# Service Mai

Video Cassette Recorder

# **Panasonic** Omnivision

91004988

04120526 SM-PV1631M SERVICE MANUAL

# **SPECIFICATIONS**

Power Source:

 $110/120/220/240 \text{ V AC } \pm 10\% \text{ AUTO},$ 

 $50/60\,\mathrm{Hz}\,\pm0.5\%$ 

Power Consumption:

Approx. 28 watts

Television System:

EIA Standard (525 lines, 60 fields)

NTSC color signal

Video Recording

System: 4 rotary heads, helical scanning system

Luminance: FM azimuth recording

Color signal: Converted subcarrier phase

shift recording

Audio Track:

2 tracks (NORMAL), 2 channels (Hi-Fi AUDIO SOUND)

Tape Format:

Tape width 1/2" (12.7 mm), high density

tape

Tape Speed:

SP mode: 1-5/16 i.p.s. (33.35 mm/s)

LP mode: 21/32 i.p.s. (16.67 mm/s) SLP mode: 7/16 i.p.s. (11.12mm/s)

Record/Playback Time: 8 HRS. with 160 min. type tape used in

SLP mode

FF/REW Time:

Heads:

Less than 6 min. with 120 min. type tape

Video: 4 rotary heads

Audio: 2 stationary heads,

(NORMAL AUDIO SOUND)

2 rotary heads

(Hi-Fi AUDIO SOUND)

Control: 1 stationary head

Erase: 1 full track erase

1 audio track erase for audio

dubbing

Video: VIDEO IN Jack (RCA type) Input Level:  $1.0\,\mathrm{Vp}$ -p,  $75\,\Omega$  unbalanced

Audio: AUDIO IN Jack (RCA type) (Right, Left)

-20dB, 50kΩ unbalanced

MIC IN Jack (M3) (Right, Left)

–70dB, 4kΩ unbalanced

TV Tuners: VHF Input: VHF Ch2-Ch13,

cable channels "A"-"W"

"A-2", "A-1"  $75\Omega$  unbalanced UHF Input: Ch14-Ch83,

 $300\Omega$  balanced

Weight and dimensions shown are approximate. Specifications are subject to change without notice.

Output Level:

Video: VIDEO OUT Jack (RCA type)

 $1.0\,\mathrm{Vp}$ -p,  $75\,\Omega$  unbalanced

Audio: AUDIO OUT Jack (RCA type)

(Right, Left)

-9dB, 600Ω unbalanced

RF Modulated: Ch3/Ch4 switchable,

72 dB µ, (Open Voltage)

 $75\Omega$  unbalanced

Video Horizontal

Resolution: Color: more than 230 lines

B/W: more than 230 lines

Audio Frequency

Response: 20 Hz ~ 20 kHz (Hi-Fi AUDIO SOUND)

(10 dB down)

better than 43dB Signal-to-Noise Ratio: Video: SP:

LP: better than 41dB SLP: better than 41 dB

(Rohde & Schwarz noise meter)

Audio: better than 80dB Dynamic Range: (Hi-Fi AUDIO SOUND)

0.005% (Hi-Fi AUDIO SOUND)

Wow and Flutter: Operation

Temperature:  $41^{\circ}F-104^{\circ}F$  (5°C-40°C)

Operating Humidity:

Available Tapes:

10%-75%

Weight:

17.2 lbs. (7.8 kg)

 $16-15/16 \text{ "(W)} \times 14-5/16 \text{ "(D)} \times 4-1/4 \text{ "(H)}$ Dimensions:

 $(430\,\mathrm{mm}\times364\,\mathrm{mm}\times108\,\mathrm{mm})$ • Wireless remote control unit Accessories Supplied:

VHF connecting cable

•  $300\Omega$ — $75\Omega$  transformer

• Twin-lead cable

• V-Lock tool

1/2" VHS video cassette tapes

NV-T160 Approx. 1073 ft. (327 m), 160,

320, or 480 min.

NV-T120 Approx. 810ft. (247 m), 120, 240,

or 360 min.

NV-T60 Approx. 417 ft. (127 m), 60, 120,

or 180 min.



# **INTRODUCTION**

This Service Manual contains information which will allow the service technician to understand and service the Panasonc VHS recorder Model PV-1631M and the various accessories that complement the deck.

For a detailed technical explanation, please refer to the Training Manual on this model. Some of the Features incorporated in this model are: soft touch controls 14 position Electronic Tuner, 2 weeks/8 program Timer, Wireless Remote Control, One Touch Record Button (O.T.R), Picture Search, Field Still, Light Editing, a \*Dolby Noise Reduction system for normal audio, Hi-Fi Audio HD Sound System, Auto Rewind, Frame Advance, Field-Slow.

This model use a multi-function display indicator which combines indicators for time, tape counter, speed, transport functions, and timer record into one easy to read digital display.

The above features plus the VHS format make the PV-1631M table top VCR's an excellent unit for your enjoyment.

Just slightly ahead of our time...Panasonic.

# **CONTENTS**

| SPECIFICATIONS                           | Cover |
|------------------------------------------|-------|
| ELECTROSTATICALLY SENSITIVE (ES) DEVICES | 1.2   |
| FEATURES                                 | 1-3   |
| DESCRIPTION OF CONTROLS                  |       |
| UHF AND VCR PLAYBACK CONNECTIONS         |       |
| CABLE CONNECTIONS                        |       |
| GLOSSARY OF TERMS                        |       |

<sup>\*</sup> Noise reduction system manufactured under license from Dolby Laboratories Licensing Corporation.

<sup>\* &#</sup>x27;Dolby' and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

# **SAFETY PRECAUTIONS**

# **GENERAL GUIDELINES**

- 1. When servicing, observe the original lead dress. If a short circuit is found, replace all parts which have been overheated or damaged by the short circuit.
- 2. After servicing, see to it that all the protective devices such as insulation barriers, insulation papers shileds are properly installed.
- 3. After servicing, make the following leakage current checks to prevent the customer from being exposed to shock hazards.
- 4. USE A SEPARATE ISOLATION TRANSFORMER FOR THIS UNIT WHEN SERVICING.

# LEAKAGE CURRENT COLD CHECK

- 1. Unplug the AC cord and connect a jumper between the two prongs on the plug.
- 2. Measure the resistance value, with an ohmmeter, between the jumpered AC plug and each exposed metallic cabinet part on the equipment such as screwheads, connectors, control shafts, etc. When the exposed metallic part has a return path to the chassis, the reading should be between  $1\,\mathrm{M}\Omega$  and  $5.2\,\mathrm{M}\Omega$ .

When the exposed metal does not have a return path to the chassis, the reading must be  $\infty$ .



Figure 1

# LEAKAGE CURRENT HOT CHECK (See figure 1.)

- 1. Plug the AC cord directly into the AC outlet. Do not use an isolation transformer for this check.
- 2. Connect a  $1.5 k\Omega$ , 10 watts resistor, in parallel with a  $0.15 \mu F$  capacitor, between each exposed metallic part on the set and a good earth ground such as a water pipe, as shown in figure 1.
- 3. Use an AC voltmeter, with 1000 ohms/volt or more sensitivity, to measure the potential across the resistor.
- 4. Check each exposed metallic part, and measure the voltage at each point.
- 5. Reverse the AC plug in the AC outlet and repeat each of the above measurements.
- 6. The potential at any point should not exceed 0.75 volts RMS. A leakage current tester (Simpson Model 229 or equivalent) may be used to make the hot checks, leakage current must not exceed 1/2 milliamp. In case a measurement is outside of the limits specified, there is a possibility of a shock hazard, and the equipment should be repaired and rechecked before it is returned to the customer.

# **ELECTROSTATICALLY SENSITIVE (ES) DEVICES**

Some semiconductor (solid state) devices can be damaged easily by static electricity. Such components commonly are called Electrostatically Sensitive (ES) Devices. Examples of typical ES devices are integrated circuits and some field-effect transistors and semiconductor "chip" components. The following techniques should be used to help reduce the incidence of component damage caused by static electricity.

- Immediately before handling any semiconductor component or semiconductor-equipped assembly, drain off any
  electrostatic charge on your body by touching a known earth ground. Alternatively, obtain and wear a commercially available discharging wrist strap device, which should be removed for potential shock reasons prior to applying
  power to the unit under test.
- 2. After removing an electrical assembly equipped with ES devices, place the assembly on a conductive surface such as aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.
- 3. Use only a grounded-tip soldering iron to solder or unsolder ES devices.
- 4. Use only an anti-static solder removal device. Some solder removal devices not classified as "anti-static" can generate electrical charges sufficient to damage ES devices.
- 5. Do not use freon-propelled chemicals. These can generate electrical charges sufficient to damage ES devices.
- 6. Do not remove a replacement ES device from its protective package until immediately before you are ready to install it. (Most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or comparable conductive material).
- 7. Immediately before removing the protective material from the leads of a replacement ES device, touch the protective material to the chassis or circuit assembly into which the device will be installed.
   CAUTION: Be sure no power is applied to the chassis or circuit, and observe all other safety precautions.
- 8. Minimize bodily motions when handling unpackaged replacement ES devices. (Otherwise harmless motion such as the brushing together of your clothes fabric or the lifting of your foot from a carpeted floor can generate static electricity sufficient to damage an ES device).

# "NOTE to CATV system installer:

This reminder is provided to call the CATV system installer's attention to Article 820-22 of the NEC that provides guidelines for proper grounding and, in particular, specifies that the cable ground shall be connected to the grounding system of the building, as close to the point of cable entry as practical".

# **FEATURES**

Your Panasonic VCR has these special features to enhance your viewing enjoyment. Feature operations are described at the referenced page numbers. To locate other information, please refer to the Table of Contents.







This symbol warns the user that uninsulated voltage within the unit may have sufficient magnitude to cause electric shock. Therefore, it is dangerous to make any kind of contact with any inside part of this unit.



This symbol alerts the user that important literature concerning the operation and maintenance of this unit has been included.

Therefore, it should be read carefully in order to avoid any problems.

# **DESCRIPTION OF CONTROLS**

# **TOP and FRONT**

# CASSETTE WINDOW

# • CASSETTE COMPARTMENT-

### • REC LEVEL METER

For monitoring the Audio Level durinig recording or playback.

# • EJECT BUTTON

Push this button to remove the cassette. "■" flashes on the Multi Function Display while the tape is being ejected.

# • POWER BUTTON

This button is used to turn the VCR on and off. When this button is pushed, counter appears on the Multi Function Display.

# • VCR/TV SELECTOR

**VCR:** To monitor videorecordings or to view playback.

**TV:** To watch TV or to view another program while recording a different program.

When this is set to VCR, "VCR" appears on the Multi Function Display.

# • TIMER BUTTON

This button is used to put the VCR in Unattended Recording mode after programming functions have been completed.

When this button is ON, " " appears on the Multi Function Display, and you will not be able to operate the unit manually.

# MEMORY BUTTON

When this button is in the "ON" position, the tape will stop when the Tape Counter reaches "0000" during rewind.

# REC LEVEL CONTROLS

For manual operation of Audio Rec Level, with Hi-Fi AUDIO sound, set the REC LEVEL Switch to MANUAL and adjust both REC LEVEL Controls until the REC LEVEL Meter reads around 0 dB. This position usually indicates the best sound reception.

MULTI FUNCTION DISPLAY

PUSH BUTTON CONTROLS

# UHF/VHF/CATV FINE TUN-ING CONTROLS (UNDER HINGED COVER)

# AUTOMATIC FINE TUNING (AFT) SWITCH (UNDER HINGED COVER)

Under normal conditions, leave the AFT Switch "ON".

# CHANNEL SELECTOR BUTTONS/INDI-CATOR LIGHTS

Select the channel (2~83, A~W, A-2, A-1) you wish to view or record by pushing any one of these 14 buttons.

BEHIND HINGED
 PANEL

# WIRÉLESS RE-MOTE SENSOR

Receives signal from Wireless Remote Control.

# AUDIO OUTPUT SELECT BUTTONS

# • INPUT SIGNAL SELECTOR

**AUDIO:** For use this VCR as an Audio Tape Deck.

**LINE:** For re-recording, audio dubbing or camera recording.

**TUNER:** For regular TV recording with monaural sound recording.

**AUDIO 2 CH:** For simulcast (stereo) recording.

# **DOLBY NR INDICATOR**

When DOLBY NR Switch is ON. Indicator light goes on.

# RESET BUTTON

Pushing this button causes the Tape Counter to return to "0000". By beginning the recording at "0000", subsequent playback will be more convenient.

# TRACKING CONTROL

Use this control during regular playback if the image is partially obscured by bands of noise.

# **SLOW TRACKING CONTROL**

If the slow-motion or still picture contains bands of noise, this control may require adjustment.

# TAPE-SPEED SELECTOR (SP/LP/SLP)

Set this selector for the desired recording speed.

# **HEADPHONES JACK**

For connecting a Headphone.

# MICROPHONE INPUT JACK

For connecting a Microphone. This is useful for recording and audio dubbing.





Use this control to make the picture softer or sharper, whichever you prefer.

# **AUDIO OUTPUT SELECT BUTTONS**



# **DESCRIPTION OF CONTROLS (CONTINUED)**

# **PUSH BUTTON CONTROLS**



# **MULTI FUNCTION DISPLAY**



# • DIGITAL CLOCK

Normally, the present time is displayed.

### • TAPE COUNTER

Tape counter number is displayed.

# • FUNCTION INDICATOR " รี่รี้ชิน "

This shows the mode of VCR (EJECT, PLAY, REC, REW, FF, PAUSE, STILL, SEARCH, STOP, FRAME ADVANCE, SLOW).

# • DEW INDICATOR " ♂8₩ "

This indicator appears if excessive moisture condenses in the unit. If the DEW Indicator is ON, the unit will not operate. If this happens, leave the VCR ON and let it remain at room temperature until this indicator goes off.

# • TIMER INDICATOR " 🗓 "

When TIMER Button is set to ON, this indicator appears and you will not be able to operate the unit manually.

# • PROGRAM NUMBER "1", "2", "3", or "4"

This shows the program number for Timer Recording.

# • CHANNEL INDICATOR "CH"

This indicator flashes when selecting channel for Timer Recording.

# • O.T.R. INDICATOR "OTR"

When OTR is set, this indicator appears.

# • MEMORY INDICATOR "M"

When MEMORY Button is set to ON, this indicator appears.

# • DUBBING INDICATOR "DUB"

When audio dubbing is set, this indicator appears.

# VCR/TV INDICATOR "VCR"

This indicator appears when the VCR/TV Selector is set to VCR.

# • SPEED INDICATOR "SP", "LP", "SLP"

This shows the tape speed during recording and playback.

# • CASSETTE-IN INDICATOR " 🖾 "

This indicator shows the condition of the cassette tape in the unit.

No " . There is no cassette in the unit.

"There is a cassette in the unit and some interval to the end of the tape.

Flashing "
": The automatic rewind took place at the end of tape during playback, recording or fast forward. The indicator continues flashing until the subsequent mode is set.

# **DESCRIPTION OF CONTROLS (CONTINUED)**



In some cases, the product may differ slightly from illustrations or photographs.

Please be assured that this difference is not due to mistake but to ongoing product improvement.

# **UHF AND VCR PLAYBACK CONNECTIONS**

If you receive UHF TV broadcasts, connect TV antennas to the VCR and TV as shown below.

# **UHF CONNECTION**





 Remove the UHF antenna twin lead wires from the back of your TV, and attach these wires to the UHF IN terminals of the VCR.



- Attach the Twin Lead (flat) Cable (supplied) to the UHF OUT terminals of the VCR.
- Attach the other end to the UHF terminals of the TV.

If you receive only UHF Channels, you must also add one of the following two connections (a) or (B) between your VCR and TV. This connection is necessary to view tapes in playback and to use your TV as a monitor.

- If you have only screw type VHF terminals on your TV, use connection (a). If using connection (b), set the switch of the VHF Connecting Cable to lower (300 \( \Omega \)) position.
- If you have a VHF terminal on your TV, use connection 

  B. If using connection 

  B, set the switch of the VHF Connecting Cable to upper (75 Ω) position.





- Attach the VHF Connecting Cable (supplied) to the VHF OUT terminal of the VCR.

# CABLE CONNECTIONS

# CABLE-VCR-TV (FOR CATV/PAY CHANNELS RECORDING/PLAYBACK)

The unit has an extended range, and can tune the Mid-Band and Super-Band cable channels. (Channels A~W, A-2, A-1). Also, the unit can tune to any of the 70 UHF channels ( $14 \sim 83$ ). Refer to VCR FINE TUNING.



However, if you subscribe to a special channel which is scrambled—you probably have a descrambler box for proper reception. The PV-1631M by itself cannot properly receive a scrambled program since it does not contain a descrambler. In order for the PV-1631M to properly receive a scrambled program, your existing descrambler must be used. There are two commonly used methods of connection in this case.

# TYPICAL CABLE SYSTEM HOOK-UPS WITH CABLE CONVERTER/DESCRAMBLER BOXES



The above cable hook-up allows VCR-TV functions except for viewing one channel while recording another.



The above cable hook-up allows VCR-TV functions, including viewing one channel while recording another, but it requires two cable TV Converter Boxes, one Switch Box and one 2-Way Splitter.

Since the PV-1631M has an extended range of tuning, tuning-programming of non-scrambled Mid-Band and Super-Band TV programs is possible. When a cable converter or descrambler box is connected to the unit, all Unattended Recording functions will continue to operate with the exception of changing channels automatically. Channel selection will have to be performed with the cable converter. Unattended Recording is therefore limited to one channel at

Using the CATV Adaptor/PV-CT2 and the cable descrambler box:

All functions (e.g. Timer Recording, Recording one channel while watching another) will be operable for both regular TV channels and one pay TV channel. If you use the PV-CT2, refer to the Operating Instructions of the PV-CT2.

Note to CATV system installer:

This reminder is provided to call the CATV system installer's attention to Article 820-22 of the NEC that provides guidelines for proper grounding and, in particular, specifies that the cable ground shall be connected to the grounding system of the building, as close to the point of cable entry as practical.

# **GLOSSARY OF TERMS**

#### ACC

Automatic Color Control used to maintain an overall constant color signal level in the color circuits.

#### **ACK**

Automatic Color Killer.

#### **Adjacent Track**

This is the name of the video track to the immediate left or right of the track of concern.

#### **AFC**

Automatic Frequency Control used to phase-lock the color circuits to either the recording or playback color signal, in order to achieve a stable color signal.

#### **AFT**

Automatic Fine Tuning...This is a special circuit found in most recent TV sets which makes the local oscillator of the TV tuner follow the channel of concern in order to produce a stable IF frequency. In other words, if for any reason the TV station being received changes frequency, the AFT circuit will automatically compensate so that no interference will be seen on the screen, i.e., no manual fine tuning is necessary.

## AGC

Automatic Gain Control used to maintain an overall constant picture level in the luminance circuits.

#### APC

Automatic Phase Control used to help phase lock the color circuits to either the recording or playback color signal in order to achieve a stable color signal.

## Azimuth

A term used to describe the left to right tilt of the gap of a recording head, if it could be viewed straight on.

# **Balanced Modulator**

A circuit so designed to give as an output the frequency sum or frequency difference of its two input signals. Any special characteristics of one of the input signals will be present in the output signal.

## Beats

A term used to described the unwanted signals produced when two original signals are allowed to be mixed together.

## **Bipolar PG**

Pulse Generator signals that have both positive and negative excursions.

## Burst

A short time occurence (8 to 10 cycles) of the 3.58 MHz subcarrier signal, appearing right after horizontal sync but centered on the blanking portion of the video waveform. Burst is used to keep the color oscillator of a TV receiver locked to the broadcast station.

## B/W

Abbreviation for Black and White.

С

Capacitor.

# C Signal

The color portion of a video signal.

# Capstan

A small rotating metal dowel which drives the recording tape to assure positive tape movement.

#### Chroma

The color portion of a video signal.

#### Chrominance

The color portion of a video signal.

#### Clamp

The process of giving an AC signal a specific DC level.

#### Control Signal

A special signal recorded onto the video tape which is used during playback as a reference for the servo circuits.

### Converted Subcarrier

This is the process of frequency shifting the color 3.58MHz subcarrier and its sidebands down to 629kHz.

#### Crosstalk

The name given to the unwanted signals obtained when a video head picks up information from an adjacent track.

#### CUE

To scan the playback picture at a faster than normal speed in the Forward direction.

D

Diode.

#### DL

Delay Line.

#### Dark Clip

After emphasis, the negative going spikes (undershoot) of a video signal may be too large in amplitude for safe FM modulation. A dark clip circuit is used to cut off these spikes at an adjustable level.

## DDC

Direct Drive Cylinder...as used in VHS, this means that the video heads are driven by a self-contained brushless DC motor using no belts or gears. DD cylinders produce pictures with better stability.

# Delta Factor (∆f)

A term used to indicate that a playback signal off the video tape has some jitter or "wow and flutter".  $\Delta f$ , or "a change in frequency" means that the color signal off the tape is not a stable frequency of 629kHz, but rather a signal whose frequency at any instant is some small amount above or below 629kHz.

# Deviation

A term used to describe how far the FM carrier swings when it is modulated. In VHS the upper limit is 4.4 MHz.

# **Dew Detector**

A variable resistor whose resistance value depends upon the ambient humidity.

## Dihedral

A term used to describe the relative position between the two video heads as they are mounted in the head cylinder. Perfect dihedral means that the tips of the heads are exactly 180° apart.

# Dropout

A momentary absence of FM or color signal off the tape, whether due to uneven oxide or a coating of dust on the tape or video heads.

# **Duty Cycle**

In describing a rectangular waveform, the "duty" refers to the percentage of off time and on time for one complete cycle. 50—50 means that there are equal periods of off time and on time for one cycle and this would be a square wave.

#### E-E

Electronics to Electronics...this is the picture viewed on the TV set when a recording is being made. This picture goes through some but not all of the circuits of the recorder and is used to test the operation of said circuits.

#### EQ

Shortened form of "Equalization", used in the audio circuits.

#### **Emphasis**

The process of boosting the level of the high frequency portions of the video signal.

#### FG

Frequency Generator used in the servo circuits.

### FL

Filter.

## **FM Signal**

The luminance portion of the video signal is used to control the frequency of astable multivibrator. The output of this multivibrator is a frequency modulated (FM) signal shifting from 3.4MHz to 4.4MHz (plus sidebands).

#### Field

One half of a television picture. A field consists of 262.5 horizontal scanning lines across the picture tube. Two fields are necessary to complete a fully scanned TV picture (frame). First, one field is "sprayed" on the picture tube, starting at the top of the tube with Line 1, and ending at the bottom with Line 262.5. Then, the next field begins at the top of the tube again with Line 262.5 and ends at the bottom with Line 525. The lines of the second field lie in-between the lines of the first field. This property of falling in-between lines is called "interlacing". The two sweeps of the picture tube, or two fields make up one complete TV picture of "frame". Frame repetition is 30 Hz, therefore field repetition is 60 Hz.

## **Flagwaving**

This is the term used to describe a TV sets ability to accept unstable playback pictures from a video tape recorder. All home VTR's have some degree of playback instability. A TV set with a long horizontal AFC time constant may not recover from the VTR's instability before the active picture is being scanned. This can cause a bending or flapping from side to side of the top inch or so of the screen. This movement is called "flagwaving".

## Frame

One complete TV picture. See "Field".

## Gate

A circuit which will deliver an output only when a specific combination of its inputs are present. For use in analog or digital applications.

# **Guard Band**

This is the space between video tracks on the video tape in the SP mode. Guard bands contain no information.

## Hall Effect IC

An external magnetic field causes current to flow in this type of device.

#### HD

Horizontal Drive signal.

#### **Head Cylinder**

A cylindrical piece of metal which houses the video heads. The tips of the heads protrude slightly from the surface of the cylinder so that they may scan the tape as the cylinder spins.

# **Head Switching**

The action of turning off during playback, the video head which is not in contact with the video tape. A particular video head will be turned off 30 times per second. This is done so that the head which is not scanning the tape, and therefore not delivering a good signal, cannot contribute any noise to the playback signal.

## **Head Switching Pulse**

The signal which is applied to the Head Amplifier to perform head switching. This is a square wave at  $30\,\text{Hz}$ , with a  $50-50\,$  duty cycle.

#### Helical

A word used to describe a general type of VTR in which the tape wraps around the video head cylinder in the shape of a 3-dimensional spiral, or "helix". The video tracks are recorded as a series of slanted lines.

IC

Integrated Circuit.

## Interchangeability

A term used to describe how well a particular VTR will play back a tape recorded on another VTR of the same type. Good interchangeability indicates good playback.

# Interlacing

The property of the scan lines of two television fields to lie inbetween each other. See "Field".

# Interleaving

A term used to indicate that the harmonics of the chrominance signal lie in-between the harmonics of the luminance portion of the video signal as it is viewed on a spectrum analyzer. This means that the color information of a video signal does not interfere with, although it is broadcast at the same time as, the luminance information.

Also, signals which have this interleaving property are not readily seen on a TV screen, because of their virtual cancellation characteristics.

Interleaving signals (fi) must have the following frequency relationship:

fi = 
$$(\frac{2n+1}{2})$$
×fH (n = 0, 1, 2, 3, 4.....)  
fH = 15,734 Hz (H sync frequency)

## Jitter

The name of the effect on the playback picture if a VTR has too much "wow and flutter". The picture appears to have a rapid shaking movement.

L

Coil.

## Luminance

This is the portion of video signal which contains the sync and B/W information.

## MM۱

Monostable Multi-Vibrator...Usually an IC device which gives a logic high or low output with a variable duration upon receipt of an input pulse or transition.

# Non-Linear Emphasis

This is similar to regular emphasis with the difference that small level high frequency portions of the signal are given more of a boost than higher level high frequency portions.

#### NTSC

The National Television Systems Committee. These four letters identify the United States color television standard.

#### O.T.R.

One Touch Recording (O.T.R.) enables you to do impromptu timer recordings at any time. When you have to go out for urgent matters or you are going to sleep, this function is very useful. Just select the channel and push the O.T.R. Button for 30 minutes to 2 hours of recordings. After recording, the VCR will be turned off automatically.

#### PG

Pulse Generator used in the servo circuits.

Q

A term used to describe the graphic response of a filter or tuned amplifier.

R

Resistor.

#### Review

To scan the playback picture at a faster than normal speed in the Reverse direction.

#### RF

Radio Frequencies.

## **Rotary Chroma**

The name of the process used in VHS to change the phase of the chrominance signal at a rate of 15,734 (same as H sync frequency) times per second.

## **Rotary Transformer**

A device used to magnetically couple RF signals to and from the spinning video heads, thus eliminating the need for brushes.

# Sample and Hold

A process used in comparator circuits by which the value of a particular signal is measured at a specific moment in time...then this value is stored for later use.

## Search

To scan the playback picture at a faster than normal speed in either the forward or reverse direction.

## Servo

Short for Servo mechanism. This is an electro-mchanical device whose mechanical operation (for instance motor speed) constantly being measured and regulated so that it closely matches or follows an external reference.

# Skew

Another way of saying Tension Error. Skew is actually the change of size or shape of the video tracks on the tape from the time of recording to the time of playback. This can occur as a result of poor tension regulation by the VTR, or by ambient conditions which affect the tape.

# Subcarrier

The name of the 3.58MHz continuous wave signal used to carry color information.

#### SS

Slow and Still.

Т

Transformer.

#### TP

Test Point.

TD

Transistor.

# **Tension Error**

See "Skew"

#### **Time Base Stability**

A term used to describe how closely the playback video signal from a VTR matches an external reference video signal...in regard to sync timing rather than picture content.

# **Tracking**

This is the action of the spinning video heads during playback when they accurately track across the video RF information laid down during recording. Good tracking indicates that the heads are positioning themselves correctly, and are picking up a strong RF signal. Poor tracking indicates that the heads are off track, and picking up low level RF signal or noise.

#### vco

Voltage Controlled Oscillator...An oscillator whose frequency of oscillation is governed by an external voltage.

#### Video Head

This is the electro-magnet used to develop magnetic flux which will put RF information on the tape. In VHS, two video heads are mounted in a rotating cylinder around which the video tape is wrapped. As the cylinder spins, each video head is allowed to alternately scan the tape.

# Video Track

The name of the RF information laid down during recording, as a particular video head scans across the tape.

# VHS

Video Home System.

## VTR

Video Tape Recorder.

## ٧v

Video to Video...or...the actual playback picture produced from a tape during playback.

## VXC

Voltage Controlled Crystal Oscillator...Similar to VCO except that a quartz crystal is sued as a reference which can be varied.

## White Clip

After emphasis, the positive going spikes (overshoot) of the video signal may be too large for safe FM modulation. A white clip circuit is used to cut off these spikes at an adjustable level.

## XTAI

Abbreviation for crystal.

## Y Signal

The B/W portion of a video signal containing B/W information and sync.

# **CONTENTS**

| SAFETY PRECAUTIONS                                 | 2-1  |
|----------------------------------------------------|------|
| MECHANICAL ADJUSTMENT PROCEDURES                   | 2-2  |
| 1. DISASSEMBLY OF CABINET PARTS                    |      |
| 1). DISASSEMBLY FLOWCHART                          |      |
| 2). DETAILED DISASSEMBLY METHOD                    |      |
| 2. PROCEDURE FOR CLEANING OF UPPER CYLINDER UNIT   |      |
| 3. ADJUSTMENT PROCEDURES                           |      |
| 1). REPLACEMENT OF UPPER CYLINDER UNIT             | 2-5  |
| 2). POSITION ADJUSTMENT OF STATOR ANGLE UNIT       | 2–7  |
| 3). REPLACEMENT OF D.D. CYLINDER UNIT              |      |
| 4). CONFIRMATION OF DISCHARGE ANGLE UNIT           |      |
| INSTALLATION POSITION                              | 2-8  |
| 5). ADJUSTMENT OF V-STOPPERS                       |      |
| 6). POSITION ADJUSTMENT OF TENSION POST            |      |
| 7). MEASUREMENT AND ADJUSTMENT 9F BACK TENSION     |      |
| 8). CONFIRMATION OF BRAKE TORQUE                   |      |
| 9). CONFIRMATION OF TAKEUP TORQUE                  |      |
| 10). POSITION ADJUSTMENT OF SAFETY TAB SWITCH      |      |
| 11). HEIGHT ADJUSTMENT OF REEL TABLES              |      |
| 12). HEIGHT ADJUSTMENT OF TAPE GUIDE POSTS         | 2-12 |
| 13). HEIGHT ADJUSTMENT OF P5 ARM UNIT              |      |
| 14). TAPE INTERCHANGEABILITY ADJUSTMENT            | 2-13 |
| 15). ADJUSTMENT OF FG HEAD GAP                     | 2-17 |
| 16). CONFIRMATION/ADJUSTMENT OF THRUST GAP         | 2-17 |
| 17). ADJSUTMENT OF CAM GEAR AND MODE SELECT SWITCH | 2-18 |
| 18). ADJUSTMENT OF CASSETTE UP GEARS               |      |
| 19). ADJUSTMENT OF CASSETTE UP/DOWN SWITCH         | 2-22 |
|                                                    |      |
| SERVICING FIXTURES & TOOLS                         | 2-24 |
|                                                    |      |
| ELECTRICAL ADJUSTMENT PROCEDURES                   |      |
| SERVICE CAUTION                                    | 2-25 |
| 1. TEST EQUIPMENT                                  | 2-26 |
| 2. ADJUSTMENT PROCEDURES                           | 2-26 |
| 2-1). SERVO SECTION                                | 2-26 |
| 2-2). AUDIO SECTION                                |      |
| 2-3). LUMINANCE AND CHROMINANCE SECTION            | 2-34 |
| 2-4). SYSTEM CONTROL SECTION                       |      |
| 2-5). TV DEMODULATOR SECTION                       |      |
| 2-6). IR WIRELESS RECEIVING DETECTOR SECTION       |      |
|                                                    |      |
| LOCATION OF TEST POINTS AND ADJUSTMENT POINTS      | 2-46 |

# IMPORTANT SAFETY NOTICE

There are special components used in this equipment which are important for safety. These parts are shaded on the schematic diagram and on the replacement parts list. It is essential that these critical parts should be replaced with manufacturer's specified parts to prevent shock, fire, or other hazards. Do not modify the original design without permission of manufacturer.

# **SAFETY PRECAUTIONS**

# **GENERAL GUIDELINES**

- 1. When servicing, observe the original lead dress. If a short circuit is found, replace all parts which have been overheated or damaged by the short circuit.
- 2. After servicing, see to it that all the protective devices such as insulation barriers, insulation papers shields are properly installed.
- 3. After servicing, make the following leakage current checks to prevent the customer from being exposed to shock hazards.
- 4. USE A SEPARATE ISOLATION TRANSFORMER FOR THIS UNIT WHEN SERVICING.

# LEAKAGE CURRENT COLD CHECK

- Unplug the AC cord and connect a jumper between the two prongs on the plug.
- Measure the resistance value, with an ohmmeter, between the jumpered AC plug and each exposed metallic cabinet part on the equipment such as screwheads, connectors, control shafts, etc. When the exposed metallic part has a return path to the chassis, the reading should be between 1MΩ and 5.2MΩ.

When the exposed metal does not have a return path to the chassis, the reading must be  $\infty$ .



Figure 1

# LEAKAGE CURRENT HOT CHECK (See figure 1.)

- 1. Plug the AC cord directly into the AC outlet. Do not use an isolation transformer for this check.
- 2. Connect a  $1.5 k\Omega$ , 10 watts resistor, in parallel with a  $0.15 \mu F$  capacitor, between each exposed metallic part on the set and a good earth ground such as a water pipe, as shown in figure 1.
- 3. Use an AC voltmeter, with 1000 ohms/volt or more sensitivity, to measure the potential across the resistor.
- 4. Check each exposed metallic part, and measure the voltage at each point.
- 5. Reverse the AC plug in the AC outlet and repeat each of the above measurements.
- 6. The potential at any point should not exceed 0.75 volts RMS. A leakage current tester (Simpson Model 229 or equivalent) may be used to make the hot checks, leakage current must not exceed 1/2 milliamp. In case a measurement is outside of the limits specified, there is a possibility of a shock hazard, and the equipment should be repaired and rechecked before it is returned to the customer.

# MECHANICAL ADJUSTMENT PROCEDURES

# 1. DISASSEMBLY OF CABINET PARTS

# 1. DISASSEMBLY FLOWCHART

This flowchart indicates disassembly steps of the cabinet parts and the P. C. Boards in order to find the item(s) necessary for servicing. When reassembling, perform the step(s) in the reverse order. Bottom Plate can be removed separately.

#### Note:

- 1. When removing the front panel, work with care so as not to break the locking portions of the panel.
- 2. The 3 screws indicated by arrow marks on the bottom plate should be removed to remove the top case.



Fig. M1 Disassembly Flow Chart

# 2. DETAILED DISASSEMBLY METHOD

# 2-1. Removal of the Top Case

Place the deck so that the left side faces down, hold the deck with your hand and remove 3 screws (A).



Fig. M2-1 Removal of Top Case

Remove 2 screws (B). Then pull the top case toward the back and then carefully lift the front portion to remove.



Fig. M2-2 Removal of Top Case

# 2-2. Removal of the Front Panel

Release 3 locking tabs. Then hold both right and left top portions of the panel and turn it towards the front of deck to remove.



Fig. M3 Removal of front Panel

2-3. Removal of the Cassette Up Unit

Remove 3 Screws (C) and unplug the connector P1551 on Connection C.B.A.

Then remove Cassette Up Unit.

First slightly lift the left side of Cassette Up Unit and then lift right side of Cassette Up Unit.



Fig. M4-1 Removal of Cassette Up Unit

2-3-1. Cassette Holder Down Position without Cassette Tape

The cassette Holder in down position without cassette tape should be done according to the following procedures for some adjustments.

- 1. Turns the power sw ON.
- 2. Insert 2 screwdrivers into the Cassette Up Unit from the front, positioning them right and left, as shown in (A) and (B) in Fig. M4-2. The screwdrivers should keep both side holder guide levers in the unlock position. By pushing down while pushing toward the rear on the Holder unit, the loading action will begin. Continue this pressure and screwdriver position until the Cassette Holder Unit clears the 3 locking tabs. After clearing the locking tabs the Cassette Up unit will move into the down position by itself.



Fig. M4-2 Cassette Down Condition Without Cassette Tape

- 3. Connect TP6005 and GND on System Control Section through a jumper wire.
- 4. After the adjustment, remove the jumper wire.

# Note:

When TP6005 and GND are connected through a jumper wire, Eject can be performed but not Cassette Loading.

2-4. Removal of the Bottom Plate

Place the deck so that the left side faces down, hold the deck with your hand are remove 6 screws (D).



Fig. M5 Removal of Bottom Plate

- 2-5. Opening of the P.C. Boards (Bottom, Signal Process)
  Place the deck so that the left side faces down, hold the deck with your hand.
- 2-5-1. Main C.B.A.

  Remove 5 red screws (E) and a Locking Tab. Then open the Main P.C.

  Board.



Fig. M6 Opening of P.C.Board

# 2-5-2. Signal Process C.B.A.

- Disconnect the AC plug from the AC outlet.
- 2. Place the deck so that the left side faces down, hold the deck with your hand and remove 2 screws (F) and a locking tab on the Nornal Audio C.B.A. Then open the Nornal Audio C.B.A.
- 3. Remove the screw and jumper on the  $\mbox{U/V}$  Tuner Unit from bottom side.
- 4. Remove the 5 red screws (G).
- 5. Lift Signal Process C.B.A. Slightly and then turn the C.B.A. to set it as shown in Fig M8.
- 6. Remove the Top Cover Support Angle.



Fig. M7 Opening of P.C. Boards



Fig. M8 Setting of Signal Process C.B.A. Note:

Be careful lest the surrounding wires should be damaged.

# 2. PROCEDURE FOR CLEANING OF UPPER CYLINDER UNIT

- 1. Position the Video Head or FM Audio Head to permit access for cleaning and hold the upper cylinder to keep it from turning while cleaning.
- 2. Gently rub the Video Head or FM Audio Head in direction of tape travel with Head Cleaning Stick (VFK27) moistened with Freon TF.
- 3. Repeat for the other Video Head and FM Audio Head.



Fig. M9 Head Cleaning

# Note:

- 1. Do not rub vertically.
- 2. Do not apply any pressure to head. If contaminant is not easily removed, continued gentle wiping will usually remove the substance.

# 3. ADJUSTMENT PROCEDURES

# 1. REPLACEMENT OF UPPER CYLINDER UNIT

Work with extreme care when removing or replacing the Upper Cylinder Unit. Do not touch Video Heads and FM Audio Heads during servicing.

1. Remove the stator Angle Unit by removing 2 screws (A).



Fig. M10-1

- 2. Unsolder the 4 Lead wires which are color coded to matching marks (Y,R,T,Y) on the head relay board.
- 3. Remove the 2 screws(B) and gently lift the RT Rotor Base Unit from the Upper Cylinder Unit.



Fig. M10-2

- 4. Unsolder the 8 lead pins on the head relay board which are indicated by the arrows =.
- 5. Remove the 2 screws (C) and gently lift the Upper Cylinder Unit from the shaft.



Fig. M10-3 Replacement of Upper Cylinder Unit

6. Before reinstalling a new unit, clean the D.D. Cylinder shaft and the surface that it engages with on the Upper Cylinder with a soft cloth dampened with Freon TF.



Fig. M10-4 Replacement of Upper Cylinder
Unit

7. Install new Upper Cylinder Unit carefully so that the 8 lead pins are properly matched to the Head Relay Board.

For details on the installation position, refer to Fig. M10-5.

## Note

Install the 8 lead pins with extreme care so as not to damage them.



Fig. M10-5 Replacement of Upper Cylinder Unit

- 8. Tighten the 2 screws(C) and resolder the 8 lead pins to the head relay board.
- 9. Next reinstall the RT Rotor Base Unit by refastening the 2 screws(B).
- 10. Matching them to their proper marks. Resolder the 4 color coded wires to the head relay board (yellow wires to Y marks, red wire to R mark, brown wire to T mark) as shown in Fig. M10-2.

- 11. Install the stator Angle Unit with 2 screws(A) as shown Fig. M10-1 and adjust the position of the Stator Angle Unit.
- 12. Clean the Upper Cylinder with a deerskin swab saturated with Freon TF.

#### Note:

Upon completion of replacement, confirm performance. And if required, perform "TAPE INTERCHANGEABILITY ADJUSTMENT".

- 2. POSITION ADJUSTMENT OF STATOR ANGLE UNIT
- 1. Loosen 2 screws(A).
- 2. Adjust the position of the stator Angle Unit so that the hole of the stator Angle Unit is centered with RT Rotor Boss.



Fig. M11 Position Adjustment of Stator Angle Unit

# 3. REPLACEMENT OF D.D. CYLINDER UNIT

Work with extreme care when removing or replacing the D.D. Cylinder Unit. Do not touch video heads during servicing.

- 1. Disconnect connector (P1503) from the Stator Angle Unit.
- 2. Disconnect 2 connectors (P1501 and P1502) from the D.D. Cylinder Unit.
- 3. Remove screw (A) and discharge angle unit.
- 4. Remove the D.D. Cylinder Unit by removing 3 screws (B).



Fig. M12-1 Replacement of D.D. Cylinder Unit

# Note:

Since there is very little clearance between D.D. Cylinder Unit and chassis, remove the D.D. Cylinder Unit gently and carefully.

- 5. Remove the Stator Angle Unit, RT Rotor Base Unit, Upper Cylinder Unit from the D.D. Cylinder and reinstall it on new one. To perform this step, refer to "REPLACEMENT OF UPPER CYLINDER UNIT" section.
- 6. Reinstall the new D.D. Cylinder Unit and connect P1501 and P1502. Reinstall connect P1503 and Discharge Angle Unit.

# Note:

1. When reinstalling the new D.D. Cylinder Unit, fit the new D.D. Cylinder Unit to the chassis by turning it counterclockwise.



Fig. M12-2 Replacement of D.D. Cylinder Unit

- 2. Upon completion of replacement, confirm performance. If any further maintenance is required, perform "TAPE INTERCHANGE-ABILITY ADJUSTMENT".
- 4. CONFIRMATION OF DISCHARGE ANGLE UNIT INSTALLATION POSITION

Check to see if the Discharge Angle Unit is correctly set in a position as close to 1mm as possible to the upper side from the center of the cylinder shaft as shown in Fig. M13.

# Note:

Never install the Discharge Angle Unit to any position to the lower side from the center of the Cylinder shaft, but always within a maximum of 1mm to the upper side of the center of this shaft.



Fig. M13 Confirmation of Discharge Angle Unit Position

# 5. ADJUSTMENT OF V-STOPPERS

- \* Equipment Required: V-Stopper Adjustment Fixture .....(VFKS0029)
- 1. Remove the D.D. Cylinder Unit from chassis. (Stator Angle Unit does not need removal from the D.D. Cylinder Unit.) Refer to "REPLACEMENT OF D.D. CYLINDER UNIT" section.
- 2. Loosen 4 screws (A) and install the fixture.
  Push the V-stoppers snugly against the pins and tighten the 4 screws (A).



Fig. M14 Adjustment of V-Stoppers

3. Upon completion of the adjustment, simulate loading completion to ensure that posts smoothly fit the V-Stoppers. Then reinstall the D.D. Cylinder Unit.

# 6. POSITION ADJUSTMENT OF TENSION POST

- \* Equipment Required:
  Tension Post Adjustment Plate
  .....(VFKS0002)
  Fine Adjustment Screwdriver
  .....(VFKS0136)
- 1. Remove the Top Case and Front Panel.
- 2. Put the Cassette Holder in down position without a cassette tape, referring to the procedures in 2-3-1 on page 2-3.
- 3. Push the play button for loading.

- 4. As soon as loading is completed, disconnect the AC plug and remove the Cassette Up Unit.
- 5. Loosen the screw slightly so that the tension band bracket can be moved in accordance with the procedure in item 7, but does not move when the screw driver is removed.
- 6. Place the adjustment plate.
- 7. Insert the fine adjustment screw-driver into the hole and move the tension band bracket right or left so that the tension post just touches the fixture.
- 8. Remove the adjustment plate and tighten the screw.
- 9. Replace the adjustment plate.
  Confirm that the tension post just touches the fixture.
- 10. Remove the jumper.



Fig. M15 Adj. of Tension Post

- 7. MEASUREMENT AND ADJUSTMENT OF BACK TENSION
- A: Measurement Procedure
- \* Equipment Required:
  Back Tension Meter (Tentelometer,
  Model T2-H7-UM, Purchase Locally)
  VHS Cassette Tape (120 Minute Tape)
- \* Specification: 25 30g
- 1. Remove the Top Case.
- 2. Pull the erase head in the direction indicated by the arrow and hold it with adhesive tape.

- 3. Playback the cassette tape from its beginning and wait until tape running has stabilized. (for approx. 10 to 20 seconds)
- 4. Insert Tension Meter in tape path and confirm reading.
- 5. If the reading is out of specification, perform the adjustment procedure.



Fig. M16 Measurement of Back Tension

# Note:

- 1. Make sure that the three probes of the meter are all in solid contact with tape, but out of contact with any other parts while measuring.
- 2. It is recommended that measurements be taken three times as tension meter is very sensitive.

# B: Adjustment Procedure

- \* Equipment Required:
  Fine Adjustment Screwdriver...(VFK0136)
- 1. Loosen screw (A) and insert the fine adjustment screwdriver into the hole (B).
- 2. Move the adjustment plate either direction as indicated by the arrow to obtain the specified tension. Turn the driver clockwise to loosen tension, counterclockwise to tighten tension.

- 3. Tighten screw (A) and verify tension with the meter once again.
- 4. Reinstall the cabinet parts.



Fig. M17 Adj. of Back Tension

## Note

Upon completion of adjustment, remove the adhesive tape holding the erase head.

# 8. CONFIRMATION OF BRAKE TORQUE

# A: Confirmation Procedure

- \* Equipment Required:
  Dial Torque Gauge.....(VFK0133)
  Adaptor for Gauge.....(VFK0134)
- 1. Remove the Top Case.
- 2. Put the Cassette Holder in Down position without a cassette tape, referring to the procedures in 2-3-1 on page 2-3.
- 3. Attach the adaptor to the torque gauge and place the deck in STOP mode.
- 4. Place the torque gauge on the reel table. The weight of gauge should not rest on the reel table.



Fig. M18-1 Confirmation of Brake Torque

5. Turn torque gauge in either direction indicated in the Fig.M18-2 and read the gauge when the brake begins slipping.

# Note:

If proper brake torque can not be obtained, clean the rotating surface of reel table with a soft cloth and recheck torque before replacing brakes.



Fig. M18-2 Confirmation of Brake Torque

# 9. CONFIRMATION OF TAKEUP TORQUE

- \* Equipment Required:
  Dial Torque Gauge.....(VFK0133)
  Adaptor for Gauge.....(VFK0134)
- \* Specifications: in PLAY mode ......100 - 180g.cm in F.F. mode .....more than 400g.cm in REW mode .....more than 400g.cm
- 1. Attach the adaptor to the torque gauge.
- 2. Remove the Top Case and Bottom plate.
- 3. Put the Cassette Holder in Down position without a cassette tape, referring to the procedures in 2-3-1 on page 2-3.
- 4. Place the torque gauge on the takeup reel table, push the Play button and read torque on the gauge.

  Repeat above procedures in F.F. mode after pushing the F.F. button.

# Note:

While measuring, the weight of the gauge should not rest on the reel table.

- 5. Set the torque gauge on the supply reel table, press the rewind button to check REW mode torque.
- 6. Remove the jumper.



Fig. M19 Confirmation of Takeup Torque

| 10. | POSITION | ADJUSTMENT | OF | SAFETY | TAB | _ |
|-----|----------|------------|----|--------|-----|---|
|     | SWITCH   |            |    |        |     |   |

- \* Equipment Required:
  Cassette Holder Fixture ....(VFKS0004)
- 1. Remove the Top Case, Front Panel, and Cassette Up Unit.
- 2. Slightly loosen the screws (A) and (B).
- 3. Place the fixture in place over the reel tables.
- 4. Adjust the Safety Switch Angle either forward or backward until the Safety Tab Switch closes and Safety Tab Switch just turns ON. Tighten Screws (A) and (B).



Fig. M20-1 Position Adjustment of Safety
Tab Switch-(1)

## Note:

- 1. Don't adjust with upward switch lever.
- 2. Confirm that the Safety Switch correctly turns ON and OFF using video cassette tapes with and without the Safety Tab.



Fig. M20-2 Position Adjustment of Safety Tab Switch-(2)

# 11. HEIGHT ADJUSTMENT OF REEL TABLES

- \* Equipment Required:
  Post Adjustment Plate .....(VFKS0010)
  Reel Table Height Fixture ..(VFKS0009)
- \* Specification ..... (+- 0.1)mm
- 1. Remove the Top Case, Front Panel, and Cassette Up Unit.
- 2. Place the post adjustment plate over the reels, and put the fixture on it. Set the fixture to zero "O" making sure that the scraper of fixture touches the cut-out portion of the plate.



Fig. M21-1 Adj. of Reel Table Height

3. Then measure the top portion of reel table and confirm the difference against the result of the measurement taken in the above step.

Do same for the other reel table.



Fig. M21-2 Adj. of Reel Table Height

- 4. If the difference is more than 0.1mm (higher or lower), adjust the height of reel table to obtain the specified height.
- 5. For adjustment, change the poly slider washer located under the reel table. (The washer is available in sizes of varying thickness, t=0.13mm, 0.25mm and 0.5mm.)

# 12. HEIGHT ADJUSTMENT OF TAPE GUIDE POSTS

- \* Equipment Required:
  Lock Screw Wrench ......(VFKS0032)
  Post Adjustment Plate .....(VFKS0010)
  Reel Table Height Fixture ..(VFKS0009)
  Nut Driver ......(Purchase Locally)
  Post Adjustment Screwdriver
  .....(VFK0137)
- 1. Remove the Top Case, Front Panel and Cassette Up Unit. Place the Adjustment Plate.



Fig. M22-1 Adj. of Tape Guide Post Height

2. First lower all posts so that the condition of height becomes as shown below.

Lower end of post and tape guide should be lower than scraper.

Loosen lock screw located at lower portion of posts (P2 & P3) by Lock Screw Wrench, then turn the posts with post adjustment screwdriver.



Fig. M22-2 Adj. of Tape Guide Post Height

- 3. Place the fixture on the Adjustment Plate and fit the scraper to the Adjustment Plate as shown in Fig. M22-2. (The scraper of the fixture should be fully lowered till it touches plate.)
- 4. Set the fixture to zero "0" and slowly raise the post until it just touches the scraper. When the scraper touches the post, it should fit as shown below in Fig. M22-3 (b).

For adjustment of P1 and P4, use the nut driver.

(The post cap on P4 can be removed by turning counterclockwise.) For adjustment of P2 and P3, use the post adjustment screwdriver.



Fig. M22-3 Adj. of Tape Guide Post Height

#### Note:

Upon completion of adjustment, tighten lock screws on the P2 and P3 by Lock Screw Wrench and also install the post cap on post 4. When the post cap on P4 is reinstalled, the position of it should be as shown below when viewed from the direction indicated by the arrow.



Fig. M22-4 Installation of Post Cap

# 13. HEIGHT ADJUSTMENT OF P5 ARM UNIT

# Note:

- 1. The adjustment should be performed after the adjustment of P4 as the spec. is based on height of P4.
- 2. The adjustment should be performed in the loading completion mode.
- \* Equipment Required:
  Post Adjustment Plate .....(VFKS0010)
  Reel Table Height Fixture ..(VFKS0009)
  Nut Driver (5.5mm) ..Purchase Locally
  Specification : 0 (+- 0.05) mm



Fig. M23 Height Adjustment of P5 Arm Unit

- 1. Put the cassette Holder in down position without a cassette tape referring to the procedures in 2-3-1 on page 2-2.
- 2. Turn power switch ON, push the play button for loading.
  Then disconnect the AC plug.
- 3. First lower the P5 Arm Unit a little lower than the Post Adjustment Plate by turning the nut clockwise.
- 4. Place the post adjustment plate, put the reel table height fixture on the plate and set the height fixture to zero "O" with condition the foot touches on the height adjustment plate.
- 5. Slightly raise the post by turning the nut counterclockwise. Place the foot to the post as shown in Fig. M23.
- 6. Then slowly turn the nut till the fixture reads the specified height.
- 7. Reinstall the Cassette Up Unit and remove the jumper and plug in for unloading.

# 14. TAPE INTERCHANGEABILITY ADJUSTMENT (FINAL ADJUSTMENT)

# Note:

To perform these adjustment/confirmation procedures, make sure that the tracking control is set in the detent (fixed) position.

\* Equipment Required:
Alignment Tape ......(VFMSO001H6)
Post Adjustment
Screwdriver .......(VFK0137)
H-Position Adujstment
Screwdriver ......(VFKS0003)
Lock Screw Wrench .....(VFKS0032)
Nut Driver (8mm) .... Purchase Locally
Oscilloscope

# 14-A. CONFIRMATION OF TAPE TRAVEL

1. Playback a cassette tape and confirm that the tape travels without curling at the edges of the tape.



Fig. M24 Confirmation of Tape Travel

2. If curling is apparent, adjust the height of posts by turning the top of post with the post adjustment screwdriver. (for P2 & P3)

# Note:

Before turning P2 and P3, slightly loosen a lock screw by the Lock Screw Wrench.

# | 14-B. CONFIRMATION OF A/C HEAD HEIGHT

This confirmation is required when the A/C Head was replaced and for preliminary height adjustment. For final adjustments, perform item 14-C, 14-D.

· — — — — — — — — — — .

1. Looking at the lower edge of the control head with the tape running, ensure that the lower edge of the tape runs along the lower edge of the control head. If it doesn't, slightly turn the nut (A) in either direction to correct. Clockwise to lower the head and counterclockwise to raise it.



Fig. M25 Confirmation of A/C Head Height

# 14-C. CONFIRMATION OF TILT OF A/C HEAD

This procedure should be performed after the height adjustment of P4.

- 1. Playback the tape and confirm that the tape runs between lower and top limits of P4 post. Also confirm that the tape is running smoothly.
- 2. If adjustment is required, turn Screw (C) clockwise until curling is apparent at lower edge of P4. Then turn screw (C) counterclockwise until the curling is smoothed out.



Fig. M26 Confirmation of A/C Head Tilt

14-D. HEIGHT AND AZIMUTH ADJUSTMENT OF
A/C HEAD

- 1. Connect the oscilloscope CH1 to the Audio Output (Left) and CH2 to the Audio Output (Right) on the rear panel.
- 2. Playback the color bar portion (3kHz, Stereo) of the alignment tape (VFMS 0001H6).
- 3. Adjust the screw (B) so that the CH2 Audio Output (Right) is maximized.



Fig. M27-1 Height and Azimuth Adjustment of A/C Head

4. Then, adjust the nut (A) so that the CH2 Audio Output (Right) is Maximized.



Fig. M27-2 Height and Azimuth Adjustment of A/C Head

- 5. Playback the monoscope portion (6KHz, Monaural) of the alignment tape (VFMS 0001H6).
- 6. Then, adjust the screw (B) so that the phases of both channels match as shown in Fig. M27-3.



Fig. M27-3 Height and Azimuth Adjustment of A/C Head

# Note:

During this adjustment, the audio output level should be maximum.

14-E. HORIZONTAL POSITION ADJUSTMENT OF A/C HEAD

1. Set the tracking control to the detent (fixed) point. Connect the oscilloscope CH1 to TP3005 on the Signal Process Section and CH2 to TP2003 on the Servo Section.



Fig. M28 Horizontal Position Adjustment of A/C Head-(1)

- 2. Playback the monoscope portion of the alignment tape (VFMSO001H6) and note the envelope which corresponds to the high period of the Head Switching Signal at TP2003 as shown in Fig. M29. Once note, use only this envelope for the subsequent Adjustments.
- 3. Slowly turn the Adjustment Nut so that the envelope is at maximum. Before finding the center of the maximum period of envelope, rotate the adjustment nut back and forth slightly to confirm the limits on either side of the maximum period. Next determine the center point.
- 4. Confirmation of the correct adjustment can be made by turning the tracking control to the right and the left to check the symmetry of the envelope. If the envelope changes symmetrically, the adjustment has been done correctly.



Fig. M29 Horizontal Position Adjustment of A/C Head-(2)



Fig. M30 Horizontal Position Adjustment of A/C Head-(3)

# 14-F. CONFIRMATION ADJUSTMENT OF ENVELOPE OUTPUT

- 1. Set the tracking control in the detent (fixed) position. Connect the oscilloscope to the TP3005 on Signal Process Section. Use TP3006 as a trigger.
- 2. Playback the monoscope portion of the alignment tape (VFMSOOO1H6) and adjust the height of posts P2 and P3 watching the scope display so that the envelope becomes as flat as possible.

(V1/V-max≥0.7, V2/V-max≥0.8)
If adjustment is required, turn top of post with post adjustment screwdriver. For adjustment of P2 & P3, refer to step 2 of item 14-A.



Fig. M31-1 Spec. of Envelope Figure

3. When the scope display is as follows, adjust the height of P2 so that the waveform looks like Fig. M31-4.



Fig. M31-2 Envelope Figure

4. When the scope display is as follows, adjust the height of P3 so that the waveform looks like Fig. M31-4.



Fig. M31-3 Envelope Figure

5. The scope display should appear as shown below when P2 and P3 are adjusted correctly.



Fig. M31-4 Envelope Figure

# Note:

Upon completion of adjustment of P2 and P3, confirm the Horizontal Position by turning the tracking control clockwise or counterclockwise. And if required, perform "Horizontal Position Adjustment of A/C Head".

# 15. ADJUSTMENT OF FG HEAD GAP

\*Equipment Required: Fine Adjustment Screwdriver...VFK0136

0.16 (+-0.02) mm\*Specification:

1. Remove 2 screws (A) on the thrust Holder, then remove the Capstan Pulley Unit, 5 screws (B) and Capstan Stator Unit.



Fig. M32-1 Adjustment of F.G. Head Gap

2. Slightly loosen the 2 screws (C) and set the fine adjustment screwdriver into the hole (D). Turn screwdriver clockwise until the FG Head touches the rotor and just slightly turn it counterclockwise so that the gap becomes as specified.



Fig. M32-2 Adjustment of F.G. Head Gap

#### Note:

- 1. Do not touch the outside circumference surface of the rotor with any tool, and keep any magnetizable material away from the rotor magnet.
- 2. When reinstalling the Capstan Stator Unit, the circumference of the hole in the Capstan Stator Unit must be Centered with the circumference of the Rotor Boss.



Fig. M32-3 Adjustment of F.G. Head Gap

# 16. CONFIRMATION/ADJUSTMENT OF THRUST GAP

\* Specification:

- \* Equipment Required: Reel Table Height Fixture...(VFKS0009) 0.05 - 0.09mm
- 1. Place the Unit upside down and place the height fixture on the thrust Holder. Set the fixture to zero "0".
- 2. Next, push the capstan shaft by your finger, and confirm the thrust gap.
- 3. If the gap is out of specification, then adjust the thrust screw by turning it clockwise or counterclockwise.



Fig. M33-1 Confirmation/Adjustment of Thrust Gap

### Note:

Upon completion of above procedure, adjust the capstsn seal so that this seal is out of contact with the pressure roller and capstan holder. The specification of clearance is approx.  $0.5 \ (+-0.2)$ mm.



Fig. M33-2 Adjustment of Capstan Seal

# 17. ADJUSTMENT OF CAM GEAR AND MODE SELECT SWITCH

### General Condition:

The mechanism of this model is mostly engaged to the electrical circuit, System Control Circuit, through the mode select switch. Therefore the relation between the mode select switch and the cam gear determines all further mechanical movement of the mechanical parts such as levers, gears, rollers and so on. If the adjustment of this item is performed improperly, the deck will be unloaded or automatically stopped. It will also result in damage to mechanical and electrical parts.

## Note:

Step 7 of this procedure describes the necessary adjustment if the mode select switch is replaced.

# Adjustment Procedures:

This procedure starts with the condition that the Cassette Lock Unit, Kick Base Unit, Sector Gear, Cam Gear and Driving Gear have been removed.

1. Turn loading gear clockwise until post 2 and 3 are fully unloaded. The small projection on the loading gear will be pointing up in the unloaded condition.



Fig. M34-1 Adj. Procedure

2. Install the driving gear so that the hole on the driving gear aligns with the projection on the loading gear. Ensure that the loading gear is still in the fully unloaded condition. Install the C-Ring to mount driving gear.

3. Slowly slide the main rod so that the hole (B) of the main rod meets the hole (C) of chassis. This will simulate stop mode (unloading completion) of main rod and mode select switch.



Fig. M34-2 Adj. Procedure

4. Insert the cam gear with the simple slot side showing so that the hole (A) on the gear meets the hole (B) on the main rod and hole(C) on the chassis. To facilitate matcing the three holes, use the small hex wrench or a metal pin. Then install the C-Ring to mount cam gear.



Fig. M34-3 Adj. Procedure

5. Install the sector gear so that the pin on the sector gear meets the inner slot of the cam gear as shown in Fig. M34-4. Also install C-Ring in order to mount sector gear.



Fig. M34-4 Adj. Procedure

6. Completed adjustments should appear as illustrated below.



Fig. M34-5 Adj. Procedure

7. (Adjustment of Mode Select Switch)
Keep the main rod in the unloading completion condition so that the hole (A) cam gear, hole (B) of main rod and the hole (C) of chassis are aligned. Upon completion, ensure that the movement of the deck is normal. Place the Mode Select Switch so that the movable projection(A) on Mode Select Switch fits around the tab on the main rod, enclosing it.

Slowly slide the Mode Select Switch sideways until the V-notches in movable Projection and V-notch on the Mode Select Switch are aligned. Tighten two screws (C) to secure alignment.



Fig. M34-6 Adj. of Mode Select Switch



Fig. M34-7 Adj. of Mode Select Switch

- 8. Turn the Pulley gear in both directions to confirm smooth movement of this mechanism.
- 9. Install the Cassette Lock Unit and Kick Base Unit.

# 18. ADJUSTMENT OF CASSETTE UP GEARS

- 1. Remove the Cassette Up Unit according to removal procedure of Cassette Up Unit.
- 2. Set Cassette Up Unit in full cassette Up condition.

Full Cassette Up Condition :

- (a). Turn the Cassette Loading Motor by hand to the Cassette Up Condition.
- (b). Then remove the worm wheel stopper. Confirm that the wiper gear arm Unit (R) is on the full left side of its arc and cassette holder is in full up condition as shown in Fig. M35.



Fig. M35 Cassette Up Condition Note:

All the follwing procedures for adjustment and part replacement should be performed with Cassette Up Unit in full Cassette Up Condition.

# 18-A. RIGHT SIDE GEARS

This procedure starts with the condition that the switch Angle Unit, worm wheel unit, wiper Gear arm Unit (R) and Main Shaft Gear (R) have been removed.



Fig. M36-1 Adjustment of Cassette Up Gears-(1)



Fig. M36-2 Adjustment of Cassette Up Gears-(2)

2. Install the wiper gear arm (R) unit so that the projection (A) on the wiper gear arm (R) unit and the Projection (B) on the Main shaft Gear (R) are aligned. Pin of Cassette Holder-R should fit into the slot of wiper gear arm (R).



Fig. M36-3 Adjustment of Cassette Up Gears-(3)

3. Install the worm wheel unit so that the tooth (E) beside the projection (C) on the worm wheel unit and the valley (F) on the Main Shaft Gear opposite the shorter projection (D) on the Main shaft Gear should be aligned as shown in Fig. M36-4.



Fig. M36-4 Adjustment of Cassette Up Gears-(4)

4. Install worm wheel stopper unit and support angle with 3 screws (A) as shown in Fig. M36-5.



Fig. M36-5 Adjustment of Cassette Up Gears-(5)

5. Install the Switch Angle Unit with screw and 3 Locking tabs as shown in Fig. M36-6.



Fig. M36-6 Adjustment of Cassette Up Gears-(6)

18-B. LEFT SIDE GEARS

This procedure starts with the condition that the Cassette Compartment Opener Lever, wiper Gear (L) and Main Shaft (L) Unit have been removed.



Fig. M36-7 Adjustment of Cassette Up Gears-(7)

1. Install the Main shaft Gear (L) Unit.



Fig. M36-8 Adjustment of Cassette Up Gears-(8)

2. Install the wiper Gear (L) unit so that the projection (E) on the wiper Gear (L) unit meets the projection (F) on the Main Shaft Gear (L) Unit. At that time, Pin of Cassette holder-L should fit into the slot of wiper Gear (L).

Then install the screw (B).



Fig. M36-9 Adjustment of Cassette Up Gears-(9)

3. Install the cassette compartment opener Lever as shown in Fig. M36-10. Ensure a portion of opener lever (G) slides into the opening beside Cassette door. Snap Cassette Compartment opener lever into place over its pin. Pull down on (H) to ensure Cassette door opens.



Fig. M36-10 Adjustment of Cassette Up Gears-(10)

## 19. ADJUSTMENT OF CASSETTE UP/DOWN SWITCH

- \* Equipment Required : Fine Adjustment Screwdriver ..VFKS0136
- 1. Confirm that the Cassette Up Unit is in the full cassette up condition and then remove the Cassette Up Unit referring to removal procedure of Cassette Up Unit.
- 2. Confirm that the projection (F) on the Wiper Arm Gear (R) Unit meets the apex of triangle of Cassette In Switch as shown in Fig. M36-11.
- 3. Slightly loosen the Screw (A) and insert the adjustment screwdriver into the hole (B).
- 4. Turn the adjustment screwdriver until projection (G) on the wiper Arm Gear (R) Unit meets the triangle of Cassette Up/Down Switch as shown in Fig. M36-11. Then Confirm the Cassette Up/Down Switch turns ON and tighten screw (A).
- 5. Connect the connector P1551 on the connection C.B.A. Insert the cassette tape, then confirm cassette up and cassette down movement.



Fig. M36-11 Adjustment of Cassette Up Gears



### ELECTRICAL ADJUSTMENT PROCEDURES

### **SERVICE CAUTION**

When servicing the Luminance, Chrominance C.B.A.s and the TV Demodulator Unit, take notice of following items.

A. Luminance and Chrominance C.B.A.s

Do not bend or spread apart the Luminance and Chrominance C.B.A.s. By doing so, damage to the Signal Process C.B.A. or pins on the C.B.A.s may result.

B. Adjustment on these C.B.A.s and TV Demodulator Unit

Adjustment can be performed without removing these C.B.A.s or the TV Demodulator Unit.

- C. Signal check and Replacement of parts on these C.B.A. and the TV Demodulator Unit.
  - 1. Remove TV Demodulator or one of these C.B.A.s, then insert the Lead Pins and solder on the foil side of Signal Process C.B.A. as shown in (A) in figure.
  - 2. Solder the TV Demodulator Unit or the extracted C.B.A. at the Pins on the Signal Process C.B.A. as shown in (B) in figure.
    Ensure that the pins numbers are aligned with their respective PC
  - Board Pin locations.

    3. Perform the signal check or replace parts.
  - 4. After completion, restore to the original assembled condition.



#### NOTE:

When troubleshooting the Luminance or Chrominance C.B.A. and soldering to the foil side of Signal Process C.B.A., remove the metal P.C.Board angle.

#### 1. TEST EQUIPMENT

To perform the electrical adjustments completely, the following equipment is required.

1. DVM (Digital Volt Meter)

Voltage Range : 0.001 - 50V

2. Dual-trace Oscilloscope

Voltage Range : 0.001 - 50V/Div.

Frequency Range: DC - 15MHz Probes: 10:1, 1:1

3. Frequency Counter

Frequency Range: 0 - 150MHz

4. Signal Generator

Sinewave : 0 - 10MHz

5. AC Millivolt Meter

Voltage Range : 0 - 0.3mVrms

: 0 - 3mVrms

6. Tuning Amp.

7. VIF Sweep Generator/Trap Adjuster

8. Spectrum Analyzer

9. NTSC Video Pattern Generator

10. DC Power Supply Unit

Voltage : 0 - 15V DC

11. Variable Attenuater

Attenuate : (+-0) dB = -50dB

12. Monitor Scope

13. Color TV Receiver or Monitor

14. V-Hold ADJ. Tool (VFKS0031)

15. Plastic Tip Driver and Non-Metal Driver

16. Lock Screw Wrench (VFKS0032)

17. Isolation Transformer

18. VHS Alignment Tape (VFMS0001H6)



Fig. E1

#### 2. ADJUSTMENT PROCEDURES

These adjustment procedures consist of the following sections.

- 1. Servo Sectin
- 2. Audio Section
- 3. Luminance and Chrominance Section
- 4. System Control Section
- 5. TV Demodulator Section
- 6. IR Wireless Receiving Detector Section

#### 2-1. SERVO SECTION



Fig. E2

# 2-1-1. HEAD SWITCHING POSITION ADJUSTMENT

Test Points: TP2003, TP3201
Adjustment: R2069 (PG SHIFTER)

- 1. Playback color bar section of the alignment tape.
- 2. Connect the scope CH 1 to TP3201 on the Sub Audio Section and CH 2 to TP2003 on the Servo Section. Set the scope to the CHOP mode.
- 3. Also set the scope to the Delay mode or expand the vertical interval of the signal from TP3201.
- 4. Adjust the PG SHIFTER (R2069) so that the head switching point is 6 (+-1) H before the start of vertical sync as shown below.



Fig. E3 TP3201 0.5V/0.1msec. div. TP2003 5V/0.1msec. div.

5. Change the slope selector on the scope from "+" to "-" and make sure that the other switching point is also 6 (+- 1) H before the beginning of vertical sync.

#### 2-1-2. TRACKING FIX ADJUSTMENT

Test Points : TP2002, TP2003

Adjustment : R2066 (TRACKING FIX)

- 1. Supply a video signal to the Video Input on the rear panel or tune in a local TV program.
- 2. Set the Tracking Control on the front panel to the center detent point.
- 3. Insert a cassette tape and make a recording in the SP mode for a few minutes.
- 4. Playback the portion just recorded.
- 5. Connect the scope CH 1 to TP2003 and CH 2 to TP2002 on the Servo Section.
- 6. Adjust the TRACKING FIX (R2066) so that the is 7.3 (+- 0.4) msec.



Fig. E4 TP2003 5V/2msec. div. TP2002 1V/2msec. div.

#### 2-1-3. SLOW BRAKE ADJUSTMENT

Test Points: TP2006, TP2007

Adjustments: R2098 (SLOW BRAKE-SP)

R2097 (SLOW BRAKE-SLP)

- 1. Supply a video signal to the video Input on the rear panel or tune in a local TV program.
- 2. Insert a cassette tape and make a recording in the SP mode for a few minutes.
- 3. Playback the portion just recorded.
- 4. Press the Slow/FA key on the front panel.
- 5. Connect the scope CH 1 to TP2007 and CH 2 to TP2006 on the Servo Section. Set the scope to the CHOP mode.
- 6. Adjust the SLOW BRAKE-SP (R2098) so that the A-portion is as shown below.



Fig. E5 TP2007 0.2V/10msec. div. TP2006 0.5V/10msec. div.

7. In case of misadjustment, A-portion is as shown in Fig. E6.



Fig. E6

- 8. Then, change to SLP and make a recording for a few minutes.
- 9. Playback the portion just recorded.
- 10. Press the Slow/FA key on the front panel.
- 11. Adjust the Slow BRAKE SLP (R2097) same as in the SP mode.

#### 2-1-4. V LOCK ADJUSTMENT

Equipment : TV Monitor

Adjustments: R2100 (V-LOCK-SLP) R2099 (V-LOCK-SP)

- 1. Supply a color bar signal to the Video Input on the rear panel or tune in a local TV program.
- 2. Insert a cassette tape and make a recording in the SLP mode for a few minutes.
- 3. Playback the portion just recorded.
- 4. Set the slow tracking VR on the front panel to the center detent point.
- 5. Push the PAUSE/STILL key.
- 6. Adjust the V-LOCK-SLP (R2100) on the System Control Section so that the center of picture is most stable.



Fig. E7

- 7. Place the unit in SP mode and make a recording for a few minutes.
- 8. Playback the portion just recorded, and push the PAUSE/STILL key.
- 9. Adjust the V-LOCK-SP (R2099) on the System Control Section so that the center of picture is most stable.

# 2-1-5. AUDIO HEAD SWITCHING POSITION ADJUSTMENT

Test Points: TP2003, TP2010, TP4202 Adjustment: R2042 (AUDIO HEAD SW.)

- Supply the video signal to the Video Input on the rear panel or tune in a local TV program.
- 2. Insert a cassette tape and make a recording in the SP mode.
- 3. Connect the scope CH 1 to TP2003 and CH 2 to TP2010 on the servo section.
- 4. Playback the portion just recorded.
- 5. Adjust the AUDIO HEAD SW. (R2042) so that the TA is 5.5 (+- 0.1) msec.



Fig. E8-1 TP2003 5V/1msec. div. TP2010 5V/1msec. div.

(Confirmation)

6. Playback the portion just recorded and confirm that the envelope at TP4202 is as shown in Fig. E8-2.



Fig. E8-2

7. If the envelope has the Drop Out (Apportion in Fig. E8-3), adjust the AUDIO HEAD SW. (R2042) so that the audio envelope has no drop out portion as shown in Fig. E8-2.



Fig. E8-3

2-2. AUDIO SECTION

### 2-2-1. NORMAL AUDIO SECTION



Fig. E9

#### 2-2-1-1. BIAS CURRENT ADJUSTMENT

Test Point : Audio Head Terminal (L, R)
Adjustment : C4110 (L CH, REC BIAS)
C4111 (R CH, REC BIAS)

- 1. Plug in a phono plug to the Audio Input, but do not supply any audio signal to the AUDIO INPUT on the rear panel.
- 2. Insert a cassette tape and make a recording in the SP mode.
- 3. Connect the AC Millivolt Meter or scope as shown in Fig. E10.



Fig. E10

- 4. While the recording is taking place, adjust the L CH REC BIAS (C4110) on the Normal Audio Section so that the voltage is within the specification.
- 5. Change the connected point of the AC Millivolt Meter or scope as shown in Fig. E11.



Fig. E11

6. During recording, adjust the R CH REC BIAS (C4111) on the Normal Audio Section so that the voltage is within the specification.

(Specification should be decided by the color of the dot on A/C Head.)

| COLOR DOT    | ADJUSTMENT VOLTAGE                         |
|--------------|--------------------------------------------|
| NO COLOR DOT | 1.5 (+- 0.05) mVrms                        |
| WHITE COLOR  | or<br>4.3 (+- 0.1) mVp-p                   |
| Color Dot    |                                            |
|              | be made depending on ot on the A/C head as |
| above.       | or on one my o neud do                     |

Fig. E12

7. Remove the AC Millivolt Meter or scope.

#### Note:

For Service replacement, A/C Head without color dot is supplied.

#### 2-2-1-2. PLAYBACK GAIN ADJUSTMENT

Test Points: TP4001 (L CH)

TP4003 (R CH)

Adjustments: R4010 (PB GAIN-L CH)

R4060 (PB GAIN-R CH)

- 1. Playback Multi-Burst section (1kHz Audio) of the alignment tape (VFMSO001H6).
- 2. Connect the scope CH 1 to TP4001 and CH 2 to TP4003 on the Normal Audio Section.
- 3. Set the DOLBY NR Switch on the front panel to OFF.
- 4. Set the scope to CH 1 mode and adjust the PB GAIN-L CH (R4010) on the Normal Audio Section so that the level of waveform is 300 (+- 15)mVp-p.



Fig. E13 TP4001 0.1V/1msec. div.

5. Set the scope to CH 2 mode and adjustment PB GAIN-R-CH (R4060) on the Normal Audio Section so that the level of waveform is 300 (+- 15) mVp-p.

#### 2-2-1-3. Recording Gain Adjustment

Test Points: TP4001, TP4003

Adjustments: R4025 (REC LEVEL-L CH)

R4075 (REC LEVEL-R CH)

#### (L Channel)

- 1. Connect the Signal Generator to AUDIO IN (L) jack on the rear panel.
- 2. Supply a sinewave signal (1KHz, -10dB, 890mVp-p) from the Signal Generator.
- 3. Set the DOLBY NR Switch on the front panel to OFF.
- 4. Place the unit in SP recording mode.
- 5. Connect the scope to TP4001 on the Normal Audio Section and set the recording level at approx. 1.3 Vp-p as a starting point of this adjustment.
- 6. Playback the portion just recorded and read the level of Playback.
- 7. Confirm that the Recording level and Playback level are the same level.
- 8. If the Recording level and Playback level aren't the same. During Recording, turn the REC LEVEL-L (R4025) to slightly increase or decrease the signal level.
- 9. Repeat above step 4 to 8 until Recording level and Playback level are the same.

#### (R Channel)

- Connect the signal Generator to AUDIO IN (R) jack on the rear panel.
- 2. Supply a sinewave signal (1KHz, -10dB, 890mVp-p) from the Signal Generator.
- 3. Place the unit in SP recording mode.
- 4. Connect the scope to TP4003 on the Normal Audio Section and set the recording level at approx. 1.3Vp-p as a starting point of this adjustment.
- 5. Playback the portion just recorded and read the level of playback.
- 6. Adjust the REC LEVEL-R (R4075) as is done in L channel adjustment.

## 2-2-1-4. Overall Frequency Response Adjustment

Test Points : TP4001 (L CH)

TP4003 (R CH)

Adjustments: R4005 (PB EQ-L CH)

R4055 (PB EQ-R CH)

- 1. Supply the color bar signal to the Video Input on the rear panel.
- 2. Supply a sinewave signal (1KHz and 5kHz, 40dB, 28mVp-p) to either Audio Input L CH or R CH on the rear panel.
- 3. Connect the AC Millivolt Meter to TP4001 on the Normal Audio Section.
- 4. Insert a cassette tape and make a recording in SP mode 1KHz first, then 5KHz.
- 5. Connect the phono plug to Audio Out jack (R CH).
- 6. Playback the portion just recorded.
- 7. Adjust PB EQ-L CH(R4005) on the Normal Audio Section so that the 1KHz and 5KHz outputs are balanced.
- 8. Then, connect the AC Millivolt Meter to TP4003 on the Normal Audio Section.
- 9. Remove the phono plug from Audio Out jack (R CH), then connect the phono plug to Audio Out jack (L CH).
- 10. Playback the portion just recorded.
- 11. Adjust the PB EQ-R CH (R4055) on the Normal Audio Section so that the 5KHz output is 0 (+- 0.5) dB of 1KHz output.
- 12. Remove the AC Millivolt Meter and the Phono plug.

#### 2-2-2. FM AUDIO SECTION



Fig. E14

When Servicing the FM Audio C.B.A., take notice of following items.

1. Disconnect the AC plug from the AC outlet.

2. Remove the 2 Screws (A), then remove the FM Audio C.B.A. When removing the FM Audio C.B.A., and keeping it tilted up, move it away from the front of the unit to free it.



Fig. E15

3. Remove the Shield Plate on the FM Audio C.B.A. by removing the 3 plastic rivets that secure it to the C.B.A. Then lay the Shield Plate on the Cassette up Unit, underneath the C.B.A. Let the C.B.A. rest on the Shiled Plate as shown in Fig. E14.

## 2-2-2-1. CARRIER FREQUENCY AND AUDIO DEVIATION ADJUSTMENT

Test Points: TP4203, TP4206, pin23 of

IC4203, pin 23 of IC4210

Adjustments: R4266 (CARRIER FRE-L)

R4304 (CARRIER FRE-R)

R4223 (DEVIATION - L)

R4296 (DEVIATION - R)

#### A:L-CHANNEL

(A-1, Carrier Frequency Adjustment)

- 1. Set the Input Select Switch on the front panel to LINE mode.
- 2. Connect the Phono plug to Audio IN jack (L CH) to complete no signal condition.

- 3. Place the unit in STOP mode.
- 4. Connect the frequency counter to TP4203 on the FM Audio Section.
- 5. Adjust the CARRIER FRE-L (R4266) so that the frequency is 1300 (+- 5) KHz.

#### (A-2, Audio Deviation Adjustment)

- 6. Connect the DVM to pin 23 of IC4203 on the FM Audio section and read the voltage level.
- 7. Connect the pin 23 of IC4203 to GND through the resistor and the variable resistor (500k $\Omega$ ) as shown below.



Fig. E16

- 8. Turn the variable resistor  $(500k\Omega)$  so that the frequency is 1250 (+- 2) KHz. Then read the voltage level at pin 23 of IC4203.
- 9. Remove the DVM, resistor and the variable resistor.
- 10. Remove the Phono plug. Then supply a sinewave signal (1KHz, -20dB, 283mVp-p) to Audio IN (L) jack on the rear panel.
- 11. Connect the AC Millivolt Meter or scope to pin 23 of IC4203.
- 12. Calculate "A" using the formula below.
- 13. Adjust the DEVIATION -L (R4223) on the FM Audio Section so that the voltage level is the same as calculated in step 12.

AC Millivolt Meter(Vrms) = 
$$\frac{V}{\sqrt{2}}$$
 = A

V : Voltage difference between step 6 and step 8

#### B:R-CHANNEL

### (B-1, Carrier Frequency Adjustment)

- 1. Set the Input Select Switch on the front panel to LINE mode.
- 2. Connect the Phono plug to Audio IN jack (R CH) to complete no signal condition.

- 3. Place the unit in STOP mode.
- 4. Connect the frequency counter to TP4206 on the FM Audio Section.
- 5. Adjust the CARRIER FRE-R (R4304) so that the frequency is 1700 (+- 5) KHz.

### (B-2, Audio Deviation Adjustment)

- 6. Connect the DVM no pin 23 of IC4210 on the FM Audio Section and read the voltage level.
- 7. Connect the pin 23 of IC4210 to GND through the resistor and the variable resistor as shown Fig. E16.
- 8. Turn the variable resistor  $(500k\Omega)$  so that the frequency is 1650 (+-2) KHz. Then read the voltage level at pin 23 of IC4210.
- 9. Remove the DVM, resistor and the variable resistor.
- 10. Remove the Phono plug. Then supply a sinewave signal (1KHz, -20dB, 283mVp-p) to Audio IN(R) jack on the rear panel.
- 11. Connect the AC Millivolt Meter or scope to pin 23 of IC4210.
- 12. Adjust the DEVIATION-R(R4296) on the FM Audio Section as is done in L channel Adjustment.

# 2-2-2. AUDIO RECORDING CURRENT ADJUSTMENT

Test Points: TP4207, TP4208

Adjustment : R4218 (REC-AUDIO-CURR)

- 1. Set the Input Select Switch on the front panel to LINE mode.
- 2. Connect the Phono plug to Audio IN jack (L CH).
- 3. Insert a cassette tape and make a recording in the SP mode.
- 4. Connect the scope between TP4207(HOT) and TP4208(GND) on the FM Audio Section.
- 5. Adjust the A-REC CURR (R4218) on the FM Audio Section so that the level of waveform is 260 (+- 10) mVp-p.

#### 2-2-3. TIMING CURRENT ADJUSTMENT

Test Points : TP4204, TP4205 Adjustment : R4335 (TIMING CURR)

1. Set the Input Select Switch on the front panel to LINE mode.

- 2. Supply a sinewave signal (1KHz,-20dB, 283mVp-p) to either Audio Input L CH or R CH on the rear panel.
- 3. Place the unit in STOP mode.
- 4. Connect the DC Millivolt Meter between TP4204(HOT) and TP4205(GND) on the FM Audio Section.
- 5. Adjust the TIMING CURR (R4335) on the FM Audio Section so that the voltage is 15.0 (+- 0.1) mVDC.

## 2-2-2-4. AUDIO PLAYBACK LEVEL ADJUSTMENT

Test points : Audio out jack (L), (R)
Adjustments : R4319 (PB AUDIO LEVEL-L)
R4352 (PB AUDIO LEVEL-R)

#### (L-channel)

- 1. Set the Input Select Switch on the front panel to LINE mode.
- 2. Supply a sinewave signal(1KHz, -20dB, 283mVp-p) to either Audio Input L CH or R CH on the rear panel.
- 3. Insert a cassette tape and make a recording in the SP mode.
- 4. Push the HiFi button and L/R button on the front panel. Then, connect the phono plug to the Audio out jack (R) on the rear panel.
- 5. Connect the scope to Audio out jack(L) on the rear panel and read the level of recording.
- 6. Playback the portion just recorded and read the level of playback.
- 7. Adjust the PB AUDIO LEVEL-L(R4319) so that the Recording level and playback level are the same level.

#### (R-channel)

- 1. Set the Input Select Switch on the front panel to LINE mode.
- 2. Supply a sinewave signal (1KHz, -20dB, 283mVp-p) to either Audio Input L CH or R CH on the rear panel.
- 3. Insert a cassette tape and make a recording in the SP mode.
- 4. Push the HiFi button and L/R button on the front panel. Then, connect the phono plug to the Audio out jack (L) on the rear panel.
- 5. Connect the scope to Audio out jack (R) on the rear panel and read the level of recording.
- 6. Playback the portion just recorded and read the level of playback.
- 7. Adjust the PB AUDIO LEVEL-R(R4352) so that the Recording level and Playback level are the same level.

#### 2-2-2-5. AUDIO MUTING ADJUSTMENT

Test Point: TP4202

Adjustment: R4240 (AUDIO MUTING)

- 1. Set the Input Select Switch on the front panel to LINE mode.
- 2. Connect the Phono plug to Audio IN jack (L CH).
- 3. Push the HiFi button and L/R button on the front panel.
- 4. Turn the Tracking Control on the front panel to center detent point.
- 5. Insert a cassette tape and make a recording in SP mode for a few minutes.
- 6. Playback the just Recorded portion.
- 7. Connect the scope to TP4202 on the FM Audio Section.
- 8. Adjust the Tracking VR so that the amplitude of the signal at TP4202 is reduced to 1/3.
- 9. First adjust AUDIO MUTING (R4240) until the HiFi indication on the front panel turns OFF.
- 10. Then slowly adjust AUDIO MUTING (R4240) to the point where the HiFi indication just turns ON.
- 11. Confirm that the sounds on CH-L and CH-R do not contain abnormal sound.

#### 2-3. LUMINANCE AND CHROMINANCE SECTION



Fig. E17



Fig. E18



Fig. E19

#### 2-3-1. E-E LEVEL ADJUSTMENT

Test Point: TP3004

Adjustment: R3114 (E-E LEVEL)

- 1. Supply an NTSC Color Bar Signal W/White Window (1Vp-p) to the Video Input on the rear panel.
- 2. Connect the scope to TP3004 on the Signal Process C.B.A.
- 3. Place the unit in STOP mode.
- 4. Adjust the E-E LEVEL (R3114) on the Luminance C.B.A. so that the video level is 2.0 (+- 0.1) Vp-p.



Fig. E20 TP3004 0.5V/20 u-sec. div.

