Josua Kugler, Nico Haaf

Aufgabe 1

Tutor: Arne Kuhrs

Lemma. Es gilt $S^{-1}M \cong M$ für einen $S^{-1}A$ -Modul M.

Beweis. Betrachte die Abbildung

$$\Phi \colon M \cong M \to S^{-1}M, m \mapsto \frac{m}{1}.$$

Diese Abbildung ist wegen

$$\Phi(\underbrace{\frac{1}{s}}_{\in S^{-1}A} \cdot m) = \frac{1}{s} \cdot m = \frac{m}{s}$$

surjektiv und wegen

$$0 = \Phi(m) = \frac{m}{1} \Leftrightarrow m = 0$$

auch injektiv.

Nach Satz 16.7 gilt

$$S^{-1}\operatorname{Tor}_{i}^{A}(M,N) \cong \operatorname{Tor}_{i}^{S^{-1}A}(S^{-1}M,S^{-1}N)$$

Mit Lemma 1 folgt

$$S^{-1}\operatorname{Tor}_i^A(M,N) \cong \operatorname{Tor}_i^{S^{-1}A}(M,N)$$

Bei M und N handelt es sich um $S^{-1}A$ -Moduln. Insbesondere existiert für beide eine projektive Auflösung in der Kategorie der $S^{-1}A$ -Moduln, da diese genügend viele Projektive besitzt. Ein A-Tensorprodukt zweier $S^{-1}A$ -Moduln ist stets auch wieder ein $S^{-1}A$ -Modul. Die Kohomologiegruppen lassen sich daher ebenfalls in $S^{-1}A$ bilden, da es eine abelsche Kategorie ist (Kerne, Kokerne etc. existieren). Insbesondere kann auch $\operatorname{Tor}_i^A(M,N)$ als $S^{-1}A$ -Modul aufgefasst werden und wir erhalten mit Lemma 1 einen Isomorphismus $S^{-1}\operatorname{Tor}_i^A(M,N)\cong\operatorname{Tor}_i^A(M,N)$. Insgesamt folgt die Behauptung.

Aufgabe 2

Lemma. Sei A ein kommutativer Ring (mit Eins) und M ein A-Modul, für $n \in \mathbb{N}$ existiert ein natürlicher Isomorphismus von A-Moduln:

$$\operatorname{Hom}_A(A^n, M) \cong M^n$$
.

Beweis. A^n ist frei als A-Modul mit Basis $(e_i)_{i=1}^n$, wobei $e_i \in A^n$ das Element mit 1 an der Stelle i und an allen anderen Stellen 0 bezeichnet. Sei

$$\psi \colon \operatorname{Hom}_A(A^n, M) \to M^n, \quad \psi(\varphi) \coloneqq (\varphi(e_i))_{i=1}^n.$$

 ψ ist ein A-Modulhomomorphismus, dies folgt aus der Elementweisen Addition in M^n und aus $\varphi(am) = a\varphi(m)$ für $\varphi \in \operatorname{Hom}_A(A^n, M), \ a \in A$ und $m \in M$. Sei

$$\theta \colon M^n \to \operatorname{Hom}_A(A^n, M), \quad \theta((m_i)_{i=1}^n) \coloneqq (e_i \mapsto m_i).$$

Die Existenz von $\theta(m)$ alle $m \in M$ folgt aus der universellen Eigenschaft der direkten Summe. Dass θ ein A-Modulhomomorphismus ist, folgt aus der Elementweisen Addition in M^n und aus der Definition von θ

 θ und ψ sind invers zueinander (insbesondere folgt die Behauptung):

$$\psi(\theta((m_i)_{i=1}^n)) = (\theta(e_i))_{i=1}^n$$

$$= (m_i)_{i=1}^n$$

$$\theta(\psi(\varphi)) = \theta((\varphi(e_i))_{i=1}^n)$$

$$= (e_i \mapsto \varphi(e_i))$$

$$= \varphi.$$

Tutor: Arne Kuhrs Josua Kugler, Nico Haaf

(a) **Behauptung:** Im folgenden wird $\operatorname{Ext}_i^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ bestimmt.

Beweis. Nach 8.1 ist eine projektive Auflösung von $\mathbb{Z}/m\mathbb{Z}$ als \mathbb{Z} -Modul gegeben durch:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{m \cdot} \mathbb{Z} \longrightarrow 0.$$

Wobei $m : \mathbb{Z} \to \mathbb{Z}$ gegeben ist durch $z \mapsto mz$. Anwenden des $\mathrm{Hom}_{\mathbb{Z}}(-,\mathbb{Z}/n\mathbb{Z})$ Funktors liefert:

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \xrightarrow{(\varphi \mapsto \varphi \circ m \cdot)} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \longrightarrow 0.$$

Nutzen des Lemmas liefert einen Quasiisomorphismus von Komplexen:

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \xrightarrow{(\varphi \mapsto \varphi \circ m \cdot)} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \longrightarrow 0$$

$$\downarrow^{(\varphi \mapsto \varphi(1))} \qquad \qquad \downarrow^{(\varphi \mapsto \varphi(1))}$$

$$0 \longrightarrow \mathbb{Z}/n\mathbb{Z} \xrightarrow{m \cdot} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

 $\mathbb{Z}/n\mathbb{Z}$ ist \mathbb{Z} Modul (bspw. via der kanonischen Projektion $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$), insbesondere ist $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ mit $\overline{n} \mapsto m\overline{n}$ wohldefiniert. Das Diagramm kommutiert, denn $m\phi(1) = \phi(m)$. Insbesondere folgt die Gleichheit der Homologiergruppen der beiden Komplexe und wir erhalten:

$$\operatorname{Ext}_{0}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = \ker(\mathbb{Z}/n\mathbb{Z} \xrightarrow{m} \mathbb{Z}/n\mathbb{Z})/\operatorname{im}(0 \to \mathbb{Z}/n\mathbb{Z})$$

$$= \{\overline{k} \in \mathbb{Z}/n\mathbb{Z} \mid mk \in n\mathbb{Z}\}/0$$

$$= \{k \in \mathbb{Z} \mid k \cdot m\mathbb{Z} \subset n\mathbb{Z}\}/n\mathbb{Z}$$

$$= (n\mathbb{Z} : m\mathbb{Z})/n\mathbb{Z}$$

$$= \left(\frac{n}{\operatorname{ggT}(m, n)}\mathbb{Z}\right)/n\mathbb{Z}$$

$$\operatorname{Ext}_{1}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) = \ker(\mathbb{Z}/n\mathbb{Z} \to 0)/\operatorname{im}(\mathbb{Z}/n\mathbb{Z} \xrightarrow{m} \mathbb{Z}/n\mathbb{Z})$$

$$= (\mathbb{Z}/n\mathbb{Z})/(\operatorname{ggT}(n, m)\mathbb{Z}/n\mathbb{Z})$$

$$= \mathbb{Z}/\operatorname{ggT}(m, n)\mathbb{Z}.$$

Für $i \geq 2$ gilt somit $\operatorname{Ext}_i^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) = 0/0 = 0.$

(b) **Behauptung:** Im folgenden wird $\operatorname{Ext}_{i}^{\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/e\mathbb{Z})$ bestimmt.

