fo/u fopkjr Hkh# tu] ughavkjEHksdke] foifr n{k NkWsrjar e/;e eu dj ';keA i¢f"k flg lalYi dj] lgrsfoifr vusd] ^cuk^ u NkWs/;\$ dk} j?kqj jk[ksVsdAA jfpr%ekuo /keZizksk Inx&f Jh j.kVkWaki th egkjkt

STUDY PACKAGE

Subject: Mathematics Topic: COMPLEX NUMBER

Available Online: www.MathsBySuhag.com

Index

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 1 + 5 = 6)
- 4. Assertion & Reason
- 5. Que. from Compt. Exams
- 6. 38 Yrs. Que. from IIT-JEE(Advanced)
- 7. 14 Yrs. Que. from AIEEE (JEE Main)

Student's Name	:
Class	:
Roll No.	:

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal (10755) 32 00 000, 98930 58881, WhatsApp 9009 260 559

: (0755) 32 00 000, 98930 58881, WhatsApp 9009 260 559 www.TekoClasses.com www.MathsBySuhag.com

page 2 of 30 A circle is a locus of a point whose distance from a fixed point (called centre) is always constant (called radius). 559.

Equation of a Circle in Various Form:

- The circle with centre as origin & radius 'r' has the equation; $x^2 + y^2 = r^2$. The circle with centre (h, k) & radius 'r' has the equation; $(x h)^2 + (y k)^2 = r^2$.
- The general equation of a circle is

 $x^2 + y^2 + 2gx + 2fy + c = 0$

with centre as (-g, -f) & radius = $\sqrt{g^2+f^2-c}$. If:

 $\begin{array}{ll} g^2 + f^2 - c > 0 & \Rightarrow \text{real circle.} \\ g^2 + f^2 - c = 0 & \Rightarrow \text{point circle.} \end{array}$

 $g^2 + f^2 - c < 0 \implies imaginary circle, with real centre,$

that is (-g, -f)Note: that every second degree equation in x & y, in which coefficient of x2 is equal to coefficient of & the coefficient of xy is zero, always represents a circle.

The equation of circle with (x_1, y_1) & (x_2, y_2) as extremeties of its diameter is: $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$. Note that this will be the circle of least radius passing through (x_1, y_2)

through $(x_1, y_1) & (x_2, y_2)$

Example: Find the equation of the circle whose centre is (1, -2) and radius is 4.

Solution: The equation of the circle is $(x - 1)^2 + (y - (-2))^2 = 4^2$

 $(x-1)^2 + (y+2)^2 = 16$ $x^2 + y^2 - 2x + 4y - 11 = 0$

98930 58881, WhatsApp Number 9009 260 Find the equation of the circle which passes through the point of intersection of the lines 3x Example: 2y - 1 = 0 and 4x + y - 27 = 0 and whose centre is (2, -3).

Solution: Let P be the point of intersection of the lines AB and LM whose equations are respectively

3x - 2y - 1 = 04x + y - 27 = 0

and 4x + y - 27 = 0(ii) Solving (i) and (ii), we get x = 5, y = 7. So, coordinates of P are (5, 7). Let C(2, -3) be the centre of the circle. Since the circle passes through P, therefore 0 000

00

32

: (0755)

Phone

Ÿ.

ď

 $CP = \text{radius} \Rightarrow \sqrt{(5-2)^2 + (7+3)^2} = \text{radius}$ radius = $\sqrt{109}$ Hence the equation of the required circle is

 $(x-2)^2 + (y+3)^2 = (\sqrt{109})^2$

Example: Find the centre & radius of the circle whose equation is $x^2 + y^2 - 4x + 6y + 12 = 0$

Solution : Comparing it with the general equation $x^2 + y^2 + 2gx + 2fy + c = 0$, we have

2g = -4 2f = 6 g = -2f = 3& c = 12centre is (-g, -f) i.e. (2, -3)

and radius = $\sqrt{g^2 + f^2} - c = \sqrt{(-2)^2 + (3)^2 - 12} = 1$

Example: Find the equation of the circle, the coordinates of the end points of whose diameter are

(-1, 2) and (4, -3)

We know that the equation of the circle described on the line segment joining (x_1, y_1) and (x_1, y_2) as a diameter is (x_1, y_2) and (x_2, y_3) as a diameter is (x_1, y_2) and (x_2, y_3) and (x_3, y_4) and (x_4, y_3) Solution: Sir),

 (x_2, y_2) as a diameter is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$. Here, $x_1 = -1, x_2 = 4, y_1 = 2$ and $y_2 = -3$.

So, the equation of the required circle is (x + 1) (x - 4) + (y - 2) (y + 3) = 0 $x^2 + y^2 - 3x + y - 10 = 0$.

Self Practice Problems:

- (x + 1) (x 4) + (y 2) (y 2)actice Problems:

 Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x 2y + 4 = 0.

 Ans $x^2 + y^2 + 4x 2y = 0$
- Find the equation of a circle whose radius is 6 and the centre is at the origin.

Intercepts made by a Circle on the Axes:

Classes, Maths: Suhag The intercepts made by the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ on the co-ordinate axes are $2\sqrt{g^2-c}$

 $2\sqrt{f^2}$ –c respectively. If

circle cuts the x axis at two distinct points. $g^2 - c > 0$

circle touches the x-axis.

circle lies completely above or below the x-axis.

Find the equation to the circle touching the y-axis at a distance – 3 from the origin and $\frac{9}{2}$ intercepting a length 8 on the x-axis. Example:

559.

, WhatsApp Number

00 000,

: (0755) 32

Bhopa.I Phone

Sir),

Ϋ.

空

Ś

Teko Classes, Maths: Suhag R.

$$\Rightarrow \frac{c}{\sqrt{5}} = \pm \sqrt{5} \qquad \Rightarrow c = \pm 5$$

Hence, the line (i) touches the circle (ii) for $c = \pm 5$

Self Practice Problem:

For what value of λ , does the line $3x + 4y = \lambda$ touch the circle $x^2 + y^2 = 10x$.

langent:

(a) Slope form :

y = mx + c is always a tangent to the circle $x^2 + y^2 = a^2$ if $c^2 = a^2 (1 + m^2)$. Hence, equation

page 4 of 30

0 98930 58881, WhatsApp Number 9009 260 559.

00 000

of tangent is $y = mx \pm a \sqrt{1 + m^2}$ and the point of contact is

- (b) Point form:
 - (i) The equation of the tangent to the circle $x^2 + y^2 = a^2$ at its point (x_1, y_2) is, $x x_1 + y y_1 = a^2$.
 - (ii) The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is: $xx_1 + yy_1 + g(x+x_1) + f(y+y_1) + c = 0$.

NOTE : In general the equation of tangent to any second degree curve at point (x, y,) on it can be obtained by

replacing
$$x^2$$
 by $x x_{1,} y^2$ by $yy_{1,} x$ by $\frac{x+x_1}{2}$, y by $\frac{y+y_1}{2}$, xy by $\frac{x_1y+xy_1}{2}$ and c remains as c .

(c) Parametric form :

The equation of a tangent to circle $x^2 + y^2 = a^2$ at $(a \cos \alpha, a \sin \alpha)$ is $x \cos \alpha + y \sin \alpha = a$.

NOTE: The point of intersection of the tangents at the points $P(\alpha)$ & $Q(\beta)$ is

Find the equation of the tangent to the circle $x^2 + y^2 - 30x + 6y + 109 = 0$ at (4, -1). Example:

Solution: Equation of tangent is

$$4x + (-y) - 30\left(\frac{x+4}{2}\right) + 6\left(\frac{y+(-1)}{2}\right) + 109 = 0$$

or
$$4x - y - 15x - 60 + 3y - 3 + 109 = 0$$
 or $-11x + 2y + 46 = 0$
or $11x - 2y - 46 = 0$

Hence, the required equation of the tangent is 11x - 2y - 46 = 0

- Find the equation of tangents to the circle $x^2 + y^2 6x + 4y 12 = 0$ which are parallel to the \Re Example: : (0755)
- line 4x + 3y + 5 = 0Given circle is $x^2 + y^2 6x + 4y 12 = 0$ and given line is 4x + 3y + 5 = 0Solution:

Centre of circle (i) is (3, -2) and its radius is 5. Equation of any line 4x + 3y + k = 0 parallel to the line (ii)

If line (iii) is tangent to circle, (i) then

$$\frac{|4.3+3(-2)+k|}{\sqrt{4^2+3^2}} = 5 \text{ or } |6+k| = 25$$
or $6+k=\pm 25$ \therefore $k=19,-31$

Hence equation of required tangents are 4x + 3y + 19 = 0 and 4x + 3y - 31 = 0

Self Practice Problem

Bhopa.I Phone Find the equation of the tangents to the circle $x^2 + y^2 - 2x - 4y - 4 = 0$ which are (i) parallel, $\widehat{\Box}$ (ii) perpendicular to the line 3x - 4y - 1 = 0(ii) perpendicular to the line $3\bar{x} - 4y - 1 = 0$

(i) 3x - 4y + 20 = 0 and 3x - 4y - 10 = 0(ii) 4x + 3y + 5 = 0 and 4x + 3y - 25 = 0

Normal: If a line is normal / orthogonal to a circle then it must pass through the centre of the

Teko Classes, Maths : Suhag R. Kariya (S.

circle. Using this fact normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at (x_1, y_1) is; $y - y_1 = \frac{y_1 + f}{x_1 + g}$ $(x - x_1)$ Find the equation of the normal to the circle $x^2 + y^2 - 5x + 2y - 48 = 0$ at the point (5, 6).

