AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA

Kraków

Symulator pożaru lasu

Autorzy:
Marcin JĘDRZEJCZYK
Sebastian KATSZER
Katarzyna KOSIAK

21 października 2015

Spis treści

1	\mathbf{W} stęp	1
C	ele modelowania pożaru	1
$\mathbf{C}_{\mathbf{z}}$	Czynniki środowiskowe	
O	pis zagadnienia	2
Po	Popularne modele	
2	Poniższego oprócz bibliografii nie potrzebujemy jeszcze na te konsultacje Zastosowany model	2
Da	Dane wejściowe	
C	ele symulacji	2
C	ele symulacji2	2
Po	odsumowanie	3
3	Testy	3
4	Wnioski	3
5	Literatura	3

1 Wstęp

Niniejszy dokument stanowi opis zagadnienia symulowania pożarów lasów wraz z prezentacją symulatora rozprzestrzeniania się pożaru lasu.

Cele modelowania pożaru

Modelowanie pożaru polega na próbie odtworzenia zachowania się ognia i poznaniu jego parametrów w zadanej sytuacji - m.in. jego szybkość rozprzestrzeniania się, kierunek i ilość wydzielanego ciepła, estymację skutków pożaru. Na parametry te ma oczywiście wpływ ilość, rodzaj i dokładność dostarczonych danych wejściowch, z których najważniejszym jest rodzaj paliwa.

Istniejące modele paliwa definiują zestawy cech roślinności mających wpływ na ich palność. Najbardziej znane modele pożaru korzystają z głównych systemów klasyfikacji modeli paliwa takich jak dynamiczne modele Scotta i Burgana czy trzynaście "oryginalnych" modeli paliwa Andersona i Albiniego, które opisują roślinność w czasie pory suchej, kiedy to stopień zagrożenia pożarowego jest najwyższy. Zwiększa to trafność i przydatność symulacji pożarów podczas organizacji akcji pożarowych.

Czynniki środowiskowe

Podejścia do modelowania pożaru

Od powstania pierwszych modeli pożarów w latach czterdziestych XX wieku minęło wiele czasu, w ciągu którego zaprezentowano kolejne - zróżnicowane pod względem wymaganych danych wejściowych, znaczących czynników i stopnia rozbudowania - modele.

Problemem związanym z modelowaniem tak skomplikowanego zjawiska jak ogień jest rosnąca wraz z ilością branych pod uwagę czynników liczba koniecznych do wykoniania obliczeń, a co za tym idzie - potrzeba coraz większej mocy obliczeniowej. W związku z tym w istniejących modelach zastosowano różne uproszczenia, często poświęcając mniej znaczące czynniki na rzecz przyspieszenia obliczeń.

Modele pożaru można podzielić na trzy grupy: empiryczne, semi-empiryczne i oparte na fizyce.

Modele empiryczne

TODO

Modele semi-empiryczne

TODO

Modele oparte na fizyce

TODO

Popularne/najważniejsze?/przykładowe modele

TODO

Rothermel(1972) Rothermel(1991) Van Wagner (1977) Cruz(1999) Cruz(1999) wspomniec o tym z czego korzystaja te systemy firecostam i behaveplus

2 Poniższego oprócz bibliografii nie potrzebujemy jeszcze na te konsultacje Zastosowany model

sds

Dane wejściowe

dsd

Cele symulacji

xcx

Cele symulacji2

xcx

f fancy function podtytuł

Podsumowanie

3 Testy

 sd

4 Wnioski

 sdsd

5 Literatura

Asensio MI, Ferragut L., Simon J.: Modelling of convective phenomena in forest fire. Rev Real Academia de Ciencias, 2002, 96:299–313

Chad Hoffman: Fire Behavior Predictions Case Study, University of Idaho, 2007

Kułakowski Krzysztof: Automaty Komórkowe, OEN AGH (2000)

Law A.M., Kelton W.D.: Simulation Modeling and Analysis, Second Edition, McGraw-Hill 2000

Ottmar Roger D. et al.: An Overview of the Fuel Characteristic Classification System - Quantifying, Classifying, and Creating Fuel beds for Resource Planning. Ćanadian Journal of Forestry Research. 37:2383-2393. 2007

Rothermel Richard C.: A Mathematical Model for Predicting Fire Spread in Wildland Fuels. USDA Forest Service. Research Paper INT-115. 1972.

Sayama Hiroki: Introduction to the Modeling and Analysis of Complex Systems, Open SUNY Textbooks, State University of New York at Geneseo, 2015

Scott Joe H., Burgan Robert E.: Standard Fire Behavior Fuel Models, USDA Forest Service Gen. Tech. Rep. RMRS-GTR-153., June 2005

Weise David R., Biging Gregory S.: A Qualitative Comparison of Fire Spread Models Incorporating Wind and Slope Effects, Research Gate, October 2015

Wells Gail: The Rothermel Fire-Spread Study: Still Running Like a Champ, Fire Science Direct, Issue 2, March 2008