Beweis. Nach 8.1 erhalten wir eine projektive Auflösung P_{\bullet} von $\mathbb{Z}/d\mathbb{Z}$ als $\mathbb{Z}/n\mathbb{Z}$ -Modul durch:

$$\cdots \longrightarrow \mathbb{Z}/n\mathbb{Z} \xrightarrow{d\cdot} \mathbb{Z}/n\mathbb{Z} \xrightarrow{\frac{n}{d}\cdot} \mathbb{Z}/n\mathbb{Z} \xrightarrow{d\cdot} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0.$$

Anwenden des $\operatorname{Hom}_{\mathbb{Z}/n\mathbb{Z}}(-,\mathbb{Z}/e\mathbb{Z})$ Funktors liefert:

$$0 \to \operatorname{Hom}_{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/e\mathbb{Z}) \xrightarrow{(d \cdot)^*} \operatorname{Hom}_{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/e\mathbb{Z}) \xrightarrow{(\frac{n}{d} \cdot)^*} \operatorname{Hom}_{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/e\mathbb{Z}) \xrightarrow{(d \cdot)} \cdots$$

Nutzen des Lemmas liefert einen Quasiisomorphismus von Komplexen (vollkommen analog zu (a)) $\operatorname{Hom}_{\mathbb{Z}/n\mathbb{Z}}(P_{\bullet},\mathbb{Z}/e\mathbb{Z}) \to R_{\bullet}$ wobei $R_i = \mathbb{Z}/e\mathbb{Z}$ für $i \in \mathbb{N}_0$ mit Differentailen $d_{2j} = (\overline{k} \mapsto d\overline{k})$ und $d_{2j+1} = (\overline{k} \mapsto \frac{n}{d}\overline{k})$ für $j \in \mathbb{N}_0$:

$$0 \longrightarrow \mathbb{Z}/e\mathbb{Z} \xrightarrow{d \cdot} \mathbb{Z}/e\mathbb{Z} \xrightarrow{\frac{n}{d} \cdot} \mathbb{Z}/e\mathbb{Z} \xrightarrow{d \cdot} \mathbb{Z}/e\mathbb{Z} \xrightarrow{\frac{n}{d}} \cdots$$

Insbesondere folgt die Gleichheit der Homologiergruppen und wir erhalten für $j \in \mathbb{N}$:

$$\operatorname{Ext}_{0}^{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/e\mathbb{Z}) = \ker(\mathbb{Z}/e\mathbb{Z} \xrightarrow{d} \mathbb{Z}/e\mathbb{Z})/\operatorname{im}(0 \to \mathbb{Z}/e\mathbb{Z})$$

$$= (d \cdot \mathbb{Z}/e\mathbb{Z})/0$$

$$= \operatorname{ggT}(d, e)\mathbb{Z}/e\mathbb{Z}$$

$$\operatorname{Ext}_{2j-1}^{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/e\mathbb{Z}) = \ker(\mathbb{Z}/e\mathbb{Z} \xrightarrow{\frac{n}{d}} \mathbb{Z}/e\mathbb{Z})/\operatorname{im}(\mathbb{Z}/e\mathbb{Z} \xrightarrow{d} \mathbb{Z}/e\mathbb{Z})$$

$$= (\{k \in \mathbb{Z} \mid \frac{n}{d}k \in e\mathbb{Z}\}/e\mathbb{Z})/(d \cdot \mathbb{Z}/e\mathbb{Z})$$

$$= ((e\mathbb{Z} : \frac{n}{d}\mathbb{Z})/e\mathbb{Z})/(\operatorname{ggT}(d, e)\mathbb{Z}/e\mathbb{Z})$$

$$= (e\mathbb{Z} : \frac{n}{d}\mathbb{Z})/\operatorname{ggT}(d, e)\mathbb{Z}$$

$$= \left(\frac{e}{\operatorname{ggT}(e, \frac{n}{d})}\mathbb{Z}\right)/\operatorname{ggT}(d, e)\mathbb{Z}$$

$$\operatorname{Ext}_{2j}^{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z}, \mathbb{Z}/e\mathbb{Z}) = \ker(\mathbb{Z}/e\mathbb{Z} \xrightarrow{d} \mathbb{Z}/e\mathbb{Z})/\operatorname{im}(\mathbb{Z}/e\mathbb{Z} \xrightarrow{\frac{n}{d}} \mathbb{Z}/e\mathbb{Z})$$

$$= \left(\frac{e}{\operatorname{ggT}(e, d)}\mathbb{Z}\right)/\operatorname{ggT}\left(\frac{n}{d}, e\right)\mathbb{Z}$$

(c) Behauptung: Im folgenden wird $\operatorname{Ext}_i^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C})$ bestimmt.

