Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2010 Übungsblatt 2 28. April 2010

Diskrete Wahrscheinlichkeitstheorie

Abgabetermin: 4. Mai 2010, 14 Uhr in die DWT Briefkästen

Hausaufgabe 1 (5 Punkte)

Eine Urne enthalte 1 weißen, 2 schwarze und 3 rote, gleichartige Bälle. Wie groß ist die Wahrscheinlichkeit mit zwei Ziehungen (ohne Zurücklegen) genau einen weißen und einen schwarzen Ball zu ziehen? Begründen Sie Ihre Antwort!

Hausaufgabe 2 (5 Punkte)

- 1. Geben Sie ein Beispiel eines diskreten Wahrscheinlichkeitsraumes an, in dem Elementarereignisse mit Wahrscheinlichkeit 0 existieren.
- 2. Sei $\langle \Omega, \Pr \rangle$ ein diskreter Wahrscheinlichkeitsraum. Für Ereignisse A und B gelte $\Pr[A] = 1$ und $\Pr[B] = \frac{1}{3}$. Zeigen Sie $\Pr[A \setminus B] = \frac{2}{3}$.

Hausaufgabe 3 (5 Punkte)

Spieler A würfelt mit zwei üblichen 6-seitigen fairen Würfeln. Er zeigt Spieler B das Ergebnis nicht, sagt aber korrekterweise, dass beide Würfel verschiedene Augenzahlen zeigen. Wie groß ist die Wahrscheinlichkeit, dass einer der Würfel eine 1 zeigt?

Hausaufgabe 4 (5 Punkte)

Eine unfaire Münze ist eine Münze, die mit Wahrscheinlichkeit p "Kopf" und mit Wahrscheinlichkeit 1-p "Zahl" zeigt, wobei $0 \le p \le 1$ und $p \ne \frac{1}{2}$ gilt. Wir werfen eine solche Münze n mal und erhalten dabei k mal "Kopf" und n-k mal "Zahl".

- 1. Beschreiben Sie das Experiment durch einen Wahrscheinlichkeitsraum $W = \langle \Omega_n, \Pr \rangle$.
- 2. Geben Sie die Wahrscheinlichkeit an, dass genau k-mal Kopf erscheint.

Tutoraufgabe 1

Würfel A hat 4 rote und 2 blaue Seiten. Würfel B hat 2 rote und 4 blaue Seiten. Würfel B hat 2 rote und 4 blaue Seiten. Wir nehmen an, dass die Ergebnisse von Würfen von Münze bzw. Würfel Laplace-verteilt sind bezüglich des Auftretens von Kopf oder Zahl bzw. der Seiten der Würfel.

Experiment: Es wird zunächst eine Münze geworfen. Zeigt diese Kopf $(K \in \{K, Z\})$, so wird Würfel A gewählt, ansonsten $(Z \in \{K, Z\})$ wird Würfel B gewählt. Mit dem gewählten Würfel werden dann n Würfe durchgeführt. Das Ergebnis ist ein Wort $w \in \{\text{rot}, \text{blau}\}^*$ der Länge n.

- 1. Wir schalten dem Experiment noch eine Auswahlfunktion i nach (mit $i \leq n$), die das i-te Objekt des Ergebnisses w des Experiments als neues Ergebnis auswählt. Mit welcher Wahrscheinlichkeit tritt dann das (Gesamt-)Ergebnis 'rot' auf?
- 2. Wir sagen, dass das Ereignis R_i eintritt, wenn das *i*-te Objekt der Ausgabe des Experiments 'rot' ist. Wir nehmen an, dass die Ereignisse R_1 und R_2 eingetreten sind. Wie hoch ist die Wahrscheinlichkeit, dass gleichzeitig auch das Ereignis R_3 eingetreten ist?
- 3. Wir nehmen an, dass das Ereignis $\bigcap_{i=1}^{n} R_i$ eingetreten ist. Wie groß ist die Wahrscheinlichkeit, dass im Experiment der Würfel A gewählt wurde?

Tutoraufgabe 2

Wir betrachten das folgende Experiment:

- 1. Schritt: Eine faire Münze wird solange geworfen, bis das erste Mal Kopf erscheint. Es sei k die Anzahl der dazu ausgeführten Münzwürfe.
- 2. Schritt: Es wird ein fairer 6-seitiger Würfel k-mal geworfen mit Ergebnissen aus der Menge [6].
- 1. Stellen Sie die Ergebnisse des Experiments entsprechend als diskreten Wahrscheinlichkeitsraum dar und beweisen Sie, dass Ihre Darstellung korrekt ist, d.h., dass die Definitionsbedingungen eines diskreten Wahrscheinlichkeitsraumes erfüllt sind.
- 2. Es sei M_k das Ereignis, dass die Münze im ersten Schritt genau k-mal geworfen wird. Bestimmen Sie $\Pr[M_k]$.
- 3. Es sei A das Ereignis, dass in den k Würfen des Würfels genau einmal eine 6 geworfen wird. Bestimmen Sie $\Pr[A|M_k]$ und $\Pr[A]$.
- 4. Bestimmen Sie $\Pr[M_k|A]$.

Tutoraufgabe 3

Die Wahrscheinlichkeitstheorie ist keine Theorie über Experimente mit Münzen, Würfel oder Ziegen. Diskutieren Sie die mathematische Abstraktion der Aufgabenstellungen der Tutoraufgaben 1 und 2!