

Modèles Bayésiens hiérarchiques

Application

YEAR		HOSPITAL	Procedure/Condition	<pre># of Deaths #</pre>	of Cases
2016	Highland	Hospital	Acute Stroke	17	147
2016	Highland	Hospital	Acute Stroke Hemorrhagic	10	36
2016	Highland	Hospital	Acute Stroke Ischemic	6	106
2016	Highland	Hospital	Acute Stroke Subarachnoid	1	5
2016	Highland	Hospital	Carotid Endarterectomy	0	5
2016	Highland	Hospital	Espophageal Resection	Θ	3

Classement des hôpitaux par taux de mortalité

Classement des procédures par taux de mortalité

3. Classement des hôpitaux + procédures par taux de mortalité

4. Étudier l'évolution des taux de mortalité dans le temps

Combien y a-t-il d'hôpitaux ? de procédures ? d'années ?

Données manquantes / dupliquées ?

Calculer un taux de mortalité fréquentiste.

Visualiser les hôpitaux / procédures avec une ACP.

Clusters évidents ? Outliers ? ム J.

Pourquoi ne pas se contenter des taux fréquentistes ?

Définir les groupes et les lois a priori

3. Interpréter les taux de mortalité avec leur HDI

Données géographiques (ville / quartier de l'hôpital)

Données par hôpital (effectif, technologies utilisées, reviews)

3. Données temporelles (événements rares: accidents, pandémies..)

Modèles Bayésiens hiérarchiques

Application

YEAR	HOSP	PITAL	Procedure/Condit	ion # of	Deaths #	of Cases
2016	Highland Hosp	oital	Acute Str	oke	17	147
2016	Highland Hosp	oital	Acute Stroke Hemorrha	gic	10	36
2016	Highland Hosp	oital	Acute Stroke Ische	mic	6	106
2016	Highland Hosp	oital A	cute Stroke Subarachn	oid	1	5
2016	Highland Hosp	oital	Carotid Endarterect	omy	0	5
2016	Highland Hosp	oital	Espophageal Resect	ion	Θ	3

1. Problématiques simples :

- 1. Classement des hôpitaux par taux de mortalité
- 2. Classement des procédures par taux de mortalité
- 3. Classement des hôpitaux + procédures par taux de mortalité
- 4. Étudier l'évolution des taux de mortalité dans le temps

3. Modélisation bayésienne

- 1. Pourquoi ne pas se contenter des taux fréquentistes ?
- 2. Définir les groupes et les lois a priori
- 3. Interpréter les taux de mortalité avec leur HDI

2. Statistiques descriptives:

- 1. Combien y a-t-il d'hôpitaux ? de procédures ? d'années ?
- 2. Données manquantes / dupliquées ?
- 3. Calculer un taux de mortalité fréquentiste.
- 4. Visualiser les hôpitaux / procédures avec une ACP.
- 5. Clusters évidents ? Outliers ?

4. Expliquer ces données avec des données externes

- . Données géographiques (ville / quartier de l'hôpital)
- 2. Données par hôpital (effectif, technologies utilisées, reviews)
- 3. Données temporelles (événements rares: accidents, pandémies..)

Chapitre 3. Applications et thématiques avancées

- 1. Modèles Bayésiens hiérarchiques (Assurance / Biostats)
- 2. Classical Machine learning: zero to hero
- 3. Bayesian Machine learning

