南开大学 2015 级信息类一元函数微分学统考试卷 (A卷) 2015年11月28日

(说明:答案务必写在装订线右侧,写在装订线左侧无效。影响成绩后果自负。)

题号	_	 =	四	五.	六	七	卷面 成绩	核分 签名	复核 签名
得分									

- 一、选择题(每小题 4 分)
- (1) 设 $\lim_{x\to 0} \frac{f(x)}{\sin x} = 1$, 则当 $x\to 0$ 时, 函数f(x)与(B)是等价无穷小:

一 题 得分 草稿区

- (A) $\ln(1-x)$; (B) $\sin |x|$; (C) $\sqrt{1+2x}-1$; (D) $1-\cos |x|$.
- (2) 设 $f(x) = |x \sin x| e^{\cos x}, x \in (-\infty, +\infty)$, 则函数 f(x) 是(D):
 - (A) 有界函数; (B) 单调函数; (C) 周期函数; (D) 偶函数.
- (3) 设 f(x) 对任意 x 满足 f(x+1) = af(x),且 f'(0) = b.其中 a,b 为非零常数,则 f(x) 在 x = 1 处 (C):
 - (A) 不可导; (B) 可导,且f'(1) = a; (C); 可导,且f'(1) = ab
 - (D) 可导, 且f'(1) = b.
- (4) 设函数 $f(x) = (\sin x) \sin \frac{1}{x}$,则 x = 0 是 f(x) 的(D):
 - (A) 可去间断点; (B) 跳跃间断点; (C) 无穷间断点; (D) 振荡间断点.
- (5) 设 f(x) 在 x = 1 处有连续的导函数,又 $\lim_{x \to 1} \frac{f'(x)}{x-1} = 1$,则 x = 1 是函数 f(x) 的(D),
 - (A) 驻点, 但不是极值点; (B) 驻点, 且是极小值点; (C) 驻点, 且是极大值点; (D) 以上答案都不正确.
- 二、填空题 (每小题 4 分):

(1)
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \underline{\qquad \qquad 0}$$

二 题得分

(2)
$$\lim_{x \to \infty} \frac{2x^2 + 1}{3x - 1} \sin \frac{1}{x + 1} = \underline{\hspace{1cm}}$$

(4) 设曲线 $y = ax^2 + bx$ 在点(1,0)处的切线与直线 y = x 平行,则 a = 1 , b = -1

三、求下列极限: (每小题5分)

(1) $\lim_{n\to\infty} (\sqrt{n+3\sqrt{n}} - \sqrt{n-\sqrt{n}})$;

(2) $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x}\right);$

三 题 得分

 $(3) \lim_{n\to\infty} \sqrt[n^2]{n!}$

四、求下列函数的导数(每小题5分):

四 题得分

(2) 设
$$y = y(x)$$
 是参数方程
$$\begin{cases} x = at \cos t \\ y = at \sin t \end{cases}$$
 所确定的函数, $(a \neq 0)$,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$;

草稿

(3) 设
$$y = y(x)$$
 由方程 $y \sin x - \cos(x - y) = 3y$ 所确定,求 $\frac{dy}{dx}$

(4) 设 $f(x) = x^2 \ln(1+x)$, 求 f(x) 在 x = 0 处的 2014 阶导数值.

五、证明下列不等式: (每小题 6 分)

(1)
$$\stackrel{\text{def}}{=} x > 0, \ln(1+x) > \frac{\arctan x}{1+x};$$

(2)
$$\stackrel{\text{def}}{=} \frac{\pi}{2} > x > 0, \sin x + \tan x > 2x$$

草稿

五 题 得分 六、设函数 f(x) 在区间 $[0,\frac{\pi}{2}]$ 上连续,在 $(0,\frac{\pi}{2})$ 内可导,且 f(0)=0,

证: 存在 $\xi \in (0, \frac{\pi}{2})$,使 $f'(\xi)\cos \xi - f(\xi)\sin \xi = 0$. (本题 7 分)

草稿区

六 题 得分

构造,中值定理

七、(6分) 设 f(x) 在区间 [a,b] 上连续,在 (a,b) 内有二阶 导数,且 $f'(\frac{a+b}{2})=0$,

证明: 存在 $\xi \in (a,b)$,使 $\frac{4}{(b-a)^2} |f(b)-f(a)| \le |f''(\xi)|$

七题 得分