Clase 3- Diferentes convergencias y Teorema Central del Límite

Probabilidades

Carrera de Especialización en Estadística, Facultad de Ciencias Exactas y Naturales, UBA

2023

Sobre las encuestas

- 1. Me parece importante que las clases no se pasen del horario estipulado, ya que es injusto para quienes, por algún motivo, se tienen que ir a la hora acordada.
- 2. Me gusta que haya rigor matemático y que tenga un ritmo ágil, aunque a veces se me dificulta tomar apuntes.
- 3. Siento que las explicaciones teóricas se temrinan yendo mucho a demostraciones que no termino de comprender

¿Qué vamos a ver hoy?

- Diferentes nociones de convergencia.
- Demostrar desigualdades pendientes y Ley de los grande números
- Hablar de convergencia en distribución
- Teorema Central del Límite.

Desigualdades

 $\bullet \ \, {\rm Markov:} \ \, X \geq 0 \text{, entonces para todo} \, \, \delta > 0 \, \, {\rm vale \, \, que} \\$

$$\mathbb{P}(X \ge \delta) \le \frac{\mathbb{E}[X]}{\delta}$$

 \bullet Tchebycheff : Sea W una v.a. y $\varepsilon>0$

$$\mathbb{P}\left(|W - \mathbb{E}[W]| \ge \varepsilon\right) \le \frac{V[W]}{\varepsilon^2}$$

Demostración:

El mundo normal vs. Desigualdad Tchebycheff

Probabilidades exactas en el mundo normal

$$\mathbb{P}\left(|W - \mu_W| > \varepsilon\right) = 2\left(1 - \phi\left(\frac{\varepsilon}{\sigma_W}\right)\right)$$

• Cotas superiores universales (asumiendo V(W) finita)

$$\mathbb{P}(|W - \mu_W| > \varepsilon) \le \frac{\sigma_W^2}{\varepsilon^2}$$

Regla Normal - $W \sim \mathcal{N}(\mu, \sigma^2)$

$$\mathbb{P}(|W - \mu| \ge \sigma) = 0.32,$$

$$\mathbb{P}(|W - \mu| \ge 2\sigma) = 0.05,$$

$$\mathbb{P}(|W - \mu| \ge 3\sigma) = 0.03$$

Desigualdad de Tchebycheff

Sea W una v.a. con media $\mathbb{E}(W)=\mu$ y $V(W)=\sigma^2$. Luego, $\varepsilon>0$

$$\mathbb{P}(|W - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

Tomando $\varepsilon = k\sigma$,

$$\mathbb{P}(|W - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2}$$

Desigualdad de Tchebycheff

Sea W una v.a. con media $\mathbb{E}(W)=\mu$ y $V(W)=\sigma^2$. Luego, $\varepsilon>0$

$$\mathbb{P}(|W - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

Tomando $\varepsilon = k\sigma$,

$$\mathbb{P}(|W - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2}$$

En particular, para k = 1, 2, 3, obtenemos las las siguientes cotas:

$$\mathbb{P}(|W - \mu| \ge \sigma) \le 1,$$

$$\mathbb{P}(|W - \mu| \ge 2\sigma) \le \frac{1}{4},$$

$$\mathbb{P}(|W - \mu| \ge 3\sigma) \le \frac{1}{9}$$

El mundo normal vs. Desigualdad Tchebycheff

Probabilidades exactas en el mundo normal

$$\mathbb{P}(|W - \mu| \ge \sigma) = 0.32,$$

$$\mathbb{P}(|W - \mu| \ge 2\sigma) = 0.05,$$

$$\mathbb{P}(|W - \mu| \ge 3\sigma) = 0.03$$

ullet Cotas superiores universales (asumiendo V(W) finita)

$$\mathbb{P}(|W - \mu| \ge \sigma) \le 1,$$

$$\mathbb{P}(|W - \mu| \ge 2\sigma) \le \frac{1}{4},$$

$$\mathbb{P}(|W - \mu| \ge 3\sigma) \le \frac{1}{9}$$

Desigualdad de Tchebycheff aplicada a promedios

- $(X_i)_{i\geq 1}$ iid, $\mathbb{E}(X_i) = \mu$, $V(X_i) = \sigma^2$.
- Promedio:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim ?$$

• Esperanza y Varianza del promedio

$$\mu_{\overline{X}_n} = \mathbb{E}(\overline{X}_n) = \mu \; , \quad \sigma_{\overline{X}_n}^2 = V(\overline{X}_n) = \frac{\sigma^2}{n} \; .$$

Tchebycheff dice:

$$\mathbb{P}\left(|\overline{X}_n - \mu_{\overline{X}_n}| \ge \varepsilon\right) \le \frac{\sigma_{\overline{X}_n}^2}{\varepsilon^2}$$

$$\mathbb{P}\left(|\overline{X}_n - \mu| \ge \varepsilon\right) \le \frac{\sigma^2/n}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}$$

Teorema: Ley de los Grandes Números (LGN)

Sean $(X_i)_{i\geq 1}$ i.i.d., con $\mathbb{E}(X_i)=\mu$ y $V(X_i)=\sigma^2$, para todo i. Entonces, el promedio converge a μ en probabilidad:

es decir para todo $\varepsilon > 0$ vale que

$$\lim_{n \to \infty} \mathbb{P}\left(|\overline{X}_n - \mu| > \varepsilon\right) = 0$$

$$\overline{X}_n \stackrel{p}{\longrightarrow} \mu$$

Demostración de la Ley de los Grandes Números

Demostración: Tchebycheff prueba que

$$\mathbb{P}\left(|W - \mathbb{E}[W]| \ge \varepsilon\right) \le \frac{V[W]}{\varepsilon^2}$$

Vamos a invocar la Desigualdad de Tchebicheff, pero con $W=\overline{X}_n.$ En tal caso,

$$\mu_{\overline{X}_n} = \mathbb{E}(\overline{X}_n) = \mu$$

$$\sigma_{\overline{X}_n}^2 = V(\overline{X}_n) = \frac{\sigma^2}{n}$$
.

Tenemos entonces que

$$\mathbb{P}\left(|\bar{X}_n - \mu| > \varepsilon\right) = \mathbb{P}\left(|\bar{X}_n - \mu_{\overline{X}_n}| > \varepsilon\right) \le \frac{V(\overline{X}_n)}{\varepsilon^2} = \frac{1}{\varepsilon^2} \frac{\sigma^2}{n} \to 0$$

Muestra (aleatoria simple)- variable i.i.d

Diremos que X_1, \ldots, X_n son una muestra si son variables aleatorias independientes, idénticamente distribuídas.

$$X_1,\ldots,X_n$$
, i.i.d.

En tal caso, $X_i \sim F$ para todo i, y por consiguiente,

$$mongo(X_i) = mongo(X_j) = mongo(X_1).$$

LGN - más generalmente

$$\frac{1}{n}\sum_{i=1}^n \mathsf{mongo}_i \to \mathbb{E}(\mathsf{mongo}) \quad \mathsf{en probabilidad}$$

Utilizamos la Ley de los Grandes Números para Estimación

Estimación de la Esperanza

- $(X_i)_{i>1}$, i.i.d. $X_i \sim F$.
- $\mathbb{E}(X_i) = \mu$, $V(X_i) = \sigma^2$
- Por la ley de los grandes números

$$\overline{X}_n o \mathbb{E}(X_1) = \mu$$
 en probabilidad

• En tal caso, definimos

$$\widehat{\mu} = \widehat{\mu}_n = \overline{X}_n$$

- Propiedades de $\widehat{\mu}_n$:
 - $\mathbb{E}(\widehat{\mu}_n) = \mu$
 - $\widehat{\mu}_n \to \mu$ en probabilidad.

Variables Bernoulli

- $X_i \sim \mathcal{B}(1,p)$, i.i.d.
- $\mathbb{E}(X_i) = p$, $V(X_i) = p(1-p)$
- Por la ley de los grandes números

$$\overline{X}_n o \mathbb{E}(X_1) = p$$
 en probabilidad

• En tal caso, definimos

$$\widehat{p} = \widehat{p}_n = \overline{X}_n$$

- Propiedades de \widehat{p}_n :
 - $\mathbb{E}(\widehat{p}_n) = p$
 - $\widehat{p}_n \to p$ en probabilidad.

Estimación de Probabilidades - Ejemplo

- $(X_i)_{i\geq 1}$, i.i.d. $X_i\sim F$.
- Nos interesa estimar $F(3) = \mathbb{P}(X \leq 3)$.
- Definimos

$$Y_i = I_{X_i \le 3} = I_{(-\infty,3]}(X_i)$$

• $Y_i \sim \mathcal{B}(1,p)$, con

$$p = \mathbb{E}(Y_1) = \mathbb{P}(Y_1 = 1) = \mathbb{P}(X_1 \le 3) = F(3)$$

Por la ley de los grandes números (caso Bernoulli)

$$\overline{Y}_n o \mathbb{E}(Y_1) = F(3)$$
 en probabilidad

• En tal caso, definimos

$$\widehat{F}(3) = \widehat{F}_n(3) = \overline{Y}_n = \frac{1}{n} \sum_{i=1}^n I_{X_i \le 3}$$

17/36

Estimación de Probabilidades.

- $(X_i)_{i\geq 1}$, i.i.d. $X_i\sim F$.
- Nos interesa estimar $\mathbb{P}(X \in A)$.
- Definimos

$$Y_i = I_{X_i \in A} = I_A(X_i)$$

• $Y_i \sim \mathcal{B}(1,p)$, con

$$p = \mathbb{E}(Y_1) = \mathbb{P}(Y_1 = 1) = \mathbb{P}(X_1 \in A)$$

Por la ley de los grandes números (caso Bernoulli)

$$\overline{Y}_n o \mathbb{E}(Y_1) = \mathbb{P}(X_1 \in A)$$
 en probabilidad

Es decir,

$$\frac{1}{n} \sum_{i=1}^{n} I_{X_i \in A} \longrightarrow \mathbb{P}(X_1 \in A)$$

DEMOSTRAMOS QUE LA FRECUENCIA RELATIVA

CONVERGE A LA PROBABILIDAD.

Estimación de varianza.

- $(X_i)_{i>1}$, i.i.d. $X_i \sim F$.
- Nos interesa estimar $\sigma^2 = V(X) = \mathbb{E}(X^2) \{\mathbb{E}(X)\}^2$.

• ¿Qué hacemos?

LGN y Propiedades de la convergencia en probabilidad

• Ley de los grandes Números: $mongo_1, mongo_2, \dots$ iid, $mongo_i \sim mongo$

$$\frac{1}{n}\sum_{i=1}^n \mathrm{mongo}_i \quad \overset{p}{\longrightarrow} \quad \mathbb{E}(\mathrm{mongo})$$

LGN y Propiedades de la convergencia en probabilidad

• Ley de los grandes Números: $mongo_1, mongo_2, ...$ iid, $mongo_i \sim mongo$

$$\frac{1}{n}\sum_{i=1}^{n}\mathrm{mongo}_{i} \quad \overset{p}{\longrightarrow} \quad \mathbb{E}(\mathrm{mongo})$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \overset{p}{\longrightarrow} \mathbb{E}(X^{2})$$

• Si $W_n \stackrel{p}{\longrightarrow} W$ y g continua, entonces $g(W_n) \stackrel{p}{\longrightarrow} g(W)$.

$$\left\{\overline{X}_n\right\}^2 \stackrel{p}{\longrightarrow} \left\{\mathbb{E}(X)\right\}^2$$

• Si $W_n \stackrel{p}{\longrightarrow} W$ y $U_n \stackrel{p}{\longrightarrow} U$, entonces $W_n \pm U_n \stackrel{p}{\longrightarrow} W \pm U$.

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \{\overline{X}_n\}^2 \xrightarrow{p} \mathbb{E}(X^2) - \mu^2 = Var(X)$$

Propiedades de la convergencia en probabilidad

- Si $W_n \stackrel{p}{\longrightarrow} W$ y $U_n \stackrel{p}{\longrightarrow} U$, entonces $W_n U_n \stackrel{p}{\longrightarrow} WU$.
- Si $W_n \xrightarrow{p} W$ y $U_n \xrightarrow{p} U$ y $\mathbb{P}(U=0) = 0$, entonces $W_n/U_n \xrightarrow{p} W/U$.
- Si $W_n \xrightarrow{p} W$ y $U_n \xrightarrow{p} U$ y g continua, entonces $g(W_n,U_n) \xrightarrow{p} g(W,U)$.

Volvamos a mirar como se distribuyen las cosas

Convergencia en distribución

Definition

Sea W_1,W_2,\ldots una sucesión de variables aleatorias y sea W otra variable aleatoria. Denotemos con F_n y F a la función de distribución acumulada de W_n y W, respectivamente: $W_n \sim F_n$, $W \sim F$. Diremos que W_n converge en distribución a W si

 $\lim_{n \to \infty} F_n(t) = F(t), \quad \text{para todo } t \text{ punto de continuidad de } F$

Notación: $W_n \stackrel{D}{\longrightarrow} W$.

Teorema Central del límite

Sea X_1,X_2,\ldots una sucesión de variables aleatorias iid definidas en (Ω,\mathcal{A},P) , con $\mathbb{E}(X_i)=\mu$ y $V(X_i)=\sigma^2$, Entonces,

$$\frac{\overline{X}_n - \mu}{\sqrt{\mathbb{V}(\overline{X}_n)}} \xrightarrow{D} Z, \quad Z \sim \mathcal{N}(0, 1).$$

Versiones equivalentes

$$\frac{\overline{X}_n - \mu}{\sqrt{\mathbb{V}(\overline{X}_n)}} \xrightarrow{D} Z, \quad Z \sim \mathcal{N}(0, 1).$$

$$\frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \xrightarrow{D} Z, \quad Z \sim \mathcal{N}(0, 1).$$

$$\frac{\sqrt{n}\{\overline{X}_n - \mu\}}{\sqrt{\sigma^2}} \xrightarrow{D} Z, \quad Z \sim \mathcal{N}(0, 1).$$

Teorema de Slutzky

1. Si $W_n \stackrel{D}{\longrightarrow} W$ y $U_n \stackrel{p}{\longrightarrow} c$, con $c \in \mathbb{R}$, entonces $W_n + U_n \stackrel{D}{\longrightarrow} c + U$

2. Si
$$W_n \stackrel{D}{\longrightarrow} W$$
 y $U_n \stackrel{p}{\longrightarrow} c$, con $c \in \mathbb{R}$, entonces
$$W_n U_n \stackrel{D}{\longrightarrow} c U$$

Teorema de Slutzky

1. Si $W_n \stackrel{D}{\longrightarrow} W$ y $U_n \stackrel{p}{\longrightarrow} c$, con $c \in \mathbb{R}$, entonces $W_n + U_n \stackrel{D}{\longrightarrow} c + U$

2. Si $W_n \xrightarrow{D} W$ y $U_n \xrightarrow{p} c$, con $c \in \mathbb{R}$, entonces

$$W_n U_n \stackrel{D}{\longrightarrow} c U$$

¿Cómo se usan estas cosas?

Método Delta

Supongamos que

$$\frac{\sqrt{n}W_n - \mu}{\sigma} \xrightarrow{D} \mathcal{N}(0,1)$$

y que g es una función diferenciable tal que $g'(\mu) \neq 0$. Entonces

$$\frac{\sqrt{n}g(W_n) - g(\mu)}{|g'(\mu)|\sigma} \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

Es decir,

si
$$W_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 entonces $g(W_n) \approx \mathcal{N}\left(g(\mu), \frac{(g'(\mu))^2 \sigma^2}{n}\right)$

 $Vueltas\ y\ vueltas\ y\ vueltas...$

Suma de variables Normales

- X_i i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$
- Suma de normales es normal:

$$\begin{split} \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} &\sim \mathcal{N}(0,1) \\ \mathbb{P}\left(\sum_{i=1}^{n} X_i \leq u\right) &= \mathbb{P}\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \leq \frac{u - n\mu}{\sqrt{n\sigma^2}}\right) \\ &= \phi\left((u - n\mu)/\sqrt{n\sigma^2}\right) \\ &= \operatorname{pnorm}\left((u - n\mu)/\sqrt{n\sigma^2}\right) \end{split}$$

 $\sum_{i} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

Promedio de variables Normales

• X_i i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}\left(\mathbb{E}(\overline{X}_n), V(\overline{X}_n)\right) , \quad \overline{X}_n \sim \mathcal{N}\left(\mu, \sigma^2/n\right) ,$$

$$\frac{\overline{X}_n - \mu}{\sqrt{V(\overline{X}_n)}} \sim \mathcal{N}(0, 1) , \quad \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0, 1) ,$$

$$\mathbb{P}\left(\overline{X}_n \le u\right) = \mathbb{P}\left(\frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \le \frac{u - \mu}{\sqrt{\sigma^2/n}}\right)$$

 $= \phi\left(\sqrt{n(u-\mu)}/\sqrt{\sigma^2}\right) = \operatorname{pnorm}\left(\sqrt{n(u-\mu)}/\sqrt{\sigma^2}\right)$

Teorema Central del Límite (TCL): versión suma

- Sean $(X_i)_{i\geq 1}$ v.a. i.i.d. con $\mathbb{E}(X)=\mu$ y $V(X)=\sigma^2$.
- ¿Qué sabemos de la suma ?

$$\sum_{i=1}^{n} X_i , \quad \mathbb{E}(\sum_{i=1}^{n} X_i) = n\mu, \quad V(\sum_{i=1}^{n} X_i) = n\sigma^2$$

TEOREMA: La distribución de la suma $\sum_{i=1}^n X_i$ **SE PARECE** a la de una normal, con su esperanza $(\mathbb{E}\left(\sum_{i=1}^n X_i\right))$ y su varianza $(V(\sum_{i=1}^n X_i))$

TCL: La suma tiene distribución Aproximadamente Normal

• X_i i.i.d., $\mathbb{E}(X_i) = \mu$, $V(X_i) = \sigma^2$

$$\sum_{i=1}^{n} X_{i} \overset{\mathbf{a}}{\approx} \mathcal{N}\left(\mathbb{E}(\sum_{i=1}^{n} X_{i}), V(\sum_{i=1}^{n} X_{i})\right), \quad \sum_{i=1}^{n} X_{i} \overset{\mathbf{a}}{\approx} \mathcal{N}\left(n\mu, n\sigma^{2}\right),$$

$$\frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sqrt{n\sigma^{2}}} \overset{\mathbf{a}}{\approx} \mathcal{N}(0, 1).$$

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq t\right) = \mathbb{P}\left(\frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sqrt{n\sigma^{2}}} \leq \frac{t - n\mu}{\sqrt{n\sigma^{2}}}\right)$$

$$\approx \operatorname{pnorm}\left((t - n\mu)/\sqrt{n\sigma^{2}}\right)$$

Teorema Central del Límite (TCL) - Suma:

Sean $(X_i)_{i\geq 1}$ v.a. i.i.d. $X\sim X_i$, con $\mathbb{E}(X)=\mu$ y $V(X)=\sigma^2$, entonces tenemos que

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} \le x\right) \underset{n \to \infty}{\longrightarrow} \phi(x) = \mathtt{pnorm}(\mathbf{x}) , \quad \forall x \in \mathbb{R} ,$$

TCL - Versión Promedio

•
$$X_i$$
 i.i.d., $X\sim X_i$. $\mathbb{E}(X)=\mu$, $V(X)=\sigma^2$
$$\overline{X}_n=\frac{1}{n}\sum_{i=1}^n X_i\;,\quad \mathbb{E}(\overline{X}_n)=\mu\;,\quad V(\overline{X}_n)=\sigma^2/n$$

TEOREMA: La distribución del promedio \overline{X}_n SE PARECE a la de una normal, con su esperanza $(\mathbb{E}\left(\overline{X}_n\right))$ y su varianza $(V(\overline{X}_n))$

TCL: El promedio tiene distribución Aproximadamente Normal

•
$$X_i$$
 i.i.d., $\mathbb{E}(X_i) = \mu$, $V(X_i) = \sigma^2$

$$\overline{X}_n \overset{a}{\approx} \mathcal{N}\left(\mathbb{E}(\overline{X}_n), V(\overline{X}_n)\right) , \quad \overline{X}_n \overset{a}{\approx} \mathcal{N}\left(\mu, \sigma^2/n\right) ,$$

$$\frac{\overline{X}_n - \mu}{\sqrt{V(\overline{X}_n)}} \overset{a}{\approx} \mathcal{N}(0, 1) , \quad \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \overset{a}{\approx} \mathcal{N}(0, 1) ,$$

$$\mathbb{P}\left(\overline{X}_n \leq x\right) \overset{a}{\approx} \phi\left((x - \mu)/\sqrt{\sigma^2/n}\right)$$

$$\mathbb{P}\left(\overline{X}_n \leq x\right) \overset{a}{\approx} \text{pnorm}\left((x - \mu)/\sqrt{\sigma^2/n}\right)$$

Teorema Central del Límite (TCL) - Promedio:

Sean $(X_i)_{i\geq 1}$ v.a. i.i.d. $X\sim X_i$, con $\mathbb{E}(X)=\mu$ y $V(X)=\sigma^2$, entonces tenemos que

$$\mathbb{P}\left(\frac{\overline{X}_n - \mathbb{E}(\overline{X}_n)}{\sqrt{Var(\overline{X}_n)}} \leq x\right) \underset{n \to \infty}{\longrightarrow} \phi(x) = \mathtt{pnorm}(\mathtt{x}) \;, \quad \forall x \in \mathbb{R} \;,$$

o equivalentemente

$$\mathbb{P}\left(\frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \le x\right) \underset{n \to \infty}{\longrightarrow} \phi(x) = \mathtt{pnorm}(\mathtt{x}) \;, \quad \forall x \in \mathbb{R} \;.$$