PTSI 2

TD 22 - Déterminants

Exercice 1 : Utiliser des déterminants pour les questions suivantes :

1. La matrice A suivante est-elle inversible?

$$A = \left(\begin{array}{ccc} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & -1 \end{array}\right)$$

- 2. Les vecteurs (1, -1, 2), (2, -1, -1) et (-1, 2, 1) forment-ils une base de \mathbb{R}^3 ?
- 3. La matrice B suivante est-elle inversible?

$$B = \left(\begin{array}{rrr} 1 & 2 & -1 \\ -1 & -1 & 2 \\ 2 & -1 & 1 \end{array}\right)$$

- 4. Soit f(x, y, z) = (2x + 3y + 4z, 4x + y + 3z, x + 2y + 4z). f est-elle une application bijective de \mathbb{R}^3 dans \mathbb{R}^3 ?
- 5. La matrice suivante C est-elle inversible? $C=\left(egin{array}{ccc} 2 & 3 & 4 \\ 4 & 1 & 3 \\ 1 & 2 & 4 \end{array}\right)$

Exercice 2 : Calculer les déterminants suivants :

$$\left|\begin{array}{ccc|c} 8 & -5 \\ 4 & 3 \end{array}\right| \qquad \left|\begin{array}{ccc|c} 8-\lambda & -5 \\ 4 & 3-\lambda \end{array}\right| \qquad \left|\begin{array}{ccc|c} 11 & 0 & 3 \\ -15 & -4 & -3 \\ -21 & -12 & -1 \end{array}\right| \qquad \left|\begin{array}{ccc|c} 11-\lambda & 0 & 3 \\ -15 & -4-\lambda & -3 \\ -21 & -12 & -1-\lambda \end{array}\right|$$

Exercice 3 : Calculer les déterminants suivants :

Exercice 4 : Calculer les déterminants suivants :

Exercice 5: Calculer par récurrence le déterminant de taille n suivant avec a>2: $D_n=\begin{bmatrix} a & 1 & 0 & \dots & 0 \\ 1 & a & 1 & \ddots & \vdots \\ 0 & 1 & a & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & a \end{bmatrix}$

Exercice 6: Soit $(a, b, c) \in \mathbb{C}^3$. Démontrer que le déterminant $\Delta(x)$ est un polynôme de degré 1 en x. Calculer $\Delta(-a)$ et $\Delta(-b)$, en déduire la valeur du déterminant $D_n(a, b, c)$ lorsque $a \neq b$. Calculer $D_n(a, a, c)$.

$$\Delta(x) = \left| egin{array}{cccccc} c+x & b+x & \dots & b+x \ a+x & \ddots & \ddots & dots \ dots & \ddots & \ddots & b+x \ a+x & \dots & a+x & c+x \end{array}
ight| D_n(a,b,c) = \left| egin{array}{ccccc} c & b & \dots & b \ a & \ddots & \ddots & dots \ dots & \ddots & \ddots & dots \ a & \dots & a & c \end{array}
ight|$$

Exercice 7: On considère trois réels distincts x_1 , x_2 et x_3 .

- 1. En utilisant un déterminant, montrer que la matrice $A=\begin{pmatrix}1&x_1&x_1^2\\1&x_2&x_2^2\\1&x_3&x_3^2\end{pmatrix}$ est de rang 3.
- 2. En déduire qu'il existe un unique polynôme $P \in \mathbb{R}_2[X]$ prenant les valeurs y_1 , y_2 et y_3 en x_1 , x_2 et x_3 .