

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

. . ۱ ۲ . * • ,

٧ ' •

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. II, Pt. II, No. 12, pp. 1-187, pls. 1-17 April 22, 1918

EXPEDITION OF THE CALIFORNIA ACADEMY OF SCIENCES TO THE GALAPAGOS ISLANDS, 1905-1906

XII

A Review of the Albatrosses, Petrels, and Diving Petrels

LEVERETT MILLS LOOMIS

PRINTED FROM THE
JOHN W. HENDRIE PUBLICATION ENDOWMENT

SAN FRANCISCO
PUBLISHED BY THE ACADEMY
1918

COMMITTEE ON PUBLICATION

GEORGE C. EDWARDS, Chairman

C. E. GRUNSKY

BARTON WARREN EVERMANN, Editor

PROCEEDINGS

Fourth Series

VOLUME I

Galapagos Islands, 1905-1906.	
Pages 1-6. I. Preliminary Description of Four New Races of	
Gigantic Land Tortoises from the Galapagos Islands. By John	•
Van Denburgh. (Issued December 20, 1907)	\$.25
Pages 7-288. II. A Botanical Survey of the Galapagos Islands. By Alban Stewart Plates I-viv (Issued Innuary 26, 1911)	1.75
Pages 289-322. III. The Butterflies and Hawk-Moths of the	1.75
Galapagos Islands. By Francis X. Williams. Plates xx-xxI.	
By Alban Stewart. Plates I-XIX. (Issued January 20, 1911) Pages 289-322. III. The Butterflies and Hawk-Moths of the Galapagos Islands. By Francis X. Williams. Plates XX-XXI. (Issued October 7, 1911)	.50
rages 323-3/4. IV. The Shakes of the Galapagos Islands. By	=0
John Van Denburgh. Plates xxII-xxx. (Issued January 17, 1912) Pages 375-404. V. Notes on the Botany of Cocos Island. By	.50
Alban Stewart. Plates xxxi-xxxiv. (Issued Ianuary 19, 1912)	.35
Pages 405-430. VI. The Geckos of the Galapagos Archipelago.	
By John Van Denburgh. (Issued April 16, 1912)	.35
Pages 431-446. VII. Notes on the Lichens of the Galapagos Islands. By Alban Stewart. (Issued December 17, 1912)	.25
	. 23
VOLUME II, PART I	
Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906.	
Pages 1-132. VIII. The Birds of the Galapagos Islands, with	
Observations on the Birds of Cocos and Clipperton Islands	
(Columbiformes to Pelecaniformes). By Edward Winslow Gifford. Plates I-VII. (Issued August 11, 1913)	1.00
Pages 133-202. IX. The Galapagoan Lizards of the Genus	1.00
Tropidurus: with Notes on the Iguanas of the General	
Conolophus and Amblyrhyncus. By John Van Denburgh and Joseph R. Slevin. Plates VIII-XI. (Issued September 19, 1913). Pages 203-374. X. The Gigantic Land Tortoises of the Galapagos	
Joseph K. Slevin. Plates VIII-XI. (1880ed September 19, 1913).	.50
Archipelago. By John Van Denburgh. Plates xii-cxxiv.	
Archipelago. By John Van Denburgh. Plates XII-CXXIV. (Issued September 30, 1914)	2.00
Pages 375-382. XI. Preliminary Descriptions of New Species of	
Pulmonata of the Galapagos Islands. By William Healey Dall. (Issued December 31, 1917)	.10
·	.10
VOLUME II, PART II	
Pages 1-187. XII. A Review of the Albatrosses, Petrels, and Diving Petrels. By Leverett Mills Loomis. Plates 1-17. (Issued April 22, 1918)	
Diving Petrels. By Leverett Mills Loomis. Plates 1-17,	1.50
	1.50
VOLUME III	
Pages 1-40. A Further Stratigraphic Study in the Mount Diablo	
Range of California. By Frank M. Anderson. Plate I. (Issued October 31, 1968)	.35
Pages 41-48. Description of a New Species of Sea Snake from the	.33
Philippine Islands, with a Note on the Palatine Teeth in the	
Proteroglypha. By John Van Denburgh and Joseph C. Thomp-	
son. (Issued December 31, 1908)	.25
and Amphibians from the Island of Formosa. By John Van	
Denburgh. (Issued December 20, 1909)	.25
Denburgh. (Issued December 20, 1909)	
By Rollo Howard Beck. (Issued September 17, 1910)	.25
Pages 73-146. The Neocene Deposits of Kern River, California, and the Temblor Basin. By Frank M. Anderson. Plates II-XIII.	
(Issued November 9, 1911)	1.00

SEP10 W

UNIV. OF MIGH

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV

1914

SAN FRANCISCO
PUBLISHED BY THE ACADEMY
1914

COMMITTEE ON PUBLICATION

GEORGE C. EDWARDS, Chairman

C. E. GRUNSKY

BARTON WARREN EVERMANN, Editor

INDEX TO VOLUME IV, FOURTH SERIES.

New names in heavy-faced type; Synonyms in italics.

Academy, Schooner, 9 acuminatus, Oxybelis, 133, 149 acutilineatus, Phacoides, 42 Admete, 88 clatskaniënsis, 88 sequalis, Psammobia, 115 æquilateralis, Venus, 115 Agasoma, 78 acuminatum, 73 barkerianum, 42 columbianum, 73 oregonense, 74 sanctacruzanum. 42 sinuatum, 42 yaquinanum, 75 Agassis, Dr. Louis, 12 Agkistrodon bilineatus, 188, 149 albaria, Mactra, 42 alta, Metis, 42 alternata, Cerithiopsis, 115 altivallis, Thomomys, 158, 154, 159 alveata, Amauropsis, 115, 116 Amauropsis alvests, 115, 116 andersoni, 115, 120 umpquaënsis, 115, 120 Amblyrhyncus, 8 americanus, Crocodylus, 188, 149 Amphissa, 72 posunculensis, 42, 72 Ancilla (Oliverato) californica, 115, 116 Anderson, F. M., 6 Neocene Record in the Temblor Basin, California, and Neocene Deposits of the San Juan District, San Luis Obispo County, 15-112 Anderson, Robert, 21 andersoni, Amauropsis, 115, 120 andersoni, Pecten, 40, 42 Anniella pulchra, 132, 140, 142 Anolis nebulosus, 182, 149 townsendi, 132, 151 anthonyi, Bascanion, 133, 146 antiselli, Astrodapsis, 47 antiselli, Drillia, 43, 93 Nassa, 48, 76 Niso (1), 48, 65 Arca osmonti, 41 Argobuccinum, 71 dilleri, 71 Arnold, Ralph, 21, 80, 85 arnoldi, Cerithium, 43, 71 arnoldi, Nassa, 40, 48

arundelii, Emoia, 183, 150 Lygosoma, 150 Astrodapsis, 52 antiselli, 47 merriami, 40, 41 heltoides, 52 tumidus, 47 whitneyi, 47 Astyris pedroana, 42 ater, Sauromalus, 146 attenuatus, Batrachoseps, 182, 137, 189 auriculata, Uta, 182, 146 Autodax lugubris, 132, 139 lugubris farallonensis, 132, 184 Bache, Alexander Dallas, 10 Barbatia morsei, 115 barkerianum, Agasoma, 42 Bascanion anthonyi, 138, 146 laterale fuliginosum, 183, 145 lineatum, 188, 149 Bathytoma condonana, 89 keepi, 42 piercei, 42 Batrachoseps attenuatus, 182, 187, 189 pacificus, 132, 134, 135 becki, Sceloporus, 182, 184 Sceloporus biseratus, 132, 135, beldingi, Verticaria hyperythra, 132, 144, 145 bilineatus, Agkistrodon, 138, 149 biplicata, Cuma, 48 biseratus becki, Sceloporus, 132, 135, 186 blakci, Nassa, 48, 76 Thais, 82 Boa imperator, 133, 149 boddserti, Drymobius, 133, 149 Bolton, A. L., 6 Botany, Department of, 5 Botanical Club, 5 boulengeri, Sceloporus, 132, 148 branneri, Glycymeris, 41 Pecten, 42 Brereton, R. M., 1 breweri, Cardium, 115 Brown, Herbert, 1 Bulla, 95 cantuaënsis, 95 Buwalda, John P., 23 buwaldana, Diplodonta, 41 buwaldana, Drillia, 48, 92

```
Christy, Samuel B., 13
ceruleus, Gerrhonotus, 182, 184
calcarea, Macoma, 41
                                             Christy, Samuel B. (with George
californica, Ancilla (Oliverato), 115,
                                               W. Dickie and Ralph Harri-
          116
                                               son), George Davidson, 10-18
        Oliva, 40, 48
                                             Chrysodomus, 78
californica, Eulimella, 43, 67
                                                     kernensis, 43, 78
        Melongena, 80
                                                     martini, 115, 116
Callisaurus dracontoides, 146
                                             clarionensis, Uta, 182, 146
        ventralis, 182, 145, 146
                                             clarki, Siphonalia, 121
Calliostoma, 64
                                             clatskaniensis, Admete, 88
        pacificum, 64
                                             Clavella, species, 115
callosa, Neverita, 48
                                             Cnemidophorus gularis mexicanus,
                                                       133, 148
Calyptresa excentrica, 115
canalifera, Rimella, 115, 116
                                                     labialis, 133, 145
                                                     mariarum, 188, 149
Cancellaria, 84
        condoni, 42, 86
                                                     martyris, 138, 147
        dalliana, 42, 86
                                                     melanostethus, 147
                                                     multiscutatus, 183, 144, 145
        joaquinensis, 42
                                                     rubidus, 188, 145
        Hckana, 84
        nevadensis, 42, 85
                                             columbiana, Drillia, 94
        pacifica, 43
                                             columbianum, Agasoma, 73
        posunculensis, 48, 86
                                             condonana, Bathytoma, 89
                                             condoni, Cancellaria, 42, 86
        rotunda, 86
        sanjosei, 48, 87
                                             Conolophus, 8
                                             conradiana, Chione, 41
       simplex, 48
cantuaënsis, Bulla, 95
                                                     Macrocallista, 115
carbonicola, Potamides, 115
                                             Conus hayesi, 80, 40, 48
Cardium, 57
                                                    owenianus, 40, 48
                                             cooperi, Ficopsis, 115
        breweri, 115
       marysvillensis, 115, 116
                                                     Terebra, 44
        quadrigenarium, 41
                                             cooperi, Pyramidella, 43, 66
                                             corais melanurus, Drymarchon, 133,
        vaquerosense, 40, 41
        weaveri, 57
                                               149
        species, 41
                                             Corbicula dumblei, 41
Caricella stormsiana, 115, 116
                                             Corbula parilis, 115
carlsoni, Turris, 88
                                                     hornii, 115
                                             costata, Cylichna, 115
Carpenter, A. G., 28
carpenteri, Lacuna, 43, 69
                                             costellata, Trochita, 44
                                             Crassatellites semidentata, 115
carrisaënsis, Trophon, 47
carrisaënsis, Turritella, 47, 70
                                                     washingtoniana, 115
Cassidaria tuberculata, 115
                                             crassicardo, Pecten, 47
catenifer, Pituophis, 183, 186, 188,
                                             Crepidula praerupta, 48
          141
                                                    princeps, 48
        deserticols, Pituophis, 133,
                                             cretacea, Lucina (!), 115
                                             Crocodylus americanus, 183, 149
          142
catilliformis, Mactra, 42
                                             Crotalus exsul, 138, 145
                                                     mitchellii, 183, 145, 147
Cerithiopsis alternata, 115
                                                     oregonus, 183, 138, 141
        oregonensis, 121
Cerithium, 71
                                                     species, 133, 149
                                             Crotalus pyrrhus, 147
       arnoldi, 48, 71
cerroense, Phrynosoma, 182, 144
                                             Crotaphytus wislisenii, 182, 144, 145
Chione, 58
                                             Ctenosaura teres, 182, 148, 149
                                             cubensis, Lymnæa, 47
        conradiana, 41
                                             Cuma biplicata, 48
       latilaminosa, 41
        (Lirophora) latilaminosa, 59
                                             Cylichna costata, 115
        margaritana, 59
                                             Cytherea diabloensis, 41
       mathewsonii, 41
                                             dalli, Fossarus, 48, 70
                                                    Molopophorus, 78
       panzana, 41, 58
        temblorensis, 40, 41
                                             dalliana, Cancellaria, 42, 86
                                            Davidson, George, 10
       species, 47
```

Eulimella californica, 43, 67 davisiana, Surcula, 115, 116 dilleri, 67 De Long, Capt., 12 Dentalium petricolum, 43 gabbiana, 43, 68 species, 115 ochsneri, 48, 66 Eumeces skiltonianus, 133, 138, 140 deserticols, Pituophis catenifer, 188, euryxanthus, Elaps, 183, 147 excentrica, Calyptrea, 115 diabloensis, Cytheres, 41 Dickie, George W. (with Ralph Harexsul, Crotalus, 188, 145 rison and Samuel B. Christy), Fairbanks, H. W., 21, 35 George Davidson, 10-13 farallonensis, Autodax lugubris, 132, Dickerson, Roy E. 184 The Fauna of the Siphonalia sut-Fauna of the Siphonalia sutterensis terensis Zone in the Roseburg Quad-Zone in the Roseburg Quadrangle, Oregon, by Roy E. Dickerson, 113rangle, Oregon, 118-128 dilleri Argobuccinum, 71 128 Eulimella, 67 Ficopsis remondii, 115 cooperi, 115 Pseudoliva, 115, 122 Ficus kernianus, 43 Diplodonta, 56 Foote, Gen. L. H., 1 buwaldana, 41, 56 Fossarus, 70 parilis, 41 dalli, 48, 70 diplotropis, Diplotropis, 138, 149 Diplotropis diplotropis, 138, 149 Fuchs, Chas., 7 fuliginosum, Bascanion laterale, 133, Dipsosaurus dorsalis, 132, 145 Donax (!) triangulata, 41, 63 145 dorsalis, Dipsosaurus, 132, 145 Fusinus, 84 empireënsis, 84 Dosinia mathewsonii, 41 ponderosa, 41 futheyana, Oliva, 48 gabbi, Molopophorus, 78 whitneyi, 80 species, 115 gabbiana, Eulimella, 43, 68 dracontoides, Callisaurus, 146 Poromya, 42 Drillia, 90 gabbianum, Trophon, 40, 44, 81 antiselli, 43, 93 Gastropoda, 42, 48, 44, 64 buwaldana, 48, 92 Gerrhonotus caruleus, 182, 184 columbiana, 94 scincicauda, 132, 184, 135, howei, 48 136 kernensis, 48 sincicauda ignavus, 132, 138, ochsneri, 48, 90 140, 142 ocoyana, 43, 93 Gibbons, Dr. Henry, 18 temblorensis, 43, 91 Gifford, E. W., 7, 8 wilsoni, 48, 91 globosa, Neverita, 115, 116 Glycimeris eocenica, 115 Drymarchon corais melanurus, 133, 149 sagitata, 115 Drymobius boddærti, 138, 149 Glycymeris branneri, 41 species, 41 dumblei, Corbicula, 41 Pleurotoma, 40 gregaria, Tamiosoma, 47 Eastwood, Alice, 5 Grinnell, Joseph, 8 Grinnell, J. (with H. S. Swarth): Echinodermata, 41, 52 The Pocket Gopher of the Boreal Elaps euryxanthus, 133, 147 eldridgei, Ostrea, 42 Zone on San Jacinto Peak, 153-160 elegans, Uta. 147 Grunsky, C. E.: Emois arundelii, 138, 150 Report of the President of the empireënsis, Fusinus, 84 Academy for the Year 1913, 1-9 Entomology, Department of, 7 gularis mexicanus, Cnemidophorus, eocenica, Glycimeris, 115 133, 148 Epitonium, 68 Haehl, H. L., 80 posočnais, 48, 68 hannibali, Natica, 115, 119 williamsoni, 43, 68 Harrison, A. S., 10 estrellana, Panopea, 42 Harrison, Ralph (with George W. Dickie and Samuel B. Christy). estrellanus, Pecten, 47 Etchegoin Group, 47 George Davidson, 10-13

Hawes, Col. A. G., 1 hayesi, Conus, 80, 40, 43 Herpetology, Department of, 5 heterostropha, Physa, 48 Hewston, Dr. George, 13 hispidus, Sauromalus, 182, 146 hornii, Corbula, 115 Meretrix, 115 Tritonium, 115 howei, Drillia, 48 Mangilia, 95 humilis, Siagonodon, 133, 145 Hydrus platurus, 138, 148 Hyla regilla, 132, 135, 137, 144 hyperythra beldingi, Verticaria, 133, 144, 145 Hypsiglens ochrorhynchus, 188, 141 idrimnsis, Ostrea, 115 ignavus. Gerrhonotus scincicauda, 182, 188, 140, 142 imperator, Boa, 133, 149 inezana, Natica, 48 Neverita, 40 Turritella, 80, 40, 44 integrum, Kinosternon, 133, 149 Invertebrate Paleontology, Department of, 6 jacinteus, Thomomys, 154, 159 joaquinensis, Cancellaria, 42 joaquinensis, Transennella, 42, 60 Johnson, H. R., 21, 85 Jones, John P., 1 juglaris, Scaphander, 48 keepi, Bathytoma, 42 kernensis, Chrysodomus, 42, 78 Drillia, 48 Mangilia, 94 kernensis, Trophon, 44 kernianus, Ficus, 48 Kinosternon integrum, 188, 149 labialis, Cnemidophorus, 183, 145 Lacuna, 69 carpenteri, 48, 69 Lampropeltis micropholis oligozona, 188, 149 laterale fuliginosum, Bascanion, 138, 145 lateralis, Uta, 132, 149 latilaminosa, Chione, 41 Chione (Lirophora), 59 Lawson, Dr. A. C., 19 Lawson, James S., 10 Leda, 58 ochsneri, 41, 53 Library, President's Report concerning, 8 Lick, James, 12, 18 lickana, Cancellaria, 84 lincolnensis, Nassa, 77

Turris. 88

lineatum, Bascanion, 183, 149 Louderback, Dr. G. D., 19 Loxotrema turrita, 115 Lucina (f) cretaces, 115 lugubris, Autodax, 132, 139 farallonensis, Autodax, 132, 184 Lygosoma arundelii, 150 Lymnæa cubensis, 48 c.f. obrussa, 48 Macoma calcarea, 41 nasuta, 41, 47 ocoyana, 41 piercei, 41 Macrocallista conradiana, 115 Mactra albaria, 42 catilliformis, 42 sectoris, 42, 63 magnolia, Pecten, 80, 42 Mammalogy, Department of, 6 Mangilia, 94 howei, 95 kernensis, 94 margaritana, Chione, 59 mariarum, Cnemidophorus, 183, 149 Martin, Bruce, 6, 7 martinensis, Uta, 182, 142 martini, Chrysodomus, 115, 116 martini, Pitaria, 115, 117 martyris, Cnemidophorus, 188, 147 marysvillensis, Cardium, 115, 116 mathewsonii, Chione, 41 Dosinia, 41 Mytilus, 42 Olivella, 115 McCreery, Andrew B., 1 melanostethus, Cnemidophorus, 147 melanurus, Drymarchon corais, 188, 149 Melongena, 80 californica, 80 sanjuanensis, 43 Meretrix hornii, 115 ovalis, 115 Merriam, J. C., 21 merriami, Astrodapsis, 40, 41 Turritella, 115 merriami, Venericardia planicosta, 115, 116, 118 Metis alta, 42 mexicanus, Cnemidophorus gularis, 188, 148 micropholis oligozons, Lampropeltis, 188, 149 microscutata, Uta, 132, 147 mitchellii, Crotalus, 183, 145, 147 Modiolus ornatus, 115 Molopophorus, 78 dalli, 78

gabbi, 78

Monterey Formation, 17, 82 Monterey Shale, 44 Moore, J. P., 18 Moran, R. B., 28 morani, Semele, 42, 62 Morrice, Charles, 28 morsei, Barbatia, 115 Mount Diablo Range, 28, 85 multiscutatus, Cnemidophorus, 183, 144, 145 Mytilus mathewsonii, 42 Mytilus sp., 42 Nassa, 75 antiselli, 48, 76 arnoldi, 40, 48 blakei, 43, 76 lincolnensis, 77 ocoyana, 43, 75 nasuta, Macoma, 41, 47 Natica hannibali, 115, 119 inezana, 43 nebulosus, Anolis, 182, 149 neglectus, Thomomys, 154 nehalemensis, Thais, 83 Neocene Record in the Temblor Basin, California, and Neocene Deposits of the San Juan District, San Luis Obispo County, by Frank M. Anderson and Bruce Martin, 15-112 nevadanus, Pecten, 42 nevadensis, Cancellaria, 42, 85 Tellina, 42, 61 Neverita callosa, 48 globosa, 115, 116 inezana, 40 nuciformis, 115 secta, 115 newcombi, Yoldia, 54 nigricans, Thomomys, 154, 156, 157 nigricauda, Uta, 182, 145 Niso, 65 Niso (f) antiselli, 48, 65 norrisi, Scutella, 88, 40, 41 nuciformis, Neverita, 115 nuttalli, Saxidomus, 42 ochrorhynchus, Hypsiglena, 183, 141 Ochsner, W. H., 23 ochsneri, Drillia, 43, 90 Eulimella, 48, 66 Leds, 41, 53 ocoyana, Macoma, 41 Turritella, 40, 44 ocoyana, Drillia, 48, 98 Nassa, 48, 75 oligozona, Lampropeltis micropholis, 188, 149 Oliva californica, 40, 48 futheyana, 48 Olivella mathewsonii, 115 pedroana, 48

oregonense, Agasoma, 74 oregonensis, Cerithiopsis, 121 Trophon, 80 oregonus, Crotalus, 133, 188, 141 ornatus, Modiolus, 115 osmonti, Arca, 41 Ostrea eldridgei, 42 idrimnsis, 115 panzana, 47 titan, 47 ovalis, Meretrix, 115 owenianus, Conus, 40, 48 Oxybelis acuminatus, 188, 149 pacifica, Cancellaria, 43 pacificum, Callistoma, 64 pacificus, Batrachoseps, 182, 184, 185 Spherodactylus, 132, 150 palmeri, Uta, 182, 147 Panopea estrellana, 42 panzana, Chione, 41, 58 Ostres, 47 Thais, 82 parilis, Corbula, 115 Diplodonta, 41 Paso Robles Formation, 48 peckhami, Pecten, 42 Pecten, 55 andersoni, 40, 42 branneri, 42 crassicardo, 47 estrellanus, 47 etchegoini, 55 magnolia, 80, 42 nevadanus, 42 peckhami, 42 perrini, 42 sancti-ludovici, 47, 55 sespeënsis, 40, 42 vanvlecki, 42 vaughani, 42 Pecten (Chlamys) wattsi var, etchegoini, 55 Pecten (Chlamys) wattsi var. morani, 55 pedroana, Astyris, 42 Olivella, 43 Pelecypoda, 41, 42, 58 peltoides, Astrodapsis, 52 perrini, Pecten, 42 pertenuis, Venus, 40, 42 Phacoides sp., 47 acutilineatus, 42 richthofeni, 40, 42 sanctmerucis, 42 Phrynosoma cerroense, 132, 144 Phyllodactylus tuberculosus, 182, 149 Physa heterostropha, 48 piercei, Bathytoma, 42 Macoma, 41 Pitaria martini, 115, 117

116, 118

Planorbis sp., 48 platurus, Hydrus, 188, 148 Pleurotoma dumblei, 40 Pocket (The) Gopher of the Boreal Zone on San Jacinto Peak, by J. Grinnell and H. S. Swarth, 158-160 ponderosa, Dosinia, 41 Poromya, 56 gabbiana, 42, 56 posoënsis, Epitonium, 48, 68 Siphonalia, 48, 79 posunculensis, Amphissa, 42, 72 Cancellaria, 48, 86 Potamides carbonicola, 115 prærupta, Crepidula, 43 President's Report for 1918, 1-9 princeps, Crepidula, 48 Psammobia sequalis, 115 Pseudoliva dilleri, 115, 122 Publications of the Academy, 8 pulchra, Anniella, 182, 140, 142 Pyramidella cooperi, 48, 66 pyrrhus, Crotalus, 147 quadrigenarium, Cardium, 41 regilla, Hyla, 182, 135, 137, 144 remondii, Ficopsis, 115 Report of the President of the Acad emy for the Year 1913, 1-9 Reptiles and Amphibians of the Islands of the West-Coast of North America, by John Van Denburgh and Joseph R. Slevin, 129-152 richthofeni, Phacoides, 40, 42 Rimella canalifera, 115, 116 riversiana, Xantusia, 132, 187, 138, 189 Rockwell, John, 10 rotunda, Cancellaria, 87 Rowley, John, 6 rubidus, Cnemidophorus, 188, 145 sagitata, Glycimeris, 115 sanctacruzanum, Agasoma, 42 sanctæcrucis, Phacoides, 42 sancti-ludovici, Pecten, 47, 55 sanjosei, Cancellaria, 48, 87 San Juan District, 85 sanjuanensis, Melongena, 43 Santa Margarita Group, 45 Sauromalus ater, 146, 148 Sauromalus hispidus, 182, 146 species, 132, 148 Saxidomus nuttalli, 42 Scaphander jugularis, 43 Sceloporus becki, 132, 184 biseratus becki, 182, 135, 136 boulengeri, 182, 148

Pituophis catenifer, 133, 136, 138, 141

planicosta merriami, Venericardia, 115,

catenifer deserticola, 188, 142

zosteromus, 182, 144, 145, 147 Schaertzer, Henry C., 1 Schwatka, Lieutenant, 12 scincicauda, Gerrhonotus, 182, 184, 185, 186 ignavus, Gerrhonotus, 132, 188, 140, 142 scopulosus, Sigaretus, 48 Scutella norrisi, 38, 40, 41 secta, Neverita, 115 sectoris, Mactra, 42, 63 Semele morani, 42, 62 semidentata, Crassatellites, 115 serices, Verticaria, 132, 147 sespeënsis, Pecten, 40, 42 Siagonodon humilis, 188, 145 Sigaretus scopulosus, 43 simplex, Cancellaria, 43 sinuatum, Agasoma, 42 Siphonalia, 79 clarki, 121 posoënsis, 43, 79 sutterensis, 115, 116 skiltonianus, Eumeces, 133, 138, 140 Slevin, Joseph R., 5, 7, 8 Slevin, Joseph R. (with John Van Denburgh): Reptiles and Amphibians of the Islands of the West Coast of North America, 129-152 Smith, Dr. J. P., 81 Smith, L. E., 5 Spherodactylus pacificus, 182, 150 stansburiana, Uta, 132, 136, 138, 139, 140, 142, 144, 145, 147, 148 stellata, Uta, 132, 148 stormsiana, Caricella, 115, 116 Surcula davisiana, 115, 116 sutterensis, Siphonalia, 115, 116 suturalis, Turris, 115, 116 Swarth, H. S. (with J. Grinnell): The Pocket Gopher of the Boreal Zone on San Jacinto Peak, 153-160 Tamiosoma gregaria, 47 Tellina nevadensis, 42, 61 tenuistriata, 42 wilsoni, 42, 62 temblorensis, Chione, 40, 41 temblorensis, Drillia, 43, 91 Yoldia, 42, 54 tenuistriata, Tellina, 42 Terebra cooperi, 44 teres, Ctenosaura, 182, 148, 149 Thais, 81 blakei, 82 nehalemensis, 83 panzana, 82

trophonoides, 81

vaquerosensis, 40, 44

INDEX

Thomomys alpinus, 154, 155 altivallis, 158, 154, 159 jacinteus, 154, 159 neglectus, 154 nigricans, 154, 156, 157 titan, Ostrea, 47 Tivela weaveri, 115, 117 townsendi, Anolis, 182, 151 Transennella, 60 joaquinensis, 42, 60 triangulata, Donax, 41, 63 Tritonium hornii, 115 Trochita costellata, 44 species, 44 Trophon, 80 carrisaënsis, 47 gabbianum, 40, 44, 81 kernensis, 44 oregonensis, 80 trophonoides, Thais, 81 Tropidurus, 8 tuberculata, Cassidaria, 115 tuberculosus, Phyllodactylus, 132, 149 tumidus, Astrodapsis, 47 Turris, 88 carlsoni. 88 lincolnensis, 88 suturalis, 115, 116 turrita, Loxotrema, 115 Turritella, 70 carrisaënsis, 47, 70 inezana, 80, 40, 44 merriami, 115 ocoyana, 40, 44 uvasana, 115, 116 variata, 44 umpquaensis, Amauropsis, 115, 120 Umpqua Formation, List of Fossils from the, 115 Uta auriculata, 182, 146 clarionensis, 132, 146 elegans, 147 lateralis, 132, 149 martinensis, 182, 142

microscutata, 132, 147

nigricauda, 132, 145 palmeri, 182, 147 stansburiana, 132, 136, 138, 139, 140, 142, 144, 145, 147, 148 stellata, 132, 143 uvasana, Turritella, 115, 116 Van Denburgh, John, 5, 8 Reptiles and Amphibians of the Islands of the West Coast of North America (Joseph R. Slevin, collaborator), 129-152 Van Dyke, Dr. E. C., 7 vanvlecki, Pecten, 42 vaquerosense, Cardium, 40, 41 vaquerosensis, Thais, 40, 44 variata, Turritella, 44 vaughani, Pecten, 42 Venericardia planicosta merriami, 115, 116, 118 Verticaria hyperythra beldingi, 182, 144, 145 sericea, 182, 147 ventralis, Callisaurus, 182, 145, 146 Venus sequilateralis, 115 pertenuis, 40, 42 washingtoniana, Crassatellites, 115 weaveri, Tivela, 115, 117 Whitney, J. D., 24 whitneyi, Astrodapsis, 47 Dosinia, 30 williamsoni, Epitonium, 43, 68 wilsoni, Drillia, 48, 91 Tellina, 42, 62 wislizenii, Crotaphytus, 132, 144, 145 Woodworth, Wm. McMichael, 1, 4 Xantusia riversiana, 182, 187, 188, 189 Yale, Charles G., 13 yaquinanum, Agasoma, 75 Yoldia, 54 newcombi, 54 temblorensis, 42, 54 zosteromus, Sceloporus, 132, 144, 145,

			•		
				•	
					•
			•		
	,			•	
			•		
		•			
	•				
					•
		•			

CONTENTS OF VOLUME IV.

PLATES 1-12.

Title-page	PAGE i
Contents	iii
Report of the President of the Academy for the Year 1913. By C. E. Grunsky	1
(Published April 9, 1914)	
George Davidson. Biographical Sketch. By George W. Dickie, Ralph Harrison and Samuel B. Christy	10
(Published April 9, 1914)	
Neocene Record in the Temblor Basin, California, and Neocene Deposits of the San Juan District, San Luis Obispo County. By Frank M. Anderson and Bruce Martin. (Plates 1-10)	15
(Published December 30, 1914)	
The Fauna of the Siphonalia sutterensis Zone in the Roseburg Quadrangle, Oregon. By Roy E. Dickerson. (Plates 11-12)	113
(Published December 30, 1914)	
Reptiles and Amphibians of the Islands of the West Coast of North America. By John Van Denburgh and Joseph R. Slevin	129
(Published December 30, 1914)	
The Pocket Gopher of the Boreal Zone on San Jacinto Peak. By J. Grinnell and H. S. Swarth	153
(Published December 30, 1914)	
Index	167
โปซ 19. 19	16

• . . •

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES.

FOURTH SERIES

Vol. IV, pp. 1-13

APRIL 9, 1914

T

Report of the President of the Academy for the Year 1913

II

George Davidson

SAN FRANCISCO
PUBLISHED BY THE ACADEMY

COMMITTEE ON PUBLICATION

GEORGE C. EDWARDS, Chairman

C. E. GRUNSKY

EDWIN C. VAN DYKE

THE HICKS-JUDD PRESS
SAN FRANCISCO

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 1-13

APRIL 9, 1914

I.

REPORT OF THE PRESIDENT OF THE ACADEMY FOR THE YEAR 1913.

MEMBERSHIP

The Academy now has a membership of 491. Of these 375 are Resident Members, 84 are Life Members, and 32 are Honorary Members.

During the year, 144 new members were elected and qualified. By resignation the Academy lost 11 members, and by death the following eight:

Oregon
Hon. John P. Jones
Henry C. Schaertzer, San
Francisco
Herbert Brown, Tucson, Arizona
Andrew B. McCreery
Dr. Wm. McMichael Wood-

R. M. Brereton, Woodstock,

worth, Cambridge, Mass. Col. A. G. Hawes, San Fran-

Gen. L. H. Foote, San Francisco Life Member

Life Member

Life Member

Resident Member

Resident Member Life Member

Life Member

Life Member, and for many years an officer of the Academy

QUARTERS AND MEETINGS

The Academy is still housed in temporary quarters at 343 Sansome Street. It has held regular bimonthly meetings, and a good attendance at these meetings may be accepted as evi-

April 8, 1914

dence of active interest in the Academy's affairs by its members.

As the business affairs of the Academy are in the hands of its Trustees, these stated meetings should be devoted primarily to the discussion of scientific subjects. This has been the case only to a limited extent since the Academy has been housed in temporary quarters. The time has now come when there should be a resumption of the old practice of giving those who are actively engaged in scientific work, whether within the Academy or without, frequent opportunity of presenting the results of their work in a more or less informal way to those who are interested. Some steps toward encouraging the use of the stated meetings for this purpose have already been taken; but the afternoon meetings are ill adapted for this purpose, and it is believed that it will be wise to return at an early day to the old practice of meeting in the evening.

The Academy has been accumulating a large amount of material in its temporary quarters. Most of this is for reference and study. At the present time the collection, together with the library, which has also assumed fair proportions, taxes the available floor-space nearly to its limit. The need of permanent and large quarters, and the need of a place in which exhibits for the benefit of the public may be installed, has been an ever-increasing one.

THE NEW MUSEUM BUILDING

The Academy was granted, by a vote of the people of San Francisco on November 15th, 1910, the right to erect a museum building in Golden Gate Park. Preparations to avail ourselves of this privilege have been under way for several years. The plans for a building have been finally accepted by the Academy, and have been approved by the Park Commissioners. Contracts have been awarded for the grading, the brick and concrete work, and the stone work required for the erection of the first unit of the proposed building. This first unit, consisting of a section of the main front of the building with two wings, of which one is to be used for research work, will cost about \$164,000.

Some evidence of the esteem in which the Academy is locally held may be found in the fact that the Building Committee of the Board of Supervisors of San Francisco declared its willingness to recommend that the Academy be granted the right to erect its museum building at the Civic Center, provided that satisfactory assurance could be given that our building would be completed in a reasonable number of years. Owing to the fact that our financial situation did not justify the giving of such an assurance, covering a possible total expenditure of from \$600,000 to \$800,000, this proposition could not be entertained, and the matter had to be dropped.

RESOURCES

The property of the Academy stands upon the books at a value of about \$1,300,000, subject to an indebtedness of \$300,000. The details of this book-value and of the annual income appear in the Treasurer's report.

It is interesting to note that the net annual income from the Academy's property on Market Street (the Commercial Building) is about \$46,700, and that from other sources, such as fees and dues, interest on special funds and short term loans, this income is swelled to about \$53,700.

The Academy has expended during the last year for rent, salaries, and on its collections, about \$32,700. The funds available for building have been increased by about \$21,000.

It is estimated that a sum of from \$125,000 to \$130,000 can be made available for the new building by the end of 1914, with some surplus for the installation of exhibits. This can be accomplished by continued exercise of economy, and by some curtailment of the Academy's activities, which under ordinary circumstances should be extended rather than curtailed. The additional funds required for the building will be advanced by the Crocker National Bank, a courteous act, which will be duly appreciated by the Academy.

DONATIONS AND BEQUESTS

The Academy has been the recipient of a number of donations, which have been recorded and suitably acknowledged throughout the year; and I take this occasion of again expressing the Academy's appreciation of the kindness of these donors in doing their share toward enlarging the Academy's field of usefulness. The Academy is above all an educational institution. Through its collection of scientific material, through the work of its curators, and through the museum exhibits which it maintained before the fire, and which it will re-establish as soon as proper space is provided in the new building, it aims to disseminate knowledge of the world in which we live, and to provide material that would otherwise be beyond the reach of the individual student. That such material flows to the Academy from many sources is an evidence that this fact is appreciated.

During the year a bequest of books and pamphlets was made to the Academy by Dr. William McMichael Woodworth, formerly of California, but in recent years a resident of Cambridge, Mass. This bequest included 235 bound volumes and over 2000 unbound volumes and pamphlets.

ACTIVITIES

During the year which has just drawn to a close the Academy has been as active as circumstances would permit, both in the continuation of research work in various departments, and in the preparation of material for the museum, the building for which—at least so much of it as will be required for immediate needs—we may hope to see completed in Golden Gate Park within this year.

The activities of the Academy along scientific lines will be set forth in detail by the Curators of the various departments. While the Academy's effective work is perhaps best evidenced by the Academy's publications, much has been accomplished which is not found nor referred to in the published material, and which will bear brief notice here.

The Curators and their assistants have worked faithfully in the collection of new material, in the classification and arrangement of the material on hand, and in the publication of the results of the work done.

DEPARTMENT OF BOTANY

Miss Alice Eastwood, Curator of the Department of Botany, besides being active in her own department, has been serving also as Assistant Librarian, and has done much toward perfecting an orderly arrangement of the books and pamphlets which have been accumulating since the destruction, in 1906, of the Academy's original library. She has also proved a valuable aid to the Director of the Museum. She has made large personal collections during the year. The department has been enriched, too, by donations, among which that of L. E. Smith is notable. This consists of 2500 specimens representing 572 species of plants from Northern California. Other donors have added some 500 specimens to the botanical collection, representing nearly the same number of species.

The material collected for the herbarium last year, and much of that which had accumulated in preceding years, was mounted, and some 12,000 mounted specimens have now been made conveniently accessible. They fill seven cases, in which they are arranged according to the latest system. They are labeled, though not all as yet are specifically determined.

