(19) 日本国格路庁 (JP)

€ 撒 4 背 华 噩 4 3

(11)特許出價公開每号

特開平6-350974

(43)公開日 平成6年(1994)12月22日

(51) Int CL.		10000000000000000000000000000000000000	識別紀号 庁内整理番号	ī.	技術
H04N		3	6942 5C		
	26/93	2	4227 5C		
		Д	7337 5C		

権強強決 未路状 競状塔の数6 01

フレーム静止画像生成装置 (54) [発班の名称]

【目的】 フィールド静止画よりも垂直解像度を向上さ せたフレーム静止画像を生成する。 (51) [慰色]

【梅戌】 フィールド内補間器4は無直方向に1/2画 2は垂直1/2以上の精度の動きベクトル13とブロッ ク散差信号14を出力する。フィールド間補間器17は 動きベクトル13とインタレース位置を参照して補間画 像信号20を生成する。選択器21はプロック誤整信号 14を所定値と比較し、所定値以上であれば補間画像信 号5、所定値未満で且つ判定結果16が1/2の奇数倍 であれば補間画像信号20、それ以外の場合は補間画像 旨身5を出力する。選択器23は奇数フィールドでは画 20フィールド内補間を行なう。動きペクトル検出器 1 옟信号3、偶数フィールドでは避択器出力22をフレー ム画像信号24とする。

成してフィールド内補間信号として出力するフィールド て、動きベクトルおよび動き補償観差の大きさであるブ **劇信号として出力するフィールド間補間手段と、前記動** きベクトルの垂直動き成分が垂直画案間隔の1/2の奇 九且つ前記プロック觀差信号の大きさが所定値未満であ ルド信号と前配第N修正フィールド信号をフィールド周 をプロックと定義し、第Nフィールドのプロックの画案 位置から垂直方向に垂直画案間隔の1/2移動した位置 の画案値を前記第Nフィールドのフィールド内補間で生 内補間手段と、前記各プロック単位で前記第Nフィール ドの画案値と前配第Mフィールドの画案値を比較するこ とにより各プロックの動きである動きベクトルを検出し ロック観差信号を出力する動きベクトル検出手段と、前 記動きベクトルを参照して前配各プロックの画素位置か 5垂直方向に垂直画素間隔の1/2移動した位置の画案 に対応する前記第Mフィールドの画案をフィールド間予 **教倍であるか否かを判定する垂直動き判定手段と、各ブ** ロックについて前配垂直動きが1/2の奇数倍と判断さ **れば前記フィールド間予測信号を出力し、それ以外の場 合いは前記フィールド内補間信号を第N修正フィールド** 信号として出力する第1の選択手段と、前記第Nフィー **朝で切り替えて出力する第2の選択手段とを備えたこと** - ス画像信号を入力信号としてフレーム静止画像を生成 **ールドを水平および垂直に分割して構成した画衆の集合** して出力するファーム静止画像生成装置であって、フィ と特徴とするフレーム静止画像生成装置。 (全 10 月)

复号化して第Mフィールド信号及び第Nフィールド信号 【静水項2】第Mフィールドと第N(ただし、N=M-止画像を生成して出力するフレーム静止画像生成装置で 動き情報復号化手段と、前記入力画像信号と前記動きべ |またはN=M+1| フィールドで構成されるインタレ 化された信号を入力信号として、復号画像のフレーム静 あって、前記入力信号の第Nフィールドの動き補償符号 ックの画素位置から垂直方向に垂直画素間隔の1/2移 -- ス画像信号の第Nフィールドを、複数の画森からなる プロック単位で第Mフィールドを参照して動き補償符号 化されたプロックの動きベクトルを復号化して出力する クトルから第Mフィールド及び第Nフィールドの画案を として出力すると共に、靱差の大きさであるプロック説 整個号を出力する画素復号化手段と、前記動き補償符号 化された各プロックの画楽位置から垂直方向に垂直画案 間隔の1/2移動した位置の画案値を前配第Nフィール ド信号からフィールド内補間で生成したフィールド内補 間信号として出力するフィールド内画案補間手段と、前 記動さペクトルを参照して前記第Nフィールドの各プロ 動した位置の画案に対応する前配第Mフィールドの画案

存器平6-350974

8

|開水項1|| 第Mフィールドと第N (ただし、N=M-またはN=M+1)フィールドで存成されるインタレ

特許請求の範囲】

間隔の1/2の奇数倍であるか否かを判定する垂直動き 判定手段と、各ブロックについて前記垂直動きが1/2 の奇数倍と判断され且つ前配プロック欧整信号の大きさ し、それ以外の場合には前記フィールド内補間信号を第 と、前配第Nフィールド信号と前配第N修正フィールド 間手段と、前記動きベクトルの垂直動き成分が垂直画衆 が所定値未満であれば前配フィールド間予測信号を出力 N修正フィールド信号として出力する第1の選択手段

背号をフィールド周期で切り替えて出力する第2の選択 手段とを備えたことを特徴とするフレーム静止画像生成

2

成してフィールド内補間信号として出力するフィールド 内補間手段と、前配各ブロック単位で前配第Nフィール 5垂直方向に垂直画案間隔の1/2移動した位置の画案 に対応する前記第Mフィールドの画衆をフィールド間予 のプロックの動きベクトルとそれに隣接するプロックの 動きベクトルの差分ペクトルの大きさを計算して差分動 について前記垂直動き 量が1/2の奇数倍と判断され且 刺信号を出力し、それ以外の場合には前記フィールド内 の選択手段と、前配第Nフィールド信号と前配第N修正 フィールド信号をフィールド周期で切り替えて出力する - ス画像信号を入力信号としてフレーム静止画像を生成 ールドを水平および垂直に分割して構成した画券の集合 位置から垂直方向に垂直画案間隔の1/2移動した位置 の画案値を前配第Nフィールドのフィールド内補間で生 とにより各ブロックの動きである動きベクトルを検出し て、動きベクトルおよび動き補償観差の大きさであるプ ロック觀整信号を出力する動きペクトル検出手段と、前 **拠信号として出力するフィールド間補間手段と、前記動** きベクトルの垂直動き成分が垂直画案間隔の1/2の奇 数倍であるか否かを判定する垂直動き判定手段と、任意 つ前記プロック製差信号の大きさが所定値未満で且つ前 記差分動き 最が所定値未満であれば前配フィールド関予 をプロックと定義し、第Nフィールドのプロックの画案 ドの画案値と前記第Mフィールドの画案値を比較するこ 記動きベクトルを参照して前記各プロックの画茶位置か 楠間信号を修正第Nフィールド信号として出力する第1 1またはN=M+1) フィールドで構成されるインタレ して出力するフレーム静止画像生成装置であって、フィ き量として出力する差分動き量計算手段と、各プロック 【欝水項3】第Mフィールドと第N(ただし、N=M-40 8 ಜ

1またはN=M+1) フィールドで構成されるインタレ プロック単位で第Mフィールドを参照して動き補償符号 止画像を生成して出力するフレーム静止画像生成装置で あって、前記入力信号の第Nフィールドの動き補償符号 - メ画像信号の第Nフィールドを、複数の画券からなる 化された信号を入力信号として、復号画像のフレーム静 【請求項4】第Mフィールドと第N(ただし、N=M-

S

をフィールド間予測信号として出力するフィールド間補

第2の選択手段とを備えたことを特徴とするフレーム静

上画像生成装置。

3

幹型46-350974

間信号として出力するフィールド内画衆補間手段と、前 段と、各プロックについて前記垂直動き量が1/2の奇 として出力すると共に、段差の大きさであるブロック段 ド宿身かのフィールド内植間で生成してフィールド内植 をフィールド聞予測信号として出力するフィールド間補 判定手段と、任意のプロックの動きベクトルとそれに隣 定値未満で且つ前配差分動き量が所定値未満であれば前 **与と前記第N修正フィールド信号をフィールド周期で切** 間隔の1/2移動した位置の画媒値を前配第Nフィール ックの画案位置から垂直方向に垂直画案間隔の1/2移 動した位置の画案に対応する前配第Mフィールドの画案 後するブロックの動きベクトルの差分ベクトルの大きさ 数倍と判断され且つ前記プロック観整信号の大きさが所 して出力する第1の選択手段と、前記第Nフィールド信 動き情報復号化手段と、前配入力画像信号と前配動きべ **復号化して第Mフィールド信号及び第Nフィールド信号** 化された各ブロックの画紫位置から垂直方向に垂直画業 関手段と、前記動きベクトルの無直動き成分が垂直画菜 間隔の1/2の奇数倍であるか否かを判定する垂直動き を計算して差分動き量として出力する差分動き量計算手 記フィールド間予測信号を出力し、それ以外の場合には り替えて出力する第2の選択手段とを備えたことを特徴 化されたプロックの動きベクトルを復身化して出力する クトルから第Mフィールド及び第Nフィールドの画茶を 益信号を出力する國衆復号化手段と、前配動き補償符号 記動きベクトルを参照して前記第Nフィールドの各プロ 前記フィールド内補間信号を修正第Nフィールド信号と とするフレーム静止画像生成装置。

