PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/37026
C12N 15/31, 15/11, 15/00, C12P 21/02, A61K 38/16, 39/09, C07K 14/195, 14/315	A1	(43) International Publication Date: 9 October 1997 (09.10.97)
(21) International Application Number: PCT/USS (22) International Filing Date: 1 April 1997 (0		Corporation, Corporate Intellectual Property, UW2220, 709
(30) Priority Data: 60/014,690 2 April 1996 (02.04.96) 60/025,788 22 August 1996 (22.08.96)		S (81) Designated States: JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Applicants (for all designated States except US): S LINE BEECHAM CORPORATION [US/US Franklin Plaza, Philadelphia, PA 19103 (US). S LINE BEECHAM PLC [GB/GB]; Three New 1 Court, Great West Road, Brentford, Middlesex T (GB).	i]; O: MITHI Horizo	With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of
(72) Inventors; and (75) Inventors/Applicants (for US only): BLACK, Michinance [GB/US]; 502 Milhouse Way, Chester Spri 19425 (US). HODGSON, John, Edward [GB/US]; Road, Malvern, PA 19355 (US). KNOWLES, David Charles [GB/GB]; Downsview House, 45 Cronks H Redhill, Surrey RH1 6LY (GB). NICHOLAS, Richalley [GB/US]; 355 Carmen Drive, Collegeville, P. (US). STODOLA, Robert, King [US/US]; 309 Hay Flourtown, PA 19031 (US).	ings, F 260 Laj d, Justi lill Ros ard, Oa A 1942	A P 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

(54) Title: NOVEL COMPOUNDS

(57) Abstract

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Codes used to identity	Juneo par	•				1
AL AM AT AUZ BA BB BE BF BC CCF CCH CCC CM CCU CZ DE DK BE	Albania Armenia Austria Austria Austria Azerbaljan Boania and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Cermar/ Denmark Estonia	ES FI FR GA GB GE GN GR HU IB II IS IT JP KE KG KP KZ LC LI LK LR	Spain Finland Prance Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Israel Iceland Kanya Kyngyzstan Democratic People's Republic of Korea Republic of Korea Rezakstan Saint Lucia Licelcentoin Sri Lanka Liberia	LS LT LU LV MC MD MG MK MN MN MN MN NE NL NO NZ FL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Lavia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonla Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Pederation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovenia Slovenia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbahwe

NOVEL COMPOUNDS

Field of the Invention:

5

15

20

25

30

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy. Preferred embodiments of the invention include Streptococcal polypeptides and polynucleotides, particularly those of *Streptococcus pneumoniae*.

10 Background of the Invention:

The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, Streptococcus pneumoniae has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with S. pneumoniae, many questions concerning the virulence of this microbe remain.

While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgA1 protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.

Brief Description of the Invention:

This invention provides novel proteins, particularly those from *Streptococcus* pneumoniae, strain 0100993, characterised in that it comprises the amino acid sequences given herein or fragments, analogues or derivatives thereof.

In accordance with another aspect of the present invention, there are provided polynucleotides (DNA or RNA) which encode such polypeptides.

1

In particular the invention provides polynucleotides having the DNA sequences given herein.

The invention also relates to novel oligonucleotides derived from the sequences given herein which can act as PCR primers in the process herein described to determine whether or not the *Streptococcus pneumoniae* gene identified herein in whole or in part is expressed in infected tissue. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained. The proteins so identified are also useful as targets in screens designed to identify antimicrobial compounds.

It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between the amino acid sequence set out in the Sequence Listing and a known amino acid sequence or sequences of other proteins such as the proteins identified under the heading Identity in Table 1.

10

15

20

25

30

It is a further object of the invention to provide polynucleotides that encode polypeptides set forth in the Sequence Listing, particularly polynucleotides that encode the polypeptide set forth in the Sequence Listing.

In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding polypeptides comprising the sequence set out in the Sequence Listing, or a variant thereof.

In another particularly preferred embodiment of the invention there is a novel protein from comprising an amino acid sequence of the Sequence Listing, or a variant thereof.

In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants the polynucleotides set forth in the Sequence Listing and polypeptides encoded thereby.

In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.

In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the sequences the Sequence Listing, treating disease, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and

administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a *Streptococcus pneumoniae* bacteria.

1

In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to polynucleotide sequences of the invention, particularly under stringent conditions.

In certain preferred embodiments of the invention there are provided antibodies against polypeptides of the invention.

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypetide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.

In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polynucleotide and/or polypeptides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.

In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.

Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.

Detailed Description of the Invention:

5

10

15

20

25

30

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgamo region can be used to construct antisense sequences

1

to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival per se, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:

1) Signature Tagged Mutagenesis (STM)

5

10

15

20

25

30

This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes.

Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.

The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.

In <u>Streptococcus pneumoniae</u>, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion-duplication mutagenesis technique as described by Morrison et al., <u>J. Bacteriol.</u> 159:870 (1984) the contents of which is incorporated by reference for background purposes.

5 2) In Vivo Expression Technology (IVET)

This technique is described by Camilli et al., Proc. Nat'l. Acad. Sci. USA. 91:2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.

In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool is introduced into a host and at various times after infection bacteria may be recovered and assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.

3) Differential display

10

15

20

25

This technique is described by Chuang et al., J. Bacteriol. 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to ORF 'unknowns'.

4) Generation of conditional lethal mutants by transposon mutagenesis.

This technique, described by de Lorenzo, V. et al., Gene 123:17-24 (1993);

Neuwald, A. F. et al., Gene 125: 69-73(1993); and Takiff, H. E. et al., J. Bacteriol.

174:1544-1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.

In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.

20 5) Generation of conditional lethal mutants by chemical mutagenesis.

This technique is described by Beckwith, <u>L. Methods in Enzymology</u> 204: 3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at temperature other than physiological temperature (permissive temperature) and subsequent replica plating and growth at different temperature (e.g. 42°C to identify ts, 25°C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.

6) RT-PCR

5

10

15

25

30

Streptococcus pneumoniae messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR

with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of S.pneumoniae 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

10

15

20

25

30

Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind. For example, some genes might be recognised as essential for infection but in reality are only necessary for the initiation of infection and so their products would represent relatively unattractive targets for antibacterials developed to cure established and chronic infections.

Use of the of these technologies when applied to the ORFs of the present invention enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.

Streptococcus pneumoniae, strain 0100993 has been deposited at the National Collection of Industrial and Marine Bacteria Ltd. (NCIMB), Aberdeen, Scotland under NCIMB number 40794 on 11 April 1996, and a Streptococcus pneumoniae, strain 0100993 DNA library in E. coli was similarly deposited on 17 April 1996 under NCIMB number 40800.

The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from Streptococcus pneumoniae, strain 0100993by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

5

10

15

20

25

30

herein typically a library of clones of chromosomal DNA of Streptococcus pneumoniae, strain 0100993 in E. coli or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).

A polynucleotide of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the polypeptide may be identical to the coding sequence shown or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encoding the same polypeptide.

The present invention includes variants of the hereinabove described polynucleotides which encode fragments, analogues and derivatives of the polypeptide characterized by the deduced amino acid sequence given herein. The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide. In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA

sequence, except that N cannot be a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.

Thus, the present invention includes polynucleotides encoding the same polypeptide characterized by the deduced amino acid sequence given herein as well as variants of such polynucleotides which variants encode for a fragment, derivative or analogue of the polypeptide. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

The polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence characterized by the DNA sequence disclosed herein. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.

10

15

20

25

30

The polynucleotide which encodes for the mature polypeptide, may include only the coding sequence for the mature polypeptide or the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention therefore includes polynucleotides, wherein the coding sequence for the mature polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the mature form of the polypeptide. The polynucleotides may also encode for a proprotein which is the mature protein plus additional 5' amino acid residues. A mature protein having a prosequence is a proprotein and may be an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.

Thus, for example, the polynucleotide of the present invention may code for a mature protein, or for a protein having a prosequence or for a protein having both a prosequence and a presequence (leader sequence). Further, the amino acid sequences provided herein show a methionine residue at the NH₂-terminus. It is appreciated, however,

that during post-translational modification of the peptide, this residue may be deleted.

Accordingly, this invention contemplates the use of both the methionine-containing and the methionineless amino terminal variants of each protein disclosed herein.

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence at either the 5' or 3' terminus of the gene which allows for purification of the polypeptide of the present invention. The marker sequence may be a hexa-histidine tag supplied by the pQE series of vectors (supplied commercially by Quiagen Inc.) to provide for purification of the polypeptide fused to the marker in the case of a bacterial host.

5

10

15

20

25

30

The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 50% and preferably at least 70% identity between the sequences. The present invention particularly relates to polynucleotides, particularly Streptococcal polynucleotides, which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which retain substantially the same biological function or activity as the polypeptide characterised by the deduced amino acid sequence given herein. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence selected from the group consisting of the polynucleotides of the Sequence Listing under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in said polynucleotide of the Sequence Listing or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.

"Identity," as known in the art and used herein, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the matchbetween strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., 10 Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods 15 to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. 20 Mol. Biol. 215: 403-410 (1990).

As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence selected from the group consisting of the polynucleotide of the Sequence Listing is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5 or 3 terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among

25

30

nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

5

10

15

20

25

30

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence of selected from the group consisting of the amino acids of the Sequence Listing is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence.

The deposit referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112. The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited material, and no such license is hereby granted.

The terms "fragment," "derivative" and "analogue" when referring to the polypeptide characterized by the deduced amino acid sequence herein, means a polypeptide which retains essentially the same biological function or activity as such polypeptide.

Thus, an analogue includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.

The fragment, derivative or analogue of the polypeptide characterized by the deduced amino acid sequence herein may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogues are deemed to be within the scope of those skilled in the art from the teachings herein.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

10

15

20

25

30

The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

In accordance with yet a further aspect of the present invention, there is therefore provided a process for producing the polypeptide of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host and recovering the expressed product. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a cosmid, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the

genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

Suitable expression vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA. However, any other vector may be used as long as it is replicable and viable in the host.

5

10

15

20

25

30

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art.

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the *E. coli.* lac or trp, the phage lambda P_L promoter and other promoters known to control expression of genes in eukaryotic or prokaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator (collectively referred to herein as "control" elements), so that the DNA sequence encoding the desired protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. The polypeptides of the present invention can be expressed using, for example, the *E. coli* tac promoter or the protein A gene (spa) promoter and signal sequence. Leader sequences can be removed by the bacterial host in post-translational processing. See, e.g., U.S. Patent Nos. 4,431,739; 4,425,437; 4,338,397. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are PKK232-8 and PCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, P_L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and

PCT/US97/05306 WO 97/37026

mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In addition to control sequences, it may be desirable to add regulatory sequences which allow for regulation of the expression of the protein sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.

5

15

20

25

30

An expression vector is constructed so that the particular coding sequence is located 10 . in the vector with the appropriate regulatory sequences, the positioning and orientation of the coding sequence with respect to the control sequences being such that the coding sequence is transcribed under the "control" of the control sequences (i.e., RNA polymerase which binds to the DNA molecule at the control sequences transcribes the coding sequence). Modification of the coding sequences may be desirable to achieve this end. For example, in some cases it may be necessary to modify the sequence so that it may be attached to the control sequences with the appropriate orientation; i.e., to maintain the reading frame. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highlyexpressed gene to direct transcription of a downstream structural sequence. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pET-3 vectors (Stratagene), pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pBlueBacIII (Invitrogen), pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

10

15

20

25

30

Examples of recombinant DNA vectors for cloning and host cells which they can transform include the bacteriophage I (E. coli), pBR322 (E. coli), pACYC177 (E. coli), pKT230 (gram-negative bacteria), pGV1106 (gram-negative bacteria), pLAFR1 (gram-negative bacteria), pME290 (non-E. coli gram-negative bacteria), pHV14 (E. coli and Bacillus subtilis), pBD9 (Bacillus), pIJ61 (Streptomyces), pUC6 (Streptomyces), YIp5 (Saccharomyces), a baculovirus insect cell system, YCp19 (Saccharomyces). See, generally, "DNA Cloning": Vols. I & II, Glover et al. ed. IRL Press Oxford (1985) (1987) and; T. Maniatis et al. ("Molecular Cloning" Cold Spring Harbor Laboratory (1982).

In some cases, it may be desirable to add sequences which cause the secretion of the polypeptide from the host organism, with subsequent cleavage of the secretory signal.

Polypeptides can be expressed in host cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

5

10

15

20

25

30

Depending on the expression system and host selected, the polypeptide of the present invention may be produced by growing host cells transformed by an expression vector described above under conditions whereby the polypeptide of interest is expressed. The polypeptide is then isolated from the host cells and purified. If the expression system secretes the polypeptide into growth media, the polypeptide can be purified directly from the media. If the polypeptide is not secreted, it is isolated from cell lysates or recovered from the cell membrane fraction. Where the polypeptide is localized to the cell surface, whole cells or isolated membranes can be used as an assayable source of the desired gene product. Polypeptide expressed in bacterial hosts such as *E. coli* may require isolation from inclusion bodies and refolding. Where the mature protein has a very hydrophobic region which leads to an insoluble product of overexpression, it may be desirable to express a truncated protein in which the hydrophobic region has been deleted. The selection of the appropriate growth conditions and recovery methods are within the skill of the art.

The polypeptide can be recovered and purified from recombinant cell cultures by methods including ammonium sulphate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo; i.e., capable of replication under its own control.

A "vector" is a replicon, such as a plasmid, phage, or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "double-stranded DNA molecule" refers to the polymeric form of deoxyribonucleotides (bases adenine, guanine, thymine, or cytosine) in a double-stranded helix, both relaxed and supercoiled. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, *inter alia*, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having the sequence homologous to the mRNA).

A DNA "coding sequence of" or a "nucleotide sequence encoding" a particular protein, is a DNA sequence which is transcribed and translated into a polypeptide when placed under the control of appropriate regulatory sequences.

10

15

20

25

30

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bound at the 3' terminus by a translation start codon (e.g., ATG) of a coding sequence and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

DNA "control sequences" refers collectively to promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, enhancers, and the like, which collectively provide for the expression (i.e., the transcription and translation) of a coding sequence in a host cell.

A control sequence "directs the expression" of a coding sequence in a cell when RNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA, which is then translated into the polypeptide encoded by the coding sequence.

A "host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous DNA sequence.

A cell has been "transformed" by exogenous DNA when such exogenous DNA has been introduced inside the cell membrane. Exogenous DNA may or may not be integrated (covalently linked) into chromosomal DNA making up the genome of the cell. In prokaryotes and yeasts, for example, the exogenous DNA may be maintained on an episomal element, such as a plasmid. With respect to eukaryotic cells, a stably transformed or transfected cell is one in which the exogenous DNA has become integrated into the chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cell containing the exogenous DNA.

5

10

15

20

25

30

A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of a DNA construct is an identifiable segment of DNA within or attached to another DNA molecule that is not found in association with the other molecule in nature.

This invention is also related to the use of the polynucleotides of the invention for use as diagnostic reagents. Detection of a polynucleotide or polypeptide of the invention in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a polynucleotide of the invention may be detected at the nucleic acid level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be

5

10

15

20

25

30

revealed by nuclease protection assays, such as RNase and S1 protection or a chemical cleavage method. See, e.g., Cotton et al., *Proc. Natl. Acad. Sci., USA*, 85: 4397-4401 (1985).

Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among othe4r things, amplifying DNA isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections by *Streptococcus pneumoniae*, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having a sequence set forth in the Sequence Listing or a sequence of the invention. Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting overexpression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a polypeptide of the invention, in a sample derived from a host are wellknown to those of skill in the art. Such assay methods include radioimmunoassays, competitivebinding assays, Western Blot analysis and ELISA assays.

In accordance with yet a further aspect of the present invention, there is provided the use of a polypeptide of the invention for therapeutic or prophylactic purposes, for example, as an antibacterial agent or a vaccine.

In accordance with another aspect of the present invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunisation.

In accordance with yet another aspect of the present invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents. In particular, there are provided antibodies against such polypeptides.

Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991).

10

20

25

30

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.

Another example of an assay for antagonists of a polypeptide of the invention is a competitive assay that combines such polypeptide and a potential antagonist with polypeptide-binding molecules, recombinant polypeptide-binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. Polypeptides of the invention can be labeled, such as by radioactivity or a colorimetric compound, such that the number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.

5

10

15

20

25

30

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, without inducing an activities of a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.

Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists (1991);Neurochem. *56:* 560 J. Okano, molecules (see include antisense OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of the polypetides of the invention.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgamo or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine et al., Infect. Immun. 60:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

The antagonists and agonists of the invention may be employed, for instance, to inhibit and treat otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleurai

empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid.

Another aspect of the invention is a pharmaceutical composition comprising the above polypeptide, polynucleotide or inhibitor of the invention and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

In a particular aspect the invention provides the use of an inhibitor of the invention as an antibacterial agent.

The invention further relates to the manufacture of a medicament for such uses.

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which have anti-bacterial action. This invention also contemplates the use of the DNA encoding the antigen as a component in a DNA vaccine as discussed more fully below.

The polypeptides or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The term antibodies also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

Polypeptide derivatives include antigenically or immunologically equivalent derivatives which form a particular aspect of this invention.

The term 'antigenically equivalent derivative' as used herein encompasses a polypeptide or its equivalent which will be specifically recognised by certain antibodies which, when raised to the protein or polypeptide according to the present invention, interfere with the interaction between pathogen and mammalian host.

The term 'immunologically equivalent derivative' as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a

4

vertebrate, the antibodies act to interfere with the interaction between pathogen and mammalian host.

5

10

15

20

25

30

In particular derivatives which are slightly longer or slightly shorter than the native protein or polypeptide fragment of the present invention may be used. In addition, polypeptides in which one or more of the amino acid residues are modified may be used. Such peptides may, for example, be prepared by substitution, addition, or rearrangement of amino acids or by chemical modification thereof. All such substitutions and modifications are generally well known to those skilled in the art of peptide chemistry.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, Nature, 256:495-497(1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72(1983)), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention.

Using the procedure of Kohler and Milstein (<u>supra</u>, (1975)), antibody-containing cells from the immunised mammal are fused with myeloma cells to create hybridoma cells secreting monoclonal antibodies.

The hybridomas are screened to select a cell line with high binding affinity and favorable cross reaction with other Streptococcal species using one or more of the original polypeptide and/or the fusion protein. The selected cell line is cultured to obtain the desired Mab.

Hybridoma cell lines secreting the monoclonal antibody are another aspect of this invention.

Alternatively phage display technology could be utilised to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing anti-Fbp or from naive libraries (McCafferty, J. et al., Nature 348:552-554(1990), and Marks, J. et al., Biotechnology 10:779-783(1992)). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., Nature 352:624-628(1991)).

The antibody should be screened again for high affinity to the polypeptide and/or fusion protein.

5

10

15

20

25

30

As mentioned above, a fragment of the final antibody may be prepared.

The antibody may be either intact antibody of M_r approx 150,000 or a derivative of it, for example a Fab fragment or a Fv fragment as described in Skerra, A and Pluckthun, A., <u>Science</u> 240:1038-1040 (1988). If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The antibody of the invention may be prepared by conventional means for example by established monoclonal antibody technology (Kohler, G. and Milstein, C. (supra, (1975) or using recombinant means e.g. combinatorial libraries, for example as described in Huse, W.D. et al., Science 246:1275-1281 (1989).

Preferably the antibody is prepared by expression of a DNA polymer encoding said antibody in an appropriate expression system such as described above for the expression of polypeptides of the invention. The choice of vector for the expression system will be determined in part by the host, which may be a prokaryotic cell, such as *E. coli* (preferably strain B) or *Streptomyces sp.* or a eukaryotic cell, such as a mouse C127, mouse myeloma, human HeLa, Chinese hamster ovary, filamentous or unicellular fungi or insect cell. The host may also be a transgenic animal or a transgenic plant (for example, as described in Hiatt, A. et al., Nature 340:76-78(1989). Suitable vectors include plasmids, bacteriophages, cosmids and recombinant viruses, derived from, for example, baculoviruses and vaccinia.

The Fab fragment may also be prepared from its parent monoclonal antibody by enzyme treatment, for example using papain to cleave the Fab portion from the Fc portion.

Preferably the antibody or derivative thereof is modified to make it less immunogenic in the patient. For example, if the patient is human the antibody may most preferably be 'humanised'; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al., Nature 321:522-525 (1986), or Tempest et al., Biotechnology 9:266-273 (1991).

The modification need not be restricted to one of 'humanisation'; other primate sequences (for example Newman, R. et al., <u>Biotechnology</u> 10:1455-1460 (1992)) may also be used.

The humanised monoclonal antibody, or its fragment having binding activity, form a particular aspect of this invention.

5

10

15

20

25

30

This invention provides a method of screening drugs to identify those which interfere with the proteins selected as targets herein, which method comprises measuring the interference of the activity of the protein by a test drug. For example if the protein selected has a catalytic activity, after suitable purification and formulation the activity of the enzyme can be followed by its ability to convert its natural substrates. By incorporating different chemically synthesised test compounds or natural products into such an assay of enzymatic activity one is able to detect those additives which compete with the natural substrate or otherwise inhibit enzymatic activity.

The invention also relates to inhibitors identified thereby.

The use of a polynucleotide of the invention in genetic immunisation will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum. Mol. Genet. 1:363 (1992); Manthorpe et al., Hum. Gene Ther. 4:419 (1963)), delivery of DNA complexed with specific protein carriers (Wu et al., L. Biol. Chem. 264:16985 (1989)), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, Proc. Nat'l Acad. Sci. USA, 83:9551 (1986)), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 243:375 (1989)), particle bombardment (Tang et al., Nature 356:152 (1992)); Eisenbraun et al., DNA Cell Biol. 12:791 (1993)) and in vivo infection using cloned retroviral vectors (Seeger et al., Proc. Nat'l. Acad. Sci. USA 81:5849 (1984)). Suitable promoters for muscle transfection include CMV, RSV, SRa, actin, MCK, alpha globin, adenovirus and dihydrofolate reductase.

In therapy or as a prophylactic, the active agent i.e., the polypeptide, polynucleotide or inhibitor of the invention, may be administered to a patient as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol

1

or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to human patients, it is expected that the daily dosage level of the active agent will be from 0.01 to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual patient and will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

5

10

15

20

25

30

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response.

A suitable unit dose for vaccination is 0.5-5 µg/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks.

Within the indicated dosage range, no adverse toxicologicals effects are expected with the compounds of the invention which would preclude their administration to suitable patients.

In order to facilitate understanding of the following example certain frequently occurring methods and/or terms will be described.

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 µg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 µl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37° C are ordinarity

used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, D. et al., (1980) Nucleic Acids Res., 8:4057.

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., supra., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase") per 0.5 µg of approximately equimolar amounts of the DNA fragments to be ligated.

15 Example 1

5

10

20

25

30

Isolation of DNA coding for a virulence gene in Streptococcus pneumoniae

As mentioned above each of the DNAs disclosed herein by virtue of the fact that it includes an intact open reading frame is useful to a greater or lesser extent as a screen for identifying antimicrobial compounds. A useful approach for selecting the preferred DNA sequences for screen development is evaluation by insertion-duplication mutagenesis. This system disclosed by Morrison et al., <u>J. Bacteriol</u>. 159:870 (1984), is applied as follows.

Briefly, random fragments of *Streptococcus pneumoniae*, strain 0100993 DNA are generated enzymatically (by restriction endonuclease digestion) or physically (by sonication based shearing) followed by gel fractionation and end repair employing T4 DNA polymerase. It is preferred that the DNA fragments so produced are in the range of 200-400 base pairs, a size sufficient to ensure homologous recombination and to insure a representative library in *E.coli*. The fragments are then inserted into appropriately tagged plasmids as described in Hensel et al., Science 269: 400-403(1995). Although a number of plasmids can be used for this purpose, a particularly useful plasmid is pJDC9 described by Pearce et al., Mol. Microbiol. 9:1037 (1993) which carries the erm gene facilitating erythromycin selection in either *E. coli* or *S. pneumoniae* previously modified by incorporation of DNA sequence tags into one of the polylinker cloning sites. The tagged plasmids are introduced into the appropriate *S. pneumoniae* strain selected, inter alia, on the basis of serotype and virulence in a murine model of pneumococcal pneumonia.

It is appreciated that a seventeen amino acid competence factor exists (Havastein et al., Proc. Nat'l. Acad. Sci. USA 92:11140-44 (1995)) and may be usefully employed in this protocol to increase the transformation frequencies. A proportion of transformants are analysed to verify homologous integration and as a check on stability. Unwanted levels of reversion are minimized because the duplicated regions will be short (200-400 bp), however if significant reversion rates are encountered they may be modulated by maintaining antibiotic selection during the growth of the transformants in culture and/or during growth in the animal.

The S. pneumoniae transformants are pooled for inoculation into mice, eg., Swiss and/or C57B1/6. Preliminary experiments are conducted to establish the optimum 10 complexity of the pools and level of inoculum. A particularly useful model has been described by Veber et al. (I. Antimicrobiol. Chemother.32:432 (1993) in which 105 cfu inocula sizes are introduced by mouth to the trachea. Strain differences are observed with respect to onset of disease e.g., 3-4 days for Swiss mice and 8-10 days for C57B1/6. Infection yields in the lungs approach 108 cfu/lung. IP administration is also possible when 15 genes mediating blood stream infection are evaluated. Following optimization of parameters of the infection model, the mutant bank normally comprising several thousand strains is subjected to the virulence test. Mutants with attenuated virulence are identified by hybridization analysis using the labelled tags from the "input" and "recovered" pools as 20 probes as described in Hensel et al., Science 269: 400-403(1995). S. pneumoniae DNA is colony blotted or dot blotted, DNA flanking the integrated plasmid is cloned by plasmid rescue in E. coli (Morrison et al., I. Bacteriol. 159:870 (1984)) and sequenced. Following sequencing, the DNA is compared to the nucleotide sequences given herein and the appropriate ORF is identified and function confirmed for example by knock-out studies. 25 Expression vectors providing the selected protein are prepared and the protein is configured in an appropriate screen for the identification of anti-microbial agents. Alternatively, genomic DNA libraries are probed with restriction fragments flanking the integrated plasmid to isolate full-length cloned virulence genes whose function can be confirmed by "knock-out" studies or other methods, which are then expressed and incorporated into a 30 screen as described above.

The individual full length sequences given herein are summarized in the following Tables (Table 1 and Table 2). Under the column in Table 1 labeled "Identity" there is the deduced identity of each open reading frame of the invention determined using Blastp and/or MPSearch. The ORF# column indicates whether the polynucleotide encoding each

ORF encodes more than one ORF. For example, SEQ ID NO:224 has an ORF# 1 but no #2; thus the polynucleotide encodes this ORF#1, but no other ORF was detected. On the other hand, SEQ ID NO:225 and 226 have ORF#s 1 and 2 respectively, indicating that they were both encoded by the same polynucleotide. This can also be seen in Table 2 where the polynucleotide of SEQ ID NO: 2 encodes the ORFs of SEQ ID NOS: 225 and 226. Table 1 also shows the start ("START" column) and stop ("STOP" column) codons for each ORF and their positions in the encoding polynucleotide sequence. The SEQ ID NOS of the polypeptides of this table are linked to both a deduced identity in this table and a polynucleotide sequence in Table 2 which encodes each polypeptide. The "Direction" column in Table 1 shows the direction of the ORF encoding each poypetide in this table. "Forward" denotes the sense orientation and "Reverse" denotes the antisense orientation of the ORF.

5

10

TABLE 1

			Codon		Position		
EQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
224.	Phosphate Transport ATP-Binding Protein PSTB Escherichia	1	-CAT	TCA-	2	553	Reverse
225.	probable ATP binding protein - Bacillus subtilis	1	-CAT	TCA~	38	781	Reverse
226.	Nopaline Transport System Permease Protein Nocm Agrobacterium Tumefaciens	2	-CAG	TTA~	781	1512	Reverse
227.	Aspartate Aminotransferase A (EC 2.6.11) (Transaminase A) (ASPAT.) - Rhizobium Meliloti.	1	ATG	TAG	480	671	Forward .
228.	ISL2 protein - Lactobacillus helveticus	1	ATG	TAA	549	947	Forward
229.	ISL2 protein - Lactobacillus helveticus	2	ATG	TAG	889	1353	Forward
230.	Unknown	3	ATG	TGA	1421	1570	Forward
231.	Unknown	2	-CAT	CTA-	111	413	Reverse
232.	Unknown	1	ATG	TGA	133	282	Forward
233.	Acyl Carrier Protein (ACP.) - Rhizobium Meliloti.	1	-CAT	CTA~	673	906	Reverse
234.	Unknown	1	-CAT	TTA-	15	137	Reverse
235.	Unknown	2	-CAT	CTA~	681	989	Reverse
236.	Sulfate Transport System Permease Protein CYST (Fragment) Synechocystis SP. (Strain PCC 6803).	2	-CAT	TTA~	336	689	Reverse
237.	probable transposase (insertion sequence IS861) - Streptococcus agalactiae (str ain COH-1)	2	-CAT	TCA~	149	454	Reverse
238.	Unknown	2	-CAG	TTA-	567	851	Reverse
239.	"PTS SYSTEM	1	ATG	TAA	49	477	Forward
240.	"PTS SYSTEM	2	-CAT	TTA-	151	789	Reverse
241.	nitrogen fixation protein (nifS) homolog - Haemophilus influenzae (strain Rd KW 20)	l	-CAT	TCA-	1	207	Reverse
242.	cellobiose phosphotransferase system cel A - Bacillus stearothermophilus	1	-CAT	TCA-	84	431	Reverse
243.	surface protein PspA - Streptococcus pneumoniae	1	ATG	TAA	22	321	Forward
244.	Unknown	2	ATG	TAA	272	469	Forward
245.	ATP-dependent Clp proteinase (EC 3.4.21chain clpL - Lactococcus lactis subs p. lactis	1	ATG	TGA	83	760	Forward

	plasmid pUCL22						
246.	Beta-Glucosidase (EC3.2.1.21) (Gentiobiase) (Cellobiase)) (Beta-D-Glucoside GL Ucohydrolase) (Amygdalase) Bacillus Subtilis.	1	-CAT	TCA~	153	599	Reverse
247.	Glycine Betaine/L-Proline Transport ATP - Binding Protein Prov Escherichia Col. I.	2	ATG	TAA	159	887	Forward
248.	Unknown	3	-CAT	TTA-	1102	1254	Reverse
249.	30S Ribosomal Protein S11 (BS11) Bacillus Subtilis.	1	ATG	TGA	15	164	Forward
250.	DNA - Directed RNA Polymerase Alpha Chain (EC 2.7.7.6) (Transcriptase Alpha Chain) Bacillus Subtilis.	2	ATG	TAA	282	1217	Forward
251.	Peptide Chain Release Factor 3 (RF-3) Bacteroides Nodosus (Dichelobacter Nod Osus).	1	ATG	TAG	212	667	Forward
252.	Unknown	<u> </u>	ATG	TAG	267	353	Forward
253.	Riboflavin Synthase Alpha Chain (EC 2.5.1.9) Bacillus Subtilis.	2	-CAT	CTA-	213	662	Reverse
254.	Unknown	3	~CAT	TTA~	833	1045	Reverse
255.	Unknown	1	~CAT	TTA-	83	424	Reverse
256.	mesl protein - Leuconostoc mesenteroides	2	ATG	TAG	448	1302	Forward
257.	Transacetylase BMTD (EC 2.3.1) Bacillus Subtilis.	1	CTG	TAG	3	320	Forward

			Codon		Position		
SEQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
258.	ribose-phosphate pyrophosphokinase (EC	1	CTG	TAG	1		Forward
	2.7.6.1.) - Bacillus caldolyticus]		
259.	Unknown	1	ATG	TAA	66	614	Forward
260.	Unknown	1	ATG	TAG	108	590	Forward
261.	nitrogenase C (nifC) homolog -	2	ATG	TAG	631		Forward
	Haemophilus influenzae (strain Rd KW20)						
262.	Unkown	2	ATG	TAA	606	752	Forward
263.	Unknown	2	ATG	TGA	280		Forward
264.	Unknown	2	ATG	TGA	639	1	Forward
26 5.	Acetyl Esterase (EC 3.1) Caldocellum	2	ATG	TAA	274	1	Forward
	Saccharolyticum.						. 0
2 <u>66</u> .	Unknown	1	-CAT	TCA~	2	157	Reverse
267.	Triosephosphaste Isomerase (EC 5.3.1.1)	ı	-CAT	TTA-	270	665	Reverse
	(TIM) Bacillus Subtilis.						
268.	Branched-chain Amino Acid	1	ATG	TAG	110	736	Forward
	Aminotransferase (EC 2.6.1.42)	Ì					
	(Transaminase B) ES Cherichia Coli.	<u></u>	ł	ì	1	1	
269.	branched-chain-amino-acid transaminase	2	ATG	TAA	708	842	Forward
	homolog - Haemophilus influenzae (strain	1					
	Rd KW20)	L	1	Ì			
270.	DnaK protein - Lactococcus lactis	1	CTG	TGA	3	749	Forward
271.	Ketol-Acid Reductoisomerase (EC 1.1.1.86)	ı	ATG	TAA	99	428	Forward
	(Acetohydroxy-Acid Isomeroreductase)						
	Lactococcus Lactis (Subsp. Lactis)			1			
	(Streptococcus Lactis)						}
272.	Unknown	1	~CAT	CTA-	278	631	Reverse
273.	Amidophosphoribosyltransferase Precursor	2	-CAT	CTA~	152	775	Reverse
	(EC 2.4.2.14) (Glutamine Phosphoribosy	İ		}	į		
	Lpyrophosphaste Amidotransferase) (Atase).			1	1]	
	- Bacillus Subtilis.			<u> </u>	<u></u>		
274.	Pyrrolidone-Carboxylate Peptidase (EC	1	~CAT	TCA~	156	803	Reverse
	3.4.19.3) (5-Oxoprolyl-Peptidase) STR				-	1	
	Eptococcus Pvogenes.		L			1	
275.	50S Ribosomal Protein L16 Mycoplasma	1	ATG	TAA	33	416	Forward
· 	Capricolum.		<u> </u>				
276.	serine O-acetyltransferase (EC 2.3.1.30) -	2	~CAT	CTA-	577	1194	Reverse
	Bacillus stearothermophilus		1		j		
277.	Unknown	1	ATG	TAG	61	648	Forward

78.	Unknown	1	-CAT	CTA-	165	335 F	Reverse
79.	Lipoprotein Signal Peptidase (EC 3.4.23.36) (Prolipoprotein Signal Peptidase) (Signal Peptidase II) (Spase II) Staphylococcus Aureus.	•	ATG	TAA	56	517 F	orward
80.		1	ATG	TAA	214	534	Forward
81.		1	-CAT	CTA-	104	445	Reverse
82.	Dihydrodipicolinate Synthase 9EC 4.2.1.52) (DHDPS) Bacillus Subtilis.	3	-CAT	TCA~	675		Reverse
283.	Polyribonucleotide Nucleotidyltransferase (EC 2.7.7.8) (Polynucleotide Phosphor Ylase) (Pnpase) Photorhabdus Luminescens.	1	~CAT	TCA~	1	855	Reverse
284.	Single-Strand Binding Protein (SSB) (Helix- Destabilizing Protein) Bacillus S Ubtilis	1	-CAT	TTA-	128	598	Reverse
285.	ATP-Dependent CLP Protease ATO- Binding Subunit CLPX Escherichia Coli.	2	-CAT	CTA~	195	482	Reverse
286.	ATP-Dependent CLP Protease ATO- Binding Subunit CLPX Escherichia Coli	4	-CAG	TCA-	676	990	Reverse
287.	N-(5'-Phosphoribosyl) Anthranilate Isomerase (EC 5.3.1.24) (PRAI) Lactococcus Lactis (Subsp. Lactis) (Streptococcus Lactis).	1	ATG	TAA	83	712	Forward
288.	30S Ribosomal Protein S2 Escherichia Coli.	1	ATG	TGA	277	591	Forward
289.	30S Ribosomal Protein S2 Escherichia Coli.	3	ATG	TGA	918	1064	Forward
290.	Possible beta-galactosidase precursor	1	-CAT	CTA-	- 120	545	Reverse
291.	Unknown	1	~CAT	TTA-	- 77	283	
292.	Unknown	1	-CAT	TTA-		198	
293.	"Phospho-2-Dehydro-3-Deoxyheptonate Aldolase	1	-CA7	TTA	- 217	690	Reverse

			Codon		Position		
EQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
294.	Unknown	2	-CAT	TTA~	429	599	Reverse
295.	Unknown	3	~CAT	TCA-	739	936	Reverse
296.	Sorbitol Dehydrogenase (EC 1.1.1.14) (L- Iditol 2-Dehydrogenase) Bacillus Sub Tilis.	l	ATG	TAA	64	480	Forward
297.	EBG Operon Repressor Escherichia Coli.	2	-CAT	CTA-	668	1060	Reverse
298.	cellobiose phosphotransferase system celA - Bacillus stearothermophilus	2	-CAT	TTA~	249	566	Reverse
299.	Unknown	3	-CAT	TCA~	581	964	Reverse
300.	Adenylosuccinate Lyase (EC 4.3.2.2) (Adenylosuccinase) (ASL) Bacillus Subtil	1	-CAT	TTA~	99	809	Reverse
301.	ATP-Binding Protein BEXA Haemophilus Influenzae.	1	ATG	TGA	111	404	Forward
302.	L-Lactate Dehydrogenase (Cytochrome) (EC 1,1,2,3), - Escherichia Coli.	2	ATG	TAA	337	507	Forward
303.	Phosphate Transport System Permease Protein PSTC Escherichia Coli.	3	ATG	TGA	507	1070	Forward
304.	Sulfate Transport ATP-Binding Protein Cysa Synechococcus SP. (Strain PCC 794 2) (Anacystis Nidulans R2).	1	-CAT	CTA-	110	838	Reverse
305.	Unknown	2	-CAT	TTA-	838	1077	Reverse
306.	Unknown	2	~CAT		282	749	Reverse
307.	Unknown	2	ATG	TAG	1108	1290	Forward
308.	Phosphoribosylformylglycinamidine Cyclo- Ligase (EC 6.3.3.1) (AIRS) (Phosphoribo Syl-Aminoimidazole Synthetase) (AIR Synthase) Bacillus Subtilis.	2	~CAT			477	Reverse
309.	Unknown	2	ATG	TAA	313	765	Forward
310.	SMS Protein Escherichia Coli.	1	-CAT	TCA~	102	416	Reverse
311.	sigma 42 protein - Enterococcus faecalis	1	-CAT	TCA-	8	487	Reverse
312.	Unknown	<u> </u>	-CAT	TTA~	76	390	Reverse
313.	Guanylate Kinase (EC 2.7.4.8) (GMP Kinase) Escherichia Coli.	2	~CAG	TTA~	415	849	Reverse
314.	Unknown	1	-CAT	TCA-	51	296	Reverse
315.	Unknown	1	ATG	TAA	175	285	Forward
316.	Uknown	2	ATG	TAA	361	558	Forward
317.	Uknown	3	ATG	TAA	383	114	4 Forward

18.	"PTS System	2	-CAT	TCA~	166	465	Reverse
19.	L-Fucose Isomerase (EC 5.3.1) - Escherichia Coli.	1	-CAT	CTA-	9	482	Reverse
20.	Unknown	2	~CAT	TTA~	495	650	Reverse
21.	Unknown	1	ATG	TGA	130	231	Forward
22.	3-Oxoacyl-[Acyl-Carrier Protein] Reductase (EC 1.1.1.100) (3-Ketoacyl- Acyl Car Rier Protein Reductase) Escherichia Coli.	1	-CAT	TCA~	51	200	Reverse
23.	3-Oxoacyl-[Acyl-Carrier Protein] Reductase (EC 1.1.1.100) (3-Ketoacyl- Acyl Car Rier Protein Reductase) Escherichia Coli.	2	-CAT	TCA~	231	614	Reverse
324.	2-Isopropylmalate Synthase (EC 4.1.3.12) (Alpha-Isopropylmalate Synthase) (Alph A-IPM Synthetase) Lactococcus Lactis (Subsp. Lactis) (Streptococcus Lactis).	1	~CAT	TTA-	31	231	Reverse
325.	2-Isopropylmalate Synthase (EC 4.1.3.12) (Alpha-Isopropylmalate Synthase) (Alph A-IPM Synthetase) Lactococcus Lactis (Subsp. Lactis) (Streptococcus Lactis).	2	-CAT	TCA-	191	334	Reverse
326.	Unknown	3	~CAT	TCA~	309	452	Reverse
327.	2-Isopropyimalate Synthase (EC 4.1.3.12) (Alpha-Isopropyimalate Synthase) (Alph A-IPM Synthetase) Lactococcus Lactis (Subsp. Lactis) (Streptococcus Lactis).	4	~CAT	TTA~			Reverse
328.	Unknown	2	~CAT	TCA-	170	469	Reverse
329.	Unknown	1	ATG	TAG	105	473	Forward
330.	Strscaa Ncbi gi: 310629NCB1 gi: 473 - Streptococcus gordonii (strain PK488) DNA	1	~CAG	CTA-	- 81	665	Reverse

		L	Codon		Position		
SEQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
331.	Unknown	1	ATG	TGA	228		Forward
332.	lysyl aminopeptidase (EC 3.4.11.15)	1	-CAT	TCA~	107	766	Reverse
	precursor - Lactococcus lactis						
333.	Indole-3-Glycerol Phosphate Synthase (EC	1	-CAT	TCA-	127	369	Reverse
	4.1.1.48) (IGPS) Lactococcus Lactis						
· · · · · · · · · · · · · · · · · · ·	(SUBSP. Lactis) (Streptococcus Lactis)				1	1	
334.	Anthranilate Phosphoribosyltransferase (EC	2	-CAA	TCA-	366	641	Reverse
	2.4.2.18)Lactococcus Lactis (Sub SP.					1	
	Lactis) (Streptococcus Lactis).					<u> </u>	
335.	Tagatose-6-Phosphate Kinase (EC 2.7.1)	1	ATG	TGA	42	524	Forward
	(Phosphotagatokinase) Lactococcus L		İ				,
	Actis (Subsp. Lactis) (Streptococcus Lactis)				<u>l</u> _		
336.	Unknown	1	ATG	TGA	73	474	Forward
337.	Unknown	l	~CAT	TTA~	32	286	Reverse
338.	Unknown	1	ATG	TGA	306	572	Forward
339.	Acetolactate Synthase Large Subunit (EC	1	ATG	TAG	59	502	Forward
	4.1.3.18) (AHAS) (Acetphydroxy-Acid Syn			ļ			
i.	thase Large Subunit) (ALS) Lactococcus		ĺ]	1	}	
	Lactis (SUBSP. Lactis) (Streptococc us		ĺ	ł			
	Lactis).						
340.	Penicillin-Binding Proteins 1A/1B	2	ATG	TGA	535	720	Forward
	Bacillus Subtilis.						
341.	Unknown	1	ATG	TAG	165	488	Forward
342.	Anthranilate Phosphoribosyltransferase (EC	1	-CAT		5	394	Reverse
	2.4.2.18) Lactococcus Lactis (SUB SP.	1			Ì		
	Lactis) (Streptococcus Lactis).			İ	İ		
343.	grpE protein - Lactococcus Lactis	2	ATG	TAA	124	543	Forward
344.	Unknown	1	~CAT	CTA-	34	195	Reverse
345.	Unknown	2	~CAT	TTA~	377	544	Reverse
346.	Unknown	2	ATG	TAA	159		Forward
347.	Unknown	2	-CAT	CTA~	315	644	Reverse
348.	Unknown	2	-CAT	CTA~		587	Reverse
349.	Unknown	2	-CAT		482	631	Reverse
350.	Unknown	2	~CAT	TTA~	380	757	Reverse
351.	NIFS Protein Homolog (Fragment).	1	ATG	TAG	87	797	
	Lactobacillus Delbrueckii (SUBSP.	١.		''	"	131	Forward
	Bulgaricus).	<u> </u>			1	1	
352.	"Ornithine Carbamovitransferase	1	TTG	TAA	2	600	Forward

53.	PSEGLI NCB1 gi: 499660 - Pseudomonase	1	-CAT	TTA~	50	481	Reverse
54.	Unknown	1	CTG	TAA	1	522	Forward_
55.	Thioredoxin Streptomyces Clavuligerus.	1	ATG	TAG	58	375	Forward
56.	D-alanine permease (dagA) homolog - Haemophilus influenzae (strain Rd KW20)	1	ATG	TAG	185	343	Forward
357.	Unknown	1	-CAT	TTA-	78	371	Reverse
358.	"DNA Polymerase III	1	-CAA	TCA-	82	561	Reverse
359.	Transport ATP-Binding Protein Coma Streptococcus Pneumoniae.	1	-CAT	TTA-	112	552	Reverse
360.	Unknown	2	ATG	TAA	445	540	Forward
361.	surface protein PspA - Streptococcus	1	-CAT	TCA~	45	416	Reverse
362.	Licid Protein Haemophilus Influenzae	2	ATG	TAA	268	633	Forward
363.	Unknown	2	ATG	TAA	527	640	Forward
364.	Glutamine Transport ATP- Binding Protein GLNQ Escherichia Coli.	1	CTG	TGA	1	393	Forward
266	Unknown	1	ATG	TAG	184	303	Forward
365.	Unknown	1	ATG	TGA	794	919	Forward
366. 367.	Lipoamide Dehydrogenase Component (E3 of Pyruvate Dehydrogenase Complex (EC 1 8.1.4) (Dihydrolipoamide Dehydrogenase). Azotobacter Vinelandii.	1.	ATG	TAA	3	416	Forward

			Codon		Position		L
EQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
68.	Orotate Phosphoribosyltransferase (EC	1	~CAT	CTA~	21	311	Reverse
	2.4.2.10) (OPRT) Bacillus Subtilis.						}
369.	Unknown	1	ATG	TAA	28	309	Forward
370.	SPO0B-Associated GTP-Binding Ptroein	1	ATG	TGA	110	538	Forward
	Bacillus Subtilis.						}
371.	Transport ATP-Binding Protein COMA	1	-CAA	TCA-	47	679	Reverse
	Streptococcus Pneumoniae.					<u>L</u>	
372.	prephenate dehydrogenase (EC 1.3.1.12) -	2	ATG	TAG	271	492	Forward
	lactococcus lactis.						
373.	O-Syaloglycoprotein Endopeptidase (EC	1	CTG	TAA	1	450	Forward
	3.4.24.57) (Glycoprotease) Pasteurella		į		}	1	
 _	Haemolytica.						
374.	Unknown	1	~CAT	TTA-	7	282	Reverse .
375.	Unknown	1	TTG	TAA	2	265	Forward
376.	"DNA Polymerase III	1	ATG	TGA	3	401	Forward
377.	Unknown	2	ATG	TAA	361	516	Forward
378.	Dihydrodipicolinate Synthase (EC 4.2.1.52)	1	-CAT	TTA~	179	457	Reverse
	(DHDPS) Bacillus Subtilis.		<u> </u>				
379.	Unknown	2	~CAT	TCA~	104	322	Reverse
380.	Unknown	2	-CAT	TCA-	248	649	Reverse
381.	Unknown	1	~CAT	TTA~	56	394	Reverse
382.	Unknown	2	~CAT	TTA~	254	409	Reverse
383.	Unknown	1	ATG	TAG	138	617	Forward
384.	Unknown	2	-CAT	TTA-	225	479	Reverse
385.	Unknown	2	ATG	TAA	747	857	Forward
386.	Unknown	1	ATG	TAG	294	443	Forward
387.	Unknown	2	ATG	TGA	356	544	Forward
388.	Unknown	1	-CAT	CTA~	4	141	Reverse
389.	Unknown	1	CTG	TAG	1	579	Forward
390.	Unknown	2	~CAT	TTA~	309	452	Reverse
391.	Phosphopentomutase (EC 5.4.2.7)	1	ATG	TAA	3	233	Forward
	Escherichia Coli.			<u> </u>			
392.	D-Alanyl-D-Alanine Carboxypeptidase	1	-CAT	TTA-	52	537	Reverse
	Precursor (EC 3.4.16.4) (DD-Peptidase)(DD						
	- Carboxypeptidase)(Cpase)(PBP5)						
	Bacillus Subtilis.	<u></u>			,		
3 93.	Na+ and Cl-dependent gamma-aminobutryic]	TTG	TGA	2	268	Forward
	acid transporter homolog-Haemophilus				ļ_		

	influenzae (strain Rd KW20)						
94.	Unknown	2	ATG	TGA	319	546	Forward
395.	dihydrolipoamide dehydrogenase (EC 1.8.1.4) - Pelobacter carbinolicus	1	ATG	TGA	3	284	Forward
396.	Unknown	2	ATG	TGA	241	450	Forward
397.	Beta-Glucosidase A (EC 3.2.1.21)(Gentiobiase)(Cellobiase)(Beta-D-Glucoside Glucohydrolase) Clostridium Thermocellum.	1	ATG	TAA	184	453	Forward
398.	Uracil Permease Bacillus Caldolyticus.	1	ATG	TAA	93	353	Forward
399.	Unknown	2	ATG	TAG	127	516	Forward
40 0.	ligoendopeptidase F- Lactococcus lactis	1	ATG	TGA	134	310	Forward
401.	Stratpasea NCBI gi: 153565NCBI gi: 4- Streptococcus Faecalis DNA.	2	ATG	TAA	392	568	Forward
402.	Unknown	2	ATG	TAA	376	507	Forward
403.	Exodeoxyribonuclease Small Subunit (EC 3.1.11.6) (Exonuclease VII Small Subunit). Escherichia Coli.	- 2	~CAT	TCA-	470	682	Reverse
404.	ATP-Depenent DNA Helicase RECG (EC 3.6.1) Escherichia Coli.	1	ATG	TGA	3	455	Forward

			Codon		Position		
SEQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
105.	Possible thiamin biosynthetic enzyme	1	-CAT	TTA-	15	347	Reverse
40 6	SPOU Protein Escherichia Coli.	2	ATG	TAA	322	618	Forward
407.	Malonyl Coa-Acyl Carrier Protein Transacylase (EC 2.3.1.39) Escherichia Coli.	1	ATG	TAG	85	498	Forward
408.	Unknown	1	-CAT	CTA~	17	118	Reverse
409.	nucleoside diphosphate kinase (ndk) homolog- Haemophilus influenzae (strain Rd KW20)	1	CTG	TGA	1	159	Forward
410.	Nucleoside Diphosphate Kinase (EC 2.7.4.6)(NDK) (NDP Kinase) Escherichia Co LI.	2	ATG	TAG	215	481	Forward
411.	Unknown	1	-CAT	TTA~	21	368	Reverse
412.	Unknown	2	-CAT	TCA~	162	314	Reverse
413.	Unknown	1	ATG	TAA	187	417	Forward
414.	Unknown	2	ATG	TGA	316	417	Forward
415.	Unknown	1	ATG	TGA	316	453	Forward
416.	Enolase (EC 4.2.1.11)(2-Phosphoglycerate Dehydratase)(2-Phospho-DOGlycerate Hydro-Lyase) Bacillus Subtilis.	1	-CAT	TTA-	4	435	Reverse
417.	Unknown	1	CTG	TGA	1	363	Forward
418.	Unknown	1	ATG	TGA	39	383	Forward
419.	PILB Protein Neisseria Gonorrhoeae.	1	-CAT	TTA~	145	327	Reverse
420.	Unknown	2	ATG	TGA	285	533	Forward
421.	Unknown	1	CTG	TAG	2	379	Forward
422.	integrase/recombinase (xprB) homolog - Haemophilus influenzae (strain Rd KW20)	1	ATG	TAA	305	421	Forward
423.	Unknown	1	-CAT	CTA-	173	436	Reverse
424.	Unknown	1	-CAT	CTA~	182	427	Reverse
425.	Unknown	1	ATG	TAA	49	372	Forward
426.	"Mutator Mutt Protein (7	1	-CAT	CTA~	21	446	Reverse
427.	Unknown	1	ATG	TGA	177	380	Forward
428.	Possible phosphatase	1	ATG	TAG	112	402	Forward
429.	Unknown	1	ATG	TGA	110	271	Forward
430.	Phosphoenolpyruvate Carboxylase (EC 4.1.1.31) Corynebacterium Glutamicum.	2	ATG	TGA	337	561	Forward
431.	Unknown	1	ATG	TGA	214	324	Forward
432.	50S Ribosomal Protein L31 Bacillus	1	ATG	TAA	1142		Forward

	Subtilis.	ļ		 			
433.	glycosyl transferase (lgtD) homolog - Haemophilus influenzae (strain Rd KW20)	1	ATG	TGA	127	399	Forward
434.	Unknown	2	-CAT	CTA~	244	435	Reverse
435	Unknown	2	ATG	TGA	118	309	Forward
436.	Factor essential for Expression of Methicillin Resistance Staphylococcus Aur Eus.	2	~CAT	TTA-	168	434	Reverse
437.	Unknown	1	-CAT	TCA~	2	214	Reverse
438.	Unknown	1	TTG	TAA	2	142	Forward
439.	Unknown	1_	ATG	TAA	30	191	Forward

			Codon	1	Position		
EQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
40.	Aspartate Aminotransferase (EC 2.6.1.1)	1	~CAT	TCA-	63	1	Reverse
	(Transaminase A)(ASPAT) Bacillus SP.						
	(STRAIN YM-2).						
<u>41.</u>	Unknown	1	ATG	TAA	52	342	Forward
142.	Unknown	2	~CAT	TCA~	210	455	Reverse
143.	Unknown	1	TTG	TGA	2	517	Forward
144 .	ATP-Dependent DNA Helicase RECG	1	ATG	TGA	83	376	Forward
	(EC 3.6.1) - Escherichia Coli.						
145.	Unknown	1	ATG	TAA	70	384	Forward
446.	Cell Division Protein FTSA Bacillus Subtilis.	1	TTG	TAA	3	371	Forward
447.	Unknown	1	ATG	TAG	70	441	Forward
448.	Unknown	<u>'</u>	ATG	TAG	104	454	Forward
449.	Unknown	1	CTG	TAA	1	159	Forward
450.	Unknown	i	ATG	TAA	120	347	Forward
451.	Unknown	1	ATG	TGA	31	423	Forward
452.	Unknown	2	ATG	TGA	225	416	Forward
453.	Unknown	1	ATG	TGA	290	418	Forward
454.	Unknown	1	ATG	TGA	3	269	Forward
455.	JAG Protein (SPOIIU Associated Protein)	1	ATG	TGA	93	365	Forward
	Bacillus Subtilis.	<u> </u>	7.10		33	303	LOIWARG
456 .	"DNA -3-Methyladenine Glycosidase I (EC	1	ATG	TAG	91	282	Forward
	3.2.2.20)(3-Methyladenine-DNA Glycosylas						
	EI						
457.	"Glucan 1	1	-CAT	TTA~	4	150	Reverse
458.	Unknown	1	~CAT	CTA-	245	400	Reverse
459.	Glutamate/Aspartate Transport ATP-	1	-CAT	TCA~	81	218	Reverse
	Binding Protein GLTL Escherichia Coli.		<u> </u>				
460.	Unknown	1	-CAT	TTA-	103	492	Reverse
461.	Unknown	1	ATG	TGA	305	484	Forward
462.	Unknown	1	-CAT	TCA~	29	355	Reverse
463.	Unknown	2	-CAT	TTA~	572	838	Reverse
464.	Unknown	2	-CAT	TCA~	652	1026	Reverse
465.	Unknown	2	-CAT	TTA~	318	764	Reverse
466.	Unknown	2	ATG	TGA	719	805	Forward
467.	Llepyrda NCB1 gi: 511014 - Lactococcus	1	ATG	TGA	134	472	Forward

468.	Unknown	11_	ATG_	TGA	385	492	Forward
469.	Unknown	2	ATG	TAA	587	721	Forward
470.	galE protein - Neisseria meningitidis	1	-CAT	TCA~	23	460	Reverse
471.	Unknown	2	~CAG	TTA~	717	1319	Reverse
472.	Naphthoate Synthase (EC 4.1.3.36) (Dihydroxynaphthoic Acid	1	ATG	TGA	97	414	Forward
	Synthetase)(Dhna Sy Nthetase).						
	Escherichia Coli.				<u> </u>		

			Codon	<u> </u>	Position		
SEQ ID NO:	Identity	ORF#	Start	Stop	Start	Stop	Direction
473.	Unknown	1	CTG	TGA	1		Forward
474	Unknown	1	-CAT	TCA~	341		Reverse
475.	Unknown	1	-CAT	TTA~	217		Reverse
<u>476</u> .	Unknown	1	-CAT	TTA~	499		Reverse
477.	Multiple Sugar-Binding Transport ATP- Binding Protein MSMK Streptococcus MUTA NS.	2	ATG	TAA	407	1	Forward

Table 2 shows the correlation between the SEQ ID NO of each DNA sequence of the invention with the SEQ ID NO(S) of polypeptide or polypeptides that its open reading frame(s) encodes. For example, the DNA of SEQ ID NO:1 encodes one polypeptide, that of SEQ ID NO:224. Whereas, the DNA of SEQ ID NO:2 encodes two polypeptides, the polypeptides of SEQ ID NO:225 and SEQ ID NO:226.

TABLE 2

DNA	Protein (open reading frame)
===	2=313=3
ì	224
2	225,226
3	227
4	228,229,230
5	231
6	232
7	233
8	234
9	235
10	236
11	237
12	238
13	239
14	240
15	241
16	242
17	243,244
18	245
19	246
20	247,248
21	249,250
22	251
23	252
24	253,254
25	255,256
26	257
27	258
28	259
29	260,261
30	262

31	263
32	264
33	265
34	266
35	267
36	268,269
37	270
38	271
39	272
40	273
41	274
42	275
43	276
44	277
45	278
46	279
47	280
48	281
49	282
50	283
51	284
52	285,286
53	287
54	288,289
55	290
56	291
57	292
58	293
59	294,295
60	296,297
61	298,299
62	300
63	301
64	302,303
65	304,305
66	306
67	307
68	308
69	309
70	310
71	311
72	312,313
	ال مسيسية و مواديد و مراد و مر

WO 97/37026

PCT/US97/05306

74 315,316,317 75 318 76 319,320 77 321 78 322,323 79 324,325,326,327 80 328 81 329 82 330 83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363		
75	73	314
76	74	315,316,317
77 321 78 322,323 79 324,325,326,327 80 328 81 329 82 330 83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	75	318
78 322,323 79 324,325,326,327 80 328 81 329 82 330 83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 <td< td=""><td>76</td><td>319,320</td></td<>	76	319,320
79 324,325,326,327 80 328 81 329 82 330 83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	77	321
80 328 81 329 82 330 83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	78	322,323
81 329 82 330 83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	79	324,325,326,327
82	80	328
83 331 84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	81	329
84 332 85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	82	330
85 333,334 86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	83	331
86 335 87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	84	332
87 336 88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	85	333,334
88 337 89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	86	335
89 338 90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363		336
90 339 91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	88	337
91 340 92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	89	338
92 341 93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	90	339
93 342 94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	91	340
94 343 95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	92	341
95 344,345 96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	93	342
96 346 97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	94	343
97 347 98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	95	344,345
98 348 99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	96	346
99 349 100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	97	347
100 350 101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	98	348
101 351 102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	99	349
102 352 103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	100	350
103 353 104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	101	351
104 354 105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	102	352
105 355 106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	103	353
106 356 107 357 108 358 109 359 110 360 111 361 112 362 113 363	104	354
107 357 108 358 109 359 110 360 111 361 112 362 113 363	105	
108 358 109 359 110 360 111 361 112 362 113 363	106	
109 359 110 360 111 361 112 362 113 363	107	357
110 360 111 361 112 362 113 363	108	358
111 361 112 362 113 363	109	359
1î2 362 113 363	110	360
113 363	111	361
113 363	112	362
114 364	113	363
117 504	114	364

115	365	
116	366	
117	367	
118	368	
119	369	
120	370	
121	371	
122	372	
123	373	
124	374	
125	375	
126	376	
127	377	
128	378	
129	379	
130	380	
131	381	
132	382	
133	383	
134	384	
135	385	
136	386	
137	387	
138	388	
139	389	
140	390	
141	391	
142	392	
143	393	
144	394	
145	395	
146	396	
147	397	
148	398	
149	399	
150	400	
151	401	
152	402	
153	403	
154	404	
155	405	
156	406	

PCT/US97/05306

157	407	
158	408	
159	409,410	
160	411	
161	412	
162	413	
163	414	
164	415	
165	416	
166	417	
167	418	
168	419	
169	420	
170	421	
171	422	
172	423	
173	424	
174	425	
175	426	
176	427	
177	428	
178	429	
179	430	
180	431	
181	432	
182	433	
183	434	
184	435	
185	436	
186	437	
187	438	
188	439	
189	440	
190	441	
191	442	
192	443	
193	444	
194	445	
195	446	
196	447	
197	448	
198	449	

WO 97/37026

PCT/US97/05306

199	450	
200	451	
201	452	
202	453	
203	454	
204	455	-
205	456	
206	457	
207	458	
208	459	
209	460	
210	461	
211	462,463	
212	464	
213	465	
214	466	
215	467	
216	468,469	
217	470,471	
218	472	
219	473	
220	474	
221	475	
222	476	
223	477	

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Black, Michael
 Hodgson, John
 Knowles, David
 Nicholas, Richard
 Stodola, Robert
- (ii) TITLE OF THE INVENTION: Novel Compounds
- (iii) NUMBER OF SEQUENCES: 477
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: 709 Swedeland Road
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-0939
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 01-APR-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/014690
 - (B) FILING DATE: 02-APR-1996

PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: 60/025788
- (B) FILING DATE: 22-AUG-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Gimmi, Edward R
 - (B) REGISTRATION NUMBER. 38,891

- (C) REFERENCE/DOCKET NUMBER: P50466
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 610-270-4478
 - (B) TELEFAX: 610-270-5090
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 683 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTCA	AACATG	GTCTCTTCTA	GTTGCATGGT	CGCAATCGGA	TCCAAGGCTG	AGGCTGGGCT	60
CATC	CATTAA	GAGGATATCT	GGCTTAACAG	AGATGGCACG	AGCGATACAG	AGACGTTGTT	120
GCTG	ACCACC	TGATAAGGTC	AAGGCTGACT	TGTGGAGATC	GTCTTTAACC	TGATCCCAAA	180
GGGC	AGCCTG	ACTAAGGGAG	GTTTCTACGA	TTTCATCTAG	GACTTGCTTA	TCCTTAACTC	240
CAGC	ACGTTC	ATGCGCAAAG	GTAATATTAC	GGTAAATTGA	CTTAGCAAAT	GGATTGGGGC	300
GTTG	AAAAAC	CATTCCAATG	TGTTTACGCA	TTTCATAAAC	GTTGATTTCT	GGACGGTTGA	360
CATC	AATTCC	ACGATAGAGA	ATCTGCCCAG	TTACTTTAGC	AATATCAATG	GTATCATTCA	420
TGCG	attgag	ACTGCGTAAG	TAGGTAGATT	TCCCCGATCC	CGACGGACCA	ATCAAAGCTG	480
TAAT	TTATT	TCCTTTCAAA	TTGCATATCA	ATCCCCTTAA	TGGATTCATT	TTTACCATAG	540
TAAA	CATGGA	CATCCTTAGT	AGAAAGGGCT	ACTTTTTCTT	CAGGAAAGGT	AAGGATATGC	600
TTCT	CATCCC	AGTTATATGT	TGACATGGCT	TCTCCTTTAG	GCAGCGGTTA	ATTTCTTGTG	660
TAGA	TAGCTT	CCGAACTTAC	GAG				683

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CTAGTCCAAC	TAACTGAGTT	TTCCTTTATC	TATTATATCA	AATATAAGTC	CGTTTGTAAC	60
TAGTGAAGAA	TTCTTTTGTC	CGCTCTTCTT	TAGGGGTGTG	GATAATCTCA	TCCGGAGTTC	120
CAGACTCGAT	GATTTTCCCC	TTATCTAAGA	AGAGAATTTT	ATCCGCAACT	TGGGCTACAA	180
AGGGCATGTC	ATGACTGACC	AAAATCATGG	TCTGACCTGA	CTTAGCAGCA	TCTGCAATAG	240
ACTTTTCTAC	TTCACCGACC	AATTCTGGGT	CAAGGGCTGA	AGTTGGTTCG	TCTAAGAGCA	300
AAACATCTGG	TTTCATAGCA	AGCGCACGCG	CTAGGGCAAC	CCGTTGCTTC	TGTCCACCTG	360
ATAAATGGCG	AGGATAATGG	TTTTCACGGT	CCGAAAGCCC	AACCTTAGCC	AACTCTTCCT	420
TGGCAATCTT	AGTCGCTTCT	TGGTCAGATA	ATTTCTTGAC	AACAACCAAG	CCTTCTTTCA	480
CATTATCAAG	TGCTGTTCGG	CGTTCAAATA	AATTAAACTG	TTGGAAAACC	ATAGACAACT	540
TACGGCGTAG	GGCAAGGATT	TCTTCTTGAG	TGATTTTAGA	AAAATCAACT	GAAAAACCAT	600
СААТСТБААТ	AGAGCCACTG	TCAGGTGTTT	CAAGATAATT	GAGACTGCGA	AGAAAGGTTG	660
ATTTTCCAGC	TCCTGAAGAA	CCAATCAAGG	CTACAACTTC	CCCTTTTTGA	ATATCCAAGT	720
TCAGATGATC	CAAGACAGTC	TGTCCTGAAA	AGGATTTGCT	TAAATTCGAA	ATCTTAATCA	780
TTAACGAAGG	TCTCCTTTCA	CATCTGTTTG	CACTGTATCA	GGTGCAGAAA	TAGCCATTTT	840
TCTCTCGATG	AAACGACCGA	GGCTTTCAAT	TCCGATATTG	ACTACCCAAT	AAACAAGGGC	9,00
AACAGAGATG	AAGCGTTCAA	AATAGCGATA	ATCAGCTCCA	CCTAGAATCT	GAGCTTGGGC	960
AAAGACTTCC	ACAACACCCG	CACTAAAAGC	TAGAGATGTT	CCCTTGGTCA	AACCGATGAG	1020
GGAATTAATC	AAGGTTGGAG	TAGCTACCAC	CGCTGCATTA	GGAATAATCA	CTCGTCGATA	1080
AACTTGCGCT	CGGGTCATAC	CCAGACTGCG	CGCCGCCTCA	ATCTCACCAG	GATTAACTGA	1140
GAGAATGGCT	GCACGAATGG	TTTCACTAGC	ATAAGCTGCC	TCATTAAAGG	CAAAAGCGAC	1200
AATCGCAAAA	GCTGCAGCTG	GAATCGCATT	GATATTGAGA	CCAGTTCCCC	ATTGCTGATT	1260
GAGGGCTTTC	AAAGCCAAAG	GGATTCCGTA	GTAGGTCAAC	ATGAGTTGCA	CCAAAATCGG	1320
TGTCCCTTTI	AAGAAACTAA	CAAAGAAGGC	CTGCAAGGGA	TATAAAATCT	TGACACGATT	1380
GATCTTCACA	ATGGCAAAAA	GAAGCGCCAA	AACCAAGCCA	AAAAGGGCAC	CGCCAATTGT	1440
CAACATAATT	GTTGTTGGA	GTTGTTGGAC	AATTCTAGGC	ATTCCATCA	AGACCGAACG	1500
TAGGCTAAAC						1512

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 709 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	መመር አር አጥጥርር	CCGTCAAAAC	GATTTGATTA	TNTTTGCGGA	TGAAATCTAT	60
CTGGAGATTA	TIGAGATIGE		TA A CCCCTYCT	GCGAGCTTG	GCACCAGATG	120
GACCGCATGG	TAAATGGACG	GACATGTGCA	TAACGCCIGI	0000.00000	mmaccccmcmc	180
TOTTOTGTGT	CAGCATGAAT	GGTCTGTCAA	AATCCCACCG	CATAGCAGGT	TTCCCGTGTG	
CCATGGATGG	TCTTGTCTGG	CCCTAAGACT	CATGITAAGG	GCTATATCGA	AGGGCTCAAT	240

ATGCTGTCCA	ATATGCGCCT	TTGCTCTAAC	GTTTTGGCTA	CCAACGCTGC	ATTAGGAATA	300
ATCACTGTCG	TACAAACTTG	CGCTTGGGGG	GTCACCAATC	AGTCGATGAA	TTGCTTCTTC	360
CTGGTGGACG	AATCTACGAG	CAAAGAAATT	TCATCTATAA	TGCCATTCAA	GATATTCCAG	420
GTTTGTCTGC	CGTTAAACCC	AAGGCGGGGC	TCTATATCTT	CCCAAAAATC	GACCGCAATA	480
TGTACCGTAT	CGATGATGAT	GAGCAGTTTG	TCCTTGATTT	CTTGAAGCAG	GAAAAGGTTC	540
TCTTGGTTCA	TGGTCGAGGC	TTTAACTGGC	AGGAACCAGA	CCACTTCCGT	ATCGTTTACC	600
TTCCTCGTGT	TGATGAGTTA	GCCCAAATCC	AAGAAAAGAT	GACTCGTTTC	TTGAAACAGT	660
ATCGTAGATA	GGGCTTGCAT	TCGAAAAAGC	TGGAAACATT	TGCCTAGAG		709

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1588 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CTGCTTCAGA ACCTGC	CCAAA CCAGCACCGA	TAACATTGAT	ATAAGATTGA	GACACGACAC	60
TAATACCTCT TTGGGA	agtgt gaagttaaga	TTCACATTGA	AAAAGCCAAT	CAGACTTACA	120
AGCTTTCGAG TTTCTT	rggct caggctgaa	AAGTCCACAG	GGCTTTTNCA	CTCCCACAAA	180
TCTTTCTATT TTTTCT	INCTA CTAGTATAA	AAAAAAAGGG	AAGAAGGNAA	ACTTCCCTGT	240
TTAGTCATTT TCTTGA	ATGTA AAGAGATAGT	GAGTATTCCA	GTTAAGAATC	AATTATATGC	300
TACTCTATAA AATCTT	TTTCC ACATAACGG	TCGATAGGGA	CTGTTATTCT	ATCTCTTGCT	360
ATAACCGTAT TATCTA	AAAAC AGCATAACAT	TCAACATAGT	GATCTCCTTT	AAACTGTGAA	420
TCTTCCGTGA TATTTT	TATTT TACCTGAAAA	AATAGCACAC	GCTCACAATT	CTTCCTAATA	480
GCCTCAGCTT CAATAT	TTTCT TACTTTCCA	TAGACTCCCT	GCGAAACAAA	ATATGGTATA	540
GTAGTTCTAT GAATGA	ATGAA GCAAGTAAAC	AACTAACTGA	TGCACGATTT	AAGCGTCTTG	600
TTGGTGTTCA GCGCAC	CGACT TTTGAAGAGA	TATTAGCTGT	ATTAAAAACA	GCTTATCAAC	660
TTAAACACGC AAAAGG	etgga cgaaaacct	AATTAAGCCT	AGAAGACCTT	CTTATGGCCA	720
CTCTTCAATA TGTGCG	GAGAA TATCGAACTI	ATGAACAAAT	TGCGGCTGAT	TTTGGTATCC	780
ACGAAAGCAA CTTAAT	CCGT CGGAGCCAAT	GGGTTGAAGT	AACTCTTGTT	CAAAGTGGTG	840
TTACGATTTC AAGAAC	CTCCT CTCAGTTCTC	AGGACACGGT	AATGATTGAT	GCGACGGAAG	900
TACAAATCAA TCGCCC	CTAAA AAAAGAATTA	GCGAATCATT	CTGGTAAAAA	GAAATTTCAC	960
GCTATGAAGG CTCAAG	GCGAT TGTCACAAGT	CAAGGGAGAA	TIGTTTCTTT	GGATATCGCT	1020
GTGAACTATA GTCATG	GATAT GAAGTTGTTC	AAAATGAGTT	${\tt GCAGAAATAT}$	CGGACAAGCT	1080
GGAAAAATCT TGGCTG	GATAG TGGTTATCAA	GGGCCCATGA	AGATATATCC	TCAAGCACAA	1140
ACTCCACGTA AATCCA	AGCAA ACTCAAGCCG	CTAATAGCTG	AAGATAAAGC	TTATAACCAT	1200
GCGCTATCCA AGGAGA	AGAAG CAAGGTTGAG	AACATCTTTG	CCAAAGTAAA	AACGTTTAAA	1260
ATGTTTTCAA CAACCT	PATCG AAATCATCGT	AAACGCTTCG	GATTACGAAT	GAATTTGATT	1320
GCTGGCATTA TCAATT	PATGA ACTAGGATIC	TAGTTTTGCA	GGAAGTCTAT	TATTTTCCTT	1380

WO 97/37026 PCT/US97/05306	
ATTGTCTGTA AGTCTACTGA CCTTGTTGTT TATCCCAGTC ATGGTTTCTA GTTCGGGCTC	1440
AGAGTTTCAA AGTGGATGGC AAGAGCATCA ATTGATTGCT GAGAAGGTTA GTAAAACACT	1500
TGACAAGACA TTTGATAAGG ATGTCAGAAA AATTCCGACC AGTCCAGTTT TATCAAAAAT	1560
TTGTAGATGA GATGGGAAGG ATTTACTC	1588
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 690 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
CTGTTTTTAA TACAGCTAAC ATCTCTTCAA AAGTGGTACG CTGAACACCA ACAAGACGCT	60
TAAATCGTGC ATCAGTTAGT TGTTTACTTG CTTCATCATT CATAGAACTA CTATACCATA	120
TTTTGTTTCG CAGGGAGTCT AATATTGTCA AATACTGGAG CGCTCATTGC TGGTATACGG	180
AATAAGATTG GCCCAGCTTC GATAACTGGG ATACCTGGTT CAAAACCAAG ATCTGTTGCA	240
GCGATTGGTG TAAAGATATC GTAACCTTTC ATAAGGTCTT CGTTTACATC TTTCACCATG	300
ACTGCATCAC AGTGAACATC ATAACCACGG TTTGAAAGTT CTTCTTCTAG AGCACTTTTA	360
ATTTGGTGAC TTGAGTTAAC ACCTGCACCG CAGGCAGCAA GAATTTTAAT CATTTAGATT	420
TCCTCCGATT TTATTTTTTA ATAGACAAGA TTAAGCGGTT GCTTCAGCAA TGTAAGCATA	480
AAGTTTTTCT GGTTCGGAAA TTTTTGATAG GTCTTCAAGA TGTCCATTTC CTGTGAAAAA	540
GTCCATCAAC TGAGCCAGAA TATTTGTTTG ACTTGAACTT GAGTTATTGA TGATAAAGAA	600
GAGCAAGGAT ACTTCTACTT CCTTATCAGG AGCTATCATA TTGTGAAAAG TTACTGATTT	660
TTCTAATCGA ACAACCACCA CTTTTCTCAG	690
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 339 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
\- ,	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
ACTGCTACCT TTAAGAAGAT AGTAGACGTA TATACTTTTT TAAGAAAATC AAAAAGATAC	60
TATAAAAAT CTATTTGTTT ATTGAATTTA AGACTTTGGT AACAAATTGA AAATAAAAAG	120

GAGGTATTCA TCATGAATAC AAAAATGATG TCACAATTTT CTGTTATGGA TAATGAAATG 180
CTTGCTTGCG TTGAAGGTGG AGATATTGAT TGGGGAAGAG AAATTAGTTG TGCAGCAGGG 240
GTTGCATATG GCGCAATTGA TGGGTGTGCA ACAACGGTTT GATATTTCTA TTGGGACCAT 300
TTGCTATAGG AATAGGTGTA ACTGGTGCTG CAGGTGGAG 339

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1693 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CTGAAGACCT	CGTGCTACTC	CTCCTCCAAC	ACCTGCTTTG	GCAAAATCTC	CCCAATTGCA	60
TCCGCCACCT	TCAACTCAAG	CAAGCATCTC	AGTATCCATA	ATTTCAAATT	GTGACATCTT	120
TTTTGTATTC	ATAACGAATA	CCTCTTTTTT	ATTTTTAATA	TTTGTCTTGT	TACAAACTTG	180
ACAAGTTTAG	TATAACAGTA	TCTATTAATT	TTTTTCATCC	AAATCTTGAA	TTGGCATCGA	240
AACGTCTTGA	ATTAGCTTTT	TTGTTTCAAA	ATCATCTCTA	TTTTTAAAAA	AGATGTTTTC	300
TAATCACTTT	TTTACTATTT	AGACTTCCTG	CAAAACTAGA	ATCCTAGTTC	ATGATTGATA	360
ATACCAGCAA	TCAAATTCAT	TCGTAATCCG	AAGCGTTTAC	GATGATTTCG	ATAGGTTGTT	420
GAAAACATTT	TAAACGTTTT	TACTTTGGCA	AAGATATTCT	CAACCTTGCT	TCTCTCCTTA	480
	GATTACAGGC					540
	TGTGCTTGAG					600
	GCTTGTCCGA					660
	TGCTATTTTC					720
	TCATCGCTGA					780
	ACTGAGTCAG					840
	CCCTGTCGCT					900
	TTTATTCTCC					960
	GAATCTGGCG					1020
	CAGGTGCCTT					1080
	TCAAACCTCT					1140
	CTGTAATAGC					1200
	GCACAGCGTT					1260
	CACGCGCTTC					1320
	TTTCCTTACG					1380
	GTGGTTGCGC					1440
	GGAGGTGCTG					1.500
	CATCTACAGT					1560
ATACGACCCA	CGATGAAGAA.	TCCACCAGCC	AACAAAGCAC	CTGTATTCCC	AGCCGAAAGG	1620

	PCT/US97/05306
WO 97/37026 ACAGCGTCTG CTTCACCATC TTTGACAGCC TTGGCTGCCA ATAC	CATACT GGCATTTTTC 1680
TTATTCCGAA TAG	1693
(2) INFORMATION FOR SEQ ID NO:8:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 616 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CTAAATCTGC TTGCTTAGTC CACTTGCTTG AGCCAAGGAG TCAC	CATACTC AAAATTTTCA 60
TGAAAGTCAT AGGTACCGTC TTCTTTTTTA GCTGAAAAGA AAAG	STCCATC GTGGTAGAGC 120
AAATCCCCGT GGGCCATAAT TCTGGCAGTT TTTTCCTCTT CCT	ACTCCTG AGACTTTTGC 180
TTAGTCCCCT CTTGAGAAAT AGTATCTCGT TTTTGACTAG TCA	AGGGATT CCTTGGAAGC 240
TTTCAAACAA CAAGACCAAG CCCATTGATA AACCAACTGC TAG	CAAGAGT ATCGCCACAA 300
ATCCCTTATT GCTCCACTTG CGATAACTCC TAAAAAGTTT ACC	AAGCCCT TCATAAAACG 360
AAAAGCTAAA CCACCCTGAT TTCGATTTTG TCTTCTTTGT ATC	TTCGTTC TCCCTACTTT 420
CTTATGCAAG CCTTTTCTTT TTATTATATC ACAGATAAGT ATT	TCTTTCA CAATTGAATT 480
GAACTTCCCA TCTATTTTCT ATAAATCCTA AATGCCATAA TGC	TTTCAAT TCCTGTCATT 540
TTGTGATATC ATGTAGAAGA AATGAACTAA TCCACAGTGG CTT	ATTCCAA GTATACCACT 600 616
TGGGCTTTGG CAGTAG	010
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1973 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CTAATATAGA ATAATCACCG CCGTTGTGAA AGAACGATTG GA	TGATAATC CAATCGTTCA 60
CCCAAATTCC AAGACCTIGG GTTTCCAATT TAGGCATGAG AC	ACCITIGG TGGCTGCTGC 120
CONCOUNTER AGENTAGGT GATTGTTGAR ARAGAGGARA AR	GGAGAAGA AATGAAACCA 180
CONNUMBER OF THE PROPERTY OF CANALITY CONTROL OF CONTRO	ATGCAAAA AACAGCAGAA 240
GTCCTAGACC GCTTCGGTGT AGCCTACGAA AAGAAAGTTG 'IT	TCCGCACA CCGTACACCA 300

9	7/37026			•	1	PCT/US97/05306	
	GACCTCATGT	TCAAACATGC	AGAAGAAGCC	CGTAGTCGTG	GCATCAAGAT	CATCATCGCA	360
	GGTGCTGGTG	GCGCAGCGCA	TTTGCCAGGC	ATGGTAGCTG	CCAAAACAAC	CCTTCCAGTC	420
	ATTGGTGTGC	CAGTCAAGTC	TCGTGCTCTT	AGTGGAGTGG	ATTCACTCTA	TTCTATCGTT	480
	CAGATGCCGG	GTGGGGTGCC	TGTTGCGACC	ATGGCTATCG	GTGAACTCTT	TTTTAGGATA	540
	TAAAACAGGG	TTCGGATAAG	TTTTTTTGCA	AGGTGGATGA	TGGCTACATT	GTAATGTTTT	600
	CCTTATTCTA	ACTTAGTCTT	AAGATAGGTC	TTAAAACCAG	GTGAAAAGCG	AAGGCATGCT	660
	TTGGCAGCTT	GTATGAGTAC	CTACCGCAGA	TGAAGGGAAC	CCCGTTTGAC	CATCCTTCCA	720
	ACTAAATCAA	TCTGACCTGA	CTGATAAATA	GAAGAATCCA	GTCCAGCGAA	AGCTTGTAAT	780
	TGAGCAGGAT	TATCAAAGGC	ATGAATATTT	CGAATCTCGG	CTAAAATGAC	CGCCCCTAAA	840
	CGATTCTCAA	TCCCAGTAAC	CGTCGTGATG	ACCGAGTTTA	ACTCAGCCAT	CAAGTCATTG	900
	ACACATTTTT	CCGCCTTGTC	AATGAGCCTC	TTGTAATGTT	TGATGTTTTC	ATTACACGAG	960
	ATAAAACGTC	TATGCGTTAT	CAAACTCATT	ACCAATTAAA	ACAAATGTGG	TTAGATCCTT	1020
	TCGGAAATTG	TCAAGCGATT	GGAGGAAATG	AACTAATCCA	CAGCGGCTTA	TTCCAAGTAT	1080
	ACCACTTGGG	CTTTGGCAGT	AGCTAACTGC	GCTAAATATA	ATATAAGGAG	GAGTAAAATG	1140
	AAGACAGTTC	AATTTTTTTG	GCATTATTTT	AAGGTCTACA	AGTTCTCATT	TGTAGTTGTC	1200
	ATCCTGATGA	TTGTTCTGGC	GACTTTTGCC	CAAGCCCTCT	TTCCAGTCTA	TTCTGGACAA	1260
	GCGGTGACGC	AGCTAGCCAA	TTTAGTTCAA	GCTTATCAAA	ATGGGCAATC	CAGAACTTGT	1320
	ATGGCAAAGC	CTATCAGGAA	TTCATGGTCA	ATCTTGGCCT	GCTGGTTTTG	GGTTCTATTT	1380
	ATCTCTAGGT	GTAATATAAA	CATGTGTCTC	ATGACGCGCG	TGATTGCAGA	ATCGACCAAC	1440
	GAGATGCGCA	AAGGTCTCTT	TGGTAAGCTT	GCTCAGTTGA	CGGTTTCTTT	CTTTGACCGT	1500
	CGACAAGATG	GCGATATCCT	GTCTCATTTT	ACCAGTGATT	TGGATAATAT	CCTCCAAGCC	1560
	TTTAACGAAA	GCTTGATTCA	GGTCATGAGC	AATATTGTTT	TATACATTGG	TCTGATTCTT	1620
	GTCATGTTTT	CGAGAAATGT	GACGCTGGCT	CTCATCACCA	TTGCCAGCAC	CCCATTGGCT	1680
	TTCCTTATGC	TGATTTTCAT	CGTGAAAATG	GCACGTAAAT	ACACCAACCT	CCAGCAGAAA	1740
	GAGGTAGGGA	AGCTCAACGC	CTATATGGAT	GAGAGCATCT	CAGGCCAAAA	AGCCGTGATT	1800
	GTGCTAGGAA	TTCAAGAGGA	TATGATGGCA	GGATTTCTTG	AACAAAATGA	GCGCGTGCGC	1860
	AAGGCAACCT	TTAAAGGAAG	AATGTTCTCA	GGAATTCTTT	TCCCTGTCAT	GAATGGGATG	1920
	AGCCTGATTA	ATACAGCCAT	CGTCATCTTT	GCTGGTTCGG	CTGTACTTTT	GAA	1973

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1209 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

(TAAACCAAT	AGTTGCTGAA	GACCATAATC	CAGCTGCTGT	TGTTAAACCT	TTAACTTTTT	60
(GATTAGTTAC	CATGATTGTT	CCTGCCCCTA	GGAAACCCAA	GCCACTAATT	ACTTGGGCTC	120
(CATTCGACT	AGGATCACCG	CTACCATAAC	GACTAGTGAT	GAACTGATTT	GTCATCATTA	180

WO 97/37026				!	PCT/US97/05306	
CAACACAAGT	TCCCAAACAA	ACTAGTAAGT	AGGTTCTAAT	CCCTGCTGCT	TGGTTTTTGA	240
CTCCTCGCTC	ATAGCCAACA	ATGCCACCGA	AAAGAATCGC	TAAAAAGCAC	CTAAGAAGTA	300
TTTCCCAAAT	ACTCAGTTCG	TATGAAAGAT	TCATATTATC	TCTTACCTCG	TTTACCTTGG	360
AATAGGCTTG	ATAAATAAAG	AGCTGCACTA	GACATAATCA	TTAAAATTAC	AGAATAAACA	420
AACATCATTG	CCTGTGCATT	TAAAGTTGCT	GTTTCATCAG	TAGACTGTTT	AATAACGATT	480
CCCAATGGTT	GGAAAAGTGG	ATGGTACAAG	AATACAGATA	AGTCATAGTC	AGATAATAAA	540
GAATTAAAGT	TTAACACAAC	TACTGATAAT	ACGACTGGTA	AAATATACGG	TATAATAACT	600
CGCACCATAG	TGTAGAAACT	AGATGCACCC	ATACTACGTG	CAGCTTCTTC	CATATCATTA	660
TCTATACTGA	AAAATACAGC	CCGAATCATT	CTATAAGAAA	ATGGTAATTT	TTGAATAGTA	720
TATGCAATAA	GTAAAATAAT	TACTGTTCCT	ACTAAAACTA	AATTAAATAG	TATTAAATGA	780
GGTATATTAT	AAGTGAACAT	TAATCCTAGT	GCAATCAATG	TACCTGGCAA	TATCCATGGT	840
ATCAGTGCAC	CATACTCAAA	GAATTTATCG	AACTTACTCT	TGTTTTTATG	TACAATACGT	900
GAAATTACTA	TTGCTATAAT	TGTAGCAATT	ACCGCAGCTA	AAATTGCATA	AACAACGCTG	960
ACTAGGTAAG	GACGAAATGA	TTGAGCATCT	GTAAATAAAT	TAGCATAGTT	CGCTAACGTA	1020
AATTTAGATA	GATCTAAAGT	TCCCGTCTTG	ATCGTCAACG	AGTCTGTAAA	CGAGTATAGA	1080
ATTATCAAAA	CTATTGGTAA	CATATAGATT	GCAAACAATA	CATACGCAGC	AATGTGAGCA	1140
AGAATTATTC	CATAATGGAG	AAGAAAATTA	TCTGCTTCCT	TAATACTAGC	CTGGTTTTCG	1200
AAACAGAAT						1209

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 717 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CTAAGTCCTT	TTAGTTTTAT	CTTAATTCTC	TTATTGTTGT	AATAATCAAT	ATAGTCTATA	60
ATGGCTTGTT	CCAATTGCTT	AAGCGACTGA	AACGACTTCT	CATAACCGTA	AAACATTTCC	120
GATTTCAGAA	TCCCAAAGAA	AGATTCCATC	ATACCGTTGT	CTTGGCTGTT	TCCCTTGCGT	180
GACATAGATG	CTTGAATTCC	CTTACTCTTA	GGAACCGATG	ATAAGAATCG	TGTTGGTATT	240
GCCAGCCTTG	GTCACTATGG	AGAATCGTAT	TCTCGTAGTG	CTTCTCTGTG	AATGCCTGTT	300
CCAACATTGT	TTGTACTTGT	TCTAAGTTGG	GTGAAGTTGA	AAGATTATAG	GCGATAATTT	360
CGCTATTAAA	GCCATCTAAA	ACTGGTGATA	AGTAAAGCTT	TTGAGTACTT	GCTGGAATGG	420
CAAATTCTGT	CACATCTGTG	TAGCACTTTT	CCATTGTTTT	AGAGCCTTCA	AATTGGCCTT	480
GAATGAGATT	CTCTGCCTTC	TTACCAACGT	CTCCTTTATG	AGAAGATTTC	GTTTCTGTCG	540
CATTTTAGCT	TGTAAATTGA	GTACTTTCAT	CAAGCCTTGA	ACTOTTTTAT	GATTTACCAG	600
		CTAAATGAAT				660
		CAGCTTTAAG				717

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 851 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

	ATTTAACC AAGTCGTAG				60
GCTGATTGCT TGC	CAATTTC TCAATCTGG	C GAGCCTTATC	CCTACCACCC	ACATAATTAA	120
CCACACGAAC TTC	GACATCT GAGTGAGCT	AAATCTGACG	CGCTACTTGG	TAAATTTGAG	180
TAGCCAACTC ACG	SACTCGGT GCAGTAATC	CTGCTTGTAC	ACTATCGCTA	GCTTCATCTA	240
ATTGCTGGAA AAT	CGGTAAC AAGAAAGTA	GAGTCTTACC	TGAACCTGTT	TTTGATTCTC	300
CTACTAGGTC ACG	SACCTGCC AAAACAATA	GAATCAACTT	GTCTTGCACC	TCTGTTGGAG	360
TTGTAAATTT TAA	CTCCTCC AAGGCTTCTC	TAATATAGTT	TTTAAATTGA	AATTTCGTAA	420
ATGACATAAC ATC	CTCGATT CTATCTATC	TATCAATTAT	ACCATATTTT	ATTCCATTAC	480
AGTAGTCTCA CTT	ATTTAGG CTATTTCCAC	TAGCTTCTCT	AGTAAGAAAA	GGCTGGAATT	540
TTATAGTTCC AAC	CTCTTTT CAGTTATTAT	TTCCAGTTTA	ACATAGCATT	CAAGCCATAG	600
TGATCACTCA CTT	GTGGACT CTTGTTACCA	TCAAATACGA	CATGTAAATT	TTCCACCGCT	660
AACTCTTTGG TAG	TAAAGAC ATAATCGATT	CGAAGGGGTT	CAGTGTTCCC	TTTCCAGCCA	720
TCAATTTCAG GCG	GAACAGT ATAGCTACCA	CTTTTCTCTT	GAGCAACTTC	AAATGCGTCT	780
TGTAAGCCTA ATG	GACTAGC TAAAATAGCT	TGGTAACCTT	CCCTGACCTG	CTGGGTTGTT	840
AAAATCTCCA G					851

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CTGTTGAGAT	TGTTACGAAA	TAACTGAAAA	TATTTAAGGA	GAAAATATAT	GTTGAAACAC	60
TTAAACTTAA	AAGGTCACTT	ATTGACAGCC	ATTTCCTATA	TGATTCCAAT	TGTTTGTGGT	120
GCAGGATTCT	TAGTTGCCAT	TGGTTTAGCA	ATGGGGGGTG	GTGTTCCTGA	CGCTCTTGTA	180
GCAGGAAAAT	TCACTATCTG	GGATGCTTTA	GCAACTATGG	GTGGTAAAGC	CCTTGGTCTC	240

	PCT/US9//05300
WA 97/37026	

TTGCCAGTTG	TTATTGCTAC	AGGTTTGTCT	TACTCGATTG	CTGGTAAGCC	AGGGATTGCA	300
CCACCAMALAC	TTGTTGGTCT	AATTGCCAAT	TCTGTTGGTT	CAGGGTTTAT	CGGTGGTATC	360
					CAAAGTACCA	420
TIGGGAGGII	ALCOMOTAR	CCCAACCTTG	ATTATTCCTT	TTGTACCTCT	TTGGTAAGTA	480
AACTGGATTA	AAGGIITAAT	* mmccccccc	CTATCCCAGC	СТТТАССААС	TGGTTGACGA	540
GTTTGATTAT	GATTTATATT	ATTGGGGGGG	CIAICOCAGE			541
G						741

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1324 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTGGAATGAG	TGTATAAGCC	CAGCCCAAGT	TTTGCATCCG	TTCAAAGTTC	CAAGACCCTT	60
		CAAACTTTTT			TGAAGTTTTT	120
•	GTTTTCAGTC			TCTAGGATAT	CGCCGATTGG	180
CAGICAIGAI	CTTCCGCCTC	CTCCGCCACC	ATTTCCACCA	GTTTTAGAAA	GGTGAAGGTA	240
GICGITAGAA	ATACCARCAC	CGATAGCACC	GAATCCGATT	AGAGTAATAT	CTGACACAGC	300
GATAAGAGCG	ALACCAACAC	CGAAGAATGG	CCATACTTCA	CGAGTTGCCA	TCATGTTGAT	360
AGCGAGAACG	MAACCAAGAG	CAACGACCAT	ACCACCACCG	ATAGCCATAC	CATCTTTGAG	420
AACCATGGCG	TAACCAACGG	CCATACTTTC	TACAGTTTCA	GTTGGTACCA	TAAGGAGAAG	480
CCAGTCTGGC	ATGGCACTAA	CARCITIC	CAAAAGTAGC	GCAATGAAAT	GCGCACGCTC	540
AGCTGCAGGA	AGCGCGATAC	GAAGICCIIG	ACCATCTGCA	GTATGAACCA	AACCAACTGA	600
CACAGCGCCG	AAGTCACCTT	TTTTAGCGGC	TCCACCTACG	GCAAGAGGGA	TAGCAACCGC	660
AATTGTACGA	ACAATCATTG	TCAAGAAAAG	CONCORCA	AGNACCATGA	TAATGGCAGC	720
TTGGGCAACA	CCGATACCAG	TCTTGGTAAA	GICACCACCA	AGAACCATGA	ACCAACCAAG	780
AGCGACAGAA	GCAAGTGCAG	CATCAGGAGC	GATAGCAGCA	CCGATATTTG	CCTCTTACAA	840
GGCAATCATT	TGAAGCGATC	CACCGAGGAT	AATCCCTGCT	TCCAAGTGGA	ACCATCCCTT	900
GCCCAATAAG	GGTACAGGCT	' ACAAGTGGTT	GGTGAAATIG	GAACTGGTCG	ACACATOTT	960
CAAGACCTGC				TAGAAATAAT	AGACAIGIII	1020
AAAATCCTTT	CATAAATAA	GGCTTATTTC	ACATTGGCTT	= :	GTCAAACAAA	1080
TCTTTTTAC	AATCATTTG	TACTTTACCO	ACATCAAATT	CAACACCCAA	GTCACGCATT	1140
TTTTCAAATC				CGGTATTGAC		
CCTGTTGAG	GAGCCATAGA	A ACCAACGTT	AGAGTCTTGA	TTGGCACGCC	GCCTTCGATG	1200
GCACGAAGG	CATCTTGAG	TGTTTCAAA	AAGATAAGGG	CATGTGTTTC	TCCAAAACGT	1260
CCGTCTTTT	AAATATCAA	r CAGTTTTTG.	A ATTGGAACC	CGTTAGCCTT	GACATTACCT	1320
GGAG	- 					1324
GOAG						

⁽²⁾ INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 663 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

TCATAAGGAA GCTGTCGCTC GTTCCGCTAA GGTATGGACA CCACGGTGAA CATTGGCATT	60
GTCCTGCTCA TAGTAACTGT TAATAGCTTT CAGAACTACT AGTGGTTTTT GTGTCGTCGC	120
AGCATTGTCC AGATAGACCA GAGGTTCATC ATTGACAATC TGATCTAAAA TTGGAAAATC	180
CTTGCGAATC GCTTCTACAT CTAACATAGG CTTCCCCTTA GCGTTTTGAC AATTTCTCTT	240
CGATAGTTGC AATCATTTCA TCACGAACTT CCTTGACTGG AATCTCCACG ATAACAGATC	300
CAAGGAAACC ACGAACAACC AAACGCTCTG CAGTTGCCTT ATCCAATCCA	360
GGTAATACAT GTCTTCTGGA TCAACTTGTC CGATAGACGC TGCGTGTCCT GCAGTGACAT	420
CATTITICATC AATCAAAAGA ATTGGGTTAG CATCTGAACG CGCTTGGTCT GAAAGCATGA	480
GAACACGGCT CTCTTGTTGC GCATCTGCTC CCTTAGCACC CTTGATGATG TGGCCGATAC	540
CATTGAAAGT CAAAGTTGCT TTTTCAAGGA TAACCCCATG TTGTAGGATA TTTCCGATAG	600
AGTTGCAGCC ATAGTTAGTT ACACGAGTAT CAATCCCTTG TACCTGACGA CCACTTGAAA	660
GAG	663

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 649 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CTAGTTGG	AT GGCTTCAATA	AAGGATGATT	TGGCTGCTCC	ACTATTGGCA	ATGAGCTGAA	60
AACAGATA	TA TTCCATTTCT	TCGTCATCTT	ATTTCTCCTA	TCCATTCAAG	TGCTTGTTCC	120
AGAACTTT	TG CTCCATTCAT	CATTCCGTAA	TCCCGCATAT	CAATGGTATC	TACAGGGATA	180
TTTCCTGC	AA TTTCTTTCAC	AGCAAGTAAC	TCATAACGAA	TTTGTGGCCC	AATTAGAATG	240
ACATCTGC	TT CATGGATATT	CTTTTTAGCT	TCTGTCATTG	ATTTTGCTTG	GATAGAAATT	300
TCAATCCC	AC GTTCAGTCGC	ACTTTGTTGC	ATTTTTTAA	CAAGCATACT	TGTCGACATT	360
CCCGCATT	AC ATACTAATAA	AATTTGTTTC	ATAATCTTAA	CCTTCCATTT	CTTGTTCAAC	420
AACTTTGT	CA TTAACTTTGA	TAAATGGAAT	GTATAGAAGA	ACTCCAAGTG	CAAAGATGAT	480

NO 97/37026 PCT/US97/05306	
GAATTGAACT AGAACTGCTC TCACGTCCCC TGCTGTTGCT AACCATGCAT TTAAGAATAC	540
TGGTGTAGTC CAAGGAACTT GTATAAATGC AGGACTCATG AATCCTGTAA CTGTTGCTAA	600
GTAGCTGATT AAAATACCAA GGACTGGAAC TGTGATAAAT GGAATAGTC	649
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 497 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CTTGGTATTA TTTGAAATCA GATGGTTCTT ATGCAAAAAA TGCATGGCAA GGAGCTTATT	60
ACCITAAATC AAACGGTAAA ATGGTACAAG GTGAGTGGGT TTATGATTCT TCTTACCAAG	120
CCATGGTATT ACTTGAAATC AGATGGTTCA TATGCTCGCA ATGCATGGCA AGGAAACTAC	180
TATTTGAAAT CAGATGGTAA AATGGCTGTC AATGAATGGG TTTATGATGC CACCTATCAA	240
GCATGGTATT ATTTGACATC AGATGGTTCT TATGCTTACA GTACATGGCA AGGAAATTAC	300
TATCCTAAAA TCGGATGGTA AAATGGCTGT CAATGAATGG GTTGATGGTG GACGTTATTA	360
TGTTGGCGCT GACGGAGTTT GGAAGGAAGG TCAAGCAAGT ACAGCTTCTC CTAGTAATGA	420
TAGCAATAGT GAATATTCCT GCTGCTTTAG GAAAGGCAAA AAGTTATAAT TCGTTATTCC	480
ACATGTCAAA AAAAACG	497
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1282 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CTAGTCTAAA TTTTTTAAAA CAAAGGTCAA AGATAGTCAA TATCAGTAAT CATAACTAAG	60
TAAACAAAA GAGGTAAAGA ATATGAATAA CAACTITAAT AATTTTAATA ACATGGATGA	120
TITATITAAC CAATTGATGG GTGGTATGCG AGGATACAGT TCTGAAAATC GCCGTTACTT	180
AATTAATGGA CGCGAAGTCA CACCTGAGGA ATTTGCTCAC TATCGTACGA CTGGTCAATT	240
ACCAGGAAAT GCAGAAACTG ATGTGCAAAT GCCACAACAG GCATCAGGTA TGAAACAAGA	300
CGGTGTCCTT GCAAAACTAG GTCGAAACTT GACAGCAGAA GCGCGTGAGG GCAAGTTGGA	360
= = ==== ·	

WO 97/37026					PCT/US97/05306	i
TCCTGTTATC	GGACGAAACA	AGGAAATTCA	AGAAACATCT	GAAATCCTCT	CACGCCGCAC	420
CAAGAACAAT	CCTGTTTTGG	TCGGAGATGC	AGGTGTTGGT	AAGACAGCAG	TTGTCGAAGG	480
TCTAGCGCAA	GCCATTGTGA	ACGGAGATGT	TCCTGCTGCT	ATCAAGAACA	AGGAAATTAT	540
TTCTATTGAT	ATCTCAGGTC	TTGAGGCTGG	TACTCAATAC	CGTGGTAGCT	TTGAAGAAAA	600
TGTCCAAAAC	TTAGTCAATG	AAGTGAAAGA	AGCAGGGAAT	ATTATCCTCT	TCTTTGATGA	660
AATTCACCAA	ATTCTTGGTG	CTGGTAGCAC	TTGTGGAGAC	AGTGGTTCTA	AAGGGCTTGC	720
GGATATTCTC	AGCCAATCGA	TCTCTCTCGT	GGAGAATTGA	CAGTGATTGG	GGCAACAACT	780
CAAGACGAAT	ACCGTAACAC	CATCTTGAAG	AATGCTGCTC	TTGCTCGTCG	TTTCAACGAA	840
GTGAAGGTCA	ATGCTCCTTC	AGCAGAGAAT	ACTTTTAAAA	TTCTTCAAGG	CATTCGTGAC	900
CTCTATCAAC	AACACCACAA	TGTCATCTTG	CCAGACGAAG	TCTTGAAAGC	AGCGGTGGAT	960
TATTCTGTTC	AATACATTCC	TCAACGTAGC	TTGCCAGATA	AGGCTATTGA	CCTTGTCGAT	1020
GTAACGGCTG	CTCACTTGGC	GGCTCAACAT	CCAGTAACAG	ATGTGCATGC	TGTTGAACGA	1080
GAAATCGAAA	CGGAAAAAGA	CAAGCAAGAA	AAAGCAGTTG	AAGCAGAAGA	TTTTGAAGCA	1140
GCTCTAAACT	ATAAAACACG	CATTGCAGAA	TTGGAAAGGA	AAATCGAAAA	CCACACAGAA	1200
GATATGAAAG	TGACTGCAAG	TGTCAACGAT	GTGGCTGAAT	CTGTGGAACG	AATGACAGGT	1260
ATCCCAGTAT	CGCAAATGGG	AG				1282

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 828 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CTTGATATAA	TTCTTGTTTC	GAAAGATTCT	CCTTAGGTAT	ATCTATTCCT	CCACTAGTAA	60
ACGGTAATTC	CAAAACAGAG	TTTACTTCGT	TAAATGTAAG	CCAATATTTA	ACTTTATCTT	120
TATACCTTTC	TAAAACTGTT	CGAGCAAATT	TTTCATAAAA	ATGAATCATT	CTTCCTATCA	180
ATCCATCCAT	GATATTTTCT	TGCTAAATAT	AATGGAGTCT	CATAGTGTGA	AAGAGTTACA	240
AGTGGTTCTA	TCCCGTGAGC	ATGTAGTTCA	TCAAACAATT	CATCATAATA	TTTCAATCCA	300
GCTTCGTTAG	GTTCTTCCTC	ATCTCCTTTT	GGAAAAATTC	TACTCCATGC	AATAGAAGTA	360
CGAAAAACAT	TAAAGCCCAT	TTCAGAAAAC	AAGGATATAT	CTTCCTTATA	TTTATGATAA	420
AAATCAATAC	CTATCAATTT	TAAGTTATCT	TCTGTAGGAT	TTTCTGTTGC	TTCTCCTAAT	480
CCACCTTTGG	GTAACACATC	CTGAACTGAT	AAGCCCTTAC	CATCTTCATT	ATATGCTCCC	540
TCTACTTGAT	TAGCTGCAAC	AGCTCCACCC	CAAAGAAAAT	CATCTGGAAA	AATGGTCATA	600
ACTTTCCTCC	ATTATAATAT	TACCAGTAAT	TCCTTAGAAA	TGCTCGATTG	TCTGATTATT	660
AGGTAATATT	AATACATCTA	GAAAATCATT	GGTATTCGTT	ACAATTACTG	GTGTAACTGT	720
TTCGTAGCCT	TTAGTCTTGA	TTAAATTCAA	GTCCATTTCA	AAAATCAACT	GATTTTTGAA	780
AACTCTGTCT	CCTTCTTCTA	CATGACTAAT	AAAACCTTGA	CCTTTTAG		828

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1466 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

AGCTATGGTC AGACTCAGAT TGATGGCGTT GCTTATGCCA AGTACGATAT CTTCCGTTTA	60
AAGAACGGGA AAATTGTGGA GCATTGGGAT AATAAGGAAG TCATGCCTAA GGTAGAAGAC	120
TTGACCAATC GAGGGAAGTT TTAAATTGAG GACAAAGAAT GATTGAATAC AAAAATGTAG	180
CACTGCGCTA CACAGAAAAG GATGTCTTGA GAGATGTCAA CTTACAGATT GAGGATGGGG	240
AATTTATGGT TTTAGTAGGG CCTTCTGGGT CAGGTAAGAC GACCATGCTC AAGATGATTA	300
ACCGTCTTTT GGAACCAACT GATGGAAATA TTTATATGGA TGGGAAGCGC ATCAAAGACT	360
ATGATGAGCG TGAACTTCGT CTTTCTACTG GTTATGTTTT ACAGGCTATT GCTCTTTTTC	420
CAAATCTAAC AGTTGCGGAA AATATTGCTC TCATTCCTGA AATGAAGGGG TGGAGCAAGG	480
AAGAAATTAC GAAGAAAACA GAAGAACTTT TGGCTAAGGT TGGTTTACCA GTAGCCGAGT	540
ATGGGCATCG CTTACCTAGT GAATTATCTG GTGGAGAACA GCAACGGGTC GGTATTGTCC	600
GAGCTATGAT TGGTCAGCCC AAGATTTTCC TCATGGATGA ACCCTTTTCG GCCTTGGATG	660
CTATTTCGAG AAAACAGTTG CAGGTTCTGA CAAAAGAATT GCATAAAGAG TTTGGGATGA	720
CAACGATTTT TGTAACCCAT GATACGGATG AAGCCTTGAA GTTGGCGGAC CGTATTGCTG	780
TCTTGCAGGA TGGAGAAATT CGCCAGGTAG CGAATCCCGA GACAATTTTA AAAGTGCCTG	840
CAACAGACTT TGTAGCAGAC TTGTTTGGAG GTAGTGTTCA TGACTAATTT AATTGCAACT	900
TTTCAGGATC GTTTTAGTGA TTGGTTGACA GCTACAATGA CATTGGTCGG TTCCTTGAGC	960
AAGAGATAGA TTAGCCAGAC AGTCATGCCC AAAATCCCTC CAGGTAAGAG CATAGACCGT	1020
TGCACATTAA GTACGATTAA AAAAGTGATA ATGGCAAGAA AACTTGCTAC TGCTTGTAAT	1080
AAAAAGGTTG TTAGTGTCAT ATTAGTTCAT CAATACCAAG GCGACAGAAG TTCCTGCCCC	1140
TAAAGCGAGG GTAATGAGCA GGGATTCAAA CATCTTACTC ATACCAGAGT TTATGTGGTT	1200
GGTCATAATA TCACGGACCG CATTGGTCAA GGCAATACCT GGTACAAACG GCATGACCGC	1260
ACCAGCTATA ATCAAATCCT GCCCGTTTGA ATGGAAAAAC CCTGTGTTAG CCGAGCCCCA	1320
COCARAGGA TARROCTOCAT CARAGGCTGT CACAAAGGA	1380
AAACTGGGGC CAATTTATCC CCCAAAGACA AAAGCTCCAT CAAGAGGTC GCCACTCCTG ATTCGGATAA ATTTTCCACA TAGAAGGAAA AGGCAAAACC AAATAAGGTC GCCACTCCTG	1440
	1466
CCCCAAGTGC TCGTAAATAT TCCGCT	

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1257 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

AAGGTTCTTC	GTAAATGTAC	ACCATTCGGA	TGCTCAAAAT	GGGTTCTGAA	GCTGCTGCTA	60
AATCTGCACA	AGAACACGGT	CTTAAATCAG	TTGAAGTTAC	TGTAAAAGGT	CCAGGTTCTG	120
GTCGTGAGTC	AGCTATTTCG	TGCGCTTGCT	GCCGCTGGTC	TTGAAGTAAC	AGCAATTCGT	180
GATGGGACTC	CAGTGCCAAC	ACAATGGTGC	TTCGTCCTCC	AAAACGTCGC	CGTGTATAAT	240
CATCGCATTA	CACTGCTTTT	CGTTTAAGAG	GGAGTAACTA	AATGATCGAG	TTTGAAAAAC	300
CAAATATAAC	AAAAATTGAT	GAAAATAAAG	ATTATGGCAA	GTTAGTAATC	GAACCACTTG	360
AACGTGGCTA	CGGTACAGCT	CTTGGTAACT	CTCTTCGTCG	TGTACTTCTA	GCTTCTCTAC	420
CAGGAGCAGC	TGTGACATCT	ATCAACATTG	ATGGTGTGTT	ACATGAGTTT	GACACAGTTC	480
CAGGTGTTCG	TGAAGACGTG	ATGCAAATCA	TTCTGAACAT	TAAAGGAATT	GCAGTGAAAT	540
CGTACGTTGA	AGACGAAAAA	ATCATCGAAC	TGGATGTTGA	AGGTCCTGCT	GAAGTAACAG	600
CTGGTGACAT	TTTGACAGAT	AGCGATATTG	aaattgtaaa	TCCAGATCAT	TATCTCTTTA	660
CAATTGGTGA	AGGTTCTTCT	CTAAAAGCGA	CTATGACTGT	TAACAGTGGT	CGTGGATATG	720
	TGAAAATAAA					780
TTTATACACC	AGTTACAAAA	GTCAACTATC	AAGTGGAACC	TGCTCGTGTA	GGTAGCAATG	840
	CAAATTAACC					900
CTTTAGGGCT	TTCAGCACGT	ATTTTGACAG	AACATCTTGA	TTTGTTTACA	AATCTTACTG	960
AGATTGCTAA	GTCAACTGAA	GTGATGAAAG	AAGCTGATAC	TGAATCTGAC	GACCGTATTT	1020
TAGATCGTAC	GATTGAGGAA	CTGGACTTGT	CTGTGCGTTC	ATACAACTGT	TTAAAACGTG	1080
	TACTGTGCAT					1140
	ACGCAAGAGT					1200
GATTAAAAGA	TAAATAAAGG	AGGAATACAT	GGCTTACCGT	AAACTAGGAC	GCACTAG	1257

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1332 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

CTATTGAAAC	AAGAAAATA	GAGAATCAAA	GA AAGAGAAC	TTATGAATAT	TCAAGAAGAA	60
ATTAAGAAAC	GTCGTACCTT	TGCCATTATC	TCCCACCCGG	ACGCGGGGAA	AACAACCATC	120
ACTGAGCAGT	TACTCTAACT	TTGGGGGTGA	GATTCGTGAG	GCTGGTACGG	TAAAAGGGAA	180
GAAACAGGG	ACTTTTGCTA	AATCTGACTG	GATGGATATC	GAGAAGCAAC	GTGGGATTTC	240

				PCT/US97/05306	
ጥርጥርጥባን ጥር ር	ь атттсаста	CGACGGCAAG	CGCGTGAATA	TCTTAGACAC	300
					360
					420
					480
					540
					600
					660
					720
TTCAGAGGAA	GCTATTCTGG	CTGGAGAATT	GACGCCTGTC	TTTTTCGGTT	780
AAACTTTGGT	GTGCAGACCT	TCCTTGAAAT	CTTCCTCAAG	TTTGCTCCAG	840
TCACAAGAAA	ACAGACGGTG	AAATTGTGGA	TCCTTATGAC	AAGGATTTCT	900
CTTTAAAATC	CAAGCCAACA	TGGATCCTCG	TCACCGTGAC	CGTATTGCCT	960
CGTATCAGGC	GAATTTGAGC	GTGGCATGAG	TGTCAATCTC	CCTCGTACTG	1020
CAAACTATCT	AATGTTACCC	AGTTTATGGC	GGAGAGTCGT	GAGAATGTGA	1080
AGCAGGTGAT	ATTATCGGGG	TTTACGATAC	CGGTACTTAT	CAGGTTGGGG	1140
GGTTGGAAAA	AACAAGTTTG	AATTTGAACC	ACTGCCAACC	TTTACTCCTG	1200
GAAAGTTTCT	GCTAAGAATG	TTATGAAGCA	AAAATCCTTC	CACAAGGGGA	1260
GGTGCAAGAA	GGAGCCGTTC	AGCTTTATAA	GAATTACCAA	ACAGGTGAGT	1320
AG					1332
	GAGGACTTCT GTGGACTCTG CGTGGCATTC GATCTCTTGC ATCGGGATGG TACAAAGGGG TCCTTTCTAC TTCAGAGGAA AAACTTTGGT TCACAAGAAA CTTTAAAATC CGTATCAGGC CAAACTATCT AGCAGGTGAT GGTTGGAAAA GAAAGTTTCT	GAGGACTTCT CAGAAGATAC GTGGACTCTG CCAAGGGGAT CGTGGCATTC CAGTCTTTAC GATCTCTTGC AAGAATTGGA ATCGGGATGG GGAAAGCCTT TACAAAGGGG ATGAGCGTTT TCCTTTCTAC GAGCAAGTCA TTCAGAGGAA GCTATTCTGG AAACTTTGGT GTGCAGACCT CCAAACTATCT CAAGCCAACA CGTATCAGGC GAATTTGAGC CAAACTATCT AATGTTACCC AGCAGGTGAT ATTATCGGGG GGTTGGAAAA AACAAGTTTG GGAAAGTTTCT GCTAAGAATG GGAGCGATCA	GAGGACTTCT CAGAAGATAC CTATCGTACC GTGGACTCTG CCAAGGGAT CGAGGCTCAA CGTGGCATTC CAGTCTTTAC CTTTATGAAC GATCTCTTGC AAGAATTGGA AGAAATCTTG ATCGGGATGG GGAAAGCCTT TGAGGGCTTG TACAAAGGGG ATGAGCGTTT TGCTAGCCCT TCCTTTCTAC GAGCAAGTCA AGGATGACAT TTCAGAGGAA GCTATTCTGG CTGGAGAATT TCACAAGAAA ACAGACCGTG AAATTGTGGA CTTTAAAATC CAAGCCAACA TGGATCCTCG CGTATCAGGC GAATTTACCC AGTTTATGGC CAAACTATCT AATGTTACCC AGTTTATGGC GGTTGGAAAA AACAAGTTTG AATTTGAACC GGAAAGTTTCT GCTAAGAATG TTATGAACCA GGAAAGTTTCT GCTAAGAATG TTATGAACCA GGAGCCAACAA GGAGCCGTTC AACTTTATAA	TCTGTTATGC AATTTGACTA CGACGCAAG CGCGTGAATA GAGGACTTCT CAGAAGATAC CTATCGTACC TTGATGGCGG GTGGACTCTG CCAAGGGGAT CGAGGCTCAA ACAAAGAAAT CGTGGCATTC CAGTCTTTAC CTTTATGAAC AAGTTGGATC GATCTCTTGC AAGAATTGGA AGAAATCTTG GGCATTGCTA ATCGGGATGG GGAAAGCCTT TGAGGGCTTG TATGACCTCT TACAAAGGGG ATGAGCGTTT TGCTAGCCCT AGAAGATGGA TCCTTTCTAC GAGCAAGTCA AGGATGACAT TGAGCTTTTA AAACTTTGGT GTGCAGACCT TCCTTGAAAT CTTCCTCAAG CTTTAAAATC CAAGCCAACA TGGATCCTCG TCACCGTGAC CGTATCAGGC GAATTTGAGC GTGGCATGAG TGTCAATCTC CAAACTATCT AATGTTACCC AGTTTATGGC GGAGAGTCGT AGCAGGTGAT ATTATCGGGG TTTACGATAC CGGTACTTAT GGTTGGAAAA AACAAGTTTG AATTTGAACC ACTGCCAACC GAAAGTTTCT GCTAAGAATG TTATGAACCA AAAATCCTTC GGTGCAAGAA GGAGCCGTTC AGCTTTATAA GAATTACCAA	GATCTCTTGC AAGAATTGGA AGAAATCTTG GGCATTGCTA GCTACCCTAT ATCGGGATGG GGAAAGCCTT TGAGGGCTTG TATGACCTCT ATAACCAACG TACAAAGGGG ATGAGCGTTT TGCTAGCCCT AGAAGATGGA GACAAACTTT TCCTTTCTAC GAGCAAGTCA AGGATGACAT TGAGCTTTTAAAATC GTGCAGACCT TCCTTGAAAT CTTCCTCAAG TTTTCGGTT TCACAAGAAA ACAGCGGTG AAATTGTGGA TCCTTATGAC AAGGATTTCT CCTTTAAAATC CAAGCCAACA TGGATCCTCG TCACCGTGAC CGTATTGCCT CGTATCAGGC GAATTTGAGC GTGGCATGAG TGTCAATCTC CCTCGTACTG CAAACTATCT AATGTTACCC AGTTTATGGC GGAGAGTCGT GAGAATGTGA GGTTGGAAAA ACAAGTTTG AATTTGAACC ACTGCCAACC TTTACCTG GGAAAGTTTCT GCTAAGAATG TTATGAAGCA AAAATCCTTC CACAAGGGGA GGTGCCAAGAA GGAGCCGTTC AGCTTTATAA GAATTACCAA ACAGGTGAGT GGAGGCAAGAA GGAGCCGTTC AGCTTTATAA GAATTACCAA ACAGGTGAGT

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 932 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ጥጥ ርር እ ርርርጥር	GAACAAATCC	AAGCTGACC'I'	GTTCCAAGAC	CAGACTTGGT	ATGCTCTGGC	60
TIGGREGETE	GCAGAAGTGA	TTGGCTTTCT	AGCTGTTCAG	GAGACTCTTC	TTTGAAGCAG	120
TIATGATGGG	AATCGCTGTC	AAAGGAGCCT	ATCAGGGTAA	GGGCATTGCG	TCAGCCTTGT	180
AAGTCCTGCA	GCCGACAGAC	AAGGAAATTT	TOCTOGAAGT	CAGACAGTCA	AATCAACGAG	240
TIGCICAATT	TTACAAGAAA	CAAACATCC	CAGTTATCGC	TGAGCGAAAG	GCCTACTACC	300
CGCAAGCATT	CGAGGACGCC	AMMAMOATCA	ACAGAGAAAT	AGATGAAGGA	TAGATATATT	360
ATGACCCAGT	AGACATCCTG	MONMONOR	ACTOTOCOCCO	TCTTGAAAAA	CGACGATGAG	420
TTAGCATTTG	AGACATCCTG	TGATGAGACC	AGIGICGCCO	አስርርጥተሞፕርር	TGGCGTAGTG	480
CTCTTGTCCA	ATGTCATTGC	TAGTCAAACT	GAGAGTCACA	ACCITITOO	CCACCCATTG	540
CCCGAAGTAG	CCAGTCGTCA	CCATGTCGAG	GTCATTACAG	CCTGTATCGA	CCCACCACCC	600
GCAGAAGCAG	GGATTACCGA	AGAGGACGTG	ACAGCTGTTG	CGGTTACCTA	CGGACCAGGC	660
TTGGTCGGAG	CCTTGCTAGT	TGGTTTGTCA	GCCGCCAAGG	CCTTTGCTTG	GGCTCACGGA	720
CTTCCACTGA	TTCCTGTTAA	TCACATGGCT	GGGCACCTCA	, 'rggcagetea	GAGTGTGGAG	120

WA 07/37026	PCT/US97/05306

CCTTTGGAGT	TTCCCTTGCT	AGCCCTTTTA	GTCAGTGGTG	GGCACACAGA	GTTGGTCTAT	780
GTTTCTGAGG	CTGGCGATTA	CAAGATTGTT	GGAGAGACAC	GAGACGATGC	AGTTGGGGAG	840
GCTTATGACA	AGGTCGGTCG	TGTCATGGGC	TTGACCTATC	CTGCAGGTCG	TGAGATTGAC	900
GAGCTGGCTC	NTCTNGGGCA	GGANATTTAT	GA			932

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1158 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CTAAACTTTC GCTCATAGGC	ATACAAATTA	ATCCTTTGGC	ATAAGTAGCC	ATAAAATTAA	. 60
CATTTTCTGT TGTAGCTGCT	TGTGCAGAAC	AAATTAAGTC	TCCTTCATTT	TCTCTATCCT	120
TGTCGTCTAT AACAAGAACA	AGTCGTCCCT	TCTGCAATGC	TTCTAATGCT	TCTTGTATTT	180
TTCGATATTC CATTGACTGA	TTATCCTTTC	TGCTAAAATC	CATTTTGATA	TAATAGTTCC	240
TTCGATATTT CTGATTTTGG	AGAGTTATCC	ATCAGTTTTT	GCACATATTT	ACCTAAGATA	300
TCATTTTCAA GATTTACTGT	ACTCCCGACT	TGTTTACTCT	TAAGAATGGT	TTGTTTCAAG	360
GTATGAGGGA TAACAGATAC	TGAAAAGTTT	ACTTTGGAGA	CTTTAGCGAC	AGTCAGACTA	420
ATGCCGTCAA TTGTAATAGA	TCCTTTTTCA	ACTATTAAAT	CTAAAATTTC	TTTTTGTGTG	480
TTGATTTGAT ACCATACAGC	ATTATCATCT	TTTTTTTTTG	ACGAGATTTT	TCCTGTACCA	540
TCAATGTGTC CTGTAACGAC	GTGACCCCCA	AGTCGACCGT	TGACAGATAA	GGCTCTTTCT	600
AGATTCACCT CACTTCCATG	TTTTAATAGA	GTAAGAGCTG	TTCGACTCCA	TGTTTCATTC	660
ATTACATCAA CTGTAAAGGA	TTGATGATTG	AAATGAGTAA	CTGTAAGACA	GATACCATTT	720
ACTGCTATAC TATCGCCTAA	ATGGATATCC	GTTAATATTT	TTGAGGCTTT	AATTGATAGT	780
TTACAATTAC GAGAGTCTTT	CTGTATTCCT	TCAACTTTTC	${\tt CGATTTCTTC}$	AATTATTCCT	840
GTGAACATGG ATAAATCACT	TCACTTTCTA	TGAGATAGTC	NTTTCCTNTT	TGAGAAAAAG	900
CATAAGGTTT CAATCTAATA	GCGTCATTTG	GCAAAGAAAT	GCCTTCACCT	CCGACAGGAA	960
ACTTGGCACT GCCTCCAAAA	ATTTTTGGTG	CAATATATAT	TTTCAGCTCA	TCAACAATTT	1020
GTTGTTCCAA AGCACTCCAA	TTCATTAGAC	TGCCCCCCTC	TACAACTAGG	CTATCAATCT	1080
GCATGTTTCC TTAGATGTTN	GCATTAAACT	CNGATAAGTC	TATATGATTG	CCTTTTTTCT	1140
TTATGGAAAG TATTCCCC			•		1158

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TAAAGGCTGT	TTGGATAATG	TAACATAAAG	AAATCTTGTT	TAGCAGGGAT	TGAATAGAGT	60
TCCTGAAGTG	ATGACTTCTT	TATTAGACAT	AATGTCTGGA	CCCAAGATTA	AAAGAATGGC	120
CCCGAAGAAT	ACGAGCATCA	AAGGTAGCAG	ATGCAACAAC	TGTATCGTGG	AAGATTGAGA	180
GGAACTTAGG	TAATTTAAGA	TTGTCTAAAC	TTTCTTCTTT	CTTACCAAAG	CGTCCTGCTA	240
CTTTATCTAC	AAACCAGATT	GCAAATTGCT	GTTGGTGACC	AATCGCAAAT	CCGCCACCAC	300
CAGTCAAGCG	TTGAGTTGCC	TCAACAGTCA	TATTTGAACT	AACTGCCCAG	TAAAGTCCAC	360
AGATGATACC	AATCGCTGCT	GTACCGTAAG	CATTGCGCAA	TTGTGGTACT	AAGAATAGAA	420
CCATAAGAGA	TACTGTTGCA	GCTAGCCATG	CTGATCAATT	CCCTCAACCA	GTCCTATATC	480
TCAGCCAAGA	GAATCGAGGA	GGTCTTTGCG	GAATCTCCCG	AAAACATCCA	TTCAGAATTA	540
				AAGAATTGAC		600
				ATATGACTCA		660
				TGGTGCAACT		720
				ATGGACGTAG		780
				AGGTCAAACT		840
				TATCTGACCA		900
				AAAAGGAAGG		960
				AAAAACAAAG		1020
				ATGATGCAAC		1080
				AAAATTTTCC		1140
				CGGACCAGAT		1200
				TGATGAAATC		1260
					GACAAACTGT	1320
					TCCTTTTCCT	1380
AGCCTTTCTA	GGAACTATTG	CCCAAGTTGG	CTTATCAATT	TACCTACCTA	TTCTGATTGG	1440
GCAGGTCATT	GACCAAGTCC	TAGTGGCTGG	TTCATCACCA	GT		1482

- (2) INFORMATION FOR SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 895 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

WO 97/37026					PCT/US97/05306	
CTCTGAAGGA	TCCAGAAAGT	CGCTTATATA	TTTTATTAAA	AGACGGTCAG	GTTATTGGGA	60
CTTGTACGGT	TGATTTATCG	ACTAATACGA	ATTACTTCTA	CGGTTTAGCA	ATATTGGAAC	120
CTGAACGTGG	AAAAGGCTAT	GGAAGCTACT	TAGCAAAATC	CCTCGTCAAC	CAACTAATTG	180
AGCAAAATGA	CAAGGAATTT	CAGATTGCAG	TGGAAGATAG	CAATGTAGGT	GCCAAACGTT	240
TGTATGAAAA	AATTGGCTTT	GTCAAACAGA	CTCAGGTGGT	TTATCTGAAT	GAGAAAGGAG	300
CAAGGGATTC	CGAAGTGTAG	AGATATTCGG	ACTGAAATTT	ACTTGAACTT	TTAGTGATGA	360
AACTAATTGT	TCTTGGATTT	CAGCTTTCCT	GATTATGATT	TATGATTAAA	ATCTATGACA	420
CCATGTCTCG	TGATTTGCGA	GAATTTGTCC	CGATTGAGGA	CGGCAAGATC	AAGATGTATG	480
TTTGTGGGCC	AACGGTGTAC	AACTATATCC	ACGTGGGAAA	CGCCCGTTCG	ACGGTAGCTT	540
TTTTGGATAC	GAATTTCGTC	GCTATTTTGA	GTACCGTGGG	TATAAGGTTG	CCTATATTTC	600
CAATTTTACA	GATGTGGATG	ATAAGATTAT	CAACCGTGCC	AGGGAAGAAG	GCATCACGCC	660
TCAGGAGGTT	GCGGATAAGT	ACATCGCTGC	CTTTCGTGAG	GATGTGACGG	CCTTGGGCGT	720
GAAACCTGCG	ACTCGCCATC	CGCGTGTAGT	GGAGTTTATG	GCAGACATCA	TCCGTTTTGT	780
GGAAGACTTG	ATCGAGAAAG	GCTTTGCCTA	TGAGAGTCAA	GGGGATGTCT	ATTTCCGTGT	840
AGAAAAATCC	CACAACTATG	CTAAATTGGC	TAATAAAACC	TTGGAAGATT	TGGAG	895

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 709 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

CTGTTTGCCC	TTTCTTCTAA	TAAAGAATTG	GCAGAACGTG	TGGCGCAGGA	GATTGGGATA	60
GAGTTGGGGA	AATCAAGTGT	TCGCCAATTT	TCAGATGGAG	AGATTCAGGT	CAACATTGAA	120
GAATCAATCC	GTGGGAAACA	CGTCTTTATC	CTACAATCAA	CTAGTTCGCC	TGTAAATGAC	180
AATCTGCTTG	AAATTTTGAT	TATGGTAGAT	GCTTTGAAGC	GTGCGAGTGC	AGAATCTGTC	240
AATGTTGTCA	TGCCTTACTA	TGGGTATGCA	CGTCAGGATA	GAAAGGCGAG	AGCGCGTGAG	300
CCAATCACTT	CAAAACTTGT	CGCAAATATG	CTTGAAGTAG	CTGGAGTGGA	TCGTTTATTG	360
ACCATCGACT	TGCATGCTGC	GCAAA TTCAA	GGATTCTTTG	ATATTCCTGT	GGATCATTTG	420
ATGGGTGCTC	CTCTGATTGC	$\mathbf{AGATTATTTT}$	GAGCGTCCTG	GTATGGTTGG	TTCTGACTAT	480
GTGGTTGTCA	GCCCGGACCA	TGGAGGGGTG	ACTCGTGCTC	GTAAGTTGGC	AGAATTTTTG	540
AAAACATCTA	TCGCTATTAT	TGAGAAACGT	CGTAGCGTTG	ATAAGATGAA	TACTAGTGAA	600
GTTATGAACA	CCATCGGTAA	GGTTGAAGCC	AACCACTTGT	AGCTTCGATT	GATGATATGT	660
ATTGATACCG	CTGGAACGAT	TTGTCATGCG	GCAGATGCTC	TTGCGGAAG		709

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

PCT/US97/05306

WO 97/37026

(A) LENGTH: 816 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

(CTAGAAGAAC	TCCGTCACAA	GCTTGTGACT	TGTAAGCAAG	AACAGAGCAA	GATTGAGGAT	60
•	TCCTTATGAT	TTCATTCCTT	CTTCTATTGG	TCTTGGTTTG	GGGATTTTAT	ATCGGCTATC	120
(GGAGAGGCCT	GCTCTTACAG	GTTTATTACC	TGATTTCAGC	CATGGCATCG	GCTTTTATGG	180
(CTGGCCAGTT	TTATAAGGGG	CTTGGAGAGC	AATTCCATTT	ATTGCTCCCT	TATGCAAATT	240
(CGCAGGAAGG	TCAGGGGACT	TTCTTTTTCC	CATCGGATCA	ACTCTTTCAG	CTGGATAAGG	300
•	TCTTTTATGC	AGGTATCGGC	TACTTGCTTG	TATTTGGGAT	TGTCTATAGC	ATTGGTCGTT	360
,	TGCTTGGTCT	TCTCTTACAC	TTGATTCCTA	GCAAAAAACT	GGGTGGTAAG	TTGTTCCAAG	420
	TTTCAGCAGG	TATCTTGTCC	ATGTTGGTGA	CCTTATTTGT	CTTGCAAATG	GCCTTGACAA	480
,	TCTTGGCGAC	CATCCCCATG	GCAGTTATAC	AAAATCCTCT	TGAAAAGAGT	ATCGTCGCAA	54,0
	AACACATCAT	CCAGAGCATA	CCGATAACAA	CCAGTTGGCT	CAAACAAATC	TGGGTGACAA	600
	ATTTAATCGG	ATAAAAAGGG	CAGGAGTTTT	CCTAGCCCTT	TGTTTACAGA	TTTGACTCGA	660
	ATCTATCAGA	ATGTAAAAAG	CTACCACACC	TAGACATTCA	AAGACAAGGA	AATAAAGATG	720
	AATAAGAAAA	TATTAGAAAC	ATTAGAGTTC	GATAAGGTCA	AGGCCTTGTT	TGAGCCTCAT	780
	TTGTTGACCG	AGCAGGGCTT	GGAGCAATTG	AGACAG			816

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1001 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

						60
CTTGAAGCAG	CTGAAAGCAT	GGGGTCTTCG	GGATTTAAAA	CCTATTCGTA	ACGGGTTGTT	00
TTACCTTTCC	TAGTTCCAAC	CTTACTAGCA	GCTCCTTGCT	TGTATTTATG	AGAGCATTCT	120
				GACTTTCCCT		180
				TGCAATTATG		240
				CCGCTACAGT		300
ATCTGCTCCA	TCCALTTGAG	CCTAXAAAAA	CTACAAAAGG	AAAAATGGCT	GCCATTTATG	360
				AATCTACTTA		420
				TTCTCCAAAC		480
CTTTCCTAAA	MACATCAGGI	AIGGIATITO	1 tradition to	• • • • • • • •		

WO 97/37026	PCT/US97/05306
-------------	----------------

TAGCTTTCAA	TCGTATGGGA	TCTGCTATTT	TCAATACCAT	TCGTATCCCT	TTGATTGCCT	540
TAGTTCTAGT	TGTTCCTATT	TACGACATTT	ATCTCCTACC	TAGCCGTTAG	AAAACGGAAT	600
TTGTTTACAA	ACTTAATTGA	CAGCCTCAGT	ATGGTACCTT	ATATTGTACC	AGGAACCGTT	660
CTAGGGATTG	CCTTCATTTC	TTCCTTCAAT	ACTGGTCTAT	TTGGAAGTGG	ATTTCTTATG	720
ATTACAGGGA	CTGCTTTCAT	CTTGATTATG	TCTCTATCTG	TCAGAAGATT	ACCGTATACT	780
ATTCGCTCAT	CTGTTGCTAG	CTTACAACAA	ATAGCACCAA	GTATTGAAGA	AGCTGCTGGA	840
AAGCTTAGGA	AGTAGTCGTC	TCAATACCTT	TGCTAAGATT	ACAACTCCAA	TGATGCTATC	900
TGGTATCATT	TCTGGAGCCA	TCTTATCTTG	GGTCACAATG	ATTTCAAAAC	TCTCTACTTC	960
TATCCTCCTC	TACAATGTCA	AAACAAGAAC	AATGACTGTA	G		1001

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1064 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GCAAGCAAGT TTTCTGGAAC ATTGAATTGC CTTACTTGCT ACCAAGTGTC TCTATGGTCT TTATCCTAGC CCTAAAAGGT GGGCTGACTG CCTTTGACCA AGTCTTTGCC ATGACCGGTG 186	0
TTATCCTAGC CCTAAAAGGT GGGCTGACTG CCTTTGACCA AGTCTTTGCC ATGACCGGTG 180	-
	0
GTGGTCCAAA CAATGCCACA ACCTCACTTG GGCTCTTGGT TTATAACTAT GCCTTTAAAA 24	
ACAACCAATT CGGTTATGCC AATGCCATTG CCGTAATCTT GTTCCTCTTA ATTGTAGTGA 30	0
TTTCGATCAT CCAATTGAGA GTATCTAAGA AATTTGAAAT TTAAGAGGAG AAGCATGATG 36	0
AAACAAGATG AAAGAAAAGC CCTGATTGGC AAATACATTC TATTGATTCT AGGATCGGTT 420	0
CTGATTTTAG TGCCGCTCCT TGCTACCCTC TTTAGTTCCT TTAAACCCAC TAAGGATATT 48	0
GTAGATAATT TCTTTGGCTT TCCAACCAAC TTCACATGGG ACAACTTTAG CCGTCTCTTA 54	0
GCTGATGGGA TTGGAGGCTA TTATTGGACT CTGTCGTCAT CACTGTCTTG TCTTTACTTG 60	0
CAGTAATGAT CTTTATCCCT ATGGCAGCCT ACTCCATCGC TCGCAATATG AGTAAAAGAA 660	0
AAGCCTTTAC CATTCATGTA TACCCTCTTA ATCCTCGGAA TCTTCGTACC TTTCCAAGTC 720	0
ATCATGATTC CGATTACGGT TATGATGAGT AAACTCGGTT TGGCTAATAC CTTTGGTTTG 780	0
ATCTTGCTCT ACTTGACCTA TGCGATTCCA CAGACCCTCT TTCTCTATGT TGGATATATC 840	C
AAAATCTCGA TTCCAGAAAG TCTGGATGAA GCAGCAGAGA TCGATGGGGC TAATCAATTT 900	0
ACAACCTATT TCCGCATCAT NTTCCCAATG ATGAAACCGA TGCATGCGAC AACCATGATC 960	0
ATCAATGCCC TTTGGTTCTG GAATGACTTC ATGTTGCCAC TCCTTGTCTT GAACCGGGAT 1020	C
TCCAAAATGT GGACTCTGCC TTTGTTCCAA TACAACTACG CAGG 1064	4

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

PCT/US97/05306

WO 97/37026

(A) LENGTH: 586 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	GCAGTTGATG	60
TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	TTATATAAAA	120
ATAGTATTAA	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	АТААААААСА	180
GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	AAGAACTCAT	240
TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	AAAATTAGCT	300
TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	TTCTGGCGGA	360
AGTAAAGATG	CTGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	TTGGTGGGCA	420
TTCCCAGTAT	TTACCCAAGA	AAAAACTGGT	GACGGTGTTG	GAACTTATGA	AAAATCAATC	480
ATCCAAGCGT	TTTGAAAAAG	CAACCCAGAT	ATAAAAGTGA	AATTGGAAAC	CATCCACTTC	540
		ACAACAGCCA				586

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1534 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

	TCCTAGTGCA	CCCCCTCTAG	ACCCAGTTGC	GACCCTAGCG	CTGGACTAGT	60
TGGTAGTTCT	TCCTAGTGCA	GGGGCTGTTG	TOO CONTRACTOR	ርርመጥአ ጥርጥ ልጥ	CAGGTGACAT	120
CGAGAGGGTG	TTGTTGAAAA	TGGATGGNTA	TCGCTATGTT	GGTTATCTAT	CAGGIGIGIA	160
CCTCAAAACG	CTTGGCTTGG	ACACTGTTTT	AGAAGAAACC	TCAGCAAAAC	CTGGAGAGGT	
CACOCONACTO	GAAGTTGAGA	CTCCTCAATC	AACAACAAAT	CAGGAGCAAG	CTAGGACAGA	240
GACIGIAGIC	GTAGAGACAG	ACCA ACCTCC	AAAAGAAGAA	GCACCTAAAA	CAGAAGAAAG	300
AAACCAAGTA	GTAGAGACAG	AGGAAGCICC		CARACCCOMIC	ста а астаса	360
TCCAAAGGAA	GAACCAAAAT	CGGAGGTAAA	ACCTACTGAC	GACACCCTTC	CIAMAGINGA	• • •
ACACCCGAAA	GAAGATTCAG	CAGAACCATC	TCCAGTTGAA	GAAGTAGGTG	GAGAAGTTGA	420
AGAGGGGGTT.	GAGGAAAAAG	ТАССАСТТРА	GCCAGAAAGT	CAACCATCAG	ACALACCAGC	480
GTCAAAACCA	GAGGAMAN		1011001111	CTCCCAGAAC	AACCCGTGCA	540
TGAGGAATCA	AAAGTTGAAC	CACCAGTAGA	ACAAGCAAAA	GICCCAGIZAC	AACCCGTGCA	600
ACCTACACAA	GCTGAGCAAC	CAAGTACACC	AAAAGAATCA	TCACAACAAG	AAAATCCTAA	
7.007.707.00	CCACCCCAAG	AGACACCGAA	ACAAGAAGAT	GAACAGCCAG	CAGAAGCCCC	660
AGAAGATAGG	GGAGCGGAAG		CLANACACCA	састсттаат	CAACCTGTTG	720
AAGAAATCAA	GGTTGAAGAA	CCAGTAGAAT	CAAAAGAGA	GUCTOTTE	CAACCTGTTG	

WO 97/37026	PCT/US97/05306
-------------	----------------

AACAACCAAA	AGTGGAAACG	CCTGCTGTAG	$\lambda\lambda\lambda\lambda\lambda\lambda$ C	GGAACCAACA	GAGGAACCAA	780
aagttgaagt	AACAAGTATT	CCCCAAACTA	CTCGCTATGA	GGAAGACCTT	ACTAAGGAAC	840
ACGGAACGCG	TGAAGTTGTT	AAGGAAGGTA	AGAATGGCAG	TAGAACAGTT	ACTACTCCAT	900
ATATCTTGAA	TGCGACAGAT	GGTACGACTA	CAGAAGGCAC	TTCGACAACT	GATGAAGCTG	960
AGATGGAGAA	AGAGGTTGTT	CGTGTTGGCA	CGAAACCCAA	AGAAAAATTA	GCTCCAGTCT	1020
TAAGTTTGAC	AAGTGTTACA	GATAATGCAA	TGTTGCGTAG	TGCGAGACTT	ACTTATCATT	1080
TGGAAAATAC	AGATAGTGTT	GATGTGAAAA	AAATTCATGC	TGAAATTAAA	AATGGCGATA	1140
AGGTTGTCAA	AACTATTGAC	TTATCTAAAG	AGAGATTATC	AGATGCTGTT	GACGGTCTTG	1200
AACTTTATAA	AGATTATAAG	ATTGTGACGA	GTATGACCTA	TGATAGAGGT	AATGGTGAAG	1260
AAACCTCTAC	GTTGGAAGAA	ACTCCACTAC	GATTAGACCT	CAAGAAGGTT	GAATTGAAAA	1320
ACATCGGCTC	TACTAATCTC	GTCAAAGTAA	ATGAGGATGG	TACTGAGGTG	GCAAGTGACT	1380
TCTTAACAAG	TAAACCTGTG	GATGTGCAGA	ATTACTACCT	CAAAGTAACT	TCCCGTGATA	1440
ATAAAGTTGT	TTCCCCTCCC	AGTTGAAAAA	ATTGAAGAGG	TGACTGAGGA	AGGTCCACCA	1500
CTTTACAAAG	TCCCTGCTAA	GGCCCTAATT	TGAT			1534

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 695 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CGGATTTGTT	TATCTCAAGA	AGAGTCGCGA	TATTCTCCGT	GAAAGTTCAG	AATTGATTAN	60
CCAAACGGTA	GAAGATTATC	TTCAAGGAGA	TGACTTTGAC	TGGGCAGATC	TTAAAGGGAA	120
GGTTCGANAT	AATTTGACCA	AGTATCTCTT	TGACCAAACC	AAGCGTCGTC	CANCTATTTT	180
ACCAGTAGTC	ATGGAAGCAA	AATAATCGTT	GAAATAAACA	GAGAGAAAGT	CGAGTTTCGG	240
CTTTTTCTTA	TAGAAAAATA	GAAGGAGAAA	ATCATGGCAG	TAATGAAAAT	CGAGTATTAC	300
TCACAAGTAT	TGGATATGGA	GTGGGGGGTG	AATGTCCTCT	ACCCTGATGC	CAATCGAGTG	360
GAAGAACCAG	AGTGTGAAGA	TATTCCCGTC	TTGTACCTTT	TGCACGGGAT	GTCTGGAAAT	420
CATAATAGTT	GGCTTAAGCG	GACCAATGTA	GAACGCTTGC	TTCGAGGAAC	TAATCTCATC	480
GTTGTTATGC	CCAATACCAG	CAATGGTTGG	TACACCGACA	CCCAGTATGG	TTTTGACTAC	540
TACACGGCTC	TAGCAGAGGA	ATTGCCACAG	GTTCCTGAAA	CGCTTCTTCC	CTAATATGAC	600
TAGCAAGCGT	GAAAAGACCT	TTATCGCTGG	TCTTTCTATG	GGAGGCTACG	GCTGCTTCAA	660
ACTGGCTCTT	ACGACAAATC	GTTTTTCTCA	TGCAG			695

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1096 base pairs

PCT/US97/05306

WO 97/37026

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

CTCATCCAAG	AATAGCATAA	AAGAACTCTT	CTGTTTTTTC	TTGAGGAACG	AGAAAGTCAG	60
CAATCTCCAT	TCCACGATCC	ATCAAATCCT	CTAAAGACAT	CGTGATTTTT	AAAGTAGTAT	120
CACTAATTTG	TTTCATTTTC	ATTGCTAGTA	ACCTCATACT	TTCAGTTCTA	TCTATTATAC	180
TAGATTTTTA	CGATTTTATC	AAAAGAAGGC	TCCTCTATAC	GGATAGATTT	TCCCTAGGGT	240
CTTTCTATAG	GAGACTCCAA	GAGAAAATTT	CTGCAGACAG	ATAGAAAAAG	CCTTCAAAAT	300
CGGCTCTTAG	CCGATTTTGA	AGACCTTATA	CATCAGAATA	CTTATAATTT	AAAGGTTGCT	360
ACACCGAGGA	TAGAACGATT	TAAGTTTCTG	AGAATTTGAA	GACTTTGCTC	AAATTTCTTA	420
TAACGAATTC	ACTCCGTACT	CTTCAACAAG	AAGGACTGTA	TCTCTTTCCA	AAAGAGATGA	480
TACATCCTGC	AAATCTACAA	ATGCATTCCT	TTTAAAGCTT	CTTGACTCTG	TTTCAATTTA	540
TCTAGGATAG	CTTTATTTGA	GCTAACGATG	GTCAATTCCT	GTCCAGTATT	TTTGTATGAC	600
AAAACATCTG	CTAGGTTAGC	AATTGTTGTA	ATCTCTGTTA	CAAAATCAAT	TTGATACTGA	660
GAAAAATCAC	CTACTCTATT	GATTGTTGGA	TTAAAGAGAT	AAACTAACAC	ATTTCCCATC	720
ACAACCAAAA	TCACACAAAC	CACTCCAATA	ACAACTAAAC	GAAGAATCAG	ATTTTTCACA	780
TTTAAGCCAA	GCGCTGTTTC	ACCATTTGCG	TTCAATTCTT	TAGAGTTGAT	GGTTTCCAGT	840
	TCACATTTGC			CAATCAACCC	ATCAATTTTT	900
TTCTCTAACA	AGTCATTGGC	ATCTTTACTT	GATGTCAAAA	TTTTCACACC	AACCCCTGCA	960
TCGTCAATCA			TTCCACCAAT	AGTCATTCGT	TGAATTTTTC	1020
AAGGTTGTTT		TAATTCACTG	GCAATTTTTT	TCAACTCACT	GGGTTCTACA	1080
TCATTGAAAA	GATAAG					1096

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1037 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TCCCCATCCC AGTGGGCAGC	AGCATTAGTC	TGTACTTCTG	CGTCGTTGCG	TTTTATTAGA	60
AGACTGATTT TGCTTTGAAC	TACTIGAAGC	TGTCGTTGTA	TCCTGCGAAG	TTTTTGCTAA	120
CTTCAGTTTC ATTTGCAGCG	ACATGACTAG	TTGCCAAGCC	TAGTAAACAG	ATACTTGCTA	180
ATCCAATTTT TGTTTTCAAT	COMPONENTS	CTATAAAAA	TGTAACAGAC	ATCTGAATGC	240.
ATCCAATTTT TGTTTCAAT	CITICCICIC	CIMINAMA	101.11.0	•••	

WO 97/37026	PCT/US97/05306

TGTTCCACCT AGO	CTTTTGCT ACTTACTGAT	TATTTTACAA	AGTCAAGCAA	AGCCAAGAAG	300
CTTTCAGCTT CAA	AGTGACGC ACCACCTACA	AGGGCACCGT	CAACGTCTGG	GCAAGCCATG	360
TATGAAGCAA CAT	TTTTCAGG TTTAACAGAA	CCACCGTATT	GAACACGAAC	TTTGTCTGCG	420
ACTTCTTGAC CAA	AGTCAGC AGCTACAACG	TCACGAACAA	CTTTACACAT	TTTTTGTGCA	480
TCGTCTTGTG AAG	SCTGATTT ACCAGTACCO	ATAGCCCAGA	TTGGCTCATA	AGCGATAACT	540
	TGTTCAGC AGTCAATCCA				600
AATTCAGCAG CTT	TTACCAGC TTCGTAAGTT	TCAAGTGATT	CACCACAACA	GATGATTGGA	660
AGCATACCGT TCG	SCAAAGAT TGCTTTTGCT	TTTTTGTTGA	TATCTTCGTC	AGTTTCATGG	720
AAGTAGTCAC GGC	GTTTCTG AGTGACCGAT	AACAACGTAG	TCAGTACCGA	TTTCTTTCAA	780
AACTTGTGGG CTA	AGTTTCAC CAGTGAAAGC	ACCTGCATTT	TCTCCGTAGC	AGTTTTGAGC	840
AGCGACTTTT AAG	STTTGAGC CTTNGGCAAC	AGCAAGNACA	GTTGTCAAAT	CAAGAGCTGG	900
AGCAGNGATA CCT	GCTTCAA CAAGATCTGA	TGAAGGAAGT	TTTGATGCAA	CTGCTTCAAC	960
GAATGNTCCA GCT	TNTTGGG GATTTTTGTT	CATTTTCCAG	TTACCAGCGA	TAAATGGTTT	1020
ACGTGACATT TCA	CATA				1037

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1340 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CTTATCGTAC	TAAGGATGGC	AGTGTTCAAC	TGTTCCGTCC	TGATGAAAAT	GCTAAACGCC	60
TGCAACGTAC	ATGTGACCGT	CTCTTGATGC	CAACAAGTTC	CGAACAGACA	TGTTTGTAGA	120
AGCTTGTAAA	GCAGTTGTCC	GTGCGAATGA	AGAATACGTA	CCACCATACG	GAATAGGTGG	180
AACTTTATAT	CTTCGCCCTC	TTTTGATTGG	TGTCGGAGAT	ATTATCGGGG	TAAAACCGGC	240
AGAAGAGTAC	ATTTTCACCA	TCTTTGCTAT	GCCAGTTGGA	AATTACTTTA	AAGGTGGTTT	300
GGTCCCAACC	AACTTCTTGA	TTCAGGATGA	GTACGACCGT	GCAGCACCAA	ATGGTACAGG	360
TGCGGCTAAG	GTTGGTGGAA	ACTATGCTGC	$\lambda AGTCTCTTA$	CCAGGAAAAA	TGGCCAAGTC	420
ACGCCATTTC	TCAGATGTTA	TCTATCTGGA	CCCATCAACT	CATACAAAGA	TTGAAGAAGT	480
CGGATCAGCT	AATTTCTTTG	GAATTACAGC	TGATAATGAA	TTTGTAACAC	CATTGAGTCC	540
ATCTATCTTG	CCATCTATTA	CCAAGTATTC	CTTGCTTTAT	TTGGCAGAAC	ATCGCTTGGG	600
ATTAACTCCT	ATTGAGGGTG	ATGTTCCAAT	TGATAATCTT	GACCGTTTTG	TAAAGGCAGG	660
TGCCTGTGGT	ACAGCAGCGG	TTATTTCTCC	AATTGGAGGT	ATTCAACATG	GTGATGATTT	720
CCATGTTATT	CTATAGTGAA	ACAGAAGTAG	GTCCTGTGAC	ACGTAAATTA	TATAATGAAT	780
TGACGGGTAT	TCAGTTTGGC	GATATTGAAG	CCCCAGAAGG	TTGGATTGTA	AAAGTAGATT	840
AAAATAAACC	AAAGGAGATT	ALADTATTT	TAGAAAAAGT	GCCTCTTAAC	AGCAGGAGTG	900
GTCCTGAGCA	CGTCAGCTAT	TTTAGTGGCT	TGTGGAAAAA	CTGATAAAGA	AGCAGATGCA	960
CCGACAACAT	TTTCTTATCT	CTATGCAGTA	GATCCAGCA'T	CATTGGGCTA	CAGTATAGCG	1020

WO 97/37026				I	CT/US97/05306	
ACTCGAACAT	CGAGGACAGA	CGTTATTGGA	AATGTTATTG	ATGGTTTGAT	GGAAAATGAT	1080
AAATACGGCA						1140
CCAAGCTATC						1200
ATGAAACACC						1260
GGATAAATAT						1320
AMAMCAAAAA						1340

- (2) INFORMATION FOR SEQ ID NO:37:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 830 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CTCTGACGGC	GTCGCCACTT	AAGAAGAGTA	TCAAAAAGAA	AAATAGAAAA	TTAACTAACA	60
AGGNAGAAAA						120
ጥጥርር እርጥጥርጥ	TGAAGGAACT	GAAAGCAAAA	TCATCGCAAA	CCCAGAAGGA	AACCGCACAA	180
		AAAAACGGAG				240
		ACAGTTATCT				300
AAGCAGTCAC	AAATCCAAAA	GAATACACTC	CACAAGAAAT	CTCAGCTATG	ATCCTTCAAT	360
AAGTTTCTGC	CMACCCTCAA	GACTACCTTG	GTGAGAAAGT	AACCAAAGCT	GTTATCACAG	420
ACTIGAAAGG	CTACGCTGAA	GCTCAACGTC	AAGCAACAAA	AGACGCTGGT	AAAATTGCTG	480
TTCCGGCTTA	CTTCAACGAC	GTTAACGAAC	CAACTGCAGC	ACCTCTTCCT	TATGGTTTGG	540
GTCTTGAAGT	ANGACGTAT-I	GITAACGAAC	TARCIGCAGE	TOCTOTOCT	ACATTCGACG	600
ACAAGACTGA	CAAAGAAGAA	AAAATCTTGG	TATTTGACCT	CECAACECCA	ACATTCGACG	660
TCTCTATCCT	TGAATTGGGT	GACGGTGTCT	TCGACGTATT	GICAACIGCA	GGGGACAACA	720
AACTTGGTGG	TGACGACTTT	GACCAAAAAA	TCATTGACCA	CTIGGTAGCA	GAATTCAAGA	780
					GAAAGATGCG	830
GCTGAAAAAG	CCAAGAAAGA	CCTTTCTGGT	GTAACTTCAA	. CACAAATCAG		630

- (2) INFORMATION FOR SEQ ID NO:38:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 667 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GTGGTGGTTT	GACTGCCCTT	ATCGAAGCAG	GTTTCGAANT	CTAAGACANA	AGCAGGTTAC	60
GCTCCAGAAT	TGGCTTAACT	TTGAAGTTCT	TCACGGAAAT	GAAATTGATC	GTTGACTTGA	120
TCTACGAAGG	TGGATTCAAG	AAAATGCGTC	AATCTATTTC	AAACACTGCT	GAATACGGTG	180
ACTATGTATC	AGGTCCACGT	GTAATCACTG	AACAAGTTAA	AGAAAATATG	AAGGCTGTCT	240
TGGCAGACAT	CCAAAATGGT	AAATTTGCAA	ATGACTTTGT	AAATGACTAT	AAAGCTGGAC	300
GTCCAAAATT	GACTGCTTAC	CGTGAACAAG	CAGCTAACCT	TGAAATTGAA	AAAGTTGGTG	360
CAGAATTGCG	TAAAGCAATG	CCATTCGTTG	GTAAAAACGA	CGATGATGCA	TTCAAAATCT	420
ATAACTAATT	AGAAATATAT	AGCGCTGGAG	ATGATTTTAT	GAAAAAGATT	ATGAGAAAA	480
TTGCATCGTT	ATTATTGGTT	CTAGTTGTAT	AATGTAATTA	CACCGTCGGT	AATAGTGCTA	540
GCAGACCAAA	ATAAAGCAGA	TTGGTCGTAT	GATGAAAATA	CTGTAATTAA	CATTTATGAT	600
GATGCTAATT	TTGAAGATGG	TAGGTTGCAT	ATGACCTTTG	AACAATTCTT	CAAATTGGCA	660
CAAATAG						667

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1397 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CGGTTCCAGA	NACTGGTATG	GCTAGGAGTC	GCGACAAAGT	GTATCTTATG	ATGGTCGATT	60
TGATACTCAA	TACGCTCAAT	ACTTACGGAA	AGAATAAACG	ATCATTGTCA	ACCGGAATAG	120
TATGATAATC	GTTTCTTGGT	GGAATAAGTT	CAATCTTATC	CTTCTTAGGC	ACAATAATGG	180
AAGAGCCCAG	TGTTCGATAA	ACACGATTAT	TAAGGCTGGC	AATTTCCGTT	AATTGCAAAG	240
CTTCAATGGT	AGGGTGTAAA	ACAGCACCAC	CAAGAGACTA	GTTATAGGCA	GTACTACCAG	300
TCGGTGTCGA	AACTGTTAGC	CCGTCTCCAC	GAAAACGTTC	AAAGGGAACA	CCATTTATTA	360
CAATATCTGC	CACCATGGTT	CGATCAGACC	TGCGGATGCT	GGCTTCGTTG	AGTGCTCTGA	420
AAATCTTAAC	TTCACCATTT	TCAAGAAAGA	CCTTCACATT	CAGAACAGGG	TAAGAAACCC	480
TTGCCCCAGT	ATCTAGCTGC	AAATTAGTCA	CTAGCTTGTC	CAACTCAAAA	TCACGATAAT	540
CTGTATAGAA	GCCCAAATGT	CCAGTATGAA	GACCGATAAA	GCGGACCTTG	TCAAGCTGAT	600
TTTCGTACTT	ATGAAAGGCC	GACAAGAGCA	TACCATCCCC	GCCAATGGAA	ATGACAATAT	660
CCGGATTGGT	ATCATTGAGT	TATAAACTGA	TTTCTCTTCA	AACGATCTCG	CAATTCATAC	720
AAAACCCTTT	GACTCTGCGG	${\bf TTTTCTATTG}$	GCTATCAGAT	CAATTCGTTT	ACCTGTATTC	780
TTCATCTGTA	TCGTCACTGN	NTCCAACACC	GTCATTTAAT	TTTCTACTCA	AAGGATCAAA	840
AAGTGCCTGG	GCTTCTTGGA	TATCATCACG	AATTTCACCC	ATTTCTTCAT	CCAACTGATG	900
GGCGATTCTA	GCTGTAATTT	CCAGTCGCTT	CTTAATCTCA	TCTGGGAAAT	CCCCTTGGTA	960
CTTGTAGTTG	AGAGAATGTT'	CTATCGTTGC	CCAGAAATTC	ATGGCCAAAG	TACGAATTTG	1020

/O 97/37026			1	PCT/US97/05306	
AATTTCTGCC AAAATAGTC	• ጥልርርጥርር ል ጥጥ	GATGGTATCA	ACCGTATATT	CTACTACCAC	1080
ATGATAGGAA CGATAGCCT					1140
TCGCATATCC TGACGCTTG					1200
					1260
AACCATCACA CGTAAGCCA					1320
GCCACGACGA GCCATTTTT					
CTCAATTGGA GAATGCTTA	r tttgcttacg	ATATTGCTTA	CGAATACCAC	GAAGTTTAAT	1380
CTTTAACTCA CCAACAG					1397

- (2) INFORMATION FOR SEQ ID NO:40:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 824 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

CTCCCATGAC A		maccant acca	CCACGTGCTT	TTTAATCCGT	TCAACAACTT	60
CTCCCATGAC A	ACCTGCACGC	TCCGTACGGG	CCACGIGCII		CMC 3 mmmCmm	120
CATAACCCGC	TCAACATCC	ACACCCGACT	GGGCATATGC	ATTITATIT	GICATITUTI	
TTTTCCTTTT (TTTAATGGA	GAATCTGTCG	CCTACTTGTA	AAAACTGGTC	TTTTCTTCCA	180
AACTTCTACG	ATAGTCTTCT	TCGTAGTCAT	AGAGAGGCGT	TGGGTAGTCA	CCGTCAAAGT	240
AAGCGACACA	CAGACCACCG	TTCGGCGCAT	CTGTTTCGAT	ACCAATCGAC	TCAATCAAGC	300
TATCAATTGA	27.C2.C2.CC	a CA CTIGTIC CG	CACCAATGAT	TTGGCGAGTT	TCTTCGACCG	360
TATCAATIGA	AAGATAAGTC	AGACTGTCCO	momcol ma mo	አአጥርርርርሞልር	AAACATGGAT	420
TATGATTGGC	TGCAATCAGC	TCCTGACGGG	TCTGGATATC	ARICCCOIAG		480
ACGCTAGTGC	AGGACTTCCA	ATGGCAACGT	GAACCTCAGT	CGCACCCGCT	TCTTTCAAGA	
GCTGAACGAT	ACGACGAGAG	GTTGTTCCAC	GTACAATGGA	ATCATCCACC	ATGACCACAC	540
GTTTGCCTTT		CANACACCAG	ACACTTTCAT	CCGCACTCCT	TGCTCCCGCA	600
GTTTGCCTTT	GACAACACCC	GAAACAGCAG	ACROTTEME		እርአርርርልሞሞጥ	660
ATTCTTGAGT	CGGTTGGATA	AAAGTTCGCT	GGGTGTATIG	GI-I-I-I-I-GATC	AGACCCATT	• • •
CATTTGGTAA	CCTGATTCT	TCCGCAAATC	CCATAGCCGC	GCTTAGGGAA	GAATTGGGCA	720
CACCAACTAC		መር እ መረገር መጥ ል እ	ልጣጥርጣርGCGC	CAATTGCGCT	CCCATTCTCT	780
						824
TACGTGCCGT	ATGGACATTG	ACCCGTGGAT	ATTAGAATCA	GGGC		024

- (2) INFORMATION FOR SEQ ID NO:41:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1020 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CTTCTTCCTT	GGTACTTCCT	CAATTGGATT	ACCTTTGGCA	TTGCTAGTTT	TTCACTCCTA	60
CCTTATATCC	AAGGCACTAA	AATTATGTTT	TACCGAGCAG	TATTGGCTCG	AAAACGTCCA	120
AAAGCTTGAA	GGTTTTCCCC	TCAAGCTTTT	TTCTATCAAT	GAATTTCTCC	GCCTACCAAC	180
GTGAGTTCCT	GATCTCCATG	TTCTATCATA	GCGCCGATTG	CTGCTTCTAT	CCCTCGCCGA	240
ATATCCACTA	AACTCATAGT	TGGAGTAGTC	GGTCTGTTCA	CCACCTGTTC	CATCATATAA	300
GGAATATGCA	TAAAACCTGC	CTTAACATAT	GGGAATTTCT	TTTCTACCAA	ATAGAGAGCC	360
TGATACATCA	AATGACTGCA	AACAAAAGTC	CCTGCACGTA	TTGGAAACAG	ACTGCCGGTA	420
AGTCCTTCTT	TTTTATTAGC	TTGTACCATC	GCTTTGATAG	GTAAACTACT	AAAATAGGCC	480
GATGCTCCAT	CAATACGAAT	CGGTGTATCA	ATTGGTTGAT	TGCCTTCGTT	ATCAGGTATG	540
CGAGCATCAT	CTTGATTAAT	AGCCACTCGT	TCAGGTGTTA	AGCCGGTCCT	GCCGCCTGCT	600
TGTCCAATAC	AAAGTACAGC	ATCTGGTTGA	TATCGTAATA	TTTCTGCCTC	TAAAACTTCT	660
GACGACTTAT	AAAAAACCGT	TGGAATTTCT	ACCCAGCGAA	CTTCAGCCCC	ATTAATCTCA	720
GATGGTAATA	ATTTTACAGC	CTCCAAAGCT	GGATTAATCT	TTTCACCTCC	AAAAGGATTA	: 780
AAACCTGTAA	CCAATATTTT	CATTTTATTT	TCCTTTACTA	AAATGCGAGA	AAGTACATTA	840
AGAATATGTG	AATAACAATC	ATTACTAGAG	CAACACCTGC	TTGAGCCTTT	ATAACGCCAT	900
TCTGATCTTT	CATATCCATC	AATGCTGCTG	GTAGAGCGTT	AAAATTAGCA	GCCATTGGGG	960
TCAATAAGGT	CCCACAATAA	CCTGCTGTCA	TGGCAAGAGC	ACCAGCCACA	ATTGGATTAG	1020

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 600 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

CTCGTAAAAA	CACTAAAGGA	GGTAAATAAC	CAATGTTAGT	ACCTAAACGT	GTTAAACACC	60
GTCGTGAATT	CCGTGGAAAA	ATGCGCGGTG	AAGCAAAAGG	TGGAAAAGAA	GTAGCATTCG	120
GTGAATACGG	TCTTCAAGCT	ACAACTAGCC	ACTGGATCAC	TAACCGCCAA	ATCGAAGCTG	180
CTCGTATCGC	CATGACTCGT	TACATGAAAC	GTGGTGGTAA	AGTTTGGATT	AAAATCTTCC	240
CACACAAATC	ATACACTGCT	AAAGCTATCG	GTGTGCGTAT	GGGATCTGGT	AAAGGGGCAC	300
CTGAAGGTTG	GGTAGCACCA	GTTAAA CGTG	GTAAAGTGAT	GTTCGAAATC	GCTGGTGTAT	360
CTGAAGAGAT	TGCACGTGAA	GCGCTTCGAC	TTGCTAGCCA	CAAATTGCCA	GTTTAAATGT	420
AAATTCGTAA	AACGTGAAGC	AGAATAA GGA	GAAGGCATGA	AACTTAATGA	AGTAAAAGAA	480
TTTGTTAAAG	AACTTCGTGG	TCTTTCTCAA	GAAGAACTCG	CGAAGCGCGA	AAACGAATTG	540
AAAAAAGAAT	TGTTTGAACT	TCGTTTCCAA	CCTGCTACTG	GTCCAATTGG	AAACAAACAG	600

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1223 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

	стсаа 60
CTTCAGCGAC ATATCTATCC ACAACTTCTC TCGATTCATG TTCCTCTGAA AATGC	CIGIL.
ATTITAATTG ACTAATTTGA TCCTGATACG AACTATCTGC TAACAAAACT TCAAG	
AAACATTIGC TAACGGATAA GGTCTTCTAT CCTTACCTAA CCAAGTTTCT GTCTC	
CCTCTATTAG TCCCCAGTTA CTGGCAAAGT CAGGATGATT CTCTAAAAAA ATACG	STICIG 240
TCTGAAAAGT GACTGACCGA ATGGGGAAAG AAGCTGTTCC TCTCTCAAAA CTAGT	CAAACA 300
ATGCACGCGC AATCCCCTGA CGGCGATGAC CTGGATGAAC CAGTATCGTC ACTTC	
CTTGGTCATC TGCATAGACA GTTAATAAAC CAACAAGTTC GCCTTTTTCA TAATA	AAAGGA 420
AAAAGGCGGG CATGTTTGGA TCAAAATTAA GCATGTTAGA GAGATAGGGA TCGCC	GATAGG 480
TACCGTCATA GTTTTGGCAA CAGTTAATTA CTTTTTTCGC CTCAGATAGC TCTTC	CTTGGC 540
TACCGTCATA GTTTTGGCAA CAGTTATTGG TATCCTCTAC AAACCAGACG ATCTC	STGACT 600
GGCATCTTTA GCCTGCTCGA GTTTATTGAC ATAATACTCC CGTTTTTCTT CGAC	TTCGTG 660
GGCATCTTTA GCCTGCTCGA GTTTATTGAC ATACTACTCC CGGCAA TACCCC AATAACAGGC TCATCTTTCT TACCATGAAG ACGGACAATC TTGGCCGGAA TACCC	GACAAC 720
TO COLOR DE	ልተተጥጥር 780
ACCANTITIC ACAGGCCCGA TAACTIGGGC ATGGGCTGAT ATGAGGGCTC CCTT	ATAGAG 900
ACTCGGATGG CGTTTGCCAC AGTCTTTCCC TGTTCCCCCG AGASTCACT	Alliono 200
AAGAACGCCT TTTTCAACAA TCGCTGTCTC TCCAATCACC AGACCAGAAC CATG	GICIEII
AAAGACACCT GAATCAATCT GGGCTCCTGG ATGAATCTCA ATCTGAGTCC AAAA	geocen 1010
AAACTGACTG TGCATACGAG CTAAGAGTTT GAAGTCGTAC TTCCAGAGAA AATG	CGAGAG 1080
ACCOTOGGC GCCAAGGCCT TGACACCTGG ATAAGTCAGC AAAACCTCCA AAGT	
GGCCGCTGGA TCATTTTCTT TTACGATATC AATGGTTTCG CGCCACCACC CCAT	ACATTT 1200
CTCCTTTCT TACTCTGAAT CTT	1223
CICCLITICE INCICIONAL C.	

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GGTGAGTGCC	TTTATTAGCG	GAGCTTCTCA	AGTGATTGTT	GCCTTGATTA	TCTTCCTTTC	60
ATGCTCTTTT	ATCTCTTGCG	TGATGGGAAA	GGCTTGCGTA	ACTATTTGAC	CCAATTCATT	120
CCAAGCAAAT	TGAAGGAACC	TGTTGGACAA	GTTCTATCAG	ATGTGAATCA	ACAGTTGTCC	180
AACTATGTTC	GAGGGCAAGT	GACAGTGGCT	ATTATTGTAG	CAGTAATGTT	TATCATCTTC	240
TTCAAGATTA	TTGGTCTACG	CTATGCGGTT	ACGCTGGGGG	TTACTGCTGG	TATTTTAAAT	300
CTGGTCCCTT	ATCTTGGTAG	CTTTCTAGCC	ATGCTTCCTG	CCCTAGTATT	GGGTTTGATT	360
GCTGGTCCAG	TCATGCTTTT	GAAAGTAGTG	ATTGTCTTTA	TTGTAGAACA	AACTATTGAA	420
GCCCTTTTG	TCTCTCCATT	GATTTTGGGA	AGTCAATTAA	ACATCCACCC	TATTAATGTT	480
CTCTTTGTTT	TGTTAACTTC	AGGATCTATG	TTTGGTATCT	GGGGAGTTTT	ACTTGGTATT	540
CCGGTTTATG	CCTCTGCTAA	GGTTGTCATT	TCAGCCATTT	TCGAATGGTA	TAAGGTAGTC	600
AGTGGTCTAT	ATGAATTAGA	GGGTGAGGAA	GTCAAGAGTG	AACAATAGTC	AACAGATGTT	660
ACAGGCTTTG	GAGGAGCAAG	ATTTAACTAA	GGCTGAGCAT	TATTTCGCCA	AAGCTTTAGA	720
AAATGATTCA	AGTGATCTTC	TGTATGAGTT	GGCAACTTAT	CTTGAAGGGA	TTGGTTTCTA	780
TCCTCAGGCC	AAGGAAATTT	ACCTGAAAAT	TGTAGAAGAT	TTTCCAGAGG	TTCATCTTAA	840
TCTAG						845

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 802 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CTATGGATTA	ATCTTCTTCT	ATCTTATCCT	GTTCCTAAAT	ATGTTGGTAG	AAAAATGAAG	60
CAGTTGTTAC	GAGTGTCTGT	ATTGGAAAAA	AATTTTGTCT	ATACAATTCT	TTAAATGATA	120
TGAAGACTAG	GAATGCCAAA	ACACTGACAT	ATTTCGTTTA	AAGCCTATCC	AGTCTCTTCA	180
ATTGTATTTG	TAGAAATGCT	ATCAGTAATA	TATTCGCGAA	CACTATGATT	TACAACAGTG	240
TGGTCGTACA	TCTTTGTAAC	TITATTATAC	AACAACCATT	TACAGGTGTA	AAGTTGAGCA	300
GTGTCTTTAG	TAAATTTAGG	GACTTGTTTT	GTCATAGTTT	TGATACCTGT	ATTCGTTGTT	360
TCATGAGTAT	TTGACGTTTC	TTTTCA TGTA	GGCATTTCAA	CAATTAGAAT	GATATTTTTC	420
CGAGGATGAA	CTTATATATT	ATGACTTTTT	AGAGTTATGA	TGCCTCTTGA	TTTGACTATC	480
GCTATCAATT	TCATCCACTT	$\mathtt{TTACAGTT} \top \mathbb{C}$	ATGCAACATA	GCGAGAAGGC	GGTTTCCTAT	540
ATGGAAGTCG	TCTTGTTTTC	ATATTGTCTA	AATACGAGAT	ATTTACTACA	GGTTGTAGAT	600
ATTGCAAGCT	CAAATGATAT	TATTTTAGAG	GAGGAGACAA	GTGAAATAAT	GCCTGGTGAG	660
TTAGATGAAA	TAAAAAGTAA	GGAGTTGAAA	GTACTGGTTC	NTTGTGCAGG	GTCTGGAACA	720
AGTGCGCAAT	TAGCCAATGC	AATTAACGAG	GGCGCTCNAT	TAGCAGAAGT	TAGAGTGATT	780
GCGAATTCAG	GAGCGCACGG	AG				802

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CTGGGACTCT CTTCGTAGAA GTCATGCAAG AATATTTTGA TCAAAAGAGG AAATCA	
AAAAAGAGCA ATAGTGGCAG TCATTGTACT GCTTTTAATT GGGCTGGATC AGTTGG	TCAA 120
ATCCTATATC GTCCAGCAGA TTCCACTGGG TGAAGTGCGC TCCTGGATTC CCAATT	TCGT 180
TAGCTTGACC TACCTGCAAA ATCGAGGTGC AGCCTTTTCT ATCTTACAAG ATCAGC	AGCT 240
GTTATTCGCT GTCATTACTC TGGTTGTCGT GATAGGTGCC ATTTGGTATT TACATA	
CATGGAGGAC TCATTCTGGA TGGTCTTGGG TTTGACTCTA ATAATCGCGG GTGGTC	
AAACTTTATT GACAGGGTCA GTCAGGGCTT TGTTGTGGAT ATGTTCCATC TTGACT	
CAACTITGCA ATTITCAATG TGGCAGATAA CTATCTGACG GTTGGAGTGA TTATTT	
TO THE PROPERTY OF THE PROPERT	
01111001110	-
TGGATAAGGC TTTGTCAGAT TTGTCAGAAT TATCACGTAG TCTCGCGAAT GAACAA	
AATCAGGCCA GGTCTTGGTC AATGGTCAAG TCAAGAAAGC TAAATACACA GTCCAA	GAGG 660
GTGATGTCGT CACTTACCAT GTGCCANAAC CAGAGGTATT AGAGTATGTG GCTGAG	GATC 720
TTCCGCTAGA AATAGTCTAC CAAGATGAAG ATGTGGCTGT CCTTAACAAA CCTCAG	
TGGTTGTGCA CCCGAGTGCT GGTCATACCA GTGGAACCCT AAGTAAATGC CCCCCA	TGTA 840
TTCACC	
	928
TTGATAAGGA TACGTCACGT CTTCTCAT	920

- (2) INFORMATION FOR SEQ ID NO:47:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 663 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CTCTTTTACA GAG	GTGTTTC CTATTTTGT	CTTCCATTTT	TGGGGCAAGG	LATTGTAGAT	60
C1C111111111				እ ርመመም ሞ እርጥር	120
GGGGATGGCA ATC	CTATCTT TTTATTGAT	ATGATATICG	TTIGCTICAT	AGITITAGIC	

9	97/37026 PC1/US9//US306				LC11/02A1/02300		
	TTTTTGAAAT	GGTTAGACTA	TGATTTCACT	AGATTGAGAA	GGGAGTTTCT	AGATACAGGT	180
	TTTCAAAAGT	CTCTTACTAA	GATTAACTGG	GCAATGGGGG	CTTATTATCT	AGTGATGCAA	240
	AGTCTATCTT	ACCTTGAATA	TGAACAAGGT	ATTCAATCAA	CGACTGTTCG	CCATCTCATC	300
	CTAGTGTTTT	ACCTACTCTT	TTTTATGGGG	GGTATCAAGA	AATTGGATAC	CTATTTGAAG	360
	GAAAAACTTC	AGGAGGAACT	GAACCAAGAG	CAGACCTTGC	GCTACAGAGA	TATGGAACGC	420
	TATAGTCGGC	ATATAGAGGA	ACTTTACAAG	GAAATTCGGA	GTTTTCGCCA	TGACTACACT	480
	AACCTCTTAA	CCACTTACGT	TTGGGCATTG	AAGAGAAGGA	TATGGAGCAG	ATAAAAGAGA	540
	TGTACGACTC	GGTCTTAAGG	GATTCCAGTC	AGAAATTGCA	GGACAATAAA	TATGACCTGG	600
	GCAGATTGGT	GAATATTNGT	GACCGTGCCC	TCAAGAGTCT	CCTAGCTGGA	AAATTTATAA	660
	AAG						663

DCT/T1007/04204

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 653 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

CTAGATTAAT	CTGATATTTC	TTTTTGGCAA	ACCAAATGCT	TCCTATCAGA	AAAGCTAGCA	60
ACAGCAACAT	GGTAATAATG	ATATGAATGG	TCATTTTCTT	CTCCTATTCT	GCCTTTTCAA	120
TATCTTTTTT	CATCTCGTCA	ACATTGAACT	TAGCAAACAA	GTATTGACGG	TCTTGGACTG	180
GGAAACGTTG	GTCCAACTGG	TCAACTGCTC	CCACCTCGAT	AATGCCTTCC	TTGATGACAA	240
AATCCATGAC	ATGTCCACCG	AAGGTCAAAT	CATCTGATAT	GAAGTGCAGA	TGGTAGCCTG	300
CCACACTGAC	CCCATGGAAA	ATCTCAGGCG	TCCAGAAACC	AACAATAGTC	CCCGCAACAT	360
TGTCACGACT	ATATTCCGGT	TGATGGGTTG	CGACATCAGC	AAACTTGGTA	TCGGGTGTTG	420
ACTTAGGAAT	CATACGCACA	TGCATATGTT	AAAAATTCCC	CCCCGAATCT	TGATAGAGCG	480
GAAAAGATTT	TCCCCATCAT	AATAAGACTC	AATTCGTTCT	TTCAATTCCT	TGTCTGTCAT	540
CTCAAAGCGC	TGGCGAAAAA	TGACCTCTGC	CTGATGCGGT	ACCACTGCAG	CGTAAGGAAT	600
AAGGGCATCT	GGTGACACTT	CCACAATTTC	TGGCTGGTCT	CCTGACCCTT	TGG	653

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 989 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CTACGATATC	TTTGGTCTTT	TGTAAGATAT	GAGGTCCACC	CTTATGCGCC	TCAGTTGGCA	60
TTTCATGCGA	TTCAAGAAGT	TGCCCCTCTT	GATCAACCAA	ACCATACTTG	ATGTTGGTTC	. 120
CACCGATATC	AATTGCAACG	TAATATGTCA	TAAATACCTC	CTTTTAGATT	AGAGGAAGCG	180
CTCCTTGGTT	TCACGAATCA	AGGCAGCAGC	CGCTTCTACA	ACTGGACGAT	CTTCTTCAGT	240
CACTGGTGTC	AATGGTGAAC	GAACAGATCC	AATATTCAAG	CCTTCATTGA	TTTTCAAGAC	300
	ACACCGTACA					360
	TGCAATTCAC					420
	AGTTCTGGCA					480
GAGGCGTCCT			ACCATTAAAG			540
	AAGGTTTGGA	TATCTTGAAC	TGGCATAGAA	GAGTTCTTCA	CACCGATAAC	600
ACGAGGATTT			GCTTGGAGTC			660
	TAAATCACGT		TGGAGCTGCA	GAACTGATAT	CGTTCCAGTA	720
	GAGTTATTCT					780
	AGCTTTCAGC					840
GCAACATGGG			TTGGCTACCG			900
AACTTGCGAT					GACATAAGAC	960
CTTGAACACC						989
'CII GWWCWCC						

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1671 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

TCAAAGAGTA AC	AAAGGCAC	CAAATTCTCG	ATAGGAACGA	TTTAGCACGG	TAAACTTCAT	60
CCACTTGGGT TC						120
TTGGTCAACT AG	GAGTAGAT	AGAACACATT	TCNTTCTTCG	TCTATATCAA	TCTTAACACC	180
TGTTTCAGCG AT	AATCTTGT	CGATGGTTTC	TCCACCCTTA	CCGATGACAA	TCTTAATCTT	240
GTCCACATCA AT	CTTGATCG	TATCAATTTT	CGGAGCAGTT	GGAGCCAATT	CTGGACGAAC	300
TTCTGGAATG GT	TGCTTCAA	TGACATCAAG	GATTTCAAAA	CGCGCTTTCT	TGGCTTGAGC	360
AAGAGCCTCC GT	CAAGATTT	CTGCAGTAAT	CCCTTGAATC	TTGATATCCA	TTTGAAGGGC	420
TGTAATCCCA TC	ACGAGTAC	CTGCAACCTT	GAAGTCCATA	TCTCCAAAGT	GATCTTCCAA	480
ACCTTGGATA TC	TGTCAATA	CTGTGTAGTT	ATTTCCATCT	GAGATAAGTC	CCATAGCAAT	540
ACCAGCTACT GG	CGCCTTGA	TTGGCACACC	ACCAGCCATA	AGGGCAAGAG	TTCCCGCACA	600
GATAGAAGCT TG	AGATGAAG	AACCGTTTGA	TTCCAAAACT	TCTGCTACTA	GACGGATAGC	660

PCT/US97/05306

GTATGGGAAT	TCTTCCAAGC	TTGGCAAGAC	TTGAGCAAGA	GCACGCTCAC	CAAGGGCACC	720
GTGACCGATT	TCACGACGAC	CTGGCGCACC	GTAACGACCT	GTTTCCCCTA	CAGAATATTG	780
AGGGAAGTTA	TAGTGGTGCA	TAAAGCGTTT	CTTGTACTCT	GGATCCAAAC	CATCAATGAT	840
TTGAGTTTCT	CCCATCGGAG	CCAAGGTCAA	GACTGAAAGA	GCTTGAGTTT	GCCCACGAGT	900
						960
						1020
						1080
						1140
						1200
						1260
						1320
						1380
						1440
						1500
						1560
						1620
ATTACGGAAA	CCTTCCGCAA	ACATAGGACG	AATCGGACGG	TCAATCAAAC	G	1671
	GTGACCGATT AGGGAAGTTA TTGAGTTTCT AAAGAGACCT TTTCATCGAC CTGCGTGTTC CGTGGTCCGC CAGTTCACGG GGCTGCAATG TTCTTTACCG GTGCCCTTTA TACCATGTTG TTGTTCTTGA AATTGGTCCG AGCCATTGGT	GTGACCGATT TCACGACGAC AGGGAAGTTA TAGTGGTGCA TTGAGTTTCT CCCATCGGAG AAAGAGACCT GAACCATGTT TTTCATCGAC CTTACGACCA CTGCGTGTTC CATTTTTCT CAGTTCACGG GAATCCAATT TCTTACCG GAATCCAATT TTCTTTACCG ACAGCACAA GTGCCTTTA AGAAGCGCTT TACCATGTTG ATAGCGTGCT TTGTTCTTGA CTTGGGTTGA AATTGGTCCG TCAAATGGAA AGCCATTGGT GCAGATGCAT	GTGACCGATT TCACGACGAC CTGGCGCACC AGGGAAGTTA TAGTGGTGCA TAAAGCGTTT TTGAGTTTCT CCCATCGAG CCAAGGTCAA AAAGAGACCT GAACCATGTT ACACGAGGAA TTTCATCGAC CTTACGACCA TCAGGACGCA CTGCGTGTTC CATTTTTCT TCGTAAACGG CAGTTCACGG GAATCCAATT TCTCTTCTAC GGCTGCAATG ATTTCAGCTT GCAATTCAGC TTCTTTACCG ACAGCAGCAA CGATTTCTTC GTGCCCTTTA AGAAGCGCTT CCAACATGAT TACCATGTTG ATAGCGTGCT TGGTTCCAGC TTGTTCTTGA CTTGGGTTGA TGATGATTTG AATTGGTCCG TCAAATGGAA TATCTGAAAT AGCCATTGGT GCAGATGCAT TTTCATCATA	GTGACCGATT TCACGACGAC CTGGCGCACC GTAACGACCT AGGGAAGTTA TAGTGGTGCA TAAAGCGTTT CTTGTACTCT TTGAGTTTCT CCCATCGGAG CCAAGGTCAA GACTGAAAGA AAAGAGACCT GAACCATGTT ACACGAGGAA GGAAGTCAAC TTTCATCGAC CTTACGACCA TCAGGACGCA CCTTGTCTTC CTGCGTGTTC CATTTGTTCC AAGATTTCAG CCACATCACG CGTGGTCCGC ATATTTTCT TCGTAAACGG CAGTCACTTG CAGTTCACGG GAATCCAATT TCTCTTCTAC TTGAACTGCC GGCTGCAATG ATTTCAGCTT GCAATTCAGC ATCCACGTGA TTCTTTACCG ACAGCAGCAA CGATTTCTTC TTGGAAGGCA CTGCCCTTTA AGAAGCGCTT CCAACATGAT TTCTTCTGAC TACCATGTTG ATAGCGTGCT TGGTTCCAGC TACTGTCAAT TTGTTCTTGA TTGTTCTTGA CTTGGGTTGA TGATGATTTG GCCATCTACA AATTGGTCCG TCAAATGGAA TATCTGAAAT AGACAGTGCC AGCCATTGGT GCAGATGCAT TTTCATCATA AGAAAGCACT	AGGGAAGTTA TCACGACGAC CTGGCGCACC GTAACGACCT GTTTCCCCTA AGGGAAGTTA TAGTGGTGCA TAAAGCGTTT CTTGTACTCT GGATCCAAAC TTGAGTTTCT CCCATCGGAG CCAAGGTCAA GACTGAAAGA GCTTGAGTTT AAAGAGACCT GAACCATGTT ACACGAGGAA GGAAGTCAAC AACCGCATCC TTTCATCGAC CTTACGACCA TCAGGACGCA CCTTGTCTTC TGTAATTAAA CTGCGTGTTC CATTTTTCT TCGTAAACGG CAGTCACTTG GTCTTTCACT CAGTTCACGG GAATCCAATT TCTCTTCTAC TTGAACTGCC TTTTGGAGGT GGCTGCAATG ATTTCAGCTT GCAATTCAGC ATCCACGTGA AGCAATTCCA TTCTTTACCG ACAGCACAA CGATTTCTTC TTGGAAGGCA ATCAATTCTT GTGCCCTTTA AGAAGCGCTT CCAACATGAT TTCTTCTGAC AATTCTTTGG TACCATGTTG ATAGCGTGCA TGGTTCCAGC TACTGTCAAT TCAAGAAGAG TTGTTCTTGAA ATTGGTCCG TCAAATGGAA TATCTGAAAT AGCACTGCC AAAGATGAAC AGCCATTGGT GCAGATGCAT TTTCATCATA AGAAAGCACT GTATTGATGA AGCCATTGGT GCAGATGCAT TTTCATCATA AGAAAGCACT GTATTGATGA	GTATGGGAAT TCTTCCAAGC TTGGCAAGAC TTGAGCAAGA GCACGCTCAC CAAGGGCACC GTGACCGATT TCACGACGAC CTGGCGCACC GTAACGACCT GTTTCCCCTA CAGAATATTG AGGGGAAGTTA TAGTGGTGCA TAAAGCGTTT CTTGTACTCT GGATCCAAAC CATCAATGAT GCCCATCGGAG CCAAGGTCAA GACTGAAAGA GCTTGAGTTT GCCCACGAGT AAAGGACCT GAACCATGTT ACACGAGGAA GGAAGTCAAC AACCGCATCC AAAGGACGGA CTTCATCATCT TCACGACCA TCAGGACCA CCTTGTCTTC TGTAATTAAA CGTCGCACTT CAGTGGTCCC AAGGATCACC CATAATACGG TCAAAATTCTT TCGTGGTCCCC ATTTCTCACC GAACCACTC TTGGAACTGC TTTTGGAGGT CACTGTTGTA TCTCTTCACC GAACCACATC TTTTGGAGGT CACTGTTGTA TCTCTTTACCG GAACCACATC TTTTGGAAGGC ATCAATTCTT TGGCAGCTTC TTTCTTTACCG ACAGCACAAC CGATTTCTTC TTGGAAGGCA ATCAATTCTT TGACAGCTTC TTCTTTTACCG ACAGCAGCAA CGATTTCTTC TTGGAAGGCA ATCAATTCTT TGACAGCTTC TTCTTTTACCG ACAGCAGCAA CGATTTCTTC TTGGAAGGCA ATCAATTCTT TGACAGCTTC TTCTTTTACCG ACAGCAGCAA CGATTTCTTC TTCTTCTGAC ATTCTTTTTGCACAGCTTC TTCTTTTTTTTTT

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 731 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CTCAGTATCT	TTGTAATCAA	CATATCCAAT	TTTGTTTGCT	GCGATGTANT	CAACTTTTTT	60
ACGGCGTTTG	AATCCGCCAC	GACGTNGTTG	AGCCATGTTT	TTNCTCCTTT	ATAAGTTTAG	120
TTGTCCATTA	GAATGGTAAA	TCATCANCTG	AAATATCCAA	TGGGTTTGTT	GCTCCAAATG	180
GATTTTCATT	ACGTGAAAAG	TCTGGTACTG	AATTTGTAGG	TGCTGAATAG	TTTGCAGTTG	240
GTGCAGAGTA	AGCTCCACCT	GTGTGACCCT	CACGCACACT	ACGGCTTTCC	AACATTTGGA	300
AATTCTCAGC	CACGACCTCT	GTCACGTAGA	CACGTTGTCC	TTGCTGGTTA	TCGTAACTAC	360
GAGTCTGGAT	ACGACCTGTC	ACCCCGATAA	GTGAGCCTTT	TTTAGCCCAG	TTAGCAAGAT	420
TTTCAGCCTG	TTGGCGCCAC	ATAACGACAT	TAATAAAATC	AGCCTCACGT	TCACCATTTT	480
GACTCTTAAA	TGTACGGTTT	ACTGCAAGAG	TAAAAGTCGC	AACTGCTACA	TTTGATGGGG	540
TATAACGCAA	CTCAGCGTCA	CGTGTCATAC	GCCCTACAAG	TACAACATTG	TTAATCATAG	600
TTTACCTTCT	TACGCGTCAA	TTTTGACGAT	CATGTGACGA	AGAATGTCAG	CGTTGATTTT	660
GGAAAGACGG	TCAAACTCTT	TAGAGAGCTG	CATCGNTCAT	TTGCTTCAAC	GTTAACGATG	720
TGGTAAAGTC	C		•			731

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 992 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CTGGGTTTTA	CCACGTTTTC	CTGATGTACG	AGCGAGATCC	TTACGGTTCA	ACATAGTGTT	60
GATAAAGCTG	GATTTACCAA	CATTTGAACG	CCCTGCTAGG	GCAATCTCTG	GCAGTTCATC	120
CTGCGGATAG	TGGGACTTAT	TAGCTGCACT	GAGCAAGATT	TCAGCATTGT	GTGTATTAAG	180
TTCCATAGTC	ACCTCTAGGC	TGTTTCTAGG	ATCGGTTTAT	CCGTTCCATC	GACAGTTTCT	240
			TGACTCGGCA			300
			CGCGCCCCTG			360
TTAGCAATCT						420
			CTTGGCTCTT			480
AAGGIIIGGI	አአጥጥርርጥሮልል	GAGCCGCAAA	AACAGGCAAG	CGTCCAATCA	ACTCAGGGAT	540
	TOTAL PARTY OF THE	CTTCAGCGAT	GAATTCTTGC	ATGTATGAGC	TGTTTCTCTG	600
			ATGACTTTTT			660
TCAATCGCCT	TAITGITTIO	ACCACCACCC	ACGATGAAGA	GGATATTTT	TGTATCCACT	720
ATTTCTTCAA	TACCATCAAA	AGCACCACCC	TO ACCUTAGE	GCCGCCACGC	TAGCAACAGT	780
TGAATCATCT	ACTIGITGIG	GATGTTTGCG	O COCCUTOR	CCACAAACAT	CACGTGTGAT	840
			CACCCCTTCA	mccacamaca:	CACGTGTGAT TAATGCCACG	900
AGACACATTC	TCACTCTTCT					960
-				TIGAGGAGTA	TATTTTCCAC	992
ATCCTCACCC	ACATAACCAG	CCTCCGTCAG	AG			334

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1299 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

ATTTTCACAG GGCAGGATGC GGAACGACTA GCCCCATACT TTAACGGAAT TTTGGTAGGG 60
ACAGCTCTTA TGCAGGCAGA AAATGTGGCC CAGAGAATCA AGGAGTTGCA GATTGACAAA 120

WO 97/37026					PCT/US97/05306	
GGTTAAAATT	TGTGGACTAT	CGACCAAAGA	AGCGGTGGAA	ACAGCCGTTT	CAGCAGGAGC	180
CGACTATATC	GGTTTTGTCT	TTGCACCTAG	TAAAAGACAG	GTGACTTTAG	AAGAGGCAGC	240
TGAGTTGGCA	AAGCTTATTC	CTGCAGATGT	GAAAAAGGTT	GGAGTATTTG	TTTCACCAAG	300
TCGGGTAGAA	CTGCTGGAAG	CGATTGACAA	AGTTGGCTTG	GACTTGGTTC	AAGTTCACGG	360
TCAGGTGGCA	GATGATTTAT	TTGAGAATTT	GCCTTGTGCC	AGTATTCAGG	CTGTGCAGGT	420
AGATGGAAAT	GGGCATGTCC	CCAATTCTCA	GGCAGATTAT	CTACTCTTTG	ATGCCCCTGT	480
GGCAGGAAGT	GGCCAGTCCT	TTGATTGGGG	TCAACTGGAT	ACGACTGGAC	TAGCACAGCC	540
CTTCTTTATC	GCAGGTGGCC	TTAATGAAGA	TAATGTAGTA	AAAGCAATTC	AACATTTTAC	600
TCCCTATGCA	GTAGATGTAT	CGAGCGGAGT	GGAGACAGAT	GGACAAAAAG	ATCATGAAAA	660
GATTAGAAGA	TTTATAGAGA	GGGTAAAGCA	TGGCATATCA	GGAACCAAAT	AAAGATGGAT	720
TTTACGGAAA	ATTCGGCGGA	CGTTTTGTCC	CAGAAACATT	GATGACAGCA	GTTTTGGAGT	780
TGGAGAAGGC	CTACCGTGAA	AGTCAGGCAG	ACCCAAGTTT	CCAAGAGGAA	TTAAACCAAC	840
		CGTGAAACTC				900
		TATCTCAAAC				960
AGATTAACAA	TGCCTTAGGA	CAAGTTTGGC	TTGCCAAACG	CATGGGTAAA	AAGAAAATTA	1020
		CAGCACGGTG				1080
		ATGGGTGAGG				1140
		GCTAAGGTTG				1200
AGGATGCGGT	CAATGCAGCC	CTTCGTTCAT	GGGTGGCTAA	TATCGACGAT	ACCCACTATA	1260
TCCTTGGTTC	TGCCTTGGGG	CCTCATCCAT	TTCCAGAAA			1299

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1078 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

CTGTTGAATC A	AACAACACGT	ATCCAAGTAT	CAGNATCAAA	TTATGCAGGT	AATCGTACAA	60
TTGGAAATCA C	CCGTGGATGG	TTCAATCCAA	CAACAACTIC	TGAAGGTTTT	GTTACATATA	120
TTTATGCAGA T	TAATTTACA	GAGGGACTCG	AATAGAGCCC	TCTTTTCAGG	TTTTACCGTG	180
ACAATCCCTA T	ATTAAAAATTA	ТАТСААААТА	GCTTGAAAAT	ATTGGAAAAG	TATGGTAGAA	240
TGAAAATTGT C	GTGTGAACG	ATAATACTCA	TTCTTGATGA	ATTGTGAAGC	AGTTGCCCTT	300
GGGTCGTTTT G	SCGAGTTGAA	GTCAAGA AGA	GGAAAAAAAC	AAAAAGGAGA	AATACTCATG	360
GCAGTAATTT C	AATGAAACA	ACTTCTTGAG	GCTGGTGTAC	ACTTTGGTCA	CCAAACTCGT	420
CGCTGGAATC C	TAAGATGGC	TAAGTACATC	TTTACTGAAC	GTAACGGAAT	CCACGTTATC	48C
GACTTGCAAC A	AACTGTAAA	ATACGCTGAC	CAAGCATACN	ACTTCATGCG	TGATGCAGCA	540
GCTAACGATG C	AGTTGTATT	GTTCGTTGGT	ACTAAGAAAA	CAAGCAGCTG	ATGCAGTTGC	600
TGAAGAAGCA G	TACGTTCAG	GTCAATACTT	CATCAACCAC	CGTTGGTTGG	GTGGAACTCT	660

	PCT/US97/05306
***/へ のク <i>はつ</i> のうん	

J.1.0. 420						
TACAAACTGG	GGAACAATCC	AAAAACGTAT	CGCTCGTTTG	AAAGAAATTA	AACGTGGATG	720
CARCARCAMC	GAACTTTCGA	AGTTCTTCCT	AAGAAAGAAG	TTGCACTTCT	TAACAAACAA	780
GAAGAAGAIG	TTGAAAAATT	compact CCCC	ATCCCA AGAT	ATGCCTCGTA	CCCCAGATGT	840
CGTGCGCGTC	TTGAAAAATT	CTTGGGGGGG	ATCCOMMON	m	AAAAAA MTTCC	900
GATGTACGTA	GTTGACCCAC	ATAAAGAGCA	AATCGCATGT	TAAAGAAGCT	MAMMATIGG	•
GAATCCCAGT	TGTAGCGATG	GTTGACACCA	ATACTGATCC	AGATGATATC	GATGTAATCA	960
	CGATGACGCT	ATCCGTGCTG	TTAAATTGAT	CACAGCTAAA	TTGGCTGACG	1020
TCCCAGCTAA	CGATGACGCT		ON CONTROCCCCO	THE DECKE	አጥጥጥርር ልር	1078
CTATTATCGA	AGGACGTCAA	GGTGAGGATG	CAGTAGCCGT	LIGANGCAGA	ATTIGENG	

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 800 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CTATGAGGGA	TATAAAGTGA	GAGAGTTGGG	CCAACGTTCC	AAAAACGTCC	TAAATTCTGC	60
CCATTGACAA	AGGCAACCCC	CTTACCAAAC	TCAGACNAGT	CTAGGTAAGT	ATCTTTTGGC	120
TATTCGACTG	TAAAGTCATA	AGCGTAAAAG	GCTGGTTGTC	CTTGAGTCCA	TCCTTTGGAA	180
AAATCAATTT	TCTCAGGATT	GTCTAGTGGG	AGTGGATAGT	GTTTCCAGTT	TAGTAAGAAA	240
TCCAGATCCT	TACAGACCCC	TGTCCGAATT	CCCTTACGTT	GCGTATCCGC	TAAGAACTTA	300
TOCCOCATAGT	TGACACGCCC	CATATTTTCT	ATCAAGATAT	CTAACCTAGA	TAGCCCTTTC	360
TOCCCATTO	GATAAAAAAT	ATCTTCCCCA	ATCTCTGTCT	GATATTGAGT	TTTAACCCAC	420
TTTTTTTTT	CATACAGCTG	GGCCCTATCT	CGACCATCAA	TGATACGAAG	TCTTTCTTCT	480
TGACCATCGA	AGTTTGTTTC	TGTTCGATAA	AGTAGGTAGC	CATAACTTTG	TCCCAGCTCC	540
TCIGCATCCC	GAGGATAGAG	ACTTTCTACA	GGGACTTGAC	AAGCTATCTA	AGGTTTCAAA	600
TCCATCTTT	TTTTCAACTA	GTGGAATAGC	ATCCAACTCC	ATACTCTCTT	TGTAGAGTGG	660
CAAAGAAAC1	GGATACTCTG	AAAAATGTGT	TGCCATCATC	TTCTTGACTG	CAAGATATTT	720
TTCCAACTGC	WITH COUNTY	CATCCAGAAG	GGCATCGTAA	TCATAAGACG	TTAACTTGTG	780
						800
GCAGGTCCAA	ATTCCTCGAG					

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 769 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic EWA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

CTCACGCAGT	TCTGTTACCA	AAGACCGTTC	AAAAAGCAAA	CTAGCAATAC	TTATAACTTA	60
TTAGAAATTC	CTAATTTTAC	CTTGCTAAAC	GAATACAGGT	CACGATGCCA	TCTGAGTCTG	120
TGATTTCCAA	TTGGCTCGAT	GTCATCCATT	TGATTGGTAC	GTCAACTTCT	TGTGCTCGTT	180
GGGCAATCGT	TAACAGTTCT	TCTTTATGTG	CAACTTCGAT	GACATAGTAG	GCTAAACCTG	240
GTAAGCCTTG	CTTACGCGGA	AGCCAGACCT	TTTCCTTCCC	CATTCGTTAA	CTGCTAAATG	300
ATGATGGTAA	TCTCCAGCCG	CAATCCAACT	AGCGCCAGGC	ACACTGAATT	TATTCTCTAG	360
CCCTAACACC	TTTTGATAAA	ACTGGCTGGA	CTTTCGACTA	TCCTTGACGG	AAAGATGAAT	420
ATGCCCCATT	CTTGTACCTT	CTGCCAGGAT	AAAGGGCTCT	ACTCTTTCCC	CCAACTCATA	480
AATGTCCTGC	GCCGCAAGAG	CCTCCGTCAC	TCCGATAATG	CGTCCATCTT	CTCGAATATC	540
CCATGTGGAA	ACTGGCTTAT	CTCGATAGAG	TTCAATGCCA	TTTCCCTCCA	AATCTTCCAA	600
GTAAATAGCT	TCACTGTAAC	CATGGTCTGC	ACCGCCGACA	AGAGGAATTT	GCAAATCTGT	660
CAGATGTTTC	AAGACATCAG	CCAAAGCCTT	GCGTGTGGGC	AAGAGAATGG	CCAAATGGTA	720
AAGACCATAA	TGTTCCCTCA	CTTCTCCGCT	CTTCTTGTGC	TTGAATCAG		769

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 637 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

TTACCCCAAG	CCTGCAACTT	CCCAAGCTGA	TTGGTTGAAT	GATTTGTCAT	CAACACCACC	60
AGTATCAGTG	ACGATTGCTG	CTTTTGTCTT	CACATCAGAA	GATGAAGCTG	CGTTACGAGA	120
AGAGCGGTTA	CCACATGCAG	CAAGTCCAAC	TGCTGCCACT	GCAACTAGGC	CAAGACCTAG	180
CCATTGTTTC	TTGTTCATTA	CTGAACCTCC	TAAATAAGAT	GTGCAACGAT	GTTGCAAGTA	240
TGGATTGATT	GGTCACAAAG	ACCCTTGCCA	CTCAAAGAGC	GACTCAGACT	AATTTAAGTC	300
TGTAAAAGAA	TATGGAAGTA	ACTCCCGAC	CGTCATCTCG	ACCGTCGATT	TATCTTTTGC	360
GACTAAGGTC	ACTTTTAAAT	CTTGTTCAAA	AAATTCGACC	ATTACTTGGC	GACAAGCACC	420
ACATGGTGAA	ATCGGTTTTT	CAGTTTGACC	ATAGACAATC	AATTCTGAAA	ATTCTCTTTG	480
GCCTTCAGAT	ATAGCCTTAA	AAATAGCTGT	TCTCTCACCG	CAATTGGTCC	AAAGGATAGC	540
TAGCATTTTC	GATATTCACT	${\tt CCCGTGTTAA}$	ACATTTCCGT	CTTTGGCTAC	TAAAACTGCT	600
CCGATAGGAA	AGTGAGAATA	GGGGACATAG	GCATGTT			637

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 940 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

CTGAGGATAA	TGACATCTGC	CANAGGAGCA	AAACTAGCAA	AATCATCNGT	TGCACGGTCA	60
ATCATGCCTT	CTTTCAAGGC	GATATCTCTC	GAAGCTTGAC	TACGGATTAT	AACCTAAAAT	120
TTCATAATCT	GGATGATCGC	GTTTGATACC	AAGTGCCATA	GAGGCTCCAA	TCAACCCAAG	180
ACCTGCGATA	TAGATTGTTT	TTGCCATAGG	AACTCCTTAA	TAGTTCTTTG	TATAGTCTCG	240
GTGTTTGGCT	ACCGCTTCTT	TTAGTTCCTC	AAGATTATCT	GATGAGAATT	TTTCGAGGAT	300
TTCTTGCGCC	AGAACCGTTG	CTACAACTGC	TTCCATGACC	ATTCCTGCAG	CTGGAAGAGC	360
AGTCGGATCA	CTTCTCTCCA	CGGTTGCCTT	GTAAGGTTCG	TGGGTTTCGA	TATCCACACT	420
CATAAGAGGT	TTATAAAGAG	TAGGAATGGG	TTTCATGACC	CCACGAACAA	CGATGGGTTG	480
CCCATTAGTC	ATACCACCTT	CAAAACCACC	TAGATTATTG	GTACGGCGAG	TATAACCGTC	540
TTCTTTAGAC	CAGAGAATTT	CATCCATAAC	TTGGCTGCCT	TTACGATAAC	CAGCCTCAAA	600
GCCAAGACCA	AATTCCACCC	CTTTAAAGGC	ATTGATAGAG	ACAACAGCTT	GAGCCAATCT	660
TGCATCCAAT	TTTCTATCCC	ATTGGGACAT	AGGAACCAAG	ACCAACTGGG	AACGCCTCCG	720
ACGACTGTCT	CCACAACCCC	ACCGATGGTA	TCACCATCAC	GTTTGATTTG	GTCAATATAG	780
TCCTTGATTT	CCTGTTCTCG	TTCTTGGTTG	ACAATAGAAA	ACTTCCAGAC	TGGGCAGCTC	840
TTTGCTTTAA	TTTCCAGCGA	CTGTCAGATT	TTCCAGGAAC	ATCCATTCCC	TTGCCACCAA	900
AGACCACGAC	ATGGTTGGCA	ATCTCCATAT	CCAGATTCGA		*	940

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 990 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

GATTCTACAG	GATCCATTTT	ACTATCTTAC	GCGCCGGGAA	GTAGGCTGAG	ACATAACCAA	60
GTAATAGAGC	CAACAACTAG	AGTTCCTAAA	ACAGATAAAA	GATTTAATTC	AAAAACCTTA	120
	GGTAAAAGTG					180
	CCAGCAGCAA					240
	CACGATTCTG					300
	TGATGTAAAT					360
IGCHIGHIM	1071011					

GATGAAAGCA	CAATCAATAA	TCCCTGAATA	ACACGAATAA	AGGTAATCAC	AATATCAAGA	420
ACTCTCTGTT	AAGAAAGCAC	AGTATACTTC	TTATTTTTCT	GTAATTCTTC	TGTTACTACT	480
TTTGTCTGTG	ATGGATCTTT	GAGTTCCAAG	ATAAAATAAG	ATACAGCTTT	CGTAAATCCA	540
GCCTCTTTCA	AAATCGTTTC	CATTTGATGA	GACAGCATGA	AACTGTTGCT	GTCCTCCATG	600
TCATCTTCAT	CATTGATTAC	ACGTACAATC	TTCGTTTGAA	ATTGAGCAAT	CTTACTAGTT	660
TCGGCAGCAC	TTTCTACAAT	GCTGACTGAG	ACTGATTTGC	CAATAAGATC	ATTAGCTGTC	720
AAATTTTTTC	CTGTCTGTTC	ATTCCAATTT	TTTAGTAAAG	CTGCTTGGAA	TCGTTAATCC	780
CTGTTCATTT	GTATCAGTAT	AGAGGGATCC	AGCCAACACT	TTGTCCGTCT	CATTATTACT	840
AACAGAGATA	CTTGTATCAT	CATAAAGACT	CACTACTTGA	GCATAAGAAG	CATCGTTTGA	900
CTCAAATCCA	TTTCTTGCCC	ATCTTTTCTT	GCCCATCTAT	AGTAATATTT	GACATGTTCA	960
TCCCNAAAGG	ACTCTCCAAA	TATNNNATAG				990

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1253 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

ATCGGCTAAG	ATGCGTGGAG	CATCACAAAT	TATCCTTATG	AGCCGTCATG	AAGACGTCAA	60
AAGATGGCTA	TGGAGTCAGG	TGCGACAGCT	GTTGTTGCAG	AACGTGGTCA	AGAACGAATT	120
ACCAAGGTGC	GTGAAATCCT	CGGCGGAGGA	GCAGACGCAG	CACTTGAATG	TGTTGGTACG	180
GAGGCTGCTA	TAGAACAGGC	GCTAGGTGTT	CTTCATAATG	GAGGGCGTAT	GGGCTTTGTA	240
GGAGTCCCAC	ACTATAATAA	TCGTGCTCTT	GGTTCGACAT	TTATGCAAAA	TATCTCTGTA	300
GCAGGTGGGG	CAGCTTCTGC	TACAACATAC	GATAAGCAAT	TTTTACTAAA	AGCCGTCCTT	360
GATGGTGATA	TCAATCCAGG	TCGCGTCTTT	ACTTCAAGTT	ATAAACTGGA	AGATATCGAC	420
CAAGCCTACA	AAGATATGGA	TGAACGTAAG	ACCATTAAGT	CTATGATTGT	AATCGAATAA	480
AAAACGAATA	GGAGTTTTAG	AACTCTATTC	GTTTTTTATG	TTATCCTATT	CTTGATTTAA	540
GGTACTTTCT	CTTAATGTCA	GTCTGGTTCC	CAGCATGGTC	AGGCTAGGGA	TTTTCCGACC	600
GTGGAGGACT	TCCTTGTTAA	GAATATCCAT	ACCTGCTCGG	CCCATTTCTT	CAGTATAAAC	660
TGTAATACTA	AGAGAGGGA	GGATAGACCT	GTTTGGTCAG	ACTAAGTGTC	GTTAAAAGGA	720
AAATGAGGCT	GACGCGATCT	${\tt GGCAGGCTGA}$	TTCCAGCTTC	TTGGAGGGCA	CGGAGGCAC	780
CGATAGCTAA	ACTATCGCTG	GCTGCGAAAA	ATGCTGGCGG	AAGTTGGTCT	CCCAAGCTCT	840
GAATGGCCTC	CTTCATTAAG	TCATAGCCAG	ACTGGGCAGT	AAATCTTCCT	TGAAAGACCA	900
GTTCATCATG	ATAGATTCCC	CTCGCTTGAC	TGTAGTTTTT	GAAGTTTTCT	AGACGCTTGT	960
CCTGAATGAT	TTCTTCTTGG	TCTGTAGTTT	CTTCAAGGCC	TGTTAGAATC	CCGATACGGT	1020
CCATTCCTTG	ACTGAGGAAA	TAATCGACAA	CCTGTTTCAT	AGCAGTGTAA	AAATCCGTGA	1080
TAATACAGGT	ATGTCCCAGG	GAAAGTGTAT	CGCTGTCTAG	AAATACAAGA	GGCTTTTGGT	1140
ATTCTTCAAA	GGCAGAAATC	TGAGCTTCTT	GATAGGATTG	ATTCTGCTAG	GGATAACAGC	1200

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1211 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CGTGTACCAT CAAGAGGCTA	ATTGATGTTT	CTTCCCCCTG	TGCCTCTCTT	GTCAACATTT	60
CTGTTTGAGC CTTATGCGCC	TGTAATAAGG	CAGCATTCGC	ATCAGCTAAT	CTTCGATTGG	1,20
CTTTAGAGAA ATCCCCTTTT	TTTGCTGCCT	GAATAGCCTC	CATAGCATTA	CTTTTGGCTT	180
CCCCACCATA CATAATTAGC	CCCATTACAG	ATTCTAAATT	ACTTTCATCC	ATAACATTCT	240
CCTCAATCTT AGTCTAATAA	ACTTTCAGCT	AAATCTAAGA	CTTTAGAACC	ATTCATCATT	300
CCATAATCTG TCATCGGAAT	AACCGCCACA	GGAATCTGTC	TATCTTTTAG	TTTTTCTTGA	360
AAGTCCCCTA GTAAATAGCG	AACTTGAGGA	CCTAAAAGCA	ACACATTTAC	TTCTTTTGTT	420
GCTACAATTT CTTCTGCTTC	AGGAGCTGGA	ACTGCAAAAA	TTTCTGCATC	CAACCCCTTA	480
TCTTCTGCTG CCTTTTGCAT	CTTTGTCACT	AGCAGACTTG	TACTCATACC	TGCTGCACAT	540
GCTAACATAA TTGTTACTTT	AGCCATAGCT	TACTCCTTTA	TCACCTATTT	ACTGACCTAG	600
CCAAGCGAGA TACTGTATGT	CTCACTCCTC	TAATTGCCTT	GCTCAATGCA	TAAATATTAA	660
CGACTGTTGC CAGTCCCCCA	TATCCTGCGT	CACCTATATG	TTGAATATCA	ACTCCACAAA	720
TTTTATTTCT AAGTGCAATT	TCCTTAATAG	TATCTGTATC	AGATGTTTCT	TGGCTAGTAC	780
CAATAGCACT CAATACAAGA	CCACCCTTAC	TATGAACGAG	ATCAACGACT	TCACGCAACT	840
CTTGGTCATG AAAGGCTGGA	ACGGTTCCAA	CTGCTGGAAC	AAGTATCACA	TCCGCACCTG	900
CTTCCAACAA TTGCTCTGCG	ACAGAAAGCT	CTGCCACAGG	CTCATTCACT	CCTGCCCCGT	960
GCATCTTACC TGCAATAATC	AAACCAGAAA	AGTTTTCCTT	AGCAGTTTGA	ACAGCCTTAA	1020
TGATTTCTCG ATTGCTAACT	CCTGTTCCAG	GATTTCCAGT	CAAACAGACA	AAGTCAAAAC	1080
CTAACTCCTA TATTCGCTTC	AATGTTTCAA	CACTAGCAAC	ACGACCTGCA	ACAATTTCCT	1140
GTGTTTCCTC TAGCATTCTT	TGCAGATGGG	TCAATCGGTT	CCAAATTTAC	ACCAATTGGA	1200
CAAGCAACAA G					1211

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1425 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

						TCGATAAAAA	60
						TCCAAGACGT	120
	TCAAAGATAT	CATCCACTCG	TTTGGTGTAA	TAAACTGGGT	TGAAGATTTC	ATCGATTTCT	180
		GACGTGATGT					240
	TGGTTGTCCC	AAGAGTAGGC	TGTTTTTGGT	TGCACCAAGT	CATAGGCTTG	CTCACGGGTC	300
	ATGCCTTTTT	CAATCAATGT	CAACATAGCC	CGTTGGCTAA	AGATAAGACC	AAAAGTCGAG	360
		GGATCATATT					420
		TGTAGTCAAT					480
	GAGTGAGAAA	TATCGCGTTC	GTGCCAGAGA	GCGACGTTTT	CATAAGCCGT	AATCATGTGA	540
	CCACGAATGA	CACGCGCCAG	ACCAGTCATA	TTTTCAGAAC	CGATTGGGTT	GCGTTTGTGA	600
		AAGACCCTTT					660
		GACCACGAAT					, 720
		AGTACTCAGC					780
		CCAAGTTTAT					840
		GCACCAGAAA					900
		GCGTTTCATT					960
		GCACACCATG					1020
	TTGTCAGCGA	TGATATTAGT	GAAGTTTTCA	AGGTCACGAC	GGATGATGTC	GTTGGCCTGC	1080
	TTGTAGAGGT	AACCATAAGC	AGTATCCACC	ACGTCGGTAG	AAGTTAACCC	ATAGTGAACC	1140
	CACTTGCGCT	CTTCACCAAG	AGTCTCAGAA	ACCGCACGCG	TGAAAGCCAC	CACATCGTGG	1200
	CGCGTCTCCT	GCTCAATTTC	CAAAATACGG	TCGATGTCAA	AGTCCGCCTT	CTTGCGAATC	1260
		CTTCCTTAGG					1320
	CCACCTCAAG	CCAAGCACGG	TATTTATTTT	CTTCACTCCA	AATATTCGCC	ATCTCAGGGC	1380
•	GAGAGTAACG	GTTGATCATG	TGTTAATTTT	TCCTTTCTTC	TTAAG		1425

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1124 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

CTATTCTGAG TATAAAGTTG GCGG	AGGCTG GAACTACGCT	CGTTATGAGG	TCATAAACTA	60
CTATACIGGA GGTTATTAAT CCTT	AAAGAG TGAGAAAAGG	AGGGCTGGAT	ATGTTAAATC	120
TTACTCATGT TACCTTAAAA ACGC				180

NO 05/2504	PCT/US97/05306	
WO 97/37026	TA TCAATGGCTC GGGAAAGACG ACACTATTCC 240)
	PA GTGGACACAT CGCAGTTCCT CCTTCTTTGT 300)
CACCILITATION CITED TO THE CONTRACT OF THE CON	TG GAAACTTAAG TGGGATGGAC TACCTTCGTC 360)
	TA AACTTGAGAG ATGAAATCGC CTACTGGGAA 420)
	GC AAGTATTCCT TAGGGATGAA GCAACGCTTG 480)
	CC AAATGCTGGC TCATGGATGA GATTACAAAT 540)
	TT TTTGATAGGC TAGCACAAAT CGATAGACAA 600)
	AT AAGGAAGAGT TGGTTGATAT CTGCGATAGA 660)
	AA GAGGTTTAGT TTATGAAAGA TGTTAGTCTA 720)
	GT TTAAACTGGA TTATCTTACT TTTATTTGCA 780	0
	AT AGTCAGACTG CAAACTCAGT CAGCTTGGAG 840	0
AGAGAGTTGG AAACTCGTCT TGTAGACC	GT GAGAGAGTCA TCAATGAAAA TGAAGAGAAA 900	0
	AG GAATACCAGT TTGCTAAAAA TAATTTAGAC 960	0
GTGCAAAAAA ATCTTTTGAC GCGAAAGA	CA GAAATTCTGA CTTTATTAAA AGAAGGGCGC 1020	0
TGGAAAGAGG CCTACTATCT GCAGTGGC	AA GATGAAGAGA AGAATTATGA ATTTGTATCA 108	•
AATGACCCGA CTGCTAGCTC TGGCTTAA	AA ATGGGGGTTG ACCG	4
AATGACCCGA CTGCTAGCTC TGGCTTAA	AA ATGGGGGTTG ACCG	4

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1089 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

	TCGTCAAATC	TTCATAGGTG	AGGTAACCAA	TTGGAAAGAG	GTTGGTGGTA	60
CAGAGCAACT	TUGTUAAATU	11CAIACOIG	as accordance	WCCCWCWCCW	CCTACCTTTG	120
AGGACTNACC	CATCTCTGTT	ATCAATCGGG	CAGCCGGCTC	IGGCICICGI	GCIACCIIIO	100
ATACTCTCAT	TATGGAAGGT	CAGTCTGCCA	TGCAAAGTCA	GGAGCAGGAT	TCAAATGGAG	180
ATACIOTOTI	AATCGTATCA	AACAAGTCCA	GGAGCTATCT	CTTATTTATC	TCTTACCTAT	240
CGGTAAAATC	AATCGTATCA	ANCANGICO		A COURT A COUCC	ACAAAATATA	300
ATAGATGATT	CGGTCAAAAG	CATGAAGTTG	AATGGCTATG	ACTIMAGICE	AGAAAAA	
ACTACCA ATA	ATTGACCCTT	GTGGTCTTAT	GAGCATATGT	ATACATTGGG	GCAGCCCAAT	360
MOINGCANIA	CAGAATTTCT	CA A MONTOCOTO	СПСПСССАТС	AGACCCAAGA	AGGGATTGTC	420
GAGTTGGCTG	CAGAATTTCT	CAMILLIGIT	C1C1CCC		TO COCO A A CT	480
AAAGGATTGA	AGTATATTCC	GATTAAGGAA	ATGAAGGTIG	AAAAAGATGC	IGCCGGWYCI	
COCA CA COCO	TGGAAGGGAG	ACAATAATGA	ATCAAGAAGA	ATTAGCTAAG	AAAATGTTGC	540
GIGACAGIGI	GAATTCTCGT	OTCC10111M	TACCAAAAGG	TTTGACCTTT	GCCTGTCTTT	600
TTCCATCAAA	GAATTCTCGT	CIGGAGAAAT	INGGRAMMOO		CCCMMCMCC)	660
СТТТСАТАСТ	CATCCTTGTG	GCCATGATTT	TGGTTTTCGT	AGCGCAAAAA	GGCTTGTCGA	• • •
01110111111	CAATGGTGTG	እ ልጥልጥርጥ ጥ ፕር	ACTTTCTTTT	GGGAGGAACT	TGGAATCCTT	720
CCTTCTTTGT	CAATGGTGTG	Animicia			ል ርርልሞጥርጥርጥ	780
CTAGTAAAGA	ATTTGGTGCC	CTTCCTATGA	TTTTGGGTTC	CITTATEGIT	Accuración	0.40
C 3 C C C C で で 3 年	CGCAACACCC	TTTGCTATTG	GTGCAGCAGT	TTTTATGACC	GAAGTATCAC	840
CWGCCCITAI		ON NOCINCOUR	ጥጥር ል ልርጥርር ፐ	GGTTGGGATT	CCTTCAGTAG	900
CAAAAGGGGC	GAAGATTTIG	CAACCAGCTA	11GUNCIO			

TGTACGGATT TATTGGCTTG CAAGTCGTCG TTCCCTTTGT TCGCAGTGTC TTTGGTGGGA 960
CTGGTTTTGG GATTTTGTCA GGGATTTCCG TCCTCTTTGT CATGATTTTG CCGACCGTAA 1020
CCTTTATGAC AACGGATAGC TTGCGTGCGG TTCCTCCNTT ATTATCGTGA AGCCAGTTTC 1080
GCTATGGGA 1089

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1502 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

CTNTNTTTAA	ACCTTGACCT	TANTTGANNA	TTATACCGAA	ATTNTCTTCA	TTTTTAAAAG	60
AAAAAAGGGC	GCTGGTAAAA	GGGATAATCT	TCACCAACTC	CCTATNTTTC	TACTTATCTA	120
AGCCTAATTC	TGCCAAGATT	TGACGTTTGT	NGGCAATCTT	TNGGACTTCN	TNGTCCTCAT	180
CTTCAGACCA	GTCTAGTTTA	ATTTCTGAAA	CAATCTGCCC	AGGGNGATTT	NTCAAGATAT	240
AGATGCGGTC	GCTGAGANTG	AGGGCCTCCT	CAATACTATG	CGTGANGATC	AGGGTTGTTA	300
GCTGCAACTG	CTTGTGAATC	TCAAGATACC	AAGCGTGGAG	TTCCATCTTT	GTCATCTCAT	360
CCAAGGCGCT	AAAGGCCTCA	TCTAAGAGAA	AGAGCTTGTG	CCCAAAAAGG	TAGGTCCGGA	420
GTAAGGCTAC	ACGCTGGCGC	ATCCCACCGC	TAAGTTCATG	AGGATACTTG	TCTCTTACAG	480
CTGTCAGCTG	GAAGGTCGCA	AGAATTTTAT	CCGCTCGGGA	AATAGCTTCT	GCCTTATCCA	540
CCTTTTGAAT	CAAGAGGGC	AGAATGATAT	TTCCAAGCAC	CGTCTTGTGC	TCCAAGAGCA	600
GATCCTTTTG	CAACATATAA	CTCACGTGCC	CCTTGGGATT	TTCTTCACCA	TCAAGGACAA	660
TTCTCCCTGA	CTGAACTTCT	AAAATCCCAG	CGATTAGATT	AAAGAGGGTG	GTCTTTCCAA	720
CACCACTTGG	GCCTAGGATG	GAAACCACTT	CGCCTGAAGT	CACCTGTAGG	TTGATATCCT	780
CTAAAATCCT	CTCCTGACCA	TAGGCATAAC	TGACGTGCTC	TAGTCTAATT	TCTGTCATTA	840
TTTCACAAAT	TCGTTGGTGA	AGCCTTTGTC	TGTCAAGTCT	TCTTTAAGGA	TACCATTTTC	900
TTTATCCCAT	TTATAGAAAG	CATTCCAGCG	AGCTGCGTCA	AATTGACCCC	ATTTTTCCTT	960
	TATTCTTTTG					1020
	GGTGCATTCT					1080
ATATTGGTAG	CCTTTTNTGA	TGGCTTGGAT	GACTTTGCGA	GCTTCTTCTT	TGTTATCTTT	1140
CAGATAGTCG	TTGTTTGCGA	TGATAACTGG	TGAATATTAN	TCAAACTCCT	TGACATAGTC	1200
TTTCAANTAC	ATGAAGTTAG	CATCTACACC	TTGAGATTTA	GCAAGGATAC	CATCCCAACC	1260
	CNAGCAGTAT					1320
NTTANTTGGT	ACTNTTTCAA	CCTTCTCACA	GTCTCCNCCT	TGAGATTCTA	CCAAGGTTTT	1380
CAACATACNN	GTTCANTTGG	GTCATICCAT	GTCCCATATT	TCTTACCAAC	CAAGTCTTTT	1440
GGACTGCCTA	CATTNTCACA	TTACCGAGAG	ATGATCCCTG	ATGTATTGTG	TTCCACCNAT	1500
AG						1502

60

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1022 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

ACTCTTCAGC GATT	TCTTGG CTGAGAATG1	CCTCATAGGC	AGGGAGTTGG	ATGTCCTGAC	60
CATATTTCTT CTTG	AGGGCA GTAGTAACTA	GGCGATAAGC	CAGATTGGCA	TTACGAGAGA	120
AGATAGGCCC GNGG	AANTAC GAACCAAAGA	CATTCTTATA	ATGAACCCCT	TCACCGACCT	180
TTTCTTCGTT GTTTC	CCATTT CCATAGACA	CCTGTCCCAG	CGGTTTTTGG	TCATCAGAGA	240
GGAAGGTACG ACCT	TGGTGA TTTTCAAAT	CATAGTAGGT	TTCATCGAAA	TCTTTCATTG	300
TGAATCTTGA TGTC	ACCGAT AAAACGGTT	TTGGTCTGGT	TGAGCGTGTA	GTGTCCCATG	360
ACCCCTAGCC CTTCC	GATACG TTTTCCTGA	GCTTCAACAT	AATATTGACC	CAATAGTTGG	420
AAACCACCGC AGATI	AGCCAG AACTACACCC	TCGTTTTGGA	TGTAGTTGTC	AATGCTCTCT	480
TTTTTAGCAG GTAG	GTCGTC TGCAATGAT	CTTTGTTCAA	AGTCTTGACC	ACCACCGAAA	540
AAGGCGATGT CGTAG	GTGATT TTCATCAAA	TCATCATGGA	GAGAAACGAT	GTCAACGGTC	600
	TTTTTC AGCCACATA				660
	ATTTCC GTAGAGGTG				720
TCTTTTGAGG AAAG	TGAAGT ATAAACCAT	r AGTTCATCTC	CTTTCTAACA	ATCTGACGAC	780
TAGCCAGCAG TTCA	CGAAAT TCCAGCATG	G CAGTATAAGT	TGCCAGAATA	TAGGCATGCT	840
TGCAGTCTTG ATTC	TCAATG GTCTTGAGA	A CTTGCTCCAG	ATTACTCGTT	TCAGTGATTT	900
TCTCAGCTGG ATAG	CCAGTC ACTCGGAGG	C GACGAGCGAT	TTCAGAATGA	CGAACACCGC	960
CAGCGTTGAT TTCA	GGAATG TCCATGTCA	G TGATTTGCTC	AAAGTCTGCA	TCCCAGATCC	1020
AG					1022

- (2) INFORMATION FOR SEQ ID NO:67:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1353 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

WO 97/37026				÷	PCT/US97/05306	
TTAAGCAGAC	GTCGGGTCCA	GTCATTGAAA	AAGCCGGAGA	TCTGGTAGCT	ATTTTGAATG	120
AGTTAGATCC	TGGGGATGTA	CTTTTTATTG	ATGAGATCCA	TCGTTTGCCA	ATGTCAGTGG	180
AAGAGGTGCT	TTATAGTGCT	ATGGAGGACT	TCTACATAGA	TATTATGATT	GGGGCTGGTG	240
AGGGTAGTCG	TAGTGTTCAT	TTGGAGTTAC	CACCTTTTAC	CTTGATTGGT	GCGACGACTC	300
GGGCTGGTAT	GCTCTCCAAT	CCGCTACGGG	CACGTTTTGG	GATTACAGGC	CATATGGAGT	360
ATTATGCCCA	TGCTGACTTG	ACAGAAATTG	TCGAGCGGAC	GGCAGATATT	TTTGAGATGG	420
AAATCACTCA	TGAGGCAGCA	TCTGAGTTGG	CCCTACGTAG	TCGTGGGACC	CCTCGTATTG	480
CCAATCGTCT	CCTCAAGCGC	GTGCGCGATT	TTGCCCAGAT	AATGGGGAAT	GGGGTAATTG	540
ATGATATTAT	TACCGATAAG	GCTTTGACTA	TGCTGGATGT	TGACCATGAA	GGTTTGGACT	600
ATGTGGATCA	AAAAATCCTT	CGTACCATGA	TTGAGATGTA	CAGTGGAGGA	CCTGTTGGTC	660
				CAGTTGAAGA		720
				GTCCTGGACG		780
GCCTAAGGCA	TATGAGCACT	TAGGTTATGA	ATACAGTGAA	AAATAAGCAA	GAAATCCTTA	840
GAGGCTTTTT	AGAGAAAATC	CAGATATGAT	GGCCATTCTG	ACGATCATCC	GAGACCTTGG	900
TCTGAAAGAC	TCGTGGTTGG	CAGCAGGTTC	TGTCAGAAAT	TTCATTTGGA	ATCTTTTGTC	960
			${\tt TATAGATGTT}$		GATCCCAGAT	1020
TTTTCTTATG	AGGAAACCTT	ATTACTGGAG	AAAAAGCTGT	GAGAGGATTT	TCCTCAGTAC	1080
CAGTGGGAAT	TGAAAAATCA	GGTCTATATG	CATCAGCACA	GTCCTCACAC	TGCTTCCTAT	1140
ACCAGTTCTC	GTGATGCTAT	GAGTAAGTAT	CCAGAACGGT	GTACGACAGT	TGGACTGCGC	1200
TTGAATGAAG	AATCAGATTT	TGAACTCTAT	GCACCTTATG	GTTTGGAGGA	TATTTTGAAT	1260
				CCGAATGGAA	CTCTATCAAA	1320
CACGTTTATC	CAAGAAAAAT	TGGCAGGAGA	AAT			1353

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 560 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

CTCCTGGAAA	TTCTGGCAAG	TAGGCTGGAT	GAATGTTGAC	AATCCGACCT	TCATAAGCCG	60
ACAATAAGGT	TGGTCCAACG	ATTTTCATGT	AGCCTGCTAG	GCAAACCAAG	TCAATCTGGT	120
GTTCTTCCAA	GAGTTCGACA	AGGGCTGCTT	CGTAGTCTGT	CTTGCTCTCA	AACTCCTTGA	180
GTTCAAAAGC	ATAGGACAGA	ACGCCGAGCT	GCTTTGCACG	CTCAAGCACA	TAGGCATCAC	240
GATGGTCTGA						300
CATTACCAGA	GGCAAAAACC	$\mathbf{GCTATT}\mathbf{T}\mathbf{T}$	TCATTTGATA	ATGACACTTT	CGTTTTCTTT	360
CTTGACGATG	CGACCAATTT	CATAGACTGC	TTCATCCAAC	AATTCTTTTA	CACGCTCTAC	420
ATTITCAGGG	CTGACCGCCA	ACATAAGTCC	CACACCCATA	TTGAAGATTT	CAAACATTTC	480
TTCGTGTTTA	ATCTGACCAT	ATTTTTCALG	GGCTTTGAAA	ATTGGAAGCA	CTGGAACTTT	540

560

- (2) INFORMATION FOR SEQ ID NO:69:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 860 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

CTTCAACACT	TTATTTTTAT	CTTTCTCCCA	TTTCGTATGC	TAGTTCGGAA	ATTGTTGCTA	60
		GATGTTCTCA				120
TTGGTGCTAG	GAAAAAAGAG	ACCAATAATA	TTGTTCCTGG	TGTTGCTATT	GCAACCGCCT	180
		GTAGGTTATG				240
		CCTCATCAAT				300
		TAAGAAACAT				360
		AGTTGCTGTT				420
		GTTGAAAAAA				480
		GAAAAAAACC				540
		GACAGAAGAA				600
		TTCTGTTCAA				660
		GTATTTCTTC				720
		TTATACAGAG				780
					AAGTATGAAA	840
	ATTATAGTAG					860
~						

- (2) INFORMATION FOR SEQ ID NO:70:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 925 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

TCTTGGCCAA CTGCATGGAG	TTCAGCGGTC	AATTTCAACG	CACCTGAGAA	ACAGACCCCT	60
GCACCCCTGA AATCTCAGGA	GACATGATGG	TCTGGATGGA	ATCAATAATG	AGAAAGTCTG	120

WO 97/37026					PCT/US97/05306	
GCTGGATACG	CTACCACTTC	TGCACGAACA	CTCTGCATAT	TGGTCTCTGC	ATAGAGATAA	180
AACTCACTAT	CAAAATCACC	TAAGCGCTCT	GCACGTAGTT	TAATCTGCTG	GGCAGACTCC	240
					TTGTAGGAGA	300
AGAGTTGATT	TCCCAATCCC	AGGATCCCCA	CCGATGAGGA	CGAGACTTTC	CTGGTACAAC	360
TCCGCCTCCA	AGCACACGGT	TGAATTCCTC	CATCTCCGTC	TTGGTTCGAT	TGACATTGAT	420
GGAAGTCACC	TCAGCTAGTT	TCATGGGCTT	GGTTTTCTCA	CCTGTCAAGG	ACACACGCGC	480
ATTCTTGACC	TCGGCAACCT	CAACCTCTTC	CACAAAAGAA	GACCAAGACC	CACAGITICGG	540
GCAACGTCCC	AGATATTTAG	GGGAATTATA	CCCACAATTT	TGACATACAA	ATGTCCCTTT	600
TTTCTTTGCG	ATGACAAACC	TCTTTCTATA	TCTCTAACTC	ACACTCAATC	ACTICCCAAA	
AATCAATCTT	CTCATTTGGC	ACAAACTGGC	GCATGAGCAT	TCGATGAGCA	ACA ACTA COA	660
CAGTCTGATG	TTCTCGATAC	TTAAACATAC	ATTCTAGAAA	CCGAGACTTC	ACAACTACCA	720
CTGTCTCATA	TTGAATAGGA	CTATTAGGAA	GCAACTCCCC	CTTGTTTTCT	Allicano	780
TTCTAGCTGT	TTCAAAGTTT	TCTATTCCTG	TTTTATAGAC	CTGCCATTCA	MANAACAGTC	840
	TAAAGGAAGA			CICCATICA	IGIAATAAAG	900

925

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 630 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

TTCTNG	ATCA	AGTCAAGGAC	TGCANGCCAC	GACCGACATA	GCGTTTGGCA	ATGGAAACAA	60
CCAAAC	GAAG	ATTGGCTTCC	GCAAGACGTT	GTTTGGCTTC	GATATCGCCA	GCTTCAACAG	120
			TCTTCATTGG				180
AGTACA	TACG	GACAGGGTCA	TTGACCTTAG	CAGAAGTTGA	CCCAATCAAG	TCCTCATCGC	240
TGAGTT	CTGG	TTCTTCTTCA	TTGCTAAGAA	CACGCGCACT	TGGATTTCCT	TCGTTATCTG	300
TGATAG	AAAT	GCCTGCATCC	TGAATCCGTT	GCAAGAGATC	TTCAATCCCA	TCAGCGTCCA	360
AGGTAA	AAGG	AATAACCAGA	CTTGCATTGA	TTTCATCATC	TGTTGCTGTC	CCTTTTTGCT	420
TATGAT	TACG	GATAAATTCT	GCTACCTGTA	CGTCAAATGT	TGTTACTTCT	TTTTGTTTTG	480
TTGCCA:	TTAT	TACTCCATTC	TTCTCTTTTG	GGAAATTAAA	CGTTCCAATT	CTTCTAGGGC	540
TGTATC'	IGTA	TCTCCTACAT	GGCTAGCTTC	CTGCACCTTC	TTTTTGATTC	CCATATTGTC	600
CTGATTO	CAAG	AGAGCCTTGT	TTCGAAGTCA				630

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

CTAGGGCCAT	CTTCTCACCT	CCTCCTTGTC	AGTACATTCT	TGCAATAGAA	AAAATAAGAT	60
TGAGTCCCCC	CAACCTTAAA	TTTTTTCACC	ATCTTCTTTT	TCTTTAGCAA	TTTGCTCTTT	120
GATTTTCTTT						180
		CTGGGTGAAT	TGTAACGTTT	CCTGATTCGA	TTTCTTCTAA	240
	GTTGATTTTT	CAGACTTGAA	ACCTTGAGTT	GCTGGGGCAC	CTGCTTCCAA	300
	CGTTTTGCTT		GAGTGAATAT	TTTGAAGGAA	CCTTGTCGAG	360
CAAGGTATCA	ATAGAGGGTT	TTAACATCAT	TTGCTTGTAC	CTATTTTCTA	AATTTTATCG	420
CCTACTTGGA	GATTTTGGTA	ACATCTCCTG	ATAGTGACCA	ATGACACGAT	CCACACAGAA	480
GTGTTCTGCT	TCAATCACAC	ATTTGACACG	TTCAGCAGCT	AGGGGTACCT	GATCGTTGAC	540
		GCATGAGGGC				600
GGCAATCACT	TCTGCACTAT	CTGTTCCACG	ACCTACCAAG	CGTTCTTGCA	ATTCATCCAA	660
ATCTGGTGGT		TAAAGACAGC				720
		GGAAAACATC				780
GGTCAGAGGA		AGTTGCCGAC			TCTGTCCTTG	840
ACGAATCAG						849
UCOMA, CHO						

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 581 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

CCCAAACAAC	GCATCCATAA	TGGTTAAATC	TTGATAAGGC	AGAGCTACAT	TCAAAACAGC	60
GCCAAACAAC	GTAGGCTTTC	AATCAGAGCA	ATCACTTCTT	CAACCTTGTC	AGCATCAAGA	120
TTGCTGGTTT	CAATCTTTGT	A COMPONENT C	CCጥጥር ፡፡ ልርጥጥ	тасстттсаа	GTCATCGCAT	180
GCAGCTGTCT	CAATCTTIGT	ACTIGITIES	mcmcma a amc	THEOLOGIANC	TTGACAAATC	240
TTTGACTTGG	TACGGCTAGC	AATCATAATC	TCTGTAAATG	TITCGCIAIC	A CAC A WALLAND	300
TTTGAAATAG	CAACTTGGGC	AACGCCCCCA	CAACCAATAA	CTAGTAAACG	ACTUATITI	360
TTCCTTCCTC	TTCTTCTAAA	ATGTCCTCAA	CATACTTGGG	CAACATAAAG	GCTCCCACGT	• • •
GTAAGTTTGC	AGTGTAGTAT	TCTGTGAAAA	GCTGGCGTTT	TTTCCAGCCT	TCCTTGTCAA	420
እአጥርሞሞሞርልር	AGGGTGGTAT	TTTTTCGATG	CAAATCCAAA	CAACCAATAG	CCAGCTGGGC	480
AMICITIAN	AMOCCCCTGA	ሞል አልሮሮሮGAC	TCATTGGAAA	GGCTTGATTG	ACCTTGCGGT	540
TACTTGGAAT	WIGGGCTON	11001000000000				

581

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1180 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

TTCTGAAAAT	CCATACTTCT	ACCAAGGAGA	TACGCTAGCG	GTCTCGGAAG	TTCTCATACT	60
TCTATCGCTA	TATCTGGCCA	TCGCCTTTCT	ATCCAAGGAT	TGACAACAAG	AGATAAGGCA	, 120
GAGAAAAAAT	TCTTGCTGGA	TCAGCTGGTT	GCCTGCGATG	GTGGTACAGG	TGTCATGCAC	180
GAAAGCTTCC	ATGTAGATGA	TCCGACCCTC	TACTCTCGTG	AATGGTTCTC	CTGGGCTAAC	240
ATGATGTTCT	GTGAGTTGGT	CTTGGATTAC	TTGGATATTC	GCTAAGGGGC	TCGCTTTAGC	300
TCAACCGATT	CTTATCAGAA	TCACAAGTTT	ACATTTAAAA	CGTTAAAATT	TAAATTTAGA	360
ATGAGGTTTT	ACTTCATGGA	AAATGTTGTT	GTACATATTA	TCTCACATAG	CCACTGGGAT	420
CGTGAGTGGT	ACTTGCCTTT	TGAAAGCCAT	CGTATGCAAT	TGGTGGAATT	GTTTGACAAT	480
CTCTTTGATC	TCTTTGAAAA	TGACCCTGAG	TTCAAGAGTT	TCCACTTGGA	TGGACAAACT	540
ATTGTCCTTG	ACGACTAACT	TACAAATTCG	CCCTGAAAAT	CGCGACAAGG	TCCAACGCTA	600
CATTGACGAG	GGCAAGCTTA	AAATTGGTCC	CTTTTACATC	TTGCAGGATG	ATTATTTGAT	660
CTCCAGTGAA	GCCAATGTCC	GCAATACCTT	GATTGGTCAA	CAAGAAGCTG	CCAAATGGGG	720
TAAATCAACC	CAGATTGGCT	ACTTTCCAGA	TACCTTTGGA	AATATGGGAC	AAGCGCCTCA	780
AATTCTTCAA	AAATCAGGCA	${\tt TTCACGTGGC}$	GCCTTTGGT	CGTGGTGTGA	AGCCGATTGG	840
ATTTGACAAC	CAAGTCCTTG	AAGATGAGCA	GTTTACGTCT	CAGTTTTCAG	AAATGTACTG	900
GCAGGGTGTG	GATGGTAGTC	GTGTTTTAGG	TATTCTCTTT	GCCAACTGGT	ACAGTAACGG	960
GAATGAAATT	CCAGTTGACA	AAGATGAGGC	CTTGACCTTC	TGGAAACAAA	AATTGTCAGA	1020
TGTGCGTTGC	CTACGCTTCG	ACCAACCAAT	GGTTGATGAT	GAAACGGCTG	TGAACACCAG	1080
CCTGTCCCAA	AAAAAATCTG	AGCGAAGCCA	TTCCGTGTGG	CAAATGAACT	CTTCCCGGAT	1140
GTAATCTTTG	TTCATAGTTC	TTTTGATGAA	TATGTTCAAG			1180

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

CTCAAAAAGT	CTGAAATTGG	ATCATTTGGA	ACCATCTGAG	CAGTAAGTTT	AACACCTTTT	60
TCTGCCAGTT	TGTGGAAGTC	TTCCACATCC	TTGTCTACTA	CGTTGATAGA	ACGTGTAATA	120
GAACGAGTTT	CTGGTGTTTG	AGACATATTC	CCAACATTAA	GGGTTTCAAG	TGGTACACCT	180
GCTTCTACCA	AACCAAGGGA	AGCGGTCTGG	TTTACGAGCC	ACGATAAAGA	GACGTTGGCT	240
ATCGTATTTG	CCAGCAAGAA	TATTGGCTGC	AGCTTTCTCA	ACTGGCAAAA	TACTCAATTT	300
CACACCTGGT	GGTGTCGCAA	GTTTCAAACC	ACTCTTTTCA	ATATCGTTGT	TGACAACTTC	360
GTCGTCTACA	ACCATAATGC	GTGAAACATT	TAGTTTTCCA	GCCCAAAGAT	TGGCTACTTG	420
TCCGTGGATC	AAACGTCCAT	CAATACGGCA	TCCTACAATT	GTCATAAGTT	TTCCCCCTTT	480
ATATGTTTTA	GTGTAGGTTT	ACGAGTTAAA	TGAATCTCTT	CTTTATATTG	ACCTTCTGTT	540
TCAAAGATAA	TGATGCGGTT	GGCACCTTCC	TTGAGATAG			579

(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 736 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

AAAAGTTTTC	TTTGACATCT	TCTGGAATAT	CTGTATCATT	AGCTTCCTGA	60
					120
					180
					240
					300
					360
					420
					480
					540
					600
					660
					720
					736
	CATAAATCCC AGACAGCTCC ACATATCCAT CATTTGATTT ATGGAGAAAT AATCTGCCAC GACGACGACC CCTCTTATTT GACGACCTGT CAATTTCTTG	CATAAATCCC AAAGGCTGGA AGACAGCTCC TGGGCGTTCT ACATATCCAT AGTTTCACTA CATTTGATTT TTTAAACAAC ATGGAGAAAT CACACATTCC AATCTGCCAC ACTTTTAGCC GACGACGACC ATCAATAGTC CCTCTTATTT TTCTGTTTCT GACGACCTGT AACCTTATAA CAATTTCTTG CTCCTCAATG TTGCGACTAA TTCTAAAGTT	CATAAATCCC AAAGGCTGGA ATCCCTTTTT AGACAGCTCC TGGGCGTTCT GTCCCATTAA ACATATCCAT AGTTTCACTA CCATAACACC CATTTGATTT TTTAAACAAC TCATGGGAAG AATCTGCCAC ACTTTTAGCC ATGTTCATTG GACGACGACC ATCAATAGTC GGACGAATCC CCTCTTATTT TTCTGTTTCT TTCATACTAC GACGACCTGT AACCTTATAA TTTTCTCGCA CAATTTCTTG CTCCTCAATG CCCTTTGTAG TTGCGACTAA TTCTAAAGTT TCCATACGGT	CATAAATCCC AAAGGCTGGA ATCCCTTTTT GAGCATGTGA AGACAGCTCC TGGGCGTTCT GTCCCATTAA ATCCCCAAAT ACATATCCAT AGTTTCACTA CCATAACACC AGCATGGTGT CATTTGATTT TTTAAACAAC TCATGGGAAG CTGCAGCCTC ATGGAGAAAT CACACATTCC ACAGGTTCCC CATCTGGATA AATCTGCCAC ACCTTTAGCC ATGTTCATTG TTTGTACTTC GACGACGACC ATCAATAGTC GGACGAATCC CAATACGTGG CCTCTTATTT TTCTGTTTCT TTCATACTAC CATCGCCATT GACGACCTGT AACCTTATAA TTTTCTCGCA TTGAGAATAG CAATTTCTTG CTCCTCAATG CCCTTTGTAG AAAGTAACAT TTGCGACTAA TTCTAAAGTT TCCATACGGT AGTATGCTGT	AAAAGTTTTC TTTGACATCT TCTGGAATAT CTGTATCATT AGCTTCCTGA CATAAATCCC AAAGGCTGGA ATCCCTTTTT GAGCATGTGA AGCTAGTACA AGACAGCTCC TGGGCGTTCT GTCCCATTAA ATCCCCAAAT AGCATGAGGA ACATATCCAT AGTTTCACTA CCATAACACC AGCATGGTGT AACTGTAATT CATTTGATTT TTTAAACAAC TCATGGGAAG CTGCAGCCTC TGGAACACGA ATGGAGAAAT CACACATTCC ACAGGTTCC CATCTGGATA TTTCAATGTG GACGACGACC ACTTTTAGCC ATGTTCATTG TTTGTACTTC AAGTGATTCC CCTCTTATTT TTCTGTTTCT TTCATACTAC CATCGCCATT ATATTTACGG GACGACCTGT AACCTTATAA TTTTCTCGCA TTGAGAATAG ACGTTCTAAA CAATTTCTTG CTCCCAATG CCCTTTGTAG AAAGTAACAT TCTTCCGTGG TTGCGACTAA TTCTAAAGTT TCCATACGGT AGTATGCTGT AATTACATCG TCAGAG

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 590 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

CTCATTGTAT	TTAGGAGAAA	TGATGGTATC	TTCCAAATCA	AAATCAACTT	CACTCCATAG	60
TCTCAACGGA	TTGATTTTCC	CATCTTGATA	GGTCACATCC	TTGTCAAGGA	TAAACTGAGT	120
CAACGCCTCA	TGCTGACCTT	GACACCTGAT	GTCATCTACC	AAGAGCCAGA	CATCCTCTAC	180
CAACATGAGG	ATTTTTCTCT	TGTGAAGATA	AGGCAAATCA	GGTTCTGCTG	ACCAATAAGC	240
CCCTTCAATA	TAATGCATTC	CCTCCCTTTC	TTTATGGTGA	CAAAACAGGG	AGTGAGGATA	300
GTATTCATAT	TCCCAGGATC	CCGTGATTCT	TTCCGGAGCT	TTCCCATCTA	CAATGCAGGT	360
CGAATGACTC	CAAGCACTCT	TTAAGAGATA	ACGTTCATAT	ATCTCCCGAT	AAGAATAACG	420
CCCAGCATCT	atgaaaatag	GTTGGCCTTG	ATACTGTAAG	CAAAAACTAT	TCTCGTCACT	. 480
ATGGCTATGG	GCACTTCCTA	GCGGACCATT	TTTGAAAAAT	AGATAACGAT	GTTCATCCTT	540
AATGCAGACA	TGTCCAGAGT	CTTCAAAGAT	CATGGACTTA	GGCTGCCAAG		590

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1199 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

TTATCTGATA	AGATAGCTGT	CATATCAGAC	TCAATCATTT	60
C TCGTATATTC	CGACTAGCGA	CCTCGCGTGC	CACAGACTTG	120
C CTTAGAAGCA	GCATAGTTAG	CTTGACCAAT	ATTCCCCATC	180
T ATTAATGATA	GCACCTTCTC	TGGCTTTCAA	TCATCGGTTT	240
ATTAAAGGCA	CCAGTCAGAT	TGACCTTGAG	CACTTTTTCA	300
GAGCATAAGA	GTATCTTGGG	TAATCCCTGC	ATTGTTGACC	360
TTCTGCAATA	GCTTGATCAA	TCATACGCTT	AGCGTCTGCA	420
AATGGGAACC	ACCTTGATAC	CATAGTTTGA	AAACTCAGCG	480
CCCACGACTG	TTTAAGACAA	TGTTGGCTCC	TGCTTGAGCA	540
ACCAATICCA	CGACTCGAAC	CTGTAATAAA	GATATTTTTA	60C
CCTTTCAAAA	CTTCTACTTA	TTTTAGTCTA	TTTTTCTAAA	660
ATCTTCCACA	TGAGCTAAGT	GAGCAGTTTG	ATCAATTTTT	720
TTTCCCCGGT	CCAATCTCGA	MTAMAGTTGC	TTATGCCTGC	780
	C TCGTATATTC C CTTAGAAGCA I ATTAATGATA I ATTAAAGGCA I GAGCATAAGA I TTCTGCAATA A AATGGGAACC C CCCACGACTG ACCAATTCCA I CCTTTCAAAA ATCTTCCACA	C TCGTATATTC CGACTAGCGA C CTTAGAAGCA GCATAGTTAG I ATTAATGATA GCACCTTCTC I ATTAAAGGCA CCAGTCAGAT I GAGCATAAGA GTATCTTGGG I TTCTGCAATA GCTTGATCAA A AATGGGAACC ACCTTGATAC C CCCACGACTG TTTAAGACAA A ACCAATICCA CGACTCGAAC I CCTTTCAAAA CTTCTACTTA A ATCTTCCACA TGAGCTAAGT	C TCGTATATTC CGACTAGCGA CCTCGCGTGC C CTTAGAAGCA GCATAGTTAG CTTGACCAAT I ATTAATGATA GCACCTTCTC TGGCTTTCAA I ATTAAAGGCA CCAGTCAGAT TGACCTTGAG I GAGCATAAGA GTATCTTGGG TAATCCCTGC I TTCTGCAATA GCTTGATCAA TCATACGCTT I AATGGGAACC ACCTTGATAC CATAGTTTGA C CCCACGACTG TTTAAGACAA TGTTGGCTCC I ACCAATTCCA CGACTCGAAC CTGTAATAAA I CCTTTCAAAA CTTCTACTTA TTTTAGTCTA I ATCTTCCACA TGAGCTAAGT GAGCAGTTTG	TTATCTGATA AGATAGCTGT CATATCAGAC TCAATCATTT CTGTATATTC CGACTAGCGA CCTCGCGTGC CACAGACTTG CTTAGAAGCA GCATAGTTAG CTTGACCAAT ATTCCCCATC ATTAATGATA GCACCTTCTC TGGCTTTCAA TCATCGGTTT ATTAAAGGCA CCAGTCAGAT TGACCTTGAG CACTTTTTCA CTGAGCATAAGA GTATCTTGGG TAATCCCTGC ATTGTTGACC CTTCGCAATA GCTTGATCAA TCATACGCTT AGCGTCTGCA AAATGGGAACC ACCTTGATAC CATAGTTTGA AAACTCAGCG CCCCACGACTG TTTAAGACAA TGTTGGCTCC TGCTTGAGCA CCCACTTCCACA CTGATCATA TTTTAGTCTAAA CTTCTCCACA TGAGCTAAGT GAGCAGTTTG ATCAATTTTT CTTTCCCCGGT CCAATCTGA MTAAAGTTGC TTATGCCTGC

TTCTTGCATG ACCCCAATAC TTTCATAGAA ACGAACGGGT TCCTTGACCT GACGCGTCAA 840
GAGCTGAGCA ATGTCCTCT TTTGCATCAC AGCAGCTTCT GTATTGCCGA CTAGGGGACA 900
AGTAAAATCT GAAAAACTTA CCTGAGCTAG AGTTTCAGCT AGTTTCTGGC TAGCAGGCTC 960
AAGGAGAGGG GTGTGAAAGG GACCTGACAC CTTAAGAGGA ATCAAGCGTT TGGCACCTGC 1020
TTCTTGCAAA AGTTCAACCG CTCGATCAAC TGCAACCACT TCTCCAGCAA TGACGATTTG 1080
TGCAGGTGTG TTATAGTTGG CTGGAGTAAC CACTCCAAGT TCCAGAAGCT TTTTGACAGG 1140
CTTCTTCAAT GACCTCTACT GGCGTATTGA GAACTGCTAC CATCTTGCCA AGTTCAGCA 1199

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1414 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

			መጥአር አር አርጥ <u>ል</u>	CCCATATCGT	GGTAAGAAAC	60
CTACTATTTT	CTTTGCCATA	GCCTTCTCCT	TTACACACTA	COCATATOOT	mmamamaccc	120
ACTGCGTCCC	ATCTCACCTG	CATTCTCTTT	TTGAACAAAG	GTATTAGCGT	TTATATAGGC	
AATAGCAGAA	GCCTTCAACA	CATCAAAATC	AAGCCCTGCT	GCATTAAAGA	TGGTTTCTGT	180
ATCCCTGTTT	TCAACAGTGA	CCAACAACCC	GATCCTGGGC	ATCGATTCCA	TCTGTTACCG	240
CATTGATAGT	GTAGGACACC	AAACGAACAG	ATTGGTTAAA	GAACTTATCG	ATAGCGTTAA	300
AGATTGCTTC	AACGGAACCC	TGTCCCTGTC	GCATTAAATT	CGACTTTCTC	ACCATCCATA	360
TTGGCTAGGC	TAACGAGCGC	TTCAATGTCA	TTATCTGCAT	GAGTTTGAAG	TTGTAAATCA	420
TCAAACTGGA	AGCCTTCTGG	ATTTTCAACC	ATGGTTCCAG	CTACCAAAGC	TCGAGTATCT	480
CONTROTOR	тттСттАСТТ	CTTATCGGCC	AGTGCCTTGA	ACTTAGCAAA	GAATGGTTTG	540
GCATCIGIGA	СТСТАВАВТС	TAAGGCCAAT	TCTCTCAGTT	TCTCAACAAA	AGCATGGCGA	600
ATAICCICTT	mmcca Acces	AATCTTAACA	CCAACCAATT	CAGGTGTGAT	GATCTCATAA	660
CCAGATAATT	mmma ACCAC	TO ATOTTO	TGAATACCAG	ATTCGTGGGA	GAAGGTATTG	720
GTGAGAGGAT	TITITAAGGAC	TCCATCITCO	GGAATACCAG	AGAAGCGAGA	AACCATTTCT	780
CCACCAACGA	CGGCTTTGTT	T-I-TAGGAAC I	GGAATACCAG	OTTO CTA CTA	ATTOTTTCCCGA	840
GACGTATTGA	TGGTCTCATT	TAGGACAATA	CTGGTTTCTA	CTTGGTAGTA	COMPARACCA	900
ATATTGAGAG	CCACTGCAAT	TTCTTCCAAA	GCAGCATTTT	CAGCTCGCTC	CCTAATACCA	960
TGGATAGTCT	CTTCAAAAAG	TCCTGCACCA	TTCTTGACAG	CAGCAAGGCT	ATTTGCCACT	• • •
GCCATCCGAA	GTTCATCATG	ACAGGGAGGC	GAATAGATGA	TCTGACGATC	CGTCTGGACA	1020
TTCTCAATCA	GGTATTGGAA	GATGGCACCA	CATTCCTCTG	GTGTGGTAAA	TCCTATATTT	1080
тстсаааатт	TCTTCAGTAA	AGAATATTTA	GCTAATTGAA	AGTTCATGAA	AATTATTAAA	1140
20120101101010101	TTTTTAGAGGT	TAAGTTCCAA	CTTTTTTCTA	TCAATTCCAG	TACTTNTTCA	1200
ATATTICAL	mancancaac	CGACACACTA	ATCCAGTAGC	GCTTGCTCAT	ATGGAAGGCT	1260
TCTGATAAA	MICHICAN	A ACCA A ACCA	GCTACTTGGT	CATGCTTGAG	GTTGACTGCT	1320
GGATAAATC	CCTTTGTG	AAGCAAAII	manmacaac	ACATETECAN	CAAGACGGCA	1380
				, AUNITION	CAAGACGGCA	1414
TACCACTTT	GATTGCCTTC	: ATGGCGCAAT	r ACAG			

