Алгоритмы и структуры данных Алгоритмы на графах

д.т.н., проф. Трифонов Петр Владимирович

Содержание лекции

- Основные понятия
- Представление графов в ЭВМ
- Задача о путях на графе
- Упорядоченные множества
- Минимальное остовное дерево
 - Операции над непересекающимися множествами
- Фибоначчиева куча

Основные понятия І

Неориентированные графы	Ориентированные графы
H еориентированный гра ϕ задается парой $G=$	O риентированный гра ϕ задается парой $G=$
(V,E), где V — конечное множество вершин,	(V,E), где V — конечное множество вершин,
и E — множество неупорядоченных пар из V ,	а $E\subset V^2$ — множество дуг графа.
называемое множеством ребер графа. Будем	
считать, что все элементы E содержат по две	
различные вершины	
Если $e=\{u,v\}\in E$, то говорят, что ребро e	Если $e = (u,v) \in \mathit{E}$, то говорят, что дуга e
соединяет вершины u и v .	ведет из вершины u в вершину v .
Вершины u и v , соединенные некоторым реб-	Вершины u и v , такие что из u в v ведет неко-
ром, называют смежными.	торая дуга, называют смежными, причем $\it u$ на-
	зывают началом дуги, а v — ее концом. Если
	начало и конец дуги совпадают, то дугу назы-
	вают петлей.

Основные понятия II

Ребро называют инцидентным вершине \emph{v} , если	Дугу (u,v) называют заходящей в вершину v и
она является одним из его концов.	исходящей из <i>и</i> . Дугу, заходящую или исходя-
	щую из некоторой вершины, называют инци-
	дентной ей.
Степенью вершины $\deg v$ называют число ин-	Полустепенью захода вершины называют чис-
цидентных ей ребер.	ло заходящих в нее дуг. Полустепенью исхода
	вершины v называют число исходящих из нее
	дуг. Степенью вершины называют сумму сте-
	пеней захода и исхода.
Множество $\Gamma(v) = \{u \{u,v\} \in E\}$ называют	Для вершины v множество $\Gamma(v) = \{x \in V\}$
множеством вершин, смежных с <i>v</i>	$V (v,x)\in E\}$ называют множеством ее преем-
	ников, а множество $\Gamma^{-1}(v)=\{x\in V (x,v)\in$
	Е} — множеством предшественников.

Основные понятия III

Цепь в неориентированном графе — последовательность вершин v_0, v_1, \ldots, v_n , такая что $\{v_i, v_{i+1}\} \in E$ для всех i

Говорят, что вершина v достижима из вершины u, если существует цепь $v_0, \ldots, v_n : v_0 = u, v_n = v$ Таким образом, определено рефлексивное, симметричное и транзитивное отношение достижимости. Простая цепь — цепь, все вершины которой, кроме, возможно, нулевой и последней, попарно различны

Простая (произвольная) цепь ненулевой длины с совпадающими началом и концом, называется циклом (замкнутой цепью).

Путь в ориентированном графе — последовательность вершин v_0, v_1, \dots, v_n , таких что $(v_i, v_{i+1}) \in E$

Говорят, что вершина v достижима из вершины u, если существует путь $v_0, \ldots, v_n : v_0 = u, v_n = u$. Таким образом, определено рефлексивное, транзитивное, но в общем случае не симметричное и не антисимметричное отношение достижимости. Простой путь — путь, все вершины которого, кроме, возможно, нулевой и последней, попарно различны.

Простой (произвольный) путь ненулевой длины, начало и конец которого совпадает, называют контуром (замкнутым путем).

Основные понятия IV

Неориентированный граф, не содержащий цик-
лов, называют ациклическим

Ориентированный граф, не содержащий контуров, называют бесконтурным.

Простые цепи и пути

Теорема

Для любой цепи (пути), соединяющей две вершины неориентированного (ориентированного) графа, существует простая цепь (путь), соединяющая те же вершины.

Доказательство.

Пусть u и v — концы рассматриваемой цепи. Если u=v, то утверждение очевидно, как и в том случае, когда эта цепь простая. Иначе предположим, что вершина w повторяется в цепи несколько раз. Удалим из цепи все элементы между первым и последним вхождением в нее w, включая последнее. Полученная последовательность также является цепью. Будем действовать аналогично, пока она не станет простой. В силу конечности множества вершин этот процесс завершится за конечное число шагов.

Подграфы I

Определение

Неориентированный (ориентированный) граф G'=(V',E') называют подграфом неориентированного (ориентированного) графа G=(V,E), если $V'\subset V,E'\subset E$ и $E'\subset V'\times V'.$

- Если хотя бы одно из этих включений является строгим, подграф называют собственным
- Если V' = V, то подграф называют остовным.
- Неориентированный граф называется *связным*, если любые его вершины связаны цепью. Ориентированный граф называют связным, если для любых двух его вершин u и v вершина u достижима из v или v достижима из u.
- Компонентой связности графа называется максимальный его связный подграф

Подграфы II

- Ориентированный граф называют сильно связным, если любые две его вершины достижимы друг из друга
- Бикомпонентой ориентированного графа называют его максимальный сильно связный подграф
- Неориентированный граф G' = (V', E') называют ассоциированным с ориентированным графом G = (V, E), если V' = V и $E' = \{\{u, v\} | (u, v) \in E\}$
- Ориентированный граф называют слабо связным, если ассоциированный с ним неориентированный граф связный
- Компонентой слабой связности ориентированного графа называется называется его максимальный слабо связный подграф

Матрица инциденций

- Пусть n = |V|, m = |E|
- ullet Неориентированный граф может быть представлен в виде n imes m матрицы

$$A = ||a_{ij}|| : a_{ij} = egin{cases} 1 & ext{если для i-й вершины j-е ребро инцидентно} \ 0 & ext{иначе} \end{cases}$$

• Ориентированный граф может быть представлен в виде матрицы

$$A = ||a_{ij}|| : a_{ij} = egin{cases} 1 & ext{ если для } i ext{-} f imes \ ext{вершины } j ext{-} f imes \ ext{дуга выходящая} \ -1 & ext{ если для } i ext{-} f imes \ ext{вершины } j ext{-} f imes \ ext{дуга заходящая} \ 0 & ext{ иначе} \end{cases}$$

• Определенная таким образом матрица носит название матрицы инциденций

Матрица смежности

- Представление графа в виде матрицы инциденций является крайне неэкономным, т.к. каждый ее столбец содержит ровно два ненулевых элемента
- ullet n imes n матрица смежности вершин $B = ||b_{ij}||$. Для неориентированных графов

$$b_{ij} = egin{cases} 1 & ext{, если вершины } i ext{ и } j ext{ смежные} \ 0 & ext{ иначе.} \end{cases}$$

Для ориентированного графа

$$b_{ij} = egin{cases} 1 & ext{, если из вершины } i ext{ в вершину } j ext{ ведет дуга} \ 0 & ext{ иначе} \end{cases}$$

ullet для неориентированного графа $B=B^T$

Список смежности и матрица достижимости

- Список смежности: для каждой вершины может быть указан список вершин, непосредственно достижимых из нее
- Матрица достижимости: $n \times n$ матрицу $V = ||v_{ij}|| : v_{ij} = 1$ тогда и только тогда, когда j-я вершина достижима из i-ой.

Задачи о путях на графе

- Вычисление матрицы достижимости. Эквивалентна нахождению транзитивного (и рефлексивного) замыкания отношения непосредственной достижимости вершин на графе
- Вычисление наименьших расстояний между всеми парами вершин на графе.
 - Всем дугам графа сопоставлены некоторые веса
 - Расстоянием между двумя вершинами по некоторому пути является сумма весов дуг, входящих в него
 - Минимальным расстоянием между вершинами называется минимальное из расстояний между ними по всем возможным путям.

Задача не всегда имеет решение, как, например, в случае наличия в графе петли с отрицательным весом. Каждое включение этой петли в путь будет приводить к уменьшению его "длины".

Полукольцо

Определение

Полукольцом называется алгебра $\mathcal{S}=(S,+,\cdot,0,1)$, такая, что для произвольных элементов a,b,c множества S выполняются следующие равенства (аксиомы полукольца):

- ② a + b = b + a;
- **3** a + 0 = a;
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c;$
- **5** $a \cdot 1 = 1 \cdot a = a$;
- $(b+c) \cdot a = b \cdot a + c \cdot a;$
- **8** $a \cdot 0 = 0 \cdot a = 0$:

Полукольцо называется идемпотентным, если для любого $a \in S$ выполняется a + a = a

Взвешенный ориентированный граф

Определение

Под взвешенным ориентированным графом понимается пара $W=(G,\phi)$, где G=(V,E) — ориентированный граф, а $\phi:E\to\mathcal{R}$ — весовая функция (или функция разметки), множеством значений которой является некоторое идемпотентное полукольцо $\mathcal{R}=(R,\oplus,\cdot)$, причем $\phi(e)\neq 0$

Взвешенный граф может быть задан матрицей меток дуг

$$A = ||a_{ij}|| : a_{ij} = egin{cases} \phi((i.j)) & ext{если из вершины } i ext{ в вершину } j ext{ ведет дуга} \ 0 \in R & ext{иначе} \end{cases}.$$

Полукольца и графы

- Введем полукольцо $\mathcal{R}_+ = (\mathbb{R}^+ \cup \{+\infty\}, \min, +)$, где $\min(a, b)$ –операция нахождения минимума двух вещественных чисел
 - Умножение (⊙): сложение вещественных чисел
 - Сложение (⊕): операция нахождения минимума
 - $+\infty$ нулевой элемент (нейтральный относительно операции сложения в полукольце). Он же может рассматриваться как нулевой элемент относительно операции умножения в полукольце.
- Булево полукольцо $\mathcal{B} = (\{0,1\},+,\cdot)$, в котором в качестве операции сложения используется операция логического ИЛИ, а умножения логического И.

Матрицы расстояний между узлами и достижимости могут быть найдены из итерации матрицы A, т.е. матрицы $A^* = \sum_{i=0}^{\infty} A^i$, где вычисления производятся, соответственно, в полукольцах \mathcal{R}_{\perp} или \mathcal{B} .

Поиск матриц достижимости и расстояний между узлами

- Метка пути, ведущего из вершины v_i в вершину v_j произведение в полукольце R меток входящих в него дуг в порядке их следования
- Метка пути нулевой длины единица полукольца
- Стоимость прохождения из вершины v_i в вершину v_j сумма в полукольце R меток всех путей, ведущих из вершины v_i в вершину v_j Таких путей может быть бесконечное (но не более чем счетное) множество. Поэтому будем использовать точную верхнюю грань последовательности таких сумм
- При отсутствии путей между двумя вершинами стоимость прохождения между ними равна 0.

Корректность алгоритма

Теорема

Элемент $a_{ij}^{(l)}$ матрицы $A^l, l \geq 0$ равен стоимости прохождения из вершины v_i в вершину v_j по всем путям длины l.

Доказательство.

При I=0 утверждение очевидно, т.к. $A^0=I$. При I=1 утверждение также очевидно. Пусть $a_{ij}^{(I-1)}$ равен стоимости прохождения из вершины i в вершину j путями длины I-1. Тогда

$$a_{ij}^{(l)} = \sum_{k=1}^{n} a_{ik}^{(l-1)} \odot a_{kj}.$$

Утверждение леммы вытекает из того, что все пути длины I получаются присоединением одной дуги в конец путей длины I-1.

Идемпотентные полукольца

- Идемпотентное полукольцо: $\forall x \in \mathcal{R} : x \oplus x = x$.
- ullet отношение порядка \preceq : $x \preceq y \Leftrightarrow x \oplus y = y$
 - В силу идемпотентности сложения это отношение рефлексивно
 - Из $x \leq y$ и $y \leq x$ вытекает, что $x \oplus y = y$ и $y \oplus x = x$, откуда, в силу коммутативности сложения, x = y, т.е. это отношение антисимметрично
 - Из $x \leq y$ и $y \leq z$ вытекает, что $x \oplus y = y$ и $y \oplus z = z$, откуда $x \oplus z = x \oplus (y \oplus z) = (x \oplus y) \oplus z = y \oplus z = z$, т.е. $x \leq z$, что означает транзитивность

Упорядоченные множества

Определение

Элемент x множества A с отношением порядка \preceq называется mинимальным, если $\nexists y \in A : y \preceq x \land y \neq x$. Наименьшим элементом упорядоченного множества называется такой его элемент $x \in A$, что $\forall y \in A : x \preceq y$.

Определение

Пусть (A, \preceq) — упорядоченное множество и $B \subset A$. Элемент $a \in A$ называется верхней (нижней) гранью множества B, если $\forall x \in B : (x \preceq a)$ (или $x \succeq a$). Наименьший (наибольший) элемент множества верхних (нижних) граней является точной верхней (нижней) гранью множества B и обозначается B (inf B).

Определение

Упорядоченное множество (A, \leq) называется *индуктивным*, если оно содержит наименьший элемент и всякая неубывающая последовательность элементов этого множества имеет точную верхнюю грань.

Непрерывные отображения

Определение

Пусть (M_1, \preceq) и (M_2, \sqsubseteq) — индуктивные упорядоченные множества. Отображение $f: M_1 \longrightarrow M_2$ называется непрерывным, если для любой неубывающей последовательности $\alpha_1, \ldots, \alpha_n, \ldots$ элементов множества M_1 образ ее точной верхней грани равен точной верхней грани последовательности образов $f(\alpha_1), \ldots, f(\alpha_n), \ldots$, т.е. $f(\sup \alpha_n) = \sup f(\alpha_n)$.

Определение

Отображение $f:M_1\longrightarrow M_2$ упорядоченных множеств называется монотонным (сохраняющим порядок), если $\forall a,b\in M_1:a\preceq b\Rightarrow f(a)\sqsubseteq f(b)$.

Это определение не следует путать с определением монотонных функций, используемым в матанализе. Функция $f: \mathbb{R} \longrightarrow \mathbb{R}$, монотонная в смысле матанализа, будет являться монотонной в вышеуказанном смысле, только если она является неубывающей.

Свойства непрерывных отображений

Теорема

Всякое непрерывное отображение одного индуктивного упорядоченного множества в другое монотонно.

Доказательство.

Пусть $f: M_1 \longrightarrow M_2$ непрерывно, M_1, M_2 — индуктивные множества. Пусть $a, b \in M_1, a \leq b$. Образуем неубывающую последовательность $\{x_n\}_{n \in \mathbb{N}}, x_1 = a, x_n = b, n \geq 2$. Для нее $\sup x_n = b$. В силу непрерывности $f(b) = f(\sup x_n) = f(\sup \{a, b\}) = \sup \{f(a), f(b)\} \Rightarrow f(a) \sqsubseteq f(b)$.

Примеры

Пример

Функция
$$f = \begin{cases} 0,5x, & 0 \leq x < 0.5 \\ 0,5+0,5x, & 0.5 \leq x \leq 1 \end{cases}$$
 является монотонной, но не непрерывной.

Пример

Пусть $f(x)=x^2$ определена на [-1,1]. Рассмотрим последовательность $x_i=-1/i, i\in\mathbb{N}$. $\sup x_i=0$, но $\sup f(x_i)=1\neq f(\sup x_i)=0$, т.е. отображение не является непрерывным в смысле вышеприведенного определения

Неподвижная точка отображения

Определение

Элемент $a \in A$ называется неподвижной точкой отображения $f: A \longrightarrow A$, если f(a) = a. Элемент a называется наименьшей неподвижной точкой отображения $f: A \longrightarrow A$, если он является наименьшим элементом множества неподвижных точек f.

Теорема о неподвижной точке І

Теорема (Клини-Тарского)

Любое непрерывное отображение f индуктивного упорядоченного множества (M, \preceq) в себя имеет наименьшую неподвижную точку.

Пусть $\mu \in M$ — наименьший элемент множества M. Пусть $f^0(x) = x, f^n(x) = f(f^{n-1}(x)), n > 0$. Рассмотрим последовательность элементов M

$$\{f^n(\mu)\}_{n\geq 0} = \{\mu, f(\mu), \dots, f^n(\mu), \dots\}.$$
 (1)

Докажем, что эта последовательность неубывающая. Т.к. μ — наименьший элемент, $\mu \leq f(\mu)$. Пусть для некоторого $n f^{n-1}(\mu) \leq f^n(\mu)$. Т.к. f непрерывно, по теореме 11 оно является монотонным, следовательно $f^n(\mu) = f(f^{n-1}(\mu)) \leq f(f^n(\mu)) = f^{n+1}(\mu)$. Таким образом, последовательность (1) является неубывающей. Тогда по определению

Теорема о неподвижной точке II

индуктивного множества она имеет точную верхнюю грань $a=\sup_{n\geq 0}f^n(\mu)$, т.е. $\forall n:f^n(\mu)\preceq a$. Ясно, что a является также верхней гранью для любой подпоследовательности (1), в т.ч. для $n\geq k>0$. Пусть b — какая-то иная верхняя грань такой последовательности с усеченным началом, т.е. $\forall n\geq k: x_n\preceq b$. Т.к. исходная последовательность неубывающая, $x_p\preceq x_k, p=0..k-1$, а следовательно $x_p\preceq x_k\preceq b$. Т.к. $a=\sup_{n\geq 0}f^n(\mu), a\preceq b$, т.е. является точной верхней гранью любой последовательности вида (1) с усеченным началом.

В силу непрерывности f имеем

$$f(a) = f(\sup_{n>0} f^n(\mu)) = \sup_{n>0} f(f^n(\mu)) = \sup_{n>0} f^{n+1}(\mu)$$

Но

$$\sup_{n\geq 0} f^{n+1}(\mu) = \sup\{f^1(\mu), f^2(\mu), \ldots\} = \sup_{n\geq 1} f^n(\mu) = a,$$

Теорема о неподвижной точке III

т.е. а является неподвижной точкой.

Докажем, что найденная вышеописанным способом неподвижная точка является наименьшей. Пусть $\exists y \in M: f(y) = y$. Т.к. $\mu \leq y$, а f, будучи непрерывным, монотонно, то $f(\mu) \leq f(y) = y$, $f^2(\mu) \leq f^2(y) = y$ и т.д., т.е. $\forall n \geq 0: f^n(\mu) \leq y$, т.е. y является верхней гранью последовательности $\{f^n(\mu)\}$. Т.к. a является точной верхней гранью, $a \leq y$, т.е. a— наименьшая неподвижная точка.

Пример

Пусть
$$f(x)=\frac{1}{2}x+\frac{1}{4}:[0,1]\longrightarrow [0,1].$$
 Применяя метод, использованный в доказательстве теоремы, получим $f^0(0)=0, f^1(0)=1/4, f^2(0)=3/8, f^n(0)=\frac{2^n-1}{2^{n+1}} \underset{n \to \infty}{\longrightarrow} 1/2.$

Точная верхняя грань подмножества идемпотентного полукольца

Теорема

Если A — конечное подмножество носителя идемпотентного полукольца, то $\sup A = \sum_{a_i \in A} a_i$, где при суммировании используется операция сложения \oplus из сигнатуры полукольца

Доказательство.

Пусть n=|A| и $a=\sum_{a_i\in A}a_i$. Тогда для произвольного $a_j\in A$ получим $a_j\oplus a=a_j\oplus (a_1\oplus\cdots\oplus a_j\oplus\cdots\oplus a_n)=a_1\oplus\cdots\oplus a_j\oplus a_j\oplus\cdots\oplus a_n=a_1\oplus\cdots\oplus a_j\oplus\cdots\oplus a_n=a_n$ т.е. $a_j\preceq a$, т.е. а является верхней гранью A. Рассмотрим произвольную верхнюю грань b этого множества. Тогда для любого $a_i\in A$ справедливо $a_i\preceq b$, т.е. $a_i\oplus b=b$. Таким образом, $b\oplus a=(b\oplus a_1)\oplus (a_2\oplus\cdots\oplus a_n)=b\oplus a_2\oplus\cdots\oplus a_n=\cdots=b$. Следовательно, $a\preceq b$, т.е. а является точной верхней гранью A

Пример

В полукольце \mathcal{R}^+ точной верхней гранью множества A в смысле отношения \leq является его наименьший элемент в смысле обычного числового порядка.

