a). Obtain the fitted the Poisson regression model with the response function μi = exp(X' β). State the estimated regression coefficients, their estimated standard deviations, and the estimated response function.

 $E[Y \mid X] = \exp\left(0.4994 + 1.495 \times 10^{-5} \cdot \text{Total cost} + 0.0067 \cdot \text{Age} + 0.1819 \cdot \text{Gender} + 0.0101 \cdot \text{Number of interventions} \right.$ $+0.1932 \cdot \text{Number of drugs} + 0.0613 \cdot \text{Number of complications} - 0.0009 \cdot \text{Number of comorbidities} + 0.0004 \cdot \text{Duration})$

Generalized	Linear	Model	Regression	Results

Dep. Variable:	Number of ER visits	No. Observations:	788
Model:	GLM	Df Residuals:	779
Model Family:	Poisson	Df Model:	8
Link Function:	Log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1626.5
Date:	Mon, 29 Jul 2024	Deviance:	1043.6
Time:	14:50:52	Pearson chi2:	1.04e+03
No. Iterations:	5	Pseudo R-squ. (CS):	0.4288
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	0.4994	0.176	2.837	0.005	0.154	0.845
Total cost	1.495e-05	2.85e-06	5.237	0.000	9.36e-06	2.05e-05
Age	0.0067	0.003	2.266	0.023	0.001	0.013
Gender	0.1819	0.044	4.135	0.000	0.096	0.268
Number of interventions	0.0101	0.004	2.646	0.008	0.003	0.018
Number of drugs	0.1932	0.013	15.234	0.000	0.168	0.218
Number of complications	0.0613	0.060	1.022	0.307	-0.056	0.179
Number of comorbidities	-0.0009	0.004	-0.244	0.807	-0.008	0.006
Duration	0.0004	0.000	1.859	0.063	-1.92e-05	0.001

(b). Obtain the deviance residuals and plot them against the estimated model probabilities with a lowest smooth superimposed. What does the plot suggest about the adequacy of the fit of the Poisson regression model?

Interpretation

There are several outliers with high residuals, indicating significant deviations between observed and predicted values for those points. The residuals exhibit a downward trend, suggesting potential systematic errors in the model for certain probability ranges. The model appears more accurate for higher estimated probabilities, with lower residuals in those regions.

(c). Conduct a series of Wald tests to determine which predictor, if any, can be dropped from the regression mode!. Control α at 0.01 for each test. State the alternatives decision rules, and conclusions.

	CHI2	P>CHI2	DF CONSTRAINT
CONST	[[8.047589931220656]]	0.00456	1

TOTAL COST	[[27.429318499243916]]	0.00000	1
AGE	[[5.1343294352454745]]	0.02346	1
GENDER	[[17.09687093615598]]	0.00004	1
NUMBER OF INTERVENTIONS	[[6.998921821544725]]	0.00816	1
NUMBER OF DRUGS	[[232.0613061253898]]	0.00000	1
NUMBER OF COMPLICATIONS	[[1.0440171815890076]]	0.30689	1
NUMBER OF COMORBIDITIES	[[0.05962992145239517]]	0.80708	1
DURATION	[[3.454458778573762]]	0.06308	

The Hypotheses

Null hypothesis (H_o): The predictor can be dropped from the model (i.e., the coefficient of the predictor is zero).

Alternative hypothesis (H_a): The predictor should not be dropped from the model (i.e., the coefficient of the predictor is not zero).

Decision Rule

Compare the p-Values ($P > X^2$) to the significance level (a=0.01)

If $P > X^2 \le 0.01$, reject the null hypothesis (H_0)

If $P > X^2 > 0.01$, fail to reject the null hypothesis (H_o)

Detailed Analysis

const

- $P>\chi 2=0.00456$
- Decision: Reject Ho
- Conclusion: The constant term can not be dropped from the model.

Total cost

- P>χ2= 1.62942111264155E-07
- Decision: Reject H0
- Conclusion: The Total cost predictor can not be dropped from the model.

Age

- P>χ2=0.02346
- Decision: Do not Reject H0
- Conclusion: The Age predictor can be dropped from the model.

Gender

- $P>\chi 2=0.00004$
- Decision: Reject H0
- Conclusion: The Gender predictor can not be dropped from the model.

Number of interventions:

- $P>\chi 2=0.00816$
- Decision: Reject H0
- Conclusion: The Number of interventions predictor can not be dropped from the model.

Number of drugs:

• P>χ2= 2.11745709683176E-52

Decision: Reject H0

Conclusion: The Number of drugs predictor can not be dropped from the model.

Number of complications:

• $P>\chi 2=0.30689$

• Decision: Fail to reject H0

• Conclusion: The Number of complications predictor can be dropped from the model.

Number of comorbidities:

• $P>\chi 2=0.80708$

• Decision: Fail to reject H0

Conclusion: The Number of comorbidities predictor can be dropped from the model.

Duration:

• $P>\chi 2=0.06308$

Decision: Fail to reject H0

• Conclusion: The Duration predictor can be dropped from the model.

Conclusion

Based on the Wald tests, the predictors **Age, Number of complications, Number of comorbidities, and Duration** can be dropped from the regression model as their p-values are greater than 0.01. The remaining predictors, including the intercept, should be retained in the model.

(d). Assuming that the fitted model in part (a) is appropriate, use the likelihood ratio test and determine whether duration, complications, and comorbidities can be dropped from the model: control α at 0.05. State the full and reduced models, decision rule, and conclusion.

Likelihood Ratio Statistic: 5.261531068848399

Degrees of Freedom Difference: 3

P-value: 0.1536181492084976

Hypotheses

Null Hypothesis (H₀): The reduced model is sufficient. The variables "duration," "complications," and "comorbidities" can be dropped.

Alternative Hypothesis (H_a): The full model is necessary. The variables "duration," "complications," and "comorbidities" cannot be dropped.

Decision Rule

- If the p-value of the likelihood ratio test is less than the significance level α =0.05, reject the null hypothesis H₀.
- Otherwise, fail to reject the null hypothesis H₀.

Conclusion

Compare the p-value to the significance level $\alpha = 0.05$:

0.1536>0.05

Since the p-value (0.1536) is greater than the significance level (0.05), we fail to reject the null hypothesis H_0 . The variables **duration**, **complications**, **and comorbidities** can be dropped from the model, as the reduced model is sufficient.

e.) Use backward elimination to decide which predictor variables can be dropped from the regression model. Control the α risk at 0.10 each stage. Which variables are retained?

Dropped Number of comorbidities with p-value $0.\overline{8070818235833706}$ Dropped Number of complications with p-value 0.30925889910006454

Based on the results, the backward elimination process iteratively removed the following predictors from the model

- 1. Number of comorbidities (p-value: 0.807081)
- 2. Number of complications (p-value: 0.309258)

The remaining predictors in the final model are:

- 1. Total Cost
- 2. Age
- 3. Gender
- 4. Number of interventions
- 5. Number of drugs
- 6. Duration

Number of drugs

Duration

These variables are retained because their p-values are below the α =0.10 threshold.

Generalized Linear Model Regression Results

Dep. Variable:	Number of ER visi	er of ER visits No		::	788	
Model:	O	GLM Df	Residuals:		781	
Model Family:	Poiss	son Df	Model:		6	
Link Function:	I	Log Sc	ale:		1.0000	
Method:	II	RLS Lo	g-Likelihood:		-1627.1	
Date:	Mon, 29 Jul 20	024 De	viance:		1044.7	
Time:	14:52:	:03 Pe	arson chi2:		1.04e+03	
No. Iterations:		5 Ps	eudo R-squ. (C	:S):	0.4281	
Covariance Type:	nonrobu	ıst				
	coef	std e	======================================	P> z	[0.025	0.975]
const	0.5208	0.1	 74 2.986	0.003	0.179	 0.863
Total cost	1.493e-05	2.84e-	06 5.251	0.000	9.36e-06	2.05e-05
Age	0.0063	0.0	03 2.156	0.031	0.001	0.012
Gender	0.1857	0.0	44 4.241	0.000	0.100	0.272
Number of intervent	ions 0.0102	0.0	04 2.710	0.007	0.003	0.018

0.012

0.000

16.067

2.048

0.000

0.041

0.172

1.49e-05

0.1963

0.0003

0.220

0.001