- 1. Determine whether the following functions are odd, even, or neither:
- $f(x) = \frac{2x}{3x^2 + 1}$ b) $f(x) = \frac{3x^2}{2x^4 + 4}$ c) $f(x) = 1 + x^3 x^5$

- d)
- $f(x) = \ln(2x^6 x^4 + 2)$ e) $g(t) = \frac{2t^3 + t 1}{3t^2 + 5}$
- $h(x) = \frac{ax^3 + bx}{ax^2 + d}$, where a, b, c and d are non-zero constants.
- 2. Use the definitions of the hyperbolic functions to show that $\cosh^2 x \sinh^2 x = 1$. Hence show that $\operatorname{sech}^2 x = 1 - \tanh^2 x$ and that $\operatorname{csch}^2 x = \coth^2 x - 1$.
- 3. Calculate the following powers of $i = \sqrt{-1}$:
 - (a) i^2

- (b) i^3 (f) i^{505}
- (c) i^4 (d) i^5 (g) i^{-1} (h) i^{-7}

(e) i^{100}

- 4. Two complex numbers, z_1 and z_2 , are given by $z_1 = -2 + i$ and $z_2 = 1 3i$. Evaluate the following:
 - (a) Re(z₁)

- (e) $|z_1|$
- (b) $Im(z_1)$ (c) $Re(z_2)$ (d) $Im(z_2)$ (f) $|z_2|$ (g) $arg(z_1)$ (h) $arg(z_2)$
- 5. Two complex numbers, z_1 and z_2 , are given by $z_1 = 3 2i$ and $z_2 = 1 + 4i$. Calculate the following quantities, plotting each result on an Argand diagram:
 - (a) $z_1 + z_2$

(b) $z_1 - z_2$

(c) Z_1Z_2

(d) z_1 / z_2

(e) z_2 / z_1

(f) $\overline{z}_1\overline{z}_2$

- 6. Write the following complex numbers in polar form:

- (a) 1+i (b) -1+i (c) -1-i (d) $\sqrt{3}+i$ (e) $\sqrt{3}-i$ (f) $-1-\sqrt{3}i$
- 7. Express the following complex numbers in standard form (z = a + ib):
 - (a) $\frac{1+i}{i(2-3i)} + \frac{2}{i}$

- (b) $\frac{1}{3+2i}+\frac{1}{2-i}$
- 8. Show that the product of two odd functions, f(x) and g(x), is always an even function.

Appendix: Table of values of trigonometric functions.

	0	$\pi/6$	π/4	π/3	π/2
sin	0	1/2	1/√2	$\sqrt{3}/2$	1
cos	1	$\sqrt{3}$ / 2	$1/\sqrt{2}$	1/2	0
tan	0	1/ √3	1	$\sqrt{3}$	*