

数理统计的基本概念与抽样分布

第一节 基本概念

第二节 常用统计分布

第三节 抽样分布

下页 ____

返回

第一节 基本概念

- 一、总体与个体
- 二、随机样本的定义
- 三、统计量
- 四、内容小结

下页 _____返回

一、总体与个体

一个统计问题总有它明确的研究对象. 研究对象的全体称为总体(母体), 总体中每个成员称为个体.

研究某批灯泡的质量

考察国产轿车的质量

然而在统计研究中,人们关心总体仅仅是 关心其每个个体的一项(或几项)数量指标和该 数量指标在总体中的分布情况. 这时,每个个 体具有的数量指标的全体就是总体.

该批灯泡寿命的 全体就是总体

所有国产轿车每公里耗油量的全体就是总体

总体可以用一个随机变量来表示

考察某大学一年级 学生的年龄 设该大学一年级学生 的年龄分布如下表

年龄	18	19	20	21	22
比例	0.5	0.3	0.1	0.07	0.03

某大学一年级全体 学生的年龄构成问 题的总体 若从该大学一年级学生中任意 抽查一个学生的年龄,所得结 果为一随机变量,记作*X*. X的概率分布是:

可见, X的概率分布反映了总体中各个值的分布情况. 很自然地, 我们就用随机变量X来表示所考察的总体.

也就是说,<u>总体可以用一个随机变量及其</u> 分布来描述。

又如:研究某批灯泡的寿命时,关心的数量指标就是寿命,那么,此总体就可以用随机变量X表示,或用其分布函数F(x)表示.

某批 灯泡的寿命

鉴于此,常用随机变量的记号或用其分布函数表示总体.如说总体X或总体F(x).

有限总体和无限总体

实例 某工厂10月份生产的灯泡寿命所组成的总体中,个体的总数就是10月份生产的灯泡数,这是一个有限总体;而该工厂生产的所有灯泡寿命所组成的总体是一个无限总体,它包括以往生产和今后生产的灯泡寿命.

当有限总体包含的个体的 总数很大时,可近似地将它看 成是无限总体.

二、随机样本的定义

1. 样本的定义

从总体X中,随机地抽取n个个体:

$$X_1, X_2, \cdots, X_n$$

称为总体X的一个样本,记为

$$(X_1, X_2, \cdots, X_n)$$

样本中所包含个体的总数n称为样本容量.

注 样本 (X_1, X_2, \dots, X_n) 是一个n 维随机变量

2. 样本值

每一次抽取 X_1, X_2, \dots, X_n 所得到的n个

确定的具体数值, 记为

$$(x_1,x_2,\cdots,x_n)$$

称为样本 (x_1, x_2, \dots, x_n) 的一个样本值(观察值).

3. 简单随机样本

若来自总体 X的样本 (X_1, X_2, \dots, X_n) 具有下列 两个特征:

- (1) 代表性: $X_1, X_2, ..., X_n$ 中每一个与所考察的总体有相同的分布.
- (2) 独立性: $X_1, X_2, ..., X_n$ 是相互独立的随机变量.

则称 (X_1, X_2, \dots, X_n) 是来自总体X 容量为n 的简单随机样本.

获得简单随机样本的抽样方法称为简单随机抽样.

总体和样本的数学严格定义:

定义5.1 一个随机变量 X 或其相应的分布函数 F(x) 称为一个总体.

定义5.2 设 X 是具有分布函数F(x)的随机变量,若 $X_1, X_2, ..., X_n$ 是具有同一分布函数F(x)、相互独立的随机变量,则称 $X_1, X_2, ..., X_n$ 为来自总体X的容量为n的简单随机样本,简称样本.

4. 样本的分布

定理5.1 设 $(X_1, X_2, ..., X_n)$ 为来自总体X的样本. (1)若总体X的分布函数为F(x),则样本

$$(X_1, X_2, \dots, X_n)$$
的分布函数为 $\prod_{i=1}^n F(x_i)$.

(2)若总体X的分布密度为p(x),则样本 (X_1, X_2, \dots, X_n) 的分布密度为 $\prod_{i=1}^n p(x_i)$.

(3)若总体X的分布率为
$$P\{X = x_i^*\} = p(x_i^*)(i = 1, 2, \dots),$$

则样本
$$(X_1, X_2, \dots, X_n)$$
的分布率为 $\prod_{i=1}^n p(x_i)$.

例1 设总体 X 服从参数为 $\lambda(\lambda > 0)$ 的指数分布, (X_1, X_2, \dots, X_n) 是来自总体的样本,求样本 (X_1, X_2, \dots, X_n) 的概率密度.

解 总体 X 的概率密度为 $p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

因为 X_1, X_2, \dots, X_n 相互独立,且与X有相同的分布,所以 (X_1, X_2, \dots, X_n) 的概率密度为

例2设总体X服从两点分布B(1,p),其中 $0 , <math>(X_1, X_2, \dots, X_n)$ 是来自总体的样本,求样本 (X_1, X_2, \dots, X_n) 的分布律.

解总体X的分布律为

$$P{X = i} = p^{i} (1-p)^{1-i}$$
 $(i = 0, 1)$

因为 X_1, X_2, \cdots, X_n 相互独立,

且与X有相同的分布,

所以 (X_1, X_2, \dots, X_n) 的分布律为

$$P\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n \}$$

$$= P\{X_1 = x_1\}P\{X_2 = x_2\} \dots P\{X_n = x_n \}$$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

其中 x_1, x_2, \dots, x_n 在集合 $\{0,1\}$ 中取值.

三、统计量

由样本推断总体情况,需要对样本值进行"加工",这就需要构造一些样本的函数,它把样本中所含的信息集中起来.

1. 统计量的定义5.3

设 (X_1, X_2, \dots, X_n) 是来自总体X的一个样本, $f(X_1, X_2, \dots, X_n)$ 是 X_1, X_2, \dots, X_n 的函数,若f中不含任何关于总体X的未知参数,则称 $f(X_1, X_2, \dots, X_n)$ 是一个统计量.

设
$$(x_1, x_2, \dots, x_n)$$
是样本
$$(X_1, X_2, \dots, X_n)$$

的样本值,则称 $f(x_1,x_2,\cdots,x_n)$ 是

$$f(X_1, X_2, \dots, X_n)$$

的观察值.

用于估计分布中参数的统计量, 称为估计量.

- 注 1° 统计量 $f(X_1, X_2, \dots, X_n)$ 是随机变量;
- 2°统计量用于统计推断,故不应含任何 关于总体X的未知参数.

例1 设 X_1, X_2, X_3 是来自总体 $N(\mu, \sigma^2)$ 的一个 样本,其中 μ 为已知, σ^2 为未知,判断下列各式哪 些是统计量,哪些不是?

$$T_1 = X_1,$$
 $T_4 = \max(X_1, X_2, X_3),$ E

$$T_2 = X_1 + X_2 e^{X_3}, \quad T_5 = X_1 + X_2 - 2\mu,$$
 $T_3 = \frac{1}{3}(X_1 + X_2 + X_3),$

$$T_6 = \frac{1}{\sigma^2} (X_1^2 + X_2^2 + X_3^2)$$
. 不是

2. 几个常用统计量的定义

(1) 样本矩

设 X_1, X_2, \dots, X_n 是来自总体的一个样本, x_1, x_2, \dots, x_n 是这一样本的观察值

1) 样本均值
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

其观察值 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

它反映了总体均值 的信息

可用于推断: E(X).

2) 样本方差

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
$$= \frac{1}{n} \left(\sum_{i=1}^n X_i^2 - n\bar{X}^2 \right).$$

可用于推断: D(X).

其观察值

$$s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

它反映了总体方差 的信息

3)样本标准差

$$S_n = \sqrt{S_n^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2};$$

其观察值

$$s_n = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2}.$$

4)修正样本方差

$$S_n^{*2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 - n\overline{X}^2).$$

其观察值

$$s_n^{*2} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} (\sum_{i=1}^n x_i^2 - n\bar{x}^2).$$

样本方差与修正样本方差的关系:

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{n-1}{n} S_n^{*2}.$$

注 1°当n较大时, $S_n^{*2} 与 S_n^2$ 差别微小;

 2° 当n较小时, S_n^{*2} 比 S_n^2 有更好的统计性质.

5) 样本 k 阶(原点)矩

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \dots;$$
 特例: $A_1 = \overline{X}$

其观察值
$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$$
.

6)样本 k 阶中心矩

特例:
$$B_2 = S_n^2$$

$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k, k = 2, 3, \dots;$$

其观察值
$$b_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k$$
, $k = 2, 3, \dots$.

样本矩具有下列性质:

性质5.1 设总体X的期望 $E(X) = \mu$,方差 $D(X) = \sigma^2$, (X_1, X_2, \dots, X_n) 为来自总体X的样本,则有

$$(1) E(\overline{X}) = \mu;$$

$$(2) D(\overline{X}) = \frac{1}{n} \sigma^2;$$

(3)
$$E(S_n^2) = \frac{n-1}{n}\sigma^2$$
;

(4)
$$E(S_n^{*2}) = \sigma^2$$
.

