(一) 命题逻辑

魏恒峰

hfwei@nju.edu.cn

2021年03月11日

逻辑是研究推理/证明 (Inference/Proof) 的一门学科。

什么样的推理是正确/合法 (Valid) 的?

$$\{\alpha, \beta, \gamma, \dots\} \models \tau$$

正确性: 如果<mark>前提</mark> α , β , γ , ... 都为真, 那么**结论** τ 也为真。

证明就是一系列根据推理规则将公式不断变形的步骤。

$$\{\alpha, \beta, \gamma, \dots\} \vdash \tau$$

$$\frac{\alpha \qquad \beta \qquad \gamma}{\tau}$$

每一步推理都必须是正确的

什么样的推理是正确/合法 (Valid) 的?

逻辑要研究的是不依赖于具体领域知识的推理

$$\begin{array}{c|cccc} P & E & E & Q & E & E & P & Q \\ \hline P & 5 & Q & A & E & E & P & Q \\ \hline \end{array}$$

如果
$$P$$
 是真的, 则 Q 是真的 P 是真的 P 是真的 $P \rightarrow Q$ P

如果
$$P$$
 是真的,则 Q 是真的 Q 是假的 $P \rightarrow Q$ $\neg Q$ $P \rightarrow Q$

这些都是人类最基本的思维规律

逻辑就是用数学的方法研究人类基本思维规律的一门学科

Socrates Aristotle Plato

所有人都是必死的 所有希腊人都是人 所有希腊人都是必死的

所有人都是必死的 苏格拉底是人 苏格拉底是必死的

> 铜是金属 金属可以导电 铜可以导电

 $\forall x. \ People(x) \rightarrow Die(x)$ People(y)Die(y)

亚里士多德总结的 24 种三段论

Gottfried Wilhelm Leibniz (莱布尼茨 1646 - 1716) "17世纪的亚里士多德"

"我有一个梦想 ..."

建立一个能够涵盖人类思维活动的"通用符号演算系统",让人们的思维方式变得像数学运算那样清晰。

一旦有争论,不管是科学上的还是哲学上的,人们只要坐下来算一算,就可以毫不费力地辨明谁是对的。

Let us calculate [calculemus].

两个重要的符号逻辑系统: "命题逻辑"与"一阶谓词逻辑"

Propositional Logic and **Predicate Logic**

Discrete Mathematics

"推理即(符号)计算"

今天, 我们学习命题逻辑

Syntax

Semantics

下周, 我们学习一阶谓词逻辑

Definition (命题 (Proposition))

命题是可以判定真假的陈述句 (不可既真又假)。

以下哪些是命题?

- 1. 1+1=2
- 2. X + 6 = 0
- 3. 中国是一个伟大的国家
- 4. 你饿了吗?
- 5. 你要好好休息
- 6. 哥德巴赫猜想
- 7. 今天是雨天
- 8. 明天是周五
- 9. 这句话是假话

忘掉"命题"!!!

逻辑不关心单个命题的真假, 而关心命题之间的关系

(一) 命题逻辑 (Propositional Logic)

Definition (命题逻辑的语言)

命题逻辑的语言包括以下 3 部分:

- (1) 任意多个**命题符号**: *A*₀, *A*₁, *P*, *Q*, ...;
- (2) 5 个逻辑联词 (Connective):

符号	名称	英文读法	中文读法	I₄TEX
7	negation (否定)	not	非	\lnot
^	conjunction (合取)	and	与	\land
V	disjunction (析取)	or	或	\lor
\rightarrow	conditional	implies (if then)	蕴含 (如果, 那么)	\to
\leftrightarrow	biconditional	if and only if	当且仅当	\leftrightar

(3) 左括号、右括号

Definition (公式 (Formula))

- (1) 每个命题符号都是公式;
- (2) 如果 α 和 β 都是公式,则 $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$ 和 $(\alpha \leftrightarrow \beta)$ 也是公式;
- (3) 除此之外, 别无其它。

Lemma (公式的括号匹配性质)

每个公式中左右括号的数目相同。

数学归纳法

对公式的结构作归纳

Theorem (归纳原理)

令 $P(\alpha)$ 为一个关于公式的性质。假设

- (1) 对所有的命题符号 A_i , 性质 $P(A_i)$ 成立; 并且
- (2) 对所有的公式 α 和 β , 如果 $P(\alpha)$ 和 $P(\beta)$ 成立,则 $P((\neg \alpha))$, $P((\alpha * \beta))$ 也成立,

那么 $P(\alpha)$ 对所有的公式 α 都成立。

Definition (公式的长度)

公式 α 的长度 $|\alpha|$ 定义如下:

- (1) 如果 α 是命题符号, 则 $|\alpha| = 1$;
- (2) 如果 $\alpha = (\neg \beta)$, 则 $|\alpha| = 1 + |\beta|$;
- (3) 如果 $\alpha = (\beta * \gamma)$, 则 $|\alpha| = 1 + |\beta| + |\gamma|$ 。

作业题

假设公式 α 中不含 "¬" 符号。

请证明, α 中超过四分之一的符号是命题符号。

关于"公式"的约定

- ▶ 最外层的括号可以省略
- ▶ 优先级: ¬, ∧, ∨, →, ↔
- ▶ 结合性: 右结合 $(\alpha \land \beta \land \gamma, \alpha \rightarrow \beta \rightarrow \gamma)$

不要过分依赖这些约定; 尽情地使用括号吧

$$(P \wedge Q) \to R$$

用命题逻辑公式表示下列命题

- (1) 或者你没有给我写信, 或者它在途中丢失了
- (2) 我们不能既写作业又打游戏
- (3) 如果中国足球队夺冠, 我就好好学习
- (4) 如果张三和李四都不去, 王五就去
- (5) 如果周六不下雨, 我就去看电影, 否则就去图书馆
- (6) 我今天讲城, 除非下雨
- (7) 如果你来了, 那么他是否唱歌将取决于你是否伴奏

用命题逻辑公式表示下列命题

某公司要从赵、钱、孙、李、吴5名员工中选派某些人出国考察。 由干某些不可描述的原因, 洗派要求如下:

(1) 若赵去, 钱也去;

(1) $Z \rightarrow Q$;

(2) 李、吴两人中必有一人去;

- $(2) L \vee W;$
- (3) 钱、孙两人中去且仅去一人; (3) $(Q \land \neg S) \lor (S \land \neg Q)$;

- (4) 孙、李两人同去或同不去;
- (4) $(S \wedge L) \vee (\neg S \wedge \neg L)$;

(5) 若吴去,则赵、钱也去;

(5) $W \to Z \wedge Q$;

(6) 只有孙去, 赵才会去。

(6) $Z \to S_{\circ}$

P, Q, R, S, T

Syntax

Semantics

命题逻辑的语义

命题逻辑公式的**语义**就是该公式的"真 $(T/1/\top)$ "、"假 $(F/0/\bot)$ "值。

$$\alpha = (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

某个公式 α 的真假值取决于

- (1) α 中所含命题符号的真假值; 与
- (2) 逻辑联词的语义

Definition (真值指派 (v))

 $\Diamond S$ 为一个命题符号的集合。S 上的一个**真值指派** v 是一个从 S 到真 假值的映射

$$v: S \to \{T, F\}.$$

$$\alpha = (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

$$v(A) = v(B) = T, \quad v(C) = F$$

使用真值表定义逻辑联词的语义

Definition (真值表 (Truth Table))

α	β	$\neg \alpha$	$\alpha \wedge \beta$	$\alpha \vee \beta$	$\alpha \to \beta$	$\alpha \leftrightarrow \beta$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

"如果中国足球队夺冠, 我就好好学习"

$$\alpha = (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

$$v(A) = v(B) = T, \quad v(C) = F$$

 α 的真值为 T

Definition (真值指派的扩张 (\overline{v}))

今 S 为一个命题符号的集合。今 \overline{S} 为只含有 S 中命题符号的公式集。 S 上的**直值指派** v **的扩张**是一个从 \overline{S} 到真假值的映射

$$\overline{v}: \overline{S} \to \{T, F\}.$$

$$\alpha: (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

$$v(A) = v(B) = T, \quad v(C) = F$$

$$\overline{v}(\alpha) = T$$

课堂练习: 构造下列公式的真值表

$$\neg P \vee Q$$

$$(P \land Q) \lor (\neg P \land \neg Q)$$

$$(P \wedge Q) \wedge \neg P$$

$$(((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

Definition (满足 (Satisfy))

如果 $\overline{v}(\alpha) = T$, 则称真值指派 v 满足公式 α 。

$$\alpha = (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

$$v(A) = v(B) = T, \quad v(C) = F$$

$$\overline{v}(\alpha) = T$$

真值指派 v 满足 α

Definition (可满足的 (Satisfiable))

如果存在某个真值指派满足公式 α , 则 α 是可满足的。

$\neg P \lor Q$ 是可满足的

$$\alpha = (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$
 是可满足的

 $(P \land Q) \land \neg P$ 是不可满足的 (unsatisfiable)

Definition (命题逻辑公式的可满足性问题 (Satisfiability; **SAT**)) 任给一个命题逻辑公式 α , α 是可满足的吗?

Definition (重言蕴含 (Tautologically Implies))

设 Σ 为一个公式集。

 Σ **重言蕴含**公式 α , 记为 $\Sigma \models \alpha$,

如果每个满足 Σ 中所有公式的真值指派都满足 α 。

$$\{\alpha\} \models \beta \rightarrow \alpha$$

$$\{\alpha \wedge \beta\} \models \alpha$$

$$\{\alpha \to \beta, \alpha\} \models \beta$$

$$\{\alpha, \neg \alpha\} \models \beta$$

Theorem

请证明: $\Sigma \cup \{\alpha\} \models \beta$ 当且仅当 $\Sigma \models (\alpha \rightarrow \beta)$ 。

 v_{Σ} :满足 Σ 中所有公式的任一真值指派

 $v_{\Sigma \cup \{\alpha\}}$: 满足 $\Sigma \cup \{\alpha\}$ 中所有公式的任一真值指派

Lemma

如果
$$\overline{v_{\Sigma \cup \{\alpha\}}}(\beta) = T$$
,则 $\overline{v_{\Sigma}}(\alpha \to \beta) = T$ 。

Lemma

如果 $\overline{v_{\Sigma}}(\alpha \to \beta) = T$, 则 $\overline{v_{\Sigma \cup \{\alpha\}}}(\beta) = T$ 。

$$\Sigma = \{\alpha\}$$
 只含有一个公式
$$\{\alpha\} \models \beta \text{ 简记为 } \alpha \models \beta$$

Definition (重言式/永真式 (Tautology))

如果 $\emptyset \models \alpha$, 则称 α 为**重言式**, 记为 $\models \alpha$ 。

重言式在所有真值指派下均为真。

$$\alpha = (((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

Definition (矛盾式/永假式 (Contradiction))

若公式 α 在所有真值指派下均为假,则称 α 为矛盾式。

$$(P \land Q) \land \neg P$$
 是不可满足的

Definition (重言等价 (Tautologically Equivalent))

如果 $\alpha \models \beta$ 且 $\beta \models \alpha$, 则称 $\alpha \vdash \beta$ **重言等价**, 记为 $\alpha \equiv \beta$ 。

$$(B \to (A \to C)) \equiv (B \land A) \to C$$

$$(((B \to (A \to C)) \leftrightarrow ((B \land A) \to C)))$$

交换律:

$$(A \land B) \leftrightarrow (B \land A)$$

$$(A \lor B) \leftrightarrow (B \lor A)$$

结合律:

$$((A \land B) \land C) \leftrightarrow ((A \land B) \land C)$$

$$((A \vee B) \vee C) \leftrightarrow ((A \vee B) \vee C)$$

分配律:

$$(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$$

$$(A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C))$$

德摩根 (De Morgan) 律:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$

$$\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$$

双重否定律:

 $\neg \neg A \leftrightarrow A$

排中律:

 $A \vee (\neg A)$

矛盾律:

 $\neg(A \land \neg A)$

逆否命题:

 $(A \to B) \leftrightarrow (\neg B \to \neg A)$

$$\alpha \to (\beta \to \alpha)$$

$$(\alpha \to \beta) \leftrightarrow (\neg \alpha \lor \beta)$$

$$(\alpha \to (\beta \to \gamma)) \leftrightarrow ((\alpha \land \beta) \to \gamma)$$

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$

使用命题逻辑进行推理

某公司要从赵、钱、孙、李、吴 5 名员工中选派某些人出国考察。由于某些不可描述的原因, 选派要求如下:

- (1) 若赵去, 钱也去;
- (2) 李、吴两人中必有一人去:
- (3) 钱、孙两人中去且仅去一人;
- (4) 孙、李两人同去或同不去;
- (5) 若吴去,则赵、钱也去;
- (6) 只有孙去, 赵才会去。

- (1) $Z \rightarrow Q$;
- (2) $L \vee W$;
- (3) $(Q \land \neg S) \lor (S \land \neg Q);$
 - (4) $(S \wedge L) \vee (\neg S \wedge \neg L)$;
 - (5) $W \to Z \land Q$;
 - (6) $Z \rightarrow S_{\circ}$

请使用形式化推理的方法帮该公司判断应选哪些人出国考察。

Definition (合取范式 (Conjunctive Normal Form))

我们称公式 α 是**合取范式**, 如果它形如

$$\alpha = \beta_1 \wedge \beta_2 \wedge \cdots \wedge \beta_k,$$

其中, 每个 β_i 都形如

$$\beta_i = \beta_{i1} \vee \beta_{i2} \vee \cdots \vee \beta_{in},$$

并且 β_{ij} 或是一个命题符号, 或者命题符号的否定。

$$(P \lor \neg Q \lor R) \land (\neg P \lor Q) \land \neg Q$$

求下列公式的合取范式

$$(P \land (Q \to R)) \to S$$

$$\neg (P \lor Q) \leftrightarrow (P \land Q)$$

Definition (析取范式 (Disjunctive Normal Form))

我们称公式 α 是**析取范式**, 如果它形如

$$\alpha = \beta_1 \vee \beta_2 \vee \cdots \vee \beta_k,$$

其中, 每个 β_i 都形如

$$\beta_i = \beta_{i1} \wedge \beta_{i2} \wedge \cdots \wedge \beta_{in},$$

并且 β_{ij} 或是一个命题符号, 或者命题符号的否定。

$$(P \land \neg Q \land R) \lor (\neg P \land Q) \lor \neg Q$$

求下列公式的析取范式

$$(P \land (Q \to R)) \to S$$

$$\neg (P \lor Q) \leftrightarrow (P \land Q)$$

求合取范式与析取范式的方法

- (1) 先将公式中的联结符号化归成 ¬, ∧ 与 ∨;
- (2) 再使用 De Morgan 律将 ¬ 移到各个命题变元之前 ("否定深入");

(一) 命题逻辑 (Propositional Logic)

(3) 最后使用结合律、分配律将公式化归成合取范式或析取范式。

命题逻辑的自然推理(演绎;推演)系统

从上往下看: 展示证明过程

$$\frac{\alpha \qquad \beta \qquad \dots \quad (前提)}{\gamma \quad (结论)} \quad (规则名称)$$

$$\{\alpha,\beta,\dots\}\vdash\gamma$$

从下往上看: 提供证明思路

(assum) [x:P]

所有引入的假设最终必须被"释放"(discharged)

 \wedge

$$\frac{P \quad Q}{P \land Q} \quad (\land \text{-intro})$$

$$\frac{P \wedge Q}{P} \quad (\land \text{-elim-left})$$

$$\frac{P \wedge Q}{Q} \quad (\land \text{-elim-right})$$

"^" 推理规则的应用

$$\{p \wedge q, r\} \vdash q \wedge r$$

Proof.

$p \wedge q$	前提	(1)
r	前提	(2)
q	\wedge -elim-right (1)	(3)
$q \wedge r$	\wedge -intro $(3),(2)$	(4)

$$\frac{\alpha}{\neg \neg \alpha}$$
 (¬¬-intro)

$$\frac{\neg \neg \alpha}{\alpha} \quad (\neg \neg \text{-elem})$$

"¬¬" 推理规则的应用

$$\{p, \neg \neg (q \wedge r)\} \vdash \neg \neg p \wedge r$$

$$\rightarrow$$

$$\frac{\alpha \to \beta \qquad \alpha}{\beta} \qquad (\to \text{-elim (modus ponens)})$$

$$\frac{\alpha \to \beta \qquad \neg \beta}{\neg \alpha} \quad \text{(modus tollens)}$$

"→" 推理规则的应用

$$\{p \to (q \to r), p, \neg r\} \vdash \neg q$$

$$\begin{array}{c}
[x:\alpha] \\
\vdots \\
\beta \\
\hline
\alpha \to \beta
\end{array} (\to -intro/x)$$

Assumption x is discharged

"→" 推理规则的应用

$$\vdash p \rightarrow p$$

"→" 推理规则的应用

$$\{\neg q \to \neg p\} \vdash p \to \neg \neg q$$

(一) 命题逻辑 (Propositional Logic)

"→" 推理规则的应用

$$\{p \land q \to r\} \vdash p \to (q \to r)$$

 \bigvee

$$\frac{\alpha}{\alpha \vee \beta} \quad (\vee \text{-intro-left})$$

$$\frac{\beta}{\alpha \vee \beta} \quad (\vee \text{-intro-right})$$

$$\frac{\alpha \vee \beta \qquad \alpha \to \gamma \qquad \beta \to \gamma}{\gamma} \quad (\vee\text{-elim}; (分情况分析))$$

"\" 推理规则的应用

$$p \vee q \vdash q \vee p$$

"\" 推理规则的应用

$$q \to r \vdash (p \lor q) \to (p \lor r)$$

推理规则的应用

$$p \wedge (q \vee r) \vdash (p \wedge q) \vee (p \wedge r)$$

推理规则的应用

$$(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$$

$$\perp$$

$$\frac{\alpha \quad \neg \alpha}{\bot}$$
 (\bot -intro)

(\perp -elim; EFQ, ex falso quodlibet (Principle of Explosion))

"」" 推理规则的应用

$$\neg p \lor q \vdash p \to q$$

"」" 推理规则的应用

$$p \to q \vdash \neg p \lor q$$

$$\frac{\alpha \to \bot}{\neg \alpha} \quad (\neg \text{-intro})$$

$$\frac{\neg \alpha}{\alpha \to \bot} \quad (\neg\text{-elim})$$

"¬" 推理规则的应用

$$\{p \to q, p \to \neg q\} \vdash \neg p$$

"¬" 推理规则的应用

$$\{(p \land \neg q) \rightarrow r, \neg r, p\} \vdash q$$

(提示:
$$\neg \neg q \vdash q$$
)

"¬" 推理规则的应用

$$\frac{\neg p \to \bot}{p}$$
 (RAA/x, reductio ad absurdum (反证法))

"¬" 推理规则的应用

$$\vdash p \lor \neg p$$
 (排中律; Law of the Excluded Middle (LEM))

连这些推理规则也一并忘却吧!!!

使用命题逻辑进行推理

某公司要从赵、钱、孙、李、吴 5 名员工中选派某些人出国考察。由于某些不可描述的原因, 选派要求如下:

- (1) 若赵去, 钱也去;
- (2) 李、吴两人中必有一人去:
- (3) 钱、孙两人中去且仅去一人;
- (4) 孙 本표 / 日土式日本土.
- (4) 孙、李两人同去或同不去;
- (5) 若吴去,则赵、钱也去;
- (6) 只有孙去, 赵才会去。

- (1) $Z \rightarrow Q$;
- (2) $L \vee W$;
- (3) $(Q \land \neg S) \lor (S \land \neg Q);$
 - (4) $(S \wedge L) \vee (\neg S \wedge \neg L)$;
 - (5) $W \to Z \land Q$;
 - (6) $Z \rightarrow S_{\circ}$

请使用形式化推理的方法帮该公司判断应选哪些人出国考察。

Theorem (命题逻辑的可靠性 (Soundness))

如果 $\Sigma \vdash \alpha$, 则 $\Sigma \models \alpha$ 。

Theorem (命题逻辑的完备性 (Completeness))

如果 $\Sigma \models \alpha$, 则 $\Sigma \vdash \alpha$ 。

Thank You!

Office 926 hfwei@nju.edu.cn