## **Contents**

| 3              | 1  | MC      | Samples and selection                                                                                                                                                                                                                                                                                                                                                                                             | 1  |
|----------------|----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4              |    | 1.1     | Data and MC samples                                                                                                                                                                                                                                                                                                                                                                                               | 1  |
| 5              |    |         | 1.1.1 MC samples and cross-sections                                                                                                                                                                                                                                                                                                                                                                               | 1  |
| 6              |    | 1.2     | Multijet background                                                                                                                                                                                                                                                                                                                                                                                               | 8  |
| 7              |    | 1.3     | Z vertex reweighting                                                                                                                                                                                                                                                                                                                                                                                              | 13 |
| 8              |    | 1.4     | W analysis event selection and control plots                                                                                                                                                                                                                                                                                                                                                                      | 13 |
| 9              |    |         | 1.4.1 Event selection                                                                                                                                                                                                                                                                                                                                                                                             | 14 |
| 10             |    |         | 1.4.2 $\sqrt{s} = 13$ TeV dataset control plots                                                                                                                                                                                                                                                                                                                                                                   | 14 |
| 11             |    |         | 1.4.3 $\sqrt{s} = 5$ TeV dataset control plots                                                                                                                                                                                                                                                                                                                                                                    | 24 |
| 12             |    | Bibl    | liography                                                                                                                                                                                                                                                                                                                                                                                                         | 31 |
| 13             |    |         | List of Figure                                                                                                                                                                                                                                                                                                                                                                                                    | es |
| 14<br>15<br>16 | 11 | (b<br>M | Pistributions for the 5 TeV low- $\mu$ dataset in a $Z/\gamma^* \to \mu\mu$ (top row) and a $Z/\gamma^* \to ee$ pottom row) selection. The data (points) is compared to $Z/\gamma^* \to \mu\mu$ or $Z/\gamma^* \to ee$ signal IC, respectively. The left and middle plots show the actual $\mu$ in a coarsely-binned and a nely-binned version. The right plot shows the number of reconstructed primary vertices |    |

|    | Distributions for the 13 TeV low- $\mu$ datasets taken in 2017 and 2018 in a $Z/\gamma^* \to \mu\mu$ (top row) and a $Z/\gamma^* \to ee$ (bottom row) selection. The data (points) is compared to $Z/\gamma^* \to \mu\mu$ | 12  | 19<br>20 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
|    | or $Z/\gamma^* \rightarrow ee$ signal MC, respectively. All distributions are (roughly) normalised to the same                                                                                                            |     | 21       |
|    | number of selected events in the 2017 dataset. The left and middle plots show the actual                                                                                                                                  |     | 22       |
|    | $\mu$ in a coarsely-binned and a finely-binned version. The right plot shows the number of                                                                                                                                |     | 23       |
| 2  | reconstructed primary vertices $N_{PV}$                                                                                                                                                                                   |     | 24       |
|    | $< u_{\parallel}^{\ell} >$ as a function of ptcone20, before and after correction using data samples at $\sqrt{s} =$                                                                                                      | 13  | 25       |
| 10 | 13 TeV                                                                                                                                                                                                                    |     | 26       |
|    | Extrapolation of the multijet distributions for the lepton transverse momentum (top) and                                                                                                                                  | 14  | 27       |
|    | pseudo-rapidity (bottom), in the $W^+ \to e^+ \nu$ (left) and $W^+ \to \mu^+ \nu$ (right) channels at $\sqrt{s} =$                                                                                                        |     | 28       |
| 11 | 13 TeV                                                                                                                                                                                                                    |     | 29       |
|    | Extrapolation of the multijet distributions for the missing transverse energy (top) and                                                                                                                                   | 15  | 30       |
|    | transverse mass (bottom), in the $W^+ \to e^+ \nu$ (left) and $W^+ \to \mu^+ \nu$ (right) channels at $\sqrt{s} =$                                                                                                        |     | 31       |
| 12 | 13 TeV                                                                                                                                                                                                                    |     | 32       |
|    | Distributions for the 5 TeV (left) and 13 TeV (right) low- $\mu$ dataset(s) in a $Z/\gamma^* \rightarrow \mu\mu$ (top                                                                                                     | 16  | 33       |
|    | row) and a $Z/\gamma^* \to ee$ (bottom row) selection. The data (points) is compared to $Z/\gamma^* \to \mu\mu$ or                                                                                                        |     | 34       |
|    | $Z/\gamma^* \rightarrow ee$ signal MC, respectively. The distributions of the <i>z</i> -position of the primary vertex                                                                                                    |     | 35       |
|    | selected as the hard interaction are compared for the dataset(s) and the MC simulation                                                                                                                                    |     | 36       |
|    | before ("no $z_{\rm vtx}$ rwgt", blue, only 13 TeV) and after reweighting (black). For the 13 TeV data                                                                                                                    |     | 37       |
|    | the 2017 and 2018 data are shown separately and all distributions are (roughly) normalised                                                                                                                                |     | 38       |
| 13 | to the same number of selected events in the 2017 dataset                                                                                                                                                                 |     | 39       |
| 17 | $\Sigma \bar{E_T}$ distribution in the muon and electron channel for the $\sqrt{s} = 13$ TeV dataset                                                                                                                      | 17  | 40       |
| 18 | $\Sigma E_T$ distribution in the muon and electron channel for the $\sqrt{s}$ = 13 TeV dataset                                                                                                                            | 18  | 41       |
| 19 | $\vec{E}_T^{miss}$ distribution in the muon and electron channel for the $\sqrt{s} = 13$ TeV dataset                                                                                                                      | 19  | 42       |
|    | Transverse mass distribution of the W boson in the muon and electron channel for the                                                                                                                                      | 110 | 43       |
| 20 | $\sqrt{s}$ = 13 TeV dataset                                                                                                                                                                                               |     | 44       |
|    | Lepton pseudorapidity distribution in the muon and electron channel for the $\sqrt{s}$ = 13 TeV                                                                                                                           | 111 | 45       |
| 21 | dataset                                                                                                                                                                                                                   |     | 46       |
|    | Lepton transverse momentum distribution in the muon and electron channel for the $\sqrt{s}$ =                                                                                                                             | 112 | 47       |
| 22 | 13 TeV dataset                                                                                                                                                                                                            |     | 48       |
|    | B W transverse momentum distribution in the muon and electron channel for the $\sqrt{s} = 13 \text{ TeV}$                                                                                                                 | 113 | 49       |
| 23 | dataset                                                                                                                                                                                                                   |     | 50       |
| 24 | $\Delta \Sigma \bar{E_T}$ distribution in the muon and electron channel for the $\sqrt{s} = 5$ TeV dataset                                                                                                                | 114 | 51       |
| 25 | $\Sigma E_T$ distribution in the muon and electron channel for the $\sqrt{s} = 5$ TeV dataset                                                                                                                             | 115 | 52       |
| 26 | $\vec{b}$ $\vec{E}_T^{miss}$ distribution in the muon and electron channel for the $\sqrt{s}=5$ TeV dataset                                                                                                               | 116 | 53       |
|    | Transverse mass distribution of the W boson in the muon and electron channel for the                                                                                                                                      | 117 | 54       |
| 27 | $\sqrt{s} = 5 \text{ TeV dataset.}$                                                                                                                                                                                       |     | 55       |
|    | Lepton pseudorapidity distribution in the muon and electron channel for the $\sqrt{s} = 5$ TeV                                                                                                                            | 118 | 56       |
| 28 | dataset                                                                                                                                                                                                                   |     | 57       |

| 58 | 119 | Lepton transverse momentum distribution in the muon and electron channel for the $\sqrt{s}$ =  |    |
|----|-----|------------------------------------------------------------------------------------------------|----|
| 59 |     | 5 TeV dataset.                                                                                 | 29 |
| 60 | 120 | W transverse momentum distribution in the muon and electron channel for the $\sqrt{s} = 5$ TeV |    |
| 61 |     | dataset                                                                                        | 30 |

**List of Tables** 

| 63 | 11 | Monte Carlo samples at $\sqrt{s}$ = 13TeV. Given is a short description of the process, the ATLAS                                                             |   |
|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 64 |    | MC data set number (DSID), the names and version numbers of the MC generator(s), the                                                                          |   |
| 65 |    | used value of the higher order cross section times any branching and filter efficiencies                                                                      |   |
| 66 |    | $(\sigma \cdot \text{BR} \cdot \epsilon_{\text{filter}})$ with the theoretical uncertainty in percent ("th. unc."), and finally the number                    |   |
| 67 |    | of events analysed after skimming at derivation production $(N_{ m evt}^{ m skim})$ as well as the number of                                                  |   |
| 68 |    | events originally processed and simulated $(N_{\mathrm{evt}}^{\mathrm{unskim}})$ . In the case of $Z \to \ell\ell$ samples, the given                         |   |
| 69 |    | $\epsilon_{\rm filter} > 1$ is related to the fact, that the cross sections were calculated for $66 < m_{\ell\ell} < 116 {\rm GeV}$ ,                         |   |
| 70 |    | but the generated mass range is larger. The last section of $t\bar{t}$ samples refers to variation                                                            |   |
| 71 |    | samples for systematics studies. The MC equivalent luminosity $N_{ m evt}^{ m unskim}/(\sigma \cdot { m BR} \cdot \epsilon_{ m filter})$ is                   |   |
| 72 |    | generally above 3fb <sup>-1</sup> for signal and significant backgrounds, the exception are Powheg                                                            |   |
| 73 |    | $W \to \tau \nu$ and $Z \to \tau \tau$ samples, that have about 0.45fb <sup>-1</sup> only                                                                     | 4 |
| 74 | 12 | Alternative signal $Z \to \ell\ell$ Monte Carlo samples at $\sqrt{s} = 13$ TeV produced with Sherpa. Gen-                                                     |   |
| 75 |    | eral description of the table see Table 11. The samples are split into a long list of orthogonal                                                              |   |
| 76 |    | slices based on "max(pTV,HT)" and filtered further into "b/c/light-jet" subcomponents. For                                                                    |   |
| 77 |    | the purpose of this analysis, the number of events in each slice is such that the samples are                                                                 |   |
| 78 |    | about 2fb <sup>-1</sup> each (after application of a penalty factor for negative weight events) and an                                                        |   |
| 79 |    | "inclusive sample" is restored after merging the slices                                                                                                       | 5 |
| 80 | 13 | Alternative signal $W \to \ell \nu$ Monte Carlo samples at $\sqrt{s} = 13$ TeV produced with Sherpa. See                                                      |   |
| 81 |    | Table 12 for a description of the table. The samples are split into a long list of orthogonal                                                                 |   |
| 82 |    | slices based on "max(pTV,HT)" and filtered further into "b/c/light-jet" subcomponents. For                                                                    |   |
| 83 |    | the purpose of this analysis, the number of events in each slice is such that the samples are                                                                 |   |
| 84 |    | about 1fb <sup>-1</sup> each (after application of a penalty factor for negative weight events) and an                                                        |   |
| 85 |    | "inclusive sample" is restored after merging the slices                                                                                                       | 6 |
| 86 | 14 | Monte Carlo samples at $\sqrt{s} = 5$ TeV. The table follows the same format as Table 11. The                                                                 |   |
| 87 |    | MC equivalent luminosity $N_{\rm evt}^{\rm unskim}/(\sigma \cdot {\rm BR} \cdot \epsilon_{\rm filter})$ is generally above 2.5fb <sup>-1</sup> for signal and |   |
| 88 |    | significant backgrounds, the exception are Powheg $W \to \tau \nu$ and $Z \to \tau \tau$ samples, that have                                                   |   |
| 89 |    | about $0.20 \mathrm{fb^{-1}}$ and $0.45 \mathrm{fb^{-1}}$ only.                                                                                               | 7 |

