Import pandas and required dataset csv

import pandas as pd

data = pd.read\_csv("/workspace/nvidia-examples/cnn/data/NYPD\_Shooting\_Inci

Show the values of the dataset

data.head()

| • |   | INCIDENT_KEY | OCCUR_DATE | OCCUR_TIME | BORO     | PRECINCT | JURISDICTION_CODE |
|---|---|--------------|------------|------------|----------|----------|-------------------|
|   | 0 | 24050482     | 08/27/2006 | 05:35:00   | BRONX    | 52       | 0.0               |
|   | 1 | 77673979     | 03/11/2011 | 12:03:00   | QUEENS   | 106      | 0.0               |
|   | 2 | 203350417    | 10/06/2019 | 01:09:00   | BROOKLYN | 77       | 0.0               |
|   | 3 | 80584527     | 09/04/2011 | 03:35:00   | BRONX    | 40       | 0.0               |
|   | 4 | 90843766     | 05/27/2013 | 21:16:00   | QUEENS   | 100      | 0.0               |

## Broader scope of the dataset

```
date = data.sort_values(by=['OCCUR_DATE'])
date.max
```

| <br>bound me | ethod NDFram | eadd_numer   | ic_operatio | ns. <locals>.m</locals> | nax of |
|--------------|--------------|--------------|-------------|-------------------------|--------|
| INCIDENT_    | _KEY OCCUR_  | DATE OCCUR_T | IME B       | ORO PRECINCT            | _ \    |
| 4437         | 9953247      | 01/01/2006   | 03:30:00    | BR00KLYN                | 67     |
| 16838        | 139716503    | 01/01/2006   | 12:30:00    | BR00KLYN                | 77     |
| 14553        | 9953246      | 01/01/2006   | 05:51:00    | BRONX                   | 44     |
| 21448        | 9953250      | 01/01/2006   | 02:34:00    | QUEENS                  | 114    |
| 21506        | 9953245      | 01/01/2006   | 02:00:00    | BRONX                   | 48     |
|              |              |              |             |                         |        |
| 12562        | 206891917    | 12/31/2019   | 20:14:00    | BR00KLYN                | 73     |
| 22540        | 222473262    | 12/31/2020   | 23:45:00    | MANHATTAN               | 33     |

13915 1.041343e+06 189493.562500 40.686617 -73.794141 BLACK 11511 BLACK 1.040590e+06 191768.156250 40.692865 -73.796836 6996 WHITE HISPANIC 1.009943e+06 244586.390625 40.837979 -73.907148 Lon Lat 4437 POINT (-73.94570651699996 40.65101399800005)

POINT (-73.95605150499995 40.67215420900004)

POINT (-73.91627635899994 40.83599040100006)

POINT (-73.93383258499995 40.77486094100004)

Plot histogram of VIC\_RACE

16838 14553

21448

import matplotlib.pyplot as plt import numpy as np %matplotlib inline

```
race = data['VIC_RACE']
```

## Plot histogram of the Races

```
p = plt.hist(race, density=False, bins=20)
plt.xticks(rotation ='vertical')
plt.show()
```



```
pieC = data.groupby(['VIC_RACE']).size()
pieC = pd.DataFrame(pieC)
pieC
```

0

Pie Chart of the Race.



age = data['VIC AGE GROUP']

```
p_age = plt.hist(age, density=False, bins=20)
plt.xticks(rotation ='vertical')
plt.show()
```



precinct = data['PRECINCT']

p\_precinct = plt.hist(precinct, density=False, bins=20)
plt.xticks(rotation ='vertical')
plt.show()



import pandas as pd

# Load the dataset
file\_path = './NYPD\_Shooting\_Incident\_Data\_\_Historic\_.csv'
shooting\_data = pd.read\_csv(file\_path)

# Display the first few rows of the dataset
shooting data.head()

|   | INCIDENT_KEY | OCCUR_DATE | OCCUR_TIME | B0R0   | LOC_OF_OCCUR_DESC | PRECINCT | JUI |
|---|--------------|------------|------------|--------|-------------------|----------|-----|
| 0 | 228798151    | 05/27/2021 | 21:30:00   | QUEENS | NaN               | 105      |     |
| 1 | 137471050    | 06/27/2014 | 17:40:00   | BRONX  | NaN               | 40       |     |
| 2 | 147998800    | 11/21/2015 | 03:56:00   | QUEENS | NaN               | 108      |     |
| 3 | 146837977    | 10/09/2015 | 18:30:00   | BRONX  | NaN               | 44       |     |
| 4 | 58921844     | 02/19/2009 | 22:58:00   | BRONX  | NaN               | 47       |     |

5 rows × 21 columns

```
import matplotlib.pyplot as plt
import seaborn as sns
# Convert 'OCCUR DATE' to datetime format and extract year and month
shooting data['OCCUR DATE'] = pd.to datetime(shooting data['OCCUR DATE'])
shooting data['YEAR'] = shooting data['OCCUR DATE'].dt.year
shooting data['MONTH'] = shooting data['OCCUR DATE'].dt.month
# Aggregate data by year and month
yearly counts = shooting data['YEAR'].value counts().sort index()
monthly counts = shooting data.groupby('YEAR')['MONTH'].value counts().unstack().fil
# Plotting
plt.figure(figsize=(15, 6))
plt.subplot(1, 2, 1)
yearly counts.plot(kind='bar', color='skyblue')
plt.title('Shooting Incidents Per Year')
plt.xlabel('Year')
plt.ylabel('Number of Incidents')
plt.subplot(1, 2, 2)
sns.heatmap(monthly counts, cmap='viridis')
plt.title('Shooting Incidents by Month and Year')
plt.xlabel('Month')
plt.ylabel('Year')
plt.tight layout()
plt.show()
```



```
# Count of incidents by borough and precinct
borough_counts = shooting_data['BORO'].value_counts()
precinct_counts = shooting_data['PRECINCT'].value_counts().head(10)

# Plotting
plt.figure(figsize=(15, 6))
plt.subplot(1, 2, 1)
borough_counts.plot(kind='bar', color='tomato')
plt.title('Shooting Incidents by Borough')

plt.subplot(1, 2, 2)
precinct_counts.plot(kind='bar', color='seagreen')
plt.title('Top 10 Precincts with Most Shooting Incidents')

plt.tight_layout()
plt.show()
```



```
# Demographic analysis
vic age group counts = shooting data['VIC AGE GROUP'].value counts()
vic sex counts = shooting data['VIC SEX'].value counts()
vic race counts = shooting data['VIC RACE'].value counts()
perp age group counts = shooting data['PERP AGE GROUP'].value counts()
perp sex counts = shooting data['PERP SEX'].value counts()
perp race counts = shooting data['PERP RACE'].value counts()
# Plottina
fig, axes = plt.subplots(3, 2, figsize=(15, 15))
vic age group counts.plot(kind='bar', ax=axes[0, 0], title='Victim Age Group')
vic_sex_counts.plot(kind='bar', ax=axes[0, 1], title='Victim Sex')
vic race counts.plot(kind='bar', ax=axes[1, 0], title='Victim Race')
perp age group counts.plot(kind='bar', ax=axes[1, 1], title='Perpetrator Age Group')
perp sex counts.plot(kind='bar', ax=axes[2, 0], title='Perpetrator Sex')
perp race counts.plot(kind='bar', ax=axes[2, 1], title='Perpetrator Race')
plt.tight layout()
plt.show()
```



