CSE02

USN 1 M S

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A' Grade

MAKEUP EXAMINATIONS - FEBRUARY 2018

Course & Branch : B.E.: Computer Science & Engineering Semester : V
Subject : Artificial Intelligence Max. Marks : 100
Subject Code : CSE02 Duration : 3 Hrs

Instructions to the Candidates:

- Answer one full question from each unit.
- Draw diagrams wherever necessary

UNIT- I

- 1. a) To what extent in terms of (Limited, borderline, Not AI, complete AI) CO1 (08) are the following computer systems instances of artificial intelligence:

 Justify with reasons.
 - Supermarket bar code scanners.
 - Web search engines.

example.

- Voice-activated telephone menus.
- Internet routing algorithms that respond dynamically to the state of the network.
- b) Compare any four uninformed search strategies in terms of the four CO1 (12) evaluation criteria. Present the answer in a tabular form and explain its notations.
- 2. a) For each of the following assertions, say whether it is true or false and CO1 (08) support your answer with examples or counter examples where appropriate.
 - i. An agent that senses only partial information about the state cannot be perfectly rational.
 - ii. There exist task environments in which no pure reflex agent can behave rationally.
 - iii. There exists a task environment in which every agent is rational.
 - iv. The input to an agent program is the same as the input to the agent function.
 - v. Every agent function is implementable by some program/machine combination.
 - vi. Suppose an agent selects its action uniformly at random from the set of possible actions. There exists a deterministic task environment in which this agent is rational.
 - vii. It is possible for a given agent to be perfectly rational in two distinct task environments.
 - ii. Every agent is rational in an unobservable environment.
 - b) List and explain with suitable examples the properties of task CO1 (12) environments.

UNIT-II

- 3. a) With neat diagram explain typical Wumpus world.b) Discuss all the 7steps used in knowledge engineering process with CO2 (08)
 - c) Write an algorithm for forward chaining for inference in first order logic. CO2 (06)

CSE02

4.	a) b)	Write five simple knowledge base sentences. Define Conjunctive normal form. Explain CNF PROCEDURE FOR converting sentence into CNF with suitable example.	CO2 CO2	(06) (07)
	c)	Discuss various inference rules used for quantifiers. Explain unification and lifting.	CO2	(07)
		UNIT- III		
5.	a)	Define Ensemble learning. Write the ADABOOST variant algorithm and explain its boosting on the restaurant data.	CO3	(12)
	b)	Describe K nearest neighbor classification models with suitable examples.	CO3	(80)
6.	a)	Explain with example how linear classification with logistic regression is superior to classification with hard thresholds.	CO3	(10)
	b)	Draw and explain the components of a perceptron network and a neural network with different number of input and output units. Compare the performance of perceptrons and decision trees.	CO3	(10)
7.		Write a note on the following: i. Learning with complete data	CO4	(20)
		ii. Speech recognition iii. Information retrival.		
8.		Write a note on the following: i Natural language processing	CO4	(20)
		ii. Syntactic Analysis ii. Machine translation.		
UNIT- V				
9.	a)		CO5	(12)
9.	b)	List the image processing operations and explain how we detect edges. Explain image formation with a pinhole camera with a neat diagram.	CO5	(08)
10.	a)	Explain how robots are used in Industry, transportation, hazardous environments, healthcare and human augmentation.	CO5	(05)
	b)	Explain how robot plans to move when the environment is with uncertainties.	CO5	(05)
	c)	Categorize Robots based on their types, Manipulation, environment and the device its made of. Give examples for each type.	CO5	(10)
