Songfang Han

- Solid research experience in computer graphics with focus on 3D geometry processing and computer vision with focus on multi-view reconstruction.
- Industry experience in developing and applying deep learning methods in image processing and computational photography.
- Seeking employment in computer graphics and computer vision

EDUCATION

Hong Kong University of Science and Technology (HKUST), Hong Kong

Ph.D. in Electronic and Computer Engineering

Aug 2013 - Jun 2019

- Advisor: Pedro V. Sander

Tongji University, Shanghai, China

B.E. in Electrical and Electronics Engineering

Aug 2009 – Jul 2013

RELATED EXPERIENCE

UCSD, San Diego, CA

Visiting Graduate Student Host: Prof. Hao Su

Dec 2018 - Jun 2019

Point-based Multi-view Stereo Network

- Proposed a novel point-based deep learning framework for multi-view stereo and outperforms state-of-art methods in terms of quality, memory efficiency and flexibility.
- A network that support adaptive refinement, which allow user to densify reconstruction only at region of interest.

SenseTime, Hong Kong (a leading AI company in China)

Research Intern Jun 2017 – Dec 2017

- **Relighting:** Developed a real-time CNN-based algorithm to add portrait lighting effects to photos, including studio, contour, and arbitrary lighting effect. The result is natural looking and temporally coherent for video input.
- **Deep Image Color Enhance:** Trained neural networks to replace image processing pipelines like HDR and a set of Lightroom presettings.

HKUST, Hong Kong

Coarse Mesh Stereo Reverse Reprojection for Efficient Rendering

May 2018 – Dec 2018

- Proposed a framework to render low-resolution model with compelling high-resolution appearance for stereo rendering.
- Achieved ~3x faster rendering speed compared with benchmark method.

Efficient Triangle Reordering of Translucent Model

Aug 2016 – May 2017

- Proposed an efficient algorithm that recovers nearly accurate back-to-front order for arbitrary viewpoints in real-time for large static translucent models.
- Achieved ~2x faster rendering speed compared to the benchmark method.
- Achieved 4x–7x faster preprocessing while maintaining perceptual rendering quality.

Triangle Reordering in Animation Scenes

Nov 2014 - Dec 2015

- Proposed an effective algorithm that renders opaque models with statistically low overdraw orders, which are precomputed offline, in animation scenes.
- First triangle ordering work designed for animation, which outperformed the state of the art for static models.

Publications

Songfang Han, Pedro V. Sander. Efficient temporal and stereo teprojection using simplified meshes. Working paper.

Songfang Han*, Rui Chen*, Jing Xu, Hao Su. *Point-based multi-view stereo network*. IEEE International Conference on Computer Vision 2019. (Oral) (* equal contribution)

Songfang Han, Ge Chen, Pedro V. Sander, Diego Nehab. *In-depth buffers*. Journal of Proceedings of the ACM on Computer Graphics and Interactive Techniques, Vol. 1, No. 1, Article 2, 2018.

Songfang Han, Pedro V. Sander. *Triangle reordering for efficient rendering in complex scenes*. Journal of Computer Graphics Techniques (JCGT), Vol. 6, No. 3, 38–51, 2017.

Songfang Han, Pedro V. Sander. *Triangle reordering for reduced overdraw in animated scenes*. SIGGRAPH Symposium on Interactive 3D Graphics and Games 2016.

Awards and Honors

Graduate Research Scholarship, HKUST	2013 – 2019
Meritorious Winner of Mathematical Contest in Modeling, COMAP	2012
National Scholarship, Tongji University	2011
First-class Scholarship, Tongji University	2009 – 2012

Graduate Coursework

Computer Vision, Combinatorial Optimization, Convex Optimization, Stochastic Processes, Digital Image Processing, Video Signal Processing, Design Thinking Summer Course

COMPUTER SKILLS

Programming: Python, C++, MATLAB, JavaScript **Deep Learning:** Tensorflow, Pytorch, Caffe

Graphics: OpenGL, OpenCV, WebGL, Maya, Blender OS: Linux, Windows, macOS