### **Section 5.2: Simple SQL Exercises**

| How many records are in the nyc_streets table?  Maybe Count()? |  |
|----------------------------------------------------------------|--|
|                                                                |  |

#### How many streets in New York have names that start with 'B'?

Pattern matching in SQL uses the LIKE keyword and '%' as the match-all character

#### What is the population of New York city?

The "nyc\_census\_blocks" table includes a "popn\_total" field which is the number of people in each block.

#### What is the population of the Bronx?

The "nyc\_census\_blocks" table includes a "boroname" field which is the borough each block is in. 'The Bronx' is a borough.

### How many "neighborhoods" are in each borough?

The "nyc\_neighborhoods" table includes a "boroname" field and a "name" field. Group by!

#### For each borough, what percentage of the population is "white"?

The "nyc\_census\_blocks" table includes a "popn\_white" field that is the number of self-identified white people in each block.

### **Data Dictionary**

Useful columns in the "nyc\_census\_blocks" table:

| blkid      | A 15-digit code that uniquely identifies every census block. Eg: |
|------------|------------------------------------------------------------------|
|            | 360050001009000                                                  |
| popn_total | Total number of people in the census block                       |
| popn_white | Number of people self-identifying as "white" in the block        |
| popn_black | Number of people self-identifying as "black" in the block        |
| popn_nativ | Number of people self-identifying as "native american" in the    |
|            | block                                                            |
| popn_asian | Number of people self-identifying as "asian" in the block        |
| popn_other | Number of people self-identifying with other categories in the   |
|            | block                                                            |
| boroname   | Name of the New York borough: Manhattan, The Bronx, Brooklyn,    |
|            | Staten Island, Queens                                            |
| geom       | MultiPolygon boundary of the block                               |

| Count(*)          | An aggregate function that returns the number of records in     |
|-------------------|-----------------------------------------------------------------|
|                   | the query.                                                      |
| GROUP BY [field]  | A SQL statement the performs aggregations based on the          |
|                   | distinct values of the provided field.                          |
| [field] LIKE 'V%' | A SQL pattern matching operator, where the field is matched     |
|                   | against a pattern and '%' is the 'global match' character. The  |
|                   | example returns all field values starting with 'V'.             |
| Sum([field])      | An aggregate function that returns the total value of the field |
|                   | over all records in the query.                                  |
| Avg([field])      | An aggregate function that returns the average value of the     |
|                   | field over all records in the query.                            |

### **Section 5.4: Geometry Exercises**

# What is the area of the 'West Village' neighborhood? What are the units of your answer?

The "nyc\_neighborhoods" table includes a "name" field.

## What is the geometry type of 'Pelham St'? How long is it?

The "nyc\_streets" table includes a "name" field.

# What is the GML representation of the 'Broad St' subway station? What about the KML? Why are they different?

The "nyc\_subway\_stations" table includes a "name" field.

#### How many census blocks in New York City are "true" MultiPolygons?

A multi-polygon can have only one part (really a simple polygon) or more than one (a "true" multi) A MultiPolygon is a kind of collection.

#### What is the most westerly subway station?

Try using "ORDER" and "LIMIT". Consider which values of X are "west" and which are "east".

#### What is the area of Manhattan in acres?

The "nyc\_census\_blocks" table is an area geometry and has a "boroname" column. There are 4047 square meters in an acre.

### **Data Dictionary**

Useful columns in the "nyc\_streets" table:

| name   | Common name of the street              |
|--------|----------------------------------------|
| oneway | Is this a one-way street?              |
| type   | What kind of street is this?           |
| geom   | MultiLinestring geometry of the street |

Useful columns in the "nyc\_subway\_stations" table:

| name   | Common name of the station                             |
|--------|--------------------------------------------------------|
| routes | Comma-separated list of routes that serve this station |
| geom   | Point geometry of the street                           |

