1 Lezione del 09-04-25

1.1 Diagrammi di Bode

I diagrammi di Bode sono 2:

1. Il **diagramma di modulo** (o ampiezza): rappresenta il modulo di $G(j\omega)$ al variare della pulsazione ω . Abbiamo quindi $|G(j\omega)|$ alle ordinate e ω alle ascisse, espresse in scala logaritmica. Il modulo si misura in deciBel (dB), già in scala logaritmica, mentre per la pulsazione ω si usa la scala logaritmica in base 10. Notiamo che il decibel è un **unità di misura relativa**: si interpreta come il rapporto fra due *potenze*, espresso in scala logaritmica, dove per la seconda grandezza, detta **valore di riferimento**, assumiamo 1:

$$dB = 10 \cdot \log_{10} \left(\frac{P}{P_{ref}} \right) = 10 \cdot \log_{10} \left(\frac{P}{1} \right)$$

Abbiamo quindi che il rapporto fra valore assoluto di ampiezza e il valore in decibel è:

$$x_{dB} = 20\log_{10}(|x|)$$

Il 20 compare per via del fatto che consideriamo *ampiezze*, mentre il decibel esprime rapporti fra *potenze*. Abbiamo che la relazione fra ampiezza A e potenza P è quadratica:

$$A^2 \propto P$$

per cui si vuole calcolare effettivamente:

$$dB = 10 \cdot \log_{10} \left(\frac{P}{P_{ref}} \right) = 10 \cdot \log_{10} \left(\frac{A^2}{A_{ref}^2} \right) = 10 \cdot \log_{10} \left(\left(\frac{A}{A_{ref}} \right)^2 \right)$$
$$= 10 \cdot 2 \cdot \log_{10} \left(\frac{A}{A_{ref}} \right) = 20 \cdot \log_{10} \left(\frac{A}{A_{ref}} \right)$$

assunto $A_{ref} = 1$ come da ipotesi si ottiene la stessa formula di prima.

2. Il **diagramma di fase:** rappresenta la fase di $G(j\omega)$ al variare della pulsazione ω . Abbiamo quindi $\angle G(j\omega)$ alle ordinate e ω alle ascisse, la prima in scala lineare e la seconda nella stessa scala logaritmica in base 10 di prima.

1.1.1 Ascisse

Abbiamo quindi che sulle **ascisse** abbiamo sempre la *pulsazione*(rad/s) o *frequenza* (Hz), che sono fra di loro direttamente proporzionali. Queste sono espresse in scala logaritmica, e troviamo quindi i seguenti intervalli relativi:

- Decade: è la distanza in scala logaritmica tra numeri il cui raporto è 10;
- Ottava: è la distanza in scala logartmica tra numeri il cui rapporto è 2.

1.1.2 Ordinate

Alle **ordinate** manteniamo invece, nel caso di un diagramma di modulo, lo spettro di ampiezza in unità logaritmiche (dB). Abbiamo quindi che 0 dB equivalgono al valore di riferimento (1), mentre tutti gli altri valori si convertono usando la formula:

(decibel)
$$20 \log_{10}(10^{\alpha}) = 20 \cdot \alpha$$
 (scala logaritmica)

Nel caso di diagrammi di fase, invece, abiamo la fase in scala lineare, misurata in *radianti* (rad) o in *gradi* (o).

Notiamo infine che il *modulo* è una funzione **pari**:

$$|G(j\omega)| = |G(-j\omega)|$$

mentre la fase è una funzione dispari:

$$\angle G(j\omega) = -\angle G(-j\omega)$$

1.1.3 Proprietà dei diagrammi di Bode

Abbiamo quindi che i diagrammi di Bode sono molto comodi per avere rappresentazioni dettagliat di grandezze che variano in campi notevolmente estese.

Notiamo le due proprietà

1. I diagrammi di Bode di sistemi in cascata si ottengono come somma dei diagrammi di Bode dei singoli sottoinsiemi. Questo perchè 2 sistemi in cascata con trasferimento $G_1(s)$ e $G_2(s)$ hanno trasferimento complessivo:

$$G_{eq}(s) = G_1(s) \cdot G_2(s)$$

ma come sappiamo la il logaritmo di un prodotto equivale alla somma dei logaritmi, ergo:

$$\log (G_1(s) \cdot G_2(s)) = \log (G_1(s)) + \log (G_2(s))$$

 I diagrammi di Bode di una funzione in forma fattorizzata si ottengono come somma dei diagrammi elementari dei singoli fattori, sempre dalla stessa proprietà di cui sopra.

Queste considerazioni spiegano il perché delle scale logaritmiche: infatti se indichiamo le grandezze:

$$a=|a|e^{j\angle a},\quad b=|b|e^{j\angle b}$$

Prendiamo il prodotto:

$$a \cdot b = |a||b|e^{j(\angle a + \angle b)}$$

cioè gli angoli già si sommano in in scala lineare, mentre adottando la scala logaritmica per le ampiezze si ha:

$$\log(|a||b|) = \log(|a|) + \log(|b|)$$

1.2 Forme fattorizzate

Vediamo quindi nel dettaglio come ricavare i diagrammi di Bode (quindi ampiezza e argomento) di funzioni in forma fattorizzata. Avremo che in questo caso la funzione di trasferimento ha l'aspetto:

$$G(s) = \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}$$
(1)

con zeri al numeratore e poli al denominatore.

Quello che fa il logaritmo è semplificare questa configurazione, in quanto i prodotti diventano somme e i rapporti diventano sottrazioni. Allora varrà che:

- Il valore in dB del modulo sarà dato dalla differenza tra le sommatorie dei valori in dB dei moduli dei fattori del numeratore e dei fattori del denominatore;
- L'argomento sarà dato dalla differenza tra le sommatorie degli argomenti dei fattori del numeratore e del denominatore.

Avremo quindi che G(s) con $s=j\omega$, cioè sistema asintoticamente stabile (si trascura la risposta transiente), dà:

$$G(j\omega) = \frac{K_B}{(j\omega)^h} \cdot \frac{\prod_{i=1}^{m-u} (1 \pm j\omega T_{z_i})}{\prod_{i=1}^{n-h-r} (1 \pm j\omega T_{p_i})} \cdot \frac{\prod_{i=1}^{u} \left(1 \pm j\omega \frac{2\xi_{z_i}}{\omega_{0_{z_i}}} - \frac{\omega^2}{\omega_{0_{z_i}}^2}\right)}{\prod_{i=1}^{r} \left(1 \pm j\omega \frac{2\xi_{p_i}}{\omega_{0p_i}} - \frac{\omega^2}{\omega_{0p_i}^2}\right)}$$

dove si è preso:

- h: numero di poli all'origine, detto anche tipo del sistema;
- *K_B*: guadagno di Bode;
- *m*: numero di zeri;
- *h*: numero di poli;
- *u*: numero di zeri complessi coniugati;
- r: numero di poli complessi coniugati.

Quindi il primo termine rappresenterà il guadagno statico di Bode, il secondo termine rappresenterà gli zeri e i poli *semplici*, e il terzo termine rappresentera gli zeri e i poli complessi coniugati.

Questa, notiamo, è effettivamente la forma di Bode della (1) (che è una forma di Evans).

1.2.1 Poli semplici

questo che ci fa qui? Vediamo quindi di applicare quanto avevamo detto al caso con *soli* **poli semplici**.

• Il modulo logaritmico sarà:

$$\log (G(j\omega)) = \sum_{i=1}^{m} \log (|1 \pm j\omega T_{z_i}|) - \sum_{i=1}^{n} \log (|1 \pm j\omega T_{p_i}|)$$

• La fase sarà:

$$\angle G(j\omega) = \sum_{i=1}^{m} \log \left(\angle \left(1 \pm j\omega T_{z_i}\right) \right) - \sum_{i=1}^{n} \log \left(\angle \left(1 \pm j\omega T_{p_i}\right) \right)$$

1.3 Diagrammi di bode di funzioni elementari

Vediamo allora i diagrammi di bode di alcune funzioni elementari.

1.3.1 Guadagno costante

Prendiamo la funzione di trasferimento a guadagno costante:

$$G(s) = K$$

in questo caso avremo la funzione di risposta armonica:

$$G(j\omega) = |k|e^{j\phi}$$

con il modulo:

$$|G(j\omega)| = |k|$$

e la fase:

$$\angle G(j\omega) = 0$$

1.3.2 Poli all'origine

Vediamo come tenere conto dei poli all'origine. Questi sono i poli del tipo:

$$G(s) = \frac{1}{s} \implies G(j\omega) = \frac{1}{j\omega}$$

passando alla risposta armoinca.

Il modulo in questo caso sarà:

$$|G(j\omega)| = \frac{1}{\omega}$$

che notiamo in logaritmo (dB) dà:

$$20\log_{10}\left(\omega^{-1}\right) = -20\log_{10}\omega$$

cioè si ottiene una retta in diagramma logaritmico che passa per $\omega=1$ con modulo 0 dB e pendenza -20 dB/dec (cioè -6 db/oct).

1.3.3 Poli reali

Prendiamo la funzione con un solo polo reale in $-\frac{1}{\tau}$:

$$G(s) = \frac{1}{1 + \tau s}$$

da cui la risposta armonica:

$$G(j\omega) = \frac{1}{1 + j\omega\tau}$$

Il modulo è quindi:

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 \tau^2}}$$

In questo caso distinguiamo due situazioni:

• $\omega^2 \tau^2 << 1$, si ha:

$$|G(j\omega)|_{dB} \approx 0 \, \mathrm{dB}$$

• $\omega^2 \tau^2 >> 1$, si ha, trascurando 1:

$$|G(j\omega)|_{dB} = 20 \log_{10} \left(\frac{1}{\omega \tau}\right) = 20 \log \left(\frac{1}{\tau}\right) - 20 \log \left(\omega\right)$$

dove il primo termine è una costante, mentre il secondo è una retta con pendenza uguale a sopra, -20 dB/dec (cioè -6 db/oct).

La fase è invece:

$$\angle G(j\omega) = -\tan^{-1}(\omega\tau)$$

ch e potremo approssimare in:

$$\begin{cases} w\tau << 1 \implies \angle G(j\omega) \approx 0^{\circ} \\ w\tau >> 1 \implies \angle G(j\omega) \approx -90^{\circ} \\ w\tau = 1 \implies \angle G(j\omega) = -45^{\circ} \end{cases}$$

preso $\tau > 0$ è il caso con polo stabile.

1.3.4 Zeri all'origine

non ne ha parlato

1.3.5 Zeri reali

Prendiamo quindi la funzione con un solo zero reale in $-\frac{1}{\tau}$:

$$G(s) = 1 + s\tau$$

da cui la risposta armonica:

$$G(j\omega) = 1 + j\omega\tau$$

Il modulo è quindi:

$$|G(j\omega)| = \sqrt{1 + \omega^2 \tau^2}$$

approssimazione linea retta

La fase è invece:

$$\angle G(j\omega) = \tan^{-1}(\omega\tau)$$

approssimazione linea retta

qui ha fatto approssimazioni a segmenti e grafici per tutto