

Process for treating parts

Patent Number: DE4333940
Publication date: 1994-12-08
Inventor(s): SCHMIDT HANS PETER (DE)
Applicant(s): MESSER GRIESHEIM GMBH (DE)
Requested Patent: DE4333940
Application Number: DE19934333940 19931006
Priority Number(s): DE19934333940 19931006
IPC Classification: C23C8/18; C21D1/76
EC Classification: C21D1/76, C23C8/18
Equivalents: EP0647726, B1

Abstract

The invention relates to a process for treating parts, in particular steel and/or cast iron parts, which is characterised by a common oxidation (blueing) and hardening of the parts in a furnace by introducing or atomising a reducing and oxidising reaction gas into the furnace space at hardening temperatures.

Data supplied from the esp@cenet database - I2

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Patentschrift
(10) DE 43 33 940 C 1

(51) Int. Cl. 5:
C 23 C 8/18
C 21 D 1/76

(21) Aktenzeichen: P 43 33 940.9-45
(22) Anmeldetag: 6. 10. 93
(43) Offenlegungstag: —
(45) Veröffentlichungstag der Patenterteilung: 8. 12. 94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:
Messer Griesheim GmbH, 60549 Frankfurt, DE

(72) Erfinder:
Schmidt, Hans Peter, 40822 Mettmann, DE

(58) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
DE-PS 9 18 933
US 26 73 821

(54) Verfahren zum Behandeln von Teilen

(57) Die Erfindung betrifft ein Verfahren zum Behandeln von Teilen, insbesondere Stahl- und/oder Gußteilen, welches durch ein gemeinsames Oxidieren (Bläuen) und Härteten der Teile in einem Ofen mittels Einleiten oder Verdüsen eines reduzierenden und oxidierenden Reaktionsgases bei Härtetemperaturen in den Ofenraum gekennzeichnet ist.

DE 43 33 940 C 1

DE 43 33 940 C 1

Beschreibung

Die Erfindung betrifft ein Verfahren zum Behandeln von Teilen, insbesondere Stahl- und/oder Gußteilen.

Stahlteile werden unter Einsatz von Schutzgasen, wie Stickstoff, Stickstoff/Propan-Gemisch, Endogas, Exogas und dergleichen in einem Ofen auf die jeweilige Austenitisierungstemperatur erwärmt und durch Abschreckmittel mit beliebigen Abschreckgeschwindigkeiten gehärtet (US-PS 2,673,821).

Viele der gehärteten Stahlteile werden anschließend in einer zweiten Wärmebehandlung bei Temperaturen zwischen 300 und 570°C oxidiert, um eine visuell ansprechendere Oberfläche zu bekommen und das Werkstück gegen Flugrost korrosionsbeständiger und gegen Abrieb widerstandsfähiger zu machen. Es bildet sich ein blaues Eisenoxid- Fe_3O_4 , das zu dem Begriff "Bläuen" geführt hat.

Mit den herkömmlichen Schutzgasen, die beim Härtprozeß zum Einsatz kommen, ist ein Oxidieren (Bläuen) der Oberfläche der Stahlteile nicht möglich.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Bläuen von Teilen während des Härtens zu schaffen.

Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik ist diese Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Durch die Erfindung kann auf eine nachgeschaltete Oxidationsbehandlung verzichtet werden, da die Stahl und/oder Gußteile eine gleichmäßig, dünne Oxidschicht (Eisenoxid) durch Einleiten oder Verdüsen eines reduzierenden und gleichzeitig oxidierenden Reaktionsgases im Ofenraum während dem Härtprozeß bei der jeweiligen Härtetemperatur erhalten. Das gleichzeitige Bläuen und Härteten der Teile erhöht die Wirtschaftlichkeit des Verfahrens. Überraschenderweise konnten die zum Erzeugen des Flammenschleiers verwendeten Mengen an Kohlenwasserstoffen durch Einspeisen des Reaktionsgases fast halbiert werden. Durch die Einspeisung der oxidierenden Komponenten wie Wasser, Kohlendioxid oder Luft wird die Rußbildung durch unvollständige Verbrennung der Flammengase, beispielsweise des Propan, stark gemindert, so daß die Reinigungsintervalle des Ofenraumes ebenfalls größer werden.

Durch die Erfindung wird ein reduzierendes und gleichzeitig oxidierendes Reaktionsgas über eine an sich bekannte Injektor-Sprühlanze in einen HärtEOFEN eingespeist und dadurch eine Gasatmosphäre geschaffen, die leicht oxidierend wirkt. Als Reaktionsgas werden bevorzugt die reinen, flüssigen Stoffe Methanol und Wasser sowie gasförmiger Stickstoff mit Hilfe der Injektor-Sprühlanze gemischt und gelangen über die Austrittsbohrungen fein verdüst in den heißen Teil des Ofenraumes. Durch die hohe Ofentemperatur verdampfen die flüssigen Stoffe, wobei sich gasförmiges Methanol in zwei Teile Wasserstoff und einen Teil Kohlenmonoxid aufspaltet. Methanol-Spaltgas bildet die reduzierende Komponente, während Wasserdampf die oxidierende darstellt. Stickstoff dient zur Verdüfung der flüssigen Stoffe und zur Verdünnung der oxidierenden und reduzierenden Bestandteile der Gasatmosphären. Das Härtgut wird außerhalb des Ofens auf ein Transportsystem gelegt und über dieses in den Ofenraum befördert. Im Ofenraum werden die Teile auf die jeweilige Austenitisierungstemperatur (860—940°C) er-

wärmt und fallen dann schlagartig in ein Abschreckbad, insbesondere ein Öl- bzw. Salzbad. Während der Aufheiz- und/oder Haltephase wird die Oberfläche der Teile durch den Wasserdampf in der Gasatmosphäre des Ofens leicht oxidiert. Damit die Oxidation der Teile nicht schon bei niedrigen Temperaturen erfolgt, wird der Flammenschleier, der sich im unteren Teil des Ofeneinlaufes befindet, optimal eingestellt, d. h., die Menge an Propan oder Erdgas (Kohlenwasserstoffe) wird so auf die eingespeiste Menge des Reaktionsgases abgestimmt, daß der Flammenschleier Sauerstoff abbindet und somit eine frühzeitige Oxidation der zu härtenden Teile verhindert wird. Der Flammenschleier ist quer zur Förderrichtung installiert. Die Mengen an Propan liegen bei 100—2000 l/h und die Reaktionsgasmengen bei 2—20 m³/h.

Durch das neue Verfahren konnten gleichmäßige und gut haftende Schichten (blaue Farbe) beim Härteten von Stahlteilen eingestellt werden. Eine Blasenbildung wurde nicht festgestellt.

Das Verfahren nach der Erfindung wurde vorstehend mit dem Reaktionsgas Stickstoff-Methanol-Wasser beschrieben. Es ist selbstverständlich auch mit anderen Reaktionsgasen durchführbar, die eine reduzierende und oxidierende Komponente aufweisen.

Patentansprüche

1. Verfahren zum Behandeln von Teilen, insbesondere Stahl- und/oder Guß-Teilen, dadurch gekennzeichnet, daß die Teile in einem Ofen mittels Einleiten oder Verdüsen eines reduzierend und oxidierend wirkenden Reaktionsgases bei Härtetemperaturen im Ofenraum gemeinsam oxidiert (Bläuen) und gehärtet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Herstellung des Reaktionsgases ein Methanol-Wasser-Gemisch verwendet wird.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß zur Herstellung des Reaktionsgases eine Flüssigkeit verwendet wird, die mit gasförmigem Stickstoff verdüst und verdünnt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Reaktionsgas durch Verdüsen in dem Teil des Ofens erzeugt wird, in welchem die Teile auf die Endtemperatur beim Härteten erwärmt werden.