Introdução ao AutoML

Gabriel Dantas
Eduardo de Pina
Euller Júlio
João Maurício

O que nós abordaremos?

01

Fundamentos de AutoML

O que é e por que usar AutoML?

03

Frameworks de AutoML

Principais ferramentas que fazem AutoML.

02

Ajuste de Modelos

Como o AutoML escolhe e ajusta o modelo automaticamente?

04

Desafios e tendências

Tendências, usos práticos e limites.

O1 Fundamentos de AutoML

O que é o AutoML?

AutoML (Automated Machine Learning) é o processo de automatizar as etapas envolvidas na criação de modelos de machine learning. Isso inclui tarefas como
pré-processamento de dados,
seleção de algoritmos, ajuste de
hiperparâmetros e até a construção
de pipelines completos.

Objetivos do AutoML

Tornar o desenvolvimento de modelos mais **acessível e eficiente**.

Isso **reduz** a dependência de especialistas, **acelerando** o ciclo de experimentação.

Por isso o AutoML é extremamente útil em contextos onde há **pouco conhecimento técnico**.

Ao simplificar tarefas complexas, o AutoML permite que os cientistas de dados **foquem em decisões estratégicas**, enquanto o sistema cuida do **trabalho mecânico**.

Tarefas realizadas

01

Construção de Pipelines

Automatiza a escolha e a organização das etapas de pré-processamento e modelagem.

03

Neural Architecture Search

Cria e otimiza arquiteturas de redes neurais de forma inteligente. 02

Escolha do modelo e otimização

Ajusta automaticamente os parâmetros dos modelos para melhorar o desempenho.

04

Validação e avaliação automática

Executa testes e validações para garantir a robustez do modelo final.

02 Ajuste de modelos

Como o AutoML modela um problema?

Identificação da tarefa

Detecta se o problema é de classificação, regressão, clusterização, etc., com base nos dados fornecidos e na variável-alvo.

Análise dos dados

Verifica tipos de variáveis, trata valores ausentes, gera estatísticas descritivas, avalia balanceamento de classes etc.

Pré processamento automático

Codificação de variáveis categóricas, escalonamento, redução de dimensionalidade, se necessário, além da seleção ou engenharia de features.

Criação do pipeline

Monta uma **sequência de transformações** e **modelos** possíveis e prepara para experimentação.

Definição da métrica de avaliação

Ex: Acurácia, F1-score, RMSE, AUC. Pode ser automático ou definido pelo usuário.

Como o AutoML ajusta os hiperparâmetros?

cross-validation para garantir robustez.

1teração até
o melhor
modelo
Repete o processo até encontrar a melhor
configuração, atingir um limite de tempo ou
convergência.

cruzada

Isso acelera e simplifica a implementação!

Com apenas alguns
parâmetros iniciais, o AutoML é
capaz de realizar de forma
automática os procedimentos
apresentados anteriormente.

<pre>clf = setup(data=final_df, target='phishing', session_id=123, train_size=0.8)</pre>								
Value	Description							
123	Session id	0						
phishing	Target	1						
Binary	Target type	2						
(27701, 391)	Original data shape	3						
(27701, 391)	Transformed data shape	4						
(22160, 391)	Transformed train set shape	5						
(5541, 391)	Transformed test set shape	6						
390	Numeric features	7						
True	Preprocess	8						
simple	Imputation type	9						
mean	Numeric imputation	10						
mode	Categorical imputation	11						
StratifiedKFold	Fold Generator	12						
10	Fold Number	13						
-1	CPU Jobs	14						
False	Use GPU	15						
False	Log Experiment	16						
clf-default-name	Experiment Name	17						
7e35	USI	18						

Apresentação dos melhores modelos

Após alguns minutos de execução, o AutoML retorna uma **tabela com os melhores modelos**.

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
lda	Linear Discriminant Analysis	0.9769	0.9963	0.9780	0.9769	0.9774	0.9539	0.9539	0.5260
ridge	Ridge Classifier	0.9755	0.9962	0.9774	0.9748	0.9761	0.9511	0.9511	0.2040
et	Extra Trees Classifier	0.9742	0.9974	0.9739	0.9756	0.9747	0.9484	0.9484	2.5540
lr	Logistic Regression	0.9735	0.9960	0.9757	0.9725	0.9741	0.9470	0.9470	1.1370
rf	Random Forest Classifier	0.9713	0.9965	0.9710	0.9728	0.9719	0.9426	0.9426	7.2930
svm	SVM - Linear Kernel	0.9639	0.9955	0.9754	0.9561	0.9652	0.9276	0.9288	0.4650
knn	K Neighbors Classifier	0.9528	0.9874	0.9789	0.9321	0.9549	0.9054	0.9066	0.8790
ada	Ada Boost Classifier	0.9313	0.9814	0.9351	0.9309	0.9329	0.8626	0.8627	10.4750
nb	Naive Bayes	0.9308	0.9831	0.9225	0.9408	0.9316	0.8615	0.8617	0.2080
qda	Quadratic Discriminant Analysis	0.8793	0.9602	0.9364	0.8946	0.9008	0.7559	0.7697	0.8470
dt	Decision Tree Classifier	0.8788	0.8788	0.8801	0.8823	0.8812	0.7575	0.7575	5.0210
dummy	Dummy Classifier	0.5109	0.5000	1.0000	0.5109	0.6763	0.0000	0.0000	0.1610

O3 Frameworks de AutoML

Auto-sklearn

Origem: Universidade de Freiburg, Alemanha

Base: Scikit-learn

Diferenciais:

- Foco em dados tabulares
- Usa otimização Bayesiana e Meta-learning

Limitações:

- Não suporta dados de texto, imagem ou áudio
- Escalabilidade limitada para datasets grandes

Ideal para:

- Dados como planilhas e tabelas
- Aplicações de pequeno e médio porte

Auto-Sklearn

TPOT

Origem: Universidade de Pennsylvania.

