THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4302: Algebra II

May 18, 2024

2:30pm. - 5:00pm

No calculators are allowed in the examination.

Answer ALL EIGHT questions

Note: You should always give precise and adequate explanations to support your conclusions. Clarity of presentation of your argument counts. So **think carefully before you write.**

- 1. (10 points). Answer "True" or "False" to each of the following six statements. For this problem only, you do not need to explain your answers.
 - 1) The principal ideal $I = \langle x 1 \rangle$ of $\mathbb{Z}[x]$ is prime but not maximal;
 - 2) The quotient ring $\mathbb{Q}[x]/\langle x^5 5 \rangle$ is a field;
 - 3) The $\mathbb{Z}[x]$ -module $M=\mathbb{Z}[x]/\langle x-1\rangle\,\oplus\,\mathbb{Z}[x]/\langle (x+15)^3\rangle$ is a torsion module;
 - 4) For any field K and any non-constant $f(x) \in K[x]$, if f(x) is irreducible in K[x], then $f(x^2)$ is irreducible in K[x];
 - 5) For any field K and any non-constant $f(x) \in K[x]$, if $f(x^2)$ is irreducible in K[x], then f(x) is irreducible in K[x].
- 2. (10 points) Consider the $\mathbb{R}[x]$ -module $V = \mathbb{R}[x]/\langle (x-3)^2(x+5)^2 \rangle$ as a vector space over \mathbb{R} , and let $T: V \to V$ be the \mathbb{R} -linear map defined by the multiplication by $x \in \mathbb{R}[x]$.
 - 1) Find a basis of V with respect to which T is in Jordan canonical form;
 - 2) Find a basis of V with respect to which T is in rational canonical form.
- 3. 1) (5 points) Let $f(x) = x^5 + 2x^4 + 4x^3 6x + 2 \in \mathbb{Q}[x]$ and let α be a root of f in \mathbb{C} . Determine whether or not $\sqrt[3]{2} \in \mathbb{Q}(\alpha)$.
 - 2) (5 points) Let β be any root of

$$g(x) = -x^{19} + i\sqrt[5]{11}x^4 + \frac{\sqrt[3]{5} + 191}{\sqrt{37} + 1}x^3 + 1 \in \mathbb{C}[x]$$

in \mathbb{C} . Show that β is a root of a polynomial with coefficients in \mathbb{Q} .

- 4. (10 points) Let p > 2 be a prime number. Show that if the angle $\frac{2\pi}{p}$ is constructable by a ruler and a compass, then p-1 must be a power of 2.
- 5. 1) (5 points) State the elementary divisor form of the classification theorem of finitely generated modules over a PID;

- 2) (5 points) Use the classification theorem of finitely generated modules over a PID to prove the classification theorem of finite abelian groups;
- 3) (10 points) Let K be an arbitrary field and consider $K\setminus\{0\}$ as an abelian group under multiplication in K. Use the classification theorem of finite abelian groups to show that every finite subgroup of $K\setminus\{0\}$ is cyclic;
- 4) (5 points) Use the result in 3) to show that every finite extension of every finite field is simple.
- 6. (10 points) Let p be a prime number and let g(x) be any irreducible polynomial in $\mathbb{F}_p[x]$. Show that $\mathbb{F}_p[x]/\langle g(x)\rangle$ is a splitting field of g(x) over \mathbb{F}_p .
- 7. (10 points) Let $K \subset L$ be a finite Galois field extension with Galois group $G = \operatorname{Gal}(L/K)$, and let $\alpha \in L$. Let $G\alpha = \{\sigma(\alpha) : \sigma \in G\} = \{\alpha = \alpha_1, \alpha_2, \dots, \alpha_r\}$, where $\alpha_i \neq \alpha_j$ for $i, j \in [1, r]$ and $i \neq j$. Show that

$$q(x) = (x - \alpha)(x - \alpha_2) \cdots (x - \alpha_r)$$

is the minimal polynomial of α in K[x].

- 8. 1) (5 points) Recall that a real quadratic extension of \mathbb{Q} is, by definition, a sub-field M of \mathbb{R} such that $|M:\mathbb{Q}|=2$. Show that every real quadratic extension of \mathbb{Q} is of the form $\mathbb{Q}(\sqrt{n})$, where n is a square-free positive integer, i.e., n>1 and n is a product of pairwise distinct prime numbers;
 - 2) (10 points) Show that any sub-field L of \mathbb{C} which is a degree four Galois extension of \mathbb{Q} must contain a real quadratic extension of \mathbb{Q} .

***** END OF PAPER *****