NNM Results for 2-DOF Nonlinear System

2023/02/06

Contents

Comparisons with Transient Simulations $\mathbf{2}$ Forced Response Results 3 **EPMC** Results 3 4 **Influence of Harmonic Truncation** 5 5 Influence of Parameters 6 Friction-Only and Cubic Spring-only Backbones 7 The general form of the nonlinear system considered is, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \beta \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{Bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{Bmatrix} + \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{Bmatrix} \alpha x_1^3 \\ \gamma \dot{x}_2^3 + f_{fr}(\dot{x}_2) \end{Bmatrix} = \begin{Bmatrix} F \cos \Omega t \\ 0 \end{Bmatrix},$ with, $f_{fr}(\dot{x}_2) \begin{cases} \in (-\mu N, \mu N) & \dot{x}_2 = 0 \\ \mu N = sgn(\dot{x}_2) & otherwise \end{cases}$. (2)

The friction model $f_{fr}(\cdot)$ is a **set-valued Coulomb law** that is implemented using a **Dynamic Lagrangian Framework**.

For all the results that follow, the damping parameter $\beta = 0.1 Nsm^{-1}$ and $\gamma = 0$.

1 Comparisons with Transient Simulations

Note: Transients calculated using an average acceleration implicit Newmark- β implementation.

Figure 1: Comparisons between transient simulations and Harmonic Balance for Forced Response

Table 1: Parameters Used

Parameter	Value
β	$0.1 Nsm^{-1}$
α	$1 Nm^{-1}$
γ	$0 N s^3 m^{-3}$
μN	0.5 N
Ω	0.9 rad/s
F	10 N

2 Forced Response Results

Figure 2: Different harmonic components of system response (plotted, x_1) to steady state forcing (a total of 33 harmonics were considered for the balance)

Table 2: Parameters Used

Parameter	Value
β	$0.1 Nsm^{-1}$
α	$1 Nm^{-1}$
γ	$0 N s^3 m^{-3}$
μN	0.5 N
Ω	[0.1, 3.0] rad/s
F	[0.01, 4.0] N

3 EPMC Results

Figure 3: Backbone and "invariant" manifold computed using EPMC (33 harmoincs considered for the balance). Manifold plotted until the red colored point in the backbone.

Table 3: Parameters Used

Parameter	Value
β	$0.1 Nsm^{-1}$
α	$1 Nm^{-1}$
γ	$0 N s^3 m^{-3}$
μN	0.5 N
Ω	N/A
F	N/A

4 Influence of Harmonic Truncation

Figure 4: Influence of Harmonic Truncation on the Computed Backbones

Table 4: Parameters Used

Parameter	Value
β	$0.1 Nsm^{-1}$
α	$1 Nm^{-1}$
γ	$0 N s^3 m^{-3}$
μN	0.5N
Ω	N/A
F	N/A

5 Influence of Parameters

Figure 5: Influence of (a) α and (b) μN on the backbones when the other is kept constant (13 harmonics used for balance)

Table 5: Parameters Used

Parameter	Value
β	$0.1 Nsm^{-1}$
α	$[0.5, 1.5] Nm^{-1}$
γ	$0 N s^3 m^{-3}$
μN	[0.250.75]N
Ω	N/A
F	N/A

6 Friction-Only and Cubic Spring-only Backbones

Figure 6: Backbones for (a) friction-only ($\alpha=\gamma=0$) and (b) cubic spring only ($\mu N=\gamma=0$) cases (33 harmonics used for balance)

The remaining parameters are identical to before.