

Decoding ECoG signals to classify faces and houses

Pod: Spry Ugusius

Team Member: Leafy Behera, Ruoying Zheng, Tanistha Bhattacharya

Fusiform Face Area

(Kanwisher & Yovel, 2006; Miller et al., 2017)

Processing faces is more advantageous than processing items in other object categories even without visual awareness

Can we use our neural activity to classify faces and houses with or without visual awareness?

Hypotheses:

1) We hypothesized that neural activity of houses and faces is different even in presence of noise.

- 2) We hypothesized that the amplitude of the neural response would decrease with increasing noise levels.
- 3) Add noise feature would help to classify the images better

Hypotheses:

1) We hypothesised that neural activity of houses and faces is different even in presence of noise.

- 2) We hypothesized that the amplitude of the neural response would decrease with increasing noise levels.
- 3) Add noise feature would help to classify the images better

Experiment 1

Participant	+ Select Channel	+ Mode1 +	+ Accuracy +	+ Precision	Recall
0 1	35	Logistic Regression	0.916666666666666	0.9310344827586207	0.9
0	35	Naive Bayes	0.883333333333333	0.896551724137931	0.86666666666666666
0	35	SVM	0.916666666666666	0.9310344827586207	0.9
1 1	46	Logistic Regression	0.916666666666666	0. 9375	0.9090909090909091
1 1	46	Naive Bayes	0.9	0.9090909090909091	0. 9090909090909091
1 1	46	SVM	0.916666666666666	0. 9375	0. 9090909090909091
2	35	Logistic Regression	0. 933333333333333	1.0	0.875
2	35	Naive Bayes	0.85	0.896551724137931	0.8125
2	35	SVM	0. 933333333333333	1.0	0. 875
3	23	Logistic Regression	0.916666666666666	0.9230769230769231	0. 88888888888888
3	23	Naive Bayes	0.816666666666666	0.9	0.666666666666666
3	23	SVM	0. 95	0.9285714285714286	0. 9629629629629629
4	15	Logistic Regression	0. 95	1.0	0. 90625
4	15	Naive Bayes	0.9	0.9642857142857143	0.84375
4	15	SVM	0. 95	1.0	0. 90625
5	25	Logistic Regression	0. 783333333333333	0.8260869565217391	0.6785714285714286
5	25	Naive Bayes	0.666666666666666	0.9	0.32142857142857145
5	25	SVM	0. 766666666666666	0.81818181818182	0.6428571428571429
6	38	Logistic Regression	0.833333333333334	0.83333333333334	0. 833333333333334
6	38	Naive Bayes	0.75	0.7586206896551724	0. 733333333333333
6 +	38 +	SVM +	0.8166666666666667 +	0.8064516129032258 +	0.833333333333334

Experiment 1 - Participant 1

Experiment 1 - Participant 1

Experiment 1 - Participant 1

Experiment 2(+Noise 0-45%)

+ Participant	 Select Channel	H Model	+ Accuracy +	+ Precision +	
0	35	Logistic Regression	0.733333333333333	0. 5909090909090909	0.65
0	35	Naive Bayes	0. 7833333333333333	0.7058823529411765	0.6
0	35	SVM	0. 7833333333333333	0.6842105263157895	0.65
1 1	46	Logistic Regression	0.7666666666666667	0.8	0.75
1	46	Naive Bayes	0.6666666666666666666666666666666666666	0.83333333333333334	0.46875
1	46	SVM	0. 7833333333333333	0.8275862068965517	0.75
2	35	Logistic Regression	0.8	0.8421052631578947	0.64
2	35	Naive Bayes	0. 7833333333333333	0. 9285714285714286	0.52
2	35	SVM	0.8	0.8421052631578947	0.64
3	23	Logistic Regression	0.9	0.8571428571428571	0.9230769230769231
3	23	Naive Bayes	0.8833333333333333	0.9130434782608695	0.8076923076923077
3	23	SVM	0.9	0.8846153846153846	0.8846153846153846
4	15	Logistic Regression	0.6333333333333333	0.58333333333333334	0.75
4	15	Naive Bayes	0.6	0.566666666666666	0.6071428571428571
4	15	SVM	0.65	0.6	0.75
5	30	Logistic Regression	0.7333333333333333	0.7391304347826086	0.6296296296296297
5	30	Naive Bayes	0.7	0.7368421052631579	0.5185185185185
5	30	SVM	0.8	0.77777777777778	0.77777777777777
6	42	Logistic Regression	0.4	0.48	0.34285714285714286
6	42	Naive Bayes	0.4	0.47619047619047616	0. 2857142857142857
6	42	SVM	0.45	0.5384615384615384	0.4
+			 	 	 +

