	1	2	3	4	5	6	Σ	
		1	1	1				
								
JMBAG		IME I PREZIME						

Teorija brojeva

1. kolokvij, 3.5.2023.

NAPOMENE: Vrijeme rješavanja je 120 minuta. Ima ukupno šest zadataka. Zadaci se rješavaju na ovim papirima. Odmah se **čitljivo** potpišite. Dozvoljeno je korištenje kalkulatora i dva papira A4 s formulama.

1. Odredite g = nzd(a, b) i nađite cijele brojeve x, y takve da je ax + by = g ako je a = 1058, b = 782.

2. Riješite sustav kongruencija

$$x \equiv 4 \pmod{15},$$

$$x \equiv 19 \pmod{24}$$
,

$$x \equiv 1 \pmod{42}$$
.

3. Nađite sva rješenja jednadžbe $\varphi(n)=408.$

4. Riješite kongruenciju

$$x^3 + 4x - 6 \equiv 0 \pmod{11^3}.$$

- 5. (a) Nađite najmanja dva primitivna korijena modulo 59.
 - (b) Riješite (pomoću indeksa) kongruenciju $7^x \equiv 41 \pmod{59}.$

- 6. (a) Izračunajte sljedeće Legendreove simbole: $\left(\frac{535}{617}\right)$, $\left(\frac{266}{719}\right)$. (b) Za koje proste brojeve p jednadžba $x^2 + 8x + 27 \equiv 0 \pmod{p}$ ima rješenje?

Rješenja:

- 1. $g = 46 = 1058 \cdot 3 + 782 \cdot (-4)$
- 2. $x \equiv 379 \pmod{840}$
- $3.\ n=409,515,818,824,1030,1236$
- 4. $x \equiv 87,559,685 \pmod{1331}$
- 5. (a) 2, 6 (b) $x \equiv 4 \pmod{29}$ 6. (a) $\left(\frac{535}{617}\right) = 1$, $\left(\frac{266}{719}\right) = -1$ (b) $p \equiv 1, 3, 4, 5, 9 \pmod{11}$, p = 2, 11