Séquence : Proportionnalité

I] Reconnaître une situation de proportionnalité

Définition

Deux grandeurs sont proportionnelles si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre, appelé coefficient de proportionnalité.

Exemple – Situation de proportionnalité

Des t-shirts sont vendus à l'unité. Un t-shirt coute 11 €.

Le prix à payer en euros s'obtient en multipliant le nombre de t-shirts achetés par 11.

Le nombre de t-shirts achetés et le prix à payer sont deux grandeurs proportionnelles.

11 est le coefficient de proportionnalité.

Luc a acheté 6 t-shirts.

Le prix en euros qu'il a payé est : $6 \times 11 = 66$.

Hatim a acheté des t-shirts et a payé 132 euros.

Le nombre de t-shirts qu'il a achetés est : $132 \div 11 = 12$.

Les deux grandeurs étudiées sont le nombre de t-shirt et le prix à payer (en €). On peut regrouper les données dans un tableau.

Exemple – Pas une situation de proportionnalité

Des stylos sont vendus 2,10 € l'un et 20 € le paquet de dix. On ne peut pas obtenir le prix à payer en multipliant le nombre de stylos achetés par un même nombre : le prix à payer et le nombre de stylos achetés ne sont pas des grandeurs proportionnelles.

Nombre de stylos achetés	1 7 ×21	10 \
Prix à payer (en €)	2,10	20 * ^2

On aurait pu aussi faire le raisonnement suivant. Si les deux grandeurs étaient proportionnelles, alors 10 stylos couteraient 10 fois plus cher qu'un stylo, soit $10 \times 2.1 \in = 21 \in$.

Ce n'est pas le cas (10 stylos coutent en réalité 20 €), donc ces deux grandeurs ne sont pas proportionnelles.

II] Calculer une quatrième proportionnelle

Propriété

Dans un tableau de proportionnalité à quatre cases, lorsque l'on connaît trois valeurs, on peut calculer la quatrième valeur, appelée quatrième proportionnelle.

Méthode – Lien entre les colonnes

Pour obtenir les nombres d'une colonne d'un tableau de proportionnalité, on peut :

- ajouter les nombres de deux autres colonnes
- multiplier (ou diviser) les nombres d'une autre colonne par un même nombre

Exemple

Au restaurant scolaire, tous les repas sont au même prix.

Si 3 repas coutent 12,90 € et 2 repas coutent 8,60 €, alors:

5 repas coutent 12,90 € + 8,60 € = 21,50 €

Méthode – Passage par l'unité

Pour traiter d'une situation de proportionnalité, il est parfois plus judicieux de revenir à l'unité.

Exemple

En randonnée, Marianne marche toujours à la même vitesse.

En 3 heures, elle parcourt 12 km. Combien parcourt-elle en 5 heures?

En 1 heure, elle parcourt 3 fois moins de distance qu'en 3 heures, soit 4 km.

En 5 heures, elle parcourt 5 fois plus de distance qu'en 1 heure, soit 20 km.

		7	Y
Temps de marche (en h)	3	1	5
Distance parcourue (en km)	12	4	20

Méthode – Coefficient de proportionnalité

Pour compléter un tableau de proportionnalité, on peut utiliser un coefficient de proportionnalité pour passer d'une ligne à l'autre.

Exemple

Pour fabriquer 10 sacs, une usine a besoin de 20 m² de tissu.

On passe du nombre de sacs fabriqués à la surface de tissu (en m²) en multipliant par 2.

Nombre de sacs fabriqués	10	32	7
Surface de tissu (en m²)	20	64	√ ×2

On cherche la surface de tissu dont elle aura besoin pour fabriquer 32 sacs.

 $32 \times 2 = 64$. Elle aura besoin de 64 m^2 de tissu.

III] Utiliser une échelle

Définitions

Dans une représentation à l'échelle, les longueurs représentées et les longueurs réelles sont proportionnelles.

Exemple

Sur le plan ci-contre à l'échelle $\frac{1}{200000}$, qu'on peut aussi noter

1 : 200 000, le chemin de randonnée entre les Granges d'Astau et le lac d'Oô mesure environ 3,4 cm. Quelle est sa longueur réelle ?

Une longueur de 3,4 cm sur le plan correspond à une longueur réelle de : 3,4 cm \times 200 000 = 680 000 cm soit 6 800 m ou encore 6,8 km.

Remarque

Si l'échelle est inférieure à 1, la représentation est une réduction.

Si l'échelle est supérieure à 1, la représentation est un agrandissement.

IV] Appliquer un pourcentage

Définition

Un pourcentage est une proportion par rapport à 100. Il traduit une situation de proportionnalité.

Exemple

L'eau de la mer Méditerranée contient 4 % de sel. Cela signifie que :

- 100 g d'eau contiennent 4 g de sel;
- la proportion de sel dans l'eau est égale à $\frac{4}{100}$;
- la masse de sel et la masse d'eau sont proportionnelles, avec pour coefficient de proportionnalité $\frac{4}{100}$ soit 0,04.

Masse d'eau (en g)	100	×0,04
Masse de sel (en g)	4	~ ~ ~ ~ ~ ~

Propriété

Pour calculer t % d'une quantité, on multiplie cette quantité par $\frac{t}{100}$.

Exemple

Quelle est la masse de sel contenue dans 680 g d'eau de la mer Méditerranée ?

On doit calculer 4 % de 680 g :
$$680 \times \frac{4}{100} = 680 \times 0.04 = \frac{27.2}{100}$$
.

Dans 680 g d'eau, il y a 27,2 g de sel.

Masse d'eau (en g)	100	680	7	×0,04
Masse de sel (en g)	4	?	2	X 0,04