Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных средств

Дисциплина: Системы автоматизированного проектирования электронных вычислительных средств

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту на тему

РАЗРАБОТКА ПЕЧАТНОГО УЗЛА СРЕДСТВАМИ САПР БГУИР КП 1-40 02 02 018 ПЗ

Студент: гр. 750701 Соколов С.А.

Руководитель: Станкевич А. В.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 АНАЛИЗ ЗАДАЧИ	4
1.1 ПОСТАНОВКА ЗАДАЧИ	
1.2 ОПИСАНИЕ СХЕМЫ УСТРОЙСТВА	4
2 ОСОБЕНОСТИ ПРИМЕНЯЕМОЙ ЭЛЕМЕНТНОЙ БАЗЫ	6
3 ОПИСАНИЕ ПРИМЕНЯЕМЫХ САПР	7
3.1 AUTOCAD	7
3.2 ALTIUM DESIGNER	
3.3 ДРУГИЕ ИСПОЛЬЗОВАННЫЕ ПРИЛОЖЕНИЯ	8
4 ОЦЕНКА ПОТРЕБЛЯЕМОЙ МОЩНОСТИ И ТОКОВ, ПРОЗ	ГЕКАЮЩИХ
В ОТДЕЛЬНЫХ ЦЕПЯХ	10
5 ОПРЕДЕЛЕНИЕ ТИПОРАЗМЕРА ПЕЧАТНОЙ ПЛАТЫ	13
6 РАСЧЁТ ПЕЧАТНОГО МОНТАЖА	16
6.1 Определение номинального значения ширины проводника	16
6.2 Определение номинальных значений диаметров монтажных от	гверстий16
6.3 РАСЧЁТ ДИАМЕТРОВ КОНТАКТНЫХ ПЛОЩАДОК	17
7 РЕШЕНИЕ ЗАДАЧИ ТОПОЛОГИЧЕСКОГО СИНТЕЗА	ПЕЧАТНОЙ
ПЛАТЫ С ПОМОЩЬЮ ПРИМЕНЯЕМОГО ПАКЕТА САПР	19
8 ОЦЕНКА КАЧЕСТВА РАЗРАБОТАННОЙ КОНСТРУКЦИИ	I 21
ЗАКЛЮЧЕНИЕ	22
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	
ПРИЛОЖЕНИЕ А	24

ВВЕДЕНИЕ

Исходя из индивидуального задания по курсовому проекту, необходимо разработать печатную плату средствами САПР, которая будет соответствовать определенным требованиям. Основной задачей является получение готовой модели печатной платы, а также оформление конструкторской документации, которая состоит из:

- Схемы электрической принципиальной
- Чертежа печатной платы
- Сборочного чертежа печатного узла
- Перечня элементов

Дополнительная задача состоит в овладении навыками работы со справочной литературой и документацией на элементную базу рассматриваемого устройства.

Данная работа состоит из шести основных частей:

- 1) анализ задачи
- 2) выбор элементной базы
- 3) знакомство с необходимыми САПР
- 4) выбор печатной платы
- 5) решение задачи топологического синтеза
- б) проверочные расчеты

Каждая из частей необходима для создания эффективного и правильно работающего устройства.

1 АНАЛИЗ ЗАДАЧИ

1.1 Постановка задачи

В данной работе необходимо разработать плату для устройства, отвечающего следующим требованиям:

- защищенность от значительных случайных ударов и вибрационных нагрузок при перемещении
- высокая надежность
- защищенность от попадания пыли, влаги, конденсата
- стойкость к циклическим сменам температуры

Согласно заданию, устройство будет представлено автономным блоком. Однако размеры печатной платы будут выбраны в соответствии со стандартом МЭК 297-3. Подробнее выбор типоразмера рассмотрен в пункте 5.3 данного курсового проекта.

Одним из важнейших факторов при разработке устройства является климатический фактор. Невозможно создать корректно работающее устройство, не зная условий эксплуатации. Разрабатываемая плата будет находиться в устройстве с всеклиматическим исполнением для суши и моря и размещенном в отапливаемых помещениях с искусственным климатом. Значения температур окружающего воздуха для данного климатического исполнения, следующие:

- верхнее значение $+70^{0}$ C;
- нижнее значение 0^0 C;
- среднее значение $+20^{\circ}$ C;

1.2 Описание схемы устройства

Данная схема представляет собой часть главной схемы монитора ViewSonic VA930-1. В качестве исходных данных используется инструкция, приведенная в списке использованной литературы.

Из-за сложности схемы и большого числа элементов по согласованию с руководителем в разработку были взяты только шесть листов из десяти. Именно поэтому в принципиальной схеме устройства были внесены некоторые изменения: удалены связи с теми элементами схемы, которые были исключены из задания, был добавлен только разъём для вывода изображения VGA, Итоговое число элементов равно 484.

Условно графические обозначения элементов были заменены в соответствии с ГОСТ. Схема электрическая принципиальная устройства, рассматриваемого в рамках курсового проекта, представлена в приложении A.

2 ОСОБЕНОСТИ ПРИМЕНЯЕМОЙ ЭЛЕМЕНТНОЙ БАЗЫ

Рассмотрим основные микросхемы.

Микросхема производства Analog Devices, AD9883-140 является аналоговым интерфейсом для отображения RGB-графики, произведённой компьютером. Корпус микросхемы — LQFP (Low Profile Quad Flat Package) — содержит планарные выводы, расположенные с четырёх сторон микросхемы, предназначен для поверхностного монтажа на печатную плату [1]. Допустимое напряжение питания 3.3 ± 0.3 В. Данная микросхема работает при температуре от -40 до + 85 °C.

Микросхема производства SmartASIC, SD1210 принимает аналоговые или цифровые RGB сигналы из видеокарты персонального компьютера в интерфейс как ЖК монитора, так и ЭЛТ. Корпус микросхемы – PQFP (Plastic Profile Quad Flat Package) — содержит планарные выводы, расположенные с четырёх сторон микросхемы, предназначен для поверхностного монтажа на печатную плату [1]. Допустимое напряжение питания 3.3 ± 0.3 В. Данная микросхема работает при температуре от 0 до $+ 115\,^{\circ}$ С.

Микросхема производства Texas Instruments, SN75LVDS83 является передатчиком и содержит четыре 7-битных регистра сдвига с параллельной загрузкой и последовательным выходом, семитактовый синтезатор и пять низковольтных драйверов линии дифференциальной сигнализации (LVDS). Выполнена в корпусе PDIP (Plastic dual in-line package) — это прямоугольный корпус с двумя параллельными рядами контактов. Допустимое напряжение питания 3.3 ± 0.3 В. Данная микросхема работает при температуре от 0 до + 70 °C.

