計量経済学

8. 測定 II

矢内 勇生

2018年10月30日

高知工科大学経済・マネジメント学群

今日の目標

- ・測定したデータを確認し、その内容を把握する方法を身に つける
 - ▶ データの可視化 (visualization)
 - ◆ ヒストグラム
 - ◆ 箱ひげ図
 - ◆ 散布図
 - ▶ 記述統計による要約

データの可視化

- データを読み込んだら、まず可視化する!
 - ヒストグラム
 - 箱ひげ図
 - 散布図

ヒストグラム (histogram)

- 注目するポイント
 - 1.どこにデータが集まっ ているか(棒が高い のはどこか)
 - 2.データが分布している範囲は?
 - 3.全体の形状は?

ポイント1:どこにデータが集まっているか

- 棒が高いところにデータが集まっている
- 高い棒と周りの棒との差 = データの集中度
 - 身長が158cm ほど の女性が多い

ポイント2:データの分布している範囲は?

- データがある場所と ない場所がある
- ▶ 145cm 以下や 171cm 以上の女性 はいない(注:デー 夕をとった40人の中 にいないだけ!)

ポイント3:全体の形状は?

- 山はいくつある?
 - ▶ 山は1つ = 単峰型分布
- 左右対称?
 - ▶ ほぼ左右対称

ポイント3 (続) : 山の数

• 右のヒストグラムの山は 2つ = 双峰型分布

異質なグループをひと つにまとめると、双峰 型になりやすい

山が3つ以上の場合は多 峰型と呼ぶ

ポイント3 (続) : 対称性

山より右に離れた位置 に大きな値が少数存在 する = 右に歪んだ分布

右に歪んだ分布は社会 のデータに多い

左右対称は、自然のデータに多い

ヒストグラムの読み方は主観的

• まったく同じヒストグラムなのに、見た目の印象が違う!

データの中心とばらつきを調べる (統計学の復習)

- データの中心的傾向を表す統計量
 - 平均值、中央值、最頻值
- データのばらつきを表す統計量
 - 分散、標準偏差(範囲、四分位範囲)

統計量 (statistic)

- 統計量とは
 - データのある特徴を表す数字
 - 統計学で決められた方法を使うことによって得られる
- 様々なstatistic について研究するのがstatistics (統計学)

代表值

- データの中心的傾向を表す統計量を「代表値」とよぶ
- 代表値の例
 - 平均值 (mean)
 - 中央値 (median)
 - 最頻値 (mode)

平均值 (mean)

- 平均にはいくつかの種類がある
 - 算術平均、相加平均(arithmetic mean)
 - 単に「平均」と言ったらこれのこと
 - 幾何平均、相乗平均(geometric mean)
 - 調和平均 (harmonic mean)
- 目的に合わせて適切なものを選ぶ

算術平均

- 算術平均 = 値の合計 ÷ n
- 例) 5人の年収の平均を求める

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{5} x_i}{5}$$

$$= \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

$$= \frac{350 + 450 + 500 + 600 + 800}{5}$$

$$= \frac{2700}{5} = 540$$

日	ΕL	

350

450

500

600

800

単位:万円

算術平均とヒストグラム

算術平均はヒストグラムの バランスをとる支点(やじ ろべえの支点、重心)

平均値の弱点

- 外れ値の影響を受けやすい
 - 「外れ値」とは、データの中の他の値に比べ、飛び 抜けて大きい(小さい)値
- → 外れ値に強い統計量は?

中央値 (median)

- データの中央にある値(中位値ともいう)
- 中央値の求め方
 - 1.データを小さいものから順番に並べる
 - 2. ちょうど真ん中にあるものが中央値
 - 3.真ん中がない(2つある)場合、2つの値の算術平均が中央値

中央値の例

• C社:600万円

- たまたま平均と同じ値

• D社:400万円

E社:真ん中が2つ

→ (450+510) / 2 = 480万円

年収 C社 D社 E社

550 350 400

550 350 420

600 400 450

650 450 **510**

650 1450 550

600

単位:万円

中央値の長所

• 外れ値の影響を受けにくい

例:ある会社の給料の変化 (2017年から2018年)

- 平均值:500万円→780万円

- 中央値:500万円のまま

従業員	2017	2018
	400	400
2	450	450
3	500	500
4	550	550
5	600	2000

中央値の欠点

与えられた情報をすべて使っていない

- (例) F社もG社も中央値は 1000万円

- しかし、分布の中身は違う

年収		
F社	G社	
850	350	
900	900	
1000	1000	
1100	1100	
1150	1150	

単位:万円

どの代表値を使う?

- 一致するときはどれでもよい
- 目的に応じて使い分けることが必要
- 統計を読むときは、どの代表値が使われているか意識 することが大事

代表値だけに頼らない!

- 2つのグループの代表値(平均、中央値)が同じだからといって、グループ同士が似ているとは限らない
- →範囲を確かめてみる

範囲は代表値とセットで

範囲だけを見てもあまり意味がない

- C社の年収の範囲とD社の年収の範囲は同じ(300 万円)だが・・・

- 平均は?

年収		
C社	D社	
350	600	
400	650	
500	750	
600	850	
650	900	
出た・古田		

単位:万円

範囲の弱点

• 範囲は、外れ値の影響を受け易い

- E組の試験得点の範囲:14

- F組の試験得点の範囲:51

▶ F組は1人の得点がきわめて悪かったため、範囲が大きくなってしまった

試験の得点		
E組	F組	
68	30	
70	70	
75	75	
78	80	
82	81	

範囲の弱点:極端な例

- E組では99人が100点、1人が90点を取った
- F組では99人が100点、1人が10点を取った
 - それぞれの範囲はどうなる?
 - 範囲の値が大きく異なるからといって、2つのグループがまったく異質だといえる?

四分位数 (quartile)

- ・データを4等分する区切り(境界線)の値
- 4等分すると境界線は5つできる
 - 最小值 [(Qo =) min]
 - 第1四分位 [Q₁]
 - 第2四分位 = 中央値(中位値)[(Q₂ =) M]
 - 第3四分位 [Q3]
 - 第4四分位 = 最大值 [(Q4 =) max]

データを小さい順に並べ替え、4等分する

四分位範囲 (interquartile range)

- 略してIQR
- $IQR = Q_3 Q_1$
- 小さい方から25%のデータと大きい方から25%のデータを省いているので、外れ値の影響を受けにくい

注意:4等分にするのはデータの値の「個数」

- データの範囲を4等分にするのではない
- 例: データ = $\{0, 1, 2, 3, 4, 8, 9, 10\}$
 - ★範囲を4等分する: 2.5, 5.0, 7.5 を区切りにして {0, 1, 2}, {3, 4}, { }, {8,9,10}の4グループに分ける (注:3つ目のグループは空集合)
 - **○個数を4等分する**: {0, 1}, {2, 3}, {4, 8}, {9, 10} の 4グループに分ける

四分位の求め方(1)

- 5つの境界線のうち、おなじみの統計量
 - (第0四分位=)最小值
 - (第4四分位=)最大值
 - 第2四分位 = 中央値
- ➡問題は、第1四分位と第3四分位の求め方

四分位の求め方 (2)

- 1.中央値を見つける
- 2.第1四分位:データ全体の中央値より小さい値の中の中央値
- 3.第3四分位:データ全体の中央値より大きい値の中の中央値

四分位の求め方:例1

- 中央値 = (76 + 78) / 2 = 77
- 第1四分位: 77より小さい値の中の中央値 → (68 + 70) / 2 = 69
- 第3四分位: 77より大きい値の中の中央値→(85 + 88) / 2 = 86.5

試験の得点

60	78
62	81
68	85
70	88
75	90
76	95

$$n=12$$

四分位の求め方:例2

- ★ n が奇数のとき
- →小さい(大きい)方の半分に中央値を含まない
- 中央値 = 76
- 第1四分位 = 68
- 第3四分位 = 85
 - 注:中央値と同じ値であっても、中央値そのものでなければ除外しない

試験の得点

60	76
62	81
68	85
70	88
76	90
76	

$$n=11$$

m分位数

- •四分位数はデータを4つに分ける(m=4)が、他にも様々な分け方が考えられる
- 他によく使われる分位数
 - m = 10:十分位数 (decile)
 - m = 100: 百分位数 (percentile)

百分位数

- 「パーセンタイル(percentile)」
- データを100等分したときの境界線
 - 25パーセンタイル = 第1四分位
 - 50パーセンタイル = 第2四分位 = 中央値
 - 75パーセンタイル = 第3四分位

注:四分位の求め方は色々ある

(この頁は興味がある者のみ読むこと)

- 厳密には、その値以下の値の数が25%(75%)になるような値を第1四分位(第3四分位)という
- 授業で解説した方法では、上の定義とずれることがある (多くの場合、ズレはわずか)
- 授業で解説した方法で求めたものをヒンジ(hinges)と呼び、四分位とは別のものとして扱う場合もある
 - 授業で求めた第1四分位:下側ヒンジ
 - 授業で求めた第3四分位:上側ヒンジ

