

Agenda

Bias-Variance Trade-Off

Bias, variance, and the fundamental problem of overfitting

Advanced ML algorithms may overfit the training data

■ Model training is about loss minimization function. Mathematically optimal solution has loss equal to zero. Does this mathematically optimal solution imply an 'optimal' model?

Advanced ML algorithms may overfit the training data

- Model training minimizes a loss function. Mathematically optimal solution has loss equal to zero. Does this mathematically optimal solution imply an 'optimal' model?
- No! A model with zero training loss is too specific. It has picked up random noise that only exists in the training set and will show high forecast error on novel data

Advanced ML algorithms may overfit the training data

■ Training data is a sample

- ☐ We assume the same is representative of the population
- ☐ Sample comprises actual structure
 - How inputs and outputs related to another
 - Feature-to-target relationship
- ☐ Sample also comprises random variation

■ Zero loss during model training

- ☐ A perfect solution only if the inputs facilitate perfect prediction of the target
- ☐ More likely scenario: the learning algorithm was fooled by the random variation in the training sample
- ☐ Learnt model will then also embody that randomness
- ☐ The model will perform poorly when applied to novel data

Model is too complex (overfitting)

Detecting overfitting issues by split-sampling / cross-validation

- Recall idea of hold-out validation from last session
 - ☐ Split data randomly into training and test set
 - ☐ Estimate model using training data
 - ☐ Assess model using test data
 - ☐ Perhaps repeat random splitting / use cross-validation
- Overfitting implies a large difference in model performance on training versus test data
- Note that detecting overfitting, while crucial, does not tell you how to improve the model
 - ☐ Change learning algorithm or its configuration
 - ☐ Regularization, early-stopping, ensembling, ...
 - ☐ We learn about these approaches later

The Trade-Off Between Bias and Variance

■ We can show that the generalization error of a model is a function to two 'evils'

- ☐ Generalization error means the error on data in general
- □ Not the error you can measure on the training set

■ Bias

- ☐ Can the model approximate the true relationship between features and the target?
- □ Refers to the expressive power of a learning algorithm
- ☐ The more complex a model the lower its bias

■ Variance

- ☐ Think of it as sensitivity of a model to data
- ☐ How much will forecasts vary with small changes in features?
- ☐ How much will the model change with small changes of the training data?

The Trade-Off Between Bias and Variance

Generalization error is a function to two 'evils'

■ Let
$$Y = f(X) + \epsilon$$
, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$

■ Generalization error

$$E_{\mathcal{D},\epsilon}\left[\left(Y-\hat{f}(X,\mathcal{D})\right)^2\right]$$

■ Bias

$$\operatorname{Bias}_{\mathcal{D}}[\hat{f}(X,\mathcal{D})] = E_{\mathcal{D}}[\hat{f}(X,\mathcal{D})] - f(X)$$

■ Variance

$$\operatorname{Var}_{\mathcal{D}}[\hat{f}(X,\mathcal{D})] = E_{\mathcal{D}}\left[\left(E_{\mathcal{D}}[\hat{f}(X,\mathcal{D})] - \hat{f}(X,\mathcal{D})\right)^{2}\right]$$

■ Expectation taken over different training sets $\mathcal{D} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ sampled from the same joint distribution P(X, Y)

■ Bias-variance decomposition of the mean-squarea error

$$E_{\mathcal{D},\epsilon}\left[\left(\underline{Y}-\hat{f}(X,\mathcal{D})\right)^{2}\right] = \left(\operatorname{Bias}_{\mathcal{D}}\left[\hat{f}(X,\mathcal{D})\right]\right)^{2} + \operatorname{Var}_{\mathcal{D}}\left[\hat{f}(X,\mathcal{D})\right] + \epsilon$$

Bias-Variance Trade-Off and Overfitting

- **■** Simple classifiers
 - ☐ High bias
 - □ Low variance
- **■** Complex classifiers
 - □ Low bias
 - ☐ High variance
- Much of supervised ML is about finding a good compromise
- **■** Common paradigm
 - ☐ Use an advanced, complex model
 - ☐ Manage / control complexity somehow

Regularization

Idea, connection to bias-variance trade-off, implementation

Regularization

- Regularization revises practices to estimate models
 - □ Do not focus on training error alone rather balance between two conflicting objectives
 - ☐ Goal 1: low training error (i.e., low bias)
 - ☐ Goal 2: **low complexity (i.e., low variance)**
- **■** Complex prediction models ...
 - ☐ Display low bias but high variance
 - ☐ Are prone to overfit the training set
- Introducing bias can, therefore, ...
 - ☐ Help prevent overfitting
 - ☐ Reduce generalization error
- **■** Regularization involves ...
 - □ Penalizing model complexity
 - ☐ Introducing bias to decrease variance, and the generalization error

Measuring Model Complexity

Motivating example for regression models

- Approaches toward measuring complexity vary across prediction models
- Consider for example univariate linear regression

Which model is simpler?

