MATH 250A: Groups, Rings, and Fields

Jad Damaj

Fall 2022

Contents

	Groups						
1.1	Augus	t 25	3				
		Groups					
	1.1.2	Review of homomorphisms, isomorphims	5				
	1.1.3	Classify all finite groups up to isomorphim	6				
1.2	Augus	t 30	6				
	1.2.1	Langrange's Theorem	6				
	1.2.2	Normal Subgroups	ç				

Chapter 1

Groups

1.1 August 25

1.1.1 Groups

Two ways to define groups

• concrete: group = symmetries of an object X. Here a symmetry is a bijection $X \to X$ with inverse that preserves "structure" (topology, order, binary operation, ...)

Example 1.1.1. The rectangle has 4 symmetries.

The icossahedron has 20×3 symmetries since after fixing the first face there are 3 possible rotations. Vector space \mathbb{R}^k : $n \times n$ matrices with det $\neq 0$, denoted $GL_n(K)$

• abstract definition:

```
Definition 1.1.2. A group is a set G with a binary operation G \times G \to G by (a,b) \mapsto ab, a \times, a+b, \ldots with "Inverse": G \to G by a \mapsto a^{-1} and "Identity": 1,0,e,I,\ldots satisfying the axioms: 1x = x1 = x x(x^{-1}) = (x^{-1})x = 1 (xy)z = x(yz)
```

We can go from the concrete definition to the abstract one: the binary operation is composition, the identity is the trivial symmetry, inverses given y "undoing' a symmetry.

Is an abstract group the symmetries of something?

Theorem 1.1.3 (Cayley's Theorem). Any abstract group is the group of symmetries of some mathematical object.

Recall group actions:

Definition 1.1.4. Given a group G, a set S, a (left) group action is a map $G \times S \to S$ by $(g, s) \mapsto g(s), gs$ satisfying g(h(s)) = gh(s), 1s = s.

To prove Cayley's theorem we need to find :

1. a set S acted on by G

2. structure on S so that G = all symmetries.

What is S? Take S = G.

Need to define the action of GonG. There are 8 natural ways to do this.

First 4, we defin $4 G \times S \to S$ by

- g(s) = s trivial action
- g(s) = gs group product
- Try g(s) = sg Fails since G not necessarily commutative: $g(h(s)) = (sh)g \neq s(gh) = gh(s)$
- $g(s) = sg^{-1}$ works since $g(h(s)) = g(sh^{-1}) = sh^{-1}g^{-1} = s(gh)^{-1} = gh(s)$
- $g(s) = gsg^{-1}$ adjoint action

The above group action is known as a left group action, We define a right group action in a similar way : $S \times G \to S$ by $(s, g) \mapsto (s)g$, s^g satisfying (sg)h = s(gh), $s^g = s(gh)$.

We now define right group actions of G on G: $S \times G \to G$ by

- $(s,g) \mapsto s$
- $(s,g) \mapsto sg$
- $\bullet \ (s,g) \mapsto g^{-1}s$
- $(s,g)\mapsto g^{-1}sg$

Now we have S=G, S=set acted on by G using left action g(s)=gs - left translation. So we have shown $G\subseteq$ symmetries of S.

Want : G =symmetries of S + "structure". Let structure on S= right action of G on S. We now have 3 copies of G:

- 1. set S = G
- 2. G acts on left on S (G = symmetries of S)
- 3. G acts o the right on S (Structure of S)

Object S = S + right G action

What are the symmetries of this?

Bijection $f: S \to S$ preserving the right G-action. eg. f(sg) = f(s)g

Need to check:

- 1. Left G-action of G preserves the right G-action
- 2. Anything that preserves the right G-action is given by left multiplication of an element of G

Check (1): For $g \in G$ need (gs)h = g(sh), follows by commutativity

Note: left G-action does not preserve right G-action: $g(hs) \neq h(gs)$ in general

Check (2): Suppose $f: S \to S$ preserves the right G-action, f(sh) = f(s)h for all $h \in G$. Need to find $g \in G$ such that f(s) = gs. Take s = 1, f(1) = g1 = g so g = f(1). If g = f(1), then f(s) = gs since gs = (f(1))s = f(1s) = f(s).

So we have G = symmetries of (Set G + right G action)

Example 1.1.5. G=symmetries of rectange, set S=G

We get the graph:

Cayley graph: Point for each $g \in G$ Draw a line from g to h with gf = h.

