

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 20 คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น วันอังคารที่ 14 พฤษภาคม 2567 เวลา 09.00 - 14.00 น.

เฉลยข้อสอบภาคทฤษฎี

เลขประจำตัวสอบ

Answer to Problem 1 (10 points)

1.1 (6 points) Structures of compounds A, D, G, H, reagent I and II.

Compound A	(1 point)	Compound D	(1 point)
HOOC NH OH S OH OH	`OH	но⊸	SH OH
Compound G (exact number of li	berated	Compound H	(1 point)
molecules must also be shown)	(1 point)		
2H ₂ O เขียน 1 molecule ของน้ำ ให้ 0.	5 คะแนน	HOS	°CHO
Reagent I	(1 point)	Reagent II	(1 point)
нѕсно		H₃C−CH	0

1.2 (1 point)

Number of stereogenic centers in compound A 5

5 (0.5 point)

Number of stereoisomers if D-xylose and L-cysteine are used.

2

(0.5 point)

1.3 (1 point) Clearly add an arrow to identify the location of the ¹³C-labeled carbon in compound J. If the labeled carbon has gone before becoming compound J, write down "no ¹³C can be found." without adding any arrow.

1.4 (2 points) Mechanism of Strecker degradation.

แสดง imine formation (ขั้น 1) ได้ถูกต้อง – 0.5 pt แสดง decarboxylation (ขั้น 2) ลูกศรถูกต้อง – 0.75 pt แสดง hydrolysis (ขั้น 3) ได้ถูกต้อง – 0.75 pt

หักคะแนนลูกศรหรือ reagent ที่ไม่สมเหตุผล ฯลฯ โดยจะ normalize ระหว่างการตรวจ ในช่วง -0.25 – -0.5 pt

Answer to Problem 2 (9 points)

2.1 (7 points) Structures of compounds A – G.

Compound A	(1 point)	Compound B	(1 point)
O N-H		OH N	
Compound C	(1 point)	Compound D	(1 point)
CI			CF ₃
Compound E	(1 point)	Compound F	(1 point)
CF	- 3	CH ₃ NH ₂	
Compound G	(1 point)		
NaBH₃CN or any reasonable reducin	ig agent		

2.2 (0.5 point) Structure of (*R*)-Fluoxetine.

2.3 (1.5 points) Mechanism for the formation of Compound A.

$$\begin{array}{c} H^{+} \\ O = H \\ H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ \end{array}$$

$$\begin{array}{c} H \\ O = H \\ \end{array}$$

$$\begin{array}{c} H \\ \end{array}$$

- แสดงขั้นตอนของการทำปฏิกิริยาได้ถูกต้อง ได้แก่ 1. กลไกการเกิด iminium 2. การเกิด enol และ 3. การทำ ปฏิกิริยาการเติมระหว่าง imine กับ enol ให้ขั้นละ 0.5 คะแนน
- นื่องจากโจทย์ระบุว่าปฏิกิริยาขั้นตอนนี้เกิดภายใต้สภาวะที่เป็นกรดเล็กน้อย ดังนั้น กลไกควรเกี่ยวข้องกับการ
 เติมและ/หรือการหลุดของ H⁺ สามารถเขียน +H⁺ หรือ -H⁺ บนลูกศรสมการดังตัวอย่างได้เลย ไม่จำเป็นต้องโยง ลูกศรการไหลของ electron
- หากไม่ได้แสดงการเกิด protonation หรือการรับส่ง H⁺ ให้ครบจะหักในภาพรวม 0.5 คะแนน
- หากเขียนกลไกในลักษณะที่เกิดในสภาวะที่ไม่เป็นกรด (เขียนผ่าน anion หรือเป็นกลางแบบไม่มี protonation) ไม่ให้คะแนน
- หากเขียนกลไกแบบผ่าน aldol condensation ก่อนแล้วตามด้วย Michael addition ไม่ให้คะแนน (เนื่องจาก ระบุในคำถามแล้วว่าเกิดผ่าน iminium ก่อน)
- กรณีพิเศษอื่น ๆ จะตรวจให้เป็นไปในแนวทางเดียวกัน และจะ normalize ในการตรวจจริงอีกครั้ง

Answer to Problem 3 (11 points)

3.1 (3 points) Structures of compounds A – C.

3.2 (2 points)

Structure of (R)-Mosher's acid:

IUPAC name of (R)-Mosher's acid:

3.3 (3 points)

3.4 (3 points)

Calculation (0.5 คะแนน)

%enantiomeric excess (ee) =
$$\frac{|(R)-(S)|}{(R)+(S)} \times 100$$

75% ee means 75% excess of (R)-isomer, and 25% racemic mixture of (R)- and (S)-isomer ($\frac{25}{2}$ % each).

(R)-isomer =
$$75 + \frac{25}{2} = 87.5\%$$

(S)-isomer =
$$\frac{25}{2}$$
 = 12.5%

ไม่จำกัดวิธีคำนวณหากแสดงมาแล้วได้ค่าที่ถูกต้อง)

3.4.2 TLC profile with "(R,R)" or "(R,S)" labels in the boxes.

(0.5 คะแนน)

- ระบุตำแหน่งถูก/สอดคล้องกับ label 0.25 คะแนน

- วาดขนาดสอดคล้องกับข้อมูล %ee 0.25 คะแนน

3.4.3 TLC profile with proper labels in the boxes.

(1 คะแนน)

ขนาด spot สอดคล้องกับ %ee โดยประมาณ (7 เท่า)
 หรือมีความแตกต่างถูกต้องชัดเจน 0.5 คะแนน

- ตำแหน่งของสาร (ค่า R_f) 0.5 คะแนน

Explanation of your prediction.

- 1. The size of each spot depends on the amount of alcohol **K**. Ester containing (R)-**K** fragment will be a bigger spot.
- 2. R_f is a physical property. (R,R) and (S,S) are enantiomer so they should have the same R_f .

 As a result, R_f of (R,R) and (S,S) is higher than (R,S) and (S,R).

คำตอบข้อที่ 4 (15 คะแนน)

4.1 (3 คะแนน) ข้อความเกี่ยวกับสารละลายนี้ถูกหรือผิด (คำตอบที่ไม่ถูกต้องจะถูกหักคะแนน)

(คำตอบถูก 0.5 ผิด -0.5 ไม่ตอบ 0)

□ ถูก \checkmark ผิด (2) $[CO_3^{2-}] < 4.69 \times 10^{-11} M$

☑ ถูก ☐ ผิด (3) ความเข้มข้นที่ภาวะสมดุลเป็นดังนี้ $[H_2CO_3] > [HCO_3^-] > [CO_3^-]$

☑ ถูก ☐ ผิด (4) pH เท่ากับ 4.088

✓ี ถูก □ ผิด (5) กราฟที่ได้จากการไทเทรตกับสารละลาย NaOH ปรากฏจุดสมมูล 2 จุดแยกกันอย่างชัดเจน

□ ถูก
 ☑ ผิด (6) การไทเทรตกับสารละลาย NaOH โดยใช้ฟีนอล์ฟทาลีนเป็นอินดิเคเตอร์
 มีอัตราส่วนโมลของ H₂CO₃ ต่อ NaOH เท่ากับ 2 : 1

(4) การคำนวณ pH

 $H_2CO_3 + H_2O \iff HCO_3^- + H_3O^+ \qquad K_{a1} = 4.45 \times 10^{-7}$

 $HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$ $K_{a2} = 4.69 \times 10^{-11}$

