5.2 圆

圆的方程主要基于圆的几何定义:平面上与定点 $ec{r}_0=(x_0,y_0)$ 的距离为定值 R>0 的所有点组成一个圆。

$$(x-x_0)^2+(y-y_0)^2=R^2$$
 $(x_0,y_0,R$ 为定值)

由定义得 $\mathrm{Dist}(x,y,x_0,y_0)=\sqrt{(x-x_0)^2+(y-y_0)^2}=R$,稍做整理即得该方程。

该方程常用于判断点与圆的位置关系。对平面上一点 (x,y),若 $(x-x_0)^2+(y-y_0)^2< R^2$,则该点在圆内。其他情况同理。

$$ec{r}=ec{r}_0+\langle R,t
angle\,(ec{r}_0,R$$
为定值)

坐标形式:
$$\begin{cases} x = x_0 + R\cos(t) \\ y = y_0 + R\sin(t) \end{cases}$$

该参数方程经常用于生成圆上的点。参数 t 为对应点对圆心的方位角。

$$r=2R\cos(heta-lpha)$$
 ($R,lpha$ 为定值)

这是一个很特别的圆方程。该方程描述了一个半径为 R,圆心为 $\langle R, \alpha \rangle$ 的圆,这样的圆必定经过原点。

值得注意的是,对于该圆上等距分布的一组点,极角 θ 也是等距分布的。

