Obligatorio Arquitectura de Sistemas

Docente: Valeria Emanueli

Grupo: M3A

Ana Betina Kadessian

Número de estudiante: 221509

Compatibilidad:

Obligatorio realizado en Logisim-evolution v3.8.0.

Link de descarga logisim-evolution-3.8.0-x86.msi: https://github.com/logisim-

evolution/logisim-evolution/releases

Video del circuito funcionando: https://youtu.be/ESPVrpw4xlc

Contenido:

Contadores:	3
Tabla de verdad del contador Y:	3
nicialización en el contador del eje Y:	4
Tabla de verdad Contador X:	4
Representación de la pelota:	6
Botón de Start y Stop:	6
Representación de la paleta:	6
Detección de colisión paleta-pelota:	7
Rebote de la pelota al impactar en la paleta:	8
Detección de no colisión pelota con paleta:	9
Cálculo de cantidad de veces que la pelota no colisiona:	9

Contadores:

La pelota es representada con la intersección de dos contadores, uno para el eje X y otro para el eje Y.

Estos tienen dos estados 0 y 1, van de creciente a decreciente cíclicamente.

Para eso utilice 4 biestables D para representar el eje Y con 3 bits (de 0 a 7),

el primer biestable indica el estado (dirección de movimiento) y los otros tres dan la posición Y en binario de la pelota.

Lo mismo para el eje X pero usando 5 biestables ya que la cantidad de columnas es de 4 bits (0 a 15)

Diseñe una tabla de verdad para que estos contadores cambien de dirección automáticamente (sin necesidad de setear el estado a 1 o 0 manualmente) por ejemplo al llegar de manera creciente a 1110 los qn , pasaran a 0111 los dn , y luego iran decreciendo como se muestra en la tabla.

Tabla de verdad del contador Y:

<u>q0 q1 q2 q3</u>			d0	d1	d2	d3	
0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	0	1	1
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	1
0	1	1	1	0	1	1	0
1	0	0	0	0	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	0	1	1	1
1	1	1	1	0	1	1	1

karnaugh contador y:


```
d0 = q0 \cdot q1 \cdot q2 \cdot q3 + q0 \cdot q1 \cdot q2 + q0 \cdot q1 \cdot q2 + q0 \cdot q1 \cdot q3
d1 = q1 \cdot q3 + q1 \cdot q2 + q0 \cdot q2 \cdot q3 + q0 \cdot q1
d2 = q0 \cdot q2 \cdot q3 + q0 \cdot q1 \cdot q2 \cdot q3 + q0 \cdot q2 \cdot q3 + q0 \cdot q2 \cdot q3 + q1 \cdot q2 \cdot q3
d3 = q3 + q0 \cdot q1 \cdot q2
```

Inicialización en el contador del eje Y:

El "contador Y" fue inicializado (set) con números equivalentes a una posición del centro de la paleta.

Para esto se obtuvo un numero calculado en el circuito "Paleta" y se seteo cada biestable D (los 3 últimos sin incluir el de estado) para iniciar en ese valor.

