

Activity Overview

- Using SPENVIS to generate some environment results for a few reference orbits
- Guided example for Mid-Latitude LEO (ex. ISS)
 - Looking at trapped fluxes, dose-depth curves
- On your own: generate environments for couple other orbits
 - Walking around to help with issues and answer questions

1

Guided Activity

Mid Latitude LEO (ISS, Starlink)	
Mission Duration	10 years
Apogee	420 km
Perigee	420 km
Inclination	52.0 deg
RAAN ¹	0 deg
Argument of Perigee	0 deg
True Anomaly	0 deg

¹Right Ascension of the Ascending Node

On your own

By yourself or in a small group, generate results for these other reference orbits

Polar LEO (POES, IRIDIUM)		
Mission Duration	7 years	
Apogee	825 km	
Perigee	825 km	
Inclination	98.8 deg	
RAAN ¹	0 deg	
Argument of Perigee	0 deg	
True Anomaly	0 deg	

HEO (Van Allen Probes, MMS)		
Mission Duration	2 years	
Apogee	70000 km	
Perigee	2500 km	
Inclination	28 deg	
RAAN	0 deg	
Argument of Perigee	0 deg	
True Anomaly	0 deg	

How do the environments at these orbits differ?

¹Right Ascension of the Ascending Node

Mid Latitude LEO

Polar LEO

HEO

