Dataflow Programming

ern0 - http://linkbroker.hu

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Definition

Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Definition

Programming paradigm / software architecture: computation is modelled as a directed graph.

Applications is a network of "black box" processes, which exchange data across predefined connections by message passing, where the connections are specified externally to the processes.

Domains

- Synth/sampler/workstation
- Audio/video processing
- Animation rendering
- Industrial/home automation
- Spreadsheet
- Task automation

Similar, See Also...

Flow Based Programming Reactive Programming Functional Programming **Event-Driven Programming** PLC (Ladder Logic, Functional Block Diagram) **Microservices**

Kahn Process Networks, Petri Net

Electricity

etc. 0.1uF 0.1uF 0.1uF 0.1uF Input to ADC Low Pass Filter Bias Circuit High Pass Filter Microphone Amplifier

Definition
Component & Port

Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Component & Port

- consumer (input)
- property / parameter
- producer (output)

Component library: platform, "language"

Definition
Component & Port

Data Types

Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Data Types

Trigger

Integer

Packet (some bytes)

Image, video stream

Audio stream

Lines of text (Unix pipe)

Composite packet

Definition
Component & Port
Data Types

Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Component Function Types

source

external input import, feed network receive

<u>processor</u>

transform path select process control

sink

data process result presentation export network send

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Component Implementation Modes

Native

```
class ChangeComponent {
 void messageHandler(Msg* message) {
    int v = message->getValue();
    int 1 = last->getValue();
    if (v == 1) return;
    last->setValue(v);
    changePort->fire(v);
    if (v == 0) {
      zeroPort->fire(v);
    } else {
      nonzeroPort->fire(v);
  } // messageHandler()
} // class
```

Composite

unlimited depth

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Scheduling Modes

<u>Synchronous</u>

<u>Asynchronous</u>

trigger

system clock

4	Variables	mail in the same of the same o	
5	Future Value = FV =		
8	Present Value = PV =		
7	Regular Payment Made at Regular Time Intervals = PMT =	\$ 250	.00
8	Annual (Year) Rate = i =	6.0	00%
9	Number of Compounding Periods per Year =n =		12
10	Years = x =		55
11	Period Rate = i.h =	0.0	050
12	Total Number of Periods = n*x =	*89*810	0.3
	Ordinary Annuty (PMT at end) = 0; Annuty Due (PMT at		
13	beg) + 1		
		1	

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite
Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Triggering Modes

Push

data/event driven

active source component

overload, unneeded messages Pull

demand driven

passive source component

response delay, improper sampling

buffering

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite
Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Parallel Execution

Converts single-threaded algorythms to multi-threaded

Load balancing, merging problems

Utilizes multi-core CPUs

Multi-host Application

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite
Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Unix Pipe

- All the commands are components by default
- One, universal data type: lines of text
- Restricted graph: 1-in-1-out (+ files)
- No editor required, CLI syntax (c1 | c2 | c3)
- Parallel execution (check it: ps)

(MS-DOS: single, using tmp files)

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite
Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Spreadsheet

- Formula components (issue: no repository)
- Data types: numeric, date, string
- Graph
 defined
 by 2D+ cell
 coordinate
 references

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite
Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Make

- Component: job (compiler script)
- Data: file (sources, objects, executable)
- Dependency tree
- Parallel execution make -j

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite
Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Quartz Composer

- Graphics purpose
- Comes with Mac OS X

Rane DragNet

Audio system

Blender

- Video system
- Open source

Clavia Nord Modular

- Music
- Win32 editor

Propellerhead Reason

- Audio workstation
- Rack+wire metaphor

Audio/video magic

MaxMSP

Houdini

3D Animation

TinyOS

Embedded Systems


```
// CounterSounder
Main.StdControl -> CounterSounderM.StdControl;

// TimerC
CounterSounderM.Timer -> TimerC.Timer[unique("Timer")];
Main.StdControl -> TimerC.StdControl;

// LedsC
CounterSounderM.Leds -> LedsC.Leds;

// Sounder
CounterSounderM.SounderControl -> Sounder.StdControl;
```

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Good News

People Are Different

another image, pls

People Are Different

creating application

<u>application builder</u>

domain knowledge

user contact customization integration maintenance

programmer

programming supporting app builder

separating roles

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Component Programming

• Simple, small code (100 – 1000 lines)

Homeaut.com component sizes:

JamSolver: 497 lines Scheduler: 628 lines SimpleSequencer: 815 lines

- Loose coupling: default (Hollywood principle etc.)
- Ready for unit testing
- No customer demands
- No legacy code to learn and modify

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Application Building

- No programming skills required
- Even the user can create apps
- Visual programming
- Convert patterns to composite components
- Focusing on the problem
- Different world

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Rapid Prototyping

- No programming required
- Mock missing components
- Mock missing resources (data source, user input etc.)
- Discover missing components to be implemented

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Reuse. Really.

OOP promised reusability.

It was a lie.

Reusability Example

Serial sniffer with home automation components

Definition
Component & Port
Data Types
Source, Processor, Sink

Advanced

Component: Native vs Composite

Scheduling: Synchronous vs Asynchronous

Triggering: Push vs Pull

Execution: Parallel, Multi Host

Dataflow Systems

Unix Pipe, Spreadsheet, Make etc.

Practice

App Creating vs Programming, Component Programming, Application Building

Benefits

Transparency

- Automatic documentation of the application
- Well-separated layers

THE END

My favourite application. Can you find the bug?