Alzheimers Disease Dataset

Henrique Z. Grande, João G. Pitol, Lucas B. Shuck, Rafael V. Serenato

Overview and Estatistical Description

O dataset representa um conjunto de informações sobre a saúde de 2149 pacientes idosos que estão separados em duas categorias, os que tem diagnósticos positivos para Alzheimer e os que não tem.

As principais colunas do data set são:

Age: Idade dos pacientes.

Gender: Sexo dos pacientes.

AlcoholConsumption: Nível de consumo de álcool.

Smoking: Presença do habito de fumar.

MMSE: Pontuação do teste de "Mini Exame do Estado Mental".

MemoryComplaints: Presença de reclamações de problema de memória.

BehavioralProblems: Presença de problemas de comportamento.

FunctionalAssessment: Pontuação no teste de capacidade de realizar atividades cotidianas.

ADL: Pontuação no teste de capacidade de realizar básicas de autocuidado.

Diagnosis: Diagnóstico da doença Alzheimer.

Overview and Estatistical Description

Nosso problema é um problema de classificação representado pela nossa variável target 'Diagnosis', que indica a presença ou não da doença Alzheimer nos pacientes e está distribuída de maneira desigual pela base.

Nosso dataset possui a seguinte estrutura:

Instancias: 2149

Variáveis: 33

Classes da variável target: 2

Variáveis numéricas float: 12

Variáveis numéricas inteiros: 3

Variáveis categóricas: 18

Analise da distribuição da variável categórica 'Diagnosis' que indica se o paciente tem ou não a doença Alzheimer diagnosticada.

Pelo gráfico é possível notar que a distribuição desta variável é desbalanceada, sendo 64.6% dos casos um diagnóstico negativo e apenas 35.4% um diagnóstico positivo.

Analise da distribuição da variável numérica 'Age' que indica a quantidade de pacientes por idade presentes no Dataset.

Pelo gráfico é possível notar que a distribuição desta variável é bem uniforme indo dos 60 aos 90 anos sendo a média de idade um pouco abaixo de 75 anos e existindo uma leve concentração de pessoas com 90 anos.

Média: 74,91 | Mediana: 75,0 | Desvio: 8,99

Assimetria: Próximo de 0, simétrica.

Curtose: Platicúrtica.

Analise da distribuição da variável categórica 'Gender' que indica o sexo biológico do paciente.

Pelo gráfico é possível notar que a distribuição desta variável é praticamente igualitária, sendo 49.4% dos pacientes homens e 50.6% mulheres.

Analise da distribuição da variável numérica 'FunctionalAssessment' que indica a pontuação dos pacientes no teste que mede a capacidade de realizar tarefas cotidianas.

Pelo gráfico é possível notar que a distribuição desta variável é bem uniforme tendo pacientes com notas de 0 até 10 sendo a média de pontuação 5.

Média: 5,08 | Mediana: 5,09 | Desvio : 2,89

Assimetria: Próximo de 0, simétrica.

Curtose: Platicúrtica.

Analise da distribuição da variável numérica 'ADL' que indica a pontuação dos pacientes no teste que mede a capacidade de realizar tarefas fundamentais relacionadas a auto cuidado.

Pelo gráfico é possível notar que a distribuição desta variável é bem uniforme tendo pacientes com notas de 0 até 10 sendo a média de pontuação 5.

Média: 4,98 | Mediana: 5,04 | Desvio: 2,95

Assimetria: Próximo de 0, simétrica.

Curtose: Platicúrtica.

Multivariate Data Analysis

Analise da distribuição de pontuação dos testes de 'FunctionalAssessment' por classe da variável target 'Diagnosis'.

Pelo gráfico é possível notar que a distribuição da pontuação deste teste nos diagnósticos negativos tem uma concentração acima da média com muitas pontuações altas, já nos diagnósticos positivos é possível identificar uma alta concentração de pontuações abaixo da média.

Distribuição da pontuação do teste de Functional Assessment por diagnóstico

Multivariate Data Analysis

Analise da distribuição de pontuação dos testes de 'ADL' por classe da variável target 'Diagnosis'.

Pelo gráfico é possível notar que a distribuição da pontuação deste teste nos diagnósticos negativos tem uma concentração acima da média com várias pontuações altas, já nos diagnósticos positivos é possível identificar uma alta concentração de pontuações abaixo da média.

