

Mirando los datos

Base de datos

						/	
01		Order	PID	MSSubClass	MSZoning	LotFrontage	LotArea
Observació	n 2673	2674	903225090	50	RM	50.0	5000
	303	304	910205120	50	RM	50.0	9140
·	1478	1479	907418010	20	RL	85.0	11058
	2874	2875	910203100	30	RM	61.0	8534
	334	335	923251080	20	RL	NaN	26142
	894	895	908203090	20	RL	64.0	6410
	575	576	533253070	120	RL	61.0	3782
	1386	1387	905200100	190	RL	60.0	12900
	355	356	527162120	60	RL	60.0	7500
	1417	1418	905480240	50	RL	60.0	9084

Variable es una característica que varía en cada observación. Cada valor que asume una variable es un dato.

Base de datos o matriz de datos

VARIABLE: columna

Observación fila	Obs	\mathbf{X}_1	\mathbf{X}_2	• • •	\mathbf{X}_{p}
	1	x_{11}	x_{12}	•••	x_{1p}
$\mathbf{X}_{n \times p} =$	= 2	x_{21}	x_{22}	• • •	x_{2p}
	•••	•••	• • •	•	•••
	n	X_{n1}	X_{n2}	• • •	$[\mathcal{X}_{np}]$

Espacio de observaciones Rⁿ

DATO

Un elemento de la matriz

$$(\mathbf{x}_1 \quad \mathbf{x}_2 \quad \dots \quad \mathbf{x}_p)$$

Espacio de variables R^p

Tipos de variables y escalas de medición

Categóricas o cualitativas

string data is always stored with an object dtype

Tipos de variables

Numéricas o cuantitativas

Discretas

ı	int_	Default integer type (same as C long; normally either int64 or int32)
ı	intc	Identical to C int (normally int32 or int64)
ı	intp	Integer used for indexing (same as C ssize_t; normally either int32 or int64)
ı	int8	Byte (–128 to 127)
ı	int16	Integer (–32768 to 32767)
ı	int32	Integer (–2147483648 to 2147483647)
ı	int64	Integer (-9223372036854775808 to 9223372036854775807)
ı	uint8	Unsigned integer (0 to 255)
ı	uint16	Unsigned integer (0 to 65535)
ı	uint32	Unsigned integer (0 to 4294967295)
ı	uint64	Unsigned integer (0 to 18446744073709551615)

Continuas

float_	Shorthand for float64
float16	Half-precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32	Single-precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64	Double-precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_	Shorthand for complex128
complex64	Complex number, represented by two 32-bit floats

Niveles de medición

Nominal

Ordinal

•De intervalos o De Razón

¿Que usamos?

Tipo de	Tabla de	Gráfico	Medidas descriptivas			
variable	frecuencias		Posición	Dispersión	Forma	
Categórica	si	BarrasTortasDiagrama de Pareto	ModaMediana (sólo cuando es ordinal)	Desviación Mediana (sólo cuando es ordinal)		
Cuantitativa Discreta	si tiene pocos valores	BastonesEscalonadoTallo y hojaBox Plot	MediaMedianaCuartilesModa	 Varianza Desviación estándar/ mediana Coeficiente de variación 	AsimetríaCurtosis	
Cuantitativa Continua	no	HistogramaOjivaBox Plot	MediaMedianaCuartilesIntervalo Modal	 Varianza Desviación estándar/mediana Coeficiente de variación 	AsimetríaCurtosis	

Medidas de tendencia no central

Cuartiles

Deciles

Asimetría

Gráfico de caja y brazos (box plot)

Permite ver la forma de la distribución y detectar casos atípicos

Rango Intercuartílico
$$\longrightarrow$$
 RI = Q₃ – Q₁

Gráfico de caja y brazos (box plot)

Gráfico de caja y brazos (box plot)

Mirando el comportamiento de variables en forma conjunta

Dos variables numéricas. Gráfico de dispersión

Permite ver la relación conjunta de las dos variables y detectar datos atípicos

Bivariadas: Medidas de Asociación lineal entre variables numéricas

Covarianza Cov(x,y) -

Coeficiente de correlación $\mathbf{R}_{\mathbf{x},\mathbf{y}}$

Asociación negativa

$$-\infty < Cov(x,y) < 0$$
$$-1 \le R_{x,y} < 0$$

Asociación positiva

No hay asociación

$$Cov(x,y)=0$$

Relación no lineal

$$R_{x,y} = 0$$

Matriz de varianzas-covarianzas. Resumen de variabilidad entre p variables

$$S = \frac{1}{n-1} \widetilde{X}'\widetilde{X}$$

 $\widetilde{\mathbf{X}}$ es una matriz de orden $\mathbf{n} \times \boldsymbol{p}$ donde cada una de las p columnas es una variable restada su media aritmética (variable en desvío)

