

FAKULTA ELEKTROTECHNICKÁ KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ **Z FYZIKY**

Jméno			Datum měření
Ondřej Hlav	⁄áček		20. 11. 2024
Semestr		Ročník	Datum odevzdání
Zimní 2024		2.	15. 12. 2024
Studijní skupina		Laboratorní skupina	Klasifikace
3		2011L	
Číslo úlohv	Název úlohy		_

6 Měření na Peltierově článku

1. Obsah:

2.	Úkol měření	3
3.	Seznam použitých přístrojů a pomůcek	3
4.	Tabulky naměřených hodnot, zpracování	4
4.1.	Tabulky naměřených hodnot	4
4.2.	Příklady výpočtu	5
5.	Graf(y)	6
6.	Zhodnocení výsledku měření	8
7.	Seznam použité literatury	8
8.	Kopie záznamu s naměřenými hodnotami	9

2. Úkol měření

Úkolem měření je seznámit se s chováním Peltierova článku ve funkci termoelektrického generátoru (TEG – thermoelectric generator) a chladicího prvku (TEC – thermoelectric cooler). V režimu TEG:

- změřte závislost termoelektrického napětí na teplotě a vyneste ji do grafu,
- z naměřené závislosti vypočtěte Seebeckův koeficient,
- vypočítejte účinnost Peltierova článku v režimu TEG a vypočtenou hodnotu porovnejte s účinností vratně pracujícího tepelného stroje.

V režimu TEC:

• změřte časovou závislost teploty na obou stranách Peltierova článku a vyneste ji do grafu.

3. Seznam použitých přístrojů a pomůcek

- Multimetr Mastech MY65 použit jako DC voltmetr
 - Použitý rozsah: Urange = 20 V
 - o Rozlišení: *U*_{resolution} = 1 mV
 - o Přesnost: $\delta U_{\text{value}} = \pm 0.1 \%$, $N_U = \pm 3 \text{ digity}$
- Multimetr Mastech DC Ampérmetr Mastech MY65
 - Použitý rozsah: Irange = 200 mA
 - Rozlišení: I_{resolution} = 1 mA
 - o Přesnost: $\delta k_{\text{value}} = \pm 0.8 \%$, $N_l = \pm 3 \text{ digity}$
- Teploměr GMH1170
 - Typ sondy: K
 - o Použitý rozsah Δ*T*_{range}: -65 − 199°C
 - Přesnost (T ≥ -60 °C): $\delta T_{value} = \pm 0,05\%$, $\delta T_{range} = \pm 1$ digit
 - Rozlišení: *T_{resolution}* = 0,1 °C
- Peltierův článek
 - Maximální proud $I_{max} = 4 A$
 - \circ Maximální teplota $T_{max} = 100 \, ^{\circ}C$

4. Tabulky naměřených hodnot, zpracování

4.1. Tabulky naměřených hodnot

Níže je uvedena tabulka č. 1 s naměřenými hodnotami času t, napětí U_0 , teploty teplého konce T_H , teploty studeného konce T_S a proudu I_K . V tabulce č. 2 jsou naměřené hodnoty času t, teploty studeného konce T_S a teploty teplého konce T_H pro měření, kdy peltierův článek pracoval jako chladící stroj.

							4
Ţ	ŗ	Peltier jak	o termoe	lektrický o	enerátor		V
l	t	U ₀	T _H	Ts	I _K	ΔΤ	
Ī	(min)	(V)	(°C)	(°C)	(A)	(°C)	
	0	1.322	50.2	22.7	0.440	27.5	
	1	1.125	46.4	22.9	0.384	23.5	
	2	1.057	44.4	22.7	0.360	21.7	
	3	0.981	42.7	22.6	0.332	20.1	
	4	0.916	41.3	22.6	0.312	18.7	
	5	0.854	39.9	22.4	0.292	17.5	
	6	0.802	38.8	22.4	0.281	16.4	
	7	0.749	37.7	22.3	0.258	15.4	
	8	0.705	36.4	22.4	0.250	14.0	
	9	0.659	35.7	22.2	0.231	13.5	
	10	0.620	34.8	22.2	0.214	12.6	
	11	0.588	34.1	22.1	0.205	12.0	
	12	0.546	33.2	22.1	0.195	11.1	
	13	0.520	32.6	22.1	0.181	10.5	
	14	0.490	31.9	21.9	0.175	10.0	
	15	0.465	31.4	21.9	0.162	9.5	

Tabulka 1 - Naměřené hodnoty peltierova čl. jako termoelektrického generátoru

Peltier jako chladící stroj			
t	Ts	T_H	
(min)	(°C)	(°C)	
0	-	-	
1	17,2	27,8	
2	16,2	27,8	
3	15,3	27,7	
4	14,7	27,6	
5	13,9	27,6	
6	13,3	27,5	
7	12,6	27,5	
8	11,9	27,4	
9	11,2	27,4	
10	10,9	27,3	