The equation of the tangent to the circle $x^2 + y^2 - 5x + 2y - 48 = 0$ at (5, 6) is Solution:

$$5x + 6y - 5\left(\frac{x+6}{2}\right) + 2\left(\frac{x+6}{2}\right) - 48 = 0 \implies 10x + 12y - 5x - 25 + 2y + 12 - 96 = 0$$
$$\implies 5x + 14y - 109 = 0$$

∴ Slope of the tangent =
$$-\frac{5}{14}$$
 ⇒ Slope of the normal = $\frac{14}{5}$

Hence, the equation of the normal at (5, 6) is y - 6 = (14/5)(x - 5) \Rightarrow 14x - 5y - 40 = 0

Self Practice Problem:

- Find the equation of the normal to the circle $x^2 + y^2 2x 4y + 3 = 0$ at the point (2, 3). x - y + 1 = 0
- Pair of Tangents from a Point: The equation of a pair of tangents drawn from the point A (x, y) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is: $SS_1 = T^2$. Where $S = x^2 + y^2 + 2gx + 2fy + c$; $S_1 = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Ex. : Find the equation of the pair of tangents drawn to the circle $x^2 + y^2 - 2x + 4y = 0$ from the point (0, 1) Solution : Given circle is $S = x^2 + y^2 - 2x + 4y = 0$ (i) page 5 of 30 Let P = (0, 1)For point P, $S_1 = 0^2 + 1^2 - 2.0 + 4.1 = 5$ Clearly P lies outside the circle $T \equiv x \cdot 0 + y \cdot 1 - (x + 0) + 2 (y + 1)$ $T \equiv -x + 3y + 2$. and $T \equiv x \cdot 0 + y \cdot 1 - (x + 0) + 2 (y + 1)$ i.e. $T \equiv -x + 3y + 2$.
Now equation of pair of tangents from P(0, 1) to circle (1) is SS₁ = T²
or $5(x^2 + y^2 - 2x + 4y) = (-x + 3y + 2)^2$ or $5(x^2 + 5y^2 - 10x + 20y = x^2 + 9y^2 + 4 - 6xy - 4x + 12y$ or $4x^2 - 4y^2 - 6x + 8y + 6xy - 4 = 0$ or $2x^2 - 2y^2 + 3xy - 3x + 4y - 2 = 0$(ii)

Note: Separate equation of pair of tangents: From (ii), $2x^2 + 3(y - 1)x - 2(2y^2 - 4y + 2) = 0$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ $x = \frac{3(y - 1) \pm \sqrt{9(y - 1)^2 + 8(2y^2 - 4y + 2)}}{4}$ or $4x - 3y + 3 = \pm \sqrt{25y^2 - 50y + 25} = \pm 5(y - 1)$ Separate equation of the tangents are x - 2y + 2 = 0 and 2x + y - 1 = 0Separate equation of the tangents are x - 2y + 2 = 0 and 2x + y - 1 = 0Separate equa Self Practice Problems : Exercise: Given circle is $x^2 + y^2 + 6x - 4y - 3 = 0$ Solution: 000 Given point is (5, 1). Let P = (5, 1)Now length of the tangent from P(5, 1) to circle (i) = $\sqrt{5^2 + 1^2 + 6.5 - 4.1 - 3} = 7$ 00 Self Practice Problems: Find the area of the quadrilateral formed by a pair of tangents from the point (4, 5) to the circle $x^2 + y^2 - 4x - 2y - 11 = 0$ and a pair of its radii. Ans. 8 sq. units

If the length of the tangent from a point (f, g) to the circle $x^2 + y^2 = 4$ be four times the length of the tangent from it to the circle $x^2 + y^2 = 4x$, show that $15f^2 + 15g^2 - 64f + 4 = 0$ 10. Director Circle: The locus of the point of intersection of two perpendicular tangents is called the director circle of the given circle. The director circle of a circle is the concentric circle having radius equal to $\sqrt{2}$ times the original circle.

le: Find the equation of director circle of the circle $(x-2)^2 + (y+1)^2 = 2$.

on: Centre & radius of given circle are (2,-1) & $\sqrt{2}$ respectively.

Centre and radius of the director circle will be (2,-1) & $\sqrt{2} \times \sqrt{2} = 2$ respectively. Example: Solution: Sir), equation of director circle is $(x-2)^2 + (y+1)^2 = 4$ $x^2 + y^2 - 4x + 2y + 1 = 0$ Find the equation of director circle of the circle whose diameters are 2x - 3y + 12 = 0 and x + 4y = 5 = 0 and area in 154 across with 空 x + 4y - 5 = 0 and area is 154 square units. **Ans.** $(x + 3)^2 + (y + 2)^2 = 98$ Chord of Contact: If two tangents PT, & PT are drawn from the point P(x_1 , y_1) to the circle S $\equiv x^2 + y^2 + 2gx + 2fy + c = 0$ then the equation of the chord of contact T,T is: $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$. **NOTE**: Here R = radius; L = length of tangent. Teko Classes, Maths: Suhag R. Kariya Chord of contact exists only if the point 'P' is not inside. (b) Length of chord of contact T₁ T₂ (c) Area of the triangle formed by the pair of the tangents & its chord of contact = (d) Tangent of the angle between the pair of tangents from $(x_1, y_1) =$ Equation of the circle circumscribing the triangle PT, T2 is: (e)

 $(x - x_1) (x + g) + (y - y_1) (y + f) = 0.$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Find the equation of the chord of contact of the tangents drawn from (1, 2) to the circle $x^2 + y^2 - 2x + 4y + 7 = 0$ Given circle is $x^2 + y^2 - 2x + 4y + 7 = 0$ Let P = (1, 2)For point P = (1, 2), P = (1, 2)Hence point P = (1, 2)Example: Solution: Hence point P lies outside the circle For point P (1, 2), T = x . 1 + y . 2 – (x + 1) + 2(y + 2) + 7T = 4y + 10Now equation of the chord of contact of point P(1, 2) w.r.t. circle (i) will be 4y + 10 = 0or 2y + 5 = 04y + 10 = 0 or 2y + 5 = 0Tangents are drawn to the circle $x^2 + y^2 = 12$ at the points where it is met by the circle $x^2 + y^2 = 12$ Example: $x^2 + y^2 - 5x + 3y - 2 = 0$; find the point of intersection of these tangents. 6006 Given circles are $S_1 = x^2 + y^2 - 12 = 0$ and $S_2 = x^2 + y^2 - 5x + 3y - 2 = 0$ Solution: Now equation of common chord of circle (i) and (ii) is 0 98930 58881, WhatsApp Number 5x - 3y - 10 = 0..... (iii) i.e. Let this line meet circle (i) [or (ii)] at A and B Let the tangents to circle (i) at A and B meet at $P(\alpha, \beta)$, then AB will be the chord of contact of the tangents to the circle (i) from P, therefore equation of AB will be $x\alpha + y\beta - 12 = 0$ Now lines (iii) and (iv) are same, therefore, equations (iii) and (iv) are identical $\alpha = 6$, $\beta = -$ 00 000, Self Practice Problems : Find the co-ordinates of the point of intersection of tangents at the points where the line 2x + y + 12 = 0 meets the circle $x^2 + y^2 - 4x + 3y - 1 = 0$ **Ans.** (1, -2)Find the area of the triangle formed by the tangents drawn from the point (4, 6) to the circle x^2 32 (0755)4x + 6y - 25 = 0and their chord of contact Ans Pole and Polar: If through a point P in the plane of the circle there be drawn any straight line to meet the circle $\frac{0}{2}$ in Q and R, the locus of the point of intersection of the tangents at Q & R is called the Polar of the point P; also P is called the Pole of the Polar. The equation to the polar of a point P (x, y₁) w.r.t. the circle $x^2 + y^2 = a^2$ is given by $\frac{a^2}{2} + \frac{a^2}{2} + \frac{a^2$ (ii) be outside the circle then the chord of contact & polar will be represented by the same equation. Sir), Pole of a given line Ax + By + C = 0 w.r.t. circle $x^2 + y^2 = a^2$ is (iii) C Ÿ. If the polar of a point P pass through a point Q then the polar of Q passes through P. (iv) 密 Two lines L, & L, are conjugate of each other if Pole of L, lies on L, & vice versa. Similarly two (v) Two lines L₁ & L₂ are conjugate of each other if Pole of L₁ lies on L₂ & vice versa. Similarly two \emptyset points P & Q are said to be conjugate of each other if the polar of P passes through Q & wice-versa.

Find the equation of the polar of the point (2, -1) with respect to the circle $x^2 + y^2 - 3x + 4y - 8 = 0$ Given circle is $x^2 + y^2 - 3x + 4y - 8 = 0$ Given point is (2, -1) let P = (2, -1). Now equation of the polar of point P with respect to circle (i) $x \cdot 2 + y(-1) - 3\left(\frac{x+2}{2}\right) + 4\left(\frac{y-1}{2}\right) - 8 = 0$ Or 4x - 2y - 3x - 6 + 4y - 4 - 16 = 0 or x + 2y - 26 = 0Find the pole of the line 3x + 5y + 17 = 0 with respect to the circle $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ Example: Solution: Find the pole of the line 3x + 5y + 17 = 0 with respect to the circle $x^2 + y^2 + 4x + 6y + 9 = 0$ Given circle is $x^2 + y^2 + 4x + 6y + 9 = 0$ (i) Example: Solution: Feko Classes, and given line is 3x + 5y + 17 = 0Let $P(\alpha, \beta)$ be the pole of line (ii) with respect to circle (i) Now equation of polar of point $P(\alpha, \beta)$ with respect to circle (i) is $x\alpha + y\beta + 2(x + \alpha) + 3(y + \beta) + 9 = 0$ $(\alpha + 2)x + (\beta + 3)y + 2\alpha + 3\beta + 9 = 0$ Now lines (ii) and (iii) are same, therefore

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.	Get Solution of These Pa	ackages & Learn b	v Video Tutorials	on www.MathsBvSuhag.co
--	--------------------------	-------------------	-------------------	------------------------

Self Practice Problems :

- Find the co-ordinates of the point of intersection of tangents at the points where the line 6006
- 2x + y + 12 = 0 meets the circle $x^2 + y^2 4x + 3y 1 = 0$. **Ans.** (1, -2) Find the pole of the straight line 2x y + 10 = 0 with respect to the circle $x^2 + y^2 10 = 0$

Ans.
$$\left(\frac{3}{2}, \frac{3}{2}\right)$$

13.

