Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems

Charbel Abi Younes, Marvyn Bailly, Bart Boom, Rohin Gilman, Daran Xu April 27, 2023

UNIVERSITY of WASHINGTON Applied Mathematics

Table of Contents

- 1. Introduction and Motivation
- 2. Model
- 3. Conclusion
- 4. Next Step
- 4.1 A Subsection
- 4.2 Another Subsection
- 5. Second Section
- 6. Bibliography

Rohin

Model

SLDS and rSLDS

- Observation $y_t = Cx_t + d + w_t$, $w_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, S)$
- Continous latent state $x_{t+1} = A_{z_{t+1}} x_t + b_{z_{t+1}} + \nu_t, \ \nu_t \overset{\mathrm{iid}}{\sim} \mathcal{N}(0, Q_{z_{t+1}})$
- Discrete latent state $z_t \in \{1, \dots, K\}$
 - SLDS $z_{t+1}|z_t \sim \pi_{z_t}$
 - rSLDS $z_{t+1}|z_t, x_t \sim \pi_{SB}(\nu_{t+1}), \ \nu_{t+1} = R_{z_t}x_t + r_{z_t}$

Stick Breaking Logitstic Regression

- $p(z|x) \sim \pi_{SB}(\nu), \ \nu = Rx + r$
- Link function: $\pi_{SB}(\nu) = \left(\pi_{SB}^{(1)}(\nu), \dots, \pi_{SB}^{(K)}(\nu)\right)$ (with $\sigma(x) = \frac{e^x}{1+e^x}$)

$$\pi_{SB}^{(k)}(\nu) = \begin{cases} \sigma(\nu_k) \prod_{j < k} \sigma(-\nu_j), & \text{if } k = 1, \dots, K - 1 \\ \prod_{1}^{K} \sigma(-\nu_j), & \text{if } k = K \end{cases}$$

- $p(z|x) \sim \prod_{k=1}^K \sigma(\nu_k)^{\mathbb{I}[z=k]} \sigma(-\nu_k)^{\mathbb{I}[z>k]}$ (Likelihood)
- With a Gaussian Prior p(x), the posterior $p(x|z) \propto p(x) * p(z|x)$ is non-Gaussian
- Bayesian updating is not efficient
 - Gibbs Sampler: sampling $x^{(i+1)} \sim p(x|z=z^{(i)})$, sampling $z^{(i+1)} \sim p(z|x=x^{(i+1)})$
 - Message Passing $m_{t\to(t+1)}(x_{t+1}) = \int \psi(x_t, y_t) \psi(x_t, z_{t+1}) \psi(x_t, x_{t+1}, z_{t+1}) m_{(t-1)\to t}(x_t) dx_t$

Polya-gamma augmentation

$$\frac{(e^{\nu})^{a}}{(1+e^{\nu})^{b}} = 2^{-b} \int_{0}^{\infty} e^{\kappa \nu} e^{-\omega \nu^{2}/2} p_{PG} \left(\omega \mid b, 0\right) d\omega \left(\kappa = a - \frac{b}{2}\right)$$
(2.1)

$$p(x_t|z_{t+1}) \propto \prod_{k=1}^{K-1} \frac{\left(e^{\nu_{t+1,k}}\right)^{\mathbb{I}[z_{t+1}=k]}}{\left(1+e^{\nu_{t+1,k}}\right)^{\mathbb{I}[z_{t+1}\geq k]}}$$
(2.2)

$$p(x_t|z_{t+1}) = \int p(x_t, \omega_t|z_{t+1}) d\omega_t = \int p(x_t|z_{t+1}, \omega_t) \frac{p(\omega_t)}{\rho(\omega_t)} d\omega_t$$
 (2.3)

$$\omega_{t,k} \mid x_t, z_{t+1} \sim \mathsf{PG}\left(\mathbb{I}\left[z_{t+1} \ge k\right], \nu_{t+1,k}\right)$$
 (2.4)

- $p(x_t|z_{t+1},\omega_t)$ is Gaussian
- Message Passing $\psi(x_t, z_{t+1}, \omega_t) \propto \mathcal{N}(\nu_{t+1} | \Omega_t^{-1} \kappa_{t+1}, \Omega_t^{-1})$
- Thus instantiating these auxiliary variables in a Gibbs sampler enables efficient block updates

Rohin

Rohin

This is a frame with a title and a subtitle.

This is a frame with no title.

This is a frame with no header.

This is underlined text.

This is italic text.

This is bold text.

This is mono-spaced text.

This is a bulleted list:

- An item
- Another item
 - A subitem
 - Another subitem

This is a numbered list:

- 1. An item
- 2. Another item
 - 2.1 A subitem
 - 2.2 Another subitem

Colored Blocks

Block Title

This is a block.

Alert Block Title

This is an alertblock.

Example

This is an example block.

This is a frame the second section.

This is a frame with a...

Frame Title

This is a frame with a...

\pause.

Bibliography

Albert Einstein.

Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies].

Annalen der Physik, 322(10):891-921, 1905.

Michel Goossens, Frank Mittelbach, and Alexander Samarin.

The LATEX Companion.

Addison-Wesley, Reading, Massachusetts, 1993.

Donald Knuth.

Knuth: Computers and typesetting.