Understanding Holographic Entanglement

With gravitational path integral & tensor network

赖文昕 2019311369

Dunham:Escher on Escher

- Question: how can we "prepare" / construct a state, e.g.
 - vacuum: $\rho = |0\rangle\langle 0|$
 - thermal: $\rho \propto \sum_n e^{-\beta H} |n\rangle\langle n|$
 - ... in a holographic system?
- Answer: via holography! (duh...)
 - Gravitational path integral
 - Tensor network
- Entanglement entropy captures some "structure" of the state

- Question: how can we "prepare" / construct a state, e.g.
 - vacuum: $\rho = |0\rangle\langle 0|$
 - thermal: $\rho \propto \sum_n e^{-\beta H} |n\rangle\langle n|$
 - ... in a holographic system?
- **Answer:** via holography! (*duh...*)
 - Gravitational path integral
 - Tensor network
- Entanglement entropy captures some "structure" of the state

- Question: how can we "prepare" / construct a state, e.g.
 - vacuum: $\rho = |0\rangle\langle 0|$
 - thermal: $\rho \propto \sum_n e^{-\beta H} |n\rangle\langle n|$
 - ... in a holographic system?
- **Answer:** via holography! (*duh...*)
 - Gravitational path integral
 - Tensor network
- Entanglement entropy captures some "structure" of the state

- Question: how can we "prepare" / construct a state, e.g.
 - vacuum: $\rho = |0\rangle\langle 0|$
 - thermal: $\rho \propto \sum_n e^{-\beta H} |n\rangle\langle n|$

... in a holographic system?

- **Answer:** via holography! (*duh...*)
 - Gravitational path integral
 - Tensor network
- Entanglement entropy captures some "structure" of the state

Review: boundary entanglement as gravitational saddles

Review: boundary entanglement as gravitational saddles

Recall: Path Integral in the Boundary & the Bulk

Lewkowycz:2013nqa: Lewkowycz:2013nqa

Figure: Thermal \mathcal{Z}_{β}

Thermal partition function in the bulk & the boundary

Image made from Benjamin:2020mfz and the EHT black hole photo

- In any field theory, a thermal state can be prepared by a path integral;
- In a holographic theory, $\mathcal{Z}_{\partial B} = \mathcal{Z}_{Bulk}$, a boundary state can be prepared by a bulk path integral.
 - $lue{}$ e.g. the thermo-field double \leftrightarrow the BTZ black hole Note that the Euclidean BTZ geometry is smooth: filling in the t_E cycle (not the ϕ cycle) of the torus
 - c.f. Chern-Simons/WZW: not quite the same

Recall: Path Integral in the Boundary & the Bulk

Lewkowycz:2013nqa: Lewkowycz:2013nqa

Figure: Thermal \mathcal{Z}_{β}

Thermal partition function in the bulk & the boundary

Image made from Benjamin:2020mfz and the EHT black hole photo

- In any field theory, a thermal state can be prepared by a path integral;
- In a holographic theory, $\mathcal{Z}_{\partial B} = \mathcal{Z}_{Bulk}$, a boundary state can be prepared by a bulk path integral.
 - e.g. the thermo-field double \leftrightarrow the BTZ black hole Note that the Euclidean BTZ geometry is smooth: filling in the t_E cycle (not the ϕ cycle) of the torus
 - c.f. Chern-Simons/WZW: not quite the same

Recall: Gravitational Path Integral

Lewkowycz:2013nqa: Lewkowycz:2013nqa

Figure: Thermal \mathcal{Z}_{β}

Thermal partition function in the bulk & the boundary

Image made from Benjamin:2020mfz and the EHT black hole photo

$$\mathcal{Z}_{\partial B} = \mathcal{Z}_{Bulk} \tag{1}$$

 \blacksquare Replica trick: entanglement entropy for a region R:

$$S_R = \operatorname{Tr} \rho_R \log \rho_R \iff \operatorname{Tr} \rho_R^n \equiv \mathcal{Z}_n$$
 (2)

i.e. reduced to the partition function of the n-replica. It can be deployed in the boundary & the bulk!

