

Institutt for teknisk kybernetikk Fakultet for informasjonsteknologi, matematikk og elektroteknikk Norges teknisk-naturvitenskapelige universitet (NTNU)

Faglig kontakt under eksamen: Tommy Gravdahl, tlf. **7359 4393**, mobil **9014 4212** T.G. går to veiledningsrunder, ca. kl. 1015 - 1100, og ca. kl. 1315 - 1345

Eksamen i SIE3005 reguleringsteknikk

fredag 15. august 2003

Tid: 0900 - 1500

Sensur vil foreligge seinest 5. september.

Hjelpemiddelkombinasjon B1: Kalkulator med tomt minne tillatt. Ingen trykte eller håndskrevne hjelpemidler tillatt, unntatt Rottmanns formelsamling.

Prosenttallene angir den relative vekt oppgavene tillegges ved bedømmelsen.

Flere spørsmål kan besvares meget enkelt ved å bruke **formelsamlinga** bakerst i oppgavesettet. **Se kjapt gjennom den før du begynner**. Sjekk den alltid før du gir opp! Men du må forklare hvordan du bruker noe, når du henter det fra formelsamlinga. Noen spørsmål skal besvares ved å **måle ut verdier på figurer i oppgavesettet** – i slike tilfeller godtas en viss "måleunøyaktighet"! Der hvor rubrikk for studentnr. etc. er angitt på sider i oppgavesettet, **kan man tegne i figurer og levere det påtegnede arket som en del av besvarelsen**.

STUDENTS MAY ANSWER THIS EXAM IN ENGLISH IF THAT IS PREFERRED.

Oppgave 1 (68 %)

Gitt prosessen som vist i figur l. Ei vifte blåser luft med volumstrøm $q \ [m^3/s]$ og inngangstemperatur $v \ [^{\circ}C]$ forbi et varmeelement som varmer opp lufta til temperatur x_2 . Et stykke lenger ute i røret måles temperaturen $y = x_2(t-\tau)$, der τ er en tidsforsinkelse. Vi betrakter en lineær modell av prosessen. Den gjelder for en liten temperaturøkning i lufta.

Flere størrelser defineres:

u: Spenning over element [V].

P: Effekt ytt av element [W], antas å være P = Gu, der G er en konstant.

l : Avstand fra element til temperaturmåling [*m*]

A: Tverrsnittsareal rør $[m^2]$.

C: Varmekapasitet element $[J/^{\circ}C]$

g: Varmeovergangstall element/luft [$W/^{\circ}C$].

 γ : Spesifikk varmekapasitet for luft $[J/(kg \circ C)]$.

 ρ : Spesifikk masse for luft $[kg/m^3]$.

Vi antar at alle størrelser er konstante, unntatt de tidsvariable x_1, x_2, y, v, u . I det følgende bør du, for å forenkle arbeidet, innføre en koeffisient $\beta = \gamma \rho q$. Til og med deloppgave (f) nedenfor er det ingen tilbakekopling (dvs. åpen sløyfe).

- a) (3 %) Finn tidsforsinkelsen τ som funksjon av tre av de oppgitte koeffisienter.
- b) (10 %) Prosessens modell blir $y = h_u u + h_v v$, med

$$h_u = K_u \frac{1}{1 + T_1 s} e^{-\tau s}, \qquad h_v = K_v \frac{1 + T_2 s}{1 + T_1 s} e^{-\tau s}$$
 (1.1)

Det oppgis at $K_v = 1$. Finn K_u , T_1 og T_2 ! (Tips for kontroll: Det oppgis at $T_2 = \frac{\beta}{g+\beta}T_1$) Dermed er $T_2 < T_1$, noe du trenger til oppgave (f) nedenfor.)

I det følgende trenger du ikke å ha greidd oppgave a) og b) for å få full uttelling. Bruk størrelsene K_u , T_1 og T_2 – du skal ikke sette inn noen tallverdier for dem.

