1.2 АСИМПТОТИЧЕСКИЙ АНАЛИЗ АЛГОРИТМОВ

Основная задача анализа алгоритмов –

выявление зависимости масштабирования требований к ресурсам (затраты времени и памяти) от размера входных данных

Асимптотический анализ проводится в предположении неограниченного роста входных данных

1.2.1

Размерность задачи и трудоемкость алгоритма

Процесс решения задачи

Модель и размерность задачи

- **Опр. 1** <u>Формальная постановка задачи</u> ее описание в виде функции, на вход которой поступают формальные параметры, задающие входные и выходные данные
- !!! Количество выполненных операций алгоритма напрямую зависит от размера входных данных
- **Опр. 2** Размерность *L* задачи количество информации, достаточное для ее формального описания

Как измерить информацию?

• История

- Впервые ввести меру информации попытался Р. Хартли в 1928 г. В своих рассуждениях он исходил из интуитивной идеи о том, что сообщение, состоящее из *п* символов, должно нести в *п* раз больше информации, чем сообщение, состоящее из одного символа
- Единственной функцией, которая удовлетворяет этому свойству, является <u>логарифмическая</u>

Маловероятные события несут много информации!

$$p(A = a_1) = p_1 \in [0,1],$$

 $p(A = a_2) = p_2 \in [0,1],$
 $p(A = a_n) = p_n \in [0,1].$
: $\sum_{i=1}^{n} p_i = 1.$

$$p_1 = p_2 = ... = p_n$$
, to $p(A = a_i) = \frac{1}{n}, \forall i = 1,...,n$

$$M(A) = \sum_{i=1}^{n} a_i \cdot p_i^{p_i = 1/n} = \sum_{i=1}^{n} a_i \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} a_i$$

Количество информации

• Опр. 3 Количество информации, которой достаточно для знания того, что событие А произошло (достаточно для разрушения неопределенности об объекте), определяется по формуле

$$i(A) = \log_x \frac{1}{P(A)}, \ x > 1$$

Бит (ср. с понятиями кубит, кудит)

• **Бит** – единица измерения информации в случае, если основание логарифма равно 2:

$$i(A) = \log_2 \frac{1}{P(A)} = -\log_2 P(A) (6um)$$

Размерность *L* задачи— это минимальное количество бит, достаточное для описания входных данных задачи

$$L = \left\lceil \log_2 \frac{1}{P(A)} \right\rceil = \left\lceil -\log_2 P(A) \right\rceil (\delta um)$$

Средняя информация (энтропия)

Энтропия источника, сопоставленного событиям, — это **среднее количество бит**, необходимое для кодирования информации

$$H(A) = \sum_{k=1}^{n} i(a_k) P(a_k)$$

$$H(A) = \frac{1}{n} \sum_{k=1}^{n} i(a_k) \# P(a_k) = 1/n$$

Замечания

- 1. Если на вход алгоритма поступает некоторое натуральное число *n*, то предполагается, что оно может быть выбрано из множества первых *n* натуральных чисел равновероятно
- 2. Если на вход алгоритма поступает некоторая последовательность чисел, то предполагается, что все ее элементы могут быть выбраны из некоторого **явно** заданного множества *X* равновероятно

Примеры

Данные	Формат данных	Размерность
х	целое число из множества $\{1,\dots,x\}$ X>1	$\lceil \log_2 x \rceil$
	целое число из множества $\{0,\dots,x\}$	$\lceil \log_2(x+1) \rceil$
	целое число из множе- ства $\{-x,\ldots,x\}$	$\lceil \log_2(2 \cdot x + 1) \rceil$
	рациональное число $x = \frac{a}{b}$	$\lceil \log_2(a \cdot b) \rceil$
X_1, \dots, X_m	целые числа x_i из множества $\{1,\ldots,x\}$	$I = m \cdot \lceil \log_2 x \rceil$
	целые числа x_i из множества $\{0, \dots, x\}$	$l = m \cdot \lceil \log_2(x+1) \rceil$

Вывод

• Если предположить, что размерность машинного слова достаточна для представления любого числа, то размерность задачи будет ограничена количеством исходных данных в ее формальном описании

Трудоемкость алгоритма

- **Опр. 4** Трудоемкость алгоритма это функция от размерности задачи, которая оценивает сверху требуемое время для ее решения
- ВременнАя сложность -T(L)
- Пространственная (емкостная)
 сложность размерность памяти –
 объем памяти, требуемый для
 реализации алгоритма

Как вычислить время, которое алгоритм затрачивает на решение задачи?

