- 1. 정격 출력 500[kW], 60국 180슬롯, 정격 토크 140[kN·m]의 3상 동기발전기가 정격 주파수 60[Hz]의 전원을 공급하고자 할 때, 동기발전기를 운전하는 원동기의 초당회전수[rps]는? (단, 기계적인 손실은 없다고 가정한다.)
 - 1

2 2

③ 60

- ④ 120
- 2. 단상 변압기의 2차 무부하 전압이 250[V]이고 정격 부하 시의 2차 단자 전압이 240[V]이다. 전압 변동률 [%]의 근삿값은?
 - 1

2 2

3 3

- 4
- 3. 직류전동기의 기동방법 성격이 다른 하나는?
 - ① 전전압 기동법
 - ② 직병렬 기동법
 - ③ 전압제어 기동법
 - ④ 저항 기동법
- 4. 외부 특성 곡선이 같으며 각각의 정격이 100[kW]
 (발전기A)와 200[kW](발전기B)인 두 대의 분권
 발전기가 병렬운전 하고 있다. 부하전류가 180[A]일 때각 발전기의 분담전류의 값[A]은?

	발전기A	발전기B
1	70	110
2	60	120
3	50	130
(4)	40	140

- 5. 동기발전기와 비교할 때 농형 유도발전기가 갖는 장점으로 가장 옳지 않은 것은?
 - ① 대단위와 소규모 발전 모두에 적합하다.
 - ② 작고 가벼우며, 견고하여 유지보수 부담이 적다.
 - ③ 전원 접속으로 여자가 가능하다.
 - ④ 출력단 단락사고 시 단락보호특성을 갖는다.

- 6. 정격 출력이 6,300[W]인 직류기가 600[rpm]의 속도로 회전할 경우 발생되는 토크[N·m]의 근삿값은? (단, 철손 및 기계적 손실은 없는 것으로 한다.)
 - ① 80.3
- ② 100.3
- ③ 120.3
- 4 140.3
- 7. 3상 유도전동기의 동기 속도가 2,000[rpm]이고, 회전자의 속도가 1,900[rpm]일 때, 슬립[%]은?
 - ① 5.0
- ② 5.2
- 3 5.4

- 4 5.6
- 8. 단락비가 큰 동기발전기에 대한 설명으로 가장 옳지 않은 것은?
 - ① 동기임피던스가 작다.
 - ② 전기자 반작용이 작다.
 - ③ 부하 전류에 대한 전압의 변동률이 크다.
 - ④ 과부하내량이 커서 안정도가 좋다.
- 9. 단상 유도전동기의 특징에 대한 설명으로 가장 옳지 않은 것은?
 - ① 가정용 전원 또는 휴대용 전원으로 간단히 운전할 수 있다.
 - ② 같은 정격 용량의 3상 유도전동기에 비하여 역률, 효율이 매우 낮다.
 - ③ 세이딩코일형 단상 유도기의 기동 토크가 가장 크다.
 - ④ 자체 기동을 하기 위한 기동장치가 필요하다.
- 10. 단권변압기에 대한 설명으로 가장 옳지 않은 것은?
 - ① 단권변압기는 고압측과 저압측 간의 전기적 차단이 중요 고려사항이 아니며, 비교적 작은 전압 변화를 얻고자 할 때 적합하다.
 - ② 권선비가 1에 가까울 때는 동일 출력을 갖는 2권선 변압기에 비해 누설 리액턴스와 여자전류가 크다.
 - ③ 공통권선에는 입력 전류와 출력 전류의 차이만큼 전류가 흐른다.
 - ④ 직렬권선의 절연은 공통권선의 절연과 동일한 수준 으로 적용되어야 한다.

- 11. 3상 유도전동기의 구성 요소로 가장 옳지 않은 것은?
 - ① 고정자
- ② 정류자
- ③ 회전자
- ④ 축
- 12. 450[kVA], 역률 0.8, 효율 90[%]인 동기발전기를 운전하는 전동기가 존재할 경우, 운전 중 전동기의 효율이 80[%]일 때 전동기의 입력[kW]은?
 - ① 400
- 2 500
- 3 600
- ④ 700
- 13. 변압기의 회로정수를 구하기 위한 시험법에 대한 설명으로 가장 옳지 않은 것은?
 - ① 무부하 시험 시에는 정확한 측정과 안전을 위해 일반적으로 저전압측을 개방하고 고전압측에서 측정한다.
 - ② 무부하 시험을 통해 여자 임피던스, 철손 저항, 자화리액턴스를 구할 수 있다.
 - ③ 단락 시험을 통해 권선저항과 누설 리액턴스를 구할 수 있다.
 - ④ 단락 시험 시 1차 전류가 정격전류에 도달했을 때 인가한 1차 측 전압을 임피던스 전압이라 한다.
- 14. 자극수가 6, 단중 파권 전기자 도체수가 400인 직류 발전기를 600[rpm]의 회전 속도로 무부하 운전하면 120[V]의 기전력이 발생한다. 이때의 1극당 주자속을 (A), 회전속도만 80%로 감소했을 때의 1극당 주자속을 (B)라고 한다면, (A)와 (B)의 값[Wb]은? (단, 자기 회로의 포화현상은 무시한다.)

	(A)	<u>(B)</u>
1	0.01	0.0125
2	0.005	0.0075
3	0.012	0.03
4	0.02	0.0325

- 15. 영구자석 전동기와 릴럭턴스 전동기에 대한 설명으로 가장 옳지 않은 것은?
 - ① 릴럭턴스 전동기는 유도전동기와 직류전동기에 비해 효율이 높다.
 - ② 영구자석 전동기는 직류전류나 교류전류로 구동할 수 있다.
 - ③ 영구자석 전동기와 릴럭턴스 전동기는 회전자 위치 검출 신호가 주어져야 구동할 수 있다.
 - ④ 릴럭턴스 전동기는 직류전류로 구동할 수 없다.

- 16. 동기발전기의 단락전류의 현상과 대책에 대한 내용으로 가장 옳지 않은 것은?
 - ① 동기발전기의 단락순간에는 단락전류로 인해 전기자 반작용이 일어난다.
 - ② 동기발전기의 돌발 단락 전류를 주로 제한하는 것은 누설 리액턴스이다.
 - ③ 동기발전기의 영구 단락 전류를 주로 제한하는 것은 동기 리액턴스이다.
 - ④ 단락 시 동기 리액턴스가 전기자 저항보다 크기 때문에 뒤진 전류가 흐른다.
- 17. 유도전동기의 크롤링(Crawling) 현상에 대한 설명으로 가장 옳지 않은 것은?
 - ① 고조파 비동기 토크가 발생되어 가속이 되지 않는 현상이다.
 - ② 슬립이 큰 영역에 운전되어 큰 1차 전류가 발생될 수 있다.
 - ③ 스큐를 이용하여 고조파를 제거할 수 있다.
 - ④ 주로 슬롯수가 많고 대용량인 권선형 유도전동기에서 발생한다.
- 18. 변압기의 와전류손을 저감하는 방법으로 가장 옳지 않은 것은?
 - ① 철심 코어의 저항률을 높게 한다.
 - ② 1차 측에 인가되는 전압을 작게 한다.
 - ③ 철심 코어의 자속밀도를 크게 한다.
 - ④ 철심 코어의 적층 두께를 작게 한다.
- 19. 22,000/220[V] 단상 변압기의 등가회로에서 1차, 2차 임피던스 Z_1 , Z_2 가 각각 $24[\Omega]$, $0.0056[\Omega]$ 이고 부하 임피던스 Z_L 가 $20[\Omega]$ 이라면, 단락사고 시 1차 측에 흐르는 전류의 값[A]은?
 - ① 133
- 2 275
- 3 325
- ④ 375
- 20. 변류기에 대한 설명으로 가장 옳지 않은 것은?
 - ① 이상적인 변류기는 입력전류의 N_1/N_2 배 크기의 2차 측 출력 전류를 얻을 수 있다. $(N_1:1$ 차측 턴수, $N_2:2$ 차측 턴수)
 - ② 변류기 사용 중에는 2차 회로를 개방하지 않도록 해야 한다.
 - ③ 변류비를 정확하게 하기 위해 철심 재료의 투자율이 크고 철손이 적은 규소강판을 사용한다.
 - ④ 변류기는 1차 정격 전류에 대하여 2차 전류가 5[mA]가 되도록 하는 것이 표준이다.