Dijkstra's Algorithm:

Consider a weighted directed graph G.

It starts with the source node and finds the shortest path between source node to all other nodes in the graph.

Define weighted distance matrix $D = (d_{ij})$ as follows;

$$d_{ii} = 0$$
,

 $d_{ij} = \infty$; if v_i is not adjacent to v_j .

 d_{ij} =weight assigned to the edge $if v_i$ is adjacent to v_j .

Define 2 sets K and U, where K consists of those vertices which have been fully investigated and between which the best path is known and U is the set of vertices which have not been fully identified.

Let $r \in K$. Then define an array best d[i] which is the length of the shortest path from r ro vertex I and another array tree[i] which is the just previous vertex to I on the shortest path.

Step 1: Let $K = \{r\}$ and U={all other vertices}

Set best $d[i] = d_{ir}$ and tree[i]=r.

Step 2: Find the vertex s in U with minimum value in best d[i] and put it in K.

Step 3: For each t in U, find bestd[s]+ d_{st} and if this is less than best d[t], replace best d[t] with this new value and update tree[t]=s.

Step 4: repeat step 2,3 until U becomes an empty set.

Example 1: Let G be the graph as shown in the figure 2.. Consider the vertex B as the source vertex. Find the shortest paths from the source vertex to all the remaining vertices of G using Dijkstra's algorithm.

Figure 2: A directed graph G

Solution:

$$D(G) = \begin{bmatrix} 0 & 7 & \infty & 6 & \infty \\ \infty & 0 & 5 & \infty & 10 \\ 12 & 6 & 0 & \infty & 3 \\ 4 & 5 & \infty & 0 & 6 \\ 11 & \infty & 8 & \infty & 0 \end{bmatrix}$$

 $K=\{B\},U=\{A,C,D,E\}$

	Α	С	D	Е
Best d	8	5	8	10
tree	В	В	В	В

Best(C)=5 and tree (C)=B

 $K=\{B,C\},U=\{A,D,E\}$

A D E	
-------	--

Best d	17	8	8
tree	С	В	С

Bestd(E)=8 and tree (E)=C.

 $K=\{B,C,E\},U=\{A,D\}$

	A	D
Best d	17	8
tree	С	В

Bestd(A)=17 and tree (A)=C

 $K=\{B,C,E,A\},U=\{D\}$

	D
Best d	23
tree	Α

Bestd(D)=23 and tree (D)=A

	Α	С	D	E
Best d	17	5	23	8

tree	С	В	А	

2. Find the distance from vertex B to G for the graph G as shown in Figure 1.

Figure 1: Directed graph G

Example: Implement Dijkstra's algorithm to find shortest path from c to all other vertices of the following network.

Floyd Warshall Algorithm

The Floyd Warshall Algorithm is an all pair shortest path algorithm.

Algorithm:

- Initialize the solution matrix same as the input graph matrix as a first step.
- Then update the solution matrix by considering all vertices as an intermediate vertex.
- The idea is to pick all vertices one by one and updates all shortest paths
 which include the picked vertex as an intermediate vertex in the shortest
 path.
- When we pick vertex number **k** as an intermediate vertex, we already have considered vertices **{0, 1, 2, .. k-1}** as intermediate vertices.
- For every pair (i, j) of the source and destination vertices respectively, there are two possible cases.
 - **k** is not an intermediate vertex in shortest path from **i** to **j**. We keep the value of **dist[i][j]** as it is.
 - k is an intermediate vertex in shortest path from i to j. We update
 the value of dist[i][j] as dist[i][k] + dist[k][j], if dist[i][j] > dist[i][k]
 + dist[k][j]

Pseudo-Code:

```
For k = 0 to n - 1

For i = 0 to n - 1

For j = 0 to n - 1

Distance[i, j] = min(Distance[i, j], Distance[i, k] + Distance[k, j])

where i = source Node, j = Destination Node, k = Intermediate Node
```

1. Find the shortest path from every node to every other nodes using Floyd warshall algorithm.

<u>Step 1</u>: Initialize the Distance[][] matrix using the input graph such that Distance[i][j] = weight of edge from i to j, also Distance[i][j] = Infinity if there is no edge from i to j.

