Parameterized Quantum Query Algorithms for Graph Problems

Tatsuya Terao¹, Ryuhei Mori²

- 1. Kyoto University
- 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

Parameterized Quantum Query Algorithms for Graph Problems

vertex cover and matching

Tatsuya Terao¹, Ryuhei Mori²

- 1. Kyoto University
- 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

kernelization and augmenting paths

Parameterized Quantum Query Algorithms for Graph Problems

vertex cover and matching

Tatsuya Terao¹, Ryuhei Mori²

- 1. Kyoto University
- 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

Query Complexity

Given f as an oracle!

Query Complexity

Algorithm

Query Complexity = # of queries to oracle

Quantum Query Complexity

Quantum Algo

Quantum Oracle O_f

$$f: \{1, ..., N\} \to \{0, 1\}$$

 ${\mathfrak F}$ Query Complexity = # of ${\mathcal O}_f$

Quantum Query Complexity

Quantum Algo

Quantum Oracle \mathcal{O}_f

$$f: \{1, ..., N\} \to \{0, 1\}$$

 ${\mathbb P}$ Query Complexity = # of ${\mathcal O}_f$

```
Input: Oracle access to f: \{1, ..., N\} \rightarrow \{0, 1\}
Output: i \in \{1, ..., N\} s.t. f(i) = 1
```

```
Input: Oracle access to f: \{1, ..., N\} \rightarrow \{0, 1\}
```

Output : $i \in \{1, ..., N\}$ s.t. f(i) = 1

Classical

Quantum

 $\Theta(N)$ queries with error prob. at most 1/3

```
Input : Oracle access to f: \{1, ..., N\} \rightarrow \{0, 1\}
```

Output : $i \in \{1, ..., N\}$ s.t. f(i) = 1

Classical

 $\Theta(N)$ queries with error prob. at most 1/3

Quantum

```
O(\sqrt{N}) queries with error prob. at most 1/3 [Grover '96]
```

Lower Bound: $\Omega(\sqrt{N})$ [Bennett-Bernstein-Brassard-Vazirani '97]

Input: Oracle access to $f: \{1, ..., N\} \rightarrow \{0, 1\}$

Output : $i \in \{1, ..., N\}$ s.t. f(i) = 1

Classical

 $\Theta(N)$ queries with error prob. at most 1/3

Quantum

Classical-Quantum Separation!

 $O(\sqrt{N})$ queries with error prob. at most 1/3 [Grover '96]

Limitation of Quantum Algo

Lower Bound: $\Omega(\sqrt{N})$ [Bennett-Bernstein-Brassard-Vazirani '97]

Quantum Query Complexity for Graph Problems

Adjacency Matrix Model

Quantum oracle access to E_M : $\{1, ..., n\} \times \{1, ..., n\} \rightarrow \{0, 1\}$

$$E_M(u,v)=1\Leftrightarrow (u,v)\in E(G)$$

n = # of vertices

Previous Works on Query Complexity

Even through classical algorithms require $\Theta(n^2)$ queries, ...

- k-clique : $\widetilde{O}(n^{2-2/k})$ [Magniez-Santha-Szegedy '05]
- Connectivity: $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Planarity: $\Theta(n^{3/2})$ [Ambainis et al. '08]
- Maximum matching : $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

n = # of vertices

k-vertex cover problem

Input: an undirected graph G and an interger k

Find: a vertex cover $S \subseteq V$ of size at most k

every edge of G has at least one endpoint in S

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

Lower Bound: $\Omega(\sqrt{kn})$ (when $k \leq (1 - \epsilon)n$)

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

Lower Bound: $\Omega(\sqrt{kn})$ (when $k \leq (1 - \epsilon)n$)

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

<u>Thm.</u>

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

Lower Bound : $\Omega(\sqrt{kn})$ (when $k \leq (1 - \epsilon)n$)

Significance

- UB $O(n^2)$, LB $\Omega(n^{3/2})$ [Zhang '04] were only known for minimum vertex cover
- Consider Parameterized ver.

<u>Technique</u>

Quantum Query Kernelization

Kernelization

Input: instance (G, k)

Output: another equivalent small instance (G', k')

- (G, k) is a Yes instance $\Leftrightarrow (G', k')$ is a Yes instance
- $\bullet E(G') \leq f(k)$
- $k' \leq g(k)$

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 2. If G has a vertex v of degree at least k + 1, then

If v is not in a vertex cover, then it must contain all neighbors of v.

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 2. If G has a vertex v of degree at least k+1, then $(G,k) \rightarrow (G-v,k-1)$

v must be in any vertex cover of size at most k.

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Rule 2. If G has a vertex v of degree at least k + 1, then $(G, k) \rightarrow (G - v, k - 1)$

v must be in any vertex cover of size at most k.

Fact: After Applying Rules 1 and 2, if $|E(G)| > k^2$, then (G, k) is a No instance

New Approach: Quantum Query Kernelization

Input: Oracle access to (G, k)

Output: another equivalent instance (G', k') as a bit string

• (G, k) is a Yes instance $\Leftrightarrow (G', k')$ is a Yes instance

New Approach: Quantum Query Kernelization

Input: Oracle access to (G, k)

Output: another equivalent instance (G',k') as a bit string

• (G, k) is a Yes instance $\Leftrightarrow (G', k')$ is a Yes instance

After Applying quantum query kernelization, just apply classical algorithm for (G', k').

Step1 Find a maximal matching M

Step1 Find a maximal matching M if |M| > k: then No instance

Step1 Find a maximal matching M if |M| > k: then No instance

Step2 Apply Rule 2 only for endpoints of edges in M

Rule 2. If G has a vertex v of degree at least k+1, then $(G,k) \rightarrow (G-v,k-1)$

Crucial Observation

independent set

 \square All edges touch an endpoint of an edge in M!

Step1 Find a maximal matching M if |M| > k: then No instance

Step2 Apply Rule 2 only for endpoints of edges in M

Rule 2. If G has a vertex v of degree at least k+1, then $(G,k) \rightarrow (G-v,k-1)$

Lem: After Step1 and 2, $|E(G)| \le 2k^2$

Step1 Find

a matching of size at least k+1 or a maximal matching of size at most k

Lem: Step1 uses $O(\sqrt{kn})$ queries

a matching of size at least k+1

Step1 Find

or a maximal matching of siz No instance

Lem: Step1 uses $O(\sqrt{k}n)$ queries

Step1 Find

a matching of size at least k+1

a maximal matching M of size at most k

Lem: Step1 uses $O(\sqrt{k}n)$ queries

a matching of size at least k+1

Step1 Find

or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

all endpoints of edges in M

```
a matching of size at least k+1
        Find
Step1
              a maximal matching M of size at most k
Step2 For each v \in V(M): all endpoints of edges in M
          if (degree of v) > k: then remove v, k \leftarrow k-1
          else: find all edges incident to v
```

a matching of size at least k+1

Step1 Find or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$: all endpoints of edges in M if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v

a matching of size at least k+1

Step1 Find

or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v

Obtain an equivalent instance as a bit string!

a matching of size at least k+1

Step1 Find

or

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v

a matching of size at least k+1 $\longleftarrow o(\sqrt{kn})$ queries

Find Step1

a maximal matching M of size at most k

Step2 For each $v \in V(M)$:

 $O(k^{3/2}\sqrt{n})$ queries

if (degree of v) > k: then remove v, $k \leftarrow k-1$ else: find all edges incident to v

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$

Lower Bound : $\Omega(\sqrt{kn})$

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$

Lower Bound : $\Omega(\sqrt{kn})$

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{k}n + k^2)$

Lower Bound : $\Omega(\sqrt{k}n)$

Significance

- UB $O(n^{7/4})$ [Kimmel-Witter '21], LB $\Omega(n^{3/2})$ [Zhang '04] were only known for maximum matching
- Consider Parameterized ver.

<u>Technique</u>

- augmenting paths
- quantum query kernelization idea

Step1 Find

a matching of size at least k+1

or

 $\longleftarrow O(\sqrt{k}n)$ queries

a maximal matching of size at most k

a matching of size at least k+1

Step1 Find

or

 $\longleftarrow O(\sqrt{k}n)$ queries

a maximal matching ${\it M}$ of size at most ${\it k}$

Step2 Repeatedly find an augmenting path and augment along it

augmenting path v_1 v_2 v_3 v_4 v_5 t

maximal matching M

|M| increases by 1!

a matching of size at least k + 1

Step1 Find

or

 $\longleftarrow O(\sqrt{k}n)$ queries

a maximal matching M of size at most k

Step2 Repeatedly find an augmenting path and augment along it

augmenting path

Lem:

Step2 uses $O(k^2)$ queries + amoritized $O(\sqrt{n})$ queries per one augmentation

maximal matching ${\cal M}$

a matching of size at least k + 1

Step1 Find

or

 $\longleftarrow O(\sqrt{k}n)$ queries

a maximal matching M of size at most k

Step2 Repeatedly find an augmenting path and augment along it

augmenting path

Lem:

Step2 uses $O(k^2)$ queries + amoritized $O(\sqrt{n})$ queries per one augmentation

 $O(k^2 + k\sqrt{n})$ queries

maximal matching M

Conclusion

 Optimal Parameterized Quantum Query Complexities for vertex cover and matching when the parameters are small.

Message

By making smart use of classical techniques such as kernelization, we can improve quantum query complexities!