				11/11		48117	TITA	
Reg. No.	100					ě.	A	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18MHE461T – ARTIFICIAL INTELLIGENCE FOR ROBOTICS AND VISION

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

(i)		Part - A should be answered in OMR so over to hall invigilator at the end of 40 th	sheet w	within first 40 minutes and OMR sheets.	t shou.	ld be	han	ded
(ii)		Part - B & Part - C should be answered	l in ans	wer booklet.				
Time	: 3	nours			Max. l	Marl	ks: 1	00
		$PART - A (20 \times 1 = 1)$	= 20 N	(arks)	Marks	BL	co	PO
		Answer ALL Q						
	1			of a datapoint for a classification	- 1	2	1	1
	1,00	algorithm.	01110					
		(A) Accuracy	(B)	F1 score				
		(C) Log loss	(D)	Mean absolute error				
			-17			2	1	1
	2.	type of AI system, might lead	l to sin	igularity.	Ţ	2	1	1
		` '		Limited memory AI				
		(C) Narrow AI	(D)	Strong AI				
	2	El secre is a of precision and t	recall		1	.1	1	1
	3.	F1 score is a of precision and to (A) Harmonic mean	(B)	Arithmetic mean				
		(C) Geometric mean	(D)	Root mean square				
		(C) Geometre mean		1000 1110011 541111				
	4.	An agent runs in the cycle of			1	1	1	1
		(A) Perceiving, thinking and acting		Perceiving, thinking and waiting				
		(C) Waiting, thinking and acting	·(D)	Perceiving, waiting and acting				
	5	Engry logic is a			1	1	2	1
	٥.	Fuzzy logic is a (A) Two-valued logic	(B)	Many valued logic				
		(C) Crisp set logic	(D)	Binary set logic				
		(C) Crisp set logic						
	6.	The membership value for a triangu	lar m	embership function is obtained by	1 11	4	2	1
		(A) $\max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b} \right), 0 \right)$	(B)	$\min\left(\max\left(x-a \ c-x\right)_{0}\right)$				
		$\max\left(\min\left(\frac{1}{b-a},\frac{1}{c-b}\right),0\right)$		$\frac{1}{b-a}, (c-b), 0$				
		(C) $(x-b,x-c)$	(D)	$\left(x-b x-c\right)$				
		(C) $\min\left(\max\left(\frac{x-b}{a-b}, \frac{x-c}{b-c}\right), 0\right)$		$\max\left(\min\left(\frac{x-b}{a-b}, \frac{x-c}{b-c}\right), 0\right)$				
	7.	Which of the following represents iden	poten	cy property of fuzzy sets?	1	2	2	1
		(A) $A \cap X = A$	(B)	$A \cap A = A$				
		(C) $\tilde{A} \cap \tilde{X} = \tilde{X}$	(D)	$\tilde{A} \cap \phi = \phi$				
					1	1	2	1
	8.	is represented as set members			1	1	2	1
		(A) Degree of truth		Degree of false				
		(C) Complement	(U)	Probability				

Note:

9.	Arti	ficial neural network follows		modelling route.	1	1	3	1
	(A)	Black box	(B)	White box				
	(C)	Grey box	(D)	Green box				
10.	_	logical operation is an example			1	2	3	1
		AND	(B)					
	(C)	NOR	(D)	EXNOR				
11	Whi	ch of the following does not form a		fh-h-id	1	2	3	1
11.	(A)	ch of the following does not form a p Real inputs and fuzzy weights	(D)	Fugget inputs and real visible	1	2	J	ŀ
	(C)	Real inputs and real weight	(D)	Fuzzy inputs and fuzzy violehte				
	(0)	rear inputs and rear weight	(1)	ruzzy inputs and ruzzy weights				
12.	Whi	ch of the following is not true for a r	enral	network?	1	2	3	2
		Node can be in non-excited state	(B)	Connection computers its				
			(-)	weighted input				
7	(C)	Network has set of nodes and	(D)					
	` ′	connections	\$ /					
13.	The	derivative of the sigmoid function σ	-1(z)	is given as	1	1	4	1
		$\sigma(z)(1+\sigma(z))$		$\sigma(z)(1-\sigma(z))$				
	(C)	$\frac{\sigma(z) + (1 - \sigma(z))}{\sigma(z) \times (1 - \sigma(z))}$	(D)	$\frac{1}{\sigma(z)+1}$				
		$\frac{(}{\sigma(\sigma) \times (1 - \sigma(\sigma))}$		$\overline{\sigma(z)+1}$				
		$O(2)\times (1-O(2))$						
14.	The	fixed logic specialized hardware use	d in d	leen learning is	1	1	4	1
	(A)	GPU	(B)	CPU	-	•		•
	(C)	ASIC	(D)	FPGA				
	(-)		(2)					
15.	Wha	t is the size of the output image o	btain	ed as a result of convolution of an	1	2	4	2
	inpu	t image of size 512×512 with a kerne	el of s	size 7×7 with padding = 1 and stride				
	= 3?							
	(A)	72×72	(B)	128×128				
	(C)	170×170	(D)	256×256				
16.		is a parallel computing platfor	m and	d programming model developed by	1	1	4	1
		OIA for general computing on GPUs.						
	(A)		. ,	TPU				
	(C)	CUDA	(D)	Keras				
17.		has a mamarr			1	1	_	4
17:		has a memory. Perceptron	(D)	I COTO A	1	1	5	1
	(C)	^.	٠,	LSTM				
	(C)	Logistic regression argorithm	(D)	CNN _				
18.		is incorporated in popular of	omm	nercial applications for voice search	1	2	5	1
10.	such	as Siri	JOHH	referring applications for voice search	•	-	J	1
	(A)		(B)	Reinforcement learning				
	(C)			Recurrent neural networks				
	` ,		(2)	Toodifont House Hot Works				
19.	Posit	ive reinforcement may lead to		of states that can the	1	1	5	2
	conse	equences.						
		Underload, reduce	(B)	Overload, reduce				
	(C)	~~ 4 4 4 .	(D)					
20.		Vachieves best results in			1	2	5	1
	(A)	1	(B)	Speech recognition				
	(C)	Image recognition	(D)	Image classification				

