section-02

October 12, 2021

1 Section 2

1.1 Agenda

- Review:
 - Algebraic data types
 - Let-expressions
 - Currying
 - Higher-order functions
 - Recursion on trees
- Assignment 1 Q&A

```
[1]: let hole () = failwith "todo"
;;
```

1.2 Algebraic Data Types

Consider the data types defined in Q2:

- Both binop and expr are what's called *algebraic data types*, because they are constructed from sum types (|) and produce types (*), like how polynomials are constructed in mathematics (e.g. f(x,y) = x*x + x*y + y*y*y)
- Each case in a sum type is called a *variant*. The labels (e.g. Const, Binary, Add, etc.) are called *constructors*.
- Constructor are like functions!
 - Const is like a one-argument function with type int -> expr
 - Binary is like a three-argument function with type binop * expr * expr -> expr
 - Add, Sub, Mul, Div are like zero-argument functions of type binop, which are just constants!

1.3 Let

There are two kinds of let in OCaml:

1.3.1 I. Top-level let-bindings

In general, an OCaml program is a sequence of top-level let bindings (and type declarations)

```
let a = ...
let rec f x = ...
and g x y = ...
let b = ...
let _ = ...
let _ = ...
```

1.3.2 II. Let-expressions, for creating local variables

Common scenario: 1. Compute 2. Store temporary result 3. Use the temporary result in subsequent computations

```
In OCaml,
```

```
let tmp = computation () in more_computation tmp
More generally,
let <name> = <e> in <body>
```

To evaluate a let-expression: 1. Evaluate e 2. Bind the value of e to name 3. Evaluate body, where name is available 4. The value of body becomes the value of the overall let-expression

Exercise: What is the value of the following expression?

```
[4]: (let x = 1 in x + 2) + 3;;
```

You can nest let-expressions!

Exercise: What is the value of the following expression?

```
[5]: let x = 1 in
let y = x * 2 in
x + y
;;
```

The left-hand side of let can actually be a pattern!

Q3 starter code:

```
[6]: (* Problem 3 *)
     type binop = Add | Sub | Mul | Div
     type expr = Const of int
               | Binary of binop * expr * expr
               | Id of string
                                          (* new *)
               | Let of string * expr (* new *)
| Seg of expr list (* new *)
                | Seq of expr list
                                          (* new *)
     type environment = (string * int) list
     let rec interpret (e: expr) : int =
       let empty = [] in
       let _, n = (interpret' e empty) in n
     and interpret' (e: expr) (env: environment) : (environment * int) =
       match e with
       -> failwith "Not yet implemented" (* your code here *)
```

Pay attention to the line

```
let _, n = interpret' e empty in n
Here.
```

- interpret' returns an (environment * int) pair
- $\bullet\,$ But interpret doesn't need the returned environment, so it matches the pair with the pattern , $\,n\,$
 - _ matches the returned environment but throws it away

• The return value of interpret is n

Exercise: Replace the second line (let _, n = interpret' e empty in n) of interpret with a pattern match.

```
[7]: let rec interpret (e: expr) : int =
    let empty = [] in
        (* Solution *)
        match (interpret' e empty) with
        | (_, n) -> n
        ;;
```

1.4 Currying

Let us define the exponentiation function.

Question: Without running the snippet below, tell us the type of exp.

```
[8]: let rec exp base power =
   if power = 0 then
     1
   else
     base * exp base (power-1)
;;
```

Now consider an alternative definition, exp'.

Question: What is the type of exp'?

```
[9]: let rec exp' pair =
   let base, power = pair in
   if power = 0 then
        1
   else
       base * exp' (base, (power-1))
;;;
```

Note that -> associates to the right, so the type of the curried version is actually 'a -> ('b -> 'c).

