Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Радиофизическая лаборатория 2020-2021 уч. год

группы Б01-818, С01-819

Даты	Разделы
15 марта 2021 г.	Занятие 1. Основные свойства ДВПФ
22 марта 2021 г.	Занятие 2. Основные свойства ДПФ
29 марта 2021 г.	Занятие 3. Связь ДВПФ и ДПФ
5 апреля 2021 г.	Сдача лабораторной работы

Данная лабораторная работа посвящена изучению дискретного и дискретного во времени преобразования Фурье. Эти два преобразования предназначены для сигнала с дискретным временем. Они позволяют получить спектр или оценки спектра для таких сигналов. В дальнейшем умение работать с этими спектрами позволит проводить спектральный анализ состава сигнала и его цифровую фильтрацию.

Лабораторная работа состоит из трех частей, каждая из которых рассчитана на одно занятие (4 ак. часа). Задания по моделированию выполняются с помощью библиотек языка программирования Python 3 (NumPy, SciPy, Matplotlib) либо в среде MATLAB.

Задание к допуску

Задание к допуску основано на теоретических частях трех занятий.

№1. Запишите пару формул дискретного во времени преобразования Фурье (ДВПФ) в нормированных частотах (в переменных V). Пользуясь формулой прямого преобразования, определите ДВПФ следующих последовательностей:

- а) $h[k] = \mathbf{1}[k] \mathbf{1}[k-1]$ (импульсная характеристика простого дискретного дифференциатора),
- б) $w[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$, N=10 (прямоугольное окно длиной в N отсчетов),
- в) $h_3[k] = \frac{1}{3}\mathbf{1}[k] + \frac{1}{3}\mathbf{1}[k-1] + \frac{1}{3}\mathbf{1}[k-2]$ (импульсная характеристика фильтра скользящего среднего второго порядка).

Для получившихся спектральных плотностей $X(v) = \left| X(v) \right| e^{j\phi(v)}$. определите модуль $\left| X(v) \right|$ и фазовую часть $\phi(v) = arctg \, \frac{{
m Im} \, X(v)}{{
m Re} \, X(v)}$.

№2. Определите ДВПФ X(v) и 16-точечное ДПФ $\tilde{X}[n]$ (с нормировкой 1/N в прямом преобразовании) следующих дискретных гармонических сигналов:

a)
$$x_1[k] = \sum_{m=-\infty}^{\infty} \mathbf{1}[k-16m]$$
 (последовательность единичных импульсов с периодом 16),

б)
$$x_2[k] = \cos \left(2\pi \frac{5}{16}k\right)$$
 (косинусоида с относительной частотой $v_0 = \frac{5}{16}$),

в)
$$x_3[k] = \sin \left(2\pi \frac{3}{16} k \right)$$
 (синусоида с относительной частотой $v_0 = \frac{3}{16}$),

r)
$$x_4[k] = \cos\left(2\pi \frac{5}{16}k\right) + \sin\left(2\pi \frac{3}{16}k\right)$$
.

Постройте графики действительной и мнимой части отсчетов ДПФ ($\operatorname{Re} \tilde{X}[n]$ и $\operatorname{Im} \tilde{X}[n]$), а также схематический график для ДВПФ с указанием весов дельта-функций. Сравните результаты. Указать, в чем заключается связь между ДВПФ и ДПФ для данных периодических последовательностей.

№3. Предположим, что спектр исходного сигнала для дискретизации был отличен от нуля лишь на интервале $\left[-\frac{f_\pi}{4},\frac{f_\pi}{4}\right]$ где f_π — частота дискретизации. График модуля спектра исходного сигнала изображен на рисунке ниже.

Установить, ли наблюдаться эффект наложения при дискретизации сигнала. Построить график модуля спектральной плотности дискретизованного сигнала $x[k] = \Delta t x(k\Delta t)$.

№4. Пусть x[k] — действительная последовательность конечной длительности, для которой известны отсчеты 10-точечного ДПФ X[4] = 5 - j, X[0] = 5 и X[8] = 8 + j. Указать все значения ДВПФ $X(\nu)$, которые можно установить из этих данных.

Занятие 1. Основные свойства ДВПФ

Первая часть лабораторной работы посвящена изучению дискретного во времени преобразования Фурье (ДВПФ). Оно отличается от преобразования Фурье тем, что сигнал в нем имеет форму функции дискретного времени x[k], $k \in \mathbb{Z}$. В этой части работы мы получим формулы ДВПФ, взяв преобразование Фурье от дискретизованного сигнала. Поскольку преобразование Фурье может быть применено для сигнала с континуальным временем x(t), $t \in \mathbb{R}$, нам потребуется также континуальная запись дискретизованного сигнала.

Теоретическая часть

Преобразование Фурье для дискретизованных сигналов

Спектр дискретизованного сигнала

Рассмотрим способы описания дискретизованного сигнала, т.е. дискретного сигнала, получаемого из аналогового с помощью дискретизации.

1) Функция дискретного времени.

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени $k\Delta t$, $k\in Z$, где Δt — шаг дискретизации:

$$x[k] = Tx(k\Delta t), T \in \{1; \Delta t\}$$

где T- константа с размерностью времени, равная единице или Δt . Выбор этой константы, как будет показано далее, влияет на связь между спектром дискретизованного и исходного сигнала.

2) Функция непрерывного времени (континуальная запись).

$$x_{_{\mathrm{I}}}(t) = \mathrm{T} \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - k\Delta t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t)$$

В этой записи дискретизованного сигнала представляется как результат умножения исходного аналогового сигнала x(t) на идеальную функцию дискретизации, представляющую собой периодическую последовательность дельта-функций Дирака с площадями T

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

В таком случае дискретизованный сигнал описывается последовательностью дельта-функций с площадями (весами) $x[k] = Tx(k\Delta t)$:

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} \mathrm{T}x(k\Delta t)\delta(t - k\Delta t).$$

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t)$$

Определим спектр дискретизованного сигнала $X_{_{\rm I}}(f)$, зная спектр исходного аналогового сигнала до дискретизации X(f). Воспользуемся континуальной формой записи дискретизованного сигнала

$$x_{_{\Pi}}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - n\Delta t) = D(t)x(t)$$

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

Ряд Фурье для идеальной функции дискретизации

$$D(t) = \frac{T}{\Delta t} \sum_{m=-\infty}^{\infty} \exp(jm \frac{2\pi}{\Delta t} t).$$

$$X_{_{\Pi}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X(f - mf_{_{\Pi}}).$$

При непосредственном взятии отсчетов $x[k] = x(k\Delta t)$ константа T = 1, и спектр перед периодическим повторением масштабируется.

При $T=\Delta t$ (когда $x[k]=\Delta t\;x(k\Delta t)$) дискретизация аналогового сигнала x(t) по времени с шагом Δt приводит к периодическому повторению его спектра с периодом (по частоте), равным частоте дискретизации $f_{\pi}=1/\Delta t$

$$X_{_{\mathrm{I}}}(f) = \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}).$$

Заметим, что при этом интервал $\left[-\frac{f_{\pi}}{2},\frac{f_{\pi}}{2}\right]$ является одним периодом функции $X_{\pi}(f)$. Если спектр аналогового сигнала лежит в этом интервале, то он периодически повторяется без наложения.

Эффект наложения

Если спектр аналогового сигнала до дискретизации не был ограничен интервалом $\left[-\frac{f_{_{\rm I}}}{2},\frac{f_{_{\rm I}}}{2}\right]$, то

возникает эффект наложения (англ. aliasing, элайзинг, алиасинг). В таком случае спектр аналогово и дискретизованного на этом интервале не совпадают. Частично устранить этот эффект можно примирением фильтра нижних частот с частотой среза $f_c = f_{\pi} / 2$, при этом информация о высокочастотных спектральных компонентах $|f| > f_c$ не сохраняется.

Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок $x(k\Delta t), k\in Z$ некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k\in Z$ — номер отсчета. $f_{\pi}=1/\Delta t$ — частота дискретизации — величина, обратная шагу дискретизации (размерность [Гц]=[c $^{-1}$]). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом $\left[-f_{\pi}/2;\,f_{\pi}/2\right]$, а соответственно при дискретизации не наблюдается эффект наложения спектров ($f_{\pi}>2f_{\text{B}}$).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t),$$

где $T=\Delta t$. Как ранее (в лекциях) было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра аналогового сигнала x(t) с периодом, равным частоте дискретизации f_{π} :

$$X_{_{\mathcal{I}}}(f) = \sum_{n=-\infty}^{\infty} X_{_{\mathbf{a}}}(f - nf_{_{\mathcal{I}}}).$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm I\!R}}\,/\,2;\,f_{_{\rm I\!R}}\,/\,2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$X_{_{\mathrm{I}}}(f) = \int_{-\infty}^{\infty} x_{_{\mathrm{I}}}(t) \exp(-j2\pi ft) dt = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t-k\Delta t) \exp(-j2\pi ft) dt = \int_{-\infty}^{\infty} x_{_{\mathrm{I}}}(t) \exp(-j2\pi ft) dt$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t - k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{\pi}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t). \tag{1.1}$$

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ). Учитывая, что (1.1) представляет собой ряд Фурье для периодической функции $X_{_{\rm II}}(f)^{1}$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (1.2)

В итоге получаем пару формул (1.1) и (1.2), определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ). ДВПФ в свою очередь показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот $\left[-f_{_{\! /}}/2;\,f_{_{\! /}}/2\right]$ в отсутствии наложения совпадает со спектром исходного аналогового сигнала. При этом важно помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как $x[k] = \Delta t x(k\Delta t)$.

Различные формы записи ДВПФ

Мы установили, что пара дискретного во времени преобразования Фурье (ДВПФ) имеет вид

$$X(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t),$$

$$x[k] = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$

Введем нормированные частоты $\, \nu = f \, / \, f_{_{\rm I\! I}} = f \, \Delta t \, . \,$ Тогда пара ДВПФ может быть записана следующим образом:

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk),$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv.$$

^{^1} Напоминание. Для 2l - периодической функции f(x), абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций $\phi_m(x) = \exp(jm\frac{\pi}{l}x)$, $m \in Z$: $f(x) = \sum_{l=0}^{+\infty} c_m \exp(jm\frac{\pi}{l}x)$, где коэффициенты Фурье $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$

$$X(\omega) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\omega k \Delta t),$$

$$x[k] = \frac{\Delta t}{2\pi} \int_{-\omega_{\pi}/2}^{\omega_{\pi}/2} X(\omega) \exp(j\omega k \Delta t) d\omega.$$

Приняв $\theta = 2\pi v$ (нормированный угол в радианах), получаем

$$X(\theta) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\theta k),$$

$$x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) \exp(j\theta k) d\theta.$$

Частотная	Размерность	Период	Основной	
переменная		повторения	период	
		спектра		
f	Гц	$f_{_{\mathrm{II}}} = 1/\Delta t$	$[-f_{_{\mathrm{I\!I}}}/2;f_{_{\mathrm{I\!I}}}/2]$	
$\omega = 2\pi f$	рад/с	$\omega_{_{\mathrm{II}}}=2\pi/\Delta t$	$[-\omega_{_{\mathrm{I}}}/2;\omega_{_{\mathrm{I}}}/2]$	
$v = f / f_{\pi}$	безразмерная	1	[-0,5;0,5]	
$\theta = 2\pi f / f_{\pi}$	рад	2π	$[-\pi;\pi]$	

Пример.

Рассмотрим в качестве примера последовательность единичных импульсов $x[k] = \mathbf{1}[k+1] + \mathbf{1}[k] + \mathbf{1}[k-1]$, где $\mathbf{1}[k]$ — единичный импульс, определяемы как

$$\mathbf{1}[k] = \begin{cases} 1, k = 0; \\ 0, k \neq 0. \end{cases}$$

ДВПФ такой последовательности

$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = \sum_{k=-1}^{1} x[k]e^{-j2\pi vk} = x[-1]e^{j2\pi v} + x[0]e^{0} + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v)$$

Свойства ДВПФ

Линейность Если $x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$ и $y[k] \overset{DTFT}{\longleftrightarrow} Y(\mathbf{v})$, то $\alpha x[k] + \beta y[k] \overset{DTFT}{\longleftrightarrow} \alpha X(\mathbf{v}) + \beta Y(\mathbf{v})$, где α , β фиксированные числа.

Это свойство следует непосредственно из соответствующих свойств интеграла и суммы.

Теорема запаздывания

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 , то $x[k-l] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v}) \exp(-j2\pi \mathbf{v}l)$.

x[k-l] — это сигнал, запаздывающий по времени относительно сигнала x[k] на l отсчетов в случае l>0 и опережающий сигнал x[k] на -l отсчетов в случае l<0.

Докажем свойство. Для этого возьмем обратное ДВПФ для правой части выражения:

$$\int_{-1/2}^{1/2} X(v) \exp(-j2\pi v l) \exp(j2\pi v k) dv = \int_{-1/2}^{1/2} X(v) \exp(j2\pi v (k-l)) dv = x[k-l].$$

Стоит отметить, что |X(v)| для запаздывающего и исходного сигнала одинаков.

Пример

Теорема смещения

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, то $x[k] \exp(j2\pi v_0 k) \overset{DTFT}{\longleftrightarrow} X(v-v_0)$

Умножение сигнала на комплексную экспоненту вида $\exp(j2\pi v_0 k),\ v_0\in R$ приводит к сдвигу спектральной функции вдоль оси частот на v_0 вправо в случае $v_0>0$ и на $-v_0$ влево в случае $v_0<0$.

Пример.

$$y[k] = x[k] \exp(j2\pi v_0 k)$$
, где $x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$.
$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi v k) = \sum_{k=0}^{N-1} \exp(-j2\pi v k) = \frac{1-\exp(-j2\pi v N)}{1-\exp(-j2\pi v)} = \frac{1-\exp(-j2\pi v N)}{1-\exp(-j2\pi v N)} = \frac{1-\exp(-j$$

$$= \frac{2j}{2j} \frac{e^{-j\pi vN}}{e^{-j\pi v}} \frac{(e^{j\pi vN} - e^{-j\pi vN})}{(e^{j\pi v} - e^{-j\pi v})} = \frac{\sin(N\pi v)}{\sin(\pi v)} \exp(-j(N-1)\pi v).$$

$$|X(v)| = \left| \frac{\sin(N\pi v)}{\sin(\pi v)} \right|.$$

$$Y(v) = X(v - v_0) = \frac{\sin(N\pi(v - v_0))}{\sin(\pi(v - v_0))} \exp(-j(N - 1)\pi(v - v_0)).$$

Равенство Парсеваля

$$\sum_{k=-\infty}^{\infty} |x[k]|^2 = \int_{-1/2}^{1/2} |X(v)|^2 dv$$

$$\sum_{k=-\infty}^{\infty} x[k] y^*[k] = \int_{-1/2}^{1/2} X(v) Y^*(v) dv$$

Пример.

