UNIVERSITY OF TARTU

Faculty of Science and Technology Institute of Computer Science Computer Science Curriculum

Alice Cooper

Type Inference for Fourth Order Logic Formulae

Master's Thesis (30 ECTS)

Supervisor(s): Axel Rose, MSc

May Flower, PhD

Type Inference for Fourth Order Logic Formulae

Abstract:

Many interpreting program languages are dynamically typed, such as Visual Basic or Python. As a result, it is easy to write programs that crash due to mismatches of provided and expected data types. One possible solution to this problem is automatic type derivation during compilation. In this work, we consider study how to detect type errors in the WHITESPACE language by using fourth order logic formulae as annotations. The main result of this thesis is a new triple-exponential type inference algorithm for the fourth order logic formulae. This is a significant advancement as the question whether there exists such an algorithm was an open question. All previous attempts to solve the problem lead lead to logical inconsistencies or required tedious user interaction in terms of interpretative dance. Although the resulting algorithm is slightly inefficient, it can be used to detect obscure programming bugs in the WHITESPACE language. The latter significantly improves productivity. Our practical experiments showed that productivity is comparable to average Java programmer. From a theoretical viewpoint, the result is only a small advancement in rigorous treatment of higher order logic formulae. The results obtained by us do not generalise to formulae with the fifth or higher order.

Keywords:

List of keywords

CERCS:

CERCS code and name: https://www.etis.ee/Portal/Classifiers/Details/d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e

Tüübituletus neljandat järku loogikavalemitele

Lühikokkuvõte:

One or two sentences providing a basic introduction to the field, comprehensible to a scientist in any discipline.

Two to three sentences of more detailed background, comprehensible to scientists in related disciplines.

One sentence clearly stating the general problem being addressed by this particular study.

One sentence summarising the main result (with the words "here we show' or their equivalent).

Two or three sentences explaining what the main result reveals in direct comparison to what was thought to be the case previously, or how the main result adds to previous knowledge.

One or two sentences to put the results into a more general context.

Two or three sentences to provide a broader perspective, readily comprehensible to a scientist in any discipline, may be included in the first paragraph if the editor considers that the accessibility of the paper is significantly enhanced by their inclusion.

Võtmesõnad:

List of keywords

CERCS:

CERCS kood ja nimetus: https://www.etis.ee/Portal/Classifiers/ Details/d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e

Contents

1	Introduction					
2	Prel	ude	8			
	2.1	Proof-of-Location	8			
		2.1.1 Parties Involved	8			
		2.1.2 Adversary Models	9			
	2.2	Mesh Networks	9			
		2.2.1 B.A.T.M.A.N. Routing Protocol	9			
		2.2.2 OpenWRT, QEMU, and Raspberry Pis	9			
	2.3	Permissionless Consensus	9			
		2.3.1 Proof-of-Work and Proof-of-Stake	9			
		2.3.2 Proof-of-X	9			
	2.4	Title of Subsection 2	9			
	2.5	How to use references	9			
3	Hov	to add figures and pictures to your thesis	11			
4	Other Ways to Represent Data					
	4.1		14			
	4.2	Lists	14			
	4.3	Math mode	14			
	4.4	algorithm2e	14			
	4.5	Pseudocode	14			
	4.6	Frame Around Information	14			
5	Con	Conclusion 1				
Re	eferen	ces	17			
Αį	pend	ix	18			
•	I. G	ossary	18			
		•	10			

Unsolved issues

List of keywords	2
CERCS code and name: https://www.etis.ee/Portal/Classifiers/Details/d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e	2
One or two sentences providing a basic introduction to the field, comprehensible	
to a scientist in any discipline	2
in related disciplines	2
One sentence clearly stating the general problem being addressed by this particular	
study	2
One sentence summarising the main result (with the words "here we show" or	•
their equivalent)	2
Two or three sentences explaining what the main result reveals in direct comparison to what was thought to be the case previously, or how the main result adds	
to previous knowledge	2
One or two sentences to put the results into a more general context	3
Two or three sentences to provide a broader perspective, readily comprehensible to a scientist in any discipline, may be included in the first paragraph if the editor considers that the accessibility of the paper is significantly enhanced	
by their inclusion	3
List of keywords	3
CERCS kood ja nimetus: https://www.etis.ee/Portal/Classifiers/Details/	
d3717f7b-bec8-4cd9-8ea4-c89cd56ca46e	3
what did you do?	16
What are the results?	16
future work?	16

1 Introduction

One is where and when one claims to be - this is the underlying principle of most of today's location-based services. This principle, however, hides a whole set of preceding premises that implicitly assert honesty and trust in the subject for reporting its correct location. Having this trust delegated, the reliance on a trusted third party, frequently an atomic computing entity, is still subject to tampering, repudiation, inaccuracy, punctual and single failure, or any other kind of Byzantine behaviour.

