Deep Generative Models

Lecture 11

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2025, Autumn

DDPM Objective

$$\mathbb{E}_{\pi(\mathbf{x}_0)} \mathbb{E}_{t \sim U\{1,T\}} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\frac{(1-\alpha_t)^2}{2\tilde{\beta}_t \alpha_t} \left\| \mathbf{s}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2 \right]$$

In practice, this coefficient is usually omitted.

NCSN Objective

$$\mathbb{E}_{\pi(\mathbf{x}_0)} \mathbb{E}_{t \sim U\{1,T\}} \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} \big\| \mathbf{s}_{\boldsymbol{\theta}, \sigma_t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0) \big\|_2^2$$

Note: The objectives of DDPM and NCSN are almost identical; however, their sampling procedures differ:

- ► NCSN utilizes annealed Langevin dynamics,
- DDPM employs ancestral sampling.

Unconditional Generation

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} \cdot \mathbf{x}_t + \frac{\beta_t}{\sqrt{1-\beta_t}} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \sigma_t \cdot \boldsymbol{\epsilon}$$

Conditional Generation

$$\mathbf{x}_{t-1} = rac{1}{\sqrt{1-eta_t}} \cdot \mathbf{x}_t + rac{eta_t}{\sqrt{1-eta_t}} \cdot
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, oldsymbol{ heta}) + \sigma_t \cdot oldsymbol{\epsilon}$$

Conditional Distribution

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta})$$
$$= \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) - \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}}$$

Here, $p(\mathbf{y}|\mathbf{x}_t)$ denotes a classifier operating on noisy samples (which must be trained separately).

Classifier-Corrected Noise Prediction

$$\epsilon_{m{ heta},t}(\mathbf{x}_t,\mathbf{y}) = \epsilon_{m{ heta},t}(\mathbf{x}_t) - \sqrt{1-ar{lpha}_t} \cdot
abla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

Guidance Scale

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

- Train DDPM as usual.
- ▶ Train a separate classifier $p(\mathbf{y}|\mathbf{x}_t)$ on noisy samples \mathbf{x}_t .

Guided Sampling

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t, \mathbf{y}) + \sigma_t \cdot \epsilon$$

Note: The guidance scale γ sharpens the distribution $p(\mathbf{y}|\mathbf{x}_t)$.

The previous method requires an additional classifier $p(\mathbf{y}|\mathbf{x}_t)$ trained on noisy data. Let's try to avoid this requirement.

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta})$$

$$\begin{split} \nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \\ &= (1 - \gamma) \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) \end{split}$$

Classifier-Free-Corrected Noise Prediction

$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \gamma \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) + (1-\gamma) \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t)$$

- ► Train one model $\epsilon_{\theta,t}(\mathbf{x}_t, \mathbf{y})$ on **supervised** data, alternating between true conditioning \mathbf{y} and empty conditioning $\mathbf{y} = \emptyset$.
- During inference, apply this model twice.

Continuous-Time Dynamics (Neural ODE)

$$egin{aligned} rac{d\mathbf{x}(t)}{dt} &= \mathbf{f}_{m{ heta}}(\mathbf{x}(t),t); \quad ext{where } \mathbf{x}(t_0) = \mathbf{x}_0. \ \mathbf{x}(t_1) &= \int_{t_0}^{t_1} \mathbf{f}_{m{ heta}}(\mathbf{x}(t),t) dt + \mathbf{x}_0 &pprox \mathtt{ODESolve}_f(\mathbf{x}_0,m{ heta},t_0,t_1). \end{aligned}$$

Here, $\mathbf{f}_{\theta}: \mathbb{R}^m \times [t_0, t_1] \to \mathbb{R}^m$ is a vector field.

Euler Update Step (ODESolve)

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \cdot \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t)$$

- ► The Euler method is the simplest version of ODESolve, but it's unstable in practice.
- More advanced numerical methods (such as Runge-Kutta) are often used instead.

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}_{\theta}(\mathbf{x}(t), t); \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

- Suppose $\mathbf{x}(0)$ is a random variable with density $p_0(\mathbf{x})$. Then, $\mathbf{x}(t)$ is a random variable with density $p_t(\mathbf{x})$.
- $p_t(\mathbf{x}) = p(\mathbf{x}, t)$ describes the **probability path** between $p_0(\mathbf{x})$ and $p_1(\mathbf{x})$.

Theorem (Picard)

If f is uniformly Lipschitz continuous in x and continuous in t, then the ODE has a **unique** solution.

This means the ODE can be uniquely inverted:

$$\mathbf{x}(1) = \mathbf{x}(0) + \int_0^1 \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) dt$$
 $\mathbf{x}(0) = \mathbf{x}(1) + \int_1^0 \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) dt$

Note: Unlike discrete-time NF, **f** need not be invertible (uniqueness ensures bijectivity).

How can we compute $p_t(\mathbf{x})$ for any t?

Outline

- 1. Continuity Equation for NF Log-Likelihood
- 2. SDE Basics

3. Probability Flow ODE

4. Reverse SDE

Outline

- 1. Continuity Equation for NF Log-Likelihood
- 2. SDE Basics

3. Probability Flow ODE

4. Reverse SDE

Continuous-Time NF

Theorem (Continuity Equation)

If f is uniformly Lipschitz continuous in x and continuous in t, then

$$\frac{d\log p_t(\mathbf{x}(t))}{dt} = -\mathrm{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t),t)}{\partial \mathbf{x}(t)}\right)$$

This result states: given $\mathbf{x}_0 = \mathbf{x}(0)$, the solution to the continuity equation gives the density $p_1(\mathbf{x}(1))$.

Solution of the Continuity Equation

$$\log p_1(\mathbf{x}(1)) = \log p_0(\mathbf{x}(0)) - \int_0^1 \operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t), t)}{\partial \mathbf{x}(t)}\right) dt.$$

- ► This provides the density along the trajectory (not the total probability path).
- ▶ However, the latter term is difficult to estimate efficiently.

Outline

1. Continuity Equation for NF Log-Likelihood

2. SDE Basics

3. Probability Flow ODE

4. Reverse SDE

Let's define a stochastic process $\mathbf{x}(t)$ with initial condition $\mathbf{x}(0) \sim p_0(\mathbf{x}) = \pi(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ $\mathbf{f}(\mathbf{x},t): \mathbb{R}^m \times [0,1] \to \mathbb{R}^m$ is the **drift** function.
- ▶ $g(t) : \mathbb{R} \to \mathbb{R}$ is the **diffusion** function.
- w(t) is the standard Wiener process (Brownian motion), defined by:
 - 1. $\mathbf{w}(0) = 0$ (almost surely);
 - 2. $\mathbf{w}(t)$ has independent increments;
 - 3. $\mathbf{w}(t)$ trajectories are continuous;
 - 4. $\mathbf{w}(t) \mathbf{w}(s) \sim \mathcal{N}(0, (t-s)\mathbf{I})$ for t > s;
- ▶ $d\mathbf{w} = \mathbf{w}(t + dt) \mathbf{w}(t) = \mathcal{N}(0, \mathbf{l} \cdot dt) = \epsilon \cdot \sqrt{dt}$, where $\epsilon \sim \mathcal{N}(0, \mathbf{l})$.
- ▶ If g(t) = 0, we recover the standard ODE.

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ Unlike ODEs, the initial condition x(0) doesn't uniquely determine the trajectory.
- There are two sources of randomness: the initial distribution $p_0(\mathbf{x})$ and the Wiener process $\mathbf{w}(t)$.

Discretizing the SDE (Euler Method) - SDESolve

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t) \cdot dt + g(t) \cdot \epsilon \cdot \sqrt{dt}$$

If dt = 1, then

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, t) + g(t) \cdot \epsilon$$

- At any time t, the process has density $p_t(\mathbf{x}) = p(\mathbf{x}, t)$.
- ▶ $p: \mathbb{R}^m \times [0,1] \to \mathbb{R}_+$ specifies a **probability path** from $p_0(\mathbf{x})$ to $p_1(\mathbf{x})$.
- ▶ How can we obtain the probability path $p_t(\mathbf{x})$ for $\mathbf{x}(t)$?

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}, \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$

Theorem (Kolmogorov-Fokker-Planck)

The evolution of $p_t(\mathbf{x})$ is governed by

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = -\text{div}\left(\mathbf{f}(\mathbf{x},t)p_t(\mathbf{x})\right) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}p_t(\mathbf{x})$$

Here,

$$\operatorname{div}(\mathbf{v}) = \sum_{i=1}^{m} \frac{\partial v_i(\mathbf{x})}{\partial x_i} = \operatorname{tr}\left(\frac{\partial \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}}\right)$$
$$\Delta_{\mathbf{x}} p_t(\mathbf{x}) = \sum_{i=1}^{m} \frac{\partial^2 p_t(\mathbf{x})}{\partial x_i^2} = \operatorname{tr}\left(\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right)$$
$$\frac{\partial p_t(\mathbf{x})}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{v}} \left[\mathbf{f}(\mathbf{x}, t) p_t(\mathbf{x})\right] + \frac{1}{2}g^2(t) \frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{v}^2}\right)$$

Theorem (Kolmogorov-Fokker-Planck)

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\big[\mathbf{f}(\mathbf{x},t)p_t(\mathbf{x})\big] + \frac{1}{2}g^2(t)\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right)$$

- ▶ The KFP theorem uniquely determines $p_t(\mathbf{x})$.
- This generalizes the continuity equation for continuous-time NF:

$$\frac{d\log p_t(\mathbf{x}(t))}{dt} = -\mathrm{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial \mathbf{x}}\right).$$

Langevin SDE (Special Case)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})dt + 1 \cdot d\mathbf{w}$$

Let's now apply the KFP theorem to this SDE.

Langevin SDE (Special Case)

$$d\mathbf{x} = rac{1}{2}rac{\partial}{\partial\mathbf{x}}\log p_t(\mathbf{x})dt + 1\cdot d\mathbf{w}$$

$$\begin{split} \frac{\partial p_t(\mathbf{x})}{\partial t} &= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\frac{p_t(\mathbf{x})}{2}\frac{1}{\frac{\partial}{\partial \mathbf{x}}}\log p_t(\mathbf{x})\right] + \frac{1}{2}\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right) = \\ &= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}p_t(\mathbf{x})\right] + \frac{1}{2}\frac{\partial^2 p_t(\mathbf{x})}{\partial \mathbf{x}^2}\right) = 0 \end{split}$$

The density $p_t(\mathbf{x})$ is constant in t; i.e., if $\mathbf{x}(0) \sim p_0(\mathbf{x})$, then $\mathbf{x}(t) \sim p_0(\mathbf{x})$.

Discretized Langevin SDE

$$\mathbf{x}_{t+1} - \mathbf{x}_t = \frac{\eta}{2} \cdot \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x}) + \sqrt{\eta} \cdot \epsilon, \quad \eta \approx dt.$$

Langevin Dynamic

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \frac{\eta}{2} \cdot \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \eta \approx dt.$$

Outline

- 1. Continuity Equation for NF Log-Likelihood
- 2. SDE Basics

3. Probability Flow ODE

4. Reverse SDE

ODE and Continuity Equation

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt$$

$$\frac{d \log p_t(\mathbf{x}(t))}{dt} = -\text{tr}\left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{x}, t)}{\partial \mathbf{x}}\right) \quad \Leftrightarrow \quad \frac{\partial p_t(\mathbf{x})}{\partial t} = -\text{div}(\mathbf{f}(\mathbf{x}, t)p_t(\mathbf{x}))$$

The only source of randomness is the initial distribution $p_0(\mathbf{x})$.

SDE and KFP Equation

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = -\text{div}(\mathbf{f}(\mathbf{x}, t)p_t(\mathbf{x})) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}p_t(\mathbf{x})$$

Now there are two sources of randomness: the initial distribution $p_0(\mathbf{x})$ and the Wiener process $\mathbf{w}(t)$.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Theorem

Suppose the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ induces the probability path $p_t(\mathbf{x})$. Then, there exists an ODE with the same probability path $p_t(\mathbf{x})$, given by

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right)dt$$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Theorem

Suppose the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ induces the probability path $p_t(\mathbf{x})$. Then, there exists an ODE with the same probability path $p_t(\mathbf{x})$, given by

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right)dt$$

Proof

$$\frac{\partial p_{t}(\mathbf{x})}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p_{t}(\mathbf{x})\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p_{t}(\mathbf{x})}{\partial \mathbf{x}^{2}}\right) =
= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p_{t}(\mathbf{x}) - \frac{1}{2}g^{2}(t)\frac{\partial p_{t}(\mathbf{x})}{\partial \mathbf{x}}\right]\right) =
= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p_{t}(\mathbf{x}) - \frac{1}{2}g^{2}(t)p_{t}(\mathbf{x})\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right]\right) =
= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\left(\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right)p_{t}(\mathbf{x})\right]\right)$$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Proof (Continued)

$$\frac{\partial p_{t}(\mathbf{x})}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\left(\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right)p_{t}(\mathbf{x})\right]\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\tilde{\mathbf{f}}(\mathbf{x},t)p_{t}(\mathbf{x})\right]\right) = -\operatorname{div}\left(\tilde{\mathbf{f}}(\mathbf{x},t)p_{t}(\mathbf{x})\right)$$

$$\tilde{\mathbf{f}}(\mathbf{x},t) = \mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x}); \quad \tilde{\mathbf{g}}(t) = 0$$

$$d\mathbf{x} = \tilde{\mathbf{f}}(\mathbf{x},t)dt + 0 \cdot d\mathbf{w} = \left(\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right)dt$$

$$\frac{\partial p_{t}(\mathbf{x})}{\partial t} = -\operatorname{div}(\tilde{\mathbf{f}}(\mathbf{x},t)p_{t}(\mathbf{x})) + \frac{1}{2}\tilde{\mathbf{g}}^{2}(t)\Delta_{\mathbf{x}}p_{t}(\mathbf{x})$$

