## Slay the Word

Mark Andrews
13 July 2018

```
library(tibble)
library(dplyr)
library(ggplot2)
library(pander)
```

A univariate normal, or Gaussian, linear model is defined as follows. Assume that our data consists of n independent pairs of observations:

$$\mathcal{D} = \{ (y_1, \vec{x}_1) \dots (y_i, \vec{x}_i) \dots (y_n, \vec{x}_n) \},\$$

where each  $y_i \in \mathbb{R}$  and  $\vec{x}_i \in \mathbb{R}^K$ . We then model this data as follows:

$$y_i \sim N(\beta_0 + \sum_{k=1}^K \beta_k x_{ik}, \sigma^2), \text{ for } i \in \{1, 2 \dots n\}.$$

## Demonstration

Here, we generate some data.

Here, we fit the model with maximum likelihood estimation:

```
M <- lm(y ~ x + z, data=Df)
pander(summary(M))</pre>
```

|                                            | Estimate | Std. Error | t value | $\Pr(> t )$ |
|--------------------------------------------|----------|------------|---------|-------------|
| (Intercept)                                | 1.438    | 0.2663     | 5.402   | 2.136e-06   |
| $\mathbf{x}$                               | 2.191    | 0.1624     | 13.49   | 8.881e-18   |
| $\mathbf{z}\mathbf{y}\mathbf{e}\mathbf{s}$ | -0.2406  | 0.3544     | -0.679  | 0.5005      |

Table 2: Fitting linear model:  $y \sim x + z$ 

| Observations | Residual Std. Error | $R^2$  | Adjusted $R^2$ |
|--------------|---------------------|--------|----------------|
| 50           | 1.231               | 0.8026 | 0.7942         |



Figure 1: Scatterplot with line of best fit.



Figure 2: This image is inserted.

## Inserting images