17. 2. 2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 3月17日

出 願 番 号 Application Number:

特願2004-075687

[ST. 10/C]:

[JP2004-075687]

出 願
Applicant(s):

昭和電工株式会社

REC'D 1 0 MAR 2005

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2005年 1月 6日

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 PSDT4218 【整理番号】 平成16年 3月17日 【提出日】 特許庁長官殿 【あて先】 CO9F 11/78 【国際特許分類】 CO9F 11/08 H01L 33/00 【発明者】 千葉県千葉市緑区大野台1-1-1 昭和電工株式会社 研究開 【住所又は居所】 発センター内 塩井 恒介 【氏名】

【特許出願人】

000002004 【識別番号】

昭和電工株式会社 【氏名又は名称】

【代理人】

100070378 【識別番号】

【弁理士】

菊地 精一 【氏名又は名称】

【手数料の表示】

【予納台帳番号】 054634 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 【物件名】

明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 9722913

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

一般式がEu2-x Lnx M3 O12 で表されることを特徴とする蛍光体。但し, 0≤ x<2,組成中のLnはY,La及びGdから選ばれた少なくとも1種であり、MはW及 びMoから選ばれた少なくとも1種である。

【請求項2】

平均粒子径が50μm以下であることを特徴とする請求項1に記載の蛍光体。

【請求項3】

赤色発光することを特徴とする請求項1~2の何れか1項に記載の蛍光体。

【請求項4】

請求項1~3の何れか1項に記載の蛍光体と発光素子とを組み合わせた発光装置。

【請求項5】

発光素子が窒化物系半導体発光素子であり、発光素子の発光波長が220nm~550 nmの範囲内であることを特徴とする請求項4に記載の発光装置。

【請求項6】

請求項1~3の何れか1項に記載の蛍光体を用いた発光スクリーン。

【請求項7】

ユーロピゥム酸化物もしくは加熱によりユーロピゥム酸化物となる化合物と、イットリウ ム酸化物、ランタン酸化物、ガドリニウム酸化物もしくは加熱によりこれらの酸化物にな る化合物の少なくとも一種と、タングステン酸化物、モリブデン酸化物もしくは加熱によ りこれらの酸化物となる化合物の少なくとも一種との混合物を800~1300℃で焼成 することを特徴とする請求項1に記載の蛍光体の製造方法。

【書類名】明細書

【発明の名称】蛍光体及びその製造方法並びに蛍光体を用いた発光装置

【技術分野】

[0001]

本発明は、紫外線又は可視光で効率よく励起され発光する蛍光体及びその蛍光体を用いた発光装置に関する。この蛍光体は特に赤色発光に好適である。

【背景技術】

[0002]

紫外線又は可視光を効率よく発光することができる窒化物系化合物半導体などの発光素子と、紫外線又は可視光で効率よく励起され発光する蛍光体を組み合わせて、種々の発光波長の発光ダイオード(以下、LEDともいう)が開発されている。現在、このような用途への適用が検討されている蛍光体として、発光色が青色の(Sr, Ca, Ba) 10 (PO_4) $6Cl_2$: Eu、緑色の3(Ba, Mg, Mn) $O\cdot 8Al_2O_3$: Eu、赤色の Y_2O_2 S: Eu が開示されている(特許文献 1 参照)。これら 3 色の蛍光体を任意の割合で混合することによって、多くの発光色を作ることができるが、白色系の場合、赤色成分の Y_2O_2 S: Eu 蛍光体の発光効率が他の蛍光体よりもかなり低いために混合割合が多くなるといった問題があった。更に、白色系では赤、緑、青の発光バランスにより白色を得ることができるが、赤色成分の発光効率が悪いために緑、青系蛍光体の発光量を低く抑えなければならず、高輝度の白色が得られなかった。

また、波長域300~410nmの長波長紫外線又は近紫外線により励起され発光する 蛍光体は、発光スクリーン、例えばコンクリートやガラス等に混入され装飾板や間接照明 器具などに使用されることが期待されているが、その効果を十分に発揮するためには、さ らに発光輝度の高い蛍光体が要求される。

【特許文献1】特開2002-203991号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

本発明は、上述した問題の解決を目的とし、紫外線又は可視光で効率よく励起され赤色の発光に好適な蛍光体及びそれを用いた発光装置を提供することを目的としている。

【課題を解決するための手段】

[0004]

本発明者は上記目的を達成するために鋭意検討した結果、一般式が $Eu_2 - x Ln_x M_3 O_{12}$ で表される蛍光体(但し, $0 \le x < 2$,組成中のLn UY,La DUG dから選ばれた少なくとも 1 種であり,MUD UM O から選ばれた少なくとも 1 種である。)が、波長域 $220 \sim 550$ nm の紫外線又は可視光励起による赤色発光強度が高く、この赤色発光蛍光体を用いた発光ダイオードなどの発光装置は発光特性が優れていることを新たに見い出し本発明を完成させるに至った。

即ち、本発明の蛍光体は、以下の各項の発明からなる。

[0005]

- (1) 一般式が $Eu_{2-x}Ln_{x}M_{3}O_{12}$ で表されることを特徴とする蛍光体。但し、 $0 \le x < 2$,組成中のLnは Y,La及びGdから選ばれた少なくとも 1種であり,Mは W及びMo から選ばれた少なくとも 1種である。
 - (2) 平均粒子径が50 μ m以下であることを特徴とする上記(1) に記載の蛍光体。
 - (3) 赤色発光することを特徴とする上記(1)~(2)の何れかに記載の蛍光体。
- (4)上記(1)~(3)の何れかに記載の蛍光体と発光素子とを組み合わせた発光装置
- (5) 発光素子が窒化物系半導体発光素子であり、発光素子の発光波長が220nm~5 50nmの範囲内であることを特徴とする上記(4)に記載の発光装置。
- (6)上記(1)~(3)の何れかに記載の蛍光体を用いた発光スクリーン。
- (7) ユーロピゥム酸化物もしくは加熱によりユーロピゥム酸化物となる化合物と、イッ

トリウム酸化物、ランタン酸化物、ガドリニウム酸化物もしくは加熱によりこれらの酸化 物になる化合物の少なくとも一種と、タングステン酸化物、モリブデン酸化物もしくは加 熱によりこれらの酸化物となる化合物の少なくとも一種との混合物を800~1300℃ で焼成することを特徴とする上記(1)に記載の蛍光体の製造方法。

【発明の効果】

[0006]

本発明の蛍光体は220~550nmの波長域の紫外線又は可視光により効率よく励起 され発光することから、発光スクリーンや発光ダイオード、蛍光ランプ等の発光装置に有 効に利用することができる。更に、本発明の蛍光体又は本発明の蛍光体を含む複数種の蛍 光体を用いることにより、種々の発光色のLEDを作製することができ、白色LEDの場 合は演色性や輝度を向上させることができる。

【発明を実施するための最良の形態】

[0007]

本発明の一般式Eu2-x Lnx M3 O12 (但し、0≤x<2, 組成中のLnはY, La及びGdから選ばれた少なくとも1種であり、MはW及びMoから選ばれた少なくと も1種)で表される蛍光体においては、広範な組成範囲で非常に高い発光強度を得ること ができる。

本発明の蛍光体においては、ユーロピウムイオンが発光イオンであるため、一般的には 、発光強度はユーロピウム濃度に依存し、ユーロピウム濃度が最大のとき発光強度も最大 となる。

一方、発光イオン濃度が高いと、(i)発光イオンの間に共鳴伝達による交差緩和が生 じ、励起エネルギーの一部が失われる。(ii)発光イオン間の共鳴伝達による励起の回遊 が生じ、これが結晶表面や非発光中心への励起の移行と消滅を助長する。(iii)発光イ オン同士が凝集あるいはイオン対を形成することによって、非発光中心やキラー(蛍光抑 制剤)に変わるなどの理由によって濃度消光が起こることが知られている。

上記の理由により、本発明の蛍光体においては、広範な組成範囲で高い発光強度を得る ことができる。

[0008]

図1に、実施例1の蛍光体の発光に対する励起スペクトルを示す。図から、この蛍光体 の励起スペクトルは、220 nmから550 nmの波長領域に存在し、本発明の蛍光体は この波長域の紫外線又は可視光により効率よく励起され赤色発光することがわかる。また 、254nm紫外線でも効率よく励起されるため、通常の蛍光ランプ用としても有効に利 用できる。

また、本発明の蛍光体は長波長紫外線~近紫外線(波長域300~410nm)により 励起され発光するため、発光スクリーン、例えばコンクリートやガラス等に混入され装飾 板や間接照明器具などに使用できる。この装飾板は、太陽光や通常の蛍光灯下でのデイス プレイ効果とUVランプの出す長波長~近紫外線照射下でのディスプレイ効果により、装 飾効果や間接照明効果を発揮するものである。

蛍光体の分布は、蛍光体を含有する部材、形成温度、粘度や蛍光体の形状、粒径、粒度 分布などを調整させることによって種々形成させることができる。したがって、使用条件 などにより蛍光体の分布濃度を、種々選択することができる。このような分布を分散性よ く制御する目的で蛍光体の平均粒径は50μm以下であることが好ましい。

[0009]

本発明の蛍光体は次のようにして得られる。原料化合物としては例えば、蛍光体原料と して、加熱により酸化物を形成するユーロピウム化合物、イットリウム化合物及びタング ステン化合物を用いた場合、各化合物について一般式Eu2-xYxW3 О1 2 (但し, 0 ≤ x < 2) の割合になるように秤取し、混合するか、又は必要に応じてこれら蛍光体原 料にフラックスを加えて混合し、原料混合物を得る。この原料混合物をアルミナルツボ等 に充填し、例えば大気中、800~1300℃で数時間焼成する。冷却後、ボールミル等 で分散・粉砕処理を行い、必要に応じて水洗処理を施し、固液分離後、乾燥・解砕・分級 して本発明の蛍光体を得る。

蛍光体原料としては、次のような酸化物又は加熱により酸化物を形成する化合物が好ま しく用いられる。例えば、ユーロピウム化合物としては炭酸ユーロピウム、酸化ユーロピ ウム、水酸化ユーロピウム等、イットリウム化合物としては炭酸イットリウム、酸化イッ トリウム、水酸化イットリウム等、ランタン化合物としては炭酸ランタン、酸化ランタン 、水酸化ランタン等、ガドリニウム化合物としては炭酸ガドリニウム、酸化ガドリニウム 、水酸化ガドリニウム等、タングステン化合物としては酸化タングステン、タングステン 酸等、モリブデン化合物としては酸化モリブデン、モリブデン酸等、の化合物、あるいは これらの複化合物が好ましい。尚、上記以外にも、ユーロピウム、イットリウム、ランタ ン、ガドリニウム、タングステン及びモリブデンを含有する有機金属化合物等を用いて、 加熱により、あるいは気相法や液相法により、本発明の蛍光体や、原料混合物を得ること が出来る。また、フラックスとしてはアルカリ金属のハロゲン化物、アルカリ土類金属の ハロゲン化物、フッ化アンモニウム等が好ましく、例えば、蛍光体原料100重量部に対 し0.01~1.0重量部の範囲で添加する。

$[0\ 0\ 1\ 0]$

本発明の蛍光体は220mmから550mmの紫外線又は可視光で効率よく励起される ため、蛍光ランプ用として有効であるだけでなく、本発明の蛍光体と発光スペクトルが2 20 nmから550 nmの波長域にある発光ダイオードと組み合わせることによって、種 々の発光色のLEDに応用できる。例えば、本発明の蛍光体と、発光スペクトルが220 ~410nm内の紫外線又は近紫外線を放射する発光ダイオードを組み合わせると、発光 色が赤色のLEDが得られる。

また、本発明の蛍光体と、発光スペクトルが400~550nm内の可視光を放射する 発光ダイオードを組み合わせると、この可視光により励起され赤色発光蛍光体が放射する 発光と発光ダイオードの可視光が混合された種々の発光色のLEDが得られる。さらに、 本発明の蛍光体を含む複数種の蛍光体と上記発光ダイオードを組み合わせることによって 種々の発光色のLEDを作製することができる。特に、白色LEDにおいて、本発明の蛍 光体を用いることにより、演色性や輝度をを向上させることができる。

$[0\ 0\ 1\ 1]$

本発明の発光装置はLEDや蛍光ランプなどの発光装置であるが、ここではLED発光 装置について説明する。この発光装置は、本発明の蛍光体と220nmから550nmの 波長域に発光する半導体発光素子を組み合わせてなる発光装置であって、半導体発光素子 としてはZnSeやGaNなど種々の半導体が挙げられる。本発明で用いる発光素子は、 発光スペクトルが220 nmから550 nmに発光可能なものであり、上記蛍光体を効率 良く励起できる窒化ガリウム系化合物半導体が好ましく用いられる。発光素子はMOCV D法やHVPE法等により基板上に窒化物系化合物半導体を形成させて得られ、好ましく は I n α A l β G a l $-\alpha$ $-\beta$ N (但し、0 $\leq \alpha$ 、0 $\leq \beta$ 、 α + $\beta \leq$ 1) を発光層として 形成させる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホ モ構造、ヘテロ構造あるいはダブルヘテロ構造のものが挙げられる。半導体層の材料やそ の混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果 が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。

