Vecteurs - Colinéarité

On se place dans un repère (O;I;J).

Définition :

On dit que deux vecteurs non-nuls sont colinéaires si et seulement si ils ont même direction.

Remarque: Par convention, le vecteur nul est colinéaire à tous les vecteurs.

Propriété:

Deux vecteurs \vec{u} et \vec{v} , non-nuls, sont colinéaires lorsqu'il existe un réel k tel que $\vec{v} = k \vec{u}$. k est appelé le coefficient de colinéarité.

Déterminant

Définition:

On définit le **déterminant** de deux vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ par la formule $\det(\vec{u};\vec{v}) = xy' - x'y$.

Propriété: (Critère de colinéarité)

Deux vecteurs \vec{u} et \vec{v} sont colinéaires <u>si et seulement si</u> leur déterminant est nul : $det(\vec{u};\vec{v})=0$.

Application 1:

Soit (O; I, J) un repère orthogonal. Les vecteurs suivants sont-ils colinéaires?

1)
$$\vec{u} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -6 \\ -18 \end{pmatrix}$.

2)
$$\vec{w} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$
 et $\vec{z} \begin{pmatrix} 12 \\ -7 \end{pmatrix}$.

· Applications de la colinéarité

Droites parallèles - Propriété:

Deux droites (AB) et (CD) sont parallèles <u>si et seulement si</u> les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Points alignés - Propriété:

Trois points A, B et C sont alignés \underline{si} et $\underline{seulement si}$ les vecteurs \overline{AB} et \overline{AC} sont colinéaires.

Application 2:

A(1;2); B(3;1) et C(5;3) sont-ils alignés?