Предположим, что имеется финитная последовательность $x[k] = \{1; \ 1; \ 1\}$. Тогда $\sum_{k=-\infty}^{\infty} \left|x[k]\right|^2 = 3$.

При этом
$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = x[-1]e^{j2\pi v} + x[0]e^0 + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v).$$

$$\int_{-1/2}^{1/2} |X(v)|^2 dv = \int_{-1/2}^{1/2} |1 + 2\cos(2\pi v)|^2 dv = 3.$$

Умножение на
$$k$$
 и дифференцирование по частоте Если $x[k] \overset{\mathrm{DTFT}}{\longleftrightarrow} X(\mathbf{v})$, то $kx[k] \overset{\mathrm{DTFT}}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(\mathbf{v})}{d\mathbf{v}}$.

Изменение масштаба

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 , то $\sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v}L).$

Для того, чтобы доказать свойство, вычислим ДВПФ для последовательности в левой части.

$$\sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \exp(-j2\pi vk) = \sum_{m=-\infty}^{\infty} x[m] \sum_{k=-\infty}^{\infty} \mathbf{1}[k-mL] \exp(-j2\pi vk) =$$

$$= \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi (vL)m) = X(vL).$$

Пример

Рассмотрим последовательность из 10 единичных импульсов. Между каждой парой отсчетов добавим L-1 нулевой отсчет. Тогда модуль ДВПФ получившейся последовательности

$$|Y(v)| = \left| \frac{\sin(10\pi vL)}{\sin(\pi vL)} \right|.$$

Для L = 5 результат показан на рисунке ниже.

Теормемы о свертке

а) Теорема о свертке во временной области.

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 и $y[k] \overset{DTFT}{\longleftrightarrow} Y(\mathbf{v})$, то $\sum_{m=-\infty}^{\infty} x[m] y[k-m] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v}) Y(\mathbf{v}).$

В левой части стоит дискретная свертка сигналов, в правой — произведение спектров.

б) Теорема о свертке в частотной области

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 и $y[k] \overset{DTFT}{\longleftrightarrow} Y(\mathbf{v})$, то $x[k]y[k] \overset{DTFT}{\longleftrightarrow} \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) Y(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}.$

В левой части стоит произведение сигналов, в правой -- циклическая свертка спектров.

ДВПФ периодических последовательностей

а) последовательность единичных импульсов с периодом 1

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v-n)$$

Вычислим ДВПФ для последовательности $\sum_{m=-\infty}^{\infty} \mathbf{1} \big[k - m \big]$.

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m]\right) \exp(-j2\pi vk) = \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \mathbf{1}[k-m] \exp(-j2\pi vk).$$

$$X(v) = \sum_{m=-\infty}^{\infty} \exp(-j2\pi vm).$$

Заметим, что $\sum_{m=-\infty}^{\infty} \exp(-j2\pi v m)$ — это ряд Фурье для периодической (по частоте)

последовательности δ -функций с периодом 1

$$\sum_{n=-\infty}^{\infty} \delta(v-n) = \sum_{m=-\infty}^{\infty} C_{-m} \exp(-j2\pi v m),$$

где коэффиценты Фурье

$$C_{-m} = \int_{-1/2}^{1/2} \delta(\mathbf{v}) \exp(j2\pi \mathbf{v} m) d\mathbf{v} = e^0 = 1$$
. Тогда получаем, что $X(\mathbf{v}) = \sum_{n=-\infty}^{\infty} \delta(\mathbf{v} - n)$.

б) Периодическая последовательность единичных импульсов с периодом $\,L_{\,\cdot\,}$

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k - mL \right] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{L} \right)$$

Найдем ДВПФ для последовательности $x(k) = \sum_{m=-\infty}^{\infty} \mathbf{1} \big[k - mL \big]$.

Используя свойство об изменении масштаба $\sum_{m=-\infty}^{\infty} xigl[m] \mathbf{1}igl[k-mLigr] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v}L)$, из

$$\sum_{m=-\infty}^{\infty}\mathbf{1}\big[k-m\big] \overset{\scriptscriptstyle DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta\big(\nu-n\big)$$
 получаем
$$\sum_{m=-\infty}^{\infty}\mathbf{1}\big[k-mL\big] \overset{\scriptscriptstyle DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta\big(\nu L-n\big)$$

Воспользовавшись свойством δ -функции

$$\delta(av - b) = \frac{1}{|a|} \delta\left(v - \frac{b}{a}\right),$$

получаем, что

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k - mL \right] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{L} \right)$$

в) Гармонические сигналы

$$\exp(j2\pi v_0 k), -\infty < k < +\infty \stackrel{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v - v_0 - n).$$

Если $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$, то $x[k] \exp \left(j2\pi \nu_0 k\right) \overset{DTFT}{\longleftrightarrow} X(\nu-\nu_0)$. (теорема смешения для ДВПФ). При этом $\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k-m\right] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \left(\nu-n\right)$. Получаем, что

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \exp(j2\pi v_0 k) \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v-v_0-n).$$

$$\exp(j2\pi v_0 k), -\infty < k < +\infty \stackrel{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v - v_0 - n).$$

Задание на моделирование

Далее значения N , L , \mathbf{v}_0 следует использовать из таблицы в соответствии с Вашим вариантом задания.

Вариант	N	L	ν_{0}	Вариант	N	L	ν_0
1	8	4	0,1	11	7	2	0,1
2	9	3	-0,1	12	8	1	-0,1
3	6	4	0,1	13	9	4	0,1
4	7	2	-0,1	14	7	2	-0,1
5	8	3	0,1	15	8	3	0,1
6	10	1	-0,1	16	10	2	-0,1
7	6	2	0,1	17	7	2	0,1
8	7	3	-0,1	18	8	2	-0,1
9	8	1	0,1	19	10	2	0,1
10	9	2	-0,1	20	8	3	-0,1

Задача 1.1. Прямоугольный импульс в дискретной форме. С помощью моделирования вычислите и постройте график для модуля и фазы ДВПФ $X_N(\nu)$ последовательности из N последовательных единичных импульсов $x_N[k] = \sum_{m=0}^{N-1} \mathbf{1} \big[k-m \big]$ для $\nu \in [-0,5;0,5]$. Сравните результат с аналитической записью для $X_N(\nu)$ (задача 1.6 из задания к допуску). Заполнить таблицу, используя результаты моделирования и аналитические записи. Принять частоту дискретизации равной 1 Гц.

Значение Ширина $\Delta { m V}$ главного $X(0)$ лепестка на нулевом уровне		Точки скачков фазы на π	Энергия 2 х Δt $\int_{-1/2}^{1/2} X(v) ^2 dv$

 $^{^2}$ Для дискретного сигнала рассматривают энергию, приходящуюся на один период частоты, т.е. на полосу частот шириной $f_{_{\pi}}$:

$$\int_{-0.5f_{\pi}}^{0.5f_{\pi}} |X(f)|^2 df = \frac{1}{\Delta t} \int_{-1/2}^{1/2} |X(v)|^2 dv$$

Для ее вычисления можно воспользоваться равенством Парсеваля для ДВПФ.

Задача 1.2. Свойство масштабирования.

Постройте последовательность $x_L[k] = \sum_{m=-\infty}^\infty x_N[m] \mathbf{1}[k-mL]$, добавив L-1 нулевой отсчет между каждой парой соседних отсчетов сигнала $x_N[k]$ (из задачи 1.1). С помощью моделирования постройте модуль ее ДВПФ для $v \in [-0,5;0,5]$ и сравните результат с $X_N(vL)$ (из задачи 1.1).

