Modelo Regressão - GITAGE

Utilizando lazypredict

```
1 # 1) Instalando pacote
2 !pip install lazypredict
Retorno 🦣
 1 Requirement already satisfied: lazypredict in /usr/local/lib/python3.10/dist-packages (0.2.12)
 2 Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from lazypredict) (8.1.7)
 3 Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from lazypredict) (1.2.2
 4 Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from lazypredict) (1.5.3)
 5 Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from lazypredict) (4.66.1)
 6 Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from lazypredict) (1.3.2)
 7 Requirement already satisfied: lightgbm in /usr/local/lib/python3.10/dist-packages (from lazypredict) (4.1.0)
 8 Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (from lazypredict) (2.0.2)
 9 Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from lightgbm->lazypredict) (1.
10 Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from lightgbm->lazypredict) (1
11 Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->1
12 Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->lazypredict
13 Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-lear
14 Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1-
1 # 2) Importando bibliotecas
2 import pandas as pd
3 import numpy as np
4 import lazypredict
5 from lazypredict.Supervised import LazyClassifier
6 from lazypredict.Supervised import LazyRegressor
7 from sklearn.model_selection import train_test_split
8 from sklearn.preprocessing import StandardScaler
9 from sklearn.ensemble import GradientBoostingRegressor
1 # 3) Ignorando avisos
2 import warnings
3 warnings.filterwarnings("ignore")
1 # 4) Configurando quantidade de colunas para aparecer em um Datraframe
pd.set_option('display.max_columns',100)
1 # 5) Usando o método read_csv() para carregar o arquivo CSV
```

Retorno 🦣

2 df.head()

2 df = pd.read_csv('/content/dbGITAGE.csv')

1 # 6) Mostrando a base de dados

```
2 Nota em Matemática Nota em Leitura Nota em escrita Sexo Fem_0 Sexo Fem_1 Sexo Masc_0 Sexo Masc_1 Indígenas_0 I
3 0 -0.58 -0.03 0.59
                          0
                             1
                                 1
                                     0
                                       1
                                           0
                                               1
                                                  0
                                                      1
                                                             0
                                                                1
                                                                   1
                                                                       0
                                                                          1
                                                                              0
                                                                                 1
4 1 1.85
           1.60 1.19
                                 0
                                    1
                                                            0
                                                                1
                                                                       0
                                                                          1
                                                                                        0
                                                                                               1
                          1
                             0
                                        1
                                           0
                                               1
                                                  0
                                                      1
                                                         0
                                                                   1
                                                                              0
                                                                                 1
                                                                                     0
5 2 -0.71 0.40
                   0.52 0
                                    0
                                        1
                                           0
                                               1
                                                  0
                                                      1
                                                             0
                                                                1
                                                                   1
                                                                       0
                                                                          1
6 3 0.14
           -0.03 -0.41 1
                             0
                                 0
                                    1
                                        1
                                           0
                                               0
                                                  1
                                                      1
                                                         0
                                                             1
                                                                0
                                                                   1
                                                                       0
                                                                          1
                                                                              0
                                                                                 1
                                                                                     0
                                                                                               0
     1.00
            1.04
                   1.12
                          0 1 1 0
                                           0
                                               1
                                                  0
                                                      1
                                                         0
                                                            0
                                                                1
                                                                   1
                                                                       0
                                                                          1
                                                                              0
                                       1
```

```
Dicionário de dados:
  • a_mulher: aluna - sexo feminino
  · a homem: aluno - sexo masculino
  • a_groupA: Indígenas
  · a_groupB: Afrodescendentes
  • a_groupC: Europeus
  • a_groupD: Pardos
  • a_groupE: Asiáticos
  • p_ensino_medio: pai aluno - nível ensino medio
  • p_tecnologo: pai aluno - nível ensino tecnologo
  • p_alguma_faculdade: pai aluno - nível alguma faculdade

    p_bacharelado: pai aluno - nível bacharelado

  · p_mestrado: pai aluno - nível mestrado
  • a_curso_de_preparacao: aluno - nível curso preparatório
  · a_score_em_matematica: aluno - nota em matemática
  · a_score_em_leitura: aluno - nota em leitura
Origem da base de dados:
```

```
1 # 7) Renomeando colunas
2
3 df.rename(columns={'a_mulher':'Sexo Fem',
4
                       'a_homem':'Sexo Masc',
5
                       'a_groupA':'Indígenas',
                       'a_groupB':'Afrodescendentes',
6
 7
                       'a_groupC':'Europeus',
8
                       'a_groupD':'Pardos',
9
                       'a_groupE':'Asiáticos',
                       'p_ensino_fundamental':'Fundamental pai',
10
11
                       'p_ensino_medio':'Ensino médio pai',
12
                       'p_tecnologo':'Tecnólogo pai',
                       'p_alguma_faculdade':'Alguma faculdade pai',
13
                       'p_bacharelado':'Bacharelado pai',
14
15
                       'p_mestrado':'Mestrado pai',
                       'a_curso_de_preparacao':'Curso preparatório',
16
17
                       'a_score_em_matematica':'Nota em Matemática',
                       'a_score_em_leitura':'Nota em Leitura',
18
19
                       'a_score_em_escrita':'Nota em escrita'},inplace=True)
20
```

```
1 # 8) Verificando a base de dados com tipo
2 df.info()
```

