NCERT 10.4.EX1

EE24BTECH11032 - JOHN BOBBY

Question

Alex and Sam together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they have is 124. Find how many marbles they had at the beginning.

Quadratic Formula

Let the number of marbles Alex have at the beginning= x The number of marbles Sam have = 45 - x After losing 5 marbles, Number of marbles alex has x - 5 Sam now has 45 - x - 5 = 50 - x Product of marbles = 124 (x - 5)(50 - x) = 124

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = 9 \text{ or } 36$$

On rearranging, $x^2 - 45x + 324 = 0$

Eigen Value Method

For a quadratic equation $ax^2 + bx + c$ the roots are the eigen values of the companion matrix

$$\begin{pmatrix} 0 & 1 \\ \frac{-c}{a} & \frac{-b}{a} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -324 & 45 \end{pmatrix}$$

We can apply the QR algorithm to find the eigen values of this matrix Using Gram-Schmidt alogorithm the matrix **A** can be factorised as

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

Where ${\bf Q}$ is a orthogonal matrix and ${\bf R}$ is a upper triangular matrix. The process continues in the following manner

$$\begin{aligned} \boldsymbol{A}_k &= \boldsymbol{Q}_k \boldsymbol{R}_k \\ \boldsymbol{A}_{k+1} &= \boldsymbol{R}_k \boldsymbol{Q}_k \end{aligned}$$

For large values of k the diagonal elements of the matrix $\mathbf{A_k}$ converges to the eigen values.

Newton-Raphson Method

- Choose a starting point x_0 which is close to a root
- Update the value of x accordingly,

$$x_{n+1} = x_n - \frac{f(x)}{f'(x)}$$

$$x_{n+1} = x_n - \frac{x_n^2 - 45x_n + 324}{2x_n - 45}$$

The value of x will converge to one of the roots

C-Code

```
#include <stdio.h>
#include <math.h>
#define EPSILON 0.000001
void function(double *x,double *y,int n){
        for(int i=0:i<n:i++)</pre>
        y[i]=x[i]*x[i]-45*x[i]+324;
double f(double x) {
    return x * x - 45 * x + 324;
double f_prime(double x) {
    return 2 * x - 45;
}
double NR(double guess1){
    double x0, root;
    x0=guess1; int iteration = 0;
    while (1) {
        double fx = f(x0):
        double fx_prime = f_prime(x0);
        root = x0 - fx / fx_prime;
        printf("Iteration %d: x = \%.6f\n", iteration + 1, root);
        if (fabs(root - x0) < EPSILON)
        break;
```

Python-Code

```
import numpy as np
import matplotlib.pyplot as plt
import ctypes
# Load the shared library
lib = ctypes.CDLL('./lib.so')
lib.function.argtypes=[ctypes.POINTER(ctypes.c_double),
  ctypes.POINTER(ctypes.c_double), ctypes.c_int]
lib.f.argtypes=[ctypes.c_double]
lib.f.restype=ctypes.c_double
lib.f_prime.argtypes=[ctypes.c_double]
lib.f_prime.restype=ctypes.c_double
lib.NR.argtypes = [ctypes.c_double]
lib.NR.restype = ctypes.c_double
# Parameters
x start = 0
x end = 40
h = 0.1
n_steps = 401
x = np.linspace(x_start, x_end, n_steps)
y = np.zeros(n_steps)
```

Python-Code

```
# Conversion to ctypes array
x_ctypes = x.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
y_ctypes = y.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
lib.function(x_ctypes, y_ctypes, n_steps)
root1=lib.NR(5)
root2=lib.NR(25)
# Plottina
plt.figure(figsize=(10, 6))
plt.plot(x, y, label="Theory", linestyle='-', color='b', linewidth=5)
plt.scatter(root1, 0, color='r', marker='o', s=100, zorder=5, label=f"Root at
\Rightarrow x=\{root1:.2f\}")
plt.scatter(root2, 0, color='r', marker='o', s=100, zorder=5, label=f"Root at
\hookrightarrow x={root2:.2f}")
plt.xlabel("x")
plt.ylabel("y")
plt.legend(['f(x)=$x^2-45x+324$',f''Root at x={root2:.2f}'',f''Root at
\hookrightarrow x=\{\text{root1}: .2f\}"])
plt.grid()
plt.savefig('plot.png')
```


Figure: Plot using Newton-Raphson method