MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2016 Tamil Students, Faculty of Engineering, University of Moratuwa Lungic இனை பல்கலைக்க மிட்டு மான்று மான்றும் மான்று மான

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

இணைந்த கணிதம் I Combined Maths I

10	Т	I
- 4	10.000	(275)

மூன்று மணித்தியாலம் Three hours

அறிவுறுத்தல்கள்:

- $\mbox{$\star$}$ இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17), எ**ன்**னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- பகுதி A எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- $oldsymbol{st}$ ப**குதி B** ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- st ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி** A ஆனது **பகுதி** B யிற்கு மேலாக இருக்கத் தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி B** யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10) இணைந்த கணிதம் ${f I}$					
பகுதி	வினா எண்.	கிடைத்த புள்ளிகள்			
	1				
	2				
	3				
	4				
A	5				
A.	6				
	7				
	8				
	9				
	10				
	<u>மொத்தம்</u> 11				
	12				
_	13				
В	14				
	15				
	16				
	17				
	<u>மொத்தம்</u>				
வினாத்தாள் I	இன் மொத்தம்				

இறுதிப் புள்ளிகள்	
மொத்தம்	
வினாத்தாள் II	
வினாத்தாள் I	

	-2-	AL/2017/10/
) . கணிதத் தொகுத்தறிவுக் கே வகுபடுமெனக் காட்டுக.	ளட்பாட்டைப் பயன்படுத்தி எல்லா $n\in\mathbb{Z}^+$ இற்கும் 7^{-}	$^n-2^n$ ஆனது 5 ஆல்
். BANANA என்னம்	சொல்லின் எல்லா எழுக்குக்களையும் பயன்ப	
்). BANANA என்னும் ஒழுங்கமைப்புக்களின் எண்ண N களும் அடுத்தடுத்து இருக்		படுத்தி ஆக்கத்தக்க எத்தனையில் இரு
	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	
ஒழுங்கமைப்புக்களின் எண்ண	னிக்கையைக் காண்க. இவ்வொழுங்கமைப்புக்களில்	

<i>/</i> (<i>) \</i>	(a+i)=2	<i>L</i> (<i>a−i</i>) ஆ	டிகுமாறு ம	a ஐக் கான்	னக. சிக்கலெ	$\frac{2+\sqrt{3}-i}{2+\sqrt{3}+i}$	இன் மட்டு,வீச்	சம் காண்க.
			• • • • • • • • • • • • • • • • • • • •					
4). $\lim_{x\to 1} \frac{x^3-x}{x^3-x^2}$	r^2 1	$=\frac{1}{2}$	- எனக் க	ாட்டுக.				
	<i>λ</i> -1		• • • • • • • • •					
	<i>λ</i> -1							
	<i>λ</i> -1							
	λ -1 							
	λ -1 							

	-4-	AL/2017/10/
	நக. இதிலிருந்து 2 ²⁰⁰³ ஐ 17 ஆல் வகுக்க வரு	പ് ധീമിബ്വക് കാര്ത്മ
	ეთ. გელი იელე 2 ფ 17 ფ თ თელი თელი	
		• • • • • • • • • • • • • • • • • • • •
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
) . வளையி $y=x^2+3,$ நேர்கோடு α பரப்பைக் காண்க.	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட ்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	பட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி
	கள் $y=4,y=6,x=0$ ஆகியன் இடைவெ	ட்டுவதால் உருவாகும் உருவத்தி

									-5-				A	AL/2017/10/T-
Q7).	ഖഞ	ണധി	y =	$be^{-\frac{x}{a}}$			ள்வோம்.	இவ்வ	Jளைய <u>ി</u>	<i>y</i> அச்சை	ச வெட்டும்	புள்ளியில்	கோடு	$\frac{x}{a} + \frac{y}{b} = 1$ ஐத்
	• • • • • • •	•••••	•••••		•••••		•••••		• • • • • • • •					
		•••••					• • • • • • • • • • • • • • • • • • • •							
••		•••••	•••••		•••••		•••••		• • • • • • • • •					•••••
••		•••••	•••••	• • • • •	•••••									•••••
			• • • • • • •											
		•••••	•••••		•••••					•••••				
		•••••					• • • • • • • • • • • • • • • • • • • •							
	• • • • • • • •	•••••	•••••	• • • • •	•••••				• • • • • • • • •					
Q8).) இனு(ள் மையட்				கு வரையப்ப	படும் செங்கு	த்தின் 🥃	அடியின் ஒழுக்கு
••														
••							•••••							
••														
•••		• • • • • •	• • • • • •											
		• • • • • •	• • • • • •											
	Com	bine	a:M	athe	mati	es I								

