Evaluating predict

Monday, April 24, 2017

Have test set $\{X_i, y_i\}$, want to evaluate predict method $\hat{y}_i = \{1, s_i > \gamma \}$

Confusion Matrix

	Predict 1	Predict 0
Actual 1	True Positive (TP)	False Negative (FN)
Actual 0	False Positive (FP)	True Negative (TN)

Predict

1. Calculate score s:

for each i.

2. Order scores:
$$Sa_1 \geq Sa_2 \geq Sa_3 \geq ... \geq Sa_n$$
 where $a_1,...,a_n$ is permutation of $\{1,...,n\}$.

Conf.
$$P = 4$$
 $FN = 2$ $P = 4$ $P = 4$ $P = 4$ $P = 4$

Reciever - Operating Characteristic (ROC)

True positive rate (TPR) = TP+FN } Actual (aka recall)

False positive rate (FPR) = FP + TN 3 Actual Neg.

<u> </u>	١	2	3	4	5	4	7	8	
TPR	1/6	1/6	2/6	3/6	3/6	4/6	4/6	5/6	
FPR	0/6	1/6	1/6	1/6	2/6	2/6	3/4	3/6	

D Every element of confusion matrix is represented

Precision - Recall Curve

In recommendation systems, many 0's-few 1's.

ex . Link prediction in sparse graphs (friend recomm.)

Document retrieval

Recall =
$$TPR = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

Recall = $TPR = \frac{TP}{TP + FN}$ Neither is Precision = $\frac{TP}{TP + FP}$ Sensative to increasing

T 1 2 3 4 5 6 7 8

Recall 1/6 1/6 2/6 3/6 3/6 4/6 4/6 5/6

Prec. 1 1/2 2/3 3/4 3/5 4/6 4/2 5/8

Margin Based Methods

Tuesday, April 25, 2017

4:22 PM

$$\hat{y} = \{ \begin{cases} 1 \\ 0 \end{cases}, \beta_0 + \beta_1 x_1 + ... + \beta_p x_p \ge 0 \}$$

Empirical Risk Minimization

$$S_{i} = \beta_{o} + \beta_{i} \times x_{i} + ... + \beta_{p} \times x_{ip}$$

$$O - 1 \quad loss \quad (y_{i} = 1)$$

$$loss = \begin{cases} 1, & S_{i} < 0 \\ 0, & otherwise \end{cases}$$

logistic regression ly:=1)

min in I loss ... (yi, Xi, B)
is very hard to optimize!
Support vector machines

loss = log (
$$1+e^{-s_i}$$
)
(for $y_i = 0$ switch)
 $s_i \leftarrow -s_i$

$$loss = \begin{cases} 1-s; & s_i < 1 \\ 0 & s_i > 1 \end{cases}$$