 H_3O^+ ในสารละลายเกิดจากการแตกตัวของ H_2CO_3 และ HCO_3^-

 $[H_3O^+] = [H_3O^+]_{H_2CO_3} + [H_3O^+]_{HCO_3^-}$

เนื่องจาก K_{a2} มีค่าน้อย ดังนั้น H_3O^+ ที่เกิดจากการแตกตัวของ HCO_3^- จึงน้อยจนไม่ต้องคำนึงถึง

 $[H_3O^+] = [H_3O^+]_{H_2CO_3} + [H_3O^+]_{HCO_3^-}$

 $K_{a1} = \frac{[HCO_3^-][H_3O^+]}{[H_2CO_3]}$

 $K_{a1} = \frac{(x)(x)}{(0.0150 - x)} = 4.45 \times 10^{-7}$

ใช้วิธี approximation จะได้ $x = 8.17 \times 10^{-5} M$

จะเห็นว่า x ≤ 5% ของ 0.0150 M (0.54%)

pH = $-\log [H_3O^+] = -\log (8.17 \times 10^{-5}) = 4.087777 \rightarrow 4.088$

(1)

4.2 (2.5 คะแนน)

สมการเคมีการเผาไหม้สมบูรณ์ของเอทานอล
$$C_2H_5OH + 3O_2 \longrightarrow 3H_2O + 2CO_2$$
 (1)

Carbon footprint (CF) ของการเผาไหม้สมบูรณ์ของเอทานอล = 34.3 mol CO_2 / L $\frac{(0.5)}{SF-0.25}$

วิธีคำนวณโดยวิธีเปลี่ยนหน่วย (factor-label method)

$$CF = \frac{2 \text{ mol } CO_2}{1 \text{ mol } C_2H_5OH} \times \frac{1 \text{ mol } C_2H_5OH}{46.0 \text{ g } C_2H_5OH} \times \frac{0.789 \text{ g } C_2H_5OH}{1 \text{ mL } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ L } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ L } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ L } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ L } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ L } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ L } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{ mL } C_2H_5OH} \times \frac{10^3 \text{ mL } C_2H_5OH}{1 \text{$$

4.3 (4.5 คะแนน) Carbon footprint ของการเผาไหม้แก๊สหุงต้ม =
$$\frac{1.05}{0.5}$$
 kg CO₂/ถึง เศษส่วนโมลของโพรเพนในแก๊สหุงต้ม = $\frac{0.722}{0.5}$ SF ที่ละ -0.25

วิธีคำนวณ

ตะกอนขาวที่เกิดขึ้นคือ BaCO₃ (อธิบาย เขียนสมการเคมี หรือแสดงสูตรเคมีของตะกอนในวิธีคำนวณก็ได้) นำมาคำนวณ carbon footprint ได้ว่า

$$\text{CF} \ \frac{\text{kg CO}_2}{1 \, \text{ถัง}} = \frac{824.0 \, \text{g BaCO}_3}{(100.0 - 82.5) \, \text{psi แก๊ส}} \times \frac{100.0 \, \text{psi แก๊ส}}{1 \, \text{ถัง}} \times \frac{1 \, \text{mol BaCO}_3}{197.3 \, \text{g BaCO}_3} \times \frac{1 \, \text{mol CO}_2}{1 \, \text{mol BaCO}_3} \times \frac{44.0 \, \text{g CO}_2}{1 \, \text{mol CO}_2} \times \frac{1 \, \text{kg CO}_2}{1 \, \text{mol CO}_2} = 1.05 \, \frac{\text{kg CO}_2}{1 \, \text{ถัง}}$$

คำนวณจำนวนโมลของแก๊สผสมในแก๊ส 1 ถัง จากสมการแก๊สอุดมคติ PV=nRT จะได้

(สมการ 0.25)

$$n = \frac{PV}{RT} = \frac{(100.0 \text{ psi} \times \frac{1 \text{ atm}}{14.7 \text{ psi}})(27.1 \text{ L})}{(0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1})(273.15+35.00 \text{ K})} = 7.29 \text{ mol}$$
 (แปลงหน่วย 0.25)

คำนวณจำนวนโมลของแก๊สแต่ละชนิดจากปริมาณ ${
m CO_2}$ ที่เกิดขึ้น โดยกำหนดให้ มีโพรเพน ${m x}$ mol จะได้ว่า

มีบิวเทน 7.29 — $x \mod ($ อัตราส่วนโมลแก๊สทั้งสองต่อ CO_2 ที่เกิดขึ้นอาจเขียนสมการเคมีหรือไม่ก็ได้) (0.25)

mol CO_2 total = mol CO_2 from C_3H_8 + mol CO_2 from C_4H_{10} (0.25)

$$1.05 \times 10^{3} \text{ g CO}_{2} \times \frac{1 \text{ mol CO}_{2}}{44.0 \text{ g CO}_{2}} = \left(x \text{ mol C}_{3} \text{H}_{8} \times \frac{3 \text{ mol CO}_{2}}{1 \text{ mol C}_{3} \text{H}_{8}}\right) + \left(7.29 - x \text{ mol C}_{4} \text{H}_{10} \times \frac{4 \text{ mol CO}_{2}}{1 \text{ mol C}_{4} \text{H}_{10}}\right)$$

$$(0.25) \qquad (0.25)$$

$$23.9 = 3x + 4(7.29 - x)$$

$$x = 5.26 \text{ mol}$$

จะได้ว่ามีโพรเพน 5.30 mol คำนวณเศษส่วนโมลได้ว่า

$$X_{C_3H_8} = \frac{5.26}{7.29}$$
 (0.25)
= 0.722

4.4 (1.25 คะแนน) สูตรเคมีของสารตั้งต้นและผลิตภัณฑ์ที่แคโทดและแอโนด และการต่อขั้วไฟฟ้ากับแบตเตอรี่

วิธีคำนวณ

คำตอบข้อที่ 5 (15 คะแนน)

5.1 (2 คะแนน) จากการทดลองตอน 1

5.1.1 🔲 ไม่เกิดตะกอน ่ 🗹 เกิดตะกอน คือ Fe(OH)₂ (1)

ตอบว่าเกิดตะกอน แต่ไม่ระบุสูตรเคมีของตะกอนหรือระบุผิด ไม่ให้คะแนน

5.1.2 สีของสารละลาย : ก่อนไทเทรต

wine red

ที่จุดยุติ

blue (1)

ให้คะแนนช่องละ 0.5 แต่ถ้าตอบสีเดียวกัน 2 ช่อง ไม่ให้คะแนน

5.2 (2 คะแนน) จากการทดลองตอน 2

5.2.1 🔲 ไม่เกิดตะกอน ่ เกิดตะกอน คือ

Fe(OH)₂ และ Mg(OH)₂

ตอบว่าเกิดตะกอน แต่ไม่ระบุสูตรเคมีของตะกอน ไม่ให้คะแนน

5.2.2 สีของสารละลาย : ก่อนไทเทรต

red

ที่จุดยุติ

blue (1)

ให้คะแนนช่องละ 0.5 แต่ถ้าตอบสีเดียวกัน 2 ช่อง ไม่ให้คะแนน

5.3 (3.5 คะแนน)

ความเข้มข้นของแคลเซียมในสารละลายขวด A =

0.04388

mol/L

(0.5)

ปริมาณแคลเซียมในผลิตภัณฑ์

220

mg ต่อ 1 เม็ด

(0.5)

(1)

วิธีคำนวณ

ใช้ข้อมูลปริมาตร EDTA จากตอน 2 = 17.40 mL (0.5)

 $=\frac{17.40~\text{mL EDTA}}{10.00~\text{mL sample soln}}\times\frac{0.02522~\text{mol EDTA}}{1000~\text{mL EDTA}}\times\frac{1~\text{mol Ca}}{1~\text{mol EDTA}}\times\frac{1000~\text{mL}}{1~\text{L}}$ (1)Ca (mol/L) = 0.04388 mol/L (0.0438828)

Ca (mg/tablet) =
$$\frac{0.04388 \text{ mol Ca}}{1000 \text{ mL}} \times \frac{40.1 \text{ g Ca}}{1 \text{ mol Ca}} \times \frac{1000 \text{ mg}}{1 \text{ g}} \times \frac{250.0 \text{ mL sample soln}}{2 \text{ tablets}}$$
 (1)
= 220 mg/tablet (219.9485)

(แทนค่าด้วยตัวเลขที่ไม่คำนึงถึงนัยสำคัญที่ใดที่หนึ่ง หัก 0.25 คะแนน)

5.4 (4 คะแนน) จากการทดลองตอน 3

5.4.1
$$a =$$
 1 $b =$ 8 $c =$ 5 $m =$ 2 (1) a, b, c ต้องถูกทั้งหมด = 0.75 คะแนน // $m = 0.25$ คะแนน

วิธีคำนวณ

Fe (mol/L)
$$= \frac{11.25 \text{ mL KMnO}_4}{10.00 \text{ mL sample soln}} \times \frac{0.01950 \text{ mol KMnO}_4}{1000 \text{ mL KMnO}_4} \times \frac{5 \text{ mol Fe}}{1 \text{ mol KMnO}_4} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$
(1)
$$= 0.1097 \text{ mol/L} \quad (0.1096875)$$

Fe (mg/tablet) =
$$\frac{0.1097 \text{ mol Fe}}{1000 \text{ mL}} \times \frac{55.8 \text{ g Fe}}{1 \text{ mol Fe}} \times \frac{1000 \text{ mg}}{1 \text{ g}} \times \frac{250.0 \text{ mL sample soln}}{2 \text{ tablets}}$$
 (1)
= 765 mg/tablet (765.1575)

(แทนค่าด้วยตัวเลขที่ไม่คำนึงถึงนัยสำคัญที่ใดที่หนึ่ง หัก 0.25 คะแนน)

5.5 (2.5 คะแนน) จากการทดลองตอน 4

วิธีคำนวณ

ความเข้มข้นของเหล็กในสารละลายขวด B (ไม่จำเป็นต้องแสดงวิธี)

จาก สมการของกราฟมาตรฐาน คือ y = 0.0188 x + 0.0129

Fe (mg/L) =
$$\frac{(0.671-0.0129)}{0.0188}$$
 = (35.005319) mg/L

ความเข้มข้นของเหล็กในสารละลายขวด A

Fe (mg/L) =
$$\frac{(0.671-0.0129)}{0.0188} \frac{\text{mg Fe flask B}}{\text{L}} \times \frac{500.0 \text{ mL Fe flask B}}{3.00 \text{ mL Fe flask A}}$$
 (1.5)

= (5834.219858) mg/L

Fe (mg/tablet) =
$$\frac{5834.2199 \text{ mg Fe}}{1000 \text{ mL}} \times \frac{250.0 \text{ mL sample soln}}{2 \text{ tablets}}$$
 (0.5)

= 729 mg/tablet (729.27749)

หรือ เขียนรวมทั้งหมด แล้วคำนวณเลขครั้งเดียว จะได้

Fe (mg/tablet) =

$$\frac{(0.671-0.0129)}{0.0188} \frac{\text{mg Fe flask B}}{\text{L}} \times \frac{500.0 \text{ mL Fe flask B}}{3.00 \text{ mL Fe flask A}} \times \frac{250.0 \text{ mL sample soln (A)}}{2 \text{ tablets}} \times \frac{1 \text{ L}}{1000 \text{ mL}}$$

= 729 mg/tablet (729.27748)

5.6 (1 คะแนน)

วิธีคำนวณ

ความคลาดเคลื่อนสัมพัทธ์ =
$$\frac{\text{ค่าที่ได้ - ค่าจริง}}{\text{ค่าจริง}} \times 100$$
ตอน 3 $2.0 = \frac{765 - x}{x} \times 100$ $x = 750$
ตอน 4 $-2.8 = \frac{729 - x}{x} \times 100$ $x = 750$
(แสดงวิธีคำนวณจากตอนใดตอนหนึ่งก็ได้)

คำตอบข้อที่ 6 (10 คะแนน)

แนวคิดเบื้องต้น จากข้อมูลของธาตุที่กำหนดให้จะได้ว่า ธาตุแต่ละตัวอยู่คนละหมู่ ดังนั้น

Α	D	E	G	J	L
K	Al	Pb	Br	N	S

6.1 (1 คะแนน)

(ตอบโดยใช้สัญลักษณ์ตามตารางธาตุ)

6.2 (1 คะแนน)

GF₃ มีรูปร่างเป็น
 ตัวที หรือ T-shaped
 (0.5 คะแนน)
 อะตอมกลางใช้ไฮบริดออร์บิทัล
 sp³d
 (0.5 คะแนน)

6.3 (2 คะแนน)

แนวคิด X อยู่ในคาบ 6 หมู่ 13 X คือ Tl X ที่มีสถานะออกซิเดชันสูงสุดคือ Tl ³⁺						
	มีไอโซเมอร์หรือไม่ ถ้ามี เลือกชนิดไอโซเมอร์ที่เป็นไปได้					
สูตรเคมีของสารเชิงซ้อนของ X	(ทำเ	ครื่องหมาย 1	🗸 ในช่องเพื่อ	เลือกคำตอบ)	
	ไม่มีไอโซเมอร์	cis	trans	mer	fac	
X Cl(OH ₂) ₅ ²⁺	✓					
X Cl ₂ (OH ₂) ₄ ⁺		✓	✓			
XCl ₃ (OH ₂) ₃				✓	✓	
X Cl ₄ (OH ₂) ₂ ⁻		√	✓			
X Cl₅(OH₂)²-	✓					
X Cl ₆ ³⁻	✓					

(สูตรเคมีละ 0.25 x 6 = 1.5 คะแนน)

(ไอโซเมอร์ แถวละ 0.1×5 (ยกเว้น XCl_6^{3-}) = 0.5 คะแนน)

6.4 (2 คะแนน)

6.4.1 การจัดเรียงอิเล็กตรอนของ JO

 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p}^*)^4(\sigma_{2p}^*)^2(\pi_{2p}^*)^1$ (1 คะแนน, ถ้าลำดับ σ_{2p} - π_{2p} สลับ ได้ 0.25 คะแนน)

6.4.2 อันดับพันธะของ JO เท่ากับ

2.5

(0.5 คะแนน)

6.4.3 สมบัติแม่เหล็กของโมเลกุล JO

(0.5 คะแนน)

☐ diamagnetic

✓ paramagnetic

☐ ferrimagnetic

☐ ferromagnetic

6.5 (2 คะแนน)

สถานะออกซิเดชันของ L ค่าต่ำสุด คือ

-2

ค่าสูงสุด คือ

+6

(1 คะแนน)

โครงสร้างลิวอิสของสารประกอบไตรออกไซด์ของ L ในสถานะของแข็ง

6.6 (2 คะแนน)

6.6.1 ค่า electronegativity (EN)

A <

<

L

J

(1 คะแนน)

6.6.2 ค่าพลังงานไอออไนเซชันลำดับที่ 3 (IE_3)

D

L

Α

<

(1 คะแนน)

คำตอบข้อที่ 7 (10 คะแนน)

7.1 (1.5 คะแนน)

สมการแสดงความสัมพันธ์ระหว่าง d กับ r

$$2\sqrt{2}r = \left(\frac{u \cdot M}{d \cdot N_A}\right)^{1/3} \text{ or } d = \frac{u \cdot M}{N_A \cdot \left(2\sqrt{2}r\right)^3}$$
 (1)

