Prevajalnik za comm

Oglejmo si implementacijo (različice) programskega jezika comm iz <u>PL Zoo</u>. Tako kot vsi jeziki v PL Zoo, je comm implementiran v programskem jeziku OCaml.

Jezik comm vsebuje:

```
• aritmetične in boolove izraze

    spremenljivke

       ∘ deklaracija nove lokalne spremenljivke let x := e in c
       ∘ nastavljanje vrednosti x := e
  • pogojni stavek if b then c1 else c2 done
  • zanka while b do c done
  • ukaz skip
  • sestavljani ukaz C1 ; C2
  • ukaz print e
Komentar:
 new x := 2 + 3 in
   x := x + 1;
   if x < 7 then
     print x
   else
     skip
```

```
v Javi:
    { int x = 2 + 3 ;
        x = x + 1
        if (x < 7) {
            print (x);
        } else
        { }
    }</pre>
```

Dogovoriti se moramo, kaj pomeni

```
new X := e in C_1 ; C_2
```

Imamo dve možnosti:

```
1. (new x := e \text{ in } c_1); c_2 - x \text{ je veljaven samo } v c_1
2. new x := e \text{ in } (c_1 ; c_2) - x \text{ je veljaven } v c_1 \text{ in } v c_2
```

Dogovorimo se, da velja 2. možnost.

Ogledamo si sestavne dele implementacije:

• abstraktna sintaksa je definirana s podatkovnimi tipi v syntax.ml

- konkretna sintaksa je opisana v lexer.mll in parser.mly; uporabimo generator parserjev Menhir
- preprost simulator procesorja z RAM in skladom najdemo v machine.ml
- prevajalnik iz comm v strojni jezik je v compile.ml
- glavni program je v comm.ml

Prevajalnik neposredno pretvori program v strojno kodo, ker je comm zelo preprost jezik. Prevajanje pravih programskih jezikov poteka preko večih stopenj, z vmesnimi jeziki. Vsak naslednji jezik je nekoliko bolj preprost in bližje strojni kodi.

Na primerih preizkusimo, kako se prevajajo programi.

Dokazovanje pravilnosti programov

Kako vemo, ali program deluje pravilno? Kako vemo, kakšen program želimo sestaviti?

Ločimo med **specifikacijo** in **implementacijo** programa:

- **Specifikacija** je opis, kaj naj želeni program počne.
- **Implementacija** je konkreten program, ki počne to, kar zahteva specifikacija.

Specifikacija je lahko podana bolj ali manj natančno, v človeškem jeziku ali zapisana v formalnem matematičnem jeziku. Zakaj potrebujemo specifikacije? Nekateri odgovori:

- da pridobimo opis programa, ki naj bi ga sestavili
- da lahko preverimo, ali je implementacija pravilna
- zagotovimo kompatibilnost med različnimi deli programske opreme

Danes bomo spoznali le majhen košček specifikacij, t.i. Hoarovo logiko, s katero izražamo dejstva o programih v ukaznem programskem jeziku in dokazujemo njihovo pravilnost.

Hoarova logika

V Hoarovi logiki pišemo Hoarove trojice

kjer sta Pin Q logični formuli in c ukaz. Formuli P pravimo *predpogoj* (angl. *precondition*), formuli Q pravimo *končni pogoj* (ang. *postcondition*). V resnici poznamo dve različici trojic:

Delna pravilnost

{ P } c { Q }

pomeni

Če velja P in če bo ukaz c končal, potem bo veljal Q

Popolna pravilnost

```
[P]c[Q]
```

pomeni

Če velja P, potem se bo c končal in veljal bo Q.

Zapomnimo si: delna pravilnost ne zagotavlja, da se bo c končal, popolna pravilnost to zagotavlja.

Primer 1

Program c zamenja vrednosti spremenljivk x in y:

```
\{ x = m \land y = n \} c \{ x = n \land y = m \}
```

Tu moramo predpostaviti, da sta m in n *duhova* (angl. ghost variable), se pravi spremenljivki, ki se ne pojavljata v c.

Primer 2

Program c poskrbi, da je x manjši ali enak y:

```
{ true } c { x \le y }
```

Ali znamo zapisati tak program? Da, na primer

```
x := 0 ; y := 1
```

Specifikacija to dovoli. Verjetno smo hoteli v resnici tole:

```
\{x = m \land y = n\} c \{x = min(m, n) \land y = max(m, n)\}
```

Ko delamo s Hoarovo logiko, običajno pišemo pogoje in kodo navpično, da lahko med vrstice vrivamo pogoje.

```
\{ x = m \land y = n \}
c
\{ x = min(m, n) \land y = max(m, n) \}
```

Seveda potrebujemo nekakšna pravila sklepanja.

Pravila sklepanja

Za Hoarovo logiko veljajo naslednja pravila sklepanja.

Splošna pravila

Vedno smemo uporabiti veljavno logično in matematično sklepanje, na primer:

$$\frac{P' \Rightarrow P \quad \{ P \} C \{ Q \} \qquad Q \Rightarrow Q'}{\{ P' \} C \{ Q' \}}$$

$$\frac{\{ P_1 \} C \{ Q_1 \} \qquad \{ P_2 \} C \{ Q_2 \}}{\{ P_1 \land P_2 \} C \{ Q_1 \land Q_2 \}}$$

Naj bodo FV(P) vse spremenljivke, ki se pojavljajo v formuli P (free variables) in FA(c) vse spremnljivke, ki jih c nastavlja (assigned variables). Na primer:

$$FV(x \le y \ v \ x > 0) = \{x, y\}$$

$$FA(if \ x < y \ then \ x := y + 3 \ else \ skip \ end) = \{x \}$$

Pozor: ne sprašujemo, ali program dejansko spremeni vrednost, ampak le, ali se pojavlja v njem ukaz oblike x := ...:

$$FA(if 5 < 3 then x := y + 3 else skip end) = { x }$$

 $FA(x := x) = { x }$

Velja pravilo:

$$\frac{FV(P) \cap FA(c) = \emptyset}{\{P\} c \{P\}}$$

Pravilo za skip

Pravilo za pogojni stavek

Pravilo za C1; C2

Pravilo za zanko while

Formuli P pravimo invarianta zanke while.

Pravilo za prirejanje

$$\{ P[x \mapsto e] \} x := e \{ P \}$$

Zapis $P[x \mapsto e]$ pomeni "v formuli P zamenjaj pojavitve x z izrazmo e. Primer:

$$P \equiv x < n \land y + x = z$$

$$P[x \mapsto x+1] \equiv x+1 < n \land y + (x+1) = z$$

$$P[x \mapsto 0] \equiv 0 < n \land y + 0 = z$$

Operaciji, ki zamenja spremenljivko z nekim izrazom pravimo substitucija.

Popolna pravilnost

Vsa zgornja pravila, razen dveh, lahko predelamo v popolno pravilnost, na primer:

Prva izjema je pravilo

$$\frac{FV(P) \cap FA(c) = \emptyset}{\{P\} c \{P\}}$$

Kaj je narobe z

$$\frac{FV(P) \cap FA(c) = \emptyset}{[P] c [P]}$$

Ne velja v naslednjem primeru:

$$[1 = 1]$$
 while true do skip done $[1 = 1]$

Zgornja trditev ne velja (ni res, da se program konča).

Zato pravilo predelamo takole:

$$\frac{FV(P) \cap FA(c) = \emptyset \quad [R] c [Q]}{[R \land P] c [Q \land P]}$$

Pri zanki while zagotovimo, da se bo končala, tako da poiščemo količino, ki se zmanjšuje, a se ne more zmanjševati v nedogled. Na primer, to je lahko celoštevilska pozitivna vrednost.

Pozor: realna pozitivna vrednost se lahko zmanjšuje v nedogled:

$$0.1 > 0.01 > 0.001 > 0.0001 > \dots$$

Pravilo za popolno pravilnost while se glasi:

Naj bo e količina, ki se ne more v nedogled zmanjševati (na primer naravno število):

[
$$P \wedge b \wedge e = z$$
] $c [P \wedge e < z$]
[P] while $b \text{ do } c \text{ done } [\neg b \wedge P]$

Stranski pogoji:

- količina e se ne more v nedogled zmanjševati
- z je duh, spremenljivka, ki se ne pojavlja nikjer drugje v P, b ali c.

Kako pa ta pravila v praksi uporabljamo? Poglejmo nekaj primerov.

Primeri

Primer 1

Zapiši s Hoarovo logiko:

- 1. Program c se ne ustavi.
- 2. Program c se ustavi.

Rešitev:

Poglejmo kar vse možne kombinacije:

- { true } c { true } vedno velja, ker true itak velja vedno
- { true } c { false } pravi "c se ne ustavi"
 - če velja true in če se bo ustavil c, bo veljalo false
 - če se bo ustavil c, bo veljalo false
 - ∘ s formulo: c se ustavi ⇒ false
 - spomnimo se: P ⇒ false je logično ekvivalentno ¬ P
 - ∘ s formulo: ¬ (c se ustavi) (upoštevamo zgornjo ekvivalenco)

```
∘ z besedami: c se ne ustavi
  • { false } c { true } - vedno velja, ker iz false sledi karkoli
  • { false } c { false } - vedno velja, ker iz false sledi karkoli
  • [ true ] c [ true ] - pomeni "c se ustavi"
       • če velja true, se bo c ustavil in veljalo bo true
       • c se bo ustavil in veljalo bo true
       • c se bo ustavil
  • [ true ] c [ false ] - nikoli ne velja
       • če velja true, se bo c ustavil in veljalo bo false
       ∘ s formulo: true ⇒ "c se ustavi" ∧ false
       ∘ s formulo: true ⇒ false
       ∘ s formulo: false
  • [ false ] c [ true ] - vedno velja, ker iz false sledi karkoli
  • [ false ] c [ false ] - vedno velja, ker iz false sledi karkoli
Koristni kombinaciji:
1.{ true } c { false } — pomeni "c se ne ustavi"
  1. [ true ] c [ true ] - pomeni "c se ustavi"
Primer 1.5
Dokaži pravilnost programa:
{ true }
x := 7
\{ x < 10 \}
Zelo natančna rešitev:
{ true }
{ 7 < 10 }
                  -- P \equiv (x < 10)
\{ P[x \mapsto 7] \}
x := 7
{ P }
\{ x < 10 \}
Praktična rešitev:
{ true }
x := 7
\{ x = 7 \} - logično sklepanje
\{ x < 10 \}
```

Primer 1.75

```
{ i < n } — naslednja vrstica je ekvivalentna tej { (i + 1) - 1 < n } i := i + 1 { i - 1 < n } — uporabili smo pravilo za prirejanje { i < n + 1 }
```

Primer 2 - 1.125

```
{ i < n }
i := i + j
{ i < n + j }
```

Primer 2

Dokaži pravilnost programa:

```
{ x \le y }

s := (x + y) / 2

{ x \le s \le y }

Rešitev:

{ x \le y }

s := (x + y) / 2

{ x \le y \land s = (x + y) / 2 } - logično sklepanje

{ x \le s \le y }
```

Varianta:

```
{ x < y } 
 s := (x + y) / 2 
 { x < y \land s = (x + y) / 2 } — logično sklepanje lari fari 
 { x < s < y }
```

NI RES! Protiprimer: x = 4, y = 5, s = 4.

Primer 3

Dokaži pravilnost programa:

```
 [ b \ge 0 ] 
i := 0 ;
p := 1 ;
while i < b do
    p := p * a ;
    i := i + 1
done
[ p = a ^ b ]
```

Rešitev:

```
\{b \geq 0\}
i := 0;
\{b \geq 0 \land i = 0\}
p := 1 ;
\{b \geq 0 \land i = 0 \land p = 1\}
\{p = a \land i \land i \leq b\}
while i < b do
    \{ i < b \land p = a \land i \land i \leq b \}
    \{ i < b \land p \cdot a = a \land (i+1) \land i \leq b \}
    p := p * a ;
    \{ i < b \land p = a \land (i+1) \land i \le b \}
    \{ i+1 < b+1 \land p = a \land (i+1) \land i+1 \le b+1 \}
    i := i + 1
    \{ i < b + 1 \land p = a \land i \land i \le b+1 \} - sklepamo: če i < b + 1,
    potem i ≤ b
    \{p = a \land i \land i \leq b\}
done
\{p = a \land i \land i \le b \land \neg (i < b)\} - logično sklepamo: i \le b in b \le i
\{p = a \land i \land b = i\} - logično sklepamo
{ p = a ^ b }
```

Popolna pravilnost: potrebujemo količino e, ki se zmanjšuje in se ne more zmanjševati v nedogled. Predlog:

```
e \equiv b - i
```

To je celo število. Ali je nenegativno? Naša invarianta vsebuje dejstvo $i \le b$, od koder seveda sledi, da je $b - i \ge 0$.

Zdaj bi moralo pazljivo dokazati, da se e res zmanjša. Pričakujemo, da e zmanjša za 1:

```
{ e = z }
while ...
    ...
done
{ e = z - 1 < z }</pre>
```