Συναρτήσεις Συνέπειες Bolzano 2 (the rest)

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Ενα μάθημα μόνο θεωρία

• Φτιάξτε άξονες

• Σχεδιάστε συνεχή συνάρτηση στο διάστημα [-2,2] που δεν έχει μέγιστο ή ελάχιστο

Ενα μάθημα μόνο θεωρία

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [-2,2] που δεν έχει μέγιστο ή ελάχιστο

Ενα μάθημα μόνο θεωρία

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [-2,2] που δεν έχει μέγιστο ή ελάχιστο

Θεώρημα μέγιστου ελάχιστου

Κάθε συνεχής σε κλειστό διάστημα συνάρτηση f έχει μέγιστο ΚΑΙ ελάχιστο στο Δ .

• Φτιάξτε άξονες

- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που να μην περνάει τώρα από το 2.5

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που να μην περνάει τώρα από το 2.5

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που να μην περνάει τώρα από το 2.5

- Φτιάξτε άξονες
- Σχεδιάστε συνεχή συνάρτηση στο διάστημα [0,1] με σύνολο τιμών το [2,3]
- Δοκιμάστε να δημιουργήσετε άλλη συνεχή συνάρτηση που να μην περνάει τώρα από το 2.5

Θεώρημα ενδιαμέσων τιμών (γενίκευση Bolzano)

Εστω μια συνεχής συνάρτηση f στο $[\alpha,\beta]$ με $f(\alpha)=\kappa$ και $f(\beta)=\lambda$ με $\lambda \neq \kappa$. Για κάθε $\eta \in (\kappa,\lambda)$ υπάρχει $x_0 \in (\alpha,\beta)$ ώστε $f(x_0)=\eta$

Συναρτήσεις 5/1

Θεώρημα εικόνας διαστήματος συνεχούς συνάρτησης Εστω μια συνεχής συνάρτηση f στο $[\alpha,\beta]$. Η εικόνα $f([\alpha,\beta])$ είναι και πάλι διάστημα.

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 6/1

Φαντασία με Σ-Λ

- Γνησίως αύξουσα σε διάστημα έχει πάντα μέγιστο
- Γνησίως αύξουσα σε κλειστό διάστημα έχει πάντα μέγιστο Πού?Συμπέρασμα...

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 7/1

Φαντασία με Σ-Λ

- Γνησίως αύξουσα σε διάστημα έχει πάντα μέγιστο
- Γνησίως αύξουσα σε κλειστό διάστημα έχει πάντα μέγιστο Πού?

Φαντασία με Σ-Λ

- Γνησίως αύξουσα σε διάστημα έχει πάντα μέγιστο
- Γνησίως αύξουσα σε κλειστό διάστημα έχει πάντα μέγιστο Πού? Συμπέρασμα...

Συναρτήσεις 7/1

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Εστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

Με λίγα λόγιο

Η φτάνουμε την τιμή Η πλησιάζουμε συνεχώς

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Εστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

• $f([\alpha, \beta]) = [f(\alpha), f(\beta)]$

•
$$f([\alpha, \beta)) = [f(\alpha), \lim_{x \to \beta^-} f(x))$$

•
$$f((\alpha, \beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$$

•
$$f((\alpha, \beta)) = (\lim_{x \to \alpha^+} f(x), \lim_{x \to \beta^-} f(x))$$

Συναρτήσεις 8/1

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα Εστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

•
$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

Με λίγα λόγιο

Η φτάνουμε την τιμή Η πλησιάζουμε συνεχώς

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 8/1

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα

Εστω μια συνεχής στο $[\alpha, \beta]$, γνησίως αύξουσα συνάρτηση f.

•
$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

•
$$f([\alpha, \beta)) = [f(\alpha), \lim_{x \to \beta^{-}} f(x))$$

•
$$f((\alpha, \beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$$

•
$$f((\alpha, \beta)) = (\lim_{x \to \alpha^+} f(x), \lim_{x \to \beta^-} f(x))$$

Συναρτήσεις 8/1

Θεώρημα συνεχών γνησίως μονότονων συναρτήσεων σε διάστημα

Εστω μια συνεχής στο $[\alpha,\beta]$, γνησίως αύξουσα συνάρτηση f.

•
$$f([\alpha, \beta]) = [f(\alpha), f(\beta)]$$

•
$$f([\alpha, \beta)) = [f(\alpha), \lim_{x \to \beta^{-}} f(x))$$

•
$$f((\alpha, \beta]) = (\lim_{x \to \alpha^+} f(x), f(\beta)]$$

$$\bullet \ f((\alpha,\beta)) = (\lim_{x \to \alpha^+} f(x), \lim_{x \to \beta^-} f(x))$$

Με λίγα λόγια

Η φτάνουμε την τιμή Η πλησιάζουμε συνεχώς

Λόλας $(10^{\circ}$ ΓΕΛ) Συναρτήσεις 8/1

Δίνεται η συνάρτηση $f(x) = 2^x$. Να δείξετε ότι υπάρχει $\xi \in (10, 11)$ ώστε $f(\xi) = 2023.$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 9/1

Εστω η συνεχής και γνησίως φθίνουσα συνάρτηση $f:[1,3] \to \mathbb{R}$. Να δείξετε ότι υπάρχει ακριβώς ένα $x_0 \in (1,3)$ ώστε

$$f(x_0) = \frac{f(1) + f(2) + f(3)}{3}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 10/1

Δίνεται η συνάρτηση $f(x)=(x-1)^4(x-3)^2$, $x\in\mathbb{R}$. Να αποδείξετε ότι η fέχει δύο θέσεις ελαχίστων x_1 , x_2 με $x_1 < x_2$. Στη συνέχεια να δείξετε ότι υπάρχει ένα τουλάχιστον $x_0 \in (x_1, x_2)$ που η συνάρτηση παρουσιάζει μέγιστο στο $[x_1, x_2]$.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 11/1

Εστω $f:[1,2]\to\mathbb{R}$ μία συνεχής συνάρτηση της οποίας η γραφική παράσταση βρίσκεται πάνω από την ευθεία $\varepsilon:y=x$. Να δείξετε ότι υπάρχει ένα τουλάχιστον σημείο της C_f που απέχει από την ευθεία ε περισσότερο από ότι απέχουν τα υπόλοιπα σημεία της C_f .

Λύση

Εστω η συνεχής συνάρτηση $f:[2,4]\to\mathbb{R}$. Να δείξετε ότι υπάρχει ενα τουλάχιστον $x_0 \in (2,4)$ ώστε

$$f(x_0) = \frac{f(2) + 2f(3) + 3f(4)}{6}$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 13/1

Δίνεται η συνάρτηση $f(x) = e^x + x$

- ullet Να βρείτε το σύνολο τιμών της f
- ullet Να βρείτε το $f(\mathrm{B})$ όταν
 - B = [0, 1]• B = [0, 1)• $B = (-\infty, 0]$
- Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο $\mathbf{B} = [0,1].$

Λύση

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν

•
$$B = [0, 1]$$

• $B = [0, 1)$
• $B = (-\infty, 0]$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 14/1

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν
 - \bullet B = [0,1]

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν
 - \bullet B = [0,1]
 - B = [0, 1)

Λόλας (10^o ΓΕΛ) Συναρτήσεις 14/1

Δίνεται η συνάρτηση $f(x) = e^x + x$

- N α βρείτε το σύνολο τιμών της f
- Nα βρείτε το f(B) όταν
 - \bullet B = [0,1]
 - \bullet B = [0,1)
 - B = $(-\infty, 0]$

Δίνεται η συνάρτηση $f(x) = e^x + x$

- Να βρείτε το σύνολο τιμών της f
- Να βρείτε το f(B) όταν
 - \bullet B = [0,1]
 - \bullet B = [0,1)
 - B = $(-\infty, 0]$
- Να βρείτε τη μέγιστη και την ελάχιστη τιμή της f, όταν είναι ορισμένη στο B = [0, 1].

Λόλας (10^o ΓΕΛ) Συναρτήσεις 14/1

Δίνεται η συνάρτηση $f(x) = \frac{1}{x} - \ln x$

- **1** Να δείξετε ότι η f αντιστρέφεται και να βρείτε το πεδίο ορισμού της

Συναρτήσεις 15/1

Δίνεται η συνάρτηση $f(x) = \frac{1}{x} - \ln x$

- **1** Να δείξετε ότι η f αντιστρέφεται και να βρείτε το πεδίο ορισμού της
- Να δείξετε ότι η εξίσωση f(x) = 2023 έχει ακριβώς μία ρίζα

Συναρτήσεις 15/1

Δίνεται η συνάρτηση $f(x) = \frac{1}{x} - \ln x$

- **1** Να δείξετε ότι η f αντιστρέφεται και να βρείτε το πεδίο ορισμού της
- Να δείξετε ότι η εξίσωση f(x) = 2023 έχει ακριβώς μία ρίζα
- Να εξετάσετε αν υπάρχει $x_0 \in (0,1]$ τέτοιο ώστε $f(x_0) = e^{x_0} 2$

Συναρτήσεις 15/1

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της

$$\frac{f(\alpha) - 1}{x - x_1} + \frac{f(\beta) - 1}{x - x_2} = 0$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/1

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της
- Να δείξετε ότι η η f έχει ακριβώς δύο ρίζες ετερόσημες

$$\frac{f(\alpha) - 1}{x - x_1} + \frac{f(\beta) - 1}{x - x_2} = 0$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/1

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της
- Να δείξετε ότι η η f έχει ακριβώς δύο ρίζες ετερόσημες
- Aν x_1 , x_2 $(x_1 < x_2)$ οι ρίζες του ερωτήματος 2., να δείξετε ότι η εξίσωση

$$\frac{f(\alpha)-1}{x-x_1}+\frac{f(\beta)-1}{x-x_2}=0$$

έχει τουλάχιστον μία ρίζα στο διάστημα (x_1, x_2) για κάθε α , $\beta \in \mathbb{R} - 0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/1

Δίνεται η συνάρτηση
$$f(x) = \begin{cases} e^x + x, & x \leq 0 \\ 1 - \ln(x+1), & x > 0 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής και να βρείτε το σύνολο τιμών της
- Να δείξετε ότι η η f έχει ακριβώς δύο ρίζες ετερόσημες
- Αν x_1 , x_2 $(x_1 < x_2)$ οι ρίζες του ερωτήματος 2., να δείξετε ότι η εξίσωση

$$\frac{f(\alpha)-1}{x-x_1}+\frac{f(\beta)-1}{x-x_2}=0$$

έχει τουλάχιστον μία ρίζα στο διάστημα (x_1, x_2) για κάθε α , $\beta \in \mathbb{R} - 0$

 \bullet Αν $\kappa \leq 0 \leq \lambda$ και ισχύει $e^{\kappa} - 1 = \ln(\lambda + 1) - \kappa$, να βρείτε τις τιμές κ και λ.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/1

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής, γνησίως φθίνουσα και έχει σύνολο τιμών το $f(\mathbb{R}) = (0, +\infty)$. Να βρείτε τα όρια:

Λόλας (10^o ΓΕΛ) Συναρτήσεις 17/1

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής, γνησίως φθίνουσα και έχει σύνολο τιμών το $f(\mathbb{R}) = (0, +\infty)$. Να βρείτε τα όρια:

- $\lim_{x\to+\infty}\frac{f(x)-x}{x+f(x)}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 17/1

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής, γνησίως φθίνουσα και έχει σύνολο τιμών το $f(\mathbb{R}) = (0, +\infty)$. Να βρείτε τα όρια:

- $\lim_{x\to+\infty}\frac{f(x)-x}{x+f(x)}$
- $3 \lim_{x \to +\infty} \frac{\ln f(x)}{f(x)}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 17/1

Εστω $f: \mathbf{A} \to \mathbb{R}$ μία συνάρτηση με $\mathbf{A} = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- ② Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- ullet Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια

 - $\bullet \lim_{x \to +\infty} \frac{f^{-1}(x) a}{x + f^{-1}(x)}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 18/1

Εστω $f: \mathbf{A} \to \mathbb{R}$ μία συνάρτηση με $\mathbf{A} = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- ② Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- $exttt{3}$ Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$
 - $\bullet \lim_{x \to +\infty} \frac{f^{-1}(x) x}{x + f^{-1}(x)}$
 - $\begin{array}{ccc}
 & \lim_{x \to -\infty} \frac{1}{f^{-1}(x)}
 \end{array}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 18/1

Εστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 18/1

Εστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$
 - $\bullet \lim_{x \to +\infty} \frac{f^{-1}(x) x}{x + f^{-1}(x)}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 18/1

Εστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = (0, +\infty)$ με $f(x) = \frac{1}{x} - x + 1$.

- Να βρείτε το σύνολο τιμών της
- Να δείξετε ότι υπάρχει η αντίστροφη συνάρτηση f^{-1} και ότι είναι γνησίως φθίνουσα
- Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι συνεχής, να βρείτε τα όρια:
 - $\bullet \lim_{x \to +\infty} \frac{1}{f^{-1}(x)}$
 - $\bullet \lim_{x \to +\infty} \frac{f^{-1}(x) x}{x + f^{-1}(x)}$
 - \bullet $\lim_{x \to \infty} \frac{1}{f^{-1}(x)}$

Συναρτήσεις 18/1

Εστω $f:[0,1]\to\mathbb{R}$ μία συνάρτηση η οποία είναι 1-1, συνεχής και ισχύει

Nα δείξετε ότι $f(x) \neq 0$ για κάθε $x \in [0,1]$

Συναρτήσεις 19/1

Να βρείτε όλες τις συνεχείς συναρτήσεις $f:\mathbb{R} \to \mathbb{R}$, για τις οποίες ισχύει $f^3(x) = f(x)$ για κάθε $x \in \mathbb{R}$

Συναρτήσεις 20/1 Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Συναρτήσεις

Με θεώρημα ενδιαμέσων τιμών. Η συνάρτηση είναι συνεχής στο [10, 11] με f(10) = 1024 και f(11) = 2048. Αφού $2023 \in (1024, 2048)$ υπάρχει x_0 ...

Λόλας (10^o ΓΕΛ) Συναρτήσεις 2/0 Με Bolzano ή με μέγιστης ελάχιστης τιμής και ΘΕΤ.

$$f(3) < f(2) < f(1)$$

$$3f(3) < f(1) + f(2) + f(3) < 3f(1)$$

$$f(3) < \frac{f(1) + f(2) + f(3)}{3} < f(1)$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 3/0 Προφανές ελάχιστο στα $x_1=1$ και $x_2=3$. Ως συνεχής στο [1,3] έχει σίγουρα ΚΑΙ μέγιστο στο (1,3)

Πίσω στην άσκηση

Λόλας (10^o ΓΕΛ) Συναρτήσεις 4/0 Η συνάρτηση 'απόστασης' f(x)-x είναι ορισμένη στο κλειστό διάστημα και έχει σίγουρα μέγιστο

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5/0

Ομοια με την Ασκηση 2

Πίσω στην άσκηση

- Είναι γνησίως αύξουσα άρα $(f(+\infty), f(-\infty))$
- Προφανώς [f(0), f(1)]...