1またはN=M+1) フィールドで構成されるインタレ とにより各ブロックの動きである動きペクトルを検出し ロック観差信号を出力する動きベクトル検出手段と、前 記動きベクトルを参照して前配各ブロックの画案位置か きベクトルの垂直動き成分が垂直画楽間隔の1/2の奇 をプロックと定義し、第Nフィールドのプロックの画案 の画素値を前記第Nフィールドのフィールド内補間で生 成してフィールド内補間信号として出力するフィールド 内補間手段と、前配各プロック単位で前配第Nフィール て,助きペクトルおよび動き補償散差の大きさであるブ ら垂直方向に垂直画衆間隔の1/2移動した位置の画茶 に対応する前記第Mフィールドの画案をフィールド間予 **側信号として出力するフィールド間補間手段と、前記動** 数倍であるか否かを判定する垂直動き判定手段と、入力 信号の第Nフィールドをプロックよりも小さい複数の小 - ス画像信号を入力信号としてフレーム静止画像を生成 位置から垂直方向に垂直画案間隔の1/2移動した位置 【謝水項5】第Mフィールドと第N(ただし、N=M-**ールドを水平および垂直に分割して構成した画森の集合** して出力するフレーム静止画像生成装置であって、フィ ドの画案値と前記第Mフィールドの画案値を比較するこ

さが所定値未満であれば前記フィールド間予測信号を出 前記小ブロック観整信号の大きさが所定値未満であれば は前記フィールド内補間信号を修正第Nフィールド信号 **きである小ブロック観差信号を出力する小ブロック観差** 力し、前記垂直動き量が1/2の奇数倍と判断され且つ として出力する第1の選択手段と、前配第Nフィールド 信号と前記第N体正フィールド信号をフィールド周期で 切り替えて出力する第2の選択手段とを備えたことを特 の前記動きベクトルを用いて動き補償しその動き補償認 2の奇数倍と判断され且つ前記プロック観差信号の大き 前記フィールド間予測信号を出力し、それ以外の場合に ルドの画衆値と第Mフィールドの画案値を当該プロック 計算手段と、各プロックについて前配垂直動き量が1/ 徴とするフレーム静止画像生成装置。

間信号として出力するフィールド内画素補間手段と、前 笛と判断され且つ前記小ブロック製整信号の大きさが所 あって、前記入力信号の第Nフィールドの動き補償符号 化されたプロックの助きベクトルを復号化して出力する 動き情報復号化手段と、前配入力画像信号と前記動きべ **仮号化して第Mフィールド信号及び第Nフィールド信号** 楚信号を出力する画案復号化手段と、前記動き補償符号 間隔の1/2移動した位置の画案値を前記第Nフィール ックの画案位置から垂直方向に垂直画案間隔の1/2移 をフィールド聞予測信号として出力するフィールド間補 る小ブロック観差計算手段と、各ブロックについて前記 垂直動き量が1/2の奇数倍と判断され且つ前記プロッ .またはN=M+1) フィールドで構成されるインタレ プロック単位で第Mフィールドを参照して動き補償符号 化された信号を入力信号として、復号画像のフレーム静 クトルから 第Mフィールド及び第Nフィールドの画祭を として出力すると共に、観整の大きさであるプロック鹍 ド염号からフィールド内補間で生成してフィールド内補 記動きベクトルを参照して前記第Nフィールドの各プロ 動した位置の画案に対応する前記第Mフィールドの画案 間手段と、前記動きベクトルの垂直動き成分が垂直画素 間隔の1/2の奇数倍であるか否かを判定する垂直動き も小さい複数の小ブロックに構成し、前配各小ブロック ク觀楚信号の大きさが所定値未満であれば前記フィール ド間予測信号を出力し、前記垂直動き量が 1/2の奇数 それ以外の場合には前記フィールド内補間信号を修正第 【静水項6】第Mフィールドと第N(ただし、N=Mー **ース画像信号の第Nフィールドを、複数の画案からなる** 止画像を生成して出力するフレーム静止画像生成装置で 化された各ブロックの画案位置から垂直方向に垂直画案 判定手段と、入力信号の第Nフィールドをプロックより 単位で第Nフィールドの画案値と第Mフィールドの画幕 値を当該プロックの前記動きペクトルを用いて動き補償 しその動き補償段差である小プロック製差信号を出力す 定値未満であれば前記フィールド間予測信号を出力し、 ន 8

記第Nフィールド信号と前記第N修正フィールド信号を フィールド周期で切り替えて出力する第2の選択手段と を備えたことを特徴とするフレーム静止画像生成装置。 [発明の詳細な説明]

[0001]

身をフレーム静止表示するために、偶数フィールドと奇 【産業上の利用分野】本発明は、インタレース動画像信 数フィールドかのファーム静止画を構成するファーム静 止画像生成装置に関するものである。

[0002]

構成されている。従って、1フレームをそのまま静止表 とならない。例えば、移動する矩形図形は図5に示すよ うに、横方向にずれて表示される。そこで、従来のフレ 【従来の技術】 インタレース(飛び越し走査)された動 画像信号の1フレームは、異なる2通りの時刻の要案で に同じフレームで表示されることになり、静止した画像 **- ム静止画像生成装置では、一方のフィールドをフィー** ルド内補間することによった、ソレーム画像を構成した 示 (フレーム表示) すると、2つの異なる画面が、同時

