

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Prof.dr.sc. Vedran Bilas

Osnove elektroničkih mjerenja i instrumentacije

P9 – Izvori referentnog napona

Sadržaj

- Primjena izvora referentnog napona (IRN)
- Spajanje izvora referentnog napona
- Značajke izvora referentnog napona
- Ukupna pogreška i odabir izvora referentnog napona
- > Tehnologije izvora referentnog napona (Zener, *bandgap*)
- Usporedba izvora referentnog napona, tipični primjeri

Primjena izvora referentnog napona

- Elektronički mjerni lanac funkcijske cjeline
- Izvor referentnog napona (IRN)usporedba s mjernim naponom
 - Čvrsta točka u AD/DA pretvorbi

Dijelovi naponskih regulatora

Spajanje izvora referentnog napona - 1

- Izvori referentnog napona mogu se spojiti kao
 - Serijski (series reference)

Paralelni (shunt reference)

Spajanje izvora referentnog napona - 2

- Osnovne razlike u radu
 - Regulacija napona na izlazu naponom serijskog tranzistora ili odvodnjom viška struje paralelnim tranzistorom
 - Serijski IRN troše manje struje (daju struju kad je potrebna)
 - Paralelni IRN troše ukupnu struju trošila i struju reference
 - Za male struje izlaza (100μA) razlika nije značajna
 - Paralelni IRN omogućuju veću fleksibilnost dizajna (raspon ulaznog napona, dobivanje negativnih napona ili plivajuće reference)
 - Serijski IRN se može isključiti

Značajke izvora referentnog napona

- Temperaturni koeficijent
- Točnost napona
- Šum
- Termička histereza
- Dugotrajna stabilnost
- Regulacija s promjenom opterećenja
- Regulacija s promjenom napajanja
- Radni napon
- Potrošnja

Temperaturni koeficijent IRN

- Promjena U_{REF} s temperaturom izražava se preko temperaturnog koeficijenta (TC) u ppm/°C
 - Raspon 1-100 ppm/°C
 - Temperaturna ovisnost (u pravilu) nije linearna
 - Pri proizvodnji se korigiraju doprinosi višega reda
- Specificira se za temperaturno područje rada komponente (0 do 70°C, -40 do 85°C, -40 do 125°C)
- TC se najčešće izračunava iz razlike najvećeg i najmanjeg napona IRN izmjerenih unutar danog temperaturnog područja

Točnost napona IRN

- > IRN ima deklarirani nominalni napon
- Podatak o točnosti pokazuje koliko se stvarni napon IRN razlikuje od nominalnog pri sobnoj temperaturi i zadanim uvjetima napajanja
- Tipično se zadaje u postocima
 - Raspon vrijednosti 0,01-1%
- Pogreška IRN popravlja se umjeravanjem sustava

Šum IRN

- Šum IRN uzrokuje smanjenje SNR analogno-digitalne pretvorbe (smanjenje efektivne razlučivosti)
- Visokofrekvencijski šum definira se efektivnom vrijednošću napona za frekvencijsko područje 10Hz – 10kHz
 - Utjecaj širokopojasnog šuma ovisi o frekvencijskom pojasu korisnog signala
 - Širokopojasni šum je u pravilu manji problem kod IRN, može se filtrirati
- Niskofrekvencijski šum definira se vrijednošću od vrha do vrha napona šuma u frekvencijskom pojasu 0,1-10Hz
 - Niskofrekvencijski šum je uglavnom 1/f tipa
 - Filtriranje napona ispod 10Hz nepraktično ⇒ NF šum izravno doprinosi ukupnoj pogrešci pretvorbe
 - IRN bez ugrađenog pojačala imaju manji NF šum

Termička histereza IRN

- Termička histereza pomak u vrijednosti referentnog napona koji nastaje zbog jednog ili više termičkih ciklusa
 - Izražava se u ppm
 - Proizvođači određuju "tipičnu" vrijednost
 - Ne provjerava se u proizvodnji
- Termički ciklus definira se kao promjena temperature od sobne do najniže, pa do najviše radne temperature i konačno natrag do sobne temperature
- Iako sama aplikacija nema veliki raspon temperatura, pregrijavanje može nastati kod ugradnje (lemljenja)
- Promjene napona izazvane su mehaničkim naprezanjima poluvodičke pločice u čipu, naprezanjima kućišta i tiskanih pločica
- Komponente u većim kućištima imaju u pravilu manju termičku histerezu

Dugotrajna stabilnost IRN

- Dugotrajna stabilnost pokazuje promjenu napona IRN nakon 1000 sati (6 tjedana) kontinuiranog rada pod nominalnim uvjetima
 - Gruba procjena stabilnosti napona kroz radni vijek sklopa
 - Većina promjene dogodi se u prvih 1000 sati, jer se dugotrajna stabilnost mijenja logaritmički s vremenom
 - Ne provjerava se u proizvodnji
- Mehanička naprezanja izazivaju pomak referentnog napona (voditi računa o izboru kućišta i položaju na PCB)

Regulacija napona IRN

- Regulacija izlaznog napona IRN definira se
 - u odnosu na promjenu struje opterećenja strujna regulacija (load regulation)
 - u odnosu na promjenu napona napajanja IRN naponska regulacija (line regulation)

Radni napon i potrošnja IRN

- U slučajevima kada je potrošnja kritičan parametar obično je bolji izbor serijski IRN
 - Tipične mirne struje od 25μA do 250μA, najmanje oko 1μA
 - Smanjenje struje ima za posljedicu smanjenje preciznosti (porast TC i netočnosti) i porast šuma
 - Serijski IRN imaju mogućnost isključivanja i time smanjenja potrošnje
- Serijskei IRN mogu raditi s vrlo malim razlikama napona ulaza i izlaza (dropout), reda 200mV
- Kod paralelnih je problem da mala razlika napona traži mali serijski otpor, a to za posljedicu ima veliku promjenu struje s promjenom ulaznog napona
- IRN se često koriste u impulsnom režimu, važno da imaju odgovarajući kondenzator

Odabir IRN

- Odabir IRN prema kriterijima aplikacije
 - Nominalni U_{REF}
 - Raspon ulaznog napona (napajanja)
 - Izlazna struja
 - Potrošnja
 - Veličina kućišta
- Sljedeći kriterij
 - Točnost AD pretvorbe
 - Točnost AD pretvorbe mjerenje u LSB
 - Pretvorba LSB ppm

$$LSB(ppm) = 10^6 \left(\frac{1}{2}\right)^n$$

8 bita ~ 3906ppm, 10 bita ~ 977ppm, 16 bita ~ 15ppm

Točnost AD pretvorbe

- Pogreška referentnog napona ima za posljedicu pogrešku pojačanja (osjetljivosti) ADP
- Može prouzročiti gubitak dinamičkog područja za ulazne signale blizu napona pune skale
- Pogreška je najveća na gornjem rubu prijenosne karakteristike
- Pri odabiru IRN, dobro je ocijeniti dozvoljenu pogrešku preko najveće pogreške pojačanja

Ukupna pogreška IRN – 1

- Konzervativna procjena (zbroj pojedinačnih vrijednosti) ili efektivna vrijednost uz pretpostavku statističke neovisnosti
- Kod nekih pogrešaka jamči se najveća vrijednost (TC, inicijalna točnost, naponska i strujna regulacija)
- \triangleright Procjena pogreške za najgori slučaj, p_{garan}
 - TC u najvećem broju slučajeva dominira nad ostalim pogreškama

$$p_{temp} = TC \left(T_{\max} - T_{\min} \right)$$
 $p_{load} = load _reg \left(I_{load \max} - I_{load \min} \right)$
 $p_{line} = line _reg \left(U_{in \max} - U_{in \min} \right)$
 $p_{garan} = p_{in _acc} + p_{temp} + p_{load} + p_{line}$

Ukupna pogreška IRN – 2

- Ostale pogreške dane su kao "tipične" vrijednosti (šum, termička histereza, dugotrajna stabilnost)
- Najgori slučaj za histerezu i stabilnost određuje se množenjem tipične vrijednosti s 3(4)
- Utjecaj NF šuma (0,1 do 10Hz) određuje se uz pretpostavku da se U_{REF} u 10 sekundi promjeni za vrijednost šuma od vrha do vrha
 - Pogrešku u ppm treba pretvoriti u LSB za dani ADP

$$p_{therm_hist} \approx 3(tip_therm_hist)$$
 $p_{longterm_stab} \approx 3(tip_longterm_stab)$
 $p_{LF_noise} \approx 10^6 \left(\frac{U_{noise_pp}(0,1-10Hz)}{U_{REF}} \right)$

$$p_{tot} \approx p_{garan} + p_{therm_hist} + p_{longterm_stab} + p_{LF_noise}$$

- Zener dioda radi u području proboja (zaporna polarizacija)
 - Tunelski proboj (<5V)
 - Lavinski proboj (>5V)
- Struktura diode slična signalnoj diodi, razlika u koncentraciji primjesa
- Probojni napon ovisi o otpornosti pn spoja (koncentraciji primjesa)
 - Kod komercijalnih dioda u rasponu 2-200V, tolerancije 5%
- Snaga u rasponu 0,25W-50W

- "Dobra" Zener dioda
 - Mala reverzna struja do proboja
 - Mala promjena napona sa strujom nakon proboja
- Minimalna radna struja
 - Određena stabilnošću napona
- Maksimalna radna struja
 - Određena dozvoljenom disipacijom snage na diodi
- Dinamički otpor Zener diode
 - $r_z = \Delta u_z / \Delta i_z$
 - Ovisi o radnoj točki
 - Specificira se za struju na sredini radnog područja

- Strmina karakteristike (dinamički otpor) ovisi o radnom naponu (koncentraciji primjesa)
 - Dinamički otpor je najmanji oko probojnog napona 5V

- Porastom temperature probojni napon
 - pada za U_z<5V (tunelski proboj)
 - raste za U_z>5V (lavinski proboj)
- Temperaturni koeficijent (TC)
 Zenerovog napona
 - $k_T = \Delta Uz/\Delta T$

21

- Spajanje Zenerove diode
- Izlazni napon

$$U_{O} = U_{UL} \frac{r_{z}}{R_{S} + r_{z}} + U_{Z} \frac{R_{S}}{R_{S} + r_{Z}} - I_{L} \left(\frac{R_{S} r_{Z}}{R_{S} + r_{Z}} \right)$$

Naponska regulacija

Ovisnost o temperaturi

Strujna regulacija

- Za stabilan izlazni napon:
 - r₇ <<
 - R_S>> (ograničenje I_{zmin}, snaga)
 - $U_{UL} \approx (2-4) U_7$
 - $I_{zmin} \approx 1/4 I_{zmax}$

- Spoj Zenerove diode s operacijskim pojačalom
- Kompenzacija promjena napona napajanja i tereta
- Nije temperaturno kompenzirana

- Temperaturna kompenzacija
- Ideja poništavanje temperaturnih koeficijenata Zenerove i signalnih dioda
 - Konačni temperaturni koeficijent do 1ppm/°C (5-100)
- Problem raste radni napon
- Drugi pristupi temperaturnoj kompenzaciji
 - Temperaturna stabilizacija
 - Termostatirano zagrijavanje na visoku temperaturu 90°C

Temperaturna ovisnost napona pn spoja - 1

Napon $U_D = U_T \ln \left(\frac{I_D}{I_C} \right)$

▶ U_T, naponski ekvivalent temperature

 $U_T = \frac{kT}{\sigma}$

I_s, struja zasićenja

- $I_S = BT^3 \exp\left(-\frac{U_{GO}}{U_{\tau}}\right)$
- k, Boltzmannova konstanta
- q, naboj elektrona
- T, apsolutna temperatura
- B, konstanta
- U_{GO}=1,205V, širina zabranjenog pojasa (bandgap) Si

25

Temperaturna ovisnost napona pn spoja - 2

Temperaturni koeficijent (TC)

$$TC(U_T) = \frac{k}{q} = 0,0862 \frac{\text{mV}}{\text{°C}}$$

$$TC(U_D) = \frac{\partial U_D}{\partial T} = \frac{\partial U_T}{\partial T} \ln \left(\frac{I_D}{I_S} \right) + U_T \frac{\partial \left[\ln \left(\frac{I_D}{I_S} \right) \right]}{\partial T}$$

$$TC(U_D) = \frac{U_D}{T} - U_T \frac{\partial \left(3 \ln T - \frac{U_{GO}}{U_T}\right)}{\partial T} = -\left(\frac{U_{GO} - U_D}{T} + \frac{3k}{q}\right)$$

- \rightarrow T=25°C, U_D=650mV
- ightharpoonup TC(U_D) \approx -2,1mV/ $^{\circ}$ C
- Ideje za temperaturnu kompenzaciju

