W - 22 - 2016

비전리전자기파 측정 및 평가에 관한 지침

2016. 12

한국산업안전보건공단

안전보건기술지침의 개요

- o 작성자 : 부산가톨릭대학교 문찬석 교수
- o 제·개정 경과
 - 2016년 11월 산업보건일반분야 제정위원회 심의(제정)
- o 관련규격 및 자료
 - 세계보건기구(WHO), Environmental Health Criteria; 238, Extremely low frequency fields, 2007.
 - ACGIH, 2016 TLVs and BEIs, Signature Publications, 2016.
 - 비전리방사방호위원회(ICNIRP). 『Exposure to static and low frequency electromagnetic fields, biological effects and health consequences (0-100 kHz)』 2003.
- o 관련법규·규칙·고시 등
 - 산업안전보건기준에규칙 제668조 비전리전자기파에 의한 건강장해 예방조치
 - 미래창조과학부고시 제2015-18호 전자파 인체보호기준
 - 국립전파연구원고시 제2014-2호 전자파강도 측정기준
- o 기술지침 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www. .kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2016년 12월 27일

제 정 자 : 한국산업안전보건공단 이사장

비전리전자기파 측정 및 평가에 관한 지침

1. 목적

이 지침은 산업안전보건기준에 관한 규칙 제668조(비전리전자기파에 의한 건강장해 예방조치)의 규정에 의하여 비전리전자기파 노출 근로자의 건강장해 예방을 목적으로 한다.

2. 적용 범위

이 지침은 비전리전자기파(가시광선, 적외선, 자외선 제외)에 노출 근로자가 근무하는 모든 사업장에 대하여 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "비전리전자기파(비전리방사선)"라 함은 광자 에너지가 약하여 원자를 전리화 시킬 수 없는, sub-raidofrequency(하위무선주파수; 30kHz미만), radiofrequency (무선주파수; 30kHz~00MHz), microwave(극저주파; ELF; extremely low frequency: 0~1kHz), 초저주파(VLF; very low frequency; 1~500kHz), 라디 오파(500kHz~300 MHz), 마이크로파(300MHz~300GHz)를 말한다.
 - (나) 비흡수율 (specific absorption rate; SAR)이라 함은 생체조직에 흡수되는 단위질량 당 에너지율을 말한다.
 - (다) 자속밀도(magnetic flux density)라 함은 운동하는 전하의 운동속도에 비례하는 힘을 유발하는 벡터량을 말한다.

W - 22 - 2016

(2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙, 미래창조과학부 고시에서 정하는 바에 따른다.

4. 비전리전자기파의 물리적 성질

- (1) 전자파(electromagnetic wave)는 진공 또는 물리적인 매질 속을 주기적인 동요를 일으키면서 전파하는 전계(electric field)와 자계(magnetic field)로 구성되어 있다.
- (2) 평면파로서 전계와 자계는 자유공간에서는 진행방향과 수직으로 빛의 속도 $(3\times10^8 \text{ m/s})$ 로 진행한다.
- (3) 전자파 진행방향벡터(K)와 직각으로 전계벡터(E)와 자계벡터(H)가 서로 수직으로 진행한다. 이에 따라 전자파는 자유공간에서 파저항(wave impedance, Z)으로 나타나는 분주특성(polarization)을 가지고 있다.
- (4) 전자파에 의해 전달되는 에너지의 양은 전계(E)와 자계(H)의 곱(P)에 비례하여 이때 P를 포인팅벡터(pointing vector)라 한다. 물질에서의 이 에너지의 작용은 투과·흡수 등으로 나타난다.
- (5) 전자파는 원방계(far field)와 근방계(near field)의 2개의 영역으로 구분되어 서로 다른 형상과 크기를 가지고 있다.
- (6) 경계점보다 안쪽의 근방계(near field)와 전자기적인 산란이 일어나는 매질에서는 전계(E)를 측정하기 위해서는 V/m, 자계(H)를 측정하기 위해서는 A/m로 측정한다.
- (7) 평면파모델로서 잘 설명되는 원방계에서는 전계(E)의 크기를 V/m, 자계(H)는 A/m, 전력밀도는 (P) W/m^2 으로 표시한다.
- (8) 진동수는 초당 주기 변화 회수이고, 파장은 최고값 사이의 거리로 정의한다.

