Landskeppni í eðlisfræði 2012

Úrslitakeppni

Laugardaginn 24. mars 2012, kl. 09:00 - 12:00

Leyfileg hjálpargögn: Reiknivél sem geymir ekki texta.

Keppnin samanstendur af 5 dæmum sem eru öll í nokkrum liðum. Athugaðu hvort þú hafir fengið öll dæmin.

Öll dæmin 5 vega jafnt og ekki verður dregið frá fyrir röng svör.

Skrifaðu lausnir þínar snyrtilega á lausnablöð sem þú færð afhent og merktu þau vel.

Tekið verður tillit til útreikninga við yfirferð á dæmum.

Góður frágangur hefur jákvæð áhrif!

Tafla yfir þekkta fasta

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3,00 \cdot 10^8 \text{ m/s}$
Þyngdarhröðun jarðar	g	$9,82 \text{ m/s}^2$
Massi rafeindar	m_e	$9,11 \cdot 10^{-31} \text{ kg}$
Rafsvörunarstuðull tómarúms	ε_0	$8,85 \cdot 10^{-12} \text{ F/m}$
Grunnhleðslan	e	$1,602 \cdot 10^{-19} \text{ C}$
Pyngdarfastinn	G	$6,67 \cdot 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$
Radíus Sólar	R_{\odot}	$6,955 \cdot 10^8 \text{ m}$
Massi Sólar	M_{\odot}	$1,99 \cdot 10^{30} \text{ kg}$
Massi Jarðar	M_j	$5,97 \cdot 10^{24} \text{ kg}$
Stjarnfræðieining	1 AU	$1,50 \cdot 10^{11} \text{ m}$

Dæmi 1 - Stöng og gormur

Neðri endi stangar með lengd L og jafndreifðan massa m leikur á núningslausri hjöru á vegg. Gormur með kraftstuðul k er festur við enda hennar og við punkt í hæð L yfir hjörunni. Gormurinn er óteygður þegar lengd hans er x_0 . Milli stangarinnar og veggsins er horn θ á bilinu $]0, \pi[$.

- a) Hver er lengd gomsins sem fall af θ ?
- \boldsymbol{b}) Við hvaða $\boldsymbol{\theta}$ er stöngin kyrr?
- c) Sambærileg tæki má nota til þess að mæla smáar breytingar á styrk þyngdarsviðs. Hvers vegna er þetta tæki hentugt til þess og hvernig ætti að velja L, m, k og x_0 svo að það sé nothæft til slíkra mælinga við yfirborð jarðar? (Ábending: Athugaðu hvernig θ hegðar sér sem fall af g).

Við lausn dæmisins geta eftirfarandi hornafallasambönd komið sér vel

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

Dæmi 2 - Viðnámskassar

 $\boldsymbol{a})$ Öll viðnámin hafa viðnámR. Hvert er heildar viðnámið milli punkta A og B?

b) Öll viðnámin hafa viðnámR. Hvert er heildar viðnámið milli punkta A og B?

c) Á myndinni sést tvívíð vörpun af fjórvíðum tening. Eins og áður er viðnám af stærð R milli sérhverra tveggja hornpunkta. Hvert er heildar viðnámið milli punkta A og B?

Dæmi 3 - Varmafræðilegt ferli

Í þessu dæmi verður fjallað um varmafræðilegt ferli. Tilteknu varmafræðilegu ferli er lýst með eftirfarandi skrefum:

- 1. Jafnhitastigs ferli (e. isothermal process); Einatóma kjörgas þenst út við fast hitastig, T_A , (e. temperature) frá V_A til V_B .
- 2. Jafnvinnu ferli (e. isochoric process); Hitastig gassins er nú aukið við fast rúmmál, V_B , þangað til að hitastig gassins er orðið T_C (ATH: $P_C < P_A$).
- 3. Jafnvarma ferli (e. adiabatic process); Kjörgasinu er nú þjappað saman, þannig að varmi (e. heat) þess breytist ekki, þangað til að þrýstingur í gasinu er orðinn $P_D = P_A$.
- 4. Jafnþrýstings ferli (e. isobaric process); Hitastig kjörgasins er nú lækkað frá T_D til T_A við fastan þrýsting P_D .

Gerðu eftirfarandi:

- a) Rissaðu ferlið í:
- (P,V) planinu, b.e. rissaðu þrýstinginn, P, sem fall af rúmmálinu, V.
- (P,T) planinu, b.e. rissaðu þrýstinginn, P, sem fall af hitastiginu, T.
- (V,T) planinu, þ.e. rissaðu rúmmálið, V, sem fall af hitastiginu, T.
- (σ,T) planinu, b.e. rissaðu entrópíuna, σ , sem fall af hitastiginu, T.
- b) Finndu hitaflæðið, Q, vinnuna, W og breytingu í innri orku, ΔU , í hverju skrefi ferlisins.
- c) Finndu heildar entrópíu breytinguna, $\Delta \sigma_{tot}$, í ferlinu.

