Tema 2: Polinomios

PROBLEMAS

- 19. Calcular f(X) + g(X) y $f(X) \cdot g(X)$ en cada uno de los casos siguientes:
 - a) f(X) = 4X 5 y $g(X) = 2X^2 4X + 2$ en $\mathbb{Z}_8[X]$,
 - b) f(X) = X + 1 y g(X) = X + 1 en $\mathbb{Z}_2[X]$,
 - c) $f(X) = 2X^2 + 3X + 4$ y $g(X) = 3X^2 + 2X + 3$ en $\mathbb{Z}_6[X]$.
- 20. Realizar en cada caso las siguientes divisiones euclídeas en $\mathbb{Q}[X]$:
 - a) $3X^5 + 2X^4 X^2 + 1$ entre $X^3 + X + 2$.
 - b) $X^4 2X^3 + X 2$ entre $X^2 2X + 4$.
- 21. Calcular en cada caso el mcd(p(X), q(X)) en $\mathbb{Q}[X]$:
 - a) $p(X) = X^5 + 3X^4 + X^3 + X^2 + 3X + 1$ $\forall q(X) = X^4 + 2X^3 + X + 2$.
 - b) $p(X) = X^{35} + 1 \vee q(X) = X^{15} + 1$.
- 22. Calcular en cada caso el polinomio $d(X) = \operatorname{mcd}(p(X), q(X))$ en $\mathbb{Q}[X]$, y polinomios $\lambda(X)$ y $\mu(X)$ en $\mathbb{Q}[X]$ cumpliendo $\lambda(X)p(X) + \mu(X)q(X) = d(X)$:
 - a) $p(X) = X^5 5X^3 + 4X \text{ v } q(X) = X^3 2X^2 5X + 6$.
 - b) $p(X) = X^3 2X + 1 \vee q(X) = 2X^2 1$.
- 23. Dados los polinomios $p(X) = X^4 + X^3 + X^2 + 3X + 2$ y $q(X) = X^3 + 3X^2 + 3X + 2$ con coeficientes en \mathbb{Z}_5 se pide:
 - a) Justificar que el polinomio $(X+1)^2$ divide a p(X) y factorizar p(X).
 - b) Calcular el máximo común divisor de p(X) y q(X).
- 24. Hallar k para que el resto de dividir $2X^2 kX + 2$ entre X 2 sea 4.
- 25. Hallar las raíces de cada uno de los polinomios siguientes. ¿Cuáles de ellos son irreducibles?

 - a) $X^2 + 1 \in \mathbb{Z}_3[X]$, b) $X^2 + 1 \in \mathbb{Z}_5[X]$, c) $X^3 + X + 2 \in \mathbb{Z}_3[X]$, e) $X^3 + X + 1 \in \mathbb{Z}_3[X]$, b) $X^2 + 1 \in \mathbb{Z}_5[X]$, f) $X^3 + X + 1 \in \mathbb{Z}_5[X]$.

- 26. Hallar las raíces comunes en $\mathbb Q$ de los polinomios X^3-3X-2 y $X^4+3X^3-2X^2-12X-8$. ¿Cuál es su máximo común divisor?

- 27. Determinar un polinomio $p(X) \in \mathbb{Q}[X]$ de grado 5 tal que p(0) = p(1) = p(2) = p(3) = p(4) = 1.
- 28. Hallar todos los polinomios irreducibles de grado 2 en $\mathbb{Z}_3[X]$.
- 29. Factorizar como producto de polinomios irreducibles:
 - $a) X^6 1 \in \mathbb{R}[X],$

c) $X^4 + 1 \in \mathbb{Z}_3[X]$,

b) $X^6 - 1 \in \mathbb{C}[X],$

- d) $X^4 + X^3 + X + 2 \in \mathbb{Z}_3[X]$.
- 30. Factorizar el polinomio $3X^4 8X^3 + 6X^2 1 \in \mathbb{R}[X]$ como producto de irreducibles y calcular su conjunto de divisores. ¿Cuántos divisores tiene? ¿Cuántos de ellos son mónicos?
- 31. Comprobar que en \mathbb{Z}_{12} la ecuación de segundo grado $X^2 + 11 = 0$ tiene más de dos soluciones. Usar los datos para dar dos factorizaciones distintas de $X^2 + 11 \in \mathbb{Z}_{12}[X]$.
- 32. Probar que el polinomio $X^2 + X + 1$ es irreducible en $\mathbb{Z}_2[X]$. Utilizar dicho polinomio para construir un cuerpo finito con 4 elementos. Calcular el inverso de la clase de X en dicho cuerpo.
- 33. Probar que el polinomio $X^2 + X + 2$ es irreducible en $\mathbb{Z}_3[X]$. Utilizar dicho polinomio para construir un cuerpo finito con 9 elementos. Calcular el inverso de la clase de X en dicho cuerpo.
- 34. Probar que el polinomio $X^3 + X + 1$ es irreducible en $\mathbb{Z}_2[X]$. Utilizar dicho polinomio para construir un cuerpo finito con 8 elementos. Comprobar que la clase de X genera el grupo multiplicativo de las unidades de $\mathbb{Z}_2[X]/(X^3 + X + 1)$.
- 35. Se consideran los polinomios $p(X) = X^3 + 2X + 1$ y $q(X) = 2X^2 + 1$ en $\mathbb{Z}_3[X]$.
 - a) Calcular d(X) = mcd(p(X), q(X)) y polinomios $\lambda(X)$ y $\mu(X)$ para los que se cumpla la igualdad $\lambda(X) \cdot p(X) + \mu(X) \cdot q(X) = d(X)$.
 - b) Demostrar que el anillo cociente $\mathbb{Z}_3[X]/(p(X))$ es un cuerpo y calcular el inverso de la clase de q(X) en dicho cuerpo.
- 36. Se consideran los polinomios $p(X) = X^3 + X^2 + X + 1$ y $q(X) = X^2 + 5$ en $\mathbb{Z}_7[X]$.
 - a) Factorizar los polinomios p(X) y q(X) como producto de irreducibles.
 - b) Calcular d(X) = mcd(p(X), q(X)) y polinomios $\lambda(X)$ y $\mu(X)$ para los que se cumpla la igualdad $\lambda(X) \cdot p(X) + \mu(X) \cdot q(X) = d(X)$.
 - c) Calcular el inverso de la clase de p(X) en $\mathbb{Z}_7[X]/(q(X))$ y el de la clase de q(X) en $\mathbb{Z}_7[X]/(p(X))$, si es que existen.