For any "two-argument" function (from arguments 'a and 'b to result 'c), it really has two incarnations in OCaml:

- 1. Uncurried: ('a * 'b) -> 'c
- 2. Curried: 'a -> 'b -> 'c

Thus, both the curried and the uncurried versions are technically one-argument functions!

- 1. ('a * 'b) \rightarrow 'c takes some input, and returns 'c. The input has type 'a * 'b
- 2. 'a -> ('b -> 'c) takes some input, and returns 'b -> 'c. The input has type 'a. The output is not a simple value, but a function from 'b to 'c.

Exercise: Implement:

- 1. a (higher-order) function, called uncurry, that converts curried functions to their uncurried form, and
- 2. a function, called curry, that converts uncurried functions to their curried form.

What's the type of uncurry? What's the type of curry?

```
[10]: (* Solution *)
let uncurry f p = let a,b = p in f a b
let uncurry' f (a,b) = f a b
let uncurry'' f = fun (a,b) -> f a b
;;
```

```
[11]: (* Solution *)
let curry f a b = f (a,b)
let curry' f = fun a -> fun b -> f (a,b)
let curry'' f = fun a b -> f (a,b)
;;
```

Consider the types of uncurry and curry:

If you replace * with logical conjunction (/\, aka logical AND), and \rightarrow with logical implication (==>, aka logical IMPLY), you will get a boolean proposition!

What are the truth values of the resulting propositions?

1.4.1 Interlude: Anonymous Functions

Let's say we want to define our own version of the addition function:

```
[12]: let plus1 (x: int) (y: int) : int = x + y ;;
```

Without type annotation, this is really just

```
[13]: let plus2 x y = x + y ;;
```

But OCaml also lets us rewrite above as

```
[14]: let plus3 = fun x -> fun y -> x + y ;;
```

which has a even nicer syntactic sugar:

```
[15]: let plus4 = fun x y -> x + y ;;
```

Now the definition of the function is completely separated from its name!

```
[16]: (fun x y -> x + y) 5 6;;
```

This is extremely useful when you program with higher-order functions (e.g. map, filter, fold, etc), many of which take a function as input.

But you often just want to construct the input function *ad hoc*, because that particular function won't ever be used again. Anonymous functions thus save you the labor of giving names, when those functions don't deserve a name.

A related note: curried functions are often better than their uncurried couterparts, because the curried version lets you do partial application, which is very useful in combination with higher-order functions.

1.5 Higher-Order Functions

To practice higher-order functions, a good exercise is actually to sit down, and try to write down their types and recursive definitions.

1.5.1 Map

What does map do, intuitively?

What is the type of map?

Can you write down the recursive definition of map?

```
[17]: List.map ;;
```

Exercise: Fill in the hole to raise 2 to a list of powers:

```
[19]: assert (two_to_the [0; 1; 2; 3; 4] = [1; 2; 4; 8; 16]);;
```

We can simplify the definition of two_to_the even further!

```
[20]: let two_to_the' ps = List.map (exp 2) ps
let two_to_the'' = List.map (exp 2)
;;

assert (two_to_the' [0; 1; 2; 3; 4] = [1; 2; 4; 8; 16])
;;
assert (two_to_the'' [0; 1; 2; 3; 4] = [1; 2; 4; 8; 16])
;;
```

[20]: val two_to_the' : int list -> int list = <fun>

[20]: val two_to_the'' : int list -> int list = <fun>

[20]: -: unit = ()

[20]: -: unit = ()

This is an alternative way to think of map.

Given any function f: 'a -> 'b, map promotes f into a more powerful function!

The new function map f now has the type ['a] -> ['b]; it operates on the list version of its argument type and return type.

1.5.2 Filter

What does filter do, intuitively?

What is the type of filter?

