Chapter 4. Interpolation and Polynomial Approximation. 4.2 Introduction to Interpolation. Given (20, yo), (21, yi), ---, (21, yn), we are Looking for the relation (function) between these points.

of points (n+1) Interpolation is an estimation of the Unknown function f(x) by polynomial of degree at most n, Pn(x), that passes through (all) the given points. (i-e) $f(x_i) = P_n(x_i)$ $(P_n(x) \approx f(x), \text{ while } f(xi) = P_n(xi))$ Remark: When no < x < xn, then Pr(x) is called an Interpolation. x < x0 or x > xn, then Pn(x) is extrapolation. Example: Let P(x) be the polynomial passes through the points: (1,1.06), (2,1.12), (3,1.34) and (5,1.78). Find the Polynomial P(x).

Sol: Let P(x) = A x3 + Bx2 + Cx + D

 $\Rightarrow 1.06 = A + B + C + D$

1.12 = 8A+4B+2C+D

1.34 = 27A + 9B + 3C + D

1.78 = 125A + 25B + 5C + D

 \Rightarrow A = -0.02 , B = 0.2 , C = -0.4 , D= 1.28

 $\Rightarrow P(x) = -0.02x^3 + 0.2x^2 - 0.4x + 1.28$

Remark: This Method is easy to understand but some times the resolution linear systems is difficult; especially if we have a large number of equations.

4.3 Lagrange Interpolation. (Approximation).

Given (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) , we need to find $P_n(x)$ that passes through all the given points (x_it) $f(x_i) = y_i = P_n(x_i)$ for i = 0, 1, ..., N

Assume (20, yo), (x,1,y) are Given, then:

 $y = P_{i}(x) = y_{0} + m(x - x_{0})$

 $\Rightarrow P_{1}(x) = y_{0} + \frac{(y_{1}-y_{0})}{(x_{1}-x_{0})}(x-x_{0})$

some rearrangments, we have

 $P_{1}(x) = \frac{(x_{1}-x_{1})}{(x_{0}-x_{1})}y_{0} + \frac{(x_{1}-x_{0})}{(x_{1}-x_{0})}y_{1}$

P,(n) is called Lagrange Interpolation of degree 1

 $L_{1,0}(x) := \frac{x - x_1}{x_0 - x_1}$ Lagrange Coefficients

 $L_{1,1}(x) := \frac{x - x_0}{x_1 - x_0}$

(119)

Notice that:

$$P_{1}(x_{0}) = y_{0} \qquad \& \quad P_{1}(x_{1}) = y_{1}$$

$$P_{i}(x) = \sum_{k=0}^{l} L_{i,k}(x) \cdot y_{k}$$

5) Fine degree of
$$P_i(n)$$
 ≤ 1

Example: Consider
$$f(x) = cosx$$
 over $[0, 1.2]$
Use the nodes $xo = 0$, $x_1 = 1.2$ to find $P_1(x)$

Sol:
$$P_{1}(x) = \frac{(x-1.2)}{(0-1.2)}y_{0} + \frac{(x-0)}{(1.2-0)}y_{1}$$

where
$$y_0 = f(n_0) = cos 0 = 1$$

 $y_1 = f(n_0) = cos 1.2 = 0.362358$

$$\Rightarrow$$
 P₁(x) = -0.83333 (x-1.2) +0.301965(x)

Case 2: Assume (20, yo), (21, y) and (22, yz)

are given, then

$$T_{2}(\chi) := \frac{(\chi - \chi_{1})(\chi - \chi_{2})}{(\chi_{0} - \chi_{1})(\chi_{0} - \chi_{2})} (y_{0}) + \frac{(\chi - \chi_{0})(\chi - \chi_{2})}{(\chi_{1} - \chi_{0})(\chi_{1} - \chi_{2})} (y_{1}) + \frac{(\chi - \chi_{0})(\chi - \chi_{1})}{(\chi_{2} - \chi_{1})} (y_{2})$$

$$P_{2}(x) = L_{2,0}(x) \cdot y_{0} + L_{2,1}(x) \cdot y_{1} + L_{2,2}(x) \cdot (y_{2})$$

$$\Rightarrow P_2(x) = \sum_{k=0}^{2} L(x). \forall k.$$

Notice that:
$$0$$
 $P_2(x_i) = y_i$, $i = 0,1,2$.

