Computation for Human Biology

Fall 2017

Tuesdays and Thursdays 12:00-1:20PM

**Location: TBD** 

**Course Description** 

Biology and medicine are becoming increasingly data-intensive fields. This course is designed to

introduce students interested in human biology and related fields to methods for working with large

biological datasets. There will be in-class activities analyzing real data that have revealed insights about

the role of the genome and epigenome in health and disease. For example, we will explore data from

large-scale gene expression and chromatin state studies. The course will provide an introduction to the relevant topics in biology and to fundamental computational skills such as editing text files, formatting

and storing data, visualizing data and writing data analysis scripts. Students will become familiar with

both UNIX and Python. This course is designed at the introductory level. Previous university-level

courses in biology and programming experience are not required.

**Course Objectives** 

Students will be able to:

1. Use Unix and/or Python to view, sort and parse large data sets such as those from genome-wide

gene expression studies.

2. Use computational methods to interpret if a variant in the genome is likely to exert its effects via

a protein coding region or through regulatory elements including promoters or enhancers.

3. Analyze datasets from cases and controls to identify sites in the genome that are likely to be

relevant to a disease.

4. Query a large data set and visualize the data by making a scatter plot, histogram or heatmap.

5. Conduct a collaborative programming project applying best practices for generating

reproducible data analysis scripts.

**Instructors** 

Anshul Kundaje, PhD.

Assistant Professor, Dept. of Genetics, Dept. of Computer Science

Office: Lane Building, L301

Office Hours: TBA

e-mail: akundaje@stanford.edu

Annette Salmeen, D.Phil.

Core Course Coordinator, Program in Human Biology

Office: Human Biology Building 20 Room 21F

Office hours: TBA

e-mail: asalmeen@stanford.edu phone: 650-723-7842

#### **Class Notes and Readings**

There are no textbooks required for this class. Class notes, articles or videos will be posted on Canvas. In-class activities will be posted as Jupyter notebooks (<a href="http://jupyter.org/">http://jupyter.org/</a>). The notebooks will include background information as well as opportunities to run and edit blocks of Unix or Python code. Instructions for accessing the Jupyter notebooks will be provided in class.

There are various on-line resources for writing code that may be helpful for this course, these references are listed by topic in the class schedule and are indicated as "For Reference".

# Computing

The in-class activities will require a laptop computer or other mobile device that can connect to the internet. Please bring your laptops to class. If you have any concerns about bringing a laptop to class please contact one of the instructors to let them know.

#### Grading

| Class participation                                    | 10% |
|--------------------------------------------------------|-----|
| Pre-class assignments                                  | 10% |
| In-class Programming or Data Analysis activities       | 10% |
| Weekly Programming or Data Analysis assignments        | 40% |
| Collaborative Computational Biology Programing Project | 30% |

# Pre-class assignments (due Tues. or Thurs. at 9AM)

The pre-class assignments will consist of ~3-5 multiple choice, short answer or reflection questions to help students prepare for the class discussions and in-class activities. The assignments will be based on short reading assignments, videos or class notes that will be posted on Canvas. Reading assignments may provide background for the biology topics or computational methods that will be used in class or may introduce students to social implications or ethical debates surrounding the topics that are being covered. Students should work independently on these assignments.

#### In-class Programming or Data Analysis activities (submit at the end of class or by 8PM the day of class)

Most class sessions will include in-class Python programming or data analysis activities. Students will complete these assignments by logging into Jupyter notebooks which will be hosted in the cloud. Students may work collaboratively on these assignments.

# Weekly Programming or Data Analysis Assignments (due Mon. at 12PM)

The weekly programming or data analysis assignments are an opportunity to practice and build upon the methods that are presented in class. Students will write their own code for these assignments. The assignments will be posted on Canvas on Wednesdays by 5:00PM and will be due on Mondays by 12:00PM. Students should work independently on these assignments.

#### **Collaborative Computational Biology Programing Project**

The goal of this project is to help students experience different roles in a programming project and to apply the computational methods that they will learn in the course in the context of a new dataset. Working in teams, students will build Jupyter notebooks showing their analysis and visualization of contributions of genetic variability to one of three diseases. Instructors will help students access datasets from GWAS studies on Alzheimer's disease, obesity or Crohn's disease and will provide an assignment sheet with instructions for the steps of the project. Teams may select the dataset they wish to work on.

# Assignment Objectives

- 1) Participate in a collaborative team-based programming project to gain insights into the workflow for computational projects
- 2) Experience different roles in a computational project including the role of project manager, code implementer and documentation provider.
- 3) Apply data analysis methods from the course to new problems
- 4) Create visualizations to help interpret and represent data.

#### **Honor Code**

Students may work together and share ideas for all of the In-class Programming or Data Analysis activities as well as for the Collaborative Computational Biology Programming Project. Students should complete and submit the weekly pre-class assignments and weekly data analysis assignments on their own. If students consult any sources besides the class notes for the weekly data analysis assignments, citations should be provided.

#### **Students with Documented Disabilities**

Students with Documented Disabilities: Students who may need an academic accommodation based on the impact of a disability must initiate the request with the Office of Accessible Education (OAE). Professional staff will evaluate the request with required documentation, recommend reasonable accommodations, and prepare an Accommodation Letter for faculty. For students who have disabilities that don't typically change appreciably over time, the letter from the OAE will be for the entire academic year; other letters will be for the current quarter only. Students should contact the OAE as soon as possible since timely notice is needed to coordinate accommodations. The OAE is located at 563 Salvatierra Walk (phone: 723-1066, URL: <a href="http://oae.stanford.edu">http://oae.stanford.edu</a>

# **Affordability of Course Materials**

Stanford University and its instructors are committed to ensuring that all courses are financially accessible to all students. If you are an undergraduate who needs assistance with the cost of course textbooks, supplies, materials and/or fees, you are welcome to approach me directly. If would prefer not to approach me directly, please note that you can ask the Diversity & First-Gen Office for assistance by completing their questionnaire on course textbooks & supplies: <a href="http://tinyurl.com/jpqbarn">http://tinyurl.com/jpqbarn</a> or by contacting Joseph Brown, the Associate Director of the Diversity and First-Gen Office (jlbrown@stanford.edu; Old Union Room 207). Dr. Brown is available to connect you with resources and support while ensuring your privacy.

# **Class Schedule and Assignments**

|                        | Topics                                                                                                                                                                                  | Assignments and Resources                                                                                                                                                                                                                                                      |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | UNIT 1: Introduction to Molecular Genetics: What are genes, DNA, RNA and proteins?  Getting Started with Python                                                                         |                                                                                                                                                                                                                                                                                |  |  |  |
| Class 1                | Course Introduction: What is Computational Biology and why does it matter? What is a gene and how can we read DNA sequences into a computer?                                            |                                                                                                                                                                                                                                                                                |  |  |  |
| In-class<br>Activity 1 | Get started with Python Working with command line Setting up a Working Directory Getting the Path of a File Downloading a Gene Sequence Reading a Gene sequence                         | For Reference:  UNIX Command-line bootcamp <a href="http://rik.smith-unna.com/command_lin">http://rik.smith-unna.com/command_lin</a> <a href="e_bootcamp/?id=9xnbkx6eaof">e_bootcamp/?id=9xnbkx6eaof</a>                                                                       |  |  |  |
| Class 2                | How can we predict the protein product of a gene?                                                                                                                                       | Watch: Cracking your Genetic Code (2012) Nova Documentary <a href="https://www.youtube.com/watch?v=30idRzGlhS8">https://www.youtube.com/watch?v=30idRzGlhS8</a> Watch: "Part 1- What is a gene?" <a href="https://www.23andme.com/gen101/">https://www.23andme.com/gen101/</a> |  |  |  |
| In-class<br>Activity 2 | Working with String Variables Write the complementary strand for a DNA sequence Predict the mRNA transcript for a gene Find an open reading frame Predict the protein product of a gene | For Reference: Jones, M., (2017) Python for Biologists.  http://pythonforbiologists.com/index.ph p/introduction-to-python-for-biologists/2 -printing-and-manipulating-text/                                                                                                    |  |  |  |
| Class 3                | How can we compare two or more DNA sequences or compare a DNA sequence to a reference genome?                                                                                           | Read: Touchman, J. (2010) Comparative Genomics. <i>Nature Education Knowledge</i> 3(10):13.  http://www.nature.com/scitable/knowle                                                                                                                                             |  |  |  |

