Федеральное государственное автономное образовательное колледж

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.3.2(2)

по курсу общей физики на тему: «Определение модуля кручения»

Работу выполнил: Санёчек Третьяков (группа Б02-206)

Маями Бич 5 декабря 2022 г.

1 Аннотация

Цель работы: измерение углов закручивания в зависимости от приложенного момента сил, расчет модуля сдвига проволоки по измерениям периодов крутильных колебаний подвешанного на ней маятника (динамическим методом).

В работе используются: проволока из исследуемого материала, грузы, секундомер, микрометр, рулетка, линейка.

2 Теоретическая справка

Вращение описывается формулой:

$$I_y \frac{d\omega}{dt} = M_y \Rightarrow I \frac{d^2\varphi}{dt^2} = -M$$

,где I - момент инерции стержня, φ - угол поворота стержня от положения равновесия, M - момент сил, действующий на стержень при закручивании; При малых φ момент сил описывается формулой:

$$M=\frac{\pi R^4 G}{2l}\varphi=f\varphi$$
, где f модуль кручения, связанный с модулем сдвига G

Тогда получаем следующие уравнения для незатухающих колебаний:

$$\frac{d^2\varphi}{dt^2} + \frac{f}{I} = 0 \Rightarrow \varphi = \varphi_0 sin(\sqrt{\frac{f}{I}}t + \theta) \Rightarrow T = 2\pi\sqrt{\frac{f}{I}}$$

Таким образом модуль сдвига G выражается через f следующей формулой:

$$G=rac{2lf}{\pi R^4},$$
где $R=rac{d}{2}$ $f=rac{4\pi^2I}{T^2}\Leftrightarrow T^2=rac{4\pi^2I}{f}$ $I=m_1r_1^2+m_2r_2^2+I_0=2mr^2+I_0$ $T^2=rac{8\pi^2m}{f}r^2+rac{4\pi^2I_0}{f}$

Можно заметить, что зависимость $T^2(r^2)$ имеет вид y = kx + b, причем

$$k = \frac{8\pi^2 m}{f} \Rightarrow f = \frac{8\pi^2 m}{k}, \quad G = \frac{16\pi l m}{kR^4}$$
$$\sigma_G = G\sqrt{(\frac{\sigma_f}{f})^2 + (\frac{\sigma_l}{l})^2 + 16(\frac{\sigma_d}{d})^2}$$

3 Методика измерений

Экспериментальная установка состоит из исследуемой проволоки "П"и прикрепленного к ее нижнему концу стержня "С"с двумя симметрично расположенными грузами "Г". Верхний конец проволоки может спокойно проворачиваться вокруг вертикальной оси. Установка для определения модуля сдвига проволочки представлена на рисунке ниже:

Рис. 1: схема установки

4 Результаты эксперимента

Массы грузиков: $m = (337 \pm 1)$ г.

Длина проволочки: $l=(171.6\pm0.1)$ см

Nº	1	2	3	4	5	6	7	8	9	10	Среднее
d, мм	1,56	1,56	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,552

Таблица 1: эксперимнтальные данные d

Диаметр проволочки: $d_{\rm cp} = (1.552 \pm 0.011)$ мм.

г, м	0,205	0,210	0,215	0,220	0,225
Т, с	5,178	5,294	5,41	5,524	5,674
r^2 , M^2	0,042	0,044	0,046	0,048	0,051
T^2 , c^2	26,8	28,02	29,27	30,51	32,19

Таблица 2: экспериментальные данные T и посчитанные T^2

5 Обработка результатов эксперимента

По полученным из эксперимента данным построим график $T^2(r^2)$:

Рис. 2: схема установки

1.3.2 здесь вроде все нормально получилось(погрешность из воздуха взял) Из графика: $k=628,22\Rightarrow G=7,6*10^{10}$ Па $\sigma_G=0,6*10^{10}$

6 Выводы

Проволока скорее всего сделана из стали. Табличное значение модуля сдвига стали 83 ГПа. Экспериментально полученный модуль сдвига - 76 ± 6 ГПа. Отличие от табличного значения составило $\varepsilon(G)=8\%$ Это можно объяснить тем, что проволока сделана из сплава или с добавлением примесей.