A feature of the botanical department is the Botanical Club, with a membership of about 50, which, under the leadership of Miss Eastwood, meets once a week, alternatively at the rooms of the Academy and on excursions.

DEPARTMENT OF HERPETOLOGY

In the Department of Herpetology, Dr. John Van Denburgh, Curator, and Joseph R. Slevin, Assistant Curator, have continued active. The collection has increased from about 28,000 to about 30,500 specimens. Exploration has added the bulk of the new material mainly from California, Nevada, and Utah, with some specimens from the Channel Islands and a few from Arizona. In this department, also, various donors have added to the collection.

The Curator and his assistants have completed the scientific work on the collections from the Galapagos Islands, and the results of the same appear as elsewhere noted in the publi-

cations of the Academy. They have also completed their studies of the collections from Arizona, and the results of these, too, have been published by the Academy during the year.

In this, as in the various other departments, the routine work of caring for the collection and of arranging the specimens has received attention, and the recording of the collection in the catalogue of the department has been brought up to date.

DEPARTMENT OF INVERTEBRATE PALEONTOLOGY

In the Department of Invertebrate Paleontology, Mr. F. M. Anderson, the Curator, and his Assistant, Mr. Bruce Martin, have devoted such time in the field as means would permit to regional studies of minor provinces of the Pacific Coast, with special reference to the Tertiary formations. The field work was extended by Mr. Martin from California into Oregon and Washington, and a large amount of valuable material was collected. Some 21,500 specimens representing about 700 species have been added to the Academy's collection.

The indoor work of the department has related to the preparation of material for publication and to the identification and arrangement of the specimens in the collection.

DEPARTMENT OF MAMMALOGY

In the Department of Mammalogy, under the direction of the Curator, Mr. John Rowley, assisted by Mr. A. E. Bolton, the work of collecting and preparing material for exhibition groups has been continued. There are now mounted and practically ready for installation nine groups, as follows:

Four seasonal groups of Blacktail Deer
One group each of:
California Mule Deer
San Joaquin Elk
Leopard Seal
Steller's Sea Lion
Mountain Lion

Groups of the California Sea Lion and of Antelope are also reported to be in an advanced stage of preparation.

The Academy has been liberal in its allotments for the work of this department during the last few years, because it is believed that no better displays can be made to popularize the Museum, and thereby call attention to the facilities for scientific study which the Academy affords.

It is to be added that the work which is being done by Mr. Rowley and his assistants is of an interesting character, and a visit to his laboratory in Berkeley, where the accumulating material is stored, is well worth while.

DEPARTMENT OF ORNITHOLOGY

The Academy's valuable collection of bird specimens is particularly rich in material pertaining to the Pacific Ocean. The collection has received the necessary attention by the Director of the Museum.

This department has furnished during the year one paper on the Birds of the Galapagos Islands by Mr. E. W. Gifford.

DEPARTMENT OF ENTOMOLOGY

In this department, the work of the year under the direction of Dr. E. C. Van Dyke, Curator, assisted by Mr. Chas. Fuchs, has consisted principally in mounting, classifying, and arranging the material brought in from time to time, as well as the material already on hand. This department, as is the case with other departments, has been in cramped quarters, and will benefit greatly by the improved facilities for work and storage which the new Museum building will afford.

The Curator did some collecting in Trinity County. He expresses his appreciation of the aid received from Mr. J. R. Slevin of the Department of Herpetology, and from Mr. Bruce Martin of the Department of Invertebrate Paleontology, the former of whom brought additions to the collection from Arizona, and the latter from Oregon and Washington.

PUBLICATIONS

Four papers have been published by the Academy. Two of these were issued as Parts VIII and IX of the series relating to the Expedition to the Galapagos Islands, and the other two are a continuation of Fourth Series, Vol. III, of the Proceedings, as follows:

Proceedings, Fourth Series, Volume II, Part I

Pages 1-132. VIII. The Birds of the Galapagos Islands, with Observations on the Birds of Cocos and Clipperton Islands (Columbiformes to Pelecaniformes), by Edward Winslow Gifford. Plates r-vii (Issued Aug. 11, 1913).

Pages 133-202. IX. The Galapagoan Lizards of the Genus Tropidurus; with Notes on the Iguanas of the Genera Conolophus and Amblyrhyncus. By John Van Denburgh and Joseph R. Slevin. Plates VIII-XI (Issued Sept. 1913).

Fourth Series, Volume III, Part I

Pages 265-360. A Distributional List of the Mammals of California. By Joseph Grinnell. Plates xv-xvi (Issued August 28, 1913).

Pages 391-454. A List of the Amphibians and Reptiles of Arizona, with Notes on the Species in the Collection of the Academy. By John Van Denburgh and Joseph R. Slevin. Plates XVII-XXVIII (Issued November 5, 1913).

The publication and distribution of these papers involved an expenditure of \$2527.13.

THE LIBRARY

The work which, during the past year, has been done on the part of the Library has brought good results. Some room on the shelves has been secured by packing in boxes and storing away a large number of books, pamphlets, and serials which are least likely to be in demand by those who avail themselves of our facilities for reference. The more important books and publications have been roughly classified and made conveniently accessible. The Librarian reports a healthy growth of the Library. The demands of the Curators for scientific works has been fairly well met, and there has been a fair increase through exchanges and complimentary sources, as well as by donations and by the Woodward be-

quest already referred to. It is expected that the Library will be gradually restored to full usefulness after it is properly housed in the new building.

THE SCHOONER "ACADEMY"

The Schooner "Academy," which carried the Academy's exploring expedition to the Galapagos Islands some years ago, has been sold. Upon the return of the expedition, the schooner was sent up to Martinez and cared for there at some expense for watchmen and annual repairs. As no further use for the vessel by the Academy was foreseen, an offer of purchase which was received during the year was accepted.

THE PRESENT SITUATION

The Academy is rapidly approaching a turning-point in its affairs. It will within a year have made suitable provision for the housing of its valuable collections, and will extend its activities in a larger field of usefulness. It has already collected much material for pictorial groups of mammals; the installation of these groups, together with a variety of miscellaneous material, will speedily follow the completion of the new building. The Academy will then be brought into closer touch with the public than it has been for some years, and new and larger responsibilities will fall upon the officers. These responsibilities your officers ask the members one and all to share with them by hearty co-operation in their endeavor to maintain the Academy as a dignified and truly useful institution.

C. E. GRUNSKY
President

II. GEORGE DAVIDSON

This distinguished member, and we might say founder, of The California Academy of Sciences was born in Nottingham, England, on May 9th, 1825. His parents were Scotch people from Montrose on the east coast. They removed to Philadelphia in 1832, George being then seven years old; and it was here that young Davidson received his elementary education. During his four years at the Central High School, he held the distinction of being continuously at the head of his class. Not satisfied with the knowledge he was gathering at school, the ambitious youth worked in the observatory from 12:20 A. M. till forty minutes before the school opened. This wearing duty was performed at a salary of one dollar a week; but before his school course was finished, the lad had worked this pay up to \$30 a month.

During this time his instructor in astronomy, and the master under whom he worked, was Alexander Dallas Bache; and a good friend he proved to the lad so eager to acquire knowledge. Presently Bache was appointed to the head of the United States Survey, and through him young Davidson found his way into the government service. Here he must have worked himself into the notice of the heads of the department, for in 1849 he was selected to perform the important duty of charting the then unknown waters of the Pacific Coast.

Davidson arrived at Yerba Buena (San Francisco) in the month of June, 1850, on the "Tennessee". The working party consisted of George Davidson, Chief; James S. Lawson, A. S. Harrison, and John Rockwell. What by the United States authorities the charting of an unknown coast was considered worth, may be gathered from the fact that Davidson received \$800 a year, and his assistants received \$30 per month. The Chief had to provide his own board, and on that account was often worse off than his assistants. We notice on the same pay-roll a cook enlisted at \$125 per month, with all traveling and subsistence expenses provided. Thus a good cook was considered worth more than two good scientists. Within a space of three years, this little party charted the

whole front coast from San Diego to Port Townsend. Assistance in this great work was rendered by some United States Navy officers then on the coast, who carried on the topography based on Davidson's determinations of latitude and longitude.

From 1854 to 1858 Prof. Davidson was in command of the survey brig "Fauntleroy," and much work was done on the Sound and in the Strait of Juan de Fuca. This involved much exposure. In consequence Lawson, who continued the work, suffered tortures from rheumatism up to the time of his death, and Davidson suffered intensely from neuralgia for years afterwards.

How painstaking he was in regard to his base-lines may be gathered from the following memorandum in the Professor's handwriting, which appears on the back of a photograph of himself in his sister's possession, and which was kindly furnished by her to the writer. It relates to a base measured in 1888-89:

G. D. January, 1889. At measurement of the Los Angeles base-line, ten and three-fourths miles long, second measurement differed from the first 1/3 inch, third differed 1/120 inch from the second. Worked in measurement, computations, etc., 17 to 18 hours daily for three months.

In 1868 Davidson was placed in charge of the Western Division of the Geodetic Survey, and himself mapped out the work to be done. He never sent out subordinates on difficult or dangerous duty, but went into the field personally. There is not a square mile where the work was carried on in California, Oregon, or Washington, that he did not occupy. His devotion to duty was even greater than his ability and capacity for work.

No other American in the public service received during his life such general scientific acknowledgment from all countries as did George Davidson. He was elected to membership in thirty-two learned societies and academies, including the Royal Astronomical Society, the American Philosophical Society, the National Academy of Sciences, the National Geographical Society, the Royal Geographical Society, and the Bureau des Longitudes of France.

Davidson's signal services to the United States Government were no less remarkable than the honors which were heaped

upon him by foreign scientists. In 1857, by a unique service, he saved the land titles of San Francisco by proving, after sixty hours of continuous work, that the Limantour seal on the claimant deeds was a forgery. In 1862 he was called east to take charge of the engineering work in connection with the defence of Philadelphia against Lee's invading army. He was then placed in command of the armed Coast Survey vessel "Vixen," for work on the Florida coast. In 1867 he was sent to explore the Isthmus of Darien for the purpose of locating a route for a ship canal. From there, Davidson was ordered to make a survey of Alaskan waters, and his report largely influenced Congress to act favorably on the purchase of Alaska. His series of astronomical observations, taken in order to throw light on the problems of the variation of latitude, were termed by German scientists "a gigantic labor." In 1891-92, in a period of fifteen months, he made no less than 6878 observations. During President Cleveland's first administration, he was one of the seven members of the Mississippi River Commission. In 1872 he was selected by President Grant for the important and delicate mission of sounding the sentiment of British Columbia on the annexation question, which was then disturbing that Province.

The existence of the California Academy of Sciences is largely owing to the work which George Davidson did for it during its early history. He became a member of the Academy in 1869, was elected President in 1871, and was reelected each successive year until 1887. He always took a deep interest in the success of the society. His activities did much to give it prominence in the world of science, and to make its meetings conspicuously interesting. If there was no special subject announced to engage the attention of the regular session, he could always draw upon his own inexhaustible fund of scientific knowledge to fill the hiatus. He was always on the alert for eminent scientists, or other notable visitors to San Francisco, who could be induced to address the meetings of the Academy. Conspicuous among such may be mentioned Dr. Louis Agassiz, Captain De Long of the Jeanette polar expedition, and Lieutenant Schwatka returning from his explorations in Alaska. He took the initiative, and did more than any other, to secure from James Lick the magnificent endowment

which has placed the California Academy of Sciences among the wealthy scientific societies of the world. While other officers and members, including Dr. Henry Gibbons, Dr. George Hewston, Charles G. Yale, J. P. Moore, and others, rendered assistance, all his contemporaries in the Academy concede that he was the chief factor in securing the splendid gift. Every member of the Academy should therefore cherish the memory of George Davidson next to that of James Lick as its greatest benefactor.

In addition to his invaluable books, there have been published about three hundred scientific papers by Professor Davidson. In a letter to his sister, he says of his most important works, The Coast Pilot of California, Oregon and Washington, 1889, and The Coast Pilot of Alaska-Part I, 1869:

The sailors call my oldest Coast Pilot "Davidson's Bible." three editions, and then rewrote every line of the fourth, now sent to you. I had about 3500 pages of manuscript, and no fellow has yet found any but a few typographical errors. Remember this big work was done besides my other official work.

That this man, after fifty years of faithful service—a service that called forth unstinted admiration and honors from all maritime nations—should have been treated by his own Government as if he were an ordinary laborer, hired for a day's work, and dropped without excuse or warning, is one of the things for which Americans have often had to hang their heads in shame. In any other country George Davidson would have had honors heaped upon him, and his old age would have been brightened by the thought that the country to which he had devoted his wonderful abilities had not forgotten the sacrifice, but delighted to honor the noble work of such a citizen.

> GEORGE W. DICKIE RALPH HARRISON SAMUEL B. CHRISTY

> > Committee

			•		
·					

·

· .	
	•
· .	

PROCEEDINGS

Fourth Series

VOLUME I

Expedition of the California Academy of Sciences to the Galapagos Islands, 1903-1906.	
Pages 1-6. I. Preliminary Description of Four New Races of Gigantic Land Tortoises from the Galapagos Islands. By John Van Denburgh. (Issued December 20, 1907)	\$.25
Pages 7-288. II. A Botanical Survey of the Galapagos Islands. By Alban Stewart. Plates I-XIX. (Issued January 20, 1911)	1.75
Pages 289-322. III. The Butterflies and Hawk-Moths of the Galapagos Islands. By Francis X. Williams. Plates xx-xxi. (Issued October 7, 1911)	.50
Pages 323-374. IV. The Snakes of the Galapagos Islands. By John Van Denburgh. Plates xxII-xxx. (Issued January 17, 1912)	.50
Pages 375-404. V. Notes on the Botany of Cocos Island. By Alban Stewart. Plates xxxi-xxxiv. (Issued January 19, 1912)	. .3 5
Pages 405-430. VI. The Geckos of the Galapagos Archipelago. By John Van Denburgh. (Issued April 16, 1912)	.35
Pages 431-446. VII. Notes on the Lichens of the Galapagos Islands. By Alban Stewart. (Issued December 17, 1912)	. 25
VOLUME II, PART I	•
Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906.	
Pages 1-132. VIII. The Birds of the Galapagos Islands, with Observations on the Birds of Cocos and Clipperton Islands (Columbiformes to Pelecaniformes). By Edward Winslow Gifford. Plates I-VII. (Issued August 11, 1913)	1.00
Pages 133-202. IX. The Galapagoan Lizards of the Genus Tropidurus; with Notes on the Iguanas of the Genera Conolophus and Amblyrhyncus. By John Van Denburgh and Joseph R. Slevin. Plates VIII-XI. (Issued September 19, 1913).	.50
VOLUME III	
Pages 1-40. A Further Stratigraphic Study in the Mount Diablo Range of California. By Frank M. Anderson. Plate 1. (Issued October 31, 1908)	.35
Pages 41-48. Description of a New Species of Sea Snake from the Philippine Islands, with a Note on the Palatine Teeth in the Proteroglypha. By John Van Denburgh and Joseph C. Thompson. (Issued December 31, 1908)	. 25

PROCEEDINGS.

Fourth Series

VOLUME III-Continued

. ,. •=• ••	
Pages 49-56. New and Previously Unrecorded Species of Reptiles and Amphibians from the Island of Formosa. By John Van Denburgh. (Issued December 20, 1909)	.25
Pages 57-72. Water Birds of the Vicinity of Point Pinos, California. By Rollo Howard Beck. (Issued September 17, 1910)	. 25
Pages 73-146. The Neocene Deposits of Kern River, California, and the Temblor Basin. By Frank M. Anderson. Plates 11-XIII. (Issued November 9, 1911)	1.00
Pages 147-154. Notes on a Collection of Reptiles from Southern California and Arizona. By John Van Denburgh. (Issued January 17, 1912)	. 25
Pages 155-160. Notes on Some Reptiles and Amphibians from Oregon, Idaho and Utah. By John Van Denburgh. (Issued January 17, 1912)	.25
Pages 161-182. Geologic Range of Miocene Invertebrate Fossils of California. By James Perrin Smith. (Issued April 5, 1912)	.25,
Pages 183-186. Description of a New Genus and Species of Salamander from Japan. By Surgeon J. C. Thompson, U. S. Navy. Plate xiv. (Issued May 3, 1912)	.25
Pages 187-258. Concerning Certain Species of Reptiles and Amphibians from China, Japan, the Loo Choo Islands, and Formosa. By John Van Denburgh. (Issued December 16, 1912.)	.50
Pages 259-264. Notes on Ascaphus, the Discoglossoid Toad of North America. By John Van Denburgh. (Issued December 21, 1912)	.25
Pages 265-390. A Distributional List of the Mammals of California. By Joseph Grinnell. Plates xv-xvi. (Issued August 28, 1913)	1.00
Pages 391-454. A List of the Amphibians and Reptiles of Arizona, with Notes on the Species in the Collection of the Academy. By John Van Denburgh and Joseph R. Slevin. Plates XVII-XXVIII. (Issued November 5, 1913)	.75
VOLUME IV	-
Pages 1-13. I. Report of the President of the Academy for the Year 1913.	
II. George Davidson. (Issued April 8, 1914)	. 25

The Academy cannot supply any of its publications issued before the year 1907, its entire reserve stock having been destroyed in the conflagration of April, 1906.

570.5

GENERAL LIGRARY

FEB13 1955

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 15-112, pls. 1-10

DECEMBER 30, 1914

III.

Neocene Record in the Temblor Basin, California, and Neocene Deposits of the San Juan District, San Luis Obispo County

FRANK M. ANDERSON
AND
BRUCE MARTIN
Department of Invertebrate Paleontology.

SAN FRANCISCO
PUBLISHED BY THE ACADEMY
1914

COMMITTEE ON PUBLICATION

GEORGE C. EDWARDS, Chairman

C. E. GRUNSKY

EDWIN C. VAN DYKE

EDITOR

BARTON WARREN EVERMANN

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 15-112, pls. 1-10. December 30, 1914

NEOCENE RECORD IN THE TEMBLOR BASIN, CALIFORNIA, AND NEOCENE DEPOSITS OF THE SAN JUAN DISTRICT, SAN LUIS OBISPO COUNTY.

By F. M. Anderson and Bruce Martin, DEPARTMENT OF INVESTEBRATE PALEONTOLOGY.

CONTENTS

										PAGE
Introduction					•					17
Question of the Mot	<i>itere</i> y	For	mati	on	•	•	•			17
NEOCENE RECORD I	N TH	IE T	EM	BLO	R BA	ASIN	Ι.			
THE TEMBLOR BASIN		•					•			23
Interior Ranges .		•								23
Mount Diablo Range				•	•					23
Neocene Deposits								•		24
Structures										25
Orogenic Blocks .	•									26
Disturbances Noted	Elscu	here								30
Neocene Record .									•	31
Conclusions				٠.				•	•	33
THE SAN JUAN DIST	RIC	Γ.								
GENERAL STATEMENT										35
Location						•				35
Topography .							•		•	36

December 30, 1914

16	CAL	IFO.	RNIA	ACA	DEM	<i>y</i> 0	F SC	CIEN	CES	[]	Proc. 4	TH SER.
												PAGE
GEOLOGY .	•				•							36
Basement Re	ocks			•								36
Neocene Ro	cks											37
Faunal Rela	tions	of	the	Teml	blor							40
Monterey Sl	hale											44
Santa Marga		Gro	up									45
Etchegoin G			•									47
Paso Robles	For	mati	on		•							48
Stream Grav	els											48
Structure												50
Economic Geor	.OGY											51
Oil and Gas												51
Gold .												52
Other Metal.	s											52
DESCRIPTION	-	SP	ECIE	ES		•					•	52

. . .

Introduction

The Question of the Monterey.—For more than the last ten years California geologists have been accustomed to the use of the term Monterey Shales, or Monterey Formation, as designating a somewhat definite formational division of the California Miocene, and as belonging to an equally definite time division of that period.

While the full discussion of this interesting question can not be undertaken within the limits of the present paper, there are some reflections that may be offered as prefatory to the subject. If the Miocene strata of California are capable of being consistently subdivided, it should be done, for purposes of intensive study and discussion, if for no other particular object.

The aggregate thickness of the entire Miocene section in California is very great, and the time interval represented is correspondingly long. In many localities in the Coast Ranges the Miocene strata attain or approach a thickness of 7000 feet, and the time required for such a body of strata, largely organic shales, to be deposited is too great to be included in a single time unit if any satisfactory divisions can be found.

While the Miocene deposits of California have not been extensively studied, they are well known to be locally complicated. The exact number and importance of these complications is not yet known.

Undoubtedly the criteria for the final subdivision of this stratigraphic series should begin with the larger events of its physical history. Faunal changes are, of course, important, but they are more likely to be controlled, or influenced, by the physical events, and are therefore of secondary diagnostic value. Next in importance for such purposes is, perhaps, lithology, and lastly, inference, theory, and scientific imagination.

In many cases the order of these criteria has undoubtedly been reversed, and lithology and imagination have been given prominence at the expense of the diastrophic record. The varied conditions of environment in which the faunas of the Miocene were developed, the great variety and composition of sediments, and the complicated physical history of the California Miocene, all contribute to the aggregate of variety that is met with in the field and in the literature.

While it will be admitted by all thoughtful geologists,—and the idea is by no means new—that lithology can form no proper basis for subdivision of the Miocene, still the thick group of strata of this period, showing as it does the signs of widespread disturbances, can not be considered as being overburdened by formational names when four or five have been proposed. In the early stages of stratigraphic study, if it is at all intensive, such names are necessary and should be welcomed when it seems necessary to the workers in the subject to make them, and they should not be discarded without a proper consideration, nor until shown by creditable authority to be unnecessary. It may be frankly admitted by the advocates of intensive stratigraphic study, without loss to their ideals, that mistakes have been made in the early stages of their work, but this fact should not discourage endeavor to find the order that undoubtedly exists in their subject. The solution of the problem, though not yet complete, is possible; and, if later investigators have erred in their search for proper criteria of differentiation, their endeavors have been toward advancement. and their success, though partial, should be welcomed and encouraged. Their errors, even if great, as they have not been, are no greater than the errors of earlier writers, and if pointed out, may still be amended.

But the difficulties in the way of making a systematic study and a systematic classification of strata should not of themselves discourage effort, nor can the difficulties inherent in the language of science be properly urged as a reason for the rejection of its results. As an example of a regrettable attitude, a recent writer has spent much effort to show that lithology can not form a sound basis of classification, and it is asserted by him that this has usually been the basis among previous writers. This author then proceeds to discourage attempts at subdivision, and endeavors to defend excathedra statements and conclusions that were on the face of them premature, and made before all the facts were known.

It has long been known that organic siliceous shales, such as occur near the town of Monterey, are a "depositional facies" that perhaps belongs to deep-water areas, and that strata of

this type occur in nearly all parts of the Miocene in California, and, in fact, are not confined to the Miocene. The suggestion that this lithologic type is not serviceable for stratigraphic divisions, except locally, is not at all new. Dr. G. D. Louderback has recently made a careful but condensed review of the literature pertaining to the earlier Miocene deposits in California, particularly with reference to the use of the terms Monterey Series and Monterey Formation. According to Dr. Louderback the usage of writers for one decade was to follow the lead of Dr. A. C. Lawson, who in 1893, proposed the adoption of the name Monterey as "the local designation of the series"—represented at Monterey and Carmelo Bay. "local designation", Louderback interprets to mean, and to include, the whole of the "depositional province", including these localities, and in proof of his contention, quotes the language of a part of Dr. Lawson's text.

Without debating the correctness of this interpretation it may be well to remark incidentally that the extent and limits of this basin or "depositional province" are not defined or even suggested, but presumably it does not extend beyond the boundaries of the California interior valleys. If the same liberty of interpretation be allowed to reviewers of Dr. Louderback's paper that this author assumes in his cursory reviews of others it will be fair to say that his "depositional province" doubtless coincides in extent and boundaries with the Temblor basin described in a former paper by the senior author of this paper.

The papers written during the succeeding decade, 1904 to 1912, show a vigorous and healthy scientific advance, and mark an epoch of progress in geologic study of the California Miocene, and of the Tertiary as a whole. But complaint is made by the reviewer quoted above against the "multiplication of formational names, both within the limits of the ('Monterey') series and throughout the Tertiary terranes", and this increase in formational names is styled "dismemberment", and it is said to be "confusing and rather discouraging to one who wishes to acquaint himself with the real essentials of the geologic history of that time".

In reality this "multiplication" was a direct result of inquiring study into the character and composition of a great succession of unclassified strata, and its complex history and changing faunas, and it clearly marks an advance in our knowledge of both the physical events of the time and of the resulting facts of deposition and organic development. The adding of three or four formational names was only incidental to the study and differentiation of the strata, and it was evolutionary and unavoidable, if any progress was to be made in our acquaintance "with the real essentials of the geologic history of that time". An increase in names could only be discouraging to one who does not desire an acquaintance with the essential facts, or who assumes an acquaintance that he does not possess, or by one who is unaware of the value of intensive study.

Within the limits of California there is much to be done in the way of finding a proper basis of stratigraphic classification of the Miocene, and its faunal changes. The area described in the second part of this paper, like many others that should be better known, has its own contribution to make toward the final result, and will serve to illustrate anew an interesting problem, and to some extent show the complicated nature of the Neocene provinces and their environments, and their phases of deposition. Faunal differences have hitherto been ascribed to progressive time development, and inland districts having faunas somewhat different from those along the present coast have been pointed to in proof of such contention, on the theory of a gradual subsidence and progressive continental transgression. The soundness of this view has still to be proved.

It has yet to be shown that the so-called *Vaqueros* beds of the Salinas valley are older in time than the Temblor deposits at the base of the Miocene within the Great Valley. Little or nothing is gained by assuming as settled facts, views that upon last analysis will be shown to be purely speculative.

During the past several years considerable stratigraphic and areal work has been done in and about the oil and gas districts of central California by the writers of this paper, and by those who have contributed to the information and fossil materials herein represented. This work has extended not only over the proved oil districts of the San Joaquin Valley, or better, the Temblor Basin; but following the lead of prospective evidences of oil it has extended into neighboring territory and into outlying districts which have contained only doubtful evidences

of petroleum, or where only stratigraphic resemblance allied them to the oil-bearing formations in other districts. This work has necessarily covered much territory outside of the limits of proved or even prospective petroleum lands. But nevertheless it has thereby led to a broader and better understanding of the stratigraphic conditions of the oil bearing formations, and of other associated strata, above and below.

However, not all of the work upon which this and subsequent papers are to be based was done as economic exploration, for much of it in fact was done for purely scientific purposes. or solely to extend the boundaries of geological and paleontological information farther than it had heretofore been carried, and to solve, or aid in solving some of the problems with which these subjects abound. While the distribution and correlation of the larger divisions of the middle Tertiary of California are well known, there are, nevertheless, points of interest in correlation which have not been finally settled, and any additional knowledge that can be added seems fully worth while. The familiar and much debated question of the relation of the lower Miocene of the interior basins to those of the coastal districts has interested the writers in areas intermediate between the Kern River region, the most easterly occurrence of lower Miocene within the Great Valley of California, and the Salinas Valley where lower horizons are supposed to occur. An area some twenty-five miles long and approximately ten miles wide, stretching from Paso Robles in the Salinas Valley southeast to the western border of the Carrizo Plain, was examined and partly mapped, and studied with a view to throwing light on this problem of correlation. The results of this work, while not yielding all that was desired, seem to warrant a brief description as to stratigraphic relations, together with a faunal correlation as far as can be made.

The geology and faunas of some of the outer coastal districts have been studied by H. W. Fairbanks, J. C. Merriam, Ralph Arnold, and the present writers, while areas within the Great Valley have been similarly studied by several workers, including Ralph Arnold, Robert Anderson, H. R. Johnson, and the writers. Meanwhile, the areas lying along the southern border of the Temblor Basin west of the Great Valley and inter-

mediate in position, have generally escaped the notice that they have deserved. Aside from the brief reference by Antisell in the Pacific Railroad Reports, there are only meager accounts of their geology or paleontology to be found in the literature of California geology.

Among these lower Miocene localities are those in northern San Luis Obispo County, as well as the locality on Los Vaqueros Creek, Monterey County, from which the name "Vagueros Formation" has been derived. The additions here made to the lower Miocene fauna of California come from a more exhaustive study of these deposits, and of those on the Kern River along the eastern border of the Temblor Basin. In no other part of the province of geology is the value of intensive stratigraphic work and of invertebrate paleontology as an aid, more clearly disclosed than in the systematic study of the marine oil-bearing formations of California. It is not difficult for the paleontologist familiar with these horizons and their faunas, to follow or identify them in districts outside of productive fields, and thereby in some measure judge of the merits of untried areas. Much of the pioneer development work of the oil districts of this state has been guided consciously or otherwise by "fossil shells", even by unscientific operators.

In a systematic study of the various deposits, economic and other, that belong to the Pacific Coast Tertiary, there are not only practical and local problems, but there are problems of provincial, regional, or even continental extent that require consideration, and which can not be overlooked by the philosophic student who would correctly understand his data. For this purpose it would be desirable to know much about the climatic conditions of the Tertiary, and the environment of its local faunas. Too little attention has hitherto been given to these and similar phases of West Coast geology.

However, it is not the purpose to undertake an extensive discussion of stratigraphy, faunas or climate in the present paper; but merely to suggest the subjects, which, it is hoped, will be further treated hereafter and incidentally to introduce into the literature a few of the hitherto undescribed invertebrate species in advance of subsequent discussions.

The new species and subspecies of marine mollusca described in this paper have been obtained from the middle and lower Miocene of central California and other provinces at various times during the last two or three years. Among the contributors of material to this paper have been Mr. R. B. Moran, Mr. W. H. Ochsner, Mr. A. G. Carpenter, Mr. John P. Buwalda, Mr. Charles Morrice, and the writers. The field work and mapping of the San Juan district and the discussion of its geology and other features is the work of the junior author.

NEOCENE RECORD IN THE TEMBLOR BASIN THE TEMBLOR BASIN

This basin has already been defined as occupying the larger part of the Central Valley of California and the neighboring intermontane valleys to the west. It is more accurately represented on the map (Plate 9) which shows it bounded on the west and south by the Santa Lucia, San Raphael, the San Emedio and Tehachapi ranges, and on the east by the foot hills of the Sierra Nevada. It is not known to extend farther north than the Marysville Buttes, though Neocene and older Tertiary strata may occur there. An inspection of the map shows the Temblor Basin to be divided by mountain ranges extending through it from southeast to northwest, beginning near the San Emedio Range at the south and extending north to the Straits of Carquinez. These ranges form two groups running nearly parallel, but diverging toward the northwest. Toward the southeast they approach or merge into each other in the region of Coalinga.

The Mount Diablo Range forms the more easterly group and is more continuous and more important than the other, which includes the San Jose, Gavilan, Santa Cruz and other intervening minor ranges.

Several small intermontane valleys are enclosed among these mountains, including the Carrizo, Cholame, Peachtree, San Benito, and Santa Clara valleys, and a few others of smaller size.

Mount Diablo Range.—The Mount Diablo Range embraces a number of minor ranges that are more or less separated and distinct, though having a greater measure of continuity than the more westerly group. Among its units are included the Temblor, Avenal, San Benito, Panoche, Mount Hamilton, and other ranges of less importance. J. D. Whitney divided the Mount Diablo Range into six sections which he believed to be more or less distinct. For the most part these divisions are offset from each other, having a somewhat en echelon arrangement, forming spurs that project in turn into the Great Valley. This fact has been mentioned before, and was first described by the senior author in 1903, in a paper read before the Cordilleran Section of the Geological Society of America' though it was not mentioned in the published abstract. and significance of this peculiar and interesting condition have never before been explained, and it is one of the aims of this paper to call attention to it as one of the most important facts to be considered in the study of the diastrophic record of the California Neocene.

Neocene Deposits.—While the larger portion of the Neocene deposits of California is included in the Temblor Basin there are important areas in the coastal valleys to the south. It is believed that the most complete, and therefore the most representative, deposits of the California Neocene are to be found within this larger basin. If older Neocene strata exist outside of this area their existence has not been proved, and it appears to be unlikely that any do exist.

The Mount Diablo Range occupying as it does a central position in this basin should furnish the most reliable key to the physical history, stratigraphy, and classification of the deposits, which are here most representative of the Neocene of California. While Neocene deposits are found in all of the intermontane valleys among the interior ranges, their most complete development is found either within the drainage of the Salinas River, or in some respects, better still, on the eastern flanks of the Mount Diablo Range, as will be shown hereafter. The eastern flank of this range occupies the most central position of the basin. Descriptions of some of these Neocene strata have already been published in the several papers devoted to different portions of the range, and in the

Bull. Geol. Soc. Am., Vol. 15, pp. 581 and 582.
 Proc. Calif. Acad. Sciences, Vol. II, No. 2;
 Proc. Calif. Acad. Sciences, Vol. III, pp. 1-40;
 Bull. No. 398, U. S. Geol. Surv., pp. 46-179;
 Bull. No. 406, U. S Geol. Surv., pp. 31-107.

second part of this paper devoted to the Geology of the San Juan district.

Structures.—The Neocene structures now found in and about the Temblor Basin, and illustrated by the structures in the Mount Diablo Range, are the final result of far-reaching geo-dynamic activity that has operated through several periods and epochs of geological history. The general aspect of the Geomorphic Map of California and Nevada shows the results of compressional stresses that have acted from east to west in the extensive wrinkling of the surface. This dynamic activity probably began in Mesozoic time or earlier, but it is certain that a large part of the distortion of the later strata was effected in Tertiary or post-Tertiary time. In fact, as will be shown later, much of it must have been accomplished in middle or early Miocene time.

The general effect of this activity or tangential thrust is expressed in the Mount Diablo Range in two important ways, each of which is better exhibited here than in any other part of the basin.

One of these effects is the widespread longitudinal folding of the Tertiary and older strata along the flanks of the various divisions of the range, as is to be seen in the several anticlines and synclines along the eastern flank of the range and in and about the oil districts, and on the San Juan River.

Another effect is the breaking up of the main range into orogenic blocks, as will be shown later, each having a more or less independent diastrophic history. The structures herein described are at one with, and dependent upon, the diastrophic movements of the several blocks or divisions of this range, and this is what should have been expected. An inspection of the structures depicted on the maps of the Coalinga and McKittrick-Sunset districts shows a general system of folding which involves all of the Neocene strata about the several oil districts from Coalinga to Sunset. The principal folds, anticlinal and other, follow a somewhat northwest to southeast course which is in a measure parallel in all of the more northerly districts, but which turns more easterly at the south.

These foldings, as well as their grouping, will be seen to have a definite and consistent relation to the faulting that has taken place chiefly at right angles to the general axis of the Mount Diablo Range. Some of these faults may be mentioned in this connection, but will be dealt with later. One of these may be called the Antelope Valley fault and is imperfectly described by Arnold and Johnson as traversing the northern border of the Antelope Valley.

Another is the Bitterwater fault which crosses the northern end of the Temblor Range, extending in a northeast to southwest direction.

A third is that described by the same authors as the Temblor fault, cutting obliquely across the range from east to west near the Temblor ranch house. Other minor faults may be noticed from an inspection of the map, but not all of them are well shown in detail on the published maps.

The San Andreas fault, although it traverses the eastern border of the San Juan district, has had little or no effect upon developing any of the structures to be seen therein, or to be seen in any part of the neighboring region. It clearly is of recent origin and its importance belongs almost entirely to the present epoch and to the human settlement of the country. The amount of horizontal displacement along its course is hardly noticeable.

Orogenic Blocks.—The breaking up of the Mount Diablo Range into separate blocks, and the divisions recognized by Whitney, have already been referred to. The following sketch

Figure 1.—Diagram showing the en echelon arrangement of the different parts of the Mount Diablo Range.

to illustrate the general facts was made use of in an earlier discussion of the stratigraphy of the southern Coast Ranges

Bull. No. 406, U. S. Geological Survey, p. 100, et seq.

¹ Unpublished manuscript 1903. See Abstract,
Bull. Geol. Soc. Am., Vol. 15, pp. 581-582.

of California. A full discussion of this interesting topic can not be given at the present time, but some suggestions are offered.

As is partly shown on the areal map of the McKittrick-Sunset district, one of the main effects of the disturbances which produced the transverse faulting is seen in the offsetting of the several formational zones cut by them, with a wide lateral displacement of the northern blocks to the eastward with respect to the others. This lateral displacement is best shown in the abrupt termination of the several belts. offsetting of the Temblor (Vaqueros) beds is not less than that of the Cretaceous, which is not small, amounting to approximately three miles in the case of the Bitterwater fault, and possibly to even more in the case of the Antelope Valley fault. Interesting suggestions are also to be seen in the distribution of the Temblor (Vaqueros) rocks along the line of the Temblor fault and also the minor faults not named. On the other hand the Monterey shales, as mapped on the McKittrick-Sunset sheet, show no appreciable offsetting on some of these faults, while on others they do. In the case of the Temblor fault the Monterey shales are overlapped by later, perhaps Etchegoin beds, and if there is any offsetting it is obscured or hidden. On the Bitterwater fault there is no offsetting of the Monterey, and this is known to be the case on the Antelope Valley fault, or on its projection westward beyond the boundaries of the map.

It would appear from these observations that the faulting and offsetting of the formations took place chiefly during middle or early Miocene time, after the deposition of the Temblor beds and prior to that of the Monterey shales, though some similar movements may have occurred since.

Similar facts of discordance, and other corroborative evidence of this order, are to be observed in other parts of the Temblor basin and in districts outside of it, as will be shown later. The displacement of the Cretaceous and the Temblor on the Antelope fault and other eccentricities and discordances of stratigraphy and sequence emphasize the individuality of these several orogenic blocks. North of the Antelope Valley, the Tejon, upon which the Temblor appears to rest conformably, is well developed. South of the Antelope Valley

no Tejon is shown, and the Temblor rests upon Cretaceous or Franciscan rocks. The development of the Temblor group north and south of these fault zones is as uniform in thickness, lithology, and fauna, as could be expected. On the south, between the Temblor and Antelope valleys, the Temblor strata are from 1000 to 1500 feet thick. On the north, as developed about the Sunflower (McClure's) Valley, it may vary from 500 to 1500 feet, as exposed at different points. It is quite possible that the shales overlying the terriginous sandstones in this locality should be included with the Temblor.

As regards the Monterey north and south of these fault zones, there is very great discrepancy in thickness and development. South of the Antelope Valley thick beds of Monterey are indicated on the map, and near Carneros Springs these beds are little less than 3500 feet in thickness. Earlier estimates of these strata included beds that probably are of Santa Margarita age. It is doubtful, on the other hand, if Monterey strata exist at all north of the Antelope Valley, and none is shown on the map of the Coalinga District. It is useless to argue about the difficulty of discriminating here between Temblor and Monterey upon the basis of lithology or any other The fact remains indisputable that the Miocene beds north and south of these fault zones are entirely different for all parts of the section above the Temblor. These facts are entirely explainable upon the assumption of distinct orogenic blocks having independent and separate diastrophic movements after the close of the Temblor epoch, but they are not readily explainable upon any other basis.

A study of the Mount Diablo Range as a whole discloses the fact that it consists of a number of orogenic areas that differ in various parts of their Neocene stratigraphy. One of these areas or blocks comprises the Temblor Range adjacent to the San Juan district. A minor block is enclosed between the Antelope Valley and the Bitterwater faults, and is of triangular shape. A larger block embraces that part of the range between the Antelope Valley and the Waltham Creek valley, and still other blocks may be defined north of Coalinga. Many of these blocks, which are in fact separate diastrophic areas, were noted by Professor Whitney in his subdivisions of the Mount Diablo Range. The extent to which this subdivision of the

range could be carried is not known, but it is sufficient for the present purpose to point out the fact that there are separate orogenic blocks within the southern portion of the range. Two important results of this breaking up of the range may properly be noticed here, though the full treatment of the subject must be deferred.

The first point of importance is the accord shown between the displacements due to thrust-faulting, and the folding, or wrinkling of the strata. In the case of the Avenal block, lying to the north of the Antelope Valley, the tangential shortening of the section is effected by folding on the eastern side of the range, as is seen in the anticlines and synclines about the Sunflower Valley and the Kettleman Hills. In the case of the Temblor block the shortening has taken place mainly on the Carrizo side of the range, as is to be seen in the anticlinal folding in the San Juan district, though to a less degree on the eastern side in the high inclination of the Miocene strata along the eastern slopes. In what may be known as the McKittrick-Midway block the folding and shortening is again largely on the eastern side of the range, as may be seen about these oil districts in the various anticlines and synclines as already stated.

Had the strata of the San Juan district been sufficiently rigid to have withstood the thrust from the southwest without crumpling, the Temblor Range would have been carried farther eastward, with the development of greater or more numerous folds on the eastern flank.

In accord with this the offsetting of the strata would have been much less along the transverse fault line, bounding this block on the north.

The second point of importance to be noted in connection with the breaking up of the range into orogenic blocks is the separate and independent vertical movements noticeable in the case of each. For just as there have been differential horizontal movements with respect to each other, there have also been vertical movements, showing the general independence of each orogenic block. This is shown in the well known discrepancies in the Neocene stratigraphic sequences of the various blocks, but the subject is too large to receive an extended treatment here.

Disturbances noted elsewhere.—Reviewing briefly some of the corroborative evidences of wide-spread disturbances in early Miocene time attention may be called to the following: 1904, H. L. Haehl and Ralph Arnold showed that eruptions of diabase and basalt took place during the early Miocene. We read: "The diabase breaks through beds of lower, and perhaps middle, Miocene age; while the associated diabase tuff is interbedded with strata containing a typical lower Miocene fauna and lies below the Monterey shale. The basalt outflow exposed near Stanford University overlies and metamorphoses beds of lower Miocene age, and is overlain by beds containing a fauna very similar to the underlying strata. This evidence indicates the lower Miocene age of the basalt and its probable contemporaneousness with the diabase of Mindego and Langley Hills".1

These facts are in accord with the unconformity shown in the discordance of dips between "Monterey strata and those of the Vaqueros sandstone" described in the same district.²

Attention may be called here to the intrusion of diabase into the Temblor beds of the San Juan district.

In the vicinity of Edna, and south of San Luis Obispo, Temblor beds are found overlaid with thick strata of rhyolite tuff, and this in turn is covered by a greater thickness of Monterey shales. With the exception of the Temblor (Vagueros) beds these facts are well represented on the geologic sheet of the San Luis Folio. However, the Temblor beds are well exposed with many characteristic fossils directly south of San Luis Obispo and east of the creek of the same name. On the geologic sheets these Temblor beds are represented as Monterey, However, as they contain Turritella inezana Conrad. Pecten magnolia Conrad, Conus hayesi Arnold and Dosinia whitneyi Gabb, the lower Miocene (Temblor) age need not be questioned. It is not unlikely that these rhyolite beds are genetically connected with eruptions of considerable magnitude that have occurred about San Luis Obispo. These beds of tuff extend in a south-easterly direction toward Santa Maria and beyond, and are covered by beds of siliceous shales, as they are near San Luis Obispo.

¹ Proc. Am. Philos. Soc., Vol. 43, p. 18. ² Santa Cruz Folio, descrip. text, p. 4.

Quite similar beds of ash or tuff, though not so thick, occur in the lower Miocene beds of Point Sal, as described by Dr. Fairbanks.¹ It is quite likely that the ash beds at Point Sal are a part of the same general outburst that spread the ash and tuff over the San Luis quadrangle not far distant. There are many geological facts in all parts of the Coast of a similar nature. The tufaceous beds in the lower Miocene of Kern River need only be mentioned in this connection.

A time correlation of all these facts of disturbance, eruptions and stratigraphic discordances, etc., is obviously suggested by the facts themselves, and it is most likely that the same geodynamic action was the prime cause of them all, which thus found various expression in different districts.

Neocene Record.—With the exception of the diastrophic events related in the preceding pages as intervening between the Temblor and Monterey epochs, and their respective stratigraphic groups, the major Neocene disturbances are fairly well illustrated in diagramatic form in a former paper. The portion of the curve representing the Temblor-Monterey subsidence should show interruption and unconformity, to some extent at least, and in this respect it will conform more closely to the sequence of events suggested by Dr. J. P. Smith in a tabular statement giving the Neocene Sections of California.

This classification recognizes the main historical facts that have been demonstrated in the Neocene record of California. The order of events may be summarized as follows:

- 1. A subsidence, possibly gradual, that led the sea into the Temblor Basin, with the development of an important series of deposits known as the Temblor group, containing a well developed subtropical fauna.
- 2. An interval of disturbance, uplift and displacement that interrupted the continuity of sedimentation in many parts of the coast. These disturbances were accompanied by considerable volcanic activity that spread both basic and acid lavas and tuffs over land and sea, as is especially shown about the southern borders of the basin and in the neighboring districts

¹ Bull. Geol. Dept. Univ. Calif., Vol. II, p. 16. ² Proc. Cal. Acad. Sci., Vol. III, p. op. 118. ³ Jour. Geol., Vol. 18, p. op. 226.

to the south. Possibly these coastal eruptions can be identified with some of the earlier Neocene volcanics of the Sierra Nevada, and the Great Basin region.

- 3. A slow and prolonged subsidence that effected the development of a great accumulation of strata known as the Monterey group, or "Monterey formation". In most parts of the Coast this group consists largely of organic siliceous deposits of diatomaceous shales, though containing other materials as well. It is not coextensive with the Temblor group in area, either within the Temblor Basin or outside of it. Its fauna is scant and of boreal aspect, and it marks a distinct change in the physical geography of the time.
- 4. Uplift and folding and an interval of denudation and erosion, that must have been far reaching as shown by its effects upon faunal development in the epoch following.
- 5. Subsidence that again extended the sea in the Temblor Basin with the development of thick deposits of largely terriginous sediments, not coextensive in area with the preceding Monterey group, and resting unconformably upon it. This subsidence was not so profound as that of the Temblor or Monterey epochs and led to the reintroduction into the basin of subtropical species, as is shown in the faunas of the Santa Margarita (San Pablo) deposits throughout the central California coast.
- 6. Uplift and local denudation, that again interrupted the continuity of sedimentation in many parts of the basin and probably in other regions, and that was of sufficient extent in time or place to again effect important faunal developments, as shown in the succeeding group.
- 7. Subsidence that once more rearranged the distribution of land and sea about the Temblor basin, with the development of a new group of sediments known as the Etchegoin group, not coextensive in area with the preceding Santa Margarita (San Pablo) group, and not containing the same number

or percentage of subtropical species. This epoch of subsidence did not terminate entirely until the final uplift that closed the occupation of the basin to marine conditions.

- 8. Uplift that expelled the sea from almost the entire basin, and left it under oscillating conditions only in the deeper portions of the same. This interval of uplift and oscillation developed the subgroup of upper Etchegoin strata which contains an alternating series of marine and freshwater sediments and faunas in the deeper portions of the Great Valley.
- 9. Differential local uplifts that expelled the sea entirely from the basin but impounded and retained an extensive body of freshwater within the Great Valley, in which were subsequently developed the series of sediments known as the Tulare group. The Tulare should probably be correlated in time with the marine Merced group which is well developed about the seaward outlets of the Temblor basin and in other similar situations along the coast.
- 10. The general, or continental, uplift that brought the final close of the Neocene and initiated the Pleistocene and its widespread terrestrial conditions.

Conclusions.—It is a well-known fact that the development of the Neocene in central California, where its largest area exists, is very great, at several places being not less than 6000 feet in thickness. It is evident that this basin should therefore be regarded as containing the most representative section of these rocks in California.

For purposes of intensive study this enormous aggregate of strata should be divided into as many groups and divisions as the geological facts in the case will sustain. The facts of prime importance bearing upon this problem are those connected with the physical and dynamic history of the period. The first object to attain in its solution is the clear understanding of its diastrophic record.

That there is considerable complexity in the diastrophic record of the Neocene in its most representative areas is evident to any one familiar with the literature and with the facts throughout the field. In the Mount Diablo Range there are three diastrophic events, perhaps of epochal duration, marked by wide stratigraphic displacement, crumpling of strata, discordance and unconformity. The earlier of these events took place in early Miocene time, and was accompanied by much volcanic activity. As an event in the physical history of the Miocene it serves as a proper basis for the separation of two stratigraphic groups of Miocene strata. The older group, from its occurrence along the eastern flank of the Temblor Range, has been described as the Temblor group, and it is representative of the lower Miocene throughout the Temblor Basin, and probably throughout the entire state.

The second group of strata is that which is locally well developed in the Temblor Basin, and which may be referred to as the "Monterey formation", as entirely distinct from the Temblor group. This separation is not made upon the basis of lithology, though incidentally for most parts of the basin the group, or "formation" is characterized by siliceous organic shales of a peculiar nature.

The second diastrophic event is that which resulted in the great discordance and widespread unconformity within the Temblor Basin between the Monterey group and the next succeeding group, which is here called the Santa Margarita. This event is not known to have been accompanied by volcanic outbursts of great importance, but was chiefly characterized by uplift, erosion and subsidence, and by differential warping of the land surface.

A third diastrophic event divides the record of the later Miocene, and is recorded in the unconformity of the Etchegoin group upon the Santa Margarita, and the wide overlap of the former upon rocks much older than the Miocene.

Other uplifts of lesser rank have affected the Neocene series in various parts of the Coast, and of this basin, but their full treatment is beyond the limits of this paper.

The latest Neocene group is partly of freshwater character and partly marine. It is the Merced-Tulare that may in part, or as a whole, be regarded as later than the Orinda formation of the Berkeley Hills.

Lithologically, there is considerable difference in the composition of the several groups of Neocene strata herein de-

scribed, but while some of these differences are more or less constant they can not serve as a basis of a division into formational groups, except locally, and with some reserve.

The areal mapping of the various groups of the Neocene is attended with the same sort of difficulties as the stratigraphic determination, and for the same reasons.

Paleontology is a useful aid in making, or rather in identifying, the divisions, but the final word has not yet been said as to the range of species; in fact, there are still many undescribed species to be found in different portions of the series. Among the important facts to be considered in connection with the faunas as reflecting the changes in physical geography is the alternation of sub-tropical and boreal faunas, in the principal divisions of the series, the Diatomaceæ being of boreal aspect.

THE SAN JUAN DISTRICT

GENERAL STATEMENT

Location.—The territory comprised in this district includes a relatively small area in the north-central part of San Luis Obispo County extending from the Carrizo plain northwestward to the Salinas Valley, thus covering the northwestern end of the Carrizo Valley and the northern flank of the San Jose Range, west to Creston and beyond. This district includes, therefore, the southern border of what is sometimes known as the Estrella Valley, and is included within the drainage of the San Juan and the Estrella, a main tributary of the Salinas River. The area lies intermediate between that of the San Luis Folio mapped by H. W. Fairbanks, and that of the McKittrick-Sunset District mapped by Arnold and Johnson. The areal geology is therefore in a measure tied to each of these areas. In a topographic and in a structural sense it lies between two of the more important ranges of this region, namely the San Jose and the Temblor ranges. The former borders it on the southwest as a massive abutment, and the latter, as the southern unit of the Mount Diablo Range, separating it from the Great Valley. It may be considered as belonging to the southeastern end of the Salinas branch of the Temblor Basin, with which it was almost solely connected in later Tertiary time. (See map, Plate 10).

The San Jose Range is the dominating feature of the district on the south. It rises to a maximum elevation above 4000 feet. The numerous spurs and ridges descending from it have no definite orientation, but strike obliquely or at right angles from the main divide, which trends in a northwest and southeast direction.

While the general area of the San Juan district is but little less than 2000 feet above sea level it has relatively low relief when compared with the more rugged topography of the neighboring range. The hills are well rounded and the slopes gentle. The low ridges and spurs have a general northwest and southeast direction, conforming to the larger topographic features. Recent stream erosion has cut deeply into the softer Tertiary formations, and all of the streams, and even the larger gulches and ravines, have fairly well-developed flood plains within the area of these formations. Within the area of older rocks the ravines and gulches are steeper and narrower, and with hardly any flood plains developed.

GEOLOGY

Basement Rocks.—The basement on which the Neocene and later sediments rest in the area covered by the mapping is almost entirely of granite. There are a few scattered patches of limestone in this area but they are mostly small and relatively unimportant. They are probably remnants of some paleozoic formation into which the granite has been intruded. A larger body of such limestone lies outside of the area covered by actual mapping, toward the north. It makes up a large part of the floor of Cholame Valley to the north and east of Shandon.

The boundaries of the basement rocks have not been mapped in detail. They compose the general areas of the Coast Ranges which represent the insular land masses of the early Neocene in the Temblor Basin. The San Jose Range lying immediately to the south of the San Juan district is composed almost entirely of granite. Along the eastern flank of the granite on the upper tributaries of the San Juan there are some sandstones and shales that are probably Cretaceous, and both Cretaceous and Eocene rocks are found in the Temblor Range and are indicated on the areal map of the McKittrick-Sunset district.

Neocene Rocks.—The oldest sedimentary rocks with which we are directly concerned are of lower Miocene age and belong to the Temblor group. The Temblor sediments range in character from conglomerates and coarse granitic sandstone at the base to finer sandstone, sandy clays, and argillaceous shale at the top. The coarseness and composition of the rocks and their hardness vary considerably, and there are few sections that are alike in sequence and character, although coarse materials predominate at the bottom and finer materials at the top, as a rule, and in this respect there is some uniformity.

The rocks of the Temblor group occupy a long narrow strip of varying width extending from the Salinas Valley, near Atascadero, southeast to San Juan River and beyond. In a few localities stream gravels and alluvium have completely covered these beds so that they can not be traced continuously across the district. One notable occurrence of this alluvium may be seen between Cammattii Canyon and Navajoa Creek in the northern part of T. 29 S., R. 16 E. The general strike of the beds is N. 60° to 70° W. in the western part of the area and about N. 40° to 50° W. in the eastern part of the district near La Panza. They dip away from the granite toward the northeast at angles which rarely exceed 30°.

The lowest beds of the group rest directly upon the eroded surface of the granite, there being no intervening marine sediments such as are found elsewhere in the Coast Ranges of California. Between the marine sandstone and the unaltered granite there is a zone of weathered granite consisting of numerous large boulders and angular fragments which do not show the rounded surfaces so characteristic of water worn The degree of weathering shows every gradation from slightly weathered granite to coarse arkose sandstone. so that in some localities it is difficult to draw a sharp line of demarkation. In the N. W. ¼ of Section 26, and the N. E. 1/4 of Section 27, T. 28 S., R. 14 E., there are several good exposures of this zone of weathered granite. These exposures occur in the canyon walls and the creek banks near the county road. Above this zone of weathered granite there are several hundred feet of coarse granitic sandstone. The degree of compactness varies considerably, many well-cemented layers being interstratified with softer materials. Overlying the coarse

sandstone are several hundred feet of softer, medium grained sandstone. Near the middle of the section there is 100 feet or more of coarse granitic, well cemented sandstone containing a few fossils, among which Scutella norrisi Pack, is the most characteristic. Above this coarse fossiliferous sandstone there are several hundred feet of medium to fine grained sandstone and sandy clays. Near the top of the section, immediately beneath the overlying shales, the beds are essentially soft sandy clays with a few thin seams of tawny colored limestones. This section may be considered representative of the Temblor in the western part of its area.

East of the San Juan River in the N. E. ¼ of T. 30 S., R. 17 E., a different sequence of sediments is exposed. Here a rugged and conspicuous mountain mass lies between San Juan River and the western border of the Carrizo plain. seen from a distance this prominent ridge appears much like the granitic hills west of the San Juan River, and might easily be mistaken for such. On closer observation, however, it is found to consist of massive thick-bedded gray sandstone, usually coarse grained and conglomeratic, but having interspersed through it thin beds or layers of clay shale. massive sandstone, when compared with the beds a few miles to the northwest, could easily be mistaken for this older formation. The finding of well preserved Temblor fossils near the base, however, has shown it to be only a special development of the Temblor beds. Near the top of this section the sediments become soft, fine grained, sandy clays, that grade into clay shales of the character common in the Monterey, but as a good fauna of Temblor species is found in the beds overlying it there can be no mistake that it is also to be included in the Temblor.

The Temblor group of this section can be separated into three distinct lithological divisions. The lowest member is that already described. The next division consists of sandy clay shales and fine grained gray or brownish sandstone with which are interstratified numerous thin layers and lenses of limestone, some of them sparingly fossiliferous. The sandy gray shales resemble lithologically some of the strata of the overlying Monterey. The third member of the group is a brownish or gray, arkosic sandstone of medium or coarse texture several

hundred feet in thickness. With it are associated several small areas of diabase which occur as intrusions into the sedimentary rocks. Overlying the coarse granitic sandstone are several hundred feet of rather brownish fine sandstone and clay shales. Numerous well preserved fossils have been obtained from this upper member of the Temblor.

The average thickness of the Temblor group in the western part of the area is between 1000 and 1500 feet. In the section just described between the west border of the Carrizo plain and the San Juan River it probably exceeds 2000 feet.

Farther to the southeast the Temblor group attains a still greater thickness, probably exceeding 2500 feet, where it includes one or more beds of white or rusty siliceous shale. This is part of the thick series of Miocene rocks referred to in a former paper by the senior author in which the estimated thickness was greatly exaggerated on account of folding and reduplication.¹

The section of the Temblor group east of the San Juan River recalls the type section of the Temblor which is less than 20 miles to the northeast, on the eastern slope of the Temblor Range near the Carneras Springs. As stated in the original description, the middle member of the Temblor beds consists of about 600 feet of "siliceous and clay shales with interstratified sandstone".

These Temblor beds are mapped on the geological sheet of the McKittrick-Sunset district as two narrow parallel zones of "Vaqueros" strata separated by a thick bed of "Monterey Shale." Similar occurrences of the Temblor group have been noted in other districts, and in fact are not rare. The association of diabase with the Temblor as intrusions near the top of the group will be referred to again. These rocks are shown on the extreme western border of the McKittrick-Sunset map, though in not very accurate detail.

The small area of strata indicated doubtfully as Oligocene on the same map is probably the shale member of the Temblor and lies stratigraphically between two well developed zones of the same, in both of which are many undoubted species of Temblor fossils. From the uppermost member of the Temblor group at this point were obtained the following species:—

¹ Bull. Geol. Soc. Am., Vol. 15, pp. 581-582. ² Bull. No. 406, U. S. Geol. Surv., pp. 47-50.

Cardium vaquerosense Arnold.
Chione temblorensis Anderson.
Phacoides richthofeni Gabb.
Pecten andersoni Arnold.
Venus pertenuis Gabb.
Conus hayesi Arnold.
Conus owenianus Anderson.
Nassa arnoldi Anderson.
Neverita inezana Conrad.
Oliva californica Anderson.
Pleurotoma dumblei Anderson.
Trochita, sp.
Trophon gabbianum Anderson.
Turritella ocoyana Conrad.

Faunal Relations of Temblor.—A large number of well preserved marine invertebrates was obtained from nearly all horizons in the Temblor of the San Juan area. The greater portion of them, however, came from strata near the middle of the section where the character of the sediments is most favorable for the preservation of organic remains. In comparing this fauna with that obtained from the lower Miocene of other localities, such as the Kern River district, Kern County, and Los Vaqueros Valley, Monterey County, it will be seen that nearly all the Temblor species found in the San Juan district occur in the Temblor group of Kern River, while some of the species most characteristic of the lowest horizon, in Los Vaqueros Valley have not been found in the San Juan district. There is some evidence, however, that the Temblor of the San Juan district is not far removed, stratigraphically, from the lower horizon of the Los Vaqueros Valley, which has been referred to as the Turritella inezana In the Los Vaqueros Valley, Scutclla norrisi Pack occurs with Pecten sespeensis Arnold, Thais vaquerosensis (Arnold), Turritella inezana Conrad, and a number of other species which are common in both horizons of the lower Miocene of Kern River and the San Juan district. In the San Juan district, Scutella norrisi Pack and Astrodapsis merriami Anderson occur together in a coarse sandstone near the middle of the series in Sec. 30, T. 28 S., R. 15 E., East of the San Juan River along the north edge of Sec. 3, T. 30 S., R. 17 E.,

Scutella norrisi Pack occurs in a massive, coarse sandstone a short distance below a very fossiliferous horizon which contains a large number of species that are common in the Temblor of the Kern River district. Scutella norrisi Pack has been considered to be characteristic of a lower horizon of the lower Miocene in the valley districts, and the finding of this species associated with Astrodapsis merriami Anderson, in rocks only a short distance below beds containing the typical Temblor fauna, makes it appear that the Turritella inezana Zone and the Turritella ocoyana Zone were not widely separated in time.

The following is a list of species that have been obtained from the lower Miocene beds of Kern River, the San Juan area, and Los Vaqueros Valley.

	Los Vagueros Valley	San Juan	Kern River
Echinodermata.			
Astrodapsis merriami Anderson	×	×	
Scutella norrisi Pack	×	×	
Pelecypoda.			
Arca osmonti Dall		×	×
Cardium quadrigenarium Conrad	×	×	
Cardium vaquerosense Arnold			
Cardium, sp.	×		
Chione conradiana Anderson		×	
Chione latilaminosa, new species			X
Chione mathewsonii Gabb	×	×	×
Chione panzana, new species		×	
Chione temblorensis Anderson		×	×
Corbicula dumblei Anderson			×
Cytherea diabloensis Anderson		×	×
Diplodonta buwaldana, new species			×
Diplodonta parilis Conrad	×		
Donax (?) triangulata, new species			×
Dosinia mathewsonii Gabb	X	×	×
Dosinia ponderosa Gray		?	×
Glycymeris branneri Arnold			×
Glycymeris, sp.			×
Leda ochsneri, new species			×
Macoma calcarea Gmelin			×
Macoma nasuta Conrad	×	X	×
Macoma ocoyana Conrad	×		×
Macoma piercei Arnold			×

	Los Vaqueros Valley	San Juan	Kern River
Pelecypoda.			
Mactra albaria Conrad		,	
Mactra catilliformis Conrad		×	X
Mactra sectoris, new species			×
Metis alta Conrad	·	×	×
Mytilus mathewsonii Gabb	×	×	×
Mytilus, sp.		×	×
Ostrea eldridgei Arnold	×		
Panopea estrellana Conrad		×	×
Pecten andersoni Arnold		×	×
Pecten branneri Arnold			$\frac{\hat{x}}{\hat{x}}$
Pecten magnolia Conrad	×		
Pecten nevadanus Conrad	$\frac{\hat{x}}{x}$?
Pecten peckhami Gabb			×
Pecten perrini Arnold			$\frac{\hat{x}}{x}$
Pecten sespeënsis Arnold			$\frac{1}{x}$
Pecten vanvlecki Arnold	<u></u>	×	7
Pecten vaughani Arnold		$\frac{\hat{x}}{ x }$	<u>-</u> -
Phacoides acutilineatus Conrad	× .	$\frac{1}{x}$	
Phacoides richthofeni Gabb	- X	$\frac{\hat{x}}{x}$	$\frac{\hat{x}}{x}$
Phacoides sanctaecrucis Arnold		×	$\frac{\sim}{\times}$
Poromya gabbiana, new species		X	
Saxidomus nuttalli Conrad		- X	×
Semele morani, new species		$\frac{\overline{x}}{ x }$	
Tellina nevadaënsis, new species		$\frac{x}{x}$	×
Tellina tenuistriata Davis	·	$\frac{1}{x}$	$\frac{}{x}$
Tellina wilsoni, new species	·	$\frac{\hat{x}}{x}$	
Transennella joaquinensis, new species	·		×
Venus pertenuis Gabb	<u>x</u>	×	$\frac{\hat{x}}{x}$
Yoldia temblorensis, new species	<u> </u>	^-	$\frac{\hat{x}}{\hat{x}}$
Gastropoda.			
Agasoma barkerianum Cooper		×	<u>×</u>
Agasoma sanctacruzanum Arnold		×	X
Agasoma sinuatum Gabb	. ?		
Amphissa posunculensis, new species			×
Astyris pedroana Conrad		×	×
Bathytoma keepi Arnold		X	×
Bathytoma piercei Arnold		X	×
Cancellaria condoni Anderson		X	×
Cancellaria dalliana Anderson		×	×
Cancellaria joaquinensis Anderson		×	×
Cancellaria nevadaënsis, new species		×	$\overline{\mathbf{x}}$

	Los Vaqueros Valley	San Juan	Kern River
Gastropoda.			
Cancellaria pacifica Anderson		×	×
Cancellaria posunculensis, new species	·	×	×
Cancellaria sanjoseënsis, new species			×
Cancellaria simplex Anderson			X
Cerithium arnoldi, new species	-		×
Chrysodomus kernensis, new species			×
Conus hayesi Arnold		×	
Conus owenianus Anderson		×	X
Crepidula praerupta Conrad		$\frac{\hat{x}}{x}$	${x}$
Crepidula princeps Conrad	-	×	${x}$
Cuma biplicata Gabb	?		
Dentalium petricolum Dall	-		X
Drillia antiselli, new species	·	\overline{x}	
Drillia buwaldana, new species	·		
Drillia howei, new species	——-		$\frac{x}{x}$
Drillia kernensis, new species			$\frac{\hat{x}}{x}$
Drillia ochsneri, new species			$\frac{}{x}$
Drillia ocoyana, new species			$\frac{\hat{x}}{x}$
Drillia temblorensis, new species			×
Drillia wilsoni, new species			
Epitonium posoënsis, new species			
Epitonium williamsoni, new species			. X
Eulimella californica, new species			X
Eulimella gabbiana, new species	?		
Eulimella ochsneri, new species			
Ficus kernianus (Cooper)	-		×
Fossarus dalli, new species			X
Lacuna carpenteri, new species			×
Melongena sanjuanensis, new species		\overline{x}	
Nassa arnoldi Anderson		×	X
Nassa antiselli, new species		×	X
Nassa blakei, new species	-		×
Nassa ocoyana, new species	-	×	X
Natica inezana Conrad (?)		×	×
Neverita callosa Gabb	 -	$\frac{1}{x}$	$\frac{\hat{x}}{x}$
Niso antiselli, new species		×	
Oliva californica Anderson		×	×
Oliva futheyana Anderson		×	×
Olivella pedroana Conrad	 -	×	X
Pyramidella cooperi, new species			×
Scaphander jugularis Conrad	-	×	×
Sigaretus scopulosus Conrad	×	×	×
Siphonalia posoënsis, new species		<u>×</u> -	

	Los Vaqueros Valley	San Juan	Kern River
Gastropoda.			
Thais vaquerosensis (Arnold)	×		
Terebra cooperi Anderson		×	×
Trochita costellata Conrad	×	×	×
Trophon gabbianum Anderson		×	×
Trophon kernensis Anderson		×	×
Turritella inezana Conrad	×		
Turritella ocoyana Conrad		×	×
Turritella variata Conrad		×	

Monterey Shale.—As in many other localities in the Coast Ranges of California, the Temblor group is overlaid along the San Juan River by a series of light colored organic shales with apparent, though probably not actual, conformity. The stratigraphic position and lithologic character of these beds make them conspicuous, and their strong lithologic contrast with the terriginous beds which they overlie makes the mapping of their contact comparatively simple. As there is no evidence, faunal or other, that they form a part of the underlying group, they have been referred to as the Monterey division of the Neocene. Their composition varies considerably within this district, though the predominating type of rock appears to be a mixture of siliceous, organic and bituminous shale, with terriginous clay shale and fine sand. The purely diatomaceous shale is much less prominent than in other areas where the Monterey group abounds. In the lower part of the group there is a large percentage of clay shale interstratified with siliceous. bituminous layers, while higher up organic materials are not prominent. In the northern part of Sec. 28, T. 28 S., R. 14 E., the lower part of the group consists to a large extent of light pumiceous rocks which are probably in part of volcanic origin. With this exception the Monterey rocks are largely a mixture of fine sandy clay and siliceous organic materials. The rocks of this type outcrop almost entirely across the San Juan district, in a zone parallel with the Temblor strata. To some extent and in some places they are covered by deposits of later age.

The Monterey group, as in all other localities where it occurs, is conspicuously unfossiliferous, except for the microscopic organisms which are of little value for correlation. The average thickness of the beds is between 600 and 1000 feet.

The Santa Margarita Group.—Overlying the Monterey group is a thick aggregate of strata consisting of gravelly sands, conglomerates, granitic sandstones and sandy clays that form a distinct group, lithologically. It is here classed as the Santa Margarita group, though perhaps the equivalent of the San Pablo of the Mount Diablo region. Although this group of strata appears to have a much greater thickness and to contain older beds than the Santa Margarita formation does in its type locality, for reasons which will be given later, it has been included entirely under this name. The Santa Margarita group, as well shown toward the southern part of the district, is unconformable upon the older groups, and although in some localities its relations are obscure, the evidence of unconformity is satisfactory in others.

The Santa Margarita group is the most prominent in the San Juan district on account of its thickness and great areal distribution. In the western part of the district it occurs as a long narrow zone parallel and adjacent to that of the Monterey shale. In the eastern part of the area the Santa Margarita outcrops in a rectangular zone which parallels and flanks San Juan River. If the covering of stream gravels and alluvium were removed from the surface, the Santa Margarita would be found to occupy nearly half of the San Juan district on the north and east.

At the base of the series there is a thin zone of soft, sandy clay shales which grade downward into the Monterey and upward into medium grained sandstone which is followed above by coarse arkosic sandstone and gravelly sands. The latter predominate throughout the formation, although there are numerous layers of soft sandy clays interstratified with the coarser sediments. East of the San Juan River, in the central part of T. 29 S., R. 17 E., the formation is composed almost entirely of coarse granitic material which is often so well cemented by the lime from fossil invertebrates that it stands out prominently on the hillsides in rugged outcrops.

A careful measurement of the thickness of these beds is difficult on account of numerous folds in the formation. The minimum thickness is estimated at 1500 feet and in many places it cannot be less than 2500 feet.

The correlation of these beds with the Santa Margarita formation need not depend alone upon the invertebrate fossils The character of the sediments and their found in them. stratigraphic position is almost as convincing as their fauna. A careful working out of the faunal zones in the Santa Margarita formation would doubtless enable us to correlate them with great accuracy as to detail. However, as this has not been possible in the present work the writers are not able to give an exact paleontological correlation of their various members. There is some stratigraphic evidence, however, that is worth consideration. The Santa Margarita in its type locality lies unconformably upon the Monterey group. This unconformity is marked by the presence of numerous angular fragments of Monterey shale in the basal beds and also, in some localities by a discordance in the attitude of the strata. some parts of the San Juan district the Santa Margarita is apparently conformable upon the underlying Monterey, and the separation between the two is made largely upon the lithologic characters. In the Mount Diablo region the relations of the San Pablo formation to the underlying Contra Costa County Miocene, the middle and upper parts of which are probably the equivalent of the Monterey, while in some places obscure, and in general apparently conformable, there are nevertheless a few localities where there is evidence of unconformity. Further south in the Mount Diablo Range there is quite definite evidence in certain districts of unconformity between the Santa Margarita and Monterey Shale. On the eastward slopes of the Santa Lucia Range, west of the Salinas Valley, the Santa Margarita is certainly unconformable upon the Monterey in numerous localities.

It thus appears that during the deposition of the Santa Margarita vertical movements took place along the Santa Lucia Range, and probably likewise in the Mount Diablo Range, allowing a portion of the basin of deposition to be raised above sea level while the area now occupied by the San Juan district ramained undisturbed and received continuous deposits. These

uplifts taking place at the close of Monterey time and continuing during the early part of Santa Margarita (San Pablo) time, followed by subsidence, resulted in the absence of the lower beds in the areas that were elevated. In the San Juan district where deposition was continuous the whole series is present, while along the eastern slope of the Santa Lucia Range only the middle and upper portion is represented. The character of the sediments and the comparatively small thickness of the beds at Santa Margarita agree in support of this explanation. In the region of Mount Diablo and Pinole, if the San Pablo is conformable upon the underlying beds, as it appears to be, we have the same condition that is here described, and the Santa Margarita of the San Juan district could be the equivalent of the San Pablo. The following species were obtained from the Santa Margarita of the San Juan district, and warrant the approximate correlation of these beds with both:-

Astrodapsis antiselli Conrad
Astrodapsis tumidus Remond
Astrodapsis whitneyi Remond
Chione, sp., a
Chione, sp., b
Macoma nasuta Conrad
Ostrea panzana Conrad
Ostrea titan Conrad
Phacoides, sp.
Pecten crassicardo Conrad
Pecten estrellanus Conrad
Pecten sancti-ludovici, n. sp.
Trophon carisaënsis Anderson
Turritella carrisaënsis, n. sp.
Tamiosoma gregaria Conrad

Etchegoin Group.—The occurrence of the Etchegoin group within the limits of the San Juan district has not been recognized, neither has it been disproved. A few miles to the east of the San Juan ranch house there are thick beds of clays, sands and gravels dipping to the westward that may in part belong to this group. In their physical appearance they are not unlike beds of Etchegoin age in the region of the Kettleman Hills. These beds of possible Etchegoin age are

covered by well stratified beds of the following group in which freshwater shells have been found plentifully in certain localities.

Paso Robles Formation.—The Santa Margarita is overlaid unconformably by a series of gravelly sands and sandy clays that are, in part, at least a portion of the formation which is prominently developed in the Salinas Valley, and which has there been called by the name, Paso Robles formation, and has been supposed to be of freshwater origin.

The limits and distribution of this formation along the San Juan River are rather obscure, and it is difficult to separate it from the stream gravels and alluvium which is believed to be largely of Quaternary age. In the canyons east of the San Juan River, and dipping at a considerable angle westerly are sandstones and gravels with interstratified beds of clay which rest upon strata of possible Etchegoin age. These overlying strata contain numerous shells of freshwater mollusks. Among the species collected from these beds are

Lymnæa cubensis Lea, Lymnæa, cf. obrussa Say, Physa heterostropha Hald?, and Planorbis, sp.

Along the northern and eastern parts of the district the Miocene is extensively covered by the Paso Robles formation which appears to have once extended entirely across the range in the vicinity of Polonia Pass, and to have been connected with similar beds in the Great Valley.

In former papers these Paso Robles beds have been correlated with the Tulare group which is known to extend into the Antelope Valley on the west side of the Temblor Range.

Stream Gravels.—Overlying all of the older formations and groups from the basement rocks to the Paso Robles there are beds of stream gravels and alluvium widely spread over the entire district. These gravels mantle large areas of the Miocene in the central and eastern half of the San Juan district. They consist of pebbles of quartzite, sandstone, limestone, granite and basalt. They cover the Miocene rocks in all the higher portions of the eastern part of the district to a depth of from one foot to 200 or 300 feet. In general, the Miocene

¹ Proc. Calif. Acad. Sci., Vol. III, page 32.

rocks are exposed only where stream erosion has removed the mantle of gravels. These deposits were eroded from the higher portions of the San Jose Range by the agency of streams and laid down again upon the surface of the Miocene.

An unusual development of these gravels can be seen in the north-central part of T. 29 S., R. 16 E., and in the southern part of T. 28 S., R. 16 E., between Navajoa Creek and Cammattii Canyon. In viewing this region from a distance it appears as a nearly level tableland standing out in sharp contrast to the adjacent hills. Closer observation discloses numerous wide ravines cutting deeply into the apparently flat surface. The areas between these ravines are flat, producing the tableland appearance. The rock exposed in the beds of the ravines is gravel, indicating that the Miocene beds have been covered by them to the depth of the ravines themselves, which in some cases is more than 250 feet. In no locality between the Navajoa Creek and Cammattii Canyon do the Miocene beds outcrop. In the hills east of Navajoa Creek and also west of Cammattii Canyon, rocks of the Miocene group are exposed at elevations far above the beds of the ravines described above. The explanation of this peculiar condition is that the Navajoa Creek has in former time swung back and forth between Cammattii Canyon and its present position, removing all of the Miocene rocks to the depth at least of the present beds of the ravines. This removal of the Miocene rocks from the area probably took place during an epoch of uplift. When the region subsequently sank the flood plain of the Navajoa was aggraded and filled by stream gravels or alluvium at least to its present thickness. Whether these gravels represent remnants of the Paso Robles formation, or not, is a debatable question. In many localities they are associated with sands and clays which are also a part of the Paso Robles forma-In the southern part of the district there is a large area of gravels which is apparently due entirely to stream action. The gravels are distributed over the Miocene sediments almost as far back as the edge of the granite area of the San Jose Range. Along the northern and eastern parts of the San Juan district the Miocene is entirely covered by these gravels, which are in part Paso Robles.

Structure.—The structural features of the San Juan district are best explained and understood with respect to the topography, geology, and dynamic history of the surrounding ranges and of the region.

The district lying, as has been explained, between the San Jose Range on the southwest and the Temblor Range on the northeast, occupies a zone of low foot hills of younger strata intervening and bordering upon both. The dynamic agency that has effected the uplift of these ranges in earlier epochs has been regional and compressive, acting from southwest to northeast, in a direction at right angles to their trend. If at one effort or epoch it has elevated the main ranges, or initiated the main folds of the region, at later epochs it has developed the minor folds in the younger and more yielding strata lying between.

The final result of the thrust movement as expressed in the Tertiary strata along the San Juan River and throughout the district is the development of a number of local and discontinuous anticlines and synclines within the general area of the trough, which therefore might be called a synclinorium.

Along the southwest border of the sedimentary area the strata lie upon the granitic basement dipping away at angles between 10° and 30° toward the northeast.

In the Santa Margarita formation which is the only one exposed over a large part of the district, three or four sharp anticlinal folds have been formed having northwest and southeast axes, that continue longitudinally for limited distances and then plunge or disappear into local synclines with which they are in alignment. The dip on either side of the folds is often so steep as to approach the vertical, and the transverse shortening of the section from northeast to southwest must have been considerable. This area of intense folding extends for only a limited distance to the northwest toward the Salinas Valley, while to the southeast it may be followed toward the closely folded area of the Cuyama River and beyond.

Of the anticlines developed in this area the most conspicuous and persistent is that lying along the western border of the Carrizo Plains, extending from the north side of T. 30 S., R. 18 E., toward the northwest for 15 or more miles, disappearing in the northern part of T. 27 S., R. 16 E. This fold in-

volves all three members of the Miocene series. It is flanked on the southwest by some smaller folds of much less extent. Faulting has taken place along and parallel to several of the folds, but it is not prominent and needs no special consideration here.

The regional disturbances which have originated the foldings along the San Juan River have developed at the same time similar structures in many other districts within and probably without the Temblor basin, as described in the first part of this paper.

ECONOMIC GEOLOGY

The San Juan district is very largely devoted to stock raising and farming, and there are so far no industries based upon any mineral deposits. There are, however, some deposits of greater or less prospective merits and that may properly be described here.

Oil and Gas.—The San Juan district has been shown to contain a good development of the formations which are oilbearing in other parts of the state and within the San Joaquin Valley, and to contain also some favorable structures, such as would appear attractive if located within the border of this valley.

Moreover, there are evidences of the escape of gases in the past from the formations exposed at different points along the San Juan River, and some slight signs of oil have been detected in wells sunk into the bituminous shales to the west of the river. These and other "indications" have induced some prospecting to be done for oil, and many have regarded its discovery in commercial quantities as a possibility, and this will not be denied.

However, the major folds in which oil could be stored have been dissected in such a manner by stream action, that if oil were present in large quantities it would be expected to make itself evident in oil saturations of the surface rocks, or in accumulations of asphaltum at the surface. No oil has yet been proved by actual drilling and wide areas on the flanks of the anticlines from which large deposits could be derived are not present. In other words the country available as a primary source of oil is quite restricted, and from this point of view, at least, commercial deposits do not appear likely.

Gold.—The only mineral of economic consequence that has been found in this district is gold. The stream gravels occurring along the canyons, especially on the Navajoa creek near the granite area, and along the small canyon one mile west of La Panza Post Office have been found to be gold bearing. During the period from 1880 to 1886 considerable interest was felt in these localities on account of the discovery of gold, and some placer mining was done along the stream beds but no large mines were developed. As a matter of history this district was known to contain gold before it was discovered by Marshall in 1848 at Coloma.

It is stated that over \$1,000,000.00 in gold has been taken from these placers.¹ The De La Guerra gulch was the principal source of the gold.

Other Metals.—There are deposits and veins of other metals, as hematite and chromic iron, known in certain parts of the district, though they are perhaps not important.

On Section 25, Township 30 South, Range 17 East, there is an outcrop of iron gossan that can be followed for a distance of 1000 feet or more along the east side of the San Juan River. It appears to have a thickness of five to eight feet and to cut through an exposure of aplitic rock from north to south, with a steep westerly dip. It is not unlikely that this vein of gossan may mark the surface outcrop of a metalliferous vein other than iron. Exploration might reveal the presence of copper sulphides.

DESCRIPTIONS OF SPECIES. ECHINODERMATA.

Genus ASTRODAPSIS Conrad

Astrodapsis peltoides, new species

Plate 2, figure 2

All of the specimens of this species are of moderate size, suboval or elliptical, moderately elevated, as in *Astrodapsis whitneyi* Remond; ambulacral areas bordered by shallow but distinct grooves, forming narrow ambulacral ridges and dis-

¹8th Rept. State Min. 1888, p. 530.

sected triangular interspaces; ambulacral ridges with slight grooved trough and distinct notch on the periphery.

Dimensions:—Length of the type specimen, 65 mm.; width, 55 mm.; altitude, 17 mm.

Occurrence:—This species occurs at various horizons in the Santa Margarita Formation of the Coalinga district, south of Waltham Creek. It is, however, most abundant in the Trophon zone, a little above the base of the Santa Margarita. This species does not appear to be related very closely to A. whitneyi Remond.

Type:—No. 102, Cal. Acad. Sci., Trophon zone, East of Jacalitos Creek, Coalinga, Fresno County, Cal., Lower Santa Margarita Beds. Collector, F. M. Anderson.

PELECYPODA

Genus LEDA Schumacher

Leda ochsneri, new species

Plate 3, figures 8a, 8b and 8c

Shell small, slightly arcuate anteriorly, excavated behind the beaks, rostrate and acute with valves closed at the posterior extremity; basal margin strongly and regularly arcuate, or sometimes slightly truncated at the rear; surface marked with strong concentric lines, polished; posterior ends bearing a shallow oblique groove extending downward from the beaks.

This shell resembles *Leda taphria* Dall, of which it may be the precursor, but it is relatively thicker, less elevated, and less clearly truncated behind.

Dimensions:—Length, 16 to 20 mm.; altitude, 9 to 10 mm.; thickness, 8 mm.

Occurrence:—Lower Miocene of Kern River, Kern County, California, at locality 68.

Type:—No. 103, and cotypes Nos. 104 and 105, Cal. Acad. Sci., on north bank of Kern River about ¾ mile west of the power plant and about 3 miles east of the Rio Bravo ranch house, Kern River, Kern County, California. Coll., J. P. Buwalda.

Named in honor of Mr. W. H. Ochsner.

Genus YOLDIA Möller

Yoldia temblorensis, new species

Plate 3, figure 3

Shell small, oblong ovate, thin, arcuate on lower margin, nearly straight above; beaks central, inconspicuous; hinge margin bent only six degrees from a straight line; anterior end well rounded; posterior end rostrate, almost pointed, slightly open, angulated by an impressed line extending from the beaks downward to the posterior end below the siphonal opening; anterior end similarly crossed by an impressed zone extending from the beaks obliquely downward and forward; surface sculptured by regular lines of growth.

Dimensions:—Length, 18 mm.; width, 7.5 mm.

Occurrence:—Lower Miocene of Kern River, California, locality 68.

Type:—No. 106, Cal. Acad. Sci., on north bank of Kern River about 34 mile west of the power plant and about 3 miles east of the Rio Bravo ranch house, Kern County, California. Coll., J. P. Buwalda.

Yoldia newcombi, new species

Plate 3, figure 2

Shell small, thin, compressed, ovally elongated; valves equal, very inequilateral, greatly attenuated behind; beaks small, slightly raised, near the anterior extremity; escutcheon lanceolate, very long, bordered by a narrow groove; lunule indistinct; anterior dorsal margin short, nearly straight; anterior end well rounded; base ovately rounded; posterior extremity tapering to a narrow, rounded end, gaping; posterior dorsal margin broadly concave, with the opposed margins projecting above the escutcheon; posterior dorsal area flattened; umbones inconspicuous; interior inaccessible.

Dimensions:—Length, 14 mm.; length of rostrum, 10.5 mm.; altitude, 5 mm.; thickness of both valves, 2.2 mm.

Occurrence:—Lower Miocene of Clallam County, Washington, locality 213.

This species can be easily recognized by its small size and long rostrum.

Type:—No. 237, Cal. Acad. Sci., in sea-cliff ½ mile west of Twin Post Office, Clallam County, Washington. Coll., Bruce Martin.

Named in honor of Dr. C. F. Newcombe.

Genus PECTEN Müller Pecten sancti-ludovici, new species

Plate 3, figures 10a and 10b

Shell of moderate size, equivalve, inequilateral, strongly ribbed, moderately inflated; umbones narrow and acute; each valve with nineteen or twenty ribs, rounded on the back and separated by narrow V-shaped interspaces; ribs ornamented by about six riblets forming fasciculi more or less beaded or roughened, not spiny; ears unequal, the anterior being nearly twice the length of the posterior, and on the right valve coarsely ribbed; posterior ear smaller and ornamented with wavy radial threads.

Dimensions:—Altitude of the type specimen, 40 mm.; width, 37 mm.; thickness, both valves, 19 mm.

This species differs from *Pecten hastatus* Sowerby, by having uniform riblets.

Type:—No. 107, and cotype No. 108, Cal. Acad. Sci., from the Santa Margarita formation along the west side of the San Juan River about one half mile above the mouth of Navajoa Creek, northeastern San Luis Obispo County, California. Coll., Bruce Martin.

Pecten etchegoini Anderson

Pecten etchegoini Anderson, Proc. Calif. Acad. Sciences, vol, 2, p. 198, pl. 18, figures 92-93, 1905.

Pecten (Chlamys) wattsi var. morani Arnold, U. S. G. S. Professional Paper No. 47, pp. 121-122, pl. 10, figs. 3, 4, 5, and 6, 1906.

Pecten (Chlamys) wattsi Arnold, var. etchegoini Anderson, U. S. G. S. Bull. 396, p. 77, 1909.

As the above named antedates the species and variety names proposed by Arnold, by at least a year, by the rules of precedence it should stand, and if there are varietal forms that merit distinct names these forms should be regarded as subspecies of *Pecten etchegoini* Anderson.

Genus POROMYA Forbes

Poromya gabbiana, new species

Plate 3, figures 7a and 7b

Shell of medium size, thin, convex, elongate, subquadrate, equivalve, inequilateral; beaks turned inward; umbones inconspicuous, a little anterior to the center; extremities well rounded; anterior dorsal margin slightly convex; posterior dorsal margin concave; base straight, parallel to the dorsal margin, contracted in the middle; surface sculptured with numerous fine concentric lines and small, almost invisible, radial striations, these crossed diagonally by low distant ridges that originate on the posterior dorsal margin, making a sharp convex bend toward the beaks, and then curving gradually downward toward the anterior ventral margin and disappearing on the dorsal area; there are fifteen of these ridges on the type specimen, and nearly twice that number on some of the cotypes; one cardinal tooth in each valve, the cardinal in the left valve diagonally elongate; ligament external; muscular impressions inaccessible.

Dimensions:—Length of the type, 46 mm.; altitude, 22.5 mm.; diameter of single valve, 8 mm.

Occurrence:—Lower Miocene of San Luis Obispo County, California, locality 126.

The living members of this genus are subtropical in habitat. None has been reported from the Miocene of California previous to this account.

Type:—No. 109, and cotype No. 110, Cal. Acad. Sci., in bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E., San Luis Obispo County, California. Coll., Bruce Martin.

Named in honor of Wm. Gabb.

Genus DIPLODONTA Bronn

Diplodonta buwaldana, new species

Plate 3, figures 1a and 1b

Shell small, thick, subcircular in outline, inflated; valves equal, inequilateral, slightly elevated in front of the beaks; beaks prominent, elevated, turned forward, slightly anterior to

the center; umbones full and broad; lunule indistinct; hinge line broadly arched; dorsal margins nearly straight in some specimens, slightly rounded in others; extremities well rounded, the posterior usually more broadly rounded than the anterior; basal margin circular; surface polished, marked by numerous fine concentric lines of growth; two teeth in each valve, the right posterior tooth faintly bifid; muscular impressions inaccessible.

Dimensions:—Length of one of the larger specimens, 21 mm.; altitude, 19 mm.; thickness of single valve, 7 mm.

Occurrence:—Not uncommon in the middle portion of the lower Miocene of Kern River, California, locality 65.

This species differs from *Diplodonta parilis* Conrad and *D. harfordi* Anderson by its inflated valves, much more prominent umbones, and more elevated beaks.

Type:—No. 111, and cotype No. 112, Cal. Acad. Sci., on west bank of a small canyon 1½ miles northeast of Barker's ranch house, Kern County, California. Coll., Bruce Martin.

Named in honor of Mr. J. P. Buwalda.

Genus CARDIUM Linn.

Cardium weaveri, new species

Plate 1, figures 3a and 3b

Shell of medium size, rounded at the base, somewhat trigonal, inflated; umbones prominent, curved inward and forward; anterior dorsal slope short and slightly concave with a cordate area immediately in front of the beaks; posterior dorsal slope long and slightly convex making a rather sharp curve into the arcuate base; a conspicuous ridge from the beaks to the posterior ventral extremity, giving the valves an angulated appearance and forming a prominent posterior dorsal area in each valve; sculpture consisting of numerous equally spaced radial striations which are replaced on the posterior dorsal area by flattened radial ribs separated by narrow interspaces, the radial ribs becoming obsolete near the margin; about twenty radial ribs on the posterior dorsal area, and between fifty-five and sixty fine radial striations on the remainder of the surface; hinge, typical of the genus *Cardium*.

Dimensions:—Length of the type specimen, 50 mm.; altitude, 48 mm.; thickness, 38 mm.

Occurrence:—Lower Miocene, or possibly Oligocene, of northwestern Oregon and western Washington. The type was obtained from the bluffs at the west end of the railroad tunnel about three miles southeast of Timber, Oregon.

This species can be easily distinguished by its peculiar radial sculpture. A number of species of *Cardium* from the west coast of North America have less prominent sculpture on the posterior dorsal area than on the remainder of the surface. In this species the reverse is true.

Type:—No. 113, and cotype No. 114, Cal. Acad. Sci., from bluffs at the west end of the railroad tunnel about three miles southeast of Timber, Oregon. Coll., Bruce Martin.

Named in honor of Professor Charles E. Weaver, University of Washington.

Genus CHIONE

Chione panzana, new species

Plate 1, figures 1a and 1b

Shell large, heavy, subtriangular in outline; valves equal, inequilateral, convex, inflated; beaks elevated, turned inward and forward, about one-third the length of the shell from the anterior extremity; umbones full; lunule large, cordate, depressed, sculptured by numerous fine concentric lines, bordered by a narrow groove; escutcheon lanceolate, extending almost to the posterior extremity, crossed by the concentric sculpture; posterior dorsal slope arcuate; anterior dorsal margin strongly excavated in front of the beaks; extremities rather sharply rounded; base arcuate, crenulated within; surface marked by numerous strong, concentric ridges, somewhat irregularly spaced, and many small radiating ribs which are a little less conspicuous than the concentric ridges; hinge plate heavy, with three cardinal teeth, the middle one bifid.

Dimensions:—Length, 78 mm.; altitude, 69 mm.; thickness of single valve, 22 mm.

Occurrence:—Lower Miocene of northeastern San Luis Obispo County, California, the type from locality 53.

This species is related to *Chione securis* Shumard, but differs from it in having fainter crenulations, finer radial lines, curved dorsal border, and narrower escutcheon. It is also much less subtriangular in outline than the latter species. It differs from *Chione temblorensis* Anderson, in not having the angulated posterior ridge nor the prominent concentric ridges.

Type:—No. 115, and cotype No. 116, Cal. Acad. Sci., San Luis Obispo County, California, in a small creek about ¾ of a mile southwest of Lewis House, near the center of the S. E. ¼ of Sec. 22, T. 29 S., R. 16 E., Mt. D. B. L. and M. Coll., Bruce Martin.

Chione margaritana, new species

Plate 2, figure 1

Shell large, subelliptical, very inequilateral; valves equal, convex, inflated; beaks near the anterior margin, not elevated, turned forward; umbones full, narrow; lunule very large, sunken, concentrically striated, bordered by narrow groove; escutcheon broad and long, concentrically striated; posterior dorsal margin long, slightly arcuate; anterior margin strongly excavated in front of the beaks, rather sharply rounded near the base; basal margin broadly arcuate, crenulated within; posterior extremity evenly rounded; surface sculptured with numerous coarse, nearly equally spaced, radiating ribs and fine concentric striations which are irregularly raised, forming concentric ruffles; the radiating ribs absent on the posterior dorsal area; interior inaccessible.

Dimensions:—Length of the figured specimen, 108 mm.; altitude, 83 mm.; thickness of the right valve, 38 mm.

Type:—No. 117, Cal. Acad. Sci., from the top of the Santa Margarita beds in the N. E. ¼ of sec. 25, T. 21 S., R. 14 E. Uncommon in the Santa Margarita beds of the Coalinga region.

Chione (Lirophora) latilaminosa, new species

Plate 1, figures 2a, 2b and 2c

Shell small, trigonal, convex, depressed, very strongly characterized by prominent lamellæ; valves equal, inequilateral; beaks prominent, turned forward, near the anterior margin of the shell; basal margin semicircular, crenulated within; cardinal

margins nearly straight, meeting in almost a right angle; lunule distinct, bordered by an impressed line and marked with fine concentric striations; escutcheon large, lanceolate, sloping inward, the lamellæ stopping abruptly at its outer margin; surface ornamented with five or six very prominent reflexed concentric lamellæ, numerous fine concentric lines of growth, and fine radial striations which are hardly visible on some specimens; the concentric lamellæ are wavy and thin on the margins but thick at the base; hinge line angulated, with three cardinal teeth in each valve, the middle one usually bifid.

Dimensions:—Length of the type specimen, 15 mm.; altitude, 8 mm.; thickness of a single valve, 4.5 mm.

Occurrence:—Not uncommon in the middle portion of the lower Miocene of Kern River, California, locality 65.

Type:—No. 118, and cotypes Nos. 119 and 120, Cal. Acad. Sci., on west bank of a small canyon 1¼ miles northeast of Barker's ranch house, Kern County, California. Coll., Bruce Martin.

Genus TRANSENNELLA Dall

Transennella joaquinensis, new species

Plate 3, figures 6a, 6b and 6c

Shell small, solid, circular in outline; valves equal, inequilateral, convex; beaks elevated, turned forward a little anterior to the middle; umbones full; dorsal margin concave in front of the beaks, nearly straight behind; extremities well rounded; base arcuate; surface marked with numerous fine concentric lines; lunule cordate, bordered by an impressed line; hinge plate of the left valve with three cardinal teeth and one anterior lateral which is elongated diagonally; the middle cardinal not distinctly bifid; pallial sinus small and shallow.

Dimensions:—Length of the type specimen, 8 mm.; altitude, 7.5 mm.; thickness of the right valve, 2.5 mm.

Occurrence:—Not uncommon in the lower Miocene of Kern River, California, locality 65.

This species can be separated from *Transennella tantilla* Gould and *T. californica* Arnold, by its less elongated form, more elevated beaks, and more prominent umbones.

Type:—No. 120, and cotypes Nos 121 and 122, Cal. Acad. Sci., on west bank of a small canyon 1¼ miles northeast of Barker's ranch house, Kern County, California. Coll., Bruce Martin.

Genus TELLINA Linn

Tellina nevadensis, new species

Plate 2, figures 3a, 3b and 3c

Shell large for the genus, compressed, inequilateral, inequivalve; beaks prominent; anterior end evenly rounded; ventral margin broadly arcuate; posterior end rostrate and bent to the right, obliquely truncated; posterior dorsal margin straight from the beaks to the truncation; a prominent fold and a concave flexure extending from the umbones to the posterior ventral extremity and bordering the posterior dorsal area in either valve; right valve convex; left valve nearly flat; surface marked with concentric ridges corresponding to the lines of growth and fine radial lines which are invisible on worn specimens; hinge plate narrow, with two cardinal and two lateral teeth in the right valve, and two cardinal teeth in the left valve; the posterior cardinal in the right valve bifid; muscular impressions large and distinct; pallial sinus very deep, extending almost to the anterior adductor; a thickened obscure ray extending diagonally across the anterior portion of the shell behind the anterior adductor.

Dimensions:—Length of the type specimen, 54 mm.; altitude, 34 mm.; diameter of the right valve, 7 mm. The type consists of one perfect right valve which is accompanied by the left valve of a cotype. Length of the largest specimen, 75 mm.; altitude, 45 mm.; diameter, both valves, 11 mm.

Occurrence:—The type specimen was obtained from the lower Miocene of Kern River, California, locality 65. Other specimens were obtained from the same horizon in the northeastern part of San Luis Obispo County, locality 126.

This species resembles Macoma nasuta Conrad and Macoma piercei Arnold in general outline. It may be distinguished from these species by the lateral teeth in the right valve, the radial sculpture, and the prominent concave flexure on the posterior portion.

Type:—No. 124, and cotypes Nos. 125 and 126, Cal. Acad. Sci., in bed of small creek, near the center of Sec. 34, T. 28 S., R. 15 E., San Luis Obispo County, California. Coll., Bruce Martin.

Tellina wilsoni, new species

Plate 3, figures 11a and 11b.

Shell small, eight to ten millimeters in length, convex, moderately inflated; valves unequal, inequilateral; beaks conspicuous, within the posterior third; anterior dorsal margin long and straight, nearly parallel to the base; anterior extremity well-rounded; basal margin very slightly arcuate; posterior dorsal margin truncated, sloping sharply downward to the posterior extremity which is sharply rounded into the base; posterior end compressed, flexuous, curved to the right; surface marked by very fine concentric lines of growth which are usually invisible to the unaided eye.

Dimensions:—Length of the type specimen, 9 mm.; altitude, 6 mm.; thickness of the right valve, 2 mm.; thickness of both valves, $4\frac{1}{2}$ mm.

Occurrence:—Not uncommon in the lower Miocene of San Luis Obispo County and of the Kern River region, California. The type specimen, No. 127, Cal. Acad. Sci., was obtained from locality 126.

Genus SEMELE Schum.

Semele morani, new species

Plate 3, figure 4.

Shell of moderate size, compressed, thin, subelliptical in outline; valves equal, convex, inequilateral, the anterior end slightly longer than the posterior; extremities well-rounded; ventral margin arcuate; beaks prominent, turned forward, excavated in front; anterior dorsal margin broadly convex; posterior dorsal margin nearly straight; lunule long and narrow, sunken, surface marked by numerous concentric lines of growth; a prominent flexure or furrow extending from the beaks to the posterior ventral margin; interior inaccessible.

Dimensions:—Length of the figured specimen, 25 mm.; altitude, 21 mm.; thickness of both valves, 8.5 mm.

Occurrence:—Uncommon in the lower Miocene of northeastern San Luis Obispo County, California, locality 126.

Type:—No. 129, Cal. Acad. Sci., in the bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E., San Luis Obispo County, California. Coll., Bruce Martin.

Named in honor of Mr. R. B. Moran.

Genus DONAX Linn.

Donax triangulata, new species

Plate 3, figure 9.

Valves small, thin, trigonal, convex; beaks a little anterior to the middle; dorsal margins nearly straight; anterior extremity rounded; basal margin nearly straight; posterior end sharply rounded; an umbonal angulation extending from the beaks to the anterior and posterior extremities, forming areas sculptured with six or seven radial ribs; left valve with one cardinal and two lateral teeth; ends crenulated within; muscular impressions indistinct.

Dimensions:—Altitude of the left valve, 5 mm.; length, 9 mm.; diameter of the left valve, 2 mm.

Occurrence:—Lower Miocene of Kern River, Kern County, California, locality 65.

Type:—No. 130, Cal. Acad. Sci., on west bank of a small canyon 11/4 miles northeast of Barker's ranch house, Kern County, California.

Genus MACTRA Linn.

Mactra sectoris, new species

Plate 3, figures 5a, 5b, 5c, 5d, and 5e.

Shell small, trigonal, equivalve, inequilateral, almost a quadrant of a spheno-discoidal solid; valves convex, inflated; beaks prominent, elevated, curved inward and forward; the forward dorsal margin slightly concave; posterior, slightly convex or straight; basal margin circular; ends sharply rounded, the anterior usually more so than the posterior; surface showing only

concentric lines of growth which disappear on the earlier portions of the shell; a prominent ridge or angulation extending from the beaks diagonally to the posterior extremity; hinge typical of this genus; muscular impressions inaccessible.

Dimensions:—Altitude, 9 to 10 mm.; length, 10 to 13 mm.; thickness, 6 to 7 mm.

Occurrence:—Found abundantly in the lower Miocene of Kern River, California, locality 69.

Though much smaller in size, the shells of this species are almost exact prototypes of *Spisula exoleta* Gray as figured and described by Arnold, and as represented by a sample collected at San Diego. More than one hundred specimens of *M. sectoris* were obtained from the locality given above, and they were all nearly equal in size, there being no gradation between them and larger specimens. This fact seems sufficient to warrant its description as a new species.

Type:—No. 131, and cotype No. 132, Cal. Acad. Sci., on the south and west slopes of Pyramid Hills, about 15 miles northeast of Bakersfield.

GASTROPODA

Genus CALLIOSTOMA Swains.

Callistoma pacificum, new species

Plate 8, figures 2a and 2b.

Shell conical, thick, with about five convex whorls; spire moderately high; whorls of the spire ornamented with ten almost equally prominent spiral threads separated by narrower interspaces; two of the spiral threads nearest the posterior margin are centrally grooved; suture distinct, impressed; bodywhorl slightly concave near the suture, convex over the central portion, sharply rounded at the base, sculptured the same as the whorls of the spire; the base ornamented with eighteen or twenty very fine spiral lines; aperture subcircular; outer lip smooth; columella thickened and incrusted.

Dimensions:—Altitude of the type specimen, 15 mm.; diameter of the last whorl, 14.5 mm.

Occurrence:—Miocene of the Oregon coast, five miles north

of Yaquina Bay, locality 36.

This species is very similar to the recent and fossil species, *Calliostoma costatum* Martyn, but can be distinguished from the latter by the fine spiral sculpture on the base. The base of *C. costatum* is sculptured the same as the whorls of the spire.

Type:—No. 134, and cotype No. 133, Cal. Acad. Sci., one-half mile north of Yaquina Head, Lincoln County, Oregon.

Genus NISO Risso

Niso (?) antiselli, new species

Plate 7, figure 22.

Shell small, smooth, with six whorls; spire conical, upper whorls absent in the type specimen; whorls nearly flat, tapering toward the apex, unsculptured; suture appressed; body-whorl sharply angulated at the periphery; base convex, with a distinct umbilicus; aperture quadrate; outer lip distinctly angulated, angle about 100°; inner lip thin, smooth; umbilical opening large but not extending to the apex of the shell.

Dimensions:—Altitude, apex broken, 7.5 mm.; latitude of the last whorl, 4 mm.

Occurrence:—The type specimen was obtained from the lower Miocene of eastern San Luis Obispo County, California, locality 125.

The living species of this genus are found in tropical and temperate seas. The placing of this species in the genus *Niso* is somewhat doubtful. The umbilical opening does not extend to the apex of the shell; it is, however, much more pronounced than in any of the Eulimidæ or Pyramidellidæ and has therefore been classed as a *Niso*.

Type:—No. 135, Cal. Acad. Sci., on top of a hill in the southwest corner of the S. E. ¼ of Sec. 29, T. 28 S., R. 15 E., San Luis Obispo County, California.

Named in honor of Dr. Thomas Antisell, one of the early geologists of California.

Genus PYRAMIDELLA Lamarck

Pyramidella cooperi, new species

Plate 7, figures 18a and 18b

Shell small, turriculated, solid, with nine or ten whorls, apex acute; spire strongly elevated; whorls flatly convex, narrowly tabulated, sculptured with one prominent narrow groove at the front margin; body-whorl rather well rounded below, with short base; aperture subelliptical; outer lip semicircular, denticulated within; columella with one conspicuous posterior plication and two less prominent anterior plications.

Members of this genus inhabit tropical seas.

Dimensions:—Altitude of the type, 11 mm.; maximum latitude, 4 mm.

Occurrence:—From the lower Miocene of Kern River, California, locality 65.

Type:—No. 136, and cotype No. 137, Cal. Acad. Sci., on the west bank of a small canyon 1½ miles northeast of Barker's ranch house, Kern County, California.

Named in honor of Dr. J. G. Cooper.

Genus EULIMELLA Fischer

Eulimella ochsneri, new species

Plate 7, figures 23a and 23b.

Shell small, elongated, slender, with eight or more whorls; spire high, with acute apex; whorls slightly convex, nearly flat, with narrow tabulation at the suture, ornamented with two or three very faint spiral lines near the base; the faint spiral lines at the base of the whorls are not visible on some specimens; suture distinct, channeled; aperture subquadrate; lips simple and smooth; body-whorl with a small umbilical chink.

Dimensions:—Altitude of the type, apex broken, 8 mm.; diameter of the last whorl, 3 mm.

Occurrence:—Not rare in the lower Miocene of Kern River, Kern County, California, locality 64.

Type:—No. 138, and cotype No. 139, Cal. Acad. Sci., in bottom of a small canyon about 1¼ miles due north of Barker's ranch house, Kern County, California.

Named in honor of Mr. W. H. Ochsner.

Eulimella dilleri, new species

Plate 7, figure 24.

Shell small, elongated, turriculated, solid, with eight to ten whorls; apex acute; whorls smooth, flatly convex; body-whorl sharply rounded below into a convex base; suture impressed, distinct; aperture subrectangular; inner lip reflexed; columella straight, without plications.

Dimensions:—Altitude of the figured specimen, apex broken, 9.5 mm.; maximum width of the shell, 3.5 mm.

Occurrence:—From the Miocene of the Oregon coast, four miles north of Yaquina Bay, locality 37.

This species differs from *Eulimella ochsneri* in having more convex whorls, an impressed suture instead of the appressed suture of the latter, and in being less convex at the periphery of the body-whorl.

Type:—No. 140, Cal. Acad. Sci., Lincoln County, Oregon, in the sea cliff ¼ mile north of lighthouse at Cape Foulweather.

Named in honor of Mr. J. S. Diller, Geologist, U. S. Geological Survey.

Eulimella californica, new species

Plate 7, figures 19a, 19b, and 19c.

Shell small, turriculated, elongated, smooth, solid, with seven or eight whorls; apex acute; whorls with a slight angulation near the anterior margin, flatly convex above, smooth; bodywhorl convex at the base, nearly flat above; base not flattened; suture impressed; aperture elliptical; oùter lip arcuate; inner lip concave, slightly incrusted.

Dimensions:—Altitude of the type specimen, 4.5 mm.; maximum latitude, 2 mm.

Occurrence:—Lower Miocene of Kern River, California, locality 64.

This species can be distinguished from *Eulimella ochsneri* and *E. dilleri* by its much smaller size, by the slight angulation on the anterior margin of the whorls, the lack of flattened base, and a more elliptically shaped aperture.

Type:—No. 141, and cotype No. 142, Cal. Acad. Sci., in the bottom of a small canyon about 1½ miles due north of Barker's ranch house, Kern County, California.

Eulimella gabbiana, new species

Plate 7, figure 20.

Shell very small, slender and smooth, polished, with numerous whorls; apex acute (broken in the type specimen), whorls nearly flat, unsculptured; suture appressed, indistinct; base unflattened; aperture ovally elongated; outer lip sharply rounded anteriorly; inner lip concave, incrusted.

Dimensions:—Altitude of the figured specimen, upper whorls lost, 4 mm.; maximum width, 1.3 mm.

Occurrence:—Lower Miocene of Kern River, California, locality 64.

This species is distinguished by its small size, slender and smooth form, and its long narrow aperture.

Type:—No. 143, Cal. Acad. Sci., in the bottom of a small canyon about 1¼ miles due north of Barker's ranch house, Kern County, California.

Named in honor of Wm. Gabb.

Genus EPITONIUM Bolten

Epitonium posoënsis, new species

Plate 7, figure 10.

Shell conical, solid, with seven or eight whorls; spire elevated; whorls tabulated, nearly flat above, sculptured with twelve strongly raised varices, which are reflexed and broadened on top, and four or five spiral lines which are plainly visible between the varices; varices with prominent shoulders, giving the whorls a tabulated appearance; body-whorl squarely angulated at the base with a keel on the angle; base flat and smooth; aperture circular; outer lip thickened by the varix; inner lip incrusted, smooth.

Dimensions:—Altitude of the figured specimen, apex broken, 14 mm.; diameter of the last whorl, 8 mm.

Type:—No. 144, Cal. Acad. Sci., the lower Miocene of Kern River, California, locality 65.

Epitonium williamsoni, new species

Plate 7, figures 9a and 9b.

Shell long and narrow, with about ten whorls; spire very high; apex sharp; whorls convex, crossed by eighteen prom-

Vol. IV]

inent, rounded axial ribs extending from suture to suture; interspaces about equal in width to the ribs; the spiral sculpture consisting of small threads, about ten or twelve to each whorl, less prominent than the axial ribs; suture distinct, deeply channeled; two broad continuous varices diagonally crossing each whorl; body-whorl angulated at the base, the angulation carrying a carina; the base sculptured with spiral threads; aperture circular; outer lip thickened; inner lip incrusted, smooth.

Dimensions:—Altitude of the type specimen, apex defective, 18 mm.; maximum diameter of the body-whorl, 6.5 mm.

Occurrence:—From the lower Miocene of Kern River and eastern San Luis Obispo County, California.

This species is named in remembrance of Lieutenant R. S. Williamson who conducted the first exploring expedition to the rich district of Kern River and Poso Creek.

Type:—No. 145, and cotype No. 146, Cal. Acad. Sci., Kern County, California, on west bank of a small canyon 1¼ miles northeast of Barker's ranch house.

Genus LACUNA Turton

Lacuna carpenteri, new species

Plate 7, figure 21.

Shell small, thin, conical, with six flat tapering whorls; spire elevated; apex subacute; whorls smooth, flat or very slightly convex; suture distinct appressed; body-whorl large, angulated at the base; aperture ovate; outer lip thin; inner lip smooth, separated from the body-whorl by a small umbilical chink.

Dimensions:—Altitude of the figured specimen, 9 mm.; diameter of the last whorl, 5 mm.

Occurrence:—Lower Miocene of Kern River, California, locality 65.

Type:—No. 147, Cal. Acad. Sci., Kern County, California, on west bank of small canyon 1¼ miles northeast of Barker's ranch house.

Named in honor of Dr. Philip Carpenter.

Genus FOSSARUS Phil.

Fossarus dalli, new species

Plate 7, figures 13a and 13b.

Shell small, subglobose, solid, with three or four whorls which increase rather rapidly in size; spire short; whorls of the spire small, convex, sculptured with spiral threads separated by narrower interspaces, about six on the penultimate whorl; suture appressed; body-whorl more than three-fourths the total length of the shell, convex, globose, sculpture with fifteen spiral threads which are separated by narrower interspaces; aperture elliptical; outer lip arcuate; columellar margin excavated, smooth; a small umbilical chink visible on some specimens.

Dimensions:—Altitude of the type, apex and base broken, 5 mm.; latitude of the body-whorl, 3 mm.

Occurrence: -Lower Miocene of Kern River, locality 64.

The living members of this genus are most commonly found in tropical and temperate seas.

Type:—No. 148, and cotype No. 149, Cal. Acad. Sci., Kern County, California, in bottom of a small canyon about 1¼ miles due north of Barker's ranch house.

Named in honor of Dr. W. H. Dall.

Genus TURRITELLA Gray

Turritella carrisaënsis, new species

Plate 4, figure 4.

Shell solid, elongated, turrited, with about ten whorls; spire very high; whorls tabulated at the posterior third; tabulation flat and forming an angle of forty degrees with the axis of the shell; surface in front of the angle flat or slightly concave; ornamentation consisting of four spiral ridges, one prominent forming the angle, two about midway between the anterior margin and the angle, and the fourth, a sutural cord, on the anterior margin; the latter forming a slight angulation on the base of the last whorl; suture deeply impressed; aperture subquadrate.

Dimensions:—Altitude of the figured specimen, apex defective, 76 mm.; latitude of the last whorl, 29 mm.

Occurrence:—Not common in the middle portion of the Santa Margarita (San Pablo) formation in the eastern part of San Luis Obispo County, California, locality 58.

This species can be distinguished by its peculiar tabulation and spiral sculpture.

Type:—No. 150, Cal. Acad. Sci., San Luis Obispo County, California; in the south bank of a small creek in the N. E. ¼ of Sec. 22, T. 29 S., R. 17 E.

Genus CERITHIUM Brug.

Cerithium arnoldi, new species

Plate 7, figure 12.

Shell conical, elongate, small, with nine or ten closely appressed whorls; spire high; apex acute; whorls nearly flat, crossed by numerous irregular wavy, axial ribs which are rendered slightly nodose by the spiral cords; the spiral sculpture on the penultimate whorl consisting of three or four cords separated by wider interspaces which carry small secondary spiral threads; body-whorl carrying seven or eight of the larger spiral cords between each two of which there are three intercalary lines, the middle one slightly larger than the two on either side; base flattened producing a distinct angulation on the anterior portion of the body-whorl; aperture subquadrate; lips simple; canal very short.

Dimensions:—Altitude of the type, 19 mm.; diameter of the last whorl, 7.5 mm.

Occurrence:—A single specimen from the lower Miocene of Kern River, locality 64.

Type:—No. 151, Cal. Acad. Sci., Kern County, California, in the bottom of a small canyon about 1¼ miles due north of Barker's ranch house.

Named for Ralph Arnold in recognition of his valuable contributions to Tertiary paleontology.