The trust levels required to testify to one's alibi remain unmeasurable in modern arrangements. Strategic interactions between rational agents often support this trust. One party provides a location-based service, and another party makes use of it for its individual benefit and by providing a non-tampered time-conscious piece of location claim. This interaction appears to be one of a non-zero-sum game that can be observed in most GPS-based services, mapping platforms, navigation systems, mobility and ride-hailing apps, among many others. If driven by the reasoning goal of extracting correct information from the interacting system, users are logically motivated to report an accurate location. The services, having the higher goal of not losing users due to their reported malfunctioning or inaccuracy, are thus motivated to provide maximized quality when operating and consuming the location claims.

This paradigm is now ubiquitous, which may lead to its fallacious use in other very distinct scenarios. Those scenarios are, therefore and inversely, the ones that fundamentally require verifiable proof of location to assert a particular state or derive a conclusion. Consider, for example, scenarios requiring location-based authentication or authorization in adversarial environments that rely on information gathered in a trustless setup. These materialize into services requiring, for instance, a digital certificate as proof that a given user is within a particular geographical area, to enable certain functionalities or assert liability, as in location-based access control, review or reward systems, augmented reality games, social networks, etc... Security against geo-tampering or location spoofing in a relatively trustless environment is needed to achieve the required integrity.

The basic infrastructural concept is somewhat understood, and theoretical or experimental solutions have been delivered throughout the years. These solutions have evolved parallel with their trust assumptions, beginning with a fully trusted setup and progressively shifting towards modern requirements for operational decentralization of power and profit. Most recent attempts contemplate the need for a permissionless means of reaching consensus between a quorum of witnesses that can attest to one's presence at a given point in space and at a given moment in time. These concepts take shape with a combination of tools: wireless technologies as message-exchanging means, cryptographic protocols as confidentiality, integrity, or authentication enablers, and distributed ledgers as publicly trusted record keepers.

The quest for a solution that could make these location-based services as prevalent

and ubiquitous shall aim to address a set of design challenges. These challenges are, among others, the solution's flexibility and deployability, preferably by making use of existing infrastructure, or at least accessible technology, and the solution's security and privacy, obeying the modern cryptographic standards and requirements, to guarantee some level of privacy, and resiliency to attacks. This thesis, aiming to address these matters, delivers the following contributions:

- 1. A semi-formalization of the location-based services paradigm, including the underlying premises and the strategic interactions between rational agents, along with a review of the state of the art in the field. The review is discriminated in terms of trust levels, from fully trusted to permissionless environments, and in terms of the underlying technology, from centralized to decentralized.
- 2. The design and implementation of a proof-of-concept that can be deployed in a permissionless manner, using existing infrastructure, and that can be used to attest to one's presence at a given point in space and time. Specifically, the proof-of-concept is based on the use of routing protocols for multi-hop mobile ad hoc networks to set up a mesh network of witnesses that can attest to one's presence in a given geographical area.

The structure of the work is as follows. In chapter 2, an introduction to the underlying concepts and hypotheses is provided, as well as a mention to the technology involded in the practical implementation. Chapter 3 examines and analyzes similar work discriminated in terms of trust levels. In chapter 4, a general overview of the requirements for the proposed solution is given. Chapter 5 details the architecture's design, implementation, and evaluation. Finally, chapter 6 presents the conclusion and recommendations for future work.

2 Prelude

This section introduces not only the underlying concepts that sustent the work, but also the technology involved in implementing the proposed proof of concept.

2.1 Proof-of-Location

2.1.1 Parties Involved

The general act of witnessing alludes to the simultaneous spatiotemporal existence of a set of entities with distinct roles. The majority of the protocols convey a clear distinction between these roles, highlighting the relative dynamism that distinguishes those entities.

