Universidade Federal do Rio Grande do Norte Centro de Tecnologia

Departamento de Engenharia de Computação e Automação

Disciplina: DCA0110 – Modelagem e Análise de Sistemas Dinâmicos

Professor: Anderson Cavalcanti

Lista 3 - Modelagem de Sistemas Dinâmicos

1) Considere o sistema mostrado na figura abaixo, composto por uma cremalheira, cujo raio da engrenagem é $\bf r$, com coeficiente de atrito no mancal de deslizamento $\bf b$, massa $\bf m$, coeficientes de mola translacional $\bf k$ e de mola rotacional $\bf K$ e o momento de inércia do disco $\bf l$. A velocidade da barra é $\bf v_0(t)$.

Pede-se: (a) Fazer o circuito elétrico equivalente; (b) Calcular a função de transferência $V_0(s)/T_i(s)$.

2) Considere o sistema hidráulico da figura abaixo, o qual possui 3 vazões de entrada Q1(t), Q2(t) e Q3(t) e três níveis h1(t), h2(t) e h3(t), nos tanques 1, 2 e 3, respectivamente

Pede-se:

(a) Fazer o circuito elétrico equivalente; (b) Calcular a função de transferência $P_3(s)/Q_1(s)$; (c) Considerando a resistência das restrições 2 e 4, R2 e R4, muito grandes (válvulas fechadas), calcule a função de transferência $H_2(s)/Q_2(s)$; (d) Considerando a resistência da restrição 2, R2, muito grande (válvula fechada), calcule a função de transferência $H_1(s)/Q_1(s)$; (e) Considerando a resistência das restrições 4, R4, e 5, R5, muito grandes, calcule a função de transferência $H_3(s)/Q_3(s)$.

3. Considere o sistema mecânico abaixo:

Calcular a função de transferência Y2(s)/F(s).

4. Considere o sistema mecânico translacional da figura abaixo.

Pede-se:

- (a) Fazer um circuito elétrico equivalente do sistema.
- 5. Considere o sistema mecânico da figura abaixo, em que u1 e u2 são as forças aplicadas nas massas m1 e m2, respectivamente.

Pede-se: (a) Fazer o circuito elétrico equivalente; (b) Calcular a função de transferência $Y_2(s)/U_2(s)$; (c) Calcular a função de transferência $Y_2(s)/U_1(s)$.

6. Considere o sistema dado na figura abaixo. O motor é controlado pela armadura, possuindo resistência elétrica R e indutância L; o momento de inércia da carga mecânica é I e o transformador é ideal.

Pede-se:

- (a) Fazer o circuito elétrico equivalente; (b) Calcular a função de transferência $I(s)/\Omega(s)$.
- 7. Considere o sistema mecânico da figura abaixo, composto por um jogo de engrenagens com N_1 e N_2 dentes. Um torque T é aplicado no eixo da engrenagem 1. Os momentos de inércia dos eixos das engrenagens são J_1 e J_2 e os coeficientes de atrito viscoso são B_1 e B_2 , respectivamente.

Pede-se: (a) Calcular a função de transferência $\theta_1(s)/T(s)$.

8. O sistema mecânico abaixo consiste de um trem de 4 engrenagens com dentes N₁, N₂, N₃ e N₄ e momentos de inércia dos eixos J₁, J₂ e J₃, respectivamente. O momento de inércia da carga é J_L.

Pede-se:

- (a) Montar o circuito elétrico equivalente; (b) Calcular a função de transferência $\theta_3(S)/Tm(S)$.
- 9. Para o sistema mecânico abaixo:

Pede-se: (a) Montar o circuito elétrico equivalente; (b) Calcular a função de transferência X(s) T(s).

10. Um atuador eletromecânico contém um solenóide que produz uma força magnética proporcional à corrente na bobina f = Kii. A bobina possui resistência R e indutância L.

Pede-se: (a) Montar o circuito elétrico equivalente; (b) Obter uma representação em variáveis de estado; (c) Calcular a função de transferência Xa(S)/E(S).