Temperaturna ovisnost napona pn spoja - 3

Spojiti napon diode (tranzistora) s negativnim temperaturnim koeficijentom (CTAT Complementary To Absolute Temperature) s izvorom koji ima pozitivan temperaturni koeficijent (PTAT *Proportional To Absolute Temperature*)

$$U_{BG} = KU_T + U_{BE}$$
 $TC(U_{BG}) = KTC(U_T) + TC(U_{BF}) = 0$

$$K = -\frac{TC(U_{BE})}{TC(U_{T})} = \frac{U_{GO} - U_{BE}}{U_{T}} + 3$$

$$U_{BG} = U_{GO} + 3U_T$$
 $U_{BG} (25^{\circ}C) \approx 1,282V$

$$U_{BG}$$
 (25°C) $\approx 1,282V$

Napon osnovne strukture i IRN *bandgap* tipa

27

IRN bandgap tipa

$$\begin{split} I_2 &= \frac{U_{BE1} - U_{BE2}}{R_3} = \frac{\Delta U_{BE}}{R_3} \\ I_{CE} &= I_S \exp\left(\frac{U_{BE}}{U_T}\right) \\ U_{BE} &= U_T \ln\frac{I_C}{I_S} \rightarrow \Delta U_{BE} = U_T \ln\frac{I_{CE1}}{I_{CE2}} \\ I_{S1} &= I_{S2}, \beta \succ 1 \\ I_{CE2} &\approx I_2 = \frac{U_T}{R_3} \ln\frac{I_{CE1}}{I_{CE2}} \end{split}$$

$$U_K = R_2 I_{C2} = U_T \frac{R_2}{R_3} \ln \frac{I_{C1}}{I_{C2}} \approx 23,2U_T$$

$$U_{REF} = U_{BE} + U_{K} = 0,6 + 23,2 \times 26 \cdot 10^{-3} = 1,203V$$

Usporedba Zener / bandgap

Zener (<i>buried</i>)	Bandgap
napajanje >5V (napon 5-7V, napajanje 10V)	napajanje <5V
radna struja 1-10mA	radna struja >100μA
nizak šum @ veliku snagu	visok šum @ veliku snagu • šum se skalira s naponom IRN • smanjenje NF šuma ⇒ povećati radne struje i povećati tranzistore (veća potrošnja i kućišta)
dugotrajna stabilnost i temperaturno klizanje - dobro	dugotrajna stabilnost i temperaturno klizanje - prosječno
histereza - prosječna	histereza – prosječna
točnost 0,01-0,1%	točnost 0,05-1%

Primjer - Zener IRN – AD587

SPECIFICATIONS

 $T_A = 25$ °C, $V_{IN} = 15$ V, unless otherwise noted.

Table 1.

		AD587		
Parameter	Min	Тур	Max	Unit
OUTPUT VOLTAGE	9.990		10.010	V
OUTPUT VOLTAGE DRIFT ¹				
0°C to 70°C			20	ppm/°C
−55°C to +125°C			20	ppm/°C
GAIN ADJUSTMENT	+3			%
	-1			%
LINE REGULATION ¹				
$13.5 \text{ V} \le +\text{V}_{IN} \le 36 \text{ V}$				
T_{MIN} to T_{MAX}			±100	μV/V
LOAD REGULATION ¹				
Sourcing 0 mA < lout < 10 mA				
T _{MIN} to T _{MAX}			±100	μV/mA
Sourcing $-10 \text{ mA} < l_{OUT} < 0 \text{ mA}^2$				'
T_{MIN} to T_{MAX}			±100	μV/mA
QUIESCENT CURRENT		2	4	mA
POWER DISSIPATION		30		mW
OUTPUT NOISE				
0.1 Hz to 10 Hz		4)	μV p-p
Spectral Density, 100 Hz		100		nV/√Hz
LONG-TERM STABILITY		±15		ppm/1000 hr
SHORT-CIRCUIT CURRENT-TO-GROUND		30	70	mA
SHORT-CIRCUIT CURRENT-TO-+VIN		30	70	mA
TEMPERATURE RANGE				
Specified Performance (J, K)	0		70	∘c
Operating Performance (J, K) ³	-40		+85	°C
Specified Performance (U)	-55		+125	∘c
Operating Performance (U) ³	-55		+125	°C

Primjer - bandgap IRN - REF30XX

ELECTRICAL CHARACTERISTICS

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +125°C.

