

SVM. Часть 2

Воробьёва Мария

- maria.vorobyova.ser@gmail.com
- @SparrowMaria

Задача SVM с жестким зазором (hard-margin SVM)

$$egin{cases} (w^Tw)/2
ightarrow min \ y(w^Tx-b) \geqslant 1 \end{cases}$$

Решается аналитически через теорему Куна-Таккера. Получаемая задача эквивалентна двойственной задаче поиска седловой точки функции Лагранжа.

В итоге мы получаем дефолтную настройку SVM с жестким зазором (hard-margin SVM)

$$egin{cases} (w^Tw)/2
ightarrow min \ y(w^Tx-b) \geqslant 1 \end{cases}$$

Почему именно ≥ 1 ? Это связано с целью максимизации зазора. В задачах SVM с жестким зазором образцы, которые находятся непосредственно на границе, удовлетворяют уравнению $y(w^Tx-b)=1$. Образцы, которые лежат дальше от границы, удовлетворяют неравенству $y(w^Tx-b)>1$.

Пусть алгоритм допускает ошибки на обучающих объектах, но при этом постараемся, чтобы ошибок было поменьше.

 $\xi_i > 0$ - величина ошибки на каждом объекте x_i

$$egin{cases} (w^Tw)/2 + lpha \sum \xi_i
ightarrow min \ y(w^Tx_i - b) \geqslant 1 - \xi_i \ \xi_i \geqslant 0 \end{cases}$$

$$egin{cases} (w^Tw)/2 + lpha \sum \xi_i o min \ y(w^Tx_i-b)\geqslant 1-\xi_i \ \xi_i\geqslant 0 \end{cases}$$
 • w — это вектор весов, • $lpha$ — гиперпараметр, контролирующий баланс между шириной зазора и штрафом за ошибки классификации, • ξ_i — величина мягкого зазора для каждого образца.

$$y_i(w^T x_i - b) \ge 1 - \xi_i$$

- y_i метка класса для і-го образца,
- x_i вектор признаков і-го образца,
- b смещение (bias).

Это ограничение означает, что каждый образец должен быть правильно классифицирован с учетом мягкого зазора ξ_i . Если образец правильно классифицирован, то ξ_i равно нулю. Если образец классифицирован неправильно, то ξ_i будет положительным и отражает степень ошибки.

Таким образом, задача сводится к нахождению такого вектора весов w и смещения b, которые максимизирует $\frac{2}{w \cdot w^T}$ ширины зазора и минимизирует штрафы за ошибки классификации, одновременно удовлетворяя ограничениям на правильную классификацию образцов с учетом мягкого зазора.

$$egin{cases} (w^Tw)/2 + lpha \sum \xi_i
ightarrow min \ y(w^Tx_i - b) \geqslant 1 - \xi_i \ \xi_i \geqslant 0 \end{cases}$$

Формулирование Лагранжевой функции

Мы можем использовать метод множителей Лагранжа для преобразования этой задачи в оптимизацию без ограничений. Лагранжева функция для этой задачи:

$$L(w,b,\xi,lpha,\lambda,\mu) = rac{1}{2}(w^Tw) + lpha \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i [y_i(w^Tx_i - b) - 1 + \xi_i] - \sum_{i=1}^n \mu_i \xi_i$$

где $\lambda_i \geq 0$ и $\mu_i \geq 0$ — множители Лагранжа.

Двойственная задача подробнее http://machinelearning.ru/wiki/images/2/25/SMAIS11_SVM.pdf

В оригинальной (**прямой**) задаче SVM, если **пространство признаков имеет высокую размерность**, оптимизация может быть вычислительно затратной.

Двойственная задача выражается через переменные Лагранжа λ, число которых равно числу обучающих примеров. Это может быть более эффективно для больших наборов данных, особенно если число признаков значительно больше числа примеров.

$$egin{cases} \sum_{i=1}^n \lambda_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j (x_i^T x_j)
ightarrow \max \ \sum_{i=1}^n \lambda_i y_i = 0 \ 0 \leq \lambda_i \leq lpha \end{cases}$$

Функция потерь hinge определяется как:

$$L(y_i, f(x_i)) = \max(0, 1 - y_i \cdot f(x_i))$$

где
$$f(x_i) = w^T x_i - b$$
.

