

Module 9 Exothermic Reactions Section 3 and 4

Last Revised – April 2024

PS Bootcamp Modules

- **Module 1: Introduction**
- **Module 2: Hazard Identification**
- **Module 3: Risk Matrix**
- **Module 4: Safeguard Concepts**
- **Module 5: Explosion/Fire Protection**
- **Module 6: Management of Change**
- **Module 7: Incident Investigation**
- **Module 8: Facility Siting**
- **Module 9: Exothermic Reactions**

Module 9: Exothermic Reactions Agenda

- ✓ Section 1 Reactive Chemicals Lesson Sharing
- ✓ Section 2 Characterizing Exothermic Reactions I
- ✓ Section 3 Characterizing Exothermic Reactions II
- ✓ Section 4 Techniques for Investigating Exothermic Reactions
- □ Section 5 Analyzing Exothermic Reaction Stability
- □ Section 6 Evaluating the Hazards of Exothermic Reactions
- Section 7 Controlling Reactive Chemistry Hazards

Section 3 – Characterizing Exothermic Reactions II

Module 9: Training Objectives – Section 3

Characterizing Exothermic Reactions:

Identify the parameters and data necessary to characterize exothermic reactions

Review General Classifications of Familiar Exothermic and Endothermic Reactions

Chemical Reactivity Hazards

Self-Reacting or Unstable Chemicals Runaway Reactions Incompatibilities

Exothermic Reaction Hazards

Key Thermochemistry Information

Adiabatic Temperature Rise

Heat Capacity

Reaction Enthalpy

Heat Production Rate/Heat of Reaction

Accumulation

MTSR (Maximum Temperature of the Synthesis Reaction)

Desired Reaction, Undesired Reaction, Decomposition, Thermal Runaway

Inadvertent Mixing

Reactivity Assessment Depth

Adiabatic Temperature Rise

Dr. Francis Stossel – Presentation on Adiabatic Temperature Rise and RC1 Data

https://www.youtube.com/watch?v=uBMohkScxBg

Hazard Classification by ΔT_{ad}

$$\Delta T_{ad} = \frac{-\Delta H (J/g)}{C_p (J/g \circ C)}$$

 $\Delta T_{ad} < 50 \text{ K}$

Reaction in most cases can be considered safe

150 K > ΔT_{ad} > 50 K

Reaction dynamics should be reviewed

 $\Delta T_{ad} > 150 \text{ K}$

Danger!!

Heat Capacity

Amount of energy required to increase the temperature of one (1) kilogram of material by one (1) degree Celsius Units – kJ/kg.K-1

Direct Role

- Accumulated Heat
- Adiabatic Temperature Rise
- MTSR

Experimental Determination Used for overall energy (or heat) balance

Reaction Enthalpy and Heat of Reaction

Enthalpy is calculated by integrating the Heat of Reaction trend over time.

Accumulation

Maximum Temperature of the Synthesis Reaction

Desired Reaction, Undesired Reaction, Decomposition, Thermal Runaway

Adiabatic runaway curves.

Inadvertent Mixing

Assess the potential for mixing whether intentional or not

- Mixing calorimeter can determine if significant heat can be released either by heat of mixing or chemical reaction
- Develop a chemical interaction matrix (HS1-d)
- Develop a materials interaction matrix (HS1-e)

Inadvertent mixing may occur at the following:

- Unloading spots
- Manifolds
- Reactor vessels
- Multi-product storage tanks
- Vent systems
- Clean up

Inadvertent Mixing Matrix

Interactions between chemicals

	Title / Project: Testproduct Location: Author:								Building Issue:	j:		Project-No. Proc. Dated: Date:				
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Chemicals	Hydrochloric Acid	Formaldehyde														
1 Epichlorhydrin	X2	X2														
2 Hydrochloric Acid		X2														
3 Formaldehyde																
4																
5																
6																
7																
8																
9																
10																
11																
12			1.71		II I A I											
13		Download/Install AIChE														

<u>HS1-d</u>

Evaluating the Reactive Hazard

Step One: Determine if the net flow of energy (heat) is into or out of the process.

Endothermic: An endothermic reaction is a reaction where energy (heat) is absorbed during the process.

Exothermic: An exothermic reaction is a reaction where energy (heat) is released during the process.

Which of the following processes is endothermic?

- A. Boiling water
- B. Burning wood
- C. Iron rusting
- D. Setting cement

Endothermic	Exothermic
Energy IN	Energy OUT
COOLER than surrounding	WARMER than surrounding

Things to keep in mind.....

