CME 307 / MS&E 311: Optimization

LP modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

September 22, 2024

Course survey

You're interested in

- duality
- modeling real-world problems
- hyperparameter and blackbox optimization
- ▶ fairness and ethics in optimization
- ...

Outline

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x > 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$? henceforth assume $A \in \mathbf{R}^{m \times n}$ has full row rank m **Q:** why? how to check?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- \triangleright p* can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$?

henceforth assume $A \in \mathbf{R}^{m \times n}$ has full row rank m

Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and remove

- \triangleright x_i servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient $i, i = 1, \dots, m$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- \triangleright x_i servings of food $j, j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient i, i = 1, ..., m

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

extensions:

ightharpoonup foods come from recipes? x = By

- \triangleright x_i servings of food $j, j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient i, i = 1, ..., m

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- foods come from recipes?
- ensure diversity in diet?

- \triangleright x_i servings of food $j, j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- \triangleright a_{ij} amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient $i, i = 1, \dots, m$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- foods come from recipes?
- ightharpoonup ensure diversity in diet? $y \leq u$

- $ightharpoonup x_j$ servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- \triangleright a_{ij} amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient i, i = 1, ..., m

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- foods come from recipes?
- ightharpoonup ensure diversity in diet? $y \leq u$
- ranges of nutrients?

- \triangleright x_i servings of food j, $j = 1, \ldots, n$
- $ightharpoonup c_j$ cost per serving
- \triangleright a_{ij} amount of nutrient i in food j
- $ightharpoonup b_i$ required amount of nutrient i, i = 1, ..., m

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- foods come from recipes?
- ightharpoonup ensure diversity in diet? $y \leq u$
- ▶ ranges of nutrients? Ax + s = b, $1 \le s \le u$

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points x that satisfy all constraints.

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points *x* that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$${Ax \mid x \geq 0} = {\sum_{i=1}^{n} a_i x_i \mid x \geq 0} = (a_1, \dots, a_n)$$

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points *x* that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, ... a_n]$:

$${Ax \mid x \geq 0} = {\sum_{i=1}^{n} a_i x_i \mid x \geq 0} = (a_1, \dots, a_n)$$

▶ LP is feasible if $b \in (a_1, ..., a_n)$

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points *x* that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, \dots a_n]$:

$${Ax \mid x \geq 0} = {\sum_{i=1}^{n} a_i x_i \mid x \geq 0} = (a_1, \dots, a_n)$$

▶ LP is feasible if $b \in (a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

ightharpoonup Ax = b defines a **hyperplane**

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points *x* that satisfy all constraints. **interpretation: conic hull**

▶ define the **cone** generated by $A = [a_1, \dots a_n]$:

$${Ax \mid x \geq 0} = {\sum_{i=1}^{n} a_i x_i \mid x \geq 0} = (a_1, \dots, a_n)$$

▶ LP is feasible if $b \in (a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

- ightharpoonup Ax = b defines a **hyperplane** (dimension? normal vectors?)
- ▶ define a halfspace $\{x \mid a^T x \geq b\}$

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points *x* that satisfy all constraints. **interpretation: conic hull**

b define the **cone** generated by $A = [a_1, \dots a_n]$:

$${Ax \mid x \geq 0} = {\sum_{i=1}^{n} a_i x_i \mid x \geq 0} = (a_1, \dots, a_n)$$

▶ LP is feasible if $b \in (a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

- \rightarrow Ax = b defines a **hyperplane** (dimension? normal vectors?)
- define a halfspace $\{x \mid a^T x > b\}$
- \blacktriangleright the **positive orthant** x > 0 is an intersection of halfspaces

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

the **feasible set** is the set of points *x* that satisfy all constraints. **interpretation: conic hull**

b define the **cone** generated by $A = [a_1, \dots a_n]$:

$${Ax \mid x \geq 0} = {\sum_{i=1}^{n} a_i x_i \mid x \geq 0} = (a_1, \dots, a_n)$$

▶ LP is feasible if $b \in (a_1, ..., a_n)$

interpretation: intersection of hyperplane and halfspaces

- \rightarrow Ax = b defines a **hyperplane** (dimension? normal vectors?)
- define a halfspace $\{x \mid a^T x > b\}$
- \blacktriangleright the **positive orthant** x > 0 is an intersection of halfspaces

▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 - \theta)y$ for $\theta \in [0, 1]$

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

define the convex hull of a set S:

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets:

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, ..., x_k\}$) some useful convex sets:
 - a hyperplane is convex

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, ..., x_k\}$) some useful convex sets:
 - ▶ a hyperplane is convex
 - a halfspace is convex

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, ..., x_k\}$) some useful convex sets:
 - a hyperplane is convex
 - a halfspace is convex
 - ▶ the intersection of convex sets is convex

- ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

$$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1
ight\}$$

- ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, ..., x_k\}$) some useful convex sets:
 - ► a hyperplane is convex
 - ► a halfspace is convex
 - ▶ the intersection of convex sets is convex
 - ▶ the feasible set $\{x : Ax = b, x \ge 0\}$ is convex

Outline

LP inequality form

another useful form for LP is inequality form

minimize $c^T x$ subject to $Ax \le b$

LP inequality form

another useful form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

interpretation: halfspaces

- $ightharpoonup a_i^T x \le b_i$ defines a halfspace
- $ightharpoonup Ax \le b$ defines a **polyhedron**: intersection of halfspaces
- ▶ LP is feasible if polyhedron $\{x \mid Ax \leq b\}$ is nonempty

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ii}$ amount of resource j used by product i
- \triangleright b_i amount of resource j available
- $ightharpoonup d_i$ demand for product i

```
minimize c^T x
subject to Ax \le b
0 \le x \le d
```

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_j amount of resource j available
- $ightharpoonup d_i$ demand for product i

minimize	$c^T x$
subject to	$Ax \leq b$
	$0 \le x \le a$

extensions:

▶ fixed cost for producing product *i* at all?

LP example: production planning

- \triangleright x_i units of product i
- c_i cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_i amount of resource j available
- \triangleright d_i demand for product i

minimize	$c^T x$
subject to	$Ax \leq b$
	$0 \le x \le a$

extensions:

• fixed cost for producing product i at all? $c^Tx + f^Tz$, $z_i \in \{0, 1\}$, $x_i \leq Mz_i$ for M large

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$ \rightarrow $x \ge 0$

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

minimize $c^T x$
subject to $Ax \le b$
 $Ax \ge b$

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

minimize $c^T x$
subject to $Ax \le b$
 $Ax \ge b$

inequality form to standard form

minimize
$$c^T x$$

subject to $Ax \le b$

standard form to inequality form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

minimize $c^T x$
subject to $Ax \le b$
 $Ax \ge b$

inequality form to standard form

minimize
$$c^T x$$

subject to $Ax \le b$ minimize $c^T (x_+ - x_-)$
subject to $A(x_+ - x_-) + s = b$
 $s, x_+, x_- \ge 0$

Outline

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution, then x^* is an extreme point of the feasible set

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution, then x^* is an extreme point of the feasible set proof: suppose by way of contradiction that x^* is not extreme in the feasible set $F = \{x \mid Ax = b, x \geq 0\}$:

$$x^* = \theta y + (1 - \theta)z \quad \text{for} y, z \in C, \theta \in (0, 1)$$

 $p^*c^Tx^* = \theta c^Ty + (1 - \theta)c^Tz$

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution, then x^* is an extreme point of the feasible set proof: suppose by way of contradiction that x^* is not extreme in the feasible set $F = \{x \mid Ax = b, x \geq 0\}$:

$$x^* = \theta y + (1 - \theta)z \quad \text{for} y, z \in C, \theta \in (0, 1)$$

 $p^*c^Tx^* = \theta c^Ty + (1 - \theta)c^Tz$

by optimality $p^* \le c^T y$ and $p^* \le c^T z$, so $p^* = c^T y = c^T z = c^T x^*$ and all three are optimal.

define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$,

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

fact: if x^* is the unique optimal solution, then x^* is an extreme point of the feasible set proof: suppose by way of contradiction that x^* is not extreme in the feasible set $F = \{x \mid Ax = b, x \geq 0\}$:

$$x^* = \theta y + (1 - \theta)z \quad \text{for} y, z \in C, \theta \in (0, 1)$$

 $p^*c^Tx^* = \theta c^Ty + (1 - \theta)c^Tz$

by optimality $p^* \le c^T y$ and $p^* \le c^T z$, so $p^* = c^T y = c^T z = c^T x^*$ and all three are optimal.

Q: Example of a problem with a non-extreme solution? Does there always exist an extreme solution?

Vertices

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $C \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in C \setminus \{x\}$$

Vertices

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $C \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in C \setminus \{x\}$$

fact: x is a vertex of $C \implies x$ is an extreme point of C

Vertices

define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $C \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$,

$$c^T x < c^T y \quad \forall y \in C \setminus \{x\}$$

fact: x is a vertex of $C \implies x$ is an extreme point of C proof: similar to previous proof

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has a vertex, then some vertex of the feasible set is optimal

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has a vertex, then some vertex of the feasible set is optimal

cases: solution x^* is unique / not unique

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has a vertex, then some vertex of the feasible set is optimal

cases: solution x^* is unique / not unique

▶ unique: so $c^T x < c^T y$ for all $y \in F \setminus \{x\}$

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has a vertex, then some vertex of the feasible set is optimal

cases: solution x^* is unique / not unique

- ▶ unique: so $c^T x < c^T y$ for all $y \in F \setminus \{x\}$
- ▶ not unique: optimal set $X^* = \{x : c^T x = c^T x^*, x \in F\}$ is a polyhedron. It is not empty (a solution exists) and its complement is not empty (optimal value is bounded). So, it has at least one vertex. That vertex is also a vertex of F.

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, \dots, n\}$ of m columns so that A_S is invertible and

$$x_{\mathcal{S}}=A_{\mathcal{S}}^{-1}b, \qquad x_{\bar{\mathcal{S}}}=0, \qquad x\geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- lacktriangle two BFS with S, S' are neighbors if they share m=1 columns: $|S\cap S'|=m-1$

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- ▶ two BFS with S, S' are neighbors if they share m=1 columns: $|S \cap S'| = m-1$

define: active set is set of nonzero variables in x

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- ▶ two BFS with S, S' are neighbors if they share m=1 columns: $|S \cap S'| = m-1$

define: active set is set of nonzero variables in x

Q: how to find a BFS?

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- ▶ two BFS with S, S' are neighbors if they share m=1 columns: $|S \cap S'| = m-1$

define: **active set** is set of nonzero variables in x

Q: how to find a BFS?

A: start at a feasible point; move in a **feasible direction** until you hit another constraint; continue until you reach a BFS

Extreme point \iff vertex \iff BFS

for any nonempty polyhedron $P = \{Ax \leq b\}$ in \mathbb{R}^n , the following are equivalent:

- \triangleright x is an extreme point of P
- x is a vertex of P
- \triangleright x is a BFS of P

Outline

Solving LPs

algorithms:

- enumerate all vertices and check
- ▶ fourier-motzkin elimination
- simplex method
- ellipsoid method
- ▶ interior point methods
- ► first-order methods
- **...**

Solving LPs

algorithms:

- enumerate all vertices and check
- fourier-motzkin elimination
- simplex method
- ellipsoid method
- interior point methods
- ► first-order methods
- **...**

remarks:

- enumeration and elimination are simple but not practical
- simplex was the first practical algorithm; still used today
- ellipsoid method is the first polynomial-time algorithm; not practical
- ▶ interior point methods are polynomial-time and practical
- first-order methods are practical and scale to large problems

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there?

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- \triangleright evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there? n choose m is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ ("exponentially many")

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective c^Tx
- ightharpoonup move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective $c^T x$
- ightharpoonup move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

discuss in groups:

- how to find an initial BFS?
- how to find a neighboring BFS with better objective?
- how to prove optimality?

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
$$\sum_{i=1}^{m} z_i$$
 subject to
$$Ax + Dz = b$$
$$x, z \ge 0$$

where $D \in \mathbf{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for i = 1, ..., m.

