《陇平化与奴柱元"

考试说	明: <u>考</u> 证	式闭卷:	可使用	文曲星外	的计算	路。	《北京工	业大学	学生违纪处 诚信考试,	分条
承诺:	本人已	学习了	《北京工	业大学	多物规则	明从!	占者教师	管理,	诚信考试,	做到
TEI II			13 17 17 17	164 / 1	~ ~~~					
不违纪	、不作物	4、不替	考。若	有违反,	心技义	711/26	• / - / ·			

承诺人: ______ 学号: _____ 班号: _____ 得分: _____

注:本试卷共<u>6</u>大题,共<u>7</u>页,满分 100 分. 考试时必须使用卷后附加的统一答题纸或草稿纸。

页面成绩汇总表 (阅卷教师填写)

	 1 728	- (9)	- (2)	- (A)	二 (5)	总分
题号	 二(1)	(2)	(3)	- (1)	- (0)	76.77
得分						
教师						

- 一、填空题 (15 个空, 每空 2 分, 共 30 分)
- 1. 设 P(A) = 0.5, $P(A \cup B) = 0.7$. 则当 $A \subseteq B$ 互斥时, $P(B) = _____; A \subseteq B$ 相互独立时, $P(B) = _____.$
- 2. 在相同条件下做 4 次独立试验, 假设每次试验时事件 A 发生的概率都是 p, 且 4 次试验中 A 恰发生 1 次与发生 2 次的概率相等. 用 X 表示 4 次试验中 A 发生的次数时, $E(X) = ______, Var(X) = ______.$
- 3. 设随机变量 X 服从参数 λ 的泊松分布, 且 $P\{X \ge 1\} = 1 e^{-2}$, 则 $\lambda = _____$, $E(X^2) = _____$.
- 4. 设随机变量 X 可能取的值为 -2, 0 和 1, 且 $P\{X=-2\}=0.4$, $P\{X=0\}=0.3$. 则 E(X)=_____, Var(X)=____.
- 5. 若随机变量 X_1, X_2 相互独立,且 $X_1 \sim N(3, 3^2)$, $X_2 \sim N(1, 2^2)$, $X = X_1 2X_2$,则 $X \sim _____$, $P\{-4 < X < 6\} = _____$.
- 6. 设 X_1, X_2, \dots, X_n 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本, μ 与 σ^2 为未知常数, \overline{X} 与 S^2 分别为样本均值与方差, 即 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$.

则 $\overline{X} \sim \underline{\qquad}$, $\frac{(n-1)S^2}{\sigma^2} \sim \underline{\qquad}$, $\frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim \underline{\qquad}$, μ 的置信度 为 $1 - \alpha$ 的置信区间

注:标准正态分布分布函数值 $\Phi(1)=0.8413, \Phi(1.96)=0.975, \Phi(1.645)=0.95.$

二、解答题 (每题 14 分, 共 70 分)

注: 由此以下各题目要求写过程, 否则没有分数!

- 1. 有型号相同的产品三箱, 第一箱装 12 件, 其中 2 件为次品; 第二箱装 8 件, 其中 1 件为次品; 第三箱装 20 件, 其中 4 件为次品.
 - (1). 从三箱抽取 1箱, 然后从中随机抽取 1件产品, 求抽到次品的概率;
 - (2). 如发现抽到的产品为次品, 求其抽自第 1 箱的概率.

- 2. 设随机变量 X_1, X_2 相互独立, 且二者均服从 [0,1] 区间上均匀分布, 令 X_1 $X_1 + X_2$, 求
 - (1). X 的概率密度函数 $f_X(x)$;

 - (2). E(X) 和 Var(X); (3). $Y = X^2$ 的概率密度函数 $f_Y(y)$.

3. 设二维连续型随机变量 (X,Y) 有联合概率密度函数

$$f(x,y) = \begin{cases} ay(1-x), & 0 \le y \le x \le 1 \\ 0, &$$
其他.

- (1). 确定常数 a;
- (2). 求边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$;
- (3). 回答 X 与 Y 是否独立? 为什么?
- (4). 计算 E(Y).

4. 设 X_1, X_2, \dots, X_n 是总体 $X \sim N(0, \sigma^2)$ 的随机样本, $\sigma^2 > 0$ 是未知参数. 求 (1). σ^2 的矩估计 $\widehat{\sigma^2}$;

(2). σ^2 的极大似然估计 $\widetilde{\sigma^2}$.

(3). 回答 $\widehat{\sigma}^2$ 是否为 σ^2 的无偏估计, 为什么?

5. 假设某品牌日光灯的使用寿命 (单位:小时) 服从正态分布 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 未知. 现从该品牌的日光灯中随机抽取 9 只进行试验, 测得它们寿命的平均值为 100.4, 样本方差为 0.49。 问在显著性水平 $\alpha=0.05$ 下, 从样本看:

(1). 能否认为 $\mu = 100$? (2). 能否认为 $\sigma^2 < 0.5$?

t 分布与 x² 分布表

でカルラ X カルX							
$t_8(0.025) = 2.3060$	$t_8(0.05) = 1.8595$	$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$				
$\chi_8^2(0.025) = 17.535$	$\chi_8^2(0.05) = 15.507$	$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$				
$\chi_8^2(0.975) = 2.180$	$\chi_8^2(0.95) = 2.733$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$				