Worked solutions for MA2101 23/24 S1 exam

Written 24 Nov 2024

Note: These solutions were written in a great rush, so there may be many mistakes. Read with care! (I'm especially unsure about my answers to questions 5(c) and (d).)

Question 1

Let $A=(a_{ij})\in M_2({f R})$ be a real matrix, let $P={10\choose 1}$, and suppose $P^{-1}AP=D:={2\choose 1}.$

$$P^{-1}AP = D := \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.$$

Let $y_i = y_i(x)$ (i = 1, 2) be differentiable functions in x. Solve the following system of differential equations:

$$Y' = egin{pmatrix} y_1' \ y_2' \end{pmatrix} = AY = A egin{pmatrix} y_1 \ y_2 \end{pmatrix}.$$

Note: For the differential equation z'(x)+p(x)z(x)=q(x) you may assume, without proof, that its general solution is given by $z(x)=rac{1}{\mu}(C+\int \mu q)$ with $\mu=e^{\int p}$.

It suffices to solve the system Z' = DZ, since then Y = PZ would solve the original system Y' = AY. This new system is given by

$$egin{cases} z_1'(x) = 2z_1(x) + z_2(x) \ z_2'(x) = 2z_2(x), \end{cases}$$

from which we immediately have $z_2(x) = C_2 e^{2x}$. Substituting this into the first equation then yields

$$z_1'(x) = 2z_1(x) + C_2 e^{2x} \quad ext{or} \quad z_1'(x) + p(x)z_1(x) = q(x),$$

where p(x)=-2 and $q(x)=C_2e^{2x}$. Computing $\mu(x)=\exp(\int p(x)\,dx)=e^{-2x}$, we deduce the general solution

$$egin{aligned} z_1(x) &= rac{1}{e^{-2x}} \Bigl(\int e^{-2x} \cdot C_2 e^{2x} \, dx + C_1 \Bigr) \ &= e^{2x} (C_2 x + C_1). \end{aligned}$$

Now that we have solved the system Z' = DZ, it remains for us to convert this into a solution Y = PZ of Y' = AY. The final solution is thus given by

$$egin{cases} y_1(x) = z_1(x) = e^{2x}(C_2x + C_1) \ y_2(x) = z_1(x) + z_2(x) = e^{2x}(C_2x + C_2 + C_1). \end{cases}$$

Ouestion 2

Let $P_s[x]$ be the vector space over ${\bf R}$ of real polynomials of degree less than s, and let $B_s=(1,x,\ldots,x^{s-1})$ be the standard basis of $P_s[x]$. Given real numbers c and d, it is known that the map $T_{c,d}\colon P_3[x]\to P_4[x]$ defined by sending $f=f(x)=\sum_{i=0}^2 a_ix^i$ to $xf(cx+d)=\sum_{i=0}^2 xa_i(cx+d)^i$ is a linear transformation.

2(a) Find the representation matrix $A_{c,d} \coloneqq [T_{c,d}]_{B_3,B_4} \in M_{4,3}(\mathbf{R})$ in terms of c and d.

We begin by computing how $T_{c,d}$ acts on the basis $B_3=(1,x,x^2)$: We have

$$\left\{egin{array}{lcl} T_{c,d}(1) &=& x \ T_{c,d}(x) &=& x(cx+d) = dx + cx^2 \ T_{c,d}(x^2) &=& x(cx+d)^2 = d^2x + 2cdx^2 + c^2x^3. \end{array}
ight.$$

It follows that the representation matrix $A_{c,d} = [T_{c,d}]_{B_3,B_4}$ is given by

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & d & d^2 \\ 0 & c & 2cd \\ 0 & 0 & c^2 \end{pmatrix}.$$

2(b) Find conditions on c and d that are equivalent to $T_{c,d}$ being an injection. Justify your answer.

The map $T_{c,d}$ is injective iff the matrix $A_{c,d}$ has a trivial null space. This is equivalent to having $\mathrm{rank}(A_{c,d})=3$, which happens iff the submatrix obtained by removing the zero row has nonzero determinant. Since this determinant is of a triangular matrix, it is the product of diagonal entries, which is c^3 . Therefore $T_{c,d}$ is an injection if and only if $c^3\neq 0$, if and only if $c\neq 0$.

2(c) Can you find c and d such that $T_{c,d}$ is a surjection? Justify your answer.

