Laboratorium Podstaw Elektroniki					
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.		
Informatyka	_	I	i i	73	
Temat Laboratorium					
Wzmacniacze operacyjne				8	
Skład grupy ćwiczeniowej oraz numery indeksów					
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)					
Uwagi Ocena					

1 PLAYGROUND

1.
$$U_{out} = k_u \cdot U_{in} = k_u (U_A - U_B)$$

2. $\frac{U_{out}(s)}{U_{in}(s)} = 1 + \frac{Z_f}{Z_{in}}$
3. $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{Z_f}{Z_{in}}$
4. $Z_f = \frac{1}{sC}$
5. $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{\frac{1}{sC}}{R} = -\frac{1}{RC} \cdot \frac{1}{s}$
6. $u_{out}(t) = -\frac{1}{RC} \int u_{in}(t) dt = -\frac{1}{T_i} \int u_{in}(t) dt$
7. $Z_{in} = \frac{1}{sC}$
8. $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{R}{\frac{1}{sC}} = -RC \cdot s$
9. $u_{out}(t) = -RC \frac{du_{in}(t)}{dt} = -T_d \frac{du_{in}(t)}{dt}$

2 Wstęp do laboratoriów

Po zapoznaniu się z treścią zaprezentowanego pdfa, złożono układ do badań zgodnie z instrukcjami i po sprawdzeniu połączonego układu przez prowadzącego przystąpiono do dalszych zadań. Prowadzący wybrał dla naszej grupy laboratoryjnej częstotliwość 1kHz.

3 Konfiguracja nieodwracająca

3.1 Cel zadania

Badanie wzmacniacza operacyjnego w konfiguracji nieodwracającej.

3.2 Przebieg zadania

Rysunek 1: Konfiguracja nieodwracająca

Przygotowano układ zgodnie z instrukcjami i odczytano wartości elementów rezystancyjnych $R_1=1k\Omega$ (wartość z pomiarów 987.573 Ω), $R_2=1k\Omega$ (wartość z pomiarów 992.386 Ω) odpowiedzialnych za wyznaczenie stopnia wzmocnienia w tej konfiguracji.

Za pomocą oscyloskopu odczytano amplitudy przebiegów wejściowego 500mV i wyjściowego 1V, a następnie zapisano ich oscylogram

Rysunek 2: Zapisany oscylogram wybranej pary przebiegów.

Wzmocnienie oszacowano na 2 w skali linowej i $10\log_{10}2\approx 3.0103dB$ Za pomocą zależności $\frac{U_{out}(s)}{U_{in}(s)}=1+\frac{Z_f}{Z_{in}}=2$ porównano wartość wzmocnienia z zależnością.

Na podstawie ogólnego równania opisującego wzmocnienie stopnia w konfiguracji nieodwracającej, $\frac{U_{out}(s)}{U_{in}(s)} =$

 $1 + \frac{Z_f}{Z_{in}}$, określono że wzmocnienie dla układu wtórnika napięciowego jest równe 1.

Wtórnik napięcia prawie wcale nie pobiera prądu ze źródła sygnału, a umożliwia pobranie całkiem sporego prądu ze swojego wyjścia, przez co układy te są stosowane w celu odseparowania źródła sygnału od odbiornika.

Wnioski

Po przeanalizowaniu oszacowanych wartości z teoretycznymi stwierdzono, ze doświadczenie przeprowadzono poprawnie.

Konfiguracja odwracająca

4.1 Cel zadania

Badanie wzmacniacza operacyjnego w konfiguracji odwracającej

4.2 Przebieg zadania

Rysunek 3: Konfiguracja odwracająca

Przygotowano układ zgodnie z instrukcjami i odczytano wartości elementów rezystancyjnych i pojemnościowych możliwych do załączenia w roli impedancji Z_f oraz Z_{in} w tej konfiguracji.

nazwa	$Z_{in}/$	wartości
elementu	Z_f	odczytów
R3		$1k\Omega$
<i>C</i> 1	7	100nF
R4	Z_{in}	$2k\Omega$
<i>R</i> 5		$1k\Omega$
C2		10nf
<i>R</i> 6	7	$5k\Omega$
<i>R</i> 7	Z_f	$1k\Omega$
R8		$2k\Omega$

Tablica 1: Zestawienie dokonanych pomiarów i odczytów.

Przy pomocy oscyloskopu odczytano wartości u_{we} i w_{wy} , następnie obliczono k_u przy pomocy wzoru $\frac{U_{out}(s)}{U_{in}(s)} = -\frac{Z_f}{Z_{in}}$, dla rożnych ustawień wzmacniacza.

Zin	nr przełącznika	Z_f	nr przełącznika	k_u teoretyczne	u_{we}	u_{wy}	$k_u [V/V]$	$k_u [dB]$
$1k\Omega$	1	$2k\Omega$	1	-2	1.06V	-2.12V	-2	-3.01
$1k\Omega$	1	$1k\Omega$	2	-1	1.06V	-1.06V	-1	0
$1k\Omega$	1	$5k\Omega$	3	-5	1.06V	-5.44V	-5.13	-7.10
$2k\Omega$	2	$1k\Omega$	2	-0.5	1.06V	-0.54V	-0.5	3.01

Tablica 2: Zestawienie danych pomiarowych i obliczeniowych stopnia wzmacniającego.

Zapisano oscylogram wybranej pary przebiegów, dla Z_{in} numer przełącznika: 1 i Z_f numer przełącznika: 2.

Rysunek 4: Zapisany oscylogram dla wybranej pary przebiegów.

Różnice między teoretyczną a uzyskaną wartością pomiarów wzmocnienia k_u , wynikają z niedokładnością sprzętu pomiarowego i elementów układu.

Przesunięcie fazowe między przebiegami wynosi Π i jest spowodowane różnicą napięć

4.3 Wnioski

Po przeanalizowaniu oszacowanych wartości z teoretycznymi stwierdzono, ze doświadczenie przeprowadzono poprawnie.

5 Blok integratora

5.1 Cel zadania

Badanie układu całkującego.

5.2 Przebieg zadania

Przygotowano układ zgodnie z instrukcjami i za pomocą oscyloskopu odczytano współczynniki nachylenia przebiegu trójkątnego.

Korzystając z zależności $u_{out}(t)=-\frac{1}{RC}\int u_{in}(t)dt=-\frac{1}{T_i}\int u_{in}(t)dt$ wyprowadzono wzór $\frac{1}{T_i}=\frac{1}{RC}$ do obliczenia teoretycznego $\frac{1}{T_i}$

R	nr przełącznika	С	nr przełącznika	$\frac{1}{T_i}$ teoretyczne	$\frac{1}{T_i}$ obliczone
1 <i>k</i> 9	1	10 <i>nF</i>	4	_	_
2 <i>k</i> 9	2	10 <i>nF</i>	4	_	_

Tablica 3: Zestawienie danych pomiarowych i obliczeniowych stopnia wzmacniającego.

Zapisano oscylogram wybranej pary przebiegów: wejściowego i wyjściowego, dla $R = 2k\Omega$, C = 10nF.

Rysunek 5: Przebieg wejściowy (żółty) i jego całka (niebieski) dla wzmacniacza napięciowego w roli integratora.

5.3 Wnioski

6 Blok różniczkujący

6.1 Cel zadania

Badanie układu różniczkującego.

6.2 Przebieg zadania

Przygotowano układ zgodnie z instrukcjami i z jego pomocą uzyskano na wyjściu niestabilny przebieg prostokątny ustawiając przełączniki na 3 dla INPUT i 1,4 dla LOOPBACK.

Rysunek 6: Uzyskany niestabiny przebieg prostokątny (niebieski)

Następnie zmieniono ustawienia przełączników na 3 dla INPUT i 1,4 dla LOOPBACK, dzięki czemu na wyjściu otrzymano stabilny przebieg prostokątny.

Rysunek 7: Przebieg wejściowy (żółty) i jego pochodna (niebieski)

dlaczemu?

6.3 Wnioski

Literatura

- [1] Stanisław Bolkowski, Elektrotechnika, WSiP, 2005r.
- [2] Krakowski Maciej, Elektrotechnika teoretyczna, Wydawnictwo Naukowe PWN, 1995r.
- [3] R. Kurdziel, Podstawy elektrotechniki, Wydawnictwo Naukowe WSiP, 1999r.

Spis treści

1	PLA	AYGROUND	1
2	Wst	ęp do laboratoriów	1
3	Kon	figuracja nieodwracająca	2
	3.1	Cel zadania	2
	3.2	Przebieg zadania	2
	3.3	Wnioski	3
4	Kon	figuracja odwracająca	3
	4.1	Cel zadania	3
	4.2	Przebieg zadania	4
	4.3	Wnioski	
5	Blok	x integratora	5
	5.1	Cel zadania	5
	5.2	Przebieg zadania	6
	5.3	Wnioski	7
6	Blok	x różniczkujący	7
	6.1	Cel zadania	7
	6.2	Przebieg zadania	7
	6.3	Wnioski	