目次

卷一之首 求作四則

幾何原本序

幾何原本提要

卷 一

十四

: : : : 士士四**四** 二

Ξ =

欽定四庫全書 幾何原本提要

為明顯 露。 說之。 深、 五 則發明其所以然之理,系則又有旁通者焉。 光啓自謂譯受是書,此其最要者也。其書每卷有界說、有公論、有設題。界說者, 光啓序稱其窮方圓平直之情,卷六俱論比例,其餘三角、方 由簡而繁推之,至於無以復加而後已。又每題有法、 至歐几里得而為是書,蓋亦集諸家之成,故自始至終,毫無疵纇 公論者, 以是弁冕西海 五百餘題, 幾何原本六卷,西洋歐几里得撰, 舉其不可疑之理。設題,則據所欲言之理,次第設之。先其易者, 利瑪竇之師丁氏為之集解,又續補二卷於後,共為十五卷。 不為過矣。乾隆四十六年十二月恭校上。 方圓、 盡規矩準繩之用, 邊線、 卷一論三角形, 面積、 利瑪竇譯而徐光啓所筆受也。 體積、 非虛語也。 有解、 E也。且此為歐邏巴算學專書,比例變化相生之義,無不曲垢 卷二論線, 有論、有系。法言題用, 卷三論圓, 加以光啓反覆推闡其文句, 歐几 無不曲折盡顯 卷四論圓內外形, 里得未詳 次其難者, 先取所用名目 前作後述不絕調圖內外形,卷 解述題意, <u></u>二六卷者, 时何時人, 由淺 論而解徐

纂官: 臣紀昀、 臣陸錫熊、 臣孫士毅。

《校官: 臣陸費墀。

幾有義 之學海, 三代之闕典遺義, 要約,六卷既平, 唐虞之世, 物理之 故嘗謂三 講談餘晷, 留意藝學。 欲 盲 所說幾何諸家, 和、 幾何原本者, 先其易, 一藝者不 如鄧林伐材, 雖實未竟, 人射的, 一端, 般墨其人乎? 代而上, 自羲 時時及之,因請其象數諸書, 且此業在波中所謂師傳曹習者,其師丁氏又絕代名家也, 以 信使人繹其文, 業而復之, 別為象數, 其裨益當世定復不小。偕二三同志刻而傳之。先生曰:是書也, 虛發無效; 度數從事, 和 然以當他書, 度數之宗,所以窮方圓;平直之情,盡規矩準繩之用也。 治 藉此為用, 棟梁榱桷, 為此業者盛,有元元本本師傳曹習之學,而畢喪於祖龍之熖。 猶其小者。 歴, 由顯入微,從疑得信,蓋不用為用,眾用所基。 暨 或依儗形似, 亦不得工也。 司 略具其自敘, 皆精, 想見其意理, 恣所取之耳。 既可得而論矣。私心自謂,不意古學廢絕二千年後頓獲, 有大用于此, 后 實典要洞無可疑其分解擘析, 稷 Í. 如持螢燭象,得首失尾,至於今而此道盡廢, 襄曠之於音,般墨之於械, 更以華文。獨謂此書未譯, 一虞典、 中不備論。 而知先生之學可信不疑, 顧惟先生之學, 將以習人之靈才, 令細而確也。 樂五 官者, 吳淞徐光啟書。 略有三種, 非度數 亦能使人無疑, 不為 大槩如 則他書俱不可得論。 豈有他謬巧哉? 大者修身事天, 故極精其說。 功 利先生從少年時, 真可謂萬象之形囿, 是, 周 余以為小用大用, 官 以當百家之用, 則是書之為用 就是書之為用更大 而余乃亟傳其小 手天,小者格物窮 漢以來多任 六 **十時,論道之** 有不得不廢 而與不佞游 ^ル囿,百家 遂共翻其 數與 于 補 綴 用 (清) 度 意揣 法 爾

界說三十六則

論幾何,先從一點諸事有度有數者, 再 界說。凡歷法、地理、 凡造論,先當分別解說論中所用名目, 面積為體, 先從一點始。自點引之為線, 是名三度。 皆依賴十府中幾何府屬。理、樂律、算章、技藝、工 線展為 [©] 工故 凡巧曰

下 圖。 八音。 ○凡圖, 點者無分。 十千為識,干盡用十二支,支盡用 〇無長短廣狹厚薄, 八 如

甲

線有直有曲。 圓相遇, 有光無光之間, 其相遇處止有 線有長無廣。 不容一物,是線也。 当點, ○試如一 行則止有一線。 平面, 真平真 光照

線之界是點。 ○凡線有界者, 雨界必是

> 長矣。 第四界。 直線之中點能遮兩界。 兩點之間至徑者, 直線止有兩端, 直線也。 ·線也。稍曲則繞而 兩端之間上下更無 〇凡量遠近,

用直線。

曲 〇甲乙丙是直線, 線。 甲丁丙、 甲戊丙、 甲己丙皆是

横行, 頂。 第五界。 〇凡體之影, 所留之迹, 面者, 即成面也。極似於面。 止有長有)) ○無厚之極。○想 ○一體所見為

面之界是線。

第六界。

四

點

間線能遮兩界。○平面者,諸方皆作直線。 **第七界。平面一面平,在界之內。**○平面中

接處。第八界。平角者,兩直線於平面縱橫相遇交

○凡言甲乙丙角,皆指平角。 ○凡言甲乙丙角,皆指平角。

○如上,甲乙、乙丙二線平等,相遇不能作角。

小較論。○所謂角,止是兩線相映,不以線之大是曲線。○所謂角,止是兩線相映,不以線之大是曲線,甲乙、乙丙二線雖相遇,不作平角,為

兩直線相遇為直線角。本書中所論,止是直線第九界。直線相遇作角,為直線角。〇平地

曲線角,三雜線角。如下六圖。角。但作角有三等,今附著於此:一直線角,一

上,必不作銳角及鈍角。

上,必不作銳角及鈍角。

一量法常用直角及垂線。垂線加於橫線之垂等,必兩成直角,而直線下垂者,謂之橫線之垂等,必兩成直角,而直線下垂者,謂之橫線之垂,若兩角

相映雖止一事等,為直角 為垂線。 線上有兩角相連,是相等者,定俱直角, 今用短尺, 一縱一橫互相為直線, 下定成兩 若 甲乙 直角, 丁又為甲乙之垂線。 ○反用之,若是直角, 線至丙 直角, 然甲線若垂下過乙, 而 所以丙乙亦為甲乙之垂線。 甲乙為垂 丁上, 則 乙之左 互相為垂線。 一次一次一方<li 則兩線定俱是 中間 -間線直如

