Scilab Textbook Companion for Physical Chemistry by D. Farrington¹

Created by
Devika Raj
Chemical engineering
Chemical Engineering
RVR College of Engineering
College Teacher
Na
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Physical Chemistry

Author: D. Farrington

 ${\bf Publisher:}\ {\rm McGraw-Hill}\ {\rm College}$

Edition: 7

Year: 1970

ISBN: 0070153396

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
2	GASES	9
3	FIRST LAW OF THERMODYNAMICS	12
4	THERMOCHEMISTRY	14
5	SECOND AND THIRD LAW OF THERMODYNAMICS	20
6	ONE COMPONENT SYSTEMS	26
7	SOLUTIONS	29
8	PROPERTIES OF DILUTE SOLUTIONS	32
9	CHEMICAL EQUILIBRIA	35
11	KINETIC THEORY	45
12	CHEMICAL KINETICS	48
13	IREVERSIBLE PROCESS IN LIQUIDS	51
14	ELECTROMOTIVE FORCE	57
15	IONIC EQUILIBRIA	62
16	Quantum theory	67

18	SPECTROSCOPY	69	
19	STATISTICAL MECHANICS	73	
20	MACROMOLECULES	76	
21	SURFACE CHEMSITRY	7 9	
22	CRYSTALS	81	
23	KINETICSPHOTOCHEMISTRYRADIATIONCHEMISTRY	Y	82
24	NUCLEAR CHEMISTRY	85	

List of Scilab Codes

Exa 2.1	example 1	9
Exa 2.2	example 2	9
Exa 2.4	example 4	10
Exa 2.5	example 5	10
Exa 3.1	example 1	12
Exa 3.4	example 4	12
Exa 4.1	example 1	14
Exa 4.2	example 2	14
Exa 4.3	example 3	15
Exa 4.4	example 4	15
Exa 4.5	example 5	16
Exa 4.6	example 6	16
Exa 4.7	example 7	16
Exa 4.8	example 8	17
Exa 4.9	example 9	17
Exa 4.10	example 10	17
Exa 4.11	example 11	18
Exa 4.12	example 12	18
Exa 4.13	example 13	19
Exa 5.1	example $1 \dots \dots \dots \dots$	20
Exa 5.2	example $2 \dots \dots \dots \dots$	20
Exa 5.3	example 3	21
Exa 5.4	example 4	21
Exa 5.5	example 5	22
Exa 5.6	example $6 \dots \dots \dots \dots \dots$	22
Exa 5.7	example 7	23
Exa 5.8	example 8	23
Eva 5.9	evample 0	23

Exa 5.10	example 10												24
Exa 6.1	example 1 .												26
Exa 6.2	example 2 .												26
Exa 6.3	example 3 .												27
Exa 6.4	example 4 .												27
Exa~6.5	example 5 .												28
Exa 7.1	example 1 .												29
Exa 7.2	example 2 .												29
Exa 7.3	example 3 .												30
Exa 7.4	example 4 .												30
Exa 8.2	example 2 .												32
Exa 8.3	example 3 .												32
Exa 8.4	example 4 .												33
Exa~8.5	example 5 .												33
Exa 8.6	example 6 .												34
Exa 8.7	example 7 .												34
Exa 9.1	example 1 .												35
Exa 9.2	example 2 .												35
Exa 9.3	example 3 .												36
Exa 9.4	example 4 .												36
Exa 9.5	example 5 .												37
Exa 9.6	example 6 .												37
Exa 9.7	example 7 .												38
Exa 9.8	example 8 .												38
Exa 9.10	example 10												38
Exa 9.11	example 11												39
Exa 9.12	example 12												39
Exa 9.13	example 13												40
Exa 9.14	example 14												40
Exa 9.15	example 15												40
Exa 9.16	example 16												41
Exa 9.17	example 17												41
Exa 9.18	example 18												42
Exa 9.19	example 19												42
Exa 9.20	example 20												43
Exa 9.21	example 21												43
Exa 9.22	example 22												43
Exa 11.1	example 1												45

Exa 11.2	example 2 .												45
Exa 11.3	example 3 .												46
Exa 11.4	example 4 .												46
Exa 11.5	example 5 .												47
Exa 12.1	example 1 .												48
Exa 12.2	example 2 .												48
Exa 12.3	example 3 .												49
Exa 12.4	example 4 .												49
Exa 12.7	example 7 .												50
Exa 13.1	example 1 .												51
Exa 13.2	example 2 .												52
Exa 13.3	example 3 .												52
Exa 13.4	example 4 .												52
Exa 13.5	example 5 .												53
Exa 13.6	example 6 .												53
Exa 13.7	example 7 .												54
Exa 13.8	example 8 .												54
Exa 13.9	example 9 .												55
Exa 13.10	example 10												55
Exa 13.11	example 11												56
Exa 14.1	example 1 .												57
Exa 14.3	example 3 .												57
Exa 14.4	example 4 .												58
Exa 14.5	example 5 .												58
Exa 14.6	example 6 .												59
Exa 14.7	example 7 .												59
Exa 14.8	example 8 .												60
Exa 14.9	example 9 .												60
Exa 14.10	example 10												60
Exa 15.1	example 1 .												62
Exa 15.2	example 2 .												62
Exa 15.3	example 3 .												63
Exa 15.4	example 4 .												63
Exa 15.5	example 5 .												64
Exa 15.6	example 6.												64
Exa 15.7	example 7 .												64
Exa 15.8	example 8.												65
Exa. 15.9	example 9												65

Exa 15.10	example 10	. 65
Exa 15.11	example 11	. 66
Exa 16.1	example 1	. 67
Exa 16.2	Example 2	. 67
Exa 18.1	example 1	. 69
Exa 18.2	example 2	. 69
Exa 19.3	example 3	. 70
Exa 18.4	example 4	. 70
Exa 18.5	example 5	. 71
Exa 18.6	example 6	. 71
Exa 18.7	example 7	. 71
Exa 18.8	example 8	. 72
Exa 19.1	example 1	. 73
Exa 19.2	example 2	. 74
Exa 19.4	example 4	. 74
Exa 20.1	example 1	. 76
Exa 20.2	example 2	. 76
Exa 20.3	example 3	. 77
Exa 20.4	example 4	. 77
Exa 20.5	example 5	. 78
Exa 21.1	example 1	. 79
Exa 21.2	example 2	. 79
Exa 23.1	example 1	. 81
Exa 23.1	example 1	. 82
Exa 23.2	example 2	. 82
Exa 23.4	example 4	. 83
Exa 23.5	example 5	. 83
Exa 24.1	example 1	. 85
Exa 24.2	example 2	. 85
Exa 24.3	example 3	
Exa 24.4	example 4	. 86
Exa 24.5	example 5	. 87
Exa 24.6	example 6	. 87
Exa 24.8	example 8	. 88

GASES

Scilab code Exa 2.1 example 1

```
1 clc
2 //initialisation of variables
3 G= 20 //gram
4 R= 0.08205 //l-atm /mole K
5 T= 30 //C
6 P= 740 //mm
7 M= 44.01 //l
8 //CALCULATIONS
9 V= G*R*(273.15+T)*760/(P*M)
10 //RESULTS
11 printf ('volume occupied by 20 grmas of carbon dioxide= %.1 f litre', V)
```

Scilab code Exa 2.2 example 2

```
1 clc
2 //initialisation of variables
3 G= 0.110 //gram
```

```
4 R= 0.08205 //l-atm /mole K
5 T= 26.1 //C
6 P= 743 //mm
7 V= 0.0270 //l
8 //CALCULATIONS
9 M= G*R*(273.15+T)*760/(P*V)
10 //RESULTS
11 printf ('molecular weight of hydrocarbon= %.f g mole ^-1', M)
```

Scilab code Exa 2.4 example 4

```
1 clc
2 //initialisation of variables
3 R= 0.08205 / l-atm deg^{-1} mole^{-1}
4 T = 25 / K
5 n = 1 //mole
6 V = 0.5 // lit
7 b= 0.04267 // lit mole^-1
8 a= 3.592 // lit^2 atm mol^-2
9 //CALCULATIONS
10 P = R*(273.15+T)/V
11 P1= (R*(273.15+T)/(V-b))-(a/V^2)
12 //RESULTS
13 printf ('pressure calculated using ideal gas law= \%
      .1 f atm',P)
14 printf ('\n pressure calculated using vander wals
      equation = \%.1 f atm', P1)
```

Scilab code Exa 2.5 example 5

```
1 clc
2 //initialisation of variables
```

```
3 T= -88 //C
4 Tc= 154.4 //K
5 Pc= 49.7 //atm
6 P= 44.7 //atm
7 R= 0.08205 //atm m^3 mole^-1 K^-1
8 r= 0.8
9 //CALCULATIONS
10 V= r*R*(273.15+T)/P
11 //RESULTS
12 printf ('volume pccupied by mole of oxygen= %.3 f litre mole^-1',V)
```

