Aulas 20 e 21

- Tecnologias de memória
- Organização genérica de um circuito de memória a partir de uma célula básica
- Memória SRAM (Static Random Access Memory):
 - organização de células básicas num array
 - ciclos de acesso para leitura e escrita: diagramas temporais
 - construção de módulos de memória SRAM
- Memória DRAM (Dynamic Random Access Memory) :
 - célula básica; organização interna
 - ciclos de acesso para leitura e escrita: diagramas temporais
 - refrescamento: modo "RAS only"
 - construção de módulos de memória DRAM

José Luís Azevedo, Arnaldo Oliveira, Tomás Silva, Bernardo Cunha

Introdução - conceitos básicos

- RAM Random Access Memory
 - Designação para memória volátil que pode ser lida e escrita
 - Acesso "random"
- ROM Read Only Memory
 - Memória não volátil que apenas pode ser lida
 - Acesso "random"

(Acesso "random" - tempo de acesso é o mesmo para qualquer posição de memória)

Introdução - conceitos básicos

- Tecnologias:
 - Semicondutor
 - Magnética
 - Ótica
 - Magneto-ótica
- Memória volátil:
 - Informação armazenada perde-se quando o circuito é desligado da alimentação: RAM (SRAM e DRAM)
- Memória não volátil:
 - A informação armazenada mantém-se até ser deliberadamente alterada: EEPROM, Flash EEPROM, tecnologias magnéticas

Memória não volátil – evolução histórica

- **ROM** programada durante o processo de fabrico (1965)
- PROM Programmable Read Only Memory: programável uma única vez (1970)
- **EPROM** Erasable PROM: escrita em segundos, apagamento em minutos (ambas efectuadas em dispositivos especiais) (1971)
- **EEPROM** Electrically Erasable PROM (1976)
 - O apagamento e a escrita podem ser efetuados no próprio circuito em que a memória está integrada
 - O apagamento é feito byte a byte
 - Escrita muito mais lenta que leitura
- Flash EEPROM (tecnologia semelhante à EEPROM) (1985)
 - A escrita pressupõe o prévio apagamento das zonas de memória a escrever
 - O apagamento é feito por blocos (por exemplo, blocos de 4 kB) o que torna esta tecnologia mais rápida que a EEPROM
 - O apagamento e a escrita podem ser efetuados no próprio circuito em que a memória está integrada
 - Escrita muito mais lenta que leitura

Tecnologias de memória

Tecnologia	Tempo Acesso	\$ / GB
SRAM	0,5 – 2,5 ns	\$500 - \$1000
DRAM	35 - 70 ns	\$10 - \$20
Flash	5 – 50 us	\$0,75 - \$1
Magnetic Disk	5 - 20 ms	\$0,005 - \$0,1

(Dados de 2012)

- SRAM Static Random Access Memory
- DRAM Dynamic Random Access Memory
- Dadas estas diferenças de custo e de tempo de acesso, é vantajoso construir o sistema de memória como uma hierarquia onde se utilizem todas estas tecnologias

Organização básica de memória

- Uma memória pode ser encarada como uma coleção de M registos de dimensão N (M x N)
- Cada registo é formado por N células, cada uma delas capaz de armazenar 1 bit
- Uma célula de memória (de 1 bit) pode ser representada por:

Organização básica de memória

• Uma possível implementação de uma célula de memória é: Di/o D sel rd\ wr\ En Di/o sel wr\ rd\ Operação de escrita **Operação de leitura** sel sel rd\ wr\ Din **Dout**

Agrupamento de células de memória

- Através do agrupamento de células-base pode formar-se uma memória de maior dimensão
- O que é necessário especificar:
 - Word size (x1, x4, x8, x16, 32, ...)
 - O número total de words que a memória pode armazenar (Número total de bits = word size * nº words)
- Exemplos:
- 1k x 8
 - 8 bits / word
 - $1k = 2^{10} \rightarrow 10$ linhas de endereço $\rightarrow 1.024$ endereços
- 1M x 4
 - 4 bits / word
 - 1M = $2^{20} \rightarrow 20$ linhas de endereço $\rightarrow 1.048.576$ endereços

Organização 2D

Organização em matriz (conceito)

Memória do tipo RAM (volátil)

SRAM – Static RAM

- Vantagens:
 - Rápida
 - Informação permanece até que a alimentação seja cortada
- Inconvenientes:
 - Implementações típicas: 6 transistores / célula
 - Baixa densidade, elevada dissipação de potência
 - Custo/bit elevado

DRAM – Dynamic RAM

- Vantagens:
 - Implementações típicas: (1 transistor + 1 condensador) / célula
 - Alta densidade, baixa dissipação de potência
 - Custo/bit baixo
- Inconvenientes:
 - Informação permanece apenas durante alguns mili-segundos (necessita de refresh regular – daí a designação "dynamic")
 - Mais lenta (pelo menos 1 ordem de grandeza) que a SRAM

RAM estática (SRAM)

• 6 transistores / célula

Write

- Colocar a informação em "bit" (e "bit\"). Exemplo: para a escrita do valor lógico "1" – "bit"=1, "bit\"=0
- Ativar a linha "select"

Read

- Ativar a linha "select"
- O valor lógico armazenado na célula é detetado pela diferença de tensão entre as linhas "bit" e "bit\"

SRAM - Organização interna

SRAM - Organização interna

SRAM - Organização interna

SRAM - Bloco funcional

• Diagrama lógico (interface assíncrona)

• Tabela de verdade

CE\	OE\	WE\	Operação
1	X	X	High-Z
0	1	1	High-Z
0	X	0	Escrita
0	0	1	Leitura

SRAM – Ciclo de Leitura

• Diagrama temporal típico de um ciclo de leitura de uma memória SRAM (interface assíncrona)

SRAM – Ciclo de leitura

• Valores indicativos (em ns) dos parâmetros associados a um ciclo de leitura de uma memória SRAM:

Parameter	Symbol	Min.	Max.
Read Cycle Time	t _{RC}	1.5	
Address Access Time	t _{AA}		1.5
CE\ Access Time	t _{CA}		1.5
Output Enable to Output Valid	t _{OE}		0.7
CE\ to Output in High-Z	t _{HZ}		0.6
OE\ to Output in High-Z	t _{OHZ}		0.6

- Cycle Time: tempo de acesso mais qualquer tempo adicional necessário antes que um segundo acesso possa ter início
- Access Time: tempo necessário para os dados ficarem disponíveis no barramento de saída da memória
- Taxa de transferência: taxa a que os dados podem ser transferidos de/para uma memória (1 / cycle_time)

SRAM – Ciclo de Escrita

• Diagrama temporal típico de um ciclo de escrita de uma memória SRAM

SRAM – Ciclo de Escrita

• Valores indicativos (em ns) dos parâmetros associados a um ciclo de escrita de uma memória SRAM:

Parameter	Symbol	Min.	Max.
Write Cycle Time	t _{wc}	1.5	
Address Valid to End of Write	t _{AW}	1.0	
CE\ to End of Write	t _{CW}	1.0	
Write Pulse Width	t _{WP}	1.0	
Data Valid to End of Write	t _{DW}	0.7	
Data Hold Time	t _{DH}	0	

Aumento da capacidade de armazenamento

- É frequente ter-se necessidade de memórias com uma capacidade de armazenamento superior à capacidade individual dos circuitos disponíveis comercialmente
- Nessa situação recorre-se à construção de módulos de memória que resultam do agrupamento de circuitos de acordo com o aumento pretendido
- Assim, a construção de um módulo de memória pode envolver as duas fases seguintes, ou apenas uma delas, em função dos circuitos disponíveis e dos requisitos finais de armazenamento:
 - Aumento da dimensão da palavra. Exemplo: a partir de C.I.s de 32Kx1, construir uma memória de 32Kx8
 - Aumento do número total de posições de memória. Exemplo: a partir de C.I.s de 32Kx8, construir uma memória de 256Kx8

Módulo de memória SRAM

Módulo de memória SRAM

Memória do tipo RAM (volátil)

SRAM – Static RAM

- Vantagens:
 - Rápida
 - Informação permanece até que a alimentação seja cortada
- Inconvenientes:
 - Implementações típicas: 6 transistores / célula
 - Baixa densidade, elevada dissipação de potência
 - Custo/bit elevado

DRAM – Dynamic RAM

- Vantagens:
 - Implementações típicas: (1 transistor + 1 condensador) / célula
 - Alta densidade, baixa dissipação de potência
 - Custo/bit baixo
- Inconvenientes:
 - Informação permanece apenas durante alguns mili-segundos (necessita de refresh regular – daí a designação "dynamic")
 - Mais lenta (pelo menos 1 ordem de grandeza) que a SRAM

DETI-UA

 Condensador com uma capacidade muito pequena (dezenas de fF (1 fF = 10⁻¹⁵ F)

- Na ausência de leitura, o condensador descarrega "lentamente"
- Informação permanece na célula apenas durante alguns milisegundos
- É obrigatório fazer o refrescamento ("refresh") periódico da carga do condensador
- A operação de leitura é destrutiva (descarrega o condensador)
- Após uma operação de leitura é necessário repor a carga no condensador

Write

- Colocar dado na linha "bit"
- Ativar a linha "select"

Read

- Pre-carregar a linha "bit" a VDD/2
- Ativar a linha "select"
- Valor lógico detetado pela diferença de tensão na linha bit, relativamente a VDD/2
- Restauro do valor da tensão no condensador (write)

Refresh da célula

 Operação interna idêntica a uma operação de "Read"

• O endereço de acesso à memória é dividido em 2 partes:

Address: Row Address Column Address

- O barramento de endereços é multiplexado: primeiro é enviado o endereços de linha e depois é enviado o endereço de coluna
- A multiplexagem no tempo é feita com 2 strobes independentes
 - RAS Row Address Strobe
 - CAS Column Address Strobe

- As transições do RAS e do CAS são usadas para armazenar internamente os endereços de linha e de coluna, respetivamente
- Linha CAS funciona também como "chip-select"

DRAM - Diagrama lógico

- WE\= 0 \rightarrow escrita; WE\=1 \rightarrow leitura (\equiv R/W\)
- RAS\: valida endereço da linha na transição descendente
- CAS\: valida endereço da coluna na transição descendente

DRAM – Diagrama de blocos conceptual

DRAM – Leitura

DRAM – Ciclo de Leitura

• Diagrama temporal típico de um ciclo de leitura de uma memória DRAM

DRAM – Ciclo de Escrita

• Diagrama temporal típico de um ciclo de escrita (*early write*) de uma memória DRAM

DRAM – Ciclo de Leitura em *page mode*

• Diagrama temporal típico de um ciclo de leitura de uma memória DRAM, em modo paginado (*page mode*)

DRAM - Refrescamento

DRAM Refresh – RAS Only

- O refresh é feito simultaneamente em todas as células da mesma linha da matriz (especificada no address bus, no momento da ativação do sinal RAS\)
- O sinal CAS\ mantém-se inativo durante o processo

DRAM - Parâmetros principais

 Valores indicativos (em ns) dos tempos indicados nos diagramas temporais de leitura e escrita de uma memória DRAM com um tempo de acesso de 55 ns:

Parameter	Symbol	Min.	Max.
Read or Write Cycle Time	t _{RC}	100	
RAS\ precharge time	t _{RP}	45	
Page mode cycle time	t _{PC}	35	
RAS\ pulse width	t _{RAS}	55	10000
CAS\ pulse width	t _{CAS}	28	10000
Data-in setup time	t _{DS}	5	
Data-in hold time	t _{DH}	14	
Output buffer turn-off delay	t _{OFF}		15
Access time from RAS\	t _{RAC}		55
Access time from CAS\	t _{CAC}		28

Módulo de memória DRAM

Módulo de memória DRAM

Melhorias de desempenho da DRAM

Fast Page Mode

 Adiciona sinais de temporização que permitem acessos repetidos ao buffer de linha (sem outro tempo de acesso à linha)

Synchronous DRAM (SDRAM)

- Adiciona um sinal de relógio à interface DRAM, para facilitar a sincronização de transferências múltiplas
- Múltiplos bancos, cada um com o seu buffer de linha

Double Data Rate (DDR SDRAM)

- Transferência de dados tanto no flanco ascendente como no flanco descendente do sinal de relógio (duplica a taxa de transferência de pico)
- Versão atual: DDR4 (set/2014). Exemplo: DDR4-3200, 3200 Milhões de transferências por segundo, relógio de 1.6 GHz
- Uma versão DDR5 é esperada em 2020.
- Estas técnicas melhoram a largura de banda, mas não a latência