Day 9: Unsupervised learning and dimensional reduction

Kenneth Benoit and Slava Mikhaylov

Introduction to Data Science and Big Data Analytics

27 August 2015

Day 9 Outline

Decision Trees

Types of dimensional reduction models

Dimensional reduction methods

Exam (p)Review

Additional resources for data science

Brief Introduction to Decision Trees

- Basic idea: segment the feature space to produce a set of terminal nodes associated with an outcome, which can be used to locate future observations to produce a prediction
- Can be used for classification, if outcome is categorical rather than continuous
- Basic methods not as effective as other methods, but can be augmented with advanced versions, such as bagging, random forests, and boosting

Decision Trees: Terminology and concepts

- terminal nodes: contain mean response of predicted variable following the partition along branches of the tree
- internal nodes: points along the tree where the predictor space is split
- prediction (and construction of the trees) proceeds through stratification of the predictor space. This is done using a variety of algorithms, selecting variables in a (usually) top-down approach based on some variance or entropy criterion
- pruning: tree size is reduced following the algorithmic construction of a complete tree, because complete trees tend to overfit the data and lead to poor test set performance

Walk-through

Walk-through

FIGURE 8.5. Regression tree analysis for the Hitters data. The training, cross-validation, and test MSE are shown as a function of the number of terminal nodes in the pruned tree. Standard error bands are displayed. The minimum cross-validation error occurs at a tree size of three.

Class prediction

Class prediction after pruning

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross -validation error, training, and test error, for different sizes of the pruned tree. Bottom Right: The pruned tree corresponding to the minimal cross-validation error.

Types of dimensional reduction models

Parametric v. non-parametric methods

- Parametric methods model feature occurrence according to some stochastic distribution, typically in the form of a measurement model
 - for instance, model words as a multi-level Bernoulli distribution, or a Poisson distribution
 - feature effects and "positional" effects are unobserved parameters to be estimated
- Non-parametric methods typically based on the Singular Value Decomposition of a matrix
 - principal components analysis
 - correspondence analysis
 - other (multi)dimensional scaling methods

Non-parametric dimensional reduction methods

- Non-parametric methods are algorithmic, involving no "parameters" in the procedure that are estimated
- Hence there is no uncertainty accounting given distributional theory
- Advantage: don't have to make assumptions
- Disadvantages:
 - cannot leverage probability conclusions given distribtional assumptions and statistical theory
 - results highly fit to the data
 - not really assumption-free (if we are honest)

Principal Components Analysis

- ▶ For a set of features $X_1, X_2, ..., X_p$, typically centred (to have mean 0)
- the first principal component is the normalized linear combination of the features

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \ldots + \phi_{p1}X_p$$

that has the largest variance

- normalized means that $\sum_{j=1}^{p} \phi_{j1}^2 = 1$
- ▶ the elements $\phi_{11}, \ldots, \phi_{p1}$ are the loadings of the first principal component
- the second principal component is the linear combination Z_2 of X_1, X_2, \ldots, X_p that has maximal variance out of all linear combinations that are *uncorrelated* with Z_1

PCA factor loadings example

	PC1	PC2
Murder	0.5358995	-0.4181809
Assault	0.5831836	-0.1879856
UrbanPop	0.2781909	0.8728062
Rape	0.5434321	0.1673186

TABLE 10.1. The principal component loading vectors, ϕ_1 and ϕ_2 , for the USArrests data. These are also displayed in Figure 10.1.

PCA factor loadings biplot

PCA projection illustrated

FIGURE 10.2. Ninety observations simulated in three dimensions. Left: the first two principal component directions span the plane that best fits the data. It minimizes the sum of squared distances from each point to the plane. Right: the first two principal component score vectors give the coordinates of the projection of the 90 observations onto the plane. The variance in the plane is maximized.

