Дифференциальные уравнения

1 Дифференциальные уравнения первого порядка

1.1 Основные понятия

Определение

Дифференциальным уравнением называется уравнение, связывающее независимую переменную x, искомую функцию y = y(x) и ее производные $y', y'', \ldots, y^{(n)}$.

Если функции, входящие в дифференциальное уравнение, зависят от одной независимой переменной, то уравнение называется обыкновенным дифференциальным уравнением.

Если в уравнение входят частные производные неизвестных функций по нескольким независимым переменным, то уравнение называют дифференциальным уравнением с частными производными.

Мы будем рассматривать только обыкновенные дифференциальные уравнения.

Пусть x – независимая переменная, y – искомая функция этой переменной. Общий вид дифференциального уравнения будет

$$\Phi(x, y, y', y'', \dots, y^{(n)}) = 0.$$
(1)

Определение

Наивысший порядок n производных неизвестной функции называется порядком дифференциального уравнения.

Определение

Функция $y = \varphi(x)$ является решением дифференциального уравнения, если её подстановка в уравнение обращает его в тождество.

В данном параграфе мы будем рассматривать дифференциальные уравнения первого порядка. Общий вид такого уравнения будет

$$\Phi(x, y, y') = 0. \tag{2}$$

или, в решенной относительно y' форме:

$$y' = \frac{dy}{dx} = f(x, y). \tag{3}$$

Рассмотрим простейший случай, когда уравнение имеет вид:

$$y' = f(x). (4)$$

Тогда множество решений уравнения дается формулой:

$$y = \int f(x)dx + C, (5)$$

где C – произвольная постоянная. Таким образом, в этом случае мы получим семейство решений дифференциального уравнения, содержащее произвольную постоянную. Такое семейство решений называется общим интегралом уравнения. Он может выражаться в том числе и в неявной форме:

$$\psi(x, y, C) = 0$$
 или $\omega(x, y) = C.$ (6)

Определение решения по начальному условию. Теорема существования и единственности.

Уравнение (4) имеет бесконечно много решений, поскольку в формулу (5). Входит произвольная постоянная C.

Для того, чтобы получить единственное решение уравнения (4), поставим начальное условие, то есть потребуем, чтобы функция y прини-

мала заданное значение y_o при $x=x_o$:

$$y\big|_{x=x_o} = y_o \tag{7}$$

Действительно, пусть функция f(x) непрерывна на некотором интервале (a,b) и точка $x_o \in (a,b)$. Заменяя в формуле (5) неопределенный интеграл определенным с переменным верхним пределом x и нижним пределом x_o , получим:

$$y = \int_{x_0}^{x} f(t)dt + C. \tag{8}$$

Удовлетворим начальному условию. При $x=x_o$ интеграл обращается в нуль и мы получим:

$$C = y_o. (9)$$

Таким образом, уравнение (4) при начальном условии (7) имеет единственное решение:

$$y = \int_{x_o}^x f(t)dt + y_o. \tag{10}$$

Отметим, что это решение единственно на всем интервале (a, b).

Определение

Уравнение (4) вместе с заданным начальным условием (7) называется задачей Коши.

Геометрическая интерпретация.

Пусть функция f(x,y) определена и непрерывна в некоторой области Ω на плоскости XOY. Согласно уравнению (3):

$$f(x,y) = y' = \operatorname{tg} \alpha,$$

то есть в каждой точке области Ω задано направление касательной к графику функции $y = \varphi(x)$. Таким образом, уравнение (3) эквивалентно определению в области Ω поля направлений, то есть в каждой точке области Ω уравнение (3) определяет некоторое направление. Вообще говоря,

на прямой можно выбрать 2 вектора противоположных направлений, но им обоим соответствует один и тот же $\operatorname{tg} \alpha$.

Определение

Интегральные кривые уравнения (3) – это кривые l, лежащие в области Ω и обладающие свойством: в каждой точке (x,y) касательная к l имеет направление, определяемое указанными выше полем направлений.

Сформулируем теорему существования и единственности решения задачи Коши для дифференциального уравнения.

Теорема 1 (Теорема Пикара)

Если f(x,y) непрерывна и имеет непрерывную чвстную производную по y в области Ω , то через каждую точку, принадлежащую Ω , проходит одна и только одна интегральная кривая уравнения(3). Или: то для любой точки $(x_o,y_o)\in\Omega$ существует единственное решение y=y(x) уравнения, удовлетворяющее условию: $y\big|_{x=x_o}=y_o$.

Без доказательства.

Определение

Общим решением дифференциального уравнения 1-го порядка называется семейство функций $y = \varphi(x,C)$ таких, что при любом функция $\varphi(x,C)$ удовлетворяет уравнению и для любых начальных условий $y|_{x=x_o} = y_o \ ((x_o,y_o) \in \Omega)$ можно найти значение $C = C_o$, при котором $\varphi(x,C_o)$ удовлетворяет данному начальному условию.

Общее решение (общий интеграл) может выражаться в неявной форме:

$$\psi(x,y,C) = 0$$
 или $\omega(x,y) = C$.

Частное решение получается из общего при каком-то конкретном значении ${\cal C}.$

Замечание

Общего метода для решения дифференциальных уравнений не существует. Однако, в некоторых частных случаях их удается решать.

1.2 Уравнения с разделяющимися переменными

Определение

Если уравнение $\Phi(x,y,y')=0$ с помощью алгебраических преобразований удаётся привести к виду

$$y' = g(x) \cdot h(y) \tag{11}$$

или

$$M_1(x)M_2(y)dx + N_1(x)N_2(y)dy = 0, (12)$$

то оно называется уравнением с разделяющимися переменными.

Разделим переменные в уравнениях (11) и (12).

$$y' = g(x) \cdot h(y) \Leftrightarrow \frac{dy}{dx} = g(x) \cdot h(y) \Leftrightarrow \frac{dy}{h(y)} = g(x)dx$$
, где $h(y) \neq 0$. (13)

Проинтегрируем обе части уравнения (13):

$$\int \frac{dy}{h(y)} = \int g(x)dx + C$$

и получим решение уравнения в неявном виде:

$$\omega(x,y) = C.$$

$$M_1(x)M_2(y)dx + N_1(x)N_2(y)dy = 0 \quad \left| \cdot \frac{1}{N_1(x)M_2(y)} \right|$$

$$\Leftrightarrow \frac{M_1(x)}{N_1(x)}dx = -\frac{N_2(y)}{M_2(y)}dy, \text{ где } N_1(x) \neq 0, M_2(y) \neq 0.$$
(14)

Проинтегрируем обе части уравнения (14) и получим решение в неявном виде:

$$\omega(x,y) = C.$$

Пример 1

Найдем решение дифференциального уравнения:

$$\frac{dy}{dx} = -\frac{y}{x} \quad \left| \cdot \frac{dx}{y} \right| \leftarrow$$
 здесь мы предполагаем, что $y \neq 0$.

$$\int \left| \frac{dy}{y} = -\frac{dx}{x} \right| \Leftrightarrow \ln|y| = -\ln|x| + \ln C_1 \Leftrightarrow$$

$$\Leftrightarrow \ln|yx| = \ln C_1 \iff |yx| = C_1, \ C_1 \neq 0.$$

Простой подстановкой проверяется, что y=0 является решением исходного уравнения. Однако, в процессе решения мы его потеряем. Следовательно, нужно добавить его обратно:

$$\begin{vmatrix} |yx| = C_1, \ C_1 \neq 0 \\ y = 0 \end{vmatrix}$$
 $\Leftrightarrow |yx| = C$, где C – произвольная постоянная.

Изобразим интегральные кривые (решения уравнения) и поле направлений на плоскости XOY.

Рис. 1: Интегральные кривые |yx| = C.

Интегральные кривые – это гиперболы $y = \pm \frac{C}{x}$. На прямых, проходящих через начало координат, короткими отрезками показано поле направлений для данного уравнения.

Пример

Опишем процесс охлаждения тела.

Скорость охлаждения пропорциональна разности температуры тела T и

температуры окружающей среды T_c :

$$\frac{dT}{dt} = -k(T - T_c) \Leftrightarrow \frac{dT}{T - T_c} = -kdt \text{ (считаем, что } T > T_c)$$

$$\Leftrightarrow \ln(T - T_c) = -kt \ln C \Leftrightarrow T - T_c = e^{-kt + \ln C} \Leftrightarrow$$

$$\Leftrightarrow T = T_c + Ce^{-kt}.$$

Пусть задана температура тела в начальный момент времени:

$$T\big|_{t=0} = T_o.$$

Подставим это условие в решение уравнения:

$$T_o = T_c + C \cdot e^0 \iff C = T_o - T_c.$$

Таким образом, решение задачи Коши имеет вид:

$$T = T_c + (T_o - T_c) \cdot e^{-kt}.$$

1.3 Однородные уравнения

Определение

Дифференциальное уравнение 1-го порядка называется однородным, если его можно привести к виду:

$$y' = f\left(\frac{y}{x}\right). \tag{15}$$

Сведем это уравнение к уравнению с разделяющимися переменными. Для этого сделаем замену:

$$\frac{y}{x} = u \iff y = ux. \tag{16}$$

Следовательно,

$$y' = u' \cdot x + u, \quad dy = udx + xdu. \tag{17}$$

Подставим y и y' в уравнение (15):

$$u' \cdot x + u = f(u) \Leftrightarrow u' \cdot x = f(u) - u \Leftrightarrow \frac{du}{dx} \cdot = f(u) - u \Leftrightarrow \frac{du}{f(u) - u} = \frac{dx}{x} / 3$$
десь мы предполагаем, что $f(u) \neq u / 3$

$$\Leftrightarrow x = C \cdot e^{\int \frac{du}{f(u) - u}}. (18)$$

Как определить, что уравнение однородное?

С помощью метода размерностей.

Припишем функции y, переменной x и их дифференциалам некоторые размерности. Например, метры:

$$x \sim M$$
, $y \sim M$, $dx \sim M$, $dy \sim M$.

Производная $y' = \frac{dy}{dx} \sim 1$ — безразмерная величина.

Для трансцендентных функций (то есть функций, не являющихся алгебраическими: $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$, e^x , $\arcsin x$, $\operatorname{arccos} x$, $\operatorname{arcctg} x$, $\operatorname{arcctg} x$) в качестве аргумента должна стоять безразмерная величина: $e^{\frac{y}{x}}$, $\operatorname{tg}\left(\frac{y}{x}\right)$ и так далее.

Уравнение будет однородным, если в нём складываются величины одной размерности.

Например:

$$(x^{2} + xy)y' = x\sqrt{x^{2} - y^{2}} + xy + y^{2},$$

$$(M^{2} + M \cdot M) \cdot 1 = M \cdot \sqrt{M^{2} - M^{2}} + M \cdot M + M^{2}.$$

Следовательно, уравнение однородное.

Пример

$$y' = \frac{2xy}{x^2 - y^2}.$$

Замена: $u = \frac{y}{x} \Leftrightarrow y = ux$.

Соответственно, y' = u'x + u.

Подставим y и y' в исходное уравнение:

$$u'x + u = \frac{2ux^2}{x^2 - u^2x^2} \iff \frac{du}{dx} \cdot x + u = \frac{2u}{1 - u^2} \iff$$

$$\left/u \neq 1 \iff y \neq x$$
 — выполнено в силу области определения ϕ функции $y' = \frac{2xy}{x^2 - y^2}$

$$\Leftrightarrow \frac{du}{dx} \cdot x = \frac{2u}{1 - u^2} - u = \frac{2u - u + u^3}{1 - u^2} = \frac{u + u^3}{1 - u^2} \Leftrightarrow$$

$$\Leftrightarrow \frac{dx}{x} = \frac{1 - u^2}{u(1 + u^2)} du \Leftrightarrow \int \frac{dx}{x} = \int \frac{1 - u^2}{u(1 + u^2)} du \Leftrightarrow$$

$$\left/ \frac{1 - u^2}{u(1 + u^2)} = \frac{A}{u} + \frac{Bu + C}{1 + u^2} \right.$$

$$1 - u^2 = A(1 + u^2) + (Bu + C)u$$

$$u^2 : -1 = A + B$$

$$u^1 : 0 = C$$

$$u^0 : 1 = A$$

$$\Leftrightarrow \left\{ \begin{array}{l} A = 1, \\ B = -2, \\ C = 0. \end{array} \right.$$

$$\Leftrightarrow \ln|x| = \int \frac{du}{u} - \int \frac{2u}{1+u^2} du \Leftrightarrow \ln|x| = \ln|u| - \int \frac{d(1+u^2)}{1+u^2} \Leftrightarrow$$

$$\Leftrightarrow \ln|x| = \ln|u| - \ln(1 + u^2) + C_1 \Leftrightarrow \frac{x(u^2 + 1)}{u} = C \Leftrightarrow$$

$$\Leftrightarrow$$
 $\left/ u = \frac{y}{x} \right/ \Leftrightarrow x \left(\frac{y^2}{x^2} + 1 \right) = C \cdot \frac{y}{x} \Leftrightarrow \underline{x^2 + y^2 - Cy = 0}.$

Рис. 2: Окружности $x^2 + y^2 - Cy = 0$.

1.4 Дифференциальные уравнения, сводящиеся к однородным

Рассмотрим уравнение вида:

$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right). \tag{19}$$

Это уравнение можно свести к однородному с помощью следующей замены переменных:

$$\begin{cases} x = u + m \\ y = v + n \end{cases}, \text{ где } m, n = const.$$
 (20)

Тогда:

$$\frac{dv}{du} = f\left(\frac{a_1u + b_1v + a_1m + b_1n + c_1}{a_2u + b_2v + a_2m + b_2n + c_2}\right). \tag{21}$$

Постоянные m и n найдем из следующих условий:

$$\begin{cases} a_1 m + b_1 n + c_1 = 0, \\ a_2 m + b_2 n + c_2 = 0. \end{cases}$$
 (22)

Тогда уравнение становится однородным:

$$\frac{dv}{du} = f\left(\frac{a_1 + b_1 \cdot \frac{v}{u}}{a_2 + b_2 \cdot \frac{v}{u}}\right). \tag{23}$$

Если система (22) не имеет решения, то это означает, что:

$$a_2x + b_2y = \lambda(a_1x + b_1y). (24)$$

Тогда можно ввести новую переменную u вместо y:

$$u(x) = a_1 x + b_1 y + c_1 \iff y(x) = \frac{1}{b_1} (u - a_1 x - c_1). \tag{25}$$

Уравнение сведётся к следующему виду:

$$\frac{dy}{dx} = \frac{1}{b_1} \frac{du}{dx} - \frac{a_1}{b_1} = f\left(\frac{u}{\lambda u + c_2 - \lambda c_1}\right) \quad \middle| \cdot b_1 dx \tag{26}$$

Таким образом, переменные в уравнении разделились и решение находится интегрированием.

Пример 1

$$(x+y-2)dx + (x-y+4)dy = 0.$$

Сделаем замену:

$$\begin{cases} x = u + m, \\ y = v + n. \end{cases}$$

Найдём m и n:

$$\begin{cases} m+n-2 &= 0 \\ m-n+4 &= 0 \end{cases} \Leftrightarrow \begin{cases} m=2-n \\ 2-n-n+4 &= 0 \end{cases} \Leftrightarrow \begin{cases} m &= -1, \\ n &= 3. \end{cases}$$

Итак, замена:

$$\begin{cases} x = u - 1, \\ y = v + 3. \end{cases}$$

Соответственно, dx = du, dy = dv.

Подставим x и y в исходное уравнение:

$$(u-1+\upsilon+3-2)du + (u-1-\upsilon-3+4)d\upsilon \Leftrightarrow$$
$$\Leftrightarrow (u+\upsilon)du + (u-\upsilon)d\upsilon = 0.$$

Мы получим однородное уравнение.

Сделаем замену:

$$\frac{y}{v} = t \iff u = vt.$$

/ Здесь мы предполагаем, что $v \neq 0$. Если v = 0, то y = 3. Подастановка в уравнение даёт: (x+1)dx = 0.

Значит x=-1. Таким образом, v=0 даёт не функцию, а значение в одной точке, что не является решением дифференциального уравнения. \int Соответственно, du=vdt+tdv.

Подставляем в уравнение:

$$(vt+v)(vdt+tdv) + (vt-v)dv = 0 \Leftrightarrow$$

$$\Leftrightarrow v^2tdt + vt^2dv + v^2dt + vtdv + vtdv - vdv = 0 \Leftrightarrow$$

$$\Leftrightarrow (v^2t+v^2)dt = -(vt^2+vt+vt-v)dv \quad \left| \cdot \frac{1}{v} \right|$$

$$\Leftrightarrow (vt+v)dt = -(t^2+2t-1)dv \quad \left| \cdot \frac{1}{v(t^2+2t-1)} \right|$$

$$\Leftrightarrow \frac{t+1}{t^2+2t-1}dt = -\frac{dv}{v}.$$

Проинтегрируем обе части уравнения:

$$\int \frac{t+1}{t^2+2t-1} dt = -\ln|v| \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{2} \int \frac{d((t+1)^2-2)}{(t+1)^2-2} = -\ln|v| \Leftrightarrow$$

$$\Leftrightarrow \ln|(t+1)^2-2| + \ln|v| = \ln C \Leftrightarrow$$

$$\Leftrightarrow (|t^2+2t-1|^{\frac{1}{2}} \cdot |v|) = C, \quad C > 0 \Leftrightarrow$$

$$\Leftrightarrow (t^2+2t-1) \cdot v^2 = \pm C^2 = C_1, \quad C_1 \neq 0 \Leftrightarrow /t = \frac{u}{v}/\Leftrightarrow$$

$$\Leftrightarrow \left(\frac{u^2}{v^2} + 2\frac{u}{v} - 1\right)(y-3)^2 = C_1 \Leftrightarrow /\left\{\begin{array}{c} u = x+1, \\ v = y-3. \end{array}\right\} \Leftrightarrow$$

$$\Leftrightarrow \frac{\left(\frac{(x+1)^2}{(y-3)^3} + 2\frac{x+1}{y-3} - 1\right)(y-3)^2 = C_1, \text{ где } C_1 \neq 0.$$

Пример 2

$$(3x + 2y + 1)dx + (6x + 4y - 3)dy = 0.$$

Здесь $6x+4y=2\cdot(3x+2y)$. Поэтому введём новую переменную и вместо y по правилу:

$$u = 3x + 2y + 1 \iff y = \frac{1}{2}u - \frac{3}{2}x - \frac{1}{2}x$$

$$dy = \frac{1}{2}du - \frac{3}{2}dx.$$

Подставим y и dy в исходное уравнение:

$$udx + (2u - 5)\left(\frac{1}{2}du - \frac{3}{2}dx\right) = 0 \iff$$

$$\Leftrightarrow \left(u - 3u + \frac{15}{2}\right) dx = -\left(u - \frac{5}{2}\right) du \Leftrightarrow$$

$$\Leftrightarrow dx = \frac{u - \frac{5}{2}}{2u - \frac{15}{2}} du.$$

Проинтегрируем обе части уравнения:

$$x + C = \int \frac{u - \frac{5}{2}}{2u - \frac{15}{2}} du = \int \frac{u - \frac{15}{4} + \frac{15}{4} - \frac{5}{2}}{2(u - \frac{15}{4})} du =$$

$$= \int \frac{1}{2} du + \frac{5}{8} \int \frac{du}{u - \frac{15}{4}} = \frac{1}{2} u + \frac{5}{8} \ln \left| u - \frac{15}{4} \right|.$$

Учитывая, что u = 3x + 2y + 1, вернемся к старой переменной y:

$$x + C = \frac{3}{2}x + y + \frac{1}{2} + \frac{5}{8}\ln\left|3x + 2y + 1 - \frac{15}{4}\right| \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{2}x + y + \frac{1}{2} + \frac{5}{8}\ln\left|3x + 2y - \frac{11}{4}\right| = C.$$

1.5 Линейные уравнения.