At T_A = +25°C, I_{LOAD} = 0mA, V_{IN} = 5V, unless otherwise noted.

		REF30xx			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
REF3030 – 3.0V					
OUTPUT VOLTAGE V _{OUT}		2.994	3.0	3.006 0.2	V %
NOISE Output Voltage Noise Voltage Noise	f = 0.1Hz to 10Hz f = 10Hz to 10kHz		33 94		μVp-p μVrms
LINE REGULATION	V_{REF} + 50mV $\leq V_{IN} \leq 5.5V$		120	375	μV/V

REF3012, REF3020, REF3025, REF3030, REF3033, REF3040					
OUTPUT VOLTAGE TEMP DRIFT ⁽²⁾ dV _{OUT} /dT	0° C \leq T _A \leq +70 $^{\circ}$ C -30 $^{\circ}$ C \leq T _A \leq +85 $^{\circ}$ C -40 $^{\circ}$ C \leq T _A \leq +85 $^{\circ}$ C -40 $^{\circ}$ C \leq T _A \leq +125 $^{\circ}$ C		20 28 30 35	50 60 65 75	ppm/°C ppm/°C ppm/°C ppm/°C
LONG-TERM STABILITY	0-1000h 1000-2000h		24 15		ppm ppm
LOAD REGULATION ⁽³⁾ dV _{OUT} /dI _{LOAD}	$0mA < I_{LOAD} < 25mA,$ $V_{IN} = V_{REF} + 500mV^{(1)}$		3	100	μV/mA
THERMAL HYSTERESIS(4) dT			25	100	ppm
DROPOUT VOLTAGE $V_{IN} - V_{OUT}$			1	50	mV
SHORT-CIRCUIT CURRENT I _{SC}			45		mA
TURN ON SETTLING TIME	to 0.1% at V_{IN} = 5V with C_{I} = 0		120		μs
$\begin{array}{ccc} \textbf{POWER SUPPLY} \\ \textbf{Voltage} & \textbf{V}_{\text{S}} \end{array}$	I _L = 0	V _{REF} + 0.001 ⁽⁵⁾		5.5	V
	-40°C ≤ T_A ≤ +125°C	V _{REF} + 0.05	42	5.5 50	V μΑ
Over Temperature	-40° C \leq T _A \leq +125 $^{\circ}$ C			59	μ Α
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance		-40 -40 -65		+125 +125 +150	ô ô ô
I nermal Resistance SOT23-3 Surface-Mount $\theta_{ m JC}$ $\theta_{ m JA}$			110 336		°C/W °C/W

Primjer - bandgap IRN - REF30XX

ELECTRICAL CHARACTERISTICS

Boldface limits apply over the specified temperature range, $T_{\Delta} = -40^{\circ}$ C to +125°C.

At T_A = +25°C, I_{LOAD} = 0mA, V_{IN} = 5V, unless otherwise noted.

			REF30xx		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	REF3012 ⁽¹⁾ - 1.25	5V			
OUTPUT VOLTAGE Initial Accuracy	V _{OUT}	1.2475	1.25	1.2525 0.2	V %
NOISE Output Voltage Noise Voltage Noise	f = 0.1Hz to 10Hz f = 10Hz to 10kHz		14 42		μVp-p μVrms
LINE REGULATION	$1.8V \le V_{IN} \le 5.5V$		60	190	μV/V
	REF3020 - 2.04	8			
OUTPUT VOLTAGE Initial Accuracy	V _{OUT}	2.044	2.048	2.052 0.2	V %
NOISE Output Voltage Noise Voltage Noise	f = 0.1Hz to 10Hz f = 10Hz to 10kHz		23 65		μVp-p μVrms
LINE REGULATION	V_{REF} + 50mV $\leq V_{IN} \leq 5.5V$		110	290	μV/V
	REF3025 - 2.5V	•			
OUTPUT VOLTAGE Initial Accuracy	V _{OUT}	2.495	2.50	2.505 0.2	V %
NOISE Output Voltage Noise Voltage Noise	f = 0.1Hz to 10Hz f = 10Hz to 10kHz		28 80		μVp-p μVrms
LINE REGULATION	V_{REF} + 50mV $\leq V_{IN} \leq 5.5V$		120	325	μV/V