Микросхема производства Atmel, AT24C21 представляет собой 1024 битную последовательную электрически стираемую и программируемую постоянную память (EEPROM), организованную как 128 слов по 8 бит каждое. Выполнена в корпусе PDIP. Допустимое напряжение питания +2.5 - +5.5 В. Данная микросхема работает при температуре от -40 до +85 °C.

3 ОПИСАНИЕ ПРИМЕНЯЕМЫХ САПР

3.1 AutoCAD

AutoCAD — двух- и трёхмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. Первая версия системы была выпущена в 1982 году. AutoCAD и специализированные приложения на его основе нашли широкое применение в машиностроении, строительстве, архитектуре и других отраслях промышленности [2].

В рамках данного курсового проекта САПР AutoCAD была применена для доработки сборочного чертежа, представленного в приложении В. При этом были использованы базовые функции системы: масштабирование элементов, создание слоёв, выбора толщины и типа основных, тонких и осевых линий. Важной особенность AutoCAD, которая помогла в выполнении чертежей, является возможность импорта PDF файлов: чертежи были экспортированы из Altium Designer в формате PDF и импортированы в AutoCAD для их доработки.

3.2 Altium Designer

Altium Designer — комплексная система автоматизированного проектирования радиоэлектронных средств, разработанная австралийской компанией Altium. Ранее эта же фирма разрабатывала САПР Р-САD, который приобрёл необычайную популярность среди разработчиков электроники. Это система, позволяющая реализовывать проекты электронных средств на уровне схемы или программного кода с последующей передачей информации проектировщику ПЛИС или печатной платы. Отличительной особенностью программы является проектная структура и сквозная целостность ведения разработки на разных уровнях проектирования. Иными словами, изменения в разработке на уровне платы могут мгновенно быть переданы на уровень ПЛИС или схемы и так же обратно [3].

В состав программного комплекса Altium Designer входит весь необходимый инструментарий для разработки, редактирования и отладки проектов на базе электрических схем и ПЛИС. Редактор схем позволяет вводить многоиерархические и многоканальные схемы любой сложности, а также проводить смешанное цифро-аналоговое моделирование. Библиотеки программы содержат более 90 тысяч готовых компонентов, у многих из которых имеются модели посадочных мест, а также трёхмерные модели.

Любую из вышеперечисленных моделей можно создать внутренними средствами программы.

Редактор печатных плат Altium Designer содержит мощные средства интерактивного размещения компонентов и трассировки проводников, которые совместно с интуитивной и полностью визуализированной системой установки правил проектирования максимально упрощают процесс разработки электроники. Инструменты трассировки учитывают требования, предъявляемые современными технологиями разработок, например, при трассировке дифференциальных пар или высокочастотных участков плат. В состав программы входит автоматический трассировщик Situs, в котором используются наиболее прогрессивные алгоритмы трассировки печатных проводников.

Работа над всеми частями проекта ведётся в единой управляющей оболочке Design Explorer, что позволяет разработчику контролировать целостность проекта на всех этапах проектирования. Таким образом, изменения, внесённые на любом этапе разработки, автоматически передаются на все связанные стадии проекта. В дополнение к мощным средствам разработки, Altium Designer имеет широкие возможности импорта и экспорта сторонних систем проектирования и поддерживает практически все стандартные форматы выходных файлов (Gerber, ODB++, DXF).

Именно поэтому Altium Designer использовался в данной работе как основная система автоматизированного проектирования, в которой и была создана модель печатной платы.

3.3 Другие использованные приложения

Важным этапом при проектировании печатных узлов является разработка конструкторской документации.

В процессе разработки конструкторской документации был использован плагин для Altium Designer — Board Assistant. Board Assistant является специализированной панелью инструментов, позволяющая разрабатывать и оформлять перечень элементов, схему электрическую принципиальную и конструкторскую документацию на печатные платы в формате PDF, добавлять на чертёж печатной платы обозначения сквозных отверстий, а также добавлять таблицу со сквозными отверстиями и иные дополнительные функции. На рисунке 3.1 показано основное окно плагина.

Рисунок 3.1 – Основное окно плагина Board Assistant

С помощью этой утилиты был оформлен чертеж печатной платы и выполнен вид спереди для сборочного чертежа.

Стоит отметить, что перечень элементов принципиальной схемы можно сделать и с помощью менеджера отчетов BOM (Bill of Materials).

4 ОЦЕНКА ПОТРЕБЛЯЕМОЙ МОЩНОСТИ И ТОКОВ, ПРОТЕКАЮЩИХ В ОТДЕЛЬНЫХ ЦЕПЯХ

Электрическая мощность — это физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мощность электрического тока — количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами — силой тока и напряжением. Единица измерения — Ватт (Вт). Мощность определяется из формулы:

$$P = I \cdot U, \tag{4.1}$$

где I — протекающий ток; U — падение напряжения.

Сила тока измеряется в Амперах (А) и вычисляется по закону Ома для участка цепи по формуле:

$$I = \frac{U}{R},\tag{4.2}$$

тВт

P = 500

тВт

1

где R — сопротивление электрорадиоэлемента.

DD2

Некоторые значения максимальной рассеиваемой мощности взяты из официальной документации на соответствующие элементы. Будем считать, что ёмкости, кварцевые резонаторы и соединители являются идеальными и мощности не потребляют, питание – 5 В.

Расчёт токов и мощностей, потребляемых элементной базой, занесем в таблицу 4.1.

Мощность Позиционное Кол., Общая Элемент Тип одного обозначение шт. мощность элемента 1 3 4 5 6 AD9883ABSTZ-P = 650P = 650DA1 1 140 тВт тВт P = 500P = 10002 DD1, DD4 AIC1732 Микросхемы

74LVX14

Таблица 4.1 – Расчёт токов и мощностей, потребляемых элементной базой

тВт

P = 500

тВт

Продолжение таблицы 4.1

1	2	3	4	5	6
	DD3	24C21	P = 210 mВт	1	P = 210 mBT
	DD5	24C02	P = 250 mBT	1	P = 250 mBT
	DD6	SIL151	P = 900 mВт	1	P = 900 mBT
	DD7	24LC08	P = 200 mВт	1	P = 200 mBT
	DD8	SD1210	P = 1000 mВт	1	P = 1000 mBT
Микросхемы	DD9	74AHC1G14-TA	P = 195 mВт	1	P = 195 mBT
Микросхемы	DD10	74LV4053	P = 350 mB _T	1	P = 350 mBT
	DD11	AV9173-01	P = 500 mBT	1	P = 500 mBT
	DD12, DD13	SN75LVDS83	P = 250 mВт	2	P = 500 mBT
	DD14	74LCX125	P = 450 mВт	1	P = 450 mBT
	DD15	SM0230	P = 650 mВт	1	P = 650 mB _T
	DD16	24LC16	P = 230 mВт	1	P = 230 mBT
Транзисторы	VT1, VT3	MMBT3904L	P = 225 mВт	2	P = 450 mBT
транзисторы	VT2, VT4	2N3906	P = 250 mBT	2	P = 500 mBT

Продолжение таблицы 4.1

	R1-111,	2КОм,1%,1/16W,TP,1206	P = 70	115	P = 8050
Розмотови	151-153	21011,170,1710 11,1200	тВт	113	тВт
Резисторы	R154-	33Ом, 5%,1/10W,ТР,	P = 61	07	P = 5917
	239	1206	тВт	97	тВт
Итого					Р _{общ} =
ИТОГО					22502 mВт

Токи в остальных цепях пренебрежимо малы, поэтому специальной оценки производить не имеет смысла.

