1 Resum de teoria

Si f és un endomorfisme d'un \mathbb{K} -espai vectorial E de dimensió n (\mathbb{K} pot ser, per exemple, \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p amb p primer) direm que f diagonalitza si existeix una base d'E tal que la matriu associada a f en aquesta base és diagonal.

Valors i vectors propis

- valor propi (vap.) d'f: $\lambda \in \mathbb{K}$ tal que $f(v) = \lambda v$, per a algun vector $v \neq 0_E$
- vector propi (vep.) d'f: $v \in E$ tal que $v \neq 0_E$ i $f(v) = \lambda v$, per a algun $\lambda \in \mathbb{K}$ (direm que v és un vector propi de valor propi λ)
- $\triangleright f$ diagonalitza si i només si existeix una base de vectors propis
- $E_{\lambda} = \{v : f(v) = \lambda v\}$ (vectors propis de valor propi λ , més el vector 0_E)

Si A és la matriu associada a f en una base qualsevol B, aleshores:

- . E_{λ} és un subespai vectorial de dimensió $n \operatorname{rang}(A \lambda I_n)$
- E_{λ} está format per les solucions del sistema d'equacions lineal homogeni $(A \lambda I_n)X = 0$.
- $\lambda \in K$ és valor propi d' $f \Leftrightarrow E_{\lambda} \neq \{0_E\} \Leftrightarrow \operatorname{rang}(A \lambda Id) < n \Leftrightarrow \det(A \lambda I_n) = 0$
- · Si $\lambda_1, \lambda_2, \ldots, \lambda_k$ són valors propis diferents d'f i v_1, v_2, \ldots, v_k són vectors propis de valor propi $\lambda_1, \lambda_2, \ldots, \lambda_k$ respectivament, aleshores v_1, v_2, \ldots, v_k són linealment independents

Polinomi característic

- Polinomi característic d'f: $p_f(x) = \det(A x I_n)$, on A és la matriu associada a f en una base qualsevol d'E. (Es pot demostrar que el polinomi característic és invariant per canvis de base.)
- $p_f(x)$ és un polinomi de grau n tal que el terme independent és det A; el coeficient de x^n és $(-1)^n$; i el coeficient de x^{n-1} és $(-1)^{n-1}$ tr A, on tr A és la suma dels elements de la diagonal principal d'A.
- $\lambda \in \mathbb{K}$ és valor propi d'f si, i només si, λ és arrel de $p_f(x)$
- . Si $\lambda \in \mathbb{K}$ és arrel de multiplicitat m del polinomi característic, aleshores $1 \leq \dim E_{\lambda} \leq m$.
- · Si $\lambda \in \mathbb{K}$ és arrel de multiplicitat 1 (arrel simple) del polinomi característic, aleshores dim $E_{\lambda} = 1$.
- Si $\lambda \in \mathbb{K}$ és arrel de multiplicitat m del polinomi característic, direm que m és la multiplicitat algebraica de λ i dim E_{λ} és la multiplicitat geomètrica de λ .

Teorema. f diagonalitza si, i només si, es compleixen alhora les dues condicions següents:

- (i) $p_f(x)$ es pot descompondre en factors de grau 1 en $\mathbb{K}[x]$;
- (ii) per a tota arrel λ de $p_f(x)$, la dimensió d' E_{λ} és igual a la multiplicitat de λ en $p_f(x)$.

La condició ii) és equivalent a dir que per a tota arrel λ de $p_f(x)$ la multiplicitat algebraica i geomètrica coincideixen.

Corol·lari. Si $p_f(x)$ té n arrels diferents en \mathbb{K} , aleshores f diagonalitza.

 \triangleright Si f diagonalitza, una base de vectors propis d'f s'obté com a unió de bases dels subespais E_{λ} tals que λ és valor propi, i la matriu associada a f en aquesta base és una matriu diagonal D on cada valor propi apareix a la diagonal tantes vegades com la seva multiplicitat en el polinomi característic.

2 Passos a seguir per a diagonalitzar un endomorfisme

Si f és un endomorfisme d'un \mathbb{K} -espai vectorial E de dimensió n i A la matriu associada a f en la base B,

- (i) Determinar si l'endomorfisme diagonalitza.
 - (1) Calcular el polinomi característic d'f i descompondre'l en factors de grau 1:

$$p_f(x) = \det(A - x I_n) = \dots = (-1)^n (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \dots (x - \lambda_k)^{m_k},$$

on $m_1 + m_2 + \cdots + m_k = n$ i $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{K}$ són arrels diferents de multiplicitat m_1, m_2, \dots, m_k respectivament $(\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{K}$ són els valors propis d'f).

