PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2283 - DISEÑO Y ANÁLISIS DE ALGORITMOS

Profesor: Nicolás Van Sint Jan

AYUDANTE: DANTE PINTO

Ayudantía 12

Teoría de Números 2: Electric boogalooo

Problema 1: Raíces de polinomios

Sea p(x) un polinomio:

$$p(x) = \sum_{i=0}^{k} a_i x^i$$

Donde $0 \le a_i \le n-1$ para todo $i, a_k \ne 0$ y $k \ge 1$. Decimos que b es una raíz de p(x) en módulo n si:

$$p(b) \equiv 0 \mod n$$

Demuestre que p(x) tiene a lo más k raíces en módulo n. Solución: Esta demostración se encuentra en la clase 22.

Problema 2: Grupos y Biyecciones

Dadas funciones $f:A\to B$ y $g:B\to C$ decimos que:

- 1. $f \text{ es } 1-1 \text{ si para cada } a, b \in A, a \neq b \rightarrow f(a) \neq f(b)$
- 2. f es sobre si para cada $b \in B$, existe $a \in A$ tal que f(a) = b
- 3. f es bivectiva si es 1-1 y sobre.
- 4. La composición de $(g \circ f) : A \to C$ se define como $(g \circ f)(x) = g(f(x))$

Sea $n \geq 1$ un número natural y sea \mathcal{B}_n el conjunto de todas las biyecciones $f: \{1,...,n\} \rightarrow \{1,...,n\}$. Demuestre que (\mathcal{B}_n, \circ) es un grupo.

Solución: Para demostrar que (\mathcal{B}_n, \circ) es un grupo debemos demostrar que cumple las siguientes condiciones:

• Asociatividad:

$$(g \circ f) \circ h = g(f(x)) \circ h$$
$$= g(f(h(x)))$$
$$= g \circ f(h(x))$$
$$= g \circ (f \circ h)$$

• Neutro: Es claro que el elemento neutro será f(x) = x, pues:

$$g \circ f = g(f(x)) = g(x)$$

$$f \circ g = f(g(x)) = g(x)$$

- Inverso: Sabemos que la función inversa de una función biyectiva siempre será biyectiva, pero esto se puede demostrar fácilmente pensando en que las biyecciones sobre estos conjuntos se comportarán como permutaciones o demostrando la inyectividad y sobreyectividad de la función inversa de f.
- Cerrado: Nuevamente sabemos por matemáticas discretas que la composición de dos biyecciones será una biyección, pero podemos demostrar esto fácilmente definiendo f(g(x)) y usando que f y g son biyecciones para demostrar las dos propiedades que nos interesan.

Problema 3: Grupos conmutativos

Un grupo (G, \circ) se dice commutativo si para todos $x, y \in G$ se cumple que $x \circ y = y \circ x$. Como notación, definimos $[a, b] = a^{-1} \circ b^{-1} \circ a \circ b$.

- 1. Demuestre que $a \circ b = b \circ a$ si y solo si [a, b] = 1.
- 2. Decimos que un grupo es generado por $S \subseteq G$ si todo elemento $g \in G$ se puede expresar como producto de elementos e inversos de elementos en S.

Desarrolle y analice un algoritmo que dado un conjunto finito $S = (g_1, ..., g_n)$ y una operación binaria \circ , determine si el grupo generado S y \circ es conmutativo.

3. Definimos el centro de un grupo G como:

$$Z(G) = \{x \in G \mid \text{ para todo } g \in G. [x, g] = 1\}$$

Además para cada $g \in G$, definimos el centralizador de g como:

$$C(g) = \{x \in G \mid [x, g] = 1\}$$

Demuestre que Z(G) es un subgrupo de G y que para todo $g \in G$, C(g) es un subgrupo de G.

4. Dado un grupo $G = \langle g_1, ..., g_n \rangle$, definimos un subproducto aleatorio como:

$$r = g_1^{\varepsilon_1} \circ \dots \circ g_n^{\varepsilon_n} \in G$$

donde cada ε_i se elige de forma uniforme e independiente del conjunto $\{0,1\}$.

Demuestre que si H es un subgrupo propio de G, entonces:

$$Pr[r \notin H] \ge \frac{1}{2}$$

5. Desarrolle y analice un algoritmo aleatorizado que dados generadores $S = g_1, ..., g_n$ y una operación binaria \circ determine si el grupo generado por S y \circ es commutativo.

Solución: La solución a esta pregunta se encuentra en el siguiente video.