

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

ESE

July- 2023

Max. Marks: 100 Class: F.Y. MCA Course Code: MC507

Duration: 3.00 hrs Semester: II Branch: M.C.A.

Name of the Course: Design and Analysis of Algorithms

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.	Questions Find the bounding function and complexity of following code.		Max. Marks	CO-BL
Q1				
A)				
	1. 2.	<pre>function(int n) int count = 0; for(int i=0; i<n; (j%i="=" 0)="" for(int="" i++)="" if="" j="i;" j++)="" j<i*i;="" k="0;" k++)<="" k<j;="" td="" {for(int=""><td>16</td><td>1-3</td></n;></pre>	16	1-3
	<pre>3. void function(int n) { int count = 0; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) for(int k=i;k<=n/2;k++)</pre>	e(n>1) n=n/2 stmt		
B)	Apply quick sort algorithm on array A = (10 1 52 8 6 13 20 3 50 69) Show all the iterations. OR Derive the Best, Worst and Average time complexities of Quick sorting technique.		4	2-3
Q2 A)	Consider sum of subset problem defined on the following set A={1,2,3,5,7,9}. Solve the problem using backtracking technique and dynamic method. Analyze and compare both the methods.		10	3-4 4-4

	T		11
B)	Discuss the Graph coloring Problem. What technique is used to solve the problem? Write the algorithm to solve above problem.	10	3-3
Q3 A	Consider start state for a 15 puzzle problem as shown in table below. Show three levels of branching using branch and bound states with justification. (show the various Queues for -live node, E node, dead node) 4	10	4-3
	13 15 14		
B)	Write Kruskal's algorithm for minimum spanning tree. Analyze the algorithm. OR	10	4-4
	Find minimum Spanning Tree for following graph using Kauskal's algorithm.		4-3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q4A	i)Compare Greedy and Dynamic programing techniques (Definition, Working, Performance, Analysis, Example)	6	3-4
	ii) Write the brute force string matching algorithm and find its time complexity.	4	Self- study
B)	Find the multiplication of matrices using Strassen's algorithm. A= 3 5 B= 8 7 6 7 , 9 5	10	3-3
Q 5 A	Find the shortest path distance between every pair of vertices using Floyd Warshall Algorithm.	10	4-3

