ESP8089 技术规格书

版本 2.0 版权 © 2016

关于本手册

本文介绍了 ESP8089 的产品技术规格。

本手册结构如下:

章	标题	内容
第1章	概述	介绍 ESP8089 的功能框图,技术概述和特性。
第2章	电路原理图	提供 ESP8089 的电路原理图。
第3章	超低功耗技术	介绍 ESP8089 的超低功耗技术和高集成度。
第4章	ESP8089 应用	介绍 ESP8089 的应用。
第5章	规格	介绍 ESP8089 的功耗和射频特性。
第6章	CPU、存储器和接口	介绍 ESP8089 的CPU,存储器和接口。
第7章	固件	介绍 ESP8089 的固件特征。
第8章	电源管理	介绍 ESP8089 芯片的 5 种电源状态。
第9章	时钟管理	介绍 ESP8089 的高频时钟和外部参考要求。
第 10 章	射频接收器	介绍 ESP8089 的射频接收器包含的主要模块。
第 11 章	蓝牙共存	介绍 ESP8089 的蓝牙共存功能。
附录	QFN32 封装信息	提供 QFN32 封装信息。

发布说明

日期	版本	发布说明
2014.12	V1.0	首次发布。
2016.08	V2.0	更新排版格式。

1.	概述.			1
	1.1.	ESP808	9 功能框图	1
	1.2.	技术概述	<u>\(\) \(\)</u>	1
	1.3.	特性		2
2.	电路	原理图		3
3.	超低	功耗技术		4
	3.1.	超低功制	技术	4
	3.2.	高集成的	F	4
4.	ESP8	3089 应	月	5
5.	规格.			6
	5.1.	功耗		6
	5.2.	射频特性	Ė	6
6.	CPU	、存储器	和接口	8
	6.1.	CPU		8
	6.2.	存储控制	J器	8
	6.3.	AHB 和	AHB 模块	8
	6.4.	接口		8
		6.4.1.	SDIO 主接口	9
		6.4.2.	主 SI/SPI 控制(可选)	g
		6.4.3.	通用 IO	10
				11
				11
7.	固件.			12
	7.1.	特征		12

8.	电源	管理	.14
9.	时钟	管理	.15
	9.1.	高频时钟	.15
	9.2.	外部参考要求	15
10	.射频:	接收器	.16
	10.1.	高频时钟	.16
	10.2.	2.4 GHz 接收器	.16
	10.3.	2.4 GHz 发射器	17
	10.4.	时钟生成器	17
11	.蓝牙:	共存	.18
I.	附录	- QFN32 封装信息	.19

1. 概述

1.1. ESP8089 功能框图

乐鑫智能互联平台拥有高性能无线 SoC,给移动平台设计师带来福音,它以最低成本提供最大实用性,为 Wi-Fi 功能嵌入其他系统提供无限可能。

图 1-1. ESP8089 功能框图

1.2. 技术概述

ESP8089 是一个完整且自成体系的 Wi-Fi 网络解决方案,能够搭载软件应用,在配合另一个应用处理器实现所有Wi-Fi 网络的功能时,减轻了另一个处理器的处理压力。

当 ESP8089 搭载具体应用时,常常是设备中唯一一个处理器,应用程序被储存在内置/外置的 Flash 中。

当作为 Wi-Fi 适配器时,可以将其与任何微控制器配合,无线网络接入可以实现在配合的任何一种处理器上。连接简单易行,只需通过 SPI/SDIO 接口或中央处理器 AHB 桥接口即可。

ESP8089 可以通过 SDIO/SPI 或存储器映射并行接口直接连接到蜂窝基带和应用处理器。由于 ESP8089 内置的处理和存储功能,它在与主控平台集成时,可以将主控平台的前期 开发和运行负荷降至最低。ESP8089 高度片内集成,包括天线开关 balun、电源管理转换器,因此仅需极少的外部电路,且包括前端模块在内的整个解决方案,使用时可以将所占 PCB 空间降到最低。