รัศมี r มีค่า

149 pm

(0.5)

7.2 (1 คะแนน)

เลขโคออร์ดิเนชันของ L =

2

ของ M =

(0.5+0.5)

7.3 (2 คะแนน) สูตรอย่างง่ายของ X ที่เป็นไปได้ (เขียนสูตรตอบโดยใช้สัญลักษณ์ตามตารางธาตุ)

 Na_3N

 AlF_3

(1+1)

7.4 (2 คะแนน) จุดแลตทิชของ X ตามแกน z โดยใช้ ● แทน L และ o แทน M

7.5 (2 คะแนน)

X มีมวลต่อโมล = $\begin{bmatrix} 83.0 \\ \text{ s/mol} \end{bmatrix}$ g/mol มีความหนาแน่น = $\begin{bmatrix} 1.29 \\ \text{ s/mol} \end{bmatrix}$ g/cm³ (1+1) ถ้าตอบด้วย AlF₃ มวลต่อโมล 84.0 g/mol ได้ 0 pt ความหนาแน่น 1.31 g/cm³ ได้ 1 pt

7.6 (1.5 คะแนน) (0.5+0.5+0.5)

โครงสร้างหลัก
 การบรรจุในช่องว่าง
 ไอออนบวก
 sc □ bcc □ hcp □ fcc
 คิวบิก ☑ ออกตะฮีดรัล ☑ เททระฮีดรัล
 ไอออนลบ
 sc □ bcc □ hcp ☑ fcc
 □ คิวบิก □ ออกตะฮีดรัล □ เททระฮีดรัล

แนวคิดและวิธีคำนวณ

ขนาดไอออนที่ isoelectronic กัน: $N^{3-} > O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$

MgO: ไอออนลบ (O^{2-}) มีขนาดใหญ่กว่า จัดเรียงตัวแบบ fcc; ไอออนบวก (Mg^{2+}) อยู่ในช่องว่างออกตะฮีดรัล

fcc เมื่อ a = unit cell length:
$$(4r)^2 = a^2 + a^2$$
; $a = 2\sqrt{2}r$; $d = \frac{u \cdot M}{N_A \cdot a^3}$; $a = 4.209 \times 10^{-8}$ cm = 421 pm

$$r = \frac{\left(\frac{u \cdot M}{d \cdot N_A}\right)^{1/3}}{2\sqrt{2}} = \frac{\left(\frac{4 \text{ units} \times (40.3 \text{ g MgO/mol})}{(3.59 \text{ g/cm}^3) \times (6.022 \times 10^{23} \text{ units/mol})}\right)^{1/3}}{2\sqrt{2}} = 1.488 \times 10^{-8} \text{ cm} = 149 \text{ pm}$$

A₆ octahedra with **B** inside เลขโคออร์ดิเนชัน CN ของ **L** = 2 (**L** ที่มุมต่อกับ **M** ใน Oh ที่แชร์มุมอยู่) CN ของ **M** ซึ่งอยู่ใน **L**₆ = 6 สูตรอย่างง่ายเป็น **L**₃**M** ซึ่งอาจเป็น Na₃N หรือ AlF₃ วาด unit cell ได้ตามรูปขวา มี **M** ที่มุม (1/8×8 =1) **L** ตามขอบ (¼×12 = 3) สูตร **L**₃**M** แต่เพราะ unit cell length (2×237 = 474 pm) ยาวกว่า ของ MgO แสดงว่าเป็น Na₃N (เพิ่มเติม AlF₃ เป็น tetragonal)

ตำแหน่งจุดแลตทิช ถ้าวาดโดยให้ **L** อยู่ที่มุมของลูกบาศก์ จะไม่ใช่ unit cell ที่ดีที่สุดเพราะมี **L** และ **M** แค่บางหน้า/ขอบเท่านั้น แม้จะได้ $\mathbf{L}_3\mathbf{M}$ เช่นเดียวกัน (มองจาก front view/side view วาด unit cell ได้ ต่างกัน คือหมุนไป 90°) *ให้คะแนนครึ่งหนึ่ง*

ความหนาแน่นของ X:
$$d_{\text{Na}_3\text{N}} = \frac{u \cdot M}{N_{\Delta} \cdot a^3} = \frac{1 \text{ unitx}(83.0 \text{ g Na}_3\text{N/mol})}{(6.022 \times 10^{23} \text{ units/mol}) \times (2 \times 2.37 \times 10^{-8} \text{cm})^3} = 1.294 \text{ g/cm}^3$$

ถ้าคิด AlF_3 (84.0 g/mol) จะได้ 1.310 g/cm 3

โครงสร้างที่ชิดกันที่สุดในระบบลูกบาศก์ คือ FCC ที่มีช่องว่างออกตะฮีดรัลและเททระฮีดรัล ใน ${\rm Li_3N}$ ไอออนลบ ${\rm N^{3-}}$ ที่ขนาดใหญ่กว่าเป็นโครงสร้างหลักแบบ FCC ส่วนไอออนบวก ${\rm Li^+}$ มี ขนาดเล็กกว่า มีจำนวนเป็น 3 เท่า จึงต้องอยู่ในช่องว่างทั้งแบบออกตะฮีดรัลและเททระฮีดรัล (นี่คือโครงสร้าง ${m \gamma}$ - ${\rm Li_3N}$ ซึ่งเกิดที่ความดันสูง ๆ)

คำตอบข้อที่ 8 (10 คะแนน)

8.1 (3 คะแนน)

8.1.2 Ni²⁺ Fe²⁺ การจัดเรียง d อิเล็กตรอนใน d orbital การจัดเรียง d อิเล็กตรอนใน d orbital

 $m_{l}=$ $\begin{bmatrix} 2 & 1 & 0 & -1 & -2 & m_{l}= & 2 & 1 & 0 & -1 & -2 \\ d-electron และ <math>m_{l}$ (0.5) ต้องถูกทั้งหมด d-electron และ m_{l} (0.5) ต้องถูกทั้งหมด

$$L = \begin{bmatrix} 3 \\ (0.25) \\ L = \end{bmatrix} = \begin{bmatrix} 2 \\ (0.25) \\ \end{bmatrix}$$

$$\mu_{\rm eff} = \begin{bmatrix} 4.47 \\ \text{(ตอบทศนิยม 2 ตำแหน่ง)} \end{bmatrix} \cdot \mu_{\rm B} \qquad (0.25) \qquad \mu_{\rm eff} = \begin{bmatrix} 5.48 \\ \text{(ตอบทศนิยม 2 ตำแหน่ง)} \end{bmatrix} \cdot \mu_{\rm B} \qquad (0.25)$$

- 8.1.3 สปีซีส์ที่มีค่า $\mu_{\text{spin-only}} = \mu_{\text{eff}}$ คือ \square Cr³⁺ $\boxed{\checkmark}$ Fe³⁺ \square Fe $\boxed{\checkmark}$ Mn (0.25+0.25)
- 8.2 (2 คะแนน)
- **8.2.1** bipyridine ใน molecular square จัดเป็นลิแกนด์ชนิด (0.25)
 - lacktriangledown monodentate $\ \square$ bidentate $\ \square$ tetradentate $\ \square$ ambidentate $\ \square$ chelate
- 8.2.2 ethylenediamine ใน molecular square จัดเป็นลิแกนด์ชนิด (0.25) ต้องถูกทั้งหมด
 - \square monodentate $\stackrel{igsplit}{igsplit}$ bidentate \square tetradentate \square ambidentate $\stackrel{igsplit}{igsplit}$ chelate
- 8.2.3 Z ใน molecular square มีค่า = 8 (0.25)

