Wet Lab schedule DAY 1

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

MONDAY	ACTIVITY	PRESENTE R
8:45 - 9.00	Registration	Lisa
9.00 - 9.15 9.15 - 9:45	Overview of the Doherty Institute/CPG/VIDRL/MDU Welcome and introductions	Lisa
9:45 -10.00	Training overview	Jean
10.00- 10.30	LAB: Pipetting exercise	Louise
10.30 - 11.00	Morning tea	
11.00 - 11.30	LECTURE: Introduction to MPXV genomics and VIDRL	Jean
11.30 - 12.30	LECTURE: TILED AMPLICON FOR MPOX	Jean
12.30 - 13.30	Lunch	
13.30 - 15.30	LAB: Tiled amplicon PCR	Louise
15.30 - 16:00	Afternoon tea	
16:00 - 16.30 16.30 - 17:00	LECTURE: Introduction to ONT sequencing viruses Group discussion: Opportunity for Q&A and further discussion	Louise Nicole

WET LAB DAY 1: TILED AMPLICON

Jean Moselen Senior Medical Scientist Victorian Infectious Disease Laboratory (VIDRL)

Viral detection & sequencing methods

Real time PCR

Basics of using PCR as a **detection method** are very similar for different viruses

Sanger sequencing

Sequencing only the **gene/s of interest** for identification of pathogen & it's strain/lineage

Whole-genome sequencing (WGS)

WGS is a comprehensive method for analysing entire genomes.

Next Generation Sequencing (NGS)

Technology for sequencing any human, animal, plants, or pathogen microbes.

Mpox surveillance workflow.

The core stages of this workflow are:

- a) specimen collection
- b) sample preparation AMPLICON GENERATION
- c) genome sequencing ONT PLATFORM
- d) processing of sequencing results
- e) sequence data interpretation and data sharing.

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

VIRAL SEQUENCING METHODS

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Pathogen NGS Why so many options?

Pathogens make up a small proportion of the sample

Viral Diversity

"Needle in the haystack" scenario

Variance in sequencing capacity of laboratories

Different research goals and throughput

Bioinformatic capacity

Emerging field and new technologies

Metagenomics

Amplicon

Target Enriched

A joint venture between The University of Melbourne and The Royal Melbourne Hosp

Abundance of host and other non-target sequences in NGS libraries results in low sensitivity

How can we get the best result?

GOAL= improve # of target specific reads

Sample type

Extraction method

Concentration/cleanup

Library Input

Metagenomics

Amplicon

Target Enriched

Sequencer platform

Bioinformatics tools

Reference sequences

In house vs online pipelines

Viral NGS Technique considerations

Virus structure
Sample type & volume
Extraction technique
Pre-treatments
Amplification options

Library Prep Kit Scalability Sequencer Selection

Budget

Data Set size produced

Number of targets

Computational capacity

Coverage & depth required

All these considerations are linked

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

Viral Genomics Methodology

Amplicon-based WGS

Developed to support genomic surveillance efforts.

Used in different public health emergencies, Zika virus and Ebola.

Broadly applied during the SARS-CoV-2 pandemic.

Primary method in viral genomic epidemiology with clinical case-derived samples due to its:

high sensitivity
multiplexing capability
cost-effectiveness
scalability

Pan Approach vs Targeted Scheme Design

GOAL= improve # of pathogen specific reads

Single target = Greater specificity and sensitivity.

Higher cost and not useful for detection of dual infections

VS

PAN approach = multiple targets (viruses) of interest

e.g Flavi viruses, MMR, respiratory

"PANELS" of viruses tested at once

Useful when looking at among human, animal, and environmental specimens.

Sensitivity is lower

Workflows were optimized for **simple adaptation of workflows** in laboratories previously involved in SARS-CoV-2 genomic surveillance.

Amplicon-based WGS approaches are highly sensitive due to targeted amplification of the viral DNA, making them particularly suitable to analyze **clinical**, **environmental and wastewater** samples with low viral loads (up to Ct ~32).

Labs can order in primer sets and start testing within a short time frame.

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

EXAMPLE	SEQUENCING APPROACH
Clinical samples with low viral load (Ct > 28)	Amplicon-based WGS OR Target capture
Detection of structural variants, ITR variation	Amplicon-based WGS or Metagenomic sequencing with long-read technology
Accurate SNP calling and clade typing	Amplicon-based WGS
Validation of amplicon dropout or suspected deletions	Metagenomic sequencing or Target capture
High-throughput routine surveillance	Amplicon-based WGS
Field deployment with minimal infrastructure	Amplicon-based WGS with long-read technology
Wastewater or environmental samples	Metagenomic sequencing or Target capture with short amplicons Possibly: amplicon-based sequencing with short amplicons
Resource-limited labs with basic capacity	Amplicon-based WGS

Community Designed Amplicon Schemes

VERSION 2 FEB 01, 2023

DOI:

dx.doi.org/10.17504/protocol s.io.kqdg39xxeg25/v2 © DengueSeq: A pan-serotype whole genome amplicon sequencing protocol for dengue virus V.2

Chantal Vogels¹, Chrispin Chaguza¹, Mallery I Breban¹,

Emma Taylor- Abigail J.

Afeez Sodeinde¹, Salmon¹, Porzucek¹,

Nathan D Grubaugh¹

 $^{1}\mbox{Department}$ of Epidemiology of Microbial Diseases, Yale School of Public Health

Nathan D Grubaugh

Department of Epidemiology of Microbial Diseases, Yale Schoo...

ABSTRACT

Version 2 updates:

■ Updated the DENV3 primer file (DENV3_Primer-Scheme.xlsx) with correct version

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

FEB 23, 2022

WORKS FOR ME

Poliovirus direct detection and nanopore sequencing (DDNS) FAQs

DOI

dx.doi.org/10.17504/protocols.io.b5ggq3tw

Alex Shaw¹, Catherine Troman¹, Joyce Akello¹, Erika Bujaki² Manasi Majumdar², Javier Martin², Nick Grassly¹

¹Imperial College London;

²National Institute for Biological Standards and Control

Poliovirus Sequencing Consortium

Nick Grassly
Imperial College London

Sequencing Enrichment Approaches for Viruses

Tiled Amplicon PCR

- Multiple primers designed that span the entire genome --> except 3' and 5' region
- Primer pools to allow overlapping regions amplification while reducing any unwanted primer interactions
- Simple to use
- Lower cost
- Widely used

Advantages of Tiled Amplicon

- Relatively low cost to sequence
- Works on low viral copy numbers
- Simple workflows
- Faster turn-around-times for results
- Short amplicons (e.g. ~400 bp) more likely to sequence even when genomic material is degraded
- If a region fails to amplify, less coverage is lost compared to if the amplicon were longer
- Works directly from clinical samples

Disadvantages of Tiled Amplicon

- Unable to sequence ends of viral genome --> slightly less complete genome coverage
- Mutations in primer binding sites can cause amplicon drop-outs
- PCR step can amplify small amounts of cross-contamination
- Not ideal for highly diverse or recombinant viruses or new emergence
- Creation of the Primer pools = prone to user error = lots of primers!

Whole Segment PCR

Whole Genome Multiplex Tiling

C Segment-Specific Tiling

D Disjointed Tiling

Sequencing Enrichment Approaches for Viruses

Tiled Amplicon PCR

Forward and Reverse Primers

Range of dilutions and concentrations

Combinations of primers

Different amplification reactions

= "Pools" of PCR master mixes

Mpox Amplicon schemes WGS of MPXV

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

Scheme	Amplicon size [bp]	# Primer pairs	Optimal Ct	Reference for primer design	Sequencing Platform (validated)	Clade Ib coverage
Chen et al. 2023	Average 200	163	<31	IIb (MT903345)	Illumina	85-90% (43)
Brinkmann et al. 2024	375	682	<30	IIb (ON585033.1)	ONT	
Welkers et al. 2022	2500	88	<25	IIb (ON563414.3)	ONT	>93.5 %
Bosmeny et al. 2023	3000	73	<32	IIb (NC_063383.1)	ONT	
Isabel et al. 2023	5000	43	<27.9	IIb (ON563414.3)	Illumina	
ARTIC / INRB	400 (wastewater surveillance) 2500 (clinical surveillance)	147	<30	I and II (KJ642613.1)		
ARTIC / BCCDC	5000	98		IIb (ON563414.3)		
Yinda et al. 2023	12,500		<~27		ONT	

Majority of MPXV primer schemes were developed using reference genomes from Clade IIb resulting in mismatches when applied to Clade I/Ib genomes.