| Sum([field])                 | An aggregate function that returns the total value of the field over all records in the query. |
|------------------------------|------------------------------------------------------------------------------------------------|
| LIMIT n                      | Restrict the query to return only the first "n"                                                |
|                              | rows.                                                                                          |
| ORDER BY [field]             | Return the query in order sorted by the field.                                                 |
| ORDER BY [field] DESC        | Return the query in descending/ascending order                                                 |
| ORDER BY [field] ASC         | sorted by the field.                                                                           |
| ST_X(point)                  | Returns the X coordinate of the point                                                          |
| ST_Y(point)                  | Returns the Y coordinate of the point                                                          |
| ST_Length(geometry)          | Returns the length of the geometry                                                             |
| ST_Area(geometry)            | Returns the area of the geometry                                                               |
| ST_StartPoint(line)          | Returns the first point in the line                                                            |
| ST_EndPoint(line)            | Returns the last point in the line                                                             |
| ST_NumPoints(line)           | Returns the number of vertices in a linestring                                                 |
| ST_NumInteriorRings(polygon) | Returns the number of interior rings (holes) in a                                              |
|                              | polygon                                                                                        |
| ST_NumGeometries(collection) | Returns the number of sub-geometries in any                                                    |
|                              | geometry collection (MULTIPOINT,                                                               |
|                              | MULTILINESTRING, MULTIPOLYGON,                                                                 |
|                              | GEOMETRYCOLLECTION)                                                                            |
| ST_GeometryN(geometry, n)    | Returns the n'th geometry in the collection                                                    |
|                              | (starting from 1)                                                                              |
| ST_AsGML(geometry)           | Returns the GML representation                                                                 |
| ST_AsKML(geometry)           | Returns the KML representation                                                                 |
| ST_AsGeoJSON(geometry)       | Returns the GeoJSON representation                                                             |
| ST_AsText(geometry)          | Returns the well-known-text representation                                                     |

## **Section 5.6: Spatial Relationship Exercises**

| What is the well-known text for the street 'Atlantic Commons'?                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                   |
| In what neighborhood is POINT(586782 4504202) (aka, the start of Atlantic Commons)?  Don't forget to include SRID 26918 when you construct your geometry.  The "nyc_neighborhoods" table includes a "name" field. |
| How many people live within 50 meters of POINT(586782 4504202)?                                                                                                                                                   |
| The "nyc_census_blocks" table includes a "popn_total" field.                                                                                                                                                      |
| For 'LINESTRING(0 0, 2 2)' and 'POINT(1 1)' which of these relationships are true? Intersects, Touches, Contains, Disjoint, Overlaps, Crosses, Within.  A sub-query might make this terser to type.               |
| How far apart are 'Columbus Cir' and 'Fulton Ave'? For SQL experts only!                                                                                                                                          |

| Sum([field])        | An aggregate function that Returns the total value of the field over all records in the query. |
|---------------------|------------------------------------------------------------------------------------------------|
| ST_Contains(A, B)   | Returns true if geometry A contains geometry B                                                 |
| ST_Crosses(A, B)    | Returns true if geometry A crosses geometry B                                                  |
| ST_Disjoint(A, B)   | Returns true if the geometries do not "spatially intersect"                                    |
| ST_Distance(A, B)   | Returns the minimum distance between geometry A and                                            |
|                     | geometry B                                                                                     |
| ST_DWithin(A, B, d) | Returns true if geometry A is distance or less from geometry                                   |
|                     | В                                                                                              |
| ST_Equals(A, B)     | Returns true if geometry A is the same as geometry B                                           |
| ST_Intersects(A, B) | Returns true if geometry A intersects geometry B                                               |
| ST_Overlaps(A, B)   | Returns true if geometry A and geometry B share space, but                                     |
|                     | are not completely contained by each other                                                     |
| ST_Touches(A, B)    | Returns true if geometry A and geometry B share space, but                                     |
|                     | are not completely contained by each other                                                     |
| ST_Within(A, B)     | Returns true if geometry A is within geometry B                                                |

### **Section 5.8: Spatial Joins Exercises**

| What subway station is in the 'Little Italy' neighborhood?                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             |
| What are all the neighborhoods served by the 6 train?                                                                                                                       |
| The "nyc_subway_stations" table has a "routes" column with values like 'A,C,6' and '5,6,Q'.                                                                                 |
|                                                                                                                                                                             |
| After 0/44 the (Dettern Deul) weighborheed was affiliate for several days Hay                                                                                               |
| After 9/11, the 'Battery Park' neighborhood was off limits for several days. How many people had to be evacuated?  The "nyc_census_blocks" table has a "popn_total" column. |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| What neighborhood has the highest population density (persons/km²)? The                                                                                                     |
| lowest?                                                                                                                                                                     |

There are  $1,000,000 \text{ m}^2$  in a km<sup>2</sup>.

