# Entity Resolution

Yibin Xiong

#### Problem to Solve

- Matching different records (rows) to the same entity
  - Within a database: de-duplication
  - Across multiple databases: record linkage
- Unique identifiers are unavailable
- Inaccurate and missing data

| Record | Given name    | Family name | Year | Month | Day | Municipality |
|--------|---------------|-------------|------|-------|-----|--------------|
| 1.     | JOSE          | FLORES      | 1981 | 1     | 29  | A            |
| 2.     | JOSE          | FLORES      | 1981 | 2     | NA  | A            |
| 3.     | JOSE          | FLORES      | 1981 | 3     | 20  | A            |
| 4.     | JULIAN ANDRES | RAMOS ROJAS | 1986 | 8     | 5   | В            |
| 5.     | JILIAM        | RMAOS       | 1986 | 8     | 5   | В            |

Table 2: Illustrative example of duplicated records in the UNTC data set reproduced from Table 1 of Sadinle (2014). Note that record 5 most likely has errors, where "RMAOS" should be "RAMOS," due to the processing of list photocopies using Optical Character Recognition. These errors were corrected in Sadinle (2014).

## Pipeline



- Attribute alignment: find the common attributes across databases
- Blocking: propose possibly matching pairs (rough filtering)
- \*Record linkage: classify if candidate pairs match or not (fine filtering)
- Canonicalization: merge matched records to a single representative record

## Blocking: Simple, Deterministic Rules

- Determine blocking key from one or several attributes
  - E.g. name; gender AND date of birth
- (Optionally,) Map the attribute values to blocking key values (BKVs)
  - E.g. phonetic encoding functions map names with similar sound to the same code
- Group the records with the same BKV together

**Table 4.1** Example name strings and their phonetic encodings. Variations of the same name are grouped together

| String    | Soundex | Phonex | Phonix | NYSIIS | Double Metaphone | Fuzzy Soundex |
|-----------|---------|--------|--------|--------|------------------|---------------|
| peter     | p360    | b360   | p300   | pata   | ptr              | p360          |
| pete      | p300    | b300   | p300   | pat    | pt               | p300          |
| pedro     | p360    | b360   | p360   | padr   | ptr              | p360          |
| stephen   | s315    | s315   | s375   | staf   | stfn             | s315          |
| steve     | s310    | s310   | s370   | staf   | stf              | s310          |
| smith     | s530    | s530   | s530   | snat   | sm0, xmt         | s530          |
| smythe    | s530    | s530   | s530   | snat   | sm0, xmt         | s530          |
| gail      | g400    | g400   | g400   | gal    | kl               | g400          |
| gayle     | g400    | g400   | g400   | gal    | kl               | g400          |
| christine | c623    | c623   | k683   | chra   | krst             | k693          |
| christina | c623    | c623   | k683   | chra   | krst             | k693          |
| kristina  | k623    | c623   | k683   | cras   | krst             | k693          |

| Id | Last Name | First Name | Postal code |
|----|-----------|------------|-------------|
| 1  | Smith     | Anna       | 1234 AB     |
| 2  | Smith     | George     | 1234 AB     |
| 3  | Schwarz   | Ben        | 6789 XY     |

| Id | Last Name | First Name | Postal code |
|----|-----------|------------|-------------|
| 1  | Smith     | George     | 1234 AB     |
| 2  | Johnson   | Charles    | 1234 AB     |
| 3  | Schwarz   | Ben        | 6789 XY     |
| 4  | Schwarz   | Anna       | 6789 XY     |

| A_ld | B_Id | Postal<br>code |
|------|------|----------------|
| 1    | 1    | 1234 AB        |
| 1    | 2    | 1234 AB        |
| 2    | 1    | 1234 AB        |
| 2    | 2    | 1234AB         |
|      |      |                |

### Blocking

- For deduplicating arXiv, we use the rule of:
  - The two names must be *compatible* (i.e. last names exactly match, initials of first names match)
  - The two records share at least 1 co-author
- Problem: Too many false discoveries if no further filtering

```
Console Terminal ×
~/Dropbox/ism-scheduler-2022/arxiv/ 🕏
Matches tound for Young Kyung Lee: Young K. Lee
Matches found for Young M. Lee: Young M Lee
Matches found for Youssef M. Aboutaleb : Youssef M Aboutaleb
Matches found for Youssef M. Marzouk: Youssef Marzouk
Matches found for Y. X. Rachel Wang : Yu Wang
Matches found for Y. X. Rachel Wang : Yu-Ping Wang
Matches found for Y. X. Rachel Wang : Yu-Xiang Wang
Matches found for Y. X. Rachel Wang : Yuan Wang
Matches found for Y. X. Rachel Wang : Yuanhao Wang
Matches found for Y. X. Rachel Wang : Yuanrong Wang
Matches found for Y. X. Rachel Wang : Yuanyuan Wang
Matches found for Yue Selena Niu : Yue S. Niu
Matches found for Y. X. Rachel Wang: Yue Wang
Matches found for Y. X. Rachel Wang: Yueqi Wang
Matches found for Y. X. Rachel Wang: Yueging Wang
```

