Name:	ID:
-------	-----

Write 1–3 sentences for each short answer. Answer in English, not R code. Explain any pictures you draw. Try to answer every question to maximize partial credit.

- 1. [12 pts] For each of the items below, give a short definition and a specific example.
 - a) numerical data

c) mosaic plot

b) ordinal data

- d) function
- 2. [12 pts] The density plot below shows the arrival performance of two bus lines. Answer each question and *justify your answers* by pointing out details from the plot.

- a) Which distribution is more spread out?
- b) Which bus is more likely to be more than 2 minutes late?
- c) Suppose both buses are more than 2 minutes late. Which bus is more likely to arrive first?
- 3. [12 pts] The table below shows body weight statistics (in pounds) for three groups of cats, each fed a different kind of food.

	Р			
Food	$\overline{25 \mathrm{th}}$	50th	75th	Mean
Cruncy Chicken	8.0	12.0	15.0	6.4
Smokey Salmon	7.5	9.4	12.0	9.6
Tasty Tuna	8.4	8.9	9.3	14.0

- a) Which group has the widest distribution of body weights?
- b) Do any of the groups appear to contain outliers? How can you tell?
- c) If someone wants their cat to stay slender, which food is best? Why?
- 4. [8 pts] Explain what it means for a statistic to be "robust."

- 5. [12 pts] Sketch a box plot and label each of the items below.
 - a) median

c) 25th quantile

b) upper whisker

- d) outlier
- 6. [12 pts] The table below shows a data frame named cars. For each command listed, write down the result if the command is valid or "error" if the command is not valid.

>	cars			
	vehicle	mpg	hp	weight
1	Camaro Z28	13.3	245	3.84
2	Valiant	18.1	105	3.46
3	Duster 360	14.3	245	3.57
4	Maserati Bora	15.0	335	3.57
5	Pontiac Firebird	19.2	175	3.85

- a) subset(cars, hp <= 200)
- c) cars[3]

b) cars[2, 1]

- d) cars[3,]
- 7. [12 pts] For each of the pairs of variables below, suggest an appropriate plot to determine whether there's a relationship between them.
 - a) age (years) and class level (freshman, sophomore, ...)
 - b) time (days) and price (dollars)
 - c) vehicle type (car, truck, ...) and vehicle color (red, blue, ...)
- 8. [20 pts] The plots below show Richter scale magnitude versus depth in kilometers for earthquakes (left) and tsunami (right). Identify five formatting problems and explain how each could be corrected.