|                        |                                                                                                                                                      | dge/library/comparative-genomics-13239<br>404                                                                                                                                                                                                                            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In-class<br>Activity 3 | Align gene sequences from two different organisms Align gene sequences from the same organism Use BLAST to find similar gene sequences in a database | For Reference:  Jones, M., (2017) Python for Biologists. <a href="http://pythonforbiologists.com/index.ph">http://pythonforbiologists.com/index.ph</a> <a href="p/applied-python-for-biologists/applied-python-1/">p/applied-python-for-biologists/applied-python-1/</a> |
|                        | duction to Functional Genomics: How a Python to work with biological dataset                                                                         |                                                                                                                                                                                                                                                                          |
| Class 4                | What causes variation in gene expression levels? What are non-coding regions of the genome doing?                                                    | Read: Kolta, G. (Sept. 5th 2012) "Bits of Mystery DNA, Far from Junk, Play Crucial Role", New York Times  http://www.nytimes.com/2012/09/06/science/far-from-junk-dna-dark-matter-proves-crucial-to-health.html                                                          |
| In-class<br>Activity 4 | Finding potential regulators for a gene using BEDTools (closestBed).                                                                                 | For Reference:  Quinlan, A., BED tools <a href="http://bedtools.readthedocs.io/en/latest/content/tools/closest.html">http://bedtools.readthedocs.io/en/latest/content/tools/closest.html</a>                                                                             |
| Class 5                | How do you identify regulatory regions in the genome and measure gene expression levels?                                                             | Read: Diep, F. (April 12th, 2013), "Friction over Function: Scientists Clash on the Meaning of ENCODE's Genetic Data", Scientific American  https://www.scientificamerican.com/article/friction-over-function-encode/                                                    |
| In-class               | Looking at sequencing reads and                                                                                                                      |                                                                                                                                                                                                                                                                          |

| Activity 5             | sequencing files, an introduction to FASTQ files.                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 6                | Finding enhancer and promoter regions in DNA sequences                                                                                                                   | Read: Chi, K. (Oct. 13th 2016), "The dark side of the human genome"  http://www.nature.com/nature/journal/v538/n7624/full/538275a.html                                                                                                                                                                                                                                                           |
| In-class<br>Activity 6 | Extracting sequences corresponding to promoter or enhancer regions for a gene from CHIP-seq data (GetFastaBED, intersectBED).  Datasets will be from the ENCODE project. | For Reference:  Bailey et al., (2013) "Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data", Plos Computational Biology.  http://journals.plos.org/ploscompbiol/art icle?id=10.1371/journal.pcbi.1003326  Quinlan, A., BED tools  http://bedtools.readthedocs.io/en/latest /content/tools/intersect.html  http://bedtools.readthedocs.io/en/latest /content/tools/getfasta.html |
| Class 7                | How do you compare regulatory regions across cell types?                                                                                                                 | Read: Kolta, G. (Feb. 18th 2015) "Project Sheds Light on What Drives Genes", New York Times  http://www.nytimes.com/2015/02/19/health/scientists-shed-light-on-circuits-that-control-genes.html                                                                                                                                                                                                  |
| In-class<br>Activity 7 | Analysis of CHIP-seq data in the Epigenome Roadmap Browser                                                                                                               | For Reference:  Roadmap Epigenomic Tutorial, WashU, EpiGenome Browser                                                                                                                                                                                                                                                                                                                            |

|                         |                                                                                                                       | http://epigenomegateway.wustl.edu/sup<br>port/Browser_tutorial_v3_wREMC.pdf                                                                    |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Class 8                 | How do you compare gene expression levels across cell types?                                                          |                                                                                                                                                |  |
| In-class<br>Activity 8  | Analysis of processed RNA-seq data Making heatmaps of gene expression data                                            | For Reference: Griffith et al., (2015) "Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud", Plos Computational Biology. |  |
|                         |                                                                                                                       | http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393                                                                  |  |
| Class 9                 | Visualizing gene expression differences across cell types                                                             | Watch: Ng, Andrew, K Means Clustering<br>Algorithm                                                                                             |  |
|                         |                                                                                                                       | https://www.youtube.com/watch?v=xn<br>WFlgr34Lk                                                                                                |  |
| In-class<br>Activity 9  | Principle Component Analysis K-means clustering of cell types Correlation distance                                    |                                                                                                                                                |  |
| Class 10                | How can you learn about the function of a gene product by studying other organisms?                                   | Read: Ashburner M., et al.,(2000) 'Gene ontology: tool for the unification of biology." <i>Nature Genetics</i> 25, 25-29.                      |  |
|                         |                                                                                                                       | http://www.nature.com/ng/journal/v25/n1/full/ng0500_25.html                                                                                    |  |
| In-class<br>Activity 10 | Clustering of genes GO-term enrichment                                                                                | For Reference:                                                                                                                                 |  |
| rictivity 10            |                                                                                                                       | http://www.geneontology.org/page/doc<br>umentation                                                                                             |  |
|                         | UNIT 3: Introduction to Population Genetics: How do genomes vary across populations?  Using Python to analyze genomes |                                                                                                                                                |  |
| Class 11                | How do gene sequences vary across humans?                                                                             | Watch: Part 2 What are SNPs?<br>https://www.23andme.com/gen101/                                                                                |  |

|                         |                                                                          | Read:Explainer "Structural variation" https://www.broadinstitute.org/explaine r-structural-variation                                                             |
|-------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                          | Read: Welcome Trust Sanger Institute, "1000 genomes for mankind"                                                                                                 |
|                         |                                                                          | http://www.sanger.ac.uk/news/view/100<br>0-genomes-mankind                                                                                                       |
| In-class<br>Activity 11 | The 1000 Genomes Project<br>UK10K                                        |                                                                                                                                                                  |
| Class 12                | Visualizing genetic variation in humans: A look at data from 23 and me   | Read:<br>TBD                                                                                                                                                     |
| In-class<br>Activity 12 | Principle Component Analysis of data from 23 and me                      | For Reference:  Genetic Ancestry by analysing 23AndMe Data using Python http://online.cambridgecoding.com/note books/cca_admin/genetic-ancestry-analy sis-python |
| Class 13                | Using principle component analysis to find artifacts                     |                                                                                                                                                                  |
| In-class<br>Activity 13 | Principle Component Analysis of data demonstrating lab to lab variation  |                                                                                                                                                                  |
|                         | oduction to Genetics and Disease cipating in collaborative Computational | Biology Programing Project                                                                                                                                       |
| Class 14                | Introduction to Collaborative Programing Project                         | Read: Noble, W, "A Quick Guide to<br>Organizing Computational Biology<br>Projects" (2009)                                                                        |
|                         |                                                                          | http://journals.plos.org/ploscompbiol/art<br>icle?id=10.1371/journal.pcbi.1000424                                                                                |
| In-class                | Getting started with the collaborative                                   |                                                                                                                                                                  |

| Activity 14             | programing project                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 15                | What is a genome wide association study and what can it tell us about the genetic basis for disease? | Read: Bush W. and Moore J., (Dec. 27th, 2012) 'Genome-Wide Association Studies", PLOS Computational Biology. Section 1-3.  http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822#pcbi.1002822.s001                                                                                                                      |
| In-class<br>activity 15 | Linkage Disequilibrium<br>Haplotypes<br>Correlation                                                  |                                                                                                                                                                                                                                                                                                                                                 |
| Class 16                | Replication of GWAS studies in different populations.                                                | Read: Bush W. and Moore J., (Dec. 27th, 2012) 'Genome-Wide Association Studies", <i>PLOS Computational Biology</i> . Section 4-5. <a href="http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822#pcbi.1002822.s001">http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822#pcbi.1002822.s001</a> |
| In-class<br>activity 16 | Comparing GWAS results in different populations                                                      |                                                                                                                                                                                                                                                                                                                                                 |
| Class 17                | Analyzing GWAS Studies                                                                               | Read: Bush W. and Moore J., (Dec. 27th, 2012) 'Genome-Wide Association Studies", <i>PLOS Computational Biology</i> . Section 6.  http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002822#pcbi.1002822.s001  Submit: Draft of Collaborative Computational Biology Programming Project.                                     |
| In-class                | Analyzing GWAS Studies                                                                               |                                                                                                                                                                                                                                                                                                                                                 |

| activity 17             | Group work on Collaborative<br>Computational Biology Programming<br>Project |                                                                                                                                           |
|-------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Class 18                | Rare variation Somatic mutations cancer                                     | Read: Kennedy, P. (Nov. 25th, 2016) "The Thin Gene", New York Times  http://www.nytimes.com/2016/11/25/op inion/sunday/the-thin-gene.html |
| In-class<br>Activity 18 | ExAC browser                                                                |                                                                                                                                           |
| Class 19                | Genome Reading to Genome Writing:<br>CRISPR-CAS9                            |                                                                                                                                           |
| In-class<br>activity 19 |                                                                             |                                                                                                                                           |
| Class 20                | Collaborative Programing Projects                                           | Submit: Final version of Collaborative<br>Computational Biology Programming<br>Project.                                                   |
| In-class<br>activity 20 | Presentation of Collaborative Programing Projects                           |                                                                                                                                           |

#### **Collaborative Computational Biology Programing Project**

#### Overview

Working in teams, students will build Jupyter notebooks showing their analysis and visualization of contributions of genetic variability to one of three diseases. Instructors will help students access RNA Seq and CHIP-Seq data from studies on Alzheimer's disease, obesity or Crohn's disease. Teams may select the dataset they wish to work on.

# **Objectives**

- 5) Participate in a collaborative team-based programming project to gain insights into the workflow for computational projects
- 6) Experience different roles in a computational project including the role of project manager, code implementer and documentation provider.
- 7) Apply data analysis methods from the course to new problems
- 8) Create visualizations to help interpret and represent data.

#### **Timeline**

Week 7 Tuesday Groups select team based project

Week 9 Tuesday Drafts of projects submitted on Canvas

Week 8 Monday Review of projects with feedback on rubrics submitted on Canvas

Week 9 Monday Instructor feedback on projects submitted on Canvas

# Logistics

Each team will have three to four members and the final projects will have three or four parts accordingly. Students will alternate participating in roles as the Project Manager, Code Implementer and Documentation Provider.

The three roles are as follows:

Project manager: Establishes an overview for the project goals and objectives. Creates a list of the analysis that will be completed and the visualizations that will be produced.

Code implementer: Writes the code to conduct the data analysis.

Documentation Provider: Creates the final iPython notebook implementing the group plans, annotating code when necessary and adding features such as captions for any visualizations.

#### Groups of 3

|           | Project Manager | Code Implementer | Documentation |
|-----------|-----------------|------------------|---------------|
| Project 1 | Student 1       | Student 2        | Student 3     |
| Project 2 | Student 2       | Student 3        | Student 1     |
| Project 3 | Student 3       | Student 1        | Student 2     |

# Groups of 4

|           | Project Manager | Code Implementer | Documentation |
|-----------|-----------------|------------------|---------------|
| Project 1 | Student 1       | Student 2        | Student 3     |
| Project 2 | Student 2       | Student 3        | Student 4     |
| Project 3 | Student 3       | Student 4        | Student 1     |
| Project 4 | Student 4       | Student 1        | Student 2     |

# Collaborative Computational Biology Project Road Map

