סיכומי הרצאות - אלגברה לינארית 1

מיכאל פרבר ברודסקי

תוכן עניינים

2	ורות, חוגים ושדות	ו מונואידים, חנ
2		. הגדרות
2	בונות של פעולות	ח.1
2		1.2
2		ın 1.3
2		
3		
-		, v =
3		II מרוכבים
3	זיסיות	2 הגדרות בכ
3	רית	3 הצגה פולא
4		מטריצות III
4		. הגדרות
4	ולות בסיסיות	4.1 פע
4		1.1
5	כפל מטריצה במטריצה 4.:	1.2
5	טענות לגבי כפל מטריצות:	1.3
5	ָולות אלמנטריות על מטריצה	4.2 פע
6	נות	שו 4.3
6		5 דירוג ודירו
6	דרות	5.1 הג
7	יאת פתרונותיאת פתרונות	5.2 מצ
	מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח 5.	2.1
7	קנונית)	
7	מציאת הפתרונות עצמם לפי צורה מדורגת קנונית	2.2
7		6 תת מרחב
7		7 צירופים ליו
7	נ"ל	
8	בוצת הצירופים הלינאריים	
8	ייסייסייסייסייסייסייסייסייסייסייסייסייס	•
9	יכות	
9	יבוונ	'
9	- '	
7	יכות מטריצה	0.۷ االـ

חלק I

מונואידים, חבורות, חוגים ושדות

1 הגדרות

1.1 תכונות של פעולות

A imes A הוא A imes A הוא A imes A תהא A imes A

- $\forall a, b, c \in A. (a*b)*c = a*(b*c)$ אסוצייטיבית: * .1
 - $. \forall a, b.a * b = b * a$ אילופית: * .2
 - $.*:A\times A\to A$:* סגורה לפעולה A סגורה לפעולה

1.2 מונואיד

G כך ש: G כאשר G כאשר אוג G כאשר הוא זוג G כאשר G כאשר פונאיד הוא כלשהי ו

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- . האיבר הזה . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, לפעולה, לפעולה, לפעולה. פ e_G האיבר הזה יחיד ומסומן.

1.3 חבורה

מקרה פרטי של מונואיד שמקיימת גם:

4. קיים איבר הופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ ראיבר יחידה. איבר איבר הופכי של g מסומן -g^-1

1.4 חוג

שלשה $\langle R, +, * \rangle$ נקראת חוג אם:

- $. orall a, b \in R.a + b = b + a$ חבורה חילופית, כלומר $\langle R, +
 angle$.1
 - .* סגורה לפעולה R ו־R סגורה לפעולה * .2
 - 3. חוק הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$

 $(b+c) * a = b * a + c * a$

a*b=b*a חוג חילופית b*a* אם a*b=b*a* חוג חילופית (כלומר

חוג עם יחידה $^{ au}$ אם $\langle R, * \rangle$ מונואיד.

סיים. 0_R ניטרלי לכפל אם 0_R ניטרלי לכפל אם קיים.

a*b=0מחלק $b\neq 0$ כך של $b\neq 0$ נקרא "מחלק 0" אם יש $b\neq 0$ כך של a*b=0 בממשיים אין מחלק a*b=0 מחלק a*b=0 מחלק a*b=0

חוג חילופי עם יחידה וללא מחלקי 0 נקרא **תחום שלמות**. הוא מקיים את חוק הצמצום (לכל a=c אז a*b=c*b, אם $a,b,c\in R$

1.5 שדה

גם: מקרה פרטי של חוג שמקיים גם: $\langle F, +, * \rangle$

. חבורה חילופית. $\langle F \setminus \{0_F\}, * \rangle$

כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות סופיים הם כן שדות. כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות בהגדרת שדה מוסיפים את הדרישה $0_F \neq 1_F$

חלק II

מרוכבים

2 הגדרות בסיסיות

נסמן הוא המספר המספר היא: $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא . $i=\sqrt{-1}$ נסמן החלק הממשי (שמסומן ($Re\left(c\right)$) והמספר השני הוא החלק הדמיוני (שמסומן , $z\in\mathbb{C}$) עובדות: עבור