Step1: Initializ	zing l	Dista	nce[][] u	sing	the I	nput Gra	aph
		Α	В	С	D	Ε		
	Α	0	4	00	5	00		
	В	90	0	1	•0	6		
	С	2	∞	0	3	0 0		
	D	×	∞	1	0	2		
	E	1	∞	×0	4	0		

<u>Step 2</u>: Treat node **A** as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:

- = Distance[i][j] = minimum (Distance[i][j], (Distance from A to j))
- = Distance[i][j] = minimum (Distance[i][j], Distance[i][A] + Distance[A][j])

	Α	В	С	D	E
Α	0	4	•0	5	90
В	90	?	?	?	?
С	2	?	?	?	?
D	90	?	?	?	?
E	1	?	?	?	?

	Α	В	С	D	E
Α	0	4	8	5	8
В	∞	0	1	8	6
С	2	6	0	3	8
D	∞	8	1	0	2
E	1	5	8	4	0

<u>Step 3</u>: Treat node **B** as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:

- = Distance[i][j] = minimum (Distance[i][j], (Distance from i to **B**) + (Distance from **B** to j))
- = Distance[i][j] = minimum (Distance[i][j], Distance[i][B] + Distance[B][j])

	ı					lode B as the Interm)	
	Α	В	С	D	E			Α	В	С	D	E
Α	?	4	?	?	?	A	Α	0	4	5	5	10
В	∞	0	1	••	6	E	В	∞	0	1	∞	6
С	?	6	?	?	?	C	С	2	6	0	3	12
D	?	00	?	?	?		D	00	00	1	0	2
E	?	5	?	?	?	E	E	1	5	6	4	0

<u>Step 4</u>: Treat node **C** as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:

- = Distance[i][j] = minimum (Distance[i][j], (Distance from c to d) + (Distance from d)
- = Distance[i][j] = minimum (Distance[i][j], Distance[i][C] + Distance[C][j])

Step 4: Using Node C as the Intermediate node Distance[i][j] = min (Distance[i][j], Distance[i][C] + Distance[C][j]) В С D Ε Α В С D Ε ? ? 0 10 Α В ? ? 1 ? ? 3 1 4 С 2 6 3 12 2 0 3 12 ? ? 1 ? D 3 7 1 0 2 Е ? ? 6 ? ? Е 1 5 6 0

<u>Step 5</u>: Treat node **D** as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:

- = Distance[i][j] = minimum (Distance[i][j], ($Distance\ from\ i\ to\ D$) + ($Distance\ from\ D\ to\ j$))
- = Distance[i][j] = minimum (Distance[i][j], Distance[i][D] + Distance[D][j])

			-top	J. U	sing	ode D as the Interme	alate	node	;		
		Distan	nce[i]	[j] = n	nin (D	tance[i][j], Distance[i][D)] + Di	stance	•[D][j])	
	Α	В	С	D	E		Α	В	С	D	E
Α	?	?	?	5	?	A	. 0	4	5	5	7
В	?	?	?	4	?	В	3	0	1	4	6
С	?	?	?	3	?	С	2	6	0	3	5
D	3	7	1	0	2	D	3	7	1	0	2
E	?	?	?	4	?	E	1	5	5	4	0

<u>Step 6</u>: Treat node **E** as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:

- = Distance[i][j] = minimum (Distance[i][j], (Distance from i to i) + (Distance from i to i))
- = Distance[i][j] = minimum (Distance[i][j], Distance[i][E] + Distance[E][j])

Step 6: Using Node E as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][E] + Distance[E][j])

	Α	В	С	D	E
Α	?	?	?	?	7
В	?	?	?	?	6
С	?	?	?	?	5
D	?	?	?	?	2
E	1	5	5	4	0

	Α	В	С	D	E
Α	0	4	5	5	7
В	3	0	1	4	6
С	2	6	0	3	5
D	3	7	1	0	2
E	1	5	5	4	0

<u>Step 7</u>: Since all the nodes have been treated as an intermediate node, we can now return the updated Distance[][] matrix as our answer matrix.

