- Maths - Chapitre 16 -

Ensembles, applications et dénombrement

I. Programme officiel

CAPACITÉS ET COMMENTAIRES

Dénombrement

CONTENU

CONTENT	
a) Cardinal d'un ensemble fini	
Cardinal d'un ensemble fini.	Notation $\operatorname{Card} A$, $ A $ ou $\#A$.
Cardinal d'une partie d'un ensemble fini, cas	
d'égalité.	
Une application entre deux ensembles finis de	
même cardinal est bijective, si et seulement	
si elle est injective, si et seulement si elle est	
surjective.	
Opérations sur les cardinaux : union disjointe	La formule du crible est hors-programme.
ou quelconque de deux parties, complémen-	
taire, produit cartésien.	
Cardinal de l'ensemble des applications entre	
deux ensembles finis, cardinal de l'ensemble	
des parties.	
b) Listes et combinaisons	
Nombre de p-listes (ou p-uplets) d'éléments	
distincts d'un ensemble de cardinal n . Nombre	
d'applications injectives d'un ensemble de car-	
dinal p dans un ensemble de cardinal n .	
Nombre de permutations d'un ensemble de	
cardinal n .	
Nombre de parties à p éléments (ou p -	Démonstration combinatoire des formules de
combinaisons) d'un ensemble de cardinal n	Pascal et du binôme de Newton.

Raisonnement et vocabulaire ensembliste

CONTENU

CAPACITÉS ET COMMENTAIRES

b) Ensembles

Ensemble des parties d'un ensemble.

c) Relations d'équivalence

Fonction indicatrice d'une partie A d'un en-

semble E.

Image directe. Notation f(A).

Image réciproque. Notation $f^{-1}(B)$.

Relation d'équivalence, classes d'équivalence. La notion d'ensemble quotient est hors pro-

gramme.

Notation $\mathbb{1}_A$.

II. Ensembles et applications

II.1. Rappels

Cardinal d'un ensemble fini

Nous avons déjà défini (voir paragraphe II.7. du chapitre 2) les notions suivantes.

Le nombre d'élément(s) d'un ensemble E fini est appelé cardinal de E.

C'est l'unique entier $n \in \mathbb{N}$ pour lequel il existe des bijections $e: E \to [1; n]$.

Chacune de ces bijections représente un ordre possible pour le dénombrement des éléments de E : c'est une numérotation de ces éléments.

Le cardinal de E est noté Card E ou |E| ou encore #E.

On a Card $\emptyset = 0$.

Ex. 16.1 Soit E_n l'ensemble des polynômes de degré inférieur ou égal à $n \in \mathbb{N}$ et dont les coefficients valent 0 ou 1.

Calculer Card E_n .

Cor. 16.1

Coefficients binomiaux

Les coefficients binomiaux $\binom{n}{k}$ pour $n \in \mathbb{N}, k \in [0; n]$ ont été introduits en terminale comme le nombre de manières de choisir k objets parmi n objets.

Nous les avons définis (voir paragraphe IV. du chapitre 2) d'une façon complètement différente en début d'année, notamment afin de donner et de démontrer la formule du binôme :

$$\forall n \in \mathbb{N}, \forall p \in \llbracket 0, n \rrbracket, \begin{pmatrix} n \\ p \end{pmatrix} = \frac{n!}{p!(n-p)!}$$

Nous avons étendu leur définition dans le chapitre 9 sur les développements limités - au moment où nous avons obtenu le développement limité à l'ordre n en 0 de $x\mapsto (1+x)^{\alpha}$ - en posant

(coefficient binomial généralisé) pour $\alpha \in \mathbb{R}$ et $p \in \mathbb{N}$,

$$\begin{pmatrix} \alpha \\ p \end{pmatrix} = \frac{\prod_{k=0}^{p-1} (\alpha - k)}{p!} = \frac{\alpha(\alpha - 1)...(\alpha - p + 1)}{1 \times 2 \times ... \times p}$$

L'un des objectifs de ce chapitre est de montrer que les deux points de vue - celui de terminale où les coefficients binomiaux sont vus comme un outil de dénombrement, et celui de PCSI où ils sont vus comme un outil de calcul littéral et d'analyse - correspondent bien aux mêmes nombres.

II.2. Ensemble des parties d'un ensemble

Notation

Étant donné un ensemble E, on note $\mathcal{P}(E)$ l'ensemble des parties de E.

Autrement dit $\mathcal{P}(E) = \{K, K \subset E\}$. Notamment $\mathcal{P}(\emptyset) = \{\emptyset\}$ possède un élément et $\mathcal{P}(\{a\}) = \{\emptyset; \{a\}\}$ possède deux éléments.

Remarque

Pour écrire que A est une partie d'un ensemble E on peut écrire

 $A \subset E$: A est inclus dans E

 $A \in \mathcal{P}(E)$: A appartient aux parties de E

Ex. 16.2 Soit $E = \{a; b; c\}$. Que vaut $\mathcal{P}(E)$?

Cor. 16.2

II.3. Image directe, image réciproque d'une partie

Soient E et F deux ensembles et $u: E \to F$ une application.

Définition 16.1 (Image directe)

Pour une partie A de E, on appelle **image directe de** A **par** u le sous-ensemble de F défini par $\{u(x), x \in A\} = \{y \in F, \exists x \in A, u(x) = y\}$

Autrement dit, c'est l'ensemble des images par u des éléments de A.

Notation

I On note u(A) l'image directe de A par u.

Remarque

Avec les notations précédentes :

- $u(\emptyset) = \emptyset$
- Si A = E, on obtient $u(E) = \operatorname{Im} u$ l'ensemble image de u.

4

Important!

Ne pas confondre l'ensemble image $u(E) = \operatorname{Im} u$ et l'ensemble d'arrivée F d'une application. En effet $u(E) = F \Leftrightarrow \dots$

Ex. 16.3 Soient $E = \{a; b; c\}$, $F = \{r; s; t\}$ et $f : E \to F$ définie par f(a) = r, f(b) = t et f(c) = t. Que valent $f(\{b, c\})$ et f(E)?

Cor. 16.3

Définition 16.2 (Image réciproque)

Si B est une partie de F, on appelle **image réciproque de** B **par** u le sous-ensemble de E défini par $\{x \in E, u(x) \in B\}$

Autrement dit, c'est l'ensemble de tous les antécédents des éléments de B.

Notation

On note $u^{-1}(B)$ l'image réciproque de B par u.

Important!

Remarque

Avec les notations précédentes :

- $\bullet \ u^{-1}(\emptyset) = \emptyset$
- $\bullet \ u^{-1}(F) = E$

Ex. 16.4 Soient $E = \{a; b; c\}$, $F = \{r; s; t\}$ et $f : E \to F$ définie par f(a) = r, f(b) = t et f(c) = t. Que valent $f^{-1}(\{r\})$, $f^{-1}(\{s\})$ et $f^{-1}(\{t\})$.

Cor. 16.4

II.4. Fonction indicatrice

Définition 16.3 (Fonction indicatrice d'une partie)

Soit E un ensemble et $A \in \mathcal{P}(E)$. On appelle fonction indicatrice de la partie A de E l'application

$$\mathbb{1}_A: \left\{ \begin{array}{ll} E & \to & \{0;1\} \\ x \in A & \mapsto & \mathbb{1}_A(x) = 1 \\ x \notin A & \mapsto & \mathbb{1}_A(x) = 0 \end{array} \right.$$

Propriété 16.4

Étant donné un ensemble E et deux parties A et B de E, on a

- 1) $\mathbb{1}_E$ est l'application constante égale à 1.
- 2) $\mathbb{1}_{\emptyset}$ est l'application constante égale à 0.
- 3) $\forall x \in E, 0 \leq \mathbb{1}_A(x) \leq 1$.
- 4) $A \subset B \Leftrightarrow \mathbb{1}_A \leqslant \mathbb{1}_B$

6) $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$ 7) $\mathbb{1}_{A \cup B} + \mathbb{1}_{A \cap B} = \mathbb{1}_A + \mathbb{1}_B$

5) $A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$

- 8) $\mathbb{1}_{\bar{A}} = 1 \mathbb{1}_A$
- 9) L'application $\Phi: \left\{ \begin{array}{ll} \mathcal{P}(E) & \to & \mathcal{F}(E, \{0; 1\}) \\ A & \mapsto & \mathbb{1}_A \end{array} \right.$ est bijective.

Démonstration

II.5. Partition, relation d'équivalence

🔁 Définition 16.5 (Partition d'un ensemble)

Soit E un ensemble et $(A_i)_{i \in [1,p]}$ une famille de parties de E. On dit que cette famille forme une partition de E si

$$\bigcup_{i=1}^{p} A_i = E \text{ et } \forall i \neq j \in [[1; p]], A_i \cap A_j = \emptyset$$

Définition 16.6 (Relation d'équivalence sur un ensemble)

Étant donné un ensemble E, on dit d'une relation \asymp : $\left\{ \begin{array}{ll} E \times E & \to & \{ \, \text{VRAI} \, ; \, \text{FAUX} \, \} \\ (x;y) & \mapsto & x \asymp y \end{array} \right.$ c'est une relation d'équivalence si elle est

- réflexive : $\forall x \in E, x \asymp x \text{ (est vrai)};$ symétrique : $\forall (x;y) \in E^2, x \asymp y \Rightarrow y \asymp x;$
- *transitive*: $\forall (x; y; z) \in E^3, (x \times y \text{ et } y \times z) \Rightarrow x \times z.$

Ex. 16.5 Nous connaissons déjà de nombreuses relations d'équivalences. L'égalité (de réels, de complexes, d'ensembles, d'applications, etc...) en est toujours une. En citer d'autres.

Cor. 16.5

Définition 16.7 (Classes d'équivalence)

Étant donnés un ensemble E, une relation d'équivalence \approx sur E et un élément x de E, on appelle classe d'équivalence de x l'ensemble $\{y \in E, y \times x\}$.

Notation

On note souvent $\dot{x} = \{y \in E, y \asymp x\}$ la classe d'équivalence de x.

Proposition 16.8

L'ensemble des classes d'équivalence d'une relation d'équivalence sur E forme une partition de

Démonstration

III. Cardinal d'une partie d'un ensemble

III.1. Cardinal et fonction indicatrice d'une partie

Lemme 16.9

Soit E un ensemble fini et A une partie de E.

$$\operatorname{Card} A = \sum_{x \in E} \mathbb{1}_A(x)$$

Conformément au programme officiel, cette propriété, très intuitive, est admise sans démonstration.

III.2. Cardinal d'une partie

Proposition 16.10

Si E est un ensemble fini et $A \subset E$ alors

$$\operatorname{Card} A \leqslant \operatorname{Card} E$$
 et $\operatorname{Card} A = \operatorname{Card} E \Leftrightarrow A = E$

Démonstration

III.3. Opérations sur les cardinaux

Proposition 16.11

Soient E un ensemble et A et B deux parties de E.

$$Card(A \cup B) = Card A + Card B - Card(A \cap B)$$

En particulier,

 $Card(A \cup B) \leq Card A + Card B$

 $Card(A \cup B) = Card A + Card B \Leftrightarrow A \cap B = \emptyset$

et $\operatorname{Card} \overline{A} = \operatorname{Card} E - \operatorname{Card} A$.

Démonstration

Proposition 16.12

Si $(A_i)_{i\in \llbracket 1;p\rrbracket}$ est une partition d'un ensemble E fini, alors

$$\operatorname{Card} E = \sum_{i=1}^{p} \operatorname{Card} A_i$$

Démonstration

Proposition 16.13

Si E et F sont deux ensembles finis, alors $E \times F$ est fini et $\operatorname{Card}(E \times F) = \operatorname{Card} E \times \operatorname{Card} F$.

Démonstration

Corollaire 16.14

Pour $p \in \mathbb{N}^*$, Card $(E^p) = (\operatorname{Card} E)^p$.

Principe additif, principe multiplicatif III.4.

Méthode

Le *principe additif* de dénombrement est l'utilisation des formules 16.11 et 16.12 aux problèmes de dénombrement. Il s'utilise lorsque l'on cherche à dénombrer des ensembles vérifiant une ou plusieurs propriétés données : choisir les éléments vérifiant une première propriété ou une seconde propriété ou...

Graphiquement, on représente ces problèmes par des diagrammes de Venn (cf. chapitre 1 section III.7.).

Le *principe multiplicatif* de dénombrement est l'utilisation de la propriété 16.13 et de son corollaire aux problèmes de dénombrement. Il s'utilise lorsque l'on cherche à dénombrer des ensembles résultant *de choix successifs* : on choisit un premier élément PUIS un deuxième élément PUIS...

Graphiquement, on représente ces problèmes par des arbres de choix.

Ex. 16.6 Combien y a-t-il de mots possibles formés avec 2 lettres de l'alphabet? Combien y a-t-il de mots de 2 lettres commençant par la lettre a ou se terminant par la lettre z. Combien y a-t-il de mots de 2 lettres distinctes?

Cor. 16.6