高性能计算实践

24秋 陈浩民 2023311426

实验环境:

OS版本:6.5.0-35-generic

*gcc*版本:(Ubuntu 11.4.0 - 1ubuntu1 22.04) 11.4.0

CPU型号: 13th Gen Intel(R) Core(TM) i9 − 13900HX

CPU最大频率(MHz): 2200.0000 CPU最小频率(MHz): 800.0000

物理核数:24

内存(M):16095080(可用:9297836)

test_cblas_dgemm.c修改为行主序后结果有什么不同:

结果与先前完全不同, 原因应该是, 行主序和列主序交换过后, 相当于矩阵转秩了, 但是

$$(AB)^T = B^T A^T \neq A^T B^T$$

所以前后结果不同。

比较:

	256	1024	4096	8192
$cblas_dgemm\ duration$	0.000996s	0.052410s	1.104756s	7.206882s
$naive_dgemm\ duration$	0.153926s	7.731068s	1364.368622s	pprox 9h
$cblas_dgemm\ gflops$	68.079601	81.949386	248.813228	305.128245
$naive_dgemm\ gflops$	0.436814	0.555546	0.201469	pprox 0.3

朴素矩阵乘法用时的增长速率很快,大概是矩阵阶数的三次方。而用*cblas*的算法,前期增长率很快,但是当矩阵的规模很大的时候用时增长率降低。*cblas*算法的浮点操作值随矩阵的规模的增大而缓慢增加,朴素乘法则基本不变且远小于*cblas*算法的值。原因是*cblas*的算法利用并行计算使得每秒能够进行操作的次数大大增多,而朴素算法一直采用同一种串行方式,每秒进行的操作次数稳定且较少。

碰到的问题:

在比较朴素乘法和并行计算时,矩阵的规模达到 4096×4096 后朴素乘法用时达到20多分钟,估算发现如果矩阵规模增加到 8192×8192 ,计算时间将达到9小时,所以我采用了估算值。