刘涛华

博客园 首页 新随笔 联系 订阅 管理

公告

昵称: Liutaohua

园龄: 6个月 粉丝: 1

关注: 0 +加关注

< 2020年6月

2020年6月

日一二三四五六

31 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 1 2 3 4

5 6 7 8 9 10 11

搜索

找找看

谷歌搜索

常用链接

我的随笔

我的评论

我的参与

最新评论

我的标签

我的标签

IoTDB(5)

数据库(5)

时序数据(4)

物联网(4)

行式数据库(3)

TsFile(3)

车联网(3)

列式数据库(3)

随笔 - 5 文章 - 0 评论 - 4

时序数据库 Apache-IoTDB 源码解析之文件索引块(五)

上一章聊到 TsFile 的文件组成,以及数据块的详细介绍。详情请见:

时序数据库 Apache-IoTDB 源码解析之文件数据块(四)

打一波广告,欢迎大家访问<u>IoTDB 仓库</u>,求一波 Star。

这一章主要想聊聊:

- 1. TsFile索引块的组成
- 2. 索引块的查询过程
- 3. 索引块目前在做的改进项

索引块

索引块由两大部分组成,其写入的方式是从左到右写入,也就是从文件头向文件尾写入。但读出的方式是先读出TsFileMetaData 再读出TsDeviceMetaDataList 中的具体一部分。我们按照读取数据的顺序介绍:

TsFileMetaData

TsFileMetaData属于文件的 1 级索引,用来索引 Device 是否存在、在哪里等信息,其中主要保存 了:

InfluxDB(2)

数据库性能(2)

随笔档案

2020年2月(5)

最新评论

1. Re:时序数据库 Apache-IoTDB 源码解析 之文件数据块(四)

楼主您好,我刚接触这个数据库一天 安装的 时候有个问题卡住了 能加个微信吗。指点一 下

--Smile_灰太狼

- 2. Re:时序数据库 Apache-IoTDB 源码解析 之文件数据块(四)
- @daconglee 目前没有...

--Liutaohua

3. Re:时序数据库 Apache-IoTDB 源码解析 之文件数据块(四)

有C#的读写代码吗?

--daconglee

4. Re:时序数据库 Apache-IoTDB 源码解析 之前言(一)

有C#的读写代码吗?

--daconglee

阅读排行榜

- 1. 时序数据库 Apache-IoTDB 源码解析之 文件索引块(五)(312)
- 1. 时序数据库 Apache-IoTDB 源码解析之系统架构(二)(227)
- 3. 时序数据库 Apache-IoTDB 源码解析之 前言(一)(200)
- 4. 时序数据库 Apache-IoTDB 源码解析之 文件数据块(四)(152)
- 5. 时序数据库 Apache-IoTDB 源码解析之

- 1. DeviceMetaDataIndexMap: Map结构, Key 是设备名, Value 是TsDeviceMetaDataIndex,保存了包含哪些 Device(逻辑概念上的一个集合一段时间内的数据,例如前几章我们讲到的:张三、李四、王五)以及他们的开始时间及结束时间、在左侧 TsDeviceMetaDataList文件块中的偏移量等。
- 2. MeasurementSchemaMap: Map结构, Key 是测点的一个全路径, Value 是 measurementSchema ,保存了包含的 测点数据(逻辑概念上的某一类数据的集合, 如体温数据)的原信息,如:压缩方式,数 据类型,编码方式等。
- 3. 最后是一个布隆过滤器,快速检测某一个时间序列是不是存在于文件内(这里等聊到 server 模块写文件的策略时候再聊)。我们知道这个过滤器的特点就是:没有的一定没有,但有的不一定有。为了保证准确性和过滤器序列化后的大小均衡,这里提供了一个1%-10%错误率的可配置,当为1%错误率时,保存1万个测点信息,大概是11.7 K。

我们再回想 SQL: SELECT 体温 FROM 王五 WHERE time = 1。读文件的过程就应该是:

- 1. 先用布隆过滤器判断文件内是否有王五的体温列,如果没有,查找下一个文件。
- 2. 从 DeviceMetaDataIndexMap 中找到王 五的 TsDeviceMetaDataIndex ,从而得 到了王五的 TsDeviceMetadata 的 offset,接下来就寻道至这个 offset 把王 五的 TsDeviceMetadata 读出来。
- 3. MeasurementSchemaMap 不用关注, 主要是给 Spark 使用的,ChunkHeader 中也保存了这些信息。