Tabulka 2 - Naměřené hodnoty peltierova čl. jako chladicího stroje

5.1	

D. III	1.1 . 1 7.	7 . 1
Peltier	jako topící stroj	
t (min)	Ts (°C)	T _H (°C)
0	21,2	21,2
1	18,2	30,4
2	18,3	33,9
3	18,5	35,9
4	18,6	36,5
5	18,8	38,4
6	18,9	39,1
7	19,0	40,4
8	19,2	41,6
9	19,3	42,7
10	19,4	43,7

Tabulka 3 - Naměřené hodnoty peltierova čl. jako topicího stroje

4.2. Příklady výpočtu

a) Peltierův článek jako termoelektrický generátor

Níže jsou výpočty výkonú P_E a P_H a účinnosti peltierova článku η_{TEG} a účinnosti tepelného stroje s vratným teplem η'_{TEG} .

$$P_E = \frac{1}{4} U_0 I_K = \frac{1}{4} \cdot 1,322 \cdot 0,440 = 0,145 W$$

$$P_H = \frac{C_{celk} (T_{H1} - T_{H2})}{t_1 - t_2} = \frac{1121 \cdot (50,2 - 46,4)}{0-60} = 71 W$$

$$\eta_{TEG} = \frac{P_E}{P_H} = \frac{0,145}{71} = 0,002 = 0,2 \%$$

$$\eta'_{TEG} = \frac{T_H - T_S}{T_H} = \frac{50,2-22,7}{273,15 + 50,2} = 0,096 = 9,6 \%$$

5. Graf(y)

a) Peltierův článek v režimu TEG

Níže je uveden graf Závislostí napětí U_T na teplotě ΔT.

$$a_0 = 0.020678 \, K$$

6.2

$$a_1 = \alpha = 0.047503 \, V/K$$

$$\sigma_{a0} = 0.006139$$

$$\sigma_{a1} = 0.000368$$

Výpočet nejistototy seebeckova koeficientu

Z nástroje na tvorbu grafů ze serveru planck byla získána směrnice z $\alpha=0.047503~{
m VK^{-1}}$. Hodnota z nástroje $\sqrt{\frac{\chi^2}{\nu}}=0.0075~{
m byla}$ použita pro vstupní odchylky, tak jak říká návod k nástroji. Poté byla odečtena standardní odchylka

$$\sigma_{a1} = 0.000368 \, \rm VK^{-1}$$

Z té spočteme nejistotu hodnot:

$$u = 3 \cdot \sigma_{a1} = 0.001104 \, \mathrm{VK^{-1}}$$

b) Peltierův článek jako tepelné čerpadlo (Chladí, nebo topí do malé nádobky)

Níže je uveden graf časové závislosti teploty studeného konce T_S a teploty teplého konce T_H. Totožná závislost je uvedena pro měření, kde byl peltierův článek zapojen jako tepelné čerpadlo (Vyhříval izolovanou nádržku)

Graf 2 - Časová závislost Ts a Th

Graf 3 - Časová závislost Ts a TH

6. Zhodnocení výsledku měření

a) Peltierův článek jako TEG

Seebeckův koeficient byl zjištěn:

$$\alpha = (47.503 \pm 1.104) \text{ mVK}^{-1}$$

Účinnost peltierova článku a účinnost vratného tepelného stroje:

$$\eta_{TEG} = \frac{P_E}{P_H} = \frac{0.145}{71} = 0.002 = 0.2 \%$$

$$\eta'_{TEG} = \frac{T_H - T_S}{T_H} = \frac{50,2-22,7}{273,15+50,2} = 0,096 = 9,6\%$$

 b) Peltierův článek jako tepelné čerpadlo Nejmenší teplota byla naměřena 10,9 °C.

7. Seznam použité literatury

- 1. Zadání laboratorní úlohy Stanovení součinitele tepelné vodivosti kovů: https://planck.fel.cvut.cz/praktikum/downloads/navody/peltier.pdf
- 2. Webovy nástroj na kreslení grafů: https://planck.fel.cvut.cz/praktikum/grafy/grafy.php
- 3. Zpracování fyzikálních měření (26. prosince 2020, Milan Červenka) https://planck.fel.cvut.cz/praktikum/downloads/navody/zpracdat.pdf

8. Kopie záznamu s naměřenými hodnotami

Hodnoty byly zadávány přímo do tabulkového editoru MS Excel:

Index komentářů

- 3.1 text v indexu veličin, pokud to není proměnná, a jednotky, se nepíší kurzívou
- 4.1 Veličiny se píší kurzívou, v češtině se používá desetinná čárka.
- 5.1 Hovorové
- 5.2 význam symbolů, indexů
- 6.1 Zokrouhlování.
- 6.2 Není uvedeno a zdůvodněno čím bylo prokládáno, co bylo započteno do nejistot, teorie, význam koeficientů.
- 8.1 Závěr je strohý, v podstatě neobsahuje žádnou větu, výpočty a dosazení do závěru nepatří.
- 8.2 Nejistotu píšeme na dvě platné cifry.