Разбор варианта домашнего задания №1 по аналитической геометрии «ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ».

Даны точки $M_1(-1,0,-3), M_2(4,4,-1), M_3(4,0,7), M_4(2,-5,1)$

- 1. Найдите уравнение плоскости α , проходящей через точки M_1, M_2, M_3 $\alpha = (M_1 M_2 M_3)$.
- 2. Найдите уравнение и длину перпендикуляра, опущенного из точки M_4 на плоскость $\alpha = (M_1 M_2 M_3)$.
- 3. Найдите расстояние от точки M_3 до прямой (M_1M_2).
- 4. Найдите точку Q, симметричную точке M_3 относительно прямой (M_1M_2) .
- 5. Найдите угол между прямыми (M_1M_2) и (M_1M_3).

Задача 1. Даны точки $M_1(-1,0,-3), M_2(4,4,-1), M_3(4,0,7)$.

Найти уравнение плоскости $\alpha = (M_1, M_2, M_3)$.

Решение. Рассмотрим векторы $\overline{M_1M_2}=(5,4,2)$ и $\overline{M_1M_3}=(5,0,10)$. Векторы, очевидно, не коллинеарны, поэтому точки не лежат на одной прямой, и через них можно провести единственную плоскость. Возьмем **произвольную точку плоскости** M(x,y,z) и рассмотрим вектор $\overline{M_1M}=(x+1,y,z+3)$. Поскольку все точки M_1,M_2,M_3,M принадлежат плоскости, векторы $\overline{M_1M_2}=(5,4,2)$, $\overline{M_1M_3}=(5,0,10)$, $\overline{M_1M}=(x+1,y,z+3)$ будут компланарны. Условием компланарности векторов является равенство нулю их смешанного произведения, которое равно значению определителя, составленного из координат векторов:

$$\overrightarrow{M_{1}M} \cdot \overrightarrow{M_{1}M_{2}} \cdot \overrightarrow{M_{1}M_{3}} = \begin{vmatrix} x+1 & y & z+3 \\ 5 & 4 & 2 \\ 5 & 0 & 10 \end{vmatrix} = 0$$

Разложим полученный определитель по последней строке:

$$5 \cdot \begin{vmatrix} y & z+3 \\ 4 & 2 \end{vmatrix} + 10 \cdot \begin{vmatrix} x+1 & y \\ 5 & 4 \end{vmatrix} = 5 \cdot (2y-4z-12) + 10 \cdot (4x+4-5y) =$$

$$= 40x - 40y - 20z - 20 = 0.$$

Упрощаем полученное уравнение и получаем уравнение искомой плоскости.

Ответ: 2x - 2y - z - 1 = 0.

Замечание. Для проверки можно взять координаты данных точек, подставить в полученное уравнение плоскости и убедиться, что получаются верные равенства.

Задача 2. Даны точка $M_4(2,-5,1)$ и плоскость $\alpha=(M_1,M_2,M_3)$, уравнение которой получено в задаче 1.

Найти уравнение и длину перпендикуляра, опущенного из точки M_4 на плоскость α .

Решение. Имеем уравнение плоскости α : 2x-2y-z-1=0. Нормальный вектор плоскости α равен $\vec{n}=(2,-2,-1)$. Направляющий вектор \vec{q} перпендикуляра, опущенного на плоскость α ,

коллинеарен вектору нормали \vec{n} . Записываем канонические уравнения прямой, проходящей через точку $M_4(2,-5,1)$ с направляющим вектором $\vec{q}=\vec{n}$: $\frac{x-2}{2}=\frac{y+5}{-2}=\frac{z-1}{-1}$. Мы получили уравнение прямой, перпендикулярной плоскости α и проходящей через точку M_4 .

Длина перпендикуляра, опущенного из точки M_4 на плоскость α будет равна расстоянию от этой точки до плоскости α .

