

ECS764P: LECTURE 2

More Probabilities

Dr Fredrik Dahlqvist

Code available at: https://hub.comp-teach.qmul.ac.uk/

THIS WEEK

- 1. Probability theory and randomness
- 2. Some important probability measures
- 3. Centrality: mean, median and mode
- 4. Dispersion: interquartile range, variance, skewness, kurtosis
- 5. The pushforward measure

PROBABILITIES AND RANDOMNESS

- There is no randomness in probability theory!
- Probability measures just ... measure
- They assign numbers in [0,1] to subsets
- These subsets are interpreted as possible outcomes events
- The number is interpreted as a "probability"

PROBABILISTIC INTERPRETATIONS

- Frequentist interpretation:
 - A probability distribution measures the relative frequency of an event as the number of trials/experiments tends to infinity

$$\mathbb{P}(A) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} 1_A(x_i), \quad (x_i)_{i \in \mathbb{N}} \text{ "sampled from } \mathbb{P}"$$

- Bayesian interpretation:
 - A probability distribution measures the degree to which an agent believes a set of outcomes will come to pass

$$\mathbb{P}(A) = r \leftrightarrow \text{l'm } 100r\% \text{ confident } A \text{ will happen}$$

Note: the *indicator function* $1_A(x)$ returns 1 if $x \in A$ and 0 otherwise.

SAMPLING

- If there is no randomness in probability theory, how can we (or Python libraries)
 sample from probability distributions?
- A Pseudo-Random Number Generator is a (deterministic!) function capable of outputting numbers which satisfy the frequentist interpretation to an acceptable degree of accuracy.
- A **Hardware Random Number Generator** is a physical device generating random numbers via a physical process (e.g. electromagnetic noise, quantum process) which is known to satisfy the frequentist interpretation to an acceptable degree of accuracy.
- Sampling is usually carried out through a PRNG (sometimes randomly seeded by hardware).

SAMPLING

- A good sampler must satisfy the frequentist interpretation
- Is this enough?
- Consider the probability measure on $\{0,1\}$ defined by $\mathbb{P}(\{0\}) = \mathbb{P}(\{1\}) = \frac{1}{2}$
- Consider the sampler

This satisfies the frequentist interpretation

$$\mathbb{P}(\{0\}) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} 1_{\{0\}}(x_i) = \frac{1}{2}$$

• And yet ... this sampler is manifestly not random!

MODELLING RANDOMNESS

- There might not be any randomness in probability theory, but there exists randomness in our physical world
- We use the frequentist (or Bayesian) interpretation to model sources of randomness

SOME IMPORTANT PROBABILITY MEASURES

THE SUPPORT OF A DISTRIBUTION

• Discrete case: given a probability measure \mathbb{P} on a set X, the **support** of \mathbb{P} is the set of elements of X which have non-zero mass

$$supp(\mathbb{P}) = \{x \in X \mid \mathbb{P}(\{x\}) > 0\}$$

- Example: on \mathbb{N} define $\mathbb{P}(\{n\}) = \frac{1+(-1)^n}{2^{n+1}}$
 - Is it a **probability** measure?
 - What is its support?
- Continuous case: harder to formalize. In practice, the set on which the density function is non-zero.

DISCRETE DISTRIBUTIONS WITH FINITE SUPPORT

	Dirac Delta	Bernoulli	Binomial	Uniform	Categorical
Notation	δ_{χ}	Bern(p)	Binom(N, p)	Unif(X)	$Cat(p_1, \dots, p_N)$
Support	{ <i>x</i> }	{0,1}	$\{0,1,\dots,N\}$	X finite	$\{0,1,\dots,N\}$
Parameter(s)	x	$p \in [0,1]$	$N \in \mathbb{N}$, $p \in [0,1]$		(p_1,\ldots,p_N)
Density function/PMF	1	$\begin{cases} 1 - p & if \ t = 0 \\ p & if \ t = 1 \end{cases}$	$\binom{N}{k} p^k (1-p)^{N-k}$	$\frac{1}{ X }$	$f(k) = p_k$

BERNOULLI vs BINOMIAL

A binomial distribution is a sum of Bernoulli distributions

$$Binom(N,p) = \sum_{i=1}^{N} Bern(p)_i$$

 This makes good intuitive sense, since the sum can be interpreted as the number of successes (i.e. ones)

Note: we will see later what adding probability distributions actually means.

