Name:	
-------	--

1 Probability

- 1. A thrilled birdwatcher suspects she has spotted an ivory-billed woodpecker. Skeptics contend that it was probably a common pileated woodpecker.
 - Ivory-billed woodpeckers are a class 6 species, defined as "definitely or probably extinct." The chance of seeing an ivory-billed woodpecker can be estimated as one in a million. The chance of seeing a pileated woodpecker can be estimated as one in 50.
 - The birdwatcher estimates her bird's length at 19 inches. That's on the large side for a pileated woodpecker, which has a 10% chance of being that size. An ivory-billed woodpecker has a 70% chance of being that size.

What is the probability that the bird is an ivory-billed woodpecker?

(Note: this answer is a very small number; you can leave it in terms of the component probabilities without multiplying, dividing, and adding it up.)

- 2. You are at the mouth of a cave full of treasure. You would like to enter the cave and get the treasure, but first you need to figure out if the dragon is inside.
 - If the dragon is home, there is a 70% chance you'll see some villagers on your way to the cave; if the dragon is out flying, there's a 90% chance they'll all stay home.
 - The probability of smoke coming from the cave is 80% if the dragon is home and 30% if the dragon is not home (the dragon's captive may be cooking something).
 - If the dragon went out the day before, the chance it will fly today is 50%. If it did not go out the day before, the chance it will today is 80%.
 - The prior probability of the dragon being out flying is 0.6.
 - (a) Draw a dynamic Bayesian network corresponding to this problem, including the necessary conditional probability tables.
 - (b) You have observed the cave for three days.

 $\mathbf{e}_1 = smoky, \neg villagers$

 $\mathbf{e}_2 = smoky, villagers$

 $\mathbf{e}_3 = \neg smoky, villagers$

What is the probability that the dragon is home on Day 3?

2 Decision trees

Should you eat the food you just dropped on the floor?

Training data:

	Sticky	Kind of floor	Last piece	Eat it?
1	Yes	Kitchen	Yes	No
2	No	Kitchen	No	Yes
3	Yes	Bathroom	No	No
4	Yes	Bedroom	Yes	Yes
5	No	Bedroom	No	Yes
6	Yes	Bedroom	No	No
7	No	Bathroom	Yes	No
8	No	Kitchen	Yes	Yes

- (a) What is the information gain from an initial split on each attribute (Sticky, Floor, or LastPiece)? Which one should a decision tree learning algorithm choose?
- (b) Draw a decision tree representing the training data.
- (c) How would the tree classify the following new instance? Trace the path of the classification through the decision tree.

	Sticky	Kind of floor	Last piece	Eat it?
	No	Kitchen	Yes	?

3 Neural networks

Suppose the training data for a neural network with the architecture depicted above is

i_1	$\mathbf{i_2}$	\mathbf{y}
1	0	1
1	1	0

the activation function for the hidden and output nodes is $\max(x,0)$

and the weights are initialized randomly with the values above

1. What is the output of the first forward pass for each training example?

- 2. What is the total error?
- 3. What is the gradient of the cost function $\frac{1}{2}(y-\hat{y})^2$ with respect to a_5 ?
- 4. What is the gradient of in_5 with respect to $w_{3,5}$?
- 5. What should the new value of each weight be after the first backpropagation pass?
- 6. What is the total error with the new weights?