SOLUCIONES DE ALGUNOS PROBLEMAS

19. a)
$$f(X) + g(X) = 2X^2 + 5$$
, $f(X) \cdot g(X) = 6X^2 + 4X + 6$,

b)
$$f(X) + g(X) = 0$$
, $f(X) \cdot g(X) = X^2 + 1$,

c)
$$f(X) + g(X) = 5X^2 + 5X + 1$$
, $f(X) \cdot g(X) = X^3 + 5X$.

20. a) Cociente:
$$3X^2 + 2X - 3$$
, resto: $-9X^2 - X + 7$,

b) Cociente:
$$X^2 - 4$$
, resto: $-7X + 14$.

21. a)
$$X^3 + 1$$
, b) $X^5 + 1$.

22. a)
$$d(X) = X^2 + X - 2$$
, $\lambda(X) = \frac{1}{12}$, $\mu(X) = \frac{-X^2}{12} - \frac{X}{6} - \frac{1}{3}$.
b) $d(X) = 1$, $\lambda(X) = -12X - 8$, $\mu(X) = 6X^2 + 4X - 9$.

23. Factorización:
$$p(X) = (X+1)^2 \cdot (X^2+4X+2)$$
; el mcd es 1.

24.
$$k = 3$$
.

- 25. a) Sin raíces; irreducible, c) 2; compuesto, e) 1; compuesto,
 - b) 2 y 3; compuesto, d) 4; compuesto,
- f) Sin raíces; irreducible.

26.
$$-1$$
 y 2. El mcd es $(X+1) \cdot (X-2)$.

27.
$$X(X-1)(X-2)(X-3)(X-4)+1$$
.

28.
$$X^2 + 1$$
, $X^2 + X + 2$, $X^2 + 2X + 2$, $2X^2 + 2X + 1$, $2X^2 + X + 1$.

29. a)
$$(X+1)(X-1)(X^2-X+1)(X^2+X+1)$$
,

b)
$$(X+1)(X-1)\left(X-\frac{1+\sqrt{3}i}{2}\right)\left(X-\frac{1-\sqrt{3}i}{2}\right)\left(X-\frac{-1+\sqrt{3}i}{2}\right)\left(X-\frac{-1-\sqrt{3}i}{2}\right)$$

c)
$$(X^2 + X + 2) \cdot (X^2 + 2X + 2)$$
,

d)
$$(X^2 + X + 2) \cdot (X^2 + 1)$$
.

30. Factorización:
$$3 \cdot (X-1)^3 \cdot (X+\frac{1}{3})$$
. Div $(3X^4-8X^3+6X^2-1)=\{k \cdot (X-1)^a \cdot (X+\frac{1}{3})^b \ / \ k \in \mathbb{R}^*, 0 \le a \le 3, 0 \le b \le 1\}$. Infinitos divisores. De ellos 8 son mónicos.

31. Soluciones: 1, 5, 7 y 11. Factorizaciones: $X^2 + 11 = (X - 1)(X - 11) = (X - 5)(X - 7)$.

32.
$$\overline{X}^{-1} = \overline{X+1}$$
. 33. $\overline{X}^{-1} = \overline{X+1}$.

35.
$$d(X) = 1$$
, $\lambda(X) = 1$, $\mu(X) = X$, $\overline{q(X)}^{-1} = \overline{X}$.

36.
$$p(X) = (X+1)(X^2+1), \quad q(X) = (X+6)(X+3), \quad d(X) = 1, \quad \lambda(X) = 5X+2,$$

 $\mu(X) = 2X^2 + 3X + 3, \quad \overline{p(X)}^{-1} = \overline{5X+2}, \quad \overline{q(X)}^{-1} = \overline{2X^2 + 3X + 3}.$