第十一界。 凡角大于直角為鈍角。

乙丁,則甲乙丙為鈍角。 一四甲乙丙角與甲乙丁角不等,而甲乙丙大於甲

指言角者,俱用三字為識,其第二字即所指角角、銳角,其大小不等,乃至無數。○是後凡甲乙丁是。○通上三界,論之直角,一而已。鈍**第十二界。凡角小於直角為銳角。**○如前圖

角。若言甲乙丁,即第二乙字是所指銳角。也。 如前圖甲乙丙三字,第二乙字即所指鈍

界,體不可為界。 有三界: 點為線之界,線為面之界,面為體之有三界: 點為線之界,線為面之界,面為體之

物。 圖見後卷。形,如平方、立方及平立三角、六、八角等形,如平方、立方及平立三角、六、八角等形。○一界之形,如平圓、立圓等物。多界之間為第十四界。或在一界,或在多界之間為

間,自界至中心作直線俱等。 第十五界。圜者,一形於平地,居一界之

至丙丁,又至甲丁,復元處,其中形即成圜。於元處所作,如上圖:甲丁線轉至乙丁,乙丁轉形為圜。○一說圜是一形,乃一線屈轉一周,復丁、丙至丁,其線俱等。○外圓線為圜之界,內丁、丙至丁,其線俱等。○外圓線為圜之界,內

第十六界。圜之中處為圜心。

界為圜徑。徑分圜兩平分。 第十七界。自圜之一界作一直線過中心至他

徑。○甲丁乙戊圜。自甲至乙過丙作一直線,為圜

第十八界。徑線與半圜之界所作形為半圜。

第十九界。在直線界中之形為直線形。

第二十界。在三直線界中之形為三邊形。

第二十一界。在四直線界中之形為四邊形。

。)二十二界。在多直線界中之形為多邊

第二十三界。三邊形○五邊以上俱是。

形。第二十三界。三邊形三邊線等為平邊三角

三角形。 三邊形三邊線俱不等為三不等

丙

第二十七界。三邊形有一鈍角為三邊鈍角

角形。○或銳或鈍。 第二十四界。三邊形有兩邊線等為兩邊等三

形。

方形。 方形。 第二十九界。四邊形四邊線等而角直為直角 腰形。 〇凡三邊形, 第二十八界。 恒以在下者為底,在上二邊為三邊形有三銳角為三邊各銳角

形。第二十六界。三邊形在一直角為三邊直角

甲

丙

2 丁

2

丁

形。

四種之外他方形皆謂之無法四邊形。第三十三界。以上方形四種謂之有法四邊

其邊兩兩

甲

丙

○如上甲乙丙丁形。 甲乙邊與丙丁邊自相等, 甲

甲

丙

第三十一界。斜方形四邊等, 2 俱非直角。

離亦不遇為平行線。 第三十四界。兩直線於同面行, 至無窮不相

甲 丙 2 丁

方形[。] 第三十五界。 一形每兩邊有平行線為平行線

直角。第三十二界。長斜方形其邊兩兩相等, 2 丁

俱非

形,其兩形無對角線者為餘方形。分為四平行線方形,其兩形有對角線者為角線方平等線,其兩平等線與對角線交羅相遇,即此形一直線,其直線為對角線。又於兩邊縱橫各作一一第三十六界。凡平等線方形,若於兩對角作

辛謂之餘方形。 ○甲乙丁丙方形於丙乙兩角作一線,為對角 等線,又依乙丁平行作戊己線,依甲乙平行作庚 之一,即作大小四平行線方形矣,則庚壬己丙及戊 主,即作大小四平行線方形矣,則庚壬己丙及戊 主,即作大小四平行線方形矣,則庚壬己丙及戊 之一、庚辛兩線交羅相遇於 之一、東至兩線交羅相遇於 之一、東至兩線交羅相遇於 之一、東至兩線交羅相遇於 之一、東至兩線交羅相遇於 之一、東至兩線交羅相遇於 之一、東至兩線交羅相遇於 之一、東至兩線交羅相遇於

求作四則

求作者,不得言不可作。

甲至乙或至丙、至丁,俱可作直線。 亦出上篇。葢自此點直行至彼點,即是直線。自 **第一求。自此點至彼點求作一直線。**〇此求

之。 一有界直線,求從彼界直行引長

行。 〇如甲乙線。從乙引至丙,或引至丁,俱一直

第三求。不論大小,以點為心,求作一圜。

此理也。何者?自有而分,不免為有。若減之可見莊子稱一尺之棰,日取其半,萬世不竭,亦見莊子稱一尺之棰,日取其半,萬世不竭,亦曰:可長不可短也。度者可以長亦可以短。長以下不可損矣。自百以上,增之可至無窮,故以下不可損矣。自百以上,減之又減至一而止,一限,如百數減半成五十,減之又減至一而止,一 同。數者,可以長不可以短。長數無窮,短數有之至極,數窮盡故也。此說非是。凡度與數不言:較小作大可作,較大作小不可作。何者?小 分者更復合之,合之又合,仍為尺棰,是始合之 或小。○凡言度者,或線、或面、或體皆是。 是有化為無也。 第四求。設一度於此,求作彼度, 兩無能並為一有也。 有化為無, 兩無能並為一有不可言 猶可言也。 較此度 或或

公論十九則

公論者, 不可疑。

第一論。 設有多度, 彼此俱與他等,

此自相等。 第二論。 有多度等。 若所加之度等,

則合并

則彼與

之度亦等。

之度亦等。 第三論。 有多度等。 若所減之度等,

則所

存

并之度不等。 第四論。 有多度不等。 若所加之度等,

則合

第五論。 有多度不等。 若所減之度等 則所

存之度不等。

第六論。 有多度, 俱倍於此度, 則彼多度俱

等。

第七論。 有多度, 俱半於此度, 則彼多度亦

一度加一度之上。 自相合,

第八論。有二度,

則二度必等。

〇以

者, 全尺中十分中之一分也。 第九論。 全大於其分。 ○如一尺大於一寸。 寸

第十論。直角俱相等。○見界說十。

論。兩角小於直角者,其行不得不相遇矣。 卅四。加一垂線,即三線之間定為直角,便知此 ○欲明此理,宜察平行線不得相遇者。○系說

第十二論。兩直線不能為有界之形。

第十三論。兩直線止能於一點相遇。

其分,而俱稱右半,是全與其分等也。○本篇九。丙亦右半也。○界說十七。甲丁乙為全,甲丁丙為之。○界說十七。夫甲丁乙,圜之右半也,而甲丁甲,則甲丁乙宜為甲丙乙圜之徑,而甲丁丙亦如甲,則甲丁乙宜為甲丙乙圜之徑,而甲丁丙亦如甲,以武線長界近,相交不止一點,試於丙乙二界○如云線長界近,相交不止一點,試於丙乙二界

