Project 3: NLP Challenge

Maria Eduarda Oliveira, Adrián A. H., Matheus Viana, Kira Redberg

Executive summary

Final result: accuracy of 94.77%

Model: LogisticRegression + XGB

Other alternatives:

- Naive Bayes Model
- Random Forest Classifier
- Convolutional Neural Network (CNN) + Embedding
- LogisticRegression + Embedding

Methods (preprocessing)

```
2- Load and check the data

1  # Reads the CSV file using "\" as separator
2  df = pd.read_csv("training_data_lowercase.csv", sep='\t', engine='python', names=['label', 'title'])
3
4  # Show first few rows of the dataframe
5  print(df.head())
6
```


Methods (preprocessing)

1. Load & Split Data

Load train/test datasets and split the training data into train/validation sets.

2. Text Features

Extract sentiment, subjectivity, and clickbait indicators from headlines.

3. Structural Features

Count! and?, measure capitalization ratio, text length, and lexical diversity.

4. Vectorization

Convert text into numerical form using Bag-of-Words and TF-IDF (1–3-grams, 10k features each).

5. Feature Combination

Merge BoW, TF-IDF, and all extra numeric features into a single feature matrix for model training.

Methods (models)

Optimizing CNN Parameters for Higher Accuracy

```
Deep Neural Network (Sequential Model)
from tensorflow.keras.optimizers import Adam
model = Sequential([
   Dense(512, activation='relu', input shape=(X train final.shape[1],),
          kernel_regularizer=regularizers.12(0.002)),
    BatchNormalization(),
   Dropout(0.4),
   Dense(256, activation='relu', kernel regularizer=regularizers.12(0.001)),
    BatchNormalization(),
   Dropout(0.3),
   Dense(128, activation='relu', kernel_regularizer=regularizers.12(0.001)).
   Dropout(0.25),
   Dense(1, activation='sigmoid')
1)
optimizer = Adam(learning rate=1e-3)
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
```

Key Adjustments Made:

- Adding Layers to increase model depth and capture more complex patterns.
- Changing the Number of Neuronsto optimize the network's capacityand avoid under/overfitting.
- 3. **Adjusting Dropout Rate** to reduce overfitting and improve generalization.

Training vs Validation accuracy: **FIXING OVERFITTING**

427/427	2s 5ms/step - accuracy: 0.9843 - loss: 0.1206 - val_accuracy: 0.9287 - val_loss: 0.3317 - learning_rate: 2.50
Epoch 25/25	
427/427	2s 5ms/step - accuracy: 0.9822 - loss: 0.1391 - val_accuracy: 0.9312 - val_loss: 0.3259 - learning_rate: 2.50
Epoch 24/25	
427/427	2s 6ms/step - accuracy: 0.9778 - loss: 0.1562 - val_accuracy: 0.9287 - val_loss: 0.3297 - learning_rate: 5.00
Epoch 23/25	
427/427	2s 5ms/step - accuracy: 0.9776 - loss: 0.1676 - val_accuracy: 0.9308 - val_loss: 0.3197 - learning_rate: 5.00
Epoch 22/25	
427/427	2s 5ms/step - accuracy: 0.9684 - loss: 0.2122 - val_accuracy: 0.9322 - val_loss: 0.3196 - learning_rate: 5.00
Epoch 21/25	
427/427	2s 6ms/step - accuracy: 0.9627 - loss: 0.2312 - val_accuracy: 0.9293 - val_loss: 0.3394 - learning_rate: 0.00
Epoch 20/25	
427/427	2s 5ms/step - accuracy: 0.9652 - loss: 0.2255 - val_accuracy: 0.9278 - val_loss: 0.3413 - learning_rate: 0.00
Epoch 19/25	

Final Validation Accuracy: 0.9322
214/214 ______ 1s 3ms/step

<pre>Class</pre>	ifica	tion Report:			
40.000		precision	recall	f1-score	support
	0	0.93	0.93	0.93	3515
	1	0.93	0.93	0.93	3316
accuracy				0.93	6831
macro	avg	0.93	0.93	0.93	6831
veighted	avg	0.93	0.93	0.93	6831

STEP BACK TO PREPROCESS DATA AGAIN

Emotional analysis FAKE NEWS VS REAL NEWS


```
Emotion lexicons - anger, disgust, surprise
nltk.download("wordnet")
nltk.download("omw-1.4")
lemmatizer = WordNetLemmatizer()
emotion_seeds = {
    "anger": ["anger", "rage", "furious", "outrage", "hate", "mad", "irritated", "annoyed"],
    "disgust": ["disgust", "gross", "nasty", "horrible", "filthy", "vile", "repulsive", "sick
    "surprise": ["surprise", "shock", "amazing", "unexpected", "astonishing", "wow", "sudden
def get synonyms(word):
    syns = set()
    for syn in wordnet.synsets(word):
        for lemma in syn.lemmas():
            name = lemma.name().replace("_"," ").lower()
            if len(name) > 2:
                syns.add(name)
    return syns
```

Takeaways

• Text representation matters most.

Upgrading from basic TF-IDF to semantic embeddings significantly improved generalization.

• Simple ≠ weak.

Logistic Regression, when enhanced with proper features and ensemble boosting, outperformed deeper neural networks.

• Hybrid approaches win.

Combining linear models for structure + tree models for interaction patterns delivered the best accuracy and stability.

Balanced evaluation is crucial.

Equal F1 for both classes shows model fairness — essential in fake news detection.

Feature engineering is still king.

Sentiment, subjectivity, and clickbait cues added valuable context beyond raw text.