CENG 384 - Signals and Systems for Computer Engineers Spring 2018-2019

Written Assignment 4

AYPEK, Ertugrul e2171270@ceng.metu.edu.tr

BADILLI, Mustafa e2171296@ceng.metu.edu.tr

June 2, 2019

1. (a) Focusing on the four way (three incoming and one outgoing) plus sign, we can deduce the following difference equation for the given system:

$$2x[n] + \frac{-1}{8}y[n-2] + \frac{3}{4}y[n-1] = y[n]$$

(b) Applying Fourier Transform directly, we get the following:

$$H(e^{jw}) = \frac{2}{1 - \frac{3}{4}(e^{-jw}) + \frac{1}{8}(e^{-jw})^2}$$

(c) Using partial fraction expansion and above frequency response:

$$H(e^{jw}) = \frac{A}{1-\frac{1}{2}(e^{-jw})} + \frac{B}{1-\frac{1}{4}(e^{-jw})}$$
, we can conclude that equation holds for $A=4, B=-2$

Hence,
$$H(e^{jw}) = \frac{4}{1 - \frac{1}{2}(e^{-jw})} + \frac{-2}{1 - \frac{1}{4}(e^{-jw})},$$

 $h[n] = (4(\frac{1}{2})^n - 2(\frac{1}{4})^n)u[n]$ is the required impulse response of the system.

(d) Converting x[n] from time domain to frequency domain, we have: $X(e^{jw})=\frac{1}{1-\frac{1}{4}e^{-jw}}$

$$X(e^{jw}) = \frac{1}{1 - \frac{1}{4}e^{-jw}}$$

$$Y(e^{jw}) = X(e^{jw})H(e^{jw})$$

$$Y(e^{jw}) = \frac{2}{(1 - \frac{1}{2}e^{-jw})(1 - \frac{1}{4}e^{-jw})^2}$$

Using partial fraction expansion, we have:
$$Y(e^{jw}) = \frac{A}{1-\frac{1}{2}e^{-jw}} + \frac{B}{1-\frac{1}{4}e^{-jw}} + \frac{C}{(1-\frac{1}{4}e^{-jw})^2}$$

Solving for A, B and C; we can conclude that equation holds for A=8, B=-4, C=-2 values.

Hence using inverse Fourier Transform:

$$y[n] = (8(\frac{1}{2})^n - 4(\frac{1}{4})^n - 2(n+1)(\frac{1}{4})^n)u[n]$$
 is the impulse response of the system for given $x[n]$

2. Being connected in parallel for two discrete time LTI systems means final system's impulse response is going to be a sum of two impulse responses. Hence,

$$h[n] = h_1[n] + h_2[n]$$

From above equality which is in time domain, we can deduce the following in frequency domain using linearity property: $H(e^{jw}) = H_1(e^{jw}) + H_2(e^{jw})$

We are given $H(e^{jw})$ and we can find $H_1(e^{jw})$ using Fourier Transform: $H_1(e^{jw})=\frac{1}{1-\frac{1}{3}e^{-jw}}$

$$H_1(e^{jw}) = \frac{1}{1 - \frac{1}{2}e^{-jw}}$$

$$H(e^{jw}) = \frac{5e^{-jw} - 12}{e^{-2jw} - 7e^{-jw} + 12}$$

Using partial fraction expansion, we have:

$$H(e^{jw})=\frac{A}{e^{-jw}-3}+\frac{B}{e^{-jw}-4}$$
 Solving for A and B, we can conclude that equation holds for A=-3, B=8 values

Hence,
$$H(e^{jw}) = \frac{-3}{e^{-jw}-3} + \frac{8}{e^{-jw}-4}$$

$$H(e^{jw}) = \frac{1}{1-\frac{1}{3}e^{-jw}} + \frac{-2}{1-\frac{1}{4}e^{-jw}}$$

Since
$$H_2(e^{jw}) = H(e^{jw}) - H_1(e^{jw})$$
, we can deduce $H_2(e^{jw})$ as the following:
$$H_2(e^{jw}) = \frac{1}{1 - \frac{1}{3}e^{-jw}} + \frac{-2}{1 - \frac{1}{4}e^{-jw}} - \frac{1}{1 - \frac{1}{3}e^{-jw}}$$
$$H_2(e^{jw}) = \frac{-2}{1 - \frac{1}{4}e^{-jw}}$$

Using inverse Fourier Transform, we can catch $h_2[n]$ as the following: $h_2[n] = (-2(\frac{1}{4})^n)u[n]$

3. (a) We know
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

we can separate x(t) as $sin\frac{2\pi t}{\pi t}$ and $cos3\pi t$

From equation 4.19 in the textbook;

$$X(j\omega)$$
 for $sin\frac{2\pi t}{\pi t}$ is:

$$X(j\omega) = \begin{cases} 1, & |\omega| < 2\pi \\ 0, & |\omega| > 2\pi \end{cases}$$

 $X(j\omega)$ for $\cos 3\pi t$ (from figure 4.13(b) in textbook) is:

$$X(j\omega) = \pi(\delta(w-3\pi) + \delta(w+3\pi))$$

Summation of those functions will give us Fourier transform of x(t).

$$X(j\omega) = \begin{cases} \pi(\delta(w-3\pi) + \delta(w+3\pi)), & |\omega| > 2\pi \\ 1, & |\omega| < 2\pi \end{cases}$$

Figure 1: ω vs $X(j\omega)$

(b)
$$w_s = \frac{2\pi}{T}$$
 and w_m , Nyquist frequency, is found to be 3π from part (a).

$$w_s=2w_m,\, \frac{2\pi}{T}=6\pi$$
 , so T= $\frac{1}{3}$. So, it shall be as : T = $\frac{1}{3}$, and $w_s=6\pi$.

(c) We know the formula,

$$X_p(j\omega) = \frac{1}{T} \sum_{-\infty}^{\infty} X(j(w - kw_s))$$

So if we insert T and X(jw) (from part (a)) into the formula,

$$X_p(j\omega) = \begin{cases} 3\pi, & |\omega| = 3\pi \\ 3, & |\omega| < 2\pi \\ 0, & 2\pi \le |\omega| < 3\pi \end{cases}$$

and $X_p(j\omega)$ is periodic with 6π and at $3\pi \pm 6\pi k$, successive δ 's will overlap, which makes them to be 6π .

Figure 2: ω vs $X_p(j\omega)$

4. (a) Given
$$w_s = \pi$$
, $T = \frac{2\pi}{w_s} = 2$
$$X_p(j\omega) = \frac{1}{T} \sum_{-\infty}^{\infty} X(j(w - kw_s))$$
$$X_d(e^{j\omega}) = X_p(j\frac{\omega}{T})$$

Thus,
$$X_d(e^{j\omega}) = \begin{cases} \frac{2}{\pi}\omega, & |\omega| \leq \frac{\pi}{2} \\ 0, & otherwise \end{cases}$$

(b) $h[n] = cos\pi n$, whose fourier transform is (From table 5.2 in textbook):

$$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \pi - 2\pi l) + \delta(\omega + \pi - 2\pi l)\}\$$

(c) We found $X_d(e^{j\omega})$ and $H(e^{j\omega})$ from part (a) and part (b).

So, we should find $Y(e^{j\omega}) = \frac{1}{2\pi} (H(e^{j\omega}) * X_d(e^{j\omega}))$

Now, if we look at $(H(e^{j\omega})$, for $\omega_0=\pi$, let's convolve $H(e^{j\omega})$ with $X_d(e^{j\omega})$. We see that it comes up

$$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \pi) + \delta(\omega + \pi)\} * X_d(e^{j\omega})$$

Thus, $Y_d(e^{j\omega})$ is sliding $X_d(e^{j\omega})$ amount of $\pm\pi.$ As a result,

$$Y_d(e^{j\omega}) = \begin{cases} \frac{1}{\pi}\omega, & \frac{\pi}{2} \le |\omega| \le \frac{3\pi}{2} \\ 0, & otherwise \end{cases}$$

Note that $Y_d(e^{j\omega})$ is periodic over the period 2π