Число $m_0 = \inf_{x \in (a, b)} \{f(x)\} = \max m$ называется нижней

гранью функции f(x), а число $M_0 \Longrightarrow \sup_{x \in (a, b)} \{f(x)\} = \min M$ на-

зывается верхней гранью функцин f(x) на данном промежутке (a, b). Разность $M_0 - m_0$ называется колебанием функции на промежутке (a, b).

 2° . Предел функции в точке. Пусть функция f(x) определена на множестве $X = \{x\}$, имеющем точку сгущения a. Запись

$$\lim_{x \to a} f(x) = A \tag{1}$$

обозначает, что для каждого числа $\varepsilon > 0$ существует число $\delta = \delta$ (ε) > 0 такое, что для всех x, для которых f(x) имеет смысл и которые удовлетворяют условию $0 < |x-a| < \delta$, справедливо неравенство

$$|f(x) - A| < \varepsilon$$
.

Для существования предела функции (1) необходимо и достаточно, чтобы для каждой последовательности $x_n \to a$, $x_n \ne a$ ($x_n \in X$; $n=1, 2, \ldots$), было выполнено равенство

$$\lim_{n\to\infty}f\left(x_{n}\right) \rightleftharpoons A.$$

Имеют место два замечательных предела:

1)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, 2) $\lim_{x\to 0} (1+x)^{1/x} = e$.

Критерий Коши. Предел функции f(x) в точке a существует тогда и только тогда, если для каждого $\epsilon>0$ най-дется $\delta=\delta$ (ϵ) >0 такое, что

$$|f(x') - f(x'')| < \varepsilon,$$

как только $0 < |x' - a| < \delta$ н $0 < |x'' - a| < \delta$, где x' н x'' - a нобые точки из области определения функции f(x).

3°. Односторонние пределы. Число A' называется пределом слева функции f(x) в точке a:

$$A' = \lim_{x \to a \to 0} f(x) = f(a - 0),$$

если

$$|A'-f(x)| < \varepsilon$$
 при $0 < a-x < \delta(\varepsilon)$.

Аналогично, число A" называется пределом справа функции **£** (x) в точке a:

$$A'' = \lim_{x \to a+0} f(x) = f(a+0)$$

€СЛИ

$$|A'' - f(x)| < \varepsilon$$
 при $0 < x-a < \delta(\varepsilon)$.