• Прежде всего – определить модель вычислительного устройства, которое используется для реализации алгоритма

• RAM (PAM) —модель вычислительного устройства (Random Access Machine-Равнодоступная адресная машина)

Принятые соглашения для RAM (неограниченная память)

- 1. Арифметические и логические операции выполняются за 1 временной шаг (1 такт)
- 2. Каждое обращение к ячейке ОП требует 1 такта
- 3. Выполнение условного перехода требует вычисления логического выражения и одной из ветвей решения
- 4. Выполнение цикла подразумевает выполнение всех его итераций, выполнение каждой итерации требует вычисления условия завершения цикла и выполнения его тела

Если взять в качестве **Меры асимптотической сложности** число выполняемых команд разветвления (программа –дв. дерево), то

Временная сложность – высота двоичного дерева

$$T(L) = h$$

Число узлов и листьев при этом могут значительно превосходить высоту дерева

Дерево решений для сортировки трех чисел (*h*! листьев)

ВЫВОД

- Для определения трудоемкости алгоритма нужно посчитать количество операций, но при этом нужно иметь в виду, что
- классы входных данных **существенно** влияют на эту величину!

Уровни оценки сложности алгоритма

- 1.Худший случай (тах число операций)
- 2.Средний случай
- 3.Лучший случай (min число операций)

Поиск наибольшего элемента (число операций присваивания)

```
P := combinat[permute](4):
• for k to nops(P) do
                                           #ј – счетчик операций
   B := P[k]; lrg := B[1]; j := 0;
                                           присваивания
     for i from 2 to nops(B) do
        if B[i] > lrg then
           lrg := B[i]; j := j + 1;
      od;
    lrg; j;
  od;
              Пример работы с
                                        B := [1, 2, 3, 4]
              одной
                                     \longrightarrow lrg := 1
              перестановкой
                                              j := 0
```

Результаты эксперимента (n=4)

Количество выполнений операции присваивания	Количество перестановок	Вероятность (частота)
0 — лучший случай	6	1/4
1	11	11/24
2	6	1/4
3 – худший случай	1	1/24

$$f_A(4) = 0 \cdot \frac{1}{4} + 1 \cdot \frac{11}{24} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{24} \approx 1.18(onep)$$

Результаты эксперимента (n=10)

Количество выполнений оператора	Количество перестановок	Вероятность
0	362880	0,1
1	1026576	0,282896825
2	1172700	0,323164683
3	723680	0,199426808
4	269325	0,07421875
5	63273	0,017436343
6	9450	0,002604167
7	870	0,000239749
8	45	1,24008e-05
9	1	2,75573e-07

$$f_A(10) \approx 1,929$$

С использованием частичной суммы гармонического ряда

$$f_A(10) \approx 1,933$$

Методичка – начало!!!!

Подсчет среднего времени с использованием рекурсивного алгоритма

```
H_n \approx \ln n + 0.58 + \frac{1}{2n}

    MaxRec(a[1..n])

   Item m
   If n>1
     then m:=MaxRec(a[1..n-1])
3
        if m<a[n]
           then m:=a[n] #вып-ся когда наиб. в поз. n
5
        return m
   Return a[1] (на доске вычисления!)
```

Подсчет операций «в среднем»

- 1. Разбить входные данные на группы с одинаковым временем (пусть n групп (GR))
- 2. Вычислить Pi=P(вх.данные из GRi), i=1..n
- 3. ti время (число операций) на данных из GRi

$$T_A(n) = \sum_{i=1}^n P_i t_i$$

Замечание. Формула упрощается при одинаковых вероятностях.

