Introduction

- Eight great ideas:
 - Design for Moore's Law.
 - Use abstraction to simplify design.
 - Make common case faster.
 - o Parallelism.
 - o Pipelining.
 - o Prediction.
 - Hierarchy of memories.
 - Dependability via redundancy.

Chapter 1

- Clock Rate (CR) = 1 / Clock Cycle (CC).
- Effective Clock Cycles per Instruction (CPI) = $\sum_{I=1}^{n} = CPI_i \times IC_i$.
- Instruction Count (IC).
- CPU time = IC x CPI x CC or IC x CPI / CR.

Chapter 3

- Locality
 - Temporal Locality: if a memory location is referenced it will most likely be referenced again shortly.
 - Spatial Locality: if a memory location is referenced its neighbouring memory location will most likely be referenced shortly.
- Miss types
 - Compulsory/Cold
 - Conflict miss: replacement algorithm keeps mapping the new data to the same block.
 - Ex. 0, 8, 0, 8, 0, 8 if use mod 4 to map blocks then it'll miss every time.
 - Capacity miss: working set is larger than the cache block.
- Average Memory Access Time (AMAT) = Hit time + Miss Rate x Miss Penalty.
- CPI_{stall} = CPI_{ideal} + Memory-stall cycles.
- Memory-stall cycles = number of access / instruction x miss rate x miss penalty.
- Cache size (C) = #Blocks (B) x #Lines (N) x #Sets (R)
- Block bits (b) = log₂B
- Set bits (s) = log_2R
- tag bits = number of available bits b s
- Types of Cache organization
 - Direct-mapped: One line per set, one block per line. resolves to one block per set.
 - Fully associative: One set with multiple lines, where each line is a block.
 - n-way Set Associative: Multiple sets, with multiple lines, and multiple blocks per line.

- Middle-Order bit indexing is good for spatial locality.
- Write hits
 - Cache-Memory consistent: write to the buffer, only stall when the buffer is full.
 - Cache-Memory inconsistent: write the cache block to the memory when its evicted, write-back. Need a dirty bit to determine if the block needs to be written to memory or not. Can use write buffer to buffer write-backs.

Chapter 4

- Design Principles:
 - Simplicity favours regularity.
 - Smaller is faster.
 - Make common case faster.
 - Good design demands good compromises.
- MIPS registers

- Words are 4 bytes each.
- MIPS is Big Endian: most-significant byte at the least address of a word.
- Instruction formats

R-format: [OP | rs | rt | rd | shft | funct] [6, 5, 5, 5, 6]
I-format: [OP | rs | rt | immediate] [6, 5, 5, 16]
J-format: [OP | jump target] [6, 26]

- Operands addressing modes:
 - o Immediate.
 - Register addressing.
 - Base addressing: register relative, pseudo-direct.
- Instruction addressing modes:
 - o PC-relative: PC + offset, used for branching.
 - Pseudo-direct: jump address, used for jumping.
- Synchronization in MIPS
 - Load Linked: Il rt, offset(rs)
 - Store conditional: sc rt, offset(rs).
 - Succeeds if location not changed since II. Sets rt to 1.
 - Fails otherwise. Sets rt to 0.

Chapter 5

- Five stages of the Datapath
 - Instruction Fetch (IF)
 - Instruction Decode (Dec)
 - Arithmetic-Logic Unit (Exec)
 - Memory Access (Mem)
 - Register Write (WB)
- Controllers
 - RegDst = add + subALUSrc = ori + lw + sw
 - MemtoReg = lw
 - RegWrite = add + sub + ori + lw
 - o MemWrite = sw
 - o nPCsel= beq
 - ExtOp = lw + swALUctr = add/sub, or

Chapter 6

- Hazards
 - Structural: attempt to use the same hardware.
 - o Data: attempt to use data before its read.
 - o Control: attempt to make decision before a condition is evaluated.
- Hazard solutions
 - Forwarding.
 - Delays.
 - Speculation.
- Very Long Instruction Word (VLIW)
- Scheduling/Reordering.
- Unrolling.
- Superscalar
 - Instruction-fetch and issue: fetch, decode and issue instruction to await execution.
 - Instruction-execution: calculate the result, once operands and instruction are ready
 - Instruction-commit: write-back once its safe to do so.
- Instruction and fetch -> functional units -> commit unit.

Chapter 7

- MESI snooping
 - Modified
 - Exclusive
 - Shared
 - Invalid

- Read Hit
 - No state change
- Read Miss
 - No valid copies
 - Change to E.
 - Another cache has an E
 - Change E to S.
 - Change the rest of the caches to S.
 - Several other caches have S
 - Change local cache to S.
 - One cache has M
 - Share value with caches and Memory.
 - Change all caches to S.
- Write Hit
 - M
- No change, update local value.
- ∘ E
- Change E to M.
- S
- Change value to M, invalidate other caches.
- Write Miss
 - All caches are invalid
 - Change to M.
 - o E, M or S
 - Change to M.
 - Invalidate other caches.
- False Sharing Miss: miss caused, even though the word was not changed.
- True Sharing Miss: miss caused, but the word was changed.
- Types of hardware multithreading
 - o Fine-grain: switches threads every instruction.
 - o Coarse-grain: switches on costly stalls.
 - Simultaneous Multithreading (SMT)