#### Record Linkage: Probabilistic Rules [Fellegi & Sunter 1969]

- Let  $\gamma = (\gamma_1, ..., \gamma_k)$  be the comparison vector between two records
- Estimate  $m(\gamma) \coloneqq \mathbb{P}(\gamma \mid M)$  and  $u(\gamma) \coloneqq \mathbb{P}(\gamma \mid U)$ 
  - Supervised learning: estimate m,u probabilities from training data
  - \*Unsupervised learning: EM algorithm
- Consider the log ratio  $W(\gamma) = \log m(\gamma) \log u(\gamma)$
- Define constants  $T_{\mu}$ ,  $T_{\lambda}$  for controlling the Type I errors  $\mu$ ,  $\lambda$ 
  - Match if  $W(\gamma) > T_{\mu}$
  - Undetermined if  $T_{\lambda} < W(\gamma) \le T_{\mu}$
  - Non-match if  $W(\gamma) \leq T_{\lambda}$

# Theoretical Properties of F&S

- Essentially, Fellegi & Sunter method is a likelihood ratio test
- The rule is the *optimal* one in the sense of minimizing the probability of a comparison vector being undetermined
- Bound the ratio  $\frac{m(\gamma)}{u(\gamma)}$  is equivalent to bound the posterior probability

$$\mathbb{P}(M \mid \gamma) = \frac{\mathbb{P}(M)m(\gamma)}{\mathbb{P}(M)m(\gamma) + (1 - \mathbb{P}(M))u(\gamma)} = 1 - \left(1 + \frac{\mathbb{P}(M)}{1 - \mathbb{P}(M)} \cdot \frac{m(\gamma)}{u(\gamma)}\right)^{-1}$$

i.e. for very large/small likelihood ratio, the posterior probability is also large/small, in which case we reject the null hypothesis and classify the pair as match/non-match

# Typical Model Settings

- Binary comparison vector  $\gamma$  [Enamorado 2018]
  - If an attribute is *string*-valued, use *edit distances* such as Levenshtein, Jaro, and Jaro-Winkler distance and convert it to similarity.
  - If an attribute is numerical, use L1 or L2 distance

• 
$$\gamma_k(i,j) = \begin{cases} 1, & dist_k(i,j) < \tau_k \\ 0, & dist_k(i,j) \ge \tau_k \end{cases}$$

- Categorical comparison vector  $\gamma$  [Enamorado et al. 2019]
  - Measure distance/similarity and **discretize** it into  $L_k$  bins
- Models for probability distributions [Enamorado 2018]

$$\gamma_k(i,j) \mid M(i,j) = m \overset{\text{indep.}}{\sim} \text{Discrete}(\pi_{km})$$

$$M(i,j) \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(\lambda)$$

M(i,j) is a latent variable. We can use EM algorithm.

#### Implementation

#### Tasks

- De-duplicate ArXiv
- De-duplicate Semantic Scholar(S2)
- Match S2 to JSM
- Match ArXiv to JSM

#### Data

- JSM: author-coauthor (5274\*5274), author-word (5274\*3966)
  - JSM authors are unique; Data are used for matching
- ArXiv: paper-author (90434\*113507), author-coauthor (113507\*113507), \*author-word
- S2: author-paper (326895\*280158), author-coauthor, author-word
- Attributes for record linkage (They are integer-valued, so already discretized)
  - De-duplication: name similarity (or frequency measure), # of common co-authors
  - Matching: name similarity (for blocking), word usage similarity (We can't use # of common coauthors for matching because the scopes of different author-coauthor matrices are different.)
  - I also want to use affiliation, but the available affiliation in S2 is too scarce

### Experiments

- Vanilla (what we did in the summer)
- RL (record linkage) + TF-IDF
- RL + word embedding downloaded from S2 (If time permits)

#### Software

- fastLink: <a href="https://github.com/kosukeimai/fastLink">https://github.com/kosukeimai/fastLink</a>
- RecordLinkage: <a href="http://uribo.github.io/rpkg\_showcase/modeling/RecordLinkage.html">http://uribo.github.io/rpkg\_showcase/modeling/RecordLinkage.html</a>
- \*reclin (good demo, flexible to use): <a href="https://github.com/djvanderlaan/reclin">https://github.com/djvanderlaan/reclin</a>

#### References

- Binette, Olivier, and Rebecca C. Steorts. "(Almost) All of Entity Resolution." arXiv e-prints (2020): arXiv-2008.
- Enamorado, Ted, Benjamin Fifield, and Kosuke Imai. "Using a probabilistic model to assist merging of large-scale administrative records." American Political Science Review 113.2 (2019): 353-371.
- Enamorado, Ted. "Active learning for probabilistic record linkage." Available at SSRN 3257638 (2018).