Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER: NJM2747

MANUFACTURER: NEW JAPAN RADIO

Bee Technologies Inc.

SPICE MODEL


```
*$
*PART NUMBER: NJM2747
*MANUFACTURER: NEW JAPAN RADIO
*OPAMP
*All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
.subckt njm2747 OUTA IN-A IN+A V+ IN+B IN-B OUTB
+ OUTC IN-C IN+C GND IN+D IN-D OUTD
X U1 IN+A IN-A V+ GND OUTA njm2747 s
X U2 IN+B IN-B V+ GND OUTB njm2747 s
X U3 IN+C IN-C V+ GND OUTC nim2747 s
X_U4 IN+D IN-D V+ GND OUTD njm2747_s
.ends njm2747
.subckt nim2747 s 1 2 3 4 5
       11 12 .79386E-12
 c1
 c2
       6 7 28.300E-12
 dc
       5 53 dy
 de
       54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp
       4 3 dx
  egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
       7 99 poly(5) vb vc ve vlp vln 0 373.25E3 -1E3 1E3 370E3 -370E3
        6 0 11 12 1.9038E-3
 ga
        0 6 10 99 321.43E-9
 gcm
       3 10 dc 99.200E-6
 iee
 hlim 90 0 vlim 1K
 q1
       11 2 13 qx1
 q2
       12 1 14 qx2
       6 9 100.00E3
 r2
 rc1
       4 11 525.26
      4 12 525.26
 rc2
  re1 13 10 2.7495
```

```
re2 14 10 2.7495
  ree 10 99 2.0161E6
  ro1
       8 5 50
  ro2 7 99 25
  rp
       3 4 83.471
 vb 9 0 dc 0
 vc 3 53 dc .89791
 ve 54 4 dc .8085
 vlim 7 8 dc 0
 vlp 91 0 dc 20
       0 92 dc 20
 vln
.model dx D(ls=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=494.75)
.model qx2 PNP(ls=842.2140E-18 Bf=495.25)
.ends njm2747_s
```

Output Voltage Swing

Simulation result

Evaluation circuit

Comparison Table

$R_L = 5 \text{ k}\Omega \text{ to } 2.5 \text{ V}$	Measurement	Simulation	%Error
V _{OH} (V)	4.9	4.9002	0.004
V _{oL} (V)	0.1	0.099967	-0.033

Input Offset Voltage

Simulation result

Evaluation Circuit

Comparison Table

Input offset Voltage	Measurement	Simulation	%Error
V _{os} (mV)	1	1.0178	1.78

Open loop Voltage Gain

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	% Error
Av (dB)	85	85.005	0.006
f-0db (MHz)	10	10.294	2.940

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Input Current

Simulation result

Evaluation Circuit

Comparison Table

Input Current	Measurement	Simulation	% Error
I _b (nA)	100	100.928	0.928
I _{io} (nA)	5	5.0595	1.190

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Slew Rate

Simulation result

Evaluation Circuit

Comparison Table

Slew Rate	Measurement	Simulation	%Error
SR (V/us)	3.5	3.483	-0.486

Common-Mode Rejection Ratio

Simulation result

Evaluation Circuit

CMRR = AV/ACM = 17793/(3.153/1)

Comparison Table

	Measurement	Simulation	% Error
CMRR (dB)	75	75.031	0.041