This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

In the date indicated below.

dende is being deposited with the United States? Service as First Class Mail in an by certify that this corre e addressed to Assistan. Commissioner for Patents, Washington, D.C., 202.

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re:

Patent Application

of Elke Bucha et al.

Group Art Unit 1643

RECEIVED

TECH CENTER 1600/2900

Appln. No.:

09/417,534

APR 2 4 2000

Filed:

October 14, 1999

Attorney Docket

For:

INTERACTIVE SYSTEM FOR

: No. 9282-6

PRESENTING AND ELIMINATING

: (D 1055 US)

SUBSTANCES

CLAIM OF FOREIGN PRIORITY AND TRANSMITTAL OF PRIORITY DOCUMENT

Applicant(s) hereby claim(s) the right of foreign priority under 35 U.S.C. Section 119 for the above-identified patent application. The claim of foreign priority is based upon Application No. 197 15 504.9, filed in Germany on April 14, 1997, and the benefit of that date is claimed.

Submitted herewith is a certified copy of German Application No. 197 15 504.9. It is submitted that this document completes the requirements of 35 U.S.C. Section 119, and benefit of the foreign priority is respectfully requested.

Respectfully submitted,

ELKE BUCA et al.

(Date)

NDA L. CALDERONE

Registration No. 35,837

AKIN, GUMP, STRAUSS, HAUER & FELD, L.L.P.

One Commerce Square

2005 Market Street - Suite 2200 Philadelphia, PA 19103-7086 Telephone: (215) 965-1200

Direct Dial: (215) 965-1272 Facsimile: (215) 965-1210

E-Mail: lcalderone@akingump.com

LLCif Enclosures Attorney for Applicant

BUNDESREPUBLIK DEUTSCHLAND

APR 2 4 200U
TECHCENTER 1600/2900

Bescheinigung

Die Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. in München/ Deutschland hat eine Patentanmeldung unter der Bezeichnung

"PMMA-Membranen mit Polyethylenglykol-gekoppelten Wirksubstanzen"

am 14. April 1997 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole B 01 D, A 61 M und A 61 K der Internationalen Patentklassifikation erhalten.

München, den 29. März 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Aktenzeichen: 197 15 504.9

Ebert

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

PMMA-MEMBRANEN MIT POLYETHYLENGLYKOL-GEKOPPELTEN WIRKSUBSTANZEN

Die vorliegende Erfindung betrifft die Verwendung von PMMA-Membranen als funktionelles Antidot für Polyethylenglykolgekoppelte Wirksubstanzen.

Die Erfindung betrifft ferner extrakorporale therapeutische Systeme, welche eine PMMA-Membran, an die eine physiologisch oder pharmakologisch wirksame PEG-gekoppelte Substanz gebunden ist, umfassen.

Zur Erhöhung des Molekulargewichts und damit zur Verbesserung der Pharmakokinetik im Körper werden häufig physiologische Wirksubstanzen mit Polyethylenglykol gekoppelt (vgl. z.B. Thrombosis and Haemostasis, 77 (1), 168-73 (1977), Peptide Research, Vol. 8, No. 2 (1995)). Derartige Substanzen finden mittlerweile eine breite therapeutische Anwendung. Bisher stehen für derartige Substanzen keine wirksamen funktionellen Antidote bzw. die Wirkung neutralisierende Systeme zur Verfügung.

Zelluläre Signal-Substanzen einer gestörten Funktion werden bei schweren Erkrankungen sehr häufig in das Blut abgegeben, wodurch sich diese zellulären Signalfaktoren an jede Stelle des Körpers rasch verteilen können. Dadurch können sowohl sinnvolle, häufig aber auch pathologische Antworten des Organismus auf derartige Signale entstehen. Durch Neutralisierung oder Blockierung dieser pathogenetischen Faktoren kann eine Krankheit unterbrochen werden, bzw. ein Fortschreiten aufgehalten werden, so daß körpereigenen Repairmechanismen die Gelegenheit gegeben wird, ursächlich einzugreifen.

Typische Beispiele für solche Signalstoffe sind die zellulären Boten der endothelialen und zirkulierenden Zellen des Blutes wie z.B. CD1, CD6, CD8, CD16, Tumornekrosefaktor (TNF) etc.

Auch pathogenetisch bedeutsame, induzierte Proteine wie z.B. das Lipoprotein-bindende Protein LBP sind für die Entwicklung von schwersten Komplikationen bei septischen Schockpatienten verantwortlich.

Es wäre wichtig, derartige Substanzen über ein extrakorporales therapeutisches System schonend entfernen zu können, ohne den Organismus mit weiteren Substanzen zu belasten. Weiterhin wäre die Therapie von bestimmten Erkrankungen mit Hilfe von monoklonalen Antikörpern bzw. Fragmenten dieser monoklonalen Antikörper vorteilhaft. Augenblicklich ist eine derartige Therapie nur kurzfristig anwendbar, weil die immunkompetenten Zellen des Organismus sehr rasch humane Antikörper gegen diese Fremdproteine produzieren. Eine lokale

Präsentation derartiger monoklonaler Antikörper in der Blutzirkulation kann ohne Immunreaktivität lange Zeit zur Neutralisierung von Antigenen im Blut verwendet werden.

Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines universellen und schnell verfügbaren Antidots für PEG-gekoppelte Wirksubstanzen. Das funktionelle Antidot soll schnell und einfach anwendbar, physiologisch verträglich und kostengünstig sein. Ferner soll ein gut dosierbares und kurzfristig anwendbares Antidot für Substanzen mit physiologischer Wirkung bereitgestellt werden. Mit diesem Antidot sollen schonend und ohne den Körper zu belasten physiologisch aktive, aber unerwünschte Substanzen aus dem Blut entfernt werden. Ferner sollen pegylierte Wirksubstanzen in den Organismus eingebracht werden und nach Ablaufen einer entsprechenden Reaktion schonend wieder aus dem Blut entfernt werden.

Gelöst wird diese Aufgabe erfindungsgemäß durch die Verwendung einer Membran aus Polymethylmethacrylat oder einem Polymethylmethacrylat-Mischpolymeren zur Bindung von Polyethylenglykol-gekoppelten Substanzen (PEG-Substanzen), insbesondere als funktionelles Antidot für PEG-Wirksubstanzen. Diese Membranen werden bevorzugt in einem Kapillardialysator eingesetzt. Ferner betrifft die Erfindung ein extrakorporales therapeutisches System, umfassend eine Membran aus Polymethylmethacrylat oder einem Polymethylmethacrylat-Mischpolymeren, an die physiologisch wirksame Polyethylenglykol-gekoppelte Substanzen (PEG-Substanzen) gebunden sind.

Überraschenderweise wurde bei Untersuchungen zur Bindungsfähigkeit von Dialysatoren gefunden, daß Dialysatoren aus Polymethylmethacrylat bzw. einem Polymethylmethacrylat-Mischpolymeren in der Lage sind, sehr spezifisch und sehr fest Polyethylenglykol-gekoppelte Strukturen zu binden. Es konnte gezeigt werden, daß diese Polyethylenglykol-PMMA-Bindung die Funktionalität der pegylierten Enzyme, Proteine und anderer Reaktanten nicht beeinflußt. Dadurch stehen diese speziellen Bindungspartner dem Blut, das extern durch derartig vorbehandelte Dialysatoren geleitet wird, für spezielle Bindungs-, Enzym- oder Einfangreaktionen zur Verfügung.

Das aufgefundene Prinzip der überraschenden Bindung von PEGgekoppelten Wirksubstanzen an PMMA-Membranen läßt nun verschiedene Anwendungsmöglichkeiten zu. Zum einen können PMMA-Membranen als funktionelles Antidot für diese Wirksubstanzen eingesetzt werden. Zum anderen können PMMA-Membranen mit PEG-gekoppelten Wirksubstanzen beschichtet werden und somit zur in-vivo-Plasmareinigung und Plasmabehandlung verwendet werden. Diese Membranen können Bestandteil eines extrakorporalen therapeutischen Systems sein. Ferner können PEG-gekoppelte Wirksubstanzen nach ihrer Reaktion im Organismus, bevorzugt im Blut, mit Hilfe einer PMMA-Membran schonend wieder aus dem Organismus entfernt werden. Dadurch können insbesondere gefährlich hohe Blutspiegel von PEG-Hirudin antagonisiert werden, aber auch pegylierte Antikörper oder pegylierte Proteinwirkstoffe, die für eine definierte Zeit im Blut zur Anwendung kamen, wieder quantitativ entfernt werden (zeitlimitierte Wirkstoffanwendung). Weiterhin können PMMA-Kapillardialysatoren mittels Polyethylen-gekoppeltem Hirudin lokal antikoaguliert werden (die Patienten brauchen dann

kein systemisches Antikoagulans), aber auch durch Coatierung von PMMA-Kapillardialysatoren mit PEG-Antigenen oder PEG-Antikörpern bzw. PEG-Wirksubstanzen zur spezifischen Interaktion mit toxischen oder krankheitsauslösenden bzw. krankheitsunterhaltenden Blutbestandteilen oder Stoffwechselprodukten befähigt werden.

Es können beliebige PEG-gekoppelte Wirksubstanzen eingesetzt werden. Beispiele hierfür sind insbesondere Proteine, wie z.B. Enzyme, Antikörper, Antikoagulantien, Tumormarker, Enzyminhibitoren, aber auch jede andere physiologische Wirksubstanz, die sich mit PEG koppeln läßt.

So kann beispielsweise an PMMA-gebundenes PEG-Hirudin auf der Membran Thrombin inaktiviert werden. Mit ausreichender Spezifität und Effektivität wird von den PEG-Hirudin-coatierten Oberflächen Thrombin gebunden, so daß es nicht mehr für Gerinnungsaktivierungs-Mechanismen zur Verfügung steht. Dies läßt sich beispielsweise über eine nicht mehr stattfindende Spaltungsreaktion von angebotenem, natürlichem Thrombinsubstrat, dem Fibrinogen, nachweisen. Ebenso lassen sich auch synthetische Thrombininhibitoren auf PMMA binden.

