Package 'LFDR.MME'

October 12, 2022

Type Package	
Title Estimating Local False Discovery Rates Using the Method of Moments	
Version 1.0	
Date 2020-11-17	
Author Ali Karimnezhad	
Maintainer Ali Karimnezhad <ali.karimnezhad@gmail.com></ali.karimnezhad@gmail.com>	
Description Estimation of the local false discovery rate using the method of moments.	
Depends $R(>=2.14.2)$	
Encoding UTF-8	
biocViews Bayesian, MathematicalBiology, MultipleComparison	
License GPL-3	
RoxygenNote 7.1.1	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2020-11-20 09:10:08 UTC	
R topics documented:	
LFDR.MM	1
Index	4
LFDR.MM Performs a Multiple Hypothesis Testing Using the Method of Moments	_
	_

Description

Based on a given vector of chi-square test statistics, provides estimates of local false discoveries.

2 LFDR.MM

Usage

LFDR.MM(x)

Arguments

Х

A vector of chi-square test statistics with one degree of freedom.

Details

For N given features (genes, proteins, SNPs, etc.), the function tests the null hypothesis H_{0i} , $i=1,\ldots,N$, indicating that there is no association between feature i and a specific disease, versus its alternative hypothesis H_{1i} . For each unassociated feature i, it is supposed that the corresponding test stiatistic x_i follows a central chi-square distribution with one degree of freedom. For each associated feature i, it is assumed that the corresponding test stiatistic x_i follows a non-central chi-square distribution with one degree of freedom and non-centrality parameter λ . In this packag, association is measured by estimating the local false discovery rate (LFDR), the posterior probability that the null hypothesis H_{0i} given the test statistic x_i is true. This package returns three components as mentioned in the **Value** section.

Value

Outputs three elements as seen below:

pi0. hat estimate of proportion of unassocaited features π_0 .

ncp. hat estimate of the non-centrality parameter λ of the chi-square model for associated

features.

1fdr.hat estimates of local false discovery rates.

Author(s)

Code: Ali Karimnezhad.

Documentation: Ali Karimnezhad.

References

Karimnezhad, A. (2020). A Simple Yet Efficient Parametric Method of Local False Discovery Rate Estimation Designed for Genome-Wide Association Data Analysis. Retrieved from https://arxiv.org/abs/1909.13307

Examples

```
# vector of test statistics for assocaited features
stat.assoc<- rchisq(n=1000,df=1, ncp = 3)

# vector of test statistics for unassocaited features
stat.unassoc<- rchisq(n=9000,df=1, ncp = 0)

# vector of test statistics
stat<- c(stat.assoc,stat.unassoc)</pre>
```

LFDR.MM 3

output <- LFDR.MM(x=stat)</pre>

Estimated pi0
output\$p0.hat

Estimated non-centrality parameter
output\$ncp.hat

Estimated LFDRs
output\$lfdr.hat

Index

 \ast Chi-Square Distribution

LFDR.MM, 1

* Empirical Bayes

LFDR.MM, 1

* Local False Discovery Rate

LFDR.MM, 1

* Multiple Hypothesis Testing

 $\mathsf{LFDR}.\mathsf{MM},\,\mathbf{1}$

* Null Hypothesis

LFDR.MM, 1

LFDR.MM, 1