# **PCA**

#### **Dimensional Reduction**

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data (e.g., topic vectors instead of bag-of-words vectors, etc.)
- Fewer dimensions  $\Rightarrow$  Less chances of overfitting  $\Rightarrow$  Better generalization.

### **Linear Dimensionality Reduction**

- Projection matrix  $U=[u_1,u_2,\cdots,u_K]$  of size  $D\times K$  defines K linear projection direction.
- U is to project  $x^{(i)} \in \mathbb{R}^D$  to  $z^{(i)} \in \mathbb{R}^K$

$$Z = U^T \cdot X, X = [x^{(1)} \cdots x^{(N)}] \in \mathbb{R}^{D \times N} \\ Z = [z^{(1)} \cdots z^{(N)}] \in \mathbb{R}^{K \times N}$$

## **PCA**

• Usage: s dimensionality reduction, lossy data compression, feature extraction, and data visualization

Def. (2 commonly used definitions)

- Learning projection directions that capture maximum variance in data
- Learning projection directions that result in smallest reconstruction error
- Projection of  $x^{(i)}$  along a one-dim subspace defined by  $u_1 \in \mathbb{R}^D,$  where  $||u_1||=1.$
- Mean of projections is  $u_1^T \mu$ , where  $\mu = \frac{1}{N} \sum_{i=1}^N x^{(i)}$  is the mean of all data.
- Variance of projections is  $u_1^T S u_1$

$$\begin{split} \frac{1}{N} \sum_{i=1}^{N} \left(u_1^T x^{(i)} - u_1^T \mu\right)^2 &= \frac{1}{N} \sum_{i=1}^{N} \left[u_1^T \left(x^{(i)} - \mu\right)\right]^2 \\ &= \frac{1}{N} \sum_{i=1}^{N} \left[u_1^T \left(x^{(i)} - \mu\right)\right] \left[u_1^T \left(x^{(i)} - \mu\right)\right]^T \\ &= E \left[u_1^T \left(X - \mu\right) \left(X - \mu\right)^T u_1\right] \\ &= u_1^T S u_1 \end{split}$$

- S is the  $D \times D$  data covariance matrix

$$S = E\left[(X-\mu)(X-\mu)^T\right] = \frac{1}{N}\sum_{i=1}^N \left(x^{(i)}-\mu\right)\left(x^{(i)}-\mu\right)^T$$

#### Optimization

• We want  $u_1$  s.t. the variance of the projected data is maximized

$$\begin{aligned} \max & u_1^T S u_1 \\ \text{s.t.} & u_1^T u_1 = 1 \end{aligned}$$

- The method of Lagrange multipliers

$$\mathcal{L}\left(u_{1},\lambda_{1}\right)=u_{1}^{T}Su_{1}-\lambda_{1}\left(u_{1}^{T}u_{1}-1\right)$$

- where  $\lambda_1$  is a Lagrange multiplier - Take the derivative w.r.t.  $u_1$  and setting to zero

$$\frac{\partial}{\partial u_1}\mathcal{L}\left(u_1,\lambda_1\right) = (S+S^T)u_1 - 2\lambda_1u_1 = 0 \Leftrightarrow Su_1 = \lambda_1u_1, \ (S=S^T)$$

- Thus,  $u_1$  is an eigenvector of S
- The variance of projection is  $u_1^T S u_1 = \lambda_1$ .
- Variance is maximized when  $u_1$  is the top eigenvector with largest eigenvalue (so-called the first Principle Component, PC).

## Steps

- 1. Center the data (subtract  $\mu$  for each data)
- 2. Compute the covariance matrix  $S = \frac{1}{N}XX^T$
- 3. Perform eigen decomposition of S and take first K leading eigenvectors  $\{u_i\}_{i=1,\dots,K}$ .
- 4. The projection is therefore given by  $Z = U^T X$