Dinámica Hamiltoniana

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

4 de noviembre de 2024

Agenda

- Entre Lagrange y Hamilton
 - La idea lagrangiana
 - La idea hamiltoniana
 - Velocidades generalizada y momentos conjugados

- El esquema Hamiltoniano
 - Del lagrangeano al hamiltoniano

• La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $L(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $L(q_i, \dot{q}_i, t)$, i = 1, 2, ..., s, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con *n* grados de libertad se rige por *n* ecuaciones diferenciales ordinarias de segundo orden.

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $L(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.
- El movimiento del sistema se determina unívocamente al especificar las 2n condiciones iniciales: los valores de las coordenadas q_s y velocidades \dot{q}_s para un instante particular t_0 .

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $L(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.
- El movimiento del sistema se determina unívocamente al especificar las 2n condiciones iniciales: los valores de las coordenadas q_s y velocidades \dot{q}_s para un instante particular t_0 .
- El movimiento se representa geométricamente mediante una trayectoria en el espacio de configuración n-dimensional descrito por las coordenadas generalizadas q_1, \ldots, q_n

 La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i), en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i.

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i), en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i.
- La dinámica de hamiltoniana consiste en sustituir las *n* ecuaciones de Lagrange por un conjunto equivalente de *n* ecuaciones diferenciales ordinarias de primer orden.

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.
- El movimiento se representa por una curva descrita en el espacio de fase, un espacio de 2n dimensiones cuyas coordenadas son las variables independientes q_i y p_i .

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i), en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i.
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.
- El movimiento se representa por una curva descrita en el espacio de fase, un espacio de 2n dimensiones cuyas coordenadas son las variables independientes q_i y p_i .
- La importancia del formalismo hamiltoniano radica en que proporciona un método potente, general y flexible para la investigación de las cuestiones estructurales más profundas de la mecánica clásica y también en que sirve de fundamento a la mecánica cuántica y a la mecánica estadística.

• No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial s_i} \right) \frac{\partial L}{\partial q_i} = 0$, para i = 1, ..., n, donde $L(q_i, s_i, t)$ es el Lagrangiano del sistema.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial s_i} \right) \frac{\partial L}{\partial q_i} = 0$, para $i = 1, \dots, n$, donde $L(q_i, s_i, t)$ es el Lagrangiano del sistema.
- Estas ecuaciones, involucran a las q_i y s_i de forma muy asimétrica y no son especialmente útiles.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial s_i} \right) \frac{\partial L}{\partial q_i} = 0$, para $i = 1, \dots, n$, donde $L(q_i, s_i, t)$ es el Lagrangiano del sistema.
- Estas ecuaciones, involucran a las q_i y s_i de forma muy asimétrica y no son especialmente útiles.
- Bajar el orden del sistema de ecuaciones dinámicas, se consigue describiendo la evolución del sistema mediante 2n, cantidades: las posiciones q_1, \ldots, q_n y los momentos conjugados p_1, \ldots, p_n , definidos por $p_i = \frac{\partial L}{\partial \dot{q}_i}, \quad i = 1, \ldots, n$.

• La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $L(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $L(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.
- Definimos $H(q, p, t) = \sum_{i=1}^{n} \dot{q}_{i} p_{i} L(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $L(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_{i} = f_{i}(q, p, t)$.

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $L(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.
- Definimos $H(q, p, t) = \sum_{i=1}^{n} \dot{q}_i p_i L(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $L(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_i = f_i(q, p, t)$.
- Las ecuaciones dinámicas serán $\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad i=1,\ldots,n$

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $L(q, \dot{q}, t)$ por H(q, p, t) como generador de la dinámica.
- Definimos $H(q, p, t) = \sum_{i=1}^{n} \dot{q}_{i} p_{i} L(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $L(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_i = f_i(q, p, t)$.
- Las ecuaciones dinámicas serán $\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad i = 1, \dots, n$
- El planteamiento hamiltoniano de la dinámica implica los siguientes pasos
 - Fija las coordenadas generalizadas y construye el lagrangeano a partir de las energías cinética y potencial
 - Expresa la velocidades generalizadas en término de los momentos canónicos conjungados $\dot{q}_i = f_i(q, p, t)$.
 - Construye el Hamiltoniano a partir de la transformación de Legendre del Lagrangeano
 - Plantea las ecuaciones dinámicas de Hamilton