Distribuição de Frequência em Estatística

A **distribuição de frequência** é um conceito fundamental em estatística, sendo uma ferramenta que permite a organização, análise e interpretação de um conjunto de dados. Ela descreve como os dados são distribuídos ao longo de diferentes intervalos ou categorias, oferecendo uma visão clara e concisa das variáveis de interesse.

O que é uma Distribuição de Frequência?

Uma distribuição de frequência é uma tabela que mostra o número de vezes (frequência) que os dados aparecem em diferentes intervalos ou classes. Essas classes são chamadas de **intervalos de classe** ou **faixas de valores** e são divididas com base no intervalo de valores dos dados.

Componentes de uma Distribuição de Frequência

Uma distribuição de frequência geralmente inclui os seguintes componentes:

1. Classe (ou Intervalo):

Refere-se aos intervalos de valores nos quais os dados são agrupados. As classes são criadas para organizar os dados em grupos com base em suas magnitudes ou valores numéricos.

2. Frequência Absoluta (f):

A frequência absoluta indica o número de vezes que um valor ou intervalo de classe aparece no conjunto de dados.

3. Frequência Acumulada (F):

A frequência acumulada é a soma das frequências absolutas das classes até o ponto desejado. Ela representa o número total de dados até a classe correspondente.

4. Frequência Relativa (fr):

A frequência relativa é a razão entre a frequência absoluta de uma classe e o total de observações no conjunto de dados. Ela é calculada pela fórmula:

 $fr = \frac{f}{N}$

Onde \$f\$ é a frequência absoluta de uma classe e \$ N \$ é o total de dados.

5. Frequência Percentual (fp%):

A frequência percentual é a frequência relativa expressa em porcentagem. Ela é calculada multiplicando a frequência relativa por 100.

 $fp\% = fr \times 100$

Exemplo de Distribuição de Frequência

Imaginemos um conjunto de dados representando as idades de 10 pessoas:

Se organizarmos esses dados em uma distribuição de frequência com intervalos de 5 anos, teríamos:

Intervalo de Idade	Frequência Absoluta (f)	Frequência Acumulada (F)	Frequência Relativa (fr)	Frequência Percentual (fp%)
18-22	3	3	0.3	30%
23-27	3	6	0.3	30%
28-32	4	10	0.4	40%
Total	10	-	1.0	100%

Passos para Criar uma Distribuição de Frequência

1. Organize os dados:

Coloque os dados em ordem crescente para facilitar a organização e o agrupamento.

2. Defina o número de classes:

Determine o número de classes a serem utilizadas. Isso pode ser feito por meio de métodos como a **regra de Sturges** ou **regra de Scott**, que ajudam a calcular a quantidade ideal de intervalos.

3. Defina os intervalos de classe:

Defina os intervalos de classe (faixas) com base no intervalo de valores dos dados. Certifique-se de que cada classe tenha a mesma amplitude, ou seja, a diferença entre o limite superior e inferior seja constante.

4. Conte as frequências absolutas:

Para cada intervalo, conte o número de dados que se encaixam naquele intervalo.

5. Calcule as frequências acumuladas, relativas e percentuais:

A partir das frequências absolutas, calcule as frequências acumuladas, relativas e percentuais.

Exemplo de Distribuição de Frequência - Didático

Vamos criar um exemplo passo a passo de distribuição de frequência utilizando um conjunto de dados fictício, onde a variável de interesse será a idade de um grupo de pessoas.

Dados Iniciais

PROFESSEUR: M.DA ROS

Suponha que temos os seguintes dados representando as idades de 15 pessoas:

[18, 22, 22, 24, 26, 26, 28, 30, 30, 32, 32, 34, 36, 38, 40]

Passos para Criar a Distribuição de Frequência

1. Organize os Dados

O primeiro passo é organizar os dados em ordem crescente:

```
[18, 22, 22, 24, 26, 26, 28, 30, 30, 32, 32, 34, 36, 38, 40]
```

2. Defina os Intervalos de Classe

Vamos criar intervalos de classe com uma amplitude de 5 anos. O intervalo de classe será de 18 a 22, 23 a 27, e assim por diante. Aqui estão os intervalos:

- 18-22
- 23-27
- 28-32
- 33-37
- 38-42

3. Conte as Frequências Absolutas

Agora, vamos contar quantos dados se encaixam em cada intervalo.

- **18-22**: 3 pessoas (18, 22, 22)
- 23-27: 3 pessoas (24, 26, 26)
- **28-32**: 4 pessoas (28, 30, 30, 32)
- **33-37**: 3 pessoas (32, 34, 36)
- **38-42**: 2 pessoas (38, 40)

4. Calcule a Frequência Acumulada

A frequência acumulada é simplesmente a soma das frequências absolutas à medida que avançamos nas classes.

• **18-22**: 3

PROFESSEUR: M.DA ROS

- **23-27**: 6 (3 + 3)
- **28-32**: 10 (6 + 4)
- **33-37**: 13 (10 + 3)
- **38-42**: 15 (13 + 2)

5. Calcule a Frequência Relativa

A frequência relativa é calculada dividindo a frequência absoluta de cada classe pelo total de dados. Neste caso, temos 15 dados no total.

- **18-22**: \$\frac{3}{15} = 0.2\$
- **23-27**: \$\frac{3}{15} = 0.2\$
- **28-32**: \$\frac{4}{15} = 0.267\$

• **33-37**: \$\frac{3}{15} = 0.2\$

• **38-42**: \$\frac{2}{15} = 0.133\$

6. Calcule a Frequência Percentual

A frequência percentual é simplesmente a frequência relativa multiplicada por 100.

• **18-22**: \$0.2 \times 100 = 20%\$

• 23-27: \$0.2 \times 100 = 20%\$

• **28-32**: \$0.267 \times 100 = 26.7%\$

• **33-37**: \$0.2 \times 100 = 20%\$

• **38-42**: \$0.133 \times 100 = 13.3%\$

Tabela de Distribuição de Frequência

Abaixo está a tabela de distribuição de frequência completa:

Intervalo de Idade	Frequência Absoluta (f)	Frequência Acumulada (F)	Frequência Relativa (fr)	Frequência Percentual (fp%)
18-22	3	3	0.2	20%
23-27	3	6	0.2	20%
28-32	4	10	0.267	26.7%
33-37	3	13	0.2	20%
38-42	2	15	0.133	13.3%
Total	15	-	1.0	100%

Algoritmo para Criar Classes em Distribuição de Frequência

A criação de classes (ou intervalos de classe) em uma distribuição de frequência é um passo fundamental na análise de dados, pois nos permite agrupar os valores de uma variável contínua em intervalos que facilitam a análise e a visualização. Esse processo é especialmente útil quando temos um grande número de dados e queremos resumir a distribuição deles de maneira eficaz.

Passos para Criar Classes em Distribuição de Frequência

Aqui estão os principais passos para construir as classes de uma distribuição de frequência:

1. Determinação do Número de Classes

PROFESSEUR: M.DA ROS

O número de classes a ser usado pode ser definido com base no número total de observações ou de acordo com critérios específicos. Um critério comum para determinar o número de classes é a **regra de**

Sturges, que pode ser calculada da seguinte maneira:

 $k = 1 + 3.322 \log(n)$

Onde:

- \$k\$ é o número de classes
- \$n\$ é o número de dados na amostra

2. Determinação do Intervalo das Classes

O intervalo (ou amplitude) de cada classe é calculado com base na diferença entre o valor máximo e o valor mínimo dos dados, dividida pelo número de classes:

\$\text{Amplitude da Classe} = \frac{\text{Valor Máximo} - \text{Valor Mínimo}}{k}\$

3. Criação das Classes

A partir do valor mínimo dos dados, criamos intervalos consecutivos (classes) com a amplitude definida no passo anterior. Cada classe deve cobrir um intervalo de valores dentro do conjunto de dados.

4. Distribuição dos Dados nas Classes

Cada valor do conjunto de dados é alocado na classe correspondente com base em seu valor. Ao final, cada classe terá uma frequência absoluta (número de elementos que caem dentro do intervalo da classe).

Exemplo Prático

Vamos usar um conjunto de dados fictício de idades, como já foi mostrado anteriormente:

Passo 1: Determinar o Número de Classes

Para calcular o número de classes \$ k \$, usamos a fórmula de Sturges:

 $k = 1 + 3.322 \log(15)$

Vamos calcular:

 $k = 1 + 3.322 \log(15) \exp(15) + 3.322 \times 1.176 = 1 + 3.91 \exp(35)$

Arredondamos para o número inteiro mais próximo, ou seja, 5 classes.

Passo 2: Determinar o Intervalo das Classes

Agora, calculamos a amplitude das classes. O valor mínimo é 18 e o valor máximo é 40.

 $\text{Model} = \frac{40 - 18}{5} = \frac{22}{5} = 4.4$

Arredondamos para o número inteiro mais próximo, ou seja, 4. Agora sabemos que cada classe terá uma amplitude de 4.

Passo 3: Criar as Classes

Com a amplitude de 4, criamos as classes a partir do valor mínimo (18). As classes serão:

- 18-22
- 23-27
- 28-32
- 33-37
- 38-42

Passo 4: Distribuição dos Dados nas Classes

Agora vamos distribuir os dados nas classes:

- **18-22**: 18, 22, 22 (3 dados)
- 23-27: 24, 26, 26 (3 dados)
- **28-32**: 28, 30, 30, 32 (4 dados)
- **33-37**: 32, 34, 36 (3 dados)
- **38-42**: 38, 40 (2 dados)

Tabela Completa com os Cálculos

Intervalo de Idade	Frequência Absoluta (f)	Frequência Acumulada (F)	Frequência Relativa (fr)	Frequência Percentual (fp%)
18-22	3	3	0.2	20%
23-27	3	6	0.2	20%
28-32	4	10	0.267	26.7%
33-37	3	13	0.2	20%
38-42	2	15	0.133	13.3%
Total	15	-	1.0	100%

Resumo do Algoritmo para Criar Classes

- 1. Determine o número de classes (usando a fórmula de Sturges ou outra metodologia).
- 2. Calcule a amplitude das classes com base no intervalo total dos dados.
- 3. Crie as classes a partir do valor mínimo dos dados, utilizando a amplitude calculada.
- 4. **Distribua os dados nas classes** e calcule a frequência de cada classe.
- 5. Calcule as frequências acumuladas, relativas e percentuais.

Esse processo permite agrupar os dados de maneira eficiente, ajudando a visualizar e entender melhor a distribuição dos valores na amostra.

Exemplo de Distribuição de Frequência para Dados de Ponto Flutuante

Quando lidamos com dados de ponto flutuante (decimais), o processo de criação de classes e a construção da tabela de distribuição de frequência segue a mesma lógica, mas devemos estar atentos às casas decimais para definir corretamente os intervalos e garantir uma análise precisa.

Passos para Criar Classes em Distribuição de Frequência para Dados de Ponto Flutuante

- 1. Determine o número de classes, utilizando a fórmula de Sturges ou outra metodologia.
- 2. **Calcule a amplitude das classes**, considerando o intervalo dos dados e a precisão necessária para os números decimais.
- 3. **Crie as classes**, com intervalos baseados na amplitude calculada, ajustando as casas decimais conforme necessário.
- 4. **Distribua os dados nas classes**, contando quantos valores caem dentro de cada intervalo.
- 5. Calcule as frequências acumuladas, relativas e percentuais, como na tabela de dados inteiros.

Exemplo Prático com Dados de Ponto Flutuante

Vamos considerar um conjunto de dados fictício de idades com pontos flutuantes:

```
[18.2, 22.5, 22.1, 24.3, 26.7, 26.4, 28.9, 30.0, 30.5, 32.8, 32.2, 34.1, 36.3, 38.5, 40.2]
```

Passo 1: Determinar o Número de Classes

Utilizando a fórmula de Sturges para o número de classes \$ k \$:

 $k = 1 + 3.322 \log(n)$

Onde \$ n = 15 \$, portanto:

 $k = 1 + 3.322 \log(15) \exp(15) + 3.322 \times 1.176 = 1 + 3.91 \exp(5.91)$

Arredondamos para 6 classes.

Passo 2: Determinar o Intervalo das Classes

O valor mínimo é 18.2 e o valor máximo é 40.2. A amplitude da classe é calculada da seguinte forma:

supprox 3.67

A amplitude será de aproximadamente 3.7. Vamos arredondar para 3.7.

Passo 3: Criar as Classes

As classes serão definidas a partir do valor mínimo, com a amplitude de 3.7:

- 18.2 21.9
- 22.0 25.7
- 25.8 29.5
- 29.6 33.3
- 33.4 37.1
- 37.2 40.9

Passo 4: Distribuição dos Dados nas Classes

Agora vamos distribuir os dados nas classes:

- **18.2 21.9**: 18.2, 22.1 (2 dados)
- **22.0 25.7**: 22.5, 24.3, 26.4 (3 dados)
- **25.8 29.5**: 26.7, 28.9, 30.0 (3 dados)
- **29.6 33.3**: 30.5, 32.8, 32.2 (3 dados)
- **33.4 37.1**: 34.1, 36.3 (2 dados)
- **37.2 40.9**: 38.5, 40.2 (2 dados)

Tabela Completa com os Cálculos

Intervalo de Idade (Classe)	Frequência Absoluta (f)	Frequência Acumulada (F)	Frequência Relativa (fr)	Frequência Percentual (fp%)
18.2 - 21.9	2	2	0.133	13.3%
22.0 - 25.7	3	5	0.2	20%
25.8 - 29.5	3	8	0.2	20%
29.6 - 33.3	3	11	0.2	20%
33.4 - 37.1	2	13	0.133	13.3%
37.2 - 40.9	2	15	0.133	13.3%
Total	15	-	1.0	100%

Resumo do Algoritmo para Criar Classes em Dados de Ponto Flutuante

- 1. **Determine o número de classes** (com base na fórmula de Sturges ou outras).
- 2. Calcule a amplitude das classes, considerando a precisão decimal dos dados.
- 3. Crie as classes a partir do valor mínimo e usando a amplitude calculada.
- 4. **Distribua os dados nas classes** e calcule a frequência absoluta de cada classe.
- 5. Calcule as frequências acumuladas, relativas e percentuais.

Essa abordagem permite a construção de uma distribuição de frequência precisa para dados de ponto flutuante, ajudando na visualização e compreensão da distribuição dos dados.

Tipos de Distribuição de Frequência

Existem diferentes formas de representar e organizar distribuições de frequência, dependendo do tipo de dados e da análise desejada:

• Distribuição de Frequência Simples:

Quando os dados são organizados em uma única variável, sem a necessidade de subdividir em mais categorias ou características.

• Distribuição de Frequência Agrupada:

Usada quando os dados são contínuos ou têm muitos valores diferentes. Neste caso, os dados são agrupados em intervalos.

Distribuição de Frequência Cumulativa:

A distribuição de frequência acumulada mostra como os dados se acumulam à medida que você avança pelas classes. Essa distribuição é útil para visualizar a quantidade total de dados até um determinado ponto.

Por que Utilizar Distribuição de Frequência?

1. Simplificação dos Dados:

Organizar os dados em uma distribuição de frequência torna a análise mais simples, permitindo identificar padrões e tendências de forma rápida.

2. Visualização das Características dos Dados:

As distribuições de frequência ajudam a visualizar a dispersão, a concentração de valores e a simetria ou assimetria dos dados. Isso é importante para entender a distribuição dos dados e decidir sobre a melhor análise estatística a ser feita.

3. Comparação de Dados:

PROFESSEUR: M.DA ROS

Permite a comparação entre diferentes conjuntos de dados ao examinar suas distribuições de frequência. Você pode comparar distribuições de diferentes variáveis ou até de diferentes grupos de indivíduos.

4. Fundamento para Cálculos Estatísticos:

A distribuição de frequência é a base para muitos cálculos estatísticos, como a média, mediana, moda, desvio padrão, entre outros.

Uso de Ferramentas na Construção de Distribuições de Frequência

No contexto de análise de dados, o uso de ferramentas de software, como **Python**, é essencial para automatizar, validar e realizar cálculos precisos em grandes volumes de dados. Ao criar distribuições de

frequência, a análise manual pode ser complexa e propensa a erros, enquanto ferramentas como **pandas**, **numpy** e **matplotlib** permitem realizar esses cálculos e gerar visualizações de maneira rápida e eficiente. Abaixo, discutimos o uso dessas ferramentas e por que elas são importantes no processo de criação de distribuições de frequência.

Exemplo python

- No seguinte link Distribuição de frequência COLAB Python há um exemplo completo em python de distribuição de frequência
- No seguinte link Gerar dataset COLAB

Para executar os arquivo acima abra o site COLAB Research

Por Que Usar Ferramentas no Processo de Distribuição de Frequência?

1. Automatização do Processo:

 A criação de uma tabela de distribuição de frequência envolve várias etapas: cálculo de classes, contagem de elementos em cada classe, cálculo de frequências acumuladas e relativas, entre outros. Ao usar ferramentas, podemos automatizar todo esse processo, o que não só economiza tempo, mas também reduz as chances de erro humano.

2. Escalabilidade:

 Para grandes volumes de dados, a análise manual se torna inviável. Ferramentas como pandas são projetadas para lidar com datasets grandes, permitindo que você trabalhe com milhões de dados de forma eficiente, sem perder desempenho.

3. Precisão nos Cálculos:

 Calculando distribuições de frequência manualmente, há sempre o risco de cometer erros ao contar ou arredondar valores. Ferramentas de software garantem que os cálculos sejam feitos com precisão, seguindo fórmulas matemáticas bem definidas.

4. Visualização:

PROFESSEUR: M.DA ROS

Uma das principais vantagens de usar ferramentas como matplotlib ou seaborn em Python
é a capacidade de gerar visualizações, como histogramas, que permitem uma interpretação
rápida e intuitiva dos dados. As visualizações são essenciais para comunicar os resultados de
maneira clara e eficaz para diferentes públicos.

5. Facilidade de Reprodutibilidade:

 Ao utilizar ferramentas e escrever código para análise de dados, você cria um processo que pode ser facilmente reproduzido. Isso é especialmente importante quando você precisa realizar a mesma análise em diferentes conjuntos de dados ou em atualizações futuras dos dados.

Exemplo de Implementação com Python

Aqui está um exemplo de como Python pode ser utilizado para calcular e visualizar uma distribuição de frequência com dados de ponto flutuante. Utilizamos as bibliotecas **pandas** para manipulação dos dados e **matplotlib** para visualização.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Dados fictícios de ponto flutuante
dados = [18.2, 22.5, 22.1, 24.3, 26.7, 26.4, 28.9, 30.0, 30.5, 32.8, 32.2,
34.1, 36.3, 38.5, 40.2]
# Criação do DataFrame
df = pd.DataFrame(dados, columns=['Idade'])
# Número de classes a partir da fórmula de Sturges
num_classes = 6
# Definindo os intervalos com a amplitude dos dados
bins = np.histogram_bin_edges(df['Idade'], bins=num_classes)
labels = [f"{int(bins[i])}-{int(bins[i+1])}" for i in range(len(bins)-1)]
# Criando a tabela de distribuição de frequência
df['Classe'] = pd.cut(df['Idade'], bins=bins, labels=labels, right=False)
# Calculando a frequência absoluta (f), acumulada (F), relativa (fr) e
percentual (fp%)
tabela_freq = df['Classe'].value_counts().sort_index().reset_index()
tabela_freq.columns = ['Classe', 'f']
tabela_freq['F'] = tabela_freq['f'].cumsum()
tabela_freq['fr'] = tabela_freq['f'] / tabela_freq['f'].sum()
tabela_freq['fp (%)'] = tabela_freq['fr'] * 100
# Exibindo a tabela
print(tabela_freq)
# Gerando um histograma para visualização
plt.hist(df['Idade'], bins=bins, edgecolor='black', alpha=0.7)
plt.title('Histograma de Idade')
plt.xlabel('Faixa Etária')
plt.ylabel('Frequência')
plt.show()
```

Resultado Esperado

A execução desse código resultará em:

1. **Tabela de Frequência**: Mostrando as classes, frequência absoluta, acumulada, relativa e percentual, como já discutido anteriormente.

2. **Histograma**: Uma representação visual da distribuição dos dados, facilitando a compreensão de sua dispersão e concentração.

O uso de ferramentas de análise de dados, como Python e suas bibliotecas (pandas, numpy, matplotlib), oferece vantagens significativas quando estamos lidando com grandes volumes de dados e processos de análise complexos. Além de garantir a precisão dos cálculos, essas ferramentas permitem gerar visualizações claras, reprodutibilidade e, o mais importante, facilitam a tomada de decisões informadas com base nos dados.

Conclusão

A **distribuição de frequência** é uma das ferramentas mais poderosas e versáteis na estatística. Ela ajuda a organizar, descrever e analisar dados, tornando-os mais compreensíveis e acessíveis para tomada de decisões. Seja em uma análise exploratória de dados, em um estudo de amostra ou na modelagem de dados para aprendizado de máquina, entender como construir e interpretar distribuições de frequência é um passo fundamental para qualquer análise estatística.