Example: Let
$$f(x) = Cosx$$
 over $[0, 1, 2]$

81: Let
$$x_0 = 0$$
, $x_1 = 0.6$, $x_2 = 1.2$

$$\Rightarrow P_2(x) = \frac{(x-0.6)(x-1.2)}{(o-0.6)(o-1.2)}(\cos o) + \frac{(x-0)(x-1.2)}{(o.6-0)(o.6-1.2)}(\cos o.6) + \frac{(x-0)(x-0.6)}{(1.2-0.6)}(\cos o)$$

=
$$1.388889(x-0.6)(x-1.2) + 2.292599(x)(x-1.2)$$

$$+0.503275(x)(x-0.6)$$
 (121)

High order Lagrange Interpolation.

Consider the n+1 points (xo, yo), (x1, y1), --, (xn, yn)

Lagrange polynomial of degree n that passes

through these points is obtained as follows.

$$P_{r}(x) = \sum_{k=0}^{n} L_{r,k}(x) \, \forall k$$

where Lnik(x) is Lagrange Coefficients defined as:

$$L_{n,k}(x) = \frac{(x-x_0) - - (x-x_1)(x-x_1) - - (x-x_n)}{(x_k-x_0) - - (x_k-x_1)(x_k-x_1)(x_k-x_n)}$$

$$=\frac{\int_{j=0}^{N}(x-x_{j})}{\int_{j=0}^{N}(x_{k}-x_{j})}$$

$$=\frac{1}{1+k}$$

And $L_{n,k}(x_i) = \begin{cases} 1, & k=i, \\ 0, & k\neq j \end{cases}$

$$P_n(xi) = \forall i , i = 0, 1, ..., n.$$

Example: Let f(x) = Cosx, over [0,1.2] Estimale +(0.35) Using Lagrange interpolation Jegree 3.

Sol: To find $P_3(x)$, we need 4 points. Let length of each subinterval = Length [a, b] \Rightarrow h = length of each subinterval = $\frac{1.2-0}{?}$ = 0.4 $x_0 = 0$, $x_1 = 0.4$, $x_2 = 0.8$, $x_3 = 1.2$ Jo = 6,0=1, J= 6,0.4 % 0.921061 $\frac{1}{2} = \cos 0.8 \approx 0.696707$ $\frac{1}{3} = \cos 1.2 \approx 0.362358$ $\Rightarrow P_3(x) = \frac{(x-0.4)(x-0.8)(x-1.2)(1)}{(o-0.4)(o-0.8)(o-1.2)}$ $+ \underbrace{(x-0)(x-0.8)(x-1.2)}_{(0,4-0)(0.4-0.8)(0.4-1.2)} (0.921061) + \underbrace{(x-0)(x-0.4)(x-1.2)(0.696707)}_{(0.8-0)(0.8-0.4)(0.8-1.2)}$ $+\frac{(x-0)(x-0.4)(x-0.8)}{(1.2-0.8)(1.2-0.8)}$ $\Rightarrow T_3(0.35) = 0.939607167 \approx Cos(0.35) = 0.939372712$

Error terms and error bounds

Theorem: (Lagrange polynomial approximation).

Assume that fE CM+1 [a, b] and that

no, x,, ..., xn E [a,b] are not nodes.

If x E [a, b], then:

$$f(x) = P_n(x) + E_n(x)$$

Where, Pn(x): Lagrange interpolation for f(x)

$$P_n(x) = \sum_{k=0}^{n} L_{n,k}(x) y_k$$

and the error term is:

$$E_{n}(x) = \frac{(x-x_{0})(x-x_{1})...(x-x_{n})}{(x+1)!} f(c)$$

for some CE [a, b]

Remark: En(xi)=0, Vi=0,1,2,...,n.

