Universidade Federal de Alagoas

Instituto de Computação Automação Industrial

Projeto Semáforo

Andressa Martins Demétrios Reis

Universidade Federral de Alagoas

Instituto de Computação Automação Industrial

Projeto Semáforo

Primeiro Relatório Parcial apresentado à disciplina de Automação Industrial, correspondente à avaliação do semestre 2019.1 do 8º período do curso de Engenharia de Computação da Universidade Federal de Alagoas, sob orientação do **Prof. João Raphael Souza Martins**.

Andressa Martins Demétrios Reis

Conteúdo

1	Descrição	1
2	Desenvolvimento2.1 Objetivos2.2 Tabela Verdade2.3 Programa	. 3
3	Conclusão	5
$\mathbf{B}^{\mathbf{i}}$	ibliografia	7
\mathbf{A}	nexo	7

1 Descrição

Vias caóticas são em sua maioria responsabilizadas pelo mau planejamento de semáforos ou más condições de pista. Os semáforos por sua vez são elementos automatizados que evitam acidentes e ainda operam de forma consistente e intermitentemente. Sua importância na sociedade é grande. O presente trabalho visa replicar o fluxo de funcionamento de um semáforo que está configurado da seguinte forma:

Figura 1: Configuração de trânsito

Boa parte do tempo que os veículos ficam parados no trânsito se deve a semáforos mal regulados, que obrigam o motorista a aguardar a abertura do sinal enquanto a via transversal apresenta pouco ou nenhum fluxo de veículos. Muitos motoristas só conseguem atravessar o sinal depois que este abre três ou até mais vezes numa via de grande movimento. O sistema em questão tem por objetivo a automatização de sinalização de um "cruzamento numa pista" obedece algumas regras, são elas:

- O sinal verde representa a permissão de passagem;
- O sinal vermelho representa a negação da passagem;
- O tempo entre a permissão da passagem e o da negação é dado pelo sinal amarelo.

A proposta então é desenvolver um semáforo que atue de acordo com as condições de tráfego no cruzamento como mostra a Figura 1 contendo um botão de inicio do sistema e um de emergência o que leva o estado de todos os semáforos para o sinal vermelho. O ideal para que possamos contornar a natureza desse sistema afim de que o mesmo não permita colisões usamos

um dispositivo usamos um dispositivo conhecido para sistemas automatizados Controlador Lógico Programável (CLP), é um computador especializado, baseado num microprocessador que desempenha funções de controle em processos automáticos com diversos níveis de complexidade. Os PLC's são resistentes e modulares. Usaremos a linguagem Ladder para modelar o problema e propor a solução.

2 Desenvolvimento

2.1 Objetivos

O objetivo é elaborar um programa em *Ladder* para controlar o funcionamento de 4 semáforos em um cruzamento entre 4 vias, levando em considereção alguns requisitos citados abaixo.

1. Tempo de acionamento das lâmpadas

• Verde: 2 segundos.

• Amarela: 1 segundo.

• Vermelha: 3 segundos.

2. Botões

• Acionamento do sistema.

• Emergência.

No problema tem-se 4 semáforos para controlar, mas analisando pode-se notar que os semáforos podem trabalham em conjunto, reduzindo assim a complexidade do problema. Isto é os semáforos paralelos podem estar no mesmo estado.

2.2 Tabela Verdade

Como citado na secção anterior o problema foi reduzido a controlar os conjuntos dos semáforos 1-2 e 3-4. A Tabela verdade representado os possíveis estados dos semáforos pode ser observada na Figura 3.

As variáveis que controlam os estados das lâmpadas são dadas por \mathbf{A} , \mathbf{B} e \mathbf{C} . Note que só existe 4 possíveis estados para os semáforos em operação normal, quando a variável \mathbf{C} é verdadeira significa que o botão de emergência foi ativado assim os semáforos vão para estados de negação de passagem, lâmpada vermelha, idependendo do estados que as variáveis \mathbf{A} e \mathbf{B} se encontram.

			Semáforo 1 - 2			Semáforo 3 - 4		
Α	В	С						
0	0	0	0	0	1	1	0	0
0	1	0	0	1	0	1	0	0
1	0	0	1	0	0	0	0	1
1	1	0	1	0	0	0	1	0
х	х	1	1	0	0	1	0	0

Figura 2: Tabela Verdade

2.3 Programa

Utilizando o programa *LOGOComfort*, e a linguagem *Ladder* foi possível desenvolver a lógica para o problema. Na Figura 4 é possível observar os principais blocos, eles estão citados na Tabela 3.

Tabela 1: Blocos utilizados

Nome do Bloco	Função
Make Contact	Representam os terminais de entrada.
Break Contact	Representam os terminais de entrada.
Relay Coil	Representam os terminais de saída.
Retentive on-delay	Um disparo único na entrada aciona um tempo configurável.

O programa consiste em uma entrada denominada *Start*, onde inicia a lógica do programa caso a entrada *Emergency* não esteja ativada, assim a saída *ON/OFF* será ativada ou não. Em suma temos uma função lógica AND entre o comando Start e Emergency. Ativando a saída *ON/OFF* será a entrada para no nosso primeiro temporizador *T001*, seguindo o tempo de acionamento para cada lâmpada, que *reset* quando a entrada *Yellow 1-2* está ativada e ativando assim a saída *Green 1-2*. Note que quando a entrada *Emergency* está ativada as lâmpadas Verde e Amarela não são ativadas, somente as lâmpadas vermelhas são ativadas para todo semáforos, como observa-se na Figura em Anexo.

Tipo	Símbolo	Equipamento elétrico
Contato aberto	⊣⊢	
Contato fechado	-1 /-	
Saída	-()-	

Figura 3: Correspondêcia no Ladder.

Analogamente foram utilizados os temporizadores para cada lâmpadas com seus devidos tempos, tanto para o conjunto de semáforo 1-2 quanto para o semáforo 3-4.

Figura 4: Programa parcial em Ladder

O código está disponível em: https://github.com/AndressaM/Automa-ao-Industrial

3 Conclusão

Nota-se através dos diagramas lógicos que temos um sistema consistente e que atende os pré-requisitos do projeto, o uso de temporizadores permitiu que os sinais fosse sincronizados pelo tempo e ainda assim respeitasse as funções lógicas. Como podemos perceber, por mais simples que seja uma planta para auxiliar a segurança na cidade ela necessita de um sistema de controle para que possa funcionar de maneira otimizada e viável. Nesse contexto, os Controladores Lógicos Programáveis desempenham um papel fundamental

na integração entre sistemas automatizados e as pessoas, pois são capazes de controlar processos dos mais simples aos mais complexos, com a grande vantagem de serem programáveis, ou seja, se adequam a qualquer tarefa com facilidade viabilidade econômica.

Bibliografia

Projeto de Controlador Inteligente para Semáforo, 2008. Helio Saburo Yuki

Fundamentals of Digital Logic, Stephen Brown, Zvonko Vranesic, McGraw-Hill

Anexo

Figura 5: Progama Semáforo em Ladder