Retorno 🖣

```
14 8 Indígenas_1
                                 1000 non-null int64
 15
      9 Afrodescendentes_0 1000 non-null int64
 16 10 Afrodescendentes_1 1000 non-null int64
                                          1000 non-null int64
 17
      11 Europeus_0
17 11 Europeus_0 1000 non-null int64
18 12 Europeus_1 1000 non-null int64
19 13 Pardos_0 1000 non-null int64
20 14 Pardos_1 1000 non-null int64
21 15 Asiáticos_0 1000 non-null int64
22 16 Asiáticos_1 1000 non-null int64
23 17 Fundamental pai_0 1000 non-null int64
24 18 Fundamental pai_1 1000 non-null int64
25 19 Ensino médio pai_0 1000 non-null int64
 25 19 Ensino médio pai_0 1000 non-null int64

      26
      20
      Ensino médio pai_1
      1000 non-null int64

      27
      21
      Tecnólogo pai_0
      1000 non-null int64

      28
      22
      Tecnólogo pai_1
      1000 non-null int64

 29 23 Alguma faculdade pai_0 1000 non-null int64
 30
      24 Alguma faculdade pai_1 1000 non-null int64
 31 25 Bacharelado pai_0 1000 non-null int64
 32 26 Bacharelado pai_1
                                         1000 non-null int64
 33 27 Mestrado pai_0 1000 non-null int64 34 28 Mestrado pai_1 1000 non-null int64
 35 29 Curso preparatório_0 1000 non-null int64
 36 30 Curso preparatório_1 1000 non-null int64
 37 dtypes: float64(3), int64(28)
 38 memory usage: 242.3 KB
1 # 9) Verificando a base de dados com cabeçalho
 2 df.head()
Retorno 🖣
 2 0 -0.58 -0.03 0.59 0 1 1 0 1 0 1
                                                                               0 1 0
                                                                                              0 1 1
                                                                                                              0
                                                                                                                  1 0 1
 3 1 1.85
                                                   0 1 1 0
                                                                               0
                                                                                         0
                                                                                                              0
                                                                                                                                          0
                                                                                                                                               1
                                                                        1
                                                                                    1
                                                                                              0
                                                                                                   1
                                                                                                        1
                                                                                                                    1
                                                                                                                         0
                                                                                                                               1
                                                                                                                                    0
                                                                                                                                                    1
```

```
Nota em Matemática Nota em Leitura Nota em escrita Sexo Fem_0 Sexo Fem_1 Sexo Masc_0 Sexo Masc_1 Indígenas
         1.60 1.19 1 0
4 2 -0.71 0.40 0.52 0 1 1 0 1
5 3 0.14 -0.03 -0.41 1 0 0 1 1 0 0 1
                                           1
                                              0
                                                 1
                                                   0
                                                      1
                                                         0
                                                            1
                                                               0 1
                                                                     0
                                                                        1
                                                                           0
                                                                             0
6 4 1.00
         1.04
               1.12 0 1 1 0 1 0 1
                                         0
                                           1 0
                                                 0 1 1 0
                                                            1 0 1
                                                                        0
```

```
# 10) Mudando o tipo de dado

col_cat = list(df.select_dtypes(include='object').columns)
df[col_cat] = df[col_cat].astype('category')
```

```
1 # 11) Verificando todas as categorias dos atributos
 2 categorico_val = []
3 continuo_val = []
4
 5 # 12) Verificando os dados únicos em cada coluna e separando em dados categóricos e continuos
 6 for column in df.columns:
 7
       print('=======')
8
       print(f"{column} : {df[column].unique()}")
9
10
       if len(df[column].unique()) <= 10:</pre>
11
           categorico_val.append(column)
12
13
           continuo_val.append(column)
```

```
1 ============
0.93094545 -1.43086119 0.79973397 0.40609953 -0.97162101 0.53731101
4 -0.84040953 -0.77480379 -2.15252433 1.25897415 -0.18435213 -0.11874639
   -0.05314065 1.39018563 2.04624304 -0.64359231 1.45579137 0.07807083
   -2.34934155 1.19336841 -1.03722675 -0.31556361 -0.38116935 0.73412823
6
7
   0.20928231 -0.44677509 0.47170527 0.34049379 -0.24995787 -2.93979322
   -1.75888989 1.06215693 1.12776267 1.32457989 1.52139711 -1.10283249
9
    2.11184878 -1.29964971 1.98063729 0.27488805 -1.62767841 -1.16843823
10
   -1.95570711 0.86533971 -1.36525545 -1.23404397 -1.56207267 -0.51238083
    1.65260859 0.60291675 -3.13661044 0.66852249 1.71821433 -1.89010137
11
   -1.69328415 -0.90601527 -2.02131285 -1.49646693 -2.67737026 1.58700285
12
   1.78382007 -2.21813007 1.91503155 -2.41494729 -1.82449563 -2.28373581
   -3.0710047 -2.80858174 -2.61176452 -3.46463914 -2.87418748 -2.48055303
14
15
   -2.08691859]
16 ==============
17 Nota em Leitura: [-0.02709151 1.60407283 0.39842962 1.03671132 -0.94905396 0.89487094
   -0.66537321 0.32750943 -0.0980117 -1.44549529 0.25658924 0.18566905
19
   -1.16181453 -1.72917604 -1.65825585 1.53315264 0.82395075 0.04382868
20 -0.31077227 1.24947188 -1.30365491 0.61119019 1.1785517 0.75303056
    0.54027 -2.50929812 -1.23273472 -1.01997415 0.46934981 0.11474887
21
22
   -0.23985208 -0.45261264 1.10763151 -0.16893189 -2.5802183 1.46223245
23
   -0.59445302 -2.65113849 -0.87813378 -1.51641547 0.68211037 1.32039207
    1.88775358 -0.38169246 -1.3745751 1.81683339 0.96579113 1.39131226
24
25
    1.7459132 -1.09089434 -0.7362934 2.02959396 -1.80009623 -0.52353283
26
   1.95867377 -2.15469717 1.67499302 -0.80721359 -1.58733566 -3.2185
   -2.22561736 -1.94193661 -1.87101642 -3.07665962 2.10051415 -2.01285679
27
   -2.86389906 -2.72205868 -2.29653755 -2.08377698 -2.36745774]
28
0.72311288 -0.74175668 0.25701802 -0.0093219 -1.3410215 0.45677296
31
   0.05726308 -1.14126656 -1.74053138 -1.87370134 0.78969786 1.05603778
32
   0.323603 -0.47541676 0.12384806 1.25579272 0.19043304 -1.20785154
33
34
   -0.6751717 0.6565279 0.39018798 -2.14004126 0.85628284 -1.40760648
35
   -0.14249186 -0.27566182 1.38896268 -0.07590688 -0.87492664 0.9894528
   -0.54200174 1.58871762 -0.20907684 -2.20662624 -0.80834166 -2.40638118
36
    -1.54077644 1.3223777 1.72188758 -1.80711636 1.45554766 -0.60858672
   -2.07345628 0.92286782 1.85505754 -0.3422468 -1.07468158 2.05481248
38
   -0.94151162 -1.47419146 -1.27443652 1.6553026 -1.6739464 1.9882275
39
    1.52213264 -3.60491082 -1.94028632 1.92164252 -3.3385709 1.78847256
40
   -2.27321122 -2.47296616 -2.87247604 -2.73930608 -1.60736142 -2.80589106
41
42 -2.60613612 -3.07223098]
43 ==============
44 Sexo Fem_0 : [0 1]
46 Sexo Fem_1 : [1 0]
48 Sexo Masc_0 : [1 0]
49 ===========
50 Sexo Masc_1 : [0 1]
51 ==============
52 Indígenas_0 : [1 0]
53 =============
54 Indígenas_1 : [0 1]
55 ==============
56 Afrodescendentes_0 : [1 0]
57 ==========
58 Afrodescendentes_1 : [0 1]
```

```
59 ==============
60 Europeus_0 : [1 0]
61 ==============
62 Europeus_1 : [0 1]
63 =============
64 Pardos_0 : [0 1]
65 =============
66 Pardos_1 : [1 0]
67 =============
68 Asiáticos_0 : [1 0]
69 =============
70 Asiáticos_1 : [0 1]
71 ==============
72 Fundamental pai_0 : [1 0]
73 ==============
74 Fundamental pai_1 : [0 1]
75 ============
76 Ensino médio pai_0 : [1 0]
77 ==============
78 Ensino médio pai_1 : [0 1]
79 ==============
80 Tecnólogo pai_0 : [1 0]
81 ==============
82 Tecnólogo pai_1 : [0 1]
83 =============
84 Alguma faculdade pai_0 : [0 1]
85 ==============
86 Alguma faculdade pai_1 : [1 0]
87 =============
88 Bacharelado pai_0 : [1 0]
89 =============
90 Bacharelado pai_1 : [0 1]
91 =============
92 Mestrado pai_0 : [1 0]
93 =============
94 Mestrado pai_1 : [0 1]
95 ============
96 Curso preparatório_0 : [0 1]
97 =============
98 Curso preparatório_1 : [1 0]
```

```
1 # 13) Checando as variáveis categóricas
2 categorico_val
```

Retorno 🦣

```
1 ['Sexo Fem_0',
2 'Sexo Fem_1',
   'Sexo Masc_0',
3
4
    'Sexo Masc_1',
    'Indígenas_0',
    'Indígenas_1',
6
7
    'Afrodescendentes_0',
    'Afrodescendentes_1',
    'Europeus_0',
9
    'Europeus_1',
10
    'Pardos_0',
11
12
    'Pardos_1',
```

```
13
    'Asiáticos_0',
14
    'Asiáticos_1',
    'Fundamental pai_0',
15
    'Fundamental pai_1',
16
17
    'Ensino médio pai_0',
18
    'Ensino médio pai_1',
    'Tecnólogo pai_0',
19
20
    'Tecnólogo pai_1',
    'Alguma faculdade pai_0',
21
22
    'Alguma faculdade pai_1',
    'Bacharelado pai_0',
23
    'Bacharelado pai_1',
24
25 'Mestrado pai_0',
    'Mestrado pai_1',
27 'Curso preparatório_0',
28 'Curso preparatório_1']
```

```
2 continuo_val
```

1 # 14) Checando as variáveis continuas

Retorno 🦣

```
1 ['Nota em Matemática', 'Nota em Leitura', 'Nota em escrita']
```

```
# 15) Preparando os dados categóricos
dataset = pd.get_dummies(df, columns = categorico_val)

# 16) Criando objeto scaler
scaler = StandardScaler()

# 17) Padronizando dados continuos
col_to_scale = ['Nota em Matemática', 'Nota em Leitura', 'Nota em escrita']

# 18) Adequando a base de dados para machine learning
dataset[col_to_scale] = scaler.fit_transform(dataset[col_to_scale])
```

```
1 # 19) Visualizando Dataset padronizando
2 dataset.head(10)
```

Retorno 🦣

```
Nota em Matemática Nota em Leitura Nota em escrita Sexo Fem_0_0
                                              Sexo Fem_0_1
                                                       Sexo Fem_1_0
                                                                 Sexo Fem
2 0 -0.58 -0.03 0.59 1 0 0 1 0 1 1 0 0 1 1
                                                       0 0
                                                            1 1
                                                                   1
3 1 1.85 1.60 1.19 0 1 1 0 1 0 0
                                                            1 1
                                   1 0 1 1 0
                                                0
                                                 1 1
                                                       0
                                                         0
    -0.71 0.40 0.52 1 0 0
                                    0
                                      0
                                           1
                                              0
                                                0
5 3 0.14 -0.03 -0.41 0 1 1 0 1 0 0 1 0 1 1
                                                  0
                                              0
                                               1
                                                       1
                                                                   0
6 4 1.00 1.04 1.12 1 0 0 1 0 1 1
                                    0 0 1 1 0
                                                0
                                                 1
                                                       0
                                                         0 1 1 0
                                                                   1
7 5 0.01 -0.95 -1.01 0 1 1 0 1
                              0
                                 0
                                   1
                                      0
                                        1
                                           1
                                              0
                                                0 1
                                                     1
                                                       0
                                                         1
                                                            0 0 1
8 6 0.93 0.89 0.72 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
                                                                   0
9 7 -1.43 -0.67 -0.74 1 0 0 1 0
                              1
                                 1 0 0 1 1 0 1 0 0
                                                       1 0 1 1 0
         0.33 0.26 0 1 1 0
10 8 0.80
                            1
                               0
                                 0 1 0 1 1 0
                                                0 1 1
                                                       0
                                                         1 0 0 1
                                                                   0
                                    0
                                      0 1 1 0
                                                0 1
11 9 -0.71 -0.10 0.52
                   1 0
                        0
                          1
                            0
                               1
                                 1
```

```
1 # 20) Visualizando o Dataset padronizado e categorias preparadas
2 dataset.info()
```