## Mesure de la masse du boson W avec le détecteur ATLAS au LHC

| 90  | 15  | Analysis cut flow for $W^+ \rightarrow e^+ \nu$ 5 leV signal selection. Lepton $p_T$ is required to be over  |    |
|-----|-----|--------------------------------------------------------------------------------------------------------------|----|
| 91  |     | 18 GeV before the final cut                                                                                  | 14 |
| 92  | 16  | Analysis cut flow for $W^+ \to e^+ \nu$ 13 TeV signal selection. Lepton $p_{\rm T}$ is required to be over   |    |
| 93  |     | 18 GeV before the final cut                                                                                  | 15 |
| 94  | 17  | Analysis cut flow for $W^+ \to \mu^+ \nu$ 5 TeV signal selection. Lepton $p_{\rm T}$ is required to be over  |    |
| 95  |     | 18 GeV before the final cut                                                                                  | 15 |
| 96  | 18  | Analysis cut flow for $W^+ \to \mu^+ \nu$ 13 TeV signal selection. Lepton $p_{\rm T}$ is required to be over |    |
| 97  |     | 18 GeV before the final cut                                                                                  | 15 |
| 98  | 19  | Analysis cut flow for $W^- \to e^- \nu$ 5 TeV signal selection. Lepton $p_T$ is required to be over          |    |
| 99  |     | 18 GeV before the final cut                                                                                  | 16 |
| 100 | 110 | Analysis cut flow for $W^- \to e^- \nu$ 13 TeV signal selection. Lepton $p_{\rm T}$ is required to be over   |    |
| 101 |     | 18 GeV before the final cut                                                                                  | 16 |
| 102 | 111 | Analysis cut flow for $W^- \to \mu^- \nu$ 5 TeV signal selection. Lepton $p_{\rm T}$ is required to be over  |    |
| 103 |     | 18 GeV before the final cut                                                                                  | 16 |
| 104 | 112 | Analysis cut flow for $W^- \to \mu^- \nu$ 13 TeV signal selection. Lepton $p_{\rm T}$ is required to be over |    |
| 105 |     | 18 GeV before the final cut                                                                                  | 16 |
| 106 | 113 | Observed and Expected yield comparison for all signal selections                                             | 17 |

107 108

# MC samples and selection

"Potentielle citation sans aucun rapport avec le sujet" 109 — Personne inconnue, contexte à déterminer 110

#### Data and MC samples 1.1

The data and MC samples for this study were collected under special beam conditions that ensure low pile-up. The data samples were collected in three runs:

- $\sqrt{s} = 5.02$ TeV data taken in November 2017, ATLAS data period M, preliminary calibrated 114 luminosity 256.827 pb<sup>-1</sup> with an uncertainty of  $\pm 1.6\%$ 115
- $\sqrt{s} = 13$ TeV data taken in November 2017, ATLAS data period N, preliminary online luminosity 116  $146.6 \,\mathrm{pb^{-1}}$ 117
- $\sqrt{s} = 13$ TeV data taken in June 2018, ATLAS data period G4+J, preliminary online luminosity  $193.2 \text{pb}^{-1}$ 119
- The runs of November 2017 and the run of June 2018 had the same bunch spacing of 25 ns, but a 120 different filling scheme. The two main differences from the high- $\mu$  data collection are the following: 121
- In order to optimize topo-cluster response for the Hadronic Recoil (HR) lower topo-cluster 122 thresholds were used. 123
- Single e and  $\mu$  triggers with significantly lower thresholds and looser identification criteria are 124 run without prescale, most notably HLT\_e15\_1hloose\_nod0\_L1EM12 and HLT\_mu14. 125
- At the beginning of 5 TeV fills the pile-up reached  $\mu \setminus 5$ , slowly descending to  $\mu \setminus 1$  by the end of the run. 126
- In the case of 13 TeV the luminosity was levelled at  $\mu = 2$  in the course of the run. The corresponding 127
- distributions for  $\mu$  and  $N_{PV}$  for the 5 TeV and 13 TeV runs are shown in Fig. 11 and Fig. 12. 128

#### MC samples and cross-sections 1.1.1

- Signal and background processes are modelled using fully simulated and reconstructed using Monte-130
- Carlo (MC) samples, specifically tuned for the special run conditions, namely the pileup conditions, 131



**Figure 11:** Distributions for the 5 TeV low- $\mu$  dataset in a  $Z/\gamma^* \to \mu\mu$  (top row) and a  $Z/\gamma^* \to ee$  (bottom row) selection. The data (points) is compared to  $Z/\gamma^* \to \mu\mu$  or  $Z/\gamma^* \to ee$  signal MC, respectively. The left and middle plots show the actual  $\mu$  in a coarsely-binned and a finely-binned version. The right plot shows the number of reconstructed primary vertices  $N_{PV}$ .



**Figure 12:** Distributions for the 13 TeV low- $\mu$  datasets taken in 2017 and 2018 in a  $Z/\gamma^* \to \mu\mu$  (top row) and a  $Z/\gamma^* \to ee$  (bottom row) selection. The data (points) is compared to  $Z/\gamma^* \to \mu\mu$  or  $Z/\gamma^* \to ee$  signal MC, respectively. All distributions are (roughly) normalised to the same number of selected events in the 2017 dataset. The left and middle plots show the actual  $\mu$  in a coarsely-binned and a finely-binned version. The right plot shows the number of reconstructed primary vertices  $N_{PV}$ .

- lower topo-cluster noise thresholds and adapter trigger menu. No pileup reweighting is performed.
  The information on the simulated samples and their properties is given in Tables 11, 12, 13, 14 [1]. The predicted event counts are normalized to the cross-sections quoted in the table.
- The primary signal event samples for W and Z production are obtained using Powheg [2, 3, 4, 5] event generator with CT10 PDF, linked with Pythia8 [6] with AZNLO tune [7]. Powheg+Pythia88 samples are interfaced to Photos++ [8] for final state Quantum Electrodynamics (QED) effects simulation.
- аre interfaced to Photos++ [8] for final state Quantum Electrodynamics (QED) effects simulation.

  A set of alternative samples at  $\sqrt{s} = 13$ TeV was prepared with Sherpa2.2.2 [9] using the NNPDF3.0
- PDFs and merging V + 0, 1, 2 at NLO accuracy with V + 3, 4 at LO accuracy with the MEPS@NLO scheme.
- <sup>140</sup> A similar set for  $\sqrt{s}$  = 5TeV was prepared with Sherpa2.2.5 with a setup similar to 13 TeV samples.
- Pileup is modelled by overlaying simulated soft events over the original hard-scattering event. These
- soft events were modelled using Pythia8 with NNPDF2.3LO set of PDFs [10] and the A3 tune [11].
- The W and Z processes samples are normalized to NNLO calculations performed using the DYTURBO,
- an optimised version of DYNNLO [12, 13] using the MMHT2014nnlo PDF set [14]. Corresponding
- numerical values were taken from the corresponding ATLAS publications of the 2015 data at 13 TeV [15]
- and 5.02 TeV [16] are presented in Table 11 for 13 TeV and Table 14 for 5 TeV. The uncertainties on
- those cross-sections arise from the choice of PDF set, from factorization and renormalisation scale
- dependence, and the strong coupling constant  $\alpha_s$  uncertainty resulting in the total uncertainty estimate
- 149 of 5%.
- Backgrounds from top-quark pair-production  $t\bar{t}$  and single-top production (Wt, t-channel, s-channel) were generated with Powheg+Pythia8. The 5 TeV  $t\bar{t}$  cross section is taken as the top++ prediction observed by CMS [17]. Di-boson combinations VV, V=W, Z are generated with Sherpa in all decay channels with a requirement of having at least one real lepton in the final state.

