

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

JEE (Main)
FULL SYLLABUS
19-01-2025

JEE(Main + Advanced): ENTHUSIAST & LEADER COURSE (SCORE-I)

ANSWER KEY PAPER (OPTIONAL)

PAR ⁻	Γ-1	:	PH'	YSI	CS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	D	В	В	С	Α	С	С	В	ပ	Α
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	Α	С	Α	В	Α	D	D	С	D	В
SECTION-II	Q.	1	2	3	4	5					
	A.	25	1	60	256	4					

PART-2: CHEMISTRY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	Α	D	С	В	С	С	Α	С	Α	Α
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	С	С	С	D	С	С	D	D	В	В
SECTION-II	Q.	1	2	3	4	5					
	A.	4	5	492	2	98					

PART-3: MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	В	В	Α	Α	Α	С	Α	С	D	Α
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	D	С	С	D	Α	Α	В	Α	Α	В
SECTION-II	Q.	1	2	3	4	5		•		•	
	A.	17	10	101	56	10					

HINT - SHEET

PART-1: PHYSICS

SECTION-I

$$dQ = dU + dW$$

$$TdS = dU + PdV$$

$$dU = C_v dT$$

at constant volume PdV = 0

$$\left(\frac{dT}{dS}\right)$$
 at constant volume = $\frac{T}{C_V}$

at constant pressure

$$dQ = C_P dT = T dS$$

$$\frac{dT}{dS} = \frac{T}{C_P}$$
$$C_P > C_V$$

1001CJA101021240039

so, slope at constant volume > slope at constant pressure

so, path b is isobaric and path a is isochoric.

In isochoric process work done is zero.

and here in isobaric process work done is positive.

Work done in path b > work done in path a.

2. Ans (B)

mg - T = ma(1)

 $mg \sin\theta + T = ma \dots (2)$

adding (1) & (2)

$$a = \frac{g}{2}(1 + \sin \theta)$$

$$T = m(g-a)$$

$$=\frac{\mathrm{mg}}{2}(1-\sin\theta)$$

5. Ans (A)

$$f_{app} = f\left[\frac{v + v_0}{v - v_s}\right]$$
$$= f\left[\frac{v + \frac{v}{3}}{v - \frac{v}{3}}\right] = f\frac{\frac{4v}{3}}{\frac{2v}{3}}$$

$$f_{ann} = 2f$$

% change =
$$\left(\frac{f_{app} - f}{f}\right) \times 100$$

6. Ans (C)

Path difference

$$\Delta x = (2\mu - 1)4t + d\sin\theta - (3\mu - 1)t = 0$$

$$5\mu t - 3t + \frac{yd}{D} = 0$$
$$y = \frac{tD(3 - 5\mu)}{d}$$

$$y = \frac{tD(3-5\mu)}{1}$$

$$\frac{1}{2}Kx^2 + \frac{1}{2}m_2v^2 + \frac{1}{2}m_1(2v)^2 = constant$$

$$2kxv + 2m_2va + 8m_1va = 0$$

$$Kx + (m_2 + 4m_1) a = 0$$

$$a = \frac{-kx}{(m_2 + 4m_1)}$$

8. Ans (B)

$$\frac{J \times L}{2} = \frac{ML^2}{12} \times \omega; \omega = \frac{6J}{ML}$$

$$J = Mv_{cm}$$

$$v_{cm} = \frac{J}{M}$$

time taken in one rotation = $\frac{2\pi}{1}$

distance travelled by c.m in one rotation =

$$V_{cm} \times \frac{2\pi}{\omega}$$

$$= \frac{J}{M} \times \frac{2\pi}{6J} \times ML = \frac{\pi L}{3}$$

Ans (C)

$$\tan \phi = \frac{V_L - V_C}{V_R}; \frac{1}{\sqrt{2}} = \frac{V_L - V_C}{2}$$

$$V_{L} - V_{C} = \frac{2}{\sqrt{3}}$$

$$V_{Source} = \sqrt{(V_L - V_C)^2 + {V_R}^2}$$

$$= \sqrt{\left(\frac{2}{\sqrt{3}}\right)^2 + 2^2} = \sqrt{\frac{16}{3}} = \frac{4}{\sqrt{3}}$$

$$\cos \phi = \frac{R}{\sqrt{(X_L - X_C)^2 + R^2}} = \frac{\sqrt{3}}{2}$$

on calculating $R = 5\sqrt{3}\Omega$

$$\tan \phi = \frac{X_L - X_C}{R} = \frac{1}{\sqrt{3}}$$

$$X_L - X_C = \frac{R}{\sqrt{3}}$$

$$Z = \sqrt{\frac{R^2}{3} + R^2} = \sqrt{\frac{75}{3}} + 75 = 10\Omega$$

$$i = \frac{V}{Z} = \frac{4}{\sqrt{3} \times 10} = \frac{2}{5\sqrt{3}}A$$

HS-2/11

10. Ans (A)

$$mv_0 2R = mvR \sin\theta$$

$$2v_0 = v\sin\theta$$

$$\frac{1}{2}mv_0^2 - \frac{GM_em}{2R} = \frac{1}{2}mv^2 - \frac{GM_em}{R}$$

$${v_0}^2 - \frac{GM_e}{R} = v^2 - \frac{2GM_e}{R}$$

$$v^2 = {v_0}^2 + \frac{GM_e}{R}$$

$$v^2 = \frac{GM_e}{7R} + \frac{GM_e}{R} = \frac{8}{7} \frac{GM_e}{R}$$

$$2 \times \sqrt{\frac{GM_e}{7R}} = \sqrt{\frac{8}{7}} \frac{GM_e}{R} \sin \theta$$

$$2 = 2\sqrt{2}\sin\theta$$

$$\sin \theta = \frac{1}{\sqrt{2}}$$

$$\theta = 45^{\circ}$$

11. Ans (A)

Given circuit is balanced wheat stone bridge. &

Circuit will look like above digaram

$$R_{eq} = 5\Omega$$

current through the battery $i = \frac{60}{5} = 12A$

current will divide in inverse ratio of resistance in

branch (1), (2) & (3)

12. Ans (C)

$$W_g + W_{F_E} = \Delta K.E.$$

$$mg \ell \sin 30 + mg \frac{\ell}{2} \sin 30^{\circ} - QE(\ell - \ell \cos 30^{\circ}) =$$

$$\frac{1}{2}I\omega^2 - 0$$

$$mg\frac{\ell}{2} + mg\frac{\ell}{4} - Q\frac{mg}{Q}\ell\left(1 - \frac{\sqrt{3}}{2}\right) = \frac{1}{2}\left(\frac{m\ell^2}{3} + m\ell^2\right)\omega^2$$

$$\operatorname{mg}\ell\left(\frac{1}{2} + \frac{1}{4} - 1 + \frac{\sqrt{3}}{2}\right) = \frac{1}{2} \times \frac{4}{3}\operatorname{m}\ell^{2}\omega^{2}$$

$$\left(\frac{\sqrt{3}}{2} - \frac{1}{4}\right) g = \frac{2}{3} \ell \omega^2$$

$$\omega = \sqrt{\frac{3g\left(2\sqrt{3} - 1\right)}{8\ell}}$$

$$v = \omega I$$

$$\mathbf{v} = \sqrt{\frac{3g\ell\left(2\sqrt{3} - 1\right)}{g}}$$

13. Ans (A)

$$f_0 = 1.2$$
 cm, $f_e = 3$ cm

$$\frac{1}{f_0} = \frac{1}{v_0} - \frac{1}{u_0}$$

$$\frac{1}{1.2} = \frac{1}{v_0} - \frac{1}{(-1.25)}$$

$$\Rightarrow \frac{1}{v_0} = \frac{5}{6} - \frac{4}{5} = \frac{1}{30}$$

Magnifying power for image at infinity

$$= \left(\frac{v_0}{u_0}\right) \left(\frac{D}{f_0}\right) = \left(\frac{30}{1.25}\right) \left(\frac{25}{3}\right) = 200$$

15. Ans (A)

When any input is 0 then current flows and $v_y = 0$ and when both input is 1

No current flows and $v_y = 1$

16. Ans (D)

$$\mu_{\rm r} = 1.6, \ \epsilon_{\rm r} = 6.4$$

$$B = 4.5 \times 10^{-2}$$

$$E = ?$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}, v = \frac{1}{\sqrt{\mu \varepsilon}}$$

$$c = \sqrt{\frac{1}{2\pi \varepsilon_0}} = \sqrt$$

$$\frac{c}{v} = \sqrt{\mu_r \varepsilon_r} = \sqrt{1.6 \times 6.4}$$

$$\frac{E}{B} = v = \frac{3 \times 10^8}{\sqrt{1.6 \times 6.4}} = 9.3 \times 10^7 \text{m/s}$$

$$E = 4.5 \times 10^{-2} \times 9.3 \times 10^{7} = 4.2 \times 10^{6}$$

17. Ans (D)

Due to the time varying magnetic field, an induced electric field E is set up, F = qE

Ring starts rotating when the torque of force due to induced electric field becomes equal to the torque of maximum friction force.

$$\Rightarrow$$
 qER = μ mgR

$$qE = \mu mg$$
 (1)

$$E = \frac{R}{2} \frac{dB}{dt}$$

$$E = \frac{R}{2} \times 16t = 8tR \dots (2)$$

From eq. (1) & (2)

$$\mu = \frac{24qR}{mg}$$

At
$$t = 3$$
 sec.

18. Ans (C)

Least count

$$= \frac{\text{Pitch}}{\text{no. of divisions on circular scale}} = \frac{0.5}{100} = 0.005 \text{mm}$$
positive zero error = $3 \times 0.005 = 0.015 \text{ mm}$

Reading =
$$4.5 + 48 \times 0.005 - 0.015 = 4.725$$
 mm

19. Ans (D)

$$Q = (B.E)_P - (B.E)_R$$

= $(104 + 116)(6.4) - (220)(5.6) = 176 \text{ MeV}$

20. Ans (B)

$$\frac{1}{u} + \frac{1}{29} = \frac{7}{20}$$
$$\frac{1}{u} = \frac{7}{120} - \frac{7}{29}$$

$$= \frac{29 \times 7 - 120}{120 \times 29}$$

$$u = 41.93 \text{ cm}$$

PART-1: PHYSICS

SECTION-II

1. Ans (25)

$$T \text{ otal Energy} = \frac{1}{2} \text{stress} \times \text{strain} \times \text{volume}$$

$$= \frac{1}{2} \frac{T}{A} \left[\frac{\Delta l_{cu}}{l_{cu}} \times V_{cu} + \frac{\Delta l_{steel}}{l_{steel}} \times V_{steel} \right]$$

$$= \frac{1}{2} \frac{T}{A} \left[\frac{T}{Y_{cu}A} (Al_{cu}) + \frac{T}{Y_{steel}A} (Al_{steel}) \right]$$

$$= \frac{1}{2} \frac{T^2}{A} \left[\frac{l_{cu}}{Y_{cu}} + \frac{l_{steel}}{Y_{steel}} \right] = 0.25 J$$

2. Ans (1)

$$mg + F_{ST} = F$$

$$mg + 4aS = a^2h\rho_w g$$

$$10 + 4 \times \frac{10}{4} = 10h$$

$$\Rightarrow$$
 h = 2

3. Ans (60)

$$Q = \frac{3}{4}mL$$

$$2Q = mL + ms(50-20)$$

$$\Rightarrow \frac{3}{2}\text{mL} = \text{mL} + 30\text{ms}$$
$$\Rightarrow \frac{L}{2} = 30\text{s}$$

$$\Rightarrow \frac{L}{c} = 60$$

HS-4/11

Ans (256) 4.

$$P \propto T^4, T \propto \frac{1}{\lambda}$$

 $\therefore P \propto \frac{1}{\lambda_0^4} \Rightarrow P' = P\left(\frac{64 \times 4}{81}\right)$

5. Ans (4)

We use
$$\frac{hC}{\lambda} = \phi + 3eV_0$$
 and $\frac{hC}{2\lambda} = \phi + eV_0$

$$\frac{hC}{2\lambda} = 2\phi \implies \phi = \frac{hC}{4\lambda}$$

PART-2: CHEMISTRY SECTION-I

1. Ans (A)

$$H_3C$$
 H_2O
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3

$$\begin{array}{c} CH_3 \\ -H^{\oplus} \end{array} \rightarrow CH_3 - C - CH_2 - \begin{array}{c} 18 \\ OH_2 \end{array}$$

On protonated epoxide, nucleophilic attack occur at α carbon Where more stable carbocation could be formed.

2. Ans (D)

(d) Acetal is formed by cyclisation.

3. Ans (C)

According to Le Chateliar's principle addition of inert gas doesn't effect equilibrium at constant volume.

4. Ans (B)

$$\begin{array}{c}
O_3 \\
(CH_3)_2S
\end{array}$$

$$\begin{array}{c}
HO^- \\
\Delta
\end{array}$$

$$\begin{array}{c}
N_2H_4 \\
N_3OH/\Delta
\end{array}$$

6. Ans (C)

at constant pressure

$$\Delta S = nC_P \, \ell n \frac{T_2}{T_1}$$

8. Ans (C)

Electronic configuration of O_2^- according MOT.

1001CJA101021240039

9. Ans (A)

10. Ans (A)

Z (atomic number)

 $a \rightarrow F$

 $b \rightarrow Q = 17$

 $c \rightarrow Br 35$

 $d \rightarrow I$ 53

17. Ans (D)

According to K_H data from NCERT.

