Ценообразование активов в непрерывном времени

Преподаватели: Пифтанкин Г.Н, Долматов А.С.

Рекомендуемый уровень обучения: 3-4 бакалавриат.

Академическая нагрузка: ...

Язык обучения: русский

Формат обучения: гибридный

Аннотация курса

Данный курс является продолжением прочитанного весной 2025 года курса по введению в ценообразование активов. В первой части курса будут рассмотрены основные модели ценообразования деривативов в непрерывном времени. В краткой форме будут даны основные необходимые понятия из теории вероятностей, случайных процессов, стохастического исчисления и стохастических дифференциальных уравнений. 2 лекции посвящены классическим результатам ценообразования в модели Блэка-Шоулза. В завершающей части первой половины курса планируется рассказать о том, как можно отказаться от некоторых предположений модели Блэка-Шоулза: будут рассмотрены модели Хестона стохастической волатильности, а также модели локальной волатильности и формулы Дюпира.

Во второй половине курса студенты познакомятся с основными численными методами в количественных финансов. На примере усложнения моделей и деривативов, будут рассмотрена эволюция методов прайсинга: от классических подходов на основе деревьев и УРЧП, к методом American Monte Carlo и обучения с подкреплением. Теоретические лекции будут дополняться практическими семинарами с кодом на Python и вычислительными домашними заданиями.

Пререквизиты

Математический анализ, теория вероятностей, случайные процессы, дифференциальные уравнения, уравнения в частных производных.

Планируемые результаты обучения по дисциплине

В результате обучения слушатель сможет применить классические и продвинутые модели ценообразования опционов.

Программа курса

Темы	Литература
	1 01
Тема 1. Дискретные случайные процессы	Бьорк, приложения А-В
1. Теория вероятности. Основные понятия и	Shreve, Ch. 1-2
определения.	
2. Условное мат. ожидание	
3. Случайные процессы в дискретном времени,	
понятие фильтрации	
4. Мартингалы, моменты остановки, теорема Дуба	
5. Дискретный стохастический интеграл	
Тема 2. Случайные процессы в непрерывном времени	Бъорк, Гл. 4
1. Броуновское движение: определения и свойства	Shreve, Ch 3-4
2. Стохастический интеграл Ито: определения и	
свойства	

2 Upo morrywoodog populowyg	
3. Квадратическая вариация	
4. Формула Ито	La carre La 5
Тема 3. Стохастические дифференциальные уравнения	Бъорк, Гл. 5
1. СДУ: определения и примеры (BM, GBM, OU-	
process)	
2. Сильное и слабое решение, теорема существования	
3. Связь с уравнениями в частных производных	
4. Прямое и обратное уравнение Колмогорова	
5. Формула Феймана-Каца	D 0.5
Тема 4. Модель Блэка-Шоулза	Бъорк, Гл. 6-7
1. Основные предположения модели	Shreve, Ch 5-6, 8
2. Динамика портфеля, условие	
самофинансируемости	
3. Уравнение Блэка-Шоулза	
4. Формула Блэка-Шоулза	
Тема 5. Фундаментальные теоремы финансов	Бъорк, Гл. 8
1. Понятие полноты и безарбитражности	
2. Риск-нейтральная мера	
3. Существование риск-нейтральной меры в модели	
БШ: теорема Гирсанова	
Тема 6. Модели стохастической волатильности: локальная	Dupire, Bergomi
волатильность	
1. Ограничения модели БШ	
2. Стилизованные факты: вменённая волатильность,	
улыбка волатильности, класстеризация	
волатильности, тяжелые хвосты	
3. Связь цен опционов и маргинальных	
распределений: формула Дюпира	
4. Статистический и динамический арбитраж	
Тема 7. Модели стохастической волатильности	Heston, Yiran Cui et al
1. Модель Хестона стохастической волатильности	
2. Характеристическая функция в модели Хестона,	
квазианалитическая формула ценообразования	
3. Теорема Gyöngy. Связь SV и LV моделей.	
4. Другие модели стохастической волатильности:	
SABR, SVI	
Тема 8. Модели на основе деревьев	
1. Прайсинг европейских и американских опционов в	
модели БШ.	
2. Связь с УРЧП. Явные и неявные схемы. Анализ	
устойчивости и сходимости.	
3. Прайсинг азиатских и барьерных опционов	
Тема 9. Методы Монте-Карло	
1. Обоснование метода МС – закон больших чисел	
2. Численные методы решения СДУ. Слабая и	
сильная сходимость.	
3. Схемы семплирования в модели Хестона.	
4 Методы снижения дисперсии: moment matching,	
control variate	
Тема 10. American MC/Regression based MC	Longstaff, Schwartz
1. Использование МС для прайсинга американских	Longstair, Deliwartz
опционов	
ОПЦИОПОВ	

2. Regression based MC для вычисления xVA	
поправок	
Тема 11. Численные методы для модели Хестона	
1. Вычисление интеграла в формуле Хестона.	
2. Meтод COS.	
3. Методы на основе FFT.	
4. Другие модели с известной хар. функцией.	
5. Калибровка параметров модели Хестона.	
Тема 12. Модели локальной волатильности	
1. Численные методы вычисления вменённой	
волатильности	
2. Формула Дюпира: сложности практической	
реализации	
3. Вычисление локальной волатильности в модели	
Хестона	
Тема 13* Обучение с подкреплением в финансах	Bühler
1. Deep-hedging	
2. RL for American options	

Примеры задач

- 1. Пусть W_t броуновское движение. При каком α процесс $X_t = e^{\alpha t + W_t}$ является мартингалом?
- 2. Пусть W_t броуновское движение, $dX_t = X_t(\mu dt + \sigma dW_t)$. Выписать СДУ для процесса $Y_t = \ln X_t$.
- 3. В модели БШ найти стоимость опциона с пэйоффом $\Phi = (G_T K)^+$ где $G_T = \exp\left(\frac{1}{T}\int_0^T \ln S_u du\right)$ геометрическое среднее цены.
- 4. Пусть W_t^1 , W_t^2 два броуновских движения, $dW_t^1dW_t^2 = \rho \cdot dt$. Пусть

$$dS_t^1 = S_t^1 \sigma_1 dW_t^1,$$

$$dS_t^2 = S_t^2 \sigma_2 dW_t^2,$$

процентная ставка нулевая. Найти стоимость обменного опциона:

$$\Phi(S_T^1, S_T^2) = (S_T^2 - S_T^1)^+$$

- 5. Найти стоимость европейского/американского опциона с пэйоффом $\Phi(S_T) = (S_T K)^+$ в модели Хестона.
- 6. Откалибровать параметры модели Хестона на рыночной поверхности волатильности.

Итоговая оценка

Оценка складывается из теоретических и практических ДЗ, а также коллоквиума по первой части курса:

Итоговая Оценка = 20% Теор. ДЗ + 40% Коллоквиум + 40% Практическое ДЗ

В качестве части практических заданий можно зачесть участие в одном из проектов. Подробнее с темами проектов можно ознакомиться на <u>гитхабе</u> курса.

Список литературы

- 1. Steven E. Shreve Stochastic Calculus for Finance II
- 2. Tomas Bjork Arbitrage Theory in Continuous time (доступна на русском в переводе Белопольской)
- 3. S. L. Heston A closed-form solution for options with stochastic volatility with applications to bond and currency options"
- 4. Yiran Cui et al Full and fast calibration of the Heston stochastic volatility model
- 5. Bergomi Stochastic Volatility Modeling
- 6. Dupire B. Pricing with a Smile
- 7. I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an Ito differential
- 8. Longstaff, Schwartz Valuing American Options by Simulation
- 9. Hans Bühler Deep Hedging