No. The map $T_{c,d}$ is never a surjection, since the constant $1 \in P_4[x]$ is never in the image of $T_{c,d}$: Indeed, if $T_{c,d}(f) = xf(cx+d) = 1$, we would have f(cx+d) = 1/x for nonzero x, which is impossible.

2(d) Suppose the matrix $A_{c,d}$ has rank equal to 2. Determine $\dim_{\mathbf{R}} \ker(T_{c,d})$. No justification is needed.

We have $\dim_{\mathbf{R}} \operatorname{im}(T_{c,d}) + \dim_{\mathbf{R}} \ker(T_{c,d}) = \dim(B_3) = 3$ by the rank-nullity theorem, and $\operatorname{rank}(A_{c,d}) = \dim_{\mathbf{R}} \operatorname{im}(T_{c,d})$ more or less by definition. Thus, we have $\dim_{\mathbf{R}} \ker(T_{c,d}) = 1$.

2(e) Suppose the range $R(A_{c,d})$ of $A_{c,d}$ is spanned by two column vectors $Y_1=(1,1,0,0)^t$ and $Y_2=(0,0,1,1)^t$. Find polynomials $f_1,f_2\in P_4[x]$ such that the range $R(T_{c,d})$ of $T_{c,d}$ is spanned by f_1 and f_2 . No justification is needed.

We can choose $f_1=1+x$ and $f_2=x^2+x^3$, which are precisely the elements of $P_4[x]$ with basis representations (with respect to B_4) given by Y_1 and Y_2 .

3(a) Consider the matrix

$$A = \begin{pmatrix} 0 & -3 & -3 \\ -3 & 0 & -3 \\ -3 & -3 & 0 \end{pmatrix}.$$

3(a)(i) Determine the characteristic polynomial $p_A(x)$.

By definition, we have

$$egin{align} p_A(x) &= \det(xI_3-A) = \detegin{pmatrix} x & 3 & 3 \ 3 & x & 3 \ 3 & 3 & x \end{pmatrix} \ &= x^3 - 27x + 54 = (x-3)^2(x+6). \end{split}$$

3(a)(ii) Find all the eigenvalues λ_i of A.

Recall that these are the roots of the characteristic polynomial. Thus we have an eigenvalue $\lambda_1=3$ with algebraic multiplicity $n_1=2$, as well as an eigenvalue $\lambda_2=-6$ with algebraic multiplicity $n_2=1$.

3(a)(iii) Find a basis B_{λ_i} for each eigenspace $V_{\lambda_i}(A)$.

Recall that $V_{\lambda_i}(A) := \ker(\lambda_i I - A)$. Let us first consider the case $\lambda_1 = 3$, so that

$$3I-A=egin{pmatrix} 3 & 3 & 3 \ 3 & 3 & 3 \ 3 & 3 & 3 \end{pmatrix}.$$

Since all the columns are equal, we immediately obtain a basis $B_3=(p_1,p_2)$ for $V_3(A)$, where $p_1=(-1,1,0)^t$ and $p_2=(-1,0,1)^t$.

Now for $\lambda_2 = -6$ we have

$$-6I-A=egin{pmatrix} -6 & 3 & 3 \ 3 & -6 & 3 \ 3 & 3 & -6 \end{pmatrix},$$

and the observation that the columns add to zero yields the basis $B_3=(p_3)$, where $p_3=(1,1,1)^t$.

3(a) (iv) Find the minimal polynomial $m_A(x)$.

The minimal polynomial and the characteristic polynomial have the same zeroes, and the minimal polynomial divides the characteristic polynomial, so there are only two possibilities for $m_A(x)$: It is either (x-3)(x+6) or $(x-3)^2(x+6)$. Direct calculation shows that (A-3)(A+6)=0, so we conclude that $m_A(x)=(x-3)(x+6)$.

 $oxed{3(a)(v)}$ Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP=D$.

The eigenspace bases we found in part (iii) form a matrix $P=(p_1,p_2,p_3)$ such that

$$P^{-1}AP = egin{pmatrix} \lambda_1 & & & \ & \lambda_1 & & \ & & \lambda_2 \end{pmatrix} = egin{pmatrix} 3 & & & \ & 3 & \ & & 6 \end{pmatrix} = ext{diag}[3,3,6].$$

3(b) Can we choose the matrix P in part (a) to be an orthogonal matrix? Justify your answer.

Yes. This is because the matrix A is symmetric and real, so the principal axis theorem implies the existence of an orthogonal matrix P with the desired properties.

