Homework 11

Frederick Robinson

13 May 2011

1 Question 1

1.1 Question

- 1. If S is an irreducible subset of a topological space X, prove that \overline{S} (the closure of S) is again irreducible.
- 2. If $f: X \to Y$ is a continuous map of topological space, prove that f(S) is irreducible for every irreducible subset S of X.
- 3. If $f: X \to Y$ is a continuous map of topological spaces and $S \subset X$ is an irreducible closed subset admitting a generic point x (i.e. $S = \overline{\{x\}}$), then $\overline{f(S)}$ is irreducible closed and admits f(x) as a generic point (i.e. $\overline{f(S)} = \overline{\{f(x)\}}$).

1.2 Answer

2 Question 2

2.1 Question

If A is a non-trivial zero-dimensional ring, prove that A[x] is one-dimensional.

2.2 Answer

3 Question 3

3.1 Question

1. Use the correspondence between irreducible subsets of Spec A and their generic points to show that for any ring A and any $\mathfrak{p} \in \operatorname{Spec} A$, the closed subset $V(\mathfrak{p})$ is an irreducible component of Spec A if and

only if $\mathfrak p$ is a minimal prime ideal of $\mathfrak p$ (i.e. does not properly contain any other prime ideals of A).

2. Use the general existence result for irreducible components to conclude that any prime ideal $\mathfrak p$ of Spec A contains a minimal prime ideal.

3.2 Answer

4 Question 4

4.1 Question

Prove that A[x] is 2-dimensional if A is a PID (not a field).

4.2 Answer