NMR

Osnova

- Úvod, základní princip
- Instrumentace magnety, měřící sondy, elektronika
- Chemický posun, spin-spinová interakce, decoupling
- Základní 1D experimenty
- Interpretace 1D NMR spekter
- Více-dimenzionální NMR spektroskopie
- NMR v pevné fázi
- NMR experimenty ve slabém magnetickém poli

Historie NMR

- 1943 Nobelova cena za objev magnetického momentu protonu Otto Stern.
- 1944 Nobelova cena za rezonanční metodu pro zjištění magnetických vlastností atomových jader – Isidor Isaac Rabi.
- 1945 první ¹H NMR spektrum vody.
- 1952 Nobelova cena za rozvoj metod pro přesná měření jaderného magnetismu a první NMR signál – Felix Bloch a Edward Mills Purcell.
- 1965 širokopásmový ¹H decoupling.
- 1991 Nobelova cena za HR-NMR, vývoj nových pulsních technik, rozvoj FT-NMR a zavedení 2D NMR technik – Richard R. Ernst.
- 2002 Nobelova cena za vývoj NMR technik umožňujících určení 3D struktury biomolekul – Kurt Wütthrich.

Nukleární Magnetická Rezonance

- Sledujeme absorpci radiofrekvečního záření vzorkem, který je umístěn v magnetickém poli.
- Vzorek může být v plynném, kapalném i pevném stavu.
- Důležitá metoda pro strukturní analýzu.
- Vyžaduje silné magnetické pole, nejčastěji se využívá supravodivých magnetů.

Schéma NMR spektrometru

NMR magnety

- Permanentní do 100 MHz
- Cryogen-free levný provoz, 100 300 MHz.
- Supravodivé magnety nejčastěji využívané v NMR
 - Chlazené kapalným heliem (4 2,2 K)
 - Magnetické pole až 23,5 T (1000 MHz)

Rezonanční frekvence ¹H a ¹³C jader v závislosti na síle magnetického pole

B ₀ [T]	¹ H [MHz]	¹³ C [MHz]
1,41	60	15,1
2,35	100	25,15
7,05	300	75,4
11,74	500	125,7
14,09	600	150,9
16,44	700	176,05
19,97	850	213,78
22,32	950	238,94

NMR sondy

- Hlavní funkcí je excitace spinového systému a snímání odezvy.
- Lockovací kanál.
- Udržuje stabilní teplotu vzorku.

• Často obsahuje také gradientovou cívku (cívky) pro experimenty využívající pulsní gradienty magnetického pole.

- Podle konstrukce se dělí
 - Teplé sondy
 - Kryosondy zvýšená citlivost, náročná údržba
 - Průtočné sondy
 - Nanosondy pro extrémně malé množství vzorku

NMR sondy

- Sondy se dále dělí podle počtu cívek. Citlivost cívek klesá se vzdáleností od vzorku.
 - Dvoukanálové dvě cívky
 - Tříkanálové (triple resonance)
- BB sondy mají vnitřní cívku určenou pro měření jader X a vnější pro měření ¹H nebo pro ¹H decoupling. Inverzní sondy mají uspořádání opačné a jsou vhodné pro snímání ¹H jader, např. 2D experimenty – ¹H-¹³C HSQC.
- Dále rozlišujeme sondy podle velikosti NMR kyvety, pro kterou jsou konstruovány – 5 a 10 mm.

NMR sondy

Vzorek pro NMR spektroskopii

- Využívají se tenkostěnné skleněné kyvety, které se umisťují do plastových nebo keramických rotorků. Průměr kyvet je nejčastěji 3, 5 nebo 10 mm.
- Pro měření je nutné připravit roztok měřené látky v deuterovaném rozpouštědle. Signál ²H (D) se používá k lockování vzorku.
- Vzorky reakčních směsí se často měří v koaxiálním uspořádání, kdy se kyveta se vzorkem vloží do kyvety s deuterovaným rozpouštědlem.
- Signál deuterovaného rozpouštědla lze využít i jako standard ke kalibraci spektra.