Находим это расстояние по формуле $\rho(M_0, \alpha) = \frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\sqrt{A^2 + B^2 + C^2}}$

Подставляем наши данные: $\rho(M_4, \alpha) = \frac{|2 \cdot 2 - 2 \cdot (-5) - 1 \cdot 1 - 1|}{\sqrt{2^2 + (-2)^2 + (-1)^2}} = \frac{12}{3} = 4$

Ответ: Уравнение $\frac{x-2}{2} = \frac{y+5}{-2} = \frac{z-1}{-1}$; длина равна 4.

Задача 3. Даны точка $M_3(4,0,7)$ и прямая (M_1,M_2) .

Найти расстояние от точки M_3 до прямой (M_1M_2) .

Решение. Способ1. Расстоянием от точки до прямой называется длина перпендикуляра, опущенного из точки на прямую. Рассмотрим векторы $\overline{M_1M_3}=(5,0,10)$ и $\overline{M_1M_2}=(5,4,2)$ (см. задачу 1). Построим параллелограмм на этих векторах. Перпендикуляр, опущенный из точки M_3 на прямую (M_1M_2) совпадает с высотой параллелограмма. Обозначим перпендикуляр как M_3D , где D- основание перпендикуляра. Длина отрезка M_3D и будет искомым расстоянием от точки M_3 до прямой (M_1M_2) .

Площадь параллелограмма равна $S = a_{och.} \cdot h = \left| \overrightarrow{M_1 M_2} \right| \cdot M_3 D$. Отсюда $M_3 D = \frac{S}{\left| \overrightarrow{M_1 M_2} \right|}$.

Вспомним, что модуль векторного произведения $|\overrightarrow{M_1M_3} \times \overrightarrow{M_1M_2}|$ численно равен площади параллелограмма, построенного на векторах $\overrightarrow{M_1M_3}$ и $\overrightarrow{M_1M_2}$.

Вычисляем векторное произведение через определитель:

$$\overline{M_1 M_3} \times \overline{M_1 M_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 0 & 10 \\ 5 & 4 & 2 \end{vmatrix} = -40\vec{i} + 40\vec{j} + 20\vec{k} .$$

$$S_{\text{паралл.}} = |M_1 M_3 \times M_1 M_2| = \sqrt{(-40)^2 + 40^2 + 20^2} = \sqrt{3600} = 60.$$

Вычисляем длину основания

$$M_1 M_2 = |\overrightarrow{M_1 M_2}| = \sqrt{5^2 + 4^2 + 2^2} = \sqrt{45} = 3\sqrt{5}$$
.

Искомое расстояние равно
$$M_3D = \frac{S}{\left| \overrightarrow{M_1 M_2} \right|} = \frac{60}{3\sqrt{5}} = \frac{20}{\sqrt{5}} = 4\sqrt{5}$$
 .

Способ 2. Построим плоскость, проходящую через точку $M_3(4,0,7)$ перпендикулярно прямой (M_1,M_2) . Тогда направляющий вектор прямой $\overline{M_1M_2}=(5,4,2)$ будет нормальным вектором плоскости. Запишем уравнение этой плоскости 5(x-4)+4(y-0)+2(z-7)=0. Раскроем скобки, упростим и получим: 5x+4y+2z-34=0. Назовем построенную плоскость β . Точка пересечения прямой (M_1,M_2) с плоскостью β (точка D) будет основанием перпендикуляра M_3D , опущенного из точки M_3 на прямую (M_1,M_2) .

Рис.8

Найдем координаты точки D . Запишем параметрические уравнения прямой (M_1, M_2) .

Имеем: направляющий вектор $\vec{q} = \overrightarrow{M_1 M_2} = (5,4,2)$, точка на прямой $M_1(-1,0,-3)$.

Получаем уравнения
$$\begin{cases} x=-1+5t\\ y=4t\\ z=-3+2t \end{cases}, t\in R \ .$$

Подставим эти уравнения в уравнение плоскости β :

$$5(-1+5t) + 4(4t) + 2(-3+2t) - 34 = 0$$

$$25t + 16t + 4t - 45 = 0$$

$$45t - 45 = 0$$

t = 1

Мы получили, что при t=1 точка прямой (M_1,M_2) лежит в плоскости β , т.е. это точка D . Подставим t=1 в уравнения прямой (M_1,M_2) и получим координаты точки D(4,4,-1) .

