Package 'NanoR'

October 25, 2019
Type Package
Title Analyze Nanopore MinION and GridION X5 1D Sequencing Data
Version 3.0
Author Davide Bolognini, BS, PhD Fellow [aut, cre]
Maintainer Davide Bolognini <davidebolognini7@gmail.com></davidebolognini7@gmail.com>
Depends R (>= $3.1.3$)
Imports parallel, ggplot2 (>= 2.2.1), reshape2, scales, RColorBrewer, grid, gridExtra, rhdf5(>= 2.14), ShortRead (>= 1.24.0)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented:
NanoCompare
NanoPrepareG
NanoPrepareM
NanoStatsG
NanoStatsM
NanoTableG
NanoTableM
Index

NanoPrepareG NanoPrepareG

NanoCompare NanoComapre

Description

Compare ONT experiments

Usage

```
NanoCompare(DataIn, DataOut, Labels)
```

Arguments

DataIn Object of class character with paths to DataForComparison for each experiment

DataOut Output folder

Labels Object of class character with (ordered) labels for each experiment

Value

Plot:

- Violins.pdf;

Examples

```
#do not run
DataIn<-c("/path/to/folder1/DataForComparison","/path/to/folder2/DataForComparison",...)
Labels<-c("first","second")
DataOut <- "/path/to/output"
NanoCompare(DataIn=DataIn,DataOut=DataOut,Labels=Labels)</pre>
```

NanoPrepareG

NanoPrepareG

Description

Organize MinION/GridION sequencing summary and FASTQ

Usage

NanoPrepareG(DataSummary, DataFastq)

Arguments

DataSummary Path to sequencing summary
DataFastq Path to passed FASTQ

Details

FASTQ are found recursively

NanoPrepareM 3

Value

Object of class list

Examples

```
#do not run
DataSummary<-'path/to/sequencing_summary'
DataFastq<-'path/to/fastq_pass'
List<-NanoPrepareG(DataSummary,DataFastq)</pre>
```

NanoPrepareM

NanoPrepareM

Description

Organize MinION/GridION basecalled FAST5

Usage

```
NanoPrepareM(DataPass, DataFail = NA, DataSkip = NA,
   MultiRead = FALSE)
```

Arguments

DataPass Path to passed FAST5

DataFail Path to failed FAST5 [NA]

DataSkip Path to skipped FAST5 [NA]

MultiRead Logical. If TRUE, assume multi-read FAST5 [FALSE]

Details

FAST5 are found recursively

Value

Object of class list

Examples

```
#do not run
DataPass<-"/path/to/fast5_pass"
DataFail<-"/path/to/fast5_fail" #can be omitted
#single-read .fast5 files
List<-NanoPrepareM(DataPass,DataFail,Label=Label)
#multi-read .fast5 files
List<-NanoPrepareM(DataPass,DataFail, Label=Label,MultiRead=TRUE)</pre>
```

4 NanoStatsM

NanoStatsG

NanoStatsG

Description

Plot statistics

Usage

```
NanoStatsG(NanoGList, NanoGTable, DataOut, KeepGGObj = FALSE)
```

Arguments

NanoGList Object of class list from NanoPrepareG

NanoGTable Object of class matrix from NanoTableG

DataOut Output folder (the same used for NanoTableG)

KeepGG0bj Logical. If TRUE, store ggplot2 data frames behind generated plots [FALSE]

Value

Plots:

- Yield.pdf (accumulation of reads and bps);
- RBLQ.pdf (# reads, # bps, length and quality overview every 30 minutes of experiment);
- LvQ.pdf (length and quality compared jointly);
- PFGC.pdf (passed and failed reads, GC content if previously computed);
- Activity.pdf (channels and muxes activity (# bps). Inactive channels and muxes are grey-colored) Tables:
- summary.txt (table with major statistics for the sequencing run)

Examples

```
#do not run
#assume List is the output from NanoPrepareG and Table from NanoTableG
#assume DataOut is the same output specified for NanoTableG
#do not store ggplot2 tables:
NanoStatsG(List, Table, DataOut=DataOut)
#store ggplot2 tables:
NanoStatsG(List, Table, DataOut=DataOut, KeepGGObj=TRUE)
```

NanoStatsM

NanoStatsM

Description

Plot statistics

Usage

```
NanoStatsM(NanoMList, NanoMTable, DataOut, KeepGGObj = FALSE)
```

NanoTableG 5

Arguments

NanoMList Object of class list from NanoPrepareM

NanoMTable Object of class matrix from NanoTableM

DataOut Output folder (the same used for NanoTableM)

KeepGG0bj Logical. If TRUE, store ggplot2 data frames behind generated plots [FALSE]

Value

Plots:

- Yield.pdf (accumulation of reads and bps);
- RBLQ.pdf (# reads, # bps, length and quality overview every 30 minutes of experiment);
- LvQ.pdf (length and quality compared jointly);
- PFGC.pdf (passed and failed reads, GC content if computed);
- Activity.pdf (channels and muxes activity (# bps). Inactive channels and muxes are grey-colored) Table:
- summary.txt (table with major statistics for the sequencing run)

Examples

```
#do not run
#assume List is the output from NanoPrepareM and Table from NanoTableM
#assume DataOut is the same output specified for NanoTableM
#do not store ggplot2 tables:
NanoStatsM(List, Table, DataOut=DataOut)
#store ggplot2 tables:
NanoStatsM(List, Table, DataOut=DataOut, KeepGGObj=TRUE)
```

NanoTableG NanoTableG

Description

Generate a metadata table

Usage

```
NanoTableG(NanoGList, DataOut, GCC = FALSE)
```

Arguments

NanoGList Object of class list from NanoPrepareG

DataOut Output folder

GCC Logical. If TRUE, compute GC content from FASTQ [FALSE]

Value

Object of class matrix

6 NanoTableM

Examples

#do not run
#assume List is the output from NanoPrepareG
DataOut <- "/path/to/output"
Table<-NanoTableG(List,DataOut)
#include GC content
Table<-NanoTableM(List,DataOut,GCC=TRUE)</pre>

NanoTableM

NanoTableM

Description

Generate a metadata table

Usage

```
NanoTableM(NanoMList, DataOut, Cores = 1, GCC = FALSE)
```

Arguments

NanoMList Object of class list from NanoPrepareM

DataOut Output folder

Cores Number of cores to accelerate metadata extraction [1]
GCC Logical. If TRUE, compute GC content [FALSE]

Value

Object of class matrix

Examples

```
#do not run
#assume List is the output from NanoPrepareM
DataOut <- "/path/to/output"
Table<-NanoTableM(List,DataOut,Cores=6)
#include GC content
Table<-NanoTableM(List,DataOut,Cores=6, GCC=TRUE)</pre>
```

Index

- NanoCompare, 2 NanoPrepareG, 2
- NanoPrepareM, 3
- NanoStatsG, 4
- NanoStatsM, 4
- NanoTableG, 5
- NanoTableM, 6