MLCM-24 schedule

mlcm-24.github.io [updated 05/03/24]

	5/20 MONDAY	5/21 TUESDAY	5/22 WEDNESDAY	5/23 THURSDAY
8:45 - 9:00 AM	Marianne Francois T-division, LANL opening remarks			
9:00 - 9:30 AM	plenary Anatole von Lilienfeld University Of Toronto Vector Institute Quantum Machine Learning	plenary Gabor Csanyi University of Cambridge Foundation models for materials chemistry	plenary Alexandre Tkatchenko University of Luxembourg Navigating Chemical Compound Space with Machine Learning	plenary Markus Reiher ETH Zurich Lifelong Machine Learning Potentials
9:30 - 10:00 AM	oleg Prezhdo University of Southern California Nonadiabatic Molecular Dynamics with Machine Learning	plenary Mario Barbatti Aix Marseille University, CNRS, ICR Machine Learning Nonadiabatic Dynamics	plenary Roberto Car Princeton University Deep potential models for equilibrium and near equilibrium processes	plenary Olexandr Isayev Carnegie Mellon University AIMNet2: Robust neural network potential for organic, element-organic molecules and chemical reactions
10:00 - 10:20 AM	David Balcells University of Oslo Generative Machine Learning for Transition Metal Chemistry	Reinhard Maurer University of Warwick Machine learning of electronic structure for molecular design	Nong Artrith Debye Institute for Nanomaterials Science ML & XAS for Amorphous Materials	Johannes Margraf University of Bayreuth Materials Discovery with Foundation Models
10:20 - 10:40 AM	Volker Deringer University of Oxford Data-driven interatomic potentials for inorganic materials chemistry	Karel Berka Palacky University Olomouc MolMeDB - free database of molecules on membranes	Matthias Rupp Luxembourg Institute of Science and Technology (LIST) Thermal transport via machine-learning potentials	Zsuzsanna Koczor-Benda University of Warwick Machine learning-based molecular design for plasmonic nanosystems
10:40 - 11:00 AM	Eva Zurek University at Buffalo, SUNY Machine Learned Interatomic Potentials for Binary Carbides Trained on the AFLOW Database	Alexander Shapeev Skolkovo Institute of Science and Technology From quantum mechanics to phase diagrams with machine learning	interactive session Jason Hattrick-Simpers University of Toronto Tutorial on the use of LLMs in Science	Tom Penfold Newcastle Univeristy Deep Neural Networks for X-ray Spectroscopy: Hero or Zero?
11:00 - 11:20 AM	Noa Marom Carnegie Mellon University Applications of Machine Learning in First Principles Materials Simulations	Julien Lam CNRS Exploiting constrained linear models for machine-learning interaction potentials		Aurora Clark University of Utah ML in Chemical Separations - Connecting Reaction Stoichiometry with Solution Structure
11:20 - 11:40 AM	Matthew Carbone Brookhaven National Laboratory TBD	Dmitry Zubarev IBM Research Foundational Models for Chemical Discovery		Connor Coley MIT Molecular design and the intersection with synthesis
11:40 am - 1:00 PM	LUNCH BREAK			
1:00 - 1:30 PM	plenary Richard Hennig University of Florida Accelerating Materials Discovery Through Deep Learning and Ultra-Fast Potentials	plenary Kieron Burke University of California, Irvine Machine Learning Density Functionals	plenary Alan Aspuru-Guzik University of Toronto TBA	plenary Rebecca Lindsey University of Michigan, Ann Arbor Explaining Performance of Physics- Informed Machine-Learned Interatomic Models
1:30 - 1:50 PM	Wissam Saidi NETL Materials Modeling and Machine Learning	Y Z University of Michigan Unusual Dynamics of Tetrahedral Liquids Caused by the Competition between Dynamic Heterogeneity and Structural Heterogeneity	Pavlo Dral Xiamen University From fast potentials for dynamics to learning dynamics	Rohit Goswami University of Iceland / Quansight Labs Throwaway Gaussian Processes for Saddle Searches
1:50 - 2:10 PM	Avanish Mishra LANL Learning from 'Small' Data Using Physics-Based Descriptors	Joshua Rackers Genentech / Prescient Design Building Physics into Al for Drug Discovery	Aditya Nandy UCLA University of Chicago Leveraging Community Knowledge to Forge a Path Forward for Transition Metal Complex and Metal-Organic Framework Design	Marivi Fernandez-Serra Stony Brook University Learning the exchange and correlation functional in DFT
2:10 - 2:30PM	Fang Liu Emory University Machine learning aided chemical discovery in the solution phase	Arthur Mar University of Alberta Discovery of Inorganic Solids with Desired Structure Motifs Guided by Machine Learning	Richard Messerly LANL Nanoreactor active learning: Discovering chemistry with a general reactive machine learning potential	David Yaron Carnegie Mellon University Quantum chemical Hamiltonians as flexible and interpretable model forms for machine learning
2:30 - 2:50 PM	Chenru Duan Microsoft Diffusion models on sampling rare events in chemistry	Sakib Matin LANL Machine Learning Potentials with long- range Coulomb interaction: Atomistic simulations of water	Ankur Chaterjee Nicolaus Copernicus University Spatio-temporal dependancies of inplane and cross-plane thermal transport proerties by hybrid architecture of CNN and RNN	Jenna Pope Pacific Northwest National Laboratory Accelerating Atomic-scale Simulations of Molecules and Materials with Neural Network Potentials
2:50 - 3:10 PM	Rose Cersonsky University of Wisconsin-Madison Data-driven approaches to chemical and materials science:the impact of data selection, representation, and interpretability	Chiho Kim GATech / Matmerize, Inc. Machine Learning-Aided Design of Biodegradable Polymers	Bakhtiyor Rasulev North Dakota State University Application of Mixture-type Descriptors in Machine Learning Modeling of Materials	Vignesh Kumar Nicolaus Copernicus University The critical role of XC potential in DFT: Our Big data analysis into DFT
3:10 - 3:30 PM	Johannes Hachmann University at Buffalo TBA	Marina Meila University of Washington TBA	Emily Shinkle LANL Thermodynamic Transferability in Coarse-Grained Force Fields using Graph Neural Networks	Puck van Gerwen EPFL EquiReact: Equivariant Neural Networks for Chemical Reactions
3:30 - 3:50 PM	Will Bricker University of New Mexico Machine-learned electron densities of nucleic acids	Maria Chan Argonne National Laboratory Theory-informed ML for Microscopy, Spectroscopy, and Scattering	Daniel Schwalbe-Koda UCLA Unifying Views on the Extrapolation Power of Machine Learning Potentials and Materials Thermodynamics	Jing Huang Westlake University DP/MM: a hybrid force field model for zinc-protein dynamics