Foundations of Statistical Modeling

Prof. Dr. Stefan Kettemann Spring term 2024

Exercise sheet 3, submit on Monday March 18th, 2024 on Teams

Your name:

1. Basic Operations on Sets [5 points]

Let $S_1 = \{2,3,4\}$ and $S_2 = \{3,4,5\}$ which are both in the DVS $S = \{1,2,3,4,5,6\}$.

- a) Find their union $S_1 \cup S_2$ and their intersection $S_1 \cap S_2$.
- b) Find the union and the intersection of S_1^c and S_2^c . Check de Morgan's laws: 1. $(S_1 \cup S_2)^c = S_1^c \cap S_2^c$. 2. $(S_1 \cap S_2)^c = S_1^c \cup S_2^c$.
- c) Define $S_a = S_1 \times S_2$ and $S_b = S_2 \times S_1$. Find the union and the intersection of S_a and S_b .

2. Sigma Fields [5 points]

Let $S = \{3,4,5,6\}$.

- a) Give the power set Pot(S).
- b) Consider the sets of sets $F_1 = \{\emptyset, S\}$ and $F_2 = \{\emptyset, \{3,4\}, \{5,6\}, S\}$ on S. Show that they are both sigma fields on S. Find the union and the intersection of the sigma fields F_1 and F_2 .
- c) Find two other sigma fields F_3 and F_4 on S such that their union $G = F_3 \cup F_4$ is not a sigma field. Check whether their intersection is then a sigma field.

3. Generation of Sigma Fields and Borel Sigma Fields [5 P]

Let S = [0, 1] be the data value space.

- a) Generate a sigma field on *S* from the set $G_1 = \{\emptyset, S, (a, b) \text{ with } a < b \in S\}$.
- b) Generate a sigma field on S from the set $G_2 = \{\emptyset, S, (a, b), (c, d), \text{ with } a < b < c < d \in S\}.$
- c) Compare $\sigma(G_1)$ and $\sigma(G_2)$ with the Borel σ -field on S.

4. Sigma Fields and Measurable Spaces [2.5 P]

Let $\Omega = \{a,b,c,d\}$ be the universe and $S = \{3,4,5,6\}$ the data value space. Construct a non-trivial sigma field \mathscr{F} on S ($\{0,S\}$ is trivial!) and a sigma field A on Ω and an RV-function $X:\Omega \to S$ such that X is $A-\mathscr{F}$ - measurable.

5. Sigma Fields and Measurable Functions [2,5 P]

Let (S_1, \mathscr{F}_1) , (S_2, \mathscr{F}_2) , (S_3, \mathscr{F}_3) be measurable spaces. If $f_1: S_1 \to S_2$ and $f_2: S_2 \to S_3$ are respectively $\mathscr{F}_1 - \mathscr{F}_2$ and $\mathscr{F}_2 - \mathscr{F}_3$ -measurable functions, prove that $f_2 \circ f_1: S_1 \to S_3$, where $f_2 \circ f_1(x) := f_2(f_1(x))$ is $\mathscr{F}_1 - \mathscr{F}_3$ measurable.