(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 9 January 2003 (09.01.2003)

PCT

(10) International Publication Number WO 03/003793 A1

(51) International Patent Classification7:

(21) International Application Number: PCT/GB02/02936

26 June 2002 (26.06.2002) (22) International Filing Date:

(25) Filing Language:

English

H05B 3/74

(26) Publication Language:

English

(30) Priority Data: 0115831.0

28 June 2001 (28.06.2001)

(71) Applicant (for all designated States except US): CERA-MASPEED LIMITED [GB/GB]; Zortech Avenue, Oldington, Kidderminster, Worcestershire DY11 7DY (GB).

(72) Inventor; and

WO 03/003793 A1

(75) Inventor/Applicant (for US only): McWILLIAMS, Kevin, Ronald [GB/GB]; 12 Broad Walk, ford-upon-Avon, Warwickshire CV37 6HS (GB).

(74) Agent: JACKSON, Derek, Charles; Derek Jackson Associates, The Old Yard, Lower Town, Claines, Worcester WR3 7RY (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: COOKING APPLIANCE

(57) Abstract: A cooking appliance includes a cooking plate (10) and a radiant electric heater (2) having multiple heating zones (12, 14, 16) arranged substantially side-by-side. A temperature sensing assembly (34) incorporates an electrical component (42) located in a position condined within a first heating zone (12) and having an electrical parameter which changes as a function of temperature. Electronic control apparatus (30) is connected to the electrical component (42) by means of electrical leads (44), the electronic control apparatus being adapted to detect the number of heating zones that are energised and to control energisation of the heater in dependence thereon.

WO 03/003793 A1

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- 1 -

COOKING APPLIANCE

The present invention relates to a cooking appliance having a cooking plate, such as of glass-ceramic

5 material, and incorporating a radiant electric heater having multiple heating zones. Such multiple heating zones are arranged substantially side-by side, such as in concentric relationship.

10 It is known, for example from GB-A-2 263 379, to provide heaters having two or three concentrically-arranged heating zones, each of which zones contains one or more electric heating elements. It is arranged for a central heating zone to be energised alone, or together with the concentrically-arranged outer heating zone or zones. Such an arrangement enables heated areas of different sizes to be provided, to accommodate cooking vessels of correspondingly different sizes on the cooking plate overlying the heater.

20

In order to limit the temperature of the cooking plate,
to prevent damage thereto, it is well known to provide a
switch device incorporating a differentially-expanding
rod and tube combination which is arranged to extend
25 across the heating zones of the heater. Such switch
device is arranged to respond primarily to the central

- 2 -

heating zone. This is achieved by providing one or more temperature-compensating sections of the rod and tube combination where it passes across the one or two outer heating zones, or by screening the rod and tube

5 combination with thermal insulating material where it crosses the one or two outer heating zones. Such arrangements effectively thermally desensitise the rod and tube combination where it passes across the one or two outer heating zones, so that calibration of the

0 switch device can be set under conditions where only the central heating zone is energised, without early switching of the switch device being effected when the one or two outer heating zones are additionally energised.

15

Such mechanical temperature-compensating or physical screening arrangements are expensive and cumbersome and not wholly satisfactory in operation.

20 A further problem exists in that, whereas previously it was general practice to separate the heating zones of the heater by means of one or more walls of thermal insulation material, space constraints, particularly with heaters having more than two zones, have necessitated 25 such one or more walls being dispensed with. The heating zones are therefore undivided and, as a result, boiling

- 3 -

performance of a liquid in a vessel located over the heater on the cooking plate is poor, except when all heating zones are energised.

5 It is an object of the present invention to overcome or minimise these problems.

According to the present invention there is provided a cooking appliance comprising:

10

a cooking plate;

at least one radiant electric heater located behind the cooking plate, the heater having:

15

multiple heating zones arranged substantially sideby-side and each provided with at least one electric heating element, a first heating zone being arranged to be energised alone and together with one or more further zones of the multiple heating zones, and

20

25

a temperature sensing assembly for sensing a temperature of the cooking plate and incorporating an electrical component located in a position confined within the first heating zone and having an

- 4 -

electrical parameter which changes as a function of temperature; and

electronic control apparatus for the at least one heater

5 connected to the electrical component by means of
electrical leads, wherein the electronic control
apparatus is adapted to detect the number of heating
zones of the at least one heater that are energised and
to control energisation of the heater in dependence

10 thereon.

