Задание 1. Вынужденное движение

Рассмотреть систему 2-го порядка, заданную дифференциальным уравнением

$$\ddot{y} + a_1 \dot{y} + a_0 y = u. \tag{1}$$

С использованием блоков элементарных операций построить структурную схему данной системы системы. На структурной схеме отметить блоки, на которых задаются начальные условия y(0), $\dot{y}(0)$. Рекомендуется использовать схему, построенную в Задании 1 Лабораторной работы 2.

Для **второго**, **третьего** и **четвертого** наборов коэффициентов a_1 и a_0 , рассчитанных в рамках **Задания 1 Лабораторной работы 2**, выполнить моделирование движения системы для трех случаев начальных условий

- $y(0) = -1, \dot{y}(0) = 0;$
- y(0) = 0, $\dot{y}(0) = 0$;
- y(0) = 1, $\dot{y}(0) = 0$.

Входные воздействия u(t) взять из **Таблицы 1** в соответствии со своим вариантом. Для повышения наглядности рекомендуется для каждой системы и каждого входного воздействия построить графики выхода с различными начальными условиями на одних координатных осях. Таким образом всего должно получиться по 3 изображения для каждой системы, на каждом из которых будет 3 траектории выхода, полученные для разных начальных условий. Сделать выводы

Ожидаемые результаты:

- Структурная схема системы.
- Значения коэффициентов a_1, a_0 .
- Графики сигналов y(t), их сопоставление.
- Выводы.

Задание 2. Качество переходных процессов

Для системы 3-го порядка, заданной передаточной функцией

$$W(s) = \frac{|\lambda_1 \lambda_2 \lambda_3|}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)},$$

исследовать зависимости качества переходной характеристики от выбора полюсов передаточной функции, для оценки качества использовать такие показатели, как перерегулирование и время переходного процесса. Для этого задаться не менее чем десятью наборами полюсов λ_1 , λ_2 и λ_3 с отрицательной вещественной частью. Половину наборов следует взять чисто вещественной, а во вторую половину включить комплексно-сопряженные полюса. В ходе исследования рекомендуется начинать с корней, имеющих равные вещественные части, а затем, фиксируя один или пару корней из набора, варьировать остальные. Провести моделирование для выбранных наборов полюсов, сопоставить полученные результаты и сделать выводы.

Ожидаемые результаты:

- Выбранные наборы полюсов λ_1 , λ_2 λ_3 . Рекомендуется для наглядности приводить рисунки, демонстрирующие расположение корней на комплексной плоскости для каждого рассмотренного набора.
- Графики переходных процессов, их сопоставление.
- Выводы.

Контрольные вопросы для подготовки к защите:

- 1. Что такое вынужденное движение?
- 2. Какие свойства преобразования Лапласа вы знаете?
- 3. Что такое весовая функция?
- 4. Что такое переходная функция?
- 5. Какие динамические (прямые) показатели качества системы вы знаете?
- 6. Какие корневые (косвенные) показатели качества системы вы знаете?
- 7. Какой вид будет иметь вынужденное движение системы (1) с корнями характеристического полинома вида $\lambda_{1,2} = \pm aj$, если на вход системы подать $u(t) = \sin{(at)}$?

Таблица 1: Исходные данные для Задания 1

Вариант	Входной сигнал $u(t)$			Вариант	Входной сигнал $u(t)$		
1	1	0.5t	$\sin t$	16	2.5	0.5t	$\cos t$
2	0.5	0.8t	$\sin 2t$	17	0.5	0.8t	$\cos 2t$
3	2	0.7t	$\sin 3t$	18	1.5	0.6t	$\cos 3t$
4	2.5	0.6t	$\sin 4t$	19	2	0.7t	$\cos 4t$
5	1	0.5t	$\sin 5t$	20	2.5	0.8t	$\cos 5t$
6	1.5	0.6t	$\sin 6t$	21	1	0.5t	$\cos 6t$
7	2	0.7t	$\sin 7t$	22	1.5	0.6t	$\cos 7t$
8	2.5	0.8t	$\sin 8t$	23	2	0.7t	$\cos 8t$
9	1	0.5t	$\sin 7t$	24	2.5	0.8t	$\cos 7t$
10	1.5	0.6t	$\sin 6t$	25	1	0.5t	$\cos 6t$
11	2	0.7t	$\sin 5t$	26	1.5	0.6t	$\cos 5t$
12	2.5	0.8t	$\sin 4t$	27	2	0.7t	$\cos 4t$
13	1	0.5t	$\sin 3t$	28	2.5	0.8t	$\cos 3t$
14	1.5	0.6t	$\sin 2t$	29	1	0.5t	$\cos 2t$
15	2	0.7t	$\sin t$	30	1.5	0.6t	$\cos t$