6	
	Quick Review
	$\int \chi^3 \left(\chi^2 + 8\right)^5 d\chi$
	V -
Solv	$\det u = \chi^2 + 8 \cdot \frac{du}{dx} = 2\chi \Rightarrow \frac{du}{2\chi} = d\chi.$
1 ,	
17	$\left(\chi^{3}(\chi^{2}+8)^{5}d\chi = \int \chi^{3} u^{5} \frac{du}{2\chi}\right)$
-	$u = \frac{1}{2} \int x^2 u^5 du$
	$=\frac{1}{2}\int (u-8) dt du$
	$=\frac{1}{2}\left[\int u^6 du - 8\int u^6 du\right]$
	$=\frac{1}{2}\left[\frac{u^{7}}{7}-8\frac{u^{6}}{6}\right]+C$
	$= \frac{1}{2} \left[\frac{(\kappa^2 + 8)^7}{7} - \frac{8}{6} (\kappa^2 + 8)^6 \right] + C.$
	Ans
- 11	

	(2) $\int \left(e^{-3x} - \frac{e^{2x}}{4 - e^{2x}}\right) dx$
Soln.	$\int_{-\infty}^{\infty} e^{-3x} dx - \int_{-\infty}^{\infty} \frac{e^{2x}}{4 - e^{2x}} dx.$
æt u 	
Thusg	
	=- \frac{1}{3}e^{-1} + \frac{1}{2}\ln(\frac{1}{4}e^{-1}) \frac{1}{2}. Ans

		J
6.3	De finite Integral.	7
	given a continuous function $f(x)$ on on interested in determining the area bounded by the graph of $f(x)$, the $x-axis$, and the lines $x=a$ and $x=b$.	os cas
	One can begin to approximate this area using	S.
	the so-called Riemann & Sums.	aviv.
	This area is of interest.	8 9 9
The	idea is to break down the domes interval. [a,b] into subintervals, choosing gome point from the subinterval and forming the nectargles	-
- 11	The above area under $f(x)$.	-

Notice, that the Right Riemann Sum this age of the
gives me an onea greater than the neguited
area whereas Bleft Riemann sum is less wo
whether f is increasing on decreasing.
Also, notice that if we increase the number of
intervals n, then we can get a better
approximation of our required area
7 7
× ×
Thus, the best possible scenario is if we let
$n \rightarrow \infty$
and look at
1 (FR() () () () () () () () () () () () () (
$\lim_{n\to\infty} \left(\left[f(x_1) + f(x_2) + \dots + f(x_n) \right] \Delta_n \right) \text{where } \Delta_n = \frac{b-a}{n}$
and x1, x2, xn we any ambithary points in the
and x1, x2, xn are any ambitmeny points in the hespective subinternals. (- for the Riemann Sum-chase night en
- for Door Riemann Sum-choose left end pointe)
end winto
- Pourid
II

(Definition). 10
det $f: \ \bullet \ [a,b] \to R \ be a function.$
9 $\lim_{n\to\infty} \left[f(x_1) + \cdots + f(x_n) \right] \Delta_n$ exists and the
when - Upper Riemann Sum is considered
- Lower Riemann Sum is considered
and in both cases, weather the limit is the same,
then we call this limit the definite integral
If from a to b, denoted by.
$\int_{\alpha} f(x) dx . Thus, \int_{\alpha} f(x) dx = \lim_{n \to \infty} \left[f(x_i) \Delta_n + f(x_i) \Delta_n + 1 f(x_i) \Delta_n \right]$
where x,, , ~ m and can be (i) the left-end points one
II LA
(i) the sught end points of the subinitervals.
v ·
Remark: Actually a this works even for arbitrarily chosen points
1 0 - it colled 0 - 0 - 1 0 1 1 0 1
a - is salled lower limit of integration
b - is called upper limit of integration.

• We say f is integrable on [a, b] if the above limit exists.

Theorem: If f is continuous, then f is integrable i.e. $\int_a^b f(x) dx$ exists.

Thus, in this case, the definite integral gives the Area

under the Curve.

FIGURE 15 $\int_a^b f(x) dx = \text{Area of } R_1$ - Area of R_2 + Area of R_3

Thus, here it is not exactly the area under the curve. We have to make suitable sign changes if we were to compute the definite integral geometrically.

Remark: Area must always be positive. Thus, if we were to compute an area under the x-axis using integration say e.g. R_2 in the above figure, then since the f(x)-values are negative, the integral will come out to be negative. So, area will be negative of the integration. However, in the above scenario, we are not computing area; Thus it says minus of the area; so we computed the area R_2 and then associated a minus sign to it.

الم ص	
Example	Use a Riemann Sum with fout subindervale
	(n=4) to approximate the area under the
	curve f(x) = x2 + 1 over the interval [0, 1].
	Choose the representative points to be the
	sight-end points of the subintervals.
Coln:	y = 4, y = 1, a = 0
243.	$\Delta = \frac{b-a}{b-a}$
	$=\frac{1-0}{4}=\frac{1}{4}$
	0 1 × 3/4
	$\alpha_{2} = 0 + 2 \cdot \frac{1}{4} = \frac{1}{2}$
	$\eta_3 = 0 + 3.\frac{1}{4} = \frac{3}{4}$
The	approximate area is.
	4. f(1/4) + f(1/2). 1/4 + f(3/4). 1/4 + f(1). 3/4
	$=\frac{1}{4}\left(\frac{1}{16}+1\right)+\frac{1}{4}\left(\frac{1}{4}+1\right)+\frac{1}{4}\left(\frac{9}{16}+1\right)+\frac{1}{4}\left(1+1\right)\approx 2 \left(1-\frac{1}{4}\right)$

[6.4]	The Fundamental Theorem of Calculus (FTC)
	of the state of th
	Et f be continuous on [a,b]. Then
	$\iint f(x) dx = F(b) - F(a)$
- 0	where F is any anti-desirative of f; ie. F'(n)-f(n)
Notation	I of F'(x) = f(x), then we usually write.
	$\int_{a}^{b} f(x) dx = F(x) \Big _{a}^{b} = F(b) - F(a).$
\$.9	$F(x)$ $\frac{4}{3}$ means $F(4)-F(3)$.
	de in steden to God
Trus	in order to find
	If(x)dx, we can o first find
	$\int f(x) dx \text{which gives a family of}$ Functions $F(x) + C$.
	then find (5) (5) (5) = E(1) - E(2)
	(F(b)+C)-(F(a)+C)=F(b)-F(a)
	(19et aid of C and only compute this

A to	oical Problem Asked in the Exam.
- det	A be the area in the xy-plane bounded by
-the	A be the area in the xy -plane bounded by x -axis and the lines $y=x+1$, $x=1$, $x=4$.
Dete	arnine A by
(i)	using geometry
(ii)	with a definite integral.
Sofn:	This is the
	$\begin{array}{c c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$
(i)	Ahea of 4 triangle = $\frac{1}{2} \cdot 3 \cdot 3 = \frac{9}{2}$.
	Atten of nectangle = $2.3 = 6$.
	Total area $A = \frac{9}{2} + 6 = \frac{21}{2} = 10.5$
(i)	$\int (x+1) dx = \int x dx + \int dx$
	$\frac{1}{2} = \frac{x^2 ^4}{2!} + \frac{x ^4}{1}$
	$= \left(\frac{16}{2} - \frac{1}{2}\right) + \left(1 - 1\right) = 8 - \frac{1}{2} + 3 = 11 - \frac{1}{2}$
	Thus, they match!

-	
Wa	hrung
	To apply FTC, it is crucial that
	to apply the children that
	f is continuous.
<u>₽.g</u>	$\int_{-1}^{1} dx \qquad \frac{1}{z^2} \text{is not continuous at 0}.$
	if we apply -1 1 Athea is extremely big.
FTC, -	fion ()
-1 -1	$dx = (-\frac{1}{2}) = (-1) - (-1) = -1 - 1 = -2$ Negative
	Absurd.
State T/F	Let $F(x) = -\frac{10}{x-2}$, and $f(x) = \frac{1}{(x-2)^2}$. Since $F'(x) = f(x)$,
	by FTC we have $\int_{1}^{3} f(x) dx = F(3) - F(1) = -2$.
Ans:	False. f is not a continuous at $x = 2$.

Rema	l: $\circ \int f(x) dx$ is a class of functions $F(x) + C$. • $\int f(x) dx$ is a geal number between the two!!
	7
	· (f(x)dx is a geal number & huge difference
	a between the two!!
Net	Change Formula.
	0
	If f' is continuous on [a,b], then
	6
	$\int f'(x)dx = f(b) - f(a).$
ċ.e	the net change is obtained by integrating the nate of
	change over the interval under consideration.
[0 a]	
	A concert sijust ended. People are leaving through the
	gate @ 100 ft + 300 people/min. (for 0 st s4)
	How many people left in the first 4 mins?
	V V ·
Soln:	Let f(t) be the no of people walking out at & minute.
	Thus, we need $f(4)-f(0)$.
	4
	$f(4)-f(0)=\int (100)(t+300)dt=(50t^2+300t)^{1/4}$
	0
	= 50x 16 + 300x4 = 2000
	Ans
	· —