KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2012 S-1A ex ret

SKRIFTLIG EKSAMEN I MATEMATIK A

Fredag den 8. juni 2012

RETTEVEJLEDNING

Opgave 1. Partielle afledede. Lad $A \subseteq \mathbb{R}^2$ være en åben mængde, og lad $(x_0, y_0) \in A$ være et fast valgt punkt. Betragt en funktion $f : A \to \mathbb{R}$.

(1) Forklar, hvad det vil sige, at funktionen f har de partielle afledede

$$\frac{\partial f}{\partial x}(x_0, y_0)$$
 og $\frac{\partial f}{\partial y}(x_0, y_0)$

i punktet (x_0, y_0) , og forklar i den forbindelse, hvordan man finder disse partielle afledede.

Løsning. Vi definerer funktionerne g_x og g_y ved

$$g_x(x) = f(x, y_0)$$
 og $g_y(y) = f(x_0, y)$,

hvor $(x, y) \in A$.

Hvis g_x er differentiabel i x_0 og g_y er differentiabel i y_0 med de afledede $g'_x(x_0)$ og $g'_y(y_0)$, hvor

$$g'_x(x_0) = \lim_{x \to x_0} \frac{g_x(x) - g_x(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0},$$

og

$$g'_y(y_0) = \lim_{y \to y_0} \frac{g_y(y) - g_y(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0},$$

så siger vi, at funktionen f har de partielle afledede

$$g'_x(x_0) = \frac{\partial f}{\partial x}(x_0, y_0)$$
 og $g'_y(y_0) = \frac{\partial f}{\partial y}(x_0, y_0)$

i punktet $(x_0, y_0) \in A$.

(2) Betragt funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x, y) \in \mathbf{R}^2 : f(x, y) = 3x^2 + xy^2 + \sin(xy).$$

Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

for denne funktion i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

Løsning. Vi finder, at

$$\frac{\partial f}{\partial x}(x,y) = 6x + y^2 + y\cos(xy)$$
 og $\frac{\partial f}{\partial y}(x,y) = 2xy + x\cos(xy)$.

(3) Betragt funktionen $g: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$g(x,y) = \begin{cases} xy, & \text{for } x > 0 \text{ og } y > 0 \\ 0, & \text{ellers} \end{cases}.$$

Bestem de partielle afledede

$$\frac{\partial g}{\partial x}(0,0)$$
 og $\frac{\partial g}{\partial y}(0,0)$.

Løsning. Vi ser, at

$$\frac{g(x,0)-g(0,0)}{x-0}=0$$
, og at $\frac{g(0,y)-g(0,0)}{y-0}=0$,

så

$$\frac{\partial g}{\partial x}(0,0) = 0 \text{ og } \frac{\partial g}{\partial y}(0,0) = 0.$$

(4) Betragt funktionen $h: \mathbf{R} \to \mathbf{R}$, som er givet ved

$$\forall x \in \mathbf{R} : h(x) = q(x, x^2).$$

Vis, at funktionen h er differentiabel i ethvert punkt $x \in \mathbf{R}$, og bestem f'(x).

Løsning. Vi ser, at funktionen h er givet ved

$$h(x) = g(x, x^2) = \begin{cases} x^3, & \text{for } x > 0 \\ 0, & \text{for } x < 0 \end{cases}$$
.

Idet

$$\frac{h(x) - h(0)}{x - 0} = \begin{cases} \frac{x^3}{x} = x^2, & \text{for } x > 0 \\ 0, & \text{for } x < 0 \end{cases} \to 0 \quad \text{for } x \to 0,$$

finder vi, at

$$h'(x) = \begin{cases} 3x^2, & \text{for } x > 0 \\ 0, & \text{for } x < 0 \end{cases}.$$

Opgave 2. Udregn følgende ubestemte integraler:

 $\int \frac{x^5}{2+x^6} \, dx.$

Løsning. Vi finder, at

$$\int \frac{x^5}{2+x^6} dx = \frac{1}{6} \int \frac{1}{2+x^6} d(2+x^6) = \frac{1}{6} \ln(2+x^6) + k, \ k \in \mathbf{R}.$$

(2) $\int \frac{x^n}{7 + x^{n+1}} dx, \text{ hvor } n \in \mathbf{N}.$

Løsning. Vi får, at

$$\int \frac{x^n}{7+x^{n+1}} dx = \frac{1}{n+1} \int \frac{1}{7+x^{n+1}} d(7+x^{n+1}) = \frac{1}{n+1} \ln(7+x^{n+1}) + k, \quad k \in \mathbf{R}, \text{ hvor } n \in \mathbf{N}.$$

 $\int \frac{e^x}{1+e^x} \, dx.$

Løsning. Vi ser, at

$$\int \frac{e^x}{1+e^x} dx = \int \frac{1}{1+e^x} d(1+e^x) = \ln(1+e^x) + k, \quad k \in \mathbf{R}.$$

Opgave 3. Betragt den uendelige række

(*)
$$\sum_{n=0}^{\infty} \frac{1}{(\sqrt{1+x^2})^n}.$$

(1) Bestem mængden

$$K = \{x \in \mathbf{R} \mid (*) \text{ er konvergent}\}.$$

Løsning. Den uendelige række (*) er en kvotientrække (en geometrisk række), og den er konvergent, hvis og kun hvis kvotienten

$$\frac{1}{\sqrt{1+x^2}} < 1.$$

Dette er opfyldt for $x \neq 0$, så $K = \mathbf{R} \setminus \{0\}$.

(2) Bestem en forskrift for funktionen $f: K \to \mathbf{R}$, som er givet ved

$$\forall x \in K : f(x) = \sum_{n=0}^{\infty} \frac{1}{(\sqrt{1+x^2})^n}.$$

Løsning. Vi finder straks, at

$$\forall x \in K : f(x) = \frac{1}{1 - \frac{1}{\sqrt{1 + x^2}}} = \frac{\sqrt{1 + x^2}}{\sqrt{1 + x^2} - 1}.$$

(3) Vis, at

$$\forall x \in K : f(-x) = f(x).$$

Løsning. Vi opnår, at for $x \in K$ gælder det, at

$$f(-x) = \frac{\sqrt{1 + (-x)^2}}{\sqrt{1 + (-x)^2} - 1} = \frac{\sqrt{1 + x^2}}{\sqrt{1 + x^2} - 1} = f(x).$$

(4) Vis, at

$$f\left(\frac{1}{p}\right) \to \infty \text{ for } p \to \infty.$$

Løsning. Man får, at

$$f\left(\frac{1}{p}\right) = \frac{\sqrt{1 + \frac{1}{p^2}}}{\sqrt{1 + \frac{1}{p^2}} - 1} \to \infty \text{ for } p \to \infty.$$