W - 22 - 2016

진동수와 파장의 관계는 다음의 식으로 설명할 수 있다. 마이크로파는 전자파의 일부로서 파장이 $1\sim300$ cm, 주파수의 범위는 $100\sim3,000$ MHz이다. 특히 파장이 10MHz와 적외선 사이의 범위를 무선주파수(radio frequency, RF)라고 한다.

- (9) 전자파는 도체에는 전도전류(conduction current), 반도체에는 변위전류 (displacement current)를 유기한다. 특히 반도체에 유기되는 변위전류는 전자 계적인 에너지를 열로 변환시킨다.
- (10) 전자파의 강도는 칼로리(caroli)단위로 표시한다. 그러나 단위는 전력밀도와 관계 가 있다는 것을 표시하기 위하여 mW/cm², W/cm² 등으로 표시하기도 한다.
- (11) 전자파방호의 목적으로 전자파 발생원, 전자파의 특성을 표현할 뿐만 아니라 흡수된 선량 및 체내흡수량의 분포 등 생체계와의 상호작용을 표현하는 물리적 양은 비흡수율(specific absorption rate; SAR)로서 단위는 W/m²으로 표시된다<표 1>.

<표 1> 비전리전자기파 관련 물리량 및 단위

물리량	기호	단위	
도전율 (conductivity)	σ	단위미터당 지멘스 (simens per metre)	S/m
전류 (current)	Ι	암페어(ampere)	А
전류밀도 (current density)	j	단위평방미터당 암페어 (ampere pre square metre)	A/m
전기장강도 (electric field strength)	E	단위미터당 볼트 (volt per metre)	V/m
에너지	W	주울(joule)	J
전력밀도 (power density or energy flux density)	S	평방미터당 와트 (watt per square metre)	W/m²

<표 1> 계속

물리량	기호	단위	
주파수 (frequency)	f	헤르쯔(hertz)	Hz
저항 (impedance)	Z	옴(ohm)	Ω
자기장강도 (magnetic field strength)	Н	단위미터당 암페어 (ampere per metre)	A/m
	S	단위평방미터당 와트 (watt per square metre)	W/m²
비흡수 (specific absorption)	SA	킬로그램당 주울 (joule per kilogram)	J/kg
비흡수율 (specific absorption rate)	SAR	킬로그램당 와트 (watt per kilogram)	W/kg
파장 (wavelength)	λ	미터(metre)	m

5. 비전리전자기파 종류 및 발생원

5.1 비전리전자기파 종류

비전리전자기파의 종류는 <그림 1>과 같다.

	비전리방사선(비전리전자기파)							전리 방사선		
지역	sub-radiofrequency (하위 무선 주파수)	radiofrequency (무선주파수)	microwave (마이크로파)	infra (적 S		light (가시 광선)		ultravio (자외선		X-ray
파장대역	ELF			IR-C IR	-B IR-A	, _,	UV-A	UV-B	UV-C	
파장거리	1000 km	10 km 1	m 1 m	nm 3 um	1.4 um 76	0 um 40	00 nm 31	15 nm 280	nm 180 nm	100 nm
주파수	300 Hz 3	00 kHz 300	Mhz 300	GHz						
					light and n	ear		ultraviolet		
applicable					infrared			(자외선)		ionizing
TLV*	sub-radiofrequency	radiofrequency a	nd microwave		(적외선)			(작의전)		radiation
(적용가능한	(하위 무선 주파수)	(고주파와 미	-이크로파)							(전리방
역치한계치)						lasers(레ㅇ	[저)			사선)

<그림 1> 비전리전자기파의 종류

W - 22 - 2016

5.2 발생원

- (1) 산업·과학·의료용 등 고주파 이용기기류
- (2) 자동차 및 내연기관 구동기기류
- (3) 가정용 전기기기 및 전동기기류
- (5) 전기철도기기류
- (6) 무선설비의 기기류
- (7) 무정전 전원장치
- (8) 저압개폐장치 및 제어장치
- (9) 멀티미디어기기류
- (10) 가변속 전력구동기기
- (11) 승강기
- (12) 해상업무용 무선설비 및 선박용 전기·전자기기류

6. 비전리전자기파 노출 위험이 높은 업종

전자파 고노출 직업군에는 발전소 및 변전소 근무자, 전기 선로공, 대전력 사용 공장 근로자, 레이더 기지 근무자, 통신병, 방송국 송신소 및 중계소 근무자, 컴퓨터를 장시간 사용하는 프로그래머, 전화번호 안내원, 컴퓨터 그래픽 디자이너, 관제사, 비행조종사, 용접공 등이 있으며, 다양한 산업에서의 발생장소(설비) 및 노출수준(자속밀도)은 <표 2>와 같다.

<표 2> 노출원 발생장소(설비) 및 노출수준(자속밀도)

노출원		발생장소(설비)	자속밀도		
	변전소	변전소 경계선	10 µТ		
	알루미늄 정제	알루미늄 냄비	0.34~3μΤ		
	월구미늄 정세	정류	30~330µТ		
		중환자 실	0.01~22μT		
	병원	마취 후 치료	0.01~2.4µT		
		자기 공명 영상	0.05∼28µT		
	아크용접	용접 작업	1mT		
작 업		전원 근처	1.8-5μΤ		
		바닥에서 전원 케이블	1.5~17μΤ		
	사무실	컴퓨터 센터	0.04~0.66μT		
	ं।। स	데스크탑 냉각 팬	100μΤ		
		다른 오피스 제품	1~20µT		
		건물의 전원 공급 장치	2.5~180μT		
	저기ㄷ그	정류	200~460μΤ		
	전기도금	야외전선과 변전소	10~170μΤ		

<표 2> 계속

	노출원	발생장소(설비)	자속밀도
		전기 저항 히터	600~1400μT
	제조	유도 히터	1∼46µT
		핸드그라인더	300µТ
		그라인더	11µT
		선반, 드릴프레스	0.1~0.4μT
		용융 금속 이동용기 정제	17~130μT
	철강 주조	전극 비활성	0.06~0.37μT
		전기 아연 도금 장치	0.2~110μT
		비디오카메라(스튜디오와 미니캠)	0.72~2.4μT
	텔레비전 방송	비디오 테이프 디가우저	16~330μT
		조명 제어 센터	0.1~30μΤ
21		스튜디오와 뉴스 룸	0.2~0.5μT
산	통신	메인 스위치 계전기	0.15~3.2μT
업		스위치 룸	0.01~130μT
		지하 폰 저장실	0.3~0.5μT
	수송	지하도	20 μΤ
		교외열차 전기 모터유닛	1mT 16-64 μT 16-48 μT
		메인열차 (전동모터유닛)	15mT 까지
		기관차	2.5mT 까지 5~50 µT
		발전소내 작업자	0.18~1.72 μT
	전력산업	변전소 작업자	0.8~1.4 μT
	但可但目 	라인 및 케이블 작업자	0.03~4.57μT
		전기공	0.2~18.48 μΤ

(출처 : 미국 NIOSH, 1996)

W - 22 - 2016

7. 비전리전자기파의 인체 영향

국제암연구소(IARC)에서는 극저주파 대역(ELF~MF)을 2002년에 발암등급 2B등급 (소아백혈병)로 지정하였으며, 이후 무선주파수 대역 전자파(RF)도 2011년에 2B등급 (뇌암)으로 지정하였다. 그 밖의 주요 인체영향으로 열작용, 자극작용, 기타작용 3가지로 구분된다.

(1) 열작용

- (가) 열작용은 크게 전신가열, 국소가열로 나눌 수 있으며, 높은 수준의 고주파 및 마이크로파는 세포조직 가열작용을 할 수 있다.
- (나) 높은 수준의 고주파 및 마이크로파에 노출된 경우 눈 자극을 호소하였으며, 백 내장이 발생하였다.

(2) 자극 작용

60Hz 자기장 노출 시 심박수, 심박변이도, 피부전기활동에서 유의한 차이를 보일 수 있다.

