elexyux 1 no 1A

Линейные пространства.

Опр. лин. пр-ва. Ущеть С-ми-во элементов модой природа, которые мы будем называть векторами и обозначать В, У, Е ...

Густь IR - ин-во действит. ruces.

Tiyoro na mu-bax Lu R onpegenenos 2 операция, кот наз. линевними операциям

1-2 onepayus - 500 CLOXEHUR 31-Buy L,

KONDAR KAXGOD noupe 21-6 8, 9 EL

CTabut & cootbetctbue 21-7 ZEL,

который наз. суммог эл-в \overline{Z} и \overline{g} и \overline{g} и \overline{g} $\overline{g$

2-2 onepaigus - 700 ymnoxenue 31-6 mg/ Ha rucha y R, Koropae Kaxgony FINTY ZEL U KOXPONY TUCNY LER CTOBUT B COOTBETCTBUE 31-T WEL KONDORD HOZ. MPOUZBEGENNEY 31-TO Z HO gelicitur rucio & 4 odozn. W=XX.

JUCTO gul Trux MUH. Onepaeycus вып. след аксионый они наз аксионани лин. пр-ва):

- 1) ROMMYTATUBHOCZ CNOXEHUR: ∀\$,\$\vec{y} \in L \vec{x} + \vec{y} = \vec{y} + \vec{x};
- 2) accoynambroch croxenul: $\forall \vec{x}, \vec{y}, \vec{z} \in L \quad (\vec{x}+\vec{y}) + \vec{z} = \vec{x} + (\vec{y}+\vec{z}) ;$
- 3) cycles bobance nelipaneror 21-50 gue croxence: $\exists \vec{\sigma} \in L: \ \forall \vec{x} \in L \ \vec{\sigma} + \vec{x} = \vec{x}$
- 4) cycyectbobance nporubonosoknoro 31-70

 VREL J-REL: R+(-R)=B;
- 5) npouzbegenue →1-b uz L на едининуу из R. V R ∈ L 1.R=R;
- 6) accognation of inpassegence: $\forall x, y \in \mathbb{R}$ $\forall \vec{x} \in L (xy)\vec{x} = x(y\vec{x})$;
- 7) quesputyribhoch no rucnam: Vx, BER VXEL (V+B) = XX+BX;
- 8) quespusyinshows no betopan: $\forall x \in \mathbb{R} \ \forall \vec{x}, \vec{j} \in L \ \mathcal{L}(\vec{x} + \vec{j}) = d\vec{x} + d\vec{y}.$

Thorga MH-BO L HOZ. NUHECINEOUS

[UNU BEKROPHONY) MP-BON HOG MH-BON

gercibut, rucen R. PTO KOHEY

onpegenerus

- 1) V1, V2, V3 elen-ba beex clos beknopob
 nperior, mockoch une np-ba;
- D Mmn (R) ми-во матрину типа тхп, элементами которых авл. действия числа; частые случась;

 - 8) Mns encopuegos-conorgos.
- (3) мн-во всех решений однородной, СЛАУ;
- (4) мн-во всех непрерывных фусей на[ав].
- (5) мн-во всех многочленов от одног, переменног степени < n.

Линейная	30 Bucernoch	и незовисимося
777004		The state of the s

Unp Jugero L- were up-b. Cucremor berropol may rompermone неупорядоченных набор векторов. Trogencressor cucress may modal чась (подмен-во) этой системы.

Oup Cucrema bekropob Zi,..., Ze my лин. пр-ва L нау. линейно zabucunos, Hezabucunos,

их нетривиальная лин. комбинацию, равная д, т.е.

 $\exists \lambda_1,...,\lambda_k \in \mathbb{R}$, $ecau \lambda_1 \overline{\lambda}_1 + ... + \lambda_k \overline{\lambda}_k = \overline{O}$, He be pabhonengy $TO \lambda_1 = 0,...,\lambda_k = 0$ $\lambda_1 \overline{\lambda}_1 + ... + \lambda_k \overline{\lambda}_k = \overline{O}$ $T.e. Poloko ux TPUB AUH. KOMB. Pabha <math>\overline{O}$)

Теорема (Критериц лин. зависти се

cell. creg.cp.

Cucrema berropob $\vec{x}_1, ..., \vec{x}_k \in L$ ebs.

where of Hegabicumoes

Zabycumal Xore бы один из них ebneerce

Hejabucumog III HU OGUH UZ HUX HE RENRETER

линевнов комбинацией останьных вектров.

Cregarbus

Пресли система векторов содержия нулевой вектор д, то она лин. завые.

- 2) Если система векхоров содержия лин. завис. подсистему, то она лин. завис.
- 2) 1) Eens cucrema berropol sun rejahic. TO MOTOR et nogcercrema mun rejablic.
 - 2) Если системо векторов лин. независ и вектор ў Е L не явл. их лин. комбиначием, то ракширенная система, сост. щ исходной селет. и ў, мин. независима.

Опр Базисом лин. пр-ва L наз. мобая упорядоченная система векторов таках, что 1) жа система лин. независема, и 2) MODER BEKROP NP-BO L MOXINO представить в виде лин. комбинация beknopol son cercremon. Hanp., nycro €,..., es ∈ L oague & L. TO 03 Hayaes, 470 1) et,..., et лин. независ., се 2) VREL = X1,..., X4 ER: 7= X, e, + ... + X, e, (1) Zanuce (1) rag. pazioxerieri Bekrypa z no sagucy e,.., en, zanuc. E координатион виде. Разможение векхорай по базмое $\vec{e}_1, ..., \vec{e}_n$ можно записать в маритном виде: $\vec{x} = (\vec{e}_1 ... \vec{e}_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ подробно UNU Z= EX (ye maspuyt E=(\vec{e}_1, ... \vec{e}_n), X=(\vec{x}_1 \)

Опр Координачание вектора в базисе

лин. пр-все L наз. конфрициент

разложения это вектора по данному

базисе.

Ободн. Z={x1,..., x4} в базисе Е,..., Ей.

Теорема о единственност разложениер вектора по базису. Разложение вектора по базису

equencitéerres.

Creschie Roopgunais berropa 6 Fagure oupequivoral equincol objesson.

Теорема о лин. операциях над вектораму. в коорд. Форме

- 1) Гіри сложений векторов их коорд-пот (в данном базисе)складываются.
- 2) При умножении вектора на чисто его координать умнох. на это киемо.

(8)

1)
$$\vec{x} = x_1 \vec{e}_1 + ... + x_n \vec{e}_n$$
 $\vec{f} \Rightarrow \vec{f} = \vec{f} = y_1 \vec{e}_1 + ... + y_n \vec{e}_n$ $\vec{f} \Rightarrow \vec{f} = (x_1 \vec{e}_1 + ... + x_n \vec{e}_n) + (y_1 \vec{e}_1 + ... + y_n \vec{e}_n) = (x_1 \vec{e}_1 + y_1 \vec{e}_1 + ... + x_n \vec{e}_n) + (y_1 \vec{e}_1 + ... + y_n \vec{e}_n) = (x_1 + y_1) \vec{e}_1 + ... + x_n \vec{e}_n + y_n \vec{e}_n$

$$= (x_1 + y_1) \vec{e}_1 + ... + (x_n + y_n) \vec{e}_n$$

2)
$$\vec{x} = x_1 \vec{e}_1 + \dots + x_n \vec{e}_n \Rightarrow \text{no auc. } 8$$
)
 $\Rightarrow \vec{x} = \vec{x} (x_1 \vec{e}_1 + \dots + x_n \vec{e}_n) = \text{no auc. } 8$)
 $= \vec{x} (x_1 \vec{e}_1) + \dots + \vec{x} (x_n \vec{e}_n) = \text{no auc. } 6$)
 $= (\vec{x} \times \vec{e}_1) + \dots + (\vec{x} \times \vec{e}_n) = \vec{e}_n$
 $= (\vec{x} \times \vec{e}_1) + \dots + (\vec{x} \times \vec{e}_n) = \vec{e}_n$
 $= (\vec{x} \times \vec{e}_1) + \dots + (\vec{x} \times \vec{e}_n) = \vec{e}_n$
 $= (\vec{x} \times \vec{e}_1) + \dots + (\vec{x} \times \vec{e}_n) = \vec{e}_n$

Опр. Размерностью лин. пр-ва нау. максимальное количество лин. независ. векторов жого пр-ва.

Odozne. dim L.

кол-во лин. независ. ECNY MORKE. векторов в Ц He cycyectyes, pabreo n,

1) I cucrema y п лин. независ. векторов, и

2) MOTAL CUCTEMA и большего колва векторов лин. jakicema,

Yn I cercrema щ п лин. независ векторов,

n- сперном $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ \frac 70 np-Ro L Haz.

Teopena 1. Если в лик. пр-ве L Эбазис из п векторов, TO MIH. Mp-Ro L M-chepno. 2. Если лин. пр-во L п-мерно, 70 MODOG ero dazenc cocrour up n beknopob. Георема. Если лин. пр-во L п-мерко, no modas sun negatic. cucrema y n berropob els. ero sagucon.

Marpuya nepexoga

Jugaro L - n-cueprece num np-bo $E = (\vec{e}_1 ... \vec{e}_n), E' = (\vec{e}_1' ... \vec{e}_n')$ gba $E = (\vec{e}_1 ... \vec{e}_n')$ $E = (\vec{e}_1' ... \vec{e}_n')$

Tycho $\vec{e}_1' = u_1 \vec{e}_1 + \dots + u_n \vec{e}_n$ $\vec{e}_n' = u_n \vec{e}_1 + \dots + u_n \vec{e}_n$ $unu \ b \ marpury (un) \ buse (un) (un)$ $(\vec{e}_1' \dots \vec{e}_n') = (\vec{e}_1' \dots \vec{e}_n') (un) \dots (un)$ $\kappa paako : \mathcal{E}' = \mathcal{E} \cdot \mathcal{U}_{\mathcal{E} \to \mathcal{E}'}$

Опр. Матрицей перехода от базиса \mathcal{E} к базису \mathcal{E}' наз. матрица $\mathcal{U}_{\mathcal{E} \to \mathcal{E}'}$, по сволбуам когорой сгает. координаго векторов базиса \mathcal{E}' относительно базиса \mathcal{E} .

Cb-ba marpuyor nepexoga

(1) det $U_{e \to e}$, $\neq 0$ <u>Cregorhre</u>. $\exists (U_{e \to e'})^{-1}$.

(2) $(U_{e \to e'})^{-1} = U_{e' \to e}$ (3) $U_{e \to e'} \cdot U_{e' \to e''} = U_{e \to e''}$

PODMENT MOROSPOROLLES MODDOLLES
Рормулы преобразования координа (12)
Jujoso Re L uneer K-101 X b daque & u X' b daque E!
UETEI - Marpuya nepexoga or ERE!
Morga X=UE>E'X
Don-lo.
To yeroburo $\vec{x} = \mathcal{E} \vec{X}$ (1) $\vec{x} = \mathcal{E}' \vec{X}'$ (2)
u E'= E UE>E1 (3).
Trogcrahm (3) B (2):
$\vec{\chi} = (\mathcal{E}\mathcal{U}_{\mathcal{E}}) \chi' = \mathcal{E}(\mathcal{U}_{\mathcal{E}}) \chi' $ (4).
ушн. могрину ассоциально Сроевнем (1) ч (4). В силу единства, разложения вектора по базису получия
$X = \mathcal{U}_{\varepsilon \to \varepsilon}, X'$
V.T.g.

Сканировано с CamScanner