размерностью линейной оболочки M.

Размерность линейной оболочки: картинка

Размерность линейной оболочки: картинка

Размерность $Span\{a,b,c\}$ равна 2.

Размерность линейной оболочки: картинка

Размерность $Span\{a,b,c\}$ равна 2.

Размерность $Span\{a,b,d\}$ равна 3.

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n — множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n — множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n — множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

Размерность \mathbb{R}^n равна n.

Линейное пространство

Краткий план:

• Векторное пространство;

Краткий план:

- Векторное пространство;
- Базис векторного пространства;

Краткий план:

- Векторное пространство;
- Базис векторного пространства;
- Размерность векторного пространства.

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

• множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта $\mathbf a$ из V на число $\lambda \in \mathbb R^n$, и оно соответствует умножению столбца $\mathbb R^n$ на λ .

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта $\mathbf a$ из V на число $\lambda \in \mathbb R^n$, и оно соответствует умножению столбца $\mathbb R^n$ на λ .

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта $\mathbf a$ из V на число $\lambda \in \mathbb R^n$, и оно соответствует умножению столбца $\mathbb R^n$ на λ .

Элементы векторного пространства называют векторами.

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта $\mathbf a$ из V на число $\lambda \in \mathbb R^n$, и оно соответствует умножению столбца $\mathbb R^n$ на λ .

Элементы векторного пространства называют векторами. Векторное пространство также называют линейным.

Многочлены

Множество V всех многочленов от t степени не выше трёх:

$$V = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}^n\}$$

Многочлены

Множество V всех многочленов от t степени не выше трёх:

$$V = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}^n\}$$

Взаимно однозначное сопоставление:

$$5t^3 + 6t^2 - 3t + 2 \leftrightarrow \begin{pmatrix} 5 \\ 6 \\ -3 \\ 2 \end{pmatrix}.$$

Многочлены

Множество V всех многочленов от t степени не выше трёх:

$$V = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}^n\}$$

Взаимно однозначное сопоставление:

$$5t^3 + 6t^2 - 3t + 2 \leftrightarrow \begin{pmatrix} 5 \\ 6 \\ -3 \\ 2 \end{pmatrix}.$$

Сложение двух многочленов и умножение многочлена на число соответствуют операциям над столбцами чисел.

Пример векторного пространства

Множество V всех функций f(t) равных нулю вне двух данных точек:

$$V = \{ f \mid f(t) = 0 \text{ для всех } t \neq \pm 1 \}$$

Пример векторного пространства

Множество V всех функций f(t) равных нулю вне двух данных точек:

$$V=\{f\mid f(t)=0$$
 для всех $t\neq\pm 1\}$

Взаимно однозначное сопоставление:

$$f \leftrightarrow \begin{pmatrix} f(-1) \\ f(1) \end{pmatrix}$$
.

Пример векторного пространства

Множество V всех функций f(t) равных нулю вне двух данных точек:

$$V=\{f\mid f(t)=0$$
 для всех $t\neq\pm 1\}$

Взаимно однозначное сопоставление:

$$f \leftrightarrow \begin{pmatrix} f(-1) \\ f(1) \end{pmatrix}$$
.

Сложение двух таких функций и умножение число соответствуют операциям над столбцами чисел.

Аналогия с \mathbb{R}^n

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Аналогия с \mathbb{R}^n

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Определение

Множество векторов M, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$M = \mathsf{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Аналогия с \mathbb{R}^n

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Определение

Множество векторов M, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$M = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Полностью аналогично определяются линейно зависимые и независимые наборы векторов.

Базис и размерность пространства

Определение

Базисом векторного пространства V называется любой набор $\{\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\}$, такой что

- $V = \operatorname{Span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$;
- векторы $\{{\bf e}_1,{\bf e}_2,\ldots,{\bf e}_n\}$ линейно независимы.

Базис и размерность пространства

Определение

Базисом векторного пространства V называется любой набор $\{{\bf e}_1,{\bf e}_2,\dots,{\bf e}_n\}$, такой что

- $V = \operatorname{Span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\};$
- векторы $\{{\bf e}_1,{\bf e}_2,\ldots,{\bf e}_n\}$ линейно независимы.

Определение

Число векторов в базисе, n, называют размерностью пространства V, $\dim V = n$.

Продолжаем аналогию

Пространство V взаимнооднозначно сопоставлено с \mathbb{R}^n и при этом сложение в V соответствует сложению в \mathbb{R}^n , а умножение на число в V соответствует умножению на число в \mathbb{R}^n .

Утверждение

Линейная независимость в V соответствует линейной независимости в \mathbb{R}^n .

Базис в V соответствует базису в \mathbb{R}^n .

Размерность V равна размерности \mathbb{R}^n , $\dim V = \dim \mathbb{R}^n = n$.

Формальности

Мы слишком привыкли к свойствам чисел!

Формальности

Мы слишком привыкли к свойствам чисел!

Эквивалентное определение

Множество V называется векторным пространством, если выполнено восемь свойств...

Восемь аксиом: сложение

1. При сложении можно расставлять скобки как хочешь (ассоциативность):

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

2. При сложении можно путать лево и право (коммутативность):

$$a + b = b + a$$

3. Существует **нулевой** вектор 0:

$$\mathbf{a} + \mathbf{0} = \mathbf{a}$$

4. Для любого вектора a найдется противоположный вектор -a:

$$\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$$

Восемь аксиом: умножение

5. Умножение вектора на число совместимо с умножением чисел:

$$\lambda_1(\lambda_2 \mathbf{a}) = (\lambda_1 \lambda_2) \mathbf{a}$$

6. Умножение на единицу не меняет вектор:

$$1 \cdot \mathbf{a} = \mathbf{a}$$

7. Раскрывать скобки можно (дистрибутивность умножения):

$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda\mathbf{a} + \lambda\mathbf{b}$$

8. Раскрывать скобки можно по всякому (дистрибутивность умножения):

$$(\lambda_1 + \lambda_2)\mathbf{a} = \lambda_1\mathbf{a} + \lambda_2\mathbf{a}$$

Умножение матрицы на вектор

Умножение матрицы на матрицу

Три взгляда на умножение матриц

Решение системы уравнений методом Гаусса

Задача о шахматной доске