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

Marks BL CO PO

- 21. Write a brief note on logistic regression and the features of its cost function.
- 2 1 1

22. Differentiate between classical set and fuzzy set.

- 2 2 1
- 23. Determine the max-min and max-product composition of the two given fuzzy relations:
- 4 3 2 2

$$\tilde{R} = \begin{bmatrix} 0.1 & 0.5 & 0.7 \\ 0.2 & 0.6 & 0.3 \\ 0.4 & 0.9 & 0.6 \end{bmatrix} \text{ and } \tilde{S} = \begin{bmatrix} 0.4 & 0.8 \\ 0.1 & 0.4 \\ 0.7 & 0.6 \end{bmatrix}$$

- 24. Compare the performance of batch gradient descent and stochastic gradient descent algorithms.
- . 3 1

25. Explain the need for transfer learning.

- 2 4 1
- 26. Define perceptron learning rule. What is the output of the neuron given below with the sigmoid activation function?
- 4 3 4 2

- 27. State the advantages and disadvantages of deep reinforcement learning.
- 4 2 5

PART – C (5 × 12 = 60 Marks) Answer ALL Questions

Marks BL CO PO

28. a. Differentiate between the following:

12 4 1 1

- (i) Model parameters and hyper parameters
- (ii) Type 1 and Type 2 error
- (iii) Generalization and regularization

(OR)

- b. Differentiate between the following:
 - (i) Lasso and Ridge regression
 - (ii) Hold out and 5×5 fold cross validation
 - (iii) Supervised and unsupervised learning
- 29. a. Describe in detail about various fuzzification methods with example.
- 12 4 2

(OR)

- b. Design a fuzzy lighting controller system, in which the control system dim the bulb light automatically according to the environmental light. Assume that the inputs to the system are the environmental light x1 and the changing rate of the environmental light x2, while the output variable which represents the control value to the dimmer is DM. consider the following assumption:
 - x_1 can be dark (D), medium (M) and light (L) and its range is between 120 and 220 with three membership functions L(130, 150), π (130, 150, 190, 210) and

 $\Gamma(190, 210)$ for D, M and L respectively. X_2 ranges between -10 and +10 and is divided into negative small (NS), zero (ZE) and positive small (PS) with three membership functions $\wedge(-20,-10,0)$, $\wedge(-10,0,10)$ and $\wedge(0,-10,20)$ for NS, ZE and PS respectively.

The following is the fuzzy rule base

Tuic basc							
D	M	L					
В	S	VS					
В	В	S					
VB	В	В					
	D B B	D M B S B B					

The output DM ranges between 0 and 10 and is divided into very small (VS), small (S), big (B) and verify (VB) with four membership functions $L(2,4), \land (2,4,6), \land (4,6,8)$ $\Gamma(6, 8)$ for VS, S, B and VB respectively. Evaluate the output for $x_1=128$ and $x_2=-8$ using Mamdani-style fuzzy inference.

- 30. a. Illustrate the architecture of a neuro fuzzy system with necessary diagrams.
- 12 - 1

12

(OR)

b. The following table gives the training dataset and the corresponding ground truths. Derive the first epoch training update data for a back propagation network with 2 neurons in the hidden layer and one O/P neuron as shown in the figure

Assume learning rate, $\propto = 0.1$. choose the initial network parameters as follows:

Assume learning rate,
$$\alpha = 0.1$$
, choose the in $w_{13} = 0.3$ $w_{23} = -0.9$ $w_{35} = 0.9$ $\theta_3 = 0.1$ $w_{14} = 0.1$ $w_{24} = 1.2$ $w_{45} = -0.6$ $\theta_4 = 0.3$ $\theta_5 = -0.5$

31. a. Illustrate the working and features of Resnet module and inception module used in convolutional neural network architectures.

(OR)

- b. Explain the challenges involved in datasets used in deep learning and how data 12 augmentation helps in overcoming them. What are the different types of data augmentation techniques? List out this features.
- 32. a. Differentiate autoencoders form principal component analysis algorithm. Illustrate 12 5 the working of autoencoders with neat sketch.

(OR)

b. What are the differences that a LSTM network has from a typical RNN? Illustrate the working of LSTM with neat sketch.