Переменные ξ_i связаны с функцией потерь hinge следующим образом:

$$\xi_i = \max(0, 1 - y_i(w^Tx_i - b))$$

Это выражение говорит нам, что ξ_i представляет собой положительную часть отклонения от идеального случая, когда $y_i(w^Tx_i-b)\geq 1$.

innoboriz

Было:

$$egin{cases} (w^Tw)/2 + lpha \sum \xi_i
ightarrow min \ y(w^Tx_i - b) \geqslant 1 - \xi_i \ \xi_i \geqslant 0 \end{cases}$$

Стало:

$$\min_{w,b} \left(rac{1}{2} \|w\|^2 + lpha \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i - b))
ight)$$

Пояснение исчезновения условий

- 1. Условие $y_i(w^Tx_i-b)\geq 1-\xi_i$:
 - Это условие учитывается в функции потерь hinge. Величина $\max(0,1-y_i(w^Tx_i-b))$ непосредственно соответствует этому условию. Если $y_i(w^Tx_i-b) \geq 1$, то $1-y_i(w^Tx_i-b) \leq 0$, и $\max(0,1-y_i(w^Tx_i-b))=0$. Если $y_i(w^Tx_i-b) < 1$, то $\max(0,1-y_i(w^Tx_i-b))$ будет положительным и отразит отклонение от этого условия.
- 2. Условие $\xi_i \geq 0$:
 - Величина $\max(0,1-y_i(w^Tx_i-b))$ по определению всегда неотрицательна. Это означает, что ξ_i всегда будет больше или равно нулю, и это условие выполняется автоматически.

Алгоритм SVM. Hinge Loss

$$Q(X,w) = lpha \sum_{i=1}^l \max\{0, 1-y_i(\langle x_i,w
angle)\} + \|w\|^2
ightarrow \min_w$$

Hinge loss для одного объекта

Hinge loss штрафует неправильные предсказания, пропорционально их отступу от правильного класса.

Большое значение α :

- hinge loss -> меньше
- точность на обучающей выборке -> больше
 ->риск переобучения

Маленькое значение $\, lpha \,$

- hinge loss -> больше
- точность на обучающей выборке -> меньше
 ->риск недообучения

Алгоритм SVM. Нелинейный случай

Ядро - любая симметричная, положительно полуопределенная матрица K, которая составлена из скалярных произведений пар векторов x_i и x_j :

$$K(x_i, x_j) = \left\langle \phi(x_i) \, | \, \phi(x_j) \right\rangle$$
, характеризующих меру их близости.

Здесь ϕ - произвольная преобразующая функция, формирующая ядро

Предположим, что у нас есть отображение ϕ , которое преобразует исходные признаки x в более высокоразмерное пространство:

$$\phi:\mathbb{R}^n o\mathbb{R}^m$$

где m>n.

Например, пусть x — это двумерный вектор $[x_1,x_2]$. Тогда $\phi(x)$ может быть трехмерным вектором, например, $[x_1,x_2,x_1^2+x_2^2]$.

В новом пространстве задача оптимизации SVM выглядит следующим образом:

$$\min_{w,b} \left(rac{1}{2} \|w\|^2 + lpha \sum_{i=1}^n \max(0, 1 - y_i(w^T \phi(x_i) - b))
ight)$$

То есть можно применить явные преобразования для хі и хј, но это долго, можно применить Kernel Trick.

Вместо того, чтобы вычислять новые координаты в этом пространстве, Kernel Trick позволяет нам вычислять скалярные произведения в этом высокоразмерном пространстве напрямую с помощью ядровых функций.

Предположим, что x — это двумерный вектор $[x_1, x_2]$. Тогда преобразование ϕ может быть, например:

$$\phi(x) = [x_1, x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]$$

$$\phi(x_i)\cdot\phi(x_j)=x_{i1}x_{j1}+x_{i2}x_{j2}+x_{i1}^2x_{j1}^2+x_{i2}^2x_{j2}^2+2x_{i1}x_{i2}x_{j1}x_{j2}$$

Теперь возьмем полиномиальное ядро $K(x_i,x_j)=(x_i\cdot x_j+1)^2$

$$(x_i \cdot x_j + 1)^2 = (x_{i1}x_{j1} + x_{i2}x_{j2} + 1)^2 = x_{i1}^2x_{j1}^2 + 2x_{i1}x_{j1}x_{i2}x_{j2} + x_{i2}^2x_{j2}^2 + 2x_{i1}x_{j1} + 2x_i$$

Когда данные не могут быть линейно разделены в исходном пространстве признаков, мы можем преобразовать их в более высокоразмерное пространство, где они могут стать линейно разделимыми. Вместо того, чтобы вычислять новые координаты в этом пространстве, kernel trick позволяет нам вычислять скалярные произведения в этом высокоразмерном пространстве напрямую с помощью ядровых функций.

$$egin{cases} \sum_{i=1}^n \lambda_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j K(x_i, x_j)
ightarrow \max \ \sum_{i=1}^n \lambda_i y_i = 0 \ 0 \leq \lambda_i \leq lpha \end{cases}$$

линейное ядро $K(x_i, x_j) = x_i^T x_j$

полиномиальное ядро со степенью p, $K(x_i, x_j) = (1 + x_i^T x_j)^p$

гауссово ядро с радиальной базовой функцией (RBF), $K(x_i, x_j) = e^{\gamma ||x_i - x_j||^2}$

сигмоидное ядро, $K(x_i, x_j) = \tanh(\gamma x_i^T x_j + \beta_0)$

