An introduction to coalescent theory

Nicolas Lartillot

May 29, 2012

Inferring population history from haplotype data

Hein, Shierup and Wiuf, 2005

- a set of *n* haplotypes randomly sampled from a population
- ullet sequences of length L, known mutation rate μ
- what can we say about
 - population size (N) and structure?
 - demographic history?
 - selection?

Approach

- define a model of demography and reproduction (Wright-Fisher)
- induces a law on gene genealogies (Kingman's coalescent)
- then define a model of DNA sequence mutations
- explain variation in gene sample based on combination of mutation and coalescent models.

Applications

- estimating parameters (population size, mutation rate)
- testing hypotheses (e.g. deviation from neutrality)
- building blocks for more sophisticated models (course no 2)

The Wright-Fisher model

from Eoleonetoin

Assumptions

- panmictic population
- constant population size
- neutral

The Wright-Fisher model

from Felsenstein

- each offspring 'chooses' parent uniformly among 2N individuals of previous generation
- distribution of number of offspring: Binomial(2N, 1/2N)

Genealogy of a sample

from Felsenstein

- n individuals taken at random (here n = 3)
- age of their ancestor?
- typical shape of the genealogy?

coalescence of n = 2 genes

- prob. of coalescence in previous generation 1/(2N)
- average coalescence time for 2 individuals: $\overline{T} = 2N$.

Relation between genetic diversity and coalescence time (n = 2)

- time since last common ancestor: *T* generations
- sequences of length L, known mutation rate μ
- mean fraction of sites differing between 2 individuals: $\pi = 2\mu T$.

May 29, 2012

coalescence of n = 2 genes

with mutation

- ullet mutations at rate μ per base pair per generation
- average diversity: $\pi = 2\overline{T}\mu = 2.2N.\mu = 4N\mu = \theta$.
- θ : scaled mutation rate (N and μ are confounded)
- yields an estimate of N if μ is known and π is observed

Tajima's estimator

n = 4 observed DNA sequences

2 A C C A G T A G 3 A C T G C A T G 4 A C T G G T A C

 π_{ij} : fraction of polymorphic sites between haplotypes i and j

$$\hat{\pi} = \frac{2}{n(n-1)} \sum_{i < i} \pi_{ij}$$

Effective population size of humans

Human-chimp divergence

- divergence time: $\simeq 6$ *Ma*.
- thus, mutation rate: $\simeq 3.10^{-8}$

Human polymorphism

- heterozygosity: $\pi = 0.001$ (1 every 1000 bp)
- SNP (single nucleotide polymorphisms): 1 every 100 to 300 bp

$$\begin{array}{rcl} \pi & = & 4N\mu \\ N & = & \pi/4/\mu \simeq 10\,000 \end{array}$$

effective population size < census population size

Effective population size

Genetic aspects

- autosomal: 2N
- X chromosome: 3/2 N
- mitochondrial, Y chromosome: N

Demographic aspects

- N: harmonic mean of census size over short-term fluctuations
- frequent bottlenecks: low N
- ullet reproductive variance (species with male dominance have low N)
- population structure (e.g. a parasite has N of its host)

Linkage and selection

- selection at linked loci reduce N at neutral loci
- purifying selection: background selection
- positive selection: selective sweeps

Nucleotide diversity across life forms

Effective population size x Nucleotide mutation rate (Ne u)

Effective population sizes across life forms

Mutation rates (per generation)

- human : $\simeq 10^{-8}$
- fly, nematode: $\simeq 10^{-9}$
- unicellular eukaryotes and prokaryotes: $\simeq 10^{-10}$

Effective population sizes

- human, large vertebrates: 10⁴
- small vertebrates: 10⁵
- invertebrates, terrestrial plants: 10⁶
- unicellular eukaryotes: 10⁷
- prokaryotes: > 10⁸

Population size and evolutionary genomics

Effective size and selection

- random drift proportional to 1/N
- selection efficient only if s >> 1/N

Evolutionary genomics

- small N: random drift dominates molecular evolution in humans
- many features selected in fly/yeast /E.coli not selected in humans
- genome structure influenced by population genetics parameters

Distribution of age of ancestor

- www.coalescent.c
- \bullet prob. of coalescence in previous generation 1/(2N)
- prob. of coalescence in 2 generations (1 1/(2N))(1/(2N))
- prob. of coalescence in t generations $(1 1/(2N))^{t-1}(1/(2N))$
- t has a geometric distribution

