Systemy Mobilne i Bezprzewodowe

laboratorium 12

Bezpieczeństwo i prywatność

Plan laboratorium

- Szyfrowanie,
- Uwierzytelnianie,
- Bezpieczeństwo systemów bezprzewodowych.

na podstawie :

- D. P. Agrawal, Q.-A. Zeng, Introduction to Wireless and Mobile Systems, 2e, Thomson, 2006
- Federal Information Processing Standards Publication, Fips Pub 46 3, Reaffirmed (1999) October 25, http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
- Federal Information Processing Standards Publications (FIPS PUBS) 197, AES, (2001) November 26, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Bezpieczeństwo i prywatność

- Transfer wiadomości w otwartym medium jakim jest przestrzeń powietrzna jest podatny na różne ataki
- Jednym z takich problemów jest "zagłuszanie" przez bardzo silną transmitującą antenę
- Problem można rozwiązać używając metody skakania po częstotliwościach w kolejnych odstępach czasu
- Używa się wielu technik szyfrowania, aby uniemożliwić nieautoryzowanym użytkownikom interpretację sygnałów

Dwie techniki szyfrowania

- Szyfrowanie z kluczem symetrycznym, np.:
 - DES (Data Encryption Standard), szyfr blokowy Feistel'a
 - ► AES (Advanced Encryption Standard), szyfr blokowy, sieć S-P
- Szyfrowanie z kluczem publicznym, np.:
 - RSA (od nazwisk twórców: Rivest, Shamir, Adleman), generator potęgowy

Szyfrowanie z kluczem symetrycznym

- Permutacja bitów przed ich transmisją w uprzednio zdefiniowany sposób – jeden z elementów szyfrowania
- Taka permutowana informacja może być odtworzona z użyciem operacji odwracającej
- Jednym z takich algorytmów jest DES (Data Encrytption Standard)

Funkcja prostej permutacji

Bity informacji przed transmisją oraz po ich otrzymaniu z użyciem DES

57	49	41	33	25	17	9	1	
61	53	45	37	29	21	13	5	
58	50	42	34	26	18	10	2	
62	54	46	38	30	22	14	6	
59	51	43	35	27	19	11	3	
63	55	47	39	31	23	15	7	
60	52	44	36	28	20	12	4	
64	56	48	40	32	24	16	8	

(a) Permutation before transmission

- 8 24 40 56 16 32 48 64 7 23 39 55 15 31 47 63 6 22 38 54 14 30 46 62 5 21 37 53 13 29 45 61 4 20 36 52 12 28 44 60 3 19 35 51 11 27 43 59 2 18 34 50 10 26 42 58 1 17 33 49 9 25 41 57
- (b) Permutation after reception

Szyfrowanie z kluczem symetrycznym

- Złożony schemat szyfrowania polega na transformacji bloków wejściowych w pewną zakodowaną formę
- Zakodowana informacja jest w sposób unikalny zamieniana na informację użyteczną
- Najprostsza transformacja zakłada logiczną lub arytmetyczną operację lub obie operacje

Proces kodowania i dekodowania

Permutacja i kodowanie informacji w DES

Transformacja f (stosująca S-Boxy)

Uwierzytelnianie

- Ma na celu upewnienie się, że użytkownik jest autentyczny
- Używa się funkcji haszującej działającej unikalnym identyfikatorze na związanej z użytkownikiem
- Inne podejście polega na użyciu dwóch związanych ze sobą kluczy (technika szyfrowania z kluczem publicznym)
- Jeden z nich znany jest tylko dla systemu generującego klucz (klucz prywatny), drugi klucz jest używany przy wysyłaniu do świata zewnętrznego (klucz publiczny)
- Algorytm RSA najbardziej znany system z kluczem publicznym

Kroki uwierzytelnienia klucza publicznego/prywatnego

Uwierzytelnianie (Algorytm RSA)

- W algorytmie RSA 2 duże liczby pierwsze (p, q) są wybierane; $n=p^*q$; wybiera się liczbę e w celu użycia (n,e) jako klucza publicznego i jest ona wysyłana do użytkownika.
- Użytkownik przechowuje ją i kiedykolwiek wiadomość m<n ma być wysłana, użytkownik oblicza

i wysyła do systemu. Po otrzymaniu c system oblicza gdzie d jest obliczane na podstawie klucza prywatnego (n,e)

$$c = m^{e}|_{mod n}$$

$$c = m^{e}|_{mod n}$$

$$c^{d}|_{mod n} = (m^{e}|_{mod n})^{d}|_{mod n} = (m^{e})^{d}|_{mod n}$$

$$= m^{ed}|_{mod n}$$

Uwierzytelnianie (Algorytm RSA) c.d.

- Aby miało to wartość równą m, ed musi być równe I
- To oznacza, że e oraz d muszą być .. mod n (lub mod p*q)
- ▶ To może być spełnione jeżeli e jest liczbą pierwszą w stosunku do (p-1)*(q-1)
- Korzystając z tej zalezności można uzyskać oryginalną wiadomość

Uwierzytelnianie wiadomości przy użyciu klucza publicznego/prywatnego

Uwierzytelnianie MS-a przez BS

Bezpieczeństwo systemów bezprzewodowych

- Podstawowe usługi bezpieczeństwa:
 - Poufność tylko autoryzowana strona może mieć dostęp do informacji systemu oraz transmitowanych danych
 - Niezaprzeczalność nadawca i odbiorca nie mogą zaprzeczyć, że transmisja się odbyła
 - Uwierzytelnienie nadawca informacji jest prawidłowo identyfikowany
 - Integralność zawartość wiadomości może być modyfikowana tylko przez autoryzowanego użytkownika
 - Dostępność zasoby są dostępne tylko dla autoryzowanych użytkowników

Bezpieczeństwo systemów bezprzewodowych

- Mechanizmy bezpieczeństwa:
 - Prewencja bezpieczeństwa wymusza bezpieczeństwo w czasie funkcjonowania systemu
 - Detekcja bezpieczeństwa odkrywa próby naruszenia bezpieczeństwa
 - Odtworzenie odtwarzanie systemu do stanu przed naruszeniem bezpieczeństwa

Funkcja kosztu bezpiecznego systemu bezprzewodowego

Kategorie zagrożeń bezpieczeństwa (typy ataków)

Interruption

Modification

Destination

Interception

Fabrication

Bezpieczeństwo bezprzewodowe

- Ataki aktywne gdy ma miejsce modyfikacja danych lub fałszywa transmisja danych
 - Maskarada: dany podmiot pretenduje bycie innym podmiotem
 - Replay: przechwycenie informacji i jej retransmisja w celu wywołania nieautoryzowanego efektu
 - Modyfikacja wiadomości
 - Odmowa usługi (Denial of service DoS)
- Pasywne ataki celem intruza jest uzyskanie informacji (monitorowanie, podsłuchiwanie transmisji)

