Informe Técnico — Pipeline de Datos COVID-19 (OWID)

Estudiante: Isaac Villa

Fecha: 31/08/2025

Git: https://github.com/IsaacVilla11/proyect-dagster.git

Arquitectura del pipeline

Assets y dependencias:

- 1) leer_datos → lectura canónica (OWID) y normalización de 'date'.
- 2) datos_procesados → normaliza tipos, filtra fechas futuras, de-duplica por (country,date), elimina nulos clave y filtra Ecuador + Perú.
- 3) metrica_incidencia_7d → media móvil de 7 días de incidencia por 100k.
- 4) metrica_factor_crec_7d → cociente de sumas móviles 7d (actual vs previa).
- 5) reporte_excel_covid → exportación a data/reporte_covid.xlsx.

```
[leer_datos] → [datos_procesados] → [metrica_incidencia_7d] \neg [metrica_factor_crec_7d] \vdash→ [reporte_excel_covid]
```

Decisiones de validación

Entrada (leer_datos):

- sin_fechas_futuras → compara max(date) por día con tolerancia configurable.
- claves_no_nulas_y_unicidad → country/date/population presentes, population>0 y unicidad por (country,date).

Salida (metrica_incidencia_7d):

• incidencia_rango_esperado → 0 ≤ incidencia_7d ≤ 2000.

Hallazgos: fechas futuras por agregaciones; revisiones con casos negativos (ajuste sólo en métricas); entidades no-país con población inválida.

Consideraciones de arquitectura

- pandas: suficiente para rolling/groupby y volumen del dataset.
- DuckDB: recomendable al escalar datasets/joins o para SQL columnas.
- Soda: alternativa declarativa, pero los Asset Checks cubren los objetivos del curso.

Resultados

Cobertura de datos (datos_procesados):

- Ecuador: 581 filas | fechas: 2021-01-20 → 2023-12-29
- Perú: 1035 filas | fechas: 2021-02-09 → 2023-12-10

Incidencia acumulada 7d por 100k — última observación:

- Ecuador: última 2023-12-29 → incidencia_7d=0.000
- Perú: última 2023-12-10 → incidencia_7d=0.000

Factor de crecimiento 7d — última observación:

- Ecuador: semana_fin 2023-01-27 → casos_semana=0, factor_crec_7d=0.000
- Perú: semana_fin 2023-05-27 → casos_semana=0, factor_crec_7d=0.000

Tabla — Incidencia 7d (primeros 3 por país))

date	country	incidencia_7d
2021-01-27 00:00:00	Ecuador	7,556
2021-01-28 00:00:00	Ecuador	7,929
2021-01-29 00:00:00	Ecuador	8,505
2021-02-15 00:00:00	Peru	19,941
2021-02-16 00:00:00	Peru	20,74
2021-02-17 00:00:00	Peru	20,177

Tabla — Factor de crecimiento 7d (primeros 3 por país)

semana_fin	country	casos_semana	factor_crec_7d
2021-02-04			
00:00:00	Ecuador	9557	1,014
2021-02-05			
00:00:00	Ecuador	9117	0,922
2021-02-06			
00:00:00	Ecuador	8725	0,822
2/22/2021 12:00:00			
AM	Peru	48694	1,042
2/24/2021 12:00:00		10011	2 222
AM	Peru	48011	0,988
2/25/2021 12:00:00			
AM	Peru	48256	1,021

Conclusión

El pipeline automatiza punta-a-punta el análisis para Ecuador y Perú con controles de calidad explícitos y salidas reproducibles. El filtrado de fechas futuras y el ajuste de casos negativos exclusivamente en las métricas aseguran interpretaciones consistentes. La

combinación de incidencia_7d (magnitud estandarizada) y factor_crec_7d (dirección de tendencia) permite monitorear la situación de forma clara y accionable.

Anexos:

珪