#### **Useful SQL**

The pattern for a spatial join is commonly

SELECT a.field, b.field FROM table\_a AS a JOIN table\_b AS b ON ST\_Something(a.geom, b.geom) WHERE a.field = 'SOMETHING';

For spatial joins that aggregate results over the whole set, the pattern is commonly

SELECT Sum(a.field), b.field FROM table\_a AS a JOIN table\_b AS b ON ST\_Something(a.geom, b.geom) WHERE a.field = 'SOMETHING' GROUP BY b.field;

Note the aggregate function around one term and the grouping on the other.

| strpos(str, char)    | Returns the character position of the character in the string   |
|----------------------|-----------------------------------------------------------------|
|                      | or 0 if the character is not in the string.                     |
| field LIKE '%thing%' | Returns true if 'thing' is appears within a string in the field |
| Sum(field)           | An aggregate function that Returns the total value of the       |
|                      | field over all records in the query.                            |
| ST_Area(geometry)    | Returns the area of the geometry in square units                |
| ST_Contains(A, B)    | Returns true if geometry A contains geometry B                  |
|                      |                                                                 |
| ST_Crosses(A, B)     | Returns true if geometry A crosses geometry B                   |
| ST_Disjoint(A, B)    | Returns true if the geometries do not "spatially intersect"     |
| ST_Distance(A, B)    | Returns the minimum distance between geometry A and             |
|                      | geometry B                                                      |
| ST_DWithin(A, B, d)  | Returns true if geometry A is distance or less from             |
|                      | geometry B                                                      |
| ST_Equals(A, B)      | Returns true if geometry A is the same as geometry B            |
| ST_Intersects(A, B)  | Returns true if geometry A intersects geometry B                |
| ST_Overlaps(A, B)    | Returns true if geometry A and geometry B share space, but      |
|                      | are not completely contained by each other                      |
| ST_Touches(A, B)     | Returns true if geometry A and geometry B share space, but      |
|                      | are not completely contained by each other                      |
| ST_Within(A, B)      | Returns true if geometry A is within geometry B                 |

### **Section 5.11: Projection Exercises**



#### **Useful Metadata**

The "spatial\_ref\_sys" table contains all the information about SRID values in the database. It is user-configurable, but is loaded by default with all the values from the EPSG database.

| srid      | Unique identifier for this spatial reference system              |
|-----------|------------------------------------------------------------------|
| auth_name | Authority that defined this system (usually EPSG)                |
| auth_srid | Identifier used by the authority (note that this does <b>not</b> |
|           | have to be the same as the value used for the internal           |
|           | database SRID)                                                   |
| srtext    | "well known text" definition of the spatial reference            |
|           | system. The same format as used in "prj" files.                  |
| proj4text | Proj4 text definition of the spatial reference system.           |
|           | Used by the PostGIS re-projection engine in                      |
|           | ST_Transform calls.                                              |

| DISTINCT                    | Returns only unique rows (all values the same)     |
|-----------------------------|----------------------------------------------------|
| Sum(field)                  | An aggregate function that Returns the total value |
|                             | of the field over all records in the query.        |
| ST_Transform(A, srid)       | Returns a geometry in the requested spatial        |
|                             | reference system, transforming the coordinates of  |
|                             | the geometry.                                      |
| ST_SRID(A)                  | Returns the SRID value of the geometry             |
| ST_SetSRID(A, srid)         | Updates the SRID value of a geometry, does not     |
|                             | alter the coordinates.                             |
| ST_GeomFromText(text, srid) | Create a new geometry from a well-known text       |
|                             | form and set the SRID value at the same time.      |
| ST_XMin(A)                  | Returns the minimum value of the X coordinate of a |
|                             | geometry.                                          |
| ST_XMax(A)                  | Returns the maximum value of the X coordinate of   |
|                             | a geometry.                                        |
| ST_Intersects(A, B)         | Returns true of geometry A and geometry B          |
|                             | intersect, false if they are disjoint.             |

### **Section 5.12: Geography Exercises**



### **Casting Types**

You can convert values from one PostgreSQL type to another using the "::type" syntax.

