Fourier Analysis

Paolo Bettelini

Contents

1	ntroduction	2
	.1 The h	2
	$a_n \ldots a_n$	2
	$.3 b_n \dots \dots \dots \dots \dots \dots \dots \dots \dots $	2
2	Complex form	2

1 Introduction

A function f(x) is periodic if there is a positive number T (the period of f) such that

$$f(x+nT) = f(x) \quad \forall x \in D_f, n \in \mathbb{Z}$$

We can lorem ipsum dolor sit amet a bit

$$f(x) = h + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right)$$

1.1 The h

We take the integral over the period $[t_0; t_0 + T]$ on both sides

$$\int_{t_0}^{t_0+T} f(x) \, dx = \int_{t_0}^{t_0+T} h \, dx + \sum_{n=1}^{\infty} \left[\int_{t_0}^{t_0+T} a_n \cos\left(\frac{2\pi nx}{T}\right) \, dx + \int_{t_0}^{t_0+T} b_n \sin\left(\frac{2\pi nx}{T}\right) \, dx \right]$$

if you think about it, the integral over a period interval of a fuction such as $\sin(x)$ or $\cos(x)$ is 0. If we consider $\sin(w_n x)$ or $\cos(w_n x)$ the function will make more full cycles in the span of the period T, all of which yield an area of 0.

$$\int_{t_0}^{t_0+T} f(x) dx = \int_{t_0}^{t_0+T} h dx$$
$$= h \int_{t_0}^{t_0+T} dx$$
$$= h[x]_{t_0}^{t_0+T}$$

concluding that

$$h = \frac{1}{T} \int_{t_0}^{t_0 + T} f(x) \, dx$$

- 1.2 a_n
- **1.3** b_n

2 Complex form