Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
В	기로		 t ₁				
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$ $t_{1}^{\#1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1} \left -\frac{i\sqrt{2}}{t_1+k^2t_1} \right $	$\frac{1}{(1+k^2)^2 t_1} \frac{i k}{(1+k^2)^2}$	$-\frac{ik}{(1+k^2)^2 t_1} \left \frac{k^2}{(1+k^2)^2} \right $	0 0	0 0	0 0	0 0
	1	10		0 0 0	0 0 0	0 0 0	0 0 0

Quadratic (free) action	$S_{F} == \iiint (\frac{1}{6} \left(-6 t_{1} \; \omega_{\kappa \alpha}^{\;\; \alpha'} \; \omega_{\kappa \alpha}^{\;\; \kappa} - 6 t_{1} \; \omega_{\kappa \lambda}^{\;\; \kappa \lambda} \; \omega_{\kappa \lambda}^{\;\; \prime} + 6 \; f^{\alpha \beta} \; \tau_{\alpha \beta} + 6 \; \omega^{\alpha \beta \chi} \; \sigma_{\alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} + 6 \; \omega_{\kappa \beta \chi}^{\;\; \alpha \beta \chi} \; \omega_{\kappa \gamma}^{\;\; \alpha \gamma \gamma} \; \omega_{\kappa \gamma}^{\;\; \alpha \gamma} \; \omega_{\kappa \gamma}^{\;\; \alpha \gamma} \; \omega_{\kappa \gamma}^{$	$4r_2\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega_{\alpha\beta}^{\kappa}-2r_2\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta}-4r_2\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta}-$	$3t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \ \theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \ \theta} - 3t_1\partial^\alpha f^{\lambda}_{\ \ \kappa}\partial^\kappa f_{\alpha\lambda} + 6t_1\omega_{\kappa\alpha}^{\ \ \alpha}\partial^\kappa f'_{ ,} +$	$6t_1\;\omega_{_{K}\lambda}^{\lambda}\partial^\kappa f^{\prime}{}_{,}+12t_1\partial^\alpha f_{_{K}\alpha}\partial^\kappa f^{\prime}{}_{,}-6t_1\partial_\kappa f^_{\lambda}\partial^\kappa f^{\prime}{}_{,}+12t_1\;\omega_{_{/K}\theta}\;\partial^\kappa f^{\prime\theta}-$	$6t_1\ \omega_{,\alpha}^{\ \alpha}\ \partial^k f'_{\ \kappa} - 6t_1\ \omega_{,\lambda}^{\ \lambda}\ \partial^k f'_{\ \kappa} + 3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^k f_{\lambda\alpha} + 3t_1\partial_\kappa f_\theta^{\ \lambda}\partial^k f_\theta^{\ \beta} +$	$3t_1\partial_k f^\lambda_{\ \theta}\partial^k f_{\ \lambda}^{\ \theta} - 6t_1\partial^\alpha f^\lambda_{\ \alpha}\partial^k f_{\ \lambda \kappa} + 2r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} + 4r_2\partial_\kappa \omega^{\theta\alpha\beta}\partial^\kappa \omega_{\alpha\beta\theta} -$	$4 r_2 \partial^{\beta} \omega_{\alpha}^{\ a\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
-------------------------	---	---	---	--	--	--	---

	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2^+}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$f_{1^{-}}^{\#2}$	0	0	0	$\bar{l} k t_1$	0	0	0
$f_{1^{-}}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}}^{\#_{1}}$	0	0	0	- <u>t1</u>	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\!\!\!\!/}^{}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$+^{\alpha \beta}$	$-\alpha\beta$	$-\alpha\beta$	$+^{\alpha}$	$+^{\alpha}$	$+^{\alpha}$	$+^{\alpha}$
	$\omega_1^{\#1}$ †	$\omega_1^{\#_2}$ †	$f_1^{#1}$ †	$\omega_{1^{\bar{-}}}^{\#_1}$	$\omega_{1^{\bar{-}}}^{\#2}$	$f_{1}^{\#1}$	$f_{1}^{\#2}$

_	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{ikt_1}{\sqrt{2}}$

	$\sigma_0^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

Source constraints/gauge generators		
SO(3) irreps	Multiplicities	
$\tau_{0^{+}}^{\#2} == 0$	1	
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1	
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3	
$\tau_{1}^{\#1\alpha} == 0$	3	
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5	
Total constraints:	16	

Massive and massless spectra

(No
ess
massless
particles
les

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$