Normalising Flows

University of Victoria PHYS-555

Probability Density Models

$$P(x \in [a, b]) = \int_a^b p(x)dx$$

How to fit a density model?

Continuous data

```
0.22159854, 0.84525919, 0.09121633, 0.364252 , 0.30738086, 0.32240615, 0.24371194, 0.22400792, 0.39181847, 0.16407012, 0.84685229, 0.15944969, 0.79142357, 0.6505366 , 0.33123603, 0.81409325, 0.74042126, 0.67950372, 0.74073271, 0.37091554, 0.83476616, 0.38346571, 0.33561352, 0.74100048, 0.32061713, 0.09172335, 0.39037131, 0.80496586, 0.80301971, 0.32048452, 0.79428266, 0.6961708 , 0.20183965, 0.82621227, 0.367292 , 0.76095756, 0.10125199, 0.41495427, 0.85999877, 0.23004346, 0.28881973, 0.41211802, 0.24764836, 0.72743029, 0.20749136, 0.29877091, 0.75781455, 0.29219608, 0.79681589, 0.86823823, 0.29936483, 0.02948181, 0.78528968, 0.84015573, 0.40391632, 0.77816356, 0.75039186, 0.84709016, 0.76950307, 0.29772759, 0.41163966, 0.24862007, 0.34249207, 0.74363912, 0.38303383,
```

Maximum Likelihood:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)})$$

Equivalently:

$$\min_{\theta} \mathbb{E}_x \left[-\log p_{\theta}(x) \right]$$

Example: Mixtures of Gaussians

$$p_{\theta}(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x; \mu_i, \sigma_i^2)$$

Parameters: means and variances of components, mixture weights

$$\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k, \sigma_1, \dots, \sigma_k)$$

How to fit a general density model?

How to ensure proper distribution, i.e:

$$\int_{-\infty}^{+\infty} p_{\theta}(x) dx = 1 \quad p_{\theta}(x) \ge 0 \quad \forall x$$

- How to sample?
- Latent representation?

Flows: Main Idea

Generally:
$$z \sim p_Z(z)$$

Normalizing Flow:
$$z \sim \mathcal{N}(0, 1)$$

How to train? How to evaluate $p_{\theta}(x)$? How to sample?

Flows: Training

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)})$$

Change of Variables

$$z = f_{\theta}(x)$$
 $p_{\theta}(x) dx = p(z) dz$
 $p_{\theta}(x) = p(f_{\theta}(x)) \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$

Note: requires f_{θ} invertible & differentiable

Flows: Training

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) \qquad p_{\theta}(x^{(i)}) = p_{Z}(z^{(i)}) \left| \frac{\partial z}{\partial x}(x^{(i)}) \right| \\ = p_{Z}(f_{\theta}(x^{(i)})) \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

ightarrow assuming we have an expression for p_Z , this can be optimized with Stochastic Gradient Descent

Flows: Sampling

Step 1: sample
$$z \sim p_Z(z)$$

Step 2:
$$x = f_{\theta}^{-1}(z)$$

What do we need to keep in mind for f?

Recall, change of variable formula requires

- f_{θ} Invertible & differentiable

Example: Flow to Uniform z

Example: Flow to Gaussian z

True distribution of x

Flow $x \rightarrow z$

Empirical distribution of z

Practical Parameterizations of Flows

Requirement: Invertible and Differentiable

- Cumulative Density Functions
 - E.g. Gaussian mixture density, mixture of logistics
- Neural Net
 - If each layer flow, then sequencing of layers = flow
 - Each layer: activation function?

How general are flows?

Can every (smooth) distribution be represented by a (normalizing) flow?
 [considering 1-D for now]

Cumulative Density Function (CDF)

Sampling via inverse CDF Sampling from the model:

$$z \sim \text{Uniform}([0, 1])$$

 $x = f_{\theta}^{-1}(z)$

The CDF is an invertible, differentiable map from data to [0, 1]

17

How general are flows?

- CDF turns any density into uniform
- Inverse flow is flow

 \rightarrow can turn any (smooth) p(x) into any (smooth) p(z)

2-D Autoregressive Flow

$$x_1 \to z_1 = f_{\theta}(x_1)$$

 $x_2 \to z_2 = f_{\theta}(x_1, x_2)$

2-D Autoregressive Flow: Two Moons

Architecture:

- Base distribution: Uniform[0,1]²
- x1: mixture of 5 Gaussians
- x2: mixture of 5 Gaussians, conditioned on x1

2-D Autoregressive Flow: Face

Architecture:

- Base distribution: Uniform[0,1]²
- x1: mixture of 5 Gaussians
- x2: mixture of 5 Gaussians, conditioned on x1

High-dimensional data

x and z must have the same dimension

Flow-models desiderata

- Easy to compute prior p(z) (i.e. isotropic Gaussian) for fast sampling
- Invertible transformation:
 - needs fast evaluation from $\mathbf{x} \rightarrow \mathbf{z}$
 - needs fast sampling from $z \rightarrow x$
- 3. Needs determinant of the NxN Jacobian matrix $\sim O(N^3)$
 - → architecture doing a special structure of the Jacobian matrix

Change of MANY variables

For $z \sim p(z)$, sampling process f^{-1} linearly transforms a small cube dz to a small parallelepiped dx. Probability is conserved:

$$p(x) = p(z) \frac{\operatorname{vol}(dz)}{\operatorname{vol}(dx)} = p(z) \left| \det \frac{dz}{dx} \right|$$

Intuition: x is likely if it maps to a "large" region in z space

Flow models: training

Change-of-variables formula lets us compute the density over x:

$$p_{\theta}(\mathbf{x}) = p(f_{\theta}(\mathbf{x})) \left| \det \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right|$$

Train with maximum likelihood:

$$\arg\min_{\theta} \mathbb{E}_{\mathbf{x}} \left[-\log p_{\theta}(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{x}} \left[-\log p(f_{\theta}(\mathbf{x})) - \log \det \left| \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right| \right]$$

New key requirement: the Jacobian determinant must be easy to calculate and differentiate!