3(c) Let G be a diagonalizable complex matrix. Suppose that the characteristic polynomial is given by $p_G(x)=(x-1)^2(x+1)$.

3(c)(i) Find all possible sizes of the matrix G. Justify your answer.

An $n \times n$ matrix has a characteristic polynomial of degree n_r so G must be a 3×3 matrix.

 $\mathfrak{Z}(c)$ (ii) Find all possible minimal polynomials $m_G(x)$ of G. Justify your answer.

We have $m_G(x)=(x-1)(x+1)$ as a straightforward consequence of three facts: (1) $m_G(x)$ divides $p_G(x)$. (2) $m_G(x)$ has the same roots as $p_G(x)$. (3) The minimal polynomial of a diagonalizable matrix is such that all of its roots are of algebraic multiplicity one.

 ${\it 3(d)}$ Is the matrix G is part (c) invertible? If so, find a polynomial f(x) of degree at most two such that $G^{-1}=f(G)$.

Yes. We have $m_G(G)=0$ by definition of G, so that (G-I)(G+I)=0. This can be rewritten as $G^2=I$, so that $G^{-1}=G$. Thus we may set f(x)=x.

Question 4

4(a) State the definition of a positive-definite complex matrix.

A positive-definite complex matrix is an $n \times n$ matrix A with complex entries that is self-adjoint ($A^* = A$) and satisfies $x^*Ax > 0$ for all $x \neq 0$.

[Note: The adjoint or conjugate transpose A^* of a complex matrix $A \in M_n(\mathbf{C})$ is defined by $A^* = (\overline{A})^t = (\overline{a}_{ji})$, where $\overline{a+bi} = a-bi$ denotes complex conjugation. The key property of the adjoint is that $\langle Av, w \rangle = \langle v, A^*w \rangle$. We care about positive-definite matrices in part because their eigenvalues are positive.]

4(b) Consider the matrix

$$H = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}.$$

Show that $(H^tHX)^t\overline{X} > 0$ for every **nonzero** complex column vector $X = (x_1, x_2, x_3)^t$, where $\overline{X} = (\overline{x}_1, \overline{x}_2, \overline{x}_3)^t$.

Since H is real, we have $\overline{H} = H$. Thus

$$(H^t H X)^t \overline{X} = X^t H^t H^t \overline{X} = (H X)^t \overline{H X}.$$

Writing Y=HX, we see that $Y\neq 0$ because H is invertible and X is assumed to be nonzero. Then the conclusion follows from the fact that

$$Y^t\overline{Y}=\sum_{j=1}^3y_j\overline{y_j}=\sum_{j=1}^3|y_j|^2>0.$$

4(c) Is the H in part (b) diagonalizable? Is H^tH diagonalizable? Justify your answers.

The matrix H is not diagonalizable because it is a nontrivial Jordan block. However, H^tH is real and symmetric, so it is diagonalizable by the principal axis theorem. (In fact, it is orthogonally diagonalizable.)

4(d) Let C be an invertible complex matrix. Show that C^*C is a positive-definite matrix. (You are not allowed to apply Remark 11.30 without giving a proof.)

We compute

$$x^*(C^*C)x=(Cx)^*(Cx)=\sum_j\overline{y_j}y_j=\sum_j|y_j|^2>0,$$

where y = Cx is nonzero because C is invertible and x is nonzero by definition.

4(e) Let A be a positive-definite complex matrix. Show that $A = G^*G$ for some invertible complex matrix G. (You are not allowed to apply Remark 11.30 without giving a proof, but you may use the principal axis theorem without proof.)

By the principal axis theorem, $A=U^*DU$ for a unitary matrix U. Positive-definiteness then implies that the entries of D are positive and real, so that, writing $D=\operatorname{diag}[\lambda_1,\ldots,\lambda_n]$, we are permitted to define the matrix $\sqrt{D}\coloneqq\operatorname{diag}[\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}]$. It follows that $A=G^*G$, where $G=\sqrt{D}U$.

Question 5

5(a) State the definition of a diagonalizable complex matrix.

A diagonalizable complex matrix is an $n \times n$ matrix A with complex entries such that there exists an invertible $n \times n$ complex matrix P with $P^{-1}AP$ a diagonal matrix.

5(b) Let A_1 and A_2 be complex matrices in $M_n(\mathbf{C})$ such that $A_1A_2=A_2A_1$. Show that there exists a common (column) eigenvector $X\neq 0$ such that $A_iX=\lambda_iX$ (i=1,2) for some eigenvalues λ_i of A_i .