- . בירים. z של z מראשית הצירים. $||z||=\sqrt{Re\left(z\right)^{2}+Im\left(z\right)^{2}}$. מראשית הצירים. 1
 - $z=||z||\,e^{i\cdot\arg(z)}$ לכן, $e^{i heta}=\cos\left(heta
 ight)+i\sin\left(heta
 ight)$.2
 - 3. **חיבור:** מחברים את החלק הממשי והדמיוני בנפרד.
 - $.i^2 = -1$ משתמשים בזה ש־ $.(a+ib)\cdot(c+id) = (ac-bd)+i\,(bc+da)$.4
 - 5. כל שורש של פולינום מרוכב הוא מרוכב.
 - .6 נגדיר \overline{z} להיות $\overline{z}=a-ib$ כלומר להפוך את החלק הדמיוני.

$$\overline{\overline{z}} = z$$
 (x)

$$z\cdot \overline{z} = \left|\left|z\right|\right|^2$$
 (1)

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$
 (a)

$$\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$$
 (7)

$$Re\left(z
ight)=rac{z+\overline{z}}{2},Im\left(z
ight)=rac{z-\overline{z}}{2i},$$
 (ন)

- .(כלומר כל שורש של כל פולינום מרוכב הוא מרוכב). שדה סגור אלגברית (כלומר כל שורש של כל פולינום מרוכב הוא מרוכב).
 - .8 איבר הופכי מקבלים (אם מכפילים בהופכי מקבלים 1). $w = \frac{a-ib}{a^2+b^2}$

3 הצגה פולארית

נגדיר מרוכב בתור אוג $\langle r, \theta \rangle$ כאשר r המרחק מראשית הצירים ו־ θ הארגומנט.

$$z = r\cos\theta + ir\sin\theta = r \cdot e^{i\theta}$$

עובדות:

1. הארגומנט של z: נסמן $\arg(z)$ להיות הזווית שהמספר יוצר עם ציר הממשיים (לרוב נסמן .1 $\arg(z) = \arctan\left(\frac{b}{a}\right)$ בעזרת לחשב אותו בעזרת $\gcd(z) = \arctan\left(\frac{b}{a}\right)$

$$\overline{z}=r\cdot e^{-i\theta}, z^{-1}=rac{1}{r}e^{-i\theta}$$
 .2

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
.3

4. להכפיל מספרים מרוכבים על הגרף נראה כמו להכפיל את האורכים זה בזה ולחבר את הזוויות.

 $e^{i\theta}=e^{i(\theta+2\pi k)}$ - ש-עובדה בעובדה נשתמש ביו . $z^n=re^{i\theta}$ נשתמש ביובדה ש $z^n=a+ib$ נמצא הצגה פולארית עבור . $k\in\mathbb{Z}$ עבור

$$z = \sqrt[n]{r}e^{i\left(\frac{\theta}{n} + 2\pi\frac{k}{n}\right)}$$

עבור שונים. $k \in \{0, \dots, n-1\}$ ולכל ולכל . $k \in \mathbb{Z}$

חלק III

מטריצות

4 הגדרות

וקטור הוא nאיה של איברים ב־ \mathbb{F} . מטריצה היא mיה של וקטורים. מטריצה בדn איברים מטריצה של מטריצה עמודות (קודם y קודו ו־nשורות שטריצה עם מטריצה עם היא עמודות (קודם אינה מטריצה של היא שורות ו־n

נגדיר מערכת משוואות כמטריצה באופן הבא:

$$\begin{cases} \alpha_{1,1}x_1 + \dots + \alpha_{1,n}x_n &= b_1 \\ \vdots &= \vdots \\ \alpha_{m,1}x_1 + \dots + \alpha_{m,n}x_n &= b_m \end{cases} \equiv \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ \alpha_{m,1} & \dots & \alpha_{m,n} & b_m \end{pmatrix}$$

4.1 פעולות בסיסיות

חיבור וקטורים:

$$\begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_0 + \beta_0 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

4.1.1 כפל מטריצה בוקטור

כמו להציב את הוקטור בעמודות המטריצה.

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \beta_1 a_{1,1} + \dots + \beta_n a_{1,n} \\ \dots + \dots + \beta_n a_{m,n} \end{pmatrix}$$

 $A\overline{x}=ar{b}$ בנוסף, הפתרונות של ($A\mid b$) בנוסף, הפתרונות של

את פתרונות המטריצה נסמן ב־Sols. מטריצות נקראות שקולות אם הפתרונות שלהן זהים.