Si $p_f(x)$ no es pot descompondre en factors de grau 1, f no diagonalitza. Altrament, continuem.

(2) Comprovar si $dim E_{\lambda_i} = m_i$, per a tots els valors propis λ_i tals que $m_i > 1$: equival a comprovar si $n - \text{rang}(A - \lambda_i I_n) = m_i$.

Si en algun cas no es compleix, f no diagonalitza. Altrament, f diagonalitza

- (ii) Trobar una base en que diagonalitzi, si és possible, i la matriu associada diagonal
 - (3) Calcular una base B_i d' $E_{\lambda_i} = \{v : f(v) = \lambda_i v\}$ per a tot valor propi λ_i . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A \lambda_i I_n$ i calculem una base del subespai vectorial solució. La base tindrà exactament m_i vectors, $B_i = \{v_{i1}, v_{i2}, \dots, v_{im_i}\}$.
 - (4) Una base de vectors propis d'f és:

$$B' = B_1 \cup B_2 \cup \cdots \cup B_k = \{\underbrace{v_{11}, v_{12}, \dots, v_{1\,m_1}}_{\text{veps. de vap. } \lambda_1}, \underbrace{v_{21}, v_{22}, \dots, v_{2\,m_2}}_{\text{veps. de vap. } \lambda_2}, \dots, \underbrace{v_{k1}, v_{k2}, \dots, v_{k\,m_k}}_{\text{veps. de vap. } \lambda_k}\}$$

(5) La matriu associada en la base B' és la matriu diagonal:

$$D = \begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_2 & & & \\ & & & \ddots & & \\ & & & & \lambda_2 & & \\ & & & & \ddots & \\ & & & & \lambda_k & \\ & & & & & \lambda_k \end{pmatrix}$$

on cada λ_i apareix exactament m_i vegades i els elements que no són de la diagonal principal són nuls.

A més, es satisfà la igualtat $D = P^{-1}AP$, on P és la matriu de canvi de base de B' a B, és a dir, les columnes de P són les components dels vectors de B' en la base B

2

3 Exemples

Exercici 1

Comproveu en cada cas si diagonalitza l'endomorfisme $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que la matriu associada en la base canònica és

(a)
$$\begin{pmatrix} 0 & 2 & -2 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & -1 \\ 0 & 0 & 4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 5 & 0 & 0 \\ -1 & -1 & 0 \\ 1 & 6 & 5 \end{pmatrix}$

Solució.

(a) (1) Polinomi característic:
$$p_f(x) = \det \begin{pmatrix} 0 - x & 2 & -2 \\ -1 & 1 - x & 1 \\ 1 & 1 & 1 - x \end{pmatrix} = \dots = -(x - 2)(x^2 + 4).$$

No diagonalitza perquè el polinomi característic no té totes les arrels reals, és a dir, no es pot descompondre en factors de grau 1 en $\mathbb{R}[x]$.

(b) (1) Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 1-x & 3 & 2 \\ 1 & -1-x & -1 \\ 0 & 0 & 4-x \end{pmatrix} = \dots = -(x-4)(x-2)(x+2).$$

Diagonalitza perquè el polinomi característic té 3 arrels diferents i dim $\mathbb{R}^3 = 3$.

(c) (1) Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 1 - x & 1 & 1 \\ -1 & 1 - x & -1 \\ 1 & 0 & 2 - x \end{pmatrix} = \dots = -(x - 1)^2 (x - 2)$$

valors propis	multiplicitat
1	2
2	1

(2) El valor propi 1 té multiplicitat 2 > 1. Comprovem si dim $E_1 = 2$:

$$\dim E_1 = 3 - \operatorname{rang} \begin{pmatrix} 1 - 1 & 1 & 1 \\ -1 & 1 - 1 & -1 \\ 1 & 0 & 2 - 1 \end{pmatrix} = 3 - \operatorname{rang} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} = 3 - 2 = 1 \neq 2.$$

Per tant, f no diagonalitza.

(d) (1) Polinomi característic:
$$p_f(x) = \det \begin{pmatrix} 5-x & 0 & 0 \\ -1 & -1-x & 0 \\ 1 & 6 & 5-x \end{pmatrix} = (5-x)^2 (-1-x)$$

valors propis	multiplicitat
5	2
-1	1

(2) El valor propi 5 té multiplicitat 2 > 1. Comprovem si dim $E_5 = 2$:

$$\dim E_5 = 3 - \operatorname{rang} \begin{pmatrix} 5 - 5 & 0 & 0 \\ -1 & -1 - 5 & 0 \\ 1 & 6 & 5 - 5 \end{pmatrix} = 3 - \operatorname{rang} \begin{pmatrix} 0 & 0 & 0 \\ -1 & -6 & 0 \\ 1 & 6 & 0 \end{pmatrix} = 3 - 1 = 2.$$

3

Per tant, f diagonalitza.

Comproveu en cada cas si diagonalitza l'endomorfisme $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ tal que la matriu associada en la base canònica és

(a)
$$\begin{pmatrix} -2 & 2 & 2 & 1 \\ 0 & 4 & 0 & 0 \\ 0 & 6 & 4 & 3 \\ 0 & 1 & 0 & -2 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ -2 & -1 & 3 & 2 \end{pmatrix}$$
 (c)
$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & -1 & 3 & 1 \\ -1 & 0 & 2 & 0 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$

Soluci'o.

(a) (1) Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} -2 - x & 2 & 2 & 1\\ 0 & 4 - x & 0 & 0\\ 0 & 6 & 4 - x & 3\\ 0 & 1 & 0 & -2 - x \end{pmatrix} = (-2 - x)^2 (4 - x)^2$$

valors propis	multiplicitat
-2	2
4	2

(2) Els dos valors propis, -2 i 4, tenen multiplicitat 2>1. Comprovem si $\dim E_{-2}=2$:

$$\dim E_{-2} = 4 - \operatorname{rang} \begin{pmatrix} -2 - (-2) & 2 & 2 & 1 \\ 0 & 4 - (-2) & 0 & 0 \\ 0 & 6 & 4 - (-2) & 3 \\ 0 & 1 & 0 & -2 - (-2) \end{pmatrix}$$
$$= 4 - \operatorname{rang} \begin{pmatrix} 0 & 2 & 2 & 1 \\ 0 & 6 & 0 & 0 \\ 0 & 6 & 6 & 3 \\ 0 & 1 & 0 & 0 \end{pmatrix} = 4 - 2 = 2$$

Comprovem ara si $\dim E_4 = 2$:

$$\dim E_4 = 4 - \operatorname{rang} \begin{pmatrix} -2 - 4 & 2 & 2 & 1 \\ 0 & 4 - 4 & 0 & 0 \\ 0 & 6 & 4 - 4 & 3 \\ 0 & 1 & 0 & -2 - 4 \end{pmatrix}$$
$$= 4 - \operatorname{rang} \begin{pmatrix} -6 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 3 \\ 0 & 1 & 0 & -6 \end{pmatrix} = 4 - 3 = 1 \neq 2.$$

4

Per tant, f no diagonalitza.

(b) (1) Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} -2 - x & 0 & 0 & 0 \\ 0 & -2 - x & 0 & 0 \\ 2 & 0 & -1 - x & 0 \\ -2 & -1 & 3 & 2 - x \end{pmatrix} = (-2 - x)^2 (-1 - x) (2 - x)$$

valors propis	multiplicitat
-2	2
-1	1
2	1

(2) El valor propi -2 té multiplicitat 2, diferent de 1. Comprovem si $\dim E_{-2} = 2$:

$$\dim E_{-2} = 4 - \operatorname{rang} \begin{pmatrix} -2 - (-2) & 0 & 0 & 0 \\ 0 & -2 - (-2) & 0 & 0 \\ 2 & 0 & -1 - (-2) & 0 \\ -2 & -1 & 3 & 2 - (-2) \end{pmatrix}$$
$$= 4 - \operatorname{rang} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & -1 & 3 & 4 \end{pmatrix} = 4 - 2 = 2.$$

Per tant, f diagonalitza.

(c) (1) Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 2-x & 0 & 0 & 0\\ 1 & -1-x & 3 & 1\\ -1 & 0 & 2-x & 0\\ 1 & 0 & 1 & 2-x \end{pmatrix} = (2-x)^3 (-1-x)$$

valors propis	multiplicitat
2	3
-1	1

(2) El valor propi 2 té multiplicitat 3 > 1.

Comprovem si $\dim E_2 = 3$:

$$\dim E_2 = 4 - \operatorname{rang} \begin{pmatrix} 2-2 & 0 & 0 & 0 \\ 1 & -1-2 & 3 & 1 \\ -1 & 0 & 2-2 & 0 \\ 1 & 0 & 1 & 2-2 \end{pmatrix} = 4 - \operatorname{rang} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & -3 & 3 & 1 \\ -1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} =$$

5

$$=4-3=1\neq 3.$$

Per tant, f no diagonalitza.

