Theorem Prover: Prototype Verification System

Thanks to Prof. Andrea Domenici for providing useful inputs for this slides

Formal system

A formal system is a system that we use to prove the truth of sentences by deductions, i.e., by showing that a sentence follows through a series of reasoning steps from some other sentences that are known (or assumed) to be valid.

A formal system consists of:

- A set of axioms, selected sentences taken as valid.
- A set of inference rules, saying that a sentence of a given structure can be deduced from sentences of the appropriate structure, independently of the meaning (semantics) of the sentences.
 - E.g., A and B stand for any two sentences, a well-known inference rule says that from "A" and "A implies B" we can deduce B.

Elements of a formal system

We have a formal system F with the set of axioms A and the set of inference rules R

We want to prove that a formula **s** follows from a set **H** of hypotheses.

A deduction of **s** from **H** within **F** is a sequence of formulae such that **s** is the last one and each other formula either:

- 1. belongs to A; or
- 2. belongs to H; or
- 3. is obtained by applying some rules belonging to **R** to some preceding formulae

Theorem Proving

- A theorem prover is a computer program that implements a formal system.
- It takes as input a formal definition
 - of the system that must be verified (H)
 - of the properties that must be proved (s),
- and tries to build a proof by application of inference rules, in an automatic or semi-automatic way.
- Generally speaking a theorem prover provides the base set R of inference rules along with the base set A of the axioms.

Users provide H and s

11 May 2022 5

Prototype Verification System

- The PVS is an interactive theorem prover developed at Computer Science Laboratory, SRI International, Menlo Park (California), by S. Owre, N. Shankar, J. Rushby, and others.
- The formal system of PVS consists of a language and the sequent calculus axioms and inference rules.
- PVS has many applications, including formal verification of hardware, algorithms, real-time and safety-critical CPS.

Sequent calculus

The sequent calculus works on sentences called sequents, of this form:

$$A_1, A_2, \ldots, A_n \vdash B_1, B_2, \ldots, B_m$$

where the A's and B's are the antecedents and the consequents, respectively.

- The symbol in the middle (⊢) is called a turnstile and may be read as "yields".
- A sequent can then be seen informally as another notation for

$$A_1 \land A_2 \land \ldots \land A_n \Rightarrow B_1 \lor B_2 \lor \ldots \lor B_m$$

Application of sequent calculus

Proofs are constructed backwards from the goal sequent, which has the form

$H \vdash s$

where **s** is the formula we want to prove and H are our hypothesis.

Inference rules are applied backwards, i.e., given a formula, we find a rule whose consequence matches the formula, and the premises become the new subgoals.

Since a rule may have two premises, proving a goal produces a tree of sequents, rooted in the goal, called the proof tree.

The proof is completed when (and if!) all branches terminate with a true sequent

Proved sequence

A sequent is proved(true) if:

- 1. any antecedent is false; or
- 2. any consequent is true;
- 3. any formula occurs both as an antecedent and as a consequent.

X	y	x => y
False	False	True
False	True	True
True	False	False
True	True	True

$$A_1 \land A_2 \land \ldots \land A_n \Rightarrow B_1 \lor B_2 \lor \ldots \lor B_m$$

PVS Theories

A PVS specification is composed of one or more theories.

 Constructs of different classes may be interleaved (e.g., a type declaration may follow a variable declaration), but every symbol must be declared before it is used.

The PVS Specification Language

- Logical connectives: NOT, AND, OR, IMPLIES, . . .
- Quantifiers: EXISTS, FORALL.
- Complex operators: IF-THEN-ELSE, COND.
- Notation for records (i.e. C struct type). . .
- Theories: named collections of definitions and formulae. A theory may be imported(and referred to) by another theory.
- A large number of pre-defined theories is available in the prelude library.

Useful commands

(while holding left Alt button hit x and start typing)

- change-context
 - Used to change the context to the folder when the theory under analysis is located
- prove
 - Move the cursor on a sentence that you want to prove and then use it to start the proof
- x-prove
 - Same as the previous one but also start the interface with the tree of the proof

Useful prover commands (type the following commands within parenthesis ())

- grind
 - Automatically tries to solve a sequent
- induct <var>
 - applies induction rule on variable <var>

Useful prover commands cont'd

- flatten opt <id>
 - applies logical simplification of the antecedent or consequent with number <id>
 - ✓ If <id> is missing it is applied to the first element
- split opt <id>
 - splits the element <id> creating two simplified branches
 - ✓ If <id> is missing it is applied to the first element
- expand <var>
 - expands variable <var> with its definition
- lemma <name>
 - adds as an antecedent the sentence with name <name>
- skeep
 - in mathematics, proof starts with "Let n be a natural number" this is a skolemization
- inst?
 - in mathematics, "Let n = 19" is an instantiation

When to apply the prover commands

Location	TOP level logical connective	
	OR, =>	AND, IFF
Antecedent	(split)	(flatten)
Consequent	(flatten)	(split)

Recall logical equivalences:

■ P => Q is equivalent to (NOT P) OR Q

■ P IFF Q is equivalent to (P => Q) AND (Q => P)

When to apply the prover commands for quantifiers

Location	TOP level quantifier	
	FORALL	EXISTS
Antecedent	(inst?)	(skeep)
Consequent	(skeep)	(inst?)

Embedded quantifiers must be brought to the outermost level

for quantifier rules to apply

e.g. FORALL x: EXISTS y:

you need to solve the FORALL first and the EXISTS later