Kepler Data Analysis

Richard Anderson

Fork updates:

https://github.com/Rander417/KeplerExoplanet

- New presentation
- Raw data pulled from CSV initially
- Pickled key data sets
- Refactored all notebooks

Forked from team project:

https://github.com/tom-ij-G/KeplerExoplanets

Columbia University – Fu School of Engineering

Data Analytics 6mo Program

My role was building the ML pipeline

- Data Cleaning
- EDA
- Preprocessing
- Building the ML models

Teammates:

Damien Corr, Priscilla Lin, Tom Greff

Kepler Mission Overview

The Kepler Telescope photometer consists of 21 CCD modules, each with two 2200x1024 pixel CCDs for a grand total of 94.6 million active pixels.

Source-https://keplerscience.arc.nasa.gov/the-kepler-space-telescope.html

https://www.nasa.gov/kepler/faq

Kepler Field of View (FOV)

https://www.nasa.gov/mission_pages/kepler/overview/index.html

4 Big Questions

Is the Object of Interest an Exoplanet?

Does EDA reveal interesting groupings?

Is the exoplanet in the habitable zone?

Can future observers use our models?

https://kepler-groupa.herokuapp.com/

Domain knowledge

CHALLENGES

- Astrophysics terminology
- Cryptic acronyms & abbreviations
 - Koi_tce_delivname, koi_fpflag_nt...
- Dense reference material
 - 382 pages!

KEPLER DATA PROCESSING HANDBOOK KSCI-19081-003

CELESTIAL COORDINATES

Declination corresponds to latitude & **Right Ascension** to longitude

https://skyandtelescope.org/astronomy-resources/right-ascension-declination-celestial-coordinates/

TRANSIT

When one object crosses in front of another in space

Transits by terrestrial planets produce a small change in a star's brightness of about 1/10,000 (100 parts per million, ppm), lasting for 2 to 16 hours.

https://exoplanets.nasa.gov/reso urces/1022/kepler-transit-graph/

FLUX

A star's apparent brightness

<u>https://bit.ly/2HBZvM3</u> https://bit.ly/34yWwNi

EDA & Preprocessing

Generally clean combination of numerical and categorical

Large number of nulls

Two Ys?!?

Unbalanced

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9564 entries, 0 to 9563 Data columns (total 50 columns): Column Non-Null Count rowid 9564 non-null int64 kepid 9564 non-null int64 kepoi name object 9564 non-null kepler name 2294 non-null object object koi disposition 9564 non-null koi pdisposition 9564 non-null object koi score 8054 non-null float64 koi fpflag nt int64 koi fpflag ss 9564 non-null int64 koi fpflag co 9564 non-null int64 koi fpflag ec 9564 non-null int64 koi period 9564 non-null float64 koi period err1 9110 non-null float64 koi period err2 9110 non-null float64 9564 non-null float64 koi time0bk err1 9110 non-null float64 koi time0bk err2 float64 9110 non-null float64 koi impact 9201 non-null float64 koi impact err1 9110 non-null koi impact err2 float64 9110 non-null koi duration 9564 non-null float64 koi duration err1 9110 non-null float64 koi duration err2 9110 non-null float64 koi depth 9201 non-null float64 koi depth err1 9110 non-null float64 koi depth err2 9110 non-null float64 koi prad float64 koi prad err1 9201 non-null float64 koi prad err2 9201 non-null float64 koi teg 9201 non-null float64 koi_teq_err1 0 non-null float64 koi teq err2 0 non-null float64 koi insol 9243 non-null float64 koi insol err1 9243 non-null float64 koi insol err2 9243 non-null float64 koi model snr 9201 non-null float64 koi tce plnt num 9218 non-null float64 koi tce delivname 9218 non-null object koi steff 9201 non-null float64 koi steff err1 9096 non-null float64 koi steff err2 float64 9081 non-null koi slogg 9201 non-null float64 koi slogg err1 9096 non-null float64 koi slogg err2 9096 non-null float64 koi srad 9201 non-null float64 45 koi srad err1 9096 non-null float64 46 koi srad err2 9096 non-null float64 47 ra 9564 non-null float64 48 dec 9564 non-null float64 49 koi kepmag 9563 non-null float64 dtypes: float64(39), int64(6), object(5) memory usage: 3.6+ MB

Handling Null Values

40k+ Null cells across 10k rows & 50 columns of data (500k cells)

363 rows with nulls after cleaning (including dropping +/- error columns)

We decided to drop the nulls due to their small volume & results of imputing

Impute methods evaluated:

```
koi srad
                                        Mean
                                                                                                                          right ascension
                                                                                                                          declination
   imputer mean = SimpleImputer(missing values=np.nan, strategy='mean')
                                                                                                                          Kepler band [mag]
                                                                                                                          TCE Delivery q1 q16 tce
                                                          Median
                                                                                                                          TCE Delivery q1 q17 dr24 tce
   keplerProcesser # Impute NaNs via Median
                                                                                                                          TCE Delivery q1 q17 dr25 tce
   keplerProcessed
                  imputer median = SimpleImputer(missing values=np.nan, strategy='median')
                                                                                                                          dtype: int64
                                                                                                    Mode
                   keplerProcessedMedianImpute df = kep
                                                       imputer mode = SimpleImputer(missing values=np.nan, strategy='most frequent')
                   keplerProcessedMedianImpute df.iloc[
Mode had a negative f1 impact while Mean
                                                       keplerProcessedModeImpute df = keplerProcessed df.copy(deep=True)
                                                       keplerProcessedModeImpute df.iloc[:,:] = imputer mode.fit transform(keplerProcessedMeanImpute df)
& Median had no discernable impact
```

keplerRAW df.isnull().sum().sum()

Ephemeris Match Indicates Contamination FPF

keplerProcessed df.isnull().sum().sum()

363

363

363

363

321

363

346

363

363

363

0

0

40557

3572

Exoplanet_Archive_Disposition
Not_Transit-Like_FPF
Stellar Eclipse FPF

Planetary Radius [Earth radii]

Equilibrium Temperature [K]

Transit Signal-to-Noise

Insolation Flux [Earth flux]

Centroid Offset FPF

Orbital_Period_[days]
Transit_Epoch_[BKJD]
Impact Parameter

Transit Duration [hrs]

Transit Depth [ppm]

TCE Planet Number

koi steff

koi slogg

Feature Analysis & A Tale of Two Ys

- Which target? Kepler Disposition vs Exoplanet Archive Disposition (EAD)
 - We chose EAD as it was the result of the most recent NASA analysis
 - ML models had a 99% f1 with kepler disposition
- We analyzed our features using the methods below
 - "Sequential Feature Selection" is part of the mlxtend library programmatically analyzes feature combinations

Feature Correlation

Feature Importance

Sequential Feature Selection

Future options

- Variance Inflation Factor
- Multicollinearity
 - Lasso regression

K-Means Clustering

- ⇒ For the three most important features, the major part of the object has a low transit depth (<20,000 parts/million), transit signal-to-lose (<2000) and stellar radius (<20 solar radii)
- ⇒ Object of interest are gathered for these important features

K-Means Clustering w/PCA

- ⇒ 6 clusters after using a <u>new</u> elbow curve
- \Rightarrow 36% of the information is lost when the four-dimension data were reduced to a two one
- ⇒ Confirmation that most of the data is consistent/homogeneous

Supervised Machine Learning

Logistic Regression - 83% f1

- Chosen since our questions are categorical
- Weaker results due to unbalanced data

- vv	caker re.	suits uu	ie to uni	Dalance	u uata
	precision	recall	f1-score	support	
0	0.68	0.57	0.62	534	
1	0.66	0.74	0.69	572	
2	0.98	1.00	0.99	1131	
accuracy			0.83	2237	
macro avg	0.77	0.77	0.77	2237	
weighted avg	0.83	0.83	0.83	2237	
	4				
Cradiani	Doosto	J Tuosa	OOO/f	1	

Gradient Boosted Trees - 90% f1

Chosen to better handle the data imbalance

	precision	recall	f1-score	support
0 1 2	0.82 0.81 0.98	0.78 0.83 1.00	0.80 0.82 0.99	534 572 1131
accuracy macro avg weighted avg	0.87 0.90	0.87 0.90	0.90 0.87 0.90	2237 2237 2237

Random Forest - 90% f1

Alternative to better handle the data imbalance

	pre	rec	spe	f1	geo	iba	sup
0	0.81	0.78	0.94	0.79	0.86	0.72	534
1	0.82	0.81	0.94	0.81	0.87	0.75	572
2	0.98	1.00	0.98	0.99	0.99	0.98	1131
avg / total	0.90	0.90	0.96	0.90	0.93	0.86	2237

Deep Neural Network - 84% f1

Uses relu and softmax

	precision	recall	f1-score	support
0 1 2	0.67 0.71 0.98	0.70 0.68 0.99	0.69 0.70 0.98	534 572 1131
accuracy macro avg weighted avg	0.79 0.84	0.79 0.84	0.84 0.79 0.84	2237 2237 2237

Graphing the results

Habitable or Not? The Goldilocks Zone

Is the Exoplanet in the Goldilocks Zone?

Habitable Criteria:

- Orbital period[days]: 200 ~ 400
- Stellar_effective_temperature > 5500 ~ 6500
- Stellar radius[solar radii]: 1 ~ 2
- Stellar surface gravity[log10(cm/s**2)]: > 4
- Stellar metallicity: > 0

Confirmed & Candidates: 2248

Habitable: 10

A giant planet composed mainly of gas

A giant planet composed mainly of gas

Prediction web-app

Takes new observations and predicts if the object is an exoplanet using our ML models

- Built with ES6/HTML
- Hosted online

https://kepler-groupa.herokuapp.com/

Centroid Offset PFF:0 | Next Trainit-Like PFF:0 | [Jehmenris Match Indicates Contamination PFF:0] | Trainit Depth Japan; 1:517:51 | Stellar Killyas PFF:0 | Trainit Signal ten Noise; 66:51 |

Technologies