Goal of Group theory

- 1. Classify all groups
 - Hard but can do special cases: Groups of order 60, finite subgroups of rotations in \mathbb{R}^3 , all finite simple groups, symmetries of crystals
- 2. Given a group G, classify all ways G can act on something (called a representation of G)
 - ullet Permutation representation : G acts on a set S
 - \bullet Linear representation : G acts on a vector space

Example 1.1.6. Poncaire group = symmetries of space time elementary particle: space of states = vector space acted on by G = linear group of G

1.1.2 Review of homomorphisms, isomorphims

Definition 1.1.7. A homomorphism is a map $f: G \to H$ that preserves structure eg. f(gh) = f(g)f(h), f(1) = 1, $f(g^{-1}) = f(g)^{-1}$

Note: last two properties can be derived from the first.

Example 1.1.8.
$$\exp(x) = e^x : (\mathbb{R}, +) \to (\mathbb{R}, \times)$$

 $\exp(x + y) = \exp(x) \exp(y), \exp(0) = 1, \exp(-x) = \exp(x)^{-1}$

Definition 1.1.9. The kernel of a homomorphism f is the set of elements with image the identity.

Example 1.1.10. $\mathbb{R} \to \text{rotation}$ is the plane by $\theta \mapsto \text{rotation}$ by angle θ .

nontrivial kernel : multiples of 2π .

We get the short exact sequence: $0 \to 2\pi\mathbb{Z} \to \mathbb{R} \to \text{rotations} \to 0$

Definition 1.1.11. A sequence of homomorphisms $A \to B \to C$ is exact if Image $A \to B = \text{Kernel } B \to C$

 $0 \to A \to B$ means $A \to B$ is injective $A \to B \to 0$ means $A \to B$ is surjective

Definition 1.1.12. $f: A \to B$ is an isomorphim if it is a homomorphism with an inverse. We say A, B are isomorphic. "basically the same"

Example 1.1.13. $2\pi\mathbb{Z}$ is isomorphic to \mathbb{Z} .

Example 1.1.14. $\mathbb{Z}/4\mathbb{Z}$, integers mod 4 with addition: $\{0, 1, 2, 3\}$ and $(\mathbb{Z}/5\mathbb{Z})^{\times}$, under multiplication: $\{1, 2, 3, 4\}$ are isomorphic.

We map $0 \to 1 = 2^0$, $1 \to 2 = 2^1$, $2 \to 4 = 2^2$, $3 \to 3 = 2^3$ eg. $x \mapsto 2^x$

1.1.3 Classify all finite groups up to isomorphim

Definition 1.1.15. The order of a group G = number of elements in G

Order 1: $e \times e = e$ 1 group - trivial group **Order 2**: 1 group - e, f with $f^2 = e \cong \mathbb{Z}/2\mathbb{Z}$

Order p for p prime: only one group $\mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Definition 1.1.16. For $g \in G$ the order of g is the smallest $n \geq 1$ with $g^n = 1$

Theorem 1.1.17 (Lagrange's Theorem). If $g \in G$, the roder of g divides the order of G.

Example 1.1.18. Suppose |G| = p, (p prime). Pick $g \in G$ with $g \neq e$. Order of g divides |G| = p so is either 1 or p. Can't be one since $g \neq e$. So elements of G 1, g, ..., g^{p-1} are all distinct since $g^p = 1$, $g^x \neq 1$ for $0 \leq x < p$ and if $g^i = g^j$, $g^{i-j} = 1$. Thus, these must be all elements of G.

Order 4:

- Ex : $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle, $(\mathbb{Z}/5\mathbb{Z})^{\times}$, $(\mathbb{Z}/8\mathbb{Z})^{\times}$, symmetries of
- only 2 groups of order 4

1.2 August 30

1.2.1 Langrange's Theorem

Order 4: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle

How to show not isomorphic?

Find some property (preserved by isomorphism) that one group has but the other does not.

Property: Order of elements

- in $\mathbb{Z}/4\mathbb{Z}$, 0, 1, 2, 3 have orders 1, 4, 2, 4 respectively
- all nontrivial elements of the group of symmetries of the rectangle have order 2

Note: counting elements of each order works for small gorups but 2 groups of order 16 with same number of elements of each order

Classification: By Lagrange's theorem, each element has order 1, 2, or 4

- 1. Have an element of order 4: g, group = $\{1, g, g^2, g^3\} \cong \mathbb{Z}/4\mathbb{Z}$ In general, if a group of n elements has an element of order n, it is $\cong \mathbb{Z}/4\mathbb{Z}$
- 2. All elements have order 1 or 2.

