Semantics of HoTT

Chaitanya Leena Subramaniam

University of San Diego

HoTTEST Summer School

31st August 2022

Why semantics?

- ► Soundness, completeness.
- ► Algebraic abstraction of syntactic constructions.
- Find (more general) syntactic proofs of facts about a given model.
- ▶ Justify the claim: "HoTT really is homotopy theory."

Why functorial semantics?

A general way of describing models:

- ▶ The syntax of a type theory \mathbb{T} forms a category with structure $\mathbb{C}_{\mathbb{T}}$ (the *syntactic category*).
- ▶ A \mathbb{T} -model in a category \mathcal{C} is a structure-preserving functor $\mathbb{C}_{\mathbb{T}} \to \mathcal{C}$.
- $ightharpoonup \mathbb{C}_{\mathbb{T}}$ is *initial* among categories with said structure.
- ► Therefore a T-model in a category C is simply a choice of said structure in C.

The syntactic category of HoTT

Defining the syntactic category $\mathbb C$ only requires the *structural* rules of MLTT:

$$\begin{array}{cccc} & & & \frac{\Gamma \vdash A \text{ type}}{\vdash \Gamma, x : A \text{ ctxt}} & \text{EXT} \\ \\ & & \frac{\vdash \Gamma, x : A, \Delta \text{ ctxt}}{\Gamma, x : A, \Delta \vdash x : A} & \text{VAR} \\ \\ & & \frac{\Gamma, \Delta \vdash \mathcal{J} & \Gamma \vdash A \text{ type}}{\Gamma, x : A, \Delta \vdash \mathcal{J}} & \text{WEAK} \\ \\ & & \frac{\Gamma, x : A, \Delta \vdash \mathcal{J} & \Gamma \vdash a : A}{\Gamma, \Delta[a/x] \vdash \mathcal{J}[a/x]} & \text{SUBST} \end{array}$$

- ▶ The objects of \mathbb{C} are contexts $\Gamma = x_1:A_1,\ldots,x_k:A_k$.
- lacktriangle Morphisms $\Delta \to x_1 : A_1, \dots, x_k : A_k$ are lists $\tau = (t_1, \dots, t_k)$ of terms

$$\Delta \vdash t_1 : A_1$$

$$\vdots$$

$$\Delta \vdash t_k : A_k[t_1/x_1, \dots, t_{k-1}/x_{k-1}].$$

The identity morphism is just the list of variables (x_1, \ldots, x_k) , and composition is defined by substitution.

Structure on $\mathbb C$

- ▶ The empty context is a terminal object.
- ▶ Given $\Gamma \vdash A$ and a morphism $\Delta \xrightarrow{\tau} \Gamma$, substitution defines a

$$\begin{array}{c} \Delta, x \mathpunct{:}\! A[\tau] \xrightarrow{(\tau, x)} \Gamma, x \mathpunct{:}\! A \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \Delta \xrightarrow{\quad \tau \quad } \Gamma \end{array}$$

For Γ in \mathbb{C} , let $\mathbb{C}/\!/\Gamma$ be the full category of $\mathbb{C}_{/\Gamma}$ on the projections $\Gamma, x : A \to \Gamma$. Substitution defines pullback functors $\mathbb{C}/\!/\Gamma \to \mathbb{C}/\!/\Gamma, x : A$. The rules for Σ -types provide left adjoints to these functors, while those for Π -types provide right adjoints.

► The rules for Id-types give

▶ The rules for a type universe give, for every morphism $\Gamma \xrightarrow{A} \mathcal{U}$. a

$$\begin{array}{cccc} \Gamma, x{:}A & \xrightarrow{(A,x)} & X{:}\mathfrak{U}, x{:}X \\ & & \downarrow & & \downarrow \\ & \Gamma & \xrightarrow{A} & \mathfrak{U}. \end{array}$$
 choice of pullback square

Definition

A **universe** in a category \mathcal{C} is a map $U' \to U$ along with for every

morphism
$$X \xrightarrow{f} U$$
, a choice of pullback square $X \xrightarrow{f} U$

