CMOS Combinational Circuits

Subsystem Design and Layout

In all designs, a logical and systematic approach is necessary

Eg: 500 transistor design → 2 Engr months 500,000 transistor design → 170 Engr years

- Subsystems are the basic leaf-cells from which larger systems are composed
- The most basic leaf-cells are the common logic gates

- The concepts of structured design leads to system designs of high 'regularity'
- This leads to the detailed design of relatively a few leaf cells, which are then replicated many times & interconnected to form the system
- This way, we can cope up with the complexity

Structured CMOS Design Steps / Guidelines

- 1. Define the requirements (properly and carefully)
- 2. Partition the overall architecture into appropriate subsystems
- 3. Consider communication paths carefully in order to develop sensible interrelationships between subsystems
- 4. Draw a floor plan of how the system is to map onto the silicon (alternate between steps 2, 3 & 4 as necessary)
- 5. Aim for regular structures so that design is largely a matter of replication
- 6. Draw suitable (stick or symbolic) diagrams of the leafcells of the subsystems

Structured CMOS Design Steps / Guidelines

- 7. Convert each cell into a layout
- 8. Carefully and thoroughly carryout a design rule check on each cell
- 9. Simulate the performance of each cell / subsystem

P.K. Shetty, MSIS, Manipal

Structured Design - Example

 Design a circuit to indicate the parity of a binary number or word of n-bit wide

If $A_i = 1$: Parity is changed, $P_i = \overline{P}_{i-1}$

If $A_i = 0$: Parity is unchanged, $P_i = P_{i-1}$

$$\Rightarrow P_i = \overline{P}_{i-1} A_i + P_{i-1} \overline{A}_i$$

XOR gate

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

XOR gate - Another Implementation

Multiplexers

2:1 Multiplexers

4:1 Multiplexers

4:1 MUX wing gate logic:

Z = 3, So I o P.K. Shetty, MSIS, Marlipal + Si So I 2 + Si So I 3

Adders

Subtractor

Adder / Subtractor

Comparators

Sequential Circuits

4-bit Synchronous Counter