Retorno 🦣

```
1 <class 'pandas.core.frame.DataFrame'>
 2
   RangeIndex: 1000 entries, 0 to 999
   Data columns (total 59 columns):
        Column
 4
                                   Non-Null Count Dtvpe
 5
 6
    0
        Nota em Matemática
                                   1000 non-null
                                                   float64
 7
         Nota em Leitura
                                   1000 non-null
                                                   float64
 8
    2
         Nota em escrita
                                   1000 non-null
                                                   float64
9
        Sexo Fem_0_0
    3
                                   1000 non-null
                                                   uint8
10
        Sexo Fem_0_1
                                   1000 non-null
                                                   uint8
11
    5
        Sexo Fem_1_0
                                   1000 non-null
                                                   uint8
12
        Sexo Fem_1_1
                                   1000 non-null
                                                   uint8
    6
         Sexo Masc_0_0
                                   1000 non-null
                                                   uint8
13
14
    8
        Sexo Masc_0_1
                                   1000 non-null
                                                   uint8
15
    9
        Sexo Masc_1_0
                                   1000 non-null
                                                   uint8
16
    10
        Sexo Masc_1_1
                                   1000 non-null
                                                   uint8
17
    11 Indígenas_0_0
                                   1000 non-null
                                                   uint8
18
        Indígenas_0_1
                                   1000 non-null
                                                   uint8
19
    13 Indígenas_1_0
                                   1000 non-null
                                                   uint8
20
    14 Indígenas_1_1
                                   1000 non-null
                                                   uint8
21
    15
        Afrodescendentes_0_0
                                   1000 non-null
                                                   uint8
22
    16 Afrodescendentes_0_1
                                   1000 non-null
                                                   uint8
23
    17 Afrodescendentes_1_0
                                   1000 non-null
                                                   uint8
24
    18 Afrodescendentes_1_1
                                   1000 non-null
                                                   uint8
25
    19
        Europeus_0_0
                                   1000 non-null
                                                   uint8
26
    20
        Europeus_0_1
                                   1000 non-null
                                                   uint8
27
    21
        Europeus_1_0
                                   1000 non-null
                                                   uint8
                                   1000 non-null
28
    22
        Europeus_1_1
                                                   uint8
29
        Pardos_0_0
                                   1000 non-null
                                                   uint8
30
    24
        Pardos_0_1
                                   1000 non-null
                                                   uint8
31
    25
        Pardos_1_0
                                   1000 non-null
                                                   uint8
        Pardos_1_1
                                   1000 non-null
                                                   uint8
32
33
    27 Asiáticos_0_0
                                   1000 non-null
                                                   uint8
34
    28
        Asiáticos_0_1
                                   1000 non-null
                                                   uint8
35
    29 Asiáticos_1_0
                                   1000 non-null
                                                   uint8
36
    30 Asiáticos_1_1
                                   1000 non-null
                                                   uint8
37
        Fundamental pai_0_0
                                   1000 non-null
                                                   uint8
    32 Fundamental pai_0_1
                                   1000 non-null
                                                   uint8
38
        Fundamental pai_1_0
                                                   uint8
39
    33
                                   1000 non-null
40
    34
        Fundamental pai_1_1
                                   1000 non-null
                                                   uint8
        Ensino médio pai_0_0
41
    35
                                   1000 non-null
                                                   uint8
42
        Ensino médio pai_0_1
                                   1000 non-null
                                                   uint8
43
    37
        Ensino médio pai_1_0
                                   1000 non-null
                                                   uint8
        Ensino médio pai_1_1
                                   1000 non-null
44
    38
                                                   uint8
        Tecnólogo pai_0_0
45
                                   1000 non-null
                                                   uint8
        Tecnólogo pai_0_1
46
    40
                                   1000 non-null
                                                   uint8
47
        Tecnólogo pai_1_0
                                   1000 non-null
                                                   uint8
    41
48
        Tecnólogo pai_1_1
                                   1000 non-null
                                                   uint8
49
        Alguma faculdade pai_0_0 1000 non-null
                                                   uint8
50
    44
         Alguma faculdade pai_0_1
                                   1000 non-null
                                                   uint8
51
    45
         Alguma faculdade pai_1_0
                                   1000 non-null
                                                   uint8
52
    46
        Alguma faculdade pai_1_1 1000 non-null
                                                   uint8
53
    47
         Bacharelado pai_0_0
                                   1000 non-null
                                                   uint8
        Bacharelado pai_0_1
54
    48
                                   1000 non-null
                                                   uint8
        Bacharelado pai_1_0
                                   1000 non-null
55
    49
                                                   uint8
56
    50
         Bacharelado pai_1_1
                                   1000 non-null
                                                   uint8
57
    51
        Mestrado pai_0_0
                                   1000 non-null
                                                   uint8
    52 Mestrado pai_0_1
                                   1000 non-null
58
                                                   uint8
```

```
1 # 21) Exportando no Google Drive.
2 dataset.to_csv('dbGITAGE.csv', index=False)
1 # 22) Identificando Recursos (X): Todas as colunas, exceto "Nota em Matemática"
2 X = dataset.drop('Nota em Matemática', axis=1)
3
4 # 23) Identificando Variável Alvo (Y): A coluna "Nota em Matemática"
5 y = dataset['Nota em Matemática']
1 # 24) Separando a base em Treinamento e teste
2 X_train, X_test, y_train, y_test = train_test_split(X,
3
4
                                                       test_size=0.2,
5
                                                       random_state=1)
1 # 25) Criando um objeto do pacote Lazy
2 clf = LazyRegressor(verbose=0,
3
                       ignore_warnings=True,
                        custom_metric=None)
1 # 26) Ajustando os dados de treinamento e teste
2 models, predictions = clf.fit(X_train, X_test, y_train, y_test)
3 models
```

Retorno 🖣

1 100%| 42/42 [00:11<00:00, 3.54it/s]

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
OrthogonalMatchingPurs uit	0.77	0.84	0.36	0.02
OrthogonalMatchingPurs uitCV	0.77	0.84	0.36	0.03
LassoCV	0.77	0.84	0.36	0.14
ElasticNetCV	0.77	0.84	0.36	0.26
LassoLarsIC	0.77	0.84	0.36	0.05
LassoLarsCV	0.77	0.84	0.36	0.09
HuberRegressor	0.76	0.83	0.37	0.04

BayesianRidge	0.76	0.83	0.37	0.02
KernelRidge	0.76	0.83	0.37	0.04
RidgeCV	0.76	0.83	0.37	0.12
Ridge	0.76	0.83	0.37	0.08
TransformedTargetRegr essor	0.76	0.83	0.37	0.10
LinearRegression	0.76	0.83	0.37	0.05
LinearSVR	0.76	0.83	0.37	0.15
RANSACRegressor	0.76	0.83	0.37	1.55
SGDRegressor	0.75	0.82	0.38	0.11
GradientBoostingRegres sor	0.74	0.81	0.39	0.25
SVR	0.73	0.81	0.39	0.32
LarsCV	0.73	0.81	0.39	0.14
NuSVR	0.73	0.81	0.40	0.12
RandomForestRegresso r	0.71	0.80	0.41	3.43
AdaBoostRegressor	0.71	0.79	0.41	0.18
MLPRegressor	0.70	0.79	0.41	0.92
ExtraTreesRegressor	0.69	0.78	0.42	0.94
LGBMRegressor	0.69	0.78	0.42	0.18
BaggingRegressor	0.67	0.77	0.43	0.08
HistGradientBoostingRe gressor	0.67	0.77	0.43	0.81
TweedieRegressor	0.66	0.76	0.44	0.29
XGBRegressor	0.66	0.76	0.44	0.82
ExtraTreeRegressor	0.45	0.61	0.56	0.05
DecisionTreeRegressor	0.37	0.56	0.60	0.03
KNeighborsRegressor	0.34	0.53	0.61	0.02
ElasticNet	0.12	0.37	0.71	0.02
PassiveAggressiveRegr essor	0.09	0.36	0.72	0.02
Lasso	-0.41	-0.00	0.90	0.02
DummyRegressor	-0.41	-0.00	0.90	0.02