	Α	В	С	D	E	
Α	0	4	5	5	7	
В	3	0	1	4	6	
С	2	6	0	3	5	
D	3	7	1	0	2	
E	1	5	5	4	0	
	B C D	A 0 B 3 C 2 D 3	A 0 4 B 3 0 C 2 6 D 3 7	A 0 4 5 B 3 0 1 C 2 6 0 D 3 7 1	A 0 4 5 5 B 3 0 1 4 C 2 6 0 3 D 3 7 1 0	A 0 4 5 5 7 B 3 0 1 4 6 C 2 6 0 3 5 D 3 7 1 0 2

Example 2: Find the shortest path from every node to every other nodes using Floyd warshall algorithm.

Solution:

<u>Step 1</u>: Initialize the Distance[][] matrix using the input graph such that Distance[i][j] = weight of edge from i to j, also Distance[i][j] = Infinity if there is no edge from i to j.

Step1: Initializing Distance[][] using the Input Graph

Step 2: treat 1 as an intermediate vertex and calculate the distance[][] for every {i,j} pair using the formula

distance[i][j] = min(distance[i][j], (distance[i][1] + distance[1][j]))

	1	2	3	4
1	0	3	∞	5
2	2	0	∞	4
3	8	1	0	8
4	8	8	2	0

Step 3: treat 2 as an intermediate vertex and calculate the distance[][] for every {i,j} pair using the formula

distance[i][j] = min (distance[i][j], (distance[i][2] + distance[2][j]))

	1	2	3	4
1	0	3	8	5
2	2	0	8	4
3	3	1	0	5
4	∞	8	2	0

Step 4: treat 3 as an intermediate vertex and calculate the distance[][] for every {i,j} pair using the formula

distance[i][j] = min(distance[i][j], (distance[i][3] + distance[3][j]))

	1	2	3	4
1	0	3	∞	5
2	2	0	∞	4
3	3	1	0	5
4	8	3	2	0

Step 5: treat 4 as an intermediate vertex and calculate the distance[][] for every {i,j} pair using the formula

 $distance[i][j] = \min\left(distance[i][j], (distance[i][4] + distance[4][j])\right)$

	1	2	3	4
1	0	3	7	5
2	2	0	6	4
3	3	1	0	5
4	5	3	2	0

Kruskal's Algorithm

This algorithm is used to derive the minimal spanning tree of the given graph is introduced by **Joseph Kruskal** (1956).

Let G be a graph with n vertices. Then, the minimal spanning tree is found as follows;

Step 1: Remove all the self-loops and parallel edges of G.

Step 2: List all the edges of the graph G in the order of non-decreasing weight

Step 3: Select the smallest edge of G, say e_k .

Step 4: Select another smallest edge e_l such that e_l makes no cycle with e_k .

Step 5: Select another smallest edge, say e_m such that e_m makes no cycle with e_k and e_l .

Step 6: Continue this process of selecting the smallest edges (from all the remaining edges of G) which make no cycle with previously selected edges until all n-1 edges have been selected.

These edges constitute the desired minimal spanning tree.

Question 1: Find Minimal Spanning Tree of G Using Kruskal's Algorithm for the graph given in Figure 1.

Figure 1: Graph G

Solution: First we will list all the edges of the graph G in the order of non-decreasing weight as follows; (v_3, v_4) : 1, (v_2, v_3) : 2, (v_1, v_3) : 3, (v_5, v_7) : 3, (v_5, v_6) : 5, (v_4, v_6) : 6, (v_1, v_4) : 6, (v_1, v_5) : 9, (v_1, v_2) : 10

and (v_6, v_7) : 11.

The smallest edge with minimum weight is selected first i.e., edge (v_3, v_4) with weight 1. The next edge with minimum weight i.e., (v_2, v_3) has weight 2. Add this edge to the spanning tree as it does not create any cycle with the previously added edge (v_3, v_4) as shown in the Figure 2.

