

EECS 16B

Designing Information Devices and Systems II Lecture 18

Prof. Yi Ma

Department of Electrical Engineering and Computer Sciences, UC Berkeley, yima@eecs.berkeley.edu

Outline

- Orthonormalization (Gram-Schmidt) and QR Decomposition
- Upper Triangularization

Gram-Schmidt Procedure (Summary)

$$\vec{z}_{1} = \vec{d}_{1} \qquad \qquad \vec{q}_{1} = \vec{z}_{1} / ||\vec{z}_{1}||$$

$$\vec{z}_{2} = \vec{d}_{2} - (\vec{d}_{2}^{\top} \vec{q}_{1}) \vec{q}_{1} \qquad \qquad \vec{q}_{2} = \vec{z}_{2} / ||\vec{z}_{2}||$$

$$\vec{z}_{3} = \vec{d}_{3} - (\vec{d}_{3}^{\top} \vec{q}_{1}) \vec{q}_{1} - (\vec{d}_{3}^{\top} \vec{q}_{2}) \vec{q}_{2} \qquad \qquad \vec{q}_{3} = \vec{z}_{3} / ||\vec{z}_{3}||$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$\vec{z}_{k} = \vec{d}_{k} - \sum_{i=1}^{k-1} (\vec{d}_{k}^{\top} \vec{q}_{j}) \vec{q}_{j} \qquad \qquad \vec{q}_{k} = \vec{z}_{k} / ||\vec{z}_{k}||$$

Claim: 1.
$$\vec{z}_i^{\top} \vec{q}_i = 0$$
 for all $i < j$ 2. $\|\vec{z}_i\| = \vec{d}_i^{\top} \vec{q}_i$

Gram-Schmidt & QR Decomposition

$$\vec{d}_{1} = (\vec{d}_{1}^{\top} \vec{q}_{1}) \vec{q}_{1} \qquad (r_{ij} = \vec{d}_{j}^{\top} \vec{q}_{i})$$

$$\vec{d}_{2} = (\vec{d}_{2}^{\top} \vec{q}_{1}) \vec{q}_{1} + (\vec{d}_{2}^{\top} \vec{q}_{2}) \vec{q}_{2}$$

$$\vec{d}_{3} = (\vec{d}_{3}^{\top} \vec{q}_{1}) \vec{q}_{1} + (\vec{d}_{3}^{\top} \vec{q}_{2}) \vec{q}_{2} + (\vec{d}_{3}^{\top} \vec{q}_{3}) \vec{q}_{3} \qquad [\vec{d}_{1}, \vec{d}_{2}, \dots, \vec{d}_{k}] = [\vec{q}_{1}, \vec{q}_{2}, \dots, \vec{q}_{k}] \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{kk} \end{bmatrix}$$

$$\vec{d}_{k} = (\vec{d}_{k}^{\top} \vec{q}_{1}) \vec{q}_{1} + (\vec{d}_{k}^{\top} \vec{q}_{2}) \vec{q}_{2} + \cdots + (\vec{d}_{k}^{\top} \vec{q}_{k}) \vec{q}_{k}$$

QR, Diagonalization, Triangularization

QR Decomposition for
$$D \in \mathbb{R}^{n \times k}$$
: $[\vec{d_1}, \vec{d_2}, \dots, \vec{d_k}] = [\vec{q_1}, \vec{q_2}, \dots, \vec{q_k}]$ $\begin{vmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{kk} \end{vmatrix}$

Diagonalization for
$$A \in \mathbb{R}^{n \times n}$$
: $A[\vec{v}_1, \ldots, \vec{v}_n] = [\lambda_1 \vec{v}_1, \ldots, \lambda \vec{v}_n] = [\vec{v}_1, \ldots, \vec{v}_n] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$

Triangularization for
$$A \in \mathbb{R}^{n \times n}$$
: $A[\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n] = [\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n]$

$$\begin{vmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{nn} \end{vmatrix}$$

Diagonalization v.s. Triangularization

Conditions for diagonalization of
$$A \in \mathbb{R}^{n \times n}$$
: $V^{-1}AV = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$

Upper-Triangularization

Upper-triangularization for
$$A \in \mathbb{R}^{n \times n}$$
: $U^{-1}AU = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{nn} \end{bmatrix}$

Eigenvalues of an upper-triangular matrix:

Upper-Triangularization

Solution to an upper-triangular system of linear equations:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Upper-Triangularization

Solution to an upper-triangular system of linear differential equations:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{nn} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} u(t)$$

Upper-Triangularization (Schur Decomposition)

Claim: For any matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues, there exists an orthogonal matrix: $U \in \mathbb{R}^{n \times n}$ such that $U^{\top}U = I$ and

$$R = U^{-1}AU = U^{\top}AU = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{nn} \end{bmatrix}$$

Proof:

Upper-Triangularization (Schur Decomposition)

Claim: For any matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues, there exists an orthogonal matrix: $U \in \mathbb{R}^{n \times n}$ such that $U^{\top}U = I$ and $R = U^{-1}AU = U^{\top}AU$ is upper-triangular.

Proof (continued):

Upper-Triangularization (Schur Decomposition)

Claim: For any matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues, there exists an orthogonal matrix: $U \in \mathbb{R}^{n \times n}$ such that $U^{\top}U = I$ and $R = U^{-1}AU = U^{\top}AU$ is upper-triangular.

Proof (continued):