

# 5. 데이터 모델링에 이해 (모델링 만 들기)

⑤ 링

https://dataonair.or.kr/db-tech-reference/d-guide/sql/?pageid=5&mod=document&uid=326

 $\exists$ 

- 1.모델링 이해
- 2. 모델링 기본 개념
- 3. 데이터 모델링의 중요성 및 유의점
- 4. 데이터 모델링의 3단계 진행 (개논물)
- 5. 프로젝트 생명주기(Life Cycle)에서 데이터 모델링
- 6. 데이터 모델링에서 데이터독립성의 이해
- 7.모델링에 3가지 관점
- 8. 데이터 모델링의 이해관계자
- 9. 데이터 모델의 표기법인 ERD의 이해
- 10. 좋은 데이터 모델의 요소
  - 가. 완전성(Completeness)
  - 나. 중복배제(Non-Redundancy)
  - 다. 업무규칙(Business Rules)
  - 라. 데이터 재사용(Data Reusability)
  - 마. 의사소통(Communication)
  - 바. 통합성(Integration)

### 1.모델링 이해

• 현실세계에 내용을 추상화,단순화,모형화를 통해 표현한것이다.

### 2. 모델링 기본 개념

- 모델링에 대한 정의
  - : 정보시스템을 구축하기 위해, 해당 업무에 어떤 데이터가 존재하는지 또는 업무가 필요로 하는 정보는 무엇인지를 분석하는 방법

• 모델링 기능

:시스템을 현재 또는 원하는 모습으로 가시화하도록 도와준다.

## 3. 데이터 모델링의 중요성 및 유의점

• 데이터 모델링이 중요한 이유는 파급효과(Leverage), 복잡한 정보 요구사항의 간결한 표현(Conciseness), 데이터 품질(Data Quality)로 정리할 수 있다.

## 4. 데이터 모델링의 3단계 진행 (개논물)

[표 I-1-1] 개념-논리-물리데이터 모델

| 데이터 모델링        | 내용                                                              | 수준  |  |  |
|----------------|-----------------------------------------------------------------|-----|--|--|
| 개념적<br>데이터 모델링 | 추상화 수준이 높고 업무중심적이고 포괄적인 수준의 모델링 진행. 전사적<br>데이터 모델링, EA수립시 많이 이용 | 추상적 |  |  |
| 논리적<br>데이터 모델링 | 시스템으로 구축하고자 하는 업무에 대해 Key, 속성, 관계 등을 정확하게<br>표현, 재사용성이 높음       |     |  |  |
| 물리적<br>데이터 모델링 | 실제로 데이터베이스에 이식할 수 있도록 성능, 저장 등 물리적인 성격을<br>고려하여 설계              | 구체적 |  |  |

## 5. 프로젝트 생명주기(Life Cycle)에서 데이터 모 델링



[그림 [-1-4] 프로젝트 생명주기에 따른 데이터 모델

## 6. 데이터 모델링에서 데이터독립성의 이해

#### 가. 데이터독립성의 필요성



[그림 [-1-5] 데이터독립성의 필요성

#### 나. 데이터베이스 3단계 구조



### 다. 데이터독립성 요소

[표 [-1-2] 데이터독립성 구성요소

| 항목                              | 내용                                                                                                                                                                      | 비고        |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 외부스키마                           | - View 단계 여러 개의 사용자 관점으로 구성, 즉 개개 사용자 단계로                                                                                                                               | 사용자 관점    |
| (External                       | 서 개개 사용자가 보는 개인적 DB 스키마                                                                                                                                                 | 접근하는 특성에  |
| Schema)                         | - DB의 개개 사용자나 응용프로그래머가 접근하는 DB 정의                                                                                                                                       | 따른 스키마 구성 |
| 개념스키마<br>(Conceptual)<br>Schema | <ul> <li>개념단계 하나의 개념적 스키마로 구성 모든 사용자 관점을 통합한 조직 전체의 DB를 기술하는 것</li> <li>모든 응용시스템들이나 사용자들이 필요로 하는 데이터를 통합한 조직 전체의 DB를 기술한 것으로 DB에 저장되는 데이터와 그들간의 관계를 표현하는 스키마</li> </ul> | 통합관점      |
| 내부스키마<br>(Internal<br>Schema)   | <ul> <li>내부단계, 내부 스키마로 구성, DB가 물리적으로 저장된 형식</li> <li>물리적 장치에서 데이터가 실제적으로 저장되는 방법을 표현하는<br/>스키마</li> </ul>                                                               | 물리적 저장구조  |