Genus ARGOBUCCINUM Morch Argobuccinum dilleri, new species

Plate 4, figure 7.

Shell large, solid, with nine or ten strongly sculptured whorls; spire high; whorls convex, tabulated, sculptured with

eighteen low, rounded axial ribs and numerous spiral cords which alternate in size; the spiral sculpture on the penultimate whorl consisting of four pair of double strap like cords, between each pair of which are three less prominent cords, the middle one being slightly larger than those on either side; the interspaces are narrower than the cords; the double cords produce nodulation on the axial ribs; two rugose discontinuous varices crossing each whorl from suture to suture; entire surface faintly spirally striate; canal and aperture partly defective.

Dimensions:—Altitude of the figured specimens, 65 mm.; maximum diameter of the body-whorl, 44 mm.

Occurrence:—From the Miocene of the Oregon coast, four and one half miles north of Yaquina Bay, locality 35.

This species can be distinguished from Argobuccinum oregonense Redfield by a difference in the spiral sculpture and more prominent varices.

Type:—No. 152, Cal. Acad. Sci., Lincoln County, Oregon, along the sea cliff a little south of the mouth of Wade Creek, about six miles north of Yaquina Bay.

Named in honor of Prof. J. S. Diller, Geologist, U. S. Geological Survey.

Genus AMPHISSA

Amphissa posunculensis, new species

Plate 7, figures 11a and 11b.

Shell small, thin, bucciniform, with about seven whorls; spire elevated; apex subacute; whorls well rounded and distinctly cancellated with small rounded axial ribs, separated by much wider interspaces and numerous spiral cords; the axial ribs are slightly nodose where crossed by the spiral cords; there are twenty-four axial ribs and about nine spiral cords of equal prominence on the penultimate whorl; the interspaces between the spiral lines usually carrying small intercalary threads; suture very distinct, channeled; body-whorl large with a broadly angulated base; aperture broadly elliptical; outer lip lirate within; inner lip incrusted; columella short, twisted; canal very short and broad, slightly curved.

Dimensions:—Altitude of the type, apex defective, 18 mm.; diameter of the last whorl, 9 mm.

Occurrence:—From the lower Miocene of Kern River, California, locality 65.

Type:—No. 153, and cotype No. 154, Cal. Acad. Sci., Kern County, California, on the west bank of a small canyon, 1¼ miles northeast of Barker's ranch house.

Genus AGASOMA Gabb

Agasoma columbianum, new species

Plate 5, figures 6a and 6b.

Shell large for the genus, conical above and below, revolute, tuberculated; spire high, having five or six conical whorls, sloping evenly to an acute apex; body-whorl angulated, carrying three rows of laterally elongated tubercules; the upper row most prominent and separated from the next row below by a concave surface; aperture ovate, broad in the middle, narrow before and extended into a moderately long recurved canal; outer lip thin and entire; inner lip incrusted; surface of the shell ornamented chiefly with revolving threads, three of which are prominent, forming the angles and elevated into tubercules; the spiral threads alternating in size and of three or four ranks, crossed at unequal intervals by sinuous lines of growth; suture broadened by thickened and wrinkled collar; canal wide and curved; the aperture is greater in length than the height of the spire.

Dimensions:—Altitude of the type specimen, 56 mm.; maximum width of the shell, 40 mm.; length of the aperture, 35 to 40 mm.

Occurrence:—Pittsburg Bluff, Nehalem River, and near Clatskanie, Oregon. This species is not uncommon in the Oligocene(?) of the Pittsburg horizon. It is not known in the rocks of the Astoria Group or in the older rocks below. It is usually associated with *Macrocallista pittsburgensis* Dall, *Molopophorus gabbi* Dall, and *Nucula shumardi* Dall.

Type:—No. 155, and cotype No. 156, Cal. Acad. Sci., Pittsburg Bluff, Nehalem River, Oregon.

Agasoma acuminatum, new species

Plate 5, figures 4a and 4b

Shell rather large, fusiform; spire elevated though shorter than the mouth, with five or six whorls; whorls angulated a

little below the middle, tuberculated on the angles, flattened and sloping regularly above, flattened below; suture distinct and bordered by a wrinkled collar which is ornamented with two or three spiral threads; aperture ovate, elongated into a long recurved canal; canal moderately wide; outer lip thin and simple, not lirate within; inner lip slightly incrusted; surface of the shell ornamented with numerous revolving threads of three alternating sizes, a few of which are coarser than the others, one or two bearing tubercules on the body-whorl.

Dimensions:—Altitude of the type specimen, 60 mm.; maximum latitude of the shell, 30 mm.

Found associated with Diplodonta parilis Conrad, Nucula conradi Dall, and Tellina oregonensis Conrad.

The ornamentation of this species is quite variable as regards the prominence of the tubercules. On some specimens they are pronounced while on others they are almost obsolete.

Type:—No. 157, and cotype No. 158, Cal. Acad. Sci., from the Oligocene(?) or possibly lower Miocene beds about ten miles northwest of Scappoose, Oregon, in Sec. 36, T. 4 N., R. 3 W.

Agasoma oregonense, new species

Plate 4, figures 3a and 3b

Shell of moderate size, fusiform; spire elevated, with seven or eight whorls; whorls angulated near the middle, flat or slightly convex above, cylindrical below, ornamented with numerous spiral threads of alternating magnitude, and irregularly raised axial lines of growth which are most pronounced on the upper whorls where they form nodes on the angulations; suture impressed; body-whorl large, ventricose, slightly constricted in front of the suture, with a rounded shoulder at the posterior third, concave above, convex below, sculptured similar to the whorls of the spire, but lacking the nodes on the shoulder; aperture ovate, outer lip simple, inner lip smooth; canal long and recurved.

Dimensions:—Altitude of the type specimen, 55 mm.; width of the body whorl, 27 mm.

Type:—No. 159, and cotype No. 160, Cal. Acad. Sci., from the Oligocene(?) or possibly lower Miocene, ten miles northwest of Scappoose, Oregon, locality 168.

Agasoma yaquinanum, new species

Plate 4, figures 5a and 5b

Shell pyriform, with five or six tabulated whorls; spire rather low; whorls angulated near the middle, flat above and below giving the shell a beautifully tabulated appearance, sculptured with eleven spiral threads, six above and five below the angle, and a large number of indistinct axial ribs which produce sharp nodulations on the larger spiral threads and especially on the angulations; body-whorl inflated, with a broad tabulation, sculptured with twelve or fourteen major spiral cords between which are three intercalary threads, the middle one of which is slightly larger than those on either side; the interspaces between these secondary spirals again occupied by very fine intercalary lines; axial ribbing almost obsolete on the body-whorl except on the angulation where they form nodes; suture appressed; aperture ovate; lips smooth and simple; canal moderately long and slightly recurved; columella twisted.

Dimensions:—Altitude of the type specimen, 25 mm.; maximum latitude of the shell, 14 mm.

Type:—No. 161, and cotype No. 162, Cal. Acad. Sci., Miocene of the Oregon coast, a little north of the entrance to Yaquina Bay, locality 39.

Genus NASSA Martini

Nassa ocoyana, new species

Plate 7, figure 17.

Shell small, with about five angulated whorls; spire elevated; whorls of the spire nearly flat, tabulated, sculptured with eight or nine broad, rounded axial ribs which are most prominent on the upper portion of the whorl where they produce nodes on the angulation, and seven or eight spiral cords which alternate in size, there being four or five slightly more prominent than those intervening; the axial ribs obsolete on the body-whorl and on the lower portion of the penultimate whorl; suture wavy, distinct, bounded below by a sutural band; body-whorl nearly flat at the center and marked by a strong spiral groove near the base; below the groove are three or four strong spiral threads and about eight indistinct spiral ridges between the groove and

the angulation; aperture elliptical, outer lip thickened by a varix; inner lip simple; canal short and recurved.

Dimensions:—Altitude of the figured specimen, canal defective, 11 mm.; diameter of the last whorl, 5 mm.

Occurrence:—Found in the lower Miocene of Kern River and eastern San Luis Obispo County, California.

Type:—No. 163, Cal. Acad. Sci., Kern County, California, in the bottom of a small creek 1¼ miles due north of Barker's ranch house.

Nassa blakei, new species

Plate 7, figures 15a and 15b.

Shell small, ovate, solid, with five or six whorls; spire elevated; whorls of the spire slightly convex, sculptured with four or five spiral lines, and twelve to fifteen raised axial ribs, most prominent at the middle of the whorls; the intersection of the axial ribs and the spiral lines producing small nodes; suture distinct, impressed; body-whorl large, about one half the total length of the shell, with prominent spiral ridges on the anterior and posterior margins, concave centrally, sculptured with numerous spiral lines and axial lines of growth; aperture subquadrate; outer lip thickened, denticulate within; inner lip incrusted, roughened; canal very short and broad.

Dimensions:—Altitude, 9 mm.; maximum width of the shell, 5 mm.; length of the aperture, including the canal, 4 mm.; width of the aperture, 2 mm.

Occurrence:—One specimen, the type, from the lower Miocene of Kern River, California, locality 65.

Type:—No. 164, Cal. Acad. Sci., Kern County, California, on the west bank of a small canyon 1½ miles northeast of Barker's ranch house.

Named in honor of Mr. W. P. Blake.

Nassa antiselli, new species

Plate 7, figure 16.

Shell small, ovate; spire conical, elevated, with five nodose whorls; whorls slightly convex, tabulated, sculptured with three equally spaced spiral cords and about thirteen axial ribs which are equal in prominence to the spiral cords; the intersection of

the spiral and axial ribs producing conspicuous nodes; suture distinct, impressed; body-whorl ventricose, sculptured with eight spiral cords and fifteen axial ribs, nodose as the whorls of the spire; aperture elliptical; outer lip thickened by a conspicuous varix; inner lip smooth; columella short, with a small anterior sulcus; canal short and broad.

Dimensions:—Altitude, 8.5 mm.; diameter of the last whorl, 5 mm.

Occurrence:—Lower Miocene of San Luis Obispo County, California, locality 126.

This species can be distinguished by its small size, peculiar nodose sculpture, and prominent varix on the outer lip. It is more elongate and has much coarser sculpture than Nassa arnoldi Anderson.

Type:—No. 165, Cal. Acad. Sci., San Luis Obispo County, California, in the bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E.

Named in honor of Dr. Thomas Antisell.

Nassa lincolnensis, new species

Plate 7, figures 14a and 14b.

Shell small, globose, with four or five rather rapidly enlarging whorls; spire of medium height; apex blunt; whorls tabulated, convex, sculptured with three spiral bands between which are equal interspaces, and twelve axial ribs separated by wider interspaces; the intersection of the axial and spiral ribs producing nodes which are most prominent on the angle of the whorls; body-whorl convex, with sixteen axial ribs and eight flat topped spiral bands, the whole surface finely spirally striate; aperture ovate; outer lip simple; inner lip incrusted; columella very short with a distinct anterior sulcus.

Dimensions:—Altitude, 10 mm.; diameter of the last whorl, 6 mm.

Type:—No. 167, and cotype No. 168, Cal. Acad. Sci., Miocene of the Oregon coast, a short distance north of Yaquina Bay, locality 39.

Genus MOLOPOPHORUS Gabb

Molopophorus dalli, new species

Plate 6, figures 7a and 7b.

Shell moderate in size, stout, conical above, not strongly sculptured, with five whorls; spire rather high for the genus, tapering evenly except for the sutural collar; younger whorls ornamented with beaded collars, older whorls with beads obsolete; body-whorl with distinct constriction below collar; mouth ovate, narrowed above; outer lip thin and smooth; inner lip widely calloused; canal very short, wide, recurved; pillar partly encircled by strong plication which forms the outer border of the canal; surface marked by irregular axial ridges crossed by spiral cords.

Dimensions:—Length, 39 mm.; width, 25 mm.

Type:—No. 168, and cotype No. 169, Cal. Acad. Sci., from the Oligocene(?) near Clatskanie, Oregon, locality 165, in a prominent bluff along the county road about 2½ miles southwest of Clatskanie.

Molopophorus gabbi Dall

Plate 6, figures 5a and 5b.

Molopophorus gabbi Dall, U. S. G. S. Professional Paper No. 59, 1909.

This species has been figured to illustrate the characters which distinguish it from *Molopophorus dalli*. As pointed out by Dr. Dall the form and sculpture of this species vary considerably, and it may be shown later that the form, here described as new, is only a wide variation of *Molopophorus gabbi* Dall. At present there seems to be sufficient difference in form and sculpture to separate the two as distinct species.

Genus CHRYSODOMUS Swains.

Chrysodomus kernensis, new species

Plate 4, figures 6a and 6b.

Shell of moderate size, solid, with seven whorls, nucleus lost on the type; spire high; apex subacute; whorls with well rounded shoulder near the middle, slightly rounded below, flat or concave above, rather strongly constricted in front of the suture forming a distinct sutural collar, sculptured with numerous spiral cords having narrower interspaces; the width of the cords and the interspaces varying considerably, on the anterior portion and just above the shoulder of the body-whorl the cords alternating large and small; in the middle portion nearly equal, with one broad spiral band at the shoulder; the axial sculpture consisting of inconspicuous lines of growth; suture strongly appressed; body-whorl large, about two thirds the total length of the shell; aperture elliptical, outer lip ribbed within, inner lip smooth, calloused; canal short, wide, recurved; columella twisted, with small anterior sulcus.

Dimensions:—Altitude of the type, apex defective, 62 mm.; maximum latitude of the shell, 28 mm.; length of the aperture, including the canal, 31 mm.; width of the aperture, 12 mm.

Occurrence:—Lower Miocene of Kern River and eastern San Luis Obispo County, California. The type was obtained from locality 65.

Type:—No. 172, and cotype No. 173, Cal. Acad. Sci., Kern County, California; on west bank of a small canyon 1¼ miles northeast of Barker's ranch house.

Genus SIPHONALIA Adams

Siphonalia posoënsis, new species

Plate 4, figure 2.

Shell large, fusiform, solid, with seven or more whorls; spire high, conical; whorls angulated near the anterior margin, the angulation ornamented with about nine prominent nodes; surface above the angulation nearly flat or concave; sculpture consisting of spiral grooves and axial lines of growth; the spiral grooves somewhat irregularly spaced and the spaces between them often raised forming spiral cords; body-whorl angulated near the middle, concave above, convex below; aperture ovate; outer lip arcuate; inner lip smooth, incrusted; canal moderately long, curved to the left; columella incrusted, with a long anterior sulcus.

Dimensions:—Altitude, 90 mm.; maximum latitude of the last whorl, 45 mm.; length of the aperture, including the canal, 43 mm.; width of the aperture, 17 mm.

December 30, 1914.

Type:—No. 174, Cal. Acad. Sci., lower Miocene of San Luis Obispo County, California, locality 126, in the bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E.

Genus MELONGENA Schum.

Melongena californica, new species

Plate 4, figure 1

Shell of moderate size solid, pyriform, with a low spire; whorls of the spire inconspicuous, unsculptured, three or four in number; body-whorl inflated, broadest near the posterior margin, the middle and anterior portion sloping downward to the canal; ornamentation consisting of two rows of nodes; one on the shoulder, and the other a little anterior to the middle, the nodes are pronounced and number about five to a row; aperture oval, inner lip smooth incrusted; columella broad and heavy, with prominent anterior sulcus; canal defective, probably broad and nearly straight.

Dimensions:—Altitude, canal defective, 38 mm.; width of the last whorl, 29 mm.; length of the aperture, including a portion of the canal, about 30 mm.

Type:—No. 175, Cal. Acad. Sci., lower Miocene of eastern San Luis Obispo County, California, locality 60, on the top of a prominent ridge one mile east of the San Juan River in the N. W. cor. of the N. E. 1/4, Sec. 3, T. 30 S., R. 17 E.

This genus has not previously been reported to occur in the Miocene of California.

Genus TROPHON Montf.

Trophon oregonensis, new species

Plate 5, figure 5

Shell large, thick, fusiform, with six or seven angulated whorls; spire elevated; whorls of the spire angulated near the middle, surface flat and smooth above, smooth and sloping inward below; whorls ornamented with nine or ten prominent projecting spines which are excavated in front and convex behind and extending downward to the suture in front forming short varices; suture impressed, wavy; body-whorl ventricose,

sharply concave at the anterior margin; aperture ovate; canal moderately long, slightly twisted.

Dimensions:—Altitude of the figured specimen, 58 mm.; maximum diameter of the last whorl, 40 mm.

Type:—No. 176, Cal. Acad. Sci., Miocene of the Oregon coast, four miles north of Yaquina Bay, locality 38.

Trophon kernensis has a lower spire, angulation of the whorls more anterior, and with nodes instead of excavated spines. Trophon carisaënsis Anderson, has a smaller number of spines, angulation nearer the anterior margin, and a shorter and much more thickened columella. Trophon gabbianus Anderson, is a closely allied species with less prominent spines and ornamented with many revolving cords and grooves on the body-whorl below the shoulder.

Trophon gabbianus Anderson

Plate 5, figure 1.

Trophon gabbiana Anderson, Proc. Calif. Acad. Sci., 3rd Series, Geology, vol. 3, No. 2, page 203, Pl. 16, fig. 79-80.

This species is refigured in order to point out more clearly the distinguishing characters of *Trophon oregonensis*, new species.

Genus THAIS Bolten

Thais trophonoides, new species

Plate 6, figures 1a and 1b.

Shell of moderate size, globose, solid, with five rather rapidly enlarging whorls; spire moderately elevated; apex blunt; whorls of the spire angulated a little below the middle, flat above and below, crossed by nine axial ribs and seven or eight spiral cords; axial ribs most prominent on the angle of the whorl; interspaces between the spiral cords usually occupied by a small intercalary thread; suture appressed; body-whorl large, ventricose, angulated above the middle, marked by nine axial ribs which are obsolete on the anterior portion, and numerous spiral cords between which are intercalary threads; aperture pyriform; outer lip angulated above and below the middle; columella twisted, with narrow groove and a deep anterior sulcus; canal recurved.

Dimensions:—Altitude of the type specimen, 34 mm.; maximum width of the shell, 24 mm.

Type:—No. 178, and cotype No. 179, Cal. Acad. Sci., from the lower Miocene of Kern River, locality 65, on the west bank of a small canyon 1¼ miles northeast of Barker's ranch house.

Thais blakei, new species

Plate 6, figures 4a and 4b.

Shell solid, fusiform, with six whorls; spire moderately high; whorls of the spire with a well rounded angle near the anterior margin, flat or concave above, restricted near the suture, sculptured with spiral cords and coarse, raised, axial lines of growth; seven or eight spiral cords on the penultimate whorl, separated by wider interspaces which occasionally carry a fine intercalary thread; suture appressed; body-whorl with a well rounded shoulder a little in front of the suture, concave above, inflated below, sculptured in the same manner as the whorls of the spire; aperture ovate, outer lip thickened, denticulate within, inner lip smooth, incrusted; canal short, recurved; columella twisted, with anterior sulcus.

Dimensions:—Altitude of the type, apex defective, 34 mm.; maximum latitude of the shell, 17 mm.; length of the aperture, including the canal, 21 mm.; width of the aperture, 6 mm.

Type:—No. 180, and cotype No. 181, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 65, on the west bank of a small canyon 1¼ miles northeast of Barker's ranch house.

Thais blakei resembles Thais edmondi Arnold in general form. It may be distinguished from the latter by its uniformly larger size, longer canal, and the lack of nodes on the shoulder or angle of the whorls.

Thais panzana, new species

Plate 6, figure 6.

Shell solid, of moderate size; whorls five or six; spire elevated, conical; suture distinct, channeled; whorls of the spire conical, slightly concave above the middle, with a row of nodes around the anterior margin giving them an angular appear-

ance, sculptured with distinct spiral cords separated by narrower interspaces, eleven or twelve on the penultimate whorl; body-whorl large, about two-thirds the total length of the shell, angulated near the middle, concave above, almost flat below and narrowing rapidly to the canal, with eight prominent nodes on the angulation, eight spiral cords above the shoulder and about eighteen below; aperture elliptical, outer lip angulated, inner lip smooth; columella stout, incrusted, with anterior sulcus; canal short, recurved.

Dimensions:—Altitude of the figured specimen, apex defective, 30 mm.; maximum latitude of the shell, 16 mm.; length of the aperture, including the canal, 20 mm.; width of the aperture, 8 mm.

Type:—No. 182, Cal. Acad. Sci., lower Miocene of eastern San Luis Obispo County, California, locality 126, in the bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E.

Thais nehalemensis, new species Plate 6, figure 3.

Shell solid, fusiform, with about six whorls; spire moderately elevated; apex acute; whorls of the spire concave with a raised anterior margin or collar which is ornamented with twelve to fourteen prominent nodes, the nodes partly obscured by the overlapping of the succeeding whorl; concave area smooth or marked by very fine spiral lines; suture indistinct due to the overlapping of the whorls; body-whorl large, more than three-fourths the total length of the shell, angulated near the middle, concave above, ornamented with thirteen prominent nodes and numerous revolving threads of three or more ranks which alternate regularly; nodes most prominent at the angle, fading out above and on the anterior portion of the whorl; the spiral threads most prominent on the nodose area; aperture oval, outer lip simple, inner lip incrusted, smooth; posterior sinus broad and shallow; canal short and broad, recurved.

Dimensions:—Length of the shell, 33 mm.; maximum diameter of the body-whorl, 19 mm.; length of the aperture and canal, 21 mm.; width of the aperture, 8 mm.

Type:—No. 183, Cal. Acad. Sci., Oligocene or lower Miocene beds ten miles northwest of Scappoose, Columbia County, Oregon.

The presence of the posterior sinus in this species indicates that it might be more properly placed in the *Pleurotomidæ*, but the short and broad canal and general shape of the shell suggest the genus *Thais* to which it has been assigned temporarily.

Genus FUSINUS Rafinesque

Fusinus empireënsis, new species

Plate 5, figure 7.

Shell solid, fusiform, with eight or nine convex whorls; spire elevated; whorls moderately convex, sculptured with seven or eight coarse rounded spiral cords alternating in prominence, the cords on the anterior portion slightly more elevated than those on the posterior, frequently giving the whorls an angulated appearance; body-whorl with eighteen spiral cords, axial sculpture consisting of lines of growth; suture distinct, channeled; aperture rounded or circular; inner lip smooth, lightly incrusted; canal defective in the type, probably of moderate length.

Dimensions:—Altitude, 50 mm.; canal defective; latitude of the last whorl, 23 mm.

Type:—No. 185, Cal. Acad. Sci., from the Empire formation, Miocene of Coos Bay, Oregon, locality 1, in the sandstone exposed on the east shore of Coos Bay, opposite Coos Bay Bar, 100 yards north of the S. W. cor., Sec. 30, T. 25 S., R. 13 W.

Genus CANCELLARIA

Cancellaria lickana, new species

Plate 8, figures 6a, 6b, 6c, and 6d.

Shell globose, solid, with five or six rapidly enlarging whorls; spire low; whorls of the spire small, inconspicuous, convex, sculptured with four or five spiral threads with nearly equal interspaces which carry a fine intercalary thread; suture appressed; body-whorl large, globose, sculptured with about twenty spiral cords and an equal number of intercalary threads; axial sculpture consisting of lines of growth; aperture elliptical; outer lip crenulated; inner lip with heavy callus covering a portion of the body-whorl; canal very short, broad, straight; columella with two plications and an anterior sulcus.

Dimensions:—Altitude of the type, 21.5 mm.; latitude of the last whorl, 16 mm.; length of the aperture, 17 mm.; width of the aperture, 6.5 mm.

Type:—No. 186, and cotypes Nos. 187, 188, 189, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 65, on the west bank of a small canyon 1¼ miles northeast of Barker's ranch house.

This species resembles superficially the figures of Purpura lima Martyn, published in an earlier paper' and referred to by Ralph Arnold in his description of Cancellaria andersoni. The species here described differs from Cancellaria andersoni Arnold, in not having axial ribbing on any of the whorls, while it shows strong spiral sculpture on all of them. The surface of the body-whorl is not inornate, but is crossed by strong spiral threads and distinct lines of growth which give the surface a doubtfully cancellated appearance.

Cancellaria nevadensis, new species

Plate 8, figures 5a, 5b, 5c, and 5d.

Shell small, solid, ovate, with five or six tabulated whorls; spire moderately high; apex subacute; whorls angulated above the middle, flat or slightly concave above, convex below, sculptured with numerous spiral threads and irregular axial ribs; the interspaces between the spiral threads vary in width and frequently carry intercalary threads; axial ribs most prominent on the whorls of the spire where they form small nodes on the angulations, almost obsolete on the body-whorl of most specimens; suture distinct, impressed; aperture ovate; outer lip thin; canal short and wide; columella with two plications and a small anterior sulcus.

Dimensions:—Altitude of the type, 18 mm.; maximum latitude of the shell, 10 mm.; length of the aperture, 11 mm.; width of the aperture, 4 mm.

Type:—No. 190, and cotypes Nos. 191, 192, 193, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 68, on the north bank of Kern River about 34 mile west of the power plant and about 3 miles east of the Rio Bravo ranch house.

¹ Proc. Calif. Acad. Sci., 3rd Ser., vol. 2, p. 202, pl. 15.

Cancellaria condoni Anderson

Plate 8, figures 8a, 8b, 8c, and 8d.

Cancellaria condoni Anderson, Proc. Calif. Acad. Sci., 3rd Series, Geol., Vol. 2, p. 200, pl. 15, fig. 49-50, 1905.

This species is refigured here in order to illustrate its variations and to point out more clearly the characters by which it may be distinguished from the new species of *Cancellaria* that are here described.

Cancellaria dalliana Anderson

Plate 8, figures 1a, 1b, 1c, and 1d.

Cancellaria dalliana Anderson, Proc. Calif. Acad. Sci., 3rd Ser., Geol., Vol. 2, p. 199, pl. 15, fig. 39-40, 1905.

Refigured with Cancellaria condoni Anderson, see above.

Cancellaria posunculensis, new species

Plate 8, figures 7a, 7b, and 7c.

Shell small, ovate-elongate, with six whorls; spire high; whorls convex, sculptured with about eight spiral threads which are separated by narrower interspaces carrying intercalary lines; axial sculpture consisting of close-set lines of growth, much less pronounced than the spiral threads; the intersection of the axial and the revolving lines producing a delicately cancellated surface; suture distinct, impressed, bordered anteriorly by a small tabulation; body-whorl large, about three-fourths the total length of the shell, gracefully convex, ornamented with eighteen major spiral threads between which are smaller intercalary lines; axial sculpture same as on the whorls of the spire; aperture elliptical; outer lip arcuate, denticulate within; canal short, curved; columella long and recurved, carrying three plications, two of them slightly larger than the third.

Dimensions:—Altitude of the type, 17.5 mm.; maximum diameter of the body-whorl, 8 mm.; length of the aperture, including the canal, 10 mm.

Type:—No. 202, and cotypes Nos. 203 and 204, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 65, on the west bank of a small canyon, 1¼ miles northeast of Barker's ranch house.

Cancellaria rotunda, new species

Plate 8, figures 4a and 4b.

Shell globose, thin, with five well rounded whorls; spire rather short; apex blunt; whorls of the spire convex, ornamented with thirteen prominent rounded axial ribs with wider interspaces, and five or six spiral threads with very small intercalary lines; suture depressed; body-whorl comprising the greater portion of the shell, evenly globose, sculptured the same as the whorls of the spire, with thirteen axial ribs and sixteen spiral threads; the axial ribs much more pronounced than the spiral threads; the interspaces between the spiral threads carrying intercalary lines; aperture semicircular; outer lip thickened; inner lip incrusted; canal short; columella with two plications on the anterior portion.

Dimensions:—Altitude of the type, 14 mm.; maximum latitude of the shell, 12 mm.; altitude of an entire specimen, about 21 mm.

Type:—No. 205, and cotype No. 206, Cal. Acad. Sci., Miocene of the Oregon coast, a half mile north of Yaquina Bay, locality 39.

Cancellaria sanjosei, new species

Plate 6, figures 2a and 2b.

Shell small, ovate, thick, with five or six rather rapidly enlarging whorls; spire elevated; whorls slightly convex or flat, with a narrow tabulation, sculptured with seven or eight flat spiral cords, the alternate cords being slightly more prominent than those adjacent; suture distinct; body-whorl large, about five-sixths of the total length of the shell, tabulated above, sculptured with fourteen major spiral cords with alternate small intercalary threads; aperture elongate-oval, outer lip thick, columella with two plications and an anterior sulcus; canal short.

Dimensions:—Altitude of the type specimen, 20 mm.; diameter of the body-whorl, 11.5 mm.

Type:—No. 207, and cotypes No. 208, Cal. Acad. Sci., lower Miocene of eastern San Luis Obispo County, California, locality 126, in the bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E.

Genus ADMETE

Admete clatskaniënsis, new species

Plate 8, figures 3a and 3b.

Shell small, ovate, thin, with six tabulated whorls, nucleus excluded; spire high, with an acute apex; whorls angulated at the middle, flat above, convex below, sculpture consisting of twelve broad, rounded axial ribs which are most prominent on the angle where they are slightly nodose, becoming obscure near the suture and on the anterior portion of the body-whorl, crossed by ten spiral threads on the penultimate whorl, four above the angle and six below, the latter alternating in prominence; suture distinct, channeled; body-whorl convex, with fifteen spiral threads which alternate in size, the interspaces on the anterior portion containing a small intercalary thread; aperture oval; outer lip arcuate; canal short; columella with two small plications and a small anterior sulcus.

Dimensions:—Altitude of the type specimen, 10 mm.; maximum diameter of the last whorl, 5 mm.

Type:—No. 209, and cotype No. 210, Cal. Acad. Sci., Oligocene(?) (or Miocene) of Columbia County, Oregon, two and one-half miles southwest of Clatskanie.

Genus TURRIS Bolten

Turris lincolnensis, new species

Plate 6, figure 8.

Shell large, fusiform, with seven or eight whorls; spire high, with an acute apex; whorls of the spire obtusely angulated a little anterior to the middle, nearly flat above and below, slightly concave near the suture; ornamentation consisting of prominent nodes and fine spiral threads separated by wider interspaces carrying fine intercalary lines, fifteen nodes and about twenty-four major spiral threads on the penultimate whorl; suture distinct, appressed; body-whorl ventricose, ornamented with a row of nodes a little above the middle producing a slight angular appearance, convex above and below, constricted at the suture; spiral sculpture similar to that of the whorls of the spire; aperture oval, with a broad and shallow posterior sinus; canal moderately long.

Dimensions:—Altitude of the figured specimen, apex and canal defective, 43 mm.; width of the last whorl, 24 mm.

Type:—No. 211, Cal. Acad. Sci., Miocene of the Oregon coast, five miles north of Yaquina Bay, locality 36.

This species is near *Turris coli* Dall, which has the nodes extending to the suture above and is not distinctly angulated. The new form has nodes instead of ribs, and is angulated.

Turris carlsoni, new species

Plate 5, figures 2a and 2b.

Shell large and solid, fusiform, with about eight whorls; spire high, with an acute apex; whorls of the spire with a subdued angular appearance below the middle, slightly concave above, convex below, ornamented with a row of nodes on the angulation, and numerous spiral striations somewhat alternating in prominence; suture appressed, bordered by a sutural collar; body-whorl ventricose, convex near the middle of the whorl, with inconspicuous or obsolete nodes, spiral sculpture the same as on the upper whorls; on some specimens the lower portion of the body-whorl is marked by raised spiral cords and intercalary lines in place of the incised lines or striations; aperture oval, with a simple outer lip; columella incrusted, smooth, with an anterior sulcus; canal moderately long, curved to the left.

Dimensions:—Altitude of the type specimen, canal defective, 44 mm.; width of the last whorl, 21 mm.; length of the aperture, including the canal, 25 mm.

Type:—No. 212, and cotype No. 213, Cal. Acad. Sci., Miocene of the Oregon coast, six miles north of Yaquina Bay, locality 36.

Named for John I. Carlson of the California Academy of Sciences.

Genus BATHYTOMA Harris & Burrows

Bathytoma condonana, new species

Plate 7, figure 8.

Shell of moderate size, ovate, with elevated spire and acute apex; whorls six or seven, ornamented with a row of nodes near the anterior margin, concave above, finely cancellated with

numerous spiral threads and fine axial ribs; the penultimate whorl carrying twelve nodes on the angulation; suture distinct, strongly appressed; body-whorl large, ventricose, angulated above the middle, concave above, convex below, marked in front of the angle with numerous raised spiral ridges with wider interspaces carrying small intercalary threads.

Dimensions:—Altitude of the figured specimen, 16.5 mm.; diameter of the body-whorl, 9.5 mm.

Type:—No. 214, Cal. Acad. Sci., lower Miocene of the Oregon coast, four miles north of Yaquina Bay, locality 39.

Named in honor of the late Professor Thos. Condon, University of Oregon.

Genus DRILLIA Gray

Drillia ochsneri, new species

Plate 6, figures 9a, 9b, and 9c.

Shell large, fusiform, with high spire and acute apex; whorls eight or nine, angulated a little below the middle, concave above, flat or convex below, crossed by ten or eleven low axial ridges most prominent on the shoulders where they form nodes, but disappearing above the shoulder on the whorls of the spire and on the anterior portion of the body-whorl; spiral sculpture consisting of revolving threads which occur only on the anterior portion of each whorl; nodes obsolete on the body-whorl of some specimens; suture distinct; aperture narrowly elliptical, with a deep posterior sinus between the shoulder and the suture; columella smooth and twisted; canal moderately short and curved.

Dimensions:—Altitude of the type specimen, 43 mm.; diameter of the last whorl, 20 mm.; length of the aperture including the canal, 22 mm.

Type:—No. 215, and cotypes Nos. 216, 217, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 65, on the west bank of a small canyon 1¼ miles northeast of Barker's ranch house.

This species has been referred to in a few cases as Drillia johnsoni Arnold. It differs from the latter in the following respects: angulation of the whorls more anterior, nodes and

axial ribbing more pronounced and of a different character, and the shell broader in proportion to the altitude.

Named in honor of Mr. W. H. Ochsner.

Drillia wilsoni, new species

Plate 6, figures 10a, 10b, and 10c.

Shell large for the genus, elongated, solid, with eight or nine whorls; spire elevated; whorls sharply angulated at the middle, very concave above, flat or slightly convex above, crossed by ten rounded, oblique axial ridges rising to prominent nodes on the angles, becoming fainter or disappearing immediately above; the axial ridges crossed by spiral cords separated by grooved interspaces in front of the shoulder on each whorl, four or five on the penultimate whorl, and eighteen or twenty on the last whorl; aperture ovate; columella smooth, straight; canal moderately long, nearly straight.

Dimensions:—Altitude of the type, with defective apex, 47 mm.; diameter of the last whorl, 18 mm.; length of the aperture, including the canal, 23 mm.

Type:—No. 218, and cotypes Nos. 219, 220, Cal. Acad. Sci., lower Miocene of eastern San Luis Obispo County, California, locality 126, in the bed of a small creek near the center of Sec. 34, T. 28 S., R. 15 E.

Drillia temblorensis, new species

Plate 7, figures 5a and 5b.

Shell small, fusiform, with seven or eight whorls; spire high with an acute apex; whorls angulated a little in front of the middle, flat above, convex below, sculptured with ten or eleven fine spiral cords which are crossed by numerous lines of growth; six spiral cords above the angle and four below, two of the latter slightly more prominent than those intervening; suture distinct, channeled; body-whorl with twenty-four spiral cords, those near the shoulder most prominent; aperture elliptical, with a simple outer lip; canal moderately short; columella smooth and twisted.

Dimensions:—Altitude of the type specimen, 13.5 mm.; maximum diameter of the last whorl, 5.5 mm.

Type:—No. 221, and cotype No. 222, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 64, in the bottom of a small canyon about 1¼ miles due north of Barker's ranch house.

Drillia temblorensis resembles Drillia inermis Hinds, in having almost no axial ribs, and in having an ornamentation consisting chiefly of revolving lines. It may be distinguished from the latter by its fine axial ornamentation, few spiral cords, less distinct suture, and less angulated whorls.

Drillia bulwaldana, new species

Plate 7, figures 3a, 3b, and 3c.

Shell small, slender, solid, with eight to ten whorls; spire high, with an acute apex; whorls angulated a little above the middle producing prominent shoulders, very concave above, convex below, each whorl crossed by thirteen strong, rounded axial ribs with slightly wider interspaces, and numerous fine spiral threads of unequal size, three or four on each whorl more prominent than those intervening; the latter very fine, and scarcely raised, making the surface appear to be spirally striate; suture distinct, wavy, bordered below by a sutural collar about one-half millimeter in width; body-whorl with ten or twelve major spiral threads, slightly concave on the posterior portion, strongly nodose on the shoulder; aperture oval; canal short; columella incrusted; posterior sinus deep and narrow, between the suture and the angle.

Dimensions:—Altitude of the type specimen, 21 mm.; diameter of the last whorl, 7 mm.

Type:—No. 223, and cotypes Nos. 224 and 225, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 68.

Drillia buwaldana somewhat resembles Drillia montereyensis Stearns but is larger, with less conspicuous sutural collar, more distinct whorls, longer canal, and few and more prominent axial ribs.

Named in honor of Mr. J. P. Buwalda.

Drillia antiselli, new species

Plate 7, figures 2a and 2b.

Shell small, solid, rather broadly fusiform; spire high with an acute apex; whorls six or seven, angulated a little in front of the middle, concave above, convex below, marked with four spiral lines, one on the angle and three below; suture distinct; body-whorl with ten or eleven spiral lines in front of the shoulder; aperture elliptical, with simple outer lip; canal short and broad, slightly recurved; columella incrusted, smooth, with anterior sulcus.

Dimensions:—Altitude of the type specimen, 17.5 mm.; diameter of the last whorl, 7.5 mm.; length of the aperture, including the canal, 9 mm.

Type:—No. 226, and cotype No. 227, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 65, on the west bank of a small canyon, 1¼ miles northeast of Barker's ranch house.

Named in honor of Dr. Thomas Antisell.

Drillia ocoyana, new species

Plate 7, figures 1a and 1b.

Shell small, elongate, solid, with seven or eight whorls; spire elevated; whorls slightly convex or nearly flat, sculptured with numerous spiral grooves eight on the whorls of the spire and about twenty-five on the body-whorl; the interspaces between the spiral grooves on the body-whorl slightly raised and often divided by a small intercalary groove; numerous faint axial lines are visible on the upper whorls of some specimens; suture strongly appressed; body-whorl sharply rounded on the anterior margin, and angulated near the posterior margin on some specimens, concave above, broadly convex below; aperture elliptical, oblique, with an arcuate outer lip and a shallow posterior sinus; canal very short; columella concave, incrusted, with an umbilical chink.

Dimensions:—Altitude of the type specimen, 22 mm., with the first few whorls broken; diameter of the last whorl, 10 mm.; length of the aperture, including the canal, 10 mm.

Type:—No. 228, and cotype No. 229, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 64, in the bottom of a small canyon about 1¼ miles due north of Barker's ranch house.

Drillia columbiana, new species

Plate 7, figures 4a and 4b.

Shell fusiform, small, with six or seven whorls; spire high, with an acute apex; whorls angulated a little below the middle, concave above with very fine spiral striations, flat below with two or three spiral threads, crossed by axial lines of growth; suture distinct, channeled; body-whorl convex in front of the shoulder, sculptured with nine or ten spiral threads having slightly wider interspaces which occasionally contain very fine intercalary lines; the spiral threads replaced by seven or eight striations on the anterior portion of the body-whorl; aperture ovate, with simple outer lip; canal short; columella twisted; posterior sinus broad and moderately deep.

Dimensions:—Altitude of the type, with defective apex, 9 mm.; diameter of the last whorl, 4.5 mm.

Type:—No. 231, and cotype No. 232, Cal. Acad. Sci., Oligocene(?) (or Miocene?) of northwestern Oregon.

Genus MANGILIA Risso

Mangilia kernensis, new species

Plate 7, figures 6a and 6b.

Shell slender and small, fusiform, with seven or eight whorls, spire high with an acute apex; whorls angulated a little above the middle, concave above, convex below, sculptured with twelve to fourteen axial ribs and about ten spiral threads, five of moderate size below the angle and four or five very fine spiral lines above the angle; axial ribs most prominent below the angle and rising to small nodes on the shoulder; interspaces equal in width to the ribs and frequently carrying intercalary lines; suture distinct, appressed; body-whorl ornamented with ten to twelve spiral threads between which are secondary spiral lines; aperture elliptical, with a simple outer lip; columella

slightly incrusted, straight; canal short, posterior sinus deep and narrow, near the suture.

Dimensions:—Altitude of the type, 6 mm.; diameter of the last whorl, 2 mm.

Type:—No. 233, and cotype No. 234, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 65, on the west bank of a small canyon 1½ miles northeast of Barker's ranch house.

Mangilia howei, new species

Plate 7, figure 7.

Shell small, fusiform, with five whorls; spire elevated; whorls slightly convex, crossed by seven strongly raised vertical ribs with wider interspaces; spiral sculpture consisting of fine threads which are most prominent on the anterior portion of the last whorl; aperture elliptical, with an arcuate outer lip; columella incrusted, canal short and wide.

Dimensions:—Altitude of the type specimen, 6 mm.; maximum diameter, 2.5 mm.

Type:—No. 234, Cal. Acad. Sci., lower Miocene of Kern River, California, locality 68, on the north bank of Kern River about 34 mile west of the power plant and about 3 miles east of the Rio Bravo ranch house.

Genus BULLA Klein

Bulla cantuaënsis, new species

Plate 5, figures 3a and 3b.

Shell one inch or more in length, broadly elliptical, smooth or showing only regular lines of growth; aperture extending the full length of the shell, ovate in front, narrowed behind; outer lip longer than the body-whorl; umbilicus deep and narrow at the posterior end, closed or hidden anteriorly.

Dimensions:—Altitude of the type specimen, 24 mm.; diameter, 15 mm.

Occurrence:—Shells of this species are abundant in the Temblor beds just north of Cantua Creek and in beds of doubtful age west of Coalinga.

Type:—No. 235, and cotype No. 236, Cal. Acad. Sci., from the Temblor beds one mile north of Cantua Creek, western Fresno County, California, where it is associated with Turritella ocoyana Conrad, Chione temblorensis Anderson, Astrodapsis merriami Anderson, and many other Temblor species.

		•			
,					
	·				
		•			
·					
				٠	

EXPLANATION OF PLATE 1 All figures natural size

Fig. 1a. Chione panzana, new species. Type. Lower Miocene of San Luis Obispo Co., California.

Fig. 1b. Chione panzana, new species. Same locality as fig. 1a., showing

the hinge plate.

Fig. 2a. Chione (Lirophora) latilaminosa, new species. Type. Exterior of left valve. Lower Miocene of Kern River, California.

Fig. 2b. The same. Dorsal view.

Fig. 2c. The same. View of hinge plate of left valve.

Fig. 3a. Cardium weaveri, new species. Oligocene(?) (or Miocene) of porthwestern Oregon.

northwestern Oregon. Fig. 3b. The same. Type. Same locality as fig. 3a.

.

.

. .

EXPLANATION OF PLATE 2 All figures natural size

Fig. 1. Chione margaritana, new species. Type. Exterior of right valve. Santa Margarita Formation of the Coalinga region, California. Fig. 2. Astrodapsis peltoides, new species. Type. Santa Margarita Formation of the Coalinga region, California. Fig. 3a. Tellina nevadensis, new species. Type. Exterior of right valve. Lower Miocene of Kern River, California. Fig. 3b. The same. Exterior of left valve. Lower Miocene of San Luis Obispo County, California. Fig. 3c. The same. Interior of the left valve. Same locality as fig. 3a.

·			
٠			
-			

EXPLANATION OF PLATE 3

Fig. 1a. Diplodonta buwaldana, new species. Natural size. Right valve.

Lower Miocene of Kern River, California.
Fig. 1b. The same. Type. Natural size. Left valve. Same locality as

fig. 1a. Fig. 2. Yoldia newcombi, new species. Type. Natural size. Lower Miocene of Clallam County, California.

Fig. 3. Yoldia temblorensis, new species. Type. Natural size. Lower

Miocene of Kern River, California.

Fig. 4. Semele morani, new species. Type. Natural size. Lower Miocene of San Luis Obispo County, California.

Fig. 5a. Mactra sectoris, new species. Type. Natural size. Lower Miocene of Kern River, California.

Figs. 5b, 5c, 5d, and 5e. The same. Natural size. Same locality as

fig. 5a.

Fig. 6a. Transennella joaquinensis, new species. Type. ×2. Lower

Miocene of Kern River, California.

Figs. 6b and 6c. The same. ×2. Same locality as fig. 6a.
Fig. 7a. Poromya gabbiana, new species. Type. Natural size. Exterior of right valve. Lower Miocene of eastern San Luis Obispo County, California.

Fig. 7b. The same. Natural size. Same locality as fig. 7a. Fig. 8a. Leda ochsneri, new species. Type. Natural size. Lower Mio-

cene of Kern River, California.

Figs. 8b and 8c. The same. Natural size. Same locality as fig. 8a.

Fig. 9. Donax triangulata, new species. Type. ×2. Lower Miocene

of Kern River, California.

Fig. 10a. Pecten sancti-ludovici, new species. Type. Natural size. Right valve. Middle Miocene of eastern San Luis Obispo County, California.

Fig. 10b. The same. Natural size. Showing the left valve. Same

locality as fig. 10a.

Fig. 11a. Tellina wilsoni, new species. Type. Natural size. Lower Miocene of eastern San Luis Obispo County, California.

Fig. 11b. The same. Natural size. The same locality as fig. 11a.

		•
·		

EXPLANATION OF PLATE 4 All figures natural size

Fig. 1. Melongena californica, new species. Type. Lower Miocene of eastern San Luis Obispo County, California.

Fig. 2. Siphonalia posoensis, new species. Type. Same locality as fig. 1. Fig. 3a. Agasoma oregonense, new species. Type. Oligocene(?) of northwestern Oregon.

Fig. 3b. Agasoma oregonense, new species. Same locality as fig. 3a. Fig. 4. Turritella carrisaensis, new species. Type. Middle Miocene of eastern San Luis Obispo County.

Fig. 5a. Agasoma yaquinanum, new species. Type. Miocene of the Oregon coast, four miles north of Yaquina Bay.

Fig. 5b. The same. Same locality as fig. 5a.

Fig. 6a. Chrysodomus kernensis, new species. Type. Lower Miocene of Kern River California

Fig. 6a. Chrystodinas kericisis, hew species. Type. 25 or Missenson of Kern River, California.

Fig. 6b. The same. Same locality as fig. 6a.

Fig. 7. Argobuccinum dilleri, new species. Type. Missenson coast, six miles north of Yaquina Bay.

	•			
	•			
				•
_				
_				
		•		

EXPLANATION OF PLATE 5 All figures natural size

- Fig. 1. Trophon gabbianus Anderson. Type locality, North of Coalinga, California.
- Fig. 2a. Turris carlsoni, new species. Type. Miocene of the Oregon coast, six miles north of Yaquina Bay.
- Fig. 2b. Turris carlsoni, new species. Same locality as fig. 2a.
 Fig. 3a. Bulla cantuaënsis, new species. Type. Lower Miocene north
 of Coalinga, California.
 Fig. 3b. Bulla cantuaënsis, new species. Same locality as fig. 3a.
 Fig. 3b. Company and the American State of the Coalinga and State of the Coaling
- Fig. 4a. Agasoma acuminatum, new species. Type. Oligocene(?) of
- northwestern Oregon.

 Fig. 4b. The same. Same locality as fig. 4a.

 Fig. 5. Trophon oregonensis, new species.

 Oregon coast, four miles north of Yaquina Bay. Type. Miocene of the
- Fig. 6a. Agasoma columbianum, new species. Type. Oligocene(?) of Pittsburg Bluff, Columbia County, Oregon.
 Fig. 6b. The same. Same locality as fig. 6a.
 Fig. 7. Fusinus empireënsis, new species. Type. Empire Formation of
- Coos Bay, Oregon.

		-	

EXPLANATION OF PLATE 6 All figures natural size

Fig. 1a. Thais trophonoides, new species. Type. Lower Miocene of Kern River, California.

Fig. 1b. The same. Same locality as fig. 1a.

Fig. 2a. Cancellaria sanjosei, new species. Type. Lower Miocene

of eastern San Luis Obispo County, California.
Fig. 2b. The same. Same locality as fig. 2a.
Fig. 3. Thais nehalemensis, new species. Type. Oligocene(?) of northwestern Oregon.

Fig. 4a. Thais blakei, new species. Type. Lower Miocene of Kern

River, California.

Fig. 4b. The same. Same locality as fig. 4a.

Fig. 5a. Molopophorus gabbi Dall. Oligocene(?) of Pittsburg Bluff, Columbia County, Oregon. Fig. 5b. The same.

Fig. 5b. The same. Fig. 6. Thais panzana, new species. Type. Lower Miocene of eastern

San Luis Obispo County, California.

Fig. 7a. Molopophorus dalli, new species. Type. Oligocene(?) of Pittsburg Bluff, Columbia County, Oregon.

Fig. 7b. The same. Same locality as fig. 7a.

Fig. 8. Turris lincolnensis, new species. Type. Miocene of the Oregon coast, six miles north of Yaquina Bay.

Fig. 9a. Drillia coherneri new species. Type. I owner Miocene of Variance Coast, six miles north of Yaquina Bay.

Fig. 9a. Drillia ochsneri, new species. Type. Lower Miocene of Kern

Fig. 9a. Drillia ochsneri, new species. 1 ype. Lower Miocene of Rein River, California.

Fig. 9b. The same. Same locality as fig. 9a.

Fig. 9c. The same. Same locality as fig. 9a.

Fig. 10a. Drillia wilsoni, new species. Type. Lower Miocene of eastern San Luis Obispo County, California.

Figs. 10b and 10c. The same. The same locality as fig. 10a.

		•			
			,		
	·			·	
	,				
		•			
·					

EXPLANATION OF PLATE 7

Fig. 1a. Drillia ocoyana, new species. Type. Natural size. Lower Miocene of Kern River, California.

Fig. 1b. The same. The same locality as fig. 1a.

Fig. 2a. Drillia antiselli, new species. Type. Natural size. Lower Miocene of Kern River, California.
Fig. 2b. The same. Same locality as fig. 2a.
Fig. 3a. Drillia buwaldana, new species. Type. Natural size. Lower

Miocene of Kern River, California.

Figs. 3b and 3c. The same. Same locality as fig. 3a.

Fig. 4a. Drillia columbiana, new species. Type. ×2. Oligocene(?)

of northwestern Oregon.

Fig. 4b. The same. Same locality as fig. 4a.

Drillia temblorensis, new species. Type. ×2.

Fig. 5a. Fig. 5b. The same. Same locality as fig. 5a.

Fig. 6a. Mangilia kernensis, new species. Type. $\times 3$. Same locality as fig. 1a.

Fig. 6b. The same. ×3. Same locality as fig. 1a.
Fig. 7. Mangilia howei, new species. Type. ×3. Lower Miocene of Kern River, California.

Fig. 8. Bathytoma condoniana, new species. Type. Natural size. Miocene of the Oregon coast, four miles north of Yaquina Bay.

Fig. 9a. Epitonium williamsoni, new species. Type. Natural size. Fig. 9b. The same. Natural size. Same locality as fig. 9a. Fig. 10. Epitonium posoensis, new species. Type. Natural size. Lower

Miocene of Kern River.

Fig. 11a. Amphissa posunculensis, new species. Type. Natural size. Fig. 11b. The same. Natural size. Same locality as fig. 11a.

Cerithium arnoldi, new species. Type. Natural size. Lower Miocene of Kern River, California.

Fig. 13a. Fossarus dalli, new species. Type. X3. Lower Miocene of Kern River, California.

Fig. 13b. The same. ×3. The same locality as fig. 13a. Fig. 14a. Nassa lincolnensis, new species. ×2. Type Oligocene(?) of northwestern Oregon.

Fig. 14b. Nassa lincolnensis, new species. ×2. Same locality as

fig<u>.</u> 14a.

Fig. 15a. Nassa blakei, new species. Type. ×2. Lower Miocene of Kern River, California. Fig. 15b. The same. ×2. Same locality as fig. 15a.

Fig. 15b. The same. ×2. Same locality as fig. 15a. Fig. 16. Nassa antiselli, new species. Type. ×2. Eastern San Luis Obispo County, California.

Fig. 17. Nassa ocoyana, new species. Type. X2. Lower Miocene of Kern River, California. Fig. 18a. Pyramidella cooperi, new species. ×2. Type. Lower Mio-

cene of Kern River, California

Fig. 18b. The same. ×2. The same locality as fig. 18a. Fig. 19a. Eulimella californica, new species. Type. ×3. Lower Miocene of Kern River, California.
Figs. 19b and 19c. The same. ×3.

Fig. 20. Eulimella gabbiana, new species. Type. X3. Lower Mio-

cene of Kern River, California.

Fig. 21. Lacuna carpenteri, new species. Type. ×2. Lower Miocene of Kern River, California.

Fig. 22. Niso antiselli, new species. Type. $\times 3$. Lower Miocene of

Kern River, California.

Fig. 23a. Eulimella ochsneri, new species. Type. ×3. Lower Mio-

cene of Kern River, California.

Fig. 23b. The same. ×3. The same locality as fig. 23a.

Fig. 24. Eulimella dilleri, new species. Type. ×3. Oligocene(?) of northwestern Oregon.

	1		
•			

EXPLANATION OF PLATE 8 All figures natural size except figs. 3a and 3b.

Figs. 1a, 1b, 1c, and 1d. Cancellaria dalliana Anderson. Lower Miocene of Kern River, California.

Fig. 2a. Calliostoma pacificum, new species. Type. Oligocene(?) of

Fig. 2a. Canistonia pacificult, new species. Type. Ongocene(?) of northwestern Oregon.

Fig. 2b. The same. Same locality as fig. 2a.

Fig. 3a. Admete clatskaniënsis, new species. Type. ×2. Oligocene(?) of northwestern Oregon.

Fig. 3b. The same. ×2. Same locality as fig. 3b.

Fig. 4a. Cancellaria rotunda, new species. Type. Oligocene(?) of northwestern Oregon.

northwestern Oregon.

Fig. 4b. The same. Same locality as fig. 4a.

Fig. 5a. Cancellaria nevadensis, new species. Type. Lower Miocene of

Fig. 5a. Cancellaria nevadensis, new species. Type. Lower Miocene of Kern River, California.

Figs. 5b, 5c, and 5d. The same. Kern River.

Figs. 6a, 6b, 6c, and 6d. Cancellaria lickana, new species. Fig. 6a, type. Lower Miocene of Kern River, California.

Figs. 7a, 7b, and 7c. Cancellaria posunculensis, new species. Fig. 7a

Type. Lower Miocene of Kern River, California.

Figs. 8a, 8b, 8c, and 8d. Cancellaria condoni Anderson. Lower Miocene of Kern River, California.

of Kern River, California.

•			
		·	
	•		
		·	

DOCUMENT) PR FEDLE SAN JUAN NORTHER TEN 17 50 17 10 Country of a you wree

PROCEEDINGS

Fourth Series

VOLUME I

Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906.	
Pages 1-6. I. Preliminary Description of Four New Races of Gigantic Land Tortoises from the Galapagos Islands. By John	
Van Denburgh. (Issued December 20, 1907)	\$.25
By Alban Stewart. Plates I-XIX. (Issued January 20, 1911)	1.75
Pages 289-322. III. The Butterflies and Hawk-Moths of the Galapagos Islands. By Francis X. Williams. Plates xx-xxi. (Issued October 7, 1911)	.50
Pages 323-374. IV. The Snakes of the Galapagos Islands. By	.50
John Van Denburgh. Plates XXII-XXX. (Issued January 17, 1912) Pages 375-404. V. Notes on the Botany of Cocos Island. By	.50
Alban Stewart. Plates XXXI-XXXIV. (Issued January 19, 1912)	.35
Pages 405-430. VI. The Geckos of the Galapagos Archipelago.	
By John Van Denburgh. (Issued April 16, 1912)	.35
Islands. By Alban Stewart. (Issued December 17, 1912)	.25
VOLUME II, PART I	
Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906.	
Pages 1-132. VIII. The Birds of the Galapagos Islands, with Observations on the Birds of Cocos and Clipperton Islands (Columbiformes to Pelecaniformes). By Edward Winslow	
Gifford. Plates I-VII. (Issued August 11, 1913)	1.00
Tropidurus; with Notes on the Iguanas of the Genera Conolophus and Amblyrhyncus. By John Van Denburgh and	•
Joseph R. Slevin. Plates VIII-XI. (Issued September 19, 1913).	.50
Pages 203-374. X. The Gigantic Land Tortoises of the Galapagos Archipelago. By John Van Denburgh. Plates 12-124. (Is-	,
sued September 30, 1914)	2.00
VOLUME III	
Pages 1-40. A Further Stratigraphic Study in the Mount Diablo Range of California. By Frank M. Anderson. Plate I. (Issued	
October 31, 1908)	.35
son. (Issued December 31, 1908)	. 25
Denburgh. (Issued December 20, 1909)	. 25

PROCEEDINGS

Fourth Series

VOLUME III—Continued	
Pages 57-72. Water Birds of the Vicinity of Point Pinos, California. By Rollo Howard Beck. (Issued September 17, 1910)	. 2!
Pages 73-146. The Neocene Deposits of Kern River, California, and the Temblor Basin. By Frank M. Anderson. Plates II-XIII. (Issued November 9, 1911)	1.00
Pages 147-154. Notes on a Collection of Reptiles from Southern California and Arizona. By John Van Denburgh. (Issued	.25
January 17, 1912)	.25
Pages 161-182. Geologic Range of Miocene Invertebrate Fossils of California. By James Perrin Smith. (Issued April 5, 1912) Pages 183-186. Description of a New Genus and Species of Sala-	. 25
mander from Japan. By Surgeon J. C. Thompson, U. S. Navy. Plate xiv. (Issued May 3, 1912)	.25
phibians from China, Japan, the Loo Choo Islands, and Formosa. By John Van Denburgh. (Issued December 16, 1912.)	.50
Pages 259-264. Notes on Ascaphus, the Discoglossoid Toad of North America. By John Van Denburgh. (Issued December 21, 1912).	. 25
Pages 265-390. A Distributional List of the Mammals of California. By Joseph Grinnell. Plates xv-xvi. (Issued August 28, 1913) Pages 391-454. A List of the Amphibians and Reptiles of Arizona.	1.00
with Notes on the Species in the Collection of the Academy. By John Van Denburgh and Joseph R. Slevin. Plates XVII-XXVIII. (Issued November 5, 1913)	.75
VOLUME IV	
Pages 1-13. I. Report of the President of the Academy for the Year 1913.	
II. George Davidson. (Issued April 8, 1914) Pages 15-112. III. Neocene Record in the Temblor Basin, California, and Neocene Deposits of the San Juan District. By Frank M. Anderson and Bruce Martin. Plates 1-10. (Issued	.25
December 30, 1914)	1.00
Pages 113-128. IV. The Fauna of the Siphonalia sutterensis Zone in the Roseburg Quadrangle, Oregon. By Roy E. Dickerson. Plates 11-12. (Issued December 30, 1914)	.50
Pages 129-152. V. Reptiles and Amphibians of the Islands of the West Coast of North America. By John Van Denburgh and	
Joseph R. Slevin. (Issued December 30, 1914)	. 25
The Academy cannot supply any of its publications issued before year 1907, its entire reserve stock having been destroyed in the contion of April, 1906.	re the

FEB13 1975

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 113-128, pls. 11-12. December 30, 1914.

IV.

The Fauna of the Siphonalia sutterensis Zone in the Roseburg Quadrangle, Oregon

ROY E. DICKERSON Assistant Curator

Department of Invertebrate Paleontology

SAN FRANCISCO PUBLISHED BY THE ACADEMY 1914

COMMITTEE ON PUBLICATION

GEORGE C. EDWARDS, Chairman

C. E. GRUNSKY

EDWIN C. VAN DYKE

EDITOR

BARTON WARREN EVERMANN

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES.

Vol. IV, pp. 113-128, pls. 11-12. Dec

DECEMBER 30, 1914.

The Fauna of the Siphonalia sutterensis Zone in the Roseburg Quadrangle, Oregon

B¥

ROY E. DICKERSON

DEPARTMENT OF INVERTEBRATE PALEONTOLOGY.

Introduction.

A definite connecting link between the Tejon group of Oregon and that of California appears to be present in the uppermost portion of the Umpqua formation on the Umpqua River near the mouth of Little River. The fauna upon which this correlation is based was obtained by Mr. Bruce Martin, until recently Assistant Curator of Paleontology of the California Academy of Sciences.

The Siphonalia sutterensis Zone of California is found typically at the Marysville Buttes.¹ Other localities where it has been recognized also are at Oroville² beneath the Older Basalt of Oroville, South Table Mountain, and near Ione³, Amador County, California, and near Merced Falls, Merced County, California.

In all of these localities this zone of the Tejon group is the only one present, the lower portion of the Tejon being absent. The beds at the Marysville Buttes containing the Siphonalia sutterensis fauna rest directly upon rocks of Chico-Cretaceous

¹ Dickerson, R. E., Fauna of the Eocene at Marysville Buttes, California, Univ. Calif. Publ., Bull. Dept. Geol., vol. 7, pp. 257-298, 1913.

² Dickerson, R. E., Note on the Faunal Zones of the Tejon group, Univ. Calif. Publ., Bull. Dept. Geol., vol. 8, pp. 17-25, 1914.

⁸ Dickerson, R. E., The Ione Formation of the Sierra Nevada Foothills, A Local Facies of the Upper Tejon-Eocene, Science, New Series, vol. 40, pp. 67-70, 1914.

age. The beds at Oroville were laid down upon the Basement Complex of the Sierra Nevada and the Chico. The so-called Ione formation, a local facies of the Tejon group which occurs typically at Ione and at Merced Falls, rests unconformably upon the Mariposa slates and other members of the Basement Complex.

At the Oregon locality, however, a great thickness of ten thousand feet of Tejon strata lies below the beds which yielded the fauna described in this paper. The writer's previous conclusions from a study of the Siphonalia sutterensis fauna were based upon stage of evolution, identity of a few species whose ranges were limited to the uppermost beds in the Tejon in the San Francisco Bay region, and the absence of many species which were characteristic of the lower zones of the Tejon. The recognition of the Siphonalia sutterensis fauna in Oregon gives stratigraphic confirmation concerning the position of this fauna in the Eocene time scale of the Pacific Coast; i. e., the Siphonalia sutterensis Zone is the youngest Eocene thus far recognized on the Pacific Coast.

STRATIGRAPHY.

The stratigraphic relations at the two collection points are described by Martin as follows: "The beds at locality 24 dip east at a low angle. The strike is nearly north and south. The rock at this locality is a massive, blue-gray sandstone overlaid by shale." At locality 25, Martin observed a dip of 20° East and a strike of North 10° East.

Mr. Diller, in the Roseburg Folio, describes this section as follows: "The Umpqua is by far the thickest formation in the Roseburg Quadrangle, but, on account of the lack of good exposures of certain members of the series, the whole could not be accurately measured. The best outcrops are along the Little River, where a continuous section of a portion of the series is well exposed. This portion has a thickness of about 7500 feet. It is interrupted on the northwest by the large mass of diabase, beyond which, as shown in Section B, about 4500 feet of still lower beds are seen, making a total thickness of approximately 12,000 feet for the entire exposed formation. It increases in thickness to the northwest and has wide distribution throughout the Coast Range." Diller's Section B places the localities described above about 2000 feet below the top of the Tejon.

FAUNAL RELATIONS. The fauna obtained at these two localities is as follows: LIST OF FOSSILS FROM THE UMPQUA FORMATION.

	25
Barbatia morsei Gabb	
ardium marysvillensis Dickerson	X
ardium brezueri Gabb	X
rassatellites semidentata Cooper	X
rassatellites semidentata Cooper	XXXX
orbula parilis Gabb	X
orbula hornii Gabb	``
Posinia, species	1
lycimeris sagitata Gabb	×
lycimeris eocenica Weaver	X
ucina(?) cretacea Gabb	
Modiolus ornatus (Gabb)	×
Meretrix hornii Gabb	I 😯
Meretrix ovalis Gabb	😯
Macrocallista commadiana (Cobb)	I 😯
Macrocallista conradiana (Gabb)	10
Psammobia æqualis (Gabb)	10
Pitaria martini, new species	××××××
Ostrea idriaensis Gabb	
ivela weaveri, new species	â
enericardia planicosta merriami, new subspecies	13
enus aequilateralis Gabb	×
Imauropsis andersoni, new species	X
mauropsis alveata Gabb	X
lmauropsis umpquaënsis, new species	×××
ncilla (Oliverato) californica Cooper	X
aricella stormsiana Dickerson	×××
erithiopsis alternata Gabb	X
assidaria tuberculata (Gabb)	X
lavella, speciesalyptræa excentrica (Gabb)	X
alyptræa excentrica (Gabb)	X
ylichna costata Gabb	X
hrysodomus martini Dickerson	X
Pentalium, species	X
icopsis remondii Gabb	×××××××××××××××××××××××××××××××××××××××
icopsis cooperi Gabb	X
oxotrema turrita Gabb	X
latica hannibali, new species	X
leverita nuciformis Gabb	×
everita secta Gabb	×
leverita globosa Gabb	•
livella mathewsonii Gabb	V
otamides carbonicola Cooper	\Diamond
seudoliva dilleri, new species	\circ
imella canalifera Gabb	\circ
iphonalia sutterensis Dickerson	
urcula davisiana (Cooper)	×××××
ritonium hornii Gabb	^
servitalla seggana Cabb	
urritella uvasana Gabb	×××
urritella merriami Dickerson	S
urris suturalis (Cooper)	X

Several forms in this fauna have not been previously reported from any other localities except those of the Marysville Buttes and Oroville South Table Mountain. These species are as follows: Chrysodomus martini, Cardium marysvillensis, Siphonalia sutterensis, Caricella stormsiana, Surcula davisiana, and Venericardia planicosta merriami, new subspecies. In addition to these species, Ancilla (Oliverato) californica, Turris suturalis and Neverita globosa, while not restricted to the Siphonalia sutterensis Zone of the Tejon group of California, are quite characteristic and abundant in this zone. The other species, except the new ones listed, have a great range in the Tejon of California and most of them are found throughout its entire thickness. Amauropsis alveata, Rimella canalifera, and Turritella uvasana, have not as yet been reported from the Siphonalia sutterensis Zone of the Marysville Buttes. These three species are very common forms in the portion of the Tejon below the Siphonalia sutterensis Zone. The occurrence of these forms along with the characteristic forms of the Siphonalia sutterensis Zone determines the position of the strata containing this fauna in reference to the faunal zones of the Tejon group of California. The fauna seems to present a stage of development between that of Zone 3 of the Diablo region and the fauna of the Siphonalia sutterensis Zone of the Marysville Buttes. The fauna obtained from the uppermost portion of the Umpqua formation appears to be more closely related to the Siphonalia sutterensis Zone than to the fauna of Zone 3, and on this account, it is tentatively placed as the lowermost portion of the Siphonalia sutterensis Zone.

Locality 24 is situated on the east bank of the north fork of the Umpqua. It is near the bend of the river, one-quarter of a mile north of Glide postoffice. It is in the southwest quarter of Sec. 18, T. 26 S., R. 3 W.

Locality 25 is on the east bank of the Little River, and underneath the bridge which crosses it at its mouth. It is near the center of Sec. 19, T. 26 S., R. 3 W.

PITARIA MARTINI, new species.

Plate 11, figures 2a, 2b, 2c.

Shell of moderate size; elongate, with beaks slightly anterior of the center; anterior dorsal margin somewhat concave; the slightly convex posterior dorsal margin sloping less steeply than the anterior margin; anterior end sharply rounded; posterior end narrowly rounded; ventral margin convex, fluted; a marked umbonal ridge extending to a point on the ventral margin two-fifths of the distance from the posterior end; a shallow groove running posteriorly, and parallel to the umbonal ridge; lunule long, narrow; escutcheon indistinct.

Dimensions: Height, 32mm; length, 42mm.

Type:—No. 237, and cotype, No. 238, California Academy of Sciences. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point.

Named for Mr. Bruce Martin, sometime Assistant Curator of Paleontology, California Academy of Sciences.

TIVELA WEAVERI, new species.

Plate 11, figures 3a, 3b, 3c.

Shell trigonal, with beak central, equivalve; the nearly straight anterior margin sloping steeply to a narrowly rounded anterior end; the slightly convex posterior margin sloping almost as steeply as the anterior; posterior end rounded broadly; base broadly rounded; hinge of right valve exhibiting three strong cardinals and a socket for a lateral in the anterior portion of hinge plate; pallial sinus appearing to be a small V-shaped one; lunule and escutcheon indistinct.

Dimensions: Height, 29mm; width, 31mm.

This species resembles *Crassatellites grandis* (Gabb) in general form. Its shell and hinge plate are not nearly so heavy as those of *C. grandis*. Common at localities 24 and 25.

Type:—No. 239, and cotype, No. 240, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point.

Named in honor of Professor Charles E. Weaver of the University of Washington.

VENERICARDIA PLANICOSTA MERRIAMI, new subspecies.

Plate 11, figures 1a and 1b.

This subspecies of V. planicosta is apparently the end member of an evolutionary series which begins with the typical V. planicosta in the Martinez, the Lower Eocene group of California. The middle member is V. planicosta hornii (Gabb) of the lower Tejon. This form in the adult stage lacks the marked radial ribbing of V. planicosta hornii (Gabb), and it is in general a higher form as well. The concentric ribbing of this form is much stronger than that of the lower Tejon subspecies. Young individuals, however, resemble the lower Tejon form so closely that one is not warranted in recognizing the subspecies upon the basis of the immature forms.

Dimensions: Height, 70mm; length, 70mm.

This subspecies resembles V. potapacoensis Clark & Martin, of the Maryland Eocene in that the radial ribbing in both forms is becoming obsolescent. They appear to differ in shape, however. The type, which is figured, is an extreme case of lack of radial ribbing. Other specimens associated with it at the same locality show fairly distinct ribbing in the neighborhood of the umbones. This species is one of the most characteristic forms of the Siphonalia sutterensis Zone. It occurs abundantly but poorly preserved at a University of California locality eight miles south of Ione, Amador County, California, at the O'Neill Sandstone Quarry, Sec. 27, T. 5 N., R. 10 E., Mt. Diablo B. L. and M., in strata which were previously recognized as Ione. It is associated at this place with Meretrix hornii Gabb, Turritella merriami Dickerson, and a few other species. This fauna proves the Ione to be only a facies of the Tejon Eocene.

Type:—No. 241, and cotype, No. 242, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River, at its confluence with the Umpqua, underneath the bridge at that point.

Named in honor of Professor J. C. Merriam of the University of California.

NATICA HANNIBALI, new species.

Plate 12, figures 5a and 5b.

Shell large, with low, partially immersed spire and very large subquadrate body-whorl; whorls five or six in number, the penultimate whorl partially covered by body-whorl; upper portion of body-whorl and the penultimate whorl forming a somewhat flattened surface above which the small spire rises abruptly; sides of spire-whorls only slightly convex and sloping away from the immersed linear suture with a uniform angle; the portion of the body-whorl near the suture rising above the suture and forming a distinct ridge; the portion of the whorl a short distance below this ridge concave, making a groove similar to that of the genus Gyrodes; a marked swelling below this groove making a shoulder about a third of the whorl length below the suture; anterior two-thirds of body-whorl only slightly convex; peculiar incremental lines mark the bodywhorl and further emphasize its peculiarities; these lines bowed forward in the vicinity of the groove and outward on the lower portion of the whorl; outer lip simple; inner lip incrusted by a thin callus which completely covers the umbilicus, which is continuous with the outer lip; mouth very narrow anteriorly but very broad near the base.

Dimensions: Length, 42mm; width of body-whorl, 35mm. This species also occurs in the Tejon of Rose Canyon, San Diego County, California, and in the Tejon about ten miles north of Coalinga, California. Its very characteristic shape renders it easy of identification.

Type:—No. 243, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point. Coll., F. M. Anderson.

Named for Mr. Harold Hannibal, whose collections have added greatly to our knowledge of the Tertiary Paleontology of Oregon and Washington.

AMAUROPSIS ANDERSONI, new species.

Plate 12, figures 2a and 2b.

Shell of medium size, solid, thick, moderately elevated, smooth except for growth-lines, with five whorls; spire-whorls rounded, their upper half being slightly tabulate, this tabulation better marked on the body-whorl but none of the specimens has this feature as well developed as *Amauropsis alveata* (Conrad). The general dimensions are about the same as in *A. alveata*, though the width in most specimens is slightly greater. The body-whorl is decidedly globose with semilunar mouth; outer lip simple; inner lip slightly incrusted and nearly covering a small narrow umbilicus.

Dimensions: Length, 27mm; width of body-whorl, 25mm. This species resembles *Amauropsis oviformis* (Gabb) in general outline but its umbilicus is much narrower and its spirewhorls less rounded than in that species.

Type:—No. 244, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point. Coll., Bruce Martin.

Named for Mr. F. M. Anderson, Curator of the Department of Invertebrate Paleontology, California Academy of Sciences, who made extensive collections from the region with which this paper deals.

AMAUROPSIS UMPQUAENSIS, new species.

Plate 12, figures 3a and 3b.

Shell large, solid, thick, much elevated, smooth except for incremental lines, with six or seven whorls; spire-whorls rounded and their upper third somewhat tabulated. This species is much longer than A. andersoni Dickerson or A. alveata Gabb, and the spire is much higher; body-whorl longer than the width; outer lip simple, with a marked shouldering at linear impressed suture; inner lip covered by a thin callus which nearly covers a small narrow umbilicus.

Dimensions: Length, 41mm; width of body-whorl, 33mm.

Type:—No. 245, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26. S.,

R. 3. W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point. Coll., Bruce Martin.

Named for the type locality of the species.

CERITHIOPSIS OREGONENSIS, new species.

Plate 11, figures 5a and 5b.

Shell elongate conic; upper whorls missing; remaining whorls, except the body-whorl, marked by three strong, equally spaced spiral lines of same strength crossed by axial ribs, the crossing being marked by rounded nodes; a very fine thread found between the spiral lines; suture impressed, linear; body-whorl marked by four rows of nodes instead of three, as in the spire-whorls, the last row being weaker than the others; fine threads between these spiral lines; base marked by four or five nodose spiral lines and threads, the spiral lines being smaller than those on rest of whorl; aperture ovate-quadrate, with narrow anterior sinus; outer lip thin; canal twisted.

Dimensions; Length of broken type, 20mm; width of bodywhorl, 4.5mm.

This species resembles C. alternata Gabb in shape, but its whorls are nearly flat while those of C. alternata are decidedly convex. The nodes are much stronger than on C. alternata. It differs from C. excelsus Dall in that its whorls are nearly flat and its spiral lines less numerous and larger.

Type:—No. 246, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point.

Named for its occurrence in the Eocene of Oregon.

SIPHONALIA CLARKI, new species.

Plate 11, figures 4a and 4b.

Shell fusiform, with high spire; nine whorls; spire-whorls distinctly shouldered and decorated by about nine rounded nodes which exhibit two apices where two strong spiral lines cross them; space between appressed wavy suture and shoulder concave, and covered by about ten spiral threads; flat space below the suture marked by two strong spiral lines and by eight to ten spiral threads, this area parallel to the axis of the shell;

shoulder located one-third of a whorl length below the suture; body-whorl marked by nodes which vary in strength with different individuals, and shouldered about one-sixth of a whorl-length below the suture; concave space between the suture and the shoulder marked by about twelve spiral threads; area below the shoulder marked by spiral lines of variable strength and by a flat-bottomed sulcus located half the whorl-length below the shoulder; outer lip thin, dentate and lirate within; inner lip covered by a thin callus; umbilicus subimperforate; canal short, twisted to the left.

Dimensions: Length of figured specimens, 40mm; width of body-whorl, 17mm.