Оценим потребляемую мощность всех элементов, подставив значения потребляемых мощностей всех ЭРЭ по формуле:

$$P_{oбщ} = \sum P_i \tag{4.3}$$

где P_i – потребляемая мощность i-го элемента.

Общая потребляемая мощность составляет $P_{\text{общ}} = 22,502 \text{ Bt}.$

5 ОПРЕДЕЛЕНИЕ ТИПОРАЗМЕРА ПЕЧАТНОЙ ПЛАТЫ

Много факторов влияет на определение размера печатной платы. Прежде всего стоит отметить, что ряд ограничений на размеры печатных плат накладывают методы изготовления платы и используемое оборудование. Важно уточнять у производителя, печатные платы каких размеров могут быть изготовлены.

В большинстве случаев размер и форма печатных плат будут зависеть от конкретного устройства и его конструкции. По техническому заданию не требуется плата сложной формы, поэтому при проектировании выбрана прямоугольная форма печатной платы.

Если печатный узел используется в составе стойки или как субблок, выбирается стандартный типоразмер печатной платы. Однако и для автономных блоков применяются типовые платы, благодаря чему достигается уменьшение как временных ресурсов, так и денежных. В рамках курсового проекта будет использована печатная плата стандартного размера в соответствии с МЭК 297-3.

При компоновке элементов на печатных платах важно понимать сколько места займет каждый элемент, иначе говоря, рассчитать его установочную площадь. Необходимо чтобы установочная площадь учитывала зазоры, которые служат для работы укладочного инструмента, поэтому рассчитанные площади умножают на коэффициент 1,3. Для большинства стандартных элементов установочная площадь рассчитывается по формуле:

$$S_{\text{VCT}} = 1.3 * b * l$$
 (5.1)

где b — ширина устанавливаемого элемента;

l — длина устанавливаемого элемента.

Установочная площадь элементов разрабатываемой платы представлена в таблице 5.1.

Таблица 5.1 – Установочная площадь элементов.

Элемент	Кол-во,	Установочная
Элемент	шт.	площадь, мм2
1. Катушка индуктивности	24	81,25
2. Конденсатор	157	31
3. Конденсатор поляризованный	15	22,77

4. Микросхема аналоговая AD9883ABSTZ-140	1	332,8
5. Микросхема цифровая АІС1732	2	25,42
6. Микросхема цифровая 74LVX14	1	70,53
7. Микросхема цифровая 24С21	1	109,1
8. Микросхема цифровая 24С02	1	98,07
9. Микросхема цифровая SIL151	1	780,33
10. Микросхема цифровая 24LC08	1	102,33
11. Микросхема цифровая SD1210	1	1 265,47
12. Микросхема цифровая 74AHC1G14-TA	1	6,29
13. Микросхема цифровая 74LV4053	1	209,14
14. Микросхема цифровая AV9173-01	1	100,64
15. Микросхема цифровая SN75LVDS83	2	1 383,2
16. Микросхема цифровая 74LCX125	1	41,6
17. Микросхема цифровая SM0230	1	254,8
18. Микросхема цифровая 24LC16	1	104,54
19. Резистор	239	6,66
20. Диод BAV99	3	9,75
21. Диод Шоттки	9	6,73
22. Диод	5	6,7
23. Транзистор MMBT3904L	2	9,05
24. Транзистор 2N3906	2	21,67
25. Разъём VGA	1	300
26. Разъём FI-SE30P-HF	1	438,75
27. Кварцевый резонатор	1	59,87
28. Общая площадь элементов, S_{ycr}		11997,68

Площадь печатной платы вычисляется по формуле:

$$S_{\Pi\Pi} = \frac{S_{\text{ycT}}}{m * k_3} \tag{5.2}$$

где $k_{\scriptscriptstyle 3}$ – коэффициент заполнения платы;

т – количество сторон монтажа.

Согласно условию задания, коэффициент заполнения разрабатываемой платы $k_{\scriptscriptstyle 3} \! \geq \! 0.7,$ а количество сторон печатного монтажа m=1.

Таким образом, рассчитанная $S_{\text{пп}}=17139,54~\text{мм}^2$. Обратившись к стандарту МЭК 297-3, выберем плату 5U размером 188,9 на 100 мм с толщиной печатной платы 2,5 мм.

6 РАСЧЁТ ПЕЧАТНОГО МОНТАЖА

По конкретной схеме электрической принципиальной электронного средства необходимо выполнить:

- расчет номинальной ширины проводника;
- расчёт диаметров монтажных отверстий;
- расчет диаметров контактных площадок;

6.1 Определение номинального значения ширины проводника

Ширина определяется протекающим по нему током *JH* и удельной плотностью тока в материале проводников.

$$t = t_{\mathcal{M}} \partial * J_{\mathcal{H}} * h * \rho \tag{6.1}$$

t = 0.25 MM;

где, tм*д* – минимально допустимая ширина проводника, мм;

JH – ток нагрузки, A;

h – толщина проводника, мм (0,035 или 0,05);

 ρ – удельная плотность тока, А/мм²:

- для наклеенной фольги -20 A/mm^2 ;
- для гальванически осажденной -15 A/mm^2 .

6.2 Определение номинальных значений диаметров монтажных отверстий

Для определения диаметров монтажных отверстий необходимо иметь данные о размерах выводов ЭРЭ.

Если вывод в сечении:

- круглый берется его диаметр,
- другой формы то наибольший размер сечения.

Номинальное значение диаметра монтажного отверстия d, мм, рассчитывают по формуле:

$$d = d_9 + r + |\Delta d_{\text{Ho}}| \tag{6.2}$$

 $d_1 = 0.6 \text{ MM};$

 $d_2 = 0.7 \text{ MM};$

 $d_3 = 0.8 \text{ MM};$

 $d_4 = 2 \text{ MM};$

где $d_{\mathfrak{I}}$ — максимальное значение диаметра вывода навесного ИЭТ, устанавливаемого на печатную плату. Для прямоугольного вывода за диаметр берется диагональ его сечения;

r — разность между минимальным значением диаметра отверстия и максимальным значением диаметра вывода (для прямоугольных — диагонали сечения устанавливаемого ИЭТ).

