

 $y - y_F \left(\frac{a_{2r} - 1}{x_{2r} - x_{2r}} (x - x_F) + 1 \right)$.

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

!

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

