

上节课回顾


```
SQL语句: Struct Query Language,结构化查询语言
SQL语句的分类:DDL、DML、DQL、DCL
CREATE TABLE `student` (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 `sex` int(11) DEFAULT NULL,
 `age` int(11) DEFAULT NULL,
 `name` varchar(20) DEFAULT NULL,
 `description` varchar(100) DEFAULT NULL,
 `birthday` date DEFAULT NULL,
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
```

本节课程内容

本节课程目标

- 1. 理解什么是存储引擎,为什么需要存储引擎。
- 2. 掌握常见存储引擎Innodb和MyISAM的优缺点及适用场景。
- 2. 掌握DML语句的增加INSERT、删除DELETE和TRUNCATE、更新UPDATE。
- 3. 理解逻辑删除和物理删除及不同业务场景如何选择删除的方式。

PART ONE

01 数据库存储引擎

1-1. 数据库存储引擎?

MySQL中的数据用各种不同的技术存储在文件(或者内存)中。每一种技术都使用不同的存储机制、索引技巧、锁定水平并且最终提供广泛的不同的功能和能力。通过选择不同的技术,能够获得额外的速度或者功能,从而改善应用的整体功能。

存储引擎是为了解决如何存储数据、如何为存储的数据建立索引和如何更新、查询数据等问题的方法。

1-1. 如何查询存储引擎?

MySQL支持很多存储引擎,包括MyISAM、InnoDB、BDB、MEMORY、MERGE、EXAMPLE、NDB Cluster、ARCHIVE等,其中InnoDB和BDB支持事务安全。

nysq1> SHOW ENGINES;				·	
Engine	Support	Comment	Transactions	XA	Savepoints
InnoDB MRG_MYISAM MEMORY BLACKHOLE MyISAM CSV ARCHIVE PERFORMANCE_SCHEMA FEDERATED	DEFAULT YES	Supports transactions, row-level locking, and foreign keys Collection of identical MyISAM tables Hash based, stored in memory, useful for temporary tables /dev/null storage engine (anything you write to it disappears) MyISAM storage engine CSV storage engine Archive storage engine Performance Schema Federated MySQL storage engine	YES NO NO NO NO NO NO NO NO	YES NO NO NO NO NO NO NO NULL	YES NO NO NO NO NO NO NO NULL

⁹ rows in set (0.00 sec)

1-2. 如何查询存储引擎?

InnoDB是MySQL默认的存储引擎。查询默认的存储引擎方式如下:

```
mysql> use db1;
Database changed
mysq1> SHOW CREATE TABLE students;
Table | Create Table
 students | CREATE TABLE students (
  id int(11) NOT NULL AUTO_INCREMENT,
  name varchar(50) NOT NULL,
  birth date DEFAULT NULL,
   gender enum('男','女') DEFAULT NULL,
 ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)
```

1-3. 存储引擎对比表

事务:是数据库操作的最小工作单元,是作为单个逻辑工作单元执行的一系列操作;这些操作作为一个整体一起向系统提交,要么都执行、要么都不执行。

特点	InnoDB	MyISAM	Memory	Archive
存储限制	64TB	256TB	有	无
事务安全	支持	-	-	-
支持索引	支持	支持	支持	
锁颗粒	行锁	表锁	表锁	行锁
数据压缩	-	支持	-	支持
支持外键	支持	-	-	-

PART TWO

02 数据库DML操作

○ 大鹏教育 课程内容

MySQL中大小写问题

- 1、数据库名与表名是严格区分大小写的;
- 2、表的别名是严格区分大小写的;
- 3、列名忽略大小写的;
- 4、变量名也是严格区分大小写的;

内容概要

2-3. DQL小拓展: 基本的查询语句

格式: select * from 表名;

说明:

- 1. from关键字后面写表名,表示数据来源于是这张表
- 2. select后面写表中的列名,如果是*表示在结果中显示表中所有列
- 3. 如果要查询多个列,列之间使用逗号分隔
- 4. 在select后面的列名部分,可以使用as为列起别名,这个别名出现在结果集中

PART THREE

03 物理删除和逻辑删除

3-1. 物理删除

物理删除就是将数据从数据库中彻底删除。DELETE操作属于物理删除,物理删除的数据无法恢复,对于一些重要的数据,以后建议使用逻辑删除。

3-2. 逻辑删除

逻辑删除本质是修改(UPDATE)操作,对于重要数据表,增加一个isDelete字段,一般默认为0(没有被删除的的意思),该字段逻辑上表示该条数据是否被删除,真实情况是在数据库中本条数据还存在。

```
create table student(
    id int not null auto_increment primary key,
    age int,
    name char(20),
    isDelete bit default 0
) engine=innodb default charset=utf8;
```

○ 大鹏教育 | 课程内容

3-3. 课堂练习

INT[(M)] [UNSIGNED] [ZEROFILL] M 默认为11 10 就是上述语句里的 M, 指最大显示宽度, 最大值为 255

int 类型在数据库里面存储占 4 个字节的长度 有符号的整型范围是 -2147483648~2147483647 无符号的整型范围是 0~4294967295

3-3. 课堂练习

DELETE PK TRUNCATE

- 1.truncate不能加where条件,而delete可以加where条件
- 2.truncate的效率高一丢丢
- 3.truncate 删除带自增长的列的表后,如果再插入数据,数据从1开始 delete 删除带自增长列的表后,如果再插入数据,数据从上一次的断点处开始
- 4. truncate删除没有返回值, delete删除有返回值(返回多少列收到影响) 5.truncate删除不能回滚, delete删除可以回滚

本堂课程已结束

如有疑问,请咨询学管老师

www.dapengjiaoyu.com