# Week 2 – Physical Layer (2)

COMP90007

Internet Technologies

## Link Terminology

### Full-duplex link

- Used for transmission in both directions at once
- e.g., use different twisted pairs for each direction

### Half-duplex link

- Both directions, but not at the same time
- e.g., senders take turns on a wireless channel

### Simplex link

Only one fixed direction at all times; not common

## Multiplexing

- When multiple sources want to access the medium
  - Time Division Multiplexing
  - Frequency Division Multiplexing
  - Statistical Multiplexing (for curious readers)
  - Code Division Multiple Access

## Time Division Multiplexing

- Users can send according to a fixed schedule
- Slotted access to the full speed of the media



## Frequency Division Multiplexing

- Users can only use specific frequencies to send their data
- Continuous access with lower speed



### Data Communication using Signals

- Information is transmitted by varying a physical property e.g. voltage, current
- How to transform continuous signals into digital values? Sampling the amplitude values of the signal
- For a periodic function:
  - e.g. Sine function:  $c * \sin(a * t + b)$
  - c: Amplitude,  $a/(2\pi)$ :Frequency and b:Phase can change the behaviour of the function.

## Change in Amplitude, Frequency, & Phase



## Digital Modulation

### Modulation schemes send bits as signals

#### **Baseband** Transmission

- Signal that run from 0 up to a maximum frequency
- E.g., Telephone system: 0 ~ 4kHz

#### **Passband** Transmission

Signals that are shifted to occupy a higher range of frequencies

**ADSL** 



Example

## Modulation Types

 Modulating the amplitude, frequency/phase of a carrier signal sends bits in a (non-zero) frequency range



## Symbol Rate

- One symbol (signal element) can represent multiple bits (data elements)
- Symbol Rate (Baud Rate): number of signal changes per second



**Figure 1.** Data bits where logical "0" and "1" are represented by 0 volts and 3 volts respectively



**Figure 2.** Four signaling levels per clock cycle can represent two data bits.

## | Harry Nyquist



 Early theoretical work on determining fundamental limits for the bandwidth required for communication-heralded digital revolution

### Maximum Data Rate of a Channel

 Nyquist's theorem relates the data rate to the bandwidth (B) and number of signal levels (V) (channel without noise):

Max. data rate =  $2B log_2 V bits/sec$ 

- Increase the bandwidth B can increase the data rate.
- If signal has V levels, each symbol can represent log<sub>2</sub>V bits.

### Claude Shannon



- Father of Information theory.
- 1948 monograph "The mathematical theory of communication" defined a new area;
- 1949 monograph-"Communication Theory of Secrecy Systems" is another foundational work on modern Cryptography

### Maximum Data Rate of a Channel

Shannon's theorem relates the data rate to the bandwidth (B) and signal strength (S) relative to the **noise** (N):

Max. data rate = 
$$B log_2(1 + S/N)$$
 bits/sec

$$\uparrow \qquad \uparrow \qquad \uparrow$$
How fast signal How many levels can change can be seen

## Example 1

**Q**: Given the signal-to-noise ratio (SNR) of 20 dB, and the bandwidth of 4kHz (telephone communications), what is the maximum data rate according to Shannon's theorem?

### <u>Ans</u>:

## Example 2

**Q**: If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is 20 dB, what is the maximum achievable data rate?

### Ans: