Notes on Noncommutative Geometry and Particle Physics

Popovic Milutin

Week 5: 12.03 - 19.03

Contents

1	Noncommutative Geometric Spaces		
	1.1	Exercises	
	1.2	Properties of Matrix Algebras	
	1.3	Morphisms Between Finite Spectral Triples	
		Graphing Finite Spectral Triples	

Noncommutative Geometric Spaces

1.1 Exercises

Exercise 1. Make the proof of the last theorem (see week4.pdf) explicit for N=3

Solution 1. For the C* algebra we have $A = \mathbb{C}^3$ For H we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus \mathbb{C}^3$ $H_2^1 \oplus H_2^2$. The symmetric operator D acting on H and the representation $\pi(a)$:

$$\pi((a(1),a(2),a(3)) = \begin{pmatrix} a(1) & 0 \\ 0 & a(2) \end{pmatrix} \oplus \begin{pmatrix} a(1) & 0 \\ 0 & a(3) \end{pmatrix} \oplus \begin{pmatrix} a(2) & 0 \\ 0 & a(2) \end{pmatrix}$$

$$= \begin{pmatrix} a(1) & 0 & 0 & 0 & 0 & 0 \\ 0 & a(2) & 0 & 0 & 0 & 0 \\ 0 & 0 & a(1) & 0 & 0 & 0 \\ 0 & 0 & 0 & a(3) & 0 & 0 \\ 0 & 0 & 0 & 0 & a(2) & 0 \\ 0 & 0 & 0 & 0 & 0 & a(3) \end{pmatrix}$$

$$(1)$$

(3)

Then the norm of the commutator would be the largest eigenvalue

$$||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||$$

$$= \left\| \begin{pmatrix} 0 & x_1(a(2) - a(1)) & 0 & 0 & 0 & 0 \\ -x_1(a(2) - a(1)) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2(a(3) - a(1)) & 0 & 0 \\ 0 & 0 & -x_2(a(3) - a(1)) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & x_3(a(2) - a(2)) \\ 0 & 0 & 0 & 0 & 0 & -x_3(a(2) - a(3)) & 0 \end{pmatrix} \right\|$$

$$(4)$$

The matrix in Equation $\ref{eq:condition}$ is a skew symmetric matrix its eigenvalues are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the λ 's are on the upper and lower diagonal check https://en.wikipedia.org/wiki/Skew-symmetric_matrix#Skew-symmetrizable_matrix. The matrix norm of would be the maximum of the norm of the larges eigenvalues:

$$||[D, \pi(a)]|| = \max_{a \in A} \{x_i | a(j) - a(k)|\}$$
 (5)

Exercise 2. Compute the metric on the space of three points given by $d_{ij} = \sup_{a \in A} \{|a(i) - a(j)| : ||[D, \pi(a)]|| \le 1\}$ for the set of data $A = \mathbb{C}^3$ acting in the defining representation $H = \mathbb{C}^3$, and

$$D = \begin{pmatrix} 0 & d^{-1} & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

for some $d \in \mathbb{R}$

Solution 2. We have $A = \mathbb{C}^3$, $H = \mathbb{C}^3$ and D from above, then

$$||[D, \pi(a)]|| = d^{-1} \left| \left| \begin{pmatrix} 0 & a(2) - a(1) & 0 \\ -(a(2) - a(1)) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right| \right|$$

$$= d^{-1}|a(2) - a(1)| \tag{6}$$

Exercise 3. Show that d_{ij} from Equation 11 is a metric on \hat{A} by establishing that:

$$d_{ij} = 0 \Leftrightarrow i = j \tag{8}$$

$$d_{ij} = d_{ji} (9)$$

$$d_{ij} \le d_{ik} + d_{kj} \tag{10}$$

$$d_{ij} = \sup_{a \in A} \left\{ |Tr(a(i)) - Tr((a(j))| : ||[D, a]|| \le 1 \right\}$$
(11)

Solution 3. For Equation 8 set i = j in 11.

$$\begin{split} d_{ii} &= \sup_{a \in A} \{ |\mathrm{Tr}(a(i)) - \mathrm{Tr}((a(i))| : ||[D, a]|| \le 1 \} \\ &= \sup_{a \in A} \{ 0 : ||[D, a]|| \le 1 \} = 0 \end{split}$$

For Equation 9 obviously we have the commuting property of addition. For Equation 10, for k=j then $d_{kj}=0$ and the equality holds. For i=k then $d_{ik}=0$ and equality holds. Else set $d_{ik}=1$ and $d_{kj}=1$ then $d_{ij}=1 \le d_{ik}+d_{kj}=2$

1.2 Properties of Matrix Algebras

Lemma 1. If A is a unital C* algebra that acts faithfully on a finite dimensional Hilbert space, then A is a matrix algebra of the Form:

$$A \simeq \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{C}) \tag{12}$$

Proof. Since A acts faithfully on a Hilbert space, then A is a C^* subalgebra of a matrix algebra $L(H) = M_{\dim(H)}(\mathbb{C} \Rightarrow A \simeq \text{Matrix algebra}.$

Question 1. What does the author mean when he sais 'acts faithfully on a Hilbertspace'? Then the representation is fully reducible, or that the presentation is irreducible?

Example 1. $A = M_n(\mathbb{C})$ and $H = \mathbb{C}^n$, A acts on H with matrix multiplication and standard inner product. D on H is a hermitian matrix $n \times n$ matrix.

D is referred to as a finite Dirac operator as in as its ∞ dimensional on Riemannian Spin manifolds coming in Chapter 4. Now we introduce it as

$$\frac{a(i) - a(j)}{d_{ij}} \tag{13}$$

for each pair $i, j \in X$ the finite dimensional discrete space. This appears in the entries in the commutator [D, a] in the above exercises.

Definition 1. Given an finite spectral triple (A, H, D), the A-bimodule of Connes' differential one form is:

$$\Omega_D^1(A) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in A \right\}$$
(14)

Question 2. Is the Conne's differential one form the set of all '1st order differential operators' given A, that act on H?

Then there is a map $d: A \to \Omega^1_D(A)$, $d = [D, \cdot]$.

Lemma 2. Let $(A,H,D) = (M_n(\mathbb{C},\mathbb{C}^n,D)$, with D a hermitian $n \times n$ matrix. If D is not a multiple of the identity then:

$$\Omega_D^1(A) \simeq M_n(\mathbb{C}) = A \tag{15}$$

Proof. Assume $D = \sum_i \lambda_i e_{ii}$ (diagonal), $\lambda_i \in \mathbb{R}$ and $\{e_{ij}\}$ the basis of $M_n(\mathbb{C})$. For fixed i, j choose k such that $\lambda_k \neq \lambda_j$ then

$$\left(\frac{1}{\lambda_k - \lambda_j} e_{ik}\right) [D, e_{kj}] = e_{ij}$$

 $e_{ij} \in \Omega^1_D(A)$ by the above definition. And $\Omega^1_D(A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A$

1.3 Morphisms Between Finite Spectral Triples

Definition 2. two finite spectral tripes (A_1, H_1, D_1) and (A_2, H_2, D_2) are called unitarily equivalent if

- $A_1 = A_2$
- $\exists U: H_1 \rightarrow H_2$, unitary with

1.
$$U\pi_1(a)U^* = \pi_2(a)$$
 with $a \in A_1$

2.
$$UD_1U^* = D_2$$

Some remarks

- the above is an equivalence relation
- spectral unitary equivalence is given by the unitaries of the matrix algebra itself
- for any such U then $(A,H,D) \sim (A,H,UDU^*)$
- $UDU^* = D + U[D, U^*]$ of the form of elements in $\Omega_D^1(A)$.

Extending the this relation we look again at the notion of equivalence from Morita equivalence of Matrix Algebras.

Given a Hilbert bimodule $E \in KK_f(B,A)$ and (A,H,D) we construct a finite spectral triple on B, (B,H',D')

$$H' = E \otimes_A H \tag{16}$$

This extends the left action on B with the right action and inherits the \mathbb{C} valued inner product space.

$$D'(e \otimes \xi) = e \otimes D\xi + \nabla(e)\xi \quad e \in E, a \in A$$
(17)

Where ∇ is called the *connection on the right A-module E* associated with the derivation $d = [D, \cdot]$ and satisfying the *Leibnitz Rule* which is

$$\nabla(ae) = \nabla(e)a + e \otimes [D, a] \quad e \in E, \ a \in A$$
(18)

Then the linearity of the balanced tensor product $E \otimes_A H$ is satisfied

$$D'(ea \otimes \xi - e \otimes a\xi) = D'(ea \otimes \xi) - D'(e \otimes \xi)$$

$$= ea \otimes D\xi + \nabla(ae)\xi - e \otimes D(a\xi) - \nabla(e)a\xi$$

$$= 0$$

With the information thus far we can prove the following theorem

Theorem 1. If (A, H, D) a finite spectral triple, $E \in KK_f(B, A)$. Then $(V, E \otimes_A H, D')$ is a finite spectral triple, provided that ∇ satisfies the compatibility condition

$$\langle e_1, \nabla e_2 \rangle_E - \langle \nabla e_1, e_2 \rangle_E = d \langle e_1, e_2 \rangle_E \quad e_1, e_2 \in E$$
 (19)

Proof. $E \otimes_A H$ was shown in the previous section (text before the theorem). The only thing left is to show that D' is a symmetric operator, this we can just compute. Let

 $e_1, e_2 \in E$ and $\xi_1, \xi_2 \in H$ then

$$\begin{split} \langle e_1 \otimes \xi_1, D'(e_2 \otimes \xi_2) \rangle_{E \otimes_A H} &= \langle \xi_1, \langle e_1, \nabla e_2 \rangle_E \xi_2 \rangle + \langle \xi_1, \langle e_1, e_2 \rangle_E D \xi_2 \rangle_H \\ &= \langle \xi_1, \langle \nabla e_1, e_2 \rangle_E \xi_2 \rangle_H + \langle \xi_1, d \langle e_1, e_2 \rangle_E \xi_2 \rangle_H \\ &+ \langle D \xi_1, \langle e_1, e_2 \rangle_E \xi_2 \rangle_H - \langle \xi_1, [D, \langle e_1, e_2 \rangle_E] \xi_2 \rangle_H \\ &= \langle D'(e_1 \otimes \xi_1), e_2 \otimes \xi_2 \rangle_{E \otimes_A H} \end{split}$$

1.4 Graphing Finite Spectral Triples

Definition 3. A *graph* is a ordered pair $(\Gamma^{(0)}, \Gamma^{(1)})$. Where $\Gamma^{(0)}$ is the set of vertices (nodes) and $\Gamma^{(1)}$ a set of pairs of vertices (edges)

Figure 1: A simple graph with three vertices and three edges

Definition 4. A Λ -decorated graph is given by an ordered pair (Γ, Λ) of a finite graph Γ and a set of positive integers Λ with the labeling

- of the vetices $v \in \Gamma^{(0)}$ given by $n(v) \in \Lambda$
- of the edges $e = (v_1, v_2) \in \Gamma^{(1)}$ by operators

-
$$D_e: \mathbb{C}^{n(v_1)} \to \mathbb{C}^{n(v_2)}$$

- and $D_e^*: \mathbb{C}^{n(v_2)} \to \mathbb{C}^{n(v_1)}$ its conjugate traspose (pullback?)

such that

$$n(\Gamma^{(0)}) = \Lambda \tag{20}$$

Question 3. Would then D_e be the pullback?

Question 4. These graphs are important in the next chapter I should look into it more, I don't understand much here, specific how to construct them with the abstraction of a spectral triple...

The operator D_e between \mathbf{n}_i and \mathbf{n}_j add up to D_{ij}

$$D_{ij} = \sum_{\substack{e = (v_1, v_2) \\ n(v_1) = \mathbf{n}_i \\ n(v_2) = \mathbf{n}_j}} D_e$$

Theorem 2. There is a on to one correspondence between finite spectral triples modulo unitary equivalence and Λ -decorated graphs, given by associating a finite spectral triples (A,H,D) to a Λ decorated graph (Γ,Λ) in the following way:

$$A = \bigoplus_{n \in \Lambda} M_n(\mathbb{C}); \quad H = \bigoplus_{v \in \Gamma^{(0)}} \mathbb{C}^{n(v)}; \quad D = \sum_{e \in \Gamma^{(1)}} D_e + D_e^*$$
 (21)

Example 2.

Figure 2: A Λ -decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n, D = D_e + D_e^*)$