

Laboratório 03 Azure – Projeto Pocco Pamonhas

Engenharia de Software – BlueShift

CONTROLE DE VERSÃO			
Autor	Versão	Data	Descrição
Renan Da Silva Ramos	1.0	21/07/2022	Criação do documento

1. INTRODUÇÃO

Este documento visa detalhar tecnicamente as etapas utilizadas no cumprimento do projeto do cliente Pocco Pamonhas, uma das grandes multinacionais no ramo de pamonhas.

2. SOLICITAÇÃO

O cliente deseja realizar um upgrade em sua arquitetura de dados que se encontra atualmente no (Apache Nifi). Em negociações amigáveis e produtivas com a (Blueshift Brasil), ambos decidiram que a melhor solução seria utilizar a plataforma do (Databricks) em conjunto com as ferramentas (Azure Sql + Azure Data Factory+ Azure Blob Storage). Além disto também será usado o (Microsoft Power Bl) para gerar relatórios e dashboards de algumas tabelas em específico da empresa.

Inicialmente os dados da empresa contratante estão com o nome de (Orders.csv) e se encontram em um "armazenamento em nuvem" no (Container Blob Azure). Esse arquivo será extraído e manipulado pelo (Databricks), que fará a ingestão juntamente com o (Azure Sql) em uma tabela inicial chamada (Stage). Após a ingestão na primeira tabela, será utilizada uma (Story-Procedure) para desdobramento e inserção destes mesmos dados em outras tabelas que serão utilizadas no (Power Bi) para a construção do (Dashboard) que o cliente deseja consultar sobre seu faturamento de vendas e demais relatórios de sua compania.

Todo este processo será orquestrado com a ferramenta (Azure Data Factory) para se ter um melhor controle otimizado sobre todas as etapas.

3. MODELO DA ARQUITETURA

A figura abaixo representa a arquitetura e os principais processos para atender as demandas do cliente

4. DADOS INICIAIS - ORIGEM

O arquivo utilizado como fonte dos dados originais se chama (Orders.csv), ele se encontra no (Azure blob storage) e retorna uma tabela com 14 colunas. Estas colunas detalham alguns países e regiões do globo terrestre e também possuem valores monetários e unitários no custo, quantidade, produção e lucro de vendas de pamonhas.

Com a ajuda do (Databricks) criamos um dataframe em CSV e fizemos as manipulações necessárias utilizando (Pyspark + Pandas) e ao final das modificações, enviamos para a tabela inicial chamada de (Stage). Fizemos isso em conjunto com o (Azure Data Factor + Azure Sql Server) através de (links de conexões) que a plataforma (Azure) oferece.

Abaixo, uma breve ilustração dos dados originais - Parte 1:

	Region	Country	Item Type	Sales Channel 🔺	Order Priority
1	Sub-Saharan Africa	Chad	Office Supplies	Online	L
2	Europe	Latvia	Beverages	Online	С
3	Middle East and North Africa	Pakistan	Vegetables	Offline	С
4	Sub-Saharan Africa	Democratic Republic of the Congo	Household	Online	С
5	Europe	Czech Republic	Beverages	Online	С

Abaixo, uma breve ilustração dos dados originais – Parte 2:

Order Date 🖱	Order ID 🔷	Ship Date	Units Sold 📤	Unit Price	Unit Cost 🔷	Total Revenue	Total Cost 🔷	Total Profit 🔔
27/01/2011	292494523	12/02/2011	4484	651,21	524,96	2920025,64	2353920,64	566105
28/12/2015	361825549	23/01/2016	1075	47,45	31,79	51008,75	34174,25	16834,5
13/01/2011	141515767	01/02/2011	6515	154,06	90,93	1003700,9	592408,95	411291,95
11/09/2012	500364005	06/10/2012	7683	668,27	502,54	5134318,41	3861014,82	1273303,59
27/10/2015	127481591	05/12/2015	3491	47,45	31,79	165647,95	110978,89	54669,06

Observe que os dados estão todos em (String) e alguns valores numéricos estão com (,) ao invés de (.). Para resolver este problema, fizemos toda manipulação conforme as exigências do cliente e mandamos para tabela inicial (Stage).

5. MANIPULAÇÃO DO AZURE SQL

Nos requisitos do projeto foi necessário a criação de algumas tabelas; "Table stage", "Table_Fato" e "Tabelas_Dim" no (Azure Sql). A tabela "Stage", contém os dados (brutos) da extração do arquivo inicial (Orders.csv). Já a tabela "Fato/Dw", terá os dados finais manipulados conforme as especificações que foram dadas no objetivo do projeto. Também foi necessária a criação de uma procedure para a transformação dos dados e inserção nas tabelas de (Dimensões = Dim) utilizadas no (Power BI).

Schema original do arquivo (Orders.csv):

```
# VERIFICANDO O SCHEMA
 df.printSchema()
ρt
-- Region: string (nullable = true)
-- Country: string (nullable = true)
-- Item Type: string (nullable = true)
-- Sales Channel: string (nullable = true)
-- Order Priority: string (nullable = true)
-- Order Date: string (nullable = true)
-- Order ID: string (nullable = true)
-- Ship Date: string (nullable = true)
-- Units Sold: string (nullable = true)
-- Unit Price: string (nullable = true)
-- Unit Cost: string (nullable = true)
-- Total Revenue: string (nullable = true)
-- Total Cost: string (nullable = true)
-- Total Profit: string (nullable = true)
```

Engenharia de Software – BlueShift

Schema da tabela STAGE renan silva.stage:

STAGE_renan_silva.stage		
Order_Date	DATE	
Unit_Price	FLOAT	
Total_Revenue	FLOAT	

Schema da tabela DW_final:

DW_renan_silva.fato	
Order_Date	DATE
Unit_Price	FLOAT
Total_Revenue	FLOAT

Engenharia de Software – BlueShift

Schema da tabela DW_renan_silva.region:

DW_renan_silva.region		
region	VARCHAR	
id_region	INT	

Schema da tabela DW_renan_silva.sales_channel:

DW_renan_silva.sales_channel		
sales_channel	VARCHAR	
id_sales_channel	INT	

Schema da tabela DW renan silva.item type:

DW_renan_silva.item_type		
item_type	VARCHAR	
id_item_type	INT	

Schema da tabela DW_renan_silva.item_type:

DW_renan_silva.country		
country	VARCHAR	
id_country	INT	

Engenharia de Software - BlueShift

Estrutura da Procedure (Codificação):

```
## CRIANDO PROCEDURE

CREATE PROCEDURE sp_lab3_renan_silva AS BEGIN

TRUNCATE TABLE DW renan_silva.region
TRUNCATE TABLE DW renan_silva.silva.stage
TRUNCATE TABLE DW renan_silva.stage
TRUNCATE TABLE DW renan_silva.stage
TRUNCATE TABLE DW renan_silva.stage
TRUNCATE TABLE DW renan_silva.fato

INSERT INTO DW renan_silva.region(region)
SELECT Region FROM STAGE_renan_silva.stage
GROUP BY Region;

INSERT INTO DW renan_silva.sales_channel(sales_channel)
SELECT Sales_Channel FROM STAGE_renan_silva.stage
GROUP BY Sales_Channel;

INSERT INTO DW renan_silva.item_type(item_type)
SELECT Item_Type FROM STAGE_renan_silva.stage
GROUP BY Sales_Channel;

INSERT INTO DW renan_silva.country(country)
SELECT Country FROM STAGE_renan_silva.stage
GROUP BY Country;

INSERT INTO DW renan_silva.fato
(Region,Country,Item_Type,Sales_Channel,Order_Priority,Order_Date,Order_ID,Ship_Date,Units_Sold,Unit_Price,Unit_Cost,Total_Revenue,Total_Cost,Total_Profit)

SELECT Region,Country,Item_Type,Sales_Channel,Order_Priority,Order_Date,Order_ID,Ship_Date,Units_Sold,Unit_Price,Unit_Cost,Total_Revenue,Total_Cost,Total_Profit
FROM STAGE_renan_silva.stage
END;
```

6. CONSTRUÇÃO DO DATA FACTORY (PROCESSAMENTO)

O Azure Data Factory é um administrador de todos os processos da pipeline do nosso projeto. Basicamente nossa pipeline é dividida em 3 processos; O primeiro processo é a requisição do arquivo (Orders.csv) que se encontra no (Azure blob storage) através do (Databricks).

