5374 Fall 2022 Numerical Linear Algebra

Lecture 26

solving	AZ= b	(A is	NXN)	Ma	vanious
algorithme:			but re upper	quies a trian	zur gulur matrix
Back-subGauss-Jos	${ m stitution\ take}$ ${ m rdan\ takes\ } { m \it O}$	es $O(n^2)$ F (n^3) FLO	LOPs longer PS	ayonthe invertib	but hondle he marrices
 QL کود (Today) الم 	owpositions o	i gradient	descent t	akes O	(κn^{-}) FLOPS
		Îre	quier a	positive finite m	DIST
now his	is positive only outs	w-2~ er	m) p		ed ed

definite

If the matrix A is **positive**, the function

$$f(\boldsymbol{z}) = \frac{1}{2}(\mathbf{A}\boldsymbol{z}, \boldsymbol{z}) - (\boldsymbol{b}, \boldsymbol{z})$$

is a (strictly) convex quadratic polynomial of n variables.

The unique global minim of
$$f(z)$$
 is the solvin Z_{k} to $AZ_{k} = b$ $(Z_{k} = A^{-1}b)$

Some computations involving f(z)

Given $\boldsymbol{z}, \boldsymbol{v}$, and α , we considered the function

$$f(\boldsymbol{z} + \alpha \boldsymbol{v}) = \frac{1}{2}(A(\boldsymbol{z} + \alpha \boldsymbol{v}), \boldsymbol{z} + \alpha \boldsymbol{v}) - (\boldsymbol{b}, \boldsymbol{z} + \alpha \boldsymbol{v})$$
expand the right hand side. Note that

Let us expand the right hand side. Note that

$$\frac{1}{2}(\mathbf{A}(\boldsymbol{z} + \alpha \boldsymbol{v}), \boldsymbol{z} + \alpha \boldsymbol{v}) = \frac{1}{2}(\mathbf{A}(\boldsymbol{z}, \boldsymbol{z}) + \alpha(\mathbf{A}\boldsymbol{z}, \boldsymbol{v}) + \frac{1}{2}\alpha^{2}(\mathbf{A}\boldsymbol{v}, \boldsymbol{v}))$$

$$(\boldsymbol{b}, \boldsymbol{z} + \alpha \boldsymbol{v}) = (\boldsymbol{b}, \boldsymbol{z}) + \alpha(\boldsymbol{b}, \boldsymbol{v})$$

Some computations involving f(z)

Putting this together, we see that

$$f(\boldsymbol{z} + \alpha \boldsymbol{v}) = f(\boldsymbol{z}) + \alpha(A\boldsymbol{z} - \boldsymbol{b}, \boldsymbol{v}) + \frac{1}{2}\alpha^2(A\boldsymbol{v}, \boldsymbol{v})$$

Moreour,

$$\lim_{\alpha \to 0} \frac{f(2+\alpha v) - f(2\tau)}{\alpha} = (Az - b, v), \forall v = 0 \text{ $\int f(2\tau) = Az - b$}$$

$$\lim_{\alpha \to 0} \frac{f(2+\alpha v) + f(2-\alpha v) - 2f(2\tau)}{\alpha^2} = (Av_1v) \forall v$$

$$\lim_{\alpha \to 0} \frac{\partial^2 f(2\tau) = A}{\partial x^2}.$$

Some computations involving f(z)

Remark: From the identity

$$f(\boldsymbol{z}+\alpha\boldsymbol{v})=f(\boldsymbol{z})+\alpha(\mathbf{A}\boldsymbol{z}-\boldsymbol{b},\boldsymbol{v})+\frac{1}{2}\alpha^2(\mathbf{A}\boldsymbol{v},\boldsymbol{v})$$
 it follows immediately that

$$\nabla f(\boldsymbol{z}) = A\boldsymbol{z} - \boldsymbol{b}, \ D^2 f(\boldsymbol{z}) = A$$

Some computations involving f(z)

Remark:

(The following elementary observation will be key later) If we write $\mathbf{x} = \mathbf{z} + \alpha \mathbf{v}$, then

$$f(x) = f(z) + (Az - b, x - z) + \frac{1}{2}(A(x - z), x - z)$$

In partial, it 7= 2x, the solute to AZ=b,

$$f(\chi) = f(\frac{1}{4}) + \frac{1}{2} \left(A(\chi - \chi), \chi - \chi \right)$$
(Since of is positive definite, this show $f(\chi) \ge f(\chi)$)
for all χ , and $=$ if and only if $\chi = \chi$)

Hote: If $\chi_0 = \text{sueller} x$ or events of χ , then

f(x) - f(z1) = 10 ||x-z+112

Line searches

How do we find the minimum of f(z)?

How do we find minimizers?

Clearly, solving $\nabla f(z) = 0$ is self-defeating in our context.

Let us settle for minimizing along any given straight line.

So we take £(2+dv) or before, and mininge in d, since this is a commex (1-d) parabole, the minimization is done in a boric algebraic operation.

Line searches

(Pick V ER?)

If current guess is z, search for the minimizer on some line

$$z + \alpha v, \ \alpha \in \mathbb{R}.$$

That is we minimize the function of one variable

$$f_{\boldsymbol{z},\boldsymbol{v}}(\alpha) := f(\boldsymbol{z} + \alpha \boldsymbol{v}).$$

Line searches

z= 2+ XV

Recall that

$$f_{\boldsymbol{z},\boldsymbol{v}}(\alpha) = f_{\boldsymbol{z},\boldsymbol{v}}(0) + (\mathbf{A}\boldsymbol{z} - \boldsymbol{b}, \boldsymbol{v})\alpha + \frac{1}{2}(\mathbf{A}\boldsymbol{v}, \boldsymbol{v})\alpha^2.$$

In particular,

$$\frac{d}{d\alpha}f_{\boldsymbol{z},\boldsymbol{v}}(\alpha) = (\mathbf{A}\boldsymbol{z} - \boldsymbol{b}, \boldsymbol{v}) + \alpha(\mathbf{A}\boldsymbol{v}, \boldsymbol{v}).$$

The minimum is achieved

(AZ-b, V)

 $\alpha = - \frac{1}{(Av_{i}v)}$

(recall (AUV) \$0 cree V\$0 and A is pos! hhe separte)

Line searches

Therefore the α that gives the minimum for $f_{z,v}$ is

$$lpha = -rac{(\mathbf{A}\boldsymbol{z} - \boldsymbol{b}, \boldsymbol{v})}{(\mathbf{A}\boldsymbol{v}, \boldsymbol{v})}$$

This takes us from an initial guess z to

$$z' = z + \alpha v, \ \alpha = -\frac{(Az - b, v)}{(Av, v)}$$

This is called a line search, since we have searched (and found) the minimum value of the function along a given line. In this context, \boldsymbol{v} is called "the search direction".

Now, we could repeat the process, starting from z', and taking a **different** direction v' to look for yet a better candidate.

Line searches

...so we arrive at the **Gradient Descent Method**.

Basically, Gradient Descent consists in subsequent line searches, where at each stage we pick as search direction **the opposite to the gradient** of f at our current guess, that is

$$\boldsymbol{v} = -\nabla f(\boldsymbol{z}) = -(\mathbf{A}\boldsymbol{z} - \boldsymbol{b}) = \boldsymbol{b} - \mathbf{A}\boldsymbol{z}$$

Line searches

Line searches
$$v = \frac{\left(A^{2-b}, Y\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(a^{2-b}, Y\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left(A^{2} + b, b - A^{2}\right)} = \frac{\left(b - A^{2}, b - A^{2}\right)}{\left$$

In this case

The Gradient Descent algorithm

Initialization:

$$z_0$$
 (initial guess) $v_0 = b - Az_0$

At stage k:

$$egin{aligned} oldsymbol{v}_k &= oldsymbol{b} - \mathbf{A} oldsymbol{z}_{k-1} \ lpha_k &= rac{(oldsymbol{v}_k, oldsymbol{v}_k)}{(\mathbf{A} oldsymbol{v}_k, oldsymbol{v}_k)} \ oldsymbol{z}_k &= oldsymbol{z}_{k-1} + lpha_k oldsymbol{v}_k \end{aligned}$$

Stop the process at a pre-determined number of steps k_0 .

The **Gradient Descent** algorithm (fixed number of steps = k_0)

$$egin{aligned} oldsymbol{z} &= oldsymbol{z}_0 \ oldsymbol{v} &= oldsymbol{v}_0 \ oldsymbol{for} & k = 1, \dots, k_0 \colon \ oldsymbol{v} &\leftarrow oldsymbol{b} - A oldsymbol{z} \ & oldsymbol{\alpha} &\leftarrow oldsymbol{(v, v)}/(A oldsymbol{v}, oldsymbol{v}) \ & oldsymbol{z} \leftarrow oldsymbol{z} + lpha oldsymbol{v} \ & oldsymbol{z} \leftarrow oldsymbol{z} + lpha oldsymbol{v} \ & oldsymbol{v} \end{aligned}$$
 return $oldsymbol{z}$

The **Gradient Descent** algorithm (fixed number of steps = k_0)

$$egin{aligned} oldsymbol{z} &= oldsymbol{z}_0 \ oldsymbol{v} &= oldsymbol{v}_0 \ oldsymbol{for} & k = 1, \dots, k_0 \colon \ oldsymbol{v} &\leftarrow oldsymbol{b} - A oldsymbol{z} \ & ar{lpha} \leftarrow (oldsymbol{v}, oldsymbol{v})/(A oldsymbol{v}, oldsymbol{v}) \ & oldsymbol{z} \leftarrow oldsymbol{z} + lpha oldsymbol{v} \ & oldsymbol{z} \leftarrow oldsymbol{z} + lpha oldsymbol{v} \end{aligned}$$
 return $oldsymbol{z}$

Q: What is the number of FLOPs performed by this algorithm?

The **Gradient Descent** algorithm (fixed number of steps = k_0)

$$egin{aligned} oldsymbol{z} &= oldsymbol{z}_0 \ oldsymbol{v} &= oldsymbol{v}_0 \ oldsymbol{for} & k = 1, \dots, k_0 \colon \ oldsymbol{v} &\leftarrow oldsymbol{b} - A oldsymbol{z} \ & ar{lpha} \leftarrow (oldsymbol{v}, oldsymbol{v})/(A oldsymbol{v}, oldsymbol{v}) \ & oldsymbol{z} \leftarrow oldsymbol{z} + lpha oldsymbol{v} \ & oldsymbol{z} \leftarrow oldsymbol{z} + lpha oldsymbol{v} \end{aligned}$$
 return $oldsymbol{z}$

Q: What is the # of FLOPs if A is sparse? (\bigcirc (\bigcirc (\bigcirc)

Lemma

Let A be positive and z_* the solution to $Az_* = b$, and $\{z_k\}_k$ a sequence generated by Gradient Descent, then

$$f(\boldsymbol{z}_k) - f(\boldsymbol{z}_*) \le \left(1 - \frac{1}{\operatorname{cond}(A)}\right) (f(\boldsymbol{z}_{k-1}) - f(\boldsymbol{z}_*))$$

In particular

$$f(\boldsymbol{z}_k) - f(\boldsymbol{z}_*) \le \left(1 - \frac{1}{\operatorname{cond}(A)}\right)^k (f(\boldsymbol{z}_0) - f(\boldsymbol{z}_*))$$