MAT135H1F – Quiz 3

TUT0101

June 4, 2015

FAMILY NAME:	GIVEN NAME:
--------------	-------------

Mark your lecture and tutorial sections:

STUDENT ID:

L0101	L5101	T0101	T0201	T5101	T5102

You have 25 minutes to solve the problems below! Each problem is worth 1 point. Good luck!

Question 1. What is the slope of the tangent to $f(x) = \arctan(2x)$ at x = 1?

- (a) $\frac{2}{5}$
- (b) $\frac{1}{5}$
- (c) 0
- (d) $\frac{1}{\sqrt{5}}$

Answer: (a) $\frac{2}{5}$. First we determine f'(x). Using the chain rule and our knowledge of differentiating arctan, we obtain $f'(x) = 2\frac{1}{1+4x^2}$. The slope of the line tangent to f at x = 1 is given by $f'(1) = \frac{2}{1+4} = \frac{2}{5}$.

Question 2. Let g'(1) = 1 and g(1) = 2. What is $\frac{d}{dx} \ln(g(x))$ at x = 1?

- (a) 1
- (b) 2
- (c) $\frac{1}{2}$
- (d) 0

Answer: (c) $\frac{1}{2}$. Differentiating $\ln(g(x))$ with the chain rule gives $\frac{d}{dx}\ln(g(x)) = \frac{1}{g(x)}g'(x)$. Thus, evaluating at x=1 gives $\frac{g'(1)}{g(1)} = \frac{1}{2}$.

Question 3. Let $x^2y + y^2x = 2$. Find y' by implicit differentiation when x = y = 1.

- (a) 0
- (b) 1
- (c) -1
- (d) Does not exist.

Answer: (c) -1. First we differentiate both sides of the equation using the chain rule and the product rule on the left side. We obtain $2xy + x^2 \frac{dy}{dx} + 2yx \frac{dy}{dx} + y^2 = 0$. This implies $\frac{dy}{dx}(x^2 + 2xy) = -2xy - y^2$ which gives $\frac{dy}{dx} = \frac{-y(2x+y)}{x(2y+x)}$. Lastly, we evaluate at (x,y) = (1,1). We have $\frac{dy}{dx}\Big|_{(1,1)} = \frac{-3}{3} = -1$.

Question 4. Where is the horizontal tangent of $f(x) = x \ln(x)$?

- (a) At x = 0
- (b) At x = -1
- (c) At x = e
- (d) At $x = e^{-1}$

Answer: (d) at $x = e^{-1}$. We solve for f'(x) using the product rule to obtain $f'(x) = \ln(x) + \frac{x}{x} = \ln(x) + 1$. Note that $\ln(0)$ is undefined so we know $x \neq 0$. Horizontal lines have a slope of 0, so we solve f'(x) = 0 which gives $\ln(x) = -1$. This implies $x = e^{-1}$.

Question 5. What is $\frac{d}{dx} \frac{1}{\ln(e+x)}$ at x = 0?

- (a) $-\frac{1}{\ln(e)^2}$
- (b) -e
- (c) $-e^{-1}$
- (d) $\frac{1}{e}$

Answer: (c) $-e^{-1}$. We differentiate $(\ln(e+x))^{-1}$ using the chain rule. We have $\frac{d}{dx}(\ln(e+x))^{-1} = -(\ln(e+x))^{-2}\frac{1}{e+x} = \frac{-1}{(e+x)(\ln(e+x))^2}$. At x=0, we obtain $\frac{-1}{e(\ln(e))^2} = -e^{-1}$.

Question 6. What is $\frac{d^2}{dx^2}\sin(2x)$ at $x = \frac{\pi}{4}$?

- (a) -2
- (b) 4
- (c) -4
- (d) 2

Answer: (c) -4. First, we differentiate with the chain rule to obtain $\frac{d}{dx}\sin(2x)=2\cos(2x)$. Differentiating again gives $\frac{d^2}{dx^2}\sin(2x)=\frac{d}{dx}2\cos(2x)=-4\sin(2x)$. Then we evaluate the second derivative at $x=\frac{\pi}{4}$ which is $-4\sin(2\frac{\pi}{4})=-4\sin(\frac{\pi}{2})=-4$.