Assignment 5

Priya Paradhi 4822

(0.1)

Explain Apriori algorithm with example.

- 1) It is powerful algorithm for mining frequent itemsets for Boolean association rules.
- 2) Name of the algorithm is based on the priority it uses i.e. Apriori.
- · Apriori property based on fact that it uses prior knowledge of frequent itemset properties.
- · This property uses iterative approach as level wise search.
- · At any level k itemsets are used to explore (kt1) itemsets.
- · At first steps. Whole database is scanned & count of each individual item is tound. Assume minimum suppost.
- Consider those items which satisfy minimum support set of such frequent itemset is found.
- The resulting set is denoted as LI (Level 1)
- · LI is used to find L2 (L2 is the frequent itemsets 2).
- · L2 is used to find L3 & the process continues till no more Frequent K-Itemsets can be found,
- · Every time database has to be scanned for find Lx frequent itemset.

Apriori property:

- . Any subset of a large itemset must be large.
- OR All nonempty subsets of a frequent itemset must also be format frequent.
- · Apriori employs an iterative approach known as level-wise seasch, where k- Itemsets are used to explore kt1- itemsets.
 - · initially, scan DB once to get frequent 1-itemset.
- · Generate length (k+1) candidate Hemsets from length k frequent itemsets.

· Test the candidates against DB.

· Terminate when no frequent or candidate set can be generated

Apriori Pruning Principle; If there is any itemset which is infrequent, its superset should not be generated / tested.

Method:

Ck is the superset of Lk: candidate for harge itemset.

of join & prune actions to generate Lk from Lk-1:

· Join step: Apriox1 assumes that items within a transaction

ox itemset are sorted in lexicographic order.

The candidate set Ck is generated by taking the join Lk-1 X Lk-1, where members of Lk-1 are joinable if their first k-2 items are in common. This ensures that no duplicates are generated.

· Prune step: To reduce the sixe of Ck, Aprilon property is used as follows -

Any (k-1) itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k-1) subset of a candidate k-itemset is not in Lk-1, the candidate cannot be frequent and can be removed from Ck.

· The count of each candidate in Gk is used to determine Lk.

Algorithm Aprioxi-generate (LK):

- 1. for each itemset 11 in Lk
- 2. for each itemset 12 in Lk
- 3. If k-1 elements in 11 and 12 are equal.
- 4. C= 11 x 12
- 5 add c to CK+1
- 6. for each k subset sofc.
- 7. If sodoes not belong to Lk then

8. delete C

9. break.

The Aprilos Algorithm:

CK! Candidate itemset of size k

LK: frequent itemset of sixe k

L1 = { frequent items ?'

1: fox (k=1; Lk!= \$; k++) do

2 · begin

3. CK+1 = Apriori _ generate (LK)
4. for each transaction tin database do

5. Increment the count of all condidates in CK +1

6. that are contained in t

7. 1 Kt1 = Candidates in Ck+1 with min support

8. end

g. setus Ok La

Example

Supmin = 2.

,		and a	
	Tid	Items	188
billing man	10	A , B , E	30 1
13039. (8.5)	20	BIE	3
BUE STO	30	Bic	
SEED COURSE +	40	A,B,D	
13.000	50	AIC	
0 10 10 10 10	60	B, C	
	70	A, C	
130100	80	A,B,C,E	
	90	A,18,6	

Page:
Date: / /

Solution:

Tid	Items		Itemset	sup		Itemse t	sup
20	BIE	C ₁	SAZ	6		SAZ	6
30	BIC	1 scan	१ छ रे	7	113	\$84	7
40	AIBID	3 23 23	£ C3	6	3	\$ 64	6
50	AIC		803	1.1		\$ E Z	3
60	Bic	1410	SEZ	3.	-	209	

Ls

-		1 3 3	Kiniagan					
-	Itemset	Sup	n tone	Itemset	sup	1	Itemset	Sup
	8A3	6		EA, B3	4.		8A,B3	40
1	5 83	7	Li X [i	8 A, CZ	4 .	2 nd can	& A,CZ	20
1	£ C 3	6		SA, E3	2		§ A, E 3	2
	\$EZ	3		€8,€3	4		SB,CZ	4
				₹8, € 7	3	6. 15		3
				€8,63	4		Lough	
	1							

12

12		
Itemset	sup	C3 = { { A, B, C } , { A, B, E } , { A, C, E } .
5 A 183	4	\$B,C, EZZ
SA,C3	4 L2×L2	The 2 - item subsets of SAB, CZ
SAIEZ	2	are {A,B3, &B,63, \$A,63
\$ B1 C3	4	which are all in 12:
SB, €3	3	The 2 - item subsets of & Bic, E?
		are \$8,03, \$0, E3 &
		& Bi € Z i ¿ Ci € Z axe not in
1		

Remove & BIC, EZ

Q 3	South N	1000	
Itemset		Itemset	Sup
SAIBIEZ 3	scan	SAIB, CZ	2
¿A,C,EZ		& A, B, E 3	2
€8, C, €3			S. AN

SAIBICZ L3×L3

The B-item subsets of & A,B,C,EZ

Bre & A,B,CZ,&B,C,EZ,&A,C,EZ

&A,B,EZ,&B,C,EZ, and &A,C,EZ

are not in 13

Remove SAIBICIEZ

Thus, C4 is empty & algorithm texminates.

8.2) Explain FP growth tree:

This algorithm is an improvement to the Apriori

2) A frequent pattern is generated without the need for candidate generation.

3) FP Growth algorithm represents the database
In the form of a tree called a frequent pattern
tree or fP tree.

4) This tree structure will maintain the association between the itemsets.

5) Input:

· Diatronsaction database

· min-sup, the minimum support count threshold

output: The complete set of frequent patterns.

g.3) Write application of Data mining.

Applications of data mining:

Nist of axeas where data mining is widely

used -

- 1) Financial Data analysis.
- 2) Retail Industry
- 3) Telecommunication Industry.
- 4) Biological Data analysis.
- 5) Other scientific Applications.
 - 6) Instrucion Detection.
 - 7) Praud detection.
 - 8) Health & medicine.