离散数学(2023)作业05-函数及其运算

March 20, 2023

Problem 1

- 1. 否。f(n) 不是函数。
- 2. 是。
- 3. 否。f(n) 是函数,但 $f(2) \notin \mathbf{R}$ 。

Problem 2

- 1. 是
- 2. 不是
- 3. 不是
- 4. 是

Problem 3

(因为 f 不是 $\mathbf{R} \to \mathbf{R}$ 上的一一映射,所以不存在反函数。此处 f^{-1} 代表逆像。)

- 1. $\{-1,1\}$
- 2. $\{x | -1 < x < 0 \lor 0 < x < 1\}$
- 3. $\{x|x > 2 \lor x < -2\}$

Problem 4

- 1. 通过证明 f 是单射且满射即证明 f 是可逆的:
 - 单射: $\forall x_1, x_2 \in \mathbf{R}$ 且 $x_1 \neq x_2$,假设 $f(x_1) = f(x_2)$,即 $ax_1 + b = ax_2 + b$ 。由于 $a \neq 0$,得 出 $x_1 = x_2$ 。矛盾,f 是单射得证。
 - 满射: $\forall y \in \mathbf{R}$, 都能找到 $x = \frac{y-b}{a} \in \mathbf{R}$ 使得 f(x) = y。 f 是满射得证。
- 2. f 的反函数: $f^{-1}(x) = (x-b)/a$

Problem 5

- 1. 定义域为 $\mathbf{Z}^+ \times \mathbf{Z}^+$, 值域为 \mathbf{Z}^+ 。
- 2. 定义域为所有位串的集合,值域为 N。
- 3. 定义域为所有位串的集合,值域为 N。
- 4. 定义域为 **Z**⁺, 值域为 {0,1,2,3,4,5,6,7,8,9}。

Problem 6

- 1. 是
- 2. 是
- 3. 是
- 4. 不是
- 5. 不是

Problem 7

- 证明 f 是单射 $\to f$ 是满射: f 是单射,则 |f(A)| = |A|,由 |A| = |B| 推出 |f(A)| = |B|。又因 为 $f(A) \subseteq B$,所以 f(A) = B,即 f 是满射。
- 证明 f 是满射 $\to f$ 是单射: 反证,假设 f 不是单射,则 $\exists x_1, x_2 \in A, f(x_1) = f(x_2)$,此时有 $f(A \{x_1\}) = B$ 。因为 A 不是单射,则 $|A \{x_1\}| \ge |B|$,与 |A| = |B| 矛盾。

综上, f 是单射当且仅当它是满射。

Problem 8

• 证明若 $f \circ g = I_Y$, $g \circ f = I_X$ 则 $f^{-1} = g$, $g^{-1} = f$:

 I_X 为双射,则 $g \circ f$ 为双射,f 为单射,g 为满射。同理可知 g 为单射 f 为满射。于是 f 和 g 都为双射,存在反函数。所以 $f^{-1} = g$, $g^{-1} = f$ 。

• 证明若 $f^{-1} = g$, $g^{-1} = f$, 则 $f \circ g = I_Y$, $g \circ f = I_X$:

对任意 $x \in X$, 有 $f(x) = g^{-1}(x) = y \in Y$, 即 f(x) = y, g(y) = x。故 $g \circ f(x) = g[f(x)] = g(y) = x = I_X(x)$ 。 $g \circ f = I_X$ 。反之同理。

综上得证。

Problem 9

- 1. 分别证明 $f(S \cup T) \subseteq f(S) \cup f(T)$ 和 $f(S) \cup f(T) \subseteq f(S \cup T)$:
 - 对于 $\forall y \in f(S)$, $\exists x \in S$ 使得 $f(x) = y \in f(S)$ 。因为 $S \subseteq S \cup T$,所以 $x \in S \cup T$,于是 $f(x) = y \in f(S \cup T)$ 。因此 $f(S) \subseteq f(S \cup T)$ 。同理可得 $f(T) \subseteq f(S \cup T)$ 。综上, $f(S) \cup f(T) \subseteq f(S \cup T)$ 。
 - 对于 $\forall y \in f(S \cup T)$, $\exists x \in S \cup T$ 使得 $f(x) = y \in f(S \cup T)$ 。如果 $x \in S$,则 $y = f(x) \in f(S)$,因此 $y \in f(S) \cup f(T)$;如果 $x \in T$,则 $y = f(x) \in f(T)$,因此 $y \in f(S) \cup f(T)$ 。综上可得 $y \in f(S) \cup f(T)$,即 $f(S \cup T) \subseteq f(S) \cup f(T)$ 。
- 2. 对于 $\forall y \in f(S \cap T)$, $\exists x \in S \cap T$ 使得 $f(x) = y \in f(S \cap T)$ 。因为 $x \in S \cap T$,所以 $x \in S$ 且 $y \in T$ 。因为 $x \in S$,所以 $y = f(x) \in f(S)$;因为 $x \in T$,所以 $y = f(x) \in f(T)$ 。综上 $y \in f(S) \cap f(T)$,即 $f(S \cap T) \subseteq f(S) \cap f(T)$ 。

Problem 10

$$f^{-1}(\bar{S}) = \{x \subseteq A | f(x) \not\subseteq S\}$$
$$= \overline{\{x \subseteq A | f(x) \subseteq S\}}$$
$$= \overline{f^{-1}(S)}$$