- ightharpoonup x = 0, z = |b| is a BFS of this problem
- \blacktriangleright (x,z)=(x,0) is a BFS of this problem $\iff x$ is a BFS of the original problem

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_j = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

construct the jth basic direction

$$Ad = A_S d_S + A_j = 0 \implies d_S = -A_S^{-1} A_j$$

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

construct the jth basic direction

$$Ad = A_S d_S + A_j = 0 \implies d_S = -A_S^{-1} A_j$$

▶ if $x_S > 0$ is **non-degenerate**, then $\exists \theta > 0$ st $x^+ \ge 0$

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

construct the jth basic direction

$$Ad = A_S d_S + A_j = 0 \implies d_S = -A_S^{-1} A_j$$

- ▶ if $x_S > 0$ is **non-degenerate**, then $\exists \theta > 0$ st $x^+ \geq 0$
- how does objective change?

$$c^T x^+ = c^T x + \theta c^T d = c^T x + \theta c_j - \theta c_s^T A_s^{-1} A_j$$

Reduced cost

define **reduced cost** $\bar{c}_j = c_j - c_S^T A_S^{-1} A_j$, $j \notin S$

Reduced cost

define **reduced cost**
$$\bar{c}_j = c_j - c_S^T A_S^{-1} A_j$$
, $j \notin S$

fact:

- ightharpoonup if $\bar{c} \geq 0$, x is optimal
- if x is optimal and nondegenerate $(x_S > 0)$, then $\bar{c} \ge 0$

Outline

Why duality?

- certify optimality
 - ► turn ∀ into ∃
 - use dual lower bound to derive stopping conditions
- new algorithms based on the dual
 - solve dual, then recover primal solution

Duality notation

▶ inner product

$$y^T x = \langle y, x \rangle = y \cdot x = \sum_{i=1}^n y_i x_i$$

conjugate

$$\langle y, Ax \rangle = \langle A^T y, x \rangle$$

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

⇒ can efficiently certify infeasibility of a linear program

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$.

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$.

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$. (opposite direction is similar)

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$ (\mathcal{P})

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$.

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$ (\mathcal{P})

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^T x - \langle y, Ax - b \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$ (\mathcal{P})

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^{T}x - \langle y, Ax - b \rangle$$

$$p^{*} = \inf_{x:Ax=b, x \geq 0} \mathcal{L}(x,y) \geq \inf_{x \geq 0} \mathcal{L}(x,y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x > 0$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^{T}x - \langle y, Ax - b \rangle$$

$$p^{*} = \inf_{x:Ax=b, x \geq 0} \mathcal{L}(x,y) \geq \inf_{x \geq 0} \mathcal{L}(x,y)$$

$$= \inf_{x \geq 0} c^{T}x + \langle y, b - Ax \rangle$$

$$= \langle y, b \rangle + \inf_{x \geq 0} \left(c^{T}x - \langle A^{T}y, x \rangle \right)$$

$$= \langle y, b \rangle + \inf_{x \geq 0} \left(\langle c - A^{T}y, x \rangle \right)$$

 (\mathcal{P})

Lagrange duality, ctd

we have a lower bound on p^* for any y, and a useful one whenever $c + A^T y = 0$. maximize bound:

$$p^* \geq \begin{array}{ll} \text{maximize} & \langle y, b \rangle \\ \text{subject to} & A^T y \leq c \\ \text{variable} & y \in \mathbf{R}^m \end{array}$$

define the dual function

$$g(y) = \begin{cases} \langle y, b \rangle & A^T y \leq c \\ -\infty & otherwise \end{cases}$$

weak duality asserts that $p^* \ge g(y)$ for all $y \in \mathbf{R}^m$.

$$p^* \geq g(y) \quad \forall y \in \mathbf{R}^m$$

 $\geq \sup_{y} g(y) =: d^*$

 $p^{\star} \geq d^{\star}$ dual optimal value

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is $c^T x - b^T y \ge 0$

by weak duality, duality gap is always nonnegative

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is $c^T x - b^T y \ge 0$

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff c^{T}x - b^{T}y = 0$$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is $c^T x - b^T y \ge 0$

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^* = d^* \iff c^T x - b^T y = 0$$

strong duality holds

- ▶ for feasible I Ps
- (later) for convex problems under constraint qualification aka Slater's condition. feasible region has an interior point x so that all inequality constraints hold strictly

Strong duality for LPs

primal and dual LP in standard form:

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

maximize $b^T y$
subject to $A^T y \le c$

claim: if primal LP has a bounded feasible solution x^* , then strong duality holds *i.e.*, dual LP has a bounded feasible solution y^* and $p^* = d^*$

Logic of strong duality proof

 $x \in \mathbf{R}^n$ is optimal for the primal LP with optimal value p^* \downarrow (see next slide) the following linear system has no solution

$$\begin{bmatrix} A & -b \\ c^T & -p^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} A^T & c \\ -b^T & -p^* \end{bmatrix}$$