Например, для примера выше:

$$T = (0+1+2+3)/4=1.5$$
 (ср. с 1.8 из эксперимента)

элемента в массиве (оценка трудоемкости по количеству операций сравнения)

HOCHCHODAICHDHUN HONCK

• Разбираем «на доске»

1.2.2. Асимптотические оценки

$$T_1(n) = 90n^2 + 201n + 2000$$

$$T_2(n) = 2n^3 + 3$$

Сравнение трудоемкостей двух алгоритмов

n	$T_1(n)$	$T_2(n)$	Сравнение алгоритмов
10	13 010	2 003	Первый алгоритм в 6.5 раза медленнее второго: $T_1(n)/T_2(n) = 6.5$
20	42 020	16 003	Первый в 2.6 раза медленнее второго
30	89 030	54 003	Первый в 1.6 раза медленнее второго
40	154 040	128 003	Первый в 1.2 раза медленнее второго
50	237 050	250 003	Первый в 1.1 раза быстрее второго
60	338 060	432 003	Первый в 1.3 раза быстрее второго
70	457 070	686 003	Первый в 1.5 раза быстрее второго
80	594 080	1 024 003	Первый в 1.7 раза быстрее второго
90	749 090	1 458 003	Первый в 1.9 раза быстрее второго
100	922 100	2 000 003	Первый в 2.2 раза быстрее второго
1 000	9 0203 000	2 000 000 003	Первый в 22 раза быстрее второго
10 000	9 002 012 000	2 000 000 000 003	Первый в 222 раз быстрее второго

Вывод

- Особую значимость приобретает оценка трудоемкости алгоритма при
- – больших объемах данных;
- – размер данных неизвестен

 Основная проблема – определение характера роста числа операций алгоритма при увеличении размера входных данных

Скорость (порядок) роста функции при увеличении аргумента

• Асимптотические методы («на бесконечности») Задача

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

- Вопрос:
- С какой скоростью происходит увеличение частичных сумм гармонического ряда?

Пример в качестве подсказки

Как изменить гармонический ряд, чтобы получить сходящийся ряд? С каким рядом «сравним» гармонический ряд?

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \left(\frac{n+1}{n} \right) \right)$$

Начать – с оценки общего члена ряда, затем – по определению суммы ряда

$$a_n = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

Нахождение суммы ряда в Maple

Сравнение ББП в матанализе

• Асимптотическое сравнение!

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{bmatrix} 0, & f << g \\ Const, & f \approx g & (f \sim g) \\ \infty, & f >> g \end{bmatrix}$$

T1<<T2

• Шкала роста:

$$a << \log_a n << n^{\alpha} << n^{\alpha} << n^n << n^n$$

$\lg n$	$\log_2 n$	n	$n \log_2 n$	n^2	2^n	n!
0	0	1	0	1	2	1
0.3	1	2	2	4	4	2
0.5	1.6	3	5	9	8	6
0.6	2.0	4	8	16	16	24
0.7	2.3	5	12	25	32	120
0.78	2.6	6	16	36	64	720
0.85	2.8	7	20	49	128	5 040
0.90	3	8	24	64	256	40 320
0.95	3.2	9	29	81	512	362 880
1	3.3	10	33	100	1024	3 628 800
3	10	1 000	9 966	1 000 000		
4	13.3	10 000	132 877	100 000 000		
5	16.6	100 000	1 660 964	10 000 000 000		
6	19.9	1 000 000	19 931 569	1 000 000 000 000		

Цель асимптотического анализа

$$\lim_{n\to\infty} \frac{T(n)}{f(n)} = Const (= 1)$$

Одна из проблем оценки T(n)

Классы асимптотических оценок

• Определения даны в аудитории при:

$$f(n) > 0, g(n) > 0, n \in \mathbb{N}$$

Верхняя асимптотическая оценка (О)

Нижняя асимптотическая оценка (Ω)

Точная асимптотическая оценка (Θ)

Теорема с доказательством!

• О связи асимптотик

Слабая верхняя оценка (о)

$$100n = o(n^2)$$
?

$$4n^2 + 2n = o(n^2)$$
?