Multivariate Data Analysis

Analise da quantidade pacientes com pontuações abaixo da média nos testes de 'ADL' e 'FunctionalAssessment' por classe da variável target 'Diagnosis'.

Pelo gráfico baseado em uma nova variável criada para representar um 'grupo de risco' relacionado a agregação de notas baixas é possível notar que 78.7% dos pacientes que apresentam pontuações abaixo da média nos 2 testes simultaneamente tem Alzheimer enquanto no outro caso apenas 20.3% deles apresentam diagnóstico positivo, além disso também é possível concluir que a maioria dos pacientes de toda a base com diagnósticos positivos tem notas abaixo da média nos 2 testes, evidenciando mais uma vez este 'grupo de risco'.

Effective Data Visualization

Mudanças feitas:

Título descrevendo a ideia do gráfico e em negrito, com formatação melhorada.

Aumento do tamanho do boxplot, aumentando a área para a distribuição dos scatterplots facilitando a visualização das concentrações.

Rótulos dos eixos foram traduzidos, ajustados para facilitar entender o que estão descrevendo e estão em negrito.

Distribuição da pontuação no Functional Assessment por diagnóstico

Effective Data Visualization

Mudanças feitas:

Título descrevendo a ideia do gráfico e em negrito, com formatação melhorada.

Aumento do tamanho do boxplot, aumentando a área para a distribuição dos scatterplots facilitando a visualização das concentrações.

Rótulos dos eixos foram traduzidos, ajustados para facilitar entender o que estão descrevendo e estão em negrito.

Distribuição da pontuação no ADL por diagnóstico

Effective Data Visualization

Mudanças feitas:

Título descrevendo a ideia do gráfico e em negrito, com formatação melhorada.

Números absolutos e porcentagens presentes nas barras foram colocados em negrito para melhor visualização.

Rótulos dos eixos foram traduzidos, ajustados para facilitar entender o que estão descrevendo e estão em negrito.

Pontuações abaixo da média nos testes ADL e Functional Assessment simultaneamente indicam maior chance de diagnóstico positivo.

Pontuações em relação as médias

Data Selection

Não foram aplicadas técnicas de seleção de dados neste trabalho, pois a base não exibe dados que possam ser considerados antiéticos ou ilegais uma vez que apenas expõe dados médicos, socio demográficos e comportamentais de maneira anonimizada, sem expor nenhum paciente.

Também não aplicamos técnicas de redução de dimensionalidade nem de seleção de atributos, uma vez que nossa base apresenta poucas variáveis e todas possuem algum grau de relevância quando relacionadas com a variável target.

Data Processing

Nesta etapa foram aplicadas técnicas de padronização dos dados e técnicas de balanceamento da variável target que tem uma distribuição de 65% negativo e 35% positivo.

Para a variável target foi usado um LabelEncoder simples trocando o 'negative' para 0 e 'positive' para 1.

Para as variáveis numéricas foi aplicado o StandardScaler deixando os dados numéricos com uma média próxima a 0 e um desvio padrão próximo a 1.

Para as variáveis categóricas nominais utilizamos o OneHotEncoder para que nenhuma ordem artificial seja induzida e para variáveis categóricas ordinais utilizamos o OrdinalEncoder para mantermos a ordem de relevância existente neste tipo de variável.

Data Processing

Após a padronização dos dados dividimos a base em treino e teste mantendo a proporção original da variável target em cada fold utilizando o StratifiedKFolds utilizando 10 Folds e o random_state = 42.

Com a divisão feita aplicamos 4 técnicas de balanceamento abaixo, apenas na divisão de treino de cada fold.

Random Over Sampling (ROS): Que faz a duplicação aleatória de instancias da classe minoritária.

SMOTE (Synthetic Minority Over-sampling Technique): Que cria instancias sintéticas da classe minoritária em uma zona segura.

Random Under Sampling (RUS): Que faz a remoção aleatória de instancias da classe majoritária.

NearMiss (versão 1): Que seleciona instancias majoritárias com base em distancia mínima as minoritárias.

		Treino	Teste	SMOTE	RandomOver	RandomUnder	NearMiss-1
Fold	Classe						
Fold 1	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 2	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 3	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 4	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 5	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 6	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 7	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 8	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 9	0	1250	139	1250	1250	684	684
	1	684	76	1250	1250	684	684
Fold 10	0	1251	138	1251	1251	684	684
	1	684	76	1251	1251	684	684

Machine Learning

KNN

O primeiro modelo escolhido foi o KNN, ele é um dos que se beneficiam da normalização dos dados e dentre os 3 escolhido teve o pior resultado com todos os tipos de balanceamento.

Foi configurado apenas com o parâmetro K=5.

Acurácia	Precision	Recall	F1-score
0.6994	0.5612	0.6882	0.6174
0.6603	0.5129	0.7895	0.6218
0.7087	0.5719	0.7158	0.6352
0.7446	0.6544	0.5908	0.6203
	0.6994 0.6603 0.7087	0.6994 0.5612 0.6603 0.5129 0.7087 0.5719	0.6603 0.5129 0.7895 0.7087 0.5719 0.7158

Machine Learning

Random-Forest

O segundo modelo escolhido foi o Random-Forest, ele não se beneficiou da etapa de normalização dos dados e dentre os 3 escolhidos teve o melhor desempenho com todas as técnicas de balanceamento.

Como nos testes iniciais este foi o melhor modelo decidimos modificar seus Hyper parâmetros para obtermos o melhor resultado possível deste modelo.

Os melhores parâmetros encontrados foram:

n_estimators=200, max_depth=10, min_samples_split=5, min_samples_leaf=2, max_features='sqrt', class_weight='balanced' e radom_state=42.

Modelo_Balanceamento	Acurácia	Precision	Recall	F1-score
RandomForest - RandomOver	0.9395	0.9402	0.8855	0.9118
RandomForest - SMOTE	0.9427	0.9481	0.8868	0.9160
RandomForest - RandomUnder	0.9418	0.9208	0.9145	0.9174
RandomForest - NearMiss-1	0.9362	0.9016	0.9211	0.9109

Machine Learning

SVM

O terceiro modelo escolhido foi o SVM, ele é um dos que se beneficiaram da etapa de normalização dos dados e dentre os 3 modelos é oque teve o resultado médio com todos os tipos de balanceamento.

Foi configurado apenas com os parâmetros SVC(kernel='rbf') e random_state=42

Modelo_Balanceamento	Acurácia	Precision	Recall	F1-score
SVM - RandomOver	0.8404	0.7671	0.7895	0.7777
SVM - SMOTE	0.8353	0.7750	0.7540	0.7639
SVM - RandomUnder	0.8311	0.7311	0.8276	0.7758
SVM - NearMiss-1	0.8125	0.7082	0.8053	0.7526

Validation

Para validação foi usado o protocolo de validação cruzada estratificada com 10 folds com o Random_state=42 para garantir que todos os modelos fossem testados com as mesmas partições dos dados.

Cada um dos 3 modelos foi treinado com os 4 tipos de balanceamentos e validados em conjuntos de testes sem o balanceamento.

A partir disto foram retiradas as métricas de acurácia, precisão, recall e F1-score para cada fold de cada combinação de modelo de ML e método de balanceamento.

Na tabela demonstramos as médias das métricas dos 10 folds de cada combinação.

	Modelo_Balanceamento	Acurácia	Precision	Recall	F1-score
0	KNN - RandomOver	0.6994	0.5612	0.6882	0.6174
1	KNN - SMOTE	0.6603	0.5129	0.7895	0.6218
2	KNN - RandomUnder	0.7087	0.5719	0.7158	0.6352
3	KNN - NearMiss-1	0.7446	0.6544	0.5908	0.6203
4	RandomForest - RandomOver	0.9395	0.9402	0.8855	0.9118
5	RandomForest - SMOTE	0.9427	0.9481	0.8868	0.9160
6	RandomForest - RandomUnder	0.9418	0.9208	0.9145	0.9174
7	RandomForest - NearMiss-1	0.9362	0.9016	0.9211	0.9109
8	SVM - RandomOver	0.8404	0.7671	0.7895	0.7777
9	SVM - SMOTE	0.8353	0.7750	0.7540	0.7639
10	SVM - RandomUnder	0.8311	0.7311	0.8276	0.7758
11	SVM - NearMiss-1	0.8125	0.7082	0.8053	0.7526

Validation

Para validar estatisticamente as diferenças entre os modelos foi aplicado o teste de Friedman, que indicou que havia uma diferença estatística entre os modelos.

Com esta confirmação foi realizado o teste de Nemenyi para que pudéssemos visualizar as distancias estatísticas entre os modelos.

