Learning to Discover Novel Visual Categories via Deep Transfer Clustering

Kai Han, Andrea Vedaldi, Andrew Zisserman

Problem/Objective

• Discover novel categories

Contribution/Key Idea

• Deep Transfer Clustering

- Task

$$D^{l} = \{(x_{i}^{l}, y_{i}^{l}), i = 1, \dots, N\} \quad y_{i}^{l} \in \{1, \dots, L\}$$
$$D^{u} = \{x_{i}^{u}, i = 1, \dots, M\} \quad y_{i}^{u} \in \{1, \dots, K\}$$

1. Deep embedded clustering

: representation learning ($f_{ heta}$) & clustering ($U=\{\mu_k, k=1,\ldots,K\}$)

$$z = f_{\theta}(x) \in \mathbb{R}^{d}$$

$$p(k|i) \propto \left(1 + \frac{\|z_{i} - \mu_{k}\|^{2}}{\alpha}\right)^{-\frac{\alpha+1}{2}}.$$

$$p(i,k) = p(k|i)/N \quad (p(i) = 1/N)$$
(1) $i \in \{1,\ldots,N\} \ k \in \{1,\ldots,K\}$

결론, q(i,k) = q(k|i)/N 와 p(i,k) = p(k|i)/N 간의 KL divergence를 minimize.

$$E(q) = KL(q||p) = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} q(k|i) \log \frac{q(k|i)}{p(k|i)}.$$
 (2)

$$q(k|i) \propto p(k|i) \cdot p(i|k)$$

$$q(k|i) \propto \frac{p(k|i)^2}{\sum_{i=1}^{N} p(k|i)}.$$
(3)

2. Transferring knowledge from known categories

Labeled set에서 pre-trained된 image representation $f_{ heta}$

3. Bottleneck

$$\mathcal{Z}^u = \{z_i = f_\theta(x_i^u), i = 1, \dots, M\} \quad z_i \in \mathbb{R}^d$$

차원 축소 Layer : $\hat{z}_i = Az_i + b$ $A \in \mathbb{R}^{K \times d}$

Figure 2. Representation visualization on CIFAR-10. Left: t-SNE projection on our learned features of unlabelled data (colored with GT labels); Middle: failure cases of clustering horses as dogs; Right: failure cases of clustering trucks as ships.

Figure 3. ACC and NMI w.r.t. different bottleneck dimensions.

4. Temporal ensembling

$$P^{t}(k|i) = \beta \cdot P^{t-1}(k|i) + (1-\beta) \cdot p^{t}(k|i), \qquad (4)$$

$$\tilde{p}^{t}(k|i) = \frac{1}{1-\beta^{t}} \cdot P^{t}(k|i). \qquad (5)$$

$$\tilde{q}^{t}(k|i) \qquad q(k|i) \propto \frac{p(k|i)^{2}}{\sum_{i=1}^{N} p(k|i)}. \qquad (3) \quad E(q) = KL(q||p) = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} q(k|i) \log \frac{q(k|i)}{p(k|i)}. \qquad (2)$$

5. Consistency

$$E(q) = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} q(k|i) \log \frac{q(k|i)}{p(k|i)} + \omega(t) \frac{1}{NK} \sum_{i=1}^{N} \sum_{k=1}^{K} ||p(k|i) - p'(k|i)||^2$$
 (6)

6. How to predict # of unlabeled classes

$$D^{l} = \{(x_{i}^{l}, y_{i}^{l}), i = 1, \dots, N\} \quad y_{i}^{l} \in \{1, \dots, L\}$$
$$D^{u} = \{x_{i}^{u}, i = 1, \dots, M\} \quad y_{i}^{u} \in \{1, \dots, K\}$$

결론, $D^l_r \cup D^u$ 에서 전체 카테고리 수 C 변화시키며 constrained (semi-supervised) k-means clustering 여러번 실행하고, 각 C값에 대해 cluster quality 측정하여 최적의 클래스 개수 결정함.

- Experiment

Known scenario: OmniGlot, ImageNet, CIFAR-10, CIFAR-100, SVHN

Table 1. Visual category discovery (known number of categories).

	CIFA	R-10	CIFAI	R-100	SV	HN	Omn	iGlot	Imag	eNet
Method	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI
<i>k</i> -means [21]	65.5%	0.422	66.2%	0.555	42.6%	0.182	77.2%	0.888	71.9%	0.713
DTC-Baseline	74.9%	0.572	72.1%	0.630	57.6%	0.348	87.9%	0.933	78.3 %	0.790
DTC-Π	87.5 %	0.735	70.6%	0.605	60.9%	0.419	89.0 %	0.949	76.7%	0.767
DTC-TE	82.8%	0.661	72.8%	0.634	55.8%	0.353	87.8%	0.931	78.2%	0.791
DTC-TEP	75.2%	0.591	72.5%	0.632	55.4%	0.329	87.8%	0.932	78.3 %	0.791

Table 2. Results on OmniGlot and ImageNet with known number of categories.

	Omn	OmniGlot		eNet
Method	ACC	NMI	ACC	NMI
k-means [21]	21.7%	0.353	71.9%	0.713
LPNMF [4]	22.2%	0.372	43.0%	0.526
LSC [8]	23.6%	0.376	73.3%	0.733
KCL [15]	82.4%	0.889	73.8%	0.750
MCL [16]	83.3%	0.897	74.4%	0.762
Centroid Networks [17]	86.6%	-	-	-
DTC	89.0%	0.949	78.3%	0.791

Table 3. Comparison with KCL and MCL on CIFAR-10/CIFAR-100/SVHN.

	CIFAR-10		CIFAR-100		SVHN	
	ACC	NMI	ACC	NMI	ACC	NMI
KCL [15]	66.5%	0.438	27.4%	0.151	21.4%	0.001
MCL [16]	64.2%	0.398	32.7%	0.202	38.6%	0.138
DTC	87.5%	0.735	72.8%	0.634	60.9%	0.419

- Experiment

Unknown scenario: OmniGlot, ImageNet, CIFAR-100

Table 4. Category number estimation results.

Data	GT	Ours	Error
OmniGlot	20-47	22-51	4.60
ImageNet _{A, B, C}	{30, 30, 30}	{34, 31, 32}	2.33
CIFAR-100	10	11	1

Table 5. Results on OmniGlot and ImageNet with unknown number of categories.

	Omn	iGlot	ImageNet		
Method	ACC	NMI	ACC	NMI	
<i>k</i> -means [21]	18.9%	0.464	34.5%	0.671	
LPNMF [4]	16.3%	0.498	21.8%	0.500	
LSC [8]	18.0%	0.500	33.5%	0.655	
KCL [15]	78.1%	0.874	65.2%	0.715	
MCL [16]	80.2%	0.893	71.5%	0.765	
DTC	87.0%	0.945	77.6%	0.786	

Table 6. KCL and MCL with our category number estimation.

	Omn	iGlot	ImageNet	
	ACC	NMI	ACC	NMI
KCL [15]	78.1%	0.874	65.2%	0.715
KCL [15] w/ our k	80.3%	0.875	71.4%	0.740
MCL [16]	80.2%	0.893	71.5%	0.765
MCL [16] w/ our k	80.5%	0.879	72.9%	0.752
DTC	87.0%	0.945	77.6%	0.786

Visualization

Figure 5. Representation visualization of unlabelled data (i.e., dog, frog, horse, ship, truck) by our deep transfer clustering model. 'init' means the feature obtained with the feature extractor trained on the labelled data (i.e., airplane, automobile, bird, cat, deer). Data points are colored according to their ground-truth labels.