ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B.Tech	Semester:	III
Paper Title :	Electromagnetic Fields	Paper Code:	EEC42107
Maximum Marks :	40	Time duration:	3 Hrs
Total No of questions:	8	Total No of Pages:	1

Instruction for the Candidate:

- 1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.
- All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.
- Assumptions made if any, should be stated clearly at the beginning of your answer.

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) "Magnetic monople does not exist."- Justify this statement.
 - b) "Del is a scalar operator". True or False?
 - c) For A = (1, 3, 4) and B = (1, 0, 2), find A.B.
 - d) When does the characteristic impedance of a transmission line becomes a real quantity?
 - e) Define Electric Flux Density.

GROUP-B

Answer *any three* of the following

 $3 \times 5 = 15$

- 2. A charge of $Q_1 = -1.0 \, mC$ is placed at the origin of a rectangular coordinate system and a second charge, $Q_2 = -10 \, mC$ is placed on the x-axis at a distance of 50 cm from the origin. Find the force on Q_1 due to Q_2 if they are in free space. [5]
- 3. Explain Biot-Savart Law.

[5]

- Define curl of a vector. Given a vector, $\mathbf{A} = 3x\mathbf{a_x} + y\mathbf{a_v} + 5z\mathbf{a_z}$, find the curl of A. [1+4] 4.
- 5. Find out the values of propagation constant (γ) and characteristics impedance (Z_0) under the following conditions: for no loss (iii) for no distortion [2.5+2.5]

GROUP -C

Answer any two of the following

 $2 \times 10 = 20$

- Define electric field strength due to a point charge. If Coulomb's force, $\mathbf{F} = 2\mathbf{a_x} + \mathbf{a_y} + \mathbf{a_z}$ 6. N, is acting on a charge, of 10 C, find the electric field intensity, its magnitude and direction. [2+8]
- 7. Explain point charge, line charge, surface charge and volume charge. If there is a total charge of 10 pC over a surface area of $0.2 m^2$, find the surface charge density. [8+2]
- 8. Establish the relationship among Characteristics impedance, Short-circuit input impedance and Open-circuit input impedance of a lossless transmission line. [10]