2021

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a production of the form

$$A \rightarrow x_1Bx_2$$

Assume that A and B are different variables and that

$$B \rightarrow y_1|y_2| \dots |y_n|$$

is the set of all productions in P which have B as the left side.

Let Ĝ=(V, T, S, Þ) be the grammar in which Þ is constructed by deleting

$$A \rightarrow x_1Bx_2$$

from P, and adding to it

$$A \rightarrow x_1y_1x_2|x_1y_2x_2| ... |x_1y_nx_2|$$

Then

$$L(\hat{G}) = L(G)$$

Example 6.1

Consider G with following productions

$$A \rightarrow a \mid aaA \mid abBc$$

 $B \rightarrow abbA \mid b$

Using the suggested substitution for the variable B, we get the grammar Ĝ

$$A \rightarrow a \mid aaA \mid ababbAc \mid abbc$$

Useful Substitution Rules

Rule 1: Remove Nullable Variables

Rule 2: Remove Unit-Productions

Rule 3: Remove Useless Variables

Nullable Variables

$$\lambda$$
 – production : $A \rightarrow \lambda$

Nullable Variable:
$$A \Rightarrow ... \Rightarrow \lambda$$

Example 6.4

$$\{a^nb^n:n\geq 1\}$$

$$S \to aS_1b$$

$$S_1 \to aS_1b \mid \lambda$$

$$S \to aS_1b \mid ab$$

$$S_1 \to aS_1b \mid ab$$

Example 6.5

Find a CFG without λ-productions equivalent to the grammar G:

Grammar G

$$S \to ABaC \qquad S \to ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Aa \mid Ba \mid a$$

$$A \to BC \qquad A \to B \mid C \mid BC$$

$$B \to b \mid \lambda \qquad B \to b$$

$$C \to D \mid \lambda \qquad C \to D$$

$$D \to d \qquad D \to d$$

A,B, and C are nullable variables

Unit-Productions

Unit Production: $A \rightarrow B$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example 6.6

Remove all unit-productions from

$$S \to Aa \mid B$$

$$B \to A \mid bb$$

$$A \to a \mid bc \mid B$$

dependency graph

$$S \rightarrow Aa \mid B$$

$$B \to A \mid bb$$

Non-unit production

$$A \rightarrow a \mid bc \mid B$$

Example 6.6

New rules

dependency graph

Useless Productions

$$S o aSb$$

$$S o \lambda$$

$$S o A$$

$$A o aA$$
 Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S \to A$$

$$A \to aA$$

$$A \to \lambda$$

$$B \to bA$$
 Useless Production

Not reachable from S!

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless iff any of its variables is useless

$$S \to aSb$$

$$S \to \lambda \qquad \text{Productions}$$

$$Variables \qquad S \to A \qquad \text{useless}$$

$$useless \qquad A \to aA \qquad \text{useless}$$

$$useless \qquad B \to C \qquad \text{useless}$$

$$useless \qquad C \to D \qquad \text{useless}$$

Removing Useless Productions

Example 6.3:

Eliminate useless symbols and productions from the grammar below:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

First:

find all variables that can produce strings with only terminals

$$S \to aS \mid A \mid C$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$\{A, B\}$$

$$\therefore S \to A$$

$$\{A, B, S\}$$

Keep only the variables that produce terminal symbols: $\{A, B, S\}$ (the rest variables are useless)

$$S \to aS \mid A \mid \mathscr{C}$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from *S*

Dependency graph

- Vertex labeled with variable
- Edge (A, B) exists iff a production form
 A → xBy

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Theorem 6.5

 Let L be a CFL that does not contain λ. Then there exists a CFG that generates L and that does not have any useless-, unit-, or λ-production.

$$S_0 \rightarrow S \mid \lambda$$

- Which one needs to be removed first?
- Remove all undesirable productions using the following sequence of steps:
- Step 1: Remove λ-productions
- Step 2: Remove unit-productions
- Step 3: Remove useless-productions

Outline

Chomsky Normal Form (CNF)

Each productions has form:

Noam Chomsky

- The Grammar Guy
- 1928 –
- b. Philadelphia, PA
- PhD UPenn (1955)Linguistics
- Prof at MIT (Linguistics) (1955 - present)

Example 6.7

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Example 6.8

 Convert the grammar with following productions to CNF:

$$S \to ABa$$

$$A \to aab$$

$$B \to Ac$$

Introduce variables for terminals: T_a, T_b, T_c

$$S \to ABT_{a}$$

$$S \to ABa$$

$$A \to aab$$

$$B \to AC$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_2

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}V_{2}$$

$$V_{2} \to T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

 $T_c \rightarrow c$

Final grammar in Chomsky Normal Form: $S oup AV_1$

Initial grammar

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

$$V_{1} \rightarrow BT_{a}$$

$$A \rightarrow T_{a}V_{2}$$

$$V_{2} \rightarrow T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

 $T_c \rightarrow c$

Theorem 6.6

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:
An equivalent grammar
in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production $T_a \rightarrow a$

In productions: replace a with T_a

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \rightarrow C_1 V_1$$

 $V_1 \rightarrow C_2 V_2$
...
$$V_{n-2} \rightarrow C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is very easy to find the Chomsky normal form for any context-free grammar

Greibach Normal Form

All productions have form:

Sheila Greibach
PhD (1963) Harvard University
Prof. of UCLA(CS)

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \to abSb$$
$$S \to aa$$

Not Greibach Normal Form

Example 6.9:

$$S \rightarrow AB$$
 $S \rightarrow aAB \mid bBB \mid bB$ $A \rightarrow aA \mid bB \mid b$ $A \rightarrow aA \mid bB \mid b$ $B \rightarrow b$

Example 6.10:

$$S \to abSb$$

$$S \to aa$$

$$S \to aT_bST_b$$

$$S \to aT_a$$

$$T_a \to a$$

$$T_b \to b$$

Greibach Normal Form

Theorem 6.7:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greibach Normal Form

Observations

 Greibach normal forms are very good for parsing

 It is hard to find the Greibach normal form of any context-free grammar

Outline

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- Exhaustive search parser: O(P^{2|w|+1})
- CYK parsing algorithm: $O(|w|^3)$

The CYK Parser

J. Cocke

D. H. Younger

T. Kasami

The CYK Membership Algorithm

Input:

 \bullet Grammar G in Chomsky Normal Form

• String W

Output:

find if $w \in L(G)$

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$ $A \rightarrow BB$ $A \rightarrow a$ $B \rightarrow AB$ $B \rightarrow b$

• String w: aabbb

 $aabbb (V_{15})$

a b

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

a a b b b A A B B B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

α	a	b	b	b
A	A	В	В	В
aa	ab S,B	bb <i>A</i>	bb A	
aab	abb	bbb		

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

$$A$$

Therefore:

$$aabbb \in L(G)$$

Time Complexity:

$$|w|^3$$

Observation:

The CYK algorithm can be easily converted to a parser (bottom up parser)