2.2.3 函数极限存在的判别,两个重要极限

仍以 $\lim_{x \to x_0} f(x)$ 为代表,介绍函数极限存在的条件. 对于其他类型的极限, 也有类似的结论.

- 一、归结原理
- 二、夹挤原理
- 三、单调有界原理

一、归结原理 (Heine定理)

定理3: 设 f 在 $U^{\circ}(x_0,\eta)$ 有定义. $\lim_{x \to x_0} f(x)$ 存在的充要条件是: 对于在 $U^{\circ}(x_0,\eta)$ 内以 x_0 为极限的任何数列 $\{x_n\}$, 极限 $\lim_{n \to \infty} f(x_n)$ 都存在,并且相等.

证 (必要性) 设 $\lim_{x\to x_0} f(x) = A$,则对任给 $\varepsilon > 0$,存 在 $\delta > 0$,当 $0 < |x-x_0| < \delta$ 时,有 $|f(x)-A| < \varepsilon$. 设 $\{x_n\} \subset U^\circ(x_0,\eta), x_n \to x_0$,那么对上述 δ ,存在 N,当 n > N 时,有 $0 < |x_n-x_0| < \delta$, 所以 $|f(x_n)-A| < \varepsilon$. 这就证明了 $\lim_{n\to\infty} f(x_n) = A$.

(充分性) 设任给 $\{x_n\}\subset U^\circ(x_0,\eta), x_n\to x_0,$ 恒有 $\lim_{n\to\infty} f(x_n)=A$.

$$|f(x_{\delta})-A| \geq \varepsilon_0.$$

现分别取 $\delta_1 = \eta, \delta_2 = \frac{\eta}{2}, \dots, \delta_n = \frac{\eta}{n}, \dots,$

存在相应的 $x_1, x_2, \dots, x_n, \dots, x_n \in U^{\circ}(x, \delta_n)$,

使得 $|f(x_n)-A| \ge \varepsilon_0, n=1,2,\cdots$.

另一方面, $0<|x_n-x_0|<\delta_n=\frac{\eta}{n}$,所以 $\lim_{n\to\infty}x_n=x_0$. 这与 $\lim f(x_n)=A$ 矛盾.

注1 归结原理有一个重要应用:

若存在
$$\{x_n\}, \{y_n\} \subset U^{\circ}(x_0), x_n \to x_0, y_n \to x_0,$$
但是
$$\lim_{n \to \infty} f(x_n) = A \neq B = \lim_{n \to \infty} f(y_n),$$

则 $\lim_{x\to x_0} f(x)$ 不存在.

注2 $x \rightarrow x_0^+$ 时的归结原理如下:

定理 设 f(x) 在 x_0 的某空心右邻域 $U_+^\circ(x_0)$ 有定义,则

$$\lim_{x \to x_0^+} f(x) = A \Leftrightarrow \begin{cases} \text{任给 } \{x_n\} \subset U_+^{\circ}(x_0), x_n \to x_0, \\ \text{必有 } \lim_{n \to \infty} f(x_n) = A. \end{cases}$$

例16. 证明 $\lim_{x\to 0} \sin\frac{1}{x}$, $\lim_{x\to \infty} \cos x$ 都不存在.

解取
$$x_n = \frac{1}{2n\pi} \to 0$$
, $y_n = \frac{1}{2n\pi + \frac{\pi}{2}} \to 0$, 有

$$\lim_{n\to\infty}\sin\frac{1}{x_n}=0\neq 1=\lim_{n\to\infty}\sin\frac{1}{y_n},\quad \text{th}\quad \lim_{x\to 0}\sin\frac{1}{x}\quad \text{π fig.}$$

二、夹挤原理

定理 8 (夹挤原理) 设 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = A$,且 $E(x) = x_0$ 的某个空心邻域 $U^\circ(x_0)$ 内有 $E(x) \leq h(x) \leq g(x)$. 那么 $\lim_{x\to x_0} h(x) = A$.

