Instituto Superior Técnico

LICENCIATURA EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES SINAIS E SISTEMAS

Relatório Laboratorial

João Barreiros C. Rodrigues n^099968 , LEEC Vasco Maria Aguiar M. R. Esteves n^0 100110, LEEC

Janeiro-Fevereiro 2022

ÍNDICE ______ÍNDICE

Índice

1	Aná	alise de um :	sist	em	ıa	(I	R1]	$\mathbf{R}^{!}$	5)												2
	1.1	Questão R1																				2
	1.2	Questão R2																				4
	1.3	Questão R3																				5
	1.4	Questão R4																				7
	1.5	Questão R5													•							10
2	\mathbf{Filt}	ragem (R6-1	R9))																		11
	2.1	Questão R6																				11
	2.2	Questão R7																				13
	2.3	Questão R8																				15
	2.4	Questão R9																				17

1 Análise de um sistema (R1-R5)

1.1 Questão R1

Da definição algébrica de *linearidade* compreende-se que um sistema linear deve obedecer às condições seguintes:

Aditividade: Verifica-se que: sistema(x+y)=sistema(x)+sistema(y)

Homogeneidade: Verifica-se que: $sistema(\alpha y) = \alpha sistema(y)$

É possível testar a primeira condição executando:

```
In [2]: t = timevar(4)
In [3]: x1 = cos(t)
In [4]: x2 = cos(2 * t)
In [5]: y1 = sistema2(x1) + sistema2(x2)
In [6]: y2 = sistema2(x1 + x2)
In [7]: tplot(y2)
In [8]: tplot(y1)
```

Figura 1: Síntese de dois sinais x1 e x2 e síntese de dois sinais y1 e y2 por respectiva soma dos outputs da passagem individual de x1 e x2 pelo sistema 1 e pela passagem do sinal resultante da soma de x1 com x2 pelo sistema1.

Para o qual se obtém o output:

Figura 2: A azul e a laranja, respectivamente as representações gráficas de y1 e y2, de notar que y1 \neq y2.

Verificando assim que o sistema não é aditivo, precipitando para a conclusão da **não-linearidade do sistema.**

Embora a linearidade seja uma conjunção de duas propriedades, realiza-se também o teste da condição de homogeneidade para efeitos de estudo:

```
In [2]: t = timevar(4)
In [3]: x1 = cos(t)
In [4]: y1 = sistema2(2 * x1)
In [5]: y2 = 2 * sistema2(x1)
In [6]: tplot(y1)
In [7]: tplot(y2)
```

Figura 3: Síntese de um sinal x1 e síntese de dois sinais y1 e y2 por respectiva passagem do produto de x1 com uma contante β (tal que β =2) pelo sistema 2 e pelo produto do resultado da passagem de x1 pelo sistema 2 com β .

Para o qual se obtém os outputs:

Figura 4: A azul e a laranja, respectivamente as representações gráficas de y1 e y2, de notar que y1 \neq y2.

Provando adicionalmente que o sistema não é homogéneo

1.2 Questão R2

Definem-se sistemas invariantes no tempo aqueles que não dependem directamente da variável tempo, ou seja na expressão matemática do sistema não está comtemplada a variável tempo. O sistema invariante no tempo pode contudo depender indirectamente do tempo, ou seja a função de *input* dada pode depender explicitamente do tempo.

Desta forma, o mais simples teste que se pode realizar de forma a concluir a variância ou invariância no tempo de um sistema é através do deslocamento do sinal de entrada. O sistema será invariante no tempo se a seguinte proposição for verdadeira:

```
Para x_0(t) e x_1(t)=x_0(t+\beta) ou seja x_1(t)=T_\beta x_0(t)

T_\beta sistema(x_0)=sistema(x_1)

Considerando T_\beta o operador deslocamento para o vector (0,-\beta)
```

Tomando as noções anteriores computa-se no ambiente ipython:

```
In [2]: t = timevar(10)
In [3]: x1 = cos(t)
In [4]: x2 = cos(t - 2)
In [5]: y1 = sistema2(x1)
In [6]: y2 = sistema2(x2)
In [7]: tplot(y1)
In [8]: tplot(y2)
```

Figura 5: Síntese de um sinal x1 e x2, tal que x2= T_{-2} e síntese de dois sinais y1 e y2 por respectiva passagem de x1 e x2 pelo sistema2.

Para o qual se obtém os outputs:

Figura 6: A azul e a verde, respectivamente, os sinais y1 e y2. De notar a distinção entre a forma de onda de y1 e y2, indiciando que T $_{-2}$ y1 \neq y2.

