Distinguishing NFW and Isothermal Density Profiles with Weak Gravitational Lensing

Ian Holst and Doyee Byun

April 29, 2018

Abstract

We examine the feasibility of distinguishing NFW and cored isothermal density profiles using weak gravitational lensing shear.

1 Introduction

Background/history of this research topic, goals for this section

1.1 General spherical density profile $\rho(r)$

Here we define our conventions for various lensing quantities, which mainly conform to those used by Dodelson [2017]. We use the thin lens approximation and assume spherical lens profiles.

Projected surface density at radius R

$$\Sigma(R) = \int_{-\infty}^{\infty} dz \ \rho(\sqrt{R^2 + z^2})$$

Average projected surface density within radius R

$$\overline{\Sigma}(R) = \frac{1}{\pi R^2} \int_0^{2\pi} d\phi \int_0^R dR' \ \Sigma(R') R'$$

Critical surface density

$$\Sigma_{\rm crit} = \frac{c^2}{4\pi G} \frac{D_S}{D_{SL} D_L}$$

Convergence

$$\kappa(\theta) = \frac{\Sigma(\theta)}{\Sigma_{\rm crit}}$$

Tangential shear

$$\gamma_t(\theta) = \overline{\kappa}(\theta) - \kappa(\theta)$$

$$\gamma_1 = -\gamma_t \cos 2\phi$$

$$\gamma_2 = -\gamma_t \sin 2\phi$$

$$\gamma = \gamma_t = \sqrt{\gamma_1^2 + \gamma_2^2} = -\gamma_1 \cos 2\phi - \gamma_2 \sin 2\phi$$

Deflection angle

$$\vec{\alpha}(\vec{\theta}) = \overline{\kappa}(\theta)\vec{\theta}$$
$$\vec{\beta} = \vec{\theta} - \vec{\alpha} = (1 - \overline{\kappa}(\theta))\vec{\theta}$$

Ellipticity

$$\epsilon_i = \frac{2\gamma_i/(1-\kappa)}{1+\gamma^2/(1-\kappa)^2}$$
$$\epsilon = -\epsilon_1 \cos 2\phi - \epsilon_2 \sin 2\phi$$

In small angle approximation, any length $R = D_L \theta$.

Prove that spherical density profiles only have tangential shear and ellipticity

1.2 Cored Isothermal Sphere Profile

$$\rho_{\rm iso}(r) = \frac{\sigma^2}{2\pi G(r^2 + r_c^2)}$$

$$\Sigma_{\rm iso}(R) = \frac{\sigma^2}{2G\sqrt{R^2 + r_c^2}}$$

$$\overline{\Sigma}_{\rm iso}(R) = \frac{\sigma^2 \left(\sqrt{R^2 + r_c^2} - r_c\right)}{GR^2}$$

In terms of angles:

$$\Sigma_{\rm iso}(\theta) = \frac{\sigma^2}{2GD_L\sqrt{\theta^2 + {\theta_c}^2}}$$

$$\overline{\Sigma}_{\rm iso}(\theta) = \frac{\sigma^2 \left(\sqrt{\theta^2 + {\theta_c}^2} - \theta_c \right)}{GD_L \theta^2}$$

$$\gamma_{\rm iso}(\theta) = \frac{\sigma^2 \left(\sqrt{\theta^2 + {\theta_c}^2} - {\theta_c} \right)}{\Sigma_{\rm crit} G D_L \theta^2} - \frac{\sigma^2}{2\Sigma_{\rm crit} G D_L \sqrt{\theta^2 + {\theta_c}^2}}$$

We switch dependence from σ^2 to M_{200} with:

$$\sigma^2 = \frac{M_{200}G}{2\left(r_{200} - r_c \arctan\left(\frac{r_{200}}{r_c}\right)\right)}$$

This is derived from the definition of M_{200} :

$$\begin{split} M_{200} &= 200 \rho_{\rm crit} \frac{4}{3} \pi r_{200}^{3} \\ M_{200} &= M_{\rm enc}(r_{200}) = \frac{2\sigma^{2}}{G} \left(r_{200} - r_{c} \arctan\left(\frac{r_{200}}{r_{c}}\right) \right) \\ r_{200} &= \left(\frac{3M_{200}}{800\pi\rho_{\rm crit}}\right)^{1/3} \end{split}$$

Ellipticity equations are very ugly but trivial to calculate from the shear.

1.3 Navarro-Frenk-White (NFW) Profile

$$\rho_{\rm NFW}(r) = \frac{\rho_{\rm crit} \delta_c}{(r/r_s) (1 + r/r_s)^2}$$

$$\Sigma_{\rm NFW}(R) = \frac{2\rho_{\rm crit}\delta_c r_s}{(R/r_s)^2 - 1} \left(1 - \frac{2}{\sqrt{(R/r_s)^2 - 1}} \arctan\left(\sqrt{\frac{R/r_s - 1}{R/r_s + 1}}\right) \right)$$

[Bartelmann 2001]

$$\overline{\Sigma}_{\mathrm{NFW}}(R) = \frac{4\rho_{\mathrm{crit}}\delta_c r_s}{(R/r_s)^2} \left(\frac{2}{\sqrt{(R/r_s)^2 - 1}} \ \arctan\left(\sqrt{\frac{R/r_s - 1}{R/r_s + 1}}\right) + \ln\left(\frac{R/r_s}{2}\right) \right)$$

In terms of angles:

$$\Sigma_{\rm NFW}(\theta) = \frac{2\rho_{\rm crit}\delta_c D_L \theta_s}{(\theta/\theta_s)^2 - 1} \left(1 - \frac{2}{\sqrt{(\theta/\theta_s)^2 - 1}} \arctan\left(\sqrt{\frac{\theta/\theta_s - 1}{\theta/\theta_s + 1}}\right) \right)$$

$$\overline{\Sigma}_{\rm NFW}(\theta) = \frac{4\rho_{\rm crit}\delta_c D_L \theta_s}{(\theta/\theta_s)^2} \left(\frac{2}{\sqrt{(\theta/\theta_s)^2 - 1}} \arctan\left(\sqrt{\frac{\theta/\theta_s - 1}{\theta/\theta_s + 1}}\right) + \ln\left(\frac{\theta/\theta_s}{2}\right) \right)$$

$$\gamma_{\rm NFW}(\theta) = \frac{\overline{\Sigma}_{\rm NFW}(\theta) - \Sigma_{\rm NFW}(\theta)}{\Sigma_{\rm crit}}$$

Can calculate ellipticities from tangential shear.

We switch the dependence to M_{200} and c with:

$$\delta_c = \frac{200}{3} \frac{c^3}{\ln(1+c) - c/(1+c)}$$

$$r_s = \frac{r_{200}}{c}$$

$$r_{200} = \left(\frac{3M_{200}}{800\pi\rho_{\text{crit}}}\right)^{1/3}$$

$$c = \frac{r_{200}}{r_c}$$

2 Methods

2.1 Current plan

- Calculate tangential shear and deflection angle for NFW and SIS
- Consider single foreground lens halo with many background galaxies

- How to arrange and distribute background halos?
 - Initial ellipticity
 - angular density on sky
 - sizes
- Apply shear and deflection angle to background galaxies
- Attempt to fit both profiles, subtracting intrinsic shear, see if the fit is distinguishable
- \bullet How many foreground halos to test? start with 1
- What redshift is $\rho_{\rm crit}$ evaluated at? at halo redshift

Fake data: N sets of e1, e2, theta1, theta2

Analyzing data: make histogram in annulus mean and standard deviation use log bins for theta

50 gals/square arcminute 5 arcminutes $z_L=0.3~z_S=1~M_{halo}=10^15$ solar masses instrinsic ellipticity from gaussian with width 0.2

Assume same DS since this can be determined by redshift anyway

estimating ellipticity has well-documented issues [cite] due to noise and PSF

References

S Dodelson. Gravitational Lensing. Cambridge University Press, jun 2017.