- c) (2 %) Kan modellen (1.1) formuleres på tilstandsromform? (Kort, men begrunnet, verbalt svar!)
- d) (4 %) Anta at $v = v_0$ og $u = u_0$ = konstante. Finn den tilsvarende konstante temperatur x_{20} i lufta. Forklar verbalt hvorfor K_v i (1.1) må være = 1!
- e) (5 %) Anta at $v = v_0$ og $u = u_0$ = konstante. Finn den tilsvarende konstante temperatur x_{10} i varmeelementet!
- f) (7%) Anta at $v = v_{01}$ har vært konstant i lengre tid, men så ved tida $t = t_0$ endrer seg som et sprang til en ny, noe større konstant verdi v_{02} . Responsen y(t) er vist til høyre. Hva blir størrelsene α_i som er inntegnet der? Du må ikke begrunne svarene. (Tips: Sett u = 0 i denne oppgaven. Tips til α_3 : begynnelsesverditeoremet se formelsamling.)

- g) (5 %) Benytt symbolene h_u og h_v . Tegn blokkdiagram for en reguleringsstruktur med tilbakekopling og seriekompensasjon via en regulator kalt h_r . Referansen for ønsket utgangstemperatur kaller du r.

 Temperaturen v kan måles. Føy til en foroverkoplingsstruktur med blokken h_f .
- h) (5 %) Hva blir den ideelle foroverkopling h_{fi} ? Angi en mer realistisk foroverkopling! Hvilken innvirkning har denne foroverkoplingen på reguleringssystemets stabilitet?
- i) (8 %) Anta nå at du ikke har foroverkopling. Finn et uttrykk for det stasjonære avviket etter et enhetssprang i v. Forutsett proporsjonalregulering og regulatorforsterkning K_p . Alternativt: hvis h_r = PI-regulator, da vil den fjerne det stasjonært avviket. Forklar det verbalt, eller vis det!
- j) (8 %) Med tallverdier innsatt for et slikt system, blir Bode-diagrammet for h_u som vist i figur l på neste side. Finn verdier for K_p og T_i i en PI-regulator ved hjelp av Ziegler-Nichols' metode (se tabell i formelsamling). Legg ved Bode-diagrammet med påtegninger, for å vise hvordan du har kommet fram til svaret!

Oppgave 2 (12 %)

En prosess kan deles opp i to delsystemer i serie slik som vist i figur 2.1. En forstyrrelse angriper ved inngangen til det høyre delsystemet. Man velger kompensasjon ved intern tilbakekopling (kaskadereguleringssystem) for prosessen. Referansen som y skal følge, er r.

- a) (6 %) Kall regulatorene for h_{r1} og h_{r2} , og tegn blokkdiagram for prosessen med kompensasjon ved intern tilbakekopling.
- b) (6 %) Forklar hvorfor reguleringsegenskapene både når det gjelder å undertrykke forstyrrelsen og når det gjelder å følge referansen – kan gjøres bedre med bruk av kompensasjon ved intern tilbakekopling, sammenliknet med bruk av vanlig seriekompensasjon.

Oppgave 3 (8%)

Det skal lages en diskret PI-regulator. Tastetida ("samplingstida") er T = 0.5.

Regulatorparametrene er $K_p = 2$ og $T_i = 10$. Svaret skal uttrykkes som en rekursiv formel, hvor du skal finne de tre koeffisientene f_1, g_0, g_1 :

$$u[k+1] = f_1 u[k] + g_0 e[k+1] + g_1 e[k]$$
(3.1)

Oppgave 4 (2 %)

Når trengs anti-overlading ("anti-windup")? Kort verbalt svar!

Oppgave 5 (10 %)

Gitt prosessen beskrevet av
$$\ddot{y} + \omega^2 y = u + \beta \dot{u}$$
, der ω^2 , β er konstanter > 0. (5.1)

- a) (2 %) Finn transferfunksjonen $h(s) = \frac{y}{u}(s)$
- b) (4 %) Vi søker \mathbf{A} , \mathbf{b} , \mathbf{c}^T i en tilstandsrommodell som representerer systemet:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

$$y = \mathbf{c}^T\mathbf{x}$$
Vis at en slik $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix}$. Finn de tilhørende \mathbf{b} og \mathbf{c}^T . (5.2)

- c) (2 %) Finn egenverdiene og en egenvektormatrise M.
- d) (2 %) Hva betyr koeffisienten β for prosessens stabilitet? Er prosessen asymptotisk stabil, marginalt stabil eller ustabil? Begrunn svaret!