Constructing flows: composition

Flows can be composed

$$X \rightarrow f_1 \rightarrow f_2 \rightarrow \dots f_k \rightarrow$$

Easy way to increase expressiveness

$$z = f_k \circ \dots \circ f_1(x)$$

$$x = f_1^{-1} \circ \dots \circ f_k^{-1}(z)$$

$$\log p_{\theta}(x) = \log p_{\theta}(z) + \sum_{i=1}^k \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right|$$

Affine flows

- Another name for affine flow: multivariate Gaussian.
 - o Parameters: an invertible matrix A and a vector b
 - \circ f(x) = A⁻¹(x b)
- Sampling: x = Az + b, where $z \sim N(0, 1)$
- Log likelihood is expensive when dimension is large.
 - The Jacobian of f is A-1
 - Log likelihood involves calculating det(A)

Elementwise flows

$$f_{\theta}((x_1,\ldots,x_d)) = (f_{\theta}(x_1),\ldots,f_{\theta}(x_d))$$

- Lots of freedom in elementwise flow
 - Can use elementwise affine functions or CDF flows.
- The Jacobian is diagonal, so the determinant is easy to evaluate.

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \operatorname{diag}(f'_{\theta}(x_1), \dots, f'_{\theta}(x_d))$$
$$\det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \prod_{i=1}^{d} f'_{\theta}(x_i)$$

NICE / RealNVP

Affine coupling layer

Split variables in half: $x_{1:d/2}$, $x_{d/2+1:d}$

$$\mathbf{z}_{1:d/2} = \mathbf{x}_{1:d/2}$$

$$\mathbf{z}_{d/2:d} = \mathbf{x}_{d/2:d} \cdot s_{\theta}(\mathbf{x}_{1:d/2}) + t_{\theta}(\mathbf{x}_{1:d/2})$$

- Invertible! Note that s_{θ} and t_{θ} can be arbitrary neural nets with **no restrictions**.

 One of them as data-parameterized elementwise flows.

NICE / RealNVP

It also has a tractable Jacobian determinant

$$\mathbf{z}_{1:d/2} = \mathbf{x}_{1:d/2}$$

$$\mathbf{z}_{d/2:d} = \mathbf{x}_{d/2:d} \cdot s_{\theta}(\mathbf{x}_{1:d/2}) + t_{\theta}(\mathbf{x}_{1:d/2})$$

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{bmatrix} I & 0 \\ \frac{\partial \mathbf{z}_{d/2:d}}{\partial \mathbf{x}_{1:d/2}} & \operatorname{diag}(s_{\theta}(\mathbf{x}_{1:d/2})) \end{bmatrix}$$

$$\det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \prod_{k=1}^{d} s_{\theta}(\mathbf{x}_{1:d/2})_{k}$$

The Jacobian is triangular, so its determinant is the product of diagonal entries.

RealNVP

Coupling layers allow unrestricted neural nets to be used in flows, while preserving invertibility and tractability

[Dinh et al. Density estimation using Real NVP. ICLR 2017] $_{
m 32}$

RealNVP Architecture

Input x: 32x32xc image

- Layer 1: (Checkerboard x3, channel squeeze, channel x3)
 - Split result to get x1: 16x16x2c and z1: 16x16x2c (fine-grained latents)
- Layer 2: (Checkerboard x3, channel squeeze, channel x3)
 - Split result to get x2: 8x8x4c and z2: 8x8x4c (coarser latents)
- Layer 3: (Checkerboard x3, channel squeeze, channel x3)
 - Get z3: 4x4x16c (latents for highest-level details)

RealNVP: Partitioning variables

Good vs Bad Partitioning Checkerboard x4; channel squeeze; channel x3; channel

(Mask top half; mask bottom half; mask left half; mask right half) x2

Choice of coupling transformation

A Bayes net defines coupling dependency, but what invertible transformation f
to use is a design question

$$\mathbf{x}_i = f_{\theta}(\mathbf{z}_i; parent(\mathbf{x}_i))$$

 Affine transformation is the most commonly used one (NICE, RealNVP, IAF-VAE, ...)

$$\mathbf{x}_i = \mathbf{z}_i \cdot \mathbf{a}_{\theta}(\operatorname{parent}(\mathbf{x}_i)) + \mathbf{b}_{\theta}(\operatorname{parent}(\mathbf{x}_i))$$

- More complex, nonlinear transformations -> better performance
 - CDFs and inverse CDFs for Mixture of Gaussians or Logistics (Flow++)
 - Piecewise linear/quadratic functions (Neural Importance Sampling)

Other classes of flows

- Glow (<u>link</u>)
 - Invertible 1x1 convolutions
 - Large-scale training
- Continuous time flows (<u>FFJORD</u>)
 - Allows for unrestricted architectures.
 Invertibility and fast log probability computation guaranteed.