#### 2-3-2: SYNC TIP FREQUECY AND DEVIATION ADJUSTMENT

Test Points: TP3501, TP3504, TP3002 Adjustments: R3103 (SYNC TIP FREQ)

R3104 (DEVIATION)

#### (A-1, Sync Tip Frequency Adjustment)

- 1. Plug in a phono plug to the Video Input on the rear panel, but do not supply video signal.
- 2. Connect the frequency counter to TP3002 on the Luminance Signal Process Section.
- 3. Insert a cassette tape and place the unit in LP REC mode.
- 4. Adjust the SYNC TIP FREQ (R3103) so that the frequency is 3.4 (+- 0.04) MHz.
- 5. Remove the frequency counter.

#### (A-2, Deviation Adjustment)

- 6. Turn the WHITE CLIP (R3101) and the DARK CLIP (R3102) to fully counterclockwise from the component side.
- 7. Turn the REC VIDEO LEVEL (R3001) to fully counterclockwise and the REC CHROMA (R3016) to fully clockwise from the component side.
- 8. Connect a signal generator (sinewave) to TP3001 through the resistor (1k $\Omega$ ). Set the frequency and the output level of the signal generator.

Frequency: 4.35 (+-0.04) MHzOutput Level: 0.1Vp-p



Fig. E21

- 9. Supply an NTSC Color Bar Signal (1Vp-p) to the Video Input on the rear panel.
- 10. Connect the scope to TP3501 (HOT) and TP3504 (GND) on the Head Amp Section. Use TP3006 as a trigger.
- 11. Turn the DEVIATION (R3104) to fully clockwise from the component side. Then slowly adjust the DEVIATION (R3104) so that maximum inner beat is procedure as shown in Fig. E22.



Fig. E22



Fig. E23 TP3501 20mV/2msec. div.



Fig. E24 TP3501 20mV/2msec. div.

Note: Inner beat is used for this adjustment but not outer beat as shown in Fig. E25.



Fig. E25

- 12. Remove the resistor and a signal generator.
- 13. Make WHITE and DARK CLIP adjustment and Recording Current adjustment.

#### 2-3-3. WHITE AND DARK CLIP ADJUSTMENT

Test Point : TP3101

Adjustments: R3101 (WHITE CLIP)

R3102 (DARK CLIP)

- Supply an NTSC color Bar Signal W/White Window to the Video Input on the rear panel.
- 2. Connect the scope to TP3101 on the Luminance C.B.A.
- 3. Place the unit in SP REC mode.
- 4. Adjust the WHITE CLIP (R3101) and the DARK CLIP (R3102) on the Luminance C.B.A. so that the overshoot and undershoot are as shown in Fig. E26.



Fig. E26 TP3101 0.2V/20 u-sec. div.

#### 2-3-4. RECORDING CURRENT ADJUSTMENT

Test Points: TP3004, TP3006, TP3501, TP3504 Adjustments: R3001 (REC VIDEO LEVEL)

R3016 (REC CHROMA LEVEL)

- 1. Supply an NTSC color Bar Signal W/White Window to the Video Input on the rear panel.
- 2. Insert a cassette tape and make a recording in the LP mode.
- 3. Connect the scope between TP3501 (HOT) and TP3504 (GND) on the Head Amp Section.
- 4. Turn the REC VIDEO LEVEL (R3001) fully counterclockwise from the component side.
- 5. Set the scope 20mV/div., 10 u-sec/div. Use TP3004 as scope trigger.
- 6. Adjust the REC CHROMA (R3016) on the Luminance Signal Process Section so that the level of cyan portion is 36 (+- 3) mVp-p.



Fig. E27 TP3501 20mV/10 u-sec. div.

- 7. Then set the scope 20mV-div., 2msec/div.
  - Use TP3006 as scope trigger.
- 8. Adjust the REC VIDEO LEVEL (R3001) on the Luminance Signal Process Section so that the level of V sync portion is 110 (+- 3) mVp-p.



Fig. E28 TP3501 20mV/2msec. div.

#### 2-3-5. 320FH VCO ADJUSTMENT

Test Point: TP8103

Adjustment: R8109 (320FH VCO)

- 1. Place the unit in STOP mode.
- 2. Connect the test point (TP8105) to Pin 3 of Chrominance C.B.A. through the resistor (1k $\Omega$ ) and the diodes (MA165).



Fig. E29

- 3. Connect the frequency counter to TP8103 on the Chrominance C.B.A.
- 4. Adjust the 320FH VCO (R8109) from the component side on the Chrominance C.B.A. so that the frequency is 4.2 (+- 0.1) MHz.
- 5. Remove the frequency counter, resistor/diodes.

#### 2-3-6. 3.58MHz VXO ADJUSTMENT

Test Point: TP8104

Adjustment: C8111 (3.58MHz VXO)

- 1. Place the unit in STOP mode.
- 2. Connect the test point (TP8102) to GND on the Chrominance C.B.A. through the resistor (22kQ) and the capacitor (0.01 u-F).



Fig. E30

3. Connect the frequency counter to TP8104 on the Chrominace C.B.A.

- 4. Adjust the 3.58MHz VXO (C8111) from the component side on the Chrominance C.B.A. so that the frequency is 3.579545 MHz (+- 20) Hz.
- 5. Remove the frequency counter, resistor/capacitor.

#### 2-3-7. COMB FILTER ADJUSTMENT

Test Point: TP3004

Adjustment: R8113 (COMB FILTER)

- 1. Supply a color bar signal to the Video Input on the rear panel.
- 2. Insert a cassette tape and make a recording in the SLP mode.
- 3. Connect the scope to TP3004 on the Luminance Signal Process Section.
- 4. Playback the portion just recorded.
- 5. Turn the Tracking Control on the front panel for the poorest tracking. (Worst playback image.)
- 6. During playback, adjust the COMB FILTER (R8113) on the Chrominance C.B.A. from the component side as shown below.



Fig. E31 TP3004 0.5V/20 u-sec. div.

#### 2-3-8. PLAYBACK LEVEL ADJUSTMENT

Test Point: TP3004

Adjustment: R3123 (PB VIDEO LEVEL)

- 1. Supply an NTSC Color Bar Signal
   W/White Window (1Vp-p) to the Video
   Input on the rear panel.
- 2. Insert a cassette and make a recording in the SP mode for a few minutes.
- 3. Connect the scope to TP3004 on the Luminance Signal Process Section.
- 4. Playback the portion just recorded.
- 5. During playback, adjust the PB VIDEO LEVEL (R3123) on the Luminance C.B.A. so that the video level is 2.0 (+- 0.1) Vp-p.
- 6. Confirm that the level of cyan portion is 1.26 (+- 0.2) Vp-p.



Fig. E32 TP3004 0.5V/20 u-sec. div.

#### 2-4. SYSTEM CONTROL SECTION



Fig. E33

#### 2-4-1. CLOCK ADJUSTMENT

Test Point: TP6001

Adjustment: C6007 (CLOCK)

- 1. Connect the frequency counter with 10:1 Probe to TP6001 on the System Control Section.
- 2. Adjust the CLOCK (C6007) from the component side so that the frequency at TP6001 is 349.525 (+- 0.001) KHz.
- 3. Remove the frequency counter.

#### 2-5. TV DEMODULATOR SECTION



Fig. E34



TV Demodulator Unit



Location of Test Points & Adjustment Points



(Component Side)

UHF/VHF Tuner Unit



Tuner Test Point

Fig. E35

## 2-5-1. VIF OVERALL CONFIRMATION AND VCO ADJUSTMENT

Test Points: TP703, TP704 Adjustment: T701 (VCO)

#### (CAUTION)

Since the TV Demodulator Unit and UHF/VHF Tuner Unit have already been factory adjusted, do not try to adjust unless absolutely necessary.

A: Factory Adjustment

#### A-1. Overall Confirmation of VIF

1. Connect the VIF Sweep Generator/Trap Adjuster and Monitor Scope as shown below.



Fig. E36

- 2. Connect the output of the VIF Sweep Generator to tuner test point on the UHF/VHF Tuner Unit.
- 3. Connect the V Input of the Monitor Scope to TP704 on the TV Demodulator Unit through VIF Detector.
- 4. Select Channel 13.
- 5. Set the AFT switch to "OFF" position.
- 6. Connect the DC Power Supply Unit to TP701 on the TV Demodulator Unit and set at OV DC as a starting point.
- 7. Connect TP702 and GND with a 3.3 u-F /25V capacitor.
- 8. Adjust the VCO (T701) so that the beat portion is at center as shown in Fig. E37.



Fig. E37

- 9. Set the DC Power supply voltage on TP701 so that the waveform level is maximum.
- 10. Adjust the output of the VIF Sweep Generator so that the A level is 1.0 Vp-p.



Fig. E38

- 11. Increase the VIF Sweep Generator output by 25dB.
- 12. Adjust the output of the DC Power Supply Unit so that the A portion becomes 1.0Vp-p.
- 13. Confirm that the Sweep output. waveform is as shown in Fig. E38.
- 14. Adjust the VCO (T701) so that the Beat portion is at 45.75MHz marker as shown below.



Fig. E39

15. Remove the capacitor.

#### A-2. VCO Adjustment

- 1. Adjust DC Power Supply Unit to OV DC.
- 2. Connect a 3.3 u-F/25V capacitor between TP702 and GND.
- 3. Connect the Frequency Counter to TP703 on the TV Demodulator Unit through a Tuning Amp.



Fig. E40

- 4. Adjust the VCO (T701) so that the frequency is 45.75MHz (+- 0.02) MHz.
- 5. Remove the capacitor.

#### B. Field Adjustment

- 1. Supply the NTSC standard color bar signal to the RF Input on the rear panel and tune this signal.
- 2. Connect the scope to TP704 on the TV Demodulator Unit.
- 3. Adjust the VCO (T701) so that the waveform is as shown below.



Fig. E41

#### 2-5-2. AFT TANK ADJUSTMENT

Test Point: Tuner Test Point (TP)
Adjustment: T702 (AFT)

- 1. Tune in a local TV program on Channel 4.
- 2. Connect the frequency counter to tuner test point on the UHF/VHF Tuner Unit through a  $10k\Omega$  resistor and a 10FF capacitor.



Fig. E42

- 3. Set the AFT switch on the Tuning Control Unit to "OFF".
- 4. Adjust the tuning VR on the front panel so that the frequency is 113.00 (+- 0.01) MHz.
- 5. Set the AFT switch on the tuning Control Unit to "ON".
- 6. Adjust the AFT (T702) so that the frequency is 113.00 (+- 0.005) MHz.
- 7. Remove the frequency counter.

#### 2-5-3. BURST LEVEL ADJUSTMENT

Test Point : Pin 10 of TV Demodulator

Unit

Adjustment: R718 (BURST LEVEL)

- Supply the NTSC standard color bar signal to the RF Input on the rear panel and tune to this signal.
- 2. Connect the scope to Pin 10 of TV Demodulator Unit.
- 3. Confirm that the video level at Pin 10 of TV Demodulator Unit is 1.0 (+- 0.2) Vp-p.
- 4. Adjust the BURST LEVEL (R718) so that the burst level is 22 (+- 1) % of the video level.
- 5. Confirm that the sync level is more than 24% of video level.



Fig. E43 Pin 10 of TV Demodulator Unit 0.2V/10 u-sec. div.

#### 2-5-4. AUDIO LEVEL ADJUSTMENT

Test Point: Pin 15 of the

TV Demodulator Unit

Adjustment: R715 (AUDIO LEVEL)

- 1. Supply TV RF signal with audio modulation of 400Hz at 30% to the RF Input on the rear panel.
- 2. Connect the scope between Pin 15 of the TV Demodulator Unit and GND.
- 3. Set the AFT switch on the Tuning Control Unit to "ON".
- 4. Adjust the AUDIO LEVEL (R715) so that he level is 140 (+- 10)mVp-p.

#### 2-5-5. RF AGC ADJUSTMENT

Test Point: TP7001

Adjustment: R7004 (RF AGC)

#### A: Factory Adjustment

- 1. Tune in a color bar signal (VHF).
- 2. Set the AFT switch on the Tuning Control meter Unit to "ON".
- 3. Set the input level of electric field
   to 63 (+- 1) dBu.
   (Using the Attenuator and Spectrum
   Analyzer)

- 4. Connect the scope to TP7001 on the Demodulator Signal Process Section.
- 5. Turn the RF AGC (R7004) on the Demodulator Signal Process Section fully counterclockwise from foil side.
- 6. Then slowly turn the RF AGC (R7004) till just before the voltage drops.
- 7. Change the input electric field from 63 dBu to 66 dBu.
- 8. Confirm that the voltage at TP7001 has dropped more than 1.0V.

#### B. Field Adjudtment

- 1. Supply a local TV Signal to the RF Input on the rear panel and tune to this signal.
- 2. Set the AFT switch on the Tuning Control Unit to "ON".
- 3. Connect the scope to pin 10 of TV Demodulator Unit and GND.
- 4. Adjust the RF AGC (R7004) so that the H-sync is Maximum and its shape can be observed clearly.



Fig. E44 Pin 10 of TV Demodulator Unit 0.2V/20 u-sec. div.

5. Confirm that the noise band and beat do not appear on the TV screen.

#### Note:

This procedure is just a simplified method. So use the factory Adjust-ment for a more accurate or interchangeable adjustment.

# 2-6. IR WIRELESS RECEIVING DETECTOR SECTION



Fig. E45

#### 2-6-1. TUNING ADJUSTMENT

Test Point: Pin 1 of P6026 Adjustment: T1 (TUNING)

1. First, place the deck so that the left side faces down. Hold the deck with your hand and then remove 2 red screws (A) and 2 screws (B), and remove the Front Frame Support Angle from the unit.



Fig. E46

- 2. Place the deck in the normal operating position. And then take out the IR Wireless Receiving Detector Unit from the Unit.
- 3. Place the IR Wireless Transmitter Unit and the Unit as shown below.



Fig. E47

- 4. Place the Unit in the stop mode.
- 5. Connect the scope to Pin 1 of P6026 on the Sub System Control Section.
- 6. Change the diretion of the IR Wireless Transmitter Unit gradually with pushing the stop button on the IR Wireless Transmitter Unit until the waveform on the scope is just begins to be disturbed as shown below.



Fig. E48

- 7. Adjust the TUNING (T1) on the IR Wireless Receiving Detector Unit continuing the condition of item 6 so that the waveform at Pin 1 of P6026 is best (i.e. least disturbance possible).
- 8. Return the IR Wireless Receiving Detector Unit to the Unit.
- 9. Remove the scope.

### MAIN C.B.A.

### (VEPS0251B1)







# **Location of Test Points and Adjustment Points**

| Head Amp Unit                       | (VEPS0508B1)                                                                                                                              | FM Audio C.B.A.                                                                                                                                                                                                          | Normal Audio C.B.A.                                  |     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|
| Luminance C.B.A.                    | (VEPS0337A)                                                                                                                               |                                                                                                                                                                                                                          |                                                      |     |
| Chrominance C.B.A.                  | (VEPS0806A)                                                                                                                               | (VEPS0424B1)                                                                                                                                                                                                             | (VEPS0422B1)                                         |     |
| IR Wireless Receiving Detector Unit | (VEQS0276)                                                                                                                                |                                                                                                                                                                                                                          |                                                      | Sig |
| Head Amp Unit                       | Chrominance C.B.A.  TP8107 R8113 FILTER  TP8105 TP8104 TP8102 TP8103 R8109 GND3 3.58MHz VX0 C8111  (Component Side)                       | FM Audio C.B.A.                                                                                                                                                                                                          | Normal Audio C.B.A.                                  | UHF |
| RS RS                               | TP3101  A R3103  TP3102  TP3101  R3101 WHITE CLIP  R3101 WHITE CLIP  A R3114  DARK CLIP  TP3501  TP3502  TP3504  TP3503  (Component Side) | FM AUDIO SECTION  TP4209  PIN 23 OF IC4210   R4296  R4304  R4296  R4319  CURRENT  TP4208  PB AUDIO R4207  TP4207  TP4208  R4240  PIN 23 OF IC4203   TP4204  TP4205  R4240  PIN 23 OF IC4203   TP4206  R4223  (Foil Side) | RCH REC GAIN ROOS RAOS RAOS RAOS RAOS RAOS RAOS RAOS |     |

### **Location of Test Points and Adjustment Points**



# CONTENTS

| 3LC | CK DIAGRAM                         |          |
|-----|------------------------------------|----------|
|     | OVERALL                            | <br>3-1  |
|     | POWER SUPPLY                       | <br>3-2  |
|     | SYSTEM CONTROL                     |          |
|     | Safety Device                      | <br>3-3  |
|     | Key Matrix                         | <br>3-4  |
|     | FIP Drive                          | <br>3-5  |
|     | Mode Select Switch                 | <br>3-5  |
|     | Serial Data                        | <br>3-6  |
|     | Microprocessor I/O Chart           | <br>3-7  |
|     | Mode By Mode                       | <br>3-10 |
|     | Stop → Play                        |          |
|     | Play → Stop                        | <br>3-11 |
|     | Stop → FF/Rew                      |          |
|     | FF/Rew → Stop                      |          |
|     | Rec • Play → Rec • Pause           | <br>3-13 |
|     | Rec • Pause → Rec • Play           | <br>3-13 |
|     | Play → Cue → Play                  | <br>3-14 |
|     | Play → Review → Play               |          |
|     | SERVO                              | <br>3-15 |
|     | HEAD AMP                           | <br>3-16 |
|     | SIGNAL PROCESS                     | <br>3-16 |
|     | LUMINANCE                          |          |
|     | CHROMINANCE                        | <br>3-17 |
|     | FM AUDIO                           | <br>3-18 |
|     | NORMAL AUDIO                       |          |
|     | TV DEMODULATOR                     | <br>3-20 |
|     | CIRCUIT BOARD LAYOUT & LOCATION OF |          |
|     | TEST POINTS AND CONTROLS           | <br>3-21 |
|     | DE CONVEDTED                       | 2.22     |

### **OVERALL BLOCK DIAGRAM**



### **POWER SUPPLY BLOCK DIAGRAM**



### SAFETY DEVICE BLOCK DIAGRAM (SYSTEM CONTROL)

3-3



### KEY MATRIX BLOCK DIAGRAM (SYSTEM CONTROL)



## MODE SELECT SWITCH BLOCK DIAGRAM (SYSTEM CONTROL)



## FIP DRIVE BLOCK DIAGRAM (SYSTEM CONTROL)



# SERIAL DATA TRANSMISSION (SYSTEM CONTROL)

#### 1. Data Transmission 1 (Operational Information)

| DATA NO. | OPERATION                  |  |  |  |  |  |
|----------|----------------------------|--|--|--|--|--|
| (1)      | "0" TRANSMISSION CODE      |  |  |  |  |  |
| (2)      | "0" TRANSMISSION CODE      |  |  |  |  |  |
| (3)      | E-E ("0")/V-V ("1")        |  |  |  |  |  |
| (4)      | PAUSE/FLASH ("1")          |  |  |  |  |  |
| (5)      |                            |  |  |  |  |  |
| (6)      | OPERATION INFORMATION CODE |  |  |  |  |  |
| (7)      | OPERATION INFORMATION CODE |  |  |  |  |  |
| (8)      |                            |  |  |  |  |  |

**Data Transmission of Operational Information** 

| (5) | DATA<br>(6) | A NO.<br>(7) | (8) | INFORMATION | (5) | DATA<br>(6) | 4 NO.<br>(7) | (8) | INFORMATION |
|-----|-------------|--------------|-----|-------------|-----|-------------|--------------|-----|-------------|
| 0   | 0           | 0            | 0   | UNDER CUT   | 1   | 0           | 0            | 0   | FF          |
| 0   | 0           | 0            | 1   | A. DUB      | 1   | 0           | 0            | 1   | REW         |
| 0   | 0           | 1            | 0   | F. ADV      | 1   | 0           | 1            | 0   | DEW         |
| 0   | 0           | 1            | 1 . | REVIEW      | 1   | 0           | 1            | 1   | STOP        |
| 0   | 1           | 0            | 0   | CUE         | 1   | 1           | 0            | 0   | EJECT       |
| 0   | 1           | 0            | 1   | PLAY        | 1   | 1           | 0            | 1   | STOP        |
| 0   | 1           | 1            | 0   | SLOW        | 1   | 1           | 1            | 0   | ALL OFF     |
| 0   | 1           | 1            | 1   | REC         | 1   | 1           | 1            | 1   | POWER OFF   |
|     |             |              |     |             |     |             |              |     |             |

Data Transmission 1 (Operational Information)



#### 2. Data Transmission 2 (Counter Number Information)

| DATA NO. | OPERATION                  |  |  |  |  |
|----------|----------------------------|--|--|--|--|
| (1)      | "1"} TRANSMISSION CODE     |  |  |  |  |
| (2)      | MEMORY ON ("1")/OFF ("0")  |  |  |  |  |
| (3)      | COUNTED BLOCK NO           |  |  |  |  |
| (4)      | COUNTER BLOCK NO.          |  |  |  |  |
| (5)      |                            |  |  |  |  |
| (6)      | COUNTER NUMBER INFORMATION |  |  |  |  |
| (7)      | COUNTER NUMBER INFORMATION |  |  |  |  |
| (8)      |                            |  |  |  |  |

Data Transmission of Counter Number Information



**Counter Position Code** 

| (5) | DATA<br>(6) | NO.<br>(7) | (8) | INFORMATION | (5) | DATA<br>(6) | NO.<br>(7) | (8) | INFORMATION |
|-----|-------------|------------|-----|-------------|-----|-------------|------------|-----|-------------|
| 0   | 0           | 0          | 0   | 0           | 0   | 1           | 0          | 1   | 5           |
| 0   | 0           | 0          | 1   | 1           | 0   | 1           | 1          | 0   | 6           |
| 0   | 0           | 1          | 0   | 2           | 0   | 1           | 1          | 1   | 7           |
| 0   | 0           | 1          | 1   | 3           | 1   | 0           | 0          | 0   | 8           |
| 0   | 1           | 0          | 0   | 4           | 1   | 0           | 0          | 1   | 9           |

Data Transmission 2 (Counter Number Information)

#### 3. Data Transmission 3 (Tape Speed Information)

| DATA NO. | OPERATION                        |  |  |  |  |
|----------|----------------------------------|--|--|--|--|
| (1)      | "1") TRANSMISSION CODE           |  |  |  |  |
| (2)      | "0") THANSMISSION CODE           |  |  |  |  |
| (3)      | "0"                              |  |  |  |  |
| (4)      | MEMORY ("1")/ERASE ("0")         |  |  |  |  |
| (5)      |                                  |  |  |  |  |
| (6)      | TAPE SPEED DATA INFORMATION CODE |  |  |  |  |
| (7)      | TAPE SPEED DATA INFORMATION CODE |  |  |  |  |
| (8)      |                                  |  |  |  |  |

Data Transmission of Tape Speed Data Information

| (5) | DATA<br>(6) | NO.<br>(7) | (8) | INFORMATION |
|-----|-------------|------------|-----|-------------|
| 1   | 1           | 0          | 0   | SP          |
| 1   | 1           | 0          | 1   | LP          |
| 1   | 1           | 1          | 0   | SLP         |

Data Transmission 3 (Tape Speed Information)

| (1)<br>: | (2)<br>:    | (3)<br>: | (4)<br>: | (5)<br>: | (6)<br>:   | (7)<br>: | (8)<br>: | DATA NO.   |
|----------|-------------|----------|----------|----------|------------|----------|----------|------------|
| 0        | 0           | 1        | 0        | 1        | 0          | 1        | 0        | 8 bit Data |
| DIS      | SCRIM<br>CO |          | ION      | 11       | NFOR<br>CC | MATI     | ON       |            |

8 bit Information Data

# MICROPROCESSOR (IC6001: MN15846VRC) I/O CHART

| PIN                                                                                 | I/O                                                                                         | NAME/OPERATION                                                                                                                                                                     |                  |                                      |  |  |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--|--|--|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | GND POSITION SIGNAL 2 POSITION SIGNAL 3 POSITION SIGNAL 1 GND TIMER SET (H) TIMER REC (H) GND REEL SENSOR CLOCK (349kHz) SIRQ IRQ SERIAL CLOCK SERIAL DATA SBI RESET (L) V REF (1) |                  |                                      |  |  |  |  |
| 18                                                                                  |                                                                                             | DATA IN 1                                                                                                                                                                          | (H)/(L)          | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | (H)<br>(M)       | TAKE UP PHOTO TR<br>DEW SENSOR       |  |  |  |  |
| 19                                                                                  |                                                                                             | DATA IN 2                                                                                                                                                                          | (H)/(L)          | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | (H)<br>(M)       | SUPPLY PHOTO TR<br>REMOTE PAUSE      |  |  |  |  |
| 20                                                                                  | l                                                                                           | DATA IN 3                                                                                                                                                                          | (H)/(L)          | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | (L)              | CYL LOCK                             |  |  |  |  |
| 21<br>22                                                                            | I<br> -                                                                                     | V REF<br>GND                                                                                                                                                                       |                  |                                      |  |  |  |  |
| 23                                                                                  |                                                                                             | DATA IN 5                                                                                                                                                                          | (H)/(L)          | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | (H)<br>(M)       | SAFETY TAB SW<br>CASSETTE UP/DOWN SW |  |  |  |  |
| 24                                                                                  | ı                                                                                           | DATA IN 6                                                                                                                                                                          | (H)/(L)          | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | (H)<br>(L)       | SLP<br>CASSETTE IN SW                |  |  |  |  |
| 25                                                                                  | ı                                                                                           | DATA IN 7                                                                                                                                                                          | (H)/(L)          | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | (H)              | LP/SLP                               |  |  |  |  |
| 26                                                                                  | l I                                                                                         | DATA IN 8                                                                                                                                                                          | SCAN PULSE       | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | SCAN 1<br>SCAN 2 | PLAY KEY<br>FF KEY                   |  |  |  |  |
| 27                                                                                  | 1                                                                                           | DATA IN 9                                                                                                                                                                          | SCAN PULSE       | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | SCAN 1<br>SCAN 2 | REC KEY<br>REW KEY                   |  |  |  |  |
| 28                                                                                  | l                                                                                           | DATA IN 10                                                                                                                                                                         | SCAN PULSE       | OPERATION                            |  |  |  |  |
|                                                                                     |                                                                                             |                                                                                                                                                                                    | SCAN 1<br>SCAN 2 | EJECT KEY<br>SLOW KEY                |  |  |  |  |

| PIN | I/O |              | NAME/O              | PERATION              |      |
|-----|-----|--------------|---------------------|-----------------------|------|
| 29  | ı   | DATA IN 11   | SCAN PULSE          | OPERAT                | ΓΙΟΝ |
|     |     |              | SCAN 1<br>SCAN 2    | PAUSE KEY<br>STOP KEY |      |
| 30  |     | IR REMOTE C  | ONTROLLER DATA      | (1)                   |      |
| 31  | I   | ł .          | ONTROLLER DATA      |                       |      |
| 32  | ı   | IR REMOTE C  | ONTROLLER DATA      | (3)                   |      |
| 33  | 1   | IR REMOTE C  | ONTROLLER DATA      | (4)                   |      |
| 34  | 0   | POWER ON (L  | .)                  |                       |      |
| 35  | 0   | EXCEPT PLAY  | ' (H)               |                       |      |
| 36  | 0   | CUE/REVIEW/  | SLOW/STILL (H)      |                       |      |
| 37  | 0   | DELAY REC (H | <b>⊣</b> )          |                       |      |
| 38  | 0   | CUE/REVIEW   | (H)                 |                       |      |
| 39  | 0   | LP CUE/REV ( | L)                  |                       |      |
| 40  | 0   | AUDIO EE (H) |                     |                       |      |
| 41  | 0   | AUDIO DELAY  | REC (H)             |                       |      |
| 42  | 0   | CASSETTE LC  | ADING MOTOR LO      | AD (H)                |      |
| 43  | 0   |              | ADING MOTOR UN      |                       |      |
| 44  | 0   | SP MEMORY (  |                     | ,                     |      |
| 45  | 0   | CAP MOTOR    | FORWARD (L)         |                       |      |
| 46  | 0   | LOADING MO   |                     |                       |      |
| 47  | 0   |              | TOR UNLOAD (H)      |                       |      |
| 48  | 0   | F. ADV (H)   | ()                  |                       |      |
| 49  | 0   | SPEED MEMO   | RY (L)              |                       |      |
| 50  | 0   | CAP MOTOR (  | • •                 |                       |      |
| 51  | 0   | CYL MOTOR C  | • •                 |                       |      |
| 52  | 0   | CAP SPEED D  | • •                 |                       |      |
| 53  | 0   | CAP SPEED D  | ` '                 |                       |      |
| 54  | 0   | AUDIO MUTE   | , ,                 |                       |      |
| 55  | 0   | 1            | OR SPEED CONTR      | ROL                   |      |
| 56  | 0   | CAP REVERSE  |                     | . •                   |      |
| 57  | 0   | EE (H)       | - (- )              |                       |      |
| 58  | O   | SCAN 1       |                     |                       |      |
| 59  | 0   | SCAN 2       |                     |                       |      |
| 60  | 0   | SCAN 3/SENS  | OR LED              |                       |      |
| 61  | ī   | DEW (L)      | - · · · <del></del> |                       |      |
| 62  | i   | OSC 1        |                     |                       |      |
| 63  | 1   | OSC 2        |                     |                       |      |
| 64  | i   | VDD          |                     |                       |      |

# IC7501 (UPD7538C-02) I/O CHART

| PIN                                                                                                                                                | I/O                |                                                                                                                                                                                                     | NAME/C                                                                       | PERATION                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                |                    | RESET OSC 1 OSC 2 V PRE V LOAD SEGMENT I SEGMENT G SEGMENT 6 SEGMENT h TIME REC (H) TIMER SET (H) GRID 4G GRID 5G GRID 6G GRID 7G                                                                   |                                                                              |                                                                                                                         |  |
| 17                                                                                                                                                 | ı                  | DATA IN                                                                                                                                                                                             | GRID SIGNAL                                                                  | OPERATION                                                                                                               |  |
|                                                                                                                                                    |                    |                                                                                                                                                                                                     | GRID 1G GRID 2G GRID 6G GRID 7G GRID 10G GRID 11G GRID 13G GRID 14G GRID 15G | TV/VCR SW TIMER SET KEY TIMER SELECT KEY SAFETY TAB SW CH DOWN TIMER MODE KEY OTR KEY CH UP RETURN KEY TIMER ON/OFF KEY |  |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 000-00000000000000 | GRID 1G GRID 2G GRID 3G VDD GRID 8G GRID 9G GRID 10G GRID 11G GRID 12G GRID 13G GRID 15G SEGMENT d SEGMENT d SEGMENT a TV/VCR CH DOWN CH UP CH LOCK (L) SERIAL DATA NOT USED SERIAL CLOC 349kHz GND |                                                                              |                                                                                                                         |  |

# MODE BY MODE BLOCK DIAGRAM (SYSTEM CONTROL)



## STOP → PLAY MODE TIMING CHART



3—11

3-11STOP  $\rightarrow$  PLAY
PLAY  $\rightarrow$  STOP

## PLAY → STOP MODE TIMING CHART



# STOP → FF/REW MODE TIMING CHART



## FF/REW → STOP MODE TIMING CHART



3—12

## REC • PLAY → REC • PAUSE MODE TIMING CHART



3-13 REC • PLAY → REC • PAUSE REC • PAUSE → REC • PLAY

## REC • PAUSE → REC • PLAY MODE TIMING CHART



 $\begin{array}{c} 3\text{-}14 \\ \text{PLAY} \rightarrow \text{CUE} \rightarrow \text{PLAY} \\ \text{PLAY} \rightarrow \text{REVIEW} \rightarrow \text{PLAY} \end{array}$ 

## PLAY → CUE → PLAY MODE TIMING CHART



## PLAY → REVIEW → PLAY MODE TIMING CHART



# **SERVO BLOCK DIAGRAM**





3-16 HEAD AMP SIGNAL PROCESS

## **HEAD AMP BLOCK DIAGRAM**



# SIGNAL PROCESS BLOCK DIAGRAI



# IC3501-(11) REC 1V/5msec. div. VIDEO HEAD P3501 7 P3501 2 P3501 8 P3501 6 LP/SLP RCH P3501 3 P3501 1 LP/SLP LCH AMP AMP AMP HEAD SW HEAD SW sw SIGNAL PATH RECORD MODE SIGNAL PATH PLAYBACK MODE IC3502

# SIGNAL PROCESS BLOCK DIAGRAM



## **LUMINANCE BLOCK DIAGRAM**

# CHROMINAN



## **CHROMINANCE BLOCK DIAGRAM**



# **FM AUDIO BLOCK DIAGRAM**





# NORMAL AUDIO BLOCK DIAGRAM



# TV DEMODULATOR BLOCK DIAGRAM



# RF CONVERTER BLOCK DIAGRAM (VEQS0252/0253)



# RF CONVERTER BLOCK DIAGRAM (VEQS0254/0255)



# **CONTENTS**

| MAIN SCHEMATIC DIAGRAM (SYSTEM CONTROL/SUB AUDIO SECTION) · · · · · · · · · · · · · · · · · · · |
|-------------------------------------------------------------------------------------------------|
| MAIN SCHEMATIC DIAGRAM (SERVO SECTION)· · · · · · · · · · · · · · · · · · ·                     |
| IC6001 MATRIX CHART, MAIN VOLTAGE CHART · · · · · · · · · · · · · · · · · · ·                   |
| MAIN VOLTAGE CHART · · · · · · · · · · · · · · · · · · ·                                        |
| MAIN C.B.A. (SERVO/SYSTEM CONTROL/SUB AUDIO) · · · · · · · · · · · · · · · · · · ·              |
| NORMAL AUDIO C.B.A                                                                              |
| NORMAL AUDIO SCHEMATIC DIAGRAM · · · · · · · · · · · · · · · · · · ·                            |
| FM AUDIO C.B.A 4-8                                                                              |
| FM AUDIO VOLTAGE CHART · · · · · · · · · · · · · · · · · · ·                                    |
| FM AUDIO VOLTAGE CHART · · · · · · · · · · · · · · · · · · ·                                    |
| FM AUDIO SCHEMATIC DIAGRAM· · · · · · · · · · · · · · · · · · ·                                 |
| SIGNAL PROCESS C.B.A. · · · · · · · · · · · · · · · · · ·                                       |
| SIGNAL PROCESS SCHEMATIC DIAGRAM· · · · · · · · · · · · · · · · · · ·                           |
| HEAD AMP CIRCUIT · · · · · · · · · · · · · · · · · · ·                                          |
| LUMINANCE CIRCUIT· · · · · · · · · · · · · · · · · · ·                                          |
| CHROMINANCE CIRCUIT · · · · · · · · · · · · · · · · · · ·                                       |
| OPERATION/AUDIO LEVEL METER CIRCUIT· · · · · · · · · · · · · · · · · · ·                        |
| POWER SUPPLY/SUB SYSTEM CONTROL CIRCUIT · · · · · · · · · · · · · · · · · · ·                   |
| PROGRAMMABLE TIMER CIRCUIT · · · · · · · · · · · · · · · · · · ·                                |
| CHANNEL SELECT CIRCUIT · · · · · · · · · · · · · · · · · · ·                                    |
| TV DEMODULATOR CIRCUIT · · · · · · · · · · · · · · · · · · ·                                    |
| CAPSTAN MOTOR DRIVE CIRCUIT · · · · · · · · · · · · · · · · · · ·                               |
| UHF/VHF TUNER CIRCUIT · · · · · · · · · · · · · · · · · · ·                                     |
| RF CONVERTER CIRCUIT (VEQS0252, VEQS0253)····································                   |
| RF CONVERTER CIRCUIT (VEQS0254)· · · · · · · · · · · · · · · · · · ·                            |
| RF CONVERTER CIRCUIT (VEQS0255)· · · · · · · · · · · · · · · · · · ·                            |
| IR WIRELESS TRANSMITTER CIRCUIT, ANTENNA TERMINAL CIRCUIT                                       |
| ANTENNA TERMINAL CIRCUIT                                                                        |
| SMALL CIRCUIT BOARDS · · · · · · 4-28                                                           |
| INTERCONNECTION SCHEMATIC DIAGRAM · · · · · · · · · · · · · · · · · · ·                         |

### IMPORTANT SAFETY NOTICE

There are special components used in this equipment which are important for safety. These parts are shaded on the schematic diagram and on the replacement parts list. It is essential that these critical parts should be replaced with manufacturer's specified parts to prevent shock, fire, or other hazards. Do not modify the original design without permission of manufacturer.

SYSTEM CONTROL SECTION
VOLTAGE MEASUREMENT:
COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET.
COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET.

SUB AUDIO SECTION VOLTAGE MEASUREME MONOSCOPE SIGN, MONOSCOPE SIGN,



IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTRO (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



KET. BRACKET. IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIEIFD PARTS

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

CALLOUTS NEXT TO WIRING PLUGS INDICATE CONNECTIONS TO OTHER SCHEMATIC DIAGRAM.

4-1 MAIN SCHEMATIC DIAGRAM (SYSTEM CONTROL /SUB AUDIO SECTION)

(SERVO SECTION)



## MAIN SCHEMATIC DIAGRAM (SERVO SECTION)

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET. COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET. IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

ALL INTEGRATED CIRCUITS AND MANY OTHER SEIELECTROSTATICALLY SENSITIVE AND THEREFORE HANDLING TECHNIQUES DESCRIBED UNDER THE "(ES) DEVICES" SECTION OF THIS SERVICE MANU,



NOTICE:
IFIED BY THE SIGN A HAVE
RISTICS IMPORTANT FOR SAFETY.
NY DOT THESE COMPONENTS, USE

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

- VOLTAGE MEASUREMENT:
  1. CUE, REVIEW, FRAME ADVANCE, SLOW.
  COLOR BAR SIGNAL IN SLP MODE.
  - COLOR BAR SIGNAL IN SP MODE.
- ★: UNMEASURABLE OR UNNECESSARY TO MEASURE.



| - 1 |       |      |    |           |     | CUE              |          |
|-----|-------|------|----|-----------|-----|------------------|----------|
|     | SEF   | RVO  |    |           |     | REV              |          |
|     |       |      |    |           | -   | SLOW(1/4)        |          |
|     | Q2001 | 4-D  |    |           |     | F.A              |          |
|     | Q2002 | 4-E  |    |           |     | REF.NO.          | _        |
|     | Q2003 | 6-D  | -  |           |     | MODE STOP        | 1        |
|     | Q2004 | 4-A  |    |           |     | REC              | - 1      |
|     | Q2005 | 6-D  |    |           |     | PLAY             | 1        |
|     | Q2006 | 6-C  |    |           |     | CUE              |          |
|     | 02007 | 6-C  |    |           |     | REV              | _1       |
|     | Q2008 | 7-C  |    |           |     | SLOW(1/4)<br>F.A | 1        |
|     | 02009 | 7-C  |    |           |     | 1.0              |          |
|     | Q2010 | 7-C  | N  | REF.NO.   |     |                  | _        |
|     | Q2011 | 7-C  | мо |           | 1   | 2                |          |
|     | Q2012 | 8-C  |    | TOP<br>EC | 0.1 | 0                | Ŀ        |
|     | 02013 | 10-B | I  | AY        | 0.1 | 0                |          |
|     | 02014 | 10-B |    | JE .      | 0.1 | 0                | $\vdash$ |
|     | 02015 | 11-B | RI | EV        | 0   | 0                |          |
|     | Q2018 | 9-C  | SL | OW(1/4)   | 0.1 | 0                |          |
|     |       |      | F. | A         | 0.1 | 0                |          |
|     | Q2019 | 2-C  |    | REF.NO.   |     |                  |          |
|     | Q2020 | 2-D  | `  |           | 1   | 2                |          |
|     |       |      |    | TOP       | 0   | 0                | -        |
|     |       |      | 19 | וטר       | U   | U                | 1        |

| REF.NO.   |      | Q2001 |      |      | Q2002 |      |     | Q2003 |      |     | Q2004 |     |     | Q2005 |     |     | Q2006 |     |
|-----------|------|-------|------|------|-------|------|-----|-------|------|-----|-------|-----|-----|-------|-----|-----|-------|-----|
| MODE      | E    | В     | C    | E    | В     | С    | E   | В     | С    | Ε   | В     | С   | E   | В     | С   | E   | В     | С   |
| STOP      | 0.1  | 0.3   | 0.8  | 0.1  | 1.2   | 0    | 1.9 | 2.4   | 5.0  | 0   | 0     | 4.8 | 3.8 | 3.3   | 0.1 | 0.1 | 0.1   | 0.4 |
| REC       | 2.8  | 4.9   | 2.7  | 2.6  | 4.9   | 2.4  | 1.9 | 2.4   | 5.0  | 0   | 0     | 4.9 | 2.9 | 2.4   | 0   | 0.2 | 0.2   | 0.4 |
| PLAY      | 2.8  | 4.9   | 2.6  | 2.7  | 4.9   | 2.4  | 1.9 | 2.5   | 5.0  | 0   | 0     | 4.8 | 2.9 | 2.4   | 0   | 0.2 | 0.2   | 0.4 |
| CUE       | 2.7  | 4.9   | 2.6  | 2.6  | 4.9   | 2.3  | 1.9 | 2.4   | 5.0  | 0   | 0     | 4.8 | 2.9 | 2.3   | 0   | 4.1 | 4.2   | 0.4 |
| REV       | 2.7  | 4.9   | 2.6  | 2.6  | 4.9   | 2.4  | 1.9 | 2.4   | 5.0  | 0   | 0     | 4.8 | 2.8 | 2.3   | 0   | 0.1 | 0.1   | 0.4 |
| SLOW(1/4) | 1.2  | 0.7.  | 1.3  | 2.7  | 2.0   | 2.6  | 1.9 | 2.4   | 5.υ  | 0   | 0     | 4.8 | 2.9 | 2.4   | . 0 | 0.2 | 0.1   | 0.4 |
| F.A       | 1.2  | 0.6   | 1.2  | 2.7  | 2.0   | 2.6  | 1.9 | 2.5   | 5.0  | 0   | 0     | 4.8 | 2.9 | 2.4   | 0   | 0.2 | 0.2   | 0.4 |
| REF.NO.   |      | Q2007 |      |      | Q2008 |      |     | Q2009 |      |     | Q2010 |     | 1   | Q2011 |     |     | Q2012 |     |
| MODE      | E    | В     | C    | E    | В     | С    | E   | В     | C    | E   | В     | C   | E   | В     | C   | E   | В     | С   |
| STOP      | 0    | 0.1   | 2.8  | 0    | 0.6   | 0    | 0   | 0.4   | 0.1  | 0   | 0.2   | 2.8 | 0   | 0.6   | 0.1 | 5.0 | 4.9   | 1.9 |
| REC       | 0    | 0.2   | 2.8  | 0.1  | 0.7   | 0    | 0   | 0.4   | 1.9  | 0   | 0.5   | 1.5 | 0   | 0.5   | 2.5 | 5.0 | 4.9   | 2.7 |
| PLAY      | 0    | 0.2   | 2.8  | 0.1  | 0.6   | 0    | 0   | 0.4   | 1.9  | 0   | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 5.0   | 2.6 |
| CUE       | 0    | 0.7   | 0.1  | 0.1  | 0.7   | 0    | 0   | 0.4   | 1.8  | 0   | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 2.6   | 4.9 |
| REV       | 0 ,  | 0.1   | 2.8  | 0    | 0.6   | 0    | 0   | 0.4   | 1.8  | 0   | 0.4   | 1.4 | 0   | 0.4   | 2.5 | 4.9 | 4.9   | 2.6 |
| SLOW(1/4) | 0    | 0.2   | 2.8  | 0.1  | 0.6   | 0    | 0   | 0.4   | 1.9  | 0   | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 4.9   | 2.7 |
| F.A       | 0    | 0.2   | 2.8  | 0.1  | 0.6   | 0    | 0   | 0.4   | 1.9  | . 0 | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 4.9   | 2.7 |
| REF.NO.   |      | Q2013 |      |      | Q2014 |      |     | Q2015 | - 1  |     | Q2018 |     |     | Q2019 |     |     | Q2020 |     |
| MODE      | Ε    | В     | С    | Е    | В     | С    | E   | В     | С    | E   | В     | С   | E   | В     | С   | E   | В     | С   |
| STOP      | 11.3 | 11.8  | 14.2 | 14.2 | 14.2  | 11.8 | 0   | _ 0.1 | 14.2 | 0   | 0     | 0   | 0   | 0     | 4.7 | 5.0 | 5.4   | 5.0 |
| REC       | 11.0 | 11.7  | 14.1 | 14.1 | 14.1  | 11.7 | 0   | 0.1   | 14.1 | 0   | 0.2   | 4.1 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| PLAY      | 11.0 | 11.6  | 14.3 | 14.3 | 14.3  | 11.6 | 0   | 0.1   | 14.2 | 0   | 0.2   | 4.1 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| CUE       | 0    | 0     | 0    | . 0  | 0     | 0    | 0 - | 0     | 0    | 0   | 0     | 0   | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| REV       | 13.5 | 14.2  | 14.2 | 14.2 | 13.5  | 14.2 | 0   | 0.7   | 0.1  | 0   | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| SLOW(1/4) | 13.6 | 14.2  | 14.2 | 14.2 | 13.5  | 14.2 | 0   | 0.7   | 0.1  | .0  | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| F.A       | 13.6 | 14.2  | 14.2 | 14.2 | 13.5  | 14.2 | 0   | 0.7   | 0.1  | 0   | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |

|                |     | 1         |      | uzuis |      | -    | <b>UZU14</b> |      |     | QZU13    |      |              | QZUIU |     |     | QZUIS |     |          | UZUZU        |              | 31         |
|----------------|-----|-----------|------|-------|------|------|--------------|------|-----|----------|------|--------------|-------|-----|-----|-------|-----|----------|--------------|--------------|------------|
|                |     | MODE      | Ε    | В     | С    | E    | В            | С    | E   | В        | С    | E            | В     | С   | E   | В     | С   | E        | В            | С            | REF        |
|                |     | STOP      | 11.3 | 11.8  | 14.2 | 14.2 | 14.2         | 11.8 | 0   | _ 0.1    | 14.2 | 0            | 0     | 0   | 0   | 0     | 4.7 | 5.0      | 5.4          | 5.0          |            |
|                |     | REC       | 11.0 | 11.7  | 14.1 | 14.1 | 14.1         | 11.7 | 0   | 0.1      | 14.1 | 0            | 0.2   | 4.1 | 0   | 0.1   | 4.7 | 5.0      | 5.4          | 5.0          | STO        |
|                |     | PLAY      | 11.0 | 11.6  | 14.3 | 14.3 | 14.3         | 11.6 | 0   | 0.1      | 14.2 | 0            | 0.2   | 4.1 | 0   | 0.1   | 4.7 | 5.0      | 5.4          | 5.0          | REC        |
|                |     | CUE       | 0    | 0     | 0    | . 0  | 0            | 0    | 0.  | 0        | 0    | 0            | 0     | 0   | 0   | 0.1   | 4.7 | 5.0      | 5.4          | 5.0          | PLAY       |
|                |     | REV       | 13.5 | 14.2  | 14.2 | 14.2 | 13.5         | 14.2 | 0   | 0.7      | 0.1  | 0            | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0      | 5.4          | 5.0          | CUE        |
|                |     | SLOW(1/4) | 13.6 | 14.2  | 14.2 | 14.2 | 13.5         | 14.2 | 0   | 0.7      | 0.1  | 0            | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0      | 5.4          | 5.0          |            |
|                |     | F.A       | 13.6 | 14.2  | 14.2 | 14.2 | 13.5         | 14.2 | 0   | 0.7      | 0.1  | 0            | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0      | 5.4          | 5.0          | REV        |
|                |     |           |      |       |      |      |              |      |     |          |      |              |       |     |     |       |     |          |              |              | SLOW       |
| REF.NO.        |     |           |      |       |      |      |              |      |     | IC2      | 001  |              |       |     |     |       |     |          |              |              | F.A<br>REF |
| \  -           | 1   | 2         | 3    | 4     | 5    | 6    | 7            | 8    | 9   | 10       | 11   | 12           | 13    | 14  | 15  | 16    | 17  | 18       | 19           | 20           |            |
| STOP           | 0   | 0         | 0    | 0     | 0    | 0    | 0            | 0    | 0   | 0        | 0.8  | 4.8          | 4.8   | 4.9 | 4.9 | 0.1   | 0   | 4.9      | 0            | 0            | MODE       |
|                |     | 0         | 0.1  | 0     | 0    | 0.1  | 0.2          | 2.7  | 2.7 | 2.7      | 2.7  | 4.9          | 4.9   | 5.0 | 5.0 | 2.1   | 2.5 | 5.0      | 2.6          | 0            | STO        |
| REC            | 0.1 | 0         | 0.1  | 0     | 0    | 0.1  | 0.2          | 2.7  | 2.7 | 2.7      | 2.8  | 0.2          | 4.9   | 5.0 | 5.0 | 0.2   | 2.5 | 5.0      | 2.6          | 0            | REC        |
| PLAY           | 0.1 | 0         | 5.0  | 0     | 0    | 0.1  | 0.1          | 2.7  | 2.7 | 2.7      | 2.7  | 0.2          | 4.9   | 5.0 | 5.0 | 0.2   | 2.3 | 5.0      | 2.6          | 0            | PLAY       |
| CUE            | 0.1 |           | 4.9  |       | 0    | 0.2  |              | 2.6  | 2.6 | 2.6      | 2.7  | 0.1          | 4.8   | 4.9 | 5.0 | 0.3   | 2.3 | 5.0      | 2.6          | 0            | CUE        |
| REV            | 0   | 0         |      | 0     |      |      | 0.1          |      | 2.6 |          | 1.2  | 0.1          | 4.8   | 0.1 | 5.0 | 0.2   | ★   | 5.0      | 2.6          | 0            | REV        |
| SLOW(1/4)      | 0.1 | 0         | 0.1  | 0     | 0    | 0.1  | 0.2          | 1.4  |     | 2.6      | 1.2  | 0.2          |       | 0.1 | 5.0 |       |     | 5.0      | 2.6          | 0            | SLOW       |
| F.A            | 0.1 | 0         | 0.1  | 0     | 0    | 0.1  | 0.2          | 1.4  | 2.7 | 2.7      | 1.2  | 0.2          | 4.8   | 0.1 | 5.0 | 0.2   | *   | 5.0      | 2.0          | U            | F.A        |
| REF.NO.        |     |           |      |       |      |      |              |      |     | IC2      | 002  |              |       |     |     |       |     |          |              |              | REF        |
| 1 \ \          | 1   | 2         | 3    | 4     | 5    | 6    | 7            | 8    | 9   | 10       | 11   | 12           | 13    | 14  | 15  | 16    | 17  | 18       | 19           | 20           | MODE       |
| STOP           | 0   | 0         | 2.5  | *     | 4.8  | 0    | 0            | 0    | 0   | 0        | 0    | 0            | 0     | 0   | 0   | 0     | 0   | 0        | 0            | 0            | STOF       |
| REC            | 0   | 2.5       | 2.3  | *     | 4.8  | 2.5  | 4.8          | 0    | 4.9 | 0.2      | 0.1  | 0.1          | 0     | 0.1 | 0.1 | 0.1   | 0   | 0.1      | 0.1          | 0            | REC        |
| PLAY           | 0   | 2.5       | 2.4  | *     | 4.8  | 2.5  | 0.1          | 0    | 0.2 | 0.2      | 0.1  | 5.0          | 0     | 5.0 | 0.1 | 0.1   | 0.1 | 0.1      | 0.1          | 0.1          | PLAY       |
|                | 0   |           | 0.1  | *     | 0.1  | 0.1  | 0.1          | 0    | 0.2 | 0.1      | 0.1  | 4.9          | 0     | 5.0 | 1.7 | 0.3   | 2.4 | 0.1      | 0.1          | 5.0          | CUE        |
| REV            |     | 0.1       | 2.3  | *     | 4.8  | 2.3  | 0            | 0    | 0.1 | 0.1      | 0.1  | 4.8          | 0     | 5.0 | 1.6 | 0.4   | 2.1 | 4.9      | 4.9          | 0            | REV        |
|                | 0   | 2.5       | 2.5  | *     | 4.8  | 2.4  | 0.1          | 0    | 0.1 | 0.1      | 0.1  | 0.1          | . 0   | 0.1 | 0.1 | 0.4   | 0.1 | 0.1      | 0.1          | 0.1          | SLOW       |
| SLOW(1/4)      | 0   | 0.3       |      |       | 4.8  | 2.4  | 0.1          | 0    | 0.1 | 0.1      | 0.1  | 4.9          | 0     | 5.0 | 1.7 | 0.1   | 3.1 | -0.1     | 0.1          | 0.1          | F.A        |
| F.A<br>REF.NO. | 0   | 0.3       | 2.5  | *     |      | 2.5  | 0.1          | U    | 0.2 | 0.2      | 0.2  | 4.9          |       | 3.0 | 1.7 | 0.2   | 3.1 | -0.1     | 0.1          | 0.1          | 5 355      |
| HEF.NO.        |     |           |      | IC2   |      |      |              |      |     |          | ·    |              |       |     |     | -     |     |          |              |              | REF.       |
| MODE           | 21  | 22        | 23   | 24    | 25   | 26   | 27           | 28   |     | <u> </u> |      | <del> </del> |       |     |     |       |     |          | -            |              | MODE       |
| STOP           | 0   | 0         | 0    | 0     | 0    | 0    | 2.5          | 2.5  |     | ļ        |      |              |       |     |     |       |     | <u> </u> | ļ            |              | STOF       |
| REC            | 0   | 0.1       | 0    | 0.1   | 0.1  | 0    | 2.6          | 2.6  |     | <b></b>  |      | <b></b>      |       |     |     |       |     |          | <b></b>      |              | REC        |
| PLAY           | 0   | 0.1       | 0    | 0.1   | 0.1  | 0    | 2.6          | 2.6  |     |          |      |              |       |     |     |       |     |          |              |              | PLAY       |
| CUE            | 0   | 4.9       | 0    | 3.9   | 2.5  | 0    | 2.5          | 2.6  | -   |          |      | <u> </u>     |       |     |     |       |     | <u> </u> |              |              | CUE        |
| REV            | 0   | 4.8       | 0    | 3.8   | 2.5  | 0    | 2.5          | 2.5  |     | <u> </u> |      |              |       |     |     |       |     | -        |              |              | REV        |
| SLOW(1/4)      | 0   | 0.1       | 0    | 3.9   | 2.5  | 0    | 2.7          | 2.5  |     |          |      |              |       |     |     |       |     | ļ        |              |              | SLOW       |
| F.A            | 0   | 0.1       | 0    | 3.9   | 2.5  | 0    | 2.6          | 2.6  |     | L        |      | <u> </u>     |       |     |     |       |     | l        | L            | L            | F.A        |
| REF.NO.        |     |           |      |       |      |      |              |      | 100 | 2003     |      |              |       |     |     |       |     | -        | 1            |              | REF.       |
| 1/             |     | 1 0 1     | 2    |       |      | T 6  | 7            |      | 9   |          | 11   | 12           | 13    | 14  | 15  | 16    | 17  | 18       | <del> </del> | 1            |            |
| MODE           | 1   | 2         | 3    | 4     | 5    | 6    | 7            | 2.5  | 0   | 3.7      | 4.9  | 0            | 4.9   | 0   | 4.7 | 4.9   | 4.9 | 0        | <u> </u>     | <b></b>      | MODE       |
| STOP           | 0.1 | 0.4       | 1.7  | 0     | 2.5  | 2.5  | 0            | I    | 1   |          | 5.0  | 2.5          | 1.2   | 2.5 | 2.9 | 4.9   | 3.9 | 0        | -            |              | STOF       |
| REC            | 2.1 | 0.2       | 2.4  | 0     | 2.5  | 2.6  | 0.1          | 2.9  | 4.8 | 2.9      |      |              |       | 2.5 | 2.9 | 4.8   | 3.9 | 0        |              |              | REC        |
| PLAY           | 0.2 | 0.1       | 1.8  | 0     | 2.6  | 2.6  | 0.1          | 2.6  | 0.1 | 2.9      | 5.0  | 2.5          | 1.1   |     |     |       | 3.9 | 0        | <del></del>  | <del> </del> | PLAY       |
| CUE            | 0.3 | -0.4      | 1.9  | 0     | 2.5  | 2.6  | 0.1          | 2.6  | 0.1 | 2.9      | 5.0  | 2.5          | 1.1   | 2.5 | 2.9 | 2.1   |     |          | <u> </u>     |              | CUE        |
| REV            | 0.4 | -0.5      | 1.8  | 0     | 2.5  | 2.5  | 0            | 2.5  | 0   | 2.8      | 5.0  | 2.4          | 1.1   | 2.5 | 2.9 | 4.8   | 3.8 | 0        |              |              | REV        |
| SL0W(1/4)      | 0.1 | 0.4       | 1.8  | 0     | 2.6  | 2.6  | 0.1          | 2.6  | 0.1 | 2.9      | 5.0  | 2.5          | 1.2   | 2.5 | 2.9 | 4.8   | 3.9 | 0        |              |              | SLOW       |
| F.A            | 0.2 | 0.4       | 1.8  | 0 -   | 2.5  | 2.6  | 0.1          | 2.6  | 0.1 | 2.9      | 5.0  | 2.4          | 1.2   | 2.5 | 1.5 | 4.8   | 3.9 | 0        | L            |              | F.A        |
|                |     |           |      |       |      |      |              |      |     |          |      |              |       |     |     |       |     |          |              |              |            |











MODE REC PLAY SLOW F.A.







- VOLTAGE MEASUREMENT:
  1. CUE, REVIEW, FRAME ADVANCE, SLOW.
  COLOR BAR SIGNAL IN SLP MODE.
- 2. OTHERS
  COLOR BAR SIGNAL IN SP MODE.
- ★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

|                                        |                            |                        | SEI       | RVO   |
|----------------------------------------|----------------------------|------------------------|-----------|-------|
|                                        |                            |                        | Q2001     | 4-0   |
| P2005                                  | (P1552 CAPSTAN FG          | -IFΔD)                 | Q2002     | 4-E   |
|                                        | CAP (M) FG                 | icho)                  | Q2003     | 6-0   |
|                                        | GND FG                     |                        | Q2004     | 4-4   |
| لنا                                    | uno.                       |                        | Q2005     | 6-0   |
|                                        |                            |                        | Q2006     | 6-0   |
| P2004                                  | (CYLINDER UNIT)            |                        | Q2007     | 6-0   |
| P2004                                  |                            |                        | Q2008     | 7-0   |
| 2                                      | GND<br>VH+                 | (P1502 ⑥)<br>(P1502 ②) | <br>Q2009 | 7-0   |
| $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | HEM                        | (P1502 ②)<br>(P1502 ③) | Q2010     | 7-0   |
| <b> </b> -4                            | HEM                        | (P1502 ⑤)              | Q2011     | 7-0   |
| 5                                      | HES                        | (P1502 (9)             | <br>Q2012 | 8-0   |
| 6                                      | HES                        | (P1502 ③)              | Q2013     | 10-E  |
| 7 8                                    | MAIN COIL 3<br>MAIN COIL 2 | (P1502 ④)<br>(P1502 ①) | Q2014     | 10-E  |
|                                        | +14V                       | (P1502 (7))            | Q2015     | 11 -E |
| <b>1</b> 0                             | MAIN COIL 1                | (P1502 ®)              | Q2018     | 9-0   |
| ш                                      |                            |                        | Q2019     | 2-0   |

| SEI   | RVO   |
|-------|-------|
| Q2001 | 4-D   |
| Q2002 | 4-E   |
| Q2003 | 6-D   |
| Q2004 | 4-A   |
| Q2005 | 6-D   |
| Q2006 | 6-C   |
| Q2007 | 6-C   |
| Q2008 | 7-C   |
| Q2009 | 7-C   |
| Q2010 | 7-C   |
| Q2011 | 7-C   |
| Q2012 | 8-C   |
| Q2013 | 10-B  |
| Q2014 | 10-B  |
| Q2015 | 11 -B |
| Q2018 | 9-C   |
| Q2019 | 2-C   |
| Q2020 | 2-D   |

| SEF                                                | RVO                                                                                                     |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| 01                                                 | 4-D<br>4-E<br>6-D<br>4-A<br>6-D<br>6-C<br>7-C<br>7-C<br>7-C<br>7-C<br>7-C<br>10-B<br>11-B<br>9-C<br>2-C |  |
| 02                                                 | 4-E                                                                                                     |  |
| 03                                                 | 6-D                                                                                                     |  |
| 04                                                 | 4-A                                                                                                     |  |
| 05                                                 | 6-D                                                                                                     |  |
| 06                                                 | 6-C                                                                                                     |  |
| 07                                                 | 6-C                                                                                                     |  |
| 08                                                 | 7-C                                                                                                     |  |
| 09                                                 | 7-C                                                                                                     |  |
| 10                                                 | 7-C                                                                                                     |  |
| 11                                                 | 7-C                                                                                                     |  |
| 12                                                 | 8-C                                                                                                     |  |
| 13                                                 | 10-B                                                                                                    |  |
| 14                                                 | 10-B                                                                                                    |  |
| 01 02 03 04 05 06 07 08 09 11 11 12 13 14 15 18 19 | 11 -B                                                                                                   |  |
| 18                                                 | 9-C                                                                                                     |  |
| 19                                                 | 2-C                                                                                                     |  |

| REF.NO.   |      | Q2001 |      |      | Q2002                                   |      |     | Q2003 |      |   | Q2004 |     |     | Q2005 |     |     | Q2006 |     |
|-----------|------|-------|------|------|-----------------------------------------|------|-----|-------|------|---|-------|-----|-----|-------|-----|-----|-------|-----|
| MODE      | E    | В     | C    | E    | В                                       | С    | E   | В     | С    | E | В     | С   | E   | В     | С   | E   | В     | С   |
| STOP      | 0.1  | 0.3   | 0.8  | 0.1  | 1.2                                     | 0    | 1.9 | 2.4   | 5.0  | 0 | 0     | 4.8 | 3.8 | 3.3   | 0.1 | 0.1 | 0.1   | 0.4 |
| REC       | 2.8  | 4.9   | 2.7  | 2.6  | 4.9                                     | 2.4  | 1.9 | 2.4   | 5.0  | 0 | 0     | 4.9 | 2.9 | 2.4   | 0   | 0.2 | 0.2   | 0.4 |
| PLAY      | 2.8  | 4.9   | 2.6  | 2.7  | 4.9                                     | 2.4  | 1.9 | 2.5   | 5.0  | 0 | 0     | 4.8 | 2.9 | 2.4   | 0   | 0.2 | 0.2   | 0.4 |
| CUE       | 2.7  | 4.9   | 2.6  | 2.6  | 4.9                                     | 2.3  | 1.9 | 2.4   | 5.0  | 0 | 0     | 4.8 | 2.9 | 2.3   | 0   | 4.1 | 4.2   | 0.4 |
| REV       | 2.7  | 4.9   | 2.6  | 2.6  | 4.9                                     | 2.4  | 1.9 | 2.4   | 5.0  | 0 | 0     | 4.8 | 2.8 | 2.3   | 0   | 0.1 | 0.1   | 0.4 |
| SLOW(1/4) | 1.2  | 0.7   | 1.3  | 2.7  | 2.0                                     | 2.6  | 1.9 | 2.4   | 5.υ  | 0 | 0     | 4.8 | 2.9 | 2.4   | 0   | 0.2 | 0.1   | 0.4 |
| F.A       | 1.2  | 0.6   | 1.2  | 2.7  | 2.0                                     | 2.6  | 1.9 | 2.5   | 5.0  | 0 | 0     | 4.8 | 2.9 | 2.4   | 0   | 0.2 | 0.2   | 0.4 |
| REF.NO.   |      | Q2007 |      |      | Q2008                                   |      |     | Q2009 |      |   | Q2010 |     |     | Q2011 |     |     | Q2012 |     |
| MODE      | E    | В     | С    | E    | В                                       | С    | E   | В     | С    | E | В     | .C  | E   | В     | C   | E   | В     | С   |
| STOP      | 0    | 0.1   | 2.8  | 0    | 0.6                                     | 0    | 0   | 0.4   | 0.1  | 0 | 0.2   | 2.8 | 0   | 0.6   | 0.1 | 5.0 | 4.9   | 1.9 |
| REC       | 0    | 0.2   | 2.8  | 0.1  | 0.7                                     | 0    | 0   | 0.4   | 1.9  | 0 | 0.5   | 1.5 | 0   | 0.5   | 2.5 | 5.0 | 4.9   | 2.7 |
| PLAY -    | 0    | 0.2   | 2.8  | 0.1  | 0.6                                     | 0    | 0   | 0.4   | 1.9  | 0 | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 5.0   | 2.6 |
| CUE       | 0    | 0.7   | 0.1  | 0.1  | 0.7                                     | 0    | 0   | 0.4   | 1.8  | 0 | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 2.6   | 4.9 |
| REV       | 0    | 0.1   | 2.8  | 0    | 0.6                                     | 0    | 0   | 0.4   | 1.8  | 0 | 0.4   | 1.4 | 0   | 0.4   | 2.5 | 4.9 | 4.9   | 2.6 |
| SLOW(1/4) | 0    | 0.2   | 2.8  | 0.1  | 0.6                                     | 0    | 0   | 0.4   | 1.9  | 0 | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 4.9   | 2.7 |
| F.A       | 0 -  | 0.2   | 2.8  | 0.1  | 0.6                                     | 0    | 0   | 0.4   | 1.9  | 0 | 0.5   | 1.5 | 0   | 0.4   | 2.5 | 5.0 | 4.9   | 2.7 |
| REF.NO.   |      | Q2013 |      |      | Q2014                                   |      |     | Q2015 |      |   | Q2018 |     |     | Q2019 |     |     | Q2020 |     |
| MODE      | E    | В     | С    | E    | В                                       | С    | E   | В     | С    | E | В     | С   | E   | В     | С   | E   | В     | С   |
| STOP      | 11.3 | 11.8  | 14.2 | 14.2 | 14.2                                    | 11.8 | 0   | _ 0.1 | 14.2 | 0 | 0     | 0   | 0   | 0     | 4.7 | 5.0 | 5.4   | 5.0 |
| REC       | 11.0 | 11.7  | 14.1 | 14.1 | 14.1                                    | 11.7 | 0   | 0.1   | 14.1 | 0 | 0.2   | 4.1 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| PLAY      | 11.0 | 11.6  | 14.3 | 14.3 | 14.3                                    | 11.6 | 0   | 0.1   | 14.2 | 0 | 0.2   | 4.1 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| CUE       | 0    | 0     | 0    | 0    | 0                                       | 0    | 0   | 0     | 0    | 0 | 0     | 0   | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| REV       | 13.5 | 14.2  | 14.2 | 14.2 | 13.5                                    | 14.2 | 0   | 0.7   | 0.1  | 0 | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| SLOW(1/4) | 13.6 | 14.2  | 14.2 | 14.2 | 13.5                                    | 14.2 | 0   | 0.7   | 0.1  | 0 | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
| F.A       | 13.6 | 14.2  | 14.2 | 14.2 | 13.5                                    | 14.2 | 0   | 0.7   | 0.1  | 0 | 0.2   | 4.7 | 0   | 0.1   | 4.7 | 5.0 | 5.4   | 5.0 |
|           |      |       |      |      |                                         |      |     |       |      |   |       |     |     |       |     |     |       |     |
|           | ***  |       |      |      | *************************************** |      |     | IC2   | 1001 |   |       |     |     |       |     |     |       |     |
|           |      |       |      |      |                                         |      |     |       |      |   |       |     |     |       |     |     |       |     |

| NOME   T   2   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REF.NO.   |     |      |      |     |     |     |      |     |     | IC2 | 001 |     |     |     |                                         |      |     |      |     |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----------------------------------------|------|-----|------|-----|-------|
| REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MODE      | 1   | 2    | 3    | 4   | 5   | 6   | 7    | 8   | 9   | 10  | 11  | 12  | 13  | 14  | - 15                                    | 16   | 17  | 18   | 19  | 20    |
| PAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STOP      | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0.8 | 4.8 | 4.8 | 4.9 | 4.9                                     | 0.1  | 0   | 4.9  | 0   | 0     |
| CUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REC       | 0.1 | 0    | 0:1  | 0   | 0   | 0.1 | 0.2  | 2.7 | 2.7 | 2.7 | 2.7 | 4.9 | 4.9 | 5.0 | 5.0                                     | 2.1  | 2.5 | 5.0  | 2.6 | 0     |
| REV 0 0 0 4.9 0 0 0.1 0.1 0.1 2.6 2.6 2.6 2.6 2.7 0.1 4.8 4.9 5.0 0.2 2.3 5.0 2.6 0 SLOWING 0.1 0 0 0.1 0 0 0 0.1 0.2 1.4 2.6 2.6 2.6 2.7 0.1 4.8 4.9 5.0 0.2 ★ 5.0 2.6 0  REV 0 0 0 4.9 0 0 0.1 0 0 0.1 0.2 1.4 2.7 2.7 1.2 0.2 4.8 0.1 5.0 0.2 ★ 5.0 2.6 0    REF.AO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLAY      | 0.1 | 0    | 0.1  | 0   | 0   | 0.1 | 0.1  | 2.7 | 2.7 | 2.7 | 2.8 | 0.2 | 4.9 | 5.0 | 5.0                                     | 0.2  | 2.5 | 5.0  | 2.6 | 0     |
| SLOWING   O.1   O.   O.1   O.   O.1   O.   O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUE       | 0.1 | 0    | 5.0  | 0   | 0   | 0.2 | 0.2  | 2.7 | 2.7 | 2.7 | 2.7 | 0.2 | 4.9 | 5.0 | 5.0                                     | 0.3  | 2.3 | 5.0  | 2.6 | 0     |
| F.A.   0.1   0   0.1   0   0.1   0.2   1.4   2.7   2.7   1.2   0.2   4.8   0.1   5.0   0.2   * 5.0   2.6   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REV       | 0   | 0    | 4.9  | 0   | 0   |     | 0.1  | 2.6 | 2.6 | 2.6 | 2.7 |     | 4.8 | 4.9 | 5.0                                     | 0.2  | 2.3 | 5.0  | 2.6 |       |
| No   No   No   No   No   No   No   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLOW(1/4) | 0.1 | 0    | 0.1  | 0   | 0   | 0.1 | 0.2  | 1.4 | 2.6 | 2.6 | 1.2 | 0.2 | 4.8 | 0.1 | 5.0                                     | 0.2  | *   | 5.0  | 2.6 | 0     |
| MODE   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F.A       | 0.1 | 0    | 0.1  | 0   | 0   | 0.1 | 0.2  | 1.4 | 2.7 | 2.7 | 1.2 | 0.2 | 4.8 | 0.1 | 5.0                                     | 0.2  | *   | 5.0  | 2.6 | 0     |
| MODE   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEE NO    |     |      |      |     |     |     |      |     |     | 100 | 000 |     |     |     |                                         |      |     |      |     |       |
| STOP   O   O   O   2.5   ★   4.8   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 \ \     |     |      |      | -   |     |     | -    | 0   |     |     |     | 10  | 40  | 44  | 45                                      | - 10 | 47  | 10   | 10  | - 20  |
| REC   0   2.5   2.4   ★   4.8   2.5   4.8   0   4.9   0.2   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0   0.1   0.1   0.1   0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0  |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| PLAY   0   2.6   2.4   ★   4.8   2.5   0.1   0   0.2   0.1   0.1   5.0   0   5.0   0.1   0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1     |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| CUE 0 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| REV 0 2.5 2.3 ★ 4.8 2.3 0 0 0 0 0.1 0.1 4.8 0 5.0 1.6 0.4 2.1 4.9 4.9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| SLOWIV4  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| F.A. 0 0.3 2.5 ** 4.8 2.5 0.1 0 0.2 0.2 0.2 4.9 0 5.0 1.7 0.2 3.1 0.1 0.1 0.1 0.1      REF.NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     | *************************************** |      |     |      |     |       |
| Note   1   22   3   24   25   26   27   28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |     |      |      |     | 7   |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| NOTE   1   22   23   24   25   26   27   28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |     | 0.3  | 2.5  |     |     | 2.5 | 0.1  | U   | 0.2 | 0.2 | 0.2 | 4.9 | 0   | 5.0 | 1.7                                     | 0.2  | 3.1 | -0.1 | 0.1 | - 0.1 |
| STOP   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \  -      | 21  | 20   | - 22 |     |     | 26  | . 27 | 20  |     |     |     |     |     |     |                                         |      |     |      |     |       |
| REC 0 0.1 0 0.1 0.1 0.1 0 2.6 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| PLAY   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| CUE 0 4.9 0 3.9 2.5 0 2.5 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |      |      |     |     |     |      |     |     | -   |     |     |     |     |                                         |      |     |      |     |       |
| REV 0 4.8 0 3.8 2.5 0 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| SLOWIV4  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| REF.NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| C2003   C2005   C205   C2005   C2005   C2005   C2005   C2005   C2005   C2005   C2005 |           |     |      |      |     |     |     |      |     |     |     |     |     |     |     |                                         |      |     |      |     |       |
| NODE   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |     | U.1  |      | 0.0 | 2.0 |     |      | 2.0 |     |     |     |     |     |     |                                         |      |     |      |     |       |
| STOP   0.1   0.4   1.7   0   2.5   2.5   0   2.5   0   3.7   4.9   0   4.9   0   4.7   4.9   4.9   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REF.NO.   |     |      |      |     |     | :   |      |     | IC2 | 003 |     |     |     |     |                                         |      |     |      |     |       |
| REC         2.1         0.2         2.4         0         2.5         2.6         0.1         2.9         4.8         2.9         5.0         2.5         1.2         2.5         2.9         4.8         3.9         0           PLAY         0.2         0.1         1.8         0         2.6         2.6         0.1         2.9         5.0         2.5         1.1         2.5         2.9         4.8         3.9         0           CUE         0.3         -0.4         1.9         0         2.5         2.6         0.1         2.9         5.0         2.5         1.1         2.5         2.9         4.8         3.9         0           REV         0.4         -0.5         1.8         0         2.5         2.5         0         2.5         0         2.8         5.0         2.4         1.1         2.5         2.9         4.8         3.8         0           SLOWIV4)         0.1         0.4         1.8         0         2.6         2.6         0.1         2.9         5.0         2.5         1.2         2.5         2.9         4.8         3.9         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MODE      | 1   | 2    | 3    | 4   | 5   | 6   | 7    | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15                                      | 16   | 17  | 18   |     |       |
| PLAY   0.2   0.1   1.8   0   2.6   2.6   0.1   2.6   0.1   2.9   5.0   2.5   1.1   2.5   2.9   4.8   3.9   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STOP      | 0.1 | 0.4  | 1.7  | 0   | 2.5 | 2.5 | 0    | 2.5 | 0   | 3.7 | 4.9 | 0   | 4.9 | 0   | 4.7                                     | 4.9  | 4.9 | 0    |     |       |
| CUE     0.3     -0.4     1.9     0     2.5     2.6     0.1     2.6     0.1     2.9     5.0     2.5     1.1     2.5     2.9     2.1     3.9     0       REV     0.4     -0.5     1.8     0     2.5     2.5     0     2.5     0     2.8     5.0     2.4     1.1     2.5     2.9     4.8     3.8     0       SLOW(04)     0.1     0.4     1.8     0     2.6     2.6     0.1     2.9     5.0     2.5     1.2     2.5     2.9     4.8     3.9     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REC       | 2.1 | 0.2  | 2.4  | 0   | 2.5 | 2.6 | 0.1  | 2.9 | 4.8 | 2.9 | 5.0 | 2.5 | 1.2 | 2.5 | 2.9                                     | 4.8  | 3.9 | 0    |     |       |
| REV 0.4 -0.5 1.8 0 2.5 2.5 0 2.5 0 2.8 5.0 2.4 1.1 2.5 2.9 4.8 3.8 0 SLOW(1/4) 0.1 0.4 1.8 0 2.6 2.6 2.6 0.1 2.6 0.1 2.9 5.0 2.5 1.2 2.5 2.9 4.8 3.9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLAY      | 0.2 | 0.1  | 1.8  | 0   | 2.6 | 2.6 | 0.1  | 2.6 | 0.1 | 2.9 | 5.0 | 2.5 | 1.1 | 2.5 | 2.9                                     | 4.8  | 3.9 | 0    |     |       |
| SLOW(1/4) 0.1 0.4 1.8 0 2.6 2.6 0.1 2.6 0.1 2.9 5.0 2.5 1.2 2.5 2.9 4.8 3.9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUE       | 0.3 | -0.4 | 1.9  | 0   |     |     | 0.1  | 2.6 | 0.1 |     | 5.0 | 2.5 | 1.1 |     | 2.9                                     | 2.1  | 3.9 | 0    |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REV       | 0.4 | -0.5 | 1.8  | 0   | 2.5 | 2.5 | 0    | 2.5 | 0   | 2.8 | 5.0 | 2.4 | 1.1 | 2.5 | 2.9                                     | 4.8  | 3.8 | 0    |     |       |
| F.A 0.2 0.4 1.8 0 2.5 2.6 0.1 2.6 0.1 2.9 5.0 2.4 1.2 2.5 1.5 4.8 3.9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SLOW(1/4) | 0.1 | 0.4  | 1.8  | 0   | 2.6 | 2.6 | 0.1  | 2.6 | 0.1 | 2.9 | 5.0 | 2.5 | 1.2 | 2.5 | 2.9                                     | 4.8  | 3.9 | 0    |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F.A       | 0.2 | 0.4  | 1.8  | 0   | 2.5 | 2.6 | 0.1  | 2.6 | 0.1 | 2.9 | 5.0 | 2.4 | 1.2 | 2.5 | 1.5                                     | 4.8  | 3.9 | 0    |     |       |

|                                                                                                                       | 14.0                                                                       | 14.0                                                                             | 2.0                                                                       | 2.4                                                                                              | 0.1                                                                                        | 4.1                                                                 | 12.0                                                                     | 0.2                                                                             | 11.2                               | 0.5                    | 2.0                                   |                   | 2.0                                 | 0.7                                   | 0.0 | 1.0 | 1.0 | J.2 | 4.0           | 3.9 |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|------------------------|---------------------------------------|-------------------|-------------------------------------|---------------------------------------|-----|-----|-----|-----|---------------|-----|
| REF.NO.                                                                                                               |                                                                            | IC2                                                                              | 004                                                                       |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| MODE                                                                                                                  | 21                                                                         | 22                                                                               | 23                                                                        | 24                                                                                               |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| STOP                                                                                                                  | 14.2                                                                       | *                                                                                | 14.2                                                                      | 0                                                                                                |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     | <b></b>       |     |
|                                                                                                                       |                                                                            |                                                                                  | 13.8                                                                      | 0.1                                                                                              |                                                                                            |                                                                     |                                                                          |                                                                                 | <del></del>                        |                        |                                       |                   |                                     |                                       |     |     |     |     | <del>  </del> |     |
| REC                                                                                                                   | 14.1                                                                       | *                                                                                |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 | <del></del>                        |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| PLAY                                                                                                                  | 14.2                                                                       | *                                                                                | 14.0                                                                      | 0.1                                                                                              |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| CUE                                                                                                                   | 14.2                                                                       | *                                                                                | 14.0                                                                      | 0.1                                                                                              |                                                                                            |                                                                     |                                                                          |                                                                                 | í l                                |                        | . 1                                   |                   |                                     |                                       | 1   |     |     | !   |               |     |
| REV                                                                                                                   | 14.2                                                                       | *                                                                                | 14.0                                                                      | 0.1                                                                                              |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| SLOW(1/4)                                                                                                             | 14.2                                                                       | *                                                                                | 14.0                                                                      | 0.1                                                                                              |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
|                                                                                                                       |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 | <del>  </del>                      |                        |                                       |                   |                                     |                                       |     |     |     |     | <del> </del>  |     |
| F.A                                                                                                                   | 14.2                                                                       | *                                                                                | 14.0                                                                      | 0.1                                                                                              | L                                                                                          |                                                                     |                                                                          |                                                                                 | L                                  |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
|                                                                                                                       |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| REF.NO.                                                                                                               |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    | IC2                    | 005                                   |                   |                                     |                                       |     |     |     |     |               |     |
| \ \ \                                                                                                                 |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     | -                                                                        |                                                                                 |                                    |                        |                                       | 10                | 10                                  | 14                                    | 16  | 10  | 17  | 10  | T 10 I        | 00  |
| MODE                                                                                                                  | 1                                                                          | 2                                                                                | 3                                                                         | 4                                                                                                | 5                                                                                          | 6                                                                   | 7                                                                        | 8                                                                               | 9                                  | 10                     | 11                                    | 12                | 13                                  | 14                                    | 15  | 16  | 17  | 18  | 19            | 20  |
| STOP                                                                                                                  | 0                                                                          | 0                                                                                | 0                                                                         | 0.5                                                                                              | 1.0                                                                                        | 1.0                                                                 | 4.9                                                                      | 0                                                                               | 0                                  | 0.2                    | 4.2                                   | 0                 | 0.1                                 | 2.2                                   | 4.9 | 0   | 0   | 0   | 4.9           | 0.2 |
| REC                                                                                                                   | 0                                                                          | 0                                                                                | 0                                                                         | 0.6                                                                                              | 2.5                                                                                        | 2.6                                                                 | 2.6                                                                      | 0.1                                                                             | 0.2                                | 0.2                    | 4.4                                   | 0.1               | 0.2                                 | 0.1                                   | 5.0 | 0.1 | 0.1 | 0.1 | 5.0           | 0.3 |
| PLAY                                                                                                                  | 0                                                                          | 0                                                                                | 0                                                                         | 0.6                                                                                              | 2.5                                                                                        | 2.6                                                                 | 2.6                                                                      | 0.1                                                                             | 4.7                                | 0.1                    | 4.4                                   | 0.1               | 0.2                                 | 0.1                                   | 5.0 | 0.1 | 0.1 | 0.1 | 5.0           | 0.3 |
| CUE                                                                                                                   | 0                                                                          | 0                                                                                | 0                                                                         | 0.6                                                                                              | 2.5                                                                                        | 2.5                                                                 | 2.1                                                                      | 2.5                                                                             | 2.5                                | 4.9                    | 4.4                                   | 0.1               | 0.2                                 | 0.1                                   | 5.0 | 0.1 | 0.1 | 0.1 | 5.0           | 0.3 |
|                                                                                                                       |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| REV                                                                                                                   | 0                                                                          | 0                                                                                | 0                                                                         | 0.5                                                                                              | 2.4                                                                                        | 2.5                                                                 | 2.0                                                                      | 2.6                                                                             | 2.3                                | 4.9                    | 4.3                                   | 0                 | 0.1                                 | 4.5                                   | 4.9 | 0   | 0   | 0   | 4.9           | 0.2 |
| SLOW(1/4)                                                                                                             | - 0                                                                        | 0                                                                                | 0                                                                         | *                                                                                                | 2.5                                                                                        | 2.3                                                                 | 0.3                                                                      | 2.3                                                                             | 2.4                                | 0.2                    | 0.1                                   | *                 | 0.2                                 | 0.1                                   | 0.1 | 0.1 | 0.2 | 0.3 | 5.0           | 0.3 |
| F.A                                                                                                                   | 0                                                                          | 0                                                                                | 0                                                                         | *                                                                                                | 2.5                                                                                        | 2.5                                                                 | 0.1                                                                      | 2.3                                                                             | 2.5                                | 0.3                    | 0.1                                   | *                 | 0.2                                 | 0.1                                   | 0.1 | 0.1 | 0.1 | 0.3 | 5.0           | 0.3 |
| REF.NO.                                                                                                               |                                                                            | L                                                                                |                                                                           | <u> </u>                                                                                         |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    | IC2                    |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| \ \                                                                                                                   |                                                                            |                                                                                  | - 00                                                                      |                                                                                                  | 05                                                                                         | - 00                                                                | 07                                                                       |                                                                                 | - 00 1                             |                        |                                       |                   | 00                                  | 0.4                                   | 05  | 00  | 07  |     | 1 00 1        | 40  |
| MODE                                                                                                                  | 21                                                                         | 22                                                                               | 23                                                                        | 24                                                                                               | 25                                                                                         | 26                                                                  | 27                                                                       | 28                                                                              | 29                                 | 30                     | 31                                    | 32                | 33                                  | 34                                    | 35  | 36  | 37  | 38  | 39            | 40  |
| STOP                                                                                                                  | 5.0                                                                        | 0                                                                                | 1.8                                                                       | 0                                                                                                | 0                                                                                          | 0                                                                   | 0                                                                        | 0                                                                               | 0                                  | 0                      | 0                                     | 2.8               | 0                                   | 0                                     | *   | 4.9 | 0   | 0.8 | 4.9           | 1.7 |
| REC                                                                                                                   | 5.0                                                                        | 0                                                                                | 2.6                                                                       | 0.1                                                                                              | 0.1                                                                                        | 0.1                                                                 | 0.1                                                                      | 0.1                                                                             | 0.1                                | 2.1                    | 0                                     | 2.8               | 0                                   | 2.5                                   | *   | 5.0 | 0.1 | 2.8 | 4.9           | 2.6 |
| PLAY                                                                                                                  | 5.0                                                                        | 0                                                                                | 2.6                                                                       | 0.1                                                                                              | 0.1                                                                                        | 0.1                                                                 | 0.1                                                                      | 0.1                                                                             | 0.1                                | 0.2                    | 0                                     | 2.8               | 0                                   | 2.5                                   | *   | 4.9 | 0.2 | 2.8 | 4.9           | 2.6 |
|                                                                                                                       |                                                                            | L                                                                                |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| CUE                                                                                                                   | 5.0                                                                        | 0                                                                                | 2.6                                                                       | 0.1                                                                                              | 0.1                                                                                        | 0.1                                                                 | 0.1                                                                      | 0.1                                                                             | 0.1                                | 0.3                    | 0                                     | 2.8               | 0                                   | 2.5                                   | * . | 4.9 | 0.3 | 2.7 | 4.9           | 2.5 |
| REV                                                                                                                   | 5.0                                                                        | 0                                                                                | 2.6                                                                       | 0.1                                                                                              | 0                                                                                          | 0.1                                                                 | 0                                                                        | 0                                                                               | 0                                  | 0.2                    | 0                                     | 2.8               | 0                                   | 2.5                                   | *   | 4.8 | 0.3 | 2.7 | 0             | 2.5 |
| SLOW(1/4)                                                                                                             | 5.0                                                                        | 0                                                                                | 2.7                                                                       | 0.1                                                                                              | 0.1                                                                                        | 0.1                                                                 | 0.3                                                                      | 0.3                                                                             | 0.1                                | 0.2                    | 0                                     | 2.8               | 0                                   | 2.5                                   | *   | 4.8 | 0.3 | 0.4 | 4.7           | 2.4 |
| F.A                                                                                                                   | 5.0                                                                        | 0                                                                                | 2.7                                                                       | 0.1                                                                                              | 0.1                                                                                        | 0.1                                                                 | 0.2                                                                      | 0.3                                                                             | 0.1                                | 0.2                    | 0                                     | 2.8               | 0                                   | 2.5                                   | *   | 4.9 | 0.3 | 0.4 | 4.6           | 2.4 |
| REF.NO.                                                                                                               | IC2                                                                        |                                                                                  |                                                                           | <u> </u>                                                                                         | U.1                                                                                        | IC2                                                                 |                                                                          | 0.0                                                                             |                                    |                        | لــنّـا                               |                   |                                     | IC2                                   |     |     |     |     |               |     |
| \ <b>+</b>                                                                                                            |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| MODE                                                                                                                  | 41                                                                         | 42                                                                               | 1                                                                         | 2                                                                                                | 3                                                                                          | 4                                                                   | 5                                                                        | 6                                                                               | 7                                  | 8                      | 1                                     | 2                 | 3                                   | 4                                     | 5   | 6   | 7   | 8   |               |     |
| STOP                                                                                                                  | 4.9                                                                        | 2.1                                                                              | 1.1                                                                       | 1.1                                                                                              | 1.0                                                                                        | 0                                                                   | 2.5                                                                      | 2.5                                                                             | 2.5                                | 4.9                    | 3.7                                   | 0                 | 2.9                                 | 0                                     | 1.8 | 1.8 | 1.8 | 5.0 |               |     |
| REC                                                                                                                   | 4.9                                                                        | 0.1                                                                              | 2.6                                                                       | 2.6                                                                                              | 2.6                                                                                        | 0                                                                   | 2.5                                                                      | 2.5                                                                             | 2.6                                | 5.0                    | 2.1                                   | 2.5               | 2.4                                 | 0                                     | 2.6 | 2.7 | 2.7 | 5.0 |               |     |
| PLAY                                                                                                                  | 4.9                                                                        | 0.1                                                                              | 2.6                                                                       | 2.6                                                                                              | 2.6                                                                                        | 0                                                                   | 2.6                                                                      | 2.5                                                                             | 2.6                                | 5.0                    | 2.1                                   | 2.5               | 2.4                                 | 0                                     | 2.7 | 2.7 | 2.7 | 5.0 |               |     |
|                                                                                                                       |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 |                                    |                        | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 | 2.7 | 5.0 | -             |     |
| CUE                                                                                                                   | 4.9                                                                        | 0.1                                                                              | 2.6                                                                       | 2.6                                                                                              | 2.6                                                                                        | 0                                                                   | 2.6                                                                      | 2.5                                                                             | 2.6                                | 5.0                    |                                       |                   |                                     |                                       |     |     |     |     |               |     |
| REV                                                                                                                   | 4.9                                                                        | 4.9                                                                              | 2.6                                                                       | 2.6                                                                                              | 2.5                                                                                        | 0                                                                   | 2.5                                                                      | 2.5                                                                             | 2.5                                | 4.9                    | 2.1                                   | 2.4               | 2.3                                 | 0                                     | 2.6 | 2.6 | 2.6 | 5.0 |               |     |
| SLOW(1/4)                                                                                                             | *                                                                          | *                                                                                | 2.6                                                                       | 2.6                                                                                              | 2.6                                                                                        | 0                                                                   | 2.5                                                                      | 2.5                                                                             | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.6 | 2.7 | 2.7 | 5.0 |               |     |
| F.A                                                                                                                   | *                                                                          | *                                                                                | 2.6                                                                       | 2.6                                                                                              | 2.6                                                                                        | 0                                                                   | 2.5                                                                      | 2.5                                                                             |                                    |                        |                                       |                   |                                     |                                       |     |     |     | 0.0 | 1             |     |
|                                                                                                                       |                                                                            |                                                                                  |                                                                           | 0                                                                                                |                                                                                            |                                                                     |                                                                          |                                                                                 | 1 25 1                             | 900                    |                                       | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 |     |     |               |     |
| REF.NO.                                                                                                               |                                                                            |                                                                                  |                                                                           |                                                                                                  |                                                                                            |                                                                     | 2.5                                                                      | 2.5                                                                             | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 | 2.7 | 5.0 |               |     |
|                                                                                                                       |                                                                            |                                                                                  |                                                                           | ICS                                                                                              | nna<br>nna                                                                                 |                                                                     | 2.5                                                                      | 2.5                                                                             | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 |     |     |               |     |
| \ <b>+</b>                                                                                                            |                                                                            |                                                                                  |                                                                           |                                                                                                  | 008                                                                                        |                                                                     |                                                                          |                                                                                 | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 |     |     |               |     |
| MODE                                                                                                                  | 1                                                                          | 2                                                                                | 3                                                                         | 4                                                                                                | 5                                                                                          | 6                                                                   | 7                                                                        | 8                                                                               | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP                                                                                                          | 1                                                                          | 2 2.3                                                                            | 3 0.1                                                                     |                                                                                                  |                                                                                            |                                                                     |                                                                          |                                                                                 | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP                                                                                                          |                                                                            |                                                                                  |                                                                           | 4                                                                                                | 5                                                                                          | 6                                                                   | 7                                                                        | 8                                                                               | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC                                                                                                   | 0<br>2.5                                                                   | 2.3                                                                              | 0.1<br>2.5                                                                | 4<br>0<br>0                                                                                      | 5<br>2.3<br>2.3                                                                            | 6<br>0.1<br>2.5                                                     | 7<br>4.9<br>2.6                                                          | 8<br>5.0<br>5.0                                                                 | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 | 0                                     | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY                                                                                           | 0<br>2.5<br>2.6                                                            | 2.3<br>2.3<br>2.3                                                                | 0.1<br>2.5<br>2.5                                                         | 4<br>0<br>0<br>0                                                                                 | 5<br>2.3<br>2.3<br>2.3                                                                     | 6<br>0.1<br>2.5<br>2.5                                              | 7<br>4.9<br>2.6<br>2.5                                                   | 8<br>5.0<br>5.0<br>5.0                                                          | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| STOP<br>REC<br>PLAY                                                                                                   | 0<br>2.5<br>2.6<br>2.6                                                     | 2.3<br>2.3<br>2.3<br>2.3                                                         | 0.1<br>2.5<br>2.5<br>2.5                                                  | 4<br>0<br>0<br>0<br>0                                                                            | 5<br>2.3<br>2.3<br>2.3<br>2.3                                                              | 6<br>0.1<br>2.5<br>2.5<br>2.5                                       | 7<br>4.9<br>2.6<br>2.5<br>2.5                                            | 8<br>5.0<br>5.0<br>5.0<br>5.0                                                   | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| STOP<br>REC<br>PLAY                                                                                                   | 0<br>2.5<br>2.6                                                            | 2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                  | 0.1<br>2.5<br>2.5                                                         | 4<br>0<br>0<br>0                                                                                 | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                       | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5                                | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5                                     | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                            | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| STOP<br>REC<br>PLAY<br>CUE<br>REV                                                                                     | 0<br>2.5<br>2.6<br>2.6                                                     | 2.3<br>2.3<br>2.3<br>2.3                                                         | 0.1<br>2.5<br>2.5<br>2.5                                                  | 4<br>0<br>0<br>0<br>0                                                                            | 5<br>2.3<br>2.3<br>2.3<br>2.3                                                              | 6<br>0.1<br>2.5<br>2.5<br>2.5                                       | 7<br>4.9<br>2.6<br>2.5<br>2.5                                            | 8<br>5.0<br>5.0<br>5.0<br>5.0                                                   | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| STOP REC PLAY CUE REV SLOW(1/4)                                                                                       | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5                                       | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                           | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                             | 4<br>0<br>0<br>0<br>0<br>0                                                                       | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                  | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                       | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                     | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| STOP REC PLAY CUE REV SLOW(1/4)                                                                                       | 0<br>2.5<br>2.6<br>2.6<br>2.5                                              | 2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                  | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                                    | 4<br>0<br>0<br>0<br>0                                                                            | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                       | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5                                | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5                                     | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                            | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)                                                                | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5                                       | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                           | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                             | 4<br>0<br>0<br>0<br>0<br>0                                                                       | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                                | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                  | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                              | 2.5                                | 5.0                    | 2.1                                   | 2.5               | 2.3                                 |                                       | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A                                                         | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5                                | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                             | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                      | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                  | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5           | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                              |                                    |                        |                                       |                   |                                     |                                       | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A                                                         | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5                                | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                             | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                      | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                  | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5           | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>7           | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                       | 9                                  | 10                     | 11                                    | 12                | 13                                  | 14                                    | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A                                                         | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5                                | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                             | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                      | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                  | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5           | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                              |                                    |                        |                                       |                   |                                     |                                       | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A                                                         | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5                                | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                             | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5               | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3                                  | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5           | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>7           | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                       | 9 0                                | 10                     | 11                                    | 12                | 13                                  | 14                                    | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A<br>REF.NO.<br>MODE<br>STOP<br>REC                       | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5<br>1<br>0                      | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3               | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5        | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>5<br>5.0                             | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0 | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>7<br>0      | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                       | 9 0 2.5                            | 10 0 0                 | 11<br>4.9<br>3.4                      | 12 *              | 13<br>0<br>2.5                      | 14<br>5.0<br>5.0                      | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A<br>REF.NO.<br>MODE<br>STOP<br>REC<br>PLAY               | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>1<br>0<br>1.6        | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3               | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>5<br>5.0<br>5.0               | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0        | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>7<br>0      | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>009                | 9<br>0<br>2.5<br>0.1               | 10 0 0 0 0             | 11<br>4.9<br>3.4<br>3.4               | 12 * * *          | 13<br>0<br>2.5<br>2.5               | 14<br>5.0<br>5.0<br>5.0               | 2.7 | 2.7 |     |     |               |     |
| MODE STOP REC PLAY CUE REV SLOW(1/4) F.A REF.NO. MODE STOP REC PLAY CUE                                               | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>1<br>0<br>1.6<br>1.6 | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>3.5<br>3.5<br>3.5 | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>5<br>5.0<br>5.0<br>5.0        | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0 | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0      | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>009<br>8<br>0      | 9<br>0<br>2.5<br>0.1<br>2.5        | 10<br>0<br>0<br>0      | 11<br>4.9<br>3.4<br>3.4<br>3.4        | 12<br>*<br>*<br>* | 13<br>0<br>2.5<br>2.5<br>2.5        | 14<br>5.0<br>5.0<br>5.0<br>5.0        | 2.7 | 2.7 |     |     |               |     |
| MODE                                                                                                                  | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>1<br>0<br>1.6        | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3               | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>5<br>5.0<br>5.0               | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0        | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>7<br>0      | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>009                | 9<br>0<br>2.5<br>0.1               | 10 0 0 0 0             | 11<br>4.9<br>3.4<br>3.4               | 12 * * *          | 13<br>0<br>2.5<br>2.5               | 14<br>5.0<br>5.0<br>5.0               | 2.7 | 2.7 |     |     |               |     |
| MODE STOP REC PLAY CUE REV SLOW(1/4) F.A REF.NO. MODE STOP REC PLAY CUE                                               | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5<br>1<br>0<br>1.6<br>1.6        | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3               | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>5<br>5.0<br>5.0<br>5.0<br>4.9 | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0 | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0      | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>009<br>8<br>0      | 9<br>0<br>2.5<br>0.1<br>2.5<br>2.5 | 10<br>0<br>0<br>0<br>0 | 11<br>4.9<br>3.4<br>3.4<br>3.4<br>3.4 | 12<br>*<br>*<br>* | 13<br>0<br>2.5<br>2.5<br>2.5        | 14<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0 | 2.7 | 2.7 |     |     |               |     |
| MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV<br>SLOW(1/4)<br>F.A<br>REF.NO.<br>MODE<br>STOP<br>REC<br>PLAY<br>CUE<br>REV | 0<br>2.5<br>2.6<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>1<br>0<br>1.6<br>1.6 | 2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>3.5<br>3.5<br>3.5 | 0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5 | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3<br>5<br>5.0<br>5.0<br>5.0        | 6<br>0.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0<br>0   | 7<br>4.9<br>2.6<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>0<br>0<br>0 | 8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>009<br>8<br>0<br>0 | 9<br>0<br>2.5<br>0.1<br>2.5        | 10<br>0<br>0<br>0      | 11<br>4.9<br>3.4<br>3.4<br>3.4        | 12<br>*<br>*<br>* | 13<br>0<br>2.5<br>2.5<br>2.5<br>2.5 | 14<br>5.0<br>5.0<br>5.0<br>5.0        | 2.7 | 2.7 |     |     |               |     |



