Nanosystems Design and Tools

Pierre-Emmanuel Gaillardon

Department of Electrical and Computer Engineering – University of Utah

A Novel Offer for Microelectronics

Keeping the pace towards more functionality

"Increase the numbers of devices per area unit"

"Increase the device capabilities for a given area" Functionality-Enhanced Devices

"Increase the circuit capabilities for a given area" Functionality-Enhanced Circuits

Novel EDA

A Transversal Research Methodology

ISCAS'11,'13,'14, TCAS-I'14, TCAS-II'13, CASM'13 ATS'14, ISVLSI'14, NEWCAS'13, VLSI-SoC'12

IEDM'11,'12,'14, EDL'14, TED'14, TNANO'14, MNE'14

Fast feedback loop

Global optimization across the traditional design boundaries

DAC'11,'13,'14, DATE'13,'14,'15
ASP-DAC'13,'14,'15, NANOARCH'11,'12,'13,'14
JETCAS12,'14, JETC'14, Phil. Trans. A'14
FPGA'14,'15, FPL'14, FPT'14

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

What is hidden behind Doped S/D CMOS?

Ultimate Devices

Vertical Stacked Nanowires

Gate-All-Around Structures

Novel Conduction Properties

Ambipolar Conduction n-type and p-type carriers

CONTROL IT

University of Utah | P.-E. Gaillardon | 6

Multiple-Independent-Gate SiNWFET

3-independent gate regions

Schottky barriers at S and D

Polarity and Threshold contri

Polarity Gate at Source (PGS)

Control Gate (CG)

Polarity Gate at Drain (PGD)

Same I_{ON} → Limited performance compromise

J. Zhang et al, TED'14

University of Utah | P.-E. Gaillardon | 7

More Expressive Device Switching Functions

These are not "Castles in the Air"!

M. De Marchi et al, IEDM'12

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

Circuit Design with Controllable-Polarity Transistors

Negative Unate functions NAND, NOR, AOI, OAI,..

Bias the polarity gates! (unipolar behavior)

Binate functions XOR, XNOR,..

Inputs to the polarity gates! (Exploit the device behavior)

 $\begin{array}{c|c}
A & B \\
\hline
B & A \\
\hline
A & B \\
\hline
C & A \\
C & A \\
\hline
C & A \\
\hline
C & A \\
C & A \\
\hline
C & A \\
C & A \\
\hline
C & A \\
C & A \\
\hline
C & A \\
C & A \\
C & A \\
\hline
C & A \\
C &$

3-input XOR

A. Zukovski et al., DAC'11 University of Utah | P.-E. Gaillardon | 12

H. Ben Jamaa et al., DATE'09

Compact Full-Adder implementation

$$Sum = A \oplus B \oplus C_{IN}$$
 $C_{OUT} = MAJ(A, B, C_{IN})$

8 Transistors

Area saving

(smaller gates)

Delay saving

(smaller stacks)

Compact computation primitives
XOR - MAJ

Mitigating the wiring complexity

- Fewer transistors for XOR operation
- Every transistor has two gate terminals to route

Layout regularity with Tiles

Novel approach

CG =

CG =

Transistor Group

2-input XOR gate

CMOS style layout

Simplified routing

University of Utah | P.-E. Gaillardon | 15

S. Bobba et al, DAC'12

Sea-of-Tiles (SoT)

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

Logic Synthesis (Optimization) Challenges

- Logic Synthesis is a technology supporter
 - LS techniques derive from CMOS abilities -NAND/NOR/ MUX
 - Many real-life applications contains different type of functions intertwined (AND/OR, XOR) together
 - LS heuristics target only one type of function for pragmatic reasons
- Logic Synthesis as a design enabler

<u>Path1:</u> Model comparator primitives (rather than switches)

BBDDs

L. Amarù et al., DATE'13, DATE'14

Path2: Exploit more generic data structures

MIG

L. Amarù et al., DAC'13, DAC'14

Can we derive novel architectures from these techniques?

OF ENGINEERS TO ONLY

Path1: Model the Comparator Primitive

Comparator primitive

Arithmetic-intensive representation form

Ability to still model efficiently general logic

• Comparator behavior captured in the biconditional expansion $(x \oplus y) f(y', y, ..., z) + (x \overline{\oplus} y) f(y, y, ..., z)$

Biconditional Binary Decision Diagrams

Each BBDD node:

- Has 2 branching variables
- Implements the biconditional expansion
- Can reduce to Shannon's expansion

Elementary Properties of BBDDs

- BBDDs are canonical!
 - Reduction and Ordering rules extended from standard BDDs
 - Variable reordering and sifting operations still efficient
- BBDDs can support efficient logic manipulation
 - Traditional DD algorithms can be extended
 - BBDD software package available at: http://lsi.epfl.ch
- BBDDs are compact for arithmetic functions
 - n-bit adder: 40% nodes reduction

BBDDs:
$$3n+1$$
 BDDs: $5n+2$

BDDs:
$$5n+2$$

n-bit majority: 4× for large enough n

BBDDs:
$$\frac{1}{8}n^2 + \frac{1}{2}n + \frac{11}{8}$$
 BDDs: $\left\lceil \frac{n}{2} \right\rceil (n - \left\lceil \frac{n}{2} \right\rceil + 1) + 1$

BBDD superiority over standard BDDs in ASICs

One-to-one correspondence between the BBDD nodes and XOR-MUX structure:

- DD performances (MCNC, opencores and hard arithmetic circuits):
 - BBDDs are frequently more compact than BDDs (1.1× to 5×)
 - BBDDs build faster than standard DDs (1.4× to 4.4×)
- EDA impact (Telecom circuit testcase)
 - BBDD restructuration reduces by 20% the critical path delay as compared to a vanilla synthesis performed by Design Compiler

L. Amarù et al., DATE'13, DATE'14

University of Utah | P.-E. Gaillardon | 21

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A Low-Power system Enabler
 - RRAM-based FPGA design
- Conclusion

Path 2: Exploit more generic data structures

Majority logic is a powerful generalization of AND/ORs.

Ex1: MAJ(a,b,c)=ab+ac+bc **Ex2:** MAJ(a,b,1)=a+b **Ex3:** MAJ(a,b,0)=ab

Unlocks optimization opportunities not apparent before.

How to exploit MAJ logic?: Majority-Inverter Graph

Definition: An MIG is a logic network consisting of 3-input majority nodes and regular/complemented edges.

From AOIG to MIG by direct transposition

Theorem: MIGs include AOIGs MIGs include AIGs

MIGs are at least as compact as AOIGs

Exploiting the MAJ functionality unlock better representations

MIG Manipulation through an efficient Boolean Algebra

- MIG Axiomatic System Ω:
 - Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
 - Majority: if(x = y), M(x, y, z) = x = y if(x = y'), M(x, y, z) = z
 - Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
 - Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
 - Inverter Propagation: M'(x, y, z) = M(x', y', z')
- **Theorem:** (B,M,',0,1) subject to axiom in Ω is a Boolean algebra.
- Theorem: It is possible to transform any MIG α into any other logically equivalent MIG β, by a sequence of transformations in Ω.

In practice, it is always possible to reach a desired MIG, i.e., an **optimized** MIG, starting from an initial MIG.

Area = MIG size – Delay = MIG depth – Power = MIG SWactivity

L. Amarù et al., DAC'14

University of Utah | P.-E. Gaillardon | 25

Superiority of MIG w.r.t. Standard Techniques

Cells = {MIN, XOR, XNOR, NAND, NOR, INV}

Post Tech. Mapping (ASIC)

Logic Synthesis results in 22-nm **CMOS** – MCNC suite

-(22%, 14%, 11%) delay, area, power w.r.t. AOIG-based synthesis

Post P&R

-(15%, 5%, 2%)

delay, area, power

w.r.t. commercial flow

Novel LS techniques promising to push design efficiency! Let's go to FPGAs and see how to exploit them (focus on BBDDs)!

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

FPGAs: Where to play? Memories (Routing) $\Pi\Pi\Pi\Pi$ inN--outW inE Routing resources CLB inS inW-Memories (Logic) $\boxtimes \boxtimes \cdots \boxtimes'$ SB SB Area 1 ∦K **Delay** \downarrow **CLB** ⋈ Power **BLE** Clk $^{\prime}old old \cdots old ^{\prime}$ $^{\prime} old old \cdots old old$ N BLEs SB Routing **⊠** ≥ · · · **≥** ⊠⊠... **BLE** Costs CLB (Local & Global) M. Lin et al, TVLSI'07 Logic Block (LB) **Routing Resources (RR)** Area 14% 8% 43% 35% Interconnects + buffers + MUXs Memory Logic Memory bone_k Delah 20% 80% 40% 60% University of Utah | P.-E. Gaillardon | 28

GE OF ENGINEERS

Exploiting the biconditional expansion in

LUTs

consider 2-

$$f(A,B) = A \oplus B \cdot \underline{f(B,B)} + A \oplus B \cdot \underline{f(B,B)}$$

$$B,\overline{B},0,1$$

$$B,\overline{B},0,1$$

$$B,\overline{B},0,1$$

BBDD representation

What is the advantage w.r.t. a standard

Strong power advantage

- 1st level of MUXes are statically configured
- 2nd level of MUXes activity is reduced thanks to the XORs
- MUX tree is not drive by SRAMs → Buffering requirements reduced

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging *Electronic Design Automation* techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

RRAM: A Low-Power System Enabler

- MIM structures
 - Different switching mechanisms
 - Different physical origins
- Back-End-of-Line integration process
- Interesting device properties
 - Non-volatile storage (1-bit or multi-bit)
 - The properties can be engineered according to the application (Thresholds, resistance levels, aging, data retention, ...)
 - Radiation tolerant

Low-Power Logic-in-memory Applications

Can we find an unconventional killer application that goes beyond the simple notion of storage?

Merge them with the data path of reconfigurable logic to achieve 5× ↓ power and 1.5× ↓ ADP

RRAM Technological Developments

Controlling the technology and its CMOS co-integration opens a path towards innovative low-power circuits and systems

- Material Innovations: Pt/TaOx/CrOy/Cr/Cu, Pt/Ti/HfO₂/Pt
- Structural Innovations: Fences (better scalability)
- CMOS-RRAM co-integration

D. Sacchetto et al., CASM'13

J. Sandrini et al., MNE'14, JME'15, JETCAS'15

M5

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system Enabler
 - RRAM-based FPGA design
- Conclusion

FPGA Non-Volatile Routing Multiplexer

FPGAs rely on Routing Multiplexers

Multi-stage Multiplexers are based on transmissiongates

RRAM elements = Non-Volatile Switches

Replacement of all the Transmission-Gates

Non-Volatile Routing MUX

Performance improvement

Towards Faster FPGAs?

Low-on Resistance Routing Structures

Faster FPGAs Nominal Vdd

- Area reduction up to 8%: Slight reduction programming circuits
- Delay reduction up to 73%: Low On-resistance in data paths

Toolflow

VTR Toolflow 40-nm tech. node MCNC Benchmarks

Room for architectural innovations

P.-E. Gaillardon et al, VLSI-SoC'12

Towards Low-Power FPGAs?

High-Performance Low-Power Routing Structures

Ultra-low Power FPGAs

Near-V_T power supply

In CMOS, V_{dd} reduction leads to low energy consumption but large delay

In ReRAM MUX, pass-gates are replaced by RRAMs

No R_{on} degradation

Limited delay degradation but similar energy gains

RRAM-based MUX can operate at low voltage without delay degradation

University of Utah | P.-E. Gaillardon | 37

RRAM-based FPGA Architectural Exploration

NINC Hold 2015 All rights recogned

- Introduction
- Functionality-enhanced Devices
 - Controllable-polarity transistors: concept and fabrication
 - Circuit design and associated physical design
- Emerging Electronic Design Automation techniques
 - Biconditional Binary Decision Diagrams (BBDDs)
 - Majority Inverter Graphs (MIGs)
 - Application to reconfigurable logic architectures
- Functionality-enhanced Circuits
 - RRAM: A low-power system enabler
 - RRAM-based FPGA design
- Conclusion

Take-away Messages

- Better devices do not mean smaller devices
 - Exploit the functionality rather than the density
 - ❖ Trigger many innovations at the circuit level (arithmetic, routing, ...)

- Novel EDA techniques are promising sources of inspiration
 - Biconditional expansion shows great quality
 - Majority logic even more promising!

The architecture/application should lead the game

Acknowledgments

Ms. Somayyeh Rahimian Mr. Hassan Ghasemzadeh Mr. Xifan Tang Mr. Gain Kim

Architecture Design

Pr. Nanni De Micheli

Funding ERC-Nanosys Swiss NSF

Physical Design

A 4 1 1 1 1 2 2 A 12

EDA Tools

Mr. Luca Amarù Mr. Winston Haaswijk

Modeling

Mr. Zhendong Guo

Technology

Mr. Michele De Marchi

Mr. Jian Zhang

Mr. Maxime Thammasack

Mr. Jury Sandrini

Thank you for your attention

Questions?

Integrated Nanosystems Research Group

Department of Electrical and Computer Engineering

MEB building – University of Utah – Salt Lake City – UT – USA