Suppose λ_1 is an eigenvalue of A_1 , and let $v \in V_{\lambda_1}(A_1)$, so that $A_1v = \lambda_1v$. Then

$$A_1 A_2 v = A_2 A_1 v = A_2 \lambda_1 v = \lambda_1 A_2 v$$

so that $A_2v\in V_{\lambda_1}(A_1)$. That is, the eigenspace $V_{\lambda_1}(A_1)$ is invariant under T_{A_2} (the linear transformation associated with the matrix A_2). The result then follows by taking an eigenvector X of the restricted linear transformation $T_{A_2}|V_{\lambda_1}(A_1)$.

5(c) Consider the complex diagonal matrix D = diag[1,2]. Find all complex matrices $G \in M_2(\mathbb{C})$ such that GD = DG.

Since

$$GD = egin{pmatrix} g_{11} & g_{12} \ g_{21} & g_{22} \end{pmatrix} egin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix} = egin{pmatrix} g_{11} & 2g_{12} \ g_{21} & 2g_{21} \end{pmatrix}$$

and

$$DG = egin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix} egin{pmatrix} g_{11} & g_{12} \ g_{21} & g_{22} \end{pmatrix} = egin{pmatrix} g_{11} & g_{12} \ 2g_{21} & 2g_{22} \end{pmatrix},$$

so $g_{12}=g_{21}=0$, and we conclude that GD=DG iff G is a complex diagonal matrix.

5(d) Suppose that $Q \in M_n(\mathbb{C})$ is a complex matrix with n distinct eigenvalues $\lambda_1, ..., \lambda_n$. Let $A \in M_n(\mathbb{C})$ be a matrix satisfying AQ = QA. Show that both Q and A are diagonalizable.

Since Q has n distinct eigenvalues, it is diagonalizable, so our goal is to show that A is diagonalizable as well. By arguing as in part (b) for each eigenvalue λ_j , there exist vectors $v_1, ..., v_n$ such that $Qv_j = \lambda_j v_j$ and $Av_j = \mu_j v_j$. These vectors are linearly independent since they correspond to distinct eigenvalues of Q. It follows that the matrix $P = (v_1, \ldots, v_n)$ diagonalizes both Q and A: We have

$$P^{-1}QP = \operatorname{diag}[\lambda_1, \dots, \lambda_n]$$
 and $P^{-1}AP = \operatorname{diag}[\mu_1, \dots, \mu_n]$.

5(e) Suppose P is an invertible matrix such that $P^{-1}QP$ is diagonal for the matrix Q from part (d). Can we say that $P^{-1}AP$ is also diagonal for the matrix A from part (d)? Justify your answer.

Yes, we can. Following part (d), since the Q-eigenvectors $v_1, ..., v_n$ are independent, their eigenspaces $V_{\lambda_j}(Q)$ are in direct sum, so that $\mathbf{C}_c^n = \bigoplus_{j=1}^n V_{\lambda_j}(Q)$. But these are n eigenspaces summing to an n-dimensional space, so each must have dimension one. Thus $V_{\lambda_j}(Q) = \mathbf{C}v_j \coloneqq \{av_j \mid a \in \mathbf{C}\}$ for all j.

Suppose $P^{-1}QP=D=\mathrm{diag}[d_1,\ldots,d_n]$. Then QP=PD, and if we write $P=(p_1,\ldots,p_n)$ where p_j is the jth column vector in the matrix P, it follows that $Qp_j=d_jp_j$. Since P is invertible, the vectors p_1,\ldots,p_n are independent, and so the one-dimensionality of each Q-eigenspace implies that the set $\{d_1,\ldots,d_n\}$ of eigenvalues is equal to the set $\{\lambda_1,\ldots,\lambda_n\}$ of Q-eigenvalues from part (d). We may relabel the eigenvalues from part (d) so as to assume that $\lambda_j=d_j$ for all j; thus $p_j\in V_{\lambda_j}(Q)=\mathbf{C}v_j$, and so $v_j=c_jp_j$ for some nonzero c_j . Since $Av_j=\mu_jv_j$, it follows that $Ap_j=c_j\mu_jp_j$, so that $P^{-1}AP=\mathrm{diag}[c_1\mu_1,\ldots,c_n\mu_n]$, which completes the proof.