Задача 1.3. Дифференцирование спектральной плотности.

Рассмотрите последовательность $x_D[k] = k \, x_N[k]$. Постройте с помощью моделирования график для модуля ДВПФ этой последовательности $X_D(v)$ для $v \in [-0,5;0,5]$.

** Получить численным или символьным дифференцированием график для $\frac{j}{2\pi} \frac{dX_{_N}(v)}{dv}$ и сравнить его с $X_{_D}(v)$. 3

Задача 1.4. Теорема смещения.

С помощью моделирования получите график модуля спектральной плотности $X_s(v)$ для сигнала $x_s[k] = x_N[k] \exp(j2\pi v_0 k)$. Приведите ответы на следующие вопросы.

- а) Какую аналитическую форму записи имеет функция $X_{\scriptscriptstyle S}(
 u)$?
- б) Как результат моделирования соотносится с теоремой смещения для ДВПФ?
- в) Почему получившийся спектр не симметричен относительно нулевой частоты?

Задача 1.5. Теорема о свертке во временной области.

Вычислите с помощью моделирования линейную дискретную свертку последовательности $x_N[k] = \sum_{m=0}^{N-1} \mathbf{1} \big[k-m \big] \text{ с точно такой же последовательностью. Постройте график для модуля ДВПФ этой последовательности. Воспользовавшись теоремой о свертке, получите аналитическую запись ДВПФ. Заполните таблицу.$

Значение $X(0)$	Ширина ∆∨ главного лепестка на нулевом уровне	Энергия х Δt $\int_{-1/2}^{1/2} X(\mathbf{v}) ^2 d\mathbf{v}$

Контрольные вопросы

№1. Пусть X(v) — ДВПФ спектр некоторой последовательности x[k]. Как нужно изменить последовательность x[k], чтобы ее ДВПФ спектр был сдвинут влево относительно исходного на $v_0 = 1/10$?

³ Двумя звездочками «**» здесь и далее отмечены задачи повышенной трудности.

№2. Пусть $X_5(v)$ — ДВПФ спектр пяти последовательных единичных импульсов $x_5[k] = \sum_{n=0}^4 \mathbf{1} \big[k - m \big]$, а Y(v) — ДВПФ спектр последовательности $y[k] = k x_5[k]$. Пусть также

$$\Phi(\mathbf{v}) = \int_{-1/2}^{1/2} X_5(\tilde{\mathbf{v}}) Y(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}},$$

$$\Psi(\mathbf{v}) = \int_{-1/2}^{1/2} Y(\tilde{\mathbf{v}}) X_5(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}.$$

Чему равно $\Phi(v)$? Выполняется ли $\Phi(v) \equiv \Psi(v)$?

№3. Предположим, что имеется финитная последовательность

$$x[k] = \{1; 5; 2; 4; 1; 1; 3\}.$$

Не вычисляя непосредственно ее ДВПФ X(v), опередите значения следующих выражений:

$$X(0); X(1/2); \int_{-1/2}^{1/2} X(v) dv; \int_{-1/2}^{1/2} |X(v)|^2 dv; \int_{-1/2}^{1/2} \left| \frac{dX(v)}{dv} \right|^2 dv.$$

№4. Докажите для ДВПФ свойство: если $x[k] \overset{DTFT}{\longleftrightarrow} X(v)$, то $kx[k] \overset{DTFT}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(v)}{dv}$. Получите аналогичное свойство для спектра сигнала (последовательности) $k^M x[k]$, где М - натуральное число.

В качестве примера рассмотрите случай $x[k] = \sum_{m=0}^{N-1} \mathbf{1} \big[k-m \big]$. Постройте с помощью Octave/Python график последовательности и ДВПФ при $-0.5 \le v \le 0.5\,$ для различных M (M=1, 2, 3).

Nº5. Предположим, что аналоговый сигнал $x(t) = \cos(2\pi t f_0)$, $-\infty < t < \infty$, $f_0 = 250$ Гц был дискретизован с частотой дискретизации $f_{\pi} = 1$ кГц. Будет ли наблюдаться эффект наложения (aliasing)?

Определить и построить график ДВПФ для отсчетов сигнала $x[k] = \Delta t \, x(t) \Big|_{t=k\Delta t}$ в переменных v .

Занятие 2. Основные свойства ДПФ

Теоретическая часть

Формы записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала либо длиной в N отсчетов, либо периодическая с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Примечание. Именно в таком виде ДПФ реализовано в Matlab, библиотеках Python Numpy и Scipy.

Наряду с приведенной парой формул, существует запись ДПФ с нормирующем множителем 1/N в прямом преобразовании:

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Далее будет показано, что такая форма ДПФ удобна при рассмотрении периодических последовательностей отсчетов x[k]. Для того, чтобы различать две записи, будем использовать обозначения $\tilde{X}[n]$ и X[n]. Очевидно, что

$$\tilde{X}[n] = \frac{1}{N} X[n].$$

В ДПФ и сигнал x[k], и последовательность ДПФ отсчетов X[n] представляют собой функции дискретного аргумента. Функцию X[n] обычно рассматривают только для значений $n=0,1,\ldots,N-1$, при этом она является периодической с периодом N.

В результате обратного ДПФ получается N –периодическая функция дискретного времени, что необходимо учитывать при использовании обратного ДПФ для последовательностей конечной длительности. Для них результат обратного преобразования нужно взять на периоде [0, N-1], а остальные отсчеты приравнять к нулю.

Пример. Пусть $x[k] = \cos\left(2\pi\frac{3}{16}k\right)$. Вычислить 16-точечное ДПФ этой последовательности $\tilde{X}[n]$ по формуле с нормирующим множителем 1/N в прямом преобразовании.

Решение.

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \cos(2\pi \frac{3}{16}k) \exp(-j2\pi \frac{n}{N}k) =$$

$$= \frac{1}{16} \sum_{k=0}^{15} \left\{ \frac{1}{2} \exp\left(j2\pi k (\frac{3}{16} - \frac{n}{16})\right) + \frac{1}{2} \exp\left(-j2\pi k (\frac{3}{16} + \frac{n}{16})\right) \right\}$$

Рассмотрим отдельно сумму вида $\sum_{k=0}^{15} \exp \left(j2\pi k \, \frac{m}{16} \right)$ при условии, что m- целое число, не равное нулю и не кратное 16. В таком случае по формуле суммы геометрической прогрессии

$$\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \frac{1 - \exp(j2\pi m)}{1 - \exp(j2\pi m \frac{1}{16})} = 0.$$

В случае когда $\,m\,$ либо равно нулю, либо кратно 16, будет выполняться

$$\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \sum_{k=0}^{15} \mathrm{e}^0 = 16$$
 . В итоге на периоде есть только два ненулевых отсчета ДПФ — $\tilde{X}[3] = 1/2$ и $\tilde{X}[13] = 1/2$.

Свойства ДПФ

Предложим, что для последовательности x[k] ДПФ будет X[n], что символически будем обозначать $x[k] \overset{DFT}{\longleftrightarrow} X[n]$. Пусть также $y[k] \overset{DFT}{\longleftrightarrow} Y[n]$. Тогда справедливы следующие утверждения — свойства ДПФ. Далее запись вида $x[k]_N$ обозначает $x[k \bmod N]$. Символ * обозначает здесь комплексное сопряжение.

Сигналы $x[k]$ и $y[k]$	N –точечные ДПФ $ ilde{X}[n]$ и $ ilde{Y}[n]$	N –точечное ДПФ $X[n]$ и $Y[n]$						
	(с нормирующим множителем	(без нормирующего множителя						
	1/N в прямом преобразовании)	1/N в прямом преобразовании)						
Линейность								
$\alpha x[k] + \beta y[k],$	$\alpha \tilde{X}[n] + \beta \tilde{Y}[n]$	$\alpha X[n] + \beta Y[n]$						
$\alpha, \beta \in \mathbb{C}$	ω21[π] β1[π]							
5.7, p = -	 Единичный импульс							
$\begin{bmatrix} 1, k = 0 \end{bmatrix}$								
$x[k] = 1[k] = \begin{cases} 1, k = 0, \\ 0, k \neq 0. \end{cases}$	$\tilde{X}[n] \equiv \frac{1}{N}$	$X[n] \equiv 1$						
,	Теорема запаздывания							
$x[k-m]_N$	~_ (2π)	(2π)						
	$\tilde{X}[n]\exp\left(-j\frac{2\pi}{N}nm\right)$	$X[n]\exp\left(-j\frac{2\pi}{N}nm\right)$						
	Теорема смещения							
$x[k]\exp\left(\pm j\frac{2\pi}{N}n_0k\right),$	$\tilde{X}[n \mp n_0]_N$	$X[n \mp n_0]_N$						
$n_0 \in \mathbb{Z}$								
	Симметрия							
$x^*[k]$	$\tilde{X}^*[N-n]_N$,	$X^*[N-n]_N$,						
$x[N-k]_N$	$\tilde{X}[N-n]_N$	$X[N-n]_N$						
$x[k] = x^*[k]$	$\tilde{X}[n] = \tilde{X}^*[N-n]_{N}$	$X[n] = X^*[N-n]_N$						
действительная								
последовательность								
$x[k] = -x^*[k]$	$\widetilde{X}[n] = -\widetilde{X}^*[N-n]_N$	$X[n] = -X^*[N-n]_{N}$						
мнимая								
последовательность								
	Георема о свертке (во временной об	бласти)						
$\sum_{m=0}^{N-1} x[m] y[k-m]_{N}$	$N\widetilde{X}[n]\widetilde{Y}[n]$	X[n]Y[n]						
Произведен	। ие сигналов (теорема о свертке в ч	і астотной области)						
x[k]y[k]	N-1	I						
WE TANK TO	$\sum_{m=0} ilde{X}[m] ilde{Y}[n-m]_N$	$\frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[n-m]_{N}$						
Равенство Парсеваля								
	$\frac{1}{N} \sum_{k=0}^{N-1} x[k] y^*[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \tilde{Y}^*[n],$	$\sum_{k=0}^{N-1} x[k] y^*[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] Y^*[n],$						
	$\frac{1}{N} \sum_{k=0}^{N-1} x[k] ^2 = \sum_{n=0}^{N-1} \tilde{X}[n] ^2.$	$\sum_{k=0}^{N-1} x[k] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} X[n] ^2.$						

Пример. Циклический сдвиг последовательности.

Пусть X[n] — восьмиточечное ДПФ последовательности

$$x[k] = \{0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8\}$$

изображенной на графике. Изобразить последовательность y[k], ДПФ которой имеет вид $Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n]$ для m=3 и m=5.

Решение.

Воспользуемся теоремой запаздывания для ДПФ:

Если
$$x[k] \overset{DFT}{\longleftrightarrow} X[n]$$
 , то $x[k-m]_N \overset{DFT}{\longleftrightarrow} X[n] \exp\biggl(-j \frac{2\pi}{N} nm \biggr).$

Тогда последовательность y[k] получается путем циклического сдвига x[k] на m отсчетов вправо (для положительных m):

$$y[k] = x[k-m]_N = x[(k-m) \mod N].$$

Пример. Симметрия ДПФ.

Пусть дана последовательность

$$x[k] = \cos(2\pi k0, 2)$$
, $k = 0, 1, 2, ..., 15$.

Эта последовательность не является периодом для $\cos(2\pi k0,2)$. Частота косинусоиды $\nu_{\cos}=0,2$ не совпадает с частотами отсчетов ДПФ $\nu_n=n/N$, N=16. Максимально близкий отсчет к частоте $\nu_{\cos}=0,2$ — это n=3 ($\nu_3=0,1875$).

ДПФ этой последовательности представлено на рисунке.

Для действительной последовательности $x[k] = x^*[k]$

$$x[k] \stackrel{DFT}{\longleftrightarrow} X^*[N-n]_N.$$

Это означает, что $X[n] = X^*[N-n]_N$. Например, $X[3] = X^*[13]$.

В данном случае мы наблюдаем симметрию действительной части и модуля $\,$ и антисимметрию мнимой части и фазы коэффициентов ДПФ относительно отсчета с номером $\,n=N\,/\,2=8$.

Матричная форма ДПФ

Введем в рассмотрение квадратную матрицу $[W]_N$ порядка N с элементами

$$W_N^{nk} = \exp(-j\frac{2\pi}{N}nk), \quad n, k \in \{0, 1, 2, ..., N-1, \}$$

так, что номер строки совпадает с номером дискретной экспоненциальной функции, а номер столбца совпадает с номером отсчета функций. При этом произведение $n \cdot k$ обычно берется по модулю N , т. е.

$$W_N^{nk} = W_N^{nk \mod N}.$$

Например, nk=17, тогда $nk \mod 8=1$. Эти свойства матрицы ДПФ следуют из N-периодичности функции $W_N^{n\,k}$ по обоим аргументам. Для случая N=8 матрица ДПФ имеет вид

$$\begin{bmatrix} W \end{bmatrix}_8 = \begin{bmatrix} W_8^0 & W_8^0 \\ 1 & W_8^0 & W_8^1 & W_8^2 & W_8^3 & W_8^4 & W_8^5 & W_8^6 & W_8^7 \\ 2 & W_8^0 & W_8^2 & W_8^4 & W_8^6 & W_8^8 & W_8^{10} & W_8^{12} & W_8^{14} \\ 2 & W_8^0 & W_8^2 & W_8^4 & W_8^6 & W_8^8 & W_8^{10} & W_8^{12} & W_8^{14} \\ 4 & W_8^0 & W_8^3 & W_8^6 & W_8^9 & W_8^{12} & W_8^{15} & W_8^{18} & W_8^{21} \\ 4 & W_8^0 & W_8^4 & W_8^8 & W_8^{12} & W_8^{16} & W_8^{20} & W_8^{24} & W_8^{28} \\ 5 & W_8^0 & W_8^5 & W_8^{10} & W_8^{15} & W_8^{20} & W_8^{25} & W_8^{30} & W_8^{35} \\ 6 & W_8^0 & W_8^6 & W_8^{12} & W_8^{18} & W_8^{24} & W_8^{30} & W_8^{36} & W_8^{42} \\ 7 & W_8^0 & W_8^7 & W_8^{14} & W_8^{21} & W_8^{28} & W_8^{35} & W_8^{42} & W_8^{49} \end{bmatrix}$$

Эта же матрица с минимальными фазами будет

$$\begin{bmatrix} w^{\downarrow} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ w^{\downarrow} & 0 & W^{0}_{8} \\ 1 & W^{0}_{8} & W^{1}_{8} & W^{2}_{8} & W^{3}_{8} & W^{4}_{8} & W^{5}_{8} & W^{6}_{8} & W^{7}_{8} \\ 2 & W^{0}_{8} & W^{2}_{8} & W^{4}_{8} & W^{6}_{8} & W^{0}_{8} & W^{2}_{8} & W^{4}_{8} & W^{6}_{8} \\ 2 & W^{0}_{8} & W^{2}_{8} & W^{4}_{8} & W^{6}_{8} & W^{0}_{8} & W^{2}_{8} & W^{4}_{8} & W^{6}_{8} \\ 2 & W^{0}_{8} & W^{2}_{8} & W^{4}_{8} & W^{6}_{8} & W^{4}_{8} & W^{7}_{8} & W^{2}_{8} & W^{5}_{8} \\ 4 & W^{0}_{8} & W^{3}_{8} & W^{6}_{8} & W^{4}_{8} & W^{4}_{8} & W^{7}_{8} & W^{2}_{8} & W^{4}_{8} \\ 4 & W^{0}_{8} & W^{4}_{8} & W^{0}_{8} & W^{4}_{8} & W^{0}_{8} & W^{4}_{8} & W^{0}_{8} & W^{4}_{8} \\ 5 & W^{0}_{8} & W^{5}_{8} & W^{2}_{8} & W^{7}_{8} & W^{4}_{8} & W^{4}_{8} & W^{6}_{8} & W^{4}_{8} \\ 6 & W^{0}_{8} & W^{6}_{8} & W^{4}_{8} & W^{2}_{8} & W^{6}_{8} & W^{4}_{8} & W^{2}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{4}_{8} & W^{3}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{2}_{8} & W^{1}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{3}_{8} & W^{3}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{3}_{8} & W^{3}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{6}_{8} & W^{5}_{8} & W^{4}_{8} & W^{3}_{8} & W^{3}_{8} & W^{3}_{8} & W^{3}_{8} \\ 7 & W^{0}_{8} & W^{7}_{8} & W^{5}_{8} & W^{5}_{8} & W^{5}_{8} & W^{5}_{8} & W^{5}_{8} & W^{5}$$

Через множители ${\cal W}_N^{nk}$ пара ДПФ записывается в виде

$$X[n] = \sum_{k=0}^{N-1} x[k] W_N^{nk},$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] W_N^{-nk}.$$

Пусть \vec{X} и \vec{x} – N-мерные вектор-столбцы:

$$\vec{X} = \begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}.$$

Тогда в матричной форме пара ДПФ (с нормирующим множителем в обратном преобразовании) имеет вид

$$ec{X} = igl[Wigr]_{\scriptscriptstyle N} \ ec{x}$$
 — прямое ДПФ, $ec{x} = igl[W_{\scriptscriptstyle N}igr]^{^{-1}} \ ec{X} \ -$ обратное ДПФ.

Чтобы найти обратную матрицу $\left[W_{_{N}}\right]^{\!-1}$, достаточно заметить, что

$$\frac{1}{N} [W_N]^* [W_N] = I_N,$$

где $I_{\scriptscriptstyle N}$ – единичная матрица размером $N \times N$. В итоге получаем, что

$$\left[W_{N}\right]^{-1}=\frac{1}{N}\left[W_{N}\right]^{*},$$

т.е. для нахождения обратной матрицы достаточно выполнить комплексное сопряжение для $\left[W_{_{\!N}}\right]$ и нормировать результат на N .

Задание на моделирование

Вариант	x[k]	m	Вариант	x[k]	m
1	{1;-3;2;4;6;7;4;6}	3	11	{9;3;2;4;6;3;4;4}	3
2	{7;3;2;-4;6;0;-4;1}	4	12	{9;-3;2;4;2;7;1;3}	4
3	{5;3;2;0;6;-7;4;-6}	-1	13	{3;-6;-8;4;6;7;4;9}	6
4	{1;-3;2;4;1;7;1;1}	-3	14	{1;-6;0;-4;6;-7;4;-9}	-3
5	{9;-3;2;4;2;7;1;3}	4	15	{1;-6;0;-4;6;-7;0;9}	-4
6	{1;7;2;2;6;5;4;1}	-2	16	{8;6;-8;-4;6;-7;4;9}	-1
7	{3;6;-8;4;6;-7;4;9}	6	17	$\{-1; -7; -2; 2; -6; 5; 5; 1\}$	6
8	{8; 6; 8; 4; 3; -7; 4; 5}	1	18	{1;-3;2;7;1;7;1;1}	2
9	{1;-6;8;4;6;-7;4;-9}	2	19	{9;-3;2;5;2;7;1;3}	-2
10	{1;-6;8;-4;0;-7;4;-9}	-3	20	{1;-1;8;4;6;-2;4;-6}	-3

Задача 2.1. Алгоритмы вычисления ДПФ.

Вычислите ДПФ X[n] для последовательности x[k] (в соответствии с Вашим вариантом). Воспользуйтесь следующими способами:

- а) вычисление с использованием матричной формы ДПФ;
- б) алгоритм быстрого преобразование Фурье (БПФ).

Сравните результаты.

Задача 2.2 Свойства симметрии ДПФ.

Для последовательности x[k] постройте графики $\operatorname{Re} X[n]$, $\operatorname{Im} X[n]$, |X[n]|, $\angle X[n]$.

Сравните получившиеся результаты со свойствами симметрии ДПФ.

Задача 2.3. Циклический сдвиг в ДПФ.

Постройте график для последовательности x[k].

Вычислите последовательность y[k], ДПФ которой

$$Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n].$$

Сравните получившиеся последовательности.

Контрольные вопросы

№1. Записать матрицу, задающую ДПФ преобразование над последовательностью (вектором) длины 4. Указать также обратную матрицу, задающую обратное преобразование.

№2. Для последовательности из трех единичных импульсов $x[k] = \mathbf{1}[k] + \mathbf{1}[k-1] + \mathbf{1}[k-2]$ изобразить

- а) линейную дискретную свертку $\sum_{m=0}^{N-1} x[m]x[k-m]$,
- б) циклическую дискретную свертку $\sum_{m=0}^{N-1} x[m]x[k-m]_N$.

Сравнить результаты.

Занятие 3. Связь между ДВПФ и ДПФ.

Теоретическая часть

ДПФ последовательностей конечной длительности

Форма записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала длиной в N отсчетов $k=0,1,\ldots,N-1$. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right), \quad k = 0, 1, ..., N-1.$$

Функцию X[n] обычно рассматривают только для значений $n=0,1,\dots,N-1$, при этом она является периодической с периодом N , $n\in Z$.

В обратном преобразовании необходимо ограничить длительность восстанавливаемой последовательности отсчетов сигнала, т.е. рассматривать x[k] для значений $k=0,1,\ldots,N-1$. Если длительность не ограничить, то будет восстановлена последовательность, являющаяся периодическим продолжением x(k).

Связь между ДПФ и ДВПФ в точках v = n/N.

Рассмотрим N – точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

ДПФ для последовательности x(k), имеет следующий вид:

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{n}{N}k\right).$$

Сравнивая формулы, в точках v = n/N получаем равенство

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N}=X[n]$$

Это означает, что коэффициенты ДПФ X[n] равны отсчетам функции X(v), взятым в точках v=n/N (с шагом $\Delta v=1/N$).

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим M – точечную последовательность — добавим в исходную последовательность x[k] M-N отсчетов, равных нулю:

$$y[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, N \le k \le M - 1. \end{cases}$$

Ее ДПФ M – точечное и определяется формулой

$$Y[n] = \sum_{k=0}^{M-1} y[k] \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right).$$

При этом ДВПФ не изменяется:

$$Y(v) = \sum_{k=0}^{M-1} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВП Φ , поскольку число точек $\nu = n/N$ на одном периоде больше, чем в исходной последовательности.