Tabla de verdad Contador X:

```
q0 q1 q2 q3 q4 | d0 d1 d2 d3 d4
0 0 0 0 0 | 0 0 0 0 1
0 0 0 0 1 | 0 0 0 1 0
0 0 0 1 0 | 0 0 0 1 1
0 0 0 1 1 | 0 0 1 0 0
0 0 1 0 0 | 0 0 1 0 1
0 0 1 0 1 | 0 0 1 1 0
0 0 1 1 0 | 0 0 1 1 1
0 0 1 1 1 | 0 1 0 0 0
0 1 0 0 0 | 0 1 0 0 1
0 1 0 0 1 | 0 1 0 1 0
0 1 0 1 0 | 0 1 0 1 1
0 1 0 1 1 | 0 1 1 0 0
0 1 1 0 0 | 0 1 1 0 1
0 1 1 0 1 | 0 1 1 1 0
0 1 1 1 0 | 0 1 1 1 1
0 1 1 1 1 | 1 1 1 1 0
1 0 0 0 0 | 0 0 0 0 1
1 0 0 0 1 | 1 0 0 0 0
1 0 0 1 0 | 1 0 0 0 1
1 0 0 1 1 | 1 0 0 1 0
1 0 1 0 0 | 1 0 0 1 1
```

```
      1
      0
      1
      0
      1
      1
      0
      1
      0
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      1
      0
      1
      1
      0
      1
      1
      0
      1
      1
      1
      0
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```


d2: q0·q2·q3·q4+q0·q1·q2·q3·q4+q0·q2·q3+q0·q2·q4+q0·q1·q2+q2·q3·q4+q2·q3·q4+q0·q2·q4

d3: q0.q3.q4+q0.q3.q4+q0.q3.q4+q0.q2.q3.q4+q0.q1.q3.q4+q0.q1.q2.q4

Representación de la pelota:

La forma utilizada para mostrar el juego fue una matriz de led de 8x16, para la cual realice un decodificador para el eje X "DecodificadorX", y otro para el eje Y "DecodificadorY", con circuitos combinacionales, los cuales toman un numero binario y lo transforman en un 1 en la posición decimal de ese número y el resto ceros.

El decodificador del eje Y prende la fila con el valor del contador decodificado, realice un circuito que tiene el comportamiento de un multiplexor (con dos entradas: prender la columna o todos ceros) "SelectorDeColumna" el cual prende solo la intersección de ambos contadores, un punto con el que se representa la pelota.

Botón de Start y Stop:

El botón de Start y Stop están conectados a un biestable D (en circuito "Matriz") que actúa de memoria de 1 bit para saber en qué estado está el juego, al presionar Start el biestable D se setea en 1, la salida Q de este biestable está conectada a 16 multiplexores conectados a la salida de los pines de cada columna de la matriz que muestran la posición de la pelota si está en 1 se vera la pelota, si está en 0 se apagara el sector de la pelota. También este biestable D está conectado con una negación al reset del contador, (Si está en 0 la memoria mantendrá el reset de los contadores en 1 y no realizara movimiento), al presionar Start y estar en 1 el biestable se mostrará la pelota e inicializaran los contadores por lo que inicializara el juego.

Para resetear el biestable en 0 y acabar la partida se puede presionar el botón de Stop o perder 8 veces.

Representación de la paleta:

Para representar la paleta utilice un registro el cual toma valores del 0 al 5 en binario (las seis posiciones posibles), el circuito realiza una suma o una resta de 1(con un sumador y un restador) de ese número del registro dependiendo de si se presiona botón arriba o botón abajo, estas operaciones están acotadas por dos comparadores, para que no sea otro valor que ese rango y se salga la paleta de la matriz, el número que contiene el registro es tomado por el circuito llamado "DecodificadorPaleta" este pone tres 1 en la posición referente a ese número guardado.

Tabla de verdad de "decodificador paleta":

x 0	x1	x2	Paleta[70]
0	0	0	11100000
0	0	1	01110000
0	1	0	00111000
0	1	1	00011100
1	0	0	00001110
1	0	1	00000111
1	1	0	00000000
1	1	1	00000000

también de este circuito "Paleta" sale el número que seteara el "contador Y" (la pelota) en el centro de la paleta, para esto le sume 2 al número del registro.

Detección de colisión paleta-pelota:

Para detectar una colisión en el circuito "ColisionDetecta", elabore una tabla de verdad en el que se consideran 4 variables que representan el borde de la matriz (columna 0 la paleta y columna 1 la pelota), esta tabla de verdad da 1 si se produce una colisión, considera las diagonales y adyacentes.

Ese circuito de análisis combinacional lo repetí 7 veces para cada cuadrado, considerando todas las posiciones como se muestra en la imagen 2 y las salidas las uní con una puerta or.

De entrada tiene 16 pines, 8 corresponden a cada fila de la columna 0 (paleta), y los otro 8 a cada fila de la columna 1 (pelota).

Karnaugh del circuito utilizado para los 7 cuadrados:

 $\mathsf{gano} = \mathsf{x0y1} \cdot \mathsf{x1y0} \cdot \mathsf{x1y1} + \mathsf{x0y1} \cdot \mathsf{x1y0} \cdot \mathsf{x1y1} + \mathsf{x0y0} \cdot \mathsf{x1y0} \cdot \mathsf{x1y1} + \mathsf{x0y0} \cdot \mathsf{x1y1} + \mathsf{x0y0} \cdot \mathsf{x1y1}$

Rebote de la pelota al impactar en la paleta:

Para que la pelota rebote, utilice dos condiciones (unidas por puerta and), la primera condición es que el circuito "ColisionDetecta" arroje 1 (se produzca colisión) y la segunda es

que la cantidad de ceros en la matriz total sea de 3, esto lo realice con un "contador de unos" de 8 bits y 16 entradas el cual uní a cada cable de la salida de cada columna (de la matriz led) y luego con un comparador que sea igual a 3 (esto lo hice para que la pelota rebote una sola vez).

Al arrojar 1 las dos condiciones anteriores se reiniciará el "contador X" en 0 0 0 0 ósea columna uno (ya que tomo como salida del contador X el dn).

Detección de no colisión pelota con paleta:

Esta detección la utilice para sumar puntos de vidas perdidas y parar el juego en caso de que se llegue a 8, ya que si se produce no se reinicia ningún contador, siguen su transcurso normal.

Las 3 condiciones (unidas por puerta and) que utilice para que se detecte esta no colisión fueron, con dos comparadores que el contador X sea igual a 0x0 o 0x10 en hexadecimal, ósea 0 y 16 que son los dos valores que podría tomar la columna 0, la otra condición fue que la cantidad de unos de la matriz sea 4.

Cálculo de cantidad de veces que la pelota no colisiona:

Para contar las veces que la pelota no colisiona se utilizó el circuito "CuentaPerdidas" que recibe un 1 cuando no hay colisión, este pin de entrada está conectado a una puerta and que está conectada a un comparador (condición que el número de registro sea menor que 8), al salir 1 de la puerta and se suma 1 a el número de registro y se almacena.

También contiene un pin de entrada que resetea este registro a 0, esto se activara al perder al llegar a 8 perdidas o al presionar el botón Stop.

Este circuito tiene como salida la cantidad del registro de veces que se perdió, el cual se conecta a el display del "main".