Atriði sem gætu gagnast við úrvinnslu verkefnisins:

- Um kjörgas gildir PV = nRT
- Í adiabatísku ferli gildir $P_1V_1^{\gamma}=P_2V_2^{\gamma}$, fyrir einatóma kjörgas er $\gamma=5/3$
- $\Delta U = \frac{3}{2}nR\Delta T$, $\Delta U = W + Q$
- $W=nRT\ln\frac{V_2}{V_1}$ í isothermal ferli Q=0í adiabatísku ferli

 - W=0 í isochoric ferli
 - $W = P\Delta V$ í isobaric ferli.
- Um entrópíu einatóma kjörgass gildir að $\sigma = \ln\left(\frac{n_Q}{n}\right) + \frac{5}{2}$ þar sem að $n_Q \propto T^{\frac{3}{2}}$ og $n \propto \frac{1}{V}$

Dæmi 4 - Fyrsta lögmál Keplers

Johannes Kepler (1571-1630) setti fram fyrstu tvö lögmálin sem við hann eru kennd í bókinni Astronomia nova árið 1609. Fyrsta lögmál Keplers staðhæfir að reikistjörnurnar gangi umhverfis sólu á sporbaugum með sól í öðrum brennipunkti. Sporbaugar eru keilusnið með miðskekkju e sem er fasti fyrir hverja reikistjörnu fyrir sig og 0 < e < 1.

Lítum á kerfið á myndinni; pláneta \mathbf{x} með massann μ er á sporbraut um sólu með massann M_{\odot} . Stærðin r táknar fjarlægð plánetunnar frá sólu og er háð horninu θ ,

$$r = \frac{a(1 - e^2)}{1 + e\cos(\theta)}\tag{1}$$

þar sem stærðin a er hálfur langás sporbaugsins. Þegar plánetan er í mestri fjarlægð frá sólu er talað um sólfirð $(e.\ aphelion)$ en um sólnánd $(e.\ perihelion)$ við minnstu fjarlægð.

a) Notaðu varðveislu hverfiþunga til að sýna að hlutfallið milli brautarhraða plánetunnar við sólfirð, v_a og brautarhraðans við sólnánd, v_p sé gefið með

$$\frac{v_a}{v_p} = \frac{1-e}{1+e}$$

- ${m b}$) Notaðu ykkur sambandið í liðnum að ofan til að gefa bæði v_p og v_a sem föll af M, a, e og þyngdarfastanum G.
- c) Finndu jöfnu fyrir brautarhverfiþunga kerfisins, L, sem fall af þekktum föstum.
- d) Finndu að lokum jöfnu fyrir fyrsta lögmáli Keplers; þ.e. jöfnu sem sýnir r sem fall af L, θ og öðrum þekktum föstum.

Dæmi 5 - Boltar

a) Látum M vera massa jarðar, R vera radíus jarðar og G vera þyngdarfastann. Látum enn fremur v vera lausnarhraða við yfirborð jarðar, þ.e. minnsta hraða sem þarf til að sleppa úr þyngdarsviði jarðar. Reiknaðu tölulegt gildi á v miðað við við eftirfarandi gildi (hunsa má loftmótstöðu): $M=5,97\cdot 10^{24}\,\mathrm{kg},$ $R=6380\,\mathrm{km},$ $G=6,67\cdot 10^{-11}\,\mathrm{Nm^2/kg^2}.$

b) Tennisbolti með massa m_2 situr á körfubolta með massa m_1 . Neðsti hluti körfuboltans er í hæð h en neðsti hluti tennisboltans er í hæð h+d. Boltunum er sleppt samtímis. Þegar tennisboltinn skoppar aftur upp kemst neðsti hluti hans hæst í hæðina H. Gera má ráð fyrir að $m_1 \gg m_2$, þ.e. m_1 er miklu stærra en m_2 . Allir árekstrar eru fjaðrandi og hunsa má loftmótstöðu.

Finndu H sem fall af h og d. (Ábending: Það eina sem þarf að vita um fjaðrandi árekstra er þetta: Ferð agnar 1 miðað við ögn 2 er sú sama fyrir og eftir árekstur.)

c) Gerum nú ráð fyrir að við höfum n bolta sem sitja hvor ofan á öðrum. Þeir hafa massa m_1, m_2, \ldots, m_n og $m_1 \gg m_2 \gg \cdots \gg m_n$. Neðsti hlutinn á þyngsta boltanum er í hæð $h=1,00\,\mathrm{m}$. Boltunum er öllum sleppt á sama tíma. Þyngdarhröðun við yfirborð jarðar er $g=9,82\,\mathrm{m/s^2}$. Allir árekstrar eru fjaðrandi og hunsa má loftmótstöðu.

Hversu margir þurfa boltarnir að vera til að sá léttasti sleppi úr þyngdarsviði jarðar?