

Trabajo 2 – Teoría de las telecomunicaciones I Tema: Transformada de Fourier

Jefry Nicolás Chicaiza¹ y Jose Nicolás Zambrano²

¹jefryn@unicauca.edu.co ²inzambranob@unicauca.edu.co

Ejercicio

Asumiendo que la señal de la figura no es periódica calcule su Transformada de Fourier.

Solución

Realización de los cálculos matemáticos de la Transformada de Fourier de la señal asignada, la formula empleada para el cálculo de la transformada es la siguiente:

$$\tilde{x}(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$
(1)

Recordando que del primer trabajo, la función correspondiente a la pendiente de la gráfica se expresa de la siguiente manera:

$$x(t) = \frac{1}{4}t + \frac{1}{8} \tag{2}$$

Transformada de Fourier aplicado a una función no periodia Diente de Sierra Teoría de telecomunicaciones I, Grupo A12 14 de abril de 2021

Esta función lineal se encuentra limitada por un intervalo de duración 4 segundos, como valor mínimo se tiene $-\frac{1}{2}$ y valor máximo $\frac{7}{2}$, lo que hace que esta función se vea como un "diente de sierra", por tanto su función más representativa o su intervalo descriptivo es el siguiente:

$$x(t) = \left(\frac{1}{4}t + \frac{1}{8}\right)rect\left(\frac{t}{4} + \frac{3}{8}\right) = \begin{cases} \frac{1}{4}t + \frac{1}{8}; & -\frac{1}{2} \le t \le \frac{7}{2} \\ 0; & p.o.c. \end{cases}$$
(3)

El proceso para obtener la Transformada de Fourier de la ecuación 3 se realiza a continuación, donde el valor x(t) de la ecuación 1 será la ecuación 2, y el valor de los intervalos de la integral serán los que limitan la función lineal, como se menciono anteriormente:

$$\begin{split} \tilde{x}(f) &= \int_{\frac{3}{2}-2}^{\frac{3}{2}+2} \left(\frac{1}{4}t + \frac{1}{8}\right) e^{-j2\pi f t} \mathrm{d}t \\ &= \frac{1}{4} \int_{\frac{3}{2}-2}^{\frac{3}{2}+2} t e^{-j2\pi f t} \mathrm{d}t + \frac{1}{8} \int_{\frac{3}{2}-2}^{\frac{2}{3}+2} e^{-j2\pi f t} \mathrm{d}t \\ &= \frac{jt}{8\pi f} e^{-j2\pi f t} + \frac{1}{16\pi^2 f^2} e^{-j2\pi f t} + \frac{j}{16\pi f} e^{-j2\pi f t} \Big|_{\frac{3}{2}-2}^{\frac{3}{2}+2} \\ &= \frac{j e^{-j2\pi f t \left(\frac{3}{2}+2\right)}}{8\pi f} \left[\left(\frac{3}{2}+2\right) + \frac{1}{j8\pi f} + \frac{1}{8} \right] - \frac{j e^{-j2\pi f t \left(\frac{3}{2}-2\right)}}{8\pi f} \left[\left(\frac{3}{2}-2\right) + \frac{1}{j8\pi f} + \frac{1}{8} \right] \\ &= \frac{e^{-j3\pi f} e^{-j4\pi f}}{4\pi f} \left(\frac{j3}{4} + j + \frac{j}{4} + \frac{1}{4\pi f} \right) - \frac{e^{-j3\pi f} e^{j4\pi f}}{4\pi f} \left(\frac{j3}{4} - j + \frac{j}{4} + \frac{1}{4\pi f} \right) \\ &= \left[\left(\frac{1}{16\pi^2 f^2} + \frac{j}{2\pi f} \right) e^{-j4\pi f} - \frac{e^{j4\pi f}}{16\pi^2 f^2} \right] e^{-j3\pi f} \end{split}$$

[1]

Transformada de Fourier
$$\tilde{x}(f) = \frac{e^{-j7pif}(1 - e^{j8\pi f} + j8\pi f)}{16\pi^2 f^2} \tag{4}$$

Bibliografía

- [1] M. Silva, "Ejercicio Transformada de Fourier," *Notas de clase*, 2021.
- [2] —, "Capítulo II: Análisis de Fourier," Notas de clase, págs. 50-69, 2021.