Circuitos Digitais

Sistemas Numéricos

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Representação de Números Decimais

- Sistema decimal (base 10) → duas regras básicas:
 - Usamos 10 símbolos: 0,1,2,3,4,5,6,7,8 e 9.
 - O valor de cada símbolo depende de sua posição.
 - Exemplo:

$$9845 = 9 \times 10^3 + 8 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

Circuitos Digitais

- □ Sinal digital → operam de modo binário :
 - cada tensão de entrada ou saída tem valor 0 ou 1 → intervalos de tensão predefinidos

Representação de Números Binários

- □ Sistema binário (base 2) → usamos as mesmas duas regras:
 - 2 símbolos \rightarrow 0 e 1 \rightarrow bits (binary digits)
 - O valor de cada símbolo depende de sua posição.
 - Exemplo:

$$26_{10} = 11010_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

Pesos dos Números Binários

□ Pesos aumentam da direita para a esquerda

- (LSB *least significant bit*) → bit menos significativo, com peso 2°.
- (MSB most significant bit) → bit mais significativo, com peso 2ⁿ⁻¹, sendo n o tamanho da palavra de bits. (No exemplo exemplo n = 7)

Conversão Decimal - Binário

Método da Divisão Sucessiva

- 1. Divide-se o número por 2
- 2. O resto é o bit menos significativo (LSB)
- 3. O quociente (inteiro) é dividido novamente por 2
- 4. O resto é o próximo bit menos significativo
- 5. Repete-se o processo até que o quociente seja 0

Exemplo → Converter 12 para binário

 $\frac{12}{2} = 6$ $\frac{6}{2} = 3$ $\frac{3}{2} = 1$ $\frac{1}{2} = 0$

Resto MSB

Pare quando a parte inteira do quociente for 0.

Representação de Números Binários

- \square Com n bits podemos representar até 2^n números
 - $n = 5 \rightarrow 2^5 \rightarrow 32 \text{ números (0 a 31)}$
 - $n = 6 \rightarrow 2^6 \rightarrow 64 \text{ números (0 a 63)}$

- \square Com n bits podemos contar até 2^n -1
 - n = 5 \rightarrow 2⁵-1 \rightarrow 31 \rightarrow podemos contar de 0 a 31
 - \blacksquare n = 6 \rightarrow 26-1 \rightarrow 63 \rightarrow podemos contar de 0 a 63

Outras bases

- Podemos usar qualquer base (radix) para nossa representação numérica
 - Por exemplo, podemos usar base 3, 7, 42, etc..
 - Os antigos babilônios utilizavam base 60 e, por isso, temos 60 minutos em uma hora e 360 graus em um círculo.
- □ Além das bases 2 e 10, a base 16 (hexadecimal) é bastante utilizada.

Representação de Números base K

■ Base k

- Usamos k símbolos.
- O valor de cada símbolo depende de sua posição.
- Exemplo:

$$D_3D_2D_1D_0, D_{-1}D_{-2}D_{-3} =$$

$$D_3 \times k^3 + D_2 \times k^2 + D_1 \times k^1 + D_0 \times k^0 + D_{-1} \times k^{-1} + D_{-2} \times k^{-2} + D_{-3} \times k^{-3}$$

□ Sistema Hexadecimal → Base 16

■ Usamos 16 símbolos → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Para converter para decimal:

HEX	0	1	2	3	4	5	6	7	8	9	А	В	С	О	Ε	F
DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Exemplo:

$$FACA_{16} = 15 \times 16^{3} + 10 \times 16^{2} + 12 \times 16^{1} + 10 \times 16^{0} = 64202_{10}$$

□ Fácil conversão Hexadecimal ← → Binário

Um dígito hexadecimal corresponde a um número

binário com 4 bits

	Bin	ário		Dígito Hexadec.
0	0	0	0	0
0	0	0	1	1
0	0	Ψ-	0	3
0	0	1	1	
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	А
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

Para converter binário para hexadecimal agrupa-se os bits de 4 em 4 da direita para a esquerda

■ Exemplos Binário → Hexadec.

	Bin	ário		Dígito Hexadec.
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

□ Fácil conversão Hexadecimal ← → Binário

Um dígito hexadecimal corresponde a um número

binário com 4 bits

■ Exemplo Hexadec. → Binário

	Bin	ário		Dígito Hexadec.
0	0	0	0	0
0	0	0	1	1
0	0	1	0	3
0	0	1	1	
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	Е
1	1	1	1	F