Big Data e Machine Learning com Hadoop e Spark

Conteúdo

CONTEÚDO PROGRAMÁTICO

- Visão geral da ciência de dados e aprendizado de máquina em escala
- Visão geral do ecossistema do Hadoop
- Instalação de um Cluster Hadoop
- Trabalhando com dados do HDFS e tabelas do Hive usando o Hue
- Visão geral do Python
- Visão geral do R
- Visão geral do Apache Spark 2
- Leitura e gravação de dados
- Inspeção da qualidade dos dados
- Limpeza e transformação de dados
- Resumindo e agrupando dados
- Combinando, dividindo e remodelando dados
- Explorando dados
- Configuração, monitoramento e solução de problemas de aplicativos Spark
- Visão geral do aprendizado de máquina no Spark MLlib
- Extraindo, transformando e selecionando recursos
- Construindo e avaliando modelos de regressão
- Construindo e avaliando modelos de classificação
- Construindo e avaliando modelos de cluster
- Validação cruzada de modelos e hiperparâmetros de ajuste
- Construção de pipelines de aprendizado de máquina
- Implantando modelos de aprendizado de máquina

MATERIAL DIDÁTICO

- Slides do treinamento em PDF
- GitHub com exercícios e códigos exemplo
- Máquinas virtuais para exercícios simulados
- Gravação das aulas disponível durante 3 meses

Desvio Padrão e Variância

Exemplo de um Histograma

Histogram of arrivals

Variância mede quão "espalhados" os dados são.

- Variância (σ²)é simplesmente a média das diferenças quadradas da média
- Exemplo: Qual a variância deste dataset (1, 4, 5, 4, 8)?
 - Calcule a Média: (1+4+5+4+8)/5 = 4.4
 - Agora encontre as diferenças da média: (-3.4, -0.4, 0.6, -0.4, 3.6)
 - Encontre o quadrado das diferenças: (11.56, 0.16, 0.36, 0.16, 12.96)
 - Calcule a média do quadrado das diferenças:

$$\sigma^2 = (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04$$

Desvio Padrão é a raiz quadrada da Variância

$$\sigma 2 = 5.04$$

$$\sigma = \sqrt{5.04} = 2.24$$

Então o Desvio Padrão de (1, 4, 5, 4, 8) é 2.24.

Isso é normalmente usado para identificar outliers. Pontos que ficam a mais de um Desvio Padrão da Média podem ser considerados não usuais.

Você pode se referei a quão extremo é um ponto de dados dizendo "quantos sigmas" longe da média ele está.

População vs. Amostra

- Se você está trabalhando com uma Amostra dos dados ao invés de Um dataset completo de dados (a *População* inteira)...
 - Então você vai querer usar a "variância da amostra" ao invés da "variância da população"
 - Para N amostras, você divide a variância quadrada por N-1 ao invés de N.
 - Então, no nosso exemplo, calculamos a variância da população assim:

$$\Box \sigma^2 = (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04$$

But the sample variance would be:

$$\Box$$
 S² = (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 4 = 6.3

Fórmulas

Variância da População:

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Variância da Amostra:

$$s^2 = \frac{\sum (X - M)^2}{N - 1}$$

Funções de densidade de probabilidade

Exemplo: uma "distribuição normal

Dá a probabilidade de um ponto de dados cair dentro de um dado intervalo de um dado valor.

Função de massa de probabilidade

Vamos ver alguns exemplos

Percentis e Momentos

Percentis

- Em um conjunto de dados, qual é o ponto em que X% dos valores são menores que esse valor?
- Exemplo: distribuição de renda

Percentis em uma distribuição normal

Vamos ver alguns exemplos

Momentos

Medidas quantitativas da forma de uma função de densidade de probabilidade Matematicamente elas são um pouco difíceis de entender:

$$\mu_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$
 (para um momento *n* em torno do valor *c*).

Mas intuitivamente, é muito mais simples em estatística.

O primeiro momento é a média

O segundo momento é a variância

Simples assim...

O terceiro momento "inclinação"

Quão "desequilibrada" é a distribuição? Uma distribuição com uma cauda mais longa à esquerda ficará inclinada para a esquerda e terá uma inclinação negativa.

O quarto momento é "curtose"

Quão espessa é a cauda e quão nítido é o pico, comparado a uma distribuição normal? Exemplo: picos mais altos têm

maior curtose

Vamos computar os 4 momentos com Python

Covariância e Correlação

Covariância

Mede como duas variáveis variam em conjunto a partir de suas médias.

Medindo a Covariância

- Pense nos conjuntos de dados para as duas variáveis como vetores de alta dimensionalidade
- Converta-os em vetores de variações a partir da média
- Pegue o produto escalar (cosseno do ângulo entre eles) dos dois vetores
- Divida pelo tamanho da amostra

Interpretar covariância é difícil

- Sabemos que uma pequena covariância, próxima de 0, significa que não há muito correlação entre as duas variáveis.
- É grandes covariâncias ou seja, longe de 0 (pode ser negativo para inverso relacionamentos) significa que há uma correlação
- Mas quão grande é "grande"?

É aí que entra a correlação!

- Apenas divida a covariância pelos desvios padrão de ambas as variáveis, e isso normaliza as coisas.
- Portanto, uma correlação de -1 significa uma correlação inversa perfeita
- Correlação de 0: sem correlação
- Correlação 1: correlação perfeita

Lembre-se: a correlação não implica causalidade!

- Somente um experimento controlado e randomizado pode fornecer informações sobre causalidade.

 • Use a correlação para decidir quais experimentos realizar!

Vamos ver alguns exemplos

Obrigado!!!

Nos vemos amanhã!!!

Bom descanso!

