Алгоритми та структури даних. Основи алгоритмізації

Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені
Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>25</u>

Виконав студент <u>Павленко Микита Андрійович</u>

(шифр, прізвище, ім'я, по батькові)

Перевірив Вечерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Алгоритми та структури даних. Основи алгоритмізації

Лабораторна робота Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант **25** Завдання

Дано число а. Знайти найближче до нього просте число.

1) Постановка задачі

За допомогою складного циклу визначити найближче до а просте число (може бути як лівіше а на числовій осі, так і правіше).

2) Побудова математичної моделі

Таблиця імен змінних:

Змінна	Тип	Ім'я	Призначення
Вхідне число	Цілий	a	Вхідні дані
Число, що передує а	Цілий	a_minus	Проміжні дані
Число, що йде після а	Цілий	a_plus	Проміжні дані
Перевірка того, чи	Логічний	ne_proste1,	Проміжні дані
просте число		ne_proste2	
Лічильник ітерацій	Цілий	i, j	Проміжні дані
Результат	Цілий	result	Вихідні дані

Отже, математичне формулювання задачі зводиться до перевірки чисел «з двох боків» від числа **а** на умову їх простоти та подальше виведення.

3) Псевдокод алгоритму

Крок 1:

початок

Введення а

Ініціалізація та оголошення інших змінних

Оголошення умови зовнішнього циклу

Знаходження елемента, що задовольняє умові

Перевірка і присвоєння потрібного результату

Виведення результату

кінець

Крок 2:

початок

Введення а

a minus = a

 $a_plus = a$

ne_proste1 = true

ne_proste2 = true

Оголошення умови зовнішнього циклу

Знаходження елемента, що задовольняє умові

Перевірка і присвоєння потрібного результату

Виведення результату

кінець

Крок 3:

```
початок
           Введення а
           a minus = a
           a_plus = a
           ne_proste1 = true
           ne_proste2 = true
           Поки (ne_proste1 && ne_proste2) повторити
           Знаходження елемента, що задовольняє умові
           Перевірка і присвоєння потрібного результату
           Виведення результату
     кінець
Крок 4:
     початок
           Введення а
           a_{minus} = a
           a_plus = a
           ne_proste1 = true
           ne_proste2 = true
           Поки (ne_proste1 && ne_proste2) повторити
                 a_minus --
                a_plus ++
                i = 2
                j = 2
                ne_proste1 = false
                 ne_proste2 = false
                Поки ((i<a_minus) && !(ne_proste1)) повторити
```

```
Якщо a_minus % i == 0 то
                 ne_proste1 = true
           інакше
                 ne_proste1 = false
           все якщо
           i ++
     все повторити
     Поки ((j<a_plus) && !(ne_proste2)) повторити
           Якщо a_plus % \mathbf{j} == 0 то
                 ne_proste2 = true
           інакше
                 ne_proste2 = false
           все якщо
           j ++
     все повторити
все повторити
Перевірка і присвоєння потрібного результату
Виведення результату
Введення а
a_{minus} = a
a_plus = a
ne_proste1 = true
ne_proste2 = true
Поки (ne_proste1 && ne_proste2) повторити
```

кінець

початок

Крок 5:

```
a_minus --
      a_plus ++
      i = 2
     j = 2
      ne_proste1 = false
      ne_proste2 = false
      Поки ((i<a_minus) && (ne_proste1)) повторити
            Якщо a_minus % i == 0 то
                  ne_proste1 = true
            інакше
                  ne_proste1 = false
            все якщо
            i ++
      все повторити
      Поки ((j<a_plus) && !(ne_proste2)) повторити
            Якщо \mathbf{a}_plus % \mathbf{j} == 0 то
                  ne_proste2 = true
            інакше
                  ne_proste2 = false
            все якщо
            j ++
      все повторити
все повторити
Якщо ne_proste1 = false то
      result = i
інакше
      result = j
```

Виведення результату кінець

4) Блок-схема алгоритму

5) Випробування алгоритму

Блок	Дія
	Початок
1	Введення: а := 25
2	a_minus = 25
	a_plus = 25
	ne_proste1 = true
	ne_proste2 = true
3	(ne_proste1 && ne_proste2) == true
4	a_minus -= 24
	a_plus += 26
	i=2
	$\mathbf{j} = 2$
	ne_proste1 = false
	ne_proste2 = false
5	((i <a_minus) !(ne_proste1))="=" &&="" th="" true<=""></a_minus)>
6	(a_minus % i == 0) == true
7	ne_proste = true
	i = 3
•••	
9	a_minus -= 23
	a_plus += 27
	i = 2
	j=2
	ne_proste1 = false
	ne_proste2 = false
10	((i < a_minus) && !(ne_proste1)) == true
11	(a_minus % i == 0) == false
12	ne_proste = false

	i = 3
13	((i <a_minus) !(ne_proste1))="=" &&="" th="" true<=""></a_minus)>
14	(a_minus % i == 0) == false
15	ne_proste = false i = 4
•••	
16	ne_proste = false i = 23
17	((i < a_minus) && !(ne_proste1)) == false
18	((j < a_plus) && !(ne_proste2)) == true
•••	
19	(ne_proste1 && ne_proste2) == false
20	(ne_proste1 == false)
21	Виведення: 23
	Кінець

Блок	Дія
	Початок
1	Введення: 35
2	Виведення: 31
	Кінець

Блок	Дія
	Початок
1	Введення: 10
2	Виведення: 11
	Кінець

Алгоритми та структури даних. Основи алгоритмізації

6) Висновки

Я дослідив особливості роботи складних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Успішно виконав поставлену задачу.