(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 September 2001 (27.09.2001)

PCT

(10) International Publication Number WO 01/70483 A1

- (51) International Patent Classification⁷: 55/28, 69/00 // B29K 1:00
- B29C 47/00,
- (21) International Application Number: PCT/GB01/00851
- (22) International Filing Date: 1 March 2001 (01.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0006524.3

18 March 2000 (18.03.2000) GE

- (71) Applicant (for all designated States except US): DEVRO PLC [GB/GB]; Moodiesburn, Chryston, Glasgow G69 0JE (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HENDRIKS, Ivo, G. [BE/BE]; Hoevenstraat 95, B-3900 Overpelt (BE). HENDRIKX, Roger, H. [BE/BE]; Schoenmakersweg 1, B-3520 Zonhoven (BE). BECKERS, Stefan, D. [BE/BE]; Panhovenstraat 19, B-3941 Hechtel-Eksel (BE). VRIJSEN, Mark [BE/BE]; Bremstraat 42, B-3520 Zonhoven (BE). HELLEMANS, Dirk, M. [BE/BE]; Lange Venstraat 38A, B-3128 Baal (BE).

- (74) Agents: MCCALLUM, William, Potter et al.; Cruikshank & Fairweather, 19 Royal Exchange Square, Glasgow G1 3AE (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

-- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DOUBLE BUBBLE PROCESS FOR MANUFACTURING ORIENTATED CELLULOSE FILMS

(57) Abstract: This application relates to producing biaxially stretched tubular cellulose films for the food industry. In particular, the biaxial stretching is obtained by using rollers to stretch the casings longitudinally and to use increased air pressure inside the films to radially stretch the casings. The obtained product may also be cut to provide longitudinal strips for the production of smaller tubular films.

01/70483 A1

WO 01/70483 PCT/GB01/00851

DOUBLE BUBBLE PROCESS FOR MANUFACTURING ORIENTATED CELLULOSE FILMS

This invention relates to tubular food casings such as those commonly used for encasing foods such as sausages. More particularly, this invention relates to using biaxially stretched material in the manufacture of tubular food casings.

Cellulose tubular films are used in the food industry for casings, primarily for meat products such as sausages. Typically, cellulose tubular films such as cellulose casings have been made for many years according to the viscose process. This process is more than a century old and has been used commercially for about 95 years. In this process, cellulose is typically taken from one source, derivatised, then solubilised and then articles are formed by extruding a solubilised derivatised cellulose into fibres, sheets or tubes. Reforming the cellulose is carried out via a process called regeneration.

The basic raw material for cellulose casings cellulose pulp which usually comes from wood pulp. major raw materials used in the viscose process are carbon sodium hydroxide, sulphuric disulphide, acid plasticising agent. The viscose preparation process is a complicated process and usually requires multiple separate steps before the solubilised cellulose is ready to be used in the manufacture of a cellulose product. Although the viscose process has generally worked well, separation time from steeping to extrusion is a considerable disadvantage, as is the use of various raw materials which give rise to disposal problems and other potential pollution associated environmental problems.

The state of the second of the second property of the second of the seco

The new process which has become popular and is replacing the viscose process involves the creation of a special type of extrusion solution called "dope" instead of viscose. Dope is a solution of cellulose dissolved in tertiary amine oxide and water. The preferred tertiary

5

10

15

20

25

10

15

20

25

30

amine oxide is NMMO (N-methyl morpholine N-oxide). One advantage of using this solvent is that it is able to dissolve cellulose without having to derivatise it first, as was required in the viscose process using materials such as carbon disulphide. A second advantage of the amine-oxide process is that once solubilised, the cellulose can be precipitated from the dope as a regenerated product by contacting the dope with a precipitation liquid, typically water which is a non-solvent for cellulose but a solvent for NMMO. A further advantage is that the process time before extrusion is significantly reduced. A yet further advantage is that much less raw materials are required and the NMMO solvent together with excess water, used in the processes during the precipitation and washing stage, can be recycled and reused.

US Patent 4,556,708 describes a non-reinforced sausage casing which has certain minimal tear strength in both longitudinal and transverse directions. However, such strengths are not as high as desired relative to their cross-sectional areas. Shrink and stretch properties are also poor.

US Patent 4,940,614 similarly describes a tubular material seamed parallel to a longitudinal axis by means of an adhesive tape. Again the strength of the cellulose based material is not as high as desired relative to the cross-sectional area. Shrink and stretch properties are also not as good as desired.

It is therefore an object of the present invention to provide a method and apparatus for producing extruded blown tubular film wherein further strength is imparted to the tubular film.

It is a further object of the present invention to provide a method and apparatus for biaxially stretching an extruded blown tubular film.

35 According to a first aspect of the present invention

there is provided a method for producing biaxially stretched extruded cellulose based tubular film wherein the tubular film is extruded from an extrusion die and sequentially transporting the tubular film through a liquid precipitation bath and a dryer, said method comprising the steps of:

locating the extrusion die above the liquid precipitation bath having a precipitation liquid level therein to provide a gap between an extrusion nozzle outlet of the extrusion die and the surface of the precipitation liquid in the liquid bath;

extruding a blown tubular film from the extrusion die so that a bubble is formed in the gap between the extrusion nozzle outlet and the liquid precipitation bath and wherein there is increased air pressure within the bubble;

pulling the tubular film away from the extrusion die and into the precipitation bath using a set of rollers;

precipitating the blown tubular film in said liquid precipitation bath; and

wherein the film is transported via further sets of rollers to form at least one further bubble, between a set of rollers, where the tubular film is further stretched to impart additional strength to the film.

Preferably, the tubular film is cellulose based and is formed by adding cellulose to a water diluted NMMO solution to form a suspension, wherein the suspension is heated and the water evaporated under reduced pressure to form NMMO monohydrate which dissolves the cellulose to form a dope solution containing cellulose, NMMO-monohydrate and water.

It is preferred if nip rolls are used to stretch the

5

10

15

20

25

tubular film.

WO 01/70483

5

10

15

20

25

30

Preferably, the nip rolls terminating the first bubble rotate faster than the rate of extrusion from the extrusion die so that there is a longitudinal tension in the tubular cellulose film.

Preferably, the air pressure in the first bubble use 0.1 to 5mbar.

Preferably, a second bubble in the tubular film is formed after it has been washed in wash tanks and plasticiser tanks.

Preferably, the film is formed into three bubbles prior to being wound on a drum. Preferably, the cellulose film in a wet condition is stretched by nip rolls longitudinally and radially by increased air pressure; and in the third bubble the pressure inside the film is increased.

Alternatively, the film in a wet condition is stretched by nip rolls longitudinally and radially by increased air pressure; and the third bubble the pressure inside the film is decreased.

A further alternative is for the cellulose film to be dried and stretched by nip rolls longitudinally by and radially by increased air pressure; and the third bubble is rewetted and further stretched between nip rolls and by using increased air pressure.

Furthermore, it is preferred if the second bubble has a set of nip rolls at both ends of the bubble and wherein the set of nip rolls first in contact with the tubular film rotate slower than the second set of nip rolls whereby a longitudinal tension is created in the film. Alternatively, a holding/accumulator tank is located between each set of rollers.

Preferably, the air pressure inside the second bubble is 50 to 800mbar.

35 Preferably, the tube is stretched by a total of 20-

10

15

20

25

30

35

1500% in the longitudinal direction and 20-2000% in the transverse direction.

According to a second aspect of the present invention there is provided apparatus for producing biaxially stretched extruded cellulose based tubular film of improved strength wherein the apparatus contains an extrusion die above a liquid bath having a liquid level therein to provide a gap between the die and the surface of the liquid in the liquid bath wherein the film is extruded into a first bubble and pulled via a set of rollers and wherein the film undergoes a process of being pulled through further rollers between which film bubbles are formed which exert further biaxial forces on the tubular film.

Preferably, the rollers are nip rolls.

According to a third aspect of the present invention, there is provided a biaxially stretched tubular cellulose based film as described herein.

Preferably, the tubular cellulose based film is cut into a plurality of biaxially stretched strips and the biaxially stretched strips are seamed to form a smaller dimensioned tubular film. The seams are conveniently formed by using tape such as adhesive tape, heat sealing tape or any other suitable adhesive means.

Advantageously, the cuts are parallel with a longitudinal axis of the formed tubular film. Alternatively, the seams are helical with respect to the formed tubular film.

Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Figure 1 is a schematic representation of a conventional NMMO-cellulose dope processing unit;

Figure 2 is a schematic representation of an NMMO-cellulose dope processing unit comprising a double bubble and further nip rolls;

10

15

20

25

30

35

Figure 3 is a schematic representation of an NMMO - cellulose dope processing unit comprising a triple bubble;

Figure 4 is a schematic representation of the second and third bubble in Figure 3 wherein the cellulose casing is pre-stretched in the second bubble and relaxed or fixated during drying in the third bubble;

Figure 5 is a schematic representation of the second and third bubble in Figure 3 wherein the cellulose casing is pre-stretched in the second bubble and stretched during drying in the third bubble;

Figure 6 is a schematic representation of the second and third bubble in Figure 3 wherein the cellulose casing is dried in the second bubble and then rewetted in the third bubble;

Figure 7 shows a tubular film with longitudinal edges wherein the edges abut each other;

Figure 8 shows a tubular film with longitudinal edges wherein the longitudinal edges overlap;

Figure 9 shows a tubular film with longitudinal edges wherein the longitudinal edges are face-to-face;

Figure 10 shows a tubular film wherein the film is seamed in a helical form; and

Figure 11 is a schematic representation of a further tubular film.

Referring to Figure 1, there is shown a typical representation of an extrusion process. NMMO-cellulose dope is fed into an extruder 20 at an extrusion temperature of about 100°C and transported through a filter screen (not shown) to a gear metering pump section, shown generally at 22.

The metering pump section 22 feeds an extrusion die 24 which has a die outlet in the shape of an annular nozzle. The die outlet is directed downwardly to face a precipitation bath, shown generally at 26. Bath 26 is separated from die 24 by an air gap.

an wildlight oblikeenseleinen en en en en en

5

10

15

20

25

30

35

Tubular cellulose casing 25 is precipitated in bath 26 which contains a precipitation liquid, usually water, at a temperature in a range of $10-20^{\circ}$ C.

A volume of water is provided to the interior of the tubular cellulose casing 25 via a feed pump supply means and conduit, shown generally at 28, which precipitates the interior of the cellulose casing 25.

Excess water NMMO solution (containing possible minor additives) is withdrawn from the interior of the cellulose casing 25 via a conduit 30 and pump. Section 27 of the casing 25 which lies in the air gap between the bath 26 and the extrusion die 24 is pressurised internally with air at a pressure of between 0.2 to 2mbar above atmospheric pressure. The increased air pressure is supplied via pressure control means, shown generally at 32.

After the tubular cellulose casing 25 has precipitated in the precipitation bath 26, the tubular cellulose casing 25 is flattened and pulled through nip rolls 34. A first bubble 29 is therefore created in the casing 25 between the extrusion die 24 and the nip rolls 34. The nip rolls 34 rotate faster than the rate of extrusion from the extrusion die 24. There is, therefore, a tension in the longitudinal direction of the tubular cellulose casing 25 due to the pulling force of the nip rolls 34. There is also a tension in the transverse direction due to the pressurised air in section 27 of the casing 25.

After passing the cellulose casing 25 through the nip rolls 34, the casing 25 is wound about a set of rollers 36, 38, 40. The cellulose casing 25 then exits the precipitation bath 26.

The cellulose casing 25 is then transported, via rollers 42, 44, 46, through multiple wash tanks 48 and, via rollers 50, 52, 54, 56, through plasticiser tank 58.

In Figure 2, there is shown the improved cellulose tubular film production apparatus. The apparatus in Figure

WO 01/70483 PCT/GB01/00851

8

2 is exactly the same as that of Figure 1 in the precipitation bath 126, multiple wash tanks 148 and plasticiser tank 158. However, after the plasticiser tank 158 the wet casing is sequentially transported through a dryer and a rehumidifier wherein there are further sets of nip rolls 160, 162 and a second bubble 164.

In the first bubble 129, to obtain radial strength tubular cellulose casing 125 is inflated pressurised in the region between the extrusion die 124 and precipitation bath 126). To obtain longitudinal strength, the tubular cellulose casing 125 is pulled longitudinally by nip rolls 134. The tubular cellulose casing 125 is longitudinally stretched by means of nip rolls 134 which rotate faster than the rate of extrusion. The tubular cellulose casing 125 is radially stretched by using increased air pressure in bubble 129. Air may be used as the expansion gas. In the case of cellulose, stretch from regeneration or precipitation applied to the first bubble 129 is usually about 1:1.1 to 1:4 in the radial direction and 1:1.1 to 1:10 in the longitudinal direction.

After regeneration and/or solvent removal, the tubular cellulose casing 125 is washed in wash tanks 148 and plasticised in plasticiser tanks 158.

Additional improvements to the strength and membrane properties of the tubular cellulose casing 125 are then obtained by using a second bubble 164. As shown in Figure 2, the second bubble 164 is captured between a pair of driven nip rolls 160, 162. In the second bubble 164, further radial and longitudinal stretching is applied prior to and during drying. Pressurised air, ranging from 50 to 800mbar, is fed into bubble 164. This second bubble 164 will improve the strength and membrane properties. Tension distribution will also be balanced by the second bubble 164.

5

10

15

20

25

30

WO 01/70483 PCT/GB01/00851

9

The radial stretch applied to the second bubble 164 is in the range of 1:1 to 1:4. The longitudinal stretch, as applied simultaneously, is in the range of 1:1 to 1:4.

The type of crystalin orientation obtained in the tubular cellulose casing 125 is dependent on the direction of the stretch i.e. the machine direction orientation (MDO) obtained by the extrusion velocity and the nip rolls 134, 160, 162 and the transverse direction orientation (TDO) obtained by the air pressurisation in the bubbles 129, 164.

The dry flat width (DFW) is defined as the lay-flat width of the dried reel stock. The wet flat width (WFW) is defined as the lay-flat width of the wet tube prior to drying. The ratio of dry flat width to wet flat width is called radial drier stretch (RDS). Depending on the radial dryer stretch (RDS), the orientation and strength properties of the dried cellulose tube may be varied.

The machine direction orientation (MDO) in the second bubble 164 is obtained by applying a different speed to the nip rolls 160, 162. Nip rolls 160 rotate slightly slower than nip rolls 162 so that a longitudinal tension is obtained in the tubular casing 125.

The longitudinal drier stretch (LDS) is defined as the ratio of inlet speed (Vw) to outlet speed (Vd). Suitable ratios range from 1:1 to 1:4.

After drying, the biaxially stretched tubular cellulose casing 125 is rolled onto a winder 166.

Figure 3 shows an NMMO-cellulose dope processing unit wherein three bubbles 229, 264, 268 are used to stretch the cellulose casing 225. Figures 4, 5 and 6 represent different conditions for the second 264 and third bubble 268.

Figure 4 shows the second bubble 229a, in a wet condition, being stretched in the machine direction orientation (MDO) and in the transverse direction orientation (TDO). The third bubble 268a is relaxed or

5

10

15

20

30

10

15

20

25

30

35

fixated by reducing the pressure in a drying zone.

Figure 5 shows the second bubble 229b, in a wet condition, being stretched in the machine transverse direction orientation (MDO) and in the The third bubble 268b is further (TDO). orientation stretched in the machine direction orientation (MDO) and transverse direction orientation (TDO) during drying, by increasing the pressure in the bubble 268b.

Figure 6 shows the second bubble 229c being dried first of all and then stretched. The third bubble 268c is rewetted and stretched by increasing the air pressure.

The use of a second and/or third stretching bubble allows the final properties of the tubular cellulose casing to be modified. Stretching in a longitudinal dryer is advantageous as this improves biaxial orientation and allows thinner films to be produced.

Optionally, after drying, the biaxially stretched tubular casings 125;225 are slit into multiple longitudinal strips for the manufacture of multiple seamed food casings. These seamed food casings have a much smaller diameter than the seamless tubular film 125;225. The slits are parallel to the machine direction orientation (MDO).

As shown in Figures 7, 8 and 9 each strip of film has parallel longitudinal edges 312; 412; 512. The parallel longitudinal edges 312; 412; 512 are curved towards each other about a longitudinal axis 314; 414; 514 so that the edges are proximate to each other to form a tube 310; 410; 510. The edges 312; 412; 512 may abut (Figure 7), overlap (Figure 8) or be face-to-face (Figure 9). The longitudinal edge 312; is sealed together either directly or by means of a sealing tape 316. When the edges 312 are sealed together in face-to-face (Figure 9) orientation, the resultant seam protrudes, generally radially, from the formed tube 510. The advantage of slitting the larger diameter tubular casing 125 is that much smaller tubular

casings 310; 410; 510 with uniform construction may be obtained.

As shown in Figure 10, another possibility is to wind the longitudinal strips, obtained by slitting, in a helical form. A tubular seamed casing 610 may then be built up with one or more layers. Some of the layers may be wound in opposite directions. Alternatively, all of the layers are wound in the same direction. The winding pitch may also be altered to provide a positive, negative or no overlap. The winding angle may range from 0 degrees to 90 degrees. The layer to form the casing 610 may be made of flat, opened and slit tubular film. Alternatively, the casing 610 is formed from a flattened tubular film. The width of the flat film may vary from the thickness of the flat film to several millimetres.

As shown in Figure 11, a spiral wound tube 710 has a circular cross-section and is commonly called the winding diameter. The winding diameter can vary from 10mm to 300mm. By varying the winding pitch, winding diameter and winding width it is possible to alter the properties of the obtained tube. For example, it is possible to stiffen the tube in one direction and at the same time increase the flexibility in the opposite direction. Another possibility is to use extremely thin casings in a multilayer principle. Layers with different properties may be wound on top of each other to produce casings with different skin behaviour.

The seal 612 is achieved via any suitable means or methods. For example, heat sealing or an adhesive such as an acrylate adhesive is used e.g. methyl methacrylate or cyanoacrylate. When the seal is a heat seal, and the base film is a cellulose film, the film is coated with a heat sealing polymeric material such as polyvinylidene chloride.

The finished seamed tubular food casing 310; 410; 510; 610, as shown in Figures 7, 8, 9 and 10, may be collected

5

10

15

20

25

on a reel for later use in, for example, food stuffing operations. In food stuffing operations, lengths of food casings are radially folded and longitudinally compressed to form shirred strands for placement over a food stuffing horn in a subsequent stuffing operation. The unique characteristic of the food casing of the present invention is that it may be formed immediately prior to stuffing which permits a continuous food stuffing operation not obtainable with real stock or shirred strands.

It is to be understood that usual treatments may be applied to the casings of the invention either before formation of the seamed tube or subsequent to such formation. Examples of such treatments include peeling aids, anti-blocking agents; plasticisers; crimping; colourants such as food approval dyes or smoke; heat sealing coatings; flavourings such as smoke and vapour; moisture barrier coatings and laminations.

The seamed casings of the present invention when properly biaxially stretched have good dimensional stability both radially and longitudinally, even when stuffed with wet food products. The casings of the present invention will radially shrink with contained food product as the food product temperature rises. The casings will also retain a consistent longitudinal dimension even when a finished stuffed product is hung by one end of the casing.

5

10

15

20

EXAMPLE_1:

5

10

15

20

25

. 30

Solutions were prepared with a laboratory mixer with 9.5% cellulose was mixed with 2% (w.r.t. cellulose) propylgallate. The propylgallate acts as a stabiliser.

The chopped cellulose pulp was preprocessed with a water/NMMO mixture of 50%. The temperature was increased to 95°C while simultaneously applying a vacuum of 50 to 80 mbar. This caused the NMMO concentration in the solvent to increase up to about 88%. The NMMO concentration was determined with a refractometer and the complete dissolution of the cellulose pulp was checked polarisation microscopy.

A cellulose film was extruded according to Fig 1. An extrusion die with a nozzle diameter of 22 mm was used. The extrusion temperature was 100°C. The extruded cellulose tubular casing was washed to remove the NMMO solvent. The washed samples were not plasticised before drying. The machine direction orientation (MDO) in extrusion was 1:4. Two films were produced with different extrusion transverse direction orientation (TDO). Sample A has a transverse direction orientation (TDO) of 1:1.6 and Sample B has a transverse direction orientation (TDO) of 1:1.8.

Both samples were dried using a radial dryer stretch (RDS) of 1:1.6 and longitudinal dryer stretch (LDS) of 1:1.15

Both samples were analysed, in the dried and rewet condition, for break stress and maximum elasticity modulus on a Zwick stress/strain tester.

The tensile measurements were performed on a universal testing machine Zwick Z 020 along the procedures of EN ISO 527-3 using the cross-head position to monitor the strain. Table 1 shows the influence of extrusion transverse orientation on the break stress of the formed dry films.

Table 1 shows that increasing the TDO will increase

10

15

20

25

30

the break stress of the resulting cellulose film, especially in the transverse directions.

Besides the stress at the breaking point, the dry modulus is also very important for sausage packaging films. The modulus is a measure of the stiffness and was determined as the maximum derivative of the whole stress-strain curve.

Table 2 shows the maximum elasticity modulus for both samples after drying. Table 2 shows that increasing the transverse direction orientation (TDO) in the first bubble (i.e. between the extrusion die and the precipitation bath) increases the transverse elasticity modulus. As the tube is blown up, the tube increases in the radial direction, with the resultant film becoming stiffer in the transverse direction.

EXAMPLE 2:

A cellulose film was produced according to the double bubble principle of Fig 2. The dope prepared was similar to Example 1. Example 2 shows the influence of using a second bubble on the formed film.

In this Example, the forces applied to the first bubble were kept constant and three different radial dryer stretch ratios were applied to the second bubble. The transverse direction orientation (TDO) in the first bubble was 1:1.6 and the machine direction orientation (MDO) was 1:3. The film was precipitated, washed and not plasticized before drying.

Three samples C, D and E were produced with respectively 1:1.35; 1:1.46 and 1:1.53 radial dryer stretch (RDS). The longitudinal dryer stretch was kept constant at 1:1.15. Table 3 shows the influence of varying radial dryer stretch on break stress of the dried samples.

From Table 3 it can be concluded that increased radial

10

15

20

dryer stretch (RDS) increases the transverse direction (TD) break stress of the dried film.

Samples C, D and E were rewetted with water after drying and the break stress was measured in the rewet condition. The rewetting involved immersing the dried samples for fifteen minutes in a water bath at room temperature.

Table 4 shows the stress results for the rewet samples. From Table 4 it can be concluded that increased radial dryer stretch (RDS) increases the transverse direction (TD) break stress of the rewetted film.

Table 5 shows the maximum modulus of samples C,D and E in the dried condition.

From Table 5 it can be concluded that the maximum transverse elasticity modulus will increase with increased radial dryer stretch.

Table 6 shows the maximum modulus of samples C,D and E in the rewetted condition.

From Tables 5 and 6 it can be seen that the maximum transverse elasticity modulus in a dried and rewet condition is dependent on the transverse orientation conditions of the second bubble. As more transverse orientation forces are applied on the second bubble the modulus will increase in that direction.

25 EXAMPLE 3:

The influence of the machine direction orientation (MDO) in the first bubble will now be illustrated. The preparation of the cellulose NMMO dope was similar to that of Example 1 and Example 2. Two samples F and G were produced. In the first bubble, a transverse direction orientation (TDO) of 1:1.6 was used in both samples. A varying machine direction orientation (MDO) of 1:3 was used for sample F and a varying machine direction orientation (MDO) of 1:4 was used for sample G. Both samples were

10

15

20

25

30

precipitated, washed and not plasticized as described in Example 1. Afterwards the film was dried using the same radial dryer stretch of 1:1.53 and the same longitudinal dryer stretch of 1:1.15.

Table 7 shows the strength of samples F and G in the dried condition.

Table 8 shows the strength of samples F and G in the rewet condition.

From Table 7 and 8 it can be concluded that the stress at break in the machine direction will increase with increased machine direction orientation (MDO) in the first bubble.

Table 9 shows the strain at break of samples F and G in the dried condition.

Table 10 shows the strain at break of samples F and G in a rewet condition.

From the above Examples, it can be seen that the strength characteristics of the dried and rewet film may be adjusted by the forces applied to the first and second bubbles.

EXAMPLE 4:

A new set of experiments was conducted by extruding dope containing 9.5% cellulose and applying different transverse direction orientation (TDO) and machine direction orientation (MDO) in the extrusion bubble and in the dryer bubble. The influence on the membrane properties were investigated. The membrane properties were determined by measuring the permeation of $K_3Fe(CN)_6$ 1% solution at 20°C through the formed cellulose film sample with a membrane area of 15.92 cm².

The results of the permeation measurements are shown in Table 11.

The permeability of the cellulose film depends on the stretch applied during the formation process and with

regard to Table 11 we may conclude that the permeability will decrease with increasing stretch.

......

Table 1 :

					MD	stress	TD stress
		MDO	TDO	LDS	RDS	(Mpa)	(Mpa)
5	Sample A :	1:4	1:1.	6 1:1.15	1:16	165	149
	Sample B :	1:4	1:1.8	3 1:1.15	1:16	176	189
				on Orient	ation in	the fi	rst bubble
	(extrusion						
10	TDO = Tran (extrusion	:			itation 3	in the fi	irst bubble
10			_		ch (drve	r lenath	direction
	draw)	<i></i>	nar bry);; (uz j c		
	•	al Dry	er Stre	tch (drye	r radial	directi	on blow up)
	Table 2 :						
15					MD 1	modulus '	TD modulus
		MD	TDO	LDS R	DS	(Mpa)	(Mpa)
	Sample A :	1:4	1:1.6	1:1.15 1	:1.6	8480	4910
	Sample B :	1:4	1:1.8	1:1.15 1	:1.6	8150	6380
	Table 3 :	drv	stress	at break	results		
20		2					
					MI	stress	TD stress
		MDO '	rdo Li	DS RD	S	(Mpa)	(Mpa)

						MD stress	TD stress
		MDO	TDO	LDS	RDS	(Mpa)	(Mpa)
	Sample C:	1:3	1:1.6	1:1.15	1:1.35	156	131
	Sample D:	1:3	1:1.6	1:1.15	1:1.46	160	140
25	Sample E:	1:3	1:1.6	1:1.15	1:1.53	154	169

				_	-				
	Table 4:	rew	et str	ess at 1	oreak res	sults			
		•				MD	stress	TD	stress
		MDO	TDO	LDS	RDS		(Mpa)		(Mpa)
	Sample C:	1:3	1:1.6	1:1.15	1:1.35		22		18
5	Sample D:	1:3	1:1.	6 1:1.1	5 1:1.46		19		17
	Sample E:	1:3	1:1.6	5 1:1.15	1:1.53		21		22
	Table 5 :	dry i	maximu	m elasti	ic modulı	ıs			
	•								
			•		N	ID Mo	dulus	TD	Modulus
10		MDO	TDO	LDS	RDS		(Mpa)		(Mpa)
	Sample C:	1:3	1:1.6	1:1.15	1:1.35		9310		5000
	Sample D:	1:3	1:1.6	1:1.1	5 1:1.4	6	9210		5410
	Sample E:	1:3	1:1.6	1:1.15	5 1:1.53	3	8950		7120
				_					
	Table 6 :	rewet	maxim	ium elasi	tic modu.	Lus			
15		:							
							MD		MD
							odulus		Modulus
		MDO T		LDS	RDS		(Mpa)		(Mpa)
	Sample C:						138		78
20	Sample D:				1:1.46		131		80
	Sample E:	1:3 1	:1.6	1:1.15	1:1.53	3 ·	123		113
	Table 7:	d	ru etr	ess at 1	oreak				
	Table 7.	u	ry scr	.633 &C .	Dieak		MD		TD
						Q+1	cess		Stress
25		MDO	TDO	LDS	RDS		MPa)		(MPa)
25	Cample F.			5 1:1.15			154		(MFA) 169
	Sample F:	1:0	Ι.Ι.	, 1.1.10	A. A. J.		1 J 1		109

1:4 1:1.6 1:1.15 1:1.53

149

165

Sample G:

Table 8 : rewet stress at break

		•	. ,			MD	TD
						Stress	Stress
		MDO	TDO	LDS	RDS	(Mpa)	(Mpa)
5	Sample F:	1:3	1:1.6	1:1.15	1:1.53	21	22
	Sample G:	1:4	1:1.6	1:1.15	1:1.53	23	23

Table 9 : strain at break dry condition

: ÷			•	•	MD	TD
10					strain	strain
		MDO	TDO	LDS R	DS (%)	(용)
	Sample F :	1:3	1:1.6	1:1.15 1:	1.53 18	24
	Sample G :	1:4	1:1.6	1:1.15 1:	1.53 21	28

15	Table 10	•	rewet strain at break

						MD	TD
						strain	strain
•		MDO	TDO	LDS	RDS	(왕)	(웅)
	Sample F:	1:3	1:1.6	1:1.15	1:1.53	48	59
20	Sample G:	1:4	1:1.6	1:1.15	1:1.53	42	78

Table 11 : Permeation values

					Permeation	value
Sample ID	MDO	TDO	LDS	RDS me	g µm ml/(mi	n cm²g)
0804/T1	1:2.5	1:1.2	7 1:1.1	0 1:1		425
0804/T2	1:2.5	1:1.2	7 1:1.3	14 1:1		433
0805/T1	1:2.5	1:1.4	5 1:1.1	0 1:1		375
0805/T2	1:2.5	1:1.4	15 1:1.	14 1:1		385
0807/T1	1:3	1:1.2	7 1:1.1	1:1		380
	0804/T1 0804/T2 0805/T1 0805/T2	0804/T1 1:2.5 0804/T2 1:2.5 0805/T1 1:2.5 0805/T2 1:2.5	0804/T1 1:2.5 1:1.2 0804/T2 1:2.5 1:1.2 0805/T1 1:2.5 1:1.4 0805/T2 1:2.5 1:1.4	0804/T1 1:2.5 1:1.27 1:1.1 0804/T2 1:2.5 1:1.27 1:1.3 0805/T1 1:2.5 1:1.45 1:1.1 0805/T2 1:2.5 1:1.45 1:1.3	0804/T1 1:2.5 1:1.27 1:1.10 1:1 0804/T2 1:2.5 1:1.27 1:1.14 1:1 0805/T1 1:2.5 1:1.45 1:1.1 0 1:1 0805/T2 1:2.5 1:1.45 1:1.14 1:1	Sample ID MDO TDO LDS RDS mg µm ml/(mix 0804/T1 1:2.5 1:1.27 1:1.10 1:1 0804/T2 1:2.5 1:1.27 1:1.14 1:1 0805/T1 1:2.5 1:1.45 1:1.1 0 1:1 0805/T2 1:2.5 1:1.45 1:1.14 1:1

	0807/T2	1:3	1:1.25 1:1.14	1:1	375
	0814/T1	-1:4	1:1.27 1:1.14	1:1.05	340
	0814/T2	1:4	1:1.25 1:1.14	1:1.25	345
	0816/T1	1:4	1:1.42 1:1.14	1:1.25	340
5	0816/T2	1:4	1:1.42 1:1.14	1:1.33	320
	0809/T1	1:5	1:1.27 1:1.10	1:1	390
	0809/T2	1:5	1:1.27 1:1.14	1:1	360
	0809/T3	1:5	1:1.27 1:1.14	1:21	320
	0809/T4	1:5	1:1.27 1:1.10	1:21	300
10	0813/T1	1:5	1:1.45 1:1.14	1:1	250

CLAIMS

A method for producing biaxially stretched extruded cellulose based tubular film wherein the tubular film is extruded from an extrusion die and sequentially film transporting the tubular through precipitation bath and a dryer, said method comprising the steps of:

locating the extrusion die above the liquid precipitation bath having a precipitation liquid level therein to provide a gap between an extrusion nozzle outlet of the extrusion die and the surface of the precipitation liquid in the liquid bath;

extruding a blown tubular film from the extrusion die so that a bubble is formed in the gap between the extrusion nozzle outlet and the liquid precipitation bath and wherein there is increased air pressure within the bubble;

pulling the tubular film away from the extrusion die and into the precipitation bath using a set of rollers;

precipitating the blown tubular film in said liquid precipitation bath; and

wherein the film is transported via further sets of rollers to form at least one further bubble, between a set of rollers, where the tubular film is further stretched to impart additional strength to the film.

2. A method according to claim 1, wherein the tubular film is cellulose based and is formed by adding cellulose to a water diluted NMMO solution to form a suspension, wherein the suspension is heated and the water evaporated under reduced pressure to form NMMO monohydrate which

10

5

15

20

25

dissolves the cellulose to form a dope solution containing cellulose, NMMO-monohydrate and water.

- 3. A method according to any preceding claim, wherein nip rolls are used to stretch the tubular film.
- 4. A method according to claim 3, wherein the nip rolls terminating the first bubble rotate faster than the rate of extrusion from the extrusion die so that there is a longitudinal tension in the tubular cellulose film.
- 5. A method according to any preceding claim, wherein the air pressure in the first bubble is 0.1 to 5mbar.
 - 6. A method according to any preceding claim, wherein a second bubble in the tubular film is formed after it has been washed in wash tanks and plasticiser tanks.
- 7. A method according to any preceding claim, wherein the film is formed into three bubbles prior to being wound on a drum.
 - 8. A method according to claim 7, wherein the second bubble in a wet condition is stretched by nip rolls longitudinally and radially by increased air pressure; and in the third bubble the pressure inside the film is increased.
 - 9. A method according to claim 7, wherein the second bubble in a wet condition is stretched by nip rolls longitudinally and radially by increased air pressure; and in the third bubble the pressure inside the film is decreased.
 - 10. A method according to claim 7, wherein the second

20

bubble is dried and stretched longitudinally by increased air pressure; and the third bubble is rewetted and further stretched between nip rolls and by using increased air pressure.

5

10

- 11. A method according to any preceding claim, wherein the second bubble has a set of nip rolls at both ends of the bubble and wherein the set of nip rolls first in contact with the tubular film rotate slower than the second set of nip rolls whereby a longitudinal tension is created in the film.
- 12. A method according to any preceding claim, wherein a holding/accumulator tank is located between each set of rollers.

15

- 13. A method according to any preceding claim, wherein the air pressure inside the second bubble is 50 to 800mbar.
- 14. A method according to any preceding claim, wherein the tube is stretched by a total of 20-1500% in the longitudinal direction and 20-2000% in the transverse direction.
- 15. Apparatus for producing biaxially stretched extruded cellulose based tubular film of improved strength wherein the apparatus comprises an extrusion die above a liquid bath having a liquid level therein to provide a gap between the die and the surface of the liquid in the liquid bath wherein the film is extruded into a first bubble and pulled via a set of rollers and wherein the film undergoes a process of being pulled through further rollers between which film bubbles are formed which exert further biaxial forces on the tubular film.

