COOMOLOGIA DI GRUPPI

CLASSIFICAZIONE DEI COMPLEMENTI

Sia dato $\phi:\pi\to {\rm Aut}\,(G)$ omomorfismo e costruiamo il prodotto semidiretto $G\rtimes_\phi\pi$ con l'azione data dal morfismo ϕ . In questo gruppo esistono, in generale, altre complementi di G oltre a π . Ci poniamo lo scopo di classificarli attraverso alcune funzioni $f:\pi\to G$. (indicheremo $\phi(\sigma)(g)$ con g^σ)

Se ω è un complemento per G e $\sigma \in \pi$ esiste un unico elemento $g \in G$ tale che $\sigma g \in \omega$. Definiamo allora una funzione $f: \pi \to G$ che associa a $\sigma \in \pi$ l'elemento $g \in G$ tale che $\sigma g \in \omega$. La f gode della proprietà $f(\sigma \tau) = f(\sigma)^{\tau} f(\tau)$ (proprietà degli omomorfismi crociati). Notiamo inoltre che dato un omomorfismo crociato f le coppie $(\sigma, f(\sigma))$ formano un sottogruppo di $G \rtimes_{\phi} \pi$

Inoltre notiamo che questi procedimenti stabiliscono una biggezione tra gli omomorfismi crociati ed i complementi di G in $G\rtimes_\phi\pi$

Se ψ è l'omomorfismo di proiezione su π ($\psi(\sigma,g)=\sigma$) ed $\exists s$ omomorfismo $\pi\to G\rtimes_\phi\pi$ tali che $\psi s=\mathrm{id}_\pi$ allora s si dice spezzamento.

Supponiamo ora di avere ω_1 ed ω_2 due complementi di G coniugati tra loro, ovvero tali che $\omega_1^x = \omega_2$. Sia $x = yg_1$, con $y \in \omega_1, g_1 \in G$. Definiamo $g := g_1^{-1}$ e con un po' di conti si vede che ω_1 ed ω_2 sono coniugati se e solo se vale la seguente relazione tra gli omomorfismi crociati indotti f_1, f_2 :

$$f_2(\sigma) = g^{\sigma} f_1(\sigma) g^{-1} \quad \forall \sigma \in \pi$$

Inoltre la relazione così indotta sugli omomorfismi crociati è di equivalenza.

Esiste quindi una corrispondenza biunivoca tra le classi di coniugio dei complementi di G nel prodotto semidiretto $G \rtimes_{\phi} \pi$ e le classi [f] dell'equivalenza data sopra. Notiamo poi che gli omomorfismi crociati equivalenti a quello indotto da π sono quelli per i quali $\exists g \in G$ t.c. $f(\sigma) = g^{\sigma}g^{-1} \quad \forall \sigma \in \pi$. Tali omomorfismi crociati si chiamano principali.

PRIMO GRUPPO DI COOMOLOGIA