Formulario di Trigonometria

Indice degli argomenti

- Formule fondamentali
- Valori noti delle funzioni trigonometriche
- Simmetrie delle funzioni trigonometriche
- Relazioni tra funzioni goniometriche elementari
- Formule sugli angoli complementari e supplementari
- Formule di addizione e sottrazione
- Formule di duplicazione e bisezione
- Formule di prostaferesi
- Formule parametriche $(t= an rac{lpha}{2})$
- Formule di Werner
- <u>Funzioni goniometriche inverse</u>
- Funzioni iperboliche

Formule fondamentali

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 $\tan x = \frac{\sin x}{\cos x}$
 $\cot x = \frac{\cos x}{\sin x}$
 $\sec x = \frac{1}{\cos x}$
 $\csc x = \frac{1}{\sin x}$

Valori noti delle funzioni trigonometriche

		Angolo														
Op.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	7	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	7	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$
cot	7	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	7	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$

Simmetrie delle funzioni trigonometriche

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

$$\cot(-x) = -\cot x$$

Relazioni tra funzioni goniometriche elementari

$\sin lpha = \pm \sqrt{1-\cos^2 lpha}$	$\sin lpha = \pm rac{ an lpha}{\sqrt{1 + an^2 lpha}}$	$\sin lpha = \pm rac{1}{\sqrt{1+\cot^2 lpha}}$
$\cos lpha = \pm \sqrt{1-\sin^2 lpha}$	$\cos lpha = \pm rac{1}{\sqrt{1+ an^2 lpha}}$	$\cos lpha = \pm rac{\cot lpha}{\sqrt{1+\cot^2 lpha}}$
$ an lpha = \pm rac{\sin lpha}{\sqrt{1-\sin^2 lpha}}$	$ an lpha = \pm rac{\sqrt{1-\cos^2 lpha}}{\cos lpha}$	$ an lpha = rac{1}{\cot lpha}$
$\cot lpha = \pm rac{\sqrt{1-\sin^2 lpha}}{\sin lpha}$	$\cot lpha = \pm rac{\cos lpha}{\sqrt{1-\cos^2 lpha}}$	$\cot lpha = rac{1}{ an lpha}$

Formule sugli angoli complementari e supplementari

	Angolo							
Operatore	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi-lpha$	
\sin	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$	
cos	$\sin lpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin lpha$	$\sin \alpha$	$\cos \alpha$	
tan	$\cot \alpha$	$-\cotlpha$	$-\tan lpha$	$\tan \alpha$	$\cot \alpha$	$-\cot lpha$	$-\tan lpha$	
cot	$\tan lpha$	$-\tan lpha$	$-\cot lpha$	$\cot lpha$	an lpha	$-\tan lpha$	$-\cot \alpha$	

Formule di addizione e sottrazione

Formule di addizione

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
 $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$
 $\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \beta + \cot \alpha}$

Formule di sottrazione

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
 $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$
 $\cot(\alpha - \beta) = \frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}$

Formule di duplicazione e bisezione

Formule di duplicazione

$$egin{aligned} \sin 2lpha &= 2\sinlpha\coslpha \ \cos 2lpha &= \cos^2lpha - \sin^2lpha \ an 2lpha &= rac{2 anlpha}{1- an^2lpha} \ \cot 2lpha &= rac{\cot^2lpha-1}{2\cotlpha} \end{aligned}$$

Formule di bisezione

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}}$$
 $\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}}$
 $\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$
 $\cot \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}}$

Formule di prostaferesi

$\sin lpha + \sin eta = 2 \sin rac{lpha + eta}{2} \cos rac{lpha - eta}{2}$	$\sin lpha - \sin eta = 2\cos rac{lpha + eta}{2} \sin rac{lpha - eta}{2}$
$\coslpha+\coseta=2\cosrac{lpha+eta}{2}\cosrac{lpha-eta}{2}$	$\cos lpha - \cos eta = -2 \sin rac{lpha + eta}{2} \sin rac{lpha - eta}{2}$
$ an lpha + an eta = rac{\sin(lpha + eta)}{\cos lpha \cos eta}$	$ an lpha - an eta = rac{\sin(lpha - eta)}{\cos lpha \cos eta}$
$\cot lpha + \cot eta = rac{\sin(eta + lpha)}{\sin lpha \sin eta}$	$\cot lpha - \cot eta = rac{\sin(eta - lpha)}{\sin lpha \sin eta}$

Formule parametriche $(t= an rac{lpha}{2})$

$$\sin lpha = rac{2t}{1+t^2} \ \cos lpha = rac{1-t^2}{1+t^2} \ an lpha = rac{2t}{1-t^2} \ \cot lpha = rac{1-t^2}{2t}$$

Formule di Werner

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

 $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$
 $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$

Funzioni goniometriche inverse

Le funzioni goniometriche inverse sono: arcoseno, arcocoseno, arcotangente e arcocotangente.

$$\arcsin x = \sin^{-1} x$$
 $\arccos x = \cos^{-1} x$
 $\arctan x = \tan^{-1} x$
 $\operatorname{arccot} x = \cot^{-1} x$

Funzioni iperboliche

Le funzioni iperboliche sono: seno iperbolico, coseno iperbolico, tangente iperbolica, cotangente iperbolica.

Formule fondamentali

$$\cosh^2 lpha - \sinh^2 lpha = 1$$
 $\tanh x = \frac{\sinh x}{\cosh x}$
 $\coth x = \frac{\cosh x}{\sinh x}$
 $\operatorname{sech} x = \frac{1}{\cosh x}$
 $\operatorname{csch} x = \frac{1}{\sinh x}$

Forma esponenziale

Per calcolare il valore delle funzioni iperboliche dobbiamo considerare la loro espressione in forma esponenziale.

$$\sinh x = rac{e^{x} - e^{-x}}{2} \ \cosh x = rac{e^{x} + e^{-x}}{2} \ anh x = rac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \ anh x = rac{e^{x} - e^{-x}}{e^{x} - e^{-x}}$$

Simmetrie delle funzioni iperboliche

$$\sinh(-x) = -\sinh x$$
 $\cosh(-x) = \cosh x$
 $\tanh(-x) = -\tanh x$
 $\coth(-x) = -\coth x$

Formule di addizione e sottrazione

$$\begin{split} &\sinh(\alpha+\beta) = \sinh\alpha \cosh\beta + \cosh\alpha \sinh\beta \\ &\cosh(\alpha+\beta) = \cosh\alpha \cosh\beta + \sinh\alpha \sinh\beta \\ &\tanh(\alpha+\beta) = \frac{\tanh\alpha + \tanh\beta}{1+\tanh\alpha \tanh\beta} \\ &\sinh(\alpha-\beta) = \sinh\alpha \cosh\beta - \cosh\alpha \sinh\beta \\ &\cosh(\alpha-\beta) = \cosh\alpha \cosh\beta - \sinh\alpha \sinh\beta \\ &\tanh(\alpha-\beta) = \frac{\tanh\alpha - \tanh\beta}{1-\tanh\alpha \tanh\beta} \end{split}$$

Formule di duplicazione e bisezione

$$egin{aligned} \sinh 2lpha &= 2\sinhlpha \coshlpha \ \cosh 2lpha &= \cosh^2lpha + \sinh^2lpha \ anh 2lpha &= rac{2 anhlpha}{1+ anh^2lpha} \ \sinhrac{lpha}{2} &= \pm\sqrt{rac{\coshlpha-1}{2}} \ \coshrac{lpha}{2} &= \sqrt{rac{\coshlpha-1}{2}} \ anhrac{lpha}{2} &= \sqrt{rac{\coshlpha-1}{\sinhlpha}} \end{aligned}$$

Formule di prostaferesi

$\sinh lpha + \sinh eta = 2 \sinh rac{lpha + eta}{2} \cosh rac{lpha - eta}{2}$	$\sinh lpha - \sinh eta = 2\cosh rac{lpha + eta}{2} \sinh rac{lpha - eta}{2}$
$\coshlpha+\cosheta=2\coshrac{lpha+eta}{2}\coshrac{lpha-eta}{2}$	$\cosh lpha - \cosh eta = -2 \sinh rac{lpha + eta}{2} \sinh rac{lpha - eta}{2}$

Formule parametriche $(t=\tanh \frac{\alpha}{2})$

$$\sinh lpha = rac{2t}{1-t^2} \ \cosh lpha = rac{1+t^2}{1-t^2} \ anh lpha = rac{2t}{1+t^2}$$

Formule di Werner

$$\sinh \alpha \cosh \beta = \frac{1}{2} [\sinh(\alpha + \beta) + \sinh(\alpha - \beta)]$$
$$\cosh \alpha \cosh \beta = \frac{1}{2} [\cosh(\alpha + \beta) + \cosh(\alpha - \beta)]$$
$$\sinh \alpha \sinh \beta = \frac{1}{2} [\cosh(\alpha - \beta) - \cosh(\alpha + \beta)]$$

Funzioni iperboliche inverse

Le funzioni iperboliche inverse sono: settore seno iperbolico, settore coseno iperbolico, settore tangente iperbolica e settore cotangente iperbolica.

$$egin{aligned} settsinh \ x &= x \log(x + \sqrt{x^2 + 1}) & \forall x \in \mathbb{R} \ settcosh \ x &= x \log(x + \sqrt{x^2 - 1}) & \cos x \geq 1 \ setttanh \ x &= rac{1}{2} \log rac{1 + x}{1 - x} & \cos -1 < x < 1 \ settcoth \ x &= rac{1}{2} \log rac{x + 1}{x - 1} & \cos x < -1 \ e \ x > 1 \end{aligned}$$