Base: Scikit-learn + Programação genética

Diferenciais:

- Usa algoritmos genéticos para evoluir pipelines
- Gera código python automatizado automaticamente

Limitações:

- Tempo de execução elevado em datasets grandes
- Sem suporte nativo para dados não tabulares

Ideal para:

- Prototipagem rápida
- Geração de pipelines replicáveis e mais compreensíveis

PyCaret

Origem: Comunidade open-source.

Base: Scikit-learn, XGBoost, LightGBM, CatBoost.

Diferenciais:

- Implementação extremamente simples e intuitiva
- Facilita o deploy e integração com streamlit, flask e cloud

Limitações:

- Performance inferior em problemas muito complexos
- Dependências de bibliotecas externas para tarefas muito específicas

Ideal para:

- Pequenas e médias empresas
- Automação de tarefas comuns em análise de dados

FLAML

Origem: Microsoft Research.

Base: algoritmo próprio (BlendSearch)

Diferenciais:

- Foco em baixo custo computacional
- Extremamente rápido e eficiente em datasets grandes

Limitações:

- Suporte limitado para deep learning
- Não realiza etapas avançadas de pré-processamento de dados

Ideal para:

- Ambientes com recursos limitados
- Aplicações rápidas e prototipagem leve

Desafios e tendências

Nem tudo são flores...

Alto custo computacional

O AutoML pode **consumir muitos recursos** para explorar o espaço de modelos e hiperparâmetros.

Isso **aumenta o custo computacional** e muitas
vezes o **tempo de execução**.

```
[20.2G/23.3G] Tasks: 129, 899 thr, 168 kthr; 8 running
                                ||||||||3.67G/4.00G] Load average: 17.30 7.33 3.94
                                                     Uptime: 01:01:15
121605 gdma
121618 gdma
                                             77.8 3.6 1:09.21 /home/gdma/CIS/venv310/bin/python -m joblib
121615 gdma
                                             77.2 3.6 1:05.18 /home/gdma/CIS/venv310/bin/python -m joblib
                                860M 64256 R 67.4 3.6 1:06.97 /home/gdma/CIS/venv310/bin/python -m joblib
121614 gdma
121604 gdma
                                             61.5 3.6 1:07.24 /home/gdma/CIS/venv310/bin/python -m joblib
                                855M 64584 R 61.5 3.6 0:59.16 /home/qdma/CIS/venv310/bin/python -m joblib
121617 gdma
121616 gdma
                                             59.8 3.5 1:00.65 /home/gdma/CIS/venv310/bin/python -m joblib
121613 gdma
                                             48.4 3.6 0:59.61 /home/gdma/CIS/venv310/bin/python -m joblib
  752 root
                                             23.4 0.4 4:04.31 /usr/lib/Xorg -nolisten tcp -background non
  1052 gdma
                                179M 87356 S 19.6 0.8 3:52.86 /usr/bin/kwin x11 --replace
 12329 gdma
                       0 32.8G 124M 84640 R 19.6 0.5 2:25.80 /opt/visual-studio-code/code --type=gpu-pro
 12350 gdma
                                536M 98.4M S 16.3 2.3 3:57.91 /opt/visual-studio-code/code --type=rendere
                  earchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kill F10Ouit
```


Pouca interpretabilidade

Ao focar em **maximizar a performance**, o AutoML frequentemente gera modelos que **tendem a ser mais complexos e difíceis de explicar**. Em **áreas delicadas**, como **segurança e saúde**, é fundamental compreender e justificar as decisões do modelo. Isso se torna um **desafio com AutoML**.

Por isso o AutoML é
utilizado preferencialmente como **uma**ferramenta de prototipagem e de
"Proof Of Concept".

"It's very difficult to understand the process and the outcomes from those techniques. It's also difficult to figure out whether we can trust the models and whether we can make fair decisions when using them."

Interpretability is crucial for trusting AI and machine learning - SAS

Limitações para problemas específicos

Pode **não se adaptar bem a tarefas muito customizadas e específicas**.

(**Ex:** interpretabilidade legal, tempo real).

Sistemas que exigem respostas em tempo real ou latência baixa geralmente não alcançam o melhor desempenho com AutoML, devido à complexidade dos modelos gerados.

Essa mesma complexidade também limita a implementação de AutoML em **sistemas embarcados**.

E quais as tendências futuras?

Democratização e integração

Expansão do uso em negócios de todos os portes, inclusive em pequenas empresas.

Isso consequentemente **amplia o acesso à inteligência artificial**, estimulando a **inovação** e sua adoção em áreas não tradicionais.

AutoML com explicabilidade

Cresce a demanda por **modelos mais interpretáveis**.

Isso impulsiona a combinação de **AutoML com XAI** (Explainable AI).

O objetivo é manter a automação no desenvolvimento de modelos, **sem abrir mão da transparência e clareza** das decisões geradas.

Artigo: Automated Machine Learning and Explainable AI (AutoML-XAI) for Metabolomics: Improving Cancer Diagnostics

AutoML Sustentável e Eficiente

Otimização do consumo energético dos processos de treinamento e busca de hiperparâmetros, alinhando-se às práticas de **Green Al**.

A tendência é tornar o AutoML mais leve, rápido e energeticamente eficiente.

www.automl.org/green-automl

Implementação de AutoML multimodal

Integração de dados de diferentes naturezas - texto, imagem, documentos, tabelas - em um único pipeline automatizado.

Isso permitirá a existência de modelos **mais robustos e capazes de lidar com diferentes tipos de informação**.

auto.gluon.ai