Величину r рекомендуется выбирать с учетом допусков на расположение выводов на корпусе устанавливаемого ИЭТ.

 Δd_{HO} — нижнее предельное отклонение номинального значения диаметра отверстия.

При автоматической установке на печатную плату величину r устанавливают равной 0,4-0,5 мм.

Уменьшение этой величины допускается в обоснованных случаях.

Предельное отклонение диаметров монтажных и переходных отверстий Δd устанавливают в соответствии с ГОСТ 23751-86.

Рекомендуется на печатной плате применять не более трех типоразмеров монтажных и переходных отверстий.

6.3 Расчёт диаметров контактных площадок

Наименьшее номинальное значение диаметра контактной площадки D, мм под выбранное отверстие рассчитывается по формуле:

$$D = \sqrt{(d + \Delta d_{bo} + 2 * b + \Delta t_{bo} + 2 * \Delta d_{tp} + T_d^2 + T_D^2 + \Delta t_{HO})}$$
(6.3)

D = 1,11 MM;

где d – номинальное значение монтажного отверстия;

 Δd_{bo} – верхнее предельное отклонение диаметра отверстия;

 Δd_{tp} — величина подтравливания диэлектрика, которая для МПП принимается равной 0, 03 мм, для ОПП — нулю;

 T_{d} – позиционный допуск расположения оси отверстия;

 T_{D} — позиционный допуск расположения центра контактной площадки;

 $\Delta t_{bo}^{}$ – верхнее предельное отклонение диаметра контактной площадки;

7 РЕШЕНИЕ ЗАДАЧИ ТОПОЛОГИЧЕСКОГО СИНТЕЗА ПЕЧАТНОЙ ПЛАТЫ С ПОМОЩЬЮ ПРИМЕНЯЕМОГО ПАКЕТА САПР

Выбор варианта установки элементов, их размещение на печатной плате, в том числе и под автоматическую установку, осуществляется в соответствии с СТБ 29137-91, с учетом конструктивных особенностей печатного узла и устройства в целом.

При расположении навесных элементов необходимо предусматривать:

- рациональное их взаимное расположение, обеспечивающее наиболее простую трассировку и исключающее взаимное влияние на электрические параметры;
- обеспечение технологических требований, предъявляемых к аппаратуре (автоматическую сборку, пайку, контроль);
- обеспечение высокой надёжности;
- малых габаритных размеров и массы;
- быстродействие;
- теплоотвод;
- ремонтопригодность.

Задача трассировки — одна из наиболее трудоёмких задач, возникающих при автоматизации проектирования устройств. Одновременная оптимизация всех соединений при трассировке за счёт перебора всех вариантов в настоящее время невозможна. Поэтому разрабатываются в основном локально оптимальные методы трассировки, когда трасса оптимальна лишь на данном шаге при наличии ранее проведённых соединений.

Основная задача трассировки формулируется следующим образом: по заданной схеме соединений проложить необходимые проводники на плате, чтобы реализовать заданные технические соединения с учётом заранее заданных ограничений. Основными являются ограничения на ширину проводников и минимальные расстояния между ними.

Решение задачи топологического синтеза с помощью пакета САПР Altium Designer сводится к созданию электронных документов топологии печатной платы на основании ранее созданных схемы электрической принципиальной и библиотеки компонентов, а также совокупностью технологических ограничений, задаваемых пользователем в правилах редактора плат (PCB Rules and Constraints Editor).

Граничные значения основных параметров печатного монтажа, которые могут быть обеспечены при конструировании и производстве для различных классов точности.

Таким образом были установлены следующие ограничения:

- минимальная ширина проводника: 0,25 мм. (Width);
- топология трассировки: самый короткий (Shortest) соединяет все узлы по кратчайшей траектории (Routing Topology);

8 ОЦЕНКА КАЧЕСТВА РАЗРАБОТАННОЙ КОНСТРУКЦИИ

После окончания цикла проектирования печатного узла в САПР Altium Designer были произведены проверки выполненности установленных правил, которую проект успешно прошёл. Скриншот оттрасированной печатной платы представлен на рисунке 8.1.

Рисунок 8.1 – Проект печатной платы в САПР Altium Designer

Чертёж печатной платы представлен в приложении Б. Сборочный чертёж представлен в приложении В.

ЗАКЛЮЧЕНИЕ

Данный курсовой проект включал в себя разработку печатной платы устройства и документации на неё в соответствии с заданием. Задание включало в себя следующие пункты:

- разработка электрической принципиальной схемы;
- генерацию списка связей;
- размещение посадочных мест;
- трассировку печатных соединений средствами пакетов САПР Altium Designer;
- передачу результатов проектирования в систему AutoCAD;
- выполнение конструкторской документации.

Итогом курсовой работы стала завершённая разработка печатной платы устройства. Средствами САПР Altium Designer удалось провести размещение и трассировку в соответствии и требованиями, изложенными в расчётах. В ходе работы были рассмотрены различные виды САПР и плагины для них.

Проделанная работа требовала большой внимательности в расчётах и чтении документации на элементную. Курсовой проект был полезен для формирования навыков разработки печатных плат и электронных вычислительных средств в целом.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] — Статья про семейство корпусов микросхем QFP [Электронный ресурс]: 2020г. URL:

https://ru.wikipedia.org/wiki/QFP

- [2] Статья про САПР AutoCAD [Электронный ресурс]: 2020г. URL: https://ru.wikipedia.org/wiki/AutoCAD
- [3] Статья про САПР Altium Designer [Электронный ресурс]: 2020г. URL: https://ru.wikipedia.org/wiki/Altium_Designer
- [4] Краткое изложение типоразмеров печатных плат [Электронный ресурс]: 2020г. URL:

https://www.cta.ru/cms/f/326673.pdf

- [5] Романов Ф.И., Шахнов В.А., Конструирование систем микро- и персональных ЭВМ. М.: Высш. шк., 1995
- [6] ГОСТ 2.701–84. ЕСКД.
- [7] ГОСТ23751–86. Печатные платы. Основные параметры конструкций.

ПРИЛОЖЕНИЕ А

ПРИЛОЖЕНИЕ Б

BOAS 1 * Размер для справок.

2 Плату изготовить комбинированным позитивным методом по ГОСТ 23752–79 3 Шаг координатной сетки 2,5 мм по ГОСТ Р 51040–97. Линии

сетки нанесены через одну.

4 Класс точности 3 по ГОСТ Р 53429–2009. 5 Группа жесткости 3 при верхнем значении температуры окружающей среды (70±2) []С. 6 Сведения об элементах проводящего рисунка сведены в

таблице 1

7 Позиционные обозначения ИЭТ выполнить краской МКЭ белая ОСТ92-1586-89, шрифт 2.0-ПРЗ по СТБ 992-95 методом шелкографии

8 Маркировать месяц и год изготовления черной краской МКЭ 8 Миркировить месяц в 200 взготовления чернов красков МКЗ

ОСТ4 ГО.054.205 ОМ2 по инструкции И-75-89 шрифтом 3,5 или 5

тип А ГФСТ 2304-81.