Замкнутое полукольцо

Определение

Полукольцо $\mathcal{S}=(S,\oplus,\cdot)$ называется *замкнутым*, если:

- оно идемпотентно
- ② любая последовательность его элементов имеет точную верхнюю грань относительно \prec
- **③** Операция умножения сохраняет точные верхние грани последовательностей, т.е. $a \sup X = \sup(aX), (\sup X)a = \sup(Xa)$

Полукольца как индуктивные упорядоченные множества

- Замкнутые полукольца являются индуктивными упорядоченными множествами
 - наименьшим элементом служит нуль полукольца
 - точной верхней гранью произвольной (в частности, неубывающей) последовательности $\{x_n\}_{n\in\mathbb{N}}$ является бесконечная сумма $\sum_{n\in\mathbb{N}} x_n$
 - операция $f_a(x) = ax$ умножения на произвольный фиксированный элемент a непрерывна, т.к. сохраняет точные верхние грани.
 - ullet Для любого a отображение $f_a(x)$ имеет наименьшую неподвижную точку.
- Итерацией элемента x полукольца \mathcal{R} будем называть точную верхнюю грань последовательности всех степеней x, т.е., в силу теоремы 17,

$$x^* = \sum_{i>0} x^i.$$

Решение уравнений в полукольцах

Теорема

Наименьшими решениями уравнений

$$x = ax \oplus b \tag{2}$$

И

$$x = xa \oplus b \tag{3}$$

в замкнутом полукольце являются, соответственно, $x = a^*b$ и $x = ba^*$.

Рассмотрим отображение $f_{a,b}(x)=ax+b$. Поиск решения уравнения (2) сводится к нахождению наименьшей неподвижной точки этого отображения. Воспользуемся методом, приведенным в доказательстве теоремы Клини-Тарского. А именно, будем искать решение как $x=\sup_{n\geq 0}f_{a,b}^n(\mu)$, где $\mu=0$ — наименьший элемент полукольца.

Видно, что $f_{a,b}^0=0, f_{a,b}^1(0)=b, f_{a,b}^2(0)=ab\oplus b=(a\oplus 1)b,\ldots, f_{a,b}^n(0)=(a^{n-1}\oplus\cdots\oplus a^0)b$

Итерация матрицы

итерация матрицы может быть найдена из систем уравнений

$$\xi = A\xi + e_j, j = 1..n,$$

где e_j-j -ый единичный вектор. Их решения имеют вид $\xi_j=A^*e_j$, т.е. ξ_j является j-ым столбцом A^* .

Пример: поиск матрицы достижимости І

Система уравнений в полукольце ${\mathcal B}$ для определения первого столбца матрицы A^* :

$$\begin{cases}
\xi_1 &= \xi_2 \oplus \xi_3 \oplus \xi_4 \oplus 1 \\
\xi_2 &= \xi_2 \oplus \xi_3 \oplus 0 \\
\xi_3 &= \xi_2 \oplus 0 \\
\xi_4 &= \xi_1 \oplus \xi_3 \oplus 0
\end{cases}
\Rightarrow
\begin{cases}
\xi_2 &= \xi_2 \oplus \xi_3 \\
\xi_3 &= \xi_2 \\
\xi_4 &= \xi_2 \oplus \xi_3 \oplus \xi_4 \oplus 1
\end{cases}$$

Пример: поиск матрицы достижимости ІІ

В соответствии с теоремой 19 наименьшее решение уравнения $\xi_2=\xi_2\oplus\xi_3$ может быть получено как $\xi_2=1^*(\xi_3\oplus 0)$. В полукольце $\mathcal B$ итерация любого элемента равна 1, поэтому $\xi_2=\xi_3$. Таким образом, получим

$$\left\{\begin{array}{lcl} \xi_3 & = & \xi_3 \\ \xi_4 & = & \xi_3 \oplus \xi_4 \oplus 1 \end{array}\right.$$

Аналогичным образом находим $\xi_3=0$ и $\xi_4=\xi_4\oplus 1$, $\xi_4=1^*\cdot 1=1$, откуда следует $\xi_1=1$. Таким образом, первый столбец матрицы A^* равен $(1\,0\,0\,1)^T$. Для нахождения второго столбца составим систему уравнений

$$\begin{cases} \xi_1 &=& \xi_2 \oplus \xi_3 \oplus \xi_4 \oplus 0 \\ \xi_2 &=& \xi_2 \oplus \xi_3 \oplus 1 \\ \xi_3 &=& \xi_2 \oplus 0 \\ \xi_4 &=& \xi_1 \oplus \xi_3 \oplus 0 \end{cases}$$

Пример: поиск матрицы достижимости III

Действуя аналогично, получим

$$\begin{cases} \xi_2 &= \xi_2 \oplus \xi_3 \oplus 1 \\ \xi_3 &= \xi_2 \oplus 0 \\ \xi_4 &= \xi_2 \oplus \xi_3 \oplus \xi_4 \oplus 0, \end{cases}$$

откуда $\xi_2=1^*\cdot(\xi_3\oplus 1)=\xi_3\oplus 1$, $\xi_3=1^*\cdot 1=1$, $\xi_4=1$ и $\xi_1=1$. Третий и четвертый столбцы могут быть вычислены аналогично. Окончательно, получим

$$A = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Таким образом, данный граф является связным и имеет две бикомпоненты связности: $\{1,4\}$ и $\{2,3\}$.

Пример: поиск матрицы кратчайших расстояний І

Пусть матрица меток дуг имеет вид $\begin{pmatrix} \infty & 5 & 10 & 1 \\ \infty & 2 & 3 & \infty \\ \infty & 1 & \infty & \infty \\ 3 & \infty & 4 & \infty \end{pmatrix}$. Воспользуемся полукольцом

 \mathcal{R}^+ . Заметим, что нулем этого полукольца является ∞ , а единицей — число 0. Для нахождения первого столбца матрицы A^* решим систему уравнений

$$\begin{cases} \xi_1 &=& 5 \cdot \xi_2 \oplus 10 \cdot \xi_3 \oplus 1 \cdot \xi_4 \oplus 0 \\ \xi_2 &=& 2 \cdot \xi_2 \oplus 3 \cdot \xi_3 \oplus \infty \\ \xi_3 &=& 1 \cdot \xi_2 \oplus \infty \\ \xi_4 &=& 3 \cdot \xi_1 \oplus 4 \cdot \xi_3 \oplus \infty \end{cases}$$

Из первого уравнения в силу определения операции сложения в этом полукольце непосредственно вытекает $\xi_1=0.$ Из второго уравнения получим

Пример: поиск матрицы кратчайших расстояний II

 $\xi_2 = 2^* \cdot (3 \cdot \xi_3 \oplus \infty) = 3 \cdot \xi_3$. Подставляя это выражение в третье уравнение, получим $\xi_3 = 1 \cdot (3 \cdot \xi_3) \oplus \infty = 4 \cdot \xi_3 \oplus \infty$, откуда $\xi_3 = 4^* \cdot \infty = \infty$. Из четвертого уравнения получим $\xi_4 = 3 \cdot 0 \oplus 4 \cdot \infty = 3 \oplus \infty = 3$. Таким образом, первый столбец матрицы A^* имеет вид $(0 \infty \infty 3)^T$. Аналогичным образом могут быть найдены оставшиеся столбцы.

Окончательно, матрица расстояний равна
$$A^* = egin{pmatrix} 0 & 5 & 5 & 1 \ \infty & 0 & 3 & \infty \ \infty & 1 & 0 & \infty \ 3 & 5 & 4 & 0 \end{pmatrix}.$$

Минимальное остовное дерево

- Неориентированный граф G' = (V', E') называют подграфом неориентированного графа G = (V, E), если $V' \subset V, E' \subset E$ и $E' \subset V' \times V'$.
- Если V' = V, то подграф называют остовным.
- Ациклический остовный подграф называют остовным (покрывающим) деревом
- Пусть w(u,v) вес ребра $(u,v) \in E$. Минимальное остовное дерево: $W(G') = \sum_{(u,v) \in E'} w(u,v) \to \min$

Алгоритм построения минимального остовного дерева

- МОД растет путем добавления к нему ребер по одному
- Инвариант: Пусть A множество ребер. Перед каждой итерацией A образует некоторое подмножество ребер некоторого МОД
- На каждом шаге найдем безопасное ребро (u, v), которое можно добавить в A без нарушения инварианта

Algorithm 1: GenericMST(G,w)

- 1 *A* = ∅
- 2 while A не является МОД do
- 3 Найти безопасное для A ребро (u,v) $A=A\cup\{(u,v)\}$
- 4 return A

Разрез графа

 $V:V=S\cup (V\setminus S),S\subset V$

• Разрезом $(S, V \setminus S)$ неориентированного графа (V, E) называется разбиение

- Ребро (u,v) пересекает разрез $(S,V\setminus S)$, если один из концов ребра принадлежит S, а второй $V\setminus S$
- ullet Разрез согласован с множеством A по ребрам, если ни одно ребро из A не пересекает его
- Ребро, пересекающее разрез, является легким, если оно имеет минимальный вес, среди всех ребер пересекающих этот разрез

Условие безопасности ребер I

Теорема

Пусть G = (V, E) — связный неориентированный граф с весовой функцией $w : E \to \mathbb{R}$. Пусть $A \subset E$ — подмножество ребер, входящих в некоторое МОД. Пусть $(S, V \setminus S)$ — разрез, согласованный с A по ребрам, а (u, v) — легкое ребро, пересекающее этот разрез. Тогда (u, v) безопасно для A

Пусть G' = (V, E') — МОД, включающее A. Если $(u, v) \in E'$, теорема доказана. Иначе попытаемся построить другое МОД $G'' = (V, E'') : (u, v) \in E''$. (u, v) образует цикл с ребрами на пути от u к v в E'. На этом пути есть как минимум 1 ребро $(x, y) \in E'$, пересекающее разрез. $(x, y) \notin A$, т.к. разрез согласован с A по ребрам. Т.к. (x, y) — единственный путь от u к v в E', его удаление разбивает G' на два компонента. Добавление (u, v) восстанавливает разбиение, образуя новое остовное дерево с $E'' = (E' \setminus \{(x, y)\}) \cup \{(u, v)\}$.

Условие безопасности ребер II

Т.к.
$$(u,v)$$
 — легкое ребро, пересекающее $(S,V\setminus S)$, и (x,y) также его пересекает, $w(u,v)\leq w(x,y)\Rightarrow w(G'')=w(G)-w(x,y)+w(u,v)\leq w(G')$. Т.к. G' — МОД, $w(G')\leq w(G'')\Rightarrow w(G')=w(G'')\Rightarrow G''$ — МОД $A\subset E',(x,y)\notin A\Rightarrow A\subset E''\Rightarrow A\cup\{(u,v)\}\subset E''$. Т.к. G'' — МОД, (u,v) безопасно для A

Алгоритм построения минимального остовного дерева

- А всегда ациклическое
- (V, A) является лесом
- ullet Число итераций равно |V|-1

Algorithm 2: GenericMST(G=(V,E),w)

- $A = \emptyset$
- 2 while A не является МОД do
- В Найти безопасное для A ребро $(u,v) \in E$ $A = A \cup \{(u,v)\}$
- 4 return A

Следствие

Пусть G=(V,E) — связный неориентированный граф с весовой функцией $w:E\to\mathbb{R}$. Пусть $A\subset E$ входит в МОД и пусть $C=(V_C,E_C)$ — связный компонент в лесу $G_A=(V,A)$. Если (u,v) — легкое ребро, соединяющее C с некоторым другим компонентом G_A , то ребро (u,v) безопасно для A.

Доказательство.

Разрез $(V_C, V \setminus V_C)$ согласован с A, (u, v) — легкое ребро этого разреза \Rightarrow оно безопасно

Операции над непересекающимися множествами

- ullet Пусть дан набор множеств $S_i:S_i\cap S_j=\emptyset$ при i
 eq j
- Каждое множество идентифицируется некоторым однозначно заданным представителем
- Операции
 - MakeSet(x) создать множество с единственным представителем x
 - Union(x,y) объединить множества, содержащие x и y. Множества не должны пересекаться. Представителем объединенного множества назначается произвольный его элемент
 - \bullet FindSet(x) возвратить указатель на представителя множества, содержащего x
- Реализация на основе односвязных списков: каждое множество соответствует списку
 - Элементы списка содержат объект, указатель на следующий член, указатель на представителя
 - Каждый список содержит указатели Head на представителя и Tail на последний элемент
 - Сложность MakeSet O(1), FindSet O(1)
 - Union: переместить короткий список в конец длинного, обновив в каждом элементе короткого списка указатель на представителя

Лес непересекающихся множеств

- Каждое множество может быть представлено в виде дерева, где узлы соответствуют элементам множеств
- Каждый член указывает на родительский узел
- Корень дерева считается представителем множества
- MakeSet(x) создать дерево с 1 узлом; сложность O(1)
- \bullet FindSet(x) проход к корню дерева
- Union(x,y) корень одного дерева указывает на корень другого
- Последовательность операций Union может привести к созданию дерева, являющегося линейной цепочкой узлов

Лес непересекающихся множеств: эвристики

- Объединение по рангу: корень дерева с меньшим числом узлов 1 должен указывать на корень дерева с большим числом узлов
- Ранг каждого узла верхняя граница высоты его поддерева
- Сжатие пути: перевешивание узлов непосредственно к корню
- Сложность m операций Union над n объектами $O(m\alpha(n))$, где $\alpha(n) = O(\log n)$

Algorithm 3: FindSet(x)

- 1 if $x \neq x.p$ then
- x.p = FindSet(x.p)
- з return x.p

Algorithm 4: MakeSet(x)

X=new Node $_{2}$ X.val=x;X.p=X;X.rank=0

Algorithm 5: Union(x,y)

Link(FindSet(x),FindSet(y));

Algorithm 6: Link(x,y)

if x.rank>y.rank then

y.p=x

Алгоритм Крускала

```
Algorithm 7: MSTKruskal(G,w)
A = \emptyset
for v \in V[G] do
   MakeSet(v)
Отсортировать ребра из E по
 возрастанию w
for (u, v) \in E в порядке возрастания
 Beca do
   if FindSet(u) \neq FindSet(v) then
       A := A \cup \{(u, v)\}
       Union(u,v)
return A
```

- Непересекающиеся множества вершин различных деревьев в лесу (V, A)
- На каждом шаге добавляется ребро минимального веса, соединяющее различные деревья
- Сложность операций в строке б $O(|E|\alpha(V))$
- Общая сложность операций над непересекающимися множествами $O((|V|+|E|)\alpha(|V|))$
- Сложность сортировки $O(|E| \log |E|)$
- $|E| > |V| 1 \Rightarrow$ сложность $O(|E| \log |E|)$

Алгоритм Прима

```
Algorithm 8: MSTPrim(G=(V,E),w,r)
for \mu \in V do
 u.key = \infty; u.parent = NULL
r.kev=0:Q=V
while Q \neq \emptyset do
    u=Q.ExtractMin()
   for v \in Adj(u) do
        if v \in Q \land w(u, v) < v.key
         then
           v.parent=u; v.key=w(u,v)
```

- ullet Ребра в A всегда образуют единое дерево с корнем r
- На каждом шаге к дереву добавляется легкое ребро, соединяющее его с оставшейся частью графа
- В приоритетной очереди Q хранятся вершины, не вошедшие в дерево
- ПО использует упорядочение по key. v.key равно минимальному весу среди всех ребер, соединяющих вершину v с вершинами дерева

$$A = \{(v, v.parent) | v \in V \setminus \{r\} \setminus Q\}$$

Алгоритм Прима

```
Algorithm 9: MSTPrim(G=(V,E),w,r)
for \mu \in V do
   u.key = \infty; u.parent = NULL
r.kev=0:Q=V
while Q \neq \emptyset do
    u=Q.E\times tractMin()
    for v \in Adi(u) do
        if v \in Q \land w(u, v) < v.key
         then
           v.parent=u; v.key=w(u,v)
```

- Перед каждой итерацией *While* $A = \{(v, v.parent) | v \in V \setminus \{r\} \setminus Q\}$
- ullet Вершины, уже помещенные в МОД, принадлежат $V\setminus Q$
- Для всех $v \in Q$: если $v.parent \neq NULL$, то $v.key < \infty$ и v.key равен весу легкого ребра (v, v.parent), соединяющего v с некоторой вершиной, уже находящейся в МОД
- Реализация ПО на основе двоичной кучи: строки 1-3-O(|V|), строка $5-O(|V|\log|V|)$. Число итераций for-O(|E|). Проверка $v\in Q$ с помощью битовой маски O(1). Обновление ключей $O(\log|V|)$. Итого $O(|V|\log|V|+|E|\log|V|)$

Фибоначчиева куча

- ullet Цель: обеспечить сложность операций, не связанных с удалением элементов, O(1)
- Операции Insert, Minimum, ExtractMin, Union
- Если над элементами ФК не выполнять DecreaseKey и Delete, структура аналогична двоичной куче
- Поддержка строгой структуры ФК откладывается до момента, когда это будет удобным

Структура фибоначчиевой кучи

- ФК набор деревьев
- Каждый узел дерева содержит указатель на родителя и на один из дочерних узлов
- Дочерние узлы объединены в циклический двусвязный список (список дочерних узлов). Порядок узлов в списке произволен
- ullet Удаление элементов из списка и объединение списков имеют сложность O(1)
- x.degree количество дочерних узлов
- x.mark = true, если x терял дочерние узлы начиная с момента, когда x стал дочерним узлом другого узла. Вновь созданные узлы не помечены, x.mark снимается, если узел становится дочерним
- ullet Q.min корень дерева с минимальным ключом. Если куча пуста, Q.min = NULL
- Корни всех деревьев образуют циклический двусвязный список (список корней)
- Q.n число узлов в ФК

Биномиальные деревья

- ullet Биномиальное дерево B_0 состоит из единственного узла
- Биномиальное дерево B_k состоит из двух биномиальных деревьев B_{k-1} , причем корень одного из них является крайним левым дочерним узлом корня второго дерева
- Неупорядоченное биномиальное дерево B_k состоит из двух биномиальных деревьев B_{k-1} , причем корень одного из них является *произвольным* дочерним узлом корня второго дерева
- ФК набор неупорядоченных биномиальных деревьев

Вставка узла

Algorithm 10: FibHeapInsert(Q,x)

- $1 \ \, x.degree = 0; x.p = NULL; x.child = NULL; x.left = x; x.right = x; x.mark = false \\$
- 2 Присоединить x к списку корней Q
- 3 if $Q.min = NULL \lor x.key < Q.min.key$ then
- 4 Q.min=x
- $S_{Q,n=Q,n+1}$

Сложность O(1)

Объединение двух ФК

Algorithm 11: FibHeapUnion(Q_1, Q_2)

- 1 $Q=MakeFibHeap();Q.min=Q_1.min$
- 2 Добавить список корней \mathcal{Q}_2 к списку корней \mathcal{Q}
- 3 if $Q_1.min = NULL \lor Q_2.min \neq NULL \land Q_2.min.key < Q_1.min.key$ then
- 4 $Q.min = Q_2.min$
- 5 $Q.n = Q_1.n + Q_2.n$
- 6 delete Q_1 ; delete Q_2
- 7 return Q

Сложность O(1)

Извлечение минимального узла

Algorithm 12: FibExtractMin(Q)

```
z=Q.min
<sub>2</sub> if z \neq NULL then
      for каждого дочернего по отношению к z
        yзлy \times do
          добавить х в список корней
           Q;x.p=NULL
      Удалить z из списка корней Q
      if z.right=z then
          Q.min=NULL
      else
          Q.min=z.right
          Consolidate(Q)
10
      Q.n=Q.n-1
```

Consolidate: многократное исполнение следующих шагов, пока все корни не будут иметь различные поля degree

- **1** Найти в списке два корня x, y с одинаковой степенью, $x.key \le y.key$
- Удалить у из списка корней, сделав его дочерним узлом х. х. degree при этом увеличивается

Уменьшение ключа

```
Algorithm 13: FibHeapDecreaseKey(Q,x,k)
                                                        v.degree
1 if k>x. key then
     Error: Новый ключ больше старого
з x.key=k;y=x.parent
4 if v \neq NULL \land x.kev < v.kev then
     Cut(Q,x,y)
                                                     1 z=y.parent
     CascadingCut(Q,y)
                                                     <sub>2</sub> if z \neq NULL then
7 if x.key<Q.min.key then
                                                              y.mark=true
     Q.min=x
                                                           else
  Сложность O(1)
```

Algorithm 14: Cut(Q,x,y)

- Удалить x из дочернего списка v, уменьшив
- $_2$ Добавить $_X$ в список корней $_Q$
- 3 x.p=NULL; x.mark=false

Algorithm 15: CascadingCut(Q,y)

```
if v.mark=false then
    Cut(Q,y,z)
CascadingCut(Q.z)
```

Заключение

- Матрицы достижимости и расстояний могут быть найдены единообразно из итерации матриц смежности/дуг в соответствующем полукольце
- Алгоритма Крускала и Прима нахождания минимального остовного дерева