PCT/GB01/00851

- 16. Apparatus according to claim 15, wherein the rollers are nip rolls.
 - 17. A biaxially stretched tubular cellulose based film, according to any of claims 1 to 14.
- 18. A biaxially stretched tubular cellulose film according to claim 17, wherein the tubular cellulose based film is cut into a plurality of biaxially stretched strips and the biaxially stretched strips are seamed to form a smaller dimensioned tubular film.
- 10 19. A biaxially stretched tubular cellulose film according to claim 18, wherein the seams are formed by using tape such as adhesive tape, heat sealing tape or any other suitable adhesive means.
- 20. A biaxially stretched tubular cellulose film according to any of claims 18 and 19, wherein the cuts are parallel with a longitudinal axis of the formed tubular film.
 - 21. A biaxially stretched tubular cellulose film according to any of claims 18 and 19, wherein the cuts are helical with respect to the formed tubular film.

onal Application No PCT/GB 01/00851

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B29C47/00 B290 B29C55/28 B29C69/00 //B29K1:00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 B29C A22C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 97 31970 A (HAMMER KLAUS DIETER 1-6. ;BERGHOF KLAUS (DE); GORD HERBERT (DE); GROLIG) 4 September 1997 (1997-09-04) 15 - 17Υ page 8, line 10 - line 37; claim 1 7-10 18-20 Х US 5 451 364 A (KAJIWARA EDWARD M ET AL) 1-5 19 September 1995 (1995-09-19) 11-17 column 6, line 16 - line 32 column 10, line 34 - line 49 χ EP 0 958 743 A (TEEPAK INVESTMENT INC) 1,15,17 24 November 1999 (1999-11-24) example 7 EP 0 960 566 A (TEEPAK INVESTMENT INC) χ 1,15,17 1 December 1999 (1999-12-01) example 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 4 July 2001 12/07/2001 Name and malling address of the ISA Authorized officer European Palent Office, P.B. 5818 Palentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Van Nieuwenhuize, O

Form PCT/ISA/210 (second sheet) (July 1992)

Fax: (+31-70) 340-3016

In: onal Application No PCT/GB 01/00851

X UAAY WF1	on of document, with Indication, where appropriate, of the relevant passages IS 4 612 245 A (SCHOENBERG JULIAN H ET IL) 16 September 1986 (1986-09-16) figure 1 IO 96 07328 A (HOECHST DO BRASIL QUIMICA E IA; SCHULTZE HARTMUT PAUL (BR); HARM B) 4 March 1996 (1996-03-14) claim 1; figure 1 IP 0 922 390 A (DEVRO TEEPAK BELGIUM NV) 6 June 1999 (1999-06-16) paragraph '0014!; claims 20-24; figures -3	Relevant to claim No. 15,16 7-10 18-20
X U A Y F 1 1 1 A W; 2	IS 4 612 245 A (SCHOENBERG JULIAN H ET L) 16 September 1986 (1986-09-16) figure 1 O 96 07328 A (HOECHST DO BRASIL QUIMICA E A; SCHULTZE HARTMUT PAUL (BR); HARM B) 4 March 1996 (1996-03-14) claim 1; figure 1 P 0 922 390 A (DEVRO TEEPAK BELGIUM NV) 6 June 1999 (1999-06-16) paragraph '0014!; claims 20-24; figures	15,16 7-10
Y W F 1 1 1 A W ; 2	L) 16 September 1986 (1986-09-16) figure 1 0 96 07328 A (HOECHST DO BRASIL QUIMICA E A ;SCHULTZE HARTMUT PAUL (BR); HARM B) 4 March 1996 (1996-03-14) claim 1; figure 1 P 0 922 390 A (DEVRO TEEPAK BELGIUM NV) 6 June 1999 (1999-06-16) paragraph '0014!; claims 20-24; figures	7–10
Y E 1 1 A W; 2	A ;SCHULTZE HARTMUT PAUL (BR); HARM B) 4 March 1996 (1996-03-14) claim 1; figure 1 P 0 922 390 A (DEVRO TEEPAK BELGIUM NV) 6 June 1999 (1999-06-16) paragraph '0014!; claims 20-24; figures	
1 1 A W; 2	6 June 1999 (1999-06-16) paragraph '0014!; claims 20-24; figures	18-20
2		
.	NO 95 35340 A (FRAUNHOFER GES FORSCHUNG WEIGEL PETER (DE); FINK HANS PETER (DE);) 28 December 1995 (1995-12-28) claims 1,12,15	1,15,17
F	70 93 13670 A (VISKASE CORP ; COURTAULDS FIBRES LTD (GB)) 22 July 1993 (1993-07-22) claim 1	1,15,17
3	P 0 899 076 A (KALLE NALO GMBH & CO KG) March 1999 (1999-03-03) claim 1	1,15,17
2	GB 1 002 752 A (DU PONT) 25 August 1965 (1965-08-25) figure 1	1
1	US 2 999 756 A (E.A. SHINER ET AL) L2 September 1961 (1961-09-12) claims 1,3,5; figure 1	1
	JS 4 590 107 A (BRIDGEFORD DOUGLAS J) 20 May 1986 (1986-05-20) example 1	1
K	NO 96 34037 A (MICHELS CHRISTOPH ;BERGHOF KLAUS (DE); THUERINGISCHES INST TEXTIL) 31 October 1996 (1996-10-31) claim 1	1
	JS 5 248 366 A (RASMUSSEN OLE-BENDT) 28 September 1993 (1993-09-28) claim 1	. 21
	US 4 809 413 A (UPMEIER HARTMUT) 7 March 1989 (1989–03–07) claim 1	21
		I

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

information on patent family members

Int ional Application No PCT/GB 01/00851

Patent document cited in search report	t	Publication date		Patent family member(s)	Publication date
WO 9731970	Α .	04-09-1997	DE	19607953 A	04-09-1997
			AT	200502 T	15-04-2001
			DE	59606788 D	17-05-2001
الله الله الله الله الله الله الله الله			EP	0883645 A	16-12-1998
US 5451364	Α	19-09-1995	us	5277857 A	11-01-1994
			AT	194455 T 69425240 D	15-07-2000 17-08-2000
			DE DE	69425240 D 69425240 T	25-01-2001
			EP	0662283 A	12-07-1995
		•	ĒS	2147772 T	01-10-2000
			US	5658524 A	19-08-1997
			AT	148306 T	15-02-1997
			AU	654080 B	20-10-1994
			AU	3321993 A 9205562 A	03-08-1993 26-04-1994
•		•	BR Ca	2096143 A	18-07-1993
			DE	69217211 D	13-03-1997
			DE.	69217211 T	17-07-1997
		•	DK	577790 T	11-08-1997
			EP	0577790 A	12-01-1994
			ES	2096908 T	16-03-1997
,			FI JP	934067 A 2568156 B	16-09-1993 25-12-1996
			JP	6508038 T	14-09-1994
			MX	9300227 A	29-07-1994
		•	WO	9313670 A	22-07-1993
			US	H1592 H	03-09-1996
			US	5597587 A	28-01-1997
			US 	5702783 A	30-12-1997
EP 0958743	Α	24-11-1999	US	6177158 B	23-01-2001
•			BR CN	9806670 A 1235901 A	20-03-2001 24-11-1999
			JP	11320675 A	24-11-1999
EP 0960566	A	01-12-1999	US	5989605 A	23-11-1999
					15-10-1986
US 4612245	Α	16-09-1986	AT Au	22544 T 547933 B	14-11-1985
		•	AU	8449882 A	03-02-1983
		•	BR	8203761 A	21-06-1983
			CA	1198561 A	31-12-1985
			DE	3273558 D	06-11-1986
			DK	342582 A,B, 0071349 A	01-02-1983 09-02-1983
		·	EP FI	822676 A,B,	01-02-1983
			JP	1614268 C	15-08-1991
			JP	2033510 B	27-07-1990
			JP	58027725 A	18-02-1983
			NO	822626 A	01-02-1983
			NZ	200767 A	11-04-1986
			ZA	8203874 A	28-09-1983
WO 9607328	Α	14-03-1996	BR	9403440 A	03-09-1996
			AU	3559295 A	27-03-1996
			^~		
			CZ EP	9700657 A 0779781 A	15-10-1997 25-06-1997