Eine weitere spezielle Anwendung ist beispielsweise die Verwendung pegylierter monoklonaler Antikörper gegen den Tumornekrosefaktor (TNF). Der monoklonale Antikörper gegen den Tumornekrosefaktor (MAK-195) ist ein Versuchspräparat der Firma Knoll und wird augenblicklich in klinischen Studien bei Schockpatienten auf seine klinische Effizienz hin evaluiert. Dieser monoklonale Antikörper läßt sich problemlos mit PEG koppeln und auf eine entsprechende PMMA-Membran aufbrin-

gen. Dadurch ist der monoklonale Antikörper festphasengebunden und bindet hochspezifisch an ein Epitop des Tumornekrosefaktors. So können hohe und pathophysiologisch für den weiteren Verlauf einer Schockreaktion schädliche TNF-Spiegel gesenkt werden. In entsprechender Weise lassen sich monoklonale bzw. polyklonale Antikörper gegen Lipopolysaccharidbindendes Protein (LBP) koppeln. Dieses Protein dient dem Transport bakterieller Stoffwechselprodukte der Lipopolysaccharide (Endotoxine, Lipid A) im Blut und ihrer Präsentation an die Zellen. Wird der Spiegel des Lipopolysaccharid-bindenden Proteins gesenkt, kann dadurch die Aufnahme von Endotoxinen aus dem Magen-Darm-Kanal, aber auch aus septischen Herden vollständig blockiert werden.

Weiterhin können beispielsweise pegylierte Enzyme auf die Membranen aufgebracht werden, und damit lassen sich dann pathogene Strukturen, z.B. von Cholesterin und hochmolekularen Lipoproteinen und anderen pathogenetisch bedeutsamen Blutbestandteilen, in inaktive Metabolite gezielt spalten.

Ferner ist es beispielsweise auch möglich, spezifische humane γ -Globulinfraktionen zu pegylieren und auf die PMMA-Membran zu coatieren, um Bakterien bzw. Viren direkt zu hemmen und über das temporäre extrakorporale therapeutische System aus dem Organismus zu entfernen.

Ferner können auch Inhibitoren für aktivierte Gerinnungsfaktoren, z.B. der rekombinante TFPI, ein natürlicher Inhibitor des Faktor VII-Tissuefaktor-Komplexes, des wichtigsten Startmechanismus der Blutgerinnung, eingesetzt werden. Diese können in entsprechend pegylierter Form auf der Membran ge-

bunden werden, um damit die Blutgerinnung in den ersten Aktivierungsmechanismen vollständig zu hemmen, ohne dabei das normale Gerinnungspotential des Organismus zu beeinflussen. Prinzipiell läßt sich jede pathologische Größe des Organismus, die zu ihrer Signalübertragung den Blutweg benützt, durch ein derartiges extrakorporales therapeutisches System modifizieren.

Die Bindungsfähigkeit derartiger oberflächendotierter Kapillardialysatoren ist erstaunlich groß; es können bis zu 1 g pegylierte Strukturen auf 1 m² Oberfläche gebunden werden. Mit Hilfe von Auswaschversuchen konnte zweifelsfrei belegt werden, daß die physikochemisch erklärbare Verbindung zwischen dem pegylierten Protein und der PMMA-Membran sehr stabil ist und ein Ablösen von der Membran sowohl durch Kochsalzspülung als auch bei Spülen mit Plasma bzw. mit Vollblut nicht möglich ist.

Aus der molekularen Immunologie ist eine Reihe spezifischer Tumorantigene an Zelloberflächen von Tumorzellen bekannt, für die zu diagnostischen Zwecken auch entsprechende Antikörper für in-vitro-Untersuchungen zur Verfügung stehen. Deren Fremdeiweißstrukturen verbieten jedoch eine Anwendung beim Patienten. Erfindungsgemäß können nun diese Antikörper, an PEG-Linker an der Oberfläche einer PMMA-Membran gebunden, eine spezifische Interaktion mit Tumorzellen des Blutes eingehen und diese ähnlich der Hämofiltration spezifisch aus der Zirkulation entfernen. Damit wird erstmalig eine Anordnung bereitgestellt, in der mit vorhandenem Oberflächenmaterial, das bioverträglich und zugelassen ist, eine spezifische Interaktion im Blut zwischen Zellen bzw. Zellanteilen

des Organismus und festphasengebundenen spezifischen Gegenspielern möglich ist.

Dieses Prinzip läßt sich auf viele weitere therapeutische Anwendungen, insbesondere auf die in-vivo-Plasmareinigung, anwenden. Beispielsweise können Ultrafiltrationsmembranen vom Typ PMMA, auf denen spezielle PEG-gekoppelte Enzyme angebracht sind, zur Entgiftung bei nierenkranken Patienten eingesetzt werden. Ferner können durch Aufbringen von PEG-gekoppelter Urease auf PMMA-Membranen erhöhte Harnstoffwerte im Blut abgebaut werden oder durch Aufbringen PEG-gekoppelter Kreatinin metabolisierender Enzyme eine Senkung weiterer harnpflichtiger Stickstoffprodukte veranlaßt werden.

können alle Membranen aus Polymethylmethacrylat einem Polymethylmethacrylat-Mischpolymeren eingesetzt werden, die biologisch verträglich sind. Es können Mischungen aus beliebigen Anteilen Polymethylmethacrylat und einem oder mehreren weiteren Polymerkomponenten angewendet werden, beispielsweise mit Polyacrylnitril, Polycarbonat oder Polysulfon. Beispiele für Mischungen sind Polymethylmethacrylat + Polyacrylnitril, Polymethylmethacrylat + Polyacrylnitril + Methacrylat, Polymethylmethacrylat + Polyacrylnitril + Methallylsulfonat, Polymethylmethacrylat + Polyethylenpolyvinylalkohol, Polymethylmethacrylat + Polyamid, Polymethylmethacrylat + Polysulfon. Bevorzugt beträgt der Anteil an Polymethylmethacrylat in den Mischpolymeren mindestens 20 %. Diese Mischpolymeren können nach auf dem Fachgebiet bekannten Verfahren hergestellt werden. Bevorzugt wird bei dem erfindungsgemäßen Verfahren eine Polymethylmethacrylatmembran verwendet.

