Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

Dans tout le problème α est un réel strictement positif. Pour $n \in \mathbb{N}^*$, on considère l'application u_n définie sur \mathbb{R}_+ par :

$$u_n(x) = \frac{x}{n^{\alpha} \left(1 + nx^2\right)}$$

Partie I: Fonction Zêta de Riemann

On note ζ la fonction Zéta de Riemann, définie par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$

- 1. Soit a > 1
 - (a) Montrer que $\sum_{n\geq 1} \frac{1}{n^x}$ converge uniformément sur $[a,+\infty[$
 - (b) A-t-on une convergence uniforme sur]1, a]?
- 2. Étudier la limite de ζ en $+\infty$
- 3. Montrer que ζ est de classe \mathcal{C}^{∞} sur $]1,+\infty[$ et calculer ses dérivées k-ième
- 4. Soit $x \in]1, +\infty[$
 - (a) En utilisant la comparaison série-intégrale, montrer que :

$$0 \leqslant \zeta(x) - 1 \leqslant \int_{1}^{+\infty} t^{-x} \, \mathrm{d}t \leqslant \zeta(x)$$

- (b) En déduire $\lim_{x\to 1^+} \zeta(x)$
- (c) Déterminer un équivalent de $\zeta(x)$ en 1

Partie II: Étude des modes de convergence de la série de fonctions $\sum_{n\geqslant 1}u_n$

5. Montrer que $\sum_{n\geqslant 1} u_n$ converge simplement sur $[0,+\infty[$.

On note f_{α} sa somme

- 6. Montrer que $\sum_{n\geqslant 1} u_n$ converge normalement sur $[0,+\infty[$ si, et seulement si, $\alpha>\frac{1}{2}$
- 7. Soit a un réel tel que a > 0.

Prouver que la série $\sum_{n\geqslant 1}u_n$ converge normalement sur $[a,+\infty[$

8. On suppose dans cette question que $\alpha \leqslant \frac{1}{2}$.

Pour
$$x \in [0, +\infty[$$
, on pose $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$

- (a) Établir les inégalités : $R_n(x) \geqslant \sum_{k=n+1}^{2n} \frac{x}{\sqrt{2n}(1+kx^2)}$ puis $R_n\left(\frac{1}{\sqrt{n}}\right) \geqslant \frac{1}{3\sqrt{2}}$
- (b) En déduire que la série $\sum_{n\geqslant 1}u_n$ ne converge pas uniformément sur [0,a] où a est un réel strictement positif
- 9. Calculer $f_1(1)$ et $f_2(1)$. (On admettra que $\zeta(2)=\frac{\pi^2}{6}$)

Problème de soutien Enoncé

Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

- 10. Calculer la limite $\lim_{x\to +\infty} f_{\alpha}(x)$
- 11. Montrer que $f_{\alpha}(x) \underset{x \to +\infty}{\sim} \frac{\zeta(\alpha+1)}{x}$

Partie III: Régularité de f_{α}

- 12. Montrer que f_{α} est continue $]0, +\infty[$
- 13. Montrer que si $\alpha > \frac{1}{2}$ alors f_{α} est continue $[0, +\infty[$
- 14. Soit x un réel strictement positif et φ_x l'application définie sur $[1, +\infty[$ par :

$$\varphi_x(t) = \frac{x}{\sqrt{t}(1 + tx^2)}$$

(a) Montrer que pour tout $n \in \mathbb{N}^*$, on a

$$\int_{1}^{n} \varphi_x(t) dt \leqslant \sum_{k=1}^{n} \frac{x}{\sqrt{k}(1+kx^2)} \leqslant \frac{x}{1+x^2} + \int_{1}^{n} \varphi_x(t) dt$$

- (b) Calculer l'intégrale $\int_1^n \varphi_x(t) dt$ (On pourra effectuer le changement de variable $u = x\sqrt{t}$)
- (c) En déduire un équivalent simple de $f_{\frac{1}{2}}(x)$ lorsque x tend vers 0^+
- 15. On suppose que $\alpha \leqslant \frac{1}{2}$
 - (a) Montrer que $f_{\frac{1}{2}} \leqslant f_{\alpha}$
 - (b) En déduire que f_{α} n'est pas continue en 0
- 16. Montrer que f_α est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et calculer f_α'
- 17. Montrer que f_α est décroissante sur $[1,+\infty[$

Partie IV: Une autre expression sommatoire de f_{α}

- 18. Soit $x \in [1, +\infty[$. Montrer que la suite double $\left(\frac{(-1)^{k-1}}{n^{k+\alpha}x^{2k-1}}\right)_{k\geqslant 1, n\geqslant 2}$ est sommable.
- 19. En déduire que

$$\forall x \in [1, +\infty[, f_{\alpha}(x)] = \frac{x}{x^2 + 1} + \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{\zeta(\alpha + k) - 1}{x^{2k-1}}$$

- 20. On pose pour $k \in \mathbb{N}^*$ et $x \ge 1$, $v_k(x) = (-1)^{k-1} \frac{\zeta(\alpha + k) 1}{x^{2k-1}}$
 - (a) Montrer que v_k est de classe \mathcal{C}^{∞} sur $[1, +\infty[$ et calculer $v_k^{(p)}(x)$ pour $p \in \mathbb{N}^*$ et $x \in [1, +\infty[$
 - (b) Montrer que f_{α} est de classe \mathcal{C}^{∞} sur $]1, +\infty[$
- 21. Soit $x \in [1, +\infty[$
 - (a) Montrer que la suite $\left(\frac{\zeta(\alpha+k)-1}{x^{2k-1}}\right)_{k>1}$ est décroissante
 - (b) En déduire que

$$\forall n \in \mathbb{N}^*, \quad \left| \sum_{k=n+1}^{+\infty} (-1)^{k-1} \frac{\zeta(\alpha+k)-1}{x^{2k-1}} \right| \le \frac{1}{(\alpha+n) x^{2n+1}}$$

(c) Donner une valeur approchée de $f_2(2)$ à 10^{-2} près

Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

Partie I: Fonction Zêta de Riemann

On note ζ la fonction Zéta de Riemann, définie par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$

- 1. Soit a > 1
 - (a) Soit $x \in [a, +\infty[$, on a :

$$|f_n(x)| = \frac{1}{n^x} \leqslant \frac{1}{n^a}$$

Puisque a>1, alors la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^a}$ converge et, par suite, la série $\sum_{n\geqslant 1}f_n$ converge normalement sur $[a,+\infty[$, ainsi la convergence uniforme de la série $\sum_{n\geqslant 1}f_n$ sur $[a,+\infty[$

- (b) Pour tout $n \ge 1$, on a $f_n(x) \xrightarrow[x \to 1^+]{} \frac{1}{n}$ et la série harmonique $\sum_{n \ge 1} \frac{1}{n}$ diverge, donc la série $\sum_{n \ge 1} f_n$ ne converge pas uniformément sur]1,a]
- 2. La série $\sum_{n\geqslant 1} f_n$ converge uniformément sur $[a,+\infty[$ et pour tout $n\geqslant 1,$

$$f_n(x) \xrightarrow[x \to +\infty]{} \ell_n = \begin{cases} 1 & \text{si } n = 1\\ 0 & \text{sinon} \end{cases}$$

Par le théorème d'interversion limite somme, ζ admet une limite finie en $+\infty$ et

$$\lim_{x \to +\infty} \zeta(x) = \sum_{n=1}^{+\infty} \ell_n = 1$$

- 3. Pour tout $n \ge 1$, la fonction f_n est de classe C^{∞} sur $]1, +\infty[$
 - La série $\sum_{n\geqslant 1} f_n$ converge simplement sur]1, $+\infty$ [de somme ζ
 - Soit $p \geqslant 1$ et $[a,b] \subset]1,+\infty[$. Pour tout $x \in [a,b],$ on a $f_n^{(p)}(x) = \frac{(-1)^p \ln^p(n)}{n^x}$. En conséquence

$$\left| f_n^{(p)}(x) \right| = \frac{\ln^p(n)}{n^x} \leqslant \frac{\ln^p(n)}{n^a}$$

Pour $\alpha \in]1, a[$, on a $n^{\alpha} \cdot \frac{\ln^p(n)}{n^a} = \frac{\ln^p(n)}{n^{a-\alpha}} \xrightarrow[n \to +\infty]{} 0$, donc, par le critère de Riemann, la série $\sum_{n \geqslant 1} \frac{\ln^p(n)}{n^a}$

converge. On en déduit la convergence normale de la série $\sum_{n\geqslant 1}f_n^{(p)}$ sur [a,b], puis sa convergence uniforme sur [a,b].

Par le théorème de dérivation sous le signe somme, la fonction ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$ et pour tout $x \in]1, +\infty[$ et $p \in \mathbb{N}$, on a :

$$\zeta^{(p)}(x) = \sum_{n=1}^{+\infty} \frac{(-1)^p \ln^p(n)}{n^x}$$

- 4. Soit $x \in]1, +\infty[$
 - (a) Soit $n \ge 1$, la fonction $t \mapsto \frac{1}{t^x}$ est décroissance sur $[1, +\infty[$, alors pour $t \in [n, n+1]$, on a :

$$\frac{1}{(n+1)^x} \leqslant \frac{1}{t^x} \leqslant \frac{1}{n^x} \implies \int_n^{n+1} \frac{1}{(n+1)^x} dt \leqslant \int_n^{n+1} \frac{1}{t^x} dt \leqslant \int_n^{n+1} \frac{1}{n^x} dt$$

$$\implies \frac{1}{(n+1)^x} \leqslant \int_n^{n+1} \frac{1}{t^x} dt \leqslant \frac{1}{n^x}$$

Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

On somme ces inégalité de n allant de 1 à $+\infty$, on obtient

$$0 \leqslant \zeta(x) - 1 \leqslant \int_{1}^{+\infty} t^{-x} dt \leqslant \zeta(x)$$

- (b) La valeur $\int_{1}^{+\infty} t^{-x} dt = \frac{1}{x-1}$ et l'inégalité précédente donnent $\frac{1}{x-1} \leqslant \zeta(x)$ et puisque $\frac{1}{x-1} \xrightarrow[x \to 1^+]{} +\infty$, alors $\zeta(x) \xrightarrow[x \to 1^+]{} +\infty$.
- (c) L'encadrement précédent donne $1\leqslant (x-1)\zeta(x)\leqslant x$, et par le théorème des gendarmes $(x-1)\zeta(x)\xrightarrow[x\to 1^+]{}1$ c'est-à-dire $\zeta(x)\underset{1^+}{\sim}\frac{1}{x-1}$

Partie II: Étude des modes de convergence de la série de fonctions $\sum_{n\geqslant 1}u_n$

- 5. Soit $x \in \mathbb{R}_+$
 - Si $x \in \mathbb{R}_+^*$, on a $u_n(x) = \frac{x}{n^{\alpha}(1+nx^2)} \sim \frac{1}{x} \frac{1}{n^{\alpha+1}}$. Or la série à termes positifs $\sum_{n\geqslant 1} \frac{1}{n^{\alpha+1}}$ converge, donc $\sum_{n\geqslant 1} u_n(x)$ converge
 - Si x=0, la série nulle $\sum_{n\geqslant 1}u_n(0)$ converge

Donc la série $\sum_{n\geq 1} u_n$ converge simplement sur $[0,+\infty[$.

6. u_n est continue sur $[0, +\infty[$ et dérivable sur $]0, +\infty[$, avec

$$u'_n(x) = \left(\frac{x}{n^{\alpha} (1 + nx^2)}\right)^{\frac{1}{2}}$$
$$= \frac{1 - nx^2}{n^{\alpha} (1 + nx^2)^2}$$

Le signe de $u_n'(x)$ sur \mathbb{R}_+^* est celui de $1-nx^2$.

On obtient son tableau de variations et $\|u_n\|_{\infty} = \frac{1}{2n^{\alpha+\frac{1}{2}}}$. Ainsi $\sum_{n\geqslant 1} \|u_n\|_{\infty}$ converge si, et seulement, si $\sum_{n\geqslant 1} \frac{1}{n^{\alpha+\frac{1}{2}}}$ converge si, et seulement, si $\alpha+\frac{1}{2}>1$ si, et seulement, si $\alpha>\frac{1}{2}$

- 7. Soit a un réel tel que a > 0 et soit $n_0 \in \mathbb{N}^*$ tel que $n_0 \geqslant \frac{1}{a^2}$. Soit $n \geqslant n_0$, l'application u_n est décroissante sur $[a, +\infty[$ et, par suite, pour tout $x \in [a, +\infty[$: $|u_n(x)| = u_n(x) \leqslant u_n(a)$. La série $\sum_{n\geqslant n_0} u_n(a)$ est convergente, d'où $\sum_{n\geqslant n_0} u_n$ converge normalement sur $[a, +\infty[$. En outre la suite $(u_n)_{n\geqslant 1}$ est bornée, donc $\sum_{n\geqslant 1} u_n$ converge normalement sur $[a, +\infty[$
- 8. On suppose dans cette question que $\alpha \leqslant \frac{1}{2}$.

Pour
$$x \in [0, +\infty[$$
, on pose $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$

Problème de soutien Correction

Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

(a) On a
$$R_n(x) = \sum_{k=n+1}^{+\infty} \frac{x}{k^{\alpha} (1 + kx^2)} \ge \sum_{k=n+1}^{2n} \frac{x}{k^{\alpha} (1 + kx^2)}$$
. Pour tout $k \in [n+1, 2n]$, on a $k^{\alpha} \le (2n)^{\alpha} \le \sqrt{2n}$ et, par suite, $R_n(x) \ge \sum_{k=n+1}^{2n} \frac{x}{\sqrt{2n}(1 + kx^2)}$ puis

$$R_n\left(\frac{1}{\sqrt{n}}\right) \ge \sum_{k=n+1}^{2n} \frac{\frac{1}{\sqrt{n}}}{\sqrt{2n}\left(1+\frac{k}{n}\right)}$$

$$\ge \sum_{k=n+1}^{2n} \frac{1}{\sqrt{2n}\left(1+\frac{2n}{n}\right)}$$

$$\ge \sum_{k=n+1}^{2n} \frac{1}{3\sqrt{2n}} = \frac{1}{3\sqrt{2}}$$

Ainsi
$$R_n\left(\frac{1}{\sqrt{n}}\right) \geqslant \frac{1}{3\sqrt{2}}$$

- (b) Pour tout $n \ge \frac{1}{a^2}$, on a $\frac{1}{\sqrt{n}} \in [0,a]$ et $\left| R_n \left(\frac{1}{\sqrt{n}} \right) \right| = R_n \left(\frac{1}{\sqrt{n}} \right) \ge \frac{1}{3\sqrt{2}}$, donc $\| R_n \|_{\infty}^{[0,a]} \ne 0$, en conséquence la série $\sum u_n$ ne converge pas uniformément sur [0,a]
- 9. Par télescopage $f_1(1) = \sum_{n=1}^{+\infty} \frac{1}{n(1+n)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n} \frac{1}{1+n}\right) = 1.$

Par la décomposition en éléments simples, on a $\frac{1}{X^2(X+1)} = \frac{1}{X^2} - \frac{1}{X} + \frac{1}{X+1}$ et, par suite,

$$f_2(1) = \sum_{n=1}^{+\infty} \frac{1}{n^2(1+n)} = \sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n}\right) = \zeta(2) - 1$$

- 10. La série $\sum_{n\geq 1} u_n$ converge uniformément sur $[a,+\infty[$ pour a>0;
 - Pour tout $n \in \mathbb{N}^*$, on a $u_n(x) \xrightarrow[x \to +\infty]{} 0$

