Congratulations! You passed!

received 100%

Latest Submission Grade 100%

To pass 75% or

Go to next item

1/1 point

1. Given the vectors:

 \vec{v} = (1, 0, 7)

 \vec{w} = (0, -1, 2)

find the distance between them, $d(\vec{v}, \vec{w})$.

 \bigcirc -2

 \bigcirc $\sqrt{(23)}$

O 5

 \bigodot Correct $\operatorname{Correctt} d(\vec{v},\vec{w}) = \sqrt{(0-1)^2 + (-1-0)^2 + (2-7)^2}$

2. You are given the points P: (1, 0, -3) and Q: (-1,0,-3). The magnitude of the vector from P to Q is:

O -2 O 3

2

 \bigodot Correct Correct The magnitude of the vector is the distance between points P and Q, which you find by using the following: $\sqrt{((-1)-1)^2+\theta^2+((-3)-(-3))}=\sqrt{4}=2$

3. Select the correct statements pertaining to the dot product.

○ Correct Correct! Since both vectors are perpendicular to each other, the dot product is always 0.

The dot product of two vectors is always a scalar.

○ Correct
 Correct! The dot product gives us a real number, therfore a scalar.

☐ The dot product of orthogonal vectors is always 1.

4. Calculate the norm ||v|| of the vector \tilde{v} = (1, -5, 2, 0,-3) and select the correct answer.

 $\bigcirc \ \|v\| = 39$

||v|| = 5

 $\bigcirc \ \|v\| = \sqrt{35}$

 \bigcirc Correct Correct $\|v\| = \sqrt{((1^2) + (-5)^2 + 2^2 + 0^2 + (-3)^2)} = \sqrt{3}9$

5. Which of the vectors has the greatest norm?

0 [2]

 $\begin{bmatrix}
1 \\
2 \\
-3
\end{bmatrix}$

 \odot $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$

 $\begin{array}{c}
 \begin{bmatrix} 5 \\ 0 \\ -2 \\ 0 \\ -1 \end{bmatrix}
\end{array}$

 \bigodot Correct Correct! The norm of the vector is $\sqrt{(2^2)+(5^2)}=\sqrt{29}$ which is larger than the other vectors in the

6. Calculate the dot product $\vec{a} \cdot \vec{b}$ and select the correct answer.

 $\vec{a} = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix}, \vec{b} = \begin{bmatrix} -3 \\ 6 \\ -4 \end{bmatrix}$

 $\begin{bmatrix}
-3 \\
30 \\
-8
\end{bmatrix}$

 $\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}$

25 O 30

Correct By applying the formula you saw in the video The dot product. L'as follows: $\vec{a}\cdot\vec{b}=ax\cdot bx+ay\cdot by+az\cdot bz$, you have:

 $\vec{a} \cdot \vec{b} = (-1) \cdot (-3) + 5 \cdot 6 + 2 \cdot (-4) = 3 + 30 - 8 = 25.$

7. Which of the following is the result of performing the multiplication $M_1\cdot M_2$? Where M_1 and M_2 are

 $M_1 = \begin{bmatrix} 2 & -1 \\ 3 & -3 \end{bmatrix}, M_2 = \begin{bmatrix} 5 & -2 \\ 0 & 1 \end{bmatrix}.$

 $\bigcirc \begin{bmatrix} 10 & 15 \\ -3 & -4 \end{bmatrix}$ $\bigcirc \begin{bmatrix} 10 & 3 \\ 15 & 4 \end{bmatrix}$

8. Calculate the dot product $\vec{w} \! \cdot \vec{z}$ and select the correct answer.

$$\vec{w} = \begin{bmatrix} -9 \\ -1 \end{bmatrix}, \vec{z} = \begin{bmatrix} -3 \\ -5 \end{bmatrix}$$

1/1 point

$$\bigcirc 35$$

$$\bigcirc \begin{bmatrix} 27 \\ 5 \end{bmatrix}$$

$$\bigcirc 32$$

$$\bigcirc \begin{bmatrix} -27 \\ -5 \end{bmatrix}$$

$$\bigcirc \text{ Correct} \\ \text{Correct} \ \vec{w} \cdot \vec{z} = \begin{bmatrix} -9 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -5 \end{bmatrix} = (-9) \left(-3 \right) + (-1) \left(-5 \right) = 32$$