EL SPIN DE UN SISTEMA BIELECTRÓNICO

Aunque el hamiltoniano del átomo bielectrónico es independiente del *spin*, la función de onda debe contener las componentes espaciales y la de *spin* en una dirección, que puede ser la del eje z. Así:

$$\psi'(q_1,q_2) = \psi(\vec{r}_1,\vec{r}_2)\chi(1,2)$$

donde $\chi(1,2)$ es la función de onda de spin para dos electrones y q_i denota las coordenadas de spin y espaciales del electrón i.

Sean \vec{S}_{1} y \vec{S}_{2} los vectores de *spin* de los dos electrones y sean también $(\hat{S}_{1})_{z}$ y $(\hat{S}_{2})_{z}$ los componentes del operador en la dirección z. Las funciones de spin posibles para los dos electrones son, por definición, $\alpha(1)$ y $\beta(1)$ para el electrón de coordenadas 1 sobre el que actúa el operador $(\hat{S}_{1})_{z}$ y $\alpha(2)$ y $\beta(2)$ para el electrón de coordenadas 2 sobre el que actúa el operador $(\hat{S}_{2})_{z}$.

El *spin* total se representa por el vector:

$$\vec{S} = \vec{S}_1 + \vec{S}_2$$

y la componente z del operador es:

$$\hat{S}_{z} = (\hat{S}_{1})_{z} + (\hat{S}_{2})_{z}$$

Si sabemos que en unidades atómicas:

$$|\vec{S}_I|^2 = |\vec{S}_2|^2 = \frac{3}{4}$$

entonces

$$|\vec{S}|^2 = |\vec{S}_I|^2 + |\vec{S}_2|^2 + 2\vec{S}_I \cdot \vec{S}_2$$

 $|\vec{S}|^2 = \frac{3}{4} + 2\vec{S}_I \cdot \vec{S}_2$

No se consideran aquí interacciones dependientes del *spin* y por lo tanto el de cada electrón podrá proyectarse positiva (m_s =+1/2, con la flecha hacia arriba \uparrow) o negativamente (m_s =-1/2, con la flecha hacia abajo \downarrow) de forma independiente. Así tendremos cuatro estados de *spin* posibles:

$$\chi_{1}(1,2) = \alpha(1)\alpha(2) \qquad \uparrow \uparrow$$

$$\chi_{2}(1,2) = \alpha(1)\beta(2) \qquad \uparrow \downarrow$$

$$\chi_{3}(1,2) = \beta(1)\alpha(2) \qquad \downarrow \uparrow$$

$$\chi_{4}(1,2) = \beta(1)\beta(2) \qquad \downarrow \downarrow$$

Debe notarse que tanto χ_1 como χ_4 son **simétricas** con respecto al intercambio de coordenadas electrónicas, mientras que χ_2 y χ_3 no son **simétricas** ni **antisimétricas**.

De esta forma:

$$\hat{S}_{z}\chi(1,2) = [(\hat{S}_{1})_{z} + (\hat{S}_{2})_{z}]\alpha(1)\alpha(2)$$

$$= [(\hat{S}_{1})_{z}\alpha(1)]\alpha(2) + \alpha(1)[(\hat{S}_{2})_{z}\alpha(2)]$$

$$= \frac{1}{2}\alpha(1)\alpha(2) + \frac{1}{2}\alpha(1)\alpha(2)$$

$$\hat{S}_{z}\chi(1,2) = \chi(1,2)$$

que puede considerarse una ecuación de valores y vectores propios donde el valor propio es unitario. Si se denomina a ese valor propio como M_S para un sistema bielectrónico, entonces queda:

$$\hat{S}_z \chi(1,2) = M_S \chi(1,2)$$

y los valores que puede tomar M_S para cada una de las combinaciones de proyección se *spin* anteriores son:

$$M_{S}=+1 \Rightarrow \hat{S}_{z}\chi(1,2) = \chi_{1}(1,2)$$
 $\uparrow \uparrow$
 $M_{S}=0 \Rightarrow \hat{S}_{z}\chi(1,2) = 0$ $\uparrow \downarrow$
 $M_{S}=0 \Rightarrow \hat{S}_{z}\chi(1,2) = 0$ $\downarrow \uparrow$
 $M_{S}=-1 \Rightarrow \hat{S}_{z}\chi(1,2) = \chi_{4}(1,2)$ $\downarrow \downarrow$

De la misma forma, para el sistema bielectrónico se puede plantear el número cuántico de *spin* como *S*, tal que de forma similar al caso monoelectrónico:

$$\hat{S}^2 \chi(1,2) = S(S+1)\chi(1,2)$$

y se puede demostrar que las funciones propias son, para cada combinación:

$$\hat{S}^{2}\chi(1,2) = 2\chi_{1}(1,2) \qquad \uparrow \uparrow$$

$$\hat{S}^{2}\chi(1,2) = \chi_{2}(1,2) + \chi_{3}(1,2) \qquad \uparrow \downarrow$$

$$\hat{S}^{2}\chi(1,2) = \chi_{2}(1,2) + \chi_{3}(1,2) \qquad \downarrow \uparrow$$

$$\hat{S}^{2}\chi(1,2) = 2\chi_{4}(1,2) \qquad \downarrow \downarrow$$

Como las funciones χ_2 y χ_3 no son simétricas ni antisimétricas, ni tampoco funciones propias de los operadores \hat{S}^2 ni \hat{S}_z , es preciso recurrir al principio de superposición para crear funciones combinación que lo sean:

$$\chi_{+}(1,2) = 2^{-1/2} [\chi_{2}(1,2) + \chi_{3}(1,2)]$$

$$\chi_{-}(1,2) = 2^{-1/2} [\chi_{2}(1,2) - \chi_{3}(1,2)]$$

donde el $2^{-1/2}$ es la constante de normalización. Ahora $\chi_+(1,2)$ es **simétrica** y $\chi_-(1,2)$ es **antisimétrica**.

Si se aplican los operadores \hat{S}^2 y \hat{S}_z a la función $\chi_+(1,2)$, se nota que es función propia de ambos y que los números cuánticos son S=1 y $M_S=0$, respectivamente. También la función antisimétrica $\chi_-(1,2)$ es propia de los operadores y los números cuánticos son S=0 y $M_S=0$.

Resumiendo, si denotamos las funciones de *spin* bielectrónicas como $\chi_{S,M_S}(1,2)$, al igual que se hizo en el caso monoenectrónico, hay tres (un **triplete**) simétricas, que son:

$$\chi_{1,1}(1,2) = \alpha(1)\alpha(2)$$

$$\chi_{1,0}(1,2) = 2^{-1/2} [\alpha(1)\beta(2) + \beta(1)\alpha(2)]$$

$$\chi_{1,-1}(1,2) = \beta(1)\beta(2)$$

y una (un singlete) antisimétrica que es:

$$\chi_{0.0}(1,2) = 2^{-1/2} [\alpha(1)\beta(2) - \beta(1)\alpha(2)]$$