Another polynomial-time estimation algorithm

Miaoyan Wang, July 8, 2021

Assumption 1 (\sqrt{d} -approximatable tensor). Let Θ be an order-3 tensor. We use $f:[d] \to \mathbb{R}$ to denote the distance function, in the sense of matrix spectral norm $\|\mathcal{M}(\cdot)\|_{\text{sp}}$, between Θ and its rank-r projection,

$$f(r) = \inf\{\|\mathcal{M}(\Theta - \mathcal{A})\|_{\text{sp}} \colon \text{Rank}(\mathcal{A}) \le (r, r, r)\}.$$

The tensor Θ is called \sqrt{d} -approximatable, if $f(\sqrt{d}) \leq \sqrt{d}$. Geometrically, the intersection point between two curves f(r) and g(r) = r is smaller than \sqrt{d} .

Equivalently, Θ admits the decomposition

$$\Theta = \mathcal{A} + \mathcal{A}^{\perp}, \quad \text{s.t.} \quad \text{Rank}(\mathcal{A}) \le (\sqrt{d}, \sqrt{d}, \sqrt{d}), \quad \text{and} \quad \|\text{Unfold}(\mathcal{A}^{\perp})\|_{\text{sp}} \le \sqrt{d}.$$
 (1)

Proposition 1 (Smooth matrix). Every Lipschitz smooth matrix is \sqrt{d} -approximatable.

Proof of Proposition 1. Let Θ be a Lipschitz smooth matrix. Set $\mathcal{A} = \operatorname{Block}(\Theta, \sqrt{d})$ and $\mathcal{A}^{\perp} = \Theta - \operatorname{Block}(\Theta, \sqrt{d})$. Then, by approximation theorem,

$$\|\operatorname{Unfold}(\mathcal{A}^{\perp})\|_{\operatorname{sp}} \leq \|\mathcal{A}^{\perp}\|_F \leq \sqrt{\frac{d^2}{d}} = \sqrt{d}.$$

Since \mathcal{A} is of rank at most \sqrt{d} , the decomposition satisfies the condition (1).

Conjecture 1 (Higher-order spectral algorithm). Suppose Θ is an order-3, \sqrt{d} -approximatable tensor. Then, the rank- \sqrt{d} higher-order spectral algorithm [1] yields the estimate $\hat{\Theta}$ with error bound

$$\mathcal{R}(\hat{\Theta}, \Theta) \lesssim d^{-1}$$
.

Intuition: We decompose the error into estimation error and approximation bias

$$\|\hat{\Theta} - \Theta\|_F^2 \le \|\hat{\Theta} - \mathcal{A}\|_F^2 + \|\mathcal{A}^{\perp}\|_F^2$$

$$\lesssim \underbrace{(d^{3/2}r + dr^2 + r^3)}_{\text{by Proposition 1 in [1]}} + \underbrace{df^2(r)}_{\text{Sdaumption 1}}$$

$$\lesssim d^2 \text{ if } r \approx \sqrt{d}. \tag{2}$$

More careful analysis is needed though, e.g. additive Gaussian vs. Bernoulli models, non-uniqueness of \mathcal{A} and its singular space, etc. Also, the rank choice $\approx \sqrt{d}$ is meaningful only in asymptotical sense. In practice, we should choose rank $C\sqrt{d}$ where the constant C may depend on actual Θ , noise, etc.

SBM (HOS+iteration) sort-and-smoothing square spectral higher-order spectral (HOC)
$$d^{-6/5}$$
 $d^{-6/5}$ (for restricted model) $d^{-2/3}$ d^{-1} (for restricted model)

Table 1: Convergence rate for order-3 tensor.

Remark 2. Based on the proof of [1, Proposition 1], the \sqrt{d} -approximatable assumption (1) can be replaced to the following two assumptions:

- 1. \mathcal{A} is a block tensor;
- 2. \mathcal{A}^{\perp} has controlled spectral complexity in that

$$\|\mathcal{A}^{\perp}\|_{\mathrm{sp}} \le \sqrt{d}$$
, and $\|\mathrm{Unfold}(\mathcal{A}^{\perp})\|_{\mathrm{sp}} \le d^{3/4}$. (3)

Correspondingly, the second term in (2) needs replaced by d^3/r^2 . We did not present this alternative form because it has less intuitive interpretation. Note that (3) implies (1) because $\|\mathcal{A}^{\perp}\|_{sp} \leq \|\text{Unfold}(\mathcal{A}^{\perp})\|_{sp}$ [2].

Unlike matrices, not every order-3 smooth tensor is \sqrt{d} -approximatable. How large is the order-3 tensor family that satisfy (1) and (3)? How to generate to order-m tensor?

References

- $[1] \ \ Rungang \ Han, \ Yuetian \ Luo, \ Miaoyan \ Wang, \ and \ Anru \ R \ Zhang, \ \textit{Exact clustering in tensor block model: Statistical optimality and computational limit, \ arXiv \ preprint \ arXiv:2012.09996 \ (2020).$
- [2] Miaoyan Wang, Khanh Dao Duc, Jonathan Fischer, and Yun S Song, Operator norm inequalities between tensor unfoldings on the partition lattice, Linear Algebra and Its Applications **520** (2017), 44–66.