CS 6316 Machine Learning

Support Vector Machines

Yangfeng Ji

Department of Computer Science University of Virginia

Separable Cases

Geometric Margin

The geometric margin of a linear binary classifier $h(x) = \langle w, x \rangle + b$ at a point x is its distance to the hyperplane $\langle w, x \rangle = 0$

$$\rho_h(x) = \frac{|\langle w, x \rangle + b|}{\|w\|_2} \tag{1}$$

Geometric Margin (II)

The geometric margin of h(x) for a set of examples $T = \{x_1, \dots, x_m\}$ is the minimal distance over these examples

$$\rho_h(T) = \min_{x' \in T} \rho_h(x') \tag{2}$$

[Mohri et al., 2018, Page 80]

Half-Space Hypothesis Space

- ► Training set $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ with $x_i \in \mathbb{R}^d$ and $y_i \in \{+1, -1\}$
- ► If the training set is linearly separable

$$y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i \in [m]$$
 (3)

- ► Linearly separable cases
 - Existance of equation 3
 - ► All halfspace predictors that satisfy the condition in equation 3 are ERM hypotheses

Which Hypothesis is Better?

Which Hypothesis is Better?

- Intuitively, a hypothesis with larger margin is better, because it is more robust to noise
- Final definition of margin will be provided later

[Shalev-Shwartz and Ben-David, 2014, Page 203]

Hard SVM/Separable Cases

The mathematical formulation of the previous idea

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{|\langle w, x_i \rangle + b|}{\|w\|_2}$$
 (4)

s.t.
$$y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$$
 (5)

▶ $y_i(\langle w, x_i \rangle + b) > 0 \ \forall i$: guarantee (w, b) is an ERM hypothesis

Hard SVM/Separable Cases

The mathematical formulation of the previous idea

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{|\langle w, x_i \rangle + b|}{\|w\|_2}$$
 (4)

s.t.
$$y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$$
 (5)

- ▶ $y_i(\langle w, x_i \rangle + b) > 0 \ \forall i$: guarantee (w, b) is an ERM hypothesis
- ▶ $\min_{i \in [m]}$: calculate the margin between a hyperplane and a set of examples

Hard SVM/Separable Cases

The mathematical formulation of the previous idea

$$\rho = \max_{(\boldsymbol{w},b)} \min_{i \in [m]} \frac{|\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b|}{\|\boldsymbol{w}\|_2}$$
(4)

s.t.
$$y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$$
 (5)

- ▶ $y_i(\langle w, x_i \rangle + b) > 0 \ \forall i$: guarantee (w, b) is an ERM hypothesis
- ▶ $\min_{i \in [m]}$: calculate the margin between a hyperplane and a set of examples
- $ightharpoonup \max_{(w,b)}$: maximize the margin

Illustration

Original form

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{|\langle w, x_i \rangle + b|}{\|w\|_2}$$
s.t. $y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$ (7)

Alternative Forms

Original form

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{|\langle w, x_i \rangle + b|}{\|w\|_2}$$

$$\text{s.t. } y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$$
(8)

Alternative Forms

Original form

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{|\langle w, x_i \rangle + b|}{\|w\|_2}$$
s.t. $y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$ (9)

Alternative form 1

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{y_i(\langle w, x_i \rangle + b)}{\|w\|_2}$$
 (10)

Alternative Forms

Original form

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{|\langle w, x_i \rangle + b|}{\|w\|_2}$$
s.t. $y_i(\langle w, x_i \rangle + b) > 0 \quad \forall i$ (9)

Alternative form 1

$$\rho = \max_{(w,b)} \min_{i \in [m]} \frac{y_i(\langle w, x_i \rangle + b)}{\|w\|_2}$$
 (10)

Alternative form 2

$$\rho = \max_{(w,b): \min_{i \in [m]} y_i(\langle w, x_i \rangle + b = 1} \frac{1}{\|w\|_2}$$

$$= \max_{(w,b): y_i(\langle x_i, x_i \rangle + b \geq 1} \frac{1}{\|w\|_2}$$
(11)

Alternative Forms (II)

Alternative form 2

$$\rho = \max_{(w,b): \ y_i(\langle w, x_i \rangle + b \ge 1} \frac{1}{\|w\|_2}$$
 (13)

► Alternative form 3: Quadratic programming (QP)

$$\min_{(\boldsymbol{w},b)} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2}$$
s.t. $y_{i}(\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle + b) \ge 1$, $\forall i \in [m]$

which is a constrained optimization problem that can be solved by standard QP packages

Alternative Forms (II)

Alternative form 2

$$\rho = \max_{(\boldsymbol{w},b):\ y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b \ge 1} \frac{1}{\|\boldsymbol{w}\|_2}$$
 (13)

► Alternative form 3: Quadratic programming (QP)

$$\min_{(\boldsymbol{w},b)} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2}$$
s.t. $y_{i}(\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle + b) \ge 1, \quad \forall i \in [m]$

which is a constrained optimization problem that can be solved by standard QP packages

Exercise: Solve a SVM problem with quadratic programming

Unconstrained Optimization Problem

The quadratic programming problem with constraints can be converted to an unconstrained optimization problem with the Lagrangian method

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 - \sum_{i=1}^m \alpha_i (y_i(\langle w, x_i \rangle + b) - 1)$$
 (15)

where

- $\alpha = \{\alpha_1, \dots, \alpha_m\}$ is the Lagrange multiplier, and
- ▶ $\alpha_i \ge 0$ is associated with the *i*-th training example

Constrained Optimization

Problems

Constrained Optimization Problems: Definition

- $\triangleright \mathfrak{X} \subseteq \mathbb{R}^d$ and
- $ightharpoonup f, g_i: \mathfrak{X} \to \mathbb{R}, \forall i \in [m]$

Then, a constrained optimization problem is defined in the form of

$$\min_{\mathbf{x} \in \mathcal{X}} \qquad f(\mathbf{x}) \tag{16}$$

s.t.
$$g_i(x) \le 0, \forall i \in [m]$$
 (17)

Constrained Optimization Problems: Definition

- $\triangleright \mathfrak{X} \subseteq \mathbb{R}^d$ and
- $ightharpoonup f, g_i: \mathfrak{X} \to \mathbb{R}, \forall i \in [m]$

Then, a constrained optimization problem is defined in the form of

$$\min_{\mathbf{x} \in \mathcal{X}} \qquad f(\mathbf{x}) \tag{16}$$

s.t.
$$g_i(x) \le 0, \forall i \in [m]$$
 (17)

Comments

- ▶ In general definition, x is the target variable for optimization
- ► Special cases of $g_i(x)$: (1) $g_i(x) = 0$, (2) $g_i(x) \ge 0$, and (3) $g_i(x) \le b$

Lagrangian

The Lagrangian associated to the general constrained optimization problem defined in equation 16 - 17 is the function defined over $\mathfrak{X} \times \mathbb{R}^m_+$ as

$$L(x, \alpha) = f(x) + \sum_{i=1}^{m} \alpha_i g_i(x)$$
 (18)

where

- ▶ $\alpha_i \ge 0$ for any $i \in [m]$

Karush-Kuhn-Tucker's Theorem

Assume that $f, g_i : \mathfrak{X} \to \mathbb{R}$, $\forall i \in [m]$ are convex and differentiable and that the constraints are qualified. Then x' is a solution of the constrained problem if and only if there exist $\alpha' \geq 0$ such that

$$\nabla_x L(x', \alpha') = \nabla_x f(x') + \alpha' \cdot \nabla_x g(x) = 0$$
 (19)

$$\nabla_{\alpha} L(x, \alpha) = g(x') \le 0 \tag{20}$$

$$\alpha' \cdot g(x') = \sum_{i=1}^{m} \alpha'_{i} g_{i}(x') = 0$$
 (21)

Equations 19 – 21 are called KKT conditions

[Mohri et al., 2018, Thm B.30]

KKT in SVM

Apply the KKT conditions to the SVM problem

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 - \sum_{i=1}^m \alpha_i (y_i(\langle w, x_i \rangle + b) - 1)$$
 (22)

We have

$$\nabla_w L = w - \sum_{i=1}^m \alpha_i y_i x_i = 0 \implies w = \sum_{i=1}^m \alpha_i y_i x_i$$

KKT in SVM

Apply the KKT conditions to the SVM problem

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 - \sum_{i=1}^m \alpha_i (y_i(\langle w, x_i \rangle + b) - 1)$$
 (22)

We have

$$\nabla_{w}L = w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = 0 \implies w = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}L = -\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \implies \sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

KKT in SVM

Apply the KKT conditions to the SVM problem

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 - \sum_{i=1}^m \alpha_i (y_i(\langle w, x_i \rangle + b) - 1)$$
 (22)

 $\forall i, \alpha_i(y_i(\langle w, x_i \rangle + b) - 1) = 0 \implies \alpha_i = 0 \text{ or } y_i(\langle w, x_i \rangle + b) = 1$

We have

$$\nabla_{w}L = w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = 0 \implies w = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}L = -\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \implies \sum_{i=1}^{m} \alpha_{i} y_{i} = 0$$

15

Consider the implication of the last equation in the previous page, $\forall i$

• $\alpha_i > 0$ and $y_i(\langle w, x_i \rangle + b) = 1$ or

Consider the implication of the last equation in the previous page, $\forall i$

- $\alpha_i > 0$ and $y_i(\langle w, x_i \rangle + b) = 1$ or
- $\alpha_i = 0$ and $y_i(\langle w, x_i \rangle + b) \ge 1$

Consider the implication of the last equation in the previous page, $\forall i$

- $\alpha_i > 0$ and $y_i(\langle w, x_i \rangle + b) = 1$ or
- $\alpha_i = 0$ and $y_i(\langle w, x_i \rangle + b) \ge 1$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 1$$

$$\mathbf{w} \cdot \mathbf{x} + b = -1$$

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i \tag{23}$$

- Examples with $\alpha_i > 0$ are called **support vectors**
- ► In \mathbb{R}^d , d + 1 examples are sufficient to define a hyperplane

Non-separable Cases

Non-separable Cases

Recall the separable case:

$$\min_{(w,b)} \frac{1}{2} ||w||_{2}^{2}
\text{s.t. } y_{i}(\langle w, x_{i} \rangle + b) \ge 1, \quad \forall i \in [m]$$

Non-separable Cases

Recall the separable case:

$$\min_{(w,b)} \frac{1}{2} ||w||_2^2$$
s.t. $y_i(\langle w, x_i \rangle + b) \ge 1$, $\forall i \in [m]$

For non-separable cases, there always exists an x_i , such that

$$y_i(\langle w, x_i \rangle + b) \not\ge 1 \tag{25}$$

or, we can formulate it as

$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \tag{26}$$

with $\xi_i \ge 0$

Geometric Meaning of ξ_i

Consider the relaxed constraint

$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \tag{27}$$

and three cases of ξ_i

- $\xi_i = 0$
- $ightharpoonup 0 < \xi_i < 1$
- $\triangleright \xi_i > 0$

Non-separable Cases (II)

In general, the SVM problem of non-separable cases can be formulated as

$$\min_{(w,b)} \frac{1}{2} ||w||_{2}^{2} + C \sum_{i=1}^{m} \xi_{i}^{p}$$
s.t. $y_{i}(\langle w, x_{i} \rangle + b) \ge 1 - \xi_{i}, \quad \forall i \in [m]$

$$\xi_{i} \ge 0$$
(28)

where $C \ge 0$, $p \ge 1$, and $\{\xi_i\}_{i=1}^m \ge 0$ are known as **slack variables** and are commonly used in optimization to define relaxed versions of constraints.

Lagrangian

Follows the same procedure as the separable cases, the Lagrangian is defined as

$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2} ||w||_{2}^{2} + C \sum_{i=1}^{m} \xi_{i}$$

$$- \sum_{i=1}^{m} \alpha_{i} (y_{i}(w^{\mathsf{T}}x_{i} + b) - 1 + \xi_{i}) \qquad (29)$$

$$- \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

with α_i , $\beta_i \geq 0$

Lagrangian

Follows the same procedure as the separable cases, the Lagrangian is defined as

$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2} ||w||_{2}^{2} + C \sum_{i=1}^{m} \xi_{i}$$

$$- \sum_{i=1}^{m} \alpha_{i} (y_{i}(w^{\mathsf{T}}x_{i} + b) - 1 + \xi_{i}) \qquad (29)$$

$$- \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

with α_i , $\beta_i \geq 0$

Exercise: show the KKT conditions of equation 29

The first two equations in the KKT conditions are similar to the separable cases, and the rest are

$$\alpha_i + \beta_i = C \tag{30}$$

$$\alpha_i = 0 \text{ or } y_i(w^{\mathsf{T}}x_i + b) = 1 - \xi_i$$
 (31)

$$\beta_i = 0 \quad \text{or} \quad \xi_i = 0 \tag{32}$$

Depending the value of ξ_i , there are two types of support vectors

- \blacktriangleright $\xi_i = 0$: $\beta_i \ge 0$ and $0 < \alpha_i \le C$
 - x_i may lie on the marginal hyperplanes (as in the separable case)

The first two equations in the KKT conditions are similar to the separable cases, and the rest are

$$\alpha_i + \beta_i = C \tag{30}$$

$$\alpha_i = 0 \text{ or } y_i(\mathbf{w}^{\mathsf{T}} x_i + b) = 1 - \xi_i$$
 (31)

$$\beta_i = 0 \quad \text{or} \quad \xi_i = 0 \tag{32}$$

Depending the value of ξ_i , there are two types of support vectors

- $\xi_i = 0$: $\beta_i \ge 0$ and $0 < \alpha_i \le C$
 - x_i may lie on the marginal hyperplanes (as in the separable case)
- \blacktriangleright $\xi_i > 0$: $\beta_i = 0$ and $\alpha_i = C$
 - \triangleright x_i is an outlier

Support Vectors (II)

Two types of support vectors

- $ightharpoonup \alpha_i = C$: x_i is an outlier
- $0 < \alpha_i < C$: x_i lies on the marginal hyperplanes

Reference

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learning. MIT press.

Shalev-Shwartz, S. and Ben-David, S. (2014). *Understanding machine learning: From theory to algorithms*. Cambridge university press.