- Sheet metalworking includes cutting and forming operations performed on relatively thin sheets of metal.
- Typical sheet-metal thicknesses are between 0.4 mm and 6mm.
- When thickness exceeds about 6 mm, the stock is usually referred to as plate rather than sheet.
- The sheet or plate stock used in sheet metalworking is produced by flat rolling.

- The most commonly used sheet metal is low carbon steel (0.06%–0.15% C typical).
- Its low cost and good formability, combined with sufficient strength for most product applications, make it ideal as a starting material.
- Sheet-metal processing is usually performed at room temperature (cold working).
- The exceptions are when the stock is thick, the metal is brittle, or the deformation is significant.

- These are usually cases of warm working rather than hot working.
- Most sheet-metal operations are performed on machine tools called presses.
- The term stamping press is used to distinguish these presses from forging and extrusion presses.
- The tooling that performs sheet metalwork is called a punch-and-die; the term stamping die is also used.
- The sheet-metal products are called stampings.

- To facilitate mass production, the sheet metal is often presented to the press as long strips or coils.
- The three major categories of sheet-metal processes are (1) cutting, (2) bending, and (3) drawing.
- Cutting is used to separate large sheets into smaller pieces, to cut out part perimeters, and to make holes in parts.
- Bending and drawing are used to form sheet-metal parts into their required shapes

CUTTING OPERATIONS

- Cutting of sheet metal is accomplished by a shearing action between two sharp cutting edges.
- The shearing action is depicted in the four stopaction sketches of Figure, in which the upper cutting edge (the punch) sweeps down past a stationary lower cutting edge (the die).
- As the punch begins to push into the work, plastic deformation occurs in the surfaces of the sheet.

CUTTING OPERATIONS

 If the clearance between the punch and die is correct, the two fracture lines meet, resulting in a clean separation of the work into two pieces.

CUTTING OPERATIONS

- As the punch moves downward, penetration occurs in which the punch compresses the sheet and cuts into the metal.
- This penetration zone is generally about one-third to half the thickness of the sheet.
- As the punch continues to travel into the work, fracture is initiated in the work at the two cutting edges.

SHEARING, BLANKING, AND PUNCHING

 The three most important operations in pressworking that cut metal by the shearing mechanism just described are shearing, blanking, and punching.

SHEARING

- Shearing is a sheet-metal cutting operation along a straight line between two cut tiny edges, as shown in Figure.
- Shearing is typically used to cut large sheets into smaller sections for subsequent pressworking operations.
- It is performed on a machine called a power shears, or squaring shears.
- The upper blade of the power shears is often inclined, to reduce the required cutting force. 10

SHEARING

- Blanking involves cutting of the sheet metal along a closed outline in a single step to separate the piece from the surrounding stock.
- The part that is cut out is the desired product in the operation and is called the blank.

- Punching/Piercing is similar to blanking except that it produces a hole, and the separated piece is scrap, called the slug.
- The remaining stock is the desired part.

Clearance

- The clearance "c" in a shearing operation is the distance between the punch and die.
- Typical clearances in conventional pressworking range between 4% to 8% of the sheet-metal thickness t.

$$c = a(t) \tag{1}$$

Where a = Allowance = 4 to 8%

Cutting Forces

• Cutting force " \boldsymbol{F} " in sheet metalworking can be determined by

$$F = StL$$
 (1b) (2)

S = shear strength of the sheet metal, MPa (psi)

t = stock thickness, mm (in)

L = length of the cut edge, mm (in)

Cutting Forces

In blanking, punching, slotting, and similar operations, " L "is the perimeter length of the blank or hole being cut.

NUMERICAL 1

- A blanking operation is to be performed on 2 mm thick cold rolled steel. The part is circular with diameter = 75 mm. Determine:
- a) the appropriate punch and die sizes for this operation if the allowance for the cold rolled steel is a = 0.075.
- b) the blanking force required if the steel has a shear strength = 325 MPa and the tensile strength is 450 MPa

NUMERICAL 1

Solution:

(a) Since a = 0.075, the clearance is given by,

$$c = 0.075$$
 (2) = 0.15 mm.

Thus the Punch diameter D_h is calculated as

$$\mathbf{D_h} = D_b - 2c = 75.0 - 2(0.15) = 74.70 mm.$$

and the Die diameter is $D_b = 75$ mm.

NUMERICAL 1

(b) the blanking force is given by

$$F = StL$$

The thick of the metal stock t is given by the problem as t = 2 mm

The length of cut edge is calculated as:

$$L = \pi D = 75\pi = 235.65 \text{ mm}$$

Thus the blanking force is

$$F = 325 (2) (235.65) = 153,200 N$$

ENERGY REQUIRED

 The energy E required for punching is calculated by an emperical formula

$$E = 1.16Fpt/12$$

E = Energy ft-lb

p = penetration of punch into stock (%)

If the punch makes N strokes per minute the power in horsepower is

POWER (hp)

ullet If the punch makes N strokes per minute the power in horsepower is

$$P = EN/33000$$