משפטים לגבי כפל מטריצה בוקטור:

$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y} \bullet$$

 $A(\alpha \cdot \overline{x}) = \alpha \cdot (A \cdot \overline{x}) \bullet$

 $0\cdot b=0$,סיריצת ה־0, עבור 0 מטריצת היחידה, $ar{b}=ar{b}$ אבור היחידה מרטיצת -0 I_n

4.1.2 כפל מטריצה במטריצה

הגדרה 1.4 יהא R חוג ויהיו (R חוג ויהיו R מטריצות. (גדיר כפל מטריצות $A\in M_{n\times m}(R), B\in M_{m\times p}(R)$ בצורה הבאה:

$$(A \cdot B)_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

$$A\cdot B=\left(egin{array}{cccc}A\cdot C_1(B)‐&A\cdot C_n(B)\\dash‐‐\end{array}
ight)$$
 2.4 משפט

$$A\cdot B=\left(egin{array}{cccc} -&R_1(A)\cdot B&-\ &dots\ -&R_n(A)\cdot B&- \end{array}
ight)$$
 3.4 משפט

A כלומר כפל מטריצות הוא כפל וקטורים של העמודות של B ב־A, או כפל של השורות של ב־B.

2.1.3 טענות לגבי כפל מטריצות:

- $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes t}(\mathbb{F}), C\in \mathcal{A}$ עבור $A\cdot B\cdot C=A\cdot (B\cdot C)$. $M_{t imes n}(\mathbb{F})$
 - 2. חוק הפילוג:

$$A\in M_{m imes k}(\mathbb{F}), B_1, B_2\in M_{k imes n}(\mathbb{F})$$
 עבור $A\cdot (B_1+B_2)=A\cdot B_1+A\cdot B_2$ (א)

$$A_1,A_2\in M_{m imes k}(\mathbb{F}),B\in M_{k imes n}(\mathbb{F})$$
 עבור $(A_1+A_2)\cdot B=A_1\cdot B+A_2\cdot B$ (ב)

$$A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(\mathbb{F}), \alpha \in \mathbb{F}$$
 עבור $A \cdot (\alpha \cdot B) = \alpha \cdot (A \cdot B)$.3

$$A\cdot I_n=A$$
 נוסף לכך . $A\cdot 0=0\cdot A=0$, $A\in M_{m imes n}(\mathbb{F})$ לכל מטריצה . $I_m\cdot A=A$

$$.igg(egin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}igg)\cdotigg(egin{array}{ccc} 1 & 1 \\ -1 & -1 \end{array}igg)=igg(egin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array}igg)$$
 הערה: יש מחלקי אפס, לדוגמה

4.2 פעולות אלמנטריות על מטריצה

הפעולות האלה הן:

- $R_i\leftrightarrow R_j$. להחליף סדר בין משוואות.
- $R_i
 ightarrow lpha \cdot R_i$.2. להכפיל משוואה בקבוע.
 - $R_i \rightarrow R_i + R_i$.3 .3

כולן משמרות את הפתרונות של המטריצה.

מטריצות ששקולות באמצעות סדרת פעולות אלמנטריות נקראות <u>שקולות שורה.</u>

4.3 שונות

מטריצה ריבועית: מטריצה שכמות העמודות בה שווה לכמות השורות.

 $A\in M_n\left(\mathbb{F}
ight)$ משפט 4.4 הבאים שקולים עבור מטריצה (מטריצה ריבועית) משפט

- I_n שקולת שורות ל- I_n .1
- . לכל $\overline{b}\in\mathbb{F}^n$ יש פתרון יחיד. $\overline{b}\in\mathbb{F}^n$ לכל.
 - . לכל $b \in \mathbb{F}^n$ קיים פתרון.
 - .4 למערכת $\overline{x}=\overline{0}$ יש פתרון יחיד.
- . יש פתרון יחיד. $A\overline{x}=\overline{b}$ יש פתרון יחיד.

מטריצת היחידה: מסומנת j ואם $i\neq j$ ואם $a_{i,j}=1$ אם מטריצה ריבועית מטריצה . I_n ואם מטריצה מסומנת $a_{i,j}=0$.