↓ (Farkas lemma)

$$\begin{bmatrix} A^T & c \\ -b^T & -p^* \end{bmatrix} \begin{bmatrix} -y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$$

 ψ y/σ is dual feasible with optimal value as least as good as p^*

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- lacktriangle if au=0, then $x^\star+x'$ is feasible for LP and $c^T(x^\star+x')< p^\star$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$ar{A}ar{x}=ar{b}, \ ar{x}\geq 0 \qquad \quad \text{or} \qquad \quad ar{A}^Tar{y}\geq 0, \quad ar{b}^Tar{y}< 0$$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

second system is feasible $\implies y/\sigma$ is dual feasible and optimal

Outline

Duality as stopping condition

want to optimize until **primal suboptimality** $p^* - c^T x \ge 0$ or **dual suboptimality** $d^* - b^T y \ge 0$ are small enough. how?

Duality as stopping condition

want to optimize until **primal suboptimality** $p^* - c^T x \ge 0$ or **dual suboptimality** $d^* - b^T y \ge 0$ are small enough. how?

duality gap $c^T x - b^T y \ge 0$ bounds both!

for x feasible, y dual feasible,

$$c^T x \ge c^T x^* \ge b^T y^* \ge b^T y$$

Duality as stopping condition

want to optimize until **primal suboptimality** $p^* - c^T x \ge 0$ or **dual suboptimality** $d^* - b^T y \ge 0$ are small enough. how?

duality gap $c^Tx - b^Ty \ge 0$ bounds both!

for x feasible, y dual feasible,

$$c^T x \ge c^T x^* \ge b^T y^* \ge b^T y$$

in practice: improve primal and dual iterates in parallel until duality gap is small enough

How to use duality to estimate sensitivity?

primal and dual LP in standard form:

$$p^* = \begin{array}{ll} \min & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array} \qquad d^* = \begin{array}{ll} \max & b^T y \\ \text{subject to} & A^T y \le c \end{array}$$

optimal primal and dual solution x^* , y^*

perturbed problem: primal and dual LP in standard form:

$$ilde{p}^{\star} = egin{array}{ll} \min & c^T x \\ \text{subject to} & Ax = b + \epsilon \\ & x > 0 & & \\ \end{array} \qquad \qquad ilde{d}^{\star} = egin{array}{ll} \max & (b + \epsilon)^T y \\ \text{subject to} & A^T y \leq c \end{array}$$

How to use duality to estimate sensitivity?

primal and dual LP in standard form:

$$p^* = \begin{array}{ll} \min & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array} \qquad d^* = \begin{array}{ll} \max & b^T y \\ \text{subject to} & A^T y \le c \end{array}$$

optimal primal and dual solution x^* , y^*

perturbed problem: primal and dual LP in standard form:

$$\tilde{p}^* = \begin{array}{ll} \min & c^T x \\ \tilde{p}^* = \text{ subject to } & Ax = b + \epsilon \\ & x > 0 \end{array} \qquad \qquad \tilde{d}^* = \begin{array}{ll} \max & (b + \epsilon)^T y \\ \text{subject to } & A^T y \le c \end{array}$$

 y^* is feasible for perturbed problem, so

$$\tilde{p}^{\star} = \tilde{d}^{\star} \geq (b + \epsilon)^{T} y^{\star} = d^{\star} + \epsilon^{T} y^{\star}$$

Outline

primal and dual LP, $A \in \mathbb{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P}

if y is optimal for \mathcal{D}_S and feasible for \mathcal{D} , then y is optimal for \mathcal{D}

primal and dual LP. $A \in \mathbf{R}^{m \times n}$. $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \le c$

approximate by using $S \subset \{1, ..., n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost $\bar{c} > 0$, then x_s is optimal for \mathcal{P} otherwise?

if y is optimal for \mathcal{D}_{S} and feasible for \mathcal{D}_{A} , then v is optimal for \mathcal{D}

40 / 44

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P}

ost if y is optimal for \mathcal{D}_S and feasible for \mathcal{D} , then y is optimal for \mathcal{D}

otherwise? find i with $\bar{c}_i = c_i - c_S^T A_S^{-1} a_i < 0$ (primal) or $a_i^T y > c_i$ (dual) and add to S

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S\subset\{1,\ldots,n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$
 $x_S \ge 0$ $\longleftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost if y is optimal for \mathcal{D}_S and feasible for \mathcal{D}_S .

 $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P} then y is optimal for \mathcal{D} otherwise? find i with $\bar{c}_i = c_i - c_S^T A_S^{-1} a_i < 0$ (primal) or $a_i^T y > c_i$ (dual) and add to S

if dual constraints are all binding, $A_S^T y = c_S$, so these conditions are the same!

ld ^{40 /}

Presolve

Often many constraints are redundant or can be simplified. example:

$$\begin{array}{ll} \text{minimize} & x_3\\ \text{subject to} & x_1=1\\ & x_2=x_3-x_1\\ & x_3-x_2\geq 0\\ & x\geq 0 \end{array}$$

a good presolve can often reduce problem from 1000s of variables and constraints down to 10s!

reference: Achterberg, Tobias, et al. "Presolve reductions in mixed integer programming." INFORMS Journal on Computing 32.2 (2020): 473-506.

Outline

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize
$$c^T x$$
 minimize $c^T x$ subject to $Ax + Bz = b$ $x \ge 0, z \ge 0 \in \mathbb{Z}$ minimize $c^T x$ subject to $Ax + Bz = b$ $x, z \ge 0$

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize
$$c^T x$$
 minimize $c^T x$ subject to $Ax + Bz = b$ $x \ge 0, z \ge 0 \in \mathbb{Z}$ minimize $c^T x$ subject to $Ax + Bz = b$ $x, z \ge 0$

example:

$$\begin{array}{ll} \text{maximize} & x \\ \text{subject to} & x \leq z \\ & x \leq 1-z \\ & x \geq 0, z \in \{0,1\} \end{array}$$

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize
$$c^Tx$$
 minimize c^Tx subject to $Ax + Bz = b$ $x \ge 0, z \ge 0 \in \mathbb{Z}$ minimize c^Tx subject to $Ax + Bz = b$ $x, z \ge 0$

example:

$$\begin{array}{ll} \text{maximize} & x \\ \text{subject to} & x \leq z \\ & x \leq 1-z \\ & x \geq 0, z \in \{0,1\} \end{array}$$

draw picture: where is solution of MILP? of LP relaxation?

Branch and bound

given MILP with integer variable z in rectangle R = (I, u), $I \le z \le u$, optimal value $p^*(R)$, solution $z^*(R)$

- ▶ solve LP relaxation to produce lower bound LB(R) $\leq p^*(R)$
- round z to nearest feasible integer z' to produce upper bound $UB(R) \ge p^*(R)$

Branch and bound

given MILP with integer variable z in rectangle R = (I, u), $I \le z \le u$, optimal value $p^*(R)$, solution $z^*(R)$

- ▶ solve LP relaxation to produce lower bound LB(R) $\leq p^{\star}(R)$
- round z to nearest feasible integer z' to produce upper bound $UB(R) \ge p^*(R)$

if
$$LB(R) = UB(R)$$
, then $p^*(R) = LB(R) = UB(R)$ and we are done.

Branch and bound

given MILP with integer variable z in rectangle R = (I, u), $I \le z \le u$, optimal value $p^*(R)$, solution $z^*(R)$

- ▶ solve LP relaxation to produce lower bound LB(R) $\leq p^{\star}(R)$
- round z to nearest feasible integer z' to produce upper bound $UB(R) \ge p^*(R)$

if
$$LB(R) = UB(R)$$
, then $p^*(R) = LB(R) = UB(R)$ and we are done. otherwise, branch

- ▶ split R into two subrectangles $R_1 = (I_1, u_1)$, $R_2 = (I_2, u_2)$ so that $\mathbb{Z} \cap R = (\mathbb{Z} \cap R_1) \cup (\mathbb{Z} \cap R_2)$
- ightharpoonup compute bounds LB(R_1), UB(R_1), LB(R_2), UB(R_2)
- $ightharpoonup R \subset R_1 \cup R_2 \text{ so } \mathsf{LB}(R) \leq \mathsf{min}(\mathsf{LB}(R_1), \mathsf{LB}(R_2))$
- ▶ keep best solution so far $UB \leftarrow min(UB, UB(R_1), UB(R_2))$
- ightharpoonup prune: eliminate rectangle from consideration if LB(R) > UB

draw picture in 2D