Симплекс метод

Nº1

$$f(x) = -x_1 + x_2 \to \min$$

$$\begin{cases}
2x_1 - 4x_2 - x_3 + x_4 = -3 \\
4x_1 - 3x_2 - x_3 + x_4 + x_5 = 6 \Rightarrow \begin{cases}
-2x_1 + 4x_2 + x_3 - x_4 - 3 = 0 \\
-4x_1 + 3x_2 + x_3 - x_4 - x_5 + 6 = 0 \\
-x_1 - 4x_2 - x_3 - x_5 + 15 = 0
\end{cases}$$

	$-x_1$	$-x_2$	$-x_3$	$-x_4$	$-x_{5}$	1
0	-2	4	<u>1</u>	-1	0	3
0	4	-3	-1	1	1	6
0	1	4	1	0	1	15
f	1	-1	0	0	0	0

	$-x_1$	$-x_2$	0	$-x_4$	$-x_{5}$	1
x_3	-2	4	1	-1	0	3
0	2	1	1	0	1	9
0	3	0	-1	1	1	12
f	1	-1	0	0	0	0

	$-x_1$	$-x_2$	$-x_4$	$-x_{5}$	1
x_3	-2	4	-1	0	3
0	2	<u>1</u>	0	1	9
0	3	0	1	1	12
f	1	-1	0	0	0

	$-x_1$	0	$-x_4$	$-x_{5}$	1
x_3	-10	-4	-1	-4	-33
x_2	2	1	0	1	9
0	3	0	1	1	12
f	3	1	0	1	9

	$-x_1$	$-x_4$	$-x_{5}$	1
x_3	-10	-1	-4	-33
x_2	2	0	1	9
0	3	1	<u>1</u>	12
f	3	0	1	9

	$-x_1$	$-x_4$	0	1
x_3	2	3	4	15
x_2	-1	-1	-1	-3
x_5	3	1	1	12
f	0	-1	-1	-3

	$-x_1$	$-x_4$	1
x_3	2	3	15
x_2	-1 *	-1	-3
<i>x</i> ₅	3	1	12
f	0	-1	-3

$$\overline{x}_{on} = [3, 0, 9, 0, 3]$$

 $\overline{x}_{onm} = [3, 0, 9, 0, 3]$

$$f(\overline{x}_{on}) = f(\overline{x}_{onm}) = -3$$

$$f(x) = x_1 + 2x_2 + x_3 - x_4 \rightarrow \min$$

$$\begin{cases}
10x_2 + x_3 + 2x_4 + 3x_5 = 25 \\
-x_1 + 5x_2 + x_3 + x_4 + x_5 = 10 \Rightarrow \begin{cases}
-10x_2 - x_3 - 2x_4 - 3x_5 + 25 = 0 \\
x_1 - 5x_2 - x_3 - x_4 - x_5 + 10 = 0 \\
-2x_1 + x_2 - x_3 + 3x_4 + 6 = 0
\end{cases}$$

$$x_j \ge 0, j = 1, 2, 3, 4, 5$$

	$-x_1$	$-x_2$	$-x_3$	$-x_4$	$-x_{5}$	1
0	0	10	<u>1</u>	2	3	25
0	-1	5	1	1	1	10
0	2	-1	1	-3	0	6
f	-1	-2	-1	1	0	0

	$-x_1$	$-x_2$	0	$-x_4$	$-x_5$	1
x_3	0	10	1	2	3	25
0	-1	-5	-1	-1	-2	-15
0	2	-11	-1	-5	-3	-19
f	-1	8	1	3	3	25

	$-x_1$	$-x_2$	$-x_{4}$	$-x_{5}$	1
x_3	0	10	2	3	25
0	<u>-1</u>	-5	-1	-2	-15
0	2	-11	-5	-3	-19
f	-1	8	3	3	25

	0	$-x_2$	$-x_4$	$-x_{5}$	1
x_3	0	10	2	3	25
x_1	-1	5	1	2	15
0	2	-21	-7	-7	-49
f	-1	13	2	5	40

	$-x_2$	$-x_4$	$-x_{5}$	1
x_3	10	2	3	25
x_1	5	1	2	15
0	-21	-7	<u>-7</u>	-49
f	13	2	5	40

	$-x_2$	$-x_4$	0	1
x_3	1	-1	3/7	4
x_1	-1	-1	2/7	1
x_5	3	1	-1/7	7
f	-2	-3	5/7	5

	$-x_2$	$-x_4$	1
x_3	1	-1	4
x_1	-1	-1	1
<i>X</i> ₅	3	1	7
f	-2	-3	5

$$\overline{x}_{on} = [1, 0, 4, 0, 7]$$
 $\overline{x}_{onm} = [1, 0, 4, 0, 7]$
 $f(\overline{x}_{on}) = f(\overline{x}_{onm}) = 5$

Nº9

$$f(x) = x_1 - 2x_2 \rightarrow \min$$

$$\begin{cases}
-x_1 + x_2 \le 0 \\
2x_1 + x_2 \le 3 \Rightarrow \begin{cases}
x_1 - x_2 \ge 0 \\
-2x_1 - x_2 + 3 \ge 0 \\
-x_1 + x_2 + 1 \ge 0
\end{cases}$$

$$x_1, x_2 \ge 0$$

$$x_1 - x_2 = x_3$$

$$-2x_1 - x_2 + 3 = x_4$$

$$-x_1 + x_2 + 1 = x_5$$

	$-x_1$	$-x_2$	1
x_3	-1	<u>1</u>	0
x_4	2	1	3
x_5	1	-1	1
f	-1	-2	0

	$-x_4$	$-x_2$	1
x_2	1/3	2/3	1
x_1	1/3	-1/3	1
x_5	0	1	1
f	-1/3	-5/3	-1

$$\overline{x}_{on} = [0, 0, 0, 3, 1]$$

$$\overline{x}_{onm} = [1, 1, 0, 0, 1]$$

$$f(\overline{x}_{on}) = 0$$

$$f(\overline{x}_{onm}) = -1$$

	$-x_1$	$-x_3$	1
x_2	-1	1	0
x_4	<u>3</u>	-1	3
x_5	0	1	1
f	1	-2	0

№13

$$f(x) = x_1 + x_2 + x_3 \to \max$$

$$\begin{cases}
-x_1 + x_2 + x_3 = 2 \\
-3x_1 + x_2 - x_3 = 0
\end{cases}, x_i \ge 0, i = 1, 2, 3$$

$$\tilde{f}(x) = -x_1 - x_2 - x_3 \to \min$$

$$\begin{cases}
x_1 - x_2 - x_3 + 2 = 0 \\
3x_1 - x_2 + x_3 = 0
\end{cases}$$

	$-x_1$	$-x_2$	$-x_3$	1
0	-1	<u>1</u>	1	2
0	3	-1	1	0
f	1	1	1	0

	$-x_1$	$-x_3$	1
x_2	-1	1	2
0	<u>2</u>	2	2
f	2	0	-2

$$\begin{split} \overline{x}_{on} &= [1,3,0] \\ \overline{x}_{onm} &= [1,3,0] \\ \widetilde{f}(\overline{x}_{on}) &= \widetilde{f}(\overline{x}_{onm}) = -4 \\ f(\overline{x}_{on}) &= f(\overline{x}_{onm}) = 4 \end{split}$$

	$-x_1$	0	$-x_3$	1
x_2	-1	-1	1	2
0	2	1	2	2
f	2	-1	0	-2

	0	$-x_3$	1
x_2	-1/2	2	3
x_1	1/2	1	1
f	-1	-2	-4