Economically-Efficient Data Stream Analysis

Roberto Oliveira Jr. Advisor: Adriano Veloso Co-advisor: Wagner Meira Jr.

Computer Science Dept - UFMG - Brazil

Data Stream

- Definition
 - Fast and possible unbounded sequence of data that arrives at time-varying.
- Motivation
 - It allows us to process huge volumes of data.
- Problem
 - Automatically extraction of relevant patterns and relations from data that is continuously created.
 - Keep track of data streams is useful for systems monitoring, online social network advertising, etc.

Social Networks Streams and Advertising

Superbowl 2013

8:40 PM - 3 Feb 13 · Details

Sentiment Streams and Advertising

and last year ... Brazil $1 \times Germany 7$

Just hit the reset button and start again #BRA

vs #GER

#BRA

vs #GER

#BRA

#BRA

vs #GER

#BRA

Classifying Data Streams

 Classifiers are applied to distinguish between pre-defined labels.

Classifying Data Streams

 Classifiers are applied to distinguish between pre-defined labels.

• Data characteristics may change with time.

Sports (WC 2010)

Elections (Brazil 2010)

Concept Drifts Types

Most common types of Concept Drifts:

Concept Drifts Types

Most common types of Concept Drifts:

 Data streams contains combination of such concept drifts types.

Classifying Data Streams

- Effective classification requires:
 - Updating the training-set to mitigate drifts.
 - Updating the classifier accordingly.
 - Limited resources: memory, time and learning requirements.

Research Questions

- Resources:
 - How to build classification models fast?
- Accuracy:
 - How to deal with concept drifts?
- Effort:
 - How to reduce labeling effort?

Research Questions

- Resources:
 - How to build classification models fast?
- Accuracy:
 - How to deal with concept drifts?
- Effort:
 - How to reduce labeling effort?

Classification Model

- Our classification model \mathcal{R} is composed of rules $\{X \to c_i\}$.
 - *X* is any combination of features in the target instance.
 - c_i is a label.

Label Scoring

- Given a target instance t_n :
 - **1** Build a classification model $\mathcal{R}(t_n)$ composed of rules $\{X \to c_i\}$ for which $X \subseteq t_n$.
 - The label score is given by the linear combination of the rules.

Label Scoring

- Given a target instance t_n :
 - **1** Build a classification model $\mathcal{R}(t_n)$ composed of rules $\{X \to c_i\}$ for which $X \subseteq t_n$.
 - The label score is given by the linear combination of the rules.

"It works well, my sister loves it, but unfortunatelly it broke."

- $\{broke\} \rightarrow negative (0.77)$
- {work, well} \rightarrow positive (0.85)
- {love, it} \rightarrow positive (0.91)

Research Questions

- Resources:
 - How to build classification models fast?
- Accuracy:
 - How to deal with concept drifts?
- Effort:
 - How to reduce labeling effort?

Dealing with Drifts

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - Memorability:
 - The ability to recover itself from drifts.

Dealing with Drifts

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - The training-set must contain fresh messages.
 - Memorability:
 - The ability to recover itself from drifts.
 - The training-set must contain pre-drift messages.
- Improving both properties simultaneously may lead to a conflict-objective problem.
 - Improve adaptiveness may hurt memorability, and vice-versa.

Pareto Efficiency

Example: hotels in Petrópolist.

Pareto Efficiency

Pareto frontier.

Compensation — Kaldor-Hicks Principle

Region of compensation.

Utility Measures

- Distance in space:
 - How similar message t_j is to the newest message t_n .

•
$$U_s(t_j) = \frac{|\mathcal{R}(t_n) \cap \mathcal{R}(t_j)|}{|\mathcal{R}(t_n)|}$$

- Distance in time:
 - How fresh is the message.
 - $U_t(t_j) = \frac{\gamma(t_j)}{\gamma(t_n)}$.
 - ullet $\gamma(t_j)$ returns the time in which message t_j arrived.
- Random permutation of messages:
 - $U_r(t_j) = \frac{\alpha(t_j)}{|\mathcal{D}_n|}$
 - $\alpha(t_j)$ returns the position of t_j in the shuffle.
 - \mathcal{D}_n is the training set at time step n.

Utility Measures

- At each time step *n*:
 - Place candidate messages in the utility space.
 - Select messages in the Pareto frontier.

Research Questions

- Resources:
 - How to build classification models fast?
- Accuracy:
 - How to deal with concept drifts?
- Effort:
 - How to reduce labeling effort?

Evaluation

- Measures used:
 - Mean Squared Error.
 - RAM-Hours:
 - A GB of RAM deployed for 1 hour execution.
- Labeling Effort:
 - ullet Different batch sizes and δ values.
- Three datasets:
 - Brazilian elections 2010.
 - World Cup 2010.
 - Person of the Year 2010 (Assange vs. Zuckerberg)
 - Baselines:
 - AC Active Classifiers (KDD 2011)
 - HAT Hoeffding Adaptive Trees (JMLR 2011)
 - ILAC Incremental Lazy Classifiers (SIGIR 2011)

Evaluation

MSE and RAM-Hours

Evaluation

MSE and Labeling Effort

Conclusions

- Sentiment analysis on Twitter streams.
 - Limited computing and training resources.
 - Sentiment drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Pareto efficiency and compensation principle.
- Our results.
 - 50% reduction in terms of labeling effort without impact on accuracy.
- Future work includes:
 - Other utility measures.
 - Other application scenarios.

Thank you!

adrianov@dcc.ufmg.br