装有 ESP8089 的系统表现出来的领先特征有:

- 节能 VoIP 在睡眠/唤醒模式之间的快速切换、
- 用于低功耗操作的自适应射频偏置、
- 前端信号的处理功能、
- 故障排除和射频共存特性可消除蜂窝/蓝牙/802.11 干扰。

1.3. 特性

- 802.11 b/g/n
- Wi-Fi Direct (P2P)、Miracast、SoftAP
- 内置 TR 切换、balun、LNA、功率放大器和匹配网络
- 内置 PLL、稳压器和电源管理组件
- 802.11b 模式下 +19 dBm 的输出功率
- 断电漏电流小于 10 µA
- 内置低功率 32 位 CPU: 可以兼作应用处理器
- SDIO 2.0 SPI UART
- STBC、1x1 MIMO、2x1 MIMO
- A-MPDU、A-MSDU 的帧聚合和 0.4 µs 的保护间隔
- 22 ms 之内唤醒、连接并传递数据包
- 待机功耗小于 1.0 mW (DTIM3)

电路原理图

超低功耗技术

3.1. 超低功耗技术

ESP8089 集成了几项专利技术,是为实现最低功耗而设计的。这种节能的架构以两种模式运行:激活模式和睡眠模式。

ESP8089 采用先进的电源管理技术和逻辑系统,调低非必需功能的功率,调控睡眠模式与工作模式之间的转换,在睡眠模式下,其消耗的电流小于 12 μA,处于连接状态时,功耗少于 1.0 mW (DTIM=3) 或 0.5 mW (DTIM=10)。

睡眠模式下,只有基准 RTC 时钟和看门狗计时器处于工作状态。可以通过编程使实时时钟在任何特定的时间间隔唤醒 ESP8089。

通过编程,ESP8089 可以在检测到某种特定情况时自动唤醒。ESP8089 在最短时间内自动唤醒,这一特征可以应用到移动设备的 SoC 上,这样 SoC 在开启 Wi-Fi 之前均处于低功耗待机状态。

3.2. 高集成度

ESP8089 集成了板子上最关键的部件,其中包括电源管理组件、TR 开关、射频 balun、峰值为 +23 dBm 的大功率 PA,因此,ESP8089 既保证了 BOM 的成本最低,又便于被嵌入任何系统。

ESP8089 仅有的外部 BOM 是电阻器、电容器和晶振。可能需要增加 SAW 滤波器,能与手机兼容。

ESP8089 应用

- 便携式媒体播放器(PMP), 如 MP3 或 MP4 播放器
- 便携式游戏机
- 数码相机
- 摄像机
- 平板电脑

mΑ

μΑ

mA

mA

μΑ

5. 规格

5.1. 功耗

下列功耗数据是基于 3.3V 的电源、25°C 的周围温度,并使用内部稳压器测得。

- 1. 所有测量均在没有 SAW 滤波器的情况下,于天线接口处完成。
- 2. 所有发射数据是基于 99% 的占空比,在持续发射的模式下测得的。

单位 模式 最小值 典型值 最大值 发射 802.11 b, DSSS 1 Mbps, POUT=+19.5 dBm 215 mΑ 发射 802.11 b, CCK 11 Mbps, POUT=+18.5 dBm 197 mΑ 发射 802.11 g, OFDM 54 Mbps, POUT =+16 dBm 145 mΑ 发射 802.11 n, MCS 7, POUT =+14 dBm 135 mΑ 接收 802.11 b, 包长 1024 字节, -80 dBm 60 mΑ 接收 802.11 g, 包长 1024 字节, -70 dBm 60 mΑ 接收 802.11 n, 包长 1024 字节, -65 dBm 62 mΑ