PCA projection illustrated

Table 5.6 Dimensional analysis of the Dutch policy space: principal components factor analysis, n=77, parameters=24

Factor	Eigenvalue	Proportion	Cumulative
1	4.28	0.48	0.48
2	1.50	0.17	0.64
3	1.26	0.14	0.78
4	0.63	0.07	0.85
5	0.52	0.06	0.91
6	0.28	0.03	0.94
7	0.26	0.03	0.97
8	0.18	0.02	0.99
9	0.08	0.01	1.00

Varimax rotated factor loadings

Variable	Factor			
	1 Economic	2 EU	3 Social	
	Left-right Liber			
Taxes vs spending	0.88	-0.17	0.18	
Environment	0.89	0.15	0.01	
Immigration	0.87	0.23	0.15	
Deregulation	0.95	-0.09	0.07	
EU accountability	0.67	0.54	0.23	
EU security	-0.23	0.84	-0.01	
EU authority	0.43	0.71	-0.01	
Social liberalism	0.08	0.11	0.84	
Decentralization	-0.18	0.08	-0.80	

Correspondence Analysis

- ► CA is like factor analysis for categorical data
- Following normalization of the marginals, it uses Singular Value Decomposition to reduce the dimensionality of the word-by-text matrix
- ► This allows projection of the positioning of the words as well as the texts into multi-dimensional space
- ► The number of dimensions as in factor analysis can be decided based on the eigenvalues from the SVD

Correspondence Analysis

- ► CA is like factor analysis for categorical data
- Following normalization of the marginals, it uses Singular Value Decomposition to reduce the dimensionality of the word-by-text matrix
- This allows projection of the positioning of the words as well as the texts into multi-dimensional space
- ► The number of dimensions as in factor analysis can be decided based on the eigenvalues from the SVD

Singular Value Decomposition

A matrix $\mathbf{X}_{i \times j}$ can be represented in a dimensionality equal to its rank k as:

$$\mathbf{X} = \mathbf{U}_{i \times j} \mathbf{d}_{k \times k} \mathbf{V}'$$

$$(1)$$

- ► The **U**, **d**, and **V** matrixes "relocate" the elements of **X** onto new coordinate vectors in *n*-dimensional Euclidean space
- Row variables of X become points on the U column coordinates, and the column variables of X become points on the V column coordinates
- ► The coordinate vectors are perpendicular (orthogonal) to each other and are normalized to unit length

Correspondence Analysis and SVD

- ▶ Divide each value of X by the geometric mean of the corresponding marginal totals (square root of the product of row and column totals for each cell)
 - ightharpoonup Conceptually similar to subtracting out the χ^2 expected cell values from the observed cell values
- Perform an SVD on this transformed matrix
 - ► This yields singular values **d** (with first always 1.0)
- ▶ Rescale the row (**U**) and column (**V**) vectors to obtain canonical scores (rescaled as $U_i \sqrt{f_{..}/f_{j.}}$ and $V_j \sqrt{f_{..}/f_{j.}}$)

Example: Schonhardt-Bailey (2008) - speakers

	Eigenvalue	% Association	% Cumulative	
Factor 1	0.30	44.4	44.4	
Factor 2	0.22	32.9	77.3	

Fig. 3. Correspondence analysis of classes and tags from Sanata debates on Partial Birth Abortion Ren Act

Example: Schonhardt-Bailey (2008) - words

How to get confidence intervals for CA

- ► There are problems with bootstrapping: (Milan and Whittaker 2004)
 - rotation of the principal components
 - inversion of singular values
 - reflection in an axis

How to account for uncertainty

- Ignore the problem and hope it will go away
 - ► SVD-based methods (e.g. correspondence analysis) typically do not present errors
 - and traditionally, point estimates based on other methods have not either

Plotting θ

Plotting θ (the ideal points) gives estimated positions. Here is Monroe and Maeda's (essentially identical) model of legislator positions:

Dimensions

How infer more than one dimension?

This is two questions:

- How to get two dimensions (for all policy areas) at the same time?
- ▶ How to get one dimension for each policy area?

How do we interpret multiple dimensions?

Exam hints

- ► Structure
- ► Topic scope
- ► Format

Additional resources

- R
- CRAN
- R-bloggers
- Stack Overflow R tag
- Data science
 - lots of on-line courses
 - lots of blogs (see http://www.ngdata.com/top-data-science-resources/)
 - more statistics