In comparable terms, highly dynamic entities do not maintain a fixed geographical location for long periods of time. They are often observed in movement, thereby repeatedly starting and finishing communication procedures with nearby entities. On the other hand, static entities are expected not to engage in frequent position changes, expressing continuous and fairly invariable communication availability around a fixed point in space as time passes [1]. The act is, however, only completed with another type of entity from whom neither the relative staticity nor the relative dynamism frankly matters. These protocol parties are often external and asynchronous to the witnessing process, but they do effectively take a non-negligible part in incentivizing and giving significance to the witnessing act.

Concisely and in concrete terms, these location-proof arrangements expect the existence of a *prover* that engages in any communication protocol with nearby participants, the *witnesses*, with the goal of gathering a verifiable proof-of-location claim, to be later presented to a *verifier*, therefore convincing it of one's existence within a geographical area at a given moment in the past [2].

Prover. A prover is a dynamic entity, both in movement and availability terms, that is expected to be able to communicate with the witnesses to gather a proof of its location and to be later able to provide a location claim to the verifier. Communication with nearby witnesses is thought to happen wirelessly, using any short-range message transmission means. Provers are also expected to be associated with a verifiable but desirably private identity, often as a pseudonym.

Witness. A witness is adjunctly an entity that is expected to be able to communicate with the prover via the same short-range communication channel and to be able to provide it with a verifiable piece of location attestation. The witnesses are envisioned to seldomly change their absolute location and maintain a relatively stable neighbouring list of nearby witnesses. These references aim at attaining the figurative creation of coverage zones as

strongly connected graphs that form the boundaries of the atomic units of a polygonal mesh. Witnesses are as well expected to be identified, usually by a pseudonym.

Verifier. A verifier is an external entity that is expected to be able to receive a location claim from a prover and to be able to verify its validity. Even though possible and predicted for trusted setups, in a trustless environment and with the general assurances of a permissionless protocol, verifiers shall not have the need to communicate directly with the witnesses. Verifiers' identity is also of no measurable importance for the protocol, as the interaction between the prover and the verifier is usually asynchronous and external to the witnessing process.

- 2.1.2 Adversary Models
- 2.2 Mesh Networks
- 2.2.1 B.A.T.M.A.N. Routing Protocol
- 2.2.2 OpenWRT, QEMU, and Raspberry Pis
- 2.3 Permissionless Consensus
- 2.3.1 Proof-of-Work and Proof-of-Stake
- 2.3.2 Proof-of-X

2.4 Title of Subsection 2

Rule: If you divide the text into subsections (or subsubsections) then there has to be at least two of them, otherwise do not create any.

Tip: You can also use paragraphs, e.g.

Type rules for integers. Some text ...

Type rules for rational numbers. Some text here too...

2.5 How to use references

Cross-references to figures, tables and other document elements. LaTeX internally numbers all kind of objects that have sequence numbers:

- chapters, sections, subsections;
- figures, tables, algorithms;

• equations, equation arrays.

To reference them automatically, you have to generate a label using \label{some-name} just after the object that has the number inside. Usually, labels of different objects are split into different namespaces by adding dedicated prefix, such as sec:, fig:. To use the corresponding reference, you must use command \ref or \eqref. For instance, we can reference this subsection by calling Section 2.5. Note that there should be a nonbreakable space ~ between the name of the object and the reference so that they would not appear on different lines (does not work in Estonian).

Citations. Usually, you also want to reference articles, webpages, tools or programs or books. For that you should use citations and references. The system is similar to the cross-referencing system in LaTeX. For each reference you must assign a unique label. Again, there are many naming schemes for labels. However, as you have a short document anything works. To reference to a particular source you must use \cite{label} or \cite[page]{label}.

References themselves can be part of a LaTeX source file. For that you need to define a bibliography section. However, this approach is really uncommon. It is much more easier to use BibTeX to synthesise the right reference form for you. For that you must use two commands in the LaTeX source

- \bibliographystyle{alpha} or \bibliographystyle{plain}
- \bibliography{file-name}

The first command determines whether the references are numbered by letter-number combinations or by cryptic numbers. It is more common to use alpha style. The second command determines the file containing the bibliographic entries. The file should end with bib extension. Each reference there is in specific form. The simplest way to avoid all technicalities is to use graphical frontend Jabref (http://jabref.sourceforge.net/) to manage references. Another alternative is to use DBLP database of references and copy BibTeX entries directly form there.

