ΕΜΠ – ΣΧΟΛΗ ΕΜΦΕ – ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ – ΑΚΑΛΗΜΑΪΚΟ ΕΤΟΣ 2017-18 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ-Ι, 1^{OY} ΕΞΑΜΗΝΟΥ ΣΧΟΛΗΣ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΜΥ

Διδάσκοντες: Η. Ζουμπούλης, Ι. Ράπτης

Α΄ ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

18 Οκτωβρίου 2017

Να επιστραφούν λυμένες μέχρι 30/10/17, οι 1, 2, 3, 4, 5, [ΠΡΟΣΟΧΗ: Οι λύσεις να είναι χειρόγραφες και, είτε να παραδοθούν στο μάθημα, είτε να αναρτηθούν ως PDF στις «Εργασίες» του mycourses]

- 1. Δίνεται ότι: $\ln\left(1+x\right)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+.....$, $-1< x \le 1$. Να υπολογιστεί η τιμή του $\ln\left(1+x\right)$ με ακρίβεια τριών δεκαδικών ψηφίων, για $x=\pm 0,3$. Μέχρι ποιον όρο του αναπτύγματος πρέπει να προχωρήσει κανείς, για κάθε πρόσημο του $x=\pm 0,3$ προκειμένου να έχει την ίδια ακρίβεια και για τα δύο πρόσημα ; Πόσο είναι το επί % σφάλμα, για κάθε πρόσημο, αν σταματήσει το ανάπτυγμα μέχρι και τον κυβικό όρο ;
- **2.** Αν τα **A** και **B** είναι σταθερά διανύσματα και $\mathbf{r}(t) = e^{at}\mathbf{A} + e^{-at}\mathbf{B}$ (όπου a σταθερά), να δείξετε ότι τα διανύσματα $\ddot{\mathbf{r}}(t)$ και $\mathbf{r}(t)$ έχουν την ίδια κατεύθυνση για κάθε t.
- **3.** Η ροπή μιας δύναμης ως προς το σημείο Ο ορίζεται ως $\vec{N} = \vec{r} \times \vec{F}$, όπου \vec{r} είναι το διάνυσμα από το Ο στο σημείο στο οποίο ασκείται η δύναμη \vec{F} . Να δειχθεί ότι η συνολική ροπή δύο ίσων και αντίθετων δυνάμεων \vec{F} και $-\vec{F}$ που ασκούνται στα σημεία \vec{r}_1 και \vec{r}_2 αντίστοιχα (ζεύγος δυνάμεων), είναι ανεξάρτητη του σημείου ως προς το οποίο υπολογίζεται.
- **4.** Βρείτε τις γωνίες που σχηματίζουν, ανά δύο, οι διαγώνιοι εδρών που άγονται από μία κορυφή προς τις παρακείμενες έδρες ενός ορθογωνίου παραλληλεπιπέδου, διαστάσεων $(2 \times 3 \times 5)$, καθώς και οι γωνίες που κάθε μία από αυτές τις διαγωνίους σχηματίζει με την «χωρο-διαγώνιο» που άγεται από την ίδια κορυφή προς την απέναντι κορυφή του παραλληλεπιπέδου.

- 5. Γνωρίζοντας ότι η ροπή αδράνειας λεπτού δίσκου ακτίνας r και μάζας m, περί τον άξονα συμμετρίας του είναι $I=m\,r^2/2$, να υπολογίσετε τη ροπή αδράνειας μίας σφαίρας μάζας M και ακτίνας R, περί άξονα που διέρχεται από το κέντρο της, αντιμετωπίζοντάς την ως κατάλληλη επαλληλία διαφορικών δίσκων, με μεταβλητή ακτίνα και με σταθερή κατάλληλη πυκνότητα μάζας.
- **6.** Δείξτε ότι αν το άθροισμα και η διαφορά δύο διανυσμάτων \vec{A}, \vec{B} έχουν ίσα μέτρα $\left[\left|\vec{A} + \vec{B}\right| = \left|\vec{A} \vec{B}\right|\right]$, τότε τα δύο διανύσματα, \vec{A}, \vec{B} είναι κάθετα μεταξύ τους (διαγώνιοι ορθογώνιου παραλληλογράμμου). Επίσης, δείξτε ότι το άθροισμα και η διαφορά δύο διανυσμάτων \vec{A}, \vec{B} που έχουν ίσα μέτρα, είναι διανύσματα κάθετα μεταξύ τους (διαγώνιοι ρόμβου).
- 7. Δείξτε ότι για κάθε διάνυσμα \vec{A} και για κάθε μοναδιαίο \hat{n} ισχύει $\vec{A} = (\hat{n} \cdot \vec{A}) \cdot \hat{n} + (\hat{n} \times \vec{A}) \times \hat{n}$
- **8.** Βρείτε τη συνθήκη που πρέπει να ικανοποιούν οι αρχικές θέσεις \vec{r}_{01} , \vec{r}_{02} και οι σταθερές ταχύτητες κίνησης $\vec{\upsilon}_{01}$, $\vec{\upsilon}_{02}$ δύο κινητών, προκειμένου να συναντηθούν, κάποια χρονική στιγμή. Σε περίπτωση που ικανοποιείται αυτή η συνθήκη, υπολογίστε τη χρονική στιγμή.

9. (α) Μέλισσα πλησιάζει στην κυψέλη της ακολουθώντας σπειροειδή τροχιά που περιγράφεται από τις εξισώσεις r=b-ct και $\dot{\theta}=kt$. Υπολογίστε την ταχύτητά της ως συνάρτηση του χρόνου. (β) Όταν φεύγει από την κυψέλη ακολουθεί τροχιά που περιγράφεται από τις σχέσεις $r=be^{at}$, $\theta=\omega t$. Δείξτε ότι η γωνία ταχύτητας και επιτάχυνσης παραμένει σταθερή με το χρόνο.

10. Ο αρχαίος Έλληνας μαθηματικός Ερατοσθένης, που γεννήθηκε στη Κυρήνη (της σημερινής Λιβύης) και έζησε και εργάστηκε στην Αλεξάνδρεια (276-195 π.Χ), πληροφορήθηκε ότι κατά το μεσημέρι του θερινού ηλιοστασίου, στην πόλη Συήνη (σημερινό Ασουάν της Αιγύπτου) ο ήλιο «ρίχνει» τις ακτίνες του κατακόρυφα (φωτίζοντας μέχρι και τον πυθμένα ενός βαθειού πηγαδιού), ενώ αντίστοιχα στην Αλεξάνδρεια οι ακτίνες του Ήλιου «έπεφταν» υπό γωνία 7.2° ως προς την τοπική κατακόρυφο. Γνωρίζοντας την απόσταση «Αλεξάνδρεια – Συήνη», υπολόγισε το μήκος της περιφέρειας της Γης. Βρείτε τα αντίστοιχα στοιχεία και επαναλάβετε τον υπολογισμό.

11. Αν $\vec{\upsilon}$ είναι το διάνυσμα της ταχύτητας και \vec{a} το διάνυσμα της επιτάχυνσης ενός κινητού, δείξτε ότι $\vec{\upsilon} \cdot \vec{a} = \upsilon \dot{\upsilon}$, (όπου $\upsilon = \left| \vec{\upsilon} \right|$). Το χρήσιμο συμπέρασμα αυτού του αποτελέσματος είναι ότι, όταν ένα κινητό, που αλλάζει το διάνυσμα της ταχύτητάς του με το χρόνο, έχει σταθερό μέτρο ταχύτητας, τότε η επιτάχυνση είναι κάθετη στην ταχύτητα. [Υπόδειξη: Θυμηθείτε ότι $\vec{\upsilon} \cdot \vec{\upsilon} = \upsilon \upsilon$, ενώ $\vec{\upsilon} \neq \left| \vec{a} \right|$]

12. Δύο χάντρες A και B συνδέονται με μία συμπαγή ράβδο μήκους L. Τα δύο σώματα ολισθαίνουν κατά μήκος δύο κάθετων αξόνων x και y αντίστοιχα. Αν η χάντρα A ολισθαίνει προς τα αριστερά δηλαδή προς την αρχή O των δύο αξόνων με σταθερή ταχύτητα v_0 , βρείτε την ταχύτητα της B όταν η ράβδος σχηματίζει γωνία $\theta = 30^o$, 45^o , 60^o με τον άξονα των x.

13. Δύο σωματίδια με μάζες m και 2m, κινούνται έτσι ώστε να έχουν διανύσματα θέσης $\vec{\mathbf{r}}_1 = (3t + 2t^2)\hat{\mathbf{x}} + (4 + 4t^2)\hat{\mathbf{y}} + (5 + 2t)\hat{\mathbf{z}} \quad \text{και} \quad \vec{\mathbf{r}}_2 = (20 - t - t^2)\hat{\mathbf{x}} + (10 + 9t - 2t^2)\hat{\mathbf{y}} + (1 + 4t)\hat{\mathbf{z}}$ αντίστοιχα, όπου $t = \chi$ ρόνος (οι αποστάσεις σε \mathbf{m} και ο χ ρόνος σε \mathbf{s}).

(α) Αποδείξετε ότι τα σωματίδια θα συγκρουσθούν και βρείτε πότε θα συμβεί αυτό. Απ.: $\tau = 2 \, \mathrm{s}$

(β) Ποια δύναμη ασκείται πάνω στο κάθε σωματίδιο; Ποια είναι η ολική εξωτερική δύναμη που ασκείται στο σύστημα; $\mathbf{A}\pi.: \ \vec{\mathbf{F}}_{o\lambda} = \mathbf{0}$

 (γ) Διατηρείται η ορμή του συστήματος; Αν ναι, πόση είναι; $A\pi.: \vec{P}_{o\lambda} = m(\hat{\mathbf{x}} + 18\hat{\mathbf{y}} + 10\hat{\mathbf{z}})$

(δ) Αν μετά την κρούση τα σωματίδια ενώνονται σε ένα, να βρεθεί η θέση τους ως συνάρτηση του χρόνου. $A\pi.: \ \vec{\mathbf{r}} = \frac{1}{3}(40\hat{\mathbf{x}} + 24\hat{\mathbf{y}} + 7\hat{\mathbf{z}}) + \frac{1}{3}t(\hat{\mathbf{x}} + 18\hat{\mathbf{y}} + 10\hat{\mathbf{z}})$

14. Αυτοκίνητο κινείται σε κυκλική διαδρομή ακτίνας R με ταχύτητα της οποίας το μέτρο μεταβάλλεται με το χρόνο ως $\upsilon=ct$, όπου c=σταθ.>0. Βρείτε τη χρονική στιγμή που τα διανύσματα ταχύτητας και επιτάχυνσης σχηματίζουν γωνία 45° .

15. Σημειακό κινητό κινείται στην επιφάνεια σφαίρας και η θέση του, συναρτήσει του χρόνου, σε σφαιρικές συντεταγμένες δίνεται από τις σχέσεις: r=R, $\varphi=\omega t$, $\theta=(\pi/4)\big[1+0.25\sin\big(4\omega t\big)\big]$. Βρείτε το μέτρο της ταχύτητας του κινητού συναρτήσει του χρόνου και περιγράψτε την τροχιά που διαγράφει