Revisão de Integral

Prof. Dr. Vinícius Wasques

Universidade Paulista - Unip, Campus Swift Campinas

23 de abril de 2020

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Seja $f:[a,b]\to\mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: f(x) = 2x

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: $f(x) = 2x \Rightarrow F(x) = x^2$ é uma primitiva para f.

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: $f(x) = 2x \Rightarrow F(x) = x^2$ é uma primitiva para f.

Exemplo: $f(x) = 3x^{2}$

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: $f(x) = 2x \Rightarrow F(x) = x^2$ é uma primitiva para f.

Exemplo: $f(x) = 3x^2 \Rightarrow F(x) = x^3$ é uma primitiva para f.

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: $f(x) = 2x \Rightarrow F(x) = x^2$ é uma primitiva para f.

Exemplo: $f(x) = 3x^2 \Rightarrow F(x) = x^3$ é uma primitiva para f.

Exemplo: f(x) = 1

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: $f(x) = 2x \Rightarrow F(x) = x^2$ é uma primitiva para f.

Exemplo: $f(x) = 3x^2 \Rightarrow F(x) = x^3$ é uma primitiva para f.

Exemplo: $f(x) = 1 \Rightarrow F(x) = x$ é uma primitiva para f.

Seja $f:[a,b] \to \mathbb{R}$. Dizemos que a função f possui primitiva, se existir uma função F que satisfaz

$$F'(x) = f(x)$$
.

A função F é chamada de primitiva de f.

Exemplo: $f(x) = 2x \Rightarrow F(x) = x^2$ é uma primitiva para f.

Exemplo: $f(x) = 3x^2 \Rightarrow F(x) = x^3$ é uma primitiva para f.

Exemplo: $f(x) = 1 \Rightarrow F(x) = x$ é uma primitiva para f. A função F(x) = x + 1 também é uma primitiva de f. De um modo geral, F(x) = x + c, sendo c um valor constante, é uma primitiva para f.

$$(F(x)+c)'=f(x), \quad \forall x \in [a,b]$$

$$(F(x)+c)'=f(x), \quad \forall x \in [a,b]$$

Escrevemos esse problema na seguinte forma:

$$\int f(x)dx = F(x) + c$$

e dizemos que $\int f(x)dx$ é a integral da função f com respeito a variável x e c é dita constante de integração.

$$(F(x)+c)'=f(x), \quad \forall x \in [a,b]$$

Escrevemos esse problema na seguinte forma:

$$\int f(x)dx = F(x) + c$$

e dizemos que $\int f(x)dx$ é a integral da função f com respeito a variável x e c é dita constante de integração.

Exemplo: $\int cos(x) dx =$

$$(F(x)+c)'=f(x), \quad \forall x \in [a,b]$$

Escrevemos esse problema na seguinte forma:

$$\int f(x)dx = F(x) + c$$

e dizemos que $\int f(x)dx$ é a integral da função f com respeito a variável x e c é dita constante de integração.

Exemplo: $\int cos(x)dx = sen(x) + c$.

$$(F(x)+c)'=f(x), \quad \forall x \in [a,b]$$

Escrevemos esse problema na seguinte forma:

$$\int f(x)dx = F(x) + c$$

e dizemos que $\int f(x)dx$ é a integral da função f com respeito a variável x e c é dita constante de integração.

Exemplo: $\int cos(x)dx = sen(x) + c$.

Exemplo: $\int e^x dx =$

$$(F(x)+c)'=f(x), \quad \forall x \in [a,b]$$

Escrevemos esse problema na seguinte forma:

$$\int f(x)dx = F(x) + c$$

e dizemos que $\int f(x)dx$ é a integral da função f com respeito a variável x e c é dita constante de integração.

Exemplo: $\int cos(x)dx = sen(x) + c$.

Exemplo: $\int e^x dx = e^x + c$.

Propriedades

•
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

•
$$\int (f(x) - g(x))dx = \int f(x)dx - \int g(x)dx$$

Propriedades

•
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

•
$$\int (f(x) - g(x))dx = \int f(x)dx - \int g(x)dx$$

$$\int 2x + 1 dx = \int 2x dx + \int 1 dx = x^2 + c_1 + x + c_2 = x^2 + x + c.$$

Propriedades

•
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

•
$$\int (f(x) - g(x))dx = \int f(x)dx - \int g(x)dx$$

Exemplo:

$$\int 2x + 1 dx = \int 2x dx + \int 1 dx = x^2 + c_1 + x + c_2 = x^2 + x + c.$$

$$\int 3x^2 - 4x dx = 3 \int x^2 dx - 4 \int x dx = 3 \frac{x^3}{3} - 4 \frac{x^2}{2} + c = x^3 - 2x^2 + c.$$

Primitivas de funções

Integral	Primitiva da função
$\int cdx$	cx+k
$\int \frac{1}{x} dx$	In(x)+k
$\int e^{x} dx$	e ^x +k
$\int x^n dx$	$\frac{x^{n+1}}{n+1}$ +k
$\int sen(x)dx$	-cos(x)+k
$\int cos(x)dx$	sen(x)+k

$$\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a),$$

$$\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a),$$

Exemplo:
$$\int_0^1 x^2 dx =$$

$$\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a),$$

Exemplo:
$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 =$$

$$\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a),$$

Exemplo:
$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{(1)^3}{3} - \frac{(0)^3}{3} = \frac{1}{3} - 0 = \frac{1}{3}$$

$$\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx$$

$$\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx = \operatorname{sen}(x) + c \Big|_{\frac{\pi}{2}}^{\pi}$$

