

Index

- Introduction
- Background
- Model Architecture
- Experiments
- Conclusion

한양대학교 인공지능 연구실	
Introduction	
	3

Introduction

Labeled text data의 부족과

충분한 labeled text data가 있어도 "unlabeled text data로 더 나은 성능을 이룰 수 있지 않을까?"라는 기대

Introduction

하지만, unlabeled text data로 word-level이상의 정보를 활용하는 것에는 어려움 존재

- Transfer하기 위한 text representation을 학습하기에 어떤 optimization objective가 효과적인지 불분명
- 이렇게 학습된 representation을 target task로 transfer할 때 어떤 방법이 가장 효과적인지 의견일치가 되지 않음

→ 이러한 불확실성이 semi-supervised learning을 어렵게 함

Introduction

본 논문에서는 **unsupervised pre-training + supervised fine-tuning** 을 통해 NLU task에 대한 semi-supervised approach를 연구

 \rightarrow **GPT** 제안

Introduction

GPT의 목표

→ 다양한 task에 적용 가능한 universal representation 학습

Background Unsupervised pre-training

Word-level embedding에서 **Context-level embedding으로 발전**

Traditional word vectors	Word Embeddings	More than word-level semantics
Bag of Words TF-IDF Distributional Embeddings	Word2Vec GloVe FastText	ELMo CoVe

Background

Auxiliary training objectives

Language modeling object 등 unsupervised training objective를 두면 성능 향상에 효과가 있음

$$L_2(C)$$
: some task-specific objective

Task-specific layers
$$L_2(C) = \sum_{(x,y)} logP(y|x^1, x^2, ..., x^m)$$

 $L_1(C)$: unsupervised training objective

$$L_1(C) = \sum_{i} log P(u_i | u_{i-k}, ..., u_{i-1}; \theta)$$

한양대학교 인공지능 연구실	
Model Architecture	
	11

Model Architecture

GPT의 목표는 다양한 task에 적용 가능한 universal representation 학습

어떻게?

- 1. 어떤 Architecture?: **Transformer 구조 사용**
- 2. Representation학습 방식: Pre-train Language model with unsupervised learning
- 3. Representation을 task-specific하게 transfer하는 방식 : **Very small modification to pre-trained network**

Model Architectures GPT

1. 어떤 Architecture?: **Transformer 구조 사용**

→ Transformer의 decoder사용

Figure 1: The Transformer - model architecture.

- 기존의 Transformer: Encoder/Decoder 6쌍으로 구성
- GPT : Decoder만 12개(Multi-head)로 구성

Model ArchitecturesGPT

- 2. Representation학습 방식: Pre-train Language model with unsupervised learning
 - → GPT는 unsupervised pre-training → supervised fine-tuning 두 단계로 나뉨

Model Architectures

Unsupervised pre-training

unsupervised pre-training

이 단계에서는, 문장단위로 Encoding하고 Transformer decode를 거쳐 Context-level Embedding을 하는 과정을 통해 Unsupervised Learning을 사용한 LM 학습

Model Architectures

Unsupervised pre-training

Unsupervised 코퍼스의 token

$$u = \{u_i, \dots, u_n\}$$

Likelihood를 최대화하는 standard language modeling objective사용

$$L_1(u) = \sum_{i} log P(u_i | u_{i-k}, ..., u_{i-1}; \theta)$$

$$U = \{u_{-k}, \dots, u_{-1}\}$$

$$h_0 = UW_e + W_p$$

 $h_1 = transformer_block(h_{l-1}) \forall i \in [1, n]$

$$P(u) = \operatorname{softmax}(h_n W_e^T)$$

k: context window 크기

 θ : Neural network \bigcirc parameters

(parameter들은 stochastic gradient descent이용하여 학습)

U: token의 context vector

n : layer 개수

 W_e : token embedding matrix W_n : position embedding matrix

Model Architectures Supervised fine-tuning

supervised fine-tuning

Supervised Learning부분은 크게 두 부분으로 나눠 짐

- 1. Text/Position Embedding부터 12개의 Decoder가 있는 부분인 **Pretrained Model**
 - 2. 그리고 Task Prediction/Classification 부분

Model Architectures Supervised fine-tuning

supervised fine-tuning

1. Text/Position Embedding부터 12개의 Decoder가 있는 부분인

Pretrained Model

- Global한 NLP feature를 학습하도록 구성
- 각 Embed는 Unsupervised에서도 언급했듯이 BPE로 구성
- 이렇게 학습된 representation은 Context에 대해 소실되는 정보가 거의 없이 학습된다고 가정하고, 이를 Decoder를 통해 Task에 맞는 정답 Feature를 추출