8.2.4 d-splitting diagram ของ Pd ใน
molecular square ที่ระบุชนิดของ
d ออร์บิทัล และเติมอิเล็กตรอน

- 8.2.5 molecular square มีสมบัติแม่เหล็กเป็นแบบ
 - lacktriangledown diamagnetic lacktriangledown paramagnetic lacktriangledown ferrimagnetic
- 8.3 (1.5 คะแนน)
- 8.3.1 d-splitting diagram ของ Ni²⁺ ใน
 สารประกอบเชิงซ้อนระหว่าง 1 และ 2
 ที่ระบุชนิดของ d ออร์บิทัล และเติม
 อิเล็กตรอน

8.3.2 เหตุผลของการเกิดการเปลี่ยนแปลง magnetic moment ของ Ni²⁺

เนื่องจากวง triazine ในโมเลกุล molecular triangle จะทำหน้าที่เป็น axial ligand ด้านบนและล่างของ Ni(II)(acen) **2** มีผลทำให้ coordination ของ Ni²⁺ ใน Ni(II)(acen) **2** เปลี่ยนจาก square planar เป็น pseudo octahedral ทำให้มีอิเล็กตรอนเดี่ยว 2 ตัว

(0.5)

(0.25)

ค่าระดับพลังงาน x^2-y^2 และ z^2 อาจจะไม่ต้องเท่ากันเหมือนในรูปก็ได้ แต่จะต้องเขียนให้มีอิเล็กตรอนเดี่ยว 2 ตัว

8.4 (3.5 คะแนน)

8.4.1 spin state ของ molecular cage (\oplus คือ LS Fe(II) และ lacktriangle คือ HS Fe(II)) และค่าเฉลี่ยของ $\mu_{\rm spin-only}$ (ตอบทศนิยม 2 ตำแหน่ง)

คำตอา	บข้อที่ 9 (10 ค	าะแนน)				
9.1	(1 คะแนน)	อุณหภูมิต่ำสุด =	50	°C		(1.0)
		ถ้าตอบ 323 (ลีเ	มเปลี่ยนหน่วย K เ	ป็น °C) ให้ 0.5 คะ	<i>แ</i> นน	
หมาย	เหตุ หากต้มหมูส	ามชั้นที่อุณหภูมินี้จริง จะใ	ใช้เวลาต้มนานมาก	ในทางปฏิบัติจะท์	า ก่าที่อุณหภูมิสูงกว่านี้	ĺ
9.2	(0.5 คะแนน)	คำตอบของข้อ 9.1 จะ	🗆 เพิ่มขึ้น	🗵 เท่าเดิม	□ ลดลง	(0.5)
เพราะ	การเปลี่ยนหน่วยเ	กิดขึ้นกับทั้ง $\Delta_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $. <i>S</i> ° ดังนั้น แฟกเตอ	ร์เปลี่ยนหน่วยจะห	กักล้างกันไปในระหว่า	างคำนวณ
9.3	(0.5 คะแนน)	หากไม่ใช้ส้อมแทงหนังห	หมูก่อนนำไปทอดใเ	ูน ^น ้ำมัน		
			🗵 ไม่ฟูกรอบ			(0.5)
		หนังหมูกรอบที่ได้จะ	🗆 แห้งเกินไป			
			🛚 แน่นเกินไป			
(้ตอบตัวเลือกถูกใง	ห้ตัวเลือกละ 0.25 คะแนน	ม ตัวเลือกผิดหัก 0.	25 คะแนน ถ้าตอ	บทั้ง 3 ตัวเลือก ได้	0 คะแนน)

ปริมาตรน้ำในถุงน้ำ = 3.72 pL = (3.72 pL)
$$\times \frac{10^{-12} \,\mathrm{L}}{1 \,\mathrm{pL}} \times \frac{10^3 \,\mathrm{mL}}{1 \,\mathrm{L}} = 3.72 \times 10^{-9} \,\mathrm{mL}$$
 (0.1)

มีน้ำมวล =
$$(3.72 \times 10^{-9} \text{ mL}) \times \frac{1.00 \text{ g}}{1 \text{ mL}}$$
 = $3.72 \times 10^{-9} \text{ g}$ (0.1)

จำนวนโมลของน้ำ =
$$(3.72 \times 10^{-9} \text{ g}) \times \frac{1 \text{ mol}}{18.0 \text{ g}}$$
 = $2.07 \times 10^{-10} \text{ mol}$ (0.1)

ภายในรูเท่ากับ 1 atm ซึ่ง ณ ขณะนั้น เหลือไอน้ำเพียง 100.00 – 99.56 = **0.44% โดยโมล**

=
$$(2.07 \times 10^{-10} \text{ mol}) \times 0.44/100$$
 = $9.11 \times 10^{-13} \text{ mol}$

คำนวณปริมาตรของรูพรุนจากสมการ
$$pV = nRT$$
; $V = \frac{nRT}{p}$ (0.2)

$$V_{\rm pore} = \frac{(9.11 \times 10^{-13} \text{ mol})(0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1})(180 + 273.15 \text{ K})}{(1 \text{ atm})}$$

$$V_{\text{pore}} = 3.39 \times 10^{-11} \text{ L} = (3.39 \times 10^{-11} \text{ L}) \times \frac{10^{-3} \text{ m}^3}{1 \text{ L}} = 3.39 \times 10^{-14} \text{ m}^3$$

จากสูตรคำนวณปริมาตรทรงกลม
$$V=rac{4}{3}\pi r^3$$

แทนค่า $(3.39 \times 10^{-14} \text{ m}^3) = \frac{4}{3} \pi r^3$

$$r = \sqrt[3]{\frac{3}{4\pi} \times (3.39 \times 10^{-14} \text{ m}^3)} = 2.01 \times 10^{-5} \text{ m} = 20.1 \,\mu\text{m}$$
 (0.2)

(เลื่อนจุดทศนิยมผิดหัก 0.1 คะแนน)

สัดส่วนการขยายตัว (expansion ratio) =
$$\frac{3.39 \times 10^{-11} \,\mathrm{L}}{3.72 \times 10^{-12} \,\mathrm{L}}$$
 = 9.11 ≈ 9 (0.2)

(ถ้านักเรียนตอบในหน่วยอื่น เช่น J หรือ kJ หัก 0.25 คะแนน)

ความร้อนที่ใช้ในการเพิ่มอุณหภูมิน้ำมันปาล์ม (
$$q_1$$
) (0.2)

$$q_1 = 2.00 \text{ L} \times \frac{10^3 \text{ mL}}{1 \text{ L}} \times \frac{0.904 \text{ g}}{1 \text{ mL}} \times 4.02 \frac{\text{J}}{\text{g °C}} \times \left((180 - 25) \text{ °C} \right) \times \frac{1 \text{ MJ}}{10^6 \text{ J}} = \textbf{1}. \textbf{13 MJ}$$

ความร้อนที่ใช้ชดเชยการสูญเสียความร้อนตลอดการให้ความร้อน
$$(q_2)$$
 (0.2)

$$q_2 = ((5 + 20) \text{ min}) \times 14.8 \frac{\text{kJ}}{\text{min}} \times \frac{1 \text{ MJ}}{10^3 \text{ kJ}} = 0.37 \text{ MJ}$$

ความร้อนที่ใช้ทั้งหมดในขั้นตอนนี้ (
$$q_{
m total}$$
) (0.1)

$$q_{\text{total}} = 1.13 \text{ MJ} + 0.37 \text{ MJ} = 1.50 \text{ MJ}$$

9.6 (1.5 คะแนน)
$$\Delta_{c}H$$
 ของแก๊สหุงต้ม = -2418 kJ mol $^{-1}$ (0.5)

