(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-352408 (P2002-352408A)

(43)公開日 平成14年12月6日(2002.12.6)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
G11B	5/667		G11B	5/667	5 D 0 0 6
	5/851			5/851	5 D 1 1 2
H01F	10/16		H 0 1 F	10/16	5 E 0 4 9
	41/18			41/18	•

審査請求 未請求 請求項の数20 OL (全 19 頁)

		四上四八	不耐水 間水気の処理 した (生 10 女)
(21)出廢番号	特願2001-154448(P2001-154448)	(71) 出願人	000002004 昭和俄工株式会社
(22)出顧日	平成13年5月23日(2001.5.23)		東京都港区芝大門1丁目13番9号
(CE) [[[8]]	TM104 0 720 1 (2001. 0. 20)	(72)発明者	
			千葉県市原市八幡海岸通5番の1 昭和電
			工エイチ・ディー株式会社内
		(72)発明者	坂脇 彰
			千葉県市原市八幡海岸通5番の1 昭和電
			エエイチ・ディー株式会社内
		(74)代理人	100064908
			弁理士 志賀 正武 (外6名)
			最終頁に続く

(54) 【発明の名称】 磁気記録媒体、その製造方法、および磁気記録再生装置

(57)【要約】

【課題】 記録再生特性に優れた磁気記録媒体を提供する。

【解決手段】 非磁性基板1上に、軟磁性下地膜2と、配向制御膜3と、垂直磁性膜4と、保護膜5とが設けられ、軟磁性下地膜2が、以下の組成で表される材料を含む。

a F e - b C o - c M - d X 1 - f N

 $(M=Ti \ Zr \ Nb \ Hf \ Ta \ V \ Moのうち 1 種または 2 種以上、 <math>X1=Cr \ Ga \ Al \ Si \ Ni \ Oうち 1 種または 2 種以上。ただし、 <math>a \ b \ c \ d$ 、 $d \ f$ は百分率で表された原子比であり、 $60 \le a+b \le 90$ 、 $30 \le a \le 90$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 7$ 、 $3 \le f \le 30$ である。)

1 : 非磁性基板 2 : 軟磁性下地膜 3 : 配向制御膜 4 : 垂直磁性膜 5 : 保護膜 6 : 潤滑膜

【特許請求の範囲】

【請求項1】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、前記軟磁性下地膜が、以下の組成で表される材料を含むことを特徴とする磁気記録媒体。

a F e - b C o - c M - d X 1 - f N

 $(M=Ti \ Zr \ Nb \ Hf \ Ta \ V \ Moのうち 1 種または 2 種以上、 <math>X1=Cr \ Ga \ Al \ Si \ Ni \ O$ うち 1 種または 2 種以上。 ただし、 $a \ b \ c \ d$ 、 f は百分率で表された原子比であり、 $60 \le a+b \le 90$ 、 $30 \le a \le 90$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 7$ 、 $3 \le f \le 30$ である。)

【請求項2】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、前記軟磁性下地膜が、以下の組成で表される材料を含むことを特徴とする磁気記録媒体。

a F e - b C o - c M - e X 2 - f N

 $(M=Ti \cdot Zr \cdot Nb \cdot Hf \cdot Ta \cdot V \cdot Mo o o 55 1 種または2種以上、<math>X2=P \cdot C \cdot B \cdot O o o 55 1 種または2種以上。ただし、<math>a \cdot b \cdot c \cdot e \cdot f$ は百分率で表された原子比であり、 $60 \le a + b \le 90 \cdot 30 \le a \le 90 \cdot 5 \le c \le 20 \cdot 0$. $1 \le e \le 10 \cdot 3 \le f \le 30$ である。)

【請求項3】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配 の向した垂直磁性膜と、保護膜とが設けられ、前記軟磁性下地膜が、以下の組成で表される材料を含むことを特徴とする磁気記録媒体。

a F e - b C o - c M - d X1 - e X2 - f N

 $(M=Ti \ Zr \ Nb \ Hf \ Ta \ V \ Moのうち 1 種または 2 種以上、 <math>X1=Cr \ Ga \ Al \ Si \ Ni \ 0$ うち 1 種または 2 種以上、 $X2=P \ C \ B \ O$ のうち 1 種または 2 種以上。 ただし、 $a \ b \ c \ d$ 。 $e \ f$ は百分率で表された原子比であり、 $60 \le a+b \le 90$ 、 $30 \le a \le 90$ 、 $5 \le c \le 20$ 、 $0 \ 1 \le d \le 7$ 、 $0 \ 1 \le e \le 7$ 、 $3 \le f \le 30$ である。)

【請求項4】 60≦a+b≦80、30≦a≦8 0、5≦c≦20、0.1≦d≦3、0.1≦e≦5、 8≦f≦25であることを特徴とする請求項3に記載の 磁気記録媒体。

【請求項5】 軟磁性下地膜が、Feを主成分する平均粒径13nm以下の微細結晶と、該微細結晶よりもMとN(M=Ti、Zr、Nb、Hf、Ta、V、Moのうち1種または2種以上)を多く含有する非晶質相とからなることを特徴とする請求項1乃至4のうちいずれか so

1 項に記載の磁気記録媒体。

【請求項6】 微細結晶が b c c 構造をとることを特徴とする請求項5に記載の磁気記録媒体。

【請求項7】 軟磁性下地膜の飽和磁束密度 B s が 1 T以上であることを特徴とする請求項1乃至6のうちいずれか1項に記載の磁気記録媒体。

【請求項8】 軟磁性下地膜の飽和磁束密度 B s が 1.4 T以上であることを特徴とする請求項1乃至7のうちいずれか1項に記載の磁気記録媒体。

【請求項9】 軟磁性下地膜の飽和磁束密度 B s と該 軟磁性下地膜の膜厚 t との積 B s · t が 5 0 T · n m以 上であることを特徴とする請求項 1 乃至 8 のうちいずれ か 1 項に記載の磁気記録媒体。

【請求項10】 軟磁性下地膜の飽和磁束密度Bsと該軟磁性下膜の膜厚tとの積Bs・tが100T・nm以上であることを特徴とする請求項1乃至9のうちいずれか1項に記載の磁気記録媒体。

【請求項11】 配向制御膜が、Ti、Zn、Y、Zr、Ru、Re、Gd、Tb、Hfのうち1種または2種以上を50%at以上含有するhcp構造材料からなることを特徴とする請求項1乃至10のうちいずれか1項に記載の磁気記録媒体。

【請求項12】 配向制御膜が、Ni、Cu、Pd、Ag、Pt、Ir、Au、Alのうち1種または2種以上を50% at以上含有するfcc構造材料からなることを特徴とする請求項1乃至10のうちいずれか1項に記載の磁気記録媒体。

【請求項13】 軟磁性下地膜の垂直磁性膜側の表面の一部または全面が酸化されていることを特徴とする請求項1乃至12のうちいずれか1項に記載の磁気記録媒体。

【請求項14】 垂直磁性膜の逆磁区核形成磁界(-Hn)がO(Oe)以上であることを特徴とする請求項 1乃至13のうちいずれか1項に記載の磁気記録媒体。

【請求項15】 非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とを設け、前記軟磁性下地膜を、以下の組成で表される材料を含むように形成することを特徴とする磁気記録媒体の製造方法。

【請求項16】 軟磁性下地膜を、Feを主成分する 平均粒径13nm以下の微細結晶と、該微細結晶よりも

MとN(M=Ti、Zr、Nb、Hf、Ta、V、Mo のうち I 種または 2 種以上)を多く含有する非晶質相とからなるものとすることを特徴とする請求項 I 5 に記載の磁気記録媒体の製造方法。

【請求項17】 軟磁性下地膜をスパッタ法にて成膜し、成膜の際に用いる成膜ガスの窒素含有率を0.1~50vol%とすることを特徴とする請求項15または16に記載の磁気記録媒体の製造方法。

【請求項18】 軟磁性下地膜を形成した後、この軟磁性下地膜を250℃~450℃で熱処理することを特徴とする請求項15乃至17のいずれか1項に記載の磁気記録媒体の製造方法。

【請求項19】 磁気記録媒体と、この磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気ヘッドが単磁極ヘッドであり、磁気記録媒体が、非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易膜が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、前記軟磁性下地膜が、以下の組成で表される材料を含むことを特徴とする磁気記録再生装置。

a F e - b C o - c M - d X 1 - e X 2 - f N (M = T i 、 Z r 、 N b 、 H f 、 T a 、 V 、 M o の う 5 1 種または 2 種以上、 X 1 = C r 、 G a 、 A 1 、 S i 、 N i の う 5 1 種または 2 種以上、 X 2 = P 、 C 、 B 、 O の う 5 1 種または 2 種以上。 ただし、 a 、 b 、 c 、 d 、 e 、 f は 百分率で表された原子比であり、 6 $0 \le a + b$ \le 9 0 、 3 $0 \le a \le 9$ 0 、 $5 \le c \le 2$ 0 、 0 . $1 \le d \le 7$ 、 0 . $1 \le e \le 7$ 、 $3 \le f \le 3$ 0 である。)

【請求項20】 軟磁性下地膜が、Feを主成分する 平均粒径13nm以下の微細結晶と、該微細結晶よりも MとN(M=Ti,Zr,Nb,Hf,Ta,V,Mo のうち 1 種または 2 種以上)を多く含有する非晶質相と からなるものであることを特徴とする請求項 19 に記載 の磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気記録媒体、その製造方法、およびこの磁気記録媒体を用いた磁気記録 再生装置に関するものである。

[0002]

【従来の技術】従来、磁性膜内の磁化容易軸が主に基板に対し水平に配向した面内磁気記録媒体が広く用いられている。面内磁気記録媒体では、高記録密度化するとビット体積が小さくなりすぎ、熱揺らぎ効果により記録再生特性が悪化する可能性がある。また、高記録密度化した際に、記録ビット境界での反磁界の影響により媒体ノイズが増加する。これに対し、磁性膜内の磁化容易軸が主に垂直に配向した垂直磁気記録媒体は、高記録密度化した際にも、ビット境界での反磁界の影響が小さく、境 50

界が鮮明な記録磁区が形成されるため低ノイズ化が可能であり、しかも比較的ビット体積が大きくても高記録密度化が可能であることから熱揺らぎ効果にも強く、近年大きな注目を集めている。

[0003]

【発明が解決しようとする課題】近年では、磁気記録媒 体の更なる高記録密度化が要望されている。このため、 垂直磁性膜に対する書き込み能力に優れる単磁極ヘッド を用いるために、記録層である垂直磁性膜と基板との間 に、裏打ち層と称される軟磁性材料からなる膜を設けた 磁気記録媒体が提案されている。この磁気記録媒体で は、単磁極ヘッドと、磁気記録媒体の間の磁束の出入り の効率を向上させることができる。しかしながら、上記 軟磁性膜(裏打ち層)を設けた磁気記録媒体を用いた場 合でも、記録再生特性は満足できるものではなく、この 特性に優れる磁気記録媒体が要望されていた。特開平2 -152208号公報には、Co(50~75at%) -M (M = Ti, Zr, Hf, Nb, Ta, Mo, W) (4~25at%)-N(1~35at%)からなる 軟磁性膜(裏打ち層)を用いることが提案されている。 一般にCo合金からなる軟磁性膜は、Coの含有率が8 5 a t %未満であると飽和磁化が低下するため、この軟 磁性膜を厚くする必要が生じ、その結果、表面粗さが粗 くなる。このため、上記磁気記録媒体では、記録再生時 における磁気ヘッド浮上高さを十分に低くすることがで きなくなり、高記録密度化が困難になる問題があった。 また厚い軟磁性膜を形成するために、生産性が低下する 問題があった。また特開平11-149628号公報に は、FeAlSi、FeTaN合金からなる軟磁性下地 膜を設けることによって、突発性のスパイクノイズの発 生を抑制し、エンベロープ特性を改善することが提案さ れている。しかしながら、上記磁気記録媒体では、エン ベロープ特性は改善されるが、軟磁性下地膜に起因する 媒体ノイズが大きくなるため好ましくない。これは、軟 磁性下地膜の結晶粒を微細化しても、結晶粒どうしの磁 気的な結合が大きくなることから、磁気クラスターサイ ズ(磁気的結合粒子径)が大きくなるためである。

【0004】本発明は、上記事情に鑑みてなされたもので、軟磁性下地膜から発生する媒体ノイズを低減することにより、記録再生特性を向上させ高密度の記録再生が可能となる磁気記録媒体、その製造方法および磁気記録再生装置を提供することを目的とする。

[0005]

【課題を解決するための手段】上記の目的を達成するために、本発明は以下の構成を採用した。本発明の磁気記録媒体は、非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、前記軟磁性下地膜が、以下の組成で表される材料を含むことを特徴とす

5

る。

a F e - b C o - c M - d X 1 - f N

 $(M=Ti \ Zr \ Nb \ Hf \ Ta \ V \ Moのうち 1 種または 2 種以上、 <math>X1=Cr \ Ga \ Al \ Si \ Ni \ Oうち 1 種または 2 種以上。ただし、 <math>a \ b \ c \ d$ 、 f は百分率で表された原子比であり、 $60 \le a+b \le 90$ 、 $30 \le a \le 90$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 7$ 、 $3 \le f \le 30$ である。)

軟磁性下地膜は、以下の組成で表される材料を含むものであってもよい。

a F e - b C o - c M - e X 2 - f N

 $(M=Ti \ Zr \ Nb \ Hf \ Ta \ V \ Moのうち 1 種または 2 種以上、 <math>X2=P \ C \ B \ Oのうち 1 種$ または 2 種以上。 ただし、 $a \ b \ c \ e \ f$ は 百分率で表された原子比であり、 $60 \le a+b \le 90 \ 30 \le a \le 90 \ 5 \le c \le 20 \ O.$ $1 \le e \le 10 \ 3 \le f \le 30$ である。)

また軟磁性下地膜は、以下の組成で表される材料を含む ものであってもよい。

a F e - b C o - c M - d X1 - e X2 - f N (M=Ti、Zr、Nb、Hf、Ta、V、Moのうち 1 種または2種以上、X1=Cr、Ga、A.l、Si、Niのうち1種または2種以上、X2=P、C、B、Oのうち1種または2種以上。ただし、a、b、c、d、e、f は百分率で表された原子比であり、 $60 \le a+b \le 90$ 、 $30 \le a \le 90$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 7$ 、 $0.1 \le e \le 7$ 、 $3 \le f \le 30$ である。)

上記 a ~ f は、次の範囲にあることが好ましい。60≦

 $a+b \le 80$, $30 \le a \le 80$, $5 \le c \le 20$, 0. 1 $\leq d \leq 3$ 、0. $1 \leq e \leq 5$ 、 $8 \leq f \leq 2.5$ 。軟磁性下地 膜は、Feを主成分する平均粒径13nm以下の微細結 晶と、該微細結晶よりもMとN(M=Ti、Zr、N b、Hf、Ta、V、Moのうち1種または2種以上) を多く含有する非晶質相とからなる構成とするのが好ま しい。微細結晶は、bcc構造をとることが好ましい。 軟磁性下地膜の飽和磁束密度Bsが1T以上とするのが 好ましく、1. 4 T以上とするのがさらに好ましい。軟 磁性下地膜は、飽和磁束密度Bsと該軟磁性下地膜の膜 厚tの積Bs・tを50T・nm以上とするのが好まし く、100T・nm以上とするのがさらに好ましい。配 40 向制御膜は、Ti、Zn、Y、Zr、Ru、Re、G d、Tb、Hfのうち1種または2種以上を50%at 以上含有するh c p構造材料からなる構成とすることが できる。配向制御膜は、Ni、Cu、Pd、Ag、P t、Ir、Au、Alのうち1種または2種以上を50 % a t 以上含有する f c c 構造材料からなる構成とする ことができる。軟磁性下地膜は、垂直磁性膜側の表面の 一部または全面が酸化されている構成とするのが好まし い。垂直磁性膜の逆磁区核形成磁界(- H n) は、0 (Oe)以上とするのが好ましい。本発明の磁気記録媒 50

6

体の製造方法は、非磁性基板上に、少なくとも軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とを設け、前記軟磁性下地膜を、以下の組成で表される材料を含むものとなるように形成することを特徴とする。

a Fe-bCo-cM-dX1-eX2-fN
(M=Ti、Zr、Nb、Hf、Ta、V、Moのうち 1 種または2種以上、X1=Cr、Ga、Al、Si、Niのうち1 種または2種以上、X2=P、C、B、Oのうち1 種または2種以上。ただし、a、b、c、d、e、fは百分率で表された原子比であり、 $60 \le a+b \le 90$ 、 $30 \le a \le 90$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 7$ 、 $0.1 \le e \le 7$ 、 $3 \le f \le 30$ である。)本発明の製造方法では、軟磁性下地膜を、Feを主成分する平均粒径13nm以下の微細結晶と、該微細結晶よりもMとN(M=Ti、Zr、Nb、Hf、Ta、V・

する平均粒径13nm以下の微細結晶と、該微細結晶よ りもMとN (M=Ti、Zr、Nb、Hf、Ta、V、 Moのうち1種または2種以上)を多く含有する非晶質 相とからなるものとするのが好ましい。また本発明の製 造方法では、軟磁性下地膜をスパッタ法にて成膜し、成 膜の際に用いる成膜ガスの窒素含有率を0.1~50~ o 1%とするのが好ましい。また本発明では、軟磁性下 地膜を形成した後、この軟磁性下地膜を250℃~45 0℃で熱処理するのが好ましい。本発明の磁気記録再生 装置は、磁気記録媒体と、この磁気記録媒体に情報を記 録再生する磁気ヘッドとを備えた磁気記録再生装置であ って、磁気ヘッドが単磁極ヘッドであり、磁気記録媒体 が、非磁性基板上に、少なくとも軟磁性材料からなる軟 磁性下地膜と、直上の膜の配向性を制御する配向制御膜 と、磁化容易膜が基板に対し主に垂直に配向した垂直磁 性膜と、保護膜とが設けられ、前記軟磁性下地膜が、以 下の組成で表される材料を含むことを特徴とする。

軟磁性下地膜は、Feを主成分する平均粒径13nm以下の微細結晶と、該微細結晶よりもMとN(M=Ti、Zr、Nb、Hf、Ta、V、Moのうち1種または2種以上)を多く含有する非晶質相とからなるものであることが好ましい。

[0006]

【発明の実施の形態】図1は、本発明の磁気記録媒体の 第1の実施形態を示すもので、ここに示す磁気記録媒体 は、非磁性基板1上に、軟磁性下地膜2と、配向制御膜 3と、垂直磁性膜4と、保護膜5と、潤滑膜6とが順次 形成されて構成されている。非磁性基板1としては、ア ルミニウム、アルミニウム合金等の金属材料からなる金 属基板を用いてもよいし、ガラス、セラミック、シリコ ン、シリコンカーバイド、カーボンなどな非金属材料か らなる非金属基板を用いてもよい。ガラス基板として は、アルモファスガラス、結晶化ガラスがあり、アルモ ファスガラスとしては汎用のソーダライムガラス、アル ミノケートガラス、アルミノシリケートガラスを使用で きる。また、結晶化ガラスとしては、リチウム系結晶化 ガラスを用いることができる。セラミック基板として は、汎用の酸化アルミニウム、窒化アルミニウム、窒化 珪素などを主成分とする焼結体や、これらの繊維強化物 などが使用可能である。非磁性基板 1 としては、上記金 属基板、非金属基板の表面にメッキ法やスパッタ法によ りNi P膜が形成されたものを用いることもできる。非 磁性基板1の表面形状は、媒体表面の形状に影響を与え るため、記録再生時における磁気ヘッド浮上高さを低く するには、非磁性基板1の表面平均粗さRaを2nm以 下とするのが好ましい。この表面平均粗さRaを2nm 以下とすることによって、磁気記録媒体の表面凹凸を小 20 さくし、記録再生時における磁気ヘッド浮上高さを十分 に低くし、記録密度を高めることができる。

【0007】軟磁性下地膜2は、ヘッドからの磁束の垂直方向成分を大きくし、かつ垂直磁性膜4の磁化を基板1に対し垂直な方向に固定するために設けられているものである。本実施形態の磁気記録媒体では、軟磁性下地膜2が、以下の組成で表される材料を含む構成を採用できる。

 $a F e - b C o - c M - d X 1 - f N \cdots (1)$

 $(M=Ti \ Zr \ Nb \ Hf \ Ta \ V \ Moのうち 30$ 1 種または2 種以上、 $Xi=Cr \ Ga \ Al \ Si \ Ni のうち <math>1$ 種または2 種以上。ただし、 $a \ b \ c \ d \ f は百分率で表された原子比(<math>at \%$)であり、6 $0 \le a+b \le 90 \ 30 \le a \le 90 \ 5 \le c \le 20 \ 0. <math>1 \le d \le 7 \ 3 \le f \le 30$ である。) $a \sim f$ は、 $60 \le a+b \le 80 \ 30 \le a \le 80 \ 5 \le 6$

 $a \sim f$ は、 $60 \le a + b \le 80$ 、 $30 \le a \le 80$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 3$ 、 $8 \le f \le 25$ とするのがより好ましい。軟磁性下地膜 2 は、式(1)で示される材料を主成分とするものであることが好ましい。なお主成分とは当該成分を50at%を越えて含むことを意味する。式(1)に示す材料の具体例としては、FeHfCrN、FeHfAlN、FeHfSiN、FeHfGaN、FeHfCrAlN、FeZrCrN、FeTaCrN、FeNbCrN、FeTiCrN、FeCoHfCrN

【0008】また、軟磁性下地膜2は、以下の組成で表される材料を含むものであってもよい。

a Fe-bCo-cM-e X2-fN \cdots (2)

(M=Ti、Zr、Nb、Hf、Ta、V、Moのうち 1種または2種以上、X2=P、C、B、Oのうち1種 または2種以上。ただし、a、b、c、e、f は百分率 で表された原子比であり、 $6.0 \le a + b \le 9.0$ 、 $3.0 \le a \le 9.0$ 、 $5 \le c \le 2.0$ 、 $0.1 \le e \le 1.0$ 、 $3 \le f \le 3.0$ である。)

 $a \sim f$ は、 $60 \le a + b \le 80$ 、 $30 \le a \le 80$ 、 $5 \le c \le 20$ 、 $0.1 \le e \le 5$ 、 $8 \le f \le 25$ とするのがより好ましい。軟磁性下地膜 2 は、式(2)で示される材料を主成分とするものであることが好ましい。式(2)に示す材料の具体例としては、F e H f B N 、F e H f C

N、FeHfPN、FeHfON、FeHfBCN、F eZrBN、FeTaBN、FeNbBN、FeTiB N、FeHfAlCONを挙げることができる。

【0009】また、軟磁性下地膜2には、以下の組成で表される材料を含むものを用いることもできる。

a Fe-b Co-c M-d X1-e X2-f N ···(3) (M=Ti、Zr、Nb、Hf、Ta、V、Moのうち 1 種または2 種以上、

X1=Cr、Ga、Al、Si、Niのうち1種または 2種以上、

X2=P、C、B、Oのうち1種または2種以上。
 ただし、a、b、c、d、e、fは百分率で表された原子比であり、60≦a+b≦90、30≦a≦90、5≦c≦20、0.1≦d≦7、0.1≦e≦7、3≦f≦30である。)

 $a \sim f$ は、 $60 \le a + b \le 80$ 、 $30 \le a \le 80$ 、 $5 \le c \le 20$ 、 $0.1 \le d \le 3$ 、 $0.1 \le e \le 5$ 、 $8 \le f \le 25$ とするのがより好ましい。軟磁性下地膜 2 は、式(3) で示される材料を主成分とするものであることが好ましい。式(3) に示す材料の具体例としては、FeHfCrBN、FeHfAlBN、FeHfAlPN、FeHfCrBPNを挙げることができる。

【0010】FeとCoの含有率の合計(a+b)が上 記範囲未満であると、飽和磁束密度が小さくなり軟磁性 下地膜2を厚くする必要が生じるため、表面平均粗さR aが大きくなる。その結果、記録再生時における磁気へ ッド浮上高さを十分に低くすることができなくなり、高 記録密度化が難しくなる。またFeとCoの合計含有率 が上記範囲を越えると、十分な低ノイズ化が難しくなる ため好ましくない。Feの含有率(a)が上記範囲未満 であると、飽和磁束密度が小さくなり軟磁性下地膜2を 厚くする必要が生じるため、表面平均粗さRa大きくな る。その結果、記録再生時における磁気ヘッド浮上高さ を十分に低くすることができなくなり、高記録密度化が 難しくなる。またFeの含有率が上記範囲を越えると、 十分な低ノイズ化が難しくなるため好ましくない。 Mの 含有率(c)が上記範囲未満であると、軟磁性下地膜2 によるノイズ低減効果が低くなるため好ましくない。ま たMの含有率が上記範囲を越えると、軟磁性下地膜2全 体が非晶質になり、ノイズ特性が劣化するおそれがある

ため好ましくない。Nの含有率(f)が上記範囲未満であると、軟磁性下地膜2の結晶粒径が大きくなりやすくなる。またNの含有率が上記範囲を越えると、軟磁性下地膜2の飽和磁束密度が低くなるため好ましくない。

9

【0011】X1の含有率(d)が上記範囲未満であると、結晶粒を微細化する効果が低下し、結晶粒径が大きくなりノイズが増加する。またX1の含有率が上記範囲を越えると、軟磁性下地膜2の磁化が不十分となりやすくなる。また軟磁性下地膜2から発生する媒体ノイズが増加するため好ましくない。X2の含有率(e)が上記範囲未満であると、結晶粒が大きくなり媒体ノイズが増加する。X2の含有率が上記範囲を越えると、軟磁性下地膜2の磁化が不十分となりやすくなる。また軟磁性下地膜2から発生する媒体ノイズが増加するため好ましくない。

【0012】軟磁性下地膜2は、Feを主成分する微細結晶と、該微細結晶よりもMとN(M=Ti、Zr、Nb、Hf、Ta、V、Moのうち1種または2種以上)を多く含有する非晶質相とからなるものとするのが好ましい。図2は、微細結晶と非晶質相とを有する軟磁性下地膜2の一例を示すもので、ここに示す例では、軟磁性下地膜2が、多数の微細結晶2aと、これら微細結晶2aを隔てる非晶質相2bとを有する構造となっている。この微細結晶2aの平均粒径は、13nm以下となっている。この平均粒径は、10nm以下とするのが好ましい。この結晶粒径をこの範囲とすることによって、軟磁性下地膜2および垂直磁性膜4内の磁気クライスターサイズを小さくし、媒体ノイズを低減することができ、記録再生特性を向上させることができる。

【0013】微細結晶2aの平均粒径は、透過型電子類 30 微鏡 (TEM) による観察像より求めることができる。 すなわちTEMにより観察された微細結晶2aの画像 を、コンピューター上で処理することにより、この微細結晶2aと同じ面積の円に変換し、この円の直径を、その微細結晶2aの粒径とする。同様の手順で複数の微細結晶2aについて粒径を求め、これら複数の微細結晶2aの粒径の平均値を平均粒径とする。粒径測定の対象となる微細結晶2aの数は、100以上(好ましくは500以上)とするのが好適である。

【0014】微細結晶2aはbcc構造をとることが好ましい。微細結晶2aがbcc構造をとると、効果的に飽和磁束密度を高めることができるためである。また、微細結晶2aでは(110)面が優先配向していることが好ましい。結晶構造および配向面はX線回折法(XRD)にて判別することができる。

【0015】軟磁性下地膜2の飽和磁束密度Bsは、1 T以上(好ましくは1.4T以上、さらに好ましくは 1.6T以上)であることが好ましい。飽和磁束密度Bsが上記範囲未満であると、軟磁性下地膜2の膜厚を厚くする必要が生じ、表面平均粗さRaが大きくなった り、生産性が悪化するため好ましくない。

【0016】軟磁性下地膜2の飽和磁束密度Bsと軟磁性下地膜2の膜厚tとの積Bs・tは、50T・nm以上(好ましくは100T・nm以上)であることが好ましい。このBs・tが50T・nm未満であると、再生波形がいわゆる矩形波でなく歪みをもつものとなり、記録再生特性が悪化するため好ましくない。

10

【0017】軟磁性下地膜2は、表面(垂直磁性膜4側 の面)の一部または全面が酸化されている構成とするこ とができる。この酸化部分(酸化層)の厚さは3nm以 下(好ましくは2.5 nm以下、より好ましくは2 nm 以下)であることが好ましい。この酸化部分の厚さが3 nmを越えると、この上に設けられる配向制御膜3の配 向を乱し、記録再生特性の劣化を招くため好ましくな い。またこの厚さが3nmを越えると、軟磁性下地膜2 の表面酸化が過剰になり、表面平均粗さRaが大きくな る(例えば2nmを越える値となる)。その結果、記録 再生時における磁気ヘッド浮上高さを十分に低くするこ とができなくなり、高記録密度化が難しくなる。軟磁性 下地膜2が酸化された状態はオージェ電子分光法、SI MS法などにより確認することができる。また軟磁性下 地膜2表面の酸化部分(酸化層)の厚さは、例えば媒体 断面の透過型電子顕微鏡 (TEM) 写真により求めるこ とができる。

【0018】軟磁性下地膜2の保磁力Hcは100(Oe)以下(好ましくは30(Oe)以下、さらに好ましくは10(Oe)以下)とするのが好ましい。この保磁力Hcが上記範囲を越えると、軟磁性特性が不十分となり、再生波形がいわゆる矩形波でなく歪みをもつものとなるため好ましくない。また、軟磁性下地膜2の最大透磁率は、1000~100000(好ましくは100000~50000)とするのが好ましい。最大透磁率が上記範囲未満であると、記録時に磁気記録媒体への費き込みが不十分となり、十分な記録再生特性を得られないおそれがある。なお、透磁率はCGS単位系で表した値である。

【0019】軟磁性下地膜2の表面形状は、磁気記録媒体表面の形状に影響を与えるため、その表面平均粗さRaを2nm以下とするのが好ましい。表面平均粗さRaをこの範囲とすることによって、磁気記録媒体の表面凹凸を小さくし、記録再生時における磁気ヘッド浮上高さを十分に低くし、記録密度を髙めることができる。

【0020】配向制御膜3は、垂直磁性膜4の配向性や結晶粒径を制御するためのものである。配向制御膜3は、少なくとも表面側(垂直磁性膜4側)が、hcp構造またはfcc構造をとるものであることが好ましい。配向制御膜3に用いられるhcp構造材料としては、Ti、Zn、Y、Zr、Ru、Re、Gd、Tb、Hfのうち1種または2種以上を50at以上含有するものを挙げることができる。なかでも、HfとRuのうちいず

れかを50at%以上含有する合金を用いると、垂直磁 性膜4から発生する媒体ノイズを低減することができ、 高記録密度化が可能になるため好ましい。特に、Ruを 用いると、垂直磁性膜4の垂直配向性を高めることがで きるため好ましい。 hcp構造材料としては、垂直磁性 膜4に対する格子の整合性を考慮して、上記材料(T i、Zn、Y、Zr、Ru、Re、Gd、Tb、Hfの うち1種または2種以上)に、Co、Cr、Fe、Ni 等を添加した合金を用いることができる。また結晶粒を 微細化するため、上記材料(Ti、Zn、Y、Zr、R u、Re、Gd、Tb、Hfのうち1種または2種以 上) に C、O、N、Si、B、Pを添加した合金を用い ることもできる。配向制御膜3に好適に用いられるhc p構造材料の具体例としては、Ru、RuCr、Hf、 HfB、Reを挙げることができる。

【0021】配向制御膜3に用いられるfcc構造材料 としては、Ni、Cu、Pd、Ag、Pt、Ir、A u、Alのうち1種または2種以上を50at以上含有 するものを用いることが好ましい。なかでも特に、Ni を用いると、垂直磁性膜4の垂直配向性を高めることが できるため好ましい。また f c c 構造材料としては、垂 直磁性膜4に対する格子の整合性を考慮して、上記材料 (Ni, Cu, Pd, Ag, Pt, Ir, Au, Alo うち 1 種または 2 種以上)に、Co、Cr、Fe、Ni 等を添加した合金を用いることができる。また結晶粒を 微細化するため、上記材料(Ni、Cu、Pd、Ag、 Pt、Ir、Au、Alのうち1種または2種以上) に、C、O、N、Si、B、Pを添加した合金を用いる こともできる。配向制御膜3に好適に用いられるfcc 構造材料の具体例としては、Ni、NiCrN、Cu、 PdBを挙げることができる。

【0022】配向制御膜3の厚さは、1~50nm(好 ましくは2~30nm、さらに好ましくは2~20n m)とするのが好ましい。この厚さが上記範囲未満であ ると、垂直磁性膜4における垂直配向性が低下し、記録 再生特性および熱揺らぎ耐性が劣化する。またこの厚さ が上記範囲を越えると、垂直磁性膜4において結晶粒子 が粗大化し記録再生特性が悪化する。また記録再生特性 時における磁気ヘッドと軟磁性下地膜2との距離が大き くなるため、再生信号の分解能が低下する。

【0023】垂直磁性膜4は、その磁化容易軸が基板に 対して主に垂直に配向した磁性材料からなるものであ り、その材料としては、CoCrX3系、CoCrPt 系、CoCrTa系、CoCrPtX3系、CoPtX3 系(X3: Ta、Zr、Nb、Cu、Re、Ni、M n、Ge、Si、O、N、およびBのうち1種または2 種以上)の合金を用いるのが好ましい。特に、垂直磁性 膜4の垂直磁気異方性を高めるために、CoCrPtX 3系、CoPt X3系の合金で、Pt含有率が8~24a

率を14~22at%とすると、逆磁区核形成磁界(-Hn)を確実にO以上とすることができ、優れた熱揺ら ぎ特性を得ることができるため好ましい。また、垂直磁 性膜4には、遷移金属材料(Co、Co合金、Fe、F e合金など)と貴金属材料(Pd、Pd合金、Pt、P t 合金)とを多数回にわたって積層した構造を採用でき る。例えば、Co、CoX4、Fe、FeX4のいずれか からなる層と、Pd、Pd X4、Pt、Pt X4(X4: Cr、Pt、Ta、B、O、Ru、Siのうち1種また は2種以上)のいずれかからなる層を多数回にわたって 積層した構造を採用することができる。上記 C o C r 系、CoCrPt系、CoCrTa系、CoCrPtX 3系、CoPt X3系の合金、積層構造膜材料はいずれも 多結晶構造をとるが、本発明の磁気記録媒体では、非晶 質構造の垂直磁性膜を適用することもできる。非晶質構 造をとる材料としては、希土類元素を含む合金(TbF eCo系合金など)を用いることができる。