2はメモリ、3はメモリ出力である画像信号、4は垂直 画菜補間を行うフィールド内補間器、5はフィールド内 ッチ、711生成されたフレーム画像信号、8はフィール 【0003】従来のフレーム静止画像生成装置のプロッ 補間器4で生成された補間画像信号、6は切り替えスイ ク図を図6に示す。同図において、1は入力画像信号、 ドの奇数/偶数を表すフィールドの切替信号である。

田書では、1フレームを構成する前半フィールドを偶数 [0004]以上のように構成された、独米のフレーム フィールドと呼び、後半フィールドを奇数フィールドと 静止画像生成装置の動作について説明する。なお、本明 **呼ぶことにする。**

信号5として出力する。 黒丸の画素と白丸の画案のいず はメモリ2に蓄積され、所定の偶数フィールドの画像信 **号3が繰り返し出力される。フィールド内補間器4は画** 俊信号3を垂直方向に1/2画秦のフィールド内補間を 行い、補間画像信号5として出力する。即ち、図7に黒 丸で示す偶数フィールドの実在画案 (画像信号3) から 白丸で示す画業を補間生成し、白丸の画素値を補間画像 れをフレーム画像信号7として出力するかは、外部から 与えられるフィールド切替盾号8によってスイッチ6の 指令によって行なわれる。即ち、偶数フィールドでは画 俊信号3を出力し、奇数フィールドでは補間画像信号5 を出力するように切替えて、同じ偶数フィールドの画素 から構成されるので、図5の様に2つの画面が合成され た画像ではなく、完全に静止した静止画を表示すること [0005] 偶数フィールドの画案からなる画像信号1 この様にしてファーム画像信号では同じ時刻の画茶のみ ができる。この静止画はフィールド静止画と呼ばれる。 のみからフレーム画像信号7を構成することができる。

化は、準静止画の様に動きの少ない画像信号の場合にお 「発明が解決しようとする課題】しかしながら、上記の 策な構成のフレーム静止画像生成装置においては、1フ **垂直解像度が1フィールドの解像度と同じ、即ち1フレ** ームの垂直解像度の1/2になる。この垂直解像度の劣 イールドの画繋から 1ファームの画繋を生成するので、 いては視覚的に顕著になる。

【0007】本発明は、上記問題点に鑑み、フレーム静 上画の様に2つの画面が合成されることなく、且つフィ 一ルド静止画よりも垂直解像度を向上させた静止画像を 表示することができるフレーム静止画像生成装置を提供 することを目的とする。

[0008]

び垂直に分割して構成した画業の集合をプロックと定義 1) フィールドで構成されるインタレース画像信号を入 力信号としてフレーム静止画像を生成して出力するフレ **一ム静止画像生成装置であって、フィールドを水平およ** 【瞑題を解決するための手段】以上の瞑題を解決するた かに、本発明のフレーム静止画像生成装置は、第Mフィ -ルドと第N (ただし、N=M-1、またはN=M+

し、第Nフィールドのブロックの画衆位置から垂直方向 Nフィールドのフィールド内補間で生成してフィールド **芍植聞信号として出力するフィールド内補聞手段と、前** 記各プロック単位で前配第Nフィールドの画索値と前配 **る第1の選択手段と、前配第Nフィールド信号と前配第** N体正フィールド信号をフィールド周期で切り替えて出 に垂直画桒聞隔の1/2移動した位置の画桒値を前配第 第Mフィールドの画案値を比較することにより各プロッ クの動きである動きベクトルを検出して,動きベクトル および動き補償設差の大きさであるブロック設差信号を 出力する動きベクトル検出手段と、前配動きベクトルを 参照して前配各プロックの画案位置から垂直方向に垂直 画案間隔の1/2移動した位置の画案に対応する前記第 Mフィールドの画案をフィールド間予測信号として出力 するフィールド間補間手段と、前記動きベクトルの垂直 動き成分が垂直画架間隔の1/2の奇数倍であるか否か を判定する垂直動き判定手段と、各ブロックについて前 **記垂直動きが1/2の奇数倍と判断され且つ前記プロッ** ク観益信号の大きさが所定値未満であれば前配フィール ルド内補間信号を第N修正フィールド信号として出力す ド間予測信号を出力し、それ以外の場合には前配フィー カする第2の選択手段とを備えて構成されている。 \$