- Boundary: static geometry, but the field theory is usually strongly coupled — often difficult!
- Bulk: dynamic geometry, weakly coupled gravity: gravity fills in the bulk smoothly, $\mathcal{Z} \sim \sum_i e^{-S_i[g_{\mu\nu}]} \text{: sum over classical saddles}$

Recall: Gravitational Path Integral

Lewkowycz:2013nqa: Lewkowycz:2013nqa

Figure: Thermal \mathcal{Z}_{β}

Thermal partition function in the bulk & the boundary

Image made from Benjamin:2020mfz and the EHT black hole photo

$$\mathcal{Z}_{\partial B} = \mathcal{Z}_{Bulk} \tag{1}$$

 \blacksquare Replica trick: entanglement entropy for a region R:

$$S_R = \operatorname{Tr} \rho_R \log \rho_R \iff \operatorname{Tr} \rho_R^n \equiv \mathcal{Z}_n$$
 (2)

i.e. reduced to the partition function of the *n*-replica. It can be deployed in the boundary & the bulk!

- Boundary: static geometry, but the field theory is usually strongly coupled — often difficult!
- Bulk: dynamic geometry, weakly coupled gravity: gravity fills in the bulk smoothly, $\mathcal{Z} \sim \sum_i e^{-S_i[g_{\mu\nu}]} \text{: sum over classical saddles}$

Recall: Replica Trick and the Ryu-Takayanagi Proposal

Lewkowycz:2013nga: Lewkowycz:2013nga

Figure: The bulk replica [Lewkowycz:2013nga]

- $\mathcal{Z} \sim \sum_i e^{-S_i[g_{\mu\nu}]}$, saddle pt. approx. ⇒ minimize $S[g_{\mu\nu}]$ on the n-replica $\widetilde{\mathcal{M}}_n$
- $\widetilde{\mathcal{M}}_n/\mathbb{Z}_n$: conical singularity at the \mathbb{Z}_n ; $n \to 1$, \Rightarrow minimize the area of the \mathbb{Z}_n fixed point \Rightarrow the extremal surface, the RT surface
- Lesson: use bulk path integral to:
 - prepare the states
 - compute the entanglement entropy

This requires holography, but not necessarily AdS/CFT

Recall: Replica Trick and the Ryu-Takayanagi Proposal

Lewkowycz:2013nga: Lewkowycz:2013nga

Figure: The bulk replica [Lewkowycz:2013nqa]

- $\mathcal{Z} \sim \sum_i e^{-S_i[g_{\mu\nu}]}$, saddle pt. approx. ⇒ minimize $S[g_{\mu\nu}]$ on the n-replica $\widetilde{\mathcal{M}}_n$
- $\widetilde{\mathcal{M}}_n/\mathbb{Z}_n$: conical singularity at the \mathbb{Z}_n ; $n \to 1$, \Rightarrow minimize the area of the \mathbb{Z}_n fixed point \Rightarrow the extremal surface, the RT surface
- Lesson: use bulk path integral to:
 - prepare the states
 - compute the entanglement entropy

This requires holography, but not necessarily AdS/CFT!

Compare: bulk emergence from tensor networks

Compare: bulk emergence from tensor networks

Prepare states via Tensor Networks

Vidal:2007hda, Swingle:2009bg. Reviewed by Rangamani:2016dms.

Figure: MERA

Multi-scale Entanglement Renormalization Ansatz

Image from tensornetwork.org

- Gravitational path integral: a spacetime perspective
 Tensor network: on a constant time slice
- States constructed with tensor networks: common in condensed matter (e.g. DMRG)
- To find the ground state of a system
 - Write down a tensor network as an ansatz for the ground state;
 - Vary the components of each tensor to achieve minimal energy — optimization

Prepare states via Tensor Networks

Vidal:2007hda, Swingle:2009bg. Reviewed by Rangamani:2016dms.