Experiment 2(+Noise 0-45%) - Participant 1

Hypotheses:

1) We hypothesised that neural activity of houses and faces is different even in presence of noise.

- 2) We hypothesized that the amplitude of the neural response would decrease with increasing noise levels.
- 3) Add noise feature would help to classify the images better

Experiment 2(+Noise 0-45%) - Participant 1

Experiment 2(+Noise 0-45%) - Participant 1

Hypotheses:

1) We hypothesised that neural activity of houses and faces is different even in presence of noise.

- 2) We hypothesized that the amplitude of the neural response would decrease with increasing noise levels.
- 3) Add noise feature would help to classify the images better

Experiment 2(+Noise 0-45%)

0 35 Logistic Regression 0.733333333333333 0.590909090909090909 0.65 0 35 Naive Bayes 0.783333333333333 0.7058823529411765 0.6 0 35 SVM 0.783333333333333 0.6842105263157895 0.65 1 46 Logistic Regression 0.7666666666666666 0.83333333333333 0.8275862068965517 0.75 1 46 SVM 0.783333333333333 0.8275862068965517 0.75 2 35 Logistic Regression 0.8 0.8421052631578947 0.64 2 35 Naive Bayes 0.7833333333333333 0.9285714285714286 0.52 2 35 SVM 0.8 0.8421052631578947 0.64 3 23 Logistic Regression 0.9 0.8571428571428671 0.52 3 23 Naive Bayes 0.8333333333333333333333333333333333333	+ 11
0 35 SVM 0.7833333333333333 0.6842105263157895 0.665 1 46 Logistic Regression 0.766666666666666 0.8333333333333333333333333333333333333	5
1 46 Logistic Regression 0.766666666666667 0.8 0.75 1 46 Naive Bayes 0.66666666666666 0.8333333333333333333333333333333333333	
1 46 Naive Bayes 0.666666666666666666666666666666666666	5
1 46 SVM 0.78333333333333333333333333333333333333	5
2 35 Logistic Regression 0.8 0.8421052631578947 0.64 2 35 Naive Bayes 0.78333333333333333333333333333333333333	75
2 35 Naive Bayes 0.78333333333333333333333333333333333333	5
2 35 SVM 0.8 0.8421052631578947 0.64 3 23 Logistic Regression 0.9 0.8571428571428571 0.923076923 3 23 Naive Bayes 0.88333333333333 0.9130434782608695 0.807692307 3 23 SVM 0.9 0.8846153846 0.884615384 4 15 Logistic Regression 0.6333333333333333 0.5833333333333333 0.7833333333333333 4 15 Naive Bayes 0.6 0.5666666666666666667 0.607142857 4 15 SVM 0.65 0.6 0.755 5 30 Logistic Regression 0.7333333333333333333333333333333333333	4
3 23 Logistic Regression 0.9 0.8571428571428571 0.923076923 3 23 Naive Bayes 0.8833333333333333333333333333333333333	2
3 23 Naive Bayes 0.8833333333333333333333333333333333333	4
3 23 SVM 0.9 0.8846153846153846 0.8846153846 0.8846153846 0.8846153846 0.8846153846 0.8846153846 0.8846153846 0.8846153846 0.8846153846 0.75846 0.758333333333333333333333333333333333333	30769231
4 15 Logistic Regression 0.6333333333333333333333333333333333333	76923077
4 15 Naive Bayes 0.6 0.5666666666666666666666666666666666666	46153846
4 15 SVM 0.65 0.6 0.75 5 30 Logistic Regression 0.7333333333333333333333333333333333333	5
5 30 Logistic Regression 0.7333333333333333333333333333333333333	71428571
5 30 Naive Bayes 0.7 0.7368421052631579 0.518518518 5 30 SVM 0.8 0.777777777777777777777777777777777777	5
5 30 SVM 0.8 0.77777777777 0.77	96296297
	35185185
6 10 Logistic Regression 0.4 0.48 0.3428571428	77777778
12 Logistic Regiession 0.4 0.40 0.5420371420	85714286
6 42 Naive Bayes 0.4 0.47619047619047616 0.285714285	57142857
6 42 SVM 0.45 0.5384615384615384 0.4	