Auxiliary objective Task objective

Model Architectures Supervised fine-tuning

supervised fine-tuning

2. 그리고 Task Prediction/Classification 부분

- Task Classifier 또는 Task Prediction처럼 하나의 예상만 출력하지 않음
- 논문에서도 이러한 구조를 Auxiliary Task라는 용어로 표현
- (쉽게 풀어 말하면, 하나의 Task objective에 대해서만 학습하는 것 보다 Auxiliary objective(sub-task)를 같이 학습하는 것이 주요 task에 대한 정확도를 높여 줌)

Auxiliary objective Task objective

Model Architectures

Supervised fine-tuning

하나의 layer에 대한 linear layer추가

$$P(y|x^1, x^2, ..., x^m) = softmax(h_l^m W_y)$$

아래 layer가 최대가 되도록 학습

$$L_2(C) = \sum_{(x,y)} log P(y|x^1, x^2, ..., x^m)$$

즉, 아래의 objective를 최적화

$$L_3(C) = L_2(C) + \lambda L_1(C)$$

C: Labeled dataset

 $x^1, x^2, ..., x^m$: input token

(parameter들은 stochastic gradient descent이용하여 학습)

y: input token에 해당하는 label

 h_l^m : 마지막 transformer 블록의 activation W_y : h_l^m 을 input으로 하는 linear layer $L_2(C)$: some task-specific objective $L_1(C)$: unsupervised training objective

Auxiliary objective Task objective

Model Architecture

GPT-1의 전체 구조

Model Architecture

다른 task에서 어떻게 사용?

- Classification은 True/False 또는 category를 예측하기 위해 하나의 구조만 가짐
- Similarity나 Multiple Choice의 경우 Context/Text를 비교하기 위해 각 부분마다 모델을 적용시킨 후, 이를 취합하는 구조
 - → GPT 모델을 사용할 때, 하고자 하는 **Task에 맞춰 모델을 알맞게 구성**해 줄 필요가 있음

한양대학교 인공지능 연구실	
Experiments	
	23

ExperimentsModel specifications

- 12 decoder-only transformer
- Adam optimization
- Cosine annealing: learning rate schedules with restart
- Input: Contiguous sequences of 512 tokens
- Weight initialization of N(0, 0.02)
- BPE with 40,000 merges

Experiments

Analysis

Transformer Decoder 개수에 따른 accuracy 변화

- RACE, MultiNLI: dataset
- RACE: Question Answering(QA)를 목적
- MultiNLI: textual entailment 또는 Natural Language Inference(NLI)를 목적으로 함
- 두 데이터 셋 모두 Layer 수가 많아질수록 정확도가 비약적으로 상승 (12개정도에서 정확도가 Converge하는듯 함)

Experiments

Analysis

Transformer의 사용 유무에 따른 차이

- 점선(LSTM) / 실선(Transformer)
- 각 색상은 task를 나타냄
- task별로 증가율의 차이는 있지만, 모두 상대적으로 performance가 증가
- LSTM은 higher variance를 보이는 반면에 Transformer는 transfer에 도움이 됨

Experiments

Analysis

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

Auxiliary Objective(sub-task) 유무에 따른 성능 그리고 pre-training이 없을 때의 성능을 보여줌

- 왼쪽 4가지와 오른쪽 4가지 task 결과가 다른데 이것은 dataset size가 다르기 때문
 - 즉, Dataset이 클수록 (QQP, MNLI, QNLI, RTE) auxiliary task가 성능 개선에 여향이 더 크고
 - 작을수록 (CoLA, SST2, MRPC, STSB) auxiliary task없이 학습하는 것이 오히려 성능에 도움이 됨
- Transformer사용 여부에 대한 성능평가도 측정, 모든 경우에 LSTM대신 Transformer를 사용하는 것이 성능 개선에 도움이 됨
- pre-training 유무에 대한 성능평가에서는 full 모델에 비해 pre-training이 없을 때 전체적으로 성능이 매우 감소
 - (pre-training을 안 한다? → unsupervised pre-training 구조를 모두 넘겨버리고 supervised 부분만 사용)

한양대학교 인공지능 연구실	
Conclusion	
	28

Conclusion

generative pre-training과 discriminative fine-tuning을 통해 task-agnostic model로 강력한 NLU를 성취할 수 있음을 보임

Conclusion

하지만, GPT-1은 BERT에 비해 주목 받지 못함 ∵ BERT가 더 범용적으로 쓰이기 용이하며, 성능도 BERT에 비해 좋다는 소식이 안 들림 (SQuAD 1.1, 2.0을 보면 GPT에 대한 성능결과가 없음)

Conclusion

그럼에도 불구하고 이 논문을 살펴봐야 할 이유

Decoder로서 Transformer를 Pre-trained Language Model생성에 어떻게 사용

하고 있는가에 대한 좋은 예시가 GPT이기 때문 (BERT와 GPT-1은 많은 부분이 유사)

BERT	GPT
Masked LM 사용	일반적인 LM 사용
Transformer encoder사용	Transformer decoder사용

한양대학교 인공지능 연구실	
Thank you	
	32