DISCRETE DISTRIBUTIONS WITH INFINITE SUPPORT

	Poisson	Geometric	
Notation	Pois(λ)	Geo(N, p)	
Support	N	N_0	
Parameter(s)	$\lambda \in (0, \infty)$	$N \in \mathbb{N}, p \in (0,1]$	
Density function/PMF	$f(n) = \frac{\lambda^n e^{-\lambda}}{n!}$	$(1-p)^{N-1}p$	

CONTINUOUS DISTRIBUTIONS WITH COMPACT SUPPORT

	Uniform	Beta	
Notation	Unif(a,b)	Beta (α, β)	
Support	[a,b]	[0,1]	
Parameter(s)	$a < b \in \mathbb{R}$	$a,b\in(0,\infty)$	
Density function/CDF	$f(x) = \frac{1}{b - a}$	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	

Note: Compact means roughly "closed interval" in this context.

DISCRETE DISTRIBUTIONS SUPPORTED BY POSITIVE REALS

	Gamma	χ^2	Lognormal	Exponential	Pareto
Notation	$Gamma(\alpha, \beta)$	$\chi^2(k)$	Lognormal(μ, σ^2)	Exponential(λ)	Pareto(x_m , α)
Support	[0,∞)	[0,∞)	$[0,\infty)$	[0,∞)	$[x_m,\infty)$
Parameter(s)	$\alpha, \beta > 0$	$k \in \mathbb{N}_0$	$\mu \in (-\infty, \infty), \sigma > 0$	$\lambda > 0$	x_m , $\alpha > 0$
Density function/CDF	$\frac{\beta^{\alpha}x^{\alpha-1}e^{-\beta}}{\Gamma(\alpha)}$	$\frac{x^{\frac{k}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)}$	$\frac{e^{\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)}}{x\sigma\sqrt{2\pi}}$	$\lambda e^{-\lambda x}$	$\frac{\alpha x_m^{\alpha}}{x^{\alpha+!}}$

- The number of TFL busses arriving at a bus stop in t units of time can be modelled by a Poisson distribution $Pois(\lambda t)$
- Then, the arrival time of the first bus will be distributed according to an exponential distribution $Exponential(\lambda)$.
- Proof: let $\mathbb{P}(A)$ be the probability that the arrival of the first bus is in A

$$\mathbb{P}([t,\infty)) = Pois(\lambda t)(\{0\}) = e^{-\lambda t}$$
$$\mathbb{P}((-\infty, t)) = 1 - e^{-\lambda t}$$

• This gives us the CDF. The density is now easily computed

$$f_X(t) = \frac{\partial}{\partial t} \mathbb{P}((-\infty, t)) = \lambda e^{-\lambda t}$$

DISCRETE DISTRIBUTIONS SUPPORTED BY $(-\infty, \infty)$

	Cauchy	Laplace	Normal	Logistic	Student's t
Notation	Cauchy(x_0, γ)	Laplace(μ, b)	$N(\mu,\sigma)$	Logistic(μ , s)	Student(n)
Support	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}
Parameter(s)	$x_0 \in \mathbb{R}, \gamma > 0$	$\mu \in \mathbb{R}, b > 0$	$\mu \in \mathbb{R}, \sigma > 0$	$\mu \in \mathbb{R}, s > 0$	$n \in \mathbb{N}_0$
Density function	$\frac{1}{\pi\gamma\left(1+\left(\frac{x-x_0}{\gamma}\right)^2\right)}$	$\frac{e^{\left(-\frac{ x-\mu }{b}\right)}}{2b}$	$\frac{e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}}{\sigma\sqrt{2\pi}}$	$\frac{e^{\left(-\frac{(x-\mu)}{s}\right)}}{s\left(1+e^{\left(-\frac{(x-\mu)}{s}\right)}\right)^2}$	$\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi(n-1)}\Gamma\left(\frac{n-1}{2}\right)\left(1+\frac{x^2}{n-1}\right)^{\frac{n}{2}}}$

MEASURES OF CENTRALITY

Mean, Median and Mode

MEAN

- Recall that probability measures/distributions can be described via their density functions
 - Discrete case: reweighting scheme w.r.t. the counting measure
 - Continuous case: reweighting scheme w.r.t. usual integration (dx)
- In what follows we only consider distributions on the real line $\mathbb R$
- The **mean** μ of a probability measure \mathbb{P} with density f is given by
 - Discrete case: $\mu(\mathbb{P}) = \sum_{x:f(x)\neq 0} xf(x)$
 - Continuous case: $\mu(\mathbb{P}) = \int_{-\infty}^{\infty} x f(x) dx$
- Average of all "possible" values, weighted by their "likelihood"

