Hoja 3

Espacios euclídeos y hermíticos III.

Proyecciones. Proyecciones ortogonales. Aplicaciones adjuntas.

1. Calcula la proyección sobre la recta V_1 dada por las ecuaciones $\{x+y+z=0, x-y=0\}$ en la dirección del plano vectorial V_2 generado por los vectores $w_1=(1,0,1)$ y $w_2=(1,1,0)$. Escribe la proyeccion sobre el plano V_2 en la dirección de la recta V_1 .

2. En \mathbb{R}^4 con el producto escalar usual, determina las ecuaciones de la proyección ortogonal sobre el subespacio vectorial generado por los vectores (1, 1, -1, 0) y (0, 0, 2, 1).

3. Calcula la expresión analítica de la proyección ortogonal sobre la recta de \mathbb{R}^3 (con producto escalar usual) $l = \{x = y = z\}$. Calcula la proyección ortogonal sobre l del vector (0, 1, 2).

4. Encuentra la expresión en coordendas de la proyección ortogonal (con respecto al producto hermítico usual) sobre la recta $l = \{x - (1+i)z = 0, y = 0\}.$

5. En \mathbb{R}^3 se considera el producto escalar con matriz en la base canónica

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 5 \end{array}\right).$$

Calcula la proyección ortogonal del vector con coordenadas (1,1,1) sobre el plano $\{y+z=0\}$.

6. Sea $V = M_2(\mathbb{C})$ y el producto hermítico $\langle A, B \rangle = \text{traza}(A\overline{B}^T)$. Encuentra la expresión en coordenadas de la proyección ortogonal sobre el plano generado por $\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $\begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}$.

7. Calcula la aplicación adjunta de:

a) h(x, y, z) = (x + y + z, x + 2y + 2z, x + 2y + 3z), con el producto escalar usual de \mathbb{R}^3 .

b) $h(x_1, x_2) = (x_1 + x_2, x_1 + 2x_2)$ con el producto escalar de \mathbb{R}^2 dado por

$$\phi((x_1, x_2), (y_1, y_2))) = x_1 y_1 + (x_1 + x_2)(y_1 + y_2)$$

8. Considerando el producto escalar usual en \mathbb{R}^3 estudia si la aplicación A es autoadjunta cuando su matriz asociada en la base $\mathcal{B} = \{(1,1,0),(1,0,1),(1,2,0)\}$ es

$$\begin{pmatrix} -4 & -5 & -6 \\ 4 & 2 & 7 \\ 3 & 5 & 4 \end{pmatrix}.$$

9. Diagonalizar en una base ortonormal cada una de las siguientes aplicaciones demostrando en primer lugar que son autoadjuntas:

a) $A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por A(x,y) = (2x + y, 2y + x).

b) $A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por A(x, y, z) = (y + z, x + z, x + y).

- 10. Sea $V = M_2(\mathbb{R})$ con el producto escalar $\langle A, B \rangle = \text{traza}(AB^T)$. Sea $f : \mathbb{M}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ la aplicación que a cada matriz A le asocia su traspuesta, i.e., $f(A) = A^T$. Demuestra que existe una base ortonormal en la que f es diagonalizable. Encuentra esa base.
- 11. Sea V un espacio vectorial euclídeo o hermítico de dimensión finita y sean $I_V, f, g: V \to V$ donde I_V es la identidad y f, g son dos endomorfismos cualesquiera. Demuestra que:
- a) $I_V^* = I_V$;
- **b)** $(f^*)^* = f;$
- c) $(f+g)^* = f^* + g^*$;
- **d)** $(f \circ g)^* = g^* \circ f^*;$
- e) Si f es biyectiva, entonces $(f^{-1})^* = (f^*)^{-1}$;
- $\mathbf{f)} \ (\operatorname{Im} \ f)^{\perp} = \operatorname{Ker}(f^*);$
- \mathbf{g}) $(\operatorname{Ker} f)^{\perp} = \operatorname{Im}(f^*).$
- 12. Sea V un espacio vectorial sobre \mathbb{K} de dimensión finita. Se dice que una aplicación lineal $P:V\to V$ es una proyección si $P^2=P$. El subespacio Ker P es la dirección de la proyección y el subespacio Im P es el subespacio sobre el que se proyecta.
 - a) Demuestra que $V = \operatorname{Ker} P \oplus \operatorname{Im} P$.
- b) Demuestra que una proyección siempre es diagonalizable.
- c) Si V es euclídeo o hermítico, se dice que una proyección es ortogonal si ker P es ortogonal a ImP. Fijado un espacio de proyección $W \subset V$, podemos considerar el conjunto X de todas las proyecciones $P: V \to V$ con Im P = W. Demuestra que las proyecciones ortogonales minimizan la longitud del vector u P(u), i.e., si T es la proyección ortogonal sobre W demuestra que

$$||u - T(u)|| = \min\{||u - P(u)|| : P \in X\}.$$

d) Demuestra que P es una proyección ortogonal si y sólo si es una proyección autoadjunta. Sugerencia: $Prueba\ que\ \langle Pu,v\rangle = \langle Pu,Pv\rangle$.