PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-093795

(43) Date of publication of application: 12.04.1989

(51)Int.CI.

G10L 3/02

(21)Application number : 62-250707

(71)Applicant:

NIPPON HOSO KYOKAI <NHK>

(22)Date of filing:

06.10.1987

(72)Inventor:

TSUGI TORU

KUWABARA HISAO

(54) METHOD FOR CONVERTING VOCALIZATION SPEED OF VOICE

(57)Abstract:

PURPOSE: To hold the continuity of an waveform and to suppress the deterioration of sound quality by separating an input voice into vowel and consonant sections and changing vocalization speed in each section in accordance with a vocalization feature.

CONSTITUTION: The voice section and silent section of an A/D converted input voice are discriminated by an analysis part 2, the voiceless consonant section and voiced section of the input voice are discriminated and these waveforms are stored. A linear prediction coefficient and a residual waveform in the voiced section are found out, a pitch period is also found out to determine one pitch section and normalization power is defined. A vowel is separated from a voiced consonant part by using resonance frequency and the normalization power. When a control part 4 extends the length of a silent section or repeats or thins respective pitches of the voiced section by proper distribution, a vocalization speed is changed and a new pitch period string is prepared. An waveform connection part 6 connects respective parts by extending/shortening their vocalization time length based upon the new pitch period string to obtain a new voice waveform.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 公 開 特 許 公 報 (A) 平1-93795

@Int_Cl.4

識別記号

庁内整理番号

❸公開 平成1年(1989)4月12日

G 10 L 3/02

A-8622-5D

審査請求 未請求 発明の数 1 (全7頁)

図発明の名称 音声の発声速度変換方法

②特 願 昭62-250707

徹

②出 願 昭62(1987)10月6日

⑦発 明 者 都 木

東京都世田谷区砧1丁目10番11号 日本放送協会放送技術

研究所内

②発明者 桑原 尚夫

大阪府枚方市東香里1丁目21番地25-203

①出願人日本放送協会

会 東京都渋谷区神南2丁目2番1号

②代 理 人 弁理士 谷 義 一

明 紐 普

1. 発明の名称

音声の発声速度変換方法

2. 特許請求の範囲

入力音声波形から、母音区間、有声子音区間、 無声子音区間、無音区間を抽出し、

前記有声子音区間と前記母音区間とで構成される有声音区間からピッチ周期を抽出することによって該有声音区間を当該ピッチの間隔で分割し、

前記母音区間および前記無音区間における発話時間長の伸縮比率を大とし、かつ前記有声子音区間および前記無声子音区間の前記伸縮比率を小とする前記各々の区間の前記伸縮比率を定め、

前記母音区間および前記有声子音区間では前記 定められた伸縮比率に基づき前記ピッチ間隔で波 形の間引または繰り返しをすることによって発声 時間長を伸縮し、

前記無声子音区間および前記無音区間では前記

定められた伸縮比率に基づき当該区間毎に発声時間長の伸縮を行なった後前記各々の区間を接続して新たな音声波形とすることを特徴とする音声の発声速度変換方法。

(以下、余白)

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、放送、映画、音楽等において、人間 の音声を処理する場合の発声速度を制御する音声 の発声速度変換方法に関する。

「発明の概要」

太発明は人の音声を一時記録し、その発生速度 を変化させて、再び音声として出力する技術に関 するもので、

入力音声をA/D 変換した後、有声音区間につい てそのピッチ周波数を抽出して各ピッチ間隔で分 割し、その内おもに定常母音区間についてピッチ 単位で間引きまたは繰り返しを行うと共に、無音 区間、無声子音区間についても間引きまたは繰返 しを行って接続し、これをD/A 変換することによ り、

原音声の音韻性や自然性を良好に保ったまま、 発声速度を自由に変換できるようにする方法であ る。

【従来の技術】

また、デジタル信号処理である、分析・合成法 を用いる方式も提案されている。分析によって得 られた調音パラメータと残差波形を、時間的に適 当な単位で間引いたり、繰返しながら合成す れば、ピッチおよびホルマント周波数には変化を 与えずに発声速度を制御することができる。

[発明が解決しようとする問題点]

しかしながら、テープレコーダの再生スピード を変化させるだけの方法は簡単ではあるが、ピッ やホルマント周波数が変化すると、個人性に影響 があり、更に変化量が多い場合には音韻性が劣化 し、非人間的な声となる。