Demostreu que l'endomorfisme $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que la matriu associada en la base canònica és $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ diagonalitza. Trobeu una base en que f diagonalitzi, i doneu la matriu associada en aquesta base i la relació entre la matriu associada en base canònica i en la base trobada.

Solució.

(1) Polinomi característic:

$$p_f(x) = \det\begin{pmatrix} 1-x & 2\\ 3 & 2-x \end{pmatrix} = (1-x)(2-x) - 6 = x^2 - 3x - 4 = (x-4)(x+1).$$

Diagonalitza perquè el polinomi característic té 2 arrels diferents i dim $\mathbb{R}^2 = 2$.

valors propis	multiplicitat
4	1
-1	1

- (2) No hi ha valors propis de multiplicitat > 1.
- (3) (i) Base d' E_4 . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A-4I_2$:

$$\begin{pmatrix} 1-4 & 2 \\ 3 & 2-4 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \equiv \begin{pmatrix} 3 & -2 \end{pmatrix}$$

Solució:
$$\{(x,y): x = \frac{2}{3}y\} = \{(\frac{2}{3}y,y): y \in \mathbb{R}\} = \{y(\frac{2}{3},1): y \in \mathbb{R}\}.$$

Base:
$$\{(\frac{2}{3}, 1)\}$$

(ii) Base d' E_{-1} . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A - (-1)I_2$:

$$\begin{pmatrix} 1-(-1) & 2 \\ 3 & 2-(-1) \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \equiv \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Solució:
$$\{(x,y): x=-y\} = \{(-y,y): y \in \mathbb{R}\} = \{y(-1,1): y \in \mathbb{R}\}.$$

Base:
$$\{(-1,1)\}$$

- (4) Base d'E en que f diagonalitza: $B' = \{(\frac{2}{3}, 1), (-1, 1)\}$
- (5) Matriu associada en la base B': $D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$

Relació entre D i A: $D=P^{-1}AP$, on P és la matriu de canvi de base que té per columnes els vectors de B' en la base canònica, és a dir, $P=\begin{pmatrix} \frac{2}{3} & -1 \\ 1 & 1 \end{pmatrix}$.

6

Demostreu que l'endomorfisme $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que la matriu associada en la base canònica és $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$ diagonalitza. Trobeu una base en que f diagonalitzi, i doneu la matriu assciada en aquesta base i la relació entre la matriu associada en base canònica i en la base trobada.

Solució.

(1) Polinomi característic:

Polinomi característic:

$$p_f(x) = \det \begin{pmatrix} 3-x & 1 & 1 \\ 2 & 4-x & 2 \\ 1 & 1 & 3-x \end{pmatrix} = (3-x)^2(4-x) + 2 + 2 - (4-x) - 3(3-x) - 2(3-x) = \dots = -x^3 + 10x^2 - 28x + 24 = -(x-2)^2(x-6)$$

valors propis	multiplicitat
2	2
6	1

(2) El valor propi 2 té multiplicitat 2 > 1.

Comprovem si $\dim E_2 = 2$:

$$\dim E_2 = 3 - \operatorname{rang} \begin{pmatrix} 3 - 2 & 1 & 1 \\ 2 & 4 - 2 & 2 \\ 1 & 1 & 3 - 2 \end{pmatrix} = 3 - \operatorname{rang} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} = 3 - 1 = 2.$$

Per tant, f diagonalitza.

(i) Base d' E_2 . Resolem el sistema d'equacions lineals homogeni que té per matriu de coefi-(3)cients $A-2I_3$:

$$\begin{pmatrix} 3-2 & 1 & 1 \\ 2 & 4-2 & 2 \\ 1 & 1 & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

$$\{(x,y,z): x+y+z=0\}=\{(x,y,z): x=-y-z\}=\{(-y-z,y,z): y,z\in\mathbb{R}\}=\{y(-1,1,0)+z(-1,0,1): y,z\in\mathbb{R}\}$$

Base: $\{(-1,1,0),(-1,0,1)\}$

(ii) Base d'E₆. Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A - 6I_3$:

$$\begin{pmatrix} 3-6 & 1 & 1 \\ 2 & 4-6 & 2 \\ 1 & 1 & 3-6 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 1 \\ 2 & -2 & 2 \\ 1 & 1 & -3 \end{pmatrix} \equiv \cdots \equiv \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$

Solució: $\{(x, y, z) : x = z, y = 2z\} = \{(z, 2z, z) : z \in \mathbb{R}\} = \{z(1, 2, 1) : z \in \mathbb{R}\}$

7

Base: $\{(1,2,1)\}$

(4) Base d'E en que f diagonalitza: $B' = \{(-1, 1, 0), (-1, 0, 1), (1, 2, 1)\}$

- (5) Matriu associada en la base B': $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$
 - Relació entre D i A: $D=P^{-1}AP$, on P és la matriu de canvi de base que té per columnes els vectors de B' en la base canònica, és a dir, $P=\begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

Demostreu que l'endomorfisme $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que la matriu associada en la base canònica és $A=\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$ diagonalitza. Trobeu una base en que f diagonalitzi, i doneu la matriu associada en aquesta base i la relació entre la matriu associada en base canònica i en la base trobada. Solució.

