Apêndice Técnico

Apêndice técnico para o trabalho

"Qualidade do instrumento de política monetária e
a hipótese de dominância fiscal brasileira"

Versão preliminar ${\rm Junho/2008}$

Esse apêndice técnico complementa o artigo "Qualidade do instrumento de política monetária e a hipótese de dominância fiscal brasileira". São mostrados adiante os detalhes dos procedimentos econométricos referenciados no texto, as telas produzidas pelo software e as conclusões dos testes. Para contextualização e discussão, dirija-se ao texto.

Os testes foram executados no software econométrico E-views, versão 6.0. Os arquivos computacionais originais que geraram os resultados a seguir estão disponíveis sob requisição.

A Estatísticas descritivas

A amostra selecionada tem dados mensais, a partir de julho de 1999, sem interrupções ou mudanças de metodologia, até novembro de 2007.

Figura 1: Variáveis de interesse JUROREAL, DLSP, NFSP, IPCA

Figura 2: JUROREAL: estatísticas descritivas

Figura 3: DLSP: estatísticas descritivas

Figura 4: NFSP: estatísticas descritivas

Figura 5: IPCA: estatísticas descritivas

B Heteroscedasticidade

Abaixo estão reportados os gráficos das primeiras diferenças das variáveis em estudo ver figura 6, para observação de indícios de heteroscedasticidade. Parece claro que a variância dentro da amostra apresenta padrões diferentes ao longo do tempo, para cada série.

As variáveis estudadas – JUROREAL, DLSP (Dívida Líquida do Setor Público), NFSP (Necessidade de Financiamento do Setor Público)e IPCA (Índice de Preços ao Consumidor Ampliado) foram transformadas linearmente pela aplicação do logaritmo natural, por conveniência econométrica, para suavizar o padrão irregular da variância dos resíduos da série, reduzindo a heteroscedasticidade.

Todas as variáveis são medidas percentuais. As variáveis JUROREAL, DLSP, NFSP e IPCA estão amostradas em pontos percentuais (40 = 40%). Apesar de terem o mesmo intervalo de variação e com a possibilidade de serem eventualmente negativas, apenas a variável NFSP tem valores menores que zero no período estimado. Isso inviabiliza a simples aplicação do logaritmo. Então decidiu-se ajustar a variável NFSP. Cada valor foi dividido por 100 e somado a uma unidade. Então, um significa que não há necessidade de financiamento do setor público, a relação NFSP sobre PIB é zero. Então a essa variável ajustada aplicou-se o logaritmo natural, gerando a série LNFSP.

As séries em estudo passam a ser chamadas LJUROREAL, LDLSP, LNFSP e LIPCA. Os gráficos das séries em logaritmo estão mostrados na figura 7.

A observação dos gráficos das séries transformadas e em primeira diferença, que está

na figura 8, ainda permite reconhecer padrões diversos de variância ao longo do tempo para cada variável. É possível que a heteroscedasticidade original tenha sido suavizada pela aplicação da transformação logarítmica. Nada mais restando a fazer para corrigir a heteroscedasticidade, assume-se que as séries em questão são homocedásticas, ou melhor, que suas heteroscedasticidades são aceitáveis. Essa característica é razoável para garantir a continuidade dos trabalhos, sem implicar prejuízos lógicos.

Figura 6: Variáveis JUROREAL, DLSP, NFSP, IPCA em primeira diferença

Figura 7: Variáveis LJUROREAL, LDLSP, LNFSP, LIPCA

Figura 8: Variáveis LJUROREAL, LDLSP, LNFSP, LIPCA em primeira diferença

C Estacionaridade

C.1 Testes de Dickey & Pantula (1987)

Supôs-se no máximo três raízes unitárias para cada variável utilizada no modelo – juro real (LJUROREAL), dívida líquida do setor público (LDLSP), necessidade de financiamento do setor público (LNFSP) e inflação (LIPCA). Todas as variáveis estão linearmente transformadas pela aplicação do logaritmo. É muito improvável que existam mais que três raízes em variáveis econômicas, daí a escolha. Também porque a inspeção gráfica não remete sobremaneira uma tendência estocástica de tal porte.

Os testes de Dickey & Pantula para três raízes unitárias são constituídos de três etapas. Primeiro analisa-se a existência de três raízes unitárias. Em se rejeitando essa hipótese, testa-se duas raízes unitárias. Por último, uma terceira etapa verificará a presença de uma única raiz, caso a hipótese de duas raízes unitárias seja rejeitada.

C.1.1 Primeira etapa

A primeira etapa dos testes para os modelos tem como hipótese nula a existência de 3 raízes unitárias, sob hipótese alternativa de até 2 raízes unitárias. São três modelos possíveis para ajuste: sem intercepto ou tendência determinística (modelo 1), com intercepto apenas (modelo 2) e com intercepto e tendência determinística (modelo 3). As formas estruturais dos modelos da primeira etapa são listadas abaixo:

$$\nabla^{3}y_{t} = \beta_{1}\nabla^{2}y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

$$\nabla^{3}y_{t} = \alpha + \beta_{1}\nabla^{2}y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

$$\nabla^{3}y_{t} = \alpha + \beta t + \beta_{1}\nabla^{2}y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

Inicialmente aplica-se o ajuste para o modelo mais completo (modelo 3), e então verificam-se as significâncias dos termos deterministas, rejeitando o modelo 3 e passando

ao modelo 2 quando a significância da tendência determinística é inadequada. Os mesmos ajustes e verificações foram tomados para o modelo 2 e, quando a significância da constante foi insuficiente, passou-se ao modelo básico, sem constante nem tendência.

As primeiras estimativas dos modelos revelaram a não-normalidade dos resíduos. O método prevê a inclusão de defasagens da variável dependente. O critério adotado para acrescentar esses novos elementos foi incluir lags de forma decrescente, a partir de um p=13, verificando a significância da última defasagem incluída e avaliando o correlograma dos resíduos da regressão ajustada. Em última inspeção, os critérios de informação Akaike e Schwarz foram utilizados para assegurar a escolha do lag adequado. A escolha de p=13 deve-se ao fato de que os dados são mensais e alguma sazonalidade pode estar determinando a correlação serial.

O teste individual da primeira etapa é:

$$\begin{cases} H_0 : \beta_1 = 0 \\ H_A : \beta_1 < 0 \end{cases}$$

A estatística do teste é dada por $t_1 = \hat{\beta}_1/s_{\beta_1}$. Os valores críticos foram inicialmente calculados por Dickey & Fuller (1981) e posteriormente simulados por Mackinnon, os quais são utilizados para avaliar o coeficiente da raiz da equação. O critério de decisão define que, se $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula.

Os testes para os coeficientes deterministas levam em conta a construção da estatística t, $t_{\alpha} = \hat{\alpha}/s_{\alpha}$ e $t_{\beta} = \hat{\beta}/s_{\beta}$. Mas devem ser confrontados contra os valores críticos também simulados por Dickey & Fuller (1981), de acordo com o modelo, o nível de significância e o tamanho da amostra. O critério de decisão define que, se $\hat{t_{\alpha\mu}} < \tau_{\alpha\mu}^{crit}$, rejeita-se a hipótese nula de que o modelo tem constante. Com $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$, rejeita-se a hipótese nula de que o modelo tem constante para o modelo 3. Com $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$, rejeita-se a hipótese nula de que o modelo tem tendência para o modelo 3. Há ainda os testes conjuntos baseados em estatística F, construídos pelos modelos restritos e irrestritos, para avaliar os coeficientes deterministas. Cada estatística F ($\hat{\Phi_1}$ no modelo 2 e $\hat{\Phi_2}$ e $\hat{\Phi_3}$ no modelo 3) deve ser confrontada com os valores também simulados por Dickey & Fuller (1981), rejeitando H_o quando $\hat{\Phi_i} > \Phi_i^{crit}$.

Os testes foram executados no modelo completo para todas as variáveis. Os valores críticos de Dickey & Fuller (1981) para os coeficientes deterministas, considerando uma amostra de 100 observações, a 1% de significância, são $\tau_{\alpha\tau}^{crit}=3.78$, $\tau_{\beta\tau}^{crit}=3.53$.

Os resultados para cada variável foram detalhados abaixo.

- **LJUROREAL** Ver figura 9. Foram necessárias 11 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -4.0661$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.
- **LDLSP** Ver figura 10. Foram necessárias 10 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 88 observações é $\tau^{crit} = -4.0648$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.
- LNFSP Ver figura 11. Foram necessárias 12 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 86 observações é $\tau^{crit} = -4.0673$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.
- LIPCA Ver figura 12. Foram necessárias 12 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 86 observações é $\tau^{crit} = -4.0673$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.

Para todas as especificações observou-se $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$ e $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$, donde rejeita-se individualmente a presença de constante e tendência. O modelo 3 não é adequado para qualquer das variáveis e deve-se passar ao modelo 2, apenas com constante.

Então os testes foram executados no modelo com apenas constante, para todas as variáveis. O valor crítico de Dickey & Fuller (1981) para a constante, considerando uma amostra de 100 observações é $\tau_{\alpha\mu}^{crit}=3.22$, a 1% de significância.

Os resultados para cada variável foram detalhados abaixo.

- **LJUROREAL** Ver figura 13. Foram necessárias 11 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -3.5063$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.
- LDLSP Ver figura 14. Foram necessárias 10 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 88 observações é $\tau^{crit} = -3.5054$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.
- LNFSP Ver figura 15. Foram necessárias 10 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 88 observações é $\tau^{crit} = -3.5054$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.

Dependent Variable: D(Method: Least Squares Date: 01/23/08 Time: 1 Sample (adjusted): 2000 Included observations: 8	6:21 0M09 2007M ⁻	11		
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(LJUROREAL(-1),2) D(LJUROREAL(-1),3) D(LJUROREAL(-3),3) D(LJUROREAL(-3),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-10),3) D(LJUROREAL(-11),3)	0.016351 -0.000288 -5.615815 4 220956 3.5558630 3.025962 2.412017 1.904901 1.434976 0.984354 0.680256 0.372035 0.379399 0.191517	0.016498 0.000266 1.188515 1.141381 1.082371 0.887973 0.881052 0.759088 0.633968 0.512195 0.389084 0.284193 0.180430 0.108943	0.991055 -1.081680 -4.725069 3.698115 3.287857 3.062797 2.737655 2.509426 2.263484 1.921835 1.748352 1.309093 2.102752 1.757956	0.3249 0.2830 0.0000 0.0004 0.0016 0.0031 0.0078 0.0143 0.0266 0.0585 0.0846 0.1946 0.0389 0.0829
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.736549 0.689633 0.061029 0.271888 127.4722 15.69936 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion erion in criter.	-0.000598 0.109546 -2.608557 -2.211744 -2.448773 1.996044

Correlogram of Residuals						
Date: 01/23/08 Time Sample: 2000M09 20 Included observation	007 M11					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	-0.121 -0.168 -0.109 -0.079 -0.050 -0.007 -0.007 -0.007 -0.044 -0.032 -0.014 -0.058 -0.012 -0.058 -0.1153 -0.116 -0.029 -0.146 -0.029 -0.028 -0.029 -0.028 -0.029 -0.028 -0.029 -0.029 -0.029 -0.029 -0.036 -0.036 -0.044 -0.045 -0.046 -	-0.024 0.005 -0.012 -0.121 -0.118 -0.089 -0.067 -0.005 -0.005 -0.003 0.026 0.026 0.026 0.029 0.023 0.030 0.030 0.030 0.030 0.030 0.040 0.052 0.0	0.0026 0.0551 0.0704 1.4514 1.8891 3.8891 3.8893 3.8824 4.1945 4.1945 4.1945 4.1945 11.040 11.450 11.450 11.3096 15.875 11.919 12.232 20.340 20.542 20.644 2	0.959 0.972 0.996 0.999 0.832 0.919 0.930 0.982 0.952 0.967 0.980 0.983 0.976 0.932 0.861 0.932 0.861 0.932 0.861 0.932 0.861 0.932 0.861 0.932 0.861 0.870 0.870 0.870 0.870 0.794

Figura 9: Teste de Dickey e Pantula, etapa 1, variável LJUROREAL, modelo com intercepto e tendência

Dependent Variable: D Method: Least Square: Date: 01/23/08 Time: Sample (adjusted): 200 Included observations:	s 13:05 00M08 2007M			
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(LDLSP(-1),2) D(LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-3),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-7,3) D(LDLSP(-9),3) D(LDLSP(-9),3) D(LDLSP(-9),3) D(LDLSP(-9),3)	0.001678 -3.31E-05 -7.955922 5.814597 4.945669 4.138473 3.334484 2.832364 2.444063 1.841311 1.350555 0.857529 0.327722	0.005250 8.47E-05 1.350090 1.301072 1.214641 1.106732 0.979290 0.842764 0.691799 0.3384712 0.243796 0.107358	0.319540 -0.391125 -5.895103 4.469082 4.071713 3.739363 3.405001 3.360804 3.532909 3.440358 3.510560 3.517408 3.052606	0.7502 0.8968 0.0000 0.0000 0.0001 0.0011 0.0012 0.0007 0.0010 0.0008 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.905400 0.890264 0.020164 0.030494 225.7055 59.81773 0.000000	S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter4.6		-0.000132 0.060870 -4.834216 -4.468246 -4.686776 2.093025

Figura 10: Teste de Dickey e Pantula, etapa 1, variável LDLSP, modelo com intercepto e tendência

Dependent Variable: D(LNFSP,3) Method: Least Squares Date: 01/23/08 Time: 16:34 Sample (adisted): 2000M10 2007M11 Included observations: 86 after adjustments					
	Coefficient	Std. Error	t-Statistic	Prob.	
C @TREND D(LNFSP(-1),2) D(LNFSP(-1),3) D(LNFSP(-2),3) D(LNFSP(-3),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-10),3) D(LNFSP(-11),3) D(LNFSP(-11),3) D(LNFSP(-11),3)	0.000159 -6.94E-06 -21.89246 19.06747 16.92929 14.67203 12.29862 10.09331 8.151092 6.299670 4.599670 1.847761 0.766646 0.195384	0.019244 0.000307 3.808413 3.586100 3.552976 3.054465 2.690917 2.285843 1.856168 1.432566 1.016568 0.652537 0.346442 0.117237	0.008260 -0.022584 -5.748449 5.091998 4.720809 4.375822 4.026442 3.750881 3.565902 3.359649 3.210793 3.104563 2.831659 2.212913 1.666573	0.9934 0.9820 0.0000 0.0000 0.0000 0.0001 0.0004 0.0007 0.0013 0.0020 0.0027 0.0060 0.0301 0.1000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.961777 0.954240 0.070617 0.354057 114.1550 127.6070 0.000000	Mean depend S.D. depende Akaike info o Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion in criter.	0.001005 0.330113 -2.305930 -1.877846 -2.133646 2.043794	

Date: 01/23/08 Tim Sample: 2000M10 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		15 0.091 16 0.082 17 0.119 18 0.002 19 0.001 20 -0.101 21 -0.023 22 -0.029 23 0.066 24 0.034 25 -0.099 26 -0.029 27 0.075 28 -0.115 29 0.037 30 -0.027 31 0.027 32 0.002	-0.048 -0.091 -0.122 -0.071 -0.122 -0.067 -0.133 -0.133 -0.133 -0.159 -0.067 -0.072 -0.064 -0.032 -0.064 -0.030 -0.134 -0.067 -0.082 -0.064 -0.003 -0.0105 -0.007 -0.083 -0.007 -0.083 -0.007 -0.083 -0.007 -0.083 -0.007 -0.083 -0.007 -0.083 -0.007 -0.083 -0.007 -0.083	0.0560 0.2546 0.9603 1.3277 2.3952 2.2823 3.5454 4.6756 6.7089 9.8471 11.028 11.028 11.038 11.1391 11.1725 11.038 11.191 11.1725 11.038 11.191 11.1725 11.038 11.03	0.813 0.880 0.811 0.857 0.792 0.857 0.792 0.830 0.945 0.945 0.945 0.972 0.975 0.971 0.975 0.971 0.975 0.982 0.978 0.983 0.999 0.978 0.999 0.978 0.999 0.999 0.999

Figura 11: Teste de Dickey e Pantula, etapa 1, variável LNFSP, modelo com intercepto e tendência

Dependent Variable: D Method: Least Square: Date: 01/23/08 Time: Sample (adjusted): 20	s 16:38	11		
Included observations:	86 after adjus	tments		
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(LIPCA(-1),2) D(LIPCA(-1),3) D(LIPCA(-3),3) D(LIPCA(-3),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3)	-0.001735 4.05E-05 -2.359908 1.212791 1.122109 0.903444 0.770751 0.631210 0.645403 0.351113 0.296507	0.015624 0.000249 0.667697 0.630652 0.605440 0.576085 0.529936 0.481310 0.420832 0.368961 0.313813 0.258787	-0.111020 0.162388 -3.534401 1.923074 1.853377 1.568249 1.454422 1.311441 1.533636 0.951628 0.944851	0.9119 0.8715 0.0007 0.0585 0.0680 0.1213 0.1502 0.1939 0.1296 0.3445 0.3479
D(LIPCA(-10),3) D(LIPCA(-11),3) D(LIPCA(-12),3)	0.335192 0.420800 -0.056828	0.205823 0.161750 0.112475	1.628547 2.601553 -0.505255	0.1078 0.0113 0.6149
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.743419 0.692826 0.056710 0.228338 133.0161 14.69400 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion in criter.	0.001617 0.102322 -2.744560 -2.316476 -2.572276 2.069521

Figura 12: Teste de Dickey e Pantula, etapa 1, variável LIPCA, modelo com intercepto e tendência

LIPCA Ver figura 16. Foram necessárias 12 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 86 observações é $\tau^{crit} = -3.5072$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.

Para todas as especificações observou-se $t_{\alpha\mu}^{\cdot} < \tau_{\alpha\mu}^{crit}$, donde rejeita-se individualmente a presença de constante. O modelo 2 também não é adequado para as variáveis e deve-se passar ao modelo 1, sem constante nem tendência determinística.

Dependent Variable: D(LJUROREAL,3) Method: Least Squares Date: 01/23/08 Time: 17:17 Sample (adjusted): 2000M09 2007M11 Included observations: 37 after adjustments						
	Cœfficient	Std. Error	t-Statistic	Prob.		
C D(JUROREAL(-1),2) D(JUROREAL(-1),3) D(JUROREAL(-2),3) D(JUROREAL(-3),3) D(JUROREAL(-4),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-11),3) D(JUROREAL(-11),3)	-2.31E-05 -5.372396 3.990295 3.339512 2.828287 2.236153 1.755107 1.309270 0.884298 0.606130 0.321564 0.351964 0.177504	0.006569 1.168356 1.122571 1.064457 0.972039 0.866915 0.747217 0.623941 0.504351 0.383441 0.280658 0.178843 0.108294	-0.003521 -4.598253 3.554604 3.137291 2.909643 2.579436 2.348860 2.098389 1.755338 1.580763 1.145750 1.968002 1.639092	0.9972 0.0000 0.0007 0.0024 0.0048 0.0119 0.0215 0.0393 0.0837 0.1182 0.2556 0.0528 0.1054		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.732327 0.688920 0.061099 0.276246 126.7805 16.87137 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000598 0.109546 -2.615645 -2.247176 -2.467274 1.990070		

	Correlogram of Residuals					
Date: 01/23/08 Tim Sample: 2000M09 2 Included observation	007 M11					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		2 - 0.016 3 - 0.011 4 - 0.001 5 - 0.107 6 - 0.053 7 - 0.089 8 - 0.071 9 - 0.042 10 - 0.005 11 0 - 0.005 11 0 0.005 11 0 0.029 13 - 0.042 14 - 0.145 15 0.187 16 0.041 17 0.059 18 - 0.009 18 - 0.009 19 - 0.027 20 - 0.052 21 - 0.042 22 - 0.074 23 - 0.142 24 - 0.105 25 - 0.043 25 - 0.043 26 0.022 29 - 0.023	-0.055 -0.104 -0.075 -0.075 -0.075 -0.026 -0.021 -0.034 -0.040 -0.172 -0.028 -0.040 -0.044 -0.040 -0.044 -0.040 -0.019 -0.019 -0.019 -0.019 -0.019 -0.0116 -0.020 -0.019 -0.019 -0.019 -0.019 -0.019 -0.010 -	0.0023 0.0024 0.0360 0.0361 1.1342 1.3832 2.3285 3.2376 3.2310 9.9564 10.346 10.346 10.437 10.745 10.437 11.601 11	0.982 0.988 1.000 0.985 1.000 0.967 0.967 0.986 0.986 0.983 0.985 0.983 0.883 0.983	

Figura 13: Teste de Dickey e Pantula, etapa 1, variável LJUROREAL, modelo com intercepto

As estimações foram realizadas com o modelo básico, para todas as variáveis.

Os resultados para cada variável foram detalhados abaixo.

LJUROREAL Ver figura 17. Foram necessárias 11 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -2.5897$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.

LDLSP Ver figura 18. Foram necessárias 10 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 88 observações é τ^{crit} =

Dependent Variable: Depend	s 17:08 00M08 2007M ⁻			
	Coefficient	Std. Error	t-Statistic	Prob.
C D(LDLSP(-1),2) D(LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-3),3) D(LDLSP(-4),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3)	-0.000195 -7.946294 5.801926 4.922489 4.125429 3.322063 2.820850 2.434193 1.834417 1.346675 0.855833 0.327526	0.002140 1.342162 1.293400 1.207388 1.100048 0.973306 0.837543 0.687475 0.531930 0.382435 0.242395 0.106757	-0.091282 -5.920518 4.485793 4.085255 3.750227 3.413175 3.368007 3.540771 3.448608 3.521315 3.530738 3.067955	0.9275 0.0000 0.0000 0.0001 0.0003 0.0010 0.0012 0.0007 0.0009 0.0007 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.905207 0.891487 0.020051 0.030557 225.6159 65.97712 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quin Durbin-Watse	ent var riterion erion in criter.	-0.000132 0.060870 -4.854906 -4.517087 -4.718807 2.088612

Figura 14: Teste de Dickey e Pantula, etapa 1, variável LDLSP, modelo com intercepto

Dependent Variable: D(LNFSP,3) Method: Least Squares Date: 01/23/08 Time: 17:06 Sample (adjusted): 2000M08 2007M11 Included observations: 88 after adjustments					
	Coefficient	Std. Error	t-Statistic	Prob.	
C D(LNFSP(-1),2) D(LNFSP(-1),3) D(LNFSP(-2),3) D(LNFSP(-3),3) D(LNFSP(-4),3)	9.79E-05 -14.96320 12.24965 10.34992 8.394481 6.406510	0.007615 2.689880 2.640872 2.510263 2.296096 2.012229	0.012852 -5.562776 4.638486 4.123044 3.655980 3.183788	0.9898 0.0000 0.0000 0.0001 0.0005 0.0021	
D(LNFSP(-5),3) D(LNFSP(-6),3) D(LNFSP(-7),3) D(LNFSP(-8),3) D(LNFSP(-9),3) D(LNFSP(-10),3)	4.715654 3.374964 2.189813 1.349083 0.773057 0.302873	1.677232 1.307204 0.937813 0.603247 0.320340 0.109918	2.811569 2.581818 2.335021 2.236370 2.413239 2.755446	0.0063 0.0118 0.0222 0.0283 0.0182 0.0073	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.958146 0.952088 0.071427 0.387740 113.8228 158.1673 0.000000	Mean dependent var A.D. dependent var Akaike into criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000591 0.326319 -2.314154 -1.976335 -2.178055 2.128673	

Date: 01/23/08 Time Sample: 2000M08 20 Included observation	007 M1 1				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		13 0.125 14 0.074 15 -0.039 16 0.031 17 0.098 18 0.010 19 -0.037 20 -0.115 21 -0.011 22 -0.062 23 0.061 24 0.070 25 -0.061 26 -0.017 27 0.894 28 -0.17 29 0.098 30 0.006 31 -0.099 32 -0.030 31 -0.029 34 -0.030	-0.044 -0.044 -0.081 -0.132 -0.093 -0.209 -0.178 -0.178 -0.192 -0.151 -0.016 -0.037 -0.016 -0.037 -0.016 -0.037 -0.016 -0.037 -0.016 -0.017 -0.016 -0.037 -0.016 -0.017 -0.016 -0.017 -0.017 -0.017 -0.018 -0.019 -0.019 -0.001 -0	0.4012 0.5453 2.4524 2.4524 2.4526 2.5170 5.5429 9.7649 9.7849 9.7849 9.7849 11.122 11.128 11.282 11.282 13.3761 14.872 14.872 14.872 18.856 18.856 18.856 18.919 19.107 1	0.526 0.761 0.878 0.881 0.784 0.881 0.784 0.680 0.680 0.680 0.759 0.825 0.914 0.926 0.914 0.926 0.936 0.936 0.936 0.936 0.936 0.943 0.956 0.943 0.956

Figura 15: Teste de Dickey e Pantula, etapa 1, variável LNFSP, modelo com intercepto

Dependent Variable: D Method: Least Square: Date: 01/23/08 Time: Sample (adjusted): 20/ Included observations:	s 17:09 00M10 2007M ⁻			
	Coefficient	Std. Error	t-Statistic	Prob.
C D(LIPCA(-1),2) D(LIPCA(-1),3) D(LIPCA(-2),3) D(LIPCA(-2),3) D(LIPCA(-4),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-10),3) D(LIPCA(-11),3) D(LIPCA(-11),3) D(LIPCA(-11),3)	0.000597 -2.346946 1.200918 1.111107 0.893541 0.761628 0.623563 0.638629 0.344752 0.291284 0.279620 0.332124 0.419146 -0.058043	0.006117 0.658411 0.6522150 0.597556 0.568961 0.523375 0.475751 0.415918 0.364386 0.310043 0.255774 0.203563 0.160334 0.111465	0.097629 -3.564562 1.930272 1.859420 1.570477 1.455224 1.310691 1.535468 0.946117 0.9339495 1.093230 1.631552 2.614216 -0.520726	0.9225 0.0007 0.0575 0.0671 0.1207 0.1500 0.1941 0.3473 0.3506 0.2779 0.1071 0.0109
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.743324 0.696980 0.056325 0.228423 133.0001 16.03917 0.000000	S.D. dependent var 0. Akaike info criterion -2. Schwarz criterion -2. Hannan-Quinn criter2.		0.001617 0.102322 -2.767444 -2.367899 -2.606646 2.070992

Date: 01/23/08 Tim Sample: 2000M10 2 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 - 0.002 2 - 0.017 3 - 0.022 4 - 0.051 5 0.067 6 - 0.024 7 - 0.042 8 - 0.129 9 0.043 10 - 0.024 11 - 0.000 12 - 0.134 13 - 0.149 14 - 0.066 15 - 0.074 16 0.024 17 - 0.012 18 - 0.033 19 0.176 22 - 0.071 23 0.004 24 - 0.106 22 - 0.071 25 - 0.013 26 0.013 27 0.043 28 0.049 29 - 0.043 29 - 0.043 29 - 0.005 30 0.044	-0.060 -0.020 -0.024 -0.055 -0.019 -0.045 -0.013 -0.014 -0.014 -0.015 -0.052 -0	0.3245 0.3496 0.3933 0.6346 1.0539 3.0683 3.0683 3.0683 3.1274 4.9564 4.9564 4.9564 11.2788 8.3675 8.2830 8.3650 11.2788 8.3675 11.2788 8.3675 11.2788	Prob 0.569 0.840 0.959 0.958 0.958 0.962 0.976 0.981 0.982 0.976 0.980 0.910 0.980 0.910
		33 0.036 34 -0.108	0.118 -0.056 -0.026	18.468 20.168 20.216	0.981 0.971 0.978
		36 0.157	0.165	23.946	0.978

Figura 16: Teste de Dickey e Pantula, etapa 1, variável LIPCA, modelo com intercepto

-2.5894,a 1%. $\hat{t_1} < \tau^{crit},$ rejeita-se a hipótese nula de 3 raízes unitárias.

LNFSP Ver figura 19. Foram necessárias 11 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit}=-2.5897$, a 1%. $\hat{t_1}<\tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.

LIPCA Ver figura 20. Foram necessárias 13 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 85 observações é $\tau^{crit} = -2.5902$, a 1%. $\hat{t_1} < \tau^{crit}$, rejeita-se a hipótese nula de 3 raízes unitárias.

Dependent Variable: D(LJUROREAL,3) Method: Least Squares Date: 01/23/08 Time: 17:28 Sample (adjusted): 2000M09 2007M11 Included observations: 87 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
D(LJUROREAL(-1),2) D(LJUROREAL(-1),3) D(LJUROREAL(-3),3) D(LJUROREAL(-3),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-10),3) D(LJUROREAL(-11),3) D(LJUROREAL(-11),3)	-5.372260 3.990160 3.393390 2.828186 2.236072 1.755054 1.309238 0.884286 0.606128 0.321572 0.351969 0.177514	1.159907 1.114413 1.056779 0.965116 0.260813 0.742066 0.619703 0.500967 0.380876 0.278773 0.177641 0.107538	4.631631 3.580504 3.158969 2.930411 2.597627 2.365090 2.112686 1.765161 1.591405 1.153525 1.981343 1.650704	0.0000 0.0006 0.0023 0.0045 0.0113 0.0206 0.0380 0.0816 0.1157 0.2524 0.0512 0.1030		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.732327 0.693068 0.060690 0.276246 126.7805 1.990069	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quin	ent var riterion rion	-0.000598 0.109546 -2.638633 -2.298508 -2.501675		

Date: 01/23/08 Tim Sample: 2000M09 20 Included observation	007 M11					
Autocorrelation	Partial Correlation	Α	C	PAC	Q-Stat	Prob
		2 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	.016 .011 .001 .053 .099 .071 .005 .042 .005 .048 .029 .066 .146 .187 .009 .027 .052 .074 .142 .033 .145 .039 .026 .026 .033 .042 .034 .042 .059 .059 .059 .059 .059 .059 .059 .059	-0.005	0.0023 0.0024 1.3833 1.3833 1.3833 1.2825 2.9972 3.3756 6.0214 10.346 11.6000 11.6000 11.6	0.962 0.988 1.000 0.953 1.000 0.953 0.967 0.987 0.981 0.986 0.834 0.968 0.838 0.966 0.953 0.964 0.965 0.964 0.965 0.964 0.969 0.967 0.969

Correlogram of Residuals

Figura 17: Teste de Dickey e Pantula, etapa 1, variável LJUROREAL, modelo básico

Como resumo da primeira etapa de testes, Dickey & Pantula rejeitam a hipótese de três raízes unitárias para todas as variáveis envolvidas. Os três modelos, com termos deterministas foram testados para todas as variáveis e o melhor ajuste aconteceu com o modelo básico, sem constante nem tendência. Ainda assim, todos os modelos testados rejeitam 3 raízes unitárias.

Dependent Variable: D Method: Least Square: Date: 01/23/08 Time: Sample (adjusted): 20 Included observations:	s 17:24 00M08 2007M ⁻			
	Coefficient	Std. Error	t-Statistic	Prob.
D(LDLSP(-1),2) D(LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-6),3)	-7.942905 5.798663 4.929651 4.123309 3.320665 2.820101 2.433938 1.834411 1.346678 0.855807 0.327509	1,332981 1,284554 1,199191 1,092698 0,966898 0,832092 0,683028 0,528493 0,379964 0,240829 0,106067	-5.958754 4.514146 4.110815 3.773514 3.434348 3.389170 3.563450 3.471021 3.544220 3.553589 3.087746	0.0000 0.0000 0.0001 0.0013 0.0010 0.0011 0.0006 0.0009 0.0007 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.905197 0.892885 0.019922 0.030560 225.6110 2.088653	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quin	ent var riterion erion	-0.000132 0.060870 -4.877523 -4.567856 -4.752766

Figura 18: Teste de Dickey e Pantula, etapa 1, variável LDLSP, modelo básico

Dependent Variable: D Method: Least Squares Date: 01/23/08 Time: Sample (adjusted): 200 Included observations:	\$ 17:30 00M09 2007M1			
	Coefficient	Std. Error	t-Statistic	Prob.
D(LNFSP(-1),2)	-18.29532	3.132010	-5.841401	0.0000
D(LNFSP(-1),3)	15.51485	3.073128	5.048554	0.0000
D(LNFSP(-2),3)	13.51228	2.936953	4.600783	0.0000
D(LNFSP(-3),3)	11.42981	2.726597	4.191968	0.0001
D(LNFSP(-4),3)	9.253862	2.444956	3.784879	0.0003
D(LNFSP(-5),3)	7.299911	2.103559	3.470267	0.0009
D(LNFSP(-6),3)	5.661642	1.730098	3.272439	0.0016
D(LNFSP(-7),3)	4.098663	1.337873	3.063567	0.0030
D(LNFSP(-8),3)	2.812500	0.952549	2.952604	0.0042
D(LNFSP(-9),3)	1.798525	0.611071	2.943236	0.0043
D(LNFSP(-10),3)	0.903005	0.326428	2.766317	0.0071
D(LNFSP(-11),3)	0.220083	0.113294	1.942578	0.0558
R-squared	0.960237	Mean depend	dent var	0.001002
Adjusted R-squared	0.954405	S.D. depende	ent var	0.328188
S.E. of regression	0.070078	Akaike info c	riterion	-2.350975
Sum squared resid	0.368319	Schwarz crite	erion	-2.010849
Log likelihood	114.2674	Hannan-Quin	n criter.	-2.214017
Durbin-Watson stat	2.083760			

Date: 01/23/08 Tim Sample: 2000M09 2t Included observation	007M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		8 -0.062 9 -0.081 10 -0.023 111 -0.041 12 -0.025 13 0.061 14 0.166 15 -0.025 16 0.074 17 0.899 18 0.009 19 0.007 20 -0.129 22 -0.018 23 0.025 24 0.025 24 0.026 25 -0.109 26 -0.006	-0.084 -0.078 -0.109 -0.129 -0.129 -0.129 -0.128 -0.162 -0.162 -0.172 -0.065 -0.025 -0.025 -0.026 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003	0.1736 0.7775 0.8814 1.2977 3.6500 4.6796 4.0223 4.6796 8.3543 8.9828 8.2847 8.3543 11.2763 11.2763 11.2763 14.224 17.244 17.124 17.245 18.000 19.350	0,677 0,678 0,830 0,862 0,832 0,812 0,819 0,856 0,968 0,968 0,971 0,970 0,977 0,977 0,977 0,977 0,977 0,978 0,986 0,988 0,988

Figura 19: Teste de Dickey e Pantula, etapa 1, variável LNFSP, modelo básico

Dependent Variable: E Method: Least Square Date: 01/23/08 Time: Sample (adjusted): 20 Included observations:	s 17:26 00M11 2007M			
	Coefficient	Std. Error	t-Statistic	Prob.
D(LIPCA(-1),2) D(LIPCA(-1),3) D(LIPCA(-2),3) D(LIPCA(-3),3) D(LIPCA(-4),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-7),3) D(LIPCA(-7),3) D(LIPCA(-11),3) D(LIPCA(-11),3) D(LIPCA(-12),3) D(LIPCA(-12),3) D(LIPCA(-12),3)	-3.003037 1.798666 1.643280 1.451058 1.353089 1.197300 1.216887 0.861448 0.739413 0.669963 0.669963 0.6207574 0.169042	0.692005 0.655319 0.618385 0.595716 0.561971 0.517966 0.468001 0.410602 0.355378 0.302196 0.248338 0.201022 0.161551 0.109023	4.339617 2.744720 2.655226 2.435823 2.407756 2.311543 2.600178 2.080639 2.266451 2.692363 3.462268 1.284880 1.550509	0.0000 0.0077 0.0098 0.0174 0.0187 0.0237 0.0113 0.0395 0.0411 0.0265 0.0088 0.0009 0.2030 0.1255
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.763765 0.720511 0.054393 0.210058 134.5186 2.040699	Mean depend S.D. depend Akaike info d Schwarz crite Hannan-Quir	ent var riterion erion	0.001934 0.102887 -2.835733 -2.433414 -2.673909

Date: 01/23/08 Time: 17:26 Sample: 2000M11 2007M11 Included observations: 85							
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
		7 0.018 8 -0.095 9 0.096 10 -0.033 11 0.014 12 -0.132 13 -0.157 14 0.000 15 -0.133 16 -0.004 17 -0.051 18 -0.063 20 0.034 21 0.017 22 -0.129 22 -0.129 24 -0.094 25 0.076 26 0.083 27 -0.016 28 0.083 29 -0.010	0.007 -0.078 -0.078 -0.090 0.040 0.002 -0.096 -0.033 -0.0140 -0.0140 -0.0149 -0.027 -0.052 -0.007 -0.0061 0.009 -0.003 -0.009 -0	0.0637 0.0691 1.2809 0.6242 1.4823 1.4923 1.5276 3.2912 3.4192 9.5283 7.7194 9.5283 1.2982 9.5283 1.2982 1.	0,801 0,966 0,961 0,960 0,961 0,962 0,970 0,962 0,970 0,962 0,970 0,964 0,963 0,847 0,908 0,847 0,908 0,878 0,908 0,878 0,908 0,878 0,908 0,878 0,908 0,878 0,908 0,908 0,909		

Figura 20: Teste de Dickey e Pantula, etapa 1, variável LIPCA, modelo básico

C.1.2 Segunda etapa

A segunda etapa testa a hipótese nula de existência de 2 raízes unitárias, sob hipótese alternativa de até 1 raiz unitária. Também devem ser incluídas defasagens da variável dependente para retirar a correlação dos resíduos, observada pela análise do correlograma. O número de lags m é definido pelos mesmos critérios já citados na primeira etapa.

Os modelos testados têm as formas estruturais abaixo.

$$\nabla^{3}y_{t} = \beta_{1}\nabla^{2}y_{t-1} + \beta_{2}\nabla y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

$$\nabla^{3}y_{t} = \alpha + \beta_{1}\nabla^{2}y_{t-1} + \beta_{2}\nabla y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

$$\nabla^{3}y_{t} = \alpha + \beta t + \beta_{1}\nabla^{2}y_{t-1} + \beta_{2}\nabla y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

O teste de hipóteses individual de Dickey & Pantula para a segunda etapa prevê:

$$\left\{ \begin{array}{ll} H_0 & : & \beta_1 < 0, \beta_2 = 0 \\ H_A & : & \beta_1 < 0, \beta_2 < 0 \end{array} \right.$$

As estatísticas do teste são $t_1 = \hat{\beta}_1/s_{\beta_1}$ e $t_2 = \hat{\beta}_2/s_{\beta_2}$. Os valores críticos foram calculados por Dickey & Fuller (1981) e também simulados por Mackinnon, esses os utilizados a seguir. O critério de decisão define que, se $\hat{t}_1 < \tau^{crit}$, rejeita-se a hipótese nula.

A construção da estatística para os testes com os coeficientes deterministas é similar à primeira etapa: $t_{\alpha} = \hat{\alpha}/s_{\alpha}$ e $t_{\beta} = \hat{\beta}/s_{\beta}$. Os valores críticos estão disponíveis em Dickey & Fuller (1981), de acordo com o modelo utilizado, o nível de significância e o tamanho da amostra. O critério de decisão define: se $t_{\alpha\mu}^{\hat{}} < \tau_{\alpha\mu}^{crit}$, rejeita-se a hipótese nula de que o modelo tem constante; se $t_{\alpha\tau}^{\hat{}} < \tau_{\alpha\tau}^{crit}$, rejeita-se a hipótese nula de que o modelo tem constante e $t_{\beta\tau}^{\hat{}} < \tau_{\beta\tau}^{crit}$, rejeita-se a hipótese nula de que o modelo tem tendência, para o modelo 3. Também estão disponíveis os testes conjuntos baseados em estatística F.

Os testes foram executados inicialmente para o modelo completo, para todas as variáveis em estudo. Os valores críticos de Dickey & Fuller (1981) para os coeficientes

deterministas, considerando uma amostra de 100 observações, a 1% de significância, são $\tau_{\alpha\tau}^{crit}=3.78,\,\tau_{\beta\tau}^{crit}=3.53.$

Os resultados para cada variável foram detalhados abaixo.

- LJUROREAL Ver figura 21. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -3.1560$, a 10%. $\hat{t}_1 > \tau^{crit}$, $\hat{t}_2 > \tau^{crit}$, não se rejeita a hipótese nula de 2 raízes unitárias. Todavia o modelo estimado tem coeficientes deterministas. $\hat{t}_{\alpha\tau} < \tau^{crit}_{\alpha\tau}$ e $\hat{t}_{\beta\tau} < \tau^{crit}_{\beta\tau}$, o que garante que esses coeficientes não são significativos, o modelo não é válido Deve-se passar ao modelo 2.
- LDLSP Ver figura 22. Foram necessárias 5 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 93 observações é $\tau^{crit} = -4.0591$, a 1%. $\hat{t_1} > \tau^{crit}$, mas $\hat{t_2} < \tau^{crit}$. O coeficiente β_1 contradiz o resultado da primeira etapa e será desconsiderado. O correlograma está bem ajustado. Rejeita-se a hipótese nula de 2 raízes unitárias. Esse modelo também tem coeficientes deterministas e $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$. Os coeficientes não são significativos e devem ser retirados do modelo. Deve-se passar ao modelo 2.
- LNFSP Ver figura 23. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -4.0636$, a 1%. $\hat{t_1} > \tau^{crit}$, contradizendo a primeira etapa, será desconsiderado. $\hat{t_2} < \tau^{crit}$ e rejeita-se a hipótese nula de 2 raízes unitárias. Novamente, $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$ e os coeficientes não são significativos. Deve-se prosseguir com o modelo sem tendência.
- LIPCA Ver figura 24. Foram necessárias 12 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 86 observações é $\tau^{crit} = -3.4620$, a 5%. $\hat{t_1} > \tau^{crit}$, contradizendo a primeira etapa, não é levando em conta. $\hat{t_2} < \tau^{crit}$, donde rejeita-se a hipótese nula de 2 raízes unitárias. Também para o IPCA, $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$. Deve-se prosseguir com o modelo sem tendência.

Em síntese, para todas as especificações observou-se $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$ e $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$, o que rejeita individualmente a presença de constante e tendência. O modelo 3 não é adequado para essas variáveis e deve-se passar ao modelo 2, apenas com constante.

Dependent Variable: D(Method: Least Squares Date: 01/23/08 Time: 1 Sample (adjusted): 2000 Included observations: 8	18:28 0M07 2007M ⁻	11		
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(JUROREAL(-1),2) D(JUROREAL(-1),3) D(JUROREAL(-3),3) D(JUROREAL(-3),3) D(JUROREAL(-4),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3) D(JUROREAL(-6),3)	0.004172 -0.000166 0.438824 -0.983309 -0.774817 -0.498941 -0.409139 -0.294152 -0.242153 -0.259994 -0.213317 -0.217415	0.015421 0.000252 1.888763 0.329540 1.599932 1.328867 1.0772326 0.842916 0.640597 0.462553 0.319412 0.194196 0.107974	0.270563 -0.658422 0.232334 -2.933878 -0.578508 -0.553066 -0.465289 -0.485385 -0.459184 -0.523513 -0.813976 -1.038464 -2.013594	0.7875 0.5123 0.8169 0.0038 0.5646 0.5616 0.6431 0.628 0.6474 0.6021 0.4182 0.2755
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.742355 0.701674 0.059962 0.273254 131.1911 18.24830 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion rion n criter.	0.000551 0.109782 -2.655979 -2.292471 -2.509459 1.952461

Date: 01/23/08 Tim Sample: 2000M07 2 Included observation	007 M1 1					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2 3 4 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 22 33 33 4	-0.063 -0.034 -0.122 -0.078 -0.103 -0.040 -0.132 -0.065 0.034 -0.115 0.053 0.053 0.144 0.026 -0.023	0.035 -0.029 -0.016 -0.015 -0.015 -0.057 -0.057 -0.010 -0.052 -0.057 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.010 -0.052 -0.	0.0199 0.1341 0.2162 0.4251 0.5055 0.7376 0.8633 3.9150 5.7387 0.8838 7.7577 7.9945 8.4735 8.6125 11.457 11.457 11.450 11.452 11	0.888 0.935 0.975 0.998 0.998 0.999 0.999 0.999 0.999 0.956 0.956 0.958 0.959 0.952

Figura 21: Teste de Dickey e Pantula, etapa 2, variável LJUROREAL, modelo com intercepto e tendência

Dependent Variable: E Method: Least Square Date: 01/23/08 Time: Sample (adjusted): 20 Included observations:	s 18:20 00M03 2007M ⁻			
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(LDLSP(-1),2) D(LDLSP(-1),1) D(LDLSP(-2),3) D(LDLSP(-3),3) D(LDLSP(-4),3) D(LDLSP(-4),3) D(LDLSP(-5),3)	0.007461 -0.000155 0.516096 -1.495475 -1.258560 -0.894846 -0.613056 -0.482903 -0.265362	0.004736 8.06E-05 1.164412 0.332993 0.890279 0.643542 0.434642 0.256014 0.104165	1.575420 -1.927516 0.443225 -4.491003 -1.413670 -1.390501 -1.410485 -1.886237 -2.547532	0.1189 0.0573 0.6587 0.0000 0.1612 0.1680 0.1621 0.0627 0.0127
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.904609 0.895524 0.019205 0.030982 240.3612 99.57275 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion in criter.	-0.000161 0.059417 -4.975510 -4.730420 -4.876550 2.001846

Figura 22: Teste de Dickey e Pantula, etapa 2, variável LDLSP, modelo com intercepto e tendência

Dependent Variable: D Method: Least Square: Date: 01/23/08 Time: Sample (adjusted): 20 Included observations:	s 18:24 00M07 2007M			
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(LNFSP(-1),2) D(LNFSP(-1),1) D(LNFSP(-1),3) D(LNFSP(-2),3) D(LNFSP(-3),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-8),3) D(LNFSP(-9),3)	0.005851 -0.000133 27.710603 27.719745 -22.43409 -17.51527 -13.30200 -9.854993 -6.936749 -4.464348 -2.629207 -1.270525 -0.371794	0.015573 0.000253 6.544931 1.245345 5.403338 4.341454 3.376241 2.522031 1.781376 1.167747 0.687578 0.335620 0.106692	0.375684 -0.525667 4.141531 -6.198880 -4.151894 -4.034425 -3.939883 -3.907563 -3.894039 -3.823045 -3.823865 -3.785608 -3.484737	0.7082 0.6007 0.0001 0.0000 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.969421 0.964593 0.061054 0.283295 129.5851 200.7793 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000750 0.324463 -2.619890 -2.256381 -2.473370 2.036993

Figura 23: Teste de Dickey e Pantula, etapa 2, variável LNFSP, modelo com intercepto e tendência

Dependent Variable: D(LIPCA,3) Method: Least Squares Date: 01/23/08 Time: 18:32 Sample (adjusted): 2000M10 2007M11 Included observations: 36 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
C @TREND D(LIPCA(-1),2) D(LIPCA(-1),1) D(LIPCA(-1),3) D(LIPCA(-2),3) D(LIPCA(-3),3) D(LIPCA(-6),3)	0.018927 -0.000422 2.878324 -0.800616 -3.400685 -2.947493 -2.625325 -2.233980 -1.873018 -1.386614 -1.253677 -0.952561 -0.645305 -0.311276 0.032009 -0.194238	0.015422 0.000261 1.539017 0.215551 1.371591 1.229724 1.088429 0.944997 0.807033 0.670563 0.549736 0.443448 0.345513 0.257334 0.182039 0.109956	1.227286 -1.618096 1.870235 -3.712562 -2.479374 -2.396873 -2.412031 -2.364008 -2.2067836 -2.260506 -2.148057 -1.867674 -1.209621 -0.175835 -1.766507	0.2238 0.1101 0.0656 0.0004 0.0156 0.0192 0.0185 0.0209 0.0232 0.0424 0.0256 0.0352 0.0660 0.2305 0.8609 0.0817		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.785629 0.739693 0.052205 0.190775 140.7447 17.10247 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watse	0.001617 0.102322 -2.901040 -2.444417 -2.717271 2.026337			

Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Date: 01/23/08 Time Sample: 2000M10 20 Included observation	007 M1 1				
2 0.066 0.065 0.5073 0.776 1 1 3 0.036 0.040 0.6225 0.891 3 0.036 0.040 0.6225 0.891 1 1 4 -0.031 -0.033 0.7133 0.950 1 1 5 0.070 0.063 1.1680 0.975 1 1 6 -0.025 -0.018 1.2300 0.975 1 7 -0.005 -0.013 1.2325 0.975 1 1 1 0.033 0.033 2.6733 0.976 1 1 1 0.030 0.033 0.033 2.6733 0.976 1 1 1 0.030 0.073 3.1238 0.978 1 1 1 1 0.030 0.077 3.1238 0.989 1 1 1 1 0.031 0.010 0.073 3.1238 0.989 1 1 1 1 0.031 0.006 6.2622 0.959 1 1 1 1 0.031 0.006 6.2622 0.959 1 1 1 1 0.031 0.006 6.2622 0.959 1 1 1 1 1 0.031 0.006 6.2639 0.977 1 1 1 1 1 1 0.031 0.006 6.2639 0.977 1 1 1 1 1 1 1 1 1 0.031 0.006 0.8313 0.991 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Autocorrelation	Partial Correlation	AC	P A C	Q-Stat	Prob
			2 0.066 4 -0.031 5 0.070 6 -0.026 7 -0.005 8 -0.117 9 0.033 10 -0.067 11 0.003 12 -0.114 13 -0.131 14 0.015 15 -0.037 16 0.051 17 -0.007 18 -0.035 19 0.140 20 0.003 22 -0.104 23 -0.013 22 -0.104 23 -0.013 22 -0.104 23 -0.036 23 -0.036 25 -0.026 25 -0.026 25 -0.026 25 -0.026 25 -0.050 2	0.065 0.000	0.5073 0.6225 0.6225 0.7133 1.1680 1.2326 2.6733 3.1228 4.4607 6.6239 9.033 9.1498 10.438 11.2566 6.6879 9.1498 11.2566 11.256	0.776 0.891 0.948 0.975 0.948 0.976 0.978 0.979 0.979 0.979 0.979 0.979 0.979 0.982 0.972 0.988 0.972 0.988 0.972 0.988 0.972 0.988 0.972 0.988 0.972 0.988 0.972 0.988 0.972

Figura 24: Teste de Dickey e Pantula, etapa 2, variável LIPCA, modelo com intercepto e tendência

Agora foram executadas as especificações para o modelo 2, apenas com intercepto, para todas as variáveis. O valor crítico de Dickey & Fuller (1981) para a constante, considerando uma amostra de 100 observações é $\tau_{\alpha\mu}^{crit}=3.22$, a 1% de significância.

Os resultados para cada variável foram detalhados abaixo.

- **LJUROREAL** Ver figura 25. Foram necessárias 9 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit}=-2.8947$, a 5%. $\hat{t_1}>\tau^{crit}$, uma contradição com a etapa anterior. Desconsiderou-se. Mas $\hat{t_2}<\tau^{crit}$ e rejeita-se a hipótese nula de 2 raízes unitárias. Todavia, $\hat{t_{\alpha\mu}}<\tau^{crit}_{\alpha\mu}$ a constante não tem significância e deve ser retirada. O modelo a estimar é o básico, sem tendência nem constante.
- LDLSP Ver figura 26. Foram necessárias 10 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 88 observações é $\tau^{crit} = -2.5842$, a 10%. $\hat{t_1} > \tau^{crit}$ e $\hat{t_2} > \tau^{crit}$, indicando que não se rejeita a hipótese de 2 raízes unitárias. Todavia a constante não é significante e deve ser extraída da especificação, pois $\hat{t_{\alpha\mu}} < \tau^{crit}_{\alpha\mu}$. O modelo que melhor ajusta a variável é o modelo básico.
- LNFSP Ver figura 27. Foram necessárias 9 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -3.5046$, a 1%. $\hat{t_1} > \tau^{crit}$, o que contradiz a primeira etapa. Desconsidera-se. $\hat{t_2} < \tau^{crit}$, donde rejeita-se a hipótese nula de 2 raízes unitárias, a 1%. Mas com $\hat{t_{\alpha\mu}} < \tau^{crit}_{\alpha\mu}$ o modelo não é o melhor ajuste e deve-se estimar o modelo sem constante.
- LIPCA Ver figura 28. Foram necessárias 11 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -3.5063$, a 1%. $\hat{t_1} > \tau^{crit}$, contradizendo a primeira etapa, não é levando em conta. $\hat{t_2} < \tau^{crit}$, donde rejeita-se a hipótese nula de 2 raízes unitárias, a 1%. Mas $\hat{t_{\alpha\mu}} < \tau^{crit}_{\alpha\mu}$. O modelo com intercepto não é adequado, deve-se proceder à estimação do modelo básico.

Logo, para todas as especificações observou-se $\hat{t_{\alpha\mu}} < \tau_{\alpha\mu}^{crit}$, o que leva a rejeição do modelo 1 para ajustar todas as variáveis. O modelo de melhor ajuste é o modelo 1, sem constante nem tendência, que será estimado a seguir.

Dependent Variable: D(LJUROREAL,3) Method: Least Squares Date: 01/23/08 Time: 19:02 Sample (adjusted): 2000M07 2007M11 Included observations: 89 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
C D(LJUROREAL(-1),2) D(LJUROREAL(-1),2) D(LJUROREAL(-2),3) D(LJUROREAL(-3),3) D(LJUROREAL(-3),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-7),3) D(LJUROREAL(-8),3) D(LJUROREAL(-8),3) D(LJUROREAL(-8),3) D(LJUROREAL(-8),3)	-0.005044 0.453530 -0.967497 -0.996153 -0.532902 -0.444244 -0.325904 -0.289067 -0.280456 -0.225793 -0.223968	0.006448 1.881670 0.327453 1.593613 1.323120 1.067138 0.838127 0.636425 0.459046 0.316725 0.192557 0.107118	-0.782262 0.241025 -2.954612 -0.596025 -0.609282 -0.499375 -0.530043 -0.512085 -0.586145 -0.885487 -1.172600 -2.090856	0.4365 0.8102 0.0042 0.5523 0.5441 0.6185 0.5976 0.6101 0.5595 0.3787 0.2446		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.740885 0.703869 0.059741 0.274812 130.9380 20.01508 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000551 0.109782 -2.672763 -2.337217 -2.537514 1.952911		

me: 19:03		

Date: 01/23/08 Time Sample: 2000M07 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		8 -0.030 9 -0.054 10 0.017 11 0.028 12 -0.077 13 0.131 14 -0.105 16 -0.030 17 0.037 18 -0.026 19 0.010 20 -0.064 21 -0.035 22 -0.121 25 -0.042 25 -0.042 26 -0.134 27 -0.057 28 0.028 29 -0.118 31 0.034 31 0.034 32 0.140 33 0.034	0.038 -0.024 -0.0124 -0.012 -0.049 -0.012 -0.036 -0.050 -0.0137 -0.105 -0.013 -0.024 -0.013 -0.024 -0.003 -0.024 -0.003 -0.024 -0.003 -0.024 -0.003 -0.024 -0.003 -0.024 -0.003 -	0.0156 0.1559 0.2160 0.4603 0.5507 0.7390 0.7390 0.7390 0.7390 0.7390 0.7390 0.7390 0.7390 0.7390 0.7390 0.7390 0.7401 0.7502 0.7450 0.	0.907 0.925 0.975 0.977 0.998 0.999 0.999 0.999 0.999 0.994 0.967 0.963 0.963 0.985 0.986 0.963 0.964 0.963 0.964 0.964 0.964 0.965 0.964 0.965 0.964 0.965 0.964 0.965

Figura 25: Teste de Dickey e Pantula, etapa 2, variável LJUROREAL, modelo com intercepto

Dependent Variable: Dependent Variable: Dependent Variable: Date: 01/23/08 Time: Sample (adjusted): 20/1/10/20/05/20/10/20/20/20/20/20/20/20/20/20/20/20/20/20	s 19:04 00M08 2007M			
	Coefficient	Std. Error	t-Statistic	Prob.
C D(LDLSP(-1),2) D(LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-3),3) D(LDLSP(-4),3) D(LDLSP(-6),3)	-0.000675 -2.310801 -1.027076 1.108275 1.074055 1.017129 0.880136 0.951618 1.076967 0.928521 0.79865 0.551924 0.243006	0.002096 2.828471 0.457083 2.439565 2.081467 1.749972 1.442361 1.165334 0.901967 0.656635 0.445351 0.265787 0.110614	-0.321829 -0.816979 -2.247023 0.454292 0.516004 0.581226 0.610205 0.816606 1.194019 1.414059 1.793338 2.189440 2.196886	0.7485 0.4165 0.0276 0.6509 0.6074 0.5628 0.5436 0.4167 0.2362 0.1615 0.0770 0.0317
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.911186 0.896976 0.019538 0.028629 228.4826 64.12197 0.000000	Mean dependent var S.D. dependent var Akaike into criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000132 0.060870 -4.897331 -4.531361 -4.749891 2.036232

Figura 26: Teste de Dickey e Pantula, etapa 2, variável LDLSP, modelo com intercepto

efficient 001593 3.81199 357314 20045 33780	0.00644 6.49026 1.23383 5.35966 4.3079	19 -0.24 57 4.13 30 -6.20	1107	9 80 0 80	_
.81199 357314 .20045	6.49026 1.23383 5.35966	67 4.13 30 -6.20	1107	0.00	
557314 .20045	1,23383 5,35966	30 -6.20			
.20045	5.35966			0.00	
.33780	4.2070*		2136	0.00	
	4.5079	19 -4.02	4634	0.00	01
.17411	3.35160	03 -3.93	0690	0.00	02
769146	2.50488			0.00	٠.
384280	1.77020	0.00		0.00	
136108	1.16101			0.00	
316415	0.6839			0.00	
266371 37 1114	0.33394		2138 5082	0.00	
969310	Mean de	pendent va	 r	0.0007	=
64925	S.D. dep	endent var		0.3244	63
060766					
284325					
1.0847	Durbin-W	atson stat		2.0336	2
	969310 964925 960766 284325 9.4236 1.0847	969310 Mean dei 964925 S.D. depo 960766 Akaike in 284325 Schwarz 9.4236 Hannan-4 1.0847 Durbin-W	069310 Mean dependent va. 064925 S.D. dependent var. 060766 Akaike info criterion 094236 Schwarz criterion 094236 Hannan-Quinn criter	969310 Mean dependent var 964925 S.D. dependent var 960766 Akaike info criterion 94236 Schwarz criterion 94236 Hannan-Quinn criter. 1.0847 Durbin-Watson stat	969310 Mean dependent var 0,0007 964925 S.D. dependent var 0,3244 960766 Akaike info criterion -2,6387 284325 Schwarz criterion -2,5034 94236 Hannan-Quinn criter2,5034 1,0847 Durbin-Watson stat 2,0336

Date: 01/23/08 Tim Sample: 2000M07 2 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		2 - 0.028 3 - 0.028 4 - 0.050 5 - 0.070 6 - 0.028 7 - 0.051 8 - 0.006 9 - 0.038 10 - 0.040 11 - 0.055 14 - 0.052 14 - 0.052 15 - 0.013 16 - 0.029 17 - 0.123 20 - 0.083 21 - 0.012 22 - 0.023 23 - 0.036 24 - 0.057 25 - 0.110 26 - 0.057 27 - 0.039 28 - 0.153 29 - 0.013 31 - 0.037 31 - 0.031 31 - 0.031 31 - 0.071 32 - 0.004 33 - 0.051 34 - 0.051	-0.029 -0.052 -0.054 -0.067 -0.067 -0.057 -0.057 -0.058 -0.057 -0.054 -0.059 -0.024 -0.020 -0.054 -0.054 -0.054 -0.054 -0.054 -0.055 -0.054 -0.054 -0.054 -0.055 -0.054 -0.054 -0.055 -0.055 -0.055 -0.056 -0	0.0333 0.1080 0.1811 0.4210 0.8923 0.9693 1.2262 1.3711 1.5537 1.8559 2.5272 2.5594 5.6775 5.7616 6.6639 9.3082 9.3082 9.3082 9.3082 9.3082 1.2428 1.2428 1.2428 1.2428 1.2428 1.2428 1.2438 1.	0.855 0.947 0.981 0.981 0.990 0.990 0.996 0.998 0.999 1.000 0.998 0.999

Figura 27: Teste de Dickey e Pantula, etapa 2, variável LNFSP, modelo com intercepto

Dependent Variable: D Method: Least Square: Date: 01/23/08 Time: Sample (adjusted): 200 Included observations:	s 19:08 00M09 2007M1			
	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.006123	0.005993	-1.021624	0.3103
D(LIPCA(-1),2)	1.661678	1.207962	1.375605	0.1732
D(LIPCA(-1),1)	-0.670524	0.180272	-3.719504	0.0004
D(LIPCA(-1),3)	-2.378025	1.085572	-2.190574	0.0317
D(LIPCA(-2),3)	-2.050894	0.964011	-2.127460	0.0368
D(LIPCA(-3),3)	-1.832165	0.838392	-2.185332	0.0321
D(LIPCA(-4),3)	-1.527309	0.717857	-2.127594	0.0367
D(LIPCA(-5),3)	-1.282286	0.598546	-2.142335	0.0355
D(LIPCA(-6),3)	-0.908523	0.496232	-1.830842	0.0712
D(LIPCA(-7),3)	-0.812839	0.400218	-2.030989	0.0459
D(LIPCA(-8),3)	-0.586204	0.314556	-1.863590	0.0664
D(LIPCA(-9),3)	-0.318908	0.240099	-1.328233	0.1882
D(LIPCA(-10),3)	-0.037248	0.172881	-0.215455	0.8300
D(LIPCA(-11),3)	0.231264	0.106077	2.180158	0.0325
R-squared	0.764115	Mean depend	dent var	-4.30E-06
Adjusted R-squared	0.722108	S.D. depende	ent var	0.102843
S.E. of regression	0.054214	Akaike info o		-2.845360
Sum squared resid	0.214560	Schwarz crite	erion	-2.448547
Log likelihood	137.7732	Hannan-Quin	n criter.	-2.685575
F-statistic	18.19023	Durbin-Watso	on stat	1.774803
Prob(F-statistic)	0.000000			

Date: 01/23/08 Tim Sample: 2000M09 2 Included observation	007 M11					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 24 25 26 27 28 29 30 31 32 33 34	0.063 0.035 -0.001 0.177 0.040 0.046 -0.062 0.005 -0.157 -0.120 -0.069	-0.022 -0.063 -0.059 -0.055 -0.059 -0.055 -0.147 -0.001 -0.023 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.041 -0.054 -0.055	0.7532 0.8165 0.8613 1.2368 1.4013 1.6285 2.0040 2.2505 4.4475 5.1971 8.7804 8.7804 9.6653 9.6653 9.6653 9.6653 15.1071 15.747 15.853 16.721 17.853 17.853 17.853	0.385 0.665 0.846 0.930 0.941 0.966 0.972 0.961 0.996 0.997 0.993 0.990 0.997 0.995 0.995 0.995 0.995 0.996 0.996 0.996 0.997 0.998

Figura 28: Teste de Dickey e Pantula, etapa 2, variável LIPCA, modelo com intercepto

Como os modelos anteriores rejeitaram com veemência a presença de intercepto ou tendência, os resultados para o modelo básico representam o melhor ajuste e decidirão a segunda etapa do modelo.

As estimações a seguir são para o modelo básico, para todas as variáveis.

Os resultados para cada variável foram assim detalhados:

- **LJUROREAL** Ver figura 29. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -2.5891$, a 1%. $\hat{t_2} < \tau^{crit}$, rejeita-se a hipótese nula de 2 raízes unitárias.
- **LDLSP** Ver figura 30. Foram necessárias 10 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 88 observações é $\tau^{crit} = -1.9438$, a 5%. $\hat{t_2} < \tau^{crit}$, rejeita-se a hipótese nula de 2 raízes unitárias.
- LNFSP Ver figura 31. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -2.5891$, a $1\%.\hat{t_2} < \tau^{crit}$, rejeita-se a hipótese nula de 2 raízes unitárias.
- **LIPCA** Ver figura 32. Foram necessárias 11 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -2.5897$, a $1\%.\hat{t_2} < \tau^{crit}$, rejeita-se a hipótese nula de 2 raízes unitárias.

Para todas as variáveis no modelo 1 notou-se que $\hat{t_1} > \tau^{crit}$, e isso contradiz a primeira etapa, pela expectativa de haver 3 raízes unitárias, hipótese já descartada. Desconsiderou-se.

A segunda etapa termina com a rejeição da hipótese nula de duas raízes unitárias para todas as variáveis em estudo, segundo o teste proposto por Dickey & Pantula. Os três modelos não concordaram com essa hipótese e foi necessário verificar qual determina o melhor ajuste. O modelo básico ajustou finalmente todas as quatro variáveis.

Aceita-se o resultado do teste e assume que todas as variáveis têm, no máximo, uma raiz unitária. Isso torna possível utilizar dos diversos testes previstos na literatura econométrica para uma raiz unitária.

A seguir prossegue-se na metodologia de Dickey & Pantula com os testes para uma raiz unitária.

Dependent Variable: D(LJUROREAL,3) Methrod: Least Squares Date: 01/23/08 - Time: 19:37 Sample (adjusted): 2000M07 2007M11 Included observations: 89 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
D(LJUROREAL(-1),2) D(LJUROREAL(-1),1) D(LJUROREAL(-1),3) D(LJUROREAL(-2),3) D(LJUROREAL(-4),3) D(LJUROREAL(-5),3) D(LJUROREAL(-5),3) D(LJUROREAL(-7),3) D(LJUROREAL(-7),3) D(LJUROREAL(-9),3) D(LJUROREAL(-9),3)	0.245856 -0.922309 -0.780928 -0.673180 -0.429705 -0.367273 -0.269952 -0.231595 -0.256955 -0.213847 -0.218518	1.858209 0.321515 1.574985 1.308887 1.056314 0.830259 0.630818 0.455402 0.314512 0.191473 0.106625	0.132308 -2.868636 -0.495832 -0.514315 -0.406796 -0.442359 -0.427939 -0.508550 -0.816995 -1.116851 -2.049412	0.8951 0.0053 0.6214 0.6085 0.6853 0.6595 0.6699 0.6125 0.4164 0.2675 0.0438		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.738826 0.705342 0.059592 0.276996 130.5857 1.951243	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000551 0.109782 -2.687319 -2.379735 -2.563341		

Date: 01/23/08 Time: 19:37 Sample: 2000M07 2007M11 Included observations: 89						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		2 0.033 3 -0.032 4 0.044 5 -0.021 6 0.023 7 -0.046 8 -0.032 9 -0.057 10 0.016 11 0.024 12 -0.079 13 0.135 14 -0.103 14 -0.103 12 -0.023 19 0.013 20 -0.063 21 -0.033 22 -0.019 23 -0.076 24 -0.109 25 -0.039 26 -0.039 27 -0.064 28 0.032 29 -0.116	0.042 -0.017 -0.042 -0.038 -0.109 -0.053 -0.102 -0.102 -0.148 -0.019 -0.040 -0.059 -0.040 -0.059 -0.040 -0.059 -0.016 -0.022 -0.018 -0.018 -0.019 -0.	0.0288 0.1327 0.4574 0.4574 0.7216 0.7216 0.8269 1.1604 1.1803 1.2467 1.9021 1.38454 4.9886 1.9021 1.9021 1.1803 1.2467 1.9021 1.1803 1.2467 1.9021 1.1803 1.2467 1.9021 1.1803 1.2467 1.1803 1.2467 1.1803 1.2467 1.1803 1.2467 1.1803 1.2467 1.1803 1.2467 1.1803 1.2467 1.1803 1.2467 1.2507 1.271 1.2471 1.	0,863 0,936 0,973 0,981 0,998 0,999 0,999 0,999 0,999 0,999 0,999 0,992 0,952 0,952 0,953 0,953 0,956 0,953 0,956	

Figura 29: Teste de Dickey e Pantula, etapa 2, variável LJUROREAL, modelo básico

Dependent Variable: E Method: Least Square Date: 01/23/08 Time: Sample (adjusted): 20 Included observations:	s 19:31 00M08 2007M ⁻			
II oldada deed vaad e	Coefficient	Std. Error	t-Statistic	Prob.
D(LDLSP(-1),2) D(LDLSP(-1),1) D(LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-4),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-7),3) D(LDLSP(-8),3) D(LDLSP(-8),3) D(LDLSP(-9),3) D(LDLSP(-9),3) D(LDLSP(-10),3)	-2.381346 -1.012108 1.165524 1.120588 1.055182 0.910946 0.976300 1.095874 0.941702 0.806661 0.585825 0.244178	2.803285 0.452021 2.418679 2.064176 1.735646 1.435068 1.155930 0.894728 0.651480 0.442027 0.263940 0.109900	-0.849484 -2.239074 0.481885 0.542874 0.607948 0.636728 0.844601 1.224812 1.445482 1.824915 2.219543 2.221828	0.3983 0.0281 0.6313 0.5888 0.5450 0.5262 0.4010 0.2244 0.1524 0.0719 0.0294
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.911064 0.898191 0.019422 0.028669 228.4218 2.037007	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir	ent var riterion erion	-0.000132 0.060870 -4.918678 -4.580859 -4.782579

Date: 01/23/08 Time: 19:31 Sample: 2000M08 2007M11 Included observations: 88						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		17 0.042 18 -0.045 19 0.070 20 0.074 21 0.022 22 -0.037 23 0.064 24 0.027 25 -0.155 26 -0.014 28 -0.081 29 -0.082 30 0.009 31 -0.025 32 -0.037	-0.021 0.036 0.022 0.005 0.029 0.005 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.005	0.0853 0.1236 0.2517 0.2819 0.3193 0.3193 0.3193 0.5790 0.5790 0.5790 0.8139 0.8977 0.9760 0.8139 0.8977 2.6737 1.2673	0.770 0.940 0.990 0.997 1.000 1.000 1.000 1.000 0.998 0.999 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999 0.	

