Foundation Algebra (CELEN036)

Topics: Trigonometry I

Problem Sheet 3

Topic 1: Trigonometric Identities

1. Prove the following trigonometric identities:

(i)
$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} = 2\sec x.$$

(ii)
$$\frac{\cos \theta}{1 + \cot \theta} = \frac{\sin \theta}{1 + \tan \theta}.$$

(iii)
$$(1 + \tan^2 \theta)(1 - \sin^2 \theta) = 1$$
.

(iv)
$$\frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} - \frac{1}{\tan^2 x} - \frac{1}{\cot^2 x} - \frac{1}{\sec^2 x} - \frac{1}{\csc^2 x} = 1.$$

(v)
$$(\csc^2 \theta - 1) = \cos^2 \theta \csc^2 \theta$$
.

(vi)
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$$
.

(vii)
$$\cot^2 x - \cos^2 x = \cot^2 x \cos^2 x$$
.

(viii)
$$\cos^4 \theta + \sin^4 \theta = 1 - 2\cos^2 \theta \sin^2 \theta$$
.

(ix)
$$\cos^6 \theta + \sin^6 \theta = 1 - 3\cos^2 \theta \sin^2 \theta$$
.

(x)
$$\cos^8 \theta - \sin^8 \theta = (\cos^2 \theta - \sin^2 \theta)(1 - 2\sin^2 \theta \cos^2 \theta).$$

(xi)
$$\frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \sin \theta.$$

(xii)
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = \sec\theta + \tan\theta.$$

(xiii)
$$(\sec \theta + \tan \theta)^2 = \frac{\csc \theta + 1}{\csc \theta - 1}$$
.

(xiv)
$$(\csc \theta + \cot \theta)^2 = \frac{\sec \theta + 1}{\sec \theta - 1}$$
.

(xv)
$$(1 + \sin \theta)(1 + \cos \theta)(\sec \theta - 1)(\csc \theta - 1)(\tan \theta + \cot \theta) = 1.$$

$$(\text{xvi}) \ \sqrt{\frac{1+\sin^2\theta\sec^2\theta}{1+\cos^2\theta\csc^2\theta}} = \tan\theta.$$

2. Given $p = \sec \theta - \tan \theta$ and $q = \sec \theta + \tan \theta$, show that $p = \frac{1}{q}$.

Topic 2: Conversion formulae

3. Convert the following degrees to radians or vice-versa:

(i)
$$-160^{\circ}$$

(iv)
$$-85^{\circ}$$

(v)
$$345^{\circ}$$

(vi)
$$145^{\circ}$$

(vii)
$$-\frac{16\pi}{7}$$

(viii)
$$\frac{71\pi}{35}$$

(ix)
$$\frac{6\pi}{13}$$

(x)
$$\frac{4\pi}{3}$$

(xi)
$$-\frac{15\pi}{8}$$

(xii)
$$\frac{\pi}{9}$$

Topic 3: Range and period of trigonometric functions

4. Find the range and period of the following functions:

(i)
$$3\sin 2x$$

(ii)
$$9\cos(3x+4)+5$$

(iii)
$$3\csc(3-4x)$$

(iv)
$$2\tan(3x-7)$$

(v)
$$7\sin\left(-\frac{3\pi}{4}x - \frac{\pi}{4}\right) + 6$$

(vi)
$$-5\cos\left(\frac{\pi}{8}x\right) + 3$$

(vii)
$$-3\cos(\pi x + 2) - 6$$

(viii)
$$-4\cos(5x-9)-7$$

Topic 4: Find values of trigonometric function

5. Given $\cos \theta = -\frac{4}{5}$; $\frac{\pi}{2} < \theta < \pi$. Find the valueof $\csc \theta + \cot \theta$.

- 6. Given $\cot\theta = -\frac{15}{8}; \frac{3\pi}{2} < \theta < 2\pi$. Find the value of $\sin\theta + \cos\theta$.
- 7. Given that $\sec \theta = -3$, and θ is obtuse. Find the values of $\tan \theta$ and $\csc \theta$.
- 8. If $\tan \theta + \sec \theta = \frac{3}{2}$; $0 < \theta < \frac{\pi}{2}$, show that $\sec \theta \tan \theta = \frac{2}{3}$. Hence find the values of $\cos \theta$ and $2\sin \theta + \tan \theta \cos \theta$

Topic 5: Solving trigonometric equations

9. Solve the following equations for θ in given interval:

(i)
$$\sin \theta = \frac{1}{\sqrt{2}}; \ \theta \in [0, \pi]$$

(ii)
$$\tan \theta = \frac{1}{\sqrt{3}}; \ \theta \in [0, 2\pi]$$

(iii)
$$\sin 2\theta = 0.5; \ \theta \in [0, 2\pi]$$

(iv)
$$\cos 3\theta = -0.5; \ \theta \in [0, 180^{\circ}]$$

10. Solve $\tan^2\theta = \sec 2\theta - 1; \ \theta \in [0, 180^\circ].$

Answers

3. (i)
$$-\frac{8}{9}\pi$$

(ii)
$$4\pi$$

(iii)
$$\frac{17}{12}\pi$$

(iv)
$$-\frac{17}{36}\pi$$
 (v) $\frac{23}{12}\pi$

(v)
$$\frac{23}{12}\pi$$

(vi)
$$\frac{29}{36}\pi$$

(vii)
$$-\frac{2880}{7}^{\circ}$$

(viii)
$$\frac{2556}{7}^{\circ}$$

(ix)
$$\frac{1080}{13}^{\circ}$$

(x)
$$240^{\circ}$$

(xi)
$$-337.5^{\circ}$$

(xii)
$$20^{\circ}$$

		(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)
4.	Range	[-3, 3]	[-4, 14]	$\mathbb{R}-(-3,3)$	\mathbb{R}	[-1, 13]	[-2, 8]	[-9, -3]	$\begin{bmatrix} -11, -3 \end{bmatrix}$
	Period	π	$\frac{2\pi}{3}$	$rac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{8}{3}$	16	2	$\frac{2\pi}{5}$

5.
$$\frac{1}{3}$$

6.
$$\frac{7}{17}$$

7.
$$-\frac{2\sqrt{2}}{3}$$
 and $\frac{3}{2\sqrt{2}}$

8.
$$\frac{12}{13}$$
 and $\frac{41}{156}$

9. (i)
$$\frac{\pi}{4}$$
 or $\frac{3\pi}{4}$ (ii) $\frac{\pi}{6}$ or $\frac{7\pi}{6}$

(ii)
$$\frac{\pi}{6}$$
 or $\frac{7\pi}{6}$

(iii)
$$\frac{\pi}{12}$$
 or $\frac{5\pi}{12}$ or $\frac{13\pi}{12}$ or $\frac{17\pi}{12}$

(iv)
$$40^{\circ}$$
 or 80° or 160°

10.
$$0^{\circ}$$
 or 180°