Prezime:

lme: _____

br.ind.: _____

1. Oko kvadrata je opisan krug. Na slučajan način se bira tačka iz kruga. Kolika je verovatnoća da je izabrana tačka u kvadratu?

P =

2. Nezavisne slučajne promenljive X i Y imaju istu raspodelu $\mathcal{N}(m,\sigma)$.

Koju raspodelu ima slučajna promenljiva Z = X - Y?

3. Za uzorak obeležja sa normalnom raspodelom testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ nije odbačena nulta hipoteza sa pragom značajnosti 5%. Da li se odbacuje nulta hipoteza testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ sa pragom značajnosti 10%?

DA NE Nekad DA, nekad NE

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $ss_x = \sum_{i=1}^n (x_i - \bar{x}_n)^2$, $ss_y = \sum_{i=1}^n (y_i - \bar{y}_n)^2$, $s_{xy} = \sum_{i=1}^n (x_i - \bar{x}_n)(y_i - \bar{y}_n)$, $\bar{x}_n = \frac{1}{n}\sum_{i=1}^n x_i$, $\bar{y}_n = \frac{1}{n}\sum_{i=1}^n y_i$. Formule za r, b, a, preko ss_x , ss_y , s_{xy} , \bar{x}_n , \bar{y}_n : $r = \frac{1}{n}\sum_{i=1}^n x_i$

b =

Rekonstruisati uzorak $(x_1,...,x_n)$ čija je empirijska funkcija raspodele data levo:

Naći uzoračku varijansu $\bar{s}_n^2 =$

Statistika - test

Novi Sad, 12. II 2018.

Prezime: _____ Ime: ____

br.ind.: ____

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathcal{F}, P) staviti znak =, \leq , \geq u polje gde važi, ostaviti prazno ako ništa od toga ne važi.

$$P(A \cup B) \square P(A \cap B), \qquad P(A \cup B) \square P(A) + P(B),$$

 $P(A \cap B) \bigcap P(A|B)$.

2. Nezavisne slučajne promenljive X, Y i Z imaju istu raspodelu $\mathcal{N}(0,1)$.

Koju raspodelu ima slučajna promenljiva
$$U = \frac{X}{\sqrt{\frac{1}{2}(Y^2 + Z^2)}}$$
?

3. Za obeležje čija očekivana vrednost je E(X)=m permutacionim testom nulte hipoteze $H_0(m=m_0)$ protiv $H_1(m>m_0)$ odbačena je nulta hipoteza sa pragom značajnosti 0.05. Da li bi se odbacila nulta hipoteza testiranjem $H_0(m=m_0)$ protiv $H_1(m\neq m_0)$ sa pragom značajnosti $\alpha=0.05$?

DA	NE	Nekad DA, nekad NE

4. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije za uzorak u kome X uzima 4 moguće vrednosti i Y uzima 3 moguće vrednosti sa $\alpha = 0.05$.

Sa kvantilima koje raspodele se poredi statistika $\theta = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o \acute{c}ekivano)^2}{o \acute{c}ekivano}$, gde se suma uzima po svih $4\cdot 3=12$ ćelija?

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Rekonstruisati uzorak $(x_1,...,x_n)$ čija je empirijska funkcija raspodele data levo:

Naći Modus uzorka Mo =

Statistika - test

Novi Sad, 12. II 2018.

Prezime:

Ime: _____

br.ind.: _____

1. Bacaju se dve kockice. Kolika je verovatnoća da je zbir manji od 9?

P =

- 2. Ako $S_n: \mathcal{B}(n,p)$ i $\lim_{n\to\infty} n\,p=\lambda=const$, za konačno k, aproksimacija Poasonovom raspodelom je $\lim_{n\to\infty} \binom{n}{k}\,p^k\,(1-p)^{n-k}=$
- 3. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije sa $\alpha=0.05$. Realizovana vrednost statistike $\chi^2=\sum_{sve\ \acute{c}elije}\frac{(ostvareno-o\check{c}ekivano)^2}{o\check{c}ekivano}$ sa 6 stepeni slobode iznosi $\chi^2=12$.

Dat je deo tabele kvantila Pirsonove χ^2 raspodele

$n \setminus F$.9000	.9500	.9750	.9900	.9950
6	10.6	12.6	14.4	16.8	18.5

Da li su obeležja *X* i *Y* nezavisna?

DA

NE

Nekad DA, nekad NE

4. U analizi varijanse, koji znak stoji između *E* (*SSTR*) i *E* (*SST*)?

 \leq

 \geq

=

Kako kad

5. Za normalnu raspodelu $Z: \mathcal{N}(0,1)$, i Studentovu raspodelu $T: t_{n-1}$ izračunati skewness.

Za
$$Z: \mu_3/\mu_2^{(3/2)} =$$

Za
$$T: \mu_3/\mu_2^{(3/2)} =$$

Statistika - test

Novi Sad, 12. II 2018.

Prezime:

lme: _____

br.ind.: _____

1. Ako je P(A) = 0.7, P(B) = 0.9 i P(AB) = 0.4, izračunati

$$P(A\bar{B}) =$$

$$, P(A \cup B) =$$

$$P(A|B) =$$

2. Izračunati uzoračku korigovanu standardnu devijaciju za uzorak (1,3,3,5).

$$\bar{s}_n' =$$

- 3. Ako nezavisne slučajne promenljive X i Y imaju istu χ_m^2 raspodelu, koju raspodelu ima statistika $Z=rac{X}{\sqrt{m}}?$
- 4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $ss_x = \sum_{i=1}^n (x_i \bar{x}_n)^2$, $ss_y = \sum_{i=1}^n (y_i \bar{y}_n)^2$, $s_{xy} = \sum_{i=1}^n (x_i \bar{x}_n) (y_i \bar{y}_n)$, $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$, $\bar{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$. Formule za r, b, a, preko ss_x , ss_y , s_{xy} , \bar{x}_n , \bar{y}_n : r = b = 0

a =

Nacrtati boxplot uzorka čija je empirijska funkcija raspodele data levo:

FTN SIIT / IIS

Statistika - test

Novi Sad, 12. II 2018.

Prezime: _____ Ime: ____ br.ind.: ____

1. U kutiji su sve figure za šah. Izvlači se na slučajan način 6 figura sa vraćanjem. Kolika je verovatnoća da je izvučeno tačno 2 topa? (Zapisati pomoću binomnih koeficijenata)

P =

- 2. Za obeležje sa normalnom raspodelom $X: \mathcal{N}(m,\sigma)$, statistika $\frac{n\bar{S}_n^2}{\sigma^2}$ ima ______ raspodelu.
- 3. Posmatra se masa u kg osobe koja se pridržava dijete. Pretpostavlja se da masa ima normalnu raspodelu. Za sve osobe i = 1, 2, ..., n zna se masa pre dijete X_i i posle dijete Y_i .

Za testiranje uspešnosti dijete koristi se _____ i alternativnom hipotezom _____ i.

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $\hat{y}_i = a + bx_i$, $i = 1, 2, \dots, n$.

Koji znak stoji između $\frac{1}{n}\sum_{i=1}^{n}\hat{y}_{i}$, i $\frac{1}{n}\sum_{i=1}^{n}y_{i}$?

 \leq

 \geq

=

Zavisi od y_i

Za uzorak iz boxplota levo očitati:

5.

min =

max =

IQR =

 $Q_1 =$

 $Q_2 =$