Homework 01

DarkSharpness

2023.09.21

目录

T4

 $\forall a,b,c \in A$,显然 $\phi(a) = \phi(a)$ 即 $a \sim a$ 。同时,若 $\phi(a) = \phi(b)$,则 $\phi(b) = \phi(a)$,即 $a \sim b \to b \sim a$ 。最后,若 $\phi(a) = \phi(b)$ 且 $\phi(b) = \phi(c)$,则 $\phi(a) = \phi(c)$,即 $a \sim b \wedge b \sim c \to a \sim c$ 。综上, \sim 是等价关系。

因为 ϕ 是集合 A 到 B 的映射,所以等价类为 $[x] = \{a | \phi(a) = x, a \in A\} (x \in B)$

T8

 $\forall (a,b) \in S$,显然 ab = ba = ab,所以 $(a,b) \sim (a,b)$ 。同时,若 $(a,b) \sim (c,d)$,则 ad = bc 即 bc = ad,即 $(a,b) \sim (c,d) \rightarrow (c,d) \sim (a,b)$ 。 最后,若 $(a,b) \sim (c,d)$ 且 $(c,d) \sim (e,f)$,则 $ad = bc \wedge cf = de$ 。因为 $b,d,f \neq 0$,所以 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$,因此, af = be,即 $(a,b) \sim (c,d) \wedge (c,d) \sim (e,f) \rightarrow (a,b) \sim (e,f)$ 。 综上, \sim 是等价关系。

T5

 $a \oplus b = a + b - 2, \forall a, b \in \mathbb{Z}$ 。 下证 (\mathbb{Z}, \oplus) 构成群。

- 1. 封闭性: $\forall a, b \in \mathbb{Z}$, 显然 $a \oplus b = a + b 2 \in \mathbb{Z}$ 。
- 2. 结合律: $\forall a, b, c \in \mathbb{Z}$, 显然 $a \oplus (b \oplus c) = a \oplus (b + c 2) = a + b + c 4 = (a + b 2) + c 2 = (a \oplus b) \oplus c$
- 3. 单位元: e=2, 显然 $a \oplus e=a+e-2=a$ 。
- 4. 逆元: $\forall a \in \mathbb{Z}$, 显然 $a \oplus (4-a) = a+4-a-2 = 2 = e$ 。 逆元为 4-a。

T12

因为 $\forall x \in G$, $x^2 = e$,由逆元定义有 $x = x^{-1}$ 。因此, $xy = (xy)^{-1} = e$,而 $xyy^{-1}x^{-1} = xex^{-1} = xx^{-1} = e$,所以 $(xy)^{-1} = y^{-1}x^{-1} = yx$,因此 xy = yx 。综上,G 是交换群。

T13

必要性, 若 G 为交换群, 则 $(ab)^2 = abab = aabb = a^2b^2$ 。

充分性,若 $(ab)^2=a^2b^2$,则 abab=aabb ,因此, $a^{-1}ababb^{-1}=a^{-1}aabbb^{-1}$,即 ba=ab 。因此,G 为交换群。

T 15

若 G 为有限群,下证明 $x^3 = e$ 的元素个数是奇数。

首先 e 显然满足。下证 $x^3 = e(x \neq e)$ 的元素个数为偶数。

因为 $x^3=e$,所以 $x^2=x^{-1}$ 。对于任意满足的解 x,存在 x^{-1} 满足 $(x^{-1})^3=(x^2)^3=x^6=ee=e$ 。 若 $x=x^{-1}$,则 $x^2=e$ 。 又因为 $x^3=e$,所以显然 x=e与假设矛盾。所以对于任意 $x\neq e$,若 $x^3=e$,则存在唯一对应的 $x^{-1}\neq x$ 满足 $(x^{-1})^3=e$ 也是满足的解 且 $(x^{-1})^{-1}=x$,即满足的解成 对出现,形如 (x,x^{-1}) 。又因为是有限群,所以对数个数有限,所以 $x^3=e(x\neq e)$ 的元素个数为偶数。 综上, $x^3=e$ 的元素个数是奇数。