(3) 기타 작용

- (가) 극저주파 자기장에 장기간 노출되면 인체 내 유도전류가 생성되어 세포막 내외에 존재하는 Na^+ , K^+ , Cl^- 등 각종 이온의 불균형을 초래하여 호르몬 분비 및 면역세포에 영향을 줄 수 있다.
- (나) 기지국(무선주파수 대역) 근처에 거주하는 주민들이 식욕감퇴, 오심, 불안증, 우울증상, 두통, 수면장애 등을 호소하였으며, 여성과 나이든 사람들에게서 더 많이 발생할 수 있다.

W - 22 - 2016

8. 노출기준

- (1) 우리나라의 직업인(근로자)에 대한 비전리전자기파 노출기준은 2000년 12월에 국제적으로 가장 많은 나라에서 채택하고 있는 국제암연구소(IARC)의 기준을 준용하여 제정되었다. 〈부록 1〉
- (2) 산업안전보건법으로 현재까지 노출기준이 제정되어 있지 않으나 고용노동부고시 제2013-38호(화학물질 및 물리적인자의 노출기준)에 따라 미국산업위생전문가 협회(ACGIH)에서 정한 비전리전자기파의 노출기준을 적용할 수 있다.〈부록 2〉

9. 측정방법

- (1) 측정기기의 일반적 조건
- (가) 충분한 동작범위와 주파수대역을 가져야 한다.
- (나) 측정기기와 전원선 및 연결 케이블은 적절히 차폐되고 외부 전자파의 영향을 받지 않아야 한다.
- (다) 저주파수대역 측정기기는 내장된 전원으로 동작해야 하며, 전원의 재충전이나 교체 없이 8시간 이상 연속동작이 가능해야 한다.
- (라) 측정기기는 전기장과 자기장 성분의 실효값와 첨두값을 측정할 수 있어야 한다.
- (2) 측정프로브의 조건
- (가) 저주파수대역의 경우 단축프로브의 단면적은 0.01m^2 보다 작아야 하며 3축 프로브의 최대 크기는 0.2m보다 작아야 한다.

W - 22 - 2016

- (나) 고주파수대역 프로브의 크기는 일반적으로 파장의 4분의 1보다 작거나 0.1m 보다 작아야 한다. 1MHz 이하의 고주파수대역의 경우 자유공간조건에서 프로브 의 최대 크기는 0.2m 이하가 되어야 한다.
- (다) 측정결과는 온도나 습도 등의 환경적인 조건, 측정을 위한 장비구성, 측정자에 의한 간섭, 전원선 및 연결 케이블에 의한 전자파유도 등과 같은 외부요인에 의해 영향을 받지 않아야 한다.

(3) 측정조건

- (가) 전자파 측정은 노출 대상자가 접근할 수 있는 모든 장소에서 행하여야 하며 여러 개의 노출 조건이 있는 경우는 최악의 노출 조건을 선택하여야 한다.
- (나) 직접적인 전자기 유도의 영향을 최소화하고 신뢰성 있는 측정을 위하여 주파수 에 따라 프로브와 전자파 발생원을 충분히 이격시켜야 한다.
- (다) 측정시에는 전자파를 발생시키는 휴대기기는 전원을 차단하여야 한다.
- (라) 측정 프로브 주변에 측정자를 포함한 산란체가 없어야 한다. 단, 옥내와 같이 프로브 주변에 산란체가 불가피하게 존재하는 경우에는 그 이유와 산란체의 위치에 대한 상세한 정보를 측정결과서에 기록하여야 한다.

(4) 측정기기의 교정 및 불확정도

- (가) 측정기기는 교정 유효기간 이내의 것을 사용하여야 하며 수리 후에는 바로 교정 하여야 한다.
- (나) 측정기기의 교정 불확정도는 ±2dB이내어야 한다. ±2dB를 초과할 경우에는 보고서 에 불확정도를 명시하여야 하며, 최대 ±4dB를 초과할 수 없다.

(5) 측정기기의 선택

W - 22 - 2016

- (가) 측정기기는 전자파 발생원의 주파수, 전자파의 최대 강도 및 시변화율, 전자파의 편파 등을 고려하여 적절히 선택하여야 한다.
- (나) 전자파 발생원으로부터 기본 주파수 성분을 포함한 무시할 수 없는 모든 고조파 성분을 정확히 측정할 수 있도록 측정기기는 충분한 대역특성을 가져야 한다.

(6) 저주파 전자파 측정방법

- (가) 전자파강도 측정은 3축 등방성프로브를 사용하여 측정영역에서의 합성전자 기 장의 최대값을 측정하여야 한다. 단, 선형편파 전자파를 측정하거나 타원편파 전자파에서 전자파이 이루는 타원의 모양을 알고자 하는 경우에는 단축프로브를 사용할 수 있다.
- (나) 고정시설물 등에서 방출되는 전자파를 측정하고자 할 때에는 작업자가 주로 작업하는 곳에서 측정하고, 전자기기 등에서 발생하는 전자파는 통상의 사용거 리에서 측정하여야 한다.
- (다) 전기장 강도 측정시 프로브와 측정자를 포함한 주변 산란체 사이의 거리는 측정 프로브 크기의 5배 이상이어야 한다. 단, 자기장강도 측정시에는 프로브와 측정자를 포함한 주변 산란체 사이의 거리를 제한하지 않는다.

(7) 고주파 전자파 측정방법

- (가) 전자파강도 측정은 3축 등방성프로브를 사용하여 합성전자파를 측정하여야 하며 선형편파 전자파를 측정하거나 타원편파 전자파에서 전자파가 이루는 타원의 모양을 알고자 하는 경우에는 단축프로브를 사용할 수 있다.
- (나) 근거리장 영역에서의 전기장강도와 자기장강도 모두를 측정해야 한다.
- (다) 원거리장 영역에서는 전기장강도 또는 자기장강도 중 하나를 측정하고 나머지 성분은 측정값으로부터 계산할 수 있다.

W - 22 - 2016

- (라) 측정기기나 지지대 등의 금속 부분은 흡수체로 둘러싸야 하고, 지지대가 유전체의 경우에는 낮은 손실탄젠트 (tanδ≤0.05)와 낮은 상대유전율(εr≤5.0) 값을 가지거나, 실효두께(TE)가 파장의 1/4 이하인 값을 가져야 한다.
- (마) 프로브와 전자파 복사원 및 산란체 사이의 거리는 20cm 이상이어야 한다.

10. 비전리전자기파 건강장해 예방

- (1) 전자파는 대부분 거리에 따라 받는 영향이 큰 차이가 발생하므로 가능한 일정거리 이상 떨어져서 전기기기를 사용하는 것이 좋다.
- (2) 전원이 제대로 접지가 되어 있으면 플러그가 콘센트에 연결되고 스위치를 켜지 않아도 전기장이 거의 발생하지 않으나 우리나라의 전원은 대체로 접지가 제대로 안되어 있는 경우가 많아서 플러그를 뽑아 놓아야 전기장이 발생되지 않는다.
- (3) 전기장이 통과하는 곳에 나무들과 같은 물체가 있거나 벽이나 지붕이 있다면 대부분의 전기장은 그 물체의 전하와 충돌하여 더 이상 나아가지 못한다. 보통의 건물은 외부 전계의 약 90%를 차단한다. 전계는 지붕이나 벽면을 접지된 알루미늄 같은 차폐물질을 사용한다면 충분히 차폐가 가능하다.
- (4) 자기파가 발생하는 설비 또는 장소에는 경고표지판를 부착한다.

