18.404/6.840 Lecture 18

Last time:

- Space complexity
- SPACE(f(n)), NSPACE(f(n)), PSPACE, NPSPACE
- Relationship with TIME classes

Today:

- Review $LADDER_{DFA} \in PSPACE$
- Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- PSPACE-completeness
- TQBF is PSPACE-complete shrink me \rightarrow

Posted: Pset 4 solutions, Pset 5

Review: SPACE Complexity

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

 $SPACE(f(n)) = \{B \mid \text{some 1-tape TM decides } B \text{ in space } O(f(n))\}$ $NSPACE(f(n)) = \{B \mid \text{some 1-tape NTM decides } B \text{ in space } O(f(n))\}$

PSPACE = $\bigcup_k \text{SPACE}(n^k)$ "polynomial space" NPSPACE = $\bigcup_k \text{NSPACE}(n^k)$ "nondeterministic polynomial space"

Today: PSPACE = NPSPACE

Or possibly:

$$P = NP = coNP = PSPACE$$

Review: $LADDER_{DFA} \in PSPACE$

Theorem: $LADDER_{DFA} \in SPACE(n^2)$

Proof: Write $u \stackrel{v}{\rightarrow} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED- $LADDER_{DFA} = \{\langle B, u, v, b \rangle | B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B)\}$

$$B-L=$$
 "On input $\langle B, u, v, b \rangle$ Let $m=|u|=|v|$.

- 1. For b = 1, accept if $u, v \in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each $w \in L(B)$ of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER_{DFA}$ with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = |\Sigma|^m$

Space analysis:

Each recursive level uses space O(n) (to record w). Recursion depth is $\log t = O(m) = O(n)$. Total space used is $O(n^2)$.

recurse

WORK

BAAR

PSPACE = NPSPACE

Savitch's Theorem: For $f(n) \ge n$, NSPACE $(f(n)) \subseteq SPACE(f^2(n))$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{D}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \xrightarrow{\nu} c_i$:

 $M = \text{"On input } c_i, c_j, b \text{ [goal is to check } c_i \xrightarrow{b} c_i \text{]}$

- 1. If b = 1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- Recursively test $c_i \xrightarrow{b/2} c_{\text{mid}}$ and $c_{\text{mid}} \xrightarrow{b/2} c_i$
- If both are true, accept. If not, continue.
- 5. Reject if haven't yet accepted."

Test if N accepts w by testing $c_{\text{start}} \xrightarrow{v} c_{\text{accept}}$ where t = number of configurations $= |Q| \times f(n) \times d^{f(n)}$

Each recursion level stores 1 config = O(f(n)) space.

Number of levels = $\log t = O(f(n))$. Total $O(f^2(n))$ space.

PSPACE-completeness

Defn: *B* is PSPACE-complete if

- 1) $B \in \mathsf{PSPACE}$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Check-in 18.1

Knowing that TQBF is PSPACE-complete, what can we conclude if $TQBF \in NP$? Check all that apply.

- (a) P = PSPACE
- (b) NP = PSPACE
- (c) P = NP
- (d) NP = coNP

Think of complete problems as the "hardest" in their associated class.

TQBF is PSPACE-complete

Recall: $TQBF = \{\langle \phi \rangle | \phi \text{ is a QBF that is TRUE} \}$

Examples: $\phi_1 = \forall x \ \exists y \ [(x \lor y) \land (\overline{x} \lor \overline{y})] \in TQBF \ [TRUE]^t$ $\phi_2 = \exists y \ \forall x \ [(x \lor y) \land (\overline{x} \lor \overline{y})] \notin TQBF \ [FALSE]$

Theorem: *TQBF* is PSPACE-complete

Proof: 1) $TQBF \in PSPACE \checkmark$

2) For all $A \in PSPACE$, $A \leq_P TQBF$

Let $A \in PSPACE$ be decided by TM M in space n^k .

Give a polynomial-time reduction f mapping A to TQBF.

```
f \colon \Sigma^* \to \mathsf{QBFs}
f(w) = \langle \phi_{M,w} \rangle
w \in A \text{ iff } \phi_{M,w} \text{ is True}
```

Plan: Design $\phi_{M,w}$ to "say" M accepts w. $\phi_{M,w}$ simulates M on w.

Constructing $\phi_{M,w}$: 1st try

Tableau for *M* on *w*

Recall: A tableau for M on w represents a computation history for M on w when M accepts w.

Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method. Then $\phi_{M,w}$ will be as big as tableau.

But that is exponential: $n^k \times d^{(n^k)}$.

Too big! 😊

Constructing $\phi_{M,w}$: 2nd try

hide \rightarrow

For configs c_i and c_j construct $\phi_{c_i,\,c_j,\,b}$ which "says" $c_i \stackrel{\triangleright}{\longrightarrow} c_j$ recursively.

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \cdots, c_l \\ \text{as in Cook-Levin} \\ \exists c_{\text{mid}} \left[\phi_{\text{ , , } b/4} \wedge \phi_{\text{ , , } b/4} \right]$$

Check-in 18.2

Why shouldn't we be surprised that this construction fails?

- (a) We can't define a QBF by using recursion.
- It doesn't use ∀ anywhere.
- We know that $TQBF \notin P$.

$$\phi_{\perp,1}$$
 defined as in Cook-Levin

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$

$$t = d^{(n^k)}$$

Size analysis:

Each recursive level doubles number of QBFs.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

 \rightarrow Size is exponential.

 $\exists c_{\text{mid}} [\phi_{,,b/8} \cdots]$

Constructing $\phi_{M,w}$: 3rd try

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall (c_g, c_h) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right] \quad \forall (x \in S) \left[\psi \right]$$
 is equivalent

is equivalent to
$$\forall x [(x \in S) \rightarrow \psi]$$

$$\phi_{M,w} = \phi_{c_{\text{start}}, c_{\text{accept}}, t}$$

$$t = d^{(n^k)}$$

Size analysis:

Each recursive level <u>adds</u> $O(n^k)$ to the QBF. Number of levels is $\log d^{(n^k)} = O(n^k)$.

$$\rightarrow$$
 Size is $O(n^k \times n^k) = O(n^{2k})$ \odot

 $\phi_{\perp,1}$ defined as in Cook-Levin

Check-in 18.3

Would this construction still work if *M* were nondeterministic?

- (a) Yes.
- (b) No.

Quick review of today

- 1. $LADDER_{DFA} \in PSPACE$
- 2. Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- 3. *TQBF* is PSPACE-complete