0.9

10

1.2

0.86

0.5

表 5-1. 功耗

5.2. 射频特性

以下数据是在室内温度下, 电压为 3.3V 和 1.1V 时分别测得。

系统待机模式

深度睡眠

节能模式 DTIM 1

节能模式 DTIM 3

关机

表 5-2. 射频特性

描述	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
输入电阻	-	50	-	Ω
输入反射	-	-	-10	dB

描述	最小值	典型值	最大值	单位
72.2 Mbps下,PA 的输出功率	14	15	16	dBm
11b 模式下,PA 的输出功率	17.5	18.5	19.5	dBm
	灵敏度			
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
6 Mbps (1/2 BPSK)	-	-93	-	dBm
54 Mbps (3/4 64-QAM)	-	-75	-	dBm
HT20, MCS 7 (65 Mbps, 72.2 Mbps)	-	-71	-	dBm
	邻频抑制			
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS 0	-	37	-	dB
HT20, MCS 7	-	20	-	dB
	计时			
晶振起动时间	-	500	-	μs
基带 PLL 起动时间	-	100	-	μs
RF PLL 起动时间	-	200	-	μs
Rx RF 起动时间	-	2	-	μs
Tx RF 起动时间	-	2	-	μs

CPU、存储器和接口

6.1. CPU

这款芯片嵌入了一个超低功耗 32 位 微型 CPU,带有 16 位 精简模式。可以通过以下接口连接该 CPU:

- 连接存储控制器、也可以用来访问外接闪存的编码 RAM/ROM 接口(iBus)
- 同样连接存储控制器的数据 RAM 接口 (dBus)
- 访问寄存器的 AHB 接口
- JTAG 调试接口

6.2. 存储控制器

存储控制器包含 ROM 和 SRAM。CPU 可以通过 iBus、dBus 和 AHB 接口访问存储控制器。这些接口中任意一个都可以申请访问 ROM 或 RAM 单元,存储仲裁器以到达顺序确定运行顺序。

6.3. AHB 和 AHB 模块

AHB 模块充当仲裁器,通过 MAC、主机的 SDIO 和 CPU 控制 AHB 接口。由于发送地址不同、AHB 数据请求可能到达以下两个从机中的一个:

- APB 模块,或
- 闪存控制器(通常在脱机应用的情况下)

闪存控制器接收到的请求往往是高速请求,而 APB 模块接收到的往往是访问寄存器的请求。

APB 模块充当解码器,但只可以访问 ESP8089 主模块内可编程的寄存器。由于发送地址不同,APB 请求可能到达射频接收器、SI/SPI、主机 SDIO、GPIO、UART、实时时钟 (RTC)、MAC 或数字基带。

6.4. 接口

ESP8089 包含多个模拟和数字接口,详情如下:

6.4.1. SDIO 主接口

IO 管脚能在以下模式中运行:

- 4位 25 MHz SDIO v1.1
- 4位 50 MHz SDIO v2.0

图 6-1. SDIO 时序图

表 6-1. SDIO 时序特征

变量	符号	最小值	最大值	单位
输入设置时间	t _{isu}	6	-	ns
输入保持时间	t _{IH}	2.5	-	ns
时钟下降时间	t _{THL}	-	3	ns
时钟上升时间	t _{TLH}	-	3	ns
输出延迟时间	t _{DLY}	2	12	ns
时钟频率	fsdio	-	50	MHz

6.4.2. 主 SI/SPI 控制 (可选)

主串行接口(SI)能在二、三、四线制总线配置下运行,被用来控制 EEPROM 或其他 I2C/SPI 设备。多址 I2C 设备共享 2 线制总线。

多址 SPI 设备共享时钟和数据信号,且根据芯片的选择,各自单独使用由软件控制的 GPIO 管脚。

SPI 可以被用来控制外接设备,如串行闪存、音频 CODEC 或其他从机设备,安装时,给它三个不同的有效管脚,使其成为标准主 SPI 设备。

- SPI ENO
- SPI EN1
- SPI_EN2

SPI 从机被用作主接口,从而给 SPI 主机和 SPI 从机提供支持。

在内置应用中,SPI_ENO 被用作使能信号,作用于外接串行闪存,将固件和/或 MIB 数据下载到基带。在基于主机的应用中,固件和 MIB 数据可以通过主机接口二者任选其一进行下载。此管脚低电平有效,不用的时候应该悬空。

