

Universidade de Brasília

Departamento de Ciência da Computação Projeto e Análise de Algoritmos

Atividade 04

José Antônio Alcântara da Silva de Andrade Mat: 232013031

Professor:

Flávio Leonardo Calvacanti de Moura

Turma 02

 $\begin{array}{c} {\rm Bras{\it i}lia,\,DF} \\ {\rm 12\,\,de\,\,maio\,\,de\,\,2025} \end{array}$

Teorema 1

Sejam f(n) uma função suave, e c e n_0 constantes positivas. Se $\exists c$ tal que $f(2n) \le c \cdot f(n), \forall n \ge n_0$, teremos que $f(2^k n) \le c^k \cdot f(n), \forall n \ge n_0$ e $k \ge 1$.

Demonstração

A prova é feita por indução. Considere o caso k = 1, teremos:

$$f(2n) \le c \cdot f(n)$$

O que é verdadeiro, uma vez que f é uma função suave. Assuma que os casos $k \le j-1$ sejam verdadeiros. Considere, então, o caso k=j:

$$f(2^{j}n) = f(2 \cdot (2^{j-1}n)) \le cf(2^{j-1}n) \stackrel{\text{hi}}{\le} c^{2}f(2^{j-2}n) \stackrel{\text{hi}}{\le} \cdots \stackrel{\text{hi}}{\le} c^{j-1}f(2n) \le c^{j}f(n)$$

Portanto, o teorema é verdadeiro.

Exercício

Seja f(n) uma função suave qualquer. Mostraremos que, $\forall b \geq 2$ fixado, teremos que $f(b \cdot n) = \Theta(f(n))$. Provar que $f(bn) = \Theta(f(n))$ é equivalente a provar que f(bn) = O(f(n)) e f(bn) = O(f(n)) simultaneamente.

Por definição de função suave, teremos que f(n) é eventualmente não-decrescente e, também:

$$f(2n) = \Theta(f(n)) \iff f(2n) = O(f(n)) \in f(2n) = \Omega(f(n))$$

E, ainda, como b > 2, teremos que $2^k < b < 2^{k+1}$.

Para provar que f(bn) = O(f(n)) considere o fato que $b < 2^{k+1}$. Então, como b é um valor fixo, eventualmente teremos que $f(bn) < f(2^{k+1}n)$.

Usando do Teorema 1, obtemos que $f(2^{k+1}n) \leq c^{k+1}f(n)$, o que então nos fornece:

$$f(bn) \le f(2^{k+1}n) \le c^{k+1}f(n)$$

Como c é uma constante positiva fixa, c^{k+1} também é positivo e fixo, logo provando que f(bn) = O(f(n)).

Para provar que $f(bn) = \Omega(f(n))$, considere o fato que $2^k \le b$. Então, como b é um valor fixo, eventualmente teremos que $f(2^k n) \le f(bn)$.

Por definição de função suave, teremos que $f(2n) = \Omega(f(n))$. Obtém-se, então:

$$f(2^{k}n) = \Omega(f(2^{k-1}n))$$

$$f(2^{k-1}n) = \Omega(f(2^{k-2}n))$$

$$\vdots$$

$$f(2^{2}n) = \Omega(f(2n))$$

$$f(2n) = \Omega(f(n))$$

O que, por sua vez, implica que $f(2^k n) = \Omega(f(n))$, o que pode ser escrito no formato $cf(n) \leq f(2^k n)$. Teremos:

$$cf(n) \le f(2^k n) \le f(bn)$$

O que implica que $f(bn) = \Omega(f(n))$ como queríamos provar.