Concluindo-se que o sistema 2 não é invariante no tempo

1.3 Questão R3

Sucintamente, um sistema descreve-se como sem memória se o seu output para um instante \mathbf{t}_1 for dependente apenas do input dado nesse mesmo instante.

Desta forma é possível aferir que um sistema sem memória tem todas as suas referências canônicas à variável tempo em input(t) na forma:

$$\alpha t^{\gamma} + \beta$$
, com $\alpha = 1$, $\gamma = 1$ e $\beta = 0$.

Um teste simples que pode ser utilizado para verificar esta propriedade consiste na síntese de dois sinais x_0 e x_1 distintos que se intersetam em determinado instante t_i . Para um sistema de equação y_1 o sistema será sem memória se $y_1(x_0)$ e $y_1(x_1)$ se intersetarem em t_i .

Executando o referido teste:

```
In [2]  t = timevar(*)
In [3]  x0 = t ** 2
In [4]: x1 = t * 2
In [5]: tplot(x1)
In [6]: tplot(x0)
In [7]: y0 = sistema2(x0)
In [8]: y1 = sistema2(x1)
In [9]: tplot(y0)
In [10]: tplot(y1)
```

Figura 7: Realização em ambiente *ipython* do teste acima descrito.

Do qual se obtém o primeiro output, de controlo:

Figura 8: Representação gráfica de x1 (a azul) e x0 (a laranja). De notar a intersecção dos gráficos para t=0 e t=2.

E o segundo, conclusivo:

Figura 9: Representação gráfica de y0 (a azul) e y1 (a laranja). Verifique-se a não intersecção do gráficos em t=0 e t=2.

Prova-se que o sistema 2 **tem memória**.

1.4 Questão R4

Assim como na caracterização da memória do sistema, também a definição de causalidade assenta nas particularidades do sistema relativas à variável tempo. Desta forma um sistema descreve-se como causal quando o seu output para qualquer instante \mathbf{t}_1 for dependente apenas de inputs presentes ou passados ou seja $\mathbf{t}_1 \geq t_{input}$

Desta forma é possível aferir que um sistema causal tem todas as suas referências canônicas à variável tempo em input(t) na forma:

$$\alpha t^{\gamma} + \beta, com\alpha \in]0, 1[, \gamma \in]0, 1] \ e \ \beta \in]-\infty, 0].$$

Desta forma, para determinar um possível contra-exemplo utilizam-se sinais de tipo degrau (nos testes apresentados utilizam-se degrau unitário, linear, sinusoidal e exponencial) tal que para t < 0 x_n é igual a 0. Assim caso o sinal de saída $sistema(x_t(t)) \neq 0$ para t < 0 compreende-se o adiantamento do sinal ou seja o output está a depender de inputs futuros, ou seja viola-se a definição inicialmente estipulada para a causalidade.

Assim computa-se o setup inicial:

```
In [2]: t = timevar(4)
In [3]: a0 = 2 * t
In [4]: a1 = e ** t
In [5]: a2 = cos(t)
In [6]: a3 = 0 * t + 3
In [7]: x0 = u(t) * a0
In [8]: x1 = u(t) * a1
In [9]: x2 = u(t) * a2
In [10]: x3 = u(t) * a3
In [11]: tplot(x0)
In [12]: tplot(x1)
In [13]: tplot(x2)
```

Figura 10: Síntese dos sinais acima propostos, com degrau linear x0, degrau exponencial x1, degrau sinusoidal x2 e degrau unitário x3.

Para o qual se obtém o output:

Figura 11: Representação gráfica dos sinais de input sintetizados. A azul, laranja, verde e vermelho respectivamente x0, x1, x2 e x3.

De seguida computa-se o setup secundário:

```
In [15]: y0 = sistema2(x0)
In [16] y1 = sistema2(x1)
In [17]: y2 = sistema2(x2)
In [18]: y3 = sistema2(x3)
In [19]: tplot(y0)
In [20]: tplot(y1)
In [21]: tplot(y2)
In [22]: tplot(y3)
```

Figura 12: Síntese dos sinais de output y_n .

Para o qual se obtém o output:

Figura 13: Representação gráfica dos sinais de output, com sinal coincidente ao input respectivo. Adicionalmente não se considera a oscilação do sinal circundada a roxo, proveniente das limitações do ambiente em que as experiências foram realizadas.

Verifica-se que para os sinais dados (propositalmente de equações distintas) a condição inicial que sustenta a definição de causalidade não é quebrada uma vez que nenhum dos sinais y_n possui para t<0 valor $\neq 0$ ou seja não é presente nenhuma evidência que o sistema2 provoque o adiantamento do sinal.

Mantém-se então a hipótese que o sistema possa ser causal.

1.5 Questão R5

Sucintamente define-se um sistema estável como um sistema que para um input com pequenas oscilações não diverge

Um teste válido para determinar um contra-exemplo para a estabilidade de um sistema é a utilização de inputs limitados superior e inferiormente (nos testes apresentados utilizam-se degrau unitário e sinal sinusoidal). Desta forma caso o sinal de output pelo sistema sintetizado divergir prova-se que o sistema não é estável.

Assim em ambiente *ipython* computa-se:

```
In [2]  t = timevar(10)
In [3]: x0 = cos(t)
In [4]: x1 = u(t) * 2
In [5]: y0 = sistema2(x0)
In [6]: y1 = sistema2(x1)
In [7]: tplot(y0)
In [8]: tplot(y1)
```

Figura 14: Síntese dos sinais x0 e x1, demonstrados em alíneas anteriores como sendo limitados. Síntese dos sinais de output y_n pela passagem dos respectivos sinais x_n pelo sistema 2.

Para o qual se obtém o output gráfico:

Figura 15: Representação gráfica dos sinais de output. De notar que ambos os sinais de output são limitados superior e inferiormente.

Desta forma não foi possível sintetizar um contra-exemplo mantendo-se a hipótese da **possível estabilidade do sistema**.

2 Filtragem (R6-R9)

2.1 Questão R6

Da expressão deduzida de $|H(j\omega)|$:

$$H(j\omega) = \frac{1}{1+j\omega RC} \iff$$

$$|H(j\omega)| = \frac{1}{\sqrt{(1+j\omega RC)^2}} \iff$$

$$R = \frac{\sqrt{\frac{1}{|H(j\omega)|^2} - 1}}{\omega C}$$

Obtém-se os valores de $|H(j\omega)|$ pela computação no sistema *ipython*:

Figura 16: Determinação de $|H(j\omega)|$ para vários ω .

Calculando R pela relação anteriormente estabelecida e cruzamento de dados:

ω	$ H(j\omega) $	R/Ω
1	0.93554	755.12
2	0.79476	763.66
3	0.65611	766.81
5	0.46385	763.96
8	0.31262	759.61
21	0.12370	764
34	0.076770	763.97
40	0.076770	764.06

Assim $R_{medio} = 762.65 \Omega$.

Verifica-se a validade do valor médio obtido para R comparando, por exemplo, a representação gráfica do output do sistema 3 com o impulso unitário como input (controlo) e a representação gráfica da expressão:

$$h_C(t) = \frac{1}{RC}e^{-\frac{t}{RC}}u(t),$$

Descritiva da resposta de um circuito RC para o impulso unitário, substituindo R por R_{medio} e C por 500μ F. Obtém-se a comparação gráfica no sistema *ipython*:

Figura 17: A azul o sinal de controlo e a laranja o sinal sintetizado pela substituição das variáveis R e C na equação de resposta do circuito RC. De notar a sobreposição dos dois gráficos, permitindo inferir que o R_{medio} determinado é solução aproximada de R para o sistema dado.

2.2 Questão R7

Toma-se como noção inicial que quanto mais rápida for a variação instantânea de um dado sinal \mathbf{x}_n em \mathbf{t}_0 maior será a frequência instantânea nesse mesmo instante no espectro do sinal, F_n .

Têm-se então o sinal p e o módulo do seu espectro y_p , que se utilizarão como controlo dos testes seguintes:

Figura 18: Representação gráfica do sinal p e do módulo do espectro de frequências do sinal p, $|F_p|$

Passando p pelo sistema 4, identificado como um filtro passa-baixo, e extraíndo o espectro do output:

Figura 19: Representação gráfica do sinal filtrado pelo sistema 4, a laranja (sobreposto sobre o sinal original, a azul) e espectro do sinal filtrado. De notar a distinção nas variações rápidas do sinal, assim como a supressão da frequências mais altas.

Logo assim como seria previsível as frequências mais altas são suprimidas, resultando numa pior reprodução das variações rápidas do sinal. Passando p pelo sistema 5, identificado como um filtro passa-alto, e extraíndo o espectro do output:

Figura 20: Representação gráfica do sinal filtrado pelo sistema 5, a laranja (sobreposto sobre o sinal original, a azul) e espectro do sinal filtrado. De notar a distinção nas variações lentas do sinal (inexistência total desta mesmas variações), assim como a supressão da frequências mais baixas.

Assim como expectável as frequências mais baixas são suprimidas, resultando numa pior reprodução das variações lentas do sinal.

2.3 Questão R8

Passando o sinal p pelo sistema 6 e obtendo o módulo do espectro deste output:

Figura 21: Representação gráfica do sinal filtrado pelo sistema 6, e espectro do sinal filtrado. De notar os dois impulsos no espectro que limitam a banda passante com $|\omega_{min}|$ =5430 rad/s e $|\omega_{max}|$ =5969 rad/s

Assim pela simples noção que $\frac{\omega}{2\pi}=f$ deduz-se que a banda passante se situa entre os 849.887Hz e os 949.996Hz.

Adicionalmente compreende-se que o sinal obtido é a soma de dois senos, \sin_a e \sin_b com ω_a igual a 5340 rad/s e ω_b iguala 5969 rad/s. As amplitudes A_a e A_b podem ser deduzidas pela expressão $Aa_c=A'$ com $a_c=1.95$ (amplitude de controlo obtida através de medição directa do espectro de $\sin(t)$) e A' a amplitude de cada impulso do espectro de sistema6(p) respectivamente $A'_a=0.074$ e $A'_b=0.066$. É então possível definir:

$$sistema6(p) = 0.038sin(5340t) + 0.034sin(5969t)$$

Definição essa que pode ser interpretada num cenário de modulação pela identidade trigonométrica:

$$2sin(\theta)cos(\phi) = sin(\theta + \phi) + 0.034sin(-\phi)$$

Obtendo-se assim:
$$sistema6(p) = 0.072 sin(5654.5t) cos(314.5t)$$

Utilizando a amplitude média dos senos de forma a ser resolúvel a identidade trigonométrica referida.

Obtêm-se então os outputs gráficos:

Figura 22: À esquerda: representação gráfica do sinal de saída formulado pela soma de senos (a laranja) sobre a representação gráfica inicial, de controlo (a azul). À direita: representação gráfica do sinal de saída formulado pela igualdade trigonométrica (a verde) sobre o a representação inicial, de controlo (a azul). De notar que em ambas as representações as distinções com o sinal de controlo são mínimas.

Desta forma conclui-se que o output de sistema6(p) é uma sinusoide uma vez que é o produto de duas sinusoides. Adicionalmente conclui-se que a frequência local do sinal de saída corresponde a 899.94 Hz e a de modulação a 50.05 Hz.

2.4 Questão R9

Tomando como noção inicial a síntese do teorema da amostragem de Nyquist-Shannon:

É possível reter toda a informação de um sinal contínuo x_{c1} num sinal discreto x_{d1} se a frequência de amostragem f_a utilizada na síntese de x_{d1} pela amostragem de x_{c1} for igual ao superior ao dobro da frequência máxima presente no sinal x_{c1} .

Amostrando o sinal x_{c1} com periodo de amostragem 0.01 segundos e reconstruindo o sinal com igual periodo obtém-se:

Figura 23: Representação gráfica do sinal y_{c1} reconstruído através da informação amostrada de x_{c1} , a verde sobreposto sobre o sinal inicial, de controlo, a azul, x_{c1} . De notar as distinções entre os dois gráficos, precipitando para a identificação de um caso de sub-amostragem.

De forma a verificar a hipótese acima descrita sintetiza-se o módulo do espectro de \mathbf{x}_{c1} :

Figura 24: Representação gráfica do espectro do sinal \mathbf{x}_{c1} (a azul) subposto sobre o espectro do sinal \mathbf{y}_{c1} (a verde). Por medição directa determina-se que ω_{max} presente no sinal \mathbf{x}_{c1} é igual a 472.72 rad/s.

A amostragem foi realizada com frequência de amostragem igual a 100 Hz e contudo verifica-se, por metódos anteriormente descritos, que a frequência máxima presente em \mathbf{x}_{c1} é 75.23 Hz, ou seja de forma a reter toda a informação do sinal por amostragem, segundo o teorema da amostragem de Nyquist-Shannon, a frequência de amostragem teria que ser superior a 150.47 Hz ou seja periodo de amostragem igual ou inferior a 0.00646 segundos, condição essa que foi comprometida, originando na reconstrução do sinal a sobreposição de informação simétrica, originando o corte defrequências justificando a dintinção entre espectros.

Assim conclui-se a presença de um caso de **sub-amostragem**.

BIBLIOGRAFIA BIBLIOGRAFIA

Bibliografia

[1] A. V. Oppenheim and A. S. Willsky. Signals & Systems. Prentice-Hall, 2 edition, 1997.