SPI_EN1 常被用于用户应用,如控制内置应用中的外接音频 codec 或感应器 ADC。此管 脚低电平有效,不用的时候应该悬空。

SPI_EN2 常被用来控制 EEPROM,储存个别数据(individual data),如 MIB 信息、MAC 地址和校准数据,或作一般用途。此管脚低电平有效,不用的时候应该悬空。

图 6-2. SPI 时序特征

表 6-2. SDIO 时序特征

变量	符号	最小值	最大值	单位
输入设置时间	tisu	11	-	ns
输入保持时间	t _{IH}	0	-	ns
SPI 时钟频率	f _{SPI}	-	10	MHz
输出延迟时间	T _{OD}	-	15	ns

6.4.3. 通用 IO

总共有多达 16 个 GPIO 管脚。固件可以给它们分配不同的功能。每个 GPIO 都可以配置内部上拉/下拉电阻、可供软件寄存器取样的输入、引发边缘或电平 CPU 中断的输入、引发电平唤醒中断的输入、开漏或互补推挽输出驱动、软件寄存器的输出源或 sigma-delta PWM DAC。

这些管脚复用作其它功能,如主接口、UART、SI、蓝牙共存等等。

6.4.4. 实时时钟

存在 32.768 kHz LFC 时钟的时候,可以将它与 EXT_LFC 连接起来。如果这个管脚上没有时钟,那么就使用内部 LFC。当存在 EXT_LFC 的时候,可以通过复用管脚 (strapping pin) 筛选 LFC 源、内部 LFC 或 EXT_LFC。

6.4.5. 数字 IO 管脚

数字 IO 管脚是双向、三态的。它包括输入和输出的三态控制缓冲器。此外,对于低功耗的运算,IO 还能被设定为保持状态。比如说,当芯片断电,所有输出使能信号可以被设定为保持低功耗状态。

选配的保持功能可以应需配置到 IO 中。当 IO 不由内外部电路驱动时,保持功能可以被配置为保持上次的状态。

保持功能会给管脚引入一些正反馈。因此,管脚的外部驱动必须强于正反馈。然而,所需驱动力大小仍然很小,在 5 µA 之内。

变量	符号	最小值	最大值	单位
输入低电压	VIL	-0.3	0.25×V _{IO}	V
输入高电压	VIH	0.75×V _{IO}	3.3	V
输入漏电流	I _{IL}	-	50	nA
输出低电压	VoL	-	0.1×V _{IO}	V
输出高电压	V _{OH}	0.8×V _{IO}	-	V
输入管脚电容	Cpad	-	2	pF
VDDIO	V _{IO}	1.8	3.3	V
最大驱动能	I _{MAX}	-	12	mA
温度	T _{amb}	-40	125	°C

表 6-3. 数字 IO 管脚

所有的数字 IO 管脚都要在引脚和地之间加一个过压保护电路(snap back circuit)。通常回跳(snap back)电压大概是 6V,而维持电压是 5.8V。这就可以避免电压过高和产生 ESD。输出设备也受到二极管保护,避免反向电压损害。

固件

固件在芯片上的 ROM 和 SRAM 上运行,当设备处于唤醒状态时,固件通过 SDIO 接口从主机上下载指令。

固件完全遵循 802.11 b/g/n/e/i WLAN MAC 协议和 Wi-Fi Direct 规格,不仅支持分散控制功能(DCF)下的基本服务单元(BSS)的操作,还遵循最新的 Wi-Fi P2P 协议,支持P2P 团体操作(P2P group operation)。低层协议功能,如

- RTS/CTS
- 确认
- 分片和重组
- 聚合
- 帧封装 (802.11 h/RFC 1042)
- 自动信标监测/扫描
- P2P Wi-Fi Direct

由 ESP8089 运行,没有主机的介入。

跟 P2P 发现程序一样,被动或主动扫描一旦在主机的指令下起动,就会自动完成。执行 电源管理时,与主机互动最少,如此一来,有效任务期达到最小化。

7.1. 特征

该软件工具开发包的实验室特征如下:

- 802.11 b/g/n/d/e/i/k/r 支持
- Wi-Fi Direct (P2P) 支持
- P2P 发现、P2P 群主模式(Group Owner mode)、P2P 电源管理
- 基础结构型网络(Infrastructure BSS)工作站(Station)模式/P2P 模式/SoftAP 模式
- 硬件加速器
 - CCMP (CBC-MAC, 计数模式)
 - TKIP (MIC, RC4)
 - WAPI (SMS4)
 - WEP (RC4)

- CRC
- WPA/WPA2 和 WPS 支持
- 其他 802.11 i 安全特征:
 - 预认证
 - TSN
- 为 EAP 多种上层认证方式准备的开放式接口, 如:
 - TLS
 - PEAP
 - LEAP
 - SIM
 - AKA
 - 或视客户要求而定
- 802.11 n 支持(2.4 GHz/5 GHz)
- 支持 MIMO 1×1 and 2×1、STBC、A-MPDU 和 A-MSDU 聚合、0.4 µs 的保护间隔
- WMM 节能 U-APSD
- 采用带 QoS 的多队列管理,实现符合 802.11 e 标准的多媒体数据流量优化方式
- 遵循 UMA, 并通过 UMA 认证
- 802.1 h/RFC1042 帧封装
- 散列 DMA 进行数据转移操作,使 CPU 占用率达到最小
- 天线分集与选择(由软件管理的硬件)
- 将时钟/电源门控与遵循 802.11 标准的功率管理结合起来,根据当前连接情况,进行动态调节,以实现最低能耗
- 可调节比率演算法则根据实际的 SNR 和信息包丢失数据设定最优传送率和 Tx 功率
- MAC 层自动重传与自动回应,避免主机运行缓慢时发生丢包现象
- 无缝漫游支持
- 可配置的数据包交通仲裁与为其量身定做、基于从机处理器的设计结合,为一系列 蓝牙芯片销售商提供灵活且精确的分时蓝牙共存支持
- 支持双/单天线蓝牙共存,具备同步接收 Wi-Fi/蓝牙的能力

电源管理

芯片可以调成以下状态:

- 关闭(OFF): CHIP_PD 管脚处于低功率状态。RTC 失效。所有寄存器被清空。
- 深度睡眠(DEEP_SLEEP): RTC 开着,芯片的其他部分都是关着的。RTC 内部 recovery memory 可保存基本的 Wi-Fi 连接信息。
- 睡眠(SLEEP): 只有 RTC 在运行。晶振器停止。任何部位唤醒(MAC、主机、RTC 计时器、外部中断)将使唤醒整个芯片。
- 唤醒(WAKEUP):在这种状态下,系统从睡眠状态下转为起动(PWR)状态。晶振器和 PLL 均转为使能状态。
- 开启状态(ON): 高速时钟可以运行,并发送至各个被时钟控制寄存器使能的模块。各个模块,包括 CPU 在内,执行较低电平的时钟门控。系统运作时,可以通过WAITI 指令关闭 CPU 内部时钟。

时钟管理

9.1. 高频时钟

ESP8089 基于内部振荡器和外部晶振生成高频时钟,该时钟用于驱动 Tx、Rx 混频器;晶振频率在 26 MHz 到 52 MHz 之间。

尽管振荡器内部校准功能能够确保大部分的晶振满足使用要求,但是晶振的质量仍然是影响相位噪声和 Wi-Fi 灵敏度的重要因素。当使用的晶振频偏太大或质量有问题时,Wi-Fi 系统的最大数据处理能力和灵敏度就会降低。请参照下表来测量频偏。