文件格式简介(三)(125)

评论排行榜

- 1. 时序数据库 Apache-IoTDB 源码解析之 文件数据块(四)(3)
- 2. 时序数据库 Apache-IoTDB 源码解析之 前言(一)(1)

TsDeviceMetaDataList

TsDeviceMetaDataList 属于文件的 2 级索引,用来索引具体的测点数据是不是存在、在哪里等信息。其中主要保存了:

- 1. ChunkGroupMetaData: ChunkGroup的索引信息,主要包含了每个ChunkGroup数据块的起止位置以及包含的所有的测点元信息(ChunkMetaData)。
- 2. ChunkMetaData: Chunk 的索引信息, 主要包含了每个设备的测点在文件中的起止 位置、开始结束时间、数据类型和预聚合信息。

上面的例子中,从 TsFileMetadata 已经拿到了 王五的 TsDeviceMetadataIndex,这里就可以 直接读出王五的 TsDeviceMetadata,并且遍历 里边的 ChunkGroupMetadata 中的 ChunkMetadata,找到体温对应的所有的 ChunkMetadata。通过预聚合信息对时间过滤, 判断能否使用当前的 Chunk 或者能否直接使用预 聚合信息直接返回数据(等介绍到 server 的查询 引擎时候细聊)。

如果不能直接返回,因为 ChunkMetaData 包含了这个 Chunk 对应的文件的偏移量,只需要使用 seek(offSet)就会跳转到数据块,使用上一章介绍的读取方法进行遍历就完成了整个读取。

预聚合信息(Statistics)

文中多次提到了预聚合在这里详细介绍一下它的数据结构。

// 所属文件块的开始时间
private long startTime;
// 所属文件块的结束时间
private long endTime;
// 所属文件块的数据类型

```
private TSDataType tsDataType;

// 所属文件块的最小值
private int minValue;

// 所属文件块的最大值
private int maxValue;

// 所属文件块的第一个值
private int firstValue;

// 所属文件块的最后一个值
private int lastValue;

// 所属文件块的所有值的和
private double sumValue;
```

这个结构主要保存在 ChunkMetaData 和 PageHeader 中,这样做的好处就是,你不必从 硬盘中读取具体的Page 或者 Chunk 的文件内容 就可以获得最终的结果,例如: SELECT SUM(体温) FROM 王五 ,当定位到 ChunkMetaData 时,判断能否直接使用这个 Statistics 信息(具体怎么判断,之后会在介绍 server 时具体介绍),如果能使用,那么直接返回 sumValue。这样返回的速度,无论存了多少数据,它的聚合结果响应时间简直就是 1 毫秒以内。

样例数据

我们继续使用上一章聊到的示例数据来展示。

时间戳	人名	体温	心率
15809 50800	王五	36.7	100
15809 50911	王五	36.6	90

完整的文件信息如下:

POSITION	CONTENT	
0	[magic head]	

```
TsFile
                  61
                      [version num
ber] 000002
                   // 数据块开始
] of wangwu begins at pos 12, ends a
t pos 253, version:0, num of Chunks:
2
                 12|
                      [Chunk] of x
inlv, numOfPoints:1, time range:[158
0950800,1580950800], tsDataType:INT3
2,
                       [minValue:10
0,maxValue:100,firstValue:100,lastVa
lue:100,sumValue:100.0]
                               [mar
ker] 1
                               [Chu
nkHeader1
                               1 pa
ges
                121|
                      [Chunk] of t
iwen, numOfPoints:1, time range:[158
0950800,1580950800], tsDataType:FLOA
Τ,
                       [minValue:36
.7, maxValue:36.7, firstValue:36.7, las
tValue:36.7, sumValue:36.700000762939
45]
                               [mar
ker] 1
                               [Chu
nkHeader]
                               1 pa
ges
                      [Chunk Group
                230
Footerl
```

```
[mar
ker] 0
                                [dev
iceID] wangwu
                                [dat
aSize] 218
                                [num
of chunks] 2
[Chunk Group
] of wangwu ends
                   // 索引块开始
                2531 [marker] 2
                254|
                       [TsDeviceMet
adata] of wangwu, startTime:15809508
00, endTime:1580950800
                                [sta
rtTime] 1580950800
                                [end
Timel 1580950800
                                [Chu
nkGroupMetaData] of wangwu, startOff
set12, endOffset253, version:0, numb
erOfChunks:2
[ChunkMetaData] of xinlv, startTime:
1580950800, endTime:1580950800, offs
etOfChunkHeader:12, dataType:INT32,
statistics:[minValue:100,maxValue:10
0,firstValue:100,lastValue:100,sumVa
lue:100.01
[ChunkMetaData] of tiwen, startTime:
1580950800, endTime:1580950800, offs
etOfChunkHeader:121, dataType:FLOAT,
statistics:[minValue:36.7,maxValue:
36.7, firstValue: 36.7, lastValue: 36.7,
sumValue:36.700000762939451
```

```
446|
                        [TsFileMetaD
ata]
                                 [num
of devices] 1
[TsDeviceMetadataIndex] of wangwu, s
tartTime: 1580950800, endTime: 1580950
800, offSet:254, len:192
                                 [num
of measurements] 2
                                 2 ke
y&measurementSchema
                                 [cre
ateBy isNotNull] false
                                 [tot
alChunkNum] 2
                                 [inv
alidChunkNum] 0
                    //布隆过滤器
                                 [blo
om filter bit vector byte array leng
th] 30
                                 [blo
om filter bit vector byte array]
                                 [blo
om filter number of bits] 256
                                 [blo
om filter number of hash functions]
5
                         [TsFileMetaD
                 599|
ataSize] 153
                 603|
                         [magic tail]
TsFile
                 609|
                        END of TsFil
e
当执行: SELECT 体温 FROM 王五 时:
```

