Math 5110 Applied Linear Algebra

He Wang

he.wang@northeastern.edu

Homework 2.

1. Reading: [Gockenbach], 2.2-2.7. 3.1-3.7. The rest of the two chapters as extra reading.

2. Questions:

Question 1. Let V be a vector space over \mathbb{R} and let $\vec{v} \in V$ be a nonzero vector. Is the subset $\{0, \vec{v}\}$ is a subspace of V? Prove your result.

Question 2. Determine whether or not the following set a subspace of \mathbb{R}^2 . Prove your result.

(1)
$$S = {\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}} \in \mathbb{R}^2 \mid x_1 x_2 = 0}.$$

(2) $T = {\vec{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1}$ the unit disc in \mathbb{R}^2 .

Question 3. (1) Let $U_{3\times 3}$ be the set of all 3×3 upper triangular matrices with real entries. Is $U_{3\times 3}$ a subspace of $\mathbb{R}^{3\times 3}$? Prove your result.

(2) Let $T_{3\times3}$ be the set of all 3×3 triangular matrices with real entries. Is $T_{3\times3}$ a subspace of $\mathbb{R}^{3\times3}$?

(3) Let W be the set of all polynomials in the form $\{t + at^2\}$ where a is any real number. Is W a subspace of P the vector space of all polynomials.

Question 4. (Allow to use Matlab for **rref**) Let S be the following subspace of \mathbb{R}^4 :

$$S = \operatorname{Span} \left\{ \vec{b}_1 = \begin{bmatrix} -1 \\ -2 \\ 4 \\ -2 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 0 \\ 1 \\ -5 \\ 4 \end{bmatrix} \right\}.$$

Determine if each vector belongs to *S*:

$$(1.) \ \vec{v} = \begin{bmatrix} -1\\0\\-6\\6 \end{bmatrix}; \quad (2.) \ \vec{w} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

Question 5. Let S be the following subspace of $\mathbb{R}^{2\times 2}$:

$$S = \operatorname{Span} \left\{ \vec{b}_1 = \begin{bmatrix} -1 & -2 \\ 4 & -2 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 0 & 1 \\ -5 & 4 \end{bmatrix} \right\}.$$

Determine if each vector belongs to *S*:

$$(1.) \ \vec{v} = \begin{bmatrix} -1 & 0 \\ -6 & 6 \end{bmatrix}; \quad (2.) \ \vec{w} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Question 6. Show that $S = \text{Span}\left\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}\right\}$ and $T = \text{Span}\left\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}\right\}$ are the same subspace of \mathbb{R}^3 .

Question 7. Suppose U and V are two subspaces of a vector space W.

- (1) Is the union of two subspace $U \cup V$ a subspace?
- (2) Is the intersection $U \cap V$ is a subspace?

Question 8. Prove or disprove the following statement: if U, V, W are subspaces of a vector space, then $(U + V) \cap W = (U \cap W) + (V \cap W)$.

Question 9. Let U_1, U_2, U_3 be subspaces of a vector space such that $U_i \cap U_j = 0$ for $i \neq j$. Is it true that the subspace $U_1 + U_2 + U_3$ equals $U_1 \oplus U_2 \oplus U_3$? Justify your answer.

Question 10. If V is a vector space with dimension n over the field \mathbb{Z}_2 of two elements, how many elements does V contain? Prove your result.

Question 11. If $\{\vec{u}, \vec{v}\}$, $\{\vec{v}, \vec{w}\}$ and $\{\vec{w}, \vec{u}\}$ are linearly independent subsets, is the subset $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent?

Question 12. Show that $\left\{\begin{bmatrix} -1\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, \begin{bmatrix} -3\\3\\13 \end{bmatrix}\right\} \in \mathbb{R}^3$ is linearly dependent by writing one of the vectors as a linear combination of the others.

Question 13. Let *A* be an $m \times n$ matrix with real entries, and suppose n > m. Prove the linear transformation defined by *A* is not injective. (That is, $A\vec{x} = \vec{0}$ has a nontrivial solution $x \in \mathbb{R}^n$.)

Question 14. Let
$$\vec{u}_1 = \begin{bmatrix} 1 \\ 4 \\ 0 \\ -5 \\ 1 \end{bmatrix}$$
; $\vec{u}_2 = \begin{bmatrix} 1 \\ 3 \\ 0 \\ -4 \\ 0 \end{bmatrix}$; $\vec{u}_3 = \begin{bmatrix} 0 \\ 4 \\ 1 \\ 1 \\ 4 \end{bmatrix}$ be vectors in \mathbb{R}^5 .

- (1) Show that $\vec{u}_1, \vec{u}_2, \vec{u}_3$ is linearly independent.
- (2) Extend $\vec{u}_1, \vec{u}_2, \vec{u}_3$ to a basis for \mathbb{R}^5 .

Question 15. Consider the linear subspaces
$$U$$
 and W of \mathbb{R}^4 spanned by $\vec{u}_1 := \begin{bmatrix} -1 \\ 3 \\ 1 \\ 0 \end{bmatrix}$, $\vec{u}_2 := \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$, $\vec{u}_3 := \begin{bmatrix} 2 \\ 2 \\ 1 \\ -3 \end{bmatrix}$

and
$$\vec{w}_1 := \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
, $\vec{w}_2 := \begin{bmatrix} 1\\3\\1\\-1 \end{bmatrix}$, $\vec{w}_3 := \begin{bmatrix} 2\\-2\\-1\\-1 \end{bmatrix}$, $\vec{w}_4 := \begin{bmatrix} 2\\2\\1\\-1 \end{bmatrix}$ respectively.

Find the **dimensions** of the sum U + W, the intersection $U \cap W$, and the quotient spaces \mathbb{R}^4/U and \mathbb{R}^4/W .

Question 16. Let V be a vector space over a field \mathbb{K} , and let $\vec{v}_1, ..., \vec{v}_n$ be n linearly dependent vectors of V such that any n-1 of the vectors $\vec{v}_1, ..., \vec{v}_n$ are linearly independent. Show:

- (a) There exist scalars $\alpha_1, \ldots, \alpha_n$ in \mathbb{K} , all nonzero, such that $\sum_{j=1}^n \alpha_j \vec{v}_j = \vec{0}$.
- (b) If $\alpha_1, ..., \alpha_n$ and $\beta_1, ..., \beta_n$ are two sets of nonzero scalars in \mathbb{K} such both $\sum_{j=1}^n \alpha_j \vec{v}_j = 0$ and $\sum_{j=1}^n \beta_j \vec{v}_j = 0$ then there exists a nonzero scalar γ in K such that $\beta_j = \gamma \alpha_j$ for each j = 1, ..., n.

Question 17. Let *M* be the matrix $M = \begin{bmatrix} 3 & 3 & 2 & 8 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 3 & 5 \\ -2 & 4 & 6 & 8 \end{bmatrix}$, and let *U* and *W* be the subspaces of \mathbb{R}^4 generated

by rows 1 and 2 of M, and by rows 3 and 4 of M respectively. Find the dimensions of the subspaces U + W and $U \cap W$.

Question 18. Define polynomials $f_1 = 1 - 2x + x^3$, $f_2 = x + x^2 - x^3$ and also $g_1 = 2 + 2x - 4x^2 + x^3$, $g_2 = 1 - x + x^2$, $g_3 = 2 + 3x - x^2$. Let $U = \text{Span}(f_1, f_2)$ and $V = \text{Span}(g_1, g_2, g_3)$ be subspaces of $P_4(\mathbb{R})$, polynomials of degree smaller than 4. Find a basis for U + V and a basis for $U \cap V$.