Shanghai Jiao Tong University CS241 Fall 2019

Assignment 9

Ziqi Zhao November 13, 2019

9.3. Implementation of Question 2.

(a) Encoding and decoding.

We map interval A[-1, 15] uniformly to interval $B[0, 2^{16} - 1]$, using the formula:

$$g(x) = \frac{(x-l)}{(u-l)} * (2^S - 1)$$

where u = 15, l = -1, S = 16.

Convert the answer g(x) into binary and place it in a vector

bool> or bitset<16>, then we obtain a 16-bit binary code as the chromosome.

In a similar way, we can decode a chromosome simply by converting it into decimal then apply $g^{-1}(x)$.

(b) Initial population.

Generate random numbers in [-1,15] for T=3000 times, and encode them using the above method to constitute the initial population.

(c) Crossover operator.

First, we randomly decide the couples in the whole population to crossover according to the pre-defined probability $P_c = 0.8$, then randomly extract two crossover points in interval [0,15] and swap the selected bits.

(d) Mutation operator.

For all 16T bits in the population, we select some randomly and invert them, using a pre-defined probability P_m .

(e) Selection methods.

It's obivious that the minimum of $x \cdot \sin x (x \in [-1, 15])$ is not less than 15, so we define the fitness function:

$$f_{itness}(x) = -x \cdot \sin x + 15$$

then f(x) keeps positive in [-1, 15].

Apply the Roulette-Wheel selection, we get the probability of k to be chosen:

$$P_k = \frac{f(k)}{\sum_i f(i)}$$

In order to keep the size of population, we pick individuals by above probabilities for T times independently and then obtain the new population.

(f) End criterion.

The algorithm will terminate when the number of iterations is larger than a given number (for instance 5000), or the difference between the average fitness score and the best fitness score is less than 0.01%.