Dot Product

PTHREADS POSIX Threads for Multiprocessing

01076255 Computer Architecture

Dot product

 Dot product หรือ ผลคูณเชิงสเกลาร์ ของเวกเตอร์ α และเวกเตอร์ b คือ ผลบวกของผลคูณระหว่างสมาชิกแต่ ละตัวของ α และ b

$$[\, \begin{matrix} 1 & 3 & -5 \, \end{matrix}] \cdot [\, 4 & -2 & -1 \, \rbrack = (1)(4) + (3)(-2) + (-5)(-1) = 3$$

โดยจะใช้ lib PTHREADS ในการทดลอง

Hardwere ที่ใช้ ในการทถลอง

```
Architecture:
                     x86 64
CPU op-mode(s):
                     32-bit, 64-bit
Byte Order:
                     Little Endian
CPU(s):
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s):
NUMA node(s):
Vendor ID:
                     GenuineIntel
CPU family:
Model:
                     142
Model name:
                     Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
Stepping:
                     1700.146
CPU MHz:
CPU max MHz:
                     3400.0000
CPU min MHz:
                     400.0000
BoaoMIPS:
                     3600.00
Virtualization:
                     VT-x
L1d cache:
L1i cache:
L2 cache:
                     256K
L3 cache:
                     6144K
NUMA node0 CPU(s):
                     0-7
```

1. วิธีการทดลอง

- ทดลองใช้คำสั่ง perf เพื่อวัดการทำงานระดับ

Microarchitecture

ซึ่งจะวัดจำนวนของ clk-cycles, instruction, cache, dTLB-loads, dTLB-stores, iTLB-loads และ branch load

โดยจะเริ่มจากทำการวัดค่าการทำงานแบบปกติ และจากนั้นเพิ่ม ค่า workload เป็น 2 เท่า 4 เท่า และ 8 เท่าจากค่าเดิม เพื่อนำ ข้อมูลมาวิเคราะห์เปรียบเทียบ

นลการทถลอง

Results

เวลาที่ใช้ในการประมวลผลต่อ ภาระงาน

	1 Thread	2 Thread	4 Thread	8 Thread
32 K	0.720 s	0.552 s	0.478 s	0.449 s
64 K	1.427 s	1.164 s	0.995 s	0.889 s
128 K	3.253 s	2.688 s	2.257 s	2.168 s

Time Use

จากกราฟจะเห็นว่าเมื่อเพิ่มค่า workload จะทำให้เวลาที่ใช้ในการคำนวณเพิ่มขึ้น และ เมื่อเพิ่มจำนวน thread เพิ่มขึ้นจะทำให้เวลา ที่ใช้ในการคำนวณเร็วขึ้นเช่นกัน

ผลการทดลองเพิ่มจำนวน thread โดย workloadคงที่

workload	64 K			
thread	1T	2T	4T	8T
cpu-cycles	560	584	590	638
instructions	604	605	605	606
cache-references	86	86	86	86
cache-miss	44	49	49	42
dTLB-loads(K)	73,692	72,954	74,992	75,582
dTLB-loads(missesK)	5.044	6.952	6.551	5.854
iTLB-loads(K)	4.343	4.784	4.020	1.162
iTLB-loads-misses(K)	0.578	0.566	0.773	0.747

ผลการทดลองเพิ่มจำนวน thread โดยเพิ่ม workload 2 เท่า

workload	128K			
thread	1T	2T	4T	8T
cpu-cycles	1,281	1,283	1,274	1,446
instructions	1,200	1,203	1,203	1,204
cache-references	176	176	175	177
cache-miss	90	88	88	85
dTLB-loads(K)	143,374	140,544	145,599	148,694
dTLB-loads(-missesK)	6.225	6.029	5.125	7.687
iTLB-loads(K)	0.973	1.582	2.657	2.331
iTLB-loads-misses(K)	0.707	1.194	1.497	1.424

cpu-cycles

- •ปริมาณ workload แปรผันตรงกับ cpu-cycle
- •จำนวน thread แปรผันตรงกับ cpu-cycle
- •ปริมาณ workload และ thread ไม่ส่งผลต่อจำนวน instructions
- •ปริมาณ workload และ thread แปรผกผันกับ ins/cycles

dTLB-loads

- •ปริมาณ dTLB-loads แปรผันตรงกับ workload
- •จำนวน thread ไม่ส่งผลต่อจำนวน dTLB-loads
- •ปริมาณ workload และ thread ไม่ส่งผลต่อจำนวน dTLB-loads-misses,

% dTLB-stores 1 Thread 2 Thread 4 Thread 0.004 0.004 8 Thread 0.0000K 0.0025K 0.0050K 0.0075K

dTLB-stores

- •ปริมาณ dTLB-stores, dTLB-stores-misses แปรผันตรงกับ workload
- •จำนวน thread ไม่ส่งผลต่อจำนวน dTLB-stores, dTLB_stores-misses
- •ปริมาณ workload และ thread ไม่ส่งผลต่อจำนวน % dTLB-stores

iTLB-loads

- ปริมาณ workload และ thread ไม่ส่งผลต่อจำนวน iTLB-loads
- ปริมาณ iTLB-loads-misses, % iDTB-loads แปรผันตรงกับ workload และ thread

branch-loads

- •ปริมาณ branch-loads, branch-loads-misses แปรผันตรงกับ workload
- •จำนวน thread ไม่ส่งผลต่อจำนวน branch-loads
- •จำนวน branch-loads-misses, % branch-loads แปรผันตรงกับ thread
- •ปริมาณ % branch-loads แปรผักผันกับ workload

Members

Kritnarong Samertung

Nuttapat Pimthong

Bundit

Seedao

59010026

59010444

59010759

Thanks!

Any questions?