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:e_i$ וקטור

$$(e_i)_i = \begin{cases} 0 & x \neq i \\ 1 & x = i \end{cases}$$

iה בעצם 0 בכל מקום חוץ מהמקום ה־i

מטריצת הסיבוב:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

אם מכפילים וקטור במטריצת הסיבוב, זה מסובב את הוקטור θ מעלות.

5 דירוג ודירוג קנוני

5.1 הגדרות

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b (מהצורה למטה.
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

משתנה חופשי הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 1 המקדם של כל משתנה פותח הוא
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית יחידה ששקולה לה.

5.2 מציאת פתרונות

(לא בהכרח קנונית) מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)

יעבור מדורגת ($A\mid b$) מטריצה

- . אין פתרון ($b \neq 0$ כאשר ($b \neq 0$ אין פתרון) אין פתרון פתרון.
 - . אחרת, יש $\left\|\mathbb{F}\right|^k$ פתרונות כאשר א מספר מספר פתרונות פחופשיים.

5.2.2 מציאת הפתרונות עצמם לפי צורה מדורגת קנונית

אז: $(A \mid b)$ מטריצה מדורגת קנונית מסדר $m \times n$ ששקולה ל־ $(A' \mid b')$

- . $\operatorname{Sols}\left((A'\mid b')\right)=\emptyset$ אם ב־ $(A'\mid b')$ יש שורת סתירה אז
- 2. אחרת: נעשה החלפה על המשתנים החופשיים (אלה שאינם מקדם פותח של אף שורה). כל משתנה שאינו חופשי יוגדר לפי משוואה מסוימת. דוגמה:

$$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 & 3 \end{array}\right)$$

המקדמים החופשיים הם 1,4,6. הפתרון הוא:

$$\left\{ \begin{pmatrix} x_1 \\ 1 \\ 2 - 4x_4 \\ x_4 \\ 3 - 3x_6 \\ x_6 \end{pmatrix} \mid x_1, x_4, x_6 \in \mathbb{R} \right\}$$

6 תת מרחב

טענה (בוחן תת מרחב): $U\subseteq F^n$ מרחב אמ"מ:

- .1 סגורה לחיבור. U
- .2 סגירה לכפל בסקלר. U
- $.U
 eq \emptyset$ ניתן החליף את התנאי ב $.\overline{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

צירופים לינאריים

7.1 בת"ל

נקראת
$$\dfrac{(lpha_1)}{(a_k)}\in\mathbb{F}^k$$
 נקראת מקדמים ($\overline{v_1},\ldots,\overline{v_k}$) $\in(\mathbb{F}^n)^k$ נקראת $lpha_k$ הגדרה 1.7 יהיו $lpha_k$

(v_1,\ldots,v_k) נגדיר את מרחב התלויות של

$$LD\left(\left(v_{1},\ldots,v_{k}\right)\right) = \left\{ \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in \mathbb{F}^{n} \mid \alpha_{1}v_{1} + \cdots + \alpha_{k}v_{k} = 0 \right\}$$

 $LD((v_1,...,v_k)) = Sols((v_1,...,v_k \mid 0))$ ר

 $LD(v_1,\ldots,v_k)=\{0\}\iff v_1,\ldots,v_k$ בת"ל מסקנה 2.7

 $ar b\in\mathbb F^m$ סדרת mיות (בת"ל) אם לכל בלתי תלויה לינארית תקרא בלתי ($\overline{v_1},\dots,\overline{v_k})\in(\mathbb F^m)^k$ סדרת חיות היותר פתרון אחד למשוואה בין $\sum_{i=1}^k x_i\overline{v_i}=ar b$

- . תהי $S\subseteq \mathbb{F}^n$ אם $S\subseteq \mathbb{F}^n$ אם .1
- .2 עד ש־ $S\subseteq \mathbb{F}^n$ ברופורציונים S=(x,y) אז א מלויה לינארית און מרים פרופורציונים.
- ינארי לינארי אינו איבר אינו בירוף לינארי בלתי תלויה לינארית $(v_1,\ldots,v_m)\subseteq\mathbb{F}^n$ כל הדרת מדרת 3.

