Universidade Federal de Alfenas - UNIFAL-MG - campus Varginha Bacharelado Interdisciplinar em Ciência e Economia Disciplina: Análise multivariada - Profa. Patrícia de Siqueira Ramos Lista 1 - Álgebra matricial

Instruções:

- Resolva a lista manualmente (a parte escrita será entregue durante a aula), exceto os exercícios onde há indicação "computacional" (usar o Python).
- Resolva também no Python as questões 1, 2, 4, 5, 7, 8, 9, 10, 11, 12 e 13.
- 1. Obtenha Ev em cada caso e forneça a dimensão de cada matriz/vetor obtido:

a)
$$\boldsymbol{E} = \begin{bmatrix} 4 & 2 \\ 0 & 2 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ b) $\boldsymbol{E} = \begin{bmatrix} 4 & 1 & -2 \\ -1 & 3 & 1 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ c) $\boldsymbol{E} = \begin{bmatrix} 0 & -1 \\ 2 & 1 \\ 2 & -1 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

2 Para
$$v = \begin{bmatrix} -2\\4\\7 \end{bmatrix}$$
 e $z = \begin{bmatrix} 3 & 6 & -2 \end{bmatrix}$, calcule: a) vz b) zv c) v^Tz^T d) z^Tv^T

Qual a relação entre os resultados de a) e d)? Qual propriedade é verificada?

- 3 Em cada caso indique se é possível efetuar a multiplicação (se não for, indique o que deveria ser feito para tornar possível o produto) e qual a dimensão do produto obtido:
- a) Um vetor coluna \boldsymbol{a} $(n \times 1)$ pode pré multiplicar uma matriz \boldsymbol{B} $(n \times m)$?
- b) Um vetor coluna a $(n \times 1)$ pode pós multiplicar uma matriz B $(m \times n)$?
- c) O produto de \boldsymbol{a} $(n \times 1)$ por ele mesmo?
- d) O produto de \boldsymbol{B} $(n \times m)$ por ela mesma?
- 4 Informe se as operações a seguir são definidas (se sim, forneça o resultado e a dimensão):

4 Informe se as operações a seguir são definidas (se sim, forneça o resultado e a dimensão):
a)
$$C = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$$
, $A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$. $CA = ?$ b) $D = \begin{bmatrix} 4 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$, $A = \begin{bmatrix} 0 & 4 & 1 \\ -2 & -1 & 2 \\ 4 & -1 & 1 \end{bmatrix}$. $D + A = ?$
c) $E = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} -2 & 1 & -2 \end{bmatrix}$. $ED = ?$ d) $C = \begin{bmatrix} 2 & 2 & -2 \\ 0 & 2 & 1 \\ -2 & 4 & 2 \end{bmatrix}$, $A = \begin{bmatrix} -2 & -1 \\ 3 & -1 \\ 2 & 4 \end{bmatrix}$. $CA = ?$

c)
$$E = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} -2 & 1 & -2 \end{bmatrix}$. $ED = ?$ d) $C = \begin{bmatrix} 2 & 2 & -2 \\ 0 & 2 & 1 \\ -2 & 4 & 2 \end{bmatrix}$, $A = \begin{bmatrix} -2 & -1 \\ 3 & -1 \\ 2 & 4 \end{bmatrix}$. $CA = ?$

5 Dados
$$\boldsymbol{A} = \begin{bmatrix} -1 & 5 & 7 \\ 0 & -2 & 4 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 9 \\ 6 \\ 0 \end{bmatrix}$ e $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$,

b) *IA* d) $\boldsymbol{x}^T \boldsymbol{I}$. I. Calcule: a) AIc) *Ix*

Indique a dimensão da matriz identidade usada em cada caso.

c) $\boldsymbol{x}^T \boldsymbol{I} \boldsymbol{A}$ d) $\boldsymbol{x}^T \boldsymbol{A}$. b) **AIb** II. Calcule: a) \boldsymbol{Ab}

A inserção de I em b) afetou o resultado em a)? A exclusão de I em d) afetou o resultado em c)?

- III. Qual é a dimensão da matriz nula resultante de:
- a) Pré-multiplicação de A por uma matriz nula (5×2) . b) Pós-multiplicação de A por uma matriz nula (3×6) .

6 Qual é o resultado de
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
?

7 Calcule os determinantes das seguintes matrizes (utilize os dois métodos vistos):

$$\mathbf{A} = \begin{bmatrix} 8 & 1 & 3 \\ 4 & 0 & 1 \\ 6 & 0 & 3 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 4 & 0 & 2 \\ 6 & 0 & 3 \\ 8 & 2 & 3 \end{bmatrix}$$

O que podemos afirmar sobre a existência das inversas das matrizes A e B?

8 Em cada letra, diga qual das duas matrizes é invertível, calcule a inversa quando possível e informe o posto de todas as matrizes.

a)
$$\boldsymbol{L} = \begin{bmatrix} -2 & -2 \\ 1 & 1 \end{bmatrix} \boldsymbol{E} = \begin{bmatrix} 1 & -4 \\ -9 & 8 \end{bmatrix}$$
 b) $\boldsymbol{G} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \boldsymbol{K} = \begin{bmatrix} 7 & 9 \\ 1 & 1 \end{bmatrix}$

9 Sejam
$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 6 & 4 & 2 \\ 4 & 4 & 0 \\ 2 & 0 & 6 \end{bmatrix}.$$

- a) Determine as inversas de \boldsymbol{A} e \boldsymbol{B} , se existirem.
- b) Determine AB e sua inversa $(AB)^{-1}$.
- c) Verifique que $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

10 Seja
$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & 5 \end{bmatrix}$$
.

- a) Obtenha os autovalores e autovetores associados a A.
- b) Obtenha a matriz P.
- c) Verifique se \boldsymbol{P} é ortogonal.
- d) Construa $\Lambda = diag(\lambda_i)$ e verifique se as seguintes igualdades valem: $\mathbf{A} = \mathbf{P}\Lambda\mathbf{P}^T$ e $\Lambda = \mathbf{P}^T\mathbf{A}\mathbf{P}$.
- e) Qual o valor de posto(A)? Com base nesse valor, podemos afirmar que A é singular?
- f) Classifique a matriz A (P.D., P.S.D., N.D., N.S.D.)
- g) Verifique que $|\mathbf{A}| = |\mathbf{\Lambda}|$ e $tr(\mathbf{A}) = tr(\mathbf{\Lambda})$.

11
$$\mathbf{A} = \begin{bmatrix} 4,6 & 7,2 \\ 7,2 & 0,4 \end{bmatrix}$$
.

- a) Calcule |A|.
- b) É possível afirmar, com base no resultado de a), se A é positiva definida? Por quê?
- c) Obtenha a decomposição espectral de A.
- d) Calcule A^{-1} .
- e) (computacional) Obtenha os autovalores de A^{-1} . Qual sua relação com os autovalores de A?
- f) Como você classifica a matriz A?
- 12 Considere a seguinte matriz de dados

$$\boldsymbol{X} = \begin{bmatrix} 10 & 3 & 38 \\ 12 & 4 & 34 \\ 20 & 10 & 74 \\ 10 & 1 & 40 \\ 8 & 7 & 64 \end{bmatrix}.$$

a) Quais os valores de $n \in p$?

- b) Obtenha o vetor de médias amostral por meio de $\bar{X} = \frac{1}{n}X^T\mathbf{1}$. c) Obtenha a matriz de covariâncias amostral por meio de $S = \frac{1}{n-1}\left(X^TX \frac{1}{n}X^T\mathbf{1}\mathbf{1}^TX\right)$ (confira com o resultado obtido usando o Python).
- d) (computacional) Como a matriz S pode ser classificada?
- 13 (computacional) Obtenha as inversas generalizadas das matrizes singulares das questões 7 e 8.