Figura 30: Teste de Dickey e Pantula, etapa 2, variável LDLSP, modelo básico

Dependent Variable: D(LNFSP;3) Method: Least Squares Date: 01/23/08 Time: 19:39 Sample (adjusted): 2000M07 2007M11 Included observations: 89 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
D(LNFSP(-1),2) D(LNFSP(-1),1) D(LNFSP(-1),3) D(LNFSP(-2),3) D(LNFSP(-4),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-7),3) D(LNFSP(-7),3) D(LNFSP(-8),3) D(LNFSP(-9),3)	26.73582 -7.643607 -22.13754 -17.28751 -13.13560 -9.741238 -6.865491 -4.424662 -2.610330 -1.263774 -0.370483	6.443804 1.225141 5.321290 4.277130 3.327765 2.487228 1.757889 1.153087 0.679341 0.331766 0.105510	4.149074 -6.238962 -4.160183 -4.041848 -3.947275 -3.916504 -3.905532 -3.837230 -3.842444 -3.809234 -3.511348	0.0001 0.0000 0.0001 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.969285 0.965348 0.060399 0.284551 129.3883 2.032876	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin	ent var riterion erion	0.000750 0.324463 -2.660412 -2.352828 -2.536434		

Date: 01/23/08 Tim Sample: 2000M07 20 Included observation	007M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		5 -0.070 6 -0.022 7 -0.051 8 0.006 9 -0.038 10 -0.040 11 -0.055 12 -0.079 13 -0.035 14 0.062 15 -0.014 16 0.089 17 0.123 18 0.033 20 -0.083 21 0.011 22 -0.023 23 0.036 24 0.032 25 -0.110 26 -0.067 27 0.039 28 -0.152 29 0.012 30 -0.063 31 -0.017	-0.029 -0.053 -0.074 -0.061 -0.061 -0.061 -0.061 -0.061 -0.061 -0.062 -0.052 -0.057 -0.104 -0.104 -0.064	0.0348 0.1099 0.1243 0.4264 1.2332 1.2362 1.3803 3.0785 5.6590 5.7605 6.6313 6.6451 6.7105 6.6924 8.5132 9.2844 12.372 12.372 12.372 12.372 12.372 12.372 12.372 12.372 12.372 12.573 13.0783 12.372 12.573 13.0783 13.0783 12.372 12.372 12.372 12.372 12.372 12.372 12.573 13.0783 13.0783 13.0783 13.0783 13.0783 13.0783 13.0783 13.0783 13.0783 13.0783 14.372 14.372 15.0783 16.0783 16.0783 17.	0.852 0.947 0.980 0.990 0.990 0.999 0.990 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900

Figura 31: Teste de Dickey e Pantula, etapa 2, variável LNFSP, modelo básico

Dependent Variable: D(LIPCA,3) Method: Least Squares Date: 01/23/08 Time: 19:34 Sample (adiusted): 2000M09 2007M11 Included observations: S7 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
D(LIPCA(-1),2)	1.413797	1.183692	1.194396	0.2361		
D(LIPCA(-1),1)	-0.629707	0.175841	-3.581110	0.0006		
D(LIPCA(-1),3)	-2.160096	1.064721	-2.028790	0.0461		
D(LIPCA(-2),3)	-1.864203	0.946812	-1.968927	0.0527		
D(LIPCA(-3),3)	-1.678814	0.825089	-2.034707	0.0455		
D(LIPCA(-4),3)	-1.402196	0.707543	-1.981782	0.0512		
D(LIPCA(-5),3)	-1.186977	0.591406	-2.007044	0.0484		
D(LIPCA(-6),3)	-0.838423	0.491611	-1.705462	0.0923		
D(LIPCA(-7),3)	-0.763341	0.397392	-1.920877	0.0586		
D(LIPCA(-8),3)	-0.552612	0.312925	-1.765954	0.0815		
D(LIPCA(-9),3)	-0.296655	0.239180	-1.240301	0.2188		
D(LIPCA(-10),3)	-0.022969	0.172366	-0.133257	0.8944		
D(LIPCA(-11),3)	0.235415	0.106030	2.220268	0.0295		
R-squared	0.760743	Mean depend	dent var	-4.30E-06		
Adjusted R-squared	0.721944	S.D. dependent var		0.102843		
S.E. of regression	0.054230			-2.854152		
Sum squared resid	0.217627	Schwarz criterion -2.485680				
Log likelihood	137.1556	Hannan-Quir	n criter.	-2.705781		
Durbin-Watson stat	1.770782					

Date: 01/23/08 Time: 19:35 Sample: 2000M09 2007Mt11 Included observations: 87						
Autocorrelation	Partial Correlation	AC PAC Q-Stat	Prob			
		1 0.081 0.081 0.886 2 0.019 0.012 0.6181 3 -0.006 -0.008 0.8214 4 -0.029 -0.028 0.8275 5 0.068 0.063 1.0186 6 0.036 0.027 1.1412 7 -0.029 -0.064 1.9940 9 0.038 0.057 2.1403 10 0.012 0.006 2.1586 11 0.034 0.022 2.2768 12 -0.146 -0.153 4.754 13 -0.044 -0.005 4.6758 14 0.007 0.016 4.8806 15 -0.010 -0.022 4.813 16 0.066 0.055 5.182 17 0.036 0.049 5.3124 18 -0.001 0.007 5.3124 18 -0.001 0.007 5.3124 19 0.180 0.172 8.893 20 0.042 -0.009 9.1852 21 0.050 0.052 9.4705 22 -0.057 -0.076 9.8710 23 0.004 0.005 9.1852 24 0.0156 -0.200 12.887 25 -0.118 -0.122 14.628 26 -0.070 -0.056 15.246 26 -0.070 -0.056 15.246 27 -0.070 -0.042 15.886	0.444 0.734 0.892 0.962 0.962 0.983 0.983 0.985 0.997 0.973 0.982 0.995 0.995 0.995 0.997 0.981 0.981 0.983 0.983 0.983 0.985 0.997			
		28 -0.030 -0.036 16.005 29 -0.044 -0.015 16.263 30 0.005 0.014 16.266 31 -0.066 0.006 16.861	0.972			
		32 0.078 0.083 17.717 33 0.040 0.065 17.942	0.981			

Figura 32: Teste de Dickey e Pantula, etapa 2, variável LIPCA, modelo básico

C.1.3 Terceira etapa

A terceira etapa dos testes de Dickey & Pantula testará a hipótese nula de 1 raiz unitária contra hipótese alternativa de estacionaridade. Os três modelos tem a seguinte estrutura nessa etapa:

$$\nabla^{3}y_{t} = \beta_{1}\nabla^{2}y_{t-1} + \beta_{2}\nabla y_{t-1} + \beta_{3}y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

$$\nabla^{3}y_{t} = \alpha + \beta_{1}\nabla^{2}y_{t-1} + \beta_{2}\nabla y_{t-1} + \beta_{3}y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

$$\nabla^{3}y_{t} = \alpha + \beta t + \beta_{1}\nabla^{2}y_{t-1} + \beta_{2}\nabla y_{t-1} + \beta_{3}y_{t-1} + \sum_{i=1}^{m} \gamma_{i}\nabla^{3}y_{t-i} + \varepsilon_{t}$$

Durante a fase de estimação dos modelos novamente foi necessário observar o correlograma dos resíduos. Defasagens foram acrescentadas ao modelo, também nessa etapa. Os critérios permanecem aqueles já citados, a significância da última defasagem incluída, os critérios de informação e o correlograma dos resíduos. O número de lags m adequado para cada especificação será informado adiante.

O teste de hipóteses individual de Dickey & Pantula para a terceira etapa prevê:

$$\left\{ \begin{array}{ll} H_0 & : & \beta_1 < 0, \beta_2 < 0, \beta_3 = 0 \\ H_A & : & \beta_1 < 0, \beta_2 < 0, \beta_3 < 0 \end{array} \right.$$

As estatísticas do teste são $t_1 = \hat{\beta}_1/s_{\beta_1}$, $t_2 = \hat{\beta}_2/s_{\beta_2}$ e $t_3 = \hat{\beta}_3/s_{\beta_3}$. Os valores críticos foram obtidos por Mackinnon. O critério de decisão é: se $\{\hat{t}_1,\hat{t}_2,\hat{t}_3\} < \tau^{crit}$ então rejeita-se a hipótese nula.

A construção da estatística para os testes com os coeficientes deterministas é similar às etapas anteriores. Os valores críticos são tomados emprestados do artigo de Dickey & Fuller (1981), para cada modelo utilizado, dados o nível de significância e o tamanho da amostra. O critério de decisão é idêntico às etapas passadas.

A sequência empregada foi novamente começar pelo modelo mais completo, verificando a significância dos termos deterministas. Os valores críticos de Dickey & Fuller (1981) para os coeficientes deterministas, considerando uma amostra de 100 observações,

a 1% de significância, são $\tau_{\alpha\tau}^{crit}=3.78,\,\tau_{\beta\tau}^{crit}=3.53.$

Os resultados para cada variável estão abaixo detalhados.

- LJUROREAL Ver figura 33. Foram necessárias 8 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 90 observações é $\tau^{crit} = -3.1557$, a 10%. Com $\hat{t_3} > \tau^{crit}$, não se rejeita a hipótese nula de uma raíz unitária. Todavia o modelo estimado tem coeficientes deterministas. $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$, e isso impõe que se rejeite esse modelo pois os coeficientes devem ser retirados da especificação. Deve-se passar ao modelo 2.
- LDLSP Ver figura 34. Foram necessárias 5 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 93 observações é $\tau^{crit} = -3.1548$, a 10%. Tem-se $\hat{t_3} > \tau^{crit}$, que não permite rejeitar H_0 . Esse modelo com coeficientes deterministas tem $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$. Os coeficientes não são significativos e serão retirados do modelo.
- LNFSP Ver figura 35. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -3.1560$, a $10\%.\hat{t_3} > \tau^{crit}$, e não se rejeita a hipótese nula de uma raiz unitária. Novamente, $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$ e os coeficientes não são significativos. Deve-se prosseguir com o modelo sem tendência.
- LIPCA Ver figura 36. Foram necessárias 11 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -3.1567$, a 10%. Aqui também $\hat{t_3} > \tau^{crit}$, donde não se rejeita a hipótese nula de uma raiz. Também para o IPCA, $\hat{t_{\alpha\tau}} < \tau^{crit}_{\alpha\tau}$ e $\hat{t_{\beta\tau}} < \tau^{crit}_{\beta\tau}$. Deve-se prosseguir com o modelo sem tendência.

Em todas as estimações do modelo 3 verificou-se que $\hat{t_1} > \tau^{crit}$ e/ou $\hat{t_2} > \tau^{crit}$, o que solicitaria a verificação do modelo para 3 raízes unitárias e/ou 2 raízes unitárias, o que já foi feito. Desconsiderou-se esses detalhes, pois a verificação de mais raízes já foi destacada antes e rejeitada para todas as variáveis.

Para todas as especificações observou-se $t_{\alpha\tau}^{\cdot} < \tau_{\alpha\tau}^{crit}$ e $t_{\beta\tau}^{\cdot} < \tau_{\beta\tau}^{crit}$. Isso rejeita individualmente a presença de constante e tendência. O modelo 3 não é adequado para as variáveis e deve-se passar ao modelo 2, apenas com constante.

Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: 0 Sample (adjusted): 2000 Included observations: 9)1:58)M06 2007M ⁻	11		
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND D(LJUROREAL(-1),2) D(LJUROREAL(-1),1) LJUROREAL(-1) D(LJUROREAL(-2),3) D(LJUROREAL(-3),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-7),3)	0.381003 -0.000202 -4.761727 0.069100 -0.158354 3.291606 2.590194 2.111504 1.562003 1.159927 0.765070 0.422437 0.178109	0.156968 0.000244 2.023816 0.470425 0.066025 1.621391 1.268425 0.964162 0.711831 0.498512 0.335043 0.199298 0.108022	2,427272 -0,829708 -2,352846 0,146889 -2,398395 2,030113 2,042055 2,189990 2,194345 2,328779 2,283499 2,119619 1,648824	0.0175 0.4093 0.0212 0.8836 0.0189 0.0446 0.0316 0.0312 0.0226 0.0252 0.0373 0.1033
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.748173 0.708928 0.059072 0.268689 133.9260 19.06384 0.000000	Mean depend S.D. depende Akaike info o Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	-0.000342 0.109491 -2.687245 -2.326161 -2.541635 1.935237

Figura 33: Teste de Dickey e Pantula, etapa 3, variável LJUROREAL, modelo com intercepto e tendência

Dependent Variable: D(LDLSP,3) Method: Least Squares Date: 01/24/08 Time: 01:09 Sample (adjusted): 2000M03 2007M11 Included observations: 93 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
C @TREND D(LDLSP(-1),2) D(LDLSP(-1),1) LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-3),3) D(LDLSP(-4),3) D(LDLSP(-4),3)	0.199787 -0.000180 0.004223 -1.325369 -0.049427 -0.892746 -0.653919 -0.468406 -0.409392 -0.241820	0.153354 8.28E-05 1.230071 0.358485 0.039393 0.933924 0.669480 0.448242 0.261784 0.105492	1.302784 -2.179425 0.003433 -3.697142 -1.254730 -0.955909 -0.976756 -1.044985 -1.563855 -2.292302	0.1963 0.0321 0.9973 0.0004 0.2131 0.3419 0.3315 0.2991 0.1217 0.0244		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.906384 0.896233 0.019140 0.030406 241.2350 89.28922 0.000000	Mean depend S.D. dependd Akaike info d Schwarz crite Hannan-Quir Durbin-Watsd	ent var riterion erion in criter.	-0.000161 0.059417 -4.972795 -4.700473 -4.862839 1.989101		

Date: 01/24/08 Tim Sample: 2000M03 20 Included observation	007 M1 1				
Autocorrelation	Partial Correlation	AC	P A C	Q-Stat	Prob
		8 -0.065 9 -0.127 10 -0.101 11 0.007 12 0.182 13 0.020 14 -0.035 15 -0.137 16 0.997 17 0.102 18 -0.123 20 0.010 21 -0.032 22 -0.085 23 -0.002 24 0.022 25 -0.057 27 0.032 28 0.037 29 0.037 30 -0.046 31 -0.065 32 -0.065 32 -0.057 32 0.037 32 0.037 32 0.037 32 0.037 32 0.037 32 0.036	-0.023 -0.026 -0.050 -0.052 -0.050 -0.043 -0.066 -0.135 -0.011 -0.011 -0.011 -0.052 -0	9.E-06 0.0550 0.1763 0.1769 0.4551 0.7147 0.9346 1.3712 1.3712 1.3712 1.372 7.7359 7.73616 7.7359 1.1137 1.1137 1.1428 1.1428 1.1536 1.	0.993 0.972 0.996 0.994 0.996 0.995 0.962 0.905 0.801 0.801 0.720 0.720 0.720 0.815 0.894 0.895 0.894 0.896 0.909

Figura 34: Teste de Dickey e Pantula, etapa 3, variável LDLSP, modelo com intercepto e tendência

Dependent Variable: Depend	s 02:06				
Sample (adjusted): 20 Included observations:					
	Coefficient	Std. Error	t-Statistic	Prob.	
С	0.083933	0.032076	2.616682	0.0107	
@TREND	-0.000661	0.000310	-2.134900	0.0360	
D(LNFSP(-1),2)	3.245783	10.70784	0.303122	0.7626	
D(LNFSP(-1),1)	-0.728057	2.808387	-0.259244	0.7962	
LNFSP(-1)	-1.290454	0.469095	-2.750946	0.0074	
D(LNFSP(-1),3)	-4.394924	8.359052	-0.525768	0.6006	
D(LNFSP(-2),3)	-4.265039	6.367787	-0.669784	0.5051	
D(LNFSP(-3),3)	-3.914668	4.704972	-0.832028	0.4080	
D(LNFSP(-4),3)	-3.503888	3.344365	-1.047699	0.298	
D(LNFSP(-5),3)	-2.912835	2.249553	-1.294850	0.1993	
D(LNFSP(-6),3)	-2.137667	1.403745	-1.522831	0.1320	
D(LNFSP(-7),3)	-1.447277	0.787244	-1.838410	0.0700	
D(LNFSP(-8),3)	-0.793468	0.365724	-2.169584	0.0332	
D(LNFSP(-9),3)	-0.256386	0.110624	-2.317624	0.0232	
R-squared	0.972224	Mean depend	dent var	0.000750	
Adjusted R-squared	0.967409	S.D. depende	ent var	0.324463	
S.E. of regression	0.058575	Akaike info c	riterion	-2.693549	
Sum squared resid	0.257330	Schwarz crite	erion	-2.302078	
Log likelihood	133.8629	Hannan-Quinn criter2.5357			
F-statistic	201.9330	Durbin-Wats	on stat	1.989171	
Prob(F-statistic)	0.000000				

Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Date: 01/24/08 Time Sample: 2000M07 20 Included observation	007 M11				
	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
			2 - 0.002 3 - 0.008 4 - 0.030 5 - 0.038 6 - 0.015 7 - 0.025 8 0.022 9 - 0.018 10 - 0.022 11 - 0.014 12 - 0.038 13 - 0.052 14 0.049 15 - 0.032 16 0.088 17 0.090 18 - 0.027 19 - 0.018 20 - 0.124 21 - 0.046 22 - 0.075 23 - 0.007 24 0.012 25 - 0.111 26 - 0.093 27 0.024 28 - 0.148 29 - 0.040 30 - 0.040 31 - 0.007 32 0.009 33 0.009 34 - 0.054	-0.002 -0.008 -0.015 -0.015 -0.015 -0.015 -0.026 -0.020 -0.021 -0.026 -0.021 -0.026 -0.036 -0.036 -0.036 -0.038 -0.039 -0.038 -0	0.0005 0.0072 0.2592 0.3129 0.3612 0.362 0.362 0.362 0.362 0.3612 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362 1.1641 1.2751 1.2751 1.2751 2.8207 4.6120 5.5534 4.6120 5.5540 4.622 1.124 1.1	1.000 1.000 0.999 0.999 1.000

Figura 35: Teste de Dickey e Pantula, etapa 3, variável LNFSP, modelo com intercepto e tendência

Dependent Variable: D	VI IDCA 3)			
Method: Least Square	s			
Date: 01/24/08 Time: Sample (adjusted): 20		14		
Included observations:				
	Coefficient	Std. Error	t-Statistic	Prob.
С	0.060260	0.054678	1.102083	0.2741
@TREND	-0.000434	0.000299	-1.453980	0.1504
D(LIPCA(-1),2)	1.461456	1.676763	0.871594	0.3864
D(LIPCA(-1),1)	-0.628098	0.257792	-2.436454	0.0173
LIPCA(-1)	-0.022005	0.023074	-0.953674	0.3435
D(LIPCA(-1),3)	-2.239560	1.476415	-1.516890	0.1337
D(LIPCA(-2),3)	-1.966977	1.283644	-1.532338	0.1299
D(LIPCA(-3),3)	-1.790845	1.092182	-1.639695	0.1055
D(LIPCA(-4),3)	-1.521235	0.915420	-1.661789	0.1010
D(LIPCA(-5),3)	-1.302656	0.745485	-1.747393	0.0849
D(LIPCA(-6),3)	-0.951903	0.602579	-1.579716	0.1186
D(LIPCA(-7),3)	-0.864244	0.474268	-1.822270	0.0726
D(LIPCA(-8),3)	-0.643746	0.362867	-1.774058	0.0803
D(LIPCA(-9),3)	-0.373750	0.268582	-1.391568	0.1684
D(LIPCA(-10),3)	-0.082032	0.187825	-0.436746	0.6636
D(LIPCA(-11),3)	0.203386	0.110751	1.836433	0.0705
R-squared	0.771235	Mean depend	dent var	-4.30E-06
Adjusted R-squared	0.722904	S.D. depende	ent var	0.102843
S.E. of regression	0.054136	Akaike info c	riterion	-2.830030
Sum squared resid	0.208084	Schwarz crite		-2.376530
Log likelihood	139.1063	Hannan-Quir		-2.647419
F-statistic	15.95745	Durbin-Wats	on stat	1.763749
Prob(F-statistic)	0.000000			

Date: 01/24/08 Tim Sample: 2000M09 2 Included observation	007 M11					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	0.015 -0.162 -0.048 -0.003 -0.023 0.047 0.018 -0.022 0.156 0.019 0.027 -0.079	-0.025 -0.061 -0.067 -0.071 -0.067 -0.050 -0.003 -0.003 -0.003 -0.034 -0.013 -0.094 -0.094 -0.098 -0.094 -0.098 -0.094 -0.098 -0	0.7600 0.8088 0.8730 0.8730 0.8730 1.1594 1.2888 1.6548 2.3048 2.3048 2.3048 2.3048 2.3058 5.2757 5.2766 5.5768 8.4380 9.3242 9.3242 9.3245 17.758 17.758 17.758 17.758 17.758 19.688 19.688 19.688 19.688 19.688	0.383 0.667 0.347 0.949 0.922 0.976 0.976 0.976 0.993 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

Figura 36: Teste de Dickey e Pantula, etapa 3, variável LIPCA, modelo com intercepto e tendência

Agora foram executadas as especificações para o modelo 2, apenas com intercepto, para todas as variáveis. O valor crítico de Dickey & Fuller (1981) para a constante, considerando uma amostra de 100 observações é $\tau_{\alpha\mu}^{crit}=3.22$, a 1% de significância.

Os resultados para cada variável foram detalhados abaixo.

- LJUROREAL Ver figura 37. Foram necessárias 8 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 90 observações é $\tau^{crit}=-2.5836$, a 10%. A estatística do teste é maior que o valor crítico, $\hat{t_1}>\tau^{crit}$, e a decisão é que não se rejeita a hipótese de uma raiz unitária. Além disso, $\hat{t_{\alpha\mu}}<\tau^{crit}_{\alpha\mu}$, donde rejeita-se a hipótese de que o modelo tem constante. A constante deve ser retirada e o modelo básico é o mais adequado para avaliar a raiz unitária para JUROREAL.
- LDLSP Ver figura 38. Foram necessárias 10 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 88 observações é $\tau^{crit}=-2.5840$, a 10%. Ainda, $\hat{t_3}>\tau^{crit}$, indicando que não se rejeita a hipótese de uma raiz unitária. Todavia a constante não é significante e deve ser extraída da especificação, pois $\hat{t_{\alpha\mu}}<\tau^{crit}_{\alpha\mu}$. O modelo que melhor ajusta a variável é o modelo básico.
- LNFSP Ver figura 39. Foram necessárias 9 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -2.5838$, a 10%. Com $\hat{t_3} > \tau^{crit}$, e não se pode rejeitar a hipótese nula de uma raiz unitária. O intercepto não apresentou significância para o valor crítico e rejeita-se a hipótese de que o modelo tem constante. Deve-se estimar o modelo sem constante.
- LIPCA Ver figura 40. Foram necessárias 11 defasagens da variável explicada para extrair a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -2.5842$, a $10\%.\hat{t_3} > \tau^{crit}$, o que não permite rejeitar H_0 . Mas aqui também $\hat{t_{\alpha\mu}} < \tau_{\alpha\mu}^{crit}$. Então o modelo com intercepto não é adequado e deve-se proceder à estimação do modelo básico para a variável IPCA.

Novamente em algumas estimações do modelo 2 verificou-se que $\hat{t_1} > \tau^{crit}$ e/ou $\hat{t_2} > \tau^{crit}$, e isso contraria as etapas anteriores que rejeitaram a hipótese de mais de uma raiz unitária. Foram desconsideradas essas estatísticas pela certeza dos testes executados nas etapas passadas.

Em todas as especificações observou-se $\hat{t_{\alpha\mu}} < \tau_{\alpha\mu}^{crit}$, o que leva a rejeição do modelo 2, com intercepto, como o modelo melhor ajustado às variáveis. Portanto, faz-se necessário estimar o modelo básico.

Dependent Variable: D(LJUROREAL,3) Method: Least Squares Date: 01/24/08 Time: 02:00 Sample (adjusted): 2000M06 2007M11 Included observations: 90 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
C D(LJUROREAL(-1),2) D(LJUROREAL(-1),1) LJUROREAL(-1),3) D(LJUROREAL(-2),3) D(LJUROREAL(-3),3) D(LJUROREAL(-4),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-6),3) D(LJUROREAL(-8),3)	0.367649 -4.746006 0.084538 -0.157421 3.267644 2.559071 2.078679 1.529156 1.132652 0.743079 0.409099 0.170294	0.155828 2.019682 0.469117 0.065883 1.617892 1.265335 0.961423 0.709308 0.496432 0.333325 0.198252 0.107395	2,359322 -2,349878 0,180208 -2,389384 2,019692 2,022445 2,162085 2,155841 2,281584 2,29293 2,063532 1,585670	0.0208 0.0213 0.8575 0.0193 0.0468 0.0466 0.0337 0.0342 0.0252 0.0287 0.0424 0.1169		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.745922 0.710091 0.058954 0.271091 133.5255 20.81749 0.000000	Mean depend S.D. depende Akaike info o Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	-0.000342 0.109491 -2.700566 -2.367258 -2.566157 1.937385		

Date: 01/24/08 Time Sample: 2000M06 20 Included observation	007 M11					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		23 24 25 26 27 28 29 30 31 32 33 34	-0.006 -0.059 -0.031 -0.092 -0.051 -0.079 -0.056 -0.071 -0.128 -0.162 -0.037 -0.018 -0.037 -0.014 -0.083 -0.162 -0.091 -0.083 -0.091 -0.083 -0.092 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.084 -0	-0.059 -0.027 -0.086 -0.046 -0.046 -0.074 -0.146 -0.059 0.180 -0.027 -0.027 -0.061 -0.077 -0.076 -0.077 -0.071 -0.070 -0.077 -0.071 -0.070 -0.	0.0788 0.2820 0.2820 0.2852 0.2852 0.7236 0.7236 1.8415 1.5759 1.8415 1.5759 1.8416 1.24748 8.3962 1.24748 8.3962 1.24748 1.2470 1.24748 1.2470 1.24748 1.2470 1.24740	0.782 0.868 0.961 0.987 0.984 0.986 0.986 0.986 0.986 0.986 0.986 0.718 0.757 0.859 0.718 0.854 0.703 0.757 0.754 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.775

Correlogram of Residuals

Figura 37: Teste de Dickey e Pantula, etapa 3, variável LJUROREAL, modelo com intercepto

Então os resultados a seguir servem como decisão sobre a presença de uma raiz unitária, já que é o modelo básico aquele mais adequado para modelar as variáveis no teste de Dickey & Pantula. As próximas estimações mostram os resultados para cada variável ajustada ao modelo sem tendência determinística nem constante.

LJUROREAL Ver figura 41. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -1.6176$, a 10%. A observação de $\hat{t_3} > \tau^{crit}$, não permite rejeitar a hipótese nula de uma raiz unitária. A série é I(1).

LDLSP Ver figura 42. Foram necessárias 10 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 88 observações é τ^{crit} =

Dependent Variable: Dependent Variable: Method: Least Square. Date: 01/24/08 Time: Sample (adjusted): 20 Included observations:	s 01:47 00M08 2007M			
	Coefficient	Std. Error	t-Statistic	Prob.
C D(LDLSP(-1),2) D(LDLSP(-1),1) LDLSP(-1) D(LDLSP(-1),3) D(LDLSP(-3),3) D(LDLSP(-3),3) D(LDLSP(-5),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-7),3) D(LDLSP(-7),3) D(LDLSP(-7),3) D(LDLSP(-7),3) D(LDLSP(-7),3) D(LDLSP(-7),3)	0.164576 -3.855479-2 -0.709954 -0.042726 2.370000 2.088043 1.818609 1.497457 1.411757 1.402535 1.143214 0.925594 0.644495 0.262901	0.165461 3.223695 0.556540 0.042777 2,747256 2.315891 1.925203 1.559225 1.253108 0.959072 0.630332 0.463134 0.273074 0.112395	0.994651 -1.195979 -1.275656 -0.998808 0.862679 0.901616 0.944633 0.954266 1.126604 1.462388 1.564598 1.938544 2.360150 2.339087	0.3231 0.2355 0.2061 0.3211 0.3911 0.3702 0.3479 0.3431 0.2635 0.1479 0.1022 0.0493 0.0209
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.912368 0.896973 0.019538 0.028248 229.0718 59.26437 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quin Durbin-Watse	ent var riterion erion in criter.	-0.000132 0.060870 -4.887995 -4.493873 -4.729213 2.050029

Date: 01/24/08 Time Sample: 2000M08 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		17 0.049 18 -0.033 19 0.080 20 0.080 21 0.027 22 -0.031 23 0.075 24 0.041 25 -0.146 26 0.002 27 0.126 28 -0.074 29 0.009 30 0.023 31 -0.013 32 -0.026	-0.033	0.1433 0.2335 0.3259 0.3259 0.3457 0.4094 0.4914 0.6882 0.7284 0.7284 4.7306 6.6930 1.1263 6.6930 1.0403 1.0403 1.0403 1.0403 1.0403 1.1248 1.3182 1.	0.705 0.705 0.957 0.958 0.998 1.000 1.000 1.000 1.000 0.998 0.994 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Figura 38: Teste de Dickey e Pantula, etapa 3, variável LDLSP, modelo com intercepto

Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 201 Included observations:	s 02:08 00M07 2007M ⁻			
II DIGGOG ODDOT VALOT DI	Coefficient	Std. Error	t-Statistic	Prob.
C D(LNFSP(-1),2) D(LNFSP(-1),1) LNFSP(-1),1) D(LNFSP(-1),3) D(LNFSP(-3),3) D(LNFSP(-3),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3) D(LNFSP(-6),3)	0.023615 13.82254 -3.899901 -0.669792 -12.35667 -10.09523 -8.033582 -6.290031 -4.687750 -3.170361 -3.1976629 -1.010211 -0.309813	0.015538 9.712472 2.438357 0.376663 7.654135 5.885577 4.389424 3.149256 2.138653 1.548260 0.764466 0.359480 0.110250	1.519844 1.423174 -1.599397 -1.778224 -1.614378 -1.715248 -1.831352 -1.999212 -2.191917 -2.351446 -2.585634 -2.810201 -2.810104	0.1327 0.1588 0.1139 0.0794 0.1106 0.0904 0.0710 0.0492 0.0314 0.0213 0.0116 0.0063 0.0063
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.970536 0.965883 0.059931 0.272968 131.2376 208.6150 0.000000	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion in criter.	0.000750 0.324463 -2.657025 -2.293516 -2.510505 1.997236

Figura 39: Teste de Dickey e Pantula, etapa 3, variável LNFSP, modelo com intercepto

Dependent Variable: D(LIPCA,3) Method: Least Squares Date: 01/24/08 Time: 01:54 Sample (adjusted): 2000M09 2007M11 Included observations: 87 after adjustments							
	Coefficient	Std. Error	t-Statistic	Prob.			
C D(LIPCA(-1),2) D(LIPCA(-1),1) LIPCA(-1),1) D(LIPCA(-1),3) D(LIPCA(-3),3) D(LIPCA(-3),3) D(LIPCA(-6),3)	0.006116 1.303182 -0.613559 -0.006304 -2.070243 -1.791050 -1.618443 -1.354885 -1.148499 -0.807094 -0.738552 -0.535014 -0.286416 -0.018747 0.238024	0.040346 1.636121 0.259583 0.020549 1.483159 1.287778 1.094094 0.915242 0.743594 0.598871 0.469917 0.357814 0.263797 0.184120 0.108992	0.151587 0.772888 -2.363633 -0.306788 -1.395834 -1.390807 -1.479254 -1.480357 -1.544525 -1.347692 -1.571666 -1.495231 -1.085744 -0.101818 2.183873	0.8799 0.4421 0.0208 0.7599 0.1671 0.1686 0.1434 0.1431 0.1268 0.1820 0.1204 0.1392 0.2812 0.9192			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.764423 0.718616 0.054554 0.214279 137.8300 16.68804 0.000000	S.D. dependent var Akaike info criterion -2.8236 Schwarz criterion -2.3986 Hannan-Quinn criter2.6524		-4.30E-06 0.102843 -2.823678 -2.398521 -2.652480 1.775326			

| Date: 01/24/08 | Time: 01:54 | Sample: 2000M09 2007M11 | Included observations: 87 | Autocorrelation | Partial Correlation | AC | PAC | Q-Stat | Prob | Pacific | Pa

Figura 40: Teste de Dickey e Pantula, etapa 3, variável LIPCA, modelo com intercepto

-1.6177,a 10%. Com $\hat{t_3} > \tau^{crit}$ não permite rejeitar a hipótese nula de uma raiz unitária. A série é I(1).

LNFSP Ver figura 43. Foram necessárias 9 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 89 observações é $\tau^{crit} = -1.6176$, a 10%. Dado $\hat{t_3} > \tau^{crit}$, não permite rejeitar a hipótese nula de uma raiz unitária. A série é I(1).

LIPCA Ver figura 44. Foram necessárias 11 defasagens da variável explicada para resolver a autocorrelação dos resíduos. O valor crítico para 87 observações é $\tau^{crit} = -1.6177$, a 10%. Tem-se $\hat{t_3} > \tau^{crit}$ e não se pode rejeitar a hipótese nula de uma raiz unitária. A série é I(1).

Todas as variáveis no modelo básico apresentaram $\hat{t_1} > \tau^{crit}$, a 10%, e isso contradiz a primeira etapa, pela expectativa de haver 3 raízes unitárias, hipótese já descartada. Desconsiderou-se. Mas para todas as variáveis, viu-se $\hat{t_1} > \tau^{crit}$ a 5%, o que corrobora os resultados da segunda etapa, que descartou duas raízes unitárias.

