Respostas

 $[1] 2 \quad \prec \quad log_3n \quad \prec \quad log_2n \quad \prec \quad n^{\frac{2}{3}} \quad \prec \quad 20n \quad \prec \quad 4n^2 \quad \prec \quad 3^n \quad \prec \quad n!$

[2] Os valores de c e de m e as funções utilizadas não representam necessariamente um limite assintótico firme.

- (a) O(n) com $c > c_1$ e $m \ge 1$ $\Omega(n)$ com $c < c_1$ e $m \ge 1$
- (b) $O(n^4)$ com $c > c_2$ e $m \ge 1$ $\Omega(n)$ com $c < c_2$ e $m \ge 1$
- (c) $O(n^2)$ com $c > max(c_4, c_5)$ e $m \ge 1$ $\Omega(n)$ com $c = c_5$ e $m \ge 1$
- (d) $O(n!) \text{ com } c > max(c_6, c_7) \text{ e } m \ge 100$ $\Omega(n) \text{ com } c = 1 \text{ e } m \ge 1$

[3] Respostas:

- (a) Verdadeiro
- (b) Falso

[4] Respostas:

- (a) $f(n) = \Theta(g(n)) \ (f(n) \approx g(n))$
- (b) $f(n) = \Omega(g(n)) \ (f(n) > g(n))$
- (c) $f(n) = \Omega(g(n)) \ (f(n) > g(n))$
- (d) $f(n) = \Omega(g(n)) \ (f(n) > g(n))$
- (e) $f(n) = \Omega(g(n)) \ (f(n) > g(n))$
- (f) f(n) = O(g(n)) (f(n) < g(n))
- (g) $f(n) = \Theta(g(n))$ $(f(n) \approx g(n)$ Ambos são constantes)
- (h) $f(n) = \Omega(g(n)) \ (f(n) > g(n))$
- (i) $f(n) = \Omega(g(n)) \ (f(n) > g(n))$
- (j) f(n) = O(g(n)) (f(n) < g(n))
- (k) f(n) = O(g(n)) (f(n) < g(n))

[5] Respostas:

- (a) $\Theta(1)$
- (b) $\Theta(n)$
- (c) $\Theta(n^2)$
- (d) $\Theta(n^2)$
- (e) $\Theta(n^2)$
- (f) $\Theta(n^2)$
- (g) $\Theta(n^2 \log n)$