PadhAl: Information Theory and Cross Entropy

One Fourth Labs

KL- Divergence and Cross Entropy

How we deal with true and predicted distributions

1. Consider the following data:

x	True Distribution: y	True IC(X)	Predicted Distribution: y	Predicted IC(X)
А	Y ₁	-logy ₁	\hat{y}_1	$-\log \hat{y}_1$
В	y ₂	-logy ₂	ŷ ₂	-logŷ ₂
С	y ₃	-logy ₃	ŷ ₃	-logŷ ₃
D	У ₄	-logy ₄	ŷ ₄	-logŷ ₄

- 2. Initially, we do not know the values of the True distribution and thereby the True Information Content
- 3. Hence, we generate a Predicted distribution and use that to compute the predicted information content.
- 4. But, the actual message will come from the True distribution y.
- 5. So therefore, the No. of bits will **not be** $-\Sigma \hat{y}_i log \hat{y}_i$ but **instead** $-\Sigma y_i log \hat{y}_i$
- 6. This is because the value associated with each of these messages comes from the predicted distribution $-log\hat{y}_i$ but the messages themselves comes from the True distribution y
- 7. Now, we have formed the basis to talk about KL-Divergence:
 - a. $H_y = -\sum y_i \log y_i$ is called the entropy
 - b. $H_{y,\hat{y}} = -\sum y_i log\hat{y}_i$ is called the cross entropy
 - c. Now we want to find the difference/distance between the predicted case and the true case, using something more efficient than the squared error
 - d. So $y||\hat{y} = H_{y,\hat{y}} H_y$
 - e. $y||\hat{y} = -\sum y_i \log \hat{y}_i + \sum y_i \log y_i$
 - f. This is called the KL-Divergence
- 8. Thus, we now have **KLD(y||ŷ)** = $-\Sigma y_i log \hat{y}_i + \Sigma y_i log y_i$
- 9. Now, we have a way of computing the difference between the two distributions.