

The Team

Matt Ghera

Design Lead Senior CompE 2024

Andrew Hall

Project Partner Liaison Senior CompE 2024

Chris Miotto

Financial Officer
Junior CompE 2025

Bree Kalina

(DKC) Project Manager

Junior EE 2025

What is a Tempo Trainer?

Emits tone to beat of tempo

Small – fits under swim cap

Swimmer sets tempo for pace

Swimmer strokes to each tone beep

What is KTT? Keep the Tempo!

A more accessible solution for deaf and hard of hearing swimmers

Our Solution – A two piece system

Tempo Trainer

Remote

Emits a pulse of light to signify tempo

Wirelessly transmits tempo to tempo trainer

Speaker: Andrew

Project Specification

Waterproof

- Withstand being submerged for 2 days
- Handle 12+ feet of water pressure
- Safe for the user and others in the pool

Physical Requirements

- Fit comfortably on the swimmers' head
- Compact design
- Use multiple devices in close proximity without interference
- Charge lasts for 4+ hours

Ease of Use

- Easily maintainable without knowledge of inner workings
- Interface to display tempo
- Easily recognizable pace indicator

What is a Tempo Trainer?

Emits tone to beat of tempo

Small – fits under swim cap

Swimmer sets tempo for pace

Swimmer strokes to each tone beep

What is KTT? Keep the Tempo!

A more accessible solution for deaf and hard of hearing swimmers

Our Solution – A two piece system

Tempo Trainer

Remote

Emits a pulse of light to signify tempo

Wirelessly transmits tempo to tempo trainer

Speaker: Andrew

Project Specification

Waterproof

- Withstand being submerged for 2 days
- Handle 12+ feet of water pressure
- Safe for the user and others in the pool

Physical Requirements

- Fit comfortably on the swimmers' head
- Compact design
- Use multiple devices in close proximity without interference
- Charge lasts for 4+ hours

Ease of Use

- Easily maintainable without knowledge of inner workings
- Interface to display tempo
- Easily recognizable pace indicator

8

Speaker: Andrew

Project Partners and Users

Project Partners

Mark Cronk – USA Deaf Swimming
Rene Massengale – USA Deaf Swimming
Shireen Hafeez – Deaf Kids CODE
Brian Bennet – Gallaudet Swimming
Larry Curran – Gallaudet Swimming

Deaf/Hard of Hearing Swimmers (including cochlear implant users and non-cochlear implant users) Gallaudet Swim Team

History of KTT

Speaker: Bree

2018

2019

2020

2021

2022

2023

2024

Ind. Type:

Haptic Indicator

Light Indicator

Micro:

Arduino Pro Micro

Arduino Pro Mini

Adafruit Feather Huzzah

Comm. Type:

Radio Frequency

WiFi Mesh

of Pieces:

One Device Solution

Two Device Solution

Main Focus:

1st Haptic Prototype

1st Light
Prototype +
Waterproof
Container

1st Remote
Prototype, 2
Device Solution
Development

Multiple Signals to Multiple TT Devices

Software
Re-Design +
Connectivity I
mprovements

PCB + Waterproofing

WiFi & Software

High Range

- Over 100 meters from research
- More testing to come

Reliable

 From testing, able to maintain connection with no drops for days

 Creates own WiFi & automatically connect to each other

Low Cost

Integrated into microcontroller

More extensive software testing can commence now that PCBs have arrived!

Microcontroller **Adafruit Feather Huzzah**

Houses ESP8266 WiFi chip

Embedded charging circuit

Less expensive than alternatives

Compact

Speaker: Andrew

Past - Tempo Trainer CAD

Assembled Tempo Trainer

Tempo Trainer Lid

PCB Tray

Battery Tray

13

Speaker: Andrew

Current - Tempo Trainer CAD

Assembled Tempo Trainer

Main Compartment and **Charging Cap**

Cap

Speaker: Chris

Remote CAD

Future Improvements

- Add charging pipe
- Change keypad orientation
- Make remote easier to hold with one hand
- Waterproof plastic cover for keypad

Speaker: Chris

Waterproofing

- 3D printing allows for quick prototyping
- More complex geometry can be used
- PETG itself is not waterproof, thus wilkuse vapor smoothing

- Vapor Smoothing liquifies the filaments surface
- Elimination of print lines helps with minimizing liquid entry

Speaker: Chris

Testing Waterproofing

- Testing under IPX-8 waterproof conditions.
- Submersed 12+ feet of chlorinated water for 30+ minutes
- Moisture strips to test for water leaks

Tempo Trainer PCB

Both Tempo Trainer & Remote PCBs have been reviewed and finalized for 1st iteration

Manufactured!

Soldered!

Tested!

LED Light Pipe Implementation (1)

Speaker: Bree

Part D: Fresnel Lens

 Clear lens to allow for different colors to be used as stroke pace indicator

Part A: Tempo Trainer Enclosure

Light pipe connected to PCB in enclosure using Light Pipe Mount

Part B: LED Light Pipe + Flexible Tubing

- Optical grade plastic connected to LED
- Flexible wire inside flexible tubing

Part C: Reusable/Detachable Zip Tie

- Allows wire to be attached to swimming goggles and held in place
- Adjustable for different goggles/face placement

Part B: LED Light Pipe + Flexible Tubing

Part A: LED Light Pipe MOUNT

Spring 2024 Semester PROGRESS

Speaker: Bree

Onboarding |

- Documentation
- CAD software
- PCB software

Spec. Dev.

- Documentation --> GANTT Chart
- Budget --> Budget Plan, Grant Proposal, Purchases

Conceptual Design

- Testing Protocols --> waterproofing, software, PCB
- Research --> LED light pipe implementations, waterproof solutions

Detailed Design

- Additions --> power switch (PCB, CAD), heat threaded inserts (CAD), software implementation of shift register circuit
- More iterations on CADs + PCBs

Speaker: Bree

Spring 2024 Semester PLAN

Spec. Dev.

• Documentation --> User Guide, Safety Measures, Design Document, Transition Document

Conceptual Design

- Draft Testing Protocols --> PCBs, safety testing measures
- Research --> safety measures for waterproofing/LED, product lifespan, battery life
- Conduct user surveys for aesthetics/comfortability improvements

Detailed Design

- More iterations on CADs + PCBs
- Testing --> PCBs, CAD models, comfortability, usability of LED light pipe and charging pipe, software, waterproofing at depths

Speaker: Bree

Future Considerations & Plans

- RGB LED Color
 Customizable Light
- Adjustable Brightness
- Color Customizable 3D
 Print Filament

- User testing + surveys
- More testing, debugging, iterating, modifying

- Head shape + comfortability improvements
- Wireless charging capabilities
 - Buoyant Tempo Trainer

