

富邦人壽業務員 績效數位優化方案

第二組

倪采靖、翁梓鴻、郭家亨、陳采妍、謝明穎

目錄

背景

問題及目標

機器學習模型分析

Linear Regression, Decision Tree, Ensembling, SVM, LSTM

02

資料觀察

監督式學習分析

結論

持續優化之處

問題

- FBFLI客戶定聯系統
- 員工對系統的依賴性不強
- 透過數據分析與數位工具協助業務員提升績效

目標

數據分析

找出 潛在因素

提供富邦 優化內容

使用模型預測

數據

Y值使用保費的 平均值

- 1. > 上四分位數
- 2. < 下四分位數
- 3. 下四分位數 ~ 上四 分位數

繪製圖表, 觀察各項 業務員基本資料與業 績的關係

登入次數:

Male: Blue, Female: Red

年資:

年齡:

Male: Blue, Female: Red

問卷填達數:

Male: Blue, Female: Red

機器學習模型分析

Linear Regression, Decision tree, Ensembling, SVM, LSTM

One_hot encoding

線性迴歸之結果無法有效預測數值

. reg sumfyc agent_title_1 agent_title_2 agent_title_3 agent_title_4 agent_title_5 agent_title_6 agent_title_7 agent_title_8 agent_t
> itle_9 agent_title_10 agent_title_11 agent_title_12 agent_title_13 agent_title_14 agent_title_15 agent_title_16 agent_age on_board
> _age seniority agent_sex city_1 city_2 city_3 city_4 city_5 city_6 city_7 city_8 city_9 city_10 city_11 city_12 city_13 city_14 ci
> ty_15 city_16 city_17 city_18 city_19 city_20 customer_cnt memo_length login_cnt contact_cnt contact_cust_cnt visit_cnt customer_v
> isit cnt qnr cnt consult cnt consult cust cnt 1 profyc 1 fyc 1 propie 1 pie 1 propre

note: agent_title_11 omitted because of collinearity

note: city 19 omitted because of collinearity

Source	SS	df	MS	Number of obs	=	53,592
'				F(54, 53537)	=	271.82
Model	1.1477e+13	54	2.1253e+11	Prob > F	=	0.0000
Residual	4.1860e+13 53,537 5.3336e+13 53,591	53,537	781881690	R-squared	=	0.2152
Million Phillips		7	Adj R-squared	=	0.2144	
Total		53,591	995247198	Root MSE	=	27962

通過箱線圖直觀的顯示數據分布,並觀測數據中的異常值。箱線圖一般由五個統計值組成:最大值、上四分位、中位數、下四分位和最小值。一般來說,觀測到的數據大於最大估計值或者小於最小估計值則判斷為異常值,其中

最大估計值=上四分位+1.5*(上四分位-下四分位) 最小估計值=下四分位-1.5*(上四分位-下四分位)

比上邊緣高的值就是異常值

雖已經處理Y(產壽險佣金總和)之極值

線性迴歸之結果無法有效預測數值

▼ 2.5.5 模型测试

加载训练好的模型参数,在测试集上得到模型的MSE指标。

```
[ ] # 加载模型权重
runner.load_model(saved_dir)

mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())

MSE: 986801664.0
```

▼ 2.5.6 模型预测

使用 Runner 中 load_model 函数加载保存好的模型,使用 predict 进行模型预测,代码实现如下:

```
[ ] runner.load_model(saved_dir)
    pred = runner.predict(X_test[3:4])
    print("真实FYC:",y_test[3:4].item())
    print("预测的FYC:",pred.item())
```

真实FYC: 16483.0

预测的FYC: 17935.86328125

maxminscaler:

線性迴歸之結果無法有效預測數值


```
y_tests[50:55]
array([[0.04597612],
       [0.0258264],
       [0.00746568],
       [0.03160405].
       [0.09794771]])
1r_y_predict[50:55]
array([[0.01281698],
       [0.01274899],
       [0.01727256],
       [0.02771023],
       [0.01609619]])
```

score of lr: -0.03234725621615597

Support Vector Machine - Support Vector Regression

目的:找到一個超平面去盡可能地分割開不同的資料點

使用資料

- 訓練集用所有資料(包含O值和極端值)
 - 不捨棄○値:有可能是新進業務員,很認真在做很多動作,但就是還沒有創造保費收入
 - 不捨棄極端值:彌補0值的缺失
- 測試集用隨機的1/4組資料

分析結果

	real	predict	error			
0	634.666667	151.526063	483.140604			
1	27727.041667	22034.898024	5692.143643			
2	0.000000	1.769352	-1.769352			
3	337.083333	0.377295	336.706038			
4	8839.458333	3084.117093	5755.341240			
5	5687.125000	3889.553496	1797.571504			
6	373.416667	197.667327	175.749339			
7	430282.625000	14375.735366	415906.889634			
8	54.833333	29.828734	25.004600			
9	1730.500000	52.907257	1677.592743			
10	45067.083333	3305.258827	41761.824506			
11	2062.166667	1495.853588	566.313079			
12	671.833333	47.721895	624.111439			
13	3258.500000	466.335144	2792.164856			
14	480515.958333	185.379828	480330.578506			
15	0.000000	26.663503	-26.663503			
16	1020.750000	148.049974	872.700026			
17	6224.708333	7343.441277	-1118.732944			
18	560.708333	516.383615	44.324718			
19	87931.250000	8368.130617	79563.119383			
Mean error = 32774.415195408						
Absolute mean error = 33691.529029052326						
Maximum error = 2665630.9049273445						
Minimum error = -32477.55550045637						
Mean (predict values) = 4351.27119949368						
Mea	n (y_mean) = 37	125.6863949016	84			

列舉前20筆資料去做參考

參數設定

- Criterion
 - O Square error, friedman mse, absolute error, poisson
- Splitter
 - Best
- Min Sample Leaf
 - 2~20

Best Model - MAE 84959

其他前處理G交叉驗證

- 類別變數
 - o Ordinal, One hot, Drop
- 缺失值
 - o O, Bfill, Ffill, mean
- 極端值
 - o Isolation Forest, Std
 - 泊期
 - 轉成自1950年開始的月份數
- 交叉驗證00000

Random Forest

- Criterion
 - Square error, friedman mse, absolute error, poisson
- N Estimators
 - 10~50
- Min Leaf Nodes
 - o 2~20
 - Best Model MAE 78473

Gradient Boosting

- Criterion
 - Square error
- N Estimators
 - o 2~10
- Max Depth
 - 2~30

- N Iter No Change
 - 0 10
- Learning Rate
 - 0.1~0.01
- MAE 58962

```
gbrt_best = GradientBoostingRegressor(
    learning_rate=2.1040543606193775e-10, max_depth=29,
    n_estimators=9, random_state=42, n_iter_no_change=10)
```

Hist Gradient Boosting

- 預設值
- MAE 83971

hgb_reg = HistGradientBoostingRegressor(random_state=42)

Stacking

- Estimators
 - Random forest, Linear SVR, Gradient boosting, Hist Gradient Boosting
- Final Estimators
 - Gradient Boosting
 - /MAE 68732

LSTM

非線性特徵的 Logistic Regression

激勵函數: ReLU

時間序列

Base Line

AGENT_ID
AGENT_AGE
ON_BOARD_AGE
SENIORITY
AGENT_SEX
CUSTOMER_CNT
MEMO_LENGTH
LOGIN_CNT
CONTACT_CNT
VISIT_CNT
QNR_CNT
CONSULT_CNT
I_PROPERTY_INSURANCE_FYC

sumfyc

AGENT_ID AGENT_AGE ON BOARD AGE **SENIORITY** AGENT_SEX CUSTOMER_CNT MEMO_LENGTH LOGIN_CNT CONTACT_CNT CONTACT_CUST_CNT VISIT_CNT CUSTOMER_VISIT_CNT **QNR CNT** CONSULT_CNT sumfyc

分析方式

預測結果

Base line

[] 100 - mean_absolute_error(y_true, y_pred)

-15649.778258040527

預測結果

時間序列

One hot encoding

困難點

```
In [2] train_df. shape, test_df. shape
  ((53592, 130), (12573, 130))
```

記憶體不足

模型训练

```
In [9] EPOCH_NUM = 100 # 设置外层循环次数

TRAIN_BATCH_SIZE = 1000 # 设置batch大小

BATCH_SIZE = 1000 # 设置batch大小

training_data = train_df.iloc[:-10000].values.astype(np.float32)

val_data = train_df.iloc[-10000:].values.astype(np.float32)
```


困難點

取有效的x

圖中最和sumfyc有相關性:

年資

客戶數量

職級:

主任級才會有正相關

(業務主任 行銷主任)

R-squared

. . reg sumfyc agent_title_1 agent_title_2 agent_title_3 agent_title_4 agent_title_5 a
> _title_9 agent_title_10 agent_title_11 agent_title_12 agent_title_13 agent_title_14

Source	SS	df	MS	Number of obs	=	53,592
				F(15, 53576)	=	290.20
Model	4.0078e+12 4.9328e+13 5.3336e+13	15 53,576 53,591	920719269 995247198	Prob > F R-squared	=	0.0000
Residual					=	0.0751
				Adj R-squared	=	0.0749
Total				Root MSE	=	30343

sumfyc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
agent title 1	-45099.82	9150.574	-4.93	0.000	-63035.02	-27164.62
agent title 2	-21227.94	9162.657	-2.32	0.021	-39186.82	-3269.057
agent title 3	-30251.98	9159.851	-3.30	0.001	-48205.37	-12298.6
agent title 4	-34100.22	9153.202	-3.73	0.000	-52040.57	-16159.87
agent_title_5	-29212.6	9211.706	-3.17	0.002	-47267.62	-11157.58
agent_title_6	-31964.25	9180.799	-3.48	0.000	-49958.69	-13969.81
agent_title_7	-25704.44	9198.503	-2.79	0.005	-43733.58	-7675.298
title 8	-21865.71	9438.542	-2.32	0.021	-40365.33	-3366.093
751 _title_9	-2885.459	9250.37	-0.31	0.755	-21016.26	15245.34
agama_title_10	-153.3637	12938.45	-0.01	0.991	-25512.83	25206.11
agent_title_11	15717.96	13638.32	1.15	0.249	-11013.27	42449.19
agent_title_12	-57328.95	10649.06	-5.38	0.000	-78201.18	-36456.71
agent_title_13	-35538.08	9414.106	-3.77	0.000	-53989.81	-17086.36
agent_title_14	40792.07	13638.32	2.99	0.003	14060.84	67523.3
agent_title_15	-48082.82	13257.97	-3.63	0.000	-74068.54	-22097.09
_cons	60246.82	9148.866	6.59	0.000	42314.96	78178.67

除了分析產品對公司的貢獻之外,我們也使用分群演算法來將每個業務員每年的貢獻進行分類,不同組的業務員的貢 獻有不小的差距,因此,我們觀察到業務員在每年的表現中是有存在不同的差異。

利用上述的方法對公司有基本的了解之後, 我們分析長期在公司工作的業務員, 可以透過這些業務員來了解他們長期

的發展跟公司之間的關係,經過分群演算法的計算後,大致上可以將這些業務員分成兩類,貢

獻度較高的業務員人數大概佔所有業務員人數的百分之二十,而這些業務

員的業績大概佔整間公司的業績之百分之八十,當我們將這相同的模型套用到每一年所有

的業務員上. 我們找到了相同的結論。

除了有八十二十法則存在於這間公司,我們也觀察到這間公司的產品與獎勵制度間的關聯非常重要,如果公司發行的 產品符合市場需求並且有提出吸引業務員的獎勵制度,他們的收入可以在短時間 內提高許多,如果在未來公司能 夠符 合上述的兩個條件,可以幫助他們的業績在短時間 內迅速成長。

論文名稱: 壽險業務員績效與業績目標關係之分析研究

論文名稱(外文): On the Relationship of Insurance Agents Performance and Sales Target

指導教授: 曹承礎 📠 、吳玲玲 📠

指導教授(外文): Seng-Cho Chou、Ling-Ling Wu

口試委員: 周子元

口試委員(外文): Tzy-Yuan Chou

口試日期: 2018-07-17

壽險業務員績效與業績目標關係之分析研究

學位類別: 碩十

校院名稱: 國立臺灣大學

系所名稱: 資訊管理學研究所

冗餘信息、過擬合(收斂太快)

特徵工程

Ex. 提取特殊的部份(細分為季、月份...)作为新的属性

交叉特徵 (ex. 職級*城市)

閾值的選取: ex. 大致上可以將這些業務員分成兩類, 貢獻度較

高的業務員人數大概佔所有業務員人數的百分之二十, 而這些

業務員的業績大概佔整間公司的業績之百分之八十

困難點

Maxminscaler 與否

(會大量影響權重)

其他模型:梯度增強

LightGBM, XGBoost, CatBoost

時間序列適合用樹模型

通過構造一組弱的學習器(樹),並把多顆決策樹的結果累加 起來作為最終的預測輸出。

調整參數(ex. Learning_rate, layer 數量) 可能可以改進結果

持續優化之處

公司面

預測優秀業務員較容易達成,

激勵員工成為優秀業務員較困難。

目前的數位活動對業績刺激不明顯,

可能需要再進一步:例:對客戶分群、為客戶分配適合業務員若對員工特徵能有更多了解(ex.性格)分群可以更加詳盡。

員工面

數位活動的使用與推廣、長期客 戶數積累。

超級業務員:賣壽險月入百萬

感謝聆聽!

