Trees, Search Trees

- Searching
- Tree Data Structures
- Binary Search Trees
- Insertion into BSTs
- Representing BSTs
- Searching in BSTs
- Insertion into BSTs
- Tree Traversal
- Joining Two Trees
- Deletion from BSTs

Searching

Search is an extremely common application in computing

- given a (large) collection of items and a key value
- find the item(s) in the collection containing that key
 - item = (key, val₁, val₂, ...) (i.e. a structured data type)
 - key = value used to distinguish items (e.g. student ID)

Applications: Google, databases,

... Searching

Many approaches have been developed for the "search" problem

Different approaches determined by properties of data structures:

- arrays: linear, random-access, in-memory
- linked-lists: linear, sequential access, in-memory
- files: linear, sequential access, external

Search costs:

	Array	List	File
Unsorted	O(n)	O(n)	O(n)
	(linear scan)	(linear scan)	(linear scan)
Sorted	O(log n)	O(n)	O(log n)
	(binary search)	(linear scan)	(Iseek,Iseek,)

... Searching

Maintaining arrays and files in sorted order is costly.

Search trees are efficient to search but also efficient to maintain.

Example: the following tree corresponds to the sorted array [2,5,10,12,14,17,20,24,29,30,31,32]:

Trees are connected graphs

- with nodes and edges (called *links*), but no cycles (no "up-links")
- each node contains a data value (or key+data)
- each node has links to $\leq k$ other child nodes (k=2 below)

Trees are used in many contexts, e.g.

- representing hierarchical data structures (e.g. expressions)
- efficient searching (e.g. sets, symbol tables, ...)

Real-world example: organisational structure

Real-world example: hierarchical file system (e.g. Linux)

Real-world example: structure of a typical book

Real-world example: a decision tree

A binary tree is either

- empty (contains no nodes)
- consists of a node, with two subtrees
 - node contains a value (typically key+data)
 - left and right subtrees are binary trees (recursive)

Other special kinds of tree

- *m*-ary tree: each internal node has exactly *m* children
- B-tree: each internal node has $n/2 \le \#$ children $\le n$
- Ordered tree: all left values < root, all right values > root
- Balanced tree: has ≅minimal height for a given number of nodes
- Degenerate tree: has ≅maximal height for a given number of nodes

Binary search trees (or BSTs) are ordered trees

- each node is the root of 0, 1 or 2 subtrees
- all values in any left subtree are less than root
- all values in any right subtree are greater than root
- these properties applies over all nodes in the tree

Level of node = path length from root to node

Height (or depth) of tree = max path length from root to leaf

Some properties of trees ...

Ordered

→ nodes: max(left subtree) < root < min(right subtree)

Perfectly-balanced tree

→ nodes: #nodes(left subtree) = #nodes(right subtree)

Height-balanced tree

• ∀ nodes: height(left subtree) = height(right subtree)

Note: time complexity of tree algorithms is typically O(height)

Operations on BSTs:

- insert(Tree,Item) ... add new item to tree via key
- delete(Tree, Key) ... remove item with specified key from tree
- search(Tree, Key) ... find item containing key in tree
- plus, "bookkeeping" ... new(), free(), show(), ...

Notes:

- nodes contain **Item**s; we generally show just **Item.key**
- keys are unique (not technically necessary)

Examples of binary search trees:

Shape of tree is determined by order of insertion.

Insertion into BSTs

Steps in inserting values into an initially empty BST

insert 3 insert 2

insert 4

insert 5

insert 1

... Insertion into BSTs

Tree resulting from inserting: 4 2 6 5 1 7 3

❖ ... Insertion into BSTs

Tree resulting from inserting: 5 6 2 3 4 7 1

... Insertion into BSTs

Tree resulting from inserting: 1 2 3 4 5 6 7

Representing BSTs

Binary trees are typically represented by node structures

• where each node contains a value, and pointers to child nodes

Most tree algorithms move *down* the tree. If upward movement needed, add a pointer to parent.

... Representing BSTs

Typical data structures for trees ...

```
// a Tree is represented by a pointer to its root node
typedef struct Node *Tree;
// a Node contains its data, plus left and right subtrees
typedef struct Node {
   int data;
   Tree left, right;
} Node;
// some macros that we will use frequently
#define data(node) ((node)->data)
#define left(node) ((node)->left)
#define right(node) ((node)->right)
```

Here we use a simple definition for **data** ... just a key

❖ ... Representing BSTs

Abstract data vs concrete data ...

Searching in BSTs

Most tree algorithms are best described recursively:

```
TreeContains(tree,key):
   Input tree, key
  Output true if key found in tree, false otherwise
   if tree is empty then
      return false
   else if key < data(tree) then</pre>
      return TreeContains(left(tree),key)
   else if key > data(tree) then
      return TreeContains(right(tree), key)
   else
                // found
     return true
   end if
```

Insertion into BSTs

Insert an item into a tree; item becomes new leaf node

```
TreeInsert(tree,item):
   Input tree, item
   Output tree with item inserted
   if tree is empty then
      return new node containing item
   else if item < data(tree) then</pre>
      left(tree) = TreeInsert(left(tree),item)
      return tree
   else if item > data(tree) then
      right(tree) = TreeInsert(right(tree),item)
      return tree
   else
      return tree // avoid duplicates
   end if
```

Tree Traversal

Iteration (traversal) on ...

- **List**s ... visit each value, from first to last
- **Graphs** ... visit each vertex, order determined by DFS/BFS/...

For binary **Tree**s, several well-defined visiting orders exist:

- preorder (NLR) ... visit root, then left subtree, then right subtree
- inorder (LNR) ... visit left subtree, then root, then right subtree
- postorder (LRN) ... visit left subtree, then right subtree, then root
- level-order ... visit root, then all its children, then all their children

Consider "visiting" an expression tree like:

NLR: + * 13 - * 579 (prefix-order: useful for building tree)

LNR: 1*3+5*7-9 (infix-order: "natural" order)

LRN: 13*57*9-+ (postfix-order: useful for evaluation)

Level: +*-13*957 (level-order: useful for printing tree)

... Tree Traversal

Traversals for the following tree:

NLR (preorder): 20 10 5 2 14 12 17 30 24 29 32 31

LNR (inorder): 2 5 10 12 14 17 20 24 29 30 31 32

LRN (postorder): 2 5 12 17 14 10 29 24 31 32 30 20

... Tree Traversal

Pseudocode for NLR traversal

```
showBSTreePreorder(t):
   Input tree t
   if t is not empty then
     print data(t)
      showBSTreePreorder(left(t))
      showBSTreePreorder(right(t))
   end if
```

Recursive algorithm is very simple.

Iterative version less obvious ... requires a Stack.

Pseudocode for NLR traversal (non-recursive)

```
showBSTreePreorder(t):
   Input tree t
   push t onto new stack S
  while stack is not empty do
      t=pop(S)
     print data(t)
      if right(t) is not empty then
         push right(t) onto S
      end if
      if left(t) is not empty then
         push left(t) onto S
      end if
   end while
```

Joining Two Trees

An auxiliary tree operation ...

Tree operations so far have involved just one tree.

An operation on two trees: $t = TreeJoin(t_1, t_2)$

- Pre-conditions:
 - takes two BSTs; returns a single BST
 - o max(key(t₁)) < min(key(t₂))
- Post-conditions:
 - result is a BST (i.e. fully ordered)
 - containing all items from t₁ and t₂

... Joining Two Trees

Method for performing tree-join:

- find the min node in the right subtree (t₂)
- replace min node by its right subtree (possibly empty)
- elevate min node to be new root of both trees

Advantage: doesn't increase height of tree significantly

 $x \le height(t) \le x+1$, where $x = max(height(t_1), height(t_2))$

Variation: choose deeper subtree; take root from there.

... Joining Two Trees

Joining two trees:

Note: t2' may be less deep than t2

Implementation of tree-join:

```
TreeJoin(t_1, t_2):
   Input trees t_1, t_2
   Output t<sub>1</sub> and t<sub>2</sub> joined together
   if t<sub>1</sub> is empty then return t<sub>2</sub>
   else if t<sub>2</sub> is empty then return t<sub>1</sub>
   else
       curr=t<sub>2</sub>, parent=NULL
       while left(curr) is not empty do // find min element in t<sub>2</sub>
           parent=curr
           curr=left(curr)
       end while
       if parent≠NULL then
           left(parent)=right(curr) // unlink min element from parent
           right(curr)=t<sub>2</sub>
       end if
       left(curr)=t<sub>1</sub>
                                           // curr is new root
       return curr
   end if
```

... Joining Two Trees

Example tree join:

Deletion from BSTs

Insertion into a binary search tree is easy.

Deletion from a binary search tree is harder.

Four cases to consider ...

- empty tree ... new tree is also empty
- zero subtrees ... unlink node from parent
- one subtree ... replace by child
- two subtrees ... replace by successor, join two subtrees

❖ ... Deletion from BSTs

Case 2: item to be deleted is a leaf (zero subtrees)

Just delete the item

... Deletion from BSTs

Case 2: item to be deleted is a leaf (zero subtrees)

... Deletion from BSTs

Case 3: item to be deleted has one subtree

Replace the item by its only subtree

❖ ... Deletion from BSTs

Case 3: item to be deleted has one subtree

❖ ... Deletion from BSTs

Case 4: item to be deleted has two subtrees

Version 1: right child becomes new root, attach left subtree to min element of right subtree

... Deletion from BSTs

Case 4: item to be deleted has two subtrees

❖ ... Deletion from BSTs

Case 4: item to be deleted has two subtrees

Version 2: *join* left and right subtree

... Deletion from BSTs

Case 4: item to be deleted has two subtrees

❖ ... Deletion from BSTs

Pseudocode (version 2):

```
TreeDelete(t,item):
   Input tree t, item
  Output t with item deleted
   if t is not empty then  // nothing to do if tree is empty
      if item < data(t) then  // delete item in left subtree</pre>
         left(t)=TreeDelete(left(t),item)
      else if item > data(t) then // delete item in left subtree
         right(t)=TreeDelete(right(t),item)
                                  // node 't' must be deleted
      else
         if left(t) and right(t) are empty then
                                            // 0 children
            new=empty tree
         else if left(t) is empty then
                                            // 1 child
            new=right(t)
         else if right(t) is empty then
            new=left(t)
                                            // 1 child
         else
            new=TreeJoin(left(t),right(t)) // 2 children
        end if
        free memory allocated for t
        t=new
      end if
  end if
   return t
```

Produced: 7 Jun 2020