Линейным уравнением первого порядка называется уравнение вида

$$y' + p(x)y = q(x), \tag{28}$$

где p(x), q(x) – заданные функции.

Рассмотрим сначала соответствующее однородное уравнение при q(x) = 0:

$$\tilde{y}' + p(x)\tilde{y} = 0. (29)$$

Переменные здесь разделяются:

$$\frac{d\tilde{y}}{dx} + p(x)\tilde{y} = 0 \iff \frac{d\tilde{y}}{\tilde{y}} + p(x)dx = 0 \iff \ln|\tilde{y}| = -\int p(x)dx \iff$$

$$\iff \tilde{y} = C \cdot e^{-\int p(x)dx}.$$
(30)

Заменим неопределённый интеграл определённым с переменным верхним пределом:

$$\tilde{y} = C \cdot e^{-\int_{x_o}^x p(t)dt}.$$
(31)

Если есть начальное условие:

$$\tilde{y}\Big|_{x=x_o} = y_o, \tag{32}$$

то $C=y_o$. Для интегрирования уравнения (28) воспользуемся методом вариации произвольных постоянных.

Будем искать решение этого уравнения в следующем виде:

$$y = u \cdot e^{-\int p(x)dx},\tag{33}$$

считая u не постоянной, а некоторой функцией от x. Дифференцируя, находим

$$y' = u' \cdot e^{-\int p(x)dx} + u \cdot e^{-\int p(x)dx} \cdot (-p(x)). \tag{34}$$

Подставив y' в уравнение (28), получим:

$$u' \cdot e^{-\int p(x)dx} = q(x) \Leftrightarrow du = q(x) \cdot e^{\int p(x)dx} \cdot dx \Leftrightarrow$$

$$\Leftrightarrow u = \int q(x) \cdot e^{\int p(x)dx} \cdot dx + C. \tag{35}$$

Подставляя u в формулу (33), получим:

$$y = e^{-\int p(x)dx} \cdot \left(\int q(x) \cdot e^{\int p(x)dx} \cdot dx + C \right). \tag{36}$$

Заменим неопределённые интегралы на интегралы с переменным верхним пределом:

$$y(x) = e^{-\int_{x_o}^x p(u)du} \cdot \left(\int_{x_o}^x q(x) \cdot e^{\int_{x_o}^v p(u)du} \cdot dv + C \right).$$
 (37)

Для ясности мы обозначаем переменные интегрирования различными буквами u и v, отличными от буквы x.

Если задано начальное условие: $y\Big|_{x=x_o}=y_o$, то $C=y_o$ и формула (37) принимает вид:

$$y(x) = e^{-\int_{x_o}^x p(u)du} \cdot \left(\int_{x_o}^x q(x) \cdot e^{\int_{x_o}^v p(u)du} \cdot dv + y_o \right).$$
 (38)

$$y(x) = \underbrace{y_o \cdot e^{-\int_{x_o}^x p(u)du}}_{\tilde{y}} + \underbrace{e^{-\int_{x_o}^x p(u)du}}_{V} \cdot \int_{x_o}^x q(x) \cdot e^{\int_{x_o}^v p(u)du} \cdot dv, \tag{39}$$

то есть $y = \tilde{y} + Y$. Таким образом, мы доказали следующую теорему:

Теорема 2 (Теорема об общем решении ЛНДУ)

Общее решение линейного неоднородного уравнения есть сумма частного решения неоднородного уравнения и общего решения однородного уравнения.

Пример 1

$$y' + \frac{1}{x} \cdot y = \frac{\sin x}{x}.$$

Замена:

$$y = u \cdot e^{-\int \frac{dx}{x}} = u \cdot e^{-\ln|x|^{-1}} = \frac{u}{x}.$$

Здесь знак " \pm " и const мы внесли в функцию u.

Соответственно,

$$y' = \frac{u'}{x} - \frac{u}{x^2}.$$

Подставим y и y' в исходное уравнение:

$$\frac{u'}{x} - \frac{u}{x^2} + \frac{1}{x} \frac{\cancel{u}}{x} = \frac{\sin x}{x} \iff u' = \sin x \iff u = -\cos x + C \iff$$

$$\Leftrightarrow \ \underline{y = \frac{1}{x}(-\cos x + C)}.$$

Пример 2

Найдём закон изменения силы тока в электрической цепи.

Рис. 3: Электрическая цепь

Здесь E=E(t) – Э.Д.С. (электродвижущая сила), R – сопротивление, L – индуктивность.

Напишем закон Ома для цепи:

$$E = I \cdot R + L \frac{dI}{dt}$$
 , где I – сила тока.

Будем считать Э.Д.С. постоянной: $E(t) = E_0$.

Пусть в начальный момент времени сила тока равна I_0 . Тогда получаем следующую задачу Коши:

$$\begin{cases} \frac{dI}{dt} + \frac{R}{L} \cdot I = \frac{E_0}{L}, \\ I(0) = I_0. \end{cases}$$

Сделаем замену:

$$I(t) = \upsilon \cdot e^{-\int \frac{R}{L}dt} = \upsilon \cdot e^{-\frac{R}{L}t}.$$

Соответственно,

$$I' = v' \cdot e^{-\frac{R}{L}t} - \frac{R}{L}v \cdot e^{-\frac{R}{L}t}.$$

Подставляем I и I' в уравнение:

$$v' \cdot e^{-\frac{R}{L}t} - \frac{R}{L}v \cdot e^{-\frac{R}{L}t} + \frac{R}{L}v \cdot e^{-\frac{R}{L}t} = \frac{E_0}{L} \iff$$

$$\Leftrightarrow v' = \frac{E_0}{L} e^{\frac{R}{L}t} \iff dv = \frac{E_0}{L} e^{\frac{R}{L}t} dt \iff$$

$$\Leftrightarrow v = \frac{E_0}{L} \cdot \int e^{\frac{R}{L}t} dt = \frac{E_0}{R} e^{\frac{R}{L}t} + C \iff / I = v \cdot e^{-\frac{R}{L}t} /$$

$$\Leftrightarrow I = \frac{E_0}{R} + C \cdot e^{-\frac{R}{L}t}.$$

Постоянную C найдем из начального условия:

$$I\Big|_{t=0} = I_0 \iff C = I_0 - \frac{E_0}{R}.$$

Итак, решение задачи Коши:

$$I(t) = \frac{E_0}{R} + \left(I_0 - \frac{E_0}{R}\right) \cdot e^{-\frac{R}{L}t}.$$

Заметим, что $I(t) \xrightarrow[t \to \infty]{E_0} \frac{E_0}{R}$, то есть при $t \to \infty$ сила тока стремится к постоянному значению $\frac{E_0}{R}$.

1.6 Уравнение Бернулли

Уравнением Бернулли называется уравнение вида

$$y' + p(x)y = q(x)y^a$$
, , где $a = const$, $a \neq 0$, $a \neq 1$. (40)

Его решение можно получить двумя способами.

I способ (сведение к линейному уравнению)

Разделим обе части уравнения (40) на y^a :

$$\frac{y'}{y^a} + p(x)y^{1-a} = q(x).$$

Сделаем замену: $z = y^{1-a}$.

Соответственно,

$$z' = (1 - a) \cdot y^{-a} \cdot y' \iff \frac{y'}{y^a} = \frac{z'}{1 - a}.$$

Подстановим z и z' в исходное уравнение:

$$\frac{1}{1-a}z' + p(x)z = q(x). \tag{41}$$

Мы получили линейное уравнение.

II способ (сведение к уравнению с разделяющимися переменными)

Сделаем замену переменной как в линейном уравнении:

$$y = u \cdot e^{-\int p(x)dx}. (42)$$

Тогда

$$y' = u' \cdot e^{-\int p(x)dx} + u \cdot e^{-\int p(x)dx} \cdot (-p(x)).$$

Подставим y и y' в уравнение (40):

$$u' \cdot e^{-\int p(x)dx} = q(x)u^a \cdot e^{-a\int p(x)dx} \Leftrightarrow$$

$$\Leftrightarrow du = q(x)u^{a} \cdot e^{(1-a)\int p(x)dx} \cdot dx \Leftrightarrow$$

$$\Leftrightarrow \frac{du}{u^{a}} = q(x) \cdot e^{(1-a)\int p(x)dx} \cdot dx. \tag{43}$$

Мы получили уравнение с разделяющимися переменными.

Пример

$$xy' + y = y^2 \ln x \Leftrightarrow y' + \frac{1}{x}y = \frac{\ln x}{x} \cdot y^2.$$

Замена:

$$y = u \cdot e^{-\int \frac{dx}{x}} = u \cdot e^{-\ln|x|} = \frac{u}{x}.$$

Соответственно,

$$y = \frac{u'}{x} - \frac{u}{x^2}.$$

Подставим y и y' в исходное уравнение:

$$\frac{u'}{x} - \frac{u}{x^2} + \frac{1}{x} \cdot \frac{u}{x} = \frac{\ln x}{x} \cdot \frac{u^2}{x^2} \iff u' = u^2 \cdot \frac{\ln x}{x^2} \iff$$

$$\Leftrightarrow \frac{du}{u^2} = \frac{\ln x}{x^2} dx \Leftrightarrow -\frac{1}{u} = \int \frac{\ln x}{x^2} dx \Leftrightarrow$$

$$\Leftrightarrow -\frac{1}{u} = -\frac{\ln x}{x} + \int \frac{dx}{x^2} = -\frac{\ln x}{x} - \frac{1}{x} - C \iff$$

$$\Leftrightarrow \frac{1}{u} = \frac{\ln x}{x} + \frac{1}{x} + C \iff u = \frac{x}{1 + Cx + \ln x} \Leftrightarrow$$

$$\Leftrightarrow \underline{y = \frac{1}{1 + Cx + \ln x}}.$$

1.7 Уравнения в полных дифференциалах

Определение

Дифференциальное уравнение вида

$$M(x,y)dx + N(x,y)dy = 0 (44)$$

называется уравнением в полных дифференциалах, если его левая часть представляет собой полный дифференциал некоторой функции u(x,y):

$$Mdx + Ndy = du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy. \tag{45}$$

Условие того, что Mdx+Ndy представляет собой полный дифференциал:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.\tag{46}$$

Если это условие выполнено, то восстановить функцию u(x,y) с точностью до константы по её известному полному дифференциалу

$$du = M(x,y)dx + N(x,y)dy (47)$$

можно с помощью криволинейного интеграла. А именно, зафиксируем некоторую точку (x_o, y_o) . Тогда криволинейный интеграл

$$u(x,y) = \int_{L} \left(M(x,y)dx + N(x,y)dy \right) \tag{48}$$

по произвольной кривой от точки (x_o, y_o) до текущей точки (x, y) даст значение функции u(x, y), дифференциал которой имеет вид (47). Изменение начальной точки (x_o, y_o) приводит к добавлению постоянной (функция u(x, y) находится с точностью до константы).

Формула (48) принимает более удобный вид, если кривую L выбрать в виде ломаной, показанной на рисунке.

Рис. 4: Кривая L в виде ломаной.

При таком выборе L имеем:

$$u(x,y) = \int_{x_{-}}^{x} M(x,y_{o})dx + \int_{y_{-}}^{y} N(x,y)dy.$$
 (49)

Соответственно, решение уравнения:

$$u(x,y) = C. (50)$$

Пример

$$(\sin(xy) + xy\cos(xy))dx + x^2\cos(xy)dy = 0.$$

Проверим, что левая часть уравнения представляет собой полный дифференциал.

$$\frac{\partial M}{\partial y} = x\cos(xy) + x\cos(xy) - x^2y\sin(xy) =$$

$$= 2x\cos(xy) - x^2y\sin(xy),$$

$$\frac{\partial N}{\partial x} = 2x\cos(xy) - x^2y\sin(xy).$$

Таким образом, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ и мы можем воспользоваться формулой (49). В качестве точки (x_o, y_o) выберем начало координат (0, 0). Тогда:

$$u(x,y) = \int_{0}^{x} (\sin(x \cdot 0) + x \cdot 0 \cdot \cos(x \cdot 0)) dx + \int_{0}^{y} x^{2} \cos(xy) dy =$$

$$= x \cdot \sin(xy)\Big|_0^y = x\sin(xy) = C.$$

Итак, общий интеграл уравнения:

$$x\sin(xy) = C.$$

Интегрирующий множитель.

В некоторых случаях, когда уравнение Mdx + Ndy = 0 не является уравнением в полных дифференциалах, удаётся подобрать функцию $\mu(x,y)$, после умножения на которую левая часть уравнения превращается в полный дифференциал:

$$du = \mu M dx + \mu N dy. \tag{51}$$

Такая функция $\mu(x,y)$ называется интегрирующим множителем. Напи-

шем условие того, что du является полным дифференциалом:

$$\frac{\partial}{\partial y}(\mu M) = \frac{\partial}{\partial x}(\mu N) \Leftrightarrow$$

$$\Leftrightarrow \frac{\partial \mu}{\partial y} \cdot M + \mu \cdot \frac{\partial M}{\partial y} = \frac{\partial \mu}{\partial x} \cdot N + \mu \cdot \frac{\partial N}{\partial x} \Leftrightarrow$$

$$\Leftrightarrow N \frac{\partial \mu}{\partial x} - M \frac{\partial \mu}{\partial y} = \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) \mu \Leftrightarrow$$

$$\Leftrightarrow N \cdot \frac{1}{\mu} \cdot \frac{\partial \mu}{\partial x} - M \cdot \frac{1}{\mu} \cdot \frac{\partial \mu}{\partial y} = \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \Leftrightarrow$$

$$\Leftrightarrow N \cdot \frac{\partial \ln \mu}{\partial x} - M \cdot \frac{\partial \ln \mu}{\partial y} = \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}.$$

$$(52)$$

Таким образом, для нахождения интегрирующего множителя мы получим уравнение в частных производных. Иногда удаётся найти его решение.

Если $\mu = \mu(x)$, то $\frac{\partial \mu}{\partial y} = 0$ и уравенине (52) примет вид:

$$\frac{d\ln\mu}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}.$$
 (53)

Если правая часть уравнения не зависит от y, то $\ln \mu$ находится интегрированием.

Пример

$$\underbrace{\frac{\left(x+y^2\right)}{M}}_{M} \underbrace{\frac{-2xy}{N}}_{N} dy = 0.$$

$$\underbrace{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}_{N} = \underbrace{\frac{2y - \left(-2y\right)}{-2xy}}_{=2xy} = -\frac{2}{x}.$$

Тогда уравнение (53) примет вид:

$$\frac{d \ln \mu}{dx} = -\frac{2}{x} \iff \ln \mu = -2 \ln |x| + C.$$

Поскольку интегрирующий множитель $\mu(x)$ – это одно из решений уравнения (53), то выберем C=0. Тогда:

$$\ln \mu = -2 \ln |x| = \ln \frac{1}{x^2} \iff \mu = \frac{1}{x^2}.$$

Домножим исходное уравнение на $\mu = \frac{1}{x^2}$:

$$\frac{x+y^2}{x^2}dx - 2\frac{xy}{x^2}dy = 0.$$

Мы получили уравнение в полных дифференциалах. В качестве точки (x_o, y_o) выберем (1, 0). Тогда:

$$u(x,y) = \int_{1}^{x} \frac{1}{x} dx - 2 \int_{0}^{y} \frac{y}{x} dy = \ln|x| - \frac{y^{2}}{x} = C.$$

Итак, общий интеграл уравнения:

$$\underline{x = C_1 \cdot e^{\frac{y^2}{x}}}.$$

1.8 Особые решения дифференциальных уравнений

Определение

Решение $y=\varphi(x)$ дифференциального уравнения

$$\Phi(x, y, y') = 0 \tag{54}$$

называется особым, если в каждой его точке нарушается свойство единственности, то есть если через каждую его точку (x_o, y_o) кроме этого решения проходит и другое решение, имеющее в точке (x_o, y_o) ту же касательную, что и решение $y = \varphi(x)$, но не совпадающее с ним в сколь угодно малой окрестности (x_o, y_o) . График особого решения будем называть особой интегральной кривой уравнения (54).

Пример

$$\frac{dy}{dx} = 3y^{\frac{2}{3}} \quad \left| \cdot \frac{dx}{3y^{\frac{2}{3}}} \right| \leftarrow$$
 здесь мы предполагаем, что $y \neq 0$.

$$\Leftrightarrow \frac{1}{3}y^{-\frac{2}{3}}dy = dx \Leftrightarrow y^{\frac{1}{3}} = x + C \Leftrightarrow y = (x + C)^3$$

Таким образом, интегральные кривые – это семейство кубических парабол, получаемых параллельными переносом вдоль оси OX.

Рис. 5: Интегральные кривые $y = (x + C)^3$.

Однако, уравнение имеет ещё решение y=0, которое не содержится в общем решении. Дело в том, что частная производная по у от правой части уравнения равна $2y^{-\frac{1}{3}}$, то есть не существует при y=0. А значит Теорема Пикара о существовании и единственности решения дифференциального уравнения будет выполнена только при y>0 и при y<0. Эти области заполнены параболами. Через каждую точку проходит только одна парабола.

Через точку $(x_o, 0)$ проходит ещё решение y = 0, то есть единственности решения нет. Если выделить отрезок $x_o - \delta \leqslant x \leqslant x_o + \delta$, то в нём определены четыре решения уравнения:

- 1) Парабола BAC;
- 2) Отрезок оси DAE;
- 3) Линия BAE (парабола и отрезок оси);

4) Линия DAC (отрезок оси и парабола).

Действительно, в уравнении участвует только функция y и её производная y'. При y=0 функция y и производная y' сохраняют непрерывность, в том числе при переходе с прямой на параболу. Таким образом, можно свободно переходить с параболы на прямую и составлять любые их коомбинации без нарушения уравнения. Итак, через каждую точку $(x_o, 0)$ на оси проходит "в малом" (то есть для сколь угодно малого δ) 4 итегральные кривые.

Если взять точку (x_o, y_o) при $y_o > 0$, то через неё проходит единственная парабола. Но если, спускаясь по указанной параболе, мы дойдём до оси OX, то там у нас есть бесконечно много возможностей продолжать эту интегральную линию:

- а) Спускаться по той же параболе;
- б) Идти по оси;
- в) Идти по оси направо, а затем подниматься по другой параболе; И так далее.

Таким образом, через каждую точку плоскости не "в малом", а "в целом" проходит бесконечно много интегральных кривых.

