STA305/1004 - Class 4

Septeber 17, 2019

Today's Class

Office hours for

Prof. Tabacu

Tues. 4-5

SS 6027C

- ▶ Hypothesis testing via randomization
- ► Two-sample t-test
- ▶ Paired t-test

Example: Wheat Yield

- ▶ Assigning treatments randomly avoids any pre-experimental bias.
- ▶ 12 playing cards, 6 red, 6 black were shuffled (7 times??) and dealt
- ▶ 1st card black $\rightarrow 1^{st}$ plot gets B
- lacksquare 2nd card red ightarrow 2nd plot gets A
- ▶ 3rd card black $\rightarrow 3^{rd}$ plot gets B
- ► Completely randomized design

Wheat Yield Example

- ▶ Evidence that fertilizer type is a source of yield variation?
- Evidence about differences between two populations is generally measured by comparing summary statistics across two sample populations.
- ▶ A statistic is any computable function of the observed data.

Wheat Yield Study

Empirical CDF Fertilizer


```
Wheat Yield Study
                                                   25 4
    summary(yA); sd(yA);quantile(yA,prob=c(0.25,0.75))_
          Min. 1st Qu.
                        Median
                                  Mean 3rd Qu.
                                                   Max.
    ##
         11.40
                 16.85
                         18.75
                                  18.37
                                          20.73
                                                  23.70
      [1] 4.234934
          25%
                 75%
    ##
       16.850 20.725
                                                            = 20.725-
    summary(yB); sd(yB); quantile(yB,prob=c(0.25,0.75))
                                                                16.850
    ##
          Min. 1st Qu.
                        Median
                                  Mean 3rd Qu.
                                                   Max.
    ##
         14.20
                 24.55
                         25.95
                                 24.30
                                          26.82
                                                  28.50
    ## [1] 5.151699
    ##
          25%
                 75%
    ## 24.550 26.825
```

Results

```
mean(yA)-mean(yB)
```

[1] -5.933333

- ▶ So there is a moderate/large difference in mean yield for these fertilizers.
- ▶ Would you recommend B over A for future plantings?
- ▶ Do you think these results generalize to a larger population?
- ▶ Could the result be due to chance?

Hypothesis Testing Via Randomization

- ▶ Are the observed differences in yield due to fertilizer type?
- ▶ Are the observed differences in yield due to plot-to-plot variation?

Hypothesis Testing Via Randomization

Hypothesis tests:

- $ightharpoonup H_0$ (null hypothesis): Fertilizer type does not affect yield.
- $ightharpoonup H_1$ (alternative hypothesis): Fertilizer type does affect yield.
- \triangleright A statistical hypothesis evaluates the compatibility of H_0 with the data

We can evaluate H_0 by answering:

- ▶ Is a mean difference of -5.93 plausible/probable if H0 true?
- ▶ Is a mean difference of -5.93 large compared to experimental noise?

- ▶ Compare $\bar{y}_a \bar{y}_b$ =-5.93 (observed difference in the experiment) to values of $\bar{y}_a \bar{y}_b$ that could have been observed if H_0 were true.
- \blacktriangleright Hypothetical values of $\bar{y}_a-\bar{y}_b$ that could have been observed under H_0 are referred to as samples from the null distribution.

- $\blacktriangleright~\bar{y}_a \bar{y}_b$ is a function of the outcome of the experiment.
- ▶ If a different experiment were performed then we would obtain a diffrent value of $\bar{y}_a \bar{y}_b$.

- ▶ In this experiment we observed $\bar{y}_a \bar{y}_b$ =-5.93.
- ▶ If there was no difference between fertilizers then what other possible values of $\bar{y}_a \bar{y}_b$ could have been observed?

The cards were shuffled and we were dealt B, R, B, R, ...

В	Α	В	Α	В	В
В	Α	Α	Α	В	Α

Under this treatment assignment we oberved the yields:

B 26.9	A 11.4	B 26.6	A 23.7	B 25.3	B 28.5
B 14.2	A 17.9	A 16.5	A 21.1	B 24.3	A 19.6

A observed

Another potential treatment assignment under ${\cal H}_0$ is:

В	Α	В	В	Α	Α
Α	В	В	Α	Α	В

The yields obtained under this assignment are:

B 26.9					
A 14.2	B 17.9	B 16.5	A 21.1	A 24.3	B 19.6

This data could occur if the experiment were run again.

Experimenta	Procedure and Potentia	al Outcor	mes		Dlot	4
Observed	treatment assignment: 3	V	_5	b	T A.	23.7
PIST	B 26.9 A 11.4 B 26.6	A)23.7	B)25.3	B 28.5	R	23.7
Oppers	B 14.2 A 17.9 A 16.5 2 8 9	A 21.1	B 24.3	A 19.6	J	
Potential		_	l	٠ ـ	Thus	, 13
hypothetica	B 26.9 A 11.4 B 26.6	B)23.7	(A)25.3	A 28.5	1 try	e 1 15
Potential hypothetica assignment.	A 14.2 B 17.9 B 16.5	A 21.1	A 24.3	B 19.6] ; t	, reser
Respond at PollEv.com/nathantaback						A=MP
☐ Text NATHANTABACK to 37607 once to join, then A, B, C, or D					× 14 -	"VENINZ
What is the difference between the observed and for A.B.						+- A,B
potential treatment assignments?					For 10	1]
	potential treatii	ieiit ass	igiiiileii	LS:	ν-	100
	he wheat yields of each plotare different in observed	and			100	
potential assignments, but the treatments are the same.						10
The wheat yields of each plot are the same in observed and potential assignments, but the treatments are different.						1% V
	There is no difference since it has	heen accum	and that Ho	is true. (- Iy	%
There is no difference since it has been assumed that H_0 is true.						
	he observed treatment assignment is statistically ignificant, but the potential treatment assignment is r	not.			y 49	%

▶ Under this hypothetical assignment the mean difference is:

```
yA \leftarrow c(11.4,25.3,28.5,14.2,21.1,24.3)

yB \leftarrow c(26.9,26.6,23.7,17.9,16.5,19.6)

mean(yA) - mean(yB)
```

```
## [1] -1.066667
```

This represents an outcome of the experiment in a universe where:

- 1. The treatment assignment is B, A, B, B, A, A, B, B, A, A, B
- 2. H_0 is true (i.e., $\mu_A=\mu_B$, where μ_A,μ_B are the mean yields of fertilizers A and B).

The Null distribution

- lacktriangle What potential outcomes **could** we see if H_0 is true?
- \blacktriangleright Compute $\bar{y}_a \bar{y}_b$ for each possible treatment assignment.

The Null Distribution

▶ For each treatment assignment compute

$$\delta_i=\bar{y}_a-\bar{y}_b, i=1,2,\dots,924.$$

- $\{\delta_1,\delta_2,\dots,\delta_{924}\}$ enumerates all pre-randomisation outcomes assuming no treatment effect.
- lacktriangle Since each treatment assignment is equally likely under the null distribution, a probability distribution of experimental results if H_0 is true can be described as

$$\begin{split} \hat{F}(y) &= \frac{\#(\delta_i \leq y)}{924} \\ &= \frac{\sum_{k=1}^{\binom{12}{6}} I(\delta_k \leq y)}{\binom{12}{6}} \end{split}$$

This is called the randomisation distribution.

Randomization Distribution

- ▶ The yield is not random since the plots were not chosen randomly.
- ▶ Their assignment to treatments is random.
- ▶ The basis for building a probability distribution for $\bar{y}_a \bar{y}_b$ comes from the randomization of fertilizers to plots.

Randomization Distribution

- ► This randomization results in 6 plots getting fertilizer A and the remaining 6 plots receiving fertilizer B.
- \blacktriangleright This is one of $\binom{12}{6}=924$ equally likely randomizations that could have occured.

This represents an outcome of the experiment in a universe where:

- 1. H_0 is true.
- 2. The yield will be the same regardless of which fertilizer a plot received.

For example a plot that had a yield of 26.9 given fertilizer B would have the same yield if the plot received fertilizer A if H_0 is true.

A and B are labels for treatment that are exchangeable assuming to is true.

