INTRODUÇÃO À TEORIA DA ELASTICIDADE LINEAR

Programa de Pós-Graduação em Engenharia Civil - UFAL Período Letivo: 2025-1 — Professor: Adeildo Soares Ramos Jr

Lista III - Data de entrega: 15/10/2025

1. Para um material elástico linear e isotrópico mostre que os planos principais de deformação e de tensão coincidem.

2. Uma roseta de deformação é montada na superfície de um corpo elástico sólido no ponto O como mostrado na figura abaixo. As medidas de deformações extensionais nas direções são dadas por: $\epsilon_a = 300 \ 10^{-6}$; $\epsilon_b = 400 \ 10^{-6}$ e $\epsilon_c = 100 \ 10^{-6}$. Assumindo que as propriedades do material são dadas por $E = 207 \ GPa$ e v = 0.3, determinar as componentes dos tensores de tensão e de deformação em relação ao sistema de coordenadas (x,y) indicado na figura.

3. Sabe-se que o coeficiente de Poisson de um material deve atender a inequação $-1 < \nu < 1/2$. Para a maior parte dos materiais reais a esta inequação é mais restritiva e definida por $0 < \nu < 1/2$. Mostre que para este caso mais restritivo a constante de Lamé $\lambda > 0$.

4. Sobre a hipótese de que E é limitado e positivo, determine as constantes λ , μ , e κ , para os valores do coeficiente de Poisson $\nu = 0, \frac{1}{4}, \frac{1}{2}$. Discuta a situação quando $\nu = \frac{1}{2}$. Mostre que para este coeficiente de Poisson ($\nu = \frac{1}{2}$) a variação de volume é nula.

5. Os cilindros abaixo definem um ensaio não confinado e confinado. No caso não confinado as tensões radiais e circunferenciais são nulas e no confinado as deformações radiais são nulas e no confinado as deformações radiais e circunferenciais são nulas. Deduzir a relação entre a tensão axial e a deformação axial para cada um dos ensaios.

6. Para a chapa mostrada abaixo determinar a variação nas dimensões assumindo que o campo de tensões e deformações são uniformes. Dados: $E=207\ GPa$ e v=0,3.