Most chemical reactions are exothermic, i.e., produce heat

All reactions are progressing. Only the rate of reaction varies

Chemical reactions accelerate with increasing temperature. This rate increase is exponentially

Decomposition reactions often generate a lots of heat, with likely gas generation and accelerate strongly with temperature

Reactions can be significantly affected by contaminants, e.g., iron salts strongly accelerate the decomposition of hydroxylamine

Process times (heat up, drying, addition etc.,) tend get longer with increasing scale

Cooling and venting capacity of vessels reduces with increasing scale

Overall mixing tends to get worse with increasing scale

Consequences of an incident get more severe with increasing scale

Reactive Chemistry at Indorama

Chemistry Products		Ankleshwar	Botany	Dayton	Port Neches	Clear Lake	Chocolate Bayou	Lake Charles	Camaçari	Coatzacoalcos	Guadalajara	Maua	Montevideo	Pasadena	San Juan Del Rio	Suzano	Tremembe	Triunfo
Acid Neutralization	tralization Heavy Fuel Oil						Х											
Alkoxylation	Alkoxylates			X	Х				X	X	X	X		X				
	EO Derivatives/ Synthetic Organics	Х	Х							Х		X		Х				
Alkylation	Amines, Ethanolamines (MEA, DEA, TEA)				Х				Х									
	Nonylphenol									Х								
Alkylation, Ethoxylation, Propoxylation	Surfactants, Surfactant Intermediates		Х	х	х				Х	X	Х	х		X				
Cracking	Ethylene				Х			Х										
Cracking, Oxidation, Hydrolysis	is Propylene, Propylene Oxide, Propylene Glycol				Х													
Dehydrogenation	Linear Olefins						X											
Deliyurogenation	MEK																	X
Epoxidation	Ethylene Oxide MTBE				Х													
Esterification	Phosphate Esters			X								X		Х				
Esterification	Lactylates										Х							
	Glyceryl Esters										X							
	Sorbitan Esters										X					X		
	PEG Esters										X							
Esterification/Hydrolysis	Sec-butanol																	X
HF – Adsorption	Water/AIF3						X											
HF – Alkylation	Alkylbenzene						X					X						
Hydrolysis	Glycols (MEG, DEG, TEG)		X		Х	X			X			X						
Hydrogenation	Ethylene							X										
Methanation	Methane																	
Oxidation	Ethylene Oxide				Х	X	X		X			X						
	Amine Oxides													X				
	Amine Oxides																X	
Polymerization	Polyacrylates																X	
	Polyethers	Х		X						Х	Х	X		Х				
Sulfonation, sulfation Anionic surfactants (sulfated)													X		X	X	X	

General Classifications - Exotherms

Mild Exotherms:

- Hydrogenation
- Hydrolysis
- Isomerization
- Sulfonation
- Neutralization

Moderate Exotherms:

- Alkylation
- Esterification
- Addition Reactions (Inorganic acids & unsaturated hydrocarbons)
- Oxidation
- Polymerization
- Condensation

Critical to Control Exotherms:

Halogenation

Sensitive Exotherms:

Nitration

General Classifications - Endotherms

Calcination Electrolysis Pyrolysis or Cracking

Ref: Dow Fire & Explosion Index

Questions/Comments

Section 4 – Techniques for Investigating Exothermic Reactions

Module 9: Training Objectives – Section 4

Techniques for Investigating Exothermic Reactions:

Increase awareness of the analytical techniques for developing reactive chemistry information

Calorimetric Principle

If the sample temperature is higher than the reference temperature, then this indicates thermal activity in the sample.

> High activity

Low activity

No activity

Calorimetric Testing Devices

Adiabatic Calorimetry

Differential Scanning Calorimetry (DSC)

Vent Sizing Package (VSP2)

Automatic Pressure Tracking Adiabatic Calorimeter (APTAC)

Druckewarmestau-Apparatur (DWS) Pressure-Heat Accumulation A

Reaction Calorimetry (Semi-Batch)

Mixing Calorimetry

Adiabatic Calorimetry Measurement of Thermal Runaway

Adiabatic = no heat loss from the sample

Adiabatic conditions are realized by:

Insulation of the sample (such as in a Dewar vessel)

Maintaining the environment temperature the same as the sample temperature

Indication for adiabatic tests

Determination of P_{max} and T_{max} Design of pressure relief system (dp/dt, dT/dt) Direct determination of adiabatic induction time Development of a kinetic model

Adiabatic Calorimetry Measurement of Thermal Runaway

Information?

- temperature as f(time) and T_{max}
- pressure as f(time) and P_{max}
- dp/dt, rate of gas evolution
- dT/dt, self-heating rate

What is to be tested?

- Reactants
- Reaction products
- Reaction mixture (also semi-batch processes)

Standard Experimental Conditions:

- P_{max} : 50 bar
- Temperature range: 30 °C < T < 350 °C
- Materials of measurement cell: stainless steel, HC

Information from Adiabatic Calorimeters

Temperature/Time

Vapor Pressure

Vent Sizing Package (VSP2)

- A low phi (Φ) factor adiabatic calorimeter.
- Designed to characterize the T and P characteristics of runaway reactions for sizing Emergency Relief Systems (ERS) using the DIERS methodology.
- The temperature and pressure behavior in the VSP is the same as that which would be observed in a plant vessel.
- Additional information that can be obtained from VSP data are:
 - heats of reaction, $-\Delta H_r$
 - adiabatic temperature rise, ΔT_{ad}
 - reaction kinetics

Automatic Pressure Tracking Adiabatic Calorimeter (APTAC)

- A low phi (Φ) factor adiabatic calorimeter
- Capable of detecting and tracking exotherms at self-heat rates < 0.04 to > 400 oC/min.
- Sample bombs are prevented from bursting by pressurizing the containment vessel to keep a constant differential pressure across the wall of the sample bomb.

Operates from full vacuum to 1,200 psig and is capable of tracking pressures of about 10,000 psi/min. Principally used for characterizing runaway reactions and obtaining data required for sizing Emergency Relief Systems (ERS) using the DIERS methodology.

Druckwarmestau-Apparatur (DWS) Pressure-Heat Accumulation Apparatus

- Consists of a 750 ml stainless steel autoclave located in a hot air furnace.
- The oven temperature is maintained the same as the sample temperature.
- Pressures greater than ~580 psi are relieved through a rupture disk.
- Pressures and temperatures are recorded as a function of time.
- Induction times from three storage tests plotted logarithmically versus 1/T result in a straight line from which induction times at any storage temperature may be determined.
- The results may be applied directly to amounts up to 100 lb_m

Adiabatic Calorimetry with Low -Factor Benefits and Constraints

Benefits

Relatively small quantities of sample

Fewer limitations with respect to agitation and charging compared to the DSC

Pressure and vapor pressure data can be generated

Can examine time dependent behavior

Can characterize upset conditions

Constraints

Cost

Temperature limitations

Difficult to simulate steady state process conditions

Agitation capabilities are limited

Differential Scanning Calorimetry

Most common thermal hazards screening tool

- Fast and inexpensive
- Safe, small sample size (approx. 10 mg)

Provides information on

- Exothermic onset temperatures
- Heats of Reaction
- Melting points, glass transitions

Principle of DSC Measurements

T_{onset} = Lowest temperature at which exothermic activity is detected **Determination Method:**

Heat generation can be detected using small amounts of sample (~10 mg)

The sample and a reference substance are heated simultaneously.

The temperature increase is controlled and linear (1 to 10 oC/min).

The ΔT between the sample and reference is measured and recorded

When the Cp of the two materials are the same heat capacity, the Δ T at any instance is proportional to the heating rate of the reaction.

Thermal Stability Testing by DSC

Information?

- ✓ Time and temperature dependent heat production rate
- ✓ Onset temperature, heat of decomposition/reaction
- ✓ Need of further tests for explosion hazard?

 $(-\Delta H > 500 \text{ J/g (deflagration)}, -\Delta H > 800 \text{ J/g (detonation)})$

✓ Need of further classification tests for commercial products?

(e.g., UN 4.1 ($-\Delta H > 300 \text{ J/g}$))

✓ Basis for formal kinetic modelling of decomposition reaction,

(e.g., estimation of degradation rate and heat flow

What is to be tested?

Reactants

Reaction products

Reaction mixture (batch process)

Differential Scanning Calorimetry (DSC) Benefits and Constraints

Benefits

Quick, inexpensive

Safe-small sample size

Provides overview information

Easy to screen autocatalytic effects

Constraints

No mixing

Closed test cell

High surface to volume ratio can factor into results

Not adiabatic

Not as sensitive as other adiabatic techniques

No pressure/gas info

Cell pressure limitations

Ideal Reactors

Semibatch Process Dosing controlled vs. kinetic controlled reaction

Types of discontinuous reaction control

Semibatch Process Reaction Calorimetry

Experimental Conditions:

0.5 kg < mass < 2.0 kg,

-20 °C < Temperature < +250 °C

heat flow calorimeter

heat balance calorimeter

Maximum Temperature of the Synthesis Reaction (MSTR)

Inherent Safety Principles

 T_{exo} < (T_{onset} - 50 K), depending on activation energy and T_{onset}

Knowledge Check

APTAC and VSP2 Method used for screening for autocatalytic (secondary reaction) properties **Method for data required for sizing Emergency Reaction Calorimetry Relief Systems using DIERS Differential Seanning Calorimetry** Method used to determine MTSR - maximum temperature synthesis reaction

Questions/Comments