FIRST LAW OF THERMODYNAMICS

Scilab code Exa 3.1 example 1

```
1 clc
2 //initialisation of variables
3 R= 1.987 //cal mol^-1 K^-1
4 T= 0 //C
5 V1= 22.4 //lit
6 V2= 2.24 //lit
7 //CALCULATIONS
8 wrev= 2.303*R*(273.1+T)*log10(V1/V2)
9 //RESULTS
10 printf ('maximum work done= % f cal ',wrev)
```

Scilab code Exa 3.4 example 4

```
1 clc
2 //initialisation of variables
3 Cp= 0.096 //cal deg g^-1
```

```
4 //RESULTS
```

5 printf ('Cp of zinc at constant pressure a room
 temperature= % 3f cal deg g^-1',Cp)

THERMOCHEMISTRY

Scilab code Exa 4.1 example 1

```
1 clc
2 //initialisation of variables
3 E= -1148.93 //kcal mole^-1
4 R= 1.987 //cal mole^-1 K^-1
5 T= 25 //C
6 n=4
7 //CALCULATIONS
8 E1= (E*1000-R*n*(273.1+T))/1000
9 //RESULTS
10 printf ('heat absorbed= %.2 f kcal mole^-1',E1)
```

Scilab code Exa 4.2 example 2

```
1 clc
2 //initialisation of variables
3 Hr1= -71.03 //kcal
4 Hr2= 70.96 //kcal
5 //CALCULATIONS
```

```
6 H= Hr1+Hr2
7 //RESULTS
8 printf ('Enthalpy of transition= %.2 f kcal', H)
```

Scilab code Exa 4.3 example 3

```
1 clc
2 //initialisation of variables
3 Hr1= -70.96 //kcal
4 Hr2= -23.49 //kcal
5 Hr3= -31.14 //kcal
6 Hr4= -68.32 //kcal
7 //CALCULATIONS
8 H= Hr1+Hr2+Hr3+Hr4
9 //RESULTS
10 printf ('Enthalpy of formation= %.2 f kcal', H)
```

Scilab code Exa 4.4 example 4

```
1 clc
2 //initialisation of variables
3 dH= -310.615 //kcal
4 HfC02= -94.52 //kcal
5 HfH20= -68.3174 //kcal
6 //CALCULATIONS
7 HfCH2= -dH+2*HfC02+HfH20
8 //RESULTS
9 printf ('Enthalpy of formation of acetylene= %.3 f kcal mole^-1', HfCH2)
```

Scilab code Exa 4.5 example 5

```
1 clc
2 //initialisation of variables
3 dH= -687.982 //kcal
4 HCO2= -94.0518 //kcal
5 HH2O= -68.3174 //kcal
6 //CALCULATIONS
7 H= -dH+4*HCO2+5*HH2O
8 //RESULTSn
9 printf ('Enthalpy of formation of n butane= %.3 f kcal mole^-1', H)
```

Scilab code Exa 4.6 example 6

```
1 clc
2 //initialisation of variables
3 HfAlO2= -399.1 //kcal
4 HfFe2O2= -196.5 //kcal
5 //CALCULATIONS
6 dH= HfAlO2-HfFe2O2
7 //RESULTS
8 printf ('Enthalpy change= %.1 f kcal mole^-1',dH)
```

Scilab code Exa 4.7 example 7

```
1 clc
2 //initialisation of variables
3 Hr= -17.74 //kcal
4 Hr1= 15.31 //kcal
5 //CALCULATIONS
6 dH= Hr+Hr1
7 //RESULTS
```

```
8 printf ('integral heat of dilution= \%.2 f kcal', dH)
```

Scilab code Exa 4.8 example 8

```
1 clc
2 //initialisation of variables
3 dHr= -0.56 //kcal
4 dHr1= -18.85 //kcal
5 //CALCULATIONS
6 dH= dHr+dHr1
7 //RESULTS
8 printf ('integral heat of hydration= %.2 f kcal ',dH)
```

Scilab code Exa 4.9 example 9

Scilab code Exa 4.10 example 10

```
1 clc
2 //initialisation of variables
3 HNaCl= -97.219 //kcal
```

```
4 HH20= -68.3174 //kcal

5 HHcl= -39.713 //kcal

6 HNaOH= -112.108 //kcal

7 //CALCULATIONS

8 H298= HNaCl+HH2O-HHcl-HNaOH

9 //RESULTS

10 printf ('dH298= %.3 f kcal ', H298)
```

Scilab code Exa 4.11 example 11

```
1 clc
2 //initialisation of variables
3 T1= 1000 //K
4 T2= 300 //K
5 k1= 6.0954 //cal deg^-1 mole^-1
6 k2= 3.2533*10^-3 //cal deg^-2 mole^-1
7 k3= -1.071*10^-6 //cal deg^-3 mole^-1
8 //CALCULATIONS
9 dH= k1*(T1-T2)+(k2*(T1^2-T2^2)/2)+(k3*(T1^3-T2^3)/3)
10 //RESULTS
11 printf ('dH= %. f cal mole^-1',dH)
```

Scilab code Exa 4.12 example 12

```
1 clc
2 //initialisation of variables
3 dH273= -79.7 //cal g^-1
4 T1= 263 //K
5 T2= 273 //K
6 dCp= -0.51 //cal mole^-1 deg^-1
7 //CALCULATIONS
8 H263= dH273+dCp*(T1-T2)
9 //RESULTS
```

```
10 printf ('H263 = \%.1 f cal g^-1', H263)
```

Scilab code Exa 4.13 example 13

```
1 clc
2 //initialisation of variables
3 dH293= -115595.8 //cal
4 T1= 1500 //K
5 T2= 298 //K
6 k1= -5.6146 //cal deg^-1 mole^-1
7 k2= 1.8931*10^-3 //cal deg^-2 mole^-1
8 k3= 4.723*10^-7 //cal deg^-3 mole^-1
9 //CALCULATIONS
10 dH=dH293+ k1*(T1-T2)+(k2*(T1^2-T2^2)/2)+(k3*(T1^3-T2^3)/3)
11 //RESULTS
12 printf ('dH1500= %. f cal ',dH)
```

SECOND AND THIRD LAW OF THERMODYNAMICS

Scilab code Exa 5.1 example 1

```
1 clc
2 //initialisation of variables
3 q2= 1000 //cal
4 T2= 100 //C
5 T1= 20 //C
6 //CALCULATIONS
7 wmax= q2*(T2-T1)/(273.1+T2)
8 //RESULTS
9 printf ('maximum work= %.f cal ',wmax)
```

Scilab code Exa 5.2 example 2

```
1 clc
2 //initialisation of variables
3 dH= 6896 //cal mole^-1
4 T= 68.7 //C
```

```
5 //CALCULATIONS
6 dS= dH/(273.1+T)
7 //RESULTS
8 printf ('entropy change per mole= %.2 f cal deg^-1 mole^-1',dS)
```

Scilab code Exa 5.3 example 3

```
1 clc
2 //initialisation of variables
3 Cp= 6.09 //cal deg^-1 mole^-1
4 T1= 30 //C
5 T2= 0 //C
6 //CALCULATIONS
7 dS= 2.303*Cp*log10((273+T1)/(273+T2))
8 //RESULTS
9 printf ('increase in entropy= %.3 f cal deg^-1 mole ^-1',dS)
```

Scilab code Exa 5.4 example 4

```
1 clc
2 //initialisation of variables
3 T1= 25 //C
4 T2= 600 //C
5 k1= 6.0954
6 k2= 3.2533*10^-3 //K
7 k3= -10.71*10^-7 //K^-1
8 //CALCULATIONS
9 dS= k1*2.303*log10((273+T2)/(273+T1))+k2*(T2-T1)+(k3 /2)*((273+T2)^2-(273+T1)^2)
10 //RESULTS
```

```
11 printf ('increase in entropy= \%.2\,\mathrm{f} cal deg^-1 mole ^-1',dS)
```

Scilab code Exa 5.5 example 5

```
1 clc
2 //initialisation of variables
3 n= 2 //mole
4 R= 1.987 //cal K^-1 mole^-1
5 X1= 0.5 //atm
6 X2= 0.5 //atm
7 //CALCULATIONS
8 S= -2.303*n*R*(X1*log10(X1)+X2*log10(X2))
9 //RESULTS
10 printf ('change in entropy= %.2 f cal deg^-1 mole^-1', S)
```

Scilab code Exa 5.6 example 6

```
1 clc
2 //initialisation of variables
3 SH20= 45.106 //cal deg^-1 mole^-1
4 SH2= 31.211 //cal deg^-1 mole^-1
5 S02= 49.003 //cal deg^-1 mole^-1
6 //CALCULATIONS
7 dS= SH20-SH2-0.5*S02
8 //RESULTS
9 printf ('change in entropy= %.3 f cal deg^-1 mole^-1', dS)
```

Scilab code Exa 5.7 example 7

```
1 clc
2 //initialisation of variables
3 n= 2 //moles
4 p= 1 //atm
5 p1= 0.1 //atm
6 T= 25 //C
7 R= 1.987 //cal mole^-1 K^-1
8 //CALCULATIONS
9 dG= n*R*2.303*log10(p1/p)*(273+T)
10 //RESULTS
11 printf ('change in Gibbs free energy= %. f cal ',dG)
```