VJBS0251

P2006 (CAPSTAN MOTOR DRIVE)

ERROR

REF VOLTAGE

02014 (11.7) (11.7) (11.6) (11.7)

FWD ①/STOP M/REV (H) (P2601 ②) CUE/REVIEW/SS (F)

(P2601 ⑥)

(P2601 (4)) (P2601 (3)) (P2601 ®) (P2601 ⑦)

































11

## **IC6001 MATRIX CHART**

#### IC6001 KEY MATRIX

| DATA IN      |                | SCAN OUT    |                     |
|--------------|----------------|-------------|---------------------|
| PIN NO.      | 59 (SCAN 2)    | 58 (SCAN 1) |                     |
| 23 (DATA 5)  | SAFETY TAB     | CASSETTE UP |                     |
| 24 (DATA 6)  | CASSETTE DOWN  | CASSETTE IN | SLP (H)             |
| 25 (DATA 7)  |                |             | LP/SLP ⊞            |
| 26 (DATA 8)  | FF/CUE         | PLAY        | AUDIO<br>DUB (L)    |
| 27 (DATA 9)  | REW<br>/REVIEW | REC         | COUNTER<br>RESET ①  |
| 28 (DATA 10) | SLOW/FA        | EJECT       | MEMORY<br>COUNTER ( |
| 29 (DATA 11) | STOP           | PAUSE/STILL | POWER ①             |

#### IC6001 SAFETY DEVICE

| SENSOR LED<br>PULSE |                      | DATA IN              |                    |
|---------------------|----------------------|----------------------|--------------------|
| PIN NO.             | 18 (DATA 1)          | 19 (DATA 2)          | 20 (DATA 3)        |
| 60("H"LEVEL)        | DEW ①                | REMOTE<br>PAUSE ①    | CYLINDER<br>LOCK ( |
| 60("L"LEVEL)        | TAKEUP<br>PHOTO TR ① | SUPPLY<br>PHOTO TR © | AUTO STOP ①        |

#### IC6001 MODE SELECT SWITCH POSITION CODE

| DATA IN<br>MODE<br>SWITCH<br>POSITION | PIN 2<br>(POSITION 2) | PIN 4<br>(POSITION 1) | PIN 3<br>(POSITION 3) |
|---------------------------------------|-----------------------|-----------------------|-----------------------|
| EJECT                                 | L                     | Н                     | Н                     |
| STOP                                  | н.                    | . L                   | H                     |
| FF/REW                                | Н                     | L                     | Н                     |
| REC/PAUSE                             | Н                     | L                     | L                     |
| REVIEW                                | Н                     | L                     | ·L                    |
| PLAY                                  | L                     | Н                     | · L                   |

| REF.NO.   | -   | Q6003 |     |     | Q6004 |     |     | Q6005 |     |     | Q6006 |      |     | Q6007 |     |     | Q6010 |           |
|-----------|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|------|-----|-------|-----|-----|-------|-----------|
| MODE      | E   | В     | С   | Ε   | В     | С   | E   | В     | С   | Ε   | В     | C    | E   | В     | С   | Ε   | В     | C         |
| STOP      | 0   | 0.1   | 5.0 | 0.8 | 0.5   | 4.1 | 0   | 0.7   | 0.1 | 0   | 0.1   | 10.2 | 0   | 0.1   | 4.0 | 5.0 | 5.0   | 0.1       |
| FF        | 0   | 0.1   | 0.1 | 0.8 | 0.5   | 4.1 | 0   | 0.5   | 2.6 | 0   | 0     | 10.1 | 0   | 0.1   | 0.1 | 5.0 | 5.0   | 0.2       |
| REW       | - 0 | 0.1   | 5.0 | 0.8 | 0.5   | 4.1 | 0   | 0.5   | 2.6 | 0   | 0.2   | 10.3 | 0   | 0.2   | 4.1 | 5.0 | 5.0   | 0.2       |
| REC       | 0   | 0.1   | 5.0 | 0.8 | 0.5   | 4.1 | 0   | *     | *.  | 0   | 0.1   | 10.2 | . 0 | 0.2   | 4.1 | 5.0 | 5.0   | 0.2       |
| PLAY      | 0   | 0.1   | 5.0 | 0.8 | 0.5   | 4.1 | 0   | *     | *   | 0   | 0.1   | 10.2 | 0   | 0.2   | 4.0 | 5.0 | 5.0   | 0.1       |
| CUE       | 0   | 0     | 4.9 | 0.8 | 0.5   | 4.1 | 0   | 0.4   | 2.5 | 0   | 0.1   | 10.2 | 0   | 0.1   | 4.0 | 5.0 | 4.9   | 0.1       |
| REV       | 0   | 0.1   | 5.0 | 0.8 | 0.5   | 4.1 | 0   | 0.4   | *   | 0   | 0.1   | 10.2 | 0   | 0.1   | 4.0 | 5.0 | 4.9   | 0.1       |
| SL0W(1/4) | 0   | 0.1   | 4.9 | 0.8 | 0.5   | 4.1 | 0   | 0.2   | 4.9 | 0   | 0.1   | 10.2 | 0   | 0.1   | 4.0 | 5.0 | 5.0   | 0.1       |
| F.A       | 0   | 0     | 5.0 | 0.8 | 0.5   | 4.1 | 0   | 0.7   | 4.9 | 0   | 0.1   | 10.2 | 0   | 0.2   | 4.0 | 5.0 | 5.0   | 0.1       |
| REF.NO.   |     | Q6011 |     |     | Q6012 |     |     | Q6014 |     |     | Q6016 |      |     | Q6020 |     |     | Q6021 |           |
| MODE      | E   | В     | С   | Е   | В     | С   | E   | В     | С   | E   | В     | C    | E   | В     | С   | E   | В     | С         |
| STOP      | 5.0 | 5.0   | 0.1 | 5.0 | 4.9   | 0.5 | 0   | 0 -   | 8.2 | 0   | 0.1   | 5.0  | 5.0 | 0.1   | 0.2 | 5.0 | 4.9   | 3.4       |
| FF        | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.5 | 0.1 | 0.1   | 8.2 | 0.1 | 0.1   | 5.0  | 5.0 | 0.1   | 0.1 | 5.0 | 4.5   | 3.5       |
| REW       | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.6 | 0.1 | 0.1   | 0.1 | 0   | 0.1   | 5.0  | 5.0 | 0.1   | 4.9 | 5.0 | 4.5   | 3.4       |
| REC       | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.5 | 0.1 | 0.1   | 8.3 | 0.1 | 0.1   | 5.0  | 0.1 | 0.1   | 0.1 | 5.0 | 4.5   | 3.4       |
| PLAY      | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.6 | 0.1 | 0.1   | 8.3 | 0.1 | 0.1   | 5.0  | 0.1 | 0.1   | 0.1 | 5.0 | 4.5   | 3.4       |
| CUE       | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.5 | 0   | 0.1   | 8.2 | 4.3 | 4.9   | 5.0  | 0.1 | 0.1   | 0.1 | 5.0 | 4.5   | 3.4       |
| REV       | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.6 | 0.1 | 0.1   | 8.2 | 4.3 | 4.9   | 5.0  | 0.1 | 0.1   | 4.9 | 5.0 | 4.4   | 3.4       |
| SLOW(1/4) | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.5 | 0.1 | 0.1   | 8.3 | 4.3 | 4.9   | 5.0  | 0.1 | 0.1   | 0.1 | 4.9 | 4.4   | 3.4       |
| F.A       | 5.0 | 5.0   | 0.2 | 5.0 | 4.9   | 0.6 | 0.1 | 0.1   | 8.2 | 4.3 | 4.9   | 5.0  | 0.1 | 0.1   | 0.1 | 4.9 | 4.4   | 3.4       |
| REF.NO.   |     | Q6199 |     |     | Q3201 |     |     |       |     |     |       |      |     |       | ,   |     |       | , , , , , |
| MODE      | E   | В     | С   | E   | В     | C   |     |       |     |     |       |      |     |       |     |     |       |           |
| STOP      | 5.0 | 2.5   | 2.2 | 0   | 0.7   | 0.1 |     |       |     |     |       |      |     |       |     |     |       |           |
| FF"       | 5.0 | 2.6   | 2.3 | *   | *     | *   |     |       |     |     |       |      |     |       |     |     |       |           |
| REW       | 5.0 | 2.6   | 2.2 | *   | *     | *   |     |       |     |     |       |      |     |       |     |     |       |           |
| REC       | 5.0 | 2.6   | 2.3 | 0   | 0.7   | 0.1 |     |       |     |     |       |      |     |       |     |     |       |           |
| PLAY      | 4.9 | 2.6   | 2.3 | 0   | 0.1   | 9.4 |     |       |     |     |       |      |     |       |     |     |       |           |
| CUE       | 4.9 | 4.9   | 4.5 | 0   | 0.1   | 9.4 |     |       |     |     |       |      |     |       |     |     |       |           |
| REV       | 4.9 | 4.9   | 4.5 | 0   | 0.1   | 9.4 |     |       |     |     |       |      |     |       |     |     |       |           |
| SLOW(1/4) | 4.9 | 2.5   | 2.2 | *   | *     | *   |     |       |     |     |       |      |     |       |     |     |       |           |
| F.A       | 5.0 | 2.6   | 2.2 | *   | *     | *   |     |       |     |     |       |      |     |       | L   |     |       |           |

| REF.NO. |      | Q4701 |      |      | Q4702 |     |   | Q4703 |     |      | Q4704 |      |   | Q4705 |     |      | Q4706 |      |
|---------|------|-------|------|------|-------|-----|---|-------|-----|------|-------|------|---|-------|-----|------|-------|------|
| MODE    | Е    | В     | С    | E    | В     | С   | E | В     | С   | E    | В     | C    | E | В     | С   | E    | В     | С    |
| STOP    | 11.3 | 0.1   | 0.1  | 0.1  | 11.2  | 0   | 0 | 0.2   | 0.1 | 0.1  | 11.2  | 0.1  | 0 | 0.3   | 0.1 | 11.2 | 11.9  | 12.0 |
| REC     | 11.3 | 12.0  | 12.1 | 11.3 | 11.2  | 0.1 | 0 | 0.2   | 0.1 | 11.3 | 11.2  | 0.1  | 0 | 0.5   | 0.2 | 11.3 | 11.9  | 12.1 |
| PLAY    | 11.3 | 12.0  | 12.1 | 11.4 | 11.2  | 0.1 | 0 | 0.2   | 0.1 | 11.3 | 0.3   | 11.2 | 0 | 0.5   | 0.2 | 11.3 | 12.0  | 12.1 |
| REF.NO. |      | Q4707 |      |      |       |     |   | •     |     |      |       |      |   |       |     |      |       |      |
| MODE    | E    | В     | С    |      |       |     |   |       |     |      |       |      |   |       |     |      |       |      |
| STOP    | 4.7  | 5.3   | 11.3 |      |       |     |   |       |     |      |       |      |   |       |     |      |       |      |
| REC     | 4.7  | 5.3   | 11.2 |      |       |     |   |       |     |      |       |      |   |       |     |      |       |      |
| PLAY    | 4.8  | 5.3   | 11.3 |      |       |     |   |       |     |      |       |      |   |       |     |      |       |      |

| REF.NO.   | TP6001 | TP6003 | TP6004 | TP6005 | TP6007 | TP6008 |
|-----------|--------|--------|--------|--------|--------|--------|
| STOP      | 3.4    | 4.1    | 0.1    | 4.0    | 5.0    | 4.4    |
| FF        | 3.5    | 4.1    | 0.1    | 4.1    | 5.0    | 5.0    |
| REW       | 3.5    | 4.1    | 0.2    | 4.1    | 5.0    | 5.0    |
| REC       | 3.4    | 4.1    | 0.1    | 3.9    | 5.0    | 4.9    |
| PLAY      | 3.4    | 4.0    | 0.1    | 4.0    | 5.0    | 5.0    |
| CUE       | 3.4    | 4.0    | 0.1    | 4.0    | 4.9    | 4.9    |
| REV       | 3.4    | 4.0    | 0.1    | 4.0    | 5.0    | 4.9    |
| SLOW(1/4) | 3.4    | 4.0    | 0.1    | 4.0    | 5.0    | 4.9    |
| F.A       | 3.4    | 4.0    | 0.1    | 4.0    | 5.0    | 4.9    |

| REF.NO.   | TP2001 | TP2002 | TP2003 | TP2004 | TP2005 | TP2006 | TP2007 | TP2008 | TP2009 | TP2010 | TP3201 |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| STOP      | 2.2    | 0.1    | 0.1    | 2.5    | 2.5    | 2.5    | 0.6    | 4.9    | 1.8    | 0.1    | 0.1    |
| REC       | 0.1    | 2.1    | 2.5    | 2.6    | . 2.4  | 2.5    | 0.6    | 3.9    | 2.4    | 2.5    | 0.1    |
| PLAY      | 0.1    | 0.2    | 2.5    | 2.6    | 2.4    | 2.5    | 0.6    | 3.9    | 1.8    | 2.5    | 0.1    |
| CUE       | 0.1    | 0.3    | 2.5    | 2.5    | 2.3    | 2.5    | 0.6    | 3.9    | 1.8    | 2.5    | 0.1    |
| REV       | 4.9    | 0.2    | 2.5    | 2.7    | 2.4    | 2.5    | 0.6    | 3.8    | 1.8    | 2.5    | 0      |
| SLOW(1/4) | *      | 0.2    | 2.5    | 2.7    | 2.5    | 2.5    | 0.2    | 3.9    | 1.8    | 2.5    | *      |
| F.A       | *      | 0.2    | 2.5    | 2.7    | 2.5    | 2.5    | 0.2    | 3.9    | 1.8    | 2.5    | *      |

- VOLTAGE MEASUREMENT:

  1. CUE, REVIEW, FRAME ADVANCE, SLOW.
  COLOR BAR SIGNAL IN SLP MODE.

  2. OTHERS

COLOR BAR SIGNAL IN SP MODE.

★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

| REF.NO.        | · · · · · · · · · · · · · · · · · · · |     |     |        |          |            |       |      |            | IC6        | 001        |        |            |            |            |      |              |          |              |      |
|----------------|---------------------------------------|-----|-----|--------|----------|------------|-------|------|------------|------------|------------|--------|------------|------------|------------|------|--------------|----------|--------------|------|
| $1 \sim 1$     | -                                     | 2   | 3   |        | E        | 6          | 7     | 8    | 9          | 10         | 11         | 12     | 13         | 14         | 15         | 16   | 17           | 18       | 19           | 20   |
| MODE           | 0                                     | 0   | 4.9 | 4.9    | 5        | 0          | 0     | 0    | 4.9        | 4.4        | 4.9        | 4.9    | 4.9        | 4.4        | 4.9        | 4.9  | 2.5          | 4.0      | 3.5          | 2.0  |
| STOP           |                                       |     |     |        |          | 0          | 0.1   | 0    | 0.1        | 0.1        | 0.1        | 0.1    | 0.1        | 0.1        | 0.1        | 0.1  | 0.1          | 0.1      | 0.1          | 0    |
| FF             | 0                                     | 0.1 | 5.0 | 0.1    | 0        |            |       |      |            |            |            | 0.1    | 0.1        | 0.1        | 0.1        | 0.1  | 0.1          | 0.1      | 0.1          | 0.1  |
| REW            | 0                                     | 0.1 | 0.1 | 0.1    | 0        | 0          | . 0.1 | 0    | 0.1        | 0.1        | 0.1        |        |            |            |            | 5.0  | 2.5          | 4.0      | 3.6          | 3.2  |
| REC            | 0 0                                   | 5.0 | 0.1 | 0.1    | 0        | 0.1        | 0.1   | 0    | 4.9        | 4.5        | 0.1        | 5.0    | 5.0        | 4.9        | 5.0        |      |              | 4.0      | 3.6          | 3.1  |
| PLAY           | 0                                     | 5.0 | 0.1 | 0.1    | 0        | 0.1        | 0.1   | 0    | *          | 4.5        | 5.0        | 5.0    | 5.0        | 4.9        | 4.9        | 5.0  | 2.5          |          |              |      |
| CUE            | 0                                     | 4.9 | 0.1 | 0.1    | 0        | 0.1        | 0.1   | 0    | *          | 4.5        | 5.0        | 5.0    | 5.0        | 4.9        | 5.0        | 5.0  | 2.5          | 4.0      | 3.6          | 3.1  |
| REV            | 0                                     | 0   | 0.1 | 4.9    | . 0      | 0.1        | 0.1   | 0    | *          | 4.4        | 4.9        | 4.9    | 5.0        | 4.9        | 4.9        | 4.9  | 2.5          | 4.0      | 3.5          | 3.1  |
| SL0W(1/4)      | 0                                     | 5.0 | 0.1 | 0.1    | 0        | 0.1        | 0.1   | 0    | 0.1        | 4.4        | *          | 5.0    | 5.0        | 4.9        | 5.0        | 5.0  | 2.5          | 4.0      | 3.6          | 3.2  |
| F.A            | 0                                     | 5.0 | 0.1 | 0.1    | 0        | 0.1        | 0.1   | 0    | 4.9        | 4.4        | 4.9        | 5.0    | 5.0        | 4.9        | 5.0        | 5.0  | 2.5          | 4.0      | 3.5          | 3.2  |
| REF.NO.        |                                       |     |     |        |          |            |       |      |            | IC6        | 001        |        |            |            |            |      |              |          |              |      |
| MODE           | 21                                    | 22  | 23  | 24     | 25       | ` 26       | 27    | 28   | 29         | 30         | 31         | 32     | 33         | 34         | 35         | 36   | 37           | 38       | 39           | 40   |
| STOP           | 4.9                                   | 0   | 4.0 | 0.6    | 0.6      | 4.0        | 4.0   | 4.0  | 0.1        | 5.0        | 4.9        | 5.0    | 4.9        | 0.1        | 4.9        | 0    | 0            | 0.1      | 4.9          | 4.8  |
| FF             | 0.1                                   | 0   | 4.1 | 0.7    | 0.7      | 4.0        | 4.0   | 4.1  | 4.2        | 5.0        | 5.0        | 5.0    | 0.1        | 0.1        | 0.1        | 0.1  | 0.1          | 0.1      | 0.1          | 0.1  |
| REW            | 0.1                                   | 0   | 4.1 | 0.7    | 0.7      | 4.1        | 4.1   | 4.1  | 0.1        | 0.1        | 0.1        | 0.1    | 0.1        | 0          | 0.1        | 0.1  | 0.1          | 0.1      | 5.0          | 4.8  |
| REC            | 5.0                                   | 0   | 4.0 | 0.7    | 0.7      | 4.0        | 4.1   | 4.1  | 4.2        | 5.0        | 5.0        | 5.0    | 5.0        | 0.1        | 4.9        | 0.1  | 4.8          | 0.1      | 4.9          | 4.8  |
| PLAY           | 5.0                                   | 0   | 4.1 | 0.7    | 0.7      | 4.0        | 4.0   | 4.1  | 4.2        | 5.0        | 5.0        | 5.0    | 5.0        | 0.1        | 0.2        | 0.1  | 0.1          | 0.1      | 5.0          | 0.1  |
| CUE            | 5.0                                   | 0   | 4.0 | 0.7    | 0.7      | 4.1        | 4.0   | 4.1  | 4.1        | 5.0        | 5.0        | 5.0    | 5.0        | 0.1        | 0.2        | 4.8  | 0.1          | 5.0      | 4.9          | 0.1  |
| REV            | 4.9                                   | 0   | 4.4 | 4.1    | 0.7      | 4.0        | 4.1   | 4.4  | 4.1        | 4.9        | 4.9        | 5.0    | 5.0        | 0.1        | 0.2        | 4.8  | 0.1          | 4.9      | 4.9          | 0    |
| SLOW(1/4)      | 5.0                                   | 0   | 4.4 | 0.7    | 0.7      | 4.0        | 4.1   | 4.4  | 4.1        | 5.0        | 5.0        | 5.0    | 5.0        | 0.1        | 0.2        | 4.8  | 0.1          | 0.1      | 4.9          | 0.1  |
|                |                                       | 0   |     | 0.7    | 0.7      | 4.0        |       | 4.1  |            | 5.0        |            | 5.0    | 5.0        | 0.1        | 0.2        | 4.8  | 0.1          | 0.1      | 4.9          | 0.1  |
| F.A<br>REF.NO. | 5.0                                   | U   | 4.1 | U. /   | 0.7      | 4.0        | 2.2   | 4.1  | 4.2        |            | 5.0        | 5.0    | 5.0        | 0.1        | 0.2        | 4.0  | 0.1          | U. I     | 4.5          | J. 1 |
| 1 \ \          | 42                                    | 40  | 40  | 44     | 45       | 40         | 47    | 40   | 40         | 106        |            | E0.    | 53         | 54         | 55         | 56   | 57           | 58       | 59           | 60   |
| MODE           | 41                                    | 42  | 43  | 44     | 45       | 46         | 47    | 48   | 49         | 50         | 51         | 52     | 0.1        |            | 0.1        | 0.1  | 4.8          | 4.9      | 4.9          | 4.5  |
| STOP           | 0.1                                   | 0.1 | 0   | 0.1    | 4.8      | 0.1        | 0.1   | 0.1  | 4.9        | 0.1        | 0.1        | 0.1    |            | 0          |            |      |              |          |              |      |
| FF             | 0.1                                   | 0.1 | 0.1 | 0.1    | 0.1      | 0.1        | 0.1   | 0.1  | 0.1        | 4.8        | 0.2        | 5.0    | 0.1        | 0.1        | 0.1        | 0.1  | 4.8          | 4.9      | 4.9          | 4.5  |
| REW            | 0.1                                   | 0.1 | 0.1 | 5.0    | 4.8      | 0.1        | 0.1   | 0.1  | 5.0        | 4.8        | 0.2        | 5.0    | 0.1        | 0.1        | 0.1        | 5.0  | 4.8          | 4.9      | 4.9          | 4.5  |
| REC            | 4.8                                   | 0.1 | 0.1 | 0.1    | 0.1      | 0.1        | 0.1   | 0.1  | 4.9        | 4.9        | 5.0        | 0.1    | 0.1        | 0.1        | 0.1        | 0.1  | 4.8          | 4.9      | 4.9          | 4.5  |
| PLAY           | 0.1                                   | 0.1 | 0.1 | 0.1    | 0.1      | 0.1        | 0.1   | 0.1  | 4.9        | 4.9        | 5.0        | 0.1    | 0.1        | 0.1        | 0.1        | 0.1  | 0.1          | 4.9      | 4.9          | 4.5  |
| CUE            | 0.1                                   | 0.1 | 0.1 | 0.1    | 0.1      | 0.1        | 0.1   | 0.1  | 4.9        | 4.9        | 4.9        | 5.0    | 0.14       | 4.9        | 0.1        | 0.1  | 0.1          | 4.9      | 4.9          | 4.5  |
| REV            | 0.1                                   | 0.1 | 0.1 | 0.1    | 4.7      | 0.1        | 0.1   | 0.1  | 4.9        | 4.8        | 4.9        | 4.9    | 0.1        | 4.9        | 0.1        | 4.9  | 0.1          | 4.9      | 4.9          | 4.4  |
| SL0W(1/4)      | 0.1                                   | 0.1 | 0.1 | 0.1    | 0.1      | 0.1        | 0.1   | 1.7  | 0.1        | 0.1        | 4.9        | 0.1    | 0.1        | 5.0        | 0.1        | 0.1  | 0.1          | 4.9      | 4.9          | 4.5  |
| F.A            | 0.1                                   | 0.1 | 0.1 | 0.1    | 0.1      | √0.1       | 0.1   | *    | 0.1        | 0.1        | 4.9        | 0.1    | 0.1        | 5.0        | 0.1        | 0.1  | 0.1          | 4.9      | 4.9          | 4.5  |
| REF.NO.        |                                       | IC6 |     |        |          |            |       |      | IC6        |            |            |        |            |            |            |      | ·            |          |              |      |
| MODE           | 61                                    | 62  | 63  | 64     | 1        | 2          | 3     | 4    | 5          | 6          | . 7        | 8      | 9          | 10         |            |      |              |          |              |      |
| STOP           | 4.8                                   | 2.3 | 2.4 | 4.9    | 0        | 0.6        | 0.5   | 8.2  | 0.1        | 0.1        | 14.2       | 14.2   | 0.9        | 0.6        |            |      |              | <u> </u> |              |      |
| FF             | 4.9                                   | 2.3 | 2.4 | 5.0    | 0        | 0.7        | 0.9   | 8.3  | 0.1        | 0.1        | 14.2       | 14.2   | 1.0        | 0.7        |            |      | -            | <u> </u> |              |      |
| REW            | 4.9                                   | 2.3 | 2.4 | 5.0    | 0        | 0.7        | 0.1   | 0.1  | 0.1        | 0          | 0.1        | 0      | 0          | 0          |            |      |              |          | -            |      |
| REC            | 4.9                                   | 2.3 | 2.4 | 5.0    | 0        | 0.7        | 0.9   | 8.3  | 0.1        | 0.1        | 14.1       | 14.1   | 1.0        | 0.7        |            |      |              |          |              | -    |
|                | 4.8                                   |     | 2.4 | 5.0    | 0        | 0.7        | 0.9   | 8.3  | 0.1        | 0.1        | 14.3       | 14.3   | 0.9        | 0.7        |            |      |              |          |              |      |
| PLAY           | 4.0                                   | 2.3 |     |        | 0        | 0.7        | 0.9   | 8.3  | 0.1        | 0.1        | 14.3       | 14.3   | 1.0        | 0.7        |            |      |              |          |              |      |
| CUE            |                                       | 2.3 | 2.4 | 5.0    |          |            |       | 8.2  |            |            | 14.2       | 14.2   | 0.9        | 0.7        |            |      |              |          |              |      |
| REV            | 4.8                                   | 2.3 | 2.4 | 4.9    | 0        | 0.6        | 0.9   |      | 0.1        | 0.1        |            |        |            | *****      |            |      |              |          | -            |      |
| SL0W(1/4)      | 4.8                                   | 2.3 | 2.4 | 5.0    | 0        | 0.7        | 0.9   | 8.3  | 0.1        | 0.1        | 14.2       | 14.2   | 0.9        | 0.7        |            |      |              |          |              |      |
| F.A            | 4.8                                   | 2.3 | 2.4 | 5.0    | 0        | 0.7        | 0.9   | 8.2  | 0.1        | 0.1        | 14.2       | 14.2   | 0.9        | 0.7        |            |      |              |          | L            |      |
| REF.NO.        | · · · · ·                             |     |     |        | IC6      | 005        |       |      |            |            | T          |        |            |            |            |      | ·            |          |              |      |
| \              | 1                                     | 2   | 3   | 4      | 5        | 6          | 7     | 8    | 9          | 10         |            |        |            |            |            |      | r            |          |              |      |
| MODE           |                                       |     |     |        | 0        | 0.1        | 14.2  | 14.2 | 0.9        | 0.6        |            |        |            |            |            |      |              |          |              |      |
| STOP           | 0                                     | 0.6 | 0.9 | *      |          |            |       |      |            |            |            |        |            |            |            |      |              |          | -            |      |
| FF             | 0                                     | 0.6 | 1.0 | *      | 0.1      | 0.1        | 14.2  | 14.2 | 1.0        | 0.5        |            |        |            |            |            |      |              |          | · -          |      |
| REW            | 0                                     | 0.1 | 1.0 | *      | 0.1      | 0.1        | 14.2  | 14.2 | 1.0        | 0.6        |            |        |            |            |            |      |              | -        | -            |      |
| REC            | 0                                     | 0.6 | 1.0 | *      | 0.1      | 0.1        | 14.1  | 14.1 | 1.0        | 0.6        |            |        |            |            |            |      |              |          | -            |      |
| PLAY           | 0                                     | 0.6 | 0.9 | *      | 0.1      | 0.1        | 14.3  | 14.3 | 1.0        | 0.6        |            |        |            |            |            | -    |              |          |              |      |
| CUE            | 0                                     | 0.6 | 0.9 | *      | 0.1      | 0.1        | 14.2  | 14.3 | 1.0        | 0.6        |            |        |            |            |            |      |              |          |              |      |
| REV            | 0                                     | 0.6 | 0.9 | *      | 0.1      | 0.1        | 14.2  | 14.2 | 0.9        | 0.6        |            |        |            |            |            |      |              |          | -            |      |
| SLOW(1/4)      | 0                                     | 0.6 | 0.9 | *      | 0.1      | 0.1        | 14.2  | 14.2 | 1.0        | 0.6        |            |        |            |            |            |      |              |          |              |      |
| F.A            | 0                                     | 0.6 | 0.9 | *      | 0.1      | 0.1        | 14.2  | 14.2 | 1.0        | 0.6        |            |        |            |            |            |      |              |          |              |      |
|                |                                       |     |     |        |          |            |       |      |            |            |            |        |            |            |            | -    |              |          |              |      |
| REF.NO.        |                                       |     |     |        | IC3201   |            |       |      |            |            |            |        | IC4701     |            |            |      |              |          |              |      |
|                | 1                                     | 2   | 3   | 4      | 5        | 6          | 7     | 8    | 9          | 1          | 2          | 3      | 4          | 5          | 6          | 7    | 8            | -        | Γ            |      |
| MODE<br>STOP   | 8.4                                   | 0.4 | 8.4 | 0      | 0        | 8.4        | 0.7   | 7.6  | 12.0       | 5.7        | 5.7        | 5.7    | 0          | 5.7        | 5.7        | 5.7  | 11.3         |          | -            | -    |
|                |                                       |     |     | 0      | 0        | 8.4        | 0.7   | 7.6  | 12.0       | 5.7        |            | 5.7    | 0          | 5.7        | 5.7        | 5.7  | 11.3         |          | 1            |      |
| REC            | 8.4                                   | 0.3 | 8.4 |        |          |            |       |      |            |            | 5.7        |        |            |            |            |      |              | -        | <del> </del> |      |
| PLAY           | 8.4                                   | 0.3 | 8.4 | 0      | 0        | 8.4        | 8.9   | 7.6  | 12.1       | 5.8        | 5.8        | 5.7    | 0          | 5.7        | 5.7        | 5.8  | 11.3         | -        | -            |      |
| CUE            | 8.4                                   | 0.4 | 8.4 | 0      | 0        | 8.4        | 8.9   | 7.6  | 12.1       | *          | *          | *      | *          | *          | *          | *    | *            |          |              |      |
| REV            | 8.4                                   | 0.4 | 8.4 | 0      | 0        | 8.4        | 8.9   | 7.6  | 12.0       | *          | *          | *      | *          | *          | *          | *    | *            |          |              | L    |
| REF.NO.        |                                       |     |     | 104    | 702      |            |       |      |            |            |            | IC4703 |            |            |            |      |              |          |              |      |
| \              | 1                                     | 0   | 2   |        | 5        | 6          | 7     | 8    | 1          | 2          | 3          | 4      | 5          | 6          | 7          |      |              |          |              |      |
| MODE           | 1 -                                   | 2   | 3   | 4      |          |            |       |      |            |            |            |        | 4.9        | 7.0        | 11.2       |      | <del> </del> |          |              | -    |
| STOP           | 5.7                                   | 5.7 | 5.7 | 0      | 5.7      | 5.7        | 5.7   | 11.3 | 7.8        | 0          | 7.8        | 0      |            |            |            |      | <u> </u>     | -        | -            | -    |
| REC            | 5.7                                   | 5.7 | 5.7 | 0      | 5.7      | 5.7        | 5.7   | 11.3 | 7.9        | 0          | 7.8        | 0      | 4.9        | 7.0        | 11.2       |      |              |          |              | -    |
| PLAY           | 5.7                                   | 5.8 | 5.7 | 0      | 5.7      | 5.8        | 5.8   | 11.3 | 7.9        | 0          | 7.8        | 0      | 4.9        | 7.0        | 11.3       | L    | <u> </u>     |          | L            |      |
| REF.NO.        |                                       |     |     | IC4704 |          |            |       | r —  |            |            |            | IC4705 |            |            |            |      |              |          | -            |      |
| \              | 1                                     |     | - 0 |        | E        | 6          | 7     | 1    | 2          | 3          | 4          | 5      | 6          | 7          | 8          | 9    |              | I        | Γ            |      |
| MODE           | 7.8                                   | 2   | 7.8 | 4      | 5<br>4.9 | 7.0        | 11.2  | 11.2 | 5.6        | 5.6        | 5.6        |        | 5.6        | 5.6        | 5.6        | 11.2 |              |          | -            | -    |
| STOP           |                                       | 0   |     | 0      |          |            |       |      |            |            |            | 0      |            |            |            |      | <del> </del> |          |              | -    |
| REC            | 7.9                                   | 0   | 7.9 | 0      | 4.9      | 7.1<br>7.1 | 11.2  | 11.3 | 5.6<br>5.6 | 5.6<br>5.7 | 5.6<br>5.6 | 0      | 5.6<br>5.6 | 5.6<br>5.6 | 5.6<br>5.6 | 11.3 |              | -        |              |      |
| PLAY           |                                       |     |     |        |          |            |       |      |            |            | 1 56       |        |            | 56         | 5.6        | 11.3 |              |          |              |      |

VOLTAGE MEASUREMENT:

1. CUE, REVIEW, FRAME ADVANCE, SLOW.
COLOR BAR SIGNAL IN SLP MODE.

2. OTHERS
COLOR BAR SIGNAL IN SP MODE.

★ : UNMEASURABLE OR UNNECESSARY TO MEASURE.

| 1 | P200 | )1 ·              |
|---|------|-------------------|
|   | 1    | ROTARY SW         |
|   | 2    | VSS               |
|   | 3    | PICTURE CTL       |
|   | 4    | HEAD SW           |
|   | 5    | 3.58MHz           |
|   | 6    | PB (H)            |
|   | 7    | DELAY REC (H)     |
|   | 8    | CUE/REVIEW/SS (H) |
|   | 9    | SLP (H)           |
|   | 10   | LP/SLP (H)        |
|   | 11   | EE/VV(EE (H))     |
|   | 12   | EXCEPT PB (H)     |

# P2002

|   | - 200 | , <u>_</u> | <br> |
|---|-------|------------|------|
|   | 1     | V-PULSE    |      |
|   | 2     | V-LOCK     |      |
|   | 3     | ENV DET    | 4    |
|   | 4     | HEAD SW    |      |
| , | P200  | 03         |      |

## 2 GND

1 CONTROL HEAD

| P20 | 04          |  |
|-----|-------------|--|
| 1   | GND         |  |
| 2   | VH+         |  |
| 3   | HEM         |  |
| 4   | HEM         |  |
| 5   | HES         |  |
| 6   | HES         |  |
| 7   | MAIN COIL 3 |  |
| 8   | MAIN COIL 2 |  |
| 9   | +14V        |  |
| 10  | MAIN COIL 1 |  |

### P2005

| 1 | CAP M FG |
|---|----------|
| 2 | GND      |
|   |          |

### P2006

|   | 1 | ERROR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 2 | FWD ①/STOP M/REV H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 3 | CUE/REVIEW/SS (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 4 | REF VOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 5 | +5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 6 | VM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 7 | GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 8 | TL 1 State of the latest the state of the st |
| • |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| P3201 |   |       |
|-------|---|-------|
| 1     | 1 | GND   |
|       | 2 | VIDEO |
|       | 3 | GND   |
|       | 4 | VIDEO |
|       | 5 | GND   |
|       | 6 | VIDEO |
|       | 7 | AUDIO |
|       | 8 | GND   |
|       |   |       |

#### P4701

| F4701 |                |  |
|-------|----------------|--|
| 1     | HEADPHONE L CH |  |
| 2     | HEADPHONE R CH |  |
| 3     | GND            |  |
| 4     | AUDIO L CH     |  |
| 5     | GND            |  |
| 6     | AUDIO R CH     |  |
|       |                |  |

| P4/U2 |            |  |
|-------|------------|--|
| 1     | AUDIO R CH |  |
| 2     | GND        |  |
| 3     | AUDIO L CH |  |
| 2     | GND        |  |

#### P6001

|    | 1 | DEW SENSOR       |
|----|---|------------------|
|    | 2 | SENSOR LED PULSE |
|    | 3 | REEL LED         |
|    | 4 | REEL SENSOR      |
|    | 5 | POSITION 1       |
| ٠. | 6 | POSITION 3       |
|    | 7 | POSITION 2       |
|    | 8 |                  |
|    | 9 | SAFETY TAB SW    |
|    |   |                  |

| P6002 |              |  |
|-------|--------------|--|
| 1     | SERIAL CLOCK |  |
| 2     | 349KHz       |  |
| 3     | SERIAL DATA  |  |
| 4     | TV/VCR SW    |  |
|       |              |  |

11 UNSWITCH +12V

#### P6003 1 DATA 10

| _ | DATA TO            |  |
|---|--------------------|--|
| 2 | DATA 9             |  |
| 3 | DATA 8             |  |
| 4 | VIDEO INPUT SELECT |  |
| 5 | AUDIO INPUT SELECT |  |
| 6 | AUDIO (H)          |  |

### P6005

| 1 | LOADING (M) UNLOADING (H) |
|---|---------------------------|
| 2 | LOADING (M) LOADING (H)   |

| P6006 |   |                            |
|-------|---|----------------------------|
|       | 1 | CASSETTE LOAD (M) LOAD (H) |
|       | 2 | CASSETTE LOAD@UNLOAD@      |
|       | 3 | SUPPLY PHOTO TR            |
|       | 4 | GND                        |
|       | 5 | CASSETTE IN SW             |
|       | 6 | CASSETTE UP/DOWN SW        |
|       |   |                            |

7 TAKEUP PHOTO TR

### P6007

| 1  | IR DATA 3     |
|----|---------------|
| 2  | IR DATA 0     |
| 3  | IR DATA 1     |
| 4  | IR DATA 2     |
| 5  | IR POWER ON ① |
| 6  | GND           |
| 7  | TIMER SET ①   |
| 8  | TIMER REC (L) |
| 9  | SAFETY TAB SW |
| 10 |               |

| P600 | 08        |
|------|-----------|
| 1    | GND       |
| 2    | TV/VCR SW |
| 3    | POWER SW  |
| 4    | SCAN 1    |
| 5    | SCAN 2    |
| 6    | DATA 11   |
| 7    | DATA 10   |
| 8    | DATA 9    |
| 9    | DATA 8    |
|      |           |

### P6009

| 10000 |               |  |
|-------|---------------|--|
| 1     | UNSWITCH +12V |  |
| 2     | GND           |  |
| 3     | +5V           |  |
| 4     | +14V          |  |
| 5     | +12V          |  |
| 6     | POWER ON (L)  |  |
| 7     | GND           |  |
|       |               |  |

| 1 | AUDIO MUTE (H)      |
|---|---------------------|
| 2 | AUDIO DELAY REC (H) |
| 3 |                     |
| 4 | SLP (H)             |
| 5 | LP/SLP (B)          |
| 6 | AUDIO EE 🕀          |
|   |                     |

| P6011 |                  |  |  |  |  |  |  |
|-------|------------------|--|--|--|--|--|--|
| 1     | EE/VV(EE (H))    |  |  |  |  |  |  |
| 2     | EXCEPT PB (H)    |  |  |  |  |  |  |
| 3     | AUDIO HEAD SW    |  |  |  |  |  |  |
| 4     | +5V              |  |  |  |  |  |  |
| 5     | UNSWITCH +12V    |  |  |  |  |  |  |
| 6     | SPEED MEMORY (L) |  |  |  |  |  |  |
|       |                  |  |  |  |  |  |  |

# MAIN C.B.A. (SERVO/SYSTEM CONTROL/SUB AUDIO)

# SERVO/SYSTEM CONTROL SECTION VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE.

SUB AUDIO SECTION VOLTAGE MEASURE



## LOCATION OF ADJUSTMENT POINTS



## LOCATION OF TEST POINTS





## STEM CONTROL/SUB AUDIO) VEPS0251B1

ROL SECTION NT: COLOR BAR SIGNAL IN SP REC MODE. SUB AUDIO SECTION
VOLTAGE MEASUREMENT : MONOSCOPE SIGNAL
IN SP REC MODE.

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

4-5 MAIN C.B.A. (SERVO/SYSTEM CONTROL /SUB AUDIO)



| SERVO SECTION |     |  |  |  |  |
|---------------|-----|--|--|--|--|
| Q1            | 7-A |  |  |  |  |
| Q2            | 7-A |  |  |  |  |
| Q3            | 7-C |  |  |  |  |
| Q4            | 6-C |  |  |  |  |
| · Q5          | 7-D |  |  |  |  |
| Q6            | 7-D |  |  |  |  |
| Q7            | 7-D |  |  |  |  |
| Q8            | 7-D |  |  |  |  |
| Q9            | 7-D |  |  |  |  |
| Q10           | 7-D |  |  |  |  |
| Q11           | 7-D |  |  |  |  |
| Q12           | 6-C |  |  |  |  |
| Q13           | 5-B |  |  |  |  |
| Q14           | 5-A |  |  |  |  |
| Q15           | 5-B |  |  |  |  |
| Q18           | 5-B |  |  |  |  |
| Q19           | 4-D |  |  |  |  |
| 020           | 6-∆ |  |  |  |  |

| SYSTEM CONTROL SECTION |       |  |  |  |  |  |
|------------------------|-------|--|--|--|--|--|
| Q3                     | 2-C   |  |  |  |  |  |
| Q4                     | 3-A   |  |  |  |  |  |
| Q5                     | 3-A   |  |  |  |  |  |
| Q6                     | 3-B   |  |  |  |  |  |
| Q7                     | 3-C   |  |  |  |  |  |
| Q10                    | 4-C   |  |  |  |  |  |
| Q11                    | 5-C   |  |  |  |  |  |
| Q12                    | 4-C   |  |  |  |  |  |
| Q14                    | 2-D   |  |  |  |  |  |
| Q16                    | 5-A   |  |  |  |  |  |
| Q20                    | 4-A   |  |  |  |  |  |
| Q21                    | · 3-B |  |  |  |  |  |
| Q119                   | 5-C   |  |  |  |  |  |

| SUB AUDIO<br>SECTION |     |  |  |  |  |  |
|----------------------|-----|--|--|--|--|--|
| Q1                   | 2-B |  |  |  |  |  |
| Q2                   | 2-A |  |  |  |  |  |
| Q3                   | 1-A |  |  |  |  |  |
| Q4                   | 2-B |  |  |  |  |  |
| Q5                   | 1-B |  |  |  |  |  |
| Q6                   | 7-D |  |  |  |  |  |
| Q7                   | 7-C |  |  |  |  |  |
| Q3201                | 8-D |  |  |  |  |  |
|                      |     |  |  |  |  |  |

Q2001,Q2002,Q2005, Q2006,Q2012,Q2014, Q6010,Q6011,Q6012,Q6021 2SB641(Q,R,S)/2SA937M(R) ×10

UNLESS OTHERWISE SPECIFIED; TRANSISTORS ARE 2SD636(Q,R,S), DIODES ARE MA165/1SS119 AND WATTAGE OF RESISTORS ARE 1/4W.

VJBS0251@

4-6 NORMAL AUDIO C.B.A.

| REF.NO.                                                                             |                                                                        | Q4001                                                                        |                                                                           |                                                                     | Q4002                                 |                                                          |                                   | Q4003                       |                                       |                                                  | Q4004                  |                  |                                | Q4007      |            |            | Q4008      |       |          |            |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------|-----------------------------|---------------------------------------|--------------------------------------------------|------------------------|------------------|--------------------------------|------------|------------|------------|------------|-------|----------|------------|
| MODE                                                                                | E                                                                      | В                                                                            | C                                                                         | E                                                                   | В                                     | С                                                        | E                                 | В                           | С                                     | E                                                | В                      | С                | E                              | В          | Ć          | E          | В          | С     |          |            |
| STOP                                                                                | 10.5                                                                   | 11.3                                                                         |                                                                           | 0                                                                   | 0                                     | 0.2                                                      | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | 4.6        | 0          | 0          | 0          | 11.8  | 41       |            |
| REC                                                                                 | 10.6                                                                   | 11.3                                                                         | 11.8                                                                      | 0                                                                   | -1.0                                  | 11.6                                                     | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | 4.6        | 0          | 0          | 0          | 0     |          |            |
| PLAY                                                                                | 10.5                                                                   | 11.2                                                                         | 11.8                                                                      | 0                                                                   | 0.3                                   | 0.3                                                      | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | 0          | 5.6        | 0          | 0          | 11.8  |          |            |
| REF.NO.                                                                             |                                                                        | Q4009                                                                        |                                                                           |                                                                     | Q4011                                 |                                                          |                                   | Q4012                       |                                       |                                                  | Q4013                  |                  |                                | Q4014      |            |            | Q4015      |       |          |            |
| MODE                                                                                | E                                                                      | В                                                                            | С                                                                         | Е                                                                   | В                                     | С                                                        | E                                 | В                           | С                                     | E                                                | В                      | С                | Е                              | В          | С          | Е          | В          | С     |          |            |
| STOP                                                                                | 11.8                                                                   | 11.8                                                                         | 0.4                                                                       | 0                                                                   | 0                                     | 4.4                                                      | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | 0          | 0          | 0          | 0          | 10.5  |          |            |
| REC                                                                                 | 11.8                                                                   | 0                                                                            | 11.8                                                                      | 0                                                                   | 0                                     | 4.4                                                      | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | 2.3        | 0          | 0          | 0          | 10.5  |          |            |
| PLAY                                                                                | 11.9                                                                   | 11.8                                                                         | 0.3                                                                       | 0                                                                   | 5.6                                   | 0                                                        | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | 0          | 5.6        | 0          | 0          | 10.4  |          |            |
| REF.NO.                                                                             |                                                                        | Q4016                                                                        |                                                                           |                                                                     | Q4017                                 |                                                          |                                   | Q4018                       |                                       |                                                  | Q4019                  | -                |                                | Q4020      |            |            |            |       |          |            |
|                                                                                     | E                                                                      | В                                                                            | С                                                                         | Е                                                                   | В                                     | c                                                        | Е                                 | В                           | С                                     | E                                                | В                      | С                | E                              | В          | С          | -          |            |       |          |            |
| STOP                                                                                | 10.5                                                                   | 10.5                                                                         | 0                                                                         | 10.5                                                                | 10.5                                  | 0                                                        | 0                                 | 0                           | 10.6                                  | 0                                                | 0                      | 10.5             | 10.5                           | 10.4       | 0          |            |            |       |          |            |
| REC                                                                                 | 10.5                                                                   | 10.5                                                                         | 0                                                                         | 10.5                                                                | 10.5                                  | 0                                                        | 0                                 | 0                           | 10.5                                  | 0                                                | 0                      | 10.5             | 10.5                           | 10.4       | 0          | -          |            |       |          |            |
| PLAY                                                                                | 10.4                                                                   | 10.4                                                                         | 0                                                                         | 10.5                                                                | 10.4                                  | 0                                                        | 0                                 | 0                           | 10.5                                  | 0                                                | 0                      | 10.4             | 10.4                           | 10.4       | 0          |            |            |       |          |            |
| i cai                                                                               | 10.4                                                                   | 10.4                                                                         |                                                                           | 10.0                                                                |                                       |                                                          |                                   |                             | 10.0                                  |                                                  |                        |                  |                                |            |            |            |            |       |          |            |
| REF.NO.                                                                             |                                                                        |                                                                              |                                                                           | IC4001                                                              |                                       |                                                          |                                   |                             |                                       |                                                  |                        |                  |                                |            |            |            |            |       |          |            |
| $1 \setminus 1$                                                                     | 1                                                                      | 2                                                                            | 3                                                                         | 4                                                                   | 5                                     | 6                                                        | 7                                 |                             | I                                     | 1                                                |                        | T .              |                                |            |            |            |            | T     |          |            |
| MODE<br>STOP                                                                        | <del>-</del>                                                           | 0                                                                            | 0                                                                         | 0                                                                   | 4.4                                   | 10.6                                                     | 0                                 |                             |                                       | -                                                | <del> </del>           | <u> </u>         |                                |            |            | -          | <b>†</b>   | t     | <b> </b> | $\vdash$   |
| REC                                                                                 | 0                                                                      | 0                                                                            | 0                                                                         | 0                                                                   | 0                                     | 10.6                                                     | 0                                 |                             | <b> </b>                              | <b> </b>                                         | -                      |                  |                                |            |            |            | <u> </u>   |       |          |            |
| PLAY                                                                                | 0                                                                      | 0                                                                            | 0                                                                         | 0                                                                   | 0                                     | 10.5                                                     | 5.6                               |                             |                                       | <del>                                     </del> |                        |                  |                                |            |            |            |            |       |          |            |
| LI LAI                                                                              | - 0                                                                    |                                                                              |                                                                           |                                                                     |                                       | 10.5                                                     | 0.0                               | L                           |                                       |                                                  | -                      | I                | <u> </u>                       |            | -          |            | -          | -     |          |            |
| REF.NO.                                                                             |                                                                        |                                                                              |                                                                           |                                                                     |                                       |                                                          |                                   |                             |                                       | . IC4                                            | 002                    | ·.               |                                |            |            |            |            |       |          |            |
| 1 1                                                                                 | 1                                                                      | 2                                                                            | 3                                                                         | 4                                                                   | 5                                     | 6                                                        | 7                                 | 8                           | 9                                     | 10                                               | 11                     | 12               | 13                             | 14         | 15         | 16         | 17         | 18    | 19       | 20         |
| MODE STOP                                                                           | 5.0                                                                    | 5.1                                                                          | 5.2                                                                       | 5.5                                                                 | 5.6                                   | 5.6                                                      | *                                 | 5.5                         | 5.6                                   | 5.5                                              | 0                      | 0                | 10.6                           | 5.6        | 5.5        | 5.6        | 5.6        | *     | 0        | 4.5        |
| REC                                                                                 | 5.0                                                                    | 5.1                                                                          | 5.1                                                                       | 5.6                                                                 | 5.6                                   | 5.6                                                      | *                                 | 5.5                         | 5.6                                   | 5.6                                              | 0                      | 0                | 10.6                           | 5.5        | 5.6        | 5.6        | 5.5        | *     | 0        | 0          |
| PLAY                                                                                | 5.0                                                                    | 5.1                                                                          | 5.3                                                                       | 5.5                                                                 | 5.5                                   | 5.5                                                      | *                                 | 5.5                         | 5.5                                   | 5.4                                              | 0                      | 0                | 10.5                           | 5.5        | 5.5        | 5.5        | 5.5        | *     | - 0      | 0          |
| REF.NO.                                                                             | J.0                                                                    |                                                                              | 002                                                                       | 0.0                                                                 | 0.0                                   | 0.0                                                      |                                   | 0.0                         | IC4003                                |                                                  | L                      | L                | 1                              |            |            |            |            | 1     |          |            |
|                                                                                     | 21                                                                     | 22                                                                           | 23                                                                        | 24                                                                  | 1                                     | 2                                                        | 3                                 | 4                           | 5                                     | 6                                                | 7                      | 8                | 9                              |            |            |            | 1          |       |          |            |
| STOP                                                                                | 5.5                                                                    | 5.4                                                                          | *                                                                         | *                                                                   | 0                                     | 0                                                        | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              | -          |            |            |            |       |          |            |
| REC                                                                                 | 5.5                                                                    | 5.4                                                                          | *                                                                         | *                                                                   | 0                                     | 0                                                        | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              |            |            |            | 1          |       |          |            |
| PLAY                                                                                | 5.5                                                                    | 5.4                                                                          | *                                                                         | *                                                                   | 0                                     | 0                                                        | 0                                 | 0                           | 0                                     | 0                                                | 0                      | 0                | 0                              |            |            |            | <u> </u>   |       |          |            |
| TLAI                                                                                | 3.3                                                                    | J. 7                                                                         |                                                                           |                                                                     | L                                     |                                                          |                                   |                             |                                       |                                                  |                        | 1                | <del>-</del>                   |            | ,          |            |            | 1     |          |            |
| REF.NO.                                                                             |                                                                        |                                                                              |                                                                           |                                                                     |                                       |                                                          |                                   |                             | IC4                                   | 1004                                             |                        |                  |                                |            |            |            |            |       | T .      |            |
|                                                                                     | 1                                                                      | 2                                                                            | 3                                                                         | 4                                                                   | 5                                     | 6                                                        | 7                                 | 8                           | 9                                     | 10                                               | 11                     | 12               | 13                             | 14         | 15         | 16         | 17         | 18    |          |            |
| STOP                                                                                | 5.8                                                                    | 0.7                                                                          | 0.7                                                                       | 5.4                                                                 | 5.4                                   | 5.0                                                      | 5.4                               | 5.4                         | 0                                     | 5.4                                              | 0                      | 5.0              | 5.4                            | 5.5        | 0.7        | 0.7        | 10.6       | 5.8   |          |            |
| REC                                                                                 | 5.8                                                                    | 0.7                                                                          | 0.7                                                                       | 5.4                                                                 | 5,4                                   | 5.0                                                      | 5.4                               | 5.4                         | 0                                     | 5.4                                              | 0                      | 5.0              | 5.4                            | 5.5        | 0.7        | 0.7        | 10.6       | 5.8   |          |            |
| PLAY                                                                                |                                                                        |                                                                              |                                                                           | 5.4                                                                 | 5.3                                   | 5.0                                                      | 5.4                               | 5.4                         | 0                                     | 5.4                                              | 0                      | 5.0              | 5.3                            | 5.4        | 0.7        | 0.7        | 10.5       | 5.7   | t        |            |
|                                                                                     |                                                                        |                                                                              |                                                                           |                                                                     | 0.0                                   | 0.0                                                      | 0. 1                              | 0                           |                                       |                                                  |                        |                  |                                |            |            | L          |            |       |          |            |
| <u> </u>                                                                            | 5.8                                                                    | 0.7                                                                          | 0.7                                                                       |                                                                     |                                       |                                                          |                                   |                             |                                       |                                                  |                        |                  |                                |            |            |            |            | 1 0.7 | l        |            |
| REF.NO.                                                                             | 5.8                                                                    | 1. 0.7                                                                       | 0.7                                                                       | l                                                                   |                                       |                                                          |                                   |                             |                                       |                                                  |                        |                  |                                |            |            |            |            | 1 0.7 |          |            |
| REF.NO.                                                                             |                                                                        |                                                                              |                                                                           | IC4005                                                              | 5                                     | 6                                                        | 7                                 |                             |                                       | T                                                |                        | T                | <u> </u>                       | 1          |            |            | T          | 0.7   | I        |            |
| REF.NO.                                                                             | 1                                                                      | 2                                                                            | 3                                                                         | IC4005                                                              | 5                                     |                                                          | 7                                 |                             | :                                     |                                                  |                        |                  |                                |            |            |            |            | 0.7   |          |            |
| REF.NO. MODE STOP                                                                   | 1 0                                                                    | 2 0                                                                          | 3 0                                                                       | 1C4005<br>4<br>0                                                    |                                       | 10.6                                                     | 0                                 |                             |                                       |                                                  |                        |                  |                                |            |            |            |            |       |          |            |
| REF.NO. MODE STOP REC                                                               | 1                                                                      | 2                                                                            | 3                                                                         | IC4005                                                              | 0                                     | 10.6<br>10.6                                             |                                   |                             |                                       |                                                  |                        |                  |                                |            |            |            |            |       |          |            |
| REF.NO. MODE STOP                                                                   | 1<br>0<br>0                                                            | 2 0 0                                                                        | 3<br>0<br>0                                                               | 1C4005<br>4<br>0                                                    | 0                                     | 10.6                                                     | 0                                 |                             |                                       |                                                  |                        |                  |                                |            |            |            |            |       |          |            |
| REF.NO. MODE STOP REC                                                               | 1<br>0<br>0                                                            | 2 0 0                                                                        | 3<br>0<br>0                                                               | 1C4005<br>4<br>0                                                    | 0                                     | 10.6<br>10.6                                             | 0                                 |                             |                                       | IC4                                              | 1006                   |                  |                                |            |            |            |            |       |          |            |
| REF.NO.  MODE STOP REC PLAY                                                         | 1<br>0<br>0                                                            | 2<br>0<br>0                                                                  | 3<br>0<br>0                                                               | 1C4005<br>4<br>0                                                    | 0                                     | 10.6<br>10.6                                             | 0                                 | 8                           | 9                                     | IC4                                              | 1006                   | 12               | 13                             | 14         | 15         | 16         | 17         | 18    | 19       | 20         |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE                                             | 1<br>0<br>0<br>0                                                       | 2 0 0 0 0                                                                    | 3<br>0<br>0<br>0                                                          | 1C4005<br>4<br>0<br>0<br>0                                          | 0 0 0                                 | 10.6<br>10.6<br>10.5                                     | 0<br>0<br>5.6                     | 8 5.6                       | 9 5.6                                 |                                                  |                        | 12 0             | 13 10.6                        | 14 5.6     | 15<br>5.6  | 16<br>5.6  | 17 5.6     |       | 19 0     | 20 4.5     |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP                                       | 1<br>0<br>0<br>0                                                       | 2<br>0<br>0<br>0<br>0                                                        | 3<br>0<br>0<br>0<br>0                                                     | 1C4005<br>4<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>5<br>5.6          | 10.6<br>10.6<br>10.5<br>6<br>5.6                         | 0<br>0<br>5.6<br>7<br>★           | 5.6                         |                                       | 10                                               | 11                     |                  |                                |            |            |            |            | 18    |          |            |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC                                 | 1<br>0<br>0<br>0                                                       | 2<br>0<br>0<br>0<br>0                                                        | 3<br>0<br>0<br>0                                                          | 1C4005<br>4<br>0<br>0<br>0                                          | 0 0 0                                 | 10.6<br>10.6<br>10.5                                     | 0<br>0<br>5.6                     |                             | 5.6                                   | 10<br>5.6                                        | 11<br>0                | 0                | 10.6                           | 5.6        | 5.6        | 5.6        | 5.6        | 18    | 0        | 4.5        |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP                                       | 1<br>0<br>0<br>0                                                       | 2<br>0<br>0<br>0<br>0                                                        | 3<br>0<br>0<br>0<br>0<br>3<br>5.4<br>5.4<br>5.4                           | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5                  | 0<br>0<br>0<br>5<br>5.6<br>5.5        | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5                  | 0<br>0<br>5.6<br>                 | 5.6<br>5.5                  | 5.6<br>5.5                            | 10<br>5.6<br>5.5                                 | 11<br>0<br>0           | 0                | 10.6<br>10.6                   | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY REF. NO.                    | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1                                    | 2<br>0<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>IC4                            | 3<br>0<br>0<br>0<br>0<br>3<br>5.4<br>5.4<br>5.4                           | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5           | 0<br>0<br>0<br>5<br>5.6<br>5.5        | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5                  | 0<br>0<br>5.6<br>                 | 5.6<br>5.5                  | 5.6<br>5.5<br>5.5                     | 10<br>5.6<br>5.5                                 | 11<br>0<br>0           | 0                | 10.6<br>10.6                   | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO.                       | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1                             | 2<br>0<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22                      | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>2006                 | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5                  | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5           | 0<br>0<br>5.6<br>7<br>★           | 5.6<br>5.5<br>5.5           | 5.6<br>5.5<br>5.5<br>1C4007           | 10<br>5.6<br>5.5<br>5.5                          | 11<br>0<br>0<br>0      | 0 0              | 10.6<br>10.6<br>10.5           | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO.                       | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.1                      | 2<br>0<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4               | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                  | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5           | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.5<br>10.5<br>6<br>5.6<br>5.5<br>5.5           | 0<br>0<br>5.6<br>*<br>*<br>*      | 5.6<br>5.5<br>5.5<br>4      | 5.6<br>5.5<br>5.5<br>1C4007<br>5      | 10<br>5.6<br>5.5<br>5.5<br>5.5                   | 11<br>0<br>0<br>0      | 0 0 0            | 10.6<br>10.6<br>10.5           | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC REC REC | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.4               | 2<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4<br>5.4             | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                  | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5           | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5           | 0<br>0<br>5.6<br>*<br>*           | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>6<br>0                | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0      | 10.6<br>10.6<br>10.5           | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO.                       | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.1                      | 2<br>0<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4               | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                  | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5<br>4<br>★ | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5<br>2<br>0 | 0<br>0<br>5.6<br>7<br>*<br>*<br>* | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>5.5<br>0<br>0         | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 10.6<br>10.6<br>10.5<br>9<br>0 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC REC REC | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.4<br>5.4<br>5.4        | 2<br>0<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4<br>5.4<br>5.4 | 3<br>0<br>0<br>0<br>0<br>3<br>5.4<br>5.4<br>5.4<br>006<br>23              | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5<br>4<br>* | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5<br>2<br>0 | 0<br>0<br>5.6<br>7<br>*<br>*<br>* | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>5.5<br>0<br>0         | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 10.6<br>10.6<br>10.5<br>9<br>0 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. REF.NO. REF.NO.       | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.4               | 2<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4<br>5.4             | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                  | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5<br>4<br>* | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5<br>2<br>0 | 0<br>0<br>5.6<br>7<br>*<br>*<br>* | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>5.5<br>0<br>0         | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 10.6<br>10.6<br>10.5<br>9<br>0 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY    | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.4<br>5.4<br>5.4 | 2<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4<br>5.4<br>5.4      | 3<br>0<br>0<br>0<br>0<br>3<br>5.4<br>5.4<br>5.4<br>006<br>23              | 1C4005<br>4<br>0<br>0<br>0<br>0<br>4<br>5.6<br>5.5<br>5.5<br>4<br>* | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5<br>2<br>0 | 0<br>0<br>5.6<br>7<br>*<br>*<br>* | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>5.5<br>0<br>0         | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 10.6<br>10.6<br>10.5<br>9<br>0 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY    | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.4<br>5.4<br>5.4<br>5.4 | 2<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4<br>5.4<br>5.4      | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>0006<br>23<br>*      | 1C4005 4 0 0 0 1 5.6 5.5 5.5 5.5  TP4004                            | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5<br>2<br>0 | 0<br>0<br>5.6<br>7<br>*<br>*<br>* | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>5.5<br>0<br>0         | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 10.6<br>10.6<br>10.5<br>9<br>0 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY    | 1<br>0<br>0<br>0<br>1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.4<br>5.4<br>5.4 | 2<br>0<br>0<br>0<br>5.2<br>5.1<br>5.1<br>1C4<br>22<br>5.4<br>5.4<br>5.4      | 3<br>0<br>0<br>0<br>0<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>TP4003 | 1C4005 4 0 0 0 5.6 5.5 5.5  4  TP4004                               | 0<br>0<br>0<br>5<br>5.6<br>5.5<br>5.5 | 10.6<br>10.6<br>10.5<br>6<br>5.6<br>5.5<br>5.5<br>2<br>0 | 0<br>0<br>5.6<br>7<br>*<br>*<br>* | 5.6<br>5.5<br>5.5<br>4<br>0 | 5.6<br>5.5<br>5.5<br>1C4007<br>5<br>0 | 10<br>5.6<br>5.5<br>5.5<br>5.5<br>0<br>0         | 11<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 10.6<br>10.6<br>10.5<br>9<br>0 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 5.6<br>5.5 | 18 *  | 0        | 4.5<br>4.4 |

# VOLTAGE MEASUREMENT: MONOSCOPE SIGNAL IN SP MODE.

★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

# NORMAL AUDIO C.B.A. VEPS0422B1

# P4001

|   | 1 | NORMAL AUDIO HEAD L CH |
|---|---|------------------------|
|   | 2 | NORMAL AUDIO HEAD L CH |
|   | 3 | GND                    |
| ĺ | 4 | NORMAL AUDIO HEAD R CH |
|   | 5 | NORMAL AUDIO HEAD R CH |
|   | 6 | GND                    |
|   | 7 | AUDIO ERASE HEAD       |
|   | 8 | GND                    |
|   |   |                        |

### P4002

| 1 | SLP (B)             |
|---|---------------------|
| 2 | LP/SLP (H)          |
| 3 | AUDIO DELAY REC (H) |
| 4 | AUDIO EE 🕦          |
| 5 | AUDIO MUTE (H)      |

### P4006

| 1  | +12V              |
|----|-------------------|
| 2  | DOLBY ON (H)      |
| 3  | AUDIO MUTE (H)    |
| 4  | NORMAL AUDIO R CH |
| 5  | NORMAL AUDIO L CH |
| 6  | GND               |
| 7  | NORMAL AUDIO L CH |
| 8  | GND               |
| 9  | NORMAL AUDIO R CH |
| 10 | GND               |
| 11 | AUDIO EE 🕀        |
|    |                   |



LOCATION OF TEST POINTS & ADJU



NORMAL AUDIO C.B.A.



C4111 BIAS L CH

REC LEVEL L CH

R4025 TP4002

VOLTAGE MEASUREMENT : MONOSCOPE SIGNAL IN SP REC MODE.

■ TP4001

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



## NORMAL AUDIO SCHEMATIC DIAGRAM

VOLTAGE MEASUREMENT:

MONOSCOPE SIGNAL IN SP REC MODE WITH BRACKET.

MONOSCOPE SIGNAL IN SP PLAY MODE WITHOUT BRACKET.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER ELECTROSTATICALLY SENSITIVE AND THEREFOR HANDLING TECHNIQUES DESCRIBED UNDER THE (ES) DEVICES" SECTION OF THIS SERVICE MA



SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.





