Class 17: Investigating Pertussis

Angela Bartolo PID:A15932451

Pertussis or whooping cough, is a highly contagious lung infection caused by a bacteria B. pertussis.

The CDC tracks reported cases in the U.S. since the 1920s.

```
cdc <- data.frame(</pre>
                                     Year = c(1922L, 1923L, 1924L, 1925L,
                                               1926L, 1927L, 1928L, 1929L, 1930L, 1931L,
                                               1932L, 1933L, 1934L, 1935L, 1936L,
                                               1937L, 1938L, 1939L, 1940L, 1941L, 1942L,
                                               1943L, 1944L, 1945L, 1946L, 1947L,
                                               1948L,1949L,1950L,1951L,1952L,
                                               1953L, 1954L, 1955L, 1956L, 1957L, 1958L,
                                               1959L,1960L,1961L,1962L,1963L,
                                               1964L, 1965L, 1966L, 1967L, 1968L, 1969L,
                                               1970L, 1971L, 1972L, 1973L, 1974L,
                                               1975L, 1976L, 1977L, 1978L, 1979L, 1980L,
                                               1981L, 1982L, 1983L, 1984L, 1985L,
                                               1986L,1987L,1988L,1989L,1990L,
                                               1991L, 1992L, 1993L, 1994L, 1995L, 1996L,
                                               1997L,1998L,1999L,2000L,2001L,
                                               2002L, 2003L, 2004L, 2005L, 2006L, 2007L,
                                               2008L, 2009L, 2010L, 2011L, 2012L,
                                               2013L, 2014L, 2015L, 2016L, 2017L, 2018L,
                                               2019L,2020L,2021L),
          Cases = c(107473, 164191, 165418, 152003,
                                               202210,181411,161799,197371,
                                               166914, 172559, 215343, 179135, 265269,
                                               180518, 147237, 214652, 227319, 103188,
                                               183866, 222202, 191383, 191890, 109873,
                                               133792,109860,156517,74715,69479,
                                               120718,68687,45030,37129,60886,
```

```
62786,31732,28295,32148,40005,
14809,11468,17749,17135,13005,6799,
7717,9718,4810,3285,4249,3036,
3287,1759,2402,1738,1010,2177,2063,
1623,1730,1248,1895,2463,2276,
3589,4195,2823,3450,4157,4570,
2719,4083,6586,4617,5137,7796,6564,
7405,7298,7867,7580,9771,11647,
25827,25616,15632,10454,13278,
16858,27550,18719,48277,28639,32971,
20762,17972,18975,15609,18617,
6124,2116)
```

)

We can now plot the number of reported pertussis cases per year in the U.S.

```
library(ggplot2)
ggplot(cdc)+
  aes(Year,Cases) +
  geom_point() +
  geom_line()
```


The first big whole-cell vaccine program started in 1942.

```
ggplot(cdc)+
  aes(Year,Cases) +
  geom_point() +
  geom_line() +
  geom_vline(xintercept = 1942, color = "blue", linetype = 4) +
  geom_vline(xintercept = 1980, color = "green",linetype = 2) +
  geom_vline(xintercept = 1995, color = "red",linetype = 6)
```


Something big is happening with pertussis cases and big outbreaks are once again a major public health concern!

One of the main hypothesis for the increasing case numbers is waning vaccine efficacy with the newer aP vaccine.

Enter the CMI-PB project, which is studying this problem on a large scale. Let's see what data they have. Their data is available in the JSON format ("key:value" pair style). We will use the "jsonlite" package to read their data.

```
library(jsonlite)
```

```
subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)</pre>
  head(subject)
  subject_id infancy_vac biological_sex
                                                         ethnicity race
1
            1
                       wP
                                   Female Not Hispanic or Latino White
2
            2
                       wP
                                   Female Not Hispanic or Latino White
           3
                       wP
3
                                   Female
                                                           Unknown White
            4
4
                       wP
                                     Male Not Hispanic or Latino Asian
5
            5
                       wP
                                     Male Not Hispanic or Latino Asian
            6
                       wP
                                   Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                     dataset
     1986-01-01
                    2016-09-12 2020_dataset
1
2
     1968-01-01
                    2019-01-28 2020_dataset
3
     1983-01-01
                    2016-10-10 2020_dataset
4
     1988-01-01
                    2016-08-29 2020_dataset
5
     1991-01-01
                    2016-08-29 2020_dataset
                    2016-10-10 2020_dataset
     1988-01-01
     Q4. How may aP and wP infancy vaccinated subjects are in the dataset?
  table(subject$infancy_vac)
aP wP
47 49
     Q5. How many Male and Female subjects/patients are in the dataset?
  table(subject$biological_sex)
Female
         Male
    66
           30
     Q6. What is the breakdown of race and biological sex (e.g. number of Asian
     females, White males etc...)?
  table(subject$race, subject$biological_sex)
```

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	18	9
Black or African American	2	0
More Than One Race	8	2
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	10	4
White	27	13

Now let's read some more database tables from CMI-PB:

```
specimen <- read_json("http://cmi-pb.org/api/specimen", simplifyVector =T)
head(specimen)</pre>
```

```
specimen_id subject_id actual_day_relative_to_boost
2
            2
                        1
                                                     736
3
            3
                        1
                                                        1
                        1
                                                        3
                                                       7
5
            5
                        1
                        1
                                                       11
 planned_day_relative_to_boost specimen_type visit
                                           Blood
2
                              736
                                           Blood
                                                    10
                                           Blood
                                                     2
3
                                1
4
                                3
                                           Blood
                                                     3
5
                                7
                                           Blood
                                                     4
```

I want to "join" (a.k.a "merge") the subject abd specimen tables together. I will use the **dplyr* package for this

Blood

```
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag The following objects are masked from 'package:base': intersect, setdiff, setequal, union meta <- inner_join(subject, specimen)</pre> Joining with `by = join_by(subject_id)` head(meta) subject_id infancy_vac biological_sex ethnicity race 1 1 wP Female Not Hispanic or Latino White 2 1 wP Female Not Hispanic or Latino White 3 1 wP Female Not Hispanic or Latino White 4 1 wP Female Not Hispanic or Latino White 5 1 wP Female Not Hispanic or Latino White 1 wP Female Not Hispanic or Latino White year_of_birth date_of_boost dataset specimen_id 1986-01-01 2016-09-12 2020_dataset 1 2 1986-01-01 2016-09-12 2020_dataset 2 3 2016-09-12 2020_dataset 3 1986-01-01 4 4 1986-01-01 2016-09-12 2020_dataset 5 5 2016-09-12 2020_dataset 1986-01-01 1986-01-01 2016-09-12 2020_dataset actual_day_relative_to_boost planned_day_relative_to_boost specimen_type -3 0 Blood 1 2 736 736 Blood 3 1 1 Blood 4 3 3 Blood 5 7 7 Blood 6 11 14 Blood visit 1 2 10

3

4

5 6 2

3 4

5

```
ab <- read json("http://cmi-pb.org/api/ab titer", simplifyVector = T)
  head(ab)
 specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI normalised
            1
                                     FALSE
                                              Total 1110.21154
                                                                      2.493425
1
                  IgE
2
            1
                                     FALSE
                                              Total 2708.91616
                                                                      2.493425
                  IgE
3
            1
                  IgG
                                      TRUE
                                                 PT
                                                      68.56614
                                                                      3.736992
                                                                      2.602350
            1
                                      TRUE
                                                PRN
                                                     332.12718
                  IgG
5
            1
                  IgG
                                      TRUE
                                                FHA 1887.12263
                                                                     34.050956
                                                       0.10000
                  IgE
                                      TRUE
                                                ACT
                                                                      1.000000
  unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

Now I can join the "meta" that we made above and contains all info about the subjects and sepcimens with this ab data

```
abdata <- inner_join(meta, ab)

Joining with `by = join_by(specimen_id)`

dim(abdata)

[1] 32675 20

Q11. How many specimens (i.e. entries in abdata) do we have for each isotype?

table(abdata$isotype)
```

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 1413 6141 6141 6141 6141
```

Q12. What do you notice about the number of visit 8 specimens compared to other visits?