Suppose G is finite and has this property. Then G commutes since $(gh)^2 = ghgh = 1 = g^2g^2$ so gh = hg. Note: only true for prime 2, there is a group of order 27 such that all elements have order 1 or 3 but is not commutative

Write group operation as +. G is a vector space over \mathbb{F}_2 (field of 2 elements). So $G \cong \mathbb{F}_2^k$ for osme set $|G| = 2^k$. We get 1 group of order 4 with all elements of order 1 or 2.

Group of order 4 is product of 2 groups, $\mathbb{F}_2^2 = \mathbb{F}_2 \oplus \mathbb{F}_2$.

Suppose G, H are gorups, $G \times H$ is a gorup under operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$

Example 1.2.1. $\mathbb{C}^{\times} \cong \mathbb{R}_{>0} \times S^1$, $z = |z| \cdot e^{i\theta}$

Chinese Remainder Theorem: (m, n) coprime, $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

We have maps $f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $g: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. This gives $h: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. If (m,n)=1, then the map is injective since if h(k)=0, $k\equiv 0 \mod m$, $\mod n$

Infinite Products: $G_1 \times G_2 \times G_3 \times \cdots$, set of all elements $(g_1, g_2, g_3, \dots,)$

Infinite Sums: Like infinite products but all but finitely many of g_1 are 1.

Example 1.2.2. Roots of $1 = e^{2\pi q}$, $q \in \mathbb{Q}$.

Infinite sum $G_2 + G_3 + G_5 + G_7 + G_1 + \cdots$ $(G_p = \text{roots of order } p^n \text{ for some } n \ge 1)$

Symmetry of Platonic Solids

by infinitely of I laterine periods							
Faces	Name	Rotations	${\rm Rotations}+{\rm Reflections}$				
4	${\it tetrahedron}$	$12 = 4 \times 3$	$24 \rightarrow \text{not a product}$				
6	hexahedron (cube)	$24 = 6 \times 4$	48	All except tetrahedron have			
8	$\operatorname{octahedron}$	$24 = 8 \times 3$	$\begin{cases} 48 \\ \text{product } \mathbb{Z}/2\mathbb{Z} \times \text{rotations} \end{cases}$	All except tetrahedron have			
12	${\it dodecahedron}$	$60 = 12 \times 5$	120 $\int \text{product } \mathbb{Z}/2\mathbb{Z} \times \text{rotations}$				
20	icosahedron	$60 = 20 \times 3$	120				
	/-1		,				

symmetry $\begin{pmatrix} 1 & -1 & \\ & -1 & \\ & & -1 \end{pmatrix}$ fo reflections in \mathbb{R}^3 , so it commutes with everything

For the tetrahedron, we have $\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$

Order 5: $\mathbb{Z}/5\mathbb{Z}$

Exercise 1.2.3. Find a graph as small as possible with symmetries $\mathbb{Z}/5\mathbb{Z}$

Order 6: 3 obvious examples: $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, symmetries of the triangle

- $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$
- group of symmetries of the triange is not abelian Permutation Notation: $(5\,2\,1\,3) = \text{function sending } 5 \rightarrow 2, \, 2 \rightarrow 1, \, 1 \rightarrow 3, \, 3 \rightarrow 5$ (Insert Figure) $(1\,2)(2\,3) = (1\,2\,3)$ but $(2\,3)(1\,2) = (1\,3\,2)$

Definition 1.2.4. A subgroup of a group G, is a subset closed under group operations.

Theorem 1.2.5 (Lagrange's Theorem). If H is a subgroup of G, |H| divides |G|.

Special Case: If $H = \text{powers of } g, 1, g, g^2, \dots, g^{n-1}, |H| = |g|$

Construction of subgorups: Pick a set S acted on by G, pick $s \in S$.

H: elements g with gs = s (elements fixing s). Then H is a subgroup.

Lagrange (Converse to Cayley's Thm): If H is a subgroup of G we can find a set acted on by G, such that H=elements fixing $s \in S$.

Given a gorup G, subgroup H. We want to construct: a set S acted on by G.

Consider G=symmetries of triangle, $H = \{(1)(2)(3), (23)\}$ fixing 1.

How do we write 1, 2, 3 in terms of G, H?

Left cosets of $H: 1 \leftrightarrow \text{elements } g \text{ with } g(1) = 1 \text{ (H)}, 2 \leftrightarrow \text{elements } g \text{ with } g(1) = 2 \text{ ((12)}H), 3 \leftrightarrow \text{elements } g \text{ with } g(1) = 3 \text{ ((13)}H)$

Left cosets of H are sets of the from aH (some fixed $a \in G$).

