Robot Navigation and Obstacle Avoidance

Robotics Y5 – Graduate Course Project

By: Georgios Voudiotis & Nefeli E. Sextou

Academic Year 2023-2024

University of Ioannina - Dept. Of Computer Science & Engineering

Goal:

Program a robot's movement in a simulation environment

Program the robot's movement in a real environment

The Robot:

- Jackal by Clearpath Robotics
- Mobile Differential Drive
- Equipped with LiDAR

Software:

- ROS 1 Noetic on Ubuntu 20.04 Focal Fossa
- Gazebo
- rViz

Problem Description:

- Workspace: 6 x 4.5 m
- Set <u>randomly</u> chosen **Start** and **Goal** configurations within the workspace
- Set 3 **cubic** obstacles at <u>random</u> points within the workspace

Configuration Representation:

$$q = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 position orientation

Methodology:

- New topic/s for a Controller
- Artificial Potential Fields : Navigation Functions
- Program scripts
- Gazebo-rViz simulation and collect data
- Run on real robot and collect data
- Compare results

Topics: /odometry/filtered /front/scan Is **Subscribed** to Is **Subscribed** to /my_controller Publishes to /jackal_velocity_controller/cmd_vel

Closed Loop Controller:

Velocity Control:

In the Navigation Function methodology, the velocity command is

$$\dot{q} = u = -K_v \nabla \phi(q)$$

Where, $\nabla \phi(q)$ is the gradient of the Navigation Function and K_v is a *gain* parameter

- The gradient has a magnitude and an orientation
- The robot is a mobile, therefore it only has a linear velocity on axis x and an angular velocity on axis z (yaw)
- The linear velocity must be proportional to the magnitude of the gradient
- The angular velocity must be adjusted according to the gradient's orientation

Navigation Functions:

Distance of obstacles

$$\beta_i(q) = \begin{cases} -d^2(q, q_0) + r_0^2 \\ d^2(q, q_i) - r_i^2 \end{cases}$$

Repulsive Potential

$$\beta(q) = \prod_{i=0}^{n} \beta_i(q)$$

Attractive Potential

$$\gamma_k(q) = \left(d(q, q_{goal})\right)^{2k}$$

$$\phi = \frac{\gamma_k(q)}{\beta(q) + \gamma_k(q)}$$

$$\phi_{morse} = \frac{d(q, q_{goal})^2}{(d(q, q_{goal})^{2k} + \beta(q))^{\frac{1}{k}}}$$

For 2d vectors :
$$d(x, y) = ||x - y|| = \sqrt{(x_2 - x_1)^2 + (x_2 - y_1)^2}$$

Navigation Functions:

$$\text{Gradient} \quad \nabla \varphi(q) = \gamma(q) = \frac{2d \left(q, q_{goal}\right) \nabla d \left(q, q_{goal}\right) \left(d \left(q, q_{goal}\right)^{2k} + \beta(q)\right)^{\frac{1}{k}} - d \left(q, q_{goal}\right)^2 \nabla \left(d \left(q, q_{goal}\right)^{2k} + \beta(q)\right)^{\frac{1}{k}}}{\left(d \left(q, q_{goal}\right)^{2k} + \beta(q)\right)^{\frac{2}{k}}}$$

Where

$$\nabla d(q, q_{goal}) = \frac{q - q_{goal}}{d(q, q_{goal})}$$

$$\nabla (d \big(q, q_{goal} \big)^{2k} + \beta(q) \big)^{\frac{1}{k}} = \frac{1}{k} (d \big(q, q_{goal} \big)^{2k} + \beta(q) \big)^{\frac{1}{k-1}} (2k \ d \big(q, q_{goal} \big)^{2k-1} \nabla d \big(q, q_{goal} \big) + \nabla \beta(q))$$

$$\nabla \beta(q) = \sum_{i=0}^{n} \nabla \beta_i(q) \prod_{j=0, j \neq i}^{n} \beta_j(q) \quad \text{where} \quad \nabla \beta_i(q) = \begin{cases} -2(q-q_0) \\ 2(q-q_i) \end{cases}$$

Programming NFs

- Partition LiDAR data considering objects every n samples -> m obstacles
- Keep min reading from each of the m obstacles
- Combine with angle increment information to find the distances between the robot and the obstacles ($\beta(q)$)
- Obstacle buffer zone = Robot Length + Virtual Obstacle Radius = 0.2+0.5
- **Linear Velocity:**
 - If the obstacle is within the robot's "safe zone":

linear.
$$x = K_v * ||\nabla \phi(q)||$$

$$linear. \ x = K_v * ||\nabla \phi(q)|| \qquad angular. \ z = K_a * (\arctan\left(\frac{-\frac{dV\phi(q)}{dq_y}}{-\frac{dV\phi(q)}{dq_y}}\right) - yaw)$$

• If there are no objects in the "safe zone":

linear.
$$x = K_v * ||\nabla \gamma_k(q)||$$
 angular. $z = K_a * (\arctan\left(\frac{-\frac{a \vee \gamma_k(q)}{dq_y}}{-\frac{d \nabla \gamma_k(q)}{dq_x}}\right) - yaw)$
 $> 0)$ Attractive Potential Only

 K_v , K_a : gains (> 0)

Simulation Scenario

- We place a cylindrical obstacle at random (could be any shape)
- We set the goal configuration as:

$$\mathbf{q_{goal}} = \begin{bmatrix} 6.5 \\ 4.0 \\ 0.0 \end{bmatrix}$$

- K_v , $K_a = 0.5$
- k = 1

Simulation: Odometry Results

Simulation: Velocity Results

Simulation: Velocity Results

Experiments in a Real Environment

- Experiment 1 (Simulation to real world):
 - Goal Configuration: x = 6.5 y = 4 $\theta = 0$, K_v , $K_a = 0.5$, k = 1
 - It was stopped before attempting to go through the wall but the trajectory it was on was correct
 - Link to video: https://drive.google.com/file/d/1-aFstjbn_DAgrovlkNKFjyuxKuny7vDY/view?usp=drive_link
- Experiment 2 (Goal within available lab space):
 - Goal Configuration: x = 4 y = 4 $\theta = 0$, K_v , $K_a = 0.5$, k = 1
 - Successfully reaches the goal and stops
 - Link to video: https://drive.google.com/file/d/1rq3qUtUcCK70-VWkYEEWPHHpCpDoiybM/view?usp=drive_link

Note: Google Chrome works best with the links

Conclusion

The simulation and real results matched

The robot behaves as we expect it to based on the simulation

The robot both avoids the obstacle and reaches the goal

Sources

Course Materials

For the Gradients:

- https://www.sciencedirect.com/science/article/pii/019688589090017S
- https://ecourse.uoi.gr/pluginfile.php/395920/mod_resource/content/17/robot ics_project_grads_2024_B.pdf