### LOCATION OF TEST POINTS & ADJUSTMENT POINTS



## FM AUDIO C.B.A. VEPS0424B1



IMPORTANT SAFETY NOTICE; COMPONENTS IDENTIFIED BY TH SPECIAL CHARACTERISTICS IMPO WHEN REPLACING ANY OF THES ONLY THE SPECIFIED PARTS.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND
ELECTROSTATICALLY SENSITIVE
HANDLING TECHNIQUES DESCRIB
(ES) DEVICES" SECTION OF THIS

VOLTAGE MEASUREMENT: MONO

| FM AUDIO C.E           01         3-           02         3-           03         4-           04         3-           05         3-           06         3-           09         3-           010         4-           011         4-           012         3-           013         4-           015         3-           016         3-           017         3-           018         4-           019         3-           020         3-           021         3-           022         3-           024         3-           025         3-           040         1-           041         1-           042         1-           043         1-           044         1-           045         1-           044         1-           045         1-           047         1-           048         2-           053         3-           056         3-           0                                          |   | *       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|-------|
| Q2         3-           Q3         4-           Q4         3-           Q5         3-           Q6         3-           Q9         3-           Q10         4-           Q11         4-           Q12         3-           Q13         4-           Q15         3-           Q16         3-           Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q43         1-           Q44         1-           Q43         1-           Q44         1-           Q45         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-                                                   |   | FM AUDI | O C.E |
| Q3         4-           Q4         3-           Q5         3-           Q6         3-           Q9         3-           Q10         4-           Q11         4-           Q12         3-           Q13         4-           Q15         3-           Q16         3-           Q17         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q43         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q66         3-                                                  | ı | Q1      | 3-    |
| Q3         4-           Q4         3-           Q5         3-           Q6         3-           Q9         3-           Q10         4-           Q11         4-           Q12         3-           Q13         4-           Q15         3-           Q16         3-           Q17         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q43         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q66         3-                                                  | Ì | Q2      | 3-    |
| Q4         3-           Q5         3-           Q6         3-           Q9         3-           Q10         4-           Q11         4-           Q12         3-           Q15         3-           Q16         3-           Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q43         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3- <trr< td=""><th>İ</th><td></td><td></td></trr<> | İ |         |       |
| Q5         3-           Q6         3-           Q9         3-           Q10         4-           Q11         4-           Q12         3-           Q13         4-           Q15         3-           Q16         3-           Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q43         1-           Q44         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3- <tr< td=""><th>ı</th><td></td><td></td></tr<>  | ı |         |       |
| Q6         3-           Q9         3-           Q10         4-           Q11         4-           Q12         3-           Q13         4-           Q15         3-           Q16         3-           Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q43         1-           Q44         1-           Q45         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3- <t< td=""><th>Ì</th><td></td><td>3-</td></t<> | Ì |         | 3-    |
| 09         3-           010         4-           011         4-           012         3-           013         4-           015         3-           016         3-           017         3-           018         4-           019         3-           020         3-           021         3-           022         3-           024         3-           025         3-           040         1-           041         1-           043         1-           044         1-           045         1-           047         1-           048         2-           051         2-           053         3-           054         3-           055         3-           060         4-           061         3-           062         3-           063         3-           064         3-           065         3-           070         3-           071         4-      <                                       | t |         |       |
| 010         4-           011         4-           012         3-           013         4-           015         3-           016         3-           017         3-           018         4-           019         3-           020         3-           021         3-           022         3-           024         3-           025         3-           040         1-           041         1-           042         1-           043         1-           044         1-           045         1-           046         1-           047         1-           048         2-           051         2-           053         3-           054         3-           055         3-           060         4-           061         3-           062         3-           063         3-           064         3-           065         3-           071         4-                                             | İ |         | 3-    |
| 011         4-           012         3-           013         4-           015         3-           016         3-           017         3-           018         4-           019         3-           020         3-           021         3-           022         3-           024         3-           025         3-           040         1-           041         1-           043         1-           044         1-           045         1-           046         1-           047         1-           048         2-           051         2-           053         3-           054         3-           055         3-           060         4-           061         3-           062         3-           063         3-           064         3-           065         3-           071         4-           072         3-           073         3-                                             | ı |         |       |
| 012         3-           013         4-           015         3-           016         3-           017         3-           018         4-           019         3-           020         3-           021         3-           022         3-           024         3-           025         3-           040         1-           041         1-           043         1-           044         1-           045         1-           046         1-           047         1-           048         2-           051         2-           053         3-           054         3-           055         3-           060         4-           061         3-           062         3-           063         3-           064         3-           065         3-           071         4-           072         3-           073         3-           074         3-                                             | ı | Q11     |       |
| Q13         4-           Q15         3-           Q16         3-           Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-                                             | 1 | Q12     | 3-    |
| 016         3-           017         3-           018         4-           019         3-           020         3-           021         3-           022         3-           024         3-           025         3-           040         1-           041         1-           042         1-           043         1-           044         1-           045         1-           046         1-           047         1-           048         2-           051         2-           053         3-           054         3-           055         3-           056         3-           060         4-           061         3-           062         3-           063         3-           064         3-           065         3-           071         4-           072         3-           073         3-           074         3-           075         1- <th></th> <td>Q13</td> <td>4-</td>          |   | Q13     | 4-    |
| Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                               |   | Q15     | 3-    |
| Q17         3-           Q18         4-           Q19         3-           Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                               | ı | Q16     | 3-    |
| Q20     3-       Q21     3-       Q22     3-       Q24     3-       Q25     3-       Q40     1-       Q41     1-       Q42     1-       Q43     1-       Q44     1-       Q45     1-       Q46     1-       Q47     1-       Q48     2-       Q51     2-       Q53     3-       Q54     3-       Q55     3-       Q60     4-       Q61     3-       Q62     3-       Q63     3-       Q64     3-       Q65     3-       Q71     4-       Q72     3-       Q73     3-       Q74     3-       Q75     1-                                                                                                                                                                                                                                                                                                                                                                                                              | ļ | Q17     |       |
| Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                          |   | Q18     | 4-    |
| Q20         3-           Q21         3-           Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                          | İ | Q19     | 3-    |
| Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                   |   | Q20     | 3-    |
| Q22         3-           Q24         3-           Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                   | 1 | Q21     | 3-    |
| Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                              | 1 |         | 3-    |
| Q25         3-           Q40         1-           Q41         1-           Q42         1-           Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                              |   |         | 3-    |
| Q40     1-       Q41     1-       Q42     1-       Q43     1-       Q44     1-       Q45     1-       Q46     1-       Q47     1-       Q48     2-       Q51     2-       Q53     3-       Q54     3-       Q55     3-       Q60     4-       Q61     3-       Q62     3-       Q63     3-       Q64     3-       Q65     3-       Q71     4-       Q72     3-       Q73     3-       Q74     3-       Q75     1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Q25     | 3-    |
| Q41     1       Q42     1       Q43     1       Q44     1       Q45     1       Q46     1       Q47     1       Q48     2       Q51     2       Q53     3       Q54     3       Q55     3       Q60     4       Q61     3       Q62     3       Q63     3       Q64     3       Q65     3       Q71     4       Q72     3       Q73     3       Q74     3       Q75     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | İ |         | 1-    |
| Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                         |   | Q41     | 1-    |
| Q43         1-           Q44         1-           Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                         |   | Q42     | 1-    |
| Q45         1-           Q46         1-           Q47         1-           Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Q43     | 1-    |
| Q45     1       Q46     1       Q47     1       Q48     2       Q51     2       Q53     3       Q54     3       Q55     3       Q60     4       Q61     3       Q62     3       Q63     3       Q64     3       Q65     3       Q71     4       Q72     3       Q73     3       Q74     3       Q75     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         | 1-    |
| Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q45     | 1-    |
| Q48         2-           Q51         2-           Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q46     | 1-    |
| Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Q47     | 1-    |
| Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |         | 2-    |
| Q53         3-           Q54         3-           Q55         3-           Q56         3-           Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |         | 2-    |
| 055 3-<br>056 3-<br>060 4-<br>061 3-<br>062 3-<br>063 3-<br>064 3-<br>065 3-<br>071 4-<br>072 3-<br>073 3-<br>074 3-<br>075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q53     | 3-    |
| Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         |       |
| Q60         4-           Q61         3-           Q62         3-           Q63         3-           Q64         3-           Q65         3-           Q71         4-           Q72         3-           Q73         3-           Q74         3-           Q75         1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | Q55     | 3-    |
| 062 3- 063 3- 064 3- 065 3- 071 4- 072 3- 073 3- 074 3- 075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |         | 3-    |
| 062 3- 063 3- 064 3- 065 3- 071 4- 072 3- 073 3- 074 3- 075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q60     | 4-    |
| 062 3- 063 3- 064 3- 065 3- 071 4- 072 3- 073 3- 074 3- 075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q61     | 3-    |
| 064 3-<br>065 3-<br>071 4-<br>072 3-<br>073 3-<br>074 3-<br>075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         | 3-    |
| 071 4·<br>072 3·<br>073 3·<br>074 3·<br>075 1·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q63     | 3-    |
| 071 4·<br>072 3·<br>073 3·<br>074 3·<br>075 1·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Q64     | 3-    |
| Q72     3-       Q73     3-       Q74     3-       Q75     1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |         |       |
| Q73 3-<br>Q74 3-<br>Q75 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Q71     | 4-    |
| Q74 3·<br>Q75 1·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |         | 3-    |
| 075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Q73     | 3-    |
| 075 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Q74     |       |
| Q76 1·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Q75     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Q76     | 1.    |

## FM AUDIO C.B.A. VEPS0424B1



IMPORTANT SAFETY NOTICE;
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

VOLTAGE MEASUREMENT : MONOSCOPE SIGNAL IN SP REC MODE.

| FM AUDIO C.B.A. |     |  |  |  |  |
|-----------------|-----|--|--|--|--|
| Q1              | 3-A |  |  |  |  |
| Q2              | 3-B |  |  |  |  |
| Q3              | 4-A |  |  |  |  |
| Q4              | 3-A |  |  |  |  |
| Q5              | 3-A |  |  |  |  |
| Q6              | 3-A |  |  |  |  |
| Q9              | 3-C |  |  |  |  |
| Q10             | 4-C |  |  |  |  |
| Q11             | 4-C |  |  |  |  |
| Q12             | 3-D |  |  |  |  |
| Q13             | 4-C |  |  |  |  |
| Q15             | 3-C |  |  |  |  |
| Q16             | 3-C |  |  |  |  |
| Q17             | 3-C |  |  |  |  |
| Q18             | 4-D |  |  |  |  |
| Q19             | 3-B |  |  |  |  |
| Q20             | 3-B |  |  |  |  |
| Q21             | 3-D |  |  |  |  |
| Q22             | 3-A |  |  |  |  |
| Q24             | 3-C |  |  |  |  |
| Q25             | 3-C |  |  |  |  |
| Q40             | 1-B |  |  |  |  |
| Q41             | 1-B |  |  |  |  |
| Q42             | 1-B |  |  |  |  |
| Q43             | 1-B |  |  |  |  |
| Q44             | 1-B |  |  |  |  |
| Q45             | 1-C |  |  |  |  |
| Q46             | 1-C |  |  |  |  |
| Q47             | 1-B |  |  |  |  |
| Q48             | 2-C |  |  |  |  |
| Q51             | 2-D |  |  |  |  |
| Q53             | 3-D |  |  |  |  |
| Q54             | 3-D |  |  |  |  |
| Q55             | 3-D |  |  |  |  |
| Q56             | 3-D |  |  |  |  |
| Q60             | 4-B |  |  |  |  |
| Q61             | 3-D |  |  |  |  |
| Q62             | 3-D |  |  |  |  |
| Q63             | 3-D |  |  |  |  |
| Q64             | 3-D |  |  |  |  |
| Q65             | 3-D |  |  |  |  |
| Q71             | 4-D |  |  |  |  |
| Q72             | 3-A |  |  |  |  |
| Q73             | 3-A |  |  |  |  |
| Q74             | 3-A |  |  |  |  |
| Q75             | 1-A |  |  |  |  |
| Q76             | 1-A |  |  |  |  |

| P42  | 01                    | Р          | 420 | 17        |
|------|-----------------------|------------|-----|-----------|
| 1    | FM AUDIO HEAD R CH    | ] [        | 1   | GND       |
| 2    | FM AUDIO HEAD L CH    | ] [        | 2   | AUDIO GA  |
| 3    | FM AUDIO HEAD R/L CH  | ][         | 3   | GND       |
| 4    | GND                   | ] [        | 4   | AUDIO GA  |
| P42  | 02                    |            | 5   | AUDIO GA  |
| _    | Ÿ                     | ı l        | 6   | AUDIO GA  |
| 1 2  | GND<br>EE/VV (EE (H)) | ļ ,        | 420 | )8        |
| 3    | +5V                   | n h        | 1   | NORMAL A  |
| 4    | EXCEPT PB (H)         | 1 1        | 2   | GND       |
| 5    | AUDIO HEAD SW         | 1 1        | 3   | GND       |
| 6    | UNSWITCH +12V         | 1          | 4   | NORMAL A  |
| 7    | SPEED MEMORY ①        | 1 1        | 5   | NORMAL A  |
| 8    |                       | 1 1        | 6   | NORMAL A  |
|      | <u> </u>              | <b>'</b>   | 7   | VIDEO EE  |
| P42  | 03                    | ,          | 8   | +12V      |
| 1    | AUDIO                 | 1 1        | 9   | DOLBY ON  |
| 2    | GND                   | ] [        | 10  | AUDIO MU  |
| P420 | 04                    |            | 11  | GND       |
| 1    | LEVEL METER L CH      | 1 l        | 12  | AUDIO EE  |
| 2    | GND                   | ] ,        | 420 | 19        |
| 3    | LEVEL METER R CH      | Ì          | 1   | AUDIO R O |
| 4    | DOLBY ON (H)          | ]          | 2   | GND       |
| P42  | 05                    | ·          | 3   | AUDIO L C |
| 1    | AUDIO R CH            | ı          | 4   | GND       |
| 2    | GND                   | 1          | 5   | HEADPHO   |
| 3    | AUDIO L CH            | 1          | 6   | HEADPHO   |
| ت    | AODIO E OII           | ,          | 421 | 0         |
| P42  | 06                    | , [        | 1   | VIDEO EE  |
| 1    | +5V                   | <b>↓</b> ⊦ | 2   | VIDEO EE  |
| 2    | AUDIO MIX (H)         | ↓ ⊦        | 3   | DELAY RE  |
| 3    | NORMAL AUDIO (L)      | <b>↓</b> ⊦ | 4   | +12V      |
| 4    | SWITCHED +12V         | <b>↓</b> } | 5   | GND       |
| 5    | AGC ON ①              | ۱ ۱        | ٦   | GIVD      |
| 6    | AUDIO R CH (H)        | 4          |     |           |
| 7    | FM LED ON (B)         | 4          |     |           |
| 8    | AUDIO L CH (H)        | 1          |     |           |
| 9    | FM AUDIO (H)          | -          |     |           |
| 10   | GND                   | ]          |     |           |
|      |                       | -          |     |           |

| 1    | GND               |
|------|-------------------|
| 2    | AUDIO GAIN L CH   |
| 3    | GND               |
| 4    | AUDIO GAIN L CH   |
| 5    | AUDIO GAIN R CH   |
| 6    | AUDIO GAIN R CH   |
| P420 | 78                |
| 1    | NORMAL AUDIO R CH |
| 2    | GND               |
| 3    | GND               |
| 4    | NORMAL AUDIO L CH |
| 5    | NORMAL AUDIO R CH |
| 6    | NORMAL AUDIO L CH |
| 7    | VIDEO EE (H)      |
| 8    | +12V              |
| 9    | DOLBY ON (H)      |
| 10   | AUDIO MUTE (H)    |
| 11   | GND               |
| 12   | AUDIO EE ℍ        |
| P420 | 09                |
| 1    | AUDIO R CH        |
| 2    | GND               |
| 3    | AUDIO L CH        |
| 4    | GND               |
| 5    | HEADPHONE L CH    |
| 6    | HEADPHONE R CH    |
| P42  | 10                |
| 1    | VIDEO EE (H)      |
| 2    |                   |
| 3    | DELAY REC (H)     |
| 4    | +12V              |
| 5    | GND               |
|      | I dieb            |

| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                                                                                 |                                                                                                       |                                                                                                                |                                                                                                                                                          |                                                                                                                                                                       |                                                                                                         |                                                           |                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | Q4201                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4203                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4204                                                                                                                                                                 |                                                                                                         |                                                           | Q4205                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4206                                                     |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | Е                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | С                                                                                                           | E                                                                                                                                            | . B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                                                                                                     | E                                                                                                                                               | В                                                                                                     | С                                                                                                              | E                                                                                                                                                        | В                                                                                                                                                                     | С                                                                                                       | E                                                         | В                                                                                                      | С                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | C                                     |                   |                                       |
| ST0P                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 0                                                                                                                                                                                                                        | 0                                                                                                           | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0                                                                                                                                   | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | 0                                                                                                                                                        | 0                                                                                                                                                                     | 0                                                                                                       | 0                                                         | 0                                                                                                      | .0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                         | 0                                     |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                               | 0.7                                                                                                                                                                                                                      | 0                                                                                                           | 0                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                     | 0                                                                                                                                               | 0                                                                                                     | 5.1                                                                                                            | 0.3                                                                                                                                                      | 0.9                                                                                                                                                                   | 5.1                                                                                                     | 10.1                                                      | 9.4                                                                                                    | 5.1                                      | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.4                                                       | 10.4                                  |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 0                                                                                                                                                                                                                        | 0                                                                                                           | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                     | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | 0                                                                                                                                                        | 0                                                                                                                                                                     | 0                                                                                                       | 0                                                         | 0                                                                                                      | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                         | 0                                     |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Q4209                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4211                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4212                                                                                                                                                                 |                                                                                                         |                                                           | Q4213                                                                                                  | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4215                                                     | -                                     |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | С                                                                                                           | E                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                     | E                                                                                                                                               | В                                                                                                     | С                                                                                                              | E                                                                                                                                                        | В                                                                                                                                                                     | С                                                                                                       | E                                                         | В                                                                                                      | С                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | С                                     |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 5.0                                                                                                                                                                                                             | 4.4                                                                                                                                                                                                                      | 5.0                                                                                                         | 5.0                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                   | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | 0                                                                                                                                                        | 0                                                                                                                                                                     | 11.9                                                                                                    | 0                                                         | 0.7                                                                                                    | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6                                                       | 0                                     |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                             | 4.4                                                                                                                                                                                                                      | 5.0                                                                                                         | 5.0                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                   | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | 10.4                                                                                                                                                     | 11.2                                                                                                                                                                  | 11.8                                                                                                    | 0                                                         | 0.7                                                                                                    | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                       | 0                                     |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                              | 1 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                     |                                                                                                                                                 |                                                                                                       |                                                                                                                |                                                                                                                                                          |                                                                                                                                                                       |                                                                                                         | 0                                                         | 0.7                                                                                                    | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                       |                                       |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                             | 5.0                                                                                                                                                                                                                      | 0.1                                                                                                         | 5.0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                     | 0                                                                                                                                               | 0                                                                                                     | 5.0                                                                                                            | 0                                                                                                                                                        | 0                                                                                                                                                                     | 11.9                                                                                                    | 0                                                         |                                                                                                        | U                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                         | 0                                     |                   |                                       |
| 1 \ \                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 | Q4216                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4218                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4219                                                                                                                                                                 |                                                                                                         |                                                           | Q4220                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4221                                                     |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | С                                                                                                           | Е                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                     | E                                                                                                                                               | В                                                                                                     | С                                                                                                              | Е                                                                                                                                                        | В                                                                                                                                                                     | С                                                                                                       | E                                                         | В                                                                                                      | С                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | С                                     |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 4.2                                                                                                                                                                                                             | 3.6                                                                                                                                                                                                                      | 2.9                                                                                                         | 0.3                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6                                                                                                                                   | 5.0                                                                                                                                             | 5.7                                                                                                   | 5.0                                                                                                            | 0.3                                                                                                                                                      | 1.0                                                                                                                                                                   | 3.7                                                                                                     | 4.3                                                       | 3.7                                                                                                    | 2.6                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7                                                       | 5.1                                   |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                               | 0                                                                                                                                                                                                                        | 0                                                                                                           | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                     | 5.0                                                                                                                                             | 5.7                                                                                                   | 5.1                                                                                                            | 0                                                                                                                                                        | 0                                                                                                                                                                     | 0                                                                                                       | 0                                                         | 0                                                                                                      | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0                                                        | 5.1                                   |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 3.6                                                                                                                                                                                                                      | 2.9                                                                                                         | 0.3                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6                                                                                                                                   | 5.0                                                                                                                                             | 5.7                                                                                                   | 5.0                                                                                                            | 0.3                                                                                                                                                      | 1.0                                                                                                                                                                   | 3.7                                                                                                     | 4.3                                                       | 3.7                                                                                                    | 2.6                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7                                                       | 5.0                                   |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Q4222                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4225                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4240                                                                                                                                                                 |                                                                                                         |                                                           | Q4241                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4242                                                     |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | Ε                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | C                                                                                                           | Е                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                     | E                                                                                                                                               | В                                                                                                     | С                                                                                                              | E                                                                                                                                                        | В                                                                                                                                                                     | C                                                                                                       | E                                                         | В                                                                                                      | С                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | С                                     |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 0                                                                                                                                                                                                                        | 0                                                                                                           | 4.9                                                                                                                                          | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                     | 5.0                                                                                                                                             | 4.9                                                                                                   | 0.2                                                                                                            | 11.9                                                                                                                                                     | 11.8                                                                                                                                                                  | 0                                                                                                       | 0                                                         | 0                                                                                                      | 0.2                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                         | 0                                     |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 0.4                                                                                                                                                                                                             | 1.2                                                                                                                                                                                                                      | 6.4                                                                                                         | 5.0                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                     | 5.0                                                                                                                                             | 5.0                                                                                                   | 0.1                                                                                                            | 11.8                                                                                                                                                     | 11.7                                                                                                                                                                  | 0.2                                                                                                     | 0                                                         | 0.2                                                                                                    | 0.3                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0                                                       | 0                                     |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 0                                                                                                                                                                                                                        | 0                                                                                                           | 4.3                                                                                                                                          | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2                                                                                                                                   | 5.0                                                                                                                                             | 4.3                                                                                                   | 5.0                                                                                                            | 11.9                                                                                                                                                     | 11.8                                                                                                                                                                  | 0                                                                                                       | 0                                                         | 0                                                                                                      | 0.2                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                         | 0                                     |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Q4243                                                                                                                                                                                                                    | L                                                                                                           | <u> </u>                                                                                                                                     | Q4244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4245                                                                                                 | 1                                                                                                              | 1                                                                                                                                                        | Q4246                                                                                                                                                                 | ·                                                                                                       |                                                           | Q4247                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4248                                                     |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | С                                                                                                           | E                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                     | Е                                                                                                                                               | В В                                                                                                   | ГС                                                                                                             | E                                                                                                                                                        | В                                                                                                                                                                     | С                                                                                                       | E                                                         | T B                                                                                                    | С                                        | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | С                                     |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                      | 0                                                                                                           | 0.3                                                                                                                                          | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                   | 11.9                                                                                                                                            | 11.8                                                                                                  | 0.5                                                                                                            | 0                                                                                                                                                        | 0                                                                                                                                                                     | 0.5                                                                                                     | 0                                                         | 0                                                                                                      | 0.3                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9                                                       | 0                                     |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                      | 0                                                                                                           | 0.3                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                                                   | 11.8                                                                                                                                            | 11.7                                                                                                  | 0.3                                                                                                            | 0                                                                                                                                                        | 0                                                                                                                                                                     | 0.4                                                                                                     | 0                                                         | 0                                                                                                      | 0.3                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9                                                       | 0                                     |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                      | 0                                                                                                           | 0.1                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                                                   | 11.9                                                                                                                                            | 11.8                                                                                                  | 0.3                                                                                                            | 0                                                                                                                                                        | 6.0                                                                                                                                                                   | 0.4                                                                                                     | 0                                                         | 6.0                                                                                                    | 0.3                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                         | 6.5                                   |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                               |                                                                                                                                                                                                                          | U .                                                                                                         | U                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                                                                                                   | 11.9                                                                                                                                            |                                                                                                       | J V.1                                                                                                          | U                                                                                                                                                        |                                                                                                                                                                       | U                                                                                                       | - 0                                                       |                                                                                                        | U                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | 0.3                                   |                   |                                       |
| \                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 | Q4251                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       | <u> </u>                                                                                                                                        | Q4254                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4255                                                                                                                                                                 | _                                                                                                       | -                                                         | Q4256                                                                                                  |                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q4260                                                     |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | E 0.1                                                                                                                                                                                                           | B 0.7                                                                                                                                                                                                                    | C . 7                                                                                                       | E                                                                                                                                            | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                                                                                                                                     | E                                                                                                                                               | B                                                                                                     | C                                                                                                              | E                                                                                                                                                        | В                                                                                                                                                                     | C C                                                                                                     | E                                                         | В                                                                                                      | C C                                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | C                                     |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                             | 2.7                                                                                                                                                                                                                      | 3.7                                                                                                         | 1.4                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6                                                                                                                                   | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | . 0                                                                                                                                                      | 0                                                                                                                                                                     | 3.5                                                                                                     | 0                                                         | 0                                                                                                      | 5.7                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                       | 4.9                                   |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                                                                                                                                                                                                             | 2.7                                                                                                                                                                                                                      | 3.7                                                                                                         | 1.4                                                                                                                                          | . 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6                                                                                                                                   | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | 0                                                                                                                                                        | 0                                                                                                                                                                     | 3.5                                                                                                     | 0                                                         | 5.0                                                                                                    | 0                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                                                       | 0                                     |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 2.1                                                                                                                                                                                                             | 2.7                                                                                                                                                                                                                      | 3.7                                                                                                         | 1.4                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6                                                                                                                                   | 0                                                                                                                                               | 0.7                                                                                                   | 0                                                                                                              | 0                                                                                                                                                        | 0                                                                                                                                                                     | 3.5                                                                                                     | 0                                                         | 0                                                                                                      | 5.7                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                       | 4.9                                   |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Q4261                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4263                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4264                                                                                                                                                                 |                                                                                                         |                                                           | Q4265                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q4271                                                     |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | С                                                                                                           | E                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                     | E                                                                                                                                               | В                                                                                                     | С                                                                                                              | E                                                                                                                                                        | В                                                                                                                                                                     | С                                                                                                       | E                                                         | В                                                                                                      | С                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                         | С                                     |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                      | 4.6                                                                                                         | 11.9                                                                                                                                         | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                                                                                                  | 12.0                                                                                                                                            | 11.9                                                                                                  | 0                                                                                                              | - 0                                                                                                                                                      | 0                                                                                                                                                                     | 11.9                                                                                                    | 0                                                         | 0                                                                                                      | 11.8                                     | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                      | 12.0                                  |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 1.4                                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                      | 4.6                                                                                                         | 11.8                                                                                                                                         | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.7                                                                                                                                  | 12.1                                                                                                                                            | 11.9                                                                                                  | 0                                                                                                              | . 0                                                                                                                                                      | 0                                                                                                                                                                     | 11.9                                                                                                    | 0                                                         | 0                                                                                                      | 11.7                                     | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                      | 12.0                                  |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                      | 4.6                                                                                                         | 11.9                                                                                                                                         | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                                                                                                  | 12.0                                                                                                                                            | 12.0                                                                                                  | 0                                                                                                              | 0                                                                                                                                                        | 0                                                                                                                                                                     | 11.9                                                                                                    | 0                                                         | 0                                                                                                      | 11.8                                     | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                      | 12.0                                  |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | Q4272                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                                              | Q4273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                                                 | Q4274                                                                                                 |                                                                                                                |                                                                                                                                                          | Q4275                                                                                                                                                                 |                                                                                                         |                                                           | Q4276                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
| MODE                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                               | В                                                                                                                                                                                                                        | С                                                                                                           | E                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                     | Е                                                                                                                                               | В                                                                                                     | С                                                                                                              | E                                                                                                                                                        | В                                                                                                                                                                     | С                                                                                                       | E                                                         | В                                                                                                      | С                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
| STOP                                                                                                                                                                                                                                                                                                                                                                                    | 5.0                                                                                                                                                                                                             | *                                                                                                                                                                                                                        | 0.2                                                                                                         | 0                                                                                                                                            | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                     | 0                                                                                                                                               | 0.2                                                                                                   | 0.6                                                                                                            | 5.2                                                                                                                                                      | 5.9                                                                                                                                                                   | 5.3                                                                                                     | 11.1                                                      | 11.8                                                                                                   | 12.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
| REC                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                             | *                                                                                                                                                                                                                        | 0.2                                                                                                         | 0                                                                                                                                            | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                     | 0                                                                                                                                               | 0.2                                                                                                   | 0.6                                                                                                            | 5.2                                                                                                                                                      | 5.9                                                                                                                                                                   | 5.3                                                                                                     | 11.1                                                      | 11.8                                                                                                   | 12.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                                                                                 |                                                                                                       |                                                                                                                |                                                                                                                                                          |                                                                                                                                                                       |                                                                                                         |                                                           |                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    | 5.0                                                                                                                                                                                                             | *                                                                                                                                                                                                                        | 0.2                                                                                                         | 0                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>^</u>                                                                                                                              | 0                                                                                                                                               | 0.2                                                                                                   | 0.6                                                                                                            | 5.2                                                                                                                                                      | 5.9                                                                                                                                                                   | 5.3                                                                                                     | 11.1                                                      | 11.8                                                                                                   | 12.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
| PLAY                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                                                                                 |                                                                                                       |                                                                                                                |                                                                                                                                                          | 5.9                                                                                                                                                                   | 5.3                                                                                                     | 11.1                                                      | 11.8                                                                                                   | 12.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                         |                                       |                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                                                                                 |                                                                                                       | 0.6                                                                                                            | 5.2                                                                                                                                                      | 5.9                                                                                                                                                                   | 5.3                                                                                                     | 11.1                                                      | 11.8                                                                                                   | 12.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                       |                   |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                             | *                                                                                                                                                                                                                        | 0.2                                                                                                         | 0                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                     | 0                                                                                                                                               | 0.2                                                                                                   | 0.6                                                                                                            | 5.2                                                                                                                                                      |                                                                                                                                                                       |                                                                                                         |                                                           |                                                                                                        |                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                        | 18                                    | · ·               |                                       |
| REF.NO.                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                             | 2                                                                                                                                                                                                                        | 3                                                                                                           | 4                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ★                                                                                                                                     | 7                                                                                                                                               | 8                                                                                                     | 0.6<br>IC4<br>9                                                                                                | 5.2<br>201<br>10                                                                                                                                         | 11 -                                                                                                                                                                  | 12                                                                                                      | 13                                                        | 14                                                                                                     | 15                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                        | 18                                    |                   |                                       |
| REF.NO.<br>MODE<br>STOP                                                                                                                                                                                                                                                                                                                                                                 | 5.0<br>1<br>4.9                                                                                                                                                                                                 | 2 0                                                                                                                                                                                                                      | 3<br>0.9                                                                                                    | 4 0.7                                                                                                                                        | 0.7<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>★</b> 6 0.7                                                                                                                        | 7<br>0.9                                                                                                                                        | 8<br>3.1                                                                                              | 0.6<br>IC4<br>9<br>3.2                                                                                         | 5.2<br>201<br>10<br>2.8                                                                                                                                  | 11 3.1                                                                                                                                                                | 12<br>1.7                                                                                               | 13<br>★                                                   | 14 0                                                                                                   | 15<br>★                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                         | *                                     |                   |                                       |
| REF.NO.<br>MODE<br>STOP<br>REC                                                                                                                                                                                                                                                                                                                                                          | 5.0<br>1<br>4.9<br>0                                                                                                                                                                                            | 2<br>0<br>2.5                                                                                                                                                                                                            | 3<br>0.9<br>0                                                                                               | 0<br>4<br>0.7<br>0                                                                                                                           | 5<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>0.7<br>0                                                                                                                         | 7<br>0.9<br>0                                                                                                                                   | 8<br>3.1<br>0.3                                                                                       | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO.<br>MODE<br>STOP                                                                                                                                                                                                                                                                                                                                                                 | 5.0<br>1<br>4.9                                                                                                                                                                                                 | 2 0                                                                                                                                                                                                                      | 3<br>0.9                                                                                                    | 4 0.7                                                                                                                                        | 0.7<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>★</b> 6 0.7                                                                                                                        | 7<br>0.9                                                                                                                                        | 8<br>3.1                                                                                              | 0.6<br>IC4<br>9<br>3.2                                                                                         | 5.2<br>201<br>10<br>2.8                                                                                                                                  | 11 3.1                                                                                                                                                                | 12<br>1.7                                                                                               | 13<br>★                                                   | 14 0                                                                                                   | 15<br>★                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                         | *                                     |                   |                                       |
| REF.NO.<br>MODE<br>STOP<br>REC                                                                                                                                                                                                                                                                                                                                                          | 5.0<br>1<br>4.9<br>0                                                                                                                                                                                            | 2<br>0<br>2.5                                                                                                                                                                                                            | 3<br>0.9<br>0                                                                                               | 0<br>4<br>0.7<br>0                                                                                                                           | 5<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>0.7<br>0                                                                                                                         | 7<br>0.9<br>0                                                                                                                                   | 8<br>3.1<br>0.3                                                                                       | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| MODE<br>STOP<br>REC<br>PLAY                                                                                                                                                                                                                                                                                                                                                             | 5.0<br>1<br>4.9<br>0                                                                                                                                                                                            | 2<br>0<br>2.5                                                                                                                                                                                                            | 3<br>0.9<br>0                                                                                               | 0<br>4<br>0.7<br>0<br>0.7                                                                                                                    | 5<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>0.7<br>0                                                                                                                         | 7<br>0.9<br>0                                                                                                                                   | 8<br>3.1<br>0.3                                                                                       | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO. MODE STOP REC PLAY                                                                                                                                                                                                                                                                                                                                                              | 5.0<br>1<br>4.9<br>0<br>4.9                                                                                                                                                                                     | 2<br>0<br>2.5<br>2.5                                                                                                                                                                                                     | 3<br>0.9<br>0<br>0.9                                                                                        | 0<br>4<br>0.7<br>0<br>0.7                                                                                                                    | 5<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>0.7<br>0<br>0.7                                                                                                                  | 7<br>0.9<br>0<br>0.9                                                                                                                            | 8<br>3.1<br>0.3<br>3.1                                                                                | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE                                                                                                                                                                                                                                                                                                                                                 | 5.0<br>1<br>4.9<br>0                                                                                                                                                                                            | 2<br>0<br>2.5<br>2.5                                                                                                                                                                                                     | 3<br>0.9<br>0<br>0.9                                                                                        | 0<br>4<br>0.7<br>0<br>0.7                                                                                                                    | 5<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>0.7<br>0<br>0.7                                                                                                                  | 7<br>0.9<br>0<br>0<br>0.9                                                                                                                       | 8<br>3.1<br>0.3<br>3.1                                                                                | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP                                                                                                                                                                                                                                                                                                                                            | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7                                                                                                                                                                         | 2<br>0<br>2.5<br>2.5<br>2.5                                                                                                                                                                                              | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7                                                                     | 0<br>4<br>0.7<br>0<br>0.7<br>1C4<br>4                                                                                                        | 5 0 0 0 0 202 5 5.8 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0.7<br>0<br>0.7<br>6<br>5.8<br>5.7                                                                                               | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6                                                                                                         | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3                                                                   | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY                                                                                                                                                                                                                                                                                                                                  | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7                                                                                                                                                                  | 2<br>0<br>2.5<br>2.5<br>2.5                                                                                                                                                                                              | 0.2<br>3<br>0.9<br>0<br>0.9<br>3<br>5.8                                                                     | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0                                                                                                   | 0.7<br>5<br>0<br>0<br>0<br>0<br>202<br>5<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>0.7<br>0<br>0.7                                                                                                                  | 7<br>0.9<br>0<br>0.9                                                                                                                            | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3                                                                   | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0                                                                                                                             | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC                                                                                                                                                                                                                                                                                                                                        | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7                                                                                                                                                                  | 2<br>0<br>2.5<br>2.5<br>2.5                                                                                                                                                                                              | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7                                                                     | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0                                                                                                   | 5 0 0 0 0 202 5 5.8 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0.7<br>0<br>0.7<br>6<br>5.8<br>5.7                                                                                               | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6                                                                                                         | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3                                                                   | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0<br>2.8                                                                                                                      | 11<br>3.1<br>0.3                                                                                                                                                      | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     |                   |                                       |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY                                                                                                                                                                                                                                                                                                                                  | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7                                                                                                                                                                  | 2<br>0<br>2.5<br>2.5<br>2.5                                                                                                                                                                                              | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7                                                                     | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0                                                                                                   | 5 0 0 0 0 202 5 5.8 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0.7<br>0<br>0.7<br>6<br>5.8<br>5.7                                                                                               | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6                                                                                                         | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3                                                                   | 0.6<br>IC4<br>9<br>3.2<br>0.3                                                                                  | 5.2<br>201<br>10<br>2.8<br>0<br>2.8                                                                                                                      | 3.1<br>0.3<br>3.1                                                                                                                                                     | 12<br>1.7<br>0                                                                                          | 13<br>*                                                   | 14<br>0<br>0                                                                                           | 15<br>*                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *                                                       | *                                     | 19                | 20                                    |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY                                                                                                                                                                                                                                                                                                                                  | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7                                                                                                                                                           | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8                                                                                                                                                                         | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8                                                              | 0<br>0.7<br>0<br>0.7<br>1C4<br>4<br>0                                                                                                        | 5 0 0 0 0 0 202 5 5.8 5.7 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>0.7<br>0<br>0.7<br>0<br>5.8<br>5.7<br>5.8                                                                                        | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7                                                                                                  | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3                                                        | 0.6<br>IC4<br>9<br>3.2<br>0.3<br>3.2                                                                           | 5.2<br>201<br>10<br>2.8<br>0<br>2.8                                                                                                                      | 3.1<br>0.3<br>3.1<br>203                                                                                                                                              | 12<br>1.7<br>0<br>1.7                                                                                   | 13 * * *                                                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * *                               | * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * *                                                     | * * *                                 | 19 0.6            | 20 4.2                                |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP STOP REC PLAY                                                                                                                                                                                                                                                                                                 | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7                                                                                                                                                           | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8                                                                                                                                                                         | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8                                                              | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0                                                                                         | 5<br>0<br>0<br>0<br>0<br>202<br>5<br>5.8<br>5.7<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>0.7<br>0<br>0.7<br>6<br>5.8<br>5.7<br>5.8                                                                                        | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7                                                                                                  | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3                                                        | 0.6<br>IC4<br>9<br>3.2<br>0.3<br>3.2                                                                           | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0                                                                                                    | 11 - 3.1<br>0.3<br>3.1<br>3.1<br>203<br>11<br>0                                                                                                                       | 12<br>1.7<br>0<br>1.7                                                                                   | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0                                                                                 | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE REC PLAY                                                                                                                                                                                                                                                                               | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7                                                                                                                                                    | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8                                                                                                                                                                           | 0.2<br>3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8                                                       | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0                                                                                         | 5<br>0<br>0<br>0<br>0<br>202<br>5<br>5.8<br>5.7<br>5.8<br>5.7<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>0.7<br>0<br>0.7<br>6<br>5.8<br>5.7<br>5.8<br>3.7<br>3.7                                                                          | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>7<br>2.6<br>2.6                                                                               | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6                                     | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0                                                                      | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>1C4<br>10<br>0                                                                                                    | 11 3.1 0.3 3.1 3.1 0.3 3.1 0.3 0.3 0.1 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3                                                                        | 12<br>1.7<br>0<br>1.7                                                                                   | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP STOP REC PLAY                                                                                                                                                                                                                                                                                                 | 1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7                                                                                                                                                                  | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8                                                                                                                                                                           | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8                                                              | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0                                                                                    | 5<br>0<br>0<br>0<br>202<br>5<br>5.8<br>5.7<br>5.8<br>5.7<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>0.7<br>0<br>0.7<br>6<br>5.8<br>5.7<br>5.8                                                                                        | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7                                                                                                  | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3                                                        | 0.6<br>IC4<br>9<br>3.2<br>0.3<br>3.2                                                                           | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0                                                                                               | 203<br>11<br>0<br>2.5<br>2.5                                                                                                                                          | 12<br>1.7<br>0<br>1.7                                                                                   | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0                                                                                 | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. REF.NO. REF.NO. REF.NO. REF.NO.                                                                                                                                                                                                                                                                                         | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8                                                                                                                               | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8                                                                                                                                                                         | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8                                                              | 0<br>4<br>0.7<br>0<br>0.7<br>1C4<br>4<br>0<br>0<br>0<br>0                                                                                    | 5 0 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8                                                                                             | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>7<br>2.6<br>2.6<br>2.3                                                                        | 8<br>3.1<br>0.3<br>3.1<br>11.2<br>11.3<br>8<br>8<br>2.5<br>2.6<br>2.2                                 | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>4.9                                                                      | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>0<br>IC4                                                                                   | 203<br>11<br>0<br>2.5<br>2.5<br>204                                                                                                                                   | 12<br>1.7<br>0<br>1.7<br>1.7                                                                            | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC MODE MODE MODE REC REC REC REC MODE MODE REC REC REC MODE REC REC REC MODE                                                                                                                                                                                                    | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8                                                                                                                               | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0                                                                                                                                                               | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8                                                              | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>2.8<br>2.8<br>2.8<br>1C4<br>24                                                  | 5 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 203 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>0.7<br>0<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>3.7<br>2.2                                                                   | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3                                                                             | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2                              | 9<br>3.2<br>0.3<br>3.2<br>5.0<br>5.0<br>4.9                                                                    | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>1C4<br>10<br>0<br>0<br>0<br>IC4<br>2                                                                              | 203<br>11<br>0<br>2.5<br>2.5<br>204                                                                                                                                   | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8                                                 | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC REF.NO. MODE STOP REC STOP REC STOP REC REF.NO. MODE STOP REF.NO.                                                                                                                                                                                                                                         | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2                                                                                                                 | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8<br>0<br>0                                                                                                                                                                 | 0.2<br>3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>★ ★                                                | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.4<br>5.0                                   | 5 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 203 25 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>3.7<br>2.2                                                                   | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3                                                                             | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2                         | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>4.9                                                                      | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2                                                                                   | 203<br>11<br>0<br>203<br>11<br>0<br>2.5<br>2.5<br>2.5<br>204                                                                                                          | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8                                                 | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. REC PLAY  REF.NO. REC PLAY  REF.NO. REC REC REC REC REC                                                                                                                                                                                                         | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2<br>4.2                                                                                                   | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0                                                                                                                                                            | 0.2<br>3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>★ ★ ★                                              | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>1C4:<br>5.0<br>5.0<br>5.0               | 5<br>0<br>0<br>0<br>202<br>5<br>5.8<br>5.7<br>5.8<br>2.8<br>2.8<br>2.8<br>203<br>25<br>2.8<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                             | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>3.7<br>2.2                                                                   | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3                                                                             | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2                         | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9                                                               | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2<br>0                                                                              | 203<br>11<br>0<br>2.5<br>2.5<br>2.5<br>204<br>3<br>5.0<br>5.0                                                                                                         | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0                              | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC STOP REC STOP REC STOP REC STOP REC STOP REC STOP                                                                                                                                                                                                                             | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2                                                                                                                 | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8<br>0<br>0                                                                                                                                                                 | 0.2<br>3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>★ ★                                                | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.4<br>5.0                                   | 5 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 203 25 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>3.7<br>2.2                                                                   | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3                                                                             | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2                         | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>4.9                                                                      | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2                                                                                   | 203<br>11<br>0<br>203<br>11<br>0<br>2.5<br>2.5<br>2.5<br>204                                                                                                          | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8                                                 | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. REC PLAY                                                                                                                                                                                                                            | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2<br>4.2                                                                                                   | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0                                                                                                                                                            | 0.2<br>3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>★ ★ ★                                              | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>1C4:<br>5.0<br>5.0<br>5.0               | 5<br>0<br>0<br>0<br>202<br>5<br>5.8<br>5.7<br>5.8<br>2.8<br>2.8<br>2.8<br>203<br>25<br>2.8<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                             | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>3.7<br>2.2                                                                   | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3                                                                             | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2                         | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9                                                               | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2<br>0<br>0                                                                         | 203<br>11<br>0<br>203<br>11<br>0<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                                                                                                   | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0                              | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6               | 4.2                                   |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY REF.NO. MODE STOP REC PLAY REF.NO. MODE REC PLAY REF.NO. MODE REC PLAY REF.NO.                                                                                                                                                                                                                       | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>1<br>2.8<br>2.8<br>2.8<br>2.8<br>2.4<br>4.2<br>4.1                                                                                                     | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0                                                                                                                                                     | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>*<br>*                                                    | 4<br>0.7<br>0 0.7<br>1C4<br>4<br>0 0<br>0 0<br>2.8<br>2.8<br>2.8<br>1C4<br>24<br>5.0<br>5.0                                                  | 5 0 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8                                                    | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8                                                         | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0                   | 9<br>3.2<br>0.3<br>3.2<br>5.0<br>5.0<br>4.9                                                                    | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>1C4<br>10<br>0<br>0<br>1C4<br>2<br>0<br>0                                                                         | 203<br>11<br>0.2.5<br>2.5<br>204<br>3<br>5.0<br>5.0<br>5.0                                                                                                            | 12<br>1.7<br>0<br>1.7<br>1.8<br>1.8<br>1.8<br>4.0<br>4.0<br>2.1                                         | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0                                                                                 | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2 4.1                               |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY                                                                                                                                                                                 | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2<br>4.2<br>4.1                                                                                                   | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0                                                                                                                                                     | 3<br>0.9<br>0<br>0.9<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>★<br>★<br>★                                        | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>1C4<br>5.0<br>5.0<br>0                  | 5 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8                                                    | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8                                                  | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0              | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9                                                               | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>1C4<br>10<br>0<br>0<br>1C4<br>2<br>0<br>0<br>1C4<br>10                                                            | 203<br>11 0.3<br>203<br>11 0.5<br>2.5<br>2.5<br>2.5<br>204<br>3 5.0<br>5.0<br>5.0                                                                                     | 12<br>1.7<br>0<br>1.7<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0<br>2.1                                    | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0                                                                                 | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * * * * * * * * * * * * * * * * * * *                     | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2 4.2 4.1                           |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY                                                                                                                                                                                                                  | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2<br>4.2<br>4.1                                                                                            | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8<br>2<br>0<br>0<br>0<br>2<br>2<br>3.8<br>3.8<br>3.8<br>3.8                                                                                                                 | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>*<br>*<br>*                                               | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>5.0<br>5.0<br>0                         | 5 0 0 0 202 5 5 8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8                                        | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8                                                  | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0         | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9                                                 | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2<br>0<br>0<br>0<br>IC4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 203<br>11<br>0.25<br>2.5<br>2.5<br>2.5<br>204<br>3<br>5.0<br>5.0<br>5.0<br>205                                                                                        | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0<br>2.1                       | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>3.3<br>3.3<br>3.1                                   | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2 4.2 4.1                           |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. REC PLAY  REF.NO. REC PLAY  REF.NO. REC PLAY                                                                                                                                                                                                                    | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2<br>4.2<br>4.1                                                                                            | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0<br>2<br>2<br>3.8<br>3.8<br>3.8<br>3.8                                                                                                               | 0.2  3 0.9 0 0.9  3 5.8 5.7 5.8  ★ ★  ★ 23 2.9 2.9 2.9 2.9 0.9 0.9                                          | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>1C4<br>5.0<br>5.0<br>0                  | 5 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8                                               | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8                                           | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0    | 9<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2                                     | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2<br>0<br>0<br>IC4<br>10<br>1.3<br>1.3                                              | 203<br>11<br>0 2.5<br>2.5<br>2.5<br>204<br>3 5.0<br>5.0<br>5.0<br>5.0<br>205<br>11<br>0.1                                                                             | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8<br>4.0<br>4.0<br>2.1                            | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0<br>14<br>3.0<br>3.0<br>2.4                                                      | 15 * * * * * * * * * * * * * * * * * * * | # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>3.3<br>3.3<br>3.1                                   | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE REC PLAY                                                                                                                                                                                                                                              | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.1<br>4.2<br>4.2<br>4.1<br>5.0<br>5.0<br>5.0<br>5.0                                                         | 2<br>0<br>2.5<br>2.5<br>2<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0<br>2<br>2<br>3.8<br>3.8<br>3.8                                                                                                                        | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>*<br>*<br>*                                               | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>5.0<br>5.0<br>0                         | 5 0 0 0 202 5 5 8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8                                               | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8                                           | 8<br>3.1<br>0.3<br>3.1<br>8<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0         | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9                                                 | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>IC4<br>10<br>0<br>0<br>IC4<br>2<br>0<br>0<br>0<br>IC4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 203<br>11<br>0.25<br>2.5<br>2.5<br>2.5<br>204<br>3<br>5.0<br>5.0<br>5.0<br>205                                                                                        | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0<br>2.1                       | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0<br>14<br>3.0<br>3.0<br>2.4                                                      | 15 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17<br>3.3<br>3.3<br>3.1                                   | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2 4.2 4.1                           |
| REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. MODE STOP REC PLAY  REF.NO. REC PLAY                                                                                                                                                                                                                                                        | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8                                                                                            | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0<br>22<br>3.8<br>3.8<br>3.8<br>3.8                                                                                                                   | 0.2  3 0.9 0 0.9  3 5.8 5.7 5.8  ★ ★ 23 2.9 2.9 2.9 2.9 0.9 0.9                                             | 4<br>0.7<br>0<br>0.7<br>1C4<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>1C4<br>5.0<br>5.0<br>0<br>0<br>0            | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>2.2<br>26<br>2.9<br>2.8<br>6<br>0.6<br>0.6<br>0.6<br>0.6                     | 7<br>0.9<br>0<br>0.9<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8                                         | 8<br>3.1<br>0.3<br>3.1<br>11.2<br>11.3<br>11.2<br>11.3<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0 | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2                       | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>1C4<br>10<br>0<br>0<br>1C4<br>2<br>0<br>0<br>0<br>1C4<br>10<br>1.3<br>1.3<br>1.3                                  | 203<br>11<br>0<br>2.5<br>2.5<br>2.5<br>204<br>3<br>5.0<br>5.0<br>5.0<br>205<br>11<br>0.1<br>0.1<br>5.0                                                                | 12<br>1.7<br>0<br>1.7<br>1.7<br>12<br>1.8<br>1.8<br>1.8<br>4.0<br>4.0<br>2.1<br>12<br>5.0<br>5.0<br>0.1 | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 1.3 IC4207                                                                                    | 15 * * * * * * * * * * * * * * * * * * * | 16<br>0<br>0<br>0<br>16<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>3.3<br>3.3<br>3.1<br>17<br>0.6<br>0.6<br>0.6        | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC PLAY REF. NO. MODE STOP REC NO. MODE STOP REC NO. MODE STOP REF. NO. MODE STOP REF. NO. MODE STOP REC NO. MODE STOP REC NO. MODE STOP REC NO. MODE STOP REC NO. MODE STOP REC NO. MODE | 5.0<br>1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>1<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8                                                                                              | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>2<br>0<br>0<br>0<br>0<br>22<br>3.8<br>3.8<br>3.8<br>3.8<br>0<br>0<br>0<br>0                                                                                          | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>\$<br>\$<br>\$<br>\$<br>2.9<br>2.9<br>2.9<br>0.9          | 0<br>4<br>0.7<br>0<br>0.7<br>1C4<br>4<br>0<br>0<br>0<br>0<br>0<br>2.8<br>2.8<br>2.8<br>1C4<br>24<br>5.0<br>5.0<br>0                          | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>6<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8<br>6<br>6.6<br>0.6<br>0.6<br>0.6<br>1C42<br>4 | 7<br>0.9<br>0<br>0.9<br>5.7<br>5.6<br>5.7<br>7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>1.3<br>1.3                                    | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.3<br>11.3<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0              | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2                       | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>10<br>10<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10                                                            | 203<br>11<br>0<br>203<br>11<br>0<br>2.5<br>2.5<br>2.5<br>2.5<br>204<br>3<br>5.0<br>5.0<br>5.0<br>205<br>11<br>0.1<br>5.0                                              | 12<br>1.7<br>0<br>1.7<br>1.7<br>1.8<br>1.8<br>1.8<br>4.0<br>4.0<br>2.1<br>12<br>5.0<br>0.1              | 13 * * * * * * * * * * * * * * * * * * *                  | 14 0 0 0 3.0 2.4 14 0 0 0 1.3 1C4207 4                                                                 | 15 * * * * * * * * * * * * * * * * * * * | 16 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17<br>3.3<br>3.3<br>3.1<br>17<br>0.6<br>0.6<br>0.6        | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC STOP REC STOP REC STOP REC PLAY                                                                                                                       | 1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.4.2<br>4.2<br>4.1<br>5.0<br>5.0<br>5.0<br>1C4                                                                                   | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0<br>0<br>22<br>3.8<br>3.8<br>3.8<br>3.8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0               | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>*<br>*<br>*<br>*<br>23<br>2.9<br>2.9<br>2.9<br>2.9<br>0.9 | 4 0.7 0 0.7 IC4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | 5 0 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 3.8 2.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3 | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8<br>6.0.6<br>0.6<br>0.6<br>1C42<br>4                | 7<br>0.9<br>0<br>0.9<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8<br>3.1.3<br>1.3<br>1.3<br>1.3<br>206<br>5.6    | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0    | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2                       | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>10<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                            | 203<br>11 0.3<br>3.1<br>203<br>11 0<br>2.5<br>2.5<br>2.5<br>204<br>3 5.0<br>5.0<br>5.0<br>5.0<br>1 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>8.3                             | 12<br>1.7<br>0<br>1.7<br>1.8<br>1.8<br>1.8<br>4.0<br>4.0<br>2.1<br>12<br>5.0<br>5.0<br>0.1              | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0<br>14<br>3.0<br>3.0<br>2.4<br>14<br>0<br>0<br>0<br>1.3<br>1C4207<br>4<br>0      | 15 * * * * * * * * * * * * * * * * * * * | 16 0 0 0 0 1 1 1 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 | 17<br>3.3<br>3.3<br>3.1<br>17<br>0.6<br>0.6<br>0.6<br>7   | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY                                                                                                                     | 1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>5.7<br>1<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>4.2<br>4.2<br>4.1                                                                                       | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.7<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0<br>0<br>22<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>*<br>*<br>*<br>*<br>23<br>2.9<br>2.9<br>2.9<br>0.9<br>0.9 | 0<br>4<br>0.7<br>0<br>0.7<br>IC4<br>4<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>1C4<br>24<br>5.0<br>5.0<br>0<br>0<br>0<br>0<br>0<br>0 | 5 0 0 0 202 5 5 8 5.7 5.8 5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3 3 6.2 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>5.7<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8<br>6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6     | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8 | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0    | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2<br>9<br>0<br>0<br>1.3 | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>10<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                            | 203<br>11 0.3<br>3.1<br>203<br>11 0<br>2.5<br>2.5<br>2.5<br>204<br>3 5.0<br>5.0<br>5.0<br>5.0<br>1 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 12<br>1.7<br>0<br>1.7<br>1.8<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0<br>2.1<br>12<br>5.0<br>5.0<br>0.1  | 13 **  *  *  13 3.9 3.9 3.4  13 5.0 5.0 5.0 5.0 3 8.3 8.2 | 14<br>0<br>0<br>0<br>0<br>14<br>3.0<br>3.0<br>2.4<br>14<br>0<br>0<br>0<br>1.3<br>1C4207<br>4<br>0<br>0 | 15 * * * * * * * * * * * * * * * * * * * | 16<br>0<br>0<br>0<br>16<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>3.3<br>3.3<br>3.1<br>17<br>0.6<br>0.6<br>0.6<br>0.6 | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY                                                                                                                                                                               | 1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>2.8<br>2.8<br>2.8<br>2.8<br>2.4.2<br>4.2<br>4.1<br>5.0<br>5.0<br>5.0<br>1C4                                                                                   | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>0<br>0<br>0<br>0<br>0<br>22<br>3.8<br>3.8<br>3.8<br>3.8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0               | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>*<br>*<br>*<br>*<br>23<br>2.9<br>2.9<br>2.9<br>2.9<br>0.9 | 4 0.7 0 0.7 IC4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | 5 0 0 0 0 202 5 5.8 5.7 5.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 3.8 2.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3 | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8<br>6.0.6<br>0.6<br>0.6<br>1C42<br>4                | 7<br>0.9<br>0<br>0.9<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8<br>3.1.3<br>1.3<br>1.3<br>1.3<br>206<br>5.6    | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0    | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2                       | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>10<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                            | 203<br>11 0.3<br>3.1<br>203<br>11 0<br>2.5<br>2.5<br>2.5<br>204<br>3 5.0<br>5.0<br>5.0<br>5.0<br>1 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>8.3                             | 12<br>1.7<br>0<br>1.7<br>1.8<br>1.8<br>1.8<br>4.0<br>4.0<br>2.1<br>12<br>5.0<br>5.0<br>0.1              | 13 * * * * * * * * * * * * * * * * * * *                  | 14<br>0<br>0<br>0<br>0<br>14<br>3.0<br>3.0<br>2.4<br>14<br>0<br>0<br>0<br>1.3<br>1C4207<br>4<br>0      | 15 * * * * * * * * * * * * * * * * * * * | 16 0 0 0 0 1 1 1 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 1 . 3 | 17<br>3.3<br>3.3<br>3.1<br>17<br>0.6<br>0.6<br>0.6<br>7   | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |
| REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC PLAY  REF. NO. MODE STOP REC      | 1<br>4.9<br>0<br>4.9<br>1<br>5.7<br>5.7<br>5.7<br>1<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>4.2<br>4.1<br>5.0<br>5.0<br>5.0<br>1C4:2<br>21<br>*** ** ** ** ** ** ** ** ** ** ** ** ** | 2<br>0<br>2.5<br>2.5<br>2.5<br>5.8<br>5.7<br>5.8<br>2<br>0<br>0<br>0<br>0<br>22<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8                                                                                                | 3<br>0.9<br>0<br>0.9<br>3<br>5.8<br>5.7<br>5.8<br>** * * 23<br>2.9<br>2.9<br>2.9<br>2.9<br>0.9<br>0.9       | 4<br>0.7<br>0<br>0.7<br>1C4<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>4<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>5.0<br>5.0<br>0<br>0<br>0<br>0     | 5 0 0 0 202 5 5 8 5.7 5.8 5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3 3 6.2 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>0.7<br>0<br>0.7<br>5.8<br>5.7<br>5.8<br>5.7<br>3.7<br>2.2<br>26<br>2.9<br>2.9<br>2.8<br>6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6     | 7<br>0.9<br>0<br>0.9<br>7<br>5.7<br>5.6<br>5.7<br>2.6<br>2.6<br>2.3<br>27<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8<br>2.8 | 8<br>3.1<br>0.3<br>3.1<br>11.3<br>11.2<br>11.3<br>8<br>8<br>2.5<br>2.6<br>2.2<br>28<br>0<br>0<br>0    | 9<br>3.2<br>0.3<br>3.2<br>0.3<br>3.2<br>9<br>5.0<br>5.0<br>4.9<br>1<br>3.7<br>3.7<br>2.2<br>9<br>0<br>0<br>1.3 | 5.2<br>201<br>10<br>2.8<br>0<br>2.8<br>10<br>0<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                            | 203<br>11 0.3<br>3.1<br>203<br>11 0<br>2.5<br>2.5<br>2.5<br>204<br>3 5.0<br>5.0<br>5.0<br>5.0<br>1 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 12<br>1.7<br>0<br>1.7<br>1.8<br>1.8<br>1.8<br>1.8<br>4<br>4.0<br>4.0<br>2.1<br>12<br>5.0<br>5.0<br>0.1  | 13 **  *  *  13 3.9 3.9 3.4  13 5.0 5.0 5.0 5.0 3 8.3 8.2 | 14<br>0<br>0<br>0<br>0<br>14<br>3.0<br>3.0<br>2.4<br>14<br>0<br>0<br>0<br>1.3<br>1C4207<br>4<br>0<br>0 | 15 * * * * * * * * * * * * * * * * * * * | 16<br>0<br>0<br>0<br>16<br>1.3<br>1.3<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17<br>3.3<br>3.3<br>3.1<br>17<br>0.6<br>0.6<br>0.6<br>0.6 | * * * * * * * * * * * * * * * * * * * | 0.6<br>0.6<br>0.7 | 4.2<br>4.2<br>4.1<br>20<br>0.9<br>0.9 |

VOLTAGE MEASUREMENT: MONOSCOPE SIGNAL IN SP MODE.

★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

4-10 FM AUDIO VOLTAGE CHART

| REF.NO.     | ·      | <del></del> |        | IC4208 |        | -      |        | T      | IC4  | 209 |      |      | -      |        | •         |          |          |          |     |                                                  |
|-------------|--------|-------------|--------|--------|--------|--------|--------|--------|------|-----|------|------|--------|--------|-----------|----------|----------|----------|-----|--------------------------------------------------|
| MODE        | 1      | 2           | 3      | 4      | 5      | 6      | 7      | 1      | 2    | 3   | 4    |      |        |        |           |          |          |          |     |                                                  |
| STOP        | 8.3    | 0           | 8.3    | 0      | 0      | 7.4    | 11.9   | 3.8    | 0    | 5.0 | 4.0  |      |        |        |           |          | -        |          |     |                                                  |
| REC         | 8.2    | 0           | 8.2    | 0      | 0      | 7.3    | 11.8   | 3.8    | 0    | 5.0 | 4.0  |      |        |        |           |          | -        |          |     | <del>                                     </del> |
| PLAY        | 8.2    | 0           | 8.3    | 0      | 0      | 7.3    | 11.9   | 2.3    | 0    | 5.0 | 2.1  |      |        |        |           |          |          |          |     |                                                  |
| REF.NO.     |        |             |        |        |        |        |        |        |      | 104 | 01.0 |      |        |        |           |          | <u> </u> |          |     |                                                  |
|             | 1      | 2           | 3      | 4      | 5      | 6      | 7      | 8      | 9    | 10  | 210  | 12   | 13     | 14     | 15        | 16       | 17       | 10       | 19  | 20                                               |
| MODE STOP   | 2.8    | 0           | *      | 2.8    | 2.8    | 3.7    | 2.6    | 2.5    | 4.9  | 0   | 0    | 1.4  | 3.9    | 3.0    | 15<br>2.5 | 0        | 3.3      | 18       | 0.7 | 4.2                                              |
| REC         | 2.8    | 0           | *      | 2.8    | 2.8    | 3.8    | 2.6    | 2.5    | 5.0  | 0   | 2.5  | 1.4  | 3.9    | 3.0    | 2.5       | 0        | 3.3      | 3.4      | 0.7 | 4.2                                              |
| PLAY        | 2.8    | 0           | *      | 2.8    | 2.8    | 2.3    | 2.4    | 2.1    | 5.0  | 0   | 2.5  | 1.5  | 3.4    | 2.4    | 2.5       | 0        | 3.1      | 3.7      | 0.7 | 4.2                                              |
| REF.NO.     | 2.0    | 1 0         |        |        | 4210   | 2.0    |        | 2.1    | 3.0  |     | 2.5  | 1.5  | 3.4    | 2.4    | 2.5       | . 0      | .0.1     | 3.1      | 0.0 | 4.1                                              |
| MODE        | 21     | 22          | 23     | 24     | 25     | 26     | 27     | 28     |      |     |      |      |        |        |           |          |          |          | T   | T                                                |
| STOP        | 4.2    | 3.8         | 3.0    | 5.0    | 2.8    | 2.8    | 2.8    | 0      | -    |     |      |      |        |        |           |          |          |          |     | <del>                                     </del> |
| REC         | 4.2    | 3.8         | 2.9    | 5.0    | 2.8    | 2.8    | 2.8    | 0      |      |     |      |      |        |        |           |          | -        |          |     |                                                  |
| PLAY        | 4.1    | 3.8         | 2.9    | 0      | 2.8    | 2.8    | 2.8    | 0      |      |     |      |      |        |        |           |          |          | · ·      |     |                                                  |
| REF.NO.     |        |             |        |        |        |        |        | 1211   |      |     |      |      |        |        |           |          |          |          |     |                                                  |
|             | 1      | 2           | 3      | 4      | 5      | 6      | 7      | 8      | 9    | 10  | 11   | 12   | 13     | 14     |           |          | · ·      |          |     |                                                  |
| MODE STOP   | 6.0    | 5.9         | 5.9    | 5.9    | 0      | 0      | 0      | 5.9    | 5.9  | 5.9 | 6.0  | 11.8 | 11.9   | 11.9   |           |          |          |          |     |                                                  |
| REC         | 5.9    | 5.9         | 5.9    | 5.9    | 0      | 0      | 0      | 5.9    | 5.9  | 5.9 | 5.9  | 11.7 | 11.7   | 11.8   |           |          |          |          |     | -                                                |
| PLAY        | 5.9    | 5.9         | 5.9    | 5.9    | 0      | 0      | 0      | 5.9    | 5.9  | 5.9 | 5.9  | 11.8 | 11.8   | 11.9   |           |          |          |          |     | <u> </u>                                         |
|             |        | 1           |        |        | -      |        |        |        | V.,  |     |      |      |        |        |           |          |          |          |     |                                                  |
| REF.NO.     |        |             |        |        | 4213   |        |        |        |      |     |      |      | IC4214 |        | P         |          |          | <u> </u> |     | т                                                |
| MODE        | 1      | 2           | 3      | 4      | 5      | 6      | 7      | 8      | 1    | 2   | 3    | 4    | 5      | 6      | 7         | 8        | 9        |          |     |                                                  |
| STOP        | 6.0    | 6.0         | 6.0    | 0      | 5.9    | 5.9    | 6.0    | 11.9   | 8.5  | 0   | 8.5  | 0.1  | 0      | 8.5    | 0.1       | 7.7      | 12.0     |          |     |                                                  |
| REC         | 5.9    | 5.9         | 5.9    | 0      | 5.9    | 5.9    | 5.9    | 11.8   | 8.4  | 0   | 8.4  | 0    | 0      | 8.4    | 0         | 7.6      | 12.0     |          |     |                                                  |
| PLAY        | 6.0    | 6.0         | 5.9    | 0      | 5.9    | 6.0    | 6.0    | 11.9   | 8.4  | 0   | 8.4  | 0    | 0      | 8.4    | 0         | 7.6      | 12.1     |          |     |                                                  |
| REF.NO.     |        |             |        |        | IC4215 |        |        |        |      |     |      |      |        | IC4216 |           | - HARLES |          |          |     |                                                  |
| MODE        | 1      | 2           | .3 ,   | 4      | 5      | 6      | 7      | 8      | 9    | . 1 | 2    | 3    | 4      | 5      | 6         | 7        | 8        | 9        |     |                                                  |
| STOP        | 8.5    | 0           | 8.5    | 0      | 0      | 8.5    | 0      | 7.7    | 12.1 | 0   | 0.4  | 1.0  | 2.0    | 0      | 2.0       | 1.0      | 0.4      | 12.1     |     |                                                  |
| REC         | 8.5    | 0           | 8.5    | 0      | 0      | 8.5    | 0      | 7.7    | 12.0 | 0   | 0.4  | 1.0  | 2.0    | 0      | 2.0       | 1.0      | 0.4      | 12.0     |     |                                                  |
| PLAY        | 8.5    | 0           | 8.5    | 0      | 0      | 8.5    | 0      | 7.7    | 12.1 | 0   | 0.4  | 1.0  | 2.0    | 0      | 2.0       | 1.0      | 0.3      | 12.0     |     |                                                  |
| REF.NO.     |        |             |        | IC4    | 1217   |        |        |        |      |     |      |      | IC4    | 218    |           |          |          |          |     |                                                  |
| MODE        | 1      | 2           | 3      | 4      | 5      | 6      | 7      | 8      | 1    | 2   | 3    | 4    | 5      | 6      | 7         | .8       | 9        | 10       |     |                                                  |
| STOP        | 7.7    | 7.7         | 7.7    | 0      | 7.7    | 7.7    | 7.7    | 12.0   | 5.0  | 2.5 | 5.0  | 1.8  | 1.7    | 1.2    | 1.2       | 0        | 2.4      | 0        |     |                                                  |
| REC         | 7.7    | 7.7         | 7.7    | 0      | 7.7    | 7.6    | 7.6    | 12.0   | 5.0  | 2.4 | 5.0  | 1.8  | 1.8    | 1.2    | 1.2       | 0        | 2.4      | 0        |     |                                                  |
| PLAY        | 7.7    | 7.7         | 7.7    | 0      | 7.7    | 7.6    | 7.6    | 12.0   | 5.0  | 2.4 | 0    | 1.7  | 0      | 1.2    | 1.7       | 4.2      | 2.4      | 0        |     |                                                  |
| REF.NO.     |        |             |        |        | IC4    | 1219   |        |        |      |     |      |      |        |        |           |          |          | -        |     |                                                  |
| MODE        | 1      | 2           | 3      | 4      | 5      | 6      | 7      | 8      | 9    | 10  |      |      |        |        |           |          |          |          |     |                                                  |
| STOP        | 5.0    | 2.5         | 5.0    | 1.8    | 1.8    | 1.2    | 1.2    | 0      | 2.4  | 0   |      |      |        |        |           |          |          |          |     |                                                  |
| REC         | 5.0    | 2.5         | 5.0    | 1.8    | 1.8    | 1.2    | 1.2    | 0      | 2.4  | 0   |      |      |        |        |           |          |          |          |     |                                                  |
| PLAY        | 5.0    | 2.4         | 0      | 1.7    | 0      | 1.2    | 1.7    | 4.2    | 2.4  | 0   |      |      |        |        |           |          |          |          |     |                                                  |
|             |        |             |        |        |        |        |        |        |      |     |      |      |        |        |           |          |          |          |     |                                                  |
| REF.NO.     | TP4202 | TP4203      | TP4204 | TP4205 | TP4206 | TP4207 | TP4208 | TP4209 |      |     |      |      |        |        |           |          |          | ,        |     |                                                  |
| MODE        |        |             |        |        |        |        |        |        |      |     |      |      | · .    |        |           |          |          |          |     |                                                  |
| ST0P        | 2.5    | 0           | 5.0    | 5.0    | 0      | 0      | 0      | 2.5    |      |     |      |      |        |        |           |          |          |          |     |                                                  |
|             |        | 0           | 5.0    | 5.0    | 0      | 0      | 0      | 2.5    |      |     |      |      |        |        |           |          |          |          |     |                                                  |
| REC<br>PLAY | 2.5    | 0           | 5.0    | 5.0    | 0      | 0      | 0      | 2.5    |      |     |      |      |        |        |           |          |          |          |     | Ļ                                                |

#### VOLTAGE MEASUREMENT: MONOSCOPE SIGNAL IN SP MODE.

#### ★: UNMEASURABLE OR UNNECESSARY TO MEASURE.



8

9

10



11

12

13

15

VJBS0424

14



#### LOCATION OF TEST POINTS & ADJUSTMENT POINTS



PIN (TO CHROMINANCE)

4 CUE/REVIEW/SS (H) 5 HSS PULSE 6 HSS 7 VIDEO 8 ROTARY SW

9 PB CHROMA 10 REC CHROMA 11 3.58MHz

12 DELAY REC (H)

16 PB CHROMA

PIN (TO TV DEMODULATOR) 1 UHF/VHF AGC 2 RF AGC

17 GND

3 GND

GND AFT SW GND 3 +12V AFT VIDE0

12 + 12V

14 GND 15 AUDIO

13 SLP (H) 14 LP/SLP (H) 15 GND

1 PB (H) 2 DOC 3 +5V

| חח | n |
|----|---|

| 1  | EXCEPT PB (H)     |
|----|-------------------|
| 2  | EE/VV(EE (H))     |
| 3  | LP/SLP (H)        |
| 4  | SLP (H)           |
| 5  | CUE/REVIEW/SS (H) |
| 6  | DELAY REC (H)     |
| 7  | PB (H)            |
| 8  | 3.58MHz           |
| 9  | HÉAD SW           |
| 10 | PICTURE CTL       |
| 11 | VSS               |
| 12 | ROTARY SW         |

| P3002 |         |  |  |  |  |
|-------|---------|--|--|--|--|
| 1     | AUDIO   |  |  |  |  |
| 2     | AUDIO · |  |  |  |  |
| 3     | GND     |  |  |  |  |
| 4     | VIDEO   |  |  |  |  |
| 5     | GND     |  |  |  |  |
| 6     | VIDEO   |  |  |  |  |
| 7     | GND     |  |  |  |  |
| 8     | VIDEO   |  |  |  |  |

#### P3003

| 1 | UNSWITCH +12V |    |
|---|---------------|----|
| 2 | +5V           |    |
| 3 | +12V          |    |
| 4 | GND           | ٠, |

#### P3004

|   | 10001 |         |  |  |
|---|-------|---------|--|--|
| 1 | 1     | HEAD SW |  |  |
|   | 2     | V-LOCK  |  |  |
|   | 3     | ENV DET |  |  |
|   | 4     | V-PULSE |  |  |

#### P3005

| 1 | AUDI0 |  |  |  |
|---|-------|--|--|--|
| 2 | GND   |  |  |  |

| 23006 |               |  |  |  |  |
|-------|---------------|--|--|--|--|
| 1     | GND           |  |  |  |  |
| 2     | DELAY REC (H) |  |  |  |  |
| 3     | +12V          |  |  |  |  |

#### P4501

| 1 | GND        |
|---|------------|
| 2 | FULL ERASE |

1 CATV (H)

| 2  | AUDIO DEFEAT |
|----|--------------|
| 3  |              |
| 4  | BU           |
| 5  | BS           |
| 6  | BV           |
| 7  | AFT SW       |
| 8  | BT           |
| 9  | GND          |
| 10 | TV/VCB       |

#### PIN (TO HEAD AMP)

|   | 1.                                        | GND                                                                |
|---|-------------------------------------------|--------------------------------------------------------------------|
|   | 2                                         | REC VIDEO                                                          |
|   | 3                                         | REC CHROMA                                                         |
|   | .4                                        | AUDIO MUTE ①                                                       |
|   | 5                                         | DELAY REC (H)                                                      |
|   | 6                                         | HEAD SW                                                            |
|   | 7                                         | GND                                                                |
|   | 8                                         | PB VIDEO                                                           |
|   | 9                                         | ENV DET                                                            |
|   | 10                                        | PB (H)                                                             |
| - | 11                                        | PB CHROMA                                                          |
|   | 12                                        | HEAD SW                                                            |
|   | 13                                        | LP/SLP (H)                                                         |
|   | 14                                        | SLP (H)                                                            |
|   | 15                                        | GND                                                                |
|   | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | HEAD SW GND PB VIDEO ENV DET PB ① PB CHROMA HEAD SW LP/SLP ① SLP ① |

#### PIN (TO LUMINANCE)

| 1  | GND               |
|----|-------------------|
| 2  | +5V               |
| 3  | REC LUMINANCE     |
| 4  | HSS               |
| 5  | HEAD SW           |
| 6  | VIDEO             |
| 7  | GND               |
| 8  | VIDEO             |
| 9  | ARTIFICIAL V SYNC |
| 10 | PB CHROMA         |
| 11 | EE/VV(EE (H))     |
| 12 | LP/SLP (H)        |
| 13 | PB VIDEO          |
| 14 | DOC DET           |
| 15 | PICTURE CTL       |
| 16 | PB 🕀              |
| 17 | GND               |

# SIGNAL PROCESS C.B.A. VEPS0344E1



| REF.NO. |     | Q3001 |      |      | Q3002 |      |     | Q3006 |      |   | Q3007 |   |     | Q3008 |     | Q3010 |     |     |
|---------|-----|-------|------|------|-------|------|-----|-------|------|---|-------|---|-----|-------|-----|-------|-----|-----|
| MODE    | E   | В     | С    | E    | В     | С    | E   | В     | С    | E | В     | С | E   | В     | С   | E     | В   | С   |
| ST0P    | 0   | -0.2  | -0.2 | 0    | 0     | 4.6  | 2.7 | 1.9   | 0    | 0 | 0.6   | 0 | 0   | 0.7   | 0   | 5.1   | 5.0 | 0.1 |
| REC     | 8.5 | 9.2   | 11.8 | 0    | 0     | 4.6  | 2.7 | 1.9   | 0    | 0 | 0.6   | 0 | 0   | 0.7   | 0   | 5.1   | 5.0 | 0.1 |
| PLAY    | 0   | 0     | 0    | 0    | 0     | 4.6  | 2.7 | 1.9   | 0    | 0 | 0.6   | 0 | 0   | 0.7   | 0   | 5.1   | 4.0 | 4.7 |
| CUE     | 0   | 0     | 0    | 0    | 0.7   | 0    | 2.7 | 1.9   | 0    | 0 | 0.6   | 0 | 0.2 | 0.8   | 0.2 | 5.1   | 4.0 | 4.7 |
| REV     | 0   | 0     | 0    | 0    | 0.7   | 0    | 2.7 | 2.0   | 0    | 0 | 0.6   | 0 | 0.2 | 0.8   | 0.2 | 5.1   | 4.0 | 4.7 |
| REF.NO. |     | 04551 |      |      | Q4552 |      |     | Q4553 |      |   |       |   |     |       | •   |       |     |     |
| MODE    | E   | В     | С    | Е    | В     | С    | Е   | В     | С    |   |       |   |     |       |     |       |     |     |
| STOP    | 0   | 0     | 12.0 | 12.1 | 12.1  | -0.2 | 0   | -0.2  | -0.2 |   |       |   |     |       |     |       |     |     |
| REC     | 0   | 0.7   | 0    | 12.1 | 11.3  | 12.0 | 0   | -0.7  | 11.9 |   |       |   |     |       |     |       |     |     |
| PLAY    | 0   | 0     | 12.0 | 12.1 | 12.1  | 0.2  | 0   | 0.2   | 0.2  |   |       |   |     |       |     |       |     |     |
| CUE     | 0   | 0     | 12.0 | 12.1 | 12.1  | 0.2  | 0   | 0.2   | 0.2  |   |       |   |     |       |     |       |     |     |
| REV     | 0   | 0     | 12.0 | 12.1 | 12.1  | 0.2  | 0   | 0.2   | 0.2  |   |       |   |     |       |     |       |     |     |

 $(\circ)$ 

LUMINANCE SIGNAL PROCESS SECTION VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE. DEMODULATOR SECTION
VOLTAGE MEASUREMENT: COLOR BAR SIGNAL
IN STOP MODE.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



|   | Q3007 |   |     | Q3008 |     | Q3010 |     |     |  |  |  |  |
|---|-------|---|-----|-------|-----|-------|-----|-----|--|--|--|--|
| E | В     | С | E   | В     | С   | E     | В   | С   |  |  |  |  |
| 0 | 0.6   | 0 | 0   | 0.7   | 0   | 5.1   | 5.0 | 0.1 |  |  |  |  |
| 0 | 0.6   | 0 | 0   | 0.7   | 0   | 5.1   | 5.0 | 0.1 |  |  |  |  |
| 0 | 0.6   | 0 | 0   | 0.7   | 0   | 5.1   | 4.0 | 4.7 |  |  |  |  |
| 0 | 0.6   | 0 | 0.2 | 0.8   | 0.2 | 5.1   | 4.0 | 4.7 |  |  |  |  |
| 0 | 0.6   | 0 | 0.2 | 0.8   | 0.2 | 5.1   | 4.0 | 4.7 |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |
|   |       |   |     |       |     |       |     |     |  |  |  |  |

| MODE | TP3001 | TP3002 | TP3003 | TP3004 | TP3005 | TP3006 |
|------|--------|--------|--------|--------|--------|--------|
| ST0P | 1.3    | 1.4    | 3.4    | 2.6    | 0      | 4.9    |
| REC  | 1.3    | 1.4    | 3.3    | 2.6    | 0      | 2.4    |
| PLAY | 1.5    | 1.9    | 3.1    | 2.7    | 2.6    | 2.4    |
| CUE  | 1.5    | 1.6    | 3.0    | 2.7    | 2.6    | 2.4    |
| REV  | 1.5    | 1.6    | 2.9    | 2.7    | 2.6    | 2.4    |

**VOLTAGE MEASUREMENT:** 

1. CUE, REVIEW.

COLOR BAR SIGNAL IN SLP MODE.

2. OTHERS COLOR BAR SIGNAL IN SP MODE.









SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

4-13 SIGNAL PROCESS SCHEMATIC DIAGRAM

**CIRCUIT** 



#### **HEAD AMP SCHEMATIC DIAGRAM**

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET. COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET. SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



| REF.NO. |     |     |     |        |        |        |        |       |     | IC3 | 501 |     |     |     |     |     |     |     |    |     |
|---------|-----|-----|-----|--------|--------|--------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|
| MODE    | 1   | 2   | 3   | 4      | 5      | 6      | 7      | 8     | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19 | 20  |
| STOP    | 0   | 0   | 0 . | . 0    | *      | *      | *      | . 0.1 | 4.7 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0   |
| REC     | 4.9 | 4.9 | 4.2 | 3.4    | *      | *      | *      | 0.1   | 4.7 | 0.1 | 0.5 | 7.7 | 3.8 | 1.7 | 0   | 0   | 0   | 0   | 0  | 8.5 |
| PLAY    | 0   | 0   | 0   | 0      | *      | *      | *      | 0.1   | 4.7 | 4.8 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0   |
| CUE     | 0   | 0   | 0   | 0      | *      | *      | *      | 0.1   | 4.7 | 4.8 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0 - | 0  | 0   |
| REV     | 0   | 0   | 0   | 0      | *      | *      | *      | 0     | 4.7 | 4.8 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0   |
| REF.NO. |     |     |     |        |        | ٠,     |        |       | •   | IC3 | 502 |     |     |     |     |     |     |     |    |     |
| MODE    | 1   | 2   | 3   | 4      | 5      | 6      | 7      | 8     | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19 | 20  |
| STOP    | 4.9 | 0   | 0   | 0      | 0      | 0      | 0      | 0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0.1 | 0   | 0  | 0   |
| REC     | 2.5 | 0   | 0   | 0      | 0      | 0      | 0      | 0     | 0   | 0   | 0   | 0   | 0   | 0.1 | 0   | 0   | 0.1 | 0.1 | 0  | 0   |
| PLAY    | 2.5 | 0.9 | 0.7 | 0.7    | 0.9    | 0      | 0.9    | 0.7   | 0.7 | 0.9 | 0   | 1.9 | 2.2 | 4.7 | 2.6 | 4.7 | 0.1 | 4.7 | 0  | 1.6 |
| CUE     | 2.5 | 0.9 | 0.7 | 0.7    | 0.9    | 0      | 0.9    | 0.7   | 0.7 | 0.9 | 1.5 | 2.0 | 2.0 | 2.5 | 2.6 | 4.6 | 0.1 | 4.7 | 0  | 1.6 |
| REV     | 2.5 | 0.9 | 0.7 | 0.2    | 0.9    | 0      | 0.9    | 0.7   | 0.7 | 0.9 | 1.5 | 2.0 | 2.0 | 2.5 | 2.6 | 4.7 | 0.1 | 4.7 | 0  | 1.6 |
| REF.NO. | IC3 | 501 |     | TP3501 | TP3502 | TDOCOO | TDOCOA |       |     |     |     |     | -   |     |     |     |     |     |    |     |
| MODE    | 21  | 22  |     | 113301 | 113502 | TP3503 | TP3504 |       |     |     |     |     |     |     |     |     |     |     |    |     |
| STOP    | 0   | 0.3 |     | 0      | 0      | 4.9    | 0      |       |     |     |     |     |     |     |     | 7   |     |     |    |     |
| REC     | 0.1 | 0.3 |     | 0      | 0      | 2.5    | 0      |       |     |     |     |     |     |     |     |     |     |     |    |     |
| PLAY    | 3.1 | 3.0 |     | 0      | 2.6    | 2.5    | 0      |       |     |     |     |     |     |     |     |     |     |     |    |     |
| CUE     | 3.1 | 3.0 |     | 0      | 2.6    | 2.5    | 0      |       |     |     | 1   |     |     |     |     |     |     |     |    |     |
| REV     | 3.1 | 3.0 |     | 0      | 2.6    | 2.5    | 0      |       |     |     |     |     |     |     |     |     |     |     |    |     |

DEENO

| REF.NO. |                                    | 03502                                            |                                                                                                                                                                            |                                                                                                                                                                                                                                  | Q3503                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              | Q3504                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODE    | E                                  | В                                                | С                                                                                                                                                                          | E                                                                                                                                                                                                                                | В                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                          | Е                                                                                                                                                                                                                                                                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STOP    | 0                                  | 0                                                | 0                                                                                                                                                                          | 0                                                                                                                                                                                                                                | -0.1                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REC     | 0                                  | 0                                                | 0                                                                                                                                                                          | 0                                                                                                                                                                                                                                | -0.1                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PLAY .  | 0.9                                | 1.6                                              | 3.8                                                                                                                                                                        | 0                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CUE     | 0.9                                | 1.6                                              | 3.8                                                                                                                                                                        | 0                                                                                                                                                                                                                                | - 0                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| REV     | 0.9                                | 1.6                                              | 3.8                                                                                                                                                                        | 0                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | MODE<br>STOP<br>REC<br>PLAY<br>CUE | MODE E<br>STOP 0<br>REC 0<br>PLAY 0.9<br>CUE 0.9 | MODE         E         B           STOP         0         0           REC         0         0           PLAY         0.9         1.6           CUE         0.9         1.6 | MODE         E         B         C           STOP         0         0         0           REC         0         0         0           PLAY         0.9         1.6         3.8           CUE         0.9         1.6         3.8 | MODE         E         B         C         E           STOP         0         0         0         0           REC         0         0         0         0           PLAY         0.9         1.6         3.8         0           CUE         0.9         1.6         3.8         0 | MODE         E         B         C         E         B           STOP         0         0         0         0         -0.1           REC         0         0         0         0         -0.1           PLAY         0.9         1.6         3.8         0         0           CUE         0.9         1.6         3.8         0         0 | MODE         E         B         C         E         B         C           STOP         0         0         0         0         -0.1         0           REC         0         0         0         0         -0.1         0           PLAY         0.9         1.6         3.8         0         0         0           CUE         0.9         1.6         3.8         0         0         0 | MODE         E         B         C         E         B         C         E           STOP         0         0         0         0         -0.1         0         0           REC         0         0         0         0         -0.1         0         0           PLAY         0.9         1.6         3.8         0         0         0         0           CUE         0.9         1.6         3.8         0         0         0         0 | MODE         E         B         C         E         B         C         E         B           STOP         0         0         0         0         -0.1         0         0         0           REC         0         0         0         0         -0.1         0         0         0           PLAY         0.9         1.6         3.8         0         0         0         0         0.7           CUE         0.9         1.6         3.8         0         0         0         0         0.7 |

**VOLTAGE MEASUREMENT:** 

1. CUE, REVIEW. COLOR BAR SIGNAL IN SLP MODE.

2. OTHERS

COLOR BAR SIGNAL IN SP MODE. \*: UNMEASURA BLE OR UNNECESSARY TO MEASURE.

**HEAD AMP UNIT** 



B









| P350 | )1.              |
|------|------------------|
| 1    | VIDEO H          |
| 2    | VIDEO H          |
| 3    | VIDE0 H          |
| 4    | GND <sup>-</sup> |
| 5    | GND              |
| 6    | VIDEO F          |

7 VIDEO HI 8 VIDEO HI

#### **VOLTAGE MEASUREMENT:**

COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET. COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET.

R3515

AMP

L C3523 L C3530 T 0.01 T 1000P

IC3502 AN3310K

TP3502

4

0.1 0.1 0 0

6 0.1 4.7 0 1.6

4.7 0

4.7 0 1.6

-C3517 -

C3520

L C3519 L C3521

PHASE COMPENSATOR 03502 2SC2206

R3521

6

#### SPECIAL NOTE: ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

P3501 (CYLINDER UNIT)

R3510

NOTE: REF. NO. ON C.B.A. IS PRINTED AS FOLLOWS. EXAMPLE: C.B.A. -- R2, REF. NO. 3500 SERIES SCHEMATIC DIAGRAM -- R3502 (R3502 IS A BREVIATED TO R2)

UNLESS OTHERWISE SPECIFIED; NPN TRANSISTORS ARE 2SD636(Q.R.S)/2SC2021M(Q.R.S) AND WATTAGE OF RESISTORS ARE 1/4W

VIDEO HEAD SP R CH

VIDEO HEAD SP R/L CH VIDEO HEAD SP L CH

VIDEO HEAD LP/SLP L CH (P1501 (7) VIDEO HEAD LP/SLP R/L CH (P1501 (6)) VIDEO HEAD LP/SLP R CH (P1501 (5))

#### **HEAD AMP UNIT VEPS0508B1**

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE.



#### MODE -0.1 -0.1

5

0 0 0 -0.1 1.6 3.8 0 0 0.7 1.6 3.8 0.7

L <sub>C3525</sub> F 0.01

**VOLTAGE MEASUREMENT:** 1. CUE, REVIEW.

COLOR BAR SIGNAL IN SLP MODE.

COLOR BAR SIGNAL IN SP MODE. ★: UNMEASURA BLE OR UNNECESSARY TO MEASURE.



V.JBS0508

| ٧. | <b>የ</b> 5 | () | 1 |
|----|------------|----|---|
|    |            |    | • |
| _  | _          | -  | _ |

| 1 | VIDEO HEAD LP/SLP L CH   |
|---|--------------------------|
| 2 | VIDEO HEAD LP/SLP R/L CH |
| 3 | VIDEO HEAD LP/SLP R CH   |
| 4 | GND                      |

5 GND 6 VIDEO HEAD SP R CH 7 VIDEO HEAD SP R/L CH

8 VIDEO HEAD SP L CH

13 ,LP/SLP (H)

14 SLP (H)

15 GND







# **LUMINANCE SCHEMATIC DIAGRAM**

**VOLTAGE MEASUREMENT:** COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET. COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



















# **LUMINANCE C.B.A. VEPS0337A**

CAUTION: DO NOT BEND OR SPREAD APART THE LUMINANCE AND CHROMINANCE PACKS.
BY DOING SO DAMAGE TO THE MAIN C.B.A. OR PINS ON THE PACKS MAY RESULT.

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE.



MICONDUCTOR DEVICES ARE REQUIRE THE SPECIAL ELECTROSTATICALLY SENSITIVE AL.

PB VIDEO LEVEL

C3127

LUMINANCE PB PROCESSING

1.5K T120P

VJBS0337

R3126 1.5K















LUMINANCE C.B.A.



#### LOCATION OF TEST POINTS & ADJUSTMENT POINTS



| VOLTAGE | MEASUREMENT: |
|---------|--------------|
| 1 (LIE  | RE\/IE\M     |

COLOR BAR SIGNAL IN SP MODE.

| REF.NO. |        |        |         |     |     |     |     |             |     | IC3 | 101 |     |     |     |     |     |     |         |     |     |
|---------|--------|--------|---------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|
| MODE    | 1      | 2      | 3       | 4   | 5   | 6   | 7   | 8           | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18      | 19  | 20  |
| STOP    | 3.1    | 0.4    | 2.1     | 2.9 | 2.3 | 3.1 | 1.3 | 1.5         | 0   | 1.9 | 0   | 4.3 | 0.7 | 0.6 | 0   | 2.0 | 3.2 | 1.5     | 3.9 | 4.9 |
| REC     | 3.1    | 0.5    | 2.1     | 2.9 | 2.3 | 3.1 | 1.3 | 1.5         | 0   | 2.0 | 0   | 0 . | 0.6 | 0.5 | 0   | 0   | 3.2 | 0.6     | 3.9 | 4.9 |
| PLAY    | 3.1    | 0.5    | 2.1     | 2.9 | 2.3 | 3.1 | 1.3 | 1.5         | 0   | 2.1 | 0   | 2.7 | 2.4 | 3.1 | 0   | 2.0 | 3.2 | 0.5     | 0   | 0   |
| CUE     | 3.1    | 0.3    | 2.1     | 2.9 | 2.3 | 3.1 | 1.3 | 1.5         | 0   | 2.1 | 0.1 | 2.6 | 2.5 | 3.1 | 1.3 | 2.0 | 3.1 | 2.0     | 3.9 | 4.9 |
| REV     | 3.1    | 0.4    | 2.1     | 2.9 | 2.3 | 3.1 | 1.3 | 1.5         | 0   | 2.0 | 0.1 | 2.6 | 2.5 | 3.1 | 1.3 | 2.0 | 3.2 | 2.1     | 3.9 | 4.9 |
| REF.NO. |        |        |         |     |     |     |     |             |     | IC3 | 101 |     | ,   |     |     |     |     |         |     |     |
| MODE    | 21     | 22     | 23      | 24  | 25  | 26  | 27  | 28          |     |     |     |     |     |     |     |     |     |         |     |     |
| STOP    | 2.0    | 2.0    | 1.9     | 2.6 | 4.1 | 4.1 | 2.3 | 3.0         |     |     |     |     |     |     |     |     |     |         |     |     |
| REC     | 2.0    | 2.0    | 1.9     | 2.6 | 4.1 | 4.1 | 2.3 | 3.0         |     |     |     |     |     |     |     |     |     |         |     |     |
| PLAY    | 2.0    | 2.0    | 1.9     | 2.6 | 4.2 | 4.2 | 2.3 | 3.4         |     |     |     |     |     |     |     |     |     |         |     |     |
| CUE     | 2.0    | 2.0    | 2.0     | 2.6 | 4.2 | 4.2 | 2.3 | 3.4         |     |     |     |     |     |     |     | -   | 1   |         |     |     |
| REV     | 2.0    | 2.0    | 1.9     | 2.5 | 4.2 | 4.2 | 2.3 | 3.4         |     |     |     |     |     |     |     |     |     |         |     |     |
| REF.NO. |        |        |         |     | p   |     |     |             |     | IC3 | 102 |     | ,   |     |     |     |     | <b></b> |     |     |
| MODE    | 1      | 2      | 3       | 4   | 5   | 6   | 7   | <b>\$</b> 8 | . 9 | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18      | 19  | 20  |
| STOP    | 0      | 0      | 0       | 0   | *   | *   | 0   | 0           | 0.1 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0       | 0   | 0   |
| REC     | 0      | 0      | 0       | 0   | ` * | *   | 0   | 0           | 0.1 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0.1     | 0.1 | 0   |
| PLAY    | 2.6    | 2.3    | 3.2     | 1.3 | *   | *   | 1.8 | 4.6         | 3.2 | 0   | 2.8 | 3.4 | 0   | 3.4 | 1.1 | 1.5 | 2.2 | 1.9     | 1.9 | 0   |
| CUE     | 2.6    | 2.4    | 3.3     | 1.4 | *   | *   | 1.9 | 4.6         | 3.2 | 3.5 | 2.8 | 3.5 | 3.4 | 3.4 | 1.0 | 1.5 | 2.2 | 1.9     | 1.9 | 0   |
| REV     | 2.6    | 2.3    | 3.3     | 1.4 | *   | *   | 1.8 | 4.6         | 3.2 | 3.4 | 2.8 | 3.5 | 3.5 | 3.4 | 1.1 | 1.5 | 2.2 | 1.9     | 1.9 | 0   |
| REF.NO. |        |        |         |     | ·   | ,   |     | ,           |     | IC3 | 102 |     | ,   |     |     |     |     |         |     |     |
| MODE    | 21     | 22     | . 23    | 24  | 25  | 26  | 27  | 28          |     |     |     |     |     |     |     |     |     |         |     |     |
| STOP    | 0 -    | 0      | 0       | 0   | 0   | 0   | 0   | 0           |     |     |     |     |     |     |     |     |     |         |     |     |
| REC     | 0      | 0      | 0       | 0   | 0   | 0   | 0   | 0           |     |     |     |     |     |     |     |     |     |         |     |     |
| PLAY    | 3.5    | 3.1    | 4.6     | 3.2 | 1.9 | 3.2 | 3.3 | 4.7         |     |     |     |     |     |     |     |     |     |         |     |     |
| CUE     | 3.5    | 3.2    | 4.6     | 3.2 | 1.9 | 3.2 | 3.1 | 0           |     |     |     |     |     |     |     |     |     |         |     |     |
| REV     | 3.5    | 3.1    | 4.6     | 3.2 | 1.8 | 3.2 | 3.2 | 4.6         |     |     |     |     |     |     |     |     |     |         |     |     |
| REF.NO. | TP3101 | TP3102 | TP3103  |     |     |     |     |             |     |     |     |     |     |     |     | -   |     |         |     | 1   |
| MODE    |        | 110102 | 11 0100 |     |     |     |     |             |     |     |     |     |     |     |     |     |     |         |     |     |
| ST0P    | 2.0    | 2.0    | 0       |     |     |     |     |             |     |     |     |     |     |     |     |     |     |         |     |     |
| REC     | 2.0    | 2.0    | 0.2     |     |     |     |     |             |     |     |     |     |     |     |     |     |     |         |     |     |
| PLAY    | 2.0    | 2.0    | 3.2     |     |     |     |     |             |     |     |     |     |     |     |     |     |     |         |     |     |
| CUE     | 2.0    | 2.0    | 3.2     |     |     |     |     |             |     |     |     |     |     |     |     |     |     |         |     |     |
| REV     | 2.0    | 2.0    | 3.2     |     |     |     |     |             |     | l   |     |     |     |     |     |     | 1   |         |     |     |

CHROMINANCE CIRCUIT

1. CUE, REVIEW.
COLOR BAR SIGNAL IN SLP MODE.
2. OTHERS

★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

#### CHROMINANCE SCHEMATIC DIAGRAM

**VOLTAGE MEASUREMENT:** COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET. COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET. SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

CALLOUTS NEXT TO WIRING PLUGS INDICATE CONNECTIONS TO OTHER SCHEMATIC DIAGRAM.

