С вопросом об особых решениях тесно связаны теория бифуркаций и теория катастроф. Катастрофами называются скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. Теория бифуркаций изучает изменение качественной картины при изменении параметров, от которых зависит система. В частности, при каких значениях параметров происходит разветвление или слияние интегральных кривых для дифференциальных уравнений, описывающих данную систему.

2 Дифференциальные уравнения высших порядков

2.1 Основные понятия

Обыкновенное дифференциальное уравнение n – го порядка имеет вид

$$\Phi(x, y, y', y'', \dots, y^{(n)}) = 0,$$
 (55)

или, в решённом относительно старшей производной $y^{(n)}$, вид

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)}).$$
 (56)

Всякая функция y(x), имеющая непрерывные производные вплоть до n — го порядка и удовлетворяющая уравнению (55) или (56), называется решением этого уравнения, а сама задача нахождения решений дифференциального уравнения называется задачей интегрирования дифференциального уравнения.

Пример

Рассмотрим прямолинейное движение точки массы m под действием силы $\overrightarrow{F} = \overrightarrow{F} \left(t, x, \frac{dx}{dt} \right)$. Силу \overrightarrow{F} считаем функцией времени t, координаты x и скорости $\frac{dx}{dt}$. Здесь мы приняли прямую, по которой движется точка, за ось OX. II закон Ньютона даёт нам дифференциальное уравнение движения:

$$m\frac{d^2x}{dt^2} = F\left(t, x, \frac{dx}{dt}\right). \tag{57}$$

Итегрирование уравнения (57) определит зависимость x от t. Для получения определённого решения задачи мы должны задать ещё начальные условия движения, а именно положение точки и её скорость в некоторый начальный момент времени, например при t=0:

$$\begin{cases} x \Big|_{t=0} = x_o, \\ \frac{dx}{dt} \Big|_{t=0} = x'_o. \end{cases}$$

$$(58)$$

Для уравнения n – го порядка (55) или (56) начальные условия состоят в задании функции y и её производных до (n-1) – го порядка включительно при некотором занчении $x=x_o$:

$$\begin{cases} y|_{x=x_{o}} = y_{o}, \\ y'|_{x=x_{o}} = y'_{o}, \\ \dots \\ y^{(n-1)}|_{x=x_{o}} = y_{o}^{(n-1)}. \end{cases}$$
(59)

Здесь $x_o, y_o, y'_o, \ldots, y_o^{(n-1)}$ — определённые числа. Для уравнения n — го порядка (56) имеет место теорема существования и единственности, аналогичная теореме Пикара.

Теорема 3 (Теорема существования и единственности решения)

Пусть функция $f(x,y,y',\ldots,y^{(n-1)})$ однозначна, непрерывна и имеет непрерывные частные производные по $y,y',\ldots,y^{(n-1)}$ при значениях аргументов $(x_o, y_o, y'_o, \ldots, y_o^{(n-1)})$ и всех значениях, достаточно близких к ним. Тогда уравнение (56) имеет единственное решение, удовлетворяющее начальным условиям (59).

Без доказательства.

Общее решение дифференциального уравнения можно определить по аналогии с формулами (5) и (6) для уравнения 1 – го порядка.

Определение

Общее решение дифференциального уравнения n – го порядка – это семейство функций

$$y = \varphi(x, C_1, C_2, \dots, C_n), \tag{60}$$

удовлетворяющих уравнению при любых значениях C_1, C_2, \ldots, C_n . Также это семейство должно удовлетворять условиям, что при любых начальных условиях найдётся такой набор постоянных C_1, C_2, \ldots, C_n такой, что функция $\varphi(x, C_1, C_2, \ldots, C_n)$ удовлетворяет этим начальным условиям.

Общее решение может быть записано и в неявном виде:

$$\psi(x, y, C_1, C_2, \dots, C_n) = 0. \tag{61}$$

Придавая C_1, C_2, \ldots, C_n определённые значения, получим частное решение уравнения (56).

2.2 Уравнения, допускающие понижение порядка

1) Уравнения вида $y^{(n)} = f(x)$.

Уравнение $y^{(n)} = f(x)$ решается с помощью n – кратного интегрирования.

Пример

$$y''' = \sin x \iff y'' = -\cos x + C_1 \iff y' = -\sin x + C_1 x + C_2 \iff$$
$$\iff y = \cos x + \frac{C_1}{2} \cdot x^2 + C_2 x + C_3.$$

2) Уравнения вида $\Phi(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0$.

Здесь уравнение не содержит функции y и её нескольких последовательных производных $y', y'', \ldots, y^{(k-1)}$.

Сделаем замену:

$$z(x) = y^{(k)}. (62)$$

Тогда порядок уравнения понизится на k единиц:

$$\Phi\left(x, z, z', \dots, z^{(n-k)}\right) = 0. \tag{63}$$

Если мы найдём общий интеграл этого последнего уравнения

$$z = \varphi(x, C_1, C_2, \dots, C_{n-k}), \tag{64}$$

то у определится из уравнения:

$$y^{(k)} = \varphi(x, C_1, C_2, \dots, C_{n-k}). \tag{65}$$

Пример

$$y'' + \frac{y'}{x} = x.$$

Сделаем замену: y' = z(x). Тогда $y'' = \frac{dz}{dx}$.

Подставим y и y' в уравнение:

$$z' + \frac{1}{x}z = x$$
 — линейное уравнение 1 — го порядка.

Замена:

$$z = u \cdot e^{-\int \frac{dx}{x}} \iff z = u \cdot e^{-\ln|x|} \iff$$

$$\Leftrightarrow z = \frac{u}{|x|} \iff z = \frac{u}{x}.$$

/

Знак и константу интегрирования внести в функцию u./

Тогда $z' = -\frac{u}{x^2} + \frac{1}{x} \cdot u'$ и уравнение примет вид:

$$-\frac{u}{x^2} + \frac{1}{x} \cdot u' + \frac{1}{x} \cdot \frac{u}{x} = x \iff u' = x^2 \iff u = \frac{x^3}{3} + C_1.$$

Вернёмся к старым переменным.

$$z = \frac{u}{x} = \frac{x^2}{3} + \frac{C_1}{x}$$

$$y' = z \iff y = \int z dx = \int \left(\frac{x^2}{3} + \frac{C_1}{x}\right) dx = \frac{x^3}{9} + C_1 \ln|x| + C_2.$$

3) Уравнения вида $\Phi(y, y', y'', \dots, y^{(n)}) = 0$.

Здесь уравнение не содержит независимой переменной x.

Примем y за независимую переменную и сделаем замену:

$$y' = p(y). (66)$$

Этим мы понизим порядок уравнения на 1. В ответе получим функцию x=x(y).

Найдём как преобразуются старшие производные при такой замене.

$$y'' = \frac{d}{dx} \left(\underbrace{\frac{dy}{dx}}_{p} \right) = \frac{d}{dx} (p(y)) = \frac{dp}{dy} \cdot \underbrace{\frac{dy}{dx}}_{p} = p \cdot \frac{dp}{dy}. \tag{67}$$

$$y''' = \frac{d}{dx}(y'') = \frac{d}{dx}\left(p(y) \cdot \frac{dp}{dy}\right) = \frac{dp}{dx} \cdot \frac{dp}{dy} + p(y) \cdot \frac{d}{dx}\left(\frac{dp}{dy}\right) =$$

Пример

$$2yy'' + \left(y'\right)^2 = 0.$$

Сделаем замену: y' = p(y).

Тогда $y'' = p \frac{dp}{dy}$.

Подставим y' и y'' в уравнение:

$$2yp\frac{dp}{dy} + p^2 = 0$$
 $\left| \begin{array}{c} \cdot \frac{dy}{p} \leftarrow \end{array} \right|$ здесь теряем решение $p = 0$ (или $y = C$)

$$\Leftrightarrow 2ydp + pdy = 0$$
 $\left| \begin{array}{c} \frac{1}{2yp} \leftarrow \end{array} \right|$ здесь теряем решения: $y = 0$ и $p = 0 \Leftrightarrow y = C$

$$\Leftrightarrow \frac{dp}{p} + \frac{dy}{2y} = 0 \Leftrightarrow \frac{dp}{p} = -\frac{1}{2}\frac{dy}{y}.$$

Проинтегрируем левую и правую части уравнения:

$$\ln|p| = -\frac{1}{2}\ln|y| + \frac{1}{2}\ln C_1 \iff 2\ln|p| + \ln|y| = \ln C_1 \iff$$

$$\Leftrightarrow \ln p^2 |y| = \ln C_1 \Leftrightarrow p^2 |y| = C_1 \Leftrightarrow p = \pm \sqrt{\frac{C_1}{|y|}} \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} p = \pm \frac{\sqrt{C_1}}{\sqrt{y}} & \text{при } y > 0 \\ & \Leftrightarrow \middle/ p = y' = \frac{dy}{dx} \middle/ \Leftrightarrow \begin{bmatrix} \sqrt{y} dy = \pm \sqrt{C_1} dx, \ y > 0 \\ \\ p = \pm \frac{\sqrt{C_1}}{\sqrt{-y}} & \text{при } y < 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \frac{2}{3}y^{\frac{3}{2}} = \pm\sqrt{C_1}x + C_2, \ y > 0 \\ \Leftrightarrow \frac{2}{3}|y|^{\frac{3}{2}} = \pm\sqrt{C_1}x + C_2 \\ \frac{2}{3}(-y)^{\frac{3}{2}} = \pm\sqrt{C_1}x + C_2, \ y < 0 \end{bmatrix}$$

$$\Leftrightarrow |y|^{\frac{3}{2}} = \widetilde{C_1}x + \widetilde{C_2}.$$

Заметим, что в это решение входят потерянные ранее частные решения y=0 и y=C.

4) Уравнения вида
$$\frac{d}{dx}\Phi(x,y,y',\ldots,y^{(n-1)})=0$$
.

Здесь левая часть уравнения представляет собой полную производную по x.

Проинтегрировав уравнение, мы понизим его порядок на 1.

Пример

$$e^{x+(y')^2} + 2y'y'' \cdot e^{x+(y')^2} = 0 \iff \frac{d}{dx} \left(e^{x+(y')^2} \right) = 0 \iff$$

$$\Leftrightarrow e^{x+(y')^2} = C \Leftrightarrow x + (y')^2 = C_1 \Leftrightarrow y' = \pm \sqrt{C_1 - x} \Leftrightarrow$$

$$\Leftrightarrow dy = \pm (C_1 - x)^{\frac{1}{2}} dx = \mp (C_1 - x)^{\frac{1}{2}} d(C_1 - x) \Leftrightarrow$$

$$\Leftrightarrow y = \mp \frac{2}{3}(C_1 - x)^{\frac{3}{2}} + C_2.$$

5) Уравнения вида $\Phi\Big(x,y,y',\ldots,y^{(n)}\Big)=0,$ где Φ — однородная функция относительно $y,y',\ldots,y^{(n)}.$ Определение

 $\Phi(x, y, y', \dots, y^{(n)})$ называется однородной функцией k – го порядка относительно переменных $y, y', \dots, y^{(n)}$, если она удовлетворяет следующему свойству:

$$\Phi\left(x, ty, ty', \dots, ty^{(n)}\right) = t^k \cdot \Phi\left(x, y, y', \dots, y^{(n)}\right). \tag{69}$$

При $y \neq 0$ сделаем замену переменных:

$$z = \frac{y'}{y}. (70)$$

Тогда производые преобразуются по следующему правилу:

$$y' = zy,$$

$$y'' = z'y + zy' = z'y + z^2y,$$

и так далее.

Таким образом, порядок уравнения понизится на 1. Функцию y=0 следует рассмотреть отдельно.

Пример

$$xyy'' - x(y')^2 - yy' = 0.$$

Сделаем замену:

$$z = \frac{y'}{y} \Leftrightarrow y' = zy / 3$$
десь мы предполагаем, что $y \neq 0 /$,

$$y'' = y(z' + z^2).$$

Подставим y и y' в исходное уравнение:

$$xy^{2}(z'+z^{2}) - xz^{2}y^{2} - y^{2}z = 0 \quad \left| \cdot \frac{1}{y^{2}} \right|$$

$$\Leftrightarrow xz' - z = 0 \Leftrightarrow xdz = zdx \Leftrightarrow$$

$$\Leftrightarrow \frac{dz}{z} = \frac{dx}{x}$$
 \leftarrow здесь теряем решение $z = 0 \Leftrightarrow y = C$

$$\Leftrightarrow \ln|z| = \ln|x| + \ln C \Leftrightarrow |z| = C|x|, C > 0 \Leftrightarrow$$

$$\Leftrightarrow z = C_1 x, C_1 \neq 0 \Leftrightarrow \left/ z = \frac{y'}{y} \right/ \Leftrightarrow \frac{y'}{y} = C_1 x \Leftrightarrow$$

$$\Leftrightarrow \frac{dy}{dx} = C_1 xy \Leftrightarrow \frac{dy}{y} = C_1 x dx \Leftrightarrow$$

$$\Leftrightarrow \ln |y| = \frac{C_1 x^2}{2} + \ln C_2 \Leftrightarrow |y| = C_2 \cdot e^{\frac{C_1}{2}x^2}, C_2 > 0 \Leftrightarrow$$

$$\Leftrightarrow y = \widetilde{C}_2 \cdot e^{\frac{C_1}{2}x^2}, \ \widetilde{C}_2 \neq 0, \ C_1 \neq 0.$$

Заметим, что функция y=0 также является решением уравнения. Однако, в процессе решения мы её потеряли. Следовательно, нужно добавить её в ответ. Сделаем это сняв ограничение на постоянную \widetilde{C}_2 . Аналогично поступим с решением y=C, сняв ограничение на C_1 .

Otbet:
$$y = C_3 \cdot e^{\frac{C_4}{2}x^2}$$
.

3 Линейные дифференциальные уравнения n – го порядка

3.1 Линейные однородные дифференциальные уравнения

Определение

Уравнение вида

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$
 (71)

называется линейным однородным дифференциальным уравнением n – го порядка.

Обозначение: ЛОДУ.

Теорема 4

Если y_1 и y_2 – четные решения ЛОДУ (71), то $\lambda y_1 + \mu y_2$, где $\lambda, \mu = const$ также будет решением этого уравнения.

Доказательство:

Подставим $\lambda y_1 + \mu y_2$ в уравнение (71):

$$(\lambda y_1 + \mu y_2)^{(n)} + a_1(x) \cdot (\lambda y_1 + \mu y_2)^{(n-1)} + \dots + a_n(x) \cdot (\lambda y_1 + \mu y_2) =$$

/ Перегруппируем слагаемые, воспользовавшись линейностью дифференцирования. /

$$\lambda \left(\underbrace{y_1^{(n)} + a_1(x)y_1^{(n-1)} + \dots + a_n(x)y_1}_{=0 \text{ в силу уравнения (71)}} \right) +$$

$$+\mu\left(\underbrace{y_2^{(n)}+a_1(x)y_2^{(n-1)}+\ldots+a_n(x)y_2}_{0}\right)=0.$$

Итак, мы доказали, что множество решений замкнуто относительно ли-

нейных операций (сложение функций и умножение функций на число). Следовательно, оно образует линейное пространство.

Определение линейной независимости элементов уже было дано в линейной алгебре. Поясним, какую специфику оно имеет в случае пространства функций y(x).

Определение

Функции $y_1(x), y_2(x), \ldots, y_n(x)$ называют линейно зависимым на интервале (a, b), если существуют постоянные $\alpha_1, \alpha_2, \ldots, \alpha_n$, не все равные нулю, такие, что для всех значений x из этого интервала справедливо тождество:

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) \equiv 0. \tag{72}$$

Если же тождество выполняется только при $\alpha_1=\alpha_2=\ldots=\alpha_n=0,$ то функции y_1,y_2,\ldots,y_n называют линейно независимым.

Замечание

Для двух функций определение упрощается. 2 функции $y_1(x)$ и $y_2(x)$ будет линейно зависимыми на интервале (a,b), если выполнено:

$$\frac{y_1(x)}{y_2(x)} = \lambda = const \quad (\text{то есть } y_1 = \lambda y_2).$$

Пример 1

Набор функций $1, x, x^2, x^3$ будет линейно независимым на всей вещественной оси. Чтобы проверить это, приравняем к нулю линейную комбинацию этих функций.

$$\alpha_1 \cdot 1 + \alpha_2 \cdot x + \alpha_3 \cdot x^2 + \alpha_4 \cdot x^3 \equiv 0 \quad \forall x \,$$
только при $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.$

Действительно, если хотя бы один из коэффициентов $\alpha_i \neq 0$, то в левой части тождества стоит полином степени не выше третьей.

По основной теореме алгебры он может обращаться в нуль не более чем в 3 точках. А у нас равенство нулю тождественное.

Значит
$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.$$

Пример 2

Набор функций: $1, 3\sin^2 x, 4\cos^2 x$ является линейно зависимым на R. Действительно, при $\alpha_1 = -1, \alpha_2 = \frac{1}{3}, \alpha_3 = \frac{1}{4}$ получим:

$$\alpha_1 \cdot 1 + \alpha_2 \cdot 3\sin^2 x + \alpha_3 \cdot 4\cos^2 x = -1 + \underbrace{\sin^2 x + \cos^2 x}_{1} = 0.$$

Определение

Любой набор из n линейного независимых решений $y_1(x), y_2(x), \ldots, y_n(x)$ уравнения (71) называется фундаментальной системой решений этого уравнения.

Проверить линейную независимость решений $y_1(x), y_2(x), \ldots, y_n(x)$ можно с помощью определителя Вронского:

$$W(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}$$
(73)

Поскольку вронскиан составлен из функций $y_i(x)$, то он сам является функцией одной переменной x.

Теорема 5

 $W(y_1,y_2,\ldots,y_n)\equiv 0 \quad \forall x \quad \Leftrightarrow \quad$ решения $y_1(x),y_2(x),\ldots,y_n(x)$ линейно зависимы.

 $W \neq 0$ хотя бы для какого-нибудь $x \Leftrightarrow$ решения $y_1(x), y_2(x), \ldots, y_n(x)$ линейно независимы.

Без доказательства.

Пример 3

В примерах 1 и 2 линейную независимость решений можно было прове-

рить с помощью определителя Вронского.

$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 0 & 1 & 2x & 3x^2 \\ 0 & 0 & 2 & 6x \\ 0 & 0 & 0 & 6 \end{vmatrix} = 12 \neq 0 \ \Rightarrow$$
 функции $1, x, x^2, x^3$ линейно независимы.

$$\begin{vmatrix} 1 & 3\sin^2 x & 4\cos^2 x \\ 0 & 3\sin 2x & -4\sin 2x \\ 0 & 6\cos 2x & -8\cos 2x \end{vmatrix} = \begin{vmatrix} 3\sin 2x & -4\sin 2x \\ 6\cos 2x & -\cos 2x \end{vmatrix} \equiv 0.$$

Следовательно, 1, $3\sin^2 x$, $4\cos^2 x$ линейно зависимы.

