Module 8 Summary Exercises

Due Mar 2 at 1:59am **Allowed Attempts** 2

Points 60

Questions 29

Time Limit None

Instructions

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	1,787 minutes	56.17 out of 60

(!) Answers will be shown after your last attempt

Score for this attempt: **56.17** out of 60

Submitted Mar 1 at 7:54pm This attempt took 1,787 minutes.

Question 1	1 / 1 pts
Where do network-layer protocols run?	
Routers	
☑ PCs	
☑ Laptops	
Mobile devices	

Question 2	1 / 1 pts
A router's routing table is output by a routing algorithm .	

	routing algorithm
rtial	Question 3 0.5 / 1 pt
	Which of the following are benefits of a datagram network? (Check all that apply)
	Faster delivery.
	Guaranteed timing.
	Less overhead than a VC network.
	Guaranteed bandwidth.
	Connection states are preserved.
	Question 4 1/1 pt
	The process of determining a path through the internet is handled by the routing algorithm
	Answer 1:
	routing algorithm
	Question 5 1/1 pt
	What can cause queueing at a router's input ports? (Check all that apply)
	Slow inbound link transmission rate.
	Slow outbound link transmission rate.
	✓ Head of Line blocking.

Answer 1:

Output port contention.		

Question 6 2 / 2 pts

Upon encountering a router with the following routing table:

Routing Table

Prefix Match			
10011110 00011110 10001111	0		
10011110 00011110 10001111 000	1		
10011110 00011110 10001111 01	2		
10011110 00011110 10001110 0001	3		
Default	4		

A datagram with the destination IP address 158.30.143.30 would be routed to Port 1 .

Answer 1:

Port 1

Question 7 2 / 2 pts

The largest amount of data, in bytes, which can be accommodated by a particular network, link, or physical-layer is called the [a].

- Sending Size
- Maximum Transmission Unit (MTU)
- Maximum Segment Size (MSS)

Question 8 2 / 2 pts

○ True	
False	
Question 9	2 / 2 pts
The transport-layer header is encapsulated in the first fragment	ed IP datagram.
True	
○ False	
Question 10	2 / 2 pts
Re-assembly of fragmented IP datagrams is handled by	
Re-assembly of fragmented IP datagrams is handled by the router in the datagram's path	
the router in the datagram's path	
the router in the datagram's paththe next router with a large-enough MTU.	
the router in the datagram's paththe next router with a large-enough MTU.the sending host.	0.67 / 2 pts

Partial

☐ Through a connection relay service	
By using the NAPT devices IP address, and a port number pre-configured to corresponding the server.	nd to
Question 12	2 / 2 pts
P datagrams fragments can not be fragmented again.	
○ True	
- True	
False	
Question 13	2 / 2 pts
t is the responsibility of a routing algorithm to correlate MAC addresses with IP addresses.	
○ True	
TrueFalse	
False	2 / 2 nts
	2 / 2 pts
False	2 / 2 pts
False Question 14	2 / 2 pts

	2 / 2 pts
If an IP datagram is fragmented into 1000-byte fragments, and late an 800-byte MTU, a special procedure (other than standard IP fragused.	
O True	
False	
Question 16	2 / 2 pts
The IP header is encapsulated in IP datagram fragments.	
○ True	
False	
Question 17	2 / 2 pts
The largest amount of data, in bytes, which can be accomodated t route from sender to receiver is called the [a].	hroughout a datagram's
Maximum Path Size	
Path Maximum Segment Size (Path MSS)	
Path Maximum Transmission Unit (Path MTU)	

Question 19	2 / 2 pt
The "time to live" field in a modern IPv4 datagram header specifies	
the number of remaining hops before the datagram is dropped.	
the milliseconds remaining before the datagram is dropped.	
 the seconds to wait for the remaining fragments of a datagram that has b 	een fragmented.
the seconds remaining before data in the datagram is considered obsoler	e.
Question 20	2 / 2 pt
NAPT devices translate IP address <i>and</i> port numbers.	
True	
○ False	
Question 21	2 / 2 pt
f an IP datagram is fragmented into 1000-byte fragments, and later end in 800-byte MTU, it is dropped.	counters a link with

Question 22	2 / 2 pts
For a TCP/IP datagram leaving a home network through a NAPT devi following header fields (IP and/or TCP) are altered? (Check all that ap	
✓ Header Checksum	
Upper Layer Protocol	
Destination IP address	
Source IP Address	
Identification	
Source Port	
Destination Port	
In network graph terminology, a [a] from A to B is the set of edges to to from A for the lowest total cost.	raverse to reach B
Shortest Path	
O Node	
Weight	
Edge	
Question 24	2 / 2 pts
The "traceroute" application (on Windows) sends UDP messages by o	default.
○ True	

Incorrect

False				

Question 25	2 / 2 pts
The "traceroute" application (on Windows) sends ICMP messages by default.	
True	
○ False	

Question 26	2 / 2 pts
For a TCP/IP datagram coming into a home network through a NAPT device, v following header fields (IP and/or TCP) are altered? (Check all that apply)	which of the
Destination Port	
Source Port	
Source IP Address	
✓ Header Checksum	
✓ Destination IP address	
Identification	
Upper Layer Protocol	

Question 27 1 / 1 pts

A private network uses a NAPT device at public IP address 128.100.116.1 The computers in the network use addresses of the form 10.0.0.x/22. Suppose that computer inside the NATed network sends a request with

Source address: 10.0.0.4 Source port: 932 Destination address: 108.155.105.30 Destination port: 22 The next available port number on the NAPT device is 12000 PART 1: What source and destination information do the request packet headers contain when the request is sent out by the sending host? [Select] Source address: [Select] Source port : [Select] Destination address: [Select] Destination port: PART 2: What source and destination information do the request packet headers contain when the request is sent out by the NAT box? [Select] Source address: [Select] Source port: Destination address: [Select] [Select] Destination port: PART 3: What source and destination information do the response packet headers contain when the response is received by the NAT box? [Select] Source address: [Select] Source port :

Destination address: [Select]
Destination port : [Select]
PART 4:
What source and destination information do the response packet headers contain when the response is received by the original sending host?
Source address: [Select]
Source port : [Select]
Destination address: [Select]
Destination port : [Select]
Answer 1:
10.0.0.4
Answer 2:
932
Answer 3:
108.155.105.30
Answer 4:
22
Answer 5:
128.100.116.1
Answer 6:
12000
Answer 7:
108.155.105.30
Answer 8:
22

Answer 9:		
108.155.105.30		
Answer 10:		
22		
Answer 11:		
128.100.116.1		
Answer 12:		
12000		
Answer 13:		
108.155.105.30		
Answer 14:		
22		
Answer 15:		
10.0.0.4		
Answer 16:		
932		

Question 28	6 / 6 pts	
Suppose that a 2200-byte datagram (identification #40) must transit a net a 660-byte MTU. Assume the minimum IP and TCP header sizes, i.e., the bytes and the TCP header is 20 bytes.		
1. How many fragments are created? [Select] represent the first fragment?2. How many bytes of application data are carried in the first fragment?	gments	
[Select] bytes		
3. How many bytes of <u>application data</u> are carried in the second fragmen	nt?	
[Select] bytes		
4. How many bytes of application data are carried in the last fragment? 260 bytes		

5. What is the identification number of the second fragment? #	
[Select]	
6. What is the fragment offset in the last fragment? [Select]	
Answer 1:	
4	
Answer 2:	
620	
Answer 3:	
640	
Answer 4:	
260	
Answer 5:	
40	
Answer 6:	
240	

• Fill in the complete routing table for node H, as it would be calculated by Dijkstra's algorithm and stored inside router H. (It's OK to do this by inspection; you don't have to crank through Dijkstra's algorithm for each destination.)

Routing Table

Destination	First Hop
А	G
В	G
С	G
D	D
E	G
F	G
G	G

S = {all nodes except source} for u in S { /*initialization*/ D[u] = edge weight (if edge (source, a)exists) or ∞ (otherwise) R[u] = u (if edge (source, u) exists) or * (otherwise) P[u] = source ((if edge (source, u) exists) or * (otherwise) while (not empty(S)) { u = node with smallest value in D/* if tie, choose lower (alpha) node */ if u in S { $if(\mathbb{D}[u] = \infty) \ \{$ error: "no path"; exit;} $S = S - \{u\};$ for (each ν such that edge (u, ν) exists) { $if(v in S) \{$ c = D[u] + weight (u, v); $\inf(c \leq \mathrm{D}[v]) \ \{$ D[v] = c;R[v] = R[u];P[v] = u} } }

Dijkstra's algorithm

Answer 1:

Answer 2:		
H-G-E-A-0	С-В	
Answer 3:		
8		
Answer 4:		
G		
Answer 5:		
G		
Answer 6:		
G		
Answer 7:		
D		
Answer 8:		
G		
Answer 9:		
G		
Answer 10:		
G		

Quiz Score: **56.17** out of 60