A pan-clade primer scheme has been developed for optimized primer binding across clades

Scheme	Amplicon size [bp]	# Primer pairs	Optimal Ct	Reference for primer design
ARTIC / INRB	400 (wastewater surveillance) 2500 (clinical surveillance)	147	<30	I and II (KJ642613.1)

Details of Amplicon Schemes

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

Amplicon Schemes Updates

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

Amplicon schemes dilutions

— Typically diluted to a working concentration of 10 μM – but not always!!!!!

Scheme	Amplicon size [bp]	# Primer pairs	Optimal Ct	Reference for primer design
ARTIC / INRB	400 (wastewater surveillance) 2500 (clinical surveillance)	147	<30	I and II (KJ642613.1)

When creating your primer pools check:

- 1. Primer dilution by volume or concentration?
- 2. Pools does the pooling parameters change? E.g Pan scheme vs Genotype specific PCR
- 3. What the stock concentration vs working concentration.
- 4. Clearly label your stock and working tubes!

Amplicon Size

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

POOL 2

	100	•			:	ί		4	_				
,	15								_	_	•		
1	10000 5000 3500	3					•		•	•	•	•	
	2500_				•	,		,		4			
2	1500_	·											
	1000_	•	-		_,	, ,							
	400												
i	250	•						•		•			
-	100	•	•						,				
1	15	-		· ·		,	•		•	4	•	•	

Sample	Mpox Ct
1	25.6
2	21.9
3	19
4	21
5	29.1
6	Not Det
7	24
8	26
9	35.3
10	Not Det
11	Not Det
12	Not Det

Amplicon Concentration

600 400

250

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

QuBit Assay

POOL 1

POOL 2

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

https://www.nature.com/articles/nrmicro.2016.182#Sec6

Method	Advantages	Disadvantages
PCR amplification sequencing	 Tried and trusted well-established methods and trained staff Highly specific; most sequencing reads will be pathogen-specific, which decreases sequencing costs Highly sensitive, with good coverage even at low pathogen load Relatively straightforward design and application of new primers for novel sequences 	 Labour-intensive and difficult to scale for large genomes Iterating standard PCRs across large genomes requires high sample volume PCR reactions are subject to primer mismatch, particularly in poorly characterized or highly diverse pathogens, or those with novel variants Limited ability to sequence novel pathogens High number of PCR cycles may introduce amplification mutations Uneven amplification of different PCR amplicons may influence minor variant and haplotype reconstruction

Wet Lab schedule DAY 1

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

MONDAY	ACTIVITY	PRESENTE R
8:45 - 9.00	Registration	Lisa
9.00 - 9.15	Overview of the Doherty Institute/CPG/VIDRL/MDU	Lisa
9.15 - 9:45	Welcome and introductions	
9:45 -10.00	Training overview	Jean
10.00- 10.30	LAB: Pipetting exercise	Louise
10.30 - 11.00	Morning tea	
11.00 - 11.30	LECTURE: Introduction to MPXV genomics and VIDRL	Jean
11.30 - 12.30	LECTURE: Tiled Amplicon for Mpox	Jean
12.30 - 13.30	Lunch	
13.30 - 15.30	LAB: Tiled amplicon PCR	Louise
15.30 – 16:00	Afternoon tea	
16:00 - 16.30	LECTURE: Introduction to ONT sequencing viruses	Louise
16.30 - 17:00	Group discussion: Opportunity for Q&A and further discussion	Nicole