	-0-	<u>AL/2017/10/T-I</u>
Ω		
Q9).	ஓர் நேர்கோடானது $\left(-\sqrt{8},\sqrt{8} ight)$ எனும் புள்ளியினூடாகச் செல்லும் அதேவேளை x அச்சில்	
	135° எனும் கோணத்தை ஆக்குகின்றது. இக்கோடானது வட்டம் $x=5\cos\theta,y=5\sin\theta$ காட்டுக. வெட்டும் இந் நாணின் நீளம் 10 எனக் காட்டுக. இங்கு $ heta$ பரமானம் ஆகும்.	ஐ வெட்டும் எனக்
•••		
•••		
 Q10)	. $2 an^{-1} \left(-3 \right) = \cos^{-1} \left(\frac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 an^{-1} \left(-3 \right) = \cos^{-1} \left(\frac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 \tan^{-1} \left(-3 \right) = \cos^{-1} \left(\frac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 an^{-1} \left(-3 \right) = \cos^{-1} \left(rac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 an^{-1} \left(-3 \right) = \cos^{-1} \left(rac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 an^{-1} \left(-3 \right) = \cos^{-1} \left(rac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 \tan^{-1} \left(-3 \right) = \cos^{-1} \left(\frac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 an^{-1} \left(-3 \right) = \cos^{-1} \left(rac{4}{5} \right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2\tan^{-1}\left(-3\right)=\cos^{-1}\left(\frac{4}{5}\right)-\pi$ எனக் காட்டுக.	
 Q10) 	. $2\tan^{-1}\left(-3\right)=\cos^{-1}\left(\frac{4}{5}\right)-\pi$ எனக் காட்டுக.	
 Q10) 	. $2\tan^{-1}\left(-3\right)=\cos^{-1}\left(rac{4}{5} ight)-\pi$ எனக் காட்டுக.	
 Q10) 	. $2\tan^{-1}\left(-3\right)=\cos^{-1}\left(\frac{4}{5}\right)-\pi$ எனக் காட்டுக.	
 Q10) 	. $2 an^{-1}\left(-3 ight) = \cos^{-1}\left(rac{4}{5} ight) -\pi$ எனக் காட்டுக.	
 Q10) 	. $2\tan^{-1}\left(-3\right)=\cos^{-1}\left(\frac{4}{5}\right)-\pi$ எனக் காட்டுக.	
 Q10) 	. $2 \tan^{-1}(-3) = \cos^{-1}\left(\frac{4}{5}\right) - \pi$ எனக் காட்டுக.	
 Q10) 	. $2 \tan^{-1}(-3) = \cos^{-1}\left(\frac{4}{5}\right) - \pi$ எனக் காட்டுக.	

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

> இணைந்த கணிதம் I Combined Maths I

10 T I

பகுதி $oldsymbol{B}$ st ஐந்து வினாக்களிற்கு மட்டும் விடை தருக.

Q11) **a.** x இல் இரண்டாம் படியிலுள்ள f(x), g(x), h(x) எனும் சார்புகள் பின்வருமாறு தரப்பட்டுள்ளன.

$$f(x) = x^{2} + x + 1$$

$$g(x) = 4x^{2} + (m+3)x + 4$$

$$h(x) = 2x^{2} + (3-m)x + 2$$

இங்கு $m\!\in\!\mathbb{R}$ ஆகும்.

- (\mathbf{i}) எல்லா $x\in\mathbb{R}$ இற்கும் $f\left(x
 ight)>0$ எனக் காட்டுக.
- $({f ii})$ -11 < m < 5 இற்கு g(x) > 0 எனக் காட்டுக.
- $({f iii})$ -1 < m < 7 இற்கு h(x) > 0 எனக் காட்டுக.

-1 < m < 5 ஆக **இருந்தால் இருந்தால்** மாத்திரம் $-3 < \frac{x^2 + mx + 1}{x^2 + x + 1} < 3$ எனக் காட்டுக.

b. $f(x) = x^4 + 2x^3 - 3x^2 - 2x + 3$ எனக் கொள்வோம்.

மீதித்தேற்றத்தை மீண்டும் மீண்டும் பயன்படுத்துவதன் மூலம் f(x) ஐ $(x-2)^2(x-3)$ ஆல் வகுக்க கிடைக்கும் மீதி $a(x-2)^2+b(x-2)+c$ எனும் வடிவில் உண்டு எனக் காட்டுக. இங்கு a,b,c ஆகியன துணியப்பட வேண்டிய மாறிலிகள் ஆகும்.

Q12) **a.** $\frac{1}{1+a^{n-1}} - \frac{1}{1+a^n}$ ஐச் சுருக்குக. இங்கு $a \in \mathbb{R}^+ - \{1\}$ ஆகும்.

$$\frac{a^{r-1}}{\left(1+a^{r-1}
ight)\!\left(1+a^r
ight)} = f\left(r-1
ight) - f\left(r
ight)$$
 ஆக இருக்கத்தக்கதாக $f\left(r
ight)$ ஐக் காண்க.

$$\sum_{r=1}^{n} \frac{a^{r-1}}{\left(1+a^{r-1}\right)\left(1+a^{r}\right)} = \frac{a^{n}-1}{2\left(a-1\right)\left(a^{n}+1\right)}$$
 எனக் காட்டி
$$\sum_{r=1}^{n} \frac{2^{r}}{\left(1+2^{r-1}\right)\left(1+2^{r}\right)} < 1 \ \text{ஐ உய்த்தறிக.}$$

$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{2017^{r}}{\left(1 + 2017^{r-1}\right)\left(1 + 2017^{r}\right)}$$
 ஐக் காண்க.

 \mathbf{b} . $y=\left|x^{2}-2x\right|,\,y=\left|1-2x\right|$ ஆகிய இரு வரைபுகளையும் ஒரே வரிப்படத்தில் வரைக.

இதிலிருந்து சமனிலி $\left|x^2-2x\right| \leq \left|1-2x\right|$ ஐத் திருப்தியாக்கும் x இன் மெய்ப் பெறுமானத் தொடையைக் காண்க.

Combined Mathematics

$$\mathbf{Q13}$$
) a. $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ எனக் காட்டுக. இங்கு $a,b,c,d \in \mathbb{R}$ ஆகும்.