9 Предельные отклонения расстояний между центрами отверстий ±0,2 мм, кроме оговоренных особо.

10 Обработка отверстий имерсионным оловом ЈттРВ по ГОСТ Р 56427-2015

11 Покрытие проводников олово РВЅтт по ГОСТ Р 55693-13

. 12 Печатная плата должна соответствовать ГОСТ Р 53429–2009

					ГУИР. 758717	7.145		
						Лит.	Масса	Масшт
Изм	ו / ועכווו	№ докум.	Подп.	Дата				
Раз	ραδ.	Соколов			Плата печатная	<i>Y</i>	0.3	1:1
Про	PB.	Станкевич						
T.KO	нтр.					Лист	Лисп	nob 1
Нач	. <i>omd</i> .				Стеклотекстолит СФ-2-35Г-1,5			
H.KL	онтр.	RNA				1 <i>6ГУИН</i>	Р, гр. 1	<i>75070</i>
Уmt	7.	DUP					, -p.	

Ταδημια 1

ן עטאטעע ז				
Обозначение	Диаметр отв.,	Диаметр конт.	Наличие	Кол.
отв.	MM	площадки, мм	металлизации	ാന്നീ.
• переходное	0,3	0,6	Да	1
• переходное	0,4	0,6	Да	682
+	0,6	1,0	Да	498
+	0,7	1,2	Да	15
-	0,8	1,2	Да	30
•	2	2,5	Да	2
	4	_	Hem	4

BOAS BOAS BOAS

BOAS

BOAS

BOAS

Копировал

Формат А1

ПРИЛОЖЕНИЕ В

- 1 * Размер для справок.
- 2 Установку ИЭТ выполнить по ГОСТ 29137-91
- 3 Шаг координатной сетки 2 мм по ГОСТ 10317-79.
- 4 Нестандартные варианты установки ИЭТ выполнить по чертежу
- 5 Паять припоем ПОСу 95–5 ГОСТ *21931–76*
- 6 Паяльная паста РМ-89 ГОСТ 27130-96
- 7 Позиции ИЭТ условно не показаны
- 8 Позиционные обозначения ИЭТ показаны условно
- 9 Маркировку даты изготовления штампа ОТК выполнить черной краской МКЭ ОСТ4 ОСТ92–1586–89 шрифт 2.0-ПРЗ по СТБ 992-95 методом шелкографии ГОСТ 2.304-81.
- 10 После установки ИЭТ плату покрыть лаком PLASTIK 71
- 11 Остальные технические требования по СТБ 1022-96

					ГУИР.203719.	145 СБ			
						Лит.	Mo	ΊΣΣΟ	Масштаδ
Изм	Лист	№ докум.	Подп.	Дата	Контроллер ЖКИ				
Разрі	^р азраб.	Соколов	DB .	אווויום אוועיו	9	0.3	1:1		
Пров	}	Станкевич			Сборочный чертеж				
T.KOH	нтр.					Лист	1	Листов	1
Н.кон	нтр.					Б	TYNP.	Р, гр. 750	1701
Утв.								•	
					Копировал	ϕ_{ℓ}	ормат	A2	

формат	Зона	Nos.		<i>ටති</i> ංය	РНОЧЕНИ	e	Наименование		КОЛ.	Примеч.
							<u>Документация</u>			
							докупентиция			
A2			ГУИР.2037	719.145 CB			Сборочный чертеж			
A2			ГУИР.2037	719.145 33			Схема электрическая			
							принципиальная			
A4			ГУИР.2037	719.145 ПЭ.	3		Перечень элементов			
							Детали			
							<u></u>			
A1		1	ГУИР. 758%	717.145			Плата печатная		1	
							<u>Прочие издели</u>	<u>19</u>		
							/Jug-7.			
		2					<u>Диоды</u> VSDSS22		5	VD9, VD10
							7303322			VD15 VD17
		3					BAV99		3	
										VD8
		4					VSZRLZ5.6		9	VD1, VD2
										VD4, VD5
										VD7
										VD11 VD14
							<u>Конденсаторы</u>			
		5					VCLFHN1HG104Z		11	<i>[5[9]</i>
										C11C13,C38
										L34L30
Изм	Λυςι	77	№ докум.	Подп.	Дата		ГУИР. 20371	9.145		
Разр	ιαδ.	۲۵۱	колов	. 10011.					/lucm	Листов
	энтр.	LITT	панкевич			KOHN Nanoi	проллер ЖКИ нень элементов	<u></u> <i>y</i>	1	7
Н. Ки Утв.	онтр.					ΠΕΡΕΞ	טונוונט אובוונוווטט	БГУИІ	^э , гр. 7	750701

Фармат	Зона	Поз.	Обозначение	Наименование	KON.	Примеч.
				<u>Конденсаторы</u>		
		6		VCEABN1CX107M	18	£14,£15,£19
				reenbrienioni	70	C28,C32
						C45C47
						C49,C50,C53
						£57,£63
						C154C160
		7		VCICHN1HH330J	15	£16,£70
						<i>C78,C90</i>
						C102C109
		8		VCICHN1HH470J	42	C17,C18,C21,
						C23,C27,
						<i>C33,C40</i>
						<i>C35C37</i>
						C42, C52
						C60C62,C66
						<i>C92C94</i>
						C120C139
						C147, C171.C190
		9		VCLFHN1HG100J	18	C20,C48,C65
						<i>C67,C79C82</i>
						C151C166
						<i>C170</i>
		10		VCLFHN1HG470K	12	<i>C24,C43,C44</i>
						<i>[69,[76,[77</i>
						C110C115
		11		VCICHN1HH330J	18	C29,C53,C89C9
						C142C146
		12		VCIRHN1HG103K	12	<i>[31,[83[88</i>
						C167C169
				ГУИР.203719.145	1	Лист

Формат	Зона	Поз.	Обозначение	Наименование	KOJ.	Примеч.
				<u>Конденсаторы</u>		
		13		VCEACU1CH477M	19	<i>C34,C58,C99</i>
						C101,
						£140£150
		14		VCICHN1EG334Z	13	<i>[39,[64[68</i>]
						C95C100
		15		VCLFHN1HG150J	19	C1C4,C10,
						C22,C25,C26,
						C30,C41,
						<i>C51,C59,C71</i>
						<i>C72C75</i>
						<i>[116[119</i>
				Катушки индуктивности		
		15		RFIL-5231T8600A	24	L1.L24
				<u>Микросхемы</u>		
		16		AD9883ABSTZ-140	1	DA1
		17		AIC1732	2	DD1, DD4
		18		74LVX14	1	DD2
		19		24C21	1	DD3
		20		2402	1	DD5
		21		SIL 151	1	DD6
		22		241.08	1	DD7
		23		SD1210	1	DD8
		24		74.AHC1G14-TA	1	DD9
		25		74L V4053	1	DD10
		26		AV9173-01	1	DD11
,	13м.		Лист № докум Подп.	ГУИР.203719.145		<i>Лист</i> 3