```
table(abdata$visit)
```

```
1 2 3 4 5 6 7 8
5795 4640 4640 4640 4640 4320 3920 80
```

There are way less visit 8 specimens because the project is still ongoing and we do not have that data individual data yet.

Examine IgG1 Ab titer levels

We will use the filter() function form dyplr to focus on just IgG1 isotype and visits 1 to 7 (i.e. exclude visit 8 as there are not many specimens there yet).

```
ig1 <- filter(abdata, isotype == "IgG1", visit!=8)
head(ig1)</pre>
```

	subject_id in	fancy_vac biolo	ogical_	sex			et]	nnicity	race	
1	1	wP	Fer	nale	Not	Hispanic	or	Latino	White	
2	1	wP	Fer	nale	Not	${\tt Hispanic}$	or	Latino	White	
3	1	wP	Fer	nale	Not	${\tt Hispanic}$	or	Latino	White	
4	1	wP	Fer	nale	${\tt Not}$	Hispanic	or	Latino	White	
5	1	wP	Fer	nale	Not	Hispanic	or	Latino	White	
6	1	wP	Fer	nale	Not	Hispanic	or	Latino	White	
	year_of_birth	date_of_boost	C	datas	set s	specimen_	id			
1	1986-01-01	2016-09-12	2020_0	datas	set		1			
2	1986-01-01	2016-09-12	2020_0	datas	set		1			
3	1986-01-01	2016-09-12	2020_0	datas	set		1			
4	1986-01-01	2016-09-12	2020_0	datas	set		1			
5	1986-01-01	2016-09-12	2020_0	datas	set		1			
6	1986-01-01	2016-09-12	2020_0	datas	set		1			
	actual_day_re	lative_to_boost	planr	ned_d	lay_:	relative_	to_1	boost sj	pecimen_	_type
1		-3	3					0	I	Blood
2		-3	3					0	I	Blood
3		-3	3					0	I	Blood
4		-3	3					0	I	Blood
5		-3	3					0	I	Blood
6		-3	3					0	I	Blood
	visit isotype	is_antigen_spe	ecific	anti	igen	M]	FI I	MFI_nor	nalised	unit
1	1 IgG1	_ C _ 1	TRUE		_	274.3550			5928058	

```
2
           IgG1
                                 TRUE
                                          LOS
                                                10.974026
                                                                2.1645083 IU/ML
      1
3
      1
           IgG1
                                 TRUE
                                        FELD1
                                                 1.448796
                                                                0.8080941 IU/ML
4
      1
           IgG1
                                 TRUE
                                        BETV1
                                                 0.100000
                                                                1.0000000 IU/ML
5
      1
           IgG1
                                 TRUE
                                        LOLP1
                                                 0.100000
                                                                1.0000000 IU/ML
           IgG1
6
      1
                                                                1.6638332 IU/ML
                                 TRUE Measles
                                                36.277417
  lower_limit_of_detection
                   3.848750
2
                   4.357917
3
                   2.699944
4
                   1.734784
5
                   2.550606
6
                   4.438966
```

Box plot of antigen levels over time.

```
ggplot(ig1) +
  aes(MFI, antigen ) +
  geom_boxplot()
```


and facet by visit

```
ggplot(ig1) +
  aes(MFI, antigen ) +
  geom_boxplot() +
  facet_wrap(vars(visit), nrow=2)
```


Clearly FIM2/3 changes. This is the "Fimbrial protein" that makes the bacteria pilis and is inlyolved in cell adhesion.

PT: Pertussis toxin

FHA: Filamentus Hemagglutinin surface associated adherence protein of Bordetella pertussis.

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(visit), nrow=2) +
  theme_bw()
```


Another version of this plot adding infacy_vac to the faceting.

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```



```
filter(ig1, antigen=="Measles") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = F) +
   facet_wrap(vars(visit)) +
   theme_bw()
```



```
filter(ig1, antigen=="FIM2/3") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = F) +
   facet_wrap(vars(visit)) +
   theme_bw()
```

