Documentation

The following are the main functions written in the ipython notebook IRassignment:

1) getEigenPairs (M,k)

This function computes the eigenvalues and eigenvectors using a generalised power iteration method. Power iteration actually just calulates the principal eigenvector, but we iteratively keep on reducting the matrix to find eigenvectors corresponding to largest k eigenvalues. Arguments:

M: Square Matrix of which we want to calculate eigenvalues and eigenpairs.

k: Number of eigenpairs we want to calculate. k can can range from 1 to no. Of rows or collumns of M.

Returns:

Val: list of k eigenvalues caluculated

Vec: list of corresponding eigenvectors as list of numpy column arrays.

2) SVD(AAT,ATA,k):

This function calculates Singular Value Decomposition of the matrix.

Arguments:

AAT,ATA:

 $A*A^T$ (Dimensions: MxM) and A^T*A (Dimensions NxN) where A is the MxN utility matrix which we want to decompose.

k: Rank of SVD we want to compute/ no. of singular values we want to consider /No of latent dimensions we want to break our space into

Returns

U: User to concept matrix (dimension: M*k)

Sigma: Matrix of singular values (dimension: k*k)

V: Movie to concept matrix. (dimension: k*N)

3) signU(A,u,v):

Eigenvectors corresponding to a singular value can be of two opposite directions. Out of these two directions only one gurantees minimum reconstruction error. The correct direction is got by fixing v and multiplying u such that Avi/ei is positive where ei is the ith eigenvector of AA^T

4) getCUR(A,r):

This function calculates the CUR decomposition of utility matrix A breaking it into r latent factors. **Arguments:**

A: Utility matrix that we want to decompose.

R: Rank.

Returns:

C: Matrix of randomly chosen columns of A using the probability function defined by the length of each collumn (list pfc in the code).

U: Moore Penrose Pseudoinverse of the matrix obtained by taking the intersection of C and R matrices.

R: Matrix of randomly chosen rows of A using the probability function defined by the length of each row (list pfr in the code).

4) **getU(W)**:

Calculates the pseudoinverse of matrix W. Used in the function getCUR for calculating U.

Arguments:

W: Matrix for of which we want to calculate the pinv.

Returns:

U: Pseudoinverse of W.