

Prof. Dr.-Ing. Martin Kumm

7. Übungsblatt - KV-Minimierung II

Digitaltechnik und Rechnersysteme • Wintersemester 2023/2024

1 Gruppenübung

1.1 Transportwagensteuerung

Ein Transportwagen eines kleinen Kohlebergwerks wird mit einem Elektromotor betrieben. Auf dem Wagen befinden sich zwei Schalter, mit denen der Wagen in Bewegung gesetzt wird. Mit dem Schalter S_3 wird der Wagen nach links bewegt, mit dem Schalter S_4 nach rechts. An den beiden Enden des Schienenweges sind zwei Schalter S_4 und S_2 angebracht. Sie werden durch die Räder des Wagens betätigt und geben ein Signal, wenn der Wagen über die Schienen hinauszufahren droht.

Es soll nun eine Kontroll-Logik entworfen werden, die den Motor des Wagens entsprechend steuert. Diese soll zwei Ausgänge haben: r, Signal, um den Wagen nach rechts zu fahren und l, Signal, um den Wagen nach links zu fahren. Das jeweils die Richtung anzeigende Signal sei logisch '1'.

Es muss hierbei verhindert werden, dass der Wagen über die Schienen hinausfahren kann (also S_1 oder S_2 aktiv sind). Der Motor muss daher gestoppt werden bis die Richtung geändert wird.

Durch eine mechanische Vorrichtung wird verhindert, dass die Schalter S_3 und S_4 gleichzeitig betätigt werden können. In der Mittelstellung dieser Vorrichtung sind beide Schalter offen und der Wagen soll anhalten.

Alle Schalter geben bei Betätigung eine logische '1' aus, so bedeutet z. B. S_3 ='1' und S_4 ='0', dass der Wagen nach links fahren soll.

- a) Ermitteln Sie die Wahrheitstabelle für die Ausgänge *l* und *r* in Abhängigkeit von *S*₁, *S*₂, *S*₃ und *S*₄. Verwenden Sie »don't cares« für Kombinationen, die technisch oder logisch ausgeschlossen sind.
- b) Ermitteln Sie die KV-Diagramme für die Ausgänge *l* und *r*.
- c) Bestimmen Sie alle Primimplikanten und geben Sie deren Typ an.
- d) Ermitteln Sie die kostengünstigsten Funktionen $l(S_1, S_2, S_3, S_4)$ und $r(S_1, S_2, S_3, S_4)$ als DNF.
- e) Zeichen Sie die Schaltung der minimalen DNF mit beliebigen Gattern.

1.2 Eigene Aufgabe

Erstellen Sie ihren Kommilitonen eine eigene Aufgabe aus dem Bereich kombinatorischer Schaltungen mit Lösung. Denken Sie sich entweder

- eine (nicht minimale) Boolesche Funktion,
- das Schaltbild (einer nicht minimalen Boolesche Funktion)
- oder eine Spezifikation (in Worten) einer kombinatorischen Problemstellung (analog zur Fahrzeugsteuerung oder der Transportwagensteuerung) aus.

Diese soll mittels Boolescher Algebra oder KV-Diagram vereinfacht und als Funktion oder Schaltbild dargestellt werden.

Geben Sie auch die Musterlösung an und zeigen Sie durch einen alternativen Lösungsweg, dass Ihre Lösung korrekt ist!

Laden Sie anschließend Ihre Aufgabe in Moodle unter »Abgabe Eigene Aufgabe« hoch und machen diese damit allen verfügbar. Im einfachsten Fall genügt hier ein lesbares Foto/Scan vom Aufgabenblatt!

Seien Sie kreativ!

2 Hausübung

2.1 7-Segment-Anzeige (10 Punkte)

Gegeben ist ein LC-Display, bestehend aus einer 7-Segment-Anzeige für die Ziffern 0-9. Die Segmente sind von »a« bis »g« gekennzeichnet. Deren Anordnung, sowie die Aktivität der Segmente für die Ziffern 0-9 ist in der folgenden Abbildung dargestellt:

Es soll eine Schaltung entworfen werden, welche eine Dezimalstelle einer BCD (Binary Coded Decimals) kodierten Zahl auf der Anzeige darstellt. Bei BCD kodierten Zahlen wird jede Dezimalstelle im Bereich von 0-9 mit einer 4 Bit binär kodierten Zahl dargestellt (was den binären Zahlen 0000 bis 1001 entspricht). Die verbleibenden Werte zwischen 1010 und 1111 sind dabei nicht definiert.

Die gesuchte Schaltung soll daher vier Eingänge x_0 , x_1 , x_2 , x_3 aufweisen, welche die Zahl $x = x_0 + 2x_1 + 4x_2 + 8x_3$ kodieren und die 7 Ausgänge a-g einer 7-Segment Anzeige ansteuern.

- a) Ermitteln Sie die Wahrheitstabelle für die Segmente d und e. Berücksichtigen Sie in der Tabelle alle Eingangswerte und markieren Sie »don't Cares« mit 'd'.
- b) Ermitteln Sie die KV-Diagramme für die Segmente d und e.
- c) Bestimmen Sie alle Primimplikanten und geben Sie deren Typ an.
- d) Ermitteln Sie die kostengünstigsten Funktionen d(x) und e(x) als DNF.