The multiple heating zones of the at least one heater may be undivided from one another.

The multiple heating zones of the at least one heater may be concentrically arranged and such that the first heating zone is a central heating zone which is energisable alone and together with one or more further zones arranged concentrically therewith.

20

The at least one heater may be provided with first and second heating zones, or first, second and third heating zones.

25 The at least one heater may be provided with a dish-like support comprising or incorporating a base of thermal and

- 5 -

electrical insulation material, the heating elements of the heating zones being supported relative to the base.

The at least one heater may be provided with a peripheral wall of thermal and electrical insulation material. The peripheral wall may be separate from or integral with the base.

The electrical component may comprise a resistance

10 temperature detector, such as a platinum resistance
temperature detector, whose electrical resistance changes
as a function of temperature.

The temperature sensing assembly may comprise a probe

15 which extends from a periphery of the at least one heater across a plurality of the multiple heating zones. The electrical component may be provided within a tube of the probe assembly. The tube of the probe assembly may comprise metal, ceramic or glass-ceramic.

20

The cooking plate may be of glass-ceramic material.

The electronic control apparatus may be adapted to control energisation of the heater in dependence upon the detected electrical parameter of the electrical component and predicted temperature of the cooking plate

- 6 -

covering that area of the cooking plate occupied by the heater.

The electronic control apparatus may be adapted to

5 provide an initial temperature boost setting and/or rate
of increase of temperature, in respect of the cooking
plate, having regard to a selected energised heating zone
or combination of energised heating zones.

10 The electronic control apparatus may comprise a microprocessor-based controller.

The arrangement of the temperature sensing assembly in the heater with the temperature-responsive electrical component located within the confines of the first heating zone, which is always energised, is advantageous in that the temperature-responsive electrical component responds primarily to the temperature in the first heating zone, although is thermally influenced to a small extent by the additional operation of the one or more other heating zones. It follows that it is unnecessary to provide mechanical temperature compensation or physical screening where the temperature sensing assembly extends across the outer heating zone or zones.

25 Furthermore, the cooperation between the electronic control apparatus and the temperature-responsive

- 7 -

electrical component enables optimised heating rates and maximum safe temperatures of the cooking plate to be obtained regardless of the selected combination of the heating zones, and provides excellent boiling performance on the cooking plate in all heating zone combinations.

For a better understanding of the present invention and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings in which:

Figure 1 is a plan view of an embodiment of a radiant electric heater according to the present invention, provided with electronic control apparatus shown in schematic form; and

Figure 2 is a cross-sectional view of the heater of Figure 1.

20 A radiant electric heater 2 comprises a metal dish-like support 4 having therein a base 6 of thermal and electrical insulation material, such as microporous thermal and electrical insulation material, and a peripheral wall 8 of thermal and electrical insulation 25 material. The peripheral wall 8 can be integral with, or separate from, the base 6 and is arranged to contact the

- 8 -

underside of a cooking plate 10, such as of glass-ceramic material, when the heater 2 is installed for operation in a cooking appliance.

5 Three undivided and merging heating zones are provided side-by-side in the heater 2. An inner, or central, heating zone 12 is formed at the centre of the heater, an intermediate heating zone 14 is formed concentrically around the inner heating zone 12 and an outer heating 200 zone 16 is formed concentrically around the intermediate heating zone 14.

As shown in Figure 2, the central heating zone 12 is defined by at least one heating element 18, the

15 intermediate heating zone 14 is defined by at least one heating element 20, and the outer heating zone 16 is defined by at least one heating element 22.

The heating elements 18, 20, 22 are supported relative to 20 the base 6 and comprise any of the well-known forms of element, such as wire, ribbon, foil or lamp forms of element, or combinations thereof. In particular, the heating elements 18, 20, 22 comprise corrugated ribbon heating elements supported edgewise on the base 6.

- 9 -

The heating elements 18, 20, 22 are electrically connected to a terminal block 24 and arranged for energising from a power supply 26, through a relay 28 which is controlled by microprocessor-based electronic control apparatus 30.

The heater 2 is arranged such that, when operated, the heating element or elements 18 in the central heating zone 12 is or are always energised, but can be energised additionally with the heating element or elements 20 in the intermediate heating zone 14 and further additionally with the heating element or elements 22 in the outer heating zone 16. This means that if it is required to heat a small cooking vessel 32A, located on the cooking plate 10 over substantially the central heating zone 12, only the central heating zone 12 will be arranged to be energised.

If it is required to heat a larger cooking vessel 32B, located on the cooking plate 10 over substantially the central heating zone 12 and the intermediate heating zone 14, the intermediate heating zone 14 will be arranged to be energised in addition to the central heating zone 12.

25 If it is required to heat a still larger cooking vessel 32C, located on the cooking plate 10 over substantially

- 10 -

the central heating zone 12, the intermediate heating zone 14 and the outer heating zone 16, both the intermediate heating zone 14 and the outer heating zone 16 will be arranged to be energised in addition to the 5 central heating zone 12.

A temperature sensing probe assembly 34 is arranged to extend from a periphery of the heater 2 across the three heating zones 12, 14, 16, in the space between the 10 heating elements 18, 20, 22 and the cooking plate 10. The probe assembly 34 comprises a tube 36, such as of metal, ceramic or glass-ceramic, secured at an end 38 thereof to the metal dish-like support 4 of the heater 2 by means of a bracket 40.

15

A resistance temperature detector (RTD) 42, particularly a platinum resistance temperature detector (PRTD), whose electrical resistance changes as a function of temperature, is located inside the tube 36 in a position 20 such that it is confined within the central heating zone 12. The resistance temperature detector 42 has electrical leads 44 connected thereto which pass along the tube 36 and are arranged for connection to the electronic control apparatus 30.

- 11 -

The construction of the temperature sensing probe assembly 34 may be as described in GB 0107042.4.

Instead of the resistance temperature detector 42,

5 another form of electrical component having an electrical
parameter which changes as a function of temperature
could be considered.

Since the resistance temperature detector 42 is a 10 relatively small discrete component located within the central heating zone 12, it responds primarily to the temperature in the central heating zone 12 and is thermally influenced to a minimal extent by the additional energising of the intermediate and outer 15 heating zones 14 and 16. Calibration of the resistance temperature detector 42 is therefore affected only to a small extent whether or not the intermediate heating zone 14 is additionally energised, or both the intermediate heating zone 14 and the outer heating zone 16 are 20 additionally energised, so that early switching off of the heating elements in response to the temperature sensing probe assembly 34 is unlikely to occur when one or both of the intermediate and outer heating zones 14, 16 is or are additionally energised.

- 12 -

The resistance temperature detector 42 is calibrated in cooperation with the electronic control apparatus 30 such that, when a predetermined temperature is reached in the central heating zone 12, the one or more heating elements 18 is or are arranged to be de-energised and also the heating elements 20 and 22, if these were energised.

Overheating of the cooking plate 10 and thermal damage thereto is thus avoided. This is particularly important when the cooking plate 10 is of glass-ceramic material.

10

The electronic control apparatus 30 is adapted to detect
the number of heating zones that are energised, namely
whether the central heating zone 12 is energised alone,
or with the intermediate heating zone 14, or with both

15 the intermediate and outer heating zones 14 and 16. Such
detection can be effected, for example, by determining
whether or not a control knob is in a position to
energise the respective heating zone.

- 20 Energisation of the heater can be controlled as a result of such detection. For example, adjustment of energisation can be effected on the basis of a desired relationship between the electrical resistance of the resistance temperature detector 42 in the probe assembly
- 25 34, and predicted temperature of the cooking plate 10 over the entire heated area of the cooking plate 10.

- 13 -

That is, it has been found the glass temperature sensed by the detector 42 varies in dependence on which of the heating zones is or are energised, due to a heating effect on the tube 36. However, the control apparatus 30 can compensate for such variations electronically rather than by providing additional mechanical temperature compensation or thermal screening.

The electronic control apparatus 30 may cooperate with 10 the resistance temperature detector 42 and the electric heating elements 18, 20, 22, to provide an initial temperature boost setting and/or rate of increase of temperature, in respect of the cooking plate 10, having regard to whether the central heating zone 12 is energised alone, or with the addition of the intermediate heating zone 14, or with the further addition of the outer heating zone 16. Thus, the electronic control apparatus 30 may generate a temperature boost at the start of a cooking cycle by temporarily setting the 20 maximum glass temperature to a higher value. temporary maximum glass temperature can be adjusted in dependence upon which of the heating zones is or are energised.