วิธีคำนวณ

$$\Delta_{c}H$$
 ของแก๊สหุงตั้ม = $\frac{(-2220 \times 7) + (-2880 \times 3)}{10}$ = **-2418 kJ mol**⁻¹ (0.2)

มวลต่อโมลของแก๊สหุงต้ม =
$$\frac{(44.0 \times 7) + (58.0 \times 3)}{10} = 48.2 \text{ g mol}^{-1}$$
 (0.1)

มวลของแก๊สหุงต้มที่ต้องใช้ (
$$m_{
m cooking\ gas}$$
) (0.2)

$$m_{\text{cooking gas}} = 1.50 \text{ MJ} \times \frac{10^3 \text{ kJ}}{1 \text{ MJ}} \times \frac{1 \text{ mol}}{2418 \text{ kJ}} \times \frac{48.2 \text{ g}}{1 \text{ mol}} = 29.9 \text{ g}$$

(ถ้านักเรียนหาเพียงจำนวนโมลของแก๊สหุงต้ม (1.50 × 10³)/2418 = 0.620 mol ได้ 0.1 คะแนน) (ถ้าคำตอบข้อ 9.5 ของนักเรียนไม่ใช่ 1.50 MJ และนักเรียนใช้ค่านั้นโดยส่วนที่เหลือถูกหมดก็ให้ 0.2 คะแนน)

ต้นทุนจาก**หมูสามชั้น**/หมูสามชั้น 1 kg =
$$1 \text{ kg} \times \frac{170 \text{ THB}}{1 \text{ kg}} = 170 \text{ THB}$$
 (0.1)

= 1 kg Pork Belly
$$\times \frac{2 \text{ L}}{8 \text{ kg Pork Belly}} \times \frac{45 \text{ THB}}{1 \text{ L}} = 11.25 \text{ THB} \approx 11.2 \text{ THB}$$

(ถ้านักเรียนลืมคิดปริมาณน้ำมันต่อหมูสามชั้น 1 kg จะได้ 90 บาท – ไม่ได้คะแนน)

= 70 min
$$\times \frac{340 \text{ THB}}{1 \text{ working day}} \times \frac{1 \text{ working day}}{8 \text{ hr}} \times \frac{1 \text{ hr}}{60 \text{ min}} = 49.58 \text{ THB} \approx 49.6 \text{ THB}$$

(ถ้านักเรียนลืมคิดว่า 1 วันทำงาน = 8 ชั่วโมงทำงาน จะได้ 396.7 บาท – ไม่ได้คะแนน)

ต้นทุนจาก**แก๊สหุงต้ม**/หมูสามชั้น 1 kg =
$$100 \text{ g} \times \frac{1 \text{ kg}}{10^3 \text{ g}} \times \frac{423 \text{ THB}}{15 \text{ kg}} = 2.82 \text{ THB} ≈ 2.8 THB (0.1)$$

$$\frac{\text{Cost}}{1 \text{ kg Pork Belly}} = 170 + 11.2 + 49.6 + 2.8 + 15 = \mathbf{248.6 \text{ THB}} = \frac{\text{Cost}}{0.6 \text{ kg Crispy Pork}}$$

(ถ้านักเรียนคำนวณต้นทุนในขั้นตอนเดียวจะประมาณค่าได้เป็น 248.7 บาท)

$$\frac{\text{Cost}}{0.1 \text{ kg Crispy Pork}} = \frac{248.6 \text{ THB}}{6} = 41.43 \text{ THB}$$

(ถ้านักเรียนคำนวณต้นทุนในขั้นตอนเดียวจะประมาณค่าได้เป็น 41.45 บาท)

$$\frac{\text{Sale Price}}{0.1 \text{ kg Crispy Pork}} = 41.43 \text{ THB Cost} \times \frac{100 \text{ THB Sale Price}}{45 \text{ THB Cost}} = \mathbf{92.07 \text{ THB}}$$

(ถ้านักเรียนคำนวณต้นทุนในขั้นตอนเดียวจะประมาณค่าได้เป็น 92.11 บาท)

$$\frac{\text{Cost}}{1 \text{ kg Pork Belly}} = \left(1 kg \times \frac{170 \text{ THB}}{1 \text{ kg}}\right) + \left(1 \text{ kg Pork Belly} \times \frac{2 \text{ L}}{8 \text{ kg Pork Belly}} \times \frac{45 \text{ THB}}{1 \text{ L}}\right)$$

$$+ \left(70 \text{ min} \times \frac{340 \text{ THB}}{1 \text{ working day}} \times \frac{1 \text{ working day}}{8 \text{ hr}} \times \frac{1 \text{ hr}}{60 \text{ min}}\right) + \left(100 \text{ g} \times \frac{1 \text{ kg}}{10^3 \text{ g}} \times \frac{423 \text{ THB}}{15 \text{ kg}}\right) + 15 \text{THB}$$

$$= 248.7 \text{ THB}$$

9.8 (1 คะแนน) มวลต่อโมล =
$$3.0 \times 10^3$$
 g mol⁻¹ (0.5)

จากสมการ
$$\Pi = cRT = \frac{n}{V}RT = \frac{m}{MV}RT$$
 (0.2) $M = \frac{m}{\Pi V}RT$

แทนค่า

$$M = \frac{(1.20 \text{ g}) \times (0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}) \times (27 + 273.15 \text{ K})}{\left(2.0 \text{ kPa} \times \frac{1 \text{ atm}}{101.325 \text{ kPa}}\right) \times \left(500 \text{ mL} \times \frac{1 \text{ L}}{10^3 \text{ mL}}\right)}$$
(0.3)

ดังนั้น $M = 2994.8 \text{ g mol}^{-1} \approx 3000 \text{ g mol}^{-1} = 3.0 \times 10^3 \text{ g mol}^{-1}$

(ถ้านักเรียนลืมเปลี่ยนหน่วยความดันและปริมาตร (หรือเปลี่ยนหน่วยผิด) หักจุดละ 0.1 คะแนน)

คำตอบข้อที่ 10 (10 คะแนน)

10.1 (2.5 คะแนน) วัดอายุของตัวอย่างได้นานที่สุด
$$3.81 \times 10^4$$
 ปี (0.5) (ตอบในรูป A.BC \times 10 $^{\circ}$)

วิธีคำนวณ

เนื่องจากต้องการวัดอายุของตัวอย่างให้นานที่สุด ($t_{
m max}$)

(0.5)

แต่ปริมาณ ¹⁴C น้อยที่สุดที่เครื่องมือตรวจวัดได้ เท่ากับ 1 pg

ดังนั้น ความเข้มข้นต่ำสุดที่จะสามารถตรวจวัดได้คือ
$$\frac{1 \times 10^{-12} \text{ g}}{100 \text{ g}} \times 10^{12} = 0.01 \text{ ppt}$$
 (0.5)

การสลายตัวของ ¹⁴C เป็นปฏิกิริยาอันดับ 1 จึงสามารถใช้สมการ

$$ln[A]_{t} = -kt + ln[A]_{0}$$

และ ¹⁴C มีครึ่งชีวิต (half-life,
$$t_{1/2}$$
) เท่ากับ 5730 ปี = $\frac{\ln 2}{k}$ ดังนั้น $k = 1.210 \times 10^{-4}$ ปี (0.5) แทนค่าทั้งหมดในสมการ จะได้

$$\ln(0.01 \text{ ppt}) = -(1.210 \times 10^{-4} \text{ J}^{-1})t_{max} + \ln(1 \text{ ppt})$$

$$(1.210 \times 10^{-4} \text{ J}^{-1})t_{max} = 4.605$$
(0.5)

ดังนั้น วัดอายุของตัวอย่างได้นานที่สุด ($t_{\rm max}$) = 3.81×10^4 ปี ซึ่งห่างไกลจากอายุของยุคไดโนเสาร์มาก (ครึ่งชีวิตของ 14 C สั้นเกินไป)

10.2	(2 คะแนน)	ครึ่งชีวิตของธาตุกัมมันตรังสีที่ใช้	ได้ควรมีค่าน้อยที่สุดเท่าเ	กับ	(0.5)
	$\square 4 \times 10^4 \mathrm{f}$	$\square 4 \times 10^5 \text{\r{d}}$	\square 4 $ imes$ 10 6 ปี	\checkmark 4 × 10 ⁷ \circlearrowleft	
	\square 4 × 10 ⁸ $\widehat{\mathfrak{I}}$	$\Box 4 \times 10^9 \overline{\mathrm{J}}$	\square 4 × 10 ¹⁰ \eth	\square 4 × 10 ¹¹ \eth	

วิธีคำนวณ

ยุคไดโนเสาร์อยู่ระหว่าง 252 ถึง 66 ล้านปีก่อน ครึ่งชีวิตของธาตุกัมมันตรังสีที่มีค่าน้อยที่สุดที่ สามารถใช้ได้ จึงควรพิจารณาจากเวลา 252 ล้านปี (โดยใช้ปริมาณสารและขีดจำกัดการวัดเท่าเดิม) (0.5)

จาก $\ln[\mathbf{A}]_{t} = -kt + \ln[\mathbf{A}]_{0}$

แทนค่าเวลาและความเข้มข้นในสมการ

$$ln(0.01 \text{ ppt}) = -k(2.52 \times 10^8 \text{ U}) + ln(1 \text{ ppt})$$

จะได้ $k = 1.8 \times 10^{-8} \, \overline{\mathbb{I}}^{-1}$

$$k = 1.8 \times 10^{-8} \, \tilde{\mathbf{J}}^{-1} \tag{0.5}$$

นั่นคือ ครึ่งชีวิตของธาตุกัมมันตรังสีที่สามารถใช้ได้ควรมีค่าน้อยที่สุดเท่ากับ $4 imes 10^7$ ปี

10.3 (1 คะแนน) ไดโนเสาร์ที่ขุดค้นพบได้ในบริเวณดังกล่าวควรอยู่ในยุค	(1)
□ ยุค Early Triassic (252–247 ล้านปีก่อน)	
ุบิยุค Middle Triassic (247–237 ล้านปีก่อน)	
ี่⊔ ยุค Early Jurassic (201–175 ล้านปีก่อน)	
□ ยุค Middle Jurassic (175–163 ล้านปีก่อน)	
□ ยุค Late Jurassic (163–145 ล้านปีก่อน)	
ี่ ยุค Early Cretaceous (145–100 ล้านปีก่อน)	
🗖 ยุค Late Cretaceous (100–66 ล้านปีก่อน)	
วิธีคำนวณ	
พิจารณาด้วย ²³⁸ U การสลายตัวเป็นปฏิกิริยาอันดับ 1 จึงสามารถใช้สมการ	
$\ln[\mathbf{A}]_t = -kt + \ln[\mathbf{A}]_0$	
238 U มีครึ่งชีวิต (half-life, $t_{1/2}$) เท่ากับ 4.47 $ imes$ 10^9 ปี = (ln 2)/ k ดังนั้น $k=1.55 imes 10^{-10}$ ปี $^{-1}$	
แทนปริมาณที่พบในธรรมชาติและที่ตรวจพบในสมการ จะได้	
$\ln(97.29\%) = -(1.55 \times 10^{-10} \text{ d}^{-1})t + \ln(99.28\%)$	
พบว่า $t = 1.31 \times 10^8 extstyle extstyle extstyle (หรือ 131 ล้านปี)$	
นั่นคือ อยู่ในยุค Early Cretaceous	
หรือ	
พิจารณาด้วย 235U การสลายตัวเป็นปฏิกิริยาอันดับ 1 จึงสามารถใช้สมการ	
$\ln[\mathbf{A}]_{t} = -kt + \ln[\mathbf{A}]_{0}$	
235 U มีครึ่งชีวิต (half-life, $t_{1/2}$) เท่ากับ 7.04 $ imes$ 10 8 ปี = (ln 2)/ k ดังนั้น k = 9.85 $ imes$ 10 $^{-10}$ ปี $^{-1}$ แทนปริมาณที่พบในธรรมชาติและที่ตรวจพบในสมการ จะได้	
$\ln(0.62\%) = -(9.85 \times 10^{-10} \text{ ปี}^{-1})t + \ln(0.71\%)$ พบว่า $t = 1.38 \times 10^8 \text{ ปี (หรือ 138 ล้านปี)}$	
นั่นคือ อยู่ในยุค Early Cretaceous	
wwite of the first control of	
10.4 (1.5 คะแนน) การสลายตัวปลดปล่อยอนุภาคแอลฟา จำนวน 6 อนุภาค	(0.5)
อนุภาคบีตา จำนวน 4 อนุภาค	(0.5)
สัญลักษณ์นิวเคลียร์ของ Po ที่เกิดขึ้น คือ Po	(0.5) ต้องถูกทั้งหมด

วิธีคิด

กำหนดจำนวนอนุภาคแอลฟาและบีตาที่ปลดปล่อยคือ x และ y ตามลำดับ

จะได้ว่า
$$x + y = 10$$
 (1)

การสลายตัวจาก U ซึ่งมีเลขอะตอม 92 ได้ผลิตภัณฑ์เป็น Po ซึ่งมีเลขอะตอม 84 (ดูจากตารางธาตุ)

(ทุกการปลดปล่อยแอลฟาเลขอะตอมลดลง 2 และทุกการปลดปล่อยบีตาเลขอะตอมเพิ่มขึ้น 1)

แก้สมการ (1) และ (2) จะได้

เลขมวลของ Po เท่ากับ 234 - 6(4) = 210

$$\frac{^{234}}{^{92}}U \xrightarrow{\alpha} \frac{^{230}}{^{2.445\times10^5}} \frac{^{230}}{^{90}}Th \xrightarrow{\alpha} \frac{^{226}}{^{88}}Ra \xrightarrow{\alpha} \frac{^{222}}{^{1600}} \frac{^{222}}{^{86}}Rn \xrightarrow{\alpha} \frac{^{218}}{^{3.8235}} \frac{^{218}}{^{4}}Po \xrightarrow{\alpha} \frac{^{214}}{^{82}}Pb \xrightarrow{\beta^-} \frac{^{214}}{^{26.8}}Bi$$

$$\xrightarrow[19.9 \text{ min}]{\beta^{-}} \xrightarrow{214}_{84} \text{Po} \xrightarrow{\alpha} \xrightarrow[164.3 \ \mu \text{s}]{210} \text{Pb} \xrightarrow{\beta^{-}} \xrightarrow{210}_{83} \text{Bi} \xrightarrow{\beta^{-}} \xrightarrow{210}_{84} \text{Po} \xrightarrow{\alpha}_{84} \xrightarrow{206}_{82} \text{Pb}$$

10.5 (3 คะแนน) จะมีปริมาณ ²³⁴Pa* เหลืออยู่

(ตอบเลขนัยสำคัญ 2 ตัว)

วิธีคำนวณ

การสลายตัวเป็นปฏิกิริยาอันดับ 1 และเกิดแบบแข่งขัน

การเปลี่ยนแปลงปริมาณ ²³⁴Pa* คือ

$$-\frac{d[^{234}Pa^*]}{dt} = k_{1.17min}[^{234}Pa^*] + k_{1.17min}[^{234}Pa^*] = 2k_{1.17min}[^{234}Pa^*]$$
 (1)

จะได้ว่า

$$\ln(^{234}\text{Pa*}) = -2k_{1.17\text{min}}t + \ln(^{234}\text{Pa*})_0 \tag{0.5}$$

$$\ln(^{234}\text{Pa*}) = -2k_{1.17\text{min}}t + \ln(115\text{ g}) \tag{0.25}$$

$$\ln(^{234}\text{Pa*}) = -2\left(\frac{\ln 2}{1.17 \text{ min}}\right)t + \ln(115 \text{ g}) \tag{0.5}$$

$$\ln(^{234}\text{Pa*}) = -2(0.592)(7.8 \text{ min}) + 4.745 \tag{0.25}$$

$$ln(^{234}Pa*) = -9.24 + 4.745$$

$$ln(^{234}Pa*) = -4.50$$

234
Pa* = $e^{-7.70}$

234
Pa* = 0.011 g

คำตอบข้อที่ 11 (10 คะแนน)

11.1 (1.5 คะแนน) คำอธิบาย

 $E_{
m gap}^{
m bulk}$ ช่องว่างระหว่างแถบพลังงาน (energy band gap) ของ bulk CdSe (0.5) $-rac{3.6e^2}{4\pi arepsilon_0 arepsilon_R}$ พลังงานศักย์ไฟฟ้าตามกฎของคูลอมบ์ ระหว่าง อิเล็กตรอน (ประจุลบ) ใน conduction band (0.5) กับ โฮล (ประจุบวก) ใน valence band $\vec{\mu}$ dielectric constant ϵ เนื่องจากอันตรกิริยาขึ้นกับชนิดของวัสดุ (ไม่ใช่สุญญากาศ) (0.5)

11.2 (1 คะแนน) สีของของแข็ง CdSe

🗌 สีคราม

🗌 สีน้ำเงิน

่ สีเขียว (0.5)

🗌 สีเหลือง

่ สีแสด

🛛 สีแดง

(1)

$$\lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{\left(1.74 \text{ eV} \times \frac{1.602 \times 10^{-19} \text{ J}}{1 \text{ eV}}\right)} = 713 \text{ nm}$$

2.3

(0.5)

(0.5)

วิธีคำนวณ

$$\Delta E \approx E_{\rm gap}^{\rm bulk} + \frac{h^2}{8\mu r^2}$$

Confinement energy:

(0.5)

(0.25)

nm

$$\frac{h^2}{8\mu r^2} = \frac{(6.626 \times 10^{-34} \,\mathrm{J \, s})(2.998 \times 10^8 \,\mathrm{m \, s^{-1}})}{(510 \times 10^{-9} \,\mathrm{m})} - \left(1.74 \,\mathrm{eV} \times \frac{1.602 \times 10^{-19} \,\mathrm{J}}{1 \,\mathrm{eV}}\right) \\
= 3.90 \times 10^{-19} \,\mathrm{J} - 2.79 \times 10^{-19} \,\mathrm{J} \\
= 1.11 \times 10^{-19} \,\mathrm{J} = 0.69 \,\mathrm{eV}$$
(0.25)

Reduced mass:

$$\frac{1}{\mu} = \frac{1}{0.13 \cdot m_e} + \frac{1}{0.45 \cdot m_e} = \left(\frac{0.45 + 0.13}{0.13 \cdot 0.45}\right) \frac{1}{m_e} \Rightarrow \mu = 0.10 \cdot m_e$$

Size of CdSe ODs: (0.5)

$$\frac{1}{r^2} = (1.11 \times 10^{-19} \,\mathrm{J}) \times \frac{8(0.10 \times 9.109 \times 10^{-31} \,\mathrm{kg})}{(6.626 \times 10^{-34} \,\mathrm{J \,s})^2} = 1.84 \times 10^{17} \,\mathrm{m}^{-2}$$

$$r^2 = 5.44 \times 10^{-18} \text{ m}^2$$

 $r = 2.33 \times 10^{-9} \text{ m} = 2.33 \text{ nm}$

11.4 (1.5 คะแนน)

วิธีคำนวณ

Capacitor potential energy: $U = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$

หน่วย: 1 V = 1 J C⁻¹ 1 F = 1 C V⁻¹

$$U = \frac{1}{2}QV$$
 และ $C = \frac{Q}{V}$ $\therefore U = \frac{1}{2}CV^2$

ชาร์จด้วยอิเล็กตรอน 1 ตัว นั่นคือ ประจุ $e = 1.602 \times 10^{-19} \, \mathrm{C}$

$$U = \frac{Q^2}{2C} = \frac{e^2}{2 \cdot 4\pi\varepsilon_0 \varepsilon r}$$

(0.5)

$$U = \frac{(1.602 \times 10^{-19} \text{ C})^2}{2 \times 4\pi (8.854 \times 10^{-12} \text{ F m}^{-1})(6.20)r}$$

(0.5)

$$U = \frac{1.86 \times 10^{-29} \text{ J m}}{r} = \frac{0.116 \text{ eV}}{(r / nm)}$$

(0.5)

11.5 (1.5 คะแนน) รัศมีของอนุภาค CdSe QDs ☐ เล็กกว่า (0.25) ☐ ใหญ่กว่า

4.52

nm

(0.5)

วิธีคำนวณ

ที่อุณหภูมิห้อง (25 °C) พลังงานความร้อน (thermal energy) มีค่าประมาณ

$$\Delta E = k_{\rm B}T = \frac{(1.381 \times 10^{-23} \text{ J K}^{-1})(298 \text{ K})}{(1.602 \times 10^{-19} \text{ J eV}^{-1})} = 25.7 \text{ meV}$$

(0.5)

พลังงานที่เพิ่มขึ้นในการชาร์จประจุทีละตัวเทียบได้กับระดับพลังงานที่มีระยะห่างทีละ U (ในข้อ 11.4) ดังนั้น จะสังเกตปรากฏการณ์ทางควอนตัมได้ ... for the single electron effect to be observable

$$\frac{0.116 \, eV}{(r \, / \, nm)} \gg 25.7 \, \text{meV} \ \ @ \, 298 \, \text{K}$$

(0.25)

 $r \ll 4.52 nm$

11.6	(2 คะแนน)	ตัวแปรที่ต้องใช้ คือ	\square ประจุ (Q)		☐ กำลังไฟฟ้า (<i>P</i>)	🗌 แรงดันไฟฟ้า (<i>V</i>)
		(0.5)	🔀 ความจุ (<i>C</i>)		🗌 กระแสไฟฟ้า (/)	☐ ความต้านทาน (<i>R</i>)
		ค่าความต้านทาน <i>(0.25)</i>	ต่ำสุดสูงสุด	จ ื้อ	4.11	k Ω (0.5) นัยสำคัญผิด -0.25
วิธีคำน	เวณ					•

สูตรการคำนวณ
$$\Delta t = R \cdot (?)$$

$$s = (V A^{-1}) \cdot [?]$$

(0.25)

$$[?] = (A s) \cdot V^{-1} = C \cdot V^{-1}$$
$$\therefore ? = \frac{Q}{V} = C$$

ดังนั้น ตัวแปรที่ต้องการ คือ ความจุ (capacitance)

Heisenberg Uncertainty Principle:

$$\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$$

$$\left(\frac{e^2}{2C}\right) \cdot (RC) \ge \frac{\hbar}{2}$$

(0.25)

$$R \ge \frac{\hbar}{e^2} \sim 4.11 \text{ k}\Omega$$

(0.25)

