

Recommender Systems

Problem formulation

1032 FRX1

Example: Predicting movie ratings

Machine Learning

Recommender Systems

Content-based recommendations

其中的水杨森(LX+0)

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating \dot{m} ovie $(\theta^{(j)}) \dot{h} x^{(i)} (\theta^{(j)}) \dot{h}$ stars. $(\theta^{(j)}) \dot{h} x^{(i)} \dot{h} x^{(i)} \dot{h} x^{(i)}$

$$\chi^{(3)} = \begin{bmatrix} 1/6 \\ \frac{0}{0} \end{bmatrix} \longleftrightarrow \Theta^{(1)} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} \quad (\Theta^{(1)})^{T} \chi^{(3)} = 54.95$$

Problem formulation

- o r(i,j)=1 if user j has rated movie i (0 otherwise) جماع المعاربة المعار
- $\rightarrow y^{(i,j)}$ = rating by user j on movie i (if defined)
- $\theta^{(j)} = parameter\ vector\ for\ userj$ 外种样一个的质点倾向外的
- $\Rightarrow x^{(i)}$ = feature vector for movie i
- \rightarrow For user j, movie i, predicted rating: $(\theta^{(j)})^T (x^{(i)})$
- $m^{(j)}$ = no. of movies rated by user j ២% រីឯសម្រាប់ ហើរ

$$J(\theta) = \left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log (h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right] + \left[\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Optimization objective:

To learn $\underline{ heta^{(j)}}$ (parameter for userj): நூற் நிரிக்குயூல்

To learn
$$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$$
: The latest $\theta^{(j)}$ and $\theta^{(j)}$ are $\theta^{(j)}$ are $\theta^{(j)}$ and $\theta^{(j)}$ are $\theta^{(j)}$ and $\theta^{(j)}$ are $\theta^{(j)}$ are $\theta^{(j)}$ are $\theta^{(j)}$ and $\theta^{(j)}$ are $\theta^{(j)}$ are $\theta^{(j)}$ and $\theta^{(j)}$ are $\theta^{(j)}$ are $\theta^{(j)}$ are $\theta^{(j)}$ and $\theta^{(j)}$ are $\theta^$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta^{(j)}_k)^2$$
 adient descent update:

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k=0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)}\right) \text{ (for } k \neq 0)$$
Andrew Ng

成化四印字数记行该项

车的抗转动物的物数

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Recommender Systems

Collaborative filtering

TMUE 展 新方斯斯斯科地(0)X)

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	,	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation X=[Alice (1) x_1 Bob (2) Dave (4) x_2 Carol (3) Movie (action) (romance) 11.0 # O·U **7** 5 **5** Love at last Romance forever 5 ? 0 ? ? ? Cute puppies of 4 0 ? love 0 0 5 Nonstop car 4 chases 0 0 5 ? Swords vs. karate O(i) 0 $\theta^{(1)}$ $\theta^{(4)}$ 0 0 5

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $\underline{x^{(1)}, \dots, x^{(n_m)}}$: $\underbrace{\min_{\underline{x^{(1)}, \dots, x^{(n_m)}}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1}^{n} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \underbrace{\sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1}$

To learn
$$\theta^{(j)}$$
 (parameter for user j): The factor $\theta^{(j)}$ (parameter for user j) and $\theta^{(j)}$ (parameter for user j): The factor $\theta^{(j)}$ (parameter for user j) and $\theta^{(j)}$ (parameter for user j): The factor $\theta^{(j)}$ (parameter for user j) and $\theta^{(j)}$ (parameter for user j

Collaborative filtering $(x, x, x^{(n_m)})$ (and movie ratings), can estimate $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$

Given $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$, $\underline{\theta^{(n_u)}}$

Gruens 6 > x > 0 > x > 0 > x >

Machine Learning

Recommender Systems

Collaborative filtering algorithm

事情的:一种标识所称特但(0x), 芳次基础隔的加州

等的的所测度的深层便作物自以归的

- Collaborative filtering algorithm

 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.

 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, ..., n_u, i = 1, ..., n_m$:

$$\begin{aligned} & \text{every } \ j = 1, \dots, n_u, i = 1, \dots, n_m : \\ & x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j: r(i,j) = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \end{aligned}$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j) = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

For a user with parameters θ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta^T x}$ $\underline{\uparrow}$ \underline{h} $\underline{h$

Machine Learning

Recommender Systems

Vectorization:
Low rank matrix
factorization

Collaborative filtering

	Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)			
	C Love at last	5	5	0	0			
	Romance forever	5	?	?	0			
	Cute puppies of love	?	4	0	?			
	Nonstop car chases	0	0	5	4			
	Swords vs. karate	0	0	5	?			
		^	1	1	1			

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering X 🕒 🥌

$$(Q_{\partial J})_{\Delta}(x_{(i,j)})$$

$$Y = \begin{pmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{pmatrix}$$

$$\begin{cases} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} - \\ \vdots \\ -(x^{(n_m)})^{T} - \end{bmatrix}$$

$$\begin{array}{c}
-(x^{(1)})^{T} \\
-(x^{(2)})^{T} \\
-(x^{(2)})^{T}
\end{array}$$

$$\begin{array}{c}
-(x^{(2)})^{T}$$

$$\begin{array}{c}
-(x^{(2)})^{T}
\end{array}$$

$$\begin{array}{c}
-(x^{(2)})^{T}$$

$$\begin{array}{c}
-(x^{(2)})^{T}
\end{array}$$

$$\begin{array}{c}
-(x^{(2)})^{T}$$

$$\begin{array}{c}
-(x^{(2)})^{T}
\end{array}$$

$$\lambda_{(1)} = \begin{bmatrix} \chi_{(1)} \\ \chi_{(1)} \\ \chi_{(1)} \end{bmatrix}$$

$$\chi_{(1)} = \begin{bmatrix} \chi_{(1)}^{(1)} \\ \chi_{(1)}^{(1)} \end{bmatrix} = \begin{bmatrix} \chi_{(1)}^{(1)} \chi_{(1)}^{(1)} - \chi_{(1)}^{(1)} \end{bmatrix}$$

Finding related movies $f_1 = f_2 = f_3 =$

How to find movies j related to movie i? The solution of the solution of

5 most similar movies to movie i: Find the 5 movies j with the smallest $\|x^{(i)} - x^{(j)}\|$.

Machine Learning

Recommender Systems

Implementational detail: Mean normalization

场的代

Users who have not rated any movies Alice (1) Eve (5) Bob (2) **Dave (4)** Movie Carol (3) 5 ? 5 0 0 Love at last Romance forever 5 ? 0 Cute puppies of love 0 Nonstop car chases 0 0 5 Swords vs. karate 0 1 $\overline{2}$ $x^{(1)},...,x^{(n_m)}$ $\theta^{(1)},\ldots,\theta^{(n_u)}$

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ \hline 0 & 0 & 5 & 0 \\ \hline ? & ? & ? \\ \hline \end{cases}$$

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

User 5 (Eve):

$$(\Theta^{(s)})^{r}(\times^{(i)}) + \mu_{i} = \mu_{i} + 0$$