# Pendel

# Milena Mensching Justus Weyers

# 2022 - 12 - 01

# Versuch 1

# Ziel

Bestimmung der Erdbeschleunigung g.

## Materialien

- Stativ
- $\bullet\,$  Pendel aus Angelschnur und Metallzylinder
- Maßband
- Messschieber
- Klebeband
- Stoppuhr

# Versuchsaufbau

- Aufstellung des Stativs, Befestigung oberhalb des Tisches
- Befestigung des Maßbandes am Stativ mit Hilfe von Klebeband



Abbildung 1: Versuchsaufbau 1

# Durchführung

Nach dem Versuchsaufbau wird mit der Versuchsdurchführung begonnen. Dazu wird die Pendellänge vermessen, indem am Maßband die Position des Drehpunktes und die Position der Oberkante des Zylindergewichtes abgelesen werden. Die Höhe des Zylindergewichtes wird mit einem Messschieber vermessen.

Im Anschluss wird die Periodendauer für diese Pendellänge bestimmt. Dazu wird das Pendel aus der Ruheposition ausgelenkt und nach ein paar Pendelschlägen mit der Zeitmessung begonnen. Die Zeit wird beim Durchgang durch den Ort der maximalen Geschwindigkeit sowohl gestartet als auch gestoppt, um die Reaktionszeit möglichst kurz zu halten. Es werden insgesamt 5 Messungen durchgeführt um einen Mittelwert bilden zu können.

### Fehlerquellen

Beim Auslenken des Pendels gibt es unregelmäßige Bewegungen (Wackeln), die entgegen der Pendelbahn laufen.

Beim Abmessen der Pendellänge ist der **personenbezogene Ablesefehler** zu erwähnen. Diesen versuchten wir weitestgehend zu eliminieren, indem nur eine Person eine vollständige Datenreihe aufnahm.

Außerdem verlängert die **Reaktionszeit** sowohl bei Start als auch bei Stopp der Messung tendenziell die gemessene Periodendauer. Um diesen Fehler möglichst gering zu halten, wurden meherere Periodendurchläufe (10) gemessen und die Periodendauer danach gemittelt. Auch hier nahm nur eine Person die Datenreihe auf, um die Reaktionszeit ähnlich zu halten.

Folgende Annahmen mussten darüber hinaus getroffen werden:

- Bewegung des Pendelkörpers und des Fadens verläuft reibungsfrei
- Masse des Fadens wird vernachlässigt
- Der Pendelkörper wird nur um eine kleine Strecke ausgelenkt
- Die Angelschnur wird als inelastisch angenommen

#### Messungen

Im Laufe des Versuches wurden folgende Messwerte aufgenommen, auf die sich in der folgenden Auswertung bezogen wird:

Tabelle 1: Messwerte aus Versuch 1

| Messgröße                   | Wert  |
|-----------------------------|-------|
| L1: Position Drehpunkt [cm] | 4.00  |
| L2: Position Fadenende [cm] | 88.50 |
| L3: Höhe Zylinder [cm]      | 5.87  |
| 10-Periodendauer [s]        | 18.75 |
| 10-Periodendauer [s]        | 18.72 |
| 10-Periodendauer [s]        | 18.85 |
| 10-Periodendauer [s]        | 18.85 |
| 10-Periodendauer [s]        | 18.72 |

Die fünf Punkte "10-Periodendauer [s]" sind die fünfmal durchgeführten Messungen, as denen der Mittelwert berechnet werden soll.

## Auswertung

#### Pendellänge L und Unsicherheit $u_L$

Die Pendellänge L wird bestimmt, indem Differenz von  $L_1$  und  $L_2$  berechnet wird, siehe Tabelle im Abschnitt Messungen. Es wird auch darauf geachtet, die Distanz von der Pendeloberkante bis zum Massenschwerpunkt des Pendels dazuzurechnen. Dafür wird die Massenverteilung in dem Metallzylinder-Gewicht als homogen angenommen. Die zu der Fadenlänge zu addierende Länge entspricht dann der halben Zylinderhöhe  $L_3$ . Der Bestwert der errechneten Pendellänge L beträgt dann:

$$L = L_2 - L_1 + \frac{L_3}{2}$$

$$= 0.885m - 0.04m + \frac{0.0587}{2}m$$

$$= 0.87435m.$$

# Bestwert Pendellänge in Metern 0.885-0.04+0.0587/2

## [1] 0.87435

Die Unsicherheit der Pendellänge setzt sich aus den zu  $L_1$ ,  $L_2$  und  $L_3$  gehörigen Messunsicherheiten zusammen:

$$\begin{split} u_L &= \sqrt{(\frac{\partial L}{\partial L_2} \cdot u_{Massband})^2 + (\frac{\partial L}{\partial L_1} \cdot u_{Massband})^2 + (\frac{\partial L}{\partial L_3} \cdot u_{Messchieber})^2} \\ &= \sqrt{u_{Massband}^2 * (\frac{\partial L}{\partial L_2}^2 + \frac{\partial L}{\partial L_1}^2) + (\frac{\partial L}{\partial L_3} * u_{Messschieber})^2} \\ &= \sqrt{(\frac{10^{-3}m}{2\sqrt{6}})^2 * (1^2 + (-1)^2) + (0, 5 * \frac{10^{-4}m}{2\sqrt{6}})^2} \\ &\approx 0, 29 \cdot 10^{-4}m \end{split}$$

Mit:

- Messunsicherheit des Maßbandes:  $u_{Massband} = \frac{10^{-3}m}{2\sqrt{6}}$
- Messunsicherheit des Messschiebers:  $u_{Messschieber} = \frac{10^{-4}m}{2\sqrt{6}}$

```
# Berechnung von u_L in R
sqrt(2*(((10**-3)/(2*sqrt(6)))**2)+((10**-4)/(2*sqrt(6)))**2)
```

## [1] 0.0002893959

Damit beträgt die Pendellänge in diesem Versuch  $L = (0,87435 \pm 0.00029)m$ .

#### Periodendauer T und Unsicherheit $u_T$

Als Zeit für zehn Perioden  $T_{10T}$  in Sekunden wird der Mittelwert der fünf Messungen aus der Tabelle im Abschnitt Messungen berechnet.

```
T10 <- mean(Werte[4:8])
T10
```

## [1] 18.778

Die Periodendauer T in Sekunden wird bestimmt, indem  $T_{10T}$  durch die Anzahl von Perioden n = 10 geteilt wird.

$$T_{10T} = n * T \Leftrightarrow T = \frac{T_{10T}}{10} \tag{1}$$

# Berechnung der Periodendauer
T10\*1/10

## [1] 1.8778

Die Messunsicherheit der digitalen Stoppuhr  $u_{Stoppuhr}$  ist die Unsicherheit für  $T_{10T}$ . Deren kleinste ablesbare Größenordnung waren zehn Millisekunden. Damit folgt für  $u_{10T}$ :  $u_{10T} = \frac{a}{2\sqrt{3}} = \frac{0.01s}{2\sqrt{3}} \approx 0,0029s$ .

Die Unsicherheit der Periodendauer  $u_T$  ist für zehn Perioden dann ein Zehntel der Messunsicherheit für zehn Perioden, also  $u_T = 0.00029s$ .

Damit ergibt sich die Periodendauer als:  $T = (1.87800 \pm 0.00029)s$ .

# Ab hier noch weiterarbeiten

Damit kann der Bestwert der Erdbeschleunigung g berechnet werden. Aus  $T=2*\pi*\sqrt{\frac{l}{g}}$  ergibt sich:

$$g = \frac{4 * \pi^2 * l}{T^2}$$

$$= \frac{4 * \pi^2 * 0,8744m}{(1,878s)^2}$$

$$\approx 9.79 \frac{m}{s^2}$$

Mit l = 0,8744mund T = 1,878s

(4\*pi\*\*2\*0.8744)/(1.878\*\*2)

## [1] 9.787656

Messunsicherheit der Erdbeschleunigung g:

$$u_g = \sqrt{(\frac{\delta g}{\delta T} * u_T)^2 + (\frac{\delta g}{\delta l} * u_l)^2}$$

$$u_g = \sqrt{(\frac{-8 * \pi^2 * l}{T^3} * u_T)^2 + (\frac{4 * \pi^2}{T^2} * u_l)^2}$$

$$u_g \approx \pm ?? \frac{m}{s^2}$$

## Interpretation

## Versuch 2

Der zweite Versuch läuft analog zum ersten Versuch. Allerdings werden statt nur einer Messreihe 5 verschiedene - jeweils mit einer anderen Fadenlänge - gemessen. Um die Pendellängen zu variieren wurde der Faden für kürzere Fadenlängen mit Klebeband am Zylinder stückchenweise festgeklebt. Für längere Pendellängen wurden weitere Stücke Angelschnur an das Pendel geknotet.

## Fehlerquellen

Die Fehlerquellen sind ebenfalls die selben wie beim ersten Versuch. Allerdings ist hierbei zu bemerken, dass die Reaktioszeit bei kürzeren Fadenlängen und daraus resultierenden kürzeren Periodendauern verhältnismäßig zunimmt. Auch von der Bahn abweichende Bewegungen nehmen bei kürzeren Pendellängen zu. Auch ist nicht unterscuht, wie sich Klebeband bzw. Knoten im Faden auf das Pendelverhalten auswirken.

#### Messungen