Diecisieteava sesión

Análisis Convexos - CM3E2

Jonathan Munguia¹

¹Facultad de Ciencias Universidad Nacional de Ingeniería

08 de enero de 2021

1/13

Outline

- Funciones conjugadas
 - Funciones conjugadas

Definición 1

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. La función conjugada de f (en el sentido de Fenchel) es la función $f^*: \mathbb{R}^n \to \overline{\mathbb{R}}$ definida por

$$f^*(x^*) = \sup_{x \in \text{dom}(f)} \left[\overbrace{\langle x, x^* \rangle - f(x)}^{2 \sqrt{X}} \right] = \sup_{x \in \mathbb{R}^n} \left[\langle x, x^* \rangle - f(x) \right].$$

Observación 1

 f^* es convexa sci porque es el supremo de funciones afines.

Ejemplo 1

- La conjugada de $f(x) = x^2$ es $f^*(y) = (\frac{y}{2})^2$.
- La conjugada de $g(x) = x^3$ es $+\infty$.

Figura: Dada la recta xy con pendiente y es traladada hasta hacerla tangente.

Teorema 1 Sesión 13

$$f(x) \ge f(\hat{x}_0) + (x - \hat{x}_1 \times \hat{x}_1) + \hat{x}_1$$

 $f(x) \ge f(\hat{x}_0) + (x - \hat{x}_1 \times \hat{x}_1) + \hat{x}_1$
 $f(x) \ge f(\hat{x}_0) + (x - \hat{x}_1 \times \hat{x}_1) + \hat{x}_1$

Ejemplo 2

Ejemplo 3

Ejemplo 4

4□▶ 4□▶ 4□▶ 4□▶ □ ♥9<</p>

Teorema 1 (Teorema de separación fuerte)

Sean C_1 , C_2 conjuntos convexos no vacíos de \mathbb{R}^n tal que C_1 es compacto y C_2 cerrado. Entonces, existen $a \in \mathbb{R}^n \setminus \{0\}$ y $\alpha \in \mathbb{R}$ tal que

$$\langle a, x \rangle < \alpha < \langle a, y \rangle \quad \forall x \in C_1, \ \forall y \in C_2.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

8 / 13

$$f(x) = \sup_{g \le f} g(x) = \inf_{g \le f} [\lambda : (x_{i}x) \in epif]$$
 $epi \bar{g} = epif$

Proposición 1

Dada $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. Se cumple

$$f^* = (\overline{f})^* = (f_c)^* = (f_{\overline{c}})^*.$$

$$f_c(x) = \inf \left[\lambda : (x, \lambda) \in Colopif) \right] \rightarrow \operatorname{epi} f_c = co(upif)$$
 $f_{\overline{c}}(x) = \inf \left[\lambda : (x, \lambda) \in Colopif) \right] \rightarrow \operatorname{epi} f_{\overline{c}} = co(upif)$

Munguia (FC-UNI)

Enero 08

Ferih = colepit) = epit = epit =
$$\frac{1}{2}$$

3° of ce la función convexa mas grande

mayorada por to.

for (regularizante convexa 50' do f)

Similar!

L'en = sup [(x,x')-fin] = pup [(x,x')-2)

REdomf (xx) = pup [(xx) = x)

In similares 1

Definición 2 (Función biconjugada)

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. La función biconjugada de f, denotada por f^{**} , es la conjugada de la función conjugada, es decir

$$f^{**}(x) = \sup_{x^* \in \mathbb{R}^n} \left[\langle x, x^* \rangle - f^*(x^*) \right].$$

= sup inf
$$[\langle x-y, x^* \rangle + f(y)]$$

suprtimum $y=x$
 $\langle \sup_{x^*} [\langle x-x, x^* \rangle + f(x)] = f(x)$

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa sci. Entonces

$$f^{**}(x) = f(x) \quad \forall x \in \mathbb{R}^n.$$

pero (x, r) & epif.

Munguia (FC-UNI) Enero 08 11 / 13

Corolario 1

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. Entonces

$$f^{***}(x^*) = f^*(x^*) \quad \forall x^* \in \mathbb{R}^n.$$

Comentario

Se deduce de las Proposiciones 1 y 2 que

$$f^{**} = (f_{\overline{c}})^{**} = f_{\overline{c}},$$

de donde,

$$epi(f^{**}) = \overline{co}(epi(f)).$$

4 D > 4 P > 4 B > 4 B > B 900

f= = f=

FIN