ELEC271: Case study of a commercial op-amp.

Exercise: The figure below shows an early operational amplifier (Motorola MC1530). All transistors are out of saturation, therefore base currents can be neglected. Note also that the diodes D_1 - D_4 are formed by transistors with the base and collector terminals connected together.

- I. Identify the circuit building blocks that make up the amplifier.
- II. Calculate the following <u>d.c. currents and voltages</u> (applied a.c. voltages at inputs 1 and 2 are both zero).
- (i) Voltage at the base of Q_1 , (ii) hence I_1 , I_O and $I_{C2} = I_{C3}$, (iii) voltage at base of Q_4 , (iv) $I_{C4} = I_{C5}$, (v) V_3 , V_4 , (vi) I_8 hence I_{C7} (Hint: what is the circuit configuration formed by R_8 , D_3 and Q_7 ?), (vii) voltage at base of Q_8 , (viii) I_9 , (ix) I_{10} , (x) V_O
- III. Assuming $\beta_0 = 100$ for all transistors:
- (xi) calculate the gain of the first stage $A_{V1} = v_2 / v_1$ (Load is 7.75k in parallel with the input resistance of Diff. Amp. formed by $Q_4, Q_5 : r_{be4}$).
- (xii) find the gain of the second stage, $A_{V2} = v_3/v_2$
- (xiii) hence find the overall gain of the amplifier, $A_V = v_o/v_1$. (Hint: the gain of the final stage is set by the ratio of resistors R_{10} , R_9)