

Gravitational Acceleration

Name: _____ Section: 2AL-_____ Date performed: ____/____/____

Lab station: _____ Partners: _____

Computing the standard value

(Q-1) Calculate the standard value of g at CCSF.

$$g_{\text{std}} = (\underline{\hspace{2cm}} \pm 0.01) \text{ cm/s}^2 = (\underline{\hspace{2cm}} \pm 0.0001) \text{ m/s}^2$$

Measuring g using the Haddock Intervalometer

(Q-2,3) Measure the fall time (t) for eight different fall heights (h) and fill in the following table.

(Q-4) Plot $2h$ vs. t^2 . Don't forget to put a title on the graph and label the axes *with units*.

(Q-5) Use the graph to calculate g_{meas} , with uncertainty.

$$g_{\text{meas}} = (\underline{\hspace{2cm}} \pm \underline{\hspace{2cm}}) \text{ m/s}^2$$

Which rule did you use to compute the uncertainty of g_{meas} ?

Comparing standard and measured values

(Q-6) Does g_{std} agree with g_{meas} ? Explain.

Exercises

Determine the right-hand side of Eq. (9) in the lab text, and derive it from Eq. (8).

The plot $2h$ vs. t^2 should be

- (A) a curve.
- (B) a straight line whose slope is equal to g .
- (C) a straight line whose slope is equal to $2g$.
- (D) a straight line whose y -intercept is equal to g .
- (E) a straight line whose slope is equal to $1/g$.
- (F) not enough information to tell.

Explain with the help of Eq. (9):

The fall height (h) should be measured

- (A) from the bottom of the ball while it is mounted on the electromagnet to the floor.
- (B) from the bottom of the ball while it is mounted on the electromagnet to the top of the floor switch.
- (C) from the bottom of the electromagnet to the top of the floor switch.
- (D) from the top of the plastic pipe on which the electromagnet is mounted to the tip of your lab partner's nose.

How would g_{std} be affected if you moved to a location which is at the same latitude as CCSF, but higher above sea level?

- (A) g_{std} would be unaffected.
- (B) g_{std} would increase.
- (C) g_{std} would decrease.
- (D) Not enough information to tell.

Explain:

How would g_{std} be affected if you moved to a location which is at the same height above sea level as CCSF, but farther north?

- (A) g_{std} would be unaffected.
- (B) g_{std} would increase.
- (C) g_{std} would decrease.
- (D) Not enough information to tell.

Explain: