ML school audio track

Deep Learning II

Dr. Paul Wallbott

iStock.com | monsitj

Organisation

Table 1

Date // Time	Мо	Tu	We	Do
9.30 – 11.00		Exercise I	Exercise III	
11.15 – 12.45		Deep Learning I	Keyword Spotting	
13.00 – 14.15				
14.15 – 15.45	Welcome	Exercise II	Exercise IV + Wrap Up	
16.00 - 17.30	Intro to Audio	Deep Learning II		

- Rough schedule, might change during the days
- Exercises in small groups
 - You will fill in the missing code in jupyter notebooks

Open Questions and exercise feedback

Lets go over the notebook together

Agenda

- We will discuss some typical problems when training DL models
 - Overfitting / underfitting
 - L1, L2 Regularization
 - Weight decay
 - Dropout
 - Data sparsity
 - Data augmentation
- Advanced model architectures
 - Convolutional neural networks
 - Temporal convolutions
 - Layer types (pooling, flattening, batch norm, ...)

Overfitting diagnosis

- We have discovered overfitting
 - Train accuracy goes up while val accuracy stays constant or drops
 - Large gap between accuracies on val and train set

Mini exercise

- What is going wrong in the overfitting case?
- What is going wrong in the underfitting case?

Solution

- What is going wrong in the overfitting case?
 - Too many parameters
 - Outliers
- What is going wrong in the underfitting case?
 - Not enough parameters

Underfitting

- Model is not powerful enough (e.g., higher order polynomial)
- features could be better
 - Data distribution can be explained with x,y
 - Alternatively use the right feature r --> one variable sufficient

$$x^{2}+y^{2} < R^{2} \qquad (x,y)$$

$$r < R \qquad (r, p)$$

Overfitting

- Training process
 - Stop training early "early stopping"
- Manual degree of freedom reduction
 - less layers or neurons per layer
- Data pre processing
 - Remove outliers
- Regularization
 - Methods that reduce degree of freedom
 - Physics: Enforce symmetries!

Regularization I: L1, L2

- Weight penalty term in loss
 - unnecessary weights driven to 0
 - Reduces the number of parameters of the final model
- Most common types
 - L2 regularization / weight decay
 - L1 regularization (used less often)
- Keras adds regularizer layerwise
 - "kernel_regularizer = keras.regularizers.l2(0.01)"
 - Allows to add only some weights to the loss

$$L \rightarrow L + \sum_{i=1}^{k} w_{i}^{2}$$

$$L \rightarrow L + \sum_{i=1}^{k} |w_{i}|$$

Regularization II: Dropout

Hinton et al., 20212

- Idea:
 - All neurons can randomly drop out with probability p of a training step
 - A group of distinct but similar models are trained (ensemble), that share weights
 - On inference (test, validation) p = 0
- Practical application
 - Training choose p in [0.1,0.5]
 - Keras has extra dropout layer: keras.layers.Dropout
- Improves almost all trainings

Regularization III: Batchnorm

- Mean 0 and variance 1 normalization improves generalization of networks for several reasons
- Want this at several points in the network!
- But what are mean and variance of the dataset at particular point in neural network?
 - Use all data in batch for component wise optimization
- Keep moving average of mu and sigma in memory during training
 - During inference, use whole training sets average instead of batch for statistics

Frei nach https://en.wikipedia.org/wiki/Batch_normalization

Regularization IV: Data augmentation

- More data is better!
 - Language ambiguation task
 - Can prevent overfitting (previous slides)
- More data are expensive --> augmentation
 - Use data we have to create more
- How to create more data?
 - Vary data quality (e.g., resolution)
 - Vary experimental conditions (e.g, lighting)
 - Force network to learn symmetries (rotation, shifts)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/acl2001.pdf

Mini Exercise

- Create a list of augmentation measures applied directly to audio data
 - Specifically for the keyword spotter, what could be varied to obtain more robust results?
 - Could help to think about humans listening to others
- We train on image data (spectrograms). What could we use for images?

Regularization IV: Audio augmentation

- Audio
 - Pitch (how high or low the speaker speaks)
 - Speed
 - Amplitude (loud?)
 - Different background noises and noise levels
- Spectrograms
 - Translation to recognize parts of word (why not rotations?)
 - Covering random parts of the image (spec augment)

CNNs I: Definition + Intuition

- Convolutional neural networks (CNNs)
- Inspired by classical image processing
 - Grayscale image is matrix of values (Time x Frequency)
 - Apply a filter to generate a new image (e.g., that shows the edges)
 - Mathematically apply kernel (often 3x3) with fixed weights (9)
- Drag a fixed size kernel over the image to get a new image
- Perform weighted sum + activation

https://setosa.io/ev/imagekernels/

CNNs I: Definition + Intuition

- Convolutional layer applies n kernels
- Each kernel has
 - A size / receptive field of e.g. 3x3 for 2D convolution, grayscale image
 - unique weights (w1,...,w9)
 - Produces 1 distinct feature map, aka new image
 - Weights are learned during training
- CNN layers have very few parameters and can learn great features
 - Example is 1D: advantage scales with dimensionality!

Mini Exercise

- What is the difference between a fully connected feed forwared network and a CNN? Explain it using the following example:
 - Draw a fully connected layer with 3 input and 2 output neurons
 - Draw a convolutional layer with 3 input neurons 2 output neurons and a kernel of size 2 (or 2 x 1) and one feature map
 - How many unique weights do the 2 variants have?

Solution

- What is the difference between a fully connected feed forwared network and a CNN? Explain it using the following example:
 - Draw a fully connected layer with 3 input and 2 output neurons
 - Draw a convolutional layer with 3 input neurons 2 output neurons and a kernel of size 2 (or 2 x 1) and one feature map
 - How many unique weights do the 2 variants have?

CNNs II: Padding, Pooling, Stride

- Lets take the model builders perspective
- To get same size output feature map use padding (add frame of 0s to original image)
- To reduce feature map dimensionality use
 - stride. How far do we jump when sliding window over image?
 - pooling layers (with pooling size). Combine local groups of pixels to one pixel (average, max, min)
- Great visualization of all types of convolutions <u>here</u>

https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html

CNNs III: resnet

- Want deep architectures for good performance (many parameters)
- Problem: E.g., vanishing gradient over to many layers
- Solution: Use skip connections and learn residuals (resnet)

Source: He et. Al 2016: Deep residual learning

CNNs IV: Convolutions in time

- Could think of MFCCs as (T x F x 1) grayscale image
 - use 2D convolutions for keyword spotting
- Think of it as time series (T x 1 x F) or (T x 1) image with F color channels!
 - 1D convolution in time now considers all frequencies simultaneously
 - Decrease parameters while first layer already knows all frequency input
 - Smaller output image
- Can use many layers on the reduced size image

CNNs V: TC resnet

from the spectrogram

Source: Choi et al., 2019

Exercise

- We will use what we have learned to improve our keyword spotter
- Work through exercise 3b
 - Add the new model
 - Add the data augmentation pipeline to create more data
 - Add dropout etc.
- Goal: In the end we should have a good classifier