Experiment 2(+Noise as a feature 0-45%)

Participant 	Select Channel	${f Model}$	+ Accuracy +	+ Precision +	+ Recall +
0	35	Logistic Regression	0.8	0. 7931034482758621	0.7931034482758621
0	35	Naive Bayes	0. 7833333333333333	0.8636363636363636	0.6551724137931034
0	35	SVM	0. 7833333333333333	0.8076923076923077	0.7241379310344828
1	46	Logistic Regression	0.7666666666666667	0.777777777777778	0.7241379310344828
1	46	Naive Bayes	0. 6833333333333333	0.7083333333333334	0. 5862068965517241
1	46	SVM	0.7666666666666667	0.777777777777778	0.7241379310344828
2	35	Logistic Regression	0.816666666666666	0.8461538461538461	0.7586206896551724
2	35	Naive Bayes	0.8	0.84	0.7241379310344828
2	35	SVM	0.8	0.84	0.7241379310344828
3	23	Logistic Regression	0. 7833333333333333	0.83333333333333334	0. 6896551724137931
3	23	Naive Bayes	0. 73333333333333333	0.8095238095238095	0. 5862068965517241
3	23	SVM	0. 75	0.81818181818182	0.6206896551724138
4	15	Logistic Regression	0.85	0.8571428571428571	0.8275862068965517
4	15	Naive Bayes	0.83333333333333334	0. 8518518518518519	0. 7931034482758621
4	15	SVM	0.8166666666666667	0.8214285714285714	0. 7931034482758621
5	30	Logistic Regression	0. 9666666666666667	0. 9655172413793104	0. 9655172413793104
5	30	Naive Bayes	0. 9666666666666667	0. 9655172413793104	0. 9655172413793104
5	30	SVM	0. 9666666666666667	0. 9655172413793104	0.9655172413793104
6	42	Logistic Regression	0.6833333333333333	0.7083333333333334	0.5862068965517241
6	42	Naive Bayes	0.7	0.7619047619047619	0. 5517241379310345
6	42	SVM	0.7	0.7619047619047619	0.5517241379310345

Limitations

• We don't have keypress values for the house stimuli.

• We don't have keypress values for the house stimuli.

• Due to time constraints we could not consider only hit trials for training the model.

• We don't have keypress values for the house stimuli.

• Due to time constraints we could not consider only hit trials for training the model.

 We could not find a definite noise range as a threshold to distinguish houses and faces

Reference

- Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109–2128. doi:10.1098/rstb.2006.1934
- Miller, K. J., Hermes, D., Pestilli, F., Wig, G. S., & Ojemann, J. G. (2017). Face percept formation in human ventral temporal cortex. Journal of Neurophysiology, 118(5), 2614–2627. doi:10.1152/jn.00113.2017
- Zhou, L. F., Wang, K., He, L., & Meng, M. (2021). Twofold advantages of face processing with or without visual awareness. Journal of experimental psychology. Human perception and performance, 10.1037/xhp0000915. Advance online publication. https://doi.org/10.1037/xhp0000915