Information on patent family members

Int one Application No PCT/GB 01/00851

					FC1/UD	01/00851
ci	Patent document ted in search report		Publication date		Patent family member(s)	Publication date
E -	P 0922390	A.	16-06-1999	JP	11240566 A	07-09-1999
h	0 9535340	A	28-12-1995	DE EP JP US	4421482 A 0766709 A 10501570 T 6113842 A	21-12-1995 09-04-1997 10-02-1998 05-09-2000
- h	0 9313670	A	22-07-1993	US AT AU AU BR CA DE	5277857 A 148306 T 654080 B 3321993 A 9205562 A 2096143 A 69217211 D	11-01-1994 15-02-1997 20-10-1994 03-08-1993 26-04-1994 18-07-1993 13-03-1997
•				DE DK EP ES JP JP MX US US US	69217211 T 577790 T 0577790 A 2096908 T 934067 A 2568156 B 6508038 T 9300227 A 5451364 A H1592 H 5597587 A 5658524 A 5702783 A	17-07-1997 11-08-1997 12-01-1994 16-03-1997 16-09-1993 25-12-1996 14-09-1994 29-07-1994 19-09-1995 03-09-1996 28-01-1997 19-08-1997 30-12-1997
E	IP 0899076	Α	03-03-1999	DE US	19737113 A 6033618 A	04-03-1999 07-03-2000
G	B 1002752	A	25-08-1965	DE	1272527 B	
l	IS 2999756	A	12-09-1961	NONE		
	JS 4590107	A	20-05-1986	BR CA DE EP FI HU JP JP WO YU	8205335 A 1180939 A 3274412 D 0070891 A 68345 B 185096 B 4012931 B 58500004 T 8202649 A 25182 A	14-12-1982 15-01-1985 15-01-1987 09-02-1983 31-05-1985 28-11-1984 06-03-1992 06-01-1983 19-08-1982 30-06-1985
ķ	10 9634037	A	31-10-1996	DE	19515137 A	31-10-1996
l	JS 5248366	A	28-09-1993	AT AU AU BR CN CN DE DE	132794 T 639210 B 3858189 A 4185893 A 8907512 A 1040537 A,B 1027356 B 68925424 D 68925424 T 301490 A	15-01-1996 22-07-1993 12-01-1990 30-09-1993 11-06-1991 21-03-1990 11-01-1995 22-02-1996 14-08-1996 22-02-1991

Form PCT/ISA/210 (patent family annex) (July 1992)

information on patent family members

Ir onal Application No PCT/GB 01/00851

Patent document Publication cited in search report date		Patent family member(s)		Publication date	
US 5248366 A	a company	EP WO	0426702 A 8912533 A	15-05-1991 28-12-1989	
		NO	178692 B	05-02-1996	
		NO	942349 A	14-02-1991	
		RU	2087301 C	20-08-1997	
		RU	2027602 C	27-01-1995	
		US	5361469 A	08-11-1994	
US 4809413 A	07-03-1989	DE	3616666 A	15-10-1987	
20 1005 120 11	** **	AT	139932 T	15-07-1996	
		CA	1315532 A	06-04-1993	
		CN	87103204 A,B	09-12-1987	
		DE	3645194 C	05-01-1995	
		DK	191387 A	15-10-1987	
		EP	0245643 A	19-11-1987	
		EP	0494091 A	08-07-1992	
		JP .	63047092 A	27-02-1988	
		RU	2062233 C	20-06-1996	
		SU	1782209 A	15-12-1992	
		US	RE34328 E	03-08-1993	

Form PCT/ISA/210 (patent family arriex) (July 1992)

PATENT COOPERATION TREATY

From the INTERNATIONAL SEARCHING AUTHORITY	PCT
To: PAULEY PETERSEN KINNE & FEJER Attn. Rauch, Melanie I. 2800 West Higgins Road, Suite 365 Hoffman Estates, Illinois 60195 UNITED STATES OF AMERICA	INVITATION TO PAY ADDITIONAL FEES (PCT Article 17(3)(a) and Rule 40.1)
	Date of mailing (day/month/year) 25/09/2002
Applicant's or agent's file reference	PAYMENT DUE within 45 XXXXXXS/days
14912 KCC-1/03-PCT	from the above date of mailing
International application No. PCT/US 02/11283	International filing date (day/month/year) 09/04/2002
Applicant	05/04/2002
Applicant	
KIMBERLY-CLARK WORLDWIDE, INC.	
1. This International Searching Authority (i) considers that there are 3 (number of the claims indicated MANN/on the extra sheet:	mber of) inventions claimed in the international application covered
and it considers that the international application does no (Rules 13.1, 13.2 and 13.3) for the reasons indicated between	t comply with the requirements of unity of invention What DOCKETED DATE 10-7-02 09 May 2002 ATTORNEY SECRETARY Pay Add'1 Fee
(ii) X has carried out a partial international search (see Ar	
on those parts of the international application which relate 3,4,7,10-12,21-23 (iii) will establish the international search report on the other to which, additional fees are paid	to the invention first mentioned in claims Nos.:
2. The applicant is hereby invited, within the time limit indicated	above, to pay the amount indicated below:
EUR_945,00x2	= EUR 1.890,00
Fee per additional invention number of additional in	
Or, x The applicant is informed that, according to Rule 40.2(c), the pi.e., a reasoned statement to the effect that the international apor that the amount of the required additional fee is excessive.	payment of any additional fee may be made under protest, application complies with the requirement of unity of invention
Claim(s) Nos. Article 17(2)(b) because of defects under Article 17(2)(a)	have been found to be unsearchable under and therefore have not been included with any invention.
Name and mailing address of the International Searching Authority	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Sophie Ruciak

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 3,4,7,10-12,21-23

Film temperatures during the inflation/blowing

1.1. Claim : 7
Multi bubble film blowing

1.2. Claims: 10-12,21-23
Blend of materials used

2. Claims: 16-19

Heating and cooling techniques of the inflated/blown bubble

3. Claims: 26-37

A cross directional oriented film

Please note that all inventions mentioned under item 1, although not necessarily linked by a common inventive concept, could be searched without effort justifying an additional fee.

The prior art DE1164645 discloses double bubble film blow extrusion for a thermoplastic elastomeric heat shrink film (Block polymer of Polyethylene and Butylene or similar). The first bubble is blown to stretch the film in the cross direction and in the length direction, then the film self cools, after a radiation treatment the film is reheated and blown a second time resulting in further stretch in the cross direction and the length direction at a temperature lower than during the first blow, then the film self cools and is collapsed and winded up. The document contains all the technical features of claims1, 2, 5, 6, 8, 9, 13-15, 20, 24, 25 and is thereby novelty destroying for those claims, see: column 1, row 1 - row 9; column 5, row 60 - column 6, row 28; column 8, row 6 - row 16; Example 3, claim 1 and 6; figure 2.

Subject 1, concerns claims 3 and 4 and treats:

-Film temperatures during the inflation/blowing

Special technical feature(s) which contribute to the solution of the objective problem:

-Blow temperature above softening temperature and below melt temperature.

-Inflation temperature above glass transition and below softening temperature.

Objective problem:

-How to find the suitable blow and inflation temperature for orientation of the film.

Sections in the description of the application mentioning said problem: -page 6, paragraph 1

Subject 2, concerns claim 7 and treats:

-Multi bubble film blowing

Special technical feature(s) which contribute to the solution of the

```
objective problem:
-Inflate/blow the film three times.
Objective problem:
-How to produce ultra thin films.
Sections in the description of the application mentioning said problem:
-page 7. paragraph 3
Subject 3, concerns claims 10-12, 21-23 and treats:
-Blend of materials used
Special technical feature(s) which contribute to the solution of the
objective problem:
-65-80% / 20-35% blend ratio of elastomeric resin / polyethylene
Objective problem:
-How to find a suitable material blend for double bubble film blow
extrusion of a heat shrink film
Sections in the description of the application mentioning said problem:
-page 11, paragraph 5 - page 6, paragraph 1
Subject 4, concerns claims 16-19 and treats:
-Heating and cooling techniques of the inflated/blown bubble.
Special technical feature(s) which contribute to the solution of the
objective problem:
-Use internal bubble cooling system
-Use combined external and internal bubble cooling system
-Use external air cooling ring
-Heat the film while orienting it in the cross direction.
Objective problem:
-How to control the temperature profile of the blown/inflated bubble.
Sections in the description of the application mentioning said problem:
-page 2, paragraph 5
Subject 5, concerns claims 26-37 and treats:
-A cross directional oriented film
Special technical feature(s) which contribute to the solution of the
objective problem:
-Latent set of the film is at least 50%
-Tension set is less than about 20%
-Shrinkge of the film is at least 50%
-Draw ratio of the film is at least 10
-Tensile force of the film is at least 30
Objective problem:
-How to find criterias for selecting materials for an optimal balance of
performance
Sections in the description of the application mentioning said problem:
-page 10, paragraph 3 - page 11, paragraph 3
The groups of claims are not linked by common or corresponding technical
features and define different inventions not linked by a single general
inventive concept. The application, hence does not meet the requirements
```

of Unity of Invention as defined in Rule 13.1-2 PCT and Rules 29, 30, 46

EPC.

Annex to Form PCT/ISA/206 COMMUNICATION RELATING TO THE RESULTS OF THE PARTIAL INTERNATIONAL SEARCH

International Application No PCT/US 02/11283

- 1. The present communication is an Annex to the invitation to pay additional fees (Form PCT/ISA/206). It shows the results of the international search established on the parts of the international application which relate to the invention first mentioned in claims Nos.:
- 3, 4 2.This communication is not the international search report which will be established according to Article 18 and Rule 43.
- 3.If the applicant does not pay any additional search fees, the information appearing in this communication will be considered as the result of the international search and will be included as such in the international search report.
- 4.If the applicant pays additional fees, the international search report will contain both the information appearing in this communication and the results of the international search on other parts of the international application for which such fees will have been paid.

1,2,5,6,
8,9, 13-15,
20,24,25 3,4,7, 10-12, 21-23
ne 28
1,2,6,8, (6) 9,14,15, 18-20,25
; claim 8;
3,4
VRIJSEN 7); 01-09-27) e 5
a _2 ;;;)

° Special categories of cited documents :

- "A" document defining the general state of theart which is not considered to be of particular relevance
- "E" earlier document but published on or after theinternational filing date
- "L" document which may throw doubts on priority chim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- P* document published prior to the internationalfiling date but later than the priority date claimed
- "T" later document published after theinternational filing date or priority date and not in conflict with theapplication but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to aperson skilled in the art.
- "&" document member of the same patent family

Service data to the State of the service of

Annex to Form PCT/ISA/206 COMMUNICATION RELATING TO THE RESULTS OF THE PARTIAL INTERNATIONAL SEARCH

International Application No
PCT/US 02/11283

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	SONG K ET AL: "DOUBLE BUBBLE TUBULAR FILM EXTRUSION OF POLYBUTYLENE TEREPHTHALATE—POLYETHYLENE TEREPHTHALATE BLENDS" POLYMER ENGINEERING & SCIENCE, SOCIETY OF PLASTICS ENGINEERS, US, vol. 40, no. 4, April 2000 (2000-04), pages 902-916, XP000927556 ISSN: 0032-3888 page 902 -page 903	10-12, 21-23
	US 4 277 578 A (HATA HIDEO ET AL) 7 July 1981 (1981-07-07) abstract column 5, line 16 - line 50 column 22, line 4 -column 23, line 34	10-12, 21-23
	·	

Patent Family Ann x

Information on patent family members

International Application No
PCT/US 02/11283

	itent document in search report		Publication date		Patent family member(s)		Publication date
DE	1164645	В	05-03-1964	NONE			
EP	0974452	A	26-01-2000	JP	2000037828		08-02-2000
				CN	1252348		10-05-2000
				EP	0974452	A2	26-01-2000
GB	1560550	Α	06-02-1980	AU	505932		06-12-1979
				AU	3084677		31-05-1979
				BE	861856		14-06-1978
				DE	2755519		15-06-1978
				FR	2374154		13-07-1978
				US 	T984006	I4 	03-07-1979
WO	0170483	Α	27-09-2001	AU	3579501		03-10-2001
				WO	0170483	A1	27-09-2001
US	US 4277578	À	07-07-1981	JP	1154978		15-07-1983
				JP	54155269		07-12-1979
				JP	57049013		19-10-1982
				JP	1412766		27-11-1987
				JP	54155271		07-12-1979
				JP	62022772		20-05-1987
				JP JP	1154961		15-07-1983
				JP	54055071 57049012		01-05-1979
				JP	54072279		19-10-1982 09-06-1979
				DE	2844363		12-04-1979
				DĒ	2857641		07-07-1983
				DE	2857642		07-07-1983
				DE	2858781		17-10-1991
				FR	2405972	A1	11-05-1979
				FR	2525956		04-11-1983
				GB	2007685		23-05-1979
				US	4302557		24-11-1981
				US	4336350		22-06-1982
				US	4835218		30-05-1989
				US	4542886		24-09-1985
				US	4379888		12-04-1983
				US US	4499241		12-02-1985
				US	4336212 4481334		22-06-1982
				US	4454303		06-11-1984 12-06-1984
				US	RE33832		25-02-1984 25-02-1992
				US	4537935		27-08-1985
				US	4701496		20-10-1987
				GB	2063277		03-06-1981