| Process                             | Data set | Generator      | $\sigma$ ·BR· $\epsilon_{\mathrm{filter}}$ [nb] (th. unc.) | $N_{\rm evt}^{\rm skim}[10^6]$ | N <sub>evt</sub> <sup>unskim</sup> [10 <sup>6</sup> ] |
|-------------------------------------|----------|----------------|------------------------------------------------------------|--------------------------------|-------------------------------------------------------|
| $W^+ \rightarrow e^+ \nu$           | 361100   | Powheg+Рутніа8 | 11.61 (5%)                                                 | 40                             | 40                                                    |
| $W^+ \rightarrow \mu^+ \nu$         | 361101   | Powheg+Рутніа8 | 11.61 (5%)                                                 | 40                             | 40                                                    |
| $W^+ \rightarrow \tau^+ \nu$        | 361102   | Powheg+Рутніа8 | 11.61 (5%)                                                 | 0.28                           | 5.0                                                   |
| $W^- \rightarrow e^- \bar{\nu}$     | 361103   | Powheg+Рутніа8 | 8.630 (5%)                                                 | 30                             | 30                                                    |
| $W^- \rightarrow \mu^- \bar{\nu}$   | 361104   | Powheg+Рутніа8 | 8.630 (5%)                                                 | 29                             | 29                                                    |
| $W^- \rightarrow \tau^- \bar{\nu}$  | 361105   | Powheg+Pythia8 | 8.630 (5%)                                                 | 0.24                           | 4.0                                                   |
| $Z \rightarrow ee$                  | 361106   | Powheg+Pythia8 | $1.910 \times 1.03 (5\%)$                                  | 10                             | 10                                                    |
| $Z \rightarrow \mu\mu$              | 361107   | Powheg+Рутніа8 | 1.910 × 1.025 (5%)                                         | 10                             | 10                                                    |
| $Z \rightarrow \tau \tau$           | 361108   | Powheg+Pythia8 | $1.910 \times 1.025 (5\%)$                                 | 0.12                           | 1.0                                                   |
| $ZZ(qar{q}\ell\ell)$                | 363356   | Sherpa 2.2.1   | $0.01556 \times 0.141 \ (10\%)$                            | 0.0064                         | 0.010                                                 |
| $WZ(qar{q}\ell\ell)$                | 363358   | Sherpa 2.2.1   | 0.003433 (10%)                                             | 0.0063                         | 0.010                                                 |
| $WW(q\bar{q}\ell\nu)$               | 363359   | Sherpa 2.2.1   | 0.02472 (10%)                                              | 0.0093                         | 0.020                                                 |
| $\overline{WW(\ell \nu q \bar{q})}$ | 363360   | Sherpa 2.2.1   | 0.02472 (10%)                                              | 0.0093                         | 0.020                                                 |
| $WZ(\ell \nu q \bar{q})$            | 363489   | Sherpa 2.2.1   | 0.01142 (10%)                                              | 0.0047                         | 0.010                                                 |
| $ZZ(4\ell)$                         | 364250   | Sherpa 2.2.2   | 0.001252 (10%)                                             | 0.0057                         | 0.010                                                 |
| $WZ(3\ell\nu)$                      | 364253   | Sherpa 2.2.2   | 0.004583 (10%)                                             | 0.0062                         | 0.010                                                 |
| $WW(2\ell 2\nu)$                    | 364254   | Sherpa 2.2.2   | 0.01250 (10%)                                              | 0.0073                         | 0.010                                                 |
| $WZ(\ell 3\nu)$                     | 364255   | Sherpa 2.2.2   | 0.003235 (10%)                                             | 0.0050                         | 0.010                                                 |
| $\overline{Wt}$                     | 410013   | Powheg+Рутніа8 | 0.03582 (10%)                                              | 0.0037                         | 0.010                                                 |
| $W \bar{t}$                         | 410014   | Powheg+Рутніа8 | 0.03399 (10%)                                              | 0.0037                         | 0.010                                                 |
| $t\bar{t}$ (nominal)                | 410470   | Powheg+Рутніа8 | $0.8318 \times 0.544 (7\%)$                                | 1.2                            | 2.0                                                   |
| t(t-chan.t)                         | 410642   | Powheg+Рутніа8 | 0.03699 (10%)                                              | 0.016                          | 0.030                                                 |
| $t(t-chan.\bar{t})$                 | 410643   | Powheg+Рутніа8 | 0.02217 (10%)                                              | 0.011                          | 0.020                                                 |
| t(s-chan.t)                         | 410644   | Powheg+Pythia8 | 0.002027 (10%)                                             | 0.0050                         | 0.010                                                 |
| $t(s-chan.\bar{t})$                 | 410645   | Powheg+Pythia8 | 0.001268 (10%)                                             | 0.0052                         | 0.010                                                 |
| $\overline{t\bar{t}}$ (syst.)       | 410480   | Powheg+Pythia8 | 0.8318 × 0.438 (7%)                                        | 0.85                           | 1.5                                                   |
| $t\bar{t}$ (syst.)                  | 410482   | Powheg+Pythia8 | $0.8318 \times 0.105 (7\%)$                                | 0.40                           | 0.50                                                  |
| $t\bar{t}$ (syst.)                  | 410557   | Powheg+Pythia8 | $0.8318 \times 0.438 \ (7\%)$                              | 0.85                           | 1.5                                                   |
| $t\bar{t}$ (syst.)                  | 410558   | Powheg+Pythia8 | $0.8318 \times 0.105 (7\%)$                                | 0.40                           | 0.50                                                  |

**Table 11:** Monte Carlo samples at  $\sqrt{s}=13$ TeV. Given is a short description of the process, the ATLAS MC data set number (DSID), the names and version numbers of the MC generator(s), the used value of the higher order cross section times any branching and filter efficiencies ( $\sigma \cdot \text{BR} \cdot \epsilon_{\text{filter}}$ ) with the theoretical uncertainty in percent ("th. unc."), and finally the number of events analysed after skimming at derivation production ( $N_{\text{evt}}^{\text{skim}}$ ) as well as the number of events originally processed and simulated ( $N_{\text{evt}}^{\text{unskim}}$ ). In the case of  $Z \to \ell \ell$  samples, the given  $\epsilon_{\text{filter}} > 1$  is related to the fact, that the cross sections were calculated for  $66 < m_{\ell\ell} < 116$ GeV, but the generated mass range is larger. The last section of  $t\bar{t}$  samples refers to variation samples for systematics studies. The MC equivalent luminosity  $N_{\text{evt}}^{\text{unskim}}/(\sigma \cdot \text{BR} \cdot \epsilon_{\text{filter}})$  is generally above  $3\text{fb}^{-1}$  for signal and significant backgrounds, the exception are Powheg  $W \to \tau \nu$  and  $Z \to \tau \tau$  samples, that have about  $0.45\text{fb}^{-1}$  only.

| Process                           | Data set | Generator    | $\sigma$ ·BR· $\epsilon_{\text{filter}}$ [nb] (th. unc.) | $N_{ m evt}^{ m skim}[10^6]$ | $N_{\rm evt}^{\rm unskim}[10^6]$ |
|-----------------------------------|----------|--------------|----------------------------------------------------------|------------------------------|----------------------------------|
| $\overline{Z \rightarrow \mu\mu}$ | 364100   | Sherpa 2.2.1 | 1.932 × 0.822 (5%)                                       | 8.0                          | 8.0                              |
| $Z \rightarrow \mu\mu$            | 364101   | Sherpa 2.2.1 | $1.933 \times 0.114 (5\%)$                               | 1.5                          | 1.5                              |
| $Z \rightarrow \mu\mu$            | 364102   | Sherpa 2.2.1 | $1.932 \times 0.0660 (5\%)$                              | 1.1                          | 1.1                              |
| $Z \rightarrow \mu\mu$            | 364103   | Sherpa 2.2.1 | $0.1063 \times 0.690 (5\%)$                              | 1.5                          | 1.5                              |
| $Z \rightarrow \mu\mu$            | 364104   | Sherpa 2.2.1 | $0.1062 \times 0.200 (5\%)$                              | 0.40                         | 0.40                             |
| $Z \rightarrow \mu\mu$            | 364105   | Sherpa 2.2.1 | $0.1063 \times 0.114 (5\%)$                              | 0.25                         | 0.25                             |
| $Z \rightarrow \mu\mu$            | 364106   | Sherpa 2.2.1 | $0.03889 \times 0.593 (5\%)$                             | 0.20                         | 0.20                             |
| $Z \rightarrow \mu\mu$            | 364107   | Sherpa 2.2.1 | $0.03885 \times 0.235 (5\%)$                             | 0.060                        | 0.060                            |
| $Z \rightarrow \mu\mu$            | 364108   | Sherpa 2.2.1 | $0.03889 \times 0.156 (5\%)$                             | 0.035                        | 0.035                            |
| $Z \rightarrow \mu\mu$            | 364109   | Sherpa 2.2.1 | $0.008310 \times 0.561 \ (5\%)$                          | 0.020                        | 0.020                            |
| $Z \rightarrow \mu\mu$            | 364110   | Sherpa 2.2.1 | $0.008310 \times 0.266 (5\%)$                            | 0.010                        | 0.010                            |
| $Z \rightarrow \mu\mu$            | 364111   | Sherpa 2.2.1 | $0.008320 \times 0.177 (5\%)$                            | 0.0050                       | 0.0050                           |
| $Z \rightarrow \mu\mu$            | 364112   | Sherpa 2.2.1 | 0.001740 (5%)                                            | 0.0050                       | 0.0050                           |
| $Z \rightarrow \mu\mu$            | 364113   | Sherpa 2.2.1 | 0.0001400 (5%)                                           | 0.0050                       | 0.0050                           |
| $Z \rightarrow ee$                | 364114   | Sherpa 2.2.1 | 1.933 × 0.821 (5%)                                       | 8.0                          | 8.0                              |
| $Z \rightarrow ee$                | 364115   | Sherpa 2.2.1 | $1.932 \times 0.114 (5\%)$                               | 1.5                          | 1.5                              |
| $Z \rightarrow ee$                | 364116   | Sherpa 2.2.1 | $1.932 \times 0.0658 (5\%)$                              | 1.1                          | 1.1                              |
| $Z \rightarrow ee$                | 364117   | Sherpa 2.2.1 | $0.1080 \times 0.694 (5\%)$                              | 1.5                          | 1.5                              |
| $Z \rightarrow ee$                | 364118   | Sherpa 2.2.1 | $0.1077 \times 0.191 (5\%)$                              | 0.40                         | 0.40                             |
| $Z \rightarrow ee$                | 364119   | Sherpa 2.2.1 | $0.1078 \times 0.119 (5\%)$                              | 0.25                         | 0.25                             |
| $Z \rightarrow ee$                | 364120   | Sherpa 2.2.1 | $0.03964 \times 0.616 (5\%)$                             | 0.20                         | 0.20                             |
| $Z \rightarrow ee$                | 364121   | Sherpa 2.2.1 | $0.03967 \times 0.233 (5\%)$                             | 0.060                        | 0.060                            |
| $Z \rightarrow ee$                | 364122   | Sherpa 2.2.1 | $0.04068 \times 0.150 (5\%)$                             | 0.035                        | 0.035                            |
| $Z \rightarrow ee$                | 364123   | Sherpa 2.2.1 | $0.008460 \times 0.569 (5\%)$                            | 0.020                        | 0.020                            |
| $Z \rightarrow ee$                | 364124   | Sherpa 2.2.1 | $0.008450 \times 0.266 (5\%)$                            | 0.010                        | 0.010                            |
| $Z \rightarrow ee$                | 364125   | Sherpa 2.2.1 | $0.008470 \times 0.177 (5\%)$                            | 0.0050                       | 0.0050                           |
| $Z \rightarrow ee$                | 364126   | Sherpa 2.2.1 | 0.001760 (5%)                                            | 0.0050                       | 0.0050                           |
| $Z \rightarrow ee$                | 364127   | Sherpa 2.2.1 | 0.0001451 (5%)                                           | 0.0050                       | 0.0050                           |