[作用] 本発明は上記の構成により、フィールド静止画 の最高2倍の垂直解像度が得ることができる。以下、そ

る。フィールド内補間手段では、各プロックの画案位置 かちインダレースのオフセットの値である垂直画茶間隔 [0010]最初に謝水項1記載の発明について説明す S

Nフィールド信号として出力する第1の選択手段と、前

ය

プロックに構成し、前記各小プロック単位で第Nフィー

画菜A'および画菜C'の画菜値を使用する。垂直動き として出力する。図8は第Mフィールドと第Nフィール フィールドの実在画案を表し、白丸が第Mフィールドの フィールドをファーム表示するためには画券Cや画券E が必要であり、これらの四角の画繋が前記フィールド内 国森楠間手段で補間生成される。 動きベクトル検出手段 ではプロック単位で第Nフィールドの画案と第Mフィー ロック観差信号として出力する。図8で三角印は第Mフ して第Nフィールドの補間画案位置の画案を第Mフィー **鼠計算手段では動きベクトルの垂直動き鼠がフィールド** 画案間隔の1/2の奇数倍の場合であるかどうかを判定 する。1/2の奇数倍でなければ、前記フィールド関補 間手段で予測に使用する画案値が第Mフィールドの垂直 ルド内補間手段で補間生成した場合と垂直解像度が同じ ことは、前記フィールド間補関手段の画茶値の予測精度 が悪いことを殺している。 従って、この2つの何れかの 号を出力するように第1の選択手段で切替えることによ り、第Nフィールドの権間画案の画質を高めることがで きる。よって、第2の選択手段で第Nフィールド信号と フィールド内補間手段で生成し、フィールド内補間信号 ドの画案の位置関係を示す図である。同図で黒丸が第N **與在画森を表し、生成すべき画森を四角印で表す。第N** ルドの画案を比較し、その差が最少となる相対位置を動 きベクトルとして出力し、またその際の差の大きさをブ イールドの無直補間画案であり、矢印は動きベクトルを **表す。フィールド間補間手段は前記動きベクトルを参照** ルドの画珠から予測し、その予測値をフィールド聞予測 **信号として出力する。即ち、図8の矢印で示す動きベク** それ以外の場合は垂直解像度が高いフィールド間予測信 ルドの画像信号とすれば、垂直解像度が高く且つ静止し の1/2だけ移動した位置の第Nフィールドの画案値を トルに対して、画衆のおよび画衆Eの予測値として各々 補間によって補間生成される画衆値となり、前配フィー になる。また、前記プロック設整信号の大きさが大きい 条件が成立する場合はフィールド内補間信号を出力し、 筑N修正フィールド信号をフレームを構成する両フィ~

力信号に対しても、第1の発明と同様の効果を得ること 【0011】 請求項2記載の発明は、入力信号がブロッ て、入力信号を動き情報復号化手段で復号化することに より、動きベクトルが生成できる。また、前記入力画像 **信号を画案復号化手段で復号化することにより、第1の** することができる。以上の動作説明より、前記動き情報 5。また、その他の手段は第1の発明の各手段と同じで ルドのインタレース画像信号とプロック観差信号を生成 復号化手段と前記画案復号化手段で第1の発明の動きべ ある。従って、プロック単位で動き補償符号化された入 発明の入力信号に対応する第Mフィールドと第Nフィー ク単位で動き補償符号化されている場合である。従っ クトル検出手段の動作が実現できることが明らかであ

と大きな画質劣化が発生する。例えば、図9(a)は平 の選択手段でフィールド間予測信号とフィールド内補間 信号の何れを出力するかを切替える条件に差分動き量を **自加したものである。 請求項1または請求項2記載の発** [0012] 請求項3および請求項4記載の発明は、請 **状項1記載の発明または請求項2記載の発明のフレーム** 明では鞣液するブロックで動きベクトルが大きく異なる り、図形の一部が異なる動きベクトルで動き補償される 作団辺肪が大甲方向に物物する倒かあり、中作団辺形の 大部分が含まれるプロックはフィールド間予測信号で静 静止画像生成装置に整分動き量計算手段を付加し、第1 場合でもフィールド間予測信号が出力されることがあ 止するが、「鞣板プロックの平行回辺形の一部は図9

5請求項4記載の発明では、隣接するブロックで動きべ に、第1の選択手段でフィールド内補間信号を出力する (b) に示すように静止しない。従って、請求項3およ クトルが大きく異なる場合 (差分動き量が大きい場合) ことにより、前記の問題を解決している。

を追加したものである。 請求項1や請求項2記載の発明 では、ブロック内に異なる動きをする小図形がある場合 **南省されたフィールド間予測信号が出力されることがあ** り、図形の小図形が静止しない場合には大きな画質劣化 が発生する。例えば、図10 (a) は移動する平行四辺 形の右上に静止した小四角形が存在する例である。プロ が、小四角形は静止しない。そこで、ブロックを上下及 び左右に2分割して小ブロックを構成し、小ブロック設 **楚計算手段で各小ブロック毎に小ブロック誤差信号を計** [0013] 請求項5および請求項6記載の発明は、請 **水項1または請求項2記載の発明のフレーム静止画像生** 成装置に小ブロック観差計算手段を付加し、第1の選択 手段でフィールド間予測信号とフィールド内補間信号の 何れを出力するかを切替える条件に小ブロック観差信号 でも当該ブロック内の大きな図形の動きベクトルで動き **身を切替える場合には、フィールド間予測信号を選択す** ック単位でフィールド間予測信号とフィールド内補間信 ると図10 (b) に示すように平行四辺形は静止する

信号が大きい小ブロックは第1の選択手段でフィールド 算する。その結果、図10(b)の右上の小ブロックは ック観整信号は小さいくなる。従って、小ブロック観巻 小ブロック観差信号が大きく、他の小ブロックの小ブロ 内補間信号を出力することにより、前記の問題を解決し

たフレーム静止画を実現することができる。

[0014]

(実施例】以下、本発明のフレーム静止画像生成装置の は 植例を、 図面に 基心い に説明する。

て、1は入力画像信号、2,10はメモリ、3,11は メモリ出力である画像信号、4は垂直画粜補間を行うフ [0015] 図1は本発明のフレーム静止画像生成装置 の第1の実施例におけるブロック図である。 同図におい S

号、20はフィールド間補間器17で生成された補間画 與益信号、15は動きベクトル13の垂直方向の動き成 する垂直動き判定器、16は垂直動き判定器15の判定 結果を表わす信号、17はフィールド間画衆補間を行う 参照画案の位置を示すアドレス信号、19は参照画案信 俊信号、21は選択器、22は選択器21の出力、23 は選択器、24は生成されたフレーム画像信号、8はフ ィールド内補閒器、5はフィールド内補閒器4で生成さ れた補間画像信号、12は動きベクトルを検出する動き ペクトル検出器、13は動きベクトル、14はプロック 分が垂直画素間隔の1/2の奇数倍であるか否かを判定 フィールド関補間器、18はフィールド間予測のために ハールドの奇数/偶数を表すフィールド切替信号であ

間画像信号5として出力する。一方、偶数フィールドの 画案はメモリ10に蓄積され、所定の偶数フィールドの [0016]以上の様に構成された実施例について、以 2に蓄積され、所定の奇数フィールドの画像信号3が繰 を垂直方向に1/2画案のフィールド内補関を行い、補 器12は画像信号3と画像信号11を数画探ずつ画楽位 置をずらしながらプロック単位で比較し、両者の差が最 り返し出力される。フィールド内補聞器4は画像信号3 画像信号11が繰り返し出力される。動きベクトル検出 る。なお、この動きベクトル検出の垂直方向の検出精度 **ドその動作を説明する。奇数フィールドの画索はメモリ** また、その際の差をプロック観差信号14として出力す 少となる相対位置を動きベクトル13として出力する。 は垂直フィールド画素間隔の1/2以上である。

3の垂直成分の大きさが垂直画楽間隔の1/2の奇数倍 であるか否かを判定し、判定結果16を出力する。フィ る偶数フィールドの画楽位置を示すアドレス信号 18を 生成し、メモリ10からアドレス信号18に対応する参 この補間画像信号20は、奇数フィールドの時刻におけ る偶数フィールドの各画衆位置の画衆値を、偶数フィー **ールド間補間器 1 7 は、動きベクトル 1 3 とインタレー** 【0017】垂直動き判定器15では、動きペクトル1 スによる垂直1/2画案の動きを加算した動きに対応す 照画業19を補間画像信号20として出力する。即ち、 ルドの画案値から予測した画案値である。選択器21

は、プロック靱整信号14を所定値と比較し、所定値以 た、プロック観差信号14が所定値未満の場合には、判 上であれば補間画像信号5を選択器出力22とする。ま 定結果16が画案間隔の1/2の奇数倍であれば補間画 像信号20を選択器出力22とし、1/2の奇数倍以外 であれば補間画像信号5を選択器出力22とする。選択 器23は切替信号8が奇数フィールドを示す場合は画像 **信号3をフレーム画像信号24として出力し、切替信号** 8 が偶数フィールドを示す場合は選択器出力22をフレ 一ム画像信号24として出力する。

ය [0018] 以上のように、本実施例によれば、フィー

存取平6-350974

9

ルド内補間器4、動きベクトル検出器12、垂直動き判 定器15、フィールド間補間器17、選択器21と選択 器23を備え、第選択器23で第Nフィールド信号(奇 数フィールド信号)と第N修正フィールド信号をフレー

て、30は入力画像信号、31は動き情報復号化器、1 【0019】図2は本発明のフレーム静止画像生成装置 **の第2の実施例におけるブロック図である。同図におい 奥現することができる。** 2

り、垂直解像度が高く、且の静止したフレーム静止画を

ムを構成する両フィールドの画像信号とすることによ

ルド間補間器、18はフィールド間予測のために参照画 号、15は動きベクトル13の垂直方向の動き成分が垂 直画媒間隔の1/2の奇数倍であるか否かを判定する垂 直動き判定器、16は垂直動き判定器15の判定結果を **芸信号、2, 10はメモリ、3はメモリ2の出力である** 器、5はフィールド内補間器4で生成された補間画像信 森の位置を示すアドレス信号、19は参照画禁信号、2 24は生成されたフレーム画像信号、8はフィールドの 号化器32で復号化された画像信号、14はブロック語 表わす信号、17はフィールド間画案補間を行うフィー 3は動きベクトル、32は画菜復身化器、33は画茶復 号、21は選択器、22は選択器出力、23は選択器、 画像信号、4は垂直画案補間を行うフィールド内補間 0はフィールド間補間器17で生成された補関画像信 ន

[0020]以上の様に構成された実施例について、以 ルド内補間器4、垂直動き判定器15、フィールド間予 測器17、選択器21、選択器23の動作は第1の実施 ドその動作を説明する。メモリ2、メモリ10、フィー 奇数/偶数を表すフィールド切替信号である。 例と同じであるため、説明を省略する。

【0021】入力信号30はブロック単位で符号化され 0は動き情報復号化器31で復号化され、動きベクトル 13が出力される。画案復号化器32は、入力信号30 ルドの画案はメモリ2に記録され、偶数フィールドの画 で入力信号30を復号化する際に、動き補償の残差信号 をプロック毎の和であるプロック段整信号14として計 **算して出力する。以降の動作は上述した実施例と同じで 参照する動き補償符号化されており、その動きベクトル** と動きベクトル13を用いて画像信号を復号化し、画像 案はメモリ10に記録される。また、画衆復号化器32 た信号である。その奇数フィールドは偶数フィールドを も動き補償製整と同時に符号化されている。入力信号3 信号33を出力する。なお、画像信号33の奇数フィー

9、動き補償符号化された入力信号30についても、第 [0022]以上のように、本実施例によれば、動きべ 1の実施例同様に、高解像度のフレーム静止画像を生成 クトル検出器31と画案復号化器32を備えることによ することができる。

【0023】図3は本発明のフレーム静止画像生成装置

段差信号、15は動きペクトル13の垂直方向の動き成 分が垂直画案間隔の1/2の奇数倍であるか否かを判定 **苗果を表わす信号、40は動きペクトルの差分の動き**量 ドレス信号、19は参照画案信号、20はフィールド間 て、1は入力画像信号、2, 10はメモリ、3, 11は メモリ出力である画像信号、4は垂直画菜補間を行うフ **ィールド内補間器、5はフィールド内補間器4で生成さ** れた補間画像信号、12は動きベクトルを検出する動き する垂直動き判定器、16は垂直動き判定器15の判定 を計算する差分動き量計算器、41は差分動き量、17 2 2は選択器21の出力、23は選択器、24は生成さ れたファーム画像信号、8はフィールドの奇数/偶数を ペクトル検出器、13は動きペクトル、14はプロック の第3の実施例におけるプロック図である。同図におい はフィールド関画衆補間を行うフィールド間補関器、、 8 はフィールド間予測のために参照画業の位置を示す7 補間器17で生成された補間画像信号、21は選択器 **数すフィールド切替信号である。**

質劣化が発生する。選択器21はブロック観整信号14 Fその動作を説明する。メモリ2、メモリ10、フィー 【0024】以上の敬に構成された実施例について、以 ルド内補間器4、動きベクトル検出器12、垂直動き判 **定器15、フィールド間予測器17、選択器23の動作** 【0025】 差分動き量計算器40は動きベクトル13 大きさである差分動き 岳41を計算する。 差分動き 量4 1 が大きい場合は隣接するブロックとの動きが大きく異 なることを示し、その場合に隣接するブロックに含まれ を所定値と比較し、所定値以上であれば補間画像信号5 を入力し、隣接するプロックでの動きベクトルの差分の 5 画像の一部が当該プロックに含まれていれば大幅な画 は第1の実施例と同じであるため、説明を省略する。

を選択器出力22とする。また、プロック観差信号14

が所定値以上、または判定結果16が画案間隔の1/

の奇数倍以外であれば補間画像信号5を避択器出力22 とする。前記以外の場合は、更に、相対動き 量41を所 **定値と比較し、所定値以上であれば補間画像信号5を避** 収器出力22とし、所定値未満であれば補間画像信号2

き品計算器40で差分動き品41を計算し、差分動き品 [0026]以上のように、本実施例によれば、差分動 4 1の大きさによってフィールド関動き補償とフィール ド内動き補償を切替えることにより、複数のプロックに 含まれる画像のフレーム静止表示の画質を向上させるこ 0を選択器出力22とする。

6

【0027】なお、本例の差分動き量計算器を用いた実 **梅別は、図1に示した構成の応用例であるが、図2に示** した構成においても同様に応用することができ、この場 合には、差分計算器の入力は、動き情報複号化器31の ができる。 8 【0028】図4は本発明のフレーム静止画像生成装置

C、1 は入力画像信号、2,10 はメモリ、3,11 は 段差信号、15は動きベクトル13の垂直方向の動き成 ルド間補閒器17で生成された補間画像信号、21は選 メモリ出力である画像信号、4は垂直画素補間を行うフ ィールド内補間器、5はフィールド内補間器4で生成さ れた補間画像信号、12は動きベクトルを検出する動き 分が垂直画案間隔の1/2の奇数倍であるか否かを判定 結果を示す信号、50は小プロック単位の誤差を計算す 器、18はフィールド間予測のために参照画券の位置を 示すアドレス信号、19は参照画楽信号、20はフィー **炽器、22は選択器出力、23は選択器、24は生成さ** の第4の実施例におけるプロック図である。同図におい ベクトル検出器、13は動きベクトル、14はプロック する垂直動き判定器、16は前記垂直動き判定器の判定 れたフレーム画像信号、8はフィールドの奇数/偶数を る小ブロック観差計算器、51は小ブロック観差信号、 17はフィールド間画琳補間を行うフィールド間補間

【0029】以上の様に構成された実施例について、以 ルド内補閒器4、動きベクトル検出器12、垂直動き判 定器15、フィールド間予測器17、選択器23の動作 下その動作を説明する。メモリ2、メモリ10、フィー は第1の実施例と同じであるため、説明を省略する。

ន

表すフィールド切替信号である。

する。 小ブロック誤差信号 5.1 が大きい場合には、その に分割し、小ブロック単位で動きベクトル13で示され 小プロックの動きが同じプロックに含まれる他の小プロ 【0030】小ブロック観差計算器50は、画像信号3 を入力されるブロックの大きさよりも小さい小ブロック 5位置の画像信号11の画案と比較し、その小ブロック の差分値の大きさを小ブロック誤差信号51として出力 ックの動きと異なる場合であり、その小ブロックはフィ ールド内補間を行わないと画質劣化が発生する。従っ ಜ

小ブロック単位で小ブロック観差信号51を所定値と比 こ、選択器 2 1 はプロック観差信号 1 4を所定値と比較 の選択器出力22とする。また、ブロック誤差信号14 数し、所定値以上であれば補間画像信号5を当該小ブロ ックの選択器出力22とし、所定値未満であれば補間画 /2の奇数倍以外であれば補間画像信号5を当該プロッ し、所定値以上であれば補間画像信号5を当該プロック が所定値未満の場合には、判定結果16が画案間隔の1 クの選択器出力22とする。更に、プロック概差信号: 4 が所定値以上で画案間隔が1/2の奇数倍であれば、

[0031]以上のように、本実施例によれば、小ブロ 、、小ブロック観差信号51の大きさによって小ブロッ を切替えることにより、ブロックと異なる動きの小画像 ク単位でフィールド問動き補償とフィールド内動き補償 を含む画像のフレーム静止表示の画質を向上させること 像信号20を当該小プロックの選択器出力22とする。 ック観差計算器50で小ブロック観差信号51を計算

[図3] 本発明のフレーム静止画像生成装置の第3の実 [図4] 本発明のフレーム静止画像生成装置の第4の実

権 倒に おける プロック 図

特開平6-350974

8

た実施例は、図1に示した構成の応用例であるが、図2 の場合には、小ブロック観差計算器は、画像信号3を入 **ちされるプロックの大きさよりも小さい小ブロックに分** 割し、小ブロック単位で動きベクトル13で示される位 の小ブロックの差分値の大きさを小ブロック誤差信号と 0032]なお、本例の小ブロック誤差計算器を用い に示した構成においても同様に応用することができ、 置の画像信号 (メモリ10の出力)の画素と比較し、 して、第1の選択器21~送出してやればよい。

[図5] 動画をそのままフレーム静止表示した例を示す

複倒におけるプロック図

【図6】従来のフレーム画像生成装置のブロック図 【図7】 フィールド内補間の画媒位置の説明図

> 0033]なお、本実施例においては、1フレームを 前半を奇数フィールドとしてもよい。また、第2の発明 0実施例において、動き情報復号化器31や画案復号化 器32を通常再生の場合の復身化装置と共用化してもよ 集成するフィールドの前半を偶数フィールドとしたが、

[0034]

ន の画質向上にも利用できるので、その実用的効果は大き 静止画像生成装置によれば、動画の高画質なフレーム静 発明の効果】以上説明したように、本発明のフレーム 止画を生成することができ、またこの技術はスロー再生

[図面の簡単な説明] いものがある。

【図1】本発明のフレーム静止画像生成装置の第1の実

[図2] 本発明のフレーム静止画像生成装置の第2の実 **複例におけるプロック図**

[図10] ブロックに異なる動きの小画像が含まれる場 [図9] 隣接するプロックの画像が含まれる場合のフレ 8のファーム静止画像の説明図 - ム静止画像の説明図 [年号の説明]

[図8] 第Mフィールドと第Nフィールドの画繋位置の

関係を示す図

2

2, 10 メモリ

4 レメークド内権関略

動きペクトル核出器 垂直動き判定器 2 ເດ

レムールド間補間器

1 3

21,23 選択器

動き情報復号化器 30

画案饭号化器 32

差分動き品計算器 40

小ブロック製差計算器 20

[図4]

16

[図6]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY