

Devoir surveillé de Mathématiques n°5 le 14/01/2025

durée: 2h30

Exercice 1 (11 points).

Soit f la fonction définie sur \mathbb{R}^* par :

$$f(x) = \frac{\sin(x)}{x}.$$

1. Déterminer la parité de f.

2 Justifier que f est prolongeable par continuité en 0.On note encore f le prolongement.

 \nearrow Justifier que f est dérivable sur \mathbb{R}^* puis calculer f'(x).

4. (a) Soit $x \in]0, \pi[$.

Montrer à l'aide du théorème des accroissements finis que :

$$x\cos(x) < \sin(x) < x.$$

(8) En déduire l'étude des variations de f sur $[0, \pi]$.

5. Déterminer la limite de $\frac{\cos(x)-1}{x}$ lorsque x tend vers 0.(justifier)

(b) A l'aide des questions (a) et (b) montrer que (a) est dérivable à droite en 0 et donner la valeur de (a).

 \swarrow (c) En déduire sans autre calcul que f est dérivable en 0.

7. On pose, pour tout $x \in]0, \frac{\pi}{3}]$:

$$h(x) = \frac{\sin(x)}{r^2}$$

Justifier le fait que l'équation h(x)=1 possède une unique solution sur $]0,\frac{\pi}{3}]$, que l'on notera α .

On définit la constante $C = \frac{\sqrt{3}}{4}$. On pose, pour tout $x \in [0, \frac{\pi}{3}]$,

$$\varphi(x) = x\cos(x) - \sin(x) + Cx^2.$$

Montrer que pour tout $x \in [0, \frac{\pi}{3}], \varphi(x) \ge 0$.

8. Déduire des questions 4)a) et 7) que : $\forall x \in [0, \frac{\pi}{3}], |f'(x)| \leq C$.

9. On définit la suite (u_n) par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$

Montrer que , pour tout entier naturel n , u_n existe et $u_n \in [0, \frac{\pi}{2}]$.

(b) Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} - \alpha| \leq C |u_n - \alpha|$.

(4) Démontrer que la suite u converge. Quelle est sa limite?

Exercice 2 (8,5 points).

On note E l'ensemble des fonctions f de classe C^{∞} sur]0,1[telles que , pour tout entier naturel n , la dérivée $n^{tème}$ de f soit positive sur]0,1[, c'est-à-dire :

$$\forall n \in \mathbb{N}, \forall x \in]0, 1[, f^{(n)}(x) \geqslant 0.$$

Ces fonctions sont dites absolument monotones sur]0, 1[.

1. Soient f, $g \in E$ et soit $\lambda \in \mathbb{R}^+$.

Montrer que $(\lambda f + g) \in E$.

Montrer que $fg \in E$.

2. Soit $f \in E$. On pose $g = e^f$. Calculer g' en fonction de f' et g et montrer à l'aide d'une récurrence forte que $g \in E$.

On pose, pour tout $x \in]0,1[$, $g(x) = -1 - \frac{2}{x-1}$. Montrer que $g \in E$. (on pourra conjecturer puis admettre la forme des dérivées successives de g)

- 4. On considère une fonction $f \in E$.
 - Montrer que f admet une limite finie λ en 0^+ .
 - (b) On prolonge f par continuité en posant $f(0) = \lambda$. Montrer que f ainsi prolongée est de classe C^1 à droite en O.
 - (c) Plus généralement, montrer que f est de classe \mathcal{C}^{∞} et absolument monotone à droite en 0.
 - (d) Peut-on en dire autant à gauche en 1?(Justifier)