Die benutzten PMMA-Membranen werden in Kapillardialysatoren verwendet. Der alleinige Hersteller von PMMA-Kapillardialysatoren ist die Firma Toray, Japan. Vor ihrer Anwendung am Menschen werden die Kapillardialysatormodule sowohl auf der Dialysatseite als auch auf der Blutseite intensiv gespült, auf der Blutseite mit physiologischer Kochsalzlösung, auf der Dialysatseite mit Dialysatflüssigkeit (Salzlösung), um toxische Produkte und Substanzen, die während des Produktionsprozesses mit dem System in Kontakt gekommen sind, aus dem Kapillardialysator herauszuspülen. Am Ende dieses kontinuierlichen Spülvorgangs, bei dem die Spülflüssigkeit auf beiden Seiten verworfen wird, wird für die Vorbereitung des externen therapeutischen Systems die Dialysatseite durch Blindstopfen verschlossen; auf der Blutseite wird eine Rezirkulation angeschaltet, wobei in der Vorlage von etwa 200 ml die pegylierte Auftragungssubstanz gelöst ist. Durch einen einfachen Rezyklisierungsvorgang, bei dem an dem Ausgang des Dialysators über eine Rollerpumpe die Lösung in das Lösungsreservoir zurückgepumpt wird, wird die Membran innerhalb von 5-10 min mit der pegylierten Substanz coatiert. Die PMMA-Membranen nehmen unabhängig von ihrem Cutoff (Maßzahl für die Größe der Poren in der Membran) bis zu 200 mg der aufzutragenden Substanz (= 1 g der pegylierten Wirksubstanz) pro m^2 Kapillaroberfläche auf. Es ist wichtig, daß die entsprechenden Bindungsstellen auf der PMMA-Membran vollständig von den pegylierten Wirksubstanzen besetzt sind. Falls nur geringere Mengen dieser Wirksubstanzen aufgebracht werden, sollte man am Ende des Spülprozesses eine Nachspülung mit PEG-Kochsalzlösung nachlaufen lassen, um alle PEG-Bindungsstellen der Membran abzusättigen. Dadurch ist gewährleistet,

daß eine zusätzliche Coatierung mit Plasmaproteinen des Blutes an den Bindungsstellen nicht mehr auftritt und damit keine Interaktion zwischen Plasmaproteinen und den präsentierten Wirksubstanzen zustandekommt (Priming).

Die Kopplung von Polyethylenglykol an Wirksubstanzen erfolgt nach an sich bekannten Verfahren, beispielsweise gemäß Miron, T. und Wilchek, M.: Bioconjugate Chem. 1993, 4, 568-69 u.a. Das Prinzip der Kopplung von Polyethylenglykol-monoaliphatischen Ketten mit Proteinen ist derart, daß die Proteine sowohl basische als auch saure Aminosäurereste in großer Zahl an der Oberfläche präsentieren (aliphatische Proteine). Die Kopplung wird dann durch eine Kondensationsreaktion vollzogen, indem Amino-PEG-Ketten oder Hydroxy-PEG-Ketten geeigneter Kettenlänge durch eine chemische Kondensationsreaktionsreaktion an die Proteine gebunden werden.

Obwohl das molekulare Prinzip der Bindung von Polyethylenglykol auf der Polymethylmethacrylatmembran bisher noch nicht untersucht ist, wird folgender hypothetischer Bindungsmechanismus vorgeschlagen, der jedoch die Erfindung in keiner Weise beschränken soll. Der ketonisch gebundene Sauerstoff an den PMMA-Ketten ist aufgrund der Ladungsverteilung in den Methylknoten der Kohlenwasserstoffkettenstrukturen stark negativ geladen. Dieser Sauerstoff kann also entsprechende elektrostatische Interaktionen mit der Polyethylenglykolkette herstellen. Die Interaktionen sind dergestalt, daß der Sauerstoff des Polyethylenglykols durch die C-C-Konfiguration leicht elektronenpositiv geladen ist. Es kommt mit großer Wahrscheinlichkeit zu einer Interaktion zwischen diesen beiden unterschiedlich geladenen Sauerstoff-

spezies im PMMA und PEG, so daß die PEG-Kette über eine gewisse Strecke von mehreren C-C-O-C-C-O-Kettengliedern an die PMMA-Oberfläche gebunden wird. Derselbe Bindungsmechanismus an diesem negativ geladenen ketonischen Sauerstoff des PMMA ist für die basale, geringe Proteinbindung dieser Membran ebenfalls verantwortlich.