範囲と四分位範囲

- 中央値: 77 (G組) > 76 (H組)
 - 中央値はほとんど同じ
- 範囲 : 35 (G) < 75 (H)
- 四分位範囲 : 17.5 (G) > 16.5 (H)
 - 範囲はH組の方が大きいが、四分位節 囲はG組のほうが大きい

4	
式験0	D得点
G組	H組
60	25
62	65
68	67
70	68
75	73
76	76
78	76
81	80
85	84
88	84
90	87
95	100

五数要約 (five-number summary)

- ・最小値、第1四分位、中央値、第3四分位、最大値の5 つの数字でデータの特徴を表すこと
- メリット:データの中心的傾向とともに範囲、四分位 範囲という散らばりの傾向もわかる

五数要約の例

表:G組とH組の得点の五数要約

	最小値	第Ⅰ四分位	中央値	第3四分位	最大値
G組	60	69	77	86.5	95
H組	25	67.5	76	84	100

五数要約を図示する

- 箱ひげ図 (box-and-whisker plot)
 - 箱で四分位範囲を表す
 - ひげで四分位外の範囲を表す
 - 箱の中の線で中央値を表す

箱ひげ図

箱ひげ図

IQRで外れ値を見つける

- 外れ値を見分けるためにIQR を利用する
- 第1四分位から1.5×IQR より小さい値は「外れ値の疑いがある」と考える
- 第3四分位から1.5×IQRより大きい値は「外れ値の疑いがある」と考える

1.5×IQR ルールの適用例(1)

- G組
 - IQR = $17.5 \rightarrow 1.5$ IQR = 26.25
 - 第1四分位は69:69-26.25=42.75 より小さい値は「外 れ値の疑い」
 - 第3四分位は86.5: 86.5+26.25=112.75 より大きい 値は存在しない
- → G組の得点に外れ値はない

試験0	D得点
G組	H組
60	25
62	65
68	67
70	68
75	73
76	76
78	76
81	80
85	84
88	84
90	87
95	100

1.5×IQR ルールの適用例(2)

- H組
 - IQR = 16.5 → 1.5IQR = 24.75
 - 第1四分位は67.5:67.5-24.75=42.75 より小さい値は「外れ値の疑い」
 - 第3四分位は84:84+24.75=108.75 より大きい値は存在しない
- → H組の25点は外れ値

試験の得点		
G組	H組	
60	25	
62	65	
68	67	
70	68	
75	73	
76	76	
78	76	
81	80	
85	84	
88	84	
90	87	
95	100	

外れ値を考慮した箱ひげ図

外れ値を探す理由

- データの間違いによる外れ値ではないか確認する
 - 入力・記入ミス
 - 異質なデータ(例:国語の点数の中にひとつだけ数学の点数、成人の身長の中に小学生の身長など)
 - →データを修正する必要がある
- 例外的な値だからといって、何も考えずに分析から除 外していいわけではない

範囲、四分位範囲の問題点

- 範囲や四分位範囲はすべての情報を利用していない
- 「全体的な」ばらつき(散らばり具合)がわからない
- ⇒すべての情報を利用して全体的なばらつきを考えよう!

データの全体的なばらつきを調べる

- 中心的傾向が同じでも、似た ようなデータとは限らない
 - 平均値も中央値も一緒だが・・・

試験の得点

A組	B組
40	10
45	30
50	50
55	80
60	100

分散 (variance)

- データのばらつきを表す統計量
- 統計学で最も重要な統計量
- s² という記号で表す
- 分散 s² = 「偏差の二乗」の平均値
- 標本で計算するときは、不偏分散を使う

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

不偏分散の例

• 右のデータの分散を求めてみる

$$s_x^2 = \frac{16+1+0+4+9}{5-1}$$
$$= 7.5$$

X	偏差	偏差2
ı	-4	16
4	- I	I
5	0	0
7	2	4
8	3	9

分散の問題点

- 値を二乗するので、単位が変わってしまう
 - 例:身長をcm(距離)で測ったデータを二乗すると、単位がcm²(面積)に変わってしまう
 - ⇒距離データの散らばり具合を面積で表現されても意味がつかみにくい

標準偏差 (standard deviation)

- 略して SD あるいは sd
- 単位を元に戻すために、分散の平方根をとる
- 標準偏差 s は、不偏分散s²の平方根

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Rで記述統計を求める

- 1.平均值: mean()
- 2. 中央値: median()
- 3. 五数要約:fivenum()
- 4. パーセンタイル: quantile()
- 5. 不偏分散: var()
- 6. 不偏分散の平方根(標準偏差): sd()

Rで図を作る

- ggplot2パッケージを使う!
 - ヒストグラム: geom_histogram()
 - 箱ひげ図:geom_boxplot()
 - 散布図:geom_point()
 - etc.