H7 Magnetic Flux and Faraday's Law

H7.1 Complete the questions in the table:

Magnetic	Area	Angle between plane	Num-	Magnetic
Flux	of	of coil and magnetic	ber of	flux linkage
Density /T	Coil	field lines /°	turns	/Wb turns
2.0	2.0 m × 1.0 m	90	40	(a)
0.00232	5.0 cm	60	2400	(h)
0.00232	3.0 Cm	00	2400	(b)
	5.0 cm			

- H7.2 Calculate the magnetic flux linkage if a $3.0 \text{ cm} \times 2.0 \text{ cm}$ rectangular coil of 200 turns is in a 0.75 T magnetic field, with the field at right angles to the plane of the coil.
- H7.3 Calculate the magnetic flux linkage if a 2400 turn coil measuring 3.0 cm \times 3.0 cm lies within a 0.25 T magnetic field, with the field lines making an angle of 30° to the plane of the coil.
- H7.4 Assume field lines are perpendicular to the plane of a 400 turn coil of area 3.0×10^{-4} m².
 - a) Calculate the rate of change in the magnetic flux linkage when the magnetic field is reduced from $0.20\,\mathrm{T}$ to zero in $0.40\,\mathrm{s}$.
 - b) What is the voltage induced across the coil?

H7.5 Complete the questions in the table:

Initial flux linkage /Wb turns	Final flux linkage /Wb turns	Time taken for flux to change /s	Voltage induced /V
30	60	0.20	(a)
200	0	(b)	400

- H7.6 A single turn coil of $10 \text{ cm} \times 5.0 \text{ cm}$ sits, stationary, in a 21000 T magnetic field, at right angles to the plane of the coil.
 - a) What is the voltage induced across the ends of the wire?
 - b) The coil is made of extensible wire and is stretched steadily to $10 \text{ cm} \times 10 \text{ cm}$ over 0.020 s. Calculate the voltage induced across the ends of the wire.
 - c) What would the induced voltage be if the magnetic field were parallel to the sides of the coil which were originally 5.0 cm long?
- H7.7 A bicycle wheel with only one spoke has a magnetic flux of 1.95×10^{-5} Wb passing through it. If the wheel goes round 6 times in one second, what voltage will be induced between the hub and the rim?

Something to think about – would the answer to question H7.7 change if there were twenty spokes?