March 18th, 2021 MATH5312 Notes

1 March 18th, 2021

1.1 Preconditioned with Projection Methods

For one dimensional projection, we have steepest descent + preconditioning. Here we search for d_k on $\{d : ||d||_A = \beta\}$. We obtain d_k by:

$$\min_{d_k} ||x_* - (x_k + \alpha d_k)||_A^2 \quad \text{s.t } ||d_k||_A = \beta$$

How ever, this is unrealistic because d_k would depend on x_* . Instead, we approximate it by searching d_k on $\{d: ||d||_2 = \beta\}$. So, d_k is obtained by:

- Fixing $\alpha > 0$ and small
- Solving approximately (since we are consider the ellipsoid under $\|\cdot\|_2$):

$$\min_{d_k} \|x_* - (x_k + \alpha d_k)\|_2^2 \quad \text{s.t.} \|d_k\|_2 = \beta$$

When the condition number of A is big, the set $\{d : ||d||_2 = \beta\}$ is very flat in A-inner product space. To improve it, we search for d on $\S_P = \{d : ||d||_P = \beta\}$, where P is such that S_P is rounder than S_2 . Where

$$||x||_P = x^T P x$$

With this, we have:

$$d_k = \operatorname*{arg\,min}_{d_k \in S_p} \| (x_k + \alpha d_k) - x_* \|_A^2$$

for small $\alpha > 0$.

Remark 1.1 — The main idea is we change the metric from 2-norm to P norm, and we take a rough approximation by restricting it to S_P .

We have:

$$\|(x_k + \alpha d_k) - x_*\|_A^2 = \|x_k - x_*\|_A^2 + 2\alpha \langle d_k, x_k - x_* \rangle_A + \alpha^2 \|d_k\|_A^2$$
$$\approx \|x_k - x_*\|_A^2 + 2\alpha \langle d_k, x_k - x_* \rangle_A.$$

Thus:

$$\min_{d_k \in S_P} \|(x_k + \alpha d_k) + x_*\|_A^2 \iff \min_{d_k \in S_P} \langle d_k, x_k - x_* \rangle_A$$

Note that this is because $\alpha \gtrsim 0$ is close to zero.

We have:

The lower bound is attained when d_k is in the opposite direction of $-P^{-1}r_k$. Thus, we choose:

$$d_k = P^{-1}r_k$$

since only the direction of d_k matters. By calculation, we have:

$$\alpha_k = \underset{\alpha \in \mathbb{R}}{\operatorname{arg \, min}} \|(x_k + \alpha d_k) - x_*\|_A^2$$
$$= \frac{\langle r_k, d_k \rangle}{\langle A d_k, d_k \rangle}.$$

This gives us Algorithm 1.

Algorithm 1 Preconditioned Steepest Descent

- 1: **for** $k = 0, 1, \dots$ **do**
- $r_k = b Ax_k$
- Solve d_k from $Pd_k = r_k$ $\alpha_k = \frac{\langle r_k, d_k \rangle}{\langle Ad_k, d_k \rangle}$ 3:
- 4:
- $x_{k+1} = x_k + \alpha_k d_k$ 5:
- 6: end for

Remark 1.2 — If we choose P = I then we get the non-preconditioned steepest

For each iteration, we need to perform:

- 2 mat-vec products of A
- solve 1 system of linear equation of P
- operations of O(n)

We can improve this to using only 1 mat-vec product of A by introducing a new variable $p_k = Ad_k$, since:

$$r_{k+1} = b - Ax_{k+1} = b - A(x_k + \alpha_k d_k) = r_k - \alpha_k p_k$$

This can be seen in Algorithm 2.

Algorithm 2 Improved Preconditioned Steepest Descent

- 1: $r_0 = b Ax_0$
- 2: **for** $k = 0, 1, \dots$ **do**
- Solve d_k from $Pd_k = r_k$
- $p_k = Ad_k$ $\alpha_k = \frac{\langle r_k, d_k \rangle}{\langle Ad_k, d_k \rangle}$ 5:
- $x_{k+1} = x_k + \alpha_k d_k$ 6:
- 7: $r_{k+1} = r_k - \alpha_k p_k$
- 8: end for