Homework 11

Problem 1. Prove that the function family

$$\mathcal{H} = \{ h_{a,b} \mid h_{a,b}(x) = a \cdot x + b, a \in \{0,1\}^k, b \in \{0,1\} \}$$

is a pairwise independent hash function family for range $R=\{0,1\}$ and domain $U=\{0,1\}^k$.

Solution. All the computations are under modulo 2.

Lemma. Given $x \in \{0,1\}^k, x \neq 0$, then

$$\Pr_{a \in \{0,1\}^k} (a \cdot x = 0) = \frac{1}{2}.$$

Proof. Assume $x_i = 1$ for some $i \in [0, k-1]$. Then

$$\Pr_{a \in \{0,1\}^k} (a \cdot x = 0) = \Pr_{a_i \in \{0,1\}} (a_i = \sum_{j \neq i} a_j x_j) = \frac{1}{2}.$$

It is easy to verify that

$$\Pr_{a \in \{0,1\}^k, b \in \{0,1\}}(h(x_1) = y_1) = \frac{1}{|R|} = \frac{1}{2},$$

so we only need to prove that, for any two distinct elements $x_1, x_2 \in U = \{0, 1\}^k$, and two (possibly equal) elements $y_1, y_2 \in R = \{0, 1\}$, we have

$$\Pr_{a \in \{0,1\}^k, b \in \{0,1\}} (h_{a,b}(x_1) + b = y_1 \text{ and } h_{a,b}(x_2) + b = y_2) = \frac{1}{4}.$$

This is equivalent to proving that

$$\Pr_{a \in \{0,1\}^k, b \in \{0,1\}} (a \cdot x_1 + b = y_1 \text{ and } a \cdot x_2 + b = y_2) = \frac{1}{4}.$$

Separate a and b as follows:

$$\begin{split} &\Pr_{a \in \{0,1\}^k, b \in \{0,1\}}(h_{a,b}(x_1) = y_1 \text{ and } h_{a,b}(x_2) = y_2) \\ &= \Pr_{a,b}(a \cdot x_1 + b = y_1 \text{ and } a \cdot x_2 + b = y_2) \\ &= \Pr_{a,b}(a \cdot (x_1 \oplus x_2) = y_1 \oplus y_2 \text{ and } b = y_1 \oplus a \cdot x_1) \\ &= \Pr_{a}(a \cdot (x_1 \oplus x_2) = y_1 \oplus y_2) \cdot \Pr_{b}(b = y_1 \oplus a \cdot x_1 \mid a = a_0). \end{split}$$

Homework 11 熊泽恩

Now that $x_1 \oplus x_2 \neq 0$, so by the lemma, we know that

$$\Pr_a(a \cdot (x_1 \oplus x_2) = y_1 \oplus y_2) = \frac{1}{2}.$$

Also, fix $a = a_0$, then $\Pr_b(b = y_1 \oplus a \cdot x_1 \mid a = a_0) = \frac{1}{2}$. Therefore we have

$$\Pr_{a \in \{0,1\}^k, b \in \{0,1\}} (a \cdot x_1 + b = y_1 \text{ and } a \cdot x_2 + b = y_2) = \frac{1}{4},$$

and \mathcal{H} is a pairwise independent hash function family.

Problem 2.

(a) Consider a random walk X_0, X_1, X_2, \ldots on a chain of n+1 vertices $0, 1, \ldots, n$ with the following transition probabilities

$$\Pr(X_t = k | X_{t-1} = j) = \begin{cases} \frac{1}{2} & \text{if } j \in [1, n-1] \text{ and } k = j \pm 1, \\ 1 & \text{if } j = 0, k = 1 \text{ or } j = n, k = n, \\ 0 & \text{otherwise.} \end{cases}$$

Let T_i be the expected number of steps the walk takes to arrive at the end vertex n starting with $X_0 = i$. Prove that $T_i \leq n^2$ for all $i \in [0, n]$.

- (b) Consider the following randomized algorithm for 2-SAT problems of n variables.
 - 1: Choose an arbitrary initial assignment.
 - 2: **for** $t = 1, 2, \dots, 2n^2$ **do**
 - 3: **if** the current assignment is satisfying **then**
 - 4: Accept immediately.
 - 5: **else**
 - 6: Choose an arbitrary clause not satisfied.
 - 7: Sample one of the two literals uniformly at random.
 - 8: Flip the value of the variable in the sampled literal.
 - 9: end if
 - 10: end for
 - 11: Reject if haven't accepted.

Use Markov inequality to show that the algorithm will find a satisfying solution with probability at least $\frac{1}{2}$ given a yes-instance as input.

Homework 11 熊泽恩

Solution. (a)

From the definition of T_i , we have

$$T_i = 1 + \frac{1}{2}T_{i-1} + \frac{1}{2}T_{i+1}, \quad 1 \le i \le n - 1,$$

and

$$T_0 = 1 + T_1, \quad T_n = 1.$$

We can rewrite the above equations as

$$T_i - T_{i-1} = T_{i+1} - T_i + 2 \quad 1 \le i \le n - 1.$$

Summing up the above equations for $i \in [1, n-1]$, we have

$$T_{n-1} - T_0 = T_n - T_1 + 2(n-1).$$

Since $T_0 = 1 + T_1$ and $T_n = 1$, we have

$$T_{n-1} = 2n - 1.$$

Now we will prove that $T_i = n^2 - i^2$ holds for all $i \in [0, n]$ by induction.

- Base case: $T_n = n^2$ and $T_{n-1} = n^2 (n-1)^2 = 2n 1$.
- Inductive step: Suppose that $T_i = n^2 i^2$ holds for all $i \ge k \in [1, n-1]$. Then we have $T_{i-1} = 2T_i T_{i+1} 2 = 2(n^2 i^2) (n^2 (i+1)^2) 2 = n^2 (i-1)^2$.
- Conclusion: By induction, we have $T_i = n^2 i^2$ for all $i \in [1, n]$. Consider the special case i = 0, we have $T_0 = 1 + T_1 = 1 + (n^2 1) = n^2$. Therefore, we have $T_i = n^2 i^2$ for all $i \in [0, n]$.

Hence, $T_i \leq n^2$ for all $i \in [0, n]$.

(b)

Consider the random variable X_i . X_i is the number of steps used to reach the state that i variables have the correct assignments. Suppose we have sampled the literal $l_{i,1}$.

- If it already has the correct value, then after we flip its value, it would be wrong, ending up with the state X_{i-1} .
- If it has the wrong value, then after we flip its value, it would be correct, ending up with the state X_{i+1} .

Homework 11 熊泽恩

Each of the cases above has a probability of $\frac{1}{2}$. Therefore, it is the same procedure as the random walk in part (a).

The target is to have all the n variables assigned with a correct value. And the number of steps to reach the state that all the variables have the correct assignments (i.e. the state X_n), from the state that initially have i correct assignments (i.e. the state X_i), is Y_i . Denote $T_i = \mathbb{E}(Y_i)$ as its expectation.

Then, by Markov inequality, we have

$$\Pr(Y_i \ge 2n^2) \le \frac{\mathbb{E}(Y_i)}{2n^2} = \frac{T_i}{2n^2} \le \frac{n^2}{2n^2} = \frac{1}{2}.$$

Hence, after $2n^2$ steps, the algorithm will find a satisfying solution with probability at least $\frac{1}{2}$ given a yes-instance as input.