**Table 12:** Alternative signal  $Z \to \ell\ell$  Monte Carlo samples at  $\sqrt{s} = 13$ TeV produced with Sherpa. General description of the table see Table 11. The samples are split into a long list of orthogonal slices based on "max(pTV,HT)" and filtered further into "b/c/light-jet" subcomponents. For the purpose of this analysis, the number of events in each slice is such that the samples are about  $2\text{fb}^{-1}$  each (after application of a penalty factor for negative weight events) and an "inclusive sample" is restored after merging the slices.

| Process                 | Data set | Generator    | $\sigma$ ·BR· $\epsilon_{\text{filter}}$ [nb] (th. unc.) | $N_{\rm evt}^{\rm skim}[10^6]$ | $N_{ m evt}^{ m unskim}[10^6]$ |
|-------------------------|----------|--------------|----------------------------------------------------------|--------------------------------|--------------------------------|
| $W \rightarrow \mu \nu$ | 364156   | Sherpa 2.2.1 | $18.58 \times 0.825 (5\%)$                               | 31                             | 31                             |
| $W \rightarrow \mu \nu$ | 364157   | Sherpa 2.2.1 | 18.57 × 0.131 (5%)                                       | 8.1                            | 8.1                            |
| $W \rightarrow \mu \nu$ | 364158   | Sherpa 2.2.1 | $18.57 \times 0.0433 \ (5\%)$                            | 2.6                            | 2.6                            |
| $W \rightarrow \mu \nu$ | 364159   | Sherpa 2.2.1 | $0.9173 \times 0.674 (5\%)$                              | 6.3                            | 6.3                            |
| $W \rightarrow \mu \nu$ | 364160   | Sherpa 2.2.1 | $0.9172 \times 0.244 (5\%)$                              | 2.1                            | 2.1                            |
| $W \rightarrow \mu \nu$ | 364161   | Sherpa 2.2.1 | $0.9163 \times 0.0847 (5\%)$                             | 0.23                           | 0.23                           |
| $W \rightarrow \mu \nu$ | 364162   | Sherpa 2.2.1 | $0.3296 \times 0.600 (5\%)$                              | 0.80                           | 0.80                           |
| $W \rightarrow \mu \nu$ | 364163   | Sherpa 2.2.1 | $0.3297 \times 0.293 (5\%)$                              | 0.27                           | 0.27                           |
| $W \rightarrow \mu \nu$ | 364164   | Sherpa 2.2.1 | $0.3295 \times 0.111 (5\%)$                              | 0.099                          | 0.099                          |
| $W \rightarrow \mu \nu$ | 364165   | Sherpa 2.2.1 | $0.06993 \times 0.548 (5\%)$                             | 0.068                          | 0.068                          |
| $W \rightarrow \mu \nu$ | 364166   | Sherpa 2.2.1 | $0.06995 \times 0.320 (5\%)$                             | 0.034                          | 0.034                          |
| $W \rightarrow \mu \nu$ | 364167   | Sherpa 2.2.1 | $0.06991 \times 0.125 (5\%)$                             | 0.014                          | 0.014                          |
| $W \rightarrow \mu \nu$ | 364168   | Sherpa 2.2.1 | 0.01456 (5%)                                             | 0.020                          | 0.020                          |
| $W \rightarrow \mu \nu$ | 364169   | Sherpa 2.2.1 | 0.001200 (5%)                                            | 0.004                          | 0.004                          |
| $W \rightarrow e \nu$   | 364170   | Sherpa 2.2.1 | $18.58 \times 0.825 (5\%)$                               | 31                             | 31                             |
| $W \rightarrow e \nu$   | 364171   | Sherpa 2.2.1 | 18.57 × 0.131 (5%)                                       | 8.3                            | 8.3                            |
| $W \rightarrow e \nu$   | 364172   | Sherpa 2.2.1 | $18.57 \times 0.0448 \ (5\%)$                            | 2.5                            | 2.5                            |
| $W \rightarrow e \nu$   | 364173   | Sherpa 2.2.1 | $0.9168 \times 0.675 (5\%)$                              | 6.4                            | 6.4                            |
| $W \rightarrow e \nu$   | 364174   | Sherpa 2.2.1 | $0.9176 \times 0.244 (5\%)$                              | 2.1                            | 2.1                            |
| $W \rightarrow e \nu$   | 364175   | Sherpa 2.2.1 | $0.9173 \times 0.0851 (5\%)$                             | 0.79                           | 0.79                           |
| $W \rightarrow e \nu$   | 364176   | Sherpa 2.2.1 | $0.3295 \times 0.599 (5\%)$                              | 0.76                           | 0.76                           |
| $W \rightarrow e \nu$   | 364177   | Sherpa 2.2.1 | $0.3297 \times 0.288 (5\%)$                              | 0.28                           | 0.28                           |
| $W \rightarrow e \nu$   | 364178   | Sherpa 2.2.1 | $0.3295 \times 0.111 (5\%)$                              | 0.10                           | 0.10                           |
| $W \rightarrow e \nu$   | 364179   | Sherpa 2.2.1 | $0.06993 \times 0.548 (5\%)$                             | 0.070                          | 0.070                          |
| $W \rightarrow e \nu$   | 364180   | Sherpa 2.2.1 | $0.06996 \times 0.320 (5\%)$                             | 0.034                          | 0.034                          |
| $W \rightarrow e \nu$   | 364181   | Sherpa 2.2.1 | $0.06994 \times 0.137 (5\%)$                             | 0.014                          | 0.014                          |
| $W \rightarrow e \nu$   | 364182   | Sherpa 2.2.1 | 0.01460 (5%)                                             | 0.020                          | 0.020                          |
| $W \rightarrow e \nu$   | 364183   | Sherpa 2.2.1 | 0.001200 (5%)                                            | 0.0050                         | 0.0050                         |

**Table 13:** Alternative signal  $W \to \ell \nu$  Monte Carlo samples at  $\sqrt{s} = 13$ TeV produced with Sherpa. See Table 12 for a description of the table. The samples are split into a long list of orthogonal slices based on "max(pTV,HT)" and filtered further into "b/c/light-jet" subcomponents. For the purpose of this analysis, the number of events in each slice is such that the samples are about 1fb<sup>-1</sup> each (after application of a penalty factor for negative weight events) and an "inclusive sample" is restored after merging the slices.