קבוצת הצירופים הלינאריים

 $(v_1,\ldots,v_k)\in (\mathbb{F}^n)^k$,איות, סדרת עבור סדרת **4.7**

$$\operatorname{sp}(v_1, \dots, v_k) = \left\{ \sum_{i=1}^k \alpha_i v_i \mid \alpha_1, \dots, \alpha_k \in \mathbb{F} \right\}$$

יא: $K\subseteq \mathbb{F}^n$ היא: המרחב הנפרש על ידי v_1,\ldots,v_k היא:

$$\operatorname{sp}(k) = \left\{ b \in \mathbb{F}^n \mid \exists k \in \mathbb{N}. \exists \alpha_1, \dots, \alpha_k \in \mathbb{F}. \exists t_1, \dots, t_k \in K. b = \sum_{i=1}^k \alpha_i t_i \right\}$$

 $\operatorname{span}(A) = b$ אם B אם פורשת A

7.3 בסיס

הגדרה 5.7 יהי $\mathbb F$ שדה, B תת קבוצה של $\mathbb F^n$. אז B נקראת בסיס של $\mathbb F^n$ אם שניים מהתנאים הבאים מתקיימים:

- .1. B בת"ל.
- \mathbb{F}^n את פורשת B .2
 - .m = n .3

כל שניים מוכיחים גם את השלישי.

Bבסיס: Bבסיס בסיס התנאים הבאים שקולים

- B בת"ל וכל קבוצה המכילה ממש את B הינה תלויה לינארית. (B בת"ל מקסימלית).
 - B .2 פורשת וכל קבוצה שמוכלת ממש ב־B אינה פורשת. (פורשת מינימלית).
 - Bיש הצגה יחידה כצירוף של וקטורים מ־ $v\in\mathbb{F}^n$ לכל.

8 שחלוף והפיכות

:Transpose מחלוף 8.1

$$(A^T)_{i,j} = (A)_{j,i}$$

$$.\left(egin{array}{ccc} 1 & 2 \\ 4 & 8 \\ 16 & 32 \end{array}
ight)^T = \left(egin{array}{ccc} 1 & 4 & 16 \\ 2 & 8 & 32 \end{array}
ight)$$
 : באופן אינטואטיבי, הפעולה מחליפה בין השורות לעמודות.

משפט 2.8 חוקי Transpose:

- . (אם החיבור מוגדר, כלומר A,B מאותו הסדר). $(A+B)^T=A^T+B^T$
 - $lpha \in \mathbb{F}$ עבור $(lpha A)^T = lpha \left(A^T
 ight)$ נפל בסקלר: •
 - $A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(F)$ עבור $(A \cdot B)^T = B^T \cdot A^T$

8.2 הפיכות מטריצה

:תיקרא $A\in M_{m imes n}(\mathbb{F})$ מטריצה 3.8 הגדרה

- $B \cdot A = I_n$ כך ש $B \in M_{n imes m}(\mathbb{F})$ הפיכה משמאל: אם קיימת מטריצה 1.
 - $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ כימת מטריצה פיימת מימין: אם קיימת מטריצה 2
- $B\cdot A=I_n$ גום $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ גם קיימת מטריצה .(A^{-1}) הפיכה: אם היא יחידה ומסומנת A^{-1} , ומקיימת B בפרט המטריצה B היא יחידה ומסומנת היא יחידה ומסומנת הישר

. משמאל או מימין מימין אינה אינה סאינה אינה מימין או המטריצה המטריצה המיכה, המטריצה אינה הפיכה, מימין או משמאל

:טענות

- . אם במטריצה $A \in M_{m \times n}(\mathbb{F})$ יש שורת אפסים אז $A \in M_{m \times n}(\mathbb{F})$. 1
 - A^T הפיכה A הפיכה.
 - $(A^T)^{-1} = (A^{-1})^T$.3
- $A\cdot B$. $A\cdot B$ הפיכה $A\cdot B$ הפיכות, אז $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes n}(\mathbb{F})$.4

$A\in M_{m imes n}(\mathbb{F})$ משפט 4.8 משפט

- ת העמודות סדרת לכל bלכל (כלומר איש א $A\cdot \overline{x}=b$ למערכת אם ורק אם מימין אם הפיכה A .1 של $(m\leq n^-)$ פורשת, ו $m\leq n^-$
- הפיכה אם ורק אם למערכת $A \cdot \overline{x} = b$ יש פתרון יחיד לכל b (כלומר סדרת העמודות של $A \cdot \overline{x} = b$). של A בסיס, ולכן a = b בפרט מטריצה הפיכה היא ריבועית.