Замечание

Теорему 5 можно уточнить на случай, когда функции $y_1(x), y_2(x), \ldots, y_n(x)$ являются решениями ЛОДУ (71):

Теорема 6

Если $y_1(x), y_2(x), \ldots, y_n(x)$ — решения одного и того же ЛОДУ (71) с непрерывными коэффициентами $a_1(x), \ldots, a_n(x)$, то вронскиан $W(y_1, y_2, \ldots, y_n)$ либо равен нулю тождественно, либо не обращается в нуль ни в одной точке.

Доказательство будет приведено позднее.

Теорема 7

Общее решение ЛОДУ есть линейная комбинация решений y_1, y_2, \ldots, y_n из фундаментальной системы решений:

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x), \tag{74}$$

где C_1, C_2, \ldots, C_n – произвольные постоянные.

Доказательство:

По теореме 4 линейная комбинация решений ЛОДУ есть решение. Для того, чтобы проверить, что это общее решение, нужно убедиться, что

при любых начальных условиях в некоторой точке x_o :

$$\begin{cases} y(x_o) = y_o, \\ y'(x_o) = y'_o, \\ \dots \\ y^{(n-1)}(x_o) = y_o^{(n-1)}, \end{cases}$$
(75)

найдутся такие постоянные C_1, C_2, \ldots, C_n , что y(x) будет удовлетворять этим условиям.

Проверим это. Подставим y(x) из (74) в условия (75). Мы получим систему линеных алгебраических уравнений для коэффициентов C_1, C_2, \ldots, C_n :

$$\begin{cases}
C_1 y_1(x_o) + C_2 y_2(x_o) + \dots + C_n y_n(x_o) = y_o, \\
C_1 y_1'(x_o) + C_2 y_2'(x_o) + \dots + C_n y_n'(x_o) = y_o', \\
\dots \\
C_1 y_1^{(n-1)}(x_o) + C_2 y_2^{(n-1)}(x_o) + \dots + C_n y_n^{(n-1)}(x_o) = y_o^{(n-1)}.
\end{cases}$$
(76)

Определитель этой неоднородной линейной системы — это вронскиан $W(y_1, y_2, \ldots, y_n)$. Для фундаментальной системы решений y_1, y_2, \ldots, y_n он не обращается в нуль ни в одной точке (согласно теоремам 5 и 6 и определению фундаментальной системы). Значит определитель системы (76) отличен от нуля и по альтернативе Фредгольма система имеет единственное решение при любой правой части.

Свойства определителя Вронского.

- 1) Формула Лиувилля Остроградского.
- а) Рассмотрим линейное однородное уравнение второго порядка:

$$y'' + p(x)y' + q(x)y = 0. (77)$$

Пусть $y_1(x)$, $y_2(x)$ – решения этого уравнения.

Воронскиан решений y_1, y_2 имеет вид:

$$W(x) = W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2.$$
 (78)

Выясним характер зависимости W(x).

Для этого составим дифференциальное уравнение для W(x) и решим его.

Найдём производную $\frac{dW}{dx}$.

$$\frac{dW}{dx} = (y_1y_2' - y_1'y_2)_x' = y_1'y_2' + y_1y_2'' - y_1''y_2 - y_1'y_2' = y_1y_2'' - y_1''y_2 = y_1'y_2' - y_1''y_2 = y_1''y_2' - y_1''y_2' -$$

 $\int y_1''$ и y_2'' выразим из уравнения (77) :

$$y_1'' = -py_1' - qy_1, \quad y_2'' = -py_2' - qy_2.$$

$$= -py_1y_2' - qy_1y_2 + py_1'y_2 + qy_1y_2 = -p(y_1y_2' - y_1'y_2) = -pW.$$
 (79)

Таким образом, $\frac{dW}{dx}$ оказалось выражено через W(x), и мы получили дифференциальное уравнение:

$$\frac{dW}{dx} = -pW. (80)$$

Пусть $W(x) \ge 0$. Тогда W(x) отлична от нуля в некоторой точке x_0 . В силу непрерывности W(x) будет отличны от нуля в некоторой окрестности точки x_0 . В этой окрестности разделим обе части уравнения (80) на W:

$$\frac{dW}{W} = -p(x)dx \iff \ln|W| = -\int_{x_0}^{x} p(x)dx + C_1 \iff W = C \cdot e^{-\int_{x_0}^{x} p(x)dx}.$$

При $x = x_0$ получим:

$$W(x_0) = C \cdot \underbrace{e^{-\int\limits_{x_0}^x p(x)dx}}_{1} = C.$$

Следовательно,

$$W(x) = W(x_0) \cdot e^{-\int_{x_0}^{x_0} p(x)dx}$$
(81)

– формула Лиувилля – Остроградского.

Из формулы (81) следует, что если определитель Вронского отличен от нуля в некоторой точке x_0 , то он будет отличен от нуля на всей вещественной оси.

Формула (81) доказывает теорему 6 для уравнения второго порядка. б) Докажем формулу Лиувилля — Остроградского для линейного однородного уравнения n — го порядка:

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0.$$
 (82)

Пусть y_1, y_2, \ldots, y_n – решения уравнения (82).

$$W(x) = W(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ y''_1 & y''_2 & \dots & y''_n \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$
(83)

Найдём производную $\frac{dW}{dx}$. Производная от поределителя есть сумма определителей, в каждом из которых продифференцирована одна из его строк.

Мы получили уравнение, аналогичное уравнению (80):

$$\frac{dW}{dx} = -a_1(x)W. (85)$$

Решая его, приходим к формуле:

$$W(x) = W(x_o) \cdot e^{-\int_{x_o}^x a_1(x)dx}$$
(86)

- формула Лиувилля Остроградского для уравнения n го порядка. Формула (86) доказывает теорему 6 в общем случае.
- 2) Построение общего решения уравнения y'' + p(x)y' + q(x)y = 0 в случае, когда одно из частных решений известно.

Рассмотрим уравнение вида

$$y'' + p(x)y' + q(x)y = 0.$$
 (87)

В общем случае его решение найти не удаётся. Однако, если известно некоторое частное решение $y_1(x) \ge 0$, то можно построить линейно независимое с ним решение $y_2(x)$. Это позволит написать общее решение уравнения (87):

$$y = C_1 y_1 + C_2 y_2. (88)$$

Составим дифференциальное уравнение для y_2 и решим его. Найдём про-изводную $\frac{d}{dx} \left(\frac{y_2}{y_1} \right)$.

$$\frac{d}{dx}\left(\frac{y_2}{y_1}\right) = \frac{y_2'y_1 - y_1'y_2}{y_1^2} = \frac{W(y_1, y_2)}{y_1^2} \stackrel{=}{\underset{(81)}{=}} \frac{W(x_0) \cdot e^{-\int_{x_0}^x p(t)dt}}{y_1^2} \Rightarrow$$

$$\Rightarrow \frac{y_2}{y_1} = \int \frac{W(x_o) \cdot e^{-\int_{x_o}^{\infty} p(t)dt}}{y_1^2} dx \Leftrightarrow y_2 = W(x_o) \cdot y_1 \cdot \int e^{-\int_{x_o}^{x} p(t)dt} \cdot \frac{dx}{y_1^2}.$$
(89)

Если $\int e^{-\int\limits_{x_0}^x p(t)dt} \cdot \frac{dx}{y_1^2} \neq 0$, то решения y_1 и y_2 линейно независимы

и можно написать общее решение уравнения (87) : $y = C_1 y_1 + C_2 y_2$.

3.2 Линейные однородные дифференциальные уравнения с постоянными коэффициентами

Рассмотрим уравнение

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0, (90)$$

где a_1, a_2, \ldots, a_n — некоторые постоянные. Согласно теореме 7, для того чтобы найти общее решение уравнения (90), нужно найти фундаментальную систему решений, то есть n линейно независимых решений уравнения (90): y_1, y_2, \ldots, y_n .

Будем искать эти решения в виде:

$$y = e^{\lambda x}. (91)$$

Подставим $y = e^{\lambda x}$ в уравнение (90).

Так как $y' = \lambda e^{\lambda x}, \ldots, y^{(n)} = \lambda^n e^{\lambda x}$, получим:

$$(\lambda^n + a_1 \lambda^{n-1} + \dots + a_n)e^{\lambda x} = 0 \Leftrightarrow$$

$$\lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0. \tag{92}$$

Пусть λ – корень уравнения (92). Тогда $e^{\lambda x}$ есть решение уравнения (90). Уравнение (92) называется характеристическим уравнением для ЛОДУ (90). По основной теореме алгебры уравнение (92) имеет n корней (с учётом кратности). Вообще говоря, это комплексные корни.

Пусть $\lambda_1, \lambda_2, \ldots, \lambda_n$ – корни уравнения (92). Нетрудно увидеть, что решения, отвечающие различным корням λ_1, λ_2 , линейно независимы. Действительно, составим определитель Вронского:

$$W\left(e^{\lambda_1 x}, e^{\lambda_2 x}\right) = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} \\ \lambda e^{\lambda_1 x} & \lambda e^{\lambda_2 x} \end{vmatrix} = (\lambda_2 - \lambda_1)e^{(\lambda_2 + \lambda_1)x} \neq 0.$$

Замечание

Линейную независимость решений можно проверить и для n различных

корней $\lambda_1, \ldots, \lambda_n$.

$$W\left(e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}\right) = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \dots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \dots & \lambda_n e^{\lambda_n x} \\ \dots & \dots & \dots & \dots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \dots & \lambda_n^{n-1} e^{\lambda_n x} \end{vmatrix} =$$

$$= e^{(\lambda_1 + \lambda_2 + \dots + \lambda_n)x} \cdot \begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \dots & \dots & \dots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix} =$$

$$=e^{(\lambda_1+\lambda_2+\ldots\ldots+\lambda_n)x}\cdot\prod_{\substack{i,j=1\i>j}}^n(\lambda_i-\lambda_j)
eq 0 \Rightarrow$$
 решения линейно независимы.

Здесь мы получили определитель Вандермонда, значение которого известно.

Таким образом, если все корни характеристического уравнения первой кратности n вещественны, то фундаментальная система решений состоит из следующих функций:

$$e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}.$$
 (93)

Если среди корней есть кратные, то для каждого из них нужно найти столько линейно независимых решений, какова его кратность. Рассмотрим эту ситуацию для уравнения 2 порядка:

$$y'' + a_1 y' + a_2 y = 0. (94)$$

Напишем характеристическое уравнение:

$$\lambda^2 + a_1 \lambda + a_2 = 0. \tag{95}$$

Пусть λ_1 – корень 2 кратности характеристического уравнения. Тогда дискриминант уравнения равен нулю: $D=a_1^2-4a_2=0$. Следовательно,

$$\lambda_1 = -\frac{a_1}{2}.\tag{96}$$

Одно из решений уравнения (94) — это $e^{\lambda_1 x}$. Найдём второе решение, линейно независимое с ним. Будем искать его в виде:

$$y_2 = u(x) \cdot e^{\lambda_1 x}. (97)$$

Тогда:

$$y_2' = e^{\lambda_1 x} (u' + \lambda_1 u),$$

$$y_2'' = e^{\lambda_1 x} (u'' + 2\lambda_1 u' + \lambda_1^2).$$

Подставим y_2, y_2', y_2'' в исходное уравнение (94):

$$e^{\lambda_1 x} \left(u'' + 2\lambda_1 u' + \lambda_1^2 \right) + a_1 e^{\lambda_1 x} \left(u' + \lambda_1 u \right) + a_2 u e^{\lambda_1 x} = 0$$

$$\Leftrightarrow e^{\lambda_1 x} \left(u'' + \underbrace{(2\lambda_1 + a_1)}_{=0 \text{ (в силу (96))}} u' + \underbrace{(\lambda_1^2 + a_1 \lambda_1 + a_2)}_{=0 \text{ (в силу (95))}} u \right) = 0 \Leftrightarrow$$

$$\Leftrightarrow u'' = 0 \Leftrightarrow u = C_1 x + C_2. \tag{98}$$

Выберем функцию u следующим образом: u = x. Тогда:

$$y_2 = x \cdot e^{\lambda_1 x}. (99)$$

Проверим, что решения y_1 и y_2 будут линейно независимы:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{\lambda_1 x} & x \cdot e^{\lambda_1 x} \\ \lambda_1 e^{\lambda_1 x} & e^{\lambda_1 x} + \lambda_1 x e^{\lambda_1 x} \end{vmatrix} = e^{2\lambda_1 x} \neq 0.$$

Таким образом, фундаментальная система решений для уравнения (94) имеет вид:

$$e^{\lambda_1 x}$$
, $xe^{\lambda_1 x}$.

В общем случае для уравнения n – го порядка ситуация такова:

Каждому вещественному корню λ уравнения (92) кратности r соответствуют r линейно независимых решений уравнения (90):

$$e^{\lambda x}, x e^{\lambda x}, x^2 e^{\lambda x}, \dots, x^{r-1} e^{\lambda x}.$$
 (100)

Пусть $\lambda = \alpha + i\beta$ – комплексный корень характеристического уравнения. Так как мы рассматриваем уравнение с вещественными коэффициентами, то из линейной алгебры известно, что если комплексное число $\alpha - i\beta$ есть корень полинома кратности r, то $\alpha - i\beta$ также будет являться корнем этого полинома кратности r. Тогда $e^{(\alpha+i\beta)x}$ и $e^{(\alpha-i\beta)x}$ будут решениями уравнения (90).

Линейные комбинации этих решений также будут решениями уравнения (90):

$$\frac{1}{2}e^{(\alpha+i\beta)x} + \frac{1}{2}e^{(\alpha-i\beta)x} = e^{\alpha x}\cos\beta x,\tag{101}$$

$$\frac{1}{2i}e^{(\alpha+i\beta)x} - \frac{1}{2i}e^{(\alpha-i\beta)x} = e^{\alpha x}\sin\beta x. \tag{102}$$

Составим определитель Вронского и убедимся, что эти решения будут линейно независимыми:

$$W(x) = \begin{vmatrix} e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\ \alpha e^{\alpha x} \cos \beta x - \beta e^{\alpha x} \sin \beta x & \alpha e^{\alpha x} \sin \beta x + \beta e^{\alpha x} \cos \beta x \end{vmatrix} =$$

$$= \alpha e^{2\alpha x} \cos \beta x \sin \beta x + \beta e^{2\alpha x} \cos^2 \beta x - \alpha e^{2\alpha x} \sin \beta x \cos \beta x +$$

$$+\beta e^{2\alpha x} \sin^2 \beta x = \beta e^{2\alpha x} \underbrace{\left(\cos^2 \beta x + \sin^2 \beta x\right)}_{=1} = \beta e^{2\alpha x} \neq 0.$$

Таким образом, паре комплексно сопряжённых корней $\alpha \pm i\beta$ первой кратности соответствуют 2 линейно независимых решения уравнения (90):

$$e^{\alpha x}\cos\beta x,\ e^{\alpha x}\sin\beta x.$$
 (103)

Если $\alpha \pm i\beta$ являются корнями кратности r, то соотвтетствующий набор линейно независимых решений таков:

$$e^{(\alpha+i\beta)x}, e^{(\alpha-i\beta)x}, xe^{(\alpha+i\beta)x}, xe^{(\alpha-i\beta)x}, \dots$$

$$\dots, x^{r-1}e^{(\alpha+i\beta)x}, x^{r-1}e^{(\alpha+i\beta)x}. \tag{104}$$

Проверим, что функции из набора (104) действительно являются решениями уравнения (90).

Введём обозначение: $\lambda_1 = \alpha + i\beta$ (аналогично для $\lambda_1 = \alpha - i\beta$).

При $\lambda_1 = \alpha + i\beta$ набор функций (104) приобретает вид:

$$e^{\lambda_1 x}, xe^{\lambda_1 x}, \dots, x^{r-1}e^{\lambda_1 x}.$$

Выясним специфику уравнения (90) в случае, когда характеристическое уравнение имеет корень λ_1 кратности r.

После подстановки $e^{\lambda x}$ в уравнение (90) его левая часть примет вид:

$$(e^{\lambda x})^{(n)} + a_1(e^{\lambda x})^{(n-1)} + \dots + a_n e^{\lambda x} = P(\lambda)e^{\lambda x}, \qquad (105)$$

где
$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$$
 (106)

– характеристический полином (левая часть характеристического уравнения).

Напомним определение кратности корня.

 λ_1 есть корень кратности r характеристического полинома, если выполнено:

$$P(\lambda_1) = 0, \ P'(\lambda_1) = 0, \ \dots, \ P^{(r-1)}(\lambda_1) = 0, \ P^{(r)}(\lambda_1) \neq 0.$$
 (107)

Продифференцируем m раз уравнение (105) по переменной λ . Используя формулу Лейбница для m – ой производной произведения $P(\lambda)e^{\lambda x}$, получим:

$$(x^m e^{\lambda x})^{(n)} + a_1 (x^m e^{\lambda x})^{(n-1)} + \dots + a_n (x^m e^{\lambda x}) =$$

$$= \sum_{k=0}^m C_m^k \cdot P^{(k)}(\lambda) \cdot x^{m-k} \cdot e^{\lambda x}. \tag{108}$$

Подставим в уравнение $\lambda = \lambda_1$.

При $m \leqslant r-1$ по формуле (107) в правой части уравнения (108) получим 0:

$$(x^m e^{\lambda_1 x})^{(n)} + a_1 (x^m e^{\lambda_1 x})^{(n-1)} + \dots + a_n (x^m e^{\lambda_1 x}) = 0.$$
 (109)

Из уравнения (109) нетрудно увидеть, что функция $x^m e^{\lambda_1 x}$ будет являться решением уравнения (90) при $m \leqslant r - 1$.

Следовательно, функции из набора (104) являются решениями уравнения (90).

Подведём итог.

В фундаментальную систему решений ЛОДУ (90) нужно включать следующие функции, соответствующие корням характеристического уравнения:

а) λ_1 – вещественный корень первой кратности:

$$e^{\lambda_1 x}$$
; (110)

б) λ_1 – вещественный корень кратности r:

$$e^{\lambda_1 x}, x e^{\lambda_1 x}, \dots, x^{r-1} e^{\lambda_1 x};$$
 (111)

в) $\lambda_1 = \alpha \pm i \beta$ – пара комплексно сопряжённых корней первой кратности:

$$e^{\alpha x}\cos\beta x,\ e^{\alpha x}\sin\beta x;$$
 (112)

г) $\lambda_1 = \alpha \pm i\beta$ – пара комплексно сопряжённых корней кратности r:

$$e^{\alpha x}\cos\beta x$$
, $e^{\alpha x}\sin\beta x$, $xe^{\alpha x}\cos\beta x$, $xe^{\alpha x}\sin\beta x$,

$$\dots x^{r-1}e^{\alpha x}\cos\beta x, \ x^{r-1}e^{\alpha x}\sin\beta x. \tag{113}$$

Общее решение ЛОДУ в соответствии с теоремой 7 есть линейная комбинация функций из фундаментальной системы решений с произвольными коэффициентами.

Примеры

Найдём общие решения следующих уравнений:

1)
$$y''' - 2y'' - y' + 2y = 0$$
.

Характеристическое уравнение:

$$\lambda^{3} - 2\lambda^{2} - \lambda + 2 = 0 \Leftrightarrow \lambda^{2}(\lambda - 2) - (\lambda - 2) = 0 \Leftrightarrow (\lambda - 2)(\lambda - 1)(\lambda + 1) = 0.$$

Фундаментальная система решений (Ф.С.Р.):

$$\begin{cases} y_1 = e^{2x}, \\ y_2 = e^x, \\ y_3 = e^{-x}. \end{cases}$$

Общее решение:

$$y = C_1 e^{2x} + C_2 e^x + C_3 e^{-x}.$$

2)
$$y''' - 3y'' + 3y' - y = 0$$
.

Характеристическое уравнение:

$$\lambda^3 - \lambda^2 + 3\lambda - 1 = 0 \iff (\lambda - 1)^3 = 0.$$

 $\lambda=1$ – корень третьей кратности.

$$\Phi.\text{C.P.}: \begin{cases} y_1 = e^x, \\ y_2 = xe^x, \\ y_3 = x^2e^x. \end{cases}$$

Общее решение:

$$\underline{y = C_1 e^x + C_2 x e^x + C_3 x^2 e^x}.$$

3)
$$y''' - 8y = 0$$
.

Характеристическое уравнение:

$$\lambda^3 - 8 = 0 \Leftrightarrow (\lambda - 2)(\lambda^2 + 2\lambda + 4) = 0 \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} \lambda = 2 \\ \lambda = \frac{-2 \pm \sqrt{4 - 16}}{2} = \underbrace{-1}_{\alpha} \pm \underbrace{\sqrt{3}}_{\beta} i \end{cases}; \quad \Phi.\text{C.P.} : \begin{cases} y_1 = e^{2x}, \\ y_2 = e^{-x} \cos(\sqrt{3}x), \\ y_3 = e^{-x} \sin(\sqrt{3}x). \end{cases}$$

Общее решение:

$$\underline{y = C_1 e^{2x} + C_2 e^{-x} \cos(\sqrt{3}x) + C_3 e^{-x} \sin(\sqrt{3}x).}$$

4)
$$y^{IV} + 8y'' + 16y = 0$$
.

Характеристическое уравнение:

$$\lambda^4 + 8\lambda^2 + 16 = 0 \Leftrightarrow (\lambda^2 + 4)^2 = 0 \Leftrightarrow \lambda^2 = -4 \Leftrightarrow \lambda = \pm 2i$$

– каждый из корней второй кратности.

Общее решение:

$$y = C_1 \cos 2x + C_2 \sin 2x + C_3 x \cos 2x + C_4 x \sin 2x.$$

5)
$$y^{IV} + 4y''' + 8y'' + 8y' + 4y = 0.$$

Характеристическое уравнение:

$$\lambda^4 + 4\lambda^3 + 8\lambda^2 + 8\lambda + 4 = 0 \iff (\lambda^2 + 2\lambda + 2)^2 = 0 \iff$$

$$\Leftrightarrow \lambda = \frac{-2 \pm \sqrt{4-8}}{2} = -1 \pm i$$
 – каждый из корней второй кратности.

Общее решение:

$$y = C_1 e^{-x} \cos x + C_2 e^{-x} \sin x + C_3 x e^{-x} \cos x + C_4 x e^{-x} \sin x.$$

6)
$$y^V - y^{IV} + 2y''' - 2y'' + y' - y = 0.$$

Характеристическое уравнение:

$$\lambda^5 - \lambda^4 + 2\lambda^3 - 2\lambda^2 + \lambda - 1 = 0 \iff (\lambda - 1)(\lambda^4 + 2\lambda^2 + 1) = 0 \iff$$

$$\Leftrightarrow \ (\lambda-1)\big(\lambda^2+1\big)^2=0 \ \Leftrightarrow \ \left[\begin{matrix} \lambda=1 \\ \\ \lambda=\pm i \end{matrix}\right. - каждый из корней второй кратности.$$

Общее решение:

$$y = C_1 e^x + C_2 \cos x + C_3 \sin x + C_4 x \cos x + C_5 x \sin x.$$

3.3 Линейные неоднородные дифференциальные уравнения

Определение

Уравнение вида

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x)$$
(114)

называется линейным неоднородным дифференциальным уравнением n – го порядка.

Обозначение: ЛНДУ.

Теорема 8 (Теорема об общем решении ЛНДУ)

Общее решение ЛНДУ (114) есть сумма частного решения неоднородного уравнения (114) и общего решения соответствующего однородного уравнения:

$$y(x) = \widetilde{y}(x) + Y(x), \tag{115}$$

где $\widetilde{y}(x)$ – общее решение однородного уравнения, Y(x) – частное решение неоднородного уравнения.

Доказательство:

Пусть Y — некоторое решение ЛНДУ (114). Будем искать общее решение y уравнения (114) в виде: $y=\widetilde{y}+Y$. Мы докажем теорему, если покажем, что для \widetilde{y} возникает задача об общем решении соответствующего ЛОДУ. Подставим $y=\widetilde{y}+Y$ в уравнение (114):

$$\widetilde{y}^{(n)} + Y^{(n)} + a_1(x)\widetilde{y}^{(n-1)} + a_1Y^{(n-1)} + \dots + a_n(x)\widetilde{y} + a_n(x)Y = f(x) \Leftrightarrow$$

$$\Leftrightarrow \left(\widetilde{y}^{(n)} + a_1 \widetilde{y}^{(n-1)} + \ldots + a_n \widetilde{y}\right) + \underbrace{\left(Y^{(n)} + a_1 Y^{(n-1)} + \ldots + a_n Y\right)}_{=f(x) \text{ (так как } Y - \text{ решение (114)})} = f(x)$$

$$\Leftrightarrow \widetilde{y}^{(n)} + a_1(x) \widetilde{y}^{(n-1)} + \ldots + a_n(x) \widetilde{y} = 0,$$

то есть функция \widetilde{y} удовлетворяет однородному уравнению. Для того, чтобы проверить, что \widetilde{y} есть общее решение, нужно убедиться, что \widetilde{y} удовлетворяет задаче Коши с произвольными начальными условиями. Функция y должна удовлетворять следующим начальным условиям:

$$\begin{cases} y(x_o) = \widetilde{y}(x_o) + Y(x_o) = y_o, \\ y'(x_o) = \widetilde{y}'(x_o) + Y'(x_o) = y'_o, \\ \dots \\ y^{(n-1)}(x_o) = \widetilde{y}^{(n-1)}(x_o) + Y^{(n-1)}(x_o) = y_o^{(n-1)}, \end{cases}$$
(116)

где $y(x_o), y'(x_o), \ldots, y^{(n-1)}(x_o)$ – произвольные числа. Тогда для функции \widetilde{y} возникает задача Коши:

$$\begin{cases}
\widetilde{y}(x_o) = y_o + Y(x_o), \\
\widetilde{y}'(x_o) = y'_o + Y'(x_o), \\
\dots \\
\widetilde{y}^{(n-1)}(x_o) = y_o^{(n-1)} + Y^{(n-1)}(x_o),
\end{cases} (117)$$

где начальные условия могут быть произвольными.

Таким образом, для \widetilde{y} возникла задача Коши об общем решении ЛОДУ, что и доказывает теорему.

Общее решение ЛОДУ даётся формулой (74):

$$\widetilde{y}(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x),$$
 (118)

где y_1, y_2, \ldots, y_n — функции из фундаментальной системы решений, C_1, C_2, \ldots, C_n — произвольные постоянные.

Если известно общее решение \widetilde{y} однородного уравнения, то можно найти частное решение неоднородного. Для этого существуют различные методы.

3.4 Метод вариации произвольных постоянных (метод Лангранжа)

1) Рассмотрим уравнение второго порядка:

$$y'' + a_1(x)y' + a_2(x)y = f(x). (119)$$

Пусть общее решение соответствующего однородного уравнения имеет вид:

$$\tilde{y} = C_1 y_1 + C_2 y_2, \tag{120}$$

где y_1, y_2 — линейно независимые решения однородного уравнения, C_1, C_2 — произвольные постоянные.

Будем искать частное решение ЛНДУ (119) в следующем виде:

$$Y = u_1(x)y_1 + u_2(x)y_2. (121)$$

Здесь $u_1(x), u_2(x)$ – некоторые функции, которые нам нужно найти. Отметим сходство формул (120) и (121). Мы вырьируем произвольнуе постоянные C_1, C_2 в формуле (120) и получаем вместо них некоторые функции $u_1(x), u_2(x)$.

Найдём производные Y', Y'' и подставим их в уравнение (119).

$$Y' = u_1'y_1 + u_1y_1' + u_2'y_2 + u_2y_2'.$$

Так как мы ищем частное решение уравнения, наложим на функции u_1, u_2 дополнительное ограничение:

$$u_1'y_1 + u_2'y_2 = 0. (122)$$

Тогда Y' примет вид:

$$Y' = u_1 y_1' + u_2 y_2'.$$

Соответственно,

$$Y'' = u_1'y_1' + u_1y_1'' + u_2'y_2' + u_2y_2''.$$

Подставим Y, Y', Y'' в исходное уравнение (119):

$$u_1'y_1' + u_1y_1'' + u_2'y_2' + u_2y_2'' + a_1u_1y_1' + a_1u_2y_2' + a_2u_1y_1 + a_2u_2y_2 = f(x) \Leftrightarrow$$

$$\Leftrightarrow u_1 \underbrace{(y_1'' + a_1 y_1' + a_2 y_1)}_{=0} + u_2 \underbrace{(y_2'' + a_1 y_2' + a_2 y_2)}_{=0} +$$

$$/ = 0 \text{ (так как } y_1, y_2 - \text{ решения ЛОДУ)} /$$

$$+ u_1' y_1' + u_2' y_2' = f(x) \Leftrightarrow u_1' y_1' + u_2' y_2' = f(x).$$

$$(123)$$

Учитывая введённые ранее ограничения (122), получаем систему уравнений для функций u'_1, u'_2 :

$$\begin{cases} u'_1 y_1 + u'_2 y_2 = 0, \\ u'_1 y'_1 + u'_2 y'_2 = f(x). \end{cases}$$
(124)

Определитель этой системы представляет собой определитель Вронского решений y_1, y_2 :

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0. \tag{125}$$

Определитель Вронского не равен нулю ни в одной точке в силу линейной независимости решений y_1, y_2 .

Следовательно, система (124) разрешима единственным образом и при любой правой части. Пусть её решения имеют вид:

$$\begin{cases} u_1' = \varphi_1(x), \\ u_2' = \varphi_2(x). \end{cases}$$
 (126)

Тогда функции $u_1(x), u_2(x)$ находятся интегрированием:

$$\begin{cases} u_1 = \int \varphi_1(x) dx, \\ u_2 = \int \varphi_2(x) dx. \end{cases}$$
 (127)

2) Рассмотрим уравнение n – го порядка:

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = f(x).$$
 (128)

Здесь все построения аналогичны.

Решение ЛОДУ имеет вид:

$$\widetilde{y} = C_1 y_1 + C_2 y_2 + \dots + C_n y_n.$$
 (129)

Частное решение ЛНДУ ищем в виде:

$$Y = u_1(x)y_1(x) + u_2(x)y_2(x) + \dots + u_n(x)y_n(x).$$
 (130)

Следуя описанной процедуре получаем следующую систему уравнений для функций u_1', u_2', \ldots, u_n' :

Определитель этой системы – это определитель Вронского:

$$\begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix} \neq 0$$
 ни в одной точке. (132)

Следовательно, система (131) разрешима единственным образом и при любой правой части. Решая её, находим u'_1, u'_2, \ldots, u'_n . Функции $u_1(x), u_2(x), \ldots, u_n(x)$ находятся интегрированием.

Пример

Решим следующее неоднородное уравнение:

$$y'' - \frac{1}{x}y' = x^2.$$

Соответствующее однородное уравнение имеет вид:

$$\widetilde{y}'' - \frac{1}{x}\widetilde{y}' = 0.$$

Сделаем замену: $\widetilde{y}' = z(x)$. Тогда $\widetilde{y}'' = \frac{dz}{dx}$.

Подставим \widetilde{y}' и \widetilde{y}'' в уравнение:

$$z' - \frac{1}{x} \cdot z = 0 \iff$$

 $\Leftrightarrow \frac{dz}{dx} = \frac{1}{x} \cdot z \quad | \cdot \frac{dx}{z} \leftarrow$ здесь мы теряем решение $z = \widetilde{y}' = 0 \Leftrightarrow \widetilde{y} = const$

$$\Leftrightarrow \frac{dz}{z} = \frac{dx}{x} \left| \int \Leftrightarrow \ln|z| = \ln|x| + \ln C \Leftrightarrow z = \pm Cx = \widetilde{C}_1 x. \right|$$

Вернёмся к старой переменной.

$$\widetilde{y}' = \widetilde{C}_1 x \iff \widetilde{y} = \frac{\widetilde{C}_1}{2} x^2 + C_2 = C_1 x^2 + C_2.$$

Заметим, что в это решение входит потерянное ранее решение $\widetilde{y}=const.$

Частное решение неоднородного уравнения будем искать в виде:

$$Y = u_1(x) \cdot x^2 + u_2(x).$$

Система уравнений (124) для функций u'_1, u'_2 примет вид:

$$\begin{cases} u'_1 \cdot x^2 + u'_2 = 0 \\ u'_1 \cdot 2x + u'_2 \cdot 0 = x^2 \end{cases} \Leftrightarrow \begin{cases} u'_1 = \frac{1}{2}x, \\ u'_2 = -\frac{1}{2}x^3. \end{cases}$$

Функции u_1, u_2 находятся интегрированием. Поскольку мы ищем частное решение уравнения, положим константы интегрирования равными нулю:

$$\begin{cases} u_1 = \frac{1}{4}x^2, \\ u_2 = -\frac{1}{8}x^4. \end{cases}$$

Соответственно,

$$Y = \frac{1}{4}x^4 - \frac{1}{8}x^4 = \frac{1}{8}x^4.$$

Следовательно, общее решение ЛНДУ имеет вид:

$$y = \widetilde{y} + Y = C_1 x^2 + C_2 + \frac{1}{8} x^4.$$

3.5 Интеграл Дюамеля

Рассмотрим важный частный случай ЛНДУ с постоянными коэффициентами:

$$y'' + k^2 y = f(x), (133)$$

где k — некоторая вещественная постоянная.

Решим соответствующее однородное уравнение:

$$\widetilde{y}'' + k^2 \widetilde{y} = 0. ag{134}$$

Характеристическое уравнение:

$$\lambda^2 + k^2 = 0 \iff \lambda^2 = -k^2 \iff \lambda = \pm ik.$$

Тогда общее решение однородного уравнения имеет вид:

$$\widetilde{y} = C_1 \cos kx + C_2 \sin kx. \tag{135}$$

Частное решение Y ЛНДУ (133) ищем в виде:

$$Y = u_1(x)\cos kx + u_2(x)\sin kx.$$
 (136)

Система уравнений (124) для функций u'_1, u'_2 примет вид:

$$\begin{cases} u'_1 \cos kx + u'_2 \sin kx = 0, \\ u'_1 \cdot (-k \sin kx) + u'_2 \cdot k \cos kx = f(x). \end{cases}$$
 (137)

$$(137) \cdot k \cos kx + (138) \cdot (-\sin kx)$$
:

$$u'_{1} \cdot k \cos^{2} kx + u'_{1} \cdot k \sin^{2} kx = -f(x) \cdot \sin kx \iff$$

$$\Leftrightarrow u'_{1}(x) = -\frac{1}{k} f(x) \sin kx. \tag{139}$$

$$(137) \cdot k \sin kx + (138) \cdot \cos kx :$$

$$u_2' \cdot k \sin^2 kx + u_2' \cdot k \cos^2 kx = f(x) \cdot \cos kx \iff$$

$$\Leftrightarrow u_2'(x) = \frac{1}{k} f(x) \cos kx. \tag{140}$$

Функции u_1, u_2 находятся интегрированием:

$$u_1(x) = -\frac{1}{k} \int_{x_o}^x f(z) \sin kz dz,$$
 (141)

$$u_2(x) = \frac{1}{k} \int_{x_o}^x f(z) \cos kz dz, \qquad (142)$$

Соответственно,

$$Y = -\frac{\cos kx}{k} \int_{x_o}^{x} f(z) \sin kz dz + \frac{\sin kx}{k} \int_{x_o}^{x} f(z) \cos kz dz =$$

$$= \frac{1}{k} \int_{x_o}^{x} f(z) \cdot \underbrace{\left(-\cos kx \sin kz + \sin kx \cos kz\right)}_{\sin(kx-kz)} =$$

$$= \frac{1}{k} \int_{x_0}^{x} f(z) \sin(k(x-z)) dz.$$
 (143)

Полученный интеграл называется интегралом Дюамеля.

Общее решение уравнения (133) имеет вид:

$$y = \tilde{y} + Y = C_1 \cos kx + C_2 \sin kx + \frac{1}{k} \int_{x_0}^{x} f(z) \sin(k(x-z)) dz.$$
 (144)

Замечание

При решении задачи Коши:

$$\begin{cases} y'' + k^2 y = f(x), \\ y(x_o) = y_o, \\ y'(x_o) = y'_o \end{cases}$$
 (145)

в формуле (144) необходимо выбрать константы C_1, C_2 , Чтобы удовлетворить начальным условиям. При этом следует иметь в виду, что интеграл Дюамеля

$$Y = \frac{1}{k} \int_{x_0}^{x} f(z) \sin(k(x-z)) dz$$

удовлетворяет нулевым начальным условиям:

$$\begin{cases} Y(x_o) = 0, \\ Y'(x_o) = 0, \end{cases}$$

$$\tag{146}$$

что позволяет упростить поиск констант C_1, C_2 . Проверим это.

$$Y(x_o) = \frac{1}{k} \int_{x_o}^{x} f(z) \sin(k(x-z)) dz = 0.$$

Для вычисления Y' воспользуемся формулой:

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x, z) dz = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} (f(x, z)) dz + f(x, b(x)) b'(x) - f(x, a(x)) a'(x).$$
(147)

Тогда

$$Y'(x_o) = \left(\frac{1}{k} \int_{x_o}^{x} f(z) \frac{\partial}{\partial x} (\sin(k(x-z))) dz + \frac{1}{k} f(x) \underbrace{\sin(k(x-z))}_{=0}\right) \bigg|_{x=x_o} =$$

$$= \frac{1}{k} \int_{x_o}^{x_o} f(z) \cdot k \cos(k(x_o - z)) dz = 0.$$

Интеграл Дюамеля часто используется при решении задач о колебаниях в механических системах или электрических цепях.

3.6 Метод неопределённых коэффициентов

Метод неопределённых коэффициентов работает только для линейных неоднородных уравнений с <u>постоянными</u> коэффициентами и правой частью f(x) специального вида.

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x), \tag{148}$$

где a_1, a_2, \ldots, a_n – некоторые постоянные.

В некоторых случаях решение дифференциального уравнения удаётся подобрать. Составим таблицу видов частных решений для различных видов правых частей f(x).