Scilab code Exa 5.8 example 8

```
1 clc
2 //initialisation of variables
3 R= 1.987 //cal mole^-1 K^-1
4 T= -10 //C
5 P1= 2.149 //mm
6 P2= 1.950 //mm
7 //CALCULATIONS
8 dG= R*2.303*(273+T)*log10(P2/P1)
9 //RESULTS
10 printf ('change in Gibbs free energy= %.f cal mole ^-1',dG)
```

Scilab code Exa 5.9 example 9

```
1 clc 2 //initialisation of variables 3 T= 100 //C
```

```
4 R= 1.987 // \text{cal mole} -1 \text{ K} -1
5 \text{ H= } 539.7 \text{ //cal g}^-1
6 M= 18 //g \text{ mole}^-1
7 //CALCULATIONS
8 \text{ w} = -R*(273+T)
9 \text{ qp} = -H * M
10 \text{ dE} = \text{qp-w}
11 dA = -w
12 dS = qp/(273+T)
13 dG = qp - (273 + T) * dS
14 //RESULTS
15 printf ('W=\%.f cal mole^-1',w)
16 printf ('\n qp= \%. f cal mole \(^{-1}\)',qp)
17 printf ('\n dE= \%. f cal mole -1', dE)
18 printf ('\n dA= \%. f cal mole -1', dA)
19 printf ('\n dS= \%. f cal deg^-1 mole^-1', dS)
20 printf ('\n dG= \%. f cal mole ^-1', dG)
```

Scilab code Exa 5.10 example 10

```
1 clc
2 //initialisation of variables
3 R= 1.987 //cal deg^-1 mole^-1
4 T= 27 //C
5 V1= 24.62 //lit
6 V2= 2.462 //lit
7 //CALCULATIONS
8 wmax= 2.303*R*(273.1+T)*log10(V1/V2)
9 dA= - wmax
10 dE= 0
11 q= dE+wmax
12 dH=0
13 dG= -R*(273.1+T)*2.303
14 dS= dG/(273.1+T)
15 dS1= (dH-dG)/(273.1+T)
```

```
16  //RESULTS
17  printf ('W= %. f cal mole^-1', wmax)
18  printf ('\n q= %. f cal mole^-1', q)
19  printf ('\n dE= %. f cal mole^-1', dE)
20  printf ('\n dA= %. f cal mole^-1', dA)
21  printf ('\n dS= %.2 f cal deg^-1 mole^-1', dS1)
22  printf ('\n dG= %.2 f cal mole^-1', dG)
```

ONE COMPONENT SYSTEMS

Scilab code Exa 6.1 example 1

```
1 clc
2 //initialisation of variables
3 G= 28.6 //gms
4 R= 0.08205 //l-atm mole^-1 deg^-1
5 T= 30 //C
6 M= 153.8 //gms
7 v= 20.01 //l
8 //CAALCULATIONS
9 p= G*R*(273.1+T)*760/(M*v)
10 p1= p/(1+(p/760))
11 //RESULTS
12 printf ('vapour pressure using ideal gas = %.f mm',p
)
13 printf ('\n vapour pressure using equation = %.f mm',p1)
```

Scilab code Exa 6.2 example 2

```
1 clc
2 //initialisation of variables
3 T= 100 //C
4 Vv= 30.199 //l mole^-1
5 Vl= 0.01878 //l mole^-1
6 H= 539.7//cal g^-1
7 m= 18.01 //g mole^-1
8 R= 0.04129 //l-atm cal^-1
9 //CALCULATIONS
10 r= H*m*R*760/((273.1+T)*(Vv-Vl))
11 r1= 1/r
12 //RESULTS
13 printf ('change in boling point of water per mm = % .3 f deg mm^-1',r1)
```

Scilab code Exa 6.3 example 3

```
1 clc
2 //initialisation of variables
3 T= 0 //C
4 H= 79.7 //cal g^-1
5 vd= -9.06*10^-5 //l g^-1
6 R= 0.04129 //l-atm cal^-1
7 //CALCULATIONS
8 r= H*R/((273.15+T)*vd)
9 //RESULTS
10 printf ('change in pressure per degree= %.f atm deg ^-1',r)
```

Scilab code Exa 6.4 example 4

```
1 clc
2 //initialisation of variables
3 y1= 32.47*10^-4
4 y2= 34.71*10^-4
5 x1= 1.625
6 x2= 1.107
7 R= 1.987 //cal mole^-1 K^-1
8 //CALCULATIONS
9 slope= (x2-x1)/(y2-y1)
10 Hvap= -slope*2.303*R
11 //RESULTS
12 printf ('Heat of vapourization= %.f cal mole^-1', Hvap)
```

Scilab code Exa 6.5 example 5

```
1 clc
2 //initialisation of variables
3 H= 342 //cal mole^-1 g^-1
4 G= 21 //gms
5 T= 60 //C
6 R= 1.987 //cal / mol K
7 //CALCULATIONS
8 Hvap= G*H
9 P1= 1/(%e^(Hvap*9/(2.303*R*(273.1+T)*H)))
10 //RESULTS
11 printf ('molar heat of vapourization = %.f cal mole ^-1', Hvap)
```

SOLUTIONS

Scilab code Exa 7.1 example 1

```
1 clc
2 //initialisation of variables
3 nb= 0.4
4 pb= 385 //mm
5 nt= 0.6
6 pt= 139 //mm
7 //CALCULATIONS
8 Pb= pb*nb
9 Pt= pt*nt
10 PT= Pb+Pt
11 Xt= Pt/PT
12 //RESULTS
13 printf ('mole fraction of benzene vapour= % 3f ',Xt)
```

Scilab code Exa 7.2 example 2

```
1 clc
2 //initialisation of variables
```

Scilab code Exa 7.3 example 3

```
1 clc
2 //initialisation of variables
3 Vp= 1022 //mm
4 Vp1= 406 //mm
5 //CALCULATIONS
6 Xb= (760-Vp1)/(Vp-Vp1)
7 Xb1= Vp*Xb/760
8 //RESULTS
9 printf ('mole fraction of benzene= % 3f ',Xb)
10 printf ('\n mole fraction of benzene vapour= % 3f ', Xb1)
```

Scilab code Exa 7.4 example 4

```
1 clc
2 //initialisation of variables
3 P1= 731.9 //mm
4 P2= 712.4 //mm
5 Mb= 18 //gms
6 r= 0.188
7 //CALCULATIONS
8 Ma= r*Mb*P2/(P1-P2)
```

```
9 //RESULTS
```

10 printf ('molecular weight of nitro-benzene= % f g
 mole^-1', Ma)

PROPERTIES OF DILUTE SOLUTIONS

Scilab code Exa 8.2 example 2

```
1 clc
2 //initialisation of variables
3 R= 1.987 //cal/mole K
4 T= 100 //C
5 M1= 18.02 //gms
6 Hvap= 539.7 //cal g^-1
7 //CALCULATIONS
8 Kb= R*(273.1+T)^2*M1/(1000*M1*Hvap)
9 //RESULTS
10 printf ('molal boiling point constant= %.3 f deg molal^-1', Kb)
```

Scilab code Exa 8.3 example 3

```
1 clc
2 //initialisation of variables
```

```
3 Kb= 2.53 //deg molal^-1
4 w2= 1 //gms
5 Tb= 0.3 //C
6 w1= 50 //gms
7 //CALCULATIONS
8 M2= Kb*w2*1000/(Tb*w1)
9 //RESULTS
10 printf ('molecular weight of dinitrozene = %.f g mole^-1', M2)
```

Scilab code Exa 8.4 example 4

```
1 clc
2 //initialisation of variables
3 mu= 5 //gms
4 Mu= 60.06 //gms
5 mw= 75 //gms
6 //CALCULATIONS
7 Tb= 0.513*mu*1000/(Mu*mw)
8 //RESULTS
9 printf ('boiling water of a solution= %.3f deg',Tb)
```

Scilab code Exa 8.5 example 5

```
1 clc
2 //initialisation of variables
3 R= 1.987 //cal mole^-1 K^-1
4 T= 0 //C
5 M= 18.02 //gms
6 Hf= 79.7 //cal g^-1
7 //CALCULATIONS
8 Kf= R*(273.1+T)^2*M/(1000*M*Hf)
9 //RESULTS
```

```
10 printf ('Kf of water= \%.2 \, \text{f deg molal} \, -1', Kf)
```

Scilab code Exa 8.6 example 6

```
1 clc
2 //initialisation of variables
3 M= 18.02 //g mole^-1
4 d= 0.99564 //g/cc
5 R= 0.08205 //l-atm deg^-1 mole^-1
6 T= 30 //C
7 P1= 31.824 //mm
8 P10= 31.207 //mm
9 //CALCULATIONS
10 p= R*(273.15+T)*2.303*1000*d*log10(P1/P10)/M
11 //RESULTS
12 printf ('osmotic pressure of sucrose solution= %.1 f atm',p)
```

Scilab code Exa 8.7 example 7

```
1 clc
2 //initialisation of variables
3 R= 0.082 //l-atm / mol ^-1 K^-1
4 T= 30 //C
5 V= 1 //l
6 //CALCULATIONS
7 p= R*(273.15+T)/V
8 //RESULTS
9 printf ('osmotic pressure of sucrose solution= %.1f atm',p)
```

CHEMICAL EQUILIBRIA

Scilab code Exa 9.1 example 1

```
1 clc
2 //initialisation of variables
3 T= 400 //C
4 R= 0.08205 //l-atm mole^-1 deg^-1
5 Kp= 1.64*10^-4
6 n= 2
7 P= 10 //atm
8 //CALCULATIONS
9 Kc= Kp*(R*(273.1+T))^n
10 Kx= Kp*P^n
11 //RESULTS
12 printf ('Kc= %.1 f l^2 mole^-2 ',Kc)
13 printf ('\n Kx= %.2 e ',Kx)
```

Scilab code Exa 9.2 example 2

```
1 clc
2 //initialisation of variables
```

```
3 R= 0.08205 //l-atm mole^-1 deg^-1
4 T= 25 //C
5 g= 1.588 //gms
6 P= 1 //atm
7 V= 0.5 //lit
8 M1= 92.02 //g mole^-1
9 //CALCULATIONS
10 M2= R*(273.1+T)*g/(P*V)
11 a= (M1-M2)/M2
12 //RESULTS
13 printf ('degree of dissociation= %.4 f ',a)
```

Scilab code Exa 9.3 example 3

```
1 clc
2 //initialisation of variables
3 P= 1 //atm
4 a= 18.46 //per cent
5 P1= 0.5 //atm
6 //CALCULATIONS
7 Kp= P*4*(a/100)^2/(1-(a/100)^2)
8 //RESULTS
9 printf ('Kp= %.3 f ',Kp)
```

Scilab code Exa 9.4 example 4

```
1 clc
2 //initialisation of variables
3 M1= 208.3 //gms
4 g= 2.69 //gms
5 R= 0.08205 //l-atm mole^-1 deg^-1
6 T= 250 //C
7 P= 1 //atm
```

```
8 V= 1 //lit
9 //CALCULATIONS
10 M2= g*R*(273.1+T)/(P*V)
11 a= (M1-M2)/M2
12 Kp= a^2*P/(1-a^2)
13 //RESULTS
14 printf ('Kp= %.2 f ',Kp)
```

Scilab code Exa 9.5 example 5

```
1 clc
2 //initialisation of variables
3 x= 0.0574 //mole
4 n= 0.1 //mole
5 //CALCULATIONS
6 a= x/n
7 //RESULTS
8 printf ('degree of dissociation= %.3 f ',a)
```

Scilab code Exa 9.6 example 6

```
1 clc
2 //initialisation of variables
3 R= 0.08205 //l-atm mole^-1 deg^-1
4 T= 250 //C
5 n= 0.1 //mole
6 Kp= 1.78
7 //CALCULATIONS
8 x= n+(n^2*R*(273.1+T)/Kp)
9 //RESULTS
10 printf ('x= %.3 f mole ',x)
```

Scilab code Exa 9.7 example 7

```
1 clc
2 //initialisation of variables
3 Ppcl5= 1 //atm
4 Kp= 1.78
5 //CALCULATIONS
6 Ppcl2= sqrt(Kp)
7 P= 2*Ppcl2+Ppcl5
8 //RESULTS
9 printf ('P= %.2 f atm ',P)
```

Scilab code Exa 9.8 example 8

```
1 clc
2 //initialisation of variables
3 Kp= 1.78
4 a= 0.2
5 //CALCULATIONS
6 P= Kp*(1-a^2)/a^2
7 //RESULTS
8 printf ('Kp= %.1 f atm ',P)
```

Scilab code Exa 9.10 example 10

```
1 clc
2 //initialisation of variables
3 n= 0.6667 //mole
4 //CALCULATIONS
```

```
5 K= n^2/((1-n)^2)
6 //RESULTS
7 printf ('K= %.f', K)
```

Scilab code Exa 9.11 example 11

```
1 clc
2 //initialisation of variables
3 pN204= 0.141 //atm
4 pN02= 1 //atm
5 R= 1.987 //cal mole^-1 deg^-1
6 T= 25 //C
7 //CALCULATIONS
8 dG= -R*2.303*(273.1+T)*log10(pN204/pN02^2)
9 //RESULTS
10 printf ('dG= %. f cal ',dG)
```

Scilab code Exa 9.12 example 12

```
1 clc
2 //initialisation of variables
3 pN204= 1 //atm
4 pN02= 0.141 //atm
5 R= 1.987 //cal mole^-1 deg^-1
6 T= 25 //C
7 //CALCULATIONS
8 dG= -R*2.303*(273.1+T)*log10(pN204/pN02)
9 //RESULTS
10 printf ('dG= %. f cal ',dG)
```

Scilab code Exa 9.13 example 13

```
1 clc
2 //initialisation of variables
3 Kc= 2.7*10^2
4 R= 1.987 //cal mole^-1 deg^-1
5 T= 43.9 //c
6 //CALCULATIONS
7 dG= -R*(273.1+T)*2.303*log10(Kc)
8 //RESULTS
9 printf ('dG= %.1 f cal ',dG)
```

Scilab code Exa 9.14 example 14

```
1 clc
2 //initialisation of variables
3 dH= -17.889 //cal deg^-1
4 T= 25 //C
5 dS= -19.28 //cal deg^-1
6 R= 1.987 //cal mole^-1 deg^-1
7 //CALCULATIONS
8 dG= dH-dS*(273.1+T)
9 Kp= 10^(dG/(-R*(273.1+T)*2.303))
10 ///RESULTS
11 printf ('Kp= %.1e ',Kp)
12
13
14 //ANSWER IN THE TEXTBOOK IS WRONG
```

Scilab code Exa 9.15 example 15

```
1 clc
2 //initialisation of variables
```

```
3 HCO2= -94.2598 //kcal
4 HH2= 0 //kcal
5 HCO= -32.8079 //kcal
6 HH2O= -54.6357 //kcal
7 R= 1.987 //cal deg^-1 mole^-1
8 T= 25 //C
9 //CALCULATIONS
10 Kp= 10^(-(HCO2-HCO-HH2O)/(R*2.303*(273.1+T)))
11 //RESULTS
12 printf ('Kp= %.2e', Kp)
13
14
15 //ANSWER IN THE TEXTBOO IS WRONG
```

Scilab code Exa 9.16 example 16

```
1 clc
2 //initialisation of variables
3 G0= 1161 //cal
4 R= 1.987 //cal mole^-1 deg^-1
5 T= 25 //C
6 P= 1 //atm
7 P1= 10 //atm
8 //CALCULATIONS
9 dG= G0+R*(273+T)*2.303*log10(P^2/P1)
10 //RESULTS
11 printf ('dG= %. f cal ',dG)
```

Scilab code Exa 9.17 example 17

```
1 clc
2 //initialisation of variables
3 K2500= 3.6*10^-3
```

```
4 K2000= 4.08*10^-4
5 R= 1.987 //cal mole^-1 K^-1
6 T1= 2500 //K
7 T2= 2000 //K
8 //CALCULATIONS
9 dH= log10(K2500/K2000)*2.303*R*T1*T2/(T1-T2)
10 //RESULTS
11 printf ('enthaly change= %. f cal ',dH)
```

Scilab code Exa 9.18 example 18

```
1 clc
2 //initialisation of variables
3 dH= -10200 ///cal
4 R= 1.987 //cal deg^-1 mole^-1
5 T1= 690 //K
6 T2= 800 //K
7 KT1= 10
8 //CALCULATIONS
9 KT2= KT1*10^(dH*(T2-T1)/(2.303*R*T1*T2))
10 //RESULTS
11 printf ('K800= %.2 f ', KT2)
```

Scilab code Exa 9.19 example 19

```
1 clc
2 //initialisation of variables
3 T= 1000 //K
4 R= 1.987 //cal mole^-1 K^-1
5 G= -1330 //cal mole^-1
6 //CALCULATIONS
7 Kp= 10^(G/(-R*T*2.303))
8 //RESULTS
```

```
9 printf ('Kp=\%.2 f ', Kp)
```

Scilab code Exa 9.20 example 20

```
1 clc
2 //initialisation of variables
3 Kp= 1.78
4 P= 0.1 //atm
5 //CALCULATIONS
6 a= sqrt(Kp/(Kp+P))*100
7 //RESULTS
8 printf ('per cent dissaciated= %.1f per cent ',a)
```