WO 97/37026

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 750 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

	~~~~~						
	CTCCCCATTT	TGGAAAATTT	CTGTCAAGAA	ACGGCGAACC	AGCTTTTTAT	TTTCTGCTTT	60
	CTTGTCCAAA	TCCTTGATTT	CAAAATCTCC	AAAAATTTGA	TCTAGTTGGT	CATTTTCAGG	120
	TGTTCGATAG	TAGTCAATGA	CATCCCAATG	CTCAACAATA	CGACCATTCT	CATCCGCACG	/ 180
	GAAAGTATCC	GTCGTCACCC	ATTGAGCTTC	TCCACCATTC	AGATATTGAT	CCAACATCAA	,
	CARACAGOAG	1000001000				GGAACAIGAA	240
	CHANGACCAG	APIGCCATCC	TCAATGGTGC	GGACAATCTT	AATCTGACGC	TCTGGATGAC	300
	GCTCAAAGAA	ATCTGCAAAG	AAGGCTGCAA	ATCCTTCTTT	CCCGTCAGGA	ACACCTCTCCC	360
							360
•	AATGTTGGAT	ATAGGTATCC	CCTACAGACT	GGGCTTGAGC	CTCAGCAACT	CGTCCGTCTT	420
	GAATGGCATG	GATGTATAGG	TTGTGAGCAT	TTTTCACTTG	TTGTGACATA	ምምርም አ አ አ ር ር m	480
	C N MMM C C C MM					TICIAMACCI	450
					AAAACCTTCA		540
	TTTCTTCCTC	TGAAAATCCT	TTGTAAAAGA	TAGTATCCAA	TTTCTGACTG	1C1CC17000	600
							600
	CCACTTCTTT	CTGGGACTTG	CCTAACTCCG	TTAAAACTAA	ATACTTCTTA	CGCTTGTCTT	660
	TTCCACACGG						
				GITCCTCTAG	CTTTTTTTATC	ATAGTCGTCA	720
	GCGTATTATT	CGCAAGCCCA	GTCGCAAGCG				750
							750

### (2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 953 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

GTATCGTTCA	ATTCCAAAGA	TACGGAGGAA	GCTGCGTTTC	GCGAGAAAAC	TCTTGTTAGA	60
CCAGATAGGG	ATTAGCCAAA	ATCCTTCTAT	GNGCTTATAT	CCAAATGGAG	ATGCAAACTT	120
CTGCCCAACT	CTTGACCAAT	AAGATCTTTC	TTAAAAATCC	ACTCAAGGCT	CTGGTAGAGG	180
					ATTTCTAGCT	240
TCGTTGCCTT	TTTCCTTAGA	AGTTTGCCTC	CAATGCTGTC	AGTGACCATA	TTCCCAAGTG	300

AATATCGCAT	CCCTGCTACT	GTCCTTATTG	TCGGTGTGGC	CCTTCTTCTC	ACTGGTTACA	360
CTAGTGCCAG	ACTTGGAAAG	GATCCGACTA	GAACAGCTAT	GATTCGGAAC	CTTGCTATTG	420
GTCTCTTGAC	CATGGGAGTT	ACCTTCCTGC	TCGAACAACT	TTTCAGCATT	TAGAATACAA	480
GAAATACCTC	GATTTTGAAG	TCGAGGTATC	TTTTTTACAT	TTGCACAATC	TTGCGATAAC	540
	AATCATGAAA					600
						660

PCT/US97/05306

AGGTCACAAT CAACATCATA GTCGTATCCA GTACACCAAT CACTTTAAA ATCAGGCTAA 660
GCATATGGTA GGCAAAGGCG AGATGTATGA AGGCAAAGAG CAAAGGAAGG AAGAAAACAG 720
TTAAAAACCTG TTTGTTGATG GTTTGCTTGA TTTGCTTTTG GTCCAAACCG ACTTTCTGCA 780
ACATAATAAA GCGTTCACGG TCTTCGTAGC CTTCAGAAAAT TTGTTTGTAG TAGATGACCA 840

AGATAATAAA GCGTTCACGG TCTTCGTAGC CTTCAGAAAT TTGTTTGTAG TAGATGACCA 840
GAACAGTTCC GACCATAAAG ATAATGGATA GGAAAATACC GATAAAGAAG ACACCGCCAA 900
AGAGGACACT CATTTGAGCA CTAGCATCTG CTAGATTGCT ACCATAAACA TAG 953

### (2) INFORMATION FOR SEQ ID NO:82:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 665 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

WO 97/37026

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

ന്നു മസ്സൂർ മ <b>്</b>	TTCTATTTAC	таататтсаа	AAATCCTCCG	TTTCAAAGAG	CAGGGAACTC	60
	AGGATTTTTT					120
	TGATATTATC					180
	CGCGTGCTAA					240
	CAAAGTAGTC					300
	GAGCAAAAGG					360
	CTTCATTAAA					420
	TCAAGACTTT					480
	TAAGAGAAAA					540
	GATTTCCGAG					600
	CAGTCAGAAT					660
	CAGICAGAMI					665
GCCAG						

# (2) INFORMATION FOR SEQ ID NO:83:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1039 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

CTAAGTATAA	AAAACTTGCC	GAAAGTATCT	CTGAAGTTAA	TTTGAATGTC	TTTTTTCAAA	60
ATGCTTTAGA	TTTTGTTGAA	ATCTTTAATC	AAGAGCCTTG	TCTGATAAAT	TTTTTTGAGT	120
TTATGAATTC	TATGTTACAA	GGCGATATTC	CAAAGTTAAC	AATAAACCAA	GAATAATAAG	180
AGGGGAACAG	TATGAAAGAT	ACGATTTCTA	ATAAGGATTT	GATTTCCATG	GGCTATAGAC	240
CATCAACAGC	AAATGCTATT	ATCCATCAGG	TGAGAGAATT	ACTTGTATCA	CGAGGCTATA	300
CATTTTATAA	TCGCAAACGT	TTGATGGTTG	TTCCAAAAAG	TGTTGTGAAA	GAGTTGTTGG	360
GAATGGAATT	GTGAAATGGC	TTATATCGAG	TATAAACAGC	GTGGGAAGAA	AAGGCTTTGG	420
TCGTTTTCTA	TACGTGAGAG	GAGCAAGAGC	CTACTCCATA	AAAGCGGATT	TAAAACAAAA	480
CGAGAAGCTA	AAATAGAAGC	GGAGAAAGTT	CTTCATAAGT	TAAATACTGG	GAGTGTCTTA	540
AGCTCTAGTA	TGACTTTATC	GGAGCTTTAT	AATGAATGGC	TGGATTTAAA	AATTTTACCT	600
AGCAATAGAA	GTGTAGTTAC	ТАААААААА	TATCTTATGA	GAAAGAAGGT	CATCGAAAGG	. 660
TTATTTGGAA	ATAAGCCTGT	ATCACAAATT	AAGCCTAGCG	AGTATCAAAA	AATTATGAAT	720
GAGTATGGAG	AGACTGTATC	GAGAAATTTC	TTAGGAAGAT	TGAATTCTAG	TATCCAGGCA	780
AGTATACAGA	TGGCTATTGC	TGATAAGGTG	ATAATAGAGG	ATTTTACTGC	TTATGTTGAG	840
TTGTTCTCTT	CTAAGAGTGG	ACACAAAGGT	TGAGGAAAAG	TATCTACATA	CTGAGTCAGA	900
TTATCAAAAA	GTTTTAGTAT	ATTTGAAAAA	TAAGTTTGAT	TATCAGAAAT	CTATTGTACC	960
GTATGTAATT	TATTTCCTTT	TTAAAACTGG	CATGCGTTTC	TCCGAATTGA	TTGCTCTAAC	1020
TTGGGATGAA	GTTGACGAG					1039

#### (2) INFORMATION FOR SEQ ID NO:84:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 793 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

CTGAGAAGTC	AGGAAGGCGA	TGTGGAGAGA	TTGAGGAATT	GGATACTTAA	CTCCATAGTA	60
ATCTTCGTAA	AACTCGATAG	AGCGAACAGC	GATATCCAGT	GAGAAATCAA	GATTTGAAAG	120
TGGATGTGCT	TTGGTTGAGT	AGACACCCTA	CCAGGGTACC	ATTTTTAGTT	TTAGCGGTCA	180
CCCCTTGCAA	ATCACCAGCA	ACAAAGGCCA	ACAAGTAAGA	AGACATGCGA	GGTGTTGTCT	240
CAAACTTCCA	GATACCTGTT	TCCTTACGGT	TTTCAACATC	GATTTCTGGC	ATGTTTGACA	300
AGGCCAATTC	ACCTTCTGCT	TGGTCAAAGC	GAAGAGAGAG	GTCAAAAGTT	GCTTTGGCTT	360
CAGGCTCATC	CACACATGGG	AAAGCTTCGC	GCGCAAAATG	GCTCTCGAAC	TGAGTAGACA	420
AGACCTCCTT	CTTGACTCCA	TCARCTGTAT	AATAAGAAGG	GTAAATCCCT	GTCATGTTGT	480

WO 97/37026					PCT/US97/05306	
CTGTAATTTT	ACCAGAAAAG	GCAAGAACCA	ATTCAACTTG	ACCAGCCTCA	GCCAATTCGA	540
TATGAAGGC	TTCATTGTCA	TGGTCAACTG	TAAATGGACG	AGCTTGACCT	GCAACTTCTA	600
CAGAGGTGAT	TTCCAAGTCT	TTTTGGTGGA	GGGAGATGCG	GTCACTCTGT	GCTTGACCAG	660
TGATGGTCAC	TTTCCCAGAA	AAAGTCTTGG	TCTCACGACT	CAAATCTAAA	AATAAATCAT	720
AATGTTCAGG	AACAAATTGC	TTAATAAAAT	GTTCAACTGC	TTGCATAGTT	TTCTCCTATT	780
CTAAGTTTAA	GAG					793

#### (2) INFORMATION FOR SEQ ID NO:85:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 642 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

CGGATGATTT	GCTTTTCATC	TATGATAAAG	TCTTTGTTGA	GCGTCGGAAT	CTCTACTGAC	60
TGGAAATTTC	CCGTAGATAA	TCCAAATGCC	CTTTAAAGAA	AACCTCATCT	GTCAACACCG	120
AAATCATCAC	TGCTCCGTTT	TCTTCATAAG	TCTGGGCCTG	TTGCACAATA	TCCACATCGA	180
GATTGATATC	TCCCCAAAAC	TAGGGCTAGC	TTTCTTGACT	TCAGCGATTA	CCTGCAAGCG	240
GTCCTGATGA	TTCTTCAAAA	ATTCTGCCAA	GCGATAGGTC	TGGCGCAGAG	GCTGGATTTG	300
CTCCAGCTTC	ATCTGCTCCA	CCTCACGCGC	CTTCTGCTCT	AAGATTCGTG	CTAAAAATTC	360
CTGACTCATT	TTTGGTACTC	CTGTAACAGT	CTGAGTTTTT	CAAGGGCCTT	GCCTCTAGCA	420
ATCACTTGAC	GGGCCAAGGC	AACTCCTTCC	TTGATGCTAT	CAATCTTACC	ATTAGCATAG	480
AAACCAAGAC	CAGCATTCAA	GACTGTCGTT	TCCAAGAATG	GACTTGCTTC	GTTTTTCAGA	540
ACGCTAAGCA	AAATTTCTGC	ATTTTCCTGA	GCATTCCCAC	CACGAATATC	TTCCATAGCA	600
TAGCCTTCCA	TTCCCAAATC	CTCTGGAGTA	AAGCTTGACA	AG		642

#### (2) INFORMATION FOR SEQ ID NO:86:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 733 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

CTCTTGCAGG TTATTAAGGA GAAAACGGAG GTAATAGAAG TATGATTTAT ACAGTCACAC

60

WO 97/37026					PCT/US97/05306	
TCAATCCATC	CATTGACTAT	ATCGTTCGTT	TGGACCAAGT	CAAAGTTGGT	AGTGTAAATC	120
GTATGGACAG	TGATGATAAG	TTTGCTGGTG	GGAAAGGAAT	CAATGTCAGC	CGTGTCTTGA	180
	TATATCAAAT					240
	TTTAGCAGAG					300
	TGTTAAAATC					360
	GGTTAAGCTA					420
	CTTTGCAGGT					480
	TGACGCGCCA					540
	GTTTGGATTA					600
	GGGTTAAACT					660
CTGGCTAAGG	GTGCTCAAAA	TGTTATTATC	TCTATGGCTG	GTGATGGTGC	CCTTCTTGTC	720
ACATCTGAGG	GAG					733

#### (2) INFORMATION FOR SEQ ID NO:87:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 536 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

TAGGAAAAGT	ATGTATCCAG	ATGATAGTTT	GACATTGCAA	CACGGACTTG	60
ACATGATGCA	GGTTTACTTT	GATCAAGGGA	TTTACAATAA	GAAGGCGGTC	120
ATTTCCGCCA	ACAGCCTTTT	AAGAACGGCT	ATGCGGTTTT	TGCAGGTTTG	180
					240
					300
					360
					420
					480
GGGACACGTC	GGGCTCAAGA	AATGGATGCG	GCCATCTGGG	AACACG	536
	ACATGATGCA ATTTCCGCCA TGAACTATCT GTTATCATGG CTGCCCAAGA TAGCCCAATG TGGCGACGAA	ACATGATGCA GGTTTACTTT ATTTCCGCCA ACAGCCTTTT TGAACTATCT TGAAGACTTG GTTATCATGG GGCGTTCTTG CTGCCCAAGA AGGGGATTTG TAGCCCAATG TCAGTTGGTC TGGCGACGAA GGCAGCCCCC	ACATGATGCA GGTTTACTTT GATCAAGGGA ATTTCCGCCA ACAGCCTTTT AAGAACGGCT TGAACTATCT TGAAGACTTG GGTTTTTCAG GTTATCATGG GGCGTTCTTG GATTACCTTC CTGCCCAAGA AGGGGATTTG GTTTTTGCTA TAGCCCAATG TCAGTTGGTC GAAACGGCTC TGGCGACGAA GGCAGCCCCC TATCCGTTTG	ACATGATGCA GGTTTACTTT GATCAAGGGA TTTACAATAA ATTTCCGCCA ACAGCCTTTT AAGAACGGCT ATGCGGTTTT TGAACTATCT TGAAGACTTG CGTTTTTCAG ATAGTGATAT GTTATCATGG GGCGTTCTTG GATTACCTTC GCCAATGA AGGGGATTTG GTTTTTGCTA ATGAACCGAT TAGCCCAATG TCAGTTGGTC GAAACGGCTC TTTTGAACAT TGGCGACGAA GGCAGCCCCC TATCCGTTTG GTTATCGAAA	TAGGAAAAGT ATGTATCCAG ATGATAGTTT GACATTGCAA CACGGACTTG ACATGATGCA GGTTTACTTT GATCAAGGGA TTTACAATAA GAAGGCGGTC ATTTCCGCCA ACAGCCTTTT AAGAACGGCT ATGCGGTTTT TGCAGGTTTG TGAACTATCT TGAAGACTTG CGTTTTTCAG ATAGTGATAT AGCCTATTTG GTTATCATGG GGCGTTCTTG GATTACCTTC GCAATTTCAA GTTGGAGTTG CTGCCCAAGA AGGGGATTTG GTTTTTGCTA ATGAACCGAT TGTGCAGGTG TAGCCCAATG TCAGTTGGTC GAAACGGCTC TTTTGAACAT CGTCAACTAC TGGCGACGAA GGCAGCCCCC TATCCGTTTG GTTATCGAAA ATGAACCCTT GGGGACACGTC GGGCTCAAGA AATGGATGCG GCCATCTGGG AACACG

### (2) INFORMATION FOR SEQ ID NO:88:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 568 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

CTGCCCCTGT	AAGGCTGGAC	GATTGCCTTT	CTTAGTATCC	GCAAAGAGGT	AAACTGAGAA	60
TAGAGAGGAT	TTCTCCTTCA	ATATCTTTGA	CAGACAGGTT	CATCTTGCCT	TCTACGTCTG	120
AAAAAATCCG	CATATTGACC	AGTTTTCTCA	CAGCATAGTC	CAAATCTTCC	TCTTGGTCCT	180
CTGGTCCAAC	ACCAACCAGC	AATAAAAGTC	CCTGATTGAT	TTTTCCCTGA	ATCTGGCCTT	240
CTATACTCAC	TTGGGCTTTT	TTAACCCGTT	GGATAATGAT	TTTCATAATA	GCCTTTCTAG	300
TAAGAGCTAG	GACAACTAGC	CGTTGGTCCG	TTTGACAGAG	TAAACTTCTG	GCACACTCTT	360
AATTTTATCG	ACAACCGTGG	TCAGTGTAGA	GAGGTTGGCA	ATACCGAAGG	ACACATGGAT	420
ATTAGCAAAC	TTCATATCCT	TGGTTGGTTG	GGCATTGACC	GTTGAAATAT	TCTTGGTTGT	480
ATTTGAAAGA	ACTTGCAGTA	CATCGTTCAA	CAGTCCTGTA	CGGTTGAGAC	CGTAGATATC	540
GATATGGGCC	ATATACTCCT	TATTTGAG				568

1

### (2) INFORMATION FOR SEQ ID NO:89:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 800 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

CTTTATATTG	TACCAAGTAT	CATTTCTAGT	GCTGCTATGG	GCTTGATTTT	TCTTCAAATC	60
TATAATCCAA	ACTATGGTGT	TGTTAACCAA	ATTATTCATC	TATTTAATCC	ATCGTTTAAA	120
GATTCAGTAC	TGTTGACTCC	CAGGATTAAA	AATAGTAGCT	ATGACTGGCG	CTTATATCTT	180
	GCATCAACCA					240
	TGCTATTTTA					300
	TAAGGGGACA					360
	CGAAGTATTC					420
	AGAATTAGCA					480
	ACAAATCTTA		TGATTATCGT			540
	AAGACTGAAA					600
	AAAGTTCTTA					660
			AAAAGCAGAT			720
CCCTATTGCG					AACTTCATGT	780
	ACTGACTTTA		I I A J A J A A A A A	GIIIIIACAA		800
TTTTACTTAC	TTTTGGAATA					

- (2) INFORMATION FOR SEQ ID NO:90:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 686 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

CTCAGTATTA TCCCTACCAA	AATGAACGTC	AGTTAGTGAC	TCAGGTGGTT	TGGGAACAAT	60
GGGCTTTGGA ATTCCAGCAG	CAATCGGTGC	TAAAATTGCT	AACCCAGATA	AGGAAGTAGT	120
CTTGTTTGTT GGGGATGGTG	GTTTCCAAAT	GACCAACCAG	GAGTTGGCTA	TTTTGAATAT	180
TTACAAGGTG CCAATCAAGG	TGGTTATGCT	GAACAATCAT	TCACTTGGAA	TGGTTCGCCA	240
GTGGCAGGAA TCCTTCTATG	AAGGCAGAAC	ATCAGAGTCG	GTCTTTGATA	CCCTTCCTGA	300
TTTCCAATTG ATGGCGCAGG	CTTATGGTAT	TAAAAACTAT	AAGTTTGACA	ATCCTGAGAC	360
CTTGGCTCAA GACCTTGAAG	CTACTACTGA	GGATGTTCCT	ATGCTAATTG	AGGTAGATAT	420
TTCTCGTAAG GAACAGGTGT	TACCAATGGT	ACCGGCTGGT	AAGAGTAATC	ATGAGATGTT	480
GGGGTGAAG TTCCATGCGT	AGAATGTTAA	CAGCAAAACT	ACAAAATCGT	TCAGGAGTAC	540
TCAATCGCTT TACAGGTGTC	CTATCTCGTC	GTCAGGTTAA	TATTGAAAGC	ATCTCTGTTG	600
GAGCAACAGA AGATCCGAAT	GTATCGCGTA	TCACTATTAT	CATTGATGTT	GCTTCTCATG	660
ATGAAGTGGA GCAAATCATC	AAACAG				686

#### (2) INFORMATION FOR SEQ ID NO:91:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 802 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

TTTTCCCAGC	TATTTTACTG	AGTATAAAAG	CCTTATTTAA	CTTACTCTAT	GTACTCGGTT	60
TTCTAGGAGG	AATGTTGGGA	GTTGGGATTG	CTTTGGGGTA	CGGAGTGGCC	TTATTTGACA	120
AGGTTCGGGT	GCCTCAAACA	${\tt GAAGAATTGG}$	TGAATCAGGT	CAAGGACATC	TCTTCTATTT	180
CACAGATTAC	CTATTCGGAC	GGGACGGTGA	TTGCTTCCAT	AGAGAGTGAT	TTGTTGCGCA	240
CTTCTATCTC	ATCTGAGCAA	ATTTCGGAAA	ATCTGAAGAA	GGCTATCATT	GCGACAGAAG	300
ATGAACACTT	TAAAGAACAT	AAGGGTGTAC	TACCCAAGGC	GGTGATTCGT	GCGACCTTGG	360
GGAAATTIGT	AGGTTTGGGT	${\tt TCCTCTAGTG}$	${\tt GGGGTTCAAC}$	CTTGACCCAG	CAACTAATTA	420
AACAGCAGGT	GGTTGGGGAT	GCGCCGACCT	TGGCTCGTAA	GGCGGCAGAA	ATTGTGGATG	480
CTCTTGCCTT	GGAACGCGCC	${\bf ATGAATAAAG}$	ATGAGATTTT	AACGACCTAT	CTCAATGTGG	540
CTCCCTTTGG	ATCGAAATAA	TAAGGGACAG	AATATTGCAG	GGGCTCGGCA	AGCAGCTGAG	600

WO 97/37026	PCT/US97/05306	
GGAATTTTCG GTGTAGATGC CAGTCAGTTG ACTGTTCCTC	C AAGCAGCATT TTTAGCAGGA	660
CTTCCACAGA GTCCCATTAC TTACTCTCT TATGAAAAT	A CTGGGGAATT GAAGAATTGA	720
TGAAGACCTA GAAATTGGCT TAAGACGGGC TAAGGCATTG	C TTTACAGTAT GTATCCTACA	780
GGTGCATTAA GCAAAGACAA TT		802
(2) INFORMATION FOR SEQ ID NO:92:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 545 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLEGULE MADE. Comomic DNA		
(ii) MOLECULE TYPE: Genomic DNA		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO	.92.	
(XI) Dagomico Dobbliti Iloni Dag Is no		•
CTACTATTT AGCATAAAAA TGCCCAAAGG GGGNGCCGTC	G TGTTTACTGA TTTTCAGGNT	60
AATGGACCAG GNAAATCAGC ATGAAAATAA AAAGAGAAAA	C AGATTATTTT AGCCATTTGT	120
CAGATTTATG CTATGCTTAA GGTAGAAAAT GAAAGGGATA	A ACAAATGTAT TTAGGAGATT	180
TGATGGAGAA AGCCGAGTGT GGTCAATTTT CAATCCTTTC	C CTTTCTATTA CAAGAGTCTC	240
AGACGACCGT CAAGGCTGTA ATGGAAGAAA CAGGATTTTC	C AAAAGCAACC CTAACCAAAT	300
ATGTCACCCT GCTCAATGAC AAGGCTTTGG ATAGTGGCTT	T AGAACTGACT ATTCACTCAG	360
AAGATGAAAA TCTGCGTCTG TCTATAGGTG CAGCTACTAA	A GGGGAGAGAT ATTCCGGAGC	420
TTGTTTTTG GATAGTGCTG TTAAATACCA GATTTTGGT	T TATCTTCTCT ACCACCAACA	480
GTTTTTAGCC CATCAGCTGG CTCAAGAATT GGTGATTAGG	C GAGGCTACGC TTGGTCGTCA	540
CTTAG		545
(2) INFORMATION FOR SEQ ID NO:93:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 576 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: Genomic DNA		
(11) MODECOLE 117E. GENOMIC DAY		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO	: 93 :	
(000)		
GAGGTCAAGA TTGATTCCCA AGGTTNGAGG AATCTGCGG	A ACCAGATTTA GAAGAAATCG	60
AGCGGTTACC ATGCTTGGCC ATGTGAATAC CGCCACCAG	C CAAGACAAAG GCTGCAGTTG	120
TGGAAATATT AAAACTGAAA GACTTGTCCC CACCTGTAC	C ACAGTTGTCC ATAGCATCAT	180
GAATCTCAGT TGGAATATGC TGGGCATCTC CTCTCATGA	C TTGGGCAATG GCTGTGCGTT	240

V	97/37026					PC1/039//05306	
	CTTCAGGTGT	TTCCCCCTTC	ATCTTAAGAG	CTAAGAGGAG	AGAAGCAATC	TGCGCTTCAG	300
	TTACACGCCC	AGTTACGATA	CGCTCAATGA	CATCCGTCAT	TTCCACACCT	GATAAATTTT	360
	CAAATTTTGC	TAGTTTTTCA	ATAATCTCTT	TCATCCTAGT	TTCCTCACTT	TACAACCTCC	420
	TCGATAAAAT	TCCGAATAGA	AGACAAGCCG	TCTGGCGTTC	CAATGCTCTC	TGGATGGTAC	480
	TGGAAGCCAT	AAATCGGTAG	GTTTTTATGT	TGAATCCCCA	TGATGGCTTG	GTCATCAGTC	540
	GAACGAGATC	AAGCTTATCG	ATACCGTNGA	CCTCGA			576

#### (2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 669 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

ATTAAAGGGA GGCGAACATG	GCCCAAGATA	TAAAAAATGG	AGAAGTAGAA	GAAGTTCAAG	60
AAGAGGAAGT TGTGGAAACA	GCTGAAGAAA	CAACTCCTGA	AAAGTCTGAG	TTGGACTTGG	120
CAAATGAACG TGCAGATGAG	TTCGAAAACA	AATATTCTTC	GCGCTCATGC	AGAAATGCAA	180
AATATCCAAC GCCGTGCCAA	TGAAGAACGT	CAAAACTTGC	AACGTTATCG	TAGCCAGGAC	240
TTGGCAAAAG CAATCTTACC	ATCTCTTGAC	AACCTTGAGC	GTGCACTTGC	AGTTGAAGGT	300
TTGACAGATG ATGTGAAGAA	GGGCTTGGGG	ATGGTGCAAG	AAAGCTTGAT	TCACGCTTTG	360
AAAGAAGAAG GAATTGAAGA	AATCGCAGCA	GATGGCGAAT	TTGACCATAA	CTACCATATG	420
GCCATCCAAA CTCTCCCAGC	AGACGATGAC	CACCCAGTAG	ATACCATCGC	CCAAGTCTTT	480
CAAAAAGGCT ACAAACTCCA	TGACCGCATC	CTACGCCCAG	CAATGGTAGT	GGTGTATAAC	540
TAAGATACAA AGCCCGTAAA	AAGCTCGCAG	TAAAAATAGG	AGATTGACGA	AGTGTTCGAT	600
GAACACAAGA AAATCTANCT	TTTTTACTCA	GAGCTTAGGG	CGTGTTCGAT	TCGGCAATTC	660
TGACGGTAG					669

### (2) INFORMATION FOR SEQ ID NO:95:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 615 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

WO 97/37026					PCT/US97/05306	
CTAGTTCACC	ATTTCTATTT	AAATTCGGCT	CAACTACACC	GAAATATCAT	ATAAGGTAAA	60
GTTCCCACTA	AGAATCTCAG	AATGAAATTC	TTCACTAACT	TCAGCGGTCA	AACTTAGCTT	120
ATCCAATTTC	AGACCGATAA	ACCCATACTT	CAGAGATACT	TCCTCTTGAA	ATTTAGAGTA	180
ACTCTTATTA	GACATTTGAT	GTATCGTTAT	CGGGCTATTA	GAAGGAGCCC	GATTTAAAAC	240
TTCTTTATTC	ATGAAATTTC	TCCTTCAAAA	AACAAAACAT	TCTATATACT	TAAATTTTAG	300
GGCAAGACTG	CCGTTCCACT	GACCACGCTC	CACTTGCCAG	CAAAGCTGGC	AGGTCCAGCC	360
TTACCCTAAA	TATAAATTAT	TTAATTTTTG	CCATTTCAAT	CAATTCTGCA	AAGGTCCCAA	420
GCTTTCTGGA	TTGAATTACC	TCATATTGGG	CATTCTGTCC	AAATGAAGCA	TTATTAATCA	480
CTTCAACCTC	ATAAAGGCCT	GGAGCAGAGA	AAACAGCTCC	AAATTTGGAT	TTATCGAAAT	540
GCATACCTAG	GTCACTCCAA	CAATCATTAA	GGGTGGAGAC	TTTTATCCAG	CCTCGTTCTT	600
TCTTAGTAGA	AATAG					615

#### (2) INFORMATION FOR SEQ ID NO:96:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 773 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CTACTGTAGT	TGGAACTGTT	GAAAAACAAG	GAAAACAAAA	GAAAGTTGTT	ACTTACAAGT	60
ACAAACCTAA	AAAAGGTAGC	CACCGTAAAC	AAGGTCACCG	TCAACCATAT	ACAAAAGTTG	120
TCATCAACGC	AATTAACGCT	TAATTTTAAG	GAGAACACAT	GATACAAGCA	GTCTTTGAGA	180
GAGCCGAAGA	TGGCGAGCTG	AGGAGTGCGG	AAATTACTGG	ACACGCCGAG	AGTGGCGAAT	240
ACGGCTTAGA	TGTCGTGTGT	GCATCGGTTT	CTACGCTTGC	CATTAACTTT	ATCAATTCTA	300
TTGAGAAATT	TGCAGGCTAT	GAACCAATCC	TAGAATTAAA	CGAAGATGAA	GGTGGCTATC	360
TGATGGTTGA	AATACCAAAA	GATCTTCCTT	CACACCAGAG	AGAAATGACC	CAGTTATTCT	420
TTGAATCATT	TTTCTTAGGT	ATGGCAAACT	TATCGGAGAA	CTCTTCTGAG	TTCGTCCAAA	480
CCAGAGTTAT	CACAGAAAAC	TAACACGGAG	GAAAACATTA	TGTTAAAAAT	GACTCTTAAC	540
AACTTGCAAC	TTTTCGCCCA	CAAAAAAGGT	GGAGGTTCTA	CATCAAACGG	ACGTGATTCA	600
CAAGCGAAAC	GTCTTGGAGC	TAAAGCAGCT	GACGGACAAA	CTGTAACAGG	TGGATCAATC	660
CTTTACCGTC	AACGTGGTAC	ACACATCTAT	CCAGGTGTAA	ACGTTGGTCG	TGGTGGAGAC	720
GATACCTTGT	TCGCTAAAGT	TGAAGGCGTA	GTACGCTTTG	AACGTAAAGG	ACG	773

### (2) INFORMATION FOR SEQ ID NO:97:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 713 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

### (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

CTGGATAATT	GGAGCAATTC	CTGATGCCAG	TTTGAGGTTA	CTGATAGGAT	TGTGGGCGAT	60
AGCCACTTGA	GAAGATGCCA	AGAGTTCAAT	TTCTCTCTCG	TTTAATTCGA	CCCCGTGAGC	120
AAATACGGAC	GGATGATCTA	AATAACCCAG	TTCTTCAAGA	AAAGCAAGGG	GGCGTTTGCC	180
GTACCGTTTG	AGGATAATTC	CTGACTCCTC	CTTGGTCTCC	GCCACATGGA	CATGGAGCGG	240
AATATTTAGC	TCTTTTGCCA	TTTCCAAACT	CGCTTCCAGC	AAGTCTCTAC	TGCAGCTATA	300
CGGAGAATGA	GGTGCTACCA	TAACCCTTGA	AATTTGGGAT	TTTTATATTT	TAAGATTTCG	360
TCTATGATGG	ATCGAGTTCT	GCTTATAGTC	TCAGCAGTTG	TTTCTGTCTC	TGAAGAAAG	420
AGAGTCGGAG	АААААТААСА	ACGCATCTTG	GAAGTTTTCA	CCACCTGATA	AATTTGCTGG	480
ATATCCACAC	CATTGGGATT	ATACATATCG	TTAAAGGTTG	TTGTTCCTGA	CTGGAGCATC	540
TCTGTTAGGG	CTTCTTTGAC	CGCATTGGTA	GTCATGTCGG	GAGTAAACTC	AGATTCTGCT	600
GGCCAGATAT	AGTCATTGAG	CCATTTCATG	GAGATTGCTG	TCATCTCGGA	TCCCTCTCAG	660
ACCTGTCATT	GCAGAATGGG	TGTGACAATT	GACCAAACCA	GGCATAAGCC	AAG	713

### (2) INFORMATION FOR SEQ ID NO:98:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 778 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

CTAGAAAATC	TGCTTTTTTC	TCGAAAAGTT	TAATACTTGG	TACAATATTA	CGCTTGCTTT	60
GCTCGGCTGC	TCCAAGGGCA	ATTTTTTCTA	GTTTTTCAAC	TTTTTTACCC	AATTTCTTGC	120
	GGCAACTGAC					180
CGGTTACTTT	TTGAGCGATG	AACTCCAGCT	TGTCTCCCTT	GGGAAATCCA	GATGCGATGG	240
TCACTTGGAC	TGGTAGTTCC	ACATTGTCAT	TTAATTCTTG	GACCAACTCA	AACTGACGAT	300
TTTCCATATC	CAGCACGCGC	GCCAAGCGCT	TGATGCCATC	ATCAAAGACT	AAGGTAACCT	360
CATCCTCTTC	TTTCAAGCGC	ATAACCTGAA	ACATATGCTT	ACTGGTTTCC	TTGTCCTCGA	420
TAGTGACAGG	AGAGATAGCA	CTGCCTTTTA	CAAAATACTG	CTGCATGCTA	GCCTCCAATC	480
ACACCAGAGA	TATCCTTGGT	TTTCTTAAAG	ACACAGGTAT	TCCATTCCCC	TTGAACCATG	540
TGAGTTTCGA	GGAAAAATCC	AGCTGATTCA	GCCGACTCGC	GCACCATGTC	CCACTTATGC	600
CTTGAATAAT	GCCACTCATG	ATCAGGTAGC	CTTCGTCCTT	AACCAAACGA	TAGGCATCGT	660
CTATTAGATG	AATGAGGATA	TCCGCCAAGA	TATTAGCCAC	AATCACATCT	GCCTCAATTT	720
CCACACCCTT	AAGCAAATCT	CCAGCCGCTA	CATGGATATT	TTCCATGCCA	GGGTTGAG	778

#### (2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1062 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

CTTCCCAGAT	TTTTTCGTTG	ACTTGCTGTT	CAATCGCACG	CAATTCTTCA	GCAGTTACAG	60
CTTGGAAGTG	GGTAAAGTCA	AAGCGAAGGA	ATTCAACTTC	GTTAAGAGAT	CCTGCCTGTG	120
TTGCGTGGTT	TCCAAGGATA	TTGTGAAGGG	CAGCGTGAAG	CAAATGAGTC	GCAGTGTGGT	180
TTTTCATGAC	ACGGTGACGG	CGATTGCTAT	CAATTGCCAA	GGTATATTCT	TGGTTCAAGG	240
CAAGCGGTGC	AAGGACTTCA	ACTGTATGAA	GGGCTTGACC	ATTTGGGGCT	TTCTGAACAT	300
TGGTCACAGT	AGCCACAACC	TTACCTGACT	CATCCAAGAT	TTGTCCGTAG	TCAGCTACCT	360
GTCCACCCAT	TTCAGCATAA	AATGACGTTT	CCCGCAAAGA	TAAGAGAGGC	AGTTCCTTCT	420
GAAACAGCTT	CTACTTCTGC	ATTGTCCGCC	ACGAATAGCT	ACCAATTTAG	AAGACAATTG	480
GCTAGCATTG	TAGTTGAAGG	CACTTTCTAC	AGTGATGTTT	TGAAGAGTTT	CCATTTTGCA	540
TACCCATTGA	GCCACCCTTG	ACAGCTGACG	CACGCGCGCG	TTCTTGTTGT	TCTTTCATGG	600
CTGCTTCAAA	ACCTTCACGG	TCTACAGTCA	TACCAGCTTC	TTCAGCGATT	TCTTCAGTCA	660
ATTCAACTGG	GAACCCATAA	GTATCATAGA	GTTTGAAGAC	ATCTGAACCA	GCGATAACAG	720
ATTGACCTTT	TTCTTTCAAG	TCTGCTACAA	TGCCTTGGGC	AAAGTGTTGA	CCTTGAGTGA	780
AGGGTACGGG	CAAATGATTC	TTCTTCGCCT	CTTAACGATT	TTCTCAATAA	AGTCACGTTT	840
CTCAAGCACT	TCTGGGTAGT	AGCTTTCCAT	GATTTTTCCA	ACAGTTGGAA	CGAGTTTTGT	900
AAAGGAAAGG	CTCGTTGATA	CCCAATTTTT	GACCCATGCA	TAGAAGCACG	ACGGAGAAGA	960
CGACGAAAGG	ACATAACCAC	GACCCTCCAT	TTCCTGGAAG	GGCACCATCC	ACCGATGGCA	1020
AATGAAAGTG	AACGGATGTT	GGTCCGCGAA	TGAACCTTGA	AT		1062

- (2) INFORMATION FOR SEQ ID NO:100:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 865 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

WO 97/37026					PCT/US97/05306	
CTCAAAGGTC	GCACCTGCAA	TACGACCCGC	TACAGGACCT	ACACTTGCTC	CATGCTTGGG	60
ACTATTGCCT	ACATAACTAC	CAAAGTCATC	AAATCCCAAG	ATAACATTGG	CAAAATTTCC	120
AGCCTTGTCA	GGTGCGACAT	AGCGCAAGAT	AGTCGCACCA	TAAGTCATAA	CCTCAAGTTG	180
		ATCGATAGGC				240
		TCATTCTGTT				300
		AATCTATGGT				360
		TACTTTTGAT			TGTACTACAC	420
		GACGGTGTAT			AGTGAAGTCA	480
ATAGGGCAAA	GAGTTGGGCA	TAAACGATGT	AAGGGAAGAC	ACGGTAAATA	TCATTCAAGA	540
CACCGCCACA	ACCAAGGGCC	ACTTCTTTGA	CATTTTCAAG	ACCAAAAGCT	TGATCACTCA	600
		ATCTGGTCAC				660
ACTTACGAGT	GTAGTCCGTC	CTTGTACCAA	AGAACAAAAC	AACTGTATTG	TCGTTGATAA	720
		ACCAACTGGG				780
GTTAATCCCA	AATCTTGAGC	TGAGCCTCAT	GAGCAGTCCA	AAGAAGACCA	GCGCCTAGAA	840
GAGACCGGTT	AAGTCTTAAT	CACAG				865

### (2) INFORMATION FOR SEQ ID NO:101:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 946 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

		AAGGCTTGGT				60
GCCTGATACA	ATCCTCGTTT	CCCATCATGG	CTGTGAACAA	TGAAATCGGC	TCTATCCAAC	120
CNATTGAGGC	TATTTCAGAA	TTCTTGGCAG	ACAAGCCGAC	TATTTCCTTC	CACGTTGATG	180
CGGTTCAGGC	GCTTGCCAAA	ATTCCGACTG	AAAAGTATCT	GACAGAACGG	GTGGATTGCG	240
		TTTCATGGTG				300
		CTTCTTACAG				360
		ATTGCAGCGA				420
		AAGACTGGGC				480
		GTCTTTTCAG				540
		CGAGGTGAAG				600
		GCTTGTTCAT				
		GATAAGGCCA				660
						720
AAAATGATAT	GAGTCAGGTC	GAGCAGTTTT	TGACCAAGTT	AAAATTGATT	TACAATCAAA	780
CTAGAAAAGT	AAGATAGGAG	CATTCATGCA	GTATTCAGAA	ATTATGATTC	GCTACGGAGA	840
		AACCGTATGC				900
		ACCCAAGTTA				946

#### (2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 552 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

CTTGCTCGTA	ACAGGTGCTA	TCCTTGGTGT	CAATGTTCAC	ATCTTCTCAC	CAAAAGAACT	60
CTTCCCAGAA	AAAGAAATCG	TTGAATTGGC	AGAAGGATTT	GCTAAAGAAA	GTGGCGCACA	120
TGTTCTCATC	ACTGAAGATG	CTGATGAAGC	AGTTAAAGAT	GCAGACGTTC	TTTACACAGA	180
CGTTTGGGTA	TCAATGGGTG	AAGAAGACAA	ATTCGCAGAA	CGTGTAGCTC	TTCTTAAACC	240
TTACCAAGTC	AATATGGACT	TAGTTAAAAA	AGCAGGCAAT	GAAAACTTGA	TCTTCCTACA	300
CTGCTTGCCA	GCATTCCACG	ATACTCACAC	TGTTTATGGT	AAAGACGTTG	CTGAAAAATT	360
TGGTGTAGAA	GAAATGGAAG	TAACAGACGA	AGTCTTCCGC	AGCAAGTACG	CTCGCCACTT	420
CGATCAAGCA	GAAAACCGTA	TGCACACTAT	CAAAGCTGTT	ATGGCTGCTA	CACTTGGTAA	480
CCTTTATATT	CCTAAAGTAT	AATTTTAGAT	AATAAACCGT	CTACCAACAG	CTATGAGGGC	540
TGCGACTAAT	AG					552

#### (2) INFORMATION FOR SEQ ID NO:103:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 512 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

CTAAAAAAAG	TCAAGTAGAA	AACGAATATT	CTACTTAACT	TGCACGAAAT	TATTTTTCAC	60
GAATGACTTC	GACCTTATAT	CCATCAGGGT	CTTTGACAAA	GTAATAGTTT	GGTGCAGTTC	120
CTGGTAGACC	ATTTGGCTCA	GTCACTTCAT	AGCCTTTTGT	ACTGTGCTCT	TGATGAAGTG	180
CCTCAAGATC	AGGTGTACTG	AGGGCGATAT	GGGCAAACCC	ATCACCAACC	ACATACGGAC	240
CGTGATCGTA	GTTATAAGTC	AACTCCAACT	CATAGTCATC	ACCCTCAAGA	CCTAGATAGA	300
CAATCGTGAA	GGCATGGTCT	GGAAAATCTC	TGCGACGCAA	TTCTTTAAAA	CCAAAAGCAT	360
CTTGATAAAA	TGCAATTGAT	TTTTCAAGAT	TTTCTACTCG	TAAGCAAGTG	TGTAGCATTT	420
TTGAAGCCAT	ATCTTTCTCC	TTTTTTTTA	AAAAGACTGG	ACAATCCTGT	TCCAGTCTCA	480

512

#### TCAGTTGTTA TTTACCAAGT TTTGCTTTAG CT

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 551 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

CTGGACCACA	CTATTTTCTG	TGTTGGCTAT	CGTGTCATGC	AAAAGGATCT	AGAAGGGACG	60
CTGGATGCTG	AAAAACTCAA	GGCTGCTGGT	GTTCCGTTCG	GCCCGCTTTT	TGGTAAAATC	120
AAAAACGGCC	AGGATCTTGT	TTTGGAAGAC	GGAACTGAAA	TCAAGGCAGC	AGACTATATC	180
TCAGCGCCAC	GTCCAGGTAA	GATTATCACT	ATTTTAGGAG	ACACTCGAAA	AACGGATGCC	240
AGTGTGCGTC	TGGCTGTCAA	TGCAGATGTC	CTAGTTCATG	AGTCCACTTA	TGGCAAGGGT	300
Gatgaaaaa	TTGCTCGTAA	CCATGGTCAC	TCAACTAATA	TGCAAGCTGC	ACAAGTAGCG	360
GTAGAAGCAG	GTGCCAAACG	CCTCCTACTC	AACCATATCA	GTGCCCGTTT	CCTCTCAAAA	420
GATATAAGCA	AACTCAAGAA	GGACGCTGCC	ACAATTTTTG	AAAATGTCCA	TGTGGTCAAA	480
GACTTGGAAA	AAATGGAAAT	CTACCAGTCA	CAGAAAGGAT	AAGTATGCCT	ACTATTCTCC	540
ATTAACCGGA	A					551

- (2) INFORMATION FOR SEQ ID NO:105:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 529 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

CCGTCATTAT	ACCTTTGTCT	ATGAAAATGA	AGACCTAGTC	TATGAGGAGG	AAGTCTTATG	60
ATACAGCCAG	CAAGTTTAGA	AGAATTAGCA	TCTTTAGTGG	AAAAAGCGGG	CAAGAAGGTC	120
TTCCTTTTTG	TGGCAGACTG	GTGTGGCGAT	TGTCGTTATA	TTTATCCTGC	CTTACCAGAG	180
ATTGAGGAGA	CCAATCCAGA	GTTCACCTTT	ATTCGAATGG	ACCGAGATCA	GTATATGGAT	240
TTGGCCAAAC	TCTGGGATGT	TTACGGAATT	CCTAGCCTTG	TTGTTCTAGA	AAAGGACAAG	300
GAAATTGGTC	GTTTTGTCAA	TCGCGACCGT	AAAAGTAAGG	AGCAAATTAA	CGATTTTTTA	360
GCAGGATTGA	AATAGGAGAA	AAAGGAAACA	ATGATTTTTA	CGTATAACAA	AGAACATGTC	420

PCT/U	S97/05306
WO 97/37026 GGTGATGTCC TTATGGTCAT CGTGAAAAAT AGCGGAGATG CCAAACTGAA TGTGC	SAACGC 480
AAAGGCAAGG TAGCCCGTGT TTTCCTCAAA GAAAATGGGG AAACAGTAG	529
AAAGGCAAGG TAGCCCGTGT TTTCCTCA2.	•
(2) INFORMATION FOR SEQ ID NO:106:	
(2) 202 002 000 000 000 000 000 000 000 0	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 663 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
	TGCATG 60
CTAGGATAGA CCGCTTTTTA GCATTTATCT AAGCATTCCA GAGTACATGT ATCT	AATCAA 120
TGCTCTTTCT TTTGGGGTTG AAACGATAGG AGAAGGAAAT GTTAGAATTG CTTA	PTTACCT 180
TCGATGCTTT TGCTTGGGGA CCGCCCCTCT TGATTTATTG GTCGGAACAG GGAT	таттт 240
AACCATGCGG CTAGGACTCT TGCAGGTTTT GCGTCTGCCC AAGGCCTTTC AGCT	PAGGCCC 300
TATCCAGGAT AAGGGACATG GTGATGTATC CAGTTTTACA GCTTCTTGTG TAAC	ACGCCTA 360
TTGGGCATTC AAACTGGTTG GGAAACAGGG AAATATCCAT TAGGGAGTTG GCGA	CGGCIA 300
TCAAGGTTGG TGGACCAGGA GCTCTATTTT GGATGTGGAT GGCGGCTTTC TTTC	PATGGTG 480
CTACCAAGTA TGCGGAAGGA CTCTTGGCCA TCAAATACCG CACCAAGGAC GACC	CGACCAC 540
CAGTAGCGGG AGGTCCCATG CATTATATCC TTCTAGGGAT GGGAGAAAAG TGGC	ACCTTCA 600
TTGCTGTTTT GTTTGCAGTA GCAGGAGTAT TGGTTGCTCT CTTGGGAATC GGA	SCCATCA 660
CCCAAGTCAA CTCGATTACA GAATCTATCC AAAATACAAC GACGATTTCG CCAC	663
CAG	
TOP OF ID NO. 107.	
(2) INFORMATION FOR SEQ ID NO:107:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 727 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) Topologi: Timedi	
(ii) MOLECULE TYPE: Genomic DNA	
(II) Nobbecomb III.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:	
CCTTGACCAC CAATTCTTCA CCCGATATGA TGCGCCCTGC TCGCTGAGCA AG	CCCCAAGA 60
CATTACTTAT CTTTTGCTTA TTCAAGTCCC AACTCTCTTC TTTTCACTTT GIV	GATCCACA 120
TARCEGATEA ACTEGICATA AAAGETITET TECACITECA IGETAAAGET GE	GGTTAAAG 100
ACCTTCTTCT TTTTCGCCTC TAGGGCTTCT GCATTGTCTA GTTTGATATA AG	CGCCGCGG 240
•••••	

WO 97/37026					PCT/US97/05306	
CCATTGGCCT	TGCCCGTAGG	ATCAATAAAG	ACTTGTCCTT	CCTTGTTCTT	GACAATGCGG	300
AGCAAATCAC	GCTTATCAAT	CACTTCGTTA	GACACAACAG	ACTTGCGCAA	AGGGATTTTT	360
CTTGTTTTCA	TCTTTCCCTC	CTCTAGCAGC	TTTTATTCTT	CTACAGTATC	GTTTTCTACT	420
TCCAACTCTA	CTGAAGCAGC	GTCTTCCATG	GCTTCAAATT	CGCTAGCAGA	CTTGATATCG	480
ATACGGTAAC	CAGTCAAGTG	AGCCGCCAAG	CGCACGTTTT	GTCCACGACG	ACCAATGGCA	540
AGAGAAAGCT	TGTTATCTGG	AACAACCACC	AAGGCACGTT	TGCTGTCGTT	TTCATCAAAG	600
ATAACTTGGT	CAACCTCAGC	AGGAGCGATG	GCATTGTAGA	TAAATTCAGC	TGGATCTGCT	660
ACCCACTCGA	TAACATCGAT	ATTTTCTTCG	ATTGGTACCA	TGCGGTCATT	TTTAGCATCG	720
TAACGAG						727

#### (2) INFORMATION FOR SEQ ID NO:108:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 563 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

CTAATGTAAA TCTATGGGAT	AAACGTTAGC	TTCTTTTAAT	AGATTATTAA	GCAATTTTTT	60
AAAACAACTC ATCAAACAAA	CTCAACTGGT	TATCTCTGGC	ATATTTCCAA	GAATACCCAT	120
CTCATCCATC TTTTCAACCA	AGGTTGATGA	GAGTCCACCA	CGCTTGCGTA	GTTCTGTTTT	180
AGAGAGGAAT TCTCCCTCTT	CACGCGCCCG	CACCAGTTGC	TTGGCAACGT	TCTCCCCAG	240
ACCATCCATT GCTACAAATG	GTGGGATAAG	GGTATCCCCG	TCGATGAGGA	ACTCTGTCGT	300
CTGACTACAG TAGAGATCTA	ATTTACCAAA	CTTGAAACCT	CGTTCCCACA	TCTCATTGAC	360
AATCTCAAGA GTTGTATAGA	GATCGATTTC	CACATTAGAG	GCTTCATTGT	TCTTCCGTTT	420
TTCAGAGATT TCTTCCATTC	TGCGCTTGAT	GACCTCCAAG	CCCGCACCCA	TGGTCTTGAT	480
ATCAAAAGCC TTAGCACGAA	TGGAGAAGTA	AGCACAGTAG	TAATAAATAG	GATGGTGAAC	540
CTTGAAGTAA GCTACACGCA	AGG				563

#### (2) INFORMATION FOR SEQ ID NO:109:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 647 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

CTAACTTCAA	AAGCTTTTAG	AATATCTTCT	TGACTAATCA	TATGATTACC	GCCCAAGGTT	60
AAGTTTTCCA	AAATAGAGCC	ATTAAAGATA	TAGGCTTGTT	GGGGTAGGTA	ATTAATATGA	120
CGGCGCAAGA	CTTTTTTTAT	CAATGTTTTT	AATATCCTGA	TGATTGATGG	AAATATGCCC	180
TTTGTAGGGT	TCAAAGAAAT	TGACAATCAT	TTTGGCTAAA	GTTGTTTTAC	CAGAACCACT	240
AACTCCAACT	AGGCTAACCT	TATCTCCTTG	TTTAATCGTG	AGATTAATAT	CTGTTAAGGT	300
ATCTCGTCCA	AAACCATACT	TATAAGAAAG	GTCATCAAAT	TCAATATCGC	CCATCAAAAA	360
ATGTGAATGA	ACAGGGTTTT	CTTGAACTTG	AAATTCAGAT	TCGACTAGAT	AGACTTCGTT	420
CAAACGGTTA	TTAGCGACCT	${\tt TCGCAGATTG}$	GAGTTTGGTT	TGGAGGTTGA	TAATATTTTC	480
CATAGGAGTT	${\tt GTAAAGTAAG}$	AAAGAAGTGT	GTTAAAGGTA	ATCAGCTGAC	CGATAGAAAT	540
TTTACTCGAC	ATGACTAATT	GAGCGCCAAA	CCATAGGATA	AGGATATTCA	GAACTAATTT	600
TGTTTCCCCT	GCTTTAAACT	CGTTTGTAAA	ATAGAATATT	TACTGAG		647

#### (2) INFORMATION FOR SEQ ID NO:110:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 610 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

CTATCCTNGA	ACCAATGATG	CTTGTAACAA	TCACTGTTCC	AGAAGAAAAC	CTTGGTGATG	60
TTATGGGTCA	CGTAACTGCT	CGTCGTGGAC	GTGTAGATGG	TATGGAAGCA	CACGGTAACA	120
GCCAAATCGT	TCGTGCTTAC	${\tt GTTCCACTTG}$	CTGAAATGTT	CGGTTACGCA	ACAGTTCTTC	180
GTTCTGCATC	TCAAGGACGT	GGTACATTCA	TGATGGTATT	TGACCACTAC	GAAGATGTAC	240
CTAAGTCAGT	ACAAGAAGAA	ATTATTAAGA	AAAATAAAGG	TGAAGACTAA	TCCGTCCTCA	300
CTCTAGAAGG	AAGTCACTTA	GTGGCTTCCT	TTTGTCTTTA	GAAAATACCT	CTAAATATGG	360
TAAAATAGTA	GAAGAATAAT	GTGAGGAAAA	TGAATGTCAA	ATAGTTTTGA	AATTTTGATG	420
AATCAATTGG	GGATGCCTGC	TGAAATGAGA	CAGGCTCCTG	CTTTAGCACA	GGCTAATATT	480
GAGCGAGTTG	TGGTTCATAA	<b>AATTAGTA</b> AG	GTATGGGAGT	TTCATTTCCG	TATTTTCTAA	540
TATTTACCTA	TTGAAATCCT	TTTTACAATT	AAAGAAAGTT	TGAGCGAAGA	ATTTCCTNAG	e0 ó
AANGCCATCA						610

#### (2) INFORMATION FOR SEQ ID NO:111:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 984 base pairs
  - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

TATAAGCATA	GTACCAGTTG	CCATTGACCT	GGAACCAACT	GTCTTCATAT	CTCCATTACT	60
GCATTTAGGT	AGTACCAAGT	TGAACCATCT	TGATACCAAC	CAGTTGCCAT	TGCTCCTGAT	120
GAACGGAGAT	AGTACCATTT	GTTCCCAAGG	TTTTGCCAAC	CTGTTTTCAT	ATCGCCATTT	180
GGCTGGTCTA	AATAATACCA	AGTGGTACCT	TCCTGATACC	AACCAGTTGC	CATTGCTCCT	240
GATGAACGGA	GATAGTACCA	TTTGTTCCCA	AGGTTTTGCC	AACCTGTTTT	CATATCGCCA	300
TTTGGCTGGT	СТАААТААТА	CCAAGTGGTA	CCTTCCTGAT	ACCAGCCAGT	GGCCATTGCT	360
CCTGAGGAAC	GGAGGTAGTA	CCACTTATTA	CCTAGATATT	GCCAACCTGT	TTGCATAATA	420
CCAGTTGTTG	GATCTAAATA	GTACCAAGTC	AAATCATCGT	TTATCCACCC	CGCACGTCTT	, 480
TCACCACCAA	GGTAGTTTTC	TCCATTAATT	TCCGTCTTAG	CTAGATAATA	CCAGTAGACT	540
GATCATAAAG	CCAACCTGTC	TCTAAAGAAT	GATTTTGATT	AAAGTAATAG	TTCGTATAAT	600
AACGNTTCTC	TTCTTTATCT	TCTGAATCTT	CACGTTTTTC	CCCGTACTTT	CTTCCAACAC	660
TGTCTTTAGT	TTTAATCTCT	AATGTTTTCC	AACCAACAAA	CTCTTGTAGC	ACTCCATTTT	720
TATCGAAGTA	GTACCACTCT	GAATTTGGAA	AACCTTCTAA	TCTCATACCA	TTTGGGTAAG	780
GACCAATTGT	ACTACCTTTA	GATGGAAACG	GGATATATTG	CCAGCCGACA	ACCATCTCTC	840
CAGATAGAGA	ATCAAAATAA	TAGTACTTAC	CATCAATCAC	TCGCCAGTAG	GTTTCTTTGA	900
GGTCCCCCTT	TTTGTAATAG	GTTCTACCGT	TTTCTTGGAC	AAACTGCCAT	CCTTCAGAGT	960
TATCTGCAAA	TACTGTATTC	GTAG				984

#### (2) INFORMATION FOR SEQ ID NO:112:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 842 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

CCTCGTTATG	CAGATGAACG	TTATTTCTTG	TCAAAGAGTC	ACAAGAATTT	TGTTGATCGT	60
AATCTTTTTA	TTACCATTCG	TGACAAGGAA	ACCACCTGTA	TCAAGCCTTA	TCAGCAGGAT	120
TTGGATTTGC	CACATGGTCT	GGCCTTGGAT	GTTTTGCCTT	TGGATTATTA	TCCGAAAAAT	180
CCAGCTGAGC	GGAAAAAACN	GGTTCGTTGA	GCCTTGATTT	ATTCACTCTT	TTGTGCGCAA	240
ACTATTCCAG	AAAAGCATGG	TECTCTCATE	AAATGGGGAA	CACCCALALA	ACTRICATION	300

WO 97/37026					PCT/US97/05306	
	CTCTCCGTTA	TCGCATCTGG	AAAAAAGCTG	AGAAAGAAAT	GACTAAGTAT	360
			TTATGCTCAG			420
			CTTTTCTTGC			480
			AGAACTGCTT			540
			GATGCTGTCA			600
			TAAGAAAAA			660
			TCTATCAACC			720
			GGAGCACTTT			780
TCCAAAGCAT	GTACGCATTT	TAAAATCCCT	TCAAGATTAT	CGCCAAACCA	GATGGATACG	840
AG						842

### (2) INFORMATION FOR SEQ ID NO:113:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 749 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

CMCCCAAATA	CAAGGTGACG	ATCATTGGTA	AATCAGCCCA	CGGTGCTATG	CCTGCTTCAG	60
CIGGCAAATA	MCCCACTTAC	СТАССССТСТ	TCCTTAGCCA	GTTTGACTTT	GCTGGTCCAG	120
GIGICAAIGG	1GCGACTIAC	ACTCCTAAAA	TTCTCTTGAA	CGACCATGAG	GGTGAAAGTC	180
CCAAAGAATA	CCTTGACATC	ACTOGIANT.	GTGCCCTTTC	TATGAATGCA	GGCGTCTTCC	240
TCAAGATTGC	TCATGTGGAT	GAAAAGATGG		CARCCCCTAT	CCAAAAGGAA	300
GCTTCGATGA	AACAAGTGCT	GATAATACCA	TTGCCCTCAA	CATCCGCTAT	CCAAAACOIS.	360
CAAGTCCAGA	ACAAATCAAG	TCAATCCTTG	AAAACTTGCC	AGTTGTTTCT	GTTAGCCTGT	420
CTGAACACGG	TCACACGCCT	CACTATGTTG	CCAATGGAAG	AATCCACTTG	GTTGCAAACC	
тссттсалат	GTCTATGAAA	AACAGACAGG	CCTTAAAGGT	CATGAACAAG	TCATCGGTGG	480
TOCA ACCIPITAT	GGTCGCTTGT	TAGAGCGCGG	AGTTGCCTAT	GGTGCTATGT	TCCCAGACTC	540
100AACC111	ATTCCACCAAG	CCAATGAATT	TATTGCCTTG	GATGATCTCT	TCCGAGCAGC	600
AATIGATACC	AIGCACCIETO	TOTAL CART	GATCAAATAA	AACGATAGAA	GTCTGAGATC	660
AGCAATTTAT	GCCGAAGCIA	CONCORNIC	TAGATGTCTC	AAATCGAAAG	AATCAAACAG	720
			INGAIGICIC			749
GCTATCATGG	CGGATTCACA	GAATGCCAG				

### (2) INFORMATION FOR SEQ ID NO:114:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 503 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

CTGGATGAAT	TGCAGAAGCG	CAACCTACTG	GGATTTGTCT	TCCAAGATTT	TCAACTATTT	60
CCTCATCTAT	CAGTTCTGGA	AAATTTGACT	TTATCGCCTG	TGAAGACCAT	GGGAATGAAG	120
CAGGAAGAGG	CTGAGAAGAA	GGCGAGTGGA	CTCTTGGAAC	AGTTAGGACT	AGGAGGACAC	180
GCAGAGTCCT	ATCCTTTCTC	ACTATCTGGT	GGGCAAAAGC	AGCGGGTGGC	TTTGGCGCGT	240
GCTATGATGA	TTGACCCAGA	AATCATTGGC	TACGATGAAC	CAACTTCTGC	CCTGGATCCA	300
GAATTACGTT	TGGAAGTGGA	GAAGCTAATC	TTGCAAAATA	GGGAACTTGG	GATGACCCAC	360
	CCCATGATTT					420
	AATAGGAAGA					480
	TTTGTTCTTA					
	GIICIIN	GIN				503

### (2) INFORMATION FOR SEQ ID NO:115:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 615 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

CTCCACCCCA	mmc s cms mms	COMMON A MARCA				
	TTCAGTATTA					60
ATTGGATTTC	CTGGTCAGAA	AAATGACCTC	TTACTCCTTC	GGCTAGATTT	<b>ልርርጥርር እ አ</b> ጥጥ	120
						120
	CTGGCTCAGC					180
GCCATGTATG	GCGCAAATTC	AGAACGCTTG	AAGGAATCCC	TTCGCATCAG	TTTGTCCCCA	240
						240
CAMMATACCG	TTGAAGACCT	ACAAACCCTC	GCAAAAACCT	TAAAAGAAAT	TATCGGAGGT	300
TAGCCATATG	GCATTTGAAA	AAATCATTCA	CTTABBBBB	TOTO COMPA CO	1 Mm1 01 0mom	
						360
TAGCCCTTCT	GTTAAAAAAT	TCACCCTCAA	AGATAACACC	TTTTTTGAAA	CTAAGGTTGG	420
						420
INACIAIGAA	CTGACTCGCC	T-1-1-T-GGAAAA	AGTGCCAAAC	AGCGGTGAAG	GCTTCCAACT	480
CAAAATCATC	ATTAACAAGG	AACTTACAGG	GGCTAAAATC	A ATTA TICA CITIC	101100000	5.4.0
						540
CCTTCGTCTA	GTTGATATTT	TCAAATCAGA	AGACCACCAT	ATTCATCAGG	AAAAATTCTA	600
CTTCCTCATG				_		000
CIICCICAIG	GUIVO					615

### (2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 954 base pairs
  - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

CTGCAATGGT	TAGCGAGGAT	GGTGAAATAG	AGGAGCCTTA	ACTATTTTGA	GGAATCCAAG	60
CTGACAGGAC			TCTGAAGGCA	GACTATACCA	GCTGGAAGTT	120
TGACAGATGT	GGCACGTGAG	AATTATTGGA	GGCNTTGACN	TANTCAGAGG	ATTCTCTCTT	180
GATATTGGGT	TTGGCAGAGT					240
CTATGCCCAG	TTAGATAATC	GCTCGATTTA	TGAGCAAACG	GGCATTTCCA	CCTATCAACG	300
AATTGGCTTT	GCCTATGCTC	AGTTAGGGAA	ATTTGAAACG	GCTACTGAGT	TTTTAGAAAA	360
AGCCCTGGAG	TTAGAATACG					420
TCAAGAAGAA	TATCAAAAAG	CCACCCTCTA	CTTTAAGCAG	CTTGATACCA	TTTCTCCTGA	480
CTTTGAAGGC	TATGAGTATG	GGTACAGTCA	GGCTTTACAT	AAGGAACATC	AAGTTCAAGA	540
ACCCCTGCGT	ATCGCTAAGC	AAGGATTAGA	GAAAAATCCC	TTTGAAACTC	GCCTCTTGCT	600
AGCTGCTTCA	CAATTTTCTT	ATGAATTGCA	TGATGCTAGT	GGTGCAGAAA	ATTATCTCCT	660
TACTGCAAAA	GAAGACGCTG	AGGATACAGA	AGAAATCTTG	CTTCGTTTAG	CCACTATTTA	720
TOTGGAGCAG	GAGCGTTATG	AGGATATTCT	AGACTTGCAG	AGTGAGGAGC	CAGAAAATCT	780
TTTGACCAAG	TGGATGATTG	CTCGTTCTTA	TCAAGAAATG	GACGATTTGG	ATACTGCTTA	840
TGAGCATTAT	CAAGAGTTGA	CAGGAGATTT	GAAGGACAAT	CCAGAATTTC	TGGAACACTA	900
TATCTATCTC	TTGCGTTGAA	TTGGGACATT	TTGAAGAAGC	AAAATCCCAT	GCTC	954

# (2) INFORMATION FOR SEQ ID NO:117:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 564 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genemic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

	TTTTGATACT	አመምርምር አጥር ር	GTGGGGGACC	TGCTGGTATG	ATGGCTACGA	60
CTATGAAACA	TITIGATACT	ATTGTCATCO	mccmcamcca	AAAAAATCGG	AAACTTGGAA	120
TTTCCAGTAG	CTTTTATGGA	CAGAAAACCC	TCCTCATCGA	ALLES A MOCON	ACCOMPAGACA	180
AAAAATTAGC	TGGGACTGGT	GGGGGACGTT	GCAATGTGAC	CAACAATGGI	AGCTTAGREE	240
ACCTGCTAGC	TGGAATTCCT	GGAAACGGAC	GCTTTCTTTA	CAGTGTTTTC	TCCCAGTTCG	
ACCIOCINO	CATCATCAAC	TTTTTTACAG	AAAATGGTGT	TAAACTTAAG	GTCGAAGACC	300
ATAATCATGA	CTTTCCAGCC	ACTICACAACT	CTCGGACTAT	TATCGAAGCT	TTGGAAAAGA	360
ACGGACGCGT	CTTTCCAGCC	AGIGACAAGI	crecontains	አ አ ል ጥርር ጥጥጥር	TGTTAAAAAA	420
AAATCACTGA	ACTAGGTGGT	CAAGTTGCTA	CICCAAATAG	AAATCOTTTC	CARA CITICA ITT	480
GTAGATGACC	AGTTTGTCCT	TAAGTCAGCG	GATCAAACCT	TCACTIGIGA	GAMACICATI	,

WO 97/37026	PCT/US97/05306	
GTCACAACAG GTGGTAAGTC TTATCCTTCG ACTO	GTTCGA CTGGTTTTGG TCACAATGCT	540
CCGCCATTTA AGCATACCAT CACG		564
(2) INFORMATION FOR SEQ ID	NO:118:	
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 651 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(b) TOPOLOGI: Timear		
(ii) MOLECULE TYPE: Genomic DNA		
(11) 1.0220022 11121 00.101120 2.111		
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:118:	
· · · · ·		
CTCCGTGGTC TTTTGGTTTG CTACGGGATG TAGG	GCAAAAG GCAAGTCCAT TTTATCAGCA	60
ATAATGGCTC CGTGTGGAAT CCCTGCTGTT GCA	STTCCTG CAATCACTTC TACTTCAGGA	120
AAGGCTTCTT TGATAGCTTC CACAAAACCA TTT	ICAATTA GGGTACGAGT TTCTGGATAG	180
GCTAGTGTCA CACGATTATC AGTGTAAATC GGT	BACTTGA TACCAGATGC CCAAGTGAAG	240
GGTTCCTCTG GTTTGAGGTA AACGGCTTGG ATT	PTCAAGA GGTGGCTAGC GATATCTTTA	300
GCAAGTGTCA TGGTATTCTC CTTTTATTTT TCT		360
GTCCATTCAT CCTTGATGGC ATGATAAGCT GCAL		420
CGTCCCACTA CGATATAGTC ACTGCCGATT TGA		480
TTTTGATCTC CAACTGCAAC ACCAGCTGGA CCAA		540
CTGGATTGGT AGCCCTGCTT GATGACTTTG TCAC		600
CCATCCCAAA GCCCAAGCTT CAGCTGTCTT CCT	IGGCATA GTTGAATCCA C	651
/21 INFORMATON FOR CEO ID A	30.110.	
(2) INFORMATION FOR SEQ ID I	WO: 119:	
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 602 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: Genomic DNA		
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:119:	

CTTAGTATCT	AGAAAAGGAG	AAATAAAATG	GTTAAAGTAT	TAGCAGCGTG	CGGAAATGGA	60
ATGGGTTCAT	CAATGGTTAT	CAAGATGAAG	GTTGAAAATG	CTCTCCGTAA	GCTTAATCAA	120
ACAGATTTT	CAGTCAATTC	ATGCAGTCTC	GGTGAAGCTA	AAGGTTTAGC	AGTAGGATAT	180
GACATCGTA	TCGCTTCTCT	TCATTTGATT	CAAGAATTGG	AAGGCCGAAC	TAATGGGAAG	240
TTAATTGGGG	TTGATAACTT	GATGGATGAT	AAAGAAATCA	CCGAAAAACT	CAGTCAAGCA	300

WO 97/37026 PCT/US97/05306	
ATACAGTAAA AGGTTGGAGG GGGCTGGACA CAAACTGAGA GTTATCGTTT CTGTCCTTCT	360
CCCTCTTTAA ATAAAGGAGG CAGATATGAA TTTAAAACAA GCTTTAATTG ACAACGACTC	420
GATCCGACTA GGTTTAGAAG CTAACGAATG GAAAGAAGCA GTCAAGGTAG CAGTAGATCC	480
CTTGATTGAA AGTGGGGCAA TTTTGCCAGA GTATTACGAT GCTATCATTG AATCGACTGA	540
AGAGTATGGG CCTTACTATA TCTTGATGCC AGGTATGGCT ATGCCCCACG CTAGACCTGA	600
AG	602
(2) INFORMATION FOR SEQ ID NO:120:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 586 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	;
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
ATTGGGAATT TTTGCAACTG CAATTGGTGC CCTCAGTAAT CTATAAAATA GATTCAAGAA	60
AATTTAGTGA CTGGGATTTC CCAGCCCTTT TTTAAAGTGA GAAGAAATAA TGAGTATGTT	120
TTTAGATACA GCTAAGATTA AGGTCAAGGC TGGTAATGGT GGCGATGGTA TGGTTGCCTT	180
TCGTCGTGAA AAATATGTCC CTAATGGAGG CCCTTGGGGT GGTGATGGTG GTCGTGGAGG	240
CAATGTGGTC TTCGTTGTAG ACGAAGGACT ACGTACCTTG ATGGATTTCC GCTACAATCG	300
TCATTTCAAG GCTGATTCTG GTGAAAAAGG GATGACCAAA GGGATGCATG GTCGTGGTGC	360
TGAGGACCTT AGAGTTCGAG TACCACAAGG TACGACTGTT CGTGATGCGG AGACTGGCAA	420
GGTTTTAACA GATTTGATTG AACATGGGCA AGAATTTATC GTTGCCCACG GTGGTCCGTG	480
GTGGACGTGG AAATATTCGT TTCGCGACAC CAAAAAATCC TGCACCGGAA ATCTCTGAAA	540
ATGGAGAACC AGGTTCAGGA ACGTGAGTTT ACAATTGGAA CTTAAA	586
(2) INFORMATION FOR SEQ ID NO:121:	
(2) INFORMATION FOR DEG 12 NOTED 1	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 680 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
TTCGACAATC TTGCCCNNGA TCCAAGACAA CCACTTCTCT GTCCGCTCAG CAATAGTCAA	60
GCGGTGAGCA ATGAAAATCA AAGGTCITGT CCAAAGCCAT GAGATAATGG ACAATCCGTT	120
0000100000	

97/37026	PCT/US97/05306
TTTTTGTCAA AATATCCAAA CTGTTAGTCG CCTCATCCAA AATC	AAGACC GGCGCATCTG 180
TCAAGAGAGC ACGCGCCAAA GCGATTCTCT GACGTTGACC ACCTC	GAAATC CCTGCCCCAT 240
CCGAAGTCAA TTCTGTCTGG TAAATTTCAA GGTGGCATGG CGGCT	PTCGAG ATATTCCTCT 300
TCGGAATCTC TGAACCAAAT TCGGACCGGC CCGTTAAAGA TATCT	TTCCCT GTGTCGTCCC 360
CTCCCTTGGC TCCCAAAAGA AGATTCTCCA AAATCGTTCC GTTAA	AAGACA TAGGGCTGTG 420
GAGGCAGATA GATGATGTAC TGGCGTAGGG CTTTTTTATC AATCT	GATTG AGATTGACAC 480
CACCCAGACT AATCTCCCCT TGACTTGGGT CGTAAAAATT AACCA	ATCATC TTGGCCAAAG 540
TCGTCTTACC TGACCCTGAA ATCCCCACAA AAGCCACCTT AGACC	CCTTGG GGAACGGTTA 600
AATTGATATC CGACAAGACG TCTCGACCAT AGCCATACTT GTAAT	GAACC TGCTTGAAAG 660
TCATCTCTCC CTTCATCAAG	680

### (2) INFORMATION FOR SEQ ID NO:122:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

CCAATTTGGA	TTTGCGAGAA	GGCGTTATTA	TTTCAGATGC	TGGTTCGACC	AAGTCAACCA	60
TTGTGGATGC	GGCGGAGCAG	TATTTGGCTG	GCAAGTCTGT	TCGCTTTGTC	GGGCCCATC	120
CCATGGCTGG	TAGTCACAAG	ACAGGGGCTG	CTTCGGCAGA	TGTCAATCTT	TTTGAAAATG	180
CCTATTATAT	CTTTACAACC	TTCCAAAGCC	CTGAACAAGT	CAAGGACAAC	GCTTAAAGGA	240
AATGGGAAAG	GATCTGCTTT	CCAGGTCTTC	ATGGCTCGTT	TTATCGAGAT	TGATGCCAAG	300
GAGCATGATC	GTGTCACTTC	TCAGATTAGC	CATTTTCCTC	ATATTTTGGC	TTCTAGTCTC	360
ATGGAGCAGA	CTGCGGTCTA	TGCTCAAGAG	CATGAGAATG	GCAAGGCGCT	TTGCGGCAGG	420
TGGTTTTCGA	GATATGACCC	GAATTGCGGA	AAGCGAGCCA	GGAATGTGGA	CCTCCATTCT	480
CTTGTCCAAT	AGCGAGACCA	TTCTGGATAG	AATTGAGGAT	TTCAAGGAAC	GTTTGGAAGC	540
GATTGGTCAG	GCCATTAGTA	AGGGAGATGA	AGAGCAAATT	TGGAACTTTT	TTAACCAAGC	600
G						601

### (2) INFORMATION FOR SEQ ID NO:123:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 514 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

CTGGCTCATC	AGGGGCAGGA	TATTTATGAT	TTCCCTCGTG	CTATGATTAA	GGAAGATAAT	60
		TTTGAAATCT				120
CAAAAGGGAG	AAAGTCTGTC	TACAGAGGAT	TTGTGTGCTT	CCTTCCAAGC	AGCTGTACTG	180
		CAAGAAGGCT				240
GTGGCAGGTG	GTGTGGCAGC	CAATAAAGGT	CTCAGAGAAC	GCCTAGCAGC	CGAGGTTACA	300
GATGTCAAGG	TCATCATTCC	ACCTCTGCGC	CTCTGCGGAG	ACAATGCAGG	TATGATTGCT	360
TATGCCAGTG	TCAGCGAGTG	GAACAAAGAA	AACTTTGCAA	ACTTGGACCT	CAATGCCAAA	420
CCAAGCCTCG	CTTTTGATAC	CATGGAATAA	AGAGTGGCTC	TTTGTCAAGT	GTAGTGGGTA	480
GGCGAAAAGC	TACAATCTGG	AGANTACGAA	ATTC			514

### (2) INFORMATION FOR SEQ ID NO:124:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 521 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

CTTGGATTAT	AAAATACAAT	CGGCAAGATC	ATAAGTCCCA	AGCCTAAAAA	TATATAGAAA	60
CCCCCTCACC	TTCCAAAGAA	ATTCTGTATT	AAAGAGCATG	ACCACAAAAC	CAATCACAAG	120
CCCCAACGCA	ATCCAGGCGA	CCTGCTGCCC	TAAAATGGGC	AGAATATTAT	TGGGGTAATC	180
ATGACTAACG	GCTATATAGA	TAGCCACCAC	ACCGATGACC	AGTAGAAAAA	ATACTGGCAA	240
GAGCAAACTG	TAATCGACTC	TTGAGTCGAG	AGAACGTTTC	ATATAAACTA	ACCTTATACT	300
TO TACA AT	ACTATTATC	AAAGTTCATT	AAAAAATCTA	TCAATAGCCT	CGTCAACTTC	360
CCATCCAGAG	ATGGTTTTAA	CAGTCGCTTC	TTCTGCTAGA	GATGCTACTA	TTTGTTTGCC	420
CUNTICATOR	CCGACGATTC	TCCTATCCAA	AATAAGAGTT	AAGGAACGTT	GGTATTCACG	480
	CTTCCCAAAG					521
TOTOWINGTI	~					

### (2) INFORMATION FOR SEQ ID NO:125:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 599 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

GACATCATTG	ACTCTTTTTG	GTATATCATC	GACCATTTCT	TAAAAAATGT	60
GAAGAAGAAC	TCGAGTTTCA	ATTGCTTAAT	AACCAAGGAA	AGATTACCTT	120
AGTCAACACC	TCCCTACAGC	CATTGATTTT	GACTTTAACC	ATCCTTTCGA	180
CCCCAAGAG	TACTGGTTTT	AGACATGGAC	GGTAGAGAAA	CTATCCTCCT	240
AATGACCTAT	TTTAAAAACT	CTAGCCTTCA	GTTGCAAGTG	ACTGAAAACT	300
TATTTTTTCA	AAGCATCATA	CAAGTTGCGG	ATCGGTTGTT	TTAATATCGG	360
TGAGGCGCAA	TTTCCTGTAA	GGACTCAAGG	ACAAAAAGGC	GTTCCCGCTA	420
TGAGGCAATA	TGAGGTCGTC	TGTATAAAGG	ATCTGGTCCT	CCCACAAAGA	480
AATCAATCCA	AACGAAGTCC	CCCAATGCAC	TTCTCTCACC	CGTCCCCAGC	540
AATGGCTAAC	AAGGTTTCNT	AACAATTCTT	GTTGCTGGTA	GCCAAGTTC	599
	GAAGAAGAAC AGTCAACACC CCCCCAAGAG AATGACCTAT TATTTTTTCA TGAGGCGCAA TGAGGCAATA AATCAATCCA	GAAGAAGAAC TCGAGTTTCA AGTCAACACC TCCCTACAGC CCCCCAAGAG TACTGGTTTT AATGACCTAT TTTAAAAACT TATTTTTCA AAGCATCATA TGAGGCGCAA TTTCCTGTAA TGAGGCCAATA TGAGGTCGTC AATCAATCCA AACGAAGTCC	GAAGAAGAAC TCGAGTTTCA ATTGCTTAAT AGTCAACACC TCCCTACAGC CATTGATTTT CCCCCCAAGAG TACTGGTTTT AGACATGGAC AATGACCTAT TTTAAAAACT CTAGCCTTCA TATTTTTCA AAGCATCATA CAAGTTGCGG TGAGGCGCAA TTTCCTGTAA GGACTCAAGG TGAGGCAATA TGAGGTCGTC TGTATAAAGG AATCAATCCA AACGAAGTCC CCCCAATGCAC	GAAGAAGAAC TCGAGTTTCA ATTGCTTAAT AACCAAGGAA AGTCAACACC TCCCTACAGC CATTGATTT GACTTTAACC CCCCCAAGAG TACTGGTTTT AGACATGGAC GGTAGAGAAA AATGACCTAT TTTAAAAACT CTAGCCTTCA GTTGCAAGTG TATTTTTCA AAGCATCATA CAAGTTGCGG ATCGGTTGTT TGAGGCGCAA TTTCCTGTAA GGACTCAAGG ACAAAAAAGGC TGAGGCAATA TGAGGTCGTC TGTATAAAGG ATCTGGTCCT AATCAATCCA AACGAAGTCC CCCAATGCAC TTCTCTCACC	GACATCATTG ACTCTTTTG GTATATCATC GACCATTTCT TAAAAAATGT GAAGAAGAAC TCGAGTTCA ATTGCTTAAT AACCAAGGAA AGATTACCTT AGTCAACACC TCCCTACAGC CATTGATTTT GACTTTAACC ATCCTTTCGA CCCCCAAGAG TACTGGTTTT AGACATGGAC GGTAGAGAAA CTATCCTCCT AATGACCTAT TTTAAAAACT CTAGCCTTCA GTTGCAAGTG ACTGAAAACT TATTTTTTCA AAGCATCATA CAAGTTGCGG ATCGGTTGTT TTAATATCGG TGAGGCGCAA TTTCCTGTAA GGACTCAAGG ACAAAAAGGC GTTCCCGCTA TGAGGCAATA TGAGGTCGTC TGTATAAAGG ATCTGGTCCT CCCACAAAGA AATCAATCCA AACGAAGTCC CCCAATGCAC TTCTCTCACC CGTCCCCAGC AATGGCTAAC AAGGTTTCNT AACAATTCTT GTTGCTGGTA GCCAAGTTC

### (2) INFORMATION FOR SEQ ID NO:126:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 564 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

CTATGGGTAA	AAAGGATGCC	TCTGCTATGC	ATGAGATGAG	GGCTTCCTTT	ATTCAAGGCT	60
CCATAGAAGC	AGGCCATACT	GCGGAAAAAT	CAGAGCAGGT	TTTTGATGTT	ATGGAGAAGT	120
TTGCAGGTTA	TGGATTTAAT	AGATCTCATG	CCTACGCCTA	CTCAGCCTTG	GCCTTCCAGT	180
TGGCTTATTT	CAAAACGCAT	TATCCAGCCA	TTTTTTATCA	GGTCATGTTA	AATTATTCCA	240
ACAGTGATTA	CTTAATAGAT	GCACTTGAAG	CAGGTTTTGA	AGTAGCCTCT	CTATCCATCA	300
ATACTATTCC						360
	CCAGCAAGGA					420
ATTGAAGATT	TTATAGCTAA	ATTACCTGAG	AATTATCTGA	AACTTCCTCC	TGCTAGAACC	480
TTTGGTAAAA	GTTGGTCTTT	TCGATTCATT	TGAAAAAAAT	CGTCCAAAAG	TATTTAATAA	540
CTTAGCTATC	TATTGAATTG	TGAA				564

### (2) INFORMATION FOR SEQ ID NO:127:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 618 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

ACTAATCACT	TACTACGTAG	CTTCTGACTA	TCTACCTCTA	CTAGATAAAG	GACAAACTGT	60
aagattaaaa	CTGGAGAAGN	TTGGAAATCA	CGGCATTACC	ACCATCGGCC	AACTTCAGAC	120
AATTGATCAA	ACTCCTACCA	GAACAGAGCA	AGGCAATCTC	TTTAAATTAA	CCGCTCTTGC	180
AAAACTATCT	AATGAGGATA	GTAAACTCAT	CCAATATGGC	TTACAAGGTC	GCGTCACTAG	240
TGTAACTGCA	AAGAAAACAT	ATTTTGATTA	TTTCAAAGAT	AAAATTTTAA	CCCATTCTGA	300
TTAATTTTCA	GATAACACTC	TATAACTATT	TATTATCTTA	TCAAAAAGGA	GAATCATAAC	360
ATGGATAAGA	AACAAAACCT	AACTTCATTT	CAAGAACTAA	CAACTACCGA	ACTCAACCAA	420
ATTACAGGTG	GAGAATGGTG	GGAAGAACTC	TTACATGAAA	CAATTTTAAG	ТАААТТТААА	480
ATCACAAAAG	CACTTGAACT	ACCTATTCAG	CTATAAAAAC	AAGACCGAGA	AACAAGAACT	540
CTCGGTCTTG	TTTTTTATCA	TTCTGCATGT	ATCACAGTAA	GTACCTGACG	AAAGACTTGA	600
TTTTGGCGAG	GTAGTATT					618

### (2) INFORMATION FOR SEQ ID NO:128:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 549 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

CAGGGGATGC	CAGTTGATTT	GCTTCAAGTT	GACTTGACTC	GTACTTGGGA	AATCCTCGGA	60
GAAATCACTG	GGGATGCTGC	TCCAGATGAA	CTCATCACCC	AACTCTTTAG	CCAATTCTGT	120
TTAGGAAAAT	AAGAAAAATC	CATGATCCTT	CATTCGGTCA	TGGATTTTAT	TGTCTTTATT	180
AGTAATCTGG	TCTTAAGACC	CCTGTTACAG	TTGCCTTAGT	TGCTTCGTAG	TCGCCATCTA	240
CGACAACCTT	GATAATGCGT	TTGACATCTT	CTTCTGGTGC	TGGAACAAGA	GGTAGACGAG	300
TGGGTCCAGC	TTCAAATCCC	ATATAGTTAA	GAATTGCCTT	AACTGGAGCA	GGACTTGGAT	360
AAGAGAAGAG	AGCATTAACC	TTAGGAATGA	ATTTACGCTG	AATTGCTGCG	GCTTTCTTCA	420
TATCGCTTTC	TGCAATGGCA	GTAAACATCT	CGTGCATTTC	ATCCCCATTT	GTATGAGAAG	480
CAACAGAAAT	AACCCATCCG	CCCCAAGGTT	CATGGCATGG	AAAGCATCTC	CATCCTCACC	540
TGTATAAAT						549

- (2) INFORMATION FOR SEQ ID NO:129:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 455 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

CTGGCTANCA	AAATCATACT	CATAATCCTT	AACACCGACA	GAGATAGAAG	CAATGAGCCC	
THEATHCOMEC	3 mmccmmma a	<b>67.3.3.3.6.6.</b>			CANTONGCCC	60
TIGNICGIGC	ATTCGTTTAA	TAAAAGGAAT	GCGTCCTGCC	TCATCAAAAC	GGTGCATAAG	120
TGTACAAGTA	ልሮሮልሮሮሞሞዋል	CCC3 COMOOM	000000		COLGCALANG	120
	ACCACCTTTA	GCCAGTTGCT	CTGCTACATT	TTCATCCAAA	ATCGTCTGCA	180
TATTCGCTGG	CACAACAGGT	<b>ልርጥጥጥ</b> እ አ አ ር ር	momos manas			100
		AGIIIAAAGG	TGTGATTTCC	TAAAGTGACA	CTTGTATCCG	240
CTTCTGCACG	GCTTTTAATG	ልሮልሮልሞሞሞልሞ	MMCC33MC33			~ 40
		MONCALLINI	TIGGAATCAA	TIGAATATCT	TCGTAATCAA	300
AAATTGGAAA	TTCATTTAAC	ATATCGATGT	CACCAMACAM	MMCM11mo10		
			Cicollicii	TIGTAATGAC	CTACCTATGC	360
TCTCGCATCA	CTACGCCTTT	TCCGACGTTT	CCCTTAAATT	<b>ጥልጥጥእጥእ እ እ ‹</b>	C11110000	
OMMONO COLOR				THITHIMM	CAAAAGTACA	420
GTTTTTGTCA	AATTATTTCA	TGAATNAAAT	ATATC			
						455

### (2) INFORMATION FOR SEQ ID NO:130:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 776 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

OMOOMOGGGG						
CICCIGGGIT	TIGATTAACT	CTAGGGTTGC	CAAAAAGAGG	GTGATGACTT	CTTGGACATT	60
CTGGGCTTCC	TTGAACAAAT	CCTGCAAGCG	CAATTGATTT	CGTCCAATCA	<b>ጀርር እ</b> ጥጥር ጥጥጥ	120
CACAATAATC	ATCATGTCCT	CAATCTTATA	CTCATCCCC	A A C A M A C M C C	MCCC1 TC111	
TGCAAACTCC	TCTTTTTTCT	TCCCTACCAM	Armmonna	AAGATAGTCG	TGTGAT"I"I'IG	180
	_	TOGCIAGGAI	ATTIGAAAAA	GCCAAAAAGA	GGTCAATGGT	240
CGTCTTGTCA	TGCACAAGCT	CCGCATCTTC	GTAAATCAAC	TCTATCGGCG	CTTTGGAATA	300
ATACTGGGCC	CGTTTCTTGG	TGCTTGGCTT	CCAAGTGCTC	ACCCAAGAGC	TITCA ACIDIDOC	
CATATUTOTO	CATOTO	1001000			TIGNACTIGC	360
	GATTTGAGAG	AGGAGGTCCT	GCTCCAGGTC	ATCCCCCAAG	TCTGTCACTT	420
CTGCTACCTT	CGGAAGGAGT	TTACGACTCT	TAATCAGCAT	GAGCTGACTA	GCCATGACCA	480
TGTACTCACC	CGTCACTTCC	AGACCCCARCO	COMOCALOGO		COUNTRACEM	400
		HONCOCH 100	CCTGCAGGGT	TGAGACATAG	GCTAGATACT	540
GTTCGATGAC	TTCCGTAATG	GGCACATCGT	AGATATCCAT	CTGGTACTTA	GAAACCAGAT	600
GCAAGAGTAA	GTCCAGGGGT	ር ር መመር ል እ እ <b>አ</b> ጥ	COORDINA A DODO		o. L L . C C I O A I	000
		CCIICAAAAI	CITTAATT	AATATCCATT	ATCTATATTT	660
TTCTAAGGTC	AGGACTGTTT	TTAATCCTAA	TTTTTTTGCA	ATTTCGTACA	AATCGACCTT	720
GTTTTCTATT	TGTCCTTAGA	ልጥል ል ል ውሙ ግሙጥ	03.00m3.3.0			120
		WY UNWOUT OUT	CACGTAAGAC	TTGAGATCGA	ATTCCT	776

⁽²⁾ INFORMATION FOR SEQ ID NO:131:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 715 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

ATTGATACCN	ATTGTACAGG	ACAACTTATT	TTGGAGCGCC	ATAGCAGGGA	TANGGTTAGC	60
		AAACGTTTNT				120
		GTTACCAATG				180
		AGTTGTTGGA				240
ACTGAGGAGG	AATAACAATT	GTATCAGGTT	GTGATTTGAA	TGCCCCTGTC	AAAATCCAGT	3,00
ACTORGONEO	GATGNACAGC	ACAGTCAACA	AGAGCAAAAT	GATTGTTGAA	ATNACAGTAA	360
ACCOMOTTA A	ACCALALALALA.	TCTGTAGATT	GCATAGCTGT	CTCCTTTCTT	TAGTATTCTA	420
CCTCCTTTCC	AAGTACTTTA	AATTGAACAA	AGCTTACGAT	AGCAATCATG	ACTGCCAAGA	480
		TAGCCGTATT				540
		GAGTAGTTTG				600
AGIACAICAA	CANTCACTTA	ATTGTTGTGA	TGATTGCAAT	ATAAAGAGTT	GTTGGAAGAA	660
CGAAACACTG	MMMA AMCMMC	CAAAAAACTT	GAAACTCAGT	TGCACCATCA	ACACG	715
こうしん しんしん	TITIMATETIC	CIRRER				

### (2) INFORMATION FOR SEQ ID NO:132:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 485 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

cmccccmca.c	መመመምርርልርልጥ	ACAAATACTG	CAACCGCAAC	TGCAATCCCC	CAACCCATAG	60
CIGGGCIGAG	ITTICCAGAI	CTGTTGCTCT	ͲϹ <b>ϹϮͲͲͲͲ</b> ϹG	AAGAACCACA	CCTGCAACAA	120
TAATCACAAT	CCAACCTGCA	CIGITACICI	macama a a a a	TOTAL CANADA	AATTCACTCA	180
CACCATTTCC	TAGAAGAATC	AGGATTAAAG	TCCCTAAAAA	11C1CCAAA1	COCHCCACCT	240
TCATTTTTCT	GTCTCCATTA	AAAAGAAGGG	GCGGGCGACA	AGGATTGCTA	CCCTCCACCT	
CTTTTATTTT	TTCTTAATTT	TTTAATTCTG	CTAAGTCGTT	TTGAGCAAGA	GCTGCTTTTA	300
CATCACCACG	GTAAGTTGCT	TTTTCTTCTT	CTGTCCAGTC	ATAGAATCGT	CCCATTTCAT	360
CATCACCACC	CTCAACGATA	CTATCCAAGC	TATCACGCAT	AAAGAGCATG	TGATTGGTAC	420
CCAAAACTGG	CICAACGAIA	GGGCTAAGAG	መርስ አርምር ልጥና	GCGCATTGCA	TAGTGAAGGG	480
CACCAAGAAG	GAAGTCAACT	GGGCTAAGAG	ICMMCICALL			

#### (2) INFORMATION FOR SEQ ID NO:133:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 670 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

CTTAATTATA ACTTAAACAC	AAAAGTTTTA	CACAAACTGT	GGATAACTCT	TTTGAAACTG	60
TGATTTTCTT AATTGAAATC	TATTTTTAT	TTTGTGAATA	AGATGTGAAA	AAATAGAGAA	. 120
TATGTTAGAA TAGAGTCATG	AAAATTAAAG	TTGTAACAGT	TGGGAAACTG	AAAGAAAAGT	180
ATTTAAAAGA TGGTATCGCA	GAGTATTCAA	AACGAATTTC	TAGATTTGCT	AAGTTTGAAA	240
TGATTGAGTT ATCAGATGAA	AAAACACCAG	ATAAGGCCAG	TGAATCAGAA	AATCAAAAGA	300
TTTTAGAAAT AGAAGGTCAG	AGAATTTTAT	CAAAAATTGC	TGACCGTGAT	TTCGTTATTG	360
TGTTAGCCAT TGAAGGGAAA	ACTITCTTCT	CAGAAGAATT	TAGTAAGCAG	TTAGAAGAAA	420
CTTCTATAAA AGGANTTTCT	ACTCTTACTT	TTATTATTGG	GGGAAGTTTA	GGATTGTCAT	480
CATCTGTAAA AAATAGAGCC	AATCTTTCTG	TCAGTTTTGG	TCGCCTAACC	TTGCCTCATC	540
AGTTAATGAG ACTAGTTCTT	GTTGAACAAA	TCTATCGCGC	TTTTACGATT	CAGCAGGGAT	600
TCCCCTACCA TAAATAGAGA	ATTGACTTTT	AATTGAATTT	TTGGTAGAAT	AATTGTGTTA	660
GGTCTCATAG					670

#### (2) INFORMATION FOR SEQ ID NO:134:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 506 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

CTATAATTTT	ATTAGCTGTA	TTCCAGTCGT	CACGACCAAA	CTCTGTTACA	GGGACACGAA	60
TGTCAAAACG	GTTCTCAATC	TCCACAATCA	ACTCAACCGT	TCCCATACTA	TCCAAGACAC	120
CTGCATCAAA	AAGATCTTCA	TCCATCATGT	CAGAAACATC	TTCCATAAAC	AACTCATCAA	1.80
TAATTTCGAT	AACTTCTGAT	TTGATATCCA	TATTTTATTT	CCTTTTATTT	TTTAAACCAT	240
AGATTATTCA	AGAATCCAGA	AAAGATTAAG	AATGACAACA	TGACAACATG	GAAAGTGACA	300

wo	97/37026					PCT/US97/05306	
	ACCATGCCAA	GCAACTGAAT	CCAGCGATTC	TCAGGTAGGG	CAGCCTTCCC	TGCTTTTTTC	360
	CGTTCCTTAT	TGAGCGTTTT	TTTCTTGCGA	ACCCAGGCAT	CATTGATGAA	CAAGCCTAAG	420
	TCCATGAAAG	AGTCCCATAG	GCGATATAGT	ACCAGGTCAC	ACCATGCCAA	AATCCCCATA	480
	ATCCAGCATA	TTTACAATGT	AAGATC				506

- (2) INFORMATION FOR SEQ ID NO:135:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 921 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

						60
ATGGTTCGAC	CCACAAATAT	GTTTTGCGAA	TCATTGACCA	TTCTATGATT	TACGTTGCCA	
TTGCCGGCTC	ATACACGCCC	GTTGTCTTGA	CCTTGATGAA	TAACTGGTTT	GGCTATCTGA	120
TTATTGTCAT	CCAATGGGGA	ACGACCATCT	TTGGTATTCT	CTATAAAATC	TTTGCTAAAA	180
AGGTCAATGA	GAAATTTAGC	CTTGCTCTTT	ACCTGATTAT	GGGCTGGTTG	GTTCTGGCTA	240
TCATTCCTGC	CATTATCAGT	CAAACNACAC	CCGTTTTCTG	GATTCTCATG	GTAACTGGCG	300
GACTCTGTTA	TACAGTTGGA	GCTGATTGAT	AGCCTTTATG	CATTGAAATT	TGACAGTTTG	360
ACTTATGAAA	ATAAAGCAGA	GGTTATGGAC	TTTATCAAGG	CTCGTGTTGA	TAAGATGATG	420
GGCTCTACTC	CAAAAGATAT	CAAGGGAAGC	AGTTCTTGCA	GGTTCAAACT	TTGTTGTGGC	480
AGATATGTTT	GGAAGCAGCA	AGTGCTCTCG	TAGAAGTAAG	CAAGGAAGAA	GATTTTAAAC	540
CATCTGTTGA	ATCACTTTCT	CGTGCCTTTA	ACCTGGCTGA	GAAGGCAGAA	GGGGTTGCTA	600
	AGCACTATTT					660
CACTCGTTTT						720
TCATTGATGC	TTTCTTTGAA	AATACTATGG	TAATGGCTGA	AGATCAGGCT	GTCCGTCAAA	780
ATCGTTTGGC	AATCTTGTCA	CAACTAACCA	AGAAAGCAGC	TAAGTTTGCT	TGTTTTAACC	840
	TAAATAAAAT					900
	ANATTGCTCG					921

- (2) INFORMATION FOR SEQ ID NO:136:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 571 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

CTTGGCAACA	GGCTCTTTTT	GTATTGCGTT	TATTAAGAAA	AACAAAAAAC	ATCGATATAA	60
CATTTAACTA	AAAATTATTG	TATGTTATCT	CCCTTAATTA	GGAATGATAA	GGGAATAACT	120
AGAAAGATTT	GTGAATACAA	ACTATTTCTG	ATATACAAAA	TATACAGTAA	TAATGAATGA	180
TGGGAGATGG	GATGAAAGAA	TTTCAATTTG	AGAGAAAGCA	GCGTTTTTCT	TTGAGGCCAT	240
ATGCAATAGG	AGCTTGTTCG	GTCTTGCTAG	GAACGAGTTT	ATTTTTTGCT	GGTATGGGTG	300
CTCAGCCTGT	ACAGGATACA	GAAACGAGTT	CAGCACTAAT	TTCAAGTCAT	TATTTGGATG	360
AGCAGGATTT	ATCTGAAAAG	CTGAAATCTG	AGTTGCAATG	GTTTGAATTA	GAAAACAAGC	420
TTTTGAACTT	ATGGGAACAT	TAGGTTACTA	TGAAGGATTT	GTTCCTTATG	TTTCAAATCA	480
ATACAAAAAC	CAAGCTGAAG	AAGAAGGCAA	ACCGCTATCT	GATAAATATA	TTTTCGAAAA	540
ATCTTAAGAA	AAACATATGC	ACCTTCAAAA	A	•		571

### (2) INFORMATION FOR SEQ ID NO:137:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 611 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

GTATCAACTC CAAAGAG	GCAA GTGACTGTCA	AAGTTGTAAC	AGATGCGGCC	AAGAAGCTCA	60
TGGGTGATAA GATTGC	rcgc cagaaagaac	GTGGGATTCA	GATTGANACC	TTGCGNACCA	120
TGATTATNGG GATTCC	ANAC GNTGGTAAAT	CCACTCTGAT	GAACCGTTTG	GCTGGTAAAA	180
AGATTGCTGT TGTTGG	AAAC AAGCCAGGGG	TCACAAAAGG	TCAACAATGG	CTTAAAACCA	240
ATAAAGATCT GGAAATA	ACTT GGATACACCG	GGGATTCTCT	GGCCTATAGT	TTGAGGATGA	300
AACTGTTGCA CTTAAGT	TTGG CATTGACTGG	AGCTATCAAG	GATCAGTTGC	TTCCTATGGA	360
TGAGGTTACC ATTTTTC	GTA TCAATTATTT	CAAAGAACAT	TATCCAGAAA	AGCTGGCTGA	420
ACGCTTCAAA CAAATGA	LAAA TTGAAGAAGA	AGCGCCTGTG	ATTATTATGG	ATATGACCCG	480
CGCCCTCGGT TTCCGTG	SATG ACTATGACCG	TTTTTACAGT	CTCTTCCGTG	AAGGAAGTCC	540
GTGATGGCAG ACTCGGT	AAC TATACCTTAG	ATACATTGGA	AGACCTCGAT	GGCNACGATT	600
GAACTAAGTC C					611

#### (2) INFORMATION FOR SEQ ID NO:138:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1054 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

ттссталасс	AGCCATGATG	ANGGCACTCC	ATAAGGATAA	GTACCACCAA	GCAGCAGCAG	60
ANGACCATAA	TCTCCTTTAT	GACTTGAACG	AGAACGTTCA	ATAATAACTT	TTTCTAGTAA	120
	ATCACTTTCA		CTCTCACTTT		CAAAAAGGAG	180
			AAAATTTAAT	ATTCATTTCT	GCCATTTTAG	240
110001101-	-		CGAATGTTTC	TCTTATTTTC	TATCCAATGT	300
CCGAAGTGCT		TTTGCTCCAT	CAGCATGGTA	ATGGTCATAG	GACCGACACC	360
•			TGGTGCAACT			420
TCCAGGGACT	·	CTCGGTTCAT	CCCAACGTCA	ATGACAACCG	CACCTGGTTT	480
ACAGAGCTTC	CCATTITCAL	ACTITIGGCGCG	GCCGATTGCG	ACTACAAGAA	TATCTGCTTT	540
		TATGAGTTCG	TGAGTGGGCC	AAGGTTACTG	TCGCATTTTT	600
AGCAGCCACC	TIGGCAAGAI	TATCHTTTCC	AACGATATTT	GAACGACCGA	TTACGACCGC	<del>6</del> 60
		TAGGITIEC	ATGAAACATT	TCCATAATTC	CTGCAGGTGT	720
ATTTTTACCT			AAGACGTCCC	ATGTTTAGGG	GATGGAAACC	780
CGAGGGAATC	ATGACTGGAT		TAAAACCGCC			840
ATCCACATCC	TTTTCTGGGT				TTAGCAATCA	900
TAATGGCAAC	TGGACCAAAA	TCCCATGCCA	AGCIGGAICC	CCACTACTTC	GCTACGGGAA	960
GGTCTAACAA				ACTTGGCTGG		1020
	GAGCTGACCT			ACTIGGETOC		1054
CCCAACCAA	ATCACTACCA	ACCAGGCACT	AGAG			

# (2) INFORMATION FOR SEQ ID NO:139:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 598 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

CTGAACTGGA	ACATTOCHEM	ACCTCTGATT	TGTCAAAGAG	ATGCGAGTTA	TGATATGAAG	60
CTGAACTGGA	TTTTGCIACA	Addictions		CACAACAATG	CACCATGTAT	120
CAGGATGATT	TGGATAAGGT	AGCAGATTAT	CTCTTCAAAA	CHOMMONETO	011001110111	180
GAGTTGATTC	TOTAL TOTAL	CCTCTATAGT	TTCTACGATG	TAGACTATGT	CACTCGGATT	180
GGTAGAGAAG	111100011-1		TACCA ACAGA	TTAGTCGCCA	TAAGAGATTA	240
GGTAGAGAAG	TTATGGAGAG	GGACGAATTT	TALCAMONIA	11110100000	TA AD ADDRESS	300
CULTURE SALES	TGGCCCTCAA	TTGTTACCAG	CATTGTTTAG	AGCATTCTTC	TAATATTT	5
GIGIIGAXII	1000000000	mach caca: c	ammammGACA	AGGTATTAA	GCTTTATGAG	360
GCCAACTATT	TTGAGGCTTA	TACHGAGASG	KIIMIIO		CONTRACAL	420
CGTAATGTTT	TCCATTATTT	AAAAGGTTTT	GCCTTATATC	AAAAAGGACA	GTGTAAAGAA	
CGIZZZZG		CACCATICCAT	δ ጥ <b>ጥ</b> የጥፕGATG	TGTTAGGTCT	TCCAGAGCAA	480
CCCTGT'AAGC	AGATGCAAGA	GWCCWIGCWI	/3			

VO 97/37026	PCT/US97/05306	
GTTAGCCTAT TATCAGGAAC ACTACGAAAA ATTTGTCAAA AGTTAATTTT	CCCAAATAAG	54
GGAAAAATA AAAAGCTCCT TTCGGTTTTG ATACAATAGT TTCAAAATTT		59
(2) INFORMATION FOR SEQ ID NO:140:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 528 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: Genomic DNA		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:		
CTACTTCCCG GCCGAGTCGA TTCTCCGCCG ATATCGAGCA TACTGGCTCC	TTCTGTTATC	60
AATTTACGAG CCTGCTGGAG CGCCTGCTCA AGAGCAAAAA ATTGACCACC	GTCCGAAAAG	120
GAGTCTGGGG TTACATTGAT AATTCCGCAA ATAGCTGTCT TTGCATGAGT	GGCTTTACTG	180
GACATATCGG TCACTCCCTC AAGGCTATTC ATCATATTAT TTCTCTATTT	TACCATAAAA	240
AGAAAAAGAT GGACACGATT TCATTCATCT TTCTCCCAGT AGAAACAAGT	AAGCAATTGT	300
CAATAATCTT AAACAGAAAT CCCTAATGTC CGACTCATAA TCACCACAAG	AGCCAACAAA	360
CAGAAAGCAA TCCCATTAAC AATCATGTGA AGTAAGATCG ACATTTCCAA	ACGTTGGGTC	420
TTGTAGGCTG TCCAAGATAG AACTGTCGAC ATACCTCCAT AAATCAATAA	AGAAGGTAAA	480
TTACTTGGTT GATGTAATAA AGCAAACACA ATCGTACCGA CTACAAAT		528
(2) INFORMATION FOR SEQ ID NO:141:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 505 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: Genomic DNA		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:		
CTATGAGAGA GAATGACCTT CTCTTGATTA CTGCGGACCA TGGAAATGAC	CCAACGTATG	60
CAGGAACGGA TCACACTCGG GAATATATTC CATTGTTGGC CTATAGCCCT	GCCTTTAAAG	120
GAAATGGTCT CATTCCAGTA GGACATTTTG CAGATATTTC AGCGACTGTT	GCCGATAACT	180
TTGGTGTGGA AACTGCTATG ATTGGGGAAA GTTTCTTAGA TAAATTGGTA	TAAGATGACG	240
CGCTATGCTT TGCTGGTGAG AGGTATCAAT GTTGGTGGTA AGAATAAGGT	CGTCATGGCG	300

GAGCTTCGTC AAGAATTGAC AAACTTGGGA CTGGAAAAAG GTTGAGAGCT ACATCAATAG

WO 97/37026					PCT/US97/05306	
GACTTTCTTT	GCAGTCCATT	ATCCATTTAT	TCCAGAACTT	TTTCCTTTAC	TGAGTCTAGA	48

GGACTTTGAA GGGCGGAACT TGAAA 505

### (2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 876 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

CTATTTTCTC A	ተርጥጥጥጥጥ <u>አ</u>	САСТССТААТ	GTATCCCCTA	GAGTTTCATT	GTTAAGACCT	. 60
		TCCTGATTCC				120
GTCGTATTGA C.						180
GACGAAATCT T		CAGCAATTTT				
ACTAGATACC A	GAGTTGCTT	CAAGCAACTC	TTCGACAGTA	TAATTACGGG	CCTCCATAGG	240
AATATTACTG G	CTTCAGAAT	TTGTCGTCAA	TTGATAAGGA	TAATCAGAAA	TATCTACAGG	300
AGTGGAGAGG G	TAATACTTC	CGTTTTCCAA	AGCTTCATAG	ACCAGATAAA	CAGTAATCAA	360
TTTTGTTATG G	ТТТААЭЭАА	CGACAGGTGG	CGTTGCATCC	TTCTCATAGA	GAATTTTACC	420
AGTATTTGCC T	0220011111	ጥርርር እጥርጥጥጥ	AGCGGCAATG	GTAAAATCTT	GAGCAACAGC	480
AGTATITICC T	CAACAGCAA	ICGCATOTT		እእ <b>አአአጥአጥጥ</b> ጥ	<b>ምምምምር እጥል</b> ርጥ	540
AGTAGAAGCA C	CCCCTAAAA	GAGAGACAGT	TAACAAAGTT	AAAAAINIII	IIIICAIACI	
AGTCTTATTC T	ATCATAAAG	AAAAAAAATA	TTCTTGCTTT	AATAATTCAT	CTGTTAAGCT	600
TTTTGAAAAT A	TGGTAAAAT	AAAGTGAGGG	AGGTAACTCA	TGTTTCGTAG	AAATAAATTA	660
TTTTTTTGGA C	CACACAAAT	<b>ምምን እርጥርጥጥ</b> እ	ACCATCATCT	TTTACCTATG	GAGACAGATG	720
				መጥ አጥር አጥጥር ር	ATTTTTATTA	780
GGGTCTTTGA T	TAACCCTTT		-			840
GGGGGCTTTC 1	TTTATTATTT	GACAAACCCT	ATTGTTACTT	TCTTAAATAA	AGTCTGTAAA	
	CCTTGGTAT		TTGTGT			876

- (2) INFORMATION FOR SEQ ID NO:143:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 521 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

60

TAGCGCTGAT	CTCCTCTATG	CTCTGGGACA	ATCTTTCTTT	GCCCTCTCAC	TAGGGGTTAC	120
AGACATGTTG	ACCTATGCTT	CTTACTTGGA	CAAGAAAACC	AATCTAGTCC	AGTCAGGAAT	180
CTCCATCGTA	ACCATGAATA	TCTCGATAGT	CCATCATGGA	AGGTCTAGCC	ATTTTCCCAG	240
CCATGTCAGC	CTTCAATATC	CACTCTGAAA	GGGGACCCAG	CCTGCTCTTT	ATCGTCTTGC	300
CTCAACTCTT	TGACAAGATG	CCTTTTGGAA	CCATTTGCTA	CGTCCTCTTC	CTCTTTGCAA	360
CTGTCACTTC	TTCTGTCGGT	GATGCTGGAG	ATCAATGTGG	GCAATGTCAC	CAACCAGGAT	420
AACAGCAAAC	GTGCCAAATG	GAGTGTTATT	TTAGGAATTT	TGACCTTTGT	CTTTGGCATT	480
CCTTCAGCCC	TATCTTACGG	TGTCATGGCG	GATGTTCACA	т		521

### (2) INFORMATION FOR SEQ ID NO:144:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 553 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

CTGCAGACAA	TAACTTGGTT	AGCTTAACGG	CTCTTGAGGA	TTCATCCAAG	GATGTAACCT	60
TTACCAGTTC	GGCTTTCAAT	CTAAAAGAAG	GGCGACACCT	${\tt TCAAAAAGGG}$	GATTCCAAGA	120
AAATCCTTAT	CCACGAAGAA	TTGGCTAAGA	AGAACGGTCT	TTCACTTCAT	GACAAGATTG	180
GCTTGGATGC	TGGTCAGTCT	GAATCTGGAA	AAGGACAAAC	AGTAGAGTTT	GAGATTATCG	240
GCATCTTTCC	TGGTAAAAA	CAAGAGAAAT	TCACAGGCTT	GTCTTCTGAC	TTCAGTGAAA	300
ATCAAGTCTT	TACAGATTAT	GAAAGTAGCC	AAACCCTTTT	GGGCAATAGT	GAAGCTCAAG	360
TCAGTGCAGC	ACGCTTCTAT	GTTAGAAAAT	CCTAAGGAAA	TGGACGGACT	CATGAAGCAG	420
GTAGAAAACT	TGGCCTTGGA	AAATCAAGGC	TACCAAGTCG	AAAAGGAAAA	CAAGGCTTTT	480
GAACAAATCA	AAGACTCAGT	TGCAACTTTC	CAAACCTTCC	TGACCATCTT	CCTTTATGGA	540
TGTTGATAGC	AGA					553

### (2) INFORMATION FOR SEQ ID NO:145:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 523 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

WO 97/37026 PCT/US	97/05306
--------------------	----------

CTATGGATGC	GGAAGTTTCT	AAGAACCTTC	GCTTGATCCT	TGAGCGTAAA	GGAATGACCA	60
TCTTGACTGG	TACTAAACTG	CAAGAAATCA	TTGAGGAAAA	TGGTCAACTT	CGTATCAAGG	120
TTGAAGGAAA	AGACAATATC	ATCGCAAGCA	AAGCTCTTCT	TTCAATTGGT	CGTATGCCAG	180
ACCTTGAAGG	TATTGGAGAG	GTTGAGTTTG	AATTGGATCG	TGGTTGTATC	AAGGTCAATG	240
AATACATGGA	AACTTCAGTT	CCACGCATTT	ATGCCACCAG	GTGACATCAA	CGGTACTAAG	300
ATGTTGGCTC	ACGCAGCTTT	CCGCATGGGT	GAAGTTTCCG	CTGAAAATGC	CCTTAAAGGA	360
AATCATGCAG	TTGCCAAATT	GAATTTGACT	CCTGCAGCCA	TCTACACTCT	CCCTGAAGTA	420
GCAGCAGTAG	GTTTGACAGA	AGAACAAGCC	CGTGAGAAAT	ACGATGTTGC	CATCGGTAAG	480
TTTAACTTTG	CTGCTAACGG	TCGTGCTATT	GCATCTGACG	CAG		523

### (2) INFORMATION FOR SEQ ID NO:146:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 508 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

AATTATGAAT	GTCGGATATG	AAAAAGCATT	CTTGATGCAG	ACATCGTTAA	60
TTCTGAAATT	ATCTCGACAT	ATGTCTATAA	AGTTGGTCTT	GTATCAGGAG	120
CTCAACAGCG	GTTGGTTTGT	TTAATGCAGT	GATTAACGTA	GTATTGCTTG	180
CCAAATCGTT	AAACGCATGA	ATAATGGTGA	AGGAATTTAA	GGAGGAAAGT	240
CGATTATGGA	TACAAAATTT	GATAGACGTA	TCTTACTCTT	AAATAAAATC	300
TTATCGTTTT	GATGACTTTG	CTTCCTTTAC	TTTATATCGT	CGTAGCATCC	360
CTAAGGTTCT	GGTTAGTAGA	GGGATTAGCT	TTAATCCAGC	CGATTGGACT	420
ACCAGCGTGT	TATTCAGTGA	CCAATCTATT	CTAAGAAGTT	TTATCAATTC	480
TCTTTTGGAT	TTGCAGCT				508
	TTCTGAAATT CTCAACAGCG CCAAATCGTT CGATTATGGA TTATCGTTTT CTAAGGTTCT ACCAGCGTGT	TTCTGAAATT ATCTCGACAT CTCAACAGCG GTTGGTTTGT CCAAATCGTT AAACGCATGA CGATTATGGA TACAAAATTT TTATCGTTTT GATGACTTTG CTAAGGTTCT GGTTAGTAGA	TTCTGAAATT ATCTCGACAT ATGTCTATAA CTCAACAGCG GTTGGTTTGT TTAATGCAGT CCAAATCGTT AAACGCATGA ATAATGGTGA CGATTATGGA TACAAAATTT GATAGACGTA TTATCGTTTT GATGACTTTG CTTCCTTTAC CTAAGGTTCT GGTTAGTAGA GGGATTAGCT ACCAGCGTGT TATTCAGTGA CCAATCTATT	TTCTGAAATT ATCTCGACAT ATGTCTATAA AGTTGGTCTT CTCAACAGCG GTTGGTTTGT TTAATGCAGT GATTAACGTA CCAAATCGTT AAACGCATGA ATAATGGTGA AGGAATTTAA CGATTATGGA TACAAAATTT GATAGACGTA TCTTACTCTT TTATCGTTTT GATGACTTTG CTTCCTTTAC TTTATATCGT CTAAGGTTCT GGTTAGTAGA GGGATTAGCT TTAATCCAGC ACCAGCGTGT TATTCAGTGA CCAATCTATT CTAAGAAGTT	AATTATGAAT GTCGGATATG AAAAAGCATT CTTGATGCAG ACATCGTTAA TTCTGAAAATT ATCTCGACAT ATGTCTATAA AGTTGGTCTT GTATCAGGAG CTCAACAGCG GTTGGTTTGT TTAATGCAGT GATTAACGTA GTATTGCTTG CCAAATCGTT AAACGCATGA ATAATGGTGA AGGAATTTAA GGAGGAAAGT CGATTATGGA TACAAAATTT GATAGACGTA TCTTACTCTT AAATAAAATC TTATCGTTTT GATGACTTTG CTTCCTTTAC TTTATATCGT CGTAGCATCC CTAAGGTTCT GGTTAGTAGA GGGATTAGCT TTAATCCAGC CGATTGGACT ACCAGCGTGT TATTCAGTGA CCAATCTATT CTAAGAAGTT TTATCAATTC

### (2) INFORMATION FOR SEQ ID NO:147:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 528 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

WA 07/37026	PCT/US97/05306

CTAAAAAGAA	CCAGATGGAT	CTTGTGATGA	ATTTACATCA	TTTTGATTTA	CCAGTGGAAC	60
TTCTTCAAAA	ATACGGTGGT	TGGGAAAGCA	AACATGTAGT	GGAGTTATTC	GTGAAGTTTG	120
CCAAGACTGC	TTTCAACATG	CTTTGGAGAT	AAGGTTCATT	ACTGGACAAC	TTTCAATGAG	180
CCAATGGTCA	TTCCAGAAGC	AGGATACTTA	TATGCTTTCC	ATTATCCAAA	TCTAAAAGGA	240
AAGGGAAAAG	AGGCCGTACA	AGTCATCTAT	AATCTAAACC	TTGCTAGTGC	AAAAGTGATT	300
CAACTATATC	GCTCATTAGG	ACTTGATGGA	AAGATTGGGA	TTATTTTAAA	CTTGACACCT	360
GCTTATCCAA	GAAGTAATTC	TCCAGAAGAC	TTAGAAGCAA	GTCGATTTAC	AGATGACTTC	420
TTTAACAAAG	TCTTCCTTGA	ATCCAGCTGT	TAAAGGAACT	TTCCCAGAAA	AGATTGGTAA	480
AAACAGCTAG	AGAGAGATGG	CGTGTTATGG	AGTCATACCG	AAAAAGAG		528

### (2) INFORMATION FOR SEQ ID NO:148:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 778 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

ACTCTTATTG GTGAGGTAT	C GCAACTTCTG	TTTCTGCCTT	CCTTGGTGGA	CCAGCCAATA	60
CAACTTACGG AGAAAATAC	A GGGGTTATCG	GTATGACTCG	TATCGCTTCT	GTCTCAGTTA	120
TCCGTAACGC TGCCTTCAT	C GCGATTGCCC	TCAGCTTCCT	TGGTAAATTC	ACTGCCTTGA	180
TTTCAACTAT TCCAAACGC	T GTACTTGGTG	GTATGTCAAT	CCTTCTCTAT	GGGGTTATCG	240
CCAGCAATGG TTTGAAAGT	C TTGATTAAAG	AACGTGTGGA	TTTCGCTCAA	ATGCGAAACC	300
TCATCATCGC AAGTGCTAT	G TTGGTTCTTG	GACTTGGGAG	GAGCTATCCT	TAAACTTGGT	360
CCAGTTACAC TTTCAGGTA	C TGCCCTTTCA	GCCATGACAG	GAATCATCTT	GAACTTGATC	420
TTGCCATACG AAAATAAAG	A CTAAGAGTCT	AAATACACCT	AATCCACTCA	GACAGCTGAG	480
TGGATTTTTC GTATACCAT	A ATAAAAGTGT	CTTAACAAAA	TTATTAAAAT	CAAAAAACGT	540
ATAATATCAG ATATTCTAA	A ACCTTGATAC	TGTACGTTTT	ATCATAGAAA	TTTTTACTTT	600
ATTTTCTCAT CAAATGAGA	T TTGCATCAAT	CTCTTGTCTT	ACTTGCGTTT	CTTCTTCGCT	660
TTCTTCATTT TGTTAGCCA	T ACGTTTCATG	GACTGTTTCA	TGGCAAATTC	ACCAATTTTA	720
CCTTTCAAAC CGCCACCAA	A CATCTGGCTC	ATATCTGGCA	TTCCTGCTCC	TCCGAGAG	778

### (2) INFORMATION FOR SEQ ID NO:149:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 622 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

GGGAGTTGGT	TGCTATTNGT	GAGGGAAAAG	GTTTGAACTT	TGAAATCGAA	GTGGATGGTG	60
GGATTGATGA	CCAAACTATT	GCTCAAGCCA	AAGAAGCTGG	TGCGACTGTT	TTTGTAGCAG	120
GTTCCTATGT	CTTTAAGGGA	GAAGTCAATG	AGCGAGTACA	AACTCTCAGA	AAACAACTGG	180
ACTAGGGTTG	CAGTTTTTGC	AGGCGGAAAC	CGCGGTCATT	ATCGGACAGA	TTTTGATGCT	240
TTTGTTGGGG	TGGATCGAGG	CTCGCTCTGG	GTCTTGGAAG	AAGACTTACC	TCTTGCTCTA	300
GCAGTCGGAG	ATTTTGATTC	TGTGACGGAA	GAAGAGCGAC	AGGTGATTCA	AAAACGTGCC	360
CAGTATTTTG	TCCAAGCCCG	GCCAGAAAAA	GATGATACTG	ATTTGGAATT	GGCTCTCTTA	420
ACCATCTTTG	AACAAAATCC	TCAGGCTGAG	GTCACTATTT	TCGGTGCCTT	GGGTGGCCGT	480
ATTGACCATA	TGTTGGCCAA	TGTTCTTTCT	ACCTAGCAAT	CCCTAAGTTG	GCACCCTATA	540
TGCGTTCNAA	TAGAAATTGA	GGAATGGGCA	AATTTGATTG	CCTATTGTTC	CAGAAGGGAA	600
CAGTCAGATT	CGAATCCCTG	CA				622

# (2) INFORMATION FOR SEQ ID NO:150:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 497 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

CTATTATCAG	CACTTTTATA	CCTATTACCA	AAAAAATCCT	CAAAATGATT	GGCAAAAGGC	60
TTTATCCACC	AGCCATTTAT	CAGCAATATT	TACTTGAAAA	ATATGGTAGA	AATAGAAAGG	120
ATGGAGGAAT	CTAATGGTAT	TACAAAGAAA	TGAAATAAAT	GAAAAAGATA	CATGGGATCT	180
ATCAACGATC	TACCCAACTG	ACCAGGCTTG	GGAAGAAGCC	TTAAAAGATT	TAACAGAACA	240
ATTGGAGACA	GTAGCCCAGT	ATGAAGGCCA	TCTCTTGGAT	AGTGCGGATA	ACCTACTAGT	300
AAATCACTGA	ATTTTCTCTT	GAAATGGAAC	GCCAGATGGA	GAAGCTTTAC	GTTTATGCTC	360
ATATGAAGAA	TGACCAGGAT	ACACGTGTAA	GCTAAGTATC	AAGAGTACTA	TGCCAAGGCC	420
ATGACACTCC	TACAGCCAGT	TAGACCAAGC	CTTTTCATTC	TATGATCCTG	AATTTATGGA	480
TATTAGCGAA	AAGCAGT					497

# (2) INFORMATION FOR SEQ ID NO:151:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 605 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

CTGTTATGGA	GTTGAAAGAA	GAATACCACC	CAGACGGTAA	AGGTTTTGAA	ATGATCTGTA	60
TCGGTGGGAT	GGGAGCTGAT	TTCTTTAAGG	CTCGCGGTAT	TCAACCACTT	TATGAATTAC	120
GTGGCTTGTC	AGACCAACCT	AGCTTTGATC	AAGTTCGTAA	GATTATTTCA	AAAACTGTTG	180
AAATGTACCA	AAATGAACTC	TTTGATGAGC	TTTATGTTTG	CTACAACCAC	CATGTCAATA	240
CGCTAACCAG	TCNAATGCGT	GTGGAACAAA	TGCTTCCGAT	TGTTGACTTG	GATCCAAATG	300
AAGCGGATGA	AGANTACAGC	TTGACTTTTG	AAATTGGGAA	ACCAGCCGAG	AAGAAATTCT	360
GGAGCAGTTG	TTGCCTCAGT	TTGCAGAAAG	TATGATTTAC	GGTGCCATTA	TCGATGCCAA	420
GACAGCTGAG	AATGCTGCGG	GTATGACAGC	CATGCAAACA	GCGACAGATA	ATGCTAAGAA	480
AGTCATCAAT	GATTTGACAA	TTCAGTATAA	CCGTGCCCAG	ACAGGCGGAT	ATTACACAAG	540
AAATTACCGA	AATCGTAGCA	${\tt GTGCCTAATG}$	CCTTAGAATA	GCTCTAGTCC	CAGCTCTCCT	600
CACTC						605

- (2) INFORMATION FOR SEQ ID NO:152:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 517 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

CTACACTTGA	GGGAAGTTTG	AAAATTCCAT	TTTTCTTAAA	GGGAATTGTG	AAACGCTATG	60
TATTTTCTTT	TTACAACCGG	ATGGAGCACT	TGGTTGTGGT	CAATCCTATG	TTTATTGAGG	120
ATTTGGTAGC	AGCTGGTATT	CCACGTGAAA	AAGTGACCTA	TATTCCTAAC	TTTGTCAACA	180
AGGGAAAAAT	GGCATCCTCT	ACCACAAGAA	GAGGTAGTCA	GACTGCGCAC	AGATCTTGGT	240
CTTAGTGACA	ATCAGTTTAT	CGTAGTAGGT	GCTGGGCAAG	TTCAGAAACG	TAAAGGGATT	300
GATGACTTTA	TCCGTCTGGC	TGAGGAATTG	CCTCAGATTA	CCTTTATCTG	GGCTGGTGGC	360
TTCTCTTTTG	GTGGTATGAC	AGATGGTTAT	GAACACTATA	AGAAAATTAT	GGAAAATCCC	420
CCTAAAAATT	TGATTTTTCC	AGGCATTGTA	TCGCCAGAGC	GGATGCGCGA	AATTGTATGC	480
TCTAACGGAT	CTTTTCTTGT	TGCCTAATTA	CAATGAG			517

- (2) INFORMATION FOR SEQ ID NO:153:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 798 base pairs

### PCT/US97/05306

### WO 97/37026

- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

TGTTCGCCTC CATATCCNAA ACTTC	SCCCTG CCACCATACO	CAGACTACCT	GAAGCAAGGG	60
ATAAGTTGGC AATCGAGCCC ACCTN				120
CATATGGGTC TAAGAATAAG GATCT				180
GTGATTGGTT AACCGCCCTC TTCGA	ATAATC GTCATCATCC	ATAGCAGGAA	GGTCATCGTG	240
AATCAAGCTC CCTGTATGAA TCATC	CTCCAA GGCAGTAGCT	ACCTGCGCGN	GAGCAGGTTT	300
GATGGTAACC TGCAAGGCTT CCAG	AACTTC TAACAAGAGA	AAAGGCCGAA	TACGCTTGCC	360
ACCAGCATGA ATAGAATAGA GAACA	AGACTC CCGTAAACT	GAGGCAAACT	GCTGGTCTCC	420
ATAAAATCTT CCAAAGCCGA CTCG	ACAAGA GCTAATTTT	CTTGCTTTTT	CATTCAAAAT	480
CACTTTCTGT TCCGTCTTCT TGCA	IGACCT TGACCAAGG	CTTTTCAGCC	TTGTCCAGCG	540
TAGCTTGGAG CTCTTTTGAC AAGA				6.00
GAGCAATTTC ACCATTTTCC AAAC	TTTGGA CAATGGTTT	CAGTTCTGCT	AGATTTTCCT	660
CAAATTTCTT TTGTTTTGAC ATCT	TTAACC TCTAATTCT	A CTTGACCATC	TCGCATCAAA	720
AGCGTTACTT GGTCTTTTTT CTTC	AAACTC TCAACCGAA'	r ctacaacgga	TCTTCTTTTT	780
TGACAATAGC ATAACCAC				798

# (2) INFORMATION FOR SEQ ID NO:154:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 547 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

<b>്റെസ്സെസ്</b> റ്റേ	GGCAGTGACA	GCAGGTTATC	AGGCTGCCCT	AATGGTACCA	ACAGAAATCC	60
TCCC3GACCA	ACACTTTGAG	AGTTTACAGA	ACCTTTTTCC	CAATTTGAAA	CTGGCTCTCT	120
TCACACCTTC	CTTGAAAGCT	GCAGAAAAGA	GAGAAGTCTT	GGAGACCATT	GCCAAGGGTG	180
ACCOMMENT	CATTATAGGA	ACTCACGCTC	TGATACAAGA	TGGGGTGGAG	TATGCTCGTC	240
MOCCOMMUNICATION	TATTATCGAT	GAGCAGCACC	GTTTTGGTGT	AGGGCAAAGG	CGTATTTTAC	300
TIGGITIGAT	CCACAATCCA	GATGTCCTCA	TGATGACGGC	GACTCCCATT	CCACGGACGC	360
GGGAAAAAGG	ACCCTTTCCA	GATATGGATG	TTTCCATTAT	CGACCAGATG	CCAGCAGGTC	420
TIGCCATCAC	MUCTURA COCG	CTGGATCAAA	CATGAGCAAC	TACCTCAGGT	CTTGACTTGG	480
GGAAGCCCTA	1.1G.tGACGCG	ACCUTCCCAA	GTCTATGTCA	TCTCTCCTTT	GATTGAAGAA	540
TTAGAGGGGG	AAATI CAAAA	MGG1 TCCC181				

### (2) INFORMATION FOR SEQ ID NO:155:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 536 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

CT	CTTTTAAC	CGTTTTAGCG	GTGACACCGA	GGTATTTTTT	CAGGACCCAA	GACTTGTCGG	60
GC	AACCGAAA	CTGGGAGTTC	GTCATCTCCA	ATATGCAGAC	CAGCAGCATC	AACCGCAAGA	120
CA	AACATCCA	ACCGATCATC	GATTATCAAG	GGGACCTGAT	AGGCATCTGT	TATTTCCTTG	180
AC	TTGTTTTG	CCAGTTGATA	ATATTGATTG	GTTGTGAGAT	TTTTTTCTCG	CAATTGGACT	. 240
AT	GGTAACCC	CTGAACGGCA	GGCCGTCTCA	ACTTTTGCAA	GAAAGCTTTC	CACGGAATCT	300
TG	ATAGCGAT	TGGTTACCAG	ATATAGTCTA	AGCGCTTCTC	TATTCATAAA	CCTCTCCTTT	360
GA	TGGTATCT	AGCCAATTTT	CATCTCTTCT	TAGGAGCGAA	AGCTGATTGA	GTACTTGGTA	420
AC	GAAATTCT	TCCAATCCCA	TTCCTTGAAC	AACTATTTTC	TCAGCCAGCG	ATATTGAGAT	480
AA	GAGACTGC	TAAGCAAGAA	CTTCAAAACC	AGTCTTTCCT	TGGCTGAGAA	AAACAG	536

### (2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 854 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

CTGGAGTGAC	GATTGAGAAA	ATCTTTGCCC	TAGAAAATTA	TCGAAATCAG	TTAGCTGCTT	60
TTCCGCAAAC	TGTCTGGATT	TCAGAGGATA	TTTTGCTAGA	TTTGGCGGAT	TCTCAGACTC	120
CACAGGGAAT	TGTTGCCGTG	GTTCAAAAAG	AAGAAGTAGG	ACAAGCTGAT	TTGAGTCAGG	180
GCAAGTTCTT	GTTTTTGGAA	GATGTGCAAG	ATCCTGGTAA	TGTAGGAACT	ATCATTCGAA	240
CTGCGGATGC	AGCAGGTTTT	ACAGGAGTGA	TTGTTTCAGA	TAAGTCGGCA	GACATCTACA	300
GTCTTCAAAA	CCCTACGTTC	CATGCAAGGT	AGTCATTTCC	ATCTGCCCAT	TTACCGGATG	360
ACTAGTCAAG	CGCTTCTTGA	CGAAACTAAA	AAGGTAGCTA	TCCCAGTGCT	AGCAACAACC	420
CAATCTAAAG	ATTCTGTTGA	TTACAGAGAA	CTGCCTTCTA	TAGAAAATTT	TGTACTAGTT	480

WO 97/37026	PCT/US97/05306

ATGGGAAATG	AGGGTCAAGG	AATTAGTCCC	CTTATGGCTG	AAAGTGCAGA	CCAGTTGGTC	540
CATATTAGCA	TGAAGGGCA	GGCCGAGAGT	TTGAATGTTG	CGGTTGCAGC	CGGTATTTTA	600
ATCTTCCATT	TAAGCTAATT	TTAACTTTTT	TTGTTATAAT	CAAGGAAAGA	TGTTCACAGA	660
AAAGGAGAAA	TGGATGAATC	ACACTATTAT	ACATGACCGT	GCAGGTCTCA	ATCAATTTTA	720
CGCTAAGGTT	TATGCCTTTG	TTGGTCTGGG	AATCGGACTA	TCTGCTTTGG	TATCAGGCCT	780
TATGTTGACG	GTCTTTCAGT	CTCAGTTGGT	TTACTTTTTG	ATGCAGGGGC	GTCTCTGGTT	840
GACCATTGCT	ACTT					854

- (2) INFORMATION FOR SEQ ID NO:157:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 636 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

CCTAAAAGAT	TTGTATTACG	GAGCCGCTAA	GAAAATTCAA	GAAGAAGCCT	60
AGGAGTTGTA	AGAAATGACT	AAAACAGCCT	TTTTATTTGC	TGGTCAAGGT	120
TACGGATGGG	ACGGGATTTC	TATGATCAGT	ATCCGATTGT	CAAAGAAACG	180
CGAGTCAGGT	GCTCGGTTAT	GATTTACGTT	ATCTCATCGA	TACGGAAGAA	240
ATCAGACCCG	CTATACGCAA	CCAGCCATTC	TAGCGACTTC	GGTTGCTATC	300
TGCAAGAAAA	GGGCTATCAC	CCTGATATGG	TTGCTGGTTT	GTCTCTTGGA	360
CCTTGGTGGC	AAGCGGCGCC	TTGGATTTTG	AAGATGCCGT	TGCCTTGGTA	420
GAGCCTATAT	GGAAGAAGCG	GCTCCTGCTG	ACTCTGGCAA	GATGGTAGCA	480
					540
					600
					636
	AGGAGTTGTA TACGGATGGG CGAGTCAGGT ATCAGACCCG TGCAAGAAAA CCTTGGTGGC GAGCCTATAT CCCCGTAGAG ATACACACTG	AGGAGTTGTA AGAAATGACT TACGGATGGG ACGGGATTTC CGAGTCAGGT GCTCGGTTAT ATCAGACCCG CTATACGCAA TGCAAGAAAA GGGCTATCAC CCTTGGTGGC AAGCGGCGCC GAGCCTATAT GGAAGAAGCG CCCCGTAGAG TCCTTGAGAA ATACACACTG CACAATCTCA	AGGAGTTGTA AGAAATGACT AAAACAGCCT TACGGATGGG ACGGGATTTC TATGATCAGT CGAGTCAGGT GCTCGGTTAT GATTTACGTT ATCAGACCCG CTATACGCAA CCAGCCATTC TGCAAGAAAA GGGCTATCAC CCTGATATGG CCTTGGTGGC AAGCGGCGCC TTGGATTTTG GAGCCTATAT GGAAGAAGCG GCTCCTGCTG CCCCGTAGAG TCCTTGAGAA GCCTGTCCAA	AGGAGTTGTA AGAAATGACT AAAACAGCCT TTTTATTTGC TACGGATGGG ACGGGATTTC TATGATCAGT ATCCGATTGT CGAGTCAGGT GCTCGGTTAT GATTTACGTT ATCTCATCGA ATCAGACCCG CTATACGCAA CCAGCCATTC TAGCGACTTC TGCAAGAAAA GGGCTATCAC CCTGATATGG TTGCTGGTTT CCTTGGTGGC AAGCGGCGCC TTGGATTTTG AAGATGCCGT GAGCCTATAT GGAAGAAGCG GCTCCTGCTG ACTCTGGCAA CCCCGTAGAG TCCTTGAGAA GCCTGTCCAA AGCTCTGACT ATACACACTG CACAATCTCA TTGCTGGAAA ATTGTTGCAG	CCTAAAAGAT TTGTATTACG GAGCCGCTAA GAAAATTCAA GAAGAAGCCT AGGAGTTGTA AGAAATGACT AAAACAGCCT TTTTATTTGC TGGTCAAGGT TACGGATGGG ACGGGATTC TATGATCAGT ATCCGATTGT CAAAGAAACG CGAGTCAGGT GCTCGGTTAT GATTTACGTT ATCTCATCGA TACGGAAGAA ATCAGACCCG CTATACGCAA CCAGCCATTC TAGCGACTTC GGTTGCTATC TGCAAGAAAA GGGCTATCAC CCTGATATGG TTGCTGGTTT GTCTCTTGGA CCTTGGTGGC AAGCGGCGCC TTGGATTTTG AAGATGCCGT TGCCTTGGTA CCCCGTAGAG TCCTTGAGAA GCCTCCTAC ACTCTGGCAA GATGGTACC ATACACACTG CACAATCTCA TTGCTGGAAA ATTGTTGCAG TGATCAACGG GAGCCAGTGCC AACCCTATCC CCTAGT

- (2) INFORMATION FOR SEQ ID NO:158:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 693 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

WO 97/37026					PCT/US97/05306	
CTCTAAAACG	AATTCTCTAC	AAGCACCGCA	AGGGCATGGC	TGAACTTCCA	CCATAAGGTG	60
GTTTGTCTCG	AAAGGCTAAT	ACTTCNTTAA	CCTTAGTTTG	TCCTGAAAAT	TGGTACATAT	120
TGAAGAGGGC	CGCCCGTTCT	GCGCAGAGAT	GGAAAACACC	ACAGGTTCCC	TCCATACAGA	180
ATCCTGTAAA	TATTTGTCCA	TCTCCTGCTT	CTACTGCAGC	TACAACATGA	TTGGCATAAA	240
CAAAGTCTGA	TACTTCATGT	GGATTGTATA	GTTTCTGTGC	TTCTTCCTAC	ATCTTTTCCC	300
AGATGTCCAT	TATTGTATCC	TCTATATTTA	GAGATTTCTT	TTAGAATGTT	TTCGATATGC	360
TGAATTGATT	TTTCACGTCC	AAGCAAGAAA	ATTGTATCTG	GTAATTCTGG	CCCATGCATT	420
TCGCCTGAAA	CTGCGATACG	AATAGGCATG	AAAAGATTTT	TCCCTTTAAT	ACCTGTTTCT	480

TTTTGGACTG CTTTAATTTG CGGGAAGATA TTTTCTGTCA CAAATTCATC ATCTGTCATC

CGCTTCAATT TTTGCTTTGA ATGCTTCAAG AACTGTTGGA ACTGTTTCAC CCGTCATGAC

TTCGCGCTCT GCTTCTGTCA ATTCCTGGGA AATCTGAGAA GAAAGATCTG TCCATGGGAT

PCT/US97/05306

540

600

660

693

### (2) INFORMATION FOR SEQ ID NO:159:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 553 base pairs

(B) TYPE: nucleic acid

ATCTCATCTA CTGATTCATT GTGGTTTATA GAG

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

CTGACAAAGG	AGACGGGTAT	GGAACAAACA	TTCTTTATCA	TCAAACCAGA	TGGTGTAAAA	60
AGAGGGCTAG	TGGGTGAAGT	GTTAAAGCGC	ATCGAACAAC	GTGGATTTAC	AATCGAAAAA	120
TTGGAGTTTC	GTTCACAGGT	TTTCAGAAGA	GTAGATTGAC	CAGCACTATC	AGGACCTGGT	180
TGGTCAGAGT	TTTTACCCAC	CGATTCGTGA	ATTCATGACT	TCAGGTCCAG	TTCTTGTGGG	240
TGTCATTTCT	GGTCCCAAAG	TAATCGAAAC	TTGGCGGACC	ATGATGGGTG	CAACTCGTCC	300
AGAAGAAGCT	TTACCAGGCA	CTATTCGAGG	TGATTTTGCA	AAAGCTGCTG	GAGAAAATGA	360
GATTATCCAA	AATGTTGTAC	ATGGTTCAGA	TTCCGAGAAG	AATCAGCTAA	GCCGAGAAAT	420
TGCTCCTTTG	GTTTTAAGAG	TGGATTGGCT	CAATCAATTG	GATAAAAGCT	CATTTGAATA	480
GAAAGTATAG	TCAATTAGTT	TAAGAÇATGA	CGCATGATAT	CAAACTTTTT	AGTTTTTGAT	540
ATGGTGCGTT	TTT					553

### (2) INFORMATION FOR SEQ ID NO:160:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 488 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOFOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

CTAGAGATTT	NCGAAGAGTA	TTATTGTACT	TTAAAGGTCT	TGAGATAATT	GTCTTTNCCT	60
ACTTGACCTT	CGAAGGTTTT	ACCATTTTCA	AGGTAAGGAA	GGTCATCGGA	TACTGAAGCC	120
TTGACCTTGT	ATATCTTGCC	ATCAACTTTA	AAGAAGTAGA	CAGTGTCTCC	CTTGATAACA	180
GCTGATTTGA	GGTCTGCTAC	TACTCCCTTG	ATGCTTTCTG	TCGTTGCATT	GTCAATTTCA	240
AGGTCGTTTT	TATTGGCATA	CTTGCTGAGC	ATCTCTTCCA	CTGTAGTAGC	AACGATAACA	300
TTTTGGTACT	CGACTGCGTC	TACCAGGGCG	TACTCTTTGA	CCAAGCCAGC	ATTGTCCTTT	360
AAGCCCATGA	TGTAAAGAGG	CTTGTCATTG	AGGTTGATAA	AGATTGGGGA	AAGGTTGCTT	420
TGTAGGATTT	CTCCTGAACA	GCACCTTCTG	CTGATTCACG	GGCTGATTCT	TCTGTCGCAG	480
AAGCCAAG						488

# (2) INFORMATION FOR SEQ ID NO:161:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 543 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

TACAGCTATC GGGTCCGTCT GGTA	GTTGGT CCTCAGAACC	TTCACTGCCA C	TTCTTCCCC	60
ATCTAAGATT AAGTCTTTGG CTAG	GTAGAC ATCCGCCATG	CCTCCTCGAC C	AATCTGTTT 1	20
GACAATCCGA TAGCGTCCGG CAAA				.80
TTCATAGAAA CAAGGGCAAC CGTA				40
ACAAGTGTCT CCGTTTTATC TGCT				00
CTGCCTGAAA TCATGTTGGT CAAG				360
AGGATAACTG TCCCAAAATC AGGC				120
ATATTTTTT GTGGATGACT TCTG				180
CATTAACCAA AGAATGATCG CTCG				540
				543
ACG				

# (2) INFORMATION FOR SEQ ID NO:162:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 504 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

CTTTAAGGAA AATCAAATC	T CTCATGCTGA	TACCTCTCCT	САТТАААТТА	AATAGTAAAA	60
AAGATTCTAT CTCACTCCC	T GATTATTACA	AAACCATTGA	AATATCACAA	CTAATAGGCT	120
AGAATGGACA TAGTAAGAT	n tagtagatga	GTCATTCTAC	TCAAATCCAC	GTTAGAAAGG	180
ACTGCTATGC CAGACAATC					240
GGTCAGGAGC NTCTGGTCG					300
CTGTCCTCCA TGATTCTAT					360
ATCGCTGGAA CGACCAAGT					420
GCGACTGCAA GAAATCTCG	G AAGAAGCTAA	ATTTNCTGGT	GGTCTCGTCC	TATTGCTAGA	480
CGANATTCAT CGACTAGAT	A GACC				504

### (2) INFORMATION FOR SEQ ID NO:163:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 528 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

CTAATAGAGG	CGAAAAAATT	TCAGGTCCTC	CTTTGCTAGA	TGATAATGAG	GAAACTAAGA	60
TTTTACCAAC	CTCTTCTTCC	CGTTTTGGTT	ATGCCAATCC	TAAGGATCAT	GGTTTTAGCC	120
AGGAAACCTT	GAAGATTCAG	GTCGAACCAT	CTATTCATAA	AAGCCGTCGT	ATTGAAAATA	180
CCAAGAGAAA	TGTCTTCAAT	TCTAAGTTGA	ATAAAATCTT	ATTTGCGGTC	ATCTTTCTCT	240
TGATTTTGCT	TGTTTTAGCA	ATGAAACTTT	TGTAATAGAA	AAGGAATTGA	AATGAAAATA	300
GGAATTATTG	CTGCTATGCC	AGAAGAACTG	GCTTATCTGG	TCCAGCATTT	AGATAATGCC	360
CAGGAGCAAG	TTGTTTTGGG	GAATACCTAT	CATACAGGAA	ACCATTGCTT	CTCATGAAAG	420
TCGTTCTTGT	TAAAAAGTGG	AATTGGTAAG	GTCATGTCTG	CTATGAATTG	TGTGGCGAAT	480
TTTGGCTGAT	CATTTCCAGG	TTGGATGCCC	TTATTAATAC	GGGTTCAG		528

### (2) INFORMATION FOR SEQ ID NO:164:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 472 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

CTAATAAGAC	TGAAAAGAAG	TCCAGCCAGA	TGTCCCTAAA	AATACAGAAA	AAACATTAAA	60
ACCAAAGGAA	ATCAAATTTA	ATTCTTGGGA	AGAATTGTTA	AAATGGGAAC	CAGGTGCTCG	120
TGAAGATGAT	GCTATTAACC	GCGGATCTGT	TGTCCTCGCT	TCACGTCGGA	CGGTCATTTA	180
	AAGCTAGCAA					240
	ATGCTTCTGT					300
	ATTCAATGGT					360
	TAACGGGGTT					420
TTGCAGATCA	AGAAAGATTT	GCTGAAGCTT	TGAAGCAAGA	CGCAGATGGT	AG	472

# (2) INFORMATION FOR SEQ ID NO:165:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 605 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

	AGAAGAATCA	САСТСАТТСС	TAAATGTGAT	ATAATATTGT	TCTCAGTCTC	60
CTTTTAAATA	AGAMOMATCA	CACTOMITOS		MOCCO A MA MM	CCATCACCTC	120
AGCAGTGCGT	TGTGAAAAAG	CCATACTAAT	CCCTGATTTT	TCCGCATATT	CCATCACCTO	
ልልርጥርጥጥጥ A	CTCACTGAGC	CAACTTGATT	AGGCTTTATT	ACAATACCAT	CAGCACAATC	180
ARGIGITIES	GAAATTCTTT	CTA ACTUTO	тосставава	TCATCACCAA	AAACTTGTAA	240
TTTAAACTGT	GAAATICTII	CIMAGILIO		***************************************	CCCAAAATGG	300
CTTTAGAGGT	TTTATCAATT	GAAATTTTCT	CCAACTATCC	AAATCTTCAT	CGGAAAA1GG	
ATCTTCAAGA	TAAACCAATG	GATACTTAAC	TCCCCAATCA	CAATAAGTAT	CCATAATTTC	360
Alciicadon	TGTTGCTGAC	MR RCRCRCCA	ጥርርጥ <u>እርጥጥ</u> ጥA	TATATGCCAA	GTGAAGAATC	420
TGTGACTGTC	TGTTGCTGAC	TAACACACCA	100111111		አጠአ አመጥጣጥ አ አ	480
GTAACGATCT	GTCATTGCTA	AATCTAAACC	GATATCATAT	CIATITIGI	MIMMITTIMA	
ጥሬ ፈጥጋጥጋጥጋ	AACGAATCCA	AAATAATATA	AAAATCATCC	GTGTTAATTA	TTAATGCACC	540
IGICICIAAI	TAGATGTTGT	2/22 2.2 0/2000	ርተጠቀጥ አ አርጥጥ	<b>ТАТСАТААСТ</b>	CATTTTTATG	600
TTGATAGAAA	TAGATGTTGT	MONANCCIOG	GIIIIAACII			605
TTAGA						003

# (2) INFORMATION FOR SEQ ID NO:166:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 552 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

	TCAGTAAACA					60
TTTGGACAGG	AAAAAGACGG	TAGTTTTCTT	GCCCAGCGTT	ACCAATTTTA	CCTCGCCCAG	120
CAGGGACAAA	CACTATCGGG	CGCTCATGAT	CTCTTGGACA	GCCTCATTGA	GCGTGATTAT	180
AACTTGTATG	CTGCGACAAA	TGGCATTACT	GCCATTCAGA	CAGGACGTTT	GGCTCAATCT	240
GGTCTAGCAC	CTTATTTCAA	TCAAGTCTTT	ATCTCAGAAC	AGTTGCAAAC	TCAAAAGCCG	300
GATGCTCTTT	TTTATGAAAA	GATTGGCCAG	CAAATTGCTG	Gatttagtaa	AGAAAAGACC	360
TGATGATTGG	AGATTCTCTA	ACCGCCGACA	TTCAAGGTGG	CAATAATGCG	GGGATTGACA	420
CTATCTGGTA	TAATCCTCAT	CACCTCGAAA	ATCACACACA	AGCCCAGCCG	ACTTACGAAG	480
TCTATTCTTA	CCAAGACTTG	CTGGATTGTT	TAGATAAAAA	TATTCTTGAA	AGATCACGTT	540
TTAAGGAGAT	AG					552

- (2) INFORMATION FOR SEQ ID NO:167:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 405 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

CTTTGTCTGT	ATCTGCCTTT	TTATGCTATA	СТТААССТАТ	CCATACAAAA	A C A CITIC A ITIMO	
					_	60
ATTNTAGGAC	TTTAGGGGAG	AGATATACCT	TTACCCANCC	TATTAAAGAG	TTGAAAACGA	120
GAAATGTAGC	AGAAGTGGCA	GATTTGCTGG	CACNAGTGGA	AAGCTACCAA	GAGCAAGATT	180
ATTATGTGGT	GGGGTATGTC	AGCTACGAGG	CTGCACCTGC	TTTTGAGGAG	AAATTAGCAG	240
TTCACAAGGT	TCCTCTACTG	GGCGAGTACT	TGCTTTACTT	TACTGTTCAC	GATAGGGTGG	300
AGACCTCCCC	TATTCCTCTG	ACTTATGAGG	ATATTGATTT	GCCCTCAAAT	TGGCAGGGAA	360
NTAACGTCTG	CACAGAACTA	TGANAAGGCC	ATTGCCCAGA	TACAC		405

- (2) INFORMATION FOR SEQ ID NO:168:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 524 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

PCT/US97/05306

### WO 97/37026

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

стсаааааса	GCTTCTAACA	GCTTGAACAA	GGGGGCTAAA	ATTGATTCCT	TGATGTAGGG	60
		GTTTCATAAA				120
		TGTTTTATTT				180
TECTTTTCC	ATCTCATCCT	TGGCCACAAA	GCGTAAAGAA	GCAGAATTGA	TACAGTAACG	240
		GTCCATCTGT				300
ACGAGAACGA	ACTTCAATTC	GCTCCATTCC	ATGGCTCAGA	TCCTTGTAAT	AATGAATCAA	360
CTCTTTGGAA	ATCGGACGGC	TTAAAACTTG	GCCAACCCAC	AACCTGAAGC	AAACTTATCC	420
TTGGCAAAAA	AGAGTTGGCT	CACCTGTTCG	TAATATCTAC	ATAAATCCCC	TCCTTCCAAA	480
		GGTAAATGGA				524

- (2) INFORMATION FOR SEQ ID NO:169:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 593 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

тесттетеса	GTTGTAAGTA	ACGTAGTACC	ATTCTCAAAA	CCATACTCAC	60
man acceptable	ССУФУФТОТ	TTAAAGGAAT	GAAATTGCAA	AAAGATATTG	120
TAAGGGGAA	CLAIRINIOI	A A A A TOCOCA A	AAAGAAAAT	TGGAATCCAA	180
AGAATATAAC	GAGGITITAA	AAAATGGCAA	CON A DOCUMENT	<b>ТОХТОТТОХТ</b>	240
CAAAAAGAAC	TAGAAAAATA	CATTAAATAA	GGAATGGTAI	IGRICIIGAI	300
AAATACTGTC	ATTTTGAATA	TAAAGGAGTT	TGATATGGAG	TGGATTAGAT	
AGCAATCATT	GTTGTGGGTT	TTATTTTAAA	ATTTGATACA	ATTGCAACAG	360
TO COMPANY COMP	<b>ACAGCTTTAG</b>	TTTCAGGTGT	TTCTCTCGTT	GAATTTTTGG	420
IGGIIIGGII	20022000	CACTCCTCAC	GATTTTATG	GTTACCTTGC	480
AAAAGAATIT	AGCAATCAGC	UAGIGCICAE	MON NATIONAL PARTY	<b>ПСАТТСБАА</b>	540
GCTGTCAGAA	ACCTTTGGAC	TCAACAACGA	TCAATCGATT	IGATICOIDS.	593
CTGACAGTTG	GAAACTTCTA	TACAGTTTAT	TCTTTATCGA	GAG	393
	TAAGGGGAA AGAATATAAC CAAAAAGAAC AAATACTGTC AGCAATCATT TGGTTTGGTT	TAAGGGGGAA CCATATATCT AGAATATAAC GAGGTTTTAA CAAAAAGAAC TAGAAAAATA AAATACTGTC ATTTTGAATA AGCAATCATT GTTGTGGGTT TGGTTTGGTT ACAGCTTTAG AAAAGAATTT AGCAATCAGC GCTGTCAGAA ACCTTTGGAC	TAAGGGGAA CCATATATCT TTAAAGGAAT AGAATATAAC GAGGTTTTAA AAAATGCAA CAAAAAGAAC TAGAAAAATA CATTAAATAA AAATACTGTC ATTTTGAATA TAAAGGAGTT AGCAATCATT GTTGTGGGTT TTATTTTAAA TGGTTTGGTT ACAGCTTTAG TTCAGGTGT AAAAGAATTT AGCAATCAGC GAGTGCTCAC GCTGTCAGAA ACCTTTGGAC TCAACAACGA	TAAAGGGGAA CCATATATCT TTAAAGGAAT GAAATTGCAA AGAATATAAC GAGGTTTTAA AAAATGGCAA AAAGAAAAAT CAAAAAGAAC TAGAAAAATA CATTAAATAA GGAATGGTAT AAATACTGTC ATTTTGAATA TAAAGGAGTT TGATATGGAG AGCAATCATT GTTGTGGGTT TTATTTTAAA ATTTGATACA TGGTTTGGTT ACAGCTTTAG TTTCAGGTGT TTCTCTCGTT AAAAGAATTT AGCAATCAGC GAGTGCTCAC GATTTTTATG GCTGTCAGAA ACCTTTGGAC TCAACAACGA TCAATCGATT	TGGTTCTCA GTTGTAAGTA ACGTAGTAC ATTCTCAAAA CCATACTCAC TAAGGGGAA CCATATATCT TTAAAGGAAT GAAATTGCAA AAAGATATTG AGAATATAAC GAGGTTTTAA AAAATGGCAA AAAGAAAAAT TGGAATCCAA CAAAAAGAAC TAGAAAAATA CATTAAATAA GGAATGGTAT TGATCTTGAT AAATACTGTC ATTTGAATA TAAAGGAGTT TGATATGGAG TGGATTAGAT AGCAATCATT GTTGTGGGTT TTATTTTAAA ATTTGATACA ATTGCAACAG TGGTTTGGTT ACAGCTTTAG TTCAGGTGT TTCTCTCGTT GAATTTTTGG AAAAGAATTT AGCAATCAGC GAGTGCTCAC GATTTTTATG GTTACCTTGC GCTGTCAGAA ACCTTTGGAC TCAACAACGA TCAATCGATT TGATTCGAAA CTGACAGTTG GAAACTTCTA TACAGTTTAT TCTTTATCGA GAG

- (2) INFORMATION FOR SEQ ID NO:170:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 456 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

CCTGCTCCTT ATCTTTGCA	G TAATTGGCGT	TTTAGTGGCC	TTGATAGCTC	AATTTTACTC	60
AGCAAAGGCA GCAGTAGGT	T TTGCTAAGGA	ATTGACAAAC	GATCTTTATC	GTCATATTCT	120
TTCCTTGCCC AAGGACAGC	A GAGACCGTCT	GACAACTTCT	AGTTTGGTTA	CTCGCTTGAC	180
TTCGGATACC TACCAGATT	C AGACTGGTAT	CAATCAATTC	CTGCGTCTCT	TTTTACGAGC	240
GCCCATTATC GTTTTTGGT	G CCATTTTAT	GGCTTATCGA	ATCTCAGCTG	AGTTGACTTT	300
CTGGTTCTTA GTCATGGTT	G CCATTTTGAC	CATTGTCATT	GTTAGGGTTA	TCTCGATTGG	360
TCAATCCTCT CTACAGTAG	T CTCAGAAAGA	AAACCGAACC	ACTGGGTTCA	NGAAACCCCC	420
CNCCATTGCA AGGATGCCG	G GTTATTCCGT	GCCTTT			456

- (2) INFORMATION FOR SEQ ID NO:171:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 565 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

CTTGTACAGT	TGAATCGTTC	AGATATTGAT	TTTGAAAACA	GAGAGTGTGT	TGTCTTTGGT	60
AAAGGAAAGA	AGGAGAGACC	AGTATATTTT	GACGCTCGGA	CGAAAATTCA	TTTAAGAAAT	120
TATCTTAACG	ACAGAAAAAG	ATAGTCACCC	TGCTCTTTTT	GTAACGCTAG	TTGGAAAAGC	180
CCAGAGACTT	GGAATTGCTG	GTGTAGAGAT	TCGCTTAAGA	AAGTTAGGAG	ACAAACTCGG	240
CATACAAAAG	GTTCACCCAC	ATAAGTTCAG	AAGAACTTTA	GCGACTAAGG	CAATTGATAA	300
AGGTATGCCT	ATCGAACAAG	TCCAAAAACT	GCTAGGTCAT	AGCAAGATTG	ACACAACCCT	360
GGCCTATGCC	ATGGTCAATC	AAAATAATGT	CAAGCATTCA	CACCAAAAAT	TCATCTCTTA	420
AAAGCAAATC	CCGATATTCC	GAAGAGGTGG	TTGCATGAAG	AAAGTGAAAT	TAGGTGAAGT	480
GGCTACTTTT	ATCAATGGCT	ATGCTTTTAA	ACCTCAAGAT	TGGTCCTCTG	AAGGAAAGAG	540
ATTATCCGAA	TTACCGAATC	TGACT				565

- (2) INFORMATION FOR SEQ ID NO:172:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 538 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

CTTTATACTT	TATCATTTCT	AACTTAATTA	TAGTCTTATT	TTTAATAAAG	TTCAATTATT	60
TATATGTAAA	ATTCCTCATC	AGTAAAAAAT	AACCGATCTC	ATTTCTGAGA	ATCGGTTTTC	120
TAAATAAATC	AAACCGATCA	TTTACATAAC	ATAAATTATG	TAAATGATCA	TACTACAACA	180
ACAAATCTTT	GACTTTTCCA	ATTTCACTTT	TTGGAATAAC	CAGGTGAATC	ATATCACCCA	240
GATACATTCT	GGTTGAGCCG	TTAACTGTTT	GGCTCTTGCC	ATTATGGACT	TGAGTTGTGA	300
TGAGGACGTT	GTGTGGTAAG	TTGAGTTCAT	GAACTTGTTT	CCCAGCAATT	TTATCAGAAA	360
CTGGTATTTC	GATAAGTGTA	ACTTCTCCTT	CGCTAGATAC	TTCTTCTGGG	AAGCATTTTT	420
TCCAGCATGG	CTTCATAGAC	TGGCGTTCCT	TTGAGCNAAT	CCCTGATNAT	TTTAGAAACC	480
AGAGTGACAG	ACCAGTGGCT	TAAGGTGCGA	ATATCTCCTA	CCATCTCAGT	TACGAGAT	538

- (2) INFORMATION FOR SEQ ID NO:173:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 509 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

CGTGCTAACC	ATGAGAGCAT	ATATTTCCTC	CAACTATTTC	TATTTCAAAA	AATCCTTACT	60
ATATTGTATC	ACAATCAGAC	ACAAAAAGAA	AAAGCAAATG	ATAAACAAAT	GCTTTTAANG	120
TTTTAAAAAA	AGCTTCGAAA	GGTTCTTCTT	TATTTTTTAA	NGGGAGAGAT	AACGTTGATA	180
TCTAAATCGT	GGTCAAAGCC	GGCAATTTTC	CTTTAGATGT	GTATTGGTGA	ATATCATAAT	240
CTAAATCAGT	TTTAGGACTG	CTCTCCAAAA	ATCCTGAGTC	TGAGCCGTAG	GACGGAATCC	300
AAACAGAGGT	AAACTTGCCT	GTATCAATAC	TGTGTTCTTC	CATGAAGTAG	ACACCAACGT	360
AGATGCCGAT	GTTTTTAGCA	CCTAGTGATG	CTAGTTTTGC	TCGAAAGTTT	TCGACACCTT	420
CGTTCATATA	GACATAGTTT	TGTCTCCACG	TCAGCCCATA	GTAACTAGGC	TGTTAGGAGA	480
GCACATTGTA	GAAAACTTCG	GCAGCCTTT				509

- (2) INFORMATION FOR SEQ ID NO:174:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 572 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

CTGTTCTGTT	TGCGACGCTA	CTTGGTTGTA	GCATGGGGGT	GGTTTTAGAT	GGTCAGTAAG	60
TATCTTTTAT	TAGCAGTTAT	TTTCTCTGGC	TTGGTGACTT	GGATTCTCCG	TATGATTTCC	120
TTCATCTTAG	TCAAGTATAA	GGGCTTGCCT	GCAATCGTTG	AGCGTTTTTT	GAAGTTCTTG	180
CCCGTTTCCA	TTATCTTTGC	CTTGATTCTT	TCAAGCGTAG	TGACAGGTAA	GGTTGGGAGC	240
CTTCCTCAAA	TTAAATGGCT	AGACTTCTTA	GCCGTCTTTC	CAACAGCTTG	GGTAGCCTTT	300
CGCTACCGCA	ATCTACTCGG	AACAGTTCTC	TTTGGAGTGG	TCTTGATTGC	CATCTTGCGT	360
TTGGTCTCTT	AAATTACCCA	CCAAAAAAAC	TTATCACAGA	GATAGATATC	ATATAATGGC	420
GTAAATGCTC	CTTTTCTGTT	AAGATTATAA	GGTATTCTAT	TTTGGAGGAA	ATGACATGAA	480
AAAAATCGTT	AAATACTCAT	CTCTTGCTGC	CCTAGGACTT	GTTGCTGCAG	TGTGCTTGCG	540
GCTTGCTCAG	GGGTGCTCAG	AAAGAAGAGA	AC			572

- (2) INFORMATION FOR SEQ ID NO:175:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 497 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

CTAGGTTATT	TAGTAAAAGA	CTAGAAGATT	TTCTTTTCCC	AATCGTCTTC	TGTACGGCGA	60
GGATAGAAAA	ACTCTGACTT	GTCGGGAGCT	TCCATCATTT	CCATCAATGG	TAGCATATCA	120
TAGGCCAGAT	TTAAGTTTGG	AATCTGGTCT	TTTTGCACCC	AAGAAACTTC	TCCCTCTTCT	180
GAAGATTGAA	GGGTACCAGA	GAACTCAGTC	GCCTTATAAC	AAATGACAAT	ATAGCGCCCA	240
CCTGTATCTA	GTGGCCAATT	TTTAATGCCG	ACAAGTTGAG	GATTTTGGAT	AGTCAACCCT	300
GTTTCTTCGT	AGATTTCACG	AATGACAGAC	TCCGCAAAAG	CCTCATCATT	TTCTACATGA	360
CCTCCAGGAA	AGGCATAACC	AGACCAGCGA	TTGTTTTCAG	GGGCGCGATA	CTGCATCACC	420
ACGCGCTGAG	TTTCGANGTC	TTCCATCAGA	CAGATATTTG	TTTAAATTGT	TTAATTGGGA	480
ACGGGACATA	AATTTAC					497

- (2) INFORMATION FOR SEQ ID NO:176:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 425 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

CTGAAATTTT	GGAAGAAGAA	ATCGGTGTAG	ATACAGTCCA	AAAAATAGGA	CGCATCTTGA	60
TTTTGTTTAA	ACAATCTAGC	AAGAAAGAAA	ATCGCAAGAT	TTCTAAGAAA	GTCAAAGAAA	120
TCTAAGATCG	AAACTCCAAA	TAACTGTTTT	TATAGAGAAA	TAAAGGGGAC	TAGCCTATGA	180
CAATCGAACT	ATTGACTCCC	TTTACCAAGG	TAGAGTTGGA	GCCAGAAATC	AAGGAGAAAA	240
AACGCAAACA	AGTTGGGATT	TTAGGGGGGA	ATTTTAACCC	TGTTCACAAT	GCCCATCTCA	300
TTGTTGCGGA	TCAAGTACGG	CAACAGTTGG	GACTGGATCA	AGTTCTGCTC	ATGCCTGAAT	360
ACCAACCTCC	TCACGTTTGA	TAAAAAGGAA	ACCATCCCTG	AACACCATCG	TCTCAAGATG	420
CTTGA						425
AACGCAAACA TTGTTGCGGA ACCAACCTCC	AGTTGGGATT TCAAGTACGG	TTAGGGGGGA CAACAGTTGG	ATTTTAACCC GACTGGATCA	TGTTCACAAT AGTTCTGCTC	GCCCATCTCA ATGCCTGAAT	300 360 420

- (2) INFORMATION FOR SEQ ID NO:177:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 418 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

CTGCTATCAA GACAGTATTA	CCGCTGAAAG	AAACAGCTTC	ACTAGAAGGC	GCAATTGAAA	60
AATAAGACGG GATCACGAAC					120
TTAGTCTTTG TCTGTCTGGG					180
TCAATGACAG ATAACTACGA					240
CCGATTCATA AGGGGACTCA					300
AAGACATCGC TTCAGATTAG	TAAGGAAGAT	TTTGAAGCCT	TTGATTATAT	TATCGGAATG	360
GACGCTTCAA ATGTTCCGAC					418

- (2) INFORMATION FOR SEQ ID NO:178:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 367 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: limear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

ACTGTTTGAA	AAATATGATT	CGTGGTCGAG	AAATGAATTG	CATTTAAGCA	ATGTAGTTCA	60
GTATATAGAT	TTGGAAATTA	ATGATTTAAC	AAAATAAAGG	AGAAAAAACA	TGGTTAAATA	120
CGGTGTTGTT	GGAGCAGGGT	ATTTTGGAGC	TGAATTGGCT	CGCTATATGC	AAAAGAATGA	180
TGGAGCAGAN	ATTACTCTTC	TCTATGATCC	AGATAATGCA	GAGGCGATTG	CAGAAGAATT	240
GGGAGCAAAA	GTTAGCAAGT	TCCTTAGATG	AGTTGGTTTC	TAGCGATGAA	GTTAGATTGT	300
GTTATCGTCG	CAACTCCCAA	ATAATCTTCA	TAAGGAACCG	GTTATTAAGG	CTGCACAGCA	360
TGGTAAAAAT	GTTTTCCTGT	TGAAAAA				387

- (2) INFORMATION FOR SEQ ID NO:179:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 561 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

CTTATGAAAT	CAATCATCAA	AATAATATTG	ATCAGGACTA	TTTAGGTAAA	TTATCTACAA	60
CGATTAAATT	GGTAGCAGAA	AAGGAAAATG	CCGTTGAGAT	CCTAGAACAC	TTGAATGTTG	120
TCCCTGTGTT	GACAGCCCAT	CCAACACAAG	TGCAACGCAA	AAGTATGTTG	GATTTAACAA	180
ATCATATTCA	TAGTCTTTTG	CGTAAATACC	GTGATGTTAA	GTTGGGGTTA	ATCAATAAAG	240
ATAAATGGCA	CAATGATTTG	CGTCGTTACA	TCGAAATTAT	CATGCAGACA	GACATGATTC	300
GTGAGAAAA	ATTAAAAGTG	ACTAACGAAA	TCACGAATGC	TATGGAAATA	TTACAACAGC	360
TCCTTTTTGA	AAGCTGTCCC	TCATTTGACG	ACGGAGTATA	AGCGCTTAGC	GCAAGCGCAT	420
GGTCTGAATT	TAAAACAGGC	TAAACCAATC	ACCATGGGTA	TGTGGATAGG	TGGTGACCGT	480
GAAGGAAATC	CATTTGTTAC	AGCAAAGAAC	TTGAAGCAGT	CTGCACTCAC	TCAGTGTGAA	540
GTCNTCCTGA	ACTTACTATG	A				561

- (2) INFORMATION FOR SEQ ID NO:180:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 496 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

CGACCTAATC	ATATTGATAC	TGCATTTGCA	TCAGCAGATT	TGTTTGAGTA	TAAATTACAA	60
TTAGCAGGAC	AGACTTGGGG	ATATTTAGAA	TTTGAAACAA	ATACAGAAAA	ATATGGGAAA	120
GTATTGTTAA	TTATAAAGGG	TAAGAAGCGA	CTTACGAACC	AATTTCCTTT	GGTACAAAA	180
AATAAGAGTG	GCTACTTATT	TGAATATGCT	CAGATGAATA	CACTTTATCT	TAATCAACAT	240
TCTTCCTACA	AAAATGATGA	AGATAGTCAT	TCCTTTCCAA	TTCAGATGGA	GTTAGTTTCT	300
GATGAAATGA	TTCCAAGAAA	TTGAACAAGC	TACTAAAAAT	TCCGAATATC	CGAAAAATTT	360
ATGATTTAA	CTTATGANGC	GGACTCCCGA	AAAACAATAT	TATATCTGTT	AGATGTTTGT	420
TATGCCCTGA	TGCCCGAACT	GGTCCAGTTA	CACTTGATTC	CAGATTGTCC	TGAGTATATC	480
CATCCAGTTC	CGTACC					496

### (2) INFORMATION FOR SEQ ID NO:181:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 504 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

CCACCCTCTA GC	AAGTGGTG	CTAATTCCTA	TAGCCTAGAA	GAAAACGAAA	TCATCTACCA	60
AAAGTTAAAA AA	CTTGCTTA	AAAACTGATA	AAATACTTGC	CAAACTTTTC	AGAATCTGAT	120
AGACTAGTAT GG	TAACAATC	TATGGCTCGC	AAAGAGACCA	TGGCAGAAAG	GAAATATTGC	180
AAAATGAAAA AA	GATATCCA	TCCAGAATAT	CGCCCAGTTG	TCTTCATGGA	CACAACTACT	240
GGTTACCAAT TO	CTTAGCGG	TTCAACAAAA	CGCTCTAACG	AAACAGTTGA	GTTCGAAGGC	300
GAAACTTACC CA	TTGATCCG	TGTGGAAATT	TCATCAGACT	CACACCCATT	CTACACTGGA	360
CGTCAAAAGT TO	ACTCAAGC	AGATGGACGC	GTGGATCGTT	TCAACAAAAA	ATACGGTCTC	420
AAATAATGAT AA	GAGAACAG	TTTCGGCTGT	TCTTTTTTGT	TTCTTGAAAT	CAACTGCTGT	480
TTTCATGTTC CA	GACTCATC	TGTA				504

# (2) INFORMATION FOR SEQ ID NO:182:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 470 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

CTCAGGCGAT	TACTAATTAC	ATGACTTCTG	CCTCAAACTT	TAATGTCGAT	GAGGCTAGCC	60
			AAATCGAACA			120
			ATTGTGCCAG			120
~~~~~~		MITAGIGIG	ATTGTGCCAG	TCTATAATGT	GGCGCAGTAC	180
			CAGACCTATC			240
GTTGATGATG	GTGCAACAGA	TGAAAGTGGT	CGCTTGTGTG	ATTCAATCGC	TGAACAACAT	300
						300
			GAAGGATTGT			360
ATGAAGCCAG	GCTCACGGGG	ATTATCTGAT	TTTTATTGAC	TCAGATGATT	ATTATICC ATTOC	420
					MINICCAICC	420
MONANIGATT	CAGAGCTTAT	ATGAGCAATT	AGTTCAAGAA	GATGCCGATG		470

(2) INFORMATION FOR SEQ ID NO:183:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 526 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

CTTATACTTG	CTTTTTTCCT	TTTGAAAAAT	GTTAATAAAT	CGTTGGTAGT	CTTCTCTAGG	60
	TCAATATCGT					120
	TAGTTAATAA					180
	TCTAATTCAA					240
CTCCTATGAT	TTTTTGAATT	TATTTTTTAA	GGCTAGGACA	TGGTTTAAAA	ATTCATAGAA	300
AATGCTATCT	TTTGTGAAGA	CAAGTAGACT	AATATAAGAG	ATAGCTGATA	ACAAGACAAT	360
CAAACCAGTA	TTAATCAAAA	ATGGCAAATT	AATGACCATA	TCCACAGGAT	ACACGAAATT	420
AATCAGGAAA	TACATTGCTA	CAAAGGAAAG	TGAAAAGAGA	GAGTATCGAA	CAGTATAGCT	480
AAAGATATGT	CCCAAGTGGA	TGAGTTGTTT	CTATGGATGA	AATGAT		526

(2) INFORMATION FOR SEQ ID NO:184:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 433 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

ACCATATCAA TACTATCGAA AAGTACAAGG GATNCAGTCT CAAGGTCGCT GAGGAAGATT 60 TGAATGACCT AGACGATGGT GAATTTTACT ATCACGAGAT TATCGGTTTG GAAGTCTATG 120 AGGGTGATAG CTTGGTTGGA ACCATCAAGG AAAATCCTGC AACCAGGTGC TAATGATGTC 180 TGGGTGGTCA AACGAAAAGG CAAACGTGAT TTGCTTTTAC CTTATATCCC ACCAGTGGTT 240 CTCAATGTTG ATATTCCAAA TAAACGGGTC GATGTGGAAA TCTTAGAAGG GTTAGACGAT 300 GAAGATTGAT ATTTTAACCC TCTTTCCAGA GATGTTTTCT CCACTGGAGC ACTCAATCGT 360 TGGAAAGGCT CGAGAAAAAG GGCTCTTTGG ATATCCCAGT TNTCATAATT TTTCGAANAA 420 AATGCTGAAA AGG							
AGGGTGATAG CTTGGTTGGA ACCATCAAGG AAAATCCTGC AACCAGGTGC TAATGATGTC 180 TGGGTGGTCA AACGAAAAGG CAAACGTGAT TTGCTTTTAC CTTATATCCC ACCAGTGGTT 240 CTCAATGTTG ATATTCCAAA TAAACGGGTC GATGTGGAAA TCTTAGAAGG GTTAGACGAT 300 GAAGATTGAT ATTTTAACCC TCTTTCCAGA GATGTTTTCT CCACTGGAGC ACTCAATCGT 360 TGGAAAGGCT CGAGAAAAAG GGCTCTTTGG ATATCCCAGT TNTCATAATT TTTCGAANAA 420	ACCATATCA	A TACTATCGAA	AAGTACAAGG	GATNCAGTCT	CAAGGTCGCT	GAGGAAGATT	60
TGGGTGGTCA AACGAAAAGG CAAACGTGAT TTGCTTTTAC CTTATATCCC ACCAGTGGTT 240 CTCAATGTTG ATATTCCAAA TAAACGGGTC GATGTGGAAA TCTTAGAAGG GTTAGACGAT 300 GAAGATTGAT ATTTTAACCC TCTTTCCAGA GATGTTTTCT CCACTGGAGC ACTCAATCGT 360 TGGAAAGGCT CGAGAAAAAG GGCTCTTTGG ATATCCCAGT TNTCATAATT TTTCGAANAA 420	TGAATGACO	T AGACGATGGT	GAATTTTACT	ATCACGAGAT	TATCGGTTTG	GAAGTCTATG	120
CTCAATGTTG ATATTCCAAA TAAACGGGTC GATGTGGAAA TCTTAGAAGG GTTAGACGAT 300 GAAGATTGAT ATTTTAACCC TCTTTCCAGA GATGTTTTCT CCACTGGAGC ACTCAATCGT 360 TGGAAAGGCT CGAGAAAAAG GGCTCTTTGG ATATCCCAGT TNTCATAATT TTTCGAANAA 420	AGGGTGATA	G CTTGGTTGGA	ACCATCAAGG	AAAATCCTGC	AACCAGGTGC	TAATGATGTC	180
GAAGATTGAT ATTTTAACCC TCTTTCCAGA GATGTTTTCT CCACTGGAGC ACTCAATCGT TGGAAAGGCT CGAGAAAAAG GGCTCTTTGG ATATCCCAGT TNTCATAATT TTTCGAANAA 420	TGGGTGGT	A AACGAAAAGG	CAAACGTGAT	TIGCTITTAC	CTTATATCCC	ACCAGTGGTT	240
TGGAAAGGCT CGAGAAAAAG GGCTCTTTGG ATATCCCAGT TNTCATAATT TTTCGAANAA 420	CTCAATGT	G ATATTCCAAA	TAAACGGGTC	GATGTGGAAA	TCTTAGAAGG	GTTAGACGAT	300
422	GAAGATTG	T ATTTTAACCC	TCTTTCCAGA	GATGTTTTCT	CCACTGGAGC	ACTCAATCGT	360
AATGCTGAAA AGG 433	TGGAAAGG	T CGAGAAAAAG	GGCTCTTTGG	ATATCCCAGT	TNTCATAATT	TTTCGAANAA	420
	AATGCTGA	AA AGG					433

(2) INFORMATION FOR SEQ ID NO:185:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 540 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

CTGCAACTTG AATTTCT	CCT TCTTGTTTCA	AAGCAAGATA	AACAATTCGA	GCCCCTCTTT	60
TTTCTAGCAA ATCCCCC	ATC TGGACAGATT	GCATAAAGGA	ACGAGAAGAA	ACCTGATCAG	120
AATAAGTCTG AAACTCT	TCT TTCGTGAGTG	TTGTTAGTGC	CATATACTTA	CTTTCTATGT	180
TTTTTTCTTA ATGTTTT	ACG GAAATCAAGA	GCAAGTCTTA	ACAGAGGATA	GAGAGGATGA	240
GTGGGCATTG TAAATTC	ACC CAAGTATTCT	TCAATCGTTG	GATTAAATTT	TTCCTTAAAA	300
TGATAAAGTC CACCATT	GAG AGAGTTTTCA	ACACCACCTA	AATTTTGCCA	GACCATACCT	360
CGCTCAAAGG CATAGCG	AGC CGTTTCATAC	CATGTTAAAA	TTGGTGCATT	GTAACGTTTA	420
AAATCATCAT CCATACC	AGC ATATATATTG	ACAGAGGTAG	TACCAAATTC	CAAACTCAAA	480
GTACCGCTAA AGGAATC					540

(2) INFORMATION FOR SEQ ID NO:186:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 321 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

NO OFFICE	
WO 97/37026	PCT/TISO7/04304

CTCAGGCTAA	AAGAGTCCAC	TGGACTCTTT	TACTCCGTCC	CATAACCAAT	GACTTAATGG	60
CGCGTTCAGC	TAGATTATTG	GAAAGGACCA	GATGTCCGTC	TTTCAAAATA	GTCTTAAAGG	120
TTTCTTCATA	CTTGAGGCTG	TATTCAATTG	CCCTTCCTAG	TTTTGAACCC	GATAAAACTG	180
ACTGACGCCG	GCACCAAGCA	AAGAAATCTT	CCATTAGGGG	TTGGAGCTCT	TCTTGACGTT	240
TCTGTAGTCG	TTCATCAGCT	GACAATGTCT	CCCAGTCTCT	TTCCAAGGCA	AATAACTGAT	300
	TAATCCTTTA				· · · · · · · · · · · · · · · · · · ·	300

(2) INFORMATION FOR SEQ ID NO:187:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 415 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

CTTGACCAAA	CAAGGCAGTT	GGAAATTGAT	TTTGGAGGAT	GAGAGCGCTG	CARCCCARCE	
СФФСССАВФС	TITICS CONC. S.C.	CTC212 T2 T2 T2	***********	ONONOCGC1G	GAAGGGAACT	60
	TTGACTCAAG					120
CGATGAAATC	TTTAAACTAT	AATCAGGAGT	GGAAGTATGA	GAAATATGTG	GGTTGTAATC	180
AAGGAAACCT	ATCTTCNACA	TGTCGAGTCA	TGGAGTTTCT	TCTTTATGGT	GATTTCCCCC	240
TTCCTCTTTT	TAGGAATCTC	ጥርጥ አርር አ አጥጥ	CCCCAMORGO	11000000		240
						300
AATAATAAAG						360
AATGGTGTTA	ACTTCGACTA	TAAAGATGAA	GCAAGTGCCA	CCAGAAGCAA	ጥጥል ል ል	415
					* * * * * * * * * * * * * * * * * * * *	#T7

(2) INFORMATION FOR SEQ ID NO:188:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 246 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

CTATNAAATA GAGTGGTTCT CTATCTGCCA TG	GACCACAAA TNAGGACAAT GATACTTCTG 60
AACGTTCAGA CTGCTATCGT AAAAGGACAG CG	GGTGAGAC GCCCATGAAT GATCTAACCA 120
GTCATACCCA CGGAGGAAAT TATACAATAG CA	CGTTATCA GGAGGAAAAA TTTTGGAACA 180
AACAGTTGTA AAATATAGTC TGCAGTTATC AA	TGCTTAAT TTTTTACAGG CGAAGATAAT 240

(2) INFORMATION FOR SEQ ID NO:189:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 519 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

CTTGTCATCC	TCACGAAAAT	TGCGATTGTA	AAGCACCAAG	CCTTGACTCG	TGATAGACTG	60
AATCATGCTT	CTCTCATGTA	CTCCTCAAGT	CGTTTCATGG	CTTCTTTGAT	AGTCTCCATG	120
CTGGCTGCAT	AAGATAGGCG	GACGTAGCCT	TCCCCGTAAC	GTCCAAAGGC	TGCACCAGGG	180
ATAAAGGCAA	CGGCCTTCTT	CTGAGCAAAA	TCCTTCAGAA	AAGCAAAGGA	GTCTTGATTG	240
TAGCCCGCTG	GAATTTTAGC	AAAAATATAG	AAGGCACCGT	CTGGTTTGAT	AATCTCAAAA	300
CCAAGAGCAG	TCATTTTTTC	GATGATATAG	TCCCGACGTT	GGATATATTC	CTTCTTCATG	360
GGCTCCGCAT	CGTTTTTACC	AGCCGTCAAG	GCTTCTACCG	CAGCATGTTG	CGCCATGGTA	420
TTTGCGGCAG	TGACCAAGTT	ACTGGTGACT	CTTGATTAAC	TGGGCTGTGA	AGGTCNCANG	480
AGCAAAAATC	AGCCCCAAAC	GCCAACCTGT	CATGGCATG			519

(2) INFORMATION FOR SEQ ID NO:190:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 468 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

CTTCAGCTAT	TCGTGGGATA	TTAGATGTAC	TTATTTAGGG	GTTGAAATCA	TATGAATATT	60
ACCAATTTGT	TTTCTATCAA	GACAGGATGT	${\tt GATGAAACTG}$	ATAGGCAACT	GCAAAAACTA	120
TTTTTTCAGT	TGGATTTACA	ATTGGGAGAA	TTGACAGATC	AACTAAGAAA	ATTAGATTCT	180
AATTTTGTTC	CTCGTAGTCA	ATTTGTAGAC	ACGTTGGATT	TGAATGATGT	AGAATATAAA	240
GAAATTTTAA	ACTATTTTAT	CTTCCATCGT	AATG ATAGTG	AAGAAAGTTT	GGTAGAATGG	300
TTATATGATT	GGATTTCCAC	AAATCGTTAT	GAACTTCCCT	AAAGAGTTTT	CCGATTCCGT	360
	AAATACCCAT					420
	TAGTGACTGT					468

(2) INFORMATION FOR SEQ ID NO:191:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 545 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

CTTGAATAGT	CTCATCACGA	AAATTGCCAT	AACTGATAAA	ACCAACCACC	TTCACGCCAT	60
CCATCGCAAT	CAATGTATTT	TCTGGATACT	TTTGACTAAA	GAATCGACAT	CTTTCTAATG	120
TCATTGTATC	CTGAAATTCC	GCAGGCAAAA	GGTCATCATA	AGACTCTCTC	CACGTTTGCC	180
AGTGAACGAG	GGATTTGCCT	TCTATCTCTT	CAGGAGTTNC	CATAGATTTG	ATAATAACCG	240
TCATTTATTT	TCTCCCAGTC	TNCTCTCAAA	ATACCATATT	TAATACTATC	AAAATATTTA	300
CCTTGATAAT	AACGAACTTT	NGGAATATGA	GCTNCTTTTT	TCATNCTTAA	TTTTTCAGCA	360
AGTTTCATCA	TACCAAGATT	TCCTGACCAA	GTTGTCAAAA	CCAGATGCTC	CAACTCCAAG	420
TAATCCTGAA	ACGTCCTATC	TATCCACTGC	AACATAGCAA	CTTTCCCAAT	ACCAGTGTTC	480
CAGAATTTTT	TATCATAAAT	ACCAATTCCC	AATCCATCCA	TCTTGTTTCC	TTTACATACC	540
CAATA						545

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 517 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

CTTGATTGTG	GAAGAAGTCC	GTGATCGCTA	TOTGGGCAAA	GTCGATGCCG	TTTTTCATAA	60
${\tt CGGCGATTCT}$	GAACTACGTC	CGGATTCTCC	ACTTTGGGAG	GGCATCCGCG	TTGTTAAAGG	120
GAACATGGAC	TTCTACGCCG	GCTACCCAGA	ACGTCTGGTG	ACTGAGCTTG	GTTCGACCAA	180
GATTATCCAA	ACTCATGGTC	ACTTGTTTGA	CATCAATTTC	AACTTTCAAA	AGTTGGACTA	240
CTGGGCTCAG	GAGGAAGAGG	CCGCTATCTG	CCTCTATGGT	CACTTGCATG	TGCCAAGTGC	300
TTGGTTGGAA	GGCAAGATCC	TCTTTCTAAA	TCCAGGCTCT	ATCAGTCAAC	CACGAGGTAC	360
CATCAGAGAA	TGTCTCTATG	CTCGTGTGGA.	GATTGATGAT	AGTTACTTCA	AAGTGGACTT	420
TTTGACACGA	GATCACGAAG	TGTATCCAGG	TTGTCCAAGG	AGTTTAGCCG	ATGATGCCAA	480

517

(2) INFORMATION FOR SEQ ID NO:193:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 458 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

CGTAACCATT	AACTATGAGG	TGGTTTGCCT	CCTCAGCGAC	CGTATTCCGA	GAGAATATTA	60
TTAGAAAAGA	AAGGAGTGGA	GCATGAATCT	ACATCAACCC	TTGCATGTCT	TGCCTGGTGT	120
GGGACCAAAG	TCAGCAGAAA	AATACGCCAA	ACTAGGAATT	GAAAACTTGC	AAGATCTCTT	180
GCTCTACTTT	CCTTTCCGTT	ATGAAGACTT	CAAAACCAAG	CAGGTGCTGG	AACTAGAAGA	240
CGGTGAGAAG	GCAGTTCTTT	CTGGTCAGGT	AGTGACTCCT	GCTAGTGTCC	AGTATTATGG	300
TTTCCAAGCC	GCCAATCCGC	CTGCGTTTTT	AGTCCTCCAA	GCCAGGGAAG	AAGGTTCGTT	360
TTTTTTTGGC	GGGTGAAATT	TCCTTTTTAA	CCCAGCCCCC	TATCCTTGGG	CTTGAATAAA	420
AAATTAGAAA	TTTTGGGGAA	CCAACCCCTT	TGGCTTGT			458

(2) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 566 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

CCTTACTAGT	TTACTCAATC	TTTACATCGT	TCTTTCGGCA	GTTCAAACTC	AGAATCCACA	60
GCACAGGTTA	TGCAATTACT	GTCTGAAAAT	ATGTTAAAAA	CCATTCAGTC	ACTTTCGGTC	120
TGGCAGATTT	ATTTGCTTGG	TTTTGAGCGA	ATCTTGGCGC	TTGGTTTCCA	ATTACTTTTG	180
ACAGTTTGGG	TTTACCAAGC	TGTTCGCCAG	AAGAAATGGA	TTTATCTCCT	AGCAGCCTAT	240
GGCTTGCATG	CCTTCTTTGA	TCTGGCACCA	TOTOTTTTCC	AAGTAGGCTG	GTTGACAAAT	300
CCAGTCTTGG	TTGLAGTGAT	TCTAGCACTG	CAGCTCGTTC	TGGTCGCCTA	TGGAACCAAG	360
GAAATCTTTT	GTAAAAAATC	ATAAAAAGGG	GGGAACCTCT	TTTTCTTATG	CAAAATCCAA	420
	TTTATGGTCG					480
AAAAGGAAGA	ATGACATGTC	TGTAAGAGAA	AAAATGCTTG	AAATCTTAGA	AGGAATTGAT	540

(2) INFORMATION FOR SEQ ID NO:195:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 523 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

CTTTGACAAA	GAGTATGACA	CCTGACCGTG	AAGTCATTAC	CTTTATTCCT	GAAAAATTTA	60
TTGTGGATGG	TTTCCAAGGG	ATTCGTGACC	CACGTGGCAT	GATGGGGGTT	CGCCTTGAAA	120
TGCGTGGTTT	GCTTTATACA	GGACCTCGTA	CTATCTTGCA	CAATTTGCGT	AAGACGGTTG	180
AGCGTGCAGG	TGTTCAGGTT	GAAAATGTTA	TCATTTCACC	ACTAGCAATG	GTTCAGTCTG	240
TTTTGAACGA	AGGGGAACGT	GAATTTGGTG	CTACAGTGAT	TGATATGGGG	GCAGGTCAAA	300
CGACTGTCGC	TACAATCCGT	AATCAAGAAC	TCCAGTTCAC	ACATATTCTC	CAAGAAGTGG	360
AGATTATGTA	ACTAAAGATA	TCTCCAAGGT	TTTGAAAACC	TCTCGCAAAT	TAGCGGAAGG	420
CTTGAAACTG	AATTACGGGG	AACCTATCCG	CCTCTTGCAA	GCAAAAAACT	CCATTAAAGT	480
TATTGGAGAA	TTAAACCAGT	CAAAGTGACG	GAACCTACTT	GTC		523

(2) INFORMATION FOR SEQ ID NO:196:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 538 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

CTGTGATTTC	AGAGAAGAAA	TCAAGTGCTG	TAACAGAAGT	AAGATGTAAT	TGTATGTAAA	60
GGAGACGTCA	TGTTAAATAG	TATTGTAACC	ATTATTTGTA	TTGCCCTTAT	CGCGTTTATC	120
TTGTTTTGGT	TTTTCAAAAA	GCCTGAAAAA	TCTGGACAAA	AAGCCCAGCA	AAAAAACGGA	180
TACCAAGAGA	TTCGAGTGGA	AGTCATGGGA	GGCTATACTC	CTGAGTTGAT	TGTCCTCAAG	240
AAATCAGTGC	CAGCCCGCAT	TGTCTTTGAC	CGCAAGGATC	CTTCACCATG	TCTGGATCAA	300
ATTGTTTTTC	CAGATTTTGG	TGTACATGCG	AACCIGCCAA	TGGGGGAAGA	GTATGTAGTG	360
GAAATCACGC	CTGAACAGGC	TGGAGAGTTT	GGCTTTGCTT	GTGGTATGAA	CATGATGCAC	420
GGCAAGATGA	TTGTAGAGTA	GGTGGAGACT	ATGACAGAAA	TTGTGAAAGC	AAGCTTAGAA	480

AATGGCATTC AAAAAATCCG TATCCGAGCT GAAAAAGGCT ATCATCCACC CATATCCA

(2) INFORMATION FOR SEQ ID NO:197:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 515 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

CCTCAAGAAG TCCGC	GATAC TTACGAAAAT	ATTTTGTAGA	GAATCGAACC	GCAAGGTTCG	60
GTTTTCTTTC TCTTT	TTGTC TATAATTTGG	TATAATAAAC	AGTATGAAAA	TCGTATCAGG	120
AATCTATGGG GGACG	TCCCC TCAAGACACT	AGAAGGCAAG	ACAACAAGAC	CTACTTCGGA	180
TAAGGTTAGG GGAGC	CATTT TTAACATGAT	TGGTCCCTAC	TTTGAAGTGG	GACNAGTCTT	240
GGACCTTTAT GCAGG	TAGTG GTGGTTTATC	TATCGAAGCA	GTATCGCGTG	GCATGTCCAG	300
TGCTGTTTTG GTGGA	GCGAG ACCGTAAGGC	TCAGACCATC	GTGGCTGAAA	ATATCCAGAT	360
GACCAAGGAA GTTGG	AAAAT TTCAACTCCT	CCAAAATGGA	TGCAGAAAGG	GCATTGGAAC	420
AGGTTNTCTG GGGAA	TTTGA CCTCGTTTTC	TTAGACCCTC	CCTATGCCAA	GGAACAAATC	480
GTAGCAGATA TTGAA	AAAAT GGCTGAGAGA	GAGCT			515

(2) INFORMATION FOR SEQ ID NO:198:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 342 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

CTGGANACAA ACTTTACAGA TCAAGTCGA	AT ACGATGATTT ATGTTGATAA AGAAGAAAAA	60
GAAACTATTA AAGCTGCACT TGTGGAGTT	TT TTTAATGGAA AAGTCACTTT AACTGACCAA	120
GGTTTACGAG AGGTTGAAGT TCCTGTAAA	AC TTAGTGTAAA CAATGAATAA TACAGCGTTT	180
CGTTGACATT CTCACAACTA CTTTAGCGA	AG CAAAATAAAA AGATGCGTAC CAAAATATAC	240
TAGAAAATGA AGCAATTCAA ACGAAACCT	TG ATATCGTTTT CCTTCACACC TATTTACTAG	300
AATTAACTGA ACGCAATCAC TTGAAAATT		342

(2) INFORMATION FOR SEQ ID NO:199:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 418 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

CTATTAGCGA	CTTTCTCTGA	AATATGGTAT	GATAAAGGAT	ATACAAGGAG	ATAAAATGAA	60
TAATAATTTA	CTGGTATTAC	AATCCAGACT	TTGGTCTGGT	TGATGGTGCG	GTATCGGCTA	120
TGATTGGAGT	GGCTTTAGAA	GAGTCTCCAA	CCTTAAAAAT	CCATCACTTG	ACGCACGATA	180
TCACGCCTTA	TAATATTTTT	GAGGGGAGCT	ATCGTCTCTT	TCAGACGGTG	GATTACTGGC	240
CTGAGGGAAC	GACGTTTGTA	TCGGTTGTCG	ATCCAGGTGT	CGGTTCGAAA	CGTAAGAGTG	300
TAGTTGCCAA	GACTGCTCAA	AAATCAATAC	ATTGTCACGC	CAGATAATGG	GACGCTTTCC	360
TTTATCAAGA	AACACGTTGG	CNTTGTANCC	ATTCGTGAGA	TTTCTGAGGT	GGCCAACT	418

- (2) INFORMATION FOR SEQ ID NO:200:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 463 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

CTCTCGCTTT	TCTCATAGTG	GGAGGTAAGG	ATGGAATTAC	GCAGACCAAG	ATTAGCGGAT	60
AAGAAAGCTG	TTTTAGATAT	GATGACAGAG	TTTGAAAAGA	GCCAATCAGC	CCATGATGGA	120
GGATTTTGGG	ATACAGAGAA	TTTTGTGTAT	GAAGAGTGGT	TGGAAAGCAA	TCAGGAACAG	180
GAAATGGGGA	TTAATCTGCC	TGAAGGATGG	GTTCCTGCAA	TTCAGTTAGT	GGCTTTTTCT	240
GAGAAAGGTC	AAGCAGTTGG	ATTTCTTAAT	CTCCGGTTGC	GCCTCAGTAA	CTTTCTACTA	300
GAAGAAGGTG	GGCACATTGG	CTACTCCATC	CGTCCATCTG	AAAGAGGCAA	GGGTTATGCA	360
AAAGAACTCT	CCGTCAGGGC	TTGCAAGTTG	CTAAGGAAAA	GAACATCAAG	AAAGCTCTGG	420
TGACCTGTAG	CGTGAATAAT	CCTGCTAGCA	GAGCATCATT	CTA		463

- (2) INFORMATION FOR SEQ ID NO:201:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 475 base pairs

NO 97/37026	PCT/US97/05306

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

CTCTTACGTG	ACCAGAACAT	GCTACTTCCC	ATCCGAGAAG	CCATTCTATC	TGGCTTACCA	60
GTGTTTGGGA	CCTGTGCGGG	CTTAATTTTG	${\tt CTGGCTAAGG}$	AAATCACTTC	TCACAAAGAG	120
AGTTATCTAG	GAACTATGGA	TATGGTGGTC	GAGCGTAATG	${\tt CTTATGGGCG}$	CCAATTANGA	180
AGTTCTNCAC	GGAAGCNNAA	TGTAAGGGAG	TTGGCNAGAT	TCCNATGACC	TTTATCCGTG	240
GTCCGATTAT	CAGTACTGTT	GGTGAGGGTG	TANAAATTCT	AGCAACAGTG	AACNATCAAT	300
TTGTTGCNNC	CCAAGANNAA	AATATGTTGG	TAAGTCCTTT	TCATCCAGAA	TTGACTGATN	360
ATNTGCGCTT	GCNCCAGTAC	TTTATCAGTA	TGTGTAAAGA	AAAAAGTNGA	GATTGAATTT	420
CTCCAACTTT	NCCACNTGTA	ATNNNCAATN	NCNATGTATT	GGAGTACGGA	CGCAG	475

(2) INFORMATION FOR SEQ ID NO: 202:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 451 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

CCTTCAAAAA	TTATTTGATG	CAACCTTAGA	CAATCCAGAA	CTCACCGCAA	CATTAGTGCC	60
TTTAGGAGAT	GGTATTCTCA	TGCTTCGTAA	AAATGTAGCA	GATGTTCAAC	TGTCTGAAAG	120
CGAATGATTT	TCAGAAAAAT	TTAAGAAAAA	ATAGTAAAAT	AGATAGAGTA	ACACTTATCT	190
CAAAGGAGTA	GACATGAAGA	AAAAATTATT	GGCAGGTGCC	ATCACACTAT	TATCAGTAGC	240
AACTTTAGCA	GCTTGTTCGA	AAGGGTCAGA	AGGAGCAGAC	CTTATCAGCA	TGAAAGGGGA	300
TGTCATCACA	GAACATCAAT	TTTATGAGCA	AGTGAAAAAC	AACCCTTCAG	CCCAGCNAGT	360
CTTGTTAAAT	ATGACCATCC	AAAAAGTTTT	TGAAAAAACA	ATATGGCTCA	GAGCTTGATG	420
ATAAAGAGGT	TGATGATACT	ATTGCCGAAG	A			451

- (2) INFORMATION FOR SEQ ID NO:203:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

			CATCAGGGCA			60
			AACTGGGGAA			120
			AAGACTATCT			180
ATCACTATTT						240
			ATCCTTTTCA			300
			ATATAGAAAC			360
ACTTAAGTGT				ACAAAAGTCT	TCTGTCAGCA	420
TGTAGGCCGT	CTCACACGGA	AACAGCTTCA	GTT			453

- (2) INFORMATION FOR SEQ ID NO:204:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

CCGTAGTACA	GGCACAAAAA	GATTTGGAAA	ATAGAAAAAG	AAAAGCCAAG	AAAAAGGCTC	60
AGAAAACGAA	ATAAATAAGG	AGGAATCTGG	TAATGGTAGT	ATTTACAGGT	TCAACTGTTG	120
AAGAAGCAAT	CCAGAAAGGA	TTGAAAGAAT	TAGATATTCC	AAGAATGAAG	GCTCATATCA	180
AAGTCATTTC	TAGGGAGAAA	AAAGGCTTTC	TTGGTCTATT	TGGTAAAAA	CCAGCCCAAG	240
TGGATATTGA	AGCGATTAGT	GAAACGACTG	TTGTCAAAGC	AAATCAACAG	GTAGTAAAAG	300
	AAAAATCAAT					360
	GTCATGTGGT					420
TCTGATGAAG	TC					432

- (2) INFORMATION FOR SEQ ID NO:205:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 428 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

AAAATCAAGA A	AATTCTTTGA	AGGAACGACA	GATACAGCTG	AGAACTATAT	CAAGTCGGCC	60
CTTAAAATGT 1	IGGTCAAATA	GGAGCAGAGA	ATGACAAAAC	GTTGTTCGTG	GGTCAAGATG	120
ACCAACCCGC 7	ICTACATCGC	CTATCATGAT	GAGGAGTGGG	GTCAGCCCCT	CCATGATGAC	180
CAAGCATTGT 7	PTGAGTTGTT	GTGTATGGAA	ACCTATCAGG	CAGGCCTGTC	TTGGGAAACG	240
GTACTCAACA	AACGCCAAGC	TTTCCGAGAA	GCCTTTCCAT	AGCTATCAAA	TTCACTCCAG	300
TCGCAGAGAT (GACTGACACT	GAATTGGAAG	CCATGCCTGG	AGAATCCCAG	CTATCATTCC	360
GAAATAGAGC (CCAAGATTTT	TGCTACACGC	CGCCTAACGC	CCCAACCCTT	TCCTACAGTT	420
ACAGGCAG						428

(2) INFORMATION FOR SEQ ID NO: 206:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 518 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

CTATTAGATG	GTATTGACTG	${\tt CCCAGACACT}$	TACGGATCTA	GCTGAGACAG	GGAATTGTCC	60
ATAACCTTCC	TCATCAATTG	TAACTTGACC	TTGGTGGTTA	CCAAGTAAAT	CTACAAAGGT	120
TTGATTAGTC	CATTCTTGAC	CGACAAACAT	TGACTTGCTG	TTTTCTTGGT	CATTTGAAAT	180
CAAGACTGCG	ATTGGGGATT	GATTTTCAGC	ACCTGAACGT	ACCCAACCGA	TACAGTTAGC	240
ATGGTCAAAG	TAGTCATTTT	GTTCTCCATA	GGCCAAATCT	TTTCGGATGG	CTAGGAGGCG	300
GTCAAGGATT	TCTTTGAAAT	CTTGTTGAGC	ATACTGGCCT	GAAATCCCAT	AGTAGTCTCC	360
GTAAAAGACA	CATGGAAGGC	CGTCTTGGCG	TAACAAAATG	AGGGCATAGG	CTGCTGGCTT	420
GAACCATTCT	TCAACGGTAG	ACTCAAGGGC	TTGTCCTCGT	TGGGTATCGT	GGTTGTCGAC	480
AAAATCACAG	ACTTGTCAGG	CTTGAGTTCA	ACCAGGCT			518

. (2) INFORMATION FOR SEQ ID NO:207:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 508 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

CTCTGTCCTT	TTACCTGAGA	GTTTGAGCAG	TTGCCTGCCT	TGCCCCTTCG	GTGCCTTTAC	60
	GAGTTCCGTC					120
TTAAACTTCA	TTCGGTGTTG	GTATTTAATT	GATTCTAATT	TTACAAAAA	TGTTGGCTTT	180
TGTCAATGTG	TTTATTAGTA	AAAATTAGTT	CAACAGTTTT	TACTTTATAA	AGTCCAGAAT	240
ACTGCTATCC	TTTAAAAGTG	ACAATAGTCG	CACCACTGCC	TCCAGCATTT	TGTGGGGCAT	300
AGCCGAAACT	CTTGACATGT	TTGTTTCTTT	GCAAGTATTT	GGTAACTCCT	TCACGGATGA	360
CTCCTGTTCC	GATACCATGG	ATGATATCAA	CTTGAGCCAT	ATTGTTAAGC	AAGGCTTGGT	420
CGAATGAAGG	TATCTAGCTC	ATTCATGGCT	TCTTCATAGC	GCTTGCCTCG	AAGATTCAGT	480
CTAGCTTGAG	TCCTCGCCCA	GAAGTTCG				508

(2) INFORMATION FOR SEQ ID NO:208:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 378 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

CTCTTGGGCT	CTCTTCTCAG	CAACTTCCCT	GCTTTCACCT	TTGGTCTTGA	TAGGTGANAA	60
	CCAATCNING					120
	GCATGGGAAA					180
	CCTTGGTTGC					240
	AAGGACCGAT					300
	CTTCATTCTT					360
CTGTCATTAT						378

- (2) INFORMATION FOR SEQ ID NO: 209:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 741 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION. SEQ ID NO:209:

CTGGCCAGCC	AGATAAACCT	CGATACGGCT	TTCTGCTCGT	TTGATGCGTT	GCAAGAGTCC	60
GCCCATACGG	ACGTCAACTG	TATCCAAACC	AAAGACCTTG	TTTTATTTCA	GCCAGTGGTG	120
ACTAAAGAGG	GCATGGAAGT	CTTCAATTTG	GCTTCTAAGT	TCTGGTAATT	CTTGTCTGGC	180
GATTTGTTGT	AAACTTTCTT	TATCATCCGC	TTGGTAGGCA	TGACGAATGC	GTCGTCCCAC	240
ATCTACTTTG	CTACTTAAAA	TAGCATTCAA	CTGGGCCTGA	GTTTCAAAGA	GATAAGCATA	300
GTTTCCAGCT	TTTTCTTTAA	TGTCAGCAAT	AGTTCCCGCC	GCCTGAGCGA	AGTGTGGCTT	360
GTCCTGTTCA	GGTGTCATGT	GTCGGTCAAG	TATCGGACAG	AGAACATCCT	GATAAAAGAC	420
ATAGCGGTTG	GGATTGATGC	CACTGAGATT	ACCTGGTAGG	TCTGGTAAGA	GGTTGGCAAG	480
ATCAATCTGC	ATAAAATCCT	CAACCGTTAG	ACCAGTATTG	GTCTTGAAAT	GCGCAGACAA	540
ACTATCTAGG	TCATTGCGAT	AGATCAAGTT	ATCGATACCG	TCGACCTCGA	GGGGGCCGT	600
ACCCAGATTT	GCAAGCTTGG	TAGGATAAAG	AACTGGGCAG	TTTCACCACC	ATTGTCTCCC	660
CAACCCGTTA	CGATGACTTC	TTTAATCTGA	TTGGCACGGC	AGGCTTTATT	AGCCTCGATA	720
GCCACTAGAC	GGCTAAAATG	G				741

(2) INFORMATION FOR SEQ ID NO:210:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1349 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

AAACTCGATT	TGAGAGAAAG	TCCAATAAGT	CTTTCCATAA	TAAAACGCAT	AGTAGCAAGA	60
GTTTCTACAC	CCACTATTAT	GCGTTTTTAT	CATTTTGAAA	TCTACTGCTA	ATCAATGAAG	120
AAGCAAAGAT	CAAACTAGGC	AGCTAGTTAC	AAGTTACGTA	AGCGCGTCAT	AACAAGGTAT	180
CTATCCTAAT	TCCCCAACTT	CCAGTATACT	AGATAAAAA	TAATTATCGG	AGGAAAGGTA	240
TTGTACTATG	ATAATTCAAC	TAAGTGATTT	AGGTCAAGTT	CACCTTGTTT	GTGGCAAGAC	300
AGATATGAGG	CAGGGAATAG	ACTCATTAGC	CTATGTAGTT	AAAACCCACT	TIGAATTGGA	360
TCCTTTCTCC	GGTCAAGCCT	TTCTCTTTTG	TGGTGGACGT	AAAGACCGCT	TTAAAGCCCT	420
TTACTGGGAT	GGTCAAGGAT	TTTGGCTACT	ATATAAACGC	TTTGAGAACG	GAAAACTGAC	480
TTGACCAAGT	ACAGAAAAGG	ATGTCAAAGC	TCTCACACCA	GAACAAGTAG	ACTGGCTTAT	540
GAAGGGCTTT	TCTATCACTC	CCCAAATATA	GTGGATTTAA	ACTAGAATAG	TACACCCCTA	600
CTTCTAAAAC	ATTGTTAGAA	ATCGATTTGA	CTGTCCTGAT	CAATTTGTCC	TGTTCTTATT	660
TCATTTTACT	ATAGAATCCA	TCTGAAAGCC	GTTTATGATT	TCTATTGAAA	TGAAGACCGT	720
CCATTTTAGT	AGACTAAAGG	ATTACTCAAA	ACTTCGAGAA	GGAAGACAGA	TGAACTTGTT	780
TCTTATAAAA	ATGTTGTCTG	AAACTATTCG	СТТТТТТССА	GAAATTTTAG	AGGAAGAAAA	840
CTTTATGAGG	AAAAAGGAGT	TACTCAAATA	ACAATTCAGG	ATTAAAAATA	GACAGTTGAG	900
GAGCGGAAGG		GTTTGCTACT	GTATAATGGA	TTTAAATCAC	TCAGCAGACA	960
GAACGAATAC	TCTTCGAAAA	TCTCTTCAAA	CCACGTCAGC	TTCGCCTTGC	CGTAGATCCA	1020

TAGGGGACTG	GACTTCATCA	GTTCTATCAA	CAACCTCAAA	ACAGTGTTTC	GAGCTGACTT	1080
CGATCAATTT	TATCTGCACC	TCAAAGCTGT	ACTITICACCA	ACCOMONOGON	CTAGCTTCCT	
				AGCC TGACGA	CTAGCTTCCT	1140
ATTTGATTTT	CATTGAATAT	CAGAAACTCA	TTCTCCATCA	AATAATTCCA	CTGCGTCTAA	1000
The amount of the	momeon				CIGCGICIAA	1200
TAATTTTTGG	TCTGGCACGG	TGTCAGAAAT	AAAGGTTGTG	TATTTGGAGA	GGGGATTAAT	1260
יית ממממיייי	CCXCMCmmcm	1111mm=-01			00001117771	1200
TIMMONNI	CCAGICTIGT	AAAATTTAGA	ACTATCAATC	AGTAAGATGG	TTTCATGGGC	1320
	ATATTCTTTT			_		1320
	MINITELLIT	LIGAMATAG				1349

(2) INFORMATION FOR SEQ ID NO:211:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1359 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:

CTTTTTTATA AGCA	ATTCAA 1	TTTATACTC	ATCTGCTTTC	AAAAAGCATT	CTAGTCCATC	60
TCCGATTAAC GATG	GACTTT A	ATCACCTCCT	TCTCCAATCC	TTGTATGACA	TCTTGAAGTT	120
GATTCATGAC ATCT	TCCAAA A	ATTCGAAAGG	CTTTATTCTT	' AAATCCACGT	TTACGAATCT	180
CTTTCCACAC TTGT	TCAATG C	GGTTCATCT	CTGGTGTGTA	TGGAGGAATA	AATGCAAAAC	240
CAATATTAGT CGGA	ATCTTT A	AGACACTTG	ATTTATGCCA	TATAGCATTG	TCCATAACCA	300
GTAAAAAATA ATCA	TCTGGA 1	AAGCTTGTG	AAAGCTCTTC	TAAAAAGGCG	TTCATCCACT	360
CAGTATTACA TCTA	CCAGCT A	TTAAGAAAA	AATGATTCCG	CCTGTTATGG	GCATCAACAC	420
CTCCATAACA ATAG	T TAAADI	CTCGTATAT	AGTGACTATG	GACATGTGGA	ССТАСТССТА	480
TTGGAGACCA ACAAC	SATCCC A	GTTTACTGA	TTCTACCGAA	ACCAGCCTCA	TCTTCCTACA	540
TCAAGCGAAC CTTAT	MAAAA C	GTCTACTGG	TTTAAATCGC	TTTCTTGTCT	TCTTCAATTC	600
AGATTTTATT TTTAC	SACGCG A	CAATGGTTT	GAGCGTCTGC	TTTCTTAGGA	TETTETECAC	660
GTGGCATAAT ATTTC	CCCAG C	CATGGCGCT	TCAACAGTTG	ATAGAAGGCA	TCACGTGTGT	720
AGGAACGACC TAACT				ATCAATTGTA		780
CTGCCTCTGT AGCCT	TCAAA T	GGCGGGCAA	GAAATACTTT	CTCTTCCTCA	ACTOTONO	840
				CATCTTATTT		
TAAAAGTTCT ATAAT	CTCTT T	ATAAGATTT	GCCCATCAGA	CGAAATATAA	TARACIMCIA	900 960
CTAGAATAGT ACACC	TCTAC T	TCT'AAAACA	TTGTTAGAAA	TCGATTTGAC	TOTCOTCATO	
GATTTGCCCT ATTCT	TGTTT CO	GTTTTACTA	TAGAACGATT		TATGATATTG	1020
AGCTGTACGA GAGTC	TTTTA A	AAGTGTTTT	GATGGCTTGG		TAGTTGATTT	1080
CATATCACTA TTATA	TAATG CT	PTTTTGATC		TATTATCGTA		1140
TAGGTGCTAT GGATA						1200
ACTTAGAGGC CCACA	TCAAG GO	CATGCGAG	ATGCCATTTA	CCNACACCCC	CGGATTACTT	1260
TTGGTTATAC GACTTO	GGGC TO	TATCGATIC	CACTOTOR	CCIVAGALGGG	GTTGACTTGC	1320
			CHOILICAG			1359

⁽²⁾ INFORMATION FOR SEQ ID NO:212:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1082 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

CTAGTATTTC CGTTGTGNTT AGT	TTGTCTG CCTATGGAGT	TATTGCCTAT	GTGCAAGGTC	60
AGNTGGATAT TCTTCTAGTG ATT	CTGGCCA TGATTGGTGG	TTTGCTCAGT	TTCTTCATCT	120
TTAACCATAA GCCTGCTAAG ATC	TTTATGG GTGATGTGGG	AAGTTTGGCT	TTAGGTGGAA	180
TGCTGGCAGC TATCTCTATG GCT	CTCCACC AAGAATGGAC	TCTCTTGATT	ATCGGAATTG	240
TGTATGTTTT TGAAACAACT TCT	GTTATGA TGCAAGTCAG	TTATTTCAAA	CTGACAGGTG	300
GTAAACGTAT TTTCCGTATG ACG	SCCTGTAC ATCACCATTT	TGAGCTTGGG	GGATTGTCTG	360
GTAAAGGAAA TCCTTGGAGC GAG	STGGAAGG TTGACTTCTT	CTTTTGGGGA	GTTGGGCTTC	420
TAGCAAGTCT CCTGACCCTA GCA	ATTTTAT ATTTGATGTA	AGAATGGCAC	CCTGATGTTT	480
TAGGGTGTTT TTGTGTTTAA ATA	CACAATG AAAATCAAAG	AACAAACTAG	AAAGCTAACT	540
TTAGGCTGCT CAAAACATAG TAT	CATTGAAA CTAAAATAGT	ACACCTCTAC	TTCTAAAACA	600
TTGTTAGAAA TCGATTTGAC TGT	CCTGATT ACGATTTATC	CTGTTCTTAT	TTCATTTTAC	660
TATACCATCA ATAAGTGTTG AAA	AGATCGT TGACAGAACT	GACCAAGCCA	GATCATCTTT	720
GTAACCACCT TGAGCTTGTA GCA	TATTTGT TAATTGAGCA	AAGGCGCTAG	AAGAGTTTGC	780
TGGGTCAGCA GTTGCGATTT TTC	CTTTTAG TTCAGGTTTG	AGAAGGTCGC	TATATCCTTC	840
GATGTTCATG CCTTTAGTTA AAT	CAGGGTG GACGATTAAA	ACACTACCAT	CTAGTGTATA	900
AGGAGTAGAG AAGCCAGTTG TGT	TTTGATA TTCTTTGATA	ACATTATCAT	TTTCTTTTGA	960
AATATAGTTT TCAAAGAGTT CTC	CGTGGGT AGCATATTGT	GTTATAAGAA	CCACCAAAGA	1020
TAACATCAGC TACAGGAACT TCT	TTTTCTG ACCTAGTTTT	TTGAAAAGTT	CTCCAGTACC	1080
AG				1082

- (2) INFORMATION FOR SEQ ID NO:213:
- (i) SEQUENCE CHARACTERISTICS.
 - (A) LENGTH: 1303 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

CTGGACTTGA TAGGCATCTT TGTAATCCTC TAAAGCCTCT TTCATCAAGG CACTACCAAT 60

WO 97/37026	•	PCT/US97/05306
		1 C 1/039//03306

TCCTTGACGC	TGATAGATTG	GTAAAACGAT	TAAATCCTG	ACCAATACTG	ATGAGAATCC	120
ATCTCCAACC	AAACGAATCA	AGCCCACCAC	AGCATCACCA	TCAAGTGCCA	CATAAATTAC	180
TAATGAATGA	GATAAGGCCT	GCTCCAGCAT	CTCTGGTTGA	TGGGTATAAT	TAGTCCAACC	240
GACAGCCTGA	TAGACATGTA	AAACATCCTC	TAGCTTGACA	ATTTCTTGCT	TTTTAATAGT	300
AATCATCTCA	ACACCTCTTA	AAGTTCTCTC	AAGCTCTTGT	ACTGCTGTCC	ATTTTTATCA	
AAATTTTCAG	GACGCAACCA	TGTTTCCAAA	CGATCTTTGA	CTTTGGGCCA	GTCCTTATCA	360
ATCATAGACA	ACCAATCCAT	ATCTCTCGTA	CGCCCCTTAT	ADACCACTCC	CTGACGGAAG	420
GTTCCTTCAT	AAATAAAGCC	CAAACGCTCC	GCAGCACGTC	TCCATCCCC 1GC	GTTAAGAGCA	480
TCGCATTTCC	ACTCATAACG	ACGATAGTTA	ACCOCCOCO A	IGGATGGCAG	GTTAAGAGCA AGCCAGTAGA	540
TACTGGGCTT	СТСТСССТАТ	CCCTCTCCCC	AGCICITEAA	AGACATAGCG	AGCCAGTAGA	600
ል ርጥጥርጥልጥጥል	CTCCCTMACM	CCGIGICCCC	CIGAGTTTTG	GAGAAAAAGT	GACAGCTCCC	660
CERCOCHACA	CTCCGTTACT	GGTCAATACG	CATGAGAGAA	AAATTCCCAA	AGCCTTACCA	720
GITGCCTTGT	CTATGTAGTA	AAAACGGTCC	TTACGAGCCA	ACATCTGACT	ACTATAGTAG	780
ATTGAAACTA	GAATAATATA	CCTCTACTTC	TAAAATATTG	TTAGAAATCG	ATTTGACTTC	840
CCTGATCGAT	TCGTCCTATT	CTTATTTCAT	TTTAATATAA	TTGATAGTGG	TCGCCCCAGC	900
CAGATACCTT	ATCTGCTATC	CATTTAGGAA	CCCCTAACTT	AAGCAATCCC	CATAATCGTC	960
TCGATTTCTT	CTTCCATTGC	TTCCAGATAA	TCACTCGTAG	GCGAGTACGC	AAGCGCTCAT	1020
CTATGTTAGT	GACTATACTT	TTCATATTTA	TAATTCATTC	CTTTCGTTTC	ACTCAAGGCA	1080
CAACACAGAA	TGAAAAAGTG	TTGTGATCTT	TATTTTGTTT	TATAATAATA	GTGAGAAAGC	1140
CTATCACTAC	TACAAATCAC	GGGGAGGTGA	ATAAGTGAGT	GGTACAGCCA	СТАССТСССА	1200
TATTTTGTCA	CATCATTTAA	CGGTACATAA	TAAGTTGTAC	CATCTGAATA	ACTTCCTACA	
ATATCATTTG	CATGCTCTCC	TTCACCTTTA	GCAAAGGTTG	GAG	AGT TOC TACA	1260
						1303

(2) INFORMATION FOR SEQ ID NO:214:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1567 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

CTC'	TTCAATC	AACTCACGCT	TTAGGGCTTC	CTGATGATTT	TCACCTGCTT	CAATTTCTCC	60
ACA!	TGGTAGG	AACCAAGCAC	CATTTGGTTC	TTGAACAAGA	ACAATTTGTT	THTTCTTCACC	120
ATT	AGGGATA	ACTGCATATA	CGCCATAGCG	AGCAATATAG	TCTCTATOCC	CETTOTICAGG	
CGA	AAGTTGG	GTTTGCCATT	GCATTTTCCT	CATTATOMAC	TOTGIATICG	CTTTTTTCTC	180
AATO	GAACCAA	AAATAGTACA	CAAMCMCCC	CATTAICIAG	TATEGTTATT	ATTATAGTGA	240
TCC	ממתמתמי	AAATAGTACA	CANTGIGGIA	TAATCTTTT	ATGGCATATT	CAATAGATTT	300
mmma		GTTCTCTCTT	ATTGTGAGCG	AACAGGTAGT	ATAACAGAAG	CATCACACGT	360
I-I-I-C	CAAATC	TCACGTAATA	CCATTTATGG	CTGGTTAAAG	CTAAAAGAGA	AAACAGGAGA	420
GCTA	LAACCAC	CAAGTAAAAG	GAACAAAACC	AAGAAAGTT	GATAGAGATA	GACTTAAAA	480
CTAT	CTTACT	GACAATCCAG	ACGCTTATTT	GACTGAAATA	GCTTCTGAAT	TTGGCTGTCA	540
TCCA	ACTACC	ATCCACTATG	CACTCAAAGC	TATGGGCTAC	ACTCGAAAAA	AAGAACCACA	540

WO 97/37026		PCT/US97/05306		

CCTACTATGA	ACAAGACCCA	GAAAAAGTAG	CCTTATTTCT	TAAGAATTTT	ANTAGTTTAA	660
AGCACCTAGC	ACAGGTCTAA	CAAATGGTGA	ATTAATCGCT	CCAATGACTT	ACGAAGAGAT	720
GATGACGAGC	GACTTTTTTG	AAGTATGGTT	TCAGAAGTTT	CTCTTACCAA	CATTAACCAC	780
ACCATCGGTT	ATTATAGTGA	AATGAAATAA	GAACAGGACN	AATCGATCAG	GACAGTAAAA	840
TCGAATTCTA	ACAATGTTTT	AGAAGTAGAG	GTGTACTATT	CTAGTTTCAA	TCTACTATAT	900
TAATGGACAA	TGCAAGATTC	CATAGAATGG	GTAAGCTAGA	GTTCTTATGT	GAAGAGTTTG	960
GGCATAAACT	TTTACCTTTT	CCTCCCTACT	CATCTTAGTA	TAGAAAAGTG	AATCTAAAAT	1020
AGTACATAAC	TGCTTCTAAA	ACATTCTTAT	AAATTGATTT	AAATTCTCAA	ATCATATTAT	1080
TCAGTTCTTA	TTTCATTTTG	CTCTACAATC	CTGTTGAGAA	GACACGTGTT	CATATCAAAA	1140
AGGTATTGGC	AAGTTGCAAT	ACCTTTTTAC	AAGGTTCTTT	TGTCTTATTT	TTGTTTCAAC	1200
TGACTATATC	TCCTATGGTT	CTAGTTCAGA	AGGCTAGGCT	ATAATTATGA	TTGATAAGAA	1260
GTATCATTCC	AAGTATTGAG	AGTGAATGTT	TCAAAATCAT	${\tt GGGTTTCTAT}$	AATGGTCAGG	1320
CTGGCATTTG	CTAGACCGCC	ATCTTTACGA	AGAAGTGGTT	CTTTATAGCC	TAGGAGAGTA	1380
CGAAGACTGG	CAGTAAGATT	GGCGCCGTGT	CCGACAATTA	GAATACGCTC	AGCTGGACTA	1440
TCTTTTAATG	atttgataaa	TTGGATGGTC	CGCTGAGTTG	TACTATAGAG	GGATTCGGCT	1500
CCGAACATTC	GAGTGTCAAA	TTGAGCAAGA	TTTGAACGAA	AAGCCTGGAT	TTGTTGCGGG	1560
TAAATAG						1567

(2) INFORMATION FOR SEQ ID NO:215:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 486 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

CTGTTTCCAT	AGCATGACTT	CTGTACTAGA	CTTTCTTTTC	CGAATAAATA	GATAGAACCA	60
CAGAATCTAG	TAAACCTAGA	$\mathbf{ATTAAAATTA}$	TGGTATAATA	TTAGCAATAA	AAGAAATCTG	120
GAGGATTAGA	ATCATGGTAT	CAACGAAAAC	ACAAATTGCT	GGTTTTGAGT	TTGACAATTG	180
CTTGATGAAT	GCAGCAGGTG	TGGCTTGTAT	GACGATAGAG	GAGTTAGAAG	AGGTCAAAAA	240
CTCAGCGGCA	GGAACCTTTG	TTACTAAGAC	AGCGACCTTG	GACTTCCGTC	AGGGGAATCC	300
TGAGCCACGC	TACCAAGATG	TTCCACTTGG	TTCCATCAAC	TCTATGGGCT	TGCCAAATAA	360
TGGCTTAGAC	TATTATTTGG	ATTATCTTTT	AGATTTGCAG	GAAAAAGAGT	CGAACCGAAC	420
TTTCTTCTTA	TCTCTGGTCG	GCATGTCTCC	AGAGAAACCC	ATACTATTT	GAAAAAGTC	480
CAGAGA						486

(2) INFORMATION FOR SEQ ID NO:216:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 814 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

CTCTATCAGG	AAAGTTAAAT	TAATTTATAG	AAATATTTTA	GTATTTAAGC	CCTACTGTTA	60
TAGATTCAAT	ACACTATATA	TGTGTTTGTC	TGATAAAAAT	TTCTACTCTT	TTTGATTTTA	120
AATAAGTATT	AGTTTACATT	ATGGTGTGAA	TTGGGTTTGA	TATCTCTTTT	GAGGAAGTTG	180
CCTTAGATTT	TTCTGATTGT	GTTTTATTGT	ACAGTGTATC	TTGCTTGTTT	TGAACAGAAT	240
TTTTTATGAC	ATTTGTCATA	TTTTCTAGTG	ACAGAAGCTT	CTGCCTCCTC	TGATTTTAAA	300
AGACTATAAT	TGTAGTATGA	AATGGGGGAA	GAAGAGATGA	GAAATAAAAT	GATTATCGCA	360
GTAAGTTTAG	TAGTAGCAGG	AGTTATGACC	TATCTCATGT	TTTCGGGATT	GGATGAGAAT	420
TTCTACCATT	TTCCTTGGGA	GGTCTTTGCT	GGCTTTGGAA	TCATCTTCTT	GGCTTGTCCA	480
GAGAAGGTTT	Gaaattagta	AGAGATGTGA	AAAAGGAGTT	TGAAAAATGA	AAAAAGCAAC	540
TATCTATTTC	TTTATCGGCC	TGTCACTCTT	GGTATGGTTG	GTAGAAATGT	TTACAGGTTG	600
			CCGTGGTGCA			660
			GCTGGAAGGA			720
			GCAAGGCTAT			780
	AGGTGAATGC					814
						274

(2) INFORMATION FOR SEQ ID NO:217:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1319 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

CTTGGTACGA CCGTATGGG	T GGTCACTGAA	AGTGGGAAAC	TTCCAAGATG	GGCACTGTGT	60
ACGGATCCCC GTAAACTGT	C GCANAAGAAC	TGAAGATGAT	GTTTTTACAG	TTGTTTTCTT	120
CCATGGCTTT CAAAAGGCT	G ACAGTTCCAG	CGATATTGTT	GTCATAGTAG	GCAAGAGGGA	180
TACGTGTTGA TTCGCCAAC	A GCCTTCAAAC	CAGCAAAGTG	AATGACACCA	GTCAGTTCTT	240
CCTGCTTGAA AATATCTCT	G AGGGTATCTG	TGTCACNAAT	ATCTGCCTCA	TAGAAAGGAA	300
TCTCAACTCC TGTGATTCT	T TCAACAACTT	CTAAACTCTT	ACNATTGCTA	TTGACAAGAT	360
TATCCACCAC AACAACTTG	A TGGCCTGCTT	GGATCAATTC	AATAACAGTG	TGGGTTCCAA	420
TAAAACCGGC ACCACCAGT	T ACCAAAATCT	TTTCTTGCAT	CTTTTTTCCT	CGATTCTCAG	480
ATTATTTTTT CTTATTTTA	A CCATTTTTGA	CAGGGAATGT	CATTTGCCAC	CTTAAACTAC	540

CTGATAAAAT	TTCAGTAAAA	TGCTTATACT	CTTGGAAAAT	CCAATTCAAA	CCACGTCAAC	600
GTCGCCTTGC	CATGGGTATG	GTTACTGACT	TCGTCAGTTC	TATCCACAAC	CTCAAAGCAG	660
CGCTTTGAGT	AACCCGCGGC	TAGTTTCNTA	GTTTGTTCTT	TGATTTTCAT	TGAGTATTAT	720
TCGCTTTTTA	CTCGTTTGAC	ATAGTTTTCA	ATTGGGTAGT	TTTCAGGGTC	CAAGGTCAAC	780
TCCTTGTCTT	GGATCAGTTG	AGCTAAATGG	TAACCAATAA	TAGGACCAGT	TGTGAGGCCT	840
GATGAACCTA	GTCCACTGGC	TGCATAGACA	CCAGTTAAGT	CAGGCACCTG	CCCAAAGAAA	900
GGAGAGAAAT	CACTGGTGTA	GGCACGGATT	CCAACACGCT	CAGATTTTGA	AGTAGCTTCA	960
GCCAAAATCA	GATAGTGAGT	CAAGGTGGCC	TCCTCCATTT	GTTGGAGCAA	GGTTTCATCT	1020
ACCGTCAAAT	CAAATCCCAT	GTCATTTTCG	TGGGTAGCGC	CTAAGGACAA	TTTCCCACCT	1080
GCAAAAGGAA	TCAAATCCCA	CTCCCCTTCT	GGCATGACAA	CAGGGTAAGC	TTCCATGTCT	1140
TGGACCAGCT	GATAATCTCG	TAGTTGTCCT	TTTTGAGGAC	GAACATCTAC	TTCATAACCC	1200
AAGGGTTCTA	ACATGTCCCC	CAACCAAGCT	CCNGTCGCCA	AAATAACCTG	CTCAAACTCC	1260
TCTTCACCAA	TCTGGTAGCC	TGATGCTAAC	GGTGTCAGAG	TCACTTTTTC	TTTGACCAG	1319

(2) INFORMATION FOR SEQ ID NO:218:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 534 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

CTCAAAATAC	TGTTTTGAGG	TTGCAGATGG	AAGCTGACGC	GGTTTAAAGA	GATTTTCGAA	60
GAGTATAAAC	TGCTTATAAA	ATAAAAAGGA	GCCCTGATGG	AACACATTAT	TTATCAGTTT	120
GAAGAGGACT	TGGCAATCCT	TACCTTGAAC	CGTCCTGAGG	TCGCAAATGG	TTTTCATATT	180
CCCATGTGTG	AGGAGATTTT	AGAAGCTCTG	ACTTTGGCAG	AAGAAAATCC	AGCTGTGCAT	240
TTTATCTTAA	TCAATGCCAA	TGGAAAGGTC	TTCTCAGTTG	GGGGAGATTT	GGTAGAGATG	300
AAGCGGGCAG	TGGATGAGGA	TGATATTCCA	TCATTGACAA	AAATCGCAGA	GTTGGTCAAT	360
ACGATTTCTT	ATAAAATCAA	GCAAATAGCC	AAACCTGTTT	TTAATGGAAG	TTGACGGTGC	420
TGTTGCAGGT	GCCGCAGCGA	ATATGGCTGT	TGCGGCAGAT	TTCTGTTTGG	CGACGGATAA	480
GGCTAAGTTT	ATCCCAAGCC	CTTTGTTGGT	GTGGTTGGCT	CCAGATTCCA	GGGG	534

(2) INFORMATION FOR SEQ ID NO:219:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 784 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPCLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

CTGCAGCCGG	AAGTTATCTG	GTTACAAAAA	ATCGCCAAAC	CATCACAGAT	GAAAGTCTTG	60
AATACCACTG	ACCGCGTTCA	AGCTATCAAG	GACGATGTGG	ATATTATCCA	AAACAGCCTG	120
CAAATCATTA	ACCAGCAAAA	AGAACTTATC	AAGGAATACC	AAGAAGACTT	GACTTACAAG	180
TTTAAGGTCT	TGGAAAAGGA	TATCCAAACT	AGGACTAGCT	GTGATAAAAG	AAATGCAGGG	240
AACTGAAGAT						300
GAATTGAATT						360
TCCTCTTATC						420
CATCATAATT						480
ACAGACTGCT						540
ACCCATGACA						
TTTCACAACT						600
						66,0
AGCTGTCCGG						720
CGCTACCGTC	CGTCATTACT	TAGNGAAGNC	TTAAAAAATC	TATAAAGTAA	AAAGAGCCCG	780
ACAG						784

(2) INFORMATION FOR SEQ ID NO: 220:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 962 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

CTACTCGTTT	' TAGTATAGTA	AACTGAATCT	AGACTAGCAC	AATGCNGCTT	CTANAGCGTT	60
TCGAAACTAG	AATAGJACAA	CATAACTGCT	AAAAGATTTC	TATAAATICA	TTTGATTTTC	120
CTAATCAATT	TGTTCGTATC	CTANTTCACT	CCACTATAAA	ATATTCTTAT	CAATTGATTT	130
GNATGCCAAA	ATTCCATCGT	TCAGGTCTT'A	TTTCATTNGG	CTNTAAAAA	CTCTCCTGGG	240
	AGAGNATGAT					300
	GTTTCTTAAT					360
ATATAGACGG	TTGCATGTTC	GGGCACTTTT	TTTGTTCAAA	ATTAAGATAG	CCGTCTTTCG	420
TACTGTCGAT	TAGATGGAGT	TCAAAATTAG	GATTTTTCTG	AGCATAGTTA	CGGAGTAAAT	480
CTAGGTAGAC	TGCATTTTCA	TCTCCACGGA	AGCTATAGTA	GAAGTGAACC	TGTTTATCTA	540
AAATAGGATG	TTCACGGATG	TAAGAGATGA	AGGGGGTGAT	CCCAATACCT	CCAGCAATCC	600
AAACCTGATT	TTCTCGTCCT	TCTTCTATGA	TCATGTGTCC	GTAAGCTCTG	TCTAGGGTTA	660
CTTTGCTGCC	GGCTTGAAGA	TTATCATAGA	TATTTCTTGG	TATGGTCGCC	TGAATTTTTA	720
ACAGTAAAGT	TAAAGAGTTT	GAACCCATGA	ACTCCCTGAG	AATAGAAAAG	GGATGCCGGA	780

ACCACTTTCA	AAGCCTTCTT	GGAAAATCTT	TAGAAAGGCA	AATTGTCCTG	ATTGATAGTT	840
GAAAGGTCTG	CTAAGATGGA	TTTGAATTTC	TCTAGTATCG	TGATTTAAGC	GTTTGAGATG	900
GGTAATTTTC	CCTAGATAGG	GGAAGGAAAT	CTTTTGATAT	AGAAAAATGA	TATAAAAACC	960
AG						962

(2) INFORMATION FOR SEQ ID NO:221:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 910 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

CTCTTTCCAC	TATTATAACA	CGAAAGAAAG	AATTGTCAGG	GAACTGTACA	GATTTCTTTT	60
CTATCTATTT	ATAACTCAAT	GAAAATCAAA	GAGCAAACTA	GGAAACTAGC	CGCAGGCTGT	120
AATTGAGTAC	GGCAAGGCGA	CGTTGACGCG	ATTTGAATTT	GATTTTCGCA	GAGTATTATT	180
CGTAAAAAAT	CTCAAAAAGC	CTACCTTTCG	GTAGACTTAG	TTTGTTTCTA	TTCTAATCGG	240
CACTCTTCCA	AAATTTTGCT	CTGCTATACT	TGGCTTTCCT	AGTTGGTAAA	TCTGGTCAAC	300
CTTTTGAGTC	ATAGCATCCC	AAGGTTCTTT	GCCAATTCGG	CTGACTAGAT	TGACCTGTCC	360
TTTCAGAGAC	TTGAGATGTT	GCCTGCCTTT	TTCAGTAAAT	CCAAGGACAT	GAATGGCTTC	420
TGGCAAGTCA	CTTTCTCTAG	CCTGCATCAA	AATATAGGTC	AATAGGCGTC	TGACACGCGC	480
CTTGGTGTAA	CGTTTGGTAG	TCACTAACTC	GACCAATTCT	TCCACAGACT	GGGCTGTTTT	540
AATAGCTTCT	TTAATGCGCA	CAGCCATTTC	TTGATTGACC	TGATAGATGG	TGGTTAGGTC	600
GGGATTTGAC	AAGATTTGAT	AGCGGAGCAA	GGGAAAATAG	TCTTCCCAGA	TCACCTTACT	660
GGCTTGCTCA	AATAGGGCAA	CAGAAGGCAT	AAAACGTTCT	AAGAAATCTT	GGTCCTTCTG	720
ATGTTGACGG	AGGGCTGTCG	CCGAGGCAAA	GTCCACATCT	TTATTCACAG	AATGGTAACC	780
TGCCCCCTGA	CGCTGAATCG	GATGCAGCTT	GATATTCCGT	CCTGCAACCG	CCTTGGCATA	840
GGCCAAAACA	AAGAACATGA	TTGGGGTGTA	TTACCTGAAA	AATCAAGACC	AGCAAATTCC	900
TTCCACATAG						910

(2) INFORMATION FOR SEQ ID NO:222:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 866 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

CGCCAAGTCA T	rccaacaagt	CCAGAACGGT	TCTGGGGCTT	GGGATCCTCA	GTCGCTGGAG	60
ATAACTCCTT T	rgggcttgtt	CATCATGTAG	TAGACAAACT	CTTCATACTC	CAACACTTGC	120
CCATCAAAAG C	CGAATCTCAT	CTATTTTTTC	ATCAATCTGC	AATTTAGCTG	ATTTTTCTTT	180
TTTACCATTT A	ACAGTCACGC	GCCCAGCCTT	GAGCAAGTTT	TTGACCTCAG	TCCGACTTCC	240
CACCGCACAG G	CAACTAAAA	ATTTATCTAA	TCTCATAGAA	CTATTATATC	ATATCAAAAG	300
GAGGCTGGTA C	CAATGACCAA	CCTCCTTTTC	GTTTCATACT	СТТСАААААТ	CTCTTCAAAC	360
CGCGTCAACG T	CGCCTTGCC	GTATATATGT	TACTGACTTC	GTCAGTTCTA	TCTGCAACCT	420
CAAAGCAGTG C	CTTTGAGCAA	CCTGCGGCTA	GTTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	480
AGTATCAGAT T	TAGGAAATT	AACTTCCTCG	TCTCCAAAAA	ATAGCTAAGA	CAATCATGGC	540
ACCTAAAACA G	CTGGGATAA	TAGCTGTTCC	TGATAAAACT	GGCCCCCAAG	TTCCAAAGAG	600
CAAGTGACCT A	AGAAAGGCTC	CGATCCAACC	GAGAAACATT	TTTCCAAAAC	ATCCCATTCG	660
CTCTCCACGA T	TTGGTCATAG	CACCTGCTAA	AAATCCCACT	AGGAGACCAA	CGAACATACT	720
TCCTAACATA T	TATCTCCTT	AATTTGCCCA	ATTCCCATTA	CGGAAAAGAA	GTACTCGCGT	780
TCCATCCTCA C	GAATACCAT	CGATATCCAT	TTGGTTAGAA	CCAATCATAA	AGTATACGTG	840
AACATCTGAA C	GGTTAAGCC	CTGCAG				866

(2) INFORMATION FOR SEQ ID NO:223:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 693 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

CTTCAGGATG TGGGAAAACG ACCCTTC	CTTC GTATGATTGC AGGTTTCAAC AGTATCAAAG 60
ATGGAGAATT TTACTTCGAT GATACAA	AAAA TCAATAATAT GGAACCCAGC AAACGCAATA 120
TCGGGCTGGT TTTCCAAAAC TACGCTA	ATTT TCCCACATTT GACTGTCCGA GACAACGTTG 180
CTTTTGGTCT TATGCAAAAG AAGGTTC	CCAA AAGAAGAATT GATTCAACAG ACCAACAAGT 240
ATCTTGGACT CATGCAAATT GCTCAAT	PATG CGGATCGAAA GCCCGATAAA CTCAGTGGTG 300
GACAACAACA ACGTGTCACC TTGGCAT	GCG TCTTAGCGGT TAATCCAAGT GTTCTCCTCC 360
ATGGACGAAG CCACTTAGTA ATCTGGA	AGGC CAAACTTCGC TTGGATATGC GTTCAAGCCC 420
ATCCCGAGAA ATCCAACCAC GAAGTTG	GGG AATTACAACT GTTTATGTAA CCCACGACCA 480
AGAAGGAGCC ATGGCTATTT CAGACCA	NAAT TGCCTGTTAT GAAAGATGGG GTGATCCAAC 540
AAATCGGCCG ACCAAAAGAA CTGTATC	CATA AACCAGCTAA TGAGTTAGTG GCAACCTTTA 600
TCGGACGCAC AAATATTATC CCTGCCA	NATE TTGAAAAACG GAGCGACGGE GNTTATATEG 660
TCTNTTCAGA TGGANANGCC CTTCGAA	ATGA TAG 693

(2) INFORMATION FOR SEQ ID NO: 224:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 183 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:

Met Ser Met Phe Thr Met Val Lys Met Asn Pro Leu Arg Gly Leu Ile 1 5 10 15

Cys Asn Leu Lys Gly Asn Lys Ile Thr Ala Leu Ile Gly Pro Ser Gly
20 25 30

Ser Gly Lys Ser Thr Tyr Leu Arg Ser Leu Asn Arg Met Asn Asp Thr

Ile Asp Ile Ala Lys Val Thr Gly Gln Ile Leu Tyr Arg Gly Ile Asp 50 55 60

Val Asn Arg Pro Glu Ile Asn Val Tyr Glu Met Arg Lys His Ile Gly 65 70 75 80

Met Val Phe Gln Arg Pro Asn Pro Phe Ala Lys Ser Ile Tyr Arg Asn 85 90 95

Ile Thr Phe Ala His Glu Arg Ala Gly Val Lys Asp Lys Gln Val Leu
100 105 110

Asp Glu Ile Val Glu Thr Ser Leu Ser Gln Ala Ala Leu Trp Asp Gln
115 120 125

Val Lys Asp Asp Leu His Lys Ser Ala Leu Thr Leu Ser Gly Gly Gln 130 135 140

Gln Gln Arg Leu Cys Ile Ala Arg Ala Ile Ser Val Lys Pro Asp Ile

145 150 155 160 Leu Leu Met Asp Glu Pro Ser Leu Ser Leu Gly Ser Asp Cys Asp His 165 170 175

Ala Thr Arg Arg Asp His Val

180

(2) INFORMATION FOR SEQ ID NO:225:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 247 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

Met Ile Lys Ile Ser Asn Leu Ser Lys Ser Phe Ser Gly Gln Thr Val 10 Leu Asp His Leu Asn Leu Asp Ile Gln Lys Gly Glu Val Val Ala Leu 25 Ile Gly Ser Ser Gly Ala Gly Lys Ser Thr Phe Leu Arg Ser Leu Asn 40 Tyr Leu Glu Thr Pro Asp Ser Gly Ser Ile Gln Ile Asp Gly Phe Ser 55 Val Asp Phe Ser Lys Ile Thr Gln Glu Glu Ile Leu Ala Leu Arg Arg 70 75 Lys Leu Ser Met Val Phe Gln Gln Phe Asn Leu Phe Glu Arg Arg Thr 85 90 Ala Leu Asp Asn Val Lys Glu Gly Leu Val Val Val Lys Lys Leu Ser 105 Asp Gln Glu Ala Thr Lys Ile Ala Lys Glu Glu Leu Ala Lys Val Gly 120 Leu Ser Asp Arg Glu Asn His Tyr Pro Arg His Leu Ser Gly Gly Gln 135 Lys Gln Arg Val Ala Leu Ala Arg Ala Leu Ala Met Lys Pro Asp Val 145 150 155 Leu Leu Asp Glu Pro Thr Ser Ala Leu Asp Pro Glu Leu Val Gly 165 170 Glu Val Glu Lys Ser Ile Ala Asp Ala Ala Lys Ser Gly Gln Thr Met 180 185 Ile Leu Val Ser His Asp Met Pro Phe Val Ala Gln Val Ala Asp Lys 200 Ile Leu Phe Leu Asp Lys Gly Lys Ile Ile Glu Ser Gly Thr Pro Asp 215 Glu Ile Ile His Thr Pro Lys Glu Glu Arg Thr Lys Glu Phe Phe Thr 225 230 235 Ser Tyr Lys Arg Thr Tyr Ile 245

- (2) INFORMATION FOR SEQ ID NO: 226:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 243 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLCGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

Met Phe Ser Leu Arg Ser Val Phe Asp Gly Ile Pro Arg Ile Val Gln 10 Gln Leu Pro Thr Thr Ile Met Leu Thr Ile Gly Gly Ala Leu Phe Gly Leu Val Leu Ala Leu Leu Phe Ala Ile Val Lys Ile Asn Arg Val Lys 40 Ile Leu Tyr Pro Leu Gln Ala Phe Phe Val Ser Phe Leu Lys Gly Thr 55 Pro Ile Leu Val Gln Leu Met Leu Thr Tyr Tyr Gly Ile Pro Leu Ala 70 Leu Lys Ala Leu Asn Gln Gln Trp Gly Thr Gly Leu Asn Ile Asn Ala Ile Pro Ala Ala Ala Phe Ala Ile Val Ala Phe Ala Phe Asn Glu Ala 105 Ala Tyr Ala Ser Glu Thr Ile Arg Ala Ala Ile Leu Ser Val Asn Pro 120 125 Gly Glu Ile Glu Ala Ala Arg Ser Leu Gly Met Thr Arg Ala Gln Val 135 Tyr Arg Arg Val Ile Ile Pro Asn Ala Ala Val Val Ala Thr Pro Thr 150 155 Leu Ile Asn Ser Leu Ile Gly Leu Thr Lys Gly Thr Ser Leu Ala Phe 170 Ser Ala Gly Val Val Glu Val Phe Ala Gln Ala Gln Ile Leu Gly Gly 185 Ala Asp Tyr Arg Tyr Phe Glu Arg Phe Ile Ser Val Ala Leu Val Tyr 200 Trp Val Val Asn Ile Gly Ile Glu Ser Leu Gly Arg Phe Ile Glu Arg 215 220 Lys Met Ala Ile Ser Ala Pro Asp Thr Val Gln Thr Asp Val Lys Gly 225 230 235 Asp Leu Arg

(2) INFORMATION FOR SEQ 1D NO:227:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

 Met
 Tyr
 Arg
 Ile
 Asp
 Asp
 Glu
 Gln
 Phe
 Val
 Leu
 Asp
 Asp
 Glu
 Glu
 Fre
 Asp
 Phe
 Leu
 Leu
 Leu
 Val
 His
 Gly
 Phe
 Asp
 Trp
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Asp
 Glu
 Leu
 Ala

 Fro
 Asp
 His
 Phe
 Arg
 Ile
 Val
 Try
 Leu
 Pro
 Arg
 Val
 Asp
 Glu
 Leu
 Ala

 Glu
 Ile
 Glu
 Lys
 Met
 Thr
 Arg
 Phe
 Leu
 Lys
 Glu
 Try
 Arg
 Arg
 Arg
 Free
 Arg
 Arg
 Arg
 Free
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 <td

- (2) INFORMATION FOR SEQ ID NO:228:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:

Met Asn Asp Glu Ala Ser Lys Gln Leu Thr Asp Ala Arg Phe Lys Arg 1 5 Leu Val Gly Val Gln Arg Thr Thr Phe Glu Glu Ile Leu Ala Val Leu Lys Thr Ala Tyr Gln Leu Lys His Ala Lys Gly Gly Arg Lys Pro Lys 40 Leu Ser Leu Glu Asp Leu Leu Met Ala Thr Leu Gln Tyr Val Arg Glu 55 Tyr Arg Thr Tyr Glu Gln Ile Ala Ala Asp Phe Gly Ile His Glu Ser 65 75 Asn Leu Ile Arg Arg Ser Gln Trp Val Glu Val Thr Leu Val Gln Ser 85 90 Gly Val Thr Ile Ser Arg Thr Pro Leu Ser Ser Glu Asp Thr Val Met 105 Ile Asp Ala Thr Glu Val Gin Ile Asn Arg Pro Lys Lys Arg Ile Ser 115 120 125

Glu Ser Phe Trp 130

- (2) INFORMATION FOR SEQ ID NO:229:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

 Met Arg Arg Lys Tyr Lys Ser Ile Ala Leu Lys Lys Glu Leu Ala Asn

 1
 5
 10
 15

 His Ser Gly Lys Lys Lys Lys Phe His Ala Met Lys Ala Gln Ala Ile Val
 20
 25
 30

 Thr Ser Gln Gly Arg Ile Val Ser Leu Asp Ile Ala Val Asn Tyr Ser
 35
 40
 45

 His Asp Met Lys Leu Phe Lys Met Ser Cys Arg Asn Ile Gly Gln Ala
 50
 55
 60

 Gly Lys Ile Leu Ala Asp Ser Gly Tyr Gln Gly Pro Met Lys Ile Tyr

Gly Lys Ile Leu Ala Asp Ser Gly Tyr Gln Gly Pro Met Lys Ile Tyr
65 70 75 80

Pro Gln Ala Gln Thr Pro Arg Lys Ser Ser Lys Leu Lys Pro Leu Ile 85 90 95

Ala Glu Asp Lys Ala Tyr Asn His Ala Leu Ser Lys Glu Arg Ser Lys
100 105 110

Val Glu Asn Ile Phe Ala Lys Val Lys Thr Phe Lys Met Phe Ser Thr 115 120 125

Thr Tyr Arg Asn His Arg Lys Arg Phe Gly Leu Arg Met Asn Leu Ile 130 135 140

Ala Gly Ile Ile Asn Tyr Glu Leu Gly Phe 145 150

- (2) INFORMATION FOR SEQ ID NO:230:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 49 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

PCT/US97/05306 WO 97/37026

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

Met Val Ser Ser Ser Gly Ser Glu Phe Gln Ser Gly Trp Gln Glu His 5 1 Gln Leu Ile Ala Glu Lys Val Ser Lys Thr Leu Asp Lys Thr Phe Asp 25 Lys Asp Val Arg Lys Ile Pro Thr Ser Pro Val Leu Ser Lys Ile Cys 40 Arg

- (2) INFORMATION FOR SEQ ID NO:231:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

Met Ile Lys Ile Leu Ala Ala Cys Gly Ala Gly Val Asn Ser Ser His 1 10

Gln Ile Lys Ser Ala Leu Glu Glu Glu Leu Ser Asn Arg Gly Tyr Asp 25

Val His Cys Asp Ala Val Met Val Lys Asp Val Asn Glu Asp Leu Met 40

Lys Gly Tyr Asp Ile Phe Thr Pro Ile Ala Ala Thr Asp Leu Gly Phe

Glu Pro Gly Ile Pro Val Ile Glu Ala Gly Pro Ile Leu Phe Arg Ile 70

Pro Ala Met Ser Ala Pro Val Phe Asp Asn Ile Arg Leu Pro Ala Lys 90

Gln Asn Met Val

100

- (2) INFORMATION FOR SEQ ID NO:232:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

 Met Asn Thr Lys Met Met Ser Gln Phe Ser Val Met Asp Asn Glu Met

 1
 5
 10
 15

 Leu Ala Cys Val Glu Gly Gly Asp Ile Asp Trp Gly Arg Glu Ile Ser
 20
 25
 30

 Cys Ala Ala Gly Val Ala Tyr Gly Ala Ile Asp Gly Cys Ala Thr Thr
 35
 40
 45

 Val

(2) INFORMATION FOR SEQ ID NO:233:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 77 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:

- (2) INFORMATION FOR SEQ ID NO: 234:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:

Met Ala His Gly Asp Leu Leu Tyr His Asp Gly Leu Phe Phe Ser Ala 1 Lys Lys Glu Asp Gly Thr Tyr Asp Phe His Glu Asp Phe Glu Tyr Val 20 Leu Leu Tyr Asp Phe His Glu Asp Phe Glu Tyr Val

Thr Pro Trp Leu Lys Gln Val Asp

- (2) INFORMATION FOR SEQ ID NO:235:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:

Met Ser Leu Ile Thr His Arg Arg Phe Ile Ser Cys Asn Glu Asn Ile

1 5 10 15

Lys His Tyr Lys Arg Leu Ile Asp Lys Ala Glu Lys Cys Val Asn Asp 20 25 30

Leu Met Ala Glu Leu Asn Ser Val Ile Thr Thr Val Thr Gly Ile Glu
35 40 45

Asn Arg Leu Gly Ala Val Ile Leu Ala Glu Ile Arg Asn Ile His Ala
50 55 60

Phe Asp Asn Pro Ala Gln Leu Gln Ala Phe Ala Gly Leu Asp Ser Ser 65 70 75

Ile Tyr Gln Ser Gly Gln Ile Asp Leu Val Gly Arg Met Val Lys Arg

Gly Ser Leu His Leu Arg

100

(2) INFORMATION FOR SEQ JD NO:236:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:

Met Ile Arg Ala Val Phe Phe Ser Ile Asp Asn Asp Met Glu Glu Ala

1 5 10 15

Ala Arg Ser Met Gly Ala Ser Ser Phe Tyr Thr Met Val Arg Val Ile
20 25 30

Ile Pro Tyr Ile Leu Pro Val Val Leu Ser Val Val Val Leu Asn Phe 35 40 45

Asn Ser Leu Leu Ser Asp Tyr Asp Leu Ser Val Phe Leu Tyr His Pro
50 55 60

Leu Phe Gln Pro Leu Gly Ile Val Ile Lys Gln Ser Thr Asp Glu Thr 65 70 75 80

Ala Thr Leu Asn Ala Gln Ala Met Met Phe Val Tyr Ser Val Ile Leu 85 90 95

Met Ile Met Ser Ser Ala Ala Leu Tyr Leu Ser Ser Leu Phe Gln Gly
100 105 110

Lys Arg Gly Lys Arg

115

- (2) INFORMATION FOR SEQ ID NO:237:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 101 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

Met Glu Lys Cys Tyr Thr Asp Val Thr Glu Phe Ala Ile Pro Ala Ser 1 5 5 1 10 10 15 15 Thr Gln Lys Leu Tyr Leu Ser Pro Val Leu Asp Gly Phe Asn Ser Glu 20 25 25 30

Ile Ile Ala Tyr Asn Leu Ser Thr Ser Pro Asn Leu Glu Gln Val Gln
35 40 45

Thr Met Leu Glu Gln Ala Phe Thr Glu Lys His Tyr Glu Asn Thr Ile 50 55 60

Leu His Ser Asp Gln Gly Trp Gln Tyr Gln His Asp Ser Tyr His Arg 65 70 75 80

Phe Leu Arg Val Arg Glu Phe Lys His Leu Cys His Ala Arg Glu Thr 85 90 95

Ala Lys Thr Thr Val

(2) INFORMATION FOR SEQ ID NO:238:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

Met Glu Ile Leu Thr Thr Gln Gln Val Arg Glu Gly Tyr Gln Ala Ile

1 5 10 15

Leu Ala Ser Pro Leu Gly Leu Gln Asp Ala Phe Glu Val Ala Gln Glu
20 25 30

Lys Ser Gly Ser Tyr Thr Val Pro Pro Glu Ile Asp Gly Trp Lys Gly
35 40 45

Asn Thr Glu Pro Leu Arg Ile Asp Tyr Val Phe Thr Thr Lys Glu Leu 50 55 60

Ala Val Glu Asn Leu His Val Val Phe Asp Gly Asn Lys Ser Pro Gln 65 70 75 80

Val Ser Asp His Tyr Gly Leu Asn Ala Met Leu Asn Trp Lys 85 90

- (2) INFORMATION FOR SEQ ID NO:239:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 142 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:

Met Leu Lys His Leu Asn Leu Lys Gly His Leu Leu Thr Ala Ile Ser 10 5 Tyr Met Ile Pro Ile Val Cys Gly Ala Gly Phe Leu Val Ala Ile Gly 25 Leu Ala Met Gly Gly Val Pro Asp Ala Leu Val Ala Gly Lys Phe Thr Ile Trp Asp Ala Leu Ala Thr Met Gly Gly Lys Ala Leu Gly Leu Leu Pro Val Val Ile Ala Thr Gly Leu Ser Tyr Ser Ile Ala Gly Lys 65 Pro Gly Ile Ala Pro Gly Phe Val Val Gly Leu Ile Ala Asn Ser Val 90 Gly Ser Gly Phe Ile Gly Gly Ile Leu Gly Gly Tyr Ile Val Gly Phe 105 Leu Val Gln Ala Ile Ile Lys Lys Val Lys Val Pro Asn Trp Ile Lys 120 Gly Leu Met Pro Thr Leu Ile Ile Pro Phe Val Pro Leu Trp 135 140 130

(2) INFORMATION FOR SEQ ID NO:240:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

WO 97/37026

Val Gly Leu Val His Thr Ala Asp Ala Ala Ala Lys Lys Gly Asp Phe
65

70

75

80

Gly Ala Val Glu Arg Ala His Phe Ile Ala Leu Leu Phe Gln Gly Leu 85 90 95

Arg Ile Ala Leu Pro Ala Ala Leu Leu Leu Met Val Pro Thr Glu Thr
100 105 110

Val Gln Ser Ile Leu Ser Ala Met Pro Asp Trp Leu Lys Asp Gly Met 115 120 125

Ala Ile Gly Gly Met Val Val Ala Val Gly Tyr Ala Met Val Ile 130 135 140

Asn Met Met Ala Thr Arg Glu Val Trp Pro Phe Phe Ala Leu Gly Phe 145 150 155 160

Val Leu Ala Ala Val Ser Asp Ile Thr Leu Ile Gly Phe Gly Ala Ile 165 170 175

Gly Val Ala Ile Ala Leu Ile Tyr Leu His Leu Ser Lys Thr Gly Gly 180 185 190

Asn Gly Gly Gly Ala Ala Thr Ser Asn Asp Pro Ile Gly Asp Ile 195 200 205

Leu Glu Asp Tyr 210

(2) INFORMATION FOR SEQ ID NO:241:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 68 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:

Met Leu Asp Val Glu Ala Ile Arg Lys Asp Phe Pro Ile Leu Asp Gln
1 5 10 15

Ile Val Asn Asp Glu Pro Leu Val Tyr Leu Asp Asn Ala Ala Thr Thr
20 25 30

Gln Lys Pro Leu Val Val Leu Lys Ala Ile Asn Ser Tyr Tyr Glu Gln
35 40 45

Asp Asn Ala Asn Val His Arg Gly Val His Thr Leu Ala Glu Arg Ala 50 55 60

Thr Ala Ser Leu

65

- (2) INFORMATION FOR SEQ ID NO:242:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 115 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:

Met Thr Lys Leu Leu Asn Lys Lys Trp Lys Val Lys Ile Met Lys Gln

1 5 10 15

Ile Leu Leu Val Cys Asn Ala Gly Met Ser Thr Ser Met Leu Val Lys

20 25 30

Lys Met Gln Gln Ser Ala Thr Glu Arg Gly Ile Glu Ile Ser Ile Gln

Lys Met Gin Gin Ser Ala Thi Gid Arg Gly lie Gid lie Ser lie Gin 35 40 45

Ala Lys Ser Met Thr Glu Ala Lys Lys Asn Ile His Glu Ala Asp Val 50 55 60

Ile Leu Ile Gly Pro Gln Ile Arg Tyr Glu Leu Leu Ala Val Lys Glu
65 70 75 80

Ile Ala Gly Asn Ile Pro Val Asp Thr Ile Asp Met Arg Asp Tyr Gly 85 90 95

Met Met Asn Gly Ala Lys Val Leu Glu Gln Ala Leu Glu Trp Ile Gly 100 105 110

Glu Ile Arg

115

- (2) INFORMATION FOR SEQ ID NO: 243:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 99 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:

Met Val Leu Met Gln Lys Met His Gly Lys Glu Leu Ile Thr Leu Asn
1 5 10 15

Gln Thr Val Lys Trp Tyr Lys Val Ser Gly Phe Met Ile Leu Leu Thr
20 25 30

Lys Pro Trp Tyr Tyr Leu Lys Ser Asp Gly Ser Tyr Ala Arg Asn Ala 35 40 45

Trp Gln Gly Asn Tyr Tyr Leu Lys Ser Asp Gly Lys Met Ala Val Asn 50 55 60

Glu Trp Val Tyr Asp Ala Thr Tyr Gln Ala Trp Tyr Tyr Leu Thr Ser 65 70 75 80

Asp Gly Ser Tyr Ala Tyr Ser Thr Trp Gln Gly Asn Tyr Tyr Pro Lys
85 90 95

Ile Gly Trp

(2) INFORMATION FOR SEQ ID NO:244:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:

Met Leu Thr Val His Gly Lys Glu Ile Thr Ile Leu Lys Ser Asp Gly

1 5 10 15

Lys Met Ala Val Asn Glu Trp Val Asp Gly Gly Arg Tyr Tyr Val Gly
20 25 30

Ala Asp Gly Val Trp Lys Glu Gly Gln Ala Ser Thr Ala Ser Pro Ser
35 40 45

Asn Asp Ser Asn Ser Glu Tyr Ser Cys Cys Phe Arg Lys Gly Lys Lys 50 55 60

Leu

65

(2) INFORMATION FOR SEQ ID NO: 245:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 225 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

Met Asn Asn Asn Phe Asn Asn Phe Asn Asn Met Asp Asp Leu Phe Asn 10 5 Gln Leu Met Gly Gly Met Arg Gly Tyr Ser Ser Glu Asn Arg Arg Tyr 25 Leu Ile Asn Gly Arg Glu Val Thr Pro Glu Glu Phe Ala His Tyr Arg 40 Thr Thr Gly Gln Leu Pro Gly Asn Ala Glu Thr Asp Val Gln Met Pro Gln Gln Ala Ser Gly Met Lys Gln Asp Gly Val Leu Ala Lys Leu Gly Arg Asn Leu Thr Ala Glu Ala Arg Glu Gly Lys Leu Asp Pro Val Ile 90 Gly Arg Asn Lys Glu Ile Gln Glu Thr Ser Glu Ile Leu Ser Arg Arg 105 Thr Lys Asn Asn Pro Val Leu Val Gly Asp Ala Gly Val Gly Lys Thr 120 Ala Val Val Glu Gly Leu Ala Gln Ala Ile Val Asn Gly Asp Val Pro Ala Ala Ile Lys Asn Lys Glu Ile Ile Ser Ile Asp Ile Ser Gly Leu 155 150 Glu Ala Gly Thr Gln Tyr Arg Gly Ser Phe Glu Glu Asn Val Gln Asn 170 Leu Val Asn Glu Val Lys Glu Ala Gly Asn Ile Ile Leu Phe Phe Asp 185 Glu Ile His Gln Ile Leu Gly Ala Gly Ser Thr Cys Gly Asp Ser Gly 200 Ser Lys Gly Leu Ala Asp Ile Leu Ser Gln Ser Ile Ser Leu Val Glu 220 215 Asn 225

(2) INFORMATION FOR SEQ ID NO: 246:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

Met Thr Ile Phe Pro Asp Asp Phe Leu Trp Gly Gly Ala Val Ala Ala Asn Gln Val Glu Gly Ala Tyr Asn Glu Asp Gly Lys Gly Leu Ser Val Gln Asp Val Leu Pro Lys Gly Gly Leu Gly Glu Ala Thr Glu Asn Pro 40 Thr Glu Asp Asn Leu Lys Leu Ile Gly Ile Asp Phe Tyr His Lys Tyr 55 Lys Glu Asp Ile Ser Leu Phe Ser Glu Met Gly Phe Asn Val Phe Arg 70 75 Thr Ser Ile Ala Trp Ser Arg Ile Phe Pro Lys Gly Asp Glu Glu Glu 85 90 Pro Asn Glu Ala Gly Leu Lys Tyr Tyr Asp Glu Leu Phe Asp Glu Leu 100 105 His Ala His Gly Ile Glu Pro Leu Val Thr Leu Ser His Tyr Glu Thr . 120 Pro Leu Tyr Leu Ala Arg Lys Tyr His Gly Trp Ile Asp Arg Lys Asn 135 Asp Ser Phe Leu 145

(2) INFORMATION FOR SEQ ID NO: 247:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:247:

 Met
 Ile
 Glu
 Tyr
 Lys
 Asn
 Val
 Ala
 Leu
 Arg
 Tyr
 Thr
 Glu
 Lys
 Asp
 Val

 Leu
 Arg
 Asp
 Val
 Asn
 Leu
 Gln
 Ile
 Glu
 Asp
 Gly
 Glu
 Phe
 Met
 Val
 Leu

 Val
 Gly
 Pro
 Ser
 Gly
 Ser
 Gly
 Lys
 Thr
 Met
 Leu
 Lys
 Met
 Ile
 Asp

 Val
 Gly
 Pro
 Ser
 Gly
 Ser
 Gly
 Lys
 Thr
 Met
 Leu
 Lys
 Met
 Ile
 Arg

 Arg
 Leu
 Leu
 Glu
 Pro
 Thr
 Asp
 Gly
 Asn
 Ile
 Tyr
 Met
 Asp
 Gly
 Lys
 Arg

 50
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fragge
 Fr

Ile Lys Asp Tyr Asp Glu Arg Glu Leu Arg Leu Ser Thr Gly Tyr Val 75 70 Leu Gln Ala Ile Ala Leu Phe Pro Asn Leu Thr Val Ala Glu Asn Ile 90 Ala Leu Ile Pro Glu Met Lys Gly Trp Ser Lys Glu Glu Ile Thr Lys 105 Lys Thr Glu Glu Leu Leu Ala Lys Val Gly Leu Pro Val Ala Glu Tyr 120 Gly His Arg Leu Pro Ser Glu Leu Ser Gly Gly Glu Gln Gln Arg Val 135 Gly Ile Val Arg Ala Met Ile Gly Gln Pro Lys Ile Phe Leu Met Asp 155 150 145 Glu Pro Phe Ser Ala Leu Asp Ala Ile Ser Arg Lys Gln Leu Gln Val 170 Leu Thr Lys Glu Leu His Lys Glu Phe Gly Met Thr Thr Ile Phe Val 185 Thr His Asp Thr Asp Glu Ala Leu Lys Leu Ala Asp Arg Ile Ala Val 200 Leu Gln Asp Gly Glu Ile Arg Gln Val Ala Asn Pro Glu Thr Ile Leu 215 Lys Val Pro Ala Thr Asp Phe Val Ala Asp Leu Phe Gly Gly Ser Val 235 240 230 His Asp

(2) INFORMATION FOR SEQ ID NO:248:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:248:

Met Pro Phe Val Pro Gly Ile Ala Leu Thr Asn Ala Val Arg Asp Ile

1 5 10 15

Met Thr Asn His Ile Asn Ser Gly Met Ser Lys Met Phe Glu Ser Leu
20 25 30

Leu Ile Thr Leu Ala Leu Gly Ala Gly Thr Ser Val Ala Leu Val Leu
35 40 45

Met Asn

50

- (2) INFORMATION FOR SEQ ID NO:249:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:

 Met
 Tyr
 Thr
 Ile
 Arg
 Met
 Leu
 Lys
 Met
 Gly
 Ser
 Glu
 Ala
 Ala
 Ala
 Lys
 Lys
 Met
 Gly
 Ser
 Glu
 Val
 Glu
 Ala
 Lys
 Gly

 Ser
 Ala
 Glu
 Val
 Glu
 Val
 Thr
 Val
 Lys
 Gly

 Pro
 Gly
 Ser
 Gly
 Arg
 Glu
 Ser
 Ala
 Ile
 Ser
 Cys
 Ala
 Cys
 Arg
 Trp

 Ser
 Ala
 Ala
 Ile
 Ala
 Ile
 Ser
 Cys
 Ala
 Cys
 Arg
 Trp

 Ala
 Ala
 Ala
 Ile
 Ala
 Ile
 Ser
 Cys
 Ala
 Cys
 Arg
 Trp

 Ala
 Ala
 Ala
 Ile
 Ala
 Ile
 Ala
 Cys
 Ala
 Cys
 Arg
 Trp

 Ala
 Ala
 Ala
 Ile
 Ala
 Ile
 Ala
 Cys
 Ala
 Cys
 Arg
 Trp

 A

- (2) INFORMATION FOR SEQ ID NO:250:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:

 Met
 Ile
 Glu
 Lys
 Pro
 Asn
 Ile
 Thr
 Lys
 Ile
 Asp
 Glu
 Asp
 Lys

 1
 5
 5
 10
 10
 15
 15

 Asp
 Tyr
 Gly
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys

Asp Tyr Gly Lys Leu Val He Glu Pro Leu Glu Arg Gly Tyr Gly Th

Ala Leu Gly Asn Ser Leu Arg Arg Val Leu Leu Ala Ser Leu Pro Gly
35 40 45

Ala Ala Val Thr Ser Ile Asn Ile Asp Gly Val Leu Kis Glu Phe Asp 50 55 60

PCT/US97/05306																
9	7/3702					_	~1	•	**- 1	Wat	C15	Tla	716			
		Val	Pro	Gly	Val		GIU	Asp	vaı	Mer	75	116	116	Deu	ng.	80
	65					70	_	_		~ 3		63.	T	7 1.0	T10	
	Lys	Gly	Ile	Ala	Val	Lys	Ser	Tyr	vaı		ASP	Glu	rys	116		GIU
					85				_	90			_		95 -	1
	Leu	Asp	Val	Glu	Gly	Pro	Ala	Glu		Thr	Ala	GIA	Asp		Leu	Tnr
				100					105				_	110		_,
	Asp	Ser	Asp	Ile	Glu	Ile	Val	Asn	Pro	Asp	His	Tyr		Phe	Thr	IIe
			115					120					125			
	Gly	Glu	Gly	Ser	Ser	Leu	Lys	Ala	Thr	Met	Thr	Val	Asn	Ser	Gly	Arg
		130					135					140				
	Gly	Tyr	Val	Pro	Ala	Asp	Glu	Asn	Lys	Lys	Asp	Asn	Ala	Pro	Val	Gly
	145					150					155					160
	Thr	Leu	Ala	Val	Asp	Ser	Ile	Tyr	Thr	Pro	Val	Thr	Lys	Val	Asn	Tyr
					165					170					175	
	Gln	Val	Glu	Pro	Ala	Arg	Val	Gly	Ser	Asn	Asp	Gly	Phe	Asp	Lys	Leu
				180					185					190		
	Thr	Leu	Glu	Ile	Leu	Thr	Asn	Gly	Thr	Ile	Ile	Pro	Glu	Asp	Ala	Leu
			195	ı				200					205			•
	Glv	Leu	Ser	Ala	Arg	Ile	Leu	Thr	Glu	His	Leu	Asp	Leu	Phe	Thr	Asn
		210					215					220				
	Leu	Thr	Glu	Ile	Ala	Lys	Ser	Thr	Glu	Val	Met	Lys	Glu	Ala	Asp	Thr
	225					230)				235					240
	Glu	Ser	Ası) Asp	Arg	, Ile	Leu	. Asp	Arg	Thr	Ile	Glu	Glu	Leu	Asp	Leu
					245	5				250)				255	•
	Ser	· Val	Arc	g Ser	туг	Ası	ı Cys	Le	Lys	Arg	, Ala	Gly	Ile	Asn	Thr	Val
				260)				265	i				270)	
	His	: Ast	. Le	ı Thi	r Glu	ı Lys	s Ser	c Glu	ı Ala	Gl	ı Met	: Met	. Lys	. Val	Arg	j Asn
			27	5				280	כ				285	•		
	Ţ.e.	ı Glv	/ Ar	g Ly:	s Sei	r Lei	u Glu	. Glu	ı Va	Ly	s Lev	ı Lys	Lev	ılle	e Asp	Leu
		290					299					300)			
	G1s			v Le	u Ly:	s As	р Гу	s								•
	309		- ,	•	-	31										
		-														

(2) INFORMATION FOR SEQ ID NO:251:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 151 amino acids
 - (B) TYPE: amino acid

wo

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:

Met Asp Ile Glu Lys Gln Arg Gly Ile Ser Val Thr Ser Ser Val Met 1 5 Gln Phe Asp Tyr Asp Gly Lys Arg Val Asn Ile Leu Asp Thr Pro Gly 25 His Glu Asp Phe Ser Glu Asp Thr Tyr Arg Thr Leu Met Ala Val Asp 40 Ala Ala Val Met Val Val Asp Ser Ala Lys Gly Ile Glu Ala Gln Thr 55 Lys Lys Leu Phe Glu Val Val Lys His Arg Gly Ile Pro Val Phe Thr 70 75 Phe Met Asn Lys Leu Asp Arg Asp Gly Arg Glu Pro Leu Asp Leu Leu 90 Gln Glu Leu Glu Glu Ile Leu Gly Ile Ala Ser Tyr Pro Met Asn Trp 100 105 Pro Ile Gly Met Gly Lys Ala Phe Glu Gly Leu Tyr Asp Leu Tyr Asn 120 Gln Arg Leu Glu Leu Tyr Lys Gly Asp Glu Arg Phe Ala Ser Pro Arg 135 Arg Trp Arg Gln Thr Phe Trp

- (2) INFORMATION FOR SEQ ID NO:252:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:

Met Ala Val Ile Ala Glu Arg Lys Ala Tyr Tyr His Asp Pro Val Glu

1 5 10 15

Asp Ala Ile Ile Met Lys Arg Glu Ile Asp Glu Gly
20 25

- (2) INFORMATION FOR SEQ ID NO:253:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 149 amino acids
 - (B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:

Met Asn Glu Thr Trp Ser Arg Thr Ala Leu Thr Leu Leu Lys His Gly

1 5 10 15

Ser Glu Val Asn Leu Glu Arg Ala Leu Ser Val Asn Gly Arg Leu Gly 20 25 30

Gly His Val Val Thr Gly His Ile Asp Gly Thr Gly Lys Ile Ser Ser 35 40 45

Ile Lys Lys Asp Asp Asn Ala Val Trp Tyr Gln Ile Asn Thr Gln Lys
50 55 60

Glu Ile Leu Asp Leu Ile Val Glu Lys Gly Ser Ile Thr Ile Asp Gly 65 70 75 80

Ile Ser Leu Thr Val Ala Lys Val Ser Lys Val Asn Phe Ser Val Ser 85 90 95

Val Ile Pro His Thr Leu Lys Gln'Thr Ile Leu Lys Ser Lys Gln Val

Gly Ser Thr Val Asn Leu Glu Asn Asp Ile Leu Gly Lys Tyr Val Gln
115 120 125

Lys Leu Met Asp Asn Ser Pro Lys Ser Glu Ile Ser Lys Glu Leu Leu 130 135 140

Tyr Gln Asn Gly Phe

145

- (2) INFORMATION FOR SEQ ID NO:254:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:

 Met Asn Trp Ser Ala Leu Glu Gln Gln Ile Val Asp Glu Leu Lys Ile

 1
 5
 10
 15
 15

 Tyr Ile Ala Pro Lys Ile Phe Gly Gly Ser Ala Lys Phe Pro Val Gly
 20
 25
 30

Gly Glu Gly Ile Ser Leu Pro Asn Asp Ala Ile Arg Leu Lys Pro Tyr

Ala Phe Ser Gln Xaa Gly Xaa Asp Tyr Leu Ile Glu Ser Glu Val Ile 50 55 60

Tyr Pro Cys Ser Gln Glu 65 70

- (2) INFORMATION FOR SEQ ID NO:255:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:

Met Val Leu Phe Leu Val Pro Gln Leu Arg Asn Ala Tyr Gly Thr Ala 1 5 10 15

Ala Ile Gly Ile Ile Cys Gly Leu Tyr Trp Ala Val Ser Ser Asn Met 20 25 30

Thr Val Glu Ala Thr Gln Arg Leu Thr Gly Gly Gly Gly Phe Ala Ile
35 40 45

Gly His Gln Gln Gln Phe Ala Ile Trp Phe Val Asp Lys Val Ala Gly
50 55 60

Arg Phe Gly Lys Lys Glu Glu Ser Leu Asp Asn Leu Lys Leu Pro Lys 65 70 75 80

Phe Leu Ser Ile Phe His Asp Thr Val Val Ala Ser Ala Thr Phe Asp 85 90 95

Ala Arg Ile Leu Arg Gly His Ser Phe Asn Leu Gly Ser Arg His Tyr
100 105 110

Val

- (2) INFORMATION FOR SEQ ID NO:256:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:

Met Leu Ile Asn Ser Leu Asn Gln Ser Tyr Ile Ser Ala Lys Arg Ile 10 Glu Glu Val Phe Ala Glu Ser Pro Glu Asn Ile His Ser Glu Leu Glu 25 Gln Lys Gln Val Thr Ser Gly Arg Val Leu Gln Val Gln Glu Leu Thr 40 Phe Thr Tyr Pro Asp Ala Ala Gln Pro Ser Leu Arg Asp Ile Ser Phe Asp Met Thr Gln Gly Gln Ile Leu Gly Ile Ile Gly Gly Thr Gly Ser 70 Gly Lys Ser Ser Leu Val Gln Leu Leu Cly Leu Tyr Pro Val Asp 85 Lys Gly Asn Ile Asp Leu Tyr Gln Asn Gly Arg Ser Pro Leu Asn Leu Glu Gln Trp Arg Ser Trp Ile Ala Tyr Val Pro Gln Lys Val Lys Leu 120 Phe Lys Gly Thr Ile Arg Ser Asn Leu Thr Leu Gly Leu Asn Gln Glu Val Ser Asp Gln Lys Leu Trp Gln Ala Leu Glu Ile Ala Gln Ala Lys 155 150 Asp Phe Val Ser Glu Lys Glu Gly Leu Leu Asp Ala Leu Ile Glu Ala 170 Gly Gly Arg Asn Phe Ser Gly Gly Gln Lys Gln Arg Leu Ser Ile Ala 185 180 Arg Ala Val Leu Arg Gln Ala Pro Phe Ile Ile Leu Asp Asp Ala Thr 200 Ser Ala Leu Asp Thr Ile Thr Glu Ser Lys Leu Leu Lys Ala Ile Arg Glu Asn Phe Pro Asn Thr Ser Leu Ile Leu Ile Ser Gln Arg Thr Ser 235 Thr Leu Gln Met Ala Asp Gln Ile Leu Leu Leu Glu Lys Gly Glu Leu 250 Leu Ala Val Gly Lys His Asp Asp Leu Met Lys Ser Ser Gln Val Tyr 265 Arg Glu Ile Asn Ala Ser Gln His Gly Lys Glu Asp 280

- (2) INFORMATION FOR SEQ ID NO:257:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 105 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:
- Met Lys Asp Pro Glu Ser Arg Leu Tyr Ile Leu Leu Lys Asp Gly Gln

 1 5 10 15
- Val Ile Gly Thr Cys Thr Val Asp Leu Ser Thr Asn Thr Asn Tyr Phe
 20 25 30
- Tyr Gly Leu Ala Ile Leu Glu Pro Glu Arg Gly Lys Gly Tyr Gly Ser 35 40 45
- Tyr Leu Ala Lys Ser Leu Val Asn Gln Leu Ile Glu Gln Asn Asp Lys 50 55 60
- Glu Phe Gln Ile Ala Val Glu Asp Ser Asn Val Gly Ala Lys Arg Leu 70 75 80
- Tyr Glu Lys Ile Gly Phe Val Lys Gln Thr Gln Val Val Tyr Leu Asn 85 90 95
- Glu Lys Gly Ala Arg Asp Ser Glu Val 100 105
 - (2) INFORMATION FOR SEQ ID NO:258:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:
- Met Phe Ala Leu Ser Ser Asn Lys Glu Leu Ala Glu Arg Val Ala Gln
- Glu Ile Gly Ile Glu Leu Gly Lys Ser Ser Val Arg Gln Phe Ser Asp
- 20 25 30 Gly Gly Tle Gly Asp Tle Gly Gly Ser Tle Are Gly Lyg Wig Wel
- Gly Glu Ile Gln Val Asn Ile Glu Glu Ser Ile Arg Gly Lys His Val 35 46 45
- Phe Ile Leu Gln Ser Thr Ser Ser Pro Val Asn Asp Asn Leu Leu Glu 50 55 60

Ile Leu Ile Met Val Asp Ala Leu Lys Arg Ala Ser Ala Glu Ser Val 70 Asn Val Val Met Pro Tyr Tyr Gly Tyr Ala Arg Gln Asp Arg Lys Ala 90 Arg Ala Arg Glu Pro Ile Thr Ser Lys Leu Val Ala Asn Met Leu Glu 105 Val Ala Gly Val Asp Arg Leu Leu Thr Ile Asp Leu His Ala Ala Gln 120 Ile Gln Gly Phe Phe Asp Ile Pro Val Asp His Leu Met Gly Ala Pro 135 Leu Ile Ala Asp Tyr Phe Glu Arg Pro Gly Met Val Gly Ser Asp Tyr 150 Val Val Val Ser Pro Asp His Gly Gly Val Thr Arg Ala Arg Lys Leu 170 165 Ala Glu Phe Leu Lys Thr Ser Ile Ala Ile Ile Glu Lys Arg Arg Ser 185 Val Asp Lys Met Asn Thr Ser Glu Val Met Asn Thr Ile Gly Lys Val 200 195 Glu Gly Asn His Leu 210

(2) INFORMATION FOR SEQ ID NO:259:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 182 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:259:

Val Thr Asn Leu Ile Gly 180

(2) INFORMATION FOR SEQ ID NO:260:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE; amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:260:

Met Arg Ala Phe Ser Asp Phe Gly Thr Pro Met Leu Ile Gly Glu Gly 5 10 Tyr Arg Thr Phe Pro Val Leu Ile Tyr Thr Gln Phe Ile Ser Glu Val 25 Gly Gly Asn Ser Ala Phe Ala Ile Met Ala Ile Ile Ile Ala Leu Ala Ile Phe Leu Ile Gln Lys His Ile Ala Asn Arg Tyr Ser Phe Ser Met Asn Leu Leu His Pro Ile Glu Pro Lys Lys Thr Thr Lys Gly Lys Met 70 75 Ala Ala Ile Tyr Ala Thr Val Tyr Gly Ile Ile Phe Ile Ser Val Leu 90 Pro Gln Ile Tyr Leu Ile Tyr Thr Ser Phe Leu Lys Thr Ser Gly Met 105 Val Phe Val Lys Gly Tyr Ser Pro Asn Ser Tyr Lys Val Ala Phe Asn 115 120 125

- (2) INFORMATION FOR SEQ ID NO:261:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 74 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:

- (2) INFORMATION FOR SEQ ID NO:262:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:

Met lle Phe lle Pro Met Ala Ala Tyr Ser lle Ala Arg Asn Met Ser l le Ala Arg Asn Met Ser l le Arg Lys Ala Phe Thr lle His Val Tyr Pro Leu Asn Pro Arg Asn Asn Ser l le Asn Ser

Leu Arg Thr Phe Pro Ser His His Asp Ser Asp Tyr Gly Tyr Asp Glu 35 40 45

- (2) INFORMATION FOR SEQ ID NO:263:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:

 Met
 Lys
 Phe
 Arg
 Lys
 Leu
 Ala
 Cys
 Thr
 Val
 Leu
 Ala
 Gly
 Ala
 Val

 Leu
 Gly
 Leu
 Ala
 Ala
 Cys
 Gly
 Ass
 Ser
 Gly
 Gly
 Ser
 Lys
 Asp
 Ala
 Ala
 Ala
 Ala
 Lys
 Thr
 Glu
 Ile
 Thr
 Trp
 Trp
 Ala
 Phe

 Lys
 Gly
 Ala
 Lys
 Thr
 Glu
 Ile
 Thr
 Trp
 Trp
 Ala
 Phe

 Pro
 Val
 Phe
 Thr
 Glu
 Lys
 Thr
 Gly
 Asp
 Gly
 Thr
 Trp
 Ala
 Phe

 Lys
 Ser
 Ile
 Ile
 Ala
 Ala
 Phe
 Ile
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala

- (2) INFORMATION FOR SEQ ID NO:264:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 275 amino acids

70

(B) TYPE: amino acid

65

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:

Val	Glu	Val	Thr	Ser	Ile		Gln	Thr	Thr	Arg		Glu	Glu	Asp	Leu
	50	_				55				_	60				
	Lys	Glu	His	Gly		Arg	Glu	Val	Val		Glu	Gly	Lys	Asn	_
65					70					75					80
Ser	Arg	Thr	Val	Thr	Thr	Pro	Tyr	Ile	Leu	Asn	Ala	Thr	Asp	Gly	Thr
				85					90					95	
Thr	Thr	Glu	Gly	Thr	Ser	Thr	Thr	Asp	Glu	Ala	Glu	Met	Glu	Lys	Glu
			100					105					110		
Val	Val	Arg	Val	Gly	Thr	Lys	Pro	Lys	Glu	Lys	Leu	Ala	Pro	Val	Leu
		115					120					125			
Ser	Leu	Thr	Ser	Val	Thr	Asp	Asn	Ala	Met	Leu	Arg	Ser	Ala	Arg	Leu
	130					135					140				
Thr	Tyr	His	Leu	Glu	Asn	Thr	Asp	Ser	Val	Asp	Val	Lys	Lys	Ile	His
145	•				150					155					160
	Glu	Ile	Lys	Asn	Gly	Asp	Lys	Val	Val	Lys	Thr	Ile	Asp	Leu	Ser
			-	165	-	-	-		170					175	
Lvs	Glu	Ara	Leu	Ser	Asp	Ala	Val	Asp	Gly	Leu	Glu	Leu	Tyr	Lys	Asp
-4-			180		-			185	_				190	_	
ጥህዮ	Lys	Tle		Thr	Ser	Met	Thr	Tvr	Asp	Arg	Gly	Asn	Gly	Glu	Glu
-3-	_,_	195					200	•	•		-	205	-		
ሞb ×	Ser		I.e.i	Glu	Glu	Thr		Leu	Ara	Leu	Asp		Lvs	Lvs	Val
1111	210	****	204		022	215			3		220			-,-	
C1	Leu	Tuc	Nen	T1_	Gly		Thr	Asn	Leu	Val		Va 1	Asn	Glu	Asp
225	пел	Lys	Vali	116	230	501			200	235	2,0				240
	Thr	a 1	11-1	810) cn	Dho	Len	Thr		Tare	Pro	Va1	Acn	-
GIY	rnr	GIU	vai		ser	Asp	Pile	Leu	250	Ser	шуs	PIO	Val	255	vai
			_	245	_		- \	0		.		T	1/- 1		Co=
Gln	Asn	Tyr		Leu	Lys	Val	Thr		Arg	Asp	ASII	рÀг		val	Ser
			260					265					270		
Pro	Pro														
		275													

- (2) INFORMATION FOR SEQ ID NO:265:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 106 amino acids
- (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:265:

Met Ala Val Met Lys Ile Glu Tyr Tyr Ser Gln Val Leu Asp Met Glu Trp Gly Val Asn Val Leu Tyr Pro Asp Ala Asn Arg Val Glu Glu Pro 25 Glu Cys Glu Asp Ile Pro Val Leu Tyr Leu Leu His Gly Met Ser Gly 40 Asn His Asn Ser Trp Leu Lys Arg Thr Asn Val Glu Arg Leu Leu Arg 50 55 Gly Thr Asn Leu Ile Val Val Met Pro Asn Thr Ser Asn Gly Trp Tyr 70 75 Thr Asp Thr Gln Tyr Gly Phe Asp Tyr Tyr Thr Ala Leu Ala Glu Glu 90 85 Leu Pro Gln Val Pro Glu Thr Leu Leu Pro 100

- (2) INFORMATION FOR SEQ ID NO:266:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:

 Met Arg Leu
 Leu Ala Met Lys
 Met Lys
 Gln
 Ile
 Ser
 Asp
 Thr
 Thr
 Leu

 1
 5
 10
 10
 15
 15

 Lys
 Ile
 Thr
 Met Ser
 Leu Glu
 Asp
 Leu Met Asp
 Arg Gly
 Met Glu
 Ile

 20
 25
 30
 30
 30
 30
 Ala
 Asp
 Phe Leu Val
 Pro Gln
 Glu
 Lys
 Thr
 Glu
 Phe Phe Phe Tyr
 Ala

 35
 40
 45
 45
 Ile
 Leu Gly
 50
 45
 Ile
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 A

- (2) INFORMATION FOR SEQ ID NO: 267:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:

 Met
 Leu
 Pro
 Ile
 Ile
 Cys
 Gly
 Glu
 Ser
 Leu
 Glu
 Thy
 Glu
 Ala

 1
 5
 5
 5
 10
 10
 5
 15
 15

 Gly
 Lys
 Ala
 Ala
 Glu
 Phe
 Val
 Gly
 Ala
 Gln
 Val
 Gln
 Ala
 Gln
 Ala
 Ala
 Ala
 Leu
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Leu
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala<

- (2) INFORMATION FOR SEQ ID NO:268:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 208 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:

 Met
 Fhe
 Val
 Glu
 Ala
 Cys
 Lys
 Ala
 Val
 Val
 Arg
 Ala
 Asn
 Glu
 Tyr

 1
 Fro
 Fro
 5
 Image: Signal of the content of th

Val Pro Thr Asn Phe Leu Ile Gln Asp Glu Tyr Asp Arg Ala Ala Pro Asn Gly Thr Gly Ala Ala Lys Val Gly Gly Asn Tyr Ala Ala Ser Leu 90 Leu Pro Gly Lys Met Ala Lys Ser Arg His Phe Ser Asp Val Ile Tyr 100 105 Leu Asp Pro Ser Thr His Thr Lys Ile Glu Glu Val Gly Ser Ala Asn 120 Phe Phe Gly Ile Thr Ala Asp Asn Glu Phe Val Thr Pro Leu Ser Pro 135 Ser Ile Leu Pro Ser Ile Thr Lys Tyr Ser Leu Leu Tyr Leu Ala Glu 150 155 His Arg Leu Gly Leu Thr Pro Ile Glu Gly Asp Val Pro Ile Asp Asn 170 165 Leu Asp Arg Phe Val Lys Ala Gly Ala Cys Gly Thr Ala Ala Val Ile 185 Ser Pro Ile Gly Gly Ile Gln His Gly Asp Asp Phe His Val Ile Leu 195 200 205

- (2) INFORMATION FOR SEQ ID NO:269:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:

 Met Val

- (2) INFORMATION FOR SEQ ID NO:270:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 248 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:

Met Thr Ala Ser Pro Leu Lys Lys Ser Ile Lys Lys Lys Asn Arg Lys 10 Leu Thr Asn Lys Xaa Glu Lys His Met Ser Lys Ile Ile Gly Ile Asp 25 Leu Gly Thr Thr Asn Ser Ala Val Ala Val Leu Glu Gly Thr Glu Ser 40 Lys Ile Ile Ala Asn Pro Glu Gly Asn Arg Thr Thr Pro Ser Val Val Ser Phe Lys Asn Gly Glu Ile Ile Val Gly Asp Ala Ala Lys Arg Gln 75 Ala Val Thr Asn Pro Asp Thr Val Ile Ser Ile Lys Ser Lys Met Gly 90 Thr Ser Glu Lys Val Ser Ala Asn Gly Lys Glu Tyr Thr Pro Gln Glu 105 Ile Ser Ala Met Ile Leu Gln Tyr Leu Lys Gly Tyr Ala Glu Asp Tyr 120 Leu Gly Glu Lys Val Thr Lys Ala Val Ile Thr Val Pro Ala Tyr Phe 135 Asn Asp Ala Gln Arg Gln Ala Thr Lys Asp Ala Gly Lys Ile Ala Gly 155 150 Leu Glu Val Xaa Arg Ile Val Asn Glu Pro Thr Ala Ala Ala Leu Ala 170 165 Tyr Gly Leu Asp Lys Thr Asp Lys Glu Glu Lys Ile Leu Val Phe Asp 185 Leu Gly Gly Gly Thr Phe Asp Val Ser Ile Leu Glu Leu Gly Asp Gly 200 Val Phe Asp Val Leu Ser Thr Ala Gly Asp Asn Lys Leu Gly Gly Asp 220 215 Asp Phe Asp Gln Lys Ile Ile Asp His Leu Val Ala Glu Phe Lys Lys 235 230 Glu Asn Gly Ile Arg Leu Val Tyr 245

- (2) INFORMATION FOR SEQ ID NO: 271:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 109 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

 Met
 Lys
 Leu
 Ile
 Val
 Asp
 Leu
 Ile
 Tyr
 Glu
 Gly
 Phe
 Lys
 Lys
 Met

 1
 5
 5
 10
 10
 15
 15

 Arg
 Gln
 Ser
 Ala
 Glu
 Tyr
 Gly
 Asp
 Tyr
 Val
 Ser
 Gly

 Pro
 Arg
 Val
 Ile
 Thr
 Glu
 Glu
 Lys
 Met
 Lys
 Ala
 Val
 Leu

 Ala
 Asp
 Ile
 Glu
 Asn
 Glu
 Asn
 Met
 Lys
 Ala
 Val
 Leu

 Ala
 Asp
 Ile
 Glu
 Asn
 Glu
 Asn
 Asn
 Asp
 Tyr
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn</t

- Val Gly Lys Asn Asp Asp Asp Ala Phe Lys Ile Tyr Asn 100 105
 - (2) INFORMATION FOR SEQ ID NO:272:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272:
- Met Leu Leu Ser Ala Phe His Lys Tyr Glu Asn Gln Leu Asp Lys Val 1 10 15
- Arg Phe Ile Gly Leu His Thr Gly His Leu Gly Phe Tyr Thr Asp Tyr
- Arg Asp Phe Glu Leu Asp Lys Leu Val Thr Asn Leu Gln Leu Asp Thr
- Gly Ala Arg Val Ser Tyr Pro Val Leu Asn Val Lys Val Phe Leu Glu 50 55 60
- Asn Gly Glu Val Lys Ile Phe Arg Ala Leu Asn Glu Ala Ser Ile Arg 65 70 75 80

Arg Ser Asp Arg Thr Met Val Ala Asp Ile Val Ile Asn Gly Val Pro 85 90 95

Phe Glu Arg Phe Arg Gly Asp Gly Leu Thr Val Ser Thr Pro Thr Gly
100 105 110

Ser Thr Ala Tyr Asn

115

(2) INFORMATION FOR SEQ ID NO:273:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 207 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273:
- Met Gly Ala Gln Leu Ala Arg Glu Phe Lys His Glu Ala Asp Ile Val
- Val Gly Val Pro Asn Ser Ser Leu Ser Ala Ala Met Gly Phe Ala Glu 20 25 30
- Glu Ser Gly Leu Pro Asn Glu Met Gly Leu Ile Lys Asn Gln Tyr Thr
- Gln Arg Thr Phe Ile Gln Pro Thr Gln Glu Leu Arg Glu Gln Gly Val 50 55 60
- Arg Met Lys Leu Ser Ala Val Ser Gly Val Val Lys Gly Lys Arg Val 65 70 75 80
- Val Met Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Arg Arg Ile 85 90 95
- Val Gln Leu Leu Lys Glu Ala Gly Ala Thr Glu Val His Val Ala Ile 100 105 110
- Gly Ser Pro Ala Leu Ala Tyr Pro Cys Phe Tyr Gly Ile Asp Ile Gln 115 120 125
- Thr Arg Gln Glu Leu Ile Ala Ala Asn His Thr Val Glu Glu Thr Arg 130 135 140
- Gln Ile Ile Gly Ala Asp Ser Leu Thr Tyr Leu Ser Ile Asp Ser Leu 145 55 150
- Ile Glu Ser Ile Gly Ile Glu Thr Asp Ala Pro Asn Gly Gly Leu Cys 165 170 175
- Val Ala Tyr Phe Asp Gly Asp Tyr Pro Thr Pro Leu Tyr Asp Tyr Glu 180 185 190

Glu Asp Tyr Arg Arg Ser Leu Glu Glu Lys Thr Ser Phe Tyr Lys
195 200 205

(2) INFORMATION FOR SEQ ID NO:274:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:274:

Met Lys Ile Leu Val Thr Gly Phe Asn Pro Phe Gly Gly Glu Lys Ile 1 Asn Pro Ala Leu Glu Ala Val Lys Leu Leu Pro Ser Glu Ile Asn Gly 25 Ala Glu Val Arg Trp Val Glu Ile Pro Thr Val Phe Tyr Lys Ser Ser 40 Glu Val Leu Glu Ala Glu Ile Leu Arg Tyr Gln Pro Asp Ala Val Leu 60 Cys Ile Gly Gln Ala Gly Gly Arg Thr Gly Leu Thr Pro Glu Arg Val Ala Ile Asn Gln Asp Asp Ala Arg Ile Pro Asp Asn Glu Gly Asn Gln Pro Ile Asp Thr Pro Ile Arg Ile Asp Gly Ala Ser Ala Tyr Phe Ser 105 Ser Leu Pro Ile Lys Ala Met Val Gln Ala Asn Lys Lys Glu Gly Leu 120 Thr Gly Ser Leu Phe Pro Ile Arg Ala Gly Thr Phe Val Cys Ser His 135 Leu Met Tyr Gln Ala Leu Tyr Leu Val Glu Lys Lys Phe Pro Tyr Val 150 155 Lys Ala Gly Phe Met His Ile Pro Tyr Met Met Glu Gln Val Val Asn 165 170 Arg Pro Thr Thr Pro Thr Met Ser Leu Val Asp Ile Arg Arg Gly Ile 180 185 Glu Ala Ala Ile Gly Ala Met Ile Glu His Gly Asp Gln Glu Leu Thr 195 200 Leu Val Gly Gly Glu Ile His 210 215

(2) INFORMATION FOR SEQ ID NO:275:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 127 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:

Met Leu Val Pro Lys Arg Val Lys His Arg Arg Glu Phe Arg Gly Lys

1 5 10 15

Met Arg Gly Glu Ala Lys Gly Gly Lys Glu Val Ala Phe Gly Glu Tyr

Met Arg Gly Glu Ala Lys Gly Gly Lys Glu Val Ala Phe Gly Glu Tyr

20 25 30

Gly Leu Gln Ala Thr Thr Ser His Trp Ile Thr Asn Arg Gln Ile Glu 35 40 45

Ala Ala Arg Ile Ala Met Thr Arg Tyr Met Lys Arg Gly Gly Lys Val 50 55 60

Trp Ile Lys Ile Phe Pro His Lys Ser Tyr Thr Ala Lys Ala Ile Gly
65 70 75 80

Val Arg Met Gly Ser Gly Lys Gly Ala Pro Glu Gly Trp Val Ala Pro 85 90 95

Val Lys Arg Gly Lys Val Met Phe Glu Ile Ala Gly Val Ser Glu Glu 100 105 110

Ile Ala Arg Glu Ala Leu Arg Leu Ala Ser His Lys Leu Pro Val

- (2) INFORMATION FOR SEQ ID NO:276:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:276:

Met Gly Trp Trp Arg Glu Thr Ile Asp Ile Val Lys Glu Asn Asp Pro 1 5 10 15

Ala Ala Arg Thr Thr Leu Glu Val Leu Leu Thr Tyr Pro Gly Val Lys Ala Leu Ala Ala His Arg Leu Ser His Phe Leu Trp Lys Tyr Asp Phe 40 Lys Leu Leu Ala Arg Met His Ser Gln Phe Trp Arg Phe Trp Thr Gln Ile Glu Ile His Pro Gly Ala Gln Ile Asp Ser Gly Val Phe Ile Asp 70 75 His Gly Ser Gly Leu Val Ile Gly Glu Thr Ala Ile Val Glu Lys Gly Val Leu Leu Tyr His Gly Val Thr Leu Gly Gly Thr Gly Lys Asp Cys 100 105 Gly Lys Arg His Pro Thr Val Arg Lys Gly Ala Leu Ile Ser Ala His 120 Ala Gln Val Ile Gly Pro Val Glu Ile Gly Glu Asn Ala Lys Val Gly 135 Ala Ala Ala Val Val Ala Asp Val Pro Ser Asp Val Thr Val Val 150 155 Gly Ile Pro Ala Lys Ile Val Arg Leu His Gly Lys Lys Asp Glu Pro 170 Val Ile His Glu Val Glu Glu Lys Arg Glu Tyr Tyr Val Asn Lys Leu 185 Glu Gln Ala Lys Asp Ala Ser His Arg Ser Ser Gly Leu 200 205

(2) INFORMATION FOR SEQ ID NO: 277:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 195 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:277:

 Met
 Leu
 Phe
 Tyr
 Leu
 Leu
 Arg
 Asp
 Gly
 Lys
 Gly
 Leu
 Arg
 Asn
 Tyr
 Leu

 1
 5
 5
 1
 10
 1
 15
 15

 Thr
 6ln
 Phe
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 1leu
 <

Val Ala Ile Ile Val Ala Val Met Phe Ile Ile Phe Phe Lys Ile Ile Gly Leu Arg Tyr Ala Val Thr Leu Gly Val Thr Ala Gly Ile Leu Asn 75 Leu Val Pro Tyr Leu Gly Ser Phe Leu Ala Met Leu Pro Ala Leu Val 90 Leu Gly Leu Ile Ala Gly Pro Val Met Leu Leu Lys Val Val Ile Val 105 Phe Ile Val Glu Gln Thr Ile Glu Gly Arg Phe Val Ser Pro Leu Ile 120 Leu Gly Ser Gln Leu Asn Ile His Pro Ile Asn Val Leu Phe Val Leu 140 135 Leu Thr Ser Gly Ser Met Phe Gly Ile Trp Gly Val Leu Leu Gly Ile 155 150 Pro Val Tyr Ala Ser Ala Lys Val Val Ile Ser Ala Ile Phe Glu Trp 170 165 Tyr Lys Val Val Ser Gly Leu Tyr Glu Leu Glu Gly Glu Glu Val Lys

185

Ser Glu Gln 195

(2) INFORMATION FOR SEQ ID NO:278:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:

(2) INFORMATION FOR SEQ ID NO:279:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:279:

Met Lys Lys Arg Ala Ile Val Ala Val Ile Val Leu Leu Leu Ile Gly

1 5 10 15

Leu Asp Gln Leu Val Lys Ser Tyr Ile Val Gln Gln Ile Pro Leu Gly
20 25 30

Glu Val Arg Ser Trp Ile Pro Asn Phe Val Ser Leu Thr Tyr Leu Gln
35 40 45

Asn Arg Gly Ala Ala Phe Ser Ile Leu Gln Asp Gln Gln Leu Leu Phe 50 55 60

Ala Val Ile Thr Leu Val Val Val Ile Gly Ala Ile Trp Tyr Leu His
65 70 75 80

Lys His Met Glu Asp Ser Phe Trp Met Val Leu Gly Leu Thr Leu Ile 85 90 95

Ile Ala Gly Gly Leu Gly Asn Phe Ile Asp Arg Val Ser Gln Gly Phe
100 105 110

Val Val Asp Met Phe His Leu Asp Phe Ile Asn Phe Ala Ile Phe Asn

Val Ala Asp Asn Tyr Leu Thr Val Gly Val Ile Ile Leu Leu Ile Ala 130 135 140

Met Leu Lys Glu Glu Ile Asn Gly Asn

145 150

- (2) INFORMATION FOR SEQ ID NO:280:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 106 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

 Met
 Gly
 Ala
 Tyr
 Leu
 Val
 Met
 Gln
 Ser
 Leu
 Ser
 Tyr
 Leu
 Glu
 Tyr
 Leu
 Glu
 Tyr
 Leu
 Glu
 Ser
 Tyr
 Lyr
 Lyr
 Leu
 Leu
 Leu
 Val
 Phe
 Arg
 His
 Lyr
 Lyr
 Leu
 Arg
 Tyr
 Leu
 Arg
 Tyr
 Leu
 Arg
 Leu
 Arg
 His
 Lyr
 Lyr
 Leu
 Arg
 Tyr
 Leu
 Arg
 Leu
 Arg
 Tyr
 Val

 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg

- (2) INFORMATION FOR SEQ ID NO:281:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

100

Glu

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:281:

 Met
 His
 Val
 Arg
 Met
 Ile
 Pro
 Lys
 Ser
 Thr
 Pro
 Asp
 Thr
 Lys
 Phe
 Ala

 Asp
 Val
 Ala
 Thr
 His
 Gln
 Pro
 Glu
 Tyr
 Ser
 Arg
 Asp
 Asp
 Val
 Ala
 Gly

 Ala
 Thr
 His
 Gln
 Pro
 Trr
 Pro
 Glu
 Ile
 Phe
 His
 Gly
 Val
 Ser
 Val

 Ala
 Gly
 Tyr
 His
 Leu
 Trr
 Phe
 Ile
 Phe
 Asp
 His
 Phe
 Ile
 Ile
 Phe
 His
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile

105

- (2) INFORMATION FOR SEQ ID NO:282:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:282:

Met Ala Val Ala Lys Gly Lys Leu Thr Ile Ile Ala His Val Ala Cys

1 10 15

Asn Asn Thr Lys Asp Ser Met Glu Leu Ala Arg His Ala Glu Ser Leu
20 25 30

Gly Val Asp Ala Ile Ala Thr Asp Ser Thr Asn Leu Phe Pro Leu Ala 35 40 45

Arg Ile Thr Gln Leu Pro Asn Thr Gly Thr Ile Ser Val Leu Gln Leu 50 55 60

Gln Thr Gln Thr Thr

65

- (2) INFORMATION FOR SEQ ID NO:283:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:283:

Met Gly Glu Thr Gln Ile Ile Asp Gly Leu Asp Pro Glu Tyr Lys Lys

1 10 15

Arg Phe Met His His Tyr Asn Phe Pro Gln Tyr Ser Val Gly Glu Thr
20 25 30

Gly Arg Tyr Gly Ala Pro Gly Arg Arg Glu Ile Gly His Gly Ala Leu

Gly Glu Arg Ala Leu Ala Gln Val Leu Pro Ser Leu Glu Glu Phe Pro 50 55 60

Tyr	Ala	Ile	Arg	Leu	Val	Ala	Glu	Val	Leu	Glu	Ser	Asn	Gly	Ser	
65					70					75					80
Ser	Gln	Ala	Ser	Ile	Сув	Ala	Gly	Thr	Leu	Ala	Leu	Met	Ala	Gly	Gly
				85					90					95	
Val	Pro	Ile	Lys	Ala	Pro	Val	Ala	Gly	Ile	Ala	Met	Gly	Leu	Ile	Ser
			100					105					110		
Asp	Gly	Asn	Asn	Tyr	Thr	Val	Leu	Thr	Asp	Ile	Gln	Gly	Leu	Glu	Asp
		115					120					125			
His	Phe	Gly	Asp	Met	Asp	Phe	Lys	Val	Ala	Gly	Thr	Arg	Asp	Gly	Ile
	130					135					140				
Thr	Ala	Leu	Gln	Met	Asp	Ile	Lys	Ile	Gln	Gly	Ile	Thr	Ala	Glu	Ile
145					150					155					160
Leu	Thr	Glu	Ala	Leu	Ala	Gln	Ala	Lys	Lys	Ala	Arg	Phe	Glu	Ile	Leu
				165					170					175	
Asp	Val	Ile	Glu	Ala	Thr	Ile	Pro	Glu	Val	Arg	Pro	Glu	Leu	Ala	Pro
			180					185					190		
Thr	Ala	Pro	Lys	Ile	Asp	Thr	Ile	Lys	Ile	Asp	Val	Asp	Lys	Ile	Lys
		195					200					205			
Ile	Val	Ile	Gly	Lys	Gly	Gly	Glu	Thr	Ile	Asp	Lys	Ile	Ile	Ala	Glu
	210					215					220				
Thr	Gly	Val	Lys	Ile	Asp	Ile	Asp	Glu	Glu	Xaa	Asn	Val	Phe	Tyr	
225					230					235					240
Leu	Leu	Val	Asp	Gln	Asn	Ala	Ile	Asn	Pro	Cys	Pro	Lys	Lys		
				245					250					255	
Leu	Val	Trp	Phe	Arg	Glu	Pro	Lys	Trp	Met	: Lys	Phe	Thr	Val		Asn
			260					265					270		
Arg	Ser	Туг	Arg	; Glu	ı Phe	• Gly	/ Ala	Phe	· Val	Thr	Lev	t			
		275	i				280)							

- (2) INFORMATION FOR SEQ ID NO:284:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 156 emino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:

Met Ile Asn Asn Val Val Leu Val Gly Arg Met Thr Arg Asp Ala Glu

1 5 10 15

Leu Arg Tyr Thr Pro Ser Asn Val Ala Val Ala Thr Phe Thr Leu Ala 25 Val Asn Arg Thr Phe Lys Ser Gln Asn Gly Glu Arg Glu Ala Asp Phe 40 Ile Asn Val Val Met Trp Arg Gln Gln Ala Glu Asn Leu Ala Asn Trp Ala Lys Lys Gly Ser Leu Ile Gly Val Thr Gly Arg Ile Gln Thr Arg Ser Tyr Asp Asn Gln Gln Gly Gln Arg Val Tyr Val Thr Glu Val Val 90 Ala Glu Asn Phe Gln Met Leu Glu Ser Arg Ser Val Arg Glu Gly His 105 100 Thr Gly Gly Ala Tyr Ser Ala Pro Thr Ala Asn Tyr Ser Ala Pro Thr 120 Asn Ser Val Pro Asp Phe Ser Arg Asn Glu Asn Pro Phe Gly Ala Thr 135 Asn Pro Leu Asp Ile Ser Xaa Asp Asp Leu Pro Phe 150

(2) INFORMATION FOR SEQ ID NO:285:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:285:

Met Asp Leu Val Arg Ile Leu Lys Glu Pro Arg Asn Ala Leu Val Lys

1 5 10 15

Gln Tyr Gln Thr Leu Leu Ser Tyr Asp Asp Val Glu Leu Glu Phe Asp

20 25 30

Asp Glu Ala Leu Gln Glu Ile Ala Asn Lys Ala Ile Glu Arg Lys Thr
35 40 45

Gly Ala Arg Gly Leu Arg Ser Ile Ile Glu Glu Thr Met Leu Asp Val

Met Phe Glu Val Pro Ser Gln Glu Asn Val Lys Leu Val Arg Ile Thr 65 70 75 80

Lys Glu Thr Val Asp Gly Thr Asp Lys Pro Ile Leu Glu Thr Ala 85 90 95

- (2) INFORMATION FOR SEQ ID NO:286:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:286:

Met Thr Glu Ala Gly Tyr Val Gly Glu Asp Val Glu Asn Ile Leu Leu

Lys Leu Leu Gln Val Ala Asp Phe Asn Ile Glu Arg Ala Glu Arg Gly

Ile Ile Tyr Val Asp Glu Ile Asp Lys Ile Ala Lys Lys Ser Glu Asn

Val Ser Ile Thr Arg Asp Val Ser Gly Glu Gly Val Gln Gln Ala Leu

Leu Lys Ile Ile Glu Gly Thr Val Ala Ser Val Pro Pro Gln Gly Gly 65 70 75 80

Arg Lys His Pro Gln Gln Val Asp Asp Ser Ser Gly Tyr Lys Lys Tyr 85 90 95

Pro Leu His Arg Gly Trp Cys Phe 100

- (2) INFORMATION FOR SEQ ID NO:287:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 209 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:287:

Met Trp Pro Arg Glu Ser Arg Ser Cys Arg Leu Thr Lys Val Lys Ile

1 5 10 15

Cys Gly Leu Ser Thr Lys Glu Ala Val Glu Thr Ala Val Ser Ala Gly 25 Ala Asp Tyr Ile Gly Phe Val Phe Ala Pro Ser Lys Arg Gln Val Thr 40 Leu Glu Glu Ala Ala Glu Leu Ala Lys Leu Ile Pro Ala Asp Val Lys 55 Lys Val Gly Val Phe Val Ser Pro Ser Arg Val Glu Leu Leu Glu Ala 70 Ile Asp Lys Val Gly Leu Asp Leu Val Gln Val His Gly Gln Val Ala Asp Asp Leu Phe Glu Asn Leu Pro Cys Ala Ser Ile Gln Ala Val Gln 105 Val Asp Gly Asn Gly His Val Pro Asn Ser Gln Ala Asp Tyr Leu Leu 120 Phe Asp Ala Pro Val Ala Gly Ser Gly Gln Ser Phe Asp Trp Gly Gln 135 Leu Asp Thr Thr Gly Leu Ala Gln Pro Phe Phe Ile Ala Gly Gly Leu 150 155 Asn Glu Asp Asn Val Val Lys Ala Ile Gln His Phe Thr Pro Tyr Ala 165 170 Val Asp Val Ser Ser Gly Val Glu Thr Asp Gly Gln Lys Asp His Glu 180 185 Lys Ile Arg Arg Phe Ile Glu Arg Val Lys His Gly Ile Ser Gly Thr 200 Lys

(2) INFORMATION FOR SEQ ID NO:288:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:288:

Met Asn Cys Glu Ala Val Ala Leu Gly Ser Phe Cys Glu Leu Lys Ser 1 5 5 10 10 15 15

Arg Arg Gly Lys Lys Gln Lys Gly Glu Ile Leu Met Ala Val Ile Ser 20 25 30

Met Lys Gln Leu Leu Glu Ala Gly Val His Phe Gly His Gln Thr Arg

Arg Trp Asn Pro Lys Met Ala Lys Tyr Ile Phe Thr Glu Arg Asn Gly 50 55 60

Ile His Val Ile Asp Leu Gln Gln Thr Val Lys Tyr Ala Asp Gln Ala 65 70 75 80

Tyr Xaa Phe Met Arg Asp Ala Ala Ala Asn Asp Ala Val Val Leu Phe 85 90 95

Val Gly Thr Lys Lys Thr Ser Ser 100

- (2) INFORMATION FOR SEQ ID NO:289:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:

- (2) INFORMATION FOR SEQ ID NO:290:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 141 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:290:

Met Glu Glu Leu Gly Gln Ser Tyr Gly Tyr Leu Leu Tyr Arg Thr Glu
1 5 10 15

Thr Asn Trp Asp Ala Glu Glu Glu Arg Leu Arg Ile Ile Asp Gly Arg 20 25 30

- Asp Arg Ala Gin Leu Tyr Val Asp Gly Gln Trp Val Lys Thr Gln Tyr
 35 40 45
- Gln Thr Glu Ile Gly Glu Asp Ile Phe Tyr Gln Gly Lys Lys Gly
 50 55 60
- Leu Ser Arg Leu Asp Ile Leu Ile Glu Asn Met Gly Arg Val Asn Tyr 65 70 75 80
- Gly His Lys Phe Leu Ala Asp Thr Gln Arg Lys Gly Ile Arg Thr Gly 85 90 95
- Val Cys Lys Asp Leu His Phe Leu Leu Asn Trp Lys His Tyr Pro Leu
 100 105 110
- Pro Leu Asp Asn Pro Glu Lys Ile Asp Phe Ser Lys Gly Trp Thr Gln
 115 120 125
- Gly Gln Pro Ala Phe Tyr Ala Tyr Asp Phe Thr Val Glu 130 135 140

(2) INFORMATION FOR SEQ ID NO:291:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 68 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:291:
- Met Gly Lys Glu Lys Val Trp Leu Pro Arg Lys Gln Gly Leu Pro Gly
 1 5 10 15
- Leu Ala Tyr Tyr Val Ile Glu Val Ala His Lys Glu Glu Leu Leu Thr
 20 25 30
- Ile Ala Gln Arg Ala Gln Glu Val Asp Val Pro Ile Lys Trp Met Thr
 35 40 45
- Ser Ser Gln Leu Glu Ile Thr Asp Ser Asp Gly Ile Val Thr Cys Ile 50 55 60

Arg Leu Ala Arg

65

- (2) INFORMATION FOR SEQ ID NO:292:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amine acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:292:

 Met
 Asn
 Lys
 Lys
 Gln
 Trp
 Leu
 Gly
 Leu
 Gly
 Leu
 Val
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 A

- (2) INFORMATION FOR SEQ ID NO:293:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:293:

 Met
 Ser
 Gln
 Trp
 Asp
 Arg
 Lys
 Leu
 Asp
 Ala
 Pro
 Lys
 Leu
 Asp
 Arg
 Leu
 Ala
 Phe
 July
 Gly
 Val
 Glu
 Phe
 Gly
 Leu
 Gly
 Phe
 Glu

 Ala
 Gly
 Frage
 Lys
 Gly
 Ser
 Gly
 Val
 Met
 Asp
 Glu
 Leu
 Gly
 Frage
 Ser

 Ala
 Frage
 Lys
 Gly
 Ser
 Gly
 Val
 Met
 Asp
 Glu
 Leu
 Trp
 Ser

 Lys
 Gly
 Asp
 Gly
 Trp
 Trp
 Arg
 Arg
 Trp
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg</t

His Glu Pro Tyr Lys Ala Thr Val Glu Arg Ser Asp Pro Thr Ala Leu 100 105 110

Pro Ala Ala Gly Met Val Met Glu Ala Val Val Ala Thr Val Leu Ala 115 120 125

Gln Glu Ile Leu Glu Lys Phe Ser Ser Asp Asn Leu Glu Glu Leu Lys 130 135 140

Glu Ala Val Ala Lys His Arg Asp Tyr Thr Lys Asn Tyr 145 150 155

- (2) INFORMATION FOR SEQ ID NO:294:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:294:

Met Glu Asp Ser Asn Ser Phe Met Leu Ser His Gln Met Glu Thr Ile

1 5 10 15

Leu Lys Glu Ala Gly Phe Thr Lys Ala Val Ser Tyr Phe Ile Leu Glu 20 25 30

Leu Lys Asp Pro Ser Gln Thr Lys Val Val Thr Glu Glu Leu Gln Lys
35 40 45

Asn Lys Lys Tyr Thr Val Leu Ser 50 55

- (2) INFORMATION FOR SEQ ID NO:295:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:295:

Met Gly Lys Lys Arg Trp Ala Arg Asn Gly Phe Glu Ser Asn Asp Ala 1 5 10 15

Ser Tyr Ala Gln Val Val Ser Leu Tyr Asp Asp Thr Ser Ile Ser Val 20 25 30

Ser Asn Asn Glu Thr Asp Lys Val Leu Ala Gly Ser Leu Tyr Thr Asp

Thr Asn Glu Gln Gly Leu Thr Ile Pro Ser Ser Phe Thr Lys Lys Leu
50 55 60

Glu 65

- (2) INFORMATION FOR SEQ ID NO:296:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 138 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:296:

Met Ala Met Glu Ser Gly Ala Thr Ala Val Val Ala Glu Arg Gly Gln

Glu Arg Ile Thr Lys Val Arg Glu Ile Leu Gly Gly Gly Ala Asp Ala

Ala Leu Glu Cys Val Gly Thr Glu Ala Ala Ile Glu Gln Ala Leu Gly

Val Leu His Asn Gly Gly Arg Met Gly Phe Val Gly Val Pro His Tyr
50 55 60

Asn Asn Arg Ala Leu Gly Ser Thr Phe Met Gln Asn Ile Ser Val Ala
70 75 80

Gly Gly Ala Ala Ser Ala Thr Thr Tyr Asp Lys Gln Phe Leu Leu Lys 85 90 95

Ala Val Leu Asp Gly Asp Ile Asn Pro Gly Arg Val Phe Thr Ser Ser 100 105 110

Tyr Lys Leu Glu Asp Ile Asp Gln Ala Tyr Lys Asp Met Asp Glu Arg

Lys Thr Ile Lys Ser Met Ile Val Ile Glu 130 135

- (2) INFORMATION FOR SEQ ID NO:297:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:297:

Met Lys Gln Val Val Asp Tyr Phe Leu Ser Gln Gly Met Asp Arg Ile 5 Gly Ile Leu Thr Gly Leu Glu Glu Thr Thr Asp Gln Glu Glu Ile Ile 25 Gln Asp Lys Arg Leu Glu Asn Phe Lys Asn Tyr Ser Gln Ala Arg Gly 40 Ile Tyr His Asp Glu Leu Val Phe Gln Gly Arg Phe Thr Ala Gln Ser 55 60 Gly Tyr Asp Leu Met Lys Glu Ala Ile Gln Ser Leu Gly Asp Gln Leu 70 75 Pro Pro Ala Phe Phe Ala Ala Ser Asp Ser Leu Ala Ile Gly Ala Leu Arg Ala Leu Gln Glu Ala Gly Ile Ser Leu Pro Asp Arg Val Ser Leu 100 105 Ile Phe Leu Leu Thr Thr Leu Ser Leu Thr Lys Gln Val Tyr Pro Pro 120

- (2) INFORMATION FOR SEQ ID NO:298:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
 - (B) TYPE: amino acid

Leu Ser 130

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:298:

Asp Ala Glu Ile Phe Ala Val Pro Ala Pro Glu Ala Glu Glu Ile Val 35 40 45

Ala Thr Lys Glu Val Asn Val Leu Leu Gly Pro Gln Val Arg Tyr
50 55 60

Leu Leu Gly Asp Phe Gln Glu Lys Leu Lys Asp Arg Gln Ile Pro Val 65 70 75 80

Ala Val Ile Pro Met Thr Asp Tyr Gly Met Met Asn Gly Ser Lys Val 85 90 95

Leu Asp Leu Ala Glu Ser Leu Leu Asp 100 105

(2) INFORMATION FOR SEQ ID NO:299:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 127 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:299:

Met His Gly Ala Gly Val Asn Glu Pro Val Ala Glu Leu Ser Val Ala

Glu Gln Leu Leu Glu Ala Gly Ala Asp Val Ile Leu Val Pro Ala Val 20 25 30

Gly Thr Val Pro Ala Phe His Asp Gln Glu Leu Arg Glu Val Val Asp

Leu Val His Ser Lys Gly Gly Leu Val Leu Ser Ala Ile Gly Thr Ser 50 55 60

50 55 60 Glu Thr Ser Asp Thr Asp Thr Ile Lys Glu Ile Ala Leu Arg Asn

65 70 75 80
Lys Ile Cys Gly Val Asp Ile Gln His Ile Gly Asp Ala Gly Tyr Gly

65 90 95

Gly Leu Ala Thr Val Asp Asn 1le Tyr Ala Leu Ser Lys Ala Ile Arg
100 1.05 110

Gly Val Arg His Thr Val Ser Arg Leu Ala Arg Ser Val Asn Arg 115 120 125

(2) INFORMATION FOR SEQ ID NO:300:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 236 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:300:
- Met Ser Ala Ile Asn Leu Ala Ser Val Pro Lys Glu Ser Leu Thr Gln Val Leu Pro Arg Asp Leu His Ala Glu Tyr Phe Ala Val Leu Ala Ser 25 Ile Ala Thr Ser Ile Glu Arg Met Ala Thr Glu Ile Arg Gly Leu Gln Lys Ser Glu Gln Arg Glu Val Glu Glu Phe Phe Ala Lys Gly Gln Lys Gly Ser Ser Ala Met Pro His Lys Arg Asn Pro Ile Gly Ser Glu Asn 75 70 Met Thr Gly Leu Ala Arg Val Ile Arg Gly His Met Ile Thr Ala Tyr 90 Glu Asn Val Ala Leu Trp His Glu Arg Asp Ile Ser His Ser Ser Ala 105 100 Glu Arg Ile Ile Thr Pro Asp Thr Thr Ile Leu Ile Asp Tyr Met Leu 120 Asn Arg Phe Gly Asn Ile Val Lys Asn Leu Thr Val Phe Pro Glu Asn 135 Met Ile Arg Asn Met Asn Ser Thr Phe Gly Leu Ile Phe Ser Gln Arg 155 Ala Met Leu Thr Leu Ile Glu Lys Gly Met Thr Arg Glu Gln Ala Tyr 165 170 Asp Leu Val Gln Pro Lys Thr Ala Tyr Ser Trp Asp Asn Gln Val Asp 180 185 Phe Lys Pro Leu Leu Glu Ala Asp Ser Glu Val Thr Ser Arg Leu Thr 200 Gln Glu Glu Ile Asp Glu Ile Phe Asn Pro Val Tyr Tyr Thr Lys Arg 215 Val Asp Asp Ile Phe Glu Arg Leu Gly Leu Gly Asp 225 23C
 - (2) INFORMATION FOR SEQ ID NO:301:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid

PCT/US97/05306 WO 97/37026

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:301:

Met Leu Asn Leu Thr His Val Thr Leu Lys Thr Arg Gln Val Ile Leu 10 1 Gln Asp Ala Asp Phe Thr Phe Lys Lys Gly Arg Ile Tyr Gly Leu Leu 25 30 Ala Ile Asn Gly Ser Gly Lys Thr Thr Leu Phe Arg Ala Met Ser Lys 40 Leu Leu Pro Leu Ser Ser Gly His Ile Ala Val Pro Pro Ser Leu Phe 55 Tyr Tyr Glu Ser Val Glu Trp Leu Asp Gly Asn Leu Ser Gly Met Asp 70 Tyr Leu Arg Leu Ile Lys Lys His Leu Glu Val Arg Pro Lys Leu Glu 90

Arg

- (2) INFORMATION FOR SEQ ID NO:302:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:302:

Met Tyr Thr Leu Gly Gln Pro Asn Glu Leu Ala Ala Glu Phe Leu Asn

Phe Val Leu Ser Asp Glu Thr Gln Glu Gly Ile Val Lys Gly Leu Lys 25

Tyr Ile Pro Ile Lys Glu Met Lys Val Glu Lys Asp Ala Ala Gly Thr

Val Thr Val Leu Glu Gly Arg Gln 55

(2) INFORMATION FOR SEQ ID NO:303:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 187 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:303:

Met Asn Gln Glu Glu Leu Ala Lys Lys Met Leu Leu Pro Ser Lys Asn

1 5 10 15

Ser Arg Leu Glu Lys Leu Gly Lys Gly Leu Thr Phe Ala Cys Leu Ser
20 25 30

Leu Ile Val Ile Leu Val Ala Met Ile Leu Val Phe Val Ala Gln Lys
35 40 45

Gly Leu Ser Thr Phe Phe Val Asn Gly Val Asn Ile Phe Asp Phe Leu 50 55 60

Leu Gly Gly Thr Trp Asn Pro Ser Ser Lys Glu Phe Gly Ala Leu Pro 65 70 75 80

Met Ile Leu Gly Ser Phe Ile Val Thr Ile Leu Ser Ala Leu Ile Ala 85 90 95

Thr Pro Phe Ala Ile Gly Ala Ala Val Phe Met Thr Glu Val Ser Pro
100 105 110

Lys Gly Ala Lys Ile Leu Gln Pro Ala Ile Glu Leu Leu Val Gly Ile
115 120 125

Pro Ser Val Val Tyr Gly Phe Ile Gly Leu Gln Val Val Pro Phe

Val Arg Ser Val Phe Gly Gly Thr Gly Phe Gly Ile Leu Ser Gly Ile 145 150 155 160

Ser Val Leu Phe Val Met Ile Leu Pro Thr Val Thr Phe Met Thr Thr 165 170 175

Asp Ser Leu Arg Ala Val Pro Xaa Leu Leu Ser 180 185

- (2) INFORMATION FOR SEQ ID NO:304:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:304:

Met Thr Glu Ile Arg Leu Glu His Val Ser Tyr Ala Tyr Gly Gln Glu Arg Ile Leu Glu Asp Ile Asn Leu Gln Val Thr Ser Gly Glu Val Val 25 Ser Ile Leu Gly Pro Ser Gly Val Gly Lys Thr Thr Leu Phe Asn Leu Ile Ala Gly Ile Leu Glu Val Gln Ser Gly Arg Ile Val Leu Asp Gly 55 Glu Glu Asn Pro Lys Gly His Val Ser Tyr Met Leu Gln Lys Asp Leu 70 65 Leu Leu Glu His Lys Thr Val Leu Gly Asn Ile Ile Leu Pro Leu Leu 90 85 Ile Gln Lys Val Asp Lys Ala Glu Ala Ile Ser Arg Ala Asp Lys Ile 105 Leu Ala Thr Phe Gln Leu Thr Ala Val Arg Asp Lys Tyr Pro His Glu 120 Leu Ser Gly Gly Met Arg Gln Arg Val Ala Leu Leu Arg Thr Tyr Leu 135 Phe Gly His Lys Leu Phe Leu Leu Asp Glu Ala Phe Ser Ala Leu Asp 150 Glu Met Thr Lys Met Glu Leu His Ala Trp Tyr Leu Glu Ile His Lys 170 165 Gln Leu Gln Leu Thr Thr Leu Ile Xaa Thr His Ser Ile Glu Glu Ala 185 180 Leu Xaa Leu Ser Asp Arg Ile Tyr Ile Leu Xaa Asn Xaa Pro Gly Gln 200 Ile Val Ser Glu Ile Lys Leu Asp Trp Ser Glu Asp Glu Asp Xaa Glu 215 Val Xaa Lys Ile Ala Xaa Lys Arg Gln Ile Leu Ala Glu Leu Gly Leu 240 235 230 Asp Lys

(2) INFORMATION FOR SEQ ID NO:305:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 79 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:305:

- (2) INFORMATION FOR SEQ ID NO:306:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 155 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:306:

Met Val Tyr Thr Ser Leu Ser Ser Lys Asp Gly Asn Tyr Pro Tyr Gln Leu Asn Ile Ala His Leu Tyr Gly Asn Leu Met Asn Thr Tyr Gly Asp Asn Gly Asn Ile Leu Met Leu Lys Tyr Val Ala Glu Lys Leu Gly Thr 40 His Val Thr Val Asp Ile Val Ser Leu His Asp Asp Phe Asp Glu Asn 55 His Tyr Asp Ile Ala Phe Phe Gly Gly Gln Asp Phe Glu Gln Ser 70 75 Ile Ile Ala Asp Asp Leu Pro Ala Lys Lys Glu Ser Ile Asp Asn Tyr 90 Ile Gln Asn Asp Gly Val Val Leu Ala Ile Cys Gly Gly Phe Gln Leu 100 105 Leu Gly Gln Tyr Tyr Val Glu Ala Ser Gly Lys Arg Ile Glu Gly Leu 120 115

PCT/US97/05306 WO 97/37026

Gly Val Met Gly His Tyr Thr Leu Asn Gln Thr Asn Asn Arg Phe Ile 135 Gly Asp Ile Lys Ile His Asn Glu Arg Phe Arg 145 150

- (2) INFORMATION FOR SEQ ID NO:307:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:307:

Met His Gln His Ser Pro His Thr Ala Ser Tyr Thr Ser Ser Arg Asp 1 5 Ala Met Ser Lys Tyr Pro Glu Arg Cys Thr Thr Val Gly Leu Arg Leu 25 Asn Glu Glu Ser Asp Phe Glu Leu Tyr Ala Pro Tyr Gly Leu Glu Asp 40 Ile Leu Asn Phe Lys Phe Val Gln Leu Leu Ile Ser 55 60

- (2) INFORMATION FOR SEQ ID NO:308:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:308:

Met Phe Glu Ile Phe Asn Met Gly Val Gly Leu Met Leu Ala Val Ser 10 Pro Glu Asn Val Glu Arg Val Lys Glu Leu Leu Asp Glu Ala Val Tyr 25 Glu Ile Gly Arg Ile Val Lys Lys Glu Asn Glu Ser Val Ile Ile Lys 35 40

244

(2) INFORMATION FOR SEQ ID NO:309:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 150 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:309:

Met Met Val Lys Lys His Tyr Phe Lys Asp Asn Glu Glu Asp Ser Lys

1 5 10 15

Met Arg Arg Ile Leu Leu Leu Val Ala Val Leu Leu Met Ile Pro Ser
20 25 30

Phe Ile Ser Ala Thr Thr Leu Val Arg Glu Thr Leu Lys Lys Glu Ser 35 40 45

Leu Lys Lys Phe Ile Ser Glu Gln Phe Gln Gly His Asn Ile Leu Lys
50 55 60

Lys Thr Tyr Ser Lys Lys Thr His Thr Leu Lys Leu Thr Ile Ser Gly 70 75 80

Asn Tyr Leu Thr Glu Glu Glu Leu Asp Met Ile Ser Ser Lys Arg Gly 85 90 95

Asp Tyr Gly Leu Ser Asp Val Ser Val Gln Val Ser Gln Leu Ser Asp 100 105 110

Ser Glu Gln Leu Ser Lys Glu Glu Leu Val Glu Tyr Phe Phe Gln Tyr 115 120 125

Ile Lys Asp Lys Glu Ala Lys Glu Lys Glu Lys Ala Asn Lys Phe Tyr 130 135 140

Thr Glu Ser Glu Glu Gln 145 150

- (2) INFORMATION FOR SEQ ID NO:310:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:310:

 Met
 Ser
 11e
 Glu
 Pro
 Arg
 Arg
 Arg
 Trp
 Arg
 Ass
 Ser
 Thr
 Val
 Cys
 Leu

 Glu
 Ala
 Glu
 Leu
 Tyr
 Gln
 Glu
 Ser
 Leu
 Val
 Leu
 Ile
 Gly
 Gly
 Asp
 Pro

 Gly
 Ile
 Gly
 Leu
 Tyr
 Leu
 Leu
 Leu
 Gly
 Val
 Ser
 Thr
 Leu
 Leu
 Gly
 Gly
 Gly
 Leu
 Ser
 Gly
 Ile
 Gly
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile

(2) INFORMATION FOR SEQ ID NO:311:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 159 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:311:

Met Ala Thr Lys Gln Lys Glu Val Thr Thr Phe Asp Val Gln Val Ala 10 Glu Phe Ile Arg Asn His Lys Gln Lys Gly Thr Ala Thr Asp Asp Glu 25 Ile Asn Ala Ser Leu Val Ile Pro Phe Thr Leu Asp Ala Asp Gly Ile 40 Glu Asp Leu Leu Gln Arg Ile Gln Asp Ala Gly Ile Ser Ile Thr Asp 55 Asn Glu Gly Asn Pro Ser Ala Arg Val Leu Ser Asn Glu Glu Glu Pro 75 70 Glu Leu Ser Asp Glu Asp Leu Ile Gly Ser Thr Ser Ala Lys Val Asn 90 85 Asp Pro Val Arg Met Tyr Leu Lys Glu Ile Gly Val Val Pro Leu Leu 110 105 100

Thr Asn Glu Glu Glu Lys Glu Leu Ala Leu Ala Val Glu Ala Gly Asp 115 120 125

Ile Glu Ala Lys Gln Arg Leu Ala Glu Ala Asn Leu Arg Leu Val Val
130 135 140

- (2) INFORMATION FOR SEQ ID NO:312:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:312:

Met Met Leu Lys Pro Ser Ile Asp Thr Leu Leu Asp Lys Val Pro Ser 1 5 10 15

Lys Tyr Ser Leu Val Ile Leu Glu Ala Lys Arg Ala His Glu Leu Glu
20 25 30

Ala Gly Ala Pro Ala Thr Gln Gly Phe Lys Ser Glu Lys Ser Thr Leu 35 40 45

Arg Ala Leu Glu Glu Ile Glu Ser Gly Asn Val Thr Ile His Pro Asp 50 55 60

Pro Glu Gly Lys Arg Glu Ala Val Arg Arg Ile Glu Glu Glu Lys
65 70 75 80

Arg Arg Lys Glu Glu Glu Lys Lys Ile Lys Glu Gln Ile Ala Lys
85 90 95

Glu Lys Glu Asp Gly Glu Lys Ile 100

- (2) INFORMATION FOR SEQ ID NO:313:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:313:

Met Ile Arg Gln Gly Gln Met Leu Glu Tyr Ala Glu Tyr Val Gly Asn 10 Tyr Tyr Gly Thr Pro Leu Thr Tyr Val Asn Glu Thr Leu Asp Lys Gly Ile Asp Val Phe Leu Glu Ile Glu Val Gln Gly Ala Leu Gln Val Lys 40 Lys Lys Val Pro Asp Ala Val Phe Ile Phe Leu Thr Pro Pro Asp Leu 55 Asp Glu Leu Gln Glu Arg Leu Val Gly Arg Gly Thr Asp Ser Ala Glu Val Ile Ala Gln Arg Ile Glu Lys Ala Lys Glu Glu Ile Ala Leu Met 90 Arg Glu Tyr Asp Tyr Ala Ile Val Asn Asp Gln Val Pro Leu Ala Ala 105 Glu Arg Val Lys Cys Val Ile Glu Ala Glu His Phe Cys Val Asp Arg 125 120 Val Ile Gly His Tyr Gln Glu Met Leu Pro Lys Ser Pro Thr Thr Arg 140 130 135

(2) INFORMATION FOR SEQ ID NO:314:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 81 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314:

 Met
 Ser
 Arg
 Leu
 Val
 11e
 Gly
 Cys
 Gly
 Gly
 Val
 Ala
 Gln
 Val
 Ala

 Ile
 Ser
 Lys
 Ile
 Cys
 Gln
 Asp
 Ser
 Glu
 Thr
 Phe
 Thr
 Glu
 Ile
 Met
 Ile

 Ala
 Ser
 Arg
 Thr
 Lys
 Ser
 Lys
 Cys
 Asp
 Asp
 Leu
 Lys
 Ala
 Lys
 Leu
 Glu

 Ala
 Ser
 Thr
 Lys
 Ser
 Lys
 Cys
 Asp
 Asp
 Leu
 Lys
 Ala
 Lys
 Leu
 Glu
 Ala
 Lys
 Leu
 Glu
 Ala
 Lys
 Leu
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 A

(2) INFORMATION FOR SEQ ID NO:315:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:

Met His Glu Ser Phe His Val Asp Asp Pro Thr Leu Tyr Ser Arg Glu

1 5 10 15

Trp Phe Ser Trp Ala Asn Met Met Phe Cys Glu Leu Val Leu Asp Tyr

20 25 30

Leu Asp Ile Arg

35

- (2) INFORMATION FOR SEQ ID NO:316:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:316:

Met Arg Phe Tyr Phe Met Glu Asn Val Val Val His Ile Ile Ser His

1 5 10 15

Ser His Trp Asp Arg Glu Trp Tyr Leu Pro Phe Glu Ser His Arg Met

20 25 30 Gln Leu Val Glu Leu Phe Asp Asn Leu Phe Asp Leu Phe Glu Asn Asp

Pro Glu Phe Lys Ser Phe His Leu Asp Gly Gln Thr Ile Val Leu Asp 50 55 60

40

Asp

65

(2) INFORMATION FOR SEQ ID NO:317:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 253 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:317:

Met Leu Leu Tyr Ile Leu Ser His Ile Ala Thr Gly Ile Val Ser Gly 10 Thr Cys Leu Leu Lys Ala Ile Val Cys Asn Trp Trp Asn Cys Leu Thr 25 30 Ile Ser Leu Ile Ser Leu Lys Met Thr Leu Ser Ser Arg Val Ser Thr 40 Trp Met Asp Lys Leu Leu Ser Leu Thr Thr Asn Leu Gln Ile Arg Pro Glu Asn Arg Asp Lys Val Gln Arg Tyr Ile Asp Glu Gly Lys Leu Lys Ile Gly Pro Phe Tyr Ile Leu Gln Asp Asp Tyr Leu Ile Ser Ser Glu 90 Ala Asn Val Arg Asn Thr Leu Ile Gly Gln Glu Ala Ala Lys Trp 100 105 Gly Lys Ser Thr Gln Ile Gly Tyr Phe Pro Asp Thr Phe Gly Asn Met 120 Gly Gln Ala Pro Gln Ile Leu Gln Lys Ser Gly Ile His Val Ala Ala 135 Phe Gly Arg Gly Val Lys Pro Ile Gly Phe Asp Asn Gln Val Leu Glu 150 155 Asp Glu Gln Phe Thr Ser Gln Phe Ser Glu Met Tyr Trp Gln Gly Val 170 Asp Gly Ser Arg Val Leu Gly Ile Leu Phe Ala Asn Trp Tyr Ser Asn 185 Gly Asn Glu Ile Pro Val Asp Lys Asp Glu Ala Leu Thr Phe Trp Lys 205 200 Gin Lys Leu Ser Asp Val Arg Cys Leu Arg Phe Asp Gln Pro Met Val 220 215 Asp Asp Glu Thr Ala Val Asn Thr Ser Leu Ser Gln Lys Lys Ser Glu 230 235 Arg Ser His Ser Val Trp Gln Met Asn Ser Ser Arg Met 250 245

- (2) INFORMATION FOR SEQ ID NO:318:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 99 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:318:

Met Thr Ile Val Gly Cys Arg Ile Asp Gly Arg Leu Ile His Gly Gln

1 5 10 15

Val Ala Asn Leu Trp Ala Gly Lys Leu Asn Val Ser Arg Ile Met Val 20 25 30

Val Asp Asp Glu Val Val Asn Asp Ile Glu Lys Ser Gly Leu Lys
35 40 45

Leu Ala Thr Pro Pro Gly Val Lys Leu Ser Ile Leu Pro Val Glu Lys
50 55 60

Ala Ala Ala Asn Ile Leu Ala Gly Lys Tyr Asp Ser Gln Arg Leu Phe 65 70 75 80

Ile Val Ala Arg Lys Pro Asp Arg Phe Pro Trp Phe Gly Arg Ser Arg 85 90 95

Cys Thr Thr

- (2) INFORMATION FOR SEQ ID NO:319:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:319:

Met Ile Gln His Pro Arg Ile Gly Ile Arg Pro Thr Ile Asp Gly Arg

1 5 10 15

Arg Gln Gly Val Arg Glu Ser Leu Glu Val Gln Thr Met Asn Met Ala
20 25 30

 Lys
 Ser
 Val
 Ala
 Asp
 Leu
 Ile
 Ser
 Thr
 Leu
 Lys
 Tyr
 Pro
 Asp
 Gly
 Gly

 Glu
 Pro
 Val
 Glu
 Cys
 Val
 Ile
 Ser
 Pro
 Ser
 Thr
 Ile
 Gly
 Arg
 Val
 Pro

 Glu
 Ala
 Ala
 Ser
 His
 Glu
 Leu
 Pro
 Lys
 Lys
 Ser
 Asn
 Val
 Cys
 Ala

 Glu
 Ala
 Ala
 Ser
 His
 Glu
 Leu
 Pro
 Lys
 Lys
 Ser
 Asn
 Val
 Cys
 Ala

 Glu
 Ala
 Ala
 Pro
 Cys
 Trp
 Cys
 Tyr
 Gly
 Ser
 Asn
 Val
 Asp

 Met
 Ser
 Pro
 Asp
 Ile
 Pro
 His
 Ala
 Ile
 Trp
 Gly
 Pro
 Asn
 Gly
 Trp
 Gly
 Ala
 Ala
 Val
 Leu
 Ala
 Ser
 His
 Ala
 Gly
 Ala
 A

155

(2) INFORMATION FOR SEQ ID NO:320:

Asn Asp Thr Asp Ile Pro Glu Asp Val Lys Glu Asn Phe

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids

150

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:320:

 Met Leu Leu Ser
 Thr Lys Gly Ile Glu Glu Gln Glu Ile Ala Arg Pro

 1
 5
 5
 10
 15
 15

 Thr Leu Glu Arg Leu Phe Ser Met Arg Glu Asn Tyr Lys Val Thr Gly
 20
 25
 30
 30

 Arg His Pro Gly Tyr Arg Lys Tyr Asn Gly Asn Gly Asp Gly Ser Met Lys Glu
 35
 40
 45
 45

 Thr Glu Lys
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 <t

- (2) INFORMATION FOR SEQ ID NO:321:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

PCT/US97/05306 WO 97/37026

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:321:

Met Leu Thr Leu Thr Pro Asp Val Ile Tyr Gln Glu Pro Asp Ile Leu 10 Tyr Gln His Glu Asp Phe Ser Leu Val Lys Ile Arg Gln Ile Arg Phe 20 25 Cys

- (2) INFORMATION FOR SEQ ID NO:322:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:322:

Met Ser Ser Val Val Gly Leu Met Gly Asn Ile Gly Gln Ala Asn Tyr 10 Ala Ala Ser Lys Ala Gly Leu Ile Gly Phe Thr Lys Ser Val Ala Arg 25 Glu Val Ala Ser Arg Asn Ile Arg Val Asn Val Ile Ala Pro Gly Asn 40 Asp

- (2) INFORMATION FOR SEQ ID NO: 323:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 127 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:323:

 Met
 Lys
 Leu
 Glu
 His
 Lys
 Asn
 Ile
 Phe
 Ile
 Thr
 Gly
 Ser
 Arg
 Gly

 Ile
 Gly
 Leu
 Ala
 Ile
 Ala
 His
 Lys
 Phe
 Ala
 Gly
 Ala
 Asn
 Ile
 30
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Asn
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile

- (2) INFORMATION FOR SEQ ID NO:324:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:324:

(2) INFORMATION FOR SEQ ID NO:325:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:325:

Met Arg Gln Gly Gln Gly Ser Val Glu Ala Ile Phe Asn Ala Ile Asp 1 5 10 15

Lys Phe Phe Asn Gln Ser Val Arg Leu Val Ser Tyr Thr Ile Asn Ala 20 25 30

Val Thr Asp Gly Ile Asp Ala Gln Asp Arg Val Val Gly His Cys
35 40 45

- (2) INFORMATION FOR SEQ ID NO: 326:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:326:

Met Val Glu Asn Pro Glu Gly Phe His Phe Asp Asp Leu Gln Leu Gln 1 5 10 15

Thr His Ala Asp Asn Asp Ile Glu Ala Leu Val Ser Leu Ala Asn Met 20 25 30

Asp Gly Glu Lys Val Glu Phe Asn Ala Thr Gly Thr Gly Phe Arg
35 40 45

- (2) INFORMATION FOR SEQ ID NO:327:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 210 amino acids
 - (3) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:327:
- Met Asn Phe Gln Leu Ala Lys Tyr Ser Leu Leu Lys Lys Phe Ser Glu

 1 5 10 15
- Asn Ile Gly Phe Thr Thr Pro Glu Glu Cys Gly Ala Ile Phe Gln Tyr
 20 25 30
- Leu Ile Glu Asn Val Gln Thr Asp Arg Gln Ile Ile Tyr Ser Pro Pro
 35 40 45
- Cys His Asp Glu Leu Arg Met Ala Val Ala Asn Ser Leu Ala Ala Val 50 55 60
- Lys Asn Gly Ala Gly Leu Phe Glu Glu Thr Ile His Gly Ile Arg Glu 65 70 75 80
- Arg Ala Glu Asn Ala Ala Leu Glu Glu Ile Ala Val Ala Leu Asn Ile 85 90 95
- Arg Gln Asp Tyr Tyr Gln Val Glu Thr Ser Ile Val Leu Asn Glu Thr
 100 105 110
- Ile Asn Thr Ser Glu Met Val Ser Arg Phe Ser Gly Ile Pro Val Pro 115 120 125
- Lys Asn Lys Ala Val Val Gly Gly Asn Thr Phe Ser His Glu Ser Gly
 130 135 140
- Ile His Gln Asp Gly Val Leu Lys Asn Pro Leu Thr Tyr Glu Ile Ile 145 150 155 160
- Thr Pro Glu Leu Val Gly Val Lys Ile Pro Leu Gly Lys Leu Ser Gly
 165 170 175
- Arg His Ala Phe Val Glu Lys Leu Arg Glu Leu Ala Leu Asp Phe Thr 180 185 190
- Glu Glu Asp Ile Lys Pro Phe Phe Ala Lys Phe Lys Ala Leu Ala Asp 195 200 205

Lys Lys

- (2) INFORMATION FOR SEQ ID NO:328:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 99 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:328:

 Met
 Ser
 Gln
 Gln
 Val
 Lys
 Asn
 Ala
 His
 Asn
 Leu
 Tyr
 Ile
 His
 Ala
 Ile

 Gln
 Asp
 Gly
 Arg
 Val
 Ala
 Glu
 Ala
 Gln
 Ala
 Gln
 Ser
 Val
 Ala
 Gln
 Ala
 Gln
 Ala
 Gln
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala

(2) INFORMATION FOR SEO ID NO:329:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 122 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:329:

Met Glu Met Gln Thr Ser Ala Gln Leu Leu Thr Asn Lys Ile Phe Leu Lys Asn Pro Leu Lys Ala Leu Val Glu Glu Lys Tyr Gly Ile Glu Tyr 25 Glu Glu Phe Thr Asn Pro Trp His Ala Ala Ile Ser Ser Phe Val Ala 40 Phe Phe Leu Arg Ser Leu Pro Fro Met Leu Ser Val Thr Ile Phe Pro 55 Ser Glu Tyr Arg Ile Pro Ala Thr Val Leu Ile Val Gly Val Ala Leu 70 75 Leu Leu Thr Gly Tyr Thr Ser Ala Arg Leu Gly Lys Asp Pro Thr Arg 90 Thr Ala Met Ile Arg Asn Leu Ala Ile Gly Leu Leu Thr Met Gly Val 105 Thr Phe Leu Leu Glu Gln Leu Phe Ser Ile 120

(2) INFORMATION FOR SEQ ID NO:330:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 194 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:330:

Lys Lys Ser Leu Ala Asp Phe Asp Gly Lys Lys Lys Val Leu Ser Val 65 70 75 80

Val Pro Ser Ile Asp Thr Gly Ile Cys Ser Thr Gln Thr Arg Arg Phe 85 90 95

Asn Glu Glu Leu Ala Gly Leu Asp Asn Thr Val Val Leu Thr Val Ser 100 105 110

Met Asp Leu Pro Phe Ala Gln Lys Arg Trp Cys Gly Ala Glu Gly Leu 115 120 125

Asp Asn Ala Ile Met Leu Ser Asp Tyr Phe Asp His Ser Phe Gly Arg 130 135 140

Asp Tyr Ala Leu Leu Ile Asn Glu Trp His Leu Leu Ala Arg Ala Val

Phe Val Leu Asp Thr Asp Asn Thr Ile Arg Tyr Val Glu Tyr Val Asp 165 170 175

Asn Ile Asn Ser Glu Pro Asn Phe Glu Ala Ala Ile Ala Ala Ala Lys 180 185 190

Ala Leu

- (2) INFORMATION FOR SEQ ID NO:331:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:331:

Met Gly Tyr Arg Pro Ser Thr Ala Asn Ala Ile Ile His Gln Val Arg 1 10 Glu Leu Leu Val Ser Arg Gly Tyr Thr Phe Tyr Asn Arg Lys Arg Leu 25 Met Val Val Pro Lys Ser Val Val Lys Glu Leu Leu Gly Met Glu Leu 35 40

- (2) INFORMATION FOR SEQ ID NO:332:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 219 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:332:

Met Gln Ala Val Glu His Phe Ile Lys Gln Phe Val Pro Glu His Tyr Asp Leu Phe Leu Asp Leu Ser Arg Glu Thr Lys Thr Phe Ser Gly Lys Val Thr Ile Thr Gly Gln Ala Gln Ser Asp Arg Ile Ser Leu His Gln 40 45 Lys Asp Leu Glu Ile Thr Ser Val Glu Val Ala Gly Gln Ala Arg Pro Phe Thr Val Asp His Asp Asn Glu Ala Leu His Ile Glu Leu Ala Glu 70 Ala Gly Gln Val Glu Leu Val Leu Ala Phe Ser Gly Lys Ile Thr Asp

Lys Glu Val Leu Ser Thr Gln Phe Glu Ser His Phe Ala Arg Glu Ala

Asn Met Thr Gly Ile Tyr Pro Ser Tyr Tyr Thr Val Asp Gly Val Lys 105

Phe Pro Cys Val Asp Glu Pro Glu Ala Lys Ala Thr Phe Asp Leu Ser 130 135 140

Leu Arg Phe Asp Gln Ala Glu Gly Glu Leu Ala Leu Ser Asn Met Pro 145 150 155 160

Glu Ile Asp Val Glu Asn Arg Lys Glu Thr Gly Ile Trp Lys Phe Glu 165 170 175

Thr Thr Pro Arg Met Ser Ser Tyr Leu Leu Ala Phe Val Ala Gly Asp 180 185 190

Leu Gln Gly Val Thr Ala Lys Thr Lys Asn Gly Thr Leu Val Gly Cys
195 200 205

Leu Leu Asn Gln Ser Thr Ser Thr Phe Lys Ser 210 215

- (2) INFORMATION FOR SEQ ID NO:333:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:333:

Met Ser Gln Glu Phe Leu Ala Arg Ile Leu Glu Gln Lys Ala Arg Glu

1 5 10 15

Val Glu Gln Met Lys Leu Glu Gln Ile Gln Pro Leu Arg Gln Thr Tyr
20 25 30

Arg Leu Ala Glu Phe Leu Lys Asn His Gln Asp Arg Leu Gln Val Ile 35 40 45

Ala Glu Val Lys Lys Ala Ser Pro Ser Phe Gly Glu Ile Ser Ile Ser 50 55 60

Met Trp Ile Leu Cys Asn Arg Pro Arg Leu Met Lys Lys Thr Glu Gln 65 70 75 80

- (2) INFORMATION FOR SEQ ID NO:334:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 91 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:334:

(2) INFORMATION FOR SEQ ID NO:335:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:335:

 Met
 11e
 Tyr
 Thr
 Val
 Thr
 Leu
 Asn
 Pro
 Ser
 Ile
 Asp
 Tyr
 Ile
 Val
 Arg

 Leu
 Asp
 Gln
 Val
 Lys
 Val
 Gly
 Ser
 Val
 Asp
 Met
 Asp
 Ser
 Asp
 Asp

 Lys
 Phe
 Ala
 Gly
 Gly
 Lys
 Gly
 Ile
 Asn
 Val
 Ser
 Arg
 Val
 Leu
 Lys
 Arg

 Lys
 Phe
 Ala
 Gly
 Lys
 Gly
 Ile
 Asn
 Val
 Ser
 Arg
 Phe
 Thr
 Ala
 Thr
 Gly
 Phe
 Ile
 Gly
 Phe
 Thr
 Arg
 Ile
 Ala
 Gly
 Ile
 Ala
 Arg
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ala
 Ala
 Ala
 Ala
 A

Leu Glu Glu Leu Lys Ala Ile Leu Ser Ser Leu Thr Ala Glu Asp Thr
115 120 125

Val Val Phe Ala Gly Ser Ser Ala Lys Asn Leu Gly Asn Val Ile Tyr

130 135 140

Lys Gly Phe Asn Leu Leu Asp Ala Pro Asp Trp Cys Ala Ser Gly Leu

145 150 155 160

- (2) INFORMATION FOR SEQ ID NO:336:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:336:

Met Met Gln Val Tyr Phe Asp Gln Gly Ile Tyr Asn Lys Lys Ala Val

Phe Glu Val Tyr Phe Arg Gln Gln Pro Phe Lys Asn Gly Tyr Ala Val 20 25 30

Phe Ala Gly Leu Glu Arg Ile Val Asn Tyr Leu Glu Asp Leu Arg Phe 35 40 45

Ser Asp Ser Asp Ile Ala Tyr Leu Glu Ser Leu Gly Tyr His Gly Ala 50 55 60

Phe Leu Asp Tyr Leu Arg Asn Phe Lys Leu Glu Leu Thr Val Arg Ser
70 75 80

Ala Gln Glu Gly Asp Leu Val Phe Ala Asn Glu Pro Ile Val Gln Val
85 90 95

Glu Gly Pro Leu Ala Gln Cys Gln Leu Val Glu Thr Ala Leu Leu Asn 100 105 110

Ile Val Asn Tyr Gln Thr Leu Val Ala Thr Lys Ala Ala Pro Tyr Pro 115 120 125

Phe Gly Tyr Arg Lys

- (2) INFORMATION FOR SEQ ID NO:337:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 84 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:337:

 Met
 Lys
 Ile
 Ile
 Gln
 Arg
 Val
 Lys
 Lys
 Ala
 Gln
 Val
 Ser
 Ile
 Glu
 Ile
 Glu
 Ile
 Glu
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 I

- (2) INFORMATION FOR SEQ ID NO:338:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:338:
- Met Ile Lys Gly Thr Ile Lys Thr Val Ser Ile Met Ala Ala Thr Ser

 1 5 10 15
- Gly Phe Leu Leu Tyr Asn Glu Val Phe Phe Leu Thr Asn Gly Ala Ala
- Gly Thr Lys Ser Ile Ser Phe Val Ile Arg Glu Leu Ala Val Ala Ser 35 40 45
- Ser Arg Thr Gln Tyr Ala Arg Ala Asn Thr Ile Gly Val Ile Gln Ile
 50 60
- Leu Gly Gly Met Leu Ile Ile Val Cys Ile Asn Ile Leu Phe Arg Glu 65 70 75 80
- Arg Lys Arg Leu Lys Gly Gly Lys

(2) INFORMATION FOR SEQ ID NO:339:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 147 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:339:
- Met Gly Phe Gly Ile Pro Ala Ala Ile Gly Ala Lys Ile Ala Asn Pro
- Asp Lys Glu Val Val Leu Phe Val Gly Asp Gly Gly Phe Gln Met Thr
 20 25 30
- Asn Gln Glu Leu Ala Ile Leu Asn Ile Tyr Lys Val Pro Ile Lys Val
 35 40 45
- Val Met Leu Asn Asn His Ser Leu Gly Met Val Arg Gln Trp Gln Glu
 50 55 60
- Ser Phe Tyr Glu Gly Arg Thr Ser Glu Ser Val Phe Asp Thr Leu Pro 70 75 80
- Asp Phe Gln Leu Met Ala Gln Ala Tyr Gly Ile Lys Asn Tyr Lys Phe 85 90 95
- Asp Asn Pro Glu Thr Leu Ala Gln Asp Leu Glu Ala Thr Thr Glu Asp 100 105 110
- Val Pro Met Leu Ile Glu Val Asp Ile Ser Arg Lys Glu Gln Val Leu 115 120 125
- Pro Met Val Pro Ala Gly Lys Ser Asn His Glu Met Leu Gly Val Lys 130 135 140

Phe His Ala

- (2) INFORMATION FOR SEQ ID NO:340:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 61 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:340:

Met Trp Leu Pro Leu Asp Arg Asn Asn Lys Gly Gln Asn Ile Ala Gly Ala Arg Gln Ala Ala Glu Gly Ile Phe Gly Val Asp Ala Ser Gln Leu 30 Thr Val Pro Gln Ala Ala Phe Leu Ala Gly Leu Pro Gln Ser Pro Ile 40 Thr Tyr Ser Pro Tyr Glu Asn Thr Gly Glu Leu Lys Asn 50 55

- (2) INFORMATION FOR SEQ ID NO:341:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:341:

Met Tyr Leu Gly Asp Leu Met Glu Lys Ala Glu Cys Gly Gln Phe Ser 10 Ile Leu Ser Phe Leu Leu Gln Glu Ser Gln Thr Thr Val Lys Ala Val 25 Met Glu Glu Thr Gly Phe Ser Lys Ala Thr Leu Thr Lys Tyr Val Thr 40 Leu Leu Asn Asp Lys Ala Leu Asp Ser Gly Leu Glu Leu Thr Ile His 55 Ser Glu Asp Glu Asn Leu Arg Leu Ser Ile Gly Ala Ala Thr Lys Gly

70 75 Arg Asp Ile Pro Glu Leu Val Phe Trp Ile Val Leu Leu Asn Thr Arg 85

90

Phe Trp Phe Ile Phe Ser Thr Thr Asn Ser Phe 100 105

- (2) INFORMATION FOR SEQ ID NO:342:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 129 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:342:

 Met
 Lys
 Glu
 Ile
 Glu
 Lys
 Leu
 Ala
 Lys
 Phe
 Glu
 Asn
 Leu
 Ser
 Gly

 Val
 Glu
 Met
 Thr
 Asp
 Val
 Ile
 Glu
 Arg
 Ile
 Val
 Thr
 Gly
 Arg
 Val
 Thr
 Ala
 Leu
 Leu
 Leu
 Ala
 Leu
 Lys
 Met
 Lys
 Gly
 Glu
 Glu
 Glu
 Ala
 Ser
 Leu
 Leu
 Leu
 Ala
 Leu
 Lys
 Met
 Lys
 Gly
 Gly
 Glu
 Glu
 Ala
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala

(2) INFORMATION FOR SEQ ID NO:343:

120

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acid

Ser

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:343:

 Met
 Asn
 Val
 Gln
 Met
 Ser
 Lys
 Thr
 Asn
 Ile
 Leu
 Arg
 Ala
 His
 Ala

 1
 5
 5
 1
 5
 10
 1
 15
 15

 Glu
 Met
 Gln
 Asn
 Ile
 Gln
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 <

Glu Glu Gly Ile Glu Glu Ile Ala Ala Asp Gly Glu Phe Asp His Asn 85 90 95

Tyr His Met Ala Ile Gln Thr Leu Pro Ala Asp Asp Asp His Pro Val

Asp Thr Ile Ala Gln Val Phe Gln Lys Gly Tyr Lys Leu His Asp Arg

Ile Leu Arg Pro Ala Met Val Val Val Tyr Asn 130 135

- (2) INFORMATION FOR SEQ ID NO:344:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:344:

 Met
 Ser
 Asn
 Lys
 Ser
 Tyr
 Ser
 Lys
 Phe
 Glu
 Glu
 Glu
 Val
 Ser
 Leu
 Lys

 Tyr
 Gly
 Phe
 Ile
 Gly
 Leu
 Lys
 Leu
 Lys
 Leu
 Ser
 Leu
 Thr
 Ala
 Glu

 Tyr
 Asp
 Glu
 Glu
 Phe
 His
 Ser
 Glu
 Ile
 Leu
 Ser
 Gly
 Asp
 Phe
 Thr
 Leu

 Tyr
 Asp
 Ile
 Ser
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 V

yr Asp Ile Ser Val 50

- (2) INFORMATION FOR SEQ ID NO:345:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:345:

 Met His Phe Asp
 Lys Ser
 Lys Phe Gly Ala Val Phe Ser Ala Pro Gly

 1
 5
 10
 15

 Leu Tyr Glu Val Glu Val Ile Asn Asn Ala Ser Phe Gly Gln Asn Ala 20
 25
 30

 Gln Tyr Glu Val Ile Gln Ser Arg Lys Leu Gly Thr Phe Ala Glu Leu 35
 40
 45

 Ile Glu Met Ala Lys Ile Lys 50
 55

(2) INFORMATION FOR SEQ ID NO:346:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 114 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:346:

Met Ile Gln Ala Val Phe Glu Arg Ala Glu Asp Gly Glu Leu Arg Ser 10 5 Ala Glu Ile Thr Gly His Ala Glu Ser Gly Glu Tyr Gly Leu Asp Val 25 Val Cys Ala Ser Val Ser Thr Leu Ala Ile Asn Phe Ile Asn Ser Ile Glu Lys Phe Ala Gly Tyr Glu Pro Ile Leu Glu Leu Asn Glu Asp Glu 55 Gly Gly Tyr Leu Met Val Glu Ile Pro Lys Asp Leu Pro Ser His Gln 70 75 Arg Glu Met Thr Gln Leu Phe Phe Glu Ser Phe Phe Leu Gly Met Ala 90 Asn Leu Ser Glu Asn Ser Ser Glu Phe Val Gln Thr Arg Val Ile Thr 105 110 100 Glu Asn

- (2) INFORMATION FOR SEQ ID NO:347:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 109 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:347:

Met Thr Ala Ile Ser Met Lys Trp Leu Asn Asp Tyr Ile Trp Pro Ala Glu Ser Glu Phe Thr Pro Asp Met Thr Thr Asn Ala Val Lys Glu Ala 25 Leu Thr Glu Met Leu Gln Ser Gly Thr Thr Thr Phe Asn Asp Met Tyr Asn Pro Asn Gly Val Asp Ile Gln Gln Ile Tyr Gln Val Val Lys Thr 55 Ser Lys Met Arg Cys Tyr Phe Ser Pro Thr Leu Phe Ser Ser Glu Thr 70 75 Glu Thr Thr Ala Glu Thr Ile Ser Arg Thr Arg Ser Ile Ile Asp Glu 90 Ile Leu Lys Tyr Lys Asn Pro Lys Phe Gln Gly Leu Trp 100

- (2) INFORMATION FOR SEQ ID NO:348:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:348:

Met Val Arg Glu Ser Ala Glu Ser Ala Gly Phe Phe Leu Glu Thr His 10 Met Val Gln Gly Glu Trp Asn Thr Cys Val Phe Lys Lys Thr Lys Asp 20 25 Ile Ser Gly Val Ile Gly Gly 35

- (2) INFORMATION FOR SEQ ID NO:349:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids

(B) TYPE: amino acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:349:

 Met Thr Val Asp Arg Glu Gly Phe Glu Ala Ala Met Lys Glu Gln Gln

 1
 5
 10
 15
 15

 Glu Arg Ala Arg Ala Ser Ala Ser Ala Val Lys Gly Gly Ser Met Gly Met Gln
 20
 25
 25
 30

 Asn Gly Asn Ser Ser Lys His His Cys Arg Lys Cys Leu Gln
 45

 Cys

- (2) INFORMATION FOR SEQ ID NO:350:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:350:

 Met
 Lys
 Ala
 Gln
 Leu
 Val
 Pro
 Ser
 Arg
 Ser
 Lys
 Tyr
 Leu
 Ile
 Asp
 15

 Asn
 Thr
 Val
 Val
 Leu
 Phe
 Phe
 Gly
 Thr
 Arg
 Thr
 Asp
 Tyr
 Thr
 Arg
 Lys
 30
 Lys
 Arg
 Arg
 Glu
 Val
 Ala
 Gly
 Asp
 Gln
 Ile
 Ala
 Arg
 Arg
 Glu
 Val
 Ala
 Gly
 Asp
 Gln
 Ile
 Ala
 Arg
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg

65 70 75 80

Phe Pro Tyr Ile Val Tyr Ala Gln Leu Phe Ala Leu Leu Thr Ser Leu 85 90 95

Lys Val Glu Asn Lys Pro Asp Thr Pro Ser Pro Thr Gly Thr Val Asn 100 105 110

Arg Val Val Gln Gly Val Ile Ile His Glu Tyr Gln Lys 115 120 125

(2) INFORMATION FOR SEQ ID NO:351:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 236 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:351:

1				5					10					15	Ile
Ser	Glu	Phe	20	Ala	Asp	Lys	Pro	Thr 25	Ile	ser	Phe	His	Val	Asp	Ala
Val	Gln	Ala 35	Leu	Ala	Lys	Ile	Pro 40	Thr	Glu	Lys	Tyr	Leu 45	Thr	Glu	Arg
Val	Asp 50	Cys	Ala	Thr	Phe	Ser 55	Ser	His	Lys	Phe	His	Gly	Val	Arg	Gly
Val 65	Gly	Phe	Val	Tyr	Ile 70	Lys	Ser	Gly	Lys	Lys 75	Ile	Thr	Pro	Leu	Leu 80
Thr	Gly	Gly	Gly	Gln 85	Glu	Arg	Asp	Tyr	Arg 90	Ser	Thr	Thr	Glu	Asn 95	Val
Ala	Gly	Ile	Ala 100	Ala	Thr	Ala	Lys	Ala 105	Leu	Arg	Leu	Ser	Met 110	Glu	Lys
Leu	Asp	Ile 115	Phe	Arg	Ser	Lys	Thr 120	Gly	Gln	Met	Lys	Ala 125	Val	Ile	His
Gln	Ala 130	Leu	Leu	Asn	Tyr	Pro 135	Asp	Ile	Phe	Val	Phe 140	Ser	Asp	Glu	Glu
Asp 145	Phe	Ala	Pro	His	Ile 150	Leu	Thr	Phe	Gly	Ile 155	Lys	Gly	Val	Arg	Gly 160
Glu	Val	Ile	Val	His 165	Ala	Phe	Glu	Asp	Tyr 170	Asp	Ile	Phe	Ile	Ser	
Thr	Ser	Ala	Cys 180	Ser	Ser	Lys	Ala	Gly 185	Lys	Pro	Ala	Gly	Thr 190		Ile
Ala	Met	Gly 195	Val	Asp	Lys	Asp	Lys 200	Ala	Lys	Ser	Ala	Val 205		Leu	Ser
	Asp 210	Leu	Glu	Asn	Asp	Met 215	Ser	Gln	Val		Gln 220		Leu	Thr	Lys

Leu Lys Leu Ile Tyr Asn Gln Thr Arg Lys Val Arg 225 230 235

- (2) INFORMATION FOR SEQ ID NO:352:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:352:
- Met Leu Val Thr Gly Ala Ile Leu Gly Val Asn Val His Ile Phe Ser

 1 5 10 15
- Pro Lys Glu Leu Phe Pro Glu Lys Glu Ile Val Glu Leu Ala Glu Gly
 20 25 30
- Phe Ala Lys Glu Ser Gly Ala His Val Leu Ile Thr Glu Asp Ala Asp 35 40 45
- Glu Ala Val Lys Asp Ala Asp Val Leu Tyr Thr Asp Val Trp Val Ser
 50 55 60
- Met Gly Glu Glu Asp Lys Phe Ala Glu Arg Val Ala Leu Leu Lys Pro 65 70 75 80
- Tyr Gln Val Asn Met Asp Leu Val Lys Lys Ala Gly Asn Glu Asn Leu 85 90 95
- Ile Phe Leu His Cys Leu Pro Ala Phe His Asp Thr His Thr Val Tyr
 100 105 110
- Gly Lys Asp Val Ala Glu Lys Phe Gly Val Glu Glu Met Glu Val Thr
- Asp Glu Val Phe Arg Ser Lys Tyr Ala Arg His Phe Asp Gln Ala Glu 130 135 140
- Asn Arg Met His Thr Ile Lys Ala Val Met Ala Ala Thr Leu Gly Asn 145 150 155 160
- Leu Tyr Ile Pro Lys Val

- (2) INFORMATION FOR SEQ ID NO:353:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 143 amino acids
 - (E) TYPE: amino acid
 - (C) STRANDEDNESS: single

PCT/US97/05306

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:353:

Glu Lys Ser Ile Ala Phe Tyr Gln Asp Ala Phe Gly Phe Lys Glu Leu
35 40 45

Arg Arg Arg Asp Phe Pro Asp His Ala Phe Thr Ile Val Tyr Leu Gly
50 55 60

Leu Glu Gly Asp Asp Tyr Glu Leu Glu Leu Thr Tyr Asn Tyr Asp His 65 70 75 80

Gly Pro Tyr Val Val Gly Asp Gly Phe Ala His Ile Ala Leu Ser Thr 85 90 95

Pro Asp Leu Glu Ala Leu His Gln Glu His Ser Thr Lys Gly Tyr Glu
100 105 110

Val Thr Glu Pro Asn Gly Leu Pro Gly Thr Ala Pro Asn Tyr Tyr Phe 115 120 125

Val Lys Asp Pro Asp Gly Tyr Lys Val Glu Val Ile Arg Glu Lys
130 135 140

- (2) INFORMATION FOR SEQ ID NO:354:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:354:

Met Asp His Thr Ile Phe Cys Val Gly Tyr Arg Val Met Gln Lys Asp 1 5 10 15

Leu Glu Gly Thr Leu Asp Ala Glu Lys Leu Lys Ala Ala Gly Val Pro
20 25 30

Phe Gly Pro Leu Phe Gly Lys Ile Lys Asn Gly Gln Asp Leu Val Leu 35 40 45

Glu Asp Gly Thr Glu Ile Lys Ala Ala Asp Tyr Ile Ser Ala Pro Arg 50 55 60

Pro Gly Lys Ile Ile Thr Ile Leu Gly Asp Thr Arg Lys Thr Asp Ala 65 70 75 80

Ser Val Arg Leu Ala Val Asn Ala Asp Val Leu Val His Glu Ser Thr 85 90 95

Tyr Gly Lys Gly Asp Glu Lys Ile Ala Arg Asn His Gly His Ser Thr
100 105 110

Asn Met Gln Ala Ala Gln Val Ala Val Glu Ala Gly Ala Lys Arg Leu 115 120 125

Leu Leu Asn His Ile Ser Ala Arg Phe Leu Ser Lys Asp Ile Ser Lys 130 135 140

Leu Lys Lys Asp Ala Ala Thr Ile Phe Glu Asn Val His Val Val Lys
145 150 150 160

Asp Leu Glu Lys Met Glu Ile Tyr Gln Ser Gln Lys Gly 165 170

(2) INFORMATION FOR SEQ ID NO:355:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:355:

Met Ile Gln Pro Ala Ser Leu Glu Glu Leu Ala Ser Leu Val Glu Lys

1 5 10 15

Ala Gly Lys Lys Val Phe Leu Phe Val Ala Asp Trp Cys Gly Asp Cys
20 25 30

Arg Tyr Ile Tyr Pro Ala Leu Pro Glu Ile Glu Glu Thr Asn Pro Glu
35 40 45

Phe Thr Phe Ile Arg Met Asp Arg Asp Gln Tyr Met Asp Leu Ala Lys
50 55 60

Leu Trp Asp Val Tyr Gly Ile Pro Ser Leu Val Val Leu Glu Lys Asp 70 75 80

Lys Glu Ile Gly Arg Phe Val Asn Arg Asp Arg Lys Ser Lys Glu Gln 85 90 95

Ile Asn Asp Phe Leu Ala Gly Leu Lys

(2) INFORMATION FOR SEQ ID NO:356:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:356:

 Met Arg
 Leu
 Gly
 Leu
 Gln
 Val
 Leu
 Arg
 Leu
 Pro
 Lys
 Ala
 Phe
 Gln

 1
 5
 5
 Lys
 Gly
 His
 Gly
 Asp
 Val
 Ser
 Ser
 Phe
 Thr

 Leu
 11e
 Phe
 Ile
 Gln
 Asp
 Lys
 Gln
 Phe
 Lys
 Leu
 Val
 Gly
 Lys
 Gln

 Ala
 Ser
 Cys
 Val
 Thr
 Gly
 Pro
 Trp
 Ala
 Phe
 Lys
 Leu
 Val
 Gly
 Lys
 Gln

 Ala
 35
 40
 45
 45
 45

Gly Asn Ile His

50

- (2) INFORMATION FOR SEQ ID NO:357:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:357:

Met Lys Thr Arg Lys Ile Pro Leu Arg Lys Ser Val Val Ser Asn Glu

1 5 10 15

Val Ile Asp Lys Arg Asp Leu Leu Arg Ile Val Lys Asn Lys Glu Gly
20 25 30

Gln Val Phe Ile Asp Pro Thr Gly Lys Ala Asn Gly Arg Gly Ala Tyr 35 40 45

Ile Lys Leu Asp Asn Ala Glu Ala Leu Glu Ala Lys Lys Lys Val
50 55 60

Phe Asn Arg Ser Phe Ser Met Glu Val Glu Glu Ser Phe Tyr Asp Glu 65 70 75 80

Leu Ile Ala Tyr Val Asp His Lys Val Lys Arg Arg Glu Leu Gly Leu 85 90 95

Glu

(2) INFORMATION FOR SEQ ID NO:358:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 159 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:358:

Met Arg Val Ala Tyr Phe Lys Val His His Pro Ile Tyr Tyr Tyr Cys

1 5 10 15

Ala Tyr Phe Ser Ile Arg Ala Lys Ala Phe Asp Ile Lys Thr Met Gly 20 25 30

Ala Gly Leu Glu Val Ile Lys Arg Arg Met Glu Glu Ile Ser Glu Lys
35 40 45

Arg Lys Asn Asn Glu Ala Ser Asn Val Glu Ile Asp Leu Tyr Thr Thr 50 55 60

Leu Glu Ile Val Asn Glu Met Trp Glu Arg Gly Phe Lys Phe Gly Lys 65 70 75 80

Leu Asp Leu Tyr Cys Ser Gln Thr Thr Glu Phe Leu Ile Asp Gly Asp 85 90 95

Thr Leu Ile Pro Pro Phe Val Ala Met Asp Gly Leu Gly Glu Asn Val
100 105 110

Ala Lys Gln Leu Val Arg Ala Arg Glu Glu Glu Glu Phe Leu Ser Lys 115 120 125

Thr Glu Leu Arg Lys Arg Gly Gly Leu Ser Ser Thr Leu Val Glu Lys 130 135 140

Met Asp Glu Met Gly Ile Leu Gly Asn Met Pro Glu Ile Thr Ser 145 150 155

(2) INFORMATION FOR SEQ ID NO:359:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:359:

Met Ser Ser Lys Ile Ser Ile Gly Gln Leu Ile Thr Phe Asn Thr Leu 1 10 Leu Ser Tyr Phe Thr Thr Pro Met Glu Asn Ile Ile Asn Leu Gln Thr 25 Lys Leu Gln Ser Ala Lys Val Ala Asn Asn Arg Leu Asn Glu Val Tyr 40 Leu Val Glu Ser Glu Phe Gln Val Gln Glu Asn Pro Val His Ser His 55 Phe Leu Met Gly Asp Ile Glu Phe Asp Asp Leu Ser Tyr Lys Tyr Gly 75 Phe Gly Arg Asp Thr Leu Thr Asp Ile Asn Leu Thr Ile Lys Gln Gly 90 Asp Lys Val Ser Leu Val Gly Val Ser Gly Ser Gly Lys Thr Thr Leu Ala Lys Met Ile Val Asn Phe Phe Glu Pro Tyr Lys Gly His Ile Ser 120 Ile Asn His Gln Asp Ile Lys Asn Ile Asp Lys Lys Ser Leu Ala Pro 130 135 140 Ser Tyr 145

- (2) INFORMATION FOR SEQ ID NO:360:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:360:

Met Arg Gln Ala Pro Ala Leu Ala Gln Ala Asn Ile Glu Arg Val Val 1 5 5 10 10 15

Val His Lys Ile Ser Lys Val Trp Glu Phe His Phe Arg Ile Phe 20 25 30

(2) INFORMATION FOR SEQ ID NO:361:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:361:

Met Gln Thr Gly Trp Gln Tyr Leu Gly Asn Lys Trp Tyr Tyr Leu Arg

1 5 10 15

Ser Ser Gly Ala Met Ala Thr Gly Trp Tyr Gln Glu Gly Thr Thr Trp

20 25 30

Tyr Tyr Leu Asp Gln Pro Asn Gly Asp Met Lys Thr Gly Trp Gln Asn 35 40 45

Leu Gly Asn Lys Trp Tyr Tyr Leu Arg Ser Ser Gly Ala Met Ala Thr 50 55 60

Gly Trp Tyr Gln Glu Gly Thr Thr Trp Tyr Tyr Leu Asp Gln Pro Asn 65 70 75 80

Gly Asp Met Lys Thr Gly Trp Gln Asn Leu Gly Asn Lys Trp Tyr Tyr 85 90 95

Leu Arg Ser Ser Gly Ala Met Ala Thr Gly Trp Tyr Gln Asp Gly Ser 100 105 110

Thr Trp Tyr Tyr Leu Asn Ala Val Met Glu Ile 115 120

- (2) INFORMATION FOR SEQ ID NO: 362:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 121 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:362:

Met Lys Trp Gly Ser Arg Ile Leu Leu Gly Leu Thr Pro Lys Ser Leu

1 5 10 15

Arg Tyr Arg Ile Trp Lys Lys Ala Glu Lys Glu Met Thr Lys Tyr Asp
20 25 30

Leu Ala Asp Cys Asp Gly Ile Thr Glu Leu Cys Ser Gly Pro Gly Tyr
35 40 45

Met Arg Asn Lys Tyr Pro Ile Thr Ser Phe Glu Asp Asn Leu Phe Leu 50 55 60

Pro Phe Glu Gly Thr Glu Met Pro Ile Pro Ile Gly Tyr Asp Val Tyr 65 70 75 80

Leu Arg Thr Ala Phe Gly Asp Tyr Met Thr Pro Pro Pro Ala Asp Lys
85 90 95

Gln Val Pro His Gln Asp Ala Val Ile Ala Asp Met Asp Lys Ser Tyr 100 105 110

Thr Glu Tyr Lys Gly Glu Tyr Gly Gly 115 120

(2) INFORMATION FOR SEQ ID NO:363:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:363:

Met Phe Pro Asp Ser Ile Asp Thr Met His Gln Ala Asn Glu Phe Ile

1 5 5 10 10 15

Ala Leu Asp Asp Leu Phe Arg Ala Ala Ala Ile Tyr Ala Glu Ala Ile
20 25 30

Tyr Glu Leu Ile Lys

35

(2) INFORMATION FOR SEQ ID NO: 364:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:364:

Met Asp Glu Leu Gln Lys Arg Asn Leu Leu Gly Phe Val Phe Gln Asp 10 Phe Gln Leu Phe Pro His Leu Ser Val Leu Glu Asn Leu Thr Leu Ser 25 Pro Val Lys Thr Met Gly Met Lys Gln Glu Glu Ala Glu Lys Lys Ala 40 Ser Gly Leu Leu Glu Gln Leu Gly Leu Gly Gly His Ala Glu Ser Tyr 55 Pro Phe Ser Leu Ser Gly Gly Gln Lys Gln Arg Val Ala Leu Ala Arg 70 75 Ala Met Met Ile Asp Pro Glu Ile Ile Gly Tyr Asp Glu Pro Thr Ser 90 Ala Leu Asp Pro Glu Leu Arg Leu Glu Val Glu Lys Leu Ile Leu Gln 100 105 Asn Arg Glu Leu Gly Met Thr His Ile Val Val Thr His Asp Leu Gln 120 Phe Gly 130

- (2) INFORMATION FOR SEQ ID NO:365:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:365:

- (2) INFORMATION FOR SEQ ID NO:366:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:366:

- (2) INFORMATION FOR SEQ ID NO:367:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 137 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:367:

 Met
 Lys
 His
 Phe
 Asp
 Thr
 Ile
 Val
 Ile
 Gly
 Gly
 Pro
 Ala
 Gly
 Met

 1
 5
 5
 10
 15
 15
 15

 Met
 Ala
 Thr
 Ile
 Ser
 Ser
 Phe
 Tyr
 Gly
 Gln
 Lys
 Thr
 Leu
 Leu
 Ile

 20
 25
 25
 30
 30
 30
 30
 30

Glu Lys Asn Arg Lys Leu Gly Lys Lys Leu Ala Gly Thr Gly Gly Gly
35 40 45

Arg Cys Asn Val Thr Asn Asn Gly Ser Leu Asp Asn Leu Leu Ala Gly
50

Ile Pro Gly Asn Gly Arg Phe Leu Tyr Ser Val Phe Ser Gln Phe Asp
65 70 75 80

Asn His Asp Ile Ile Asn Phe Phe Thr Glu Asn Gly Val Lys Leu Lys 85 90 95

Val Glu Asp His Gly Arg Val Phe Pro Ala Ser Asp Lys Ser Arg Thr
100 105 110

Ile Ile Glu Ala Leu Glu Lys Lys Ile Thr Glu Leu Gly Gly Gln Val

Ala Thr Pro Asn Arg Asn Arg Phe Cys 135

- (2) INFORMATION FOR SEQ ID NO:368:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:368:

Met Thr Leu Ala Lys Asp Ile Ala Ser His Leu Leu Lys Ile Gln Ala 5 10

Val Tyr Leu Lys Pro Glu Glu Pro Phe Thr Trp Ala Ser Gly Ile Lys 25

Ser Pro Ile Tyr Thr Asp Asn Arg Val Thr Leu Ala Tyr Pro Glu Thr 40

Arg Thr Leu Ile Glu Asn Gly Phe Val Glu Ala Ile Lys Glu Ala Phe

Pro Glu Val Glu Val Ile Ala Gly Thr Ala Thr Ala Gly Ile Pro His

70 Gly Ala Ile Ile Ala Asp Lys Met Asp Leu Pro Phe Ala Tyr Ile Pro

- 85 90
 - (2) INFORMATION FOR SEQ ID NO:369:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 93 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:369:

Met Val Lys Val Leu Ala Ala Cys Gly Asn Gly Met Gly Ser Ser Met 10

Val Ile Lys Met Lys Val Glu Asn Ala Leu Arg Lys Leu Asn Gln Thr 20 25

Asp Phe Thr Val Asn Ser Cys Ser Val Gly Glu Ala Lys Gly Leu Ala 35 40 45

Val Gly Tyr Asp Ile Val Ile Ala Ser Leu His Leu Ile Gln Glu Leu 50 55 60

Glu Gly Arg Thr Asn Gly Lys Leu Ile Gly Leu Asp Asn Leu Met Asp 65 70 75 80

Asp Lys Glu Ile Thr Glu Lys Leu Ser Gln Ala Ile Gln 85 90

(2) INFORMATION FOR SEQ ID NO:370:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 142 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:370:

Met Ser Met Phe Leu Asp Thr Ala Lys Ile Lys Val Lys Ala Gly Asn

1 5 10 15

Gly Gly Asp Gly Met Val Ala Phe Arg Arg Glu Lys Tyr Val Pro Asn 20 25 30

Gly Gly Pro Trp Gly Gly Asp Gly Gly Arg Gly Gly Asn Val Val Phe
35 40 45

Val Val Asp Glu Gly Leu Arg Thr Leu Met Asp Phe Arg Tyr Asn Arg
50 55 60

His Phe Lys Ala Asp Ser Gly Glu Lys Gly Met Thr Lys Gly Met His 65 70 75 80

Gly Arg Gly Ala Glu Asp Leu Arg Val Arg Val Pro Gln Gly Thr Thr
85 90 95

Val Arg Asp Ala Glu Thr Gly Lys Val Leu Thr Asp Leu Ile Glu His
100 105 110

Gly Gln Glu Phe Ile Val Ala His Gly Gly Pro Trp Trp Thr Trp Lys
115 120 125

Tyr Ser Phe Arg Asp Thr Lys Lys Ser Cys Thr Gly Asn Leu
130 135 140

- (2) INFORMATION FOR SEQ ID NO:371:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 210 amino acids

(B) TYPE: amino acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:371:

Met Met Lys Gly Glu Met Thr Phe Lys Gln Val His Tyr Lys Tyr Gly 10 Tyr Gly Arg Asp Val Leu Ser Asp Ile Asn Leu Thr Val Pro Gln Gly 25 Ser Lys Val Ala Phe Val Gly Ile Ser Gly Ser Gly Lys Thr Thr Leu Ala Lys Met Met Val Asn Phe Tyr Asp Pro Ser Gln Gly Glu Ile Ser - 55 Leu Gly Gly Val Asn Leu Asn Gln Ile Asp Lys Lys Ala Leu Arg Gln 70 Tyr Ile Ile Tyr Leu Pro Pro Gln Pro Tyr Val Phe Asn Gly Thr Ile 85 90 Leu Glu Asn Leu Leu Gly Ala Lys Gly Gly Asp Asp Thr Gly Lys 100 105 Ile Ser Leu Thr Gly Arg Ser Glu Phe Gly Ser Glu Ile Pro Lys Arg 120 125 Asn Ile Ser Lys Pro Pro Cys His Leu Glu Ile Tyr Gln Thr Glu Leu 135 140 Thr Ser Asp Gly Ala Gly Ile Ser Gly Gly Gln Arg Gln Arg Ile Ala 150 Leu Ala Arg Ala Leu Leu Thr Asp Ala Pro Val Leu Ile Leu Asp Glu 170 Ala Thr Asn Ser Leu Asp Ile Leu Thr Lys Lys Arg Ile Val His Tyr 180 185 190 Leu Met Ala Leu Asp Lys Thr Phe Asp Phe His Cys Ser Pro Leu Asp 200 Tyr Cys 210

- (2) INFORMATION FOR SEQ ID NO:372:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:372:

- (2) INFORMATION FOR SEQ ID NO:373:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 149 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:373:

Met Ala His Gln Gly Gln Asp Ile Tyr Asp Phe Pro Arg Ala Met Ile Lys Glu Asp Asn Leu Glu Phe Ser Phe Ser Gly Leu Lys Ser Ala Phe 25 Ile Asn Leu His His Asn Ala Glu Gln Lys Gly Glu Ser Leu Ser Thr 40 Glu Asp Leu Cys Ala Ser Phe Gln Ala Ala Val Leu Asp Ile Leu Met 55 60 Ala Lys Thr Lys Lys Ala Leu Glu Lys Tyr Pro Val Lys Thr Leu Val 70 75 Val Ala Gly Gly Val Ala Ala Asn Lys Gly Leu Arg Glu Arg Leu Ala 90 Ala Glu Val Thr Asp Val Lys Val Ile Ile Pro Pro Leu Arg Leu Cys 105 Gly Asp Asn Ala Gly Met Ile Ala Tyr Ala Ser Val Ser Glu Trp Asn 115 120

Lys Glu Asn Phe Ala Asn Leu Asp Leu Asn Ala Lys Pro Ser Leu Ala 130 135 140

Phe Asp Thr Met Glu 145

- (2) INFORMATION FOR SEQ ID NO:374:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 91 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:374:

Met Lys Arg Ser Leu Asp Ser Arg Val Asp Tyr Ser Leu Leu Pro 1 5 10 15

Val Phe Phe Leu Leu Val Ile Gly Val Val Ala Ile Tyr Ile Ala Val 20 25 30

Ser His Asp Tyr Pro Asn Asn Ile Leu Pro Ile Leu Gly Gln Gln Val 35 40 45

Ala Trp Ile Ala Leu Gly Leu Val Ile Gly Phe Val Val Met Leu Phe 50 55 60

Asn Thr Glu Phe Leu Trp Lys Val Thr Pro Phe Leu Tyr Ile Phe Arg 70 75 80

Leu Gly Thr Tyr Asp Leu Ala Asp Cys Ile Leu 85 90

- (2) INFORMATION FOR SEQ ID NO:375:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 87 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:375:

Met Pro Asp Asp Ile Ile Asp Ser Phe Trp Tyr Ile Ile Asp His Phe 1 5 10 15

Leu Lys Asn Val Phe Glu Leu Glu Glu Glu Leu Glu Phe Gln Leu Leu 20 25 30

Asn Asn Gln Gly Lys Ile Thr Phe His Phe Ser Ser Gln His Leu Pro 35 40 45

Thr Ala Ile Asp Phe Asp Phe Asn His Pro Phe Asp Pro Arg Tyr Pro 50 55 60

Pro Arg Val Leu Val Leu Asp Met Asp Gly Arg Glu Thr Ile Leu Leu 65 70 75 80

Pro Glu Glu Asn Asp Leu Phe

85

(2) INFORMATION FOR SEQ ID NO:376:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:376:

Met Gly Lys Lys Asp Ala Ser Ala Met His Glu Met Arg Ala Ser Phe 1 5 10 15

Ile Gln Gly Ser Ile Glu Ala Gly His Thr Ala Glu Lys Ser Glu Gln
20 25 30

Val Phe Asp Val Met Glu Lys Phe Ala Gly Tyr Gly Phe Asn Arg Ser 35 40 45

His Ala Tyr Ala Tyr Ser Ala Leu Ala Phe Gln Leu Ala Tyr Phe Lys
50 55 60

Thr His Tyr Pro Ala Ile Phe Tyr Gln Val Met Leu Asn Tyr Ser Asn 65 70 75 80

Ser Asp Tyr Leu Ile Asp Ala Leu Glu Ala Gly Phe Glu Val Ala Ser 85 90 95

Leu Ser Ile Asn Thr Ile Pro Tyr His Asp Lys Ile Ala Asn Lys Ser 100 105 110

Ile Tyr Ile Gly Leu Lys Ser Ile Lys Gly Leu Gln Gln Gly Leu Gly
115 120 125

Ala Leu Asp Tyr

130

(2) INFORMATION FOR SEQ ID NO:377:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:377:

Met Asp Lys Lys Gln Asn Leu Thr Ser Phe Gln Glu Leu Thr Thr 10 Glu Leu Asn Gln Ile Thr Gly Gly Glu Trp Trp Glu Glu Leu Leu His 20 25 Glu Thr Ile Leu Ser Lys Phe Lys Ile Thr Lys Ala Leu Glu Leu Pro

Ile Gln Leu

50

- (2) INFORMATION FOR SEQ ID NO:378:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 92 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:378:

Met His Glu Met Phe Thr Ala Ile Ala Glu Ser Asp Met Lys Lys Ala 10

Ala Ala Ile Gln Arg Lys Phe Ile Pro Lys Val Asn Ala Leu Phe Ser 25

Tyr Pro Ser Pro Ala Pro Val Lys Ala Ile Leu Asn Tyr Met Gly Phe 40

Glu Ala Gly Pro Thr Arg Leu Pro Leu Val Pro Ala Pro Glu Glu Asp 55

Val Lys Arg Ile Ile Lys Val Val Val Asp Gly Asp Tyr Glu Ala Thr 70

Lys Ala Thr Val Thr Gly Val Leu Arg Pro Asp Tyr

- (2) INFORMATION FOR SEQ ID NO:379:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 72 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:379:

Met Leu Asn Glu Phe Pro Ile Phe Asp Tyr Glu Asp Ile Gln Leu Ile 1 5 10 15

Pro Asn Lys Cys Val Ile Lys Ser Arg Ala Glu Ala Asp Thr Ser Val

Thr Leu Gly Asn His Thr Phe Lys Leu Pro Val Val Pro Ala Asn Met 35 40 45

Gln Thr Ile Leu Asp Glu Asn Val Ala Glu Gln Leu Ala Lys Gly Gly 50 55 60

Tyr Leu Tyr Thr Tyr Ala Pro Phe 65 70

- (2) INFORMATION FOR SEQ ID NO:380:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:380:

Met Asp Ile Lys Leu Lys Asp Phe Glu Gly Pro Leu Asp Leu Leu Leu 1

His Leu Val Ser Lys Tyr Gln Met Asp Ile Tyr Asp Val Pro Ile Thr
20 25 30

Glu Val Ile Glu Gln Tyr Leu Ala Tyr Val Ser Thr Leu Gln Ala Met
35 40 45

Arg Leu Glu Val Thr Gly Glu Tyr Met Val Met Ala Ser Gln Leu Met 50 55 60

Leu Ile Lys Ser Arg Lys Leu Leu Pro Lys Val Ala Glu Val Thr Asp 65 70 75 80

Leu Gly Asp Asp Leu Glu Gln Asp Leu Leu Ser Gln Ile Glu Glu Tyr
85 90 95

Arg Lys Phe Lys Leu Gly Glu His Leu Glu Ala Lys His Gln Glu
100 105 110

Thr Gly Pro Val Leu Phe Gln Ser Ala Asp Arg Val Asp Leu Arg Arg 115 120 125

Cys Gly Ala Cys Ala 130

(2) INFORMATION FOR SEQ ID NO:381:

- (i) SEQUENCE CHÁRACTERISTICS:
 - (A) LENGTH: 112 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:381:

Met Gln Ser Thr Glu Lys Lys Pro Leu Thr Ala Phe Thr Xaa Ile Ser
1 5 10 15

Thr Ile Ile Leu Leu Leu Leu Thr Val Leu Xaa Ile Phe Pro Phe Tyr 20 25 30

Trp Ile Leu Thr Gly Ala Phe Lys Ser Gln Pro Asp Thr Ile Val Ile 35 40 45

Pro Pro Gln Trp Phe Pro Lys Met Pro Thr Met Glu Asn Phe Gln Gln 50 55 60

Leu Met Val Gln Asn Pro Ala Leu Gln Trp Met Trp Asn Ser Val Phe 65 70 75 80

Ile Ser Leu Val Thr Met Phe Leu Val Cys Ala Thr Ser Ser Leu Ala 85 90 95

Gly Tyr Val Leu Ala Xaa Lys Arg Phe Tyr Gly Xaa Arg Ile Tyr Cys 100 105 110

- (2) INFORMATION FOR SEQ ID NO:382:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:382:

- (2) INFORMATION FOR SEQ ID NO:383:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 159 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:383:

Met Lys Ile Lys Val Val Thr Val Gly Lys Leu Lys Glu Lys Tyr Leu 1 5 10 Lys Asp Gly Ile Ala Glu Tyr Ser Lys Arg Ile Ser Arg Phe Ala Lys 25 Phe Glu Met Ile Glu Leu Ser Asp Glu Lys Thr Pro Asp Lys Ala Ser 40 Glu Ser Glu Asn Gln Lys Ile Leu Glu Ile Glu Gly Gln Arg Ile Leu 55 60 Ser Lys Ile Ala Asp Arg Asp Phe Val Ile Val Leu Ala Ile Glu Gly 70 75 Lys Thr Phe Phe Ser Glu Glu Phe Ser Lys Gln Leu Glu Glu Thr Ser 85 90 Ile Lys Gly Xaa Ser Thr Leu Thr Phe Ile Ile Gly Gly Ser Leu Gly 105 Leu Ser Ser Val Lys Asn Arg Ala Asn Leu Ser Val Ser Phe Gly 115 120 125

Arg Leu Thr Leu Pro His Gln Leu Met Arg Leu Val Leu Val Glu Gln
130

135

140

Ile Tyr Arg Ala Phe Thr Ile Gln Gln Gly Phe Pro Tyr His Lys
145

150

155

- (2) INFORMATION FOR SEQ ID NO:384:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 84 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:384:

 Met
 Gly
 I be
 Ala
 Trp
 Cys
 Asp
 Leu
 Val
 Leu
 Trp
 Asp
 Leu
 Trp
 Asp
 Leu
 Trp
 Asp
 Leu
 Trp
 Asp
 Leu
 Asp
 Leu
 Phe
 IIe
 Asp
 Asp
 Ala
 Trp
 Val
 Arg
 Lys
 Asp
 Lys
 Ala
 Arg
 Lys
 Ala
 Ala
 Lys
 Ala
 Ala
 Leu
 Ala
 Leu
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala</t

- (2) INFORMATION FOR SEQ ID NO:385:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:385:

Met Val Met Ala Glu Asp Gln Ala Val Arg Gln Asn Arg Leu Ala Ile 1 5 10 15

Leu Ser Gln Leu Thr Lys Lys Ala Ala Lys Phe Ala Cys Phe Asn Gln
20 25 30

Ile Asn Thr Lys

35

- (2) INFORMATION FOR SEQ ID NO:386:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:386:

His

- (2) INFORMATION FOR SEQ ID NO:387:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 62 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:387:

Met Asp Glu Val Thr Ile Phe Gly Ile Asn Tyr Phe Lys Glu His Tyr

Pro Glu Lys Leu Ala Glu Arg Phe Lys Gln Met Lys Ile Glu Glu Glu Glu 20 25 30

Ala Pro Val Ile Ile Met Asp Met Thr Arg Ala Leu Gly Phe Arg Asp 35 40 45

Asp Tyr Asp Arg Phe Tyr Ser Leu Phe Arg Glu Gly Ser Pro 50 55 60

- (2) INFORMATION FOR SEQ ID NO:388:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:388:

 Met Lys Val
 Ile Asn Gln Thr Leu Leu Glu Lys Val
 Ile Ile Glu Arg

 1
 5
 10
 15

 Ser Arg Ser Ser His Lys Gly Asp Tyr Gly Xaa Leu Leu Leu Leu Gly
 20
 25
 30

 Gly Thr Tyr Pro Tyr Gly Val
 Xaa Ser Ser Trp Leu Leu
 45

- (2) INFORMATION FOR SEQ ID NO:389:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:389:

 Met
 Asn
 Trp
 Ile
 Leu
 Leu
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Asp
 Leu
 Ile
 Cys
 Gln
 Asp
 Ala
 Ser

 Tyr
 Asp
 Met
 Lys
 Asp
 Asp
 Leu
 Asp
 Lys
 Val
 Asp
 Tyr
 Glu
 Asp
 Tyr
 Glu
 Leu
 Ile
 Leu
 Phe
 Gly
 Asp
 Leu

 Lys
 Thr
 Glu
 Glu
 Tyr
 Met
 Tyr
 Glu
 Leu
 Ile
 Leu
 Phe
 Gly
 Asp
 Leu

 Tyr
 Ser
 Phe
 Tyr
 Asp
 Val
 Tyr
 Val
 Tyr
 Arg
 Ile
 Glu
 Val
 Arg
 Ile
 Arg
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile

Val Leu Ile Leu Ala Leu Asn Cys Tyr Gln His Cys Leu Glu His Ser 85 90 95

- Ser Phe Tyr Asn Ala Asn Tyr Phe Glu Ala Tyr Thr Glu Lys Ile Ile
 100 105 110
- Asp Lys Gly Ile Lys Leu Tyr Glu Arg Asn Val Phe His Tyr Leu Lys
 115 120 125
- Gly Phe Ala Leu Tyr Gln Lys Gly Gln Cys Lys Glu Gly Cys Lys Gln 130 135 140
- Met Gln Glu Thr Met His Ile Phe Asp Val Leu Gly Leu Pro Glu Gln 145 150 155 160
- Val Ser Leu Leu Ser Gly Thr Leu Arg Lys Ile Cys Gln Lys Leu Ile 165 170 175
- - (2) INFORMATION FOR SEQ ID NO:390:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:390:

- (2) INFORMATION FOR SEQ ID NO:391:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 76 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:391:

- (2) INFORMATION FOR SEQ ID NO:392:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 161 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:392:

Met Lys Lys Ile Phe Leu Thr Leu Leu Thr Val Ser Leu Leu Gly Gly 10 Ala Ser Thr Ala Val Ala Gln Asp Phe Thr Ile Ala Ala Lys His Ala 25 Ile Ala Val Glu Ala Asn Thr Gly Lys Ile Leu Tyr Glu Lys Asp Ala 40 Thr Pro Pro Val Glu Ile Ala Ser Ile Thr Lys Leu Ile Thr Val Tyr 55 Leu Val Tyr Glu Ala Leu Glu Asn Gly Ser Ile Thr Leu Ser Thr Pro 75 70 Val Asp Ile Ser Asp Tyr Pro Tyr Gln Leu Thr Thr Asn Ser Glu Ala 90 85 Ser Asm Ile Pro Met Glu Ala Arg Asm Tyr Thr Val Glu Glu Leu Leu 100 105 Glu Ala Thr Leu Val Ser Ser Ala Asn Ser Ala Ala Ile Ala Leu Ala 120 Glu Lys Ile Ala Gly Ser Glu Lys Asp Phe Val Xaa Met Met Arg Ala 140

Lys Leu Leu Glu Trp Gly Ile Arg Ile His Cys Cys Gln Tyr Asp Arg 145 150 155 160

Ser

(2) INFORMATION FOR SEQ ID NO:393:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:393:

Met Ser Asn Ala Met Glu Gly Val Leu Tyr Phe Leu Lys Pro Asp Phe 1 5 10

Ser Lys Leu Thr Ser Ala Asp Leu Leu Tyr Ala Leu Gly Gln Ser Phe
20 25 30

Phe Ala Leu Ser Leu Gly Val Thr Asp Met Leu Thr Tyr Ala Ser Tyr 35 40 45

Leu Asp Lys Lys Thr Asn Leu Val Gln Ser Gly Ile Ser Ile Val Thr 50 55 60

Met Asn Ile Ser Ile Val His His Gly Arg Ser Ser His Phe Pro Ser 65 70 75 80

His Val Ser Leu Gln Tyr Pro Leu

85

- (2) INFORMATION FOR SEQ ID NO:394:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 75 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:394:

Met Lys Val Ala Lys Pro Phe Trp Ala Ile Val Lys Leu Lys Ser Val 1 5 10 15

Gln His Ala Ser Met Leu Glu Asn Pro Lys Glu Met Asp Gly Leu Met 20 25 30

Lys Gln Val Glu Asn Leu Ala Leu Glu Asn Gln Gly Tyr Gln Val Glu 35 40 45

Lys Glu Asn Lys Ala Phe Glu Gln Ile Lys Asp Ser Val Ala Thr Phe 50 55 60

Gln Thr Phe Leu Thr Ile Phe Leu Tyr Gly Cys
65 70 75

(2) INFORMATION FOR SEQ ID NO:395:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 93 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:395:

Met Asp Ala Glu Val Ser Lys Asn Leu Arg Leu Ile Leu Glu Arg Lys

1 5 10 15

Gly Met Thr Ile Leu Thr Gly Thr Lys Leu Gln Glu Ile Ile Glu Glu
20 25 30

Asn Gly Gln Leu Arg Ile Lys Val Glu Gly Lys Asp Asn Ile Ile Ala 35 40 45

Ser Lys Ala Leu Leu Ser Ile Gly Arg Met Pro Asp Leu Glu Gly Ile 50 55 60

Gly Glu Val Glu Phe Glu Leu Asp Arg Gly Cys Ile Lys Val Asn Glu 65 70 75 80

Tyr Met Glu Thr Ser Val Pro Arg Ile Tyr Ala Thr Arg 85 90

(2) INFORMATION FOR SEQ ID NO:396:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:396:

 Met
 Lys
 Asn
 Ser
 Ile
 Met
 Asp
 Thr
 Lys
 Phe
 Asp
 Arg
 Arg
 Ile
 Leu
 Leu

 Leu
 Asn
 Lys
 Ile
 Ile
 Ile
 Val
 Phe
 Ile
 Val
 Leu
 Met
 Thr
 Leu
 Leu
 Pro

 Leu
 Tyr
 Ile
 Val
 Val
 Ala
 Ser
 Phe
 Met
 Asp
 Pro
 Lys
 Val
 Leu
 Val

 Leu
 Tyr
 Ile
 Val
 Val
 Ala
 Asp
 Trp
 Thr
 Val
 Glu
 Gly
 Tyr

 Ser
 Arg
 Val
 Ile
 Gln
 Fro
 Ala
 Asp
 Trp
 Thr
 Val
 Glu
 Gly
 Tyr

 Gln
 Arg
 Val
 Ile
 Gln
 Fro
 Fro
 Ala
 Asp
 Trp
 Thr
 Val
 Glu
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 Fro
 F

(2) INFORMATION FOR SEQ ID NO:397:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 89 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:397:

- (2) INFORMATION FOR SEQ ID NO:398:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 86 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:398:

 Met
 Thr
 Arg
 11e
 Ala
 Ser
 Val
 Ser
 Val
 11e
 Arg
 Asn
 Ala
 Phe
 Ile

 Ala
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 Ine
 I

Leu Gly Arg Ser Tyr Pro

85

- (2) INFORMATION FOR SEQ ID NO:399:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 129 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:399:

Met Ser Leu Arg Glu Lys Ser Met Ser Glu Tyr Lys Leu Ser Glu Asn
1 5 10 15

Asn Trp Thr Arg Val Ala Val Phe Ala Gly Gly Asn Arg Gly His Tyr 20 25 30

Arg Thr Asp Phe Asp Ala Phe Val Gly Val Asp Arg Gly Ser Leu Trp

Val Leu Glu Glu Asp Leu Pro Leu Ala Leu Ala Val Gly Asp Phe Asp
50 55 60

Ser Val Thr Glu Glu Glu Arg Gln Val Ile Gln Lys Arg Ala Gln Tyr 65 70 75 80

Phe Val Gln Ala Arg Pro Glu Lys Asp Asp Thr Asp Leu Glu Leu Ala 85 90 95

Leu Leu Thr Ile Phe Glu Gln Asn Pro Gln Ala Glu Val Thr Ile Phe
100 105 110

Gly Ala Leu Gly Gly Arg Ile Asp His Met Leu Ala Asn Val Leu Ser 115 120 125

Thr

- (2) INFORMATION FOR SEQ ID NO:400:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 58 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:400:

Met Val Leu Gln Arg Asn Glu Ile Asn Glu Lys Asp Thr Trp Asp Leu

1 5 10 15

Ser Thr Ile Tyr Pro Thr Asp Gln Ala Trp Glu Glu Ala Leu Lys Asp 20 25 30

Leu Thr Glu Gln Leu Glu Thr Val Ala Gln Tyr Glu Gly His Leu Leu 35 40 45

Asp Ser Ala Asp Asn Leu Leu Val Asn His
50 55

- (2) INFORMATION FOR SEQ ID NO:401:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 58 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:401:

PCT/US97/05306 WO 97/37026

Asn Asp Leu Thr Ile Gln Tyr Asn Arg Ala Gln Thr Gly Gly Tyr Tyr

Thr Arg Asn Tyr Arg Asn Arg Ser Ser Ala 50 55

- (2) INFORMATION FOR SEQ ID NO:402:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402:

Met Thr Asp Gly Tyr Glu His Tyr Lys Lys Ile Met Glu Asn Pro Pro 5 10

Lys Asn Leu Ile Phe Pro Gly Ile Val Ser Pro Glu Arg Met Arg Glu 25

Ile Val Cys Ser Asn Gly Ser Phe Leu Val Ala 40 35

- (2) INFORMATION FOR SEQ ID NO:403:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:403:

Met Ser Lys Gln Lys Lys Phe Glu Glu Asn Leu Ala Glu Leu Glu Thr

Ile Val Gln Ser Leu Glu Asn Gly Glu Ile Ala Leu Glu Asp Ala Ile

25 Thr Ala Phe Gln Lys Gly Met Val Leu Ser Lys Glu Leu Gln Ala Thr

Leu Asp Lys Ala Glu Lys Thr Leu Val Lys Val Met Gln Glu Asp Gly 50

Thr Glu Ser Asp Phe Glu 65 70

(2) INFORMATION FOR SEQ ID NO:404:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 150 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:404:

Met Phe Ala Ala Val Thr Ala Gly Tyr Gln Ala Ala Leu Met Val Pro 1 5 10 15

Thr Glu Ile Leu Ala Glu Gln His Phe Glu Ser Leu Gln Asn Leu Phe
20 25 30

Pro Asn Leu Lys Leu Ala Leu Leu Thr Gly Ser Leu Lys Ala Ala Glu 35 40 45

Lys Arg Glu Val Leu Glu Thr Ile Ala Lys Gly Glu Ala Asp Leu Ile 50 55 60

Ile Gly Thr His Ala Leu Ile Gln Asp Gly Val Glu Tyr Ala Arg Leu 65 70 75 80

Gly Leu Ile Ile Ile Asp Glu Gln His Arg Phe Gly Val Gly Gln Arg 85 90 95

Arg Ile Leu Arg Glu Lys Gly Asp Asn Pro Asp Val Leu Met Met Thr
100 105 110

Ala Thr Pro Ile Pro Arg Thr Leu Ala Ile Thr Ala Phe Gly Asp Met
115 120 125

Asp Val Ser Ile Ile Asp Gln Met Pro Ala Gly Arg Lys Pro Tyr Cys 130 135 140

Asp Ala Leu Asp Gln Thr

- (2) INFORMATION FOR SEQ ID NO:405:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 110 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:405:

 Met
 Asn
 Arg
 Glu
 Ala
 Leu
 Arg
 Leu
 Tyr
 Leu
 Val
 Thr
 Asn
 Arg
 Tyr
 Gln

 Asp
 Ser
 Val
 Glu
 Ser
 Phe
 Leu
 Ala
 Lys
 Val
 Glu
 Thr
 Ala
 Cys
 Arg
 Ser

 Gly
 Val
 Thr
 Ile
 Val
 Gln
 Leu
 Arg
 Glu
 Lys
 Asn
 Leu
 Thr
 Thr
 Asn
 Gln

 Tyr
 Tyr
 Gln
 Leu
 Ala
 Lys
 Glu
 Leu
 Thr
 Thr
 Asn
 Gln

 Tyr
 Tyr
 Gln
 Leu
 Ala
 Lys
 Gln
 Val
 Lys
 Glu
 Ile
 Thr
 Thr
 Asn
 Gln
 Gln

 Tyr
 Tyr
 Gln
 Lys
 Asp
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys

(2) INFORMATION FOR SEQ ID NO:406:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 98 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:406:

 Met
 Gln
 Gly
 Ser
 His
 Phe
 His
 Leu
 Pro
 Ile
 Tyr
 Arg
 Met
 Thr
 Ser
 Gln

 Ala
 Leu
 Leu
 Asp
 Glu
 Thr
 Lys
 Lys
 Val
 Ala
 Ile
 Pro
 Val
 Leu
 Ala
 Thr

 Thr
 Gln
 Ser
 Lys
 Asp
 Ser
 Val
 Asp
 Tyr
 Arg
 Glu
 Leu
 Pro
 Ser
 Ile
 Glu

 Asn
 Phe
 Val
 Leu
 Val
 Asp
 Glu
 Glu
 Glu
 Ile
 Ser
 Ile
 Glu

 Met
 Ala
 Glu
 Asp
 Glu
 Leu
 Val
 His
 Ile
 Ser
 Met
 Lys
 Gly
 Gln

 Ala
 Glu
 Ser
 Ala
 Asp
 Glu
 Leu
 Val
 His
 Ile
 Ser
 Met
 Lys
 Gly
 Glu

 Ala
 Glu
 Ser
 Ala
 Asp
 Val
 Ala
 Val
 Ala
 Gly
 I

Leu Ser

(2) INFORMATION FOR SEQ ID NO:407:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 137 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:407:

Met Thr Lys Thr Ala Phe Leu Phe Ala Gly Gln Gly Ala Gln Tyr Leu

1 5 10 15

Arg Met Gly Arg Asp Phe Tyr Asp Gln Tyr Pro Ile Val Lys Glu Thr
20 25 30

Ile Asp Arg Ala Ser Gln Val Leu Gly Tyr Asp Leu Arg Tyr Leu Ile
35 40 45

Asp Thr Glu Glu Asp Lys Leu Asn Gln Thr Arg Tyr Thr Gln Pro Ala 50 55 60

Ile Leu Ala Thr Ser Val Ala Ile Tyr Arg Leu Leu Gln Glu Lys Gly 65 70 75 80

Tyr His Pro Asp Met Val Ala Gly Leu Ser Leu Gly Glu Tyr Ser Ala 85 90 95

Leu Val Ala Ser Gly Ala Leu Asp Phe Glu Asp Ala Val Ala Leu Val
100 105 110

Ala Lys Arg Gly Ala Tyr Met Glu Glu Ala Ala Pro Ala Asp Ser Gly
115 120 125

Lys Met Val Ala Val Leu His Thr Pro 130 135

- (2) INFORMATION FOR SEQ ID NO:408:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:408:

Met Tyr Gln Phe Ser Gly Gln Thr Lys Val Xaa Glu Val Leu Ala Phe

1 5 5 10 10 15

Arg Asp Lys Pro Pro Tyr Gly Gly Ser Ser Ala Met Pro Leu Arg Cys
20 25 30

Leu

- (2) INFORMATION FOR SEQ ID NO:409:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:409:

 Met
 Thr
 Lys
 Glu
 Thr
 Gly
 Met
 Glu
 Gln
 Thr
 Phe
 Phe
 Phe
 Ile
 Lys
 Pro

 Asp
 Gly
 Val
 Lys
 Arg
 Gly
 Leu
 Val
 Gly
 Glu
 Val
 Leu
 Lys
 Arg
 Ile
 Glu
 Gly
 Fhe
 Arg
 Ile
 Glu
 Lys
 Leu
 Glu
 Phe
 Arg
 Ser
 Gln
 Val
 Phe

 Arg
 Arg
 Val
 Asp
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 Ser
 S

- (2) INFORMATION FOR SEQ ID NO:410:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:410:

Met Thr Ser Gly Pro Val Leu Val Gly Val Ile Ser Gly Pro Lys Val
1 5 10 15

Ile Glu Thr Trp Arg Thr Met Met Gly Ala Thr Arg Pro Glu Glu Ala
20 25 30

Leu Pro Gly Thr Ile Arg Gly Asp Phe Ala Lys Ala Ala Gly Glu Asn 35 40 45

Glu Ile Ile Gln Asn Val Val His Gly Ser Asp Ser Glu Lys Asn Gln 50 55 60

Leu Ser Arg Glu Ile Ala Pro Leu Val Leu Arg Val Asp Trp Leu Asn 65 70 75 80

Gln Leu Asp Lys Ser Ser Phe Glu

85

(2) INFORMATION FOR SEQ ID NO:411:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 115 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:411:

Met Gly Leu Lys Asp Asn Ala Gly Leu Val Lys Glu Tyr Ala Leu Val 1 5 10 15

Asp Ala Val Glu Tyr Gln Asn Val Ile Val Ala Thr Thr Val Glu Glu 20 25 30

Met Leu Ser Lys Tyr Ala Asn Lys Asn Asp Leu Glu Ile Asp Asn Ala 35 40 45

Thr Thr Glu Ser Ile Lys Gly Val Val Ala Asp Leu Lys Ser Ala Val 50 55 60

Ile Lys Gly Asp Thr Val Tyr Phe Phe Lys Val Asp Gly Lys Ile Tyr 65 75 80

Lys Val Lys Ala Ser Val Ser Asp Asp Leu Pro Tyr Leu Glu Asn Gly 85 90 95

Lys Thr Phe Glu Gly Gln Val Xaa Lys Asp Asn Tyr Leu Lys Thr Phe
100 105 110

Lys Val Gln

115

(2) INFORMATION FOR SEQ ID NO:412:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:412:

 Met Ile Ser Gly Ser Glu Ile Arg Asp Ile Val Thr Ser Asp Ile Pro

 1
 5
 10
 5
 15

 Leu Ala Asp Lys Thr Glu Thr Leu Val Arg Phe Ala Asn Asn Asp 20
 25
 5
 30

 Gly Leu Asp Asn Ile Thr Val Ala Leu Val Ser Met Asn Glu Glu Asp 35
 40
 45

Glu Glu

- 50
- (2) INFORMATION FOR SEQ ID NO:413:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 76 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:413:

Met Pro Asp Asn Leu Ala Leu Arg Met Arg Pro Lys Thr Ile Asp Gln
1 5 10 15

Val Ile Gly Gln Glu Xaa Leu Val Gly Pro Gly Lys Ile Ile Arg Arg 20 25 30

Met Val Glu Ala Asn Arg Leu Ser Ser Met Ile Leu Tyr Gly Pro Pro
35 40 45

Gly Ile Gly Lys Thr Ser Ile Ala Ser Ala Ile Ala Gly Thr Thr Lys
50 55 60

Tyr Ala Phe Arg Thr Phe Asn Ala Thr Val Asp Ser 65 70 75

- (2) INFORMATION FOR SEQ ID NO:414:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:414:

- (2) INFORMATION FOR SEQ ID NO:415:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:415:

- (2) INFORMATION FOR SEQ ID NO:416:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 143 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:416:

Met Thr Asp Arg Tyr Asp Ser Ser Leu Gly Ile Tyr Lys Val Pro Trp Cys Val Ser Gln Gln Gln Thr Val Thr Glu Ile Met Asp Thr Tyr Cys 20 Asp Trp Gly Val Lys Tyr Pro Leu Val Tyr Leu Glu Asp Pro Phe Ser Asp Glu Asp Leu Asp Ser Trp Arg Lys Phe Gln Leu Ile Lys Pro Leu Lys Leu Gln Val Phe Gly Asp Asp Phe Tyr Ala Thr Asn Leu Glu Arg 70 75 Ile Ser Gln Phe Lys Asp Cys Ala Asp Gly Ile Val Ile Lys Pro Asn 90 Gln Val Gly Ser Val Ser Lys Thr Leu Glu Val Met Glu Tyr Ala Glu 105 Lys Ser Gly Ile Ser Met Ala Phe Ser Gln Arg Thr Ala Glu Thr Glu 120 Asn Asn Ile Ile Ser His Leu Ala Met Ser Val Ile Leu Leu Ile 135 130

(2) INFORMATION FOR SEQ ID NO:417:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417:

 Met
 Lys
 Lys
 Ile
 Ser
 Lys
 Glu
 Glu
 Leu
 Val
 Asn
 Thr
 Arg
 Phe
 Ser
 Arg

 Leu
 Phe
 Ala
 His
 Phe
 Gly
 Gln
 Glu
 Lys
 Asp
 Gly
 Ser
 Phe
 Leu
 Ala
 Gln

 Arg
 Tyr
 Gln
 Phe
 Tyr
 Leu
 Ala
 Gln
 Gln
 Gly
 Gln
 Thr
 Leu
 Asp
 Gly
 Ala
 Gln
 Gln
 Gln
 Thr
 Leu
 Ser
 Gly
 Ala
 Asp
 Asp
 Leu
 Ile
 Ala
 Asp
 Asp
 Ile
 Ile
 Asp
 Asp
 Ile
 Ile
 Ile
 Asp
 Asp
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile

Gly Leu Ala Pro Tyr Phe Asn Gln Val Phe Ile Ser Glu Gln Leu Gln
85 90 95

Thr Gln Lys Pro Asp Ala Leu Phe Tyr Glu Lys Ile Gly Gln Gln Ile 100 105 110

Ala Gly Phe Ser Lys Glu Lys Thr 115 120

- (2) INFORMATION FOR SEQ ID NO:418:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 114 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:418:

Met His Arg Lys Thr Val Ile Asp Xaa Arg Thr Leu Gly Glu Arg Tyr

1 5 10 15

Thr Phe Thr Xaa Pro Ile Lys Glu Leu Lys Thr Arg Asn Val Ala Glu
20 25 30

Val Ala Asp Leu Leu Ala Xaa Val Glu Ser Tyr Gln Glu Gln Asp Tyr
35 40 45

Tyr Val Val Gly Tyr Val Ser Tyr Glu Ala Ala Pro Ala Phe Glu Glu 50 55 60

Lys Leu Ala Val His Lys Val Pro Leu Leu Gly Glu Tyr Leu Leu Tyr 65 70 75 80

Phe Thr Val His Asp Arg Val Glu Thr Ser Pro Ile Pro Leu Thr Tyr 85 90 95

Glu Asp Ile Asp Leu Pro Ser Asn Trp Gln Gly Xaa Asn Val Cys Thr 100 105 110

Glu Leu

- (2) INFORMATION FOR SEQ ID NO:419:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:419:

 Met Glu Arg Ile Glu Val Arg Ser Arg Ser Gly Ser Ala His Leu Gly

 1
 5
 10
 15

 His Val Phe Thr Asp Gly Pro Arg Glu Leu Gly Gly Leu Arg Tyr Cys
 20
 25
 30

 Ile Asn Ser Ala Ser Leu Arg Phe Val Ala Lys Asp Glu Met Glu Lys
 35
 40
 45

Ala Gly Tyr Gly Tyr Leu Leu Pro Tyr Leu Asn Lys 50 55 60

- (2) INFORMATION FOR SEQ ID NO: 420:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 82 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:420:

 Met
 Glu
 Trp
 Ile
 Arg
 Leu
 Ile
 Gly
 Ile
 Ala
 Ile
 Ile
 Val
 Ile
 Val
 Val
 Ile
 Val
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile</th

- (2) INFORMATION FOR SEQ ID NO:421:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid

Ser Ile

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:421:

Met Leu Leu Ile Phe Ala Val Ile Gly Val Leu Val Ala Leu Ile Ala Gln Phe Tyr Ser Ala Lys Ala Ala Val Gly Phe Ala Lys Glu Leu Thr 25 Asn Asp Leu Tyr Arg His Ile Leu Ser Leu Pro Lys Asp Ser Arg Asp 40 Arg Leu Thr Thr Ser Ser Leu Val Thr Arg Leu Thr Ser Asp Thr Tyr 60 Gln Ile Gln Thr Gly Ile Asn Gln Phe Leu Arg Leu Phe Leu Arg Ala 75 70 Pro Ile Ile Val Phe Gly Ala Ile Phe Met Ala Tyr Arg Ile Ser Ala 85 90 Glu Leu Thr Phe Trp Phe Leu Val Met Val Ala Ile Leu Thr Ile Val 105 Ile Val Arg Val Ile Ser Ile Gly Gln Ser Ser Leu Gln 125 120 115

- (2) INFORMATION FOR SEQ ID NO:422:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:422:

 Met
 Pro
 Ile
 Glu
 Gln
 Val
 Gln
 Lys
 Leu
 Leu
 Gly
 His
 Ser
 Lys
 Ile
 Asp

 1
 5
 5
 10
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15

35

(2) INFORMATION FOR SEQ ID NO:423:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 87 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:423:

Met Lys Pro Cys Trp Lys Lys Cys Phe Pro Glu Glu Val Ser Ser Glu

1 5 10 15

Gly Glu Val Thr Leu Ile Glu Ile Pro Val Ser Asp Lys Ile Ala Gly
20 25 30

Lys Gln Val His Glu Leu Asn Leu Pro His Asn Val Leu Ile Thr Thr
35 40 45

Gln Val His Asn Gly Lys Ser Gln Thr Val Asn Gly Ser Thr Arg Met 50 55 60

Tyr Leu Gly Asp Met Ile His Leu Val Ile Pro Lys Ser Glu Ile Gly 65 70 75 80

Lys Val Lys Asp Leu Leu Leu

85

- (2) INFORMATION FOR SEQ ID NO:424:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 81 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424:

Met Asn Glu Gly Val Glu Asn Phe Arg Ala Lys Leu Ala Ser Leu Gly

1 5 10 15 Ala Lys Asn Ile Gly Ile Tyr Val Gly Val Tyr Phe Met Glu Glu His

20 25 30

Ser Ile Asp Thr Gly Lys Phe Thr Ser Val Trp Ile Pro Ser Tyr Gly
35 40 45

Ser Asp Ser Gly Phe Leu Glu Ser Ser Pro Lys Thr Asp Leu Asp Tyr 50 55 60

PCT/US97/05306 WO 97/37026

Asp Ile His Gln Tyr Thr Ser Lys Gly Lys Leu Pro Ala Leu Thr Thr 70 75 Ile

- (2) INFORMATION FOR SEQ ID NO: 425:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:425:

Met Val Ser Lys Tyr Leu Leu Leu Ala Val Ile Phe Ser Gly Leu Val 1 5 Thr Trp Ile Leu Arg Met Ile Ser Phe Ile Leu Val Lys Tyr Lys Gly 25 Leu Pro Ala Ile Val Glu Arg Phe Leu Lys Phe Leu Pro Val Ser Ile 40 Ile Phe Ala Leu Ile Leu Ser Ser Val Val Thr Gly Lys Val Gly Ser Leu Pro Gln Ile Lys Trp Leu Asp Phe Leu Ala Val Phe Pro Thr Ala 70 75 Trp Val Ala Phe Arg Tyr Arg Asn Leu Leu Gly Thr Val Leu Phe Gly 28 90 Val Val Leu Ile Ala Ile Leu Arg Leu Val Ser

105

- (2) INFORMATION FOR SEQ ID NO: 426:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 141 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426:

Met Glu Asp Xaa Glu Thr Gln Arg Val Val Met Gln Tyr Arg Ala Pro Glu Asn Asn Arg Trp Ser Gly Tyr Ala Phe Pro Gly Gly His Val Glu 25 Asn Asp Glu Ala Phe Ala Glu Ser Val Ile Arg Glu Ile Tyr Glu Glu 40 Thr Gly Leu Thr Ile Gln Asn Pro Gln Leu Val Gly Ile Lys Asn Trp 55 Pro Leu Asp Thr Gly Gly Arg Tyr Ile Val Ile Cys Tyr Lys Ala Thr 70 75 Glu Phe Ser Gly Thr Leu Gln Ser Ser Glu Glu Gly Glu Val Ser Trp 90 85 Val Gln Lys Asp Gln Ile Pro Asn Leu Asn Leu Ala Tyr Asp Met Leu 105 110 100 Pro Leu Met Glu Met Met Glu Ala Pro Asp Lys Ser Glu Phe Phe Tyr 120 Pro Arg Arg Thr Glu Asp Asp Trp Glu Lys Lys Ile Phe 130 135

(2) INFORMATION FOR SEQ ID NO:427:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 67 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427:

 Met
 Thr
 11e
 Glu
 Leu
 Leu
 Thr
 Pro
 Phe
 Thr
 Lys
 Val
 Glu
 Leu
 Glu
 Lys
 Lys
 Lys
 Lys
 Gln
 Val
 Gly
 Ile
 Leu
 Gly
 Gly
 Asn

 Glu
 11e
 Lys
 Lys
 Lys
 Lys
 Gln
 Val
 Gly
 Ile
 Leu
 Gly
 Gly
 Asn
 Asn
 Asn
 Leu
 Ile
 Val
 Asn
 Gln
 Asn
 Asn
 Asn
 His
 Leu
 His
 Asn
 Asn
 Asn
 His
 Leu
 His
 Asn
 Asn
 Asn
 His
 Leu
 His
 Asn
 Asn
 Asn
 His
 Leu
 His
 Leu
 Asn
 Asn
 Asn
 Asn
 Asn
 His
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn
 Asn

(2) INFORMATION FOR SEQ ID NO:428:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:428:

Met Lys Lys Leu Val Phe Val Cys Leu Gly Asn Ile Cys Arg Ser Pro 1 5 10 15

Met Ala Glu Phe Val Met Lys Ser Met Thr Asp Asn Tyr Glu Ile Gln
20 25 30

Ser Arg Ala Thr Ser Ser Trp Glu His Gly Asn Pro Ile His Lys Gly 35 40 45

Thr Gln Gly Ile Phe Gln Glu Tyr Glu Ile Pro Tyr Asp Lys Asn Lys
50 55 60

Thr Ser Leu Gln Ile Ser Lys Glu Asp Phe Glu Ala Phe Asp Tyr Ile
65 70 75 80

Ile Gly Met Asp Ala Ser Asn Val Pro Thr Tyr Val Arg Cys Val Gln 85 90 95

- (2) INFORMATION FOR SEQ ID NO: 429:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:429:

Met Val Lys Tyr Gly Val Val Gly Ala Gly Tyr Phe Gly Ala Glu Leu

1 5 10 15

Ala Arg Tyr Met Gln Lys Asn Asp Gly Ala Xaa Ile Thr Leu Leu Tyr
20 25 30

Asp Pro Asp Asn Ala Glu Ala Ile Ala Glu Glu Leu Gly Ala Lys Val 35 40 45

Ser Lys Phe Leu Arg

- (2) INFORMATION FOR SEQ ID NO:430:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 74 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:430:

Met Leu Trp Lys Tyr Tyr Asn Ser Ser Phe Leu Lys Ala Val Pro His

1 5 10 15

Leu Thr Thr Glu Tyr Lys Arg Leu Ala Gln Ala His Gly Leu Asn Leu
20 25 30

Lys Gln Ala Lys Pro Ile Thr Met Gly Met Trp Ile Gly Gly Asp Arg

Glu Gly Asn Pro Phe Val Thr Ala Lys Asn Leu Lys Gln Ser Ala Leu 50 55 60

Thr Gln Cys Glu Val Xaa Leu Asn Leu Leu 65 70

- (2) INFORMATION FOR SEQ ID NO:431:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:431:

Met Asn Thr Leu Tyr Leu Asn Gln His Ser Ser Tyr Lys Asn Asp Glu

1 5 10 15

Asp Ser His Ser Phe Pro Ile Gln Met Glu Leu Val Ser Asp Glu Met
20 25 30

Ile Pro Arg Asn

35

(2) INFORMATION FOR SEQ ID NO:432:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:432:

Met Ala Arg Lys Glu Thr Met Ala Glu Arg Lys Tyr Cys Lys Met Lys

1 10 15

Lys Asp Ile His Pro Glu Tyr Arg Pro Val Val Phe Met Asp Thr Thr 20 25 30

Thr Gly Tyr Gln Phe Leu Ser Gly Ser Thr Lys Arg Ser Asn Glu Thr 35 40 45

Val Glu Phe Glu Gly Glu Thr Tyr Pro Leu Ile Arg Val Glu Ile Ser 50 55 60

Ser Asp Ser His Pro Phe Tyr Thr Gly Arg Gln Lys Phe Thr Gln Ala 65 70 75 80

Asp Gly Arg Val Asp Arg Phe Asn Lys Lys Tyr Gly Leu Lys 85 90

- (2) INFORMATION FOR SEQ ID NO:433:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 90 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:433:

Met Glu Thr Ala Leu Ile Ser Val Ile Val Pro Val Tyr Asn Val Ala

1 5 10 15

Gln Tyr Leu Glu Lys Ser Ile Ala Ser Ile Gln Lys Gln Thr Tyr Gln
20 25 30

Asn Leu Glu Ile Ile Leu Val Asp Asp Gly Ala Thr Asp Glu Ser Gly 35 40 45

Arg Leu Cys Asp Ser Ile Ala Glu Gln Asp Asp Arg Val Ser Val Leu 50 55 60

PCT/US97/05306 WO 97/37026

His Lys Lys Asn Glu Gly Leu Ser Gln Ala Arg Asn Asp Gly Met Lys Pro Gly Ser Arg Gly Leu Ser Asp Phe Tyr

85

- (2) INFORMATION FOR SEQ ID NO:434:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:434:

Met Tyr Phe Leu Ile Asn Phe Val Tyr Pro Val Asp Met Val Ile Asn 5 1 Leu Pro Phe Leu Ile Asn Thr Gly Leu Ile Val Leu Leu Ser Ala Ile 25 Ser Tyr Ile Ser Leu Leu Val Phe Thr Lys Asp Ser Ile Phe Tyr Glu 40 Phe Leu Asn His Val Leu Ala Leu Lys Asn Lys Phe Lys Lys Ser

- 55 50
 - (2) INFORMATION FOR SEQ ID NO:435:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:435:

Met Arg Val Ile Ala Trp Leu Glu Pro Ser Arg Lys Ile Leu Gln Pro 5 1

Gly Ala Asn Asp Val Tro Val Val Lys Arg Lys Gly Lys Arg Asp Leu 25

Leu Leu Pro Tyr Ile Pro Pro Val Val Leu Asn Val Asp Ile Pro Asn 45 40 35

Lys Arg Val Asp Val Glu Ile Leu Glu Gly Leu Asp Asp Glu Asp

- (2) INFORMATION FOR SEQ ID NO: 436:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:436:

Met Asp Asp Asp Phe Lys Arg Tyr Asn Ala Pro Ile Leu Thr Trp Tyr 10

Glu Thr Ala Arg Tyr Ala Phe Glu Arg Gly Met Val Trp Gln Asn Leu

Gly Gly Val Glu Asn Ser Leu Asn Gly Gly Leu Tyr His Phe Lys Glu 40

Lys Phe Asn Pro Thr Ile Glu Glu Tyr Leu Gly Glu Phe Thr Met Pro 55

Thr His Pro Leu Tyr Pro Leu Leu Arg Leu Ala Leu Asp Phe Arg Lys 70 75

Thr Leu Arg Lys Lys His Arg Lys

85

- (2) INFORMATION FOR SEQ ID NO:437:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:437:

Met Glu Asp Phe Phe Ala Trp Cys Arg Arg Gln Ser Val Leu Ser Gly 5 10 Ser Lys Leu Gly Arg Ala Ile Glu Tyr Ser Leu Lys Tyr Glu Glu Thr 20

25 321

Phe Lys Thr Ile Leu Lys Asp Gly His Leu Val Leu Ser Asn Asn Leu 35 40 45

Ala Glu Arg Ala Ile Lys Ser Leu Val Met Gly Arg Ser Lys Arg Val 50 55 60

Gln Trp Thr Leu Leu Ala 65 70

- (2) INFORMATION FOR SEQ ID NO:438:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:438:

 Met
 Thr
 Lys
 Gln
 Gly
 Ser
 Trp
 Lys
 Leu
 Ile
 Leu
 Glu
 Asp
 Glu
 Ser
 Ala

 Gly
 Arg
 Glu
 Leu
 Phe
 Pro
 Ile
 Leu
 Thr
 Gln
 Gly
 Xaa
 Tyr
 Ile
 Ala

 Phe
 Asp
 Gln
 Gln
 Ala
 Pro
 Xaa
 Ile
 Asp
 Glu
 Ile
 Phe
 Lys
 Leu

 35
 40
 40
 45
 45

- (2) INFORMATION FOR SEQ ID NO:439:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:439:

Met Thr Thr Asn Xaa Asp Asn Asp Thr Ser Glu Arg Ser Asp Cys Tyr

1 5 10 15

Arg Lys Arg Thr Ala Gly Glu Thr Pro Met Asn Asp Leu Thr Ser His 20 25 30

Thr His Gly Gly Asn Tyr Thr Ile Ala Arg Tyr Gln Glu Glu Lys Phe 35 40 45

Trp Asn Lys Gln Leu 50

(2) INFORMATION FOR SEQ ID NO:440:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:440:

Met Ala Gln His Ala Ala Val Glu Ala Leu Thr Ala Gly Lys Asn Asp 1 5 5 10 10 15 Ala Glu Pro Met Lys Lys Glu Tyr Ile Gln Arg Arg Asp Tyr Ile Ile

Glu Lys Met Thr Ala Leu Gly Phe Glu Ile Ile Lys Pro Asp Gly Ala

Phe Tyr Ile Phe Ala Lys Ile Pro Ala Gly Tyr Asn Gln Asp Ser Phe 50 55 60

Ala Phe Leu Lys Asp Phe Ala Gln Lys Lys Ala Val Ala Phe Ile Pro
65 70 75 80

Gly Ala Ala Phe Gly Arg Tyr Gly Glu Gly Tyr Val Arg Leu Ser Tyr 85 90 95

Ala Ala Ser Met Glu Thr Ile Lys Glu Ala Met Lys Arg Leu Glu Glu
100 105 110

Tyr Met Arg Glu Ala

- (2) INFORMATION FOR SEQ ID NO:441:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:441:

- (2) INFORMATION FOR SEQ ID NO:442:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 81 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:442:

 Met
 Leu
 Gln
 Trp
 Ile
 Asp
 Arg
 Thr
 Phe
 Gln
 Asp
 Tyr
 Leu
 Glu
 Leu
 Glu
 Leu
 Glu
 Leu
 Jo
 Leu
 Leu
 Leu
 Leu
 Jo
 Leu
 Leu
 Leu
 Jo
 Leu
 Jo
 Leu
 Jo
 Leu
 Ju
 Leu
 Ju
 Leu
 Ju
 Leu
 Ju
 Leu
 Ju
 Leu
 Ju
 Leu
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju
 Ju

- (2) INFORMATION FOR SEQ ID NO:443:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 171 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:443:

Met Ile Val Glu Glu Val Arg Asp Arg Tyr Val Gly Lys Val Asp Ala 10 Val Phe His Asn Gly Asp Ser Glu Leu Arg Pro Asp Ser Pro Leu Trp 25 Glu Gly Ile Arg Val Val Lys Gly Asn Met Asp Phe Tyr Ala Gly Tyr Pro Glu Arg Leu Val Thr Glu Leu Gly Ser Thr Lys Ile Ile Gln Thr 55 His Gly His Leu Phe Asp Ile Asn Phe Asn Phe Gln Lys Leu Asp Tyr 75 Trp Ala Gln Glu Glu Ala Ala Ile Cys Leu Tyr Gly His Leu His 90 Val Pro Ser Ala Trp Leu Glu Gly Lys Ile Leu Phe Leu Asn Pro Gly 105 Ser Ile Ser Gln Pro Arg Gly Thr Ile Arg Glu Cys Leu Tyr Ala Arg 120 Val Glu Ile Asp Asp Ser Tyr Phe Lys Val Asp Phe Leu Thr Arg Asp 135 His Glu Val Tyr Pro Gly Cys Pro Arg Ser Leu Ala Asp Asp Ala Lys 150 Glu Leu Arg Leu Ser Val Gly Ala Glu Asn Phe 165

- (2) INFORMATION FOR SEQ ID NO:444:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:444:

Met Asn Leu His Gln Pro Leu His Val Leu Pro Gly Val Gly Pro Lys

5 10 15

Ser Ala Glu Lys Tyr Ala Lys Leu Gly Ile Glu Asn Leu Gln Asp Leu 20 25 30

Leu Leu Tyr Phe Pro Phe Arg Tyr Glu Asp Phe Lys Thr Lys Gln Val 35 40 45

Leu Glu Leu Glu Asp Gly Glu Lys Ala Val Leu Ser Gly Gln Val Val
50 55 60

Thr Pro Ala Ser Val Gln Tyr Tyr Gly Phe Gln Ala Ala Asn Pro Pro 65 70 75 80

Ala Phe Leu Val Leu Gln Ala Arg Glu Glu Gly Ser Phe Phe Phe Gly 85 90 95

Gly

(2) INFORMATION FOR SEQ ID NO:445:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:445:

Met Gln Leu Leu Ser Glu Asn Met Leu Lys Thr Ile Gln Ser Leu Ser

1 5 10 15

Val Trp Gln Ile Tyr Leu Leu Gly Phe Glu Arg Ile Leu Ala Leu Gly
20 25 30

Phe Gln Leu Leu Leu Thr Val Trp Val Tyr Gln Ala Val Arg Gln Lys 35 40 45

Lys Trp Ile Tyr Leu Leu Ala Ala Tyr Gly Leu His Ala Phe Phe Asp 50 55 60

Leu Ala Pro Ser Leu Phe Gln Val Gly Trp Leu Thr Asn Pro Val Leu 65 70 75 80

Val Glu Val Ile Leu Ala Leu Glu Leu Val Leu Val Ala Tyr Gly Thr
85 90 95

Lys Glu Ile Phe Cys Lys Lys Ser

100

(2) INFORMATION FOR SEQ ID NO:446:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 122 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:446:

Met Thr Lys Ser Met Thr Pro Asp Arg Glu Val Ile Thr Phe Ile Pro 1 5 10

Glu Lys Phe Ile Val Asp Gly Phe Gln Gly Ile Arg Asp Pro Arg Gly 25

Met Met Gly Val Arg Leu Glu Met Arg Gly Leu Leu Tyr Thr Gly Pro 40

Arg Thr Ile Leu His Asn Leu Arg Lys Thr Val Glu Arg Ala Gly Val

Gln Val Glu Asn Val Ile Ile Ser Pro Leu Ala Met Val Gln Ser Val 70

Leu Asn Glu Gly Glu Arg Glu Phe Gly Ala Thr Val Ile Asp Met Gly 90

Ala Gly Gln Thr Thr Val Ala Thr Ile Arg Asn Gln Glu Leu Gln Phe 105 110

Thr His Ile Leu Gln Glu Val Glu Ile Met 115

120

- (2) INFORMATION FOR SEQ ID NO:447:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:447:

Met Leu Asn Ser Ile Val Thr Ile Ile Cys Ile Ala Leu Ile Ala Phe 1

10 Ile Leu Phe Trp Phe Phe Lys Lys Pro Glu Lys Ser Gly Gln Lys Ala

Gln Gln Lys Asn Gly Tyr Gln Glu Ile Arg Val Glu Val Met Gly Gly 35 40

Tyr Thr Pro Glu Leu Ile Val Leu Lys Lys Ser Val Pro Ala Arg Ile
50 55 60

Val Phe Asp Arg Lys Asp Pro Ser Pro Cys Leu Asp Gln Ile Val Phe 65 70 75 80

Pro Asp Phe Gly Val His Ala Asn Leu Pro Met Gly Glu Glu Tyr Val 85 90 95

Val Glu Ile Thr Pro Glu Gln Ala Gly Glu Phe Gly Phe Ala Cys Gly
100 105 110

Met Asn Met Met His Gly Lys Met Ile Val Glu 115 120

- (2) INFORMATION FOR SEQ ID NO:448:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 116 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:448:

Met Lys Ile Val Ser Gly Ile Tyr Gly Gly Arg Pro Leu Lys Thr Leu

1 5 10 15

Glu Gly Lys Thr Thr Arg Pro Thr Ser Asp Lys Val Arg Gly Ala Ile
20 25 30

Phe Asn Met Ile Gly Pro Tyr Phe Glu Val Gly Xaa Val Leu Asp Leu 35 40 45

Tyr Ala Gly Ser Gly Gly Leu Ser Ile Glu Ala Val Ser Arg Gly Met 50 55 60

Ser Ser Ala Val Leu Val Glu Arg Asp Arg Lys Ala Gln Thr Ile Val 65 70 75 80

Ala Glu Asn Ile Gln Met Thr Lys Glu Val Gly Lys Phe Gln Leu Leu 85 90 95

Gln Asn Gly Cys Arg Lys Gly Ile Gly Thr Gly Xaa Leu Gly Asn Leu 100 105 110

Thr Ser Phe Ser

- (2) INFORMATION FOR SEQ ID NO:449:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:449:

Met Xaa Thr Asn Phe Thr Asp Gln Val Asp Thr Met Ile Tyr Val Asp

1 5 10 15

Lys Glu Glu Lys Glu Thr Ile Lys Ala Ala Leu Val Glu Phe Phe Asn 20 25 30

Gly Lys Val Thr Leu Thr Asp Gln Gly Leu Arg Glu Val Glu Val Pro 35 40 45

Val Asn Leu Val

50

- (2) INFORMATION FOR SEQ ID NO:450:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 75 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:450:

Met Ile Gly Val Ala Leu Glu Glu Ser Pro Thr Leu Lys Ile His His 1 5 10 15

Leu Thr His Asp Ile Thr Pro Tyr Asn Ile Phe Glu Gly Ser Tyr Arg
20 25 30

Leu Phe Gln Thr Val Asp Tyr Trp Pro Glu Gly Thr Thr Phe Val Ser 35 40 45

Val Val Asp Pro Gly Val Gly Ser Lys Arg Lys Ser Val Val Ala Lys
50 55 60

Thr Ala Gln Lys Ser IIe His Cys His Ala Arg 65 70 75

- (2) INFORMATION FOR SEQ ID NO:451:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:451:

 Met
 Glu
 Leu
 Arg
 Pro
 Arg
 Leu
 Ala
 Asp
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys</th

100 105 110

Leu Ser Val Arg Ala Cys Lys Leu Leu Arg Lys Arg Thr Ser Arg Lys
115 120 125

Leu Trp

130

- (2) INFORMATION FOR SEQ ID NO:452:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:452:

Met Thr Phe Ile Arg Gly Pro Ile Ile Ser Thr Val Gly Glu Gly Val

1 5 5 10 10 15

Xaa Ile Leu Ala Thr Val Asn Xaa Gln Phe Val Xaa Xaa Gln Xaa Xaa
20 25 30

Asn Met Leu Val Ser Pro Phe His Pro Glu Leu Thr Asp Xaa Xaa Arg 35 40 45

Leu Xaa Gln Tyr Phe Ile Ser Met Cys Lys Glu Lys Ser Xaa Asp 50 55 60

- (2) INFORMATION FOR SEQ ID NO:453:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:453:

 Met
 Lys
 Gly
 Asp
 Val
 Ile
 Thr
 Glu
 His
 Gln
 Phe
 Tyr
 Glu
 Gln
 Val
 Lys

 1
 5
 5
 10
 15
 15

 Asn
 Asn
 Pro
 Ser
 Ala
 Gln
 Xaa
 Val
 Leu
 Leu
 Asn
 Met
 Thr
 Ile
 Gln
 Lys

 Val
 Phe
 Glu
 Lys
 Thr
 Ile
 Trp
 Leu
 Arg
 Ala

- 35 40
 - (2) INFORMATION FOR SEQ ID NO:454:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:454:

Met Asp Lys Ala Leu Ala Asp Leu Lys Thr Ser Gly His Leu Pro Ile

1 5 10 15

Pro Arg His Leu Arg Asp Gly His Tyr Xaa Gly Ser Lys Glu Leu Gly
20 25 30

Asn Ala Gln Asp Tyr Leu Tyr Pro His Asn Tyr Pro Xaa Asn Trp Val 35 40 45

Lys Gln Asp Tyr Leu Pro Gln Lys Ile Arg Asn His His Tyr Phe Gln 50 55 60

Ala Glu Tyr Thr Gly Lys Tyr Glu Arg Ala Leu Ala Gln Arg Lys Glu
65 70 75 80

Ala Ile Asp His Leu Arg Lys Ile

85

- (2) INFORMATION FOR SEQ ID NO: 455:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 90 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:455:

 Met
 Val
 Val
 Phe
 Thr
 Gly
 Ser
 Thr
 Val
 Glu
 Glu
 Ale
 Lys
 Gly
 Lys
 Gly
 Lys
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet
 Jet</th

- (2) INFORMATION FOR SEQ ID NO:456:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:456:

Met Thr Lys Arg Cys Ser Trp Val Lys Met Thr Asn Pro Leu Tyr Ile 1 5 10 15

Ala Tyr His Asp Glu Glu Trp Gly Gln Pro Leu His Asp Asp Gln Ala 20 25 30

Leu Phe Glu Leu Leu Cys Met Glu Thr Tyr Gln Ala Gly Leu Ser Trp 35 40 45

Glu Thr Val Leu Asn Lys Arg Gln Ala Phe Arg Glu Ala Phe Pro 50 55 60

- (2) INFORMATION FOR SEQ ID NO:457:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:457:

 Met
 Phe
 Val
 Gly
 Gln
 Glu
 Trp
 Thr
 Asn
 Gln
 Thr
 Phe
 Val
 Asp
 Leu
 Leu

 1
 5
 5
 1
 10
 1
 15
 15

 Gly
 Asn
 His
 Gln
 Gly
 Gln
 Thr
 Ile
 Asp
 Glu
 Glu
 Tyr
 Gly
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln

- (2) INFORMATION FOR SEQ ID NO:458:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:458:

Met Ala Gln Val Asp Ile Ile His Gly Ile Gly Thr Gly Val Ile Arg

1 5 5 10 10 15

Glu Gly Val Thr Lys Tyr Leu Gln Arg Asn Lys His Val Lys Ser Phe
20 25 30

Gly Tyr Ala Pro Gln Asn Ala Gly Gly Ser Gly Ala Thr Ile Val Thr
35 40 45

Phe Lys Gly 50

- (2) INFORMATION FOR SEQ ID NO:459:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:459:

Met Asn Leu Leu Glu Glu Ala Thr Lys Gly Lys Val Ile Phe Glu Gly

1 5 5 10 10 15

Val Asp Ile Thr Asp Lys Lys Asn Asp Leu Phe Pro Met Arg Glu Lys
20 25 30

Met Gly Met Val Phe Gln Gln Phe Asn Xaa Phe Leu Ile 35 40 45

- (2) INFORMATION FOR SEQ ID NO:460:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 129 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:460:

Met Gln Ile Asp Leu Ala Asn Leu Leu Pro Asp Leu Pro Gly Asn Leu

1 5 10 15

Ser Gly Ile Asn Pro Asn Arg Tyr Val Phe Tyr Gln Asp Val Leu Cys
20 25 30

Pro Ile Leu Asp Arg His Met Thr Pro Glu Gln Asp Lys Pro His Phe 35 40 45

Ala Gln Ala Ala Gly Thr Ile Ala Asp Ile Lys Glu Lys Ala Gly Asn 50 55 60

Tyr Ala Tyr Leu Phe Glu Thr Gln Ala Gln Leu Asn Ala Ile Leu Ser 65 70 75 80

Ser Lys Val Asp Val Gly Arg Arg Ile Arg His Ala Tyr Gln Ala Asp 85 90 95

Asp Lys Glu Ser Leu Gln Gln Ile Ala Arg Gln Glu Leu Pro Glu Leu 100 105 110.

Arg Ser Gln Ile Glu Asp Phe His Ala Leu Phe Ser His His Trp Leu 115 120 125

Lys

- (2) INFORMATION FOR SEQ ID NO:461:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 59 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:461:

Met Arg Gln Gly Ile Asp Ser Leu Ala Tyr Val Val Lys Thr His Phe 1 5 10 15

Glu Leu Asp Pro Phe Ser Gly Gln Ala Phe Leu Phe Cys Gly Gly Arg
20 25 30

Lys Asp Arg Phe Lys Ala Leu Tyr Trp Asp Gly Gln Gly Phe Trp Leu 35 40 45

Leu Tyr Lys Arg Phe Glu Asn Gly Lys Leu Thr
50 55

- (2) INFORMATION FOR SEQ ID NO: 462:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 108 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:462:

Met Asn Ala Phe Leu Glu Glu Leu Ser Gln Aia Tyr Pro Asp Asp Tyr

1 5 10 15

Phe Leu Leu Val Met Asp Asn Ala Ile Trp His Lys Ser Ser Val Leu 20 25 30

Lys Ile Pro Thr Asn Ile Gly Phe Ala Phe Ile Pro Pro Tyr Thr Pro 35 40 45

Glu Met Asn Pro Ile Glu Gln Val Trp Lys Glu Ile Arg Lys Arg Gly 50 55 60

Phe Lys Asn Lys Ala Phe Arg Ile Leu Glu Asp Val Met Asn Gln Leu 65 70 75 80

Gln Asp Val Ile Gln Gly Leu Glu Lys Glu Val Ile Lys Ser Ile Val

Asn Arg Arg Trp Thr Arg Met Leu Phe Glu Ser Arg

- (2) INFORMATION FOR SEQ ID NO:463:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:463:

Met Thr Val Glu Glu Glu Lys Val Phe Leu Ala Arg His Leu Lys Ala

Thr Glu Ala Gly Glu Phe Val Thr Ile Asp Ala Leu Phe Gln Ala Tyr
20 25 30

Lys Lys Glu Leu Gly Arg Ser Tyr Thr Arg Asp Ala Phe Tyr Gln Leu 35 40 45

Leu Lys Arg His Gly Trp Arg Asn Ile Met Pro Arg Pro Glu His Pro 50 55 60

Lys Lys Ala Asp Ala Gln Thr Ile Val Ala Ser Lys Asn Lys Ile Ser 65 70 75 80

Ile Gln Glu Asp Lys Lys Ala Ile

- (2) INFORMATION FOR SEQ ID NO:464:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 124 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:464:

Met Leu Ser Leu Val Val Leu Ile Thr Gln Tyr Ala Thr His Gly Glu

1 5 10 15

Leu Phe Glu Asn Tyr Ile Ser Lys Glu Asn Asp Asn Val Ile Lys Glu 20 25 30

Tyr Gln Asn Thr Thr Gly Phe Ser Thr Pro Tyr Thr Leu Asp Gly Ser 35 40 45

Val Leu Ile Val His Pro Asp Leu Thr Lys Gly Met Asn Ile Glu Gly 50 55 60

Tyr Ser Asp Leu Leu Lys Pro Glu Leu Lys Gly Lys Ile Ala Thr Ala 65 70 75 80

Asp Pro Ala Asn Ser Ser Ser Ala Phe Ala Gln Leu Thr Asn Met Leu 85 90 95

Gln Ala Gln Gly Gly Tyr Lys Asp Asp Leu Ala Trp Ser Val Leu Ser 100 105 110

Thr Ile Phe Ser Thr Leu Ile Asp Gly Ile Val Lys
115 120

- (2) INFORMATION FOR SEQ ID NO:465:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:465:

Met Leu Ala Arg Lys Asp Arg Phe Tyr Tyr Ile Asp Lys Ala Thr Gly

1 10 15

Lys Ala Leu Gly Ile Phe Leu Ser Cys Val Leu Thr Ser Asn Gly Val
20 25 30

Ile Glu Val Gly Ala Val Thr Phe Ser Pro Lys Leu Arg Gly Thr Arg 35 40 45

Ile Gly Thr Glu Ala Gln Tyr Leu Leu Ala Arg Tyr Val Phe Glu Glu 50 55 60

Leu Asn Tyr Arg Arg Tyr Glu Trp Lys Cys Asp Ala Leu Asn Leu Pro 65 70 75 80

Ser Arg Arg Ala Ala Glu Arg Leu Gly Phe Ile Tyr Glu Gly Thr Phe 85 90 95

Arg Gln Ala Val Val Tyr Lys Gly Arg Thr Arg Asp Met Asp Trp Leu 100 105 110

Ser Met Ile Asp Lys Asp Trp Pro Lys Val Lys Asp Arg Leu Glu Thr 115 120 125

Trp Leu Arg Pro Glu Asn Phe Asp Lys Asn Gly Gln Gln Tyr Lys Ser 130 135 140

Leu Arg Glu Leu 145

- (2) INFORMATION FOR SEQ ID NO:466:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 466:

- (2) INFORMATION FOR SEQ ID NO:467:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 112 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:467:

Met Val Ser Thr Lys Thr Gln Ile Ala Gly Phe Glu Phe Asp Asn Cys

1 5 10 15

Leu Met Asn Ala Ala Gly Val Ala Cys Met Thr Ile Glu Glu Leu Glu
20 25 30

Glu Val Lys Asn Ser Ala Ala Gly Thr Phe Val Thr Lys Thr Ala Thr
35 40 45

Leu Asp Phe Arg Gln Gly Asn Pro Glu Pro Arg Tyr Gln Asp Val Pro 50 55 60

Leu Gly Ser Ile Asn Ser Met Gly Leu Pro Asn Asn Gly Leu Asp Tyr 65 70 75 80

Tyr Leu Asp Tyr Leu Leu Asp Leu Gln Glu Lys Glu Ser Asn Arg Thr
85 90 95

Phe Phe Leu Ser Leu Val Gly Met Ser Pro Glu Lys Pro Ile Leu Phe 100 105 110

- (2) INFORMATION FOR SEQ ID NO:468:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:468:

Met Thr Tyr Leu Met Phe Ser Gly Leu Asp Glu Asn Phe Tyr His Phe 1 5 10 15

Pro Trp Glu Val Phe Ala Gly Phe Gly Ile Ile Phe Leu Ala Cys Pro 20 25 30

Glu Lys Val

- (2) INFORMATION FOR SEQ ID NO: 469:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:469:

Met Phe Thr Gly Trp Phe Ala Gln Thr Phe Leu His Gln Phe Ile Arg

1 5 10 15

Gly Ala Trp Gly Leu Gly Phe Met Ile Phe Ile Ala Phe Pro Met Gly

20 25 30

Lys Glu Leu Leu Glu Gly Glu Tyr His Glu His Asp

- (2) INFORMATION FOR SEQ ID NO: 470:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 145 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:470:

Met Gln Glu Lys Ile Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Thr 10 5 His Thr Val Ile Glu Leu Ile Gln Ala Gly His Gln Val Val Val 25 20 Asp Asn Leu Val Asn Ser Asn Xaa Lys Ser Leu Glu Val Val Glu Arg 40 Ile Thr Gly Val Glu Ile Pro Phe Tyr Glu Ala Asp Ile Xaa Asp Thr Asp Thr Leu Arg Asp Ile Phe Lys Gln Glu Glu Leu Thr Gly Val Ile 75 70 His Phe Ala Gly Leu Lys Ala Val Gly Glu Ser Thr Arg Ile Pro Leu 90 Ala Tyr Tyr Asp Asn Asn Ile Ala Gly Thr Val Ser Leu Leu Lys Ala 105 Met Glu Glu Asn Asn Cys Lys Asn Ile Ile Phe Ser Ser Xaa Ala Thr 120 Val Tyr Gly Asp Pro Tyr Thr Val Pro Ile Leu Glu Val Ser His Phe

(2) INFORMATION FOR SEQ ID NO: 471:

Glrı 145 135

PCT/US97/05306 WO 97/37026

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 200 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:471:
- Met Val Lys Glu Lys Val Thr Leu Thr Pro Leu Ala Ser Gly Tyr Gln 10
- Ile Gly Glu Glu Phe Glu Gln Val Ile Leu Ala Xaa Gly Ala Trp 20 25
- Leu Gly Asp Met Leu Glu Pro Leu Gly Tyr Glu Val Asp Val Arg Pro
- Gln Lys Gly Gln Leu Arg Asp Tyr Gln Leu Val Gln Asp Met Glu Ala 55
- Tyr Pro Val Val Met Pro Glu Gly Glu Trp Asp Leu Ile Pro Phe Ala 75 70
- Gly Gly Lys Leu Ser Leu Gly Ala Thr His Glu Asn Asp Met Gly Phe 85 90
- Asp Leu Thr Val Asp Glu Thr Leu Leu Gln Gln Met Glu Glu Ala Thr
- Leu Thr His Tyr Leu Ile Leu Ala Glu Ala Thr Ser Lys Ser Glu Arg 120
- Val Gly Ile Arg Ala Tyr Thr Ser Asp Phe Ser Pro Phe Phe Gly Gln 135
- Val Pro Asp Leu Thr Gly Val Tyr Ala Ala Ser Gly Leu Gly Ser Ser 150 155
- Gly Leu Thr Thr Gly Pro Ile Ile Gly Tyr His Leu Ala Gln Leu Ile 165 170
- Gin Asp Lys Glu Leu Thr Leu Asp Pro Glu Asn Tyr Pro Ile Glu Asn 180 185
- Tyr Val Lys Arg Val Lys Ser Glu
 - 195
 - (2) INFORMATION FOR SEQ ID NO: 472:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:472:

(2) INFORMATION FOR SEQ ID NO:473:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 81 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:473:

- (2) INFORMATION FOR SEQ ID NO: 474:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 135 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:474:
- Met Gly Ser Asn Ser Leu Thr Leu Leu Leu Lys Ile Gln Ala Thr Ile

 1 5 10 15
- Pro Arg Asn Ile Tyr Asp Asn Leu Gln Ala Gly Ser Lys Val Thr Leu 20 25 30
- Asp Arg Ala Tyr Gly His Met Ile Ile Glu Glu Gly Arg Glu Asn Gln 35 40 45
- Val Trp Ile Ala Gly Gly Ile Gly Ile Thr Pro Phe Ile Ser Tyr Ile
 50 60
- Arg Glu His Pro Ile Leu Asp Lys Gln Val His Phe Tyr Tyr Ser Phe 65 70 75 80
- Arg Gly Asp Glu Asn Ala Val Tyr Leu Asp Leu Leu Arg Asn Tyr Ala 85 90 95
- Gln Lys Asn Pro Asn Phe Glu Leu His Leu Ile Asp Ser Thr Lys Asp 100 105 110
- Gly Tyr Leu Asn Phe Glu Gln Lys Lys Cys Pro Asn Met Gln Pro Ser 115 120 125
- Ile Cys Val Val Leu Phe Leu
 - 130 135
 - (2) INFORMATION FOR SEQ ID NO:475:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:475:

Met Phe Phe Val Leu Ala Tyr Ala Lys Ala Val Ala Gly Arg Asn Ile 10 Lys Leu His Pro Ile Gln Arg Gln Gly Ala Gly Tyr His Ser Val Asn 20 Lys Asp Val Asp Phe Ala Ser Ala Thr Ala Leu Arg Gln His Gln Lys 40 Asp Gln Asp Phe Leu Glu Arg Phe Met Pro Ser Val Ala Leu Phe Glu 55 Gln Ala Ser Lys Val Ile Trp Glu Asp Tyr Phe Pro Leu Leu Arg Tyr 75 70 Gln Ile Leu Ser Asn Pro Asp Leu Thr Thr Ile Tyr Gln Val Asn Gln 90 Glu Met Ala Val Arg Ile Lys Glu Ala Ile Lys Thr Ala Gln Ser Val 105 Glu Glu Leu Val Glu Leu Val Thr Thr Lys Arg Tyr Thr Lys Ala Arg 120 Val Arg Arg Leu Leu Thr Tyr Ile Leu Met Gln Ala Arg Glu Ser Asp 135 Leu Pro Glu Ala Ile His Val Leu Gly Phe Thr Glu Lys Gly Arg Gln 150 His Leu Lys Ser Leu Lys Gly Gln Val Asn Leu Val Ser Arg Ile Gly 170 Lys Glu Pro Trp Asp Ala Met Thr Gln Lys Val Asp Gln Ile Tyr Gln 185 Leu Gly Lys Pro Ser Ile Ala Glu Gln Asn Phe Gly Arg Val Pro Ile 205 200 Arg Ile Glu Thr Asn 210

- (2) INFORMATION FOR SEQ ID NO:476:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 76 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:476:

Met Leu Gly Ser Met Phe Val Gly Leu Leu Val Gly Phe Leu Ala Gly

1 5 10 15

Ala Met Thr Asn Arg Gly Glu Arg Met Gly Cys Phe Gly Lys Met Phe
20 25 30

Leu Gly Trp Ile Gly Ala Phe Leu Gly His Leu Leu Phe Gly Thr Trp 35 40 45

Gly Pro Val Leu Ser Gly Thr Ala Ile Ile Pro Ala Val Leu Gly Ala 50 55 60

Met Ile Val Leu Ala Ile Phe Trp Arg Arg Gly Ser 65 70 75

- (2) INFORMATION FOR SEQ ID NO:477:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 54 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:477:

Met Arg Ser Ser Pro Ser Arg Glu Ile Gln Pro Arg Ser Trp Gly Ile
1 5 10 15

Thr Thr Val Tyr Val Thr His Asp Gln Glu Gly Ala Met Ala Ile Ser 20 25 30

Asp Gln Ile Ala Cys Tyr Glu Arg Trp Gly Asp Pro Thr Asn Arg Pro 35 40 45

Thr Lys Arg Thr Val Ser

WHAT IS CLAIMED IS:

15

1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- 5 (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of selected from the group consisting of SEQ ID NO:224 through 477,
 - (b) a polynucleotide which is complementary to the polynucleotide of (a);
- (c) a polynucleotide having at least a 70% identity to a polynucleotide encoding the same mature polypeptide expressed by the a gene comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:1 through 223 contained in the DNA of the deposited clone; and
 - (d) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b) or (c).
 - The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
 - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
 - 4. The polynucleotide of Claim 2 comprising the nucleic acid sequence set forth in SEQ ID NO:1.
- 5. The polynucleotide of Claim 2 comprising a nucleotide sequence selected from 20 the group consisting of SEQ ID NO:1 through 223.
 - The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:224 through 477.
 - 7. A vector comprising the polynucleotide of Claim 1.
 - 8. A host cell comprising the vector of Claim 7.
- 25 9. A process for producing a polypeptide comprising: expressing from the host cell of Claim 8 a polypeptide encoded by said DNA.
 - 10. A process for producing a noval polypeptide or fragment comprising culturing a host of claim 8 under conditions sufficient for the production of said polypeptide or fragment.
- 30 11. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:224 through 477.
 - 12. A polypeptide comprising an amino acid selected from the group consisting of SEQ ID NO:224 through 477.

- 13. An antibody against the polypeptide of claim 11.
- 14. An antagonist which inhibits the activity or expression of the polypeptide of claim 11.
- 15. A method for the treatment of an individual in need of a Streptococcal
 5 polypeptide comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 11.
 - 16. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 14.
- 10 17. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 11 in an individual comprising:
 - (a) determining a nucleic acid sequence encoding said polypeptide, and/or
 - (b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.
- 15 18. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 11 comprising:

contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound;

and determining whether the compound interacts with and activates or inhibits an activity of the polypetide by detecting the presence or absence of a signal generated from the interaction of the compound with the polypeptide.

- 25 19. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with Streptococcal polypeptide of claim 11, or a fragment or variant thereof, adequate to produce antibody and/or T cell immune response to protect said animal from disease.
- 20. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of Streptococcal polypeptide of claim 11, or fragment or a variant thereof, for expressing said Streptococcal polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.

21. An isolated Streptococcal polypeptide having one of the amino acid sequences of SEQ ID NO:224 through SEQ ID NO:234.

- 22. An isolated nucleic acid encoding one of the amino acid sequences of Claim 21 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
- 23. Recombinant vectors comprising the nucleic acid sequences of Claim 22 and host cells transformed or transfected therewith.

- 24. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 21 and selecting those compounds
 10 capable of inhibiting the bioactivity of said polypeptide.
 - 25. Antimicrobial compounds identified by the method of Claim 24.

International application No. PCT/US97/05306

A. CLASSIFICATION OF SUBJECT MATTER				
IPC(6) :Please See Extra Sheet.				
US CL :536/23.7; 435/6, 69.1, 252.3, 320.1; 530/324, 350 According to International Patent Classification (IPC) or to both				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system follow	ed by classification symbols)	· · · · · · · · · · · · · · · · · · ·		
U.S. : 536/23.7; 435/6, 69.1, 252.3, 320.1; 530/324, 350; 514/12				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.		
	WO 96/10647 A1 (FUSO PHARMACEUTICAL INDUSTRIES, LTD.) 11 April 1996, claim 2, pages 22-24.			
·		3, 6, 9-12, 15, 17, 21, and 23- 25		
New York: Scientific American I	WATSON, J. D. et al. Recombinant DNA, Second Edition. New York: Scientific American Books, W.H. Freeman and Company, 1992, pages 73 and 74, see entire document.			
Hybridization. Progress in Nucleic	KENNELL, D. E. Principles and Practices of Nucleic Acid Hybridization. Progress in Nucleic Acid Research Molecular Biology. 1971, Vol. 11, pages 259-301, see especially pages 259-262.			
Purther documents are listed in the continuation of Box C. See patent family annex.				
Special categories of cited documents: 17 later document published after the international filing data or priority				
"A" document defining the general state of the art which is not considered to be of particular relevance. data and not in conflict with the application but cited to understand the principle or theory underlying the invention.				
"E" carlier decument published on or after the interactional filling data "X" document of perticular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an invention step				
[. decument which may threw doubts on priority chain(s) or which is whom the document is taken alone cled to establish the makingtim data of mother circles or other				
upocial reason (as specified) "Y" document of particular relevance; the claimed inventors count to considered to involve an inventive step when the document in "O" document referring to an oral disclosure, use, exhibition or other combined with one o, more other such documents, such combination				
"P" decusions published prior to the international filing date but later then "A" decusions member of the same patent family the priority date claimed				
Date of the actual completion of the international search Date of mailing of the international search report				
10 JULY 1997 0 6 AUG 1997				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer		1. Ch		
Box PCT Washington, D.C. 20231 IAMES MARTINELL IAMES MARTINELL				
Facsimile No. (703) 305-3230 Telephone No. (703) 308-0196				

International application No. PCT/US97/05306

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:		
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
3. 🔲	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)		
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:		
Ple	case See Extra Sheet.		
ı. 🔲	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
4. X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: -3, 6-12, 15, 17, and 21-23 (SEQ ID NOs 224-233).		
Remark	on Protest		
Į.	No protest accompanied the payment of additional search fees.		

Form PCT/ISA/210 (continuation of first shock(1))(July 1992):

International application No. PCT/US97/05306

1

1

;

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING (Continued):

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I. Claims 1-12, 15, 17, and 21-23, drawn to nucleic acids and polypeptides of specific sequence, vectors containing nucleic acids, methods of producing polypeptides, and methods of treatment using polypeptides.

Group II. Claims 13 and 19, drawn to antibodies against any of no fewer than 254 specific sequence polypeptides.

Group III. Claims 14 and 16, drawn to antagonists of undisclosed composition of the activity of no fewer than 254 specific sequence polypeptides.

Group IV. Claims 18 and 24, drawn to methods for screening for compounds that interact with no fewer than 254 specific sequence polypeptides.

Group V. Claim 20, drawn to a method of inducing an immunological response using a nucleic acid.

Group VI. Claim 25, drawn to compounds of undisclosed composition.

The inventions listed as Groups I-VI do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons. The nucleic acids, proteins, and methods of Group I are materially different from the antibodies of Group II, the compounds of Group III, and the compounds of Group VI and are not required to produce either the antibodies of Group II, which antibodies may be made with antigens other than those embraced by Group I. Additionally, the methods of Group I are not needed to produce the compounds of either one of Groups III or VI. The compositions and methods of Group I are not needed for the methods of cither one of Groups IV or V. The antibodies of Group II are not needed for the methods of Groups IV or V and are materially different from the compounds of Groups III and VI. The antagonists of Group III are materially different from the compounds of Groups III and VI. The antagonists of differing sites of action and/or binding. Neither are the compounds of either one of Groups III or VI needed to practice the methods of either one of Groups IV or V. The methods of Groups IV and V may be practiced independently of one another.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows. Each of the 234 SEQ ID NOs listed is a separate species because there is no relationship between the species.

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons. There is no relationship among the species.

For any Group applicant elects, a total of 10 (TEN) specified sequences will be searched and no more than 4 (FOUR) specified sequences will be searched for each additional fee paid.

The claims are deemed to correspond to the species listed above in the following manner: SEQ ID NOs 224-233 correspond to claims 1-3, 6-12, 15, 17, and 21-23.

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12N 15/31, 15/11, 15/00; C12P 21/02; A61K 38/16, 39/09; C07K 14/195, 14/315

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

MPSRCH OF: A-GENESEQ26, A-ISSUED, HIV-AA2, PIR50, SUIWW-PROT34, EMBL-NEW11, GENBANK97, GENBANK-NEW11, U-EMBL48_97, HIV-NA8, N-GENESEQ26, N-ISSUED, EST-STS, EST-STS-TWO, EST-STS-

International application No. PCT/US97/05306

THREE. SEQ ID NO: 224-233.	į
	·
	÷
	y .

Form PCT/ISA/210 (extra sheet)(July 1992)*