HW 18; 3/22/2017 MATH 110 Linear Algebra with Professor Stankova

- 7.1 #1fh (f) False. We need to take a basis of K_{λ} which can be partitioned into cycles. (h) True. A previous homework problem showed that for any operator T, when $\dim(\ker(T^k)) = \dim(\ker(T^{k+1}))$, we have $\dim(\ker(T^k)) = \dim(\ker(T^\ell))$ for all $\ell \geq k$. Thus after n "steps" it must stabilize since there V is n-dimensional.
 - 7.1 #2 (a) The characteristic polynomial is $\chi(t) = t^2 4t + 4$, so t = 2 is the only eigenvalue. $A-2I=\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$ has rank 1, so in particular we have an eigenvector $(1,1)^t$. We want to comptute the chain terminating here; we solve $(A-2I)x=(1,1)^t$ to find $x=(0,1)^t$, so we have a basis $\beta_2 = \{(1,1)^t, (0,1)^t\}$ which is a cycle generated by $(0,1)^t$. The Jordan normal form (in this basis) is $[T]_{\beta} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.
 - (b) The characteristic polynomial is $\chi(t) t^2 3t 4$. Thus the eigenvalues are t = 4, -1. A-4I has kernel $(2,3)^t$ and A+I has kernel $(1,-1)^t$. Thus we have a basis of eigenvectors and in this basis β , we have $[T]_{\beta} = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (c) The characteristic polynomial is $\chi(t) = -t^3 + 3t^2 4$. Testing its rational roots, we find that it factors $-(t-2)^2(t+1)$, so its eigenvalues are t=-1,2. For the eigenvalue 2,

we find that
$$(A - 2I) = \begin{pmatrix} 9 & -4 & -5 \\ 21 & -10 & -11 \\ 3 & -1 & -2 \end{pmatrix}$$
, which we can row-reduce to $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ and

so has rank 2, with corresponding eigenvector $(1,1,1)^t$. We compute the chain terminating here: $(A-2I)x = (1,1,1)^t$ gives $x = (1,2,0)^t$. Thus, $\beta_2 = \{(1,1,1)^t, (1,2,0)^t\}$ is A-cyclic

generated by
$$(1, 2, 0)^t$$
. Next, for the eigenvalue -1 , we find $A + I = \begin{pmatrix} 12 & -4 & -5 \\ 21 & -7 & -11 \\ 3 & -1 & 1 \end{pmatrix}$, which

here:
$$(A - 2I)x = (1, 1, 1)^t$$
 gives $x = (1, 2, 0)^t$. Thus, $\beta_2 = \{(1, 1, 1)^t, (1, 2, 0)^t\}$ is A -cyclic generated by $(1, 2, 0)^t$. Next, for the eigenvalue -1 , we find $A + I = \begin{pmatrix} 12 & -4 & -5 \\ 21 & -7 & -11 \\ 3 & -1 & 1 \end{pmatrix}$, which row reduces to $\begin{pmatrix} 3 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ so is rank 2. We have $(A + I)^2 = 3\begin{pmatrix} 15 & -5 & -7 \\ 24 & -8 & -13 \\ 6 & -2 & -1 \end{pmatrix}$, which row reduces to $\begin{pmatrix} 3 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and has rank 2. An eigenvector for this eigenvalue is $(1,3,0)^t$. Thus, we have a basis of generalized eigenvectors $\beta = \{(1,1,1)^t, (1,2,0)^t, (1,3,0)^t\}$; so we

Thus, we have a basis of generalized eigenvectors $\beta = \{(1,1,1)^t, (1,2,0)^t, (1,3,0)^t\}$; so we

have
$$[T]_{\beta} = 2 \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
.

(d) The characteristic polynomial of the matrix is $(t-2)^2(t-3)^2$, so the eigenvalues are

t = 2, 3. For t = 2, we have $A - 2I = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$. This matrix has rank 3, so we have

eigenvector $(1,0,0,0)^t$. To find the corresponding chain, we look for x such that (A-2I)x =

$$(1,0,0,0)^t$$
, e.g. $(0,1,0,-1)^t$ will do. For $t=3$, we have $A-3I=\begin{pmatrix} -1 & 1 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 0 & 0\\ 0 & 1 & -1 & 0 \end{pmatrix}$, which

has rank 2, so it has a two-dimensional eigenspace spanned by eigenvectors $(1,1,1,0)^t$ and $(0,0,0,1)^t$. Define the basis $\beta = \{(1,0,0,0)^t, (0,1,0,-1)^t, (1,1,1,0)^t, 0,0,0,1)^t\}$; we have

$$[T]_{\beta} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

7.1 #3 (a) Let us choose the standard basis γ . Then since $T(1)=2, T(x)=2x-1, T(x^2)=2x^2-2x$,

we have $A = [T]_{\gamma} = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$. This matrix is almost in Jordan canonical form as

written. It is upper triangular, so the only eigenvalue is 2. $A - 2I = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}$ has

rank 2, so we have an eigenvector $(1,0,0)^t$. To compute the rest of the chain, we want x such that $(A-2I)x=(1,0,0)^t$, e.g. $x=(0,-1,0)^t$. Finally, we want a y such that $(A-2I)y = x = (0,-1,0)^t$, e.g. y = (0,0,1/2). Thus, we have basis $\beta = \{1,-x,\frac{1}{2}x^2\}$

whereby
$$[T]_{\beta} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- 7.1 #3 (a) Let us forgo a choice of basis and compute the chains directly. Note that (T-2)(f) = -f', and that $(T-2)(t^2) = -2t$, (T-2)(-2t) = 2, and (T-2)(2) = 0. Thus, the basis $\beta = \{t^2, -2t, 2\}$ is a chain in K_2 for T (K_0 for T-2), and we have $[T]_{\beta} = \begin{pmatrix} 2 & 1 & 0 & \\ 0 & 2 & 1 & 0 & 0 & 2 \end{pmatrix}$.
 - (b) Let us forgo a choice of basis and compute the chains directly. Observe that $T(\frac{1}{2}t^2) = t$, T(t) = 1, and T(1) = 0. Thus, $\{1, t, \frac{1}{2}t^2\}$ is a basis for K_0 which is a chain. Next. note that $(T-I)(te^t) = e^t$, and $(T-I)(e^t) = 0$ so we have $\{e^t, te^t\}$ is a chain. So, in the basis

$$\beta = \{1, t, \frac{1}{2}t^2, e^t, te^t\} \text{ we have } [T]_{\beta} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$