Университет ИТМО, факультет инфокоммуникационных технологий Отчетная работа по «Информатике»: аннотация к статье

Выполнил(а)	Долматов Д.А.	, № группы	K3221	, дата	20.11.2021	, оценка	
	ФИО студента						не заполнять

Название статьи/главы книги: Оптимизация клиент-серверного взаимодействия с сервисом авторизации средствами языка Swift.

ФИО автора статьи:	Дата публикации:	Размер статьи
А.А. Тонхоноева	2020	6 стр.

Прямая полная ссылка на источник и сокращенная ссылка:

https://cyberleninka.ru/article/n/optimizatsiya-klient-servernogo-vzaimodeystviya-s-servisom-avtorizat
sii-sredstvami-yazyka-swift/viewer
https://clck.ru/YwDev

Тэги, ключевые слова или словосочетания: авторизация, OAuth2, токен, iOS-приложение, Swift

Перечень фактов, упомянутых в статье: Крупные транснациональные компании, входящие в пятерку FAAAM (Facebook, Amazon, Apple, Microsoft и Alphabet) перешли на OAuth2, который позволяет избавиться от необходимости хранения логинов и паролей, выдачей ограниченного набора прав одному сервису на доступ на другом сервисе. Однако возникает проблема обновления токена, поскольку он имеет ограниченный период жизни. Алгоритм авторизации приложения заключается в направлении пользователя на страницу авторизации, ввода пользователем логина/пароля и последующем выборе прав и разрешений на данное приложение. Сервис перенаправляет пользователя на страницу - заглушку, который передаст либо данные, либо ошибку доступа. Основная проблема наступит тогда, когда время действия токена закончится, а взаимодействия не будет иметь вид «backend - backend». Поскольку в сетевом слое запросы выполняются в многопоточном режиме, то каждый запрос нового токена лишь увеличит нагрузку на сервер. В прибавок к этому, у нас будет коллизия токенов. Данную проблему решает метод расширения сетевого слоя, который инкапсулирует часть логики с помощью наборов абстракций и методов, упрощающих сетевое взаимодействие приложений, а управление авторизационных данных будет находится в одном локализованном участке. В итоге данный метод начинает обновление токена, если какой-либо запрос вернет ошибку. Инкапсуляция сетевого слоя приложения избегает обработку реальных логинов и паролей пользователей, передавая эту обязанность страницу-заглушке.

Позитивные следствия и/или достоинства описанной в статье технологии

- 1) Избегание обработки паролей пользователей
- 2) Избегание коллизии из-за повторного и одновременно отправления токенов мультипотоками.
- 3) Быстрая реализация благодаря Swift.

Негативные следствия и/или недостатки описанной в статье технологии

- 1) Если приложение не использует Alamofire, то необходимо изменять код более сложными способами.
- 2) Частое ТО оборудование, поскольку нарушение в работе потока вызовет коллизию.
- 3) Необходимость хранить базовый токен пользователю самостоятельно (риск потерять).

Ваши замечания, пожелания преподавателю или анекдот о программистах Such a great day today!