MEAN: EXAMPLES

- Poisson distribution $Pois(\lambda)$ with parameter $\lambda \in (0, \infty)$
 - Density: $f(n) = \frac{\lambda^n e^{-\lambda}}{n!}$ for $n \in \mathbb{N}$, 0 elsewhere
 - Mean: $\mu = \sum_{n=0} n f(n) = \sum_{n=1} \frac{\lambda^n e^{-\lambda}}{(n-1)!} = e^{-\lambda} \lambda \sum_{n=0} \frac{\lambda^n}{n!} = \lambda$
- Uniform distribution U(a,b) on [a,b]
 - Density: $f(x) = \frac{1}{b-a}$ for $x \in [a, b]$, 0 elsewhere
 - Mean: $\mu = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{b+a}{2}$

MEDIAN

- The CDF tells us which proportion of the total probability mass lies below a given point t
- Consider the *inverse of the CDF* (inverse CDF): given a probability mass x, it gives every t such the set of all numbers below t weighs x
- Consider for example x=0.5, the inverse CDF gives us t such the set of all numbers below t accounts for half of the total probability
- Not necessarily a function!!!

MEDIAN

- Formally the median of a distribution with density f is defined as a point m (not necessarily unique!) such that
 - Discrete case:

$$\sum_{x \le m} f(x) \ge \frac{1}{2}$$
 and $\sum_{x \ge m} f(x) \ge \frac{1}{2}$

Continuous case:

$$\int_{-\infty}^{m} f(x)dx \ge \frac{1}{2} \text{ and } \int_{m}^{\infty} f(x)dx \ge \frac{1}{2}$$

MODE

- General idea: value(s) that appear(s) most often when distribution is sampled
- Concretely: point(s) where PMF/PDF is maximal

MEAN vs MEDIAN vs MODE

• Difference between Mean, Median and Mode indicate skewed distribution

- Typically, same central values for symmetrical distributions.
- Example of exception: distribution with two maxima.
 - Mode = any of the maxima.
 - Mean = median = middle value.

LIMITATIONS OF CENTRAL VALUES

• Many distributions can have the same central value, e.g. mean.

MEASURES OF DISPERTION

Interquartile Range, Variance, Higher-order Moments

PERCENTILE

• Remember the inverse of the CDF. Given a probability mass x, it gives t such the set of all numbers below t weighs x

INTERQUARTILE RANGE

- Interquartile range = 75^{th} percentile -25^{th} percentile
- Robust to outliers
- Estimates dispersion

VARIANCE

- The variance σ^2 of a distribution with density f is given by:
 - Discrete case:

$$\sigma^2 = \sum_{x} (x - \mu)^2 f(x)$$

• Continuous case:

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

• Standard deviation σ : square root of variance

VARIANCE vs IQR

- Symmetric, unimodal distributions
 - STD with Mean
- Skewed distribution
 - IQR with Median

SKEWNESS

- The skewness $\widetilde{\mu_3}$ of a distribution with density f is given by:
 - Discrete case:

$$\widetilde{\mu_3} = \sum_{x} \left(\frac{x-\mu}{\sigma}\right)^3 f(x)$$

• Continuous case:

$$\widetilde{\mu_3} = \int_{-\infty}^{\infty} \left(\frac{x-\mu}{\sigma}\right)^3 f(x) dx$$

Captures asymmetry

SKEWNESS

KURTOSIS

- The **kurtosis** $\widetilde{\mu_4}$ of a distribution with density f is given by:
 - Discrete case:

$$\widetilde{\mu_4} = \sum_{x} \left(\frac{x-\mu}{\sigma}\right)^4 f(x)$$

Continuous case:

$$\widetilde{\mu_4} = \int_{-\infty}^{\infty} \left(\frac{x-\mu}{\sigma}\right)^4 f(x) dx$$

• Captures "peakedness" or "tailedness"

EXCESS KURTOSIS

The excess kurtosis is defined as:

$$\widetilde{\mu_4}$$
 – 3

- Three possibilities:
 - Mesokurtic distribution: zero excess kurtosis, i.e. $\widetilde{\mu_4}=3$
 - Leptokurtic distribution: positive excess kurtosis, i.e. $\widetilde{\mu_4} \geq 3$
 - Platykurtic distribution: negative excess kurtosis, i.e. $\widetilde{\mu_4} \leq 3$

THE PUSHFORWARD MEASURE

APPLYING A FUNCTION TO A MEASURE - THE PUSHFORWARD MEASURE

- Consider the sets {1,2,3,4,5,6} and {*head*, *tail*}
- Consider the uniform distribution $\mathbb{P}(\{1\}) = \cdots = \mathbb{P}(\{6\}) = \frac{1}{6}$
- Consider finally, the function $f: \{1,2,3,4,5,6\} \rightarrow \{head,tail\}, 1,2,3,4 \mapsto head, 5,6 \mapsto tail$
- Suppose we sample from $\mathbb P$ and then apply f, what is the probability of getting tail?
- This is given by

$$\mathbb{P}(\{5,6\}) = \mathbb{P}(f^{-1}(tail)) = \frac{1}{3}$$

Note: for $f: X \to Y, U \subseteq Y$ the inverse image $f^{-1}(U)$ of U is defined as: $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$

APPLYING A FUNCTION TO A MEASURE - THE PUSHFORWARD MEASURE

• This defines a new probability measure \mathbb{Q} on $\{head, tail\}$ given by

$$\mathbb{Q}(\{tail\}) = \mathbb{P}(f^{-1}(tail)) = \frac{1}{3}$$

$$\mathbb{Q}(\{head\}) = \mathbb{P}(f^{-1}(head)) = \frac{2}{3}$$

• $\mathbb Q$ is called the pushforward of $\mathbb P$ through f and written $f_*(\mathbb P)$ or simply $f_*\mathbb P$

This is possibly the most important concept of the entire course!

THE PUSHFORWARD MEASURE

- General definition: if $f: X \to Y$ and M is a measure on X then
- The pushforward of \mathbb{M} through f is the measure on Y defined by

$$f_*\mathbb{M}(U) = \mathbb{M}(f^{-1}(U))$$
 for every $U \subseteq Y$

THE PUSHFORWARD MEASURE

- Discrete example:
 - Take $X = Y = \mathbb{N}$ and \mathbb{M} the counting measure
 - Take $f(n) = \left| \frac{n}{2} \right|$ (where $\lfloor \cdot \rfloor$ is the floor function)

•
$$f_*M(\{1\}) = M(f^{-1}\{1\}) = M(\left\{n \mid \left|\frac{n}{2}\right| = 1\right\}) = M(\{2,3\}) = 2$$

•
$$f_*M(\{2\}) = M(f^{-1}\{2\}) = M(\left\{n \mid \left\lfloor \frac{n}{2} \right\rfloor = 2\right\}) = M(\{4,5\}) = 2$$

- ...
- So f_*M is just the counting measure multiplied by 2

- Continuous example:
 - Take X = Y = [0,1] and \mathbb{P} the uniform distribution on [0,1]
 - Take $f: [0,1] \to [0,1], x \mapsto 1-x$
 - Let's compute the CDF of $f_*\mathbb{P}$:
 - $f_*\mathbb{P}([0,t]) = \mathbb{P}(f^{-1}[0,1]) = \mathbb{P}(\{x \mid 1-x \in [0,t]\}) = \mathbb{P}([1-t,1]) = t$
 - Therefore, PDF is 1, in other words $f_*\mathbb{P}=\mathbb{P}$

Example: $X = Y = \mathbb{R}$, f(x) = x + 5 and $\mathbb{P} = N(0,1)$ standard normal distribution.

Example: $X = Y = \mathbb{R}$, f(x) = x + 5 and $\mathbb{P} = N(0,1)$ standard normal distribution.

1. CDF computation:
$$f_* \mathbb{P} \big((-\infty, t] \big) = \mathbb{P} \big(\{ x \mid x + 5 \le t \} \big)$$

$$= \mathbb{P} \big((-\infty, t - 5] \big)$$

$$= \int_{-\infty}^{t-5} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$$

2. PDF computation: differentiate CDF

$$\frac{d}{dt} \int_{-\infty}^{t-5} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-5)^2}{2\sigma^2}}$$

So $f_*\mathbb{P} = N(5,1)$ as expected.