Section 6: Joint Hypothesis Testing

Valentine Gilbert

October 21, 2021

Overview

- Review: The t-statistic
- The Variance-Covariance Matrix
- Joint Hypothesis Testing
- 4 Asymptotic Normality of OLS Estimates

The t-statistic

The **t-statistic** measures the deviation of an estimate from a hypothesized value of the estimand, normalized by the standard deviation of the estimator:

$$t_{\hat{\theta}} = \frac{\hat{\theta} - \frac{\theta_0}{\widehat{SE}(\hat{\theta})}$$

Examples:

• The t-statistic for the sample mean is:

$$t_{\bar{Y}} = \frac{\bar{Y} - \mu_0}{\widehat{SE}(\bar{Y})} = \frac{\bar{Y} - \mu_0}{\widehat{\sigma}_{Y} / \sqrt{N}}$$

• The t-statistic for a regression coefficient is:

$$t_{\hat{\beta}} = \frac{\hat{\beta} - \beta_0}{\widehat{SE}(\hat{\beta})}$$

The distribution of the t-statistic

Under **strong assumptions**, the t-statistic follows an exact t-distribution:

- E.g. the t-statistic for the difference in means follows a t-distribution *if and only if* the underlying data are Normal, errors are homoskedastic, and the standard error is estimated using the pooled variance formula
- These assumptions are unlikely to hold, so we don't use the t-distribution

Under **weak assumptions**, the t-statistic is approximately distributed $\mathcal{N}(0,1)$ by the CLT

This is how we usually do inference for a single hypothesis test

Variance-Covariance Matrix

The variance-covariance matrix is a key estimand for statistical inference

- Suppose our regression model is: $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + u_i$
- The corresponding variance-covariance matrix would be:

$$V_{HC} = \begin{pmatrix} Var(\hat{\beta}_0) & Cov(\hat{\beta}_0, \hat{\beta}_1) & \dots & Cov(\hat{\beta}_0, \hat{\beta}_k) \\ Cov(\hat{\beta}_1, \hat{\beta}_0) & Var(\hat{\beta}_1) & \dots & Cov(\hat{\beta}_1, \hat{\beta}_k) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(\hat{\beta}_k, \hat{\beta}_0) & Cov(\hat{\beta}_k, \hat{\beta}_1) & \dots & Var(\hat{\beta}_k) \end{pmatrix}$$

• With k regressors, the matrix V_{HC} is a $k \times k$ symmetric matrix containing the variances and covariances of each of our estimated parameters

Estimating V_{HC}

On Monday, we used a matrix version of the CLT to show that the vector $\hat{\beta}$ is asymptotically normal:

$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\to} \mathcal{N}(0, E[X_i X_i']^{-1} E[X_i X_i' u_i^2] E[X_i X_i']^{-1})
\stackrel{d}{\to} \mathcal{N}(0, \alpha \Sigma \alpha')$$

- This implies that $V_{HC} = \alpha \Sigma \alpha' / N$
- Estimating this is simple just use sample averages instead of expectations:

$$\hat{V}_{HC} = \left[\frac{1}{N} \sum_{i=1}^{N} X_i X_i'\right]^{-1} \left\{\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \hat{u}_i^2\right\} \left[\frac{1}{N} \sum_{i=1}^{N} X_i X_i'\right]^{-1} / N$$

• Once we have \hat{V}_{HC} , we can use its elements to test hypotheses about individual coefficients, combinations of coefficients, or joint hypotheses

Valentine Gilbert Section 6 October 21, 2021 8 / 18

Joint Hypothesis Testing 1/5: Motivation

- Joint hypothesis tests allow us to test multiple hypotheses at once
 - E.g. $H_0: \beta_1 = 0 \text{ AND } \beta_2 = 0$
- When would you want to do that?
 - Checking for successful randomization in an RCT
 - Assessing strength of first stage in an instrumental variables context
 - Testing for heterogeneous treatment effects
- What goes wrong if you test your hypotheses individually instead of jointly?
 - Remember, you have a 5% chance of rejecting the null when it's true.
 - So testing hypotheses individually may lead you to:
 - think your randomization failed when it didn't
 - think your first stage is stronger than it is
 - think heterogeneous treatment effects exist when they don't
 - You'll also fail to take into account the covariance of your estimates, lowering statistical power

Joint Hypothesis Testing 2/5: Specifying Hypotheses

- We can represent a hypothesis with the following matrix notation: $R\beta = r$, where R is $q \times k$, β is $k \times 1$, and r is $q \times 1$
- Example: $H_0: \beta_1 = 0$ AND $\beta_2 = 1$ is equivalent to $R\beta = r$ if:

$$R = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \end{pmatrix}$$
 and $r = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- How can I represent the following hypotheses in matrix notation? How many restrictions are there in each case?
 - $H_0: \beta_0 = \beta_1 = \beta_2 = 1$
 - $H_0: \beta_1 = \beta_2 = \beta_3$
 - $H_0: 2\beta_1 + 5\beta_3 = \beta_4 \text{ AND } \beta_2 = 0$
 - $H_0: \beta_1 \times \beta_2 = 1$

Joint Hypothesis Testing 3/5: The F Test

• The *F*-statistic is the joint-hypothesis analogue to the *t*-statistic

$$F = (R\hat{\beta} - r)'[R\hat{V}_{HC}R']^{-1}(R\hat{\beta} - r)/q$$

- What's *q*? The number of restrictions.
- Under the null hypothesis, $F \sim \chi_q^2/q$
- What happens if your parameter estimates are very different from their hypothesized values? F is large!
- So what is the F-statistic in words?
 - The average squared distance of your estimates from their hypothesized values, normalized by their variance/covariance
 - This is exactly the same logic as the t-statistic!

Joint Hypothesis Testing 4/5: Understanding $R\hat{V}_{HC}R'$

- Let's take a closer look at the variance/covariance term in the F-statistic
- Consider the example from class: $R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\Rightarrow R\hat{V}_{HC}R' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Var(\hat{\beta}_0) & Cov(\hat{\beta}_0, \hat{\beta}_1) & Cov(\hat{\beta}_0, \hat{\beta}_2) \\ Cov(\hat{\beta}_0, \hat{\beta}_1) & Var(\hat{\beta}_1) & Cov(\hat{\beta}_1, \hat{\beta}_2) \\ Cov(\hat{\beta}_0, \hat{\beta}_2) & Cov(\hat{\beta}_1, \hat{\beta}_2) & Var(\hat{\beta}_2) \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} Cov(\hat{\beta}_0, \hat{\beta}_1) & Var(\hat{\beta}_1) & Cov(\hat{\beta}_1, \hat{\beta}_2) \\ Cov(\hat{\beta}_0, \hat{\beta}_2) & Cov(\hat{\beta}_1, \hat{\beta}_2) & Var(\hat{\beta}_2) \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} Var(\hat{\beta}_1) & Cov(\hat{\beta}_1, \hat{\beta}_2) \\ Cov(\hat{\beta}_1, \hat{\beta}_2) & Var(\hat{\beta}_2) \end{pmatrix}$$

• What does $R\hat{V}_{HC}R'$ look like when R = (1, 0, 0)?

Small Class (%) (%) (Years)

Wage

Earnings

[-1.262]

-3829

(346.2)

[-11.06]

-2001

(281.4)

[-7.109]

0.000

10.992

[0.141]

-0.291

(1.110)

I-0.2621

-0.828

(0.885)

[-0.935]

0.261

10.992

Dependent Variable:

Student free-lunch

Student's age at KG

p value of F test

Observations

Student predicted earnings

entry

TABLE II Randomization Tests

Teacher

Experience

Teacher Has

Post BA Deg.