またピッチやホルマント周波数を元に戻す方式 においても、その処理単位が、プロック単位であ るため、波形の連続性を完全に保つことが難 しく、音質劣化が著しい。

さらに、分析・合成方法においても、出力音声 がパラメータ制御による合成音であるためある程 度の音質劣化は避けられない。

この種の技術としては、古典的な例として音声 をアナログテープレコーダに録音し、再生スピー ドを変化させる方法がある。この場合、発声速度 のみならず、ピッチ周波数やホルマント周波数も 一様に変化する。すなわち、再生スピードを録音 時のR倍にすると、発声速度がR倍になると共 に、ピッチおよびホルマント周波数も全てR倍と なる。ここで、ピッチ周波数はその全体的な変化 によって音声の髙低を決定し、局所的な変化に よって、アクセント等、音声の抑揚を決定するも のである。また、ホルマント周波数は音声の個人 性や音韻性を定めるものである。

これに対し、R倍になったピッチおよびホルマ ント周波数を元に戻すには、BBDなどを用いて クロック周波数Fで取込んだ音声波形を、F/R なるクロック周波数で読出せばピッチおよびホル マント周波数が1/R倍となりもとに戻る。ただ し、BBDに取込む前に、適当な時間窓と周期を 用いて波形を間引いたり、繰り返したりして、過 不足のないようにする。

また、従来の方式では、処理が全ての区間でー 様であるが、実際の音声では子音の種類によって はその持続時間が発声速度に殆ど依存せず、この 部分を母音区間と同じ比率で時間伸縮したの では、会話音声としての自然性が劣化する。

・さらにtやkのような破裂性の子音は持続時間 が短いので、ブロック単位で間引いた場合に消失 する場合がある。

そこで、本発明の目的は上述した従来の問題点 チやホルマント周波数も変化してしまう。ピッチを解消し、間引きや繰り返しの単位をピッチ単位 とすることで波形の連続性を保ち、かつ原音声の 波形をそのまま用いることで音質の劣化を防ぐこ とを可能とする音声の発声速度変換方法を提供す ることにある。

> 本発明の他の目的は母音区間、有声子音区間、 無声子音区間、無音区間を別々の比率で時間伸縮 し、音声としての自然性を維持することが可能な 音声の発声速度変換方法を提供することにあ る.

[問題点を解決するための手段]

[作 用]

以上の構成によれば、入力音声を母音区間、有 声子音区間、無声子音区間、無音区間に分離し、 それぞれの区間毎に人間の発声特徴に応じた変換 方法を用いて発声速度を変換する。

更し、波形接続部 6 では発声時間長を伸縮して波 形の接続を行なう。

上述した一連の発声速度変換の処理を終了すると、合成された音声波形をD/A 変換して出力音声とする。

上記各部における処理の詳細を第2図に示すフローチャートを参照しながら説明する。

 すなわち、有声音区間では音声の間引きや繰り返しの単位をピッチ単位とし、かつ原音声の波形をそのまま用いる。

また、子音区間においても、それぞれの子音の性質により伸縮の方式を切替える。

[実施例]

以下、図面に示す実施例に基づき本発明を詳細に説明する。

第1図は、本発明の一実施例に係る発声速度変換システムのブロック図を示す。図において、2は分析部、4は制御部、6は波形接続部をそれぞれ示し、各部は電子計算機内に構成され、ROM・RAM あるいはメモリディスク等のメモリを併用しながら発声速度変換の処理が実行される。

A/D 変換されて標本化された音声波形は分析部 2へ入力し、有音と無音および有声音と無声音の 判別、さらには有声音については線形予測分析が なされ、ピッチ周期、予測係数、共振周波数、共 振の帯域幅が求められる。

次に、制御部4においては、発声速度を変

さ分析の両方を用いて判別を行なうのは、判別を 確実なものとするためである。

上記ステップS1およびS2で判別された無音 区間の時間および無声子音区間の波形は、それぞ れステップS15およびS16においてそのままRAM あるいはメモリディスク等に記憶される。

次に、ステップS3では有声音区間における音声波形の標本値を音声の生成モデルに基づくいわゆる声道逆フィルタに通すことによって線形予測分析を行なう。この線形予測分析によって線形予測係数と残差波形を得る。得られた残差波形はステップS17においてRAM あるいはメモリディスク等に記憶される。

ステップS4ではステップS3で得られた残差 波形の相間における周期と原音声波形のピークの 間隔とから仮のピッチ周期を求める。

次に、ステップ S 5 においては、第 3 図に示すように波形のレベルが急に大きくなる点の直前をピッチの開始点とし、上記で求めたピッチ周期に基づき次のピッチの開始点の 1 標本手前を終了点

として1つのピッチ区間を定める。

ステップS6では上記で求めた1ピッチ区間の 中間点を分析窓の中心として、20msec程度の窓掛 けを行なう。この窓掛けにより有限個の標本値に よる短時間スペクトル分析が可能となり、この窓 掛けデータを基に再び線形予測分析を行なう。す なわち、標本値の窓掛けを行なったデータを基に 相関関数を求めることによって、線形予測係数 αι~α,を算出する。ここで、pは線形予測分 析の次数であり、一般に男性の声に対してはp= 14、女性の声に対してはp=10程度を用いる。

さらに、ステップ S 18で、以下に示す(1) 式を 満足するこの根と、~こ。を求め、各々の根と、・ に対応して(2),(3) 式により共振周波数F1 とそ の帯域幅B」を求める。

$$1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \cdots + \alpha_p z^{-p} = 0$$
 (1)

$$F_{i} = Fs / (2\pi) \cdot arg(z_{i})$$
 [Hz]

$$B_{i} = Fs / \pi \cdot |\log(|z_{i}|) | \qquad [Hz] \qquad (3)$$

なおFsは音声の標本化周波数である。

話の時間長即ち発声速度が変更された新しいピッ チ周期列を作る。

ここで分析部2において次のような結果が得ら れたとする。

母音部分の時間長の総和 T,

有声子音部分の時間長の総和 Tev

無声子音部分の時間長の総和 Tcn

無音部分の時間長の総和 T,

ただし

ところが、実際の音声では、発声速度が変化し てもT゚゚゚やT゚゚・はあまり変化せず、主にT゚゚や T、が変化する。そこで、T。とT、については 1の重みで、TcnとTcvについてはw(ただしw <1)の重みでその長さを変更し、その和T゚*** がT*11 の1/R倍になるようにする。すなわち ステップS9において、変更後の各部の時間長を

また、ステップS7はこの1ピッチ区間内のサ ンプル値の自乗和をピッチ区間長で割った値を正 規化パワーと定義し、ピッチ区間の長さと共に RAM あるいはメモリディスク等に記録する。

4.理区間を1ピッチ分だけ後へずらし、上述し た一連の処理を行い、これらの操作を有声区間が 終るまで繰返す。

(2) 式で求めた共振周波数の時間軌跡は、定常・ 母音部では連続的でかつ緩やかに変化するが、有 声子音部では不安定に変化しかつ帯域幅は母音部 よりも広い。また正規化パワーの時間軌跡におい ては有声子音部で一時的かつ急激な減少が起こる ことが多い。そこで、ステップS8では、これら の特徴を用いて、母音部と有声子音部を分離し、 各ピッチ毎にその情報をRAM あるいはメモリディ スク等に記録する。

制御部4では、分析部2において得られた、無 音区間長や一連のピッチ周期を基に、適当な配分 (3) により無音区間長を伸縮したり、有声区間の各々 のピッチを繰返すかまたは間引くことにより、発

次のようにする。

(2)

$$T_{a11} = \gamma_0 \cdot T_{a11} \tag{5}$$

$$T'_{\nu} = \gamma_1 \cdot T_{\nu} \tag{6}$$

$$T'_{cv} = \gamma_2 \cdot T_{cv} \tag{7}$$

$$T'_{cn} = \gamma_2 \cdot T_{cn} \tag{8}$$

$$T' = \gamma \cdot T \cdot T \cdot (9)$$

$$r \circ = 1 / R \tag{10}$$

$$\gamma_{1} = \frac{\gamma_{0} \cdot T_{s11} - (1 - w) \cdot (T_{cv} + T_{cn})}{T_{v} + T_{s} + w \cdot (T_{cv} + T_{cn})}$$
(11)

$$\gamma_{2} = \frac{\gamma_{0} \cdot w \cdot T_{s+1} + (1-w) \cdot (T_{v} + T_{s})}{T_{v} + T_{s} + w \cdot (T_{cv} + T_{cn})}$$
(12)

ここでwの値は、0.3~0.5 程度とする。

波形接続部6では制御部4で決定された比率に より各部分の発声時間長を伸縮して接続する。

母音区間、有声子音区間においてそれぞれの発 声時間長をィュ倍、ィュ倍にするには、以下のよ うに適当な割合でピッチ単位の波形を適宜間引く かまたは繰り返して接続する。

