Main challenges of machine learning

Insufficient quantity of training data

Non-representative training data

Poor quality data

Irrelevant features

Neural Network

Neural Network

OR

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Activation Function: Threshold

step function

Activation Function: Threshold

if $\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0$: 1

Else: 0

step function

Activation Function: Threshold

if
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0$$
: 1

Else: 0

Update Rule:

updated weight; = weight; - (output - target) * input;

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

target: 0

output: 1

input: 1, 0, 0

updated weight₀ = weight₀ - (output - target) * input₀ updated weight₁ = weight₁ - (output - target) * input₁ updated weight₂ = weight₂ - (output - target) * input₂

input: 1, 0, 0

output: 1

target: 0

updated weight₀ = 3 - (output - target) * input₀ updated weight₁ = -2 - (output - target) * input₁ updated weight₂ = 2 - (output - target) * input₂

input: 1, 0, 0

output: 1

target: 0

updated weight₀ = 3 - (1 - target) * input₀ updated weight₁ = -2 - (1 - target) * input₁ updated weight₂ = 2 - (1 - target) * input₂

input: 1, 0, 0 **target**: 0

output: 1

updated weight₀ = 3 - (1 - 0) * input₀ updated weight₁ = -2 - (1 - 0) * input₁ updated weight₂ = 2 - (1 - 0) * input₂ weights: 3, -2, 2 output: 1

input: 1, 0, 0 **target**: 0

updated weight₀ = 3 - (1 - 0) * 1

updated weight₁ = -2 - (1 - 0) * 0

updated weight₂ = 2 - (1 - 0) * 0

weights: 3, -2, 2 output: 1

input: 1, 0, 0 **target**: 0

updated weight $_0 = 3 - 1$

updated weight₁ = -2 - 0

updated weight₂ = 2 - 0

weights: 3, -2, 2 output: 1

input: 1, 0, 0 **target**: 0

updated weight $_0 = 2$

updated weight₁ = -2

updated weight $_2 = 2$

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	1

output: 0

input: 1, 1, 0

target: 1

updated weight₀ = weight₀ - (output - target) * input₀ updated weight₁ = weight₁ - (output - target) * input₁ updated weight₂ = weight₂ - (output - target) * input₂

output: 0

input: 1, 1, 0

target: 1

updated weight₀ = 2 - (output - target) * input₀ updated weight₁ = -2 - (output - target) * input₁ updated weight₂ = 2 - (output - target) * input₂ weights: 2, -2, 2

input: 1, 1, 0

output: 0

target: 1

updated weight₀ = 2 - (0 - target) * input₀

updated weight₁ = -2 - (0 - target) * input₁

updated weight₂ = 2 - (0 - target) * input₂

input: 1, 1, 0 **target**: 1

updated weight₀ = 2 - (0 - 1) * input₀ updated weight₁ = -2 - (0 - 1) * input₁ updated weight₂ = 2 - (0 - 1) * input₂

input: 1, 1, 0 target: 1

updated weight₀ = 2 - (0 - 1) * 1

updated weight₁ = -2 - (0 - 1) * 1

updated weight₂ = 2 - (0 - 1) * 0

input: 1, 1, 0 **target**: 1

updated weight₀ = 2 - (-1)

updated weight₁ = -2 - (-1)

updated weight₂ = 2 - 0

input: 1, 1, 0 **target**: 1

updated weight $_0 = 2 + 1$

updated weight₁ = -2 + 1

updated weight₂ = 2 - 0

input: 1, 1, 0 **target**: 1

updated weight $_0 = 3$

updated weight $_1 = -1$

updated weight $_2 = 2$

XOR

Feature 1	Feature 2	Target
0	0	0
1	0	1
0	1	1
1	1	0

Multi-Layer Perceptron (MLP)

input layer hidden layer output layer

Multi-Layer Perceptron (MLP)

input layer hidden layer output layer

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Model Selection

DATA SET

Training Set

70%

Test Set

DATA SET

Training Set

70%

K-fold cross validation

Training Set

Training Set

evaluation

Training Set

evaluation

Training Set

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10

Logistic Regression

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	mean
0.69	0.64	0.73	0.82	0.64	0.70	0.68	0.71	0.70	0.69	0.70

Logistic Regression	Support Vector Machine	Decision Tree	K-Nearest Neighbor	Neural Network
0.705	0.722	0.635	0.675	0.607

Hyperparameter Tuning

Logistic Regression

$$\hat{f}(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2)}}$$

$LOC = 227.63 + 9.51x_1 + 2.7x_2 - 7.08x_3$

 X_1 = hour pair programming

 $X_2 = gender \ (m = 0; f = 1)$

X3 = number of social accounts

Support Vector Machine

'rbf' kernel

Radial Basis Function

2.0

1.5

1.0

0.0

_{0.5} Z₃

[att, ave, un]

k-Nearest Neighbor

$$k = 3$$

Multi-Layer Perceptron (MLP)

input layer hidden layer output layer

Grid Search

Grid Search

Support Vector Machine

Grid Search

Support Vector Machine

param_grid=[{'C': [.1, 1, 10]}], 'kernel': ['linear', 'rbf'], cv=3)}]

C	kernel
0.1	linear'
1	linear'
10	linear'
0.1	'rbf'
1	'rbf'
10	'rbf'

Training Set

DATA SET

Training Set

Test Set

70%

DATA SET

Test Set

30%

Model Evaluation Metrics

Negative Class

Positive Class

Predicted Negative

Predicted Positive

Accuracy

Precision

Recall

Accuracy

0.796

Precision

0.725

Recall

0.891

Model Evaluation Metrics

	Precision	Recall	F1-score
Rejected	0.89	0.72	0.79
Liked	0.73	0.89	0.81

Some things to keep in mind:

Get more and/or better data

Feature Engineering

Hyperparameter tuning

Generalization