Rozpouštědla pro NMR

Rozpouštědlo	$\delta(^{1}H)$	δ(¹³ C)
	7,16	128,4
CDCI ₃	7,24	77,23
CD ₂ Cl ₂	5,32	54,0
D ₂ O	4,8	-
DMSO	2,50	39,5
CD ₃ OD	3,31; 4,78	49,2
Toluen-d ₈	2,09; 6,98; 7,00; 7,09	20,4; 125,5; 128,3; 129,4; 137,9
CD ₃ CN	1,94	1,4; 118,7

Jaderný spin

- Atomové jádro se skládá z protonů a neutronů.
- Obě částice mají spin ±½.
- Jaderný spin je dán součtem spinů všech nukleonů.
- V NMR jsou aktivní pouze jádra, která mají spin různý od nuly.
- Nejčastěji se měří jádra se spinem ½, např. ¹H, ¹³C, ¹9F a ³¹P.
- Za normálních podmínek mají obě orientace spinu stejnou energii.
- Pokud ale vložíme jádro do magnetického pole, získáme dvě rozdílné energetické hladiny.
- Pokud na tento systém působíme radiofrekvenčním zářením, může dojít k absorpci a přeskoku spinu na vyšší energetickou hladinu.
- Poté pozorujeme návrat spinu na původní hladinu a vyzáření absorbované energie, kterou snímáme.

Radiofrekvenční pulsy

- FT-NMR využívá k excitaci jaderných spinů radiofrekvenční pulsy.
- Ty excitují všechna měřená jádra, např. protony, najednou.
- Pulsy sklápí vektor magnetizace a způsobují jeho precesi.
- Délka pulsů se pohybuje v řádu μs.
- Čím je puls delší, tím je větší i sklápěcí úhel.

Chemický posun

- Izolovaná jádra stejného izotopu budou v magnetickém poli rezonovat při stejné frekvenci.
- Pokud uvažujeme molekuly, je každé jádro ovlivněno také lokálními magnetickými poli, které jsou generovány vazebnými elektrony. Tím dochází ke změně rezonanční frekvence daného jádra.
- Změna je dána tzv. chemickým okolím pozorovaného jádra a nazývá se *chemický* posun. Označuje se δ a je dán vztahem:

$$\delta = \frac{v - v_{TMS}}{v}$$

- v_{TMS} je rezonanční frekvence standardu, v je rezonanční frekvence signálu
- chemický posun je bezrozměrný, jelikož se jedná o velmi malé hodnoty, udává se v ppm.
- Chemický posun je, na rozdíl od rezonanční frekvence, nezávislý na hodnotě vnějšího magnetického pole.

¹H NMR chemické posuny

Interakční konstanta

Pokud je v molekule více NMR aktivních jader, může docházet k
jejich vzájemné interakci. Síla této interakce je dána hlavně počtem
vazeb, které jádra oddělují.

 Velikost interakční konstanty je nezávislá na intenzitě magnetického pole.

OH

4.0

5.0

Interakční konstanta

- Způsob štěpení je dán počtem interagujících spinů.
- Pro jádra se spinem ½ je velikost multipletu, tzn. počet signálů po štepení a jejich vzájemná intenzita dán Pascalovým trojúhelníkem.

Interakční konstanta

 Velikost interakce se vyjadřuje pomocí interakční konstanty, která se označuje písmenem J. Pro přesnější popis interakce se využívá indexů, např. interakci mezi atomy vodíku v ethanolu (přes tři vazby H-C-C-H) vyjádříme ³J_{HH}. Její velikost se udává v Hz.

Decoupling (dekaplink)

- Štěpením signálů spektra je důležitou informací pro strukturní analýzu, zároveň ale zhoršuje poměr signál/šum.
- Pro potlačení štěpení se používá tzv. decoupling, kdy kontinuálně ozařujeme dekaplovaná jádra. Tím dojde k potlačení štěpení.
- Ztratíme ale informaci o kvantitativním složení vzorku, protože intenzita signálu v dekaplovaném spektru není úměrná koncentraci.
- Gated decoupling neozařujeme během akvizice, nedojde k potlačení NOE.

 Inverse-gated decoupling – ozařujeme pouze během akvizice, vhodné pro jádra se záporným gyromagnetickým poměrem – ¹⁵N,
 ²⁹Si.

Proton Decoupling

Inverse Gated Proton Decoupling

Gated Proton Decoupling

Inverse Gated X Decoupling

¹H NMR

- ¹H je velmi citlivé jádro s přírodním zastoupením téměř 100 %.
- Běžný rozsah chemických posunů 14 až -4 ppm.
- Používá se jednopulsní experiment (zg) s 90° pulsem, příp. 30° pulsem (zg30).
- Lze využít i homonukleární nebo heteronukleární decoupling.
- Složitější molekuly poskytují komplikovaná spektra, obsahující multiplety vyšších řádů.
- Pro větší molekuly je výhodné měřit 2D NMR experimenty COSY, NOESY.
- Ve spektru lze pozorovat tzv. uhlíkové satelity vzniklé interakcí ¹H-¹³C.
- http://users.wfu.edu/ylwong/chem/nmr/h1/
- http://www.chem.wisc.edu/areas/reich/handouts/nmr-h/hdata.htm

¹³C NMR

- V přírodě je obsah izotopu ¹³C pouze 0,01 %, zbytek tvoří NMR neaktivní izotop ¹²C.
- ¹³C NMR nejčastěji měříme s ¹H decouplingem.
- Rozsah chemických posunů je od 220 do -20 ppm.
- Často se využívají složitější experimenty APT, DEPT, INEPT, ...
- Příp. 2D experimenty HSQC, HMBC.
- Stanovení interakční konstanty ¹³C-¹³C vyžaduje velmi koncentrované vzorky a dlouhý měřící čas – INADEQUATE.
- http://www.chem.wisc.edu/areas/reich/handouts/nmr-c13/cdata.htm
- http://www.chem.wisc.edu/areas/reich/handouts/nmr-c13/c-coupling.htm

DEPT - Distortionless Enhancement by Polarization Transfer

- Poskytuje informaci o počtu protonů vázaných k uhlíku, tzn.
 Umožňuje rozlišit skupiny CH, CH₂, CH₃ a kvartérní uhlíky.
- DEPT45 signály od všech uhlíku s vazbou C-H ve stejné fázi
- DEPT90 pouze signály skupin CH, ostatní jsou potlačeny
- DEPT135 signály CH a CH₃ ve fázi, CH₂ v antifázi

APT – Attached Proton Test

- Podobně jako DEPT umožňuje určit počet protonů vázaných na atom uhlíku.
- Kvartérní uhlíky a skupiny CH₂ poskytují pozitivní píky.
- Skupiny CH a CH₃ poskytují negativní píky.
- Nižší citlivost než DEPT, ale místo tří spekter stačí naměřit jedno.

INEPT – Insensitive Nuclei Enhanced by Polarization Transfer

- Důležitý prvek mnoha pulsních sekvencí, využívajících přenos polarizace.
- Využívá se pro zvýšení citlivosti jader s nízkým gyromagnetickým poměrem.
- Zvýšení citlivosti je úměrné poměru gyromagnetických konstant ¹H
 a měřeného jádra pro ¹³C je to asi 4x, pro ¹⁵N cca 10x.

2D ... XD NMR experimenty

- Pro složitější molekuly není 1D NMR spektrum čitelné.
- Rozlišení se dá zvýšit silnějším magnetickým polem.
- Lepší cestou je přechod na NMR experimenty ve více dimenzích.
- V dnešní době se rutinně využívají 2D a 3D experimenty.
- Rozlišení je podstatně vyšší než u 1D spekter protože dochází k rozprostření signálů v ploše spektra.

2D ... XD NMR experimenty

- 2D experimenty se skládají ze čtyř kroků:
 - Příprava (preparation) excitace spinového systému.
 - Vývoj (evolution) necháme systém volně vyvíjet.
 - Mixing time dochází k přenosu magnetizace mezi spiny.
 - Detekce akvizice dat.
- 2D spektra se nejčastěji znázorňují jako plošné řezy, lze je ale zobrazit i jako 3D mapy.
- Rozlišená 2D NMR spektra (resolved) rozlišená podle interakčních konstant. Na jedné ose je chemický posun, na druhé interakční konstanta.
- Korelovaná 2D NMR spektra (correlated) na obou osách jsou chemické posuny.
- U vícedimensionálních experimentů se opakuje vývoj a mixing time v příslušných dimensích.

29

Homonukleární 2D experimenty

- Přenos magnetizace mezi stejnými jádry, nejčastěji ¹H-¹H, ale může být i ³¹P-³¹P, ¹ºF-¹ºF, atd. U koncentrovaných vzorků lze i ¹³C-¹³C (INADEQUATE).
- Pokud mezi jádry dochází k přenosu magnetizace, pozorujeme tzv. cross-peaky. V opačném případě získáme diagonální peaky.

COSY

- COrrelated SpectroscopY
- Jeden z nejběžnějších 2D experimentů.
- Umožňuje zjistit interakce mezi jádry a odečíst interakční konstanty.
- Protony, které jsou dál než tři vazby neposkytují cross-peaky, protože hodnota ⁴J_{HH} je blízká nule.
- V současnosti se používá DQF-COSY (Double Quantum Filtered COSY) - která poskytuje stejné informace, ale spektra jsou čistější.

TOCSY

- TOtal Correlated SpectroscopY
- HOHAHA HOmonuclear HArtmann HAhn
- Umožňuje rozdělit protony do skupin podle vzájemných interakcí.
- Lze např. rozlišit protony jednotlivých cyklů v disacharidech.

NOESY

- Nuclear Overhauser Enhancement SpectroscopY
- Velmi důležitá metoda pro určování terciární struktury biomolekul.
- Přenos magnetizace probíhá mezí jádry, mezi kterými je skalární interakce.
- Maximální vzdálenost jader 5-6 Å.
- Pro větší vzdálenosti ROESY ROtating frame Overhauser Enhancement SpectroscopY.

Heteronukleární 2D experimenty

- Dochází k přenosu magnetizace mezi různými jádry, např. ¹H-¹³C,
 ¹H-¹⁵N, atd.
- Díky přenosu magnetizace lze pohodlně měřit i málo citlivá jádra.
- Na osách jsou chemické posuny jednotlivých jader.
- Pokud mezi jádry dojde k přenosu magnetizace, pozorujeme peak na průsečiků chemických posunů obou jader.
- Pokud k přenosu magnetizace nedojde, nezískáme žádný peak.

HSQC

- Heteronuclear Single Quantum Coherence
- Patří mezi tzv. inverzní experimenty snímáme ¹H.
- Signály ve spektru patří ¹H jádrům vázaným přímo na ¹³C nebo ¹⁵N.
- Spektrum není symetrické podle diagonály.

HMBC

- Heteronuclear Multiple Bond Correlation
- Pozorujeme signály protonů, které interagují s jádrem X přes více než jednu vazbu.
- Metoda umožňuje pozorování kvartérních uhlíků.

HMBC spektra jsou náchylná na∥vznik artefaktů, zvláště od ¹J_{XH}.

Solid-state NMR

- MAS NMR Magic Angle Spinning
- Anizotropie chemického posunu.
- Vzorek je napěchován do keramického rotoru a rotuje pod úhlem 54,7° (magický úhel).
- Rotace při rychlostech 0-50 kHz.
- Pro měření málo citlivých jader se využívá cross-polarizace.

NMR ve slabém magnetickém poli

- Earth's-Field NMR
 - využívá magnetické pole Země
 - lze měřit velké vzorky
 - pro zlepšení S/N se využívá pre-polarizace v elektromagnetu
- Low-Field NMR
- Systémy využívající permanentní magnety nebo elektromagnety -PicoSpin, ...

Odkazy

- http://nmrlab.chemi.muni.cz/
- http://qa.nmrwiki.org/
- http://chem.ch.huji.ac.il/nmr/index.html
- http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi