

Elementary Analytic Number Theory

Masum Billal

September 29, 2021

Contents

Notations		7
1	Introduction]
2	Arithmetic Functions 2.1 Dirichlet Convolution and Generalization	•

iv *CONTENTS*

Notations

- gcd(a, b) Greatest common divisor of a and b
- lcm(a, b) Least common multiple of a and b
- $\varphi(n)$ Euler's totient function of n
- $\tau(n)$ Number of divisors of n
- $\sigma(n)$ Sum of divisors of n
- $\omega(n)$ Number of distinct prime divisors of n
- $\Omega(n)$ Number of total prime divisors of n
- $\lambda(n)$ Liouville function of n
- $\mu(n)$ Mőbius function of n
- $\vartheta(x)$ Tchebycheff function of the first kind
- $\psi(x)$ Tchebycheff function of the second kind
- $\zeta(s)$ Zeta function of the complex number s

Chapter 1 Introduction

Chapter 2

Arithmetic Functions

Arithmetic function. A real or complex valued function $f: \mathbb{N} \to \mathbb{C}$ is an *arithmetic function*. In this book, we will be concerned with $f: \mathbb{N} \to \mathbb{N}$ primarily.

2.1 Dirichlet Convolution and Generalization

Definition. For two arithmetic functions f and g, the *Dirichlet product* or *Dirichlet convolution* of f and g is defined as

$$f*g = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

We will discuss here how this came to be. Consider the zeta function.

$$\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \dots$$