формат	Зона	Поз.	Обозначение	Наименование	KON.	Примеч.
				<u>Микросхемы</u>		
		27		SN75L VDS83	2	DD12, DD13
		28		74LCX125	1	<i>DD14</i>
		29		SM0230	1	DD15
		30		24LC16	1	DD16
				<u>Разъемы</u>		
		31		FI-SE30P-1-F	1	X1
		32		QCNCD1173T8	1	X2
		33		Резонатор RCRSL 1132Т8	1	ZQ1
				<u>Резисторы</u>		
		34		VRMDNVG-750J	20	R1R4,
						R9,R18R21,
						R51R54,
						R64R66,R76
						R101R103
		35		VRMDNVG-470J	33	R5R8,
						R38R41,
						R45,R46,
						R72R74,
						R140R147,
						R205R210,
						R234R239,
V	13м.		Лист N° дакум Подп.	ГУИР.203719.145		Aucm 4

Формат	Зона	ЕОЦ	Обозначение	Наименование	'אסע	Примеч.
				<u>Резисторы</u>		
		36		VRMDNVG-330J	19	R10R14,
						R22R24,
						R47R50,
						R128134,
		37		VRMDNVG-472J	32	R15R17,
						R31.R34,
						R59R63,
						R148R157,
						R211R219,
		39		VRMDNVG-202J	18	R25,R26
						R104,R105
						R165R170
						R194R200
						R203
		40		VRMDNVG-221J	47	R27R30
						R67,R68,R75
						R77,R220
						R85R88
						R121R127
						R35
		41		VRMDNVG-223J	26	R89R91
						R106R115
						R158R164
						R171R176
						Лист
V	13м.		Лист № дакум Подп.	ГУИР.203719.145		5

Формат	Зона	<i>Поз.</i>	Обозначение	Наименование	KON.	Примеч.
				<u>Резисторы</u>		
		42		VRMDNVG-101J	8	R36,R37
						R56R58
						R182,R201
						R231
		43		VRMDNVG-000J	33	R42,R43
						R79,R81
						R84,R92
						R95,R98
						R136R139
						R177R180
						R183R193
						R221R228
		44		VRMDNVG-102J	16	R44,R55
						R69,R70,
						R80,R82,
						R93,R96
						R97,R99
						R100,R135
						R204,R232
						R233
		45		VRMDNVG-105J	8	R71,R78
						R83,R94
						R116R120
						R181,R202
						R230
			<u> </u>			<i>n</i>
VI	13М.		Лист № докум Подп.	ГУИР.203719.145		Лист 6

формат	Зона	Паз.	Обазначение	Наименование	KON.	Примеч.
				<u>Транзисторы</u>		
		46		MMBT3904L	2	VT1,VT3
		47		2N3906	2	VT2, VT4
						Лист
1.	10::	1	All 2011 17-2-	ГУИР.203719.145		7
V	13М.		Лист № докум Подп.	202717.112		7

ПРИЛОЖЕНИЕ Г

Поз. Обознач.			Наименов	<i>вание</i>	Кол.	Примечание
	<u>Конденсаторы</u>					
<i>C1C4</i>	VCLFHN1HG150J 15.				5	Hitachi
<i>C5C9</i>	VCIRHN1HG103K O.	1MKΦ 50 B			5	Samsung
<i>C10</i>	VCLFHN1HG150J 15	- МКФ 50 В			1	Hitachi
£11£13	VCIRHN1HG103K O.				3	Samsung
C14,C15	VCEABN1CX107M 1	————— 100МКФ 16 E	3		2	Samsung
£16	VCICHN1HH330J 33	 ЗМКФ 50 В			1	JAMICON
C17,C18	VCICHN1HH470J 47	 7ΜΚΦ 50 B			2	Hitachi
<i>C19</i>	VCEABN1CX107M 1	 100МКФ 16 E	3		1	Samsung
<i>C20</i>	VCLFHN1HG100J 10	 ЛМКФ 50 В			1	JAMICON
<i>C21</i>	VCICHN1HH470J47	 7МКФ 50 В			1	Hitachi
<i>C22</i>	VCLFHN1HG150J 15				1	Hitachi
<i>C23</i>	VCICHN1HH470J 47	 7ΜΚΦ 50 B			1	Hitachi
<i>C24</i>	VCLFHN1HG470K 4				1	Hitachi
<i>C25</i>	VCLFHN1HG150J 15I				1	Hitachi
<i>[26</i>	VCLFHN1HG150J 15.				1	Hitachi
<i>C27</i>	VCICHN1HH470J47	 7ΜΚΦ 50 B			1	Hitachi
<i>C28</i>	VCEABN1CX107M 1	 100МКФ 16 E	3		1	Samsung
<i>C29</i>	VCICHN1HH330J 33				1	HITANO
<i>C30</i>	VCLFHN1HG150J 15				1	Hitachi
<i>C31</i>	VCIRHN1HG103K 0.0	 01МКФ 50 В	1		1	Samsung
<i>C32</i>	VCEABN1CX107M 18	 'ООМКФ 16 Б)		1	Samsung
<i>C33</i>	VCICHN1HH470J47	 7МКФ 50 В			1	Hitachi
<i>[34</i>	VCEACU1CH477M 4		В		1	HITANO
<i>C35C37</i>	VCICHN1HH470J47	 7МКФ 50 В			3	Hitachi
<i>C38</i>	VCIRHN1HG103K O.				1	Samsung
Изм. Лисп	п № докум.	Подп.	Дата	ГУИР.2037	19.145 [7.	733
азраб.	Соколов				Лит	Лист Листой
оов. контр. Контр.	Станкевич			Контроллер ЖКИ Перечень элементов БГУИР,		9ИР, гр. 750701

Обозн.	Наименование	Кол	Примечание
	<u>Конденсаторы</u>		
<i>C40</i>	VCICHN1HH470J 47MKΦ 50 B	1	Hitachi
<i>C</i> 41	VCLFHN1HG150J 15MKΦ 50 B	1	Hitachi
<i>[42</i>	VCICHN1HH470J 47MKΦ 50 B	1	Hitachi
<i>C43,C44</i>	VCLFHN1HG470K 47MKΦ 50 B	2	Hitachi
C45C47	VCEABN1CX107M 100MKΦ 16 B	3	Samsung
<i>C</i> 48	VCLFHN1HG100J 10MKΦ 50 B	1	HITANO
C49,C50	VCEABN1CX107M 100MKΦ 16 B	2	Samsung
<i>C51</i>	VCLFHN1HG150J 15MKΦ 50 B	1	Hitachi
<i>C52</i>	VCICHN1HH470J 47MKΦ 50 B	1	Hitachi
<i>C53</i>	VCICHN1HH330J 33MKΦ 50 B	1	HITANO
C54C56	VCIRHN1HG103K 0.1MKΦ 50 B	3	Samsung
<i>C57</i>	VCEABN1CX107M 100MKΦ 16 B	1	Samsung
<i>C58</i>	VCEACU1CH477M 470MKΦ 16 B	1	HITANO
<i>C59</i>	VCLFHN1HG150J 15MKΦ 50 B	1	Hitachi
<i>[60[62</i>	VCICHN1HH470J 47MKΦ 50 B	3	Hitachi
<i>[63</i>	VCEABN1CX107M 100MKΦ 16 B	1	Samsung
<i>[64[68</i>	VCICHN1EG334Z 0.33MKΦ 25 B	5	HITANO
<i>C69</i>	VCLFHN1HG470K 47MKΦ 50 B	1	Hitachi
<i>C70</i>	VCICHN1HH330J 33MKΦ 50 B	1	HITANO
C71C75	VCLFHN1HG150J 15MKΦ 50 B	5	Hitachi
<i>C76,C77</i>	VCLFHN1HG470K 47MKΦ 50 B	2	Hitachi
<i>C78</i>	VCICHN1HH330J 33MKΦ 50 B	1	HITANO
C79C82	VCLFHN1HG100J 10MKΦ 50 B	4	ELNA
<i>[83[88</i>	VCIRHN1HG103K 0.01MKΦ 50 B	6	Samsung
<i>[89[91</i>	VCICHN1HH330J 33MKΦ 50 B	3	HITANO
<i>C92C94</i>	VCICHN1HH470J 47MKΦ 50 B	3	Hitachi
C95C100	VCICHN1EG334Z 0.33MKΦ 25 B	6	HITANO
<i>C101</i>	VCEACU1CH477M 470MKΦ 16 B	1	HITANO
C102C109	VCICHN1HH330J 33MKΦ 50 B	8	HITANO
Изм. Лист	ГУИР.203719.14. № докум. Подп. Дата	- 5 П <u>-</u>	73 <u>Aucm</u> 2

Обозн.	Наименование	Kon.	Примечание	
	<u>Конденсаторы</u>			
	Noncencumopui			
C110C115	VCLFHN1HG470K 47MKΦ 50 B	6	Hitachi	
C116C119	VCLFHN1HG150J 15MKΦ 50 B	4	Hitachi	
C120C139	VCICHN1HH470J 47MKΦ 50 B	20	Hitachi	
C140C150	VCEACU1CH477M 470MKΦ 16 B	11	HITANO	
C151C166	VCLFHN1HG100J 10MKΦ 50 B	16	ELNA	
C167C169	VCIRHN1HG103K 0.01MKΦ 50 B	3	Samsung	
<i>C170</i>	VCLFHN1HG100J 10MKΦ 50 B	1	ELNA	
<u> </u>	VCICHN1HH470J 47MKΦ 50 B	26	Hitachi	
	Схемы интегральные аналоговые			
DA1	AD9883ABSTZ-140	1	Analog Devices	
	Схемы интегральные цифровые			
DD1, DD4	AIC1732	2	Analog Integrations Corporation	
DD2	74L V X 14	1	STMicroelectronics	
DD3	24C21	1	Atmel	
<i>DD5</i>	24CO2	1	STMicroelectronics	
DD6	SIL 151	1	Emerson Network Powe	
<i>DD7</i>	24LC08	1	Ceramate	
DD8	SD1210	1	SmartASIC	
<i>DD9</i>	74AHC1G14-TA	1	Diodes	
DD10	74LV4053	1	Phillips	
DD11	AV9173-01	1	Integrated Circuit System.	
DD12, DD13	SN75LVDS83	2	FlikLink	
DD14	74LCX125	1	Fairchild Semiconductor	
DD15	SM0230	1	Stealth Microwave	
DD16	241.C16	1	Microchip Technology	
Изм. Лист	№ докум. Подп. Дата	ГУИР.203719.145 П.	<i>7100</i>	

Обозн.	Наименована	ne Kon.	Примечание
	<u>Резисторы</u>		
R1R4	VRMDNVG-750J 75 0M 1/16 BT	4	Yageo
R5R8,	VRMDNVG-470J 47 OM 1/16 BT	4	Panasonic Panasonic
R9	VRMDNVG-750J 75 0M 1/16 BT	1	Yaqeo
R10R14	VRMDNVG-330J 33 OM 1/16 BT	5	Telema
R15R17	VRMDNVG-472J 4.7 KOM 1/16 BT	3	Telema
R18R21	VRMDNVG-750J 75 OM 1/16 BT	4	Yageo
R22R24	VRMDNVG-330J 33 OM 1/16 BT	3	Telema
R25,R26	VRMDNVG-202J 2 KOM 1/16 BT	2	Telema
R27R30	VRMDNVG-221J 220 OM 1/16 BT	4	Telema
R31.R34	VRMDNVG-472J 4.7 KOM 1/16 BT	4	Telema
R35	VRMDNVG-221J 220 OM 1/16 BT	1	Telema
R36,R37	VRMDNVG-101J 100 0M 1/16 BT	2	Yaqeo
R38R41	VRMDNVG-470J 47 OM 1/16 BT	4	Panasonic -
R42,R43	VRMDNVG-000J 0 0M 1/16 BT	2	Panasonic
R44	VRMDNVG-102J 1 KOM 1/16 BT	1	Rohm
R45,R46	VRMDNVG-470J 47 OM 1/16 BT	2	Panasonic
R47R50	VRMDNVG-330J 33 OM 1/16 BT	4	Telema
R51R54	VRMDNVG-750J 75 OM 1/16 BT	4	Yageo
R55	VRMDNVG-102J 1 KOM 1/16 BT	1	Rohm
R56R58	VRMDNVG-101J 100 0M 1/16 BT	3	Yageo Yageo
R59R63	VRMDNVG-472J 4.7 KOM 1/16 BT	5	Telema
R64R66	VRMDNVG-750J 75 OM 1/16 BT	5	Yageo
R67,R68	VRMDNVG-221J 220 OM 1/16 BT	2	Telema
R69,R70	VRMDNVG-102J 1 KOM 1/16 BT	2	Rohm
R71	VRMDNVG-105J 1 MOM 1/16 BT	1	Rohm
R72R74	VRMDNVG-470J 47 OM 1/16 BT	3	Panasonic
R75	VRMDNVG-221J 220 OM 1/16 BT	1	Telema
R76	VRMDNVG-750J 75 OM 1/16 BT	1	Yageo
R77	VRMDNVG-221J 220 0M 1/16 BT	1	Telema
		F111/12 2075 12 11 5	Лист
Изм. Лист	№ докум. Подп. Дата	ГУИР.203719.145 П.	73

