BPA电网模型导入 DIgSILENT的研究和开发

孙竞凡 3110104734

导师: 甘德强

项目背景

- 采用单一的电力仿真软件已经难以满足实际需要[1]:
 - 不同软件采用的模型或者数值计算方法可能不同,在功能上也会有差异
 - 不同的软件在计算规模上有差别
 - 由于新型电力元件的不断出现,某些软件在元件模型库上可能存在不足
- BPA应用广泛、数据丰富,不能修改和自定义元件模型
- DIgSILENT功能强大,图形化操作,自定义元件^[2]
 - [1] 李广凯, 李庚银. 电力系统仿真软件综述[J]. 电气电子教学学报, 2005, 27(3): 61-65.
 - [2] 吕涛, 韩祯祥. 电力系统仿真软件 DlgSILENT 介绍[J]. 华东电力, 2005, 32(12): 37-41.

项目研究现状

文献[3]分析了BPA和DIgSILENT的数学模型,通过DIgSILENT的DPL语言和DGS接口,结合VC6和DPL实现了数据导入。

^[1] 马龙义. BPA与PSS/E仿真模型分析与转换研究[D]. 华南理工大学, 2010.

^[2] 马龙义, 武志刚, 侯冠基, 等. BPA 与 PSS/E 的暂稳态模型比较和数据转换[J]. 电力系统及其自动化学报, 2010, 22(5): 128-134.

^[3] 刘庆, 张东英, 刘燕华, 等. BPA 电网模型自动导入 DIgSILENT 的研究和开发[J]. 电力系统保护与控制, 2014, 42(16): 112-117.

项目主要内容与特点

	DPL	Python
适用性	$\sqrt{}$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
可读性	$\sqrt{}$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
调试功能	×	$\sqrt{}$
实现操作	一般	复杂
第三方接口	×	$\sqrt{}$

表1. Python和DPL的比较

图1. Python Module 通过API与PowerFactory交互示意图

- 本项目主要内容是通过Python语言实现由BPA到DIgSILENT之间的数据转换,完成潮流计算并进行比较。
- 项目特点在于使用Python完成数据转换。
- DigSILENT中Python有利于[1]:
 - 任务自动化执行
 - 创建用户自定义的运算指令
 - 将DIgSILENT整合到其他应用程序之中

[1] PowerFactory. User's Manual DIgSILENT PowerFactory. Version 14.0 DIgSILENT GmbH. Gomaringen, Germany July 2010. Publisher: DIgSILENT GmbH. Page 976-980.

BPA和DIgSILENT的 数据转换关系

元件类型	BPA	DIgSILENT	转换公式
母线	定义了 13 种类型母线	通过制定母线相 连元素的特性确 定母线的属性	
线路	$R_{BPA} \ X_{BPA} \ B_{BPA}$	$R_{DIg} \ X_{DIg} \ B_{DIg}$	$R_{DIg} = R_{BPA} \times (U_B^2)/S_B$ $X_{DIg} = X_{BPA} \times (U_B^2)/S_B$ $B_{DIg} = 2 \times B_{BPA} \times (U_B^2)/S_B$
变压器	R_T X_T	P_k $U_k\%$	$P_{k} = \frac{1000S_{NT}^{2}R_{T}}{U_{NT}^{2}} \times \frac{U_{B}^{2}}{S_{B}}$ $U_{k}\% = \frac{100S_{NT}X_{T}}{U_{NT}^{2}} \times \frac{U_{B}^{2}}{S_{B}}$
	B_T G_T	$I_0\%$ P_0	$I_0\% = \frac{{}^{100B_TU_{NT}^2}}{{}^{S_{NT}}} \times \frac{{}^{S_B}}{{}^{U_B^2}}$ $P_0 = 1000G_TU_{NT}^2 \times \frac{{}^{S_B}}{{}^{U_B^2}}$
发电机	M X_{BPA}	$T X_{DIg}$	$T = M/S_{NG}$ $X_{DIg} = X_{BPA} \times S_B/S_{NG}$
负荷、电抗	填写在 B 卡和 + 卡上	专门的负荷和电抗元件	

表2. BPA-DIgSILENT数据转换关系[1]

[1] 刘庆, 张东英, 刘燕华, 等. BPA 电网模型自动导入 DIgSILENT 的研究和开发[J]. 电力系统保护与控制, 2014, 42(16): 112-117.