Figure: MERA

Multi-scale Entanglement Renormalization Ansatz

 ${\bf Image\ from\ tensornetwork.org}$

- Gravitational path integral: a spacetime perspective
 Tensor network: on a constant time slice
- States constructed with tensor networks: common in condensed matter (e.g. DMRG)
- To find the ground state of a system
 - Write down a tensor network as an ansatz for the ground state;
 - Vary the components of each tensor to achieve minimal energy — optimization!

AdS Bulk as a Tensor Network

Reviewed by Harlow:2018fse: Harlow:2018fse

img/pentagonpush.pdf

- Gravitational path integral: a spacetime perspective
 Tensor network: on a constant time slice
- Dual geometry in the bulk is understood as the "continuous limit" of a tensor network
 - Node: tensor acting on the Hilbert space
 - Leg: index to be contracted
 - 1 × free leg takes in bulk local operator insertions
 - \blacksquare $5\times {\rm contracted}$ leg propagates the bulk insertions to the boundary

AdS Bulk as a Tensor Network

Reviewed by Harlow:2018fse: Harlow:2018fse

img/pentagonpush.pdf

- Gravitational path integral: a spacetime perspective
 Tensor network: on a constant time slice
- Dual geometry in the bulk is understood as the "continuous limit" of a tensor network
 - Node: tensor acting on the Hilbert space
 - Leg: index to be contracted
 - 1 × free leg takes in bulk local operator insertions
 - \blacksquare $5\times {\rm contracted\ leg}$ propagates the bulk insertions to the boundary

RT from the tensor network

Harlow: 2018 fse: Harlow: 2018 fse

img/cutnetwork.pdf

- "Entanglement" between R and \bar{R} : \propto min # of links connecting the two regions Naturally, entropy = bulk area!
- "Complexity": # of nodes Proposal: complexity = bulk volume! See e.g. Susskind:2014rva
- Note: how to actually take the continuous limit? "Real time" path integral on a constant time slic
 - cMERA: Nozaki:2012zj
 - "Path-Integral Optimization":Boruch:2021hqs

RT from the tensor network

Harlow: 2018 fse: Harlow: 2018 fse

img/cutnetwork.pdf

- "Entanglement" between R and \bar{R} : \propto min # of links connecting the two regions Naturally, entropy = bulk area!
- "Complexity": # of nodes Proposal: complexity = bulk volume! See e.g. Susskind:2014rva
- Note: how to actually take the continuous limit? "Real time" path integral on a constant time slic
 - cMERA: Nozaki:2012zj
 - "Path-Integral Optimization":Boruch:2021hqs

RT from the tensor network

Harlow: 2018 fse: Harlow: 2018 fse

img/cutnetwork.pdf

- "Entanglement" between R and \bar{R} : \propto min # of links connecting the two regions Naturally, entropy = bulk area!
- "Complexity": # of nodes Proposal: complexity = bulk volume! See e.g. Susskind:2014rva
- Note: how to actually take the continuous limit? "Real time" path integral on a constant time slice
 - cMERA: Nozaki:2012zj
 - "Path-Integral Optimization": Boruch:2021hqs

The Lesson

- \blacksquare The Ryu–Takayanagi proposal: $S \sim \frac{A}{4G_N}$
 - ... seems to be universal in holographic systems,
 - ... where boundary states can be constructed from some sort of bulk operations:
 - Gravitational path integral
 - Tensor network
- Applications: beyond standard AdS₃/CFT₂
 - Cutoff holography: Lewkowycz:2019xse
 - Flat holography: **Apolo:2020bld**, **Apolo:2020qjm**