The cooperation between the electronic control apparatus
and the resistance temperature detector 42 enables

- 14 -

optimised heating rates and maximum safe temperatures of the cooking plate 10 to be obtained, regardless of the selected combination of the energised heating zones 12, 14, 16, and provides excellent boiling performance in respect of a liquid in the cooking vessel 32A, 32B, 32C, in all heating zone combinations.

A known form of cooking vessel detection arrangement (not shown) can be incorporated in the heater 2 and operating in association with the electronic control apparatus 30, to detect placement and removal of the cooking vessel 32A, 32B, 32C on and from the cooking plate 10 and effecting energising and de-energising of appropriate combinations of the heating elements 18, 20, 22.

15

If desired, the heating zones 12, 14, 16 could be divided by walls of thermal insulation material 46 of well-known form, located therebetween and extending between the base 6 and the cooking plate 10.

20

Instead of the heater 2 having three heating zones 12, 14, 16, the heater could be provided with a central heating zone and only one outer heating zone concentric therewith. Alternatively, the heater could have a central heating zone and more than two outer heating zones concentric therewith.

- 15 -

CLAIMS

- 1. A cooking appliance characterised by:
- 5 a cooking plate (10);

at least one radiant electric heater (2) located behind the cooking plate, the heater having:

- multiple heating zones (12, 14, 16) arranged substantially side-by-side and each provided with at least one electric heating element (18, 20, 22), a first heating zone (12) being arranged to be energised alone and together with one or more further zones (14, 16) of the multiple heating zones, and
- a temperature sensing assembly (34) for sensing a temperature of the cooking plate and incorporating an electrical component (42) located in a position confined within the first heating zone (12) and having an electrical parameter which changes as a function of temperature; and
- 25 electronic control apparatus (30) for the at least one heater (2) connected to the electrical component (42) by

- 16 -

means of electrical leads (44), wherein the electronic control apparatus is adapted to detect the number of heating zones of the at least one heater that are energised and to control energisation of the heater in dependence thereon.

2. An appliance as claimed in claim 1, characterised in that the multiple heating zones (12, 14, 16) of the at least one heater (2) are undivided from one another.

10

- 3. An appliance as claimed in claim 1 or 2, characterised in that the multiple heating zones (12, 14, 16) of the at least one heater (2) are concentrically arranged and such that the first heating zone (12) is a central heating zone which is energisable alone and together with one or more further zones (14, 16) arranged concentrically therewith.
- An appliance as claimed in claim 1, 2 or 3,
 characterised in that the at least one heater (2) is provided with first and second heating zones.
- An appliance as claimed in claim 1, 2 or 3, characterised in that the at least one heater (2) is
 provided with first, second and third heating zones.

- 17 -

- 6. An appliance as claimed in any preceding claim, characterised in that the at least one heater (2) is provided with a dish-like support (4) comprising or incorporating a base (6) of thermal and electrical insulation material, the heating elements of the heating zones being supported relative to the base.
- An appliance as claimed in claim 6, characterised in that the at least one heater (2) is provided with a
 peripheral wall (8) of thermal and electrical insulation material.
- An appliance as claimed in any preceding claim, characterised in that the electrical component (42)
 comprises a resistance temperature detector whose electrical resistance changes as a function of temperature.
- An appliance as claimed in claim 8, characterised in
 that the resistance temperature detector comprises a
 platinum resistance temperature detector.
 - 10. An appliance as claimed in any preceding claim, characterised in that the temperature sensing assembly (34) comprises a probe which extends from a periphery of

25

- 18 -

the at least one heater (2) across a plurality of the multiple heating zones (12, 14, 16).

- 11. An appliance as claimed in claim 10, characterised in that the electrical component (42) having an electrical parameter which changes as a function of temperature is provided within a tube (36) of the probe assembly.
- 10 12. An appliance as claimed in claim 11, characterised in that the material of the tube (36) of the probe assembly is selected from metal, ceramic and glass-ceramic.
- 15 13. An appliance as claimed in any preceding claim, characterised in that the cooking plate (10) comprises glass-ceramic material.
- 14. An appliance as claimed in any preceding claim,

 20 characterised in that the electronic control apparatus

 (30) is adapted to control energisation of the heater (2)

 in dependence upon the detected electrical parameter of
 the electrical component and predicted temperature of the
 cooking plate (10) covering that area of the cooking

 25 plate occupied by the heater.