,則合并之差與所加之差等。第十四論。有幾何度等。若所加之度各不

第十五論。 則合并所贏之度與元所贏之度等。 有幾何度不等。若所加之度

也,而戊乙大於己丁乙甲於己丁加丁丙, ○如上圖。反說之, (戊乙大於己丁亦如之。(己丁加丁丙,則戊甲大於己丙者, 戊乙、己丁線不等於戊乙加 戊庚線

也,

第十六論。 則餘度所贏之度與減去所贏之度等。 有幾何度等。若所減 **泛之度** 不

乙戌大於丁己者,庚戌也,而丙己大於甲戌亦如〇甲乙丙丁線等於甲乙減戊乙於丙丁減已丁,則

第十七論。 則餘度所贏之度與元所贏之度等。 有幾何度不等。 若所減之度

> 甲乙於丙己減丙丁,則乙戊長於丁己者,亦庚戊〇如十四論,反說之。甲戊丙己線不等於甲戊減 與甲戊長於丙己者等矣。

丙

丁

2

庚

戊

第十八論。 全與諸分之并等。

較。 全所減之度倍於彼全所減之度, 二十減六,於十減三, ○相減之餘日較。○如此度二十,彼度十,於『減之度倍於彼全所減之度,則此較亦倍於彼第十九論。有二全度,此全倍於彼全。若此 則此較十四,

幾何原本卷

第一題。 于有界直線上,求立平邊三角形。 丙

丙, 線俱等故。丙、乙丁線 與甲 形。 為為 亦等于甲乙,即甲丙亦等于乙丙。○公論一。三邊 法曰 如所求。 内 乙丁線亦等。 ○論 丙至乙, 作丙 乙為界 甲丁線等。 ○界說十五。既乙丙等于乙甲, 甲丁 Z 〇凡論有二種, 阛作 線 何者?凡為圜,自心至界, 丙 上 以乙為心, 兩圜 Z 求 丁 立 以乙丙等于乙甲,而甲丙、乙丙等于乙甲,而甲丙克、 以乙為。 ,即乙甲線與乙乙為心,則乙甲線與乙乙為心,則乙甲線與乙國相交于丁末。自甲至丁圍,次以乙為心,甲丁國,次以乙為心,甲丁國,次以乙為心,甲丁國,次以乙為心,甲 此以是為論者正論也。

點為界作直線,

與元線等。

第二題。

一直線,

線或內:

或外有一

點。

求

以

近丙

一短界線;

乙為心, 甲為界,

俱推前用法作 ,亦如之。兩短 不知之。兩短

其用法不心作兩圜。

但以甲為

心,

界線交處即

得丙。

〇諸三角形,

○詳本篇廿二。

戊 庚己

界 形 上下作甲丁丙平邊三角形。○本篇一。次自三角 丙一 一求。 心, 兩腰線引長之。 法 而 丙為界亦可作。 與乙丙 分線, 若在丙乙之外, 止 日 : 如上前圖。或甲在丙乙之內, 甲己線。 有甲點及乙丙線, 為丙戊線;其丁甲引之出丙 如上圖。 等。 先以丙 作丙乙圜。 ○第二求。 末以丁為 甲在丙乙之內,則截取甲至則自甲至丙作甲丙線。()第 兩法俱以甲丙線為底, 為 宀 其丁丙引至丙乙圜 求以甲為界, 心 ○第三求。次 乙為 戊為界, 乙圜, 0 觀甲 任于 乙為

論一。 尤易。 為界, 亦等。 丁丙, 線, 丙至戊即所求。 圜 與乙 假如點在 ○若所設。 亦等。 戊庚為界, 公論三。 丙線等。 庚線減丁 甲 ○界說十五。 線 丙, 夫丙戊與丙乙同以丙為心, 甲點即在丙乙線之一界, 與丁戊 故等。 单, 論 即以丙為心, 作乙戊圜, 其所減兩腰線等, 日 : 即甲庚與丙 ○界說十五。 睘 相 戊、丁庚線同 交 (于庚, 于丁戊 乙等。 即 ", 戊乙 徐減 其法 甲 〇 公 以 丁

與乙丙交于戊, ニ。次以乙為心, 以甲為度, 法曰: 甲短線, 乙戊同心同圜故。 從乙引至別界, 即乙戊與等。 乙丙長線, ○界說十五。 作圜。 甲之乙丁等, 作 求于乙丙減 乙丁線; ○第三求。 甲。 〇本篇 圜界 葢 $\overline{\mathbb{Z}}$

亦等。其餘各兩角相當者俱等。等,各兩腰線間之角等,則兩底線必等,而兩形等,外四 題。兩 三角 形,若相 當之 兩 腰 線各

等。 等, 兩線能相合為形也。 角置丁角之上, 乙丙與丁 己之上, 言乙丙與戊己兩底線必等,而兩三角形亦等。 一俱等, 解 甲乙與丁戊亦必相合, 甲丙與丁己兩線, 而戊庚己又為直線, ○論曰: 如云乙 駁論也。下放此。 為庚, 甲乙 而云乙丙與戊己不等, 戊己兩角, 甲丙乙與丁己戊兩角 丙、 或在其下, 兩角必相合, 丁戊己兩三角形之甲與丁 辛倣此。 丙與戊己不等, 甲乙與丁戊兩線各等。 則兩線當別作一形, 為辛矣。戊己既為直不等,必乙丙底或在戊無大小。○△綸八。此 無大小。〇公論八。 ○公論十二。 無大小。 即令將 甲丙與 此以非為 兩角 甲俱 Ţ 甲

角等,而兩腰引出之其底之外兩角亦等。 第五題。三角形若兩腰等,則底線兩端之兩

Z, 各兩角亦等矣。○本篇四。又不等,則其底丙丁與乙己必等, 甲丙、 角既 角同, 觀甲 丙已角與乙之外丙乙丁角必等矣。 三角形亦等。何者?此兩形之丙丁乙與乙己丙兩 甲戊截取一分, 兩角必等。 公論三。丙丁與乙己兩底又等,○本論。 任引至戊, 丙至丁, 兩外角亦等。 解 題言甲 乙己與甲丙丁兩角既等于甲乙已減丙 甲丙丁減乙丙丁角, 即乙丙丁與丙乙己兩角亦等也。則丙之外乙 甲丁丙 曰 : 甲乙線, 己與甲丁兩腰又等,甲乙與甲丙兩 〇本論。而甲己、甲丁兩腰各減相等之 甲乙 乙至己,各作直線。 ○公論三 (甲丁兩腰又等,甲乙與甲丙兩腰又1兩三角形必等。何者?此兩形之甲 甲乙線任引至丁,其乙丙戊 丙乙與甲乙丙 丙三角形, 與甲丁等, 即所存丙己、乙丁兩腰又等。 ○本篇四。又乙丙已與丙乙 論曰: 試如甲戊線稍 則所存甲丙乙與甲乙丙 兩角等, 為甲己。 其甲丙 而底線兩端 ○第一求。 與甲乙 又自甲 ○本篇 ○本篇三。 又乙丙同 即甲己 與 相當之 四。 丁 二。即次從 丙 丙 兩 兩 乙線腰

丙

三角形若底線兩端之角等,

則 兩

腰

亦等。

線, 丙。 角 Z 分等也。 兩腰線不等, 本形成兩三角形,其一為甲乙丙,其一 乙丁與甲丙等。 甲乙 等。 與甲丙乙兩角等, 解 丙與甲乙丙全形之乙丙又同線, 即令比甲丙線截去所長之度, 而甲乙丙全形與丁乙丙分形同也。 題言甲 丙全形之甲丙 兩線既等,一 甲 乙 〇公論九。何者?彼言丁乙丙分形之乙丁 乙與甲丙兩腰亦等。 而一長一短, 試辯之。 丙三角形, 〇本篇三。次自丁至丙作直線, 則丁乙丙與甲乙丙兩形 其甲乙 丙與 ○論 丁乙丙分形之 為 乙 而元 若甲乙為長 是全與其 甲 丁線, \Box 丙乙 乙則 云 而

○本篇四。是全與其分等也。 兩腰必等也。 故底線 兩端之兩

七題。 不得別有腰線與元腰線等而于此七題。一線為底,出兩腰線,其相 點遇 外止 相有

2

于丙 與甲丙等, 遇曰 題言此為 乙上更出 一定之處, 于甲于乙各出 不得于甲上更 與乙丙等, 出至 而

丙 相遇 甲 甲 2 丙 甲 甲 甲 2

可

通。

何者?

丙甲元線之上,

說駁之。若言

從乙丁引 乙丁丙, 丙、 也。 丙之分, 底 第二圖, 外兩角等乎?若言 可通 了了一角,而為世界丁丙宜亦等也。 ,、甲丙兩腰等者,世人, 圖, 丙又甲丁丙之分, 更小于戊丙丁, 戊丙丁宜亦等也。○+內、乙丙丁宜亦等也 引出 在何 而 而乙丁丙、

等也。 據, 為其分, 丁乙亦成一 三角形, 本篇五。 此二說者, 如彼論則甲丙丁角亦小于丙丁乙角矣。 〇本篇五。夫丁丙乙角本小于甲丙 據如彼論, 甲丁 丙角. 豈不自相戾乎? 本小于丙 則丙丁乙角亦 而丙丁乙宜與丁丙乙 丁乙角, 7小于甲二 而 角, 為 方 其分 兩 又 角而角丙

底亦等,則兩腰間角必等。第八題。兩三角形,若相當之兩腰各等,兩

角在甲角上邪?否邪?若在上,即兩角等矣。○○論曰:試以丁戊己形加于甲乙丙形之上,問丁

公論八。 線之內邪? 丁角。 邪?皆依前論駁之。○本篇七。 則角必等, 若旋轉, 或謂不然, 或在三角頂之內邪? 依法論之,即三角皆同 不可疑也。 乃在于庚, ○系: 即問 或在 | 庚當 本題· 三角 在 正 頂 미 **二論**甲次之 戊 見 凡

第九題。有直線角。求兩平分之。

為戊任 戊丁故。 ⊟ : 自己至申, 言兩底等?初從戊丁底作此三角平形, 底, 截法 與甲 甲己同是一線, 丁甲己與戊甲己兩三角形之甲丁與甲戊 分, 立平邊三角形, 則丁甲己與戊甲己兩角必等。 作直線, 等次。 甲丙 為甲丁。 即乙甲丙角為兩平分。 戊己與丁己兩 丁至戊作 求兩平分之。 ○本篇一。 本篇三。次于甲丙亦 :直線。 此二線為腰, 為丁戊已形。 底又等。 先于甲乙 ○本篇八。 次以 Ť 截 兩線 ()論 末戊甲線 何

· 以 · ; 亦如之。兩界線交處得己。○本篇一。 向乙丙間任作一 如上。截取甲丁、 短界線。 次用元度, 甲戊,即 以丁為 以戊為

一有界線,求兩平分之。

論曰: 分之, 兩腰等,而丙丁同線,甲丙丁與乙丙丁兩角又 乙丙兩邊等三角形。 ○法曰: 〇本篇九。則甲丁與乙丁兩線必等。 〇本篇九。等丙丁直線,即分甲乙于丁。 丙丁乙、 甲乙線求兩平分。 丙丁甲兩三角形之丙乙、 ○本篇一。次以甲丙乙角兩平 先以甲乙為底, ○本篇四。 丙甲

> 為心,亦 ○用法。 即分甲乙于戊。 亦如之。兩界線交處即丙丁。末作丙丁直上,向上下各作一短界線。次用元度以乙 以甲為 任用一度, 戊 但須長于甲乙

2

線。 第十一題。一直線。 任于一 點 上, 求 作 垂

線,

之己丁、己戊兩腰等,而己丙同線,丙丁與丙戊甲乙之垂線。 〇論曰:丁己丙與戊己丙兩角形 戊。 線。 本篇一為丁已戊。 ○法曰: 先于丙左右任用一度,各截一界, ○本篇二。次以 甲乙直線。 末自己至丙作直線,即己丙為 丁戊為底, 作兩邊等角形, 任指一 點于丙, 求丙上作

即是垂線。○界說十。 此後三角形,多稱角形,省文即是垂線。○界說十。 此後三角形,多稱角形,直角丁丙已與戊丙已兩角必等矣。等即是直角,直角為五。丁已丙與戊己丙兩角亦等。○本兩底又等,即兩形必等,丁與戊兩角亦等。○本

線交處即己。作短界線。次用元度,以戊為心,亦如之。兩界作短界線。次用元度,以戊為心,亦如之。兩界丁為心,任用一度,但須長于丙丁線,向丙上方○用法:于丙點左右,如上,截取丁與戊,即以

用元度,以戊為心,亦如之。則上交為己,下用一度,以丁為心,于丙上下方各作短界線。次〇又用法:于丙左右,如上,截取丁與戊,即任

得。是用法又為嘗巧之法。 交為庚。末作己庚直線,視直線交于丙點,

即

甲丙庚兩角又等,即甲庚、戊庚兩線必等。○形之甲丙、戊丙兩線既等,庚丙同線,戊丙庚4年直線,如所求。 ○論曰:庚甲丙與庚丙戊兩4年,近,五垂線,與己丙線相遇為庚。末自庚至2月,五重線上載戊丙線。○本為三。次于戊-角兩平分之,為丙,如前法, 篇四。 增: 而對同邊之甲角、戊角亦等。 若甲乙線所 如前法, 甲外無餘線可截, 則甲亦直角, ○本篇九。為己丙線。次以 與己丙線相遇為庚。末自庚至甲 于丙上立丁丙垂線。 欲立垂線之點, 是甲庚為甲乙之垂線。 則于甲乙 戊庚兩線必等。○本庚丙同線,戊丙庚與]線上任取 ○本篇四。戊 三。次于戊上 次以甲丙為 次以甲丙丁 乃在 兩角

未能論。論見第三卷第三十一題。○此法今遇,為己。末自己至甲作直線,即所求。○此法今直線,引長之至戊,為戊丁線。戊丁線與圜界相方半圜。圜界與甲乙線相遇為丁。次自丁至丙作大半圜。圜界與甲乙線相遇為丁。次自丁至丙作上方任抵一界,作丙點。次用元度以丙為心,作元線○用法:甲點上欲立垂線。先以甲為心,向元線

點上作垂線至直線上。 第十二題。有無界直線,線外有一點。求于

戊于己。○本篇十。末自丙至己作直線,即丙己為丁、為戊。次從丁戊各作直線至丙。次兩平分丁乙。先以丙為心作一圜,令兩交于甲乙線,為○法曰:甲乙線外有丙點,求從丙作垂線至甲

→C 等,則丙己丁與丙己戊等,皆直角。○本為內。而 時,則丙己丁與丙己戊等,皆直角。○本為內。而 丙己定為垂線矣。 ○本為八。而丁丙己與戊丙己兩角又 之丙丁、丙戊兩線等丙己同線則丙戊己與丙丁己 甲乙之垂線。 ○論曰:丙己丁、丙己戊兩角形

至丁,作直線,則丙戊為垂線。界線,乙為心亦如之,兩界線交處為丁。末自丙甲、為乙。次用元度以甲為心向丙點相望處作短甲、:以丙為心,向直線兩處各作短界線,為

丙

心,以丙為界,作一圜,界于丙點及相望處,各〇又用法:于甲乙線上近甲、近乙,任取一點為

直線,得戊。○若近界作垂線,無可截取,亦用此法。界作一圜,界至與前圜交處得丁末。自丙至丁作圖,或進或退,如後圖。任移一點為心,以丙為稍引長之。次于甲乙線上視前心,或相望,如前

直角即等于兩直角。 第十三題。一直線至他直線上,所作兩角非

等。()公論一。 兩直角等,則甲乙丁與甲乙丙兩角定與兩直角

等,即後出兩線為一直線。線,偕元線,每旁作兩角。若每旁兩角與兩直角與第十四題。一直線于線上一點出不同方兩直

一甲丙己、甲丙丁兩角亦等矣。試減甲丙丁角等。○本為十三。如此即甲丙戊、甲丙丁兩年上為甲丙己、甲丙丁兩角,此兩角宜與兩方上為甲丙己、甲丙丁兩角,此兩角宜與兩方一線,或離戊而上,為丁丙己,或離戊而下,曰:如云不然,令另个一圓氣 以甲等。 與 丁。右出一線,為丙戊。 甲丙戊與甲 兩直角等, 解 ⊟ : 甲乙 題言丁丙與丙戊是一直線。 丙己兩角較之, 〕線于古 令別作一直線,必從丁丙更引 丙 點上, 若甲丙戊、甲丙 果相等乎? 左 丁角, 兩角 兩直 Τ, 一, 一, 一, 一, 引 ○ 一 一 一 無 角 は 為 出 論 角

公論九。兩者皆非,而丁丙戊是一直線。○公論九。兩者皆非,而丁丙戊是一直線。○本篇十三。如此即用,與至丁丙庚。直與兩直角等。○本篇十三。如此即用,與至丁丙庚。直線上為甲丙庚、甲丙丁兩角亦甲丙淚至丁丙庚。直線上為甲丙庚、甲丙丁兩年,是全與其分等也。○公論九。若下于戊,則三。夫甲丙己本小于甲丙戊是一直線。

#必等。 第十五題。凡兩直線相交,作四角,每兩交

上,則則兩角與 丙與 戊丙兩角等。 論曰:丁戊線至甲乙線上,則甲戊丁、 解 如此即丁戊乙、甲戊丁兩角亦與甲戊丁、 則甲戊丙、甲戊丁兩角與兩直角等。 丁 \Box 兩直角等。 戊乙兩角, 甲乙與丙 ○公論十。試減同用之甲戊丁角, ○本篇十三。甲戊線至丙丁線 甲戊丁與丙戊乙兩角各等。丁兩線相交于戊。題言甲戌 ○本篇十 丁戊乙 甲

> 成丁、丙戊乙必等。 戊二、丙戊乙必等。 戊乙、丙戊乙兩角 戊乙、丙戊乙兩角 成乙、丙戊乙兩角 成之、丙戊乙兩角 上兩直線相交 公論十八。 于中點,上作四角, 即甲戊丁、丁戊乙兩角亦與丁戊乙、 丙戊乙必等。 丙戊乙兩角與兩直角等。 〇本篇十三。 乙戊線至丙丁線上, 不論幾許線、 甲戊 試減同用之丁戊乙角, 則甲戊 丙 ○一系: 推顯。 與四直角等。 兩 幾許角, 丁、丁戊乙兩角與 定與四直角等。 ○公論三。 ○本篇十三。 〇二系:一點之 兩直線相交 其所存甲 丙戊乙 又 如 T

兩交角等,即後出兩線為一直線。 增題。一直線內,出不同方兩直線,而所作

丁、戊丙乙兩交角等。 戊丙乙 解 ○論曰: 而所作甲丙戊、 戊丙乙兩角等。 角, 甲乙 即甲丙戊、戊丙乙兩角必與丁甲丙戊角既與丁丙乙角等,每 線 內 ○公論二。 丁丙乙 丙點, 題言戊丙、 兩交 而甲丙戊、 出 丙 角等, 丙丁即 第 甲 乙丙加直丙

兩直角等,是戊丙、丙丁為一直線。○本篇十四。與兩直角等。○本篇十三。則丁丙乙、戊丙乙亦與

言角。 第十六題。凡三角形之外角,必大于相對之

丙之分,則丁甲丙大于己甲戊,亦大于相等之己甲戊與戊丙乙兩角亦等矣。夫己甲戊乃丁甲丙兩底亦等。○本為四。兩形之各邊各角俱等,而 長之。 〇論曰:欲顯丁甲丙角大于丙乙角,外角丁甲丙必大于相對之內角甲乙丙、 自甲至己, 作直線。 線兩平分于戊。 戊己與戊乙兩線等,戊甲與戊丙兩線等,甲 解 乙戊丙兩交角又等。○本篇+五。則甲己與乙〕與戊乙兩線等,戊甲與戊丙兩線等,甲戊-至己,作直線。即甲戊己、戊乙丙兩角形之 從戊外截取戊己, 甲乙丙角形, ○本篇十。自乙至戊, 自乙甲線引之至丁。 與乙戊等。 ○本篇三。 作直線, 試 甲丙 以甲 方 次 引

> 之, 角乎? 論推, 庚甲乙之分,必小于庚甲乙也。庚甲等。則壬甲辛與辛乙丙兩角亦等矣。 戊 甲丙外角乎?其餘乙丙上作外角, 内兩交角等。 丙辛等。 丙至辛作直線,引長之,從辛外截取 角, 丙 至庚。 Ż 依此推顯。 壬甲辛與辛乙丙兩角亦等矣。夫壬甲辛乃顯甲辛壬、辛丙乙兩角形之各邊各角俱 次顯丁甲丙大于甲乙丙。 而 〇本篇三。次自甲至壬, 次以甲乙線兩平分于辛。 丁甲丙 ○本篇十五。 於角不大于相對之甲丙乙 則甲乙丙內角不小于丁 試自 庚甲乙又與丁甲 作直線, 俱 ○本篇十。 大于相 丙甲線引長 辛壬, 依前 内 與

第十七題。凡三角形之每兩角,必小于兩直

角

皆小于兩直角。 角。 至 解 丙乙引出至丁,即甲乙丁外角大于相 甲乙 甲乙丙兩角, 丙 角形。 ○論曰: 言甲乙丙、 試用兩邊線丙 甲丙乙、 丙甲乙 甲 · 丙 乙 甲 相引兩對出角

5>>>>。 第十九題。凡三角形,大角對大邊,小角對

第二十題。凡三角形之兩邊并之,必大于一

邊。

邊引長之,以甲乙為度,截取甲丁,○本為三。自乙、乙丙并之,必大于甲丙。○論曰:試于丙甲必大于乙丙邊,甲丙、丙乙并之必大于甲乙,甲○解曰:甲乙丙角形。題言甲丙、甲乙邊并之

乎? 甲丁角, 丁至乙作 一倣此。 ○本篇十九。 大角也, 豈不大于乙丙邊對丙丁乙小角者 ·角,亦大于丙丁乙角矣。夫丁丙邊對丙乙甲乙丁兩角亦等。〇本篇五。即丙乙角大于 則甲乙、 則甲乙加甲丙者與丙丁等矣。丙丁既大于乙 甲丙兩邊并, 又甲丁、甲乙兩線各加甲丙線等 甲 乙 必大于乙丙邊也。 兩 腰 而 甲

小于相對兩腰,而後兩線所作角必大于相對角。線,復作一三角形在其內,則內形兩腰并之,必第二十一題。凡三角形,于一邊之兩界出兩

甲乙、 戍, 于乙戊線 ○ 論 曰: 解曰: 乙、甲丙并,遇于丁。題 即乙 則乙甲、 甲戊角形之乙甲、 也。 試用內一線, 甲乙丙 題言 ○本篇二十。此二率者, 角 而乙丁丙角 丁 丙、 戊丙并, 引長之, 于乙丙邊之兩界各出 丁乙兩線 甲戊兩 必大于乙戊、 如乙丁引之至 線并, (于乙戊、戊 () 每加一戊 () 以大

> 戊并線, 戊矣。 則 更大于相對之丁戊丙內角矣,戊內角,〇本篇十六。即丁戊丙 線并, 大于甲丙角乎? +。又乙甲戊角形之丙戊丁外角大于相對之乙盧 丙并矣。 戊丙,豈不更大于丁丙、丁公。○公論四。夫乙甲、甲戊、 則戊丁、戊丙、丁乙并, 必大于丁丙線也。此二率者, 對之丁戊丙內角矣,而乙丁丙角豈不更○本篇+六。即丁戊丙角形之乙丁丙外角 ○公論四。又戊 丁丙 角形之戊 必大于丁丙、 丁乙乎?〇本篇二 戊丙既大于乙 每加

并,大于一線也。 第二十二題。三直線作三角形,其每兩線

形,見本篇二十。求作三角形。先任作丁戊線,長第三線。○若兩線比第三線或等或小,即不能作三角○法曰:甲乙丙三線,其第一、第二線并,大于

可作。 癸庚、 于三線并。 庚癸與 丙等, 丁己、己癸線皆同圜之半徑等。 或等或小于第三線, 兩圜相遇, 本篇三。 **亅**壬癸圜。 從庚截取庚辛線。 癸己兩直線,即得己癸庚三角形。 若丁壬癸園不到子辛, 庚辛、 乙 為 以庚為心, 下為壬, 上為癸。 次以甲 已庚元以乙為度, 不成三角形。 庚癸線亦皆同園之半徑等, 辛為界,作辛壬癸圜。 次以己為心, 截 壬癸園不到丑, 丁截取 ○論曰: 此角形之 末以庚己為底, 則角形三線與所 ○界說十五。 庚 線。 Ţ 丁為界, ?己線。 以丙 即是兩線 ○用壬亦 則己 作其 為 作

線為度,向上作短界線。次以又一界為心,第三〇用法: 任以一線為底,以底之一界為心,第二

等,亦用此法。 〇若設一三角形,求別作一形與之腰,如所求。 〇若設一三角形,求別作一形與之線為度,向上作短界線。兩界線交處向下作兩

角,與所設角等。 第二十三題。一直線,任于一點上求作

等。 壬癸角形, 壬癸兩腰與戊庚辛兩腰等,)法曰: 點, 先于戊丁線任取一點, 則丙角與戊角必等。 為辛。 甲乙 與戊庚辛角形等。 自庚至辛作直線。 線于丙點求作一 ○本篇八。 為庚, 壬癸底與庚辛 ○本篇廿二。 次依甲乙線作一 于戊己線任取乃,與丁戊己角 上 底 天 丙 丙

一形之腰間角大,則底亦大。 第二十四題。兩三角形相當之兩腰各等。若

至庚作 己角甲論于戊〇 丙 = 戊兩解 角等。 而丁 丁腰,曰: 直線, 試依 ○本篇三。 己 庚腰在丁己之外矣。 甲甲 丙 丁戊線, ○本篇廿三。 是甲乙與丁戊, 與丁 題言 丙 與 即丁庚己俱與甲丙 Ż J Z 三。則戊二 從丁點 兩腰 戊己 丙 底 各 刚 必 公丁庚角大于, 等。 次截丁 大于 形。 若乙甲丙 下丙 丙與 方戊己底。 若乙甲丙 等。 東角, 東線, 庚 又自戊 戊 丁己 與丁 與乙 與 角 大

> 戊己庚大角之戊庚腰也。〇本為十。若戊己與; 也。〇公論允。則對戊庚己小角之戊己腰必小! 丁已庚又戊己庚角之分,則戊庚己益小于戊! 分,必小于丁庚己,亦必小于相等之丁已庚. 角亦等矣。〇本為五。夫戊庚己角乃丁庚己. 角形之丁庚、丁己兩腰等,而丁庚己與丁己. 如第六圖,自己至庚佐必小于戊庚也。〇公論兩底同線,即如第四層 之戊己 丰 庚己益小于戊己庚也。相等之辛己庚,而辛己 己角乃壬庚己角之分,必小于壬庚己,辛己庚、壬庚己兩外角亦等矣。○本篇五 角在在庚各 上,以下,以下, 引丁己線, 腰必 即如第二 底上 必 等也用两 是三戊己皆 邪? 自己至庚作直線, 小于對戊己庚大角之戊庚腰也戊己庚也。○公論九。則對戊庚己庚,而辛己庚又戊己庚角之分, 與 出于辛, 抑同 戊 公論九。 本 T 論九。若戊庚在戊己之一置戊己乃戊庚之分 自己至庚作直 篇 庚 四。 、『乙戈己腰必小于4 則戊庚己益小于戊己庚 紀小于相等之丁己庚, 而 以庚己角アフリー 兩 線邪? 則丁庚、 次 角 問亦 次引丁字 所等 抑 庚己與丁己 庚之乙 戻己,亦必小于)*本篇五。夫戊庚 丁己兩腰等而 在 戊己之下, 東線, **宁庚乙** 則丁 丙 包也。 - 邪?若 丙 \bigcirc 與 出于 庚 庚 小則角戊 之兩已

形之底大,則腰間角亦大。第二十五題。兩三角形相當之兩腰各等。

若

不然,題 丙底大也?若言乙甲丙角小,則等,腰間角又等,宜兩底亦等。 丙線宜亦小。 解 甲丙 題言乙甲丙角大于戊丁己角。 令言或小或等。 與 甲乙丙 丁己各兩腰等。 ○本篇廿四。]與丁 戊己 若言等, 何設乙丙底大也? 兩角形, 若乙丙底大于戊 則對乙甲丙角之乙 則兩形之兩腰各 ○本篇四。 ○論 其甲乙 曰: 如云 何設乙

亨。其一邊不論在兩角之內及一角之對。
市,及相當之一邊等,則餘兩邊必等,餘一角亦第二十六題。○兩支。兩三角形,有相當之兩

言甲乙與丁戊兩邊,甲丙與丁己兩邊各等,而乙兩角各等,在兩角內之乙丙邊與戊己邊又等。題丙、甲丙乙兩角與丁戊己角形之丁戊己、丁己戊○先解一邊在兩角之內者,曰甲乙丙角形之甲乙

本篇四。而庚己戊角與甲丙乙角宜亦等也。○矣。夫乙角與戊角元等,則甲丙與庚己宜等。 乙等。 等而 甲丙 戊與甲丙乙丙角等,是庚已戊與丁已戊亦等, 為四。既設丁己戊與甲丙乙兩角等, 與其分等矣。 角形之庚戊、 角與戊 則餘一角亦等。 戊大于甲乙, 令于丁 ○本篇三。次自庚至己作直線, 丁己角亦等。 ○公論九。 戊己兩邊, 以此見兩邊必等。 宜與甲乙、 今又言庚己 如 庚 乙丙兩邊等 戊, 庚戊己 兩邊既 兩 與甲 本

乙、乙丙邊等矣。 作直線,即丁戊唐 線截 者, 曰 : 己戊兩邊各等, 己之丁戊邊又等。題言甲丙與丁己兩邊, 之戊角、 後解相 取戊庚, 如云兩邊不等, 曰甲乙丙角形之乙角、 即丁戊庚角形之丁戊、戊庚兩邊 丁己戊角各等, 而對 等邊 ○本篇四。而丁庚戊角與甲丙乙角 與乙丙等。 而甲角與戊丁己角亦等。 在 夫乙角與戊角元等, 兩 而戊己大于乙丙, 角之內, ○本篇三。次自丁 丙角與丁 丙之甲 而在 -丙乙角宜則甲丙與 戊己 乙邊與對 令于戊己 角之對 丙乙與 角 與甲 至 庚 論 形

己戊內角等矣, 庚戊與甲丙乙兩角等, 亦等也。 兩邊既等, 既設丁己戊與甲丙乙兩角等, 則餘一角亦等。 本篇十六。 +六。可乎?以此見兩邊必是丁庚戊外角與相對之丁 今又言丁

上 若內相對兩角等, 第二十七 題。 兩 直 即兩直線必平行。 線 有 他 直 線 交 加 其

矣。 角形, 甲乙、 庚、 相遇于癸, 丙辛庚角等, 于辛, ○本篇十六。 丙丁兩線必平行。 丙丁兩直線必至相遇于壬, 則甲庚辛外角宜大于相對之庚辛壬內角 甲乙、 亦依此論。 而甲庚辛與丁辛庚兩角等。 亦依此論。 7依此論。若言甲乙、丙丁兩直線乃先設相等乎?若設乙庚辛角與 丙丁兩直線加他直線戊己, ○論 ⊟ : 如云不然, 而庚辛壬成三 題言甲 則

> 上。 兩直角等, 第二十八題。 若外角與同方相對之內角等 即兩直線必平行。 〇二支。兩直線有他直線交加其 或同方 兩 角

與

戊 論曰: 甲庚辛、 外角與同方相對之內角等, 同用之甲庚辛, 兩直線必平行。 サセ。戊庚甲與乙庚辛兩角亦等。 論曰:乙庚辛角與相對之內角丙辛庚等。 庚辛丙內角等。題言甲乙、 角與兩直角等。 交于庚, 于辛, 其戊庚甲外角與同 ○本題。 甲庚辛兩角亦與兩直角等。) 先解曰: 甲乙、 即所存甲庚戊與丙辛庚等矣。 題言甲乙、 丙辛庚兩角與兩直角等, ○後解曰:甲庚辛、丙辛庚兩內 丙 丁 丙丁兩線必平行。 丙丁兩線必平行。 即甲乙、 ○本篇十三。 線加他直 ○本篇十五。即 他直線戊 丙丁必平 而甲庚 ○本篇 試 減

其上 ·。同方兩內角亦與兩直角等。 則內相對兩角必等,外角與 十九題。 〇三支。 兩平行線有他直線 外角與同方相對之內 交加

甲 庚 こ 天 こ

Z, 每加 彼論, 庚甲、 云不然, 等之戊庚甲○本為十五。與丙辛庚必等。 對之丙辛庚兩內角等,○本題。則乙庚辛交角相 甲庚辛與丁辛庚內相對兩角必等。 甲本與兩直角等,○本篇十三。則甲庚辛、 方相對之庚辛丙內角等。 一。可謂平行線乎? 庚乙宜小 平行 後解曰:甲庚辛、丙辛庚兩內角與兩直角等。 丙丁兩直線向乙丁行,必相遇也,○公論十 戊庚甲兩角必等。 戊庚甲與庚辛丙兩角既等, 則丁辛庚、辛庚乙兩角小于兩直角, 甲庚辛角, 辛庚乙元與兩直角等, ,于辛庚甲加辛庚乙矣。○公論四。而甲庚辛大于丁辛庚,則丁辛庚 加他直線戊己, 則庚辛丙、甲庚辛兩角與甲庚 ○次解曰:戊庚甲外角與同 ○公論ニ。則甲庚辛、丙辛庚○公論ニ。夫甲庚辛、戊庚 故同前 ○論曰: 乙庚辛與相 交于庚、 ○本篇十三。據如 圖。 則丁辛庚加辛 于辛。 有甲乙丙 ○本題。 ○公論一。 論 ⊟ : 夫辛 而 而 甲

戊丙

甲丙

戊

行。 有論。 辛直線, 九。丁癸子與甲壬子亦為相對之內角, 之己子壬丙內角等。 丁于癸。 一。而甲乙、丙丁為平行線。 解 即丁癸子內角與己子壬外角亦等。 題言甲乙與丙丁亦平行。 如甲乙、 其甲乙與戊己既平行, 交加于三直線甲乙于壬,戊己于子, 此題所指線 丙丁兩直 〇本篇せれ。丙丁與戊己既平行,即甲壬子與相對 在 同 線, 面 ○本篇廿七。 各與他線戊己 ○論 不同面: \exists 亦等。 成戊己平鼠線後別 本篇廿 ,作,所,

厅。 第三十一題。一點上求作直線,與所設直線

丙

庚

甲

戊

2

兩線, 乙等, 線上戊甲丁乙角。點向乙丙線任指一 對之兩角等,即平行線。 己,即己戊與乙丙平行。 法曰: 甲點上求作直線, 有甲丁線聯之, 其所作戊甲丁與甲丁乙相 ○本篇廿三。為戊甲丁。 次于甲點上作一 處作直 線, ○論曰:戊己、 與乙丙平行。 從戊甲線引之至 為甲丁, 角, 與 即 因 丙 先從甲 乙丙

○本篇廿七。

四 增從此題生一用法。 有角與所設角等, 設一角兩線, 兩兩邊線與所設線 角兩線, 求作有法

庚線 〇

依己丁平行作庚戊,即所求。與甲等,己丁線與乙等。末依丁戊平行作己與曰:先作己丁戊角,與丙等。次截丁戊

法曰: 先作己丁戊

度以甲為心作庚辛圜界,作甲丁線,次以丁為心, 圜界為度, 本題用法: 于庚辛 圜界截取庚辛, 于甲點求作直線, 辛 稍長于戊己。次任作戊己圜界。 與乙 末自甲至辛作及已。次取戊己 丙平行。

各引長之, 即所求。

處為己。自甲至己作直線,各引長之,即所求。度,以甲為心,向甲平處作短界線。後兩界線交度,以戊為心,向上與甲平處作短界線。又用元乙丙上向丙截取一分,作短界線,為戊。次用元一點作短界線為丁。次用元度,以丁為心,于一點作短界線為丁。次用元度,以丁為心,于一、

言甲丙丁外角與相對之內兩角甲、乙并等。 ○論○先解曰:甲乙丙角形,試從乙丙邊引至丁。題

等矣。 又等, Z, 甲丙丁角與甲乙兩角并等,更于甲丙丁加甲丙解曰:甲乙丙三角并,與兩直角等。○論曰:既 ⊟ : 篇せれ。既甲丙戊與乙甲丙等,而戊丙丁與甲乙丙 甲丙戊角等。 丙為甲乙、 失。○公論二。夫甲丙丁、甲丙乙并,元與兩直 則甲丙丁、甲丙乙兩角并與甲乙丙內三角并 試作戊丙線, 則戊丙丁外角與相對之甲乙丙內角等。 ○本篇十三。則甲乙丙內三角并亦與兩直角 則甲丙丁外角與內兩角甲乙并等矣。 戊丙之交加線, ○本篇せ九。又乙丁線與兩平行線相 與甲乙平行。○本篇三一。 則乙甲丙角與相對之 令甲 ○後 ○本

數,減二邊,即所存邊數是本形之數。為第三形,六邊為第四形。做此以至無窮。又視每形邊二線,不能為形,數三邊為第一形,四邊為第二形,五邊窮,每命形之數倍之,為所當直角之數。○凡一線當四直角,第三形當六直角,自此以上至于無當四直角,第三形當六直角,自此以上至于無當

: