J2EE LA PROPUESTA DE SUN PARA ARQUITECTURA DISTRIBUIDA

Eduard Lara

INDICE

- 1. Introducción
- 2. Partes de J2EE
- 3. Arquitectura J2EE
- 4. Tecnologías J2EE
- 5. Montando el puzzle
- 6. Proveedores

1. Introducción

Actualmente existen dos alternativas:

- DNA (Microsoft)
- J2EE (Sun).

Internet cambia el entorno:

- Más requerimientos.
- Menos tiempo para desarrollar.
- Mayor capacidad de adaptación.
- Mayor portabilidad.

1. Introducción

Solución propuesta:

- Framework estándar: ayuda a construir e implantar sistemas.
 - J2EE
- Best Practices: ayudan a utilizar el framework correctamente.
 - Sun Blueprints Design Guidelines for J2EE

1. Introducción

Complejidades resueltas:

- Gestión de transacciones
- · Gestión del ciclo de vida
- Pooling de recursos

Conclusión:

 Desarrollo de aplicaciones de manera más rápida y fáciles de adaptar.

2. Partes de J2EE

Aplicaciones J2EE se dividen en tres partes fundamentales:

- Componentes (beans)
- Contenedores
- Conectores

2. Componentes

- Los desarrolladores no se deben preocupar más que de la lógica del sistema.
- Permite un desarrollo organizado en capas de funcionalidad.
- Desarrollo basado en componentes se plantea como un ensamblaje de piezas, que se pueden reutilizar.

2. Contenedores

- Puente entre un cliente y un componente. Ofrece servicios a ambos.
- El uso de contenedores permite especificar el comportamiento de los componentes en tiempo de deploy (configuración, puesta en servicio).

2. Conectores

- Mecanismo para interconectar EIS (Enterprise Information Systems) con los contenedores de J2EE.
- Estándar Connector Service Provider Interface.

3. Arquitectura J2EE

- La arquitectura propuesta por J2EE se compone de cuatro capas:
 - Cliente
 - Web
 - Negocio
 - Sistema de Información

2. Arquitectura J2EE

3. Arquitectura: Cliente

Existen dos alternativas en las aplicaciones J2EE:

- Basadas en Web.
 - Las aplicaciones funcionan sobre el navegador y la capa Web realiza el trabajo de presentación.
- No basadas en Web
 - Las aplicaciones conectan directamente con la capa de negocio.

3. Arquitectura: Web

- En el caso de aplicaciones basadas en Web, esta capa se encarga de la lógica de la presentación.
- Los componentes web corren en contenedores capaces de manejar el protocolo HTTP.

3. Arquitectura: Negocio

- Contiene la lógica para procesar la información:
 - Recibe información desde la capa cliente y la procesa, para luego enviarla a la capa EIS.
 - Recupera información de la capa EIS para enviársela a la capa cliente.
- Los componentes de negocio corren en contenedores que se encargan de las transacciones, multithreading, etc.

3. Arquitectura: Enterprise Information System

- Plantea la integración de J2EE con sistemas ERP, sistemas de base de datos, y otros sistemas de información propietarios.
- · Connector Architecture.

4. Tecnologías J2EE

La tecnología en la que se basa J2EE es Java.

Tecnologías por capas:

- · HTML, JavaScript
- JSP, Servlets
- EJB

4. Tecnologías: Cliente

- Aplicaciones basadas en Web
 - HTML.
 - JavaScript, permite dotar de mayor dinamismo a la presentación.
 - Java, para incorporar applets (Java Plugin).
- Aplicaciones no basadas en Web
 - Java, u otros lenguajes que permitan acceder a través de CORBA a la capa de negocio.

4. Tecnologías: Web

- JSP (Java Server Pages)
 - Utilizadas en la presentación dinámica de la información al usuario.
- Servlets
 - Recomendable para el desarrollo de funciones de más bajo nivel y que no van a requerir ser modificadas frecuentemente.

4. Tecnologías: Negocio

- EJB (Enterprise JavaBean)
 - Session beans
 - Stateless, no mantiene información relativa al cliente. Ejemplo: ejb que aplique una regla de negocio.
 - Stateful, mantiene información relativa al cliente. Ejemplo: carrito de la compra de una tienda virtual.
 - Entity beans. Representa datos de la base de datos y proporciona los métodos para manipularlos.

5. Montando el puzzle

Interconexión de la arquitectura:

- · Cliente Web
- Web Negocio
- · Cliente Negocio
- Negocio EIS

5. Montando el puzzle

5. Montando el puzzle: Cliente - Web

El cliente utiliza un navegador para acceder /
ejecutar la aplicación, por lo tanto se conecta con un
servidor web: utilización del protocolo HTTP para
las comunicaciones.

Montando el puzzle: Web - Negocio

 La comunicación se lleva a cabo entre los servlets y el servidor de aplicaciones: JNDI (Java Naming Directory Interface), que permite acceder de forma remota a objetos a través del nombre con el que se publican.

Montando el puzzle:Cliente - Negocio

- El cliente se basa en una aplicación que se conecta directamente con el servidor de aplicaciones. Existen dos posibilidades:
- · Java, utilizando el protocolo RMI de acceso remoto.
- Otros, a través de un interfaz CORBA.

5. Montando el puzzle: Negocio - EIS

 EIS = base de datos, esto quiere decir que en espera de la Connector Architecture, el mecanismo de conexión utilizado es JDBC.

5. Montando el puzzle: Otros mecanismos

- JMS (Java Message Service) permite a la capa de negocio ofrecer servicios de envio / recepción de mensajes.
- JTS (Java Transaction Service, monitor de transacciones) provee de un Transaction Manager al servidor de aplicaciones.
- JavaMail es una API que permite acceder a los servidores de correo.
- XML (eXtensible Markup Language) es independiente de Java, pero en conjunción con Java permite conseguir un sistema independiente de la plataforma.

6. Proveedores

```
Servidores Web (JSP / Servlets):
   Tomcat, Iplanet (Netscape) ...
Servidores de Aplicaciones (EJB):
   WebLogic (BEA), Websphere (IBM), IAS (Inprise) ...

JDBC:
   Oracle, SQLServer ...

CORBA:
   Visibroker (Inprise) ...
```