Implementing Regularization

Two common complexity penalties for regression-type models

■ LASSO penalty

$$L_1(\mathbf{w}) = \sum_{j=1}^m |w_j|$$

■ Ridge penalty

$$L_2(\mathbf{w}) = \sum_{j=1}^m w_j^2$$

- **■** Considerations on penalty choice
 - □ LASSO complicates model estimation but gives sparser models
 - □ Ridge imposes stronger penalty on (very) large coefficients
- Elastic net penalty $L_{enet}(w) = \frac{1-\alpha}{2} \sum_{j=1}^{m} w_j^2 + \alpha \sum_{j=1}^{m} |w_j|$
 - \square With α a mixing parameter between ridge ($\alpha = 0$) and LASSO ($\alpha = 1$)
 - □ Needs additional tuning by the modeler

Implementing Regularization

Logistic regression revisited

■ Model formulation: model log-odds ratio as linear function of the features

$$\log\left(\frac{p(Y=1|X)}{1-p(Y=1|X)}\right) = b + \sum_{j=1}^{m} w_j X_j$$

■ Loss function: negative of the log-likelihood function

$$\mathcal{L}(w) = -\left(\sum_{i=1}^{n} Y_i \log(p(Y_i = 1|X_i)) + (1 - Y_i) \log(1 - p(Y_i = 1|X_i))\right)$$

■ Model estimation: minimize the loss function with respect to coefficients

$$\widehat{\boldsymbol{w}} \leftarrow \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w})$$

Regularized logistic regression

Extension of the loss function through adding a penalty term

- Regularized logistic regression with ridge penalty
 - \square Loss function with ridge penalty $\mathcal{L}^{ridge}(w) = \mathcal{L}(w) + \lambda L_2(w)$
 - $\Box \widehat{\beta}^{ridge} \leftarrow \min \left\{ -\left(\sum_{i=1}^{n} y_{i} \log \left(p(y_{i} = 1 | x_{i})\right) + (1 y_{i}) \log \left(1 p(y_{i} = 1 | x_{i})\right)\right) + \lambda \sum_{i=1}^{m} w_{i}^{2} \right\}$
- Regularized logistic regression with LASSO penalty
 - \square Loss function with LASSO penalty $\mathcal{L}^{lasso}(w) = \mathcal{L}(w) + \lambda L_1(w)$
 - $\square \widehat{\beta}^{lasso} \leftarrow \min \left\{ -\left(Y_i \log \left(p(Y_i = 1 | \boldsymbol{X}_i)\right) + (1 Y_i) \log \left(1 p(Y_i = 1 | \boldsymbol{X}_i)\right)\right) + \lambda \sum_{j=1}^{m} |w_j| \right\}$
- \blacksquare Additional (meta-)parameter λ controls the degree of regularization
 - $\square \lambda \to \infty$ \rightarrow all elements of w will be zero
 - \square $\lambda \to 0$ \longrightarrow recovers original logistic regression
- \blacksquare Finding suitable settings for λ requires tuning (see model selection)

Decision Tree Pruning Revisited

Pruning as a form of regularization

- Complexity of a tree-based model often measured as number of terminal nodes
- Tree pruning is, therefore, also a form of regularization

Search strategies and process perspective

Tuning of algorithmic hyperparameters

- Advanced classifiers offer hyperparameters (also called meta-parameters)
 - ☐ Facilitate adapting the classifier to a given data set
 - □ Need to be set by the data scientist
- Similar to feature selection (in regression modeling)
 - ☐ Manually decide which features to use in a model
 - ☐ Try out candidate settings using heuristic search (forward/backward, stagewise regression)
- How to take corresponding decisions?
 - □ Default settings / rules of thumb (not a good idea!)
 - ☐ Experience (may work, may fail as well)
 - ☐ Empirically, in a model selection process (common practice)

