OBJECTIVE

Estimation of power required for liquid agitation (P_L) in a 14L bioreactor.

INTRODUCTION

The total electrical power delivered to agitator shaft to agitator motor is used up for (a) Losses in motor, (b) losses in reduction gear-box, (c) losses due to friction in mechanical seal, and (d) agitation of liquid in the bioreactor (P_L), i.e.,

$$P_L = P_1 - P_0$$
 ----- (1)
 $P_0 = VI \cos \phi$ (measured electrical power without liquid)

 $P_1 = VI \cos \phi$ (measured electrical power with liquid)

Where

P_L Power consumed in liquid agitation

V Voltage (Volts)
I Current (Amperes)
Cosø power factor (0.9)

Rsuhton et.al, develop the concept of power number (N_P) . It is defined as the ratio of external to inertial force per unit liquid volume and is given by:

$$N_P = \text{(external force)} / \text{(inertial force)}$$

$$P_L$$

$$N_P = \frac{P_L}{n^3 D_i^{5.5} \Omega_c}$$
------(2)

Where:

P_L Power consumed for liquid agitation, (kg m²) / sec³

n Impeller rotational speed, per sec

Di Impeller diameter, m

ρ Liquid density, kg / m³ (= 10³ for water)

The modified Reynolds Number (N_{Re}) is given by:

$$N_{Re}\!=\!$$
 (n $Di^2\,\rho$) / μ ------(3)

Where: μ liquid viscosity, (kg / m sec): (= 10^{-3} for water)

If agitation (n) is set such that the flow is in turbulent regime, N_P can be taken as 3 x 6, i.e., 18 (for three sets of flat blade turbines) provided H_L / Di and Di / D_t = 3. Then equation (2) can be used to estimate (P_L). This will be power required for agitation of liquid. Now if electrical power (P_0 & P_1), consumed by the motor, is measured by an ammeter and a voltmeter, we can estimate power consumed for liquid agitation (P_L) by equation(1) and compare it with calculated value using equation (2). The value of P_0 refers to power used up in losses without liquid agitation.

MATERIALS

- (a) Fermentor 14L
- (b) Voltmeter and ammeter

METHOD

1. For the 14L reactor, Di=0.08m, D_t =0.26m and the ratio D_t /Di = 3. Now fill the reactor with water up to 11L mark. This makes H_L /Di=3.68 instead of literature figure of 3.

- 2. Set the agitation at 300 rpm & compute N_{Re} for minimum agitator rpm so as to ensure turbulent flow of water in the rpm range selected.
- 3. Now adjust agitation at 300, 400, 500 and 600. Measure electrical power consumed by the motor using the ammeter/voltmeter at each rpm.
- 4. Drain out the water to the mechanical seal height (so the seal does not run dry)
- 5. Repeat step-3 for the above rpm without water.

CALCULATION

$$\begin{split} P_L &= N_P \ n^3 \ Di^5 \ \rho \quad kg.m^2 \ / \ sec^3 \ or \ watts \\ P_0 \ or \ P_1 &= V \ I \ Cos \ \varphi \ Watts \\ Cos \ \varphi &= Power \ factor \ (=0.9) \\ P_L &= P \ - \ P_o \end{split}$$

OBSERVATION

Table-1 Power used in losses without liquid agitation

Rpm	Current (A)			Voltage (V)			
	Lower value	Higher value	Average	Lower value	Higher value	Average	Po
300							
400							
500							
600							

Table-2 Power used in losses & liquid agitation

Rpm	Current (A)			Voltage (V)			
	Lower value	Higher value	Average	Lower value	Higher value	Average	P ₁
300							
400							
500							
600							

Table-3 Power used in liquid agitation

Rpm	$P_{L \text{ observed}} = P_1 - P_0 \text{ (from eqn - 1)}$	PL calculated (from eqn – 2)
300		
400		
500		
600		

RESULTS

Make a plot of P_L vs n. Compare the P_L observed (from eqn-1) with the calculated value from eqn-2.

DISCUSSION

Write a discussion on your observations.	
--	--