- 1. 从 599 开始读, 1 级索引长度为 153.
- 2. 599 153 = 446 就是 1 级索引读开始 位置,并读出 TsDeviceMetadataIndex of 王五,其中记录了,王五设备的 2 级索 引的 offset 为 254.
- 3. 跳到 254 开始读 2 级索引,找到 ChunkMetaData of 体温, 其中记录了体 温数据的 Chunk 的offset 为 121
- 4. 跳到 121 ,这里进入了数据块,从 121 读取到 230 ,读出的数据就全部是体温数据。

改进项

1. 只读投影列

前面第 3 步中,读取 2 级索引时候,会将这个设备下的所有测点数据全部读出来,这依然不太符合只读投影列的设计,所以在新的 TsFile 中,修改了 1级索引和 2 级索引的部分结构,使得读出的数据更少,更高效。有兴趣的同学可以关注 PR: Refactor TsFile #736

2. 文件级 Statistics

在物联网场景中经常会涉及到查询某个设备的最后状态,比如:车联网中,查询车辆的末次位置(SELECT LAST(lat,lon) FROM VechicleID),或者当前的点火、熄火状态等 SELECT LAST(accStatus) FROM VechicleID。

或者当某些分页查询等情况时候,经常会使用到 COUNT(*)等操作,这些都非常符合 Statistics 结构,这些场景涉及到的索引设计也都会体现到新的 TsFile 索引改动中。

到此已经介绍完了文件的整体结构,了解了大体的写入和读取过程,但是 TsFile 的 API 是如何设计的,怎样在代码里做一些特殊的功课,来绕过 Java 装箱、GC 等问题呢? 欢迎持续关

注。。。。

标签:列式数据库,车联网,TsFile,IoTDB,时序数据,数据库,数据库性能,物联网,行式数据库

关注我

收藏该文

0

<u>Liutaohua</u> <u>关注 - 0</u> 粉丝 - 1

+加关注

0

« 上一篇: 时序数据库 Apache-IoTDB 源码解析之文件数据块(四)

posted @ 2020-02-14 14:55 Liutaohua 阅读 (312) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请 登录 或 注册, 访问 网站首页。

【推荐】超50万行VC++源码:大型组态工控、电力 仿真CAD与GIS源码库

【推荐】独家下载 |《大数据工程师必读手册》揭秘 阿里如何玩转大数据

相关博文:

- ·时序数据库Apache-IoTDB源码解析之文件索引...
- ·时序数据库Apache-IoTDB源码解析之文件数据...
- ·时序数据库Apache-IoTDB源码解析之文件格式...
- ·时序数据管理引擎ApacheIoTDB
- ·solr创建索引源码解析
- » 更多推荐...

最新 IT 新闻:

- · GitHub 开源 Super Linter,用自动化解决开发者的需求
- ·量子计算机领域内第一种高级编程语言 Silq 诞生
- · 微软正式推出 gRPC-Web for .NET
- · Visual Studio Code 6 月 Python 扩展更新
- · 再见 Python, 你好 Julia!
- » 更多新闻...