考试类别[学生填写]	(口工学	口礼夹	□垂攸	口礼攸	口绝土	口甘宁、
有队尖加[子生堪与]	【口止伤		□単修		山纺石	一块匕

题号	_	1_1			\equiv			四	E	<u>s</u> .	六	总分
越与	1-6	7-11	12	13	14	15	16	17	18	19	20	
得分												

《线性代数与空间解析几何》期末考试试卷A

适用专业: 2016 级全校理、工科本科各专业 本试卷共3页,七大题24小题,总计100分

得 分	
评卷人	

一、填空题(共9小题,第1小题每空1分,其余每空2分, 共21分)

- 1. 矩阵的初等行变换包括: ① 互换两行 , ② 某行乘以非零数 , ③ 某行乘以非零数加到另一行对应元素上.
- 2. 已知矩阵 $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \end{pmatrix}$, E(1,3)表示第一种 3 阶初等矩阵,则

$$AE(1,3) = \begin{bmatrix} 2 & -1 & 1 \\ 5 & 0 & 3 \end{bmatrix}$$
.

- 3. 设向量 (1, -3, 5) 与向量 (-2, 6, a) 线性相关,则 a = -10
- 4. 方程 $\frac{x^2}{3} + \frac{y^2}{5} z^2 = 1$ 表示的图形为_____单叶双曲面_____,

方程 $2x^2 + 3y^2 - z^2 = 0$ 表示的图形为 锥面 .

5. 过点 M(4,-1,3)且平行于直线 $\frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{5}$ 的直线方程为

$$\frac{x-4}{2} = \frac{y+1}{1} = \frac{z}{5}.$$

- 6. 己知向量 $\alpha = (2, 1, 3), \beta = (-1, 2, 1), 则 Prj_{\beta}\alpha = \sqrt{6}/2$.
- 7. 设三阶矩阵 *A* 的特征值为 1, -1, 3, 若 $B = A^2 2A + 4E$, 求 *B* 的 特征值为 3,7,7 .
- 8. 已知二次型 $f(x, y, z) = x^2 + 4xy + 4y^2 + 2xz + z^2 + 4yz$,则二次型 对应的矩阵 $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \end{pmatrix}$
- 9. 向量空间 $V=\{\alpha=(x_1,x_2,\cdots,x_{n-1},0)^T\mid x_1,x_2,\cdots,x_{n-1}\in R\}$ 的维数为<u>n-1</u>.

得 分 评卷人

二、单项选择题(6小题,每小题2分,共12分)

10. 下列矩阵是行阶梯形矩阵的是(B)

(A)
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & -3 & -1 \\ 0 & 0 & 6 & 4 \end{pmatrix}$$
, (B) $\begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,

(B)
$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(C)
$$\begin{pmatrix} -1 & 3 & 0 & 2 \\ 0 & 2 & -3 & -1 \\ 0 & 3 & 2 & 0 \end{pmatrix}$$
, (D) $\begin{pmatrix} 0 & 3 & -2 & 5 \\ 0 & 0 & -3 & 0 \\ 0 & 6 & 0 & 0 \end{pmatrix}$

$$\begin{pmatrix}
0 & 3 & -2 & 5 \\
0 & 0 & -3 & 0 \\
0 & 6 & 0 & 0
\end{pmatrix},$$

- 11. 矩阵转置也是一种运算,下列不是转置运算律的为(D)

 - $(A) (A^T)^T = A;$ $(B) (A+B)^T = A^T + B^T;$
 - (C) $(\lambda A)^T = \lambda A^T$; (D) $(AB)^T = A^T B^T$.
- 12. 已知 $A \times B$ 是同阶方阵,下列运算正确的是(C)
 - (A) $(A B)^2 = A^2 2AB + B^2$; (B) |A + B| = |A| + |B|;
 - (C) |AB| = |B|/|A|; (D) $(AB)^{-1} = A^{-1}B^{-1}$.

第1页/共5页

- 13. 设矩阵 A 的秩为 r ,则下列结论正确的是(C)
 - (A) 所有r-1阶子式都不为0 ; (B) 所有r-1阶子式全为0 ;
 - (C) 至少有一个r阶子式不等于0; (D) 所有r阶子式都不为0.
- 14. 设矩阵 A = B 相似且可逆,则下列结论不正确的是(C)
 - (A) A⁻¹ 与 B⁻¹ 相似;
- $(B) \quad |A| = |B| \qquad ;$
- (C) $A \lambda E = B \lambda E$; (D) $A^T = B^T$.
- 15. 若二次型 $f(x_1,x_2,x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 2x_1x_3 + 4x_2x_3$ 是正定的,

则 t 的取值范围为 ----- (B)

(A) -2 < t < 2:

(B) -2 < t < 1:

(C) -2 < t < 0;

(D) t 为任意实数.

三、解答题(5小题,共34分)

16. (本題 6 分) 设
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 3 & -1 \\ -2 & 4 & 0 \end{pmatrix}$, 求 AB^T .

解
$$AB^{\mathrm{T}} = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 3 & 4 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ 18 & 10 \\ 3 & 10 \end{pmatrix}$$
.....(6 分)

解:
$$\begin{vmatrix} 2 & 1 & 4 & 1 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 5 & 0 & 6 & 2 \end{vmatrix} \underbrace{\begin{vmatrix} r_2 + r_1 \\ i_3 - 2i_1 \end{vmatrix}}_{5 & 0 & 6 & 2} = \begin{bmatrix} 2 & 1 & 4 & 1 \\ 5 & 0 & 6 & 2 \\ -3 & 0 & -5 & 0 \\ 5 & 0 & 6 & 2 \end{bmatrix}}_{5 & 0 & 6 & 2} = (-1)^{1+2} \begin{vmatrix} 5 & 6 & 2 \\ -3 & -5 & 0 \\ 5 & 6 & 2 \end{vmatrix} = 0 \dots (6 \%)$$

得 分 评卷人

18. (**本题 8** 分) 求过三点 P₁(1, 0, -1), P₂(2, -1, 1), P₃(0, 1, -2) 的平面方程.

解
$$\overrightarrow{P_1P_2} = (1,-1,2)$$
, $\overrightarrow{P_1P_3} = (-1,1,-1)$ (2分)

两向量对应坐标不成比例, 所以不平行。所求平面的法向量垂直于这两个向 量,于是取两向量的向量积作为平面的法向量:

$$n = \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} = \begin{vmatrix} i & j & k \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{vmatrix} = (-1, -1, 0), \dots (5 \%)$$

 P_1, P_2, P_3 中任一点可为已知点,若取 P_1 ,由点法式得

$$-1(x-1)-(y+1)+0(z-2)=0,$$

即
$$x + y = 0$$
 为所求平面方程。(8 分)

19. **(本题 6 分)** 设 R^3 中两个基向量 $\alpha_1 = (1,0,0)^T$,

$$\alpha_2 = (0,1,-1)^T$$
, $\alpha_3 = (1,1,1)^T$, $\beta_1 = (0,1,1)^T$, $\beta_2 = (1,1,-1)^T$,

 $\beta_3 = (2,-1,1)^T$, 求 $\alpha_1,\alpha_2,\alpha_3$ 到 β_1,β_2,β_3 的过渡矩阵

由

$$(\mathbf{A} \vdots \mathbf{B}) = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & -1 \\ 0 & -1 & 1 & 1 & -1 & 1 \end{pmatrix} \xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 & -1 \\ 0 & 0 & 2 & 2 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_3} \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1-r_3} \begin{pmatrix}
1 & 0 & 0 & -1 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{pmatrix}$$

从而得过渡矩阵
$$C = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$
. (6 分)

20. (本题8分)

求齐次线性方程组
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 0, \\ 2x_1 - 5x_2 + 3x_3 + 2x_4 = 0, \\ 7x_1 - 7x_2 + 3x_3 + x_4 = 0. \end{cases}$$
的通解.

解 对系数矩阵 A 作初等行变换, 变为行最简型矩阵, 有

$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & -5 & 3 & 2 \\ 7 & -7 & 3 & 1 \end{pmatrix} \longrightarrow \begin{cases} 1 & 0 & -2/7 & -3/7 \\ 0 & 1 & -5/7 & -4/7 \\ 0 & 0 & 0 & 0 \end{cases}$$
(3 分)

便得
$$\begin{cases} x_1 = \frac{2}{7}x_3 + \frac{3}{7}x_4, \\ x_2 = \frac{5}{7}x_3 + \frac{4}{7}x_4. \end{cases}$$

R(A) = 2,基础解系含有 2 个线性无关的解向量.

$$\Rightarrow \begin{pmatrix} \mathcal{X}_3 \\ \mathcal{X}_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, 对应有 \begin{pmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{pmatrix} = \begin{pmatrix} 2/7 \\ 5/7 \end{pmatrix} \mathbb{Z} \begin{pmatrix} 3/7 \\ 4/7 \end{pmatrix}.$$

即得基础解系
$$\xi_1 = \begin{pmatrix} 2/7 \\ 5/7 \\ 1 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 3/7 \\ 4/7 \\ 0 \\ 1 \end{pmatrix}$$
(7 分)

并由此得到通解

$$\begin{pmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \mathbf{X}_{3} \\ \mathbf{X}_{4} \end{pmatrix} = c_{1} \begin{pmatrix} 2/7 \\ 5/7 \\ 1 \\ 0 \end{pmatrix} + c_{2} \begin{pmatrix} 3/7 \\ 4/7 \\ 0 \\ 1 \end{pmatrix}, (c_{1}, c_{2} \in R)$$
(8 $\stackrel{\triangle}{\mathcal{T}}$)

四、讨论题 (本题8分)

逆矩阵.

解

$$|A| = \begin{vmatrix} 1 & 2 & -1 \\ 3 & -2 & 1 \\ 1 & -1 & -1 \end{vmatrix} = 12 \neq 0 则 A 可逆。 (2 分)$$

$$(A:E) = \begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-r_1]{r_3-r_1}
\begin{pmatrix}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & -8 & 4 & -3 & 1 & 0 \\
0 & -3 & 0 & -1 & 0 & 1
\end{pmatrix}
\xrightarrow[r_2-3r_3]{r_2-3r_3}
\begin{pmatrix}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & -3 & 0 & -1 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow[r_1-2r_3]{r_1-2r_3}
\begin{pmatrix}
1 & 0 & -9 & 1 & -2 & 6 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 0 & 12 & -1 & 3 & -8
\end{pmatrix}$$

第3页/共5页节约用纸两面书写

五、综合题(2小题,共20分)

得 分 评卷人

22. (本题 10 分)

给定向量组
$$\alpha_1 = \begin{pmatrix} -2\\1\\0\\3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\-3\\2\\4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3\\0\\2\\-1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0\\-1\\4\\9 \end{pmatrix}$.

试判断 α_4 是否为 α_1 , α_2 , α_3 的线性组合; 若是,则求出组合系数.

$$\widetilde{A} = \begin{pmatrix}
-2 & 1 & 3 & 0 \\
1 & -3 & 0 & -1 \\
0 & 2 & 2 & 4 \\
3 & 4 & -1 & 9
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
0 & -5 & 3 & -2 \\
1 & -3 & 0 & -1 \\
0 & 1 & 1 & 2 \\
0 & 13 & -1 & 12
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 3 & 5 \\
0 & 1 & 1 & 2 \\
0 & 0 & 8 & 8 \\
0 & 0 & -14 & -14
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 3 & 5 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

因 $R(\widetilde{A}) = R(A) = 3$,所以 $\alpha_4 = 2\alpha_1 + \alpha_2 + \alpha_3$,

组合系数为 2, 1, 1。(10 分

得 分 评卷人

23. (**本题 10 分**) 求矩阵 $A = \begin{pmatrix} 3 & 1 & 1 \\ -2 & 0 & -1 \\ -6 & -3 & -2 \end{pmatrix}$ 的特征值与特

征向量。

$$|A - \lambda E| = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ -2 & -\lambda & -1 \\ -6 & -3 & -2 - \lambda \end{vmatrix} = -(\lambda + 1)(\lambda - 1)^{2}$$

当
$$\lambda_1 = -1$$
 时, 方程组 $\begin{pmatrix} 4 & 1 & 1 \\ -2 & 1 & -1 \\ -6 & -3 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ 的基础解系为 $p_1 = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$. (6 分)

A的属于特征值 $\lambda = -1$ 的所有特征向量为 $kp_1(k \neq 0$ 为任意常数).....(7分)

第4页/共5页节约用纸两面书写

当
$$\lambda_2 = \lambda_3 = 1$$
 时,方程组 $\begin{pmatrix} 2 & 1 & 1 \\ -2 & -1 & -1 \\ -6 & -3 & -3 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ 的基础解系为

$$p_2 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, p_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}. \tag{9 \%}$$

则 A 的属于特征值 $\lambda_2=\lambda_3=1$ 的所有特征向量为 $\mathbf{k}_1p_2+\mathbf{k}_2p_3(\mathbf{k}_1,\mathbf{k}_2$ 不同时为零)。(10 分)

得 分	
评卷人	

六、 证明题 (本题 5 分)

24. 设A, B都是n阶方阵, 且AB = 0, 证明 $R(A) + R(B) \le n$.

证明 设 $B = (\beta_1, \beta_2, \dots, \beta_n), \beta_i (i = 1, 2, \dots, n)$ 为B的第i个列向量,则

$$AB = (A\beta_1, A\beta_2, \dots, A\beta_n) = 0 \circ \dots (2 \ \%)$$

于是有 $A\beta_i = 0$ ($i = 1, 2, \dots, n$), β_i 为方程Ax = 0的解。

由于 B 的列向量组的秩 $R(B) \le n - R(A)$ (Ax=0 解空间的维数),

即 $R(A) + R(B) \le n$ 。(5分)