Muneeb Parwaz Student ID: 2448869

Replication of Results Reported

Table 1:

Experiment	Accuracy	Precision	Recall	F1-score	AUC
TF-IDF + NB (baseline)	0.625827815	0.609021933	0.747575464	0.555144187	0.747575464
TF-IDF + NB without stop-word removal	0.609933775	0.606261803	0.739621698	0.543441129	0.739621698
TF-IDF baseline with Comments included from bug reports	0.565562914	0.597830512	0.72101522	0.511415018	0.72101522
TF-IDF baseline with Labels included	0.709271523	0.625938841	0.768447891	0.613627993	0.768447891
TF-IDF baseline with Code Snippets included	0.631788079	0.608497595	0.743277987	0.558226446	0.743277987
TF-IDF baseline with Labels AND Code Snippets incl.	0.669536424	0.617454989	0.75834931	0.585876292	0.75834931

How to replicate results from table 1:

❖ Experiment 1: TF-IDF + NB (baseline) can be replicated by running the tool with the baseline configs:

```
project = 'pytorch'
REPEAT_TIMES = [10]
IncludeCommentsFromBugReports = False
IncludeCodeSnippetsAndErrorLogsFromBugReports = False
IncludeLabelsFromBugReports = False
Method = 'TFIDFNaiveBayes'
RemoveHTMLTags = True
RemoveEmoji = True
RemoveStopWords = True
CleanString = True
UseGridSearchCVForBERTLR = False
```

- Output file is called pytorch NB.csv
- For experiment 2: set "RemoveStopWords" to False and then save and re-run the tool.
 - Output file is called pytorch NB KeepStopwords.csv
- ❖ For experiment 3: set "IncludeCommentsFromBugReports" to True and then re-run the tool.
 - Output file is called pytorch_NB_CommentsIncluded.csv
- ❖ For experiment 4: set "IncludeLabelsFromBugReports" to True and then re-run the tool.
 - ➤ Output file is called pytorch NB LabelsIncluded.csv
- ❖ For experiment 5: set "IncludeCodeSnippetsAndErrorLogsFromBugReports" to True and then re-run the tool.
 - ➤ Output file is called pytorch NB CodeSnippetsAndErrorLogsIncluded.csv
- ❖ For experiment 5: set both "IncludeLabelsFromBugReports" and
 - "IncludeCodeSnippetsAndErrorLogsFromBugReports" to True and then re-run the tool.
 - > Output file is pytorch NB CodeSnippetsAndErrorLogsIncluded LabelsIncluded.csv

Table 2:

Model	Accuracy	Precision	Recall	F1-score	AUC
TF-IDF + NB (baseline)	0.625827815	0.609021933	0.747575464	0.555144187	0.747575464
BERT + LR	0.871523179	0.699985972	0.632523249	0.652598514	0.632523249

How to replicate results from Table 2:

• for TF-IDF + NB (baseline), run the tool with the following configs:

```
project = 'pytorch'
REPEAT_TIMES = [10]
IncludeCommentsFromBugReports = False
IncludeCodeSnippetsAndErrorLogsFromBugReports = False
IncludeLabelsFromBugReports = False
Method = 'TFIDFNaiveBayes'
RemoveHTMLTags = True
RemoveEmoji = True
RemoveStopWords = True
CleanString = True
UseGridSearchCVForBERTLR = False
```

- ➤ Output file is called pytorch NB.csv
- ❖ for BERT + LR, set "Method" to "BERTLogisticRegression", and then save and rerun the tool.
 - > Output file is called pytorch BERT-LR.csv

Table 3:

Dataset	Model	Accuracy	Precision	Recall	F1-score	AUC
PyTorch	TF-IDF + NB	0.625827815	0.609021933	0.747575464	0.555144187	0.747575464
	BERT + LR	0.871523179	0.699985972	0.632523249	0.652598514	0.632523249
TensorFlow	TF-IDF + NB	0.561744966	0.635961066	0.72267484	0.539710278	0.72267484
	BERT + LR	0.863758389	0.773706983	0.728266	0.745852715	0.728266
Keras	TF-IDF + NB	0.560447761	0.629413581	0.698389094	0.540072792	0.698389094
	BERT + LR	0.829850746	0.726213108	0.687601091	0.701687124	0.687601091
MXNet	TF-IDF + NB	0.606730769	0.613445133	0.749989724	0.547106142	0.749989724
	BERT + LR	0.888461538	0.761363159	0.679620009	0.703560512	0.679620009
Caffe	TF-IDF + NB	0.522413793	0.55724276	0.623421921	0.442683432	0.623421921
	BERT + LR	0.875862069	0.570779282	0.533520415	0.535300613	0.533520415

How to replicate results from Table 3:

- ❖ The first pair of rows (under PyTorch) come from table 2, so can be obtained in the same way as described on the previous page.
- To get the remaining 8 rows, change the "project" variable from 'pytorch' to the 4 other projects names ('tensorflow', 'keras', 'incubator-mxnet' and 'caffe').
- ❖ Then for each of these projects, run the tool twice. Once with "Method" set to "TFIDFNaiveBayes" and the second time with Method="BERTLogisticRegression".
 - The output files (in order in which they appear in Table 3) are called:
 - o pytorch NB.csv
 - o pytorch BERT-LR.csv
 - o tensorflow NB.csv
 - o tensorflow BERT-LR.csv
 - o keras NB.csv
 - o keras BERT-LR.csv
 - o incubator-mxnet NB.csv
 - o incubator-mxnet_BERT-LR.csv
 - o caffe NB.csv
 - o caffe_BERT-LR.csv

Table 4:

Model	Accuracy	Precision	Recall	F1-score	AUC
BERT + LR with stop-word removal (new baseline)	0.871523179	0.699985972	0.632523249	0.652598514	0.632523249
BERT + LR without stop-word removal	0.886092715	0.756221254	0.650873254	0.678438532	0.650873254
BERT + LR with Comments included	0.873509934	0.700764192	0.620798251	0.63706784	0.620798251
BERT + LR with Labels included	0.869536424	0.687540901	0.621969034	0.641102365	0.621969034
BERT + LR with Code Snippets included	0.878145695	0.730814982	0.632696434	0.655390815	0.632696434

How to replicate results from Table 4:

For row 1, run the tool with the following configurations:

```
project = 'pytorch'
REPEAT_TIMES = [10]
IncludeCommentsFromBugReports = False
IncludeCodeSnippetsAndErrorLogsFromBugReports = False
IncludeLabelsFromBugReports = False
Method = 'BERTLogisticRegression'
RemoveHTMLTags = True
RemoveEmoji = True
RemoveStopWords = True
CleanString = True
UseGridSearchCVForBERTLR = False
```

- ➤ Output file is called pytorch BERT-LR.csv
- For experiment 2, set "RemoveStopWords" to False, and then save and re-run the tool.
 - ➤ Output file is called pytorch BERT-LR KeepStopwords.csv
- ❖ For experiment 3, set "IncludeCommentsFromBugReports" to True, and then save and re-run the tool.
 - ➤ Output file is called pytorch BERT-LR CommentsIncluded.csv
- ❖ For experiment 4, set "IncludeLabelsFromBugReports" to True, and then save and rerun the tool.
 - ➤ Output file is called pytorch BERT-LR LabelsIncluded.csv
- ❖ For experiment 5, set "IncludeCodeSnippetsAndErrorLogsFromBugReports" to True, and then save and re-run the tool.
 - ➤ Output file is called pytorch BERT-LR CodeSnippetsAndErrorLogsIncluded.csv

How to replicate statistical test results highlighted in each table above, and reported in the table below:

Metric	Test Statistic	P-value	Significantly different? (p < 0.05)	Interpretation
AUC	0.0	1.862645149230957e-09	Yes	BERT + LR is significantly better
Accuracy	0.0	1.7245993818153558e-06	Yes	BERT + LR is significantly better
Precision	6.0	2.60770320892334e-08	Yes	BERT + LR is significantly worse
Recall	0.0	1.862645149230957e-09	Yes	BERT + LR is significantly better
F1 Score	4.0	1.30385160446167e-08	Yes	BERT + LR is significantly worse

- 1. After running two different models in main.py, open the csv output file generated for each model.
- 2. Open the statisticalTest.py file
- 3. Copy the list of Auc, Accuracy, Precision, Recall and F1 scores from the output file of the model (found in the last 5 columns of the CSV)
- 4. Paste them into lines 5-9 for the first model, and onto 12-16 for the second model (into their corresponding variables)
- 5. Save and run the file by running the command: python statisticalTest.py
- 6. View the results of the statistical test for each evaluation metrics in the output:

```
Test Results:
Test Statistic: 23.0000
P-value: 0.6953
  No statistically significant difference in Auc (p >= 0.05)
The difference could be due to random chance.
Test Statistic: 0.0000
P-value: 0.0020
 The difference in Accuracy is statistically significant (p < 0.05)</p>
The new model significantly outperforms the Baseline
Test Statistic: 0.0000
P-value: 0.0020
 The difference in Precision is statistically significant (p < 0.05)</p>
The new model significantly outperforms the Baseline
Test Statistic: 23.0000
P-value: 0.6953
  No statistically significant difference in Recall (p >= 0.05)
The difference could be due to random chance.
Test Statistic: 0.0000
P-value: 0.0020
 The difference in F1 is statistically significant (p < 0.05)</p>
The new model significantly outperforms the Baseline
```

Note: the highlighted statistical comparisons in tables 1-4 used the list of values from the output csv files from the row where repeated_times=10, whereas the table in Appendix 3 – which compares values from the output files "pytorch_NB.csv" and "pytorch_BERT-LR KeepStopwords.csv" – uses the row where repeated_times=30.