Atividade 05 - Controlador Fuzzy

Eduardo Satiro da Cruz

PPGMMC

CEFET-MG

Belo Horizonte, Brasil
eduardo.satiro@gmail.com

I. Introdução

Esse trabalho tem o objetivo desenvolver um controlador fuzzy de um tanque de água que existe duas válvulas, de entrada e saída. A válvula de entrada tem a vazão entre 0 e 15 litros por segundo porém não tem o conhecimento dessa razão que entra no tanque. A válvula de saída, que é o controlador desenvolvido, também tem a vazão entre 0 e 15 litros por segundo e ela foi programada para que tanque fique com 60 cm de altura de água. O tanque tem duas válvulas, de entrada e saída, tem a altura de 100 cm e a proporção entre a vazão de entrada e saída com a altura do tanque é de um para um, ou seja, a cada um litro corresponde a um centímetro de altura. Na Fig. 5 consta a figura do tanque e as válvulas.

Fig. 1. Figura do Exercício

II. SOLUÇÃO PROPOSTA

Foi utilizado a linguagem *Python* com as bibliotecas *numpy*, *pandas*, *matplotlib* e *random*. Para o problema, foi definido um tempo de 3 mil unidades. Para a válvula de controle entrada foi feito uma função que definiu seis níveis de vazão, zero como vazão zero, um com entrada de um a três litros, nível dois com quatro a seis litros, três com sete a nove litros, nível quatro com dez a doze litros e nível cinco com treze a quinze litros. A cada unidade de tempo, aleatoriamente, define se a vazão diminui, mantém ou aumenta e caso altere a vazão atual, aleatoriamente, define a quantidade de litros de acordo com o nível e a vazão começa com o nível zero.

Para a válvula de controle de saída, foi definido outra função. Nela comparamos o erro (erro é a diferença entre a altura ideal e altura desejada) com as regras definidas e verificamos o valor que cada valor ativou. Posteriormente

calculamos a área ativada no consequente e assim, para a defuzzificação, calculamos a centroide do área ativa.

Para o antecedente foi definido quatro regras, a primeira definida como muito baixa esta entre o erro -60 a 0, a baixa entre -2.5 a 7.5, média como 5 a 10 e alta como 7.5 a 40. Para o consequente também foram quatro regras, a primeira definida como 0, segunda entre 0 e 7.5, terceira 5 a 12.5 e última entre 10 e 15.

III. RESULTADOS OBTIDOS

Na Fig. 2 possui os níveis do antecedente que corresponde todo o valor do erro possível, entre -60 a 40.

Fig. 2. Antecedente

Na Fig. 3 o consequente corresponde o valor de 0 a 15 que é a quantidade de saída possível no válvula de saída.

Fig. 3. Consequente

Na Fig. 4 consta um gráfico com a vazão de entrada, a altura atual, a altura atual menos a vazão de saída e o limite estabelecido.

Na Fig. 5 consta uma tabela com os dados da vazão de saída, a altura atual e a diferença entre eles.

IV. CONSIDERAÇÕES E DISCUSSÕES

A partir das informações apresentadas, o objetivo foi alcançado porém é provável que utilizando outros níveis

Fig. 4. Consequente

Index	Vaz	āo Saída	1	Altura Atu	ıal Alt	ura - Vazāo
50	-	9.06	-	65	-	55.94
51	-	3.75	-	68	-	64.25
52	-	9.06	-	65	-	55.94
53	-	3.75	-	68	-	64.25
54	-	9.06	-	65	-	55.94
55	-	3.75	-	68	-	64.25
56	-	9.06	-	65	-	55.94
57	-	3.75	-	68	-	64.25
58	-	9.06	-	65	-	55.94
59	-	3.75	-	68	-	64.25
500	-	3.75	-	70	-	66.25
501	-	12.5	-	66	-	53.5
502	-	6.53	-	68	-	61.47
503	-	9.06	-	67	-	57.94
504	-	7.92	-	68	-	60.08
505	-	9.06	-	62	-	52.94
506	-	3.75	-	62	-	58.25
507	-	3.75	-	62	-	58.25
508	-	3.75	-	62	-	58.25
509	-	3.75	-	62	-	58.25
1000	-	3.75	-	55	-	51.25
1001	-	0.0	-	56	-	56.0
1002	-	0.0	-	57	-	57.0
1003	-	0.0	-	58	-	58.0
1004	-	3.75	-	55	-	51.25
1005	-	0.0	-	61	-	61.0
1006	-	3.75	-	63	-	59.25
1007	-	3.75	-	65	-	61.25
1008	-	3.75	-	67	-	63.25
1009	-	7.92	-	65	-	57.08

Fig. 5. Tabela com dados da vazão e altura do tanque

de antecedente e consequente e também outra técnica de defuzzificação, o erro pudesse ser mais suavizado, não apresentando muitos picos.

V. CÓDIGO EM PDF