Chapter 3

First Order Logic (FOL)

3.1 Syntax of FOL

Propositional logic is a coarse language, which only concerns about propositions and boolean connectives. Practically, this logic is not powerful enough to describe important properties we are interested in.

Example 3.1.1 (Syllogism of Aristotle). Consider the following assertions:

- 1. All men are mortal.
- 2. Socrates is a man.
- 3. So Socrates would die.

$$\forall x (Man(x) \rightarrow Mortal(x))$$

Definition 3.1.2. First order logic is an extension of proposition logic:

1. To accept parameters, it generalizes propositions to predicates.

- 2. To designate elements in the domain, it is equipped with functions and constants.
- 3. It also involves quantifiers to capture infinite conjunction and disjunction.

Definition 3.1.3. We are given:

- an arbitrary set of variable symbols $VS = \{x, y, x_1, \dots\};$
- an arbitrary set (maybe empty) of function symbols $FS = \{f, g, f_1, \ldots\}$, where each symbol has an arity;
- an arbitrary set (maybe empty) of predicate symbols $PS = \{P, Q, P_1, \dots\}$, where each symbol has an arity;
- an equality symbol set ES which is either empty or one element set containing $\{\approx\}$.

Let $L = VS \cup \{(,), \rightarrow, \neg, \forall\} \cup FS \cup PS \cup ES$. Here $VS \cup \{(,), \rightarrow, \neg, \forall\}$ are referred to as logical symbols, and $FS \cup PS \cup ES$ are referred to as non-logical symbols.

We often make use of the

- set of constant symbols, denoted by $CS = \{a, b, a_1, ...\} \subseteq FS$, which consist of function symbols with arity 0;
- set of propositional symbols, denoted by $PS = \{p, q, p_1, \dots\} \subseteq FS$, which consist of predicate symbols with arity 0.

Definition 3.1.4 (FOL terms). The terms of the first order logic are constructed according to the following grammar:

$$t ::= x \mid ft_1 \dots t_n$$

where $x \in VS$, and $f \in FS$ has arity n.

Accordingly, the set T of terms is the smallest set satisfying the following conditions:

- each variable $x \in VS$ is a term.
- Compound terms: $ft_1 cdots t_n$ is a term (thus in T), provided that f is a n-arity function symbol, and $t_1, cdots, t_n \in T$. Particularly, $a \in CS$ is a term.

We often write $f(t_1, \ldots, t_n)$ for the compound terms.

Definition 3.1.5 (FOL formulas). The well-formed formulas of the first order logic are constructed according to the following grammar:

$$\varphi ::= Pt_1 \dots t_n \mid \neg \varphi \mid \varphi \to \varphi \mid \forall x \varphi$$

where t_1, \ldots, t_n are terms, $P \in PS$ has arity n, and $x \in VS$. We often write $P(t_1, \ldots, t_n)$ for clarity. Accordingly, the set

FOF of first order formulas is the smallest set satisfying:

- $P(t_1, ..., t_n) \in FOF$ is a formula, referred to as the atomic formula.
- Compound formulas: $(\neg \varphi)$ (negation), $(\varphi \rightarrow \psi)$ (implication), and $(\forall x \varphi)$ (universal quantification) are formulas (thus in FOF), provided that $\varphi, \psi \in FOF$.

We omit parentheses if it is clear from the context.

As syntactic sugar, we can define $\exists x \varphi$ as $\exists x \varphi := \neg \forall x \neg \varphi$. We assume that \forall and \exists have higher precedence than all logical operators.

Definition 3.1.6 (Sub-formulas). For a formula φ , we define

the sub-formula function $Sf: FOF \rightarrow 2^{FOF}$ as follows:

$$Sf(P(t_1, ..., t_n)) = \{P(t_1, ..., t_n)\}$$

$$Sf(\neg \varphi) = \{\neg \varphi\} \cup Sf(\varphi)$$

$$Sf(\varphi \to \psi) = \{\varphi \to \psi\} \cup Sf(\varphi) \cup Sf(\psi)$$

$$Sf(\forall x\varphi) = \{\forall x\varphi\} \cup Sf(\varphi)$$

$$Sf(\exists x\varphi) = \{\exists x\varphi\} \cup Sf(\varphi)$$

Definition 3.1.7 (Scope). The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Formally, each sub-formula of the form $Qx\psi \in Sf(\varphi)$, the scope of the corresponding quantifier Qx is ψ . Here $Q \in \{\forall, \exists\}$.

Substitution for Terms

Definition 3.1.8 (Sentence). We say an occurrence of x in φ is free if it is not in scope of any quantifiers $\forall x$ (or $\exists x$). Otherwise, we say that this occurrence is a bound occurrence. If a variable φ has no free variables, it is called a closed formula, or a sentence.

Definition 3.1.9 (Substitution). The substitution of x with t within φ , denoted as $S_t^x \varphi$, is obtained from φ by replacing each free occurrence of x with t.

We would extend this notation to $S_{t_1,\dots,t_n}^{x_1,\dots,x_n}\varphi$.

Remark 3.1.10. It is important to remark that $S_{t_1,\dots,t_n}^{x_1,\dots,x_n}\varphi$ is not the same as $S_{t_1}^{x_1}\dots S_{t_n}^{x_n}\varphi$: the former performs a simultaneous substitution.

For example, consider the formula P(x,y): the substitution $S_{y,x}^{x,y}P(x,y)$ gives $S_{y,x}^{x,y}P(x,y) = P(y,x)$ while the substitutions $S_y^x S_x^y P(x,y)$ give $S_y^x S_x^y P(x,y) = S_y^x P(x,x) = P(y,y)$.

Remark 3.1.11. Consider $\varphi = \exists y(x < y)$ in the number theory. What is $S_t^x \varphi$ for the special case of t = y?

Definition 3.1.12 (Substitutable on Terms). We say that t is substitutable for x within φ iff for each variable y occurring in t, there is no free occurrence of x in scope of $\forall y/\exists y$ in φ .

Definition 3.1.13 (α - β condition). If the formula φ and the variables x and y fulfill:

- 1. y has no free occurrence in φ , and
- 2. y is substitutable for x within φ ,

then we say that φ , x and y meet the α - β condition, denoted as $C(\varphi, x, y)$.

Lemma 3.1.14. If $C(\varphi, x, y)$, then $S_x^y S_y^x \varphi = \varphi$.