LassoLars	-0.41	-0.00	0.90	0.04
GaussianProcessRegres sor	-88.70	-62.56	7.16	0.14
Lars	-168.91	-119.39	9.85	0.05

```
1 # 27) Criando o modelo GradientBoostingRegressor
2 regressor = GradientBoostingRegressor()
4 # 28) Treinando o modelo
5 regressor.fit(X_train, y_train)
7 # 29) Fazendo previsões
8 y_pred = regressor.predict(X_test)
 1 # 30) Adaptando função Regressão para o SGDRegressor
 3 from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
 5 def print_regression_score(model, X_train, y_train, X_test, y_test, train=True):
 6
       if train:
           y_pred_train = model.predict(X_train)
 7
           mse_train = mean_squared_error(y_train, y_pred_train)
 8
           r2_train = r2_score(y_train, y_pred_train)
 9
10
           mae_train = mean_absolute_error(y_train, y_pred_train)
           rmse_train = mean_squared_error(y_train, y_pred_train, squared=False) # Calcula o RMSE
11
12
           # Calcula o MAPE
13
           mape_train = np.mean(np.abs((y_train - y_pred_train) / y_train)) * 100
14
15
           print("Resultado do treinamento:\n========"")
           print(f"Mean Absolute Error (MAE) - Treinamento: {mae_train:.2f}")
16
17
           print(f"Mean Squared Error (MSE) - Treinamento: {mse_train:.2f}")
18
           print(f"Root Mean Squared Error (RMSE) - Treinamento: {rmse_train:.2f}")
19
           print(f"Mean Absolute Percentage Error (MAPE) - Treinamento: {mape_train:.2f}%")
20
           print(f"R-squared (R2) - Treinamento: {r2_train:.2f}")
21
22
       else:
23
           y_pred_test = model.predict(X_test)
           mse_test = mean_squared_error(y_test, y_pred_test)
24
25
           r2_test = r2_score(y_test, y_pred_test)
           mae_test = mean_absolute_error(y_test, y_pred_test)
26
           rmse_test = mean_squared_error(y_test, y_pred_test, squared=False) # Calcula o RMSE
27
28
29
           # Calcula o MAPE
           mape_test = np.mean(np.abs((y_test - y_pred_test) / y_test)) * 100
30
31
32
           print("Resultado do teste:\n========"")
33
           print(f"Mean Absolute Error (MAE) - Teste: {mae_test:.2f}")
           print(f"Mean Squared Error (MSE) - Teste: {mse_test:.2f}")
34
           print(f"Root Mean Squared Error (RMSE) - Teste: {rmse_test:.2f}")
35
36
           print(f"Mean Absolute Percentage Error (MAPE) - Teste: {mape_test:.2f}%")
```

```
# 31) Avaliando o modelo SGDRegressor
print_regression_score(regressor, X_train, y_train, X_test, y_test, train=True)
print_regression_score(regressor, X_train, y_train, X_test, y_test, train=False)
```

print(f"R-squared (R2) - Teste: {r2_test:.2f}")

37

Retorno -

```
1 Resultado do treinamento:
 3 Mean Absolute Error (MAE) - Treinamento: 0.26
 4 Mean Squared Error (MSE) - Treinamento: 0.11
 5 Root Mean Squared Error (RMSE) - Treinamento: 0.33
 6 Mean Absolute Percentage Error (MAPE) - Treinamento: 125.17%
 7 R-squared (R2) - Treinamento: 0.89
 8 Resultado do teste:
 9 ==============
10 Mean Absolute Error (MAE) - Teste: 0.32
11 Mean Squared Error (MSE) - Teste: 0.15
12 Root Mean Squared Error (RMSE) - Teste: 0.39
13 Mean Absolute Percentage Error (MAPE) - Teste: 177.45%
14 R-squared (R2) - Teste: 0.81
1 # 32) Calculando o r-quadrado ajustado
2 def adjusted_r2(y_test, y_pred,X_train):
3
      from sklearn.metrics import r2_score
     adj_r2 = (1 - ((1 - r2\_score(y\_test, y\_pred)) * (len(y\_test) - 1)) / (len(y\_test) - X\_train.shape[1] - 1))
5
      return adj_r2
1 # 33) Imprimindo r-quadrado ajustado
2 print(round(adjusted_r2(y_test,y_pred,X_train),2))
1 # 34) Salvando o modelo
2 from joblib import dump
4 # Salvando o modelo treinado
5 dump(regressor, 'modelo_score_aluno_reg')
Retorno 🖣
1 ['modelo_score_aluno_reg']
```