R Code for Randomization Distribution

```
yA <- c(11.4,23.7,17.9,16.5,21.1,19.6) yeld's under trt. A
yB <- c(26.9,26.6.25 3 20 5 11.1,19.6)
fert <- c(yA,yB); N <- choose(12,6) ←
res <- numeric(N) # store the results
index <-combn(1:12,6) #Generate N treatment assignments
                            _ 6 Plots labellas A
for (i in 1:N)
{res[i] <- mean(fert[index[,i]])-mean(fert[-index[,i]])}</pre>
index[,1:2] #output first two randomizations
                                                            6 plots
                                                            Labelled B
         [,1]
              [,2]
##
   [1,]
   [2,]
                               SAAAAAB
BABBBB
   [3.]
            3
## [4,]
##
   ſ5.l
            5
## [6,]
res[1:2] #output first two mean diffs
```

[1] -5.933333 -3.500000

Computational Note: Vectorized Coding/Functional Programming

```
m1 <- function(){ # Vectorized version</pre>
  f <- function(index){mean(fert[index]) - mean(fert[-index])}</pre>
  index <- combn(1:12,6)
                                                  Vectorized
Version of
for bop.
  y \leftarrow lapply(1:924, function(x) index[,x])
  z <- lapply(y,f)
  return(z)
system.time(m1())
                                                Lor 100b.
##
     user system elapsed
##
     0.007 0.000
                     0.007
m2 <- function() { #non-vectorized version
  res <- numeric(N) # store the results
  index <- combn(1:12,6) #Generate N treatment assignments
  for (i in 1:N)
  {res[i] <- mean(fert[index[,i]]) - mean(fert[-index[,i]])}</pre>
  return(res)
system.time(m2())
```

```
## user system elapsed
## 0.013 0.000 0.013
```

Randomization Distribution

Hypothesis Testing

- \blacktriangleright Is there any contradiction between H_0 and the observed data?
- ▶ A P-value is the probability, under the null hypothesis of obtaining a more extreme than the observed result.

$$\text{P-value} = P\left(\delta \leq -5.93\right) = \hat{F}(-5.93)$$

- ▶ A small P-value implies evidence **against** null hypothesis.
- ▶ If the P-value is large does this imply that the null is true?

Randomization Test

- ▶ Assume H_0 is true.
- Calculate the difference in means for every possible way to split the data into two samples of size 6.
- ▶ This would result in $\binom{12}{6} = 924$ differences.
- Calculate the probability of observing a value as extreme of more extreme than the observed value of the test statistic (*P-value*).
- ▶ If the P-value is small then there are two possible explanations:
- 1. An unlikely value of the statistic has occurred, or
- 2. The assumption that H_0 is true is incorrect.
- ▶ If the P-value is large then the hypothesis test is inconclusive.

Computing the P-value

[1] 0.03

```
The observed value of the test statistic is -5.93. So, the p-value is
# of times values from the mean randomization distribution
# less than observed value
sum(res<=observed)</pre>
## [1] 26
N # Number of randomizations
## [1] 924
pval <- sum(res<=observed)/N # Randomization p value</pre>
round(pval,2)
```

Interpretation of P-value

- ▶ A p-value of 0.03 can be interpreted as: assume there is no difference in yield between fertilizers A and B then the proportion of randomizations that would produce an observed mean difference between A and B of at most -5.93 is 0.03.
- ▶ In other words, under the assumption that there is no difference between A and B only 3% of randomizations would produce an extreme or more extreme difference than the observed mean difference.
- Therefore it's unlikely (if we consider 3% unlikely) that an observed mean difference as extreme or more extreme than -5.93 would be observed if $\mu_A = \mu_B$.

 $e_A = \mu_B$. evidence that fert. A is diff. them fort. B.

Two-Sided Randomization P value

- ▶ If we are using a two-sided alternative then how do we calculate a p-value?
- ▶ The randomization distribution may not be symmetric so there is no justification for simply doubling the probability in one tail.

Let

$$\bar{t} = \left(1/{N \choose N_A}\right) \sum_{i=1}^{(N_A)} t_i$$

be the mean of the randomization distribution then we can define the two-sided

The probability of obtaining an observed value of the test statistic as far, or farther, from the mean of the randomization distribution.

Two-Sided Randomization P value

```
vA \leftarrow c(11.4, 23.7, 17.9, 16.5, 21.1, 19.6)
yB \leftarrow c(26.9, 26.6, 25.3, 28.5, 14.2, 24.3)
fert <- c(yA,yB) #pool data
N <- choose (12.6) # vandoni Zuthans.
res <- numeric(N) # store the results
index < -combn(1:12,6)
for (i in 1:N)
  res[i] <- mean(fert[index[,i]])-mean(fert[-index[,i]])
pval <- sum(abs(res-tbar)>=abs(observed-tbar))/N for Computing round(pval,2)

## [1] 0.06
## [1] 0.06
```

Randomization Test

- We could calculate the difference in means for every possible way to split the data into two samples of size 6.
- ▶ This would result in $\binom{12}{6} = 924$ differences.
- ▶ If there were 30 observations split evenly into two groups then there are $\binom{35}{15} = 155, 117, 520$ differences.
- ▶ So unless the sample sizes are small these exhaustive calculations are not practical.

Randomization Test

Instead we can create a permutation resample (Monte Carlo Sampling).

- 1. Draw 6 observations from the pooled data without replacement. (fert A)
- 2. The remaining 6 observations will be the second sample (fert B)
- 3. Calculate the difference in means of the two samples
- 4. Repeat 1-3 at least 250000 times.
- P-value is the fraction of times the random statistics exceeds the original statistic.

Estimate P-value via Monte Carlo Sampling

If M test statistics, $t_i, i=1,...,M$ are randomly sampled from the permutation distribution, a one-sided Monte Carlo p value for a test of $H_0:\mu_T=0$ versus $H_1:\mu_T>0$ is

$$\hat{p} = \frac{1 + \sum_{i=1}^{M} I(t_i \ge t^*)}{M+1}.$$

Including the observed value t^* there are M+1 test statistics.

Estimate P-value via Monte Carlo Sampling

```
N <- 250000 # number of times to repeat this process
result <- numeric(N) # space to save random diffs.
for (i in 1:N)
{ #sample of size 6 from 1 to 12, without replacement
  index <- (sample)(12, size=6, replace=F)</pre>
  result[i] <- mean(fert[index])-mean(fert[-index])</pre>
#store observed mean difference
observed <- mean(yA)-mean(yB)
#P-value - mean - results will vary
pval <- (sum(result <= observed)+1)/(N+1)</pre>
round(pval,4)
```

[1] 0.0279

Basic Decision Theory

 $\mathsf{P}\text{-value} = P\left(\mathsf{test}\ \mathsf{statistic} \geq \mathsf{observed}\ \mathsf{value}\ \mathsf{of}\ \mathsf{test}\ \mathsf{statistic}\right)$

$$\alpha = P \, (\mbox{type I error})$$

$$\beta = P \, (\mbox{type II error})$$

$$1 - \beta = \mbox{power}$$

The Randomization P-value

- ▶ An achievable P-value of the randomization test must be a multiple of $\frac{k}{\binom{6}{2}} = \frac{k}{924}$, where $k=1,2,\ldots,924$.
- ▶ If we choose a significance level of $\alpha = \frac{k}{924}$ that is one of the achievable P-values then P (type I error) $= \alpha$.
- ▶ The randomization test is an exact test.
- If α is not chosen to be one of the achievable P-values but $\alpha=\frac{k}{924}$ is the largest acheivable P-value less than α then P (type I error) $<\alpha$.

A test statistic should be able to differentiate between ${\cal H}_0$ and ${\cal H}_a$ in ways that are scientifically relevant.

- ▶ Other test statistics could be used instead of $T = \bar{Y}_A \bar{Y}_B$ to measure the effectiveness of fertilizer A.
- ▶ The difference in group medians

$$median(Y_A) - median(Y_B) \\$$

or trimmed means are examples of other test statistics.

The randomiztion distribution of the difference in group medians can be obtained by modifying the R code used for the difference in group means.

```
fert <- c(yA,yB) #pool data —

N <- choose(12,6) —

res <- numeric(N) # store the results —

index <-combn(1:12,6) # Generate N treatment assignments —

for (i in 1:N)

{

res[i] <- median(fert[index[,i]])-median(fert[-index[,i]])
}

ws fead of Wlan

Use wedwan.
```



```
The p-value of the randomization test can be calculated
```

```
# of times values from the median randomization
# distribution less than observed value
sum(res<=observed)</pre>
```

N # Number of randomizations

pval <- sum(res<=observed)/N # Randomization p value
round(pval,2)</pre>

where MA, MB arethe medians of Yield under AanolB.

If the two wheat yield samples are independent random samples from a normal distribution with means μ_A and μ_B but the same variance then the statistic

$$\bar{y}_A - \bar{y}_b \sim N \left(\mu_A - \mu_B, \sigma^2 (1/n_A + 1/n_B) \right).$$

So,

$$\label{eq:continuous_state} \overbrace{\sqrt{\sigma \sqrt{(1/n_A+1/n_B)}}}^{\bar{y}_A-\bar{y}_b-\delta} \sim N(0,1),$$

where $\delta = \mu_A - \mu_B$.

If we substitute

$$S^2 = \frac{\sum_{i=1}^{n_A}(y_{iA} - \bar{y}_A) + \sum_{i=1}^{n_B}(y_{iB} - \bar{y}_B)}{n_A + n_B - 2}$$

for σ^2 then

$$\frac{\bar{y}_A - \bar{y}_b - \delta}{\sqrt{(1/n_A + 1/n_B)}} \sim t_{n_A + n_B - 2},$$
 ple t-statistic

is called the two sample t-statistic.

In the wheat yield example $H_0: \mu_A = \mu_B$ and suppose that $H_1: \mu_A < \mu_B$. The p-value of the test is obtained by calculating the observed value of the two sample t-statistic under H_0 .

$$t^* = \frac{\bar{y}_A - \bar{y}_b}{s\sqrt{(1/n_A + 1/n_B)}} = \frac{18.37 - 24.3}{4.72\sqrt{(1/6 + 1/6)}} = -2.18$$

The p-value is
$$P(t_{18}<-2.18)=0.03$$
. The calculation was done in R.
$$s \leftarrow \text{sqrt}((5*\text{var}(y\texttt{A})+5*\text{var}(y\texttt{B}))/(9*\text{sqrt}(1/6+1/6)); \ \text{round}(\text{tstar},2)$$

$$tstar \leftarrow (\text{mean}(y\texttt{A})-\text{mean}(y\texttt{B}))/(9*\text{sqrt}(1/6+1/6)); \ \text{round}(\text{tstar},2)$$

```
In R the command to run a two-sample t-test is t.test().
t.test(yA,yB,var.equal = TRUE,alternative = "less")
##
                                                 Ha: MA CMB.
##
   Two Sample t-test
##
## data: yA and yB
## t = -2.1793, df = 10, p-value = 0.02715
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
                           One-Sided.
##
          -Inf -0.9987621
## sample estimates:
## mean of x mean of y
    18.36667 24.30000
##
```


Theoretical Quantiles

QQ plots assers The two-sample t-test Normality of Yields under treatments. qqnorm(yB,main = "Fertilizer B");qqline(yB) Fertilizer B 28 56 No Systematic doui atous from Straight line. 24 Sample Quantiles 22 20 16

0.0

Theoretical Quantiles

0.5

1.0

-1.0

-0.5

Two-Sample t-test versus Randomization Test

- ▶ The p-value from the randomization test and the p-value from two-sample t-test are almost identical.
- ▶ The randomization test does not depend on normality or independence.

Two-Sample t-test versus Randomization Test

- ▶ The randomization test does depend on Fisher's concept that after randomization, if the null hypothesis is true, the two results obtained from each particular plot will be exchangeable.
- ▶ The randomization test tells you what you could say if exchangeability were true.

Paired Comparisons

- Increase precision by making comparisons within matched pairs of experimental material.
- ► Randomize within a pair.

Boy's Shoe Experiment

- Two materials to make boy's shoes, A and B, are tested to evaluate if B is more sturdy compared to A.
- During the experimental test some boys scuffed their shoes more than others.
- Each boy's two shoes were subjected to the same treatment by having each boy wear both materials.
- Working with 10 differences B-A most of the boy-to-boy variation could be eliminated.
- ▶ Called a randomized paired comparison design.

Boy's Shoe Experiment

- ▶ Toss a coin to randomize material to L/R foot of a boy.
- ▶ Head: Material A used on right foot.
- Null hypothesis: amount of wear associated with material A and B are the same.
- ▶ So labelling given to a pair of results only affects the sign of the difference.

SS6027C.

library(BHH2) data(shoes.data) shoes.data

##		boy	\mathtt{matA}	sideA	\mathtt{matB}	sideB
##	1	1	13.2	L	14.0	R
##	2	2	8.2	L	8.8	R
##	3	3	10.9	R	11.2	L
##	4	4	14.3	L	14.2	R
##	5	5	10.7	R	11.8	L
##	6	6	6.6	L	6.4	R
##	7	7	9.5	L	9.8	R
##	8	8	10.8	L	11.3	R
##	9	9	8.8	R	9.3	L
##	10	10	13.3	L	13.6	R
math - mats						

D.7F 13.2-14.0 8.2-8.8

are diff.


```
diff <- shoes.data$matA-shoes.data$matB
meandiff <- mean(diff): meandiff
## [1] -0.41
shoe.dat2 <- data.frame(shoes.data,diff)</pre>
shoe.dat2
     boy matA sideA matB sideB diff
##
## 1
      1 13.2
               I. 14.0 R. -0.8
## 2
      2 8.2
               L 8.8 R -0.6
## 3 3 10.9
               R 11.2 L -0.3
## 4 4 14.3
               L 14.2 R 0.1
## 5 5 10.7
               R 11.8 L -1.1
## 6 6 6.6
               L 6.4 R 0.2
## 7 7 9.5
               L 9.8 R -0.3
## 8 8 10.8
               L 11.3 R -0.5
## 9
     9 8.8
               R 9.3 L -0.5
               I. 13.6 R. -0.3
## 10
     10 13.3
```

Boy's Shoe Experiment

- ▶ The sequence of coin tosses is one of $2^{10} = 1024$ equiprobable outcomes.
- ▶ To test H_0 the average difference of -0.41 observed observed can be compared with the other 1023 averages by calculating the average difference for each of 1024 arrangements of signs in:

$$\bar{d} = \frac{\pm 0.8 \pm 0.6 \dots \pm 0.3}{10}$$

[1] 0.41 0.25

```
\mathbb{N} \leftarrow 2^{(10)} \# number of treatment assignments
res <- numeric(N) #vector to store results
LR <- list(c(-1,1)) # difference is multiplied by -1 or 1
# generate all possible treatment assign
trtassign <- expand.grid(rep(LR, 10))
for(i in 1:N){
res[i] <- mean(as.numeric(trtassign[i,])*diff)</pre>
trtassign[1:2,]
## Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10
## 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 2 1 -1 -1 -1 -1 -1 -1 -1
res[1:2]
```

hist(res, xlab="Mean Difference",main="Randomization Distribution Boys'
abline(v = meandiff,col="blue")

Randomization Distribution Boys' Shoes


```
sum(res<=meandiff) # number of differences le observed diff

## [1] 7
sum(res<=meandiff)/N # p-value

## [1] 0.006835938</pre>
```

If we assume that the differences -0.8, -0.6, -0.3, 0.1, -1.1, 0.2, -0.3, -0.5, -0.5, -0.3 are a random sample from a normal distribution then the statistic

$$t = \frac{\bar{d}}{s_{\bar{d}}/\sqrt{10}} \sim t_{10-1},$$

where, $s_{\bar{d}}$ is the sample standard deviation of the paired differences. The p-value for testing if $\bar{D}<0$ is

$$P(t_9 < t)$$
.

In general if there are n differences then

$$t = \frac{\bar{d}}{s_{\bar{d}}/\sqrt{n}} \sim t_{n-1},$$

where, $s_{\bar{d}}$ is the sample standard deviation of the paired differences. The p-value for testing if $\bar{D}<0$ is

$$P(t_{n-1} < t)$$
.

NB: This is the same as a one-sample t-test of the differences.

In R a paired t-test can be obtained by using the command t.test() with paired=T.

```
t.test(shoes.data$matA,shoes.data$matB,paired = TRUE,
       alternative = "less")
##
##
   Paired t-test
##
## data: shoes.data$matA and shoes.data$matB
## t = -3.3489, df = 9, p-value = 0.004269
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
          -Inf -0.1855736
##
## sample estimates:
## mean of the differences
##
                     -0.41
```

This is the same as a one-sample t-test on the difference.

```
# same as a one-sample t-test on the diff
t.test(diff,alternative = "less")
##
##
   One Sample t-test
##
## data: diff
## t = -3.3489, df = 9, p-value = 0.004269
## alternative hypothesis: true mean is less than 0
## 95 percent confidence interval:
##
        -Inf -0.1855736
## sample estimates:
## mean of x
     -0.41
##
```

qqnorm(diff); qqline(diff)

