

Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática

Bacharelado em Ciência da Computação

Arquitetura e Organização de Computadores II Aula 10

2. MIPS pipeline: conflitos por dados e adiantamento.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

Conflitos por Dados

Seja o seguite trecho de código, escrito para o MIPS

```
sub $2, $1, $3  # registrador $2 é escrito pela instrução sub
and $12, $2, $5  # primeiro operando ($2) depende de sub
or $13, $6, $2  # segundo operando ($2) depende de sub
add $14, $2, $2  # primeiro e segundo operandos ($2) dependem de sub
sw $15, 100($2)  # base ($2) depende de sub
```

Para estudar as consequências destas dependências quando da execução em pipeline, usar um diagrama de pipeline de múltiplos ciclos.

Conflitos por Dados

ComputaçãoUFPel

slide 10.3

Prof. José Luís Güntzel

Conflitos por Dados

Uma solução seria o compilador evitar sequências de instruções que gerassem conflitos por dados

```
sub
     $2, $1, $3
                    # registrador $2 é escrito pela instrução sub
                    # na falta de instruções que sejam independentes, o
nop
                    # compilador inseriria instruções "nop"
nop
                    # primeiro operando ($2) depende de sub
and
    $12, $2, $5
     $13, $6, $2
                   # segundo operando ($2) depende de sub
or
add $14, $2, $2
                    # primeiro e segundo operandos ($2) dependem de sub
     $15, 100($2) # base ($2) depende de sub
SW
```

Problemas:

- □ Conflitos por dados são muito freqüentes
- □ A inserção de instruções nop causa perda de desempenho!

Conflitos por Dados

Outra solução

- □ Detectar o conflito
- □ Adiantar o resultado da ULA (ou da memória de dados)

Testes para detecção de conflito (uso dos registradores de pipeline):

- 1a) EX/MEM.RegistradorRd = DI/EX.RegistradorRs
- 1b) EX/MEM.RegistradorRd = DI/EX.RegistradorRt
- 2a) MEM/ER.RegistradorRd = DI/EX.RegistradorRs
- 2b) MEM/ER.RegistradorRd = DI/EX.RegistradorRt

Conflitos por Dados

Arquitetura e Organização de Computadores II

Conflitos por Dados

Conflitos por Dados

Conflitos por Dados

Arquitetura e Organização de Computadores II

Conflitos por Dados

ComputaçãoUFPel

slide 10.10

Prof. José Luís Güntzel

Detectando e Resolvendo Conflitos por Dados

1. Conflitos no Estágio EX

```
se (EX/MEM.EscReg = 1
e (EX/MEM.RegistradorRd ≠ 0 )
e (EX/MEM.RegistradorRd = DI/EX.RegistradorRs )) Adianta.A = 10
se (EX/MEM.EscReg = 1
e (EX/MEM.RegistradorRd ≠ 0 )
e (EX/MEM.RegistradorRd = DI/EX.RegistradorRt )) Adianta.B = 10
```

Detectando e Resolvendo Conflitos por Dados

2. Conflitos no Estágio MEM

```
se (EX/MEM.EscReg = 1
e (EX/MEM.RegistradorRd ≠ 0 )
e (MEM/ER.RegistradorRd = DI/EX.RegistradorRs )) Adianta.A = 01
se (EX/MEM.EscReg = 1
e (EX/MEM.RegistradorRd ≠ 0 )
e (MEM/ER.RegistradorRd = DI/EX.RegistradorRt )) Adianta.B = 01
```

Detectando e Resolvendo Conflitos por Dados

Complicação:

 Conflito entre o resultado no estágio ER e o resultado no estágio MEM e o operando-fonte da instrução no estágio da ULA.

```
add $1, $1, $2
```

. . .

Detectando e Resolvendo Conflitos por Dados

2. Conflitos no Estágio MEM

```
se (EX/MEM.EscReg = 1
e (EX/MEM.RegistradorRd ≠ 0)
e (EX/MEM.RegistradorRd ≠ DI/EX.RegistradorRs)
e (MEM/ER.RegistradorRd = DI/EX.RegistradorRs)) Adianta.A = 01
se (EX/MEM.EscReg = 1
e (EX/MEM.RegistradorRd ≠ 0)
e (EX/MEM.RegistradorRd ≠ DI/EX.RegistradorRt)
e (MEM/ER.RegistradorRd = DI/EX.RegistradorRt)) Adianta.B = 01
```

Uso do Simulador DLX

- O processador DLX é um primo-irmão do MIPS, mostrado no outro livro do Patersson-Hennessy (Computer Architecture: A Quantitative Approach. 2nd edition. San Francisco, California: Morgan Kaufmann Publishers, 1996.)
- □ O DLX é capaz de executar todas as instruções do MIPS
- Disponível em ftp://ftp.mkp.com/pub/dlx/
- O arquivo-fonte contendo o programa em simbólico deve ser editado em um editor ascii, sem formatação, e deve receber um nome com extensão ".s"
- O simulador do DLX mostra a progressão das instruções nos estágios do pipeline
- □ Permite visualizar a execução com e sem Unidade de Adiantamento (with or without forwarding)