Off-policy value function approximation

Konpat Preechakul Chulalongkorn University September 2019

Two sided problems

Off-policy target value

Off-policy target state distribution

$$p^b \rightarrow p^{T}$$

Target value problem

Target value problem

- If the target is on-policy, it needs correction
 - MC, N-step need importance sampling
- Some targets are off-policy, no need for correction
 - Expected SARSA
 - Deterministic policies
 - Q-learning
 - Tree-backup

A bird eye view of on/off-policy

Algorithm	V/Q value	Make it off-policy	Variance	Bias
Monte Carlo	V	IS	High	Low
	Q	IS	High	Low
One-step SARSA	V	IS	Lower	High
	Q	IS	Lower	High
One-step Expected SARSA	V	IS	Lower	High
	Q	Already	Low	High
One-step TD with Deterministic Policy (including Q-learning)	V	IS	Lower	High
	Q	Already	Low	High
N-step SARSA (including lambda)	V	IS	Medium	Medium
	Q	IS	Medium	Medium
Tree backup	V	Already	Low	High
	Q	Already	Low	High

Semi-gradient with correction

Off-policy N-step

$$g_{t:t+n} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots + \gamma^n v(s_{t+n})$$
$$v(s_t) \leftarrow v(s_t) + \alpha \rho_{t:t+n-1} [G_{t:t+n} - v(s_t)]$$

Off-policy N-step semi-gradient

$$\theta \leftarrow \theta + \alpha \rho_{t:t+n-1} \left(g_{t:t+n} - v_{\theta}(s_t) \right) \nabla_{\theta} v_{\theta}(s_t)$$

Q-learning with approximation

No need for off-policy correction

$$q(s,a) \leftarrow q(s,a) + \alpha \left[r(s,a) + \max_{a'} q(s',a') - q(s,a) \right]$$

for until q_{θ} is stable do take action according to $q_{\theta}(s, a)$ collect (s, a, r, s') $\delta = r + \gamma \max_{a'} q_{\theta}(s', a') - q_{\theta}(s, a)$ $\theta \leftarrow \theta + \alpha \delta \nabla_{\theta} q_{\theta}(s, a)$ end for

Summary

- Target value problem is straightforward
- Make sure that the target value is corrected
- Only **one part** of the problem

Target distribution problem

Target distribution problem

- Update distribution is "crucial" for convergence of semi-gradient
- Off-policy data = off-policy distribution
 - Convergence guarantee only on-policy distribution
- No convergence guarantee

Example of divergence

On-policy is more reasonable

Intuitive divergence

Problem of generalization of nearby states

Intuitive divergence

The deadly triad

- Off-policy
- Bootstrapping
- Approximation

Having the three at the same time causes "instability"

(with semi-gradient)

Double is not deadly

Off-policy + bootstrap:

Q-learning

Off-policy + approximation:

Off-policy MC with approx.

Bootstrap + approximation:

On-policy linear TD

All are stable.

When does divergence happen?

- When you use off-policy data
- You don't correct the target distribution
 - Even you have corrected the target value
- You use approximation
- You use semi-gradient
 - Imply bootstrapping

Bandages for semi-gradient

The deadly triad bandages

- Off-policy => more on-policy
- Bootstrapping => less bootstrap
- Approximation => **less approximate**

More on-policy

- On-policy state distribution correction
- Importance sampling

$$\theta \leftarrow \theta + \alpha \rho_{0:t-1} \rho_t \left(r_{t+1} + \gamma v_{\theta}(s_{t+1}) - v_{\theta}(s_t) \right) \nabla_{\theta} v_{\theta}(s_t)$$
Pistribution correction Target correction

$$\rho_{t:T-1} = \prod_{i=t}^{T-1} \frac{\pi(a_i|s_i)}{b(a_i|s_i)}$$

High variance

Less bootstrapping

- Smaller discount
 - Smaller bootstrap
- N-step return
 - Smaller bootstrap
- Target networks
 - Realize (more) the independence assumption
- Loss constraints
 - Reducing dependency

Target network visualized

Target networks

```
\theta' \leftarrow \theta
for until q_{\theta} is stable do
   take action according to q_{\theta}(s, a)
   collect (s, a, r, s')
   \delta = r + \gamma \max_{a'} q_{\theta'}(s', a') - q_{\theta}(s, a)
   \theta \leftarrow \theta + \alpha \delta \nabla_{\theta} q_{\theta}(s, a)
   if every K steps then
   end if how long do you need to get to r + v_{o'}
end for
```

Loss constraints

Reducing dependency between nearby states*

Projected gradients

$$V_{g}(8) \uparrow$$
 $V_{g}(8') \uparrow$
 $V_{g}(8) \uparrow$ $V_{g}(8')$ inchanged
we use $g \approx \nabla V_{g}(8)$ s.t. $g \perp \nabla V_{g}(8')$

Temporal consistency loss

$$TC(\theta) = \| V_{\ell}(s') - V_{\ell}(s') \|^2$$

Pohlen, Tobias, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel Barth-Maron, et al. 2018. "Observe and Look Further: Achieving Consistent Performance on Atari." *arXiv* [cs.LG]. arXiv. http://arxiv.org/abs/1805.11593.

Less approximate

- Increase the capacity of the approximator
 - This reduces the generalization effect
- First-order tabular update approximation
 - Intuition, table is stable even with off-policy

First-order tabular update approximation

First-order tabular update approximation

- Problems from "generalization"
- Problems from "slope"
 - SGD => steepest
 - Tabular => proportional
- If each update "knows" its "generalization", it could correct itself!
 - v _____
 - $V = \frac{S_0 S_1 S_2 S_3}{S_0 S_1 S_2 S_3}$

Why do we love semi-gradient so much?

- It is fast
- It gives favorable fixed-point if trained successfully
 - TD fixed point
- It is probably the one which is shown to work on large problems
 - Atari
 - Go

Moving to true gradient

Semi to true gradient

- Semi-gradient is the culprit
- True gradient guarantees convergence
 - Merit from SGD
 - Even in non-linear case
 - But to where?

Loss functions:

- TD error
- Bellman error
- Projected Bellman error

TD Error (TDE)

$$TDE(\theta) = \mathbb{E}\left[(R_{t+1} + \gamma v_{\theta}(S_{t+1}) - v_{\theta}(S_t))^2 | A_t \sim \pi \right]$$
$$TDE(\theta) = \mathbb{E}\left[\delta^2 | A_t \sim \pi \right]$$

True gradient:

$$\theta \leftarrow \theta + \alpha \delta_t \left[\nabla_{\theta} v_{\theta}(s_t) - \gamma \nabla_{\theta} v_{\theta}(s_{t+1}) \right]$$

How good is the fixed point?

A-split problem

Semi-grad TD on A-split

$$\min_{v_{\theta}} \mathbb{E}_{\pi}[\delta^2]$$

TDE on A-split

$$\min_{ heta} \mathbb{E}_{\pi}[\delta^2]$$
 Tends to be large

Update visualized true SGD TD

Update visualized true SGD TD

TDE seems bad, Alternatives?

Bellman error

Bellman equation

$$v(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v(s')]$$

Formulation for single state

$$\overline{\delta_{\theta}}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\theta}(s')] - v_{\theta}(s)$$

$$= \mathbb{E}_{\pi} [\delta_{s}]$$

Bellman error

$$\overline{\delta_{\theta}}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\theta}(s')] - v_{\theta}(s)$$

$$= \mathbb{E}_{\pi} [\delta_{s}]$$

Weighted squared error for all states

$$\|\overline{\delta_{ heta}}\|_{\pi}^2 = \mathrm{BE}(heta) = \sum_s \mathbb{P}^{\pi}(s) \left[\mathbb{E}_{\pi}[\delta_s]^2\right]$$
vs. $\mathbb{E}_{\pi}[\delta_s^2]$ toe

Minimize the above, using SGD

BE on A-split

$$\min_{ heta} \mathbb{E}_{\pi}[\delta]^2$$
 Tends to be smaller

BE on A-split (v2)

$$\min_{ heta} \mathbb{E}_{\pi}[\delta]^2$$
 Tends to be smaller ∞

Bellman error's gradient

$$\overline{\delta_{\theta}}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\theta}(s') \right] - v_{\theta}(s)$$
$$\|\overline{\delta_{\theta}}\|_{\pi}^{2} = \text{BE}(\theta) = \sum_{s',r} \mathbb{P}^{\pi}(s) \left[\mathbb{E}_{\pi}[\delta_{s}]^{2} \right]$$

Gradient

$$\nabla_{\theta} BE(\theta) = \sum \mathbb{P}^{\pi}(s) \left[\mathbb{E}_{\pi}[\delta_{s}] \mathbb{E}_{\pi}[\gamma \nabla_{\theta} v_{\theta}(s') - \nabla_{\theta} v_{\theta}(s)] \right]$$

Double sampling problem

$$\|\overline{\delta_{\theta}}\|_{\pi}^{2} = \mathrm{BE}(\theta) = \sum_{s} \mathbb{P}^{\pi}(s) \left[\mathbb{E}_{\pi}[\delta_{s}]^{2} \right]$$

$$\nabla_{\theta} \mathrm{BE}(\theta) = \sum_{s} \mathbb{P}^{\pi}(s) \left[\mathbb{E}_{\pi}[\delta_{s}] \mathbb{E}_{\pi}[\gamma \nabla_{\theta} v_{\theta}(s') - \nabla_{\theta} v_{\theta}(s)] \right]$$

Bellman error summary

- Impractical
- Might converge to undesirable fixed point
- A better loss function needed
 - Projected Bellman error
 - How to get its gradients (GTD2)

Read further

- Sutton 2018, Chapter 11
- Maei, Hamid Reza. 2011. "Gradient Temporal-Difference Learning Algorithms." University of Alberta.
- Topics:
 - Projected Bellman error
 - GTD2

Levels of guarantees

- Stability vs convergence
 - Stability is easier to guarantee
- On-policy vs off-policy
 - On-policy is easier to guarantee
- · Linear vs non-linear
 - Linear is easier to guarantee

Convergence of off-policy non-linear function approximation:

• Doesn't imply a "good" fixed point

Summary of gradients

Semi gradients = converge only on linear with on-policy

- Semi-gradient TD
- You need luck and tricks

True gradients = converge even on non-linear, both on-policy and off-policy

- Value error
- TD error
- Bellman error

Assignment

• Q-learning with function approximation notebook (Github)