$$\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx = \operatorname{sen}(x) + c \Big|_{\frac{\pi}{2}}^{\pi}$$
$$= \operatorname{sen}(\pi) + c - \left(\operatorname{sen}\left(\frac{\pi}{2}\right) + c\right)$$

$$\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx = \operatorname{sen}(x) + c \Big|_{\frac{\pi}{2}}^{\pi}$$

$$= \operatorname{sen}(\pi) + c - \left(\operatorname{sen}\left(\frac{\pi}{2}\right) + c\right)$$

$$= \operatorname{sen}(\pi) + c - \operatorname{sen}\left(\frac{\pi}{2}\right) - c$$

$$\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx = sen(x) + c \Big|_{\frac{\pi}{2}}^{\pi}$$

$$= sen(\pi) + c - (sen(\frac{\pi}{2}) + c)$$

$$= sen(\pi) + c - sen(\frac{\pi}{2}) - c$$

$$= 0 - 1$$

$$\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx = \operatorname{sen}(x) + c \Big|_{\frac{\pi}{2}}^{\pi}$$

$$= \operatorname{sen}(\pi) + c - \left(\operatorname{sen}\left(\frac{\pi}{2}\right) + c\right)$$

$$= \operatorname{sen}(\pi) + c - \operatorname{sen}\left(\frac{\pi}{2}\right) - c$$

$$= 0 - 1$$

Aplicações: Área

Aplicações: Área

$$Area = \int_a^b f(x) dx$$

Calcule a área da região abaixo da função f(x) = x no intervalo [0,2].

Área =
$$\int_0^2 x dx$$

Area =
$$\int_0^2 x dx$$

= $\left. \frac{x^2}{2} \right|_0^2$
= $\left. \frac{(2)^2}{2} - \frac{(0)^2}{2} \right.$

Área =
$$\int_0^2 x dx$$
=
$$\frac{x^2}{2} \Big|_0^2$$
=
$$\frac{(2)^2}{2} - \frac{(0)^2}{2}$$
=
$$\frac{4}{2} - 0$$

Área =
$$\int_0^2 x dx$$

= $\frac{x^2}{2}\Big|_0^2$
= $\frac{(2)^2}{2} - \frac{(0)^2}{2}$
= $\frac{4}{2} - 0$
= $2 - 0$

Área =
$$\int_0^2 x dx$$

= $\frac{x^2}{2}\Big|_0^2$
= $\frac{(2)^2}{2} - \frac{(0)^2}{2}$
= $\frac{4}{2} - 0$
= $2 - 0$
= 2

Aplicações

Outras aplicações:

- Comprimento de curvas;
- Centro de Massa;
- 3 Trabalho realizado por uma força;
- 4 Circuitos elétricos;
- 5 Energia cinética.

1) Substituição

$$\int (f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)),$$

em que
$$u = g(x)$$
 e $du = g'(x)dx$

1) Substituição

$$\int (f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)),$$

em que
$$u = g(x)$$
 e $du = g'(x)dx$

$$\int cos(2x)dx =$$

1) Substituição

$$\int (f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)),$$

em que
$$u = g(x)$$
 e $du = g'(x)dx$

$$\int \cos(2x)dx = \int \cos(u)\frac{du}{2} =$$

1) Substituição

$$\int (f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)),$$

em que
$$u = g(x)$$
 e $du = g'(x)dx$

$$\int cos(2x)dx = \int cos(u)\frac{du}{2} = \frac{1}{2}\int cos(u)du =$$

1) Substituição

$$\int (f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)),$$

em que
$$u = g(x)$$
 e $du = g'(x)dx$

$$\int \cos(2x)dx = \int \cos(u)\frac{du}{2} = \frac{1}{2}\int \cos(u)du = \frac{1}{2}\sin(u) + k$$

1) Substituição

$$\int (f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)),$$

em que
$$u = g(x)$$
 e $du = g'(x)dx$

$$\int \cos(2x)dx = \int \cos(u)\frac{du}{2} = \frac{1}{2}\int \cos(u)du = \frac{1}{2}\operatorname{sen}(u) + k$$
$$\int \cos(2x)dx = \frac{1}{2}\operatorname{sen}(2x) + k$$

2) Integral por partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

ou também

$$\int u dv = uv - \int v du$$

2) Integral por partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

ou também

$$\int u dv = uv - \int v du$$

$$\int ln(x)dx =$$

2) Integral por partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

ou também

$$\int u dv = uv - \int v du$$

$$\int \ln(x) dx = x \ln(x) - \int \frac{1}{x} x dx =$$

2) Integral por partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

ou também

$$\int u dv = uv - \int v du$$

$$\int \ln(x)dx = x\ln(x) - \int \frac{1}{x}xdx = x\ln(x) - \int 1dx =$$

2) Integral por partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

ou também

$$\int u dv = uv - \int v du$$

$$\int \ln(x)dx = x\ln(x) - \int \frac{1}{x}xdx = x\ln(x) - \int 1dx = x\ln(x) - x + k$$

2) Integral por partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

ou também

$$\int u dv = uv - \int v du$$

$$\int \ln(x)dx = x\ln(x) - \int \frac{1}{x}xdx = x\ln(x) - \int 1dx = x\ln(x) - x + k$$
$$\int \ln(x)dx = x\ln(x) - x + k$$

Obrigado pela atenção!

Prof. Dr. Vinícius Wasques

email: vinicius.wasques@docente.unip.br

Departamento de Engenharia, Ciência da Computação e Sistemas de Informação

site: https://viniciuswasques.github.io/home/