<그림 2> 비전리전자기파 경고표지판

<부록 1> 직업인(국내)에 대한 전자파 강도 기준 (미래창조과학부고시 제2015-18호 전자파인체보호기준)

주파수 범위	전기장강도 (V/m)	자기장강도 (A/m)	자속밀도 (μT)	전력밀도 (W/m²)
1Hz 이하	-	1.63×10 ⁵	2×10 ⁵	
1Hz 이상 ~ 8Hz 미만	20,000	$1.63 \times 10^5 / f^2$	$2 \times 10^5 / f^2$	
8Hz 이상 ~ 25Hz 미만	20,000	2×10 ⁴ /f	$2.5 \times 10^4 / f$	
0.025㎞ 이상 ~ 0.82㎞미만	500/f	20/f	25/f	
0.82년 이상 ~ 65년 미만	610	24.4	30.7	
0.065째 이상 ~ 1째 미만	610	1.6/f	2.0/f	
1Mb 이상 ~ 10Mb 미만	610/f	1.6/f	2.0/f	
105 이상 ~ 4005 미만	61	0.16	0.2	10
400Mb 이상 ~ 2,000Mb 미만	$3f^{1/2}$	$0.008 f^{1/2}$	$0.01f^{1/2}$	f/40
2대z 이상 ~ 300대z 미만	137	0.36	0.45	50

- 비고 :1. 주파수(f)의 단위는 주파수 범위란에 표시된 단위와 같다.
 - 2. 전기장강도, 자기장강도 및 자속밀도는 실효치로 한다. 자속밀도는 자기장강도에 자유공간의 투자율(4π×10⁻⁷)을 곱한 것이며 전력밀도는 주어진 주파수에서 전기장강도에 자기장강도를 곱한 것이다.
 - 3. 100kHz 이하의 주파수대역에서 측정값은 시간평균을 취하지 않은 최대값으로 한다.
 - 4. 100kHz 이상 10GHz 미만의 주파수 대역에서 측정 평균시간은 6분으로 한다.
 - 5. 10GHz 이상의 주파수대역에서 측정 평균시간은 68/f^{1.05} 분으로 한다. 단, f의 단위는 GHz 이다.
 - 6. 동일 장소 또는 그 주변에 복수의 무선국이 전자파를 복사하는 경우 또는 하나의 무선국이 다중주파수의 전자파를 복사하는 경우 전기장강도 및 자기장강도에 관하여는 위 표의 각 주파수에서 복사되는 값의 기준값에 대한 비율의 제곱의 합 또는 전력밀도에 관하여는 위 표의 각 주파수에서 복사되는 값의 기준값에 대한 비율의 합이 각각 1을 초과하지 않아야 한다.
 - 7. 60Hz 주파수대역의 전기설비(송전선로)는 이 기준을 적용하지 아니한다.

<부록 2> 미국산업위생전문가협회(ACGIH)의 TLV

<표 3> 정자기장(static magnetic fields)의 TLV

노 출	천정값(Ceiling Value)
전신 (일반 작업장)	2 T
전신 (정자기장 노출 작업장)	8 T
사지	20 T
의료기구 착용	0.5 mT

<표 4> 하위 무선주파수(sub-radiofrequency; 30 kHz 미만) TLV

주파수 범위	TLVs®
1~300 Hz	전신노출: $\frac{60}{f}$ 천정치(mT)
1~300 Hz	팔과 다리 : $\frac{300}{f}$ 천정치(mT)
1~300 Hz	손과 발: $\frac{600}{f}$ 천정치(mT) (f=Hz 단위의 주파수)
300 Hz~30 kHz	전신 또는 신체 일부분 천정치: 0.2 mT
1Hz~2.5 kHz	제한치(point contact current limit): 1.0 mA
2.5~30 kHz	제한치(point contact current limit): 0.4 f mA (f=kHz 단위의 주파수)

<표 5> 무선주파수와 마이크로파의 TLV

주과수	출력밀도, S (W/m²)	전자기장 강도, E (V/m)	자기장 강도, H (A/m)	노출시간 E ² , H ² , or S (min)
30 kHz~100 kHz	_	1842	163	6
100 kHz~1 kHz	_	1842	16.3/f	6
1 MHz~30 MHz	_	1842/f	16.3/f	6
30 MHz~100 MHz	_	61.4	16.3/f	6
100 MHz~300 MHz	10	61.4	0.163	6
300 MHz~3 GHz	f/30	_	_	6
3 GHz~30 GHz	100	-	_	34000/f ^{1.079}
30 GHz~300 GHz	100	-	_	68/f ^{0.476}