Figure 2: An empty graph and a graph with 2 edges with minimum weight

Next we add the edges (v_1, v_3) : 3, (v_5, v_7) : 3, (v_5, v_6) : 5, (v_4, v_6) : 6. The minimal spanning tree is as shown in the figure 3. Total weight is **1+2+3+3+5+6=20**

Figure 3: Minimal Spanning tree

Question 2: Find Minimal Spanning Tree of G Using Kruskal's Algorithm for the graph as shown in the figure 3.

Figure 3: Graph G

Solution: The four edges with the lowest weight are selected (weights 1,2 3,4) as shown in figure 4.

Figure 4: A graph with four edges with lowest weight

Edges with weight 5 or 6 cannot be included as they create a cycle.

Edge with weight 7 can be taken. But, edges with weight 8 or 9 cannot be taken.

Finally, an edge with weight 10 is selected to get a minimal spanning tree as shown in the figure 5, whose total weight is 1+2+3+4+7+10=27.

Figure 5: Minimal Spanning tree

Prim's Algorithm

Let G be a graph with n vertices. Then, the minimal spanning tree is found as follows:

Step I: Tabulate the given weights of the edges of G in an n-by-n table.

(Then the table is symmetric with respect to the diagonal, and the diagonal is empty). Set the weights of nonexistent edges as very large.

Step II: Draw n isolated vertices and label them $v_1, v_2, v_3, ..., v_n$.

Step III: Start from vertex v_1 and connect it to the vertex, say v_k , which has the smallest entry in row 1 of the table.

Step IV: Consider v_1 and v_k as one subgraph, and connect this subgraph to a vertex, other than v_1 and v_k , which has the smallest entry among all the entries of the rows 1 and k. Let this new vertex be v_i .

Step V: Regard v_1, v_k, v_i as one subgraph, and continue this procedure until all n vertices have been connected by n-1 edges.

Question 1: Find the Shortest Spanning Tree of a Graph G Using Prim's Algorithm for the graph as shown in the Figure 1.

Solution: First create the 7×7 table showing the weights of every edge.

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	10	<u>3</u>	6	9	∞	8
v_2	10	0	2	∞	00	∞	8
v_3	3	<u>2</u>	0	1	∞	∞	8
v_4	6	8	1	0	∞	<u>6</u>	8
v_5	9	8	8	∞	0	5	<u>3</u>
v_6	∞	8	8	6	<u>5</u>	0	11
v_7	∞	8	8	∞	3	11	0

Start from vertex v_1 and connect it to the vertex which has the smallest entry (3) in row 1 of the table i.e., v_3 . We get the $2^{\rm nd}$ graph shown in the Figure 6. Next select the minimum entry in $3^{\rm rd}$ row i.e., row corresponds to vertex v_3 . The vertex v_4 is the one with minimum entry. Connect v_4 to v_3 . Then we obtain the $3^{\rm rd}$ graph as shown in the Figure 6.

Figure 6: Empty graph, Graph with one edge, graph with 2 edge

Continuing like this we get the Minimal spanning tree as shown in the Figure 7. The total weight of the spanning tree is **20**.

Figure 7: Minimal spanning tree

Application: Suppose that we have to connect n cities $v_1, v_2, ..., v_n$ through a **network** of roads, given that c_{ij} is the cost of building a direct road between the cities v_i and v_j . Then, the problem of finding the least expensive **network** that connects all the cities is the same as finding a minimal spanning tree.

Comparison Between Prim's and Kruskal's Algorithms

The running time for large graphs depends on the time to sort m numbers. With this cost included, Prim's algorithm may be faster than Kruskal's Algorithm.

Prim's and Kruskal's Algorithms have similar running times when edges are pre-sorted by weight. Both are greedy Algorithms

Prim's algorithm can start with any vertex, but Kruskal's algorithm starts with a vertex that carries minimum weight.

In Kruskal's algorithm, it traverses one vertex more than once, whereas in Prim's algorithm it traverses one vertex only once.

Questions:

1. For the graph in the figure below find minimal spanning tree using (i) Kruskal's

algorithm (ii) Prims Algorithm.

Answer: Spanning tree

Sum of all edge weights=99.