Define $g_1 \approx g_2$ if $g_1 = g_2 h$ for some $h \in H$. This is an equivalence relation:

Reflexivity: $g_1 \approx g_1$ group identity, 1

Symmetry: $g_1 \approx g_2 \rightarrow g_2 \approx g_1$ group inverses, h^{-1}

Transitivity: $g_1 \approx g_2, g_2 \approx g_3 \rightarrow g_1 \approx g_3$ group operation, $h_1 h_2$

 $G = \text{disjoint union of cosets (equivalence classes of } \approx)$ and any two cosets have the same same |H| since we have a bijection $H \to aH$ byb $h \mapsto ah$ with inverse $h \mapsto a^{-1}h$.

So G = # cosets \times size of cosets = # elements of $S \times |$ subgroup of elements fixing s|

Note: We assume S is transisitve - if $s_1, s_2 \in S$. $g(s_1) = s_2$ for some g

Rotations of a dodecahedron: 12 (faces) \times 5 = 20 (vertices) \times 3 = 30 (edges) \times 2 = 60

Conways Group: has order 831555361308172000

Acting on Frames: # 8252375 Group fixing each frame: 1002795171840

Special Cases of Lagrange:

- Fermat: $a^p \equiv a \mod p$ (p prime), $a^{p-1} \equiv 1 \mod p$ (a, p) = 1 Group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ integers modulo p under \times has order p-1. Lagrange: order of a divides p-1 so $a^{p-1} \equiv 1$
- Euler: $a^{\varphi(m)} \equiv 1 \mod n \ (a, m) = 1$ $(\mathbb{Z}/m\mathbb{Z})^{\times} = \text{group of elements coprime to } m, \mod m, \text{ order } = \varphi(m)$

m = 8: $\varphi(m) = 4$, $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1, 3, 5, 7\}$. Euler $a^4 \equiv 1 \mod 8$ (a odd) but we see $a^2 \equiv 1 \mod 8$

Right Cosets: $Ha \leftrightarrow$ elements of a set acted on, on the right by $G. S \times G \rightarrow S$

Are left cosets the same as right cosets? sometimes

Example 1.2.6. Take G = symmetries of triangle. $H = \{1, (23)\}$. Find the left, right costs of H in G.

```
Left: H = \{1(23)\}, (31)H = \{(31), (321)\}, (12)H = \{(12), (123)\}
```

Right: $H = \{1(23)\}, (31)H = \{(31), (123)\}, (12)H = \{(12), (321)\}$

so left cosets \neq right cosets

Definition 1.2.7. Index of H in G, [G:H] = # cosets of H in G.

Left or right cosets? [G:H][H] = |G| when G finite so # left cosets = # right cosets. In gernal, right cosets \rightarrow left cosets by $Ha \mapsto a^{-1}H$ so # left cosets = # right cosets

1.2.2 Normal Subgroups

G/H = set of left coset of G. Is G/H a group?

How to definte $(g_1H) \times (g_2H)$? g_1g_2H

Problem: not well defined - suppose we have g_1, g_2, g_1h_1, g_2h_2 . Want $g_1g_2H = g_1h_1g_2h_2H$

Is $h_1g_2 = g_2(h \in H)$? not in general

Want: $ghg^{-1} \in H$ for all $g \in G$. If this holds, then we can turn G/H into a group.

Definition 1.2.8. If H satisfies the above property, H is called a normal subgroup of G.

Example 1.2.9. $G = \text{symmetries of triangle. } H = \{(23), 1\}. \text{ Is } H \text{ normal?}$

 $(12)(23)(12)^{-1} = (13) \notin H$ so H is not normal

What about $H = \{1, (123), (132)\}$. Is H normal?

H has index 2 in G. $[G:H] = \frac{|G|}{|H|} = 2$. We claim any subset of order 2 is normal.

There are only 2 left cosets: H, things not in H. Similarly for right cosets. So right cosets = left cosets. So H is normal.

Classifying Groups of Order 6

- orders of elements 1, 2, 3, 6
- If element of order 6, group must be cyclic
- Want element of order 3

Lagrange: order of element divides order of group

Converse: If n divides |G|, does G have a subgroup of order n?

No: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has no element of order 4

Yes: if n is prime (Cayley)

So G has elements a, b of order 2,3 and subset $(1, b, b^2)$ has order 2 so it is normal.