SOLUTIONS

Answer 1. (d) Collinearity

Answer 2. (b) Random Forest

Answer 3. (c) Decision Tree are prone to overfit

Answer 4. (c) Training data

Answer 5. (c) Anamoly detection

Answer 6. (c) Case based

Answer 7. (d) Both a and b (Statistical learning theory and Computational learning theory)

Answer 8. (c) Both a and b (Curse of dimensionality and Calculate the distance of test case for all training cases)

Answer 9. (c) 3

Answer 10. (a) PCA

Answer 11. (c) Neither feature nor number of groups is known

Answer 12. (b) SVG

Answer 13. (b) Underfitting

Answer 14. (a) Reinforcement learning

Answer 15. (a) Mean relative error

Answer 16. (c) Nonlinear, binary

Answer 17. (a) Supervised learning

Answer 18. (c) Both a and b (euclidean distance and manhattan distance)

Answer 19. (a) removing columns which have too many missing values

Answer 20. (c) Input attribute

Answer 21. (a) SVM allows very low error in classification

Answer 22. (c) 2 and 3 (Depth of Tree and Learning rate)

- **Answer 23.** (a) $(6/10 \log (6/10) + 4/10 \log (4/10))$
- Answer 24. (a) Weights are regularized with the l1 norm
- **Answer 25.** (b) Logistic regression and Gaussian discriminant analysis
- Answer 26. (d) Either 2 or 3
- Answer 27. (b) Increase by 5 pound
- **Answer 28.** (d) Minimize the squared distance from the points
- **Answer 29.** (b) As the value of one attribute increases the value of the second attribute also increases
- **Answer 30.** (b) Convolutional Neural Network