

Buildings Aware Path Loss Modeling in ns-3

Hugo LE DIRACH

ONERA - ENAC

Marc BOYER - Emmanuel LOCHIN

O. Introduction

Figure 1 : Visualization of available path and used path in the routing process

O. Introduction

Figure 2: Visualization of a mobility scenario

O. Introduction

Figure 2 : Visualization of a mobility scenario

Figure 3: Loss value as function of the time

Summary

- O. Introduction
- 1. ns-3, signal propagation and path loss modeling
- 2. Developed loss model
- 3. Implementation
- 4. Results

Signal propagation

- Decrease with the distance
- Obstacles may interfere with the strength of the signal

Figure 4: Visual representation signal strength in multiple settings

ns-3

- Network simulator
- Discrete time events
- Open-Source
- Modular architecture
- Most used in scientific community
- Very scalable

Figure 5: Visual representation of a network scenario in ns-3

Figure 6: Visual mapping of the different loss model approaches

Figure 6: Visual mapping of the different loss model approaches

Developed loss model

2. Developed loss model

Dominant path model

Figure 7: The dominant path method where the signal, considered as a ray, interacts with the object in the medium (penetration, diffraction, reflection).

2. Developed loss model

Dominant path model

Figure 8: Visual representation of signal penetration, diffraction and reflection on objects.

Implementation

3. Implementation

Figure 9 : Code architecture

Results

First scenario

Figure 10: Visualization of the first scenario

First scenario

Figure 10: Visualization of the first scenario

Figure 11: Loss value as function of the time

Figure 12 : Performance tests

Figure 12 : Performance tests

Figure 12 : Performance tests

Figure 12 : Performance tests

- Currently under review for ns-3 integration
- Submission to International Conference on ns-3 (ICNS3), formerly known as Workshop on ns-3 (WNS3)

Thank you for your attention