King Richard is leading a troop of N^2 knights into battle! Being very organized, he labels his knights $K_0, K_1, \ldots, K_{N^2-1}$ and arranges them in an $N \times N$ square formation, demonstrated below:

<u> </u>	N columns					
K_0		<i>K</i> ₁	K ₂		K _{N-1}	
K_{N}		K _{N+1}	K _{N+2}		K _{2N-1}	
K ₂ ,	,	K _{2N+1}	K _{2N+2}		K _{3N-1}	N rows
$K_{N\cdot(N)}$,-1) A	(_{N-(N-1)+1}	K _{N-(N-1)+2}		K_{N^2-1}	

Before the battle begins, he wants to test how well his knights follow instructions. He issues S drill commands, where each command follows the format a_i b_i d_i and is executed like so:

• All knights in the square having the top-left corner at location (a_i, b_i) and the bottom-right corner at location $(a_i + d_i, b_i + d_i)$ rotate 90° in the clockwise direction. Recall that some location (r, c) denotes the cell located at the intersection of row r and column r. For example:

You must follow the commands sequentially. *The square for each command is completely contained within the square for the previous command.* Assume all knights follow the commands perfectly.

After performing all S drill commands, it's time for battle! King Richard chooses knights $K_{w_1}, K_{w_2}, \ldots, K_{w_L}$ for his first wave of attack; however, because the knights were reordered by the drill commands, he's not sure where his chosen knights are!

As his second-in-command, you must find the locations of the knights. For each knight K_{w_1} , K_{w_2} ,..., K_{w_L} , print the knight's row and column locations as two space-separated values on a new line.

Input Format

This is broken down into three parts:

- 1. The first line contains a single integer, N.
- 2. The second line contains a single integer, \boldsymbol{S}
 - \circ Each line i of the S subsequent lines describes a command in the form of three spaceseparated integers corresponding to $\pmb{a_i}$, $\pmb{b_i}$, and $\pmb{d_i}$, respectively.
- 3. The next line contains a single integer, \boldsymbol{L} .
 - \circ Each line $m{j}$ of the $m{L}$ subsequent lines describes a knight the King wants to find in the form of a single integer corresponding to w_j .

Constraints

- $1 \le S \le 2 \cdot 10^5$

- $egin{array}{l} \bullet & 7 \leq N \leq 3 \cdot 10^7 \\ \bullet & 1 \leq a_i, \overline{b_i} \leq N \\ \bullet & 0 \leq d_i < N \\ \bullet & a_{i-1} \leq a_i \text{ and } a_i + d_i \leq a_{i-1} + d_{i-1} \\ \bullet & b_{i-1} \leq b_i \text{ and } b_i + d_i \leq b_{i-1} + d_{i-1} \end{array}$

- $\begin{array}{l} \bullet \ 1 \leq L \leq 2 \cdot 10^5 \\ \bullet \ 0 \leq w_j < N^2 \end{array}$

Subtask

• $7 \le N \le 3000$ for 25% of the maximum score.

Output Format

Print $m{L}$ lines of output, where each line $m{j}$ contains two space-separated integers describing the respective *row* and *column* values where knight K_{w_i} is located.

Sample Input

Sample Output

3 4 2 5

Explanation

The following diagram demonstrates the sequence of commands:

Click here to download a larger image.

In the final configuration:

• Knight K_0 is at location (1,1)

- Knight K₆ is at location (1,7)
 Knight K₉ is at location (4,6)
 Knight K₁₁ is at location (3,4)
 Knight K₂₄ is at location (2,5)

- Knight K_{25} is at location (2,4)• Knight K_{48} is at location (7,7)