【0024】垂直磁性膜4の逆磁区核形成磁界(-H n) は、0 (Oe) 以上 (好ましくは1000 (Oe) 以上)とするのが好適である。この逆磁区核形成磁界 (-Hn)が、この範囲未満であると熱揺らぎ耐性が低 下する。図3に示すように、逆磁区核形成磁界(-H n)とは、履歴曲線(MH曲線)において、磁化が飽和 した状態から外部磁場を減少させる過程で、外部磁場が Oとなる点aから磁化反転を起こす点bまでの距離(O e)で表すことができる。なお、逆磁区核形成磁界(-Hn)は、磁化反転を起こす点bが、外部磁場が負とな る領域にある場合に正の値をとり(図3を参照)、逆 に、点bが、外部磁場が正となる領域にある場合に負の 値をとる(図4を参照)。逆磁区核形成磁界(-Hn) の測定には、軟磁性下地膜2の影響を除くため、基板 1、配向制御膜3、垂直磁性膜4、保護膜5のみからな るディスクを用い、このディスクについて、振動式磁気 特性測定装置またはカー効果測定装置を用いて測定を行 うのが好適である。また磁気記録媒体をそのまま用い て、振動式磁気特性測定装置またはカー効果測定装置に より逆磁区核形成磁界(-Hn)を測定することもでき

【0025】垂直磁性膜4は、成分組成や結晶構造が異 なる2以上の層からなる多層構造とすることもできる。 例えば、複数の磁性層と各磁性層間に形成された中間層 からなり、この中間層が h c p 構造または f c c 構造を とる構成とすることができる。これら複数の磁性層は、 成分組成や結晶構造の点で互いに同じものであってもよ いし、互いに異なっていてもよい。中間層の材料として は、磁性層に対する格子の整合性を考慮すると、Ru (またはRe) に、Co、Cr、Fe、Ni、C、O、 N、Si、B等を添加した合金; Niに、Co、Cr、 Fe、C、O、N、Si、B等を添加した合金:Co t%であるものを用いることが好ましい。また P t 含有 σο に、C r 、 F e 、N i 、 C 、O 、N 、 S i 、 B 等を添加 した合金:CoCrに、Fe、Ni、C、O、N、Si、B等を添加した合金:Niを用いることができる。 【0026】垂直磁性膜4の保磁力Hcは、3000 (Oe)以上とするのが好ましい。保磁力Hcがこの範囲未満であると、記録特性、熱揺らぎ特性が劣化するため好ましくない。

【0027】垂直磁性膜4においては、結晶粒の平均粒径が4~15nmであることが好ましい。この平均粒径がこの範囲未満であると、保磁力低下、熱揺らぎ特性劣化が起こりやすくなる。平均粒径が上記範囲を越えると、媒体ノイズが増加する。結晶粒の平均粒径は、上述の軟磁性下地膜2における微細結晶2aの平均粒径と同様にして求めることができる。

【0028】垂直磁性膜4の厚さは、5~50nm(特に7~30nm)とするのが好ましい。この厚さが上記範囲未満である場合には、垂直磁性膜4の結晶配向が不十分となりやすくなり、記録再生特性が劣化する。また厚さが上記範囲を越えると、結晶粒の粗大化が起こりやすくなりノイズが増加し記録再生特性が劣化する。

【0029】保護膜5は、垂直磁性膜4の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぎ、かつ磁気ヘッドと媒体の間の潤滑特性を確保するためのものである。保護膜5には、従来公知の材料を使用することが可能であり、例えばC、S i O2、Z r O2の単一組成、またはこれらを主成分とし他元素を含むものが使用可能である。保護膜5の厚さは、 $1\sim10$ n mとするのが好ましい。

【0030】潤滑膜6には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸など公知の潤滑剤を使用することができる。その種類および膜厚は、使用される保護膜や潤滑剤の特性に応じて適宜設定することができる。

【0031】上記構成の磁気記録媒体を製造するには、図1に示す基板1上に、スパッタ法などにより軟磁性下地膜2を形成し、次いで、必要に応じてこの軟磁性下地膜2の表面に酸化処理を施し、次いで配向制御膜3、垂直磁性膜4を順次スパッタ法などにより形成する。次いで、スパッタ法や、CVD法、イオンビーム法等によって保護膜5を形成した後、ディップコーティング法、スピンコート法などにより潤滑膜6を形成する。

【0032】軟磁性下地膜2を形成する際には、上記式(1)~(3)に示す材料からNを除いた材料からなるターゲットを用いたスパッタ法を採用し、成膜時に用いる成膜ガスに窒素を含有させる方法をとることができる。この成膜ガスの窒素含有率は0.1~50vol%とするのが好ましい。この窒素含有成膜ガスとしては、窒素とアルゴンからなる混合ガスを用いることができる。窒素を含有する成膜ガスを用いることによって、軟磁性下地膜2を均一に形成することができるようになる。

【0033】軟磁性下地膜2の表面に酸化処理を施す場 50

合には、軟磁性下地膜2を形成した後、軟磁性下地膜2を酸素含有ガスに曝す方法や、軟磁性下地膜2を形成する際の成膜用ガス中に酸素を導入する方法をとることができる。軟磁性下地膜2の表面を酸素含有ガスに曝す場合には、軟磁性下地膜2を、酸素をアルゴンや窒素で希釈した希釈ガスや純酸素に0.3~20秒程度接触させる方法をとることができる。また軟磁性下地膜2を大気に曝す方法をとることもできる。特に、酸素をアルゴンや窒素などのガスで希釈した希釈ガスを用いる場合に

14

は、酸素の希釈率を選択することによって、軟磁性下地膜 2 表面の酸化の度合いの調節が容易になるため、所望の酸化状態を得ることができる。また軟磁性下地膜 2 の成膜用ガスに酸素を導入する場合には、例えば成膜法としてスパッタ法を用いるならば、成膜過程の一部のみ(または全過程)に、酸素を含有するプロセスガスを用

(または全過程)に、酸素を含有するプロセスガスを用いてスパッタを行えばよい。このプロセスガスとしては、例えばアルゴンに酸素を体積率で0.05%~50%(好ましくは0.1~20%)程度混合したガスが好適に用いられる。この軟磁性下地膜2の表面酸化によって、軟磁性下地膜2の表面の磁気的な揺らぎを抑え、この揺らぎに起因するノイズ発生を防ぐとともに、軟磁性下地膜2上に形成される配向制御膜3の結晶粒を微細化してノイズ特性、記録再生特性の改善効果を得ることができる。また軟磁性下地膜2表面の酸化部分(酸化層)によって、非磁性基板1や軟磁性下地膜2の材料がイオン化して媒体表面に移動するのを阻止し、媒体表面の腐食を防ぐことができる。

【0034】軟磁性下地膜2を、微細結晶2aと非晶質相2bとを有するものとする場合には、軟磁性下地膜2を形成した後、熱処理(アニール処理)を施すことによって、境界が鮮明な微細結晶2aおよび非晶質相2bを形成し、ノイズを低減し、記録再生特性をさらに向上させることができる。アニール処理の温度条件は、250℃~450℃とする。このアニール処理温度が250℃未満であると、媒体ノイズ低減効果が低くなる。またアニール処理温度が450℃を越えると、微細結晶2aの結晶が粗大化し、ノイズ低減効果が低くなるため好ましくない。アニール処理の時間は特に制限されないが、2~50秒(さらに好ましくは2~20秒)とするのが望ましい。アニール処理後の冷却時間は特に制限されないが、生産性を考えると、50秒以下(好ましくは20秒以下)とすることが望ましい。

【0035】配向制御膜3を形成する際には、成膜ガスに酸素や窒素を導入することによって、配向制御膜3の表面に酸化膜または窒化膜を形成してもよい。例えば、成膜法としてスパッタ法を用いるならば、配向制御膜3の表面付近を形成する際に、プロセスガスとして、アルゴンに酸素を体積率で0.05~50%(好ましくは0.1~20%)程度混合したガス、アルゴンに窒素を体積率で0.01~20%(好ましくは0.02~10

%)程度混合したガスを用いることによって、上記酸化 膜または窒化膜を形成することができる。

【0036】垂直磁性膜4を単層構造とする場合には、この垂直磁性膜4を構成する材料からなるターゲットを用いて垂直磁性膜4を形成することができる。垂直磁性膜4を、遷移金属層と貴金属層からなる多層構造とする場合には、遷移金属(Co、Co合金)からなる第1のターゲットと、貴金属(Pt、Pd等)からなる第2のターゲットを交互に用いて、それぞれのターゲットの材料を交互にスパッタすることにより垂直磁性膜4を構成する。

【0037】保護膜5の形成方法としては、カーボンターゲットを用いたスパッタ法や、CVD法、イオンビーム法を用いることができる。また、SiOzやZrOzのターゲットを用いたRFスパッタ、あるいはSiやZrのターゲットを用い、プロセスガスとして酸素を含むガスを用いる反応性スパッタによって、SiOzやZrOzからなる保護膜5を形成する方法などを適用することができる。CVD法、イオンビーム法を用いる場合には、極めて硬度の高い保護膜5を形成することができ、スパッタ法よりも保護膜5を大幅に薄くすることが可能となるため、記録再生時のスペーシングロスを小さくし、高密度の記録再生を行うことができる。

【0038】本実施形態の磁気記録媒体では、軟磁性下 地膜2の材料として、以下に示す組成で表されるものの うちいずれかを用いるので、記録再生特性を向上させる ことができる。

a Fe-bCo-cM-dX1-fN \cdots (1)

 $(6.0 \le a + b \le 9.0, 3.0 \le a \le 9.0, 5 \le c \le 2$

 $0, 0. 1 \le d \le 7, 3 \le f \le 30$

 $a F e - b C o - c M - e X 2 - f N \cdots (2)$

 $(6.0 \le a + b \le 9.0, 3.0 \le a \le 9.0, 5 \le c \le 2$

 $0, 0. 1 \le e \le 10, 3 \le f \le 30$

 $a F e - b C o - c M - d X 1 - e X 2 - f N \cdots (3)$

 $(6.0 \le a + b \le 9.0, 3.0 \le a \le 9.0, 5 \le c \le 2$

 $0.0.1 \le d \le 7.0.1 \le e \le 7.3 \le f \le 30$ 【0039】上記材料を用いることによって、記録再生特性を向上させることができる理由を以下に示す。窒素には、Fe 合金膜において結晶粒を微細化する効果があるため、窒素の添加によってノイズ低減を図ることができる。さらに、Fe N合金に、M(Ti.Zr.Nb.Hf.Ta.V.Moのうち1種または2種以上)を添加することによって、<math>Me Nが結合した化合物を生成させることができる。このMe Nを含む化合物は、粒界に偏析しやすいため、Mo 添加によって、粒界の形成を促進し、結晶粒を孤立化させ、さらにノイズを低く抑えることができる。また Xi (Cr.Ca.Al.Si.Ni0) がきる 1種または2種以上)は、Fe に固溶し、Fe 合金結晶の成長を抑える性質がある。このため、Xi0 添加によって、軟磁性下地膜 2 において過剰な結晶成長 50

を阻止することができる。従って、結晶粒の粗大化を防 ぎ、ノイズ低減を図ることができる。またX2(P、 C、B、O)は、粒界領域に偏析しやすく、粒界におい てFeやMと共有結合する性質があるため、X2の添加 によって、上記共有結合性化合物を含む粒界を形成させ ることができる。このため、幅が広く、かつ安定な粒界 を形成するとともに、過剰な結晶成長を抑制することが できる。従って、結晶粒を微細化、孤立化させ、さらな るノイズ抑制が可能となる。X1とX2のいずれか1つで も媒体ノイズ低減効果があるが、これら双方を添加する ことによって、いっそう優れた媒体ノイズ低減効果を得 ることができる。以上の理由により、上記材料を用いる ことによって、軟磁性下地膜2内の結晶粒径を小さくす るとともに、結晶粒を孤立化させ、軟磁性下地膜2に起 因するノイズを低減することができる。また結晶粒を孤 立化させることができるため、これら結晶粒間の磁気的 相互作用を抑制することができる。このため、軟磁性下 地膜2中の磁気クラスターサイズを小さくし、この磁気 クラスターに基づくノイズを抑えることができる。