Dependent Variable: D(LJUROREAL,3) Method: Least Squares Date: 01/24/08 Time: 02:04 Sample (adjusted): 2000M07 2007M11 Included observations: 89 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
D(LJUROREAL(-1),2) D(LJUROREAL(-1),1) LJUROREAL(-1),2) D(LJUROREAL(-1),3) D(LJUROREAL(-3),3) D(LJUROREAL(-4),3) D(LJUROREAL(-6),3) D(LJUROREAL(-7),3) D(LJUROREAL(-7),3) D(LJUROREAL(-7),3) D(LJUROREAL(-8),3) D(LJUROREAL(-8),3)	0.415245 -0.957886 -0.002325 -0.920425 -0.516817 -0.433002 -0.318443 -0.264393 -0.277741 -0.224406 -0.223504	1.872008 0.324764 0.002725 1.586182 1.317580 1.063072 0.835268 0.634469 0.457814 0.316002 0.192206 0.106971	0.221818 -2.949488 -0.853351 -0.580277 -0.594971 -0.466155 -0.518399 -0.501904 -0.577512 -0.878923 -1.167529 -2.089397	0.8250 0.0042 0.3961 0.5634 0.5536 0.6282 0.6057 0.6172 0.5653 0.3822 0.2466 0.0400		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.741273 0.704312 0.059696 0.274401 131.0046 1.952495	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quir	ent var riterion erion	0.000551 0.109782 -2.674260 -2.338714 -2.539011		

Date: 01/24/03 Time: 02:04 Sample: 2000M07 2007M11 Included observations: 39								
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob			
		1 -0.012 2 0.039 3 -0.025 4 0.055 5 -0.016 6 0.026 7 -0.044 8 -0.031 9 -0.054 11 0.027 11 0.028 12 -0.077 13 0.132 14 -0.105 15 0.151 16 -0.035 19 0.010 20 -0.064 21 -0.035 22 -0.02 25 -0.042 26 -0.134 27 -0.05 28 0.029 28 0.029 29 0.048 31 0.048 31 0.048 32 0.108	-0.012 0.039 -0.024 0.048 -0.013 0.021 -0.050 0.014 0.036 -0.079 0.137 -0.105 0.144 -0.024 -0.024 -0.020 -0.020 -0.096 -0.095	0.152 0.1561 0.2157 0.4816 0.4879 0.4816 0.8303 0.8	0.903 0.925 0.975 0.937 0.993 0.997 0.998 1.000 1.000 0.994 0.987 0.946 0.987 0.989 0.999 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.998			
- I		33 0.022 34 -0.024 35 -0.126 36 0.033	0.037 -0.042 -0.119 0.020	20.764 20.851 23.216 23.379	0.952 0.962 0.936 0.948			

Figura 41: Teste de Dickey e Pantula, etapa 3, variável LJUROREAL, modelo básico

Dependent Variable: D(LDLSP,3) Method: Least Squares Date: 01/24/08 Time: 01:48 Sample (adjusted): 2000M08 2007M11 Included observations: 88 after adjustments							
	Coefficient	Std. Error	t-Statistic	Prob.			
D(LDLSP(-1),2) D(LDLSP(-1),1) LDLSP(-1),3) D(LDLSP(-2),3) D(LDLSP(-2),3) D(LDLSP(-3),3) D(LDLSP(-4),3) D(LDLSP(-6),3) D(LDLSP(-6),3) D(LDLSP(-7,3) D(LDLSP(-8),3) D(LDLSP(-9),3) D(LDLSP(-9),3) D(LDLSP(-10),3)	-2.314592 -1.026316 -0.000181 1.111386 1.076534 1.019039 0.881549 0.952604 1.077607 0.928916 0.788890 0.582037 0.243044	2.826863 0.456665 0.000542 2.438315 2.080517 1.749218 1.441782 1.164900 0.901658 0.656434 0.445239 0.265737 0.110600	-0.818785 -2.247414 -0.334477 0.455801 0.517436 0.582569 0.611430 0.817756 1.195140 1.415093 1.794294 2.190274 2.197515	0.4155 0.0276 0.7390 0.6499 0.6064 0.5619 0.5428 0.4161 0.2358 0.1612 0.0768 0.0316			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.911196 0.896987 0.019537 0.028626 228.4874 2.036257	S.D. dependent var 0.0608 Akaike info criterion -4.8974 Schwarz criterion -4.5314		-0.000132 0.060870 -4.897441 -4.531471 -4.750001			

Date: 01/24/08 Tim Sample: 2000M08 2 Included observation	007M11					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2 - 3 4 4 5 - 6 7 8 - 9 - 10 11 1 - 12 13 14 15 - 16 17 18 19 20 21 22 29 - 28 - 29 30 31 - 30 31 32 3 33 33 33 33 34 - 1	-0.018	0.004 -0.014 -0.016	0.0760 0.1063 0.2485 0.22907 0.3168 0.4136 0.5731 0	0.783 0.948 0.998 0.999 0.999 1.000 1.000 1.000 0.999 0.998 0.998 0.999 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990

Figura 42: Teste de Dickey e Pantula, etapa 3, variável LDLSP, modelo básico

Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 20 Included observations:	s 02:10 00M07:2007M1			
	Coefficient	Std. Error	t-Statistic	Prob.
D(LNFSP(-1),2)	24.14087	7.004376	3.446542	0.0009
D(LNFSP(-1),1)	-6.863975	1.475994	-4.650408	0.0000
LNFSP(-1)	-0.147488	0.155499	-0.948479	0.3459
D(LNFSP(-1),3)	-20.18910	5.707247	-3.537449	0.0007
D(LNFSP(-2),3)	-15.86788	4.534053	-3.499713	0.0008
D(LNFSP(-3),3)	-12.13891	3.491783	3.476421	0.0008
D(LNFSP(-4),3)	-9.073679	2.586433	-3.508182	0.0008
D(LNFSP(-5),3)	-6.447267	1.813446	-3.555258	0.0000
D(LNFSP(-6),3)	-4.185816	1.180990	-3.544328	0.0007
D(LNFSP(-7),3)	-2.490649	0.691390	-3.602377	0.0006
D(LNFSP(-8),3)	-1.216414	0.335714	-3.623369	0.0005
D(LNFSP(-9),3)	-0.359183	0.106248	-3.380599	0.001
R-squared	0.969640	Mean depend	dent var	0.000750
Adjusted R-squared	0.965303			
S.E. of regression	0.060438	Akaike info criterion -2.64955		
Sum squared resid	0.281265	Schwarz criterion -2.31400		
Log likelihood	129.9052	Hannan-Quir	n criter.	-2.51430
Durbin-Watson stat	2.026819			

Date: 01/24/08 Tim Sample: 2000M07 20 Included observation	007M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		7 - 0,046 8 0,011 0 - 0,035 11 - 0,035 11 - 0,035 11 - 0,035 11 - 0,035 12 - 0,073 13 - 0,035 12 - 0,05 12 - 0,05 12 - 0,05 12 - 0,05 12 - 0,05 12 - 0,05 12 - 0,05 12 - 0,05 12 - 0,05 13	-0.030 -0.050 -0.051 -0.071 -0.071 -0.073 -0.056 -0.002 -0.093 -0.058 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050	0.0404 0.1206 0.1933 0.4191 1.11276 0.9085 1.1185 2.2965 2.2965 2.27303 3.5897 5.3886 6.2665 8.6258 8.6258 8.6258 8.6258 11.828	0.841 0.941 0.979 0.981 0.989 0.993 0.993 0.999 0.999 0.999 1.000 0.999 1.000 0.998 0.999 0.998 0.999 0.998 0.999 0.998 0.999 0.990 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900

Figura 43: Teste de Dickey e Pantula, etapa 3, variável LNFSP, modelo básico

Dependent Variable: D(LIPCA,3) Method: Least Squares Date: 01/24/08 Time: 01:51 Sample (adjusted): 2000M09 2007M11 Included observations: 87 after adjustments							
	Coefficient	Std. Error	t-Statistic	Prob.			
D(LIPCA(-1),2) D(LIPCA(-1),1) LIPCA(-1),3) D(LIPCA(-1),3) D(LIPCA(-2),3) D(LIPCA(-3),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-6),3) D(LIPCA(-11),3)	1,483860 -0,642301 -0,003224 -2,225476 -1,922166 -1,726281 -1,441916 -1,215989 -0,858212 -0,775950 -0,560773 -0,302787 -0,023104 0,234629	1.184615 0.176106 0.0030517 1.065679 0.947654 0.825661 0.707983 0.591576 0.491580 0.397258 0.312774 0.239062 0.172299 0.105949	1.252609 -3.647234 -1.056813 -2.028342 -2.026342 -2.036654 -2.05566 -1.745826 -1.953265 -1.792902 -1.266564 -0.163114 2.214542	0.2143 0.0005 0.2941 0.0403 0.0462 0.0453 0.0434 0.0850 0.0546 0.0771 0.2093 0.8709			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.764348 0.722382 0.054187 0.214348 137.8161 1.775147	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir	-4,30E-06 0.102843 -2.846347 -2.449534 -2.686563				

1 0.091 0.091 0.7486 0.38	Date: 01/24/08 Time Sample: 2000M09 20 Included observation	007 M1 1				
1	Autocorrelation	Partial Correlation	AC	P A C	Q-Stat	Prob
			2 0.026 3 -0.001 4 -0.021 5 0.064 6 0.043 7 -0.047 8 -0.061 10 0.025 11 0.043 12 -0.135 13 -0.039 14 0.008 15 -0.009 16 0.066 17 0.037 18 0.026 20 0.042 21 0.049 22 -0.059 23 0.006 24 -0.158 25 -0.013 26 -0.028 27 -0.058 28 -0.028 29 0.004 30 0.004 31 0.074 33 0.036 34 -0.031	0.018	0.8114 0.8523 1.2418 1.2418 1.6313 2.5143 2.	0.387 0.667 0.847 0.941 0.945 0.997 0.987 0.996 0.996 0.997 0.999 0.975 0.998 0.996 0.996 0.952 0.968 0.952 0.958

Figura 44: Teste de Dickey e Pantula, etapa 3, variável LIPCA, modelo básico

A terceira e última etapa dos testes de Dickey & Pantula (1987) determinou que as variáveis LJUROREAL, LDLSP, LNFSP e LIPCA possuem uma e apenas uma raíz unitária. São integradas de ordem 1. Apesar dos modelos 2 e 3 apresentarem resultados semelhantes, não puderam ser considerados pela insignificância de seus termos deterministas, mas foram válidos para indicar o modelo básico como mais adequado para decisão sobre a hipótese nula.

Por final, aceita-se o resultado do teste e assume-se que todas as variáveis têm uma raiz unitária e apenas uma raiz unitária.

C.2 Testes de Dickey & Fuller (1981) (Augmented Dickey-Fuller/ADF)

Para o teste aumentado de Dickey e Fuller, novamente são previstos três modelos possíveis. O modelo 1 é o modelo básico, sem tendência determinística nem intercepto. O modelo 2 inclui intercepto e o modelo 3, mais completo, tem intercepto e tendência. As formas estruturais dos modelos para os testes estão abaixo.

$$\nabla y_{t} = \gamma y_{t-1} + \sum_{i=1}^{p-1} \gamma_{i} \nabla y_{t-i} + \varepsilon_{t}$$

$$\nabla y_{t} = \alpha + \gamma y_{t-1} + \sum_{i=1}^{p-1} \gamma_{i} \nabla y_{t-i} + \varepsilon_{t}$$

$$\nabla y_{t} = \alpha + \beta t + \gamma y_{t-1} + \sum_{i=1}^{p-1} \gamma_{i} \nabla y_{t-i} + \varepsilon_{t}$$

A especificação com escolha automática das defasagens oferecida pelo software não foi considerada em nenhum momento durante as estimações. O critério principal para decidir o número de defasagens do modelo foi a análise da significância da maior defasagem, incluindo lags de forma crescente, até o lag de ordem 12, pela possibilidade de sazonalidade nos dados mensais. O correlograma dos resíduos foi outra ferramenta consultada para verificar o ajustamento do modelo e determinar a inclusão de outros lags. Por fim, os critérios de informação Akaike e Schwarz também foram utilizados para a escolha do modelo mais adequado.

Começa-se do modelo mais completo, o modelo 3, com intercepto e tendência. Em sendo verificado pelo teste para os coeficientes deterministas que a hipótese nula é rejeitada, isto é, os coeficientes não são significativos, um modelo deve ser confeccionado extraindo a tendência. Verificado o teste agora para o intercepto, em sendo esse insignificante, deve ser retirado, passando ao modelo básico.

O teste de hipótese de Augmented Dickey-Fuller tem a seguinte estrutura decisória:

$$\left\{ \begin{array}{ll} H_0 & : & \gamma = 0 \\ H_A & : & \gamma < 0 \end{array} \right.$$

A estatística do teste é dada por $t_{\gamma} = \hat{\gamma}/s_{\gamma}$. Os valores críticos foram inicialmente calculados por Dickey & Fuller (1981) e posteriormente simulados por MacKinnon, os

quais são utilizados para avaliar o coeficiente da raiz da equação. O software E-views já traz os valores críticos mais recentes tabulados por MacKinnon. O critério de decisão define que, se $\hat{\gamma} < \tau^{crit}$, rejeita-se a hipótese nula.

Os testes para os coeficientes deterministas levam em conta a construção da estatística t, $t_{\alpha} = \hat{\alpha}/s_{\alpha}$ e $t_{\beta} = \hat{\beta}/s_{\beta}$. Mas devem ser confrontados contra os valores críticos simulados por Dickey & Fuller (1981), de acordo com o modelo, o nível de significância e o tamanho da amostra, idêntico àqueles do teste de Dickey & Pantula (1987). O critério de decisão define que, se $\hat{t_{\alpha\mu}} < \tau_{\alpha\mu}^{crit}$, rejeita-se a hipótese nula de que o modelo tem constante. Com $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$, rejeita-se a hipótese nula de que o modelo tem constante para o modelo 3. Com $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$, rejeita-se a hipótese nula de que o modelo tem tendência para o modelo 3.

Há ainda os testes conjuntos baseados em estatística F, construídos pelos modelos restritos e irrestritos, para avaliar os coeficientes deterministas. Cada estatística F ($\hat{\Phi}_1$ no modelo 2 e $\hat{\Phi}_2$ e $\hat{\Phi}_3$ no modelo 3) deve ser confrontada com os valores também simulados por Dickey & Fuller (1981), rejeitando H_0 quando $\hat{\Phi}_i > \Phi_i^{crit}$.

Os testes de significância conjunta dos parâmetros foram aplicados. As estatísticas foram calculadas à parte, tomando as soma dos quadrados dos resíduos dos modelos, uma vez que o software não informa o resultado desse teste nem possui os valores tabelados por Dickey & Fuller (1981).

Com $H_0: (\alpha, \beta, \gamma) = (0, 0, 1)$, toma-se o modelo 1, sem intercepto ou tendência, como restrito. Assim constrói-se a estatística do teste conjunto:

$$\hat{\Phi}_2 = \frac{(SQR_1 - SQR_3)/3}{(SQR_3)/(T - K)}$$

Com $H_0: (\alpha, \beta, \gamma) = (\alpha, 0, 0)$, toma-se o modelo 2, apenas com intercepto, como o modelo restrito. A estatística do teste conjunto é dada por:

$$\hat{\Phi}_3 = \frac{(SQR_2 - SQR_3)/2}{(SQR_3)/(T - K)}$$

Com $H_0: (\alpha, \gamma) = (0, 1)$, toma-se o modelo 1, sem intercepto ou tendência, como restrito e o modelo 2 como irrestrito. Assim constrói-se a estatística do teste conjunto:

$$\hat{\Phi}_1 = \frac{(SQR_1 - SQR_2)/2}{(SQR_2)/(T - K)}$$

Os valores críticos de Dickey & Fuller (1981) para os testes individuais dos coeficientes deterministas, considerando uma amostra de 100 observações, a 1% de significância, são $\tau_{\alpha\tau}^{crit}=3.78,\,\tau_{\beta\tau}^{crit}=3.53.$

Os valores críticos de Dickey & Fuller (1981) para testes conjuntos dos coeficientes deterministas, considerando uma amostra de 100 observações, a 1% de significância, são $\Phi_1=6.70,\,\Phi_2=6.50$ e $\Phi_3=8.73$.

Os resultados para cada variável foram detalhados abaixo.

C.2.1 Juros real

Inicialmente, os testes foram executados no modelo completo para a variável LJU-ROREAL. O resultado está na figura 45. Foram necessárias 11 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo não rejeita a hipótese de um raiz unitária, a 10% de significância. Todavia, os testes de hipótese de que os coeficientes da tendência e do intercepto são individualmente não nulos rejeita H_0 , $\hat{t}_{\alpha\tau} < \tau_{\alpha\tau}^{crit}$ e $\hat{t}_{\beta\tau} < \tau_{\beta\tau}^{crit}$. Os termos devem ser retirados da especificação. O modelo 3 não é adequado.

Para o modelo 2, o resultado está na figura está na figura 46. Foram necessárias 10 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo não rejeita a hipótese de um raiz unitária, a 10% de significância. A constante é rejeitada $\hat{t}_{\alpha\mu} < \tau_{\alpha\mu}^{crit}$ e o modelo 2 não é adequado.

O modelo básico está estimado na figura 47. A autocorrelação dos resíduos foi corrigida mediante a aplicação de 11 defasagens, conforme atesta o correlograma. O teste de raiz unitária aponta $\hat{\gamma} > \tau^{crit}$, mesmo a 10% de significância.

Os testes de significância conjunta dos parâmetros foram aplicados. Com $\hat{\Phi_3} < \Phi_3$, não se rejeita a hipótese de que o modelo tenha raiz unitária sem tendência. Com $\hat{\Phi_2} < \Phi_2$ não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha coeficientes deterministas. E com $\hat{\Phi_1} < \Phi_1$, não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha intercepto.

O resultado do teste indica que a série tem uma raiz unitária.

Augmented Dickey-Fuller Unit Root Test on LJUROREAL

Correlogram of RESID

Null Hypothesis: LJURC Exogenous: Constant, L Lag Length: 11 (Fixed)		unit root			Date: 01/24/08 Sample: 1999N Included obser
			t-Statistic	Prob.*	Autocorrelati
Augmented Dickey-Full	er test statistic		-1.876641	0.6583	1 1 1
Test critical values:	1% level		-4.064453		
	5% level		-3.461094		
	10% level		-3.156776		
*MacKinnon (1996) one	-sided p-value	9 5.			
TVEST GITTOIT (1000) OF R	adda p vala	~.			!!!
					1 1 12 1
Auamented Dickey-Full	er Test Equat	ion			1 1 19.1
Dependent Variable: D(
Method: Least Squares	200110112112	,			1 1 (4)
Date: 01/24/08 Time: 0	14:10				
Sample (adjusted): 200		14			
Included observations:					'5
ii ciuded doservations.	os anter acquis	lilleriis			
	Coefficient	Std. Error	t-Statistic	Prob.	
	0.404507	0.070440	4.070044	0.0045	
LJUROREAL(-1) D(LJUROREAL(-1))	-0.131587 0.603739	0.070118 0.116609	-1.876641 5.177447	0.0645	
					1 1 12 1
D(LJUROREAL(-2))	-0.251886	0.135247	-1.862419	0.0665	1 1 14 1
D(LJUROREAL(-3))	0.214372	0.136408	1.571550	0.1203	
D(LJUROREAL(-4))	-0.094335	0.139275	-0.677328	0.5003	'9'
D(LJUROREAL(-5))	0.111589	0.140380	0.794904	0.4292	'-
D(LJUROREAL(-6))	0.006050	0.140003	0.043216	0.9656	<u> '</u>
D(LJUROREAL(-7))	-0.000267	0.140150	-0.001902	0.9985	
D(LJUROREAL(-8))	0.112404	0.135647	0.828654	0.4099	'-
D(LJUROREAL(-9))	-0.002245	0.132295	-0.016971	0.9865	'
D(LJUROREAL(-10))	0.252793	0.124024	2.038264	0.0450	
D(LJUROREAL(-11))	-0.163553	0.110035	-1.486374	0.1414	
C	0.315240	0.1166451	1.893896	0.0621	
				0.4995	
@TREND(1999M07)	-0.000168	0.000248	-0.678605	0.4995	
R-squared	0.351784	Mean deper	ndent var	-0.005669	
Adjusted R-squared	0.239426	S.D. depend		0.067642	
S.F. of regression	0.058991	Akaike info		-2.679395	1 11
Sum squared resid	0.030331	Schwarz crit		-2.287924	
Log likelihood	133,2331			-2.521605	1
		Hannan-Qui			
F-statistic	3.130930	Durbin-Wat	son sial	1.924935	
Prob(F-statistic)	0.000916				

Figura 45: Teste Augmented Dickey-Fuller, variável LJUROREAL, modelo com intercepto e tendência

C.2.2 Dívida líquida do setor público

Os testes foram executados no modelo completo para a variável LDLSP. Esse resultado está na figura 48. Foram necessárias 7 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo não rejeita a hipótese de um raiz unitária, a 10% de significância. Todavia, os testes de hipótese para os coeficientes rejeita que eles existam no modelo, com $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$ e $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$. Os termos devem ser retirados da especificação e o modelo 3 não é adequado.

Para o modelo 2, o resultado está na figura está na figura 49. Foram necessárias 12 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo não rejeita a hipótese de um raiz unitária, a 10% de significância. A constante é rejeitada $\hat{t}_{\alpha\mu} < \tau_{\alpha\mu}^{crit}$ e o modelo 2 não é adequado.

Augmented Dickey-Fuller Unit Root Test on LJUROREAL

Correl	logram i	of RES	ır

Null Hypothesis: LJURC Exogenous: Constant	REAL has a	unit root		
Lag Length: 10 (Fixed)				
			t-Statistic	Prob.*
Augmented Dickev-Fulle Test critical values:	er test statistion 1% level 5% level 10% level	3	-2.389384 -3.504727 -2.893956 -2.584126	0.1476
*MacKinnon (1996) one	-sided p-value	æ.		
Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: 0 Sample (adjusted): 2000 Included observations: 9	LJURORÉAL 04:12 0M06 2007M) 11		
	Cœfficient	Std. Error	t-Statistic	Prob.
LJUROREAL(-1) D(LJUROREAL(-2)) D(LJUROREAL(-3)) D(LJUROREAL(-3)) D(LJUROREAL(-5)) D(LJUROREAL(-5)) D(LJUROREAL(-5)) D(LJUROREAL(-6)) D(LJUROREAL(-9)) D(LJUROREAL(-10)) C C	-0.157421 0.806177 -0.230211 0.228181 -0.069131 0.153018 0.006932 0.055592 0.095175 0.068512 0.170294 0.367649	0.065883 0.116148 0.132632 0.136012 0.1373753 0.137372 0.139022 0.135124 0.131314 0.123462 0.107395 0.155828	-2.389384 5.218980 -1.735715 1.677648 -0.501119 1.113902 0.049863 0.411415 0.724788 0.554922 1.585670 2.359322	0.0193 0.0000 0.0866 0.0974 0.6177 0.2687 0.9604 0.6819 0.4708 0.5805 0.1169 0.0208
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.328968 0.234335 0.058954 0.271091 133.5255 3.476255 0.000561	Mean depend S.D. depend Akaike info o Schwarz crit Hannan-Quii Durbin-Wats	ent var criterion erion nn criter.	-0.006080 0.067374 -2.700566 -2.367258 -2.566157 1.937385

Date: 01/24/08 Time Sample: 1999M07 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		4 -0.006 5 -0.031 7 -0.092 8 -0.051 9 -0.079 10 -0.056 11 -0.071 12 -0.128 13 -0.176 14 -0.037 14 -0.037 14 -0.037 14 -0.037 12 -0.128 18 -0.091 19 -0.004 20 -0.083 21 -0.077 22 -0.140 23 -0.041 24 -0.087 25 -0.088 26 -0.162 27 -0.083 28 -0.162 27 -0.083 28 -0.162 27 -0.083 28 -0.162 30 -0.083 28 -0.162 30 -0.083 30 -0.162 31 -0.079 32 -0.084 31 -0.079 32 -0.086 33 -0.046 31 -0.079 32 -0.086 33 -0.046 34 -0.087 35 -0.086 37 -0.083 38 -0.162 39 -0.086 30 -0.086 31 -0.079 32 -0.086 32 -0.086 33 -0.086 34 -0.087 35 -0.086 36 -0.086 37 -0.083 38 -0.086 39 -0.086 30 -0.086 31 -0.079 32 -0.086	-0.059 -0.027 -0.086 -0.046 -0.071 -0.071 -0.145 -0.145 -0.149 -0.149 -0.149 -0.149 -0.051 -0.061 -0.061 -0.061 -0.061 -0.079 -0.067 -0.067 -0.076 -0	0.768 0.2820 0.2820 0.2852 0.7235 0.7	0.782 0.863 0.961 0.987 0.984 0.980 0.986 0.986 0.986 0.986 0.986 0.862 0.718 0.854 0.864 0.870 0.764 0.870 0.770 0.764 0.770

Figura 46: Teste Augmented Dickey-Fuller, variável LJUROREAL, modelo com intercepto

0.318495 0.221137 0.059696

0.274401 131.0046 1.952495 Mean dependent var S.D. dependent var Akaike info criterion

Schwarz criterion Hannan-Quinn criter.

R-squared Adjusted R-squared S.E. of regression

Sum squared resid Log likelihood Durbin-Watson stat

Correlogram of RESID

Sample: 1999M07 2 Included observation						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prol
		2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 8 29 30 31 32 33 34	-0.064 -0.035 -0.121 -0.081 -0.105 -0.042 -0.134 -0.067 0.029 -0.118	0.039 -0.024 -0.013 0.021 -0.040 -0.037 -0.050 0.014 -0.024 -0.020 -0.020 -0.095 -0.095 -0.095 -0.090 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.00	0.1152 0.11561 0.2157 0.4816 0.4579 0.4816 0.7358 1.1279 0.8303 1.1279 1.1578 1.2414 1.8688 3.7129 4.9140 1.9187 1.9288 1.1257 1.0158 1	0.90 0.97 0.97 0.99 0.99 0.99 0.99 0.99

Figura 47: Teste Augmented Dickey-Fuller, variável LJUROREAL, modelo básico

-0.005669 0.067642 -2.674260 -2.338714 -2.539011 O modelo básico está estimado na figura 50. A autocorrelação dos resíduos foi corrigida mediante a aplicação de 12 defasagens, conforme atesta o correlograma. O teste de raiz unitária aponta $\hat{\gamma} > \tau^{crit}$, mesmo a 10% de significância.

Os testes de significância conjunta dos parâmetros foram aplicados. Com $\hat{\Phi_3} < \Phi_3$, não se rejeita a hipótese de que o modelo tenha raiz unitária sem tendência. Com $\hat{\Phi_2} < \Phi_2$ não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha coeficientes deterministas. E com $\hat{\Phi_1} < \Phi_1$, não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha intercepto.

O resultado do teste indica que a série tem uma raiz unitária.

Augmented Dickey-Fuller Unit Root Test on LDLSP

Correlogram of RESID

Null Hypothesis: LDLSF Exogenous: Constant, L Lag Length: 7 (Fixed)		ot		
			t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistion 1% level 5% level 10% level	0	-1.254730 -4.059734 -3.458856 -3.155470	0.8925
*MacKinnon (1996) one	-sided p-value	æs.		
Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: 0 Sample (adjusted): 2000 Included observations: 9	04:02 0M03 2007M ⁻ 93 after adjus	tments		
	Coefficient	Std. Error	t-Statistic	Prob.
LDLSP(-1) D(LDLSP(-1)) D(LDLSP(-2)) D(LDLSP(-3)) D(LDLSP(-3)) D(LDLSP(-5)) D(LDLSP(-6)) D(LDLSP(-7)) C @TREND(1999M07)	-0.049427 -0.213893 0.127351 -0.053315 -0.126498 0.108558 0.074248 -0.241820 0.199787 -0.000180	0.039393 0.106588 0.109267 0.110310 0.107937 0.108170 0.108279 0.105492 0.153354 8.28E-05	-1.254730 -2.006719 1.165500 -0.483319 -1.171962 1.003582 0.685714 -2.292302 1.302784 -2.179425	0.2131 0.0480 0.2472 0.6301 0.2446 0.3185 0.4948 0.0244 0.1963 0.0321
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.212113 0.126680 0.019140 0.030406 241.2350 2.482789 0.014569	Mean deper S.D. depend Akaike info Schwarz crif Hannan-Qui Durbin-Wats	lent var criterion erion nn criter.	-0.000703 0.020481 -4.972795 -4.700473 -4.862839 1.989101

Date: 01/24/08 Time: 04:02 Sample: 1999M07 2007M11 Included observations: 93						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		8 -0.085 9 -0.127 10 -0.101 11 0.007 12 0.182 13 0.020 14 -0.035 15 -0.137 17 0.102 18 -0.123 19 -0.035 22 -0.085 22 -0.085 23 -0.025 25 -0.079 26 0.057 27 0.032 28 0.097 30 -0.046 31 -0.065 32 -0.095	-0.023 0.026 0.052 -0.050 0.052 -0.050 0.052 -0.050 0.0135 -0.066 -0.135 -0.014 0.001 0.183 -0.052 0.052 0.053 0.054 -0.066 0.065 0.	9.E-05 0.0560 0.1763 0.1769 0.7447 1.3772 3.0548 4.1422 3.0548 10.054 11.137 12.357 14.140 15.325 16.230 16.635 16.734 18.258 19.207 19.311 19.386 19.311 19.386 19.311 19.386 19.311	0.983 0.972 0.996 0.996 0.994 0.996 0.992 0.992 0.982 0.898 0.893 0.893 0.894 0.816 0.801 0.778 0.767 0.815 0.894 0.893 0.999 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.993	

Figura 48: Teste Augmented Dickey-Fuller, variável LDLSP, modelo com intercepto e tendência

C.2.3 Necessidade de financiamento do setor público

Os testes foram executados no modelo completo para a variável LNFSP. Esse resultado está na figura 51. Foram necessárias 7 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo não rejeita a hipótese de um raiz unitária, a

Augmented Dickey-Fuller Unit Root Test on LDLSP

Correlogram of RESID

Null Hypothesis: LDLSP has a unit root Exogenous: Constant Lag Length: 12 (Fixed)							
			t-Statistic	Prob.*			
Augmented Dickey-Ful Test critical values:	ller test statisti 1% level 5% level 10% level	2	-0.998808 -3.506484 -2.894716 -2.584529	0.7508			
*MacKinnon (1996) one-sided p-values.							
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LDLSP) Method: Least Squares Date: 01/24/08 Time: 04:03 Sample (adjusted): 2000M08 2007M11 Included observations: 88 after adjustments							
	Coefficient	Std. Error	t-Statistic	Prob.			
LDLSP(-1) D(LDLSP(-2)) D(LDLSP(-3)) D(LDLSP(-3)) D(LDLSP(-3)) D(LDLSP(-6)) D(LDLSP(-6)) D(LDLSP(-7)) D(LDLSP(-8)) D(LDLSP(-10)) D(LDLSP(-110)) D(LDLSP(-111)) D(LDLSP(-12)) C	-0.042726 -0.195426 0.203516 0.012522 -0.051718 0.235451 0.076479 -0.250100 0.041701 -0.063478 -0.100496 0.118694 0.262901 0.164576	0.042777 0.116807 0.118788 0.119389 0.117655 0.117722 0.114518 0.11426 0.116734 0.115215 0.115051 0.114794 0.112395 0.165461	-0.998808 -1.673070 1.713260 0.104887 -0.439573 2.000068 0.667834 -2.185697 0.357235 -0.550971 1.033973 2.339087 0.994651	0.3211 0.0985 0.0909 0.9167 0.6615 0.0492 0.5063 0.0320 0.7219 0.5833 0.3852 0.3045 0.0220 0.3231			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.253439 0.122286 0.019538 0.028248 229.0718 1.932396 0.039662	Mean depen S.D. depend Akaike info o Schwarz crite Hannan-Quir Durbin-Wats	-0.000701 0.020855 -4.887995 -4.493873 -4.729213 2.050029				

Date: 01/24/08 Time Sample: 1999M07 20 Included observation	007M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		17 0.049 18 -0.033 19 0.080 20 0.080 21 0.027 22 -0.031 23 0.075 24 0.041 25 -0.146 26 0.002 27 0.126 28 -0.074 29 0.009 30 0.023 31 -0.013 32 -0.026 33 0.025	-0.033 0.029 0.026 0.000 0.000 0.002 0.003 0.003 0.003 0.003 0.007 0.005 0	0.1433 0.2335 0.3259 0.3457 0.4914 0.4914 0.4914 0.4914 0.4914 1.1226 0.7224 1.1226 0.7324 1.7020 1.1226 0.5324 1.7020 1.1226 0.6930 0.8115 0.6930 0.8115 0.6930 1.1226 0.8115 1.1226 1.	0.705 0.890 0.985 0.987 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.995 0.999 0.995 0.999 0.995 0.999 0.995 0.999 0.995 0.999 0.995 0.995 0.998

Figura 49: Teste Augmented Dickey-Fuller, variável LDLSP, modelo com intercepto

Null Hypothesis: LDLS Exogenous: None Lag Length: 12 (Fixed)		ot				
			t-Statistic	Prob.*		
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	0	-0.334477 -2.591505 -1.944530 -1.614341	0.5620		
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LDLSP) Method: Least Squares Date: 01/24/08 Time: 04:04 Sample (adjusted): 2000M03 2007M11 Included observations: 88 after adjustments						
	Coefficient	Std. Error	t-Statistic	Prob.		
LDLSP(-1) D(LDLSP(-1)) D(LDLSP(-2)) D(LDLSP(-2)) D(LDLSP(-4)) D(LDLSP(-6)) D(LDLSP(-6)) D(LDLSP(-6)) D(LDLSP(-7)) D(LDLSP(-9)) D(LDLSP(-10)) D(LDLSP(-11)) D(LDLSP(-11))	-0.000181 -0.229522 0.168354 -0.022643 -0.079995 0.208545 0.053948 -0.273695 0.018666 -0.086827 -0.122139 0.095948 0.243044	0.000542 0.111656 0.113398 0.114026 0.114160 0.11248 0.111248 0.111932 0.112405 0.112787 0.112967 0.112485 0.110600	-0.334477 -2.055624 1.484625 -0.198581 -0.700727 1.820349 0.480618 -2.445199 0.163153 -0.769836 -1.081194 0.852984 2.197515	0.7390 0.0433 0.1418 0.8431 0.4856 0.0727 0.6322 0.0168 0.8708 0.4438 0.2831 0.3964 0.0311		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.243458 0.122411 0.019537 0.028626 228,4874 2.036257	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Qui	ent var criterion erion	-0.000701 0.020855 -4.897441 -4.531471 -4.750001		

Date: 01/24/08 Time Sample: 1999M07 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		3 0.039 4 0.021 5 -0.017 6 0.031 7 0.005 8 -0.038 9 -0.013 10 0.049 11 -0.028 13 0.117 14 0.050 15 -0.121 16 0.009 17 0.043 18 -0.045 19 0.070 20 0.073 21 0.022 22 -0.036 24 0.027 25 -0.154 24 0.027 25 -0.154 26 0.014 27 0.111 28 -0.002 31 -0.025 32 -0.037 33 0.012 33 0.0039 31 -0.025 33 -0.037 33 0.039	-0.019	0.0760 0.1083 0.2495 0.2495 0.2495 0.4106 0.5138 0.4106 0.5549 0.5731 0.5731 0.8393 0.9765 2.4182 2.6891 4.2823 4.7121 6.6197 6.6197 6.6197 6.6197 9.7007 9.7007 9.7007 11.311 12.178 12.189 12.424 12.424 12.429 12.430 14.416 12.430 14.416 14.407	0.783 0.948 0.999 0.999 1.000 1.000 1.000 1.000 0.997 1.000 0.998 0.999 0.999 0.999 1.000 0.997 0.998 0.999 0.999 0.999 1.000 1.000 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Figura 50: Teste Augmented Dickey-Fuller, variável LDLSP, modelo básico

10% de significância. Todavia, os testes de hipótese para os coeficientes rejeita que eles existam no modelo, com $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$ e $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$. Os termos devem ser retirados da especificação e o modelo 3 não é adequado.

