Wang Xianyi

LZU

2024.2.3

- 2 Algorithm and Optimization
- 3 Experiments
- 4 Conclusion
- 6 References

Introduction •00

- 2 Algorithm and Optimization
- 3 Experiments
- 4 Conclusion

Problem and Motivation

Introduction

- Data is Privacy sensitive
- Data is Large in quantity

Therefore, restoring data in centralized localization has risk

Solution & Contributions

Solution(Federated Learning):

- Leaves training data in mobile devices.
- Shares locally-computed updates in mobile devices rather than the data with server.

Contributions:

- The identitification of the problem of training on decentralized data from mobile devices as an important research direction;
- the selection of a straightforward and practical algorithm that can be applied to this setting
- an extensive empirical evaluation of the proposed approach.

They have introduced the "FederatedAveraging[1]" algorithm, which combines local stochastic radient descent (SGD) on each client with a server that performs model averaging.

(ロ) (部) (注) (注) 注 の(()

- 2 Algorithm and Optimization
- 3 Experiments
- 4 Conclusion

Introduction

Federated optimization has several key properties compared to a typical distributed optimization problems;

- Non-IID
- Unbalanced
- Massively distributed
- Limited communication

Problem

There are two primary aspects of the algorithm;

- How to compute global/local loss function?
- How to compute global/local gradient calculation and update state

Objective Function

The objective function:

$$\min_{\omega \in R^d} f(\omega) \tag{1}$$

$$f(\omega) = \frac{1}{n} \sum_{i=1}^{n} f_i(\omega)$$
 (2)

Every client computes the loss function above with its local dataset Then these local loss scores are weighted-averaged

$$f(\omega) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(\omega)$$
 (3)

$$F_k(\omega) = \frac{1}{n_k} \sum_{i \in P_k}^n f_i(\omega)$$
 (4)

- **(ロ)(御)(き)(き) き り**への

FederatedAveraging(or FedAvg)

Each client k locally takes one step of gradient descent on the global model with its local dataset.

$$\forall k, \quad \omega_{t+1} \leftarrow \omega_t - \eta g_k \tag{5}$$

Then the server takes a weighted average of the resulting models.

$$\omega_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} \omega_{t+1}^k \tag{6}$$

(FedAvg) fits real world problems more.

$$\omega^k \leftarrow \omega^k - \eta \nabla F_k(\omega^k) \tag{7}$$

Computation is controlled by three key parameters for this approach

- C:The fraction of clients that perform computation on each round.
- E:Number of training passes each client makes over its local dataset on each round.
- B:Local minibatch size used for the client updates.

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

```
initialize w_0

for each round t = 1, 2, \dots do

m \leftarrow \max(C \cdot K, 1)

S_t \leftarrow (random set of m clients)

for each client k \in S_t in parallel do

w_{t+1}^k \leftarrow ClientUpdate(k, w_t)

w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k

ClientUpdate(k, w): // Run on client k

\mathcal{B} \leftarrow (split \mathcal{P}_k into batches of size B)

for each local epoch i from 1 to E do
```

for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$

return w to server

图 2: FederatedAveraging

- 2 Algorithm and Optimization
- **3** Experiments
- 4 Conclusion
- 6 References

MNIST Digit Recognition

Model

- 2NN model[2]
- Basic CNN Model

Data distribution

- IID
- Non-IID

The complete Works of William Shakespare

Model

• LSTM[3]

Data distribution

- Balanced and IID version
- Unbalanced and non-IID version

2NN	ı — ıı	D ——	——Non-IID ——						
C	$B = \infty$	B = 10	$B = \infty$	B = 10					
0.0	1455	316	4278	3275					
0.1	$1474 (1.0 \times)$	$87 (3.6 \times)$	$1796 (2.4 \times)$	$664 (4.9 \times)$					
0.2	$1658 (0.9 \times)$	$77 (4.1 \times)$	$1528 (2.8 \times)$	$619 (5.3 \times)$					
0.5	— (—)	$75(4.2\times)$	— (—)	443 (7.4×)					
1.0	— (—)	$70~(4.5\times)$	— (—)	$380 (8.6 \times)$					
CNN, E = 5									
0.0	387	50	1181	956					
0.1	$339(1.1\times)$	$18(2.8\times)$	$1100 (1.1 \times)$	$206 (4.6 \times)$					
0.2	337 (1.1×)	$18(2.8\times)$	$978 (1.2 \times)$	$200(4.8\times)$					
0.5	$164(2.4\times)$	$18(2.8\times)$	$1067 (1.1 \times)$	$261 (3.7 \times)$					
1.0	246 (1.6×)	$16(3.1\times)$	— (—)	97 (9.9×)					

图 3: Effect of the client fraction C on the MNIST 2NN with $\mathsf{E}=1$ and CNN with $\mathsf{E}=5$.

C is set to 0.1 for all experiments.

Computation increased by increasing E, decreasing B.

MNIST CNN, 99% ACCURACY							
CNN	\boldsymbol{E}	\boldsymbol{B}	\boldsymbol{u}	IID	Non-IID		
FEDSGD	1	∞	1	626	483		
FEDAVG	5	∞	5	179 $(3.5\times)$	$1000 (0.5 \times)$		
FEDAVG	1	50	12	65 $(9.6\times)$	$(0.8\times)$		
FEDAVG	20	∞	20	234 $(2.7\times)$	672 $(0.7\times)$		
FEDAVG	1	10	60	$34 (18.4 \times)$	350 $(1.4\times)$		
FEDAVG	5	50	60	$29(21.6\times)$	334 $(1.4\times)$		
FEDAVG	20	50	240	$32(19.6\times)$	426 $(1.1\times)$		
FEDAVG	5	10	300	20 (31.3×)	229 $(2.1\times)$		
FEDAVG	20	10	1200	18 (34.8×)	173 $(2.8\times)$		

SHAKESPEARE LSTM, 54% ACCURACY

LSTM	\boldsymbol{E}	\boldsymbol{B}	u	IID	Non-IID
FEDSGD	1	∞	1.0	2488	3906
FEDAVG	1	50	1.5	$1635 (1.5 \times)$	549 $(7.1\times)$
FEDAVG	5	∞	5.0	613 $(4.1\times)$	597 $(6.5\times)$
FEDAVG	1	10	7.4	460 $(5.4\times)$	$164 (23.8 \times)$
FEDAVG	5	50	7.4	401 (6.2×)	$152(25.7\times)$
FEDAVG	5	10	37.1	$192 (13.0 \times)$	41 (95.3×)

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 年 9 9 9 0

 \S 5: Test set accuracy vs. communication rounds for the MNIST CNN and Shakespeare LSTM with C = 0.1 and optimized η . The gray lines show the target accuracies used in Table 4.

 \boxtimes 6: The effect of training for many local epochs between averaging steps, fixing B = 10 and C = 0.1 for the Shakespeare LSTM with a fixed learning rate $\eta = 1.47$.

- 4 □ ト 4 圖 ト 4 필 ト 4 필 ト 9 9 0

- Using extreme non IID data to train the model, FedAvg can also perform better than FedSGD, indicating that the FedAvg algorithm may have strong robustness.
- FedAvg has higher accuracy than FedSGD on the test set, and the author speculates that FedAvg produces a dropout like regularization effect.
- When larger, the accuracy of FedAvg algorithm convergence will decrease, or even not converge.

1711

21 / 26

Wang Xianvi Federated Learning

- 2 Algorithm and Optimization
- 3 Experiments
- 4 Conclusion

Conclusion

Fedavg trains high-quality models using relatively few rounds of communication.

It offers many practical privacy benefits;

- Differential privacy
- Secure multi-party computation

- Introduction
- 2 Algorithm and Optimization
- 3 Experiments
- 4 Conclusion
- 6 References

- [2] Y. LeCun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324
- [3] Y. Kim, Y. Jernite, D. Sontag, et al. Character-aware neural language models[C]. Proceedings of the AAAI conference on artificial intelligence, 2016, 2741-2749

Thanks!

- 4 ロ ト 4 团 ト 4 恵 ト 4 恵 ト - 恵 - 夕久(^)