The equation of the Chord with a given Middle Point:

The equation of the chord of the circle $S = x^2 + y^2 + 2gx + 2fy + c = 0$ in terms of its mid point $M(x_1, y_1) \ge x_1 + y_2 + y_3 + y_4 + y_$

00 000, 0 98930 58881, WhatsApp The chord passing through a point 'M' inside the circle and which is at a maximum distance

from the centre is a chord with middle point M. **Ex.** :Find the equation of the chord of the circle $x^2 + y^2 + 6x + 8y - 11 = 0$, whose middle point is (1, -1)Solution: Equation of given circle is $S = x^2 + y^2 + 6x + 8y - 11 = 0$

Let L = (1, -1)
For point L(1, -1),
$$S_1 = 1^2 + (-1)^2 + 6.1 + 8(-1) - 11 = -11$$
 and $T = x.1 + y(-1) + 3(x + 1) + 4(y - 1) - 11$ i.e. $T = 4x + 3y - 12$
Now equation of the chord of circle (i) whose middle point is L(1, -1) is $T = S_1$ or $4x + 3y - 12 = -11$ or $4x + 3y - 1 = 0$

Second Method: Let C be the centre of the given circle, then C = (-3, -4). L = (1, -1) slope of Cl

Equation of chord of circle whose middle point is L, is

$$y + 1 = -\frac{4}{3} (x - 1)$$
 [: chord is perpendicular to CL)

Self Practice Problems

or

1. Find the equation of that chord of the circle $x^2 + y^2 = 15$, which is bisected at (3, 2) **Ans.**3x + 2y - 13 = 0 **2.** Find the co-ordinates of the middle point of the chord which the circle $x^2 + y^2 + 4x - 2y - 3 = 0$ cuts off on the : (0755)

line
$$y = x + 2$$
.

Ans.
$$\left(-\frac{3}{2}, \frac{1}{2}\right)$$

page 7 of 30

559.

35

14. Equation of the chord joining two points of circle

Sir), Bhopa I Phone The equation of chord PQ to the circle $x^2 + y^2 = a^2$ joining two points $P(\alpha)$ and (β) on it is given by. The equation of a straight line joining two point $\alpha \& \beta$ on the circle $x^2 + y^2 = a^2$ is

$$x \cos \frac{\alpha + \beta}{2} + y \sin \frac{\alpha + \beta}{2} = a \cos \frac{\alpha - \beta}{2}$$
.

15.

Con	nmon langents to Case	two Circles: Number of Tangents	Condition	Sir),
(i)	(r, /c,) (%)	4 common tangents		(S. R. K.
		(2 direct and 2 transverse)	$r_1 + r_2 < c_1 c_2$.	Kariya
(ii)		3 common tangents.	$\mathbf{r}_1 + \mathbf{r}_2 = \mathbf{c}_1 \ \mathbf{c}_2.$	ıhag R.
(iii)	(\cdot)	2 common tangents.	$ r_1 - r_2 < c_1 c_2 < r_1 + r_2$	Maths : Suhag
(iv)	$\overline{\bigcirc}$	1 common tangent.	$\left \mathbf{r}_{1} - \mathbf{r}_{2} \right = \mathbf{c}_{1} \mathbf{c}_{2}.$	Classes, Ma
(v)	\bigcirc	No common tangent.	$c_1 c_2 < r_1 - r_2 $.	Teko Clas

Get So	olution	of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com	
IN	MDOD	FANT NOTE .	
(i		The direct common tangents meet at a point which divides the line joining centre of circles externally in the ratio of their radii.	
		Transverse common tangents meet at a point which divides the line joining centre of circles on the internally in the ratio of their radii.	
(i	ii)	Length of an external (or direct) common tangent & internal (or transverse) common tangent to	
		the two circles are given by: $L_{ext} = \sqrt{d^2 - (r_1 - r_2)^2} \& L_{int} = \sqrt{d^2 - (r_1 + r_2)^2}$, where $d = distance$ between the centres of the two circles and r_{ext} , r_{ext} are the radii of the two $\frac{dr_{ext}}{dr_{ext}}$	
		circles. Note that length of internal common tangent is always less than the length of the	
Example) :	external or direct common tangent. \overline{N} Examine if the two circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$ touch each other \overline{N}	
Solution		externally or internally. Given circles are $x^2 + y^2 - 2x - 4y = 0$ (i)	
	•	and $x^2 + y^2 - 8y - 4 = 0$ (ii)	
		A = (1, 2), B = (0, 4), $r_1 = \sqrt{5}$, $r_2 = 2\sqrt{5}$	
		external or direct common tangent. Examine if the two circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$ touch each other externally or internally. Given circles are $x^2 + y^2 - 2x - 4y = 0$ (i) and $x^2 + y^2 - 8y - 4 = 0$ (ii) Let A and B be the centres and r_1 and r_2 the radii of circles (i) and (ii) respectively, then $A = (1, 2), B = (0, 4), r_1 = \sqrt{5}, r_2 = 2\sqrt{5}$ Now $AB = \sqrt{(1-0)^2 + (2-4)^2} = \sqrt{5}$ and $r_1 + r_2 = 3\sqrt{5}$, $ r_1 - r_2 = \sqrt{5}$ Thus $AB = r_1 - r_2 $, hence the two circles touch each other internally. Problems: Exposition of the circles $x^2 + y^2 - 2x - 6y + 9 = 0$ and $x^2 + y^2 + 6x - 2y + 1 = 0$ with respect to the circle lies completely outside the other circle.	
Self Prac	ctice P	Thus $AB = r_1 - r_2 $, hence the two circles touch each other internally. \mathfrak{S}	
	ind the ach oth	e position of the circles $x^2 + y^2 - 2x - 6y + 9 = 0$ and $x^2 + y^2 + 6x - 2y + 1 = 0$ with respect to $\frac{\pi}{2}$	
Α	ns. Ortho	One circle lies completely outside the other circle. ogonality Of Two Circles:	
Т	wo cire	cles S = 0 & S = 0 are said to be orthogonal or said to intersect orthogonally if the tangents at 🛱	
2	' a, a, +	int of intersection include a right angle. The condition for two circles to be orthogonal is: $\overset{\sim}{1}$ $\overset{\sim}{2}$ $\overset{\sim}{1}$	
NOTE : (a	a) The	centre of a variable circle orthogonal to two fixed circles lies on the radical axis of two circles. & If two circles are orthogonal, then the polar of a point 'P' on first circle w.r.t. the second circle ജ	
`		passes through the point Q which is the other end of the diameter through P. Hence locus of a \circ point which moves such that its polars w.r.t. the circles $S_1 = 0$ $S_2 = 0$ & $S_3 = 0$ are concurrent	
(0		in a circle which is orthogonal to all the three circles. The centre of a circle which is orthogonal to three given circles is the radical centre provided 8	
		the radical centre lies outside all the three circles	
Example		Obtain the equation of the circle orthogonal to both the circles $x^2 + y^2 + 3x - 5y + 6 = 0$ and $4x^2 + 4y^2 - 28x + 29 = 0$ and whose centre lies on the line $3x + 4y + 1 = 0$.	
Solution			
		or $x^2 + y^2 - 7x + \frac{29}{4} = 0$ (ii)	
\		Let the required circle be $x^2 + y^2 + 2ax + 2fy + c = 0$ (iii)	
١		Since circle (iii) cuts circles (i) and (ii) orthogonally	
		29 - 29	
		and $2g(-\frac{\pi}{2}) + 2f.0 = c + \frac{\pi}{4}$ or $-7g = c + \frac{\pi}{4}$ (V)	
		From (iv) & (v), we get $10g - 5f = -\frac{5}{4}$	
		or $40g - 20f = -5$. (vi) 2 Given line is $3x + 4v = -1$ (vii)	
		Given line is $3x + 4y = -1$ (vii) Since centre $(-g, -f)$ of circle (iii) lies on line (vii), $3x + 4y = -1$ (viii)	
		$\therefore -3g - 4\overline{g} = -1$ \vdots 1 (viii) \underline{w}	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\therefore \text{from (5), c} = -\frac{29}{4}$	

:. from (5),
$$c = -\frac{29}{4}$$

$$x^2 + y^2 + \frac{1}{2}y - \frac{29}{4} = 0$$
 or $4(x^2 + y^2) + 2y - 29 = 0$

Self Practice Problems:

- be the circle which passes through the origin and has its centre on the line $\frac{3x^2}{3x^2+3y^2+4x+20y}=0$ Radical Axis and Radical Centre:

 The radical axis of two circles is the locus of points whose powers w.r.t. the two circles are equal. The equation of radical axis of the two circles $S_1=0$ & $S_2=0$ is given by Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

17.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $S_1 - S_2 = 0$ i.e. $2(g_1 - g_2) \times 2(f_1 - f_2) \times 2(g_1 - g_2) \times 2(g_1$

The common point of intersection of the radical axes of three circles taken two at a time is called the 🖰 radical centre of three circles. Note that the length of tangents from radical centre to the three circles are equal.

