Embedded Systems Architecture

Session #3

Instruction Sets

- Processor Basics
- ARM Processor
- PICmicro mid-range family
- TI C55x Digital Signal Processor

Processor Basics

- Memory Architectures
- Endianess
- Addressing Modes
- Instruction Execution
- Instruction Execution Pipelining
- Register Sets

Memory Architectures

- von Neumann architecture
- Harvard architecture

Von Neumann architecture

Harvard architecture

Endianess

Endianess (continued)

Addressing modes

- Absolute
- Immediate
- Program relative
- Register direct
- Register indirect

Instruction Execution

- Multiple cycle, single operation
 - CISC
- Single cycle, single operation
 - RISC, DSP
- Single cycle, multiple operation
 - RISC, DSP, VLIW, SIMD
- The line between RISC and CISC is not so well defined these days.

Instruction Execution Pipelining

- Execute several instructions simultaneously but at different stages.
- Simple three-stage pipeline:

Execution Pipelining

Register Sets

- Directly accessible
- Indirectly accessible
- Specific purpose
- General purpose
- Redundant register sets

Three Processor Architectures

- ARM Processor
- PICmicro mid-range family
- TI C55x Digital Signal Processor

Lab Session #3

Control Flow Diagrams

Last Week

- Data Flow Diagrams
 - Graphical Elements
 - Process
 - Data Flow
 - Data Store
 - Terminator
 - Process Specification (PSPEC)
 - DFD Hierarchy
 - Data Context Diagram

This Week

- Data vs. Control
- Control Flow Diagrams
- Data Conditions

Data vs. Control

- Data signals may be either discrete or continuous valued.
- Control signals must be discrete valued.

Control Flow Diagrams (CFD)

- Control Flow
- Control Store
- Control Specification (CSPEC)
- Control Context Diagram (CCD)

Control Flow

- Definition
 - A control flow is a pipeline through which control information of known composition flows.
- Symbol
 - A named unidirectional or bidirectional dashed vector.
- Naming Convention
 - No verbs, only nouns and adjectives.

Control Store

- Definition
 - A store is simply control information retained for later use.
- Symbol
 - Parallel lines with the name of the stored control information.
- Naming same as control flow.

Control Specification (CSPEC)

- Definition
 - A CSPEC describes how the outputs are generated from the inputs. (Just like a PSPEC)
- Symbol
 - Shown as a single vertical line or bar.
- Naming Convention
 - Possesses the same name and number as it's CFD.

Control Context Diagram (CCD)

 Top level CFD with a single process for the system itself and terminators indicating system boundaries.

Data Conditions

• The output of a PSPEC *may* contain one or more control flows.

Data Conditions Example

- Compare PSPEC
 - If A>B then Comparison=GREATER_THAN
 - Elsif A=B then Comparison=EQUAL
 - Else Comparison=LESS_THAN