This species is easily distinguished from S. sutterensis Dickerson, with which it is associated, by its greater length, by its more pronounced spiral ribbing, and by its greater nodosity.

Type:—No. 247, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, near the center of Sec. 19, T. 26 S., R. 3 W., on the east bank of Little River at its confluence with the Umpqua, underneath the bridge at that point. Coll., F. M. Anderson and Bruce Martin.

Named for Dr. Bruce Clark, Instructor in Invertebrate Paleontology, University of California.

PSEUDOLIVA DILLERI, new species.

Plate 12, figures 1a, 1b, 1c, 1d.

Shell biconical; whorls five; spire of moderate height, with conical nodose whorls; suture wavy, indistinct, and bordered by a nodose rim on the succeeding whorl; body-whorl marked by two angulations, both being nodose, but the lower one the stronger; a nearly flat, narrow horizontal space just below the suture rim, this area marked, in addition to spiral lines, by the backward bending lines which mark the former position of a sharp V-shaped posterior sinus; a slightly nodose shoulder terminating this narrow shelf of the body-whorl; from this shoulder the shelf sloping downward to a point a third the length of the body-whorl where another occurs; this second angulation ornamented by prominent rounded tubercules about twelve in number; space between this angulation and the end of the short, slightly-twisted canal marked in its midportion by a deeply impressed groove and by numerous fine spiral lines; a

persistent ribbon-like band, much wider than the space between these spiral lines, about half-way between the tuberculated shoulder and the median groove. This line occurs on most specimens.

Dimensions: Length, 34mm; width of body-whorl, 29mm. This species can be distinguished from *Pseudoliva volutæ-formis* Gabb by its greater number of nodes, by the double angulation of the body-whorl, and by the greater strength and abundance of its spiral lines. The spiral lines of this species resemble those of *P. lineata* Gabb, but they are stronger and larger; the tuberculations, however, make it easily distinguishable. This form appears to have been evolved from *P. lineata*.

Type:—No. 248, and cotype, No. 249, Cal. Acad. Sci. Locality 25, Roseburg Quadrangle, Oregon, on Little River at its confluence with the Umpqua, underneath the bridge at that point. Coll., Bruce Martin.

Named in honor of Professor J. S. Diller of the U. S. Geological Survey, whose mapping of the Roseburg Quadrangle made the zonal connection between the Eocene of Oregon and California possible.

	•			
	•			
	•			
	•			
		•		
•				
			•	

.

		•	
•			
			•
			•
		•	
	•		
	•		,
			·
		·	

EXPLANATION OF PLATE 11.

- Fig. 1a. Venericardia planicosta merriami, new subspecies, x1. This form in the adult lacks the marked radial ribbing of the typical V. planicosta. The type specimen which is figured is an extreme case of this lack of radial ribbing. Other adult individuals associated with it show obscure ribs in the umbonal region. A very characteristic form of the Siphonalia sutterensis Zone.
- Fig. 1b. Venericardia planicosta merriami, new subspecies, x1. This is a figure of a young individual which shows about the same type of ribbing as V. planicosta hornii (Gabb), its probable progenitor.
- Fig. 2a. Pitaria martini, new species, x1. A side view of the type specimen.
- Fig. 2b. Pitaria martini, new species, x1. Side view of a smaller specimen than the type.
- Fig. 2c. Pitaria martini, new species, x1. View showing hinge of same specimen as Fig. 2b.
- Fig. 3a. Tivela weaveri, new species, x1. Side view.
- Fig. 3b. Tivela weaveri, new species, x1. View showing hinge.
- Fig. 3c. Tivela weaveri, new species, x1. Side view of smaller specimen than the type.
- Fig. 4a. Siphonalia clarki, new species, x1. Mouth view.
- Fig. 4b. Siphonalia clarki, new species, x1. Back view.
- Fig. 5a. Cerithiopsis oregonensis, new species, x2. View showing mouth.
- Fig. 5b. Cerithiopsis oregonensis, new species, x2. Back view.

			•		
				•	
				•	
				,	
	٠				
		•			
		•			
				•	
					•
	•				
•					

EXPLANATION OF PLATE 12.

- Fig. 1a. Pseudoliva dilleri, new species, x1. Mouth view.
- Fig. 1b. Pseudoliva dilleri, new species, x1. Back view of same specimen as Fig. 1a.
- Fig. 1c. Pseudoliva dilleri, new species, x1. Back view of small individual.
- Fig. 1d. Pseudoliva dilleri, new species, x1. Mouth view of individual figured as Fig. 1c.
- Fig. 2a. Amauropsis andersoni, new species, x1. Back view of type specimen.
- Fig. 2b. Amauropsis andersoni, new species x1. Mouth view of type.
- Fig. 3a. Amawropsis umpquaënsis, new species, x1. Mouth view of type.
- Fig. 3b. Amauropsis umpquaënsis, new species, x1. Back view of type.
- Fig. 4a. Ancilla (Oliverato) californica Cooper, xl. Back view. This species is characteristic of, but not restricted to, the Siphonalia sutterensis Zone.
- Fig. 4b. Ancilla (Oliverato) californica Cooper, xl. Mouth view.
- Fig. 5a. Natica hannibali, new species, x1. Back view.
- Fig. 5b. Natica hannibali, new species, x1. Mouth view.

Fourth Series

	VOLUME	1				
fornia -1906.	Academy	of	Sciences	to	the	Gala-

Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906.	,
Pages 1-6. I. Preliminary Description of Four New Races of Gigantic Land Tortoises from the Galapagos Islands. By John	•
Van Denburgh. (Issued December 20, 1907)	\$.25
Pages 7-288. II. A Botanical Survey of the Galapagos Islands.	Ψ
By Alban Stewart. Plates 1-xix. (Issued January 20, 1911)	1.75
Pages 289-322. III. The Butterflies and Hawk-Moths of the Gala-	
pagos Islands. By Francis X. Williams. Plates xx-xx1. (Issued October 7, 1911)	.50
Pages 323-374. IV. The Snakes of the Galapagos Islands. By John	
Van Denburgh. Plates XXII-XXX. (Issued January 17, 1912)	.5 0
Pages 375-404. V. Notes on the Botany of Cocos Island. By	25
Alban Stewart. Plates xxxi-xxxiv. (Issued January 19, 1912). Pages 405-430. VI. The Geckos of the Galapagos Archipelago. By	.35
John Van Denburgh. (Issued April 16, 1912)	.35
Pages 431-446. VII. Notes on the Lichens of the Galapagos Islands.	
By Alban Stewart. (Issued December 17, 1912)	.25
VOLUME II, PART I	
Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906.	
Pages 1-132. VIII. The Birds of the Galapagos Islands, with Ob-	
servations on the Birds of Cocos and Clipperton Islands (Colum-	
biformes to Pelecaniformes). By Edward Winslow Gifford.	
Plates 1-VII. (Issued August 11, 1913)	1.00
durus; with Notes on the Iguanas of the Genera Conolophus	
and Amblyrhyncus. By John Van Denburgh and Joseph R.	
Slevin. Plates VIII-XI. (Issued September 19, 1913)	.50
Pages 203-374. X. The Gigantic Land Tortoises of the Galapagos	
Archipelago. Plates 12-124. By John Van Denburgh. (Issued September 30, 1914)	200
	2.00
VOLUME III	
Pages 1-40. A Further Stratigraphic Study in the Mount Diablo	
Range of California. By Frank M. Anderson. Plate I. (Issued October 31, 1908)	.35
Pages 41-48. Description of a New Species of Sca Snake from the	.55
Philippine Islands, with a Note on the Palatine Teeth in the	
Proteroglypha. By John Van Denburgh and Joseph C. Thomp-	
son. (Issued December 31, 1908)	.25
Pages 49-56. New and Previously Unrecorded Species of Reptiles and Amphibians from the Island of Formosa. By John Van	
Denburgh. (Issued December 20, 1909)	.25
Pages 57-72. Water Birds of the Vicinity of Point Pinos, California.	.20
By Rollo Howard Beck. (Issued September 17, 1910)	.25

Fourth Series

VOLUME III—Continued

Pages 73-146. The Neocene Deposits of Kern River, California,
and the Temblor Basin. By Frank M. Anderson. Plates II-XIII. (Issued November 9, 1911)
Pages 147-154. Notes on a Collection of Reptiles from Southern
California and Arizona. By John Van Denburgh. (Issued
January 17, 1912)
Pages 155-160. Notes on Some Reptiles and Amphibians from Ore-
gon, Idaho and Utah. By John Van Denburgh. (Issued Janu-
ary 17, 1912)
Pages 161-182. Geologic Range of Miocene Invertebrate Fossils of
California. By James Perrin Smith. (Issued April 5, 1912) 25
Pages 183-186. Description of a New Genus and Species of Sala-
mander from Japan. By Surgeon J. C. Thompson, U. S. Navy.
Plate xiv. (Issued May 3, 1912)
Pages 187-258. Concerning Certain Species of Reptiles and Am-
phibians from China, Japan, the Loo Choo Islands, and For-
mosa. By John Van Denburgh. (Issued December 16, 1912) 50
Pages 259-264. Notes on Ascaphus, the Discoglossoid Toad of North
America. By John Van Denburgh. (Issued December 21, 1912)25
Pages 265-390. A Distributional List of the Mammals of California.
By Joseph Grinnell. Plates xv-xvi. (Issued August 28, 1913) 1.00 Pages 391-454. A List of the Amphibians and Reptiles of Arizona,
with Notes on the Species in the Collection of the Academy. By
John Van Denburgh and Joseph R. Slevin. Plates XVII-XXVIII.
(Issued November 5, 1913)
, , , , , , , , , , , , , , , , , , , ,
VOLUME IV
Pages 1-13. I. Report of the President of the Academy for the
Year 1913.
II. George Davidson. (Issued April 8, 1914)
Pages 15-112. III. Neocene Record in the Temblor Basin, Califor-
nia, and Neocene Deposits of the San Juan District, San Luis
Obispo County. Plates 1-10. By F. M. Anderson and Bruce
Martin. (Issued December 30, 1914)
in the Roseburg Quadrangle, Oregon. Plates 11-12. By Roy
E. Dickerson. (Issued December 30, 1914)
Pages 129-152. V. Reptiles and Amphibians of the Islands of the
West Coast of North America. By John Van Denburgh and
Joseph R. Slevin. (Issued December 30, 1914)
Pages 153-160. VI. The Pocket Gopher of the Boreal Zone on San
Jacinto Peak. By J. Grinnell and H. S. Swarth, (Issued
December 30, 1914)25
The Academy cannot supply any of its publications issued before the
year 1907, its entire reserve stock having been destroyed in the conflagra-
tion of April, 1906.

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 129-152.

DECEMBER 30, 1914

v

Reptiles and Amphibians of the Islands of the West Coast of North America

BY

John Van Denburgh
Curator of the Department of Herpetology

AND

JOSEPH R. SLEVIN

Assistant Curatar of the Department of Herpetology

SAN FRANCISCO
PUBLISHED BY THE ACADEMY
1914

COMMITTEE ON PUBLICATION

George C.) Edwards, Chairman

C. E. GRUNSKY

EDWIN C. VAN DYKE

E D I T O R Barton Warren Evermann

OF THE

CALIFORNIA ACADEMY OF SCIENCES FOURTH SERIES

Vol. IV, pp. 129-152.

DECEMBER 30, 1914

v

Reptiles and Amphibians of the Islands of the West Coast of North America

BY

JOHN VAN DENBURGH Curator of the Department of Herpetology

AND

JOSEPH R. SLEVIN Assistant Curator of the Department of Herpetology

CONTENTS	
	Page
Introductory Remarks	13
Table of Distribution	13
South Farallon Island	13
Año Nuevo Island	13
San Miguel Island	13
Santa Rosa Island	13
Santa Cruz Island	13
Ana Capa Island	130
San Nicolas Island	132
Santa Barbara Island	132
Santa Catalina Island	132
San Clemente Island	139
Los Coronados	139
San Martin Island	142
San Geronimo Island	142
Guadalupe Island	143

December 30, 1914

San Benito Islands	143
Cerros Island	144
Natividad Island	145
Magdalena Island	145
Santa Margarita Island	145
San Benedicto Island	146
Socorro Island	146
Clarion Island	146
Angel de la Guardia Island	146
Tiburon Island	147
San Pedro Martir Island	147
Carmen Island	147
San Jose Island	147
Espiritu Santo Island	148
Isabel Island	148
Las Tres Marias	149
Maria Madre Island	149
Maria Cleofa Isand	149
Maria Magdalena Island	149
Clipperton Island	150
Cocos Island	150

INTRODUCTORY REMARKS.

In June, 1905, the Academy published a paper entitled "The Reptiles and Amphibians of the Islands of the Pacific Coast of North America from the Farralons to Cape San Lucas and the Revilla Gigedos." The greater portion of the edition of this paper and nearly all the specimens upon which it was based were destroyed in the great fire of April, 1906. In building up a new reptile collection for the Academy effort has been made to replace this material. Specimens of most of the species hitherto reported from these islands are now at hand, and a considerable number of kinds not previously known from various islands will be recorded in the following pages. Owing to the fact that the earlier paper is now out of print, it has been thought best to include in this one all species known from these islands, and in order to make the record more complete we have added the species known from islands in the Gulf of California, as well as those from Isabel, Las Tres Marias, Clipperton and Cocos islands.

We have at present no specimens from any of the islands in the Gulf of California or from Isabel and the Tres Marias islands. An account of the reptiles of the latter islands has been published by Dr. Stejneger in North American Fauna No. 14, 1899, pp. 63 to 71. The original records of the reptiles of the islands of the Gulf of California are either given or referred to in a paper on the herpetology of Lower California, published in the Proceedings of the California Academy of Sciences, Second Series, Vol. V, pp. 77 to 162.

In this paper the reptilian fauna of thirty-five islands is considered, and some sixty-six species and subspecies are mentioned. The island distribution of these is shown in the following table:

AMPHIBIANS
AND
REPTILES
ISLAND
OF
DISTRIBUTION

Harallon	102	·
Heart Hear		1 1 1 1 1 1 1 1 1 1
Farallon	Clipperton	111111111111111111111111111111111111111
Farallon Farallon Ano Nucco Ano Nu	Las Tres Marias	111111++1+11111111111111111111111111111
Heart Hear	Isabel	111111111111111111111111111111111111111
Heart Hear	Espiritu Santo	111111111111111111111111111111111111111
Harallon	San Jose	1 1 1 1 1 1 1 1 1 1
Farallon Farallon Headel Farallon Headel Farallon Headel He	Саттел	111111111111111111111111111111111111111
Harallon	San Pedro Martir	111111111111111111111111111111111111111
	norudiT	
	Angel de la Guardia	111111111111111111111111111111111111111
Harallon	Clarion	!!!!!!!!!!!!!!!!!!!!!!!!
Harallon	0110002	1111111111111111111111111
Haring Harallon	Santa Margarita	111111111111111
Harallon	Magdalena	
Harallon	babivitaN	11111111111111111
Harallon	Cerros	!!!!+!!!!!!!++!!!!!!!!!
Harallon	San Benito	11111111111111111+111111111111111
Harallon	Guadalupe	
Hamilton	San Geronimo	111111111111111111
Hamilton	San Martin	1111111111111111
Harallon	Los Coronados	+ +
	San Clemente	11111111111111111
	Santa Catalina	111++111111111+111111111111111111
	Santa Barbara	
	San Nicolas	111111111111111111111111111111111111111
	Ans Caps	111111111111111
Parallon	Santa Cruz	+ +
Harallon Andrew Andrew Andrew Harallon Hara	Santa Rosa	+ +
nolisis 4	San Miguel	+
	Апо Миечо	111111111111111111111111111111111111111
NAME x lugubris farallonensis xx lugubris farallonensis hoseps perificus hoseps perificus codactylus dactylus pacificus advylus puberculosus. codactylus pacificus advylus pacificus dactylus pacificus advylus pacificus aura teres a	Farallon	<u> + </u>
wutoda wutoda atraca at	NAME	ddax lugubris dedax lugubris dedodax lugubris de deboseps attent regilal production to regilal recodactylus pa lodactylus tube lis rebulosus lis rebulosus lis townsendi recodaris lis townsendi recolorus conalus hispiti comalus hispiti comalus hispiti comalus hispiti comalus piptiti martinensis saura teres saura teres andribusa antribusa nigricauda martinensis palmeri nigricauda mercosetta mercosetta nigricauda mercosetta nigricauda mercosetta mercosetta nigricauda mercosetta nigricauda mercosetta mercosetta nigricauda mercosetta mercosetta nigricauda mercosetta mercosetta mercosetta nigricauda mercosetta mercosetta mercosetta nigricauda mercosetta mercosett

eq
ontinu
S
BIAN
AMPHIB
AND
REPTILES
ISLAND
ОF
DISTRIBUTION

Parishon The control of the control		100
Tarallon Tarallon Tarallon And Native Capa Santa Caralina Santa Caralina Santa Caralina Santa Caralina Santa Maguel Caralina Caralina Santa Martin Taralina Caralina Santa Martin Caralina Santa Martin Caralina Caralina Santa Martin Caralina Caralina Santa Martin Caralina Santa Martin Caralina Santa Martin Caralina Caralina Santa Martin Santa Martin Caralina Santa Martin Caralina Santa Martin Santa Martin Santa Martin Santa Martin Santa Martin Caralina Santa Martin		<u> </u>
A Marin Oligonon A Line Hallon Farallon And Marin Oligonon A Line Hallon And Marin Oligonon A Line Hallon And Cornected Bands Cornected Ba	Clipperton	11111111111+111111111111111111111
Parallon	Las Tres Marias	+ + + + + + + + + + + + +
Parallon	Isabel	111111+11111111111111111111111111111111
The control of the co	Espiritu Santo	111111111111111111111111111
Parallon And Nuevo Santa Rota And Nuevo Santa Rota Santa Capa Santa Martain	San Jose	11+11::::::::::::::::::::::::::::::::::
Parallon Parallon Santa Capa Santa Margarita	Свттвел	
Parallon Parallon And Other Control And Caronino Cardalupe And Caronino And Caronino And Caronino And Caronino Cardalupe And Caronino Cardalupe And Caronino Cardalupe And Caronino Caronino Caronino Clarion Angel de la Cuardia	San Pedro Martir	IIII+
Parallon	notudiT	11111111111111111111111111
Parallon	Angel de la Guardia	11111111111111111111111111111111
AMERICAN The Market State Sta	RoinelD	1111111111111111+1111111111111
Parallon Parallon And Nucvo An	5000110	
Parallon And Mucro A	Santa Margarita	+
PARIE CENTRE STATE	Magdalena	[+ [+ 1 1 1 1 1 1 1 1 1
Parallon Trie Santa Barbara Santa Caraina San Martin Cuadalupe Cuadalupe San Martin San Benito	babivitaN	+
Parallon Partia Burbara Santa Rosa Santa Rosa Santa Cruz Santa Cruz Santa Cruz Santa Cruz Santa Cruz Santa Caralina	Cerros	[+
Parallon	San Benito	
Parallon Parallon Santa Rosa Santa Rosa Santa Rosa Santa Rosa Santa Capa Santa Capa Santa Capa Santa Capa Santa Capa Santa Catalina	Guadalupe	
Parallon Peddingi. Santa Rosa Santa Rosa Santa Rosa Santa Rosa Santa Capa Santa Capa Santa Capa Santa Capa Santa Capa Santa Capa Santa Catalina	San Geronimo	
Parallon	San Martin	1::::::::::::::::::::::::::::::::::::::
Parallon Santa Capa	Los Coronados	
Parallon Peldingi Santa Rosa Santa Barbara	San Clemente	+::::::::::::::::::::::::::::::::::::::
AME Secretaria Seritatus Santa Rosa Santa Capa Sa	Santa Catalina	~ +
Parallon Farallon Santa Rosa Santa Cruz Santa Capa Santa Capa Santa Capa Santa Capa Santa Capa	Santa Barbara	+::::::::::::::::::::::::::::::::::::::
AME Securation Parallon P	San Nicolas	+
AME scutatus is mexicanus its	Ana Capa	
AME secutatus its mexicanus.	Santa Cruz	
AME a beldingi scutatus its mexicanus its m	Santa Rosa	
AME a beldingi settatus settatus ris mexicanus ris mexicanus lis, settum liginosum liginosum poblis oligozona, holis oligozona, lus	San Miguel	
a beldingi scutatus scutatus is mexicanus ris mexicanus lis mexicanus liginosum liginosum liginosum liginosum us nebns holis oligozona nus nus	Año Nuevo	
NAME riversiana hyperythra beldingi sercea horus multiscutatus horus martyris horus meriatus horus martyris horus martyris horus martyris horus martyris horus martyris horus martyris nu delii is a cohrorbynchis oligozona i a cherorbynchis oligozona i a cherorpynchis oligozona i a cherorpynchis oligozona i a cherorpynchis oligozona i dilutrus his micropholis oligozona	nolls187	
ssia carial carial didop dido dido	NAME	Xattusia riversiana. Verticaria hyperythra beldingi. Verticaria hyperythra beldingi. Cnemidophorus multiscutatus Cnemidophorus markiria. Cnemidophorus markiria. Cnemidophorus markiria markiria markiria markiria markiria markiria markiria markiria marindelii Eumeese skiltonianus Emoia arandelii Siagonodon humilis Emoia arandelii Siagonodon humilis Bano in mertoria Dyrabolus boddaerii Bascanion lateaturi Bascanion lateaturia deserticola Bascanion alteaturia markiria meropholis oligozona. Diplotropis catenifer deserticola Bascanion latenifer deserticola Diplotropis catenifer deserticola Crotalus socegonus Crotalus socegonus Crotalus mitchelii Crotalus mitchelii

SOUTH FARALLON ISLAND.

Only one kind of salamander is known.

1. Autodax lugubris farallonensis Van Denburgh.

Five specimens collected June 15-July 1, 1911, by E. W. Gifford, are Nos. 27335 to 27339.

AÑO NUEVO ISLAND.

This island was visited by Mr. R. H. Beck, July 1, 1909. He collected the following lizard:

1. Gerrhonotus cæruleus Wiegmann.

Eight typical specimens (Nos. 14520 to 14527) were secured. These show dark lines between the rows of ventral scales. The dorsal scales are in 16 rows in six specimens, but there are only 14 in Nos. 14520 and 14526.

SAN MIGUEL ISLAND.

One salamander and two lizards are known from this island. We visited San Miguel in April, 1913, but the weather was not favorable for collecting.

1. Batrachoseps pacificus Cope.

Two specimens (Nos. 36083 and 36084) were found under a piece of a fallen fence post in a little gully, April 11, 1913. The costal grooves in these specimens are 18 in number. One of these salamanders had a reddish dorsal band similar to that seen in some specimens of *Batrachoseps attenuatus* and *Plethodon cinereus*. The other showed the uniform yellowish brown coloration characteristic of all other known specimens of *B. pacificus*.

2. Sceloporus becki Van Denburgh.

We failed to find this lizard on San Miguel Island. The Academy collection contains only the type specimen (No. 4537) collected on San Miguel, by R. H. Beck, March 26, 1903.

3. Gerrhonotus scincicauda Skilton.

The only specimen collected by us on San Miguel (No. 36082) was found under a stone April 11, 1913. Its dorsal scales are in 14 rows. The temporal scales and those on the arm and forearm are smooth. The dark ventral lines run along the middles of the scale rows.

SANTA ROSA ISLAND.

During our visit in April, 1911, we secured three species. The *Hyla* had not previously been taken on this island.

1. Batrachoseps pacificus Cope.

We failed to find this salamander on Santa Rosa Island, although it is known to occur there.

2. Hyla regilla Baird & Girard.

Seventeen specimens (Nos. 36103 to 36119) collected April 12, 1913, add this tree-toad to the known fauna of Santa Rosa Island. They seem to differ in no way from mainland specimens.

3. Sceloporus biseriatus becki Van Denburgh.

The 17 specimens (Nos. 36086 to 36102) secured by us show the coloration characteristic of *S. becki*. All these specimens have the frontoparietal separated from the enlarged supraoculars. Femoral pores vary from 14 to 19; being 14 once, 15 eight times, 16 nine times, 17 nine times, 18 five times, and 19 once.

4. Gerrhonotus scincicauda Skilton.

We found one specimen (No. 36085) on Santa Rosa Island, April 12, 1913. The dorsals are in 14 rows. The temporals and limb scales are smooth. The ventral dark lines run along the middles of the rows of scales.

SANTA CRUZ ISLAND.

In the few hours we were able to devote to collecting on this island we secured two species which had not been taken there before. Six species are now known from this island.

1. Batrachoseps pacificus Cope.

Five specimens (Nos. 36149-36153), were taken April 13, 1913, under old bark and from rotten logs in the vicinity of Pelican Bay. Each has 18 costal folds and shows the coloration typical of this species.

2. Hyla regilla Baird & Girard.

We collected 12 specimens (Nos. 36137 to 36148) near Pelican Bay, April 13, 1913. They were found, several together, in cavities in decaying logs, where they probably had retreated for protection from the dry weather of summer.

3. Uta stansburiana Baird & Girard.

We did not secure any specimens of *Uta*, although this species is known to occur on this island.

4. Sceloporus biseriatus becki Van Denburgh.

Twelve specimens (Nos. 36122 to 36133) were collected April 13, 1913. All these specimens have the frontoparietal separated from the large supraoculars by a complete row of scales and show the same coloration as the Santa Rosa specimens. The femoral pores vary from 14 to 19; being 16 ten times, 17 five times, 15 three times, 18 once, and 19 once.

5. Gerrhonotus scincicauda Skilton.

Three specimens (Nos. 36134-36135 and 36136) were collected April 13, 1913. All three are typical of the mainland form. The dorsal scales are in 14 rows. The temporals and the plates on the forearm are smooth, while those on the hind limbs are keeled. The longitudinal lines on the under surface run along the middles of the scale rows.

6. Pituophis catenifer (Blainville).

We collected two specimens (Nos. 36120 and 36121) in the vicinity of Pelican Bay, April 13, 1913. No. 36120 has 29 scale rows, gastrosteges 208, urosteges 71, upper labials 8-8, lower labials 13-13, preoculars 1-1, postoculars 3-3, loreals 1-1, temporals 2+3 and 3+3, postgenials shorter, anal plate undivided.

No. 36121 has 29 scale rows, gastrosteges 199, urosteges 54, upper labials 8-9, lower labials 11-11, preoculars 1-1, postoculars 3-3, loreals, 1-1, temporals 3+4 and 4+3, postgenials shorter, anal plate undivided.

With the exception of two rattlesnakes taken on Catalina, these are the only snakes that have ever been collected on any of the California islands, although *Pituophis* also has been seen on Catalina Island.

ANA CAPA ISLAND.

We spent a few hours on Ana Capa Island, April 13, 1913, but found no reptiles. Only one species has been collected there.

1. Uta stansburiana Baird & Girard.

This lizard was secured on Ana Capa by Joseph Grinnell, September 4, 1903.

SAN NICOLAS ISLAND.

Mr. Slevin spent five days on San Nicolas Island, November 7-11, 1911. He found only the single species of lizard known from this island.

1. Xantusia riversiana Cope.

One hundred and twelve specimens (Nos. 30754 to 30864 and 35793) were secured. These are of various sizes, and show a wide range of coloration. They were found under flat stones just above the high tide line on the beaches. They are very active when disturbed. Careful comparison with our series from San Clemente and Santa Barbara islands has not disclosed any differences.

SANTA BARBARA ISLAND.

This island was visited by Mr. Slevin, October 4, 1912, and a few hours collecting resulted in finding only the one known species.

1. Xantusia riversiana Cope.

Twenty-one specimens (Nos. 35567 to 35587) were collected. They were found under rocks near the north end of the island. They seem identical with the specimens from San Nicolas and San Clemente islands.

SANTA CATALINA ISLAND.

One salamander, two lizards and a rattlesnake have been reported from Santa Catalina Island. We now are able to add a Hyla, a snake and two other species of lizards.

1. Batrachoseps attenuatus (Eschscholtz).

The salamanders of Catalina seem not to differ from those of the mainland.

2. Hyla regilla Baird & Girard.

Seventy-six specimens (Nos. 26898 to 26973) were collected near Avalon, July 23 to September 8, 1910, by John I. Carlson, and Mr. Slevin secured 17 (Nos. 35550 to 35566) at the isthmus of the island, September 29 and 30, 1912.

3. Uta stansburiana Baird & Girard.

One hundred and sixty-six specimens are before us. Eighty-four of these (Nos. 26812 to 26895) are from the vicinity of Avalon, July 23 to August 26, 1910, while 82 (Nos. 35468 to 35549) were secured near Johnson's Landing, at the north end of the island, September 29 and 30, 1912. Femoral pores in 34 specimens vary from 12 to 16; being 12 ten times, 13 eighteen times, 14 nineteen times, 15 eighteen times, and 16 three times.

4. Xantusia riversiana Cope.

Although Mr. Rivers stated that he had received this species from Catalina Island it is very doubtful if it really occurs there. Extended search by Mr. Carlson revealed no specimens, nor was Mr. Slevin more successful in finding it on this island, and no other collector has secured it there.

5. Gerrhonotus scincicauda ignavus Van Denburgh.

A single specimen (No. 26896) was collected at Avalon, August 13, 1910. There are 14 longitudinal rows of dorsal scales, and the dark lines on the belly run along the middles of the scales. Owing to the fact that this specimen is quite young, the temporals are not keeled, but the caudal keeling is typical of this subspecies.

6. Eumeces skiltonianus (Baird & Girard).

A single young individual (C. A. S. No. 26897) taken by Mr. Carlson at Avalon, August 1, 1910, establishes the first record of this species on Catalina Island.

7. Pituophis catenifer (Blainville).

Mr. Charles L. Camp has informed us that he found a good-sized gopher snake at the isthmus of the island, July 3, 1910, but that it escaped. We know of no specimen from Catalina in any museum.

8. Crotalus oregonus Holbrook.

The presence of rattlesnakes on Catalina was first recorded by Yarrow from a specimen taken there by Mr. Schumacher in 1876. This record has remained unconfirmed. Through the kindness of Dr. Grinnell and Mr. Charles L. Camp we are now able to record a second specimen. This is No. 4323 in the collection of the Museum of Vertebrate Zoology, University of California, and was found by Mr. Camp at an elevation of about 25 feet near the isthmus of the island, July 7, 1910. It is a male with scales in 23 rows, gastrosteges 169, urosteges 23, supralabials 15-15, infralabials 14-14, preoculars 2-2, and postoculars 3-3.

SAN CLEMENTE ISLAND.

Mr. Slevin collected on San Clemente Island three days in October, 1912. He secured only the two kinds of lizards previously known from this island.

1. Uta stansburiana Baird & Girard.

Eighty-three specimens (Nos. 35710 to 35792) were secured. They seem not to differ from mainland lizards of this species.

2. Xantusia riversiana Cope.

One hundred and twenty-two of these lizards were collected on San Clemente Island by Mr. Slevin October 15 to 17, 1912. They were taken in the vicinity of Mosquito Harbor, and were found under stones near the beach and on the plateau several hundred feet above. There appears to be no difference between these lizards and the Xantusias of San Nicolas and Santa Barbara islands.

LOS CORONADOS.

Mr. R. H. Beck visited these islands in 1908, and collected several species not previously recorded.

1. Batrachoseps attenuatus (Eschscholtz).

Fifty-five (Nos. 13477 to 13531) were collected on East Coronado Island, February 15, 1908, and five (Nos. 13604 to 13608) are labeled merely Coronado Islands. They seem identical with specimens from the mainland. Costal grooves in 38 specimens are 18 on each side except in specimens Nos. 13509 and 13512, which have 19.

2. Autodax lugubris (Hallowell).

Two specimens (Nos. 13609 and 13610) labeled Coronado Islands were collected February 22, 1908. Their costal grooves are 12 on each side.

3. Uta stansburiana Baird & Girard.

Two specimens (13449 and 13450) were taken on East Coronado Island, February 15, 1908, and three others (13532 to 13534) are labeled South Coronado, April 9, 1908. Femoral pores vary from 10 to 15; being 10 once, 13 three times, 14 four times, and 15 twice.

4. Anniella pulchra Gray.

This species has not been recorded from any of the islands of the Pacific Coast. We now have at hand 10 specimens from the Coronado Islands. Nos. 13579 to 13582 were collected on South Coronado, April 6-7, 1908. Nos. 13471 to 13475 were secured on East Coronado, February 15, 1908. No. 13601 is labeled merely Coronado Islands, February 22, 1908.

5. Gerrhonotus scincicauda ignavus Van Denburgh.

This lizard was collected on North, South and East Coronado islands. From North Coronado we have four (Nos. 13444 to 13447) collected April 6-8, 1908. Twenty-four (Nos. 13535 to 13559) were collected on South Coronado, April 6-11, 1908. Eleven (Nos. 13451 to 13461) were taken on East Coronado, February 15, 1908. Five (Nos. 13590 to 13594) labeled merely Coronado Islands, were caught February 22, 1908.

All but No. 13590 have keeled temporals, and all have caudal keeling typical of G. s. ignavus. The dark ventral lines are along the middles of the scales in all 45 specimens. The longitudinal rows of dorsals are in 14½ rows in two specimens, 14 rows in 31, 12½ rows in 10, and 12 in two specimens.

6. Eumeces skiltonianus (Baird & Girard).

The collection includes 35 specimens of this skink. Only one of these (No. 13448) is from North Coronado Island, April 8, 1908. It has 26 rows of scales around the body. Twenty-five (Nos. 13560 to 13575 and 13595 to 13600) are from South Coronado, April 6-7, 1908. The scales around the middle of the body in 17 specimens counted are 24 in five and 26 in twelve. Nine (Nos. 13462 to 13470) were secured on East Coronado Island, February 15, 1908. The scales are in 24 rows in four and 26 in five of these specimens. The number of scales in a row along the back, from the head to a line con-

necting the posterior surfaces of the thighs, in 34 specimens from all the islands, varies from 55 to 61; being 55 three times, 56 four times, 57 five times, 58 eleven times, 59 five times, 60 five times, and 61 once.

7. Hypsiglena ochrorhynchus Cope.

A single specimen (No. 13602) collected February 22, 1908, is labeled Coronado Islands. The scales are in 21 rows, gastrosteges 178, anal divided, urosteges 44, supralabials 8-8, infralabials 10-10, preoculars 2-2, postoculars 2-2, loreal 1-1, temporals 1+2-1+2, genials equal.

8. Pituophis catenifer (Blainville).

Two specimens from South Coronado Island are at hand.

No. 13588, April 6, 1908, has 31 scale rows, 231 gastrosteges, 65 urosteges, supralabials 8-8, infraliabials 12-12, preoculars 2-2, postoculars 3-3, loreal 1-1, anterior genials longer.

No. 13589, April 11, 1908, has 35 scale rows, 229 gastrosteges, 71 urosteges, supralabials 9-9, infralabials 13-13, preoculars 2-2, postoculars, 3-3, loreal 1-1, temporals 3+3-3+3, anterior genials longer.

9. Crotalus oregonus Holbrook.

We have seven rattlesnakes of this species from these islands. Nos. 13583 to 13587 were collected on South Coronado, April 6-11, 1908. No. 13476 was secured on East Coronado, February 15, 1908, No. 13603 is labeled merely Coronado Islands, February 22, 1908. No. 13586 contains the remains of a lizard (*Eumeces*) which it had eaten. Variation in scales is shown in the following table:

No.	Scales	Gastro	Uro	Supra labials	Infra labials	Pre oculars	Post oculars	Loreal
13476 13583 13584 13585 13586 13587 13603	25 25 27 29 25 25 25 25	171 177 176 171 172 168 179	19(1÷) 19(9÷) 20(1÷) 18(7÷) 15(1÷) 22(4÷) 17(1÷)	13—13 15—14 14—15 15—16 12—14 16—15 15—15	14—14 15—15 15—15 16—18 15—14 16—16 15—15	2—2 2—2 2—2 2—2 2—2 2—2 2—2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1-1 1-1 1-1 1-1 0-0 1-1 1-1

SCALE COUNTS IN CROTALUS OREGONUS.

SAN MARTIN ISLAND.

1. Uta martinensis Van Denburgh.

Four specimens (Nos. 8673 to 8676) of this large-scaled lizard were collected on San Martin, July 11, 1905. None of these has the fifth toe reaching beyond the tip of the second, as in the original specimen. Femoral pores in No. 8674 are 13-14, and in 8676 they are 12-14. These lizards were secured on a sand beach near the north end of the island.

2. Gerrhonotus scincicauda ignavus Van Denburgh.

Our collection contains the type specimen and one other (No. 8677) collected July 11, 1905. The dorsals are in 14 rows. The temporal and caudal scales, as well as those on the limbs, are strongly keeled. The dark lines on the belly run along the middles of the rows of scales.

3. Pituophis catenifer deserticola Stejneger.

One specimen (No. 8678) collected on the north end of San Martin Island, July 11, 1905, is as brightly colored as specimens from the desert regions of California, Nevada and Arizona. The scales are in 31 rows, gastrosteges 236, urosteges 76, supralabials 8-9, infralabials 13-13.

SAN GERONIMO ISLAND.

We have secured two kinds of lizards from this island. Neither has been recorded previously.

1. Uta stansburiana Baird & Girard.

The collection includes 37 specimens (Nos. 8679 to 8714 and 8717) collected July 13, 1905. They seem not to differ appreciably from mainland specimens of this species. The femoral pores in 34 of these lizards vary from 12 to 16; being 12 eighteen times, 13 twenty-eight times, 14 fifteen times, 15 five times, and 16 twice.

2. Anniella pulchra Gray.

Two specimens (Nos. 8715-8716) of this footless lizard were secured July 13, 1905. One was found under a stone and the other was dug out of the soft earth under a bush.

GUADALUPE ISLAND.

No reptiles or amphibians have been collected on Guadalupe Island. The only information we have been able to secure as to their occurrence on this island is contained in a paper by Edward L. Greene, published in Bulletin No. 4 of the California Academy of Sciences, p. 220. He writes:

"Of reptiles I met with only two or three small lizards. In the moist parts of the plateau are plenty of shallow and tepid pools, fed by springs, but not even a tadpole was visible; and both soldiers and seamen assured me that none of the toad or frog race were ever seen or heard on Guadalupe. Most other islands off the coast of Mexico are commonly reported to be alive with snakes; but no one charges this remoter and more oceanic pile with harboring serpents of any sort; and during my seven days of incessant rambling and climbing I did not see one."

SAN BENITO ISLANDS.

There are three islands in this group—West, Middle and East San Benito. Only one species of lizard has been taken here. It occurs on all three islands.

1. Uta stellata Van Denburgh.

The type probably came from West San Benito Island. We now have 100 specimens (Nos. 8718 to 8817) collected on this island by Mr. Slevin, July 14, 1905; four (Nos. 8834 to 8837) taken on Middle San Benito, July 15, 1905; and 16 (Nos. 8818 to 8833) secured on East San Benito, July 15, 1905. Femoral pores in 50 specimens from West San Benito vary from 12 to 18; being 12 once, 13 seven times, 14 twenty-three times, 15 twenty-eight times, 16 eighteen times, 17 four times, and 18 three times. In 12 specimens from East Benito the femoral pores vary from 13 to 16; being 13 four times, 14 seven times, 15 nine times, 16 four times. In the four lizards from Middle San Benito Island the pores are 15 five times and 16 three times.

This small scaled member of the *Uta stansburiana* group is a ground dwelling species. It was most abundant on the lower portions of the islands.

CERROS ISLAND.

Mr. Slevin spent one day on Cerros Island. Owing probably to the shortness of his visit, he failed to find a number of species which have been recorded by others. On the other hand, he secured a lizard and a snake not previously taken on Cerros, so that 10 species are now known to live there.

1. Hyla regilla Baird & Girard.

Mr. Slevin did not secure this tree-toad, which has been reported by Dr. Streets and Mr. Belding.

2. Crotaphytus wislizenii Baird & Girard.

The Leopard Lizard is represented in our Cerros collection by two specimens (Nos. 8843 and 8844) taken by Mr. Slevin, July 18, 1905, in a dry wash in the south end of the island. No. 8843 has femoral pores 24-25, and No. 8844 has 23-22 pores.

3. Uta stansburiana Baird & Girard.

Mr. Slevin secured eleven Utas which seem typical of this species. These are Nos. 8845 to 8850, 8858 to 8859, and 8861 to 8863. Femoral pores in six of these vary from 11 to 15; being 11 once, 12 once, 13 three times, 14 four times, and 15 three times. This lizard had been taken on Cerros by both Dr. Streets and Mr. Belding.

4. Sceloporus zosteromus Cope.

Three specimens (Nos. 8842, 8856 and 8857) taken by Mr. Slevin, July 18, 1905, confirm Mr. Belding's record of this lizard. Femoral pores are 16-16, 17-18, 16-16.

5. Phynosoma cerroense Steineger.

This horned toad was not found by Mr. Slevin. It is known from a single specimen taken by Mr. Belding.

6. Verticaria hyperythra beldingi (Stejneger).

This lizard also was not secured here by Mr. Slevin.

7. Cnemidophorus multiscutatus Cope.

Cerros is the type locality of this form. Nine whiptails (Nos. 8838 to 8841 and 8851 to 8855) were taken by Mr. Slevin. Femoral pores in eight of these vary from 18 to 22; being 18 twice, 19 three times, 20 five times, 21 five times, and 22 once.

8. Cnemidophorus labialis Stejneger.

We have no specimens of this species.

9. Siagonodon humilis (Baird & Girard).

No. 8860 is a dried specimen of this worm snake which was found dead on the sand in a dry wash, July 18, 1905.

10. Crotalus exsul Garman.

We have received no rattlesnakes from Cerros Island.

NATIVIDAD ISLAND.

We have two kinds of lizards secured by Mr. Slevin during a visit of a few hours, July 19, 1905.

1. Uta stansburiana Baird & Girard.

The collection includes 46 specimens (Nos. 8887 to 8932) of this *Uta*. The femoral pores in 40 specimens vary from 12 to 17; being 12 once, 13 six times, 14 sixteen times, 15 thirty-one times, 16 twenty times, and 17 six times.

2. Cnemidophorus multiscutatus Cope.

Twenty-three whiptails (Nos. 8864 to 8886) taken seem not to differ from those secured on Cerros Island. They were abundant about the deserted nesting burrows of sea birds. Femoral pores vary from 16 to 21; being 16 four times, 17 eight times, 18 nine times, 19 fifteen times, 20 six times, and 21 four times.

MAGDALENA ISLAND.

We have no additional material from this island. The following species have been recorded.

- 1. Dipsosaurus dorsalis Baird & Girard.
- 2. Crotaphytus wislizenii Baird & Girard.
- 3. Uta nigricauda Cope.
- 4. Sceloporus zosteromus Cope.
- 5. Verticaria hyperthra beldingi (Stejneger).
- 6. Cnemidophorus rubidus (Cope).

SANTA MARGARITA ISLAND.

We have nothing new to record regarding the reptiles of Santa Margarita. Five kinds have been reported.

- 1. Callisaurus ventralis (Hallowell).
- 2. Sceloporus zosteromus Cope.
- 3. Cnemidophorus rubidus Cope.
- 4. Bascanion laterale fuliginosum (Cope).
- 5. Crotalus mitchellii Cope.

SAN BENEDICTO ISLAND.

Mr. Slevin spent several hours on this island, July 26, 1905, with four other members of the expedition. No reptiles were seen by any member of the party, although careful search was made.

SOCORRO ISLAND.

1. Uta auriculata Cope.

This *Uta* remains the only reptile known from Socorro Island, except the green turtle which breeds here in numbers. Ninety-two specimens (Nos. 8933 to 9024) collected by Mr. Slevin, July 27-28, 1905, are now before us. In life their bright blue coloration makes them conspicuous on the black lava. The femoral pores are small and difficult to count. In 20 specimens they vary in number from 10 to 13; being 10 eight times, 11 eighteen time, 12 eleven times, and 13 three times.

CLARION ISLAND.

We now have no specimens from this island, the great fire of 1906 having destroyed those we had. The two species known from Clarion are a lizard and a snake:

- 1. Uta clarionensis Townsend.
- 2. Bascanion anthonyi Stejneger.

ANGEL DE LA GUARDIA ISLAND.

Three species of reptiles have been recorded from this island.

1. Callisaurus ventralis (Hallowell).

Callisaurus dracontoides, Townsend, Proc. U. S. Nat. Mus., XIII, 1890, p. 144.

Callisaurus ventralis, VAN DENBURGH, Proc. Cal. Acad. Sci., (2), V, 1895, p. 98.

Townsend has recorded the presence of this lizard on Angel Island, Gulf of California.

2. Sauromalus hispidus Stejneger.

Sauromalus ater, Streets, Bull. U. S. Nat. Mus., No. 7, 1877, p. 36; TOWNSEND, Proc. U. S. Nat. Mus., XIII, 1890, p. 144.

Sauromalus hispidus Stejneger, Proc. U. S. Nat. Mus., XIV, 1891, p. 409.

Dr. Stejneger has described this species from four specimens collected by Dr. Streets and Mr. Townsend on Angel Island. Dr. Streets states that these lizards are abundant on the island.

3. Crotalus mitchellii Cope.

Crotalus pyrrhus Streets, Bull. U. S. Nat. Mus., No. 7, 1877, p. 39; Townsend, Proc. U. S. Nat. Mus., XIII, 1890, p. 144.

Crotalus mitchellii, VAN DENBURGH, Proc. Cal. Acad. Sci., (2), V, 159.

Dr. Streets was the first to report the presence of this rattlesnake on Angel Island. Mr. Townsend afterward collected one there.

TIBURON ISLAND.

We know of only one record of a reptile having been taken on Tiburon Island. Doubtless many species occur there.

1. Elaps euryxanthus Kennicott.

Dr. Streets has reported this coral snake from this island. (Bull. U. S. Nat. Mus., No. 7, 1877, p. 40).

SAN PEDRO MARTIR ISLAND.

Two species of lizards have been described by Dr. Stejneger as peculiar to this island.

1. Uta palmeri Stejneger.

Uta palmeri Stejneger, N. A. Fauna, No. 3, 1890, p. 106; Van Denburgh, Proc. Cal. Acad. Sci., (2), V, 1895, p. 106.

This species is allied to *Uta stansburiana*.

2. Cnemidophorus martyris Steineger.

Cnemidophorus martyris Stejneger, Proc. U. S. Nat. Mus., XIV, 1891, p. 407; Cope, Trans. Am. Philos. Soc., XVII, 1, 1892, p. 36; VAN DENBURGH, Proc. Cal. Acad. Sci., (2), V, p. 125.

Two specimens were collected by Dr. Edward Palmer. They seem most closely allied to C. melanostethus.

CARMEN ISLAND.

Only one lizard has been reported from this island.

1. Uta stansburiana Baird & Girard.

Uta elegans, Townsend, Proc. U. S. Nat. Mus., XIII, 1890, p. 144. Uta stansburiana, VAN DENBURGH, Proc. Cal. Acad. Sci., (2), V, 1895, p. 104.

Mr. Townsend collected this species on Carmen Island.

SAN JOSE ISLAND.

The following three kinds of lizards were collected by W. E. Bryant on San Jose Island in April and May, 1892.

1. Uta microscutata Van Denburgh.

Uta microscutata Van Denburgh, Proc. Cal. Acad. Sci., (2), V, 1895, p. 106.

Two specimens were secured.

2. Sceloporus zosteromus Cope.

Sceloporus sosteromus, Van Denburgh, Proc. Cal. Acad. Sci., (2), V, 1895, pp. 109, 110.

Two were taken.

3. Verticaria sericea Van Denburgh.

Verticaria sericea VAN DENBURGH, Proc. Cal. Acad. Sci., (2), V, 1895, p. 132.

This species is known only from the type specimen.

ESPIRITU SANTO ISLAND.

Two kinds of lizards are known to occur here, and a sea snake has been taken near this island.

1. Sauromalus sp?

Sauromalus ater, Belding, West Am. Sci., III, 1887, pp. 96, 97. Sauromalus sp?, Stejneger, Proc. U. S. Nat. Mus., XIV, 1891, p. 411.

A medium-sized Sauromalus collected by Mr. Belding on this island is No. 12633 of the U. S. National Museum collection. Its specific identity is not definitely known.

2. Uta stansburiana Baird & Girard.

Uta stansburiana, VAN DENBURGH, Proc. Cal. Acad. Sci., (2), V, 1895, p. 105.

Two specimens were collected by Mr. W. E. Bryant in April, 1892.

3. Hydrus platurus (Linnæus).

Hydrus platurus, Mocquard, Nouv. Arch. du Mus., (4), I, p. 331.

Mocquard says:

Deux spécimens ont été capturés dan le golfe de Californie, au large de l' île Espiritu Santo.

ISABEL ISLAND.

The following list is taken from Stejneger's paper on the Tres Marias. We have no specimens from this island.

- 1. Ctenosaura teres (Harlan).
- 2. Sceloporus boulengeri Stejneger.
- 3. Cnemidophorus gularis mexicanus Peters.

LAS TRES MARIAS.

We have no specimens from these islands. Stejneger, in the North American Fauna, No. 14, 1899, pp. 63-71, records 16 species of land reptiles. One of these, Diplotropis diplotropis (Günther), is known only from specimens labeled merely the Tres Marias. The other species have been taken on the three islands, as follows:

MARIA MADRE ISLAND.

- 1. Kinosternon integrum Leconte.
- 2. Crocodylus americanus Laur.
- 3. Phyllodactylus tuberculosus Wiegmann.
- 4. Anolis nebulosus Wiegmann.
- 5. Ctenosaura teres (Harlan).
- 6. Uta lateralis Boulenger.
- 7. Cnemidophorus mariarum Günther.
- 8. Boa imperator Daudin.
- 9. Oxybelis acuminatus (Wied).
- 10. Drymobius boddaerti (Seetzen).
- 11. Bascanion lineatum Bocourt.
- 12. Drymarchon corais melanurus (Dum. & Bibron).
- 13. Lampropeltis micropholis oligozona (Bocourt).
- 14. Agkistrodon bilineatus (Günther).

MARIA CLEOFA ISLAND.

- 1. Phyllodactylus tuberculosus Wiegmann.
- 2. Anolis nebulosus Wiegmann.
- 3. Ctenosaura teres (Harlan).
- 4. Cnemidophorus mariarum Günther.

MARIA MAGDALENA ISLAND.

- 1. Crocodylus americanus Laur.
- 2. Anolis nebulosus Wiegmann.
- 3. Cnemidophorus mariarum Günther.
- 4. Drymobius boddaerti (Seetzen).
- 5. Crotalus sp?

CLIPPERTON ISLAND.

Clipperton Island is an atoll about three miles long, at one end of which may be seen a large black rock known as Clipperton Rock. The following species seems to be the only land reptile known from Clipperton Island.

1. Emoia arundelii (Garman).

Lygosoma arundelü Garman, Proc. N. Eng. Zool. Club, I, 1899, p. 61; HELLER, Proc. Wash. Acad. Sci., Vol. V, 1903, p. 97.

Sixty-five specimens (Nos. 9025-9089) were collected on Clipperton Rock, August 10, 1905. These lizards appear to be more abundant on Clipperton Rock than elsewhere on the island. The following color description was taken from a living specimen, now number 9054, of the Academy collection:

Back very dark brown with a fairly distinct grayish stripe running from tip of snout to base of tail, gular region a little darker than belly, which is dull slate; under surface of hind legs yellowish.

We have not compared these lizards with E. cyanura.

The scales around the middle of the body were counted in 38 specimens and found to be in 28 rows in all. The scales in a row down the middle of the back from the base of the head to a line joining the posterior surface of the thighs vary from 51 to 56; being 51 twice, 52 six times, 53 ten times, 54 eight times, 55 eight times, and 56 four times.

COCOS ISLAND.

Two species of lizards from this island have been described.

1. Sphærodactylus pacificus Stejneger.

Sphærodactylus pacificus Stejneger, Proc. Biol. Sci. Wash., Vol. XVI, 1903, p. 3.

This species was described by Dr. Stejneger from five specimens collected in 1902 by Prof. Biolley, naturalist of the Museo Nacional, San José, Costa Rica. Although a careful search was made during a week's stay, September 5-12, 1905, by the Academy's Galapagos expedition, no specimens of this gecko were obtained.

2. Anolis townsendi Stejneger.

Anolis townsendi Stejneger, Bull. Mus. Comp. Zool., Vol. XXXVI, 1900, p. 163; Heller, Proc. Wash. Acad. Sci., Vol. V, 1903, p. 95.

One hundred and sixty specimens (Nos. 9090-9249) were collected in the vicinity of Wafer and Chatham bays, September 5-12, 1905. These lizards were abundant on the vines and trees along the water courses. When approached they would jump several inches from leaf to leaf, and when alighting would always turn so as to face the ground. The males at this season were seen displaying the gular pouch.

			·

Fourth Series

VOLUME I

Expedition of the California Academy of Sciences to the	
Galapagos Islands, 1905-1906.	
Pages 1-6. I. Preliminary Description of Four New Races of	
Gigantic Land Tortoises from the Galapagos Islands. By John	
Van Denburgh. (Issued December 20, 1907)	\$.25
Pages 7-288. II. A Botanical Survey of the Galapagos Islands.	
By Alban Stewart. Plates 1-x1x. (Issued January 20, 1911)	1.75
Pages 289-322. III. The Butterflies and Hawk-Moths of the	
Galapagos Islands. By Francis X. Williams. Plates xx-xx1.	
(Issued October 7, 1911)	.50
Pages 323-374. IV. The Snakes of the Galapagos Islands. By	
John Van Denburgh. Plates XXII-XXX. (Issued January 17, 1912)	.50
Pages 375-404. V. Notes on the Botany of Cocos Island. By	
Alban Stewart. Plates xxxi-xxxiv. (Issued January 19, 1912)	.35
Pages 405-430. VI. The Geckos of the Galapages Archipelago.	
By John Van Denburgh. (Issued April 26, 1912)	.35
Pages 431-446. VII. Notes on the Lichens of the Galapagos	
Islands. By Alban Stewart. (Issued December 17, 1912)	.25
•	
VOLUME II, PART I	
Expedition of the California Academy of Sciences to the	•
Galapagos Islands, 1905-1906.	
Pages 1-132. VIII. The Birds of the Galapagos Islands, with	
Observations on the Birds of Cocos and Clipperton Islands	
(Columbiformes to Pelecaniformes). By Edward Winslow	
Gifford. Plates 1-v11. (Issued August 11, 1913)	1.00
Pages 133-202. IX. The Galapagoan Lizards of the Genus	
Tropidurus; with notes on the Iguanas of the Genera	
Conolophus and Amblyrhyncus. By John Van Denburgh and	
Joseph R. Slevin. Plates VIII-XI. (Issued September 19, 1913)	.50
Pages 203-374. X. The Gigantic Land Tortoises of the Galapagos	
Archipelago. By John Van Denburgh. Plates XII-CXXIV.	
(Issued September 30, 1914)	2.00
,	
VOLUME III	
Pages 1-40. A Further Stratigraphic Study in the Mount Diablo	
Range of California. By Frank M. Anderson. Plate I. (Issued	
October 31, 1908)	.35
Pages 41-48. Description of a New Species of Sea Snake from the	
Philippine Islands, with a Note on the Palatine Teeth in the	
Proteroglypha. By John Van Denburgh and Joseph C. Thomp-	
son. (Issued December 31, 1908)	.25
Pages 49-56. New and Previously Unrecorded Species of Reptiles	
and Amphibians from the Island of Formosa. By John Van	
Denburgh. (Issued December 20, 1909)	.25

Fourth Series

VOLUME III-Continued

Pages 57-72. Water Birds of the Vicinity of Point Pinos, California.
By Rollo Howard Beck. (Issued September 17, 1910)
Pages 73-146. The Neocene Deposits of Kern River, California,
and the Temblor Basin. By Frank M. Anderson. Plates II-XIII.
(Issued November 9, 1911)
Pages 147-154. Notes on a Collection of Reptiles from Southern
California and Arizona. By John Van Denburgh. (Issued January 17, 1912)
Pages 155-160. Notes on Some Reptiles and Amphibians from
Oregon, Idaho and Utah. By John Van Denburgh. (Issued
January 17, 1912)
Pages 161-182. Geologic Range of Miocene Invertebrate Fossils of
California. By James Perrin Smith. (Issued April 5, 1912) 25
Pages 183-186. Description of a New Genus and Species of Sala-
mander from Japan. By Surgeon J. C. Thompson, U. S. Navy.
Plate xiv. (Issued May 3, 1912)
Pages 187-258. Concerning Certain Species of Reptiles and Am-
phibians from China, Japan, the Loo Choo Islands, and Formosa.
By John Van Denburgh. (Issued December 16, 1912)
Pages 259-264. Notes on Ascaphus, the Discoglossoid Toad of
North America. By John Van Denburgh. (Issued December
21, 1912)
By Joseph Grinnell. Plates xv-xvi. (Issued August 28, 1913) 1.00
Pages 391-454. A List of the Amphibians and Reptiles of Arizona,
with Notes on the Species in the Collection of the Academy.
By John Van Denburgh and Joseph R. Slevin. Plates xvii-
XXVIII. (Issued November 5, 1913)
VOLUME IV.
Pages 1-13. I. Report of the President of the Academy for the Year 1913.
II. George Davidson. (Issued April 8, 1914)
Pages 15-112. III. Neocene Record in the Temblor Basin, Califor-
nia, and Neocene Deposits of the San Juan District, San Luis
Obispo County. By F. M. Anderson and Bruce Martin. Plates
1-10. (Issued December 30, 1914) 1.00
Pages 113-128. IV. The Fauna of the Siphonalia sutterensis zone
in the Roseburg Quadrangle, Oregon. By Roy E. Dickerson,
Plates 11-12. (Issued December 30, 1914)
Pages 129-152. V. Reptiles and Amphibians of the Islands of the
West Coast of North America. By John Van Denburgh and
Joseph R. Slevin. (Issued December 30, 1914)
Pages 153-160. VI. The Pocket Gopher of the Boreal Zone on San
Jacinto Peak. By J. Grinnell and H. S. Swarth. (Issued
The Academy cannot supply any of its publications issued before the
year 1907, its entire reserve stock having been destroyed in the conflagra-
tion of April, 1906.

FED18 1915

- --

PROCEEDINGS

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 153-160.

DECEMBER 30, 1914

VI

The Pocket Gopher of the Boreal Zone on San Jacinto Peak

BY

J. GRINNELL and H. S. SWARTH

SAN FRANCISCO
PUBLISHED BY THE ACADEMY
1914

COMMITTEE ON PUBLICATION

GEORGE C. EDWARDS, Chairman

C. E. GRUNSKY

EDWIN C. VAN DYKE

E D I T O R Barton Warren Evermann

OF THE

CALIFORNIA ACADEMY OF SCIENCES

FOURTH SERIES

Vol. IV, pp. 153-160.

DECEMBER 30, 1914

VI

The Pocket Gopher of the Boreal Zone on San Jacinto Peak

BY

J. GRINNELL and H. S. SWARTH.*

In our report upon the birds and mammals of the San Jacinto area of southern California (Univ. Calif. Publ. Zool., Vol. 10, 1913, pp. 354-355) the twelve specimens of pocket gophers at that time available from the Boreal zone on San Jacinto Peak were referred to Thomomys altivallis Rhoads. That series contained not one adult male, and the possibility was suggested that, upon proper comparisons, differences would be found to exist whereby the species of San Jacinto Peak could be distinguished from that of the San Bernardino Mountains (altivallis). It will be recalled that the San Jacinto and San Bernardino mountain masses are separated only by the narrow, though deep, San Gorgonio Pass. latter is cut to such a depth as to be traversed by a tongue of the Lower Sonoran zone, yet so steep are the confining walls that the nearest limits of the boreal areas of the separated mountain masses are only about seventeen miles apart.

In order to clear up the relationships of the San Jacinto gopher, opportunity was taken by the junior author, in September, 1914, to revisit San Jacinto Peak, with the result that seven more specimens were obtained, four of which are adult males. With this additional material we now find good grounds for nomenclatural separation of the San Jacinto and San Bernardino mountain gophers, and also for further discussion of relationships.

^{*}Contributed from the Museum of Vertebrate Zoology of the University of California.

Thomomys jacinteus, new species.

San Jacinto Gopher

Type.—Male, adult; No. 21235, Mus. Vert. Zool.; Round Valley, 9000 feet altitude, San Jacinto Mountains, Riverside County, California; September 15, 1914; collected by H. S. Swarth; orig. No. 10012.

Diagnosis.—A Thomomys of the alpinus group of species. Size medium; coloration dark; skull long and narrow, but faintly ridged, and with relatively straight top in lateral profile.

Material.—Nineteen skins-with-skulls from San Jacinto Peak: Nine (Nos. 21229-21235, 1761, 1762) from Round Valley, 9000 feet altitude; ten (Nos. 2188-2197) from Tahquitz Valley, 8000 feet altitude. Of these, nine are obviously young; seven are males, twelve are females.

Comparisons.—As compared with topotypes of Thomomys altivallis Rhoads, its nearest relative geographically, the new species is decidedly smaller in general size (see accompanying tables of measurements), the tone of coloration is slightly browner, there is more or less white about the face, the whole skull is much narrower (except for interorbital constriction), there is less of angulation and ridging, the nasals are shorter, and the dorsal outline is more nearly straight in lateral profile. From Thomomys neglectus Bailey, from the San Gabriel Mountains, as originally described (Proc. Biol. Soc. Wash., Vol. 27, 1914, p. 117), jacinteus evidently differs notably in much less blackish coloration, in presence of more or less white about the face, and in less elongated and straight-topped skull. From topotypes of Thomomys albinus Merriam, from the Mount Whitney region, jacinteus differs in decidedly browner and darker, less grayish, coloration, in much less squarely spreading zygomatic arches, in narrower braincase, and in shorter and posteriorly less attenuated nasals. the species of gopher on the immediately adjacent lower slopes of San Jacinto Peak (T. nigricans Rhoads, of Upper Sonoran and low Transition), jacinteus differs in decidedly larger general size and notably larger ears and front feet, in

much less reddish-brown tone of coloration, in more or less white marking about the face, in heavier dentition, in larger and especially more elongated auditory bullæ, in wider interorbital constriction, in less widely spreading zygomatic arches, and in more nearly straight dorsal outline of skull in lateral profile.

Taking all characters into consideration, there appear to be more in common between jacinteus and alpinus than between jacinteus and altivallis. Out of the entire series of jacinteus, both adults and young, eleven have much white on chin and lining of cheek-pouches, as in alpinus; the rest all show white in lining of cheek-pouches, at least. Altivallis has a blackish brown face, rarely showing white, even within the cheek-pouches.

Relationships and Ecology.—The habitats of the several species of Thomomys occurring in the San Jacinto Mountains seem to be constituted mainly by the several valleys comprising areas of varying size throughout the range. Thomas (or Hemet), Strawberry, Tahquitz, and Round valleys are the more important of the stretches of comparatively open and level country of the higher parts of the mountains; and while gophers also occur in limited numbers along some of the streams connecting these sections, as well as on many of the dry and rather open pine-covered ridges, still the meadowlands in each of these valleys may be considered as the centers of abundance and radial dispersal of the gophers of these mountains. The densely brush-covered slopes surrounding the lower valleys offer poor inducements to the species, and the animals are seldom found in such places.

The three higher valleys of San Jacinto Peak, Strawberry Valley at 6000 feet, Tahquitz Valley at 8000 feet, and Round Valley at 9000 feet, form a series of terraces on the sides of the mountain. In these mountain valleys the soil is deep and rich, in many places supporting a dense growth of grasses, and sometimes so saturated with water as to form acres of wet bog, altogether making most favorable surroundings for gophers. In striking contrast, the valleys' edges are sharply defined by steep, rocky slopes, these in the higher portions of the range frequently forming series of bare cliffs, in the lower parts steep, gravelly hillsides, densely covered with chaparral.

Many portions of these breaks in the topography are sufficiently marked to suggest their actual service as physical barriers to the dispersal of animals having the sedentary habits of gophers. Especially is this the case between Strawberry and Tahquitz valleys, where lies the dividing line between nigricans and jacinteus. It will be noted that Tahquitz and Round valleys, as well as the country lying directly between, the entire habitat of jacinteus in fact, is on the eastern slope of San Jacinto Peak, with all drainage toward the desert. Strawberry Valley, together with the rest of the habitat of nigricans in these mountains, is west of the divide. There are no streams connecting the higher valleys with Strawberry Valley and the slopes to the westward, streams which with their narrow margins of favorable surroundings would offer means of dispersal for these animals. Also the slopes intervening are so steep and rocky as apparently to preclude the possibility of uninterrupted distribution without some such passage ways (see Univ. Calif. Publ. Zool., Vol. 10, plate 8, fig. 1).

This latter condition also prevails on the eastern side of the mountain, where the series of tremendous, rocky precipices descending abruptly to the desert forms an effective barrier, in all probability extending from the habitat of the boreal jacinteus to that of the Lower Sonoran perpallidus of the floor of the desert below. So altogether it seems probable that Thomomys jacinteus is absolutely separated from those forms geographically nearest to it by the physical conditions surrounding its habitat.

Between Tahquitz and Round valleys there is no abrupt break. Although at the eastern edge of Round Valley there is nearly as steep and rocky a cliff as between Tahquitz and Strawberry valleys, the approach from Tahquitz Valley to Hidden Lake, and thence to Round Valley, is gradual, and gopher sign was seen continuously over the whole distance. In accounting for the occurrence of nigricans in Strawberry Valley, in common with the lower Thomas Valley and the country to the southward, there is no difficulty, for while Strawberry Valley occupies a sharply defined terrace, with steep slopes below, the connecting streams with their adjacent congenial margins are probably sufficient to explain the general dispersal of this species of gopher.

As the structural peculiarities of jacinteus point to close affinities with other boreal species from distant mountains, rather than with the geographically nearer low-zone species of the same mountain mass, there is, of course, no need for invoking a theory of isolation from nigricans to account for the occurrence of the former on San Jacinto Peak. It is, however, of decided interest to note the probable existence of associational barriers to the dispersal of an animal with the habits of the gopher, along the exact line where division between jacinteus and nigricans appears to be. While these barriers may have had nothing to do with the origin of either species, they may well be the sole prevention of the wider dispersal of either one of them, which, if it had been freely possible, might have resulted in competitive displacement of the other.

The summer of 1914 had been an unusually dry one in the San Jacinto Mountains, where this season of the year is generally accompanied by frequent thunder showers; and in the lower parts of the range the dryness had the effect of entirely stopping the gophers from any active digging. In Strawberry Valley, during two weeks, no freshly thrown-out earth was seen, though *Thomomys nigricans* is an abundant inhabitant of the valley, and old mounds could be observed everywhere. It was evident, however, that the cessation of digging activities by the animals was by no means an indication that they were in a dormant condition similar to hibernation. A house cat belonging to an acquaintance in the camp caught gophers frequently, sometimes two in a night.

Trapping here was not promising, however, for there was no way of telling which entrances were in use; so it was a relief to find that conditions were somewhat different in the higher valleys where *jacinteus* occurs. The several large meadows occupying the centers of Tahquitz and Round valleys are so saturated with water that even in a dry summer parts of them remain boggy. About these wet meadows the gophers were most abundant. No trapping was done in Tahquitz Valley during the visit of September, 1914, and but a cursory investigation of conditions was made; but several fresh mounds were noted near the edges of the meadow and on the adjacent dry ridges.

In Round Valley, September 13, 14 and 15, gophers were found to be working actively, though in a rather limited area. The meadow here is about two hundred yards across, and about a quarter of a mile in length, and the gophers occupied a narrow belt surrounding this area. They worked down toward the center as far as the water permitted, but not far into the dry woods of the higher surrounding ridges. Fresh mounds were also noted along the margins of the stream flowing out of the valley, at various points along this and other small streams between Round Valley and Hidden Lake, and between Hidden Lake and Tahquitz Valley. These fresh workings, however, were always near water, where there was a little green growth. No gopher sign was noted on the steep slopes between Round Valley and the summit of San Jacinto Peak. Here, as elsewhere, it seemed evident that such stony ground is impassable to the animals.

The burrows in Round Valley were of noticeably small size, a condition possibly produced by the dryness and consequent hardness of the ground. The occupied holes were all in grassy areas, and the green grass seemed to be the principal food plant sought. Cut grass was found in several of the holes. Of the seven animals taken at this point, four were caught in the middle of the day. The other three may also have been captured after daylight, as the traps were not inspected until some time after dawn. Evidently they were working actively during the day.

MEASUREMENTS IN MILLIMETERS OF NINE ADULTS OF THOMOMYS ALTIVALLIS

Mus. No.	Sex	Total length	Tail vertebræ	Hind foot	Occipito-nasal length or cranium	Zygomatic width	Mastoid width	Inter-orbital constriction	Length of nassis
4546	*0 *0 *0 *0 O+ O+ O+ O+ O+	267	85	36	48.6	30.2	24.8	6.0	17.5
4543		256	80	36	48.2	30.7	25.0	6.3	16.8
4601		265	83	36	47.8	31.6	25.2	5.9	17.0
4599		249	82	34	47.2	28.4	22.8	6.8	17.7
4592		232	75	31	42.7	25.7	21.8	6.6	15.7
4568		215	73	31	40.8	25.7	20.6	7.0	14.2
4587		223	63	30	41.1	25.9	20.6	6.9	14.1
4554		203	65	31	39.5	24.9	20.0	7.0	12.6
4593		219	62	32	38.4	22.4	19.7	6.8	13.0

MEASUREMENTS IN MILLIMETERS OF NINE ADULTS OF THOMOMYS JACINTEUS

Mus. No.	Sex	Total length	Tail vertebræ	Hind foot	Occipito-nasal length of cranium (1)	Zygomatic width	Mastoid width (2)	Inter-orbital constriction	Length of nasals
21235 21230 21229 21232 21231 2193 2188 2190 1762	*0 *0 *0 *0 O+ O+ O+ O+	240 231 234 218 219 230 220 210 209	82 76 80 75 77 80 71 65 69	32 30 31 28 28 30 30 29 29	43.5 41.0 39.1 36.3 38.3 39.6 38.6 38.6 38.0	25.0 24.9 24.8 21.4 22.9 22.6 22.5 23.3 21.7	20.3 19.3 19.7 18.6 18.9 18.7 18.4 18.4	6.1 6.4 6.5 5.8 6.2 6.5 6.5 6.6 6.4	15.0 14.0 14.4 11.1 12.8 12.7 13.2 12.5 13.3

⁽¹⁾ Measured over-all from anterior tips of nasals to most posterior points on occipital end of cranium, which are usually the condyles.

⁽²⁾ Greatest breadth behind zygomatic arches; sometimes pertains to auditory tubes, sometimes the lateral protuberances of mastoids; often the parallel dividers touch both.

			_	
		•		
			•	
			ı	
			ı	

Fourth Scries

VOLUME I

Expedition of the California Academy of Sciences to the	
Galapagos Islands, 1905-1906.	
Pages 1-6. I. Preliminary Description of Four New Races of	
Gigantic Land Tortoises from the Galapagos Islands. By John Van Denburgh. (Issued December 20, 1907)	\$.25
Pages 7-288. II. A Botanical Survey of the Galapagos Islands.	\$.23
By Alban Stewart. Plates 1-x1x. (Issued January 20, 1911)	1.75
Pages 289-322. III. The Butterflies and Hawk-Moths of the	1.,, 0
Galapagos Islands. By Francis X. Williams. Plates xx-xx1.	
(Issucd October 7, 1911)	.50
Pages 323-374. IV. The Snakes of the Galapagos Islands. By	
John Van Denburgh. Plates xxII-xxx. (Issued January 17, 1912)	.50
Pages 375-404. V. Notes on the Botany of Cocos Island. By Alban Stewart. Plates xxxi-xxxiv. (Issued January 19, 1912)	.35
Pages 405-430. VI. The Geckos of the Galapagos Archipelago.	.55
By John Van Denburgh. (Issued April 16, 1912)	.35
Pages 431-446. VII. Notes on the Lichens of the Galapagos'	
Islands. By Alban Stewart. (Issued December 17, 1912)	.25
·	
VOLUME II, PART I	
Expedition of the California Academy of Sciences to the Galapagos Islands, 1905-1906. Pages 1-132. VIII. The Birds of the Galapagos Islands, with Observations on the Birds of Cocos and Clipperton Islands (Columbiformes to Pelecaniformes). By Edward Winslow Gifford. Plates I-VII. (Issued August II, 1913)	1.00 .50 2.00
VOLUME III	
Pages 1-40. A Further Stratigraphic Study in the Mount Diablo Range of California. By Frank M. Anderson. Plate 1. (Issued October 31, 1908)	35
Pages 41-48. Description of a New Species of Sea Snake from the Philippine Islands, with a Note on the Palatine Teeth in the Proteroglypha. By John Van Denburgh and Joseph C. Thompson. (Issued December 31, 1908)	.25
Pages 49-56. New and Previously Unrecorded Species of Reptiles and Amphibians from the Island of Formosa. By John Van Denburgh. (Issued December 20, 1909)	.25

Fourth Series

VOLUME III-Continued

Pages 57-72. Water Birds of the Vicinity of Point Pinos, California.	
By Rollo Howard Beck. (Issued September 17, 1910)	.25
Pages 73-146. The Neocene Deposits of Kern River, California,	
and the Temblor Basin. By Frank M. Anderson. Plates 11-XIII.	
(Issued November 9, 1911)	1.00
Pages 147-154. Notes on a Collection of Reptiles from Southern	
California and Arizona. By John Van Denburgh. (Issued	
January 17, 1912)	.25
Pages 155-160. Notes on Some Reptiles and Amphibians from	
Oregon, Idaho and Utah. By John Van Denburgh. (Issued	
January 17, 1912)	.25
Pages 161-182. Geologic Range of Miocene Invertebrate Fossils of	`
California. By James Perrin Smith. (Issued April 5, 1912)	:25
Pages 183-186. Description of a New Genus and Species of Sala-	
mander from Japan. By Surgeon J. C. Thompson, U. S. Navy.	
Plate xiv. (Issued May 3, 1912)	.25
Pages 187-258. Concerning Certain Species of Reptiles and Am-	•
phibians from China, Japan, the Loo Choo Islands, and Formosa.	
By John Van Denburgh. (Issued December 16, 1912)	.50
Pages 259-264. Notes on Ascaphus, the Discoglossoid Toad of	
North America. By John Van Denburgh. (Issued December	
21, 1912)	.25
Pages 265-390. A Distributional List of the Mammals of California.	
By Joseph Grinnell. Plates xv-xvi. (Issued August 28, 1913)	1.00
Pages 391-454. A List of the Amphibians and Reptiles of Arizona,	
with Notes on the Species in the Collection of the Academy.	
By John Van Denburgh and Joseph R. Slevin. Plates xvii-	
XXVIII. (Issued November 5, 1913)	.75
VOLUME IV	
Pages 1-13. I. Report of the President of the Academy for the	
Year 1913.	~=
II. George Davidson. (Issued April 8, 1914)	.25
Pages 15-112. III. Neocene Record in the Temblor Basin, Califor-	
nia, and Neocene Deposits of the San Juan District, San Luis	
Obispo County. By F. M. Anderson and Bruce Martin. Plates	
1-10. (Issued December 30, 1914)	1.00
Pages 113-128. IV. The Fauna of the Siphonalia sutterensis zone	
in the Roseburg Quadrangle, Oregon. By Roy E. Dickerson.	
Plates 11-12. (Issued December 30, 1914)	.50
Pages 129-152. V. Reptiles and Amphibians of the Islands of the	
West Coast of North America. By John Van Denburgh and	
Joseph R. Slevin. (Issued December 30, 1914)	.25
Pages 153-160. VI. The Pocket Gopher of the Boreal Zone on San	
Jacinto Peak. By J. Grinnell and H. S. Swarth. (Issued	
December 30, 1914)	.25
The Academy cannot supply any of its publications issued befor	e the
year 1907, its entire reserve stock having been destroyed in the confl	agra-
tion of April 1906	

