

- Robin De Haes
- Mathias Mallinus

THE NETFLIX CHALLENGE DATASET

DATASET OVERVIEW SPARSITY

	Minimum	Maximum	# Distinct Entries
Movie ID	1	17 770	17 770
User ID	1	2 649 429	480 189
Rating	1	5	100 480 507

Density:
$$\frac{100\,480\,507}{17\,770\,\times480\,189} = 0.012$$

4 text files

MovieID1:

CustomerID11,Rating11,Date11 CustomerID12,Rating12,Date12

. .

MovieID2:

CustomerID21,Rating21,Date21 CustomerID22,Rating22,Date22

LOADING THE DATASET

PARSING PIPELINE

PROBE FILE

1 probe file

MovieID1:

CustomerID11

CustomerID12

. .

MovieID2:

CustomerID21

CustomerID22

PROBE MASK

Original Sparse Matrix

	1	2	3	•••	480189
1	1	5	4		
2		2	1		2
3			1		
	3				
17769		3			
17770			1		

Index-based Mask

	1	2	3	•••	480189
1		1			
2		1			1
3					
•••					
17769					
17770			1		

PROBE OVERVIEW

	# Movie IDs	# User IDs	# Ratings	% of Full Dataset
Training	17 770	480 189	9 907 112	98.6
Test	16 938	462 858	1 408 395	1.4
Full	17 770	480 189	100 480 507	100

RANDOM SAMPLING

Original Sparse Matrix

	1	2	3	•••	480189
1	1	5	4		
2		2	1		2
3			1		
	3				
17769		3			
17770			1		

Test Sparse Matrix

	1	2	3	•••	480189
1		5			
2		2			2
3					
•••					
17769					
17770			1		

DIMSUM

SINGULAR VALUE DECOMPOSITION

DIMSUM APPROACH

$$A^T A = V \Sigma^2 V^T$$

- Map-reduce approximation for scalability on tall skinny matrices
- Importance sampling for safeguarding singular values

$DIMSUMMapper(r_i)$

for all pairs
$$(a_{ij}, a_{ik})$$
 in r_i do With probability

$$\min\left(1, \frac{1}{||c_j|| ||c_k||}\right)$$

emit
$$((c_j, c_k) \to a_{ij} a_{ik})$$

end for

DIMSUMReducer
$$((c_i, c_j), \langle v_1, \dots, v_R \rangle)$$

if
$$\frac{\gamma}{||c_i||||c_j||} > 1$$
 then
output $b_{ij} \to \frac{1}{||c_i||||c_j||} \sum_{i=1}^R v_i$

else

output
$$b_{ij} \to \frac{1}{\gamma} \sum_{i=1}^{R} v_i$$

end if

GRADIENT DESCENT WITH LATENT FACTORS

SINGULAR VALUE DECOMPOSITON

LATENT FACTORS

• $A = U\Sigma V^T = QP^T$

• Q = U: latent movie information

• $P^T = \Sigma V^T$: latent user information

• $Q_m P_u^T$: predicted rating for movie m by user u

_	1	2	3
1			
•••			
m			
•••			
17770			

	1	•••	u	•••	480189
1					
2					
3					

 \mathbf{P}^{T}

	1	•••	u	•••	480189
1	1	5	4		
•••		2	1		2
m			1		
	3				
17770			1		

Q

GRADIENT DESCENT

ITERATIVE REFINEMENT

- Objective function: $\min_{p,q} \sum_{(m,u) \in K} (r_{mu} q_m p_u)^2 + \lambda (\|q_m\|^2 + \|p_u\|^2)$
- Stochastic gradient descent (with random shuffling)
- Batch gradient descent
- Hyperparameters
 - Regularization parameter λ
 - Learning rate η
 - # epochs (2-5)
 - # latent factors K

STOCHASTIC GRADIENT DESCENT

IMPACT OF K

GRADIENT DESCENT

COMPARISON OF SGD AND BGD

Hyperparameters

•
$$K = 50$$

•
$$\lambda = 0.01$$

• *SGD*:
$$\eta = 10^{-5}$$

• BGD: $\eta = 0.1/|dataset|$

- [1] BellKor's Pragmatic Chaos Wins \$1 Million Netflix Prize by Mere Minutes. (2009). Retrieved May 31, 2022, from https://www.wired.com/2009/09/bellkors-pragmatic-chaos-wins-1-million-netflix-prize
- [2] Zadeh, R. B., & Carlsson, G. (2013). Dimension independent matrix square using mapreduce. arXiv preprint arXiv:1304.1467.
- [3] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37.

QUESTIONS?