

Multivariate statistics and data visualization

Lecture 14.03.2019

Outline

- Diversity concepts
- Alpha diversity indices and rarefaction curves
- Rare biosphere
- Beta diversity and ordination methods
- Compositionality
- Hypothesis testing
- Co-occurrence networks
- Data visualization in R
 - Getting your data into shape
 - R data and object types
 - R errors

Diversity concepts

Alpha diversity:

- Diversity within one sample
- Richness
- Evenness

Beta diversity:

- Diversity between samples (comparison)
- Dissimilarity

Shared OTUs

Alpha diversity

- Alpha diversity indices:
 - Chao1
 - ACE
 - Richness
 - Shannon
 - Inverse Simpson

Influence of rare OTUs

- Unifying concept: Hill numbers
 - Richness (q = 0)
 - Exponential Shannon (q = 1)
 - Inverse Simpson (q = 2)

$$QD = \left(\sum_{i=1}^{S} p_i^q\right)^{1/(1-q)}$$

- Sequencing depth and rare biosphere?
 - Subsample sequences to equal library sizes
 - Correct the number of singletons per sample
 - Use rarefaction curves to estimate covered diversity by available sequencing depth

Rarefaction curves

Rare biosphere

- No technique can provide results beyond detection limit and measurement uncertainty
- Depending on error rate and sequencing depth

Remove rare OTUs (e.g. singletons, doubletons) from your data set

Beta diversity

Distance vs. dissimilarity

• Community (dis)similarity between samples

	OTU	1	OTU2	OTU3	3 C	TU4				OTU [*]	1 01	U2	OTU3	OTU4
S1	14		2	14		14	nrese	ence/	S1	1	,	1	1	1
S 2	10		14	0		8		-	S 2	1		1	0	1
S 3	0		5	0		2	abse	nce	S 3	0		1	0	1
S4	0		0	1		0			S 4	0	(0	1	0
	Asymmetrical vs. symmetrical Bray-Curtis vs. euclidean Jaccard													
	S1	S2	S3	S4		S1	S2	S3	S4		S1	S2	2 S3	S4
S1	0				S1	0				S1	0			
S2	0.5	0			S 2	19.8	0			S2	0.25	0		
S3	8.0	0.6	0		S3	23.3	14.7	0		S3	0.5	0.3	3 0	
S4	1.0	1	1	0	S4	23.8	19	5.5	0	S4	0.75	1	1	0

- Zeros in ecology: Is this species really not there or did we just not find it?
- → double zeros not relevant

Ordination

Visualization of a multidimensional matrix in a reduced set of dimensions

• E.g.: PCA, PCoA, NMDS _____

	•					
	rincipal component nalysis	Principle coordinate analysis	Non-metric multidimensional scaling			
•	Continuous environmental data	Species abundance data	Species abundance data			
•	Metric ordination based on euclidean distances	 Metric ordination based on any kind of distance/dissimilarity measure 	 Non-metric ordination based on any kind of distance/dissimilarity measure 			
•	Create new axes (principal components) along direction of highest variability ($N_{PC} = N_{variables}$)	 Create new axes (principal components) along direction of highest variability (N_{PC} = N_{variables} - 1) 	 Show maximum variation in 2 (or 3) dimensions 			

More information:

GUide to STatistical Analysis in Microbial Ecology

http://mb3is.megx.net/gustame

Ordination

- Visualization of a multidimensional matrix in a reduced set of dimensions
- E.g.: PCA, PCoA, NMDS

Compositionality

• OTU 'abundances' are not independent, but proportions of a whole

Sequence proportion

• Centered log-ratio transformation (clr): $\log(x_i) - \log(n\sqrt{product(x_1...xn)})$

Hypothesis testing

Which test to use...

Mixed effects models

- Extension of GLMs
- Additional feature: include random effects

• GLM:
$$F = \frac{explained\ variation}{unexplained\ variation} = \frac{SS_{fixed}/dffix_{ed}}{SS_{error}/dferr_{or}}$$

• GLMM:
$$F = \frac{explained\ variation}{unexplained\ variation} = \frac{SS_{fixed}/dffix_{ed}}{SS_{random}/dfran_{dom}}$$

- Example: repeated measurements
 - 3 treatments x 10 replicates x 3 measurements = 90 values
 - df_{fixed} ~ number of treatments
 - df_{error} ~ total sample size (without random factor)
 - df_{random} ~ number of levels in random factor

Permutation tests

- Create your own theoretical distribution of the test statistic
- Randomly reshuffle the response variable

Implemented in R as default for several tests (mostly multivariate tests)

Testing for patterns in community composition

Analysis of similarity (ANOSIM)	Non-parametric multivariate ANOVA (PERMANOVA)	Redundancy analysis (RDA)
Overlap/separation of communitiesUnifactorial	Indirect assessment of effectsMultifactorial	Constrained ordinationDirect assessment of maringal effects
Non-parametricBased on ranked dissimilarities	Non-parametricBased on ranked dissimilarities	ParametricLinear technique
	ANOVA-like outputExplained variation	ANOVA-like outputExplained variation
 Based on permutation tests 	Based on permutation tests	Based on permutation tests

Comparing patterns in community composition

Mantel test

- Correlation of dissimilarity matrices
- Comparison based on all variation

Mantel statistic r: 0.7511

Significance: 0.001

Procrustes test

- Correlation of ordination objects
- Comparison based on the majority of the variation

Procrustes SS: 0.1266

Correlation (symmetric rotation): 0.9346

Significance: 0.001

Differential OTU proportions

- Testing statistical differences between environmental conditions for each OTU
- Compositionality correction: clr-transformation
- P-value correction:

Implementation: ALDEx2 (https://github.com/ggloor/ALDEx2)

Exclude rare OTUs

Random forests

- Is it possible to predict a contextual parameter based on the community composition?
- Which OTUs are most important for a correct prediction?

Exclude rare OTUs

Random Forest model Error rate (cross-validation)

Permutation tests

Importance scores

Significance

Interpretation

 Decrease in model accuracy if features (OTUs) are removed

Multiple decision trees calculated for a subset of the data (bootstrap) Confusion matrix:

	group1	group2
group1	10	0
group2	1	9

Out-of-bag error:

 Internal validation based on samples outside bootstrap data sets

Leave-one-out cross-validation:

- Train model with n-1 sample n times
- Test model with left-out sample

Co-occurrence networks

Problems: sparcity and compositionality

Exclude rare OTUs

Network inference:

→ SPIEC-EASI: Sparse InversE Covariance estimation for Ecological Association and Statistical Inference

Module detection:

→ Louvain clustering

- Röttjers & Faust (2018) FEMS Microbiology Reviews 42:761-780. doi: 10.1093/femsre/fuy030
- Chafee et al. (2017) ISMEJ 12:237-252. doi: 10.1038/ismej.2017.165
- Guidi et al. (2016) Nature 532:465-470. doi: 10.1038/nature16942

Data and object types

margin 2: colnames(data.frame)

data.frame **V1 V2 V3 V4 V**5 **V6** matrix margin 1: rownames(data.frame) **S1** 0.6 5.3 "A" **TRUE** Α **S2** "B" 5 В **FALSE** -4.3 6 **S**3 43.7 "C" C **TRUE** 34.9 **S4** 3 "B" 0.2 8 В **FALSE S5** 8 -65 -2 "A" Α **FALSE** factor numeric numeric character integer logical

(levels "A" "B" "C") (numeric)

Getting your data into shape

Community matrix

- Numerical matrix
- Output from sequence processing software

Taxonomic assignment

- Character matrix or data.frame
- Output from sequence processing software

Contextual information and metadata

- Data.frame
- Provided by user for data analysis

- Most common input format for tabular data:
 - .txt
 - .CSV
 - .tsv
- Include variable names in first row (header)
- Values usually tab, space, or comma separated
- Avoid special characters and spaces in data values, variable names, and file names

	Bad	Good
Variable	mean temperature	temperature.mean
name	mean-temperature	
	mean temperature [°C]	
Data	day 1	day1
value		1 (variable name: day)

Getting your data into shape Merged cells Bad: reef seep.influence site рΗ Illi **S1** 7.92 7.93 7.91 medium S12 medium 7.94 7.9 7.99 Empty cells reef site seep.influence SiO4 Illi **S1** 4.470 medium 4.956 4.245 Interspersed 1.836 S12 medium 2.080 2.150 header reef seep.influence PO4 site 0.110 Illi **S1** medium 0.107 0.107 S12 medium 0.090 0.083 0.093 Empty rows

• Good:

Wide data
format

reef	site	seep.influence	рН	SiO4	PO4
Illi	S1	medium	7.92	4.471	0.109
▼ Illi	S1	medium	7.93	4.245	0.107
Illi	S1	medium	7.91	4.956	0.107
Illi	S12	medium	7.94	2.076	0.090
Illi	S12	medium	7.90	2.150	0.083
Illi	S12	medium	7.99	1.836	0.093

Data formats

Long data format:

- One data value per line
- Additional comlums with contextual data (usually categories)

Wide data format:

- More easily readable
- Values either calculated based on or rearrangement of long data format

reef	site	seep.influence	measurement	value
Illi	1	medium	рН	7.92
Illi	1	medium	рН	7.93
Illi	1	medium	рН	7.91
Illi	12	medium	рН	7.94
Illi	12	medium	рН	7.90
Illi	12	medium	рН	7.99
Illi	1	medium	SiO4	4.471
Illi	1	medium	SiO4	4.245
Illi	1	medium	SiO4	4.956
Illi	12	medium	SiO4	2.076
Illi	12	medium	SiO4	2.150
Illi	12	medium	SiO4	1.836
Illi	1	medium	PO4	0.109
Illi	1	medium	PO4	0.107

Original data - rearranged

reef	site	seep.influence	рН	SiO4	PO4
Illi	S1	medium	7.92	4.471	0.109
Illi	S1	medium	7.93	4.245	0.107
Illi	S1	medium	7.91	4.956	0.107
Illi	S12	medium	7.94	2.076	0.090
Illi	S12	medium	7.90	2.150	0.083
Illi	S12	medium	7.99	1.836	0.093

Mean values

reef	site	seep.influence	рН	SiO4	PO4
Illi	S1	medium	7.92	4.539	0.108
Illi	S12	medium	7.94	2.021	0.089

Errors

Syntax errors

- When R doesn't understand you, because the command doesn't make sense...
- R returns an error message

E.g.: Trying to calculate the mean of categorical data

Semantic errors

- When R doesn't do what you want, although the command makes sense...
- R will not return an error message, because the command is valid
- More dangerous errors

 E.g.: Calculating percentages over columns, and not rows

Google is your new best friend ©

http://seqanswers.com/

https://peerj.com/articles/593/

http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12428/abstract

http://www.nature.com/ismej/journal/v9/n4/abs/ismej2014195a.html

http://www.nature.com/nmeth/journal/v13/n7/full/nmeth.3869.html

https://www.arb-silva.de/

https://www.ncbi.nlm.nih.gov/pubmed/24910773

https://sites.google.com/site/mb3gustame/

https://github.com/chassenr/Tutorials/tree/master/R course MPI

http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

http://onlinelibrary.wiley.com/doi/10.1890/13-0133.1/abstract

https://www.ncbi.nlm.nih.gov/pubmed/26855872

https://cran.r-project.org/web/packages/iNEXT/iNEXT.pdf

http://www.sciencedirect.com/science/article/pii/S1047279716300722

http://www.sciencedirect.com/science/article/pii/S1047279716300734

https://github.com/zdk123/SpiecEasi

https://rpubs.com/michberr/randomforestmicrobe

http://msystems.asm.org/content/2/1/e00162-16

https://github.com/LangilleLab/microbiome_helper/wiki/Random-Forest-Tutorial

https://www.nature.com/articles/ismej2016139