Recommender Systems

Lecture 5

Previous lecture

Previous lecture: neighborhood formation

- 1. sample w.r.t. observed ratings: $\mathcal{N}_i(u)$ or $\mathcal{N}_u(i)$
- 2. sample *n* entities, s.t. $k \ll n \ll N$
 - randomly
 - by recency
- 3. select top-k most similar
 - what similarity?

Choosing between user-based and item-based:

- # users vs. # items
- system dynamics
- explainability vs. serendipity

Previous lecture: limited coverage problems

Unreliable correlations

Weak generalization

Today's Lecture

- Low-rank approximation for CF
 - PureSVD
 - Recommendation vs matrix completion
- Revisiting popularity bias

Low rank representation

~ ·	3	5	5
4	٠.	5	5

4	3	?		
••	3	5		
4	?	5		
			4	5
			?	5

A general view on latent factors models

• **Task**: find utility (relevance) function f_R :

 f_R : Users × Items \rightarrow Relevance score

• As optimization problem with some *loss function* \mathcal{L} :

$$\mathcal{L}(A,R) \to \min$$

 \boldsymbol{A}

N itemsknown entriesunknown entries

Components of the model:

- Utility function to generate *R*
- Optimization objective defined by \mathcal{L}
- Optimization method (algorithm)

What is the form of R and \mathcal{L} ?

Intuition behind MF

Assumption: observed interactions can be explained via

- a *small* number of common patterns in human behavior
- + individual variations (including random factors and "unknown unknowns")

$$A_{full} = R + E, \qquad R = PQ^{\mathsf{T}}$$

Predicted utility of item *j* for user *i*:

$$r_{ij} \approx \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j = \sum_{k=1}^d p_{ik} q_{jk}$$

 p_i – latent factors vector for user i q_i – latent factors vector for item j

Simplistic view on latent features

rows of P – user embeddings rows of Q – item embeddings

N items

Singular Value Decomposition

Quick reminder:

$$A = U\Sigma V^{\mathsf{T}}$$

$$U \in \mathbb{R}^{M \times M}, \qquad V \in \mathbb{R}^{N \times N}$$

$$U^{\mathsf{T}}U = I_M, \qquad V^{\mathsf{T}}V = I_N$$

 $\Sigma \in \mathbb{R}^{M \times N}$ - diagonal, with $[\Sigma]_{kk} = \sigma_k$:

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min(M,N)} \ge 0$$

$$\sigma_k(A) = \sqrt{\lambda_k(A^{\mathsf{T}}A)} = \sqrt{\lambda_k(AA^{\mathsf{T}})}$$

Low-rank approximation task:

$$||A - R||_F^2 \rightarrow \min$$
, s.t. rank $(R) = d$

$$R = U_d \Sigma_d V_d^{\mathsf{T}}, \quad ||A - R||_{\mathsf{F}}^2 =$$

Is it directly applicable here?

PureSVD model for CF

Relevance score prediction:

$$A_0 V_d V_d^{\mathsf{T}} =$$

Let's impute zeros in place of unknowns!

$$A_0 = U\Sigma V^{\mathsf{T}}, \qquad [A_0]_{ij} = \begin{cases} a_{ij}, & \text{if known} \\ 0, & \text{otherwise} \end{cases}$$

$$R = U_d \Sigma_d V_d^{\mathsf{T}}$$

Explaining recommendations

Which one is more explainable?

$$r = Qp$$
 vs. $r = VV^{T}a$

Which model does PureSVD resemble?

PureSVD computation

- Efficient computation with Lanczos algorithm
 - iterative process
 - requires only sparse matvec (fast with CSR format)
 - complexity $O(nnz \cdot d) + O((M + N) \cdot d^2)$ nnz – number of non-zeros of A_0

- Efficient implementations in Python:
 - SciPy Sparse svds,
 - Scikit-Learn TruncatedSVD.
- Core functionality is also implemented in Spark.

Billion-scale computations with SVD

In practice, in distributed setups, randomized SVD is used.

Examples:

- Criteo* https://github.com/criteo/Spark-RSVD
- Facebook's randomized SVD implementation https://research.fb.com/fast-randomized-svd

Research:

- "out-of-memory" SVD [Kabir 2017]
- communication-avoiding algebra [Demmel 2008]
- DeepMind's attempt to adapt to modern hardware (GPU, TPU) via game-theoretic approach https://www.deepmind.com/blog/game-theory-as-an-engine-for-large-scale-data-analysis

```
Generate random matrix \Omega \in \mathbb{R}^{n \times (k+p)} Y \leftarrow A\Omega Q \leftarrow \operatorname{QR}(Y) \Rightarrow \operatorname{QR} decomposition of Y for i \leftarrow 1 to q do Y \leftarrow A^TQ Q \leftarrow \operatorname{QR}(Y) Y \leftarrow AQ Q \leftarrow \operatorname{QR}(Y) end for B \leftarrow Q^TA \widetilde{Q}, \widetilde{R} \leftarrow \operatorname{QR}(B^T) SVD decomposition of \widetilde{R} = \widetilde{V} \Sigma \widetilde{U}^T return U = Q\widetilde{U}
```

Lifecycle of a recsys model

PureSVD – recommending online

folding-in technique*

Finding a warm-start user representation:

$$\|\boldsymbol{a}_0^{\mathsf{T}} - \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}\|_2^2 \to \min$$

new user embedding

$$\boldsymbol{u}^{\mathsf{T}} = \boldsymbol{a}_0^{\mathsf{T}} V \Sigma^{-1}$$

Prediction:

$$\boldsymbol{r}^{\mathsf{T}} = \boldsymbol{u}_d^{\mathsf{T}} \boldsymbol{\Sigma}_d V_d^{\mathsf{T}} = \boldsymbol{a}_0^{\mathsf{T}} V_d V_d^{\mathsf{T}}$$

$$r = V_d V_d^{\mathsf{T}} \boldsymbol{a}_0$$

- convenient for evaluation
- complexity $\sim 0(Nd)$
- enables real-time recommendations

^{*}G. Furnas, S. Deerwester, and S. Dumais, "Information Retrieval Using a Singular Value Decomposition Model of Latent Semantic Structure," Proceedings of ACM SIGIR Conference, 1988

On-stream and incremental learning

Incremental learning:

- *Adding new users/items:*
 - rank-1 updates (see G. Golub, C. Van Loan, "Matrix Computations")
 - M. Brand "Incremental singular value decomposition of uncertain data with missing values.", 2002.

Adding new interactions:

- via projector splitting approach [Lubich & Oseledets 2013]:
 - example in recsys: [Olaleke et al. 2021]
- streaming:
 - Method of frequent directions [Ghashami et al. 2016]
 - Zoom SVD [Jang et al. 2018]

CF as low-rank approximation task

Approximation with irreducible noise

$$A = \boldsymbol{e} \cdot \boldsymbol{a}^{\mathsf{T}} + \epsilon B$$

$$\sigma_1^2(A) \le M \|\boldsymbol{a}\|^2 + \epsilon^2 N, \qquad \sigma_k^2(A) \approx \epsilon^2 N, k \gg 1$$

$$\sigma_k^2(A) \approx \epsilon^2 N, k \gg 1$$

?	3	5	5
4	? .	5	5

Practical consequences

- larger # of items harder pattern discovery task
- even in the simplest case singular values won't become 0
 - let's check it!

no simple choice of the optimal rank of the decomposition

•
$$||A - U_d \Sigma_d V_d^{\top}||_F = \sqrt{\sigma_{d+1}^2 + \dots + \sigma_{\min(M,N)}^2}$$

• doesn't mean you can't get close to zero RMSE on trainset

Data centering (PCA style)

Observations:

- today: in PureSVD, values are highly biased towards 0
- previously: a signal is carried mostly by baseline estimators

How does it affect rating prediction?

Strategy:

- value imputation → mean shifted matrix
- akin to data centering in PCA

Spectrum of mean-shifted ratings matrix

$$A = \hat{A}_0 + \alpha \boldsymbol{e}_M \boldsymbol{e}_N^{\mathsf{T}}$$

$$\sigma_1^2(A) = \sigma_1^2(\hat{A}_0) + \alpha^2 MN, \qquad \sigma_k^2(A) \approx \sigma_1^2(\hat{A}_0), k \gg 1$$

Let's evaluate!

Note: we have a dense (and potentially huge) matrix

$$A = \hat{A}_0 + \alpha \, \boldsymbol{e}_M \boldsymbol{e}_N^\mathsf{T}$$

Example: $M = 1_000_000$ users and $N = 100_000$ items would require ≈ 745 Gb of RAM

How to avoid explicitly forming it?

Practical consequences

- SVD for CF is:
 - NOT pure matrix completion
 - NOT pure dimensionality reduction
- common PCA-like preprocessing may spoil data representation
- rating prediction doesn't make sense
 - recommendations can still be good!
 - we can treat rating values more flexibly

Mitigating popularity bias

Top singular vector and popularity bias

• We saw that for a simple rank-1 approximation, topsingular value is driven by the common row of ratings $A = \mathbf{e} \cdot \mathbf{a}^{T} + \epsilon B$

 More generally, top singular triplet is likely to capture signal mostly from popular items and active users

• Idea: remove it ©

Image source: Khawar, Farhan, and Nevin L. Zhang. "Matrix Factorization Equals²⁶ Efficient Co-occurrence Representation." *arXiv preprint arXiv:1808.09371* (2018).

The effect of removing top singular component

Method	NDCG@50	Recall@50	D@50	Time(min.)
(a)SVD(k = 20)	0.60597	0.40434	1574	34.8
(b) SVD($k = 19$)	0.60168	0.40088	2139	35.4
(c)SVD(k = 1)	0.42106	0.19704	290	20.8
SVD(k = 100)	0.59912	0.37539	2368	88
WRMF($k = 20, \lambda = 10^{-3}$)	0.60678	0.40904	1861.6	214

Figure 3: Removing \mathbf{v}_H increases diversity by including non-popular items.

Data normalization in PureSVD

- Common observation:
 - interactions data approximately follows power-law or zipf-like distributions

- What effect does it have on covariance matrix?
 - $a_i^{\mathsf{T}}a_j$
- Idea: normalization inversely proportional to popularity

$$\tilde{A} = AD^{f-1}, \qquad [D]_{ii} = ||\overline{\boldsymbol{a}}_i||$$