TriMedia Foundation class

(typical schedule - individual classes may vary)

	Day 1	Day 2	Day 3	Day 4	
	Software Architecture	System On Chip Architecture	CPU core architecture	Optimization	
9.30 am	Preparation	Preparation Review questions on previous day's work			
10.00 am	System architecture	Basics of digital video	TriMedia CPU core architecture	Scheduling and Profiling	
11.00 am	Software Architecture (TSSA 1.6)	TriMedia peripheral architecture	TriMedia compilation tools	Cache Optimizations	
12.00 am		Morning review questions			
12.30 pm		lunch			
1.00 pm		Extension work			
1.30 pm	Software Architecture (TSSA 1.5)	pnx1300 System On Chip architecture	TriMedia cache architecture	Scheduling Optimizations	
2.30 pm		Practical exercises, discussion and questions			
3.00 pm	Software Architecture (IADK / MPTK)	pnx1500 System On Chip architecture	TriMedia cache architecture	Custom and SIMD Optimizations	
4.00 pm	Software	pnx1500 System	Discussion	Certificate presentations	
4.30 pm	Architecture (SDE2)	On Chip architecture			

Day 1: System architecture

Software Architecture

Day 2: System On Chip Architecture

Day 3: CPU core architecture

Day 4: Optimization

1. TriMedia System Architecture

Introducing the overall TriMedia system as an integrated System On Chip and Software Architecture: explaining its aims and the resulting design choices; outlining the main features of the overall system and of its software and hardware elements.

- a. TriMedia System an architecture for Media processing
- b. Characteristics of media processing systems
- c. The Universal Home API
- d. TriMedia Software Architecture
- e. Media Processing Toolkit
- f. Architectural choices in media processing systems
- g. Matching System on Chip to application needs
- h. Mapping the application to the architecture
- i. TriMedia core architecture
- j. Compilation tools
- k. Peripheral architecture

2. TriMedia Software Architecture

In-depth look at the TriMedia Software Architecture, including TSSA 1.6, 1.5 and 1.4 versions: outlining the history of its development and resulting legacy issues; explaining and clarifying the different programming models of different versions, and the intention and implementation of different layers within each version.

a. TSSA 1.6 software architecture

Introducing the TSSA 1.6 programming model including its choice of COM-like components and interfaces; explaining the concepts and implementation of component connection; and legacy issues for earlier (TSSA 1.5) components.

i. Components

TSSA 1.6 programming model of COM-like components and interfaces.

- 1. Contracts
- 2. Interfaces
- 3. Interface Suites
- 4. Interface names
- 5. Notifications

ii. tmCOM

Introducing the TSSA 1.6 COM implementation.

- 1. tmCom interface call
- 2. tmCom function tables
- 3. tmCom interfaces
- 4. tmCom creating components

iii. Connections

Explaining the concepts and implementation of connections in TSSA 1.6 including pins; queues and packet pools; the connection toolkit; and legacy issues for wrapping TSSA 1.5 components

- 1. Connection Manager
- 2. Component pins
- 3. Packet queues
- 4. Packet pools
- 5. Packet pool streaming to a queue
- 6. Packet streaming from a gueue
- 7. Connection toolkit
- 8. Streaming interfaces
- 9. Connection sequence
- 10. Data Packets
- 11. Clocks
- 12. Synchronization
- 13. Creating components
- 14. TSSA 1.5 wrapper
- 15. TSSA 1.5 wrapper creating a component
- 16. TSSA 1.5 wrapper setting up a component

b. TSSA 1.5 software architecture

Legacy TSSA 1.5 software architecture, including Operating and Application Layers; InOutDescriptors as connecting components; and examples of usage.

- i. TSSA 1.5 Software Architecture
 - 1. TSSA history
 - 2. Software Architecture Layers
 - 3. Software Architecture modes
- ii. Operating Layer
 - 1. Software Components OL
 - 2. TSA OL example
 - 3. TSA OL example component
 - a. TSA OL component configuration functions
 - b. TSA OL component connection
 - c. TSA OL component connection checking
 - d. TSA component callback functions
 - e. TSSA 1.5 component connection
 - 4. Data packets
 - a. Data formats
 - b. Video data format
 - c. Audio data format
 - 5. IADK example exolViVo
 - a. IADK example exolViCopyIOVo

c. Integrated Appliance Developer's Kit

Introduction to the IADK and MPTK component collections, through examples of mini-applications showing different aspects of usage.

- i. IADK example video encode and decode system
 - 1. a test harness for video codecs
- ii. IADK example exolVCodec
- iii. DV decoder (digital video camera)
 - 1. components with multiple inputs and outputs
- iv. MPEG-2 decoding
 - 1. dynamic disconnection and reconnection
- v. MPEG-2 transport stream
 - 1. in-place components
- vi. MPEG-4 decoding
 - 1. Audio / video synchronization

vii. pnx1500 peripheral components

Components for pnx1500 peripherals, including VIP and QVCP.

- 1. exolVrendVip example
- 2. exolVrendVip configuration
- 3. VcapVip component
- 4. pnx1500 video digitizer
- 5. VrendGfxVo component
- 6. pnx1500 video renderer

d. Operating System Abstraction

Concepts and implementation of Operating System Abstraction including legacy issues; and how pSOS+ is used.

- i. OSAL background
- ii. tmos
- iii. tmosal
- iv. pSOS+ operating system

e. Application Layer

Explanation of the purpose and use of the Application Layer including as a layer in which to write components that will be used at the OL; the purpose and implementation of the Default Layer; and how to use components at the Application Layer.

- i. TSA AL components
- ii. TSA AL example
 - 1. TSA AL example component configuration
 - 2. TSA AL example structures
 - 3. TSA AL example open and close functions
 - 4. TSA AL example data handling
 - 5. TSA AL example processing
 - 6. TSA AL example data formats
 - 7. TSA AL example -processing
- iii. Default Layer

f. Software Development Environment

Aims and implementation of the Software Development Environment as a structure within which to develop and distribute re-usable components; including how to set up the SDE, and how to build applications and components.

- i. SDE component folders
- ii. SDE configuration
- iii. SDE building
- iv. Installing the TCS 4.3 software
- v. Installing the TCS 4.4 software
- vi. Building the MPTK software
- vii. SDE configuration for UHAPI
- viii. Making an application
- ix. Making a component
- x. Making an application component

3. Basics of digital video

Review of digital video including sampling schemes and storage formats. This is useful to cover common ground in preparation for sessions dealing with video peripherals.

- a. The basis of 3-component color
- b. Color spaces
 - i. RGB
 - ii. YUV
 - iii. YCbCr
- c. Raster scan
 - i. Video frames
 - ii. Video fields
 - 1. Interlacing
 - 2. Pull down
- d. Video formats
 - i. Video perceptive compression
 - ii. YUV 4:2:2
 - iii. YUV sampling schemes
- e. Planar video formats
- f. MPEG SIF
- g. Video connectors

4. TriMedia Peripheral Architecture

Introduction to the TriMedia System on Chip peripheral architecture.

- a. Peripheral architecture
- b. Memory map
- c. Peripheral MMIO registers
- d. Software Architecture devices
 - i. Device library layer
 - ii. Board Support Library
 - iii. Peripheral registers configuration data structures
 - iv. Peripheral registers configuration functions
- e. Interrupts
 - i. Interrupt configuration
 - ii. Interrupt programming
 - iii. Interrupts and decision trees
- f. Data cache coherency and MMIO
 - i. Data cache copyback example
- g. Peripheral simulation

5. pnx1300 System on Chip architecture

In-depth look at the pnx1300 System on Chip architecture including pnx1300 peripheral architecture and the configuration, programming and function of individual peripherals.

- a. pnx1300 peripheral architecture
- b. Data highway bus arbitration
 - i. Data highway bus arbitration example
- c. Video output peripheral
 - i. Video output peripheral configuration
 - ii. Video output data format
 - 1. Video output data sampling schemes
 - iii. Video output overlay
 - 1. Video output overlay configuration
 - 2. Video output overlay data
 - 3. Video output overlay data conversion
 - 4. Video output overlay alpha blending
 - 5. Video output overlay chroma keying
- d. Video input peripheral
 - i. Video input peripheral configuration
 - ii. Video input data format
 - iii. Video input data sampling schemes
- e. Image Co-Processor
 - i. Image Co-Processor programming
 - ii. Image Co-Processor data format
 - 1. Image Co-Processor input data sampling schemes
 - 2. Image Co-Processor RGB data format
 - iii. Image Co-Processor scaling configuration
 - 1. Image Co-Processor RGB/YUV conversion
 - 2. Image Co-Processor overlay configuration
 - 3. Image Co-Processor overlay data conversion
 - iv. Image Co-Processor filter coefficients
- f. VLD Variable Length Decoder
- g. Audio output peripheral
- h. Audio input peripheral
- i. SPDIF digital audio output peripheral
- j. pnx1300 PCI / XIO interface
 - i. pnx1300 data cache PCI connection
 - ii. pnx1300 PCI interface registers
 - iii. pnx1300 PCI programming
 - iv. pnx1300 XIO interface
 - v. pnx1300 XIO examples
- k. IIC interface

6. pnx1500 and pnx8550 System on Chip architecture

In-depth look at the pnx1500 System on Chip architecture, and the TriMedia-based peripheral architecture of the pnx8550.

- a. pnx1500 peripheral architecture
- b. pnx8550 peripheral architecture

c. Video Composition Processor - architecture

- i. Video Composition Processor layers
- ii. Video Composition Processor DMA
- iii. Video Composition Processor data formats
 - 1. Video Composition Processor sampling schemes
 - 2. Video Composition Processor packed data formats
- iv. Video Composition Processor pool resources
 - 1. Video Composition Processor resource assignment
- v. Video Composition Processor pixel formatting
 - 1. Video Composition Processor color lookup table
- vi. Video Composition Processor chroma keying
 - 1. Video Composition Processor chroma key combining
- vii. Video Composition Processor undithering
- viii. Video Composition Processor upsampling
 - 1. Video Composition Processor chroma upsampling
 - 2. Video Composition Processor color transient improve
 - 3. Video Composition Processor rate conversion
 - 4. Video Composition Processor linear interpolator
- ix. Video Composition Processor image improvement
 - 1. Video Composition Processor histogram modification
 - 2. Video Composition Processor luma sharpening
 - 3. Video Composition Processor color features
 - 4. Video Composition Processor brightness and contrast
- x. Video Composition Processor color space conversion
- xi. Video Composition Processor layer fetch control
- xii. Video Composition Processor mixer
 - 1. Video Composition Processor mixer chroma keying
 - 2. Video Composition Processor chroma key combining
 - 3. Video Composition Processor mixer keys
 - 4. Video Composition Processor raster operations
 - 5. Video Composition Processor alpha blending
- xiii. Video Composition Processor output pipeline
 - 1. Video Composition Processor chroma downsampling
 - 2. Video Composition Processor gamma correction
 - 3. Video Composition Processor output format
 - 4. Video Composition Processor screen timing
- xiv. LCD controller
- xv. Video Output Router

d. Video Input Processor - architecture

- i. Video Input Processor test pattern generator
- ii. Video Input Processor video extraction
- iii. Video Input Processor video capture modes
 - 1. Video Input Processor planar data formats
 - 2. Video Input Processor packed data formats
 - 3. Video Input Processor data sampling schemes
- iv. Video Input Processor dithering
- v. Video Input Processor image scaling
 - 1. Video Input Processor scaling unit architecture
 - 2. Video Input Processor scaling and polyphase filter
 - 3. Video Input Processor re-sampling
 - 4. Video Input Processor color space conversion
- vi. Video Input Processor storage modes
- vii. Video Input Processor auxiliary data
- viii. Video Input Router
- ix. Video Input Router dual video capture
- e. Fast Generic Parallel Interfaces
- f. pnx1500 PCI / XIO interface
 - i. pnx1500 XIO IDE interface
 - ii. pnx1500 XIO examples
- g. IIC interface
- h. VLD Variable Length Decoder
- i. Audio output peripheral
- j. Audio input peripheral
- k. SPDIF digital audio output peripheral
- I. 10/100 Ethernet MAC

