EXPERIENȚA DEBYE-SCHERRER DE DIFRACȚIE A ELECTRONILOR PE O REȚEA POLICRISTALINĂ

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD
Pascu Ioana-Călina
Sîrboiu Patricia Octavia
Văideanu Renata-Georgia

Scopul lucrării este determinarea lungimii de undă asociată electronilor, verificarea ecuației de Broglie și determinarea constantelor de rețea ale grafitului.

În cadrul experimentului Debye-Scherrer, au fost măsurate diametrele D_1 și D_2 ale inelelor de difracție observate pe ecran. Tensiunea de accelerare (U) a fost variată între 3 kV și 5kV în trepte de 0.5 kV. Rezultatele au fost notate în tabelul de mai jos.

U (kV)	D1 (cm)	D2 (cm)
3	3	5
3,5	2,6	4,6
4	2,4	4,4
4,5	2,2	4,1
5	2,1	3,8

Folosind ecuația $\lambda=d\frac{D}{2L}$, se obține lungimea de undă experimentală a electronilor $\lambda_{1 exp}$ și $\lambda_{2 exp}$. Se cunosc valorile constantei de rețea $d_1=2,13\cdot 10^{-10} m$ și $d_2=1,23\cdot 10^{-10} m$ presupuse cunoscute, distanța de la probă la ecran L=13,5 cm.

U (kV)	1/rad(U)	D1 (cm)	D2 (cm)	λlexp(pm)	λ2exp (pm)
3	0,57735	3	5	23,66666667	39,4444444
3,5	0,534522	2,6	4,6	20,51111111	36,28888889
4	0,5	2,4	4,4	18,93333333	34,71111111
4,5	0,471405	2,2	4,1	17,3555556	32,3444444
5	0,447214	2,1	3,8	16,56666667	29,9777778

Relația de Broglie $\lambda=\frac{h}{p}$, se verifică folosind ecuația $\lambda=\frac{h}{\sqrt{2meU}}$ prin calcularea valorii teoretice a lungimii de undă λ_t .

Se cunosc: $e = 1,602 \cdot 10^{-19} \text{C}$, $m = 9,109 \cdot 10^{-31} \text{kg}$, $h = 6,625 \cdot 10^{-34} \text{Js}$.

U (kV)	1/rad(U)	D1 (cm)	D2 (cm)	λlexp(pm)	λ2exp (pm)	λT(pm)
3	0,57735	3	5	23,66666667	39,4444444	22,38964344
3,5	0,534522	2,6	4,6	20,51111111	36,28888889	20,72878192
4	0,5	2,4	4,4	18,93333333	34,71111111	19,39
4,5	0,471405	2,2	4,1	17,3555556	32,3444444	18,28106732
5	0,447214	2,1	3,8	16,56666667	29,9777778	17,34294323

Diametrele D_1 și D_2 se reprezintă grafic în funcție de $\frac{1}{\sqrt{U}}$, rezultând două drepte cu pantele $k_1(d_1)$ și $k_2(d_2)$ ce satisfac relația $k(d)=\frac{2hL}{d\sqrt{2me}}$.

Deci, valorile experimentale ale constantelor de rețea ale grafitului sunt:

$$d_1 = \frac{2hL}{k_1\sqrt{2me}} = 1.5185 \cdot 10^{-10} \text{m}$$

$$d_2 = \frac{2hL}{k_2\sqrt{2me}} = 1.1777 \cdot 10^{-10} \text{m}$$