(%)

[1.459]

-0.116

(0.969)

[-0.12]

0.140

(0.738)

[0.19]

0.258

10.938

Teacher is

Black

(%)

[1.788]

-0.461

(0.648)

[-0.712]

-0.364

(0.633)

[-0.575]

0.133

10.916

0.350

0.567

0.916

p value

	(1)	(2)	(3)	(4)	(5)	(6)
Parent's income (\$1000s)	65.47 (6.634) [9.87]	-0.003 (0.015) [-0.231]	-0.001 (0.002) [-0.509]	0.016 (0.012) [1.265]	-0.003 (0.007) [-0.494]	0.848
Mother's age at STAR birth	53.96 (24.95) [2.162]	0.029 (0.076) [0.384]	0.022 (0.012) [1.863]	0.008 (0.061) [0.132]	0.060 (0.050) [1.191]	0.654
Parents have 401 (k)	2273 (348.3) [6.526]	1.455 (1.063) [1.368]	0.111 (0.146) [0.761]	0.431 (0.917) [0.469]	-1.398 (0.736) [-1.901]	0.501
Parents own home	390.9 (308.1) [1.269]	-0.007 (0.946) [-0.008]	-0.023 (0.159) [-0.144]	-2.817 (0.933) [-3.018]	0.347 (0.598) [0.58]	0.435
Parents married	968.3 (384.2) [2.52]	0.803 (1.077) [0.746]	0.166 (0.165) [1.008]	-0.306 (1.101) [-0.277]	-0.120 (0.852) [-0.14]	0.820
Student female	-2317 (425.0) [-5.451]	-0.226 (0.864) [-0.261]	0.236 (0.111) [2.129]	-0.057 (0.782) [-0.072]	-0.523 (0.521) [-1.003]	0.502
Student black	-620.8 (492.0)	0.204 (1.449)	0.432 (0.207)	2.477 (1.698)	1.922 (1.075)	0.995

[2.089]

0.051

(0.149)

[0.344]

-0.034

(0.131)

[-0.257]

0.190

10.914

Proving Asymptotic Normality 1/3

The regression of interest is $y_i = \mathbf{x}_i' \mathbf{\beta} + u_i$

• Let's start with our estimate of β :

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{y} = \left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} y_{i}$$

$$= \left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} (\mathbf{x}'_{i} \beta + u_{i})$$

$$= \beta + \left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} u_{i}$$

$$\implies \hat{\beta} - \beta = \left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} u_{i}$$

Proving Asymptotic Normality 2/3

Now rewrite $\hat{m{\beta}} - m{\beta}$ in terms of sample averages so we can apply the LLN and CLT

$$\hat{\beta} - \beta = \left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} u_{i}$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}'_{i}\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} u_{i}$$

Remember that the standard deviation of a sample average shrinks at a rate of \sqrt{N}

- We want to understand what happens to the sampling distribution of $\hat{\beta}$ as $N \to \infty$
- ullet So we multiply by \sqrt{N} to keep the standard deviation of a sample average constant

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right)^{-1} \frac{\sqrt{N}}{N} \sum_{i=1}^{N} x_i u_i$$

Proving Asymptotic Normality 3/3

We're now in a position to prove the asymptotic normality of $\hat{\beta}$:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right)^{-1} \frac{\sqrt{N}}{N} \sum_{i=1}^{N} x_i u_i$$

- What happens to the purple term as $N \to \infty$ and why?
 - It converges in probability to $\alpha = E[x_i x_i']^{-1}$ by the LLN and Slutsky
- And what happens to the red term as $N \to \infty$ and why?
 - It converges in distribution to $\mathcal{N}(0, \Sigma)$ by the CLT, where $\Sigma = E[(x_i u_i)(x_i u_i)']$
- So what happens to the left hand side as $N \to \infty$ and why?
 - It converges in distribution to $\mathcal{N}(0, \alpha \Sigma \alpha')$ by Slutsky