Para o modelo 2, o resultado está na figura está na figura 52. Foram necessárias 12 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo não rejeita a hipótese de um raiz unitária, a 10% de significância. A constante é rejeitada $\hat{t}_{\alpha\mu} < \tau_{\alpha\mu}^{crit}$ e o modelo 2 não é adequado.

O modelo básico está estimado na figura 53. A autocorrelação dos resíduos foi corrigida mediante a aplicação de 12 defasagens, conforme atesta o correlograma. O teste de raiz unitária aponta $\hat{\gamma} > \tau^{crit}$, mesmo a 10% de significância.

Os testes de significância conjunta dos parâmetros foram aplicados. Com $\hat{\Phi}_3 < \Phi_3$, não se rejeita a hipótese de que o modelo tenha raiz unitária sem tendência. Com $\hat{\Phi}_2 < \Phi_2$ não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha coeficientes deterministas. E com $\hat{\Phi}_1 < \Phi_1$, não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha intercepto.

O resultado do teste indica que a série tem uma raiz unitária.

C.2.4 Inflação

Finalmente, os testes foram executados no modelo completo para a variável LIPCA. Esse resultado está na figura 54. Foram necessárias 14 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo 3 não rejeita a hipótese de um raiz unitária, a 10% de significância.

Entretanto, os testes de hipótese para os coeficientes rejeita que eles existam no modelo, com $\hat{t_{\alpha\tau}} < \tau_{\alpha\tau}^{crit}$ e $\hat{t_{\beta\tau}} < \tau_{\beta\tau}^{crit}$. Os termos devem ser retirados da especificação e o modelo 3 não é adequado.

Para o modelo 2, o resultado está na figura está na figura 55. Foram necessárias 13 defasagens da variável para resolver a autocorrelação dos resíduos. O modelo 2 também não rejeita a hipótese de um raiz unitária, a 10% de significância. A constante é rejeitada $t_{\alpha\mu}^{\hat{}} < \tau_{\alpha\mu}^{crit}$ e o modelo 2 não é adequado.

Correlogram of RESID

Exogenous: Constant, Linear Trend Lag Length: 11 (Fixed) t-Statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level -2.750946 -4.064453 0.2194 -3.461094 -3.156776 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNFSP) Method: Least Squares Date: 01/24/08 Time: 04:13 Sample (adjusted): 2000M07 2007M11 Included observations: 89 after adjustments Coefficient Std. Error t-Statistic Prob. LNFSP(-1) D(LNFSP(-1)) D(LNFSP(-2)) D(LNFSP(-3)) D(LNFSP(-4)) D(LNFSP(-5)) D(LNFSP(-7)) D(LNFSP(-7)) D(LNFSP(-9)) D(LNFSP(-10)) D(LNFSP(-111)) C -2.750946 0.280620 0.695049 0.593423 0.175656 0.580019 0.636516 -0.319171 0.0074 0.7798 0.4892 0.5547 0.8610 0.5636 0.5264 0.7505 0.8749 0.469095 0.437609 0.401447 0.371551 0.343907 -1.290454 0.122802 0.279025 0.20487 0.060409 0.180273 0.184116 -0.084779 -0.036580 -0.116726 -0.280697 -0.256386 0.083933 -0.000661 0.310804 0.289255 0.265624

0.231612 0.201052 0.168433 0.110624

0.032076 0.000310

Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat

0.678174 0.622390 0.058575 0.257330

133.8629 12.15730 0.000000

-0.157938 -0.15/938 -0.580579 -1.666518 -2.317624 2.616682 -2.134900

0.8749 0.5633 0.0998 0.0232 0.0107 0.0360

-2.74E-05 0.095322 -2.693549 -2.302078 -2.535758 1.989171

Augmented Dickey-Fuller Unit Root Test on LNFSP

Null Hypothesis: LNFSP has a unit root

C @TREND(1999M07)

R-squared Adjusted R-squared S.E. of regression Sum squared resid

Log likelihood F-statistic Prob(F-statistic)

Date: 01/24/08 Time: 04:13 Sample: 1999M07 2007M11 Included observations: 89						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
		31 -0.007 32 0.009	-0.008 -0.029 -0.026 -0.026 -0.026 -0.026 -0.026 -0.016 -0.040 -0.040 -0.040 -0.054	6.E-06 0.0005 0.00072 0.2029 0.3259 0.3612 0.3951 0.3951 0.4655 0.6190 0.4654 0.6190 0.4654 0.6190 0.4654 0.6190 0.4654 0.6190 0.4654 0.6190 0.4654 0.6190 1.1641 1.7818 2.28207 7.1165 5.5351 1.28207 7.1165 5.5351 1.1223 1.1243 1.1243 1.1243 1.1445 1.1458	1.000 1.000	

Figura 51: Teste Augmented Dickey-Fuller, variável LNFSP, modelo com intercepto e tendência

Augmented Dickey-Fuller Unit Root Test on LNFSP

Null Hypothesis: LNFSP has a unit root Exopenous: Constant Lag Length: 11 (Fixed)							
			t-Statistic	Prob.*			
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	2	-1.778224 -3.505595 -2.894332 -2.584325	0.3890			
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNFSP) Method: Least Squares Date: 01/24/08 Time: 04:14 Sample (adjusted): 2000M07 2007M11 Included Observations: 89 after adjustments							
	Coefficient	Std. Error	t-Statistic	Prob.			
LNFSP(-1) D(LNFSP(-1)) D(LNFSP(-2)) D(LNFSP(-3)) D(LNFSP(-3)) D(LNFSP(-6)) D(LNFSP(-6)) D(LNFSP(-6)) D(LNFSP(-9)) D(LNFSP(-9)) D(LNFSP(-11)) C(LNFSP(-11)) C(LNFSP(-11))	-0.669792 -0.434028 -0.204429 -0.204430 -0.314094 -0.134269 -0.303656 -0.227315 -0.266020 -0.303654 -0.309813 0.023615	0.376663 0.359518 0.359149 0.320892 0.302649 0.279997 0.264982 0.246481 0.218632 0.192860 0.164087 0.110250 0.015538	-1.778224 -1.207250 -0.602770 -0.638220 -1.037817 -0.479539 -0.343014 -1.313104 -1.399718 -1.379346 -2.380349 -2.810104 1.519844	0.0794 0.2311 0.5485 0.5252 0.3026 0.6329 0.7325 0.1931 0.3018 0.1718 0.0198 0.0063 0.1327			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.658616 0.604713 0.059931 0.272968 131.2376 12.21860 0.000000	S.D. dependent var Akaike info criterion Schwarz criterion		-2.74E-05 0.095322 -2.657025 -2.293516 -2.510505 1.997236			

Date: 01/24/08 Tim Sample: 1999M07 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		8 0.042 9 0.001 11 -0.006 12 -0.027 13 -0.019 14 0.071 15 -0.010 16 0.090 17 0.124 18 0.027 20 -0.079 21 0.011 22 -0.077 23 0.043 26 -0.051 28 -0.051 28 -0.053 30 -0.024 31 -0.011 32 0.023	-0.005 -0.002 -0.002 -0.002 -0.012 -0.002 -0.012 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00000 -0.	0.0004 0.0031 0.0429 0.1473 0.1473 0.1588 0.3470 0.4212 0.4607 1.9084 4.5183 3.7101 4.583 3.7948 4.5183 4.5183 6.1727 9.2158 9.2171 9.2184 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122 9.3122	0.984 0.998 1.000

Figura 52: Teste Augmented Dickey-Fuller, variável LNFSP, modelo com intercepto

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

0.648240 0.597989 0.060438

0.281265 129.9052 2.026819

-2.501420 -3.335336 -3.380599

Mean dependent var S.D. dependent var Akaike info criterion

Schwarz criterion Hannan-Quinn criter.

0.0145 0.0013 0.0011

-2.74E-05 0.095322 -2.649556 -2.314009 -2.514307

Correlcoram	of	BESI	٦

Autocorrelation	Partial Correlation	2 3 4 5 6 7 8 9	-0.021 -0.029 -0.028 -0.049 -0.067 -0.025 -0.046 0.010	-0.030 -0.029 -0.051 -0.071 -0.033 -0.056	0.0404 0.1206 0.1933 0.4191 0.8457 0.9085	0.9
		2 3 4 5 6 7 8 9	-0.029 -0.028 -0.049 -0.067 -0.025 -0.046	-0.030 -0.029 -0.051 -0.071 -0.033 -0.056	0.1206 0.1933 0.4191 0.8457	0.94 0.95 0.98
		3 4 5 6 7 8 9	-0.028 -0.049 -0.067 -0.025 -0.046	-0.029 -0.051 -0.071 -0.033 -0.056	0.1933 0.4191 0.8457	0.9
		4 5 6 7 8 9	-0.049 -0.067 -0.025 -0.046	-0.051 -0.071 -0.033 -0.056	0.4191 0.8457	0.98
		5 6 7 8 9	-0.067 -0.025 -0.046	-0.071 -0.033 -0.056	0.8457	
		6 7 8 9	-0.025 -0.046	-0.033 -0.056		
		7 8 9	-0.046	-0.056	0.9085	
		8 9				0.98
	3	9	0.010		1.1185	0.99
	3				1.1276	0.99
	1 11 1		-0.033		1.2397	0.99
	4		-0.035		1.3639	0.99
	<u> </u>	11	-0.049		1.6158	0.99
	19 1		-0.073		2.1710	0.99
	14.1		-0.034		2.2965	1.00
	1.1.1	14	0.062	0.033	2.7081	0.99
	' ' '		-0.014		2.7303	1.00
Γi	: L :	16	0.088	0.063	3.5897	0.99
	: P:	17	0.123	0.108	5.2928	0.99
' ' ' '	111	18	0.029	0.031	5.3886	0.99
		19	0.023	0.035	5.4523	
: 4 :	: "	20	-0.083	0.073	6.2605 6.2734	0.99
111	111	1	0.010			
111	1	22			6.3356	1.00
111	111	23	0.037	0.050	6.5065 6.6596	1.00
	14	24	-0.107	0.045	8.1037	0.99
(7)	17		-0.107		8.6226	0.98
111	111	27	0.042	0.050	8.8538	1.00
		28			11.789	0.99
	17.1	29	0.015	0.026	11.821	0.99
	141		-0.028		11.930	0.99
	111	31	-0.014		11.958	0.99
111	111	32		-0.034	11,958	1.00
	111	33		-0.034	11,981	1.00
	141	34	-0.054		12.406	1.00
111			-0.014		12.436	1.00
i hii		36	0.091	0.082	13.691	1.00

Figura 53: Teste Augmented Dickey-Fuller, variável LNFSP, modelo básico

O modelo básico está apresentado na figura 56. A autocorrelação dos resíduos foi corrigida mediante a aplicação de 13 defasagens, conforme atesta o correlograma. O teste de raiz unitária aponta $\hat{\gamma} > \tau^{crit}$, mesmo a 10% de significância.

Os testes de significância conjunta dos parâmetros foram aplicados. E também com $\hat{\Phi_3} < \Phi_3$, não se rejeita a hipótese de que o modelo tenha raiz unitária sem tendência. $\hat{\Phi_2} < \Phi_2$ e não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha coeficientes deterministas. E com $\hat{\Phi_1} < \Phi_1$, também não se rejeita a hipótese de que o modelo tenha raiz unitária e não tenha intercepto.

Enfim, o resultado do teste indica que a variável tem uma raiz unitária.

Augmented Dickey-Fuller Unit Root Test on LIPCA

Correlo	aram of	BESIC
COLLEGE	gi au i i Oi	

Null Hypothesis: LIPCA Exogenous: Constant, L Lag Length: 14 (Fixed)		ot		
			t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level	3	-1.211985 -4.068290 -3.462912 -3.157836	0.9014
*MacKinnon (1996) one	-sided p-value	es.		
Augmented Dickey-Fulle Dependent Variable: Dril Method: Least Squares Date: 01/24/08 Time: 0 Sample (adjusted): 2000 Included observations: 8	LIPCA) 14:06 0M10 2007M1	11		
	Coefficient	Std. Error	t-Statistic	Prob.
LIPCA(-1) D(LIPCA(-1)) D(LIPCA(-2)) D(LIPCA(-3)) D(LIPCA(-3)) D(LIPCA(-5)) D(LIPCA(-6)) D(LIPCA(-6)) D(LIPCA(-7)) D(LIPCA(-9)) D(LIPCA(-10)) D(LIPCA(-11)) D(LIPCA(-13)) D(LIPCA(-13)) D(LIPCA(-14)) C(LIPCA(-14)) C(LIPCA(-14)) C(LIPCA(-14)) C(LIPCA(-14)) @TREND(1999M07)	-0.027314 0.690833 -0.007061 -0.120764 0.082731 -0.016344 0.141098 -0.332215 0.184735 0.020885 0.045418 0.022958 -0.5555695 0.431335 -0.184175 0.080979 -0.000585	0.022537 0.114642 0.129590 0.119749 0.123856 0.125817 0.129130 0.128290 0.127261 0.127412 0.128229 0.129638 0.138627 0.109904 0.053456 0.000293	-1.211985 6.026022 -0.054485 -1.008473 0.667958 -0.129904 1.092680 -2.593419 1.440653 0.162542 0.356463 0.179039 -4.284852 3.111480 -1.675787 -1.598347	0.2297 0.0000 0.9567 0.3168 0.5064 0.8970 0.2763 0.0116 0.1542 0.8714 0.7226 0.0854 0.0001 0.0027 0.0083 0.1344
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.653826 0.573553 0.052031 0.186798 141.6505 8.145097 0.000000	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Quii Durbin-Wats	ent var criterion erion nn criter.	-0.007025 0.079676 -2.898849 -2.413688 -2.703594 2.044285

Included observations: 86				
Autocorrelation Partial Correlation	AC	PAC	Q-Stat	Prob
	7 -0.001 8 -0.118 9 0.035 10 -0.066 11 0.005 12 -0.106 13 -0.126 14 0.018 15 -0.032 16 0.056 17 -0.005 18 -0.038 19 0.140 20 0.001 21 0.030 22 -0.119 23 -0.022 24 -0.141 25 -0.034 26 0.034 27 -0.114 28 -0.008 29 -0.056 30 0.030 31 0.048 33 0.072 34 -0.048 34 -0.048 34 -0.048	0.058 0.042 0.069 -0.012 0.069 -0.012 0.031 -0.056 0.009 -0.002 0.042 0.013 -0.002 -0.042 0.013 -0.002 -0.042 0.013 -0.002 -0.042 0.013 -0.003 -0.006 -	0.1843 0.5075 0.7006 1.2728 2.7500 1.2728 2.7500 6.0151 6.	0,688 0,776 0,889 0,951 0,941 0,941 0,973 0,982 0,977 0,962 0,973 0,982 0,983 0,983 0,983 0,982 0,983 0,982 0,983

Figura 54: Teste Augmented Dickey-Fuller, variável LIPCA, modelo com intercepto e tendência

Os testes de Dickey & Fuller (1981) confirmam totalmente os resultados encontrados pelos testes de Dickey & Pantula (1987), atestando que as séries são integradas de ordem um.

Augmented Dickey-Fuller Unit Root Test on LIPCA

Null Hypothesis: LIPC/ Excoenous: Constant Lag Length: 13 (Fixed)		ot		
			t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistion 1% level 5% level 10% level	3	-0.306788 -3.507394 -2.895109 -2.584738	0.9186
"MacKinnon (1996) on Augmented Dickey-Ful Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Date: 01/24/08 Jime: College observations:	ller Test Equat 0(LIPCA) s 04:06 00M09 2007M ⁻	ion 11		
ii bidasa assivation b.	Coefficient	Std. Error	t-Statistic	Prob.
LIPCA(-1) D(LIPCA(-1)) D(LIPCA(-3)) D(LIPCA(-3)) D(LIPCA(-4)) D(LIPCA(-6)) D(LIPCA(-6)) D(LIPCA(-6)) D(LIPCA(-9)) D(LIPCA(-10)) D(LIPCA(-11)) D(LIPCA(-11)) D(LIPCA(-12)) D(LIPCA(-13)) C(LIPCA(-13))	-0.006304 0.619380 0.046254 -0.10658 0.090951 -0.057179 0.135079 -0.272863 0.134996 0.049071 -0.010888 -0.494796 0.238024 0.006116	0.020549 0.113137 0.125128 0.124770 0.12868 0.130336 0.130336 0.130537 0.132474 0.132238 0.133068 0.133006 0.133006 0.108992 0.040346	-0.306788 5.474594 0.369653 -0.864258 0.705772 -0.436976 1.012528 -2.090314 1.019038 0.338955 0.143321 -0.062246 3.720085 2.183873 0.151587	0.7599 0.0000 0.7127 0.3958 0.4826 0.6634 0.3147 0.0401 0.7356 0.8864 0.9864 0.9004 0.0004 0.0322 0.8799
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.602906 0.525693 0.054554 0.214279 137.8300 7.808377 0.000000	Mean depend S.D. depend Akaike info o Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	-0.007066 0.079213 -2.823678 -2.398521 -2.652480 1.775326

Date: 01/24/08 Tim Sample: 1999M07 20 Included observation	007 M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		5 0.065 6 0.044 7 -0.046 8 -0.60 9 0.052 10 0.027 11 0.046 12 -0.133 13 -0.038 14 0.011 15 -0.066 16 0.069 17 0.039 18 0.004 19 0.182	-0.000 0.020 -0.018 0.059 0.052 0.011 0.176 -0.009 0.051 -0.077 0.041 -0.201 -0.121 -0.053 -0.040 -0.034	0.7449 0.8082 0.8450 0.8450 1.4399 1.6395 2.2572 2.2572 2.3304 4.5270 5.0245 5.2227 9.0371 15.336 9.2381 14.529 9.2381 15.739 15.739 15.739 15.739 15.739 15.739 17.739 17.739 17.739	0.388 0.668 0.964 0.947 0.932 0.940 0.987 0.981 0.987 0.995 0.996 0.997 0.980 0.998 0.950

Figura 55: Teste Augmented Dickey-Fuller, variável LIPCA, modelo com intercepto

Correlogram of	RESID
Contacyramor	

Null Hypothesis: LIPCA Exagenous: None Lag Length: 13 (Fixed)	A has a unit roo	ot		
			t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	1% level 5% level 10% level		-1.056813 -2.591813 -1.944574 -1.614315	0.2604
*MacKinnon (1996) one Augmented Dickey-Ful Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 200 Included observations:	ler Test Equat (LIPCA) ; 04:09 00M09 2007M1	ion		
	Coefficient	Std. Error	t-Statistic	Prob.
LIPCA(-1) D(LIPCA(-2)) D(LIPCA(-2)) D(LIPCA(-3)) D(LIPCA(-3)) D(LIPCA(-5)) D(LIPCA(-6)) D(LIPCA(-6)) D(LIPCA(-7)) D(LIPCA(-9)) D(LIPCA(-10)) D(LIPCA(-11)) D(LIPCA(-11)) D(LIPCA(-13))	-0.003224 0.616084 0.044926 -0.107426 0.088480 -0.058437 0.131849 -0.275514 0.132915 0.042809 0.01699 -0.011949 -0.497362 0.234629	0.003051 0.110283 0.123983 0.123810 0.126974 0.129693 0.130815 0.128491 0.130876 0.131219 0.131255 0.131436 0.131038 0.105949	-1.056813 5.586411 0.362357 -0.867664 0.696836 -0.450584 1.007911 -2.144229 1.015580 0.326240 0.125240 0.10505 -1.090912 -3.795545 2.214542	0.2941 0.0000 0.7181 0.3884 0.4881 0.6536 0.3168 0.0353 0.7152 0.7452 0.8991 0.9278 0.0003 0.0299
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.602779 0.532041 0.054187 0.214348 137.8161 1.775147	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quir	ent var riterion erion	-0.007066 0.079213 -2.846347 -2.449534 -2.686563

Date: 01/24/08 Tim Sample: 1999M07 2 Included observation	007M11				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		8 -0.061 9 0.051 10 0.026 11 0.043 12 -0.135 13 -0.039 14 0.008 15 -0.009 16 0.066 17 0.037 18 0.002 21 0.049 22 -0.059 23 0.006 24 -0.156 25 -0.018	-0.000 0.018 -0.021 0.056 0.050 0.009 0.173 -0.011 0.049 -0.079 0.040 -0.201 -0.021 -0.053 -0.040 -0.034	0.7486 0.8113 0.8523 1.2418 1.4147 1.6313 1.2418 1.4147 1.6313 1.25143 4.5928 4.5928 4.5928 4.5928 4.5928 9.0917 1.5115 1.5115 1.5115 1.5126 1.6087 1.6087 1.7480 1.7781 1	0.387 0.667 0.647 0.941 0.965 0.977 0.983 0.996 0.997 0.998 0.996 0.996 0.997 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.996 0.998 0.

Figura 56: Teste Augmented Dickey-Fuller, variável LIPCA, modelo básico

C.3 Testes de Phillips & Perron (1988)

Os testes para uma raiz unitária propostos por Phillips & Perron (1988) tratam o problema da autocorrelação dos resíduos de maneira não paramétrica, pela correção da estatística de teste. Também três são os modelos possíveis, cujas especificações estão abaixo descritas, na ordem modelo básico, modelo com intercepto, modelo com intercepto e tendência.

$$\begin{array}{rcl} y_t & = & \rho y_{t-1} + \varepsilon_t \\ \\ y_t & = & \alpha + \rho y_{t-1} + \varepsilon_t \\ \\ y_t & = & \alpha + \beta t \rho y_{t-1} + \varepsilon_t \end{array}$$

O teste de hipótese é da seguinte forma:

$$\begin{cases} H_0 : \rho = 1 \\ H_A : \rho < 1 \end{cases}$$

A estatística do teste $\hat{\tau}$ deve ser comparada à distribuição de MacKinnon. Uma hipótese do modelo de P-P é que os erros devem ser i.i.d. com média zero e variância σ_{ε} . Contudo, caso haja autocorrelação, a estatística do teste deve considerar esse fato. Assim testa-se $Z(\hat{\tau})$, onde a função Z é o ajuste efetuado por P-P. O critério para determinar o número de lags dos resíduos para considerar a autocorrelação foi a sugestão de Newey-West.

O critério de decisão é tal que se $Z(\hat{\tau_{\tau}}) < \tau_{\tau}^{crit}$, então rejeita-se a hipótese nula de raiz unitária.

Os testes de Phillips & Perron (1988) não possuem testes de hipótese para verificar a significância dos termos deterministas. Assim, quando há dúvida sobre qual modelo é o mais adequado, pode-se recorrer ao teste de Dickey & Fuller (1981) como diferencial.

Os resultados para cada variável foram detalhados abaixo.

C.3.1 Juros real

Para a variável LJUROREAL foram estimados os três modelos: com tendência e intercepto, figura 57; com intercepto, figura 58; e sem intercepto nem tendência, figura 59.

Para o modelo 3, $Z(\hat{\tau_{\tau}}) > \tau_{\tau}^{crit}$, o que não permite rejeitar a hipótese de um raiz unitária, mesmo a 10% de significância.

Para o modelo 2, $Z(\hat{\tau}_{\tau}) < \tau_{\tau}^{crit}$, a 10% de significância, quando se poderia rejeitar a hipótese. Todavia não se admite nesse estudo uma significância tão baixa. Portanto, o modelo não rejeita a hipótese de um raiz unitária.

O modelo 1 diz que $Z(\hat{\tau_{\tau}}) > \tau_{\tau}^{crit}$, mesmo a 10% de significância, e a decisão é não rejeitar a hipótese de uma raiz unitária .

Os resultados dos testes para todos os modelos são convergentes em afirmar que a série apresenta uma raiz unitária.

Null Hypothesis: LJUROREAL has a unit root Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West using Bartlett kernel) Adj. t-Stat -2.907280 -4.052411 -3.455376 -3.153438 Phillips-Perron test statistic Test critical values: 19 0.1648 1% level 5% level 10% level *MacKinnon (1996) one-sided p-values Residual variance (no correction) HAC corrected variance (Bartlett kernel) Phillips-Perron Test Equation Printips-Perion 1 est Equation
Dependent Variable: D(LU)RCREAL)
Method: Least Squares
Date: 01/24/08 Time: 05:24
Sample (adjusted): 1999M08 2007M11
Included observations: 100 after adjustments Coefficient Std. Error t-Statistic Prob. LJUROREAL(-1) -0.103782 0.043735 0.106835 -2.372964 0.0196 0.241997 2.265155 C @TREND(1999M07) 0.000240 -0.000113 -0.469304 0.6399 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood 0.054954 0.035468 -0.008322 Mean dependent var S.D. dependent var 0.068480 0.067255 0.438754 129.5554 Akaike info criterion Schwarz criterion -2.531109 -2.452954 Hannan-Quinn criter -2.499478 F-statistic Prob(F-statistic) 2.820233 Durbin-Watson stat

Phillips-Perron Unit Root Test on LJUROREAL

Figura 57: Teste de Phillips-Perron, variável LJUROREAL, modelo com intercepto e tendência

Phillips-Perron Unit Root Test on LJUROREAL

Exogenous: Constant	OREAL has a	un i t root		
Bandwidth: 2 (Newey-\	West using Ba	rtlett kernel)		
			Adj. t-Stat	Prob.*
Phillips-Perron test sta			-2.849289	0.0551
Test critical values:	1% level		3.497029	
	5% level 10% level		-2.890623 -2.582353	
			ZECECOO	
*MacKinnon (1996) on	e-sided p-valu	es.		
Residual variance (no HAC corrected variance		nel)		0.004398 0.007081
Phillips-Perron Test Ed Dependent Variable: D	(LJUROREAL)		
)(LJUROREAL s 05:25 99M08 2007M	11		
Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199)(LJUROREAL s 05:25 99M08 2007M	11 stments	t-Statistic	Prob.
Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199	O(LJUROREAL s 05:25 99M08 2007M 100 after adju	11 stments		
Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	O(LJUROREAL s 05:25 99M08 2007M 100 after adju	11 stments Std. Error		0.0214
Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	0(LJUROREAL s 05:25 99M08 2007M: 100 after adju Coefficient -0.098903	11 stments Std. Error 0.042312	-2.337454 2.248947	Prob. 0.0214 0.0268 -0.008322
Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199 Included observations: LJUROREAL(-1) C R-squared Adjusted R-squared	0.052808 0.043143	stments Std. Error 0.042312 0.099963 Mean depend	-2.337454 2.248947 dent var lent var	0.0214 0.0268 -0.008322 0.068480
Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 198 Included observations: LJUROREAL(-1) C R-squared Adjusted R-squared SE, of regression	0.0(LJUROREAL 0.5.25 0.5.25 0.99M03 2007M 100 after adju Coefficient -0.098903 0.224813 0.052808 0.043143 0.066987	Std. Error 0.042312 0.099963 Mean depend Akaike info of	-2.337454 2.248947 dent var lent var criterion	0.0214 0.0268 -0.008322 0.068480 -2.548841
Dependent Variable: L Method: Least Squaret Date: 01/24/08 Time: Sample (adjusted): 199 Included observations: LJUROREAL(-1) C R-squared Adjusted R-squared SE. of regressions Sum squared resid	0(LJUROREAL 5) 5) 5) 50 5) 52 99M08 2007M ¹ 100 after adju Coefficient -0,098903 0,224813 0,052808 0,043143 0,063987 0,439751	Std. Error 0.042312 0.099963 Mean depen S.D. depend Akaike info o	-2.337454 2.248947 dent var lent var criterion erion	0.0214 0.0268 -0.008322 0.068480 -2.548841 -2.496737
Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 198 Included observations: LJUROREAL(-1) C R-squared Adjusted R-squared SE, of regression	0.0(LJUROREAL 0.5.25 0.5.25 0.99M03 2007M 100 after adju Coefficient -0.098903 0.224813 0.052808 0.043143 0.066987	Std. Error 0.042312 0.099963 Mean depend Akaike info of	-2.337454 2.248947 dent var lent var criterion erion nn criter.	0.0214 0.0268 -0.008322 0.068480

Figura 58: Teste de Phillips-Perron, variável LJUROREAL, modelo com intercepto

Phillips-Perron Unit Root Test on LJUROREAL

Null Hypothesis: LJUR Exogenous: None Bandwidth: 6 (Newey-				
			Adj.t-Stat	Prob.*
Phillips-Perron test sta Test critical values:	tistic 1% level 5% level 10% level		-1.246503 -2.588292 -1.944072 -1.614616	0.1943
*MacKinnon (1996) on	e-sided p-valu	es.		
Residual variance (no	correction)			0.004624
HAC corrected variance		nel)		0.005902
	e (Bartlett ken quation 0(LJUROREAL s 05:25 99M08 2007M:)		0.005902
Phillips-Perron Test Ec Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199	e (Bartlett ken quation 0(LJUROREAL s 05:25 99M08 2007M:) 11 stments	t-Statistic	0.005902
Phillips-Perron Test Ec Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199	pe (Bartlett ken quation O(LJUROREAL s 05:25 99M08 2007M1 100 after adju) 11 stments		

Figura 59: Teste de Phillips-Perron, variável LJUROREAL, modelo básico

C.3.2 Dívida líquida do setor público

Para a variável LDLSP foram estimados os três modelos: com tendência e intercepto, figura 60; com intercepto, figura 61; e sem intercepto nem tendência, figura 62.

Para o modelo 3, $Z(\hat{\tau_\tau}) > \tau_\tau^{crit}$, o que não permite rejeitar a hipótese de um raiz unitária, mesmo a 10% de significância.

Também para o modelo 2, tem-se $Z(\hat{\tau_{\tau}}) > \tau_{\tau}^{crit}$, a 10% de significância. Portanto, essa especificação também não rejeita a hipótese de um raiz unitária.

O modelo 1 confirma que $Z(\hat{\tau_{\tau}}) > \tau_{\tau}^{crit}$, mesmo a 10% de significância, e a decisão é também não rejeitar a hipótese de uma raiz unitária .

Os resultados dos testes são consonantes para atestar que a variável possui uma raiz unitária.

Null Hypothesis: LDLSF Exogenous: Constant, L Bandwidth: 5 (Newey-W	inear Trend			
			Adj. t-Stat	Prob.*
Phillips-Perron test stati Test critical values:	stic 1% level 5% level 10% level		-1.449949 -4.052411 -3.455376 -3.153438	0.8400
*MacKinnon (1996) one	-sided p-value	es.		
Residual variance (no o HAC corrected variance		nel)		0.000382 0.000294
Phillips-Perron Test Eq. Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: 0 Sample (adjusted): 1994 Included observations:	LDLSP) 05:22 9 M 08 2007M ⁻			
	Coefficient	Std. Error	t-Statistic	Prob.
LDLSP(-1) C @TREND(1999M07)	-0.058936 0.232674 -0.000117	0.035256 0.136997 7.09E-05	-1.671659 1.698393 -1.650636	0.0978 0.0926 0.1020
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.043643 0.023924 0.019839 0.038176 251.6418 2.213289	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var :riterion erion nn criter.	-0.000674 0.020080 -4.972836 -4.894681 -4.941206 2.456751

Phillips-Perron Unit Root Test on LDLSP

Figura 60: Teste de Phillips-Perron, variável LDLSP, modelo com intercepto e tendência

Phillips-Perron Unit Root Test on LDLSP

Null Hypothesis: LDLSI Exogenous: Constant Bandwidth: 3 (Newey-V				
			Adj. t-Stat	Prob.*
Phillips-Perron test stat Test critical values:	istic 1% level 5% level 10% level		-1.100009 -3.497029 -2.890623 -2.582353	0.7135
*MacKinnon (1996) one	sided p-value	es.		
Residual variance (no d HAC corrected variance		nel)		0.000392 0.000325
Phillips-Perron Test Ed Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	(LDLSP) ; 05:22 19M08 2007M ⁻			
	Coefficient	Std. Error	t-Statistic	Prob.
LDLSP(-1) C	-0.044572 0.171330	0.034464 0.133015	-1.293269 1.288056	0.1990 0.2008
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.016780 0.006748 0.020012 0.039249 250,2568 1.672545 0.198958	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Qui Durbin-Wats	lent var criterion erion nn criter.	-0.000674 0.020080 -4.965135 -4.913032 -4.944048 2.424843

Figura 61: Teste de Phillips-Perron, variável LDLSP, modelo com intercepto

Phillips-Perron Unit Root Test on LDLSP

Bandwidth: 7 (Newey-	west using bar	illeli kerreri		
			Adj. t-Stat	Prob.*
Phillips-Perron test sta			-0.420777	0.5292
Test critical values:	1% level		-2.588292 -1.944072	
	5% level		-1.614616	
*MacKinnon (1996) on	ne-sided p-value	es.		
Residual variance (no HAC corrected variance		nal)		0.000399
Phillips-Perron Test E	quation			0.00027
Phillips-Perron Test Ed Dependent Variable: D Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations:	quation O(LDLSP) is : 05:23 99M08 2007M	11		
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19	quation O(LDLSP) is : 05:23 99M08 2007M	11	t-Statistic	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19	quation O(LDLSP) s : 05:23 99M08 2007M: : 100 after adju	11 stments	t-Statistic -0.355008	
Dependent Variable: I Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations: LDLSP(-1) R-squared	quation ()(LDLSP) s 05:23 999M08 2007M 1100 after adiu Coefficient -0.000185	111 stments Std. Error 0.000520 Mean depen-	-0.355008 dent var	Prob. 0.7233 -0.000674
Dependent Variable: I Method: Least Square Date: 01/24/08 Times Sample (adjusted): 19 Included observations: LDLSP(-1) R-squared Adjusted R-squared	quation (LDLSP) s : 05:23 99M08 2007M: : 100 after adiu Coefficient -0.000185 0.000135	stments Std. Error 0.000520 Mean depend	-0.355008 dent var ent var	Prob. 0.7233: -0.000674 0.020080
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations: LDLSP(-1) R-squared Adjusted R-squared SE. of regression	quation p(LDLSP) s 0.5:23 99M08 2007M: 100 after adju Coefficient -0.000185 0.000135 0.020079	stments Std. Error 0.000520 Mean depend Akaike info of	-0.355008 dent var ent var riterion	Prob. 0.7233 -0.000674 0.02008 -4.988347
Dependent Variable: I Method: Least Square Date: 01/24/08 Times Sample (adjusted): 19 Included observations: LDLSP(-1) R-squared Adjusted R-squared	quation (LDLSP) s : 05:23 99M08 2007M: : 100 after adiu Coefficient -0.000185 0.000135	stments Std. Error 0.000520 Mean depend	-0.355008 dent var ent var riterion erion	Prob. 0.7233: -0.000674 0.020080

Figura 62: Teste de Phillips-Perron, variável LDLSP, modelo básico

C.3.3 Necessidade de financiamento do setor público

Para a variável LNFSP foram estimados os três modelos: com tendência e intercepto, figura 63; com intercepto, figura 64; e sem intercepto nem tendência, figura 65.