【0040】また、軟磁性下地膜2において結晶粒を微細化、孤立化できることから、軟磁性下地膜2の影響下で成長する配向制御膜3、垂直磁性膜4においても結晶粒の微細化、孤立化を図ることができる。このため、さらなる媒体ノイズ低減を図ることができる。また上記磁気記録媒体では、記録再生時において、磁気ヘッドからの磁束が垂直磁性膜4、軟磁性下地膜2を通って再び磁気ヘッドに至る閉磁路が形成される。このように、軟磁性下地膜2と垂直磁性膜4の磁気クラスターサイズは、軟磁性下地膜2の磁気クラスターサイズに影響されるようになる。このため、垂直磁性膜4の磁気クラスターサイズと同様、小さくなる。

【0041】以上より、本実施形態の磁気記録媒体では、軟磁性下地膜2および垂直磁性膜4において、結晶粒径および磁気クラスターサイズを小さくし、記録再生特性を向上させ、高密度の情報の記録再生が可能となる。なお、磁気クラスターサイズは、磁気間力顕微鏡(MFM)により求めることができる。すなわち軟磁性下地膜2を形成した段階の媒体を交流消磁した後、MFMで磁化状態を測定して、互いにほぼ同じ方向に向いている磁化の集団の直径を磁気クライスターサイズとすることができる。

【0042】また本実施形態の磁気記録媒体では、軟磁性下地膜2に、上記式(1)~(3)に示す材料を用いるので、軟磁性下地膜2において十分な磁化を得ることができる。このため、軟磁性下地膜2を過大な厚さに形成する必要がなく、生産性の低下を防ぐことができる。また軟磁性下地膜2の表面粗さを小さくし、グライドハイト特性の劣化を防ぐことができる。

【0043】また、軟磁性下地膜2を、微細結晶2aと、微細結晶2aよりもMとN(M=Ti、Zr、Nb、Hf、Ta、V、Moのうち1種または2種以上)を多く含有する非晶質相2bとからなるものとすることによって、幅が広く、かつ安定な非晶質相2bを形成し、微細結晶2a間の磁気的相互作用を抑え、磁気クライスターサイズを小さくでき、媒体ノイズを小さくすることができる。非晶質相2bが幅広で安定なものとなるのは、MとNが結合した化合物が形成され、この化合物が非晶質相2bに偏析するためであると考えられる。

【0044】本実施形態の磁気記録媒体の製造方法では、軟磁性下地膜2に、上記式(1)~(3)に示す材料を用いるので、軟磁性下地膜2、垂直磁性膜4内の結晶粒径を小さくし、軟磁性下地膜2、垂直磁性膜4に起因するノイズを低減することができる。また軟磁性下地膜2および垂直磁性膜4の磁気クラスターサイズを小さくし、この磁気クラスターに基づくノイズを抑えることができる。従って、記録再生特性を向上させ高密度の情報の記録再生が可能となる。

【0045】図5は、本発明の磁気記録媒体の第2の実 施形態を示すものである。この磁気記録媒体では、軟磁 性下地膜2と配向制御膜3との間に、配向制御下地膜7 が設けられている点で、上記第1の実施形態の磁気記録 媒体と異なる。配向制御下地膜7には、Ti、Zn、 Y、Zr、Ru、Re、Gd、Tb、Hfのうち1種ま たは2種以上を主成分とする材料を用いることができ る。また、配向制御下地膜7の材料としては、B2構造 をなす材料を用いることもできる。B2構造をなす材料 としては、NiAI、FeAI、CoFe、CoZr、 NiTi、AlCo、AlRu、CoTiのうち1種ま 30 たは2種以上の合金を主成分とするものが使用できる。 また、これらの合金にCr、Mo、Si、Mn、W、N b、Ti、Zr、B、O、N等の元素を添加した材料を 用いることもできる。配向制御下地膜7の厚さは、30 nm以下とするのが好ましい。この厚さが上記範囲を越 えると、垂直磁性膜4と軟磁性下地膜2との距離が大き くなるため分解能およびノイズ特性が劣化する。配向制 御下地膜7の厚さは、0.1 nm以上とするのが好まし W

【0046】図6は、本発明の磁気記録媒体の第3の実 40 施形態を示すものである。この磁気記録媒体では、配向制御膜3と垂直磁性膜4との間に、非磁性材料からなる非磁性中間膜8が設けられている点で、図1に示す第1の実施形態の磁気記録媒体と異なる。非磁性中間膜8には、hcp構造をとる非磁性材料を用いるのが好ましい。この材料としては、CoCr合金、CoCrX5合金、CoX5合金(X5は、Pt、Ta、Zr、Ru、Nb、Cu、Re、Ni、Mn、Ge、Si、O、N、Bのうち1種または2種以上)を用いるのが好適である。非磁性中間膜8の厚さは、垂直磁性膜4における磁性粒 50

の粗大化による記録再生特性の悪化や、磁気ヘッドと軟磁性下地膜2の距離が大きくなることによる記録分解能の低下を防ぐため、20nm以下(好ましくは10nm以下)とするのが好適である。本実施形態では、非磁性中間膜8を設けることによって、垂直磁性膜4の配向性を向上させ、保磁力Hcを高め、記録再生特性および熱揺らぎ特性をさらに向上させることができる。

【0047】図7は、本発明の磁気記録媒体の第4の実 施形態を示すものである。この磁気記録媒体では、非磁 性基板1と軟磁性下地膜2との間に、磁化容易軸が面内 方向に向いた硬磁性膜9と面内下地膜10が設けられて いる点で、図1に示す第1の実施形態の磁気記録媒体と 異なる。硬磁性膜9に用いられる材料としては、CoC r合金、特にCoCrX6(X6は、Pt、Ta、Zr、 Nb、Cu、Re、Ni、Mn、Ge、Si、O、N、 Bのうちから選ばれる1種または2種以上)を用いるの が好適である。またCoSm合金を用いてもよい。硬磁 性膜9は、保磁力Hcが1000(0e)以上(好まし くは2000(0e)以上)であることが好ましい。硬 磁性膜9の厚さは、10~150nm (好ましくは40 ~80 nm)とするの好ましい。硬磁性膜9は、軟磁性 下地膜2が基板半径方向の磁壁を形成しないようにする ため、基板中心から放射状の方向に磁化され、硬磁性膜 9と軟磁性下地膜2が交換結合していることが好まし い。面内下地膜10は、硬磁性膜9の直下に設けられ、 その材料としては、CrまたはCr合金を挙げることが できる。面内下地膜10に用いられるCr合金の例とし ては、CrMo系、CrTi系、CrW系、CrMo 系、CrV系、CrSi系、CrNb系の合金を挙げる ことができる。

【0048】硬磁性膜9を設けることによって、軟磁性下地膜2での巨大磁区の形成を抑えることができる。このため、外乱磁場が大きい環境下においてもスパイクノイズの発生を防ぐことができ、エラーレート特性に優れ、高密度記録が可能な磁気記録媒体を得ることができる。

【0049】図8は、本発明の磁気記録媒体の第5の実施形態を示すものである。ここに示す磁気記録媒体では、垂直磁性膜4と保護膜5との間に、磁化安定膜11が設けられている点で図1に示す第1の実施形態の磁気記録媒体と異なる。磁化安定膜11の材料としては、Feを60at%以上含有するFe合金を用いることができる。この材料としては、FeCo系合金(FeCo、FeCoVなど)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSiなど)、FeAl系合金(FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRuなど)、FeCr系合金(FeCr、FeCrTi、FeCrCuなど)、FeTa系合金(FeTa、FaTaCなど)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系

【0052】磁気ヘッド22としては、単磁極ヘッドを 用いることができる。図10は、単磁極ヘッドの一例を 示すもので、単磁極ヘッド22は、磁極25と、コイル 26とから概略構成されている。磁極25は、幅の狭い 主磁極27と幅広の補助磁極28とを有する側面視略コ 字状に形成され、主磁極27は、記録時に垂直磁性膜4

に印加される磁界を発生し、再生時に垂直磁性膜4から

の磁束を検出することができるようになっている。

20

【0053】単磁極ヘッド22を用いて、磁気記録媒体 20への記録を行う際には、主磁極27の先端から発せ られた磁束が、垂直磁性膜4を、基板1に対しほぼ垂直 な方向に磁化させる。この際、磁気記録媒体20には軟 磁性下地膜2が設けられているため、単磁極ヘッド22 の主磁極27からの磁束は、垂直磁性膜4、軟磁性下地 膜2を通って補助磁極28に至る閉磁路を形成する。こ の閉磁路が単磁極ヘッド22と磁気記録媒体20との間 に形成されることにより、磁束の出入りの効率が増し、 高密度の記録再生が可能になる。なお、軟磁性下地膜2 と補助磁極28との間の磁束は、主磁極27と軟磁性下 地膜2との間の磁束とは逆向きになるが、補助磁極28 の面積は主磁極27に比べて十分に広いので、補助磁極 28からの磁束密度は十分に小さくなり、この補助磁極 28からの磁束により垂直磁性膜4の磁化が影響を受け ることはない。また本発明では、磁気ヘッドとして、単 磁極ヘッド以外のもの、例えば再生部に巨大磁気抵抗 (GMR) 素子を備えた複合型薄膜磁気記録ヘッドを用 いることもできる。

【0054】本実施形態の磁気記録再生装置は、磁気記 録媒体20の軟磁性下地膜2に、上記式(1)~(3)に示す 材料を用いるので、軟磁性下地膜2内の結晶粒を微細 化、孤立化し、軟磁性下地膜2に起因するノイズを低減 することができる。また軟磁性下地膜2中の磁気クラス ターサイズを小さくし、これによって垂直磁性膜4内の 磁気クラスターサイズを小さくすることができる。この ため、この磁気クラスターに基づくノイズを抑えること ができる。従って、記録再生特性を向上させ髙密度の情 報の記録再生が可能となる。

[0055]

【実施例】以下、実施例を示して本発明の作用効果を明 確にする。ただし、本発明は以下の実施例に限定される ものではない。

(実施例1)洗浄済みのガラス基板1 (オハラ社製、外 径2. 5インチ)をDCマグネトロンスパッタ装置(ア ネルバ社製C-3010)の成膜チャンバ内に収容し て、到達真空度 1×10-5 Paとなるまで成膜チャンバ 内を排気した後、このガラス基板上に、84Fe-13 Hf-3Crからなるターゲットを用い、アルゴン・窒 素混合ガス(窒素含有率5 v o l %)中で、軟磁性下地 膜2(厚さ100nm)を形成した。次いで、軟磁性下 地膜2に350℃の条件で10秒間の熱処理(アニール

合金、FeHf系合金を挙げることができる。磁化安定 膜11は、FeAIO、FeMgO、FeTaN、Fe ZrNなどの微細結晶を有する構成とすることができ る。また微細結晶がマトリクス中に分散されたグラニュ ラー構造とすることもできる。磁化安定膜11には、C oを80at%以上含有し、Zr、Nb、Ta、Cr、 Mo等のうち少なくとも1種以上を含有するCo合金を 用いることもできる。例えば、CoZr、CoZrN b、CoZrTa、CoZrCr、CoZrMoなどを 好適なものとして挙げることができる。磁化安定膜11 の保磁力Hcは100(Oe)以下(好ましくは50 (Oe)以下)とするのが好ましい。磁化安定膜11の 飽和磁束密度Bsは、0. 4T以上(好ましくは1T以 上)とするのが好ましい。また、磁化安定膜11の飽和 磁束密度膜厚積 B s・t は 7. 2 T・n m以下であるこ と好ましい。このBs・tが上記範囲を越えると再生出 力が低下するため好ましくない。また磁化安定膜11の 最大透磁率は、1000~100000(好ましくは 10000~500000) とするのが好ましい。磁化 安定膜11は、構成材料が部分的または完全に酸化され 20 た構成とすることができる。 すなわち磁化安定膜 11の 表面(保護膜5側または垂直磁性膜4側の面)およびそ の近傍において、構成材料が部分的または全体的に酸化 された構成とすることができる。

【0050】本実施形態では、磁化安定膜11を設ける ことによって、熱揺らぎ特性の向上、再生出力の増大を 図ることができる。再生出力が増大するのは、磁化安定 膜11によって、垂直磁性膜4の表面における磁化の揺 らぎが抑えられることから、漏れ磁束が揺らぎの影響を 受けなくなるためであると考えられる。熱揺らぎ特性が 30 向上するのは、磁化安定膜11によって、垂直磁性膜4 の垂直方向の磁化と、軟磁性下地膜2および磁化安定膜 11の面内方向の磁化が、閉磁路を形成するようにな り、垂直磁性膜4の磁化がより強固に垂直方向に固定さ れるためであると考えられる。また磁化安定膜11の表 面が酸化された構成とする場合には、磁化安定膜11の 表面の磁気的な揺らぎを抑えることができるため、この 磁気的な揺らぎに起因するノイズを低減し、磁気記録媒 体の記録再生特性を改善することができる。

【0051】図9は、本発明に係る磁気記録再生装置の 一例を示す構成図である。この図に示す磁気記録再生装 置は、上記構成の磁気記録媒体20と、この磁気記録媒 体20を回転駆動させる媒体駆動部21と、磁気記録媒 体20に対して情報の記録再生を行う磁気ヘッド22 と、磁気ヘッド22を駆動させるヘッド駆動部23と、 記録再生信号処理系24とを備えている。記録再生信号 系24は、入力されたデータを処理して記録信号を磁気 ヘッド22に送ったり、磁気ヘッド22からの再生信号 を処理してデータを出力することができるようになって いる。

処理)を施した。軟磁性下地膜2の組成をオージェ電子 分光法(AES)を用いて測定したところ、75Fe-11.6日f-2.4Cr-11Nであることが確認さ れた。また透過型電子顕微鏡(TEM)を用いてこの軟 磁性下地膜2を観察したところ、この軟磁性下地膜2 は、多数の微細結晶2aが非晶質相2bによって隔てら れた構造となっており、この微細結晶2aの平均粒径が 10 n mであることが確認された。また振動式磁気特性 測定装置(VSM)による測定の結果、軟磁性下地膜2 の飽和磁束密度Bsは1.5Tであり、Bs・tが15 OT·nmであることがわかった。次いで、200℃の 条件で、軟磁性下地膜2上に、50Ni-50Alから なる配向制御下地膜7(厚さ8nm)と、Ruからなる 配向制御膜3(厚さ10nm)とからなる配向制御膜3 を順次形成した。次いで、65Co-17Cr-16P t-2Bからなる垂直磁性膜4(厚さ25nm)を形成 した。垂直磁性膜4をTEMを用いて観察した結果、平 均結晶粒径が9 nmであることが明らかになった。また Kerr効果測定装置を用いて垂直磁性膜4の静磁気特 性を調べたところ、保磁力は4570(Oe)、逆磁区 20 核形成磁界(-Hn)は750(Oe)であった。また 軟磁性下地膜2、配向制御膜3、垂直磁性膜4を形成す

る際には、成膜用のプロセスガスとしてアルゴンを用

21

法により保護膜5(厚さ5 nm)を形成した。次いで、 ディップコーティング法によりパーフルオロポリエーテ ルからなる潤滑膜6を形成し、磁気記録媒体を得た。な お上記合金材料の記載において、aA-bBは、a(a t%) A-b (at%) Bを示す。例えば65Co-1 7 Cr-16 Pt-2 Bは、65 at % Co-17 at %Cr-16at%Pt-2at%B(Co含有率65 at%、Cr含有率17at%、Pt含有率16at %、B含有率2at%)を意味する。

22

【0056】(実施例2~15)軟磁性下地膜2の組成 を表1に示すとおりとすること以外は、実施例1に準じ て磁気記録媒体を作製した(表1を参照)。

【0057】(比較例1~6)軟磁性下地膜2の組成を 表1に示すとおりとすること以外は、実施例1に準じて 磁気記録媒体を作製した(表1を参照)。

【0058】これら実施例および比較例の磁気記録媒体 について、記録再生特性を評価した。記録再生特性の評 価は、GUZIK社製リードライトアナライザRWA1 632、およびスピンスタンドS1701MPを用いて 測定した。記録再生特性の評価には、磁気ヘッドとして 垂直記録用の単磁極ヘッドを用い、線記録密度600k FCIにて測定を行った。試験結果を表1に示す。

[0059]

【表1】

い、その圧力を O. 5 P	aに設定した。次いで、CVD	[表	1]				
	軟磁性下地膜	配息				垂直磁性膜		記録再 生特性
	組成	組成	厚さ	組成	厚ら	組成	思さ	Iラーレート 10-X
実施例1	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	65Co 17Cr 16Pt2B	25	-6. 5
実施例2	75. 2Fe-12. 4Hf-0. 2Cr-12. 2N	NiAI	8	Ru	10	65Co 17Cr 16Pt2B	25	-6.0
実施例3	72. 6Fe-9. 8Hf-6. 5Cr-11. 1N		8	Ru	ı	65Co17Cr16Pt2B		
実施例4	74. 9Fe-10. 4Hf-2. 4A1-12. 3N	1	8	Ru		65Co17Cr16Pt2B		
実施例5	74. 1Fe-9. 8Hf-2. 8Si-13. 3N	1	8	Ru		65Co17Cr16Pt28		
実施例6	73. 2Fe-11Hf-3. 2Ga-12. 4N	NIAL	8	Ru		65Co17Cr 16Pt2B		
実施例7	74. 5Fe-11. 6Hf-1. 5Cr-0. 8AI-11. 6N	NIAL	8	Ru		65Co17Cr16Pt2B		
実施例8	75. 3Fe-8. 6Zr-2. 4Cr-13. 7N	NIAL	8	Ru	ı	65Co17Cr16Pt2B		
実施例9	72. 5Fe-10. 6Ta-2. 1Cr-14. 8N	1	8	Ru		65Co17Cr16Pt2B		. ,
	72. 2Fe-12. 1Nb-2. 9Cr-12. 8N	NIAL	8	Ru		65Co 17Cr 16Pt2B		, ,
実施例11	73. 2Fe-11. 2Ti-2. 2Cr-13. 4N	1	8	Ru		65Co 17Cr 16Pt2B	-	1
実施例12	75. 4Fe-5. 4Hf-2. 4Cr-16. 8N		8	Ru	1	65Co17Cr16Pt28	1	
実施例13	76. 6Fe- 17. 6Hf-2. 4Cr-3. 4N	NIAL	8	Ru		65Co17Cr16Pt2B		
実施例14	63Fe-6. 6Hf-1. 1Cr-29. 3N	NiAL	8	Ru		65Co17Cr16Pt2B		4 1
実施例15	37Fe-32Co-14. 6Hf-2. 9Cr-13. 5N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	
比較例1	76Fe-12. 3Hf-11. 7N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	
比較例2	68Fe-11. 2Hf-7. 8Cr-13N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	P 1
比較例3	55Fe-17. 8Hf-4. 2Cr-23N	NIAL	8	Ru		65Co17Cr16Pt2B		
比較例4	64Fe-21. 5Hf-3. 7Cr-10. 8N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	1 1
比較例5	B4Fe-13Hf-3Cr	NIAL	8	Ru		65Co17Cr16Pt2B		
比較例6	60Fe-8. 3Hf-0. 5Cr-31, 2N	NIAL	8	Ru	10	65Co17Cr16Pt2B		

. (厚さの単位は n m)

【0060】表1より、上記式(1)に示す材料を軟磁性 下地膜2に用いた実施例では、比較例に比べ、優れた記 録再生特性を示したことがわかる。

【0061】 (実施例16~26) 軟磁性下地膜2の組 成を表2に示すとおりとすること以外は、実施例1に準 50 じて磁気記録媒体を作製した(表2を参照)。

【0062】(比較例7、8)軟磁性下地膜2の組成を 表 2 に示すとおりとすること以外は、実施例 1 に準じて 磁気記録媒体を作製した(表2を参照)。

【0063】これら実施例および比較例の磁気記録媒体

について、記録再生特性を評価した。試験結果を表2に 示す。

[0064]

【表2】

	敦磁性下地膜	配	煙	制御) 读	垂直磁性膜		記録再生特性
	組成	組成	厚さ	組成	厚さ	組成	厚さ	エラーレート 10-X
実施例1	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	65Co 17Cr 16Pt 2B	25	-6. 5
実施例16	74. 9Fe-11. 1Hf-2. 7B-11. 3N	NiAl	8	Ru	10	65Co17Cr16Pt2B	25	-6.8
実施例17	74. 5Fe-12. 1Hf-0, 2B-13. 2N	NIAI	8	Ru	10	65Co17Cr16Pt2B	25	-5. 9
実施例18	72, 7Fe-9, 1Hf-9, 4B-8, 8N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-5. 8
実施例19	74. 5Fe-10. 2Hf-2C-13. 3N	NiAL	8	Ru	10	65Co17Cr16Pt2B	25	-6.4
実施例20	73, 8Fe-11, 1Hf-2, 8P-12, 3N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-6.6
実施例21	73. 9Fe-10. 6Hf-3. 4O-12, 1N	NiAI	8	Ru	10	65Co17Cr16Pt2B	25	-6.8
実施例22	75. 5Fe-10. 3Hf-2, 0B-1. 1C-11. 1N	NiAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	-6. 9
実施例23	76. 6Fe-9. 1Zr-2. 48-11. 9N	NIAL	8	Ru	10	65Co17Cr16Pt28	25	-6.3
実施例24	74. 4Fe-10. 1Ta-2, 1B-13. 4N	NIAL	8	Ru	10	65Co17Cr16Pt28	25	-6. 2
実施例25	73. 4Fe-11. 8Nb-2. 5B-12. 3N	NIAI	8	Ru	10	65Co17Cr16Pt28	25	-6.4
実施例26	74. 6Fe-11. 6Ti-2. 2B-11. 6N	NIAI	8	Ru	10	65Co17Cr16Pt28	25	-6.0
比較例7	68, 9Fe-10, 1Hf-12, 7B-8, 3N	NiAl	8	R∪	10	65Co17Cr16Pt2B	25	
比較例8	68. 4Fe-9. 5Hf-12. 8P-9. 3N	NiAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	

(厚さの単位はnm)

24

【0065】表2より、上記式(2)に示す材料を軟磁性 録再生特性を示したことがわかる。

【0066】 (実施例27~35) 軟磁性下地膜2の組 成を表3に示すとおりとすること以外は、実施例1に準

じて磁気記録媒体を作製した(表3を参照)。これら実 下地膜2に用いた実施例では、比較例に比べ、優れた記 20 施例の磁気記録媒体について、記録再生特性を評価した 結果を表3に示す。

[0067]

【表3】

				_		$\overline{}$			
ſ		軟磁性下地膜	配會制		制縮	莫	垂直磁性膜		記録再 生特性
		組成	組成	厚さ	組成	厚さ	組成	厚さ	Iラ-レート 10-X
1	実施例1	75Fe-11. 6Hf-2. 4Cr-11N	NiAI	В	Ru	10	65Co17Cr16Pt2B	25	-6.5
	実施例27	73. 5Fe-10. 6Hf-1. 7Cr-1. 9B-12. 3N	NIAI	В	Ru	10	65Co17Cr16Pt2B	25	-7.1
	実施例28	73. 5Fe-10. 6Hf-0. 2Cr-2. 3B-13. 4N	NiAl	8	Ru	10	65Co 17Cr 16Pt2B	25	-7.0
	実施例29	73. 2Fe-9Hf-4. 8Cr-1. 58-11. 5N	NIAI	8	Ru	10	65Co 17Cr 16Pt2B	25	-6.9
	実施例30	72. 8Fe-10. 6Hf-2. 1Cr-0. 2B-14. 3N	NIAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	-6. 9
	実施例31	72. 1Fe-8. 6Hf-1. 5Cr-6. 8B-11N	NIAI	8	Ru	10	65Co 17Cr 16Pt2B	25	-6. 6
	実施例32	73. 9Fe-10. 4Hf-1. 9A1-1. 8B-12N	NIAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	-7.0
	実施例33	73. 4Fe-10. 9Hf-1. 6AI-2. 2P-11. 9N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-7.3
	実施例34	73. 9Fe-11. 4Hf-1. 2Cr-1. 1AI-1. 6B-10. 8N	NIAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	-7. 1
	実施例35	72, 3Fe-10, 1Hf-1, 7Cr-1, 9B-0, 9P-13, 1N	NIAL	8	Ru	10	65Co17Cr 16Pt2B	25	-7. 2

(厚さの単位はnm)

【0068】表3より、上記式(3)に示す材料を軟磁性 下地膜2に用いた実施例では、優れた記録再生特性を示 したことがわかる。また式(1)、(2)に示す材料を用いた 実施例(表1、表2)に比べて、より優れた記録再生特 性が得られたことがわかる。

【0069】(実施例36~39)軟磁性下地膜2の飽

40 和磁束密度 B s および厚さ t を表 4 に示すとおりとする こと以外は、実施例1に準じて磁気記録媒体を作製した (表4を参照)。これら実施例の磁気記録媒体につい て、記録再生特性を評価した結果を表4に示す。

[0070]

【表4】

	軟磁性下地膜			配向制	制御	莫	垂直磁性膜		記録再 生特性		
	組成	Bs (T)	t (nm)	Bs•t (T•nm)	組成	厚さ	組成	厚さ	組成	厚さ	Iラ-レ-ト 10-X
実施例1	75Fe-11. 6Hf-2. 4Cr-11N	1.5	100	150	NiAl	8	Ru	10	65Co 17Cr 16Pt2B	25	-6. 5
実施例36	80Fe-8. 6Hf-1. 2Cr-10. 2N	1.8	85	153	NiAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	-6. 5
実施例37	71Fe-12. 4Hf-4. 4Cr-12. 2N	1. 3	115	150	NIAI	8	Ru	10	65Co 17Cr 16Pt2B	25	-6. 1
実施例38	63Fe-17. 8Hf-3. 1Cr-18. 1N	1. 0	150	150	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-5. 9
実施例39	60. 3Fe-18. 7Hf-6. 8Cr-14. 2N	0. 8	188	150	NIAL	8	Ru	10	65Co17Cr16Pt2B		

(厚さの単位はnm)

【0071】表4より、飽和磁束密度Bsを1T以上 (特に1.4 T以上)とすることによって、優れた記録 再生特性を得ることができたことがわかる。

【0072】(実施例40~42)軟磁性下地膜2の飽 和磁束密度 B s および膜厚 t を表 5 に示すとおりとする こと以外は、実施例1に準じて磁気記録媒体を作製した (表5を参照)。これら実施例の磁気記録媒体につい て、記録再生特性を評価した結果を表5に示す。

[0073]

【表5】

D 2 40 9 C	が戻げてなるにかりこれ	<u> </u>	<u>. 9 ව</u>		142	<u> </u>					
	軟磁性下地	膜			配	記憶制御師] 读	垂直磁性膜		配録再 生特性	
	組成	Bs (T)	t (nm)	Bs·t (T·nm)	組成	厚さ	組成	厚さ	組成	厚さ	Iラ-レ-ト 10-X
実施例1	75Fe-11. 6Hf-2. 4Cr-11N	1. 5	100	150	NiAl	8	Ru	10	65Co17Cr16Pt2B	25	-6. 5
実施例40	75Fe-11. 6Hf-2. 4Cr-11N	1. 5	30	45	NiAI	8	Ru	10	65Co 17Cr 16Pt2B	25	-5.8
実施例41	75Fe-11. 6Hf-2. 4Cr-11N	1. 5	60	90	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-6. 1
実施例42	75Fe-11. 6Hf-2. 4Cr-11N	1. 5	70	105	NIAL	8	Ru	10	65Co 17Cr 16Pt2B	25	-6.5

(厚さの単位は n m)

【0074】表5より、飽和磁束密度Bsと膜厚tの積 Bs・tを50T・nm以上(特に100T・nm以 上)とすることによって、優れた記録再生特性を得るこ とができたことがわかる。

【0075】(実施例43~54)配向制御下地膜7お よび配向制御膜3の材料およびその厚さを表6に示すと 30 おりとすること以外は、実施例1に準じて磁気記録媒体 を作製した(表6を参照)。これら実施例の磁気記録媒 体について、記録再生特性を評価した結果を表6に示 す。

[0076]

【表6】

	軟磁性下地膜	配向制下地		配向制御腹		垂直磁性膜		記録再 生特性
	組成	組成	と	組成	厚さ	組成	厚さ	エラ-レ-ト 10-X
実施例1	75Fe-11.6Hf-2.4Cr-11N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-6. 5
実施例43	75Fe-11.6Hf-2.4Cr-11N	-	-	Ru	2	65Co17Cr16Pt2B	25	-6, 1
実施例44	75Fe-11. 6Hf-2. 4Cr-11N	_	-	Ru	18	65Co17Cr16Pt2B	25	-6. 2
実施例45	75Fe-11.6Hf-2.4Cr-11N	-	-	Ru	45	65Co17Cr16Pt2B	25	-5. 9
実施例46	75Fe-11.6Hf-2.4Cr-11N	l –	-	70Ru30Cu	18	65Co17Cr16Pt2B	25	-6.6
寅施例47	75Fe-11.6Hf-2.4Cr-11N	-	-	Hf	18	65Co17Cr16Pt2B	25	-6.7
実施例48	75Fa-11.6Hf-2.4Cr-11N	1 –	-	80Hf20B	18	65Co17Cr16Pt2B	25	-6.8
実施例49	75Fe-11.6Hf-2.4Cr-11N	NIAL	8	Re	8	65Co17Cr16Pt2B	25	-5.7
実施例50	75Fe-11, 6Hf-2, 4Cr-11N	_	-	Ni	3	65Co17Cr16Pt28	25	-6. 1
実施例51	75Fe-11, 6Hf-2, 4Cr-11N	NIAL	8	Ni	3	65Co17Cr16Pt28	25	-6.1
実施例52	75Fe-11. 6Hf-2. 4Cr-11N	_	_	85Ni 10Cr5N	10	65Co17Cr16Pt2B	25	-6.3
実施例53	75Fe-11.6Hf-2.4Cr-11N	l –	_	Cu	15	65Co 17Cr 16Pt 2B	25	-5.5
寅施例54	75Fe-11.6Hf-2.4Cr-11N	<u> </u>	_	80Pd20B	10	65Co17Cr16Pt2B	25	-5.4

(厚さの単位はnm)

【0077】表6より、配向制御膜3に、hcp構造ま たはfcc構造材料(特にRu、Hf、Ru合金、Hf 合金、Ni、Ni合金)を用いた構成によって、記録再 生特性に優れた磁気記録媒体を得ることができたことが わかる。

【0078】 (実施例55~63) 垂直磁性膜4の材料 およびその厚さを表7に示すとおりとすること以外は、 実施例1に準じて磁気記録媒体を作製した(表7を参 照)。これら磁気記録媒体の熱揺らぎ耐性を評価した結 50 果を表7に示す。熱揺らぎ耐性の評価は、70℃の条件

下で線記録密度50kFClにて書き込みをおこなった後、書き込み後1秒後の再生出力に対する出力の低下率(%/decade)を、(So-S)×100/(So×3)に基づいて算出した。この式において、Soは磁気記録媒体に信号記録後1秒経過時の再生出力を示

し、Sは1000秒後の再生出力を示す。これら実施例の磁気記録媒体について、記録再生特性を評価した結果を併せて表7に示す。

[0079]

【表7】

軟磁性下地膜			制御) 莫	垂直磁性膜		記録再 生特性	熟据を
組成	組成	厚さ	組成	厚さ	組成	厚さ	Iラ-レート 10-X	(%/de cade)
75Fe-11. 6Hf-2. 4Cr-11N	NiAl	8	Ru	10	65Co17Cr16Pt2B	25	-6. 5	0. 65
75Fe-11, 6Hf-2, 4Cr-11N	NiAL	8	Ru	10	65Co17Cr16Pt2B	3	-4. 9	1. 03
75Fe-11, 6Hf-2, 4Cr-11N	NIAL	8	Ru	10	65Co 17Cr 16P t2B	8	-6. 0	0.88
75Fe-11, 6Hf-2, 4Cr-11N	NiAl	8	Ru	10	65Co17Cr16Pt2B	45	-5. 8	0. 55
75Fe-11, 6Hf-2, 4Cr-11N	NiAI	8	Ru	10	65Co17Cr16Pt2B	60	-5. 1	0. 52
75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	62Co19Cr15Pt3Mn	25	-6. 1	0.71
75Fe-11.6Hf-2.4Cr-11N	NIAL	8	Ru	10	68Co21Cr6Pt5B	25	-6.3	1.08
75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	61Co17Cr21Pt	25	-5, 6	0.49
75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	Co/Pd (*1	15	-5.3	0.36
75Fe-11, 6Hf-2, 4Cr-11N	NIAL	8	Ru	10	TbFeCo	25	-5. 1	0.64
	相成 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N 75Fe-11.6Hf-2.4Cr-11N	相成 下地 相成	相成 下地膜 相成 厚さ 75Fe-11.6Hf-2.4Cr-11N NiAI 8 75Fe-11.6Hf-2.4Cr-11N NiAI 8	おおける	相成 下地膜 制御膜組成 厚 組成 厚 組成 厚 組成 厚 組成 厚 組成 厚 組成 厚 と	おける 下地膜 制御膜 組成 厚 組成 月 組成 月 組成 月 日本 日本 日本 日本 日本 日本 日本	おおけっぱ おおりまままままままままままままままままままままままままままままままままま	組成 提成 厚 組成 厚 組成 厚 17-レーさ 10-X 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 65Co17Cr 16Pt2B 3 -4. 9 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 65Co17Cr 16Pt2B 8 -6. 0 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 65Co17Cr 16Pt2B 8 -6. 0 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 65Co17Cr 16Pt2B 45 -5. 8 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 62Co19Cr 15Pt3Mn 25 -6. 1 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 68Co21Cr 6Pt5B 25 -6. 3 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 61Co17Cr 21Pt 25 -5. 6 75Fe-11. 6Hf-2. 4Cr-11N NiAI 8 Ru 10 Co/Pd (*1 15 -5. 3 15 -5. 3

*1:Co層とPd層を多数回にわたって積層した多層構造膜

(厚さの単位は n m)

【0080】表7より、垂直磁性膜4の厚さを5~50nm (特に7~30nm) とすることによって、優れた記録再生特性が得られたことがわかる。また垂直磁性膜 204にCoCrPt合金を用いた場合には、Pt含有率を8~24at%とすることによって、優れた熱揺らぎ耐性が得られることがわかる。

【0081】(実施例64~67)軟磁性下地膜2の表面を酸素含有ガス(曝露ガス)に曝すことによって、軟磁性下地膜2に酸化処理を施すこと以外は実施例1に準じて磁気記録媒体を作製した。曝露ガスとしては、純酸素(100%O2)、または酸素アルゴン混合ガス(50vol%O2-50vol%Ar)を用いた。上記曝露によって軟磁性下地膜2の表面に形成された酸化層の30

厚さを表8に示す。これら実施例の磁気記録媒体について、記録再生特性を評価した結果を表8に示す。

【0082】(実施例68) 軟磁性下地膜2を形成する際に、プロセスガス(成膜ガス)として、Ar(100%)を用い、次いで酸素アルゴン混合ガス(混合比:10vo1%02-90vo1%Ar)を用いること以外は実施例1に準じて磁気記録媒体を作製した(表8を参照)。酸素アルゴン混合ガスの使用によって、軟磁性下地膜2の表面付近に酸化層が形成された。この酸化層の厚さを表8に併せて示す。この磁気記録媒体について、記録再生特性を評価した結果を表8に示す。

[0083]

【表8】

	軟磁性	軟磁性下地膜							垂直磁性膜		記録再 生特性
	組成	眼器が入	酸化	酸化	組成	厚	組成	厚	組成	厚	Iラーレート
		(プロセスかつス)	処理	層厚		ð		ð		č	10-X
				Č	111111	_		10	CEC- 170- 150-00	OE.	
実施例1	75Fe-11.6Hf-2.4Cr-11N	_	_	-	NiAl	8	Ru	ייון	65Co 17Cr 16Pt2B	20	-6. 1
実施例64	75Fe-11.6Hf-2.4Cr-11N	100%O2	EF 23	0. 5	NIAL	8	Ru	10	65Co 17Cr 16Pt2B	25	-7. 1
実施例65	75Fe-11.6Hf-2.4Cr-11N	100%02	医蕗	2. 5	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-6. 9
実施例66	75Fe-11.6Hf-2.4Cr-11N	100%02	暖露	4	NIAI	8	Ru	10	65Co17Cr16Pt2B	25	-6. 1
実施例67	75Fe-11.6Hf-2.4Cr-11N	50%O2-50%Ar	暖露	1	NIAL	8	Ru	10	65Co 17Cr 16Pt2B	25	-6. 8
実施例68	75Fe-11.6Hf-2.4Cr-11N	10% O 2-90%Ar	*1	1	NIAL	8	Ru	10	65Co 17Cr 16Pt28	25	-6. 7

*1: 軟磁性下地膜形成時に、プロセスガスとして 100%Arを用いた後、10%O2-90%Arを使用した。 (厚さの単位はnm)

【0084】表8より、軟磁性下地膜2の酸化によって、優れた記録再生特性が得られたことがわかる。

【0085】(実施例69~76)配向制御膜3と垂直磁性膜4との間に非磁性中間膜8を設けること以外は実施例1に準じて磁気記録媒体を作製した(表9を参

照)。これら実施例の磁気記録媒体について、記録再生 特性および熱揺らぎ耐性を評価した結果を表9に示す。

[0086]

【表9】

	軟磁性下地膜	配向制御 配向 下地膜 制御膜			非磁性中間膜		垂直磁性膜		記録再 生特性	熱揺らぎ耐性	
	組成	組成	厚さ	組成	厚さ	組成	厚さ	組成	厚さ	Iラ-レート 10-X	(%/de cade)
実施例1	75Fe-11. 6Hf-2. 4Cr-11N	NiAl	8	Ru	10	_	=	65Co17Cr16Pt2B	25	-6. 5	0. 65
実施例69	75Fe-11. 6H1-2. 4Cr-11N	NIAI	8	Ru	10	60Co40Cr	5	65Co17Cr16Pt2B	25	-6.8	0. 55
実施例70	75Fe-11.6Hf-2.4Cr-11N	NIAL	8	Ru	10	60Co40Cr	2	65Co17Cr16Pt2B	25	-6. 8	0. 57
実施例71	75Fe-11. 6Hf-2. 4Cr-11N	NIAI	8	Ru	10	60Co40Cr	18	65Co17Cr16Pt2B	25	-6. 7	0. 52
実施例72	75Fe-11.6Hf-2.4Cr-11N	NIAI	8	Ru	10	60Co40Cr	25	65Co17Cr16Pt2B	25	-6. 5	0. 52
実施例73	75Fe-11.6Hf-2.4Cr-11N	NiAI	8	Ru	10	55Co35Cr 10Mn	5	65Co17Cr16Pt2B	25	-6. 9	0. 56
実施例74	75Fe-11.6Hf-2.4Cr-11N	NIAI	8	Ru	10	52Co33Cr 10Pt5B	5	65Co17Cr16Pt2B	25	-7. 0	0. 55
実施例75	75Fe-11.6Hf-2.4Cr-11N	NIAL	8	Ru	10	55Co45Ru	5	65Co17Cr16Pt2B	25	-6. 9	0. 58
実施例76	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	60Co30Cr5Ta58	5	65Co17Cr16Pt2B	_	-6.9	0. 54

【0087】表9より、非磁性中間膜8を設けることによって、記録再生特性、熱揺らぎ耐性を向上させることができたことがわかる。特に、非磁性中間膜8の厚さを20nm以下(特に10nm以下)とすることによって、優れた記録再生特性が得られたことがわかる。

【0088】(実施例77~81)非磁性基板1と軟磁性下地膜2との間に硬磁性膜9、面内下地膜10を設けること以外は、実施例1に準じて磁気記録媒体を作製し

た (表10を参照)。面内下地膜10には、94Cr6 Moを用い、厚さは15nmとした。これら実施例の磁 気記録媒体について、記録再生特性を評価した結果を表 10に示す。表10には、スパイクノイズの有無も併せ で示す。

[0089]

【表10】

		硬磁性膜		軟磁性下地膜		順	配向制御	鱼	垂直磁性膜		記録再 生特性	スパイク
		組成	厚さ	組成	組成	厚さ	組成	厚さ	組成	厚さ	Iラ-レ-ト 10-X	有無
	実施例1		-	75Fe-11. 6Hf-2. 4Cr-11N	NiAI	8	Ru	10	65Co 17Cr 16Pt 2B	25	-6. 5	* 1
1	実施例77	65Co17Cr16Pt2B	50	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	65Co 17Cr 16Pt2B	25	~6. 4	なし
	実施例78	65Co17Cr16Pt2B	20	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	65Co17Cr16Pt2B	25	-6. 5	なし
	実施例79	65Co17Cr16Pt2B	140	75Fe-11. 6Hf-2. 4Cr-11N	NIAI	8	Ru	10	65Co 17Cr 16Pt2B	25	-6. 1	なし
ļ	実施例80	64Co21Cr10Pt58	50	75Fe-11. 6Hf-2. 4Cr-11N	NIAI	8	Ru	10	65Co17Cr16Pt2B	25	-6. 4	なし
	実施例81	84Co16Sm	50	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	65Co 17Cr 16Pt2B	25	-6.0	なし

*1:わずかにスパイクノイズが観察された。

(厚さの単位はnm)

【0090】表10より、硬磁性膜9、面内下地膜10を設けることによって、スパイクノイズを抑えることができたことがわかる。また十分な記録再生特性を得ることができたことがわかる。

【0091】(実施例82~86)垂直磁性膜4と保護膜5との間に磁化安定膜11を設けたこと以外は、実施 40

例1に準じて磁気記録媒体を作製した(表11を参 照)。これら実施例の磁気記録媒体について、記録再生 特性を評価した結果を表11に示す。

[0092]

【表11】

	軟磁性下地膜	配向制御下地膜		配向制御展		垂直	磁化安定睽		記録再生特性 エラーレート 再生		利据5
<u> </u>	組成	組成	厚さ	組成	厚さ		組成	厚さ	10-X	出力 (u V)	(%/de cade)
実施例1	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	8	Ru	10	(*1	_	-	-6. 5	2180	0. 65
実施例82	75Fe-11. 6Hf-2. 4Cr-11N	NIAI	8	Ru	10	(*1	75Fe-11.6Hf-2.4Cr-11N	3. 6	-6. 7	2870	0. 45
実施例83	75Fe-11.6Hf-2.4Cr-11N	NIAI	8	Ru	10	(*1	75Fe-11.6Hf-2.4Cr-11N	7. 0	-6. 2	2350	0. 53
実施例84	75Fe-11.6Hf-2.4Cr-11N	NiAI	8	Ru	10	(*1	75Fe-11.6Hf-2.4Cr-11N	9. 6	-5. 7	1780	0.74
実施例85	75Fe-11. 6Hf-2. 4Cr-11N	NIAL	В	Ru	10	(*1	85Fe-152r	3. 6	-6. 4	2660	0. 52
宝施例86	75Fe-11, 6Hf-2, 4Cr-11N	NIAL	В	Ru	10	(*1	89Co-4Zr-7Nb	3. 6	-6. 5	2720	0.51

*1:垂直磁性膜:65Co17Cr16Pt2B,厚さ25nm

(厚さの単位はnm).

【0093】表11より、磁化安定膜11を設けることによって、記録再生特性、再生出力、熱揺らぎ耐性を向上させることができたことがわかる。

[0094]

【発明の効果】以上説明したように、本発明の磁気記録 媒体にあっては、軟磁性下地膜の材料として、以下に示 す組成で表されるもののうちいずれかを用いるので、記 録再生特性を向上させることができる。

a Fe-b Co-c M-d X1-f N \cdots (1)

 $(6.0 \le a + b \le 9.0, 3.0 \le a \le 9.0, 5 \le c \le 2)$

 $0, 0. 1 \le d \le 7, 3 \le f \le 30$

a Fe - b Co - c M- e X2- f N \cdots (2)

 $(6.0 \le a + b \le 9.0, 3.0 \le a \le 9.0, 5 \le c \le 2$

 $0, 0. 1 \le e \le 10, 3 \le f \le 30$

a F e - b C o - c M - d X 1 - e X 2 - f N · · · · (3)

 $(6.0 \le a + b \le 9.0, 3.0 \le a \le 9.0, 5 \le c \le 2)$

 $0, 0. 1 \le d \le 7, 0. 1 \le e \le 7, 3 \le f \le 30$

【図面の簡単な説明】

【図1】 本発明の磁気記録媒体の第1の実施形態を示す一部断面図である。

【図2】 図1に示す磁気記録媒体の軟磁性下地膜を

示す構造図である。

【図3】 履歴曲線の一例を示すグラフである。

【図4】 履歴曲線の他の例を示すグラフである。

【図5】 本発明の磁気記録媒体の第2の実施形態を示す一部断面図である。

32

【図6】 本発明の磁気記録媒体の第3の実施形態を 示す一部断面図である。

【図7】 本発明の磁気記録媒体の第4の実施形態を 20 示す一部断面図である。

【図8】 本発明の磁気記録媒体の第5の実施形態を示す一部断面図である。

【図9】 本発明の磁気記録再生装置の一例を示す概略構成図である。

【図10】 図9に示す磁気記録再生装置に使用される磁気ヘッドの一例を示す構成図である。

【符号の説明】

1…非磁性基板、2…軟磁性下地膜、2 a・・・微細結晶、2 b・・・非晶質相、3…配向制御膜、4…垂直磁性膜、5…保護膜、20…磁気記録媒体、22…磁気ヘッド

【図1】

【図2】

2a: 微細結晶 2b: 非晶質相

【図10】

BEST AVAILABLE COPY

(18)

特開2002-352408

-Hn;逆磁区核形成磁界

【図5】

【図6】

【図7】

[図8]

[図9]

フロントページの続き

(72)発明者 酒井 浩志 千葉県市原市八幡海岸通5番の1 昭和電 エエイチ・ディー株式会社内

F ターム(参考) 5D006 AA01 CA03 CA05 DA08 EA03 FA06 5D112 AA05 BB02 FA04 GB02 5E049 AA01 AC01 BA06 GC01