 $100n << n^2$

$$4n^2 + 2n \approx n^2$$

 $100n << n^2$

$4n^2 + 2nun^2$, $4n^2 + 2nu4n^2$

Слабая нижняя оценка (ω)

$$2n^2 = \omega(n)?$$

$$24n = \omega(n)?$$

ω

 $2n^2 >> n$

 $24n \approx n$

Упражнение

- Постройте графики для сравнения поведения функций при разных константах
- Проанализируйте зависимость аргумента от константы *с*

Свойства асимптотик (записать и доказать)

- 1. Рефлексивность?
- 2.Симметричность? Перестановочная симметричность?
- 3.Транзитивность?
- 4. Асимптотические оценки результатов операций (умножение на Const, сложение, умножение)

Асимптотическое сравнение функций (по аналогии с <,>для чисел)

1.2.3

• Базовые функции, используемые при асимптотическом анализе алгоритмов

- 1.Ближайшие целые
- 2. Деление с остатком
- 3.Многочлены->Степенная функция
- 4.Показательная функция
- 5.Факториал
- 6.Логарифмическая функция
- 7. Функциональная итерация
- 8.Итерированный логарифм

1.2.4

Оценка трудоемкости алгоритма с примерами

Трудоемкость алгоритма — это функция от размерности задачи, которая оценивает сверху время, требуемое для ее решения

$$f(n) \rightarrow T(L)$$

Простейшая классификация алгоритмов по трудоемкости

Алгоритм называется **полиномиальным**, если его трудоемкость T(L)=O(p(L)), где p(L) – некоторый полином или полиномиально ограниченная функция.

Алгоритм называется экспоненциальным, если его трудоемкость $T(L)=\Omega(exp(L))$, где exp(L) – некоторая экспоненциальная функция

Вопрос. Можно ли в определениях заменить на (+)?

Этапы определения трудоемкости

- 1 Определить размерность L задачи
- 2 Разработать алгоритм решения задачи и оценить время (число базовых операций) решения в худшем (среднем) случае. При необходимости учесть весовые коэффициенты для операций
- 3 Выразить трудоемкость T(L) и оценить порядок роста при неограниченном увеличении размерности
- 4 Определить класс сложности алгоритма

• Определить трудоемкость алгоритма последовательного вычисления факториала натурального числа *п*

```
Fct:=1 #1-p1

for k to n #n-p2

do Fct:=Fct*k end do #n-p3

Fct; #1-p4
```

Размерность задачи	$l = \lceil \log_2 n \rceil (2^{l-1} < n \le 2^l)$
Число арифмети- ческих операций	$c_1 n + c_2$
Трудоемкость алгоритма	$T(l) \ge c_3 \cdot n \ge \frac{c_3}{2} \cdot 2^l, (n \ge 2)$
	$T(l) = \Omega(2^l)$ — алгоритм экспоненциальный

• Определить трудоемкость алгоритма последовательного вычисления суммы натуральных чисел: $s = a_1 + a_2 + \cdots + a_n$

Размерность задачи	$c_1 \cdot n \leq l \leq c_2 \cdot n \left(\frac{1}{c_2} \cdot l \leq n \leq \frac{1}{c_1} \cdot l\right)$
Число арифмети- ческих операций	$c_{s}n+c_{4}$
Трудоемкость алгоритма	$T(I) \le c \cdot n \le \frac{c}{c_1} \cdot I$
	T(l) = O(l) - алгоритм полиномиальный

• Определить трудоемкость алгоритма проверки числа на простоту: for i := 2 to \sqrt{n} do for i := 0 then for i :=

Размерность задачи	$l = \lceil \log_2 n \rceil (2^{t-1} < n \le 2^t)$
Число арифмети- ческих операций	$c_1\sqrt{n}+c_2$
Трудоемкость алгоритма	$T(l) \geq c_3 \sqrt{n} > c_3 (2^{l-1})^{\frac{l}{2}}$ $T(l) = \Omega(2^{l/2}) - \text{алгоритм экспоненциальный}$

• Определить трудоемкость алгоритма последовательного вычисления суммы первых *п* натуральных чисел.

$$S:=0;$$
 for $i:=1$ to n do $=$ экспоненциальный $S:=S+i;$

$$S:=rac{n\left(n+1
ight)}{2}$$
 O(1) – КОНСТАНТНАЯ СЛОЖНОСТЬ