erfindungsgemäß aufgefundene Prinzip der Bindung von Das PEG-gekoppelten Substanzen an PMMA-Membranen bzw. Membranen aus PMMA-Mischpolymeren kann nun zur Herstellung von Kapillardialysatoren genutzt werden. Dadurch lassen sich PEG-gekoppelte Strukturen, die für eine limitierte Zeit zur Therapie beim Menschen eingesetzt werden, quantitativ aus dem Organismus entfernen. Es ist möglich, daß man für eine gewisse Zeit großmolekulare, mit PEG-Ketten versehene Wirkstoffe in den Organismus instilliert und, nachdem dort eine in-vivo-Reaktion mit Antigenen, Antikörpern etc. stattgefunden hat, diese dann über diesen erfindungsgemäßen Bindungsmechanismus aus dem Organismus durch eine Behandlung in einem extrakorporalen therapeutischen System, welches eine entsprechende Membran enthält, entfernt. Ebenso können mit einem großen PEG-Molekül versehene monoklonale Antikörper einem Organismus zugesetzt werden und dann mit Hilfe eines entsprechenden Dialysators wieder aus dem Organismus entfernt werden.

Die Erfindung wird nun anhand von Polyethylenglykol-gekoppeltem Hirudin näher erläutert.

Hirudin stellt in der rekombinanten, naturidentischen Form ein hochspezifisches und effektives antithrombotisches Prinzip dar, welches in den nächsten Jahren für die suffiziente Therapie thromboembolischer Erkrankungen und deren Folgezustände zunehmendes Interesse gewinnen wird.

Erste klinische Untersuchungen bis hin zu großen Phase III-Studien haben die Effektivität dieser neuartigen, therapeutisch wertvollen Substanz bewiesen.

Rekombinantes Hirudin kann natürlich auch zu Intoxikationen führen, entweder durch die Art des durchgeführten Therapieschemas, durch Überdosierung oder durch objektive Eliminationsschwierigkeiten, die durch plötzliche oder passagere Niereninsuffizienzen gegeben sind.

Für die Entfernung von Hirudin aus dem Organismus stehen augenblicklich in der klinischen Medizin zwei Wege offen, nämlich die Applikation eines Antidots (vgl. die deutschen Patentschriften P 42 03 965.7 und 196 25 642.9), sowie die rasche Entfernung des Hirudins mittels High-Flux-Dialysemembranen.

In der Klinik hat sich vor allem ein großmolekulares Derivat des Hirudins für die praktische Anwendung als geeignet erwiesen. Es handelt sich um ein Hirudin, bei dem das Molekulargewicht durch zwei 5000-D-Polyethylenglykol-Ketten vergrößert ist. Dadurch ist eine bis zu 4-5 mal größere Stoffmenge im Organismus und eine noch stärkere verlängerte Plasmaverweilzeit des Hirudins gegeben.

Die Möglichkeiten, dieses PEG-Hirudin bei Überdosierungen oder toxischen Blutspiegeln zu antagonisieren, stellt sich als schwierig heraus. Zwar ist für das PEG-Hirudin ebenfalls das universelle Antidotprinzip gegen Hirudine und gegen synthetische Thrombin-Inhibitoren wie oben beschrieben verwendbar, aber eine generelle Dialysierbarkeit von PEG-Hirudin ist nicht gegeben. Selbst Hämofiltrationssysteme mit extrem großem Cutoff werden von PEG-Hirudin nicht passiert. Dementsprechend ist bisher eine schnell verfügbare funktionelle Antidotformulierung nicht möglich.

Beim Vergleich zwischen rekombinantem Hirudin und PEG-molekulargewichtsvergrößertem Hirudin bei entsprechenden vitro-, aber auch in-vivo-Zirkulationen durch PMMA-Membranen wurde ein gänzlich unterschiedliches Verhalten festgestellt. Während natives oder rekombinantes Hirudin sehr rasch von der Blutseite in die Dialysatseite übertritt und aus der Zirkulation verschwindet, verhält sich PEG-Hirudin gänzlich anders. Es wurde nachgewiesen, daß bei einem Kapillardialysator-Rezirkulationsmodell nach kurzer Zeit sowohl auf der Blut- als auch auf der Dialysatseite kein PEG-Hirudin in freier Form mehr vorkommt, obwohl relativ hohe Mengen von PEG-Hirudin auf der Blutseite entweder in antikoaguliertes Rinderblut oder auch in Eiweißkochsalzlösung appliziert wurden. Damit wurde nachgewiesen, daß in diesem Rezirkulationsmodell PEG-Hirudin mit hoher Geschwindigkeit aus Vollblut, Plasma oder albuminischer Rezirkulationslösung auf der PMMA-Membranoberfläche fest gebunden wird. Ein Versuch, nach Entfernung der untersuchten Zirkulationslösung mit Hilfe von Kochsalzlösungen ein Ausbluten bzw. Auswaschen des PEG-Hirudins von der Membran zu erreichen, war nicht möglich; die Bindung erwies sich durchaus als stabil und fest.

Aus diesen Untersuchungen ergibt sich eindeutig, daß damit ein funktionelles Antidotprinzip für PEG-Hirudin möglich ist. Derartige Dialysatoren können auf verschiedene Weise genutzt werden:

Man kann beispielsweise einen PMMA-Dialysator an eine normale Dialyse-Einheit anschließen und als funktionelles Antidotprinzip für PEG-Hirudin bei entsprechenden klinischen Einsätzen verwenden, oder man kann auch mit einfachen Hämofiltrationspumpsystemen, wie sie in der Intensivmedizin zur kontinuierlichen Hämoperfusion angewendet werden (siehe Beispiel), die PMMA-Dialysatoren betreiben, so daß eine relativ problemlose, gering volumenbelastende Dialyse des betroffenen Patienten vorgenommen werden kann. Die benötigte Hämofiltrationszeit selbst für hohe Konzentrationen von PEG-Hirudin im Blut wäre in diesen Fällen mit weniger als 2 h, vorzugsweise 30-45 min, anzugeben.

Zur extrakorporalen Therapie des Blutes mit Hilfe der effektiven Dialyse harnpflichtiger Stoffwechselprodukte werden möglichst gut biokompatible Membranmaterialien entwickelt, die über eine lange Zeit konstante Filterleistungen haben. Polymethylmethacrylat (PMMA) bietet eine exzellente Clearance von mittleren Molekülen und Ultrafiltrationsleistungen, die durch den Transmembrandruck exakt kontrolliert werden können.

Polymethylmethacrylat ist ein Polymerprodukt, das zu symmetrischen Hohlmembranen versponnen wird. PMMA ist leicht kationisch geladen, mit der Eigenschaft, daß eine Reihe von

Proteinen des Blutes mit der Membranoberfläche in Wechselwirkung treten.

Die vorliegende Erfindung wird nun anhand der folgenden Beispiele näher erläutert.

<u>Beispiel 1</u>

Herstellung von PEG-modifiziertem Hirudin-Ziegenantikörpern

1) Präparation von SC-PEG

Methode nach Talia Miron und Meir Wilchek (Lit.: Bioconjugate Chem. 1993, 4, 568-569)

Materialien:

Aceton wasserfrei Diethylether wasserfrei 1,4-Dioxan wasserfrei Molekularsieb 4A, Perlen 8-12 mesh Phosphat-Puffer 0,05 mol/1; pH 7,0 Polyethylenglykol 6000 MG 5000-7000; 1 mmol N, N'-Disuccinimidylcarbonat 5 mmol 4-(Dimethylamino)pyridin 5 mmol

Ausführung:

In 25 ml wasserfreiem Dioxan (über Molekularsieb) werden 1 mmol PEG im heißen Wasserbad gelöst. Nach Abkühlung auf Raumtemperatur wird das N,N'-Disuccinimidylcarbonat, gelöst in 10 ml Aceton, zugegeben. Anschließend läßt man langsam die 10 ml Aceton mit 5 mmol 4-(Dimethylamino)pyridin unter Rühren zufließen. Bei Raumtemperatur wird die Mischung 6 Stunden aktiviert (Magnetrührwerk). Das aktivierte PEG wird aus dieser Lösung direkt mit Diethylether gefällt. Durch eine G3-Fritte wird der voluminöse weiße Niederschlag abgesaugt. Die völlige Entfernung des Ethers erfolgt im evakuierten Exsiccator. Aufbewahrung: trocken bei 4°C.

Effizienz: 85 % (bezogen auf PEG)

- 2) Kopplung von SC-PEG mit Protein
- a) Präparation von PEG-modifiziertem Hirudin:

Materialien: Borat-Puffer pH 9,5

Phosphat-Puffer pH 7,0; 0,05 mol/l

Hirudin; rekombinant

SC-PEG

Ausführung:

150 mg PEG und 27 mg Hirudin wurden zusammen in 25 ml Borat-Puffer gelöst und 3 Stunden bei 4°C unter Rühren inkubiert. Ungebundenes PEG und Hirudin werden durch Ultrafiltration (AMICON; Membran YM 10) mit dem 6- bis 10-fachen Volumen Phosphat-Puffer entfernt. Das Retentat wird lyophilisiert und im Exsiccator bei 4°C aufbewahrt. Die einzelnen Präparationsschritte wurden durch SDS-PAGE, Gerinnungsteste (ECT), PEG-Bestimmung und Tierversuch belegt.

b) Präparation von PEG-modifiziertem Hirudin-ZAK:

Materialien: Phosphat-Puffer pH 7,0; 0,05 mol/l

SC-PEG

Hirudin-Ziegenantikörper (Hi-ZAK)

Ausführung:

500 mg PEG werden in 20 ml Hi-ZAK (in Phosphat-Puffer vorliegend) gelöst und 48 Stunden bei 4°C unter Rühren inkubiert. Ungebundenes PEG und Hi-ZAK werden durch Ultrafiltration (AMICON; Membran YM 10) mit dem 6- bis 10-fachen Volumen Phosphat-Puffer entfernt. Die Aufbewahrung des Präparats erfolgte als Lösung bei 4°C.

Diese PEG-modifizierten Hirudin-Ziegenantikörper können auf eine PMMA-Membran aufgebracht werden, und damit lassen sich bei Verwendung in einem extrakorporalen therapeutischen System schonend hohe Hirudinspiegel im Blut senken.

Beispiel 2

"Dialyse" von PEG-Hirudin

In dem folgenden Versuchsbeispiel soll die Effizienz der Entfernung von PEG-Hirudin aus dem Blut dargestellt werden. Zu diesem Zweck wird 250 bzw. 300 ml Rindervollblut mit 36 μ g/ml PEG-Hirudin antikoaguliert und in entsprechend aufbereitete und für die Anwendung zur Verfügung stehende PMMA-Dialyse-Rezirkulationssysteme eingebracht. Zu diesem Rezirkulationsmodell wird folgender Versuchsaufbau benutzt:

Eine Hämodialyse-Einheit vom Typ Fresenius A2008C wird zur Vorspülung der Blut- und Dialysatseite der Dialysatoren benutzt. Die PMMA-Dialysatoren werden nach der Vorschrift des Herstellers für die Dialyse vorbereitet. Am Ende der Vorspülung der PMMA-Dialysemembran wird der Zu- und Abfluß der Dialysatseite mit Schlauchklemmen total verschlossen, so daß kein Wechsel der Dialysatflüssigkeit während des Versuchs vorgenommen werden kann. Die an der Dialyse-Einheit vorhandene Schlauchpumpe wird mit einem Vorratsgefäß und mit der arteriovenösen Seite verbunden. In das silikonisierte Glas-Vorratsgefäß wird das abgenommene und PEG-Hirudin-antikoagulierte Rinderblut eingefüllt und unmittelbar danach mit der Rezirkulation der Blutseite begonnen. In kurzen Abständen werden Proben aus dem Blutreservoir entnommen und mit Hilfe Ecarin-Gerinnungszeit (vgl. deutsche Patentanmeldung P 42 03 965.7) die Hirudinkonzentration im Rezirkulationssystem gemessen. Wie aus Figur 1 hervorgeht, kommt es mit dem Beginn der Zirkulation der PMMA-Membran zu einem raschen Abfall der Hirudinkonzentration im Blut, innerhalb der ersten 40 Minuten.

Die Figur 2 zeigt die Oberflächenbindung von PEG-NAPAP (NAPAP = \mathcal{B} -Naphthylsulfonyl-Gly-D,L-4-amidinophenylalanin-piperidin). Die Figur 3 zeigt die Thrombinbindung an NAPAP_{PEG10000}-beladenen PMMA-Membran-Dialysator.

Aus den hier dargestellten PEG-Hirudinkonzentrationen auf der Blut- und Dialysatseite ist erkennbar, daß auf beiden Seiten des Rezirkulationssystems kein meßbares PEG-Hirudin mehr vorhanden ist.

Zu Vergleichszwecken ist das Verhalten von rekombinantem Hirudin bei Verwendung von PMMA-Dialysatoren dargestellt. Es wurde mit 30-50 μ g/ml r-Hirudin antikoaguliertes Rinderblut verwendet. Aus der Abbildung ist ersichtlich, daß es ebenfalls zu einer Verminderung der Hirudinkonzentration auf der Blutseite kommt, die aber sehr rasch in einen steady-state hinübergeht. Bei der Untersuchung nach der zweistündigen Hämodialyse sind im Dialysatraum entsprechend hohe Konzentrationen von r-Hirudin wie auf der Blutseite vorhanden, d.h. es kommt zu einem typischen totalen r-Hirudin-Konzentrationsausgleich auf beiden Seiten. Eine adsorptive Bindung (Verlust von r-Hirudin) ist vernachlässigbar klein. Aus den hier vorgestellten Untersuchungen geht eindeutig hervor, daß PEG-Hirudin mit hoher Spezifität an PMMA-Kapillardialysatoren gebunden wird. Der direkte Vergleich mit dem ungebundenen r-Hirudin läßt zweifelsfrei den Schluß zu, daß der PEG-Anteil des Hirudins für die Kopplung an der PMMA-Oberfläche verantwortlich ist.

Beispiel 3

Herstellung und Verwendung eines Polyethylenglykol (20000) - gekoppelten monoklonalen Antikörpers gegen Tumornekrosefaktor (MAK 195)

100 mg MAK 195 werden in 50 ml 0,1-Mol Boratpuffer (pH 8) gelöst und mit 200 mg Methoxypolyethylenglykol (20000)-4-Ni-trophenylcarbonat versetzt und für 3 h bei 25°C inkubiert. Die Kopplungsreaktion wird mit einem 500fachen molaren Überschuß an TRIS gestoppt, gegen 20 mMol TRIS-HCl dialysiert

Antikörper von der PMMA-Membran spezifisch aus der Zirkulation entfernt wird. Dieser Versuch beweist das "Fischen" eines für eine begrenzte Zeit im Blut zur Anwendung gekommenen pegylierten Wirkstoffs.