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w} - \mathsf{SDE}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right)dt - \mathsf{Probability Flow ODE}$$

- ► The term $\mathbf{s}(\mathbf{x},t) = \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})$ is the score function in continuous time.
- ▶ The ODE produces more stable trajectories.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Outline

1. Continuity Equation for NF Log-Likelihood

2. SDE Basics

- 3. Probability Flow ODE
- 4. Reverse SDE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt, \qquad \mathbf{x}(t + dt) = \mathbf{x}(t) + \mathbf{f}(\mathbf{x}, t)dt$$

Here dt can be > 0 or < 0.

Reverse ODE

Let $\tau = 1 - t$ ($d\tau = -dt$).

$$d\mathbf{x} = -\mathbf{f}(\mathbf{x}, 1 - \tau)d\tau$$

- ► How do we reverse the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$?
- ► The Wiener process introduces randomness that must be reversed.

Theorem

There exists a reverse SDE for $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$, given by:

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})\right) dt + g(t) d\mathbf{w}$$

where dt < 0.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Theorem

There exists a reverse SDE for $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$, given by:

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})\right) dt + g(t) d\mathbf{w}$$

where dt < 0.

Note: Again, the score function appears: $\mathbf{s}(\mathbf{x},t) = \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})$.

Proof Sketch

- Convert the initial SDE to a probability flow ODE.
- Reverse the probability flow ODE.
- Convert the reversed probability flow ODE back to an SDE.

Proof

► Convert the initial SDE to a probability flow ODE:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right)dt$$

Reverse the probability flow ODE:

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p_{t}(\mathbf{x})\right)dt$$

$$d\mathbf{x} = \left(-\mathbf{f}(\mathbf{x}, 1 - \tau) + \frac{1}{2}g^{2}(1 - \tau)\frac{\partial}{\partial \mathbf{x}}\log p_{1 - \tau}(\mathbf{x})\right)d\tau$$

▶ Convert the reversed probability flow ODE back to an SDE:

$$d\mathbf{x} = \left(-\mathbf{f}(\mathbf{x}, 1 - \tau) + \frac{1}{2}g^{2}(1 - \tau)\frac{\partial}{\partial \mathbf{x}}\log p_{1-\tau}(\mathbf{x})\right)d\tau$$

$$d\mathbf{x} = \left(-\mathbf{f}(\mathbf{x}, 1 - \tau) + g^{2}(1 - \tau)\frac{\partial}{\partial \mathbf{x}}\log p_{1-\tau}(\mathbf{x})\right)d\tau + g(1 - \tau)d\mathbf{w}$$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Theorem

There exists a reverse SDE for $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$, given by:

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})\right) dt + g(t) d\mathbf{w}$$

where dt < 0.

Proof (Continued)

$$d\mathbf{x} = \left(-\mathbf{f}(\mathbf{x}, 1 - \tau) + g^2(1 - \tau)\frac{\partial}{\partial \mathbf{x}}\log p_{1 - \tau}(\mathbf{x})\right)d\tau + g(1 - \tau)d\mathbf{w}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial}{\partial \mathbf{x}} \log p_t(\mathbf{x})\right) dt + g(t) d\mathbf{w}$$

Here $d\tau > 0$ and dt < 0.

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w} - \mathsf{SDE}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right)dt - \mathsf{Probability Flow ODE}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p_t(\mathbf{x})\right)dt + g(t)d\mathbf{w} - \mathsf{Reverse SDE}$$

- This framework allows us to transform one distribution into another via an SDE with a prescribed probability path $p_t(\mathbf{x})$.
- We can invert this process using the score function.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Summary

- ▶ The continuity equation allows us to compute $\log p(\mathbf{x}, t)$ at any time t.
- ➤ An SDE defines a stochastic process with drift and diffusion terms; ODEs are a special case of SDEs.
- ► The KFP equation describes the probability dynamics of an SDE.
- ▶ The Langevin SDE preserves a constant probability path.
- Every SDE admits a corresponding probability flow ODE following the same probability path.
- SDEs can be reversed using the score function.