- 19 -

15. An appliance as claimed in any preceding claim, characterised in that the electronic control apparatus (30) is adapted to provide an initial temperature boost setting, in respect of the cooking plate (10), having regard to a selected energised heating zone or combination of energised heating zones.

- 16. An appliance as claimed in any preceding claim, characterised in that the electronic control apparatus
 0 (30) is adapted to provide an initial rate of increase of temperature, in respect of the cooking plate (10), having regard to a selected energised heating zone or combination of energised heating zones.
- 15 17. An appliance as claimed in any preceding claim, characterised in that the electronic control apparatus (30) comprises a microprocessor-based controller.

1 / 2

2 / 2

FIG 2

In tional Application No PCI/GB 02/02936

A. CLA	SSIFICATIO	N OF SUB	JECT MATTER
IPC	7 H05	B3/74	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ H05B$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	EP 0 943 870 A (CERAMASPEED LTD) 22 September 1999 (1999-09-22) abstract column 1, line 1-6 column 2, line 27,28 column 3, line 8-31 claims 1,3,13-17 figures 1,2,4	1,3,4, 6-14,17
Υ	EP 0 551 172 A (CERAMASPEED LTD) 14 July 1993 (1993-07-14) column 1, line 3-6 claims 1,11 figures 1,2 -/	1,3,4, 6-14,17

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the International filling date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filling date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family 		
Date of the actual completion of the international search 17 October 2002	Date of mailing of the international search report 29/10/2002		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer D/L TASSA LAFOR, J		

	cition) DOCUMENTS CONSIDERED TO BE RELEVANT	Dolayant to steim No.
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 577 176 A (BAYER HELMUT) 18 March 1986 (1986-03-18) abstract figure 3	2-8
A	US 4 511 789 A (WILDE EUGEN ET AL) 16 April 1985 (1985-04-16) abstract column 1, line 5-11 claim 1 figure 1	1,8-11
A	DE 32 34 349 A (EGO ELEKTRO BLANC & FISCHER) 22 March 1984 (1984-03-22) abstract claim 1 figures 1,2	1-8
_		

In ational Application No PC I / GB 02/02936

Patent docume cited in search re		Publication date		Patent family member(s)	Publication date
EP 0943870	A	22-09-1999	GB EP US	2335541 A 0943870 A1 6150641 A	22-09-1999 22-09-1999 21-11-2000
EP 0551172	A	14-07-1993	GB AT CA DE DE EP ES JP US	2263379 A 170700 T 2086861 A1 69320667 D1 69320667 T2 0551172 A2 2120476 T3 5264043 A 5270519 A	21-07-1993 15-09-1998 11-07-1993 08-10-1998 25-03-1999 14-07-1993 01-11-1998 12-10-1993 14-12-1993
US 4577176	A	18-03-1986	AT AT DE FR GB IT	376540 B 3183 A 3346582 A1 2539264 A1 2133879 A ,B 1213116 B	26-11-1984 15-04-1984 05-07-1984 13-07-1984 01-08-1984 14-12-1989
US 4511789	A	16-04-1985	DE DE AT AU DE EP ES GR JP YU ZA	3234349 A1 3314501 A1 38757 T 1912683 A 3378516 D1 0103741 A2 525626 D0 8406833 A1 81429 A1 59066095 A 187483 A1 8306251 A	22-03-1984 25-10-1984 15-12-1988 22-03-1984 22-12-1988 28-03-1984 16-07-1984 01-11-1984 11-12-1984 14-04-1984 31-12-1985 24-04-1985
DE 3234349	A	22-03-1984	DE AT AU DE EP ES GR JP US YU ZA	3234349 A1 38757 T 1912683 A 3378516 D1 0103741 A2 525626 D0 8406833 A1 81429 A1 59066095 A 4511789 A 187483 A1 8306251 A	22-03-1984 15-12-1988 22-03-1984 22-12-1988 28-03-1984 16-07-1984 01-11-1984 11-12-1984 14-04-1985 31-12-1985 24-04-1985