Таблица видов частных решений для различных видов правых частей

Правая часть дифференциаль-	Корни характеристиче-	Виды частного решения
ного уравнения	ского уравнения	Zii, Sii Tuo Iio To Poliiciiiii
nore y pasiremin	1) Число 0 не явля-	
$P_m(x)$	ется корнем характери-	$\widetilde{P}_m(x)$
	стического уравнения	$\prod_{i=1}^{n} m(x_i)$
	2) Число 0 является	
	корнем характери-	$x^s \widetilde{P}_m(x)$
	стического уравнения	$\begin{bmatrix} x & 1 & m(x) \end{bmatrix}$
	кратности s 1) Число α не явля-	
$P_m(x)e^{\alpha x}$	1	$\widetilde{P}_m(x)e^{lpha x}$
	ется корнем характери-	$P_m(x)e^{-x}$
	стического уравнения	
	2) Число α является	$s\widetilde{D}$ () αr
	корнем характери-	$x^s \tilde{P}_m(x) e^{\alpha x}$
	стического уравнения	
	кратности s	
$P_n(x)\cos\beta x + Q_m(x)\sin\beta x$	$ 1 \rangle$ Числа $\pm i\beta$ не яв-	
	ляются корнями харак-	$\vec{P}_k(x)\cos\beta x + \vec{Q}_k(x)\sin\beta x$
	теристического уравне-	
	п п п п п п п п п п п п п п п п п п п	
	(2) Числа $\pm i\beta$ явля-	~ (~ () ~ ()
	ются корнями харак-	$x^{s} \left(\widetilde{P}_{k}(x) \cos \beta x + \widetilde{Q}_{k}(x) \sin \beta x \right)$
	теристического уравне-	,
	ния кратности s	
$e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x)$	1) Числа $\alpha \pm i\beta$ не яв-	~
	ляются корнями харак-	$\left(\widetilde{P}_k(x)\cos\beta x + \widetilde{Q}_k(x)\sin\beta x\right)e^{\alpha x}$
	теристического уравне-	/
	ния	
	$ 2 \rangle$ Числа $\alpha \pm i\beta$ яв-	/~
	ляются корнями харак-	$\int x^{s} \left(\widetilde{P}_{k}(x) \cos \beta x + \widetilde{Q}_{k}(x) \sin \beta x \right) e^{\alpha x}$
	теристического уравне-	/
	ния кратности s	

k – это наибольшая из степененй m и n.

 $\widetilde{P}_m(x)$ – это полином степени m с неопределенными коэффициентами.

Замечание

Если правая часть уравнения f(x) есть сумма двух правых частей специального вида: $f(x) = f_1(x) + f_2(x)$, то частное решение следует искать в виде суммы двух решений: $Y_1 + Y_2$, где Y_1 отвечает правой части f_1 , а Y_2 отвечает правой части f_2 .

Примеры

Найдём общие решения следующих уравнений:

1)
$$y''' - y'' = 12x^2 + 6x$$
.

Соответствующее однородное уравнение имеет вид:

$$y''' - y'' = 0.$$

Характеристическое уравнение:

$$\lambda^3-\lambda^2=0 \iff \lambda^2(\lambda-1)=0 \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} \lambda=0, & -\text{ корень второй кратности} \\ \lambda=1. \end{bmatrix}$$

Общее решение однородного уравнения:

$$\widetilde{y} = C_1 + C_2 x + C_3 e^x.$$

Частное решение неоднородного уравнения будем искать методом неопределённых коэффициентов. Посмотрим таблицу видов частных решений.

Число 0 является корнем характеристического уравнения кратности 2. Следовательно, частное решение неоднородного уравнения нужно искать в виде:

$$Y = x^{2}(Ax^{2} + Bx + C) = Ax^{4} + Bx^{3} + Cx^{2}.$$

Соответственно,

$$Y' = 4Ax^{3} + 3Bx^{2} + 2Cx,$$

$$Y'' = 12Ax^{2} + 6Bx + 2C,$$

$$Y''' = 24Ax + 6B.$$

Подставим Y''' и Y'' в исходное уравнение:

$$24Ax + 6B - 12Ax^2 - 6Bx - 2C = 12x^2 + 6x.$$

Приравняем коэффициенты при одинаковых степенях x:

$$\begin{array}{c|cccc} x^2 : & -12A = 12 \\ x^1 : & 24A - 6B = 6 \\ x^0 : & 6B - 2C = 0 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} A = -1, \\ B = -5, \\ C = -15. \end{array} \right.$$

Тогда $Y = -x^4 - 5x^3 - 15x^2$.

Следовательно, общее решение уравнения имеет вид:

$$y = \widetilde{y} + Y = C_1 + C_2 x + C_3 e^x - x^4 - 5x^3 - 15x^2.$$

2)
$$y'' + y' = 4x^2e^x$$
.

Соответствующее однородное уравнение:

$$y'' + y' = 0.$$

Характеристическое уравнение:

$$\lambda^2 + \lambda = 0 \iff \lambda(\lambda + 1) = 0 \iff \begin{bmatrix} \lambda = 0, \\ \lambda = -1. \end{bmatrix}$$

Общее решение однородного уравнения:

$$\widetilde{y} = C_1 + C_2 e^{-x}.$$

Найдём частное решение неоднородного уравнения. Число 1 не является корнем характеристического уравнения. Следовательно, частное решение нужно искать в виде:

$$Y = (Ax^2 + Bx + C)e^x.$$

Соответственно,

$$Y' = (2Ax + B)e^{x} + (Ax^{2} + Bx + C)e^{x},$$

$$Y'' = 2Ae^{x} + (2Ax + B)e^{x} + (2Ax + B)e^{x} + (Ax^{2} + Bx + C)e^{x}.$$

Подставим Y' и Y'' в исходное уравнение:

$$2Ae^{x} + (4Ax + 2B)e^{x} + (Ax^{2} + Bx + C)e^{x} + (2Ax + B)e^{x} + (Ax^{2} + Bx + C)e^{x} = 4x^{2}e^{x}.$$

Разделим обе части уравнения на e^x и приведём подобные члены:

$$2Ax^2 + 6Ax + 2Bx + 2A + 3B + 2C = 4x^2$$
.

Приравняем коэффициенты при одинаковых степенях x:

$$\begin{array}{c|c} x^2 : & 2A = 4 \\ x^1 : & 6A + 2B = 0 \\ x^0 : & 2A + 3B + 2C = 0 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} A = 2, \\ B = -6, \\ C = 7. \end{array} \right.$$

Тогда $Y = (2x^2 - 6x + 7)e^x$.

Следовательно, общее решение уравнения имеет вид:

$$y = \widetilde{y} + Y = C_1 + C_2 e^{-x} + (2x^2 - 6x + 7)e^x.$$

3)
$$y'' + 4y = \sin 2x$$
.

Соответствующее однородное уравнение:

$$y'' + 4y = 0.$$

Характеристическое уравнение:

$$\lambda^2 + 4 = 0 \iff \lambda^2 = -4 \iff \lambda = \pm 2i.$$

Общее решение однородного уравнения:

$$\widetilde{y} = C_1 \sin 2x + C_2 \cos 2x.$$

Найдём частное решение неоднородного уравнения. Числа $\pm 2i$ являются корнями характеристического уравнения кратности 1. Следовательно, частное решение нужно искать в виде:

$$Y = x(A\sin 2x + B\cos 2x).$$

Соответственно,

$$Y' = A\sin 2x + B\cos 2x + 2Ax\cos 2x - 2Bx\sin 2x,$$

$$Y'' = 2A\cos 2x - 2B\sin 2x + 2A\cos 2x - 4Ax\sin 2x - 2B\sin 2x - 4Bx\cos 2x.$$

Подставим Y'' и Y в исходное уравнение:

$$4A\cos 2x - 4B\sin 2x - 4Ax\sin 2x - 4Bx\cos 2x + 4Ax\sin 2x + 4Bx\cos 2x = \sin 2x \iff 4A\cos 2x - 4B\sin 2x = \sin 2x.$$

Приравняем коэффициенты при одинаковых функциях:

$$\begin{vmatrix} \cos 2x : & 4A = 0 \\ \sin 2x : & -4B = 1 \end{vmatrix} \Leftrightarrow \begin{cases} A = 0, \\ B = -\frac{1}{4}. \end{cases}$$

Тогда $Y = -\frac{1}{4}x\cos 2x$.

Общее решение уравнения:

$$y = C_1 \sin 2x + C_2 \cos 2x - \frac{1}{4}x \cos 2x.$$

4)
$$y'' - 6y' + 9y = 25e^x \sin x$$
.

Соответствующее однородное уравнение:

$$y'' - 6y' + 9y = 0.$$

Характеристическое уравнение:

$$\lambda^2 - 6\lambda + 9 = 0 \Leftrightarrow (\lambda - 3)^2 = 0 \Leftrightarrow$$
 $\Leftrightarrow \lambda = 3$ — корень второй кратности.

Общее решение однородного уравнения:

$$\widetilde{y} = (C_1 + C_2 x)e^{3x}.$$

Найдём частное решение неоднородного уравнения. Числа $1 \pm i$ не являются корнями характеристического уравнения. Следовательно, частное решение нужно искать в виде:

$$Y = (A\cos x + B\sin x)e^x.$$

Соответственно,

$$Y' = (-A\sin x + B\cos x)e^{x} + (A\cos x + B\sin x)e^{x} =$$

$$= (A+B)\cos x \cdot e^{x} + (B-A)\sin x \cdot e^{x},$$

$$Y'' = -(A+B)\sin x \cdot e^{x} + (A+B)\cos x \cdot e^{x} + (B-A)\cos x \cdot e^{x} +$$

$$+(B-A)\sin x \cdot e^{x} = -2A\sin x \cdot e^{x} + 2B\cos x \cdot e^{x}.$$

Подставим Y'', Y' и Y в исходное уравнение:

$$-2A\sin x \cdot e^x + 2B\cos x \cdot e^x - 6(A+B)\cos x \cdot e^x - 6(B-A)\sin x \cdot e^x +$$

$$+9A\cos x \cdot e^x + 9B\sin x \cdot e^x = 25e^x \cdot \sin x.$$

Разделим обе части уравнения на e^x и приведём подобные члены:

$$(4A + 3B)\sin x + (3A - 4B)\cos x = 25\sin x.$$

Приравняем коэффициенты при одинаковых функциях:

$$\begin{vmatrix}
\sin x : & 4A + 3B = 25 \\
\cos x : & 3A - 4B = 0
\end{vmatrix}
\Leftrightarrow
\begin{cases}
B = \frac{3}{4}A \\
4A + \frac{9}{4}A = 25
\end{cases}
\Leftrightarrow
\begin{cases}
A = 4, \\
B = 3.
\end{cases}$$

Тогда $Y = (4\cos x + 3\sin x)e^x$.

Следовательно, общее решение уравнения имеет вид:

$$y = \widetilde{y} + Y = (C_1 + C_2 x)e^{3x} + (4\cos x + 3\sin x)e^x.$$

5)
$$y'' + 2y' + 5y = e^{-x} \cos 2x$$
.

Соответствующее однородное уравнение:

$$y'' + 2y' + 5y = 0.$$

Характеристическое уравнение:

$$\lambda^2 + 2\lambda + 5 = 0 \iff \lambda = \frac{-2 \pm \sqrt{4 - 20}}{2} = -1 \pm 2i.$$

Общее решение однородного уравнения:

$$\widetilde{y} = (C_1 \cos 2x + C_2 \sin 2x)e^{-x}.$$

Найдём частное решение неоднородного уравнения. Числа $-1 \pm 2i$ являются корнями характеристического уравнения первой кратности. Следовательно, частное решение нужно искать в виде:

$$Y = x(A\cos 2x + B\sin 2x)e^{-x}.$$

Соответственно,

$$Y' = (A\cos 2x - 2Ax\sin 2x + B\sin 2x + 2Bx\cos 2x)e^{-x} - (Ax\cos 2x + Bx\sin 2x)e^{-x} =$$

$$= e^{-x} \cdot ((A - Ax + 2Bx)\cos 2x + (B - Bx - 2Ax)\sin 2x),$$

$$Y'' = -e^{-x} \cdot ((A - Ax + 2Bx)\cos 2x + (B - Bx - 2Ax)\sin 2x) +$$

$$+e^{-x} \cdot ((2B - A)\cos 2x - 2(A - Ax + 2Bx)\sin 2x - (2A + B)\sin 2x +$$

$$+2(B - Bx - 2Ax)\cos 2x) =$$

$$= e^{-x} \cdot ((-2A + 4B - 3Ax - 4Bx)\cos 2x + (-4A - 2B + 4Ax - 3Bx)\sin 2x).$$

Подставим Y'', Y' и Y в уравнение и разделим обе части уравнения на e^{-x} :

$$(-2A + 4B - 3Ax - 4Bx)\cos 2x + (-4A - 2B + 4Ax - 3Bx)\sin 2x +$$

$$+(2A - 2Ax + 4Bx)\cos 2x + (2B - 2Bx - 4Ax)\sin 2x +$$

$$+5Ax\cos 2x + 5Bx\sin 2x = \cos 2x \iff$$

$$\Leftrightarrow 4B\cos 2x - 4A\sin 2x = \cos 2x.$$

Приравняем коэффициенты при одинаковых функциях:

$$\begin{vmatrix}
\cos 2x : & 4B = 1 \\
\sin 2x : & -4A = 0
\end{vmatrix} \Leftrightarrow \begin{cases}
A = 0, \\
B = \frac{1}{4}.
\end{cases}$$

Тогда $Y = \frac{1}{4}xe^{-x}\sin 2x$.

Общее решение уравнения:

$$y = (C_1 \cos 2x + C_2 \sin 2x)e^{-x} + \frac{1}{4}xe^{-x} \sin 2x.$$

4 Системы дифференциальных уравнений

4.1 Основные понятия

Система дифференциальных уравнений – это набор дифференциальных уравнений, решаемых совместно. Решение системы – это набор функций, который удовлетворяет всем уравнениям системы.

Мы будем рассматривать системы 1 порядка, в которых все уравнения разрешены относительно производных. Такая форма записи системы называется нормальной формой Коши:

$$\begin{cases}
\frac{dy_1}{dx} = f_1(x, y_1, y_2, \dots, y_n), \\
\dots \\
\frac{dy_n}{dx} = f_n(x, y_1, y_2, \dots, y_n).
\end{cases}$$
(149)

Замечание

Рассматривая только системы 1 порядка, мы не умаляем общности задачи. Действительно, если система (149) содержит, например, уравнение

$$\frac{d^2y_1}{dx^2} = f_1(x, y_1, y_2, \dots, y_n), \tag{150}$$

то вводя новую функцию $z_1 = \frac{dy_1}{dx}$ и добавляя это в уравнение к системе, мы получим систему первого порядка, где вместо уравнения (150) стоят два уравнения первого порядка:

$$\begin{cases} \frac{dz_1}{dx} = f_1(x, y_1, y_2, \dots, y_n), \\ \frac{dy_1}{dx} = z_1. \end{cases}$$

$$(151)$$

Решением системы (149) называется совокупность n функций

$$y_i = \psi_i(x), \quad i = 1, 2, \dots, n$$
 (152)

таких, что при подстановке их в уравнения системы (149) эти уравнения обращаются в тождества относительно x. При этом функции $\psi_i(x)$ предполагаются непрерывно дифференцируемыми.

Как и в случае одного уравнения 1 – го порядка, имеет место теорема, аналогичная теореме Пикара. Начальные условия имеют вид:

$$y_1\Big|_{x=x_o} = y_1^{(0)}, y_2\Big|_{x=x_o} = y_2^{(0)}, \dots, y_n\Big|_{x=x_o} = y_n^{(0)}.$$
 (153)

Определение

Система уравнений (149) вместе с заданными начальными условиями (153) называется задачей Коши.

С геометрической точки зрения, решение – это интегральная кривая в (n+1) – мерном пространстве, а решение задачи Коши есть интегральная кривая, проходящая через заданную точку.

Теорема 9 (аналог теоремы Пикара)

Если функции $f_1(x, y_1, \ldots, y_n), \ldots, f_n(x, y_1, \ldots, y_n)$ непрерывны и имеют непрерывные частные производные $\frac{\partial f_i}{\partial y_i}$, $i, j = 1, \ldots, n$ в области Ω , то через каждую точку, принадлежащую Ω , проходит одна и только одна интегральная кривая системы уравнений (149).

Или: то для любой точки $\left(x_{o},y_{1}^{(0)},\ldots,y_{n}^{(0)}\right)\in\Omega$ существует единственное решение

$$\begin{cases} y_1 = y_1(x), \\ \dots \\ y_n = y_n(x) \end{cases}$$

системы (149), удовлетворяющее начальным условиям (153).

Определение

Общим решением системы уравнений 1 – го порядка (149) называется семейство функций $y_1 = \varphi_1(x, C_1, \ldots, C_n), \ldots, y_n = \varphi_n(x, C_1, \ldots, C_n)$ таких, что при любых постоянных C_1, C_2, \ldots, C_n функции $\varphi_1(x, C_1, \ldots, C_n), \ldots, \varphi_n(x, C_1, \ldots, C_n)$ удовлетворяют системе (149) и для любых начальных условий (153) (точка $\left(x_o, y_1^{(0)}, \ldots, y_n^{(0)}\right) \in \Omega$) можно найти значения C_1, C_2, \ldots, C_n , при

которых функции $\varphi_1(x, C_1, \ldots, C_n), \ldots, \varphi_n(x, C_1, \ldots, C_n)$ удовлетворяют данному начальному условию.

Замечание

Функции $y_i = \varphi_i(x, C_1, \dots, C_n)$ могут быть заданы в неявной форме:

$$\psi_i(x, y_1, \dots, y_n) = C_i, \quad i = 1, 2, \dots, n.$$

Определение

Соотношение $\psi_i(x, y_1, \dots, y_n) = C_i$ называется первым интегралом системы, если функция ψ_i не является константой и при подстановке в неё любого решения системы $y_i = \varphi_i(x), i = 1, 2, \dots, n$ соотношение обращается в тождество.

Для того, чтобы решить систему, нужно найти n независимых первых интегралов. Интегралы $\psi_i(x,y_1,\ldots,y_n)=C_i,\ i=1,2,\ldots,n$ называются независимыми, если эти равенства однозначно разрешимы относительно y_1,y_2,\ldots,y_n .

Общего метода решения систем дифференциальных уравнений не существует. Однако, в некоторых частных случаях их удаётся решать.

4.2 Метод исключения

Метод исключения аналогичен соответствующему алгебраическому методу.

Если одно из уравнений системы позволяет выразить одну из неизвестных функций через другие, то сделаем это и подставим данное выражение в остальные уравнения. Мы получим систему из (n-1) – го уравнения с (n-1) – ой неизвестной функцией. Однако, порядок уравнений возрастёт. Повторяем эту процедуру до тех пор, пока не придём к одному уравнению n – го порядка. Решаем это уравнение и через его решение выражаем остальные искомые функции.

Проиллюстрируем этот метод на примере системы двух уравнений:

$$\begin{cases} \frac{dy_1}{dx} = ay_1 + by_2 + f(x), \\ \frac{dy_2}{dx} = cy_1 + dy_2 + g(x). \end{cases}$$
 (154)

Здесь a,b,c,d – постоянные коэффициенты, а f(x) и g(x) – заданные функции. $y_1(x)$ и $y_2(x)$ – искомые функции.

