南京理工大学

智能计算技术实验二

姓	名:_	蒋旭钊	学号:	918106840727		
学院(系):		计算机科学与工程学院				
专	业:	计算	机科学与	技术		
课	 程:	智能	计算技术			

2021年 11月

一. 问题重述

实现章节《5.6 博弈树的启发式搜索》中,5*5 格子的一字棋问题,要求 MAX 方和 MIN 方都用博弈树来决策,运用极大极小分析法,同时加入 a-β 剪枝策略。

二. 算法介绍

极大极小分析法:

- (1)设博弈的双方中一方为 A,另一方为 B。极大极小分析法是为其中的一方 (例如 A 方)寻找一个最优行动方案的方法。
- (2)为了找到当前的最优行动方案,需要对各个方案可能产生的后果进行比较。
- (3)为了计算得分,需要根据问题的特性信息定义一个估价函数,用来估算当前博弈树端节点的得分,称为静态估值。
- (4) 当端节点的估值计算出来后,再推算出父节点的得分。
- (5) 如果一个行动方案能获得较大的倒推值,则它就是当前最好的行动方案。

博弈树的启发式搜索算法:

- (1) k=1, 初始棋局 Sk= S1:
- (2) 如果棋局 Sk 是终止节点棋局,则算法成功终止; 否则,由棋局 Sk 生成 A 方所有可能的或关系子节点 Si ($i=1,2,\cdots,n$)。
- (3) 对每一个或关系子节点 Si, 生成其 B 方所有可能的与关系子节点 Sj $(i=1, 2, \dots, m)$ 。生成节点数为 $n \times m+1$ 的部分博弈树。
- (4) 计算每个与关系子节点 Si 的启发函数值。
- (5) 分别由 m 个与关系子节点倒推计算其父节点(与节点)的启发函数值:

$$h_i = \min\{ h_j \mid j = 1, 2, \dots m \}, \quad i = 1, 2, \dots, m$$

(6) 由 n 个或关系子节点倒推计算其父节点 Sk (或节点)的启发函数值:

$$h_k = \max\{ h_i \mid i = 1, 2, \dots, n \}, \quad k = 1, 2, \dots, n$$

- (7) A 方从 Sk 的 n 个或关系子节点中选择节点 i 作为最优行动方案,获得棋局 Si。
- (8) B 方从 Si 的 m 个与关系子节点中选择节点 j 作为最优行动方案,获得棋局 Sj。
- (9) 若节点 i 是端节点,则算法终止:否则令 k= i,转步骤(2)。

a-β剪枝策略:

- (1) 对于一个与节点 MIN,若能估计出其倒推值的上界 β ,并且这个 β 值不大于 MIN 的父节点(一定是或节点)的估计倒推值的下界 α ,即 $\alpha \geq \beta$,则就不必再扩展该 MIN 节点的其余子节点了。这一过程称为 α 剪枝。
- (2) 对于一个或节点 MAX,若能估计出其倒推值的下界 α ,并且这个 α 值不小于 MAX 的父节点(一定是与节点)的估计倒推值的上界 β ,即 $\alpha \geq \beta$,则不必再扩展该 MAX 节点的其余子节点了。这一过程称为 β 剪枝。

三. 实现思路

主要有三个 java 类来实现:

• Class AlGobang

定义了棋盘大小 BOARD_SIZE,以及无穷大 MAX_VAL、无穷小 MIN_VAL、平局 DRAW。

此外实现了 Human 和 AI 双方下棋位置的展示以及每个棋盘的显示,最终给出双方的终局结果。

Class BoardState

定义了博弈树中每个节点的状态,包括生成该博弈树的角色mainPlayerTurn、要落子的角色playerTurn、结点的alpha、beta值,以及博弈树搜索最大深度MAX DEPTH(=2)。

棋盘上 alpha、beta 值以及状态估值的更新,通过 getScore()函数递归更新,剪枝通过:

if (this.alpha>=this.beta) {
 break;
}讲行判断。

• Class Utils

定义了要用到的各种函数,包括根据棋盘落子算出静态估值的函数 getCost、生成新棋盘的函数 generateNewBoard ()等等。

四. 实验结果

本次实验不需要输入,输出展示了下棋的棋盘状态以及走子情况,最后判断双方的终局结果。

输出样例:

**Human First								
**Human is X								
**AI is	s 0							
**Chess	sis	as be	low					
Chessbo	pard	No.0:	(The	empty	chessboard)			
					_			
		I	1	1	 -			
1 1		I	I .	I	I and the second			
l I	l	I	I	I	Ī			
Ī	l	I	Ι	I	ī			
1 1	ı	T	Ι	Ι	ī			
Novt Human Bosition is (2.2)								
Next Human Position is (2,2) Chessboard No.1:								
CIICSSBC	Jul u	140.1.						
1 1	l	I	I	I	Ī			
Ī	ı	I	I	I	ī			
l l	ı	0	I	I	ī			
1 1	l	I	Ι	Ι	ī			
1	I	Ι	Ι	I	ī			
Next AI Position is (0,0) Chessboard No.2:								

The Game Is Draw!

10 | 0 | X | 0

Process finished with exit code 0

| X |