ASSUMPTION UNIVERSITY FACULTY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE COURSE OUTLINE CS3201, CSX3009 ALGORITHM DESIGN

Course Status: Major Required

Pre-requisite: Mathematics Foundation for Computer Science or equivalent

Semester: 2 / 2023

Instructor: Asst. Prof. Dr. Thitipong Tanprasert

Wednesday 13:30 – 16:30 (541) Thursday 13:30 – 16:30 (542)

Room ???

Office

VMS 608, VMS. Building 6th floor Email: thitipong@scitech.au.edu

Office Hours: 9:00 – 12:00 Wednesday, Thursday

References:

- 1. *Introduction to Algorithms* by Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, The MIT Press, 3rd Edition (2nd Edition is applicable)
- 2. *Algorithms* by Jeff Ericsson, An online book, http://www.cs.illinois.edu/~jeffe/teaching/algorithms/, Latest update December 25, 2013
- 3. Algorithm Design., J. Kleinberg, E. Tardos, Addison Wesley, 2005.
- 4. Python Algorithms, Magnus Lie Hetland, Apress, ISBN 978-1-4302-3237-7, 2010
- 5. Task collection, Programming.in.th
- 6. Artificial Intelligence The Modern Approach, Stuart.Russell and Peter Norvig, Prentice Hall

Course Description

Techniques for designing algorithms using divide and conquer, greedy method, dynamic programming and backtracking by emphasizing on analysis of efficiency, design techniques for NP problem domain.

Course Objectives

The students will understand the development and comparative advantages of various data structures. The students will be able to appropriately apply data structures in an application development through algorithm analysis. The students will understand various searching and sorting techniques and be able to analyze the impact of the data structures that are applied to these techniques.

Lecture Schedule:

Weeks	Topics	Remarks
1	Summary of the algorithm analysis and its	$O(n^3)$ vs $O(n^2)$ vs $O(n)$ for the
	correlation with the real program efficiency.	same problem.
	Introduction to NP-Complete Problems	
2	Python rehearsal I: iterative algorithms	Max contiguous subsequence,
		Location
3	Python rehearsal II: simple recursive algorithms	Fibonacci, Square and Domino
		Tiles (extended to 3), Tower of
		Hanoi
4	Recursion - a critical key in algorithm design	Location revisited, Rod cutting
5	Memoization	Rod cutting, Coin Change
6	Memoization : 2-argument problems	0-1 Knapsack
7	Dynamic Programming I: Bottom-up	0-1 Knapsack, Edit Distance
8	Dynamic Programming II	M3Tile, Shoe-Shopping
	Midterm Examination	

9	Breadth-First Seach	n-Queen, Maze
10	Uniform Cost Search	Priority queue, Shortest route in
		map
11	Heursistics search	Maze version 2
12	Backtracking & Pruning, Branch and Bound	0-1 Knapsack, Fractional
		knapsack
13	Greedy Algorithm	Kruskal's MST + Disjoint-Set,
		Activity selection
14	Divide and Conquer	Fast exponentiation, Mergesort
		& Counting inversion
15	Term project presentation	
	Final Examination	

Mark Allocation:

Term Project	20%
Assignments (4)	20%
Midterm Examination	30%
Final Examination	30%

Other Requirements:

Participating in the project presentation

Term Project Description:

A group of **no more than two** members will study for an algorithmic solution for a specified problem (must be proposed to get approval by the lecturer) and implement the solution. The report will include the solution, its running time analysis, the implemented program, and the example executions, including the test cases. The completion of the project includes presentation.