Duality Principle

- Any theorem or postulate in Boolean Algebra remains true if
 - 0 and 1 are swapped and
 - AND and OR are swapped

Postulates:

Postulate	Dual Pairs	
Identity	X+0=X	X·1=X
Complements	$X+\overline{X}=1$	$X \cdot \overline{X} = 0$
Commutativity	X+Y=Y+X	X·Y=Y·X
Associativity	(X+Y)+Z=X+(Y+Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
Distributivity	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$	$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$

Duality Principle

Theorems

Theorem	Dual Pairs	
Idempotency	X+X=X	X·X=X
Null Elements	X+1=1	X·0=0
Involution	$\overline{X}=X$	$\overline{X}=X$
Covering	$X+(X\cdot Y)=X$	X·(X+Y)=X
Covering	$X+(\overline{X}\cdot Y)=X+Y$	$X \cdot (\overline{X} + Y) = X \cdot Y$
Combining	$(X \cdot Y) + (X \cdot \overline{Y}) = X$	$(X+Y)\cdot(X+\overline{Y})=X$
Combining	$(X \cdot Y) + (X \cdot \overline{Y} \cdot Z) = (X \cdot Y) + (X \cdot Z)$	$(X+Y)\cdot(X+\overline{Y}+Z)=(X+Y)\cdot(X+Z)$
DeMorgan's	$\overline{X+Y}=\overline{X}\cdot\overline{Y}$	$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$
Consensus	$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z) = (X \cdot Y) + (\overline{X} \cdot Z)$	$(X+Y)\cdot(\overline{X}+Z)\cdot(Y+Z)=(X+Y)\cdot(\overline{X}+Z)$
Shannon's	$f(X,Y,Z)=X\cdot f(1,Y,Z) + \overline{X}\cdot f(0,Y,Z)$	$f(X,Y,Z)=X+f(0,Y,Z)\cdot\overline{X}+f(1,Y,Z)$