### The 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023)

# On-ramp Merging on Highway for Cooperative Automated Vehicles based on an Online Reconfigurable Formation Control Approach

Lyes Saidi <sup>1</sup>, Reine Talj <sup>1</sup> and Lounis Adouane <sup>1</sup>

<sup>1</sup> Heudiasyc laboratory, CNRS, Université de Technologie de Compiègne, France







#### **Context & Goals**

#### **Context:**

# On-ramp merging on highway performed by Autonomous Vehicles (AVs)



Fig 1. On-ramp merging on highway performed by AVs

- Ego-centered resulting merging maneuver,
- Lake of anticipation and synchronization,
- Not **efficient** in terms of **energy consumption**.

# On-ramp merging on highway performed by Cooperative and Automated Vehicles (CAVs)



Fig 2. On-ramp merging on highway performed by CAVs

- Cooperative on-ramp merging maneuver,
- Anticipation is improved using surrounding CAVs information, shared using communication,
- Synchronization permits to improve the energy efficiency.

#### **Goals:**

- The online adaptation of the inter-target distance matrix proposed in [1] [2] for open world to on-road constrained environment,
- Ensure safe and smooth on-ramp merging on highway maneuver for CAVs.

[1] L. Saidi, L. Adouane and R. Talj, CORM: Constrained Optimal Reconfiguration Matrix for Same On-Ramp Cooperative Merging of Automated Vehicles, IEEE International Conference on Intelligent Transportation Systems, Macau, China, pp. 2783-2790, 2022.

[2] J. Vilca, L. Adouane and Y. Mezouar, Stable and Flexible Multi-Vehicle Navigation Based on Dynamic Inter-Target Distance Matrix, IEEE Transactions on Intelligent Transportation Systems, vol 20, pp. 1416- 1431, 2019.

### Scenario



# Plan

- The proposed control architecture
- The Formation Reconfiguration Approach based on an Online Control Strategy (FRA-OCS)
- Simulation results
- Conclusion and perspectives

#### The control architecture skeleton



### The formation reconfiguration control architecture skeleton



[3] L. Saidi, L. Adouane and R. Talj, Altruistic Coordination Strategy for On-Ramp Merging on Highway of a Formation of Cooperative Automated Vehicles, International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 2023.

### FRA-OCS: Formation Reconfiguration Approach based on an Online Control Strategy



[1] L. Saidi, L. Adouane and R. Talj, CORM: Constrained Optimal Reconfiguration Matrix for Same On-Ramp Cooperative Merging of Automated Vehicles, IEEE International Conference on Intelligent Transportation Systems, Macau, China, pp. 2783-2790, 2022.

#### Nominal mode: simulation results

#### Simulation scenario:

#### **Context:**

The simulation presents an on-ramp merging on highway scenario of Cooperative Automated Vehicles (CAVs). The scenario is performed using the FRA-OCS. Under the communication range of the road side unit, the merging of  $CAV_m$  is operated using the cooperative mode of the proposed control architecture.



### Scenario 1

## **Online formation reconfiguration:**

The FRA-OCS computes with the help of the velocity generator the needed formation dynamic to perform the passing sequence selected by the cooperative mode.



#### Scenario 2

### Online formation reconfiguration:

The highway CAV in yellow decides to join the formation what causes a configuration switch. FRA-OCS computes the needed dynamic to perform the new passing sequence, while ensuring the continuity of the CAVs dynamics.



## **Conclusion and perspectives**

- Safe and smooth on-ramp merging approach for Cooperative and Automated Vehicles (CAVs).
- A two steps strategy:
  - 1. Formation modeling using the virtual structure,
  - 2. Formation reconfiguration: online computation of the trajectory and velocity generator parameters w.r.t. sq.
- Several simulations were conducted in order to test the performance of the proposed strategy.

#### **Future work:**

- Compare the performance of the proposed FRA-OCS to other on-ramp merging approaches.
- Include communication delays and deal with uncertainty.