Application: cutoff AdS_3 / $T\bar{T}$ deformed theory

Application: cutoff $\mathrm{AdS}_3\,/\,T\bar{T}$ deformed theory

Cutoff $\mathrm{AdS}_3 \, / \, T\bar{T}$ deformed theory

McGough:2016lol

img/cutnetwork.pdf

- AdS₃ with finite cutoff: holographic renormalization of the boundary theory
 - This is clear in the tensor network picture "coarse-graining"
- Deform the boundary CFT_2 with some operator: $CFT_2^{(UV)} \leadsto \text{deformed theory}^{(IR)}$
- \blacksquare Surprisingly, we were able to find the deformed theory! $\delta S \propto \mu \, (T\bar{T})_{\mu}, \ T\bar{T} = \tfrac{1}{8} \big(T^{\alpha\beta} T_{\alpha\beta} (T^{\alpha}_{\alpha})^2 \big)$
 - See e.g. Smirnov:2016lqw
 - McGough:2016lol:

Cutoff $AdS_3 / T\bar{T}$ deformed theory

McGough:2016lol

img/cutnetwork.pdf

- AdS₃ with finite cutoff: holographic renormalization of the boundary theory
 - This is clear in the tensor network picture "coarse-graining"
- Deform the boundary CFT_2 with some operator: $CFT_2^{(UV)} \leadsto \text{deformed theory}^{(IR)}$
- Surprisingly, we were able to find the deformed theory! $\delta S \propto \mu \, (T\bar{T})_{\mu}, \ T\bar{T} = \tfrac{1}{8} \big(T^{\alpha\beta} T_{\alpha\beta} (T^{\alpha}_{\alpha})^2 \big)$
 - See e.g. Smirnov:2016lqw
 - McGough:2016lol:

Cutoff $AdS_3 / T\bar{T}$ deformed theory

McGough:2016lol

img/cutnetwork.pdf

- AdS₃ with finite cutoff: holographic renormalization of the boundary theory
 - This is clear in the tensor network picture "coarse-graining"
- Deform the boundary CFT_2 with some operator: $CFT_2^{(UV)} \leadsto \text{deformed theory}^{(IR)}$
- \blacksquare Surprisingly, we were able to find the deformed theory! $\delta S \propto \mu \, (T\bar{T})_{\mu}, \ T\bar{T} = \tfrac{1}{8} \big(T^{\alpha\beta} T_{\alpha\beta} (T^{\alpha}_{\alpha})^2 \big)$
 - See e.g. Smirnov:2016lqw
 - McGough:2016lol: McGough:2016lol

Holographic Entanglement in Cutoff AdS₃

Lewkowycz:2019xse

img/cutnetwork.pdf

- If we assume that the tensor network intuition is valid, Then the RT proposal should still hold!
 - This is shown by **Lewkowycz:2019xse**
- Generalization of A in $S \sim \frac{A}{4G_N}$: A is actually the gravitational charge of the *replica symmetry*,
 - \blacksquare ... analytically continued from \mathbb{Z}_n to U(1),
 - ... corresponds to the Killing horizon generator / modular flow generator ξ .
 - This would in turn give us a hint of the modular flow in the $T\bar{T}$ deformed theory! (ongoing work)

Holographic Entanglement in Cutoff AdS₃

Lewkowycz:2019xse

img/cutnetwork.pdf

- If we assume that the tensor network intuition is valid, Then the RT proposal should still hold!
 - This is shown by **Lewkowycz:2019xse**
- Generalization of A in $S \sim \frac{A}{4G_N}$: A is actually the gravitational charge of the *replica symmetry*,
 - \blacksquare ... analytically continued from \mathbb{Z}_n to U(1),
 - ... corresponds to the Killing horizon generator / modular flow generator ξ .
 - This would in turn give us a hint of the modular flow in the $T\bar{T}$ deformed theory! (ongoing work)

Further Reading & Outlook

- \blacksquare Single-trace $T\bar{T}$ duality and the flow towards to UV
 - Apolo:2019zai
- Quantum error correction:
 - Jahn:2021uqr
- Tensor network for flat spacetime?
 - May:2016dgv

References I