#### **Chapter 2 Concept of Regression**

남준우·허인(2021), 제3장

Gujarati/Porter(2018), 제2장

- (1) Relationship between economic variables
- (2) Theoretical(Economic) model vs. Statistical(Econometric) model
- (3) Population Regression Function(PRF)
- (4) Stochastic Presentation of PRF
- (5) Sample Regression Function(SRF), Sample Regression Line
- (6) Least Squares Method
- (7) Prediction, Forecasting

## (1) Relationship between economic variables

•  $\Delta X \Rightarrow \Delta y$ 

#### (Examples)

 $\Delta$  income  $\Rightarrow$   $\Delta$  consumption

 $\Delta$  money supply  $\Rightarrow$   $\Delta$  inflation

 $\Delta$  advertisement  $\Rightarrow$   $\Delta$  sales

 $\Delta$  노선별 경쟁상태, 항공 거리, 지역 등  $\Rightarrow$   $\Delta$  항공권 가격

 $\Delta$  투수의 실적  $\Rightarrow$   $\Delta$  투수의 연봉

 $\Delta$  교육비지출, 여성의 취업률, 혼인율 등  $\Rightarrow$   $\Delta$  출산율

 $\Delta$  영화의 특성  $\Rightarrow$   $\Delta$  흥행(혹은 관객수)

 $\Delta$  국가별 특성  $\Rightarrow$   $\Delta$  자살률

 $\Delta$  도시별 특성  $\Rightarrow$   $\Delta$  빈곤율

- Modeling economic behavior: y = f(X)
- ► Simplification:  $y = \beta_1 + \beta_2 X$
- ►  $\beta_2 = \frac{dy}{dX}$ : marginal effect of X on y

- (2) Theoretical(Economic) model vs. Statistical(Econometric) model
- Theoretical model: model for specific individual

$$y_i = f(X_i)$$

- model for representative individual
- <u>Statistical model</u>: model for average or systematic behavior of many individuals or firms

$$y_i = f(X_i) + \varepsilon_i$$

- (3) Population Regression Function(PRF)
- ① (univariate case)  $\mu = E(y_i)$ then  $y_i = \mu + \varepsilon_i$
- ② (Bivariate example) income vs. age
- ► Conditional mean, conditional expectation
- Conditional expectation function

$$y_i = E(y_i | X_i) + \varepsilon_i$$



► Conditional Expectation Function(CEF), PRF, Population Regression Line

# • Assume PRF is linear,



►  $E(y_i|X_i) = \beta_1 + \beta_2 X_i$ ; Linear Population Regression Line

- ►  $(\beta_1, \beta_2)$ : Regression coefficient
  - $\triangleright$   $\beta_1$ : intercept coefficient
  - $\triangleright$   $\beta_2$ : slope coefficient  $\Rightarrow$  marginal effect of X on y
- $\Rightarrow$  unknown, to be estimated
- ► The term of 'regression'

# (4) Stochastic Presentation of PRF

- Error term
  - $E(y_i|X_i) = \beta_1 + \beta_2 X_i$
- $\Rightarrow y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$
- $\triangleright$   $y_i$ : dependent variable, endogenous
- $\triangleright$   $X_i$ : independent variable, explanatory variable, exogenous
- $\blacktriangleright$  ( $\beta_1, \beta_2$ ): regression coefficient
- $\triangleright$   $\varepsilon_i$ : error term

• 
$$\varepsilon_i = y_i - E(y_i | X_i) = y_i - (\beta_1 + \beta_2 X_i)$$

$$\Rightarrow E(\varepsilon_i | X_i) = 0$$

- Sources of error term
- ① Omitted variables
- ② Approximation error
- 3 Measurement error
- 4 Real unpredictable error

- (5) Sample Regression Function(SRF), Sample Regression Line
- ; Estimation of Population Regression Function
- population data vs. sample data
- ① SRF, Sample Regression Line
- $y_i = b_1 + b_2 X_i + e_i$

- $ightharpoonup \hat{y}_i$ : fitted value
- ►  $(b_1,b_2)$ : estimator of  $(\beta_1,\beta_2)$
- $ightharpoonup e_i$ : residual

- ②  $\beta_1 = b_1$ ,  $\beta_2 = b_2$  can NOT be guaranteed.
- $(b_1, b_2)$  are random variables.
- ► We have to configure the sampling distribution of  $(b_1, b_2)$ .

- (6) Least Squares Method: How to get  $(b_1,b_2)$ ?
- Choose  $(b_1, b_2)$  which minimizes  $\sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i b_1 b_2 X_i)^2$ : Least Squares Estimator



- Why Least Squares?
- ► Why not minimizing  $\sum_{i=1}^{n} e_i$ ?
- ightharpoonup What about minimizing  $\sum_{i=1}^n |e_i|$  ? Least Absolute Deviations(LAD) Estimator

## Least Squares Estimator

Choose  $(b_1, b_2)$  which minimizes  $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_1 - b_2 X_i)^2$ .

## F.O.C.:

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (Y_1 - b_1 - b_2 X_i) = 0$$

$$\sum_{i=1}^{n} X_{i} e_{i} = \sum_{i=1}^{n} X_{i} (Y_{1} - b_{1} - b_{2} X_{i}) = 0$$

$$b_{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{\sum_{i=1}^{n} X_{i} y_{i} - n\overline{X} \overline{y}}{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}} = \frac{S_{Xy}}{S_{X}^{2}}$$

$$b_1 = \overline{y} - b_2 \overline{X}$$

#### (Example)

• y:소비, X: 소득.

| obs | $Y_{i}$ | $X_i$ |       | $(X_i - \overline{X})(Y_i - \overline{Y})$ | $\hat{Y_i}$ | $e_{i}$ | $e_i^2$ | $(Y_i - \overline{Y})^2$ | $(X_i - \overline{X})X_i$ | $(X_{\cdot} - \overline{X})Y_{\cdot}$ |
|-----|---------|-------|-------|--------------------------------------------|-------------|---------|---------|--------------------------|---------------------------|---------------------------------------|
| 1   | 70      | 80    | 8100  | 3690                                       | 65.28       | 4.82    | 23.21   | 1681                     | (1 ) 1                    | (1 ) 1                                |
| 2   | 65      | 100   | 4900  | 3220                                       | 75.36       | -10.36  | 107.41  | 2116                     |                           |                                       |
| 3   | 90      | 120   | 2500  | 1050                                       | 85.55       | 4.45    | 19.84   | 441                      |                           |                                       |
| 4   | 95      | 140   | 900   | 480                                        | 95.73       | -0.73   | 0.53    | 256                      |                           |                                       |
| 5   | 110     | 160   | 100   | 10                                         | 105.91      | 4.09    | 16.74   | 1                        |                           |                                       |
| 6   | 115     | 180   | 100   | 40                                         | 116.09      | -1.09   | 1.19    | 16                       |                           |                                       |
| 7   | 120     | 200   | 900   | 270                                        | 126.27      | -6.27   | 39.35   | 81                       |                           |                                       |
| 8   | 155     | 240   | 4900  | 3080                                       | 146.64      | 8.36    | 69.95   | 1936                     |                           |                                       |
| 9   | 150     | 260   | 8100  | 3510                                       | 156.82      | -6.82   | 46.49   | 1521                     |                           |                                       |
| 10  | 140     | 220   | 2500  | 1450                                       | 136.45      | 3.55    | 12.57   | 841                      |                           |                                       |
| 합   | 1110    | 1700  | 33000 | 16800                                      |             | 0       | 337.27  | 8890                     |                           |                                       |

$$ightharpoonup \overline{Y} = 1110/10 = 111, \qquad \overline{X} = 1700/10 = 170$$

• 
$$b_2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{16800}{33000} = 0.51,$$
 •  $b_1 = \overline{Y} - b_2 \overline{X} = 111 - 0.51 \times 170 = 24.5$ 

# (Remarks)

- ① LS estimator vs. LS estimate
- ② If  $X_i$  has only one variable ( $X_i = c$  for all i), then  $b_2$  can NOT be obtained.
- ► Identification condition

 $\bigcirc$  Linear regression: We require 'linear in  $(\beta_1, \beta_2)$ '.

We do NOT require 'linear in X'.

(<u>Definition of linear</u>) f(x) is linear in x, if f'(x) is not a function of x.

## (Examples)

①  $y_i = \beta_1 + \beta_2 \ln X_i + \varepsilon_i$  ; linear

②  $y_i = \beta_1 + \sqrt{\beta_2} X_i + \varepsilon_i$  ; nonlinear

③  $y_i = \beta_1 + \beta_2 X_i^2 + \varepsilon_i \beta_2$ ; linear

## (7) Prediction, Forecasting

• Suppose, for some observation f , the value of X is known as  $X_f$  , the best predictor of  $y_f$  is

$$\hat{y}_f = b_1 + b_2 X_f$$
.

(Example) In consumption function example,  $X_f = 200$ ,

then 
$$\hat{y}_f = 24.5 + 0.51 \times 200 = 126.25$$