$$\mathbf{i}\mathbf{E} \quad (1) \, \mathbf{E}(\mathbf{X}) = \boldsymbol{\mu}$$

$$E(\overline{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$$

$$(2) D(\overline{X}) = \frac{1}{n} \sigma^2$$

$$D(\overline{X}) = D(\frac{1}{n} \sum_{i=1}^{n} X_i)$$

$$= \frac{1}{n^2} \sum_{i=1}^n D(X_i) = \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2.$$

$$(3) E(S_n^2) = \frac{n-1}{n} \sigma^2 \qquad S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$E(S_n^2) = E[\frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2]$$

$$= \frac{1}{n} \sum_{i=1}^n E(X_i^2) - E(\bar{X}^2)$$

$$= \frac{1}{n} \sum_{i=1}^n E(X_i^2) - E(\bar{X}^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} [D(X_i) + (E(X_i))^2] - [D(\overline{X}) + (E(\overline{X}))^2]$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\sigma^2 + \mu^2) - (\frac{1}{n} \sigma^2 + \mu^2) = \frac{n-1}{n} \sigma^2$$

(4)
$$E(S_n^{*2}) = E(\frac{n}{n-1}S_n^2) = \frac{n}{n-1}E(S_n^2) = \sigma^2$$

性质5.2 若总体X的k阶矩 $E(X^k) = \mu_k$ 存在,

则当
$$n \to \infty$$
时, $A_k \xrightarrow{P} \mu_k$, $k = 1, 2, \cdots$.

证 因为 X_1, X_2, \dots, X_n 独立且与X 同分布,

所以 $X_1^k, X_2^k, \dots, X_n^k$ 独立且与 X^k 同分布,

故有
$$E(X_1^k) = E(X_2^k) = \cdots = E(X_n^k) = \mu_k$$
.

再根据第四章辛钦定理知,

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} \mu_k , \quad (n \to \infty), \quad k = 1, 2, \dots;$$

由第四章关于依概率收敛的序列的性质知

$$g(A_1,A_2,\cdots,A_k) \xrightarrow{P} g(\mu_1,\mu_2,\cdots,\mu_k),$$

其中g是连续函数.

以上结论是下一章所要介绍的矩估计法的理论根据.

(2) 次序统计量

定义 设 $(X_1, X_2, ..., X_n)$ 是从总体X中抽取的一个样本, $(x_1, x_2, ..., x_n)$ 是其一个观测值,将观测值按由小到大的次序重新排列为

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$$

当 (X_1, X_2, \cdots, X_n) 取值为 $(x_1, x_2, \cdots x_n)$ 时,定义

$$X_{(k)}$$
取值为 $x_{(k)}(k=1,2,\cdots n)$, 由此得到 $(X_{(1)},X_{(2)},\cdots,X_{(n)})$,

称为样本 (X_1, X_2, \dots, X_n) 的次序统计量.

对应的 $(x_{(1)},x_{(2)},\cdots x_{(n)})$ 称为其观测值。

 $X_{(k)}$: 样本 (X_1, X_2, \dots, X_n) 的第k个次序统计量.

特别地, $X_{(1)} = \min_{1 \le i \le n} X_i$ 称为最小次序统计量.

 $X_{(n)} = \max_{1 \le i \le n} X_i$ 称为最大次序统计量.

注 由于每个 $X_{(k)}$ 都是样本 (X_1, X_2, \dots, X_n) 的函数,所以, $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ 也都是随机变量,并且它们一般不相互独立.

定理5.2 设总体X的分布密度为p(x)(或分布函数为F(x)), $(X_{(1)},X_{(2)},\cdots,X_{(n)})$ 为总体X的 样本 (X_1,X_2,\cdots,X_n) 的次序统计量。则有

(1)最大次序统计量 $X_{(n)}$ 的分布密度为

$$p_{X_{(n)}}(x) = n[F(x)]^{n-1}p(x)$$

(2) 最小次序统计量X₍₁₎的分布密度为

$$p_{X_{(1)}}(x) = n[1 - F(x)]^{n-1}p(x)$$

$$\begin{split} \mathbf{ii} \quad & \textbf{I} \quad F_{X_{(n)}}(x) = P\{X_{(n)} \leq x\} \\ & = P\{\max_{1 \leq i \leq n} X_i \leq x\} \\ & = P\{X_1 \leq x, X_2 \leq x, \cdots, X_n \leq x\} \\ & = P\{X_1 \leq x\} \cdot P\{X_2 \leq x\} \cdot \cdots \cdot P\{X_n \leq x\} \end{split}$$

$$=F^n(x)$$

$$\therefore p_{X_{(n)}}(x) = \frac{\mathrm{d}F_{X_{(n)}}(x)}{\mathrm{d}x} = nF^{n-1}(x) \cdot p(x)$$

(2)
$$F_{X_{(1)}}(x) = P\{X_{(1)} \le x\}$$

$$= P\{\min_{1 \le i \le n} X_i \le x\} = 1 - P\{\min_{1 \le i \le n} X_i > x\}$$

$$= 1 - P\{X_1 > x, X_2 > x, \dots, X_n > x\}$$

$$=1-[1-F(x)]^n$$

$$\therefore p_{X_{(1)}}(x) = \frac{\mathrm{d}F_{X_{(1)}}(x)}{\mathrm{d}x}$$

$$=-n[1-F(x)]^{n-1}\cdot[-F'(x)]=n[1-F(x)]^{n-1}\cdot p(x).$$

例2 设总体X服从区间[$0,\theta$]上的均匀分布, (X_1, X_2, \dots, X_n) 为总体X的样本,试求 $X_{(1)}$ 和 $X_{(n)}$ 的分布.

