1 Complete Parse Expressions: A Notation for Parse Trees

A parse tree can be unambiguously denoted using a symbolic form that I refer to as a *complete parse-expression*. Let G denote an arbitrary context-free grammar G. Let A denote a nonterminal symbol in G and let α denote a string of symbols (terminals and/or nonterminals) such that:

$$A \Rightarrow^+ \alpha$$

Let α' denote a string that is derived from α by subscripting all nonterminals appearing in α . Under these assumptions we say that the term $A[\![\alpha']\!]$ is a complete parse expression with respect to the grammar G.

1.1 An Example

Consider the following grammar containing the terminal symbols $\{c,d\}$ and the nonterminal symbols $\{A.list,B,D\}$:

Among others, this grammar contains the following complete parse expressions:

$$\begin{array}{l} A_list[\![c]\!]\\ A_list[\![A_list_1\ B_1]\!]\\ A_list[\![A_list_1\ B_1\ B_2]\!]\\ A_list[\![cB_1\ B_2]\!]\\ A_list[\![cB_1\ d]\!]\\ B[\![D_1]\!]\\ B[\![B_1\ D_1]\!]\\ B[\![B_1\ D_1\ D_2]\!]\\ B[\![B_1\ D_1\ D_1]\!]\\ B[\![B_1\ D_1\ D_1]\!]\\ B[\![d]\!]\\ B[\![d]\!] \end{array}$$

The following expressions are **NOT** complete parse expressions with respect to G:

Expression	Comment
$A_list[A_list_1]$	The length of the derivation must be at least 1.
$A_list[A_list_1B]$	The nonterminal B must be given a subscript.
$A_list[\![D_1]\!]$	The derivation $A \stackrel{+}{\Rightarrow} D$ is not possible in G .

1.2 An Example

In class conditions were given when the leading nonterminal of a complete parse expression can be dropped. Consider the following grammar containing the terminal symbols $\{c, d\}$ and the nonterminal symbols $\{A.list, B, D\}$:

Among others, this grammar contains the following parse expressions:

Parse-expression	Derived from
$\llbracket B_1 rbracket$	A
$[A_list_1 \ B_1]$	A
$[A_list_1 \ B_1 \ B_1]$	A
$[A list_1 B_1 B_2]$	A
$[\![c\ B_1\ B_2]\!]$	A
$\llbracket c \ B_1 \ d \rrbracket$	A
$\llbracket D_1 rbracket$	B
$\llbracket c rbracket$	B
$\llbracket d rbracket$	D

2 Matching

Parse expressions are useful because we will use them in equations to define the semantics of programming language constructs. In this framework, a program can be executed by using these equations to simplify a program until it can be simplified no further. This simplification is based on equational reasoning and requires matching as one of its computational steps. Therefore, to understand how a program can be simplified we must first understand matching in this context.

In the context of parse-expressions, a match expression is of the form:

$$[\![\alpha']\!] \ll [\![\beta]\!]$$

In this case, α denotes a string that may contain terminals and subscripted nonterminals and β denotes a string that may only contain terminal symbols. It is also assumed that $\lceil \alpha' \rceil$ and $\lceil \beta \rceil$ are well-formed parse expressions.

In the context of matching, subscripted nonterminals occurring in parse expressions are treated as **variables** quantified over the set of all strings they can derive with respect to the given grammar. A match is said to **succeed** if the variables on the left-hand side of the match expression (i.e., the variables to the left of \ll) can be instantiated in such a manner so that the left and right sides of the match expression become syntactically equal.

The algorithm for solving a match expression of the form $[\![\alpha']\!] \ll [\![\beta]\!]$ can be summarize as follows:

- 1. Check that $\llbracket \alpha' \rrbracket$ and $\llbracket \beta \rrbracket$ are well-formed.
- 2. Find values for variables (if possible) so that when the variables in α' are replaced with their values, the resulting parse-expression is $[\![\beta]\!]$.

3. Make sure that a value assigned to a variable can actually be derived from that variable. That is if A_1 is a variable and v_1 is a value, then $A \stackrel{+}{\Rightarrow} v_1$ must be possible within the grammar.

2.1 Example

In this example, we use a standard BNF grammar fragment describing a subset of mathematical expressions. We assume that *num* and *ident* are terminal symbols and have the usual meaning.

Match Expression	Result of Match
$[E_1 + T_1] \ll [1 + 2]$	true – $E_1 \stackrel{*}{\Rightarrow} 1$ and $T_1 \stackrel{*}{\Rightarrow} 2$
$[\![E_1 + T_1]\!] \ll [\![1 + 1]\!]$	$\text{true} - E_1 \stackrel{*}{\Rightarrow} 1 \text{ and } T_1 \stackrel{*}{\Rightarrow} 1$
$[T_1 * F_1] \ll [1 * x]$	$\operatorname{true} - T_1 \stackrel{*}{\Rightarrow} 1 \text{ and } F_1 \stackrel{*}{\Rightarrow} x$
$\llbracket T_1 * F_1 \rrbracket \ll \llbracket x * x \rrbracket$	true – $T_1 \stackrel{*}{\Rightarrow} x$ and $F_1 \stackrel{*}{\Rightarrow} x$
$[\![E_1 + E_2]\!] \ll [\![x+2]\!]$	false – $[E_1 + E_2]$ is not well-formed
$[T_1 + T_2] \ll [1 + y]$	$\operatorname{true} - T_1 \stackrel{*}{\Rightarrow} 1 \text{ and } T_2 \stackrel{*}{\Rightarrow} y$
$[T_1 + T_1] \ll [1 + 2]$	false – T_1 cannot be instantiated to be both 1 and 2 at the same time.
$[T_1 * T_2] \ll [x * 2]$	false – $[T_1 * T_2]$ is not well-formed
$[\![F_1 * F_2]\!] \ll [\![1 * y]\!]$	$\text{true} - F_1 \stackrel{*}{\Rightarrow} 1 \text{ and } F_2 \stackrel{*}{\Rightarrow} y$
$[\![F_1 * F_1]\!] \ll [\![1 * 2]\!]$	false – F_1 cannot be instantiated to be both 1 and 2 at the same time.
$[E_1 + T_1 * F_1] \ll [1 + 2 * 3]$	true $-E_1 \stackrel{*}{\Rightarrow} 1$ and $T_1 \stackrel{*}{\Rightarrow} 2$ and $F_1 \stackrel{*}{\Rightarrow} 3$
$[T_1 + T_1 * F_1] \ll [2 + 2 * 3]$	true $-T_1 \stackrel{*}{\Rightarrow} 2$ and $F_1 \stackrel{*}{\Rightarrow} 3$
$[T_1 + T_1 * F_1] \ll [1 + 2 * 3]$	false – T_1 cannot be instantiated to be both 1 and 2 at the same time.
$[E_1 + F_1 * F_2] \ll [1 + 2 * 3]$	true $-E_1 \stackrel{*}{\Rightarrow} 1$ and $F_1 \stackrel{*}{\Rightarrow} 2$ and $F_2 \stackrel{*}{\Rightarrow} 3$
$[F_1 + F_2 * F_3] \ll [1 + 2 * 3]$	true – $F_1 \stackrel{*}{\Rightarrow} 1$ and $F_2 \stackrel{*}{\Rightarrow} 2$ and $F_3 \stackrel{*}{\Rightarrow} 3$
$[F_1 + F_2 * T_3] \ll [1 + 2 * 3]$	false – $[F_1 + F_2 * T_3]$ is not well-formed.