证 因为 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A$,所以对于任意 $\varepsilon > 0$,存在 $\delta > 0$,当 $0 < |x - x_0| < \delta$ 时,有 $A - \varepsilon < f(x) < A + \varepsilon$, $A - \varepsilon < g(x) < A + \varepsilon$. 再由定理的条件,得 $A - \varepsilon < f(x) \le h(x) \le g(x) < A + \varepsilon$. 这就证明了 h(x) 在点 x_0 的极限存在,并且就是 A.

例 17. 求
$$\lim_{x\to 0} x \left[\frac{1}{x}\right]$$
.

解 由取整函数的性质, $\frac{1}{x}-1 < \left\lfloor \frac{1}{x} \right\rfloor \le \frac{1}{x}$. 当 x > 0

时,有
$$1-x < x \left[\frac{1}{x}\right] \le 1$$
,由于 $\lim_{x \to 0^+} (1-x) = \lim_{x \to 0^+} 1 = 1$,

因此由迫敛性得 $\lim_{x\to 0^+} x \left[\frac{1}{x}\right] = 1;$ 又当 x < 0 时,有

$$1 < x \left[\frac{1}{x} \right] \le 1 - x$$
,同理得 $\lim_{x \to 0^{-}} x \left[\frac{1}{x} \right] = 1$. 于是求得

$$\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1.$$

三、单调有界原理

相应于数列极限的单调有界定理,关于 $x \to x_0^+$, $x \to x_0^-$,

 $x \to +\infty$ 和 $x \to -\infty$ 这四种类型的单侧极限也有相应的定理.

现以 $x \to x_0^+$ 这种类型为例叙述如下:

定理 9 设 f 是定义在 $U_{+}^{0}(x_{0})$ 上的单调有界函数,则右极限 $\lim_{x \to x_{0}^{+}} f(x)$ 存在.

证 不妨设 f 在 $U_{+}^{0}(x_{0})$ 上递增. 因 f 在 $U_{+}^{0}(x_{0})$ 上有界,由确界原理 $\inf_{x \in U_{+}^{0}(x_{0})} f(x)$ 存在,记为 A.下证 $\lim_{x \to x_{0}^{+}} f(x) = A$

事实上,任给 $\varepsilon > 0$,按下确界定义,存在 $x' \in U_{+}^{0}(x_{0})$,使得 $f(x') < A + \varepsilon. 取 \delta = x' - x_{0} > 0$,则由f的递增性,对一切 $x \in (x_{0}, x') = U_{+}^{0}(x_{0}; \delta)$,有 $f(x) \leq f(x') < A + \varepsilon.$

另一方面,由 $A \le f(x)$,更有 $A - \varepsilon \le f(x)$.从而对一切 $x \in U_{+}^{0}(x_{0}; \delta)$ 有 $A - \varepsilon < f(x) < A + \varepsilon$

这就证得 $\lim_{x \to x_0^+} f(x) = A$.

两个重要极限:

$$\lim_{x\to 0} \frac{\sin x}{x} = 1 \qquad \left(\frac{0}{0} \, \mathbb{D}\right)$$

作单位圆的切线,得 ΔACO .

扇形OAB的圆心角为x, $\triangle OAB$ 的高为BD,

于是有 $\sin x = BD$, x = M AB, $\tan x = AC$,

$$\therefore \sin x < x < \tan x, \qquad \text{pressure} \cos x < \frac{\sin x}{x} < 1,$$

$$0 < |\cos x - 1| = 1 - \cos x = 2\sin^2 \frac{x}{2} < 2(\frac{x}{2})^2 = \frac{x^2}{2},$$

$$\lim_{x\to 0}\frac{x^2}{2}=0, \qquad \lim_{x\to 0}(1-\cos x)=0,$$

一般地:
$$\lim_{\square \to 0} \frac{\sin\square}{\square} = 1$$

例19. (1)
$$\lim_{x\to 0} \frac{\tan x}{x} = \lim_{x\to 0} \frac{\sin x}{x} \frac{1}{\cos x} = 1$$

