获得的答案

Assumption: is a 3CNF formula.

 ϕ is a clause that contains two literals with unequal truth values of an \neq – assignment to the variable.

CNF is Conjunctive Normal Form. It has the following rules:

- A literal is Boolean variable or negated Boolean variable in the form.
- Boolean formula is in CNF called a CNF formula.
- If all clauses have three literals, then it is called 3cnf formula.
- Clause contains several literals connected with vs and As.
- Each clause has at least one satisfied literal and one unsatisfied literal in \neq assignment to ϕ .
- The negation of an \neq –assignment conserve this property.
- Hence, negation of any \neq to ϕ is also an \neq assignment.

b)

To show: The formula ϕ is mapped to ϕ then ϕ is satisfiable if ϕ has an \neq assignment.

Assumption: \neq SAT is the collection of 3cnf formulas that have an \neq –assignment.

• Obtain a polynomial time reduction from 3SAT to \neq – SAT by replacing each close c_i of the form $(y_1 \lor y_2 \lor y_3)$ with the two clause $(y_1 \lor y_2 \lor z_i)$ and $(z_i \lor y_3 \lor b)$

Where

- z_i is a new variable for each clause c_i
- b is a single additional new variable.

It is known that $SAT = \{(\phi) \mid \phi \text{ is a boolean formula} \}$

- Let ϕ and ϕ are 3 CNF formulas of input and reduction on input ϕ and ϕ as output.
- We must prove $\phi \in 3-SAT \Leftrightarrow \phi^{'} \in \neq SAT$ therefore the reduction is correct.

Suppose that $\phi \in 3 - SAT$

- φ is satisfiable.
- 1 is true and 0 is false. We get an ≠ assignment to ø by extending a satisfying assignment to ø in such a way that we assign 1 to ø ∈ k ≠ SAT.
- Else if both literals y_1 and y_2 are clauses c_i are unsatisfied, else we assign 0 to z_i .
- Finally, we assign 0 to b.
- Extended assignment satisfies ϕ' and it is an \neq assignment to ϕ' .

Therefore, $\phi' \in \neq SAT$

Suppose that $\phi' \in k \neq SAT$

• ≠ has an ≠ - assignment

Satisfying assignment to ϕ as follows:

- From part(a) we obtain ≠ assignment assigns 0 to b, otherwise simply alegate the assignment.
- This \neq assignment cannot assign 0 to all y_1, y_2 and y_3 as doing so would force one of the two clauses, $(y_1 \lor y_2 \lor z_i)$ and $(z_i \lor y_3 \lor b)$, to have all 0's

• Hence restricting this assignment to the variables of ϕ yields a satisfying assignment to ϕ .

Therefore, 3SAT is polynomial time reducible to \neq SAT

(c)

NP-COMPLETE: A language B is NP-complete if it satisfies two conditions

- B is in NP
- Every A in NP is polynomial time reducible to B.

 \neq SAT \in NP, as it is easy to verify whether an assignment is an \neq – assignment.

Part(b) also proved $3SAT \leq_p \neq SAT$, \neq SAT is NP-complete.