O segundo processo será utilizar (Pandas + Pyspark no Databricks) na tipagem de dados e também substituição do padrão de (,) por (.) nos valores numéricos.

Já o terceiro processo, a (Store-Procedure) entra em ação e faz a extração dos dados da tabela inicial, para a tabela final (Dw_Fato) e também para as tabelas (Dimensões finais) que serão utilizadas no (Power BI).

Ilustração do 1° processo - obtendo (Orders.csv) no (Databricks) :

Ilustração do 2° processo - ETL (DATABRICKS PARTE - 1) :

Ilustração do 2° processo - ETL (DATABRICKS - PARTE 2) :

```
# TRANSFORMAÇÃO DOS DADOS (ETL) => NOME DOS CAMPOS / TIPO DE DADOS / E (,) POR (.)
   pronto = df.withColumnRenamed("Item Type","Item_Type")\
3
   .withColumnRenamed("Sales Channel", "Sales_Channel")\
   .withColumnRenamed("Order Priority","Order_Priority")\
   .withColumnRenamed("Order Date","Order_Date")\
   .withColumnRenamed("Order ID","Order_ID")\
   .withColumnRenamed("Ship Date","Ship_Date")\
   .withColumnRenamed("Units Sold","Units_Sold")\
9
   .withColumnRenamed("Unit Price","Unit_Price")\
0
   .withColumnRenamed("Unit Cost","Unit_Cost")\
1
   .withColumnRenamed("Total Revenue","Total_Revenue")\
2
   .withColumnRenamed("Total Cost", "Total_Cost")\
3
   .withColumnRenamed("Total Profit","Total_Profit")\
   .withColumn("Order_Date",to_date("Order_Date","dd/MM/yyyy"))\
   .withColumn("Ship_Date",to_date("Ship_Date","dd/MM/yyyy"))\
   .withColumn("Order_ID",col("Order_ID").cast("int"))\
   .withColumn("Units_Sold",col("Units_Sold").cast("int"))\
   .withColumn("Unit_Price",regexp_replace("Unit_Price",",",".").cast("float"))\
   .withColumn("Unit_Cost",regexp_replace("Unit_Cost",",",".").cast("float"))\
   .withColumn("Total_Revenue", regexp_replace("Total_Revenue", ", ", ", ".").cast("float"))\
1
   .withColumn("Total_Cost",regexp_replace("Total_Cost",",",".").cast("float"))\
   .withColumn("Total_Profit",regexp_replace("Total_Profit",",",".").cast("float"))
3
4
```

Ilustração do 3° processo - (Dados finais):

Resultado final do pipeline no (Azure Data factor) :

7. IMPLEMENTAÇÃO DO (POWER BI)

A proposta de implementar um (Dashboard) no (Power BI) foi exigida pelo cliente, pois o mesmo, deseja saber visualmente alguns resultados em que sua empresa vem desempenhando, abaixo segue a relação das pequenas amostras do (Dashboard).

Ilustração da proposta do cliente - (Requisição) :

Especificação para construçãos dos dashboard em Power BI

VENDAS = quantidade de itens multiplicados pelo valor do item.

- O acumulado de vendas do último ano por Região e País. Ele gostaria de ter essa visão através de um Mapa Mundial diretamente no Relatório.
- Quantidade de vendas dos últimos 10 dias através de um gráfico de colunas.
- Quantidade de vendas e a Quantidade acumulada de vendas dos últimos 30 dias.
- Uma visão acumulada das vendas do último ano por Canal e País. De forma que seja possível ver a distribuição das vendas um determinado país por canal.

Especificação para reestruturação do Data Warehouse

Os relatórios desenvolvidos no Power BI deverão apontar para as seguintes tabelas:

- Dimensão com as regiões.
- Dimensão com país.
- Dimensão com Canais de venda.
- Fato com as vendas

Ilustração da proposta do cliente - (Gráfico) :

Ilustração da proposta do cliente - (Gráfico) :

Ilustração da proposta do cliente - (Geral) :