Para o modelo 3, $Z(\hat{\tau}_{\tau}) < \tau_{\tau}^{crit}$. Isso significa que se rejeita a hipótese de uma raiz unitária na série, a 1% de significância.

Também para o modelo 2 tem-se $Z(\hat{\tau_\tau}) < \tau_\tau^{crit}$, a 1 % de significância. Rejeita-se a hipótese de um raiz unitária.

O modelo 1 sem tendência nem intercepto também aponta $Z(\hat{\tau_{\tau}}) < \tau_{\tau}^{crit}$, a 1% de significância. A decisão é também rejeitar a hipótese de uma raiz unitária .

Os resultados dos testes para as três especificações concordam que a série é estacionária, não possui raiz unitária. Esse resultado é diverso daquele apontado pelos testes de Dickey-Pantula e ADF. O teste de Phillips & Perron (1988) tem maior potência que o teste ADF quando trata-se de uma série com autocorrelação serial de ordens elevadas. Não parece ser o caso para a variável em questão, que é uma variável de fluxo.

C.3.4 Inflação

Para a variável LIPCA foram estimados os três modelos: com tendência e intercepto, figura 66; com intercepto, figura 67; e sem intercepto nem tendência, figura 68.

Para o modelo 3, $Z(\hat{\tau_{\tau}}) > \tau_{\tau}^{crit}$, donde não se pode rejeitar a hipótese de uma raiz unitária na série, mesmo a 10% de significância.

Também para o modelo 2 tem-se $Z(\hat{\tau_\tau}) > \tau_\tau^{crit}$, até 10 % de significância. Não se rejeita H_0 .

O modelo 1 sem tendência nem intercepto também aponta $Z(\hat{\tau_{\tau}}) > \tau_{\tau}^{crit}$, a 10% de significância. A decisão é também não descartar a existência de uma raiz unitária.

Os resultados dos testes para as três especificações concordam que a série é integrada de ordem um, existe uma raiz unitária.

Os testes de Phillips-Perron confirmaram os testes de Dickey-Fuller e de Dickey-

Phillips-Perron Unit Root Test on LNFSP

Bandwidth: 2 (Newey-W	est using Bai	tiett keiriei)		
			Adj. t-Stat	Prob.*
Phillips-Perron test stati Test critical values:	istic 1% level 5% level 10% level		-11.96169 -4.052411 -3.455376 -3.153438	0.0000
*MacKinnon (1996) one	-sided p-value	9s.		
Residual variance (no d HAC corrected variance		nel)		0.003343 0.003752
Phillips-Perron Test Eq. Dependent Variable: D(
	'LNFSP) 05:25 9M08 2007M			
Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: (Sample (adjusted): 199	'LNFSP) 05:25 9M08 2007M		t-Statistic	Prob.
Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: (Sample (adjusted): 199	LNFSP) 05:25 9M08 2007M 100 after adju	stments	-12.07284	0.0000

Figura 63: Teste de Phillips-Perron, variável LNFSP, modelo com intercepto e tendência

Phillips-Perron Unit Root Test on LNFSP

Bandwidth: 2 (Newey-	Nest using Ba	rtlett kernel)		
			Adj. t-Stat	Prob.*
Phillips-Perron test sta Test critical values:	tistic 1% level 5% level 10% level		-11.55679 -3.497029 -2.890623 -2.582353	0.0000
*MacKinnon (1996) on	e-sided p-valu	9S.		
Residual variance (no HAC corrected variance		nel)		0.003508 0.004021
Phillips-Perron Test Ed				
Phillips-Perron Test Ec Dependent Variable: I Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations:	.)(LNFSP) s 05:25 99M08 2007M ⁻			
Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199	.)(LNFSP) s 05:25 99M08 2007M ⁻		t-Statistic	Prob.
Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199	D(LNFSP) s 05:25 99M08 2007M 100 after adju	stments	t-Statistic -11.65147 6.035932	Prob. 0.0000 0.0000

Figura 64: Teste de Phillips-Perron, variável LNFSP, modelo com intercepto

Phillips-Perron Unit Root Test on LNFSP

Null Hypothesis: LNFSP has a unit root Exogenous: None Bandwidth: 7 (Newey-West using Bartlett kernel)						
			Adj. t-Stat	Prob.*		
Phillips-Perron test statistic 9.623302						
*MacKinnon (1996) on	e-sided p-valu	9s.				
Residual variance (no correction) 0.004812 HAC corrected variance (Bartlett kernel) 0.010013						
HAC corrected variand	oe (Bar tlett ken	nel) 		0.010013		
Phillips-Perron Test Ed Dependent Variable: I Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations:	quation (LNFSP) s 05:25 99M08 2007M	<u>, </u>		0.010013		
Phillips-Perron Test Ed Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 19	quation (LNFSP) s 05:25 99M08 2007M	<u>, </u>	t-Statistic	0.010013		
Phillips-Perron Test Ed Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 19	quation (LNFSP) s 05:25 99M08 2007M: 100 after adju	11 stments	t-Statistic			

Figura 65: Teste de Phillips-Perron, variável LNFSP, modelo básico

Phillips-Perron Unit Root Test on LIPCA

Null Hypothesis: LIPCA has a unit root Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West using Bartlett kernel)					
			Adj.t-Stat	Prob.*	
Phillips-Perron test stati Test critical values:	istic 1% level 5% level 10% level		-2.426389 -4.052411 -3.455376 -3.153438	0.3639	
*MacKinnon (1996) one	-sided p-value	9S.			
Residual variance (no d HAC corrected variance		nel)		0.006474 0.017210	
Phillips-Perron Test Eq Dependent Variable: D(Method: Least Squares Date: 01/24/08 Time: (Sample (adjusted): 199 Included observations:	LIPCA) 05:23 9M08 2007M ⁻				
	Coefficient	Std. Error	t-Statistic	Prob.	
LIPCA(-1) C @TREND(1999M07)	-0.047823 0.130279 -0.000824	0.023173 0.053952 0.000324	-2.063729 2.414712 -2.541376	0.0417 0.0176 0.0126	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.070441 0.051275 0.081698 0.647432 110.1017 3.675277 0.028936	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion enion nn criter.	-0.000884 0.083877 -2.142034 -2.063879 -2.110404 0.708837	

Figura 66: Teste de Phillips-Perron, variável LIPCA, modelo com intercepto e tendência

Phillips-Perron Unit Root Test on LIPCA

Null Hypothesis: LIPCA has a unit root Exogenous: Constant Bandwidth: 5 (Newey-West using Bartlett kernel)					
			Adj. t-Stat	Prob.*	
Phillips-Perron test star Test critical values:	tistic 1% level 5% level 10% level		-1.616147 -3.497029 -2.890623 -2.582353	0.4706	
*MacKinnon (1996) one	e-sided p-value	es.			
Residual variance (no o HAC corrected variano		nel)		0.006905 0.018480	
Phillips-Perron Test Ec Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	(LIPCA) s 05:23 99M08 2007M ⁻				
	Coefficient	Std. Error	t-Statistic	Prob.	
LIPCA(-1) C	-0.019107 0.034899	0.020787 0.039824	-0.919186 0.876329	0.3603 0.3830	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008548 -0.001569 0.083942 0.690540 106.8787 0.844903 0.360255	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Quit Durbin-Wats	ent var riterion erion nn criter.	-0.000884 0.083877 -2.097574 -2.045470 -2.076487 0.684999	

Figura 67: Teste de Phillips-Perron, variável LIPCA, modelo com intercepto

Phillips-Perron Unit Root Test on LIPCA

Phillips-Perron test star Test critical values:	tistic 1% level 5% level		Adj. t-Stat -0.401582 -2.588292	Prob.* 0.5367				
	1% level			0.5367				
l est critical values:								
			-1.944072					
	10% level		-1.614616					
*MacKinnon (1996) on	e-sided p-value	2 S.						
Residual variance (no				0.006960				
HAC corrected variance	e (Bartlett kerr	nel)		0.018250				
Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	05:24 99 M 08 2007M ⁻ 100 after adju	stments	100-10-10-	DI				
	Coefficient	Std. Error	t-Statistic	Prob.				
	-0.001300	0.004376	-0.297077	0.7670				
LIPCA(-1)	-0.001300	0.004070						
LIPCA(-1)	0.000778	Mean depen	dent var	-0.000884				
R-squared Adjusted R-squared	0.000778 0.000778	Mean depend	ent var	0.083877				
R-squared Adjusted R-squared S.E. of regression	0.000778 0.000778 0.083844	Mean depend S.D. depend Akaike info d	ent var riterion	-0.000884 0.083877 -2.109768				
R-squared Adjusted R-squared	0.000778 0.000778	Mean depend	ent var riterion erion	0.083877				
Sample (adjusted): 199	(LIPCA) s 05:24 99M08 2007M ⁻ 100 after adju Coefficient	stments Std. Error	t-Statistic	_				

Figura 68: Teste de Phillips-Perron, variável LIPCA, modelo básico

Pantula na rejeição da estacionaridade, por presença de uma raiz unitária, para as séries LJUROREAL, LDLSP e LIPCA. A série LNFSP foi apontada como estacionária por Phillips-Perron.

C.4 Testes de Dickey-Fuller GLS

Esses testes reajustam o modelo seminal de Dickey-Fuller mediante a utilização de técnica GLS para encontrar maior potência dos testes de hipótese. O teste de Dickey-Fuller GLS, também conhecido como ERS (Elliot- Rothenberg-Stock), utiliza-se de uma alternativa para estimar os termos deterministas do modelo. Por tal motivo, o teste DF-GLS é aplicável sempre quando o Augmented-Dickey-Fuller concluiu que o modelo adequado tem a presença de componentes determinísticos, como constante e tendência.

O método faz um teste pontual ótimo para o qual o teste de hipótese tem menos chance de incorrer em erro do tipo dois, que é não rejeitar a hipótese nula, de existência de raiz unitária, quando a série em verdade é estacionária.

Os testes devem ser aplicados se os estudos originais do Augmented Dickey-Fuller confirmarem o melhor ajuste do modelo com a presença de algum termo determinístico. Não foi o caso, o modelo básico apresentou melhor ajuste no teste ADF. Quando o teste ADF indica que o modelo ótimo não possui termos determinísticos, esse modelo estimado já está na fronteira de potência, não havendo ganhos com a utilização do teste DF-GLS.

O método de aplicação é estimar os termos determinísticos antes e aplicar o teste Dickey-Fuller sobre o resíduo da variável dependente.

São dois modelos possíveis, o modelo com intercepto apenas e o modelo com intercepto e tendência:

$$y_t = \beta_0 + u_t$$
$$y_t = (\beta_0 + \beta t) + u_t$$

A especificação operacional é dada pela equação:

$$\nabla y_t^d = \gamma y_{t-1}^d + \Sigma_{i=1}^l \gamma_i \nabla y_{t-i}^d + \varepsilon_t$$

Em que $y_t^d = y_t - \beta_0$ no modelo com intercepto e $y_t^d = y_t - (\beta_0 + \beta t)$ no modelo com

intercepto e tendência.

O teste tem a seguinte estrutura:

```
\begin{cases} H_0 : \gamma = 1 \\ H_A : \gamma < 1 \end{cases}
```

O critério para seleção do número de defasagens foi o critério de Schwarz (SIC), oferecido automaticamente pelo software. A estatística do teste deve ser confrontada com os valores críticos. Para o modelo com intercepto, os valores são os mesmos simulados por MacKinnon. Para o modelo com intercepto e tendência, os valores críticos devem ser capturados em Elliott, Rothemberg & Stock (1996).

Os resultados dos testes vêm a seguir.

C.4.1 Juros real

Os resultados estão nas figuras 69, modelo com intercepto e tendência, e 70, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo é $\hat{\tau}_{GLS} > \tau_{GLS}$, ao nível de 10%, onde os valores críticos foram simulados por Elliot, Rothenberg e Stock. Não se rejeita a hipótese nula de uma raiz unitária.

Para o modelo com intercepto, a estatística do teste é $\hat{\tau}_{\mu} > \tau_{\mu}$, mesmo a 10% de significância, conforme tabela de MacKinnon. Assim, não se pode rejeitar a hipótese de raiz unitária.

Ambos os modelos não rejeitam a raiz unitária na série, o que corrobora todos os testes anteriores.

C.4.2 Dívida líquida do setor público

Os resultados estão nas figuras 71, modelo com intercepto e tendência, e 72, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo é $\hat{\tau}_{GLS} > \tau_{GLS}$, ao nível de 10%. Não se rejeita a hipótese nula de uma raiz unitária.

DF-GLS Unit Root Test on LJUROREAL

Exogenous: Constant, Linear Trend Lag Length: 2 (Automatic based on SIC, MAXLAG=12)						
t-Statistic						
Elliott-Porthenberg-Stock DF-GLS test statistic -2,048839 Test critical values: 1% level -3,587600 5% level -3,036400 10% level -2,746000						
*Elliott-Rothenberg-Sto	ck (1996, Tab	le 1)				
Dependent Variable: D(GLSRESID) Melhod: Least Squares Date: 01/24/08 Time: 06:10 Sample (adiusted): 1999M10 2007M11 Included observations: 98 after adjustments						
Sample (adjusted): 199	9M10 2007M					
Sample (adjusted): 199	9M10 2007M		t-Statistic	Prob.		
Sample (adjusted): 199	9M10 2007M 98 after adjus Coefficient -0.063295	Std. Error 0.030893	-2.048839	0.0432		

Figura 69: Teste de Dickey-Fuller GLS, variável LJUROREAL, modelo com intercepto e tendência

DF-GLS Unit Root Test on LJUROREAL

Null Hypothesis: LJUROREAL has a unit root Exogenous: Constant Laq Length: 2 (Automatic based on SIC, MAXLAG=12)					
				t-Statistic	
Elliott-Rothenberg-Stock DF-GLS test statistic -0.534356 Test critical values: 1% level -2.588772 5% level -1.944140 10% level -1.614575					
*MacKinnon (1996)					
DF-GLS Test Equation on GLS Detrended Residuals Dependent Variable: D(GLSRESID) Method: Least Squares Date: 01/24/08 Time: 06:11 Sample (adjusted): 1999M10 2007M11 Included observations: 98 after adjustments					
Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199	s 06:11 99M10 2007M1				
Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199	s 06:11 99M10 2007M1	tments	t-Statistic	Prob.	
Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 195 Included observations: GLSRESID(-1)	s 06:11 99M10 2007M ⁻ 98 after adjus	Std. Error	-0.534356 5.335798	0.5943	

Figura 70: Teste de Dickey-Fuller GLS, variável LJUROREAL, modelo com intercepto

Para o modelo com intercepto, a estatística do teste é $\hat{\tau}_{\mu} > \tau_{\mu}$, a 10% de significância. Assim, também não se rejeita a hipótese de raiz unitária para essa estimação.

Ambos os modelos não rejeitam a raiz unitária na série, apontando-a como integrada de ordem um, o que corrobora todos os testes anteriores.

DF-GLS Unit Root Test on LDLSP

Null Hypothesis: LDLSP has a unit root Excoenous: Constant, Linear Trend Lag Length: 1 (Automatic based on SIC, MAXLAG=12) Elliott-Rothenberg-Stock DF-GLS test statistic Test critical values: 1% level 5% level -0.941720 -3.583800 -3.033200 -2.743000 *Elliott-Rothenberg-Stock (1996, Table 1) DF-GLS Test Equation on GLS Detrended Residuals Dependent Variable: D(GLSRESID) Method: Least Squares Date: 01/24/08 Time: 06:09 Sample (adjusted): 1999M09 2007M11 Included observations: 99 after adjustments Coefficient Std. Error t-Statistic Prob. GLSRESID(-1) D(GLSRESID(-1)) -0.030817 -0.238185 0.032725 0.099016 -0.941720 R-squared Adjusted R-squared S.E. of regression 0.072617 Mean dependent var -0.000770 0.063056 0.019416 S.D. dependent var Akaike info criterion 0.020059 -5.025414 Sum squared resid 0.036568 Schwarz criterion 4.972988 Log likelihood Durbin-Watson stat 250.7580 -5.004202

Figura 71: Teste de Dickey-Fuller GLS, variável LDLSP, modelo com intercepto e tendência

C.4.3 Necessidade de financiamento do setor público

Os resultados estão nas figuras 73, modelo com intercepto e tendência, e 74, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo é $\hat{\tau}_{GLS} < \tau_{GLS}$, a 1% de significância e os valores críticos são dados por Elliot, Rothenberg e Stock. Rejeita-se a hipótese nula de uma raiz unitária para a série.

Para o modelo com intercepto, a estatística do teste é $\hat{\tau}_{\mu} < \tau_{\mu}$, a 1% de significância, conforme tabela de MacKinnon. Assim, também rejeita-se a hipótese de raiz unitária para esse modelo.

Em suma, ambos os modelos rejeitam a raiz unitária na série, apontando-a como estacionária. Esse resultado corrobora o achado nos testes de Phillips-Perron, mas não

DF-GLS Unit Root Test on LDLSP

Lag Length: 1 (Automa	and Babbar Off C	#01WW.	12)	t-Statistic	
Elliott-Pothenberg-Stock DF-GLS test statistic -0.900922					
Test critical values:	ox DF-GLS tes 1% level	t statistic		-0.900922 -2.588530	
root orthodr valados.	5% level			-1.944105	
	10% level			-1.614596	
*MacKinnon (1996)					
DF-GLS Test Equation Dependent Variable: Dependent Variable: Dependent Variable: Dependent Variable: Dependent Variable: 01/24/08 Time:)(GLSRESID) s	rioed nesidual	s		
Dependent Variable: Depend	0(GLSRESID) s 06:09 99 M 09 2007M ⁻	11	s		
Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199	0(GLSRESID) s 06:09 99 M 09 2007M ⁻	11	t-Statistic	Prob.	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations:	0(GLSRESID) s 06:09 99:M09 2007M: 99 after adjus Coefficient -0.027165	11 tments Std. Error 0.030152	t-Statistic	0.3699	
Dependent Variable: Dependent Variable: Dependent Square: Date: 01/24/08 Time: Sample (adjusted): 19(Included observations:	O(GLSRESID) s 06:09 99M09 2007M 99 after adjus Coefficient	11 tments Std. Error	t-Statistic	0.3699	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19t Included observations: GLSRESID(-1) D(GLSRESID(-1)) R-squared	0(GLSRESID) s 06:09 39:09 2007M: 99 after aclius Coefficient -0.027165 -0.239703	111 tments Std. Error 0.030152 0.098831 Mean depend	t-Statistic -0.900922 -2.425397 dent var	0.3699 0.0171 -0.000896	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 198 Included observations: GLSRESID(-1) D(GLSRESID(-1)) R-squared Adjusted R-squared	0(GLSRESID) s 06:09 39:009 2007M* 99 after aclius Coefficient -0.027165 -0.239703 0.071156 0.061531	Std. Error 0.030152 0.098831 Mean depending the state of the state o	t-Statistic -0.900922 -2.425397 dent var	0.3699 0.0171 -0.000896 0.020059	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations: GLSRESID(-1) D(GLSRESID(-1)) R-squared Adjusted R-squared SE, of regression	0(GLSRESID) s 06:09 29:09:29:07:09 99 after adjus Coefficient -0.027165 -0.239703 0.071156 0.061581 0.019432	Std. Error 0.030152 0.098831 Mean depende Akaike info of	t-Statistic -0.900922 -2.425397 dent var ent var riterion	0.3699 0.0171 -0.000899 0.020059 -5.023841	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 198 Included observations: GLSRESID(-1) D(GLSRESID(-1)) R-squared Adjusted R-squared	0(GLSRESID) s 06:09 39:009 2007M* 99 after aclius Coefficient -0.027165 -0.239703 0.071156 0.061531	Std. Error 0.030152 0.098831 Mean depende Akaike info of	1-Statistic -0.900922 -2.425397 dent var ent var ritterion	0.3699 0.0171 -0.000896 0.020059	

Figura 72: Teste de Dickey-Fuller GLS, variável LDLSP, modelo com intercepto está de acordo com Dickey-Pantula e Dickey-Fuller.

C.4.4 Inflação

Os resultados estão nas figuras 75, modelo com intercepto e tendência, e 76, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo é $\hat{\tau}_{GLS} > \tau_{GLS}$, ao nível de 10%, onde os valores críticos foram simulados por Elliot, Rothenberg e Stock. Não se rejeita a hipótese nula de uma raiz unitária.

Para o modelo com intercepto, a estatística do teste é $\hat{\tau}_{\mu} < \tau_{\mu}$, apenas a 10% de significância, conforme tabela de MacKinnon. Assim, não se aceita esse nível de significância e não se rejeita a hipótese de raiz unitária.

Ambos os modelos não rejeitam a raiz unitária na série, o que corrobora os testes já realizados.

As variáveis LJUROREAL, LDLSP e LIPCA apresentaram após os testes de Dickey-Fuller GLS os mesmos resultados já apontados por Dickey-Pantula, Augmented Dickey-Fuller e Phillips-Perron. Todas possuem uma raiz unitária. A variável LNFSP encon-

DF-GLS Unit Root Test on LNFSP

Null Hypothesis: LNFS Exogenous: Constant, Lag Length: 0 (Automa	Linear Trend		12)		
				t-Statistic	
Elliott-Pothenberg-Stock DF-GLS test statistic -12.18 Test critical values: 1% level -3.580 5% level -3.030 10% level -2.740					
*Elliott-Rothenberg-Sto	ock (1996, Tab	le 1)			
DF-GLS Test Equation on GLS Detrended Residuals Dependent Variable: D(GLSRESID) Method: Least Squares Date: 01/24/08 Time: 06:11 Sample (adjusted): 1999M08 2007M11 Included observations: 100 after adjustments					
Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199	0(GLSRESID) s 06:11 99 M 08 2007M ⁻	11	s		
Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199	0(GLSRESID) s 06:11 99 M 08 2007M ⁻	11	s t-Statistic	Prob.	
Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199	0(GLSRESID) s 06:11 99M08 2007M: 100 after adju	11 stments	t-Statistic	Prob.	

Figura 73: Teste de Dickey-Fuller GLS, variável LNFSP, modelo com intercepto e tendência

DF-GLS Unit Root Test on LNFSP

Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAC=12)					
				t-Statistic	
Elliott-Rothenberg-Stock DF-GLS test statistic -11,37766 Test critical values: 1% level -2,588282 5% level -1,944072 10% level -1,614616 -1,61					
*MacKinnon (1996)					
DF-GLS Test Equation Dependent Variable: D	(GLSRESID)	nded Residual	s		
	0(GLSRESID) s 06:11 99M08 2007M ⁻ : 100 after adju	11 stments		Drob	
Dependent Variable: E Method: Least Square Date: 01/24/08 Time: Sample (adjusted): 19 Included observations:	O(GLSRESID) s 06:11 99M08 2007M ⁻ : 100 after adju Coefficient	11 stments Std. Error	t-Statistic		
Dependent Variable: E Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 19:	0(GLSRESID) s 06:11 99M08 2007M ⁻ : 100 after adju	11 stments	t-Statistic	Prob. 0.0000	

Figura 74: Teste de Dickey-Fuller GLS, variável LNFSP, modelo com intercepto

DF-GLS Unit Root Test on LIPCA

Null Hypothesis: LIPCA has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic based on SIC, MAXLAG=12)						
t-Statistic						
Elliatt-Rothenberg-Stock DF-GLS test statistic -1,981850 Test critical values: 1% level -3,583800 5% level -3,032200 10% level -2,743000						
*Elliatt-Rathenberg-Sta	ck (1996, Tab	le 1)				
DF-GLS Test Equation Dependent Variable: D Method: Least Squares Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	(GLSRESID) s 06:10 99M09 2007M1	11				
	Coefficient	Std. Error	t-Statistic	Prob.		
GLSRESID(-1) D(GLSRESID(-1))	-0.029197 0.635476	0.014732 0.074177		0.0503 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.434330 0.428499 0.061566 0.367664 136.5125 1.875448	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quin	ent var riterion rion	-0.002383 0.081439 -2.717424 -2.664998 -2.696212		

Figura 75: Teste de Dickey-Fuller GLS, variável LIPCA, modelo com intercepto e tendência

DF-GLS Unit Root Test on LIPCA

Null Hypothesis: LIPCA has a unit root Exogenous: Constant Lag Length: 1 (Automatic based on SIC, MAXLAG=12)					
				t-Statistic	
Elliott-Rothenberg-Stock DF-GLS test statistic -1,827682 Test critical values: 1% level -2,588530 5% level -1,944105 10% level -1,614596					
*MacKinnon (1996)					
DF-GLS Test Equation Dependent Variable: D Method: Least Square: Date: 01/24/08 Time: Sample (adjusted): 199 Included observations:	(GLSRESID) s 06:10 99 M 09 2007M ⁻	11			
	Coefficient	Std. Error	t-Statistic	Prob.	
Coefficient Std. Error t-Statistic Prob.					

Figura 76: Teste de Dickey-Fuller GLS, variável LIPCA, modelo com intercepto

tra consonância apenas com o teste de Phillips-Perron quando indica estacionaridade. Dickey-Pantula e ADF concluiram, ao contrário, que LNFSP é integrada de ordem um.

C.5 Testes de Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

O teste proposto por Kwiatkowski et al. (1992) tem uma especificação diferente dos demais testes aplicados. A idéia dos autores é verificar, sob hipótese nula, que as séries são estacionárias em torno de uma constante.

São dois os modelos possíveis, o modelo com intercepto e o modelo com intercepto e tendência. Avalia-se sob hipótese nula de que a série é estacionária, se existe estacionaridade em torno de uma constante (modelo primeiro) ou em torno de uma tendência linear (segundo modelo).

$$y_t = r_t + \varepsilon_t$$

$$y_t = r_t + \lambda t + \varepsilon_t$$

E $r_t = r_{t-1} + \mu_t$, onde μ_t é i.i.d. com média zero e variância constante.

O teste de hipótese proposto por Kwiatkowski et al. (1992):

$$\begin{cases} H_0 : \sigma_{\varepsilon} = 0 \\ H_A : \sigma_{\varepsilon} > 0 \end{cases}$$

A estatística do teste deve ser confrontada com os valores críticos simulados pelos autores Kwiatkowski et al. (1992). O critério de decisão é se $\hat{\eta} > \eta^{crit}$, rejeita-se a hipótese nula de estacionaridade.

O critério adotado para determinar as defasagens na janela de Bartlett foi a sugestão de Newey-West, construído pelo software.

Os resultados dos testes vêm a seguir.

C.5.1 Juros real

Os resultados estão nas figuras 77, modelo com intercepto e tendência, e 78, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo

é $\hat{\eta} < \eta^{crit}$, até o nível de 10%, onde os valores críticos foram simulados por Kwiatkowski et al. (1992). Não se rejeita a hipótese nula de estacionaridade.

Para o modelo com intercepto, a estatística do teste mantém-se $\hat{\eta} < \eta^{crit}$, mesmo a 10% de significância. Assim, não se pode rejeitar a hipótese de nenhuma raiz unitária.

Ambos os modelos não rejeitam a estacionaridade da série. Esse resultado é contrário a todos os testes anteriores aplicados para a variável LJUROREAL.

KPSS Unit Root Test on LJUROREAL

Null Hypothesis: LJUROREAL is stationary Excepnous: Constant, Linear Trend Bandwidth: 7 (Newey-West using Bartlett kernel)					
				LM-Stat.	
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.0892 Asymptotic critical values": 1% level 0.2160 5% level 0.1480 10% level 0.1190					
*Kwiatkowski-Phillips-So	chmidt-Shin (1992, Table 1)			
Residual variance (no o HAC corrected variance		nel)		0.024485 0.115899	
KPSS Test Equation Dependent Variable: LJI Method: Least Squares Date: 01/24/08 Time: 0 Sample: 1999M07 2007 Included observations: 1	06:12 M11				
	Coefficient	Std. Error	t-Statistic	Prob.	
C @TREND(1999M07)	2.428183 -0.001499	0.031221 0.000539	77.77464 -2.778948	0.0000 0.0065	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072361 0.062991 0.158049 2.472962 44.02725 7.722552 0.006526	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion in criter.	2.353233 0.163275 -0.832223 -0.780438 -0.811259 0.189620	

Figura 77: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LJUROREAL, modelo com intercepto e tendência

C.5.2 Dívida líquida do setor público

Os resultados estão nas figuras 79, modelo com intercepto e tendência, e 80, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo indica $\hat{\eta} > \eta^{crit}$, ao nível de 1%. Nesse caso, rejeita-se a hipótese nula de estacionaridade. A série possui uma raiz unitária.

Para o modelo com intercepto, a estatística do teste é $\hat{\eta} > \eta^{crit}$, apenas a 10%

KPSS Unit Root Test on LJUROREAL

Null Hypothesis: LJUR Exogenous: Constant Bandwidth: 7 (Newey-V		•		
				LM-Stat.
Kwiatkowski-Phillips-Sc Asymptotic critical valu		st statistic 1% level 5% level 10% level		0.181665 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-S	Schmidt-Shin (1992, Table 1)		
Residual variance (no d HAC corrected variand		nel)		0.026395 0.121876
KPSS Test Equation Dependent Variable: LJUROREAL Method: Least Squares Date: 01/24/08 Time: 06:12 Sample: 1999M07 2007Mt1 Included observations: 101				
	Coefficient	Std. Error	t-Statistic	Prob.
С	2.353233	0.016246	144.8460	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.163275 2.665867 40.23407 0.176751	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quin	ent var riterion rion	2,353233 0,163275 -0,776912 -0,751020 -0,766430

Figura 78: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LJUROREAL, modelo com intercepto

de significância. Assim, como esse nível de significância não é aceitável nesse estudo, também não se rejeita a hipótese de estacionaridade da série.

Os modelos mostraram divergência. Enquanto o modelo com tendência e intercepto indicou uma raiz unitária, o modelo com intercepto concluiu pela estacionaridade da série. O resultado de uma raiz unitária foi apontado por todos os testes anteriores aplicados à série.

C.5.3 Necessidade de financiamento do setor público

Os resultados estão nas figuras 81, modelo com intercepto e tendência, e 82, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo é $\hat{\eta} < \eta^{crit}$, até 10% de significância. Assim não se rejeita a hipótese de estacionaridade da série LNFSP.

Para o modelo com intercepto, a estatística do teste é $\hat{\eta} > \eta^{crit}$, a 5% de significância.

KPSS Unit Root Test on LDLSP

Null Hypothesis: LDLSP Exogenous: Constant, L Bandwidth: 8 (Newey-W	inear Trend			
				LM-Stat.
Kwiatkowski-Phillips-Sc Asymptotic critical value		st statistic 1% level 5% level 10% level		0.274779 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-So	chmidt-Shin (1992, Table 1)		
Residual variance (no o HAC corrected variance		nell)		0.003199 0.023796
KPSS Test Equation Dependent Variable: LDLSP Method: Least Squares Date: 01/24/08 Time: 06:13 Sample: 1999M07 2007M11 Included observations: 101				
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND(1999M07)	3.885205 -0.000544	0.011285 0.000195		0.0000 0.0063
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072984 0.063620 0.057130 0.323114 146.8031 7.794259 0.006291	Mean depend S.D. depende Akaike info c Schwarz crit Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	3.857988 0.059038 -2.867389 -2.815604 -2.846425 0.123548

Figura 79: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LDLSP, modelo com intercepto e tendência

KPSS Unit Root Test on LDLSP

Exogenous: Constant Bandwidth: 8 (Newey-)	P is stationary West using Bar				
				LM-Stat.	
Kwiatkowski-Phillips-S Asymptotic critical valu		st statistic 1% level 5% level 10% level		0.360767 0.739000 0.463000 0.347000	
*Kwiatkowski-Phillips-	Schmidt-Shin (1992, Table 1)			
Residual variance (no correction) HAC corrected variance (Bartlett kernel)					
		,			
KPSS Test Equation Dependent Variable: L Method: Least Square: Date: 01/24/08 Time: Sample: 1999M07 200 Included observations:	DLSP s 06:13 17M11			3,025,02	
Dependent Variable: L Method: Least Square: Date: 01/24/08 Time: Sample: 1999M07 200	DLSP s 06:13 17M11	,	t-Statistic		
Dependent Variable: L Method: Least Square: Date: 01/24/08 Time: Sample: 1999M07 200	DLSP s 06:13 7/M11 101	,	t-Statistic 656,7304		

Figura 80: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LDLSP, modelo com intercepto

Nesse nível é possível rejeitar a hipótese de estacionaridade da série.

Cada modelo apresentou uma conclusão. O modelo mais completo indica série estacionária, enquadro o modelo com apenas intercepto fala pela existência de uma raiz unitária. O resultado de estacionaridade para a série Necessidade de Financiamento do Setor Público foi também apontado por Phillips-Perron e DF-GLS, mas não pelos testes de Dickey-Pantula e Dickey-Fuller.

KPSS Unit Root Test on LNFSP

Null Hypothesis: LNFSF	is stationary				
Exogenous: Constant, L Bandwidth: 5 (Newey-W		rtlett kernel)			
				LM-Stat.	
Kwiatkowski-Phillips-Sc Asymptotic critical value		st statistic 1% level 5% level 10% level		0.065240 0.216000 0.146000 0.119000	
*Kwiatkowski-Phillips-S	chmidt-Shin (1992, Table 1)			
Residual variance (no correction) 0.0034 HAC corrected variance (Bartlett kernel) 0.0027					
KPSS Test Equation Dependent Variable: LNFSP Method: Least Squares Date: 01/24/08 Time: 06:12 Sample: 1999M07 2007M11 Included observations: 101					
	Coefficient	Std. Error	t-Statistic	Prob.	
C @TREND(1999M07)	0.055265 -0.000374	0.011718 0.000202	4.716070 -1.847815	0.0000 0.0676	
R-squared	0.033339	Mean depend	tent var ent var	0.036559	

Figura 81: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LNFSP, modelo

C.5.4 Inflação

com intercepto e tendência

Os resultados estão nas figuras 83, modelo com intercepto e tendência, e 84, o modelo com intercepto.