The following paragraph shows how references can be used. Game-based proving is a way to analyse security of a cryptographic protocol [?, ?]. There are automatic provers, such as CertiCrypt [?] and ProVerif [?].

3 How to add figures and pictures to your thesis

Here are a few examples of how to add figures or pictures to your thesis (see Figures 1, 2, 3).

Rule: All the figures, tables and extras in the thesis have to be referred to somewhere in the text.

Figure 1. The title of the Figure.

Figure 2. Refer if the figure is not yours [?].

Tip: If you add a screenshot then labeling the parts might help make the text more understandable (panel C vs bottom left part), e.g.

Figure 3. Screenshot of ProveIt.

Node	Decendants
1	2, 3, 4
2	3, 4
3	
4	
5	3, 4, 6, 7
6	4
7	3
8	3, 4, 5, 6, 7
9	3, 4, 5, 6, 7

Figure 4. Example how to put two figures parallel to each other.

Example: A screenshot of ProveIt can be seen on Figure 3. The user first enters the pseudocode of the initial game in panel B. ProveIt also keeps track of all the previous games showing the progress on a graph seen in panel A.

There are two figures side by side on Figure 4.

4 Other Ways to Represent Data

4.1 Tables

Table 1. Statements in the ProveIt language.

Statement	Typeset Example
assignment	a := 5 + b
uniform choice	m < -M
function signature	$f: K \times M - > L$

4.2 Lists

Numbered list example:

- 1. item one;
- 2. item two;
- 3. item three.

4.3 Math mode

Example:

$$a + b = c + d \tag{1}$$

Aligning:

$$a = 5$$

$$b + c = a$$

$$a - 2 * 3 = 5/4$$

Hint: Variables or equations in text are separated with \$ sign, e.g. a, x - y.

4.4 algorithm2e

4.5 Pseudocode

4.6 Frame Around Information

Tip: We can use minipage to create a frame around some important information.

Algorithm 1: typeChecking

Input: Abstract syntax tree

Result: Type checking result; In addition, type table type_{type_G} for global variables, type_{game} for the main game and type_{fun} for each $fun \in F$

1 while something changed in last cycle do

```
foreach global statement S do parseStatement(S, type<sub>type_G</sub>);
2
3
     foreach function fun do
4
         foreach statement s in fun do parseStatement(s, type<sub>fun</sub>);
6
     foreach statement S in game do parseStatement(S, typegame);
7
8
```

```
expression
  : NUMBER
  | VARIABLE
  | '+' expression
  | expression '+' expression
  | expression '*' expression
  | function_name '(' parameters ')'
| '(' expression ')'
```

Figure 5. Grammar of arithmetic expressions.

- 1. integer division (\div) only usable between Int types
- 2. remainder (%) only usable between Int types

Figure 6. Arithmetic operations in ProveIt revisited.

5 Conclusion

what did you do?
What are the results?

future work?

References

- [1] B. Nasrulin, M. Muzammal, and Q. Qu, "A robust spatio-temporal verification protocol for blockchain," in *Web Information Systems Engineering–WISE 2018: 19th International Conference, Dubai, United Arab Emirates, November 12-15, 2018, Proceedings, Part I 19*, pp. 52–67, Springer International Publishing, 2018.
- [2] A. Dupin, J.-M. Robert, and C. Bidan, "Location-proof system based on secure multi-party computations," in *Provable Security: 12th International Conference, ProvSec 2018, Jeju, South Korea, October 25-28, 2018, Proceedings*, pp. 22–39, Springer, 2018.

Appendix

I. Glossary

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Alice Cooper,

(author's name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the purpose of preservation, including for adding to the DSpace digital archives until the expiry of the term of copyright,

Type Inference for Fourth Order Logic Formulae,

(title of thesis)

supervised by Axel Rose and May Flower.

(supervisor's name)

- 2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the public via the web environment of the University of Tartu, including via the DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving appropriate credit to the author, to reproduce, distribute the work and communicate it to the public, and prohibits the creation of derivative works and any commercial use of the work until the expiry of the term of copyright.
- 3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.
- 4. I certify that granting the non-exclusive licence does not infringe other persons' intellectual property rights or rights arising from the personal data protection legislation.

Alice Cooper dd/mm/yyyy