Обозн.	Наименование	Кол.	Примечание
	<u>Резисторы</u>		
R78	VRMDNVG-105J 1 MOM 1/16 BT	1	<i>Rohm</i>
<i>R79</i>	VRMDNVG-000J 0 0M 1/16 BT	1	Panasonic -
R80	VRMDNVG-102J 1 KOM 1/16 BT	1	Rohm
R81	VRMDNVG-000J 0 0M 1/16 BT	1	Panasonic
R82	VRMDNVG-102J 1 KOM 1/16 BT	1	Rohm
R83	VRMDNVG-105J 1 MOM 1/16 BT	1	Rohm
R84	VRMDNVG-000J 0 0M 1/16 BT	1	Panasonic
R85R88	VRMDNVG-221J 220 OM 1/16 BT	4	Telema
R89R91	VRMDNVG-223J 22 OM 1/16 BT	3	Telema
R92	VRMDNVG-000J 0 0M 1/16 BT	1	Panasonic
R93	VRMDNVG-102J 1 KOM 1/16 BT	1	Rohm
R94	VRMDNVG-105J 1 MOM 1/16 BT	1	Rohm
R95	VRMDNVG-000J 0 0M 1/16 BT	1	Panasonic
R96, R97	VRMDNVG-102J 1 KOM 1/16 BT	2	Rohm
R98	VRMDNVG-000J 0 0M 1/16 BT	1	Panasonic
R99, R100	VRMDNVG-102J 1 KOM 1/16 BT	2	Rohm
R101R103	VRMDNVG-750J 75 0M 1/16 BT	3	Yageo
R104,R105	VRMDNVG-202J 2 KOM 1/16 BT	2	Telema
R106R115	VRMDNVG-223J 22 OM 1/16 BT	10	Telema
R116R120	VRMDNVG-105J 1 MOM 1/16 BT	5	Rohm
R121R127	VRMDNVG-221J 220 OM 1/16 BT	7	Telema
R128134	VRMDNVG-330J 33 OM 1/16 BT	7	Telema
R135	VRMDNVG-102J 1 KOM 1/16 BT	1	Rohm
R136R139	VRMDNVG-000J 0 0M 1/16 BT	4	Panasonic
R140R147	VRMDNVG-470J 47 OM 1/16 BT	8	Panasonic
R148R157	VRMDNVG-472J 4.7 KOM 1/16 BT	10	Telema
R158R164	VRMDNVG-223J 22 0M 1/16 BT	7	Telema
R165R170	VRMDNVG-202J 2 KOM 1/16 BT	6	Telema
R171R176	VRMDNVG-223J 22 OM 1/16 BT	6	Telema
		1	Ли
Изм. Лист	№ докум. Подп. Дата	ГУИР.203719.145 П.	93

Обоэн.	Наиме	гнование	Кол.	Примечание
	Danusmanu			
	<u>Резисторы</u>			
R177R180	VRMDNVG-000J 0 0M 1/16 BT		4	Panasonic
R181	VRMDNVG-105J 1 MOM 1/16 BT		1	<i>Rohm</i>
R182	VRMDNVG-101J 100 0M 1/16 BT		1	Yageo
R183R193	VRMDNVG-000J 0 0M 1/16 BT		11	Panasonic
R194R200	VRMDNVG-202J 2 KOM 1/16 BT		7	Telema
R201	VRMDNVG-101J 100 0M 1/16 BT		1	Yageo
R202	VRMDNVG-105J 1 MOM 1/16 BT		1	<i>Rohm</i>
R203	VRMDNVG-202J 2 KOM 1/16 BT		1	Telema
R204	VRMDNVG-102J 1 KOM 1/16 BT		1	<i>Rohm</i>
R205R210	VRMDNVG-470J 47 0M 1/16 BT		6	Panasonic
R211R219	VRMDNVG-472J 4.7 KOM 1/16 BT		9	Telema
R220	VRMDNVG-221J 220 0M 1/16 BT		1	Telema
R221R229	VRMDNVG-000J 0 0M 1/16 BT		9	Panasonic
R230	VRMDNVG-105J 1 MOM 1/16 BT		1	Rohm
R231	VRMDNVG-101J 100 0M 1/16 BT		1	Yageo
R232	VRMDNVG-102J 1 KOM 1/16 BT		1	Rohm
R233	VRMDNVG-102J 1 KOM 1/16 BT		1	Rohm
R234R239	VRMDNVG-470J 47 0M 1/16 BT		6	Panasonic
	<u>Диоды</u>			
VD1, VD2	VSZRLZ5.6		2	
VD3	<i>BAV99</i>		1	
VD4, VD5	VSZRLZ5.6		4	
VD6	<i>BAV99</i>		1	
VD7 VSZRLZ5.6			1	
VD8	BA V 99		1	
VD9, VD10	VSDSS22		2	
VD11 VD14	VSZRLZ5.6		4	
VD15 VD17	VSDSS22		3	
		ГУИР.203719.14.5	, п	<u>/lucm</u>
Изм. Лист	№ докум. Подп. Дата	1 JNIF. ZUJ / 17. 143 	ـــا ۱ ۱	6

Обазн.	Наиме	енование	Кол	Примечание
	<u>Транзисторы</u>			
1/741/77	MAID T700 / I		2	04.6
VT1,VT3	MMBT3904L		2	ON Semiconductor
VT2,VT4	2N3906		2	ON Semiconductor
	<u>Разъемы</u>			
	<u>,</u>			
X1	FI-SE30P-1-F		1	JAE Electronics
X2	QCNCD1173T8		1	Antenk Electronics
ZQ1	Резонатор RCRSL1132T8		1	NDK
<u> </u>	, ,			
		ГУИР.203719.145	7:	<i></i>
Изм. Лист	№ докум. Подп. Дата		, , , , _	

Обозначение	Наименование	Примеч.		
	<u>Текстовые документы</u>			
БГУИР КП 1-40 02 02 018 ПЗ	Пояснительная записка	24 с.		
	<u>Графические документы</u>			
ГУИР.203719.145 ЭЗ	Схема электрическая принципиальная	Формат А2		
ГУИР. 758717.145	Чертёж детали	Фармат А1		
ГУИР.203719.145 СБ	Сборочный чертёж	Фармат А2		
	FELIAD KE 4 10 00 00 040 E0			
	БГУИР КП 1-40 O2	UZ UIO IIJ		
Разраб. Соколов		Num Nucm Nucmob		
Пров. Станкевич	азработка печатного узла средствами САПР			
	САПР Ведомость курсового проекта	Кафедра ЭВС гр. 750701		