இதிலிருந்து மெய் மூலகங்களைக் கொண்ட யாதாயினும் ஓர் 2×2 தாயத்திற்கு நேர்மாறு இருப்பதற்குரிய நிபந்தனையை **உய்த்தறிக.**

$$\mathbf{A} = \begin{pmatrix} 3 & 7 \\ 1 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}$$
 எனக் கொள்வோம். $\mathbf{A}\mathbf{B}$ ஐயும் $(\mathbf{A}\mathbf{B})^{-1}$ ஐயும் காண்க.

$$\left(\mathbf{i}\right)\left(\mathbf{A}\mathbf{B}\right)^{-1}
eq \mathbf{A}^{-1}\mathbf{B}^{-1}$$
 எனவும்,

$$\left(\mathbf{ii}\right)\left(\mathbf{AB}\right)^{-1}=\mathbf{B}^{-1}\mathbf{A}^{-1}$$
எனவும் காட்டுக.

$$b$$
. பிரதேசம் $\left\{z\in\mathbb{C}:\left|z\right|\leq4\right\}\cap\left\{z\in\mathbb{C}:\operatorname{Im}\left(rac{z-1+\sqrt{3}i}{1-\sqrt{3}i}
ight)\geq0
ight\}\cap\left\{z\in\mathbb{C}:\operatorname{Re}\left(z\right)\geq0\right\}$ ஐ நிழற்றுக இதன் பரப்பு $\frac{20\pi}{3}$ எனக் காட்டுக.

c. z என்பது ஒரு சிக்கலெண் எனக் கொள்வோம் $\left|z\right|^2=z\overline{z}$ எனக் காட்டுக. z_1,z_2 என்பன பூச்சியம் அல்லாத யாதாயினும் இரு சிக்கலெண்களாயிருக்கையில், $\left|z_1+z_2\right|^2=\left|z_1\right|^2+\left|z_2\right|^2+2\operatorname{Re}\left(z_1\overline{z}_2\right)$ எனக் காட்டி $\left|z_1-z_2\right|^2$ இற்கான கோவையை எழுதுக.

$$\dfrac{\left(z_1-z_2
ight)}{\left(z_1+z_2
ight)}$$
 இன் மட்டுப் பெறுமானம் 1 எனின் $\dfrac{z_1}{z_2}$ ஆனது அறக்கற்பனை எனக் காட்டுக.

Q14) **a.**
$$x \in \mathbb{R}$$
 இற்கு $y = \frac{\left(x-2\right)^2}{x^2+4}$ எனக் கொள்வோம். $0 \le y \le 2$ எனக் காட்டுக.

திரும்பல் புள்ளிகளையும் அணுகு கோட்டையும் காட்டி $y=rac{\left(x-2
ight)^2}{x^2+4}$ ஐ வரைக.

சமன்பாடு $x\left(x^2+4\right)=\left(x-2\right)^2$ இற்கு ஒரு மெய் மூலம் மாத்திரம் உண்டு இது ஏன் என விளக்குக.

b. ஆரை 3 மீற்றரையும் உயரம் h மீற்றரையும் உடைய இரு பொள் கூம்பை அதே ஆரையையும் உயரம் H மீற்றரையும் உடைய ஒரு சீர்வட்ட பொள் உருளையுடன் உருவில் காணப்படுகின்றவாறு விறைப்பாக இணைப்பதன் மூலம் கொள்கலன் ஒன்று உருவாக்கப்பட்டது. கொள்கலனின் மொத்தக் கனவளவு $900\mathbf{m}^3$ ஆகும். $H = \frac{100}{\pi} - \frac{2}{3}h$ எனக் காட்டுக. இக் கொள்கலனின் மொத்த மேற்பரப்பளவு

$$S\mathbf{m}^2$$
எனின் $S=600-4\pi h+6\pi\sqrt{9+h^2}$ எனக் காட்டுக.

S இழிவாக இருக்கத்தக்கதாக $\,h$ இன் பெறுமானத்தைக் காண்க $\,$

- Q15) a. பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int e^{ax} \sin bx \, \mathrm{d}x$ ஐக் காண்க.
 - **b.** ப**குதிப் பின்னங்களைப்** பயன்படுத்தி $\int \frac{11+3x-2x^2}{(x+3)(x-1)^2} \, \mathrm{d}x$ ஐக் காண்க.
 - c. a,b,c என்பன மாறிலிகள் ஆகவும் $b^2-4ac
 eq 0$ ஆகவும் இருக்கையில்

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{Ax+B}{ax^2+bx+c}\right) = \frac{1}{\left(ax^2+bx+c\right)^2} - \frac{C}{ax^2+bx+c}$$
 ஆகுமாறு A,B,C ஐக் காண்க.

இதிலிருந்து
$$\int_{0}^{1} \frac{\mathrm{d}x}{\left(x^2+4x+1\right)^2} = \frac{1}{4} - \frac{\sqrt{3}}{36} \ln\left(2+\sqrt{3}\right)$$
 எனக் காட்டுக.

- **Q16**) **a.** $x^2 + y^2 + 2gx + 2fy + c = 0$ எனும் வட்டமானது x அச்சைத் தொடும் எனின் $g^2 = c$ எனவும் $f^2 > c$ எனின் y அச்சை வெட்டும் எனவும் இவ் வெட்டும் நானின் நீளம் $2\sqrt{f^2 c}$ எனவும் காட்டுக. ஓர் வட்டமானது x அச்சை புள்ளி A(a,0) இல் தொடும் அதேவேளை நேர் y அச்சை B,C எனும் புள்ளிகளிலும் வெட்டிக் கொண்டு செல்கிறது. BC = l எனின் இவ்வட்டத்தின் சமன்பாடு $\left(x a\right)^2 + \left(y \frac{\sqrt{l^2 + 4a^2}}{2}\right)^2 = \frac{l^2 + 4a^2}{4}$ எனக் காட்டுக.
 - a=12, l=10 எனின் முக்கோணி ABC யின் பரப்பைக் காண்க.
 - **b.** ஓர் நேர் கோடானது, கோடு 5x-y-4=0 ஐ புள்ளி P யிலும் கோடு 3x+4y-4=0 ஐ புள்ளி Q விலும் வெட்டிக் கொண்டு செல்கிறது. PQ வின் நடுப்புள்ளி $M\left(1,5\right)$ ஆகும். m என்பது கோடு PQ வின் படித்திறன் எனின் $P=\left(\frac{9-m}{5-m},\frac{25-m}{5-m}\right)$ எனவும் $Q=\left(\frac{4m-16}{4m+3},\frac{m+15}{4m+3}\right)$ எனவும் காட்டி PQ வின் சமன்பாட்டைக் காண்க.
- ${f Q17})$ a. anig(A-Big) இற்கான விரிவைப் பயன்படுத்தி $an15^\circ=2-\sqrt{3}$ எனக் காட்டுக.

$$0 < x < \frac{\pi}{2}$$
 இற்கு $\tan\left(\frac{x}{2}\right) = \frac{\sqrt{1+\tan^2 x} - 1}{\tan x}$ எனக் கட்டுக.

$$\tan 7\frac{1}{2}$$
° = $(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)$ எனக் காட்டி $\cot 7\frac{1}{2}$ ° = $\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}$ என உய்த்தறிக.

- **b.** சமன்பாடு $\sin^3 x + \cos^3 x + \sin x \cos x = 1$ இன் பொதுத்தீர்வைக் காண்க.
- **c.** முக்கோணி தொடர்பான சைன் விதியைக் கூறுக.

 $\Delta\!ABC$ இற்கு வழக்கமான குறிப்பீட்டில்

$$(\mathbf{i})(a-b)\cos\frac{C}{2} = c\sin\left(\frac{A-B}{2}\right)$$
 எனக் காட்டுக.

$$(\mathbf{ii}) \frac{\tan A - \tan B}{\tan A + \tan B} = \frac{c - b}{c}$$
 எனின் $A = 60^{\circ}$ எனக் காட்டுக.

* END OF QUESTIONS *

MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa பாற்களை மல்கலைக்க பொற்பியும் பிறாக சிரும் அமைந்கள் மிறாந் பிறு மான் விருக்கார். பிறும் மான் விருக்கார் மிறாந் பிறும் மான் விருக்கார். பிறும் மான் விருக்கார் மிறாந் பிறும் மான் விருக்கார். பிறும் மான் விருக்கார் மிறும் மான் விருக்கார். இதில் மான் விருக்கார் மிறும் மான் விருக்கார். இதில் மான் விருக்கும் மிறும் மான் விருக்கார். இதில் மான் விருக்கார் மிறும் மிறு

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

இணைந்த கணிதம் II Combined Maths II

10	Т	II
----	---	----

மூன்று மணித்தியாலம் Three hours

அறிவுறுத்தல்கள்:

- $m{x}$ இவ்வினாத்தாள் **பகுதி** $m{A}$ (வினாக்கள் 1-10), **பகுதி** $m{B}$ (வினாக்கள் 11-17), எ**ன்**னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- பகுதி A எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- $oldsymbol{*}$ ப**குதி B** ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- st ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி** A ஆனது **பகுதி** B யிற்கு மேலாக இருக்கத் தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி B** யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10)	இணைந்த க	ணிதம்	II	
பகுதி	வினா எண்.	கிடை	த்த	புள்ளிகள்
	1			
	2			
	3			
	4			
	5			
	6			
	7			
	8			
	9			
	10			
	<u>மொத்தம்</u> 11			
	12			
	13			
	14			
	15			
	16			
	17			
	மொத்தம்			
வினாத்தாள் I	இன் மொத்தம்			J

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

	-2-	AL/2017/10/T-I
:::::::::::		
Q1).	ஒரு புகையிரதமானது நிலையம் A யில் ஓய்விலிருந்து இயங்க ஆரம்பித்து $lpha$ என்ற ஆர்முடுக	லுக்கு உள்ளாகி
	சிறிது தூரம் பயணம் செய்து பின் eta அமா்முடுகலுடன் நிலையம் B யில் ஒய்விற்க்கு வருகிற	து. $AB=4km$
	உம் பிரயாண நேரம் 4 நிமிடமும் ஆகும். $\dfrac{1}{lpha}+\dfrac{1}{eta}=2$ எனக் காட்டுக. இங்கு $lpha,eta$ kn	$\imath/$ நிமிடம் இல்
	உள்ளது.	
••		
••		
••		
O2)		
Q2)•	P எனும் ஒரு துணிக்கை நிலையான புள்ளியிலிருந்து x தூரத்தில் இருக்கும் x	
		ரிமை இசை
	இயக்கம் எனக் காட்டி இதன் வீச்சம் $\sqrt{a^2+b^2}$ எனக் காட்டுக. இங்கு a,b,n மாறிலிகள்.	
		•••••
••		
••		•••••
••		
••		
••		
••		
•••		
	Combined Mathematics II	

			-3-				AL/2017/2	10/T-
		- 0 :	D	- O	· · · · · · · · · · · · · · · · · · ·	·-		
	2m,3m திணிவுள்ள					_		
	நேரடியாக மோதுகு	ன்றன. கோளங்கவ	ரிற்கிடையிலான	மீளமைவுக்	குணகம்	<u>l</u> _ எனின்	மோதுகையின் பி	ன்
	கோளங்களின் வேகு					-		
••••						•••••		• • • • •
••••			•••••			•••••		• • • • •
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
••••	•••••	•••••					• • • • • • • • • • • • • • • • • • • •	••••
••••				•••••		• • • • • • • • • • • • • • • • • • • •		••••
••••								• • • • •
		•••••						
••••					• • • • • • • • • • • • • • • • • • • •			
••••								
Q4).	$\overrightarrow{OA} = 3\mathbf{a} + 2\mathbf{b}$ உம்	$\overrightarrow{OB} = 2\mathbf{a} - \mathbf{b}$ உம்	எனின் $\overrightarrow{OA}.\overrightarrow{OB}$	$=6\left \mathbf{a}\right ^2+\mathbf{a.b}$	$-2 \mathbf{b} ^2$ எ	னக் காட்டு	ിക.	
	$\mathbf{a} = 2\mathbf{i} + \mathbf{j}, \mathbf{b} = 2\mathbf{i} -$							
	.				رچن ده مدست			
••••			•••••			•••••		••••
••••			•••••					•••••
••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	••••
••••	•••••							••••
••••					•••••	•••••		••••
••••								••••
		•••••			•••••			
• • • • •								

5).	ஒரு மெல்லிய சீரான கம்பியானது ABC எனும் இருசமபக்க முக்கோணவடிவில் அமைக்கப்பட்டுள்ளது.
	இங்கு $AB=BC=a, AC=b, 2a>b$ ஆகும். இம் முக்கோணி ABC யின் ஈர்ப்பு மையமானது AC யி
	செங்குத்து இரு கூறாக்கியில் AC யில் இருந்து $\dfrac{a}{2}\sqrt{\dfrac{2a-b}{2a+b}}$ தூரத்தில் கிடக்கும் எனக் காட்டுக. இம்முக்கோ
	A யில் இருந்து தொங்கவிடப்படின் நிலைக்குத்துடன் AC ஆக்கும் கோணத்தைக் காண்க.
•••	
•••	
•••	
• • •	
• • •	
 (i)	ஓர் கரடான பொட்கோளமானது நிலைப்படுத்தப்பட்டுள்ளது. இப் பொட் கோளத்தினுள்ளே கோளப்பரப்பில் ஒ
 (5)•	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பே
···· •)•	
 (i).	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
 (i).	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
 (i).	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
 	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா
	பாரமான துணிக்கையானது அக்கோளத்தின் மிகத்தாழ்ந்த புள்ளியிலிருந்து $a(1-\cos\lambda)$ உயரத்துக்கு பேசமநிலையில் இருக்க முடியாதெனக் காட்டுக. இங்கு λ என்பது கோளத்துக்கும் துணிக்கைக்குமிடையிலா

							**********		_ <u>-</u> _) - 				<u>AL/</u>	<u>2017</u>	/1U/1
	A, B $P(A')$									நிகழ்ச்சிக	ளாகும்.	0 < P(A		$0 \le P(B)$	<1	எனி6
		•••••		•••••					•••••					• • • • • • • • • • • • • • • • • • • •		
					 (P) =	3	 		······································	_ 1 P(A)		······································	D	$(P \cap C)$		
3). «	ஒர் மாதி	ிரி ெ	ນຄຳແນ		(B)=	$=\frac{3}{4}$,	P(A	~B €	 \(\tau^C'\)	$=\frac{1}{3}, P(A')$	'∩B∩C	$\left(\frac{1}{3} \right) = \frac{1}{3}$ sign	னின் <i>P</i> ($(B\cap C)$ g	ஐக் கா	ண்க.
3). ę	ஒர் மாதி		ച ளிய்		(B) =	3, 4,	P(A			$= \frac{1}{3}, P(A')$	'∩B∩C	$\left(\frac{1}{3} \right) = \frac{1}{3}$ sign	னின் <i>P</i> ($(B\cap C)$ g	ஐக் கா	ண்க.
3). 6	ஒர் மாத	ப்பி ெ	บาราใน		(B) =	3,4,1	P(A	<i>→ B c</i>		$= \frac{1}{3}, P(A')$	$\cap B \cap C$	$\left(\frac{1}{3} \right) = \frac{1}{3}$ sign	னின் <i>P</i> ($(B\cap C)$ g	ஐக் கா	ண்க.
	ஒர் மாத		บ வளிய்		(B) =	3/4,1	P(A	<i>→ B ∩</i>		$= \frac{1}{3}, P(A')$	$ -B \cap C $	$\left(\frac{1}{3} \right) = \frac{1}{3}$ significant sig	னின் <i>P</i> ($(B\cap C)$ g	ஐக் கா	ண்க.
	ஒர் மாத		വണിധ്		(B) =	3,4,1	P(A	<i>→ B ←</i>		$= \frac{1}{3}, P(A')$	$ \cap B \cap C $	$\left(\frac{1}{3}\right) = \frac{1}{3}$ significantly and $\frac{1}{3}$ significantly analysis of $\frac{1}{3}$ significantly and $\frac{1}{3}$ significantly analysis of $\frac{1}{3}$ significantly and $\frac{1}{3}$ significantly analysis of $\frac{1}{3}$ significantly	னின் <i>P</i> ($(B\cap C)$ g	ஐக் கா	ண்க.

