Biopython Workshop

- 1. Work with DNA sequences:
 - Sequence: AGTCCCAAGAgTGATG
 - Reverse complement the sequence
 - Transcribe and translate the sequence
 - Define your own stop codon
- 2. Reading FASTA-files:
 - Read file "e_coli_plasmid_p12579.txt" as fasta file
 - Use the SeqIO for parsing the contents of the file
 - Which information are accessible?
- 3. Plot the length of the gene sequences from a FASTA-file using pylab
- 4. Plot the GC content of the gene sequences from a FASTA-file
- 5. BLAST over the internet
 - BLAST a nucleotide sequence using Bio.Blast
 - Save BLAST result in a xml-file
 - Access the results using NCBIXML
 - Print alignments
 - Which different species were found?
 - BLAST a short and a long DNA sequence, compare the time needed for BLAST
- 6. Optional: Take a known sequence and create two primers (use a non conserved sequence!). BLAST the primers separated and analyse the result:
 - i. Identify the same records
 - ii. How many products would result during the PCR? (consider DNA strand!)
 - iii. How many different species would be detected during the PCR? Would there be some false positive results?