(2)
$$\lim_{x\to 0} \frac{\sin \alpha x}{\sin \beta x} = \lim_{x\to 0} \frac{\sin \alpha x / \alpha x}{\sin \beta x / \beta x} \frac{\alpha}{\beta} = \frac{\alpha}{\beta}$$

(3)
$$\lim_{x\to 0} \frac{\arcsin x}{x} = \lim_{t\to 0} \frac{t}{\sin t} = 1$$

解 原式 =
$$\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2}\lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{(\frac{x}{2})^2}$$

$$= \frac{1}{2}\lim_{x \to 0} (\frac{\sin \frac{x}{2}}{\frac{x}{2}})^2 = \frac{1}{2} \cdot 1^2$$

$$= \frac{1}{2}.$$

(2)
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$
 $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$

一般地:

$$\lim_{\square \to \infty} (1 + \frac{1}{\square})^{\square} = e \quad \text{if} \quad \lim_{\square \to 0} (1 + \square)^{\frac{1}{\square}} = e$$

证明:
$$\exists x \ge 1$$
时, 有 $[x] \le x \le [x] + 1$,

$$(1+\frac{1}{[x]+1})^{[x]} \le (1+\frac{1}{x})^x \le (1+\frac{1}{[x]})^{[x]+1},$$

$$\overline{\prod} \lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]+1} = \lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]} \cdot \lim_{x \to +\infty} (1 + \frac{1}{[x]}) = e,$$

$$\lim_{x \to +\infty} (1 + \frac{1}{[x] + 1})^{[x]}$$

$$= \lim_{x \to +\infty} (1 + \frac{1}{[x]+1})^{[x]+1} \cdot \lim_{x \to +\infty} (1 + \frac{1}{[x]+1})^{-1} = e,$$

$$\therefore \lim_{x \to +\infty} (1 + \frac{1}{x})^x = e.$$

$$\Leftrightarrow t = -x,$$

$$\therefore \lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t})^{-t} = \lim_{t \to +\infty} (1 + \frac{1}{t - 1})^t$$

$$= \lim_{t \to +\infty} (1 + \frac{1}{t-1})^{t-1} (1 + \frac{1}{t-1}) = e.$$

$$\therefore \lim_{x\to\infty} (1+\frac{1}{x})^x = e$$

注 若令
$$t = \frac{1}{x}$$
,则 $x \to \infty$ 时, $t \to 0$. 可得

$$\lim_{t\to 0} \left(1+t\right)^{\frac{1}{t}}=e.$$

例21. 求
$$\lim_{x\to\infty} (1-\frac{1}{x})^x$$
.

解 原式 =
$$\lim_{x \to \infty} [(1 + \frac{1}{-x})^{-x}]^{-1} = \lim_{x \to \infty} \frac{1}{(1 + \frac{1}{-x})^{-x}} = \frac{1}{e}.$$

例22. 求
$$\lim_{x\to\infty} (\frac{3+x}{2+x})^{2x}$$
.

解 原式 =
$$\lim_{x\to\infty} [(1+\frac{1}{x+2})^{x+2}]^2 (1+\frac{1}{x+2})^{-4} = e^2$$
.

例23. 求
$$\lim_{n\to\infty}\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n$$
.

解 因为
$$\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n < \left(1+\frac{1}{n}\right)^n$$
,

$$\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n = \left(1+\frac{n-1}{n^2}\right)^{\frac{n^2}{n-1}-\frac{n}{n-1}} \ge \left(1+\frac{n-1}{n^2}\right)^{\frac{n^2}{n-1}-2}.$$

而
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
, $\frac{n-1}{n^2}\to 0$, 所以由归结原则,

$$\lim_{n\to\infty} \left(1+\frac{n-1}{n^2}\right)^{\frac{n}{n-1}}=e.$$

再由迫敛性,求得
$$\lim_{n\to\infty} \left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n = e.$$

例23. 求
$$\lim_{n\to\infty}\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n$$
.

解:
$$\left(1+\frac{1}{n}-\frac{1}{n^2}\right)^n = \left[\left(1+\frac{n-1}{n^2}\right)^{\frac{n^2}{n-1}}\right]^{\frac{n-1}{n}}$$
?