	0-10	10-20	20-30	30-40	40-50	
	14	X	27	У	15	
x,y ஆகிய	வற்றின் பெறுமா	னங்களைக் கண்(ச	் பரம்பலின் இடை		ിക.	-
). $1, 2, 6, \lambda, \mu$	எனும் 5நோக்ச	தல்களின் இடை 4	l.4 உம் மாறற்றிற _்	ன் 8.24உம் ஆகுட	ம். λ,μ ஐக் காண்	·в.
•••••						
•••••						
•••••						
•••••						
•••••						
				• • • • • • • • • • • • • • • • • • • •		
				• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •						
						•••••

2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MOR E AMIL 2016 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuse | MORA E TAMILS 2019 | Tamil Students | Tamil Students

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

> இணைந்த கணிதம் II Combined Maths II

10 T II

பகுதி $B^{\,\,*}$ ஐந்து வினாக்களிற்கு மட்டும் விடை தருக.

- ${f Q11})$ **a.** A,B என்பன m,3m திணிவுடைய இரு கோளங்களாகும். கிடையான ஒப்பமான மேசை மீது B ஒய்வில் இருக்க A ஆனது நேரடியாக u வேகத்துடன் B ஐ மோதுகிறது. e ஆனது A,B இற்கு இடையிலான மீளமைவுக் குணகம் ஆகும். மோதலின் பின் A ஆனது பின்னடிக்கிறது எனின்,
 - $ig({f i} ig)$ மோதலின் பின் B இன் வேகம் $rac{u}{4} ig(1 + e ig)$ எனக் காட்டுக.
 - $ig({f ii} ig)$ மோதலின் பின் A யின் வேகம் யாது?
 - ig(iiiig)தொடரும் இயக்கத்தில் B செங்குத்தான சுவரினை மோதுகின்றது. B யிற்கும் சுவரிற்கும் இடையிலான B மீளமைவுக்குணகம் $1 \over 2$ ஆகும். B ஆனது மீண்டும் A யினை மோதும் எனின், $1 \over 3 < e < \frac{3}{5}$ எனக்காட்டுக.
 - b. m₁, m₂ எனும் இரு திணிவுகள் இலேசான நீட்டமுடியாத ஓர்
 இழையினால் இணைக்கப்பட்டு படத்தில் காட்டியது போல்
 ஒப்பமான கப்பி ஒன்றின் மேலாகச் செல்கின்றது.
 இக்கப்பியானது α சாய்வுள்ள சாய்தளத்தின் உச்சியில்
 இணைக்கப்பட்டுள்ளது.

- $oxed{(i)}$ சாய்தளம் ஒப்பமானது எனின் m_1 இறங்கும் ஆர்முடுகலையும் இழையில் உள்ள இழுவையையும் காண்க.
- $({f ii})$ சாய்தளம் கரடானதும் உராய்வுக் குணகம் μ ஐக் கொண்டதும் எனின் m_1 இறங்கும் ஆர்முடுகலையும் இழையில் உள்ள இழுவையையும் காண்க.
- $({f iii})$ சாய்தளம் உராய்வு இருந்தபோது உள்ள ஆர்முடுகலுக்கும், சாய்தளம் ஒப்பமாக இருந்தபோது உள்ள ஆர்முடுகலுக்கும் இடையிலுள்ள வித்தியாசம் $rac{\mu m_2 \cos lpha}{m_1 + m_2} g$ எனக் காட்டுக.
- Q12) **a.** O வை மையமாகவும் r ஐ ஆரையாகவும் கொண்ட ஒரு நிலைத்த ஒப்பமான கோள ஓட்டின் உள்ளே, அதன் அதிதாழ் புள்ளியிலிருந்து m திணிவுடைய ஒரு துணிக்கை P யானது கிடையாக u வேகத்துடன் எறியப்படுகிறது.OP யானது கீழ்முக நிலைக்குத்துடன் ஒரு கூர்ங்கோணம் θ வை ஆக்கும் போது துணிக்கையின் கோணவேகம் $\omega = \frac{1}{r} \sqrt{u^2 2gr\left(1 \cos\theta\right)}$ எனவும், கோள ஓட்டினால் துணிக்கைக்குக் கொடுக்கப்படும் மறுதாக்கம் $R = \frac{m}{r} \left\{ u^2 gr\left(2 3\cos\theta\right) \right\}$ எனவும் காட்டுக. $u \ge \sqrt{5gl}$ எனின்

துணிக்கை பூரண வட்ட இயக்கத்தை ஆற்றும் என நிறுவுக. $u \geq \sqrt{5gl}$ இற்கு இத்துணிக்கையின் கோணவேகங்கள் முறையே ω_1,ω_2 உம், அதி உயர்ந்த, அதிகுறைந்த அதிஉயர்ந்த,அதிகுறைந்த முறையே R_1, R_2 உம் எனின் $\omega = \sqrt{\omega_1^2 \cos^2 \frac{1}{2} \theta + \omega_2^2 \sin^2 \frac{1}{2} \theta}$ மறுதாக்கங்கள் $R = R_1 \cos^2 \frac{1}{2} \theta + R_2 \sin^2 \frac{1}{2} \theta$ எனவும் காட்டுக.

 ${f b}$. ஒரு புள்ளி O விலிருந்து உயரம் h இல் இருக்கும் ஒரு புள்ளி C யில் கிடையுடன் கோணம் heta இல் மேல்நோக்கி சாய்ந்து வேகம் u உடன் ஒரு நிலைக்குத்துத்தளத்தில் ஒரு துணிக்கை ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இனூடான கிடைத்தளத்தின் மீது இத்துணிக்கையின் வீச்சு R எனின்

$$R^2 \tan^2 \theta - \frac{2u^2}{g} R \tan \theta + R^2 - \frac{2hu^2}{g} = 0$$
 எனக் காட்டுக.

இதிலிருந்து இவ் வேகம் u இற்கு O இனூடான கிடைத்தளத்தின் மீது இத்துணிக்கையின் அதி உயர் வீச்சு $\sqrt{\frac{u^4}{g^2} + \frac{2hu^2}{g}}$ என உய்த்தறிக. இதன் அதி உயர் வீச்சு R' எனவும் இதற்கான எறியல் கோணம் lpha உம் எனின் $an 2lpha = rac{R'}{h}$ என உய்த்தறிக.

Q13) A,B என்பன ஓர் ஒப்பமான கிடை மேசை மீது இடைத்தூரம் 3l இல் இருக்கும் இரு புள்ளிகளாகும். திணிவு m ஐ உடைய ஓர் ஒப்பமான துணிக்கை P ஆனது A யிற்கும் B யிற்குமிடையே AB மீது உள்ள ஒர் புள்ளியில் வைக்கப்பட்டுள்ளது. இயற்கை நீளம் l ஐயும் மீள்தன்மை மட்டு 3mg வையும் உடைய ஓர் இலேசான மீள்தன்மை இழையினால் புள்ளி A உடனும் $\,$ இயற்கை நீளம் $\,l$ ஐயும் மீள்தன்மை மட்டு λ வையும் உடைய ஒர் இலேசான மீள்தன்மை இழையினால் புள்ளி $\,B\,$ உடனும் துணிக்கை $\,P\,$ இணைக்கப்பட்டுள்ளது. துணிக்கை P ஆனது $AC=rac{3}{2}l$ ஆன புள்ளி C யிலே நாப்பத்தில் இருக்குமெனின் $\, \lambda \,$ ஐ எழுதுக $\,$

> துணிக்கை P ஆனது B இல் வைக்கப்பட்டு, பின்னர் ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. இழை BP இறுகும்போது துணிக்கை P யின் வேகம் $3\sqrt{gl}$ எனக் காட்டுக.

> தொடர்ந்து இரு இழைகளும் இறுகி இருக்கையில் ஆரம்ப நாப்பத்தானம் $\,C\,$ யில் இருந்து $\,CB\,$ வழியே அளக்கப்பட்ட துணிக்கை P யின் இடப்பெயர்ச்சி x எனின் $\frac{d^2x}{dt^2}+\frac{6g}{l}x=0$ எனக் காட்டுக. இங்கு $-rac{l}{2} \leq x \leq rac{l}{2}$. மேற்குறித்த சமன்பாட்டின் தீர்வு வடிவம் $x = A\cos\omega t + B\sin\omega t$ ஐ உடையதெனக் கொண்டு A,B,ω ஆகிய மாறிலிகளைக் காண்க.

> காட்டுக.

- ${f Q14}$) ${f a.}$ பக்கத்தின் நீளம் $2{f m}$ ஆகவுள்ள ஒரு சதுரம் ABCDயின் $AB,BC,CD,DA,\overline{BD}$ ஆகிய பக்கங்கள் வழியே எழுத்து ஒழுங்கு முறையால் காட்டப்படும் திசைகளில் முறையே $2,1,3,4,2\sqrt{2}$ நியூட்டன் என்னும் பருமன்களை உடைய விசைகள் தாக்குகின்றன. விளையுள் விசையின் பருமன், திசை, தாக்கக் கோடு AD ஐ E யில் வெட்டின் நீளம் AE ஆகியவற்றைக் காண்க.
 - இவ் விசைத்தொகுதியை சமனிலையில் வைத்திருக்க சேர்க்கப்பட வேண்டிய விசையின் பருமன், திசை, தாக்கக் கோடு ஆகியவற்றைக் காண்க.
 - ${f (ii)}$ விளையுள் விசையை புள்ளி $\,D$ யிற்கு மாற்றத்தேவையான இணையின் பருமனையும் போக்கையும் காண்க.
 - ${f b.}$ ABC என்பது ஒரு முக்கோணி ஆகும். AB யின் நடுப்புள்ளி D ஆகும். புள்ளி E ஆனது BE:EC=1:2 ஆகுமாறு பக்கம் BC யில் உள்ளது.கோடு AE உம் கோடு ஆகிய புள்ளிகளின் தானக் காவிகள் முறையே $\mathbf{b}, \, \mathbf{c}$ என சந்திக்கின்றன.A ஐக் குறித்து B,Cஎடுப்பதன் மூலம் $\frac{AP}{PE} = \frac{3}{2}$ எனவும் $\frac{CP}{PD} = \frac{4}{1}$ எனவும் காட்டுக.
- $\mathbf{Q15}$) \mathbf{a} . சுயாதீனமாக மூட்டப்பட்ட AB,BC,CD,BD என்னும் நான்கு இலேசான கோல்களாலான ஒரு தொகுதி காணப்படுகின்றது. BDகோல் நிலைக்குத்தாக இருக்கும் அதேவேளை கோல் BC கிடையானது. சட்டப்படல் தொகுதியானது யிலும் D யிலும் கிடை நிலத்தில் பிணைக்கப்பட்டிருக்கும்

அதேவேளை $\,C\,$ யில் ஒரு $\,w\,$ நிறை தொங்குகிறது. இழுவைகளையும் உதைப்புகளையும் வேறுபடுத்திக் காட்டி, போவின் குறியீட்டைப் பயன்படுத்துக் கோல்களிலுள்ள விசைகளைக் காண்க.

 ${f b}_{m ullet}$ ஒவ்வொன்றும் w நிறையையும் a நீளமுமுடைய சீரான ஆறு சம கோல்கள் அறுகோணி ABCDEF ஐ அமைக்குமாறு ஒப்பமாக மூட்டப்பட்டுள்ளன. இவை உச்சி $\,\,A\,$ யிலிருந்து தொங்கவிடப்பட்டு $\,B,F\,$ ஐத் தொடுக்கும் இலேசான கிடைக்கோல் BF இனாலும், C,E ஐத் தொடுக்கும் இலேசான கிடைக்கோல் CEஇனாலும் ஒழுங்கான ஒரு அறுகோணி வடிவத்தில் பேணப்பட்டுள்ளன.தொகுதி சமனிலையில் தொங்கும் போது இலேசான கோல்கள் BF,CE என்பவற்றிலுள்ள தகைப்புகள் முறையே $\frac{5\sqrt{3}}{2}w,\frac{\sqrt{3}}{2}w$ எனக்

Q16)

காட்டுக.

a ஆரையுடைய $^{'}$ சீரான திண்மக் கோளத்தில் உரு (\mathbf{i}) இல் காட்டப்பட்டதைப் போல அதன் மையம் Oவிலிருந்து b தூரத்தில் வெட்டி பெரும்பகுதியை அகற்றுவதால் திண்ம கோளத்துண்டம் பெறப்படுகிறது இதன் புவியீர்ப்பு மையம் கோளத்தின் மையம் O விலிருந்து $\dfrac{3}{4}\dfrac{\left(a+b
ight)^2}{\left(2a+b
ight)}$ எனும் தூரத்தில் உண்டு என தொகையிடல் மூலம் காட்டுக.

இதிலிருந்து சீரான a ஆரையுடைய திண்ம அரைக்கோளத்தின் புவியீா்ப்பு மையத்தை உய்த்தறிக. r ஆரையுடைய சீரான திண்ம அரைக்கோளமும் r ஆரையுடைய சீரான திண்ம செவ்வட்டக்கூம்பும் அவற்றின் தளமுகங்கள் சாியாகப் பொருந்தக் கூடியவாறு ஒட்டப்பட்டு ஆக்கப்பட்ட சோ்த்திப் பொருள்

ஒன்று உரு $\left(\mathbf{ii}
ight)$ இல் காட்டப்பட்டுள்ளது. அடர்த்திகள் எல்லாம் ஒரே அளவானது எனக் கொண்டு

சேர்த்திப் பொருளின் திணிவு மையம் அதன் சமச்சீரச்சின் மீது O' இல் இருந்து தூரம் $\dfrac{r\left|\tan^2 lpha - 3\right|}{8 + 4 \tan lpha}$ இல்

இருக்கிறதெனக் காட்டுக. இக் கூட்டுடல் ஆனது உரு $\left(iii\right)$ இல் காட்டிவாறு கிடைத்தரை மீதுவைக்கப்பட்டு ஓய்வில் பிடித்து விடுவிக்கப்படுகிறது. பின்வரும் நிபந்தனைகளில் என்ன நடைபெறும் எனவிளக்குக.

(a)
$$\alpha < \tan^{-1}(\sqrt{3})$$
 (b) $\alpha > \tan^{-1}(\sqrt{3})$ (c) $\alpha = \tan^{-1}(\sqrt{3})$

- **Q17**) **a.** A,B என்பன $P(A) = P(A/B) = \frac{1}{4}, P(B/A) = \frac{1}{2}$ ஆகுமாறு யாதாயினும் இரு நிகழ்ச்சிகள் ஆகும். பின்வரும் கூற்றுக்களில் எது சரி எது பிழை என நியாயத்துடன் கூறுக.
 - (\mathbf{i}) A,B தம்முள் புற நீங்கும் நிகழ்சிகள்
 - $oxed{(ii)} A, B$ என்பன இரு சாரா நிகழ்ச்சிகள்

$$(\mathbf{iii}) P(A'/B) = \frac{3}{4}$$

$$(\mathbf{iv}) P(A'/B') = \frac{1}{2}$$

- **b.** இணைந்த கணித வினா ஒன்றைத் தீர்த்து முடிப்பதற்கு A,B,C எனும் மூன்று மாணவர்களிடம் தனித்தனியாகக் கொடுக்கப்பட்டது. A,B,C என்னும் மாணவர்கள் அவ் வினாவைத் தீர்ப்பதற்கான நிகழ்தகவுகள் முறையே $\frac{1}{2},\frac{3}{4},\frac{1}{4}$ ஆகும் எனின், அவ் வினா தீர்க்கப்படத்தக்கதற்கான நிகழ்தகவைக் காண்க.
- **c.** பாடசாலை மாணவர்கள் பரீட்சை ஒன்றில் பெற்ற புள்ளிகள் பற்றிய விபரம் கீழ் உள்ள அட்டவணையில் காட்டப்பட்டுள்ளது.

இப்பரம்பலின் ஆகாரம் 38 எனின் f ஐக் காண்க. மேலும் இப்பரம்பலின் இடை,இடையம்,மாறற்றிறன் ஆகியவற்றைக் காண்க.

Цополюжн	010001000110700707
0-10	4
10-20	2
20-30	18
30-40	f-24
40-50	67 – f
50-60	19
60-70	10
70-80	4
80-90	1