"Theory of Computation" Part2

Automata and Language Hierarchy

Lecturer: รศ.ดร. เกียรติกูล เจียรนัยธนะกิจ

Email: kietikul@yahoo.com, kjkietik@kmitl.ac.th

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Finite Pushdown Turing
Automata Automata Machine

Less power

Solve more

computational problems

Languages

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets:
$$\Sigma = \{a, b\}$$

Strings

a

ab

abba

baba

aaabbbaabab

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

Empty String

A string with no letters: λ

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
a <u>bbab</u>	bbab

Prefix and Suffix

abbab

Prefixes Suffixes

abbab

a bbab

ab bab

abb ab

abba b

abbab λ

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

Languages

A language is any subset of Σ^*

Example:
$$\Sigma = \{a,b\}$$

 $\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\}$

Languages:
$$\{\chi\}$$
 $\{a,aa,aab\}$ $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. egin{aligned} \lambda \ ab \ aabb \ aaaaaabbbbb \end{aligned}
ight) \in L \qquad abb
otin L \ aabb \ aaaaaabbbbb \ aaaaabbbbb \ \end{array}$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = LL \cdots L$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Finite Automata

Finite Automaton

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Output: "accept"

Rejection

Input finished

Another Rejection

 λ

Output:

"reject"

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F : set of final states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

Transition Function δ

	<u> </u>		
δ	а	Ь	
90	91	<i>9</i> ₅	
q_1	9 5	92	
92	q_5	93	
<i>9</i> ₃	94	95	
94	<i>9</i> ₅	95	
9 5	<i>9</i> ₅	9 5	
			b = a

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, abba) = q_4$$

Languages Accepted by DFAs Take DFA $\,M\,$

Definition:

The language L(M) contains all input strings accepted by M

L(M) = { strings that drive M to a final state}

Formally

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0 \qquad \qquad w \qquad \qquad q' \in F$$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all strings with prefix ab }

L(M) = { all strings without substring 001 }

Regular Languages

A language L is regular if there is a DFA M such that L = L(M)

All regular languages form a language family

Nondeterministic Automata

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

First Choice

All input is consumed

Second Choice

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

AND

all the input is consumed and the automaton is in a final state

Therefore, aa is accepted by the NFA:

computation accepts aa

On the contrary, a is rejected by the NFA:

All possible computations lead to rejection

Lambda Transition

A transition that does not need to read an input alphabet.

Example

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function ($\delta: Q \times \Sigma \rightarrow (2^Q)$)

 q_0 : Initial state

F: Final states

$$\delta(q_1,0) = \{q_0,q_2\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0,w_m)=\{q_i,q_j,...,q_k,...\}$$
 and there is some $q_k\in F$ (final state)

$$w \in L(M)$$
 $\mathcal{S}^*(q_0, w)$ q_i $q_k \in F$

NFAs accept the Regular Languages

Equivalence of Machines

Definition for Automata:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

We will prove:

Languages
accepted
by NFAs
Regular
Languages
Languages

Languages accepted by DFAs

NFAs and DFAs have the same computation power

Step 1

Languages
accepted
by NFAs

Regular
Languages

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Step 2

```
Languages
accepted
by NFAs
Regular
Languages
```

Proof: Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Convert NFA to DFA (Systematic method)

Create a transition table

δ	a	Ь
q_0	q_1, q_2	Ø
q_1	q_1, q_2	90
q_2	Ø	q_0

δ	a	Ь
q_0	q_1, q_2	Ø
q_1	q_1, q_2	9 0
q ₂	Ø	q_0