# THER SEMICONDUCTOR DEVICES ARE REFORE REQUIRE THE SPECIAL R THE "ELECTROSTATICALLY SENSITIVE MANUAL.

TS NEXT TO WIRING PLUGS INDICATE TIONS TO OTHER SCHEMATIC DIAGRAM.













#### CHROMINANCE C.B.A. VEPS0806A

REF.NO.

Q8101

Q8102

CAUTION: DO NOT BEND OR SPREAD APART THE LUMINANCE AND CHROMINANCE PACKS. BY DOING SO DAMAGE TO THE MAIN C.B.A. OR PINS ON THE PACKS MAY RESULT.

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE.



#### LOCATION OF TEST POINTS & ADJUSTMENT POINTS

CHROMINANCE C.B.A.



#### **VOLTAGE MEASUREMENT:**

- 1. CUE, REVIEW.
- COLOR BAR SIGNAL IN SLP MODE.
- 2. OTHERS
- COLOR BAR SIGNAL IN SP MODE.

  ★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

| MODE            | E      | В      | С      | E      | В      | , C    | E   | В   | С   | E   | В    | С   |     |     |     |     |     |     | i   |     |
|-----------------|--------|--------|--------|--------|--------|--------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| STOP            | 0      | 0      | 0.1    | 2.3    | 2.9    | 4.9    | 0   | .0  | 4.9 | 0   | 0    | 4.9 |     |     |     |     |     |     | i   |     |
| REC             | 0      | 0      | 0      | 2.2    | 2.9    | 4.9    | 0   | 0   | 3.3 | 1.3 | 2.0  | 3.3 |     |     |     |     |     |     | i   |     |
| PLAY            | 2.0    | 2.7    | 3.4    | 2.2    | 2.9    | 4.9    | 0.8 | 1.4 | 3.2 | 0   | 0    | 3.2 |     |     |     |     |     |     |     |     |
| CUE             | 1.9    | 2.6    | 3.4    | 2.2    | 2.9    | 4.9    | 0.8 | 1.4 | 3.2 | 0   | 0    | 3.2 |     |     |     |     |     |     | i   |     |
| REV             | 2.0    | 2.7    | 3.4    | 2.2    | 2.9    | 4.8    | 0.7 | 1.4 | 3.2 | 0   | 0    | 3.2 |     |     |     |     |     |     | İ   |     |
| REF.NO.         | l      |        |        |        |        |        |     |     |     | IC8 | 3101 |     |     |     |     |     |     |     |     |     |
| MODE            | 1      | 2      | .3     | 4      | 5      | 6      | 7.  | 8   | 9   | 10  | 11   | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| STOP            | 3.0    | 2.9    | 3.1    | 2.9    | 3.1    | 3.3    | 3.5 | 4.9 | 3.9 | 2.9 | 3.9  | 1.0 | 2.5 | 0   | 1.8 | 1.9 | 0   | 2.9 | 2.9 | 2.9 |
| REC             | 4.4    | 3.2    | 3.1    | 2.9    | 2.6    | 3.3    | 3.5 | 4.9 | 3.9 | 0   | 3.9  | 1.0 | 2.5 | 2.6 | 2.3 | 4.9 | 0   | 3.0 | 2.4 | 2.9 |
| PLAY            | 3.0    | 3.1    | 3.1    | 2.9    | 3.1    | 3.3    | 3.5 | 4.9 | 3.9 | 0.1 | 3.9  | 1.0 | 2.5 | 2.6 | 1.8 | 1.9 | 0   | 2.9 | 2.4 | 3.0 |
| CUE             | 2.9    | 3.1    | 3.1    | 2.9    | 3.1    | 3.3    | 3.5 | 4.9 | 3.9 | 3.0 | 3.9  | 0.7 | 2.5 | 2.6 | 1.8 | 1.9 | 0   | 2.9 | 2.5 | 3.0 |
| REV             | 2.9    | 3.1    | 3.1    | 2.9    | 3.1    | 3.3    | 3.5 | 4.9 | 3.9 | 2.9 | 3.9  | 0.9 | 2.5 | 2.6 | 1.8 | 1.9 | 0   | 2.9 | 2.5 | 3.0 |
| REF.NO.         | IC8    | 3101   |        |        |        |        |     |     |     | IC8 | 3102 | •   |     |     |     |     |     |     |     |     |
| MODE            | 21     | 22     | 1      | 2      | 3      | 4      | 5   | 6   | 7   | 8   | - 9  | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  |
| STOP            | 3.3    | 3.0    | 4.9    | 2.6    | 0      | 0.3    | 0   | 0   | 2.5 | 0   | 2.5  | *   | 0   | 0   | *   | 0.5 | 4.9 | 2.5 | 0   | 4.6 |
| REC             | 3.4    | 3.0    | 4.9    | 2.6    | 0      | 0.3    | 0   | 2.5 | 2.5 | 0   | 2.5  | *   | 0   | 0   | *   | 0.4 | 4.9 | 2.6 | 0   | 4.6 |
| PLAY            | 3.4    | 3.0    | 4.9    | 2.6    | 0      | 0.3    | 0   | 2.5 | 2.5 | 0   | 2.5  | *   | 4.7 | 0   | *   | 0.4 | 4.9 | 2.6 | 0.2 | 4.6 |
| CUE             | 3.4    | 3.0    | 4.9    | 2.6    | 0      | 0.3    | 0   | 2.5 | 2.5 | 0   | 2.5  | . * | 4.7 | 0   | *   | 0.5 | 4.9 | 2.6 | 3.9 | 4.6 |
| REV             | 3.4    | 3.0    | 4.9    | 2.6    | 0      | 0.3    | 0   | 2.5 | 2.5 | 0   | 2.5  | *   | 4.7 | 0   | *   | 0.4 | 4.9 | 2.5 | 3.9 | 4.6 |
| REF.NO.<br>MODE | TP8102 | TP8103 | TP8104 | TP8105 | TP8106 | TP8107 |     |     |     |     |      |     |     |     |     |     |     |     |     |     |
| STOP            | 4.0    | 4.0    | 3.5    | 2.6    | 0      | 0      |     |     |     |     |      |     |     |     |     |     |     |     |     |     |
| REC             | 3.9    | 3.9    | 3.5    | 2.5    | 0      | 0      |     |     |     |     |      |     |     |     |     |     |     |     |     |     |
| PLAY            | 3.9    | 3.9    | 0      | 2.6    | 0      | 0      |     |     |     |     |      |     |     |     |     |     |     |     |     |     |
| CUE             | 3.9    | 3.9    | 3.4    | 2.5    | 0      | 0      |     |     |     |     |      |     |     |     |     |     |     |     |     |     |
| REV             | 3.9    | 3.9    | 3.5    | 2.5    | 0      | 0      |     |     |     |     |      |     |     |     |     |     |     |     |     |     |

Q8104

Q8103

6

SS OTHERWISE SPECIFIED; SISTORS ARE 2SD636(Q.R.S.) 2021M(Q.R.S.) AND

AGE OF RESISTORS ARE 1/4W.

REF. NO. ON C.B.A. IS PRINTED AS FOLLOWS. EXAMPLE: C.B.A. ··· R2. REF. NO. 8100 SERIES SCHEMATIC DIAGRAM··· R8102 (R8102 IS ABBREVIATED TO R2)

(PIN SIGNAL PROCESS)

CUE/REVIEW/SS® HSS\_PULSE

PB (H) + 5V

HSS VIDEO ROTARY SW PB CHROMA REC CHROMA

3.58MHz DELAY REC (H)

SLP®

LP/SLP(B) GND

PB CHROMA

# OPERATION/AUDIO LEVEL METER SCHEMATIC DIAGRAM



# OPERATION/AUDIO LEVEL METER C.B.A. VEPS06112A2

MANY OTHER SEMICONDUCTOR DEVICES ARE AND THEREFORE REQUIRE THE SPECIAL BED UNDER THE "ELECTROSTATICALLY SENSITIVE IS SERVICE MANUAL.





VJBS06112

DIO LEVEL METER SECTION TE:REF. NO. ON C.B.A. IS PRINTED AS FOLLOWS. - EXAMPLE:C.B.A. "REF. NO.7800 SERIES SCHEMATIC DIAGRAM-"R7802 (R7802 IS ABBREVIATED TO R2)

UNLESS OTHERWISE SPECIFIED; SWITCHES ARE EVOQJ104K, DIODES ARE MA165/1SS119 AND WATTAGE OF RESISTORS ARE 1/4W.

7



# **AUDIO LEVEL METER (DP7801) CONNECTION CHART**



| PIN NO. | SIGNAL NAME |
|---------|-------------|
| 1       | FILAMENT    |
| 2       | FILAMENT    |
| 3       | GRID        |
| 4       | SEGMENT A1  |
| 5       | SEGMENT A2  |
| 6       | SEGMENT A3  |
| 7       | SEGMENT A4  |
| 8       | SEGMENT A5  |
| 9       | SEGMENT A6  |
| 10      | SEGMENT B1  |
|         |             |

| PIN NO. | SIGNAL NAME |
|---------|-------------|
| 11      | SEGMENT B2  |
| 12      | SEGMENT B3  |
| 13      | SEGMENT B4  |
| 14      | SEGMENT B5  |
| 15      | SEGMENT B6  |
| 16      |             |
| 17      |             |
| 18      | SEGMENT B7  |
| 19      | SEGMENT B8  |
| 20      | SEGMENT B9  |

| 21 SEGMENT B10 22 SEGMENT B11 23 SEGMENT B12 24 SEGMENT A7 25 SEGMENT A8 26 SEGMENT A9 27 SEGMENT A10 28 SEGMENT A11 29 SEGMENT A12 30 SEGMENT A12 | J | PIN NO. | SIGNAL NAME |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|-------------|
| 23 SEGMENT B12 24 SEGMENT A7 25 SEGMENT A8 26 SEGMENT A9 27 SEGMENT A10 28 SEGMENT A11 29 SEGMENT A12                                              | ] | 21      | SEGMENT B10 |
| 24 SEGMENT A7 25 SEGMENT A8 26 SEGMENT A9 27 SEGMENT A10 28 SEGMENT A11 29 SEGMENT A12                                                             |   | 22      | SEGMENT B11 |
| 25 SEGMENT A8 26 SEGMENT A9 27 SEGMENT A10 28 SEGMENT A11 29 SEGMENT A12                                                                           | ] | 23      | SEGMENT B12 |
| 26 SEGMENT A9 27 SEGMENT A10 28 SEGMENT A11 29 SEGMENT A12                                                                                         | ] | 24      | SEGMENT A7  |
| 27 SEGMENT A10 28 SEGMENT A11 29 SEGMENT A12                                                                                                       | ] | 25      | SEGMENT A8  |
| 28 SEGMENT A11<br>29 SEGMENT A12                                                                                                                   | ] | 26      | SEGMENT A9  |
| 29 SEGMENT A12                                                                                                                                     | ] | 27      | SEGMENT A10 |
|                                                                                                                                                    | ] | 28      | SEGMENT A11 |
| 30 SEGMENT S                                                                                                                                       | ] | 29      | SEGMENT A12 |
|                                                                                                                                                    | 1 | 30      | SEGMENT S   |

PIN NO. SIGNAL NAME

| P630 | )1        |
|------|-----------|
| 1    | GND       |
| 2    | TV/VCR SW |
| 3    | POWER SW  |
| 4    | SCAN 1    |
| 5    | SCAN 2    |
| 6    | DATA 11   |
| 7    | DATA 10   |
| 8    | DATA 9    |
| 9    | DATA 8    |
|      |           |

| P/801 |      |                  |
|-------|------|------------------|
|       | 1    | DOLBY ON (H)     |
|       | 2    | LEVEL METER R CH |
|       | 3    | LEVEL METER L CH |
|       | P780 | 02               |
|       | 1    | GND              |

| P7802 |                 |  |  |
|-------|-----------------|--|--|
| 1     | GND             |  |  |
| 2     | AUDIO GAIN R CH |  |  |
| 3     | AUDIO GAIN R CH |  |  |
| 4     | GND             |  |  |
| 5     | AUDIO GAIN L CH |  |  |
| 6     | AUDIO GAIN L CH |  |  |

| '80 | 03               | _  | P790 | 06    |
|-----|------------------|----|------|-------|
| 1   | AGC ON ①         |    | 1    | SCAN  |
| 2   | SWITCHED +12V    | ]  | 2    | DATA  |
| 3   | FM LED ON ⊕      | ]  | 3    | DOLB  |
| 4   | AUDIO MIX (H)    | ]. | 4    | +5V   |
| 5   | FM AUDIO (H)     |    | 5    | AGC ( |
| 6   | AUDIO L CH (H)   | ]  |      |       |
| 7   | AUDIO R CH (H)   |    |      |       |
| В   | GND              |    |      |       |
| 9   | NORMAL AUDIO (L) | 1  |      |       |

| 1    | +15V               |  |
|------|--------------------|--|
| 2    | GND .              |  |
| 3    | AC2.7V             |  |
|      |                    |  |
| P790 | )3                 |  |
| 1    | DATA 10            |  |
| 2    | DATA 9             |  |
| 3    | DATA 8             |  |
| 4    | VIDEO INPUT SELECT |  |

5 AUDIO INPUT SELECT

6 AUDIO (H)



LOCATION OF ADJUSTMENT POINTS

/AUDIO LEVEL METER C.B.A.



#### POWER SUPPLY/SUB SYSTEM CONTROL SCHEMATIC DIAGRAM

POWER SUPPLY SECTION
VOLTAGE MEASUREMENT: COLOR BAR SIGNAL
IN STOP MODE,

SUB SYSTEM CONTROL SECTION
VOLTAGE MEASUREMENT:
COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET.
COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET.

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN ⚠ HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

SPECIAL NOTE:

ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

CALLOUTS NEXT TO WIRING PLUGS INDICATE CONNECTIONS TO OTHER SCHEMATIC DIAGRAM.







EMICONDUCTOR DEVICES ARE REQUIRE THE SPECIAL 'ELECTROSTATICALLY SENSITIVE

POWER SUPPLY

Q1001

Q1002

Q1003

Q1004

Q1006

Q1007

Q1009

Q1010 Q1011

Q1012

Q1013

Q101 4

Q1015

Q1016

Q6001

Q6002

Q6008

Q6009

Q6019

Q6221

SUB SYSTEM CONTROL SECTION

SECTION

2-D

2-D

2-D

3-D

5-D

4-D 3-C

4-E

4-D

5-E

4-D

5-D

5-D

3-B

2-A

6-B

3-A

6-C

6-B

D

DICATE DIAGRAM.

′302 ③) 7302 ②) 7302 ①)

i009 (6) 009 ②) (009 ①)

003 ①)

J7 (§) 07 (6) )7 ⑦) )7 (8)

17 (9)

#### POWER SUPPLY/SUB SYSTEM CONTROL C.B.A. VEPS0143A1



POWER SUPPLY SECTION VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN STOP MODE.

SUB SYSTEM CONTROL SECTION VOLTAGE MEASUREMENT : COLOR BAR SIGNAL IN SP REC MODE.

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

| POWER SUPPLY<br>SECTION |     |  |
|-------------------------|-----|--|
| Q1                      | 1-C |  |
| Q2                      | 1-C |  |
| Q3                      | 2-C |  |
| Q4                      | 1-D |  |
| Q6                      | 4-D |  |
| Q7                      | 3-D |  |
| Q9                      | 2-B |  |
| Q10                     | 2-C |  |
| Q11                     | 3-D |  |
| Q12                     | 3-D |  |
| Q13                     | 3-B |  |
| Q14                     | 2-B |  |
| Q15                     | 1-B |  |
| Q16                     | 1-B |  |

| SUB SYSTEM |     |  |  |  |
|------------|-----|--|--|--|
| Q1         | 1-A |  |  |  |
| Q2         | 1-A |  |  |  |
| Q8         | 2-A |  |  |  |
| Q9         | 2-A |  |  |  |
| Q19        | 3-A |  |  |  |
| Q221       | 3-A |  |  |  |

| 100 | 12     |   |
|-----|--------|---|
| 1   | AC2.7V |   |
| 2   | GND    | - |
| 3   | +15V   |   |
| 100 | 13     |   |

| 1003 |               |  |  |
|------|---------------|--|--|
| 1    | GND           |  |  |
| 2    | UNSWITCH +12V |  |  |
| 3    | + 12V         |  |  |
| 4    | + 31V         |  |  |
|      |               |  |  |

| • | P1004 |        |   |  |  |  |  |
|---|-------|--------|---|--|--|--|--|
|   | 1     | AC4.3V |   |  |  |  |  |
|   | 2     | -30V   | - |  |  |  |  |
|   | 3     | GND    | ' |  |  |  |  |
|   | 4     | AC4.3V |   |  |  |  |  |
|   | 5     |        |   |  |  |  |  |

#### LOCATION OF TEST POINTS





| 100 | )5            |  |
|-----|---------------|--|
| 1   | GND           |  |
| 2   | POWER ON ①    |  |
| 3   | + 12V         |  |
| 4   | +14V          |  |
| 5   | + 5V          |  |
| 6   | GND           |  |
| 7   | UNSWITCH +12V |  |
|     |               |  |

| 1 | P100 | 16            |
|---|------|---------------|
|   | 1    | GND           |
|   | 2    | +12V          |
|   | 3    | +5V           |
|   | 4    | UNSWITCH +12V |

|     | 1    | IR CODE   |     | 1    | TV/VCR SW    |
|-----|------|-----------|-----|------|--------------|
|     | 2    | +12V      |     | 2    | SERIAL DATA  |
|     | 3    | GND       |     | 3    | SERIAL CLOCK |
|     |      |           | - 1 | 4    | 349KHz       |
| . 1 | P602 | 27        |     | 7.   |              |
| ١   | 1    | IR DATA 3 |     | P602 | 29           |
|     | 2    | IR DATA 2 |     | 1    | IR CH UP     |
|     | 3    | IR DATA 0 |     | 2    | IR CH DOWN   |

| 1 | IR DATA 3     |     | P602 | 29            |
|---|---------------|-----|------|---------------|
| 2 | IR DATA 2     |     | 1    | IR CH UP      |
| 3 | IR DATA 0     |     | 2    | IR CH DOWN    |
| 4 | IR DATA 1     |     | 3    | TIMER SET ①   |
| 5 | IR POWER ON ① | ] [ | 4    | TIMER REC ①   |
| 6 | GND           |     | 5    | SAFETY TAB SW |
| 7 | TIMER SET ①   |     | 6    | TV/VÇR SW     |
| 8 | TIMER REC ①   |     | 7    | SERIAL DATA   |
| 9 | SAFETY TAB SW |     | 8    | SERIAL CLOCK  |
|   |               |     | 9    | 349KHz        |
|   |               |     | 10   | + 5V          |
|   |               |     | 11   | + 5V          |
|   |               |     | 12   | IC7501 RESET  |

| REF.NO.   |   |    |     |     |   |     |     | IC6 | 003 |    |    |    |     |    |     |     |  |     |  |
|-----------|---|----|-----|-----|---|-----|-----|-----|-----|----|----|----|-----|----|-----|-----|--|-----|--|
| MODE      | 1 | 2  | 3   | 4   | 5 | 6   | 7   | 8   | 9   | 10 | 11 | 12 | 13  | 14 | 15  | 16  |  | T - |  |
| STOP      | 0 | .0 | 5.0 | 5.0 | 0 | 2.4 | 2.2 | 0   | 0   | 0  | 0  | 0  | 5.0 | 0  | 5.0 | 5.0 |  |     |  |
| FF        | 0 | 0  | 5.0 | 5.0 | 0 | 2.4 | 2.2 | 0   | 0   | 0  | 0  | 0  | 5.0 | 0  | 5.0 | 5.0 |  |     |  |
| REW       | 0 | 0  | 5.0 | 5.0 | 0 | 2.4 | 2.2 | 0   | 0   | 0  | 0  | 0  | 5.0 | 0  | 5.0 | 5.0 |  |     |  |
| REC       | 0 | 0  | 5.0 | 5.0 | 0 | 2.4 | 2.2 | 0   | 0   | 0  | 0  | 0  | 5.0 | 0  | 5.0 | 5.0 |  |     |  |
| PLAY      | 0 | 0  | 4.9 | 4.9 | 0 | 2.3 | 2.1 | 0   | 0   | 0  | 0  | 0  | 4.9 | 0  | 4.9 | 4.9 |  |     |  |
| CUE       | 0 | 0  | 4.9 | 4.9 | 0 | 2.3 | 2.1 | 0   | 0   | 0  | 0  | 0  | 4.9 | 0  | 4.9 | 4.9 |  |     |  |
| REV .     | 0 | 0  | 4.9 | 4.9 | 0 | 2.3 | 2.1 | 0   | 0   | 0  | 0  | 0  | 4.9 | 0  | 4.9 | 4.9 |  |     |  |
| SLOW(1/4) | 0 | 0  | 4.9 | 4.9 | 0 | 2.3 | 2.1 | 0   | 0   | 0  | 0  | 0  | 4.9 | 0  | 4.9 | 4.9 |  |     |  |
| F.A       | 0 | 0  | 4.9 | 4.9 | 0 | 2.3 | 2.1 | 0   | 0   | 0  | 0  | 0  | 4.9 | 0  | 4.9 | 4.9 |  |     |  |

| REF.NO.   |     | Q6001 |   |     | Q6002 |     |   | Q6008 |     |   | Q6009 |     |      | Q6019 |      |    | Q6221 |     |
|-----------|-----|-------|---|-----|-------|-----|---|-------|-----|---|-------|-----|------|-------|------|----|-------|-----|
| MODE      | E   | В     | C | E   | В     | С   | Е | В     | С   | E | В     | C   | E    | В     | С    | Ε. | В     | С   |
| STOP      | 5.1 | 5.0   | 0 | 5.0 | 3.8   | 5.0 | 0 | 0     | 4.3 | 0 | 0     | 5.0 | 11.6 | 12.2  | 12.3 | 0  | 0     | 5.0 |
| FF        | 5.1 | 5.0   | 0 | 5.0 | 3.8   | 5.0 | 0 | 0     | 4.0 | 0 | 0     | 5.0 | 11.6 | 12.2  | 12.3 | 0  | 0     | 5.0 |
| REW       | 5.1 | 5.0   | 0 | 5.0 | 3.8   | 5.0 | 0 | 0     | 4.0 | 0 | 0     | 5.0 | 11.6 | 12.2  | 12.3 | 0  | 0     | 5.0 |
| REC       | 5.1 | 5.0   | 0 | 5.0 | 3.8   | 5.0 | 0 | 0     | 4.0 | 0 | 0     | 5.0 | 11.6 | 12.2  | 12.3 | 0  | 0     | 5.0 |
| PLAY      | 4.9 | 4.9   | 0 | 4.9 | 3.7   | 4.9 | 0 | 0     | 4.0 | 0 | . 0   | 4.9 | 11.6 | 12.2  | 12.3 | 0  | 0     | 4.9 |
| CUE       | 4.9 | 4.9   | 0 | 4.9 | 3.7   | 4.9 | 0 | 0     | 4.0 | 0 | .0    | 4.9 | 11.6 | 12.2  | 12.3 | 0  | 0     | 4.9 |
| REV       | 4.9 | 4.9   | 0 | 4.9 | 3.7   | 4.9 | 0 | 0     | 4.0 | 0 | . 0   | 4.9 | 11.6 | 12.2  | 12.3 | 0  | 0     | 4.9 |
| SLOW(1/4) | 4.9 | 4.9   | 0 | 4.9 | 3.7   | 4.9 | 0 | 0     | 4.0 | 0 | 0     | 4.9 | 11.6 | 12.2  | 12.3 | 0  | 0     | 4.9 |
| F.A       | 4.9 | 4.9   | 0 | 4.9 | 3.7   | 4.9 | 0 | 0     | 4.0 | 0 | 0     | 4.9 | 11.6 | 12.2  | 12.3 | 0  | 0     | 4.9 |

**VOLTAGE MEASUREMENT:** 

UNLESS OTHERWISE SPECIFIED; WATTAGE OF RESISTORS ARE 1/4W.

VJBS0143 ①

3

- 1. CUE, REVIEW, FRAME ADVANCE, SLOW. COLOR BAR SIGNAL IN SLP MODE.
- 2. OTHERS COLOR BAR SIGNAL IN SP MODE.

| Λ |   | 4   | 0 |
|---|---|-----|---|
| 4 | _ | - 1 | ĸ |

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN STOP MODE.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

# **PROGRAMI**





# IC7501 KEY MATRIX CHA

| SCAN OUT    | DATA IN      |
|-------------|--------------|
| PIN NO.     | 17 (DATA IN) |
| 15 (SCAN 1) | SELECT       |
| 19 (SCAN 2) | TIME SET     |
| 24 (SCAN 3) | MODE         |
| 25 (SCAN 4) | OTR          |
| 29 (SCAN 5) | TIMER        |
| 28 (SCAN 6) | RETURN       |

#### PROGRAMMABLE TIMER C.B.A. VEPS07117D1

000000

2

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN STOP MODE.



000000

JUMPER A 1 KEY IN 2 CH LED 3 CH 7 4 CH 4 5 CH 6 6 CH 5

JUMPER B 1 CH 14 2 CH 13 3 CH 12 4 CH 11 5 CH 10

6 CH 9

JUMPER C 1 CH 8 2 CH 3 3 CH 1 4 CH 2 5 TIMER SET (L) 6 GND 7 CH UP CH DOWN 9 CH LOCK © 10 TV/VCR

3 SAFETY TAB SW 4 349KHz 1 + 5V 2 DATA 7 3 DOLBY ON (H

4-19

P7501

P7502

**CIRCUIT** 

1 AC4.3V

2 -30V

3 GND 4 AC4.3V

1 +5V

2 + 5V

3 TIMER REC ©

4 SERIAL CLOCK

5 TIMER SET ①

6 IC7501 RESET

1 IR CH UP

2 IR CH DOWN

1 TV/VCR SW

4 AGC ON 🛈

5 SCAN 5

2 SERIAL DATA

PROGRAMMABLE TIMER

UNLESS OTHERWISE SPECIFIED; SWITCHES ARE EVOQJ104K, DIODES ARE MA166 AND WATTAGE OF RESISTORS ARE 1/4W.

VJBS07117 ②

5

3

# **DISPLAY TUBE (DP7501) CONNECTION CHART**



IC7501



| IN NO. | SIGNAL NAME |    | PIN NO. | SIGNAL NAME |
|--------|-------------|----|---------|-------------|
| 1      | FILAMENT    |    | 11      |             |
| 2      | FILAMENT    |    | 12      |             |
| 3      |             |    | . 13    | GRID 12G    |
| 4      | GRID 15G    | ]. | 14      |             |
| 5      |             |    | 15      | SEGMENT e   |
| 6      |             |    | 16      | SEGMENT c   |
| 7      | GRID 14G    |    | 17      | GRID 11G    |
| 8      |             | ]  | 18      | SEGMENT g   |
| 9      |             |    | 19      | GRID 10G    |
| 10     | GRID 13G    | 1  | 20      | SEGMENT b   |

| PIN NO. | SIGNAL NAME |
|---------|-------------|
| 21      | GRID 9G     |
| 22      | SEGMENT f   |
| 23      | GRID 8G     |
| 24      | GRID 7G     |
| 25      | SEGMENT a   |
| 26      | GRID 6G     |
| 27      | SEGMENT h   |
| 28      | SEGMENT d   |
| 29      | GRID 5G     |
| 30      |             |

| 1 | PIN NO. | SIGNAL NAME | PIN NO. | SIGN |
|---|---------|-------------|---------|------|
| 1 | 31      |             | 41      | FILA |
|   | 32      | GRID 4G     | 42      | FILA |
|   | 33      |             |         |      |
|   | 34      | GRID 3G     |         |      |
| ı | 35      |             |         |      |
| 1 | 36      | GRID 2G     |         |      |
| 1 | 37      |             |         |      |
|   | 38      |             |         |      |
|   | 39      | GRID 1G     |         |      |
|   |         |             |         |      |

4



#### LOCATION OF TEST POINTS



CHANNEL SELECT CIRCUIT

CHANNEL SELECT)

#### CHANNEL SELECT SCHEMATIC DIAGRAM

2

3

(P1003②) UNSWITCH +12V (P1003①) GND

**VOLTAGE MEASUREMENT: COLOR BAR SIGNAL** CALLOUTS NEXT TO WIRING PLUGS INDICATE CONNECTIONS TO OTHER SCHEMATIC DIAGRAM. (JUMPER B PROGRAMMABLE TIMER) JUMPER B POTENTIOMETER VR7301 EWELJ4A00B24 (JUMPER C PROGRAMMABLE TIMER) JUMPER C TIMER SET ( CH DOWN CH LOCK ① D TV/VCR 10● D7303 (JUMPER A PROGRAMMABLE TIMER) JUMPER 16 LINE INVERTER CH SELECTOR 4BIT BINARY UP/DOWN COUNTER CH LED 2 • CH 7 3 • D7304 D7305 BT CONTROL INITIAL SET D7306 Q7301 CH LOCK 16.0 R7304 27K 07313 VI D7309 R7312 4.7K R7313 4.7K ⊥<sub>C7307</sub> ⊤3300P CH LOCK R7350 22 K INVERTER 07302 INVERTER R7333 56K R7319 560 (P7001 SIGNAL PROCESS) P7301 CATV ® D7311 UHF/VHF TUNER POWER CONTROL R7317 100K DISCRIMINATION VOLTAGE SET 07303 AFT DEFEAT R7318 220K Q7307 0.3**(T) ⊕** D7332 MA165 D7315~D7328 MA166×14 AFT SW Α (POWER SUPPLY /SUB SYSTEM CONTROL) P7302 50V

4

5

6

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

NOTE:REF.NO. ON C.B.A. IS PRINTED AS FOLLOWS. EXAMPLE:C.B.A.··R.2.REF.NO.7300 SERIES SCHEMATIC DIAGRAM.--R7302 (R7302 IS ABBREVIATED TO R2)

V.IB507130

UNLESS OTHERWISE SPECIFIED; PNP TRANSISTORS ARE 2SB642(0.R.S), NPN TRANSISTORS ARE 2SD637(0.R.S) AND WATTAGE OF RESISTORS ARE 1/4W.

| CHANNE | L SELECT |
|--------|----------|
| Q7301  | 2-C      |
| Q7302  | 1-B      |
| Q7303  | 3-A      |
| Q7304  | 3-A      |
| Q7306  | 4-A      |
| Q7307  | 4-A      |
| Q7311  | 5-C      |
| Q7312  | 6-B      |
| Q7313  | 6-C      |
| Q7314  | 4-B      |

CHANNEL S



# ND MANY OTHER SEMICONDUCTOR DEVICES ARE VE AND THEREFORE REQUIRE THE SPECIAL RIBED UNDER THE "ELECTROSTATICALLY SENSITIVE THIS SERVICE MANUAL.

# CHANNEL SELECT C.B.A. VEPS07130A1

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN STOP MODE.



# TV DEMODULATOR SCHEMATIC DIAGRAM



SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



TV DEMODU UNIT PIN (1) STOP. 0.2V/20Usec. div.



TV DEMODU UNIT PIN (§) STOP. 50mV/1msec. div.

#### TV DEMODULATOR UNIT VEQS0257

JITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ENSITIVE AND THEREFORE REQUIRE THE SPECIAL DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE N OF THIS SERVICE MANUAL.





TV DEMODU UNIT PIN (§) STOP.

v. VJBS0788



#### LOCATION OF TEST POINTS & ADJUSTMENT POINTS





4-22 CAPSTAN MOTOR DRIVE CIRCUIT

#### CAPSTAN MOTOR DRIVE SCHEMATIC DIAGRAM

CALLOUTS NEXT TO WIRING PLUGS INDICATE CONNECTIONS TO OTHER SCHEMATIC DIAGRAM.

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE WITH BRACKET. COLOR BAR SIGNAL IN SP PLAY MODE WITHOUT BRACKET. IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

CAPSTAN MO



#### CAPSTAN MOTOR DRIVE C.B.A. VEPS0243C1

VOLTAGE MEASUREMENT: COLOR BAR SIGNAL IN SP REC MODE.

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.





| 6   | CUE/REVIEW/SS (H) |
|-----|-------------------|
| 7   | GND               |
| 8   | VM                |
| JUM | PER A             |
| 1   | MAIN COIL 2       |
| 2   | MAIN COIL 3       |
| 3   | H3 —              |
| 4   |                   |
| 5   | H3+               |
| 6   | H1 -              |
| 7   |                   |
| 8   | H1+               |
| 9   | MAIN COIL 1       |
| 10  | H2 —              |
| 11  | VH+               |
| 12  | H2+               |
| 13  | VH-               |
| 14  | :                 |

2 FWD ①/STOP M/REV H

P2601

3 +5V 4 REF VOLTAGE 5 ERROR

| REF.NO.   |     |     |     |      |     |     |     |     |     | IC2 | 601 |    |     |     |     |     |     |     |     |     |
|-----------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| MODE      | 1   | 2   | 3   | 4    | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12 | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| STOP      | 2.0 | 0   | 2.0 | *    | 2.0 | 2.1 | 2.1 | 2.0 | 2.0 | 2.1 | 2.1 | 0  | 4.9 | 3.0 | 2.6 | 2.2 | 5.0 | 0.6 | 0.5 | 0 - |
| REC .     | 3.1 | 0   | 3.2 | *    | 2.1 | 2.1 | 2.1 | 2.1 | 2.0 | 2.1 | 0 - | 0  | 5.0 | 3.1 | 2.6 | 2.5 | 5.0 | 0.5 | 0.5 | 0   |
| PLAY      | 2.6 | 0.1 | 3.0 | *    | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | -0  | 0  | 5.0 | 3.0 | 2.7 | 2.5 | 5.0 | 0.5 | 0.4 | 0   |
| CUE .     | 4.8 | 0.1 | 4.8 | *    | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 0   | 0  | 4.9 | 3.0 | 2.6 | 2.5 | 5.0 | 0.5 | 0.5 | 0.1 |
| REV       | 4.7 | 0.1 | 4.8 | *    | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 4.7 | 0  | 5.0 | 3.0 | 2.6 | 2.4 | 5.0 | 0.5 | 0.4 | 0.1 |
| F.ADV.    | 2.3 | 0   | 2.2 | *    | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 1.9 | 0  | 4.9 | 3.0 | 2.6 | 2.7 | 4.9 | 0.5 | 0.4 | 0   |
| SLOW(1/4) | 2.3 | 0   | 2.2 | *    | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 1.9 | 0  | 5.0 | 3.0 | 2.6 | 2.0 | 5.0 | 0.5 | 0.5 | . 0 |
| REF.NO.   |     |     |     |      |     |     |     |     |     | IC2 | 601 |    |     |     |     |     |     |     |     |     |
| MODE      | 21  | 22  | 23  | 24   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |
| STOP      | 0   | 0   | 2.0 | 11.8 |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |
| REC       | 0   | 0.5 | 3.1 | 11.8 |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |
| PLAY      | 0   | 0.5 | 3.1 | 11.7 |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |
| CUE       | 0   | 0.5 | 4.8 | 11.8 |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |
| REV       | 0   | 0.5 | 4.9 | 11.7 |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |
| F.ADV.    | 0   | 0.2 | 2.0 | 11.8 |     |     |     |     |     |     |     |    |     |     |     |     | -   |     |     |     |
| SLOW(1/4) | 0   | 0.1 | 2.2 | 11.8 |     |     |     |     |     |     |     |    |     |     |     |     |     |     |     |     |

- VOLTAGE MEASUREMENT:

  1. CUE, REVIEW, FRAME ADVANCE, SLOW.
  COLOR BAR SIGNAL IN SLP MODE.
- COLOR BAR SIGNAL IN SP MODE.
- ★: UNMEASURABLE OR UNNECESSARY TO MEASURE.

| To design the              |
|----------------------------|
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
| SVA TONE CONTROL           |
|                            |
|                            |
|                            |
|                            |
| CAPSTAN MOTOR DRIVE C.B.A. |
|                            |

TE:
ATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ITICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
ECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
S" SECTION OF THIS SERVICE MANUAL.

SE SPECIFIED; ISTORS ARE 1/4W. VJBS0243

6

JUMPER A (CAPTAN STATOR COIL ASS'Y) MAIN COIL 2 MAIN COIL 3

8 H1 + MAIN COIL 1 H2 -**-**11 VH+ ●12 H2 +

C22 2200F

Q4 2SC2636(

B

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.



## RF CONVERTER SCHEMATIC DIAGRAM

## **RF CONVERTER UNIT VEQS0252**

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

AUDIO 4



## RF CONVERTER SCHEMATIC DIAGRAM

## **RF CONVERTER UNIT VEQS0253**

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.



## **RF CONVERTER UNIT VEQS0254**

4-25 RF CONVERTER CIRCUIT (VEQS0254)

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.







| PIN |       |  |
|-----|-------|--|
| 1   | +5V   |  |
| 2   | VIDE0 |  |
| 3   | RF CH |  |
| 4   | AUDIO |  |

4-26 RF CONVERTER CIRCUIT (VEQS0255)

#### RF CONVERTER SCHEMATIC DIAGRAM

# **RF CONVERTER UNIT VEQS0255**

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

VJBS00274

1 +5V
 2 VIDEO
 3 RF CH
 4 AUDIO





## IR WIRELESS TRANSMITTER UNIT

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



#### ANTENNA TERMINAL SCHEMATIC DIAGRAM

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMI ELECTROSTATICALLY SENSITIVE AND THEREFORE RE HANDLING TECHNIQUES DESCRIBED UNDER THE "EL (ES) DEVICES" SECTION OF THIS SERVICE MANUAL



## ANTENNA TERMINAL SCHEMATIC DIAGRAM

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.

SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



## **ANTENNA TERMINAL UNIT**

IR WIRELESS
TRANSMITTER
CIRCUIT,
ANTENNA TERMINAL
CIRCUIT

IMPORTANT NOTICE:
IF UNIT PARTS ARE REPLACED INDIVIDUALLY, THE FCC
SPECIFICATIONS WILL NOT BE SATISFIED.
DURING SERVICING, PLEASE REPLACE AS A UNIT.



4-28 SMALL CIRCUIT BOARDS

#### **CASSETTE LOADING C.B.A.**

#### SUPPLY PHOTO TR C.B.A.

# CAPSTAN S

0





SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" SECTION OF THIS SERVICE MANUAL.

## **CONNECTION C.B.A.**

# SENSOR LED C.B.A.

# REEL SENSOR C.B.A. VEPS00269A









#### O TR C.B.A.

#### CAPSTAN STATOR COIL ASS'Y VEMSO058

# IR WIRELESS RECEIVING DETEC SCHEMATIC DIAGRAM



HER SEMICONDUCTOR DEVICES ARE EFORE REQUIRE THE SPECIAL THE "ELECTROSTATICALLY SENSITIVE MANUAL.

#### OR C.B.A. VEPS00269A





| 1  | MAIN COIL 2 |
|----|-------------|
| 2  | MAIN COIL 3 |
| 3  | H3 —        |
| 4  |             |
| 5  | H3 +        |
| 6  | H1 -        |
| 7  |             |
| 8  | H1 +        |
| 9  | MAIN COIL 1 |
| 10 | H2 -        |
| 11 | VH +        |
| 12 | H2 +        |
| 13 | VH -        |
| 14 |             |



#### CAPSTAN FG HEAD C.B.A.





# CAPSTAN FG HEAD C.B.A.



#### S'Y VEMS0058

# 

## IR WIRELESS RECEIVING DETECTOR SCHEMATIC DIAGRAM



# IR WIRELESS RECEIVING DETECTOR UNIT VEQS0276



| JUM | PER     |
|-----|---------|
| R   | +12V    |
| S   | IR CODE |
| G   | GND     |

CAPSTAN FG HEAD C.B.A.



1 MAIN COIL 2 2 MAIN COIL 3

3 H3 –

5 H3 +

6 H1 –

8 H1 +

10 H2 -

11 VH + 12 H2 + 13 VH -

9 MAIN COIL 1



#### CAPSTAN FG HEAD C.B.A.



# NORMAL AUDIO /CONTROL HEAD C.B.A.



#### INTERCONNECTION SCHEMATIC DIAGRAM



SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



SPECIAL NOTE:
ALL INTEGRATED CIRCUITS AND MANY OTHER SEMICONDUCTOR DEVICES ARE
ELECTROSTATICALLY SENSITIVE AND THEREFORE REQUIRE THE SPECIAL
HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY SENSITIVE
(ES) DEVICES" SECTION OF THIS SERVICE MANUAL.



### **CONTENTS**

| SPECIFICATIONS                          | Cover |
|-----------------------------------------|-------|
| INNER PARTS LOCATION                    | 5- 1  |
| Top View                                | 5- 1  |
| Bottom View                             | 5- 2  |
|                                         |       |
| EXPLODED VIEWS                          | 5- 3  |
| 1. Transport Section                    | 5- 3  |
| 2. Moving Mechanism Section - (1)       | 5- 4  |
| 3. Moving Mechanism Section - (2)       | 5- 5  |
| 4. Cassette Up Mechanism Section        | 5- 6  |
| 5. Chassis Frame & Tuner Parts Section  | 5- 7  |
| 6. Casing Parts Section                 | 5- 8  |
| 7. Packing Parts & Accessories Section  | 5- 9  |
| 8. IR Wireless Transmitter Unit Section | 5–10  |
|                                         |       |
| REPLACEMENT PARTS LIST                  | 5–11  |
| MECHANICAL REPLACEMENT PARTS LIST       | 5–11  |
| ELECTRICAL DEDIACEMENT DADTO LICT       | 5_15  |

#### ■ IMPORTANT SAFETY NOTICE ■

There are special components used in this equipment which are important for safety. These parts are shaded on the schematic diagram and on the replacement parts list. It is essential that these critical parts should be replaced with manufacturer's specified parts to prevent shock, fire, or other hazards. Do not modify the original design without permission of manufacturer.

#### INNER PARTS LOCATION

#### **TOP VIEW**

#### Note:

When the mechanical parts surrounded by rectangle are removed or replaced, be sure to perform necessary adjustment or confirmation procedures according to the mechanical adjustment procedures section.



#### **BOTTOM VIEW**



#### LUBRICATION POINTS

When the marked parts are replaced, apply the recommended lubricants or adhesive for better maintenance of the unit.

| Marks | Kind of Lubricant | Availability                 | Part Number |
|-------|-------------------|------------------------------|-------------|
| XXX   | Molytone Grease   | Available From Factory       | MOR265      |
| 000   | Spindle Oil       | Purchase From Local Supplier | ••••        |
| ΔΔΔ   | Gummed Adhesive   | Purchase From Local Supplier | ••••        |

## **EXPLODED VIEWS 1** Transport Section



## 2 Moving Mechanism Section-(1)



## Moving Mechanism Section-(2)



## 4 Cassette Up Mechanism Section



# **5** Chassis Frame & Tuner Parts Section

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS, USE
ONLY THE SPECIFIED PARTS.



## 6 Casing Parts Section



## Packing Parts & Accessories Section



## 8 IR Wireless Transmitter Unit Section



#### MECHANICAL REPLACEMENT PARTS LIST

Model No. PV-1631M

Note: Be sure to make your orders of replacement parts according to this list.

| Item<br>No. | Drawing No. | Description                             | Pcs/<br>Set | Part No.                              | Remark                                           |
|-------------|-------------|-----------------------------------------|-------------|---------------------------------------|--------------------------------------------------|
| 1           |             |                                         |             |                                       |                                                  |
| 2           | 1           | FASTENER                                | 1           | TYB-23M                               |                                                  |
| 3           | 1           | ERASE HEAD                              | 1           | VBS0027                               |                                                  |
| 4           | 2           | INTERMEDIATE GEAR -1                    | 1           | VDGS0038                              |                                                  |
| 5           | 2           | DRIVING GEAR                            | 1           | VDGS0039                              |                                                  |
| 6           | 3           | INTERMEDIATE GEAR -2                    | 1           | VDGS0040                              |                                                  |
| 7           | 2           | LOADING CAM GEAR                        | 1           | VDGS0041                              |                                                  |
| 8           | 2           | CHANGE GEAR                             | 1           | VDGS0042                              |                                                  |
| 9           | 1           | IDLER GEAR                              | 1           | VDGS0043                              |                                                  |
| 10          | 1           | INTERMEDIATE GEAR -A                    | 1           | VDGS0044                              |                                                  |
| 11          | 2           | DILL DY CEAD                            | -           | WDCGCO15                              |                                                  |
| 11          | 3           | PULLEY GEAR                             | 1           | VDGS0045                              |                                                  |
| 12          | 1           | INTERMEDIATE GEAR -B                    | 1           | VDGS0046                              |                                                  |
| 13          | 2           | KICK GEAR -1                            | 1           | VDGS0048                              |                                                  |
| 14          | 2           | RELEASE GEAR                            | 1           | VDGS0049                              |                                                  |
| 15          | 2           | KICK GEAR -2                            | 1           | VDGS0050                              |                                                  |
| 16          | 4           | WORM                                    | 1           | VDGS0051                              |                                                  |
| 17          | 4           | MAIN SHAFT GEAR -R                      | 1           | VDGS0054                              |                                                  |
| 18          | 1           | CLUTCH PULLEY                           | 1           | VDPS0083                              |                                                  |
| 19          | 4           | WORM PULLEY                             | 1           | VDPS0088                              |                                                  |
| 20          | 1           | SUPPLY ROLLER                           | 1           | VDPS0091                              |                                                  |
|             |             | GARDONAN DELA                           |             | , , , , , , , , , , , , , , , , , , , |                                                  |
| 21          | 3           | CAPSTAN BELT                            | 1           | VDVS0042                              |                                                  |
| 22          | 3           | LOADING BELT                            | 1           | VDVS0043                              | -                                                |
| 23          | 4           | LOADING BELT                            | 1           | VDVS0044                              |                                                  |
| 24          | 1           | D.D CYLINDER UNIT                       | 1           | VEG0304                               |                                                  |
| 25          | 3           | F.G HEAD UNIT                           | 1           | VEHS0068                              |                                                  |
|             |             |                                         |             | OR VEHSOO69                           |                                                  |
| 26          | 1           | A/C HEAD UNIT                           | 1           | VEHS0074                              |                                                  |
| 27          | 1           | UPPER CYLINDER UNIT                     | 1           | VEH0224                               |                                                  |
| 28          | 1           | LUG ASS'Y                               | 1           | VEKS1794                              |                                                  |
| 29          | 4           | CASSETTE LOADING MOTOR UNIT             | 1           | VEMS0088                              |                                                  |
| 30          | 3           | CAPSTAN STATOR UNIT                     | 1           | VEMS0089                              |                                                  |
| 21          | 3           | LOADTING WOMOD HINTE                    |             | HIMMOOOK                              |                                                  |
| 31          |             | LOADING MOTOR UNIT                      | 1           | VEMS0085                              | <del>                                     </del> |
| 32          | 5           | IR WIRELESS RECEIVING DETECTOR UNIT     | 1           | VEQS0276                              |                                                  |
| 33          | 7           | UHF CHANNEL FILM                        | 1           | VGKS0683                              |                                                  |
| 34          | 2           | MODE SELECT SWITCH                      | 1           | VESS0016                              |                                                  |
| 35          |             |                                         |             |                                       |                                                  |
| 2/          |             | WIE CHANNEL BELV                        | <b> </b>    | WOW GOE SO                            |                                                  |
| 36          | 6           | WHACKING W. D. DANNEY                   | 1           | VGKS0550                              | -                                                |
| 37          | 5           | TRACKING V.R PANEL                      | 1           | VGPS0716                              | -                                                |
| 38          | 4           | BRIND PANEL                             | 1           | VGPS0937                              | -                                                |
| 39          | 6           | FILM HOLDER                             | 1           | VGQS0242                              |                                                  |
| 40          | 5           | TRACKING KNOB                           | 3           | VGTS0135                              |                                                  |
| 41          | 6           | TUNING DOOR DECORATION                  | 1           | VGPS0928                              |                                                  |
| 42          | 6           | POWER SELECT SWITCH KNOB PIECE          | 1           | VGQS0363                              |                                                  |
| 43          | 7           | VHF CONNECTING CABLE                    | 1           | VSQS0215                              |                                                  |
| 44          | 7           | TWIN LEAD CONNECTOR                     | 1           | VJA0102                               |                                                  |
| 45          | 6           | DOOR CLAMPER                            | 1           | VGQS0374                              |                                                  |
| 16          | 5           | TDACKING DANKI                          | -           | WITCOOK?                              | -                                                |
| 46          | 5           | TRACKING PANEL                          | 1           | VJJS0067                              | <del>                                     </del> |
| 47          | 3,5         | CLAMPER                                 | 2           | VJR3                                  |                                                  |
| 48          | 5           | HINGE                                   | 3           | VKCS0009                              |                                                  |
| 49<br>50    | 7           | V -HOLD ADJ. TOOL<br>SHAFT HOLDER PLATE | 1           | VXKS0365                              |                                                  |
| JU          | 1           | DHAFT HUGDER FLATE                      | 2           | VMAS0545                              | -                                                |
| 51          | 3           | TENSION REGULATOR PLATE                 | 1           | VMAS0875                              |                                                  |
| 52          | 3           | TENSION ANGLE                           | 1           | VMAS0876                              | ļ                                                |
| 53          | 3           | LOADING MOTOR BRACKET                   | 1           | VMAS0877                              | I                                                |

| No.                                                                                                   | Drawing No.                                                             | Description                                                                                                                                                                                                           | Pcs/<br>Set                             | Part No.                                                                                                                                           | Remark                                           |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 54                                                                                                    | 2                                                                       | GROUNDING PLATE                                                                                                                                                                                                       | 1                                       | VMAS0883                                                                                                                                           |                                                  |
| 55                                                                                                    | 4                                                                       | CASSETTE HOLDER                                                                                                                                                                                                       | 1                                       | VMASO898                                                                                                                                           |                                                  |
|                                                                                                       |                                                                         |                                                                                                                                                                                                                       | -                                       |                                                                                                                                                    |                                                  |
| 56                                                                                                    | 6                                                                       | RESET BUTTON                                                                                                                                                                                                          | 3                                       | VGUS0738                                                                                                                                           |                                                  |
| 57                                                                                                    | 4                                                                       | CASSETTE COMPARTMENT TOP PLATE                                                                                                                                                                                        | 1                                       | VXAS0676                                                                                                                                           |                                                  |
| 58                                                                                                    | 4                                                                       | SWITCH BRACKET                                                                                                                                                                                                        | 1                                       | VMAS0906                                                                                                                                           | -                                                |
|                                                                                                       |                                                                         | ·                                                                                                                                                                                                                     | -                                       |                                                                                                                                                    |                                                  |
| 59                                                                                                    | 5                                                                       | TOP COVER ANGLE -R                                                                                                                                                                                                    | 1                                       | VMAS0932                                                                                                                                           |                                                  |
| 60                                                                                                    | 3                                                                       | THRUST HOLDER                                                                                                                                                                                                         | 1                                       | VMAS0940                                                                                                                                           |                                                  |
| 61                                                                                                    | 5                                                                       | TOP COVER SUPPORT ANGLE                                                                                                                                                                                               | 1                                       | VMAS0951                                                                                                                                           | -                                                |
| 62                                                                                                    | 5                                                                       | P.B ANGLE                                                                                                                                                                                                             | 1                                       | VMAS1058                                                                                                                                           |                                                  |
| 63                                                                                                    | 5                                                                       | SIGNAL PROCESS C.B.A ANGLE                                                                                                                                                                                            | 1                                       | VMAS0953                                                                                                                                           |                                                  |
| 64                                                                                                    | 5                                                                       | FRONT FRAME SUPPORT ANGLE                                                                                                                                                                                             | 1                                       | VMAS0954                                                                                                                                           | -                                                |
|                                                                                                       |                                                                         |                                                                                                                                                                                                                       |                                         |                                                                                                                                                    |                                                  |
| 65                                                                                                    | 5                                                                       | GROUNDING ANGLE                                                                                                                                                                                                       | 1                                       | VMAS0955                                                                                                                                           |                                                  |
| 66                                                                                                    | 4                                                                       | WORM WHEEL STOPPER                                                                                                                                                                                                    | 1                                       | VMAS0986                                                                                                                                           |                                                  |
| 67                                                                                                    | 5                                                                       | AUDIO C.B.A ANGLE                                                                                                                                                                                                     | 1                                       | VMAS1007                                                                                                                                           |                                                  |
| 68                                                                                                    | 4                                                                       | CASSETTE HOLDER SPRING-L                                                                                                                                                                                              | 1                                       | VMAS1014                                                                                                                                           |                                                  |
| 69                                                                                                    | 4                                                                       | CASSETTE HOLDER SPRING-R                                                                                                                                                                                              | 1                                       | VMAS1015                                                                                                                                           |                                                  |
|                                                                                                       |                                                                         |                                                                                                                                                                                                                       |                                         |                                                                                                                                                    |                                                  |
| 70                                                                                                    | 1                                                                       | SUPPLY INERTIA SPRING                                                                                                                                                                                                 | 1                                       | VMBS0071                                                                                                                                           | -                                                |
| 71                                                                                                    | 1                                                                       | POST SPRING -P,4                                                                                                                                                                                                      | 1                                       | VMBS0288                                                                                                                                           | -                                                |
|                                                                                                       | 2                                                                       |                                                                                                                                                                                                                       |                                         |                                                                                                                                                    |                                                  |
| 72                                                                                                    |                                                                         | KICK SPRING                                                                                                                                                                                                           | 1                                       | VMBS0330                                                                                                                                           | -                                                |
| 73                                                                                                    | 2                                                                       | TENSION SPRING                                                                                                                                                                                                        | 1                                       | VMBS0331                                                                                                                                           | -                                                |
| 74                                                                                                    | 4                                                                       | SOFT BRAKE SPRING                                                                                                                                                                                                     | 1                                       | VMBS0332                                                                                                                                           | <u> </u>                                         |
| 75                                                                                                    | 2                                                                       | SELECT GEAR LEVER SPRING                                                                                                                                                                                              | 1                                       | VMBS0333                                                                                                                                           |                                                  |
|                                                                                                       |                                                                         |                                                                                                                                                                                                                       | -                                       |                                                                                                                                                    | -                                                |
| 76                                                                                                    | 2                                                                       | PRESSURE ROLLER SPRING                                                                                                                                                                                                | 1                                       | VMBS0334                                                                                                                                           |                                                  |
| 77                                                                                                    | 2                                                                       | KICK LEVER SPRING                                                                                                                                                                                                     | 1                                       | VMBS0336                                                                                                                                           |                                                  |
| 78                                                                                                    | 2                                                                       | SUB LEVER SPRING                                                                                                                                                                                                      | 1 :                                     | VMBS0337                                                                                                                                           |                                                  |
| 79                                                                                                    | 1                                                                       | IDLER ARM SPRING                                                                                                                                                                                                      | 1                                       | VMBS0339                                                                                                                                           |                                                  |
| 80                                                                                                    | 1                                                                       | ADJUST SPRING                                                                                                                                                                                                         | 1                                       | VMBS0425                                                                                                                                           |                                                  |
|                                                                                                       |                                                                         |                                                                                                                                                                                                                       |                                         |                                                                                                                                                    |                                                  |
| 81                                                                                                    | 1                                                                       | SOFT BRAKE SPRING -S                                                                                                                                                                                                  | 1                                       | VMBS0341                                                                                                                                           |                                                  |
| 82                                                                                                    | 1                                                                       | A/C HEAD SPRING                                                                                                                                                                                                       | 1                                       | VMBS0342                                                                                                                                           |                                                  |
| 83                                                                                                    | 4                                                                       | CASSETTE HOLDER GUIDE SPRING                                                                                                                                                                                          | 2                                       | VMBS0345                                                                                                                                           |                                                  |
| 84                                                                                                    | 4                                                                       | WIPER GEAR SPRING                                                                                                                                                                                                     | 1                                       | VMBS0348                                                                                                                                           |                                                  |
| 85                                                                                                    | 4                                                                       | WIPER SPRING -L                                                                                                                                                                                                       | 1                                       | VMBS0349                                                                                                                                           | ł —                                              |
|                                                                                                       |                                                                         |                                                                                                                                                                                                                       | <u> </u>                                |                                                                                                                                                    |                                                  |
| 86                                                                                                    | 4                                                                       | BLIND SPRING                                                                                                                                                                                                          | 1                                       | VMBS0350 .                                                                                                                                         |                                                  |
| 87                                                                                                    | 1                                                                       | IDLER SPRING                                                                                                                                                                                                          | 1                                       | VMBS0335                                                                                                                                           |                                                  |
| 88                                                                                                    |                                                                         |                                                                                                                                                                                                                       |                                         |                                                                                                                                                    |                                                  |
| 89                                                                                                    | 1                                                                       | ERASE HEAD LEVER SPRING                                                                                                                                                                                               | 1                                       | VMBS0373                                                                                                                                           |                                                  |
| 90                                                                                                    |                                                                         |                                                                                                                                                                                                                       | -                                       |                                                                                                                                                    | -                                                |
| 91                                                                                                    | 2                                                                       | BRAKE ARM SPRING                                                                                                                                                                                                      | 1                                       | VMBS0409                                                                                                                                           | -                                                |
| 92                                                                                                    | 1                                                                       | ADJUST SPRING                                                                                                                                                                                                         | 1                                       | VMB0404                                                                                                                                            | <del>                                     </del> |
|                                                                                                       | •                                                                       |                                                                                                                                                                                                                       |                                         | VMB0669                                                                                                                                            |                                                  |
|                                                                                                       | 1                                                                       |                                                                                                                                                                                                                       |                                         | *1.00000                                                                                                                                           | 1                                                |
| 93                                                                                                    | 1                                                                       | LOADING SPRING                                                                                                                                                                                                        | 2                                       |                                                                                                                                                    |                                                  |
| 93<br>94                                                                                              | 1                                                                       | POST STOPPER                                                                                                                                                                                                          | 1                                       | VMDS0031                                                                                                                                           |                                                  |
| 93                                                                                                    |                                                                         |                                                                                                                                                                                                                       |                                         |                                                                                                                                                    |                                                  |
| 93<br>94<br>95                                                                                        | 1                                                                       | POST STOPPER INERTIA ROLLER LIMITER                                                                                                                                                                                   | 1 7                                     | VMDS0031<br>VMDS0063                                                                                                                               |                                                  |
| 93<br>94<br>95<br>96                                                                                  | 1                                                                       | POST STOPPER INERTIA ROLLER LIMITER POST STOPPER                                                                                                                                                                      | 1 1                                     | VMDS0031<br>VMDS0063<br>VMDS0199                                                                                                                   |                                                  |
| 93<br>94<br>95<br>96<br>97                                                                            | 1 1 4                                                                   | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R                                                                                                                                            | 1 1 1 1                                 | VMDS0031<br>VMDS0063<br>VMDS0199<br>VMDS0203                                                                                                       |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98                                                                      | 1 1 4 4                                                                 | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L                                                                                                                   | 1 1 1 1                                 | VMDS0031<br>VMDS0063<br>VMDS0199<br>VMDS0203<br>VMDS0204                                                                                           |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99                                                                | 1 1 4                                                                   | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R                                                                                                          | 1 1 1 1                                 | VMDS0031<br>VMDS0063<br>VMDS0199<br>VMDS0203<br>VMDS0204<br>VMDS0205                                                                               |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99                                                                | 1 1 4 4                                                                 | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L                                                                                                                   | 1 1 1 1                                 | VMDS0031<br>VMDS0063<br>VMDS0199<br>VMDS0203<br>VMDS0204                                                                                           |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99                                                                | 1<br>1<br>4<br>4<br>4<br>4                                              | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L                                                                                                 | 1 1 1 1 1 1 1 1 1                       | VMDS0031<br>VMDS0063<br>VMDS0199<br>VMDS0203<br>VMDS0204<br>VMDS0205<br>VMDS0206                                                                   |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100                                                         | 1<br>1<br>4<br>4<br>4<br>4                                              | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L SIDE PLATE -L                                                                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VMDS0031 VMDS0063  VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206  VMDS0206                                                                          |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100                                                         | 1<br>1<br>4<br>4<br>4<br>4<br>4<br>4                                    | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L  SIDE PLATE -L SWITCH CAM                                                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VMDS0031 VMDS0199 VMDS0203 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0208 VMDS0209                                                                   |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100                                                         | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4                               | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PLECE                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1    | VMDS0031 VMDS0199 VMDS0203 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0208 VMDS0208 VMDS0209 VMDS0236                                                 |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103                                    | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4      | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PIECE SUB LEVER CUSHION                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VMDS0031 VMDS0199 VMDS0203 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0208 VMDS0209                                                                   |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103                                    | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4                               | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PLECE                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1    | VMDS0031 VMDS0199 VMDS0203 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0208 VMDS0208 VMDS0209 VMDS0236                                                 |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>02<br>103<br>104<br>105                       | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4      | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PIECE SUB LEVER CUSHION                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | VMDS0031 VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0206 VMDS0208 VMDS0208 VMDS0209 VMDS0236 VMDS0249                                        |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      | 1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>2<br>3                | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PLECE SUB LEVER CUSHION OIL POOL                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | VMDS0031 VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206  VMDS0206  VMDS0208 VMDS0209 VMDS0236 VMDS0249 VMDS0249                                      |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>1      | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L  SIDE PLATE -L SWITCH CAM SWITCH PIECE SUB LEVER CUSHION OIL POOL  IDLER ARM -A                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | VMDS0031 VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0206 VMDS0208 VMDS0209 VMDS0236 VMDS0249 VMDS0303                                        |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>1<br>1 | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SILIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PLECE SUB LEVER CUSHION OIL POOL  IDLER ARM -A CHANGE LEVER -B | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | VMDS0031 VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206  VMDS0206  VMDS0208 VMDS0209 VMDS0236 VMDS0249 VMDS0249                                      |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>1      | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SLIDE -R SLIDE -L  SIDE PLATE -L SWITCH CAM SWITCH PIECE SUB LEVER CUSHION OIL POOL  IDLER ARM -A                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VMDS0031 VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206 VMDS0206 VMDS0208 VMDS0209 VMDS0236 VMDS0249 VMDS0303                                        |                                                  |
| 93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                      | 1<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>1<br>1 | POST STOPPER INERTIA ROLLER LIMITER  POST STOPPER CASSETTE HOLDER GUIDE -R CASSETTE HOLDER GUIDE -L SILIDE -R SLIDE -L SIDE PLATE -L SWITCH CAM SWITCH PLECE SUB LEVER CUSHION OIL POOL  IDLER ARM -A CHANGE LEVER -B | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VMDS0031 VMDS0063  VMDS0199 VMDS0203 VMDS0204 VMDS0205 VMDS0206  VMDS0206  VMDS0208 VMDS0209 VMDS0236 VMDS0236 VMDS0249 VMD0104  VMLS0303 VMLS0305 |                                                  |

| Item<br>No.    | Drawing No. | Description                   | Pcs/<br>Set  | Part No.    | Remark                                           | Item<br>No. | Drawing No. | Description                             | Pcs/<br>Set | Part No.  | Remark |
|----------------|-------------|-------------------------------|--------------|-------------|--------------------------------------------------|-------------|-------------|-----------------------------------------|-------------|-----------|--------|
| 112            | 4           | CASSETTE COMPARTMENT OPENER   | 1            | VMLS0322    | ļ                                                | 168         | 2           | ARM LEVER UNIT                          | _ 1         | VXLS0272  |        |
|                |             | LEVER                         | <u> </u>     |             |                                                  | 169         | 2           | SECTOR GEAR UNIT                        | 1           | VXLS0273  |        |
| 113            | 1           | ERASE HEAD LEVER              | 1            | VMLS0350    |                                                  | 170         | 2           | TENSION ARM UNIT                        | 1           | VXLS0276  |        |
| 14             | 1 -         | LEVER SHAFT                   | 1            | VMSS0381    |                                                  |             |             |                                         |             |           |        |
| 15             | 4           | WORM SHAFT                    | 1            | VMSS0394    |                                                  | 171         | 4           | CASSETTE OPENER LEVER                   | 1           | VXLS0295  |        |
|                |             |                               |              |             |                                                  | 172         | 4           | WIPER GEAR R UNIT                       | 1           | VXLS0296  |        |
| 116            | 1           | COLLAR                        | 1            | VMXS0035    |                                                  | 173         | 4           | WIPER GEAR L UNIT                       | 1           | VXLS0297  |        |
| 17             | 1           | POST CAP -P.4                 | 1            | VMXS0129    |                                                  | 174         | 2           | PRESSURE ROLLER LEVER UNIT              | 1           | VXLS0310  |        |
| 118            | 1           | LIMITER SUPPORTER             | 1            | VMXS0321    |                                                  | 175         | 1           | IDLER FRAME UNIT                        | 1           | VXPS0116  |        |
| 119            | 1           | SLEEVE                        | 1            | VMXS0370    |                                                  |             |             |                                         |             |           |        |
|                |             | 5555.2                        | + -          | OR VMXSO372 | <del>                                     </del> | 176         | 3           | CAPSTAN ROTOR UNIT                      | 1           | VXPS0119  | -      |
| 120            | 6           | TIMER BUTTON RETURN SPRING    | +            | VMBS0399    |                                                  | -           |             | LOADING GEAR UNIT                       | 2           | VXPS0120  | +      |
| 120            |             | TIMES BOTTON RETORN BURING    |              | VMD00377    |                                                  | 177         | 1           |                                         |             |           |        |
|                |             | OIL SEAL                      | + -          | Indicase.   |                                                  | 178         | 2           | KICK GEAR UNIT                          | 1           | VXPS0121  | +      |
| 121            | 3           |                               | 1            | VMX0251     |                                                  | 179         | 3           | CAPSTAN PULLEY UNIT                     | 1           | VXPS0122  | ļ.     |
| 122            | 1           | INERTIA ROLLER UPPER LIMITER  | 1            | VNWS0002    |                                                  | 180         | 1           | CLUTCH GEAR UNIT                        | 1           | VXPS0124  |        |
| 123            | 7           | POLYETHYLENE BAG              | 1            | VPFS0029    |                                                  |             |             |                                         |             |           |        |
| 24             | 7           | PACKING CASE                  | 1            | VPGS1081    |                                                  | 181         | 4           | WORM WHEEL UNIT                         | 1           | VXPS0128  |        |
| 25             | 7           | RIGHT CUSHION -TOP            | 1            | VPNS0157    |                                                  | 182         | 4           | MAIN SHAFT                              | 1           | VXPS0129  |        |
|                |             |                               |              |             |                                                  | 183         | 2           | SUPPLY REEL TABLE UNIT                  | 1           | VXRS0016  |        |
| 26             | 7           | LEFT CUSHION -TOP             | 1            | VPNS0158    | 1                                                | 184         | 2           | TAKEUP REEL TABLE UNIT                  | 1           | VXRS0017  |        |
| 27             | . 7         | RIGHT CUSHION -BOTTOM         | 1            | VPNS0159    |                                                  | 185         | 6           | CHANNEL SELECT BUTTON -A                | 14          | VGUS0742  |        |
| 28             | 7           | LEFT CUSHION -BOTTOM          | 1            | VPNS0160    |                                                  | 109         |             | DELICA DOLLOW TA                        | -   '4-     |           | +      |
|                | 7           |                               |              |             | <del> </del>                                     | 101         |             | DDAVD C IMITM                           | +_          | NYTROOF   | +      |
| 29             |             | FAN BAG                       | 1.           | VQFS0708    |                                                  | 186         | 2           | BRAKE S UNIT                            | 1           | VXZS0055  | +      |
| 30             | 6           | STICKER                       | 1            | VQLS1110    |                                                  | 187         | 2           | BRAKE T UNIT                            | 1           | VXZS0057  |        |
|                |             |                               |              |             |                                                  | 188         | 2           | TENSION BAND UNIT                       | 1           | VXZS0059  |        |
| 31             | 6           | BOTTOM CAUTION LABEL          | 1            | VQLS1051    |                                                  | 189         | 4           | SOFT BRAKE T UNIT                       | 1           | VXZS0062  |        |
| 32             | 5           | GROUNDING PLATE               | 1            | VSCS0476    |                                                  | 190         | 6           | BOTTOM PANEL UNIT                       | 1           | VYFS0057  |        |
| 33             | 5           | GROUNDING ANGLE               | 1            | VSCS0477    |                                                  | 1           |             |                                         |             | 1         | T      |
| 34             |             |                               | _            |             |                                                  | 191         | 6           | TIMER DOOR UNIT                         | 1           | VYPS2461  | _      |
| 35             | 5 .         | GROUNDING PLATE               | 1            | VSCS0528    |                                                  | 192         | 6           | FRONT PANEL 1 UNIT                      | 1           | VYPS2450  |        |
|                |             | GROOMPING PERIE               | +            | 10000,20    |                                                  |             |             |                                         |             |           | +      |
|                |             |                               | <del> </del> | 1,,,,,,,,   | ļ                                                | 193         | 6           | TOP COVER UNIT                          | 1           | VYPS2448  |        |
| 36             | 7           | IR WIRELESS TRANSMITTER UNIT  | 1            | VSQS0262    |                                                  | 194         | 1,3,4       | CLAMPER                                 | 9           | VZFS0006  |        |
| 37             | 5           | TV DEMODULATOR UNIT SUPPORT   | 1            | VMAS1035    |                                                  | 195         | 6           | TUNING DOOR UNIT                        | 1           | VYPS2446  |        |
|                | İ           | ANGLE                         | 1            |             |                                                  |             |             |                                         |             |           |        |
| 38             | 7           | VHF ANTENNA ADAPTOR           | 1            | VSQ0057     |                                                  | 196         | 5           | FILTER PLATE                            | 1           | VGQS0294  |        |
| 139            | 1           | ROLLER POST UNIT              | 2            | VXAS0562    |                                                  | 197         | . 5         | SHIELD CASE                             | 1           | VSCS0309  |        |
| 140            | 1           | LOADING BASE 1 UNIT           | 1            | VXAS0564    |                                                  | 198         | 5           | SHIELD CASE                             | 1           | VSCS0310  |        |
|                |             |                               | _            |             |                                                  | 199         | 4           | CASSETTE ANGLE -R                       | 1           | VMAS0907  |        |
| 1/1            | 1           | SHAFT HOLDER BLOCK S UNIT     | 1            | WARDE CE    |                                                  | <b>—</b>    |             |                                         |             |           |        |
| 141            | 1           |                               | -            | VXASO565    | 1                                                | 200         | 4           | CASSETTE ANGLE -L                       | 1 .         | VMAS0908  |        |
| 142            | 1           | LOADING POST S UNIT           | 1            | VXAS0566    | -                                                | l ———       |             |                                         |             |           |        |
| 43             | 1           | SHAFT HOLDER BLOCK T UNIT     | 1            | VXAS0567    | ļ                                                | 201         | 6           | EJECT BUTTON                            | 1           | VGUS1064  |        |
| 44             | 1           | LOADING POST T UNIT           | 1 .          | VXASO568    |                                                  | 202         | 6           | POWER SELECT SWITCH KNOB                | 1           | VGTS0139  |        |
| 45             | 2           | MAIN LEVER UNIT               | 1            | VXASO570    |                                                  | 203         | 6           | FM AUDIO SELECT BUTTON                  | 5           | VGUS0964  |        |
|                |             |                               |              |             |                                                  | 204         | 6           | OPERATION BUTTON -PLAY                  | 1           | VGUS0956  |        |
| 146            | 2           | SUB LEVER UNIT                | 1            | VXAS0572    |                                                  | 205         | 6           | OPERATION BUTTON -POWER/VCR             | 2           | VGUS0728  | 1      |
| 47             | 2           | KICK BASE UNIT                | 1            | VXAS0705    |                                                  |             |             | 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 | 1           | 1         |        |
| 48             | 4           | CASSETTE HOLDER GUIDE R UNIT  | 1            | VXASO608    |                                                  | 206         | 6           | OPERATION BUTTON -RECORD                | 1           | Vallanore |        |
|                |             |                               | +            | T           | 1                                                | l ——        |             |                                         | 1           | VGUS0958  | +      |
| 49             | 4           | CASSETTE HOLDER GUIDE L UNIT  | 1            | VXAS0609    |                                                  | 207         | 6 .         | TIMER OPERATION BUTTON                  | 4           | VGUS1062  | +      |
| 50             | 4           | CASSETTE HOLDER UNIT          | 1            | VXASO610    | ļ                                                | 208         | 6           | OPERATION BUTTON -STOP                  | 1           | VGUS0957  | +      |
|                | <u> </u>    |                               |              |             |                                                  | 209         | 6           | OPERATION BUTTON -SLOW                  | 1 1         | VGUS0960  | -      |
| 51             | 4           | CASSETTE GUIDE I UNIT         | 1            | VXASO614    |                                                  | 210         | 6           | O.T.R BUTTON                            | 1           | VGUS0741  |        |
| 52             | 4           | CASSETTE UP UNIT              | 1            | VXAS0685    |                                                  |             |             |                                         |             |           |        |
| 53             | 4           | SIDE PLATE -R                 | 1            | VXAS0620    |                                                  | 211         | 6.          | OPERATION BUTTON -PAUSE                 | 1           | VGUS0962  |        |
| 54             | 4           | SWITCH ANGLE UNIT             | 1            | VXASO625    |                                                  | 212         | 6           | OPERATION BUTTON -F.F                   | 1           | VGUS0961  |        |
| 55             | 1           | CASSETTE OPENER ANGLE UNIT    | 1            | VXASO648    |                                                  | 213         | 6           | OPERATION BUTTON -REWIND                | 1           | VGUS0963  | +      |
| "              | - '         | SHOOPITE OF EMPAR ANGLE ONT!  | +-           | - 1100040   | <del>                                     </del> |             |             |                                         |             |           | +      |
|                |             | GUDDODE AVOLD                 | <del></del>  | mugan       | ļ                                                | 214         | 6           | OPERATION BUTTON -A.DUB                 | 1           | VGUS0959  | +      |
| 56             | 4           | SUPPORT ANGLE                 | 1            | VMAS1028    | -                                                | 215         | 5           | FM AUDIO C.B.A ANGLE -A                 | 1           | VMAS1059  | +      |
| 57             |             |                               |              | 1           |                                                  |             |             |                                         |             |           |        |
| 58             | 1           | DISCHARGE ANGLE UNIT          | 1 -          | VXBS0022    |                                                  | 216         |             |                                         |             |           |        |
| 59             | 3           | HOUSING                       | 1            | VXDS0012    |                                                  | 217         | 2           | KICK LEVER 1 UNIT                       | 1           | VXLS0275  |        |
| 60             | 4           | RELEASE LEVER                 | 1            | VMLS0357    |                                                  | 218         | 7           | TOP PAD                                 | 1           | VPGS1051  |        |
|                |             |                               | 1            |             |                                                  | 219         | 6           | OPERATION BUTTON SPRING                 | 1.          | VMBS0256  | 1      |
| 61             | 5           | CUSHION                       | 2            | VXGS0006    | 1                                                | 220         | 7           | ACCESSORY CASE                          | 1           | VFGS0379  | +      |
|                |             |                               |              |             |                                                  | ~~~         |             | NOODOOKI ONOD                           |             | -1450377  | +      |
| 62             | 1           | F.F SLIDE LEVER UNIT          | 1            | VXKS0339    | <del> </del>                                     | 001         |             | ACCRECODY CACE THE                      |             | WPAG-225  |        |
|                | 1 -         | LOADING ARM R UNIT            | 1            | VXLS0200    | 1                                                | 221         | 7           | ACCESSORY CASE PAD                      | 1           | VPGS0380  | +      |
|                | 1           | LOADING ARM L UNIT            | 1            | VXLS0201    |                                                  | 222         | 4           | RELEASE LEVER SPRING                    | 1           | VMBS0418  | 1      |
| 63             | '           | 1                             | 1            | VXLS0267    |                                                  | 223         | 1,3,5       | CLAMPER                                 | 3           | PEC-034-0 |        |
| 63<br>64       | 1           | CHANGE LEVER -A               | 1            | AVPONSO /   | 1                                                |             |             |                                         |             |           |        |
| 63<br>64<br>65 |             | CHANGE LEVER -A               | + '          | VALSUZ67    | † ·                                              | 224         | 2           | P5 ARM UNIT                             | 1           | VXLS0302  |        |
| 63<br>64       |             | CHANGE LEVER -A  IDLER ARM -B | 1            | VXLS0268    |                                                  | l .         |             | P5 ARM UNIT<br>P5 IDLER LEVER           | 1           |           |        |

| Item<br>No. | Drawing No. | Description                           | · Pcs/<br>Set                                    | Part No.    | Remark                                           | Item<br>No.                                 | Drawing No. | Description                | Pcs/<br>Set    | Part No.         | Remark   |
|-------------|-------------|---------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------|---------------------------------------------|-------------|----------------------------|----------------|------------------|----------|
| 226         | 6           | CHANNEL SELECT BUTTON BRACKET         | 1                                                | VYPS2459    |                                                  | 411                                         | 5           | TAPPING SCREW 3X6          | 3              | XTV3+6FRS        |          |
| 227         | 6           | REC LEVEL SLIDE CONTROL UNIT          | 1                                                | VYPS2311    |                                                  | 412                                         | 4           | SCREW                      | 2              | VHDS0061         |          |
| 228         | 6           | TUNING CAUTION LABEL                  | 1                                                | VQLS0891    |                                                  | 413                                         | 3           | SCREW                      | . 1            | VHDS0062         |          |
| 229         |             |                                       |                                                  |             |                                                  | 414                                         | 1           | ADJUST NUT -3              | 1              | VHNS0019         |          |
| 230         |             |                                       | 1                                                |             |                                                  |                                             | _           |                            | T .            | OR VHNSOO23      |          |
|             | -           |                                       |                                                  |             |                                                  | 415                                         | 1           | IDLER ANGLE                | 1              | VMAS0872         |          |
| 231         | 5           | FM AUDIO C.B.A ANGLE -B               | 1                                                | VMAS1060    |                                                  |                                             |             |                            | 1              |                  |          |
| 232         | -           |                                       | <del>                                     </del> |             |                                                  | 416                                         | 1           | CHANGE LEVER SPRING        | 1              | VMBS0424         |          |
| 233         |             |                                       |                                                  |             |                                                  | 417                                         | 2           | SLIDE WASHER               | 3              | VMXS0050         |          |
| 234         | 1           | RT ROTOR BASE UNIT                    | 1                                                | VXA2004     |                                                  | 418                                         | 4           | WASHER                     | 2              | VMXS0098         |          |
|             |             |                                       | 1                                                |             |                                                  |                                             | 2           | SLIDE WASHER F             |                |                  |          |
| 235         | 5           | CUSHION                               | 1                                                | VMGS0054    | <u> </u>                                         | 419                                         |             |                            | 3              | VMXS0109         |          |
|             |             |                                       | 1                                                |             |                                                  | 420                                         | 2           | WASHER                     | 1              | VMXS0335         |          |
| 236         | 6           | OPERATION BUTTON SPRING               | 10                                               | VMBS0371    |                                                  | i                                           |             |                            | <u> </u>       |                  |          |
| 237         |             |                                       |                                                  |             |                                                  | 421                                         | 1,2         | CUT WASHER                 | 7              | VMXS0336*        |          |
| 238         | 5           | GROUNDING ANGLE                       | 1                                                | VMAS1051    | ļ                                                | 422                                         | 2           | CUT WASHER                 | 1              | VMXS0342*        |          |
| 239         | 5           | CUSHION                               | 1                                                | VMGS0055    |                                                  | 423                                         | 3           | CAPSTAN THRUST WASHER      | 1              | VMX0265          |          |
| 240         | 1           | STATOR ANGLE UNIT                     | 1                                                | VXA2006     | ļ.,                                              | 424                                         | 5           | M3 NUT                     | 1.             | XNG3             |          |
|             |             |                                       |                                                  |             |                                                  | 425                                         | 1           | M3 NUT                     | 2              | XNG3E            |          |
| 241         | 5           | CUSHION                               | 1                                                | VMGS0036    |                                                  |                                             |             |                            |                |                  |          |
| 242         | 5           | CLAMPER                               | 1                                                | KEX-004     |                                                  | 426                                         | 1           | M3 NUT                     | 1              | XNG3EZU          |          |
| 243         |             |                                       |                                                  |             |                                                  | 427                                         | 1           | WASHER 5                   | 1              | XNG5E            |          |
| 244         | 5           | FUSE CAUTION LABEL                    | 1                                                | VQLS0768    |                                                  | 428                                         | 6           | BIND SCREW 4X12            | 2              | XSB4+12KS        |          |
| 245         | 6           | FILM HOLDER UNIT                      | 1                                                | VYQS0027    |                                                  | 429                                         | 4           | TAPPING SCREW 2.6X6        | 2              | XTN26+6          |          |
|             |             |                                       |                                                  |             |                                                  | 430                                         | 5           | TAPPING SCREW 3X8          | 2              | XTV3+8A          |          |
| 246         |             |                                       |                                                  |             |                                                  |                                             | -           |                            |                |                  |          |
| 247         | 5           | CLAMPER                               | 1                                                | VJF0004     |                                                  | 431                                         | 1           | SCREW 3X10                 | 1              | XSN3D10F         |          |
| 248         |             |                                       | <u> </u>                                         |             |                                                  | 432                                         | 5           | SCREW WITH WASHER 3X12     | 1              | XYN3+F12FNS      |          |
| 249         |             |                                       | <del> </del>                                     |             |                                                  | 433                                         | 1           | TAPPING SCREW 2.6X6        | 1              | XTV26+6F         |          |
| 250         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1701    |                                                  | 434                                         | 4           | TAPPING SCREW 2.6X6        | 2              | XTV26+6G         |          |
| 200         | 2           | CONNECTOR ASS'I                       | <del> </del> '-                                  | VERSITOI    |                                                  |                                             | 5           | GROUNDING PLATE            | 1              |                  |          |
| 251         |             | CONNEGROD AGGIV                       | 1                                                | IIPV01000   |                                                  | 435                                         | 2           | GROUNDING PDATE            | '              | VSCS0408         |          |
| 251         | 3           | CONNECTOR ASS'Y                       | 1                                                | VEKS1707    | <del> </del>                                     | 1                                           | <del></del> |                            | <del> </del> _ |                  |          |
| 252         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1705    |                                                  | 436                                         | 6           | TAPPING SCREW 3X12         | 6              | XTV3+12AK        |          |
| 253         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1719    | <u> </u>                                         | 437                                         | 5           | TAPPING SCREW 3X12         | 13             | XTV3+12AR        |          |
| 254         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1924    |                                                  | <u>                                    </u> |             |                            | 1:             | OR XTV3+12JR     |          |
| 255         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1878    |                                                  | 438                                         | 3           | TAPPING SCREW 3X15         | 1              | XTV3+15F         |          |
|             |             |                                       |                                                  |             |                                                  | 439                                         | 6           | TAPPING SCREW 3X25         | 3              | XTV3+25AK        |          |
| 256         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1882    |                                                  | 440                                         | 5           | TAPPING SCREW 3X8          | 7              | XTV3+8B          |          |
| 257         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1885    |                                                  |                                             |             |                            |                |                  |          |
| 258         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1893    |                                                  | 441                                         | 5           | TAPPING SCREW 3X6          | 1              | XTV3+6           |          |
| 259         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1894    |                                                  | 442                                         | 1           | TAPPING SCREW 3X6          | 1              | XTV3+6F          |          |
| 260         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1933    |                                                  | 443                                         | 5           | TAPPING SCREW 3X8          | 7              | XTV3+8           |          |
|             |             |                                       |                                                  |             |                                                  | 444                                         | 5           | TAPPING SCREW 3X8          | 3              | XTV3+8AR         |          |
| 261         | 5           | CONNECTOR ASS'Y                       | 1                                                | VEKS1964    |                                                  |                                             |             |                            |                | OR XTV3+8JR      |          |
| 262         | 5           | C.B.A GROUNDING PLATE                 | 1                                                | VSCS0594    |                                                  | 445                                         | 5           | TAPPING SCREW 3X10         | 2              | XTV3+10AR        |          |
|             |             |                                       |                                                  |             |                                                  |                                             |             |                            |                | OR XTV3+10JR     |          |
|             |             | · · · · · · · · · · · · · · · · · · · |                                                  |             |                                                  |                                             |             |                            |                |                  |          |
|             |             |                                       |                                                  |             |                                                  | 446                                         | 1,2,3,4     | TAPPING SCREW 3X8          | 29             | XTV3+8F          |          |
| -           |             |                                       | -                                                |             |                                                  | 447                                         | 5           | TAPPING SCREW 3X8          | 2              | XTV3+8FRS        |          |
|             |             |                                       | +                                                |             |                                                  | 448                                         | 4           | TAPPING SCREW 3X8          | 4              | XTV3+8G          |          |
| -           |             |                                       | +                                                |             |                                                  | 449                                         | 4           | TAPPING SCREW 2.6X8        | 4              | XTW26+8P         |          |
|             |             |                                       | +-                                               |             | <del> </del>                                     | 450                                         | 1           |                            |                |                  |          |
|             |             |                                       | 1                                                | <u> </u>    | -                                                | 450                                         |             | RETAINING RING E-TYPE 1.5  | 2              | XUC15FP          |          |
|             |             |                                       | -                                                |             |                                                  | 150                                         | 1.0         | DEPARTMENC DING IS MUST OF | 1              | VIIGOEPP         |          |
| _           |             |                                       | -                                                |             | <u> </u>                                         | 451                                         | 1,2         | RETAINING RING E-TYPE 2.5  | 3              | XUC25FP          |          |
|             |             |                                       | -                                                |             |                                                  | 452                                         | 2,3         | RETAINING RING C-TYPE 3    | - 8            | XUEV3VW          | <u>:</u> |
|             |             |                                       | -                                                |             | <del>                                     </del> | 453                                         | 1,2,4       | RETAINING RING C-TYPE 4    | 13             | XUEV4VW          |          |
|             |             |                                       | -                                                |             |                                                  | 454                                         | 1           | POLY SLIDER WASHER 2       | 1              | XWGV2D5G         |          |
|             |             |                                       | -                                                |             |                                                  | 455                                         | 1           | POLY SLIDER WASHER 3       | 1              | XWGV3D12G        |          |
| 401         | 4           | TAPPING SCREW 3X10                    | 3                                                | XTV3+10FRS  |                                                  | l                                           |             |                            | <u> </u>       |                  |          |
| 402         | 4           | TAPPING SCREW 2.6X6                   | 1                                                | XTV26+6FS   | <u> </u>                                         | 456                                         | 1,2         | POLY SLIDER WASHER 3       | 4              | XWGV3D54G        |          |
| 403         | 5           | TUNING V.R CASE DECORATION            | 1                                                | VGNS0794    |                                                  | 457                                         | 1           | WASHER 5                   | 1              | XWG5J12          |          |
| 404         | 5           | SLIDE SWITCH KNOB -B                  | 1                                                | VGTS0118    |                                                  | 458                                         | 2           | POLY SLIDER WASHER 3       | 1              | XWXV3A54(t=0.25) |          |
| 405         | 6           | SCREW                                 | 2                                                | VHDS0011    |                                                  | 459                                         | 2           | POLY SLIDER WASHER 3       | 1              | XWXV3A8 (t=0.25) |          |
|             |             |                                       |                                                  |             |                                                  | 460                                         | 1,2,3       | POLY SLIDER WASHER 3       | 11             | XWXV3D54(t=0.5)  |          |
| 406         | 1           | SCREW                                 | 3                                                | VHDS0016    |                                                  |                                             |             |                            |                |                  |          |
| 407         | 1           | LOCK SCREW                            | 2                                                | VHDS0024    |                                                  | 461                                         | 2           | POLY STATER WASHER 3       | 1              | XWXV3D8 (t=0.5)  |          |
|             |             |                                       | <del>  ~</del>                                   | OR VHDSO052 | <del>                                     </del> | 462                                         | 2           | POLY SLIDER WASHER 3       | _              | XWXV3Z54(t=0.13) |          |
| 408         | 1           | SCREW WITH WASHER                     | 2                                                | XYNV0027    |                                                  | 463                                         | 2           | POLY SLIDER WASHER 3       |                | XWXV3Z8 (t=0.13) |          |
| 409         | 1           |                                       |                                                  |             |                                                  | 464                                         | 3           | POLY SLIDER WASHER 3       | 1              | XWXV35D6         |          |
| -           |             | ADJUST SCREW                          | 1 -                                              | VHDS0041    |                                                  | 465                                         | 2           | POLY SLIDER WASHER 4       | 2              | XWXV4D11         |          |
| 410         | 1           | SCREW                                 | 1                                                | VHDS0045    | <del></del>                                      | 1                                           | ~           | 1021 ODIDAN WADDER 4       | , c            | TOURDIL          |          |
|             |             |                                       |                                                  |             |                                                  |                                             |             | İ                          | 1              |                  |          |

<sup>\*</sup>This cut washer is not reusable. If removed, reinstall a new one

| Item<br>No. | Drawing No.                           | Description                   | Pcs/<br>Set                                      | Part No.     | Remark   | Item<br>No.                                 | Drawing No. | Description                           | Pcs/<br>Set  | Part No.   | Remark       |
|-------------|---------------------------------------|-------------------------------|--------------------------------------------------|--------------|----------|---------------------------------------------|-------------|---------------------------------------|--------------|------------|--------------|
| 466         | 1,2                                   | POLY SLIDER WASHER 4          | 6                                                | XWXV4D9      |          |                                             | -           |                                       | -            |            |              |
| 467         | 1                                     | SCREW WITH WASHER 2.6X8       | 1                                                | XYC26+CJ8    |          |                                             |             |                                       |              |            |              |
| 468         | 3                                     | SCREW WITH WASHER 3X8         | 2                                                | XYC3+FF8     |          |                                             |             |                                       |              |            |              |
| 469         | 4                                     | SCREW WITH WASHER 2.6X8       | 1                                                | XYE26+FJ8    |          |                                             | _           |                                       |              |            |              |
| 470         | 2                                     | SCREW WITH WASHER 3X10        | 3                                                | XYE3+FF10    |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  | 1            |          |                                             |             | SERVICING FIXTURES & TOOLS            | T            |            |              |
| 471         | 2                                     | SCREW WITH WASHER 3X8         | 1                                                | XYE3+FF8     |          |                                             |             |                                       | 1            |            |              |
| 472         | 1                                     | SCREW WITH WASHER 3X8         | 1                                                | XYNV3+K8     |          |                                             |             | VHS ALIGNMENT TAPE                    | <del> </del> | VFMS0001H6 |              |
| 473         | 4                                     | TAPPING SCREW 2X10            | 2                                                | XYC2+FF10    |          | l                                           |             | DIAL TORQUE GAUGE                     |              | VFK0133    |              |
| 474         | 3                                     | SCREW WITH WASHER 2.6X33      | . 2                                              | XYN26+C33    |          |                                             |             | PLASTIC CLAMPER                       | <del>-</del> | VFK0180    |              |
| 475         | 1                                     | SCREW WITH WASHER 3X4         | 2                                                | XYN3+C4      |          | l                                           |             |                                       |              |            |              |
| 4/)         | '                                     | Soliew with washen 3A4        | + ~                                              | AIN5TG4      | <u> </u> |                                             |             | ADAPTOR FOR VFK0133                   | +            | VFK0134    |              |
| 476         | 1                                     |                               | -                                                | WWW. THE     | 1        | l                                           |             | FINE ADJ. SCREWDRIVER                 | -            | VFK0136    | <del> </del> |
| 470         | '                                     | SCREW WITH WASHER 3X12        | 2                                                | XYN3+F12     | <u> </u> | ļ <del>,</del>                              |             | (for 3mmø Long Shaft)                 |              | -          |              |
|             |                                       |                               | -                                                | OR XYN3+F16  |          | l                                           |             |                                       | -            |            | ļ            |
| 477         | 1                                     | SCREW WITH WASHER 3X18        | 2                                                | XYN3+F18     |          | <u>                                    </u> |             | POST ADJ. SCREWDRIVER                 | 1            | VFK0137    |              |
| 478         | 2,3                                   | SCREW WITH WASHER 3X8         | 2                                                | XYN3+F8      |          | <u> </u>                                    |             | POST ADJ. PLATE                       |              | VFKS0010   |              |
| 479         | 2                                     | POLY SLIDER WASHER 3          | 1                                                | XWXV3D65     |          |                                             |             | REEL TABLE HEIGHT FIXTURE             |              | VFKS0009   |              |
|             |                                       |                               |                                                  | OR XWXV3D7   |          |                                             |             | TENSION POST ADJ. PLATE               |              | VFKS0002   |              |
| 480         | 2                                     | M3 NUT                        | 1                                                | VHD0045      |          |                                             |             | H-POSITION ADJ. FIXTURE               |              | VFKS0003   |              |
| ]           |                                       |                               |                                                  | OR VHNSOO15  |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             | V-HOLD ADJ. TOOL                      |              | VFKS0031   |              |
| 481         | 2                                     | POLY SLIDER WASHER 6          | 1                                                | XWXV6F9      |          |                                             |             | CASSETTE HOLDER FIXTURE               |              | VFKS0004   |              |
| 482         |                                       |                               |                                                  |              |          |                                             |             | V-STOPPER ADJ. FIXTURE                | T            | VFKS0029   |              |
| 483         | 1                                     | CUT WASHER                    | 1                                                | VMXS0376*    |          |                                             |             | RETAINING RING REMOVER                |              | VFK0144    |              |
| 484         | 1,4                                   | TAPPING SCREW 3X5             | 2                                                | XTV3+5F      |          |                                             |             | (for 3mmø)                            | 1            | 144        |              |
| 485         | 1                                     | SCREW WITH WASHER 3X14        | 2                                                | XYN3+A14     |          |                                             |             | RETAINING RING REMOVER                | 1            | VEKO1/F    |              |
| /           | · · · · · · · · · · · · · · · · · · · | 245 144                       | -                                                |              |          |                                             |             | (for 4mmø)                            |              | VFK0145    |              |
| 486         | 1                                     | SCREW WITH WASHER 3X10        | 2                                                | XYN3+A10BWS  |          |                                             |             | (101 Liming)                          |              |            |              |
| 487         | 5                                     | UHF TERMINAL SCREW            | -                                                | VHDS0055     |          | H                                           |             | HDAD OVDANTNA ORTOV                   |              |            |              |
| 488         | 3                                     | THRUST SCREW                  | 4                                                |              |          | $\vdash$                                    | -           | HEAD CLEANING STICK                   | -            | VFK27      |              |
| -           | 1                                     |                               | 1                                                | VMX0211      |          | -                                           |             | MOLYTONE GREASE                       |              | MOR265     |              |
| 489         | <u> </u>                              | RETAINING RING C-TYPE 4       | 4                                                | XUEV4FP      |          | -                                           |             | LOCK SCREW WRENCH                     |              | VFKS0032   |              |
|             |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             | •                                     |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               | 1                                                |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               | 1                                                |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               | 1 -                                              |              |          |                                             |             |                                       |              |            |              |
|             |                                       |                               | <del>                                     </del> |              |          |                                             |             |                                       | +            |            |              |
| - 1         |                                       |                               | -                                                |              |          |                                             |             |                                       | +            |            |              |
|             |                                       | · · ·                         |                                                  |              |          |                                             |             |                                       | +            |            |              |
| 901         | 8                                     | ELECTRODE PLATE -COMMON       | 1                                                | IID COMPA 04 |          | ļ                                           |             |                                       |              |            |              |
|             | 8                                     |                               | 1                                                | UR52TD101    |          |                                             |             |                                       |              |            |              |
| 902         |                                       | OPERATION BUTTON -STOP        | 1                                                | UR56BT76     |          |                                             |             |                                       |              |            |              |
| 903         | 8                                     | OPERATION BUTTON -PLAY        | 1                                                | UR56BT77     |          |                                             |             |                                       |              |            |              |
| 904         | 8                                     | OPERATION BUTTON -PAUSE/STILL | 1                                                | UR56BT78     |          |                                             |             |                                       |              |            |              |
| 905         | 8                                     | OPERATION BUTTON -FADV        | 1                                                | UR56BT79     |          |                                             |             |                                       |              |            |              |
|             |                                       |                               |                                                  |              |          | Ŀ                                           |             |                                       |              |            |              |
| 906         | 8                                     | OPERATION BUTTON -FF/REWIND   | 2                                                | UR56BT80     |          |                                             |             |                                       |              |            |              |
| 907         | 8                                     | TOP CASE                      | 1                                                | UR56CS69     |          |                                             |             |                                       |              | ·          |              |
| 908         | 8                                     | RUBBER PLATE FOR CONTACT      | 1                                                | UR56CT72A    |          |                                             |             |                                       | 1            |            |              |
| 909         | 8                                     | PART NO PLATE                 | 1                                                | UR56LB86     |          |                                             |             |                                       | 1            |            |              |
| 910         | 8                                     | TOP CASE DECORATION           | 1                                                | UR56PP81     |          | -                                           |             |                                       | +            |            |              |
|             |                                       |                               | <del> </del>                                     |              |          | -                                           |             |                                       |              |            |              |
| 911         | 8                                     | TOP CASE UNIT                 | 1                                                | UR56VCS38    |          | -                                           |             |                                       |              |            |              |
| 912         | 8                                     | BOTTOM CASE UNIT              | 1                                                |              |          |                                             |             |                                       | +            |            |              |
| 913         | 8                                     |                               |                                                  | UR56VCS39    |          | -                                           |             |                                       | ļ            |            |              |
|             |                                       | BATTERY COVER UNIT            | 1                                                | UR56VEC37    |          |                                             |             |                                       |              |            |              |
| 914         | 8                                     | ELECTRODE PLATE -POSITIVE     | 1                                                | UR57TD74     |          | ļ                                           |             |                                       | <u> </u>     |            |              |
| 115         | 8                                     | ELECTRODE PLATE -NEGATIVE     | 1                                                | UR57TD75     |          |                                             |             |                                       | 1            |            | <u></u>      |
|             |                                       |                               |                                                  |              |          |                                             |             | · · · · · · · · · · · · · · · · · · · |              |            |              |
|             |                                       |                               | -                                                |              |          | ·                                           |             |                                       |              |            |              |
| $\neg$      |                                       |                               |                                                  |              |          |                                             |             |                                       | T            |            |              |
|             |                                       |                               |                                                  |              |          |                                             |             | · · · · · · · · · · · · · · · · · · · |              |            |              |
| .           |                                       |                               |                                                  |              |          |                                             |             |                                       | 1            |            |              |
| -           |                                       |                               |                                                  |              |          |                                             |             |                                       |              |            |              |
| - 1         |                                       | -                             |                                                  |              |          |                                             |             |                                       | 1            |            |              |
|             |                                       |                               |                                                  |              |          | 1                                           |             |                                       | 1            |            | I            |
|             |                                       |                               | <b></b>                                          |              |          |                                             |             |                                       | ì            |            |              |

This cut washer is not reusable. If removed, reinstall a new one.

#### ELECTRICAL REPLACEMENT PARTS LIST

Model No. PV-1631M

Special Note:

All integrated circuits and many other semiconductor devices are electrostatically sensitive and therefore require the special handling techniques described under the "Electrostatically Sensitive (ES) Devices" section of this service manual.

Note:

1. Be sure to make your orders of replacement parts according to this list.

2. IMPORTANT SAFETY NOTICE

Components identified by the sign. A: have special characteristics important for safety.

When replacing any of these components, Use only the specified parts.

3. Unless otherwise specified,

All resistors are in OHRS (2p, 1/4W, ±5%, carbon, K=1,000Q, M=1,000KQ,

All capacitors are in MICROFARADS (UP), P=UUF, ±10%.

All coils are in MICROHENRIES (UH), M=10³U, ±10%.

4. C.B.A.1 Circuit Board Assembly.

5. P.C.B.2 Print Circuit Board.

| Ref. No.     | Part No.           | Part Name & Description         | Pcs<br>/<br>Set | Remarks |
|--------------|--------------------|---------------------------------|-----------------|---------|
|              |                    |                                 |                 |         |
|              |                    | PRINTED CIRCUIT BOARD ASSEMBLY  |                 |         |
|              | VEPS0251B1         | MAIN C.B.A                      | 1               | -       |
|              | VEPS0344E1         | SIGNAL PROCESS C.B.A            | . 1             |         |
|              | VEPS0508B1         | HEAD AMP UNIT                   | 1               |         |
|              | VEPS0143A1         | POWER SUPPLY/SUB SYSTEM CONTROL | . 1             |         |
|              |                    | C.B.A                           |                 |         |
|              | VEPS0424B1         | FM AUDIO C.B.A                  | 1               |         |
|              | VEPS0422B1         | NORMAL AUDIO C.B.A              | 1               |         |
|              | VEPS06112A2        | OPERATION/AUDIO LEVEL METER     | 1               |         |
|              |                    | C.B.A                           |                 | -       |
|              | VEPS07117D1        | PROGRAMMABLE TIMER C.B.A        | 1               |         |
|              | VEPS0243C1         | CAPSTAN MOTOR DRIVE C.B.A       | 1               |         |
| -            |                    | LUMINANCE C.B.A                 |                 |         |
|              | VEPS0337A          |                                 | 1               |         |
| <u> </u>     | VEPS0806A          | CHROMINANCE C.B.A               | 1               |         |
|              | VEQS0257           | TV DEMODULATOR UNIT             | 1               |         |
| ļ            | VEPS07130A1        | CHANNEL SELECT C.B.A            | 1               |         |
|              |                    |                                 |                 |         |
|              |                    |                                 |                 |         |
|              |                    |                                 |                 |         |
|              |                    |                                 |                 |         |
|              |                    |                                 |                 |         |
|              |                    | MAIN C.B.A                      |                 |         |
|              |                    |                                 |                 |         |
|              |                    | INTEGRATED CIRCUITS             |                 |         |
| IC2001       | AN6359             |                                 | 1               |         |
| 20,000       | OR AN6359N         |                                 |                 |         |
| IC2002       | MN6168VIH          |                                 |                 |         |
| IC2003       |                    |                                 | 1               |         |
| ·            |                    |                                 | 1_              |         |
| 102004       | AN6387             |                                 | 1               |         |
| IC2005       | UPD6110CA          |                                 | 1               |         |
| IC2006,2007  | AN1358             |                                 | 2               |         |
|              | OR AN6562          |                                 |                 |         |
|              | OR HA17358         |                                 |                 |         |
|              | OR UPC358C         |                                 |                 |         |
| IC2008       | AN1393             |                                 | - 1             |         |
|              | OR AN6914          |                                 |                 |         |
|              | OR HA17393         |                                 |                 |         |
|              | OR UPC393C         |                                 |                 |         |
| IC2009       | MN4013B            |                                 | 1               |         |
|              | OR TC4013BP        |                                 |                 |         |
|              | OR UPD4013BC       |                                 |                 |         |
| IC3201       | TA7348P            |                                 | 1               |         |
| IC4701,4702  |                    |                                 |                 |         |
| 204101,4102  | AN6558             |                                 | 2               |         |
| T0.4703 1701 | OR BA4558          |                                 |                 |         |
| IC4703,4704  | TA7347P            |                                 | 2               |         |
| IC4705       | BA715              |                                 | 1               |         |
|              | OR TA75557S        |                                 |                 |         |
| IC6001       | MN15846VRC         |                                 | 1               |         |
| 106004,6005  | BA6209U            |                                 | 2               |         |
|              |                    |                                 |                 | 1.0     |
| T            |                    |                                 |                 |         |
|              |                    |                                 |                 |         |
|              |                    | TRANSISTORS                     |                 |         |
| Q2001,2002   | 2SA937M(R)         |                                 | 2               |         |
|              | OR OR              |                                 |                 |         |
|              | 2SB641(Q,R,S)      |                                 |                 |         |
|              | MODULE (M) I DOUGH | <u> 11</u>                      |                 |         |

|                                                  |                           | <u> </u>                |                 |                                         |
|--------------------------------------------------|---------------------------|-------------------------|-----------------|-----------------------------------------|
| Ref. No.                                         | Part No.                  | Part Name & Description | Pcs<br>/<br>Set | Remarks                                 |
| Q2003,2004                                       | 2SC2021M(R)               |                         | 2               |                                         |
|                                                  | OR                        |                         |                 |                                         |
|                                                  | 2SD636(Q,R,S)             |                         |                 |                                         |
| Q2005,2006                                       | 2SA937M(R)                |                         | 2               |                                         |
| 1                                                | OR                        |                         | +               |                                         |
|                                                  | 2SB641(Q,R,S)             |                         | _               |                                         |
| Q2007-2011                                       | 2SC2021M(R)               |                         | 5               |                                         |
|                                                  | OR                        |                         | +               |                                         |
|                                                  | 2SD636(Q,R,S)             |                         |                 |                                         |
| Q2012                                            | 2SA937M(R)                |                         | 1               |                                         |
| \$20.2                                           | OR                        |                         | + '             |                                         |
|                                                  | 2SB641(Q,R,S)             |                         | +               |                                         |
| Q2013                                            | 2SD1266                   |                         | 1               |                                         |
| Q2017                                            | OR 2SD856                 |                         | +               |                                         |
| Q2014                                            | 2SA937M(R)                |                         | 1               |                                         |
| QL014                                            | OR OR                     |                         | +               |                                         |
| <del>                                     </del> | 2SB641(Q,R,S)             |                         | -               |                                         |
| Q2015                                            | 2SC2021M(R)               |                         | 1               |                                         |
| Q2015                                            |                           |                         | 1               |                                         |
|                                                  | OR                        | ·                       |                 |                                         |
| 02019 2010                                       | 2SD636(Q,R,S)             |                         | + -             | _                                       |
| Q2018,2019                                       | 2SC2021M(R)               |                         | 2               |                                         |
| <u> </u>                                         | OR 290636(0 P C)          |                         | +               |                                         |
| 02020                                            | 2SD636(Q,R,S)             |                         | +               |                                         |
| Q2020                                            | 2SC2925(S)<br>2SC2021M(R) |                         | 1               |                                         |
| Q3201                                            |                           |                         | 1               |                                         |
|                                                  | OR .                      |                         |                 |                                         |
| 0.1704                                           | 2SD636(Q,R,S)             |                         |                 |                                         |
| Q4701                                            | 2SD636(Q,R,S)             |                         | 1               |                                         |
| Q4702                                            | 2SB641(Q,R)               |                         | 1               |                                         |
| Q4703                                            | 2SD655(E,F)               |                         | 1               |                                         |
|                                                  | OR 2SD661(S,T)            |                         |                 |                                         |
| Q4704                                            | 2SB641(Q,R)               |                         | 1               |                                         |
| Q4705                                            | 2SD655(E,F)               |                         | 1               |                                         |
| 0.000 .000                                       | OR 2SD661(S,T)            |                         |                 |                                         |
| Q4706,4707                                       | 2SD636(Q,R,S)             |                         | 2               |                                         |
| Q6003=6005                                       | 2SD636(Q,R,S)             |                         | 3               |                                         |
| Q6006                                            | 2SD638(Q,R,S)             |                         | 1               |                                         |
| Q6007                                            | 2SD636(Q,R,S)             |                         | 1               |                                         |
| Q6010-6012                                       | 2SA937M(R)                |                         | 3               |                                         |
|                                                  | OR                        |                         |                 |                                         |
| 0/041                                            | 2SB641(Q,R,S)             |                         |                 |                                         |
| Q6014                                            | 2SD636(Q,R,S)             |                         | 1               |                                         |
| Q6016                                            | 2SD636(Q,R,S)             |                         | 1               |                                         |
| Q6020                                            | 2SD636(Q,R,S)             | -                       | 1               |                                         |
| Q6021                                            | 2SA937M(R)                |                         | 1               |                                         |
|                                                  | OR                        |                         | 1               |                                         |
|                                                  | 2SB641(Q,R,S)             |                         |                 |                                         |
| Q6199                                            | 2SD636(Q,R,S)             |                         | 1               |                                         |
|                                                  |                           |                         | ļ               |                                         |
|                                                  |                           |                         | -               | · - · · · · · · · · · · · · · · · · · · |
|                                                  |                           |                         |                 |                                         |
|                                                  |                           | DIODES                  | 4               |                                         |
| D2001-2019                                       | MA165                     |                         | 19              |                                         |
|                                                  | OR 155119                 |                         | ļ               |                                         |
| D2022,2023                                       | MA165                     |                         | 2               |                                         |
|                                                  | OR 1SS119                 | -                       |                 |                                         |
| D2026,2027                                       | MA165                     |                         | 2               |                                         |
|                                                  | OR 188119                 |                         |                 |                                         |
| D2038-2040                                       | MA165                     |                         | 3               |                                         |
|                                                  | OR 1SS119                 |                         | $\sqcup$        |                                         |
| D3201-3204                                       | EQA02-13                  | ZENER                   | 4               |                                         |
|                                                  | OR MA4130                 | ZENER                   |                 | . · . · . · . · . · . · . · . · . · . · |
| 70001                                            | OR RD13EB                 | ZENER                   |                 |                                         |
| D3206,3207                                       | MA165                     |                         | 2               |                                         |
| D. 100 1                                         | OR 1SS119                 |                         | -               |                                         |
| D4701                                            | MA165                     |                         | 1               |                                         |
| D4702                                            | MA4130                    | ZENER                   | 1               |                                         |
| D4703                                            | MA165                     |                         | 1               |                                         |
| D4704-4709                                       | MA4130                    | ZENER                   | 6               |                                         |
| D4710,4711                                       | MA165                     |                         | 2               |                                         |

| R2058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref. No.                        |          | Part No.     | Part Name & Description                 | Pcs<br>/<br>Set | Remarks | Ref. No.     |          | Part No.     | Part Name & Description               | Pcs<br>/<br>Set | Remarks      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|--------------|-----------------------------------------|-----------------|---------|--------------|----------|--------------|---------------------------------------|-----------------|--------------|
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | D4712                           |          | MA4062       | ZENER                                   | 1               |         | R2061        |          | EVJFFAF15B15 | VARIABLE 100K                         | 1               |              |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | L        | OR RD6.2EB   | ZENER /                                 |                 |         | R2062        |          | ERDS2TJ223   | 22%                                   | 1               |              |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | D6006,6007                      |          | MA165        |                                         | 2               |         | <del></del>  | <u> </u> | <del></del>  |                                       |                 |              |
| 10   1819   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | ┡        |              |                                         |                 |         |              |          |              |                                       |                 |              |
| NOTE   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965   1965      | D6009-6015                      | +-       |              |                                         | 7               |         |              |          |              |                                       |                 |              |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | D6017 6019                      | $\vdash$ |              |                                         | -               |         |              |          |              |                                       | -               |              |
| Money                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10017,0018                      | H        |              |                                         | . ~             |         |              |          |              |                                       |                 | -            |
| Second Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D6022,6023                      |          |              |                                         | 2               |         |              |          |              |                                       | _               |              |
| 10   168119   10   168119   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | 1        |              |                                         |                 |         | R2070,2071   |          | ERDS2TJ104   | 100K                                  | 2               |              |
| Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont   | D6027                           |          | MA165        |                                         | 1               |         | R2072        |          | EVJFPAF15B15 | VARIABLE 100K                         | 1               |              |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |                                 |          | OR 188119    |                                         |                 |         | R2073        |          | ERDS2TJ222   | 2.2K                                  | 1               |              |
| Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont   | D6029-6042                      | _        | MA165        |                                         | 14              |         | R2074        |          |              | 180                                   | 1               |              |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |                                 | <u> </u> | <del></del>  |                                         |                 |         |              |          |              |                                       | _               |              |
| No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.    | D6198,6199                      | Ļ        |              |                                         | 2               |         |              |          |              |                                       | _               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P(00)                           | -        |              |                                         |                 |         |              | _        |              |                                       |                 |              |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | 10201                           | ┢        | HDSOER       | ZENER                                   | 1               |         |              | _        |              |                                       |                 |              |
| Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secretary   Secr   |                                 | $\vdash$ |              |                                         |                 |         | -            | _        |              |                                       |                 |              |
| BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROOF   BROO   |                                 | $\vdash$ |              |                                         |                 |         |              |          |              |                                       |                 |              |
| Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | t        |              | RESISTORS                               |                 |         |              |          |              | · · · · · · · · · · · · · · · · · · · | _               |              |
| 18002   180021710   180021710   180021710   180021710   19002   180021710   19002   180021710   19002   180021710   19002   180021710   19002   190021710   19002   190021710   19002   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710   190021710      | R2001                           |          | ERDS2TJ223   |                                         | 1               |         |              |          |              | 3.3K                                  | 1               |              |
| MONOCH   MEMBERLING   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2002                           | L        | ERDS2TJ334   |                                         | 1               |         | R2086        |          | ERDS2TJ103   | 10K                                   | 1               |              |
| 1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900      | R2003                           | Ľ        | ERDS2TJ272   | 2.7K                                    | 1               |         |              |          | ERDS2TJ333   | 33K                                   | 1               |              |
| Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Management   Man   |                                 | $\perp$  | ERDS2TJ473   | 47K                                     | 1_              |         |              |          |              |                                       |                 |              |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |                                 | $\vdash$ |              |                                         |                 |         |              |          | ·            |                                       |                 |              |
| MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MINISTRATE   MIN   |                                 | L        |              |                                         |                 |         |              |          |              |                                       |                 |              |
| MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER   MINISTER    |                                 | 1        |              |                                         |                 |         |              |          |              |                                       |                 | -            |
| RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   R   |                                 | $\vdash$ |              |                                         |                 |         |              |          |              |                                       |                 |              |
| BOOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | -        |              |                                         | 1               |         |              |          |              |                                       |                 |              |
| REDIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | $\vdash$ |              |                                         | 1               |         |              |          |              |                                       |                 |              |
| Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | Т        |              |                                         |                 |         | R2098        |          | EVN38CA00B15 | VARIABLE 100K                         | 1               |              |
| RECORD   SERRE   RECORD   SERRE   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   RECORD   REC   |                                 | Г        |              |                                         | . 1             |         | R2099,2100   |          | EVLS3MA00B15 | VARIABLE 100K                         | 2               |              |
| RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1002   RECORD-1003   RECORD-1002   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003   RECORD-1003      | R2017                           |          | ERDS2TJ103   | 10K                                     | 1               |         |              |          |              |                                       | 1               |              |
| RECOLOGY   RECONTRICEO   PRECISION METAL FIRM 1.58 1-27   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R2018,2019                      | L        | ERDS2TJ332   | 3.3%                                    | 2               |         |              |          |              |                                       |                 |              |
| RODA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R2020-2022                      | L        |              | 47                                      | 3_              |         |              |          |              |                                       |                 |              |
| RODE   A   DELICABRING   MEDIAL OKIDE   1/24   0.56   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | ⊢        |              |                                         | 1               |         | 1            |          |              |                                       |                 |              |
| ROOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ******************************* | 4        |              |                                         | 1               |         |              |          |              |                                       |                 |              |
| ROSE   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   ROSENTIO   RO   |                                 |          |              |                                         | •               |         |              |          |              |                                       |                 |              |
| R2027   R20271124   R2028   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182   R2182      |                                 | -        | <del></del>  | *************************************** | 1               |         |              | _        |              |                                       | _               |              |
| R2029   R10SZ11473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R2027                           | T        |              |                                         | 1               |         | R2121        |          | ERDS2TJ473   | 47K                                   | 1               |              |
| Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   Record   R   | R2028                           | 1        | ERDS2TJ823   | 82K                                     | 1               |         | R2122        |          | ERDS2TJ103   | 10K                                   | 1               |              |
| R2031   R20321   R20321174   R20321774   R20321774   R20321775   R20321774   R20321775   R20321774   R20321775   R20321775   R203217774   R20321775   R203217774   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R203217775   R20321777   | R2029                           |          | ERDS2TJ473   | 47K                                     | 1               |         |              |          | ERDS2TJ103   | 10K                                   | 1               |              |
| R2032, 2033   REGERTISA   150K   2   R2127   REDECTISCA   220K   1   R2034   R2034   REDECTIFA   270K   1   R2035   REDECTIFA   270K   1   R2128   REDECTIFA   220K   1   R2035   REDECTIFA   270K   1   R2035   REDECTIFA   270K   1   R2128   R2129   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2037   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   REDECTIFA   1   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036  |                                 | L        |              |                                         | <del>-</del> -  |         |              |          |              |                                       | _               |              |
| R2034   REDSZTJ774   REDSZTJ774   R270K   1   R2128   R2128   R21224   R200K   1   R2126   R2035   R2035   REDSZTJ73   R2036   REDSZTJ73   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R2036   R20 |                                 | 1        |              |                                         |                 |         |              |          |              |                                       |                 | ļ            |
| R2035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | L        |              |                                         |                 |         |              |          |              |                                       | -               | <del> </del> |
| R2036   RRDSZTI322   RRDSZTI322   RRDSZTIGUE   RRZTIS22   RRZTIS22   RRZTIGUE   RRZTIS23   RRZTIGUE   RRZTIS24   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RRZTIGUE   RZZTIGUE   RRZTIGUE   RZZTIGUE                                   | -        |              |                                         | -               |         |              |          |              |                                       |                 |              |
| R2037   ROSZTKG6801   PRECISION METAL FILM 10K +-ZZ   1   R2131,2132   RDSZTJ104   100K   2   R2038,2039   RROSZTKG1002   PRECISION METAL FILM 10K +-ZZ   2   R2133   RDSZTJ233   RDSZTJ233   RDSZTJ233   RDSZTJ233   RDSZTJ233   RDSZTJ234   RZ134   RZ134   RZ134   RZ134   RZ134   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136   RZ135,2136    |                                 | $\vdash$ |              |                                         |                 |         |              | _        |              |                                       | -               |              |
| R2038,2039   RR0S2TKG1002   PRECISION METAL FILM 10K +-ZX   2   2   82133   RBDS2TJ223   22K   1   82134   R2040   R2040   REDS2TJ154   REDS2TJ154   R2041   150K   1   82135,2136   REDS2TJ562   REDS2TJ563   R2042   R2043   R2043   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   R2045   |                                 | -        |              |                                         |                 |         |              |          |              |                                       |                 |              |
| R2040   R0052TKG1202   PRECISION METAL FILM 12K +-2Z 1   R2134   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2136   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135,2138   R2135 |                                 |          |              |                                         |                 |         |              |          |              |                                       | -               |              |
| R2041       ERDS2TJ154       ERDS2TJ154       150K       1       R2135,2136       ERDS2TJ62       ERDS2TJ62       5.6K       2         R2042       EVN38CA00B54       VARIABLE       50K       1       R2137,2138       ERDS2TJ104       100K       2         R2043       ERDS2TJ682       GENS2TJ682       6.8K       1       R2139       ERDS2TJ244       20K       1         R2044,2045       ERDS2TJ563       GENS2TJ563       6.8K       1       R2140       ERDS2TJ561       56K       1         R2046       ERDS2TJ563       GENS2TJ563       6.8K       1       R2140       ERDS2TJ563       56K       1         R2047       ERDS2TJ104       GENS2TJ104       100K       1       R2142       ERDS2TJ333       33K       1         R2049,2050       ERDS2TJ104       GENS2TJ104       100K       2       R2144       ERDS2TJ333       33K       1         R2051       ERDS2TJ563       GENS2TJ393       39K       1       R2146       ERDS2TJ333       33K       1         R2052-2054       ERDS2TJ393       39K       3       R3201       ERDS2TJ04       100K       1         R2052-2054       ERDS2TJ393       FREGISION METAL FILM 100K +-2x <td></td> <td><math>\top</math></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | $\top$   |              |                                         |                 |         |              |          |              |                                       | _               |              |
| R2042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |          |              | · · · · · · · · · · · · · · · · · · ·   | 1               |         | R2135,2136   | _        | ERDS2TJ562   | 5.6K                                  | 2               |              |
| R2044, 2045   ERDSZTJ104   100K   2   R2140   ERDSZTJ561   566   1   R2046   R2046   ERDSZTJ563   56K   1   R2142   ERDSZTJ563   56K   1   R2047   R2047   ERDSZTJ104   100K   1   R2143   ERDSZTJ333   R2047   R2048   ERDSZTJ393   R2047   R2048   R2049, 2050   ERDSZTJ104   100K   2   R2144, 2145   ERDSZTJ104   100K   2   R2049, 2050   ERDSZTJ563   R2047   R2049, 2050   ERDSZTJ104   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050   R2049, 2050 | R2042                           |          |              |                                         | 1               |         |              |          |              |                                       | 2               |              |
| R2046       ERDS2TJ563       56K       1       R2142       ERDS2TJ563       56K       1         R2047       ERDS2TJ104       100K       1       R2143       ERDS2TJ333       33K       1         R2048       ERDS2TJ393       39K       1       R2144,2145       ERDS2TJ104       100K       2         R2049,2050       ERDS2TJ563       56K       1       R2144,2145       ERDS2TJ333       33K       1         R2051       ERDS2TJ563       56K       1       R2146       ERDS2TJ333       33K       1         R2052-2054       ERDS2TJ563       56K       1       R3201       ERDS2TJ101       100       1         R2055-2054       ERDS2TJ563       78K       3       R3201       ERDS2TJ102       11       1         R2056       ERDS2TJ103       78K       3       R3201       ERDS2TJ103       10K       1         R2056       ERDS2TJ103       78K       1       R3206       ERDS2TJ563       56K       1         R2057       EROS2TKG1003       78K       1       R3207       ERDS2TJ563       56K       1         R2057       EROS2TKG1602       78K       1       7820K       2       2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | L        |              |                                         |                 |         | +            |          |              |                                       |                 |              |
| R2047         ERDS2TJ104         100K         1         R2143         ERDS2TJ333         33K         1           R2048         ERDS2TJ993         9K         1         R2144,2145         ERDS2TJ104         100K         2           R2049,2050         ERDS2TJ104         100K         2         R2146         ERDS2TJ333         33K         1           R2051         ERDS2TJ563         56K         1         R3201         ERDS2TJ101         100         1           R2052-2054         ERDS2TJ393         PRECISION METAL FILM 100K +-2x         1         R3203         ERDS2TJ102         10         1           R2055         ERDS2TJ103         PRECISION METAL FILM 10K +-2x         1         R3206         ERDS2TJ103         10K         1           R2056         ERDS2TJ103         PRECISION METAL FILM 12K +-2x         1         R3207         ERDS2TJ633         56K         1           R2057         ERDS2TKG1602         PRECISION METAL FILM 16K +-2x         1         R3208         ERDS2TJ473         47K         1           R2058         ERDS2TJ224         ERDS2TJ224         220K         1         R3209         EVJFAF15B24         VARIABLE         20K         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | 1        |              |                                         |                 |         |              | _        | <del></del>  |                                       | -               |              |
| R2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | $\vdash$ |              |                                         |                 |         |              |          | ·            |                                       |                 |              |
| R2049,2050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | $\vdash$ |              |                                         |                 |         |              |          |              |                                       |                 |              |
| R2051         ERDS2TJ563         56K         1         R3201         ERDS2TJ101         100         1           R2052-2054         ERDS2TJ393         39K         3         R3203         ERDS2TJ102         1K         1           R2055         EROS2TKG1003         PRECISION METAL FILM 100K +-2X         1         R3206         ERDS2TJ103         10K         1           R2056         ERDS2TJ103         10K         1         R3207         ERDS2TJ563         56K         1           R2057         EROS2TKG1202         PRECISION METAL FILM 16K +-2X         1         R3208         ERDS2TJ473         47K         1           R2058         EROS2TKG1602         PRECISION METAL FILM 16K +-2X         1         R3209         EVJFFAF15B24         VARIABLE         20K         1           R2059         ERDS2TJ224         20K         1         R3210         ERDS2TJ123         12K         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | $\vdash$ |              |                                         |                 |         |              |          |              | · · · · · · · · · · · · · · · · · · · |                 | 1.           |
| R2052-2054 ERDSZTJ393 39K 3 83203 ERDSZTJ102 1K 1 R2055 ERDSZTJ6103 PRECISION METAL FILM 100K +-2% 1 R2056 ERDSZTJ103 10K 1 R2056 ERDSZTJ103 10K 1 R2057 ERDSZTJ620 PRECISION METAL FILM 12K +-2% 1 R2058 ERDSZTJ620 PRECISION METAL FILM 16K +-2% 1 R2059 ERDSZTJ224 220K 1 R3210 ERDSZTJ123 12K 1 R3210 ERDSZTJ123 12K 1 R3210 ERDSZTJ123 12K 1 R3210 ERDSZTJ123 12K 1 R3210 ERDSZTJ123 R3210 ERDSZTJ123 12K 1 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ123 R3210 ERDSZTJ | -                               | $\vdash$ |              |                                         |                 |         |              |          |              |                                       |                 |              |
| R2055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | $\vdash$ |              |                                         |                 |         |              |          | <del></del>  |                                       |                 |              |
| R2056     ERDS2TJ103     10K     1     R3207     ERDS2TJ563     56K     1       R2057     EROS2TKG1202     PRECISION METAL FILM 12K +-2x     1     R3208     ERDS2TJ473     47K     1       R2058     EROS2TKG1602     PRECISION METAL FILM 16K +-2x     1     R3209     EVJFFAF15B24     VARIABLE     20K     1       R2059     ERDS2TJ224     ERDS2TJ224     R3210     ERDS2TJ123     12K     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | T        |              |                                         |                 | 7       |              |          |              |                                       |                 |              |
| R2057 EROSZTKG1202 PRECISION METAL FILM 12K +-2% 1 R3208 ERDSZTJ473 47K 1 R32058 ERDSZTJ473 47K 1 R32058 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R32059 ERDSZTJ473 47K 1 R320 |                                 |          |              |                                         |                 |         | 1            |          |              |                                       | 1               |              |
| R2059 ERDS2TJ224 220K 1 R3210 ERDS2TJ123 12K 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R2057                           |          |              |                                         |                 |         | R3208        |          | ERDS2TJ473   | 47K                                   | 1               |              |
| AND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2058                           | $\Box$   | EROS2TKG1602 | PRECISION METAL FILM 16K +-2%           | 1               | -       |              |          |              | VARIABLE 20K                          | _1              |              |
| R2060   ERDS2TJ103   10K   1   R3211   ERDS2TJ472   4.7K   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | _        |              |                                         | _1              | ·       | <del> </del> |          |              |                                       |                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R2060                           | _        | ERDS2TJ103   | 10K                                     | 1               |         | R3211        | _        | ERDS2TJ472   | 4.7K                                  | 1               | <u></u>      |

| Ref. No.            | Part No.                 | Part Name & Description | Pcs      | Remarks                               | Ref. No.            | Γ        | Part No.                     | Part Name & Description                   | Pcs          | Remarks                                          |
|---------------------|--------------------------|-------------------------|----------|---------------------------------------|---------------------|----------|------------------------------|-------------------------------------------|--------------|--------------------------------------------------|
| R3216               | ERDS2TJ102               | 1K                      | Set<br>1 |                                       | R6056,6057          | -        | ERDS2TJ822                   | 8.2%                                      | Set 2        |                                                  |
| R4701               | ERDS2TJ182               | 1.8K                    | 1        |                                       | R6058-6061          | ┼-       | ERDS2TJ682                   | 6.88                                      | <del> </del> |                                                  |
| R4702,4703          | ERDS2TJ103               | 10K                     | 2        |                                       | R6062               | $\vdash$ | ERDS2TJ822                   | 8.2K                                      |              |                                                  |
| R4704               | ERDS2TJ105               | 1M                      | 1        |                                       | R6063               | $\vdash$ | ERDS2TJ223                   | 22K                                       | _            |                                                  |
| R4705               | ERDS2TJ101               | 100                     | 1        |                                       | R6064 .             |          | ERDS2TJ471                   | 470                                       | 1            |                                                  |
| R4706               | ERDS2TJ104               | 100K                    | 1        |                                       | R6068,6069          |          | ERDS2TJ392                   | 3.9K                                      | 2            |                                                  |
| R4707               | ERDS2TJ183               | 18K                     | 1        |                                       | R6077,6078          |          | ERDS2TJ102                   | 1 K                                       | - 2          |                                                  |
| R4708               | ERDS2TJ103               | 10K                     | 1        |                                       | R6079               | L        | ERDS2TJ473                   | 47K                                       | _ 1          |                                                  |
| R4709               | ERDS2TJ473               | 47K                     | 1        |                                       | R6080,6081          | L        | ERDS2TJ472                   | 4.7K                                      | 2            |                                                  |
| R4710               | ERDS2TJ563               | 56K                     | 1        |                                       | R6082,6083          | L        | ERDS2TJ103                   | 10K                                       | -            |                                                  |
| R4711<br>R4712      | ERDS2TJ562<br>ERDS2TJ473 | 5.6K                    | 1.       |                                       | R6084,6085<br>R6087 | L        | ERDS2TJ472                   | 4.7K                                      | 2            |                                                  |
| R4712               | ERDS2TJ563               | 56K                     | 1        |                                       | R6088               | H        | ERDS2TJ104<br>ERDS2TJ472     | 100K                                      |              |                                                  |
| R4714               | ERDS2TJ182               | 1.8K                    | 1        |                                       | R6089               |          | ERDS2TJ102                   | 1K                                        | -            |                                                  |
| R4715               | ERDS2TJ473               | 47K                     | 1        |                                       | R6091               | +        | ERDS2TJ102                   | 1K                                        | _            |                                                  |
| R4716               | ERDS2TJ105               | 1м                      | 1        |                                       | R6092               |          | ERDS2TJ103                   | 10K                                       | _            |                                                  |
| R4717               | ERDS2TJ101               | 100                     | 1        |                                       | R6093,6094          | Т        | ERDS2TJ102                   | 1K                                        | -            |                                                  |
| R4718               | ERDS2TJ104               | 100K                    | 1        |                                       | R6095               |          | ERDS2TJ472                   | 4.7K                                      | 1            |                                                  |
| R4719               | ERDS2TJ183               | 18K                     | 1        |                                       | R6096               | Δ        | ERDS1FJ2R7                   | 1/2W 2.7                                  | 1            |                                                  |
| R4720               | ERDS2TJ103               | 10K                     | 1        |                                       | R6097               |          | ERDS2TJ102                   | 1 K                                       | 1            |                                                  |
| R4721               | ERDS2TJ563               | 56K                     | 1        |                                       | R6098               |          | ERDS2TJ104                   | 100K                                      | -            |                                                  |
| R4722               | ERDS2TJ562               | 5.6K                    | 1        |                                       | R6099               |          | ERDS2TJ333                   | 33K                                       | _            |                                                  |
| R4723,4724          | ERDS2TJ473               | 47K                     | 2        |                                       | R6103,6104          |          | ERDS2TJ472                   | 4.7K                                      | 2            |                                                  |
| R4725               | ERDS2TJ563               | 56K                     | 1        |                                       | R6108               | -        | ERDS2TJ274                   | 270K                                      |              | <del> </del>                                     |
| R4726<br>R4727      | ERDS2TJ182<br>ERDS2TJ473 | 1.8K                    | 1        |                                       | R6109               | -        | ERDS2TJ333                   | 33K                                       | 1            |                                                  |
| R4727<br>R4728,4729 | ERDS2TJ473<br>ERDS2TJ151 | 47A<br>150              | 2        |                                       | R6111,6112          | $\vdash$ | ERDS2TJ102<br>ERDS2TJ102     | 1K                                        |              | 1                                                |
| R4730               | ERDS2TJ473               | 47K                     | 1        |                                       | R6120               | H        | ERDS2TJ333                   | 33K                                       | . 1          | <u> </u>                                         |
| R4731               | ERDS2TJ102               | 1K                      | 1        |                                       | R6121,6122          |          | ERDS2TJ562                   | 5.6K                                      | 2            |                                                  |
| R4732               | ERDS2TJ473               | 47K                     | 1        |                                       | R6123,6124          |          | ERDS2TJ223                   | 22K                                       | 2            |                                                  |
| R4733               | ERDS2TJ102               | 1K                      | 1        |                                       | R6126,6127          |          | ERDS2TJ562                   | 5.6K                                      | 2            |                                                  |
| R4734,4735          | ERDS2TJ223               | 22K                     | 2        |                                       | R6128               |          | ERDS2TJ332                   | 3.3K                                      | 1            |                                                  |
| R4736               | ERDS2TJ182               | 1.8K                    | 1        |                                       | R6129-6132          |          | ERDS2TJ223                   | 22K                                       | 4            |                                                  |
| R4737               | ERDS2TJ472               | 4.7K                    | 1        |                                       | R6133               |          | ERDS2TJ103                   | 10K                                       | 1            |                                                  |
| R4738,4739          | ERDS2TJ154               | 150K                    | 2        |                                       | R6134               |          | ERDS2TJ223                   | 22K                                       | 1            |                                                  |
| R4740,4741          | ERDS2TJ104               | 100K                    | 2        |                                       | R6135               |          | ERDS2TJ682                   | 6.8K                                      | _            |                                                  |
| R4742,4743          | ERDS2TJ102               | 1K                      | 2        |                                       | R6197               | -        | ERDS2TJ562                   | 5.6K                                      |              | <del></del>                                      |
| R4744<br>R4746,4747 | ERDS2TJ561<br>ERDS2TJ392 | 560<br>3.9K             | 2        |                                       | R6198,6199<br>R6201 | -        | ERDS2TJ104                   | 100K                                      | 2            |                                                  |
| R4748,4749          | ERDS2TJ154               | 150K                    | 2        |                                       | MOZUI               |          | ERDS2TJ102                   | 1K                                        | 1            |                                                  |
| R6008,6009          | ERDS2TJ223               | 22K                     | 2        |                                       |                     |          |                              |                                           |              |                                                  |
| R6010               | ERDS2TJ472               | 4.7K                    | 1        |                                       |                     |          |                              |                                           |              |                                                  |
| R6011               | ERDS2TJ474               | 470K                    | 1        |                                       |                     |          |                              | CAPACITORS                                |              |                                                  |
| R6012               | ERDS2TJ472               | 4.7K                    | 1        |                                       | C2001               |          | ECEA1HS010                   | ELECTROLYTIC 50V 1                        | -1           |                                                  |
| R6013,6014          | ERDS2TJ104               | 100K                    | 2        |                                       |                     |          | OR ECEA1HUO10                | ELECTROLYTIC 50V 1                        |              |                                                  |
| R6015               | ERDS2TJ472               | 4.7K                    | 1        |                                       | C2002               |          | VCYSARC103NY                 | CERAMIC 16V 0.01 +-30%                    | 1            |                                                  |
| R6021               | ERDS2TJ824               | 820K                    | 1        |                                       | 02003               |          | ECEA1EN3R3S                  | ELECTROLYTIC 25V 3.3                      | 1            |                                                  |
| R6022               | ERDS2TJ102               | 1K                      | 1        |                                       | C2004               |          | ECQM1H103KV                  | POLYESTER 50V 0.01                        | 1            |                                                  |
| R6023               | ERDS2TJ273               | 27K                     | 1        |                                       | 02005               |          | OR ECQM1H103KZ<br>ECEA1CS100 |                                           |              | -                                                |
| R6024               | ERDS2TJ123               | 12K                     | 1        |                                       | C2005               |          | OR ECEA1CU100                | ELECTROLYTIC 16V 10                       | 1            |                                                  |
| R6025               | ERDS2TJ102               | 1K                      | 1.       |                                       | C2006               |          | ECEA1HSO10                   | ELECTROLYTIC 16V 10 ELECTROLYTIC 50V 1    | -            |                                                  |
| R6026               | ERDS2TJ223<br>ERDS2TJ563 | 22K 56K                 | 1        |                                       | 02000               | $\vdash$ | OR ECEATHUO10                | ELECTROLYTIC 50V 1 ELECTROLYTIC 50V 1     | 1            | 1                                                |
| R6028               | ERDS2TJ102               | 1K                      | 1        |                                       | C2007               | $\vdash$ | ECEA1HNO10S                  | ELECTROLYTIC 50V 1                        | 1            |                                                  |
| R6029,6030          | ERDS2TJ152               | 1.5K                    | 2        |                                       | C2008               |          | ECEA1HSOR1                   | ELECTROLYTIC 50V 0.1                      | 1            | t                                                |
| R6031               | ERDS1TJ101               | 1/2W 100                | 1        |                                       |                     |          | OR ECEATHUOR1                | ELECTROLYTIC 50V 0.1                      | Ė            |                                                  |
| R6032-6034          | ERDS2TJ222               | 2.2K                    | 3        |                                       | C2009               |          | VCYSARC222NX                 | CERAMIC 16V 0.0022 +-30%                  | 1            |                                                  |
| R6035               | ERDS2TJ333               | 33K                     | 1        |                                       | C2010               |          | VCYW1E152KX                  | CERAMIC 25V 0.0015                        | 1            |                                                  |
| R6036               | ERDS2TJ224               | 220K                    | 1        |                                       | C2011               |          | ECEA1HS2R2                   | ELECTROLYTIC 50V 2.2                      | 1            |                                                  |
| R6037               | ERDS2TJ822               | 8.2K                    | 1        |                                       |                     |          | OR ECEA1HU2R2                | ELECTROLYTIC 50V 2.2                      |              |                                                  |
| R6038               | ERDS2TJ223               | 22K                     | 1        |                                       | C2012               |          | ECEA1HN2R2S                  | ELECTROLYTIC 50V 2.2                      | 1            |                                                  |
| R6039-6041          | ERDS2TJ822               | 8.21                    | 3        |                                       | C2013               |          | ECEA1CS101                   | ELECTROLYTIC 16V 100                      | 1            |                                                  |
| R6042-6044          | ERDS2TJ223               | 22K                     | 3        |                                       | 2001                | <u> </u> | OR ECEA1CU101                | ELECTROLYTIC 16V 100                      |              |                                                  |
| R6045               | ERDS2TJ332               | 3.3K                    | 1        | - <u>-</u>                            | C2014               | Щ        | VCYSARC682NX                 | CERAMIC 16V 0.0068 +-30%                  | .1           |                                                  |
| R6046               | ERDS2TJ154               | 150K                    | 1        |                                       | C2015               |          | ECEA1CS221                   | ELECTROLYTIC 16V 220                      | 1            |                                                  |
| R6047               | ERDS2TJ224               | 220K                    | 1        | · · · · · · · · · · · · · · · · · · · | 02016 2017          |          | OR EGEATOU221                | ELECTROLYTIC 16V 220                      | _            |                                                  |
| R6048,6049          | ERDS2TJ223               | 22K                     | 2        |                                       | C2016,2017          | $\vdash$ | ECEA1HN2R2S<br>VCYSARH102KB  | CERAMIC 50V 2.2                           | 2            | <del>                                     </del> |
| R6053<br>R6054      | ERDS2TJ222<br>ERDS2TJ392 | 2.2%                    | 1        |                                       | C2018               | $\vdash$ | ECEA1ES3R3                   | CERAMIC 50V 0.001<br>ELECTROLYTIC 25V 3.3 | 1            | -                                                |
|                     |                          | 3.9K                    | 1        |                                       | /                   | -        | OR ECEATEU3R3                |                                           | 1            |                                                  |
| R6055               | ERDS2TJ683               | 68K                     | ·1       |                                       |                     |          | OR BUBAIBUJRJ                | ELECTROLYTIC 25V 3.3                      |              | <u> </u>                                         |

| Ref. No.            | Part No.                     | . Part Name & Description                        | Pcs<br>/<br>Set | Remarks                               | Ref. No.      | Part No.       | Part Name      | & Description  | Pcs<br>/<br>Set | Remarks |
|---------------------|------------------------------|--------------------------------------------------|-----------------|---------------------------------------|---------------|----------------|----------------|----------------|-----------------|---------|
| 02020               | ECQM1H123KV                  | POLYESTER 50V 0.012                              | 1               |                                       | C2060         | ECKW1H102ZF5   | CERAMIC        | 50V 0.001      | 1               |         |
|                     | OR ECQM1H123KZ               |                                                  |                 |                                       |               |                |                | +80%-20%       |                 |         |
| C2021               | ECEA1HSR22                   | ELECTROLYTIC 50V 0.22                            | . 1             |                                       | C2061         | ECQV05334JZ    | POLYESTER      | 50V 0.33 +-5%  | 1               |         |
|                     | OR ECEA1HUR22                | ELECTROLYTIC 50V 0.22                            |                 |                                       |               | OR ECQV1H334JZ |                | 50V 0.33 +-5%  |                 |         |
| C2022               | ECEA1HS010                   | ELECTROLYTIC 50V 1                               | 1               |                                       | C2063         | ECKW1H102ZF5   | CERAMIC        | 50V 0.001      | 1               |         |
|                     | OR ECEA1HUO10                | ELECTROLYTIC 50V 1                               | _               |                                       | g00(1, 20(5)  | NOVGADO4 CONV  | OPDANTO        | +80%-20%       | 2               |         |
| C2023               | VCYSARC472NX                 | CERAMIC 16V 0.0047 +-30%                         | 1               |                                       | 02064,2065    | VCYSARC103NY   | CERAMIC        | 16V 0.01 +-30% | -               |         |
| C2024               | ECQM1H102KV                  | POLYESTER 50V 0.001                              | 1               |                                       | C2066         | ECQV05104JZ    | POLYESTER      | 50V 0.1 +-5%   | 1               |         |
|                     | OR ECQM1H102KZ               | POLYESTER 50V 0.001                              | _               |                                       |               | OR ECQB1H104JE |                | 50V 0.1 +-5%   |                 |         |
| C2025               | ECQM1H562KV                  | POLYESTER 50V 0.0056                             | 1               |                                       | 02067         | ECEAOJK470     | ELECTROLYTIC   |                | 1               |         |
| 0000/               | OR ECQM1H562KZ<br>ECEA1HSOR1 |                                                  | 4               |                                       | 02067         | ECKW1H222ZF5   | CERAMIC        | 6.3V 47        | 2               |         |
| 02026               | OR ECEA1HUOR1                | ELECTROLYTIC 50V 0.1                             | 1               |                                       | 02000,2009    | DORW (REZERE)  | OBRANIO        | +80%-20%       | ~               |         |
| C2027               | ECEAOJS470                   | ELECTROLYTIC 50V 0.1 ELECTROLYTIC 6.3V 47        | 1               |                                       | 03201         | ECEA1HS3R3     | ELECTROLYTIC   | 50V 3.3        | 1               |         |
| 02027               | OR ECEAOJU470                |                                                  |                 |                                       | 03201         | OR ECEATHU3R3  | ELECTROLYTIC   | 50V 3.3        | <u> </u>        |         |
| C2028               | ECQM1H562KV                  | POLYESTER 50V 0.0056                             | 1               |                                       | 03202         | ECEA1ES100     | ELECTROLYTIC   | 25V 10         | 1               |         |
| 02028               | OR ECQM1H562KZ               | POLYESTER 50V 0.0056                             | 1               |                                       | 0)202         | OR ECEA1EU100  | ELECTROLYTIC   | 25V 10         | <u> </u>        |         |
| C2029               | ECEA1HSOR1                   |                                                  | 1               |                                       | 03203,3204    | ECEA1HS2R2     | ELECTROLYTIC   | 50V 2.2        | 2               |         |
| 02029               | OR ECEA1HUOR1                | ELECTROLYTIC 50V 0.1 ELECTROLYTIC 50V 0.1        |                 |                                       | 0,20,,,,,,,,, | OR ECEA1HU2R2  | ELECTROLYTIC   | 50V 2.2        |                 |         |
| C2030               | ECQM1H562KV                  |                                                  | 1               |                                       | 03205         | ECEA1CS470     | ELECTROLYTIC   | 16V 47         | 1               |         |
| 02030               | OR ECQM1H562KZ               |                                                  | 1               |                                       | رقمرة         | OR ECEA1CU470  | ELECTROLYTIC   | 16V 47         | <del>-</del>    |         |
| C2031               | ECEAOJS101                   |                                                  | 1               |                                       | 03206         | ECKW1H103ZF5   | CERAMIC        | 50V 0.01       | 1               |         |
| ١٥٥٥٥               | OR ECEAOJU101                | ELECTROLYTIC 6.3V 100 ELECTROLYTIC 6.3V 100      | _               |                                       | 0,200         | OR OR          | ODMINITO .     | +80%-20%       |                 |         |
| C2032               | VCYSARC103NY                 | CERAMIC 16V 0.01 +-30%                           | 1               | · ·                                   |               | ECKW1H103ZV    | CERAMIC        | 50V 0.01       | -               |         |
| C2032<br>C2033,2034 | ECEAOJS470                   |                                                  | 2               |                                       | -             | DOM III 1032V  | DEIGHTIO       | +80%-20%       |                 |         |
| 02000,2034          | OR ECEAOJU470                | ELECTROLYTIC 6.3V 47 ELECTROLYTIC 6.3V 47        | - 2             |                                       | C4701,4702    | ECEA1CK330     | ELECTROLYTIC   | 16V 33         | 2               |         |
| C2035               | ECQV05104J2                  |                                                  | 1               |                                       | 04701,4702    | ECEA1AK330     | ELECTROLYTIC   | 107 33         | 1               |         |
| 02033               | OR ECQV1H104JZ               |                                                  |                 | ,                                     | C4704         | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 1.              |         |
| G2036               | ECQM1H472JV                  | POLYESTER 50V 0.1 +-5% POLYESTER 50V 0.0047 +-5% | 1               |                                       | C4705         | ECEA1HKOR1     | ELECTROLYTIC   | 50V 0.1        | 1               |         |
| 02000               | OR ECQM1H472JZ               |                                                  |                 |                                       | C4706         | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 1               |         |
| C2037               | ECQB1H563JH                  | POLYESTER 50V 0.0047 +-5%                        | 1               | ·                                     | C4707         | ECCW1H151J5    | CERAMIC        | 50V 150P +-5%  | 1               |         |
| 02057               | OR ECQV05563JZ               |                                                  |                 |                                       | 04707         | OR ECCW1H151K5 |                | 50V 150P       | i i             |         |
|                     | OR ECQV1H563JZ               |                                                  |                 | · · · · · · · · · · · · · · · · · · · | C4708         | ECKW1H102KB5   | CERAMIC        | 50V 0.001      | 1               |         |
| C2038               | ECQV05124JB                  | POLYESTER 50V 0.12 +-5%                          | 1               |                                       | C4709         | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 1               |         |
| 02030               | OR ECQV1H124JZ               |                                                  |                 |                                       | C4710         | ECEA1CK100     | ELECTROLYTIC   | 16V 10         | 1               |         |
| C2039               | ECEAOJS221                   | ELECTROLYTIC 6.3V 220                            | 1               |                                       | C4711,4712    | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 2               |         |
| 02037.              | OR ECEAOJU221                | ELECTROLYTIC 6.3V 220                            |                 |                                       | 04713,4714    | ECCW1H151J5    | CERAMIC        | 50V 150P +-5%  | 2               |         |
| C2040               | ECEAOJS470                   | ELECTROLYTIC 6.3V 47                             | 1               |                                       | ***********   | OR ECCW1H151K5 |                | 50V 150P       |                 |         |
| 02040               | OR ECEAOJU470                | ELECTROLYTIC 6.3V 47                             |                 |                                       | C4715         | ECEA1CK100     | ELECTROLYTIC   | 16V 10         | 1               |         |
| C2041               | VCYSARC472NX                 | CERAMIC 16V 0.0047 +-30%                         | 1               |                                       | C4716         | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 1               |         |
| C2042               | ECQM1H333KV                  | POLYESTER 50V 0.033                              | 1               |                                       | C4717         | ECEA1HKOR1     | ELECTROLYTIC   | 50V 0.1        | 1               |         |
| 1 2 2 4 2           | OR ECQM1H333KZ               | POLYESTER 50V 0.033                              |                 |                                       | C4718         | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 1               |         |
| C2043               | ECQV05274JZ                  | POLYESTER 50V 0.27 +-5%                          | 1               |                                       | C4719         | ECCW1H151J5    | CERAMIC        | 50V 150P +-5%  | 1               |         |
| 0.0045              | OR ECQV1H274JZ               |                                                  |                 |                                       | 177.7         | OR ECCW1H151K5 | CERAMIC        | 50V 150P       |                 |         |
| C2044               | ECQM1H272KV                  | POLYESTER 50V 0.0027                             | 1               |                                       | C4720         | ECKW1H102KB5   | CERAMIC        | 50V 0.001      | 1               |         |
| 0.0044              | OR ECQM1H272KZ               | POLYESTER 50V 0.0027                             | '               |                                       | C4721         | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        | 1               |         |
| C2045,2046          | ECEA1CS100                   | ELECTROLYTIC 16V 10                              | 2               |                                       | C4722         | ECEA1CK100     | ELECTROLYTIC   | 16V 10         | 1               |         |
|                     | OR ECEA1CU100                |                                                  | ٠.              |                                       | 04723,4724    | ECEA1EK3R3     | ELECTROLYTIC   | 25V 3.3        |                 |         |
| C2047               | ECEAOJS470                   | ELECTROLYTIC 6.3V 47                             | 1               |                                       | C4725,4726    | ECCW1H151J5    | CERAMIC        | 50V 150P +-5%  | 2               |         |
| ,                   | OR ECEAOJU470                | ELECTROLYTIC 6.3V 47                             | <u> </u>        |                                       |               | OR ECCW1H151K5 | CERAMIC        | 50V 150P       |                 |         |
| C2048               | VCYW1E393KX                  | CERAMIC 25V 0.039                                | 1               |                                       | C4727         | ECEA1CK100     | ELECTROLYTIC   | 16V 10         | 1               |         |
| C2049               | ECEAOJS470                   | ELECTROLYTIC 6.3V 47                             | 1               |                                       | 04728,4729    | VCYS0001       | MULTI FUNCTION | 0.01           | 2               |         |
|                     | OR ECEAOJU470                | ELECTROLYTIC 6.3V 47                             |                 |                                       | C4730         | ECCW1H82OJ5    | CERAMIC        | 50V 82P +-5%   | 1               |         |
| C2050               | ECQM1H333KV                  | POLYESTER 50V 0.033                              | 1               |                                       |               | OR ECCW1H82OK5 | CERAMIC        | 50V 82P        |                 |         |
|                     | OR ECQM1H333KZ               | POLYESTER 50V 0.033                              |                 |                                       | G4731         | ECEA1CS100     | ELECTROLYTIC   | 16V 10         | 1               |         |
| C2051               | VCYSARC332NX                 | CERAMIC 16V 0.0033 +-30%                         | 1               |                                       | C4732         | ECKW1H103ZF5   | CERAMIC        | 50V 0.01       | 1               |         |
| C2052               | VCYSARC103NY                 | CERAMIC 16V 0.01 +-30%                           | 1               |                                       |               |                |                | +80%-20%       |                 |         |
| C2053               | ECQV05334JZ                  | POLYESTER 50V 0.33 +-5%                          | 1               |                                       | C4733         | ECEA1CN100S    | ELECTROLYTIC   | 16V 10         | 1               |         |
|                     | OR ECQV1H334JZ               |                                                  |                 |                                       | C4734         | ECQB1H153JZ    | POLYESTER      | 50V 0.015 +-5% | 1               |         |
| C2054               | ECQM1H682KV                  | POLYESTER 50V 0.0068                             | 1               |                                       |               | OR ECQB1H153KZ | POLYESTER      | 50V 0.015      |                 |         |
|                     | OR ECQM1H682KZ               | POLYESTER 50V 0.0068                             |                 |                                       | C4735         | ECCW1H820J5    | CERAMIC        | 50V 82P +-5%   | 1               |         |
| C2055               | ECQM1H332KV                  | POLYESTER 50V 0.0033                             | 1               |                                       |               | OR ECCW1H820K5 | CERAMIC        | 50V 82P        |                 |         |
|                     | OR ECQM1H332KZ               | POLYESTER 50V 0.0033                             |                 |                                       | 04736         | ECEA1CS100     | ELECTROLYTIC   | 16V 10         | 1               |         |
| C2056               | ECQV05334JZ                  | POLYESTER 50V 0.33 +-5%                          | 1               |                                       | C4737         | ECKW1H103ZF5   | CERAMIC        | 50V 0.01       | 1               |         |
|                     | OR ECQV1H334JZ               | POLYESTER 50V 0.33 +-5%                          |                 |                                       |               |                |                | +80%-20%       |                 |         |
| C2057               | ECQM1H332KV                  | POLYESTER 50V-0.0033                             | -1              |                                       | C4738         | ECEA1CN100S    | ELECTROLYTIC   | 16V 10         | 1               |         |
|                     | OR ECQM1H332KZ               | POLYESTER 50V 0.0033                             |                 |                                       | C4740         | ECEA1AS330     | ELECTROLYTIC   | 10V 33         | 1               |         |
| C2058               | VCYSARC332NX                 | CERAMIC 16V 0.0033 +-30%                         | 1               |                                       |               | OR ECEA1AU330  | ELECTROLYTIC   | 10V 33         |                 |         |
|                     |                              |                                                  |                 | 1                                     | C4741,4742    | ECEA1CS330     | ELECTROLYTIC   | 16V 33         | 2               |         |
| C2059               | VCYSARH102KB                 | CERAMIC 50V 0.001                                | 1               | 1                                     | 047419474     | Dominos 550    | DEBOTICOLITIO  |                | _~              |         |

|               | ECEA1ES3R3<br>OR ECEA1EU3R3 | ELECTROLYTIC 25V 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | P6008                     |                               | VJPS0105                                   | 9P                                    | Set<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | ELECTROLYTIC 25V 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | P6010                     | -                             | VJPS0102                                   | 6P                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             | ECEA1EN4R7S                 | ELECTROLYTIC 25V 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 10010                     |                               | 10120102                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECEA1ES3R3                  | ELECTROLYTIC 25V 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\dashv$      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | ·                         | _                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             | OR ECEATEU3R3               | ELECTROLYTIC 25V 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | }                         | <u> </u>                      |                                            | avizmoir                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4             | ECEA1EN4R7S                 | ELECTROLYTIC 25V 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            | SWITCH                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECKW1H102KB5                | CERAMIC 50V 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | SW2001                    |                               | VSSS0034                                   | SP/LP/SLP SELECT                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | VCYW1C104MX                 | CERAMIC 16V 0.1 +-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECEA1CS100                  | ELECTROLYTIC 16V 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | OR ECEA1CU100               | ELECTROLYTIC 16V 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECKW1H103ZF5                | CERAMIC 50V 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | -                         |                               |                                            | MISCELLANEOUS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | +80%-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               | TMM7443                                    | CLAMPER                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECEAOJS221                  | ELECTROLYTIC 6.3V 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | T18S                                       | FASTENER                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | OR ECEAOJU221               | ELECTROLYTIC 6.3V 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | VEKS1890                                   | LUG ASS'Y                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\neg$        | ECKW1H103ZF5                | CERAMIC 50V 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | VJJS0069                                   | REAR JACK                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | +80%-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | _                             |                                            |                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +             | ECCW1H080CC                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\dashv$      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           | -                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +             | PCDUAGOOD11                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\rightarrow$ |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | -                         | $\vdash$                      | VALPOOOD                                   | OBAR DR                               | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           | _                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             | EUKWIH472ZF5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | -                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | <u> </u>                  | _                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\perp$       | ECKW1H103ZF5                | CERAMIC 50V 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | +80%-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | VCYW1C104MX                 | CERAMIC 16V 0.1 +-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            | SIGNAL PROCESS C.B.A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECKW1H222ZF5                | CERAMIC 50V 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | ÷80%-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            | TRANSISTORS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECKW1H103ZF5                | CERAMIC 50V 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Q3001,3002                |                               | 2SC2021M(Q,R,S                             |                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7             |                             | +80%-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECEA10S221                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | -                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 03006                     |                               |                                            |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -+            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 9,000                     | Ь.                            |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -+            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\rightarrow$ |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             | ECKW7H102ZF5.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | 03007,3008                | _                             |                                            |                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           | _                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _             | VCYW1C104MX                 | CERAMIC 16V 0.1 +-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Q3010                     |                               |                                            |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECCW1H47OJC5                | CERAMIC 50V 47P +-5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | OR                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | 2SB641(Q,R,S)                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| į             | ECKW1H103ZF5                | CERAMIC 50V 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Q4551                     |                               | 2SC2021M(Q,R,S                             | <u> </u>                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | -                           | +80%-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               | OR                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | ECKW1H103ZF5                | CERAMIC 50V 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | 2SD636(Q.R.S)                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 04552                     |                               |                                            |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 44224                     |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                         | 0/553                     |                               |                                            |                                       | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +             |                             | COTTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +             | VI OUROP/ COT               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | -                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | \$1000                    | -                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4             | VLQS66R101K                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | -                             | L                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _             | · · · · ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               | 220030(Q,K,S)                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\Box$        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | L                         |                               | <u> </u>                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | CRYSTAL OSCILLATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | VSXS0002                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | , ,                                        | DIODES                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | D3003                     |                               | EQA02-09-D                                 | ZENER                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               | OR MA4091H                                 | ZENER                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                               | OR RD10EB1                                 | ZENER                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7             | ,                           | PIN HEADERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | D3004                     |                               | MA165                                      |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\dashv$      | VJPS0016                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | OR 155119                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | D3005                     | _                             |                                            | ZENER                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               |                                            |                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\overline{}$ |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>               |                           | -                             |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | D2004                     | -                             |                                            | JENER                                 | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | טטטעע                     | _                             |                                            |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | L                         |                               |                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | 8P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | D7001                     | L                             |                                            |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | VJPS0107                    | 11P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                               | OR 1SS119                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [             | VJPS0100_                   | 4P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                  | D7003                     | L                             | MA4100H                                    | ZENER                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | 6P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | D7005                     |                               | MA165                                      |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           | _                             | OR 1SS119                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | D7006.7007                | -                             |                                            | ZENER                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                             | ECEAOJS221 OR ECEAOJU221 ECKW1H103ZF5 ECCW1H08OCC ECRHAC20D11 OR MCV03R200ER ECKW1H103ZF5 ECKW1H103ZF5 ECKW1H103ZF5  VCYW1C104MX ECKW1H222ZF5 ECEA1CS221 OR ECEA1CU221 VCYW1C104MX VCYSARC103NY ECKW1H102ZF5 ECEAOJK101 VCYW1C104MX ECKW1H103ZF5 ECEAOJK101 VCYW1C104MX ECKW1H103ZF5 ECEAOJK101 VCYW1C104MX ECKW1H103ZF5 VYLQS78F682K VLQS78F682K | BCEAOJS221   BLECTROLYTIC   6.3V   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220 | ECEAOJS221   ELECTROLYTIC | ECEAGUS221   ELECTROLYTIC | ELECTROLYTIC   6.3V   220   1 | RCEAOUS221   RLECTROLYTIC   6.3V   220   1 | DEBAUSE21   BLECTROLYTIC 6.3V 220   1 | SEMANTESISE  NUMBERS   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME   SAME | SEASTRONG   SEASTRONG   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seastrong   Seas |

| Ret. No.   | L        | Part No.        | Part Name & De     | scription |      | Pcs<br>/<br>Set | Remarks |
|------------|----------|-----------------|--------------------|-----------|------|-----------------|---------|
|            |          |                 |                    |           |      |                 |         |
|            |          |                 |                    |           |      |                 |         |
|            |          |                 | RESISTORS          |           |      |                 |         |
| R3001      |          | EVNE4AAOOB23    | VARIABLE           |           | 2K   | 1               |         |
| R3002      |          | ERDS2TJ821      |                    |           | 820  | 1               |         |
| R3003      |          | ERDS2TJ122      |                    |           | 1.2K | 1               |         |
| R3004      |          | ERDS2TJ222      |                    |           | 2.2K | 1               |         |
| R3005      |          | ERDS2TJ681      |                    |           | 680  | 1               |         |
| R3006      |          | ERDS2TJ820      |                    |           | 82   | 1               |         |
| R3015      | _        | ERDS2TJ681      |                    |           | 680  | 1               |         |
| R3016      |          | EVNE4AAOOB13    | VARIABLE           |           | 1K   | 1               |         |
| R3017      | _        | ERDS2TJ561      |                    |           | 560  | 1               |         |
| R3018      |          | ERDS2TJ392      |                    |           | 3.9K | 1               |         |
| R3019      |          | ERDS2TJ333      |                    |           | 33K  | 1               |         |
| R3020      |          | ERDS2TJ473      |                    |           | 47K  | 1               |         |
| 3030,3031  | _        | ERDS2TJ103      |                    |           | 10K  | 2               |         |
| 3034       | _        | ERDS2TJ471      |                    |           | 470  | 1               |         |
| 13035      | _        | ERDS2TJ680      |                    |           | 68   | 1               |         |
| 3036       |          | ERDS2TJ102      |                    |           | 1K   | 1               |         |
| 3037       | _        | ERDS2TJ561      |                    |           | 560  | 1               |         |
| 3040       | _        | ERDS2TJ153      |                    |           | 15K  | 1               |         |
| R3041      | <u> </u> | ERDS2TJ563      |                    |           | 56K  | 1               |         |
| 3042       |          | ERDS2TJ223      |                    |           | 22K  | 1               |         |
| 3043-3045  | ļ        | ERDS2TJ473      |                    |           | 47K  | 3               |         |
| 3046       | Ŀ        | ERDS2TJ333      |                    |           | 33K  | 1               |         |
| 3048       | L        | ERDS2TJ682      |                    |           | 6.8K | 1               |         |
| 3049,3050  | _        | ERDS2TJ332      | <u></u>            |           | 3.3K | 2               |         |
| 3054       |          | ERDS2TJ562      |                    |           | 5.6K | 1               |         |
| 3055       |          | ERDS2TJ101      |                    |           | 100  | 1               |         |
| 13056      | L        | ERDS2TJ681      |                    |           | 680  | 1               |         |
| 13060      |          | ERDS2TJ563      |                    |           | 56K  | 1               |         |
| R3061      | <u> </u> | ERDS2TJ102      |                    |           | 1 K  | 1               |         |
| 3064       | _        | ERDS2TJ102      |                    |           | 1K   | 1               |         |
| R4551,4552 | L.,      | ERDS2TJ223      |                    |           | 22K  | 2               |         |
| 14553      |          | ERDS2TJ333      |                    |           | 33K  | 1               |         |
| 14554,4555 |          | ERDS2TJ472      |                    |           | 4.7K | 2               |         |
| R7001      | _        | ERDS2TJ273      | ·                  |           | 27K  | 1               |         |
| R7002      |          | ERDS2TJ222      |                    |           | 2.2K | 1               |         |
| R7003      |          | ERDS2TJ183      |                    |           | 18K  | 1               |         |
| R7004      |          | AVNE4AAOB102    | VARIABLE           |           | 1 K  | 1               |         |
|            | _        | OR EVNEAAAOOB13 | VARIABLE           |           | 1 K  |                 |         |
| R7005      | _        | ERDS2TJ681      |                    |           | 680  | 1               |         |
| R7006      |          | EROS2TKG6802    | PRECISION METAL F1 | LM 681    | 4-2% | 1               |         |
| 7008       |          | EROS2TKG1203    | PRECISION METAL FI | LM 1201   | 4-2% | 1               |         |
| 7011       |          | ERDS2TJ103      |                    |           | 10K  | 1               |         |
| 7012       |          | ERDS2TJ473      |                    |           | 47K  | 1               |         |
| 7013       | Ĺ        | ERDS2TJ104      |                    |           | 100K | 1               |         |
| 7016       | Ľ        | ERDS2TJ393      |                    |           | 39K  | 1               |         |
| 7017,7018  | L        | ERDS2TJ104      |                    |           | 100K | 2               |         |
| 7019       | L        | ERDS1TJ151      |                    | 1/2W      | 150  | 1               |         |
| 7020       | Ŀ        | ERDS2TJ103      |                    |           | 10K  | 1.              |         |
| 7021       |          | ERDS2TJ153      |                    |           | 15K  | 1               |         |
| 7022,7023  |          | ERDS2TJ221      |                    |           | 220  | 2               |         |
| 7026       |          | ERDS2TJ151      |                    |           | 150  | 1               |         |
| 7027       |          | ERDS1TJ221      |                    | 1/2W      | 220  | 1               |         |
| 7028       |          | ERDS2TJ101      |                    |           | 100  | 1               |         |
| 7031       |          | ERDS2TJ223      |                    |           | 22K  | 1               |         |
|            | L.       |                 |                    |           |      |                 |         |
|            | Ī        |                 |                    |           |      |                 |         |
|            |          |                 |                    |           |      |                 |         |
|            |          |                 | CAPACITORS         |           |      |                 |         |
| 3001       |          | VCYSARH820KB    | CERAMIC            | 50V       | 82P  | 1               |         |
| 3002       | -        | VCYSARH331KB.   | CERAMIC            | 50V       | 330P | 1               |         |
| 3003       | Ι        | VCYSARC103NY    |                    | / 0.01    |      | 1               |         |
| 3004       | T        | VCYSARH820KB    | CERAMIC            | 50V       | 82P  | 1               |         |
| 3016       | _        | VCYSARC103NY    |                    | 7 0.01    |      | 1               |         |
| 3027       | _        | VCYSARC103NY    |                    | 7 0.01    |      | 1               |         |
| 3028       |          | ECEA1CS470      | ELECTROLYTIC       | 16V       | 47   | 1               |         |
|            | -        | OR ECEA1CU470   | ELECTROLYTIC       | 16V       | 47   |                 |         |

| Ref. No.       | Part No.       | Part Name               | & Description              | Pcs<br>/<br>Set | Remarks |
|----------------|----------------|-------------------------|----------------------------|-----------------|---------|
| 03029          | ECEA1JS471     | ELECTROLYTIC            | 63V 470                    | 1               |         |
|                | OR ECEA1JU471  | ELECTROLYTIC .          | 63V 470                    |                 |         |
| C3030          | ECKF1H103ZV    | CERAMIC                 | 50V 0.01                   | 1               |         |
| 02021          | EGEAOTS (GO    | DI POMPOT VITO          | +80%-20%                   |                 |         |
| C3031          | VCYSARH102KB   | ELECTROLYTIC<br>CERAMIC | 6.3V 47<br>50V 0.001       | 1               |         |
| C3040<br>C3041 | VCYSARC103NY   | CERAMIC                 | 16V 0.01 +-30%             | 1               |         |
| C3042          | ECEA1CN100S    | ELECTROLYTIC            | 16V 10                     | 1               |         |
| 03043,3044     | VCYSARC103NY   | CERAMIC                 | 16V 0.01 +-30%             | 2               | -       |
| C4551          | ECEA1CS100     | ELECTROLYTIC            | 16V 10                     | 1               |         |
|                | OR ECEA1CU100  | ELECTROLYTIC            | 16V 10                     |                 |         |
| C4555          | VCYW1E153KX    | CERAMIC                 | 25V 0.015                  | 1               |         |
| C4556          | ECKW1H472ZF5   | CERAMIC                 | 50V 0.0047                 | 1               |         |
|                |                |                         | +80%-20%                   | •               | _       |
| C4557          | ECQB1H333KZ    | POLYESTER               | 50V 0.033                  | 1               |         |
|                | OR ECQV05333JZ | POLYESTER               | 50V 0.033 +-5%             |                 |         |
| C4558          | VCYSARC103NY   | CERAMIC                 | 16V 0.01 +-30%             | 1               |         |
| C4559          | ECEA1HN4R7S    | ELECTROLYTIC            | 50V 4.7                    | 1               |         |
| C7001          | ECEA1ES220     | ELECTROLYTIC            | 25V 22                     | 1               |         |
|                | OR ECEA1EU220  | ELECTROLYTIC            | 25V 22                     |                 |         |
| C7002          | ECEA1ES4R7     | ELECTROLYTIC            | 25V 4.7                    | 1               |         |
|                | OR ECEA1EU4R7  | ELECTROLYTIC            | 25V 4.7                    |                 |         |
| C7003          | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 1               |         |
|                |                |                         | +80%-20%                   |                 |         |
| C7004          | ECQB1H103KZ    | POLYESTER               | 50V 0.01                   | 1               |         |
|                | OR ECQM1H103KV | POLYESTER               | 50V 0.01                   |                 |         |
| 00000          | OR ECQM1H103KZ | POLYESTER               | 50V 0.01                   |                 |         |
| C7005          | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 1               |         |
| C7007          | ECQB1H333JZ    | POLYESTER               | +80%-20%<br>50V 0.033 +-5% |                 |         |
| 07007          | OR ECQM1H333KV | POLYESTER               | 50V 0.033                  |                 |         |
| C7008          | ECEA1HS010     | ELECTROLYTIC            | 50V 1                      | 1               |         |
| 07000          | OR ECEA1HUO10  | ELECTROLYTIC            | 50V 1                      |                 |         |
| C7009          | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 1               |         |
| -,,            |                |                         | +80%-20%                   | •               |         |
| C7010          | ECEA1CU102     | ELECTROLYTIC            | 16V 1000                   | 1               |         |
| C7012          | ECEA1CS470     | ELECTROLYTIC            | 16V 47                     | 1               |         |
|                | OR ECEA1CU470  | ELECTROLYTIC            | 16V 47                     |                 |         |
| C7013          | ECEA50ZR1      | ELECTROLYTIC            | 50V 0.1                    | 1               |         |
| C7014          | ECEAOJS102     | ELECTROLYTIC            | 6.3V 1000                  | 1               |         |
|                | OR ECEAOJU102  | ELECTROLYTIC            | 6.3V 1000                  |                 |         |
| C7016          | ECEA1ES220     | ELECTROLYTIC            | 25V 22                     | 1               |         |
|                | OR ECEA1EU220  | ELECTROLYTIC            | 25V 22                     |                 |         |
| C7017          | ECEA1CS221     | ELECTROLYTIC            | 16V 220                    | 1               |         |
|                | OR ECEA1CU221  | ELECTROLYTIC            | 16V 220                    |                 |         |
| C7020          | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 1               |         |
|                |                |                         | +80%-20%                   |                 |         |
| C7021          | ECQB1H273KZ    | POLYESTER               | 50V 0.027                  | 1_              |         |
| 0000-          | OR ECQM1H273KV | POLYESTER               | 50V 0.027                  |                 |         |
| C7023          | ECEAOJS221     | ELECTROLYTIC            | 6.3V 220                   | 1               |         |
| C7024          | OR ECEAOJU221  | ELECTROLYTIC            | 6.3V 220                   |                 |         |
|                | MCCW1H360JC    | CERAMIC                 | 50V 36P +-5%               | 1               |         |
| C7026          | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 1               |         |
| C7027          | ECEA1CS100     | ELECTROLYTIC            | +80%-20%<br>16V 10         | 1               |         |
| -10~1          | OR ECEA1CU100  | ELECTROLYTIC            | 16V 10                     |                 |         |
| C7028          | ECEA1HS010     | ELECTROLYTIC            | 50V 1                      | 1               |         |
| -              | OR ECEATHUO10  | ELECTROLYTIC            | 50V 1                      |                 |         |
| 07029,7030     | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 2               |         |
| ,              |                |                         | +80%-20%                   |                 |         |
| C7033          | ECKW1H103ZF5   | CERAMIC                 | 50V 0.01                   | 1               |         |
|                |                |                         | +80%-20%                   |                 |         |
|                |                |                         |                            |                 |         |
|                |                |                         |                            |                 |         |
|                |                |                         |                            |                 |         |
|                |                | COILS                   |                            |                 |         |
| L3001          | VLQSA04R820K   |                         | 82                         | 1               |         |
| L3002          | VLQS66R101K    | <u></u>                 | 100                        | 1               |         |
| L3012          | VLQS66R101K    |                         | 100                        | _1_             |         |
| L4551          | VLQS66F221K    |                         | 220                        | 1               |         |