- -- Converts text to geometry SELECT 'POINT(0 0)'::geometry;
- -- Converts text to geography to geometry SELECT 'POINT(0 0)'::geography::geometry

| Sum(field)                  | An aggregate function that Returns the total value of the field over all records in the query.              |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| ST_Transform(geom, srid)    | Returns a geometry in the requested spatial reference system, transforming the coordinates of the geometry. |  |  |
| ST_GeomFromText(text, srid) | Create a new geometry from a well-known text form and set the SRID value at the same time.                  |  |  |
| ST_Distance(geog1, geog2)   | Returns the shortest distance in meters between two geographies.                                            |  |  |
| ST_Length(geog)             | Returns the length in meters of a geography.                                                                |  |  |
| ST_GeogFromText(text)       | Create a new geography from a well-known text form.                                                         |  |  |

## **Section 5.13: Geometry Construction Exercises**

| How many census blocks don't contain their own centroid?                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Union all the census blocks into a single output. What kind of geometry is it? How many parts does it have?                                                                                                                                                                               |
| What is the area of a one unit buffer around the origin? How different is it from what you would expect? Why? The value of $\pi$ can be accessed with the pi() function. There is a three-parameter variant of ST_Buffer(geom, radius, n) What do you think the third parameter controls? |
| The Brooklyn neighborhoods of 'Park Slope' and 'Carroll Gardens' are going to war! Construct a polygon delineating a 100 meter wide DMZ on the border between the neighborhoods. What is the area of the DMZ?  Hint. A self-join will be required. Buffer and then intersect.             |

| Count(field)            | An aggregate function that returns the number of rows in the query result set.                                          |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ST_Intersection(A, B)   | Returns a geometry that covers the area shared by geometries A and B.                                                   |  |  |  |
| ST_Centroid(A)          | Returns a point at the center of mass of geometry A.                                                                    |  |  |  |
| ST_PointOnSurface(A)    | Returns a point guaranteed to be within the boundary of geometry A.                                                     |  |  |  |
| ST_Union(A, B)          | Returns a geometry that covers all the area covered by geometry A or geometry B.                                        |  |  |  |
| ST_Contains(A, B)       | Returns true if geometry A contains geometry B.                                                                         |  |  |  |
| ST_Union([geometryset]) | Aggregate function returns a geometry that covers all the area covered by all elements of the input geometry set.       |  |  |  |
| ST_GeometryType(A)      | Returns the geometry type of geometry A.                                                                                |  |  |  |
| ST_NumGeometries(A)     | Returns the number of sub-geometries in a geometry collection.                                                          |  |  |  |
| Pi()                    | Returns the value of pi.                                                                                                |  |  |  |
| ST_Buffer(A, d)         | Returns a polygonal geometry that covers all the area within a radius d of geometry A and all the area within A itself. |  |  |  |

### **Section 6.2: Validity Exercises**

# Create an invalid geometry. Verify it is invalid and why the system thinks it is invalid.

The rules: Interior rings inside exterior, no ring intersections except at a single point, no ring self-intersections, no multi-polygons with intersecting parts.

Here is some graph paper to make it easier!



### Try to repair your invalid geometry. What is the result?



| ST_GeomFromText(wkt, srid) | Create a geometry from a well-known text              |  |  |  |  |
|----------------------------|-------------------------------------------------------|--|--|--|--|
|                            | representation.                                       |  |  |  |  |
| ST_IsValid(geometry)       | Returns true if the geometry is constructed           |  |  |  |  |
|                            | according to validity rules.                          |  |  |  |  |
| ST_IsValidReason(geometry) | Returns a string describing the invalidity of a       |  |  |  |  |
|                            | geometry or NULL if the geometry is valid.            |  |  |  |  |
| ST_IsValidDetail(geometry) | Returns a composite object including a validity       |  |  |  |  |
|                            | string and a point location where the invalidity      |  |  |  |  |
|                            | occurs, or NULL if the geometry is valid.             |  |  |  |  |
| ST_Buffer(geometry, 0)     | Rebuilds (often) a valid version of an invalid input  |  |  |  |  |
|                            | polygon.                                              |  |  |  |  |
| ST_Perimeter(geometry)     | Returns the total length of line work in a polygon    |  |  |  |  |
|                            | boundary, unaffected by invalidities.                 |  |  |  |  |
| ST_Area(geometry)          | Returns the area of a geometry, may be affected       |  |  |  |  |
|                            | by invalidity (in particular inverted ring sections). |  |  |  |  |

### **Section 6.5: DE9IM Exercises**

Fill in the DE9IM matrix for this geometry interaction.



E

Fill in the DE9IM matrix for this geometry interaction.