(1) Polinomi característic:
$$p_f(x) = \det \begin{pmatrix} 2-x & 0 & 4 \\ 3 & -4-x & 12 \\ 1 & -2 & 5-x \end{pmatrix} = (2-x)(-4-x)(5-x) - 24 - 4(-4-x) - 24(2-x) = \cdots = -x^3 + 3x^2 - 2x = -x(x-1)(x-2)$$

valors propis	multiplicitat
0	1
1	1
2	1

Diagonalitza perquè té 3 valors propis diferents i $\dim \mathbb{R}^3 = 3$.

- (2) No hi ha valors propis amb multiplicitat > 1.
- (3) (i) Base d' E_0 . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A-0\cdot I_3=A$:

$$\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} = \equiv \cdots \equiv \begin{pmatrix} 1 & 0 & 2 \\ 0 & -2 & 3 \end{pmatrix}$$

Solució: $\{(x,y,z): x+2z=0\,,\, -2y+3z=0\}=\{(x,y,z): x=-2z\,,\, y=\frac{3}{2}z\}=\{(-2z,y\frac{3}{2}z,z): z\in\mathbb{R}\}=\{z(-2,\frac{3}{2},1): y,z\in\mathbb{R}\}$

Base: $\{(-4,3,2)\}$, ja que el vector $(-2,\frac{3}{2},1)$ genera el mateix subespai que $2(-2,\frac{3}{2},1)=(-4,3,2)$

(ii) Base d' E_1 . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A-1\cdot I_3$:

$$\begin{pmatrix} 2-1 & 0 & 4 \\ 3 & -4-1 & 12 \\ 1 & -2 & 5-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 3 & -5 & 12 \\ 1 & -2 & 4 \end{pmatrix} \equiv \cdots \equiv \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \end{pmatrix}$$

Solució: $\{(x,y,z):x+4z=0\,,\,y=0\}=\{(x,y,z):x=-4z\,,\,z=0\}=\{(-4z,0,z):z\in\mathbb{R}\}=\{z(-4,0,1):y,z\in\mathbb{R}\}$

Base: $\{(-4,0,1)\}$

(iii) Base d' E_2 . Resolem el sistema d'equacions lineals homogeni que té per matriu de coeficients $A-2I_3$:

$$\begin{pmatrix} 2-2 & 0 & 4 \\ 3 & -4-2 & 12 \\ 1 & -2 & 5-2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4 \\ 3 & -6 & 12 \\ 1 & -2 & 3 \end{pmatrix} \equiv \cdots \equiv \begin{pmatrix} 0 & 0 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

Solució: $\{(x, y, z) : z = 0, x = 2y\} = \{(2y, y, 0) : y \in \mathbb{R}\} = \{y(2, 1, 0) : z \in \mathbb{R}\}$

Base: $\{(2,1,0)\}$

- (4) Base d'Een que f diagonalitza: $B'=\{(-4,3,2),(-4,0,1),(2,1,0)\}$
- (5) Matriu associada en la base B': $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

Relació entre D i A: $D=P^{-1}AP$, on P és la matriu de canvi de base que té per columnes els vectors de B' en la base canònica, és a dir, $P=\begin{pmatrix} -4 & -4 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$.

Comproveu si diagonalitza l'endomorfisme $f:\mathbb{C}^3\longrightarrow\mathbb{C}^3$ tal que la matriu associada en la base canònica és $A=\begin{pmatrix}0&2&-2\\-1&1&1\\1&1&1\end{pmatrix}$.

Solució.

Polinomi característic:
$$p_f(x) = \det \begin{pmatrix} 0 - x & 2 & -2 \\ -1 & 1 - x & 1 \\ 1 & 1 & 1 - x \end{pmatrix} = \dots = -(x - 2)(x - 2i)(x + 2i).$$

Diagonalitza perquè el polinomi característic té 3 arrels diferents i dim $\mathbb{C}^3=3.$