

CAR ACCIDENT SEVERITY PREDICTION

-GANAPATHI BALAJI

CONTENT

- Problem Definition
- Exploratory Data Analysis
- Feature Engineering
- Model Process
- Model Report
- Summary Conclusion

PROBLEM DEFINITION - BACKGROUND

 World Health Organization (WHO) reported that more than 1.25 million people die each year while 50 million are injured as a result of road accidents worldwide

- Road accidents are the 10th leading cause of death globally
- On current trends, road traffic accidents are to become the 7th leading cause of death by 2030 making it a major public health concern
- Between the years 2005 and 2016, there were roughly 2 million road accidents reported in the United Kingdom (UK) alone of which 16,000 were fatal

PROBLEM DEFINITION - OBJECTIVE

- Used the Traffic Accidents dataset obtained from Kaggle's data repository to:
 - Identify factors responsible for most of the reported accidents
 - Build a predictive model capable of accurately determining the severity of an accident based on a set of input factors
 - Provide recommendations to <u>Department of Transport</u> to improve road safety policies and prevent accident recurrences where possible

PEDCYLCOUNT	3
PEDCOUNT	7
VEHCOUNT	13
OT_COLCODE	39
ERSONCOUNT	47
SEGLANEKEY	1955
OSSWALKKEY	2198
INTKEY	7614
x	23563
Y	23839
SDOTCOLNUM	114932
OBJECTID	194673
INCKEY	194673
COLDETKEY	194673

['LIGHTCOND','ROADCOND','WEATHER'] Severity distribution is having some correlation with fields so we can include these columns and test the performance

FEATURE ENGINEERING

- After all the EDA I can say the final list of features are as below
 - From Numerical features (#PEDCOUNT)
 - From Categorical features (ADDRTYPE, COLLISIONTYPE, JUNCTIONTYPE, WEATHER, ROADCOND, LIGHTCOND)

MODEL PROCESS

Label Encoding for Categorical features

Creating Training, Test set by balancing severity ratio

Training by applying different Classification Techniques

Model Evaluation and Hyper parameters tuning

Model Score Report

MODEL SCORES REPORT

- I have used trained the data on 3 different algorithms
- I did Hyper parameter tuning by changing the weights and getting almost same model scores
- I was Training on SVM also it is taking lot of time so not putting that here

	Algorithm	F1-score	Jaccard	LogLoss
0	KNN	0.837984	0.730371	NA
1	Decision Tree	0.838124	0.730551	NA
2	LogisticRegression	0.837691	0.730037	0.556894

CLASSIFICATION EVALUATION

At k value 7 is where we are getting better accuracy of 0.73

		precision recal		f1-score	support	
	1	0.72 0.90	0.99 0.11	0.84 0.20	27297 11638	
micro macro weighted	avg	0.73 0.81 0.78	0.73 0.55 0.73	0.73 0.52 0.65	38935 38935 38935	

DECISION TREE EVALUATION

At k value 4 is where we are getting better F1-score of 0.73

Decision Trees is giving best results at Dept = 4 using entropy

```
[49]: yhat=drugTree.predict(X_test)
yhat_prob=drugTree.predict_proba(X_test)
report=report.append({"Algorithm": "Decision Tree", "Jaccard": jacc
print (classification_report(y_test, yhat))
                           recall f1-score
              precision
                                              support
                                       0.84
                                                27297
                   0.72
                             0.99
                   0.90
                             0.11
                                       0.20
                                                11638
   micro avg
                   0.73
                             0.73
                                       0.73
                                                38935
```

0.55

0.73

0.52

0.65

38935

38935

0.81

0.78

macro avg weighted avg

DECISION TREE EVALUATION

At k value 4 is where we are getting better F1-score of 0.84

Logistic Regression is performing best with regularization val = 0.03

	1	0.72	0.99	0.84	27297
	2	0.88	0.11	0.20	11638
micro	avg	0.73	0.73	0.73	38935
macro		0.80	0.55	0.52	38935
weighted		0.77	0.73	0.65	38935

SUMMARY CONCLUSION

- Useful and informative models built to predict accident severity
- Value in guiding public traffic polices to focus on important factors to prevent accident injuries
- Accuracy of model has room for improvement, more insights could be gained
 - Collision type be further processed and used in model
 - Accident address be grouped based on injury occurrence ratio and used in model
 - Accident trend by dates

Thank You