

PROBABILITY AND STATISTICS

Hypothesis Testing Z & T

TEACHER: LINDA GONZALEZ

STUDENTs: JOHAN BADER, MAX
MORALES

ID:6522I50036, 6522I5006I

GROUP: TIDBIS32M

PLACE AND DATE: CHIHUAHUA, CHIH.
TO NOVEMBER 29, 2023

DIFERENCES

- Z-Test: Suitable for large sample sizes, requires known population standard deviation.
- T-Test: Appropriate for small sample sizes, uses sample standard deviation to estimate population standard deviation.

PRACTICAL EXAMPLE

A) Let's consider a scenario where you are testing a new drug's effectiveness in reducing blood pressure.

- Null Hypothesis (H0): The mean blood pressure after taking the new drug is the same as before (μ_before = μ_after).
- Alternative Hypothesis (H1): The mean blood pressure after taking the new drug is different from before (µ_before ≠ µ_after).
- \bullet If using a Z-Test, you might know the population standard deviation (σ) from previous studies.
- \bullet If using a T-Test, you estimate the population standard deviation (σ) from the sample data.

CONCLUSION

Hypothesis testing is a crucial statistical tool for making inferences about populations based on sample data. Understanding the differences between Z and T tests is essential in choosing the appropriate method for analysis. The choice depends on the size of the sample and whether the population standard deviation is known. Real-world applications, such as medical studies, often involve hypothesis testing to assess the effectiveness of treatments or interventions. Learning about hypothesis testing equips researchers and analysts with the tools to draw meaningful conclusions from data, contributing to evidence-based decision-making.