量子信息与量子密码 第一次作业

姓名: 刘炼 学号: 202128013229021

	Date
根据技迹,知: $\hat{F_a} = \lambda_a (\hat{I} + \hat{I})$ $= \lambda_a^2 (\hat{I} + \hat{I})$ $= \lambda_a^2 (\hat{I} + \hat{I})$	2) 11 7
27106) Na (Itha
= 1/2 [I+2	na. 0+ (na. 8)
= 1/2 L2 (1+	Ra. 8)
= 2 La Fa	
$f_{\alpha} = \frac{1}{2} \int_{-\infty}^{\infty} f^{2}$	
10 1a	
: <4 Fa 4>= == <4 Fa	IDX
20	1/
^	A .
2	r)
= Eala1 + Ea)	lara o
$=$ $\frac{1}{1}$ $+$ 0	
- 7	
·、得证	
- 10 11.	

$$2.$$
解, 由题意识, 根据厄创集符, 亚林 $0 - i$ $0 = \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix}$ $0 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

n= (sind cos 4, six & sin & sin 4, cos (3) (48)

考虑和证益人, 二1, 即 On 二1 例对应的本证意:即有 了一只一了 二0 习或得成红态为 1入1>

最終就得: 1入1><入1= = (I+ 3·ス)

$$0 = \frac{1}{2} \left(\frac{1 + \cos \theta}{\sin \theta} + \frac{\cos \theta}{\cos \theta} \right)$$

$$|\nabla u_{n-1}| = \frac{1}{2} \left(| \cos \theta_{0}| + \sin \theta e^{-i\varphi} \right)$$

$$|\sin \theta|^{2} = \frac{1}{2} \left(|\sin \theta|^{2} + \cos \theta_{0}| + \cos \theta_{0}| \right)$$

$$|\sin \theta|^{2} = \frac{1}{2} \left(|\sin \theta|^{2} + \cos \theta_{0}| + \cos \theta_{0}| \right)$$

国理、 可销在村正值
$$\lambda_2 = -1$$
 时。

$$P(O_n = -1) = \frac{1}{2} \left(she e^{-i\varphi} \right)$$
she $e^{-i\varphi}$ $1 + cose$

在一切二八情况下,

$$\langle \delta x \rangle = \langle \Psi | \delta x | \Psi \rangle = tr(\rho \delta x) = son \theta ces \Psi$$

$$\langle \delta y \rangle = \langle \varphi | \delta y | \varphi \rangle = tr(\rho \delta y) = sone sin \varphi$$

$$\langle \sigma_z \rangle = \langle \varphi | \sigma_z | \varphi \rangle = tr(\rho \sigma_z) = cose \cos \theta$$
.

图若 PA为纯高,即到入一个系统 B, 构成复合系统、别么,

147=140>BIB>, 表示人心=1, 故得证

14>= 140> 8/18>, sunt 14> stars &, AD

$$A = 10 \times 01 + 11 \times 11 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(2)
$$A = |0 \times 0| + |1 \times 1| = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 1 \end{pmatrix}$$

(3)
$$A = |0\rangle\langle 0| + |1\rangle\langle 1| = \begin{pmatrix} \cos^2 6 & \cos 6 \sin 6 \end{pmatrix} + \begin{pmatrix} \sinh^2 6 & -\sinh 6 \cos 6 \\ -\sinh 6 & \cosh 6 \end{pmatrix}$$

$$(\cos 6 \sin 6) + \begin{pmatrix} \cosh 6 & \cos^2 6 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$