1

Random Numbers

Varun Gupta (cs21btech11060)

Abstract—This document contains the solution for Random Numbers

Problem 1.1: Generate 10^6 samples of U using a C program and save into a file called uni.dat. **Problem 1.2:** Load the uni.dat file into python and plot the empirical CDF of U using the samples in uni.dat. The CDF is defined as

Solution:

Fig. 1. The CDF of U

Problem 1.3: Find a theoretical solution for $F_U(x)$ Solution:

$$F_U(x) = \Pr\left(U \le x\right) = \int_{-\infty}^x p_U(u) du \qquad (1)$$

- 1) Case 1: x < 0: $p_X(x) = 0 \Rightarrow F_U(x) = 0$
- 2) Case 2: $0 \le x < 1$: $F_U(x) = \int_0^x du = x$
- 3) Case 3: $x \ge 1$: Put x = 1 to get $F_U(x) = 1$

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$
 (2)

Problem 1.4: The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i \tag{3}$$

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (4)

Write a C program to find the mean and variance of U.

Problem 1.5: Verify your result theoretically given that $E[U^k] = \int_{-\infty}^{\infty} x^k dF_U(x)$

Solution:

$$E[U] = \int_0^1 x dx = \frac{1}{2}$$
 (5)

(6)

 \Rightarrow theoretically empirical mean is 0.50 which closely agrees with numerical value of 0.500007

$$E[U^2] = \int_0^1 x^2 dx = \frac{1}{3} \tag{7}$$

$$var [U] = E [U - E [U]]^{2}$$

$$= E[U^{2} - 2UE [U] + E^{2}[U]]$$
(9)

$$= E[U^2] - E^2[U] = \frac{1}{12} \quad (10)$$

 \Rightarrow theoretically empirical variance is 0.083333 which closely agrees with numerical value of 0.083301

Problem 2.1: Generate 10^6 samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{11}$$

using a C program, where U_i , $i=1,2,\ldots,12$ are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat **Problem 2.2:** Load gau.dat in python and plot the empirical CDF of X using the samples in gau.dat. What properties does a CDF have? **Solution:**

Fig. 2. The CDF of X

Problem 2.3: Load gau.dat in python and plot the empirical PDF of X using the samples in gau.dat. The PDF of X is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{12}$$

What properties does the PDF have? **Solution:**

Fig. 3. The PDF of X

Problem 2.4: Find the mean and variance of X by writing a C program.

Problem 2.5: Given that $p_X(x) = \frac{1}{\sqrt{2\pi}} \exp^{-\frac{x^2}{2}}$ & repeat the above exercise theoretically. **Solution:**

$$E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0$$
 (13)

 \Rightarrow theoretically empirical mean is 0 which closely agrees with numerical value of 0.000326

$$var[X] = E[X^2] - E^2[X]$$
 (14)

$$= \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} \exp^{-\frac{x^2}{2}} dx = 1 \qquad (15)$$

(16)

⇒ theoretically empirical variance is 1 which closely agrees with numerical value of 1.000906

Problem 3.1: Generate samples of

$$V = -2\ln(1 - U) \tag{17}$$

and plot its CDF.

Solution:

Fig. 4. The PDF of X

Problem 3.2 Find the theoretical expression for $F_V(x)$

Solution:

$$v = f(u) = -2\ln(1 - U) \tag{18}$$

$$u = f^{-1}(v) = 1 - e^{-\frac{v}{2}} \tag{19}$$

$$\Rightarrow F_V(v) = F_U(1 - e^{-\frac{v}{2}})$$
 (20)

$$F_V(v) = \begin{cases} 0 & v < 0\\ 1 - e^{-\frac{v}{2}} & v \ge 0 \end{cases}$$
 (21)