Exponential distribution

- age of ancestor of 2 individuals has geometric distribution
- for $n \ll N$, approx. an exponential distribution
- mean of t_2 is 2N, (std dev of t_2 is 2N)
- rescaling: $u_2 = t_2/(2N)$ has mean 1 and stdev 1

- make Wright-Fisher simulations (pop. size 2N)
- for each simulation, take *n* chromosomes at final time (present)
- trace back their genealogy
- measure t_i (in generations) and set $u_i = t_i/2N$ (rescaling)
- distribution of t_i and u_i over simulations?

rate of coalescence

$$r_2 = 1/2N$$

$$r_j = {j \choose 2} \frac{1}{2N} = \frac{j(j-1)}{4N}$$

- make Wright-Fisher simulations (pop. size 2N)
- for each simulation, take n chromosomes at final time (present)
- trace back their genealogy
- measure t_i (in generations) and set $u_i = t_i/2N$ (rescaling)
- distribution of t_i and u_i over simulations?

mean coalescence times

$$\overline{t}_2 \simeq 2N$$

$$ar{t}_j \simeq rac{4N}{j(j-1)}, j=2..n$$

17 / 40

- make Wright-Fisher simulations (pop. size 2N)
- for each simulation, take n chromosomes at final time (present)
- trace back their genealogy
- measure t_i (in generations) and set $u_i = t_i/2N$ (rescaling)
- distribution of t_i and u_i over simulations?

mean coalescence times

$$\overline{u}_2 \simeq 1$$

$$\overline{u}_j \simeq \frac{2}{j(j-1)}, j=2..n$$

- make Wright-Fisher simulations (pop. size 2N)
- for each simulation, take *n* chromosomes at final time (present)
- trace back their genealogy
- measure t_i (in generations) and set $u_i = t_i/2N$ (rescaling)
- distribution of t_i and u_i over simulations?

distribution of coal. times

$$t_j \sim Exp\left(mean = \frac{4N}{j(j-1)}\right)$$

$$u_j \sim Exp\left(mean = \frac{2}{j(j-1)}\right)$$

Drawing from the coalescent

www.coalescent.d

Algorithm

for i = n..2:

- draw $u_j \sim Exp\left(mean = \frac{j(j-1)}{2}\right)$
- join 2 of the *j* remaining lineages taken at random

Drawing from the coalescent

Forward versus backward simulation

- forward: Wright Fisher simulation + backtracking of ancestors
- backward: Kingman's coalescent: drawing exponential variables
- equivalence (n << N), but
- Kingman's approach more efficient (in n instead of N^2)

Drawing from the coalescent

- large variability of deep branches
- high uncertainty on population size estimate based on one locus
- suggests approaches averaging over several independent loci

What is coalescent theory useful for?

Theory

- obtaining insights about patterns in sequence variation
- deriving theoretical expectations
 (e.g. age of sample's last common ancestor)

Simulations

- null distribution for hypothesis testing
- detecting departures from neutrality (selection)

Parameter estimation

- estimating $\theta = 4Nu$ based on observed polymorphism
- estimating demographic scenarios (see course 2)

Mean age of most recent common ancestor (MRCA)

$$T_n = u_n + u_{n-1} + ... + u_2$$

 $E[T_n] = 2(1 - 1/n)$

- expected MRCA age reaches a limit (4N generations) for large n
- intra-specific variation gives access to relatively shallow past
- in contrast to interspecific divergence (human chimp: 6 Myrs)

Age of most recent common ancestor

- mitochondrial: 200 000 years (Soares et al, 2009, Am J Human Genet 84:740)
- Y chromosome: 55 000 years (Thomson et al, 2000, PNAS, 97:7360)
- nuclear genome: variation along genome

Genealogies and recombination

Marjoram and Tavaré, 2006, Nat Rev Genet, 7:759

Genealogies and recombination

Rosenberg and Nordborg, 2002, Nat Rev Genet, 3:380

Total length of the genealogy

$$L_{n} = \sum_{j=2}^{n} j u_{j}$$

$$E[L_{n}] = \sum_{j=2}^{n} j \frac{2}{j(j-1)}$$

$$= 2 \sum_{j=2}^{n} \frac{1}{(j-1)}$$

for large *n*

$$E[L_n] \sim 2 \ln n$$

(slow increase)

Estimating $\theta = 4N\mu$: Watterson's estimator

$$L_n = \sum_{j=2}^n j u_j$$
 $E[L_n] = 2 \sum_{j=2}^n \frac{1}{(j-1)}$

- S_n : number of sites segregating in the sample
- low mutation rate: $S_n = \text{total } \# \text{ mutations along genealogy}$

$$E[S_n] = 2N\mu E[L_n] = \theta E[L_n]/2$$

$$\hat{\theta} = \frac{2S_n}{E[L_n]}$$

Estimating $\theta = 4N\mu$: Tajima versus Watterson

Tajima's estimator of scaled mutation rate

• π_{ij} : fraction of polymorphic sites between haplotypes i and j

$$\hat{\pi} = \frac{2}{n(n-1)} \sum_{i < j} \pi_{ij}$$

Watterson's estimator

- *S_n*: number of sites segregating in the sample
- $E[L_n]$: mean total length of genealogy

$$\hat{\theta} = \frac{2S_n}{E[L_n]}$$

Variance of the two estimators

Felsenstein 1992

- Tajima's estimator is not consistent
- Watterson's estimator consistent but not optimal
- maximum likelihood (see later) optimal and more general

Demography and population structure

- changes in population size induce changes in rate of coalescence
- at time t, rate of coalescence of j lineages is j(j-1)/4N(t)
- increasing population: comparatively higher rates in distant past
- decreasing population: comparatively higher rates near present

Demography and population structure

- Tajima's and Watterson's estimates respond differently to changes in N
- increasing population: $d = \hat{\pi} \hat{\theta} < 0$
- decreasing population: $d = \hat{\pi} \hat{\theta} > 0$
- Tajima's $D = d/\hat{V}(d)$

Hypothesis testing using Tajima's D

Principle

- estimate $\hat{\pi}$ and $\hat{\theta}$, compute D
- ullet simulate genealogies and distribute mutations over it with rate $\hat{ heta}$
- on each replicate, estimate $\hat{\pi}$ and $\hat{\theta}$, compute D: null distribution

Scope and limits

- significant deviation: departure from any assumption
- demography (*D* < 0: population increase)
- selection (D < 0: directional selection, D > 0 balancing selection)
- panmixia (but *D* is more robust to this)

Tajma's D and selection

Nielsen, 2005, Ann Rev Genet 39:197

- directional selection like population increase (at selected locus)
- locally in genome, looks like demographic expansion
- recombination progressively dissipates linkage with nearby neutral polymorphisms

Extensions to Kingman's coalescent

- with demographic variation (time-dependent N(t))
- with population structure (demes with migration between demes)
- with recombination (ancestral recombination graphs)
 - Hudson 1983, Theor Popul Biol 23:183.
 - important tool for estimating recombination rates along genomes
- with selection (ancestral selection graphs)
 - Krone and Neuhauser, 1997, Theor Popul Biol 51:210.

Genealogies and recombination

Marjoram and Tavaré, 2006, Nat Rev Genet, 7:759

Ancestral recombination graph: 2 loci

from Awadalla (McVean, Awadalla and Fearnhead, Genetics, 160:1231)

- scaled recombination rate $\rho = 4Nr$
- coalescence at rate j(j-1)/2
- recombination at rate $j\rho/2$

Ancestral recombination graph: continuous segment of loci

Hein, Shierup and Wiuf, 2005

- scaled recombination rate (for whole segment) $\rho = 4Nr$
- coalescence at rate j(j-1)/2
- recombination at rate $i\rho/2$

Lineage sorting

Hobolth et al, PLoS Genetics, 2007, 3 p.e7

Lineage sorting: structured coalescent

Probability of locus genealogy

$$p(HC1) = 1 - e^{-2\tau_2/N_{HC}}$$
 $p(HC2) = p(HG) = p(CG) = 1/3 e^{-2\tau_2/N_{HC}}$
 $p(HC) = p(HC1) + p(HC2)$

Estimating ancestral population size

Tree mismatch approach (Nei 1987)

- for each locus, reconstruct most likely tree
- count proportions of trees = HC, HG or CG
- solve equation (last slide) for τ_2/N_{HC}
- assuming $\tau_2 = 1.6$ Myrs, this yields $N_{HC} = 100,000 \pm 50,000$.

Problems

- bias due to stochastic tree reconstruction errors
- even under no lineage sorting, trees might differ due to finite alignment size
- results in an inflated estimate for N_{HC}
- need to use probabilistic models to improve on this estimate

Summary and conclusions

Summary

- rate of coalescence of j lineages is j(j-1)/4N
- depth of genealogy reflects population size
- shape of genealogy reflects demographic history
- Kingman's coalescent: simple and powerful model for
 - understanding population genetics
 - estimating parameters
 - testing models

From there

- coalescent at the core of probabilistic models for statistical inference
- represents the natural law for integrating over unknown genealogies