Asymptotic genealogies of sequential Monte Carlo algorithms

Suzie Brown

University of Warwick with Paul Jenkins, Adam Johansen & Jere Koskela

18 November 2020

Outline

- 1. Sequential Monte Carlo
- 2. Resampling and degeneracy
- 3. SMC genealogies
- 4. Examples

Sequential Monte Carlo

Target a sequence of distributions by simulating a population of particles evolving in time

Sequential Monte Carlo

Target a sequence of distributions by simulating a population of particles evolving in time

Iterate these steps:

- 1. Mutate particles via Markov transition density q_t
- 2. Weight particles by potential function g_t
- 3. Resample particles in proportion to their weights

Resampling

Stochastically map continuous weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to discrete offspring counts $(\nu_t^{(1)}, \ldots, \nu_t^{(N)})$

Resampling

Stochastically map continuous weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to discrete offspring counts $(\nu_t^{(1)}, \ldots, \nu_t^{(N)})$

Properties:

- Number of particles constant $\sum_{i=1}^{N} \nu_t^{(i)} = N$
- ► Equal weights after resampling $w_{t\perp}^{(i)} = 1/N$
- Unbiased $\mathbb{E}[\nu_t^{(i)}|w_t^{(i)}] = Nw_t^{(i)}$

Ancestral degeneracy: for $t \ll T$, few distinct samples are available

▶ Label time in reverse

- ► Label time in reverse
- ► Population of *N* particles
- ▶ Sample $n \le N$ terminal particles

- ▶ Label time in reverse
- ► Population of *N* particles
- ▶ Sample $n \le N$ terminal particles
- lacktriangle Describe genealogy by stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$ on space of partitions of $\{1,\ldots,n\}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t

- ▶ Label time in reverse
- ▶ Population of *N* particles
- ightharpoonup Sample $n \leq N$ terminal particles
- lackbox Describe genealogy by stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$ on space of partitions of $\{1,\ldots,n\}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t
- ▶ Initially $G_0^{(n,N)} = \{\{1\}, \dots, \{n\}\}$
- ▶ The only possible non-identity transitions are those that merge blocks
- ▶ The trivial partition $\{\{1, ..., n\}\}$ is an absorbing state

Kingman's *n*-coalescent¹

- Continuous-time Markov chain on the space of partitions of $\{1, \ldots, n\}$
- ► Single pair mergers only
- Each pair merges independently at rate 1 (total merge rate $\binom{k}{2}$ while there are k distinct lineages)

¹J F C Kingman, Stochastic Processes & their Applications, 1982.

Time scale

Pair merger probability conditional on $(\nu_t^{(1)}, \dots, \nu_t^{(N)})$:

$$c_{N}(t) = rac{1}{(N)_{2}} \sum_{i=1}^{N} (
u_{t}^{(i)})_{2}$$

Time scale

Pair merger probability conditional on $(\nu_t^{(1)}, \dots, \nu_t^{(N)})$:

$$c_N(t) = rac{1}{(N)_2} \sum_{i=1}^N (
u_t^{(i)})_2$$

Rescale time by inverse:

$$au_{\mathit{N}}(t) := \min \left\{ s \geq 1 : \sum_{r=1}^{s} c_{\mathit{N}}(r) \geq t
ight\}$$

Assumptions:

▶ Parent-offspring assignments are uniform given offspring counts

Assumptions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- lacktriangle Time scale does not explode (i.e. $\mathbb{P}[au_N(t)=\infty]=0$ for all finite t)

Assumptions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- lacktriangle Time scale does not explode (i.e. $\mathbb{P}[au_N(t)=\infty]=0$ for all finite t)
- ▶ There exists a sequence (b_N) such that $\lim_{N\to\infty} b_N = 0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

Assumptions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- ▶ Time scale does not explode (i.e. $\mathbb{P}[\tau_N(t) = \infty] = 0$ for all finite t)
- ▶ There exists a sequence (b_N) such that $\lim_{N\to\infty} b_N = 0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

Then the finite-dimensional distributions of the time-rescaled genealogies $\left(G_{\tau_N(t)}^{(n,N)}\right)_{t\geq 0}$ converge to Kingman's n-coalescent as $N\to\infty$.

Examples

We have established the theorem in these cases:

- ► Multinomial resampling
- Stochastic rounding
- Conditional SMC with multinomial resampling

Multinomial resampling

Consider an SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probablity distribution $h(\cdot)$.

Suzie Brown

²J Koskela, P A Jenkins, A M Johansen, D Spanò. *Annals of Statistics*, 2020.

Multinomial resampling

Consider an SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probablity distribution $h(\cdot)$.

Under multinomial resampling:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

the rescaled genealogies converge to Kingman's coalescent.²

Suzie Brown

²J Koskela, P A Jenkins, A M Johansen, D Spanò. *Annals of Statistics*, 2020.

 $\mathbf{Y}: \mathbb{R}_+^N o \mathbb{N}^N$ is a *stochastic rounding* of \mathbf{X} if for $i = 1, \dots, N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

³D Crisan, T Lyons. Probability Theory & Related Fields, 1997.

⁴M Gerber, N Whiteley, N Chopin. *Annals of Statistics*, 2019.

 $\mathbf{Y}: \mathbb{R}_+^N o \mathbb{N}^N$ is a *stochastic rounding* of \mathbf{X} if for $i = 1, \dots, N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

- ▶ We can construct low-variance resampling schemes using stochastic rounding
- lacksquare Take $X_i = \mathit{Nw}_t^{(i)}$ and $Y_i =
 u_t^{(i)}$
- ▶ Require further constraint $Y_1 + \cdots + Y_N = N$

³D Crisan, T Lyons. *Probability Theory & Related Fields*, 1997.

⁴M Gerber, N Whiteley, N Chopin. *Annals of Statistics*, 2019.

 $\mathbf{Y}: \mathbb{R}_+^{N} o \mathbb{N}^{N}$ is a *stochastic rounding* of \mathbf{X} if for $i = 1, \dots, N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

- ▶ We can construct low-variance resampling schemes using stochastic rounding
- lacksquare Take $X_i = \mathit{Nw}_t^{(i)}$ and $Y_i =
 u_t^{(i)}$
- ▶ Require further constraint $Y_1 + \cdots + Y_N = N$
- ► Examples: systematic, residual-stratified, branching system³, SSP resampling⁴

³D Crisan, T Lyons. *Probability Theory & Related Fields*, 1997.

⁴M Gerber, N Whiteley, N Chopin. *Annals of Statistics*, 2019.

Consider an SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon \le q_t(x, x') \le \frac{1}{\varepsilon}$$

for constants $0 < \varepsilon < 1 < a < \infty$.

Resampling via stochastic rounding, the rescaled genealogies converge to Kingman's coalescent.

Conditional SMC

- ► Used for SMC updates in particle MCMC⁵
- One fixed "immortal lineage" is conditioned to survive all mutation and resampling steps
- Resampling must deterministically propagate the immortal lineage

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

Conditional SMC

Consider a conditional SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probability distribution $h(\cdot)$.

Under multinomial resampling, the rescaled genealogies converge to Kingman's coalescent.

Conditional SMC

Consider a conditional SMC algorithm with potential g and transition density q, satisfying

$$\frac{1}{a} \le g_t(x, x') \le a$$
$$\varepsilon h(x') \le q_t(x, x') \le \frac{1}{\varepsilon} h(x')$$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probability distribution $h(\cdot)$.

Under multinomial resampling, the rescaled genealogies converge to Kingman's coalescent.

Conjecture: the theorem also applies to conditional SMC with stochastic rounding

In conclusion...

- ► Genealogies can help us to analyse performance of SMC algorithms which suffer ancestral degeneracy
- ▶ We have simple conditions under which these genealogies converge to Kingman's *n*-coalescent
- ▶ These conditions are verified for some important classes of SMC algorithms

Open questions

- ▶ Verify theorem for other important resampling schemes (stratified, residual-multinomial)
- \blacktriangleright How to estimate the time scale τ_N a priori (since it depends on offspring counts)
- Weak convergence
- ► Rates of convergence
- ► Finite-*N* behaviour

Thank you!

pre-print at arXiv:2007.00096