变量	符号	最小值	最大值	单位
频率	Fxo	26	52	MHz
加载电容	CL	-	32	pF
动态电容	См	2	5	pF
串联电阻	Rs	0	65	Ω
频偏容限	ΔF _{XO}	-15	15	ppm
频率 vs. 温度(-25°C ~ 75°C)	ΔF _{XO} , _{Temp}	-15	15	ppm

表 9-1. 高频时钟

9.2. 外部参考要求

外部时钟的频率在 26 MHz 到 52 MHz 之间。为了使射频接收器良好运作,时钟必须具备以下特点:

变量	符号	最小值	最大值	单位
时钟振幅	Vxo	0.2	1	Vpp
外部时钟精准度	$\Delta F_{XO,EXT}$	-15	15	ppm
相位噪声@1 kHz 偏移, 40 MHz 时钟	-	-	-120	dBc/Hz
相位噪声@10 kHz 偏移, 40 MHz 时钟	-	-	-130	dBc/Hz
相位噪声@100 kHz 偏移, 40 MHz 时钟	-	-	-138	dBc/Hz

表 9-2. 外部参考要求

射频接收器

ESP8089 射频接收器主要包含以下模块:

- 2.4 GHz 接收器
- 2.4 GHz 传送器
- 高速时钟生成器和晶振器
- 实时时钟
- 偏压和稳压器
- 电源管理

10.1. 高频时钟

根据 IEEE 802.11 b/g/n 标准, 射频收发器支持以下频道:

频道编号	频率(MHz)	频道编号	频率(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442	14	2484

表 10-1. 高频时钟

10.2. 2.4 GHz 接收器

2.4 GHz 接收器把射频信号下变频,变成正交基带信号,用 2 个高精度的高速 ADC 将后者转为数字信号。为了适应不同的信号频道,射频接收器集成了射频滤波器、自动增益控制(AGC)、DC 偏置补偿电路和基带滤波器。

10.3. 2.4 GHz 发射器

2.4 GHz 发射器将正交基带信号上变频到 2.4 GHz,使用大功率 CMOS 功率放大器驱动天线。数字校准的使用进一步地改善了功率放大器的线性,从而在 802.11 b 传输中达到 +20.5 dBm 的平均功率,在 802.11 n 传输中达到 + 16 dBm 的平均功率,功能超强。

为抵消射频接收器的瑕疵,还另增了校准措施,例如:

- 载波泄露
- I/Q 相位匹配,和
- 基带非线性

这样便减少了生产测试所需的时间和设备。

10.4. 时钟生成器

时钟生成器为接收器和发射器生成 2.4 GHz 时钟信号,其所有部件均集成于芯片上,包括:

- 电感器
- 变容二极管
- 闭环滤波器

时钟生成器含有内置校准电路和自测电路。正交时钟相位和相位噪声通过自主知识产权的校准算法在芯片上进行优化,可确保接收器和发射器达到最佳性能。

蓝牙共存

ESP8089 预先分配了特定管脚给蓝牙/Wi-Fi 共存和蓝牙时钟请求信号,用于两个系统之间的通信仲裁。这个控制系统集成在固件中,且支持不同的标准或自主共存协议。

l.

附录 - QFN32 封装信息

TOP VIEW

NOTE:

1) TSLP AND SLP SHARE THE SAME EXPOSE OUTLINE BUT WITH DIFFERENT THICKNESS:

		TSLP	SLP
Α	MAX.	0.800	0.900
	N□M.	0.750	0.850
	MIN.	0.700	0.800

BOTTOM VIEW

www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2016 乐鑫所有。保留所有权利。