 $X_{(n)}$ 的分布。 $\mathbf{p}(x) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ \mathbf{0}, & \mathbf{j} \in \mathbf{0} \end{cases}$

$$X$$
的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{\theta}, & 0 \le x \le \theta \\ 1, & x > \theta \end{cases}$

由定理5.2得X(1)的分布密度为

$$\begin{aligned} p_{X_{(1)}}(x) &= n[1 - F(x)]^{n-1} p(x) \\ &= \begin{cases} \frac{n}{\theta} (1 - \frac{x}{\theta})^{n-1}, & 0 \le x \le \theta \\ 0, & \text{\sharp} \text{ th} \end{cases} \end{aligned}$$

而 $X_{(n)}$ 的分布密度为

$$p_{X_{(n)}}(x) = nF^{n-1}(x)p(x) = \begin{cases} \frac{n}{\theta^n}x^{n-1}, & 0 \le x \le \theta \\ 0, & \text{ 其他} \end{cases}$$

(3) 经验分布函数

定义5.5 设 X_1, X_2, \dots, X_n 是总体X的一个样本, $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ 为总体X的样本 (X_1, X_2, \dots, X_n) 的次序统计量. $(x_{(1)}, x_{(2)}, \dots x_{(n)})$ 为其观测值,设x是任一实数, 称函数 $\begin{bmatrix} 0, & x < x_{(1)}, & x_{(2)}, & x_{$

$$F_n(x) = \begin{cases} 0, & x < x_{(1)}, \\ \frac{k}{n}, & x_{(k)} \le x < x_{(k+1)}, \\ 1, & x \ge x_{(n)}. \end{cases}$$

为总体X的经验分布函数,即对于任何实数x,,经验分布函数 $F_n(x)$ 为样本值中不超过x的个数再除以n,亦即

$$F_n(x) = \frac{\mu_n(x)}{n}$$

其中 $\mu_n(x)$ ($-\infty < x < +\infty$)表示 x_1, x_2, \dots, x_n 中不超过于x的个数.

性质

- (1)对于给定的一组样本值 $(x_1, x_2, ..., x_n)$, $F_n(x)$ 满足分布函数的特征,是一个分布函数.
- (2)由于 $F_n(x)$ 是样本的函数,故 $F_n(x)$ 是随机变量. 可以证明 $nF_n(x) \sim B(n,F(x))$,所以

$$E[F_n(x)] = F(x), \quad D[F_n(x)] = \frac{F(x)[1 - F(x)]}{n}$$

 $(3)F_n(x)$ 依概率收敛于F(x). 即 $\lim P\{|F_n(x)-F(x)|<\varepsilon\}=1 \qquad (\forall \varepsilon>0)$

格里汶科定理5.3

对于任一实数x,当 $n \to \infty$ 时, $F_n(x)$ 以概率1 一致收敛于分布函数F(x),即

$$P\left\{\lim_{n\to\infty}\sup_{-\infty< x<+\infty}\left|F_n(x)-F(x)\right|=0\right\}=1.$$

对于任一实数x当n充分大时,经验分布函数的任一个观察值 $F_n(x)$ 与总体分布函数F(x)只有微小的差别,从而在实际上可当作F(x)来使用.

例3 设总体X具有一个样本值1,2,3,

则经验分布函数
$$F_3(x)$$
的观察值为
$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{3}, & 1 \le x < 2, \\ \frac{2}{3}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

例4 设总体X具有一个样本值1,1,2,则经验分布函数 $F_3(x)$ 的观察值为

$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{2}{3}, & 1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

四、内容小结

说明1 一个总体对应一个随机变量X,我们将不区分总体和相应的随机变量,统称为总体X.

说明2 在实际中遇到的总体往往是有限总体,它对应一个离散型随机变量;当总体中包含的个体的个数很大时,在理论上可认为它是一个无限总体.

总体, 样本, 样本值的关系:

统计是从手中已有的资料--样本值,去推断总体的情况--总体的分布F(x)的性质.

样本是联系二者的桥梁.

总体分布决定了样本取值的概率规律,也就是样本取到样本值的规律,因而可以由样本值去推断总体.

两个最重要的统计量:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$