Beweis. Nach 8.2 erhalten erhalten wir eine projektive Auflösung von \mathbb{C} als $\mathbb{C}[X,Y]$ -Modul durch:

$$0 \longrightarrow \mathbb{C}[X,Y] \stackrel{\alpha}{\longrightarrow} \mathbb{C}[X,Y]^2 \stackrel{\beta}{\longrightarrow} \mathbb{C}[X,Y] \longrightarrow 0.$$

Anwenden des $\operatorname{Hom}_{\mathbb{C}[X,Y]}(-,\mathbb{C})$ Funktors liefert: (Zur Vereinfachung der Notation $\operatorname{Hom}_{C[X,Y]}) = \operatorname{Hom}$)

$$0 \longrightarrow \operatorname{Hom}(\mathbb{C}[X,Y],\mathbb{C}) \stackrel{\beta^*}{\longrightarrow} \operatorname{Hom}(\mathbb{C}[X,Y],\mathbb{C}) \stackrel{\alpha^*}{\longrightarrow} \operatorname{Hom}(\mathbb{C}[X,Y],\mathbb{C}) \longrightarrow 0.$$

Anwenden des Lemmas liefert einen Quasiisomorphismus von Komplexen:

$$0 \longrightarrow \operatorname{Hom}(\mathbb{C}[X,Y],\mathbb{C}) \xrightarrow{\beta^*} \operatorname{Hom}(\mathbb{C}[X,Y]^2,\mathbb{C}) \xrightarrow{\alpha^*} \operatorname{Hom}(\mathbb{C}[X,Y],\mathbb{C}) \longrightarrow 0$$

$$\downarrow^{\psi_1} \qquad \qquad \downarrow^{\psi_2} \qquad \qquad \downarrow^{\psi_1}$$

$$0 \longrightarrow \mathbb{C} \xrightarrow{0} \mathbb{C}^2 \longrightarrow 0 \longrightarrow \mathbb{C} \longrightarrow 0$$

Die Existenz der Isomorphismen ψ_1, ψ_2 folgt aus dem Lemma, es gilt zu zeigen, dass obiges Diagramm kommutiert:

sei $\varphi \in \text{Hom}(\mathbb{C}[X,Y],\mathbb{C})$, dann gilt:

$$\psi_{2}(\beta^{*}(\varphi)) = \psi_{2}(\varphi \circ \beta)
= (\varphi(\beta(1,0)), \varphi(\beta(1,0)))
= (\varphi(Y), \varphi(X))
= (Y\varphi(1), X\varphi(1))
= ((Y)(Y = 0, X = 0) \cdot \varphi(1), (X)(Y = 0, X = 0) \cdot \varphi(1))
= (0,0).$$

Tutor: Arne Kuhrs

Josua Kugler, Nico Haaf

Insbesondere kommutiert das erste Quadrat. Sei $\varphi \in \text{Hom}(\mathbb{C}[X,Y]^2,\mathbb{C})$, dann gilt:

$$\psi_1(\alpha^*(\varphi)) = \psi_1(\varphi \circ \alpha)$$

$$= \varphi(\alpha(1))$$

$$= \varphi(X, -Y)$$

$$= X\varphi(1, 0) - Y\varphi(0, 1)$$

$$= 0 \cdot \varphi(1, 0) - 0 \cdot \varphi(0, 1)$$

$$= 0.$$

Insbesondere kommutiert das zweite Quadrat und somit das ganze Diagramm. Aus dem Quasiisomorphismus folgt die Gleichheit der Homologiergruppen und wir erhalten:

$$\begin{split} \operatorname{Ext}_0^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C}) &= \ker(\mathbb{C} \overset{0}{\to} \mathbb{C}^2) / \operatorname{im}(0 \to \mathbb{C}) \\ &= \mathbb{C}/0 = \mathbb{C} \\ \operatorname{Ext}_1^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C}) &= \ker(\mathbb{C}^2 \overset{0}{\to} \mathbb{C}) / \operatorname{im}(\mathbb{C} \overset{0}{\to} \mathbb{C}^2) \\ &= \mathbb{C}^2/0 = \mathbb{C}^2 \\ \operatorname{Ext}_2^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C}) &= \ker(\mathbb{C} \to 0) / \operatorname{im}(\mathbb{C}^2 \overset{0}{\to} \mathbb{C}) \\ &= \mathbb{C}/0 = \mathbb{C} \end{split}$$

sowie
$$\operatorname{Ext}_i^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C}) = 0/0 = 0$$
 für alle $i \geq 3$.

Aufgabe 3

(a) **Behauptung:** Für ein projektives System $(A_n)_{n\in\mathbb{N}}$ endlicher abelscher Gruppen ist $\lim_{n\in\mathbb{N}} A_n$.

Beweis. Abelsche Gruppen sind genau die \mathbb{Z} -Moduln, insbesondere ist der projektive Limes als projektiver Limes von \mathbb{Z} -Moduln zu verstehen. Nach VL genügt es zu zeigen, dass $(A_n)_{n\in\mathbb{N}}$ die Mittag-Leffler Eigenschaft (ML) erfüllt:

Sei $n \in \mathbb{N}$. Für $j \geq n$ sei

$$D_j := \operatorname{im}(d_{j,n} \colon A_j \to A_n) \subset A_n.$$

Da A_n endlich ist, gilt $\#A_n < \infty$. Es gilt:

$$D_{j+1} = \operatorname{im}(d_{j+1,n}) = \operatorname{im}(d_{j,n} \circ d_{j+1,j}) \subset \operatorname{im}(d_{j,n}) = D_j.$$

Insbesondere folgt $\#D_{j+1} \leq \#D_j \leq A_n$ für alle $j \geq n$. Offensichtlich gilt $\#D_j \geq 0$. Insbesondere ist die Folge $(\#D_j)_{j\geq n} \subset \mathbb{N}_0^{\mathbb{N}} \subset \mathbb{R}^{\mathbb{N}}$ monoton fallend und beschränkt nach oben durch $\#A_n$ von unten durch 0, insbesondere konvergent. Da \mathbb{N}_0 abgeschlossen, existiert $(\varepsilon = \frac{1}{2})$ ein $N \geq n$ sodass für alle $m \geq N$ gilt $|x_m - x_N| < \frac{1}{2}$, da $x_m, x_N \in \mathbb{N}_0$ folgt $x_m = x_N$ und da $D_m \subset D_N$ also $D_m = D_N$. Somit erfüllt $(A_n)_{n \in \mathbb{N}}$ ML.

(b) **Behauptung:** Für eine Primzahl p ist $\lim_{n\in\mathbb{N}} p^n\mathbb{Z} \neq 0$, wobei die Übergangsabbildungen die Übergangsabbildungen sind.

Beweis. Wir definieren folgende projektive Systeme: (bei A mit den Übergangsabbildungen und bei C mit den kanonischen Projektionen)

$$A := \left(\cdots \to p^{3} \mathbb{Z} \to p^{2} \mathbb{Z} \to p \mathbb{Z} \right),$$

$$B := \left(\cdots \to \mathbb{Z} \stackrel{\text{id}}{\to} \mathbb{Z} \stackrel{\text{id}}{\to} \mathbb{Z} \right)$$

$$C := \left(\cdots \to \mathbb{Z}/p^{3} \mathbb{Z} \to \mathbb{Z}/p^{2} \mathbb{Z} \to \mathbb{Z}/p \mathbb{Z} \right).$$

