Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grosse-Erdmann, Schmies, Trunk

 $\begin{array}{c} \text{SS } 2007 \\ 08.10.2007 \end{array}$

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:			Vo	. Vorname:				
MatrNr.: Studiengang:								
Die Lösungen sind geschriebene Klaus						ozugebe	n. Mit	Bleistift
Dieser Teil der Klar Rechenaufwand mi wenn nichts andere Die Bearbeitungsze	it den Ke es gesagt	enntniss ist, im	sen aus mer ein	der Vor ie kurz	elesung	lösbar s	sein. Ge	_
Die Gesamtklausubeiden Teile der K						,	•	
Korrektur								
	1	2	3	4	5	6	7	Σ

1. Aufgabe 7 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x^2 \sin x}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

Ist f im Punkt (0,0) stetig? Existieren die partiellen Ableitungen $\frac{\partial f}{\partial x}(0,0)$ und $\frac{\partial f}{\partial y}(0,0)$? Ermitteln Sie diese gegebenenfalls.

2. Aufgabe 5 Punkte

Bestimmen Sie für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = \sin x + \cos y$ alle Richtungen, in denen f im Punkt $(\frac{\pi}{4}, \frac{\pi}{4})$ den Anstieg 1 hat.

3. Aufgabe 6 Punkte

Gegeben sei die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ mit $g'(x,y) = (y+\sin x \ x + \cos y)$ sowie die Funktion $\vec{h}: \mathbb{R}^2 \to \mathbb{R}^2$ mit $\vec{h}(x,y) = (x+y, \ \pi + \sin x)^T$. Ermitteln Sie für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f = g \circ \vec{h}$ die partiellen Ableitungen $\frac{\partial f}{\partial x}(0,0)$ und $\frac{\partial f}{\partial y}(0,0)$.

4. Aufgabe 4 Punkte

Gegeben sei das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (y,\ x-z,\ -y)^T$ und eine beliebige glatte Kurve \vec{x} , die auf dem Zylindermantel $M = \{(x,y,z) \in \mathbb{R}^3 \mid x^2+y^2=1\}$ vom Punkt $(1,\ 0,\ 1)$ zum Punkt $(0,\ 1,\ 2)$ verläuft.

Bestimmen Sie den Wert des Kurvenintegrals $\int_{\vec{x}} \vec{v} \cdot \vec{ds}$.

5. Aufgabe 8 Punkte

Das Vektorfeld $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$ habe das **Vektor**potential $\vec{w}(x,y,z) = (-y,\ x,\ x+y)^T$.

Ermitteln Sie den Wert des Flußintegrals $\iint_S \vec{v} \cdot d\vec{O}$

für die Fläche $\,S=\{x^2+y^2+z^2=2,\;z\geq \overset{\smile}{1}\}$.

Hinweis: Wenden Sie einen geeigneten Integralsatz an.

6. Aufgabe 4 Punkte

Parametrisieren Sie die Fläche $S=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2=(1-z)^2,\ 0\leq z\leq\frac{1}{2}\}\ .$

7. Aufgabe 6 Punkte

Berechnen Sie den Wert des Integrals $\iint_B e^{-\frac{x}{y}} dxdy$. Dabei sei B der von

den Geraden x = 0, y = 2 und y = 2x eingeschlossene Bereich.

Hinweis: Wählen Sie eine geeignete Integrationsreihenfolge.