- D'après le théorème d'interversion limite et somme $f_{\alpha}(x) \xrightarrow[x \to +\infty]{} 0$ 11. Puisque $\forall x \in \mathbb{R}_{+}$ et $n \in \mathbb{N}^{*}$ on a : $\left| \frac{x^{2}}{n^{\alpha}(1+nx^{2})} \right| = \frac{x^{2}}{n^{\alpha}(1+nx^{2})} \leqslant \frac{1}{n^{\alpha+1}}$, alors la série $\sum_{n \geqslant 1} \frac{x^{2}}{n^{\alpha}(1+nx^{2})}$ converge normalement sur \mathbb{R}_+ et donc uniformément sur \mathbb{R}_+
 - Pour tout $n \in \mathbb{N}^*$, on a $\frac{x^2}{n^{\alpha} (1 + nx^2)} \xrightarrow[x \to +\infty]{} \frac{1}{n^{\alpha+1}}$

D'après le théorème d'interversion limite et somme $xf_{\alpha}(x) \xrightarrow[x \to +\infty]{+\infty} \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha+1}}$, soit $f_{\alpha}(x) \underset{x \to +\infty}{\sim} \frac{\zeta(\alpha+1)}{x}$

Partie III: Régularité de f_{α}

- 12. Pour tout $n \in \mathbb{N}^*$, l'application $u_n : x \longrightarrow \frac{x}{n^{\alpha} (1 + nx^2)}$ est continue sur \mathbb{R}_+^* ;
 - Soit $[a,b] \subset \mathbb{R}_+^*$. D'après la question 7 la série de fonctions $\sum_{n\geq 1} u_n$ converge normalement sur $[a,+\infty[$, donc elle l'est uniformément sur $[a,+\infty[$ puis en particulier sur [a,b]

Donc f_{α} est continue sur \mathbb{R}_{+}^{*}

Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

- 13. Si $\alpha > \frac{1}{2}$
 - Pour tout $n \in \mathbb{N}^*$, l'application $u_n : x \longrightarrow \frac{x}{n^{\alpha} (1 + nx^2)}$ est continue sur \mathbb{R}_+ ;
 - D'après la question 6 la série de fonctions $\sum_{n\geqslant 1}u_n$ converge normalement sur \mathbb{R}_+ , donc elle l'est uniformément sur \mathbb{R}_+

Donc f_{α} est continue \mathbb{R}_+

14. Soit x un réel strictement positif et φ_x l'application définie sur $[1,+\infty[$ par :

$$\varphi_x(t) = \frac{x}{\sqrt{t}(1+tx^2)}$$

(a) Soit $n \in \mathbb{N}^*$. L'application φ est continue, décroissante et positive sur $[1, +\infty[$, on utilise les deux inégalités

$$\forall k \geqslant 1, \quad \int_{k}^{k+1} \varphi_x(t) \, \mathrm{d}t \leqslant \varphi_x(k) \quad \text{ et } \quad \forall k \geqslant 2, \quad \varphi_x(k) \leqslant \int_{k-1}^{k} \varphi_x(t) \, \mathrm{d}t$$

On somme la première inégalité de k allant de 1 à n et la deuxième de k allant de 2 à n, on obtient

$$\int_{1}^{n+1} \varphi_{x}(t) dt \leq \sum_{k=1}^{n} \frac{x}{\sqrt{k}(1+kx^{2})} \text{ et } \sum_{k=2}^{n} \frac{x}{\sqrt{k}(1+kx^{2})} \leq \int_{1}^{n} \varphi_{x}(t) dt$$

Par transitivité, la première inégalité donne $\int_1^n \varphi_x(t) \, \mathrm{d}t \leqslant \sum_{k=1}^n \frac{x}{\sqrt{k}(1+kx^2)} \text{ et on ajoute le nombre } \varphi_x(1)$ aux deux membres de la deuxième inégalité, on aboutit à $\sum_{k=1}^n \frac{x}{\sqrt{k}(1+kx^2)} \leqslant \frac{x}{1+x^2} + \int_1^n \varphi_x(t) \, \mathrm{d}t \ .$ Bref

$$\int_{1}^{n} \varphi_{x}(t) dt \leqslant \sum_{k=1}^{n} \frac{x}{\sqrt{k}(1+kx^{2})} \leqslant \frac{x}{1+x^{2}} + \int_{1}^{n} \varphi_{x}(t) dt$$

(b) On effectue le changement de variable $u=x\sqrt{t}$. Alors $t=1\Rightarrow u=x,\, t=n\Rightarrow u=x\sqrt{n},\, t=\frac{u^2}{t^2}$ et $\mathrm{d}t=\frac{2u}{x^2}\mathrm{d}u$, par la formule de changement de variables, il vient

$$\int_{1}^{n} \varphi_{x}(t) dt = \int_{x}^{x\sqrt{n}} \frac{x}{\frac{u}{x}(1+u^{2})} \cdot \frac{2u}{x^{2}} du$$

$$= 2 \int_{x}^{x\sqrt{n}} \frac{1}{1+u^{2}} du$$

$$= 2 \left[\arctan(u)\right]_{x}^{x\sqrt{n}}$$

$$= 2 \left(\arctan(x\sqrt{n}) - \arctan(x)\right)$$

(c) Tout d'abord on fait tendre n vers l'infini, dans l'inégalité de 14a, on obtient l'encadrement

$$\pi - 2\arctan(x) \leqslant f_{\frac{1}{2}}(x) \leqslant \frac{x}{1+x^2} + \pi - 2\arctan(x)$$

 $\text{Comme } \lim_{x \to 0^+} \pi - 2 \arctan(x) = \lim_{x \to 0^+} \frac{x}{1+x^2} + \pi - 2 \arctan(x) = \pi, \text{ alors } f_{\frac{1}{2}}(x) \xrightarrow[x \to 0^+]{} \pi$

- 15. On suppose que $\alpha \leqslant \frac{1}{2}$
 - (a) Soit $x \in \mathbb{R}_+$. Pour tout $n \in \mathbb{N}^*$, on a $n^{\alpha} \leqslant \sqrt{n}$, ce qui donne l'inégalité $\frac{x}{n^{\alpha}(1+nx^2)} \leqslant \frac{x}{\sqrt{n}(1+nx^2)}$, puis par sommation $f_{\frac{1}{2}}(x) \leqslant f_{\alpha}(x)$. Ceci est vrai pour tout $x \in \mathbb{R}_+$, alors $f_{\frac{1}{2}} \leqslant f_{\alpha}$

Problème de soutien Correction

Étude de la série
$$\sum_{n\geqslant 1}rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

- (b) Si f_{α} est continue en 0, alors on doit avoir $f_{\alpha}(x) \xrightarrow[x \to 0^{+}]{} f_{\alpha}(0) = 0$. Mais l'inégalité précédente donne $\pi = \lim_{x \to 0^+} f_{\frac{1}{2}}(x) \leqslant \lim_{x \to 0^+} f_{\alpha}(x). \text{ Absurde}$ — Pour tout $n \in \mathbb{N}^*$, l'application u_n est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_{+}^{*}, \quad u'_{n}(x) = \frac{1 - nx^{2}}{n^{\alpha} (1 + nx^{2})^{2}}$$

- La série $\sum_{n\geq 1} u_n$ converge simplement sur \mathbb{R}_+^*
- Soit $[a,b] \subset \mathbb{R}_+^*$ et soit $x \in [a,b]$, on a

$$\left| \frac{nx^2 - 1}{n^{\alpha} (1 + nx^2)^2} \right| \leqslant \frac{nx^2 + 1}{n^{\alpha} (1 + nx^2)^2} \leqslant \frac{nb^2 + 1}{n^{\alpha} (1 + na^2)^2} \leqslant \frac{nb^2 + 1}{a^4 n^{\alpha + 2}}$$

Comme $\frac{nb^2+1}{a^4n^{\alpha+2}} \sim \frac{b^2}{a^4} \frac{1}{n^{\alpha+1}}$ et la série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha+1}}$ converge $(\alpha>0)$, donc $\sum_{n\geqslant 1} u_n'$ converge

normalement sur le segment [a,b], donc elle l'est uniformément

D'après le théorème de la dérivation terme à terme f_{α} est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_{+}^{*}, \quad f_{\alpha}'(x) = \sum_{n=1}^{+\infty} \frac{1 - nx^{2}}{n^{\alpha} (1 + nx^{2})^{2}}$$

17. Pour tout $x \in [1, +\infty[$ et $n \in \mathbb{N}^*$, la fraction $\frac{1 - nx^2}{n^{\alpha}(1 + nx^2)}$, dont le dénominateur positif et le numérateur négatif, est positive, donc $f'_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{1 - nx^2}{n^{\alpha}(1 + nx^2)} \leq 0$, puis f_{α} est décroissante sur $[1, +\infty[$

Partie IV: Une autre expression sommatoire de f_{α}

18. — Soit
$$n \geqslant 2$$
, la série $\sum_{k\geqslant 1} \frac{1}{n^{k+\alpha}x^{2k-1}} = \sum_{k\geqslant 1} \frac{x}{n^{\alpha}(nx^2)^k}$ converge car la série géométrique $\sum_{k\geqslant 1} \frac{1}{(nx^2)^k}$, de raison $0 < \frac{1}{nx^2} \leqslant \frac{1}{2}$, converge

$$-T_n = \sum_{k=1}^{+\infty} \frac{x}{n^{\alpha} (nx^2)^k} = \frac{x}{n^{\alpha} (nx^2 - 1)} \sim \frac{1}{n^{\alpha + 1}x} \text{ et la série } \sum_{n \ge 2} T_n \text{ converge}$$

Donc la suite double $\left(\frac{(-1)^{k-1}}{n^{k+\alpha}x^{2k-1}}\right)_{k>1}$ est sommable.

19. D'après le théorème de Fubini, on a
$$\sum_{k=1}^{+\infty} \sum_{n=2}^{+\infty} \frac{(-1)^{k-1}}{n^{k+\alpha} x^{2k-1}} = \sum_{n=2}^{+\infty} \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{n^{k+\alpha} x^{2k-1}}.$$
 Or

$$\sum_{k=1}^{+\infty} \sum_{n=2}^{+\infty} \frac{(-1)^{k-1}}{n^{k+\alpha} x^{2k-1}} = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{x^{2k-1}} \sum_{n=2}^{+\infty} \frac{1}{n^{k+\alpha}} = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{x^{2k-1}} \left(\zeta(\alpha+k) - 1 \right)$$

D'autre part

$$\sum_{n=2}^{+\infty}\sum_{k=1}^{+\infty}\frac{(-1)^{k-1}}{n^{k+\alpha}x^{2k-1}} = \sum_{n=2}^{+\infty}\frac{-x}{n^{\alpha}}\sum_{k=1}^{+\infty}\left(\frac{-1}{nx^2}\right)^k = \sum_{n=2}^{+\infty}\frac{-x}{n^{\alpha}}\frac{\frac{-1}{nx^2}}{1+\frac{1}{nx^2}} = \sum_{n=2}^{+\infty}\frac{x}{n^{\alpha}\left(nx^2+1\right)} = f_{\alpha}(x) - \frac{x}{x^2+1}$$

D'où la formule demandée

$$\forall x \in [1, +\infty[, f_{\alpha}(x)] = \frac{x}{x^2 + 1} + \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{\zeta(\alpha + k) - 1}{x^{2k-1}}$$

Étude de la série
$$\sum_{n\geqslant 1} rac{x}{n^{lpha}\left(1+nx^{2}
ight)}$$

- 20. On pose pour $k \in \mathbb{N}^*$ et $x \geqslant 1$, $v_k(x) = (-1)^{k-1} \frac{\zeta(\alpha+k)-1}{x^{2k-1}}$
 - (a) v_k est de classe \mathcal{C}^{∞} sur $[1, +\infty[$, car il s'agit de la restriction d'une fraction rationnelle de pôle 0 sur $[1, +\infty[$. Pour $p \in \mathbb{N}^*$ et $x \in [1, +\infty[$, on a

$$v_k^{(p)}(x) = (-1)^{k+p-1} \frac{(2k-2+p)!}{(2k-2)!} \frac{\zeta(\alpha+k)-1}{x^{2k+p-1}}$$

- (b) Pour tout $k \in \mathbb{N}^*$, l'application v_k est de classe \mathcal{C}^{∞} sur $]1, +\infty[$
 - La série $\sum_{k\geq 0} v_k$ converge simplement sur $]1,+\infty[$
 - Soit $[a, b] \subset]1, +\infty[$ et soit $x \in [a, b]$, on a

$$\forall p \in \mathbb{N}^*, \quad \left| v_k^{(p)}(x) \right| = \frac{(2k-2+p)!}{(2k-2)!} \frac{\zeta(\alpha+k)-1}{x^{2k+p-1}} \leqslant \frac{(2k-2+p)!}{(2k-2)!} \frac{\zeta(\alpha+k)-1}{a^{2k+p-1}} \sim \frac{(2k)^p}{a^{2k+p-1}} \left(\zeta(\alpha+k)-1 \right)$$

La série $\sum_{k\geqslant 1}\frac{(2k)^p}{a^{2k+p-1}}$ converge, d'après le critère de D'Alembert,

Donc, d'après le théorème de dérivation terme à terme, $\sum_{k\geqslant 1}v_k$ est de classe \mathcal{C}^{∞} sur $]1,+\infty[$. Puis f_{α} est de classe \mathcal{C}^{∞} sur $]1,+\infty[$ comme somme de deux fonctions de classe \mathcal{C}^{∞} sur $]1,+\infty[$

- 21. Soit $x \in [1, +\infty[$
 - (a) Les deux suites $(\zeta(\alpha+k)-1)_{k\geqslant 1}$ et $\left(\frac{1}{x^{2k-1}}\right)_{k\geqslant 1}$ de réels positifs sont décroissantes, donc $\left(\frac{\zeta(\alpha+k)-1}{x^{2k-1}}\right)_{k\geqslant 1}$ est décroissante
 - (b) $\frac{\zeta(\alpha+k)-1}{x^{2k-1}} \xrightarrow[k \to +\infty]{} 0$, car $\zeta(\alpha+k) \xrightarrow[k \to +\infty]{} 1$ et la suite $\left(\frac{1}{x^{2k-1}}\right)_{k\geqslant 1}$ est bornée, on déduit que la série $\sum_{k\geqslant 1} (-1)^{k-1} \frac{\zeta(\alpha+k)-1}{x^{2k-1}}$ est alternée vérifiant le critère spécial des séries alternées, alors

$$\forall n \in \mathbb{N}^*, \quad \left| \sum_{k=n+1}^{+\infty} (-1)^{k-1} \frac{\zeta(\alpha+k)-1}{x^{2k-1}} \right| \leqslant \frac{1}{(\alpha+n) x^{2n+1}}$$

(c) D'après la question précédente

$$\forall n \in \mathbb{N}^*, \quad \left| f_2(2) - \left(\frac{2}{5} + \sum_{k=1}^n (-1)^{k-1} \frac{\zeta(2+k) - 1}{2^{2k-1}} \right) \right| = \left| \sum_{k=n+1}^{+\infty} (-1)^{k-1} \frac{\zeta(2+k) - 1}{2^{2k-1}} \right| \leqslant \frac{1}{(2+n) 2^{2n+1}}$$

Pour n=2, on a $\frac{1}{(2+n)\,2^{2n+1}}=\frac{1}{128}\leqslant 10^{-2}$ et alors $\frac{2}{5}+\frac{\zeta(3)-1}{2}-\frac{\zeta(4)-1}{8}=\frac{1}{40}+\frac{4\zeta(3)-\zeta(4)}{8}$ est une valeur approchée de $f_2(2)$ à 10^{-2} près