$$i R v = iR ? X$$

$$+ v - v = -iR \sqrt{}$$

$$v = iR$$

$$\stackrel{i}{\longrightarrow} \frac{R}{\vee}$$

$$A \stackrel{v_a}{\longleftarrow} W \stackrel{k}{\longrightarrow} B$$

Current flowing into node A:

$$\frac{\boldsymbol{v_b} - \boldsymbol{v_a}}{R}$$

Current flowing out of node A:

$$\frac{\boldsymbol{v_a} - \boldsymbol{v_b}}{\boldsymbol{R}}$$

3.8 P115

A supernode is formed by enclosing a voltage source (dependant or independent) connected between two non-reference nodes and any elements connected in parallel with it.

Using nodal analysis, find v_o in the circuit of Fig. 3.57.

What to do

$$\frac{3.8}{\sqrt{9}} \frac{5000}{\sqrt{100}} = 0$$

$$\frac{\sqrt{9}}{\sqrt{100}} = \frac{\sqrt{100}}{\sqrt{100}} = 0$$

$$\sqrt{9} = \frac{100}}{\sqrt{100}} = 0$$

$$\sqrt{9} = \frac{\sqrt{100}}{\sqrt{100}} = 0$$

$$\sqrt{9} = \frac{\sqrt{100}}{\sqrt{100}} = 0$$

$$\sqrt{9} = \frac{\sqrt{100}}{\sqrt{100}} = 0$$

$$\sqrt{9} = \frac{\sqrt{100}}$$

3.14 Using nodal analysis, find v_o in the circuit of Fig. 3.63.

3.20 For the circuit in Fig. 3.69, find v_1 , v_2 , and v_3 using nodal analysis.

Salution.

$$v_1 + v_2 + v_3$$
: $\frac{v_1}{40} + \frac{v_2}{10} + \frac{v_3}{40} = 0$ $v_1 = -60V$

$$v_1 - v_2 = 20i \qquad \qquad v_2 = 90V$$

$$v_1 - v_3 = 240 \qquad v_3 = -300V$$
 $i = \frac{v_3}{40}$

3.30 Using nodal analysis, find v_o and i_o in the circuit of Fig. 3.79.

3.31 Find the node voltages for the circuit in Fig. 3.80.

3.38 Apply mesh analysis to the circuit in Fig. 3.85 and obtain I_o .

ML

3.50 Use mesh analysis to find the current io in the circuit of Fig. 3.95.

3.63 Find v_x and i_0 in the circuit shown in Fig. 3.107.

3.67 Obtain the node-voltage equations for the circuit in Fig. 3.111 by inspection. Then solve for V_o .

3.73 Write the mesh-current equations for the circuit in Fig. 3.117.

