Large-scale structure of complex networks (Part 2)

Snehal M. Shekatkar

Centre for modeling and simulation, S.P. Pune University, Pune

Community structure in networks

Community structure in networks

What are communities?

- ► Traditional definition: Groups of nodes with a high internal link density
- ▶ Modern definition: Nodes with similar connection probabilities to the rest of the network

Communities in the real-world networks

Social networks:

- ▶ Friend-circles
- ▶ Research communities
- Co-workers

World Wide Web:

- Pages with similar contents
- ▶ Webpages under the same domain (e.g. Wikipedia)

Biological network:

- Proteins with similar roles in protein interaction networks
- Chemicals together taking part in chemical reactions in metabolic networks
- ▶ Communities in neuronal networks

Community detection

Detecting communities is important!

- ► Communities are building blocks of networks
- ► Communities allow us to see "the big picture"
- ► Functional/Autonomous units
- ▶ Non-trivial effects on the processes on networks

Graph partitioning

Problem of dividing a graph in a given number of groups of given sizes such that the number of links between the groups is minimized

Graph partitioning

Problem of dividing a graph in a given number of groups of given sizes such that the number of links between the groups is minimized

Partitioning is hard!

- ightharpoonup Graph with n vertices
- ▶ Find two groups with sizes n_1 and n_2 such that the cut size is minimum
- ▶ Number of ways: $\frac{n!}{n_1!n_2!} \approx \frac{2^{n+1}}{\sqrt{n}}$

Community detection is harder!

Graph partitioning

- ▶ well defined
- Number of groups is fixed
- ► Sizes of the groups are fixed
- ▶ Divide even if no good division exists

Community detection

- ▶ ill-defined
- Number of groups depends on the structure of the network
- Sizes of the groups depend on the structure of the network
- Discover natural fault lines

Too many algorithms

- ▶ Girvan-Newman algorithm
- ▶ Modularity maximization
- ► Spectral decomposition
- Clique-percolation
- ▶ Radom walk methods
- ▶ Statistical inference
- Label propagation
- ▶ Hierarchical clustering

"The" simplest community detection problem

- ightharpoonup Bisecting a graph with n nodes
- Group sizes are not fixed
- ► Minimum cut size?

"The" simplest community detection problem

- \triangleright Bisecting a graph with n nodes
- Group sizes are not fixed
- ► Minimum cut size?

A different measure of the quality of division is required..

▶ Fewer than expected edges between the groups

- ▶ Fewer than expected edges between the groups
- ▶ Equivalently, more than expected edges inside the groups

- ▶ Fewer than expected edges between the groups
- ▶ Equivalently, more than expected edges inside the groups
- ► Assortativity mixing and modularity

- ▶ Fewer than expected edges between the groups
- ▶ Equivalently, more than expected edges inside the groups
- Assortativity mixing and modularity
- ▶ Look for divisions with high modularity

- ▶ Fewer than expected edges between the groups
- ▶ Equivalently, more than expected edges inside the groups
- Assortativity mixing and modularity
- ▶ Look for divisions with high modularity
- Modularity maximization is hard

Heuristic algorithms for modularity maximization

► Agglomerative algorithms:

- ► Hierarchical clustering
- ► Louvain method
- ▶ CNM algorithm

▶ Divisive algorithms:

- ▶ Girvan-Newman algorithm
- ▶ Radichhi algorithm

Newman-Girvan algorithm

- ▶ Look for edges between the communities
- ▶ Edge betweenness

Edge betweenness

- ▶ Path between two nodes
- Shortest path between two nodes
- ▶ Number of shortest paths that go through a given edge

The algorithm

- Calculate betweenness for all edges
- ▶ Remove the edge with the highest betweenness
- ▶ Recalculate betweenness for all edges
- ► Repeat