Similarly, we can write

$$t_2 = 1 + \frac{1}{2}t_1 + \frac{1}{2}t_3$$

= $1 + \frac{1}{2}t_1$.

Solving the above equations, we obtain

$$t_1=rac{5}{2}, \quad t_2=rac{9}{4}.$$

Generally, let $A \subset S$ be a set of states. The above procedure can be used to find the expected time until the chain first hits one of the states in the set A.

Mean Hitting Times

Consider a finite Markov chain $\{X_n, n=0,1,2,\cdots\}$ with state space $S=\{0,1,2,\cdots,r\}$. Let $A\subset S$ be a set of states. Let T be the first time the chain visits a state in A. For all $i\in S$, define

$$t_i = E[T|X_0 = i].$$

By the above definition, we have $t_j=0$, for all $j\in A$. To find the unknown values of t_i 's, we can use the following equations

$$t_i = 1 + \sum_k t_k p_{ik}, \quad ext{ for } i \in S-A.$$

Mean Return Times:

Another interesting random variable is the *first return time*. In particular, assuming the chain is in state l, we consider the expected time (number of steps) needed until the chain returns to state l. For example, consider a Markov chain for which $X_0=2$. If the chain gets the values

$$X_0 = 2, X_1 = 1, X_2 = 4, X_3 = 3, X_4 = 2, X_5 = 3, X_6 = 2, X_7 = 3, \dots,$$

then the first return to state 2 occurs at time n=4. Thus, the first return time to state 2 is equal to 4 for this example. Here, we are interested in the expected value of the first return time. In particular, assuming $X_0=l$, let's define r_l as the expected number of

steps needed until the chain returns to state $\it l$. To make the definition more precise, let's define

$$R_l = \min\{n \ge 1 : X_n = l\}.$$

Then,

$$r_l = E[R_l | X_0 = l].$$

Note that by definition, $R_l \ge 1$, so we conclude $r_l \ge 1$. In fact, $r_l = 1$ if and only if l is an absorbing state (i.e., $p_{ll} = 1$). As before, we can apply the law of total probability to obtain r_l . Again, let's define t_k as the expected time until the chain hits state l for the first time, given that $X_0 = k$. We have already seen how to find t_k 's (mean hitting times). Using the law of total probability, we can write

$$r_l = 1 + \sum_k p_{lk} t_k.$$

Let's look at an example to see how we can find the mean return time.

Example 11.11

Consider the Markov chain shown in Figure 11.13. Let t_k be the expected number of steps until the chain hits state 1 for the first time, given that $X_0 = k$. Clearly, $t_1 = 0$. Also, let r_1 be the mean return time to state 1.

- 1. Find t_2 and t_3 .
- 2. Find r_1 .

Figure 11.13 - A state transition diagram.

Solution

1. To find t_2 and t_3 , we use the law of total probability with recursion as before. For example, if $X_0=2$, then after one step, we have $X_1=2$ or $X_1=3$. Thus, we can write

$$t_2 = 1 + \frac{1}{3}t_2 + \frac{2}{3}t_3.$$

Similarly, we can write

$$t_3 = 1 + \frac{1}{2}t_1 + \frac{1}{2}t_2$$

= $1 + \frac{1}{2}t_2$.

Solving the above equations, we obtain

$$t_2 = 5, \quad t_3 = \frac{7}{2}.$$

2. To find r_1 , we note that if $X_0=1$, then $X_1=1$ or $X_1=2$. We can write

$$r_1 = 1 + \frac{1}{2} \cdot t_1 + \frac{1}{2} t_2$$

= $1 + \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 5$
= $\frac{7}{2}$.

Here, we summarize the formulas for finding the mean return times. As we mentioned before, there is no need to memorize these formulas once you understand how they are derived.

Mean Return Times

Consider a finite irreducible Markov chain $\{X_n, n=0,1,2,\cdots\}$ with state space $S=\{0,1,2,\cdots,r\}$. Let $l\in S$ be a state. Let r_l be the **mean return time** to state l. Then

$$r_l = 1 + \sum_k t_k p_{lk},$$

where t_k is the expected time until the chain hits state l given $X_0=k$. Specifically,

$$egin{aligned} t_l &= 0, \ t_k &= 1 + \sum_j t_j p_{kj}, \quad ext{ for } k
eq l. \end{aligned}$$