NOTE:

- (a)
- If two circles intersect, then the radical axis is the common tangent of the two circles at of contact. (b)
- Radical axis is always perpendicular to the line joining the centres of the two circles. (c)
- Radical axis will pass through the mid point of the line joining the centres of the two circles only if the two circles have equal radii. (d) 6006
- (e) Radical axis bisects a common tangent between the two circles.
- (f)
- Example :

$$3x^{2} + 3y^{2} + 4x - 6y - 1 = 0$$

 $2x^{2} + 2y^{2} - 3x - 2y - 4 = 0$
 $2x^{2} + 2y^{2} - x + y - 1 = 0$

A system of circles, every two which have the same radical axis, is called a coaxal system. Pairs of circles which do not have radical axis are concentric. Find the co-ordinates of the point from which the lengths of the tangents to the following three circles be equal. $3x^2 + 3y^2 + 4x - 6y - 1 = 0$ $2x^2 + 2y^2 - 3x - 2y - 4 = 0$ $2x^2 + 2y^2 - x + y - 1 = 0$ Here we have to find the radical centre of the three circles. First reduce them to standard form in which coefficients of x^2 and y^2 be each unity. Subtracting in pairs the three radical axes are $x = \frac{17}{2}x + \frac{5}{2}x + \frac{5}{2}x$ Solution:

$$\frac{17}{6}x - y + \frac{5}{3} = 0 \qquad ; \qquad -x - \frac{3}{2}y - \frac{3}{2} = 0$$
$$-\frac{11}{6}x + \frac{5}{2}y - \frac{1}{6} = 0.$$

 $\frac{17}{6}x - y + \frac{5}{3} = 0 \qquad ; \qquad -x - \frac{3}{2}y - \frac{3}{2} = 0$ $\frac{11}{6}x + \frac{5}{2}y - \frac{1}{6} = 0.$ Solving any two, we get the point $\left(-\frac{16}{21}, \frac{31}{63}\right)$ which satisfies the third also. This point is called $\frac{60}{21}$

the radical centre and by definition the length of the tangents from it to the three circles are 000 000

35

Teko Classes, Maths: Suhag

Self Practice Problem :

Find the point from which the tangents to the three circles $x^2 + y^2 - 4x + 7 = 0$

 $2x^2 + 2y^2 - 3x + 5y + 9 = 0$ and $x^2 + y^2 + y = 0$ are equal in length. Find also this length.

(2, -1); 2.

Family of Circles:

or

- (0755)The equation of the family of circles passing through the points of intersection of two circles The equation of the family of circles passing through the points of intersection of two circles $S_1 = 0$ & $S_2 = 0$ is : $S_1 + K S_2 = 0$ (K $\neq -1$ provided the co-efficient of x^2 & y^2 in S_1 & S_2 are same)

 The equation of the family of circles passing through the point of intersection of a circle S = 0
- The equation of the family of circles passing through the point of intersection of a circle S = 0 a line L = 0 is given by S + KL = 0.

 The equation of a family of circles passing through two given points $(x_1, y_1) & (x_2, y_2)$ can be a (b)
- (c) written in the form: Bhopa.l

$$(x-x_1)(x-x_2) + (y-y_1)(y-y_2) + K \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$
 where K is a parameter.

- (d)
- The equation of a family of circles touching a fixed line $y-y_1=m$ $(x-x_1)$ at the fixed point (x_1, y_1) is $(x-x_1)^2+(y-y_1)^2+K$ $[y-y_1-m(x-x_1)]=0$, where K is a parameter. Family of circles circumscribing a triangle whose sides are given by $L_1=0$; $L_2=0$ and $L_3=0$ is given by; $L_1L_2+\lambda$ $L_2L_3+\mu$ $L_3L_1=0$ provided co-efficient of $x^2=0$ and $x^2=0$. (e)
- Equation of circle circumscribing a quadrilateral whose side in order are represented by the α lines $L_1 = 0$, $L_2 = 0$, $L_3 = 0$ & $L_4 = 0$ are α u α using condition that co–efficient of α and co–efficient of α and co–efficient of α and the equations of the circles passing through the points of intersection of the circles α and α are α and α and (f)

Example:

Solution: Any circle through the intersection of given circles is
$$S_1 + \lambda S_2 = 0$$

or $(x^2 + y^2 - 2x - 4y - 4) + 1(x^2 + y^2 - 10x - 12y + 40) = 0$

or
$$(x^2 + y^2) - 2 \frac{(1+5\lambda)}{1+\lambda} x - 2 \frac{(2+6\lambda)}{1+\lambda} y + \frac{40\lambda - 4}{1+\lambda} = 0$$
(i)
 $r = \sqrt{g^2 + f^2 - c} = 4$, given

$$\frac{(1+5\lambda)^2}{(1+5\lambda)^2} + \frac{(2+6\lambda)^2}{(1+5\lambda)^2}$$

$$16(1 + 2\lambda + \lambda^{2}) = 1 + 10\lambda + 25\lambda^{2} + 4 + 24\lambda + 36\lambda^{2} - 40\lambda^{2} - 40\lambda + 4 + 4\lambda$$

$$16 + 32\lambda + 16\lambda^{2} = 21\lambda^{2} - 2\lambda + 9 \qquad \text{or} \qquad 5\lambda^{2} - 34\lambda - 7 = 0$$

 $(\lambda - 7) (5\lambda + 1) = 0$ Putting the values of λ in (i) the required circles are $2x^2 + 2y^2 - 18x - 22y + 69 = 0$ and $x^2 + y^2 - 2y - 15 = 0$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Find the equations of circles which touche 2x - y + 3 = 0 and pass through the points of intersection of the line x + 2y - 1 = 0 and the circle $x^2 + y^2 - 2x + 1 = 0$. Example: Solution: centre (-g, -f) is $[(2 - \lambda)/2, -\lambda]$ $r = \sqrt{g^2 + f^2 - c}$ $= \sqrt{(2-\lambda)^2/4 + \lambda^2 - (1-\lambda)} \qquad = \frac{1}{2} \sqrt{5\lambda^2} = (\lambda/2)\sqrt{5} \ .$ Since the circle touches the line 2x - y + 3 = 0 therefore perpendicular from centre is equal to $\frac{2 \cdot [(2-\lambda)/2] - (-\lambda) + 3}{\sqrt{F}} = \frac{\lambda}{\sqrt{F}}$ Example: Solution: Example: Solution: Equation of circle is $(x-3)^2 + (y+1)^2 + \lambda(x+2y-1) = 0$ Since it passes through the point (2, 1) \Rightarrow $\lambda =$ Sir), Bhopa.I Phone: (0755) 32 00 000, $1 + 4 + \lambda (2 + 2 - 1) = 0$ circle is ∴. $(x-3)^2 + (y+1)^2 - \frac{5}{3}(x+2y-1) = 0 \Rightarrow$ $3x^2 + 3y^2 - 23x - 4y + 35 = 0$ Find the equation of circle circumcscribing the triangle whose sides are 3x - y - 5x - 3y - 23 = 0 & x + y - 3 = 0. Example: 5x - 3y - 23 = 0Solution: L_3 : x + y - 3 = 0 $\begin{array}{c} L_1L_2 + \lambda L_2L_3 + \mu L_1L_3 = 0 \\ (3x - y - 9)(5x - 3y - 23) + \lambda(5x - 3y - 23)(x + y - 3) + \mu(3x - y - 9)(x + y - 3) = 0 \\ (15x^2 + 3y^2 - 14xy - 114x + 50y + 207) + \lambda(5x^2 - 3y^2 + 2xy - 38x - 14y + 69) \\ \qquad + \mu(3x^2 - y^2 + 2xy - 18x - 6y + 27) = 0 \\ (5\lambda + 3\mu + 15)x^2 + (3 - 3\lambda - \mu)y^2 + xy(2\lambda + 2\mu - 14) - x(114 + 38\lambda + 18\mu) + y(50 - 14\lambda - 6\mu) \stackrel{\checkmark}{\times} \\ \qquad + (207 + 69) + 27\mu) = 0 \end{array}$ <u>.</u> $+(207 + 69\lambda + 27\mu) = 0$ coefficient of x^2 = coefficient of y^2 Maths: Suhag R. Kariya $5\lambda + 3\mu + 15 = 3 - 3\lambda - \mu$ $8\lambda + 4\mu + 12 = 0$ $2\lambda + \mu + 3 = 0$ coefficient of xy = 0 $\Rightarrow \lambda + \mu - 7 = 0$ $2\lambda + 2\mu - 14 = 0$ Solving (ii) and (iii), we have $\lambda = -10$, $\mu = 17$ Puting these values of λ & μ in equation (i), we get $2x^2 + 2y^2 - 5x + 11y - 3 = 0$ Self Practice Problems: Find the equation of the circle passing through the points of intersection of the circles $x^2 + y^2 - 6x + 2y + 4 = 0$ and $x^2 + y^2 + 2x - 4y - 6 = 0$ and with its centre on the line y = x. **Ans.** $7x^2 + 7y^2 - 10x - 10y - 12 = 0$ Teko Classes, Find the equation of circle circumcribing the quadrilateral whose sides are 5x + 3y = 9, x = 3y, 2x = 3yand x + 4y + 2 = 0. Ans. $9x^2 + 9y^2 - 20x + 15y = 0$.

STANDARD RESULTS:

EQUATION OF A CIRCLE IN VARIOUS FORM:

- The circle with centre (h, k) & radius 'r' has the equation; $(x-h)^2 + (y-k)^2 = r^2$.
- **(b)** The general equation of a circle is $x^2 + y^2 + 2gx + 2fy + c = 0$ with centre as: (-g, -f) & radius = $\sqrt{g^2 + f^2 - c}$.

Remember that every second degree equation in x & y in which coefficient of x^2 = coefficient of y^2 & there is no xy term always represents a circle.

 $g^{2} + f^{2} - c > 0 \Rightarrow$ $g^{2} + f^{2} - c = 0 \Rightarrow$ $g^{2} + f^{2} - c < 0 \Rightarrow$ real circle. point circle. imaginary circle.

Note that the general equation of a circle contains three arbitrary constants, g, f & c which corresponds to the fact that a unique circle passes through three non collinear points.

The equation of circle with $(x_1, y_1) & (x_2, y_2)$ as its diameter is : $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0.$

Note that this will be the circle of least radius passing through (x_1, y_1) & (x_2, y_2) . INTERCEPTS MADE BY A CIRCLE ON THE AXES:

The intercepts made by the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ on the co-ordinate axes are

$$2\sqrt{g^2-c}$$
 & $2\sqrt{f^2-c}$ respectively.

NOTE:

- If circle cuts the x axis at two distinct points.
- circle touches the x-axis.
- circle lies completely above or below the x-axis. If

POSITION OF A POINT w.r.t. A CIRCLE:

The point (x_1, y_1) is inside, on or outside the circle $x^2 + y^2 + 2gx + 2fy + c = 0$. according as $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c \Leftrightarrow 0$.

Note: The greatest & the least distance of a point A from a circle

Let L = 0 be a line & S = 0 be a circle. If r is the radius of the circle & p is the length of the perpendicular from the centre on the line, then:

- $p > r \Leftrightarrow$ the line does not meet the circle i. e. passes out side the circle.
- (ii) $p = r \Leftrightarrow$ the line touches the circle.
- (iii) $p < r \Leftrightarrow$ the line is a secant of the circle.
- $p = 0 \implies$ the line is a diameter of the circle.

PARAMETRIC EQUATIONS OF A CIRCLE:

$$x \cos \frac{\alpha + \beta}{2} + y \sin \frac{\alpha + \beta}{2} = a \cos \frac{\alpha - \beta}{2}$$
.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

$$\frac{a\cos\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}}, \frac{a\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}}$$

- PARAMETRIC EQUATIONS OF A CIRCLE:

 The parametric equations of $(x-h)^2 + (y-k)^2 = r^2$ are: $x = h + r \cos \theta$; $y = k + r \sin \theta$; $-\pi < \theta \le \pi$ where (h, k) is the centre, r is the radius & θ is a parameter.

 Note that equation of a straight line joining two point α & β on the circle $x^2 + y^2 = a^2$ is $x \cos \frac{\alpha + \beta}{2} + y \sin \frac{\alpha + \beta}{2} = a \cos \frac{\alpha \beta}{2}$.

 TANGENT & NORMAL:

 The equation of the tangent to the circle $x^2 + y^2 = a^2$ at its point (x_1, y_1) is, $x x_1 + y y_1 = a^2$. Hence equation of a tangent at $(a \cos \alpha, a \sin \alpha)$ is; $x \cos \alpha + y \sin \alpha = a$. The point of intersection of the tangents at the points $P(\alpha)$ and $Q(\beta)$ is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$, $\frac{a \sin \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha \beta}{2}}$.

 The equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at its point (x_1, y_1) is $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha + \beta}{2}}$.

 The equation of $\frac{a \cos \frac{\alpha + \beta}{2}}{\cos \frac{\alpha + \beta}{2}}$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

If a line is normal/orthogonal to a circle then it must pass through the centre of the circle. Using $\frac{2}{3}$ this fact normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at (x_1, y_1) is

$$y - y_1 = \frac{y_1 + f}{x_1 + g} (x - x_1).$$

- A FAMILY OF CIRCLES: The equation of the family of circles passing through the points of intersection of two circles of $(K \neq -1)$.
- The equation of the family of circles passing through the point of intersection of a circle S = 0 & a line L = 0 is given by S + KL = 0.

$$(x-x_1)(x-x_2) + (y-y_1)(y-y_2) + K \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$
 where K is a parameter.

- Equation of circle circumscribing a triangle whose sides are given by $L_1 = 0$; $L_2 = 0$ & & $L_3 = 0$ is given by; $L_1L_2 + \lambda L_2L_3 + \mu L_3L_1 = 0$ provided co-efficient of $x^2 = 0$ co-efficient of y^2 .

 Equation of circle circumscribing a quadrilateral whose side in order are represented by the lines & $L_1 = 0$, $L_2 = 0$, $L_3 = 0$ & $L_4 = 0$ is $L_1L_3 + \lambda L_2L_4 = 0$ provided co-efficient of $x^2 = 0$.

 LENGTH OFA TANCENT AND POWER OFA BODYER

LENGTH OF A TANGENT AND POWER OF A POINT:

The length of a tangent from an external point (x_1, y_1) to the circle

$$S = x^2 + y^2 + 2gx + 2fy + c = 0$$
 is given by $L = \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2f_1y + c} = \sqrt{S_1}$

 $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0 \quad \text{is given by} \quad L = \sqrt{x_1}^2 + y_1^2 + 2gx_1 + 2f_1y + c = \sqrt{S_1} \ .$ Square of length of the tangent from the point P is also called **THE POWER OF POINT** w.r.t. a circle Power of a point remains constant w.r.t. a circle.

(0755)3200000Note that : power of a point P is positive, negative or zero according as the point 'P' is outside, inside or on the circle respectively.

DIRECTOR CIRCLE:

The locus of the point of intersection of two perpendicular tangents is called the **DIRECTOR CIRCLE** of the given circle. The director circle of a circle is the concentric circle having radius equal to $\sqrt{2}$ times the original circle.

EQUATION OF THE CHORD WITH A GIVEN MIDDLE POINT:

The equation of the chord of the circle $S = x^2 + y^2 + 2gx + 2fy + c = 0$ in terms of its mid point \overleftarrow{a}

M
$$(x_1, y_1)$$
 is $y - y_1 = -\frac{x_1 + g}{y_1 + f}$ $(x - x_1)$. This on simplication can be put in the form $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$

Teko Classes, Maths: Suhag R. Kariya (S.

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$$

which is designated by $T - S$

which is designated by T = S

the shortest chord of a circle passing through a point 'M' inside the circle, Note that: is one chord whose middle point is M.

CHORD OF CONTACT:

If two tangents PT_1 & PT_2 are drawn from the point $P(x_1, y_1)$ to the circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$, then the equation of the chord of contact T_1T_2 is: $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0.$

- Chord of contact exists only if the point 'P' is not inside.
- Length of chord of contact $T_1 T_2 = \sqrt{R^2 + L^2}$.
- Area of the triangle formed by the pair of the tangents & its chord of contact = $\frac{1}{R^2 + L^2}$ Where R is the radius of the circle & L is the length of the tangent from (x_1, y_1) on S = 0.

page 13 of 30

છ

- Angle between the pair of tangents from $(x_1, y_1) = \tan^{-1} \left(\frac{2RL}{L^2 R^2} \right)$ **(d)**
 - where R = radius; L = length of tangent.
- Equation of the circle circumscribing the triangle PT_1T_2 is: $(x-x_1) (x+g) + (y-y_1) (y+f) = 0.$
 - The joint equation of a pair of tangents drawn from the point $A(x_1, y_1)$ to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is : $SS_1 = T^2$.

 Where $S = x^2 + y^2 + 2gx + 2fy + c$; $S_1 = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$ $T = xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c$.

 POLE & POLAR:

 If through a point P in the plane of the circle, there be drawn any straight line to meet the circle in Q and R, the locus of the point of intersection of the tangents at Q & R is called the POLAR OF THE POINT P; also P is called the POLAR.

- OF THE POINT P; also P is called the POLE OF THE POLAR.

 The equation to the polar of a point P (x_1, y_1) w.r.t. the circle $x^2 + y^2 = a^2$ is given by $xx_1 + yy_1 = a^2$, & if the circle is general then the equation of the polar becomes $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$. Note that if the point (x_1, y_1) be on the circle then the chord of contact, tangent & polar will be represented by the same equation.

 Pole of a given line Ax + By + C = 0 w.r.t. any circle $x^2 + y^2 = a^2$ is $\left(-\frac{Aa^2}{C}, -\frac{Ba^2}{C}\right)$.

 If the polar of a point P pass through a point Q, then the polar of Q passes through P.

 Two lines L_1 & L_2 are conjugate of each other if Pole of L_1 lies on L_2 & vice versa Similarly two points C P & Q are said to be conjugate of each other if the polar of P passes through Q & vice-versa. So COMMON TANGENTS TO TWO CIRCLES:
- (iii)
- (iv)
- **(v)**

- Where the two circles neither intersect nor touch each other, there are FOUR common tangents, O
- (ii)

$$L_{\text{ext}} = \sqrt{d^2 - (r_1 - r_2)^2}$$
 & $L_{\text{int}} = \sqrt{d^2 - (r_1 + r_2)^2}$.

- when they intersect there are two common tangents, both of them being direct.

 When they touch each other:

 (a) Externally: there are three common tangents, two direct and one is the tangent at the point of contact.

 (b) Internally: only one common tangent possible at their point of contact.

 Length of an external common tangent & internal common tangent to the two circles is given by: $L_{ext} = \sqrt{d^2 (r_1 r_2)^2} \quad \& \quad L_{int} = \sqrt{d^2 (r_1 + r_2)^2} \quad .$ Where d = distance between the centres of the two circles . $r_1 \& r_2$ are the radii of the two circles. The direct common tangents meet at a point which divides the line joining centre of circles externally in the ratio of their radii.

 Transverse common tangents meet at a point which divides the line joining centre of circles internally in the ratio of their radii.
 - externally in the ratio of their radii.

 Transverse common tangents meet at a point which divides the line joining centre of circles of internally in the ratio of their radii.

RADICAL AXIS & RADICAL CENTRE:

The radical axis of two circles is the locus of points whose powers w.r.t. the two circles are equal. The \overleftarrow{o} equation of radical axis of the two circles $S_1 = 0 & S_2 = 0$ is given; $S_1 - S_2 = 0$ i.e. $2(g_1 - g_2) x + 2(f_1 - f_2) y + (c_1 - c_2) = 0$. ď

NOTÉ THAT:

- If two circles intersect, then the radical axis is the common chord of the two circles.
 - If two circles intersect, then the radical axis is the common chord of the two circles.

 If two circles touch each other then the radical axis is the common tangent of the two circles at the common point of contact.

 Radical axis is always perpendicular to the line joining the centres of the two circles
- Radical axis is always perpendicular to the line joining the centres of the two circles.
- Radical axis need not always pass through the mid point of the line joining the centres of the two circles.

- **(h)**

Radical axis need not always pass through the mid point of the line joining the centres of the two circles.

Radical axis bisects a common tangent between the two circles.

The common point of intersection of the radical axes of three circles taken two at a time is a called the radical centre of three circles.

A system of circles, every two which have the same radical axis, is called a coaxal system. Fairs of circles which do not have radical axis are concentric.

ORTHOGONALITY OF TWO CIRCLES:

Two circles $S_1 = 0$ & $S_2 = 0$ are said to be orthogonal or said to intersect orthogonally if the tangents of their point of intersection include a right angle. The condition for two circles to be orthogonal is: $2g_1g_2 + 2f_1f_2 = c_1 + c_2$. is: $2g_1g_2 + 2f_1f_2 = c_1 + c_2$.

Note: (a) Locus of the centre of a variable circle orthogonal to two fixed circles is the radical axis between the

orthogonal to all the three circles. EXERCISE-I

Determine the nature of the quadrilateral formed by four lines 3x + 4y - 5 = 0; 4x - 3y - 5 = 0; 93x + 4y + 5 = 0 and 4x - 3y + 5 = 0. Find the equation of the circle inscribed and circumscribing this

Suppose the equation of the circle which touches both the coordinate axes and passes through the point with abscissa -2 and ordinate 1 has the equation $x^2 + y^2 + Ax + By + C = 0$, find all the possible ordered triplet (A, B, C) ordered triplet (A, B, C).

A circle S = 0 is drawn with its centre at (-1, 1) so as to touch the circle $x^2 + y^2 - 4x + 6y - 3 = 0$ Q.3 externally. Find the intercept made by the circle S = 0 on the coordinate axes.

The line lx + my + n = 0 intersects the curve $ax^2 + 2hxy + by^2 = 1$ at the point P and Q. The circle on PQ as diameter passes through the origin. Prove that $n^2(a^2 + b^2) = l^2 + m^2$

One of the diameters of the circle circumscribing the rectangle ABCD is 4y = x + 7. If A & B are the points (-3, 4) & (5,4) respectively, then find the area of the rectangle.

Find the equation to the circle which is such that the length of the tangents to it from the points (1,0), (2, 0) and (3, 2) are 1, $\sqrt{7}$, $\sqrt{2}$ respectively.

A circle passes through the points (-1, 1), (0, 6) and (5, 5). Find the points on the circle the tangents at which are parallel to the straight line joining origin to the centre.

Find the equations of straight lines which pass through the intersection of the lines x - 2y - 5 = 0, $\Re 7x + y = 50$ & divide the circumference of the circle $x^2 + y^2 = 100$ into two arcs whose lengths are $\Re 7x + y = 100$ into two arcs whose lengths are $\Re 7x + y = 100$ into two arcs whose lengths are

A(-a,0); B(a,0) are fixed points. C is a point which divides AB in a constant ratio $\tan \alpha$. If AC & Q.9

CB subtend equal angles at P, prove that the equation of the locus of P is $x^2 + y^2 + 2ax \sec 2\alpha + a^2 = 0$. A circle is drawn with its centre on the line x + y = 2 to touch the line 4x - 3y + 4 = 0 and pass through Q.10 the point (0, 1). Find its equation.

Q.11(a) Find the area of an equilateral triangle inscribed in the circle $x^2 + y^2 + 2gx + 2fy + c = 0$.

(b) If the line $x \sin \alpha - y + a \sec \alpha = 0$ touches the circle with radius 'a' and centre at the origin then find $\widehat{\Omega}$ the most general values of ' α ' and sum of the values of ' α ' lying in $[0, 100\pi]$.

A point moving around circle $(x + 4)^2 + (y + 2)^2 = 25$ with centre C broke away from it either at the point \bigcirc A or point B on the circle and moved along a tangent to the circle passing through the point D (3, -3). Find the following.

Equation of the tangents at A and B. (ii) Coordinates of the points A and B.

Angle ADB and the maximum and minimum distances of the point D from the circle

Angle ADB and the maximum and minimum distances of the point D from the circle.

Angle ADB and the maximum and minimum distances of the point D from the circle.

Area of quadrilateral ADBC and the Δ DAB.

Equation of the circle circumscribing the Δ DAB and also the intercepts made by this circle on the coordinate axes. coordinate axes.

Find the locus of the mid point of the chord of a circle $x^2 + y^2 = 4$ such that the segment intercepted by $\frac{1}{2}$ the chord on the curve $x^2 - 2x - 2y = 0$ subtends a right angle at the origin.

Find the equation of a line with gradient 1 such that the two circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 10x - 14y + 65 = 0$ intercept equal length on it.

Find the locus of the middle points of portions of the tangents to the circle $x^2 + y^2 = a^2$ terminated by the ϕ

coordinate axes.

Tangents are drawn to the concentric circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ at right angle to one another. Show that the locus of their point of intersection is a 3^{rd} concentric circle. Find its radius.

Find the equation of the circle passing through the three points (4, 7), (5, 6) and (1, 8). Also find the α Q.17 coordinates of the point of intersection of the tangents to the circle at the points where it is cut by the straight line 5x + y + 17 = 0.

Consider a circle S with centre at the origin and radius 4. Four circles A, B, C and D each with radius $\frac{1}{2}$ unity and centres (-3, 0), (-1, 0), (1, 0) and (3, 0) respectively are drawn. A chord PQ of the circle S touches the circle B and passes through the centre of the circle C. If the length of this chord can be expressed as \sqrt{x} , find x. expressed as \sqrt{x} , find x.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Obtain the equations of the straight lines passing through the point A(2, 0) & making 45° angle with the government at A to the circle $(x+2)^2 + (y-3)^2 = 25$. Find the equations of the circles each of radius 3 % whose contrast are on these straight lines at a distance of 5. $\sqrt{2}$ from A Q.19 whose centres are on these straight lines at a distance of $5\sqrt{2}$ from A.

Consider a curve $ax^2 + 2hxy + by^2 = 1$ and a point P not on the curve. A line is drawn from the point P of intersects the curve at points Q & R. If the product PQ. PR is independent of the slope of the line, then

- Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com show that the curve is a circle.
- Q.21 The line 2x - 3y + 1 = 0 is tangent to a circle S = 0 at (1, 1). If the radius of the circle is $\sqrt{13}$. Find the equation of the circle S.

 Find the equation of the circle which passes through the point (1, 1) & which touches the circle and the circle are circle are circle and the circle are circle are circle and the circle are circl
- Q.22
- $x^{2} + y^{2} + 4x 6y 3 = 0$ at the point (2, 3) on π . Let a circle be given by 2x(x-a) + y(2y-b) = 0, (a \neq 0, b \neq 0). Find the condition on a & b if two Q.23 chords, each bisected by the x-axis, can be drawn to the circle from the point $\left(a, \frac{b}{2}\right)$
- chords, each bisected by the x-axis, can be drawn to the circle from the point $\left(a,\frac{b}{2}\right)$.

 Q.24 Show that the equation of a straight line meeting the circle $x^2 + y^2 = a^2$ in two points at equal distances by different approximately approximately a straight line meeting the circle $x^2 + y^2 = a^2$ in two points at equal distances by different approximately approximatel

- to it. If this circle is orthogonal to the circle $x^2 + y^2 kx + 2ky 8 = 0$ then find the value of k.
 - (b) Find the equation of the circle which cuts the circle $x^2 + y^2 14x 8y + 64 = 0$ and the coordinate axes orthogonally.
- Find the equation of the circle whose radius is 3 and which touches the circle $x^2 + y^2 4x 6y 12 = 0$ internally at the point (-1, -1).

 Show that the locus of the centres of a circle which cuts two given circles orthogonally is a straight line (-1, -1). Q.29
- & hence deduce the locus of the centers of the circles which cut the circles $x^2 + y^2 + 4x 6y + 9 = 0$ & $x^2 + y^2 - 5x + 4y + 2 = 0$ orthogonally. Interpret the locus.

EXERCISE-II

- A variable circle passes through the point A(a, b) & touches the x-axis; show that the locus of the other \bigotimes end of the diameter through A is $(x-a)^2 = 4by$.
- Find the equation of the circle passing through the point (-6,0) if the power of the point (1,1) w.r.t. the Q.2circle is 5 and it cuts the circle $x^2 + y^2 - 4x - 6y - 3 = 0$ orthogonally.
- Consider a family of circles passing through two fixed points A(3,7) & B(6,5). Show that the chords in which the simple A(3,7) and A(3,7) are A(3,7) are A(3,7) and A(3,7) are A(3,7) are A(3,7) and A(3,7) are A(3,7) and A(3,7) are A(3,7) are A(3,7) and A(3,7) are A(3,7) and A(3,7) are A(3,7) and A(3,7) are A(3,7) are A(3,7) and A(3,7) are A(3,7) are A(3,7) and A(3,7) are A(3,7) and A(3,7) are A(3,7) a Q.3 in which the circle $x^2 + y^2 - 4x - 6y - 3 = 0$ cuts the members of the family are concurrent at a \bigcirc point. Find the coordinates of this point.
- Q.4 Find the equation of circle passing through (1, 1) belonging to the system of co–axal circles that are $\overline{\Delta}$ tangent at (2,2) to the locus of the point of intersection of mutually perpendicular tangent to the circle $\vec{\sigma}$ $x^2 + y^2 = 4$.
- Find the locus of the mid point of all chords of the circle $x^2 + y^2 2x 2y = 0$ such that the pair of lines $\frac{1}{100}$ Q.5 joining (0,0) & the point of intersection of the chords with the circles make equal angle with axis of x. The circle C: $x^2 + y^2 + kx + (1 + k)y - (k + 1) = 0$ passes through the same two points for every real \overline{o}
- number k. Find(i) the coordinates of these two points.(ii) the minimum value of the radius of a circle C. ∠ Find the equation of a circle which is co-axial with circles $2x^2 + 2y^2 - 2x + 6y - 3 = 0 \& \alpha$
- $x^2 + y^2 + 4x + 2y + 1 = 0$. It is given that the centre of the circle to be determined lies on the radical axis σ of these two circles.
- Show that the locus of the point the tangents from which to the circle $x^2 + y^2 a^2 = 0$ include a constant. angle α is $(x^2 + y^2 - 2a^2)^2 \tan^2 \alpha = 4a^2(x^2 + y^2 - a^2)$.
- A circle with center in the first quadrant is tangent to y = x + 10, y = x 6, and the y-axis. Let (h, k) be
- A circle with center in the first quadrant is tangent to y A + A = 0, y A = 0, the center of the circle. If the value of $(h + k) = a + b\sqrt{a}$ where \sqrt{a} is a surd, find the value of a + b. So A circle is described to pass through the origin and to touch the lines x = 1, x + y = 2. Prove that the Q.10 radius of the circle is a root of the equation $(3 - 2\sqrt{2})t^2 - 2\sqrt{2}t + 2 = 0$.
- Find the condition such that the four points in which the circle $x^2 + y^2 + ax + by + c = 0$ and $x^2 + y^2 + a'x + b'y + c' = 0$ are intercepted by the straight lines Ax + By + C = 0 & Q.11 A'x + B'y + C' = 0 respectively, lie on another circle.
- A circle C is tangent to the x and y axis in the first quadrant at the points P and Q respectively. BC and $\frac{80}{50}$ AD are parallel tangents to the circle with slope -1. If the points A and B are on the y-axis while C and $\frac{80}{50}$
- D are on the x-axis and the area of the figure ABCD is $900\sqrt{2}$ sq. units then find the radius of the circle. The circle $x^2 + y^2 4x 4y + 4 = 0$ is inscribed in a triangle which has two of its sides along the

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Q.7

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Q.29
$$5x^2 + 5y^2 - 8x - 14y - 32 = 0$$

Q.30 9x - 10y + 7 = 0; radical axis

XERCISE-II

Q.2
$$x^2 + y^2 + 6x - 3y = 0$$
 Q.3 $\left(2, \frac{23}{3}\right)$

Q.4
$$x^2 + y^2 - 3x - 3y + 4 = 0$$

$$Q.5 x + y = 2$$

Q.7
$$4x^2 + 4y^2 + 6x + 10y - 1 = 0$$

Q.11
$$\begin{vmatrix} a - a' & b - b' & c - c' \\ A & B & C \\ A' & B' & C' \end{vmatrix}$$

Q.12
$$r = 15$$

Q.13
$$K = 1$$

page 18 of 30

0 98930 58881, WhatsApp Number 9009 260 559.

ď

Q.17
$$x^2 + y^2 - 12x -$$

$$x^2 + y^2 - 12x - 12y + 64 = 0$$
 Q.18 16

$$Q.19 x^2 + y^2 \pm a\sqrt{2} x = 0$$

Q.20
$$(2ax - 2by)^2 + (2bx - 2ay)^2 = (a^2 - b^2)^2$$

Q.1 (a)
$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{2}$$
, (b) D, (c) $(-\infty, -2) \cup (2, \infty)$ Q.2 (2, -2) or (-2, 2) Q.3 (a) (1/2, 1/4)

(c)
$$c_1: (x-4)^2 + y^2 = 9$$
; $c_2: \left(x + \frac{4}{3}\right)^2$

common tangent between
$$c \& c_1 : T_1 = 0$$
; $T_2 = 0$ and $x - 1 = 0$; common tangent between $c \& c_2 : T_1 = 0$; $T_2 = 0$ and $x + 1 = 0$;

common tangent between
$$c_1 \& c_2$$
: $T_1 = 0$; $T_2 = 0$ and $y = \pm \frac{5}{\sqrt{39}} \left(x + \frac{4}{5} \right)$

where
$$T_1: x - \sqrt{3}y + 2 = 0$$
 and $T_2: x + \sqrt{3}y + 2 = 0$

Q.7

Q.7 (a) C (b) A
Q.8 (a)
$$6x - 8y +$$

$$-25 = 0$$
 & $6x - 8y - 25 = 0$; (b)

(c)
$$x^2 + y^2 + 4x - 12 = 0$$
, T_1 : $\sqrt{3}x - y + 2\sqrt{3} + 4 = 0$, T_2 : $\sqrt{3}x - y + 2\sqrt{3} - 4 = 0$ (D.C.T.)

$$T_3$$
: $x + \sqrt{3} y - 2 = 0$, T_4 : $x + \sqrt{3} y + 6 = 0$ (T.C.T.)

Q.9 (a) A; (b) OA =
$$3(3 + \sqrt{10})$$

Q.10 (a)
$$x^2 + y^2 + 14x - 6y + 6 = 0$$
; (b) $2px + 2$

Q.13
$$2x^2 + 2y^2 - 10x - 5y + 1 = 0$$
 Q.14 D

Part: (A) Only one correct option

- where $T_1: x \sqrt{3}y + 2 = 0$ and $T_2: x + \sqrt{3}y + 2 = 0$ (a) C (b) A
 (a) 6x 8y + 25 = 0 & 6x 8y 25 = 0; (b) (-9/2, 2)(c) $x^2 + y^2 + 4x 12 = 0$, $T_1: \sqrt{3}x y + 2\sqrt{3} + 4 = 0$, $T_2: \sqrt{3}x y + 2\sqrt{3} 4 = 0$ (D.C.T.)

 T₃: $x + \sqrt{3}y 2 = 0$, $T_4: x + \sqrt{3}y + 6 = 0$ (T.C.T.)

 A) A; (b) $OA = 3(3 + \sqrt{10})$ Q.10 (a) $x^2 + y^2 + 14x 6y + 6 = 0$; (b) 2px + 2qy = r(a) C; (b) A Q.12 C
 Q.13 $2x^2 + 2y^2 10x 5y + 1 = 0$ Q.14 D

 A) Only one correct option

 If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, which is concentric with the circle $x^2 + y^2 + 6x + 8y 5 = 0$, then c is
 (A) 11 (B) -11 (C) 24 (D) none of these

 The circle $x^2 + y^2 6x 10y + c = 0$ does not intersect or touch either axis & the point (1, 4) is inside the circle. Then the range of possible values of c is given by:
 (A) C > 9 (B) C > 25 (C) C > 20 (D) C > 20Sir), the circle. Then the range of possible values of c is given by: (B) c > 25(C) c > 29
- The length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + p = 0$ to the circle \angle $x^2 + y^2 + 2gx + 2fy + q = 0$ is:
 - $(A) \sqrt{q-p}$
- (B) $\sqrt{p-q}$
- (C) $\sqrt{q+p}$
- The angle between the two tangents from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ equals
- (B)

- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com The circumference of the circle $x^2 + y^2 - 2x + 8y - q = 0$ is bisected by the circle $x^2 + y^2 + 4x + 12y + p = 0$, then p + q is equal to: (B) 100
 - Maths: Suhag R. Kariya (S. are four distinct points on a circle of radius 4 units then, abcd is equal to:
 - The centre of a circle passing through the points (0, 0), (1, 0) & touching the circle $x^2 + y^2 = 9$ is:

- (A) $\left(\frac{3}{2},\frac{1}{2}\right)$ (B) $\left(\frac{1}{2},\frac{3}{2}\right)$ (C) $\left(\frac{1}{2},\frac{1}{2}\right)$ (D) $\left(\frac{1}{2},-\sqrt{2}\right)$ So $\frac{3}{2}$ Two thin rods AB & CD of lengths 2a & 2b move along OX & OY respectively, when 'O' is the origin. The equation of the locus of the centre of the circle passing through the extremities of the two rods is: (A) $x^2 + y^2 = a^2 + b^2$ (B) $x^2 y^2 = a^2 b^2$ (C) $x^2 + y^2 = a^2 b^2$ (D) $x^2 y^2 = a^2 + b^2$ O The value of 'c' for which the set, $\{(x,y) \mid x^2 + y^2 + 2x \le 1\} \cap \{(x,y) \mid x y + c \ge 0\}$ contains only one point in common is:
- 9.

	Get S	Solution of These Pa	ckages & Learn by	Video Tutorials on w	ww.MathsBySuhag.com	30
	10.	(A) o	mbers satisfying the equ & m respectively, then	(C) 15	(D) nana of those	a
J.com	11.	À line meets the co-ord	dinate axes in A & B. A c e tangent to the circle a	ircle is circumscribed ab	out the triangle OAB. If $d_1 \& d_2$ oints A and B respectively, the	
l I J		(A) $\frac{2d_1 + d_2}{2}$	(B) $\frac{d_1 + 2d_2}{2}$	(C) $d_1 + d_2$	(D) $\frac{d_1d_2}{d_1+d_2}$	0 559
<u>کر</u>	12.	The distance between $x^2 + y^2 + 2gx + 2fy + c =$	the chords of contact of 0 from the origin & the	tangents to the circle; point (g, f) is:		39 26
lathsb		(A) $\sqrt{g^2 + f^2}$	(B) $\frac{\sqrt{g^2+f^2-c}}{2}$	(C) $\frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$	(D) $\frac{\sqrt{g^2 + f^2 + c}}{d_1 + d_2}$ (D) $\frac{\sqrt{g^2 + f^2 + c}}{2\sqrt{g^2 + f^2}}$ $x^2 + y^2 = 9$ at A & B and tangents of C are: (D) $\left(\frac{9}{5}, \frac{18}{5}\right)$ 12 = 0 which subtend an angle	ber 90(
≥	13.	If tangent at (1, 2) to the at A & B to the second	e circle c_1 : $x^2 + y^2 = 5$ ir circle meet at point C, t	itersects the circle c_2 : x^2 ; hen the co-ordinates of	P + y ² = 9 at A & B and tangents f C are:	Nun
		(A) (4, 5)	$(B) \left(\frac{9}{15}, \frac{18}{5}\right)$	(C) (4, -5)	$(D)\left(\frac{9}{5},\frac{18}{5}\right)$	sApp
ď	14.	The locus of the mid po π	oints of the chords of the	e circle x ² + y ² + 4x – 6y –	12 = 0 which subtend an angle	√hät
Ĕ		of $\frac{\pi}{3}$ radians at its circ	umference is:	(5) (0)0 (0)0		,
8		(A) $(x-2)^2 + (y+3)^2 =$ (C) $(x+2)^2 + (y-3)^2 =$	6.25 18.75	(B) $(x + 2)^2 + (y - 3)^2 =$ (D) $(x + 2)^2 + (y + 3)^2 =$	6.25 : 18.75 f a common external tangent is	888
šes	15.	11, then the product of	on internal tangent to tw the radii of the two circ	o circles is 7, and that of les is:	a common external tangent is	30 5
ase	16. Two	(A) 36 circles whose radii are	(B) 9 equal to 4 and 8 interse	(C) 18 ct at right angles. The le	(D) 4 ngth of their common chord is:	9893
3		(A) $\frac{16}{}$	(B) 8	(C) $4\sqrt{6}$	(D) $\frac{8\sqrt{5}}{}$	0
eko	17.	A circle touches a strai	ght line $lx + my + n = 0$	& cuts the circle $x^2 + y^2$	= 9 orthogonally. The locus of	000
		centres of such circles (A) $(lx + my + n)^2 = (l^2 + my + n)^2$	$\cdot \text{m}^2) (\text{x}^2 + \text{y}^2 - 9)$	(B) $(Ix + my - n)^2 = (I^2 + n)^2$	$(x^2 + y^2 - 9)$	2 00
≪	18.	(C) $(lx + my + n)^2 = (l^2 + lf a circle passes throu$	· m²) (x² + y² + 9) gh the point (a, b) & cut	(D) none of these s the circle $x^2 + y^2 = K^2$ o	orthogonally, then the equation	5) 32
>		(A) $2ax + 2bv - (a^2 + b^2)$	$(2 + K^2) = 0$	(B) $2ax + 2by - (a^2 - b^2)$	$+ (\zeta^2) = 0$	(075
<u>.:</u>	19.	(C) $x^2 + y^2 - 3ax - 4by + $ The circle $x^2 + y^2 = 4$ cu	$-(a^2 + b^2 - K^2) = 0$ its the circle $x^2 + y^2 + 2x$	(D) $x^2 + y^2 - 2ax - 3by +$	$-(a^2 - b^2 - K^2) = 0$ on the equation of the circle on	
website		AB as a diameter is: (A) $13(x^2 + y^2) - 4x - 6y$		(B) $9(x^2 + y^2) + 8x - 4y$		hon
ĕ	20.	(C) $x^2 + y^2 - 5x + 2y +$ The length of the tange	72 = 0	(D) none of these he circle $15x^2 + 15y^2 - 4$	18x + 64y = 0 to the two circles	а. Р
Ē		$5x^2 + 5y^2 - 24x + 32y + 32$	+ 75 = 0 and 5x ² + 5y ² (B) 2 · 3	-48x + 64y + 300 = 0.6	(D) none of these , –2). Then the equation of the	Jops
5	21.	The normal at the poin circle is	t (3, 4) on a circle cuts the	he circle at the point (-1	, –2). Then the equation of the	, <u>B</u>
ge		(A) $x^2 + y^2 + 2x - 2y -$ (C) $x^2 + y^2 - 2x + 2y +$	13 = 0 12 = 0	(B) $x^2 + y^2 - 2x - 2y - $ (D) $x^2 + y^2 - 2x - 2y + $	11 = 0 14 = 0	K. Sir)
χ ω	22.	The locus of poles who (A) $Kx - a^2 = 0$	se polar with respect to	x ² + y ² = a ² always pas: (C) Ky + a ² = 0	ses through (K, 0) is: (D) Ky – $a^2 = 0$	조
Package rrom	23.	If two distinct chords, bisected by the x-axis,	drawn from the point (p	(0) (3)	² = px + q) (where pq ≠ 0) are [IIT - 1999]	
_ 중	24	(A) $p^2 = q^2$ The triangle POR is ins	(B) $p^2 = 8q^2$	(C) $p^2 < 8q^2$	(D) $p^2 > 8q^2$ co-ordinates (3, 4) and (-4, 3)	ariya
) I	24.	respectively, the \angle QP	R is equal to		[IIT - 2000]	<u>.</u>
כו ס		(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{6}$	ag F
nloa	24.25.26.27.	Let PQ and RS be tan intersect at a point X or	gents at the extremities on the circumference of t	s of diameter PR of a ci he circle, then 2r equals	(D) $\frac{\pi}{6}$ (rcle of radius r. If PS and RQ [IIT-2001] (D) $\frac{\sqrt{PQ^2 + RS^2}}{2}$ (the centre. Then, locus of the [IIT-2001] (D) a pair of straight line [IIT-2002]	Suh
≷		(A) √PQ.RS	(B) $\frac{PQ + RS}{2}$	(C) $\frac{2PQ + RS}{PQ + RS}$	(D) $\frac{\sqrt{PQ^2 + RS^2}}{2}$	laths
יי כ	26.	Let AB be a chord of the	ne circle x ² + y ² = r ² sub	tending a right angle at	the centre. Then, locus of the	;S, ™
Ţ,	27	(A) a parabola	(B) a circle	(C) an ellipse	(D) a pair of straight line	asse
Ľ	41.	5x - 2y + 6 = 0 at a po	int Q on the y-axis, the	n the length of PQ is	= 2 meets the straight line [IIT-2002]	CE
	28.	(A) 4	(B) 2 √5	(C) 5	(D) $3\sqrt{5}$ y ² + 16x + 12y + c = 0 at a point	8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

1.
$$x^2 + y^2 - 2x - 4y = 0$$
 2. (1, 3), (5, 7), $4\sqrt{2}$

9.3.
$$16x^2 - 65y^2 - 288x + 1296 = 0$$
, $tan^{-1} \left(\frac{8\sqrt{65}}{49} \right)$

4.
$$\left(\frac{33}{4}, 2\right)$$
; $\frac{1}{4}$

5.
$$x^2 + y^2 - 3x - \sqrt{3}y + 2 = 0$$
;

$$x^2 + y^2 - 5x - \sqrt{3}y + 6 = 0$$

$$x^2 + y^2 - 4x + 3 = 0$$

6. 32 sq. unit **7.** 75 sq. units **8.**
$$(a^2 > 2b^2)$$

8.
$$(a^2 > 2b^2)$$

9.
$$x^2 + y^2 - 4x - 6y - 4 = 0$$

10.
$$2 x + y + 1 = 0, \frac{2}{\sqrt{5}}$$
 11. $a \in (0, 9/5)$

12. Centre =
$$(3, 0)$$
, (radius) = $\sqrt{5}$

13.
$$x^2 + y^2 + 18 x - 2 y + 32 = 0$$

17.
$$c_1$$
: $(x-4)^2 + y^2 = 9$; c_2 : $\left(x + \frac{4}{3}\right)^2 + y^2 = \frac{1}{9}$

common tangent between c & c_1 : $T_1 = 0$; $T_2 = 0$ and x - 1 = 0; common tangent between $c \& c_2$: $T_1 = 0$; $T_2 = 0$ and x + 1 = 0; common tangent between $c_1 \& c_2$: $T_1 = 0$; $T_2 = 0$ and

$$y = \pm \frac{5}{\sqrt{39}} \left(x + \frac{4}{5} \right)$$
 where T_1 : $x - \sqrt{3} y + 2 = 0$

and
$$T_2$$
: $x + \sqrt{3} y + 2 = 0$

18. ellipse **19.**
$$\sqrt{5}$$

page 21 of 30