Выпуклая оболочка.

Гащук Елизавета, 332 группа

21 марта 2021 г.

1.Постановка задачи. Дан набор точек на плоскости. Требуется вычислить выпуклую оболочку данного множества точек.

2.Определение и псевдокод.

Опр 1. Пусть в d - мерном пространстве E^d заданы n различных точек $\{p_i\}_{i=1}^n$. Множество точек

$$p = \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_n p_n$$
$$(\alpha_i \in \mathbb{R}, \ \alpha_i > 0, \ \alpha_1 + \alpha_2 + \ldots + \alpha_n = 1)$$

называется *выпуклым множееством*, порожденным точками $\{p_i\}_{i=1}^n$.

Опр 2. Пусть в d - мерном пространстве E^d заданы n различных точек $\{p_i\}_{i=1}^n = L$. Выпуклой оболочкой Conv(L) множества L называется наименьшее выпуклое множество, содержащее L.

 Π ример Conv(L) множества черных точек L на плоскости

Algorithm 1 Convex Hull

- 1: Отсортировать точки по возрастанию координаты х
- 2: Отсортировать подпоследовательности, образованные одинаковой координатой x, по возрастанию координаты y. Отсортированный массив $\{p_i^*\}_{i=0}^{n-1}$
- 3: Положить p_0^* , p_1^* в list L_{upper}
- 4: **for** i = 2 **to** n 1 i++ **do**
- 5: Положить p_i^* в конец list L_{upper}
- 6: **while** L_{upper} содержит более двух точек **and** последние три точки из L_{upper} не образуют правый поворот **do**
- 7: удалить среднюю точку среди последних трех из L_{upper}
- 8: end while
- 9: end for
- 10: Положить точки p_{n-1}^* and p_{n-2}^* в лист L_{lower}
- 11: **for** i = n 3 **to** 0 i- **do**
- 12: Положить p_i^* в конец list L_{lower}
- из: while L_{lower} содержит более двух точек and последние три точки из L_{lower} не образуют правый поворот ${f do}$
- 14: удалить среднюю точку среди последних трех из L_{lower}
- 15: end while
- 16: end for
- 17: удалить первую и последнюю точки из L_{lower} , так как они дублируются в L_{upper}
- 18: **return** $L_{upper} + L_{lower}$

В алгоритме *Convex Hull* необходимо проверять, какой поворот образует тройка точек A, B, C: правый или левый.

Утверждение 1. Дана тройка точек A, B, C $\in \mathbb{R}^2$. $\vec{V} = \vec{AB}$, $\vec{U} = \vec{AC}$. Тогда, если:

- $Sign([\vec{U},\vec{V}])=1$, то тройка точек A, B, C образует правый поворот.
- $Sign([\vec{U},\vec{V}]) = -1$, то тройка точек A, B, C образует левый поворот.
- ullet $[\vec{U}, \vec{V}] = 0$, то тройка точек A, B, C лежит на одной прямой.

Доказательство:

Очевидно, что при $[\vec{U},\vec{V}]_3=0$ тройка точек A, B, C лежит на одной прямой, так как $|[\vec{U},\vec{V}]_3|$ – площадь параллелограмма, натянутого на вектора \vec{V} и \vec{U} .

Из курса аналитической геометрии знаем, что, если кратчайший

поворот от \vec{U} до \vec{V} против часовой стрелки, то $Sign([\vec{U},\vec{V}])=1,$ если по часовой, получим -1.

Будем постепенно соединять вершины, образуя треугольник. Сначала грань через вершины A и C. Если $Sign([\vec{U},\vec{V}])=1$, то чтобы соединить C и B, необходимо повернуть налево относительно направления \vec{AC} . Чтобы замкнуть кривую, необходимо соединить B и A, совершив левый поворот относительно направления \vec{CB} . Тогда при обратном обходе $A \to B \to C \to A$ все повороты будут правыми.

При $Sign([\vec{U},\vec{V}])=-1$ аналогично получаем, что все повороты при $A\to B\to C\to A$ – левые.

Сложность алгоритма Convex Hull.

- Сортировка Хоара n точек имеет среднюю сложность $n \log(n)$. Один раз сортируем по x координате $\to n \log(n)$.
- После сортировки по x координате получили k подпоследовательностей, образованных точками с одинаковой x координатой. Скажем, что длина i ой подпоследовательности есть len_i . Тогда нам нужно еще $\sum_{i=1}^k len_i \log(len_i)$ действий.
- ullet Далее n 2 раза проверяем поворот. Тут требуется 11(n-2) действий (для L_{upper}).
- ullet Далее n 2 раза проверяем поворот. Тут требуется 11(n-2) действий (для L_{lower}).

Итого имеем: $n \log(n) + \sum_{i=1}^k len_i \log(len_i) + 2 \cdot 11(n-2) = \mathcal{O}(n \log n)$ в среднем.

4.Результаты.