Scilab code Exa 9.21 example 21

```
1 clc
2 //initialisation of variables
3 R= 1.987 //cal mole^-1 K^-1
4 T= 2000 //K
5 dH= 117172 //cal mole^-1
6 H= -43 //cal mole^-1
7 n= 2
8 H1= -56.12 //cal mole^-1
9 //CALCULATIONS
10 K= 10^(-(1/(2.303*R))*((dH/T)+n*H-H1))
11 //RESULTS
12 printf ('equilibrium constant= %.1e ',K)
```

Scilab code Exa 9.22 example 22

```
1 clc
2 //initialisation of variables
3 T = 25 //C
4 R= 1.987 / cal mole^-1 K^-1
5 n = 2
6 dH= -21.840 // cal mole^-1
7 HHCl= -37.73 // cal mole^-1
8 HH2= -24.44 // cal mole^-1
9 HCl= -45.95 //cal mole^-1
10 //CALCULATIONS
HCl))
12 //RESULTS
13 printf ('equilibrium constant= %.1e ',K)
14
15
16 //ANSWER IN THE TEXTBOOK IS WRONG
```

KINETIC THEORY

Scilab code Exa 11.1 example 1

```
1 clc
2 //initialisation of variables
3 R= 8.31*10 //ergs mole^-1 K^-1
4 M= 2.016 //gms
5 T= 0 //C
6 //CALCULATIONS
7 vp= sqrt(2*R*(273+T)/M)
8 v= sqrt(8*R*(273+T))/(%pi*M)
9 vr= sqrt(3*R*(273+T)/M)
10 //RESULTS
11 printf ('most probabale velocity= %.2e cm sec^-1',vp
)
12 printf ('\n arthmetic mean velocity= %.2e cm sec^-1'
,v)
13 printf ('\n root mean square velocity= %.2e cm sec^-1'
,v)
```

Scilab code Exa 11.2 example 2

```
1 clc
2 //initialisation of variables
3 R= 8.31*10^7 // ergs mole^-1 K^-1
4 M = 9.013 //mg
5 T = 1457 / K
6 d = 0.318 //cm
7 t = 60.1 //min
8 \text{ m} = 9.54 //\text{mg}
9 \text{ g= } 980 \text{ } //\text{cmsec}^2
10 D= 13.6 //g/cc
11 p= 76 //\text{cm atm}^-1
12 //CALCULATIONS
13 P = sqrt(2*\%pi*R*T/M)*(m*10^-3/(\%pi*(d/2)^2*t*60*p*D*)
      g))
14 //RESULTS
15 printf ('vapour pressure= %.2e atm',P)
```

Scilab code Exa 11.3 example 3

```
1 clc
2 //initialisation of variables
3 M1= 238 //gms
4 M2= 235 //gms
5 A= 6
6 N= 19
7 //CALCULATIONS
8 r= sqrt((M1+A*N)/(M2+A*N))
9 //RESULTS
10 printf ('ratio of rates= %.4 f ',r)
```

Scilab code Exa 11.4 example 4

1 clc

```
2 //initialisation of variables
3 s= 3.61*10^-8 //cm
4 v= 4.44*10^4 //cm/sec
5 n= 2.46*10^19 //molecules
6 N= 6.02*10^23 //molecules
7 Z1= 13.6*10^16 //collisions cm^-3 sec^-1
8 N= 6*10^23 //molecules
9 //CALCULATIONS
10 Z= sqrt(2)*%pi*s^2*v*n^2*10^3/(2*N)
11 Z2= Z1*10^3/N
12 //RESULTS
13 printf ('Z= %.2e moles of collisons litre^-1 sec^-1', Z)
14 printf ('\n Z= %.2e moles of collisons litre^-1 sec^-1', Z2)
```

Scilab code Exa 11.5 example 5

```
1 clc
2 //initialisation of variables
3 n= 2.46*10^19 //molecules cm^-3
4 n1= 3.24*10^13 //molecules cm^-3
5 l= 3.61*10^-8
6 //CALCULATIONS
7 L= (sqrt(2)*%pi*l^2*n)^-1
8 L1=(sqrt(2)*%pi*l^2*n1)^-1
9 //RESULTS
10 printf ('mean free path= %.2e cm',L)
11 printf ('\n mean free path= %.2e cm',L1)
12
13
14 //ANSWER GIVEN IN THE TEXTBOOK IS WRONG
```

CHEMICAL KINETICS

Scilab code Exa 12.1 example 1

```
1 clc
2 //initialisation of variables
3 Vs= 23.95 //ml
4 Ve= 34.75 //ml
5 //CALCULATIONS
6 fr= (Ve-Vs)/Ve
7 //RESULTS
8 printf ('fraction of nitrogen pentoxide remain unreacted after 1 hour= %.3 f ',fr)
```

Scilab code Exa 12.2 example 2

```
1 clc
2 //initialisation of variables
3 Ps= 200 //mm
4 Pe= 390 //mm
5 Pt= 300 //mm
6 t= 500 //sec
```

```
7 Pe1= 400 //mm
8 //CALCULATIONS
9 r= (Pe1-Pt)/(Pe1-Ps)
10 //RESULTS
11 printf ('fraction remained undecomposed= %.1 f ',r)
```

Scilab code Exa 12.3 example 3

```
1 clc
2 //initialisation of variables
3 V= 1200 //ml
4 V1= 100 //ml
5 t= 300 //sec
6 //CALCULATIONS
7 r= V/t
8 t1= V1/r
9 //RESULTS
10 printf ('time of residence of gas= %.f sec',t1)
```

Scilab code Exa 12.4 example 4

```
1 clc
2 //initialisation of variables
3 y= 0.550
4 x= 2400
5 d= 0.00494
6 //CALCULATIONS
7 s= y/x
8 k= s*2.303/d
9 //RESULTS
10 printf ('k= %.3 f lit mol^-1 sec^-1',k)
```

Scilab code Exa 12.7 example 7

```
1 clc
2 //initialisation of variables
3 T = 393.7 //C
4 k= 2.6*10^-4 //lit mol^-1 sec^-1
5 R= 1.987 // cal mole^-1 K^-1
6 E= 45.6 // kcal mole^-1
7 \text{ wl} = 3.5 //A
8 N= 6*10^23 //molecules
9 R1= 8.31*10 // ergs mole^-1 K^-1
10 M= 127.9 //g mole^-1
11 //CALCULATIONS
12 k= 2*10^2*N*sqrt(\%pi*R1*(273.1+T)/M)*(wl*10^-8)^2*\%e
      ^(-E*10^3/(R*(273.1+T)))
13 //RESULTS
14 printf ('second order rate for this constant= \%.1e
      lit mol^-1 sec^-1,k)
```

IREVERSIBLE PROCESS IN LIQUIDS

Scilab code Exa 13.1 example 1

```
1 clc
2 //initialisation of variables
3 t = 10 //min
4 i = 0.1 //amp
5 \text{ M} = 63.54 \text{ //gm mole} -1
6 n=2
7 F= 96500 //\text{amp-sec} equiv-1
8 Mo= 32 //g \text{ mole}^-1
9 T= 25 //C
10 R= 0.08205 / l-atm deg^-1 mole^-1
11 p = 740
12 n1=4
13 //CALCULATIONS
14 \text{ m} = t*60*i*M/(F*n)
15 V = t*60*i*Mo*R*(273+T)*760/(F*n1*Mo*p)
16 //RESULTS
17 printf ('number of grams of copper deposited at
      cathode = %.5 f gram', m)
18 printf ('\n volume of oxygen liberated at anode= \%.5
```

Scilab code Exa 13.2 example 2

```
1 clc
2 //initialisation of variables
3 r= 82.4 //ohms
4 k= 0.002768 //ohm^-1
5 R1= 326 //ohm
6 //CALCULATIONS
7 K= r*k
8 K1= (K/R1)
9 //RESULTS
10 printf ('cell constant= %.4 f cm^-1',K)
11 printf ('\n specific conductance= %.3 e ohm^-1 cm^-1',K1)
```

Scilab code Exa 13.3 example 3

```
1 clc
2 //initialisation of variables
3 C= 0.005 //N
4 k= 6.997*10^-4 //ohm^-1 cm^-1
5 //CALCULATIONS
6 A= 1000*k/C
7 //RESULTS
8 printf ('equivalent conductance= %.1 f cm^2 equiv^-1 ohm^-1', A)
```

Scilab code Exa 13.4 example 4

```
1 clc
2 //initialisation of variables
3 AHcl= 426.1 //cm^2 equiv^-1 ohm^-1
4 ANaC2H3O2= 91 //cm^2 equiv^-1 ohm^-1
5 ANaCl= 126.5 //cm^2 equiv^-1 ohm^-1
6 //CALCULATIONS
7 AHC2H3O2= AHcl+ANaC2H3O2-ANaCl
8 //RESULTS
9 printf ('equivalent conductance of acetic acid= %.1 f cm^2 equiv^-1 ohm^-1', AHC2H3O2)
```

Scilab code Exa 13.5 example 5

```
1 clc
2 //initialisation of variables
3 Ke= 48.15
4 Ki= 390.6
5 c= 0.001028 //N
6 //CALCULATIONS
7 a= Ke/Ki
8 K= a^2*c/(1-a)
9 //RESULTS
10 printf ('ionisation constant= %.2e',K)
```

Scilab code Exa 13.6 example 6

```
1 clc
2 //initialisation of variables
3 i= 0.00521 //amp
4 A= 0.23 //cm^2
5 k= 0.0129 //ohm^-1 cm^-1
6 t= 67 //min
7 l= 4.64 //cm
```

```
8 //CALCULATIONS
9 r= i/(A*k)
10 uK= 1/(t*60*r)
11 //RESULTS
12 printf ('electrical field strength= %.2 f volts cm^-1
    ',r)
13 printf ('\n mobility of potassium ion= %.1 e cm^2
    volt^-1 cm^-1',uK)
```

Scilab code Exa 13.7 example 7

```
1 clc
2 //initialisation of variables
3 C= 0.1 //N
4 F= 96500 //coloumbs
5 mna= 42.6*10^-5 //cm^2 volt sec^-1
6 mcl= 68*10^-5 // cm^2 colt sec^-1
7 //CALCULATIONS
8 k= F*(mna+mcl)*C/1000
9 //RESULTS
10 printf ('specific conductance of sodium chloride= % .5 f ohm^-1 cm^-1',k)
```

Scilab code Exa 13.8 example 8

```
1 clc
2 //initialisation of variables
3 V= 4.9 //faraday^-1
4 c= 0.1 //N
5 //CALCULATIONS
6 TK= V*c
7 Tcl= 1-TK
8 //RESULTS
```

```
9 printf ('transference number of chlorine= \%.3\,\mathrm{f} ',Tcl )
```

Scilab code Exa 13.9 example 9

```
1 clc
2 //initialisation of variables
3 Mc= 63.54 //gms
4 n= 2
5 mc= 0.3 //gms
6 mc1= 1.43
7 mc2= 1.2140
8 //CALCULATIONS
9 Me= Mc/n
10 Tc= ((mc/Me)-((mc1-mc2)/Me))/(mc/Me)
11 Ta= 1-Tc
12 //RESULTS
13 printf ('copper transference number= %.2f ',Ta)
```

Scilab code Exa 13.10 example 10

```
1 clc
2 //initialisation of variables
3 Tn= 0.820
4 Tn1=0.450
5 A= 426.1
6 A1= 91
7 //CALCULATIONS
8 l= Tn*A
9 l1= Tn1*A1
10 L= 1+l1
11 //RESULTS
12 printf ('A0 for acetic acid= %.1 f',L)
```

Scilab code Exa 13.11 example 11

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 n= 2
5 F= 96500 //coloumbs
6 R= 8.316 //J mole^-1 K^-1
7 a= 76.2*10-5
8 a1= 79*10^-5
9 A= 155.2*10^-5
10 //CALCULATIONS
11 D0= n*a*a1*R*(273+T)*10^-6/(F*A)
12 //RESULTS
13 printf ('limiting diffusion coefficient= %.2e cm^2 sec^-1', D0)
```

ELECTROMOTIVE FORCE

Scilab code Exa 14.1 example 1

```
1 clc
2 //initialisation of variables
3 n=2
4 V= 0.67533 //volt
5 E= 23060 //cal volt^-1
6 Tc= -6.5*10^-4 //volt deg^-1
7 T= 25 //C
8 //CALCULATIONS
9 G= -n*V*E
10 S= n*E*Tc
11 H= -n*E*V+n*Tc*E*(273+T)
12 //RESULTS
13 printf ('dG = %. f cal',G)
14 printf ('\n dS = %. f cal deg^-1',S)
15 printf ('\n dH = %. f cal',H)
```

Scilab code Exa 14.3 example 3

```
1 clc
2 //initialisation of variables
3 C= 0.01 //M
4 C1= 0.02 //M
5 n=1
6 n1=2
7 //CALCULATIONS
8 I= 0.5*(C*n^2+C^n^2)
9 I1= 0.5*(C1*n^2+C*n1^2)
10 I2= 0.5*(C*n1^2+C*n1^2)
11 //RESULTS
12 printf ('ionic strength of NaCl = %.2 f ',I)
13 printf ('\n ionic strength of Li2SO4 = %.2 f ',I1)
14 printf ('\n ionic strength of CuSO4 = %.2 f ',I2)
```

Scilab code Exa 14.4 example 4

```
1 clc
2 //initialisation of variables
3 C= 0.1 //M
4 V= 0.3524 //volt
5 V1= 0.2224 //volt
6 V2= 0.1183 //volt
7 //CLACULATIONS
8 r= 10^((-V+V1+V2)/V2)
9 //RESULTS
10 printf ('mean ionic activity = %.3f',r)
```

Scilab code Exa 14.5 example 5

```
1 clc
2 //initialisation of variables
3 n=2
```

```
4 F= 96500 //coloumbs
5 E= 0.337 //volt
6 E1= -0.403 //volt
7 //CALCULATIONS
8 E0= E-E1
9 G= -n*F*E0/4.184
10 //RESULTS
11 printf ('voltage of cell = %.3 f volt', E0)
12 printf ('\n gibbs free energy= %. f cal', G)
```

Scilab code Exa 14.6 example 6

```
1 clc
2 //initialisation of variables
3 E= -0.403 //volt
4 E1= -0.763 //volt
5 //CALCULATIONS
6 E0= E-E1
7 //RESULTS
8 printf ('voltage of cell = %.3 f volt', E0)
```

Scilab code Exa 14.7 example 7

```
1 clc
2 //initialisation of variables
3 E= 1.360 //volt
4 E1= 0.337 //volt
5 F= 965000 //coloumbs
6 //CALCULATIONS
7 G= -F*(E-E1)/4.1840
8 //RESULTS
9 printf ('Gibbs free energy = %. f cal',G)
```

Scilab code Exa 14.8 example 8

```
1 clc
2 //initialisation of variables
3 E= -0.126 //volt
4 E1= -0.140 //volt
5 n=2
6 R= 0.0591 //volt
7 //CALCULATIONS
8 E0= E-E1
9 K= 10^((E-E1)*n/R)
10 //RESULTS
11 printf ('equilibrium constant = %.2 f ',K)
```

Scilab code Exa 14.9 example 9

```
1 clc
2 //initialisation of variables
3 E0= 0.0140 //volt
4 n= 2
5 r= 2
6 V= 96500 //coloumbs
7 //CALCULATIONS
8 E= E0-0.0576*log10(n)
9 G= -n*V*E/4.1840
10 //RESULTS
11 printf ('gibbs free energy = %.f cal',G)
```

Scilab code Exa 14.10 example 10

```
1 clc
2 //initialisation of variables
3 n= 2
4 R= 0.0591
5 C= 0.01 //M
6 C1= 0.1 //M
7 //CALCULATIONS
8 E= -R*log10(C/C1)/n
9 //RESULTS
10 printf ('electromotive force of the cell = %.4 f volt ',E)
```

IONIC EQUILIBRIA

Scilab code Exa 15.1 example 1

```
1 clc
2 //initialisation of variables
3 c= 8*10^-5 //molar
4 n= 2
5 //CALCULATIONS
6 Ksp= c^3*n^2
7 x= Ksp*10^6
8 //RESULTS
9 printf ('solubility product = %.1e ',Ksp)
10 printf ('\n solubility = %.1e ',x)
```

Scilab code Exa 15.2 example 2

```
1 clc
2 //initialisation of variables
3 Ksp= 2*10^-12
4 M= 8.84*10^-5 //molar
5 n= 2
```

```
6 //CALCULATIONS
7 r= (Ksp/(n^2*M^3))^(1/3)
8 //RESULTS
9 printf ('mean ionic activity coefficient = %.1 f ',r)
```

Scilab code Exa 15.3 example 3

```
1 clc
2 //initialisation of variables
3 n= 2
4 C= 0.01 //M
5 //CALCULATIONS
6 r= 10^(-0.509*n*sqrt(C))
7 //RESULTS
8 printf ('mean ionic activity coefficient = %.2f ',r)
```

Scilab code Exa 15.4 example 4

```
1 clc
2 //initialisation of variables
3 M= 18 //gms
4 k= 5.5*10^-8 //ohm^-1 cm^-1
5 lc= 349.8 //cm^2 equiv^-1 ohm^-1
6 la= 198 //cm^2 equiv^-1 ohm^-1
7 //CALCULATIONS
8 A= M*k
9 A0= lc+la
10 a= A/A0
11 a1= 1000*a/M
12 Kw= a1*a1
13 //RESULTS
14 printf ('degree of ionisation = %.1e ',a1)
15 printf ('\n ion product of water = %.1e ',Kw)
```

Scilab code Exa 15.5 example 5

```
1 clc
2 //initialisation of variables
3 Ka= 1.772*10^-4
4 //CALCULATIONS
5 pK= -log10(Ka)
6 //RESULTS
7 printf ('pKa = %.2 f ',pK)
```

Scilab code Exa 15.6 example 6

```
1 clc
2 //initialisation of variables
3 K= 1.75*10^-5
4 c= 0.01 //M
5 //CALCULATIONS
6 r= 10^(-0.509*sqrt(c))
7 Ka= K/r^2
8 //RESULTS
9 printf ('ionisation constant = %.2e', Ka)
```

Scilab code Exa 15.7 example 7

```
1 clc
2 //initialisation of variables
3 ka= 1.75*10^-5
4 ca= 0.1 //mole lit
5 //CALCULATIONS
```

```
6 pH= -log10(sqrt(ka*ca))
7 //RESULTS
8 printf ('pH = %.2 f ',pH)
```

Scilab code Exa 15.8 example 8

```
1 clc
2 //initialisation of variables
3 kw= 10^-14
4 ka= 2.69*10^-5
5 c= 0.1 //N
6 //CALCULATIONS
7 pH= -log10(sqrt(kw*ka/c))
8 //RESULTS
9 printf ('pH = %.2 f ',pH)
```

Scilab code Exa 15.9 example 9

```
1 clc
2 //initialisation of variables
3 pH= 4.57
4 M= 0.03 //mole litre^-1
5 M1= 0.1 //mole litre^-1
6 //CALCULATIONS
7 pH1= pH+log10(M1/M)
8 //RESULTS
9 printf ('pH = %.2 f ', pH1)
```

Scilab code Exa 15.10 example 10

```
1 clc
2 //initialisation of variables
3 pH= 9.26
4 M= 0.02 //N
5 M1= 0.01 ///N
6 //CALCULATIONS
7 pH1= pH+log(M1/M)
8 //RESULTS
9 printf ('pH = %.2 f ',pH1)
```

Scilab code Exa 15.11 example 11

```
1 clc
 2 //initialisation of variables
3 pKa = 6.84
4 n = 0.04 //mole
5 \text{ n1= 0.02 } // \text{mole}
6 \text{ n2= 0.001 } //\text{mole}
7 pH3 = 7
8 //CALCULATIONS
9 pH= pKa+log10(n/n1)
10 pH1= pKa+log10((n-n2)/(n1+n2))
11 \text{ dpH} = \text{pH} - \text{pH1}
12 pH2= -\log 10 (n2)
13 \text{ dpH1} = \text{pH3} - \text{pH2}
14 //RESULTS
15 printf ('pH = \%.2 \, f', pH1)
16 printf ('\n dpH = \%.2 \,\mathrm{f}', dpH)
17 printf ('\n dpH = \%.2 \,\mathrm{f}',dpH1)
```

Quantum theory

Scilab code Exa 16.1 example 1

Scilab code Exa 16.2 Example 2

```
1 clc
2 //initialisation of variables
3 wl= 4500 //A
4 c= 3*10^10 //cm/sec
5 //CALCULATIONS
6 l= wl*10^-8
```

```
7   11= wl*10^-1
8   f= 1/1
9   f1= c/1
10   //RESULTS
11   printf ('wavelength in centimetres = %.1e cm',1)
12   printf ('\n wavelength in micrometres = %.1e cm',11)
13   printf ('\n frequency of bluelight = %.2e sec^-1',f1
    )
14   printf ('\n wave number = %.2e cm^-1',f)
```

SPECTROSCOPY

Scilab code Exa 18.1 example 1

```
1 clc
2 //initialisation of variables
3 l= 3000 //A
4 h= 6.62*10^-27 //erg sec
5 c= 3*10^10 //cm/sec
6 N= 6*10^23
7 //CALCULATIONS
8 E= h*c/(1*10^-8)
9 E1= E*N/(4.18*10^7)
10 //RESULTS
11 printf ('energy in ergs = %.f cal mole^-1',E1+276)
```

Scilab code Exa 18.2 example 2

```
1 clc
2 //initialisation of variables
3 E= 95300 //cal mole^-1
4 l= 3000 //A
```

Scilab code Exa 19.3 example 3

```
1 clc
2 //initialisation of variables
3 p= 19.2 //per cent
4 b= 1 //cm
5 c= 5*10^-4 //mole l^-1
6 m= 1.75*10^-4 //M
7 //CALCULATIONS
8 As= log10(100/p)
9 am= As/(b*c)
10 r= 100/10^(am*m)
11 //RESULTS
12 printf (' perentage trnasmmitancy= %.1f per cent',r)
```

Scilab code Exa 18.4 example 4

```
1 clc
2 //initialisation of variables
3 a= 193 //mole^-1 cm^-1
4 b= 2 //cm
5 c= 1.55*10^-3 //mole l^-1
6 //CALCULATIONS
7 r= 100/10^(a*b*c)
8 //RESULTS
9 printf (' perentage = %.2 f per cent',r)
```

Scilab code Exa 18.5 example 5

```
1 clc
2 //initialisation of variables
3 m= 1.008 //gms
4 m1= 36.98 //gms
5 N= 6*10^23 //molecules
6 r= 1.275*10^-8 //cm
7 //CALCULATIONS
8 u= m*m1/(N*(m+m1))
9 I= u*r^2
10 //RESULTS
11 printf (' reduced mass = %.2e g',u)
12 printf (' \n moment of inertia = %.2e g cm^2',I)
```

Scilab code Exa 18.6 example 6

```
1 clc
2 //initialisation of variables
3 h= 6.625*10^-27 //erg sec
4 c= 3*10^10 //cm sec^-1
5 k= 2.647*10^-40 //gm cm^2
6 //CALCULATIONS
7 v= h/(4*%pi^2*k*c)
8 //RESULTS
9 printf (' frequency = %.1 f cm^-1',v)
```

Scilab code Exa 18.7 example 7

```
1 clc
2 //initialisation of variables
3 v= 8.867*10^13 //sec^-1
4 u= 1.628*10^-24 //gms
5 //CALCULATIONS
6 k= (%pi*2*v)^2*u
7 //RESULTS
8 printf (' force constant = %.2e dyne cm^-1',k)
```

Scilab code Exa 18.8 example 8

```
1 clc
2 //initialisation of variables
3 e= 23.06 //kcal mole^-1
4 E= 4.476 //ev
5 h= 6.627*10^-27 //ergs sec
6 c= 3*10^10 //cm/sec
7 v= 4395 //cm^-1
8 e1= 8060 //ev
9 N= 6*10^23
10 //CALCULATIONS
11 D= E*e+(h*c*N*v/(2*10^3*4.184*10^7))
12 D1= E*e1+(v/2)
13 //RESULTS
14 printf (' dissociation energy = %.1 f kcal mole^-1',D
)
15 printf (' \n dissociation energy = %.f cm^-1',D1+26)
```

STATISTICAL MECHANICS

Scilab code Exa 19.1 example 1

```
1 clc
2 //initialisation of variables
3 \text{ Na} = 1
4 \text{ Nb} = 1
5 \text{ Nc} = 1
6 \text{ Na1} = 2
7 \text{ Nb1} = 1
8 \text{ Nc1} = 0
9 \text{ Na2} = 3
10 \text{ Nb2} = 0
11 \text{ Nc2} = 0
12 //CALCULATIONS
13 Wabc= factorial(Na+Nb+Nc)/(factorial(Na)*factorial(
      Nb)*factorial(Nc))
14 Waab= factorial(Na1+Nb1+Nc1)/(factorial(Na1)*
       factorial(Nb1)*factorial(Nc1))
15 Waaa= factorial(Na2+Nb2+Nc2)/(factorial(Na2)*
      factorial(Nb2)*factorial(Nc2))
16 //RESULTS
17 printf ('Wabc = \%. f', Wabc)
18 printf ('\n Waab = \%. f', Waab)
```

```
19 printf ('\n Waaa = \%. f', Waaa)
```

Scilab code Exa 19.2 example 2

```
1 clc
2 //initialisation of variables
3 K= 4.9860 //cal deg^-1 mole^-1
4 K1= -31.6 //cal deg^-1 mole^-1
5 //CALCULATIONS
6 S= K-K1
7 //RESULTS
8 printf ('Enthalpy = %.1f cal deg^-1 mole^-1',S)
```

Scilab code Exa 19.4 example 4

```
1 clc
2 //initialisation of variables
3 \text{ No= } 0.979889
4 \text{ v} = 2989.74 //\text{cm}^-1
5 \text{ rc} = 1.2746 //A
6 T = 25 //C
7 E1= 6.8635 // cal deg^-1 mole^-1
8 E2= 11.4392 //cal deg^-1 mole^-1
9 E3= 7.2820 // cal deg^-1 mole^-1
10 E4= 4.5757 // cal deg^-1 mole^-1
11 E5= 2.7676 // \text{cal deg} -1 \text{ mole} -1
12 r1= 0.265 //A
13 r = 35.99 //A
14 //CALCULATIONS
15 Et = E1*log10(r)+E2*log10(273.15+T)-E3
16 Ei = E4*log10(r1)+E4*log10(273.15+T)-E5
17 //RESULTS
```

- 18 printf ('Transitional energy = $\%.1\,\mathrm{f}$ cal deg^-1 mole ^-1',Et)
- 19 printf ('\n rorational energy = $\%.1\,\mathrm{f}$ cal deg^-1 mole ^-1',Ei)

MACROMOLECULES

Scilab code Exa 20.1 example 1

```
1 clc
2 //initialisation of variables
3 R= 0.082 //l-atm deg^-1 mole^-1
4 T= 25 //C
5 V= 85*10^-6 //l-atm g^-1
6 //CALCULATIONS
7 M= R*(273+T)/V
8 //RESULTS
9 printf ('average molecular weight of this polystrene = %. f g mole^-1', M)
```

Scilab code Exa 20.2 example 2

```
1 clc
2 //initialisation of variables
3 T= 20 //C
4 v= 0.01005 //poise
5 N= 6*10^23 //molecules
```

Scilab code Exa 20.3 example 3

```
1 clc
2 //initialisation of variables
3 w= 2.82*10^7
4 t2= 70 //min
5 t1= 60 //min
6 r2= 6.731 //cm
7 r1= 5.949 //cm
8 //CALCULATIONS
9 s= 2.303*log10(r2/r1)/(w*t2*t1)
10 //RESULTS
11 printf ('time = %.1e sec',s)
```

Scilab code Exa 20.4 example 4

```
1 clc
2 //initialisation of variables
3 R= 8.31*10^7 //ergs deg^-1 mole^-1
4 T= 20 //C
5 s= 4.3*10^-13 //sec
6 D= 6.15*10^-7 //cm^2 sec^-1
7 d= 0.9982 //g/cc
8 v= 0.735 //cm^3 g^-1
9 //CALCULATIONS
```

Scilab code Exa 20.5 example 5

```
1 clc
2 //initialisation of variables
3 K= 3.7*10^-4
4 a= 0.62
5 iv= 0.74
6 //CALCULATIONS
7 M= (iv/K)^(1/a)
8 //RESULTS
9 printf ('Molecular weight = %.f g mole^-1',M)
```

SURFACE CHEMSITRY

Scilab code Exa 21.1 example 1

```
1 clc
2 //initialisation of variables
3 A= 500 //cm^2
4 m= 0.106 //mg
5 N= 6*10^23 //molecules
6 M= 284 //g mole^-1
7 d= 0.85 //g/cm^3
8 //CALCULATIONS
9 A1= A*M/(N*m^10^-3)
10 t= m*10^-3/(A*d)
11 //RESULTS
12 printf ('cross-sectional area = %.e cm^2 ',A1)
13 printf ('\n thcikness t of the film = %.e cm ',t)
```

Scilab code Exa 21.2 example 2

```
1 clc
2 //initialisation of variables
```

```
3 V= 129 //ml g^-1
4 N= 6*10^23 //molecules
5 A= 16.2 //A^2
6 //CALCULATIONS
7 SA= V*N*A*10^-10/(10^3*22.4)
8 //RESULTS
9 printf ('surface area per gram of gel = %.f m^2 g^-1 ',SA)
```

CRYSTALS

Scilab code Exa 23.1 example 1

```
1 clc
2 //initialisation of variables
3 d = 0.856 //g/cc
4 N= 6*10^23 / molecules
5 \text{ M} = 39.1 //g \text{ mole} -1
6 n = 2
7 n1 = 4
8 n2 = 12
9 //CALCULATIONS
10 a = (n*M/(N*d))^(1/3)
11 d= a*10^8/sqrt(n1)
12 d1= a*10^8/sqrt(n)
13 d2= a*10^8/sqrt(n2)
14 //RESULTS
15 printf ('distance between planes = \%.2 \, f \, A',d)
16 printf ('\n distance between planes = \%.2 \, f \, A',d1)
17 printf ('\n distance between planes = \%.2 \, f \, A',d2)
```

KINETICSPHOTOCHEMISTRYRADIA

Scilab code Exa 23.1 example 1

```
1 clc
2 //initialisation of variables
3 k= 9.12*10^-4 //sec^-1
4 H= 25100 //cal mole^-1
5 S= -10.6 //cal deg^-1 mole^-1
6 //RESULTS
7 printf ('Entropy of activation = %.1f cal deg^-1 mole^-1',S)
```

Scilab code Exa 23.2 example 2

```
1 clc
2 //initialisation of variables
3 h= 6.62*10^-27 //ergs/sec
4 c= 3*10^10 //cm/sec
5 wl= 4358 //A
6 I= 14000 //ergs sec^-1
7 p= 80.1 //percent
```

```
8 t= 1105 //sec
9 n= 0.075 //millimole
10 //CALCULATIONS
11 E= h*c/(wl*10^-8)
12 q= I*p*t/(100*E)
13 M= 6*10^23*n*10^-3
14 P= M/q
15 //RESULTS
16 printf ('quantum yield = %.1 f ',P)
```

Scilab code Exa 23.4 example 4

```
1 clc
2 //initialisation of variables
3 a= 43560 //ft^-2
4 t= 500 //min day^-1
5 E= 1000 //cal min^-1 ft^-2
6 m= 2 //tons acre^-1
7 E1= 4000 //cal gram^-1
8 M= 9.07*10^5 //gram ton^-1
9 //CALCULATIONS
10 Sh= a*t*E*365.26
11 Hs= m*M*E1
12 r= Hs/Sh
13 //RESULTS
14 printf ('fraction of solar energy stored = %.3f ',r)
```

Scilab code Exa 23.5 example 5

```
1 clc
2 //initialisation of variables
3 h= 6.625*10^-27 //ergs/mole
4 f= 2.65*10^-5 //sec^-1
```

```
5  c= 3*10^10 //cm/sec
6  t= 2
7  N= 6*10^23 //molecules
8  M= 382 //gms
9  E1= 750 //ergs
10 //CALCULATIONS
11  E= h*c/f
12  n1= E1/E
13  m= n1/(t*7)
14  G= m*M/N
15 //RESULTS
16  printf ('number of quanta = %.2e ',n1)
17  printf ('\n number of quanta = %.2e molecules',m)
18  printf ('\n grams per day= %.2e gms',G)
```

NUCLEAR CHEMISTRY

Scilab code Exa 24.1 example 1

```
1 clc
2 //initialisation of variables
3 E= 931 //Mev/amu
4 nc= 6
5 m= 1.00814 //amu
6 m1= 1.00898
7 mc= 12.0038
8 //CALCULAIONS
9 md= nc*m+nc*m1-mc
10 BE= E*md
11 //RESULTS
12 printf ('BInding Energy = %.1 f Mev', BE)
```

Scilab code Exa 24.2 example 2

```
1 clc
2 //initialisation of variables
3 r= 1.07*10^-4 //ml g^-1 day^-1
```

```
4 N1= 3.4*10^10 //alpha particles g^-1 sec^-1 5 //CALCULATIONS
6 N= 22400*N1*24*60*60/r 7 //RESULTS
8 printf ('avagadro number = %.2e', N)
```

Scilab code Exa 24.3 example 3

```
1 clc
2 //initialisation of variables
3 R= 0.08205 //l-atm mole^-1 K^-1
4 T= 25 //C
5 p= 1 //atm
6 Mr= 226 //gms
7 th= 3.82 //days
8 t= 1620 //years
9 //CALCULATIONS
10 NRn= th/(Mr*t*365.26)
11 V= NRn*R*(273+T)*1000/p
12 //RESULTS
13 printf ('millilitres of radon = %.2e ml',V)
```

Scilab code Exa 24.4 example 4

```
1 clc
2 //initialisation of variables
3 mli= 7.01822 //amu
4 mH= 1.00814 //amu
5 mHe= 4.00387 //amu
6 n=2
7 E= 931 //Mev/amu
8 //CALCULATIONS
9 dE= E*(-n*mHe+mH+mli)
```

Scilab code Exa 24.5 example 5

```
1 clc
2 //initialisation of variables
3 mr= 2.01474 //amu
4 mH= 0.00237 //amu
5 mD= 1.00814 //amu
6 //CALCULATIONS
7 mn= mr+mH-mD
8 //RESULTS
9 printf ('mass of neutron = %.5 f amu',mn)
```

Scilab code Exa 24.6 example 6

```
1 clc
2 //initialisation of variables
3 t= 1600 //years
4 M= 226 //gms
5 k= 3.7*10^10 //disintegrations per second
6 //CALCULATIONS
7 wl= 0.693/(t*365*24*60*60)
8 r= wl*6.02*10^23/M
9 //RESULTS
10 printf ('wavelength = %.1e disintegrations per second',r)
```

Scilab code Exa 24.8 example 8

```
1 clc
2 //initialisation of variables
3 ku= 1.52*10^-10 //year^-1
4 ru= 0.0453
5 ru1= 1.0523
6 Mu= 238 //gms
7 mu= 206 //gms
8 //CALCULATIONS
9 dt= ru*Mu/(ku*ru1*mu)
10 t= 2.303*log10(ru1/(ru1-(ru*Mu/mu)))/(ku*10^6)
11 //RESULTS
12 printf ('age of pitchblende = %.f million years',t)
```