Para o modelo com intercepto e tendência linear, a estatística do teste para o modelo é $\hat{\eta} > \eta^{crit}$, ao nível de 1%. Então, rejeita-se a hipótese de estacionaridade. A série é I(1).

Para o modelo com intercepto, a estatística do teste é $\hat{\eta} > \eta^{crit}$, apenas a 5% de

KPSS Unit Root Test on LNFSP

Null Hypothesis: LNFSI Exogenous: Constant Bandwidth: 1 (Newey-V				
				LM-Stat.
Kwiatkowski-Phillips-Sc Asymptotic critical valu		st statistic 1% level 5% level 10% level		0.509331 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-S	Schmidt-Shin (1992, Table 1)		
Residual variance (no d HAC corrected variance		nel)		0.003568 0.002993
KPSS Test Equation Dependent Variable: LNFSP Method: Least Squares Date: 01/24/08 Time: 06:11 Sample: 1999M07 2007M11 Included observations: 101				
	Coefficient	Std. Error	t-Statistic	Prob.
С	0.036559	0.005974	6.120111	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.060034 0.360413 141.2863 2.321531	Mean depend S.D. depende Akaike info d Schwarz crite Hannan-Quin	ent var riterion rion	0.036559 0.060034 -2.777946 -2.752054 -2.767464

Figura 82: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LNFSP, modelo com intercepto

significância. Assim, aceita-se esse nível e é possível descartar a hipótese nula de estacionaridade. A série tem uma raiz unitária.

Ambos os modelos rejeitam a hipótese de série estacionária e apontam uma raiz unitária, o que corrobora os testes já realizados.

A variável LJUROREAL não rejeitou a hipótese de estacionaridade, ao contrário de todos os testes anteriores. A variável LIPCA, todavia, manteve a unanimidade com as abordagens anteriores e continua indicando a presença de uma raiz unitária.

A variável LNFSP apresentou resultados não conclusivos, cada modelo apontou uma decisão. Nos testes anteriores, Phillips-Perron e DF-GLS indicaram estacionaridade, enquanto Dickey-Pantula e ADF concluíram que LNFSP é integrada de ordem um.

A variável LDLSP também apresentou divergência entre os modelos do KPSS. Todavia, os testes anteriores tinham sido unânimes na determinação de uma raiz unitária.

KPSS Unit Root Test on LIPCA

Null Hypothesis: LIPCA Exogenous: Constant, L Bandwidth: 8 (Newey-W	inear Trend	rtlett kernell)		
				LM-Stat.
Kwiatkowski-Phillips-Sc Asymptotic critical value		st statistic 1% level 5% level 10% level		0.225778 0.216000 0.146000 0.119000
*Kwiatkowski-Phillips-So	chmidt-Shin (1992, Table 1)		
Residual variance (no o HAC corrected variance		nel)		0.123192 0.883362
KPSS Test Equation Dependent Variable: LIF Method: Least Squares Date: 01/24/08 Time: 0 Sample: 1999M07 2007 Included observations: 1	06:12 M11			
	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND(1999M07)	2.212591 -0.006888	0.070031 0.001210	31.59466 -5.692859	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.246625 0.239015 0.354515 12.44244 -37.56543 32.40865 0.000000	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	1.868189 0.406394 0.783474 0.835258 0.804438 0.056267

Figura 83: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LIPCA, modelo com intercepto e tendência

KPSS Unit Root Test on LIPCA

Exogenous: Constant Bandwidth: 8 (Newey-V	\ is stationary Vest using Bar	tlett kemel)		
				LM-Stat.
Kwiatkowski-Phillips-S Asymptotic critical valu		st statistic 1% level 5% level 10% level		0.489246 0.739000 0.463000 0.347000
*Kwiatkowski-Phillips-S	Schmidt-Shin (1992, Table 1)		
Residual variance (no HAC corrected variance		nel)		0.163521 1.241354
KPSS Test Equation Dependent Variable: LIPCA Method: Least Squares Date: 01/24/08 Time: 06:13 Sample: 1999/M07 2007/M11 Included observations: 101				
Included observations:				
Included observations:	Coefficient	Std. Error	t-Statistic	Prob.
Included observations:	Coefficient 1.868189	Std. Error 0.040438		Prob.

Figura 84: Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LIPCA, modelo com intercepto

D Cointegração

Os testes de cointegração de Engle-Granger e de Johansen foram especificados para variáveis integradas de primeira ordem. Os testes de Dickey-Pantula já destacados nesse trabalho rejeitam a hipótese de mais de uma raiz unitária. De tal sorte, aplica-se a metodologia básica de Engle-Granger.

D.1 Procedimento de Engle-Granger

O procedimento de Engle-Granger é aplicável para apenas duas variáveis. As variáveis do modelo que fundamentam a questão da dominância fiscal são os juros reais e a dívida.

O teste CRADF tem a seguinte especificação:

$$\Delta \hat{\varepsilon}_t = \gamma \hat{\varepsilon}_{t-1} + \sum_{i=1}^l \delta_i \Delta \hat{\varepsilon}_{t-1} + \xi_t \tag{1}$$

 $\hat{\varepsilon}_t$ são os resíduos da regressão OLS entre as duas variáveis. ξ_t é resíduo. As defasagens da variável explicativa devem tornar ξ_t um ruído branco. Os critérios utilizados para definir as defasagens foram, na ordem, um valor máximo de defasagens, a análise dos correlogramas e, eventualmente, os critérios AIC e SBC.

Dependent Variable: L Method: Least Squares Date: 01/24/08 Time: Sample: 1999M07 200 Included observations:	s 08:32 7 M 11			
	Cœfficient	Std. Error	t-Statistic	Prob.
C LDLSP	1.952920 0.103762	1.071698 0.277755	1.822267 0.373575	0.0714 0.7095
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001408 -0.008679 0.163982 2.662114 40.30520 0.139558 0.709520	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	2.353233 0.163275 -0.758519 -0.706734 -0.737555 0.176325

Figura 85: Cointegração: Procedimento de Engle-Granger: LJUROREAL contra LDLSP

Augmented Dickey-Fuller Unit Root Test on EG_OLS_RESID

Null Hypothesis: EG_OLS Exogenous: None Lag Length: 10 (Fixed)	_RESID has	a unit root		
			t-Statistic	Prob.*
Augmented Dickey-Fuller Test critical values:	test statistic 1% level 5% level 10% level		-2.465775 -2.590910 -1.944445 -1.614392	0.0140
*MacKinnon (1996) one-si	ided p-values	S.		
Augmented Dickey-Fuller Dependent Variable: D(E0 Method: Least Squares Date: 01/24/08 Time: 08: Sample (adjusted): 2000M Included observations: 90	G_OLS_RES :36 106 2007M1 ⁻	sID) I		
	Coefficient	Std. Error	t-Statistic	Prob.
EG_OLS_RESID(-1) D(EG_OLS_RESID(-1)) D(EG_OLS_RESID(-2)) D(EG_OLS_RESID(-3)) D(EG_OLS_RESID(-4)) D(EG_OLS_RESID(-5)) D(EG_OLS_RESID(-6)) D(EG_OLS_RESID(-7)) D(EG_OLS_RESID(-7)) D(EG_OLS_RESID(-10)) D(EG_OLS_RESID(-10))	-0.159380 0.596698 -0.209061 0.221926 -0.063085 0.152312 0.003537 0.058085 0.098649 0.065784 0.170189	0.064637 0.114620 0.130504 0.135086 0.135086 0.134153 0.135708 0.131992 0.128183 0.121558 0.105954	-2.465775 5.205866 -1.601949 1.666234 -0.467001 1.135364 0.026063 0.440062 0.769601 0.541173 1.606259	0.0158 0.0000 0.1132 0.0996 0.6418 0.2597 0.9793 0.6611 0.4438 0.5899 0.1122
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.317494 0.231101 0.058958 0.274604 132.9460 1.939687	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quii	ent var riterion erion	-0.005978 0.067237 -2.709912 -2.404379 -2.586703

Figura 86: Cointegração: Procedimento de Engle-Granger: teste dos resíduos

Correlogram of RESID

7	0.044 0.0 -0.002 -0.0 -0.005 -0.0 -0.032 -0.0 -0.090 -0.0 -0.074 -0.0 -0.072 -0.0 -0.124 -0.1 0.173 0.1	025 0.0588 043 0.2373 004 0.2378 007 0.2405 061 0.6065 029 0.7099 084 1.5201 046 1.7892 067 2.3540 055 2.6331	0.808 0.888 0.971 0.993 0.988 0.994 0.982 0.987 0.985 0.988 0.988
	0.044 0.0 -0.002 -0.0 -0.005 -0.0 -0.032 -0.0 -0.090 -0.0 -0.074 -0.0 -0.072 -0.0 -0.124 -0.1 0.173 0.1	0.43 0.2373 004 0.2378 007 0.2405 061 0.6065 029 0.7099 084 1.5201 046 1.7892 067 2.3540 055 2.6331	0.888 0.971 0.993 0.988 0.994 0.982 0.987 0.985 0.989
	0.005 -0.0 0.053 0.0	141 4.7986 179 8.0339 162 8.2037 190 12.418 12.420 12.739 106 12.740 12.741 13.616 14.299 17.102 19.039 18.069 18.069 19.039 18.584 20.32 1.968 22.826 19.85 22.826	0.841 0.878 0.647 0.715 0.754 0.807 0.856 0.768 0.804 0.800 0.817 0.690 0.738 0.726 0.759 0.759 0.634 0.759

Figura 87: Cointegração: Procedimento de Engle-Granger: correlograma dos resíduos

A idéia é que se os resíduos são estacionários, então a especificação OLS representa um vetor de cointegração. Os valores da estatística t devem ser comparados com valores críticos tabelados por MacKinnon. Para 90 observações, sem termos determinísticos, a 1%, $t_{cr}=-2.590910$ e a 5%, $t_{cr}=-1.944445$. Mas $\hat{t}=-2.465775$ (figura 86). Logo, com p-valor de 1.4%. Então, considerando 5% de significância, rejeita-se a hipótese de raiz unitária dos resíduos. Os erros da equação OLS são estacionários e o vetor de cointegração são os coeficientes da regressão OLS (figura 85). O correlograma dos resíduos está na figura 87.

Esse resultado aponta que tais variáveis são cointegradas. Para uma variação de 1% na relação dívida/PIBT brasileira, os juros reais devem responder com 0.41 %, já realizada a transformação anti-log.

D.2 Procedimento de Johansen

A metodologia de Johansen para extrair vetores de cointegração pode ser aplicada para mais de duas variáveis. Além disso têm outras três vantagens óbvias sobre o procedimento de Engle-Granger: estima mais de um vetor de cointegração, não classifica ex-ante variáveis como endógenas ou exógenas e inclui mais dinâmica que o procedimento anterior.

Os testes de cointegração de Johansen estão ligados ao Teorema da Representação de Granger, que prescreve a existência de um modelo de correção de erro sempre que as variáveis forem cointegradas. Deve ser aplicado apenas para variáveis integradas de primeira ordem.

D.2.1 Construção do modelo de correção de erro

A ordem do VAR foi escolhida mediante a análise dos critérios de informação. Como as variáveis são mensais, foram estudados possíveis ajustes até o décimo terceiro lag. A figura 88 mostra os resultados dos critérios de informação e a proposta de lags indicada por cada fórmula.

Quatro critérios – LR (sequential modified LR test statistic, each test at 5% level), FPE (Final prediction error), SIC (Schwarz information criterion) e HQ (Hannan-Quinn

Lag	LogL	LR	FPE	AIC	SC	HQ
0	271.3453	NA	2.89e-08	-6.007760	-5.895911	-5.962677
1	651.4074	717.4206	8.09e-12	-14.18893	-13.62969	-13.96352
2	724.7990	131.9399*	2.23e-12*	-15.47863	-14.47199*	-15.07288*
3	731.8388	12.02309	2.75e-12	-15.27728	-13.82324	-14.69120
4	744.5458	20.55957	2.99e-12	-15. 2 0328	-13.30185	-14.43686
5	760.7694	24.79109	3.03e-12	-15. 2 0830	-12.85948	-14.26156
6	774.3680	19.55760	3.28e-12	-15.15434	-12.35812	-14.02726
7	792.7610	24.79959	3.22e-12	-15.20811	-11.96450	-13.90070
8	809.3542	20.88131	3.34e-12	-15.22144	-11.53043	-13.73370
9	824.0353	17.15544	3.68e-12	-15.19181	-11.05340	-13.52373
10	839.9847	17.20382	4.01e-12	-15.19067	-10.60487	-13.34226
11	860.2844	20.07164	4.06e-12	-15.28729	-10.25409	-13.25855
12	887.8449	24.77347	3.60e-12	-15.54708*	-10.06648	-13.33801

Figura 88: Cointegração: Johansen: ordem do VAR

information criterion) – concordam com duas defasagens para o VAR. O Akaike information criterion indica 12 defasagens. Assim sendo, amparado por 4 dos 5 testes, optou-se por indicar o VAR com 2 defasagens. O VEC, portanto, terá 1 defasagem.

A escolha do modelo VEC foi desenvolvida pela adequação semântica da especificação ao comportamento econômico. Pela análise gráfica rejeita-se com veemência a hipótese de tendência quadrática (modelo 5). As séries escolhidas são todas medidas em pontos percentuais, à exceção da variável transformada em logaritmo NFSP que necessitou de um ajuste para evitar termos positivos e têm teoricamente o mesmo espaço de variação, motivo suficiente para não utilizar o modelo 1. Por sua vez, o modelo 2 pode ser adequado. Os modelos 3 ou 4, com tendências lineares diferentes, fora ou dentro do vetor de cointegração, não parecem razoáveis pela inspeção gráfica.

Os resultados na figura 89 determinam, tanto para o modelo 2, como para os modelos 3 e 4, aqueles tidos como candidatos à simulação, um único vetor de cointegração pela estatística do traço e um único vetor de cointegração pela estatística do máximo autovalor. Como os resultados para os três modelos são iguais, optou-se pelo modelo 2, com intercepto no vetor de cointegração, por ser mais parcimonioso e incluir menos rigidez que os modelos 3 e 4, já que ambos implicam que há uma tendência linear dentro ou fora do vetor que sustenta a cointegração.

Johansen Cointegration Test Summary

Test Type						
Data Trend: None			A		9M07 2007M11 ervations: 99 OREAL LDLSF	Sample: 1999 Included obse Series: LJUR
Test Type	Vlodel	s by Model	ating Relation	er of Cointeg)5 level*) Numb	Selected (0.0
No Trend	Linear Quadratic	Linear	Linear	None	None	Data Trend:
Trace Max-Eig 1 2 1 1 2	tercept Intercept	Intercept	Intercept	Intercept	No Intercept	Test Type
Max-Eig 1 1 1 1 1 *Critical values based on MacKinnon-Haug-Michelis (1999) Information Criteria by Rank and Model Data Trend: None None Linear Linear Quadra Rank or No Intercept In	Trend Trend	Trend	No Trend	No Trend	No Trend	
Critical values based on MacKinnon-Haug-Michelis (1999) Information Criteria by Rank and Model Data Trend: None None Linear Linear Quadra Rank or No Intercept Intercept Intercept Intercept Intercept Intercept No. of CEs No Trend No Trend No Trend Trend Trend Trend Log Likelihood by Rank (rows) and Model (columns) 0 781,5878 781,5878 782,0865 782,0865 783,62 1 797,3941 797,4236 797,9223 798,7141 800,19 2 802,7184 806,8307 807,3294 809,5344 810,97 3 805,4518 812,1528 812,5627 814,8462 816,28 4 805,8630 812,5817 812,5817 816,6791 816,67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15,46642 -15,46642 -15,39569 -15,39569 -15,345 1 -15,62412 -15,60452 -15,55399 -15,54978 -15,519	1 1	1	1	1	1	Trace
Data Trend:	1 1	1	1	1	1	Max-Eig
Data Trend: None Linear Intercept Linear Intercept Intercept Linear Intercept Intercept Linear Intercept Intercept Intercept Linear Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Intercept Inte		99)	g-Michelis (19	acKinnon-Hau	es based on Ma	*Critical value
Rank or No. of CEs No Intercept No. of CEs Intercept Trend In				and Model	Criteria by Rank	Information C
No. of CEs No Trend No Trend No Trend Trend Trend Log Likelihood by Rank (rows) and Model (columns) 0 781.5878 781.5878 782.0865 782.0865 783.62 1 797.3941 797.4236 797.9223 798.7141 800.19 2 802.7184 806.8307 807.3294 809.5344 810.97 3 805.4518 812.1528 812.5627 814.8462 816.28 4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	inear Quadratic	Linear	Linear	None	None	Data Trend:
Log Likelihood by Rank (rows) and Model (columns) 0 781.5878 781.5878 782.0865 782.0865 783.62 1 797.3941 797.4236 797.9223 798.7141 800.19 2 802.7184 806.8307 807.3294 809.5344 810.97 3 805.4518 812.1528 812.5627 814.8462 816.28 4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	tercept Intercept	Intercept	Intercept	Intercept	No Intercept	Rank or
0 781.5878 781.5878 782.0865 782.0865 783.62 1 797.3941 797.4236 797.9223 798.7141 800.19 2 802.7184 806.8307 807.3294 809.5344 810.97 3 805.4518 812.1528 812.5627 814.8462 816.28 4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	Trend Trend	Trend	No Trend	No Trend	No Trend	No. of CEs
1 797.3941 797.4236 797.9223 798.7141 800.19 2 802.7184 806.8307 807.3294 809.5344 810.97 3 805.4518 812.1528 812.5627 814.8462 816.28 4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	umns)	(columns)	vs) and Model	d by Rank (ro	Log Likelihoo	
2 802.7184 806.8307 807.3294 809.5344 810.97 3 805.4518 812.1528 812.5627 814.8462 816.28 4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	32.0865 783.6264	782.0865	782.0865	781.5878	781.5878	0
3 805.4518 812.1528 812.5627 814.8462 816.28 4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	98 .7141 800.1960	798.7141	797.9223	797.4236	797.3941	1
4 805.8630 812.5817 812.5817 816.6791 816.67 Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	9.5344 810.9746	809.5344	807.3294	806.8307	802.7184	2
Akaike Information Criteria by Rank (rows) and Model (columns) 0 -15.46642 -15.46642 -15.39569 -15.39569 -15.545 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	14.8462 816.2807	814.8462	812.5627	812.1528	805.4518	3
0 -15.46642 -15.46642 -15.39569 -15.39569 -15.345 1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	16.6791 816.6791	816.6791	812.5817	812.5817	805.8630	4
1 -15.62412* -15.60452 -15.55399 -15.54978 -15.519	d Model (columns)) and Model (by Rank (rows	nation Criteria	Akaike Inform	
	5.39569 -15.34599	-15.39569	-15.39569	-15.46642	-15.46642	0
	5.54978 -15.51911	-15.54978	-15.55399	-15.60452	-15.62412*	1
2 -15.57007 -15.61274 -15.58241 -15.58655 -15.575	5.58655 -15.57524	-15.58655	-15.58241	-15.61274	-15.57007	2
3 -15.46367 -15.53844 -15.52652 -15.51204 -15.520	5.51204 -15.52082	-15.51204	-15.52652	-15.53844	-15.46367	3
4 -15.31036 -15.36529 -15.36529 -15.36725 -15.367	5.36725 -15.36725	-15.36725	-15.36529	-15.36529	-15.31036	4
Schwarz Criteria by Rank (rows) and Model (columns)	olumns)	el (columns)	ows) and Mod	eria by Rank (r	Schwarz Crite	
0 -15.04701* -15.04701* -14.87142 -14.87142 -14.716	1.87142 -14.71687	-14.87142	-14.87142	-15.04701*	-15.04701*	0
1 -14.99500 -14.94918 -14.82001 -14.78959 -14.680	4.700E0 4.4.00000	-14.78959	-14.82001	-14.94918	-14.99500	1
2 -14.73124 -14.72149 -14.63873 -14.59045 -14.526	1.78959 - 14.68028	-14.59045	-14.63873	-14.72149	-14.73124	2
3 -14.41514 -14.41127 -14.37313 -14.28002 -14.262						
4 -14.05212 -14.00219 -14.00219 -13.89931 -13.899	1.59045 -14.52671	-14.28002	-14.37313	-14.41127	-14.41514	3

Figura 89: Cointegração: Johansen: escolha do modelo VEC

O modelo escolhido, portanto, foi o modelo 2, com intercepto no vetor de cointegração.

Johansen Cointegration Test

Date: 01/24/08 Sample (adjusted Included observative Trend assumption Series: LJUROR Lags interval (in the series)	d): 1999M09 200 Itions: 99 after ac n: No determinis EAL LDLSP LNF	djustments tic trend (restrict FSP LIPCA	ed constant)				
Unrestricted Coir	ntegration Rank	Test (Trace)					
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**			
None * At most 1 At most 2 At most 3	0.273790 0.173077 0.101938 0.008627	61.98783 30.31616 11.50189 0.857759	54.07904 35.19275 20.26184 9.164546	0.0084 0.1527 0.4944 0.9682			
* denotes rejecti	ates 1 cointegration of the hypothe aug-Michelis (199 ategration Rank	esis at the 0.05 l 99) p-values	evel				
Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**			
None * At most 1 At most 2 At most 3	0.273790 0.173077 0.101938 0.008627	31.67167 18.81427 10.64413 0.857759	28.58808 22.29962 15.89210 9.164546	0.0195 0.1430 0.2793 0.9682			
* denotes rejecti **MacKinnon-Ha	Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):						
LJUROREAL 1.442296 0.468284 6.466225 0.550051	LDLSP -2.583784 23.10057 -4.423318 -3.267632	LNFSP 32.69094 -15.83393 -4.972679 -0.331346	LIPCA -0.309685 -3.475306 0.273154 -0.154004	C 5.892096 -83.12472 1.630491 10.63809			
Unrestricted Adj	Unrestricted Adjustment Coefficients (alpha):						
D(LJUROREAL) -0.010129 -0.006606 -0.016706 0.000891 D(LDLSP) -0.005083 -0.003658 0.001653 0.001155 D(LNFSP) -0.025004 -0.002247 0.006027 0.003303 D(LIPCA) 0.014666 0.016628 0.003996 0.001881							

Os resultados da figura 90 confirmam o obtido no sumário dos modelos. O modelo 2 tem 1 único vetor de cointegração pelo teste da estatística do traço. Contudo, o vetor é significante a 5%. Pelo teste do máximo autovalor, indica-se a existência de um único vetor de cointegração ao nível de 5%.

Foram mostrados os 3 vetores de cointegração possíveis, porém apenas o primeiro é

Johansen Cointegration Test

1 Cointegrating Ed	uation(s):	Log likelihood	797.4236				
	. , ,		:	->			
	Normalized cointegrating coefficients (standard error in parentheses) LJUROREAL LDLSP LNFSP LIPCA C						
1.000000	-1.791438	22.66590	-0.214717	4.085220			
	(3.14870)	(4.27799)	(0.41930)	(11.5309)			
Adjustment coeffic	Adjustment coefficients (standard error in parentheses)						
D(LJUROREAL)	-0.014609						
D/I DI OD)	(0.00862)						
D(LDLSP)	-0.007331 (0.00269)						
D(LNFSP)	-0.036063						
,	(0.00856)						
D(LIPCA)	0.021153						
	(0.00864)						
2 Cointegrating Ed	quation(s):	Log likelihood	806.8307				
		ients (standard erro					
LJUROREAL	LDLSP	LNFSP	LIPCA	C			
1.000000	0.000000	20.68675	-0.467256	-2.278324			
0.000000	1.000000	(3.70842) -1.104786	(0.28662) -0.140970	(0.56745) -3.552198			
0.000000	1.000000	(0.31617)	(0.02444)	(0.04838)			
		,	,	(,			
		d error in parenthes	ses)				
D(LJUROREAL)	-0.017703	-0.126431 (0.12704)					
D/I DI CD/	(0.00900) -0.009044	(0.13794) -0.071373					
D(LDLSP)	(0.009044	(0.04249)					
D(LNFSP)	-0.037115	0.012699					
D(L(1, 0))	(0.00899)	(0.13779)					
D(LIPCA)	0.028939	0.346214					
	(0.00870)	(0.13339)					
3 Cointegrating Ed	quation(s):	Log likelihood	812.1528				
		ients (standard erro					
LJUROREAL	LDLSP	LNFSP	LIPCA	С			
1.000000	0.000000	0.000000	-0.082546	-2.184681			
			(0.11374)	(0.21909)			
0.000000	4 000000	0.000000		0.557400			
0.000000	1.000000	0.000000	-Ò.161516	-3.557199 (0.05226)			
			-0.161516 (0.02713)	(0.05226)			
0.00000.0	1.000000	0.000000 1.000000	-Ò.161516				
0.000000	0.000000	1.000000	-0.161516 (0.02713) -0.018597 (0.01406)	(0.05226) -0.004527			
0.000000 Adjustment coeffic	0.000000	1.000000 d error in parenthe:	-0.161516 (0.02713) -0.018597 (0.01406)	(0.05226) -0.004527			
0.000000	0.000000 eients (standan -0.125725	1.000000 d error in parenthe: -0.052537	-0.161516 (0.02713) -0.018597 (0.01406) ses) -0.143464	(0.05226) -0.004527			
0.000000 Adjustment coeffice D(LJUROREAL)	0.000000 eients (standar -0.125725 (0.03772)	1.000000 d error in parenthe: -0.052537 (0.13437)	-0.161516 (0.02713) -0.018597 (0.01406) ses) -0.143464 (0.20819)	(0.05226) -0.004527			
0.000000 Adjustment coeffic	0.000000 eients (standan -0.125725 (0.03772) 0.001647	1.000000 d error in parenthe: -0.052537 (0.13437) -0.078686	-0.161516 (0.02713) -0.018597 (0.01406) ses) -0.143464 (0.20819) -0.116465	(0.05226) -0.004527			
0.000000 Adjustment coeffice D(LJUROREAL)	0.000000 eients (standar -0.125725 (0.03772)	1.000000 d error in parenthe: -0.052537 (0.13437)	-0.161516 (0.02713) -0.018597 (0.01406) ses) -0.143464 (0.20819)	(0.05226) -0.004527			
0.000000 Adjustment coeffic D(LJUROREAL) D(LDLSP)	0.000000 Sients (standar -0.125725 (0.03772) 0.001647 (0.01209)	1.000000 d error in parenthe: -0.052537 (0.13437) -0.078686 (0.04306)	-0.161516 (0.02713) -0.018597 (0.01406) ses) -0.143464 (0.20819) -0.116465 (0.06672)	(0.05226) -0.004527			
0.000000 Adjustment coeffic D(LJUROREAL) D(LDLSP)	0.000000 Sients (standar -0.125725 (0.03772) 0.001647 (0.01209) 0.001859	1.000000 d error in parenthe: -0.052537 (0.13437) -0.078686 (0.04306) -0.013962	-0.161516 (0.02713) -0.018597 (0.01406) Ses) -0.143464 (0.20819) -0.116465 (0.06672) -0.811791	(0.05226) -0.004527			

Figura 90: Cointegração: Johansen: VEC para modelo $2\,$

estatisticamente significantes a 5%.

Vector Error Correction Estimates

Vector Error Correction E Date: 01/24/08 Time: 1 Sample (adjusted): 1999 Included observations: 99 Standard errors in () & t-	I:58 M09 2007M11 ∂ after adjustments		
Cointegrating Eq:	CointEq1		
LJUROREAL(-1)	1.000000		
LDLSP(-1)	-1.791438 (3.14870) [-0.56894]		
LNFSP(-1)	22.66590 (4.27799) [5.29827]		
LIPCA(-1)	-0.214717 (0.41930) [-0.51208]		
С	4.085220 (11.5309) [0.35428]		

Figura 91: Cointegração: Johansen: relação de longo prazo

A figura 91 descreve a equação de cointegração normalizada já antecipada no texto. Agora são disponíveis os valores da estatística t-Student. O coeficiente da variável LNFSP é significante na equação de longo prazo. Os demais coeficientes não permitem essa conclusão.

Nesse escopo da figura 92 observa-se como as variáveis se ajustam a mudanças para corrigir a relação estável no curto prazo. Os coeficientes das variáveis LJUROREAL e LIPCA são significantes para corrigir no curto prazo os desequilíbrios contra suas próprias realizações no período anterior, respectivamente.

O vetor de cointegração estimado, já normalizado, é:

```
1.000000000 LJUROREAL -1.791438181934037 * LDLSP + 22.66590477479257 * LNFSP -0.2147166533406575 * LIPCA + 4.085219571628363 = 0
```

A relação de cointegração ao longo do tempo é mostrada no gráfico da figura 93. A

Vector Error Correction Estimates

Error Correction:	D(LJUROREA	D(LDLSP)	D(LNFSP)	D(LIPCA)
CointEq1	-0.014609	-0.007331	-0.036063	0.021153
	(0.00862)	(0.00269)	(0.00856)	(0.00864)
	[-1.69576]	[-2.72348]	[-4.21478]	[2.44870]
D(LJUROREAL(-1))	0.498886	0.028622	0.108387	0.165241
	(0.10888)	(0.03402)	(0.10813)	(0.10917)
	[4.58213]	[0.84138]	[1.00236]	[1.51365]
D(LDLSP(-1))	0.161082	0.286988	-0.943964	-0.958795
	(0.63981)	(0.19991)	(0.63543)	(0.64152)
	[0.25177]	[1.43561]	[-1.48555]	[-1.49457]
D(LNFSP(-1))	0.286861	-0.037146	-0.079352	-0.189908
	(0.11494)	(0.03591)	(0.11415)	(0.11525)
	[2.49573]	[-1.03432]	[-0.69513]	[-1.64782]
D(LIPCA(-1))	0.075695	0.003435	-0.016477	0.659773
	(0.09308)	(0.02908)	(0.09245)	(0.09333)
	[0.81320]	[0.11810]	[-0.17823]	[7.06912]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.250879	0.177943	0.607138	0.486407
	0.219001	0.142962	0.590421	0.464552
	0.332038	0.032415	0.327510	0.333816
	0.059433	0.018570	0.059027	0.059592
	7.870092	5.086839	36.31751	22.25607
	141.5575	256.7256	142.2373	141.2932
	-2.758737	-5.085366	-2.772470	-2.753397
	-2.627670	-4.954299	-2.641403	-2.622330
	-0.006865	-0.000896	-0.000839	-0.003052
	0.067252	0.020059	0.092232	0.081439
Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion		1.46E-12 1.19E-12 797.4236 -15.60452 -14.94918		

Figura 92: Cointegração: Johansen: ajustamento de curto prazo

parte não explicada pelo vetor de correção de erros constitui os resíduos do VEC, que estão mostrados na figura 94.

Figura 93: Cointegração: Johansen: gráfico do vetor de cointegração que explica a relação de longo prazo

A figura 95 mostra a relevância do lag incluído no VAR e a possibilidade de exclui-lo sem perdas de explicação. A análise mostra que o lags incluído tem significância conjunta a 1%. Dentre os lags incluídos, nota-se pelo teste individual que não são significantes a 10% os lags para LDLSP e LNFSP.

D.2.2 Estabilidade

O modelo VEC deve atender à condição de estabilidade. Como as variáveis são postas em nível, e todas tem raízes unitárias, não é possível avaliar a estabilidade no nível. Construiu-se, pois, um VAR com as variáveis em primeira diferença. A figura 96 mostra as raízes do polinômio característico e seus módulos, confirmando que todas são menores que uma unidade, que é a condição necessária. Uma forma alternativa de observar a estacionaridade do vetor auto-regressivo é verificar o gráfico das raízes no círculo unitário. Todas devem estar contidas no seu interior.

O VAR com as variáveis defasadas é estacionário. O conjunto estimado não possui raízes unitárias e os estimadores são consistentes. A estacionaridade indica que o modelo converge para a média e tem variância não explosiva. Assume-se portanto que o VEC é

Figura 94: Cointegração: Johansen: resíduos do VEC

Date: 01/24/0	lusion Wald Tests 8 Time: 12:03 9M07 2007M11 ervations: 99	;			
	test statistics for la] are p-values	g exclusion:			
	D(LJUROREA	D(LDLSP)	D(LNFSP)	D(LIPCA)	Joint
DLag 1	32.11379 [1.81 e- 06]	3.794449 [0.434538]	6.844992 [0.144310]	89.07203 [0.000000]	222.0013 [0.000000]
df	4	4	4	4	16

Figura 95: Cointegração: Johansen: testes Wald para exclusão de lags

corretamente estimado.

VAR Stability Condition Check

Roots of Characteristic Polynomia Endogenous variables: D(LJURO Exogenous variables: C Lag specification: 1 1 Date: 01/24/08 Time: 12:50	
Root	Modulus
0.746514	0.746514
-0.552355	0.552355
0.371114 - 0.037582i 0.373013	
0.371114 + 0.037582i	0.373013
No root lies outside the unit circle VAR satisfies the stability condition	

Inverse Roots of AR Characteristic Polynomial

Figura 96: Cointegração: Johansen: raízes do polinômio para VAR em primeira diferença

D.2.3 Autocorrelação e normalidade

Os estimadores para um VEC são consistentes e assintoticamente eficientes. Entretanto, ao se garantir que os resíduos do VEC tem distribuição normal, garante-se que os estimadores também tem distribuição normal. Isso valida o uso dos testes convencionais de hipóteses sobre significância dos coeficientes.

Há necessidade de se garantir a não existência de autocorrelação dos resíduos do VEC. O correlograma dos resíduos está mostrado na figura 97 e atesta pela razoável inexistência de autocorrelação residual. Há exceções pontuais nas quais não se rejeita a autocorrelação da defasagem, mas dadas a freqüência sem padrão e a periodicidade mensal da série, assumiu-se que são correlações espúrias.

De fato, dois testes foram aplicados com o objetivo de verificar tal propriedade de

Figura 97: Cointegração: Johansen: correlograma dos resíduos do VEC

autocorrelação não contemporânea dos resíduos do VAR.

O teste de Portmanteau tem como hipótese nula a não existência de autocorrelação não contemporânea até a defasagem h. Os valores foram apresentados na figura 98. Analisando os resultados, observa-se a não rejeição da hipótese nula pelo apontamento do p-valor para os primeiros lags. Mas rejeita-se a 5% a hipótese de não autocorrelação a partir do décimo lag. O teste de Portmanteau não rejeita a inexistência de autocorrelação residual para boa parte das defasagens apontadas.

