Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named Sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	\mathbf{R}^2

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set Symbols

Meaning	Symbol
is a member	€
subset	\subset
intersection	

Meaning	Symbol
union	\cup
complement	$superscript^{C}$
set minus	\

Logic Symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\Longrightarrow

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	3

Function Notation

dom(F)	domain of function F
range(F)	range of function F
C_A	set of continuous functions on set A
C_A^1	set of differentiable functions on set A
$A \to B$	set of functions from A to B

Magnitude & Conjugate

For all $a, b \in \mathbf{R}$

$$|a + ib| = \sqrt{a^2 + b^2}$$
$$\overline{a + ib} = a - ib$$

For all $x, y, z \in \mathbf{C}$, we have

$$|xy| = |x||y|$$

$$|x + y| \le |x| + |y|$$

$$||x| - |y|| \le |x - y|$$

$$\overline{xy} = \overline{xy}$$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} (\text{ for } z \ne 0)$$

$$\frac{\left(\frac{x}{z}\right)}{z} = \frac{\overline{x}}{\overline{z}}$$

Complex Exponential

For $x, y \in \mathbf{R}$

$$e^{iy} = \cos(y) + i\sin(y)$$
$$e^{x+iy} = e^x (\cos(y) + i\sin(y))$$

For all $z_1, z_2 \in \mathbf{C}$,

$$e^{z_1+z_2} = e^{z_1}e^{z_2}$$

 $[e^{z_1} = e^{z_2}] \equiv [z_1 - z_2 = 2\pi n, n \in \mathbf{Z}]$

Argument & Polar form

For all $z \in \mathbf{C}_{\neq 0}$, there is a unique $\theta \in (-\pi, \pi]$ such that

$$z = |z|(\cos(\theta) + i\sin(\theta))$$
$$\arg(z) = \theta$$

We have

$$\sqrt{z} = \sqrt{|z|}(\cos(\theta/2) + i\sin(\theta/2))$$

$$z^{a} = |z|^{a}(\cos(\theta/a) + i\sin(\theta/a))(\text{ for } z \in \mathbf{R}_{\neq 0})$$

$$\log(z) = \log(|z|) + i\arg(z)$$