| Ref. No.   | Part No.                                         | Part Name & Description        | Pcs<br>/<br>Set | Remarks                                          | Ref. No.    |     | Part No.       | Part Name    | & Description | Pc:<br>/<br>Set | Remarks      |
|------------|--------------------------------------------------|--------------------------------|-----------------|--------------------------------------------------|-------------|-----|----------------|--------------|---------------|-----------------|--------------|
| 7001,7002  | VLQSL01101K                                      | 100                            | 2               |                                                  |             |     |                | CAPACITORS   |               |                 |              |
| 7003       | VLQS66R470K                                      | 47                             | 1               |                                                  | 03501       |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       | 1 1             | 1            |
| 7004       | VLQS66R330K                                      | . 33                           | 1               |                                                  |             |     | OR             |              | +80%-20       | Z               |              |
|            |                                                  |                                |                 |                                                  |             |     | ECXZ1H103ZV    | CERAMIC      | 50V 0.0       | 1               |              |
|            |                                                  |                                |                 |                                                  |             |     |                |              | +80%-20       |                 | 1            |
|            |                                                  |                                |                 |                                                  | 03502       |     | ECCZ1H180JC    | CERAMIC      | 50V 18P +-5   | % 1             | 1            |
|            |                                                  | TRANSFORMER                    |                 |                                                  |             |     | OR ECCZ1H18OJC | CERAMIC      | 50V 18P +-5   | 76              | <u> </u>     |
| r4551      | ELM7Q019E                                        |                                | 1               |                                                  | C3504       |     | VCYD1C104MX    | CERAMIC      | 16V 0.1 +-20  | 7 1             |              |
|            |                                                  |                                |                 |                                                  | C3505       |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       | 1 1             | 1            |
|            |                                                  |                                |                 |                                                  |             |     | OR ·           |              | +80%-20       | Z               |              |
|            |                                                  |                                |                 |                                                  |             |     | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       | 1               |              |
|            |                                                  | PRINTED CIRCUIT BOARD ASSEMBLY |                 |                                                  |             | П   |                |              | +80%-20       | 76              |              |
|            | VEPS0337A                                        | LUMINANCE C.B.A                | 1               |                                                  | C3506       |     | VCYD1C104MX    | CERAMIC      | 16V 0.1 +-20  | % 1             | 1            |
|            | VEPS0508B1                                       | HEAD AMP UNIT                  | 1               |                                                  | 03507       |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       | 1 1             | 1            |
|            | VEPS0806A                                        | CHROMINANCE C.B.A              | 1               |                                                  | 1221        |     | OR             |              | +80%-20       | +               |              |
|            |                                                  | TV DEMODULATOR UNIT            | 1               |                                                  |             | -   | ECK21H103ZV    | CERAMIC      | 50V 0.0       |                 | +            |
|            | VEQS0257                                         | IV DEMODULATOR UNII            |                 |                                                  |             |     | 2012/11/0524   | OLIMITO      | +80%-20       | -               |              |
|            | 1                                                |                                |                 |                                                  | 02500 2500  | -   | ECEA1CK470     | ELECTROLYTIC |               | -+-             | , —          |
|            |                                                  |                                |                 |                                                  | 03508,3509  | _   |                |              |               |                 |              |
|            |                                                  |                                |                 |                                                  | 03510       | -   | ECEA1HK010     | ELECTROLYTIC | 50V           | 1) 1            |              |
|            |                                                  | MISCELLANEOUS                  |                 |                                                  | 03511       |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       |                 | 1            |
|            | T18S                                             | FASTENER                       | _ 2             |                                                  |             | _   | OR             |              | +80%-20       |                 |              |
|            | VEKS1793                                         | LUG ASS'Y                      | 1_              |                                                  |             |     | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       |                 |              |
|            | VMAS0953                                         | SIGNAL PROCESS C.B.A ANGLE     | 1               |                                                  |             |     |                |              | +80%-20       | Z               |              |
|            | VMTS0035                                         | CUSHION                        | 7               |                                                  | C3512       | _ [ | ECCZ1H270JC    | CERAMIC      | 50V 27P +-5   | 7 1             | 1            |
|            | VMXS0366                                         | SPACER                         | 2               |                                                  |             |     | OR ECCZ1H270JC | CERAMIC      | 50V 27P +-5   | 2               |              |
|            | VZFS0006                                         | CLAMPER                        | 1               |                                                  | C3513       | _   | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       | 1 1             | 1            |
|            |                                                  |                                |                 |                                                  |             |     | OR -           |              | +80%-20       | 7.              |              |
|            |                                                  |                                |                 |                                                  |             |     | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       |                 |              |
|            |                                                  |                                |                 |                                                  |             | -   |                |              | +80%-20       | _               |              |
|            |                                                  |                                | -               |                                                  | C3514       | -   | ECCZ1H330JC    | CERAMIC      | 50V 33P +-5   |                 | ,            |
|            |                                                  |                                |                 |                                                  | 95514       |     | OR ECCZ1H330JC |              | 50V 33P +-5   |                 |              |
| -          |                                                  | HEAD AND HAVE                  | <del>-</del> i  |                                                  | C351E 2516  | -   |                | ELECTROLYTIC |               | _               | ,            |
|            | ļ                                                | HEAD AMP UNIT                  |                 |                                                  | 03515,3516  |     | ECEA1HK010     |              |               |                 |              |
|            | <del> </del>                                     |                                |                 |                                                  | C3517       |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       |                 |              |
|            | ļ                                                | INTEGRATED CIRCUITS            |                 |                                                  | <b>—</b>    |     | OR             |              | +80%-20       | _               | +            |
| C3501      | AN3220K                                          |                                | _1              |                                                  | <b></b>     |     | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       | _               |              |
| 03502      | AN3310K                                          |                                | 1               | ·                                                | <b> </b>    |     |                |              | +80%-20       |                 |              |
|            |                                                  |                                |                 |                                                  | C3518       |     | ECCW1H15OJC    | CERAMIC      | 50V 15P +-5   | Z 1             | 1            |
|            |                                                  |                                |                 |                                                  | L           |     | OR ECCW1H150JC | CERAMIC      | 50V 15P +-5   | 7               |              |
|            |                                                  |                                | i               |                                                  |             |     | OR ECCZ1H15OJC | CERAMIC      | _50V_15P +-5  | 7.              |              |
|            |                                                  | TRANSISTORS                    |                 |                                                  |             |     | OR ECCZ1H150JC | CERAMIC      | 50V 15P +-5   | 7               |              |
| 23502      | 2502206                                          |                                | 1               |                                                  | 03519       |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       | 1 1             | 1            |
| 23503,3504 | 2SC2021M(Q,R,S                                   | )                              | 2               |                                                  |             |     | OR             |              | +80%-20       |                 |              |
| 2505,5504  | OR                                               |                                |                 |                                                  |             | _   | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       |                 |              |
|            |                                                  |                                |                 |                                                  |             | _   |                |              | +80%-20       |                 |              |
|            | 2SD636(Q,R,S)                                    |                                |                 |                                                  | G2520       | _   | EGGETHESON TO  | CEDANTO      |               | -               | . +          |
|            |                                                  |                                |                 | <del>                                     </del> | C3520       | -   | OR ECCZ1H330JC | CERAMIC      | 50V 33P +-5   | 1               |              |
|            |                                                  |                                |                 |                                                  | 02504       |     |                |              | 50V 33P +-5   |                 | .+           |
|            | +                                                |                                |                 |                                                  | 03521       | _   | ECEA1HK010     | ELECTROLYTIC |               | 1 1             |              |
|            | <del>                                     </del> | RESISTORS                      |                 | <u> </u>                                         | 03522,3523  | _   | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       |                 | <u> </u>     |
| 3501       | ERDS2TJ681                                       | 680                            | 1_              |                                                  | <b> </b>    | _   | OR             |              | +80%-20       | _               | <del> </del> |
| 3502       | ERDS2TJ122                                       | 1.2K                           | 1_              |                                                  | ·           | _   | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       | -1              |              |
| 3503       | ERDS2TJ151                                       | 150                            | 1_              |                                                  |             | _   |                |              | +80%-20       | Z               |              |
| 3504       | ERDS2TJ222                                       | 2.2K                           | _1_             |                                                  | C3524       | _   | ECEA1CK470     | ELECTROLYTIC | 16V 4         | 7 1             |              |
| 3505-3508  | ERDS2TJ100                                       | 10                             | 4               |                                                  | C3525       |     | ECKZ1H103ZF5   | CERAMIC      | 50V0.0        | 1 7             | ·            |
| 3509-3512  | ERDS2TJ102                                       | 1K                             | 4               |                                                  |             | _   | OR             |              | +80%-20       | Z               |              |
| 3513       | ERDS2TJ681                                       | 680                            | 1.              |                                                  |             |     | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       |                 |              |
| 3514       | ERDS2TJ821                                       | 820                            | 1               |                                                  |             |     |                |              | +80%-20       |                 |              |
| 3515       | ERDS2TJ561                                       | 560                            | 1               |                                                  | C3526       | _   | ECCZ1H220JC    | CERAMIC      | 50V 22P +-5   |                 |              |
| 3516       | ERDS2TJ821                                       | 820                            | 1               |                                                  |             |     | OR ECCZ1H22OJC |              | 50V 22P +-5   |                 |              |
| 3517       | ERDS2TJ152                                       | 1.5K                           | 1               |                                                  | 03527       |     | ECCZ1H47OJC    | CERAMIC      | 50V 47P +-5   | _               |              |
| 3518       | ERDS2TJ222                                       |                                |                 |                                                  | 1-2-27      | -   | OR ECCZ1H47OJC |              | 50V 47P +-5   | _               |              |
|            |                                                  | 2.2K                           | 1 ·             | <u> </u>                                         | C3528       |     | ECEA1HKO10     | ELECTROLYTIC |               | 1 1             |              |
| 3519,3520  | ERDS2TJ102                                       | 1 <u>K</u>                     | 2               | <u> </u>                                         | <del></del> | _   |                |              |               |                 |              |
| 3521       | ERDS2TJ271                                       | 270                            | 1               | <u> </u>                                         | 03529       | _   | ECCW1H820JC    | CERAMIC      | 50V 82P +-5   | -+              | <u> </u>     |
| 3522       | ERDS2TJ122                                       | 1.2K                           | 1               | ·                                                |             |     | OR ECCW1H82OJC |              | 50V 82P +-5   | -               |              |
| 3523       | ERDS2TJ102                                       | 1K                             | 1               |                                                  | 03530       | _   | ECKW1H102KB5   | CERAMIC      | 50V 0.00      | -+              |              |
| 3524       | ERDS2TJ223                                       | 22K                            | 1               |                                                  | C3532,3533  |     | ECKZ1H103ZF5   | CERAMIC      | 50V 0.0       | 1 2             | 2            |
| 3525       | ERDS2TJ683                                       | . 68к                          | . 1             |                                                  |             |     | OR             |              | +80%-20       | 2               |              |
| 3526       | ERDS2TJ392                                       | 3.9K                           | 1               |                                                  |             | _   | ECKZ1H103ZV    | CERAMIC      | 50V 0.0       | 1               |              |
| 3527 .     | ERDS2TJ223                                       | 22K                            | 1               |                                                  |             |     |                |              | +80%-20       | 8               | : -          |
|            |                                                  |                                |                 |                                                  | 03534       |     | ECKZ1H331KB    | CERAMIC      | 50V 330       |                 |              |
|            |                                                  |                                |                 |                                                  |             |     |                |              |               |                 |              |

| Ref. No.            |          | Part No.                       | Part Name & Description         | Pcs<br>/<br>Set | Remarks | Ref. No.       |           | Part No.                 | Part Name & Description  | Pcs<br>/<br>Set                                  | Remarks |
|---------------------|----------|--------------------------------|---------------------------------|-----------------|---------|----------------|-----------|--------------------------|--------------------------|--------------------------------------------------|---------|
|                     |          |                                |                                 |                 |         | D1008          |           | MA165                    |                          | 1                                                |         |
|                     |          |                                |                                 |                 |         | D1009          | 仓         | MA167                    |                          | 1                                                |         |
|                     | <u></u>  |                                |                                 |                 |         | D1010          | _         | D1K40                    |                          | 1                                                |         |
|                     |          |                                | COILS                           |                 |         |                |           | OR ERB43-04              |                          |                                                  |         |
| L3501<br>L3502      | -        | VLQELO5R330K<br>VLQELO5R101K   | 33<br>100                       | 1               | •       | D1011<br>D1012 | -         | MA651<br>D1K40           |                          | 1                                                |         |
| L3503-3506          |          | VEKS1989                       | 2                               | 4               |         | DIOIR          | $\vdash$  | OR ERB43-04              |                          | <u>'</u>                                         |         |
| L3507,3508          | +        | VLQELO5R101K                   | 100                             | 2               |         | D1013          | $\vdash$  | MA4068M                  | ZENER                    | 1                                                |         |
| L3509               |          | VLQELO5R470K                   | 47                              | 1               |         | D1014          | H         | MA165                    |                          | 1                                                |         |
| L3510               |          | VLQELO5R220K                   | 22                              | 1               |         | D1015          |           | ERB81-004                |                          | 1                                                |         |
| L3511               |          | VLQELO5R330K                   | 33                              | 1               |         | D1019          |           | MA4051M                  | ZENER                    | 1                                                |         |
| L3512               |          | VLQELO5R181K                   | · 180                           | 1               |         | D1020          |           | MA165                    |                          | 1                                                |         |
|                     | -        |                                |                                 |                 |         | D1021          | Δ         | MA4051M                  | ZENER                    | ************                                     |         |
|                     |          |                                |                                 |                 |         | D1022          |           | MA4130L                  | ZENER                    | 1                                                |         |
|                     |          |                                | n-v                             |                 |         | D1023,1024     | -         | MA165                    | GENVER                   | 2                                                | _       |
| P3501               |          | VJPS0039                       | PIN HEADER 8P                   | 1               |         | D1026          |           | MA4051<br>OR RD5.1EB     | ZENER<br>ZENER           | 1                                                |         |
| 13301               |          | V0F30039                       | Or .                            | <u> </u>        |         | D1030          | Н         | D1K40                    | SEMER                    | 1                                                |         |
|                     |          |                                |                                 |                 |         | 21000          |           | OR ERB43-04              |                          | <del>                                     </del> |         |
|                     |          |                                |                                 |                 |         | D1031,1032     |           | MA165                    |                          | 2                                                |         |
|                     |          |                                | MISCELLANEOUS                   |                 |         | D1033          |           | MA4150L                  |                          | 1                                                |         |
|                     |          | VJHS0045                       | PACK PIN                        | 3               |         | D6001-6004     |           | MA165                    |                          | 4                                                |         |
|                     | Ш        | VSCS0410                       | SHIELD CASE                     | . 1             |         |                |           | OR 1SS119                |                          | <u> </u>                                         |         |
|                     |          | VSCS0428                       | SHIELD CASE                     | 1               |         | D6005          |           | RD5.6EB2                 | ZENER                    | 1                                                |         |
|                     | Н        | VSCS0430                       | SHIELD CASE                     | 1               |         | D6221          | H         | MA165                    |                          | 1                                                | ·       |
|                     | -        | VSCS0572                       | SHIELD CASE                     | 1               |         |                | ├         | OR 1SS119                |                          |                                                  |         |
|                     | H        |                                |                                 |                 |         |                | $\vdash$  |                          |                          |                                                  |         |
|                     | H        |                                |                                 |                 |         |                | -         |                          |                          |                                                  |         |
|                     |          |                                |                                 |                 |         |                |           |                          | RESISTORS                |                                                  |         |
|                     |          |                                |                                 |                 |         | R1001          |           | ERDS2TJ334               | 330K                     | 1                                                |         |
|                     |          |                                | POWER SUPPLY/SUB SYSTEM CONTROL |                 |         | R1002          | ⚠         | ERG3SJ333                | METAL OXIDE 3W 33K       | 1                                                |         |
|                     |          |                                | C.B.A                           |                 |         |                | ⚠         | OR KRG38J333             | METAL OXIDE 3W 33K       |                                                  |         |
|                     | -        |                                |                                 |                 |         | R1003          |           | ERD25FJ6R2               | 6.2                      |                                                  |         |
|                     | Н        |                                | INTEGRATED CIRCUITS             |                 |         | R1004          |           | ERD25FJ222               | 2.2K                     |                                                  |         |
| IC1001              |          | TLP521-1-YG                    |                                 | 1               |         | R1005          |           | ERD25FJ152<br>ERD25FJ4R7 | 1.5K                     | 1000000                                          | -       |
| 106003              | H        | OR ON3111<br>MB88201-128L      |                                 |                 |         | R1006<br>R1008 |           | ERD25FJ472               | 4.7<br>4.7K              |                                                  |         |
| 10000               |          | MD00201-120L                   | ,                               |                 |         | R1009          | 4.4.3     | ERDS2TJ471               | 470                      |                                                  |         |
|                     | П        |                                |                                 |                 |         | R1010          | Æ         | ERD25FJ560               | 56                       |                                                  |         |
|                     |          |                                |                                 |                 |         | R1011          | ********* | ERD25FJ330               | 33                       |                                                  |         |
|                     |          |                                | TRANSISTORS                     |                 |         | R1012          |           | ERDS2TJ331               | 330                      |                                                  |         |
| Q1001               | ⚠        | 2SD1244                        |                                 | 1_              |         | R1013          |           | ERDS2TJ104               | 100K                     |                                                  |         |
| Q1002               | ļ        | 2SB976                         |                                 | 1               |         | R1017          | -         | ERDS2TJ221               | 220                      | -                                                |         |
| Q1003<br>Q1004      | Δ        | 2SB642                         |                                 | 1               |         | R1018          | H         | ERDS2TJ562               | 5.6K                     |                                                  |         |
| Q1004<br>Q1006      | 213      | 2SC3577<br>2SD1643             |                                 | 1               |         | R1019<br>R1020 | $\vdash$  | ERDS2TJ103<br>ERDS2TJ562 | 10K                      | -                                                |         |
| Q1007               | Н        | 2SD637                         |                                 | 1               |         | R1020          | Н         | ERDS2TJ221               | 220                      |                                                  |         |
| Q1009               | Н        | 2SD636(Q,R,S)                  |                                 | 1               |         | R1022          | Н         | ERDS2TJ3R3               | 3.3                      | +                                                |         |
| Q1010               | Ħ        | 2SB642                         |                                 | 1               |         | R1023          | A         | ERDS1FJ1RO               | 1/2W 1                   |                                                  |         |
| Q1011               |          | 2SB644                         |                                 | 1               |         | R1025          |           | ERC12ZGK275              | SOLID 1/2W 2.7M +=10%    |                                                  |         |
| Q1012               |          | 2SB642                         |                                 | 1               |         | R1026          |           | ERDS2TJ472               | 4.7K                     | 1                                                |         |
| Q1013               | П        | 2802594                        |                                 | 1               |         | R1027,1028     |           | ERDS2TJ104               | 100K                     | _                                                |         |
| Q1014               |          | 2SD1458                        |                                 | 1               | ·       | R1029          |           | ERDS2TJ103               | 10K                      | *********                                        |         |
| Q1015,1016<br>Q6001 | 1        | 2SD639<br>2SB641(Q,R,S)        |                                 | . 1             |         | R1032          | +         | ERF-2AK2R2               | METAL OXIDE 2W 2.2 +-10% | · · · · · · · · · · · · · · · · · · ·            |         |
| Q6001<br>Q6002      |          | 2SB641(Q,R,S)<br>2SD636(Q,R,S) |                                 | 1               |         | R1033<br>R1034 | Δ         | ERD25FJ472               | 2.7%                     | ***********                                      |         |
| Q6002<br>Q6008,6009 | 1 1      | 2SD636(Q,R,S)                  |                                 | 2               |         | R1034<br>R1035 | A         | ERDS2TJ334<br>ERD25FJ150 | 330K                     | 1                                                |         |
| Q6019               | $\vdash$ | 2SD636(Q,R,S)                  |                                 | 1               |         | R1036          | -         | ERD25FJ220               | 22                       | 4                                                |         |
| Q6221               | H        | 2SD636(Q,R,S)                  | : .                             | 1               |         | R1037          | 443       | ERDS2TJ562               | 5.6K                     |                                                  |         |
|                     | П        |                                |                                 |                 |         | R1038          |           | ERDS2TJ471               | 470                      | _                                                |         |
|                     |          | •                              |                                 |                 |         | R1039          | ΔŁ        | EHD25FJ330               | 33                       | *********                                        |         |
|                     |          |                                |                                 |                 |         | R1040          |           | ERDS2TJ333               | 33K                      | 1                                                |         |
|                     |          |                                | DIODES                          |                 |         | R1041,1042     |           | ERD2FCGP121              | 120 F-2%                 | 2                                                |         |
| D1001               | +        | S1VB60S                        |                                 | - 1             |         |                | 1         | OR ERD2FCG121            | 120 +-2%                 |                                                  |         |
| Danco               |          | OR 1J4B41                      |                                 |                 |         | R1043          | _         | ERDS2TJ822               | 8.2K                     |                                                  | ļ       |
| D1002<br>D1003-1005 |          | ERB43+08<br>MA165              |                                 | 1 2             |         | R1044          | _         | ERDS2TJ560               | 56                       |                                                  |         |
| D1003=1005          | -        | MA4130H                        | ZENER                           | 3               |         | R1045          |           | ERDS2TJ822               | 8.2K                     |                                                  | •       |
| D1008               | _        | MA170                          |                                 | 1               |         | R1046<br>R1050 | _         | ERDS2TJ274<br>ERDS2TJ274 | 270K                     |                                                  | -       |
|                     | ш        |                                | <u> </u>                        | •               | · ·     | 1 [10,00       | Ш         | INDUCTOR /4              | 270K                     |                                                  | I       |

| Ref. No.   |          | Part No.          | Part Name & Description    | Pcs<br>/<br>Set | Remarks | Ref. No.   |              | Part No.                                         | Part Name & Description | Pcs<br>/<br>Set                                  | Remarks                                            |
|------------|----------|-------------------|----------------------------|-----------------|---------|------------|--------------|--------------------------------------------------|-------------------------|--------------------------------------------------|----------------------------------------------------|
| R1051      |          | ERDS2TJ104        | 100K                       | Set<br>1        |         | C1045      |              | ECKW1H103ZF5                                     | CERAMIC 50V 0.01        | 1                                                |                                                    |
| R1052      | $\vdash$ | ERDS2TJ473        | 47K                        | 1               |         | 01045      | ┢            | BOKW III 10 JAL J                                | +80%-20%                | <u></u>                                          |                                                    |
| R6001      |          |                   |                            |                 |         |            | $\vdash$     | KMA16VB-22                                       | ELECTROLYTIC 16V 22     | 1                                                |                                                    |
| 10001      |          | ERG1ANJ181        | METAL OXIDE 1W 180         |                 |         | 01049      | $\vdash$     |                                                  |                         |                                                  |                                                    |
|            | Δ        | OR ERGISJ181      | METAL OXIDE 1W 180         |                 |         | C1050      | -            | ECKW1H471KB5                                     | CERAMIC 50V 470P        | 1                                                |                                                    |
| R6002,6003 |          | ERDS2TJ333        |                            | 2               |         | 01051      | ⊢            | ECEA1CS100                                       | ELECTROLYTIC 16V 10     | 1                                                | <del></del>                                        |
| R6004      |          | ERDS2TJ472        | 4.7K                       | _1              |         |            | 1            | OR ECEA1CU100                                    | ELECTROLYTIC 16V 10     |                                                  |                                                    |
| R6005      |          | ERDS2TJ153        | 15K                        | 1               |         | C6001      | <u>L</u> .   | ECEAOJS221                                       | ELECTROLYTIC 6.3V 220   | 1                                                |                                                    |
| R6006      |          | ERDS2TJ332        | 3.3K                       | 1               |         |            |              | OR ECEAOJU221                                    | ELECTROLYTIC 6.3V 220   |                                                  |                                                    |
| R6007      | П        | ERDS2TJ152        | 1.5K                       | 1               |         | C6008      | 1            | EECW5R5F473                                      | GOLD 5.5V 0.047F        | 1                                                |                                                    |
| R6070      |          | ERDS2TJ103        | 10K                        | 1               |         | 06015,6016 |              | ECCW1H33OJC5                                     | CERAMIC 50V 33P +-5%    | 2                                                |                                                    |
| R6071      | П        | ERDS2TJ682        | 6.8K                       | 1               |         | C6018      |              | ECEA1CS470                                       | ELECTROLYTIC 16V 47     | 1                                                |                                                    |
| R6072,6073 |          | ERDS2TJ103        | 10K                        | 2               |         |            |              | OR ECEA1CU470                                    | ELECTROLYTIC 16V 47     |                                                  | †                                                  |
| R6075      | 1        | ERDS2TJ103        | 10K                        | 1               |         | C6020      | $\vdash$     | ECKW1H103ZF5                                     | CERAMIC 50V 0.01        | 1                                                |                                                    |
|            |          |                   |                            | 1               |         | 00020      | ┢            | EORW III TO JEL J                                | +80%-20%                | <u> </u>                                         | <del>                                     </del>   |
| R6085      | Н        | ERDS2TJ563        | 56K                        |                 |         | 7/200      | $\vdash$     |                                                  |                         |                                                  |                                                    |
| R6100      |          | ERDS2TJ103        | 10K                        | 1               |         | C6023      | -            | ECEAOJS330                                       | ELECTROLYTIC 6.3V 33    | 1                                                |                                                    |
| R6112,6113 |          | ERDS2TJ472        | 4.7K                       | 2               |         |            |              | OR ECEAOJU330                                    | ELECTROLYTIC 6.3V 33    |                                                  | <u> </u>                                           |
| R6114,6115 |          | ERDS2TJ102        | 1K                         | 2               |         | C6221      |              | ECEA1CS100                                       | ELECTROLYTIC 16V 10     | 1                                                |                                                    |
| R6129-6132 |          | ERDS2TJ223        | 22K                        | 4               |         |            | L            | OR ECEA1CU100                                    | ELECTROLYTIC 16V 10     |                                                  |                                                    |
| R6221,6222 | П        | ERDS2TJ223        | 22K                        | 2               |         | C6222      | Г            | ECKW1H103ZF5                                     | CERAMIC 50V 0.01        | 1                                                |                                                    |
| R6223      | П        | ERDS2TJ472        | 4.7K                       | 1               |         |            |              |                                                  | +80%-20%                |                                                  |                                                    |
|            | Н        |                   |                            | <u> </u>        |         |            | $\vdash$     |                                                  |                         |                                                  |                                                    |
|            | $\vdash$ |                   |                            | <b>-</b>        |         | -          | +            |                                                  |                         |                                                  | +                                                  |
|            |          |                   |                            | -               |         |            | $\vdash$     | <del>                                     </del> |                         |                                                  |                                                    |
| <u> </u>   | Н        |                   | 0.01077000                 | <u> </u>        |         | <b>—</b>   | $\vdash$     | ļ                                                |                         | -                                                |                                                    |
|            |          |                   | CAPACITORS                 |                 |         |            |              | L                                                | COILS                   |                                                  | <u> </u>                                           |
|            |          | ECQU2A683MN       | POLYESTER 200V 0.068 +-20% | 2               |         | L1001      | Δ            | ELF18D410                                        | 56                      | 1                                                |                                                    |
| 01003,1004 | <u>A</u> | VCKS0001          | GERAMIC 0.001              | - 2             |         | L1002      |              | VLQS11H560K                                      | 56                      | 1                                                |                                                    |
| C1005      | A        | ECES2GV151Y       | ELECTROLYTIC 200V 150      | - 1             |         | 1          |              | OR VLQS11H560M                                   | 56 +-20%                | l                                                |                                                    |
| 01006      | A        | ECEA2EG4R7Y       | ELECTROLYTIC 250V 4.7      | 1               |         | L1003      | 1            | VLQS0006                                         | 22                      | 1                                                |                                                    |
|            |          | OR KM250VB4R7     | ELECTROLYTIC 250V 4.7      |                 |         |            |              | OR VLQS9H22OM                                    | 22 +-20%                | -                                                |                                                    |
| C1007      | *******  | ECEA1EG220        | ELECTROLYTIC 25V 22        | 1               |         | L1004,1005 | $\vdash$     | VLQS0007                                         | 100                     | 2                                                |                                                    |
| 01007      | -        |                   |                            | <u> </u>        |         | 11004,1005 | ╁            |                                                  |                         | ~                                                | <del>-</del> -                                     |
|            |          | OR KMA16VB-22     | ELECTROLYTIC 16V 22        |                 |         |            | +-           | OR VLQS9H101K                                    | 100                     |                                                  | <del>                                       </del> |
| C1008      |          | VCKS0001          | CERAMIC 0.001              |                 |         | L1007      | -            | VLQSO5R4R7K                                      | 4.7                     |                                                  | <del></del>                                        |
| G1009      | 45       | KM50VB-22         | ELECTROLYTIC 50V 22        | 1               |         | L6002      | ļ            | VLQS66R101K                                      | 100                     | 1                                                | ·                                                  |
| C1010      |          | ECEA1HG2R2S       | ELECTROLYTIC 50V 2.2       | 1               |         |            | <u> </u>     |                                                  |                         | 1                                                |                                                    |
|            |          | OR KMA50VB-2R2    | ELECTROLYTIC 50V 2.2       |                 |         |            |              |                                                  |                         |                                                  |                                                    |
| C1011      | 1        | ECQV05153JZ       | POLYESTER 50V 0.015 +-5%   | 1               |         |            |              |                                                  |                         |                                                  |                                                    |
| C1012      |          | ECEA1HU47QX       | ELECTROLYTIC 50V 47        | 1               |         |            |              |                                                  | CRYSTAL OSCILLATOR      | 1                                                |                                                    |
|            | -        | OR SXE50VB-68     | ELECTROLYTIC 50V 68        | -               |         | X6002      |              | VSXS0009                                         |                         | 1                                                | \                                                  |
| C1013,1014 | -        | ECEA1CU222X       | ELECTROLYTIC 16V 2200      | 2               |         |            |              | OR VSXSOO11                                      |                         |                                                  |                                                    |
| 01019,1014 | Н        | OR SXE16VB2200    | ELECTROLYTIC 16V 2200      | ~_              |         |            | _            | OR VERBOOTT                                      |                         |                                                  |                                                    |
| 71015      |          |                   |                            |                 |         |            | $\vdash$     | i                                                |                         | -                                                |                                                    |
| C1015      |          | ECEA1HU470X       | ELECTROLYTIC 50V 47        | . 1             |         |            | -            |                                                  |                         | <del>                                     </del> |                                                    |
|            | -        | OR SXE50VB-68     | ELECTROLYTIC 50V 68        |                 |         |            | -            |                                                  |                         | -                                                |                                                    |
| C1016,1017 | Ш        | ECEAOJF102W       | ELECTROLYTIC 6.3V 1000     | 2               |         |            | -            |                                                  | PIN HEADERS             | -                                                |                                                    |
|            |          | OR SXE6.3VB120    | ELECTROLYTIC 6.3V 1200     |                 |         | P1002      | <u> </u>     | VJPS0011                                         | 3P                      | 1                                                |                                                    |
| C1019      |          | ECKW1H103ZF5      | CERAMIC 50V 0.01           | 1               |         | P1004      |              | VJPS0013                                         | 5P                      | 1                                                |                                                    |
|            | ΙП       |                   | +80%-20%                   | L               |         | P1005      |              | VJPS0022                                         | 7P                      | 1                                                |                                                    |
| 01021,1022 |          | ECEA1HG100S       | ELECTROLYTIC 50V 10        | 2               |         | P1006      | Г            | VJPS0012                                         | . 4P                    | 1                                                |                                                    |
| ,          | _        | OR KMA16VB-10     | ELECTROLYTIC 16V 10        |                 |         | P6026      |              | VJPS0099                                         | 3P                      |                                                  |                                                    |
| C1025      | $\vdash$ | ECEA1CU222X       |                            |                 |         | P6029      | +-           | VJPS0102                                         | 6P                      | -                                                |                                                    |
| C1025      | $\vdash$ |                   | ELECTROLYTIC 16V 2200      | 1_              |         |            | +-           | 11100.02                                         |                         | <u>'</u>                                         |                                                    |
|            | $\vdash$ | OR SXE16VB2200    | ELECTROLYTIC 16V 2200      | <b>-</b>        |         | -          | +-           | <del> </del>                                     |                         | -                                                |                                                    |
| C1026      |          | ECEAOJF102W       | ELECTROLYTIC 6.3V 1000     | 1               |         |            | -            | -                                                |                         | 1                                                |                                                    |
|            |          | OR SXE6.3VB1200   | ELECTROLYTIC 6.3V 1200     |                 |         |            | -            |                                                  |                         | <u> </u>                                         |                                                    |
| 01029      |          | ECEA1HG100S       | ELECTROLYTIC 50V 10        | 1               |         |            |              |                                                  | FUSE                    |                                                  |                                                    |
|            |          | OR KMA16VB-10     | ELECTROLYTIC 16V 10        | L               |         | F1001      | ⚠            | XBA2C3ONU100                                     | 34                      | 1                                                |                                                    |
| C1030      |          | ECEA1HG100S       | ELECTROLYTIC 50V 10        | 1               |         |            |              |                                                  |                         |                                                  |                                                    |
|            | П        | OR KM50VB-10      | ELECTROLYTIC 50V 10        |                 |         |            |              |                                                  |                         |                                                  |                                                    |
| C1031-1033 |          | ECKW1H102KB5      | CERAMIC 50V 0.001          | 3               |         |            |              | -                                                |                         | T                                                |                                                    |
| C1034      |          | ECKW1H103ZF5      | CERAMIC 50V 0.01           | 1               |         | ļ .        | +            |                                                  | TRANSFORMER             | -                                                |                                                    |
| 3.004      | Н        | _ Jan 121 (U)DF ) |                            |                 |         | ma ooa     | L.           | Omeorroe*                                        | TRANSFORMER             |                                                  |                                                    |
| 01025      | Н        | E00M440077        | +80%-20%                   | -               |         | T1001      | # <b>2</b> 2 | LIDSTROUR                                        |                         | 1                                                |                                                    |
| 01035      |          | ECQM1102KZ        | POLYESTER 100V 0.001       | 1               |         | -          | 1            |                                                  |                         | <u> </u>                                         |                                                    |
| C1039,1040 |          | ECKW1H103ZF5      | CERAMIC 50V 0.01           | 2               |         |            | $\perp$      |                                                  |                         |                                                  |                                                    |
|            | Ll       |                   | +80%-20%                   |                 |         |            | L            |                                                  |                         |                                                  |                                                    |
| C1041      |          | ECEA1AG101S       | ELECTROLYTIC 10V 100       | 1               |         |            | L            |                                                  | MISCELLANEOUS           | L .                                              |                                                    |
|            | -        | OR KM6.3VB-100    | ELECTROLYTIC 6.3V 100      |                 |         | -          | $\vdash$     | TEL302-5X                                        | CHECK TERMINAL          | 2                                                |                                                    |
| C1042      | _        | ECKW1H103ZF5      | CERAMIC 50V 0.01           | 1               |         |            | -            | TJC6320                                          | FUSE HOLDER             | 2                                                | 1                                                  |
| · ·        |          |                   | +80%-20%                   | <u> </u>        |         |            | 1-           |                                                  | CUSHION                 |                                                  |                                                    |
| C10/3      | Н        | PCOM1U100707      |                            | _               | · ·     |            | +            | VMTS0035                                         |                         | 4                                                |                                                    |
| C1043      | -        | ECQM1H103KV       | POLYESTER 50V 0.01         | 1               |         |            |              | VMTS0044                                         | CUSHION                 | 1                                                |                                                    |
|            | -        | OR ECQM1H103KZ    | POLYESTER 50V 0.01         |                 |         |            | Δ            | VMZS0130                                         | INSULATOR PLATE         | 1                                                |                                                    |
| C1044      | Ш        | ECKW1H471KB5      | CERAMIC 50V 470P           | 1               |         |            |              | VMZS0139                                         | CAPACITOR CAP           | 1                                                |                                                    |
| L          |          | <u> </u>          |                            |                 |         |            | L            | VSCS0403                                         | HEAT SINK PLATE         | 1                                                |                                                    |
|            |          |                   |                            |                 |         |            |              | -                                                |                         |                                                  |                                                    |

| Def. M         |               | Don M.           | Part N & Decoints       | Pcs                                              | Demostra | p.c.N                                            | D N                 | Unst Name & Description | Pcs         | Damarka     |
|----------------|---------------|------------------|-------------------------|--------------------------------------------------|----------|--------------------------------------------------|---------------------|-------------------------|-------------|-------------|
| Ref. No.       | $\square$     | Part No.         | Part Name & Description | Set .                                            | Remarks  | Ref. No.                                         | Part No.            | Part Name & Description | Set         | Remarks     |
|                | Ш             | VSCS0436         | SHIELD CASE             | 1                                                | -        | Q4217                                            | 2502188             |                         | 1           |             |
|                |               | VSCS0437         | SHIELD CASE             | 1                                                |          | Q4218                                            | 2SD973(Q,R,S)       |                         | 1           |             |
|                |               | VSCS0542         | SHIELD CASE             | 1                                                |          | Q4219                                            | 2802188             |                         | 1           |             |
|                |               | VSCS0544         | SHIELD CASE             | 1                                                |          | Q4220                                            | 2SA564(R,S)         |                         | 1           |             |
|                |               | VSCS0604         | SHIELD CASE             | 1                                                | 1        |                                                  | OR                  |                         |             |             |
|                |               |                  |                         |                                                  |          |                                                  | 2SB641(Q,R,S)       |                         |             |             |
|                |               |                  |                         |                                                  |          | Q4221                                            | 2SC1684(Q,R,S)      |                         | 1           |             |
|                |               |                  |                         |                                                  |          |                                                  | OR 2S21M(Q,R,S)     |                         |             |             |
|                |               |                  |                         |                                                  |          |                                                  | OR                  |                         |             |             |
|                | Н             |                  | FM AUDIO C.B.A          |                                                  |          |                                                  | 2SD636(Q,R,S)       |                         |             | -           |
|                | H             |                  |                         |                                                  |          | Q4222                                            | 2SC2188             |                         | 1           |             |
|                | Н             |                  | INTEGRATED CIRCUITS     |                                                  |          | Q4224,4225                                       | 2SA564(R,S)         |                         | 2           |             |
| IC4201         |               | AN6326N          | INIBARITED OTHERS       | 1                                                |          | 442.44,422)                                      | OR OR               |                         | -           |             |
| IC4202         | Н             | AN6558           |                         | 1                                                |          |                                                  | 2SB641(Q,R,S)       |                         |             |             |
| 104202         | $\rightarrow$ | OR BA4558        |                         |                                                  |          | Q4240                                            | 2SA564(R,S)         |                         | 1           |             |
| TC/202         | $\rightarrow$ |                  |                         | 1                                                |          | Q4240                                            | OR                  | <del></del>             |             |             |
| IC4203         | -             | AN6391K          |                         |                                                  |          |                                                  |                     |                         | _           |             |
| IC4204         | $\vdash$      | VCR0087-1        |                         | 1                                                |          |                                                  | 2SB641(Q,R,S)       |                         |             |             |
| IC4205         | -             | AN6291           |                         | 1                                                |          | Q4241                                            | 2SC1684(Q,R,S)      |                         | 1           |             |
| IC4206         |               | AN6558           | <u> </u>                | 1                                                |          |                                                  | OR 2S21M(Q,R,S)     |                         |             |             |
|                | -             | OR BA4558        |                         |                                                  |          |                                                  | OR                  | ·                       |             |             |
| IC4207,4208    | -             | TA7347P          |                         | 2                                                |          |                                                  | 2SD636(Q,R,S)       |                         | ļ           |             |
| IC4209         | -             | VCR0087-1        |                         | 1                                                |          | Q4242,4243                                       | 2SD655(E,F)         |                         | 2           |             |
| IC4210         | -             | AN6391K          |                         | 1                                                |          | Q4244                                            | 2SC1684(Q,R,S)      |                         | 1           |             |
| IC4211         | Ш             | HA14066B         | ·                       | 1                                                |          |                                                  | OR 2S21M(Q,R,S      | l                       |             |             |
|                |               | OR TC4066B       |                         |                                                  |          |                                                  | OR                  | -                       |             |             |
|                |               | OR UPD4066BC     |                         |                                                  |          |                                                  | 2SD636(Q,R,S)       |                         |             |             |
|                |               | OR MN4066B       |                         |                                                  |          | Q4245                                            | 2SA564(R,S)         |                         | 1           |             |
| IC4213         | П             | AN6552           |                         | 1                                                | · · · ·  |                                                  | OR                  |                         |             |             |
|                | П             | OR BA4558        |                         |                                                  |          |                                                  | 2SB641(Q,R,S)       |                         |             |             |
|                | -             | OR TA75557P      |                         |                                                  |          | Q4246-4248                                       | DTC124A             |                         | 3           |             |
| IC4214,421     | -             | TA7348P          |                         | 2                                                |          | 11.                                              | OR UN1212           |                         |             |             |
| IC4216         | -             | BA6138           |                         | 1                                                |          | Q4251                                            | 2SC1684(Q,R,S)      |                         | 1           |             |
| IC4217         |               | AN6552           |                         | 1                                                |          | 44271                                            | OR 2S21M(Q,R,S)     |                         |             |             |
| 104217         | -             | OR BA4558        |                         |                                                  |          |                                                  | OR ZDZ IN (Q, R, B) |                         |             |             |
|                | _             |                  |                         |                                                  |          |                                                  | 2SD636(Q,R,S)       |                         |             |             |
| TG/010 /016    | -             | OR TA75557P      |                         | 2                                                |          | 0/252 /25/                                       | 2SC1684(Q,R,S)      |                         | 2           | <del></del> |
| IC4218,4219    |               | VCRS0030         |                         | -                                                |          | Q4253,4254                                       |                     |                         | ~           |             |
|                | Н             |                  |                         |                                                  |          |                                                  | OR 2S21M(Q,R,S)     |                         |             |             |
| -              | $\vdash$      |                  | TRANSISTORS             | $\vdash$                                         |          |                                                  | OR                  |                         |             |             |
| 04201 4202     |               | 20D(20(0 B B)    | TRANSISTORS .           | -                                                |          |                                                  | 2SD636(Q,R,S)       |                         |             |             |
| Q4201-4203     |               | 2SD638(Q,R,S)    |                         | 3                                                |          | Q4255                                            | 2\$D1458            |                         | 1           |             |
| Q4204          |               | 2SC1684(Q,R,S)   |                         | 1                                                |          | Q4256                                            | DTC124A             |                         | 1           |             |
|                |               | OR 2S21M(Q,R,S   |                         | ļ.,                                              |          |                                                  | OR UN1212           | <u> </u>                |             |             |
|                | -             | OR               |                         |                                                  |          | Q4260,4261                                       | 2SC1684(Q,R,S)      |                         | 2           |             |
|                |               | 2SD636(Q,R,S)    |                         | <u> </u>                                         |          | -                                                | OR 2S21M(Q,R,S      |                         |             |             |
| Q4205          |               | 2SA564(R,S)      |                         | 1                                                |          |                                                  | OR                  |                         |             |             |
|                |               | OR               |                         | L                                                |          |                                                  | 2SD636(Q,R,S)       |                         | L           |             |
|                |               | 2SB641(Q,R,S)    |                         |                                                  |          | Q4262                                            | DTA114A             |                         | 1           |             |
| Q4206          |               | 2SC1684(Q,R,S)   |                         | 1                                                |          |                                                  | OR UN1111           | <u> </u>                |             |             |
|                |               | OR 2521M(Q,R,S   |                         |                                                  |          | Q4263                                            | DTA144A             |                         | 1           |             |
|                | П             | OR               |                         |                                                  |          |                                                  | OR UN1113           |                         |             | _           |
|                |               | 2SD636(Q,R,S)    |                         |                                                  |          | Q4264                                            | DTC114A             |                         | 1           |             |
| Q4209,4210     |               | 2SA564(R,S)      |                         | 2                                                |          |                                                  | OR UN1211           |                         |             |             |
|                | _             | OR               |                         |                                                  |          | Q4265                                            | 2SD1205(Q,R)        |                         | 1           |             |
|                |               | 2SB641(Q,R,S)    |                         |                                                  |          | Q4271                                            | 2SC1684(R,S)        |                         | 1           |             |
| Q4211          | -             | 2SC1684(Q,R,S)   |                         | 1                                                |          | 844.11                                           | OR                  |                         | <u></u>     |             |
|                |               | OR 2S21M(Q,R,S)  |                         | <u> </u>                                         |          | <del>                                     </del> |                     |                         |             |             |
|                | -             | OR ZBZ /M(Q,R,B) |                         | <del>  -</del>                                   |          |                                                  | 2SC2021M(R,S)       |                         | <del></del> |             |
|                |               | 2SD636(Q,R,S)    |                         | <del></del>                                      |          | 0,1000                                           | OR 2SD636(R,S)      | •                       |             |             |
| Q4212          | $\rightarrow$ | 2SD638(Q,R,S)    |                         | 1                                                |          | Q4272                                            | DTA124A             |                         | 1           |             |
| Q4212<br>Q4213 |               | 2SC1684(Q,R,S)   |                         | 1                                                |          | 10,000                                           | OR UN1112           |                         |             |             |
| whe i          |               |                  |                         | <del>                                     </del> | ·        | Q4273                                            | 2SC1684(Q,R,S)      |                         | 1           |             |
|                | _             | OR 2S21M(Q,R,S)  |                         |                                                  |          |                                                  | OR 2S21M(Q,R,S)     |                         |             |             |
|                | -             | OR               | ·                       |                                                  |          |                                                  | OR                  | -                       |             |             |
| 01017          |               | 2SD636(Q,R,S)    |                         | -                                                |          |                                                  | 2SD636(Q,R,S)       |                         |             |             |
| Q4215          |               | 2SC1684(Q,R,S)   |                         | 1                                                |          | Q4274                                            | DTC144A             | ·                       | 1           |             |
|                | -             | OR 2S21M(Q,R,S)  | ·                       | <u> </u>                                         |          |                                                  | OR UN1213           | <u> </u>                |             |             |
|                | $\rightarrow$ | OR               | <u></u>                 |                                                  |          | Q4275                                            | 2SD973(R,S)         |                         | 1           |             |
|                |               | 2SD636(Q,R,S)    |                         | ļ                                                |          | Q4276                                            | 2SC1684(R,S)        |                         | 1_1_        |             |
| Q4216          | _             | 2SA564(R,S)      |                         | 1                                                |          |                                                  | OR                  |                         |             |             |
|                | ıΙ            | OR               |                         |                                                  |          |                                                  | 2SC2021M(R,S)       |                         |             |             |
|                |               |                  |                         |                                                  |          |                                                  |                     |                         |             |             |

| Ref. No.       |               | Part No.                 | Part Name & Description | Pcs<br>/<br>Set | Remarks                               | Ref. No.                 |               | Part No.                 | Part Name & Description | Pcs<br>/<br>Set | Remarks                               |
|----------------|---------------|--------------------------|-------------------------|-----------------|---------------------------------------|--------------------------|---------------|--------------------------|-------------------------|-----------------|---------------------------------------|
|                |               |                          |                         |                 |                                       | R4243-4245               | E             | ERDS2TJ223               | · 22K                   | 3               |                                       |
|                |               |                          |                         |                 |                                       | R4246                    | F             | ERDS2TJ104               | 100K                    | 1               |                                       |
|                | Н             |                          | DIODES                  | -               |                                       | R4248                    |               | ERDS2TJ152               | 1.5K                    | 1               |                                       |
| D4201          |               | DA203                    | DIODES                  | 1               |                                       | R4249                    |               | ERDS2TJ151               | 150                     | 1               |                                       |
| 24201          | Н             | OR MA156                 |                         | <u> </u>        |                                       | R4250<br>R4251           | _             | ERDS2TJ223<br>ERDS2TJ333 | 22K<br>33K              | 1               |                                       |
| D4202,4203     |               | MA165                    |                         | 2               |                                       | R4252                    | -             | ERDS2TJ272               | 2.7K                    | 1               |                                       |
|                |               | OR 1SS119                |                         |                 |                                       | R4253,4254               | ,             | ERDS2TJ473               | 47K                     | 2               |                                       |
| D4205,4206     |               | MA165                    |                         | 2               |                                       | R4255                    | F             | ERDS2TJ333               | 33К                     | 1               |                                       |
| D              |               | OR 188119                |                         | <u> </u>        |                                       | R4256                    |               | ERDS2TJ473               | 47K                     | 1               |                                       |
| D4207          |               | DA203<br>OR MA156        |                         | 1               |                                       | R4259                    | _             | RDS2TJ223                | 22K                     | 1               |                                       |
| D4209          |               | MA165                    |                         | 1               |                                       | R4260<br>R4261           |               | ERDS2TJ102<br>ERDS2TJ151 | 1K<br>150               | 1               |                                       |
| -4/4007        |               | OR 1SS119                |                         | † ·             |                                       | R4262                    |               | RDS2TJ562                | 5.6K                    | 1               |                                       |
| D4210          |               | DAN201                   |                         | 1               |                                       | R4263                    | -             | RDS2TJ103                | 10K                     | 1               |                                       |
|                |               | OR MA154                 |                         |                 |                                       | R4264                    |               | RDS2TJ183                | 18K                     | 1               |                                       |
| D4213          |               | MA165                    | 1.                      | 1               |                                       | R4266                    | E             | EVN3ACAOOB23             | VARIABLE 2K             | 1               |                                       |
|                |               | OR 1SS119                |                         |                 |                                       | R4267                    | E             | RDS2TJ272                | 2.7K                    | 1               |                                       |
| D4215          |               | DAN201                   |                         | 1               |                                       | R4268,4269               | -             | CRDS2TJ681               | 680                     | 2               |                                       |
| D4216          | Н             | OR MA154<br>MA165        |                         | 1               |                                       | R4270                    | _             | RDS2TJ222                | 2.2K                    | 1               |                                       |
| J42 10         | $\vdash$      | OR 1SS119                |                         |                 | · · · · · · · · · · · · · · · · · · · | R4271,4272<br>R4273      |               | RDS2TJ152<br>RDS2TJ222   | 1.5K                    | 2<br>1          |                                       |
| D4218          | Н             | MA165                    | ,                       | 1               |                                       | R4274                    | -             | RDS2TJ222                | 2.2K                    | 1               |                                       |
|                | П             | OR 188119                |                         |                 |                                       | R4275                    |               | RDS2TJ392                | 3.9K                    | 1               |                                       |
| D4220          |               | MA165                    | ·                       | 1               |                                       | R4276                    |               | RDS2TJ821                | 820                     | 1               |                                       |
|                | П             | OR 1SS119                |                         |                 |                                       | R4277                    |               | CRDS2TJ151               | 150                     | 1               |                                       |
| D4221          |               | RD5.1JB2                 | ZENER                   | 1               |                                       | R4278                    | _             | RDS2TJ392                | 3.9K                    | 1               |                                       |
| D4222          | -             | MA165                    |                         | 1               |                                       | R4279                    |               | RDS2TJ102                | 1K                      | 1.              |                                       |
|                |               | OR 1SS119                |                         |                 |                                       | R4280<br>R4281           |               | RDS2TJ272<br>RDS2TJ392   | 2.7K                    | 1               |                                       |
|                |               |                          |                         |                 |                                       | R4282                    |               | RDS2TJ821                | 3.9K<br>820             | 1               |                                       |
|                | H             |                          |                         | -               |                                       | R4283                    | _             | RDS2TJ390                | 39                      | 1               |                                       |
|                |               |                          | RESISTORS               |                 |                                       | R4284                    | _             | RDS2TJ102                | . 1К                    | 1               |                                       |
| R4201,4202     |               | ERDS2TJ100               | 10                      | 2               |                                       | R4285                    | Е             | RDS2TJ272                | 2.7K                    | 1               |                                       |
| R4203,4204     |               | ERDS2TJ332               | 3.3K                    | 2               |                                       | R4286,4287               | E             | RDS2TJ222                | 2.2K                    | 2               |                                       |
| R4205          | -             | ERDS2TJ223               | 22K                     | 1               |                                       | R4288                    |               | RDS2TJ102                | 1K                      | 1               |                                       |
| R4206          | -             | ERDS2TJ152               | 1.5K                    | 1               |                                       | R4289                    | _             | RDS2TJ392                | 3.9K                    | 1               |                                       |
| R4207<br>R4208 |               | ERDS2TJ100<br>ERDS2TJ102 | 10<br>1K                | 1               |                                       | R4290,4291<br>R4293,4294 | -             | RDS2TJ152<br>RDS2TJ103   | 1.5K                    | 2               |                                       |
| R4209 -        | -             | ERDS2TJ222               | 2.2%                    | 1               |                                       | R4295                    | _             | RDS2TJ272                | 2.7K                    | 1               |                                       |
| R4210,4211     | $\rightarrow$ | ERDS2TJ392               | 3.9K                    | -               |                                       | R4296                    |               | VN3ACAOOB13              | VARIABLE 1K             | 1               |                                       |
| R4212          |               | ERDS2TJ102               | 1K                      |                 |                                       | R4297                    | E             | RDS2TJ153                | 15K                     | 1               |                                       |
| R4213          | $\rightarrow$ | ERDS2TJ100               | 10                      | 1               |                                       | R4298                    | E             | RDS2TJ822                | 8.2K                    | 1               |                                       |
| R4214          | $\rightarrow$ | ERDS2TJ471               | 470                     | 1               |                                       | R4299                    | _             | RDS2TJ331                | 330                     | 1               |                                       |
| R4215          | $\vdash$      | ERDS2TJ221               | 220                     | 1               |                                       | R4300                    |               | RDS2TJ681                | 680                     | 1               |                                       |
| R4216<br>R4217 | -             | ERDS2TJ392<br>ERDS2TJ474 | 3.9K                    | 1               |                                       | R4301<br>R4303           | _             | RDS2TJ102<br>RDS2TJ272   | 1K.                     | 1               |                                       |
| R4217<br>R4218 | -             | EVN3ACA00B53             | VARIABLE 5K             | 1               | -                                     | R4304                    |               | VN3ACAOOB23              | VARIABLE 2K             | 1               | - MI AV -                             |
| R4219          | _             | ERDS2TJ562               | VARIABLE 5K 5.6K        | 1               |                                       | R4305                    |               | RDS2TJ473                | VARIABLE 2K             | 1               |                                       |
| R4221          |               | ERDS2TJ562               | 5.6K                    | 1               |                                       | R4306                    |               | RDS2TJ223                | 22K                     | 1               |                                       |
| R4222          | -             | ERDS2TJ181               | 180                     |                 |                                       | R4307                    | E             | RDS2TJ332                | 3.3K                    | 1               |                                       |
| R4223          | -             | EVN3ACAOOB13             | VARIABLE 1K             | 1               |                                       | R4308                    |               | RDS2TJ473                | 47K                     | 1               |                                       |
| R4224          | _             | ERDS2TJ821               | 820                     | _ 1             |                                       | R4309                    |               | RDS2TJ683                | 68K                     | 1               |                                       |
| R4225          |               | ERDS2TJ102               | 1K                      | 1               |                                       | R4310                    | _             | RDS2TJ562                | 5.6K                    | 1               |                                       |
| R4226<br>R4227 | -             | ERDS2TJ153<br>ERDS2TJ822 | 15K                     | 1               |                                       | R4311                    |               | RDS2TJ473                | 47K                     | 1               |                                       |
| R4227<br>R4229 | -             | ERDS2TJ822<br>ERDS2TJ392 | 8.2K<br>3.9K            | 1               |                                       | R4312,4313<br>R4314,4315 | $\rightarrow$ | RDS2TJ104<br>RDS2TJ102   | 100K                    | 2               |                                       |
| R4230          | -             | ERDS2TJ562               | 5.6K                    | 1               |                                       | R4316                    | $\rightarrow$ | RDS213102<br>RDS2TJ562   | 5.6K                    | 1               | · · · · · · · · · · · · · · · · · · · |
| R4231          | -             | ERDS2TJ683               | 68K                     | 1               |                                       | R4317                    | _             | RDS2TJ332                | 3.3K                    | 1               |                                       |
| R4232          |               | ERDS2TJ105               | 1M                      | 1               |                                       | R4318                    |               | RDS2TJ222                | 2.2K                    | 1               |                                       |
| R4233          | $\rightarrow$ | ERDS2TJ104               | 100K                    | 1               |                                       | R4319                    | ΕV            | VN3ACAOOB25              | VARIABLE 200K           | 1               |                                       |
| R4234          |               | ERDS2TJ473               | 47K                     | 1               |                                       | R4321                    | ,             | RDS2TJ102                | 1K                      | 1               |                                       |
| R4235          |               | ERDS2TJ562               | 5.6K                    | 1               |                                       | R4323                    |               | RDS2TJ102                | 1K                      | 1               |                                       |
| R4236          | -             | ERDS2TJ103               | 10K                     | 1               |                                       | R4325                    |               | RDS2TJ103                | 10K                     | 1               |                                       |
| R4237<br>R4238 | _             | ERDS2TJ272<br>ERDS2TJ102 | 2.7K                    | 1               |                                       | R4326<br>R4327,4328      | _             | RDS2TJ122<br>RDS2TJ391   | 1.2K                    | 1               |                                       |
| R4239          |               | ERDS2TJ102<br>ERDS2TJ104 | 1K<br>100K              | 1               |                                       | R4327,4328               | _             | RDS2TJ103                | 390<br>10K              | 2               |                                       |
| R4240          |               | EVN3ACAOOB54             | VARIABLE 50K            | 1               | 1                                     | R4330,4331               | _             | RDS2TJ104                | 100K                    | 2               |                                       |
|                |               | ERDS2TJ102               | 1K                      | 1               |                                       | R4335                    |               | VN3ACAOOB23              | VARIABLE 2K             | 1               |                                       |
| R4241          |               |                          |                         |                 |                                       |                          |               |                          |                         |                 |                                       |

| Ref. No.            |               | Part No.                 | Part Name & Description      | ·Pcs<br>/<br>Set | Remarks | Ref. No.                  |               | Part No.                       | Part Name                    | & Description                | Pcs<br>/<br>Set | Remarks                                          |
|---------------------|---------------|--------------------------|------------------------------|------------------|---------|---------------------------|---------------|--------------------------------|------------------------------|------------------------------|-----------------|--------------------------------------------------|
| R4337               |               | ERDS2TJ153               | 15K                          | 1                |         | R4448                     | Æ             | ERG1ANJ470                     | METAL OXIDE                  | 1W 47                        | 1               |                                                  |
| R4338               |               | EROS2TKG1001             | PRECISION METAL FILM 1K +-2% | 1                |         |                           | Æ             | OR ERG1SJ470                   | METAL OXIDE                  | 1W 47                        |                 |                                                  |
| R4339               |               | ERDS2TJ153               | 15K                          | - 1              |         |                           | Δ             | OR KRG1SJ470                   | METAL OXIDE                  | 1W 47                        |                 |                                                  |
| R4340               | _             | ERDS2TJ472               | 4.7K                         | 1                |         | R4449                     | _             | ERDS2TJ102                     |                              | 1K                           | 1               |                                                  |
| R4341               |               | ERDS2TJ151               | 150                          | 1                |         | R4450                     |               | ERDS2TJ222                     |                              | 2.2K                         | 1               |                                                  |
| R4342<br>R4343      | -             | ERDS2TJ122<br>ERDS2TJ103 | 1.2K                         | 1                |         | R4451,4452<br>TH4201,4202 | ,             | ERDS2TJ154<br>ERTD2Z1K154M     | THERMISTOR                   | 150K                         | 2               | ļ. ————                                          |
| R4352               |               | EVN3ACAOOB25             | VARIABLE 200K                | 1                |         | 1114201,4202              | ٠             | ERIDES IN 1941                 | THERMISION                   | 150K                         | ~               |                                                  |
| R4355               |               | ERDS2TJ222               | 2.2K                         | 1                | -       |                           | $\dashv$      |                                |                              |                              |                 | -                                                |
| R4356               |               | ERDS2TJ562               | 5.6K                         | 1                |         |                           |               |                                |                              |                              |                 |                                                  |
| R4357               |               | ERDS2TJ272               | 2.7K                         | 1                |         |                           |               |                                | CAPACITORS                   |                              |                 |                                                  |
| R4358,4359          |               | ERDS2TJ333               | 33K                          | 2                |         | 04201,4202                |               | ECCZ1H47OJC                    | CERAMIC                      | 50V 47P +-5%                 | 2               |                                                  |
| R4360               |               | ERDS2TJ272               | 2.7K                         | 1                |         |                           |               | OR ECCZ1H47OJC                 | 5 CERAMIC                    | 50V 47P +-5%                 |                 |                                                  |
| R4361               |               | ERDS2TJ562               | 5.6K                         | 1                |         | C4203,4204                |               | ECKZ1H1032V                    | CERAMIC                      | 50₹ 0.01                     | 2               |                                                  |
| R4362,4363          | _             | ERDS2TJ473               | 47K                          | 2                |         |                           | _             |                                |                              | +80%-20%                     |                 |                                                  |
| R4364               | _             | ERDS2TJ101               | 100                          | 1                |         | C4205                     |               | ECQB1H103KH                    | POLYESTER                    | 50V 0.01                     | 1               |                                                  |
| R4365,4366          |               | ERDS2TJ104               | 100K                         | 2                |         | C4206                     | -             | ECEAOJK470                     | ELECTROLYTIC                 | 6.3V 47                      | 1               |                                                  |
| R4367               |               | ERDS2TJ225               | 2.2M                         | 1                |         | C4207                     | -             | ECEA1HNO10S                    | ELECTROLYTIC                 | 50V 1                        | 1               |                                                  |
| R4368<br>R4369      |               | ERDS2TJ562<br>ERDS2TJ101 | 5.6K                         | 1                |         | C4208-4210<br>C4211       | -             | ECEA1CK100<br>ECEA1HK010       | ELECTROLYTIC<br>ELECTROLYTIC | 16V 10<br>50V 1              | <u>3</u>        | <del> </del>                                     |
| R4370,4371          |               | ERDS2TJ104               | 100K                         | 2                |         | 04211                     |               | ECEA1CK100                     | ELECTROLYTIC                 | 16V 10                       | 1               | <del> </del>                                     |
| R4372               | Н             | ERDS2TJ225               | 2.2M                         | 1                |         | C4213                     |               | ECQB1H103KH                    | POLYESTER                    | 50V 0.01                     | 1               |                                                  |
| R4373               |               | ERDS2TJ183               | 18K                          | 1                |         | C4214                     |               | ECEA1CK330                     | ELECTROLYTIC                 | 16V 33                       | 1               | <u> </u>                                         |
| R4374               |               | ERDS2TJ473               | 47K                          | 1                |         | C4215-4217                |               | ECKZ1H103ZV                    | CERAMIC                      | 50V 0.01                     | 3               |                                                  |
| R4375,4376          |               | ERDS2TJ472               | 4.7K                         | 2                |         |                           |               | -                              |                              | +80%-20%                     |                 |                                                  |
| R4377               |               | ERDS2TJ103               | 10K                          | _ 1              |         | C4218                     |               | ECQB1H103KH                    | POLYESTER                    | 50V 0.01                     | 1               |                                                  |
| R4378               | Ц             | ERDS2TJ562               | 5.6K                         | 1                |         | C4219                     | 1             | ECKZ1H103ZV                    | CERAMIC                      | 50V 0.01                     | 1               |                                                  |
| R4379               |               | ERDS2TJ473               | 47K                          | 1                |         |                           | _             |                                |                              | +80%-20%                     |                 |                                                  |
| R4380-4383          |               | ERDS2TJ103               | 10K                          | 4                |         | 04220,4221                |               | ECCZ1H680J                     | CERAMIC                      | 50V 68P +-5%                 | 2               |                                                  |
| R4384-4387          |               | ERDS2TJ104               | 100K                         | 4                |         | C4222                     |               | OR ECCZ1H680J6                 | CERAMIC                      | 50V 68P +-5%                 |                 | <u> </u>                                         |
| R4388-4393          |               | ERDS2TJ562               | 5.6K                         | 6                |         | 04222                     | $\dashv$      | ECCZ1H820JC5<br>OR ECCZ1H820JC | CERAMIC                      | 50V 82P +-5%<br>50V 82P +-5% | 1               |                                                  |
| R4394,4395          |               | ERDS2TJ473<br>ERDS2TJ102 | 47K                          | 1                |         | C4223                     |               | ECKZ1H103ZV                    | CERAMIC                      | 50V 82P +=5%<br>50V 0.01     | 1               |                                                  |
| R4396<br>R4397      |               | ERDS2TJ272               | 1K<br>2.7K                   | 1                |         |                           |               | 2012/11/0/21                   | oznania o                    | +80%-20%                     |                 |                                                  |
| R4399               |               | ERDS2TJ104               | 100K                         | 1                |         | C4224                     | -             | ECQB1H103KH                    | POLYESTER                    | 50V 0.01                     | 1               |                                                  |
| R4400               |               | ERDS2TJ184               | 180K                         | 1                |         | C4225                     | 7             | ECCW1H101JC5                   | CERAMIC                      | 50V 100P +-5%                | 1               |                                                  |
| R4401-4403          |               | ERDS2TJ103               | 10K                          | 3                |         | C4226,4227                |               | ECEA1EK3R3                     | ELECTROLYTIC                 | 25V 3.3                      | 2               |                                                  |
| R4404               |               | ERDS2TJ473               | 47K                          | 1                |         | C4228                     |               | ECEA1AK220                     | ELECTROLYTIC                 | 10V 22                       | 1               |                                                  |
| R4405               |               | ERDS2TJ102               | 1K                           | 1                |         | C4230                     |               | ECEA1HK2R2                     | ELECTROLYTIC                 | 50V 2.2                      | 1               |                                                  |
| R4406               |               | ERDS2TJ224               | 220K                         | 1                |         | C4231                     |               | ECEA1EK3R3                     | ELECTROLYTIC                 | 25V 3.3                      | 1               |                                                  |
| R4407               |               | ERDS2TJ103               | 10K                          | 1_               |         | C4232                     |               | ECEAOJK220                     | ELECTROLYTIC                 | 6.3V 22                      | 1               |                                                  |
| R4408               |               | ERDS2TJ682               | 6.8K                         | . 1              |         | 04233                     | _             | ECEAOJK101                     | ELECTROLYTIC                 | 6.3V 100                     | 1               |                                                  |
| R4409,4410          | _             | ERDS2TJ333               | 33K                          | 2                |         | C4234                     | _             | ECQB1H562KH                    | POLYESTER                    | 50V 0.0056                   | 1               |                                                  |
| R4411               |               | ERDS2TJ224               | 220K                         | 1_               |         | 04235                     |               | ECEAOJK220                     | ELECTROLYTIC                 | 6.3V 22                      | 1               |                                                  |
| R4412               | $\vdash$      | ERDS2TJ682               | 6.8K                         | 1                |         | C4236<br>C4237            |               | ECEAOJK101                     | ELECTROLYTIC                 | 6.3V 100                     | 1               |                                                  |
| R4413               | -             | ERDS2TJ224               | 220K                         | 1_               |         | C4238                     |               | ECQB1H103KH<br>ECKZ1H331KB     | POLYESTER                    | 50V 0.01<br>50V 330P         | 1               | <del> </del>                                     |
| R4414               | Н             | ERDS2TJ473               | 47K                          | 1                |         | ال مهد                    | -             | OR ECKZ1H331KB                 |                              |                              |                 | <del>                                     </del> |
| R4419<br>R4421,4422 | H             | ERDS2TJ102<br>ERDS2TJ473 | 1K<br>47K                    | 2                |         | C4239                     | _             | ECEAOJK101                     | ELECTROLYTIC                 | 50V 330P<br>6.3V 100         | 1               | t                                                |
| R4423               | H             | ERDS2TJ273               | 27K                          | 1                |         | C4240                     |               | ECEA1CK101                     | ELECTROLYTIC                 | 16V 100                      | 1               |                                                  |
| R4424               | П             | ERDS2TJ222               | 2.2K                         | 1                |         | C4241                     |               | ECCZ1H330J                     | CERAMIC                      | 50V 33P +-5%                 | 1               |                                                  |
| R4425               |               | ERDS2TJ273               | 27K                          | 1                |         |                           |               | OR ECCZ1H330J6                 | CERAMIC                      | 50V 33P +-5%                 |                 |                                                  |
| R4426               |               | ERDS2TJ222               | 2.2K                         | 1                |         | C4242                     |               | ECQB1H183JZ                    | POLYESTER                    | 50V 0.018 +-5%               | 1               |                                                  |
| R4429               |               | ERDS2TJ104               | . 100K                       | 1                |         |                           |               | OR ECQV1H183JZ                 | POLYESTER                    | 50V 0.018 +-5%               |                 |                                                  |
| R4430               | Ш             | ERDS2TJ332               | 3.3K                         | 1                |         | C4243                     |               | ECEA1CK330                     | ELECTROLYTIC                 | 16V 33                       | 1               |                                                  |
| R4431               |               | ERDS2TJ472               | 4.7K                         | 1                |         | C4244,4245                |               | ECEA1AK330                     | ELECTROLYTIC                 | 10V 33                       | 2               |                                                  |
| R4432               |               | ERDS2TJ562               | 5.6K                         | 1                |         | C4246                     | $\overline{}$ | ECCZ1H330J                     | CERAMIC                      | 50V 33P +-5%                 | 1               | 1                                                |
| R4433,4434          |               | ERDS2TJ223               | 22K                          | 2                |         | 0/0/2                     | _             | OR ECCZ1H330J6                 | CERAMIC                      | 50V 33P +-5%                 |                 |                                                  |
| R4435               | $\vdash$      | ERDS2TJ473               | 47K                          | 1                |         | C4247                     | _             | ECEA1CK101                     | ELECTROLYTIC                 | 16V 100                      | 1               |                                                  |
| R4436<br>R4437      | H             | ERDS2TJ224<br>ERDS2TJ104 | 220K<br>100K                 | 1                |         | C4248<br>C4249            |               | ECEA1AK330<br>ECQB1H183JZ      | ELECTROLYTIC<br>POLYESTER    | 10V 33<br>50V 0.018 +-5%     | 1               | <del> </del>                                     |
| R4437               | $\overline{}$ | ERDS2TJ223               | 22K                          | 1                |         | J4447                     | _             | OR ECQV1H183JZ                 | POLYESTER                    | 50V 0.018 +-5%               | 1               | <del>                                     </del> |
| R4439               | -             | ERDS2TJ104               | 100K                         | 1                |         | C4250                     | $\rightarrow$ | ECEAOJK330                     | ELECTROLYTIC                 | 6.3V 33                      | 1               | <del> </del>                                     |
| R4440               | -             | ERDS2TJ562               | 5.6K                         | 1                |         | C4251                     | _             | ECKZ1H103ZV                    | CERAMIC                      | 50V 0.01                     | 1               |                                                  |
| R4441               | -             | ERDS2TJ332               | 3.3K                         | 1                |         |                           |               |                                |                              | +80%-20%                     | •               |                                                  |
| R4442               | $\vdash$      | ERDS2TJ562               | 5.6K                         | 1                |         | C4252                     | _             | ECQB1H103KH                    | POLYESTER                    | 50V 0.01                     | 1               |                                                  |
| R4443               |               | ERDS2TJ332               | 3.3K                         | 1                |         | C4253,4254                |               | ECKZ1H103ZV                    | CERAMIC                      | 50V 0.01                     | 2               |                                                  |
| R4445               |               | ERDS2TJ222               | 2.2K                         | 1_               |         |                           |               |                                |                              | +80%-20%                     |                 |                                                  |
| R4446,4447          |               | ERDS2TJ123               | . 12K                        | 2                |         | C4255                     |               | ECQB1H103KH                    | POLYESTER                    | 50V 0.01                     | 1               |                                                  |
| .uddtdo.itttt.      |               |                          |                              |                  |         |                           |               |                                |                              |                              |                 |                                                  |

| Ref. No.   |          | Part No         | Part Name & Description   | Pcs<br>/ | Remarks | Ref. No.   | Part No.        | Part Name       | & Description   | Pcs<br>/<br>Set | Remarks                                          |
|------------|----------|-----------------|---------------------------|----------|---------|------------|-----------------|-----------------|-----------------|-----------------|--------------------------------------------------|
| C4257      |          | ECKZ1H103ZV     | CERAMIC 50V 0.01          | Set<br>1 |         | C4318      | ECEA1CK220      | ELECTROLYTIC    | 16V 22          | Set<br>1        |                                                  |
|            | П        |                 | +80%-20%                  |          |         | C4319-4322 | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 4               |                                                  |
| C4259      |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        |         | C4323      | ECCZ1H820J      | CERAMIC         | 50V 82P +-5%    | 1               |                                                  |
| C4260      |          | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         |            | OR ECCZ1H820J6  | CERAMIC         | 50V 82P +-5%    |                 |                                                  |
| C4261      | П        | ECQB1H183JZ     | POLYESTER 50V 0.018 +-5%  | 1        |         | C4324      | ECEA†CK220      | ELECTROLYTIC    | 16V 22          | 1               |                                                  |
| -          |          | OR ECQV1H183JZ  | POLYESTER 50V 0.018 +-5%  | -        |         | C4325,4326 | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 2               |                                                  |
| C4262      |          | ECEA50M3R3R     | ELECTROLYTIC 50V 3.3      | 1        |         | C4327,4328 | ECEA1EK3R3      | ELECTROLYTIC    | 25V 3.3         | 2               |                                                  |
| C4263      |          | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         | C4331,4332 | ECEA1EK3R3      | ELECTROLYTIC    | 25V 3.3         | 2               |                                                  |
| C4264      |          | ECQB1H123JZ     | POLYESTER 50V 0.012 +-5%  | 1        |         | C4335      | ECEA1AK470      | ELECTROLYTIC    | 10V 47          | 1               |                                                  |
|            |          | OR ECQV1H123JZ  | POLYESTER 50V 0.012 +-5%  |          |         | C4337      | ECEA1CK330      | ELECTROLYTIC    | 16V 33          | 1               |                                                  |
| C4265,4266 |          | ECEA50Z3R3      | ELECTROLYTIC 50V 3.3      | 2        |         | C4338      | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | . 1             |                                                  |
| C4267      |          | ECEAOJK470      | ELECTROLYTIC 6.3V 47      | 1        |         | 04339      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               |                                                  |
| C4268      |          | ECQB1H123JZ     | POLYESTER 50V 0.012 +-5%  | 1        |         |            |                 |                 | +80%-20%        |                 |                                                  |
|            |          | OR ECQV1H123JZ  | POLYESTER 50V 0.012 +-5%  |          |         | C4340      | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 1               |                                                  |
| C4269      |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        |         | C4341      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | .1              |                                                  |
| C4270      |          | ECEA16M1OR      | ELECTROLYTIC 16V 10       | 1.       |         |            |                 |                 | +80%-20%        |                 |                                                  |
| C4271      |          | ECEAOJK101      | ELECTROLYTIC 6.3V 100     | 1        |         | C4342      | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 1               |                                                  |
| 04272      |          | ECQB1H123JZ     | POLYESTER 50V 0.012 +-5%  | 1        |         | C4343      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               |                                                  |
|            |          | OR ECQV1H123JZ  | POLYESTER 50V 0.012 +-5%  |          |         | :          |                 |                 | +80%-20%        |                 |                                                  |
| 04273      |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        |         | C4344      | ECCZ1H82OJ      | CERAMIC         | 50V 82P +-5%    | 1               |                                                  |
| C4274      |          | ECCW1H331J5     | CERAMIC 50V 330P +-5%     | 1        |         |            | OR ECCZ1H820J6  | CERAMIC         | 50V 82P +-5%    |                 |                                                  |
| 04275      |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        |         | C4345      | QCEA1CSS221G    | ELECTROLYTIC    | 16V 220         | 1               |                                                  |
| C4276      |          | ECQB1H472JH     | POLYESTER 50V 0.0047 +-5% | 1        |         |            | OR SCEA1CSS221  | ELECTROLYTIC    | 16V 220         |                 |                                                  |
| C4277      |          | ECQB1H223JZ     | POLYESTER 50V 0.022 +-5%  | 1        |         | C4346      | ECEA1EK4R7      | ELECTROLYTIC    | 25V 4.7         | 1               |                                                  |
|            |          | OR ECQV1H223JZ  | POLYESTER 50V 0.022 +-5%  |          |         | C4347-4349 | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 3               |                                                  |
| 04278      |          | ECEA50M3R3R     | ELECTROLYTIC 50V 3.3      | 1        |         | 04350      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               |                                                  |
| 04279      |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        | ·       |            |                 |                 | +80%-20%        |                 | <u> </u>                                         |
| C4280      |          | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         | C4351      | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 1               |                                                  |
| C4281      | Ш        | ECQB1H183JZ     | POLYESTER 50V 0.018 +-5%  | · 1      |         | 04352      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               | <u> </u>                                         |
|            |          | OR ECQV1H183JZ  | POLYESTER 50V 0.018 +-5%  |          |         |            |                 |                 | +80%-20%        | <b> </b>        | ļ                                                |
| C4282      |          | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         | C4353      | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 1               |                                                  |
| C4283,4284 |          | ECCZ1H470J      | CERAMIC 50V 47P +-5%      | 2        |         | C4354      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               |                                                  |
|            |          | OR ECCZ1H470J6  | CERAMIC 50V 47P +-5%      |          |         |            |                 |                 | +80%-20%        |                 |                                                  |
| C4285      |          | ECKZ1H103ZV     | CERAMIC 50V 0.01          | 1.       |         | C4355      | ECCZ1H820J      | CERAMIC         | 50V 82P +-5%    | 1               |                                                  |
|            | Ш        |                 | +80%-20%                  |          |         |            | OR ECCZ1H820J6  | CERAMIC         | 50V 82P +-5%    |                 |                                                  |
| C4286      |          | ECCZ1H820JC5    | CERAMIC 50V 82P +-5%      | 1        |         | C4357      | ECKZ1H471KB     | CERAMIC         | 50V 470P        | 1               |                                                  |
|            |          | OR ECCZ1H820JC  |                           |          |         |            | OR ECKZ1H471KB  | 6 CERAMIC       | 50V 470P        |                 |                                                  |
| C4287      | Ш        | ECQB1H102KH     | POLYESTER 50V 0.001       | 1        |         | 04359,4360 | VCYD1C104MX     | CERAMIC         | 16V 0.1 +-20%   | 2               | <u> </u>                                         |
| C4288      |          | ECCW1H101JC5    | GERAMIC 50V 100P +-5%     | 1        |         | C4361      | ECQB1H222KH     | POLYESTER       | 50V 0.0022      | 1               |                                                  |
| C4289      |          | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         | C4362      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               |                                                  |
| C4290      | Ш        | ECEA1AK220      | ELECTROLYTIC 10V 22       | 1        |         | 2/2/2      | 7000 11000111   |                 | +80%-20%        | L .             |                                                  |
| C4292      |          | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         | 04363      | ECQB1H222KH     | POLYESTER       | 50V 0.0022      | 1               |                                                  |
| C4293      |          | ECEAOJK220      | ELECTROLYTIC 6.3V 22      | 1        |         | C4364      | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 1               | <u> </u>                                         |
| C4294      |          | ECEAOJK101      | ELECTROLYTIC 6.3V 100     | 1        |         | C4365      | ECEA16M10R      | ELECTROLYTIC    | 16V 10          | 1               |                                                  |
| C4295      |          | ECQB1H562KH     | POLYESTER 50V 0.0056      | 1        |         | C4366      | ECEAOJK101      | ELECTROLYTIC    | 6.3V 100        | 1               |                                                  |
| C4296      | Н        | ECEAOJK220      | ELECTROLYTIC 6.3V 22      | 1        |         | C4367      | ECQB1H123JZ     | POLYESTER       | 50V 0.012 +-5%  | 1               |                                                  |
| C4297      |          | ECKZ1H221KB     | CERAMIC 50V 220P          | 1        |         | 0/260 /060 | OR ECQV1H123JZ  |                 | 50V 0.012 +-5%  | -               |                                                  |
| 0,000      | Ц        | OR ECKZ1H221KB6 | <del></del>               |          |         | 04368,4369 | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 2.              |                                                  |
| C4298      | Н        | ECKZ1H331KB     | CERAMIC 50V 330P          | 1        |         | C4370      | ECQB1H223JZ     | POLYESTER       | 50V 0.022 +-5%  | 1               |                                                  |
| 01300      |          | OR ECKZ1H331KB  |                           | ,        |         | 0/371      | OR ECQV1H223JZ  | POLYESTER       | 50V 0.022 +-5%  | -               | 1                                                |
| C4299      | Н        | ECEAOJK101      | ELECTROLYTIC 6.3V 100     | 1        |         | 04371      | ECKZ1H103ZV     | CERAMIC         | 50V 0.01        | 1               | <del>                                     </del> |
| C4300      | Н        | ECQB1H103KH     | POLYESTER 50V 0.01        | 1        |         | 0/270      | DORAGINO A O    | ET EGMD OF VOTE | +80%-20%        |                 |                                                  |
| C4301      |          | ECEAOJK101      | ELECTROLYTIC 6.3V 100     | 1        |         | C4372      | ECEA1HK010      | ELECTROLYTIC    | 50V 1           | 1               |                                                  |
| C4302-4304 | $\vdash$ | ECEA1AK330      | ELECTROLYTIC 10V 33       | 3        |         | C4373      | ECEA1EK3R3      | ELECTROLYTIC    | 25V 3.3         | 1               |                                                  |
| C4305      | -        | ECEA1CK220      | ELECTROLYTIC 16V 22       | 1        |         | 04374      | ECEA1HK010      | ELECTROLYTIC    | 507 1           | 1               |                                                  |
| C4306      | Н        | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        |         | 04375      | ECQB1H472JH     | POLYESTER       | 50V 0.0047 +-5% | 1               |                                                  |
| C4307      |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        |         | 04376      | ECCW1H331J5     | CERAMIC         | 50V 330P +-5%   | 1               | <del> </del>                                     |
| C4308      | -        | ECEAOJK101      | ELECTROLYTIC 6.3V 100     | 1        |         | C4377      | ECKZ1H221KB     | CERAMIC         | 50V . 220P      | 1               | <del> </del>                                     |
| C4309      | -        | ECQV05104JB     | POLYESTER 50V 0.1 +-5%    | 1        |         | 01200 1000 | OR ECKZ1H221KB6 |                 | 50V 220P        | -               | <del>                                     </del> |
|            | -        | OR ECQVO5104JC  | POLYESTER 50V 0.1 +-5%    |          |         | C4378,4379 | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 2               | ļ                                                |
| 0.210      | $\vdash$ | OR ECQV1H104JZ  | POLYESTER 50V 0.1 +-5%    |          |         | C4380      | ECEAOJK101      | ELECTROLYTIC    | 6.3V 100        | 1               | -                                                |
| C4310      | -        | ECEA1EK3R3      | ELECTROLYTIC 25V 3.3      | 1        | ·       | C4381      | ECEA1HK010      | ELECTROLYTIC    | 50V 1           | 1               | ļ                                                |
| C4311      | -        | ECEA1CK100      | ELECTROLYTIC 16V 10       | 1        |         | C4383      | ECEA1HK2R2      | ELECTROLYTIC    | 50V 2.2         | 1               | <del>                                     </del> |
| C4312      | 1        | ECQV05104JB     | POLYESTER 50V 0.1 +-5%    | 1        |         | C4386      | ECEA1CK101      | ELECTROLYTIC    | 16V 100         | 1               | ļ                                                |
|            |          | OR ECQV05104JC  | POLYESTER 50V 0.1 +-5%    |          |         | C4387,4388 | ECQB1H103KH     | POLYESTER       | 50V 0.01        | 2               |                                                  |
| 0/242      |          | OR ECQV1H104JZ  | POLYESTER 50V 0.1 +-5%    |          |         | C4389      | ECEA1EK4R7      | ELECTROLYTIC    | 25V 4.7         | 1               | <del>                                     </del> |
| C4313      | -        | ECEAOJK101      | ELECTROLYTIC 6.3V 100     | . 1      |         | 04390      | ECEA1CK101      | ELECTROLYTIC    | 16V 100         | 1               | <del>                                     </del> |
| C4314-4316 |          | ECEA1CK100      | ELECTROLYTIC 16V 10       | 3        |         | C4391,4392 | ECEA1CK100      | ELECTROLYTIC    | 16V 10          | 2               | <del>                                     </del> |
| C4317      | $\vdash$ | ECCZ1H82OJ      | CERAMIC 50V 82P +-5%      | 11       |         | 1          | -               |                 |                 | -               |                                                  |
| ı <b>I</b> | ı        | OR ECCZ1H82OJ6  | CERAMIC 50V 82P +-5%      |          |         |            |                 |                 |                 | L               | <u> </u>                                         |

