

## Комп'ютерне моделювання задач прикладної математики

Властивості моделі. Однорідні динамічні системи.

### Точність моделі

#### Похибки моделювання класифікують за джерелами походження:

- Методичні похибки можуть бути викликані нехтуванням певними впливовими факторами, помилками у виборі виду функціональної залежності, невідповідністю способу отримання результату моделювання особливостям моделі, неправильним вибором типу моделі тощо.
- Обчислювальні похибки викликані особливостями алгоритму отримання результату. При великій кількості послідовних обчислень похибка накопичується і може досягати значної величини. Такі ситуації виникають при розв'язанні диференціальних рівнянь, особливо у частинних похідних.
- Похибки від невизначеності початкових даних відіграють значну роль при використанні алгоритмів, які мають низьку стійкість. Так, наприклад, при обчисленні похідної різницевим методом похибка результату може значно перевищувати похибки початкових даних.

## Види похибок

- абсолютна похибка
- відносна похибка
- максимальна похибка

$$\Delta_{\mathcal{V}} = |y - y^*|$$

$$\varepsilon_y = \Delta_y/y^*$$

$$\Delta_{y \max} = \max_{x_i \in X} (\Delta_y)$$

де  $\overrightarrow{x_i} = (x_{1i}, ..., x_{ni})$  – вектор вхідних величин об'єкта/моделі X – множина можливих значень вектору вхідних величин

• середня похибка

$$\overline{\Delta_y} = 1/N \sum_{i=1}^N [y(x_i) - y^*(x_i)]$$

• середня квадратична похибка

$$\sigma_y = \sqrt{1/N \sum_{i=1}^{N} [y(x_i) - y^*(x_i)]^2} = \sqrt{1/N \sum_{i=1}^{N} (\Delta_y)^2}$$

• зведена похибка

$$\delta_y = \sigma_y / (y_{max} - y_{min})$$

 $(y_{max}-y_{min})$  - діапазон значень параметра стану

ullet загальна середня квадратична похибка  $\sigma_\Sigma = \sqrt{\sum_i ig(\delta_{\mathcal{Y}}^2ig)_i}$ 

### Адекватність моделі

- Необхідна умова для переходу від дослідження об'єкта до дослідження моделі і подальшого перенесення результатів на об'єкт дослідження – вимога адекватності моделі і об'єкта.
- Адекватність це правильне відтворення моделлю з необхідною повнотою всіх властивостей об'єкта, важливих для цілей даного дослідження.
- **Евристичні критерії** адекватності моделей:
  - Достатня точність за граничних умов моделювання і у особливих точках.
  - Достатня точність збігу з відомими випадками
  - Підвищення або, принаймні,
     збереження точності при
     врахуванні до даткових факторів



## Методи числового диференціювання

• Постановка задачі

$$\frac{dy}{dx} = g(x, y), \qquad y(x_0) = y_0$$

Похідна:

$$\frac{dy}{dx} = \frac{y(x_{n+1}) - y(x_n)}{\Delta x}, \Delta x = x_{n+1} - x_n$$

• Метод Єйлера

$$y(x_{n+1}) = y(x_n) + g(x_n, y_n) \Delta x$$

• Метод Рунге-Кутта

$$y_{n+1} = y_n + \Delta x (k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = g(x_n, y_n)$$

$$k_2 = g(x_n + \Delta x/2, y_n + \Delta x/2 k_1)$$

$$k_3 = g(x_n + \Delta x/2, y_n + \Delta x/2 k_2)$$

$$k_2 = g(x_n + \Delta x, y_n + \Delta x k_3)$$

- Відвідувач зайшов у кафе та замовив чашку кави. Температура в приміщенні 18 С. Відвідувач вважає за комфортну температуру кави 50 С. Потрібно визначити час, необхідний для остигання свіжоприготовленої кави до комфортної для відвідувача температури.
- Математична модель

$$\frac{dT}{dt} = -r(T - T_s), \ T(0) = T_0$$

 $T_{\scriptscriptstyle S}$  - температура навколишнього середовища

 $T_{0}$  - початкова температура кави

r — коефіцієнт теплопередачі

| Час<br>хв | Т<br>град | Час<br>хв | Т<br>град |
|-----------|-----------|-----------|-----------|
| 0         | 83.0      | 8.0       | 64.7      |
| 1.0       | 77.7      | 9.0       | 63.4      |
| 2.0       | 75.1      | 10.0      | 62.1      |
| 3.0       | 73.0      | 11.0      | 61.0      |
| 4.0       | 71.1      | 12.0      | 59.9      |
| 5.0       | 69.4      | 13.0      | 58.7      |
| 6.0       | 67.8      | 13.0      | 57.8      |
| 7.0       | 66.4      | 15.0      | 56.6      |

ファギャレ

Математична модель

$$\frac{dT}{dt} = -r(T - T_s), \ T(0) = T_0$$
 ук точного розв'язку

Пошук точного розв'язку

$$\frac{dT}{(T-T_s)} = (-r dt) \rightarrow ln(T-T_s) = -rt + C$$

$$(T-T_s) = exp(T_0 - rt) = exp(C) exp(-rt)$$

$$T = T_s + Aexp(-rt), \qquad A = exp(C)$$

Початкові умови

$$T(0) = T_0 \rightarrow T_0 = T_s + A \rightarrow A = T_0 - T_s$$

Точний розв'язок

$$T = T_S - (T_S - T_0)exp(-rt)$$

(2)

#### Програма досліджень.

- 1) Інший відвідувач замовив каву з вершками. Дослідити вид кривої остигання за умови, що додавання вершків зменшує температуру кави на 5 градусів.
- 2) Дослідити випадок, коли вершки додають у каву через 3 хвилини після приготування. Зіставте з першим випадком. Якщо ви поспішаєте і п'єте каву з вершками, чи додаватимете ви вершки відразу або почекаєте кілька хвилин?
- 3) Припустимо, що вам налили каву в товщу чашку. Температура кави одразу впала на 10 градусів. Побудуйте криву остигання. З якої чашки ви надасте перевагу пити каву.
- 4) Припустимо, що інший відвідувач у спекотний літній час зайшов випити чашку кави. Температура в приміщенні 30 С. Побудуйте та проведіть аналіз кривої остигання.
- 5) Знайдіть час, необхідний для того, щоб різниця температур між температурою кави та кімнатною склала 1⁄(е≈0.37) від початкової. Цей час називається часом остигання або часом релаксації. Проаналізуйте, залежить час релаксації від початкової температури? Від температури довкілля?



Залежність температури кави від часу: точний розв'язок та числове моделювання при  $\Delta t = 1.0$ 



Залежність похибки обчислень від часу для різних значень кроку інтегрування  $\Delta t$ 



| Час<br>хв | Т<br>град | Час<br>хв | Т<br>град |
|-----------|-----------|-----------|-----------|
| 0         | 83.0      | 8.0       | 64.7      |
| 1.0       | 77.7      | 9.0       | 63.4      |
| 2.0       | 75.1      | 10.0      | 62.1      |
| 3.0       | 73.0      | 11.0      | 61.0      |
| 4.0       | 71.1      | 12.0      | 59.9      |
| 5.0       | 69.4      | 13.0      | 58.7      |
| 6.0       | 67.8      | 13.0      | 57.8      |
| 7.0       | 66.4      | 15.0      | 56.6      |

Залежність температури кави від часу при різних значеннях коефіцієнту теплопередачі *г* Порівняння з експериментальними даними взятими з таблиці



Залежність часу вистигання (релаксації) від початкової температури ТО при  $\Delta t = 0.001$  та різних значеннях температури середовища Ts та коефіцієнту теплопередачі r

relaxation time, min

Залежність часу вистигання (релаксації) від температури середовища  $\mathit{Ts}$  при  $\Delta t = 0.001$  та різних значеннях початкової температури T0 та коефіцієнту теплопередачі r

Постановка задачі

$$\frac{dx}{dt} = f(x, t), \qquad x(0) = x_0$$

Потенціальні системи

$$\frac{dx}{dt} = f(x), \qquad f(x) = -\frac{dV}{dx}, \qquad x(0) = x_0$$

Стаціонарні стани

$$\frac{dx}{dt} = 0 \quad \Rightarrow \quad f(x) = 0$$

Приклад:

$$V(x) = x^2$$



Потенціальні системи

$$\frac{dx}{dt} = f(x), \qquad f(x) = -\frac{dV}{dx}, \qquad x(0) = x_0$$

Стаціонарні стани

$$\frac{dx}{dt} = 0 \quad \Rightarrow \quad f(x) = 0$$

Приклад:

$$V(x) = x^2$$







Потенціальні системи

$$\frac{dx}{dt} = f(x), \qquad f(x) = -\frac{dV}{dx}, \qquad x(0) = x_0$$

Стаціонарні стани

$$\frac{dx}{dt} = 0 \quad \Rightarrow \quad f(x) = 0$$

Приклад:

$$V(x) = ax^4 - x^2$$







Потенціальні системи

$$V(x)=ax^4-x^2$$
 енціальні системи  $\dfrac{dx}{dt}=f(x), \qquad f(x)=-\dfrac{dV}{dx}, \qquad x(0)=x_0$ 

Стаціонарні стани  $x_i$ 

$$\frac{dx}{dt} = 0 \implies f(x) = 0$$

$$f(x) = 0 \Rightarrow 2x - 4ax^3 = 0 \Rightarrow x_1 = 0; \quad x_{2,3} = \pm \frac{1}{\sqrt{2a}}$$



Стійкість стаціонарних станів: 
$$X = X_i$$
  $f(x) = f(x_i) + \frac{df}{dx}\Big|_{x=x_i} (x-x_i) + \cdots;$   $\delta x = (x-x_i)$   $\delta x = (x-x_i)$ 

$$\delta x = (x - x_i) \quad 2 - 120$$

Розв'язок

$$\delta x \rightleftharpoons \propto \exp(\lambda t)$$
:  $\frac{dx}{dt} = \frac{d\delta x}{dt} = \lambda \cdot \delta x$ ;  $f(x_i) = 0$ 

Характеристичне рівняння

$$\lambda \cdot \delta x = \frac{df}{dx} \Big|_{x=x_i} \delta x \Rightarrow \lambda = \frac{df}{dx} \Big|_{x=x_i}$$
  $\lambda < 0 -$  стійкий стан  $\lambda > 0 -$  нестійкий стан

$$\lambda < 0$$
 — стійкий стан  $\lambda > 0$  — нестійкий стан

## Дякую за увагу