Grid Search

A versatile approach toward model selection

■ Fully enumerative search through all possible combinations of candidate

hyperparameter settings

■ Algorithm

- □ Define candidate range for each hyperparameter
- ☐ Enumerate combinations of candidate values
- ☐ Train model with given configuration
- ☐ Assess model performance on hold-out data
- ☐ Repeat with next configuration
- Magnify grid resolution in promising regions of the search space

Model Selection Process

- Additional modeling step to tune hyperparameters
 - ☐ Rules of accuracy assessment apply to model selection
 - □ Need 'fresh' set of hold-out data to assess candidate models with different hyperparameters
- Generalization of the split-sample approach
- Can also involve cross-validation

Model Selection Process (cont.)

- **Identify best hyperparameter values**
- Build final classifier with best hyperparameters
 - □ No need for auxiliary validation data anymore
 - □ Can train on the union of training and validation sample

Model Selection Process (cont.)

A note on computational efficiency

■ Model selection is costly

- ☐ Iterative estimation of different candidate models
- ☐ As many as candidate hyperparameter values in grid-search
- □ Potentially more if using cross-validation
- □ Careful exploration of parameter space computationally challenging

■ Practical recommendation

- ☐ Check whether you reduce the among of data during model selection
- □ Does the best hyperparameters depend on the size of the training sample?
- □ If not (aggressively) down-sample the training set, determine best hyperparameters, and build a model with best hyperparameters on the full training set can give a major speed-up
- □ Can start from a learning curve analysis (Perlich et al., 2003) to determine how much down-sampling is possible

Summary

Learning goals

- Understand overfitting problem
- and its connection to bias and variance

Findings

- Detect overfitting by comparing training to test error
- Complex models display low bias and high variance
- Regularization introduces bias to decrease variance
- Implementing regularization through penalties
- Model selection for tuning algorithmic hyperparameters including regularization penalty

What next

- Demo notebook on model selection
- XMAS Break

Literature

- Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization Journal of Machine Learning Research, 13, 281-305.
- Perlich, C., Provost, F., Simonoff, J. S., & Cohen, W. W. (2003). Tree induction vs. logistic regression: A learning-curve analysis. Journal of Machine Learning Research, 4(2), 211-255.

Thank you for your attention!

Stefan Lessmann

Chair of Information Systems
School of Business and Economics
Humboldt-University of Berlin, Germany

Tel. +49.30.2093.5742

Fax. +49.30.2093.5741

stefan.lessmann@hu-berlin.de http://bit.ly/hu-wi

www.hu-berlin.de

Appendix

Further considerations related to model selection

Learning algorithms may exhibit many hyperparameters

			•
- Ρασιι	larızadı	Indiction	ragraccian
- Negu	laiizeu	togistic	regression

- □ Regularization coefficient
- ☐ Two coefficients for elastic net penalty

Decision trees

- □ Splitting criterion
- □ Max depth
- ☐ Min observations per leaf
- ☐ Magnitude of IG to continue splitting
- □ Post-pruning

■ Tree based ensembles

- ☐ Hyperparameters of the base learner
- ☐ Size of the ensemble
- \square ...

■ Neural networks

- □ Regularization coefficient, dropout rate
- □ No. hidden layers
- □ No. hidden nodes
- □ Activation function
- ☐ Learning rate, decay schedule
- □ Solver

Support vector machines

- □ Regularization coefficient
- □ Kernel function
- ☐ Parameters of kernel function

Grid search: a versatile approach toward model selection

■ Three step approach

- ☐ For each meta-parameter,
- □ define candidate settings
- □ test combinations empirically

■ Example

- □ Two parameters
- □ 10 candidate settings each
- ☐ Grid search explores 10*10=100 value combinations

meta-parameter 2

Performance of candidate classifier with meta-parameter 1 set to 5, and meta-parameter 2 set to 8.

Some paper to learn about candidate parameter settings

- Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble Selection from Libraries of Models. In C. E. Brodley (Ed.), *Proc. of the 21st Intern. Conf. on Machine Learning* (pp. 18-25). Banff, Alberta, Canada: ACM.
- Caruana, R., Munson, A., & Niculescu-Mizil, A. (2006). Getting the Most Out of Ensemble Selection. In Proc. of the 6th Intern. Conf. on Data Mining (pp. 828-833). Hong Kong, China: IEEE Computer Society.
- Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2011). Data mining techniques for software effort estimation: A comparative study. *IEEE Transactions on Software Engineering*, 38, 375-397.
- Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A Practical Guide to Support Vector Classification. In. Taiwan: Department of Computer Science and Information Engineering, National Taiwan University.
- S. Lessmann, M.C. Sung, J.E. Johnson, T. Ma, A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction, *European Journal of Operational Research*, 218(1) (2012) 163-174.
- S. Lessmann, S. Voss, Customer-centric decision support: A benchmarking study of novel versus established classification models, *Business and Information System Engineering*, 2(2) (2010) 79-93.
- S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification models for software defect prediction: A proposed framework and novel findings, *IEEE Transactions on Software Engineering*, 34(4) (2008) 485-496.
- Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. *European Journal of Operational Research*, 247, 124-136.
- Lessmann, S., Haupt, J., Coussement, K., & De Bock, K. W. (2019). Targeting customers for profit: An ensemble learning framework to support marketing decision-making. Information Sciences, (doi:10.1016/j.ins.2019.05.027).
- Loterman, G., Brown, I., Martens, D., Mues, C., & Baesens, B. (2012). Benchmarking regression algorithms for loss given default modeling. *International Journal of Forecasting*, 28, 161-170.
- Partalas, I., Tsoumakas, G., & Vlahavas, I. (2010). An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. *Machine Learning*, 81, 257-282.
- Van Gestel, T., Suykens, J. A. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., De Moor, B., & Vandewalle, J. (2004). Benchmarking least squares support vector machine classifiers. Machine Learning, 54, 5-32
- Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. *European Journal of Operational Research*, 218, 211-229.

Repeated Grid Search

Repeat grid-search zooming in on promising search areas

ORWINE PORTING

- Magnify resolution of candidate settings in promising areas
- Consider two to three iterations and/or trace degree of improvement

Model Selection Approaches Beyond Grid Search

■ Other search strategies

- □ Random search (popular for deep neural networks, see Bergstra & Bengio, 2012)
- ☐ Meta-heuristics and evolutionary algorithms (genetic algorithms, evolution strategies, particle swarm optimization, harmony search, etc.)

■ Promise autonomous, self-adaptive hyperparameter tuning

- □ Do not require candidate settings for prediction model hyperparameters to be defined
- □ But what about the parameters of the search strategy ???

■ Practical recommendation

- □ Using an advanced search strategy, you trade one tuning problem for another
- ☐ Availability in software packages might also be an issue
- ☐ In most cases, grid search will work well

Model Selection Efficiency

■ Model selection is costly

- ☐ Iterative estimation of different candidate models
- ☐ As many as candidate hyperparameter values in grid-search
- ☐ Careful exploration of parameter space challenging

■ Approaches to increase efficiency

- □ Algorithmic specific strategies (much work on support vector machines; Lessmann & Voß, 2009)
- ☐ Generic approaches

■ Practical recommendation

- □ Consider learning curve-based heuristic
- ☐ Learning curve analysis tells you how much data is needed
- □ Carry out model selection with this amount of data might give substantial speed-up
- ☐ Following slides detail this idea

Learning Curve Analysis

Examines the sensitivity of a model regarding training data size

- How much data is needed or what is the marginal value of more data
- **■** Three-step approach
 - ☐ Draw small sample from your data
 - ☐ Estimate and assess model (e.g., split-sample method)
 - ☐ Increase samples size and repeat
- **■** Perlich et al. (2003)
- Learning curve will often display a degressive trend
 - ☐ Marginal value of data diminishes
 - ☐ Curve offers insight when training has stabilized

Learning Curve Analysis & Model Selection

A heuristic to increase the efficiency of model selection

■ Assumption

- ☐ Hyperparameter efficacy does not depend on sample size
- ☐ Relaxation: Moderate dependence is still ok
- Perform learning curve analysis with default hyperparameter values
- Find sample size where classifier training stabilizes
- Perform model selection using that sample size
- Can give substantial speed-up
 - ☐ For many classifiers, training time increases exponentially with sample size
 - ☐ Small reduction in sample size facilitates notable speed-up

Learning Curve Analysis & Model Selection

A heuristic to increase the efficiency of model selection