| Ref. No.            | Part No.                        | Part Name & Description | Pcs<br>/<br>Set | Remarks | Ref. No.            |   | Part No.                   | Part Name & Description | Pcs<br>/<br>Set | Remarks                                          |
|---------------------|---------------------------------|-------------------------|-----------------|---------|---------------------|---|----------------------------|-------------------------|-----------------|--------------------------------------------------|
|                     |                                 | FILTERS                 |                 |         |                     | - |                            |                         |                 |                                                  |
| FL4201,4202         | VLF0305                         |                         | 2               |         |                     |   |                            |                         |                 |                                                  |
| FL4203              | VLF0280                         |                         | 1               |         |                     |   |                            | RESISTORS               |                 |                                                  |
| FL4204              | VLF0281                         |                         | 1               |         | R4001               |   | ERDS2TJ333                 | 33K                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4002               |   | ERDS2TJ181                 | 180                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4003               |   | ERDS2TJ101                 | 100                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4004               | _ | ERDS2TJ331                 | 330                     | 1               |                                                  |
|                     |                                 | COILS                   |                 |         | R4005               |   | EVN38CA00B53               | VARIABLE 5K             | 1               |                                                  |
| L4201,4202          | VLQELO5R101K                    | 100                     | 2               |         | R4006               |   | ERDS2TJ124                 | 120K                    | 1_              |                                                  |
| L4203<br>L4204      | VLQELO5R471K<br>VLQELO5R101K    | 470                     | 1               |         | R4007<br>R4008,4009 | _ | ERDS2TJ103<br>ERDS2TJ472   | 10K                     | 2               |                                                  |
| L4205               | VLQELO5R121K                    | 120                     | 1               |         | R4010               |   | EVN38CA00B54               | VARIABLE 50K            | 1               |                                                  |
| L4207               | VLQELO5R101K                    | 100                     | 1               |         | R4011               |   | ERDS2TJ332                 | 3.3K                    | 1               |                                                  |
| L4209               | VLQELO5R101K                    | 100                     | 1               |         | R4012               |   | ERDS2TJ152                 | 1.5K                    | 1               |                                                  |
| L4210,4211          | VLPS0007                        | 1.5                     | 2               |         | R4018               | _ | ERDS2TJ821                 | 820                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4019               |   | ERDS2TJ822                 | 8.2K                    | 1               |                                                  |
|                     |                                 |                         |                 |         | R4020               |   | ERDS2TJ223                 | 22K                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4021               |   | ERDS2TJ102                 | 1K                      | 1               |                                                  |
|                     | -                               | PIN HEADERS             |                 |         | R4022               |   | ERDS2TJ223                 | 22K                     | 11              |                                                  |
| P4201               | VJPS0035                        | 4P                      | 1               |         | R4023               |   | ERDS2TJ183                 | 18K                     | 1               |                                                  |
| P4202               | VJPS0039                        | 8P                      | 1               |         | R4024               |   | ERDS2TJ271                 | VARTARIE 200            | 1               |                                                  |
| P4203               | VJPS0033                        | 2P                      | 1               |         | R4025<br>R4026      |   | EVN38CA00B24<br>ERDS2TJ101 | VARIABLE 20K            | 1               |                                                  |
| P4204               | VJPS0035                        | 4P                      | 1               |         | R4027               |   | ERDS2TJ331                 | 330                     | <u>;</u>        |                                                  |
| P4205<br>P4206      | VJPS0034<br>VJPS0041            | 3P                      | 1               |         | R4027               |   | ERDS2TJ271                 | 270                     | 1               | <del>                                     </del> |
| P4207               | VJPS0037                        | 6P                      | 1               |         | R4029               |   | ERDS2TJ152                 | 1.5K                    | 1               |                                                  |
| P4208               | VJPS0043                        | 12P                     | 1               |         | R4030               |   | ERDS2TJ272                 | 2.7K                    | 1               |                                                  |
| P4209               | VJPS0037                        | 6P                      | 1               |         | R4031               |   | ERDS2TJ332                 | 3.3K                    | 1               |                                                  |
| P4210               | VJPS0036                        | 5P                      | 1               |         | R4032               |   | ERDS2TJ330                 | 33                      | 1               |                                                  |
|                     |                                 |                         |                 |         | R4033               |   | ERDS2TJ473                 | 47K                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4034               |   | ERDS2TJ682                 | 6.8K                    | 1               |                                                  |
|                     |                                 |                         |                 |         | R4035               | _ | ERDS2TJ104                 | 100K                    | 1               |                                                  |
|                     |                                 | MISCELLANEOUS           |                 |         | R4036               |   | ERDS2TJ101                 | 100                     | 1               |                                                  |
|                     | VMTS0035                        | CUSHION                 | 1               |         | R4037               | _ | ERDS2TJ183                 | 18K                     | 1               |                                                  |
| -                   | VSCS0462                        | SHIELD CASE             | 1               |         | R4038               | — | ERDS2TJ223                 | 22K                     | 1               |                                                  |
|                     | VSCS0464                        | SHIELD CASE             | 1               |         | R4039<br>R4044,4045 |   | ERDS2TJ100<br>ERDS2TJ102   | 10<br>1K                | 2               |                                                  |
| ļ                   | VSCS0602<br>VZFS0006            | SHIELD CASE<br>CLAMPER  | 2               |         | R4051               |   | ERDS2TJ333                 | 33K                     | 1               |                                                  |
|                     | V2F 50000                       | ODAM ER                 | ~               |         | R4052               | - | ERDS2TJ181                 | 180                     | 1               |                                                  |
|                     |                                 |                         |                 |         | R4053               |   | ERDS2TJ101                 | . 100                   | 1               |                                                  |
|                     |                                 |                         |                 |         | R4054               | _ | ERDS2TJ331                 | 330                     | 1               |                                                  |
|                     |                                 |                         | -               |         | R4055               |   | EVN38CA00B53               | VARIABLE 5K             | 1               |                                                  |
|                     |                                 |                         |                 |         | R4056               |   | ERDS2TJ124                 | 120K                    | 1               |                                                  |
|                     |                                 | NORMAL AUDIO C.B.A      |                 |         | R4057               |   | ERDS2TJ103                 | 10K                     | . 1             |                                                  |
|                     |                                 |                         |                 |         | R4058,4059          |   | ERDS2TJ472                 | . 4.7K                  | 2               |                                                  |
|                     |                                 | INTEGRATED CIRCUITS     |                 |         | R4060               |   | EVN38CAOOB54               | VARIABLE 50K            | 1               | -                                                |
| IC4001              | UPC1513HA                       |                         | 1               |         | R4061               |   | ERDS2TJ332                 | 3.3K                    | 1               |                                                  |
| Favors              | OR UPC1519HA                    |                         |                 |         | R4062<br>R4068      |   | ERDS2TJ152<br>ERDS2TJ821   | 1.5K                    | 1               |                                                  |
| IC4002              | AN6209K                         |                         | 1               |         | R4069               |   | ERDS2TJ821<br>ERDS2TJ822   | 820<br>8.2K             | 1               | <del>                                     </del> |
| IC4003<br>IC4004    | AN90C21<br>HA12O45              |                         | 1               |         | R4009               |   | ERDS2TJ223                 | 8.2K                    | 1               |                                                  |
| IC4004              | UPC1513HA                       |                         | 1               |         | R4071               |   | ERDS2TJ102                 | 1K                      | 1               | †                                                |
| 20400)              | OR UPC1519HA                    |                         |                 |         | R4072               |   | ERDS2TJ223                 | 22K                     | 1               |                                                  |
| IC4006              | AN6209K                         |                         | 1               |         | R4073               | - | ERDS2TJ183                 | 18K                     | 1               |                                                  |
| IC4007              | AN90C21                         |                         | 1               |         | R4074               |   | ERDS2TJ271                 | 270                     | 1               |                                                  |
|                     |                                 |                         | -               |         | R4075               |   | EVN38CA00B24               | VARIABLE 20K            | 1               |                                                  |
|                     |                                 |                         |                 |         | R4076               |   | ERDS2TJ101                 | 100                     | 1               |                                                  |
|                     |                                 | TRANSISTORS             |                 |         | R4077               |   | ERDS2TJ331                 | 330                     | 1               |                                                  |
| Q4001               | 2SD636(R,S)                     |                         | 1               |         | R4078               |   | ERDS2TJ271                 | 270                     | 1               |                                                  |
| Q4002               | 2SD637(Q,R,S)                   |                         | 1               |         | R4079               |   | ERDS2TJ152                 | 1.5K                    | 1_              | ļI                                               |
| Q4003,4004          | 2SD636(Q,R,S)                   |                         | 2               |         | R4080               |   | ERDS2TJ272                 | 2.7K                    | 1               | ļl                                               |
| Q4007,4008          | 2SD636(Q,R,S)                   |                         | 2               |         | R4081<br>R4082      |   | ERDS2TJ332<br>ERDS2TJ330   | 3.3K                    | 1               |                                                  |
| Q4009<br>Q4011      | 2SB641(R,S)                     |                         | 1               |         | R4083               |   | ERDS21J473                 | 33<br>47K               | 1               |                                                  |
| Q4011<br>Q4012,4013 | 2SD636(Q,R,S)<br>2SD1330(R,S,T) |                         | 1 2             |         | R4084               |   | ERDS2TJ682                 | 6.8K                    | 1               |                                                  |
| Q4012,4015          | 2SD636(Q,R,S)                   |                         | 2               |         | R4085               |   | ERDS2TJ104                 | 100K                    | 1               |                                                  |
| Q4016,4017          | 2SB641(R,S)                     |                         | 2               |         | R4086               | _ | ERDS2TJ101                 | 100                     | 1               |                                                  |
| Q4018,4019          | 2SD636(Q,R,S)                   |                         | 2               |         | R4087               |   | ERDS2TJ183                 | 18K                     | 1               |                                                  |
| Q4020               | 2SB641(R,S)                     |                         | 1               |         | R4088               |   | ERDS2TJ223                 | · 22K                   | 1               |                                                  |
| <u> </u>            |                                 |                         |                 |         | <u> </u>            |   |                            | <del>/</del>            |                 |                                                  |

| Ref. No.  |          | Part No.                 | Part Name & Description   | Pcs<br>/<br>Set | Remarks     | Ref. No.       | Part No.                   | Part Name          | e & Description       | Pcs<br>/<br>Set | Remarks      |
|-----------|----------|--------------------------|---------------------------|-----------------|-------------|----------------|----------------------------|--------------------|-----------------------|-----------------|--------------|
| 4089      | F        | ERDS2TJ100               | 10                        | -               |             | C4035          | ECQB1H183JZ                | POLYESTER          | 50V 0.018 +-5%        | Set 1           |              |
| 4101      | I        | ERDS2TJ222               | 2.2)                      | 1               |             |                | OR ECQVO5183J              | Z POLYESTER        | 50V 0.018 +-5%        |                 |              |
| 4102      | I        | ERDS2TJ103               | 108                       | 1               |             |                | OR ECQV1H183J              | Z POLYESTER        | 50V 0.018 +-5%        |                 |              |
| 103       | 1        | ERDS2TJ562               | 5.68                      | 1               | -           | C4036          | ECEA1HK010                 | ELECTROLYTIC       | 50V 1                 | 1               |              |
| 104       |          | ERDS2TJ822               | 8.28                      |                 |             | C4037          | ECSF1CD224KD               | TANTALUM           | 16V 0.22              | 1               |              |
| 105       | _        | ERDS2TJ220               | 22                        | -               |             | C4038          | ECSF1CD684KD               | TANTALUM           | 16V 0.68              |                 |              |
| 4106      | _        | ERDS2TJ333               | 331                       |                 |             | C4051          | ECEAOJK221                 | ELECTROLYTIC       | 6.3V 220              |                 |              |
|           | _        | ERDS2TJ103               | 101                       | -               |             |                |                            | <del></del>        |                       |                 |              |
| 4107      |          |                          |                           | _               |             | 04052          | ECKW1H471KB5               | CERAMIC            | 50V 470P              |                 |              |
| 4108      |          | ERDS2TJ472               | 4.78                      |                 |             | C4053          | ECEA50M1R                  | ELECTROLYTIC       | 50V 1                 | 11              |              |
| 4109      | _        | ERDS2TJ223               | 228                       | -               |             | .C4054         | ECKW1H471KB5               | CERAMIC            | 50V 470P              | _               |              |
| 4110-4112 | I        | ERDS2TJ562               | 5.61                      | 3               |             | C4055          | ECEA50ZR33                 | ELECTROLYTIC       | 50V 0.33              | 1               |              |
| 4126,4127 | 1        | ERDS2TJ822               | 8.28                      | 2               |             | C4056          | ECEA50ZR22                 | ELECTROLYTIC       | 50V 0.22              | 1               |              |
| R4128     | I        | ERDS2TJ681               | 680                       | 1               |             | C4057          | ECEA1CS220                 | ELECTROLYTIC       | 16V 22                | . 1             |              |
| 4129-4135 | I        | ERDS2TJ223               | 221                       | 7               |             |                | OR ECEA1CU220              | ELECTROLYTIC       | 16V 22                |                 |              |
| 4136,4137 | I        | ERDS2TJ103               | 108                       | 2               |             | C4058          | ECQB1H333JZ                | POLYESTER          | 50V 0.033 +-5%        | 1               |              |
| 4138,4139 | _        | ERDS2TJ473               | 478                       | _               |             | 14174          | OR ECQV05333J              | <del></del>        | 50V 0.033 +-5%        | m               |              |
|           | _        |                          |                           | 1               |             |                |                            |                    |                       |                 | <del> </del> |
| 4140,4141 |          | ERDS2TJ222               | 2.2                       | -               |             |                | OR ECQV1H333J              |                    | 50V 0.033 +-5%        |                 | <u> </u>     |
| 4142,4143 |          | ERDS2TJ223               | 221                       | _               |             | C4059          | ECEA1CS100                 | ELECTROLYTIC       | 16V 10                |                 |              |
| 4144      | I        | ERDS2TJ393               | 398                       | 1               |             |                | OR ECEA1CU100              | ELECTROLYTIC       | 16V 10                | ·               | -            |
|           |          |                          |                           | Ŀ               |             | C4060          | ECEA50ZR33                 | ELECTROLYTIC       | 50V 0.33              | 1               |              |
| 1         |          |                          |                           |                 |             | C4061          | ECEA1CS100                 | ELECTROLYTIC       | 16V 10                | 1               |              |
|           | $\sqcap$ |                          |                           |                 |             |                | OR ECEA1CU100              | ELECTROLYTIC       | 16V 10                |                 |              |
|           | +        |                          |                           | 1               |             | C4065          | ECKW1H102KB5               | CERAMIC            | 50V 0.001             | 1               |              |
|           | +        |                          | CADACIMORG                | -               | <del></del> |                |                            |                    |                       |                 |              |
|           |          |                          | CAPACITORS                | -               |             | C4066          | ECEA1CS100                 | ELECTROLYTIC       | 16V 10                | _               | <del></del>  |
| 4002      | -        | ECKW1H471KB5             | CERAMIC 50V 470F          |                 |             | <u> </u>       | OR ECEATCU100              | ELECTROLYTIC       | 16V 10                |                 |              |
| 4003      | -        | ECEA50M1R                | ELECTROLYTIC 50V 1        | 1               |             | C4067          | ECEA1CS220                 | ELECTROLYTIC       | 16V 22                | 1               |              |
| 4004      | E        | ECKW1H471KB5             | CERAMIC 50V 470F          | 1               |             |                | OR ECEA1CU220              | ELECTROLYTIC       | 16V 22                |                 |              |
| 4005      | F        | ECEA5OZR33               | ELECTROLYTIC 50V 0.33     | 1               | ·           | C4068          | ECEA1CS330                 | ELECTROLYTIC       | 16V 33                | 1               |              |
| 4006      | E        | ECEA50ZR22               | ELECTROLYTIC 50V 0.22     | 1               |             |                | OR ECEA1CU330              | ELECTROLYTIC       | 16V 33                |                 |              |
| 4007      |          | ECEA1CS220               | ELECTROLYTIC 16V 22       |                 |             | C4069          | ECEA1HSO10                 | ELECTROLYTIC       | 50V 1                 | 1               |              |
| ····      |          | OR ECEATCU220            | ELECTROLYTIC 16V 22       | -               |             | -400/          | OR ECEA1HUO10              |                    | 50V 1                 |                 |              |
| 1000      | -        |                          |                           |                 |             | 10000          |                            |                    |                       |                 |              |
| 4008      |          | ECQB1H333JZ              | POLYESTER 50V 0.033 +-5%  | _               |             | C4070          | ECQV05563JZ                | POLYESTER          | 50V 0.056 +-5%        | 1               |              |
|           | _        | OR ECQV05333JZ           | POLYESTER 50V 0.033 +-5%  |                 |             | <u> </u>       | OR ECQV1H563J              |                    | 50V 0.056 +-5%        |                 | <del> </del> |
|           |          | OR ECQV1H333JZ           | POLYESTER 50V 0.033 +-5%  | -               |             | C4071          | ECEA1AS330                 | ELECTROLYTIC       | 10V 33                | 1               | ļ            |
| 4009      | E        | ECEA1CS100               | ELECTROLYTIC 16V 10       | 1               |             |                | OR ECEA1AU330              | ELECTROLYTIC       | 10V 33                |                 |              |
|           |          | OR ECEA1CU100            | ELECTROLYTIC 16V 10       |                 |             | C4072,4073     | ECEA50ZOR1                 | ELECTROLYTIC       | 50V 0.1               | 2               |              |
| 4010      | E        | ECEA50ZR33               | ELECTROLYTIC 50V 0.33     | 1               |             | C4074          | ECEA1AS330                 | ELECTROLYTIC       | 10V 33                | 1               |              |
| 4011      | _        | ECEA1CS100               | ELECTROLYTIC 16V 10       |                 |             |                | OR ECEA1AU330              | ELECTROLYTIC       | 10V 33                |                 |              |
|           | - 1-     | OR ECEA1CU100            | ELECTROLYTIC 16V 10       |                 |             | C4075          | VCYW1C104MX                | CERAMIC            | 16V 0.1 +-20%         | 1               |              |
| 4015      |          | ECKW1H102KB5             |                           |                 |             |                | 1                          |                    |                       |                 |              |
|           |          |                          |                           |                 |             | C4076          | ECEA1CKN100                | ELECTROLYTIC       | 16V 10                |                 |              |
| 4016      | _        | ECEA1CS100               | ELECTROLYTIC 16V 10       |                 |             | C4077          | ECEA1HS010                 | ELECTROLYTIC       | 50V 1                 | 1               |              |
| i         |          | OR ECEA1CU100            | ELECTROLYTIC 16V 10       |                 |             |                | OR ECEATHUO10              | ELECTROLYTIC       | 50V 1                 |                 | <del> </del> |
| 4017      | F        | ECEA1CS220               | ELECTROLYTIC 16V 22       | 1               |             | C4078          | ECEA1CK470                 | ELECTROLYTIC       | 16V 47                |                 | <u> </u>     |
|           | c        | OR ECEA1CU220            | ELECTROLYTIC 16V 22       |                 |             | C4079          | ECEA1CKN100                | ELECTROLYTIC       | 16V 10                | 1               |              |
| 4018      | E        | ECEA1CS330               | ELECTROLYTIC 16V 33       |                 |             | C4080          | ECQB1H333JZ                | POLYESTER          | 50V 0.033 +-5%        | 1               | [            |
|           | C        | OR ECEA1CU330            | ELECTROLYTIC 16V 33       |                 |             |                | OR ECQV05333J              | Z POLYESTER        | 50V 0.033 +-5%        |                 |              |
| 1019      |          | ECEA1HSO10               | ELECTROLYTIC 50V 1        |                 |             |                | OR ECQV1H333J              |                    | 50V 0.033 +-5%        |                 |              |
|           |          | OR ECEA1HUO10            | ELECTROLYTIC 50V 1        | _               |             | C/081          |                            |                    |                       | 1               |              |
| 4020      |          | CQV05563J2               |                           | 1               |             | C4081          | ECQB1H472JZ                | POLYESTER          | 50V 0.0047 +-5%       | `               |              |
| +020      |          |                          |                           |                 |             | 21055          | OR ECQM1H472J              |                    | 50V 0.0047 +-5%       |                 |              |
| -         |          | OR ECQV1H563J2           | POLYESTER 50V 0.056 +-5%  |                 | ļ           | C4082          | ECEA1EKL4R7                | ELECTROLYTIC       | 25V 4.7               |                 |              |
| .021      |          | ECEA1AS330               | ELECTROLYTIC 10V 33       | 1               |             | 04083          | ECEA1CKN100                | ELECTROLYTIC       | 16V 10                | 1               |              |
|           |          | OR ECEA1AU330            | ELECTROLYTIC 10V 33       |                 |             | C4084          | ECQV05473JZ                | POLYESTER          | 50V 0.047 +-5%        | 1               |              |
| 022,4023  | E        | CEA50ZOR1                | ELECTROLYTIC 50V 0.1      | 2               |             |                | OR ECQV1H473J              | POLYESTER          | 50V 0.047 +-5%        |                 |              |
| 024       | E        | CEA1AS330                | ELECTROLYTIC 10V 33       | +               |             | C4085          | ECQB1H183JZ                | POLYESTER          | 50V 0.018 +-5%        | 1               |              |
|           |          | OR ECEA1AU330            | ELECTROLYTIC 10V 33       | +               |             |                | OR ECQV05183J              |                    | 50V 0.018 +-5%        |                 |              |
| 025       |          | CYW1C104MX               | CERAMIC 16V 0.1 +-20%     |                 |             | <b> </b>       | OR ECQV1H183J              |                    | 50V 0.018 +-5%        |                 |              |
| ,026      |          | CEA1CKN100               |                           | -               |             | 0,004          |                            |                    |                       |                 | <del></del>  |
|           |          |                          | ELECTROLYTIC 16V 10       | _               |             | C4086          | ECEA1HKO10                 | ELECTROLYTIC       | 50V 1                 | 1               | <u> </u>     |
| 027       |          | CEA1HS010                | ELECTROLYTIC 50V 1        |                 |             | C4087          | ECSF1CD224KD               | TANTALUM           | 16V 0.22              | 1_              |              |
|           |          | R ECEA1HUO10             | ELECTROLYTIC 50V 1        | <u></u>         |             | C4088          | ECSF1CD684KD               | TANTALUM           | 16V 0.68              | 1               |              |
| 028       |          | CEA1CK100                | ELECTROLYTIC 16V 10       | 1               |             | C4101          | ECEA1CK101                 | ELECTROLYTIC       | 16 <b>V</b> 100       | 1               | <u></u>      |
| 029       | E        | CEA1CKN100               | ELECTROLYTIC 16V 10       | 1               |             | 04102          | ECEA1CS470                 | ELECTROLYTIC       | 16V 47                | 1               |              |
| 030       |          | CQB1H333JZ               | POLYESTER 50V 0.033 +-5%  | -               |             |                | OR ECEA1CU470              | ELECTROLYTIC       | 16V 47                |                 |              |
|           |          | R ECQVO5333JZ            | POLYESTER 50V 0.033 +-5%  | +               |             | C4103          | ECEA1HSR47                 | ELECTROLYTIC       | 50V 0.47              | 1               |              |
|           |          |                          |                           |                 |             | 34105          |                            |                    |                       | !_              |              |
|           |          | R ECQV1H333JZ            | POLYESTER 50V 0.033 +-5%  | _               |             | <u> </u>       | OR ECEATHUR47              | ELECTROLYTIC       | 50V 0.47              |                 |              |
| 204       | -        | CQB1H472JZ               | POLYESTER 50V 0.0047 +-5% | -               |             | C4104,4105     | ECKW1H102KB5               | CERAMIC            | 50V 0.001             | 2               |              |
| 031       |          | R ECQM1H472JV            | POLYESTER 50V 0.0047 +-5% | 1               |             | C4106          | ECEA1CS220                 | ELECTROLYTIC       | 16V 22                | . 1             |              |
| 031       | 0        |                          |                           | 1               |             |                | OR ECEA1CU220              | ELECTROLYTIC       | 16V 22                |                 |              |
| .031      | _        | CEA1EKL4R7               | ELECTROLYTIC 25V 4.7      | , ,             |             |                |                            |                    |                       |                 |              |
|           | Е        | CEA1EKL4R7<br>CEA1CKN100 |                           | _               |             | C4107          | VCYW1E103KX                | CERAMIC            | 25V 0-01 l            | 1               | 1 .          |
| 032       | E        |                          |                           | 1               |             | C4107<br>C4108 | VCYW1E103KX<br>VCYW1E333KX | CERAMIC<br>CERAMIC | 25V 0.01<br>25V 0.033 | 1               |              |

| Ref. No.       | Part No.                 | Part Name & Description     | Pcs<br>/<br>Set | Remarks | Ref. No.            | Part No.              | Part Name & Description                  | Pcs<br>/<br>Set | Remarks |
|----------------|--------------------------|-----------------------------|-----------------|---------|---------------------|-----------------------|------------------------------------------|-----------------|---------|
| C4110,4111     | ECRHCO60G11              | TRIMMER 601                 | 1               |         | R7811               | ERDS2TJ103            | 10%                                      | _               |         |
|                | OR ECV1ZW60X6            |                             | -               |         | R7814               | ERDS2TJ333            | 33%                                      | _               |         |
|                | OR VCVSAW60X1            | R TRIMMER 601               |                 |         | R7815               | ERDS2TJ274            | . 270K                                   |                 |         |
| 04123          | ECEA1HS2R2               | ELECTROLYTIC 50V 2.2        | 1               |         | R7816               | ERDS2TJ153            | 15%                                      | 1               |         |
|                | OR ECEA1HU2R2            | ELECTROLYTIC 50V 2.2        |                 |         | R7817-7819          | ERDS2TJ182            | 1.8K                                     | 3               |         |
| C4124          | VCYW1E333KX              | CERAMIC 25V 0.033           | . 1.            |         | R7820,7821          | VRVS0001              | VARIABLE 5K                              | 2               |         |
|                |                          |                             | ļ               |         | R7905               | ERDS2TJ271            | 270                                      | 1               |         |
|                |                          |                             | ļ               |         |                     |                       |                                          | ļ               |         |
|                |                          |                             | <u> </u>        |         |                     |                       |                                          |                 |         |
| FL4001,400     | 2 VLFS0002               | FILTERS                     | -               |         |                     |                       |                                          |                 |         |
| F154001,4002   | VLF30002                 |                             | 2               |         | ggpot ggoo          | ECEA1CK100            | CAPACITORS                               |                 |         |
|                |                          |                             |                 |         | C7801,7802<br>C7803 | ECEA1EK4R7            | ELECTROLYTIC 16V 10 ELECTROLYTIC 25V 4.7 | <del> </del>    |         |
|                |                          |                             |                 |         | C7804               | ECEA1CK330            | ELECTROLYTIC 25V 4.7 ELECTROLYTIC 16V 33 |                 |         |
|                |                          | COILS                       |                 |         | C7805               | ECEA1CK100            | ELECTROLYTIC 16V 10                      |                 |         |
| L4001          | VLQS78F222K              | 2.2M                        | 1               |         | C7806               | ECEA1EK4R7            | ELECTROLYTIC 25V 4.7                     | -               |         |
| L4002          | VLQS67F222K              | 2.2M                        |                 |         | C7807               | ECEA1CK100            | ELECTROLYTIC 16V 10                      |                 |         |
| L4003          | VLQS78F222K              | 2.2M                        | 1               |         | C7809               | ECEA1CK100            | ELECTROLYTIC 16V 10                      |                 |         |
| L4004          | VLQS67F222K              | 2.2M                        | 1               |         |                     |                       |                                          |                 |         |
| L4005,4006     | VLQS66F471K              | 470                         | 2               |         |                     |                       |                                          |                 |         |
|                | 1                        |                             |                 |         |                     |                       |                                          |                 |         |
|                |                          |                             |                 |         |                     |                       | SWITCHES                                 |                 |         |
|                |                          |                             |                 |         | SW6301-6310         |                       | PUSH                                     | 10              |         |
| Diese          | <del></del>              | PIN HEADER                  |                 |         | SW7821              | ESB-65143             | SELECT                                   | 1_              |         |
| P4001          | VJPS0104                 | 8P                          | 1               |         | SW7901,7902         |                       | PUSH                                     | 2               |         |
|                |                          |                             |                 |         | SW7903              | EVQ-QJ104K            | PUSH                                     | 1               |         |
|                |                          |                             |                 |         | SW7906<br>SW7907    | VSSS0031<br>EVQQSR05K | SELECT<br>PUSH                           | 1               |         |
|                |                          | TRANSFORMER                 |                 |         | SW 7907             | MCONOGPVA             | ruon                                     | -               |         |
| T4001          | ELM7Q020E                |                             | 1               |         |                     | -                     |                                          |                 |         |
|                |                          |                             |                 |         |                     |                       |                                          |                 |         |
|                |                          |                             |                 |         |                     |                       | MISCELLANEOUS                            |                 |         |
| Į              |                          |                             |                 |         |                     | VGMS0077              | LEVEL METER HOLDER                       | 1               |         |
|                |                          | MISCELLANEOUS               |                 |         |                     | VMDS0248              | LED SPACER                               | 1               |         |
|                | VMTS0035                 | CUSHION                     | - 6             |         |                     | VMXS0036              | LED SPACER                               | 1               | . 4     |
|                | VSCS0439                 | SHIELD CASE                 | 1               |         |                     | VMZS0141              | BARRIER                                  | 1               |         |
|                | VSCS0440                 | SHIELD CASE                 | _ 1             |         | DP7801              | VSZS0027              | LEVEL METER DISPLAY TUBE                 | 1               |         |
|                | VSCS0441<br>VZFS0006     | SHIELD CASE<br>CLAMPER      | 1               |         |                     |                       |                                          |                 |         |
|                | V21 00000                | CHAPP BR                    | 1               |         |                     |                       |                                          |                 |         |
|                |                          |                             |                 |         |                     |                       |                                          | -               |         |
|                |                          |                             |                 |         |                     |                       |                                          |                 |         |
|                |                          |                             |                 |         |                     |                       | PROGRAMMABLE TIMER C.B.A                 | ,               |         |
|                |                          |                             |                 |         |                     |                       |                                          |                 |         |
|                |                          | OPERATION/AUDIO LEVEL METER |                 |         |                     |                       | INTEGRATED CIRCUITS                      |                 |         |
| -              |                          | C.B.A                       | -               |         | IC7501              | UPD7538C-021          |                                          | _ 1             |         |
|                |                          |                             |                 |         |                     | OR UPD7538C-02        | 8                                        |                 |         |
| IC7801,7802    | BA668A                   | INTEGRATED CIRCUITS         | 2               |         | <u> </u>            |                       |                                          |                 |         |
| IC7803         | BA222                    |                             | 1               |         |                     |                       | ,                                        |                 |         |
|                |                          |                             | •               |         |                     |                       | TRANSISTOR                               |                 |         |
|                |                          |                             |                 |         | Q7502               | 2SD636(Q,R,S)         |                                          | 1               |         |
|                |                          |                             |                 |         |                     |                       |                                          |                 |         |
|                |                          | DIODES                      |                 |         |                     |                       |                                          |                 |         |
| D6301-6308     | MA165                    |                             | 8               | :       |                     |                       | '                                        |                 |         |
|                | OR 1SS119                | / · · ·                     | - 1             |         |                     |                       | DIODES                                   |                 |         |
| D7808-7812     | BR5608S                  | LED                         | _5_             |         | DX7201<br>DX7202    | VCRS0037              | COMPLEX COMPONENT                        | 1               |         |
| D7901          | LN31GCPHL                | LED                         | 1               |         | DX7503-7505         | VCRS0038              | COMPLEX COMPONENT COMPLEX COMPONENT      | 3               |         |
| -              |                          |                             |                 |         | D7215-7228          | LN31GCPUHL            | LED .                                    | 14              |         |
|                |                          |                             |                 |         | D7501               | MA166                 | <u> </u>                                 | 1               |         |
|                |                          | RESISTORS                   |                 |         | D7502               | RD9.1EB               | ZENER                                    | 1               |         |
| R6301          | ERDS2TJ392               | 3.9K                        | 1               |         | D7504-7517          | MA166                 |                                          | 14              |         |
| R7804          | ERDS2TJ103               | 10K                         | 1               |         | D7542,7543          | MA166                 |                                          | 2               |         |
| R7805          | ERDS2TJ272               | 2.7%                        | 1               |         | D7545               | RD20EB                | ZENER                                    | 1               |         |
| R7806          | ERDS2TJ561               | 560                         | 1               |         | ļ                   |                       |                                          |                 |         |
| R7807          | ERDS2TJ394               | 390K                        | 1               |         |                     | <u> </u>              |                                          |                 |         |
| R7808<br>R7809 | ERDS2TJ272<br>ERDS2TJ561 | 2.7K                        | . 1             |         |                     |                       | DECTORODO                                |                 |         |
| R7810          | ERDS2TJ394               | 560<br>390K                 | 1               |         | R7501,7502          | ERDS2TJ104            | RESISTORS 100K                           | 2               |         |
|                | 1 2/4                    | 3901                        |                 |         |                     |                       | TOOK                                     | ٨               |         |

| Ref. No.                                         | Part No.                     | Part Name & Description                        | Pcs<br>/<br>Set | Remarks | Ref. No.       |   | Part No.                   | Part Name & Description . | Pcs<br>/<br>Set | Remarks |
|--------------------------------------------------|------------------------------|------------------------------------------------|-----------------|---------|----------------|---|----------------------------|---------------------------|-----------------|---------|
| R7505                                            | ERDS2TJ222                   | 2.2%                                           |                 |         |                |   |                            |                           |                 |         |
| R7508                                            | ERDS2TJ682                   | 6.88                                           |                 |         | <b> </b>       |   |                            | CAPSTAN MOTOR DRIVE C.B.A |                 |         |
| R7509,7510                                       | ERDS2TJ223                   | 228                                            | <del> </del>    |         | <b> </b>       |   |                            |                           | ļ               |         |
| R7511<br>R7512-7515                              | ERDS2TJ473<br>ERDS2TJ223     | 478                                            | -               |         | T00/04         | L | ANDODAY                    | INTEGRATED CIRCUITS       |                 |         |
| R7516                                            | ERDS2TJ224                   | 22K                                            |                 |         | IC2601         |   | AN3821K<br>OR AN3822K      |                           | 1               |         |
| R7517                                            | ERDS2TJ221                   | 220                                            | -               |         | 1              | - | ON ANJOZZN                 |                           |                 |         |
| R7518                                            | ERDS2TJ102                   | 1 1 1                                          |                 |         |                |   |                            |                           |                 |         |
| R7519                                            | ERDS2TJ391                   | 390                                            | +               |         |                |   |                            |                           |                 |         |
| R7520                                            | ERDS2TJ122                   | 1.2K                                           | 1               |         |                |   |                            | RESISTORS                 |                 |         |
| R7521,7522                                       | ERDS2TJ102                   | 1K                                             | 2               |         | R2601          | Δ | ERX12ANJR68                | METAL OXIDE 1/2W 0.68     | 1               |         |
| R7523                                            | ERDS2TJ122                   | 1.2K                                           | 1               |         |                | Δ | OR ERX12SJR68              | METAL OXEDE 1/2W 0.68     |                 |         |
| R7524                                            | ERDS2TJ472                   | 4.7K                                           | -               |         | R2602          |   | ERDS2TJ102                 | 1K                        | 1               |         |
| R7525,7526                                       | ERDS2TJ331                   | 330                                            |                 |         | R2603          |   | ERDS2TJ392                 | 3.9K                      | 1               |         |
| R7527                                            | ERDS2TJ472                   | 4.7K                                           |                 |         | R2605          |   | ERDS2TJ181                 | 180                       | 1               |         |
| R7530                                            | ERDS2TJ102                   | 1K                                             | 1               |         | R2606-2608     | - | ERDS2TJ224                 | 220K                      | 3               |         |
|                                                  |                              |                                                |                 |         |                |   |                            |                           |                 |         |
|                                                  |                              |                                                |                 |         | l              |   |                            |                           |                 |         |
|                                                  |                              | CAPACITORS                                     |                 |         | l              |   |                            | CAPACITORS                |                 |         |
| C7501                                            | ECEAOJS221                   | ELECTROLYTIC 6.3V 220                          | 1               |         | C2601          | - | ECEA1CK101                 | ELECTROLYTIC 16V 100      | 1               |         |
|                                                  | OR ECEAOJU221                | ELECTROLYTIC 6.3V 220                          |                 |         | C2602          | Г | ECQM1H473KV                | POLYESTER 50V 0.047       | 1               |         |
| C7502                                            | ECQV05224JZ                  | POLYESTER 50V 0.22 +-5%                        | 1               |         |                |   | OR ECQM1H473KZ             |                           |                 |         |
|                                                  | OR ECQV1H224JZ               | · · · · · · · · · · · · · · · · · · ·          |                 |         | C2603          | L | ECEA1HKO10                 | ELECTROLYTIC 50V 1        | 1               |         |
| C7503                                            | ECEA1HKO10                   | ELECTROLYTIC 50V 1                             | 1               |         | C2604-2606     |   | ECEA1EKN2R2                | ELECTROLYTIC 25V 2.2      | 3               |         |
| C7505                                            | VCYW1E473KX                  | CERAMIC 25V 0.047                              |                 |         | C2607-2609     |   | ECKF1H472ZF                | CERAMIC 50V 0.0047        | 3               |         |
| C7506,7507<br>C7508                              | VCYSARH101KB<br>VCYSARH102KB | CERAMIC   50V   100P     CERAMIC   50V   0.001 | 2               |         |                | _ |                            | +80%-20%                  |                 |         |
| C7508                                            | VCYSARC103NY                 | CERAMIC 50V 0.001 CERAMIC 16V 0.01 +-30%       | 1               |         |                | _ |                            |                           |                 |         |
| C7513                                            | VCYSARC103NY                 | CERAMIC 16V 0.01 +-30%                         | 1               |         |                |   |                            |                           |                 |         |
| C7515                                            | VCYD1C104MX                  | CERAMIC 16V 0.1 +-20%                          | 1               |         |                |   |                            | PIN HEADER                |                 |         |
|                                                  | ,                            |                                                |                 |         | P2601          | - | VJPS0116                   | FIN HEADER 8P             | 1               |         |
|                                                  |                              |                                                |                 |         | 1              |   |                            | 0.1                       | T.              |         |
|                                                  |                              |                                                |                 |         |                |   |                            |                           |                 |         |
|                                                  |                              | COIL                                           |                 |         | -              |   |                            |                           |                 |         |
| L7501                                            | VLQS05R4R7K                  | 4.7                                            | 1               |         |                |   |                            |                           |                 |         |
|                                                  |                              |                                                |                 |         |                |   |                            |                           |                 |         |
|                                                  |                              |                                                |                 |         |                |   |                            | LUMINANCE C.B.A           | -               | · .     |
|                                                  |                              | CRYSTAL OSCILLATOR                             |                 |         |                |   |                            |                           |                 |         |
| X7501                                            | VSXS0007                     | CRISTAL OSCILLATOR                             | 1               |         |                | - |                            | INTEGRATED CIRCUITS       |                 |         |
| ,,0.                                             | OR VSXSOOO8                  |                                                |                 |         | IC3101         | - | AN3210K                    |                           | 1               |         |
|                                                  |                              |                                                |                 |         | IC3102         |   | AN3320K                    |                           | 1_              |         |
|                                                  |                              |                                                |                 |         |                |   |                            |                           |                 |         |
|                                                  |                              |                                                |                 |         |                |   |                            |                           |                 |         |
|                                                  |                              | PIN HEADER                                     |                 |         |                |   |                            | DIODES                    |                 |         |
| P7505                                            | VJPS0113                     | 5P                                             | 1               |         | D3101,3102     |   | MA165                      |                           | 2               |         |
|                                                  |                              |                                                |                 |         |                |   | OR 188119                  |                           |                 |         |
|                                                  |                              |                                                |                 |         | D3104          |   | EQA02-06                   | ZENER                     | 1               |         |
|                                                  |                              | CHITMOUTEG                                     |                 |         |                |   | OR EQAO2-07                | ZENER                     |                 |         |
| SW7201-7214                                      | EVQQSR05K                    | SWITCHES<br>PUSH                               | 47              |         |                |   | OR RD6.2EB                 | ZENER                     |                 |         |
| SW7503-7507                                      | EVQ-QJ104K                   | PUSH                                           | 14<br>5         |         | <del>  </del>  | _ | OR RD6.8EB                 | ZENER                     | 5.              |         |
| SW7509,7510                                      | VES0198                      | SELECT                                         | 2               |         |                |   |                            |                           |                 |         |
| 1                                                | OR VSSSOOO5                  | SELECT                                         | ~               |         |                |   |                            |                           |                 |         |
|                                                  |                              |                                                |                 |         |                |   |                            | RESISTORS                 |                 |         |
|                                                  |                              |                                                |                 |         | R3101-3103     | _ | EVNE4AAOOB54               | VARIABLE 50K              | 3               |         |
|                                                  |                              |                                                |                 |         | R3104          | _ | EVNE4AAOOB14               | VARIABLE 10K              | . 1             |         |
|                                                  |                              | MISCELLANEOUS                                  |                 |         | R3105          |   | ERÐS2TJ103                 | 10K                       | 1               |         |
|                                                  | VMDS0185                     | LED HOLDER                                     | 2               |         | R3106          | _ | ERDS2TJ122                 | 1.2K                      | 1               |         |
| DOMAN                                            | VMDS0223                     | DISPLAY TUBE HOLDER                            | 1               |         | R3107          |   | ERDS2TJ563                 | 56K                       | 1               |         |
| D7501                                            | VSZS0023                     | DISPLAY TUBE                                   | 1               | -       | R3110          |   | ERDS2TJ332                 | 3.3K                      | 1               |         |
|                                                  |                              |                                                |                 |         | R3111          |   | ERDS2TJ822                 | 8.2K                      | 1               |         |
|                                                  | 1                            |                                                |                 |         | R3112          | _ | ERDS2TJ821                 | 820                       | 1               |         |
|                                                  |                              |                                                |                 |         | R3113<br>R3114 |   | ERDS2TJ102<br>EVNE4AAOOB54 | VARIABLE 50K              | 1               |         |
| <del>                                     </del> |                              |                                                |                 |         | R3114          |   | ERDS2TJ102                 | VARIABLE 50K              | 1               |         |
| <del> </del>                                     |                              |                                                |                 |         | R3116          |   | ERDS2TJ272                 | 2.7K                      | 1               |         |
|                                                  |                              |                                                |                 |         | R3117          |   | ERDS2TJ103                 | 10K                       | 1               |         |
|                                                  |                              |                                                |                 |         | R3118,3119     |   | ERDS2TJ391                 | 390                       | 2               |         |
|                                                  |                              |                                                |                 |         |                |   | //!                        |                           | ~               |         |

| Ref. No.   | Part No.                    | Part Name & Description                         | Pcs<br>/<br>Set | Remarks                                          | Ref. No.   |                | Part No.         | Part Name & Description | Pcs<br>/<br>Set | Remarks                               |
|------------|-----------------------------|-------------------------------------------------|-----------------|--------------------------------------------------|------------|----------------|------------------|-------------------------|-----------------|---------------------------------------|
| R3120,3121 | ERDS2TJ122                  | 1.2K                                            |                 |                                                  |            |                |                  | C/R COMPLEX COMPONENT   |                 |                                       |
| 3122       | ERDS2TJ562                  | 5.6K                                            | 1               |                                                  | CR3101     |                | EXRP391K332      | 50V 390P, 3.3K          | 1               |                                       |
| 3123       | EVNE4AA00B24                | VARIABLE 20K                                    | 1               |                                                  | CR3102     |                | EXRP103M184      | 50V 0.01 +-20%, 180K    | 1               |                                       |
| 3125       | ERDS2TJ122                  | 1.28                                            | 1               |                                                  | CR3103     |                | EXRP391K271      | 50V 390P, 270           | 1               |                                       |
| 3126       | ERDS2TJ152                  | 1.5K                                            | 1               |                                                  | CR3104     |                | EXRP271K152      | 50V 270P, 1.5K          | 1               |                                       |
| 3127       | ERDS2TJ182                  | 1.8%                                            | 1               |                                                  |            |                |                  |                         |                 |                                       |
| 3128       | ERDS2TJ471                  | 470                                             | 1               |                                                  | , , ,      |                |                  |                         |                 |                                       |
| 3129       | ERDS2TJ151                  | 150                                             | 1               |                                                  |            |                |                  |                         |                 |                                       |
| 3130       | ERDS2TJ222                  | 2.2K                                            | 1               |                                                  |            |                |                  | DELAY LINE              |                 |                                       |
| 3131       | ERDS2TJ121                  | 120                                             | 1               |                                                  | DL3101     | L              | EFDEN645A12P     |                         | 1               |                                       |
| 3132       | ERDS2TJ103                  | 10K                                             | 1               |                                                  |            |                | OR VLDS0003      |                         |                 |                                       |
| 3133,3134  | ERDS2TJ152                  | 1.5%                                            | 2               |                                                  |            |                |                  |                         |                 |                                       |
| 3135       | ERDS2TJ122                  | 1.28                                            | 1'              |                                                  |            |                |                  |                         |                 |                                       |
| 3140,3141  | ERDS2TJ824                  |                                                 | 2               |                                                  |            |                |                  | · .                     |                 |                                       |
| 3143       | ERDS2TJ473                  | 47K                                             | 1               |                                                  |            |                |                  | FILTER                  |                 | L                                     |
|            |                             |                                                 |                 |                                                  | FL3101     |                | ELB4M006         |                         | 1               |                                       |
|            |                             |                                                 |                 |                                                  |            |                | OR VLFS0011      |                         |                 | L                                     |
|            |                             |                                                 |                 |                                                  |            |                |                  |                         |                 |                                       |
|            |                             | CAPACITORS                                      |                 |                                                  |            |                |                  |                         |                 |                                       |
| 3101       | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                          | 1               |                                                  |            | Ĺ              |                  | <u> </u>                |                 |                                       |
| 3102       | ECCW1H39OJC5                | CERAMIC 50V 39P +-5%                            | 1               |                                                  |            |                |                  | COILS                   |                 |                                       |
| 3103       | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                          | 1               |                                                  | L3101~3103 |                | VLQS05R101K      | 100                     | 3               |                                       |
| 3105       | VCYSARH101KB                | CERAMIC 50V 100F                                | 1               |                                                  | L3104      |                | VLQS05R270K      | 27                      |                 |                                       |
| 23106      | ECEA1HSR47                  | ELECTROLYTIC 50V 0.47                           | 1               |                                                  | L3105      |                | VLQS05R101K      | 100                     |                 |                                       |
| 3107       | VCYSARC103NY                | CERAMIC 16V 0.01 ÷-30%                          | 1               |                                                  | L3106,3107 |                | VLQS05R100K      | 10                      |                 | ,                                     |
| 3108       | ECEAOJS221                  | ELECTROLYTIC 6.3V 220                           |                 |                                                  | ,,,,,,     |                |                  | , ,                     |                 |                                       |
|            | OR ECEAOJU221               | ELECTROLYTIC 6.3V 220                           | +               |                                                  |            |                |                  |                         |                 |                                       |
| 3109       | VCYSARH471KB                | CERAMIC 50V 470F                                | 1               |                                                  |            | Г              |                  |                         |                 |                                       |
| 3110       | VCYSARH391KB                | CERAMIC 50V 390P                                |                 |                                                  |            |                |                  | MISCELLANEOUS           | $\neg$          |                                       |
| 3111       | VCYSARH561KB                | CERAMIC 50V 560P                                |                 |                                                  |            | Г              | VJHS0046         | PACK LEAD PIN           | 1               |                                       |
| 3112       | ECEA1HS010                  | ELECTROLYTIC 50V 1                              | 1               |                                                  |            | Г              | VMXS0366         | SPACER                  | 1               |                                       |
|            | OR ECEA1HUO10               | ELECTROLYTIC 50V 1                              | $\Box$          |                                                  |            |                | VMZS0081         | SPACER                  | 1               |                                       |
| 3113       | ECCW1H680J5                 | CERAMIC 50V 68P +-5%                            | 1               |                                                  |            | 1              | VSCS0494         | ANGLE                   | 1               |                                       |
| 3114       | VCYSARH331KB                | CERAMIC 50V 330P                                |                 |                                                  |            | T              | 10000474         | mobs                    |                 |                                       |
| 3115       | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                          |                 |                                                  |            | -              | _                |                         |                 |                                       |
| 3117-3122  | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                          | +               |                                                  |            | $\vdash$       |                  |                         |                 |                                       |
| 3123,3124  | ECCW1H390J5                 | CERAMIC 50V 39P +-5%                            | _               |                                                  | -          | $\vdash$       |                  |                         | $\neg$          |                                       |
| 3125       | ECEAOJS221                  | ELECTROLYTIC 6.3V 220                           | -               |                                                  |            | $\vdash$       |                  |                         |                 |                                       |
| 33123      | OR ECEAOJU221               | ELECTROLYTIC 6.3V 220                           | -               |                                                  |            |                |                  | CHROMINANCE C.B.A       |                 |                                       |
| 3126-3128  | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                          | _               |                                                  |            |                |                  | CHROMINANCE C.B.A       | -               |                                       |
| 3129       | ECCW1H390J5                 | CERAMIC 50V 39P +-5%                            |                 |                                                  |            | -              | -                | INTEGRATED CIRCUITS     |                 | <u> </u>                              |
| 3130       | ECEA1HS010                  | ELECTROLYTIC 50V 1                              |                 |                                                  | IC8101     |                | AN6366NK         | INTEGRATED CIRCUITS     | 1               |                                       |
| 551,50     | OR ECEA1HUO10               | ELECTROLYTIC 50V 1                              | +               |                                                  | IC8102     | -              | MN6163A          |                         | 1               |                                       |
| 33131      | ECCW1H390J5                 | CERAMIC 50V 39P +-5%                            |                 |                                                  | 100102     |                | MINOTOJA         |                         |                 |                                       |
| 33132      | ECEA1ES3R3                  | ELECTROLYTIC 25V 3.3                            |                 |                                                  |            | -              |                  |                         |                 |                                       |
| .5.5~      | OR ECEA1EU3R3               | ELECTROLYTIC 25V 3.3                            | _               |                                                  |            |                | -                |                         |                 |                                       |
| 3133,3134  | VCYSARC103NY                | CERAMIC 16V 0.01 +-30%                          |                 |                                                  |            | $\vdash$       |                  | TDANGTOTORG             |                 |                                       |
|            | ECEA1HS010                  |                                                 | 1               | <del> </del>                                     | 08101 0101 | $\vdash$       | 290202134/0 n c  | TRANSISTORS             |                 |                                       |
| 3135       | OR ECEA1HUO10               | ELECTROLYTIC 50V 1 ELECTROLYTIC 50V 1           | +               |                                                  | Q8101-8104 | <del>  -</del> | 2SC2021M(Q,R,S   | 1                       | 4               |                                       |
| 3136       | VCYSARH681KB                | CERAMIC 50V 680P                                |                 |                                                  |            | ╁              | OR 280626(0 P 8) |                         |                 |                                       |
| 3137       | ECCW1H151J5                 | CERAMIC 50V 150P +-5%                           |                 |                                                  | -          | $\vdash$       | 2SD636(Q,R,S)    |                         |                 |                                       |
| 3138       | ECCW1H151J5                 |                                                 |                 |                                                  | ,          | $\vdash$       |                  |                         | $\vdash$        |                                       |
| 00100      | OR VCKW1H221JSA             |                                                 |                 |                                                  |            | $\vdash$       |                  |                         |                 |                                       |
| 3130       |                             |                                                 | 1               | <b>———</b>                                       |            | +-             | · -              | PLODES                  | i               | · · · · · · · · · · · · · · · · · · · |
| 3139       | VCYSARC103NY<br>ECCW1H561J5 | CERAMIC 16V 0.01 +-30%<br>CERAMIC 50V 560P +-5% |                 |                                                  | D8101,8102 |                | MA165            | DIODES                  | 2               |                                       |
| J140       |                             |                                                 | -               |                                                  |            | -              | OR 1SS119        |                         | _~_             |                                       |
| 21/1       | OR VCKW1H561JSA             |                                                 |                 |                                                  | -          |                | - 100117         |                         | $\dashv$        |                                       |
| 3141       | ECCW1H82OJ5                 | CERAMIC 50V 82P +-5%                            | 1               |                                                  |            | -              | -                |                         |                 |                                       |
| 3142       | ECEA1ES3R3                  | ELECTROLYTIC 25V 3.3                            |                 | <del></del>                                      | -          | -              | -                |                         | -               |                                       |
| 04.10      | OR ECEA1EU3R3               | ELECTROLYTIC 25V 3.3                            |                 | <del>  </del>                                    |            | -              |                  | PROTOMODO.              |                 |                                       |
| 3143       | ECEA1ES4R7                  | ELECTROLYTIC 25V 4.7                            |                 | <del></del>                                      | P0101      | -              | EDDCOM1400       | RESISTORS               | '               |                                       |
|            | OR ECEA1EU4R7               | ELECTROLYTIC 25V 4.7                            |                 |                                                  | R8101      | -              | ERDS2TJ102       | 1K                      | 1               |                                       |
| 3144       | ECEA1CS220                  | ELECTROLYTIC 16V 22                             |                 | <del>                                     </del> | R8102      | -              | ERDS2TJ121       | 120                     | 1               |                                       |
|            | OR ECEA1CU220               | ELECTROLYTIC 16V 22                             |                 | ļ                                                | R8103      | -              | ERDS2TJ152       | 1.5K                    | 1               | ·                                     |
| 3145       | ECEA1ES3R3                  | ELECTROLYTIC 25V 3.3                            | 1               | <u> </u>                                         | R8104      | _              | ERDS2TJ122       | 1.2K                    | 1               | ļ                                     |
|            | OR ECEA1EU3R3               | ELECTROLYTIC 25V 3.3                            | $\sqcup$        | <u> </u>                                         | R8105      | L.             | ERDS2TJ222       | 2.2%                    | 1               |                                       |
| 3147       | ECEA1HS2R2                  | ELECTROLYTIC 50V 2.2                            | 1               |                                                  | R8106      |                | ERDS2TJ272       | 2.7K                    | 1               | ļ                                     |
|            |                             |                                                 | $\sqcup$        |                                                  | R8107,8108 | L              | ERDS2TJ682       | 6.8%                    | 2               | <u> </u>                              |
|            |                             |                                                 |                 |                                                  | R8109      | L              | EVNE4AA00B54     | VARIABLE 50K            | 1               |                                       |
|            |                             |                                                 |                 | _ 7                                              | R8110      |                | ERDS2TJ183       | 18K                     | 1               |                                       |
|            |                             |                                                 |                 |                                                  |            |                |                  |                         |                 |                                       |

| Ref. No.  |          | Part No.      | Part Name & Description                     | Pcs<br>/<br>Set  | Remarks | Ref. No.      | Part No.                      | Part Name & Description | Pcs<br>/<br>Set | Remarks                                          |
|-----------|----------|---------------|---------------------------------------------|------------------|---------|---------------|-------------------------------|-------------------------|-----------------|--------------------------------------------------|
| 8112      |          | ERDS2TJ822    | 8.2K                                        | 1                |         |               |                               |                         |                 |                                                  |
| 3113      |          | EVNE4AAOOB53  | VARIABLE 5K                                 | 1                |         |               |                               |                         |                 |                                                  |
| 3114      |          | ERDS2TJ122    | 1.2%                                        | 1                |         |               |                               |                         |                 |                                                  |
| 115       |          | ERDS2TJ822    | 8.2K                                        | 1                |         |               |                               | FILTER                  |                 | ,                                                |
| 116       |          | ERDS2TJ183    | 18K                                         |                  |         | FL8101        | ELB5G040                      |                         | 1               |                                                  |
| 117       |          | ERDS2TJ471    | 470                                         | . 1              |         |               | OR VLFS0008                   |                         |                 |                                                  |
| 3119      |          | ERDS2TJ223    | 22K                                         | 1                |         |               |                               |                         |                 |                                                  |
| 3120      |          | ERDS2TJ102    | 1K                                          | 1                |         |               |                               |                         | -               |                                                  |
| 3121      |          | ERDS2TJ103    | 10K                                         | 1                |         |               |                               | *                       |                 |                                                  |
| 8122      |          | ERDS2TJ470    | 47                                          | 1                |         |               |                               | COILS                   |                 |                                                  |
| 3123,8124 |          | ERDS2TJ122    | 1.2K                                        | 2                |         | L8101         | VLQSO5R471K                   | 470                     | 1               |                                                  |
| 8125      |          | ERDS2TJ102    | 1K                                          |                  |         | L8102         | VLQS05R221K                   | 220                     | 1               |                                                  |
| 8126      |          | ERDS2TJ271    | 270                                         | 1                |         | L8103         | VLQSO5R331K                   | 330                     | 1               |                                                  |
| 8127      |          | ERDS2TJ102    | 1K                                          |                  |         | L8104,8105    | VLQS05R101K                   | 100                     | 2               |                                                  |
|           |          | ERDS2TJ822    | 8.2%                                        | -                |         | L8106,8107    | VLQSO5R181K                   | 180                     | 2               |                                                  |
| 8129      |          |               |                                             | -                |         | L8108         | VLQS66R102K                   | 1M                      | 1               |                                                  |
| 8130      |          | ERDS2TJ183    | 18K                                         | _                |         |               |                               |                         | _               |                                                  |
| 8131      |          | ERDS2TJ562    | 5.6K                                        | +                |         | L8109         | VLQSO5R470K                   | 47                      | 1               |                                                  |
| 8132      |          | ERDS2TJ561    | 560                                         | 1                |         |               |                               |                         |                 |                                                  |
| 8133      |          | ERDS2TJ273    | 27K                                         | 1                |         |               |                               |                         |                 |                                                  |
| 8134      |          | ERDS2TJ153    | 15K                                         | 1                |         |               | 1                             |                         |                 |                                                  |
| 3135      |          | ERDS2TJ561    | 560                                         | 1                |         |               |                               | CRYSTAL OSCILLATOR      | <u></u> .       |                                                  |
| 3136      |          | ERDS2TJ472    | 4.7K                                        | 1                |         | X8101         | VSXS0003                      |                         | 1               |                                                  |
| 8137      |          | ERDS2TJ821    | 820                                         | _                |         |               | OR VSXOO60                    |                         |                 |                                                  |
| 8138      | $\vdash$ | ERDS2TJ472    | 4.7K                                        | <del>i – –</del> |         |               |                               |                         |                 |                                                  |
|           | $\vdash$ | ERDS2TJ122    | 1.2K                                        |                  |         |               |                               |                         |                 |                                                  |
| 8139      | -        | EMPORTO IKK   | 1.28                                        | +                |         | <del>  </del> |                               |                         |                 |                                                  |
|           |          |               |                                             | <del> </del>     |         |               |                               | MTCODI I ANDONO         |                 | -                                                |
|           |          |               |                                             | -                |         |               | WTWGGGG                       | MISCELLANEOUS           | -               | <del></del>                                      |
|           |          |               |                                             | -                |         |               | VJHS0046                      | PACK LEAD PIN           | 1               |                                                  |
|           |          |               | CAPACITORS                                  |                  |         |               |                               |                         |                 |                                                  |
| 8101,8102 |          | VCYSARC103NY  | CERAMIC 16V 0.01 +-30%                      | 2                |         |               |                               |                         |                 |                                                  |
| 8103      |          | VCYW1E183KX   | CERAMIC 25V 0.018                           | 1                |         |               |                               |                         |                 | <u> </u>                                         |
| 8104      | -        | VCYSARH680J   | CERAMIC 50V 68P +-5%                        | 1                |         |               |                               |                         |                 |                                                  |
| 8105,8106 | -        | VCYSARH121KB  | CERAMIC 50V 120P                            |                  |         |               |                               |                         |                 |                                                  |
| 8107      |          | VCYSARC103NY  | CERAMIC 16V 0.01 +-30%                      | _                |         |               |                               | TV DEMODULATOR UNIT     |                 |                                                  |
|           |          |               |                                             |                  |         |               |                               | TV DEMODDERIOR ONT      |                 |                                                  |
| 8108      |          | ECEA1HS010    | ELECTROLYTIC 50V 1                          |                  |         |               |                               | THERED ARED GIDGUITMG   |                 | <u> </u>                                         |
|           |          | OR ECEATHUO10 | ELECTROLYTIC 50V 1                          |                  |         | -             |                               | INTEGRATED CIRCUITS     |                 |                                                  |
| 8109      | L.       | ECEAOJS470    | ELECTROLYTIC 6.3V 47                        |                  |         | IC701         | AN5135K                       |                         | 1               | ļ                                                |
|           |          | OR ECEAOJU470 | ELECTROLYTIC 6.3V 47                        |                  |         |               |                               |                         |                 |                                                  |
| 8110      | L        | VCYSARH5R6KC  | CERAMIC 50V 5.6P                            | 1                |         |               |                               |                         |                 |                                                  |
| 8111      |          | MCV03R200ER   | TRIMMER 20P                                 | 1                |         |               |                               |                         |                 |                                                  |
| 8112      |          | VCYSARH102KB  | CERAMIC 50V 0.001                           | 1                |         |               |                               | TRANSISTORS             |                 |                                                  |
| 8113      |          | ECEAOJS221    | ELECTROLYTIC 6.3V 220                       | 1                |         | Q701          | 2SC2188                       |                         | 1               |                                                  |
|           |          | OR ECEAOJU221 | ELECTROLYTIC 6.3V 220                       |                  |         | Q702          | 2SD637(Q,R)                   |                         | 1               |                                                  |
| 8114      | _        | VCYSARC103NY  | CERAMIC 16V 0.01 +-30%                      |                  |         |               |                               |                         | -               |                                                  |
| 8115      |          | VCYSARH102KB  |                                             |                  |         |               | -                             |                         |                 |                                                  |
| 8116      |          | VCYSARC102NY  | CERAMIC 50V 0.001<br>CERAMIC 16V 0.01 +-30% | 1                |         |               |                               |                         |                 |                                                  |
| 8117      | $\vdash$ | VCYW1C104MX   |                                             | -                |         |               |                               | DIODE                   | -               |                                                  |
|           | $\vdash$ |               |                                             |                  |         |               | V. 00 =                       | DIODE                   | -               | +                                                |
| 8118,8119 |          | VCYSARC103NY  | CERAMIC 16V 0.01 +-30%                      |                  |         | D701          | MA27T                         |                         | 1               |                                                  |
| 8120      | L_       | VCYSARC222NX  | CERAMIC 16V 0.0022 +-30%                    | -                |         | <b> </b>      |                               |                         | _               |                                                  |
| 8121      | L        | VCYSARC103NY  | CERAMIC 16V 0.01 +-30%                      | 1                |         |               |                               |                         |                 |                                                  |
| 8122      | L        | VCYW1C104MX   | CERAMIC 16V 0.1 +-20%                       | 1                |         |               |                               |                         |                 |                                                  |
| 8123-8130 |          | VCYSARC103NY  | CERAMIC 16V 0.01 +-30%                      | 8                |         |               |                               | RESISTORS               |                 |                                                  |
| 8131      |          | VCYSARH680J   | CERAMIC 50V 68P +-5%                        | -                |         | R702,703      | ERDS2TJ562                    | 5.6K                    | 2               |                                                  |
| 8132      | -        | VCYSARH271KB  | CERAMIC 50V 270P                            | 1                |         | R704          | ERDS2TJ271                    | 270                     |                 |                                                  |
| 8133      | -        | VCYSARH680J   | CERAMIC 50V 68P +-5%                        | _                |         |               | ERDS2TJ221                    | 220                     | $\overline{}$   |                                                  |
| 8134      | -        | VCYSARC472NX  |                                             | _                |         | R705          |                               |                         |                 |                                                  |
|           |          |               |                                             | -                |         | R706,707      | ERDS2TJ821                    | 820                     |                 | 1                                                |
| 8135      | $\vdash$ | VCYSARH680J   | CERAMIC 50V 68P +-5%                        |                  |         | R708          | ERDS2TJ561                    | 560                     |                 | <del>                                     </del> |
| 3136      | _        | VCYSARH220J   | CERAMIC 50V 22P +-5%                        | _                |         | R709          | ERDS2TJ470                    | 47                      |                 | ļ                                                |
| 3137      | L        | ECEA1ES3R3    | ELECTROLYTIC 25V 3.3                        | 1                |         | R710          | ERDS2TJ122                    | 1.2K                    | 1               |                                                  |
|           | _        | OR ECEA1EU3R3 | ELECTROLYTIC 25V 3.3                        | L                |         | R711          | ERDS2TJ474                    | 470K                    | 1               |                                                  |
| 3138      |          | ECEA1ES4R7    | ELECTROLYTIC 25V 4.7                        | 1                |         | R712          | ERDS2TJ183                    | 18K                     |                 |                                                  |
|           |          | OR ECEA1EU4R7 | ELECTROLYTIC 25V 4.7                        | 1                |         | R713          | ERDS2TJ221                    | 220                     |                 |                                                  |
| 3139      |          | VCYW1C104MX   | CERAMIC 16V 0.1 +-20%                       | _                |         | R714          | ERDS2TJ821                    | 820                     |                 | 1                                                |
|           | -        |               |                                             | +                |         |               |                               |                         |                 | ļ                                                |
| 3140      |          | VCYSARH150JC  | CERAMIC 50V 15P +-5%                        | +                |         | R715          | AVNE4AAOB682                  | VARIABLE 6.8K           | -               | <del>                                     </del> |
| 3142      | L        | VCYW1C104MX   | CERAMIC 16V 0.1 +-20%                       | 1                |         |               | OR EVNE4AAOOB53               | VARIABLE 5K             | <b> </b>        | <del></del>                                      |
| 5142      |          |               |                                             |                  |         | R716          | ERDS2TJ471                    | 470                     | 1               |                                                  |
| 5142      |          |               | ·                                           |                  |         | R718          | AVNE4AAOB103                  | VARIABLE 10K            | 1               |                                                  |
| 5142      | Г        |               |                                             |                  |         |               |                               |                         |                 | 1                                                |
| 5142      |          |               |                                             |                  |         |               | OR EVNEAAAOOB14               | VARIABLE 10K            | ĺ               | 1                                                |
| 0142      |          |               | DELAY LINE                                  |                  |         | R719          | OR EVNE4AAOOB12<br>ERDS2TJ272 | VARIABLE 10K<br>2.7K    |                 |                                                  |

| Ref. No. |               | Part No.       | Part Name & Description  | Pcs<br>/<br>Set | Remarks | Ref. No.   | Part No.                     | Part Name & Description | Pcs<br>/<br>Set | Remarks . |
|----------|---------------|----------------|--------------------------|-----------------|---------|------------|------------------------------|-------------------------|-----------------|-----------|
| 721      | Ш             | ERDS1TJ680     | 1/2W 68                  | 1               |         |            |                              | TRANSFORMERS            |                 |           |
| 722      | Ш             | ERDS1TJ101     | 1/2W 100                 | 1               |         | T701       | EIV7EF002B                   |                         | 1               | <u> </u>  |
| 723      |               | ERDS2TJ101     | 100                      | 1               |         | T702       | EIV7EF001B                   |                         | 1               |           |
| 724      |               | ERDS2TJ562     | 5.6K                     | 1               |         |            |                              | <u> </u>                |                 |           |
| 726      |               | ERDS2TJ222     | 2.2K                     | 1               |         |            |                              | <u> </u>                |                 |           |
| 727      | П             | ERDS2TJ102     | 1K                       | 1               |         |            |                              | ,                       |                 | _         |
| 729      |               | ERDS2TJ681     | 680                      | 1               |         |            |                              | MISCELLANEOUS           |                 |           |
| 730      |               | ERDS2TJ104     | . 100K                   | 1               |         |            | VJHS0045                     | PACK PIN                | 3               |           |
| 732      |               | ERDS2TJ222     | 2.2K                     | 1               |         |            | VSCS0389                     | SHIELD CASE             | 1               |           |
| 734      | -             | ERDS2TJ102     | 1K                       | 1               |         |            | VSCS0390                     | SHIELD CASE             | 1               |           |
| 2735     | 1 -           | ERDS2TJ152     | 1.5K                     | 1               |         | -          | 1,5050370                    | CHIEBE CHOS             | <u> </u>        | -         |
| .,,,     | H             | BRDD210172     | 1.7k                     |                 |         |            | -                            |                         |                 |           |
|          |               |                |                          |                 |         |            |                              |                         |                 |           |
|          |               | <u> </u>       |                          |                 |         |            |                              |                         |                 |           |
|          | Ш             |                |                          |                 |         |            |                              |                         |                 |           |
|          |               |                | CAPACITORS               |                 |         |            |                              |                         |                 |           |
| 701-704  |               | VCYSARC103NY   | CERAMIC 16V 0.01 +-30%   | 4               |         |            |                              | CHANNEL SELECT C.B.A    |                 |           |
| 705      |               | ECEA1CK330     | ELECTROLYTIC 16V 33      | 1               |         |            |                              |                         |                 |           |
| 706,707  |               | VCYSARC103NY   | CERAMIC 16V 0.01 +-30%   | 2               |         |            |                              | INTEGRATED CIRCUITS     |                 |           |
| 708      | -             | ECQV05474JC    | POLYESTER 50V 0.47 +-5%  | 1               |         | IC7301     | UPC1363C                     |                         | 1               | -         |
|          | -             | OR ECQVO5474JZ | POLYESTER 50V 0.47 +-5%  | i i             |         | 1 20,551   | OR UPC1363CA                 |                         | i i             |           |
|          | -             | OR ECQV094743Z | POLYESTER 50V 0.47 +-5%  |                 |         | Tagge      |                              |                         |                 | -         |
|          | -             |                |                          |                 |         | I07302     | AN5070                       |                         | 1               |           |
| 709      |               | VCYSARC103NY   | CERAMIC 16V 0.01 +-30%   | 1               |         | L          |                              |                         | · ·             |           |
| 710      |               | ECEA1HKO10     | ELECTROLYTIC 50V 1       | 1               |         |            |                              |                         |                 |           |
| 713      | -             | VCYSARC103NY   | CERAMIC 16V 0.01 +-30%   | 1               |         |            |                              |                         |                 | <u> </u>  |
| 715      |               | ECCW1H18OJC5   | CERAMIC 50V 18P +-5%     | 1               |         |            | 1 2                          | TRANSISTORS             |                 |           |
| 716      | $L^{T}$       | ECKW1H101KB5   | CERAMIC 50V 100P         | 1               |         | Q7301      | 2SB642(Q,R,S)                |                         | 1               |           |
| 17       | П             | ECCW1H82OJR5   | CERAMIC 50V 82P +-5%     | 1               |         | Q7302-7304 | 2SD637(Q,R,S)                |                         | 3               |           |
| 118      |               | ECCW1H12OJC5   | CERAMIC 50V 12P +-5%     | 1               |         | Q7306,7307 | 2SD637(Q,R,S)                |                         | 2               |           |
| 19       | 1             | EGCW1H22OJC5   | CERAMIC 50V 22P +-5%     | 1               |         | Q7311      | 2SD637(R,S)                  |                         | 1               |           |
| 20,721   | -             | ECQV05473JC    | POLYESTER 50V 0.047 +-5% | 2               |         |            | 2SD637(R,S)<br>2SD637(Q,R,S) |                         |                 |           |
| 20,721   |               |                |                          | ~               |         | Q7312      |                              |                         | 1               |           |
|          | -             | OR ECQVO5473JZ | POLYESTER 50V 0.047 +-5% |                 |         | Q7313      | 2SB642(Q,R,S)                |                         | 1               |           |
|          |               | OR ECQV1H473JZ | POLYESTER 50V 0.047 +-5% |                 |         | Q7314      | 2SD637(Q,R,S)                |                         | 1               |           |
| 22       | $\leftarrow$  | ECEA1HKR47     | ELECTROLYTIC 50V 0.47    | 1               |         |            |                              |                         |                 |           |
| 23       |               | ECEA1CK470     | ELECTROLYTIC 16V 47      | 1               |         |            |                              |                         |                 |           |
| 726      |               | ECCW1H040CC5   | CERAMIC 50V 4P +-0.25P   | 1               |         |            |                              | ·                       |                 |           |
| 27       |               | ECQM1H223KV    | POLYESTER 50V 0.022      | 1               |         |            |                              | DIODES                  |                 |           |
|          |               | OR ECQM1H223KZ | POLYESTER 50V 0.022      |                 |         | D7301-7314 | MA166C                       |                         | 14              |           |
| 728      |               | ECCW1H560JC5   | CERAMIC 50V 56P +-5%     | 1               |         | D7315-7329 | MA166                        |                         | 15              |           |
| 729      | -             | ECEA1EK4R7     | ELECTROLYTIC 25V 4.7     | 1               |         |            | MA165                        |                         | 2               |           |
|          |               | ECCW1H270JC5   |                          |                 |         | D7331,7332 |                              |                         |                 |           |
| 731      | -             |                | CERAMIC 50V 27P +-5%     | 1               |         | D7333      | MA166C                       |                         | 1               |           |
| 733      | _             | ECEA1HKO10     | ELECTROLYTIC 50V 1       | 1               |         | D7335      | MA166                        |                         | 1               | -         |
| 734      | 1             | VCYSARC103NY   | CERAMIC 16V 0.01 +-30%   | 1               |         |            | -                            |                         |                 |           |
| 36       | Ш             | ECCW1H56OJC5   | CERAMIC 50V 56P +-5%     | 1               |         | <b> </b>   |                              |                         |                 |           |
|          | Ш             |                |                          |                 |         |            |                              |                         |                 |           |
|          | Ш             |                |                          |                 |         |            |                              | RESISTORS               |                 |           |
|          |               |                |                          |                 |         | R7301      | ERDS2TJ563                   | 56K                     | 1               |           |
|          | П             |                | FILTERS                  |                 |         | R7304      | ERDS2TJ273                   | 27K                     | 1               |           |
| 701      |               | SFE4R5MB4      | CERAMIC                  | 1               |         |            |                              |                         |                 |           |
|          | _             |                |                          | - 1             |         | R7305      | ERDS2TJ563                   | 56K                     | l               |           |
| 702      |               | EFCS4R5MW3     | CERAMIC                  | 1               |         | R7306      | ERDS2TJ683                   | 68K                     |                 |           |
|          | 1 1           | OR TFCS4R5MW3  | CERAMIC                  |                 |         | R7307      | ERDS2TJ103                   | 10K                     | l               |           |
| 703      |               | VLFS0006       |                          | 1               |         | R7310,7311 | ERDS2TJ562                   | 5.6K                    | I               | <u> </u>  |
| 704      | Ш             | VSXS0004       |                          | 1               |         | R7312,7313 | ERDS2TJ472                   | 4.7K                    | 2               |           |
|          | Ш             |                |                          |                 |         | R7314      | ERDS2TJ562                   | 5.6K                    | 1               |           |
|          |               |                |                          |                 |         | R7315      | ERDS2TJ333                   | 33K                     | 1               |           |
|          | LΠ            |                |                          |                 |         | R7316      | ERDS2TJ472                   | 4.7K                    | 1               |           |
|          | П             |                | COILS                    |                 |         | R7317      | ERDS2TJ104                   | 100K                    | 1               |           |
| )2       |               | ELQR82KB .     | 0.82                     | 1               |         | R7318      | ERDS2TJ224                   | 220K                    | - 1             |           |
|          |               | OR TLQR82N2O5C | 0.82                     |                 |         | R7319      | ERDS2TJ561                   | 560                     |                 |           |
| 3        | -             | VLQS66R4R7K    | 4.7                      | 1               |         | R7320      | ERDS2TJ103                   | 10K                     |                 |           |
| 5        | $\overline{}$ | ELQR47KB       |                          | 1               |         |            |                              |                         |                 |           |
|          |               |                | 0.47                     | 1               |         | R7321      | ERDS2TJ473                   | 47K                     | 1               | <u> </u>  |
|          | _             | OR TLQR47N2O5C | 0.47                     |                 |         | R7322      | ERDS2TJ223                   | 22K                     | 1               |           |
| 6        | $\rightarrow$ | VLQS66R120K    | 12                       | 1               |         | R7329,7330 | ERDS2TJ104                   | 100K                    | 2               |           |
| 7        |               | VLQS66R68OK    | 68                       | 1               |         | R7331      | ERDS2TJ153                   | 15K                     | 1               | <u>.</u>  |
| 18       | H             | VLQS66R4R7K    | 4.7                      | . 1             |         | R7332,7333 | ERDS2TJ563                   | 56K                     | 2               |           |
| 9        | -             | VLQS66R470K    | 47                       | 1               |         | R7334      | ERDS2TJ474                   | 470K                    | -               |           |
| 0        | -             | VLQS66R680K    | 68                       | 1               | -       | R7335      | ERDS2TJ154                   | 150K                    |                 |           |
| 12       | _             | /LQS66R220K    |                          |                 |         |            |                              |                         |                 |           |
| ~        | H             | *TASOOUS TV    | . 22                     | 1               |         | R7337      | ERDS2TJ223                   | 22K                     |                 |           |
|          | $\vdash$      |                |                          |                 |         | R7338      | ERDS2TJ103                   | 10K                     | 1               |           |
|          | 1             |                |                          |                 |         | R7339      | ERDS2TJ472                   | 4.7K                    | 1               |           |
|          |               |                |                          |                 |         |            | ERDS2TJ104                   | 100K                    | 3               |           |

|             |               | Part No.     | Part Name & Description  | Pcs<br>/<br>Set  | Remarks     | Ref. No.                              | Part No.     | Part Name & Description       | Pcs<br>/<br>Set | Remarks     |
|-------------|---------------|--------------|--------------------------|------------------|-------------|---------------------------------------|--------------|-------------------------------|-----------------|-------------|
| R7343       | 1             | ERDS2TJ105   | 1M                       | 1                |             |                                       | VLTS0002     | BALLOON CORE                  | 1               |             |
| R7348       |               | ERDS2TJ563   | 56K                      | 1                |             |                                       | VSCS0283     | ANT COVER                     | 1               |             |
| R7349       |               | ERDS2TJ153   | 15K                      | 1                |             |                                       | VXKS0342     | SENSOR LED UNIT               | 1               |             |
| R7350,7351  | 7             | ERDS2TJ223   | 22K                      | 2                |             |                                       | XTV3+10G     | TAPPING SCREW 3X10            | 1               |             |
| R7352       |               | ERDS2TJ3R3   | 3.3                      | 1                |             |                                       | XTV3+8FX     | TAPPING SCREW 3X8             | 3               |             |
| VR7301      |               | EWELJ4AOOB24 | VARIABLE 20K             | 1                |             | Q1551,1552                            | PN150NV      | PHOTO TRANSISTOR              | 2               |             |
|             | 7             |              |                          |                  |             | D1551                                 | LN59         | DIODE LED                     | 1               |             |
|             | 7             |              |                          |                  |             | R1551,1552                            | ERDS2TJ100   | RESISTOR 10                   | 2               |             |
|             | 1             |              |                          |                  |             | P1551                                 | VJPS0115     | PIN HEADER 7P                 | 1               |             |
|             | 寸             |              | CAPACITORS               |                  |             | SW1551                                | VSMS0009     | CASSETTE UP/DOWN SWITCH       | 1               |             |
| C7301       |               | ECEB1CK100   | ELECTROLYTIC 16V 10      | 1                |             | SW1552                                | VSMS0010     | CASSETTE IN SWITCH            | 1               | -           |
| C7302       |               | ECQM1H223KV  | POLYESTER 50V 0.022      | 1                |             | SW1553                                | VSMS0007     | SAFETY TAB SWITCH             | 1               |             |
| C7303       | $\rightarrow$ | VCYST16103NY | CERAMIC 16V 0.01 +-30%   | 1                |             |                                       | -            |                               |                 |             |
| C7306,7307  |               | VCYST25332NX | CERAMIC 25V 0.0033 +-30% |                  |             |                                       | -            |                               |                 |             |
|             |               | ECEA1HN4R7S  | ELECTROLYTIC 50V 4.7     | 1                |             |                                       |              |                               |                 |             |
| C7308       | -             |              |                          | _                |             |                                       | <del> </del> | -                             |                 |             |
| C7309       | -             | ECCW1H101JC5 |                          |                  |             | <b>—</b>                              |              |                               |                 |             |
| C7310       | -             | ECEA1HKO10   | ELECTROLYTIC 50V 1       | 1                |             |                                       | -            |                               |                 |             |
| 07311       | _             | ECQM1H1O3KV  | POLYESTER 50V 0.01       | 1                |             | <u> </u>                              | -            |                               |                 |             |
| C7312       | _             | ECEA1HKO10   | ELECTROLYTIC 50V 1       | 1                |             |                                       | -            |                               |                 |             |
| C7315       | _             | ECQM1H103KV  | POLYESTER 50V 0.01       | 1                |             |                                       |              |                               |                 | <del></del> |
| C7316       | _             | ECKW1H103ZF5 | CERAMIC 50V 0.01         | 1                |             | <b></b>                               |              |                               |                 |             |
|             | _             |              | +80%-20%                 | ļ                |             |                                       |              |                               |                 |             |
| C7317       |               | ECQM1H103KV  | POLYESTER 50V 0.01       | 1                | L           |                                       |              | IR WIRELESS                   |                 |             |
|             |               |              |                          |                  |             |                                       |              | RECEIVING DETECTOR C.B.A      |                 |             |
|             | [             |              |                          | <u> </u>         |             |                                       |              |                               |                 |             |
|             | T             |              |                          | ∟_               |             |                                       |              | INTEGRATED CIRCUITS           |                 |             |
|             |               |              | PIN HEADERS              |                  |             | IC1                                   | UPC1373H     |                               | 1               |             |
| P7301       |               | VJPS0015     | 10P                      | 1                |             |                                       | OR UPC1373HA |                               |                 | N           |
| P7302       |               | VJPS0012     | 4P                       | 1                |             |                                       |              |                               |                 |             |
|             | 7             |              |                          |                  |             |                                       |              |                               |                 |             |
|             |               |              |                          |                  |             |                                       |              |                               |                 |             |
|             |               |              |                          |                  |             |                                       |              | DIODE                         |                 |             |
|             | 1             |              | SWITCH                   | 1                |             | D1                                    | PH302        |                               | 1               |             |
| GMG 2 O 4   | +             | VSSS0025     | SELECT                   | 1                |             | -                                     | OR PN313     |                               |                 |             |
| SW7301      | +             | V3330025     | SELECT                   | <del>  '</del> - |             |                                       | OR TPS703    |                               |                 |             |
|             | +             |              |                          |                  |             |                                       | 00, 113703   |                               |                 |             |
|             | +             |              |                          | <del> </del>     |             |                                       |              |                               |                 |             |
|             | -             |              |                          |                  |             |                                       |              |                               |                 |             |
|             | -             |              | MISCELLANEOUS            |                  |             |                                       |              |                               |                 |             |
|             | 4             | VMZS0163     | BARRIER                  | 1_1_             |             |                                       |              | RESISTORS                     |                 |             |
|             |               |              |                          | ļ                |             | R1                                    | ERDS2TJ102   | 1K                            | 1               |             |
|             | 4             |              |                          |                  |             | R2                                    | ERDS2TJ560   | 56                            | _1_             |             |
|             |               |              |                          |                  |             | R3                                    | ERDS2TJ224   | 220K                          | 1               |             |
|             |               |              |                          |                  |             |                                       |              |                               |                 |             |
|             | $\perp$       |              |                          |                  |             |                                       |              |                               |                 |             |
|             |               |              |                          |                  |             |                                       |              |                               |                 |             |
|             | J             |              |                          |                  |             |                                       |              | CAPACITORS                    |                 |             |
|             | _T            | -            |                          |                  |             | C1                                    | ECEA1CK100   | ELECTROLYTIC 16V 10           | 1               |             |
|             |               |              |                          |                  |             | C2                                    | ECEA1EK4R7   | ELECTROLYTIC 25V 4.7          | 1               |             |
|             | 7             |              | ELÉCTRICAL PARTS         |                  |             | 03                                    | ECEA1CK100   |                               | 1               |             |
|             | 7             |              | LOCATED ON CHASSIS       |                  |             | C4                                    | AMZV50K183   | POLYESTER 50V 0.018           |                 |             |
|             | $\dashv$      |              |                          |                  |             | 05                                    | ECEA1CK470   |                               | 1               |             |
|             | +             | TJE98101     | CHECK TERMINAL           | 12               |             | C6                                    | APSV100J182  | POLYESTER 100V 0.0018 +-5%    | 1               |             |
|             | $\rightarrow$ | TNV56751F2R  | UHF/VHF TUNER UNIT       | 1                |             |                                       |              | 1007 0:0010 7=9%              |                 |             |
| <del></del> | $\rightarrow$ | VEJS0020     | VHF BLOCK                | 1                |             |                                       | 1            |                               |                 |             |
|             |               | VEXS1523     | ANT TERMINAL UNIT        | 1                |             |                                       | 1            | ·                             |                 |             |
|             |               |              |                          |                  |             | -                                     | +            | ED ANGEODIGES                 |                 |             |
|             |               | VEKS1524     | ANT CABLE                | 1                |             |                                       |              | TRANSFORMER                   | -               | -           |
|             |               | VEKS1525     | RF CABLE                 | 1                | '           | T1                                    | ELM7Q206A    |                               | 1               |             |
| <u>A</u>    | -             | VEKS1534     | AC CORD UNIT             | 1                |             |                                       | 1            |                               | -               |             |
|             |               | VEPSO0269A   | REEL SENSOR UNIT         | 1                |             |                                       | -            |                               |                 |             |
|             | -             | VEQS0252     | RF CONVERTER             | 1                |             |                                       |              |                               |                 |             |
|             |               | VEQS0253     | RF CONVERTER             | 1                |             |                                       |              |                               |                 |             |
|             |               | VEQSO254     | RF CONVERTER             | 1                |             |                                       | 1            |                               |                 |             |
|             |               | VEQS0255     | RF CONVERTER             | . 1              |             |                                       |              | IR WIRELESS TRANSMITTER C.B.A |                 |             |
|             |               | VJBS00288    | PHOTO TRANSISTOR P.C.B   | 1                |             |                                       |              |                               |                 |             |
| Τ           | $\rightarrow$ | VJBS00296    | CONNECTION P.C.B         | 1                |             |                                       |              | INTEGRATED CIRCUITS           |                 |             |
|             |               |              | CHECK TERMINAL           | 3                |             | IC1                                   | UPD6108C-003 |                               | 1               |             |
|             |               | VJES0003     |                          |                  | <del></del> | · · · · · · · · · · · · · · · · · · · |              |                               |                 |             |
|             |               | VJESOOO3     |                          | 10               | 1           | 1                                     |              |                               |                 |             |
|             |               | VJES0004     | CHECK TERMINAL           | 10               |             | -                                     |              |                               |                 |             |
|             |               |              |                          | 10<br>4<br>45    |             |                                       |              |                               |                 |             |

| Ref. No. |         | Part No.       | Part Name & Description               |      | Pcs<br>/<br>Set | Remarks |
|----------|---------|----------------|---------------------------------------|------|-----------------|---------|
|          | +-      |                | TRANSISTOR                            |      |                 |         |
| Q1       | +       | 2SD1458        | TRANSISION                            |      | 1               |         |
|          | +       |                |                                       |      |                 | ·       |
|          |         |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          |         |                | DIODE                                 |      |                 |         |
| D1       | _       | LN66NC         | LED                                   |      | 1               |         |
|          | +       |                |                                       |      |                 | ·       |
|          | +       |                |                                       |      |                 |         |
|          |         |                | RESISTORS                             |      | -               |         |
| R1       | +       | ERDS2TJ102     |                                       | 1K   | 1               |         |
| R2       | 1       | ERDS2TJ473     |                                       | 47K  |                 |         |
| R3       | T       | ERDS2TJ1RO     |                                       | 1    | _ 1             |         |
|          |         |                |                                       |      |                 |         |
|          | 1       |                |                                       |      |                 |         |
|          | $\perp$ |                |                                       |      |                 |         |
|          | -       | 707774         | CAPACITORS                            | 1000 |                 |         |
| C1,2     | -       | ECKF1H471KB    | CERAMIC 50V                           | 470P | _               |         |
| C3       | +       | ECEAOJK101     | ELECTROLYTIC 6.3V                     | 100  | 1               |         |
|          |         |                |                                       |      |                 |         |
|          | t       |                |                                       |      |                 |         |
|          | -       |                | CRYSTAL OSCILLATOR                    |      |                 |         |
| X1       | Τ       | CSB455PB6T     |                                       |      | 1               |         |
|          |         | OR EFOA455KO5B |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          | $\perp$ |                |                                       |      |                 |         |
|          | -       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | +       |                |                                       |      | _               |         |
|          |         |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          | $\perp$ |                |                                       |      |                 |         |
|          | _       |                |                                       |      |                 |         |
|          | -       |                |                                       |      |                 |         |
|          | +       |                | · · · · · · · · · · · · · · · · · · · |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | +-      | -              |                                       |      |                 |         |
|          | 1       |                |                                       |      |                 |         |
|          | -       |                | ·                                     |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          | 1       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | Ť       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          | L       |                |                                       |      |                 |         |
|          | 1       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | +       | -              |                                       |      |                 |         |
|          | +       |                |                                       |      |                 |         |
|          | T       |                |                                       |      | _               |         |
|          | †       |                |                                       |      |                 |         |
|          | 1       |                |                                       |      |                 |         |
|          | 1.      |                |                                       |      |                 |         |
|          |         |                |                                       |      |                 |         |
|          |         | · I            |                                       |      |                 | i i     |