Digression: CCCs

- ▶ An object X of a category $\mathfrak C$ is **squarable** if $\forall Y$ in $\mathfrak C$, the product $X \times Y$ exists in $\mathfrak C$,
- \Leftrightarrow the functor $\mathcal{C}_{/X} \to \mathcal{C}$ from the slice category has a right adjoint.
- ▶ A squarable object X is **exponentiable** if (the right adjoint) $\mathcal{C} \xrightarrow{X \times -} \mathcal{C}_{/X}$ has a (further) right adjoint $X \Rightarrow -$.
- ightharpoonup $m {\it C}$ has finite products if it has a terminal object and every X in $m {\it C}$ is squarable.
- $ightharpoonup {\mathcal C}$ is **cartesian closed** if it has a terminal object and every X in ${\mathcal C}$ is exponentiable (thus also squarable).

Digression: LCCCs

- ▶ A map $X \xrightarrow{f} Y$ in $\mathcal C$ is **squarable** if $\forall Z \xrightarrow{g} Y$ in $\mathcal C$, the pullback $\vdots \xrightarrow{h} \vdots \\ f^*g \downarrow \xrightarrow{\Box} \downarrow g$ exists in $\mathcal C$, $\vdots \xrightarrow{f} \vdots$
- \Leftrightarrow the functor $\mathcal{C}_{/X} \xrightarrow{f \circ -} \mathcal{C}_{/Y}$ has a right adjoint f^* .
- ▶ A squarable map $X \xrightarrow{f} Y$ is **exponentiable** if $\mathcal{C}_{/Y} \xrightarrow{f^*} \mathcal{C}_{/X}$ has a right adjoint Π_f .
- C is locally cartesian closed if all its maps are (squarable and) exponentiable,
- \Leftrightarrow every slice category $\mathcal{C}_{/X}$ is cartesian closed.

Modeling dependent type theory in LCCCs "naïvely"

In the Set model of type theory,

- ightharpoonup Contexts are sets: $\Gamma \in \operatorname{Set}$
- ▶ Types are indexed sets: $\Gamma \vdash A$ corresponds to $\{A_{\gamma} \in \text{Set} \mid \gamma \in \Gamma\}$ and $(\Gamma, x:A) = \coprod_{\gamma \in \Gamma} A_{\gamma}$. Equivalently, types are functions $A \to \Gamma$.
- $\begin{array}{c|c} & \Gamma, x : A \\ & \downarrow \\ & \Gamma \end{array} \text{ of the projection. }$
- (Σ -types) For $B \to A \to \Gamma$, we have $(\Sigma_A B)_{\gamma} = \coprod_{a \in A_{\gamma}} B_a$
- (Π -types) For $B \to A \to \Gamma$, we have $(\Pi_A B)_{\gamma} = \prod_{a \in A_{\gamma}} B_a$.

► (Id types)

But in this interpretation, refl is also a type over $=_A$, so using elim

Consequently, $=_A \to A \times A$ is the diagonal map Δ_A of A, and hence is a monomorphism in Set.

Corollary: In the Set model, all types/contexts are 0-truncated (uniqueness of identity proofs).

So the Set model of type theory cannot be a model of HoTT. This argument also works in any LCCC.

Models of type theory with Σ, Π, \mathcal{U}

A LCCC C, with

- ► A chosen terminal object 1.
- ightharpoonup A universe $U' \to U$,
- ▶ that is closed under Σ : the composite $A \to B \to C$ of maps "in the universe" is in the universe,
- ▶ that is closed under Π : for any sequence $C \to B \to A$ of maps in the universe, the exponential $\Pi_B C \to A$ is in the universe.

(We'll ignore coherence conditions for today.)

Models of Id-types in model categories

The first "homotopical" flavour in type theory is the observation (Awodey, Warren) that if types-in-context $\Gamma \vdash A$ are interpreted as fibrations of a (Quillen) model category, then Id-types can be interpreted as path objects.

the diagonal as a trivial cofibration followed by a fibration, and the rules

elim, comp:
$$P_A = P_A$$
 are given by the lifting of the trivial

cofibration refl against the fibration $C \to P_A$.

