ANOMALY DETECTION

References

- Anomaly Detection A Survey PDF
- A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data PDF

What is Anomaly Detection?

- Example
 - Suppose you are a car manufacturer, and perform car engine testing.
 - You are given some features
 - X₁ = heat generated
 - X_2 = vibration intensity
 - Given DataSet: x⁽¹⁾, x⁽²⁾, ..., x⁽ⁿ⁾
 - Then for a new engine
 - We want to determine if x_{test} is an anomaly

What is Anomaly Detection

- Anomaly detection identifies unexpected items or events in datasets, which differ from the norm.
- Usually anomaly detection is applied to unlabeled data (so its not a standard classification task).

What is Anomaly Detection

- Given a set of n 'normal' data points, we build a model for p(x).
- Then given a new data point, if
 - $p(x) < \varepsilon$ --- > anomaly
 - $p(x) \ge \varepsilon$ ----> normal

Other Applications of Anomaly Detection

- Fraud detection
 - X⁽ⁱ⁾ = features of a users i's activities
 - Model p(x) from data
 - Identify unusual users by checking which have p(x) < ε
- Monitoring computers in a data center
 - X⁽ⁱ⁾ = features of machine i
 - Features :
 - x_1 = memory use,
 - x₂ = number of disk accesses,
 - x₃ = CPU load,
 - x₄ = CPU load / network traffic
 - Model p(x) and then identify abnormal machines that may indicate bad nodes in the network

 $X_1 => login frequency$

 $X_2 => number of$

 $X_3 => typing speed$

transactions

Gaussian (Normal) Distribution

- Say $x \in \mathbb{R}$.
- If x is a distributed Gaussian with mean μ , *variance* σ^2 .

• X ~ \aleph (μ , σ^2)

Gaussian Distribution Examples

Parameter Estimation

• Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \varepsilon \mathbb{R}$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)^2$$

Density Estimation

- Given a Training Set: {x (1),, x (m)}
- Each example is $x \in \mathbb{R}^n$
- Model the probability of x
 - $p(x) = p(x_1; \mu_1; \sigma^2_1) p(x_2; \mu_2; \sigma^2_2) p(x_3; \mu_3; \sigma^2_3) \dots p(x_n; \mu_n; \sigma^2_n) = \prod_{j=1}^n p(x_j; \mu_j, \sigma^2_j)$
- How to model these terms?
 - Assume that each feature follows a Gaussian distribution with some mean and variation.
 - So, for example assume $x_1 \sim \aleph (\mu_1, \sigma_1^2)$

Anomaly Detection Algorithm

- Given a dataset of examples, { x⁽¹⁾, x ⁽²⁾,, x ^(m)}
- Choose features x_i that you think might be indicative of anomalous examples.
- Fit parameters μ_1 , ..., μ_n ; σ^2_1 , ..., σ^2_n
 - $u_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$
 - $\sigma^2_j = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} \mu_j)^2$
- Given new example x, computer p(x):

•
$$p(x) = \prod_{j=1}^{n} p(xj; \mu_j, \sigma^2_j) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2})$$

• Anomaly if $p(x) < \varepsilon$

Example

How to evaluate the algorithm?

- We have been treating anomaly detection as an unsupervised learning problem, using non-labeled dataset.
- However, if we have some labeled data, of anomalous and non-anomalous examples (y=0 if normal, y=1 if anomalous), then we can use this information to make decisions about our learning algorithm.
 - Such as which features to choose
- Training set: $x^{(1)}$, $x^{(2)}$, ... $x^{(n)}$ assume normal examples / not anamalous
- Cross Validation set: normal and anamalous examples
- Test Set: normal and anamalous examples

Example (1/2)

- Dataset
 - 1000 good (normal) examples
 - 20 flawed examples (anomalous)
- Splitting Dataset

y=0
$$p(x) = p(x_1, \mu_1, \sigma_1^2) * p(x_2, \mu_2, \sigma_2^2) ...$$

- Training set (60%): 6000 good examples (unlabeled training set)
- Cross validation set(20%): 2000 good examples (y=0) & 10 anomalous (y=1)
- Test set(20%): 2000 good examples (y=0) & 10 anomalous (y=1)

Example (2/2)

- Fit model p(x) on training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- On a cross validation / test example x, predict

•
$$y = \begin{cases} 1 & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

- Possible evaluation metrics:
 - True positive, false positive, false negative, true negative
 - Precision / recall
 - F₁-recall
- Can you also use cross validation set to choose parameter ε

Anomaly Detection VS Supervised Learning

- Very small number of positive examples (y=1) maybe 0 – 20 anomalous examples.
- Large number of negative (y=0) examples
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what future anomalies may look like

- Large number of positive and negative examples
- Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Anomaly Detection

Supervised Learning

Fraud Detection

Email Spam Classification

Manufacturing

Weather prediction

 Monitoring machines in a data center Cancer classification

Non-gaussian Features

Error analysis for anomaly detection

- Want :
 - p(x) large for normal examples x.
 - p(x) small for anomalous examples x
- Most common problem
 - p(x) is comparable (say, both large) for normal and anomalous examples
- Solution
 - Find new features that expose the difference between anomalous and normal examples

Deriving features

- Consider the following example
 - Lets assume we want to detect anomalies in a data center
 - We are given a set of features
 - X₁ = memory use of computer
 - X₂ = number of disk accesses / sec
 - X₃ = CPU load
 - X₄ network traffic
 - The goal is to choose features that might take on unusually large or small values in the event of an anomaly.
 - May derive features such as
 - x₅ = cpu load / network traffic

Multivariate Gaussian: Motivating Example

Multivariate Gaussian (Normal) Distribution

- $X \in \mathbb{R}^n$, don't model $p(x_1)$, $p(x_2)$, ..., $p(x_n)$. separately.
- Model p(x) collectively.
- Parameters : $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

•
$$p(x; \mu; \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

We get different distributions as we vary these parameters

Parameter fitting

- Given a training set { $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$,, $\mathbf{x}^{(m)}$ } $\mathbf{x}^{(i)}$ ε \mathbb{R}
- Fit model p(x) by setting

•
$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu) (x^{(i)} - \mu)^{\mathsf{T}}$$

Given a new example x, compute

•
$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

Flag an anomaly if p(x) < ε

Original Model

- $p(x_{1;} \mu_{1;} \sigma^{2}_{1}) \times p(x_{2;} \mu_{2;} \sigma^{2}_{2}) \times ... p(x_{n;} \mu_{n;} \sigma^{2}_{n})$
- Manually create features to capture anomalies where x₁, x₂ take unusual combinations of values
- Computationally cheaper (alternatively, scales better to large n)
- Okay even if m (training set size) is small

Multivariate Gaussian

•
$$p(x; \mu; \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

- Automatically captures correlations between features
- Computationally more expensive
- Must have m > n, or else ∑ is non invertible