Proof: We are going to establish the result for [n=1]

Consider the special function

$$g(t) = f(t) - P_1(t) - E_1(x) (t - x_0)(t - x_1)$$

 $p_0 y_1 y_1 degree 1$ $(x - x_0)(x - x_1)$

Notice that x, no and x, are constants w.r. to t.

$$g(x_0) = f(x_0) - P_1(x_0) - E_1(x) [0] = 0.$$

$$g(x_1) = f(x_1) - P_1(x_1) - E_1(x)[0] = 0$$

$$g(x) = f(x) - P_1(x) - E_1(x) = 0$$
.

 $0 = g(x_0) = g(x)$ Let $x \in (x_0, x_1)$, applying Rolle's theorem on $[x_0, x]$

 $\exists c_0 \in (n_0, x)$ such that $g'(c_0) = 0$. Again, applying Rolle's theorem on $[x, x_i]$, then

Now, since
$$g'(c_0) = g'(c_1) = 0$$
, we can again apply Rolle's theorem to $g'(t)$ on $[c_0, c_1]$

then
$$\exists c \in (c_0, c_1)$$
 such that $g'(c) = 0$.

Calculate: $g'(t) = f'(t) - P_1(t) - E_1(x)[(t-x_1)+(t-x_0)(x-x_1)]$

and $g''(t) = f'(t) - 0 - E_1(x)[(x-x_0)(x-x_1)]$

$$\Rightarrow g''(c) = 0 = f'(c) - E_1(x)[(x-x_0)(x-x_1)]$$

$$\Rightarrow E_1(x) = \frac{(x-x_0)(x-x_1)}{(x-x_0)(x-x_1)} f'(c).$$

Example: Let $f(x) = cosx$, $E_0, 1, 2$.

Find the upper bound of the error when estimating $f(o,35)$ using $P_3(x)$. $x_0 = 0, x_1 = 0.4, x_2 = 0.8, x_3 = 1.2$.

$$|E_2(x)| \leq |(x-x_0)(x-x_1)(x-x_2)(x-x_2)| = 0.4$$

 $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{3})(\chi - \chi_{3})| |Max| f(\chi)|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{3})(\chi - \chi_{3})(\chi - \chi_{3})|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{3})(\chi - \chi_{3})(\chi - \chi_{3})|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{3})(\chi - \chi_{3})(\chi - \chi_{3})|$ $|E_{2}(\chi)| \leq |(\chi - n_{0})(\chi - \chi_{1})(\chi - \chi_{3})(\chi - \chi_{3})(\chi - \chi_{3})|$ $|E_{2}(\chi)| \leq |\chi - \chi_{3}| + |\chi - \chi_{3}| + |\chi - \chi_{3}| + |\chi - \chi_{3}| + |\chi - \chi_{3}|$ $|E_{2}(\chi)| \leq |\chi - \chi_{3}| + |\chi - \chi$

 $\Rightarrow |E_2(0.35)| \leq 2.7891 \times 10^{-4}$

Example: Let
$$f(x) = \frac{1}{1-2x}$$

- (a) Use Lagrange interpolation polynomial with the nodes $x_0 = 2$, $x_1 = 3$ and $x_2 = 3.5$ to find an estimation for f(2.5).
- (b) Find an upper bound of the error when estimating f(2.5)
- (c) Find an upper bound of the error when estimating f(x), $\forall x \in [2,3.5]$.

Sol: (a)
$$P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} + \frac{(x-x_0)(x-x_1)}{(x_2-x_1)} + \frac{(x-$$

$$\Rightarrow f(25) \approx P_2(2.5) = \frac{(2.5-3)(2.5-3.5)}{(2-3)(2-3.5)} f(2) + 2$$

$$+ \frac{(2.5-2)(2.5-3.5)}{(3-2)(3-3.5)} f(3) + \frac{(2.5-2)(2.5-3)}{(3.5-2)(3.5-3)} f(3.5)$$

$$= \frac{0.5}{1.5} \left(\frac{-1}{3} \right) + \frac{-0.5}{-0.5} \left(\frac{-1}{5} \right) + \frac{-0.25}{0.75} \left(\frac{-1}{6} \right)$$

(b)
$$|E_{2}(x)| \leq \frac{|(x-x_{0})(x-x_{1})(x-x_{2})|}{3!} |A_{1}| |f(x)|$$
 $f(x) = \frac{48}{(1-2x)^{4}}$
 $|x \in [2,3.5]|$

which

is decreasing function over $[2,3.5]$
 $|A_{1}| |f(x)| = \frac{48}{(1-2x)^{4}} |A_{2}| = 0.59259259$
 $|E_{2}(3.5]| |f(x)| = \frac{48}{(1-4)^{4}} |A_{2}| = 0.59259259$
 $|E_{2}(3.5)| \leq \frac{(2.5-2)(2.5-3)(2.5-3.5)}{3!} |A_{2}| |f(x)| = \frac{48}{(3.5)} |A_{2}| |f(x)| = \frac{48}{(1-4)^{4}} |A_{2}| |f(x)| =$

$$|E_{2}(2.5)| \leq |(2.5-2)(2.5-3)(2.5-3.5)| (0.59259259)$$

$$\Rightarrow |E_2(2.5)| \leq 0.02469$$

(c)
$$|E_2(x)| \leq \frac{|(x-n_0)(x-n_1)(x-n_2)|}{3!} (|Mex|f(x)|)$$

Let g(x) = (x-2)(x-3)(x-3.5), we need to find

$$\frac{|\text{Max | g(x)|}}{[z,3.5]} \Rightarrow g(x) = (x-2)(x-3) + (x-2)(x-3.5) + (x-3)(x-3.5)$$

$$\Rightarrow$$
 g(x) = 3x² - 17x + 23.5.

$$\Rightarrow g(x) = 0 \Rightarrow \chi_{1,2} = \frac{-(-17) \pm \sqrt{(-17)^2 - 4(3)(23.5)}}{2(3)}$$

(128)

$$\Rightarrow x_1 = 3.2743 \quad \text{and} \quad x_2 = 2.3924$$
Hotice that $g(2) = 0$ $g(3.5) = 0$ $f(3.5) = 0.2641$ $f(3.5) = 0.2641$

Used over the Internal [xo, xn]

Theorem: (Error bounds for Lagrange Merpolation equally spaced nodes). Assume that f(x) is defined on [a, b], which Contains equally spaced nodes $x_k = x_0 + h k$, $h = \frac{b-a}{n}$ Assume of EC[a,b] and bounded on the special subinternals [no, xi], [no, xz], [no, xz] that is: $|f'(x)| \leq Max |f'(x)| = M_{n+1}$ for n=1,2,3. Then the error terms are: $|E_1(x)| \leqslant \frac{h^2 M_2}{8}$, x E [no, xi]

2)
$$|E_2(x)| \leqslant \frac{k^3 M_3}{9\sqrt{3}}, x \in [n_0, x_2]$$

3)
$$|E_3(x)| \leq \frac{L^4M_4}{24}$$
, $x \in [x_0, x_3]$.

Consider the change of Variable: $\chi_0 + \chi_1$

$$t = \chi - \chi_0 \Rightarrow h - t = \chi_1 - \chi$$

$$\Rightarrow$$
 t-h= κ - κ_1

$$\Rightarrow E_{1}(x) = E_{1}(x_{0}+t) = \frac{t(t-h)}{2!} f(c), 0 \le t \le h$$

Let
$$\phi(t) = t^2 - th \Rightarrow \phi'(t) = 2t - h = 0$$

$$\Rightarrow$$
 $t = \frac{h}{2}$ (critical point).

$$\Rightarrow$$
 Extreme values: $\phi(0) = 0$ } Field eight

$$\emptyset \left(\frac{h}{2}\right) = -\frac{h^2}{4}$$

$$\Rightarrow |\phi(t)| \leqslant \frac{h^2}{4}$$

$$\Rightarrow |E_1(x)| \leqslant \frac{h^2}{4} M_2 = \frac{h^2 M_2}{8}.$$

Example: Consider
$$y = f(x) = \cos x$$
, [0,1.2].

Determine the upper bounds of the error for Lagrange polynomials $P_1(x)$, $P_2(x)$ and $P_3(x)$.

Sol: For
$$P_i(x)$$
: $x_0 = 0$, $x_1 = 1.2.$, $h = \frac{1.2-0}{1}$

$$\Rightarrow$$
 $|E_1(x)| < \frac{h^2 M_2}{8} = \frac{(1.2)^2}{8} \frac{Max}{E_{0,1,2}} \frac{f(x)}{f(x)}$

$$\Rightarrow |E_1(x)| \leq \frac{(1.2)^2}{8}(1) = 0.18.$$

For
$$P_2(x)$$
: $\chi_0 = 0$, $\chi_1 = 0.6$, $\chi_2 = 1.2$, $h = \frac{1.2 - 0}{2} = 0.6$

$$M_s = M_{ex} | f(x)| = | sin(1.2)| = 0.932039$$

$$\Rightarrow |E_2(x)| < \frac{h^3 M_3}{9\sqrt{3}} = \frac{(0.6)^3 (0.932039)}{9\sqrt{3}} = 0.012915$$

$$h = \frac{1.2-0}{3} = 0.4$$
 and $M_{H} = \frac{M_{H}}{J_{H}} \left[\frac{J_{H}}{J_{H}} \right] = |\cos 0| = 1$

$$\Rightarrow |E_3(x)| < \frac{h^4 M_4}{24} = \frac{(0.4)^4(1)}{24} = 0.001067$$

4.4. Newton Polynomials.

It is sometimes useful to find several approximating polynomials $P_1(x)$, $P_2(x)$, ..., $P_n(x)$ and then choose the one that snits our need.

If Lagrange polynomials are used, there is no Constructive relationship between $P_{n-1}(x)$ and $P_n(x)$.

Each polynomial has to be Constructed individually. So, we will construct Newton polynomials that have the recursive pattern: Given (xo, yo) , --, (xo, yn)

 $P_{i}(x) = a_{o} + a_{i}(x - n_{o}).$

 $P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$

= $P_1(x) + a_2(x-x_0)(x-x_1)$.

P3(x) = a0 + a, (x-n0) + a2(x-n0)(x-n1)+a3(x-n0)(x-x1)(x-x2) = $P_2(x) + a_3(x-x_0)(x-x_1)(x-x_1)$.

$$P_n(x) = P_{n-1}(x) + a_n(x-x_0)(x-x_1) - (x-x_n)$$

$$P_h(x)$$
 is called Newton polynomial with centers x_0, x_1, \dots, x_{n-1} , and degree $\leq n$. (Unique poly)

Now, we need to determine the ai's , i=0,...,n.

$$\boxed{a_1} = f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

(First divided difference).

$$\begin{bmatrix} a_2 = f[x_0, x_1, x_2] = f[x_1, x_2] - f[x_0, x_1] \\ x_2 - x_0 \end{bmatrix}$$

$$=\frac{f(x_2)-f(x_1)}{(x_2-x_1)}-\frac{f(x_1)-f(x_0)}{(x_1-x_0)}$$

$$=\frac{f(x_2)-f(x_1)}{(x_1-x_0)}$$

(second divided difference).

(134)

(kth divided difference).

χk	\$[xk]	\$[-,-]	\$ [-,-,-]	f [-,-,-]	\$[-1-1-1-]
χ _o	f[no]	00		-	
×I	f[x,]_	f[no,x]	191		
XZ	f[x2]	\$[x1,x2]	f[no, x1, x2]	102	
23	f[x3]	f[x2,x3]	\$[x1,x2,x3]	f[x,x,x,x]	2 a 3
жy	f[x4]	\$[x3, x4]	\$[x2,x3,x4]	\$[x,1,x2,x3, ny]	\$[x0,x1,x2,x3,x4)

$$f[1,2,3] = f[2,3] - f[1,2]$$

$$= \frac{f(3)-f(2)}{(3-2)} - \frac{f(2)-f(1)}{(2-1)} = \frac{(\cos 3 - 2\cos 2 + (\cos 1))}{2}$$

(135)

Theorem: (Newton Polynomial). Suppose that 20, x1, -, xn are not distinct number in [a, b]. There exists a Unique polynomial $P_n(x)$ of degree at most n with the property that (no error) = $f(x_i) = P_n(x_i)$, i = 0, 1, ..., N. The Newton form of this polynomial is: $P_n(x) = a_0 + a_1(x-x_0) + \dots + a_n(x-x_0)(x-x_1) \cdots (x-x_{n-1})^n$ where $a_k = f[n_0, ..., x_k], k = 0, 1, ..., n$. Corollary: Assume that Pn(n) is Newton polynomial is used to approximate of (x), that is: $f(x) = P_n(x) + E_n(x).$ If $f \in C^{n+1}[a_1b_1]$, then $\forall x \in (a_1b)$, $\exists c = c(x)$ in (a,b) such that the error term has the form: $E_{n}(x) = \frac{(x-x_{0})(x-x_{1})...(x-x_{n})}{(x+1)!} f(c).$

(136)

Remark: The error term En(x) is the same as

the one for Lagrange Interpolation.

Example: Let $f(x) = x^3 - 4x$. Construct the divided-difference table based on the nodes: $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 5$, $x_5 = 6$.

then find P3(x).

xk	FERM	D.D	2nd D.D	3rd D.D	7+h	D.D D.D
1	-3=a	.0	_	_		_
2	0	3=0,	_	_		_
3	15	12	6=92			
4	48	33	9	1 = a3		
5	105	57	12	1	0=94	_
6	192	87	15	1	0	0=a5

$$\Rightarrow P_3(x) = a_0 + a_1(x-n_0) + a_2(x-n_0)(x-x_1) + a_3(x-n_0)(x-x_1)(x-x_3)$$

$$= -3 + 3(x-1) + 6(x-1)(x-2) + 1(x-1)(x-2)(x-3).$$

$$\Rightarrow P_3(x) = x^3 - 4x$$

Remark: It f(x) = polynomial of degree n

then:

$$P_{n}(x) = f(x)$$

- 2) anti = 0, \(\forall i=1,2,\dots
- 3) an can be found directly from f(x), such that $a_n = \text{Coefficient af } x^n$.
- 4) ai, Vi<n can be found from table.

Example: If $f(x) = x^5 - 3x^2 + 4x - 8$, then : ① $P_5(x) = f(x)$, Using the nodes x_0, x_1, \dots, x_8 .

- 2) as = 1
- (3) a; = 0, \times 5

Example: Construct a divided - difference table for $f(x) = \cos x$, based on the points $(x, \cos k)$, for k = 0,1,2,3,4. Then find $P_1(x)$, $P_2(x)$, $P_3(x)$ and $P_4(x)$. Using 5 significant digits rounded J.

80 1:

κ_{k}	f[xx]	\$E,-J	\$[-,-,-]	\$[-,-,-,-]	\$[-,-,-,-]
0	1	_	_	_	_
1	0.54030	-0.4597		_	_
2	-0.41615	-0.95645	-0.24838		_
3	-0.98999	-0.57384	0.19131	0-14656	_
4	-0.65364	0.33635	0.4551	0.08793	-0.014658

$$\Rightarrow P_{1}(x) = 1 - 0.4597(x-0)$$

$$P_{2}(x) = P_{1}(x) - 0.24838(x-0)(x-1)$$

$$P_{3}(x) = P_{2}(x) + 0.14656(x-0)(x-1)(x-2)$$

$$P_{4}(x) = P_{3}(x) - 0.014658(x-0)(x-1)(x-2)(x-3).$$

End of Chapter 4" (139)