Komunikacijski protokoli in omrežna varnost

Razpošiljanje (multicast)

Razpošiljanje

- Načini naslavljanja:
 - unicast (tradicionalno): pošiljanje enemu ciljnemu IP naslovu (unikaten v Internetu / lokalnemu omrežju)
 - **broadcast**: naslavljanje "vseh prejemnikov" v podomrežju (npr. iskanje usmerjevalnika ali strežnika, nujno sporočilo); ne dostavlja paketov izven omrežja
- Kako poslati samo izbrani skupini naslovov, tudi izven lokalnega omrežja?
 - multicast naslavljanje (razpošiljanje) omogoča dostavo skupinam ne glede na meje podomrežij
 - IGMP (Internet Group Management Protocol) se uporablja za upravljanje s skupinami

Razpošiljanje

Razpošiljanje - primer

Poslati želimo 4 od 6 računalnikov v omrežju. Kako?

- unicast: potrebujemo 6 kopij istega paketa, večkratno pošiljanje obremenjuje medij
- broadcast: naslovi vse računalnike, filtriranje pravih prejemnikov prepustimo protokolom na višjim plastem.
- multicast: pošljemo "posebnemu" naslovu", ki predstavlja SKUPINO prejemnikov, ki posluša pakete, naslovljene na ta naslov
 - podobno kot broadcast: paket dobijo vsi
 - vendar: filtriranje se izvede na omrežnem nivoju -IP (včasih lahko tudi na povezavnem nivoju)

Razpošiljanje: usmerjanje paketov

- broadcast paketov usmerjevalniki ne posredujejo (dobili bi jih vsi!), torej ostajajo znotraj lokalnega omrežja
- **usmerjanje pri razpošiljanju** je praktično: en sam paket <u>usmerjevalniki</u> razmnožijo in posredujejo samo preko tistih vmesnikov, kjer so poslušatelji paketa. Ime skupine je 32 bitno število (skoraj).
- Izzivi protokola:
 - odkrivanje, kje so prejmeniki paketa,
 - razpošiljanje zahteva dodatno delo: usmerjevalni protokoli, posredovanje informacije o poslušateljih,
 - razpošiljalni naslovi ne oblikujejo (pod)mrež -> maska ima 32 bitov. V usmerjevalnih tabelah zato zahtevajo posebne vnose
 - izziv: lahko imajo tudi več posebnih vnosov, zakaj?
 - varnost: prisluškovalec se lahko naroči na poslušanje paketov in postane legitimni prejemnik
 - kaj narediti, če samo en prejemnik javi, da ni dobil paketa?

Razpošiljanje

naročanje na multicast promet (IGMP)

multicast usmerjanje (PIM)

Aplikacije razpošiljanja

- pošiljanje velikih datotek preko omrežja (glavni urad podružnicam) – zanesljivi prenos.
- nadgradnja programske opreme v velikem omrežju
- data streaming (npr. pošiljanje podatkov o delnicam vsem finančnim družbam)
- audio/video streaming
- video na zahtevo (spremljanje TV programa)
- izvedba konferenc (pomislek: boljša uporaba konferenčnega centra, ki odloča, kdo lahko govori in čigave pakete posredovati drugim)
 - izziv: premisli, kako izgleda izvedba konference z multicast pristopom
- aplikacije v realnem času z RTP, ki se uporablja za zagotaljanje tekoče in kakovostne dostave v okoljih, kjer se uporablja razpošiljanje

Naslavljanje IPv4 in IPv6

Naslavljanje IPv4

- imena razpošiljavalnih skupin so dejansko posebej rezervirani IPv4 naslovi: 224.0.0.0 239.255.255.255 (razred D)
- Posebni naslovi znotraj tega obsega:

Razpon naslovov	Opis	
224.0.0.0 - 224.0.0.255	Rezervirano za znane ("well-known") multicast naslove	
224.0.0.1	Vsi sistemi (vmesniki in usmerjevalniki)	
224.0.0.2	Vsi usmerjevalniki	
224.0.1.0 - 238.255.255.255	Globalni multicast naslovi (dosegljivi v internetu)	
239.0.0.0 - 239.255.255.255	Lokalni multicast naslovi (lokalno omrežje)	

Naslavljanje IPv6

- 1.) ime razpošiljevalne skupine je 128-bitno število IPv6 naslov, ki se prične z **FF**
- 2.) **FFo2::1** (link local: vsi VMESNIKI)
- 3.) **FFo2::2** (link local: vsi USMERJEVALNIKI)
- 4.) Struktura IPv6 naslova:

Preslikava v povezavne naslove

- Ethernet in FDDI okvirji uporabljajo 48 bitne naslove. Naslovi 01-00-5e-00-00-00 do 01-00-5e-ff-ff predstavljajo naslove razpošiljevalnih skupin.
- Predpona 01-00-5e pomeni razpošiljevalni okvir, naslednji bit je 0, ostalih 23 bitov tvori ime razpošiljevalne skupine.
- ker so IP razpošiljevlani naslovi dolgi 28 spremenljivih bitov, preslikava ni enolična! V okvir se vstavi samo 23 manj pomembnih bitov. To pomeni, da se po 32 (2⁵) naslovov združuje v isti naslov na drugi plasti.
 - izziv: kaj mora torej početi usmerjevalnik?
- Omrežna plast odloča, ali so datagrami pomembni za sprejem ali ne.

Prijava na multicast promet: protokola IGMP in MLD

Click here to Enroll Now ▶

- mrežni protokol je IPv4 paketu in številka protokola je 2
- RFC 2236, Internet Group Management Protocol, Version 2, RFC 3376, Internet Group Management Protocol, Version 3
 - obvezno: poiščite ga na spletu ter ga preberite literatura!
 - izziv: poiščite še ostale RFC dokumente, ki se ukvarjajo z IGMP
- IGMP skrbi za upravljanje s tem, kdo so prejemniki razpošiljanih sporočil. Omogoča:
 - pridružitev skupini
 - izstop iz skupine
 - zaznavanje drugih vmesnikov v skupini

• IGMP komunikacija poteka <u>med odjemalcem in najbližjim</u> <u>razpošiljevlanim usmerjevalnikom</u>

 na podlagi protokola IGMP usmerjevalniki dobijo nalogo povezati se v strukturo razpošiljevalnega drevesa

Verzije IGMP

Obstajajo verzije IGMP v1, v2 in v3.

- IGMPv1: Vmesniki se lahko pridružijo skupinam. Sporočila za izstop ne obstajajo. Usmerjevalniki uporabljajo mehanizem s pretekom časa, da odkrivajo skupine, ki za vmesnik niso zanimive.
- IGMPv2: Dodana sporočila za izstop iz skupine. S tem omogočitev hitrejšega sporočanja usmerjevalniku o prekinitvi dostave nepotrebnega prometa.
- IGMPv3: Večje spremembe v protokolu. Vmesniki lahko določijo SEZNAM drugih vmesnikov, od koder želijo prejemati promet. Promet od ostalih vmesnikov omrežje blokira).

• Kako z IGMP udejaniti upravljanje s skupinami?

Dejanje	IGMP sporočilo	IP Destination Address	IGMP Group Address
pridružiti se želim skupini	Group Membership Report	naslov skupine	naslov skupine
Kdo vse je član določene skupine?	Group Membership Query	naslov skupine	naslov skupine
katere skupine obstajajo?	Group Membership Query	vsi vmesniki (224.0.0.1)	0.0.0.0
sem član skupine, o kateri se poizveduje, želim se odzvati, da sem član	Group Membership Report	naslov skupine	naslov skupine
zapustiti želim skupino	Group Leave Report	vsi usmerjevalniki (224.0.0.2)	naslov skupine

IGMP sporočilo je dolgo 8 zlogov

- **type** tip sporočila:
 - 17 (0x11): Group Membership Query (odkrivanje članov skupine)
 - 18 (0x12): Group Membership Report IGMP v1 (objava prejemnika)
 - 22 (0x16): Group Membership Report IGMP v2 (objava prejemnika)
 - 34 (0x22): Group Membership Report IGMP v3 (objava prejemnika)
 - 23 (0x17): Leave Group Report IGMP v2 (objava, da je prejemnik zapustil skupino)
- response time čas, v katerem se mora prejemnik klica IGMP Group Membership Query, odzvati
- **checksum** kontrolna vsota (ne pokriva IP glave)
- multicast group address IPv4 naslov razpošiljevalne skupine

Posebno sporočilo: IGMPv3 Group Membership report

Туре	Not used	Checksum
Not used		Number of Addresses
Multicast Group Address Response		
Multicast Group Address Responses		

- Type= ox22
- odgovori vseh vmesnikov v skupini so zbrani v istem paketu
- vmesnik čaka na odgovore drugih prejemnikov v skupini, preden odgovori sam
 - posebna oblika paketa torej omogoči izogibanje podvojenemu multicast prometu

Protokol IGMP: prijava na vir

- za pridružitev skupini, se pošlje GMR sporočilo z vrednostjo TTL=1 (dostava samo najbližjemu usmerjevalniku)
- usmerjevalnik evidentira da mora skupinske pakete posredovati novemu naročniku (kako? povezavni razpošiljevalni naslov / kopije datagramov na IP naslov)
- usmerjevalnik sporoči sosednjim usmerjevalnikom, da ima novega naročnika. Če bi vsak usmerjevalnik sporočil enako naprej, pride do problema - paketi bi se posredovali navzkrižno preko vseh povezav v omrežju. Rešitve:
 - **uporablja se RPL algoritem** (Reverse Path Lookup): zavržemo vse multicast pakete, ki pridejo od usmerjevalnikov, ki ne povezujejo z izvorom paketa po najbližji poti
 - usmerjevalniki imajo posebne usmerjevalne protokole za multicast promet: npr. protokol PIM-SM (Protocol Independent Multicast Sparse Mode)

Reverse path lookup: primer

Protokol MLD

- Multicast Listener Discovery, RFC 2710, Multicast Listener Discovery (MLD) for IPv6
 - obvezno: poiščite ga na spletu ter ga preberite literatura!
 - izziv: poiščite razlike med MLD in IGMP
 - izziv: kaj pa sobivanje IGMP (IPv4) in MLD (IPv6)?

Protokol MLD

 Dejansko je protokol za IPv6 za razpošiljanje in ima enako funkcionalnost kot IGMP

Protokol IGMP in MLD

• MLD:

• IGMP:

Checksum

| Max Resp Time |

Type

Razpošiljevalna drevesa

Razpošiljanje prometa

- paketi se gibljejo v obliki razpošiljevalnega drevesa
- drevo lahko optimizira različne kriterije:
 - slika 1: skupna dolžina poti (število hopov) vseh datagramov
 - slika 2: najkrajša pot za vsak datagram posebej (minimalno vpeto drevo)

Usmerjanje multicast

- Naloga usmerjanja: najti drevo povezav, ki povezuje vse usmerjevalnike v isti razpošiljevalni skupini
- Za komunikacijo med usmerjevalniki potrebujemo razpošiljevalne usmerjevalne algoritme (delujejo na omrežni plasti), kot so: PIM, DVMRP, MOSFP in BGP.

kako rdeče usmerjevalnike povezati v skupno drevo?

Dve rešitvi iskanja razpošiljevalnega drevesa

- uporaba enega samega drevesa za vse usmerjevalnike za usmerjanje razpošiljevalnega prometa se določi eno samo drevo (group-shared tree) - slika levo
- določitev ločenega drevesa za vsakega udeleženca v skupini (source-based tree); za N članov skupine imamo torej N dreves (za vsako razpošiljevalno skupino) slika desno

Določanje skupnega drevesa (group-shared)

- iskanje drevesa z **minimalno skupno ceno** (uporablja se Steinerjev algoritem za vpeta drevesa, problem je NP poln), *slika levo ali*
- določitev **centralnega vozlišča** "rendez-vouz point" (kako usmerjati do njega je znano iz pravil za unicast usmerjanje); usmerjevalnik se pridruži drevesu, ko na poti do centralnega vozlišča naleti na prvo vozlišče, ki je že v drevesu, slika desno

Določanje dreves posameznih pošiljateljev (source-based)

- 1. Iskanje **drevesa najkrajših poti** v grafu (uporaba algoritma Dijkstra, ki išče drevo najkrajših povezav glede na podano začetno vozlišče), *slika levo*
 - usmerjevalniki morajo poznati stanja vseh povezav (link-state)

ali

2. Uporaba **RPL** (*Reverse Path Lookup*): ne sprejemo sporočil od usmerjevalnikov, ki niso na najbližji poti do izvora sporočila, *slika desno*

Usmerjanje razpošiljanja

Usmerjevalni protokoli

- skrbijo za oglaševanje skupin v omrežju
- delimo jih glede po 2 kriterijih (2x2=4 skupine)
 - razpršeno / gosto (sparse-mode / dense-mode)
 - sparse-mode: posamezna vozlišča zahtevajo vključitev v drevo (pull princip)
 - *dense-mode*: razpošiljane pakete razpošljemo po vsem omrežju, usmerjevalniki se odjavljajo, če so nepotrebni (*push* princip). Tu dva načina:
 - broadcast and prune (uporaba prune in graft sporočil); struktura se občasno reinicializira
 - domain-wide poročila (usmerjevalniki z broadcastom prijavljajo odjemalce na promet)
 - 2. intra (znotraj domene) / interdomain (med domenami)

Usmerjevalni protokoli

 obstaja povezava med načinom delovanja in vrsto drevesa, ki ga protokol gradi

Protokol	Način delovanja	vrsta drevesa	Vrsta
PIM-SM	sparse	skupno	znotraj in med domenami
PIM-DM	dense	posamezno	znotraj domen
СВТ	sparse	skupno	znotraj in med domenami
MOSPF	dense	posamezno	znotraj domen
BGMP	dense	posamezno	znotraj domen
DVMRP	dense	posamezno	znotraj in med domenami

PIM-SM (Protocol Independent Multicast - Sparse Mode)

- PIM-DM: dense-mode, posamezno drevo
- PIM-SM: sparse-mode, skupno drevo, včasih posamezno
 - izziv: preberi RFC 4601 in ga preuči
- protokola PIM-SM in PIM-DM sta primerna za usmerjevalnike, ki že izvajajo unicast usmerjanje. Sta neodvisna od unicast protokola
- sporočila uporabljajo IP mrežni protokol s številko protokola protokola 103
- sporočila med usmerjevalniki so unicast ali multicast na naslov 224.0.0.13 (vsi PIM usmerjevalniki)

Delovanje PIM-SM

vzpostavitev arhitekture

- kandidatni zagonski (*bootstrap*) usmerjevalniki (c-BSR) oznanijo svojo prisotnost (**tip sporočila BOOTSTRAP**) in izberejo glavni zagonski usmerjevalnik BSR
- •kandidatni centralni (*rendezvouz*) usmerjevalniki (c-RP) oznanijo prisotnost BSR usmerjevalniku (tip sporočila CANDIDATE-RP-ADVERTISEMENT)
- BSR izbere dokončni centralni usmerjevalnik (RP) za vsako skupino in jih oznani s sporočili tipa BOOTSTRAP

pošiljanje podatkov

- •PIM-SM usmerjevalniki se zaznajo in vzdržujejo komunikacijo s sporočili HELLO
- •vmesnik, ki pošilja podatke na skupinski naslov, razpošlje datagram na lokalni segment mreže
- •izbrani usmerjevalnik na mreži (designated router) enkapsulira datagram v tip sporočila REGISTER in ga pošlje RP
- •RP dekapsulira datagram in ga razpošlje po razpošiljevalnem drevesu

vzdrževanje naročnine

- •kadar RP zazna, da v skupini ni več prejemnikov, pošlje sporočilo REGISTER-STOP vsem izbranim usmerjevalnikom
- kadar se novi uporabnik želi pridružiti skupini, pošlje **sporočilo JOIN/PRUNE** s seznamom vseh želenih skupin in dovoljenih prejemnikov

Oblika paketa - vsebina glave

- Glava dolga 32 bitov
- version = 2
- tip:

vrednost	pomen
0	hello
1	register
2	register stop
3	join/prune
4	bootstrap
5	assert
6	candidate-rp- advertisement

24

31

Oblika paketa PIM-SM - paket HELLO

- namenjen vzdrževanju povezav med usmerjevalniki
- v primeru, da se izbrani usmerjevalnik za pošiljanje multicast prometa ne odzove, se izbere drugi
- paket vsebuje množico TLV vrednosti, kot so npr. potek časa, v katerem je pričakovan odgovor

Oblika paketa PIM-SM - paket REGISTER in REGISTER-STOP

- sporočilo REGISTER nosi vsebino multicast sporočila do centralnega usmerjevalnika (unicast)
 - B (border router) sporočilo prišlo usm., ki je neposredno povezan z vmesnikom,
 - N (null) paket je prazen, za vzpostavitev povezanosti
- sporočilo REGISTER STOP pošlje centralni usmerjevalnik izbranemu usmerjevalniku, z njim sporoči naj ne pošilja sporočil (prejemnikov ni / sporočila dobiva že od drugje)

24

31

R Amonhaum	P	Booosed	Alba eleanos	
Version	Type=2	Reserved	Checksum	
	Encoded-Group Address			
	Encoded-Unicast-Source Address			
minded amous assiss radios				

Oblika paketa PIM-SM - JOIN/PRUNE

- omogoča prejemniku, da se prijavi/odjavi od prejemanja multicast prometa
- PIM-SM ima Number of Pruned sources enak 0 (ker uporablja skupno drevo)
- Polja za prijavo/odjavo:
 - Encoded Join Source Address
 - Encoded Pruned Source Address

Drugi usmerjevalni protokoli

- MOSPF
 - Multicast OSPF
 - ima dodano le posebno obliko paketa, ki oznanja multicast promet
 - izziv: poišči RFC dokumente, ki opisujejo MOSPF in jih preberi!
- DVMRP
 - Distance Vector Multicast Routing Protocol
 - prenaša se ga v IGMP paketih (tip 13)
 - izziv: preberi RFC 1075 in prouči delovanje tega protokola

MBONE

- povezava omrežij, zmožnih multicast prometa
 - sprva znotraj interneta, tvorile so ga delovne postaje z virtualnimi povezavami
 - izziv: preberi RFC 2715
 - 1995: MBONE vsebuje 901 usmerjevalnikov (uporablja se DVMRP) in je v 20 državah
 - 1999: 4178 usmerjevalnikov, uporablja se vse bolj RTP, ponudniki storitev postajajo preobremenjeni
 - IETF ustanovi delovno skupino MBONED z nalogo, da vzpostavi multicast usmerjanje preko celega interneta (razvoj protokola MSDP: Multicast Source Discovery Protocol)
 - izziv: preberi RFC 1112, kaj je to Any Source Multicast arhitektura (ASM)?

Naslednjič gremo naprej!

avtentikacija, avtorizacija in beleženje - AAA!