Date: 01/2 Sample: 1	hesis: no resid 14/08 Time: 12 999M07 2007N bservations: 99	2:08 111	ciatoris apto	ag II	
Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	6.441212	NA*	6.506938	NA*	NA*
2	17.09636	0.3794	17.38178	0.3613	16
3	32.94480	0.4207	33.72548	0.3840	32
4	54.60055	0.2381	56.29306	0.1924	48
5	72.99886	0.2063	75.67000	0.1508	64
6	88.36774	0.2444	92.03042	0.1687	80
7	111.9830	0.1266	117.4425	0.0678	96
8	121.5214	0.2536	127.8194	0.1457	112
9	144.8596	0.1464	153.4915	0.0619	128
10	167.4215	0.0884	178.5884	0.0266	144
11	189.6778	0.0545	203.6267	0.0112	160
12 215.7194 0.0222 233.2603 0.0025 176					
*The test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution					

Figura 98: Cointegração: Johansen: teste PortManteau de autocorrelação dos resíduos do VEC

O teste LM de correlação residual é baseado em uma estatística χ^2 . A hipótese nula é a não correlação serial de ordem l. Os resultados estão plotados na figura 99 e sua análise determina que se não rejeita, a 5%, a extensa maioria das defasagens apontadas. Todavia também nesse teste algumas defasagens mostram-se sobressalentes. A 5% os lags 7, 9, 10 e 12 são rejeitados, mas aceita-se com o rigor de 1% de significância os três primeiros. Dada a ordem do VEC e a peridiodicidade das séries, não é possível certificar que a atual especificação representa o melhor ajuste. Entretanto, essas correlações serão assumidas como espúrias.

Em suma, o correlograma mostra bom comportamento das correlações dos resíduos e os testes LM e Portmanteau corroboram com a inexistência de autocorrelação serial. Dada que essa especificação foi aquela que melhor ajustou a tais aspectos, decidiu-se mantê-la e assumir que a autocorrelação residual não contemporânea está resolvida.

Outro fator importante para o VEC é a análise do teste de normalidade dos resí-

VEC Residual Serial Correlation LM Test Null Hypothesis: no serial correlation at I Date: 01/24/08 Time: 12:04 Sample: 1999M07 2007M11 Included observations: 99					
Lags	LM-Stat	Prob			
1	18.52691	0.2940			
2	17.85070	0.3327			
3	16.69923	0.4053			
4	22.71819	0.1215			
5 19.65336 0.2362					
6	18.04673	0.3212			
7	26.38366	0.0489			
8	10.70611	0.8273			
9	27.10504	0.0403			
10	26.49511	0.0474			
11	24.39323	0.0813			
12 33.85129 0.0057					
Probs fror	n chi-square with	n 16 df.			

Figura 99: Cointegração: Johansen: teste LM de autocorrelação dos resíduos do VEC

duos, exposto à figura 100, resultante da estatística produzida pela ortogonalização de Cholesky. Os resultados demonstram que, no quesito coeficiente de assimetria, apenas o componente residual para a relação dívida/pib não tem comportamento normal. O teste conjunto sob o coeficiente de assimetria garante a rejeição da hipótese nula de normalidade.

Todavia os testes individuais para os componentes rejeitam a normalidade pela análise da curtose para os juros reais e a dívida líquida do setor público. O teste conjunto também determina que os resíduos não tem um padrão de distribuição normal, rejeita-se a hipótese nula.

A terceira bateria de testes, o teste Jarque-Bera compõe ambos os quesitos de observação, ponderando sobremaneira o aspecto do alongamento da distribuição (curtose). O fato é que os testes individuais dos componentes garantem rejeição da normalidade para os juros reais e a dívida pública. O teste conjunto também não permite assumir normalidade dos resíduos.

A normalidade para o VEC apenas dá mais segurança para os testes de hipóteses dos coeficientes, mas não é fundamental. Para correção da normalidade seria possível incluir variáveis dummies para capturar efeitos de outliers. Entretanto, essa abordagem não foi considerada adequada para esse trabalho. Ainda que ciente do problema com a normalidade dos resíduos do VEC, prosseguiu-se a análise.

Orthogonalizati	/107 2007M11		nal	
Component	Skewness	Chi-sq	df	Prob.
1 2 3 4	-0.151812 0.717568 0.276396 -0.181802	0.380275 8.495909 1.260514 0.545357	1 1 1 1	0.5375 0.0036 0.2616 0.4602
Joint		10.68206	4	0.0304
Component	Kurtosis	Chi-sq	df	Prob.
1 2 3 4	6.519745 6.433797 3.731991 2.695939	51.10301 48.63773 2.210218 0.381368	1 1 1 1	0.0000 0.0000 0.1371 0.5369
Joint		102.3323	4	0.0000
Component	Jarque-Bera	df	Prob.	
1 2 3 4	51.48328 57.13364 3.470732 0.926725	2 2 2 2	0.0000 0.0000 0.1763 0.6292	
Joint	113.0144	8	0.0000	
Joint	113.0144	8	0.0000	:

Figura 100: Cointegração: Johansen: teste de normalidade dos resíduos do VEC, por ortogonalização de Cholesky

E Exogeneidade e causalidade

O teste de exogeneidade fraca pode ser aplicado para a modelagem VEC. A exogeneidade forte implica no atendimento simultâneo das condições de exogeneidade fraca e causalidade de Granger.

E.1 Restrições sobre o vetor de correção de erro

Uma variável que é fracamente exógena em relação aos parâmetros de interesse dispensa a estimação do modelo marginal. Na abordagem para o vetor de correção de erros, uma variável fracamente exógena em relação ao vetor de cointegração é definida como aquela que não responde aos desequilíbrios de curto prazo.

Os testes para a exogeneidade de cada variável do VEC portanto são restrições aplicadas ao vetor de correção de erro. Como o vetor de cointegração não pode estar na equação marginal de cada variável, cada elemento de correção de erro deve ser estatisticamente nulo. Assim, testa-se $\alpha_{(k,r)}$, onde k é a ordem da variável no vetor de cointegração e r é a r-ésima relação de cointegração estimada.

No caso acima, temos apenas um vetor de cointegração, r=1. A ordem das variáveis no vetor é aquela tradicionalmente explorada no trabalho: juros reais, dívida, necessidade de financiamento e inflação. O teste de hipótese prevê como hipótese nula $H_0: \alpha_{(k,r)}=0$, ou seja a variável é fracamente exógena.

Os testes devem ser confrontados contra os valores críticos de uma distribuição χ^2 . A decisão é $LR > \chi^2_{crit}$, rejeita-se H_0 .

A figura 101 mostra o teste para a variável juros reais. Não é possível rejeitar a hipótese de que os juros são fracamente exógenos, mesmo a 10% de significância.

A figura 102 mostra o teste para a variável dívida líquida do setor público. É possível rejeitar a hipótese de que a variável é exógena apenas a 5%, mas não a 1% de significância. Assume-se que a dívida líquida do setor público não é exógena em relação ao vetor de cointegração. Assim, a dívida responde aos desequilíbrios de curto prazo.

A figura 103 apresenta o teste para a variável LNFSP. Rejeita-se a hipótese de que a necessidade de financiamento do setor público seja exógena a 1%. A variável responde

aos desequilíbrios de curto prazo.

A figura 104 mostra o teste para a variável inflação. Não é possível rejeitar a hipótese de que a inflação é fracamente exógena, a 5% de significância. Mas com 10% é possível a rejeição. O nível de confiança não é aceitável e toma-se o LIPCA como exógeno.

Vector Error Correction Estimates

Vector Error Correction Estimates Time: 12:13 Sample (adjusted): 1999M09 2007M11 Included observations: 99 after adjustments Standard errors in () & t-statistics in [] Cointegration Restrictions: Convergence achieved after 18 iterations. Not all cointegrating vectors are identified LR test for binding restrictions (rank = 1): Chi-square(1) Probability Cointegrating Eq: CointEq1 LJUROREAL(-1) 0.386013 LDLSP(-1) -4.445834 LNFSP(-1) 34.79845 LIPCA(-1) 0.035776 C 14.81498 Error Correction: D(LJUBOREA D(LDLSP) D(LNESP) D(LIPCA) 0.006520 0.000000 -0.004530 -0.024691 CointEq1 (0.00000)(0.00435)[NA] [-2.45406] [-4.19917] [1.49916] D(LJUROREAL(-1)) 0.483338 0.025322 0.096463 0.183053 (0.10927) [4.42340] (0.03398) (0.11005) (0.10742)[0.89797] D(LDLSP(-1)) -0.048190 0.279894 -0.885091 -0.758033 (0.65188) (0.20269)(0.64088) [-1.38106] (0.65657) [-1.15454] [-0.07392] [1.38086] D(LNFSP(-1)) 0.273434 -0.035652 -0.064120 -0.179062 (0.11685)(0.03633)(0.11488)(0.11769)[-0.98121] [-0.55814] [-1.52143] 0.674267 (0.09478) D(LIPCA(-1)) 0.060618 0.002895 -0.012407 (0.09411) [0.64414] (0.02926)(0.09252)[0.09892] [-0.13410] [7.11381] R-squared Adj. R-squared 0.237916 0.205487 0.171794 0.608382 0.472811 0.591717 0.136551 0.337784 Sum sq. resids 0.032657 0.326474 0.342653 S.E. equation 0.059945 0.018639 0.058933 0.060376 F-statistic 7.336501 4.874591 36.50739 21.07605 Log likelihood 256.3567 142.3941 139.9998 Akaike AIC -2.741581 -5.077914 -2.727269 -2.775639 -2.610515 -0.006865 -4.946847 -0.000896 -2.644572 -0.000839 -2.596203 -0.003052 Mean dependent 0.067252 0.020059 0.092232 0.081439

Figura 101: Exogeneidade fraca para variável LJUROREAL

No resumo, foram descartadas as hipóteses de que LDLSP e LNFSP são exógenos. As variáveis dívida e necessidade de financiamento respondem no curto prazo e realizam o ajuste para a equação. As variáveis LJUROREAL e LIPCA não permitiram rejeitar a hipótese de exogeneidade fraca. Assim, podem ser tratadas como fracamente exógenas

Vector Error Correction Estimates

Vector Error Correction B Date: 01/24/08 Time: 1: Sample (adjusted): 1999 Included observations: 9: Standard errors in () & t-	2:13 M09 2007M11 9 after adjustment	s		
Cointegration Restrictions A(1,1)=0 Convergence achieved at Not all cointegrating vecto LR test for binding restric Chi-square(1) Probability	iter 18 iterations. ors are identified			
Cointegrating Eq:	CointEq1			
LJUROREAL(-1)	0.386013			
LDLSP(-1)	-4.445834			
LNFSP(-1)	34.79845			
LIPCA(-1)	0.035776			
С	14.81498			
Error Correction:	D(LJUROREA	D(LDLSP)	D(LNFSP)	D(LIPCA)
CointEq1	0.000000 (0.0000) [NA]	-0.004530 (0.00185) [-2.45406]	-0.024691 (0.00588) [-4.19917]	0.006520 (0.00435) [1.49916]
D(LJURORE A L(-1))	0.483338 (0.10927) [4.42340]	0.025322 (0.03398) [0.74530]	0.096463 (0.10742) [0.89797]	0.183053 (0.11005) [1.66331]
D(LDLSP(-1))	-0.048190 (0.65188) [-0.07392]	0.279894 (0.20269) [1.38086]	-0.885091 (0.64088) [-1.38106]	-0.758033 (0.65657) [-1.15454]
D(LNFSP(-1))	0.273434 (0.11685) [2.33996]	-0.035652 (0.03633) [-0.98121]	-0.064120 (0.11488) [-0.55814]	-0.179062 (0.11769) [-1.52143]
D(LIPCA(-1))	0.060618 (0.09411) [0.64414]	0.002895 (0.02926) [0.09892]	-0.012407 (0.09252) [-0.13410]	0.674267 (0.09478) [7.11381]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent	0.237916 0.205487 0.337784 0.059945 7.336501 140.7083 -2.741581 -2.610515 -0.006865	0.171794 0.136551 0.032657 0.018639 4.874591 256.3567 -5.077914 -4.946847 -0.000896	0.608382 0.591717 0.326474 0.058933 36.50739 142.3941 -2.775639 -2.644572 -0.000839	0.472811 0.450378 0.342653 0.060376 21.07605 139.9998 -2.727269 -2.596203 -0.003052
Mean dependent S.D. dependent	-0.006865 0.067252	-0.000896 0.020059	-0.000839 0.092232	-0.00305 0.08143

Figura 102: Exogeneidade fraca para variável LDLSP

Vector Error Correction Estimates

Vector Error Correction B Date: 01/24/08 Time: 1: Sample (adjusted): 1999 Included observations: 9: Standard errors in () & t-	2:13 M09 2007M11 9 after adjustment	s		
Cointegration Restrictions A(1,1)=0 Convergence achieved at Not all cointegrating vecto LR test for binding restric Chi-square(1) Probability	iter 18 iterations. ors are identified			
Cointegrating Eq:	CointEq1			
LJUROREAL(-1)	0.386013			
LDLSP(-1)	-4.445834			
LNFSP(-1)	34.79845			
LIPCA(-1)	0.035776			
С	14.81498			
Error Correction:	D(LJUROREA	D(LDLSP)	D(LNFSP)	D(LIPCA)
CointEq1	0.000000 (0.0000) [NA]	-0.004530 (0.00185) [-2.45406]	-0.024691 (0.00588) [-4.19917]	0.006520 (0.00435) [1.49916]
D(LJURORE A L(-1))	0.483338 (0.10927) [4.42340]	0.025322 (0.03398) [0.74530]	0.096463 (0.10742) [0.89797]	0.183053 (0.11005) [1.66331]
D(LDLSP(-1))	-0.048190 (0.65188) [-0.07392]	0.279894 (0.20269) [1.38086]	-0.885091 (0.64088) [-1.38106]	-0.758033 (0.65657) [-1.15454]
D(LNFSP(-1))	0.273434 (0.11685) [2.33996]	-0.035652 (0.03633) [-0.98121]	-0.064120 (0.11488) [-0.55814]	-0.179062 (0.11769) [-1.52143]
D(LIPCA(-1))	0.060618 (0.09411) [0.64414]	0.002895 (0.02926) [0.09892]	-0.012407 (0.09252) [-0.13410]	0.674267 (0.09478) [7.11381]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent	0.237916 0.205487 0.337784 0.059945 7.336501 140.7083 -2.741581 -2.610515 -0.006865	0.171794 0.136551 0.032657 0.018639 4.874591 256.3567 -5.077914 -4.946847 -0.000896	0.608382 0.591717 0.326474 0.058933 36.50739 142.3941 -2.775639 -2.644572 -0.000839	0.472811 0.450378 0.342653 0.060376 21.07605 139.9998 -2.727269 -2.596203 -0.003052
Mean dependent S.D. dependent	-0.006865 0.067252	-0.000896 0.020059	-0.000839 0.092232	-0.00305 0.08143

Figura 103: Exogeneidade fraca para variável LNFSP

Vector Error Correction Estimates

Vector Error Correction E Date: 01/24/08 Time: 1: Sample (adjusted): 1999 Induded observations: 9: Standard errors in () & t-	2:13 M09 2007M11 9 after adjustment	s		
Cointegration Restrictions A(1,1)=0 Convergence achieved at Not all cointegrating vector. LR test for binding restrict Chi-square(1) Probability	iter 18 iterations. ors are identified			
Cointegrating Eq:	CaintEq1			
LJUROREAL(-1)	0.386013			
LDLSP(-1)	-4.445834			
LNFSP(-1)	34.79845			
LIPCA(-1)	0.035776			
С	14.81498			
Error Correction:	D(LJUROREA	D(LDLSP)	D(LNFSP)	D(LIPCA)
CointEq1	0.000000 (0.00000) [NA]	-0.004530 (0.00185) [-2.45406]	-0.024691 (0.00588) [-4.19917]	0.006520 (0.00435) [1.49916]
D(LJUROREAL(-1))	0.483338 (0.10927) [4.42340]	0.025322 (0.03398) [0.74530]	0.096463 (0.10742) [0.89797]	0.183053 (0.11005) [1.66331]
D(LDLSP(-1))	-0.048190 (0.65188) [-0.07392]	0.279894 (0.20269) [1.38086]	-0.885091 (0.64088) [-1.38106]	-0.758033 (0.65657) [-1.15454]
D(LNFSP(-1))	0.273434 (0.11685) [2.33996]	-0.035652 (0.03633) [-0.98121]	-0.064120 (0.11488) [-0.55814]	-0.179062 (0.11769) [-1.52143]
D(LIPCA(-1))	0.060618 (0.09411) [0.64414]	0.002895 (0.02926) [0.09892]	-0.012407 (0.09252) [-0.13410]	0.674267 (0.09478) [7.11381]
R-squared Adi, R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.237916 0.205487 0.337784 0.059945 7.336501 140.7083 -2.741581 -2.610515 -0.006865 0.067252	0.171794 0.136551 0.032657 0.018639 4.874591 256.3567 -5.077914 -4.946847 -0.000896 0.020059	0.608382 0.591717 0.326474 0.058933 36.50739 142.3941 -2.775639 -2.644572 -0.000839 0.092232	0.472811 0.450378 0.342653 0.060376 21.07605 139.9998 -2.727269 -2.596203 -0.003052 0.081439

Figura 104: Exogeneidade fraca para variável LIPCA

em relação ao vetor de cointegração.

Pelos testes de exogeneidade fraca, pode-se determinar, utilizando como critério o valor da estatística χ^2 , uma ordenação entre as variáveis, da menos endógena para a mais endógena, a citar: LJUROREAL, LIPCA, LDLSP, LNFSP.

E.2 Causalidade de Granger

Estudou-se a causalidade no sentido de Granger para as variáveis endógenas do modelo de correção de erro. O teste de causalidade de Granger entre blocos de variáveis do modelo VEC é baseado na comparação de modelos restritos e irrestritos.

No caso do modelo VEC, as variáveis defasadas que são testadas pelas exclusões são apenas aquelas em primeira diferença. Eventualmente, os termos defasados presentes na equação de cointegração não são testados.

Como há cointegração, o estudo da causalidade é diferente do procedimento tradicional. Se uma variável não é fracamente exógena, essa variável já é Granger-causada pelo bloco de variáveis do vetor de cointegração. Sabe-se que a exogeneidade fraca foi rejeitada para as variáveis LDLSP e LNFSP. Então essas variáveis são Granger-causadas no vetor de cointegração.

Já para as variáveis LJUROREAL e LIPCA, que não foram definidas como endógenas, é possível verificar a causalidade pelos testes Wald para bloco de variáveis. O teste tem a seguinte estrutura:

```
\left\{ \begin{array}{ll} H_0 & : & \mbox{y n\~{a}o Granger-causa z} \\ H_A & : & \mbox{y Granger-causa z} \end{array} \right.
```

A estatística é obtida por $LR=2[\ln L_{ir}-\ln L_r]$ e deve ser testada contra uma distribuição χ^2 . Se $LR>\chi^2_{crit},\,y$ Granger-causa z.

Foi testada a causalidade de Granger para o bloco de variáveis dentro do VEC, conforme mostra figura 105.

Para a variação da taxa de juros reais, rejeita-se a hipótese de não causalidade da variação da necessidade de financiamento do setor público. No escopo total, rejeita-se a hipótese de que a variação da taxa de juros não é Granger-causada pelas demais variáveis

VEC Granger Causality/Block Exogeneity Wald Tests Date: 01/24/08 Time: 12:04 Sample: 1999M07 2007M11 Included observations: 99			
Dependent varia	.ble: D(LJUROR	IEAL)	
Excluded	Chi-sq	df	Prob.
D(LDLSP) D(LNFSP) D(LIPCA)	0.063387 6.228649 0.661289	1 1 1	0.8012 0.0126 0.4161
All	9.058616	3	0.0285
Dependent varia	.ble: D(LDLSP)		
Excluded	Chi-sq	df	Prob.
D(LJUROREA D(LNFSP) D(LIPCA)	0.707916 1.069815 0.013949	1 1 1	0.4001 0.3010 0.9060
All	2.388743	3	0.4957
Dependent varia	ble: D(LNFSP)		
Excluded	Chi-sq	df	Prob.
D(LJUROREA D(LDLSP) D(LIPCA)	1.004729 2.206873 0.031768	1 1 1	0.3162 0.1374 0.8585
All	3.663784	3	0.3001
Dependent variable: D(LIPCA)			
Excluded	Chi-sq	df	Prob.
D(LJUROREA D(LDLSP) D(LNFSP)	2.291144 2.233749 2.715303	1 1 1	0.1301 0.1350 0.0994
All	13.75412	3	0.0033

Figura 105: Causalidade de Granger para as variáveis do VEC

do VEC. Logo, não é possível assumir que a variação das taxas de juros é exógena.

A variação da inflação não rejeita a não causalidade de Granger para as variáveis excluídas individualmente, mas no teste conjunto, rejeita a não causalidade de Granger em relação ao vetor de cointegração. Portanto, a variação do LIPCA é Granger-causada pelas demais variações de variáveis do modelo.

Em síntese, para as variáveis em nível, dívida líquida do setor público e necessidade de financiamento do setor público são variáveis endógenas em relação ao vetor de cointegração.

Juros reais e inflação são variáveis fracamente exógenas. Mas o teste de causalidade de Granger para essas variáveis indicou que não há exogeneidade forte e suas variações são Granger-causadas pelas variações das variáveis do vetor de cointegração.

F Funções de resposta ao impulso

À parte o modelo ajustado, pode-se analisar qual o comportamento individual de variáveis endógenas quando se efetua um choque aleatório de intensidade padrão para cada variável. O método de separação dos efeitos individuais sobre cada variável endógena de um choque aleatório sobre o conjunto VAR é possível pela decomposição de Cholesky. Essa decomposição todavia exige a ordenação ad-hoc das séries em questão pelo seu grau de endogeneidade, da menos endógena para a mais endógena. Segundo o critério apresentado nos testes de exogeneidade fraca, toma-se LJUROREAL, LIPCA, LDLSP, LNFSP como ordenação para aplicar Cholesky. Os resultados estão postos na figura 106 para um período de doze meses.

Não estão disponíveis os desvios-padrão para as respostas dentro de um VEC.

Figura 106: Funções de resposta ao impulso: ordenação LJUROREAL, LIPCA, LDLSP, LNFSP

Analisa-se separadamente os efeitos dos choques em cada variável para vinte e quatro meses. A figura 107 mostra os efeitos de um choque nas taxas reais de juros. Os choques nas variáveis fiscais, dívida líquida do setor público e necessidade de financiamento do setor público são mostradas nas figuras 108 e 109, respectivamente. Já a figura 110 mostra os efeitos de um choque inflacionário.

Figura 107: Funções de resposta ao impulso: choque nos juros reais

As variáveis LJUROREAL e LIPCA são menos endógenas no vetor de cointegração. É especialmente relevante verificar como choques exógenos nessas variáveis são transmitidas para as demais variáveis.

Um choque de juros reais determina um efeito imediato de aumento na relação dívida pública/PIB. Os juros permanecem elevados e mudam de patamar. A relação dívida/PIB reduz gradativamente depois do salto inicial, até estabilizar em um patamar superior ao inicial. Os desvios-padrão não estão disponíveis. Mas como juros e dívida estão na mesma variável, a ordem de grandeza indica que a variação sobre a dívida é pequena. O choque sobre a necessidade de financiamento do setor público inicialmente gera uma afetação positiva, para cair em seguida estabilizado em um patamar inferior. Dada a

Figura 108: Funções de resposta ao impulso: choque na dívida líquida do setor público

Figura 109: Funções de resposta ao impulso: choque na necessidade de financiamento do setor público

Figura 110: Funções de resposta ao impulso: choque na inflação

transformação na variável NFSP, a ordem de grandeza permite especular que esse efeito não é elevado. Entretato, significativo e relevante é o efeito sobre a inflação, com o aumento dos juros reais determinando uma depressão inicial sobre o nível de preços. No período seguinte, há uma acomodação da inflação, mas o sinal não muda.

Um choque na inflação determinará uma resposta imediata de aumento de juros, todavia a proporção não é unitária, o que é razoável. As trajetórias de inflação e juros são similares, indicando resposta consistente da taxa de juros para controlar a inflação. As variáveis fiscais são endógenas. Um aumento da inflação reduz a dívida pública, mas esse efeito é acomodado ao longo do tempo. A necessidade de financiamento do setor público aumenta instantaneamente pelo choque inflacionário, mas tende perder efeito ao longo do tempo. Em suma, dado um choque inflacionário, é a taxa de juros a principal resposta, atuando de forma ativa até a estabilização do índice de preços.

Agora os choques fiscais. Um aumento da necessidades de financiamento do setor público determina uma queda nas taxas reais de juros. A inflação aumenta ao longo do tempo. A queda nas taxas reais de juros significa que houve um aumento da taxa nominal inferior ao aumento da inflação. De qualquer forma, os juros nominais respondem positivamente ao longo do tempo.

Um choque na dívida líquida do setor público define uma oscilação breve de aumento na necessidade de financiamento do setor público. A inflação aumenta ao longo do tempo, enquanto os juros reais caem, quase na mesma proporção, e isso indica relativa estabilidade da taxa nominal, com ligeira elevação.

Lista de Figuras

1	Variáveis de interesse JUROREAL, DLSP, NFSP, IPCA
2	JUROREAL: estatísticas descritivas
3	DLSP: estatísticas descritivas
4	NFSP: estatísticas descritivas
5	IPCA: estatísticas descritivas
6	Variáveis JUROREAL, DLSP, NFSP, IPCA em primeira diferença IV
7	Variáveis LJUROREAL, LDLSP, LNFSP, LIPCA V
8	Variáveis LJUROREAL, LDLSP, LNFSP, LIPCA em primeira diferença . $$
9	Teste de Dickey e Pantula, etapa 1, variável LJUROREAL, modelo com intercepto e tendência
10	Teste de Dickey e Pantula, etapa 1, variável LDLSP, modelo com intercepto e tendência
11	Teste de Dickey e Pantula, etapa 1, variável LNFSP, modelo com intercepto e tendência
12	Teste de Dickey e Pantula, etapa 1, variável LIPCA, modelo com intercepto e tendência
13	Teste de Dickey e Pantula, etapa 1, variável LJUROREAL, modelo com intercepto
14	Teste de Dickey e Pantula, etapa 1, variável LDLSP, modelo com interceptoXIV
15	Teste de Dickey e Pantula, etapa 1, variável LNFSP, modelo com interceptoXV
16	Teste de Dickey e Pantula, etapa 1, variável LIPCA, modelo com interceptoXVI
17	Teste de Dickey e Pantula, etapa 1, variável LJUROREAL, modelo básico XVII
18	Teste de Dickey e Pantula, etapa 1, variável LDLSP, modelo básico XVIII

19	Teste de Dickey e Pantula, etapa 1, variável LNFSP, modelo básico	XVIII
20	Teste de Dickey e Pantula, etapa 1, variável LIPCA, modelo básico	XIX
21	Teste de Dickey e Pantula, etapa 2, variável LJUROREAL, modelo com intercepto e tendência	XXII
22	Teste de Dickey e Pantula, etapa 2, variável LDLSP, modelo com intercepto e tendência	XXIII
23	Teste de Dickey e Pantula, etapa 2, variável LNFSP, modelo com intercepto e tendência	XXIV
24	Teste de Dickey e Pantula, etapa 2, variável LIPCA, modelo com intercepto e tendência	XXV
25	Teste de Dickey e Pantula, etapa 2, variável LJUROREAL, modelo com intercepto	XXVII
26	Teste de Dickey e Pantula, etapa 2, variável LDLSP, modelo com intercepto	OXXVIII
27	Teste de Dickey e Pantula, etapa 2, variável LNFSP, modelo com intercepto	XXXX
28	Teste de Dickey e Pantula, etapa 2, variável LIPCA, modelo com intercepto	XXX
29	Teste de Dickey e Pantula, etapa 2, variável LJUROREAL, modelo básico	XXXII
30	Teste de Dickey e Pantula, etapa 2, variável LDLSP, modelo básico	XXXIII
31	Teste de Dickey e Pantula, etapa 2, variável LNFSP, modelo básico	XXXIII
32	Teste de Dickey e Pantula, etapa 2, variável LIPCA, modelo básico	XXXIV
33	Teste de Dickey e Pantula, etapa 3, variável LJUROREAL, modelo com intercepto e tendência	XXXVII
34	Teste de Dickey e Pantula, etapa 3, variável LDLSP, modelo com intercepto e tendência	XXXVIII
35	Teste de Dickey e Pantula, etapa 3, variável LNFSP, modelo com inter- cento e tendência	XXXIX

36	Teste de Dickey e Pantula, etapa 3, variável LIPCA, modelo com intercepto e tendência	XL
37	Teste de Dickey e Pantula, etapa 3, variável LJUROREAL, modelo com intercepto	XLII
38	Teste de Dickey e Pantula, etapa 3, variável LDLSP, modelo com intercepto	oXLIII
39	Teste de Dickey e Pantula, etapa 3, variável LNFSP, modelo com intercepto	OXLIV
40	Teste de Dickey e Pantula, etapa 3, variável LIPCA, modelo com intercepto	OXLV
41	Teste de Dickey e Pantula, etapa 3, variável LJUROREAL, modelo básico	XLVI
42	Teste de Dickey e Pantula, etapa 3, variável LDLSP, modelo básico	XLVII
43	Teste de Dickey e Pantula, etapa 3, variável LNFSP, modelo básico	XLVII
44	Teste de Dickey e Pantula, etapa 3, variável LIPCA, modelo básico	XLVIII
45	Teste Augmented Dickey-Fuller, variável LJUROREAL, modelo com intercepto e tendência	LII
46	Teste Augmented Dickey-Fuller, variável LJUROREAL, modelo com intercepto	LIII
47	$\label{thm:continuous} \mbox{Teste Augmented Dickey-Fuller, variável LJUROREAL, modelo básico} \ . \ .$	LIV
48	Teste Augmented Dickey-Fuller, variável LDLSP, modelo com intercepto e tendência	LV
49	$\label{total composition} \mbox{Teste Augmented Dickey-Fuller, variável LDLSP, modelo com intercepto} \ .$	LVI
50	Teste Augmented Dickey-Fuller, variável LDLSP, modelo básico	LVII
51	Teste Augmented Dickey-Fuller, variável LNFSP, modelo com intercepto e tendência	LIX
52	$\label{thm:continuous} \mbox{Teste Augmented Dickey-Fuller, variável LNFSP, modelo com intercepto} \ .$	LX
53	Teste Augmented Dickey-Fuller variável LNESP modelo hásico	LXI

54	Teste Augmented Dickey-Fuller, variável LIPCA, modelo com intercepto e tendência
55	Teste Augmented Dickey-Fuller, variável LIPCA, modelo com intercepto . LXIII
56	Teste Augmented Dickey-Fuller, variável LIPCA, modelo básico LXIV
57	Teste de Phillips-Perron, variável LJUROREAL, modelo com intercepto e tendência
58	Teste de Phillips-Perron, variável LJUROREAL, modelo com intercepto . LXVII
59	Teste de Phillips-Perron, variável LJUROREAL, modelo básico LXVII
60	Teste de Phillips-Perron, variável LDLSP, modelo com intercepto e tendênciaLXVIII
61	Teste de Phillips-Perron, variável LDLSP, modelo com intercepto LXIX
62	Teste de Phillips-Perron, variável LDLSP, modelo básico LXIX
63	Teste de Phillips-Perron, variável LNFSP, modelo com intercepto e tendênciaLXXI
64	Teste de Phillips-Perron, variável LNFSP, modelo com intercepto LXXI
65	Teste de Phillips-Perron, variável LNFSP, modelo básico LXXII
66	Teste de Phillips-Perron, variável LIPCA, modelo com intercepto e tendênciaLXXII
67	Teste de Phillips-Perron, variável LIPCA, modelo com intercepto LXXIII
68	Teste de Phillips-Perron, variável LIPCA, modelo básico LXXIII
69	Teste de Dickey-Fuller GLS, variável LJUROREAL, modelo com intercepto e tendência
70	Teste de Dickey-Fuller GLS, variável LJUROREAL, modelo com interceptoLXXVII
71	Teste de Dickey-Fuller GLS, variável LDLSP, modelo com intercepto e tendência
72	Teste de Dickey-Fuller GLS, variável LDLSP, modelo com intercepto LXXIX

73	Teste de Dickey-Fuller GLS, variável LNFSP, modelo com intercepto e tendência
74	Teste de Dickey-Fuller GLS, variável LNFSP, modelo com intercepto LXXX
75	Teste de Dickey-Fuller GLS, variável LIPCA, modelo com intercepto e tendência
76	Teste de Dickey-Fuller GLS, variável LIPCA, modelo com intercepto LXXXI
77	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LJUROREAL, modelo com intercepto e tendência
78	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LJUROREAL, modelo com intercepto
79	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LDLSP, modelo com intercepto e tendência
80	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LDLSP, modelo com intercepto
81	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LNFSP, modelo com intercepto e tendência
82	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LNFSP, modelo com intercepto
83	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LIPCA, modelo com intercepto e tendência
84	Teste de Kwiatkowski-Phillips-Schmidt-Shin, variável LIPCA, modelo com intercepto
85	Cointegração: Procedimento de Engle-Granger: LJUROREAL contra LDLSPXC
86	Cointegração: Procedimento de Engle-Granger: teste dos resíduos XCI
87	Cointegração: Procedimento de Engle-Granger: correlograma dos resíduos XCII
88	Cointegração: Johansen: ordem do VAR

89	Cointegração: Johansen: escolha do modelo VEC	XCV
90	Cointegração: Johansen: VEC para modelo 2	XCVII
91	Cointegração: Johansen: relação de longo prazo	XCVIII
92	Cointegração: Johansen: ajustamento de curto prazo	XCIX
93	Cointegração: Johansen: gráfico do vetor de cointegração que explica a relação de longo prazo	С
94	Cointegração: Johansen: resíduos do VEC	CI
95	Cointegração: Johansen: testes Wald para exclusão de lags	CI
96	Cointegração: Johansen: raízes do polinômio para VAR em primeira diferença	CII
97	Cointegração: Johansen: correlograma dos resíduos do VEC	CIII
98	Cointegração: Johansen: teste PortManteau de autocorrelação dos resíduos do VEC	CIV
99	Cointegração: Johansen: teste LM de autocorrelação dos resíduos do VEC	CV
100	Cointegração: Johansen: teste de normalidade dos resíduos do VEC, por ortogonalização de Cholesky	CVI
101	Exogeneidade fraca para variável LJUROREAL	CVIII
102	Exogeneidade fraca para variável LDLSP	CIX
103	Exogeneidade fraca para variável LNFSP	CX
104	Exogeneidade fraca para variável LIPCA	CXI
105	Causalidade de Granger para as variáveis do VEC	CXIII
106	Funções de resposta ao impulso: ordenação LJUROREAL, LIPCA, LDLSP, LNFSP	CXV
107	Funções de resposta ao impulso: choque nos juros reais	CXVI

108	Funções de resposta ao impulso: choque na dívida líquida do setor público	CXVII
109	Funções de resposta ao impulso: choque na necessidade de financiamento do setor público	CXVIII
110	Funcões de resposta ao impulso: choque na inflação	CXIX