

Inteligência Artificial

Aprendizado Supervisionado: Classificação k-Nearest Neighbor (kNN) e Support Vector Machines (SVM)

Prof. Dr^a. Andreza Sartori asartori@furb.br

Documentos Consultados/Recomendados

- ARTERO, Almir Olivette. Inteligência artificial: teórica e prática. 1. ed. São Paulo: Livraria da Física, 2008.
- COPPIN, Ben. Inteligência artificial. Rio de Janeiro: LTC, 2013.
- KLEIN, Dan; ABBEEL, Pieter. Intro to AI. UC Berkeley. Disponível em: http://ai.berkeley.edu
- LIMA, Edirlei Soares. Inteligência Artificial. PUC-Rio, 2015.
- MALIK, Jitendra. Department of EECS UC Berkeley. http://www-inst.eecs.berkeley.edu/ ~cs280/sp15/index.html
- NG, Andrew. Machine Learning. Stanford University. <u>https://www.coursera.org/learn/machine-learning</u> <u>http://cs229.stanford.edu/materials.html</u>
- RUSSELL, Stuart J. (Stuart Jonathan); NORVIG, Peter. Inteligência artificial. Rio de Janeiro: Campus, 2013. 1021p.
- SEBE, Nicu. Classification. Universidade de Trento. 2011.

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos especiais

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos especiais

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

- 4.2 Aprendizado Supervisionado
 - 4.2.1 Regressão
 - 4.2.2 k-Nearest Neighbour (KNN)
 - 4.2.3 Support Vector Machine (SVM)
 - 4.2.4 Redes Neurais
- 4.3 Aprendizado Não-Supervisionado
 - 4.3.1 Clustering: k-means

Recapitulando...

Aprendizado Supervisionado

- Damos ao sistema a "resposta correta" durante o processo de treinamento.
- Dado um conjunto de entradas de treinamento e saídas correspondentes, produz os resultados "corretos" para novas entradas. SUPERVISED MACHINE LEARNING
- É eficiente pois o sistema pode trabalhar diretamente com informações corretas.

Abordagens do Aprendizado Supervisionado

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma fruta: informa que fruta é (dentre um número finito de classes).

Regressão:

- Faz uma predição a partir de exemplos.
- Prever o valor dos imóveis, dados os valores por metro quadrado.

Abordagens do Aprendizado Supervisionado

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma fruta: informa que fruta é (dentre um número finito de classes).

· Regressão:

- Faz uma predição a partir de exemplos.
- Prever o valor dos imóveis, dados os valores por metro quadrado.

Aprendizado Supervisionado: Classificação

Prever se tumor na mama é Maligno ou Benigno.

Qual é a probabilidade / chance de um tumor ser maligno ou benigno?

Pode ter mais de dois valores para valores possíveis de saída (multiclasse).

Exemplo: 0 (benígno), 1 (câncer tipo 1), 2 (câncer tipo 2), 3,n

Aprendizado Supervisionado: Classificação

Prever se tumor na mama é Maligno ou Benigno.

Mais de uma característica (feature)

- Espessura
- Uniformidade do tamanho da célula
- Uniformidade da forma celular
- ...(número infinito de características SVM)

Classificação

Executamos classificação todos os dias:

Cadeira Mesa

Classificação

Executamos classificação todos os dias:

Comestível

Não Comestível

Classificação

k-Nearest Neighbor (kNN)

- k-Vizinhos Mais Próximos
- É um dos algoritmos de classificação mais simples.
- Classifica objetos com base nos exemplos de treinamento que se encontram mais próximos no espaço de características.

Para utilizar o kNN é necessário:

- **1.** Um conjunto (Data Set) de exemplos de treinamento.
- **2.** Definir uma métrica para calcular a distância entre os exemplos de treinamento.

- 3. Definir o valor de k
 - k é o número de vizinhos mais próximos que serão considerados pelo algoritmo.

Classificação de um exemplo desconhecido com o algoritmo KNN:

1. Cálculo da distância entre o exemplo desconhecido e os outros exemplos do conjunto de treinamento.

Classificação de um exemplo desconhecido com o algoritmo KNN:

- 1. Cálculo da distância entre o exemplo desconhecido e os outros exemplos do conjunto de treinamento.
- 2. Identificar os *k* vizinhos mais próximos.

Classificação de um exemplo desconhecido com o algoritmo KNN:

- 1. Cálculo da distância entre o exemplo desconhecido e os outros exemplos do conjunto de treinamento.
- 2. Identificar os *k* vizinhos mais próximos.
- **3.** Utilizar o rótulo (label) da classe dos vizinhos mais próximos para determinar o rótulo de classe do exemplo desconhecido (votação majoritária).

Espaço de Características

Para um exemplo não rotulado x, encontre os **k** mais próximos a ele na base de dados rotulada e atribua a classe mais frequente para x.

Prever se tumor na mama é Maligno ou Benigno.

Cálculo da Distância Entre Dois Pontos

- O principal propósito da medida de distância é identificar os dados que são similares e que não são similares.
- Existem diferentes maneiras de calcular a distância entre dois pontos. Formas de medir a distância:
 - Distância Euclidiana
 - Distância Manhattan (distância medida entre 2 pontos através dos ângulos de x e y)
 - Distância de Minkowsky (generalização da distância euclidiana)
 - Distância de Hamming (verifica se os 2 atributos são iguais ou não)

As distâncias mais utilizadas:

Euclidean

Cálculo da Distância Entre Dois Pontos

- Distância Euclidiana:
 - Dá a mesma importância para todas as características.
 - Ponto negativo: sensibilidade aos valores extremos outliers

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

$$D(p,q)$$

$$D(p,q) = \sqrt{(soma((p-q)^2))}$$

Porém é importante normalizar os dados!

kNN: Normalização

O dados precisam ser **normalizados** para evitar que as medidas de distância sejam dominadas por uma única característica.

- Exemplos:
 - Altura de uma pessoa pode variar de 1,10 à 2,10.
 - Peso de uma pessoa pode variar de 40 kg à 160 kg.
 - O salário de uma pessoa podem variar de R\$ 800 à R\$ 30.000.
- A Normalização ajusta as escalas de valores das características para o mesmo intervalo:
 - [-1 a 1], [0 a 1], etc.

kNN: Normalização

Normalização linear no intervalo [0,1]

$$N(X)\frac{X-Min(X)}{Max(X)-Min(X)}$$

CPF	Despesa	Despesa_normalizada
9999999999	1000	0,14
11111111111	2000	0,43
3333333333	3000	0,71
5555555555	1500	0,29
2222222222	1500	0,29
0000000000	1000	0,14
8888888888	3000	0,71
7777777777	500	0
6666666666	4000	1
4444444444	1000	0,14

Fonte: Bogorny, Vania. (2016) UFSC

Como determinar a classe do exemplo desconhecido a partir da lista de vizinhos mais próximos:

- Considera-se o voto majoritário entre os rótulos (labels) de classe dos k vizinhos mais próximos.
- Como escolher o valor de k?

Lima, E. (2014) Puc-Rio

- K = 1
 - Pertence a classe de quadrados.
- K = 3
 - Pertence a classe de triângulos.
- K = 7
 - Pertence a classe de quadrados.

- Como escolher o valor do parâmetro k?
 - Se k tem valor baixo, a classificação fica sensível a pontos de ruído.
 - Se k tem valor alto, pode aumentar a inclusão de elementos de outras classes.
 - O valor do parâmetro k é escolhido comumente através de tentativa-e-erro.
 - Avaliação empírica com diferentes valores de k.
- Além disso, é necessário sempre escolher um valor ímpar para k, assim se evita empates na votação.

Vantagens:

- Técnica simples e facilmente implementada.
- Bastante flexível.
- Em alguns casos apresenta ótimos resultados.

Desvantagens:

- Pode ser um processo computacionalmente complexo, pois requer um cálculo de distância para cada exemplo de treinamento.
- Pode consumir muito tempo quando o conjunto de treinamento é muito grande.
- A precisão da classificação pode ser severamente degradada pela presença de ruído ou características irrelevantes.

Classificação de Pedestres

Exemplo: abordagem de Janela Deslizante Multi-Escalar para detecção de objetos

- Complexidade proporcional ao número de pixels
 - Pode ter milhões de posições
- Cálculo com múltiplas escalas - pessoas com tamanhos diferentes;

nº de pixels * nº de escalas consideradas * complexidade de avaliação do classificador

Como podemos separar essas duas classes?

Várias soluções possíveis.

- Qual das duas retas divide melhor as classes? B1 ou B2?
- Como podemos definir o que é melhor?

Qual dos dois métodos é mais seguro essa separação?

Encontra o hiperplano que **maximiza** a margem => B1 é melhor que B2

- Máquina de Vetores de Suporte
- Procura encontrar a maior margem para separar diferentes classes de dados.
- A essência do SVM é a construção de um hiperplano ótimo, de modo que ele possa separar diferentes classes de dados com a maior margem possível.

Vetores de Suporte (Support Vectors)

- Servem para definir qual será o hiperplano.
- São encontrados durante a fase de treinamento.
- São os exemplos de treinamento realmente importantes.
 - Os outros exemplos podem ser ignorados.

- Hiperplano:
 - Espaço 1D = Ponto

– Espaço 3D = Plano

Espaço 2D = Reta

- A aplicação de um método puramente linear para classificar um conjunto de dados pode sofrer com dois problemas:
 - Outliers (Presença de ruídos e exemplos inconsistentes)
 - Exemplos rotulados erroneamente

 O SVM ainda assim pode ser aplicado através do uso do de variáveis de folga (Soft Margin)

Soft Margin

- É utilizada quando não há um hiperplano que divida os exemplos exatamente em -1 e +1 (acontece em boa parte dos casos)
- Permite que alguns dados possam violar a restrição, porém há uma penalização para estes casos.

 Em alguns problemas não é possível separar as classes linearmente mesmo utilizando a margem de folga.

- Grande maioria dos problemas reais não são separáveis linearmente.
- O que fazer quando os dados não são linearmente separáveis?

SVM Não-Linear

O que fazer quando os dados não são linearmente separáveis?

 A abordagem utilizada pelo SVM para resolver esse tipo de problema consistem em mapear os dados para um espaço de dimensão maior:

SVM Não-Linear

O espaço de características (feature space) original pode ser mapeado em um espaço de características de dimensão maior onde o conjunto de treinamento é linearmente separável:

Kernel Trick

SVM Não-Linear Exemplo

 Considerando o seguinte conjunto de exemplos de treinamento que não são linearmente separáveis:

Elevando para uma dimensão linearmente separável (R¹ → R²):

SVM Não-Linear Exemplo

- A mesma metodologia pode ser aplicada em um espaço 2D de características (R² → R³).
- A única diferença é a necessidade de uma nova função de kernel. Um exemplo de função de kernel aplicável nesse caso seria:

Funções de Kernel

Kernel	Função $\phi(x_i, x_j)$
Polinomial	$\left \left(\delta(x_i \cdot x_j) + k \right)^d \right $
Gaussiano (RBF)	$\exp(-\sigma \ x_i - x_j\ ^2)$
Sigmoidal	$\tanh(\delta(x_i \cdot x_j) + k)$

- O SVM originalmente lida com classificações binárias (-1,+1).
- Maior parte dos problemas reais requerem múltiplas classes.
- Para se utilizar uma SVM para classificar múltiplas classes é necessário transformar o problema multi-classe em vários problemas da classes binárias
 - Um contra o resto (one-versus-all).
 - Pairwise (one-versus-one)

SVM Multi-Classes

- Um contra o resto (one-versus-all):
 - Estratégia o vencedor leva tudo: o classificador com a função de saída mais elevada será atribuido a classe.
- Pairwise (one-versus-one)
 - Estratégia max-vitórias votantes: a classe com a maioria dos votos é escolhida.

Aplicação

- Antes de aplicar um SVM para classificar um conjunto de dados é necessário responder algumas questões:
 - Quais funções de kernel utilizar?
 - Qual o valor do parâmetro para a Soft Margin?
- Validações cruzadas (cross-validations)
 - Holdout
 - K-fold
 - Leave-one-out

Validações Cruzadas (Cross-Validations)

Holdout:

- Divide o grupo de dados em 2
 - uma parte para treinamento e outra para teste
- É comum considerar 2/3 dos dados para treinamento e o 1/3 para teste

K-fold: (Mais utilizado!)

- Divide o DataSet em k subconjuntos do mesmo tamanho
- Então, um subconjunto é utilizado para teste e os k restantes são utilizados para treinamento.
- Este processo é realizado k vezes alternando de forma circular o subconjunto de teste.

Leave-one-out: (alto custo computacional!)

- Caso específico do k-fold
- k igual ao número total de dados N.
- São realizados N cálculos de erro, um para cada dado.

Vantagens e Desvantagens

Vantagens:

- Consegue lidar bem com grandes conjuntos de exemplos.
- Trata bem dados de alta dimensão.
- O processo de classificação é rápido.

Desvantagens:

- É necessário definir um bom Kernel.
- O tempo de treinamento pode ser longo dependendo do número de exemplos e dimensionalidade dos dados.
- Não funciona bem em conjunto de dados com grande quantidade de ruídos.

Software e DataSets Disponíveis

LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Python: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

- DataSets para Estudo/Exemplo:
 - LIBSVM Data: Classification, Regression, and Multi-label //www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
 - Machine Learning Repository http://archive.ics.uci.edu/ml/datasets.html