MotorKit Parameters

The linearized model of inverted pendulum system is:

$$J_{ip}\ddot{\theta} + \frac{K^2}{R}\dot{\theta} - mgl_c\theta = \frac{KV_s}{R}d$$

Using parameters:

Parameter	Value	Description
m(kg)	4.4×10^{-2}	Mass of pendulum
$g(m/s^2)$	9.81	Gravitational acceleration
$l_c(m)$	2.54×10^{-2}	Distance from pivot joint to the center of pendulum rod
$J_{rodc}(\mathrm{kg}\cdot\mathrm{m}^2)$	2.16×10^{-5}	Moment of inertia of pendulum about center of rod
$J_{rode}(\mathrm{kg}\cdot\mathrm{m}^2)$	8.37×10^{-5}	Moment of inertia of pendulum about end of rod
$J_{rotor}(\mathrm{kg}\cdot\mathrm{m}^2)$	1.67×10^{-6}	Moment of inertia of motor rotor
$J_{inertia}(kg \cdot m^2)$	2.33×10^{-5}	Moment of inertia of inertia mode of system
$J_{dp}(\mathrm{kg}\cdot\mathrm{m}^2)$	8.54×10^{-5}	Moment of inertia of downward pendulum mode of system
$J_{ip}(\mathrm{kg}\cdot\mathrm{m}^2)$	8.54×10^{-5}	Moment of inertia of inverted pendulum mode of system
$V_s(V)$	10.7	Supply voltage of the motor drive (H-bridge)
d	-	Duty cycle
$\theta(\mathrm{rad})$	-	Angle of pendulum

Table 1: Pendulum system parameters in SI units.

From Lab2 System Identification, you should get your k and τ as parameters of motor, where

$$k = \frac{V_s}{K}$$

$$\tau = \frac{J_{inertia}R}{K^2}$$

For more details, read MotorLabManual you got from Lab2.