 $\widetilde{X}'\widetilde{X}$ es la matriz de sumas de cuadrados y producto cruzados y representa la variabilidad de los datos (contiene la variabilidad de cada variable y la variabilidad conjunta entre pares de variables)

$$S = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1p} \\ S_{21} & S_{22} & \dots & S_{2p} \\ \dots & \ddots & \dots \\ S_{p1} & S_{p2} & \dots & S_{pp} \end{bmatrix}$$

Vector de desvíos
$$\mathbf{d}_{j} = \mathbf{x}_{j} - \overline{\mathbf{x}}_{j} \mathbf{1}_{n}$$
 $\mathbf{d}_{j} = \begin{vmatrix} x_{1j} - \overline{\mathbf{x}}_{j} \\ x_{2j} - \overline{\mathbf{x}}_{j} \\ \vdots \\ x_{j} - \overline{\mathbf{x}}_{j} \end{vmatrix}$

Varianza
$$s_j^2 = s_{jj} = \frac{\sum_{i=1}^{n} (x_{ij} - x_j)^2}{n-1} = \frac{\sum_{i=1}^{n} d_{ij}^2}{n-1} = \frac{\mathbf{d}_j \mathbf{d}_j}{n-1}$$

$$s_{jk} = s_{kj} = \frac{\sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})(x_{ik} - \bar{x}_{k})}{n-1} = \frac{\mathbf{d}_{j}^{'} \mathbf{d}_{k}}{n-1} \qquad j, \ k = 1, \ 2, ..., p$$

Matriz de correlación

Es la matriz de varianzas y covarianzas de los datos estandarizados $\frac{X-\mu_X}{\sigma_X}$ donde μ_X es la media aritmética y σ_X el desvío estándar de la variable X.

$$\frac{X-\mu_X}{\sigma_X}$$
 donde μ_X es la media aritmética y σ_X e

$$R = D^{-\frac{1}{2}}SD^{-\frac{1}{2}} = \begin{bmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \dots & \dots & \ddots & \dots \\ r_{p1} & r_{p2} & \dots & 1 \end{bmatrix}$$
Donde $D = diag(s_{11}, s_{22}, \dots, s_{pp})$

Coeficiente de correlación

$$r_{jk} = r_{kj} = \frac{s_{jk}}{\sqrt{s_{jj}}\sqrt{s_{kk}}}$$

Datos perdidos o faltantes ¿qué hacemos?

Si los métodos de análisis se basan en información completa, sin datos perdidos, tenemos algunas alternativas

Eliminarlos Algunos algoritmos utilizan este mecanismo por defecto. En este caso, se debe analizar si los faltantes son aleatorios. Esto es, asegurarse que no se están eliminando casos con características particulares, lo que derivaría en un sesgo relevante al momento del análisis y que la cantidad de observaciones retenidas sea suficiente para que el algoritmo funcione correctamente.

Imputarle un valor asignar a los datos faltantes valores obtenidos bajo algún criterio adecuado. Se pueden definir distintos criterios:

Sustitución de casos: En los casos en que se pueda buscar una nueva observación, cada observación con datos faltantes es reemplazada por una nueva no incluida inicialmente y para la cual se dispongan de datos completos.

Valores representativos: Consiste en asignar a cada dato faltante un valor relativo a los datos observados, como puede ser el promedio, la mediana, el mínimo, el máximo o, incluso, un valor aleatorio dentro del rango para cada variable. Utilizar otras observaciones completas: se reemplazan los datos faltantes por valores calculados a partir de uno o más observaciones completas del mismo conjunto de datos. Existen diferentes formas de asignar eligiendo el valor de una observación al azar o calculando la media de valores correspondientes de un grupo de observaciones. Crear un modelo predictivo para estimar valores que sustituirán los datos faltantes. La variable con datos faltantes se usa como variable respuesta o predicha, y las variables restantes se usan como entrada para el modelo predictivo de clasificación o regresión, según el tipo de variable con datos faltantes.

Cómo detectamos datos atípicos

El diagrama de caja y brazos permite detectar atípicos en forma univariada, el diagrama de dispersión en forma bivariada. Se han definido muchos métodos de detección de datos atípicos analizando las variables en forma conjunta. Incluso muchos de ellos tienen que ver con el problema que se plantea y el algoritmo utilizado.

PyOD: Librería Python para Detección de Outliers disponible en https://pyod.readthedocs.io/en/latest/ basado en el trabajo de Songqiao Han y otros (https://www.andrew.cmu.edu/user/yuezhao2/papers/22-neurips-adbench.pdf) dan un listado de funciones para detectar datos atípicos.

¿qué hacemos una vez que los identificamos?

Eliminarlos si el objetivo del análisis es tener un resultado sobre datos considerados típicos o normales.

Analizar la sensibilidad probando el algoritmo con y sin los casos atípicos. Esto permite analizar el efecto de los atípicos en los resultados.

Analizarlos por separado en caso de que se pueda identificar que el conjunto de datos atípicos corresponden a un grupo con características bien diferenciadas.