A=analysis, D=design, C=calculated solution using taught theory, B=bookwork NB - marking will be 1 mark for every 2% indicated on question paper (max 50 marks) so marks here are half of marks on question paper.

Solution to Ouestion 1

36 minutes for the question => 9 minutes each part

- a)
- i) 1074.75
- ii) 270F
- iii) 112
- iv) -1
- v) 1023

[1 mark each, except iv & v 1 mark if both right]

[4C]

b)

seee eeee emmm mmmm mmmm mmmm mmmm

```
(i) s=0, e=158, m=0 => exp=31, mant=1 => 2^{31}=2147483648 [2 marks]
(ii) s=1,e=125,m= 10001....=>exp=2^{-2}, mant=1.001 =>-1.125/4=0.2812 [2 marks]
```

Unsigned exponent => 31 bit unsigned comparison can be used onfloating point, and combine with sign bit [2 marks]

[6C/A]

c)

R0=2	Timing:
R1=4	0: 0-3
R2=2-32=-30	4: 1-4
R3=6	8: 2-6
R4=0	C: 4-7

[4A]

- d)
- (i) -28*x
- (ii)

```
RSB R1, R0, R0 lsl 3; R1 := R0*7
```

RSB R1, R1, R1 lsl 4; R1 := R1*15

(iii)

 $floor((2^{31}-1)/105) = 20452225$ (allow approximations)

[6A/D]

Solution to Question 2

27 minutes for the question

This tests ability to understand low-level operation of ARM assembler instructions

For each part, deduct 1 mark for each column wrong down to minimum of 0 marks, except in allow consequent errors in memory write data. Assume mem[] = mem₃₂[]. Ignore entries in n/a columns

	r0	r1	r2	r3	r4	NZCV	Memory
a)	-2	3	&100 256	1	-3 &FFFFFFD	1000	$mem_{32}[\&104] = 3$ 260
b)	&10B 267	1	&01020304 16909060	1	n/a	n/a	$mem_8[\&1] = 1$
c)	&FC 252	2 ³¹ +2 ⁸ &80000100	2 ⁹ &200	2 ¹⁰ +1 &401	&01000000 2 ²⁴	0011	Mem ₃₂ [&100]=&401

16777216

1025

512

2147483904

[5A+5A+5A]

Solution to Question 3

27 minutes for the question

This questions tests understanding of the operation of different types of direct-mapped caches.

a)

each line has two words

i	tag	index	word sel	type	
1	0	0	0	M	
2	0	0	1	Н	
3	0	1	0	M	
4	0	1	1	Н	
5	1	0	0	M	

14,18,14,10, c, 8, 4, 0, 4, 8, c H, M,H, H, M,H, M,H, H,H,H,

[5A]

b)

i	tag	index	word sel	type	
1	0	0	0	M	
2	0	1	0	M	
3	0	2	0	M	
4	0	3	0	M	
5	1	0	0	M	

M,M,H,H,H,M,M,M,H,H,H

[5A]

- C)
- 1 R0,R4
- 2 none
- 3 R8, RC
- 4 none
- 5 W0, W4, R10, R14
- 6 none
- 7 none
- 8 none
- 9 W10, W14, R0, R4

[5A]

Solution to Question 4

This question tests whether the student understands the ARM conditional instructions and pipeline, and implications for code timing.

27 minutes for the question

TEST

CMP R1, R0

CMPEQ R3, R2

BEQ T1

RSB R5, R4, #0

B T2

T1

MOV R5, R4

a)
if (R1=R0) and (R3=R2) then R5 := R4 else R5 := -R4

T2

Either the BEQ branch is executed or the B branch is taken. The taken branch has execution time 4 cycles, all other instructions one cycle.

[4A]

TEST

CMP R1, R0

CMPEQ R3, R2

BEQ T1

RSBNE R5, R4, #0

MOVEQ R5, R4

[4D]

c) F=Fetch, D=Decode, E=execute

1F	1D	1E						
	2F	2D	2E					
		3F	3D	3E				
			4F (aborted)	S	S	4F	4D	4E

[4B]

d) 100 MHz * 1/(1+BPL) = 100/(1+0.25*0.4*5)=66.6 MHz. Must assume branch latency = pipeline length

[3C]