m. General Purpose Input / Output

- i. General Purpose Input / Output time stamping
- ii. General Purpose Input / Output sampling
- iii. General Purpose Input / Output IR receiver

n. Memory based scaler

- i. Memory Based Scaler de-interlacing
 - 1. Memory Based Scaler Edge Detection de-interlacing
- ii. Memory based scaler scaling
 - 1. Memory based scaler scaling and polyphase filter
- iii. Memory based scaler data conversion
 - 1. Memory based scaler planar formats
 - 2. Memory based scaler packed data formats
 - 3. Memory based scaler indexed data formats
 - 4. Memory based scaler data sampling schemes
 - 5. Memory based scaler color space conversion
- o. 2D drawing engine

7. TriMedia CPU Core Architecture

Explanation and clarification of the TriMedia CPU core architecture including its design aims and design choices; instruction format; review of VLIW scheduling; register-based architecture; custom operations; compilation tools; and cache architecture.

a. TriMedia core architecture

- b. Superscalar and VLIW scheduling
- c. TriMedia core functional units
 - i. Functional unit example
- d. Instruction format
 - i. Instruction set design
 - ii. CISC, RISC and Superscalar architectures
- e. Data registers
- f. SIMD operations overview
- g. Compilation tools

h. TriMedia cache architecture

- i. TriMedia data cache mapping
- ii. Cache architectures introduction
- iii. Cache mapping
- iv. Cache set associative mapping
- v. TriMedia data cache banks
- i. Simulator
- j. Debugger

8. Optimizing TriMedia programs

In-depth treatment of optimization including; optimization strategies; tactics to follow in discovering and exposing possible optimizations; profile-driven optimization; cache optimization; parallel scheduling optimizations; and use of custom operations for optimization.

- a. Optimisation
- b. Profiler
- c. Profile driven optimisation

d. Cache optimization

- i. Data cache hit and miss policy
- ii. Data cache profiling
- iii. Data cache management
- iv. Data cache programming
- v. Data cache mapping optimisation
- vi. Instruction cache
- vii. Instruction cache profiling
- viii. Instruction cache optimisation

e. Parallel scheduling optimization

- i. Scheduling
 - 1. Functional unit optimisation schedule report
- ii. Decision trees
 - 1. Grafting
 - 2. Loop unrolling
 - 3. Function inlining
- iii. Restricted pointers
- iv. Optimization example FIR
- v. Register variables
- vi. Temporary variables
- vii. Software pipelining
- f. Mapping the application
- g. Tuning the application
- h. FIR filter example background

i. Floating point optimizations

- i. Fixed point data types
- ii. Fractional fixed point

j. Custom operation optimization

Explanation of custom operations and their use in different approaches to optimization including increased parallelism through Single Instruction Multiple Data (SIMD); reduced memory access overhead through register-based manipulations; SIMD operations for common Media Processing functions; and specific SIMD operations for specialised purposes.

- i. SIMD operations overview
 - 1. SIMD naming convention
 - 2. SIMD operations macros
- ii. SIMD operation FIR example

Increased parallelism for classic DSP functions.

- 1. SIMD operation FIR example funshift
- 2. SIMD operation FIR example ifir
- iii. SIMD matrix transposition example

Optimizing by reducing memory accesses through register-based instead of memory-based data manipulations.

- 1. SIMD matrix transposition using pack and merge
- iv. SIMD MPEG kernel example

SIMD operations for common Media processing functions.

- 1. SIMD MPEG kernel example quadavg
- 2. SIMD MPEG kernel example quadadd
- 3. SIMD MPEG kernel example compacting (or, when not to go too far)
- v. SIMD median filter example
 - 1. SIMD median filter example quadumax and quadumin
- vi. SIMD sum of absolute differences example
 - 1. SIMD sum of absolute differences example ume