Beispiel 4

Verwendung eines PEG-gekoppelten Enzyms

Als Modellenzym wird die Urease (EC 3.5.1.5., zu beziehen von Sigma, Best.-Nr. U 1500) verwendet. Herstellung eines PEG-gekoppelten Ureasepräparats: 100 mg Urease (Typ III, spezifische Aktivität 20.000 bis 30.000 U/g) werden in 80 ml 0,1-Mol Boratpuffer (pH 8) gelöst und mit 250 mg Methoxypolyethylenglykol (25.000)-4-Nitrophenylcarbonat versetzt und für 24 h bei 5°C inkubiert. Die Reaktion wird mit einem mehrfach höheren molaren Überschuß an TRIS gestoppt, gegen TRIS-HCl (pH 8) dialysiert und in einer HP-Q-Sepharose-Säule mit einem linearen NaCl-Gradienten (pH 8) entwickelt. Das PEG-Urease-Konjugat eluiert bei 180 bis 200 mMol NaCl. Die Ausbeute des PEG-Urease-Konjugats liegt bei 30-40 %. Die Enzymaktivität wird mit einem Harnstoff-Assay gemessen. Die Spaltungsaktivität wird mittels pH-Titration messend verfolgt und mit nicht konjugierter Urease verglichen. Die Pegylierung der Urease hat einen leichten aktivitätserhöhenden Einfluß auf die harnstoffspaltende Aktivität des Enzyms. Die mit 25 kD-Polyethylenglykol gekoppelte Urease wird in einer Konzentration von 2 mg (bezogen auf den Proteingehalt des Konjugats) auf einen miniaturisierten experimentellen Kapillardialysator mit 50 cm² Oberfläche aufgetragen. Bereits nach der ersten Zirkulation sind mehr als 90 % der Urease

oberflächenfixiert. Bis zum fünften Rezirkulationszyklus ist die PEG-Urease fest auf der Oberfläche der Membran installiert. Eine Auswaschung mittels halbstündiger Spülung mit einer Albumin-Kochsalzlösung ergab keinen Aktivitätsverlust bzw. Auftreten von freier Ureaseaktivität in der Spülflüssigkeit. Auf das Urease-dotierte PMMA-Kapillardialysator-System wird eine Blutplasmalösung (50 ml enthaltend 30 mg Harnstoff) aufgetragen. Im Eluat der experimentellen PEG-Urease-PMMA-Membran werden nach 5, 10, 20 und 30 min die verbliebenen Harnstoffmengen mittels eines Enzymassays nachgewiesen. Es kann gezeigt werden, daß sehr rasch innerhalb der ersten 10 min die Harnstoffkonzentration im Blutplasma abfällt. Nach 30 min ist freier Harnstoff nicht mehr nachweisbar. Die Ammoniakprobe im Blut ist während der letzten 25 min des Versuchs positiv. Aus den Untersuchungen kann zweifelsfrei geschlossen werden, daß ein pegyliertes Enzym, auf die PMMA-Membran gebunden, eine lokale Enzymaktivität entfaltet und entsprechende spezifische Interaktionen mit seinem Substrat im zirkulierenden Blut erzeugen kann.

PATENTANSPRÜCHE

- 1. Verwendung einer Membran aus Polymethylmethacrylat oder einem Polymethylmethacrylat-Mischpolymeren zur Bindung von Polyethylenglykol-gekoppelten Substanzen (PEG-Substanzen).
- 2. Verwendung nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daS die Membran der funktionellen Antidotierung einer PEG-gekoppelten Wirksubstanz dient.
- 3. Verwendung nach Anspruch 2, dadurch geken n-ze ich net, daß die PEG-gekoppelte Wirkstubstanz ein PEG-gekoppeltes Protein ist.
- 4. Verwendung nach Anspruch 3, dadurch gekenn-zeichnet, daß das PEG-gekoppelte Protein ein Enzym, ein Antikörper, ein Antikoagulans oder ein Tumormarker ist.
- 5. Verwendung nach Anspruch 4, dadurch g e k e n n z e i c h n e t , daß das Antikoagulans Hirudin ist.
- 6. Verwendung einer Membran nach einem der Ansprüche 1 bis 5 in einem Kapillardialysator.
- 7. Extrakorporales therapeutisches System, umfassend eine Membran aus Polymethylmethacrylat oder einem Polymethylmethacrylat-Mischpolymeren, an die eine physiologisch wirksame Polyethylenglykol-gekoppelte Substanz (PEG-Substanz) gebunden ist.

- 8. Extrakorporales therapeutisches System nach Anspruch 7, dadurch $g \in k \in n$ $n \in k$ $n \in k$ n
- 9. Extrakorporales therapeutisches System nach Anspruch 8, dadurch gekennzeichnet, daß das Protein ein Enzym, ein Antikörper, ein Antikoagulans oder ein Tumormarker ist.
- 10. Extrakorporales therapeutisches System nach Anspruch 9, dadurch g e k e n n z e i c h n e t , daß das Antikoagulans Hirudin ist.

ZUSAMMENFASSUNG

Die Erfindung betrifft die Verwendung einer Membran aus Polymethylmethacrylat oder einem Polymethylmethacrylat-Mischpolymeren als funktionelles Antidot für Polyethylengly-kol-gekoppelte Wirksubstanzen sowie ein extrakorporales therapeutisches System, das eine Membran aus Polymethylmethacrylat oder einem Polymethylmethacrylat-Mischpolymeren, an die eine physiologisch wirksame Polyethylenglykol-gekoppelte Substanz gebunden ist, umfaßt.

Creation date: 04-02-2004

Indexing Officer: TKASSAYE - TILAHUN KASSAYE

Team: OIPEBackFileIndexing

Dossier: 09417534

Legal Date: 08-29-2000

No.	Doccode	Number of pages
1	CTRS	5

Total number of pages: 5

Remarks:

Order of re-scan issued on