Josua Kugler, Nico Haaf

Wir erhalten eine exakte Folge von projektiven Systemen in \mathbb{Z} -Mod^{\mathbb{N}} durch:

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0.$$

Wobei f und g gegeben sind durch: für $k \in \mathbb{N}$ sei $f_k \colon p^k \mathbb{Z} \to \mathbb{Z}$ die kanonische Inklusion und $g_k \colon \mathbb{Z} \to \mathbb{Z}/p^k \mathbb{Z}$ die kanonische Projektion. Dann kommutiert obiges Diagramm offensichtlich, hier in ausführlich:

Aus (unten) folgenden Lemma folgt: da f_k für alle $k \in \mathbb{N}$ injektiv folgt die Exaktheit bei A. Da g_k surjektiv für alle $k \in \mathbb{N}$ folgt die Exaktheit bei C. Es gilt die Exaktheit bei B zu zeigen: Sei $k \in \mathbb{N}$, dann gilt:

$$\operatorname{im}(f_k) = p^k \mathbb{Z} = \ker(\mathbb{Z} \to \mathbb{Z}/p^k \mathbb{Z}) = \ker(g_k).$$

Bilder und Kerne in \mathbb{Z} -Mod^{\mathbb{N}} entstehen stufenweise, daher folgt im $(f) = \ker(g)$. Also gilt Exaktheit bei B.

Aus den bisherigen Ergebnissen ist bekannt, dass

$$\lim B = \mathbb{Z}, \quad \lim C = \mathbb{Z}_p.$$

Da B offensichtlich ML erfüllt folgt:

$$\lim^1 B = 0.$$

Da A genau die Inklusion von \mathbb{Z} -Untermodul $p\mathbb{Z} \supset p^2\mathbb{Z} \supset p^3\mathbb{Z} \supset \cdots$ ist folgt:

$$\lim A = \lim p^n \mathbb{Z} = \bigcap_{k \in \mathbb{N}} p^k \mathbb{Z} = 0$$

wobei die letzte Gleichheit wie folgt folgt: sei $0 \neq a \in \mathbb{Z}$, oE a > 0, dann existiert ein $N \in \mathbb{N}$ sodass $a < p^N$. Da p^N das kleinste positive Element aus $p^N\mathbb{Z}$ ist, folgt $a \notin p^N\mathbb{Z}$ und somit $a \notin \bigcap_{k \in \mathbb{N}} p^k\mathbb{Z}$.

Aus der Vorlesung ist bekannt, dass $\lim^i K = 0$ für $i \ge 2$ und $K \in \{A, B, C\}$. Wir erhalten also folgende lange exakte Folge:

$$0 \longrightarrow \lim A \longrightarrow \lim B \longrightarrow \lim C \longrightarrow \lim^{1} A \longrightarrow \lim^{1} B \longrightarrow \lim^{1} C \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_{p} \longrightarrow \lim^{1} A \longrightarrow 0 \longrightarrow \lim^{1} C \longrightarrow 0.$$

Insbesondere erhalten wir die exakte Folge:

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_p \longrightarrow \lim^1 p^k \mathbb{Z} \longrightarrow 0.$$

Aus der Exaktheit folgt via Homomorphiesatz: $(\neq 0 \text{ folgt aus } 4.1)$

$$\lim^{1} p^{k} \mathbb{Z} = \mathbb{Z}_{p} / \mathbb{Z} \neq 0$$

Tutor: Arne Kuhrs Josua Kugler, Nico Haaf

Lemma. Sei A ein kommutativer Ring mit Eins, und $\mathcal{D} = A\text{-Mod}^{\mathbb{N}}$. Dann sind die Epimorphismen (Monomorphismen) in \mathcal{D} genau die kommutiven Diagramme, die auf jeder Stufe surjektiv (bzw. injektiv) sind.

Beweis. Sei $M=(M_n)_{n\in\mathbb{N}}, N=(N_n)_{n\in\mathbb{N}}\in\mathcal{D}$ und $f\colon (M_n)_{n\in\mathbb{N}}\circ (N_n)_{n\in\mathbb{N}}$ ein Epimorphismus. Angenommen es existiert ein $k\in\mathbb{N}$ sodass f_k nicht surjektiv ist, dann gilt $\operatorname{im}(f_k)\neq N_k$, also $N_k/\operatorname{im}(f_k)\neq 0$. Wir erahlten ein $A\in\mathcal{D}$ durch $A_k=N_k/\operatorname{im}(f_k)$ und $A_n=0$ sonst mit den Nullabbildungen als Übergangsabbildungen. Wir erhalten einen Morphismus $g\colon N\to A$ durch $g_k\colon N_k\to N_k/\operatorname{im}(A_k)$ die kanonische Projektion und $g_k=0$ sonst. Dann gilt nach Definition gf=0 aber $g\neq 0$. Ein Widerspruch. Also ist für $k\in\mathbb{N}$ f_k surjektiv.

Sei $f: M \to N$ ein Morphismus und f_n surjektiv für alle $n \in \mathbb{N}$. Sei $g: N \to S$ ein Morphismus mit gf = 0. Dann ist $g_n f_n = 0$, also $g_n = 0$ für alle $n \in \mathbb{N}$, also g = 0. Somit ist f ein Epimorphismus. Die Aussage über Monomorphismen folgt durch Umdrehen aller Pfeile.

Aufgabe 4

(a) Wir betrachten $\overline{\text{im }\phi^*}$. Es gilt

$$\overline{\operatorname{im} \phi^*} = V(I(\operatorname{im} \phi^*))$$

$$= V\left(\bigcap_{\mathfrak{p} \in \operatorname{Spec} B} \phi^{-1}(\mathfrak{p})\right)$$

 $\{0\} \in \operatorname{Spec} B$ ist ein Primideal. Ist ϕ injektiv, so ist $\phi^{-1}(\{0\}) = \{0\}$

$$= V (\{0\})$$

$$= \{ \mathfrak{p} \in \operatorname{Spec} A \colon \{0\} \subset \mathfrak{p} \}$$

$$= \operatorname{Spec} A$$

(b) In diesem Fall sind die Bedingungen von Satz 5.12(iii) erfüllt und jedes Primideal von A ist zurückgezogen, d.h.

$$\forall \mathfrak{p} \in \operatorname{Spec} A \exists \mathfrak{q} \in \operatorname{Spec} B \colon \quad \mathfrak{p} = \mathfrak{q}^c = \phi^{-1}(\mathfrak{q}) = \phi^*(q)$$

Insbesondere ist also ϕ^* surjektiv.

Zusatzaufgabe 5

(a) **Behauptung:** Es ist $(M_i, \varphi_{ij})_{i \in I}$ ein projektives System nicht leerer Mengen.

Beweis. Sei $i \in I$. Wenn $i = \emptyset$, dann besteht M_{\emptyset} genau aus der leeren Abbildung, also $M_{\emptyset} \neq \emptyset$. Sei nun $i \neq \emptyset$, da $\#i < \infty$, existiert eine Bijektion $g \colon i \to \{1, ..., \#i\}$. Komposition mit der injektiven Inklusion $\iota \colon \{1, ..., \#i\} \to \mathbb{Q}$ liefert $f = \iota g \in M_i$. Also $M_i \neq \emptyset$.

Sei $i \in I$, dann gilt: $\varphi_{ii}(f) = f|_i = f$ für alle $f \in M_i$, da $f: i \to \mathbb{Q}$.

Seien $i \subset j \subset k \in I$, dann gilt für alle $f \in M_k$, dass:

$$\varphi_{ik}(f) = f|_k = (f|_j)|_k = \varphi_{jk}(\varphi_{ij}(f)).$$