すなわち、ステップ S 10 および S 11で、ある母音区間または有声子音区間の発声時間長を Y 倍するとして、 Y > 1 ならば、 1 / (Y - 1) ピッチにつき 1 ピッチの割合で同じピッチ 波形を にってく 1 ならば、 1 / (1 - Y) ピッチにつき 1 ピッチの割合で間引く。 第 4 図に Y = 1.5 の場合の例を示す。 同図からによび Y = 0.667 の場合の例を示す。 同図からに 1 回ピッチに 3 ポンチに 1 回ピッチに 3 ポンチに 1 回ピッチ区間 3 ポンチに 5 を間引く。

なお、有声子音区間のうち原音声の区間長が25msec以下のものについては流音/ ア/の可能性が高く、この区間の長さは発声速度には殆ど依存しないので伸縮は行わない。

このようにすれば、概ね原音声のア倍の発声時間長とすることができ、かつ聴感的にも違和感がない。

なお、一般的にピッチ区間を間引くかまたは繰返した波形においては、あるピッチ区間の終了点

で例外としてその長さを不変とすると共に、無声子音の直前の無音部を短くする場合には30ミリ秒以下にならないように制限する。

なお、以上の処理で各部分に生じた伸縮時間長の誤差は、それぞれの区間の近傍の無音区間また は母音区間の長さを伸縮して修正する。

ひとつの区間の処理が終了したならば、ステップ S 14において、その開始部および終了部に1ミリ 秒程度の立上がりおよび立下がりの窓をかけ、前の区間と接続し、次の区間の処理に移る。

なお、長時間にわたる連続音声の全発声時間長を基に処理を行うのは困難であるので、100~200 ミリ秒前後の比較的長い無音区間を検出したならば、その中間点までをひとつのブロックの生まった後、まずこの1ブロックの中で上記の一連の時間伸縮処理を行った後、つぎのブロックの処理に移る。ただし、原音声が比較的早口の場合には、ブロック分割を判断するための無音区間長を50ミリ秒程度に狭めた方がよい。

最終的に合成された音声をD/A 変換して、出力

と次のピッチ区間の開始点の間は不連続であるので、接続点の前後数サンブルのデータを用いて最小自乗法により3次曲線を用いた近似を行い、連続的に接続する。

無声子音区間においてはステップ S 12で原音声の区間長しが 60msecより短いものについては破裂性または破擦性の子音の可能性が高いので、それ自身の伸縮は行わない。

しが60ミリ秒より大きいものについては γ_2 < 1 ならば区間の開始点および終了点から中間点に向かって、それぞれ L・(1- γ_2)/2に相当する長さる るく。2 ≥ γ_2 > 1 ならば中間点の前後 L・(γ_2 -1)に相当する長さの波形を切り出し原波形の中間点の間に挿入する。この様子を第5図に示す。 γ_2 > 2 の場合は、全区間を繰返す操作を適宜加える。

無音区間においては、ステップ S 13で、基本的には無条件にその区間長を r 1 倍して新たな区間長とするが、無声子音の直後の 30 ミリ 秒以下の無音部は、無声破裂子音の気音部の可能性が高いの

音声とする。

なお、分析部 2 における、ピッチ周波数抽出法や、有声/無声判別法、有声子音抽出法などは、ここで述べたものに限らず、それらが精度良く抽出できる方法なら何でも良い。

[発明の効果]

以上説明したように、本発明によれば予め入力 音声を母音区間、有声子音区間、無声子音区間、 無音区間に分離し、それぞれの区間毎に人間の発 声の特徴に応じた変換方法を用いて発声速度を換 えるので、音声としての自然性が高い。

また、有声音区間では音声の間引きや繰返しの単位をピッチ単位とすることで波形の連続性を保ち、かつ原音声の波形をそのまま用いることで音質の劣化が殆どない。

さらに子音区間においても、それぞれの子音の 性質により伸縮の方式を切替えることができるの で、持続時間の短いものが脱落することなどもな く、明瞭度の低下を最小限に抑えることができ る。

図

4. 図面の簡単な説明

第1図は本発明の一実施例に係るシステムのブロック図、

第2図は本発明の一実施例を示すフローチャート、

第3図は実施例におけるピッチ区間の定め方を 説明するための波形図、

第4図は実施例における波形の繰り返しおよび 間引きを説明するための波形図、

第5図は実施例における無声子音部の波形の伸縮を説明するための波形図である。

- 2 … 分析部、
- 4 … 制御部、
- 6 … 波形制御部。

特許出願人 日本放送協

代理人 弁理士 谷 義 一

実施例の波形図

第 3 図