Найдем длину перпендикуляра M_3D : $|M_3D| = \sqrt{(4-4)^2 + (4-0)^2 + (-1-7)^2} = \sqrt{80} = 4\sqrt{5}$

Ответ: $4\sqrt{5}$.

Задача 4. Даны точка $M_3(4,0,7)$ и прямая (M_1,M_2) .

Найти точку Q (т.е. найти координаты), симметричную M_3 относительно прямой (M_1, M_2) .

Решение. Для построения точки Q нужно из точки M_3 опустить перпендикуляр на прямую (M_1,M_2) . Пусть это будет M_3D (D- основание перпендикуляра M_3D). Затем, необходимо продлить прямую (M_3D) и отложить отрезок DQ, равный отрезку M_3D .

Поскольку $M_3D\perp M_1M_2$, то M_3D лежит в плоскости, перпендикулярной прямой (M_1,M_2) . Следовательно, направляющий вектор прямой (M_1,M_2) является вектором нормали к плоскости, перпендикулярной прямой (M_1,M_2) и проходящей через точку $M_3(4,0,7)$. Запишем уравнение этой плоскости. Имеем: $\vec{n}=\overrightarrow{M_1M_2}=(5,4,2)$, $M_3(4,0,7)$.

Получаем уравнение

$$5(x-4)+4(y-0)+2(z-7)=0$$
, или

5x + 4y + 2z - 34 = 0. Обозначим построенную плоскость как β .

Точка D , являющаяся основанием перпендикуляра M_3D , также является точкой плоскости β и прямой (M_1,M_2) .

Запишем параметрические уравнения прямой (M_1, M_2) .

Направляющий вектор $\vec{q} = \overrightarrow{M_1 M_2} = (5,4,2)$. Точка на прямой $M_1(-1,0,-3)$. Получаем

уравнения
$$\begin{cases} x=-1+5t\\ y=4t &, \quad t\in R \ .\\ z=-3+2t \end{cases}$$

Подставим эти уравнения в уравнение плоскости β :

$$5(-1+5t) + 4(4t) + 2(-3+2t) - 34 = 0$$

$$25t + 16t + 4t - 45 = 0$$

$$45t - 45 = 0$$

t = 1

Рис.

Мы получили, что при t=1 точка прямой (M_1,M_2) лежит в плоскости β , т.е. это точка D . Подставим t=1 в уравнения прямой (M_1,M_2) и получим координаты точки D(4,4,-1) .

Теперь, чтобы получить координаты искомой точки Q прибавим к координатам точки D координаты вектора $\overrightarrow{M_3D} = (0,4,-8)$. Получаем Q(4,8,-9) .

Ответ: Q(4,8,-9).

Задача 5. Даны точки $M_1(-1,0,-3), M_2(4,4,-1), M_3(4,0,7)$.

Найти угол между прямыми (M_1M_2) и (M_1M_3) .

Решение. Найдем направляющие векторы прямых: $\vec{q}_1 = \overline{M_1 M_2} = (5,4,2)$ и $\vec{q}_2 = \overline{M_1 M_3} = (5,0,10)$. Косинус угла между прямыми с направляющими векторами находим по формуле: $\cos(\angle(M_1 M_2), (M_1 M_3)) = \frac{|\vec{q}_1 \cdot \vec{q}_2|}{|\vec{q}_1| \cdot |\vec{q}_2|}$

Подставляем наши данные и получаем:

$$\cos(\angle(M_1M_2),(M_1M_3)) = \frac{\left|5 \cdot 5 + 4 \cdot 0 + 2 \cdot 10\right|}{\sqrt{5^2 + 4^2 + 2^2} \cdot \sqrt{5^2 + 0^2 + 10^2}} = \frac{45}{\sqrt{45} \cdot \sqrt{125}} = \frac{45}{3\sqrt{5} \cdot 5\sqrt{5}} = \frac{45}{75} = \frac{3}{5}.$$

Отсюда,
$$\angle((M_1M_2), (M_1M_3)) = \arccos\left(\frac{3}{5}\right)$$
.

Ответ: $\arccos\left(\frac{3}{5}\right)$.