C12 - 4.1 - Degree/Radian Conversion HW

Degrees to Radians:

Radians to Degrees:

$$\frac{180^o}{\pi} = \frac{\pi}{180^o}$$

$$\times\,\frac{\pi}{180^o}$$

$$\times \frac{180^0}{\pi}$$

 π and 180^{o} are the same thing, just in different units

Find θ in radians

$$100^{0}$$

$$0^{0}$$

$$330^{0}$$

Find θ in degrees

$$\frac{\pi}{6_{\it rad}}$$

$$\frac{\pi}{12_{rad}}$$

$$\frac{5\pi}{3}_{rad}$$

$$\frac{3\pi}{5}_{rad}$$

$$\frac{2\pi}{5}_{\it rad}$$

$$\frac{2\pi}{7}_{\it rad}$$

$$3.14_{rad}$$

$$5.12_{rad}$$

$$7_{rad}$$

C12 - 4.1 - Fill in blanks degrees/radians WS

Simplify Fraction below!

Simplify

$$\frac{\pi}{2}$$
, $\frac{2\pi}{2}$, $\frac{3\pi}{2}$, ...,

C12 - 4.2 - Arc Length, Central Angle HW

Don't forget to draw and label the circle!

What is the arc length of a circle with:

A radius of 1 and an angle of 45⁰?

A radius of 5 and an angle of 60° ?

A radius of 4 and an angle of 180°?

What is the arc length of a circle with:

A radius of 1 and an angle of $\frac{\pi}{4}$?

A radius of 5 and an angle of π ?

A radius of 4 and an angle of $\frac{3\pi}{2}$?

What is the central in radians angle with:

A radius of 1 and an arc length of 1?

A radius of 3 and an arc length of 2?

A radius of 5 and an arc length of 12?

C12 - 4.2 - Radius, Sector Area HW

Don't forget to draw and label the circle!

What is the radius of the circle with:

An arc length of 3 and a central angle of $\frac{\pi}{3}$?

An arc length of 3 and a central angle of $\frac{\pi}{3}$?

An arc length of 3 and a central angle of $\frac{\pi}{3}$?

What is the sector area of the circle with:

A radius of 1 and an arc length of 1?

A radius of 3 $\,$ and an arc length of 2?

A radius of 5 and an arc length of 12?

C12 - 4.3 - Sketch, Find θ_r , θ_{stp} HW

Sketch θ_{stp} .

Sketch θ_r

Find θ_r for each θ_{stp}

Find θ_{stp} for each θ_r

C12 - 4.3 - ASTC +/-

Draw 2 triangles in the quadrants for the following statements

 $\cos\theta > 0$

 $\tan \theta > 0$

 $\sin \theta > 0$

 $\cos\theta < 0$

 $\tan \theta < 0$

 $\sin \theta < 0$

Draw a triangle in the quadrant for following statements

 $\cos\theta > 0$ and $\sin\theta < 0$

 $\cos\theta < 0$ and $\tan\theta > 0$

 $tan\theta > 0$ and $sin\theta > 0$

 $\cos\theta < 0$ and $\sin\theta < 0$

 $\cos\theta < 0$ and $\tan\theta < 0$

 $tan\theta < 0$ and $sin\theta > 0$

 $\cos\theta < 0$ and $\sin\theta > 0$

 $\cos\theta > 0$ and $\tan\theta < 0$

 $tan\theta < 0$ and $sin\theta < 0$

Find sinx, cox, and tanx for the following points. And Find the Reference Angle and Angle in Standard Position in radians.

 $\theta_{stp} =$

(-3,-4) \xrightarrow{x} (-5,12) \xrightarrow{x}

 $(2,3) \qquad \uparrow^{y} \qquad (5,-6) \qquad \stackrel{\uparrow}{\longrightarrow}$

C12 - 4.34 - ASTC Unit Circle HW

Find sinx, cox, and tanx for the following points and θ stp.

sinx =

cosx =

tanx =

 $\theta_{stp} =$

(0,3) y

(-5,0)

(0, -99)

C12 - 4.3 - Special Trig Equations HW

Solve for $x, 0 \le x < 2\pi$, answer should say x =

 $sinx = \frac{1}{2}$

$$cosx = \frac{1}{\sqrt{2}}$$

$$cosx = \frac{1}{2}$$

tanx = 1

$$sinx = \frac{1}{\sqrt{2}}$$

$$sinx = \frac{\sqrt{3}}{2}$$

$$\cos x = \frac{\sqrt{3}}{2}$$

$$tanx = \frac{1}{\sqrt{3}}$$

$$tanx = \sqrt{3}$$

$$sinx = -\frac{1}{2}$$

$$cosx = -\frac{1}{\sqrt{2}}$$

$$cosx = -\frac{1}{2}$$

tanx = -1

$$sinx = -\frac{1}{\sqrt{2}}$$

$$sinx = -\frac{\sqrt{3}}{2}$$

$$cosx = -\frac{\sqrt{3}}{2}$$

$$tanx = -\frac{1}{\sqrt{3}}$$

$$tanx = -\sqrt{3}$$

C12 - 4.3 - Decimal Trig Equations HW

Solve for $x, 0 \le x < 2\pi$, answer should say x =

sinx = 0.6

$$cosx = \frac{1}{4}$$

$$cosx = 0.45$$

 $tanx = \frac{4}{5}$

sinx = 0.4

 $sinx = \frac{1}{3}$

cosx = 0.75

 $tanx = \frac{1}{5}$

tanx = 0.35

sinx = -0.1

 $cosx = -\frac{1}{5}$

cosx = -0.65

tanx = -2

sinx = -0.8

 $sinx = -\frac{2}{3}$

cosx = -0.5

tanx = -0.707

C12 - 4.3 - Algebra Special Trig Equations HW

Solve for $x, 0 \le x < 2\pi$

2sinx = 1

 $\sqrt{2}cosx = 1$

 $-2sinx = \sqrt{3}$

2tanx = 2

 $2\cos x = -\sqrt{3}$

 $2sinx = -\sqrt{3}$

 $-\sqrt{2}sinx - 1 = 0$

 $2\cos x + 1 = 0$

tanx - 2 = -3

 $\sin^2 x = \frac{1}{4}$

 $\tan^2 x = 1$

 $4\cos^2 x - 1 = 0$

 $2\sin^2 x + 1 = 0$

C12 - 4.4 - Unit Circle Trig Equations HW

 $Solve for \theta, 0 \le \theta < 2\pi$ $sin\theta = 1$ $sin\theta = -1$ y $tan\theta = und$ x x y $sin\theta = 0$

C12 - 4.4 - Factoring Trig Equations HW

Solve for x, $0 \le x < 2\pi$, *by factoring, then setting factors equal to zero and solve.*

