# ECE 637 Project 2: 1 bit Full Adder

Tanya Rampal (21083581)

#### Introduction:

A 1 bit full adder has been designed in this project, aiming to achieve equal rise and fall time propagation delays  $(t_{pHL}=t_{pLH})$  via an inverter. Subsequently, the layout was created and post layout simulations along with corner simulations were performed on the full adder.

### Transistor sizing and Full adder design:

To equalize the propagation delays in the 1 bit adder, firstly the pMOS to nMOS transistor size ratio was to be finalised using the inverter (using 'project2\_cadence/proj2\_inv\_sizing'). The schematic and testbench used for the inverter are shown fig 1 and 2. Via hit and trial, different sizes of the pMOS (with nMOS size fixed to be the minimum width = 120nm) and their associated delays were observed as shown in table 1. It was concluded that the delays would be equal when  $200 \text{nm} < W_P < 210 \text{nm}$ . Hence, by obtaining a parametric sweep of the pMOS size ( $W_P$ ) (shown in fig 3), and some more delay calculations (shown in table 2, and keeping error < 0.0005 ps), equal rise and fall delays were achieved ( $t_{pHL} = t_{pLH} = 7.263 \text{ps}$ ) at transistor sizes  $W_N = 120 \text{nm}$  and  $W_P = 205.9 \text{nm}$ .

Table 1: Propagation delays associated with different  $W_P$ 

| W <sub>P</sub> /wn | $W_P$ | t <sub>pHL</sub> (ps) | t <sub>pLH</sub> (ps) | t <sub>pHL</sub> - t <sub>pLH</sub> |
|--------------------|-------|-----------------------|-----------------------|-------------------------------------|
| 1                  | 120nm | 6.32348p              | 8.69503p              | 2.37155                             |
| 1.67               | 200nm | 7.1993p               | 7.3152p               | 0.1159                              |
| 1.75               | 210nm | 7.30643p              | 7.22851p              | 0.07792                             |
| 2                  | 240nm | 7.62879p              | 7.02837p              | 0.60042                             |





Table 2: Propagation delays after parametric sweep of  $W_P$ 

| W <sub>P</sub> /W <sub>N</sub> | W <sub>P</sub> | t <sub>pHL</sub> (ps) | t <sub>pLH</sub> (ps) | t <sub>pHL</sub> - t <sub>pLH</sub> |
|--------------------------------|----------------|-----------------------|-----------------------|-------------------------------------|
| 1.715                          | 205.8nm        | 7.26247               | 7.264                 | 0.00153                             |
| 1.715417                       | 205.85nm       | 7.263                 | 7.26357               | 0.00057                             |
| 1.715833                       | 205.9nm        | 7.26353               | 7.26314               | 0.00039                             |
| 1.7167                         | 206n           | 7.26459               | 7.26228               | 0.00231                             |

Fig 1: Inverter schematic

Fig 3: Parametric sweep of W<sub>P</sub>



Fig 2: Inverter testbench

Hence, the final reduced size of the full adder is  $W_P/W_N = 205.9/120 = 1.71583$ . The full adder was sized accordingly as shown in fig 4 ensuring the reduced size is met. The schematic of the full adder is shown in fig 5 (saved in 'project2\_cadence/proj2\_schem\_sized\_5'), and fingers were used to size the nMOS and pMOS in order to ensure they fit in the layout.



Fig 4: Transistor sizes



Fig 5: 1b Full Adder schematic

The testbench's schematic is shown in fig 6 (saved in 'project2\_cadence/proj2\_schem\_tb\_buff\_sized\_2'), and the waveform obtained with all the possible combinations in the truth table is shown in fig 7. The delay values for both sum and carry out are shown in tables 3 and 4, and it is seen that sum has the maximum delay corresponding to the  $(010\ 10 \rightarrow 011\ 01 \rightarrow 100\ 10)$  transition with equal delays.







Fig 7: 1b Full Adder output

#### Table 3 (a) & (b): $t_p$ for fig 7 for Sum

| Transition (ABC <sub>i</sub> SC <sub>o</sub> )                                 | t <sub>pHL</sub> (ps)           |
|--------------------------------------------------------------------------------|---------------------------------|
| $(111\ 11 \rightarrow 000\ 00)$                                                | 53.5955                         |
| $(010\ 10 \rightarrow 011\ 01)$                                                | 63.8625                         |
| $(100\ 10 \rightarrow 101\ 01)$                                                | 55.504                          |
|                                                                                |                                 |
|                                                                                |                                 |
| Transition (ABC <sub>i</sub> SC <sub>0</sub> )                                 | t <sub>pLH</sub> (ps)           |
| Transition (ABC <sub>i</sub> SC <sub>0</sub> ) $(000\ 00 \rightarrow 001\ 10)$ | t <sub>pLH</sub> (ps)<br>60.212 |
|                                                                                |                                 |

Table 4 (a) & (b):  $t_p$  for fig 7 for  $C_0$ 

| Transition (ABC <sub>i</sub> SC <sub>0</sub> ) | t <sub>pHL</sub> (ps) |
|------------------------------------------------|-----------------------|
| (111 11 → 000 00)                              | 38.3613               |
| (011 01 → 100 10)                              | 45.9431               |

| Transition (ABC <sub>i</sub> SC <sub>o</sub> ) | t <sub>pLH</sub> (ps) |
|------------------------------------------------|-----------------------|
| $(010\ 10 \rightarrow 011\ 01)$                | 40.8786               |
| $(100\ 10 \rightarrow 101\ 01)$                | 32.2138               |



Fig 8: 1b Full Adder layout

Table 5 (a) & (b):  $t_p$  for post layout for Sum

| Transition (ABC <sub>i</sub> SC <sub>o</sub> ) | t <sub>pHL</sub> (ps) |
|------------------------------------------------|-----------------------|
| $(111\ 11 \rightarrow 000\ 00)$                | 100.55p               |
| $(010\ 10 \rightarrow 011\ 01)$                | 127.004p              |
| (100 10 → 101 01)                              | 117.211p              |

| Transition (ABC <sub>i</sub> SC <sub>0</sub> ) | t <sub>pLH</sub> (ps) |
|------------------------------------------------|-----------------------|
| $(000\ 00 \rightarrow 001\ 10)$                | 105.23p               |
| $(011\ 01 \rightarrow 100\ 10)$                | 127.884p              |
| $(110\ 01 \rightarrow 111\ 11)$                | 82.2434p              |

Table 6 (a) & (b):  $t_p$  for post layout for  $C_O$ 

| Transition (ABC <sub>i</sub> SC <sub>0</sub> ) | t <sub>pHL</sub> (ps) |
|------------------------------------------------|-----------------------|
| $(111\ 11 \rightarrow 000\ 00)$                | 67.0028p              |
| (011 01 → 100 10)                              | 91.4495p              |

| Transition (ABC <sub>i</sub> SC <sub>0</sub> ) | t <sub>pLH</sub> (ps) |
|------------------------------------------------|-----------------------|
| $(010\ 10 \rightarrow 011\ 01)$                | 84.8352p              |
| $(100\ 10 \rightarrow 101\ 01)$                | 71.213p               |

The layout of the full adder is shown in fig 8, and it is DRC and LVS free (shown in figs 9 and 10). As mentioned earlier, the concept of fingers was used to reduce the vertical heights of the transistors in the layout. The propagation delays of the post layout simulation are shown in tables 5 and 6 and the maximum delay is corresponding to the (010 10  $\rightarrow$  011 01  $\rightarrow$  100 10)



Fig 9: DRC check Fig 10: LVS check

transition with equal delays, similar to the schematic simulation.

#### **Propagation delays:**

The propagation delays of the schematic and post layout simulations for Sum and Carry Out for the corner case of TT at  $27^{\circ}$  covering all input combinations (except those that do not result in a change in the output) are presented in tables 7 and 8. A comparison column is also included that shows the drastic change in the delay due to addition of parasitic capacitances in the post layout. As seen by the highlighted blue delays, the maximum delay case or the slowest input combination case in both Sum and Carry out is the (001  $10 \leftrightarrow 110 \ 01$ ) transition.

Table 7: Propagation delay for Sum for TT 27° for all input combinations

|                      | 001 10           |           |             |            | 010 10    |             |            | 100 10    |             |            | 111 11    |             |            |
|----------------------|------------------|-----------|-------------|------------|-----------|-------------|------------|-----------|-------------|------------|-----------|-------------|------------|
| ABCi SC <sub>O</sub> | Delay type (ps)  | Schematic | Post Layout | Comparison |
|                      | t <sub>pHL</sub> | 42.369    | 81.5244     | 92.415%    | 39.6155   | 84.1987     | 112.540%   | 32.4291   | 73.0647     | 125.306%   | 46.0013   | 82.9224     | 80.261%    |
| 000 00               | t <sub>pLH</sub> | 60.8797   | 105.901     | 73.951%    | 50.9197   | 96.9521     | 90.402%    | 34.8694   | 72.4225     | 107.696%   | 51.8761   | 90.3535     | 74.172%    |
|                      | tp               | 51.62435  | 93.7127     | 81.528%    | 45.2676   | 137.767     | 204.339%   | 33.64925  | 72.7436     | 116.182%   | 48.9387   | 86.63795    | 77.034%    |
|                      | t <sub>pHL</sub> | 66.5818   | 135.788     | 103.942%   | 63.2237   | 127.66      | 101.918%   | 60.5214   | 124.224     | 105.256%   | 36.5987   | 79.3336     | 116.766%   |
| 011 01               | t <sub>pLH</sub> | 74.7557   | 145.925     | 95.203%    | 72.7808   | 140.793     | 93.448%    | 57.2423   | 128.702     | 124.837%   | 46.4473   | 94.456      | 103.362%   |
|                      | tp               | 70.66875  | 140.8565    | 99.319%    | 68.00225  | 134.2265    | 97.385%    | 58.88185  | 126.463     | 114.774%   | 41.523    | 86.8948     | 109.269%   |
|                      | t <sub>pHL</sub> | 55.531    | 116.368     | 109.555%   | 58.1197   | 118.43      | 103.769%   | 54.742    | 117.6       | 114.826%   | 44.4795   | 98.0297     | 120.393%   |
| 101 01               | t <sub>pLH</sub> | 51.4596   | 105.883     | 105.759%   | 57.7209   | 114.162     | 97.783%    | 55.4142   | 112.774     | 103.511%   | 42.4223   | 86.4455     | 103.774%   |
|                      | tp               | 53.4953   | 111.1255    | 107.729%   | 57.9203   | 116.296     | 100.786%   | 55.0781   | 115.187     | 109.134%   | 43.4509   | 92.2376     | 112.280%   |
|                      | t <sub>pHL</sub> | 77.7068   | 147.517     | 89.838%    | 68.2702   | 142.349     | 108.508%   | 69.9992   | 146.294     | 108.994%   | 46.6281   | 90.697      | 94.511%    |
| 110 01               | t <sub>pLH</sub> | 75.9959   | 150.204     | 97.648%    | 63.7095   | 120.76      | 89.548%    | 64.8885   | 129.24      | 99.172%    | 47.6515   | 83.119      | 74.431%    |
|                      | tp               | 76.85135  | 148.8605    | 93.699%    | 65.98985  | 131.5545    | 99.356%    | 67.44385  | 137.767     | 104.269%   | 47.1398   | 86.908      | 84.362%    |

Table 8: Propagation delay for  $C_0$  for TT  $27^\circ$  for all input combinations

|          | 011 01           |           |             | 101 01     |           |             | 110 01     |           |             | 111 11     |           |             |            |
|----------|------------------|-----------|-------------|------------|-----------|-------------|------------|-----------|-------------|------------|-----------|-------------|------------|
| ABCi SCo | Delay type (ps)  | Schematic | Post Layout | Comparison |
|          | t <sub>pHL</sub> | 33.8433   | 62.459      | 84.554%    | 28.7744   | 56.4003     | 96.009%    | 33.4773   | 63.907      | 90.897%    | 31.5766   | 57.1286     | 80.921%    |
| 000 00   | t <sub>pLH</sub> | 50.1677   | 94.429      | 88.227%    | 38.8162   | 75.7527     | 95.157%    | 53.27     | 110.145     | 106.767%   | 30.2572   | 55.9383     | 84.876%    |
|          | tp               | 42.0055   | 78.444      | 86.747%    | 33.7953   | 66.0765     | 95.520%    | 43.37365  | 87.026      | 100.643%   | 30.9169   | 56.53345    | 82.856%    |
|          | t <sub>pHL</sub> | 42.1497   | 86.2106     | 104.534%   | 36.4511   | 76.9987     | 111.238%   | 45.6463   | 91.5202     | 100.499%   | 38.5768   | 79.9029     | 107.127%   |
| 001 10   | t <sub>pLH</sub> | 46.3521   | 94.5938     | 104.077%   | 35.5084   | 75.092      | 111.477%   | 50.258    | 100.553     | 100.074%   | 25.156    | 51.8159     | 105.978%   |
|          | tp               | 44.2509   | 90.4022     | 104.295%   | 35.97975  | 76.04535    | 111.356%   | 47.95215  | 96.0366     | 100.276%   | 31.8664   | 65.8594     | 106.673%   |
|          | t <sub>pHL</sub> | 37.605    | 75.6215     | 101.094%   | 34.04     | 67.4687     | 98.204%    | 39.601    | 77.6628     | 96.113%    | 34.5949   | 66.6986     | 92.799%    |
| 010 10   | t <sub>pLH</sub> | 41.5703   | 85.0863     | 104.681%   | 37.3356   | 74.2987     | 99.002%    | 46.8021   | 97.7293     | 108.814%   | 25.7766   | 50.5744     | 96.203%    |
|          | tp               | 39.58765  | 80.3539     | 102.977%   | 35.6878   | 70.8837     | 98.622%    | 43.20155  | 87.69605    | 102.993%   | 30.18575  | 58.6365     | 94.252%    |
|          | t <sub>pHL</sub> | 38.5512   | 90.595      | 134.999%   | 36.0049   | 74.6626     | 107.368%   | 45.4853   | 90.7919     | 99.607%    | 35.7385   | 79.3848     | 122.127%   |
| 100 10   | t <sub>pLH</sub> | 42.656    | 92.1782     | 116.097%   | 32.7105   | 71.4629     | 118.471%   | 47.5034   | 99.5743     | 109.615%   | 21.6873   | 52.443      | 141.814%   |
|          | tp               | 40.6036   | 91.3866     | 125.070%   | 34.3577   | 73.06275    | 112.653%   | 46.49435  | 95.1831     | 104.720%   | 28.7129   | 65.9139     | 129.562%   |

(here average propagation delay  $t_p = \frac{t_{pHL} + t_{pLH}}{2}$ )

The reasons why the (001 10  $\leftrightarrow$  110 01) transition (for both schematic and post layout) has the maximum delay are:

- The sum has to wait for the result of the carry out, resulting in a larger delay for sum.
- In the schematic, when the C<sub>0</sub> transitions from 0 to 1 (C<sub>0</sub>' changed from 1 to 0), (ie 001 to 110 input), the series transistors N1 and N2 (according to fig 4) create the discharging path to bring the voltage down. All the other transistors in the PDN are off and there is only one series path operating, which results in a large resistance and hence a higher delay. When the sum transitions from 1 to 0 (S' 0→1), only the series transistors P5 and P6 create the charging path to bring the voltage up, resulting in higher resistance and hence higher delay (fig 11).
- Similarly, when the C<sub>0</sub> transitions from 1 to 0 (C<sub>0</sub>' changed from 1 to 0), (ie 110 to 001 input), the series transistors P1, P2, P3, P4 (highest resistance path) create the charging path to bring the voltage up, and for sum the series transistors N3 and N4 create the discharging path to bring the voltage down. All other transistors are in the respective PDN and PUN are off resulting in higher resistance and hence higher delay (fig 12).



Fig 11: (001 10 ↔ 110 01) transition



Fig 12: (110 01 ↔ 001 1) transition

• The post layout simulations have higher delays than their schematic counterparts due to the extra parasitic capacitances as shown in the table. The input combo and reason for highest delay is same as schematic result.

## Global mismatch (corner simulations):

Tables 4 and 5 record the propagation delays (high to low, low to high and average), average power, and Power Delay Product of the schematic and post layout simulations for the process corners for temperature -25° and 27° respectively. These results are tabulated for the slowest input combination, ie the input combination that resulted in the highest delay:  $(001\ 10 \leftrightarrow 110\ 01)$  transition (testbench used: 'project2\_cadence/proj2\_schem\_tb\_buff\_sized\_4').

Table 9: Constraints for process corners at T=-25°C

| Temperature $\rightarrow$ | T=-25°C   |             |           |             |           |             |           |             |           |             |  |  |
|---------------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|--|--|
| Corners $\rightarrow$     | TT        |             | SS        |             | FF        |             | 9         | SF.         | FS        |             |  |  |
| Values                    | Schematic | Post layout |  |  |
| t <sub>pHL</sub> (ps)     | 63.8997   | 123.641     | 78.822    | 154.219     | 53.3754   | 102.391     | 70.8998   | 130.668     | 59.1775   | 120.269     |  |  |
| t <sub>pLH</sub> (ps)     | 60.2158   | 118.413     | 74.2846   | 151.771     | 50.6986   | 96.6695     | 60.2936   | 121.104     | 63.1375   | 119.378     |  |  |
| tp (ps)                   | 62.05775  | 121.027     | 76.5533   | 152.995     | 52.037    | 99.53025    | 65.5967   | 125.886     | 61.1575   | 119.8235    |  |  |
| P <sub>AVG</sub> (μW)     | 7.67918   | 13.0476     | 6.70338   | 12.0331     | 10.1691   | 15.6006     | 7.71544   | 13.0747     | 7.88492   | 13.2587     |  |  |
| PDP (1e-18 J)             | 476.553   | 1579.112    | 513.166   | 1841.004    | 529.169   | 1552.732    | 506.107   | 1645.922    | 482.222   | 1588.704    |  |  |

Table 10: Constraints for process corners at T=27°C

| Temperature $\rightarrow$ | T=27°C    |             |           |             |           |             |           |             |           |             |
|---------------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|
| Corners $\rightarrow$     | TT        |             | SS        |             | FF        |             | SF        |             | FS        |             |
| Values                    | Schematic | Post layout |
| t <sub>pHL</sub> (ps)     | 77.7068   | 147.517     | 94.875    | 182.653     | 65.7857   | 123.773     | 84.8062   | 154.963     | 73.4134   | 145.173     |
| t <sub>pLH</sub> (ps)     | 75.9959   | 150.204     | 93.2479   | 186.168     | 64.5581   | 120.908     | 77.5622   | 151.877     | 77.6885   | 145.629     |
| tp (ps)                   | 76.85135  | 148.8605    | 94.06145  | 184.4105    | 65.1719   | 122.3405    | 81.1842   | 153.42      | 75.55095  | 145.401     |
| P <sub>AVG</sub> (μW)     | 10.7677   | 16.1676     | 8.27189   | 13.6354     | 15.2342   | 20.6942     | 10.896    | 16.2898     | 11.1967   | 16.5936     |
| PDP (1e-18 J)             | 827.512   | 2406.717    | 778.066   | 2514.511    | 992.842   | 2531.739    | 884.583   | 2499.181    | 845.921   | 2412.726    |

Average Power =  $P_{AVG}$  = Average Current \* Supply voltage = average ( $I_{VDD}$ ) \*  $V_{DD}$ Power Delay Product = PDP = Average power \* Average delay =  $P_{AVG}$  \*  $t_p$ 

# Local Mismatch (MC simulation):

The Monte Carlo simulation was performed for the schematic and post layout to include random mismatch, and the results are tabulated in table 11. The average propagation delay and power statistics for 100 at T=27° samples of Monte Carlo simulations according to the graphs in fig 13 and 14 are summarised in table 12 for schematic. Figures 13 and 14 are the statistical distributions of the average delay and power of the schematic after running the Monte Carlo Simulations.

Table 11: Constraints for process MC at T=27°C

|                       | Monte Carlo |             |  |  |
|-----------------------|-------------|-------------|--|--|
| Values                | Schematic   | Post layout |  |  |
| t <sub>pHL</sub> (ps) | 77.7068     | 147.739     |  |  |
| t <sub>pLH</sub> (ps) | 75.9959     | 146.418     |  |  |
| tp (ps)               | 76.85135    | 147.0785    |  |  |
| P <sub>AVG</sub> (μW) | 10.7677     | 16.1676     |  |  |
| PDP (1e-18 J)         | 827.512     | 2377.906    |  |  |

Table 12: MC analysis for delay and power

| Values                | Min   | Max (worst case) | Mean    | Standard Deviation |
|-----------------------|-------|------------------|---------|--------------------|
| tp (ps)               | 69.75 | 84.2             | 77.3459 | 2.7343             |
| P <sub>AVG</sub> (μW) | 10.13 | 11.79            | 10.8742 | 0.327              |





Fig 13: MC analysis average power distribution

Fig 14: MC analysis propagation delay distribution

#### **Conclusion:**

- An inverter was sized in order to get equal rise and fall times delays and the corresponding W<sub>P</sub> and W<sub>N</sub> were used
  to design the 1 bit full adder. A graph was plotted that had all the input combinations and it was confirmed that
  the rise and fall times delays were indeed equal
- Subsequently, the DRC and LVS clear layout of the full adder was created.
- Schematic and post layout simulations were performed under TT 27°C for all input combinations and the highest delay/slowest input combination was identified and explained
- This slowest input combination was used to run the corner simulations for delay, power and PDP, and obtain the MC distributions to identify the worst cases.