[0012]

発光素子上に設ける上記蛍光体層は、少なくとも1種以上の蛍光体を単層又は複数層と して層状に積層配置しても良いし、複数の蛍光体を単一の層内に混合して配置しても良い 。上記発光素子上に蛍光体層を設ける形態としては、発光素子の表面を被覆するコーティ ング部材に蛍光体を混合する形態、モールド部材に蛍光体を混合する形態、或いはモール ド部材に被せる被覆体に蛍光体を混合する形態、更にはLEDランプの投光側前方に蛍光 体を混合した透光可能なプレートを配置する形態等が挙げられる。

又、上記蛍光体は発光素子上のモールド部材に少なくとも1種以上の蛍光体を添加して も良い。更に、上記蛍光体の1種以上の蛍光体層を、発光ダイオードの外側に設けても良 い。発光ダイオードの外側に設ける形態としては、発光ダイオードのモールド部材の外側

【実施例】

[0013]

以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるものではないことは言うまでもない。尚、以下の実施例では発光スペクトルは、日本分光株式会社製FP-6500を用いて測定した。

[実施例1] 蛍光体構成原料として、WO3 粉末を68.89gと、Eu2O3 粉末を24.40gと、Y2O3 粉末6.71gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉砕・分級し、平均粒径4.5 μ mのEu1.4 Y0.6 W3O12 なる蛍光体を得た。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトルの強度(相対強度、以下同じ)を100とした。この蛍光体の励起スペクトルを図1に示す

$[0\ 0\ 1\ 4]$

[実施例2] 蛍光体構成原料として、WO3 粉末を66.40gと、Eu2O3 粉末を33.60gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉砕・分級し、平均粒径5.8μmのEu2W3O12 なる蛍光体を得た。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトルの強度は71だった。

[0015]

[実施例3] 蛍光体構成原料として、 WO_3 粉末を67.21 gと、 Eu_2O_3 粉末を30.61 gと、 Y_2O_3 粉末2.18 gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1000 Cの温度で6 時間焼成した。得られた焼成物をボールミルにより細かく粉砕・分級し、平均粒径 4.7μ mの $Eu_1.8Y_0.2W_3O_12$ なる蛍光体を得た。同蛍光体を395 n m励起下で発光させたところ、赤色発光が認められ、発光スペクトルの強度は91 だった。

[0016]

[実施例 4] 蛍光体構成原料として、WO3 粉末を70.66gと、Eu2O3 粉末を17.87gと、Y2O3 粉末11.47gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉砕・分級し、平均粒径5.1 μ mのEuYW3O12なる蛍光体を得た。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトルの強度は96だった。

[0017]

[実施例 5] 蛍光体構成原料として、WO3 粉末を 7 2. 5 1 gと、E u 2 O 3 粉末を 1 1. 0 1 gと、Y 2 O 3 粉末 1 6. 4 8 gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中 1 0 0 0 $^{\circ}$ での温度で 6 時間焼成した。得られた焼成物をボールミルにより細かく 粉砕・分級し、平均粒径 5. 3 $^{\mu}$ mの E u 0 . 6 Y 1 . 4 W 3 O 1 2 蛍光体を得た。同蛍光体を 3 9 5 n m励起下で発光させたところ、赤色発光認められ、発光スペクトルの強度 は 8 3 だった。

[0018]

[実施例6] 蛍光体構成原料として、WO3 粉末を74.47gと、Eu2 O3 粉末を 出証特2004-3120125

3. 77gと、Y2O3粉末21.76gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉 碎・分級し、平均粒径 5. 8 μ mの E u o . 2 Y ı . 8 W 3 O ı 2 なる蛍光体を得た。同 蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトルの 強度は48だった。

[0019]

[実施例7] 蛍光体構成原料として、WO3 粉末を66.34gと、Eu2 O3 粉末を 30.21gと、Gd2O3粉末3.46gを正確に秤量し、これをボールミルを使用し て均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入 れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく 粉砕・分級し、平均粒径 5. 1μ mの E u 1. 8 G d o . 2 W 3 O 1 2 なる蛍光体を得た 。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクト ルの強度は89だった。

[0020]

[実施例8] 蛍光体構成原料として、WO3 粉末を66.20gと、Eu2 O3 粉末を2 3. 45gと、Gd2O3粉末1O.35gを正確に秤量し、これをボールミルを使用し て均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入 れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく 粉砕・分級し、平均粒径 5.8 μ mの E u 1.4 G d o .6 W 3 O 1 2 なる蛍光体を得た 。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクト ルの強度は99だった。

[0021]

[実施例9] 蛍光体構成原料として、WO3 粉末を66.07gと、Eu2 O3 粉末を 16.71gと、Gd2O3粉末17.21gを正確に秤量し、これをボールミルを使用 して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に 入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細か く粉砕・分級し、平均粒径 5. 5μmのΕυGdW3O12なる蛍光体を得た。同蛍光体 を395 n m励起下で発光させたところ、赤色発光が認められ、発光スペクトルの強度は 96だった。

[0022]

[実施例10] 蛍光体構成原料として、WO3 粉末を65.94gと、Eu2 O3 粉末 を10.01gと、Gd2O3粉末24.06gを正確に秤量し、これをボールミルを使 用して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝 に入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細 かく粉砕・分級し、平均粒径 5.5 μ m の E u o .6 G d 1.4 W 3 O 12 なる蛍光体を 得た。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペ クトルの強度は83だった。

[0023]

[実施例11] 蛍光体構成原料として、WO3 粉末を65.80gと、Eu2 O3 粉末 を3.33gと、Gd2O3粉末30.87gを正確に秤量し、これをボールミルを使用 して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に 入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細か く粉砕・分級し、平均粒径 5.8 μ m の E u o .2 Y 1.8 W 3 O 12 なる蛍光体を得た 。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクト ルの強度は53だった。

[0024]

[実施例12] 蛍光体構成原料として、WO3 粉末を67.58gと、Eu2 O3 粉末を 10.26gと、La2O3粉末22.16gを正確に秤量し、これをボールミルを使用 して均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に

入れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細か - く粉砕・分級し、平均粒径 5. 8 μ mのE u o . 6 L a 1 . 4 W 3 O 1 2 なる蛍光体を得 た。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペク トルの強度は79だった。

[0025]

[実施例13] 蛍光体構成原料として、MoO3 粉末を57.89gと、Eu2 O3 粉末 を33.03gと、Y2O3粉末9.08gを正確に秤量し、これをボールミルを使用し て均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入 れ大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく 粉砕・分級し、平均粒径 4. 7μ mの E u 1. 4 Y 0. 6 M O 3 O 1 2 なる蛍光体を得た 。同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクト ルの強度は88.4だった。

[0026]

[実施例14] 蛍光体構成原料として、WO3 粉末を68.89gと、Eu2 O3 粉末を 24. 40gと、Y2O3粉末6.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉 砕・分級し、平均粒径 2. 4 μ m の E u 1. 4 Y 0. 6 W 3 O 1 2 なる蛍光体を得た。同 蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトルの 強度は97だった。

[0027]

[実施例15] 蛍光体構成原料として、WO3粉末を68.89gと、Eu2O3粉末を 24. 40gと、Y2O3粉末6.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉 砕・分級し、平均粒径27.8μmのEu1.4 Yo.6 W3 O12 なる蛍光体を得た。 同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトル の強度は91だった。

[0028]

[実施例16] 蛍光体構成原料として、WO3粉末を68.89gと、Eu2O3粉末を 24. 40gと、Y2O3粉末6.71gを正確に秤量し、これをボールミルを使用して 均一に混合して原料混合体とした。次に、得られた原料混合体を、アルミナ製坩堝に入れ 大気中1000℃の温度で6時間焼成した。得られた焼成物をボールミルにより細かく粉 砕・分級し、平均粒径41.4μmのEu1.4 Yo.6 W3 O12 なる蛍光体を得た。 同蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトル の強度は87だった。

[0029]

[実施例17] 実施例1で得られた蛍光体を465nm励起下で発光させたところ、赤 色発光が認められ、発光スペクトルの強度は86.1だった。

[0030]

[実施例18] 実施例1で得られた蛍光体を256nm励起下で発光させたところ、赤 色発光が認められ、発光スペクトルの強度は98だった。

[0031]

[比較例1] 蛍光体構成原料として、WO3 粉末を75.49gと、Y2O3 粉末24 . 5 1 gを正確に秤量し、これをボールミルを使用して均一に混合して原料混合体とした 。次に、得られた原料混合体を、アルミナ製坩堝に入れ大気中1000℃の温度で6時間 焼成した。得られた焼成物をボールミルにより細かく粉砕・分級し、平均粒径 6.2 μ m のY2W3O12なる蛍光体を得た。同蛍光体を395nm励起下で発光させたところ、 赤色発光が認められ、発光スペクトルの強度は0だった。

[0032]

[比較例2] 既存のY2O2S:Eu蛍光体を395nm励起下で発光させたところ、赤色発光が認められ、発光スペクトルの強度は18.2だった。

[0033]

[実施例19] 実施例1で得られた蛍光体をシリコーンゴムに20質量%混合し、これを加熱プレス機を用いてキャップ状に成型した。これを、発光波長が395nmの近紫外線LEDの外側に被覆し、発光させたところ、赤色発光が認められた。また、温度60℃90%RH下で500時間点灯後においても蛍光体に起因する変化は認められなかった。

[0034]

[実施例20] 実施例1で得られた蛍光体と、青色発光蛍光体としてSr5 (PO4) 3 C1: Euと、緑色発光蛍光体としてBaMg2Al16O27: Eu, Mnとをシリコーンゴムに前記順に22.7質量%、3.8質量%、3.4質量%混合し、395nm近紫外線発光素子上にマウントして白色LEDを作製したところ、得られた白色光の平均演色評価数は89だった。

[0035]

[実施例21] 実施例1で得られた蛍光体と、黄色発光蛍光体として Y_3 A 1_5 O 1_2 : Ce とをエポキシ樹脂に前記順に8.8質量%、 1_7 .6質量%混合し、 4_6 5 n m 青色発光素子上にマウントして白色LEDを作製したところ、得られた白色光の平均演色評価数は81だった。

[0036]

[実施例 2 2] 実施例 1 で得られた蛍光体と、青色発光蛍光体としてSr5 (PO4) 3C1:Euと、緑色発光蛍光体としてBaMg2A116O27:Eu, Mnとをシリコーンゴムに前記順に 2 2. 7 質量%、 3. 8 質量%、 3. 4 質量%混合し、 3 9 5 n m 近紫外線発光素子上にマウントして作製した白色LEDと、赤色発光蛍光体として Y2O2 S:Eu、青色発光蛍光体として Sr5 (PO4) 3C1:Eu と、緑色発光蛍光体として BaMg2A116O27:Eu, Mn とをシリコーンゴムに前記順に 4 5. 8 質量%、 3. 8 質量%、 3. 4 質量%混合し、 3 9 5 n m 近紫外線発光素子上にマウントして 作製した白色LEDとを比較したところ、赤色発光蛍光体として Y2O2 S:Eu を用いた場合よりも 2. 7 倍の輝度を持つ白色光が得られた。

【産業上の利用可能性】

[0037]

本発明の蛍光体は発光スクリーン、例えばコンクリートやガラス等に混入し、装飾板や間接照明器具などに使用できる。また発光ダイオード、蛍光ランプ等の発光装置に有効に利用することができる。

【図面の簡単な説明】

[0038]

【図1】実施例1の蛍光体の励起スペクトル図である。

【書類名】図面【図1】

【書類名】要約書

【要約】

【課題】 紫外線又は可視光で効率よく励起され、赤色に発光する蛍光体及びそれを用いた発光装置を提供すること。

【解決手段】一般式 $Eu_2-xLn_xM_3O_12$ で表される蛍光体である。但 $L0\le x<2$,組成中のLnはY,La及びGdから選ばれた少なくとも1種であり、MはWまたはMoからなる群より選ばれた少なくとも1種である。

上記の蛍光体と窒化物系半導体発光素子等の発光素子とを組み合わせて発光装置とすることができる。

【選択図】 なし

特願2004-075687

出願人履歴情報

識別番号

[000002004]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所 名

東京都港区芝大門1丁目13番9号

昭和電工株式会社