Formelsamling

(4 sider, noe av dette trenger du kanskje...)

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sf(s) \tag{V.1}$$

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sf(s) \tag{V.2}$$

$$\mathcal{L}\left[\dot{f}(t)\right] = sf(s) - f(t)\big|_{t=0} \quad , \quad \mathcal{L}\left[\ddot{f}(t)\right] = s^2 f(s) - sf(t)\big|_{t=0} - \dot{f}(t)\big|_{t=0} \quad (\text{V.3})$$

Residuregning:
$$f(t) = \sum_{a_i} \frac{1}{(m-1)!} \left[\frac{\partial^{m-1}}{\partial s^{m-1}} \{ (s-a_i)^m f(s) e^{st} \} \right]_{s=a_i}$$
(V.4)

$$|\lambda \mathbf{I} - \mathbf{A}| = 0 \tag{V.5}$$

Rettlinja bevegelse:
$$f = ma$$
 Rotasjon: $d = J\dot{\omega}$ (V.6)

Folding (konvolusjon):

$$y(t) = h(t) * u(t) = \int_{0}^{t} h(t - \tau)u(\tau)d\tau, \quad \mathcal{E}[h(t) * u(t)] = h(s)u(s)$$
 (V.7)

Linearisering:
$$\Delta \dot{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\mathbf{x}^{p}, \mathbf{u}^{p}} \Delta \mathbf{x} + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\mathbf{x}^{p}, \mathbf{u}^{p}} \qquad , \quad \mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\mathbf{x}^{p}, \mathbf{u}^{p}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{x}^{p}, \mathbf{u}^{p} \end{bmatrix}$$
(V.8)

Gitt en åpen prosess $h_0(s)$ med N_p poler i høyre halvplan.

Vektoren $1 + h_0(j\omega)$ får en netto vinkeldreining lik

$$\Delta \angle (1+h_0) = -2\pi(N_n-N_p) \qquad \text{når } \omega \text{ går fra } -\infty \text{ til } \infty. \tag{V.9}$$

 N_n blir da antall poler i h.h.p. for det lukkede (tilbakekoplede) system.

Merk: Dreieretning er definert positiv mot urviseren.

Zieg	ler-Nichol	ls metode

Regulator	K_p	T_i	T_d
P	$0.5K_{pk}$	∞	0
PI	$0.45K_{pk}$	$T_k/1.2$	0
PID	$0.6K_{pk}$	$T_k/2$	$T_k/8$

(V.10)

(Tips: $T_k = 2\pi/\omega_{180}$, dvs lengden av en svingeperiode i den stående svingningen.)

s erstattes med
$$\frac{2z-1}{Tz+1}$$
, der z betyr tidsforskyving, dvs. $zx[k] = x[k+1]$ (V.11)

$$e^{-\tau s} \approx \frac{1 - \frac{\tau}{2}s}{1 + \frac{\tau}{2}s} \tag{V.12}$$

PI-regulator:
$$h_r = K_p \frac{1 + T_i s}{T.s}$$
 (V.13)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & & 0 & 0 \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -\alpha_0 - \alpha_1 - \alpha_2 & \cdots - \alpha_{n-2} - \alpha_{n-1} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
$$\mathbf{c}^T = \begin{bmatrix} \rho_0 & \rho_1 & \rho_2 & \cdots & \rho_{n-1} \end{bmatrix}$$

gir
$$\frac{y}{u}(s) = h(s) = \frac{\rho_{n-1}s^{n-1} + \dots + \rho_1s + \rho_0}{s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0}$$
 (V.14)

$$x[dB] = 20\log_{10}(x)$$
 (V.15)