#### 라. 두 영역의 데이터독립성

#### [표 I-1-3] 논리적, 물리적 데이터독립성

| 독립성        | 내용                                                                                                      | 특징                                                                          |
|------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 논리적<br>독립성 | <ul><li>개념 스키마가 변경되어도 외부 스키마에는 영향을 미치지 않도록 지원하는 것</li><li>논리적 구조가 변경되어도 응용 프로그램에 영향 없음</li></ul>        | <ul><li>사용자 특성에 맞는 변경가능</li><li>통합 구조 변경가능</li></ul>                        |
| 물리적<br>독립성 | <ul> <li>내부스키마가 변경되어도 외부/개념 스키마는 영향을 받지 않도록 지원하는 것</li> <li>저장장치의 구조변경은 응용프로그램과 개념스키마에 영향 없음</li> </ul> | <ul> <li>물리적 구조 영향 없이 개념구조 변경가능</li> <li>개념구조 영향 없이 물리적인 구조 변경가능</li> </ul> |

#### 마. 사상(Mapping)

[표 I-1-4] 사상(Mapping)

| 사상                     | 내용                                                        | ଜା                                                                       |
|------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|
| 외부적/개념적 사상<br>(논리적 사상) | <ul> <li>외부적 뷰와 개념적 뷰의 상호 관련<br/>성을 정의함</li> </ul>        | 사용자가 접근하는 형식에 따라 다른 타입의<br>필드를 가질 수 있음. 개념적 뷰의 필드 타입<br>은 변화가 없음         |
| 개념적/내부적 사상<br>(물리적 사상) | <ul> <li>개념적 뷰와 저장된 데이터베이스</li> <li>의 상호관련성 정의</li> </ul> | 만약 저장된 데이터베이스 구조가 바뀐다면<br>개념적/내부적 사상이 바뀌어야 함. 그래야<br>개념적 스키마가 그대로 남아있게 됨 |

## 7.모델링에 3가지 관점

- 1) 업무가 관여하는 어떤 것(Things) 2) 어떤 것이 가지는 성격(Attributes) 3) 업무가 관여하는 어떤 것 간의 관계(Relationships)
- 2. 단수와 집합(복)의 명명

[표 I-1-5] 용어의 구분정의

| 개념                                        | 복수/집합개념<br>타입/클래스   | 개별/단수개념<br>어커런스/인스턴스                |
|-------------------------------------------|---------------------|-------------------------------------|
| 시퍼 괴                                      | 엔터티 타입(Entity Type) | 엔터티(Entity)                         |
| 어떤 것<br>(Thing)                           | 엔터티(Entity)         | 인스턴스(Instance),<br>어커런스(Occurrence) |
| 어떤 것간의 연관<br>(Association between Things) | 관계(Relationship)    | 패어링(Pairing)                        |
| 어떤 것의 성격<br>(Characteristic of a Thing)   | 속성(Attribute)       | 속성값(Attribute Value)                |

## 8. 데이터 모델링의 이해관계자

가. 이해관계자의 데이터 모델링 중요성 인식

나. 데이터 모델링의 이해관계자

#모델링은 중요하다 그러니 이해하고 사용하자

## 9. 데이터 모델의 표기법인 ERD의 이해



[그림 [-1-13] 관계차수와 선택성 표시

## 10. 좋은 데이터 모델의 요소

### 가. 완전성(Completeness)

업무에서 필요로 하는 모든 데이터가 데이터 모델에 정의되어 있어야 한다.

### 나. 중복배제(Non-Redundancy)

하나의 데이터베이스 내에 동일한 사실은 반드시 한 번만 기록하여야 한다.

### 다. 업무규칙(Business Rules)

데이터 모델에서 매우 중요한 요소 중 하나가 데이터 모델링 과정에서 도출되고 규명되는 수 많은 업무규칙(Business Rules)을 데이터 모델에 표현하고 이를 해당 데이터 모델을 활용하는 모든 사용자가 공유할 수 있도록 제공하는 것이다.

### 라. 데이터 재사용(Data Reusability)

데이터의 재사용성을 향상시키고자 한다면 데이터의 통합성과 독립성에 대해서 충분히 고려해야 한다.

### 마. 의사소통(Communication)

데이터 모델의 역할은 많다. 그 중에서도 중요한 것이 데이터 모델의 의사소통의 역할이다.

### 바. 통합성(Integration)

가장 바람직한 데이터 구조의 형태는 동일한 데이터는 조직의 전체에서 한번 만 정의되고 이를 여러 다른 영역에서 참조, 활용하는 것이다.