## Congratulations! You passed!

0.119

**⊘** Correct

Grade received 100% To pass 80% or higher

Go to next item

**Policy Gradient Methods** Total points 12 1. Which of the following is true about policy-based methods? (Select all that apply) 1 / 1 point Policy-based methods can be applied to continuous action space domains. **⊘** Correct Correct. By parameterizing a policy to represent a probability distribution such as Gaussian, it can be applied to continuous action space domains. Policy-based methods can learn an optimal policy that is stochastic. **⊘** Correct Correct. It can learn a stochastic optimal policy, such as the soft-max in action preferences. Policy-based methods are useful in problems where the policy is easier to approximate than actionvalue functions. Correct. For example in the Mountain Car problem a good policy is easy to represent whereas the value function is complex. Policy-based methods allow smooth improvement in the policy without drastic changes. **⊘** Correct Correct. As the policy parameters change the action probabilities change smoothly, but with valuebased methods a small change in action-value function can drastically change the action probabilities. 2. Which of the following statements about parameterized policies are true? (Select all that apply) 1/1 point ☐ The policy must be approximated using linear function approximation.  $\hfill \square$  The function used for representing the policy must be a softmax function. The probability of selecting any action must be greater than or equal to zero. Correct! This is one of the conditions for a valid probability distribution. For each state, the sum of all the action probabilities must equal to one. Correct! This condition is necessary for the function to be a valid probability distribution. 3. Assume you're given the following preferences  $\,h_1=44$ ,  $\,h_2=42$ , and  $\,h_3=38$ , corresponding to three 1/1 point different actions (  $a_1, a_2, a_3$  ), respectively. Under a softmax policy, what is the probability of choosing  $a_2$  , rounded to three decimal numbers? 0.42 0.879 0.002

✓ CorrectCorrect.

| $oldsymbol{ abla}$ The true action value $q_\pi$ can be approximated in many ways, for example using TD algorithms.                                                                                           |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ○ Correct     Correct.                                                                                                                                                                                        |             |
| This expression can be converted into the following expectation over $\pi$ : $\mathbb{E}_{\pi}[\nabla ln\pi(A S,\theta)q_{\pi}(S,A)]$                                                                         |             |
| <ul> <li>Correct</li> <li>Correct. In fact, this expression is normally used to perform stochastic gradient updates.</li> </ul>                                                                               |             |
| This expression can be converted into: $\mathbb{E}_{\pi}[\Sigma_a \nabla \pi(a S,\theta) q_{\pi}(S,a)]$ In discrete action space, by approximating q_pi we could also use this gradient to update the policy. |             |
| <ul> <li>Correct</li> <li>Correct. The expression contains sum over actions, which can be computed for discrete actions. In<br/>the textbook, this is also called the all-actions method.</li> </ul>          |             |
| <ul> <li>8. Which of the following statements is true? (Select all that apply)</li> <li>The Actor-Critic algorithm consists of two parts: a parameterized policy — the actor — and a value</li> </ul>         | 1/1 point   |
| function — the critic.  Orrect Correct.                                                                                                                                                                       |             |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                      |             |
| <ul> <li>Correct</li> <li>Correct. This is equivalent to using one-step state value and subtracting a current state value baseline.</li> </ul>                                                                |             |
| <ul> <li>Subtracting a baseline in the policy gradient update tends to reduce the variance of the update, which results in faster learning.</li> <li>Correct</li> </ul>                                       |             |
| Correct.                                                                                                                                                                                                      |             |
| <ul> <li>To train the critic, we must use the average reward version of semi-gradient TD(0).</li> <li>True</li> </ul>                                                                                         | 1/1 point   |
| <ul><li>● False</li><li>✓ Correct</li></ul>                                                                                                                                                                   |             |
| Correct. We can use any state-value learning algorithm.                                                                                                                                                       |             |
| 10. Consider the following state features and parameters $\theta$ for three different actions (red, green, and blue):                                                                                         | 1 / 1 point |
| $\begin{bmatrix} 45 \\ 73 \\ 21 \\ 120 \end{bmatrix} a_0$                                                                                                                                                     |             |
| $\mathbf{X}(s) = \begin{bmatrix} 0.1 \\ 0.3 \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} 120 \\ 120 \\ 100 \end{bmatrix} \boldsymbol{a}_1$                                                      |             |



Compute the action preferences for each of the three different actions using linear function approximation and stacked features for the action preferences.

|     | and stacked reatures for the action preferences.                                                                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | What is the action preference of $a_0$ (red)?                                                                                                      |
|     | ③ 39                                                                                                                                               |
|     | ○ 33                                                                                                                                               |
|     | ○ 37                                                                                                                                               |
|     | ○ 35                                                                                                                                               |
|     |                                                                                                                                                    |
|     |                                                                                                                                                    |
| 11. | , Which of the following statements are true about the Actor-Critic algorithm with softmax policies? (Choose all that apply)                       |
|     | ✓ The learning rate parameter of the actor and the critic can be different.                                                                        |
|     | Correct Correct! In practice, it is preferable to have a slower learning rate for the actor so that the critic can accurately critique the policy. |
|     | ☐ The preferences must be approximated using linear function approximation.                                                                        |
|     | Since the policy is written as a function of the current state, it is like having a different softmax distribution for each state.                 |
|     |                                                                                                                                                    |
|     | The actor and the critic share the same set of parameters.                                                                                         |
| 12  | , A Gaussian policy becomes deterministic in the limit $\sigma 	o 0.$                                                                              |
|     | (a) True                                                                                                                                           |
|     | ○ False                                                                                                                                            |
|     | $\bigcirc$ Correct Correct: As $\sigma$ approaches 0, the values of the Gaussian policy approach the mean of the policy in a given state.          |
|     |                                                                                                                                                    |