Example: Contractibility

Syntactically, the type $\Sigma_{a:A}\Pi_{x:A}a=_Ax$ is equivalent to the type $\Sigma_{a:A}(\lambda x.a\sim \mathrm{id}_A)$ of deformation retracts of A onto the terminal object 1 (the empty context).

Semantically, consider a path object $P_A \to A \times A$. Then a section $1 \to \Sigma_{A \to 1} \Pi_{\pi_2: A \times A \to A} P_A$ corresponds to a section $1 \xrightarrow{a} A$ and a

commuting triangle

which, by adjointness,

corresponds to a triangle

But this right homotopy

describes a deformation retract of A onto 1.

The simplicial model of univalence

It turns out that there is a very nice model category in which we can interpret HoTT (Voevodsky). This is the model category ${\rm sSet}$ of simplicial sets with the usual "Kan-Quillen" model structure. For a suitable cardinal κ

- There is a κ -small (each fibre is a κ -small set) map of simplicial sets $U' \to U$ that classifies (is a universe of) κ -small fibrations,
- ▶ that is closed under Σ , Π and Id,
- such that U is fibrant and $U' \to U$ is a κ -small fibration.
- ightharpoonup and such that $U' \to U$ satisfies the univalence axiom.

(The construction of the fibration $U' \to U$ is technical.)

▶ in order to show that every small fibration is a pullback of $U' \to U$, it suffices that in every solid diagram of pullback squares as below, where $A \rightarrowtail B$ is a monomorphism, and where the vertical arrows are small fibrations, the dashed part exists and is a pullback.

▶ Once this is done, showing that *U* is fibrant turns out to reduce to requiring that the dashed part of the following pullback square exist whenever the solid part does, where vertical arrows are fibrations, and *i* is a trivial cofibration (the "fibration extension property").

Finally, univalence comes down to the "equivalence extension property": given a cofibration i and weak equivalence w in the solid diagram below, where all vertical maps are fibrations and the front square is a pullback, the dashed part of the diagram exists, where v is a weak equivalence, vertical maps are fibrations, and all squares are pullbacks.

Models in higher topoi

The model category sSet presents the ∞ -topos of ∞ -groupoids (spaces), and the model of HoTT in sSet does interpret types as arbitrary ∞ -groupoids.

In fact, it is possible to extend this to an interpretation of HoTT in any Grothendieck ∞ -topos.

Type-theoretic model topoi

A type-theoretic model topos (Shulman) is a category ${\mathcal E}$

- that is a 1-topos,
- with a model structure that is right proper, simplicial, combinatorial and whose cofibrations are exactly the monomorphisms,
- that is simplicially locally cartesian closed,
- that has a suitable "notion of fibred structure" that classifies all fibrations.

The key fact (Shulman) is that every type-theoretic model topos models type theory with Σ , Π , Id, univalent universes, W-types, pushouts, truncations, etc.

Model categories of simplicial presheaves

Given a small category A, the category $\mathrm{Sp}A = [A^{op}, \mathrm{sSet}]$ of simplicial presheaves on A has an **injective** model structure, whose weak equivalences and cofibrations are the pointwise weak equivalences and cofibrations of simplicial presheaves.

Every Grothendieck ∞ -topos can be presented by a left exact left Bousfield localisation of one of these model categories. So it would be nice if they were type-theoretic model topoi.

However, the fibrations of this model structure are difficult to characterise (unlike those of sSet), so constructing a universal univalent fibration is non-trivial.

Injective fibrations

Given a square $C \longrightarrow X \\ \downarrow p \\ \downarrow p$ of simplicial presheaves on A such that i is a $D \longrightarrow Y$

pointwise cofibration and p is a pointwise fibration, there exist lifts $C_a \to X_a$ for all a that do not fit into a natural transformation, but into a homotopy-coherent natural transformation.

There is an object $\mathbf{C}(X)$ that classifies homotopy-coherent natural transformations into X, with a map $X \to \mathbf{C}(X)$. It so happens that X is injectively fibrant just when it is equipped with a retraction $\mathbf{C}(X) \to X$.

Since retractions are *structure*, this turns out to be a suitable "notion of fibred structure" that makes $\mathrm{Sp}A$ with the injective model structure a type-theoretic model topos.