Ans (D) 18.

NCERT statements.

20. Ans (B)

NCERT

PART-2: CHEMISTRY

SECTION-II

1. Ans (4)

Ph—C—CH₃+ 4KOH+3I₂
$$\rightarrow$$
 Ph—COOK + CHI₃ + 3KI + 3H₂O

HS-5/11

2. Ans (5)

3. Ans (492)

MgCO₃. CaCO₃
$$\rightarrow$$
 CaO + 2CO₂ + MgO
 $\frac{1.84}{184} \times 10^3$
 n CO₂ = 2 × 10 = 20
 v CO₂ = 20 × 24.6 = 492

4. Ans (2)

5. Ans (98)

$$Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \longrightarrow 2PbSO_4 + 2H_2O$$

2 electrons are involved for 2 molecules of sulphuric

acid.

PART-3: MATHEMATICS SECTION-I

Hence the n-factor for sulphuric acid is 1.

1. Ans (B)

Family of curves passing through the intersection of the parabola and hyperbola is

$$x^2 - y^2 - a^2 + \lambda (x^2 - y) = 0.$$

i.e.
$$(1 + \lambda)x^2-y^2 - \lambda y - a^2 = 0$$

For this equation to represent a circle

$$1 + \lambda = -1 \Rightarrow$$

$$x^2 + y^2 - 2y + a^2 = 0$$

More over this equation represent a real circle,

if
$$g^2 + f^2 - c > 0$$
.

$$\Rightarrow 0 + 1 - a^2 > 0$$
.

$$\Rightarrow$$
 a \in (-1, 1)

2. Ans (B)

$$SS' = 2ae$$

$$\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 4a^2e^2$$

$$\Rightarrow (x_1 + x_2)^2 - 4x_1x_2 + (y_1 + y_2)^2 - 4y_1y_2$$

$$= 4(a^2 - b^2)$$

$$\Rightarrow (2h)^{2} + (2k)^{2} - 4(x_{1}x_{2} + y_{1}y_{2}) = 4(a^{2} - b^{2})$$

Perpendiculars from focii upon any tangent = b^2

Also
$$x_1x_2 = y_1y_2 = b^2$$

 $\Rightarrow h^2 + k^2 = a^2 + b^2$

$$\Rightarrow$$
 $x^2 + y^2 = 16 + 4 = 20.$

Which is circle.

3. Ans (A)

$$P_n = P_{n-1} P(T) + P_{n-2} P(T) P(H)$$

$$P_{n} = \frac{P_{n-1}}{2} + \frac{P_{n-2}}{4};$$

$$P_{1} = 1, P_{2} = \frac{3}{4}; P_{3} = \frac{3}{8} + \frac{1}{4}$$

$$P_{3} = \frac{5}{8}; P_{4} = \frac{P_{3}}{2} + \frac{P_{2}}{4}; = \frac{8}{16}$$

Alternatively: Clearly $p_1 = 1$ and p_2

$$= 1 - P(H H) = 1 - \frac{1}{4} = \frac{3}{4}$$

Now for $n \ge 3$,

Compute
$$P_3 = \frac{5}{8}$$
; $P_4 = \frac{1}{2}$
Hence $P_2 = \frac{12}{16}$; $P_3 = \frac{10}{16}$; $P_4 = \frac{8}{16}$

$$\Rightarrow$$
 P₂, P₃, P₄ are in A.P.

$$\boldsymbol{P}_n = \underbrace{(1-p)}_{\boldsymbol{T}} p_{n-1} + \underbrace{p}_{\boldsymbol{H}} \underbrace{(1-p)}_{\boldsymbol{T}} p_{n-2}$$

HS-6/11

4. Ans (A)

$$z = \frac{1}{1 - \cos \theta + 2i \sin \theta}$$

$$= \frac{2\sin^2 \frac{\theta}{2} - 2i \sin \theta}{(1 - \cos \theta)^2 + 4\sin^2 \theta}$$

$$= \frac{\sin \frac{\theta}{2} - 2i \cos \frac{\theta}{2}}{4\sin \frac{\theta}{2} \left(\sin^2 \frac{\theta}{2} + 4\cos^2 \frac{\theta}{2}\right)}$$

$$Re(z) = \frac{1}{2\left(\sin^2 \frac{\theta}{2} + 4\cos^2 \frac{\theta}{2}\right)} = \frac{1}{5}$$

$$\sin \frac{2\theta}{2} + 4\cos^2 \frac{\theta}{2} = \frac{5}{2}$$

$$1 - \cos^2 \frac{\theta}{2} + 4\cos \frac{\theta}{2} = \frac{5}{2}$$

$$3\cos^2\frac{\theta}{2} = \frac{3}{2}$$

$$\cos^2\frac{\theta}{2} = \frac{1}{2}$$

$$\frac{\theta}{2} = n\pi \pm \frac{\pi}{4}$$

$$\theta = 2n\pi \pm \frac{\pi}{2}$$

$$\theta \in (0, \pi)$$

$$\left[\frac{\theta = \frac{\pi}{2}}{\int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta - \left[-\cos \theta \right]_{0}^{\frac{\pi}{2}}} \right]$$
$$= -(0 - 1) = 1$$

5. Ans (A)

6. Ans (C)

Given D.E. is

$$2xy \, dy = (x^2 + 1) \, dx + y^2 \, dx$$

$$\Rightarrow \frac{2xy \, dy - y^2 dx}{x^2} = \left(1 + \frac{1}{x^2}\right) \, dx$$

$$\Rightarrow d\left(\frac{y^2}{x}\right) = d\left(x - \frac{1}{x}\right)$$

$$\Rightarrow \frac{y^2}{x} = x - \frac{1}{x} + c$$

$$\Rightarrow y^2 + 1 = x^2 + cx$$

$$\Rightarrow x^2 - y^2 + cx - 1 = 0$$

$$\Rightarrow \frac{(x + (c/2))^2}{1 + c^2/4} - \frac{(y - 0)^2}{1 + c^2/4} = 1$$

Which represents a family of rectangular hyperbola with center on x-axis.

7. Ans (A)

$$C_1 : x^2 + y^2 = r^2$$

$$\therefore C_2 : x^2 + y^2 = 2r^2$$

Let C_3 is $x^2 + y^2 + 2gx + 2fy = 0$

common chord of C_3 and C_2 is

 $gx + fy + r^2 = 0$ and this is a tangent to C_1

$$\Rightarrow \left| \frac{r^2}{\sqrt{g^2 + f^2}} \right| = r$$

$$\Rightarrow g^2 + f^2 = r^2$$

$$\Rightarrow$$
 Locus of $(-g, -f)$ is C_1

8. Ans (C)

Consider
$$F(x) = \cot \left(\cos^{-1}(|\sin x| + |\cos x|) + \sin^{-1}(-|\cos x| - |\sin x|)\right)$$

But $|\sin x| + |\cos x| \Rightarrow [1, \sqrt{2}], \forall x \in \mathbb{R}$
 $\therefore F(x) = \cot(\cos^{-1}(1) + \sin^{-1}(-1))$
 $= \cot\left(0 - \frac{\pi}{2}\right) = 0 = g(3)$
(As $F(x) = 0, \forall x \in D_F$)

9. Ans (D)

(A) Equation of circle is $x^2 + \left(y - \frac{10}{3}\right)^2 = 1$

Consider a general point $(2t^2, 2t^3)$ on the curve $x^3 = 2y^2$, its distance from centre is

$$\ell^2 = 4t^4 + \left(2t^3 - \frac{10}{3}\right)^2 = 4\left[t^4 + \left(t^3 - \frac{5}{3}\right)^2\right]$$

$$\frac{d(\ell^2)}{dt} = 8t^2(t-1)(3t^2 + 3t + 5)$$

 \Rightarrow t = 1 is a point of local minima

$$\Rightarrow \ell_{\min} = \frac{2}{3}\sqrt{13}$$

(B) Given curve is parabola of the form $(x-1)^2 = 4(y-2)$

Let AB is normal chord $A(2t_1 + 1, t_1^2 + 2)$, $B(2t_2 + 1, t_2^2 + 2)$

$$(AB)^2 = (t_1 - t_2)^2 (4 + (t_1 + t_2)^2)$$
 also $t_2 = -t_1 - \frac{2}{t_1}$

$$AB^2 = 16 \left(\frac{\left(1 + t_1^2\right)^3}{t_1^4} \right)$$
; AB^2 is maximum at $t_1^2 = 2$

(C) Let
$$t = -x - \frac{\pi}{6}$$
, $t \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

$$\Rightarrow \tan\left(x + \frac{2\pi}{3}\right) - \tan\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$$

 \Rightarrow cot t + tan t + cos t

$$\Rightarrow \left(\frac{2}{\sin 2t} + \cos t\right) \text{ of decreasing in } \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$$

$$\Rightarrow \text{Greatest value occur at } t = \frac{\pi}{6} \Rightarrow \frac{11\sqrt{3}}{6}$$

(D)
$$(x-2)^2 + (y-2)^2 = 4$$
 (1)

Let equation of line is y = mx put in equation (1)

$$(x-2)^2+(mx-2)^2=4$$

$$\Rightarrow$$
 $x^2(1+m^2) - 4x(1+m) + 4 = 0$

 \Rightarrow Let M and N are (x_1, y_1) and (x_2, y_2)

$$\Rightarrow (x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2 = \frac{32m}{(1 + m^2)^2}$$

10. Ans (A)

f(x) has no critical points in (a, b)

⇒ f is monotonic

 $\Rightarrow \max\{f(x)\} = \max\{f(a), f(b)\}\$

 $\Rightarrow \min\{f(x)\} = \min\{f(a), f(b)\}\$

11. Ans (D)

For idempotent matrix, $A^2 = A$

$$A^{-1} A^2 = A^{-1} A$$

{∵ A is non-singular}

$$A = I$$

⇒ Non-singular idempotent matrix is always a

unit matrix

$$\therefore \quad \ell^2 - 3 = 1 \quad \Rightarrow \quad \ell = \pm 2$$

$$m^2 - 8 = 1 \implies m = \pm 3$$

$$S: \{-4, -3, -2, 0, 2, 3, 4\}$$

$$n^2 - 15 = 1 \implies n = \pm 4$$

$$p = q = r = 0$$

$$(-3-2-4+0+4+2+3)^2$$

$$=2(3^2+2^2+1^2)+2T$$

$$\Rightarrow$$
 T = -29

∴ Absolute value of T is 29.

12. Ans (C)

$$I = \int \left(\frac{2\cos x (\cos x + \sin x)}{1 + \sin 2x} - \frac{2x}{1 + \sin 2x} \right) dx$$

$$I = \int \frac{2\cos x}{\sin x + \cos x} dx - \int \frac{2x}{(\sin x + \cos x)^2} dx$$

After using integration by parts in first part,

$$I = \frac{2x \cos x}{\sin x + \cos x} + c$$

13. Ans (C)

$$h'(0) = \left(\lim_{h \to 0} \frac{h(0+h) - h(0)}{h}\right)$$

$$\left(e^{g(0)}.f^{2}(0)g(0)+e^{g(0)}f^{2}(0)\right)+2e^{g(0)}f(0)f'(0)g(0)$$

For h'(0) to be exist either f(0) = 0 or g(0) = -1

14. Ans (D)

Let
$$A = \{a_1, a_2, a_3,, a_n\}$$

A general element of A must satisfy one of the following possibilities

[here, general element by $a_i (1 \leq i \leq n)]$

(i)
$$a_i \in P$$
, $a_i \in Q$

(ii)
$$a_i \in P$$
, $a_i \notin Q$

(iii)
$$a_i \notin P, a_i \in Q$$

(iv)
$$a_i \notin P$$
, $a_i \notin Q$

Therefore, for one element a_i of A, we have four choices (i), (ii), (iii) and (iv)

Total number of cases for all element = 4^n

And for one element a_i of A, such that $a_i \in P \cup Q$, we have there choices (i), (ii) and (iii)

Number of cases for all elements belong to $P \cup Q = 3^n$ Here, number of ways in which atleast one element of A does not belongs to

$$P \cup Q = 4^{n} - 3^{n}$$

15. Ans (A)

Clearly S_1 is true

$$D \equiv \frac{Z_2 + Z_3}{2}, E \equiv \frac{Z_3 + Z_1}{2}, F \equiv \frac{Z_1 + Z_3}{2}$$

So, arg
$$\left(\frac{(Z_2 + Z_3)/2}{(Z_1 + Z_2)/2}\right) = \arg\left(\frac{(Z_3 + Z_1)/2}{(Z_2 + Z_3)/2}\right)$$

$$\Rightarrow \arg\left(\frac{(Z_2 + Z_3)^2}{(Z_1 + Z_3)(Z_1 + Z_2)}\right) = 0$$

$$\Rightarrow \frac{(Z_2 + Z_3)^2}{(Z_1 + Z_2)(Z_1 + Z_3)} = \text{purely real.}$$

16. Ans (A)

$$\alpha + \beta = -\frac{b}{a} \& \alpha \beta = \frac{c}{a}$$

$$\ \, \boldsymbol{\cdot} \boldsymbol{\cdot} \ A_{n+2} = \boldsymbol{\alpha}^{n+2} + \boldsymbol{\beta}^{n+2}$$

$$= (\alpha + \beta)(\alpha^{n+1} + \beta^{n+1}) - \alpha\beta^{n+1} - \beta\alpha^{n+1}$$

$$= (\alpha + \beta)(\alpha^{n+1} + \beta^{n+1}) - \alpha\beta(\alpha^n + \beta^n)$$

$$=\frac{-b}{a}A_{n+1}-\frac{c}{a}A_n$$

$$\Rightarrow$$
 $aA_{n+2} + bA_{n+1} + cA_n = 0$

17. Ans (B)

Clearly at 6th, 7th and 8th toss there must be tail, head, head respectively and in first five tosses no any two consecutive heads obtained, for first five tosses

Case-I : all 5 "T"
$$\Rightarrow \frac{|5|}{|5|} = 1$$
 way

Case-II: 4 "T"
$$\Rightarrow \frac{5}{|4|1} = 5$$
 way

$$\Rightarrow$$
 ${}^{4}C_{2} = 6$ ways using gap method

$$\Rightarrow$$
 ${}^{3}C_{3} = 1$ way

$$\Rightarrow$$
 P (E) = $\frac{1+5+6+1}{2^8} = \frac{13}{256}$

18. Ans (A)

$$-8 \times {}^{18}C_{15} + 64 \times {}^{18}C_{16} - 2b^{18}C_{17} = 0$$

$$\therefore b = \frac{272}{3}$$

19. Ans (A)

$$f(x) = x^2 + \lambda x + \mu \cos x$$

Let α be the root of $f(x) = 0 \Rightarrow f(\alpha) = 0$

$$\Rightarrow$$
 f(f(α)) = f(0) = 0 (: α is root of f(f(x) = 0 also)

Now
$$f(0) = \mu = 0$$

$$f(x) = x^2 + \lambda x = 0$$

$$\Rightarrow$$
 x = 0, x = $-\lambda$

$$f(f(x)) = f(x^2 + \lambda x) = (x^2 + \lambda x)^2 + \lambda (x^2 + \lambda x)$$

$$= (x^2 + \lambda x) \{x^2 + \lambda x + \lambda\} = 0$$

Will have same root x = 0, $x = -\lambda$

If $x^2 + \lambda x + \lambda = 0$ have no real roots

$$\Rightarrow \lambda^2 - 4\lambda < 0$$

$$\Rightarrow 0 < \lambda < 4 \Rightarrow \lambda = 1,2,3$$

But $\lambda = 0$ is also satisfy

$$(0,0), (1,0), (2,0), (3,0)$$
 are 4

or different (λ, μ) does exist.

20. Ans (B)

(2) We have,

$$a \le x_i \le b$$
; $i = 1, 2,, n$...(i)

$$\Rightarrow \sum_{i=1}^n a \leqslant \sum_{i=1}^n x_i \leqslant \sum_{i=1}^n b$$

$$\Rightarrow$$
 na $\leqslant \sum_{i=1}^{n} x_i \leqslant nb$

$$\Rightarrow a \leqslant \frac{1}{n} \sum_{i=1}^{n} x_i \leqslant b$$

$$\Rightarrow$$
 a \leq X \leq b

$$\Rightarrow$$
 $-b \leqslant -X \leqslant -a$...(ii)

From (i) and (ii) we get

$$a - b \le x_i - X \le b - a$$
; $i = 1, 2,, n$

$$\Rightarrow \left| \mathbf{x}_{i} - \mathbf{X} \right| \leqslant \mathbf{b} - \mathbf{a} \; ; \; i = 1, 2,, n$$

$$\Rightarrow \left(x_{i} - \overline{X}\right)^{2} \leqslant (b - a)^{2}; i = 1, 2, ..., n$$

$$\Rightarrow \sum_{i=1}^{n} \left(x_i - \overline{X}\right)^2 \leqslant n(b-a)^2$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{X} \right)^2 \leqslant (b - a)^2$$

$$\Rightarrow$$
 V ar (X) \leq (b - a)²

HS-10/11

PART-3: MATHEMATICS

SECTION-II

1. Ans (17)

$$\lim_{x\to\infty}\frac{\int\limits_0^x e^{f(t)}dt}{\frac{e^{f(x)}}{g(x)}},\left(\frac{\infty}{\infty}form\right)$$

Applying L-Hopital Rule.

We get our answer.

2. Ans (10)

Total distance AB = $4(1 + \cos \theta + \infty)$

$$\frac{4}{1-\cos\theta}$$

3. Ans (101)

Given
$$\vec{B} \times \vec{C} = x\vec{A} + y\vec{B} + z\vec{C}$$

$$dot \quad with \quad \vec{B} \times \vec{C}$$

$$(\vec{B} \times \vec{C}) \cdot (\vec{B} \times \vec{C}) = x [\vec{A} \ \vec{B} \ \vec{C}]$$

$$x = \frac{\left(\vec{B} \times \vec{C}\right)^{2}}{\left[\vec{A} \ \vec{B} \ \vec{C}\right]}; \quad x = \frac{\vec{B}^{2} \vec{C}^{2} - \left(\vec{B} \cdot \vec{C}\right)^{2}}{\left[\vec{A} \ \vec{B} \ \vec{C}\right]}$$

|||| Iy dot with $\vec{C} \times \vec{A}$ gives $y = \frac{(\vec{B} \times \vec{C}) \cdot (\vec{C} \times \vec{A})}{[\vec{A} \ \vec{B} \ \vec{C}]}$

and dot with $\vec{A} \times \vec{B}$ gives $z = \frac{(\vec{B} \times \vec{C}) \cdot (\vec{A} \times \vec{B})}{[\vec{A} \ \vec{B} \ \vec{C}]}$

$$\begin{bmatrix} \vec{A} & \vec{B} & \vec{C} \end{bmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 1(1+1) - 2(-2-3) = 12$$
$$\vec{B}^2 \vec{C}^2 - (\vec{B} \cdot \vec{C})^2 = (6)(2) - (0) = 12$$

$$\vec{B}^2 \vec{C}^2 - (\vec{B} \cdot \vec{C})^2 = (6)(2) - (0) = 12$$

$$\therefore \quad \mathbf{x} = \frac{12}{12} = 1$$

$$\dot{\mathbf{x}} = \frac{12}{12} = 1$$

$$\mathbf{y} = \frac{\begin{vmatrix} \vec{\mathbf{B}} \cdot \vec{\mathbf{C}} & \vec{\mathbf{B}} \cdot \vec{\mathbf{A}} \\ \vec{\mathbf{C}} \cdot \vec{\mathbf{C}} & \vec{\mathbf{C}} \cdot \vec{\mathbf{A}} \end{vmatrix}}{12} = \frac{\begin{vmatrix} \mathbf{0} & -3 \\ 2 & 1 \end{vmatrix}}{12} = \frac{1}{2};$$

$$z = \frac{\left| \vec{C} \cdot \vec{A} \cdot \vec{C} \cdot \vec{B} \right|}{12} = \frac{1}{2}$$

$$100x + 10y + 8z$$

$$\Rightarrow$$
 100 + 5 - 4 = 109

4. Ans (56)

$$I_{2} = \int_{0}^{1} \left(\frac{x}{7+x}\right)^{\frac{5}{2}} \left(\frac{1-x}{7+x}\right)^{\frac{7}{2}} \frac{dx}{(7+x)^{2}}$$
put $\frac{x}{7+x} = t$

$$I_{2} = \frac{1}{7^{\frac{9}{2}}} \int_{0}^{\frac{1}{8}} (t)^{\frac{5}{2}} (1-8t)^{\frac{7}{2}} dt \text{ and now substitute } 8t = u$$
after simplification $I_{2} = \frac{I_{1}}{8^{\frac{7}{2}} \cdot 7^{\frac{9}{2}}}$

5. Ans (10)

Let $A(\alpha, \beta)$, the equation of the normal to the parabola at $(at^2, 2at)$ is $y + xt = 2at + at^3$

As it passes through (α,β) so at $^3+(2a-\alpha)t-\beta=0$ have three roots t_1,t_2,t_3

$$\Rightarrow$$
 $t_1 + t_2 + t_3 = 0$ (i)

Now P(at₁², 2at₁), Q(at₂², 2at₂) and R(at₃², 2at₃)

Equation of
$$C_1 \equiv (x - \alpha)(x - at_1^2) + (y - \beta)(y - 2at_1) = 0$$

$$C_2 \equiv (x - \alpha) (x - at_2^2) + (y - \beta) (y - 2at_2) = 0$$

Common chord

$$\equiv (t_1 + t_2) x + 2y - \alpha (t_1 + t_2) - 2\beta = 0$$

From (i)

$$\therefore \mathbf{m}_1 = -\left(\frac{\mathbf{t}_1 + \mathbf{t}_2}{2}\right) = \frac{\mathbf{t}_3}{2}$$

Tangent to the parabola at R

$$t_3 y = x + a t_3^2 \Rightarrow m_2 = \frac{1}{t_3}$$

So,
$$m_1 \times m_2 = \frac{1}{2}$$