Name: P.Asha Belcilda

Rollno:2252229104

PML Lab11. Shopping Mall Customer Segmentation using Clustering

STEP -1 UNDERSTAND DATA

```
In [48]:
          import pandas as pd
          import numpy as np
         df = pd.read_csv('Mall_Customers.csv')
In [49]:
In [50]:
          # head
          df.head()
Out[50]:
             CustomerID
                         Genre Age Annual Income (k$) Spending Score (1-100)
          0
                      1
                          Male
                                 19
                                                                       39
                                                  15
          1
                      2
                          Male
                                 21
                                                  15
                                                                      81
          2
                      3 Female
                                 20
                                                  16
                                                                       6
                      4 Female
                                 23
                                                  16
                                                                      77
                     5 Female
                                 31
                                                  17
                                                                      40
In [51]: #shape
          df.shape
Out[51]: (200, 5)
In [52]:
          #size
          df.size
Out[52]: 1000
In [53]:
          #columns
          df.columns
Out[53]: Index(['CustomerID', 'Genre', 'Age', 'Annual Income (k$)',
                  'Spending Score (1-100)'],
                dtype='object')
```

```
In [54]:
          #value counts
          df.Genre.value counts()
Out[54]: Female
                    112
         Male
                    88
         Name: Genre, dtype: int64
In [55]:
         #info
          df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
         CustomerID
                                    200 non-null int64
         Genre
                                    200 non-null object
         Age
                                    200 non-null int64
         Annual Income (k$)
                                    200 non-null int64
         Spending Score (1-100)
                                    200 non-null int64
         dtypes: int64(4), object(1)
         memory usage: 7.9+ KB
In [56]:
         #dtypes
          df.dtypes
Out[56]: CustomerID
                                     int64
         Genre
                                    object
                                     int64
         Age
         Annual Income (k$)
                                     int64
         Spending Score (1-100)
                                     int64
         dtype: object
```

STEP - 2 LABEL ENCODE GENDER

3/15/23, 11:08 AM 225229104 PML Lab-11

STEP - 3 CHECK FOR VARIANCE

In [58]: df.describe()

Out[58]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	0.440000	38.850000	60.560000	50.200000
std	57.879185	0.497633	13.969007	26.264721	25.823522
min	1.000000	0.000000	18.000000	15.000000	1.000000
25%	50.750000	0.000000	28.750000	41.500000	34.750000
50%	100.500000	0.000000	36.000000	61.500000	50.000000
75%	150.250000	1.000000	49.000000	78.000000	73.000000
max	200.000000	1.000000	70.000000	137.000000	99.000000

In [59]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

CustomerID 200 non-null int64
Genre 200 non-null int64
Age 200 non-null int64
Annual Income (k\$) 200 non-null int64
Spending Score (1-100) 200 non-null int64

dtypes: int64(5)
memory usage: 7.9 KB

In [60]: df.var()

 Out[60]:
 CustomerID
 3350.000000

 Genre
 0.247638

 Age
 195.133166

 Annual Income (k\$)
 689.835578

 Spending Score (1-100)
 666.854271

dtype: float64

In [61]: df.corr()

Out[61]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1- 100)
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835
Genre	0.057400	1.000000	0.060867	0.056410	-0.058109
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	0.056410	-0.012398	1.000000	0.009903
Spending Score (1- 100)	0.013835	-0.058109	-0.327227	0.009903	1.000000

3/15/23, 11:08 AM 225229104 PML Lab-11

STEP 4 CHECK SKEWNESS

In [62]:	df.skew()					
Out[62]:	CustomerID	0.000000				
	Genre	0.243578				
	Age	0.485569				
	Annual Income (k\$)	0.321843				
	Spending Score (1-100)	-0.047220				
	dtype: float64					

In [63]: df.sort_values(by =['Genre','Age','Annual Income (k\$)','Spending Score (1-100)'

Out	[63]	:

Out[63]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	114	115	0	18	65	48
	111	112	0	19	63	54
	115	116	0	19	65	50
	2	3	0	20	16	6
	39	40	0	20	37	75
	31	32	0	21	30	73
	35	36	0	21	33	81
	84	85	0	21	54	57
	105	106	0	21	62	42
	5	6	0	22	17	76
	87	88	0	22	57	55
	3	4	0	23	16	77
	7	8	0	23	18	94
	29	30	0	23	29	87
	78	79	0	23	54	52
	100	101	0	23	62	41
	124	125	0	23	70	29
	13	14	0	24	20	77
	45	46	0	24	39	65
	132	133	0	25	72	34
	47	48	0	27	40	47
	58	59	0	27	46	51
	97	98	0	27	60	50
	155	156	0	27	78	89
	142	143	0	28	76	40
	48	49	0	29	40	42
	135	136	0	29	73	88
	161	162	0	29	79	83
	183 9	184	0	29	98	88
		10	0	30	19	72
	130	 131		 47	 71	9
	42	43	1	48	39	36
	85	86	1	48	54	46
	92	93	1	48	60	49
	98	99	1	48	61	42
	50	59	'	70	01	72

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
146	147	1	48	77	36
104	105	1	49	62	56
164	165	1	50	85	26
18	19	1	52	23	29
32	33	1	53	33	4
59	60	1	53	46	46
107	108	1	54	63	46
80	81	1	57	54	51
176	177	1	58	88	15
53	54	1	59	43	60
74	75	1	59	54	47
128	129	1	59	71	11
178	179	1	59	93	14
30	31	1	60	30	4
64	65	1	63	48	51
8	9	1	64	19	3
110	111	1	65	63	52
109	110	1	66	63	48
10	11	1	67	19	14
82	83	1	67	54	41
102	103	1	67	62	59
108	109	1	68	63	43
57	58	1	69	44	46
60	61	1	70	46	56
70	71	1	70	49	55

200 rows × 5 columns

STEP 5 PAIR PLOT

```
In [64]: import matplotlib.pyplot as plt
import seaborn as sns
```


Out[65]: <seaborn.axisgrid.PairGrid at 0x1215741c240>

STEP - 6 BUILD KMEANS

random_state=None, tol=0.0001, verbose=0)

```
225229104 PML Lab-11
In [70]: KM.labels
Out[70]: array([3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0,
                3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0,
                3, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
                0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
                1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 4, 2, 4, 1, 4, 2, 4, 2, 4,
                2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
                2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
                2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
                2, 4])
In [71]: | print(KM.cluster_centers_)
         [[ 0.4
                       24.8
                                   41.46
                                                63.7
          [ 0.43396226 53.50943396 54.73584906 48.47169811]
          [ 0.51351351 40.32432432 87.43243243 18.18918919]
          [ 0.38095238 44.14285714 25.14285714 19.52380952]
          [ 0.46153846 32.69230769 86.53846154 82.12820513]]
         STEP - 7 SCATTER PLOT
In [72]:
         import warnings
         warnings.filterwarnings('ignore')
In [98]: | sns.scatterplot(df['Annual Income (k$)'], df['Spending Score (1-100)'], hue=KM.
```

STEP - 8 CLUSTER ANALYSIS

```
In [99]:
          kmeans2 = KMeans(n clusters = 5, init='k-means++')
           kmeans2.fit(df)
           pred = kmeans2.predict(df)
In [100]: | frame = pd.DataFrame(df)
           frame['cluster'] = pred
In [101]: frame.cluster.value counts()
Out[101]:
          0
                79
          1
                39
           3
                36
          4
                23
          2
                23
          Name: cluster, dtype: int64
```

In [102]: frame

20, 11.007111					223223 10-11 WE Eas 11	
Out[102]:		Genre	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
	0	1	19	15	39	2
	1	1	21	15	81	4
	2	0	20	16	6	2
	3	0	23	16	77	4
	4	0	31	17	40	2
	5	0	22	17	76	4
	6	0	35	18	6	2
	7	0	23	18	94	4
	8	1	64	19	3	2
	9	0	30	19	72	4
	10	1	67	19	14	2
	11	0	35	19	99	4
	12	0	58	20	15	2
	13	0	24	20	77	4
	14	1	37	20	13	2
	15	1	22	20	79	4
	16	0	35	21	35	2
	17	1	20	21	66	4
	18	1	52	23	29	2
	19	0	35	23	98	4
	20	1	35	24	35	2
	21	1	25	24	73	4
	22	0	46	25	5	2
	23	1	31	25	73	4
	24	0	54	28	14	2
	25	1	29	28	82	4
	26	0	45	28	32	2
	27	1	35	28	61	4
	28	0	40	29	31	2
	29	0	23	29	87	4
	170	1	40	87	13	3
	171	1	28	87	75	1
	172	1	36	87	10	3
	173	1	36	87	92	1
	174	0	52	88	13	3

	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
175	0	30	88	86	1
176	1	58	88	15	3
177	1	27	88	69	1
178	1	59	93	14	3
179	1	35	93	90	1
180	0	37	97	32	3
181	0	32	97	86	1
182	1	46	98	15	3
183	0	29	98	88	1
184	0	41	99	39	3
185	1	30	99	97	1
186	0	54	101	24	3
187	1	28	101	68	1
188	0	41	103	17	3
189	0	36	103	85	1
190	0	34	103	23	3
191	0	32	103	69	1
192	1	33	113	8	3
193	0	38	113	91	1
194	0	47	120	16	3
195	0	35	120	79	1
196	0	45	126	28	3
197	1	32	126	74	1
198	1	32	137	18	3
199	1	30	137	83	1

200 rows × 5 columns

```
In [78]: C0 = df[df['cluster'] == 0]
C1 = df[df['cluster'] == 1]
C2 = df[df['cluster'] == 2]
C3 = df[df['cluster'] == 3]
C4 = df[df['cluster'] == 4]
```

```
In [79]:
         import statistics as ss
         print('Average Age : ',C0['Age'].mean())
         print('Average Annual Income : ',C0['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C0['Annual Income (
         print('No. of Customers ie shape :' ,C0.shape)
         print('From those Customers We have', C0.Genre.value_counts()[1], 'male and', C0.G
         Average Age : 32.69230769230769
         Average Annual Income: 86.53846153846153
         Deviation of the mean for annual Income: 16.312484972924967
         No. of Customers ie shape: (39, 5)
         From those Customers We have 18 male and 18
In [82]: print('Average Age : ',C1['Age'].mean())
         print('Average Annual Income : ',C1['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C1['Annual Income (
         print('No. of Customers ie shape :' ,C1.shape)
         print('From those Customers We have', C1.Genre.value counts()[1], 'male and', C1.G
         Average Age : 43.727272727273
         Average Annual Income : 55.48051948051948
         Deviation of the mean for annual Income: 8.742832236527411
         No. of Customers ie shape : (77, 5)
         From those Customers We have 31 male and 31
In [83]: print('Average Age : ',C2['Age'].mean())
         print('Average Annual Income : ',C2['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C2['Annual Income (
         print('No. of Customers ie shape :' ,C2.shape)
         print('From those Customers We have', C2.Genre.value counts()[1], 'male and', C2.G
         Average Age : 24.96
         Average Annual Income : 28.04
         Deviation of the mean for annual Income: 9.654359982239457
         No. of Customers ie shape: (25, 5)
         From those Customers We have 11 male and 11
         print('Average Age : ',C3['Age'].mean())
In [84]:
         print('Average Annual Income : ',C3['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C3['Annual Income (
         print('No. of Customers ie shape :' ,C3.shape)
         print('From those Customers We have', C3.Genre.value counts()[1], 'male and', C3.G
         Average Age : 40.66666666666664
         Average Annual Income: 87.75
         Deviation of the mean for annual Income : 16.387059354433127
         No. of Customers ie shape: (36, 5)
         From those Customers We have 19 male and 19
```

```
In [85]: print('Average Age : ',C4['Age'].mean())
    print('Average Annual Income : ',C4['Annual Income (k$)'].mean())
    print('Deviation of the mean for annual Income : ',ss.stdev(C4['Annual Income (
        print('No. of Customers ie shape :' ,C4.shape)
    print('From those Customers We have',C4.Genre.value_counts()[1],'male and',C4.G
```

Average Age : 45.21739130434783 Average Annual Income : 26.304347826086957 Deviation of the mean for annual Income : 7.893811054517766 No. of Customers ie shape : (23, 5)

From those Customers We have 9 male and 9

STEP 9 FIND THE BEST NUMBER

```
In [89]: SSE = []
    for clust in range(1,20):
        KM = KMeans(n_clusters= clust, init='k-means++')
        KM = KM.fit(df)
        SSE.append(KM.inertia_)
```

```
In [90]: plt.plot(np.arange(1,20), SSE,'ro-')
    plt.xlabel('Number of Clusters')
    plt.ylabel('Inertia')
```


STEP -10 REDUCE DIMESNSION USING PCA

```
In [91]: from sklearn.decomposition import PCA
In [92]:    pca = PCA(n_components=2)
    _PCA = pca.fit_transform(df)
    PCA_Components = pd.DataFrame(_PCA)
```

In [93]: PCA_Components

Out[93]:

0	-31.532645	-33.381457
1	1.448933	-56.823775
2	-57.297507	-13.829755
3	-1.523021	-53.496952
4	-31.865811	-30.773356
5	-1.547168	-52.245811
6	-58.994143	-10.270642
7	13.106185	-61.451941
8	-66.309657	-4.034841
9	-5.082493	-47.330620
10	-58.162524	-9.852324
11	15.364576	-61.913645
12	-55.079684	-10.758648
13	0.599482	-50.105484
14	-52.670895	-12.327940
15	2.564571	-51.488747
16	-34.276510	-24.176811
17	-6.779627	-43.599196
18	-41.109021	-16.975647
19	16.884757	-58.086776
20	-32.542334	-21.728017
21	-0.448450	-44.456801
22	-57.831625	-2.582956
23	-1.011469	-42.870008
24	-50.486003	-4.182855
25	8.236144	-45.754996
26	-34.508834	-15.489814
27	-9.547990	-33.141834
28	-33.772184	-14.752709
29	13.918471	-48.531434
170	-14.465678	42.704595
171	37.067156	6.177396
172	-16.082444	43.882289
173	49.018418	-2.381003
174	-16.169540	45.060867

```
0
                         1
    45.983015
                  1.045569
175
176 -15.726045
                 44.705674
     33.080405
                 10.248086
178 -13.817887
                 49.476792
179
     51.092629
                  3.512747
180
                 39.760603
      6.944925
181
     50.806197
                  8.644245
182
     -7.661899
                 51.320966
183
     53.540012
                  7.946639
     12.888126
                 37.958748
184
185
     61.060325
                  3.817272
186
      -0.315926
                 49.719493
187
     39.613968
                 21.545123
188
      -2.234632
                 53.627727
     52.721933
189
                 14.616630
      3.851888
                 49.344705
190
     40.802395
191
                 23.125153
192
      -2.064322
                 65.833817
                 19.647586
193
     62.878416
194
      5.660638
                 68.830266
     57.985992
195
                 31.739157
196
     19.020341
                 66.700768
197
     58.062687
                 39.069193
     19.927301
198
                 79.643964
199
     71.935705
                42.710124
```

200 rows × 2 columns

STEP 11 SCATTER PLOT

```
In [97]: sns.scatterplot(PCA_Components[0], PCA_Components[1], hue=KM1.labels_)
```

STEP 12 MEAN SHIFT CLUSTERING

```
In [103]: from sklearn.cluster import MeanShift, AgglomerativeClustering
In [104]: MS = MeanShift(bandwidth = 50)
    MS.fit(PCA_Components)
    MS.cluster_centers_
Out[104]: array([[ 0.40694764, -4.10211689]])
In [105]: sns.scatterplot(PCA_Components[0], PCA_Components[1], hue=KM1.labels_)
...
```

STEP 13 PREDICT HIERARCHICAL CLUSTERS USING AGGLOMERATIVE CLUSTERING

```
In [107]: AC.labels
Out[107]: array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
             4, 3, 4, 3, 4, 0, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1,
             0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1,
             2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
             2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
             2, 1], dtype=int64)
In [108]: | df['Cluster'] = AC.labels_
In [109]:
        import scipy.cluster.hierarchy as sch
In [110]: from scipy.cluster import hierarchy
In [111]: Z = hierarchy.linkage(df[:30], 'ward')
        plt.figure(figsize=(10,5))
        dn = hierarchy.dendrogram(Z)
         200
         150
         100
         50
```

STEP 14 VISUALIZE SCATTER PLOT WITH HUE AS AGGLOMERATIVECLUSTERING LABELS_

35