Can you write down the recursive definition of filter?

```
[21]: let filter = List.filter
;;
```

```
[21]: val filter: ('a -> bool) -> 'a list -> 'a list = <fun>
```

Exercise: Using filter, implement positives, which keeps only the positive integers in a list.

```
[22]: val positives : int list -> int list = <fun>
```

```
[23]: assert (positives [2; -3; 5; -7; 11] = [2; 5; 11]);;
```

[23]: -: unit = ()

Exercise: Using filter, implement partition, which takes an input predicate and partitions a list into two lists, where elements of the first list satisfies the predicate while those of the second list does not.

[24]: val partition : ('a -> bool) -> 'a list -> 'a list * 'a list = <fun>

```
[25]: assert (partition ((<) 0) [2; -3; 5; -7; 11] = ([2; 5; 11], [-3; -7]));;
```

[25]: - : unit = ()

1.5.3 Fold

What does fold do, intuitively?

What is the type of fold?

Can you write down the recursive definition of fold?

```
[26]: let fold = List.fold_left
;;
```

[26]: val fold: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

Exercise: Using fold, implement sum which sums an integer list.

```
[27]: val sum : int list -> int = <fun>
```

```
[28]: assert (sum [1; -1; 2; -2; 3; -3; 4] = 4);;
```

[28]: -: unit = ()

Exercise: Using fold, implement rev which reverses a list.

[29]: val rev : 'a list -> 'a list = <fun>

```
[30]: assert (rev [1;2;3;4;5] = [5;4;3;2;1]);;;
```

[30]: -: unit = ()

Exercise: Using fold, implement is_sorted which tests if an integer list is sorted.

[31]: val is_sorted : int list -> bool = <fun>

```
[32]: assert (is_sorted [1;2;3;4;5]);;
```

[32]: -: unit = ()

Note that the fold we are using is called fold_left. So naturally, there is also a fold_right!

• Can you guess what fold_right does?

- What do you think is the type of fold_right?
- Can you write down a recursive definition of fold_right?
- One of fold_right and fold_left is tail-recursive, while the other one is not. Which one is tail-recursive?

1.5.4 Recursion on trees

Exercise:: Implement nodes, which counts the number of nodes (i.e. constructors) in an expression.

[33]: val nodes : expr \rightarrow int = $\langle \text{fun} \rangle$

```
[34]: assert (nodes (Const 0) = 1);;
assert (nodes (Binary (Add, Const 0, Id "x")) = 3);;
```

```
[34]: -: unit = ()
```

```
[34]: -: unit = ()
```

Exercise: Implement subst, which takes a string x and an expression ex, substitutes every occurrence of Id x with ex in an input expression.

```
[35]: val subst : string -> expr -> expr -> expr = <fun>
```

```
[36]: assert (subst "x" (Const 1) (Binary (Add, Id "x", Id "x")) = Binary (Add, Const

→1, Const 1))

;;
assert (subst "x" (Id "y") (Seq [Id "z"; Id "y"; Id "x"]) = Seq [Id "z"; Id "y";

→ Id "y"])

;;
```

```
[36]: -: unit = ()
```

```
[36]: -: unit = ()
```

Notice how nodes and subst look awfully the same: 1. In the base cases, they map the base case to a value of the return type. - For nodes, it maps Const and Id to the integer 1. - For subst, it maps Const to itself, and Id to the substituted expression if there is a match)

- 2. In the recursive cases, they recurse on sub-expressions, after which they build a value of the return type with the results of recursing on the sub-expressions.
 - For nodes, it simply sums the result of recursion on sub-expressions and adds 1.
 - For subst, it reconstructs an expr using the same constructor and the result of recursion on sub-expressions.

So there's a lot of code repetition here! In particular, both **nodes** and **subst** follows a pattern called *post-order traversal*, which you may have seen in your previous data structure course.

Whenever we see code repetition in OCaml, we should think, "Can we define a higher-order function (like map and fold) that distills the pattern / template / common-behavior?"

A Very Challenging Exercise: Write a higher-order function that distills the pattern examplified by nodes and subst. Then define new versions of nodes and subst in terms of the higher-order function you just wrote.