Пример.

Рассмотрим последовательность отсчетов

$$x[k] = \begin{cases} \sin\left(2\pi \frac{1,5}{20}k\right) + \sin\left(2\pi \frac{5,4}{20}k\right) + \sin\left(2\pi \frac{7,6}{20}k\right), 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

Заметим, что частоты синусоид в ней не совпадают с бинами ДПФ:

$$v_1 = \frac{1,5}{20}$$
, $v_2 = \frac{5,4}{20}$, $v_3 = \frac{7,6}{20}$.

На рисунке изображен модуль ДВПФ этой последовательности для частот $v \in [0;1]$. Приведено соответствие с 16—точечным ДПФ этой последовательности, вычисленным по формуле без нормирующего множителя 1/N. В точках v=n/N значение ДВПФ совпадают с величиной отсчетов ДПФ в этих точках:

$$X(n\Delta v) = X[n], \ \Delta v = 1/N.$$

Теперь дополним рассматриваемый в ДПФ участок сигнала нулевыми отсчетами. ДВПФ при этом не изменится (мы даже не изменили сигнал x[k]), а число отсчетов ДПФ на одном периоде станет больше. Таким образом улучшено качество визуализации ДВПФ с помощью отсчетов ДПФ.

Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках

$$v \neq n / N$$

Рассмотрим N – точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

Обратное ДПФ для последовательности x[k]

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Получаем, что

$$X(v) = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi vk\right) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \sum_{k=0}^{N-1} \exp\left(-j2\pi \left(v - \frac{n}{N}\right)k\right).$$

Рассмотрим отдельно множитель $\sum_{k=0}^{N-1} \exp \left(-j2\pi (\nu - n/N)k \right)$. Это сумма N членов геометрической прогрессии с первым членом

$$b_{\scriptscriptstyle 1}=1$$
 , и знаменателем $q=\expigl(-j2\piigl(
u-n\,/\,N\,igr)igr)$.

В точках $v\neq n/N$, где $q\neq 1$, получаем (используя известные формулы $S_N=b_1(1-q^N)/(1-q)$ и $\sin \phi=(e^{j\phi}-e^{-j\phi})/(2j)$):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)} =$$

$$= \frac{\exp\left(j\pi\left(\nu - n/N\right)N\right)\left\{\exp\left(j\pi\left(\nu - n/N\right)N\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}}{\exp\left(j\pi\left(\nu - n/N\right)\right)\left\{\exp\left(j\pi\left(\nu - n/N\right)\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}} =$$

$$= \exp\left(j\pi\left(\nu - n/N\right)(N-1)\right)\frac{\sin\left(\pi\left(\nu - n/N\right)N\right)}{\sin\left(\pi\left(\nu - n/N\right)N\right)}$$

Подставив формулу для суммы в связь, получаем интерполяционную формулу восстановления континуальной функции $X(\mathfrak{v})$ по коэффициентам ДПФ X[n]:

$$X(v) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \frac{\sin(\pi(v-n/N)N)}{\sin(\pi(v-n/N))} \exp(j\pi(v-n/N)(N-1)).$$

Заметим, что для последовательностей конечной длительности ДВПФ непрерывно, а значит для интерполяционной формулы выполняется

$$\lim_{\nu \to n/N} X(\nu) = X[n],$$

что согласуется с тем, что в точках $\mathbf{v} = n/N$ выполняется $X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n]$.

ДПФ периодических последовательностей

Форма записи ДПФ

Пусть x[k], $k \in \mathbb{Z}$ — периодическая последовательность отсчетов сигнала с периодом N . Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$\widetilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

 $ilde{X}[n]$ может рассматриваться как N- точечная последовательность коэффициентов ДПФ (отсчетов ДПФ), где $n=0,1,\ldots,N-1$. $ilde{X}[n]$ может также рассматриваться как периодическая последовательность с периодом N, $n\in Z$. В обратном преобразовании последовательность x(k) также получится периодической.

Связь между ДПФ и ДВПФ для периодических последовательностей.

Пусть аналоговый периодический сигнал x(t) с периодом T дискретизован с шагом $\Delta t = T/N$. Тогда на одном периоде x(t) будет содержаться N отсчетов (если крайний правый отсчет попадает на границу периода, то будем считать его относящимся к следующему периоду). Выделим для последовательности отсчетов x[k] один период

$$x_N[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

Пусть $x_N[k] \longleftrightarrow X_N(v)$. Последовательность x(k) может быть представлена в виде дискретной сверки $x_N[k]$ и $\sum_{n=0}^{\infty} \mathbf{1} \big[k - m N \big]$. Причем

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN] \longleftrightarrow \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Тогда

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Последовательность $x_{_N}[k]$ имеет конечную длительность, является абсолютно суммируемой. $X_{_N}(v)$ непрерывна. При этом ДВПФ периодической последовательности x(k) имеет дискретную структуру, которой в континуальной записи соответствует некоторый периодический набор δ - функции.

Введем периодическую функцию дискретного аргумента $\tilde{X}[n]$, значения которой будут соответствовать площадям дельта-функций в X(v) в точках v=n/N:

$$X(v) = \tilde{X}[n] \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

В таком случае

$$\tilde{X}[n] = \frac{1}{N} X_N(\frac{n}{N}) = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k).$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv = \int_{0}^{1} X(v) \exp(j2\pi vk) dv =$$

$$= \int_{0}^{1} X_{N}(v) \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right) \exp(j2\pi vk) dv = \frac{1}{N} \sum_{n=0}^{N-1} X_{N}(\frac{n}{N}) \exp(j2\pi \frac{n}{N}k).$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k).$$

Получаем следующую пару формул

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k),$$

определяющие прямое и обратное дискретное преобразование Фурье (ДПФ). В ДПФ частотная (n) и временная (k) переменная дискретны, функция $\tilde{X}[n]$ периодична с периодом N , а в качестве главного периода для отсчетов ДПФ выбирают такой, на котором $n=0,\dots,N-1$.

Пример.

Предположим, что имеется периодическая последовательность

$$(\infty < k < +\infty)$$

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

Учитывая, что

$$\cos(2\pi \frac{3}{16}k) = \frac{1}{2}\exp(j2\pi \frac{3}{16}k) + \frac{1}{2}\exp(-j2\pi \frac{3}{16}k),$$

получаем для ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n).$$

 $X(\mathbf{v})$ содержит две $\,\delta$ -функции с площадями $1/2\,$ на каждом периоде. Рассмотрим период $0 \leq \mathbf{v} < 1$ (правую крайнюю точку можем не включать из-за периодичности $\,X(\mathbf{v})\,$). На нем содержится две $\,\delta$ -функции в точках $\,\mathbf{v}_1 = \frac{3}{16}\,$ и $\,\mathbf{v}_2 = \frac{13}{16}\,$. Последовательность имеет период $\,N = 16\,$ точек. Это означает, что можно установить значения $\,16\,$ -точечного ДПФ $\,\tilde{X}[3] = 1/2\,$, $\,\tilde{X}[13] = 1/2\,$, а в остальных точках главного периода $\,\tilde{X}[n] = 0\,$.

Предположим, что нужно вычислить ДВПФ для одного периода последовательности

$$x[k] = \cos(2\pi \frac{3}{16}k)$$
 , т.е. для последовательности $x_N[k] = x[k]w[k]$, где $w[k] = \sum_{m=0}^{15} \mathbf{1} \big[k-m\big]$.