Выразим y_2 из первого уравнения системы (154):

$$y_2 = \frac{1}{b} \cdot \left(\frac{dy_1}{dx} - ay_1 - f(x)\right). \tag{155}$$

Подставим во второе уравнение системы (154) вместо y_2 правую часть (155), а вместо $\frac{dy_2}{dx}$ производную от правой части (155), получаем уравнение второго порядка относительно $y_1(x)$:

$$A\frac{d^2y_1}{dx^2} + B\frac{dy_1}{dx} + Cy_1 + P(x) = 0, (156)$$

где A, B, C – некоторые постоянные.

Решая уравнение (156), находим $y_1 = y_1(x)$. Подставив найденное выражение для y_1 и $\frac{dy_1}{dx}$ в (155), найдём y_2 .

Пример

Решим следующую систему уравнений:

$$\begin{cases} \frac{dy_1}{dx} = -\frac{y_1}{x} + y_2, \\ \frac{dy_2}{dx} = -\frac{2}{x^2}y_1 + \frac{1}{x}y_2. \end{cases}$$
 (157)

$$\frac{dy_2}{dx} = -\frac{2}{x^2}y_1 + \frac{1}{x}y_2. \tag{158}$$

Выразим y_2 из уравнения (157):

$$y_2 = \frac{y_1}{x} + \frac{dy_1}{dx}.$$

Следовательно,

$$\frac{dy_2}{dx} = -\frac{y_1}{x^2} + \frac{1}{x}\frac{dy_1}{dx} + \frac{d^2y_1}{dx^2}.$$

Подставим y_2 и $\frac{dy_2}{dx}$ в уравнение (158):

$$-\frac{y_1}{x^2} + \frac{1}{x}\frac{dy_1}{dx} + \frac{d^2y_1}{dx^2} = -\frac{2}{x^2}y_1 + \frac{1}{x}\left(\frac{y_1}{x} + \frac{dy_1}{dx}\right) \iff$$

$$\Leftrightarrow \frac{d^2y_1}{dx^2} = 0 \Leftrightarrow \underline{y_1 = C_1x + C_2}.$$

Соответственно,

$$y_2 = \frac{C_1x + C_2}{x} + C_1 = 2C_1 + \frac{C_2}{x}.$$

4.3 Матричный метод (метод Эйлера)

Матричный метод применим только для линейных однородных систем уравнений с постоянными коэффициентами:

$$\begin{cases} y'_1 = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n, \\ y'_2 = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n, \\ \dots \\ y'_n = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n. \end{cases}$$
(159)

где a_{ij} – некоторые постоянные коэффициенты.

Система уравнений (159) может быть записана в матричном виде:

$$Y' = AY, (160)$$

где введены следующие обозначения:

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}, \quad Y' = \begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{pmatrix}. \tag{161}$$

Определение

Матрица – столбец

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

называется частным решением матричного уравнения (160) на интервале (a,b), если её подстановка в уравнение обращает его в тождество для любых $x \in (a,b)$.

Определение

Система n частных решений уравнения (160)

$$Y_{1}(x) = \begin{pmatrix} y_{1}^{(1)}(x) \\ y_{2}^{(1)}(x) \\ \vdots \\ y_{n}^{(1)}(x) \end{pmatrix}, \dots, Y_{n}(x) = \begin{pmatrix} y_{1}^{(n)}(x) \\ y_{2}^{(n)}(x) \\ \vdots \\ y_{n}^{(n)}(x) \end{pmatrix}$$

называется фундаментальной на интервале (a,b), если функции $Y_1(x),\ldots,Y_n(x)$ линейно независимы.

Утверждение.

Линейная независимость решений $Y_1(x), \ldots, Y_n(x)$ уравнения (160) эквивалентна тому, что определитель

$$\begin{vmatrix} y_1^{(1)}(x) & y_1^{(2)}(x) & \dots & y_1^{(n)}(x) \\ y_2^{(1)}(x) & y_2^{(2)}(x) & \dots & y_2^{(n)}(x) \\ \dots & \dots & \dots & \dots \\ y_n^{(1)}(x) & y_n^{(2)}(x) & \dots & y_n^{(n)}(x) \end{vmatrix} \neq 0 \quad \forall x \in (a,b).$$

$$(162)$$

Без доказательства.

Заметим, что верхние индексы $(1),(2),\ldots,(n)$ – это номер частного решения (а не порядок производной).

Теорема 10 (Теорема об общем решении матричного уравнения)

Общее решение матричного дифференциального уравнения (160) есть линейная комбинация фундаментальной системы решений с произвольными коэффициентами C_1, C_2, \ldots, C_n :

$$Y(x) = C_1 Y_1(x) + C_2 Y_2(x) + \dots + C_n Y_n(x).$$
 (163)

В обычной записи это даёт решение системы (159):

$$\begin{cases} y_1(x) = C_1 y_1^{(1)}(x) + C_2 y_1^{(2)}(x) + \dots + C_n y_1^{(n)}(x), \\ \dots & \dots \\ y_n(x) = C_1 y_n^{(1)}(x) + C_2 y_n^{(2)}(x) + \dots + C_n y_n^{(n)}(x). \end{cases}$$
(164)

Доказательство:

Для того, чтобы проверить, что (163) есть общее решение, нужно убедиться в том, что для любых начальных условий $y_1(x_o), y_2(x_o), \ldots, y_n(x_o)$ можно найти значения C_1, C_2, \ldots, C_n такие, что решение (163) будет им удовлетворять:

$$\begin{cases} y_1(x_o) = C_1 y_1^{(1)}(x_o) + \dots + C_n y_1^{(n)}(x_o), \\ \dots & \dots \\ y_n(x_o) = C_1 y_n^{(1)}(x_o) + \dots + C_n y_n^{(n)}(x_o). \end{cases}$$
(165)

Систем (165) — это неоднородная линейная система алгебраических уравнений относительно C_1, C_2, \ldots, C_n . Её определитель отличен от нуля при любом x (формула (162)), поэтому система (165) однозначно разрешима при любых $y_1(x_o), \ldots, y_n(x_o)$, что и доказывает теорему.

В соответствии с теоремой 10, для решения системы (159) нам требуется найти фундаментальную систему решений уравнения (160). Будем

искать решения в следующем виде:

$$Y(x) = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix} \cdot e^{\lambda x}, \quad \xi_i \in R.$$
 (166)

Подставим (166) в (160):

$$\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} \lambda e^{\lambda x} = A \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} e^{\lambda x}. \tag{167}$$

Сокращая на $e^{\lambda x}$, приходим к алгебраическому матричному уравнению:

$$AX = \lambda X$$
, где $X = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$ (168) $\Leftrightarrow (A - \lambda I)X = \mathbb{O}.$

Мы получили задачу о собственных векторах и собственных значениях матрицы А. Условие существования нетривиального решения уравнения (168) таково:

$$\det(A - \lambda I) = 0. \tag{169}$$

Корни λ_i этого алгебраического уравнения n – ой степени – это собственные значения матрицы A, а нетривиальные решения уравнения (168), соответствующие $\lambda = \lambda_i$ – это собственные векторы.

Подстановка собственного вектора и собственного значения в формулу (166) даст нам решение Y(x) матричного уравнения (160) (или системы (159)). Таким образом, линейно независимые собственные векторы матрицы A дают нам вектор — функции из фундаментальной системы решений.

Для того, чтобы получить всю фундаментальную систему, требуется найти n линейно независимых решений.

Замечание

При рассмотрении теории систем дифференциальных уравнений мы обозначали независимую переменнуб через x, а функции через y_1, y_2, \ldots, y_n для того, чтобы продемонстрировать сходство с теорией отдельных дифференциальных уравнений. При решении задач мы будем использовать для независимой переменной более традиционное обозначение t, а для функций — обозначения x, y, z во избежание излишней индексации.

Пример 1

Решим систему уравнений:

$$\begin{cases} \frac{dx}{dt} = 3x - y + z, \\ \frac{dy}{dt} = -x + 5y - z, \\ \frac{dz}{dt} = x - y + 3z. \end{cases}$$

1) Выписываем матрицу системы:

$$A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}.$$

2) Найдём собственные числа и собственные векторы матрицы А. Для посика собственных чисел составим характеристическое уравнение:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ -1 & 5 - \lambda & -1 \\ 1 & -1 & 3 - \lambda \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow (3 - \lambda)^{2}(5 - \lambda) + 1 + 1 - (5 - \lambda) - (3 - \lambda) - 3 + \lambda = 0 \Leftrightarrow$$

$$\Leftrightarrow (3 - \lambda)(15 - 3\lambda - 5\lambda + \lambda^{2}) + 2 - 5 + \lambda - 3 + \lambda - 3 + \lambda = 0 \Leftrightarrow$$

$$\Leftrightarrow 45 - 9\lambda - 15\lambda + 3\lambda^{2} - 15\lambda + 3\lambda^{2} + 5\lambda^{2} - \lambda^{3} - 9 + 3\lambda = 0 \Leftrightarrow$$

$$\Leftrightarrow -\lambda^{3} + 11\lambda^{2} - 36\lambda + 36 = 0 \Leftrightarrow \lambda^{3} - 11\lambda^{2} + 36\lambda - 36 = 0 \Leftrightarrow$$

$$\Leftrightarrow (\lambda - 2)(\lambda^{2} - 9\lambda + 18) = 0 \Leftrightarrow (\lambda - 2)(\lambda - 3)(\lambda - 6) = 0.$$

Итак, собственные числа: $\lambda_1 = 2, \ \lambda_2 = 3, \ \lambda_3 = 6.$

Найдём собственные векторы.

1. $\lambda_1 = 2$.

$$(A - \lambda_1 I)X_1 = \mathbb{O} \iff \begin{pmatrix} 1 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \xi_1 - \xi_2 + \xi_3 = 0 \\ -\xi_1 + 3\xi_2 - \xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_1 = -\xi_3, \\ \xi_2 = 0. \end{cases}$$

Пусть $\xi_3 = C_1$. Тогда $\xi_1 = -C_1$.

Соответственно, собственный вектор имеет вид:

$$X_1 = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = C_1 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

2. $\lambda_2 = 3$.

$$(A - \lambda_2 I)X_2 = \mathbb{O} \iff \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -\eta_2 + \eta_3 = 0 \\ -\eta_1 + 2\eta_2 - \eta_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \eta_1 = \eta_2, \\ \eta_3 = \eta_2. \end{cases}$$

Пусть $\eta_2 = C_2$. Тогда $\eta_1 = \eta_3 = C_2$.

Соответствующий собственный вектор имеет вид:

$$X_2 = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = C_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. $\lambda_3 = 6$.

$$(A - \lambda_3 I)X_3 = \mathbb{O} \iff \begin{pmatrix} -3 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -3 \end{pmatrix} \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases}
-3\zeta_1 - \zeta_2 + \zeta_3 = 0 & (I) \\
-\zeta_1 - \zeta_2 - \eta_3 = 0 & (II) \\
\zeta_1 - \zeta_2 - 3\zeta_3 = 0 & (III)
\end{cases} \Leftrightarrow / (I) - (II) \to (I), (II) + (III) \to (II) /$$

$$\begin{cases}
-2\zeta_1 + 2\zeta_3 = 0 \\
-2\zeta_2 - 4\zeta_3 = 0 \\
\zeta_1 - \zeta_2 - 3\zeta_3 = 0
\end{cases} \Leftrightarrow \begin{cases}
\zeta_1 = \zeta_3, \\
\zeta_2 = -2\zeta_3.
\end{cases}$$

Пусть $\zeta_3 = C_3$. Тогда $\zeta_1 = C_3, \zeta_2 = -2C_3$.

Соответствующий собственный вектор имеет вид:

$$X_3 = \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} = C_3 \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}.$$

3) Запишем ответ:

$$\underbrace{\begin{pmatrix} x \\ y \\ z \end{pmatrix}}_{=Y} = e^{\lambda_1 t} \cdot \underbrace{\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}}_{=X_1} + e^{\lambda_2 t} \cdot \underbrace{\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}}_{=X_2} + e^{\lambda_3 t} \cdot \underbrace{\begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix}}_{=X_3} \Leftrightarrow$$

$$\Leftrightarrow Y(t) = C_1 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{3t} + C_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} e^{6t}.$$

Также ответ можно записать в координатной форме:

$$\begin{cases} x(t) = -C_1 e^{2t} + C_2 e^{3t} + C_3 e^{6t}, \\ y(t) = -C_2 e^{3t} - 2C_3 e^{6t}, \\ z(t) = -C_1 e^{2t} + C_2 e^{3t} + C_3 e^{6t}. \end{cases}$$

Пример 2

Решим систему уравнений:

$$\begin{cases} \frac{dx}{dt} = y + z, \\ \frac{dy}{dt} = x + y - z, \\ \frac{dz}{dt} = y + z. \end{cases}$$
 (170)

1) Выписываем матрицу системы:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

2) Найдём собственные числа и собственные векторы матрицы А. Для посика собственных чисел составим характеристическое уравнение:

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 & 1\\ 1 & 1 - \lambda & -1\\ 0 & 1 & 1 - \lambda \end{vmatrix} = 0 \Leftrightarrow$$
$$\Leftrightarrow -\lambda (1 - \lambda)^2 + 1 - \lambda - (1 - \lambda) = 0 \Leftrightarrow \lambda (1 - \lambda)^2 = 0.$$

Итак, собственные числа: $\lambda_1 = 0, \ \lambda_{2,3} = 1.$

1. Найдем собственный вектор для $\lambda_1 = 0$.

$$(A - \lambda_1 I)X_1 = \mathbb{O} \iff \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff$$

$$\Leftrightarrow \begin{cases} \xi_2 + \xi_3 = 0 \\ \xi_1 + \xi_2 - \xi_3 = 0 \\ \xi_2 + \xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_1 = 2\xi_3, \\ \xi_2 = -\xi_3. \end{cases}$$

Пусть $\xi_3 = C_1$. Тогда $\xi_1 = 2C_1, \xi_2 = -C_1$.

Соответствующий собственный вектор имеет вид:

$$X_1 = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = C_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

Соответствующее решение из фундамеетальной системы:

$$Y_1(t) = e^{\lambda_1 t} \cdot X_1 = /\lambda_1 = 0/ = C_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

2. Собственное число $\lambda = 1$ имеет вторую кратность. Поэтому процедуру построения решения необходимо изменить.

Будем искать решение системы (170) в следующем виде:

$$Y(t) = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \cdot e^t + \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} \cdot te^t.$$
 (171)

Подставим Y(t) в исходную систему (170):

$$\begin{cases} \eta_1 e^t + \zeta_1 e^t + \zeta_1 t e^t = \eta_2 e^t + \zeta_2 t e^t + \eta_3 e^t + \zeta_3 t e^t, \\ \eta_2 e^t + \zeta_2 e^t + \zeta_2 t e^t = \eta_1 e^t + \zeta_1 t e^t + \eta_2 e^t + \zeta_2 t e^t - \eta_3 e^t - \zeta_3 t e^t, \\ \eta_3 e^t + \zeta_3 e^t + \zeta_3 t e^t = \eta_2 e^t + \zeta_2 t e^t + \eta_3 e^t + \zeta_3 t e^t. \end{cases}$$

В каждом из уравнений приравняем коэффициенты при линейно независимых функциях e^t и te^t :

Тогда формула (171) примет вид:

$$Y(t) = \begin{pmatrix} \eta_3 \\ \zeta_3 \\ \eta_3 \end{pmatrix} e^t + \begin{pmatrix} \zeta_3 \\ 0 \\ \zeta_3 \end{pmatrix} t e^t \iff$$
 / Соберём подобные члены при η_3 и ζ_3 /

$$\Leftrightarrow Y(t) = \eta_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^t + \zeta_3 \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} t e^t \end{pmatrix}. \tag{172}$$

Таким образом, мы получили два линейно независимых решения системы (170):

$$Y_2(t) = C_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^t,$$

$$Y_3(t) = C_3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} te^t$$
.

3) Запишем ответ.

Общее решение системы (170) имеет вид:

$$Y(t) = C_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^t + C_3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} t e^t \end{pmatrix}.$$

В координатной форме:

$$\begin{cases} x = 2C_1 + C_2e^t + C_3te^t, \\ y = -C_1 + C_3e^t, \\ z = C_1 + C_2e^t + C_3te^t. \end{cases}$$

Замечание о кратных собственных значениях.

Если корень $\lambda = \lambda_o$ имеет кратность s, то ему должны отвечать s линейно независимых решений. Одной функции $e^{\lambda_o t}$ будет недостаточно. В этом случае ищем решение в виде:

$$Y_1 e^{\lambda_o t} + Y_2 t e^{\lambda_o t} + \dots + Y_s t^{s-1} e^{\lambda_o t}. \tag{173}$$

Для определения координат векторов Y_1, Y_2, \ldots, Y_s подставляем (173) в исходную систему уравнений и в каждом из уравнений приравниваем коэффициенты при линейно независимых функциях.

5 Операционное исчисление

5.1 Преобразование Лапласа

Линейные дифференциальные уравнения с постоянными коэффициентами и их системы можно решать путем сведения к алгебраическим уравнениям. Этот подход называется операционным методом. Он основан на преобразовании Лапласа. Дадим основные определения, связанные с этим преобразованием.

Определение

Функцией-оригиналом называется комплекснозначная функция f(t) вещественной переменной t, удовлетворяющая следующим условиям:

- 1) f(t) = 0, если t < 0;
- **2)** f(t) интегрируема на любом конечном интервале оси t;
- 3) с возрастанием t модуль функции f(t) растет не быстрее некоторой показательной функции, то есть существуют числа M>0 и $s_0\geq 0$ такие, что для всех t имеем:

$$|f(t)| \le Me^{s_0 t}.\tag{174}$$

Определение

Преобразованием Лапласа L функции-оригинала f(t), заданной на $[0,\infty)$, называется преобразование вида:

$$(Lf)(p) = F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt,$$
 (175)

где образ функции f будем обозначать за F(p). Функцию F(p) называют изображением функции-оригинала f(t).

Свойства преобразования Лапласа

1)
$$L(\alpha f + \beta g) = \alpha L f + \beta L g$$
 – линейность; (176)

Доказательство очевидно в силу линейности интеграла.

2)
$$L(f(at)) = \frac{1}{a} F\left(\frac{p}{a}\right), \ a > 0$$
 — теорема подобия; (177)

$$L(f(at))=\int\limits_0^\infty e^{-pt}f(at)dt=\Big/$$
Замена: $s=at\Rightarrow ds=adt\Big/=$
$$=\int\limits_0^\infty e^{-rac{p}{a}s}f(s)rac{1}{a}ds=rac{1}{a}F\left(rac{p}{a}
ight).$$

3)
$$L(e^{at}f(t)) = F(p-a)$$
 — теорема смещения; (178)

Доказательство:

$$L(e^{at}f(t)) = \int_{0}^{\infty} e^{-pt}e^{at}f(t)dt = \int_{0}^{\infty} e^{-(p-a)t}f(t)dt = F(p-a).$$

4)
$$L(f(t-a)) = e^{-ap}F(p), \ a > 0$$
 — теорема запаздывания; (179)

Доказательство:

$$L(f(t-a)) = \int_{0}^{\infty} e^{-pt} f(t-a) dt = \Big/$$
Замена: $s = t - a \Rightarrow ds = dt \Big/ =$

$$= \int_{-a}^{\infty} e^{-ps} e^{-ap} f(s) ds = \Big/ f(s) = 0 \text{ при } s < 0 \Big/ = e^{-ap} \int_{0}^{\infty} e^{-ps} f(s) ds = e^{-ap} F(p).$$

$$5) L(tf(t)) = -\frac{d}{dp}F(p);$$
(180)

$$L(t^{n}f(t)) = (-1)^{n} \frac{d^{n}}{dp^{n}} F(p);$$
(181)

Продифференцируем по параметру p формулу (175) из определения преобразования Лапласа:

$$F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt,$$

$$\frac{d}{dp}F(p) = -\int_{0}^{\infty} e^{-pt}tf(t)dt = -L(tf(t)).$$

Соответственно,

$$\frac{d^n}{dp^n}F(p) = (-1)^n \int_{0}^{\infty} e^{-pt}t^n f(t)dt = (-1)^n L(t^n f(t)).$$

6) L(f'(t)) = pF(p) - f(0); (182)

$$L(f^{(n)}(t)) = p^n F(p) - p^{n-1} f(0) - p^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$
(183)

Доказательство:

$$L(f'(t)) = \int_{0}^{\infty} f'(t)e^{-pt}dt = \begin{cases} u = e^{-pt} & du = -pe^{-pt}dt \\ v = f(t) & dv = f'(t)dt \end{cases} =$$

$$= f(t)e^{-pt}\Big|_{0}^{\infty} + p \int_{0}^{\infty} f(t)e^{-pt}dt = -f(0) + pF(p)$$

Формула для $f^{(n)}(t)$ доказывается по индукции.

База проверена (n=1). Переход $n \to n+1$:

$$L(f^{(n+1)}(t)) = \int_{0}^{\infty} f^{(n+1)}(t)e^{-pt}dt = \left\langle \begin{array}{c} u = e^{-pt} & du = -pe^{-pt}dt \\ v = f^{(n)}(t) & dv = f^{(n+1)}(t)dt \end{array} \right\rangle =$$

$$= f^{(n)}(t)e^{-pt}\Big|_{0}^{\infty} + p\int_{0}^{\infty} f^{(n)}(t)e^{-pt}dt = -f^{(n)}(0) + p\Big(p^{n}F(p) - p^{n-1}f(0) - p^{n-1}f(0) - p^{n-2}f'(0) - \dots - f^{(n-1)}(0)\Big) = p^{n+1}F(p) - p^{n}f(0) - p^{n-1}f'(0) - \dots - f^{(n)}(0).$$

Определение

Сверткой функций g и f называется функция:

$$(g * f)(s) = \int_{0}^{s} g(s - t)f(t)dt.$$
 (184)

7)
$$L(g * f) = L\left(\int_{0}^{s} g(s-t)f(t)dt\right) = L(g) \cdot L(f).$$
 (185)

Доказательство:

$$L\left(\int_{0}^{s} g(s-t)f(t)dt\right) = \int_{0}^{\infty} ds \cdot e^{-ps} \int_{0}^{s} g(s-t)f(t)dt =$$

Изменим порядок интегрирования в повторном интеграле. Пределы удобно расставить с помощью рисунка:

Рис. 6: Расстановка пределов интегрирования

$$= \int_{0}^{\infty} dt \int_{t}^{\infty} ds \cdot e^{-ps} g(s-t) f(t) = \left/ \text{Замена: } \frac{s-t=\tau}{ds=d\tau} \right/ =$$

$$= \int_{0}^{\infty} dt \int_{0}^{\infty} d\tau \cdot e^{-p(t+\tau)} g(\tau) f(t) = \int_{0}^{\infty} dt e^{-pt} f(t) \int_{0}^{\infty} d\tau e^{-p\tau} g(\tau) = L(f) \cdot L(g)$$

8)
$$L\left(\int_{0}^{t} f(\tau)d\tau\right) = \frac{F(p)}{p}.$$
 (186)

Введем функцию Хевисайда по следующему правилу:

$$\theta(t) = \begin{cases} 1, & t \ge 0; \\ 0, & t < 0 \end{cases}$$

Тогда:

$$L\Big(\int\limits_0^t f(\tau)d\tau\Big) = L\Big(\int\limits_0^\infty \underbrace{\theta(t-\tau)\cdot}_{=1\text{ при }0\leq \tau\leq t} f(\tau)d\tau\Big) = \Big/\text{определение свертки }(184)\Big/ =$$

$$= L(\theta*f) = \Big/\text{свойство }7\Big/ = L(\theta)L(f) = \frac{1}{p}F(p).$$

$$\Big/L(\theta(t)) = \int\limits_0^\infty e^{-pt}\cdot 1dt = \frac{e^{-pt}}{-p}\bigg|_0^\infty = \frac{1}{p}\Big/$$

Преобразования Лапласа простейших функций (таблица изображений)

Преобразование Лапласа определено только для функций, обращающихся в ноль при t<0. Поэтому выписывая таблицу изображений, будем считать, что функции-оригиналы обращаются в ноль на отрицательной полуоси.

1)
$$L(1) = \frac{1}{p};$$
 (187)

Доказательство:

$$L(1) = \int_{0}^{\infty} e^{-pt} \cdot 1 dt = \frac{e^{-pt}}{-p} \Big|_{0}^{\infty} = \frac{1}{p}.$$

2)
$$L(e^{at}) = \frac{1}{p-a};$$
 (188)

$$L(e^{at}) = L(e^{at} \cdot 1) = \frac{1}{p-a}.$$

$$\left/ \left\{ \begin{array}{l} \text{Свойство 3:} \quad L(e^{at}f(t)) = F(p-a); \\ \Phi \text{ормула (187):} \quad L(1) = \frac{1}{p}. \end{array} \right. \right. \right/$$

3)
$$L(\sin at) = \frac{a}{p^2 + a^2};$$
 (189)

Доказательство:

$$L(\sin at) = L\Big(rac{1}{2i}(e^{iat}-e^{-iat})\Big) = \Big/$$
Линейность преобразования Лапласа $\Big/ = rac{1}{2i}\Big(L(e^{iat}) - L(e^{-iat})\Big) = \Big/$ формула (188) $\Big/ = rac{1}{2i}\Big(rac{1}{p-ia} - rac{1}{p+ia}\Big) = rac{1}{2i}rac{2ia}{p^2+a^2} = rac{a}{p^2+a^2}.$

4)
$$L(\cos at) = \frac{p}{p^2 + a^2};$$
 (190)

Доказательство:

$$L(\cos at) = L\Big(\frac{1}{2}(e^{iat} + e^{-iat})\Big) = \Big/$$
 Линейность преобразования Лапласа $\Big/ = \frac{1}{2}\Big(L(e^{iat}) + L(e^{-iat})\Big) = \Big/$ формула (188) $\Big/ = \frac{1}{2}\Big(\frac{1}{p-ia} + \frac{1}{p+ia}\Big) = \frac{1}{2}\frac{2p}{p^2+a^2} = \frac{p}{p^2+a^2}.$

5)
$$L(t^n) = \frac{n!}{p^{n+1}}.$$
 (191)

$$L(t^n) = L(t^n \cdot 1) = (-1)^n \frac{d^n}{dp^n} \frac{1}{p} = \frac{n!}{p^{n+1}}.$$

$$/ \begin{cases} \text{Свойство 5:} \quad L(t^n f(t)) = (-1)^n \frac{d^n}{dp^n} F(p); \\ \Phi\text{ормула (187):} \quad L(1) = \frac{1}{p}. \end{cases} /$$

Примеры

Найдем преобразования Лапласа от следующих функций:

1)
$$L(\sin^2 t) = L(\frac{1}{2} - \frac{1}{2}\cos 2t) = \frac{1}{2p} - \frac{p}{2(p^2 + 4)}$$
.

2)
$$L(t\sin 3t) = /L(tf(t)) = -\frac{d}{dp}F(p)/ = -\frac{d}{dp}(L(\sin 3t)) =$$

$$= -\frac{d}{dp} \left(\frac{3}{p^2 + 9} \right) = \frac{6p}{(p^2 + 9)^2}.$$

Нахождение оригинала функции по ее изображению

Преобразование Лапласа L является взаимно однозначным. У него существует обратное преобразование L^{-1} , которое по изображению восстанавливает оригинал. В большинстве задач функция-изображение является правильной рациональной дробью. В этом случае оригинал по изображению можно восстановить, используя таблицу изображений и свойства преобразования Лапласа. Правильная рациональная дробь раскладывается на простейшие, а для каждой простейшей оригинал известен.

Замечание

Мы не будем выписывать формулу для обратного преобразования Лапласа, так как она требует знаний из теории функции комплексной переменной.

Примеры

Найдем функции-оригиналы по заданным изображениям:

1)
$$\frac{1}{p^2-4} = \frac{1}{4} \left(\frac{1}{p-2} - \frac{1}{p+2} \right).$$

$$L^{-1}\left(\frac{1}{p^2-4}\right) = \frac{1}{4}\left(L^{-1}\left(\frac{1}{p-2}\right) - L^{-1}\left(\frac{1}{p+2}\right)\right) = \frac{1}{4}e^{2t} - \frac{1}{4}e^{-2t}.$$

2)
$$\frac{p}{p^2 - 2p + 5} = \frac{p - 1 + 1}{(p - 1)^2 + 4} = \frac{p - 1}{(p - 1)^2 + 4} + \frac{1}{(p - 1)^2 + 4}$$
.

Из таблицы изображений: $L(\cos 2t) = \frac{p}{p^2 + 4}$;

По свойству 3 преобразования Лапласа: $L(e^t \cos 2t) = \frac{p-1}{(p-1)^2 + 4};$

Из таблицы изображений: $L(\sin 2t) = \frac{2}{p^2 + 4}$;

По свойству 3 преобразования Лапласа: $L(e^t \sin 2t) = \frac{2}{(p-1)^2 + 4}$.

Следовательно,
$$L^{-1}\left(\frac{p}{p^2 - 2p + 5}\right) = e^t(\cos 2t + \frac{1}{2}\sin 2t).$$

5.2 Операционный метод

Применим преобразование Лапласа к решению дифференциальных уравнений и систем дифференциальных уравнений.

Операционный метод для одного дифференциального уравнения

Опишем процедуру построения решения задачи Коши для линейного дифференциального уравнения с постоянными коэффициентами:

$$\begin{cases} y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(t), \\ y(0) = y_0, \\ y'(0) = y'_0, \\ \dots \\ y^{(n-1)}(0) = y_0^{(n-1)}, \end{cases}$$
(192)

где a_i – некоторые постоянные.

Сделаем преобразование Лапласа от дифференциального уравнения в системе (192) (по свойству 6) с учетом начальных условий:

$$\underbrace{p^{n}Y(p) - p^{n-1}y_{0} - p^{n-2}y'_{0} - \dots - y_{0}^{(n-1)}}_{=L(y^{(n)})} + \underbrace{a_{1}p^{n-1}Y(p) - a_{1}p^{n-2}y_{0} - \dots \cdot a_{1}y_{0}^{(n-2)}}_{=L(a_{1}y^{(n-1)})} + \dots + a_{n}Y(p) = F(p). (193)$$

Здесь Y(p) есть преобразование Лапласа от функции y(t).

Мы получили линейное алгебраическое уравнение относительно Y(p). Его решение дается формулой:

$$Y = \frac{F(p) + p^{n-1}y_0 + p^{n-2}y_0' + \dots + y^{(n-1)} + a_1p^{n-2}y_0 + \dots + a_1y_0^{(n-2)} + \dots + a_{n-1}y_0}{p^n + a_1p^{n-1} + \dots + a_n}.$$
(194)

Сделаем обратное преобразование Лапласа от функции Y(p) и получим решение задачи (192).

Замечание

Отметим, что мы нашли частное решение задачи Коши (192), не находя общего решения уравнения уравнения. Начальные условия были учтены автоматически при вычислении преобразований Лапласа от производных $y^{(n)}, y^{(n-1)}, \ldots y'$. В этом заключается удобство операционного

метода.

Пример

Решим задачу Коши для следующего дифференциального уравнения:

$$\begin{cases} y'' - 2y' - 3y = e^{3t}, \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$

Сделаем преобразование Лапласа от уравнения:

$$p^{2}Y(p) - p \underbrace{y(0)}_{=0} - \underbrace{y'(0)}_{=0} - 2(pY(p) - \underbrace{y(0)}_{=0}) - 3Y(p) = \frac{1}{p-3} \Leftrightarrow$$

$$\Leftrightarrow p^{2}Y(p) - 2pY(p) - 3Y(p) = \frac{1}{p-3} \Leftrightarrow Y(p) = \frac{1}{(p-3)(p^{2}-2p-3)} \Leftrightarrow$$

$$\Leftrightarrow Y(p) = \frac{1}{(p+1)(p-3)^{2}}.$$

Получившуюся дробь разложим на простейшие:

$$\frac{1}{(p+1)(p-3)^2} = \frac{A}{(p-3)^2} + \frac{B}{p-3} + \frac{C}{p+1} \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{(p+1)(p-3)^2} = \frac{A(p+1) + B(p-3)(p+1) + C(p-3)^2}{(p-3)^2(p+1)} \Rightarrow$$

$$\Rightarrow A(p+1) + B(p-3)(p+1) + C(p-3)^2 = 1.$$

Для нахождения коэффициентов A, B, C подставим в последнее равенство различные значения p:

Сделаем обратное преобразование Лапласа от функции Y(p) :

$$y(t) = L^{-1} \left(\frac{1}{(p+1)(p-3)^2} \right) = L^{-1} \left(\frac{\frac{1}{4}}{(p-3)^2} - \frac{\frac{1}{16}}{p-3} + \frac{\frac{1}{16}}{p+1} \right) =$$

$$\Big/ \text{В силу линейности преобразования Лапласа} \Big/$$

$$= \frac{1}{4}L^{-1}\left(\frac{1}{(p-3)^2}\right) - \frac{1}{16}L^{-1}\left(\frac{1}{p-3}\right) + \frac{1}{16}L^{-1}\left(\frac{1}{p+1}\right) =$$

$$= /L(t) = \frac{1}{p^2}, \quad L(te^{3t}) = \frac{1}{(p-3)^2} / = \frac{1}{4}te^{3t} - \frac{1}{16}e^{3t} + \frac{1}{16}e^{-t}.$$

Other: $y(t) = \frac{1}{4}te^{3t} - \frac{1}{16}e^{3t} + \frac{1}{16}e^{-t}$.

Операционный метод для системы дифференциальных уравнений

Опишем процедуру построения решения задачи Коши для системы линейных дифференциальных уравнений 1 порядка с постоянными коэффициентами:

где a_{ij} – некоторые постоянные.

Сделаем преобразования Лапласа от всех уравнений в системе (195) (по свойству 6) с учетом начальных условий:

$$\begin{cases}
 pY_1(p) - y_1^{(0)} = a_{11}Y_1(p) + \dots + a_{1n}Y_n(p) + F_1(p), \\
 \dots \dots \dots \dots \dots \dots , \\
 pY_n(p) - y_n^{(0)} = a_{n1}Y_1(p) + \dots + a_{nn}Y_n(p) + F_n(p).
\end{cases} (196)$$

Решая систему (196), находим Y_1, Y_2, \ldots, Y_n . Сделав обратные преобразования Лапласа, получим решение задачи (195).

Пример

Решим задачу Коши для системы дифференциальных уравнений:

$$\begin{cases} \frac{dy_1}{dt} = y_1 + 2y_2, \\ \frac{dy_2}{dt} = 2y_1 + y_2 + 1, \\ y_1(0) = 0, \\ y_2(0) = 5. \end{cases}$$

Сделаем преобразования Лапласа от уравнений в системе с учетом начальных условий:

$$\begin{cases} pY_1 - \underbrace{y_1^{(0)}}_{=0} = Y_1 + 2Y_2 \\ pY_2 - \underbrace{y_2^{(0)}}_{=5} = 2Y_1 + Y_2 + \frac{1}{p} \end{cases} \Leftrightarrow \begin{cases} pY_1 = Y_1 + 2Y_2 \\ pY_2 - 5 = 2Y_1 + Y_2 + \frac{1}{p} \end{cases} \Leftrightarrow \\ \Leftrightarrow \begin{cases} Y_2 = \frac{p-1}{2}Y_1 \\ \frac{(p-1)^2}{2}Y_1 - 2Y_1 = 5 + \frac{1}{p} \end{cases} \Leftrightarrow \begin{cases} Y_2 = \frac{p-1}{2}Y_1 \\ \frac{(p-3)(p+1)}{2}Y_1 = \frac{5p+1}{p} \end{cases} \Leftrightarrow \\ \Leftrightarrow \begin{cases} Y_2 = \frac{5p^2 - 4p - 1}{p(p+1)(p-3)} \\ Y_1 = \frac{10p + 2}{p(p+1)(p-3)} \end{cases} \end{cases} \Leftrightarrow \begin{cases} Y_1(p) = \frac{10p + 2}{p(p+1)(p-3)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{p-3} \Leftrightarrow \\ \Rightarrow \frac{10p + 2}{p(p+1)(p-3)} = \frac{A(p+1)(p-3) + B(p-3)p + Cp(p+1)}{p(p+1)(p-3)} \Rightarrow \\ \Rightarrow A(p+1)(p-3) + B(p-3)p + Cp(p+1) = 10p + 2. \end{cases}$$

Для нахождения коэффициентов $A,\ B,\ C$ подставим в последнее равенство различные значения p :

Сделаем обратное преобразование Лапласа от функции $Y_1(p)$:

$$y_1(t) = L^{-1}(Y_1) = L^{-1}\left(-\frac{2}{3} \cdot \frac{1}{p} - 2\frac{1}{p+1} + \frac{8}{3} \cdot \frac{1}{p-3}\right) = -\frac{2}{3} - 2e^{-t} + \frac{8}{3}e^{3t}.$$

$$Y_2(p) = \frac{5p^2 - 4p - 1}{p(p+1)(p-3)} = \frac{D}{p} + \frac{E}{p+1} + \frac{F}{p-3} \Leftrightarrow \frac{5p^2 - 4p - 1}{p(p+1)(p-3)} = \frac{D(p+1)(p-3) + E(p-3)p + Fp(p+1)}{p(p+1)(p-3)} \Rightarrow D(p+1)(p-3) + E(p-3)p + Fp(p+1) = 5p^2 - 4p - 1.$$

Для нахождения коэффициентов D, E, F подставим в последнее равенство различные значения p:

Сделаем обратное преобразование Лапласа от функции $Y_2(p)$:

$$y_2(t) = L^{-1}(Y_2) = L^{-1}\left(\frac{1}{3}\frac{1}{p} + 2\frac{1}{p+1} + \frac{8}{3} \cdot \frac{1}{p-3}\right) = \frac{1}{3} + 2e^{-t} + \frac{8}{3}e^{3t}.$$