Notation

Strings, arrays, sets

i, j, k, n	Integer numbers.
[ij], [ij]	The set of integers $\{i, i+1, \ldots, j-1, j\}$ and its cardinality
	j - i + 1.
$\mathbb{I}(x,y),\mathbb{I}(x)$	A function that returns the set of integers $[ij]$ associated with
	the pair of objects (x, y) . We use $\mathbb{I}(x)$ when y is clear from the
	context.
$\vec{x}, \vec{x}, \vec{x}, \vec{x} $	Assume that $\mathbb{I}(x, y) = [ij]$, where both function \mathbb{I} and object y
	are clear from the context. Then, $\vec{x} = [ij], \vec{x} = i, \vec{x} = j$, and
	$ \vec{x} = [ij] .$
$\Sigma = [1\sigma]$	Alphabet of size σ . All integers in Σ are assumed to be used.
$\Sigma \subseteq [1u]$	An ordered alphabet, in which not all integers in $[1u]$ are
	necessarily used. We denote its size $ \Sigma $ with σ .
a, b, c, d	<i>Characters</i> , that is, integers in some alphabet Σ . We also call
	them symbols.
$T=t_1t_2\cdots t_n$	A <i>string</i> , that is, a concatenation of characters in some alphabet
	Σ , with character t_i at position i . We use the term sequence in
	a biological context.
$T \cdot S, t \cdot s$	Concatenation of strings T and S or multiplication of integers
	t and s, with the operation type being clear from the con-
	text. We sometimes omit · if the operands of the concatena-
<i>T</i>	tion/multiplication are simple.
T = ACGATAGCTA	A <i>string</i> , with characters given explicitly and represented as
T	letters of the English alphabet.
$\frac{T}{\mathcal{I}}$	The reverse of a string T , i.e. string T read from right to left.
L	The reverse complement of a DNA sequence T, that is, string
	T read from right to left, replacing A with T and C with G, and
T	vice versa. The substring t to the of string T induced by the indexes
T_{ij}	The <i>substring</i> $t_i t_{i+1} \cdots t_{j-1} t_j$ of string T induced by the indexes in $[ij]$.
T[i,j]	- •-
T[ij]	Equivalent to T_{ij} , used for clarity when i or j are formulas rather than variables.
	ration than variables.

subsequence	A string $t_{i_1}t_{i_2}\cdots t_{i_k}$ obtained by selecting a set of positions $1 \le$
suosequence	$i_1 < i_2 < \cdots < i_k \le n$ and by reading the characters of a
	string $T = t_1 t_2 \cdots t_n$ at those positions. In a biological context,
$\mathcal{S} = \{T^1, T^2, \dots, T^n\}$	subsequence is used as a synonym of substring.
,	Set of strings, with T^i denoting the <i>i</i> th string.
$\Sigma^*, \Sigma^+, \Sigma^n$	The set of all strings over alphabet Σ , the set of all non-empty
	strings over alphabet Σ , and the set of strings of length n over
	alphabet Σ , respectively. We use shorthand $A = a^n$ for $A \in$
	$\{a\}^n$, that is, for a string consisting of <i>n</i> occurrences of <i>a</i> .
$\delta(ij,c)$	A function that maps an interval [ij] and a character $c \in \Sigma$
	onto exactly one interval $[i'j']$.
$\dots, \#_2, \#_1, \#_0$	Shorthands for non-positive integers, with $\#_0 = 0$ and $\#_i = -i$.
#	Shorthand for $\#_0$.
$\$_1, \$_2, \dots$	Shorthands for positive integers greater than σ , with $\$_i = \sigma + i$.
\$	Shorthand for $\$_1$.
A[1n]	<i>Array A</i> of integers, indexed from 1 to <i>n</i> .
$A[ij], A[\overrightarrow{x}]$	The <i>subarray</i> of array A induced by the indexes in $[ij]$ and in
	\vec{x} , respectively.
X = (p, s, v)	Triplet of integers, with primary key $X.p$, secondary key $X.s$,
	and value $X.v.$
D[1m, 1n]	An $array/matrix$ with m rows and n columns.
$D_{i_1j_1,i_2j_2}$	Subarray of D.
$D[i_1j_1, i_2j_2]$	Same as above.
$d_{i,j} = D[i,j]$	An element of the array <i>D</i> .

Undirected graphs

Figure 2 An undirected graph G = (V, E), with vertex set V and edge set E.

V(G)	Set V of vertices of a graph $G = (V, E)$.
E(G)	Set E of edges of an undirected graph $G = (V, E)$.
$(x,y) \in E(G)$	An edge of an undirected graph G ; the same as (y, x) .
N(x)	The <i>neighborhood</i> of x in G, namely the set $\{y \mid (x, y) \in E(G)\}$.

Directed graphs

Figure 3 A directed graph G = (V, E), with vertex set V and arc set E.

$(x,y) \in E(G)$	An arc of a directed graph G ; the arc (x, y) is different from (y, x) .
$N^-(x)$	The in-neighborhood of x in G , namely the set $\{y \mid (y, x) \in E(G)\}$.
source	A vertex v is a source if $N^-(v) = \emptyset$.
$N^+(x)$	The out-neighborhood of x in G , namely the set $\{y (x, y) \in E(G)\}$.
sink	A vertex v is a sink if $N^+(v) = \emptyset$.
$P = v_1, \ldots, v_k$	A path in G , namely a sequence of vertices of G connected by
	arcs with the same orientation, from v_1 to v_k ; depending on the
	context, we allow or not <i>P</i> to have repeated vertices.
s-t path	Path from vertex <i>s</i> to vertex <i>t</i> .
$C = v_1, \ldots, v_k, v_1$	A cycle in G, namely a path in G in which the first and last vertex
	coincide; depending on the context, we allow or do not allow C
	to have other repeated vertices than its first and last elements.
$(x,y) \in S$	Arc $(x, y) \in E(G)$ appears on S, where S is a path or cycle of G.

Trees

Figure 4 A tree $\mathcal{T} = (V, E)$, with *node* set V and *edge* set E. Unless stated otherwise, we assume all trees to be *ordered*, that is, we assume that there is a total order on the children of every node.

v_2 is a child of v_1	If there is an edge between v_1 and v_2 and v_1 appears on the path
	from the root to v_2 .
v_1 is the parent of v_2	If v_2 is the child of v_1 .
degree of a node v	The number of children of <i>v</i> .
leaf	A node with degree 0.
internal node	A node with degree at least 1.
unary node	A node with degree 1.
depth of v	The number of edges of the path from the root to v .
subtree rooted at v	The subtree of \mathcal{T} having root v and consisting of all nodes
	reachable through a path starting at v made up only of nodes
	of depth at least the depth of v.
v_2 is descendant v_1	If $v_2 \neq v_1$ belongs to the subtree rooted at v_1 .
v_1 is ancestor v_2	If $v_2 \neq v_1$ belongs to the subtree rooted at v_1 .
$LCA(v_1, v_2)$	The <i>lowest common ancestor</i> of v_1 and v_2 , that is, the deepest
	node which is an ancestor of both v_1 and v_2 .
$\overline{\mathcal{V}}$	The left-most leaf of the subtree rooted at a node <i>v</i> .

The right-most leaf of the subtree rooted at a node v.

 \vec{v}