Заметим, что

$$W(v) = e^{-j(N-1)\pi v} \frac{\sin(N\pi v)}{\sin(\pi v)},$$

$$X(v) = 0.5 \sum_{m=-\infty}^{\infty} \delta(v - \frac{3}{16} - m) + 0.5 \sum_{m=-\infty}^{\infty} \delta(v + \frac{3}{16} - m).$$

<u>Способ 1.</u> ДВПФ последовательности Y(v) может быть представлено в виде циклической свертки

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}} = \int_{-1/2}^{1/2} W(\tilde{\mathbf{v}}) X(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(v)\delta(v-v_{1})dv = \begin{cases} W(v_{1}), a < v_{1} < b, \\ 0.5W(v_{1}), (v_{1} = a) \cup (v_{1} = b), \\ 0, (v_{1} < a) \cup (v_{1} > b), \end{cases}$$

получаем, что

Способ 2. Аналогично через теорему смещения

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v-\frac{3}{16})\right) \frac{\sin(N\pi(v-\frac{3}{16}))}{\sin(\pi(v-\frac{3}{16}))} + \frac{1}{2} \exp\left(-j(N-1)\pi(v+\frac{3}{16})\right) \frac{\sin(N\pi(v+\frac{3}{16}))}{\sin(\pi(v+\frac{3}{16}))}.$$

Частотная ось ДПФ

Отчету N – точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке v = n/N по оси нормированных частот:

$$X(v)\big|_{v=n/N} = X[n].$$

Если рассматривается периодическая последовательность отсчетов, и коэффициенты ДПФ вычисляются по периоду последовательности, то весам дельта-функций в точках $\mathbf{v}=n/N$ в ДВПФ соответствуют отсчеты ДПФ с номерами n:

$$X(v) = \tilde{X}[n] \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Эти два обстоятельства позволяют сопоставить отсчётам ДПФ частоты в спектре дискретизованного сигнала. Учитывая, что $\, {\rm V} = f \, / \, f_{_{\rm A}} = f \, \Delta t$, где $\, f_{_{\rm A}} -$ частота дискретизации, $\, \Delta t -$ шаг дискретизации, получаем, что отсчету с номером $\, n \,$ соответствует частота $\, f = n f_{_{\rm A}} \, / \, N = n \, / \, (N \Delta t) \,$ Гц. Разрешение по оси частот при ДПФ анализе составляет $\, f_{_{\rm A}} \, / \, N \,$ Гц.

В таблице ниже рассмотрены основные способы введения частотной оси для отсчетов ДПФ.

Частотная переменная	Связь частотной	Разрешение по	Диапазон изменения	
и ее размерность	переменной с	частоте	частоты,	
	номером отсчета ДПФ		соответствующий	
			отсчетам $\left[0,N ight)$	
f , [Гц]	$f = \frac{nf_{\pi}}{N}$	$\Delta f = \frac{f_{\pi}}{N}$	$[0,f_{_{\mathrm{I\!I}}})$	
ω, [рад/с]	$\omega = \frac{n\omega_{_{\mathcal{I}}}}{N}$	$\Delta \omega = \frac{\omega_{\pi}}{N}$	$[0,\omega_{_{\mathrm{I}}})$	
v , безразмерная	$v = \frac{n}{N}$	$\Delta v = \frac{1}{N}$	[0,1)	
heta , [рад]	$\theta = 2\pi \frac{n}{N}$	$\Delta\theta = \frac{2\pi}{N}$	$[0, 2\pi)$	

Задание на моделирование

Вариант	m_0	m_1	Вариант	m_0	m_1
1	1	0,25	11	1	0,6
2	2	0,2	12	2	0,5
3	3	-0,25	13	3	-0,5
4	4	-0,2	14	4	0,85
5	5	0,8	15	5	0,6
6	6	0,75	16	6	0,5
7	7	0,6	17	7	-0,5
8	8	0,5	18	8	0,85
9	9	-0,5	19	9	-0,25
10	10	0,85	20	10	-0,2

Задача 3.1. Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал.

Постройте на одном графике модули ДВПФ $\left| X(\mathbf{v}) \right|$ и ДПФ $\left| X[n] \right|$ последовательности $\left(N=32 \right)$

$$x[k] = \begin{cases} \sin\biggl(\frac{2\pi}{N}m_0k\biggr) + \sin\biggl(\frac{2\pi}{N}\bigl(m_0+0,25\bigr)k\biggr), \, 0 \leq k \leq N-1; \\ 0, \, \text{ при других } k. \end{cases}$$

Увеличьте размерность ДПФ, добавив нулевые отсчеты так, чтобы все относительные частоты синусоид попадали на бины ДПФ. Приведите на одном графике модули ДВПФ |X[v]| и ДПФ |X[n]| для этого случая. Сравните результаты.

Задача 3.2. ДВПФ и ДПФ периодической последовательсти.

Простройте графики для действительной и мнимой части коэффициентов ДПФ периодической последовательности $x[k] = \cos\left(\frac{2\pi}{N}mk\right) + \sin\left(\frac{2\pi}{N}mk\right)$ с периодом N=32, для случаев $m=m_0$ и $m=m_0+m_1$. Получите аналитическую запись ДПФ. Сравните ДПФ последовательности с ее ДВПФ. Определите, выполняется ли связь между весами дельта-функций в ДВПФ и величинами отсчетов ДПФ.

Контрольные вопросы

№1. Построить графики ДВПФ сигналов (последовательностей) $x_1[k] = \cos(2\pi k \nu_0)$ и $x_2[k] = \sin(2\pi k \nu_0)$, $\nu_0 = 0.2$, $-\infty < k < \infty$. Определить ДВПФ для последовательностей $y_1[k]$ и $y_2[k]$ взвешанных прямоугольной оконной функцией $w(k) = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$, т.е. $y_1[k] = x_1[k]w[k]$ и $y_2[k] = x_2[k]w[k]$ (это можно сделать, зная ДВПФ окна и используя теорему смещения).

Nº2. Пусть имеется N=10 точечное ДПФ некоторой последовательности отсчетов конечной длительности. Частота дискретизации $f_{\pi}=1$ кГц. Указать, сколько дополнительных нулей нужно добавить к этой последовательсноти, чтобы растояние между отсчетами стало равным $\Delta f=10$ Гц.

№3. Воспользовавшить интерполяционной формулой востановления ДВПФ по коэффициэнтам ДПФ получить спектральную плостность для последовательности отсчетов конечной длительности, ДПФ которой имеет вид

$$X[n] = \begin{cases} 5, & \text{при } n = 5 + mN, m \in \mathbb{Z}, \\ 0, & \text{иначе.} \end{cases}$$

Сравнить результат со спектральной плотностью сигнала, получаемого обраным ДПФ для X[n].

Список литературы

В качестве учебной литературы рекомендуется использовать учебные пособия [1], [2] и [3]. Все книги есть в библиотеке МФТИ.

- 1. Солонина А.И. Цифровая обработка сигналов в зеркале Matlab. СПб.: БХВ-Петербург, 2021. 560 с.
- 2. Романюк Ю.А. Основы цифровой обработки сигналов. В 3-ч ч. Ч.1. Свойства и преобразования дискретных сигналов. Изд. 2-Е, . М.: МФТИ, 2007. 332 с.
- 3. Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Учебное пособие. М.: МФТИ, 2007. 120 с.