Tredicesima Esercitazione

Esercizio 1. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

Sequenza dei nodi visitati $S = \{1,$ }

Esercizio 2. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

TAGLIO DI CAPACITÀ MINIMA

$$N_s$$
= N_t =

Esercizio 3. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Riempire la tabella:

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,4) $(2,4)$				
x =	(2,5)(3,6)	(1,2)			
	(4,6)				
	(1,2)(1,4)				
$\pi = (0,$	(3,6)(4,3)	(5,6)			
	(4,5)				

Esercizio 4. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	passo 1	passo 2
Archi di B	(1,3) (1,4) (2,4) (3,6) (5,6)	
Archi di U	(4,5)	
x		
costo di x		
π		
k		
(arco entrante)		
θ_1		
(archi concordi)		
θ_2		
(archi discordi)		
h		
(arco uscente)		

Esercizio 5. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

}

Esercizio 6. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

TAGLIO DI CAPACITÀ MINIMA

$$N_s = N_t =$$

Esercizio 7. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,4) (1,5)				
x =	(2,3)(3,4)	(4,5)			
	(5,6)				
	(1,5)(2,4)				
$\pi = (0,$	(3,4)(4,5)	(4,6)			
	(5,6)				

Esercizio 8. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 7.

	passo 1	passo 2
Archi di B	(1,5) (2,3) (3,4) (4,5) (5,6)	
Archi di U	(1,2)	
x		
costo di x		
π		
k		
(arco entrante)		
$ heta_1$		
(archi concordi)		
θ_2		
(archi discordi)		
h		
(arco uscente)		

Esercizio 9. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

Sequenza dei nodi visitati $S = \{1,$ }

Esercizio 10. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

TAGLIO DI CAPACITÀ MINIMA

$$N_s = N_t =$$

Esercizio 11. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
	(1,3) (2,5)				
x =	(3,5)(3,7)	(1,2)			
	(4,6) (6,7)				
	(1,2) (1,3)				
$\pi = (0,$	(3,5)(4,3)	(3,2)			
	(4,6)(5,7)				

Esercizio 12. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 11.

	passo 1	passo 2
Archi di B	(1,4) (2,5) (3,5) (4,3) (4,6) (5,7)	
Archi di U	(1,2)	
x		
costo di x		
π		
k		
(arco entrante)		
$ heta_1$		
(archi concordi)		
$ heta_2$		
(archi discordi)		
h		
(arco uscente)		

Esercizio 13. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

Sequenza dei nodi visitati $S = \{1,$ }

Esercizio 14. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

TAGLIO DI CAPACITÀ MINIMA

$$N_s =$$
 $N_t =$

SOLUZIONI

Esercizio 1.

	pas	so 1	pas	so 2	pas	so 3	pas	so 4	pas	so 5	pas	so 6
nodo	d	p	d	p	d	p	d	p	d	p	d	p
2	4	1	4	1	4	1	4	1	4	1	4	1
3	3	1	3	1	3	1	3	1	3	1	3	1
4	6	1	6	1	6	1	6	1	6	1	6	1
5			10	3	8	2	8	2	8	2	8	2
6							14	4	14	4	14	4
7			11	3	11	3	11	3	11	3	11	3

Sequenza dei nodi visitati $S = \{1, 3, 2, 4, 5, 7, 6\}$

Esercizio 2. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	14	(0, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0)	14
1 - 2 - 3 - 7	1	(1, 14, 0, 1, 0, 0, 15, 0, 0, 0, 0)	15
1 - 2 - 5 - 7	8	(9, 14, 0, 1, 8, 0, 15, 0, 0, 8, 0)	23
1 - 4 - 6 - 7	8	(9, 14, 8, 1, 8, 0, 15, 0, 8, 8, 8)	31

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 2, 3, 5\}$$
 $N_t = \{4, 6, 7\}$

Esercizio 3. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x = (6, 0, 0, 5, 4, 1, 0, 0, 3, 0)	$ \begin{array}{c} (1,4) (2,4) \\ (2,5) (3,6) \\ (4,6) \end{array} $	(1,2)	SI	SI	NO
$\pi = (0, 6, 7, 3, 6, 14)$	$ \begin{array}{c} (1,2) \ (1,4) \\ (3,6) \ (4,3) \\ (4,5) \end{array} $	(5,6)	NO	NO	NO

Esercizio 4. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	passo 1	passo 2
Archi di B	(1,3) (1,4) (2,4) (3,6) (5,6)	(1,4) (2,4) (2,5) (3,6) (5,6)
Archi di U	(4,5)	(4,5)
x	(0, 1, 5, 3, 0, 2, 0, 6, 0, 2)	(0, 0, 6, 2, 1, 1, 0, 6, 0, 3)
costo di x	77	70
π	(0, -4, 3, 3, 7, 10)	(0, -4, -4, 3, 0, 3)
k		
(arco entrante)	(2,5)	(4,5)
$ heta_1$		
(archi concordi)	2	5
θ_2	1	9
(archi discordi)	1	2
(arco uscente)	(1,3)	(2,4)

Esercizio 5. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	pass	so 1	pas	so 2	pass	so 3	pas	so 4	pass	so 5
nodo	d	p	d	p	d	p	d	p	d	p
2	7	1	7	1	7	1	7	1	7	1
3	4	1	4	1	4	1	4	1	4	1
4	6	1	6	1	6	1	6	1	6	1
5					14	4	13	2	13	2
6			12	3	9	4	9	4	9	4

Sequenza dei nodi visitati $S=\{1,\ 3,\ 4,\ 2,\ 6,\ 5\}$

Esercizio 6. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 6	5	(0, 5, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 4 - 6	10	(0, 5, 10, 0, 0, 5, 0, 0, 10, 0)	15
1 - 2 - 5 - 6	8	(8, 5, 10, 0, 8, 5, 0, 0, 10, 8)	23
1 - 4 - 3 - 6	2	(8, 5, 12, 0, 8, 7, 2, 0, 10, 8)	25

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 2, 3, 4, 5\}$$
 $N_t = \{6\}$

Esercizio 7. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x = (0, 9, 0, -3, 0, -2, 5, 0, 1)	$ \begin{array}{c} (1,4) \ (1,5) \\ (2,3) \ (3,4) \\ (5,6) \end{array} $	(4,5)	NO	SI	NO
$\pi = (0, -2, -4, 3, 6, 11)$	$ \begin{array}{c c} (1,5) & (2,4) \\ (3,4) & (4,5) \\ (5,6) \end{array} $	(4,6)	SI	NO	NO

Esercizio 8. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 7.

	passo 1	passo 2
Archi di B	(1,5) (2,3) (3,4) (4,5) (5,6)	(1,2) (2,3) (3,4) (4,5) (5,6)
Archi di U	(1,2)	(1,5)
x	(6, 0, 3, 3, 0, 4, 2, 0, 1)	(6, 0, 3, 3, 0, 4, 2, 0, 1)
costo di x	84	84
π	(0, -7, -4, 3, 6, 11)	(0, 3, 6, 13, 16, 21)
k		
(arco entrante)	(1,2)	(1,4)
θ_1		
(archi concordi)	0	3
θ_2		
(archi discordi)	2	3
h		
(arco uscente)	(1,5)	(1,4)

Esercizio 9. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	pass	passo 1 passo 2		so 2	passo 3		passo 4		passo 5	
nodo	d	p	d	p	d	p	d	p	d	p
2	10	1	10	1	10	1	10	1	10	1
3									20	2
4	3	1	3	1	3	1	3	1	3	1
5	5	1	5	1	5	1	5	1	5	1
6			11	4	8	5	8	5	8	5

Sequenza dei nodi visitati $S = \{1, 4, 5, 6, 2, 3\}$

Esercizio 10. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 4 - 6	6	(0, 6, 0, 0, 0, 0, 0, 6, 0)	6
1 - 5 - 6	8	(0, 6, 8, 0, 0, 0, 0, 6, 8)	14
1 - 2 - 4 - 6	10	(10, 6, 8, 0, 10, 0, 0, 16, 8)	24

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 5\}$$
 $N_t = \{2, 3, 4, 6\}$

Esercizio 11. Si consideri il problema di flusso di costo minimo sulla seguente rete. Su ogni nodo é indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Vettore	Archi di B	Archi di U	Ammissibile	Degenere	Ottimo
			(SI/NO)	(SI/NO)	(SI/NO)
x = (6, 3, 0, 3, 0, 0, 1, 0, 3, 0, 0)	(1,3) $(2,5)$ $(3,5)$ $(3,7)$	(1,2)	SI	SI	SI
	(4,6) $(6,7)$				
$\pi = (0, 7, 4, -5, 8, 5, 16)$	(1,2) (1,3) (3,5) (4,3) $(4,6) (5,7)_{16}$	(3,2)	NO	NO	NO

Esercizio 12. Effettuare due passi dell'algoritmo del simplesso su reti per il problema dell'esercizio 11.

	passo 1	passo 2
Archi di B	(1,4) (2,5) (3,5) (4,3) (4,6) (5,7)	(1,4) (2,5) (3,5) (4,3) (4,6) (5,7)
Archi di U	(1,2)	(1,2) (1,3)
x	(6, 0, 3, 3, 0, 1, 0, 3, 3, 1, 0)	(6, 3, 0, 3, 0, 1, 0, 0, 3, 1, 0)
costo di x	135	111
π	(0, 11, 12, 3, 16, 13, 24)	(0, 11, 12, 3, 16, 13, 24)
k		
(arco entrante)	(1,3)	(3,7)
θ_1		
(archi concordi)	3	5
θ_2		
(archi discordi)	3	1
h		
(arco uscente)	(1,3)	(3,5)

Esercizio 13. Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	pas	so 1	pas	so 2	pas	so 3	pas	so 4	pas	so 5	pas	so 6
nodo	d	p	d	p	d	p	d	p	d	p	d	p
2	5	1	5	1	5	1	5	1	5	1	5	1
3	5	1	5	1	5	1	5	1	5	1	5	1
4	6	1	6	1	6	1	6	1	6	1	6	1
5			14	2	12	3	12	3	12	3	12	3
6							11	4	11	4	11	4
7					15	3	15	3	14	6	14	6

Esercizio 14. Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	6	(0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)	6
1 - 2 - 5 - 7	7	(7, 6, 0, 7, 0, 0, 6, 0, 0, 7, 0)	13
1 - 4 - 3 - 7	5	(7, 6, 5, 7, 0, 0, 11, 5, 0, 7, 0)	18
1 - 4 - 6 - 7	2	(7, 6, 7, 7, 0, 0, 11, 5, 2, 7, 2)	20

TAGLIO DI CAPACITÀ MINIMA

$$N_s = \{1, 2, 5\}$$
 $N_t = \{3, 4, 6, 7\}$