| Process                            | Data set | Generator      | $\sigma$ ·BR· $\epsilon$ <sub>filter</sub> [nb] (th. unc.) | $N_{\mathrm{evt}}^{\mathrm{skim}}[10^6]$ | N <sub>evt</sub> <sup>unskim</sup> [10 <sup>6</sup> ] |
|------------------------------------|----------|----------------|------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|
| $W^+ \rightarrow e^+ \nu$          | 361100   | Powheg+Pythia8 | 4.357 (5%)                                                 | 11                                       | 11                                                    |
| $W^+ \rightarrow \mu^+ \nu$        | 361101   | Powheg+Pythia8 | 4.357 (5%)                                                 | 11                                       | 11                                                    |
| $W^+ \rightarrow \tau^+ \nu$       | 361102   | Powheg+Pythia8 | 4.357 (5%)                                                 | 0.065                                    | 0.94                                                  |
| $W^- \rightarrow e^- \bar{\nu}$    | 361103   | Powheg+Pythia8 | 2.902 (5%)                                                 | 7.0                                      | 7.0                                                   |
| $W^- \to \mu^- \bar{\nu}$          | 361104   | Powheg+Pythia8 | 2.902 (5%)                                                 | 7.0                                      | 7.0                                                   |
| $W^- \rightarrow \tau^- \bar{\nu}$ | 361105   | Powheg+Pythia8 | 2.902 (5%)                                                 | 0.039                                    | 0.59                                                  |
| $Z \rightarrow ee$                 | 361106   | Powheg+Рутніа8 | $0.6600 \times 1.025 (5\%)$                                | 6.3                                      | 6.3                                                   |
| $Z \to \mu\mu$                     | 361107   | Powheg+Pythia8 | $0.6600 \times 1.025 (5\%)$                                | 3.4                                      | 3.4                                                   |
| $Z \rightarrow \tau \tau$          | 361108   | Powheg+Pythia8 | $0.6600 \times 1.025 (5\%)$                                | 0.039                                    | 0.29                                                  |
| $Z \rightarrow ee$                 | 364381   | Sherpa 2.2.5   | $0.6600 \times 1.12 (5\%)$                                 | 5.0                                      | 5.0                                                   |
| $Z \to \mu\mu$                     | 364382   | Sherpa 2.2.5   | $0.6600 \times 1.12 (5\%)$                                 | 5.0                                      | 5.0                                                   |
| $Z \to \tau \tau$                  | 364383   | Sherpa 2.2.5   | $0.6600 \times 1.12 (5\%)$                                 | 1.5                                      | 1.5                                                   |
| $W \rightarrow e \nu$              | 364384   | Sherpa 2.2.5   | 7.259 (5%)                                                 | 25                                       | 25                                                    |
| $W \to \mu \nu$                    | 364385   | Sherpa 2.2.5   | 7.259 (5%)                                                 | 25                                       | 25                                                    |
| $W \rightarrow \tau \nu$           | 364386   | Sherpa 2.2.5   | 7.259 (5%)                                                 | 6.0                                      | 6.0                                                   |
| $\overline{ZZ(4\ell)}$             | 361063   | Sherpa 2.1     | 0.004624 (10%)                                             | 0.017                                    | 0.049                                                 |
| $WZ(\ell\ell\ell^-\nu SF)$         | 361064   | Sherpa 2.1     | 0.0005324 (10%)                                            | 0.0073                                   | 0.015                                                 |
| $WZ(\ell\ell\ell^-\nu OF)$         | 361065   | Sherpa 2.1     | 0.001041 (10%)                                             | 0.012                                    | 0.030                                                 |
| $WZ(\ell\ell\ell^+\nu SF)$         | 361066   | Sherpa 2.1     | 0.0008433 (10%)                                            | 0.010                                    | 0.020                                                 |
| $WZ(\ell\ell\ell^+\nu OF)$         | 361067   | Sherpa 2.1     | 0.001633 (10%)                                             | 0.016                                    | 0.039                                                 |
| $WW(2\ell 2\nu)$                   | 361068   | Sherpa 2.1     | 0.003356 (10%)                                             | 0.068                                    | 0.090                                                 |
| $WW(q\bar{q}\ell\nu)$              | 361091   | Sherpa 2.1     | 0.006059 (10%)                                             | 0.078                                    | 0.15                                                  |
| $WW(\ell \nu q \bar{q})$           | 361092   | Sherpa 2.1     | 0.006082 (10%)                                             | 0.14                                     | 0.26                                                  |
| $WZ(\ell \nu q \bar{q})$           | 361093   | Sherpa 2.1     | 0.002503 (10%)                                             | 0.039                                    | 0.075                                                 |
| $WZ(qar{q}\ell\ell)$               | 361094   | Sherpa 2.1     | 0.0007518 (10%)                                            | 0.017                                    | 0.025                                                 |
| $ZZ(qar{q}\ell\ell)$               | 361096   | Sherpa 2.1     | $0.003789 \times 0.148 \ (10\%)$                           | 0.0070                                   | 0.010                                                 |
| $t\bar{t}$                         | 410470   | Powheg+Pythia8 | $0.06890 \times 0.544 (7\%)$                               | 1.8                                      | 2.8                                                   |
| t(s-chan.t)                        | 410644   | Powheg+Pythia8 | 0.0005400 (10%)                                            | 0.028                                    | 0.050                                                 |
| $t(s-chan.\bar{t})$                | 410645   | Powheg+Pythia8 | 0.0002751 (10%)                                            | 0.028                                    | 0.050                                                 |
| Wt                                 | 410646   | Powheg+Pythia8 | 0.002990 (10%)                                             | 0.018                                    | 0.050                                                 |
| $W\bar{t}$                         | 410647   | Powheg+Pythia8 | 0.002983 (10%)                                             | 0.019                                    | 0.050                                                 |
| t(t-chan.t)                        | 410658   | Powheg+Pythia8 | 0.005414 (10%)                                             | 0.028                                    | 0.050                                                 |
| $t(t-chan.\bar{t})$                | 410659   | Powheg+Pythia8 | 0.002682 (10%)                                             | 0.028                                    | 0.050                                                 |

**Table 14:** Monte Carlo samples at  $\sqrt{s}=5$ TeV. The table follows the same format as Table 11. The MC equivalent luminosity  $N_{\rm evt}^{\rm unskim}/(\sigma\cdot {\rm BR}\cdot \epsilon_{\rm filter})$  is generally above  $2.5{\rm fb}^{-1}$  for signal and significant backgrounds, the exception are Powheg  $W\to \tau\nu$  and  $Z\to \tau\tau$  samples, that have about  $0.20{\rm fb}^{-1}$  and  $0.45{\rm fb}^{-1}$  only.

#### 1.2 Multijet background

The estimate of the multijet background, which contain contributions from fake leptons produced in 155 semi-leptonic decays of heavy quarks, in-flight pion decays, photon conversions, etc, is done using a 156 data-driven technique. The W boson phase space is defined by the following cuts: 157

- $p_{\rm T}^{\ell} > 25$  GeV,  $|\eta_{\ell}| < 2.4$ ; 158
- $E_{\rm T}^{\rm miss} > 25 {\rm GeV}$ , 159

154

161

- $m_{\rm T} > 50 {\rm GeV}$ . 160
  - lepton isolation, using track of calorimeter-based variables.

The production of multijets is mainly concentrated at lower values of  $p_T^l$ ,  $E_T^{\rm miss}$  and  $m_T$ , such that the largest part of the multijet background events are removed by the cuts described above. The 163 background estimate is obtained by fitting the signal and multijet yields in  $p_T^l$ ,  $E_T^{miss}$  and  $m_T$  kinematic 164 distributions, but with  $E_T^{\text{miss}}$  and  $m_T$  cuts relaxed. These kinematic distributions for the signal are 165 modelled using the MC simulation and include the calibrations and corrections presented in the 166 previous chapter. The templates of the multijet distributions are obtained using the data with the same 167 kinematic selection, but with relaxed or inverted isolation cuts. The multijet yield is obtained in the 168 region with relaxed kinematic cuts and then extrapolated to the signal region, correcting for kinematic 169 cuts efficiency. 170

- First step consists in defining four different regions in phase-isolation space: 171
- signal region (SR): isolated leptons, signal requirement on  $p_T^{lep}$ ,  $E_T^{miss}$  and  $m_T$ ; 172
- fit region (FR): isolated leptons, relaxed kinematic requirements:  $E_T^{\text{miss}} > 0$  GeV,  $m_T > 0$  GeV; 173
- control region 1 (CR1): anti-isolated leptons with FR kinematic requirements; 174
- control region 2 (CR2): anti-isolated leptons with SR kinematic requirements. 175

Multijet(MJ) yield is estimated in SR. The fit region is used to perform the fraction fit, which is obtained 176 by fitting the template obtained from the CR1. The shape of the multijet background in the SR is 177 provided by CR2. This shape is then normalized to the ratio of MJ events in the two control regions: 178  $\epsilon = N_{MI}^{CR2}/N_{MI}^{CR1}$ . The number of the MJ background events is estimated in the following way: 179

ullet The number of multijet background events in CR1  $(N_{
m MJ}^{CR1})$  and their distributions  $(H_{
m MJ}^{CR1})$  are derived as follows:

$$N_{\rm MJ}^{CR1} = N_{\rm data}^{\rm CR1} - N_{\rm EW}^{\rm CR1},$$
 (1.1)  
 $H_{\rm MJ}^{CR1} = H_{\rm data}^{\rm CR1} - H_{\rm EW}^{\rm CR1}$  (1.2)

$$H_{\text{MJ}}^{\text{CR1}} = H_{\text{data}}^{\text{CR1}} - H_{\text{EW}}^{\text{CR1}} \tag{1.2}$$

180

where  $H^{CR1}$  stands for one of the kinematic distributions used in the fit, namely  $p_T^{\ell}$ ,  $E_T^{miss}$  or  $m_T$ .

• The fraction fit is performed in FR, which has looser kinematics cuts and the same isolation cuts as the signal. The fit has the following form:

$$H_{\text{data}}^{\text{FR}} = \alpha \cdot H_{\text{FW}}^{\text{FR}} + T \cdot H_{\text{MI}}^{\text{CR1}}.$$
 (1.3)

The fitting parameter T gives the factor for the MJ contribution in FR:  $N_{MJ}^{FR} \approx T \cdot N_{MJ}^{CR1}$ . A normalization factor for the EW+top contribution,  $\alpha$ , is also fitted and should be unity within the uncertainties in the luminosity and the cross-sections of the MC-simulated processes.

• Then the fitted multijet yield is extrapolated to the signal region. The extrapolation factor  $\varepsilon$  that was mentioned before can be obtained as follows:

$$\varepsilon \equiv \frac{N_{\text{data}}^{\text{CR2}} - N_{\text{EW}}^{\text{CR2}}}{N_{\text{data}}^{\text{CR1}} - N_{\text{EW}}^{\text{CR1}}},\tag{1.4}$$

and assuming that this factor does not depend in the isolation cuts, one obtains

$$N_{MI}^{SR} = \varepsilon N_{MI}^{FR}. \tag{1.5}$$

This method relies on the anti-isolation procedure which may introduce a bias into the results. The dependence of the MJ yield on the isolation criteria must be taken into account. In order to do this the control regions CR1 and CR2 are esimated in the slices of anti-isolation with ptvarcone20/pT ranging in the following intervals: [0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40].

The change of isolation criterion also biases the hadronic recoil reconstruction procedure, where the cone replacement appears to be isolation-dependent. This bias is overcome by introducing a correction to the hadronic recoil vector:

$$\vec{u}^{\text{corr}} = \vec{u}^{\text{baseline}} + \vec{u}^{\text{iso}}$$
, where (1.6)

$$\vec{u}^{\text{iso}} \equiv \text{ptcone20} \cdot \vec{n_{\ell}}.$$
 (1.7)

The unit vector  $\vec{n_\ell}$  is aligned with the lepton direction. This correction vanishes at low isolation in the signal region but introduces a sizable correction in the anti-isolated region (see Fig. 13). Some residual dependence of the extrapolated distributions on the isolation criteria is still present and requires shape extrapolation procedure. Distribution shape is estimated in three slices of ptvarcone20/pT isolation within [0.10, 0.20, 0.30 0.40] in CR2. For every observable X,  $X = p_T^\ell$ ,  $E_T^{miss}$ ,  $m_T$ , the difference  $\Delta[X]$  of the distribution of X between consecutive isolation slices is defined as:

$$H_{MJ}^{[0.1,0.2]}[X] = H_{data}^{[0.1,0.2]}[X] - H_{MC}^{[0.1,0.2]}[X];$$
(1.8)

 $\Delta[X] = 1/2 \left[ (H_{MJ}^{[0.1,0.2]}[X] - H_{MJ}^{[0.2,0.3]}[X]) + (H_{MJ}^{[0.2,0.3]}[X] - H_{MJ}^{[0.3,0.4]}[X]) \right], \tag{1.9}$ 

182

183

184

185

186

187

188

189



**Figure 13:**  $< u_{\parallel}^{\ell} >$  as a function of ptcone20, before and after correction using data samples at  $\sqrt{s} = 13$  TeV.

 $\Delta[X]$  is supposed to be the difference between MJ sprectrum in the signal region (ptvarcone20/pT< 0.1) and the isolation slice next to it (0.10 < ptvarcone20/pT < 0.20). So the extrapolated distribution to the signal region is the following:

$$H_X^{sig} = H_X^{[0.1,0.2]} - \Delta[X] \tag{1.10}$$

The shift  $\Delta[X]$  applied is assigned a 100% relative uncertainty because of large statistical uncertainty coming from the linear fit used. The MJ contributions to the kinematic distributions in slices of isolation along with the extrapolation to the signal region for the 13 TeV for electrons and muons are shown in Figures 14 and 15. The kinematic distributions with the contributions from the multijets for 5 and 13 TeV are presented in sections 1.4.3 and 1.4.2 respectively.

210

211

212

213



**Figure 14:** Extrapolation of the multijet distributions for the lepton transverse momentum (top) and pseudo-rapidity (bottom), in the  $W^+ \to e^+ \nu$  (left) and  $W^+ \to \mu^+ \nu$  (right) channels at  $\sqrt{s} = 13$  TeV



**Figure 15:** Extrapolation of the multijet distributions for the missing transverse energy (top) and transverse mass (bottom), in the  $W^+ \to e^+ \nu$  (left) and  $W^+ \to \mu^+ \nu$  (right) channels at  $\sqrt{s} = 13$  TeV

#### 15 1.3 Z vertex reweighting

216

217

218

220

The 5 TeV MC samples have been generated to be perfectly matched to the data Although this is not the case for 13 TeV samples, which can be seen at Fig. 16. It is also seen from these plots that the 2017 and 2018 data were collected at two different runs under different beam conditions. To avoid possible impact on the acceptance the MC samples were reweighted to the data using  $Z \rightarrow ee$  and  $Z \rightarrow \mu\mu$  selections.



**Figure 16:** Distributions for the 5 TeV (left) and 13 TeV (right) low- $\mu$  dataset(s) in a  $Z/\gamma^* \to \mu\mu$  (top row) and a  $Z/\gamma^* \to ee$  (bottom row) selection. The data (points) is compared to  $Z/\gamma^* \to \mu\mu$  or  $Z/\gamma^* \to ee$  signal MC, respectively. The distributions of the z-position of the primary vertex selected as the hard interaction are compared for the dataset(s) and the MC simulation before ("no  $z_{\rm vtx}$  rwgt", blue, only 13 TeV) and after reweighting (black). For the 13 TeV data the 2017 and 2018 data are shown separately and all distributions are (roughly) normalised to the same number of selected events in the 2017 dataset.

### 1.4 W analysis event selection and control plots

#### 1.4.1 Event selection

228

229

230

231

232

233

234

235

236

237

238

239

240

Both in case of 5 and 13 TeV events with  $W \to \ell \nu$  candidate were selected base on a single-lepton trigger requirement. The trigger for  $W \to e \nu$  event candidate HLT\_e15\_1h1oose\_nod0\_L1EM12 require at least one reconstructed electron with  $E_{\rm T}$  larger than 15 GeV passing *loose* identification requirements. Candidates for  $W \to \mu \nu$  were triggered by HLT\_mu14 trigger requiring one muon with  $E_{\rm T}$  larger than 14 GeV.

Events are required to contain exactly one lepton (muon or electron) candidate having  $p_T > 25$ GeV. Electrons are required to have  $|\eta| < 2.47$  excluding transition region  $1.37 < |\eta| < 1.52$ . Muons Events with additional leptons of the same flavour with transverse momentum greater than 20 GeV satisfying some ID criteria are discarded, to better reject the Z background. The ID point is medium for the muon channel, and loose for the electron channel. There is no requirement on the number of leptons with different flavour than the channel under study.

To suppress background, in particular from multijet processes, events are required to have  $E_T^{\text{miss}}$  greater than 25 GeV. The W boson transverse mass  $m_T$  is demanded to be larger than 50 GeV. This transverse mass is defined as follows:

$$m_T = \sqrt{2p_T^{\nu} p_T^l (1 - \cos \Delta \phi^{\nu})} \tag{1.11}$$

The tables 15,17,19,111 contain signal selection event yields for the  $W^{\pm} \to \ell^{\pm} \nu$  at  $\sqrt{s} = 5$  TeV low- $\mu$  dataset. Similarly the tables 16,18,110,112 contain the corresponding numbers for the 13 TeV low- $\mu$  dataset. Table 113 provides a comparison between observed and expected yields. Events denoted as  $W \to \ell \nu$  in the tables and the plots contain the sum of background events coming from  $W \to \tau \nu$  and other W leptonic decays other than the signal.

| Cut                          | Data    | Signal             | $W^\pm \to \ell^\pm \nu$ BG | $Z \to \ell \ell$ | Тор              | Diboson     | Multijet   |
|------------------------------|---------|--------------------|-----------------------------|-------------------|------------------|-------------|------------|
| One electron                 | 1993720 | 643610 ± 260       | 32940 ± 190                 | 44338 ± 71        | 1754.4 ± 3.9     | 772.2 ± 3.7 | -          |
| Electron trig matched        | 1907724 | $612940 \pm 250$   | $30790 \pm 190$             | $42100 \pm 69$    | $1698.5 \pm 3.8$ | 741.1 ± 3.6 | -          |
| Isolation                    | 1438941 | $610320 \pm 250$   | $30590 \pm 190$             | $41923 \pm 69$    | 1663.6 ± 3.8     | 722.5 ± 3.6 | -          |
| $p_T^e > 25 \text{GeV}$      | 720284  | $482240 \pm 220$   | $14790 \pm 130$             | $31955 \pm 53$    | $1464.5 \pm 3.5$ | 592.1 ± 3.2 | -          |
| $E_T^{miss} > 25 \text{GeV}$ | 440605  | 421510 ± 210       | 9650 ± 100                  | $1336 \pm 20$     | 1223 ± 3.2       | 420.8 ± 2.4 | -          |
| $m_T > 50 \text{GeV}$        | 430620  | $417430  \pm  210$ | 8800 ± 96                   | 1047 ± 16         | 944.3 ± 2.9      | 373.5 ± 2.2 | 3030 ± 550 |

**Table 15:** Analysis cut flow for  $W^+ \to e^+ \nu$  5 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

#### 1.4.2 $\sqrt{s} = 13$ TeV dataset control plots

Control plots for the 13 TeV low- $\mu$  dataset are provided here after applying all corrections described in section ??, and after applying the selection described above in this section. In each figure, the right(left)-hand column shows distributions for the  $W^+$  ( $W^-$ ) process. The top (bottom) row shows the

| Cut                          | Data    | Sign    | nal   |     | $W^{\pm} \rightarrow$ | $W^{\pm} \rightarrow \ell^{\pm} \nu \text{ BG}$ |     |        | $Z \to \ell \ell$ |     |       | Тор   |    |      | oso | n  | Multijet |   |      |
|------------------------------|---------|---------|-------|-----|-----------------------|-------------------------------------------------|-----|--------|-------------------|-----|-------|-------|----|------|-----|----|----------|---|------|
| One electron                 | 7915023 | 1797340 | ±     | 390 | 92520                 | ±                                               | 270 | 147490 | ±                 | 140 | 63207 | ±     | 89 | 3069 | ±   | 63 |          | - |      |
| Electron trig matched        | 7840239 | 1709140 | $\pm$ | 380 | 86370                 | ±                                               | 260 | 139760 | ±                 | 140 | 61110 | $\pm$ | 88 | 2967 | ±   | 62 |          | - |      |
| Isolation                    | 5413483 | 1698430 | ±     | 380 | 85560                 | ±                                               | 260 | 138890 | ±                 | 140 | 59834 | ±     | 87 | 2939 | ±   | 61 |          | - |      |
| $p_T^e > 25 \text{GeV}$      | 2452868 | 1342200 | ±     | 330 | 44450                 | ±                                               | 190 | 106270 | ±                 | 110 | 53811 | ±     | 82 | 2565 | ±   | 58 |          | - |      |
| $E_T^{miss} > 25 \text{GeV}$ | 1275513 | 1136520 | ±     | 310 | 28580                 | ±                                               | 150 | 8313   | ±                 | 46  | 45707 | ±     | 75 | 1990 | ±   | 53 |          | - |      |
| $m_T > 50 \text{GeV}$        | 1207776 | 1117560 | ±     | 310 | 24760                 | ±                                               | 130 | 6443   | ±                 | 36  | 34580 | ±     | 65 | 1718 | ±   | 50 | 28000    | ± | 1800 |

**Table 16:** Analysis cut flow for  $W^+ \to e^+ \nu$  13 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

| Cut                          | Data    | Sig    | nal   |     | $W^{\pm} \rightarrow$ | $W^{\pm} \rightarrow \ell^{\pm} \nu$ BG |     | $Z \to \ell \ell$ |       |    | To     | Dib   | oso | n     | Multijet |     | et  |       |     |
|------------------------------|---------|--------|-------|-----|-----------------------|-----------------------------------------|-----|-------------------|-------|----|--------|-------|-----|-------|----------|-----|-----|-------|-----|
| One muon                     | 2434459 | 760980 | ±     | 280 | 35090                 | ±                                       | 200 | 37015             | ±     | 82 | 2025.3 | ±     | 4.1 | 864.7 | ±        | 3.7 |     | -     |     |
| Muon trig matched            | 2353403 | 664100 | ±     | 260 | 30610                 | $\pm$                                   | 190 | 32554             | $\pm$ | 76 | 1725.6 | $\pm$ | 3.8 | 746.6 | $\pm$    | 3.4 |     | -     |     |
| Isolation                    | 1186616 | 659200 | $\pm$ | 260 | 30400                 | $\pm$                                   | 190 | 32303             | $\pm$ | 76 | 1574.6 | $\pm$ | 3.7 | 710.1 | $\pm$    | 3.3 |     | -     |     |
| $p_T^{\mu} > 25 \text{GeV}$  | 632016  | 508270 | $\pm$ | 230 | 13900                 | $\pm$                                   | 130 | 22556             | ±     | 57 | 1335.3 | $\pm$ | 3.4 | 568.2 | $\pm$    | 2.9 |     | -     |     |
| $E_T^{miss} > 25 \text{GeV}$ | 470856  | 442600 | $\pm$ | 210 | 8700                  | $\pm$                                   | 100 | 9959              | $\pm$ | 31 | 1111.8 | $\pm$ | 3   | 424.5 | $\pm$    | 2.5 |     | -     |     |
| $m_T > 50 \text{GeV}$        | 457053  | 438280 | $\pm$ | 210 | 7879                  | $\pm$                                   | 97  | 9649              | ±     | 27 | 879.7  | $\pm$ | 2.8 | 381.7 | $\pm$    | 2.3 | 720 | $\pm$ | 190 |

**Table 17:** Analysis cut flow for  $W^+ \to \mu^+ \nu$  5 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

| Cut                          | Data    | Signal    |     | $W^{\pm} \rightarrow$ | $\ell^{\pm}\nu$ | BG  | Z -     | $\rightarrow \ell\ell$ |      | To    | ор    |    | Dib  | oso   | n  | Mι   | ıltije | et  |
|------------------------------|---------|-----------|-----|-----------------------|-----------------|-----|---------|------------------------|------|-------|-------|----|------|-------|----|------|--------|-----|
| One muon                     | 9570104 | 2100770 ± | 410 | 83110                 | ±               | 270 | 2019400 | ±                      | 2200 | 71602 | ±     | 94 | 3442 | ±     | 63 |      | -      |     |
| Muon trig matched            | 9382783 | 1840550 ± | 390 | 72820                 | ±               | 250 | 1750400 | ±                      | 2000 | 61519 | $\pm$ | 87 | 2956 | $\pm$ | 59 |      | -      |     |
| Isolation                    | 3905612 | 1821750 ± | 380 | 71780                 | ±               | 250 | 595700  | ±                      | 1100 | 56849 | ±     | 84 | 2916 | ±     | 59 |      | -      |     |
| $p_T^{\mu} > 25 \text{GeV}$  | 1930655 | 1393330 ± | 340 | 34470                 | ±               | 170 | 170840  | ±                      | 490  | 49338 | ±     | 78 | 2471 | ±     | 54 |      | -      |     |
| $E_T^{miss} > 25 \text{GeV}$ | 1321407 | 1173860 ± | 310 | 21450                 | ±               | 140 | 51090   | ±                      | 180  | 41956 | ±     | 72 | 1930 | ±     | 49 |      | -      |     |
| $m_T > 50 \text{GeV}$        | 1244892 | 1153800 ± | 310 | 18270                 | ±               | 130 | 38304   | ±                      | 81   | 32375 | ±     | 63 | 1705 | ±     | 44 | 9040 | ±      | 800 |

**Table 18:** Analysis cut flow for  $W^+ \to \mu^+ \nu$  13 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

muon (electron) decay channel. In the ratio panels, the grey band is the total systematic uncertainty, whilst the brown band adds the MC statistical uncertainty in quadrature on top of it. In regions of the distributions insensitive to the modelling of  $p_T^W$  there is generally good agreement between data and predictions. The bulk of the  $m_T$  distribution is a typical example of distribution that is mostly insensitive to the modeling of  $p_T^W$ . The  $u_T$  distribution is an exception, and it can therefore be concluded that the baseline simulation is not modeling  $p_T^W$  satisfactorily.

247

248

| Cut                          | Data    | Sigr   | nal |     | $W^{\pm} \rightarrow$ | $\ell^{\pm}$ ı | , BG | Z -   | $\rightarrow \ell\ell$ |    | To     | р     |     | Dib   | oso   | n   | Mι   | ultije | et  |
|------------------------------|---------|--------|-----|-----|-----------------------|----------------|------|-------|------------------------|----|--------|-------|-----|-------|-------|-----|------|--------|-----|
| One electron                 | 1724472 | 374900 | ±   | 200 | 24150                 | ±              | 160  | 41995 | ±                      | 70 | 1590.5 | ±     | 2.9 | 684.8 | ±     | 4   |      | -      |     |
| Electron trig matched        | 1645694 | 359010 | ±   | 200 | 22070                 | $\pm$          | 160  | 39854 | $\pm$                  | 68 | 1539.9 | $\pm$ | 2.9 | 655.7 | $\pm$ | 3.9 |      | -      |     |
| Isolation                    | 1176976 | 357660 | ±   | 200 | 21920                 | $\pm$          | 160  | 39686 | $\pm$                  | 68 | 1504.6 | ±     | 2.8 | 640.7 | ±     | 3.8 |      | -      |     |
| $p_T^e > 25 \text{GeV}$      | 529183  | 302070 | ±   | 180 | 11920                 | $\pm$          | 110  | 30214 | ±                      | 52 | 1330.8 | $\pm$ | 2.6 | 532.9 | $\pm$ | 3.5 |      | -      |     |
| $E_T^{miss} > 25 \text{GeV}$ | 281957  | 266750 | ±   | 170 | 8084                  | $\pm$          | 90   | 1293  | ±                      | 20 | 1112.5 | $\pm$ | 2.4 | 380   | $\pm$ | 3   |      | -      |     |
| $m_T > 50 \text{GeV}$        | 274329  | 264540 | ±   | 170 | 7317                  | ±              | 84   | 994   | ±                      | 16 | 855.2  | ±     | 2.1 | 338.1 | ±     | 2.9 | 2400 | ±      | 500 |

**Table 19:** Analysis cut flow for  $W^- \to e^- v$  5 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

| Cut                          | Data    | Signa   | al |     | $W^{\pm} \rightarrow$ | $\ell^{\pm} \iota$ | BG  | Z -    | $\rightarrow \ell\ell$ |     | To    | ор |    | Dib  | oso | n  | Mı    | ultije | et . |
|------------------------------|---------|---------|----|-----|-----------------------|--------------------|-----|--------|------------------------|-----|-------|----|----|------|-----|----|-------|--------|------|
| One electron                 | 7471742 | 1323710 | ±  | 330 | 78230                 | ±                  | 230 | 140980 | ±                      | 140 | 61951 | ±  | 86 | 3059 | ±   | 58 |       | -      |      |
| Electron trig matched        | 7402574 | 1267710 | ±  | 330 | 72240                 | ±                  | 230 | 133580 | ±                      | 140 | 59950 | ±  | 85 | 2968 | ±   | 57 |       | -      |      |
| Isolation                    | 4949352 | 1260540 | ±  | 330 | 71550                 | ±                  | 230 | 132740 | ±                      | 140 | 58689 | ±  | 84 | 2937 | ±   | 57 |       | -      |      |
| $p_T^e > 25 \text{GeV}$      | 2113364 | 1053510 | ±  | 300 | 39660                 | ±                  | 160 | 101350 | ±                      | 110 | 52923 | ±  | 79 | 2544 | ±   | 53 |       | -      |      |
| $E_T^{miss} > 25 \text{GeV}$ | 1008915 | 900640  | ±  | 280 | 25900                 | ±                  | 130 | 7954   | ±                      | 45  | 45065 | ±  | 73 | 1962 | ±   | 48 |       | -      |      |
| $m_T > 50 \text{GeV}$        | 949362  | 887810  | ±  | 270 | 22400                 | ±                  | 120 | 6052   | ±                      | 35  | 34177 | ±  | 64 | 1695 | ±   | 44 | 27400 | ±      | 2000 |

**Table 110:** Analysis cut flow for  $W^- \to e^- \nu$  13 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

| Cut                          | Data    | Sign     | al    | $W^{\pm}$ $\rightarrow$ | · $\ell^{\pm}$ ı | вG ВG | <i>Z</i> – | $\rightarrow \ell\ell$ | ,  | To     | р     |     | Dib   | oso   | n   | Mı  | ultije | et  |
|------------------------------|---------|----------|-------|-------------------------|------------------|-------|------------|------------------------|----|--------|-------|-----|-------|-------|-----|-----|--------|-----|
| One muon                     | 2075709 | 440560   | ± 220 | 22510                   | ±                | 170   | 34440      | ±                      | 80 | 1835.6 | ±     | 3.1 | 751.5 | ±     | 3.3 |     | -      |     |
| Muon trig matched            | 2002955 | 383720 : | ± 200 | 19640                   | $\pm$            | 160   | 30277      | ±                      | 75 | 1561.6 | $\pm$ | 2.9 | 648   | $\pm$ | 3.1 |     | -      |     |
| Isolation                    | 883078  | 381010 : | ± 200 | 19450                   | ±                | 160   | 30046      | $\pm$                  | 74 | 1411   | $\pm$ | 2.7 | 616.9 | ±     | 2.9 |     | -      |     |
| $p_T^{\mu} > 25 \text{GeV}$  | 426119  | 314370 : | ± 180 | 9370                    | $\pm$            | 110   | 20749      | ±                      | 56 | 1202.1 | $\pm$ | 2.5 | 505   | $\pm$ | 2.5 |     | -      |     |
| $E_T^{miss} > 25 \text{GeV}$ | 298992  | 276060 : | ± 170 | 5893                    | ±                | 89    | 8716       | ±                      | 29 | 1004.2 | $\pm$ | 2.3 | 372.6 | ±     | 2   |     | -      |     |
| $m_T > 50 \text{GeV}$        | 287870  | 273710 : | ± 170 | 5158                    | $\pm$            | 82    | 8408       | $\pm$                  | 26 | 788.2  | $\pm$ | 2   | 335.6 | ±     | 1.9 | 760 | ±      | 160 |

**Table 111:** Analysis cut flow for  $W^- \to \mu^- \nu$  5 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

| Cut                          | Data    | Signa   | al  |    | $W^{\pm} \rightarrow$ | $\ell^{\pm}$ ı | , BG | Z -     | $\rightarrow \ell\ell$ |      | To    | р     |    | Dib  | oso   | n  | Mu   | ıltije | t   |
|------------------------------|---------|---------|-----|----|-----------------------|----------------|------|---------|------------------------|------|-------|-------|----|------|-------|----|------|--------|-----|
| One muon                     | 8773414 | 1518070 | ± 3 | 60 | 64930                 | ±              | 230  | 2019900 | ±                      | 2200 | 70580 | ±     | 90 | 3230 | ±     | 60 |      | -      |     |
| Muon trig matched            | 8597493 | 1322980 | ± 3 | 30 | 56520                 | $\pm$          | 210  | 1750300 | $\pm$                  | 2000 | 60579 | ±     | 84 | 2806 | ±     | 56 |      | -      |     |
| Isolation                    | 3298569 | 1310310 | ± 3 | 30 | 55680                 | $\pm$          | 210  | 593700  | $\pm$                  | 1100 | 55949 | ±     | 80 | 2751 | ±     | 55 |      | -      |     |
| $p_T^{\mu} > 25 \text{GeV}$  | 1561721 | 1069770 | ± 3 | 00 | 28230                 | ±              | 150  | 166810  | ±                      | 490  | 48544 | $\pm$ | 75 | 2362 | $\pm$ | 52 |      | -      |     |
| $E_T^{miss} > 25 \text{GeV}$ | 1030406 | 910150  | ± 2 | 80 | 17380                 | $\pm$          | 120  | 47370   | $\pm$                  | 180  | 41259 | ±     | 69 | 1842 | ±     | 46 |      | -      |     |
| $m_T > 50 \text{GeV}$        | 963568  | 896850  | ± 2 | 70 | 14710                 | ±              | 110  | 34572   | ±                      | 80   | 31772 | ±     | 61 | 1598 | ±     | 43 | 9050 | ±      | 620 |

**Table 112:** Analysis cut flow for  $W^- \to \mu^- \nu$  13 TeV signal selection. Lepton  $p_T$  is required to be over 18 GeV before the final cut.

| Selection                         | Observed | Expected |   |      |  |  |  |  |  |
|-----------------------------------|----------|----------|---|------|--|--|--|--|--|
| 5TeV $W^+ \rightarrow e^+ \nu$    | 430620   | 431620   | ± | 600  |  |  |  |  |  |
| 5TeV $W^+ \rightarrow \mu^+ \nu$  | 457053   | 457790   | ± | 300  |  |  |  |  |  |
| 5TeV $W^- \rightarrow e^- \nu$    | 274329   | 276450   | ± | 530  |  |  |  |  |  |
| 5TeV $W^- \rightarrow \mu^- \nu$  | 287870   | 289160   | ± | 250  |  |  |  |  |  |
| 13TeV $W^+ \rightarrow e^+ \nu$   | 1207776  | 1213000  | ± | 1800 |  |  |  |  |  |
| 13TeV $W^+ \rightarrow \mu^+ \nu$ | 1244892  | 1253490  | ± | 870  |  |  |  |  |  |
| 13TeV $W^- \rightarrow e^- \nu$   | 949362   | 979500   | ± | 2000 |  |  |  |  |  |
| 13TeV $W^- \rightarrow \mu^- \nu$ | 963568   | 988560   | ± | 690  |  |  |  |  |  |

Table 113: Observed and Expected yield comparison for all signal selections.



**Figure 17:**  $\Sigma \bar{E_T}$  distribution in the muon and electron channel for the  $\sqrt{s} = 13$  TeV dataset.



**Figure 18:**  $\Sigma E_T$  distribution in the muon and electron channel for the  $\sqrt{s}$  = 13 TeV dataset.



**Figure 19:**  $\vec{E}_T^{miss}$  distribution in the muon and electron channel for the  $\sqrt{s} = 13$  TeV dataset.



**Figure 110:** Transverse mass distribution of the W boson in the muon and electron channel for the  $\sqrt{s} = 13$  TeV dataset.



**Figure 111:** Lepton pseudorapidity distribution in the muon and electron channel for the  $\sqrt{s} = 13$  TeV dataset.



**Figure 112:** Lepton transverse momentum distribution in the muon and electron channel for the  $\sqrt{s} = 13$  TeV dataset.



**Figure 113:** W transverse momentum distribution in the muon and electron channel for the  $\sqrt{s} = 13$  TeV dataset.

## 1.4.3 $\sqrt{s} = 5$ TeV dataset control plots

Control plots for the 5 TeV low- $\mu$  dataset are provided here after applying all corrections described in section ??, and after applying the selection described above in this section. In each figure, the right(left)-hand column shows distributions for the  $W^+$  ( $W^-$ ) process. The top (bottom) row shows the muon (electron) decay channel. In the ratio panels, the grey band is the total systematic uncertainty, whilst the brown band adds the MC statistical uncertainty in quadrature on top of it. In regions of the distributions insensitive to the modelling of  $p_T^W$  there is generally good agreement between data and predictions. The bulk of the  $m_T$  distribution is a typical example of distribution that is mostly insensitive to the modeling of  $p_T^W$ . Compared to the 13 TeV situation, the  $u_T$  distribution seems to indicate that the baseline simulation models  $p_T^W$  more satisfactorily.



**Figure 114:**  $\Sigma \bar{E_T}$  distribution in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.



**Figure 115:**  $\Sigma E_T$  distribution in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.



**Figure 116:**  $\vec{E}_T^{miss}$  distribution in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.



**Figure 117:** Transverse mass distribution of the W boson in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.



**Figure 118:** Lepton pseudorapidity distribution in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.



**Figure 119:** Lepton transverse momentum distribution in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.



**Figure 120:** W transverse momentum distribution in the muon and electron channel for the  $\sqrt{s} = 5$  TeV dataset.

#### 262 Bibliography

- Il Jan Kretzschmar. Samples and Physics modelling for low pile-up runs taken in 2017 and 2018.
  Tech. rep. ATL-COM-PHYS-2019-075. Geneva: CERN, Feb. 2019. URL: https://cds.cern.ch/record/2657141.
- Paolo Nason. "A New method for combining NLO QCD with shower Monte Carlo algorithms". In: *JHEP* 11 (2004), p. 040. DOI: 10.1088/1126-6708/2004/11/040. arXiv: hep-ph/0409146.
- 268 [3] Stefano Frixione, Paolo Nason, and Carlo Oleari. "Matching NLO QCD computations with Parton Shower simulations: the POWHEG method". In: *JHEP* 11 (2007), p. 070. DOI: 10.1088/1126-270 6708/2007/11/070. arXiv: 0709.2092 [hep-ph].
- [4] Simone Alioli et al. "NLO vector-boson production matched with shower in POWHEG". In: *JHEP* 0807 (2008), p. 060. poi: 10.1088/1126-6708/2008/07/060. arXiv: 0805.4802 [hep-ph].
- [5] Simone Alioli et al. "A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX". In: *JHEP* 06 (2010), p. 043. DOI: 10.1007/JHEP06(2010)043. arXiv: 1002.2581 [hep-ph].
- T. Sjöstrand, S. Mrenna, and P. Skands. "Brief Introduction to PYTHIA 8.1". In: *Comput. Phys. Comm.* 178 (2008), p. 85. doi: 10.1016/j.cpc.2008.01.036. arXiv: 0710.3820v1 [hep-ph].
- 278 [7] ATLAS Collaboration. "Measurement of the  $Z/\gamma^*$  boson transverse momentum distribution in pp collisions at  $\sqrt{s} = 7 \text{ TeV}$  with the ATLAS detector". In: JHEP 09 (2014), p. 145. DOI: 10.1007/ 280 JHEP09(2014)145. arXiv: 1406.3660 [hep-ex].
- [8] Piotr Golonka and Zbigniew Was. "PHOTOS Monte Carlo: A Precision tool for QED corrections in *Z* and *W* decays". In: *Eur. Phys. J.* C45 (2006), pp. 97–107. DOI: 10.1140/epjc/s2005-02396-4. arXiv: hep-ph/0506026.
- 284 [9] Stefan Höche et al. "NLO matrix elements and truncated showers". In: *JHEP* 1108 (2011), p. 123. 285 DOI: 10.1007/JHEP08(2011)123. arXiv: 1009.1127 [hep-ph].
- Richard D. Ball et al. "Parton distributions with LHC data". In: *Nucl. Phys. B* 867 (2013), p. 244.

  DOI: 10.1016/j.nuclphysb.2012.10.003. arXiv: 1207.1303 [hep-ph].
- ATLAS Collaboration. The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model. ATL-PHYS-PUB-2016-017. 2016. URL: https://cds.cern.ch/record/2206965.
- 291 [12] S. Catani and M. Grazzini. "An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC". In: *Phys. Rev. Lett.* 98 (2007), p. 222002. DOI: 10.1103/PhysRevLett.98.222002. arXiv: hep-ph/0703012 [hep-ph].
- 294 [13] S. Catani et al. "Vector boson production at hadron colliders: A Fully exclusive QCD calculation 295 at NNLO". In: *Phys. Rev. Lett.* 103 (2009), p. 082001. DOI: 10.1103/PhysRevLett.103.082001. 296 arXiv: 0903.2120 [hep-ph].

- <sup>297</sup> [14] L.A. Harland-Lang, A. D. Martin, P. Motylinski, R. S. Thorne. "Parton distributions in the LHC era: MMHT 2014 PDFs". In: *Eur. Phys. J. C* 75.5 (2015), p. 204. DOI: 10.1140/epjc/s10052-015-3397-6. arXiv: 1412.3989 [hep-ph].
- 300 [15] ATLAS Collaboration. "Measurement of  $W^{\pm}$  and Z-boson production cross sections in pp collisions at  $\sqrt{s} = 13 \text{ TeV}$  with the ATLAS detector". In: *Phys. Lett. B* 759 (2016), p. 601. Doi: 10.1016/j.physletb.2016.06.023. arXiv: 1603.09222 [hep-ex].
- 303 [16] ATLAS Collaboration. "Measurements of W and Z boson production in pp collisions at  $\sqrt{s}$  = 5.02 TeV with the ATLAS detector". In: *Eur. Phys. J. C* 79 (2019), p. 128. DOI: 10.1140/epjc/s10052-019-6622-x. arXiv: 1810.08424 [hep-ex].
- CMS Colaboration. "Measurement of the inclusive  $t\bar{t}$  cross section in pp collisions at  $\sqrt{s} = 5.02$  TeV using final states with at least one charged lepton". In: *JHEP* 03 (2018), p. 115. Doi: 10.1007/JHEP03 (2018) 115. arXiv: 1711.03143 [hep-ex].