EE255 Real-Time Embedded Systems HW Project #2 Writeup

Team05 (Jinwei Zhang & Uriel Escobar)

4.6.1. Screenshots of trace of sample application timerfd in kernelshark tool.

When room in into the execution section of the sample application,

4.6.2. Below are the screenshots of the traces of our periodic program (periodic.c) from kernelshark.

Instance 1):

CPUID	PID	Start exe time/ period (sec)	End exe time/ period (sec)	End time of Period (sec)	Execution time C (ms)	Period T (ms)
2	911	951.548928	951.558955	951.598928	10	50

Instance 2):

CPUID	PID	Start exe time/ period (sec)	End exe time/ period (sec)	End time of Period (sec)	Execution time C (ms)	Period T (ms)
2	836	162.426076	162.446114	162.5060	20	80

Instance 3):

CPUID	PID	Start exe time/ period (sec)	End exe time/ period (sec)	End time of Period (sec)	Execution time C (ms)	Period T (ms)
2	869	238.656097	238.686144	238.756097	30	100

All three at same time.

As we can see there is a lot of process switching. It some what looks like its in a round robin fashion but not exactly. We can see that there is not priority scheduling as not one thread preempts another consistently

4.6.3 Task sets are running with real-time priorities respectively under SCHED_FIFO policy.

We can observe the preemptions among the three tasks. Task 1, 2, 3 have pid numbers of 986, 987 and 988. As demonstrated in the yellow box, the task 3 came first and has been executed firstly. In the middle of task 3, it is preempted by task 1, who has the highest priority. Task 2 arrived after task 1 started but before task 1 finished, task 2 was also preempted by task 1. Then task 1 completed and task 2 can run, while task 3 was still holding. Later when task 2 finishes task 3 can resume and run to end.