程序实现流程

图2. 数据转换程序流程

节点名	电压等级	直接计算		导入计算	
	/kV	幅值/p.u.	相角/(°)	幅值/p.u.	相角/(°)
母线1	230	1.039	-3.4	1.039	-3.46393
母线2	230	1.043	-0.7	1.043	-0.7466709
母线3	230	1.053	-1.3	1.053	-1.30707
母线A	230	1.006	-6.2	1.006	-6.161529
母线B	230	1.022	-5.5	1.022	-5.463974
母线C	230	1.032	-3.1	1.032	-3.145084
发电机1	16.5	1.01	0	1.01	0
发电机2	18	1.01	5.1	1.01	5.093619
发电机3	13.8	1.01	1.5	1.01	1.516313

节点名	电压等级	直接计算		导入计算	
	/kV	幅值/p.u.	相角 /(°)	幅值/p.u.	相角 /(°)
BUS-1	100	1.047	-9.6	1.046809	-9.602738
BUS-2	100	1.048	-7.0	1.047052	-7.029467
BUS-3	100	1.030	-9.9	1.027007	-9.884633
BUS-4	100	1.004	-10.7	1.00084	-10.68566
BUS-5	100	1.005	-9.5	1.002952	-9.494038
BUS-6	100	1.007	-8.8	1.005436	-8.789464
BUS-7	100	0.997	-11.0	0.9948063	-11.00165
BUS-8	100	0.996	-11.5	0.9938655	-11.5098
BUS-9	100	1.028	-11.3	1.027325	-11.33503
BUS-10	100	1.017	-6.4	1.014925	-6.393861
BUS-11	100	1.012	-7.2	1.01047	-7.211021
BUS-12	100	1.000	-7.2	0.9976709	-7.225505
BUS-13	100	1.014	-7.1	1.011684	-7.109368

节点名	电压等级 /kV	直接计算		导入计算	
		幅值/p.u.	相角 /(°)	幅值/p.u.	相角 /(°)
BUS-14	100	1.011	-8.8	1.008226	-8.783199
BUS-15	100	1.015	-9.2	1.009275	-9.191731
BUS-16	100	1.032	-7.8	1.024576	-7.762237
BUS-17	100	1.034	-8.8	1.02802	-8.781325
BUS-18	100	1.031	-9.6	1.026305	-9.634572
BUS-19	100	1.050	-3.2	1.047044	-3.112279
BUS-20	100	0.991	-4.6	0.989222	-4.531725
BUS-21	100	1.032	-5.4	1.026271	-5.326154
BUS-22	100	1.050	-0.9	1.046251	-0.8390043
BUS-23	100	1.045	-1.1	1.04055	-1.03279
BUS-24	100	1.037	-7.7	1.026016	-7.631142
BUS-25	100	1.057	-5.6	1.055651	-5.662408
BUS-26	100	1.052	-6.9	1.048973	-6.915023

节点名	电压等级 /kV	直接计算		导入计算	
		幅值/p.u.	相角 /(°)	幅值/p.u.	相角 /(°)
BUS-27	100	1.037	-8.9	1.033	-8.933213
BUS-28	100	1.050	-3.4	1.048	-3.392054
BUS-29	100	1.049	-0.6	1.048	-0.6260201
BUS-30	100	1.047	-4.6	1.047	-4.604645
BUS-31	100	0.982	0.0	0.982	0.0
BUS-32	100	0.983	1.6	0.983	1.620698
BUS-33	100	0.997	2.1	0.997	2.106795
BUS-34	100	1.012	0.6	1.012	0.6582742
BUS-35	100	1.049	4.0	1.049	4.14102
BUS-36	100	1.063	6.7	1.063	6.850825
BUS-37	100	1.027	1.1	1.027	1.135931
BUS-38	100	1.026	6.4	1.026	6.43863
BUS-39	100	1.030	-11.1	1.03	-11.14407

图3. 转换结果误差比较

- 通过比较BPA中直接计算和进行转换后在DIgSILENT 中计算潮流的结果,可以看出:
 - 两种方式下的潮流计算结果基本一致
 - 相比于幅值结果,相角误差相对较大
 - 微小的差异主要由于模型转化过程中数据保留的有效位数不同所致
- 综上所述,BPA导入DIgSILENT数据转换程序的开发 达到了设计要求

谢谢