

LC90

The Curry-Howard homeomorphism

GADTs and Dependently Typed Programming

FP2 Lecture 2 | Philipp Schröppel | May 3, 2024

1. A Brief History of Types and Proofs

Computability, Paradoxes and Types

David Hilbert

Bertrand Russell

Alan Turing

Alonzo Church

Revisiting the Simply Typed Lambda Calculus

Syntax of Simply Typed Lambda Calculus

Recall the definition of the Lambda Calculus:

$$e ::= x \mid \lambda x.e \mid e e \tag{1}$$

Given a set of base types $B = \{b_1, b_2, ..., b_N\}$ we define the type syntax

$$\tau ::= \tau \to \tau | T, \text{ where } T \in B$$
 (2)

Revisiting the Simply Typed Lambda Calculus

Syntax of Simply Typed Lambda Calculus

Recall the definition of the Lambda Calculus:

$$e ::= x \mid \lambda x.e \mid e e \tag{1}$$

Given a set of base types $B = \{b_1, b_2, ..., b_N\}$ we define the type syntax

$$\tau ::= \tau \to \tau | T, \text{ where } T \in B$$
 (2)

Examples of Typed Lambda Terms

$$\lambda x: b_1.x$$
 has type $b_1 \rightarrow b_1$

$$\lambda x:b_1.\lambda f:b_1\to b_2.fx$$
 has type $b_1\to (b_1\to b_2)\to b_2$

Revisiting the Simply Typed Lambda Calculus

Typing Rules in the Simply Typed Lambda Calculus

We want to specify which lambda terms are well-typed by defining a relation between terms and types.

- A typing assumption has the form x : b, meaning variable x has type b
- A typing context Γ is a set of typing assumptions
- A typing relation $\Gamma \vdash e : b$ indicates that e has type b in the typing context Γ
- ullet Typing assumptions in the typing context Γ are assumed to be well-typed
- Type assumptions outside the typing context are well-typed if they can be derived from the assumptions in the typing context Γ.

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma} \qquad \qquad (3) \qquad \frac{\Gamma,x:\sigma\vdash e:\tau}{\Gamma\vdash (\lambda x:\sigma.e):(\sigma\to\tau)} \qquad (4) \qquad \frac{\Gamma\vdash e_1:\sigma\to\tau\;,\;\Gamma\vdash e_2:\sigma}{\Gamma\vdash e_1\;e_2:\tau} \qquad (5)$$

Empty and Nonempty Types

A type is called nonempty if there is a closed term of that type.

Types from our examples our nonempty

The types

$$b_1 \rightarrow b_1, \ b_1 \rightarrow (b_1 \rightarrow b_2) \rightarrow b_2$$

are nonempty.

Not all types are nonempty

Consider the type

$$(b_1 \rightarrow b_2) \rightarrow b_1$$

Is it empty?

A Subset of Propositional Logic

We can construct a subset of propositional logic terms based on the following grammar:

$$p ::= b \mid p \Rightarrow p \tag{6}$$

$$\frac{\rho \in \Gamma}{\Gamma \vdash \rho} \tag{8}$$

$$\frac{\Gamma, \rho_1 \vdash \rho_2}{\Gamma \vdash \rho_1 \to \rho_2} \tag{8}$$

A Subset of Propositional Logic

We can construct a subset of propositional logic terms based on the following grammar:

$$p ::= b \mid p \Rightarrow p \tag{6}$$

$$\frac{\rho \in \Gamma}{\Gamma \vdash \rho} \tag{9}$$

Comparison to Typing Rules

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma} \qquad \qquad \frac{\Gamma,x:\sigma\vdash e:\tau}{\Gamma\vdash (\lambda x:\sigma.e):(\sigma\to\tau)} \qquad \qquad \frac{\Gamma\vdash e_1:\sigma\to\tau\;,\;\Gamma\vdash e_2:\sigma}{\Gamma\vdash e_1\,e_2:\tau}$$

Curry-Howard Correspondance

Algebra	Logic	(Haskell) Types
a+b	$a \lor b$	Either a b
a · b	$a \wedge b$	(a,b)
a^b	$a \Rightarrow b$	a o b
a = b	$a \Leftrightarrow b$	a isomorphic to b
0	Т	Void
1	\perp	()

Curry-Howard Correspondance

Algebra	Logic	(Haskell) Types
a+b	$a \lor b$	Either a b
a · b	$a \wedge b$	(a,b)
a^b	$a \Rightarrow b$	a o b
a = b	$a \Leftrightarrow b$	a isomorphic to b
0	Τ	Void
1	\perp	()

Limitations of the Example

This is a simplified and incomplete representation of the correspondance between types in simply typed Lambda calculus and terms in propositional logic.

Dependent Types

Implications of the Curry-Howard Correspondance

- The Curry-Howard Correspondance describes a correspondence between a given logic and a type system.
- For each proposition in the logic there is a corresponding non-empty type in the type system.
- For each proof of a given proposition, there is a program of the corresponding type.
- The correspondance applies not only to the simply-typed lambda calculus and propositional logic, but
 extends to more sophisticated logical calculi and type sytems (Girard-Reynolds, Hindley-Milner, ...).

Dependent Types

A dependent type is a type whose definition depends on a value.

Dependent Types

П Туре

The Π Type is the type of function whose type of return value depends on the value of its argument.

Notation: $\Pi_{x:A}B(x)$, where A is a family of types and $B:A\to U$ is a family of types.

 Π Types encode universal quantification: A function of type $\Pi_{x:A}B(x)$ assigns a type B(a) to every $a \in A$

П Туре

A function which maps natural numbers $n \in \mathbb{N}$ to n-tuples of floats has type $\Pi_{n:\mathbb{N}} \text{Vec}(\mathbb{R}, n)$.

Dependent Types

Σ Type

The Σ Type is the type of a tuple in which the type of the second term depends on the value of the first term.

Notation: $\Sigma_{x:A}B(x)$, where A is a family of types and $B:A\to U$ is a family of types.

 Σ Types encode existential quantification: There is a $a \in A$ such that B(a) is inhabited

Σ Type

A tuple consisting where the first term is a natural number and second term contains natural numbers greater than the value of the first term has type $\Sigma_{n:\mathbb{N}}\mathbb{N}_{>n}$.

2. GADTs

Warning: Compiler Extensions Required

```
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTS #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
```

An Expression for Adding Integers

data ExprV1 = ExprV1 Int | AddV1 ExprV1 ExprV1

An Expression for Adding Integers

```
data ExprV1 = ExprV1 Int | AddV1 ExprV1 ExprV1
```

Kinds & Types of Type and Data Constructors

```
:k ExprV1
-- ExprV1 :: *
:t ExprV1
-- ExprV1 :: Int -> ExprV1
:t AddV1
-- AddV1 :: ExprV1 -> ExprV1 -> ExprV1
```

An Expression for Adding Integers

```
data ExprV1 = ExprV1 Int | AddV1 ExprV1 ExprV1
```

Kinds & Types of Type and Data Constructors

```
:k ExprV1
-- ExprV1 :: *
:t ExprV1
-- ExprV1 :: Int -> ExprV1
:t AddV1
-- AddV1 :: ExprV1 -> ExprV1 -> ExprV1
```

Evaluating our Expressions

```
evalExprV1 :: ExprV1 -> Int
evalExprV1 (ExprV1 k) = k
evalExprV1 (AddV1 e1 e2) = evalExprV1 e1 + evalExprV1 e2
```

Extending Our Expression with Conditionals

```
data ExprV2 a where
  IntV2 :: Int -> ExprV2 Int
  BoolV2 :: Bool -> ExprV2 Bool
  AddV2 :: ExprV2 Int -> ExprV2 Int
  NotV2 :: ExprV2 Bool -> ExprV2 Bool
  IfV2 :: ExprV2 Bool -> ExprV2 a -> ExprV2 a
```

Extending Our Expression with Conditionals

```
data ExprV2 a where
  IntV2 :: Int -> ExprV2 Int
  BoolV2 :: Bool -> ExprV2 Bool
  AddV2 :: ExprV2 Int -> ExprV2 Int
  NotV2 :: ExprV2 Bool -> ExprV2 Bool
  IfV2 :: ExprV2 Bool -> ExprV2 a -> ExprV2 a
```

Kinds & Types of Type and Data Constructors

```
:k ExprV2
-- ExprV2 :: * -> *
:t IntV2
-- IntV2 :: Int -> ExprV2 Int
:t AddV2
-- AddV2 :: ExprV2 Int -> ExprV2 Int
```

GADTs: Pattern Matching Leads to Type Refinement

3. Dependently Typed Programming in Haskell

Lists are Unsafe

Run-Time Errors head [] -- *** Exception: Prelude.head: empty list maximum [] -- *** Exception: Prelude.head: empty list ["foo"] !! 1 -- *** Exception: Prelude.!!: index too large

GADTs Can Alleviate Some Problems

Nonempty Lists with GADTs

```
data ContainerStatus = Empty | NonEmpty

data SafeList :: * -> ContainerStatus -> * where
  Nil :: SafeList a Empty
  Cons :: a -> SafeList a b -> SafeList a NonEmpty

safeHead :: SafeList a NonEmpty -> a
safeHead (Cons x _) = x
```

GADTs Can Alleviate Some Problems

Nonempty Lists with GADTs data ContainerStatus = Empty | NonEmpty data SafeList :: * -> ContainerStatus -> * where Nil :: SafeList a Empty Cons :: a -> SafeList a b -> SafeList a NonEmpty safeHead :: SafeList a NonEmpty -> a safeHead (Cons x _) = x

Turning Run-Time into Compile-Time Errors

```
safeHead $ Cons "bar" Nil
-- "bar"
safeHead $ Nil
-- error: Couldn't match type 'Empty' with 'NonEmpty'
```

Natural Numbers and Fixed Length Lists

```
data Nat where
  Zero :: Nat
  Succ :: Nat -> Nat

data Vec :: * -> Nat -> * where
  VNil :: Vec a 'Zero
  VCons :: a -> Vec a n -> Vec a ('Succ n)
```

Constructing Nats and Vecs

```
Succ (Succ Zero) -- 2
VCons 2 (VCons 1 Nil) -- the vector [2, 1]
:t VCons 2 (VCons 1 VNil)
-- VCons 2 (VCons 1 VNil) :: Num a => Vec a ('Succ ('Succ 'Zero))
```

A Safe Head Function safeHead' :: Vec a ('Succ n) -> a safeHead' (VCons x _) = x

```
Compile-Time Error

safeHead' (VCons "foo" VNil)
-- "foo"
safeHead' VNil
-- error: Couldn't match type ''Zero' with ''Succ no'
```

comparing Nats (at Compile-Time!) type family (m::Nat) :< (n::Nat) :: Bool type instance m :< 'Zero = 'False type instance Zero :< (Succ n) = 'True type instance ('Succ m) :< (Succ n) = m :< n</pre>

Safe Access (with Gaps)

```
nth :: (m:<n) ~ 'True => --?-- -> Vec a n -> a
nth --?-- (VCons a _) = a
nth --?-- (VCons _ as) = nth sm' as
```

Safe Access (with Gaps) nth :: (m:<n) ~ 'True => --?-- -> Vec a n -> a nth --?-- (VCons a _) = a nth --?-- (VCons _ as) = nth sm' as

Singleton Nats

```
data SNat :: Nat -> * where
SZero :: SNat 'Zero
-- SSucc :: forall (n::Nat).SNat n -> SNat ('Succ n)
SSucc :: SNat n -> SNat ('Succ n)
```

Safe Access nth :: (m:<n) ~ 'True => SNat m -> Vec a n -> a nth SZero (VCons a _) = a nth (SSucc sm') (VCons _ as) = nth sm' as

```
Compile-Time Error

nth SZero (VCons "foo" VNil)
-- "foo"
nth (SSucc SZero) (VCons "foo" VNil)
-- error: Couldn't match type ''False' with ''True'
```

Singleton Type Generation

Eisenberg, R., & Weirich, S. (2012). Dependently typed programming with singletons. In Proceedings of the 2012 Haskell Symposium (pp. 117–130). Association for Computing Machinery.

Singleton Types - a Poor Man's Substitute for Dependent Types?

What is a dependently typed language?

In a dependently typed language, types depend on run-time values.

Is Haskell a dependently typed language?

Elements of a dependently typed language are supported by language extensions:

- There is a notion of type-level data with typing provided by DataKinds.
- We can use GADTs to create run-time representation of type-level data (using Singletons)

Using Singletons oftentimes requires duplicate code for term- and type-level data. The *Singletons* library can help to create this boilerplate code using *Template Haskell*.

The Curry-Howard homeomorphism

LC90

GADTs and Dependently Typed Programming

