

® BUNDESREPUBLIK
DEUTSCHLAND

**® Offenlegungsschrift** 

® DE 196 20 154 A 1

(5) Int. Cl.<sup>6</sup>: A 61 K 49/00





DEUTSCHES PATENTAMT

(2) Aktenzeichen:

196 20 154.3

② Anmeldetag:

9. 5.96

Offenlegungstag:

20. 3.97

(3) Innere Priorităt: (2) (3) (3) (14.09.95 DE 195355733

(7) Anmelder:

Röder, Beate, Prof. Dr., 14612 Falkensee, DE

@ Erfinder:

Röder, Beate, Prof. Dr., 14612 Falkensee, DE; Hackbarth, Steffen, 10407 Berlin, DE; Licha, Kai, Dr., 14169 Berlin, DE; Riefke, Björn, Dr., 13353 Berlin, DE

(A) Verfahren zur Nutzung von Tetrapyrrol-Cyclodextrin Wirt-Gast-Komplexen für die in-vivo-Diagnostik

Die Erfindung betrifft ein Verfahren zur In-vivo-Diagnostik mittels sichtbarer Strahlung oder Nahinfrarot-Strahlung (NIR-Strahlung) unter Verwendung von Wirt-Gast-Komplexen, bestehend aus Tetrapyrrolen und Cyclodextrinen, mit bestimmten photophysikalischen und pharmakologischen Eigenschaften als Kontrastmittel in der Diagnostik auf der Basis von Absorptions-, Fluoreszenz- und Streulichttechniken

Applicants: Ronald Breslow et al. U.S. Serial No.: 10/054,585 Filed: November 12, 2001 Exhibit 9



#### Beschreibung

Die Erkennung von Krankheiten ist zu einem wesentlichen Teil davon abhängig, inwieweit es gelingt, Informationen über Strukturen und deren Veränderungen aus den primär nicht zugänglichen tieferen Schichten der Gewebe zu erlangen. Dies kann neben Tasten, Freilegen oder Punktieren durch die modernen bildgebenden Verfahren, wie Röntgen, die Magnetresonanztomographie oder die Ultraschalldiagnostik geschehen.

Da biologisches Gewebe eine relativ hohe Durchlässigkeit für langwelliges Licht des nahen IR-Bereichs (NIR; 600-1000 nm) besitzt, steht dem Diagnostiker hiermit ein völlig anderes Verfahren zur bildlichen Ge-

webedarstellung zur Verfügung.

Die Tatsache, daß nahinfrarotes Licht Gewebe bis in den Zentimeterbereich durchdringen kann, wird in der Transilluminationsbildgebung genutzt. Neben der Detektion der nicht absorbierten Strahlung kann auch die nach Bestrahlung mit nahinfrarotem Licht emittierte 20 Fluoreszenzstrahlung bzw. das gestreute Licht gewebespezifische Informationen liefern.

Das wesentliche Problem bei der Nutzung von nahinfraroter Strahlung ist die außerordentliche starke Streuung des Lichtes, so daß selbst bei unterschiedlichen pho- 25 tophysikalischen Eigenschaften von einem scharf begrenzten Objekt und seiner Umgebung sich dieses Objekt nur unscharf abzeichnet. Das Problem nimmt mit wachsender Entfernung des Objektes von der Oberfläche zu und kann als hauptsächlicher limitierender Fak- 30 tor sowohl bei der Transillumination als auch bei der Detektion von Fluoreszenzstrahlung angesehen wer-

Zur Verbesserung der Differenzierung zwischen nor-Fluoreszenzfarbstoffe beitragen, die sich im erkrankten Gewebe (insbesondere Tumoren) anreichern und ein spezifisches Absorptions- und Emissionsverhalten besitzen. Die durch Absorption des Farbstoffes bewirkte Änderung des (gestreuten) eingestrahlten Lichtes oder die 40 durch die Anregungsstrahlung induzierte Fluoreszenz wird detektiert und liefert die eigentlichen gewebespezifischen Informationen.

Für die Lokalisation und Abbildung von Tumoren namischen Therapie (PDT) konzipierten Photosensibilisatoren mit Tetrapyrrol-Grundstruktur (u. a. Hāmatoporphyrinderivate, Photophrin II, Benzoporphyrine, Tetraphenylporphyrine, Chlorine, Phthalocyanine) verwendet (Bonnett R.; New photosensitizers for the pho- 50 todynamic therapy of tumours, SPIE Vol. 2078 (1994)). Das für die PDT erforderliche Vermögen dieser Moleküle, über den angeregten Zustand (Triplettzustand) Singulettsauerstoff zu generieren und damit eine photorein diagnostische Zielstellungen störend.

Der Erfindung liegt die Aufgabe zugrunde, neue Verbindungen und Mittel zur Verfügung zu stellen, die zur Lokalisation und Abbildung von erkrankten Gewebebereichen, insbesondere Tumoren, geeignet sind, ohne 60 als Nebenwirkung infolge der zur optischen Diagnostik notwendigen Lichtanregung photodynamische Effekte

hervorzurufen.

Erfindungsgemäß wird diese Aufgabe nunmehr dadurch gelöst, daß Tetrapyrrole verwendet werden, die 65 über eine nichtkovalente Wirt-Gast-Komplexbildung gegen die Umgebung derart abgeschirmt sind, daß kein Energietransfer zu molekularem Sauerstoff erf Igen

kann und damit phot dynamische Effekte verhindert werden.

Die erfindungsgemäß verwendeten Wirt-Gast-Komplexe besitzen photophysikalische Eigenschaften, die durch Absorptions- und Fluoreszenzbanden im sichtbaren und/oder nahinfraroten Spektralbereich gekennzeichnet sind, wodurch ein technisch umkomplizierter Nachweis mit optischen Methoden gewährleistet ist.

Die im erfindungsgemäßen Verfahren verwendeten 10 Tetrapyrrole sind Verbindungen aus der Klasse der Porphyrine, Benzoporphyrine, Chlorine, Bacteriochlorine, sowie Phthalocyanine und Naphthalocyanine.

Bevorzugte Tetrapyrrole sind Chlorophyll und natürliche Chlorine als Abkömmlinge des Chlorophylls, näm-15 lich Pheophorbide und Pheophorbidderivate, sowie Phthalocvanine.

Besonders bevorzugte Verbindungen sind Tetrapyrrole, die durch Reste substituiert sind, durch welche eine stabile Komplexbindung erreicht wird. Solche Reste sind verzweigte oder unverzweigte Alkylreste mit bis zu 20 C-Atomen, Arylreste oder Arylalkylreste.

Als Komplexbildner bzw. Wirtsmoleküle fungieren unsubstituierte oder ein- oder mehrfach substituierte, mono-, di- oder oligomere α-, β- oder γ-Cyclodextrine.

Die Vorteile der erfinderischen Lösung liegen vor allem darin, daß nunmehr Tetrapyrrole mit ausgezeichneten photophysikalischen Eigenschaften, die bisher in der photodynamischen Therapie von Tumoren Verwendung fanden, nun auch für rein diagnostische Fragestellungen eingesetzt werden können, da eine photodynamische Wirkung durch die nichtkovalente Wechselwirkung mit Cyclodextrinen unterdrückt wird.

Vorteilhaft ist weiterhin, daß durch die Überführung von meist lipophilen, schwer wasserlöslichen Tetrapyrmalem und erkranktem Gewebe können geeignete 35 rolen in Cyclodextrinsysteme erreicht wird, daß die Farbstoffe in Gegenwart von Cyclodextrinen eine erhöhte Löslichkeit in wäßrigen Medien aufweisen und in Form wäßriger Lösungen in ausreichender Menge in den Körper eingebracht werden kann. Die applizierbare Dosis wird damit erhöht. Darüberhinaus kann durch die Überführung von Fluoreszenzfarbstoffen in Cyclodextrinsysteme eine deutliche Veränderung ihrer pharmakokinetischer Eigenschaften und infolgedessen eine gewebs- oder organspezifische/ortsspezifische Anreichewurden bisher die für eine Anwendung in der Photody- 45 rung des derart formulierten Fluoreszenzfarbstoffes erreicht werden. Weiterhin ist die Verträglichkeit von Tetrapyrrol-Cyclodextrin-Systemen gegenüber den freien Tetrapyrrolen erhöht.

Eine Optimierung und Anpassung des pharmakokinetischen Verhaltens der erfindungsgemäß verwendeten Verbindungen an das diagnostische Problem kann durch die Verwendung von Derivaten des α-, β- und γ-Cyclodextrins geschehen.

Ein weiterer Gegenstand der Erfindung sind Wirtdynamische, zelltötende Wirkung hervorzurufen ist für 55 Gast-Komplexe, die an biologische Erkennungseinheiten, d. h. sich spezifisch in erkrankten Gewebeeinheiten anreichernde Biomoleküle, gekoppelt sind. Bevorzugt werden als Biomoleküle Aminosäuren, Peptide, Proteine, Antikörper, Antikörperfragmente, Antigene, Haptene, Enzymsubstrate, Hormone, Kohlenhydrate, Saccharide, Dextrane oder rezeptorenbindende Arzneimittel verwendet. Die Darstellung solcher Addukte geschieht dadurch, daß geeignete Cyclodextrinderivate verwendet werden, die eine oder mehrere Gruppierungen enthalten, über welche eine kovalente Bindung zum Biomolekül aufgebaut werden kann. Bevorzugt sind monosubstituierte  $\alpha$ -,  $\beta$ - und  $\gamma$ -Cyclodextrinderivate.

Besonders bev rzugt sind die entsprechenden mono-

55



substituieren 6-O-p-Toluolsulfonyl-, Methylsulfonyloder Mesitylsulfonylcyclodextrine und solche, die sich aus den aufgezählten Verbindungen synthetisch erzeugen lassen.

Erfindungsgemäß wird bei der Durchführung des 5 Verfahrens zur In-vivo-Diagnostik den Geweben eine oder mehrere der Substanzen, durch parenterale Gabe, bevorzugt intravenose Injektion, zugeführt und Licht aus dem sichtbaren bis nahinfraroten Bereich eingestrahlt. Das nicht absorbierte, gestreute Licht und/oder 10 die vom Farbstoff emittierte, gestreute Fluoreszenzstrahlung werden gleichzeitig/einzeln registriert. Bevorzugt sind die Methoden, bei denen das Gewebe großflächig bestrahlt und die Fluoreszenzstrahlung örtlich aufgelöst durch Aufnahme mit einer CCD-Kamera darge- 15 stellt wird oder die abzubildenden Gewebeareale mit einem Lichtleiter abgerastert und die erhaltenen Signale rechnerisch in ein synthetisches Bild umgesetzt werden. Darüberhinaus kann die Fluoreszenz spektral und/ oder phasenselektiv sowie stationär und/oder zeitaufge- 20 löst ausgewertet werden.

### Die folgenden Beispiele erläutern die Erfindung

Dargestellt ist die Veränderung der Absorption 25 von Pheophorbid α/β-Cyclodextrin-Komplexen (Abb. 1) in einer Verdünnungsreihe. Wie deutlich zu erkennen ist, verändert sich die Form und spektrale Lage der Spektren nicht. Aus diesem Fakt kann geschlossen werden, daß die gebildeten Komplexe unter diesen Bedingungen stabil sind.

2. In Abb. 2 ist das Fluoreszenzspektrum von Pheophporbid α/β-Cyclodextnn -Komplexen bei konstanter Pheophorbid a-Konzentration gezeigt. Die spektrale Lage und Form der stationären Fluoreszenzspektren lassen, ebenso wie die Absorptionsspektren und die gemessenen Fluoreszenzlebensdauer, die über alle Messungen konstant bei 5.8 ns liegt, den Schluß zu, daß der Farbstoff trotz wäßriger Umgebung in monomerer Form in die Komplexe eingebettet ist.

3. Unter Anwesenheit von molekularem Sauerstoff wird bei Belichtung von Pheophorbid a Singulettsauerstoff mit einer Quantenausbeute von ca. 0.59 (monomerer Farbstoff in Ethanol) generiert. Die 45 Entstehung von Singulettsauerstoff, der als wesentliche toxische Spezies bei der Photodynamischen Therapie angesehen wird, kann direkt über seine Lumineszenz bei 1269 nm nachgewiesen werden. In Abb. 3 ist gezeigt, daß bei gleichzeitiger Monomerisierung und Bildung eines Einschluß-Komplexes (vgl. Abb. 1 und Abb. 2) mit dem Cyclodextrin (c = 0.15 M und 0.20 M) ebenso wie in Phosphatpuffer (PBS), in dem das Pheophorbid a aggregiert vor-

### Patentansprüche

liegt, kein Singulettsauerstoff generiert wird.

- Verfahren zur In-vivo-Diagnostik von erkrankten Gewebebereichen mit Wirt-Gast-Komplexen, 60 dadurch gekennzeichnet, daß als Gastmoleküle Tetrapyrrole und als Wirtsmoleküle Cyclodextrine verwendet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Tetrapyrrol Chlorophyll und des 65 Chlorophylls verwendet werden.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Tetrapyrrol Bacteriochlorophyll

- und Derivate des Bacteriochlorophylls verwendet werden.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Tetrapyrrol Porphyrine, Chlorine und Bacteriochlorine verwendet werden.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Tetrapyrrol Phthalocyanine und Naphthalocyanine verwendet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Wirtsmoleküle α-Cyclodextrin und Derivate des α-Cyclodextrins verwendet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Wirtsmoleküle 
  ß-Cyclodextrin und Derivate des 
  ß-Cyclodextrins verwendet werden.
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Wirtsmoleküle γ-Cyclodextrin und Derivate des γ-Cyclodextrins verwendet werden.
- 9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Diagnostik nach Lichtanregung durch Messung optischer Parameter der Wirt-Gast-Komplexe erfolgt.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als optischer Parameter die Fluoreszenz gemessen wird, wobei die Fluoreszenz spektral und/oder phasenselektiv, stationär und/oder zeitaufgelöst ausgewertet wird.
- 11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als optischer Parameter die Absorption gemessen wird.
- 12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als optischer Parameter die Lichtstreuung gemessen wird.

Hierzu 3 Seite(n) Zeichnungen

# Abbildung 1



Verdünnungsreihe an Pheo-a in β-CD-Lösung (in PBS)

Numm Int. Cl. Offenlegungstag: DE 196 20 154 A1 A 61 K 49/00 20. März 1997

Abbildung 2



Fluoreszenz von Pheo-a in unterschiedlich konzentrierten \u03b3-CD-L\u00fcsungen (in PBS)

# Abbildung 3



Messung der NIR-Lumineszenz an Pheo-a in unterschiedlich konzentrierten  $\beta$ -CD-Lösungen (in PBS)

DIALOG(R)File 351:DERWENT WPI (c)1999 Derwent Info Ltd. All rts. reserv.

011203178

WPI Acc No: 97-181102/199717 XRAM Acc No: C97-058534

In-vivo diagnosis e.g. of tumours using e.g. near IR - by using

host-guest complex of tetrapyrrole cpd. in cyclodextrin

Patent Assignee: ROEDER B (ROED-I)

Inventor: HACKBARTH S; LICHA K; RIEFKE B; ROEDER B

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Main IPC Week

DE 19620154 A1 19970320 DE 1020154 A 19960509 A61K-049/00 199717 B

Priority Applications (No Type Date): DE 1035573 A 19950914

Patent Details:

Patent Kind Lan Pg Filing Notes Application Patent

DE 19620154 A1 1

Abstract (Basic): DE 19620154 A

In-vivo diagnosis of diseased tissue regions is effected using guest-host complexes. The guest is tetrapyrrole and the host is a cyclodextrin (CD).

The tetrapyrrole is preferably a chlorophyll (or deriv.), bacteriochlorophyll (or deriv.), porphyrin, chlorin, bacteriochlorin, phthalocyanine or naphthalocyanine. The cyclodextrin is alpha, beta or gamma-cyclodextrin or their derivs. The diagnosis comprises measurement of an optical parameter of the complex, pref. fluorescence (spectral and/or phase selective, stationary and/or time-dependent), absorption or light-scattering.

USE - The process allows measurements to be made using long-wave light (600-1000 nm.) in the near IR. Diagnosis is esp. of tumours.

ADVANTAGE - The process gives improved contrast.

Dwg.0/3

Title Terms: VIVO; DIAGNOSE; TUMOUR; INFRARED; HOST; GUEST; COMPLEX; TETRA;

PYRROLE; COMPOUND; CYCLODEXTRIN

Derwent Class: B04

International Patent Class (Main): A61K-049/00

File Segment: CPI

Manual Codes (CPI/A-N): B04-C02B1; B06-D18; B11-C08; B12-K04A1

Chemical Fragment Codes (M1):

\*01\* M423 M750 M903 N102 V754

Chemical Fragment Codes (M2):

\*02\* A212 A960 C710 D011 D013 D019 D023 E350 H7 H715 H722 J0 J012 J2 J251 J271 J5 J561 M210 M211 M212 M226 M232 M240 M272 M282 M283 M312 M321 M332 M342 M372 M391 M411 M430 M511 M520 M530 M540 M630 M782 M800

M903 M904 N102 P831 R10075-D R10075-M 06561

- \*03\* A212 A960 C710 D011 D013 D019 D023 E350 H7 H715 H722 J0 J012 J2 J251 J271 J4 J411 J5 J561 M210 M211 M212 M226 M232 M240 M272 M282 M283 M312 M321 M332 M342 M372 M391 M411 M430 M511 M520 M530 M540 M630 M782 M800 M903 M904 N102 P831 R10092-D R10092-M 06561
- \*04\* A212 A960 C710 D011 D013 D019 D023 E350 H7 H721 J0 J012 J2 J251 J271 J4 J411 J5 J561 M210 M211 M212 M226 M232 M240 M272 M282 M283 M312 M321 M332 M342 M372 M391 M411 M430 M511 M520 M530 M540 M630 M782 M800 M903 M904 N102 P831 R09012-D R09012-M 06561
- \*05\* D014 D015 D019 D240 H4 H405 H424 H484 H8 K0 L8 L814 L824 L831 M280 M311 M323 M342 M373 M393 M412 M430 M511 M520 M530 M540 M782 M903 M904 N102 P831 V721 R04817-D R04817-M 06561 49968
- \*06\* D014 D015 D019 D240 H4 H405 H424 H484 H8 K0 L8 L814 L824 L831 M280 M311 M323 M342 M373 M393 M412 M423 M430 M511 M520 M530 M540 M782 M903 M904 N102 P831 V721 R01856-D R01856-M 06561 49968 42995
- \*07\* D014 D015 D019 D240 H4 H405 H424 H484 H8 K0 L8 L814 L824 L831 M280 M311 M323 M342 M373 M393 M412 M423 M430 M511 M520 M530 M540 M782 M903 M904 N102 P831 V721 R04818-D R04818-M 06561 49968 42995 49969
- \*08\* D000 E350 M280 M320 M412 M430 M511 M520 M530 M540 M782 M903 M904 N102 P831 R18222-D R18222-M 06561 49968 42995 49969 40078
- \*09\* D000 E350 M280 M320 M412 M430 M511 M520 M530 M540 M782 M903 M904 M910 N102 P831 R01386-D R01386-M 06561 49968 42995 49969 40078 07541
- \*10\* D000 E350 M280 M320 M412 M430 M511 M520 M530 M540 M782 M903 M904 N102 P831 R04200-D R04200-M 06561 49968 42995 49969 40078 07541 05479

Chemical Fragment Codes (M6):

\*11\* M903 P831 R514 R614 R627 R639 06561 49968 42995 49969 40078 07541 05479

Ring Index Numbers: 06561; 49968; 42995; 49969; 40078; 07541; 05479

Derwent Registry Numbers: 1386-U

Specific Compound Numbers: R10075-D; R10075-M; R10092-D; R10092-M; R09012-D; R09012-M; R04817-D; R04817-M; R01856-D; R01856-M; R04818-D; R04818-M; R18222-D; R18222-M; R01386-D; R01386-M; R04200-D; R04200-M

