

C. Propositional Equivalence

1.1 - 1.2

@2020 A.D. Gunawardena

- Tautologies and contradictions
- Logical equivalences
- De Morgan's Law
- Satisfiability
- Direct proofs

Tautologies and contradictions

Tautology. A compound proposition that is always true despite the values of variables.

Contradiction. A compound proposition that is always false.

contingency. A compound proposition that neither a tautology or contradiction.

This Photo by Unknown Author is licensed under CC BY-SANC

Precedence rules of logical operators

Operator precedence is an ordering of logical operators designed to allow dropping of the parenthesis in logical expressions.

un-parenthesized statements. associate the expression with the one with higher precedence.

$$\neg p \land q \qquad ((\neg p) \land q)
p \land \neg q \qquad (p \land (\neg q))
p \land q \lor r \qquad ((p \land q) \lor r)
p \lor q \land r \qquad (p \lor (q \land r))
p \Rightarrow q \Rightarrow r \qquad (p \Rightarrow (q \Rightarrow r))
p \Rightarrow q \Leftrightarrow r \qquad (p \Rightarrow (q \Leftrightarrow r))$$

DO NOT share

Workshop

Identify each of the following as tautology, contradiction or contingency

- 1. $p \land q \land \neg p$
- 2. (p ∧ q) v ¬ p
- 3. p **→** ¬ p
- 4. p v q **→** q
- 5. (p**→**q) v (q **→** p)

Classwork

.

- Tautologies and contradictions
- Logical equivalences
- De Morgan's Law
- Satisfiability
- Direct proofs

Logical Equivalence

Two compound propositions p and q are logically equivalent if p $\leftarrow \rightarrow$ q is a tautology.

Example: $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent (to be proved)

Notation. If p and q are logically equivalent, then we say $p \equiv q$

workshop

Example. Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent

Example. Find a logically equivalent implication to p $v \neg q$

workshop

Show that $p \lor \neg p \Rightarrow q$ and q are logically equivalent

Useful Logical Equivalences

TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee T \equiv T$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \land \neg p \equiv \mathbf{F}$	

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$\begin{aligned} p &\leftrightarrow q \equiv (p \to q) \land (q \to p) \\ p &\leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ p &\leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q) \\ \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q \end{aligned}$$

- Tautologies and contradictions
- Logical equivalences
- De Morgan's Law
- Satisfiability
- Direct proofs

De Morgan's Law

TABLE 2 De Morgan's Laws.

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

- Tautologies and contradictions
- Logical equivalences
- De Morgan's Law
- Satisfiability
- Direct proofs

Satisfiability

A compound proposition is **satisfiable** if and only if **there exists at least one assignment** to the propositional variables that makes the entire proposition true.

Example. $p v \neg p$ is satisfiable

Example. $(p \rightarrow q) v (q \rightarrow p)$ is satisfiable

Example. $p \rightarrow \neg p$

- Tautologies and contradictions
- Logical equivalences
- De Morgan's Law
- Satisfiability
- Direct proofs

Direct Proofs

A method of proof where result is obtained by applying known equivalences

Example 1.

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Example 2.

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

workshop

Use De Morgan's laws to find the negation of each of the following statements.

- a) Kwame will take a job in industry or go to graduate school.
- b) Yoshiko knows Java and calculus.
- c) James is young and strong.
- d) Rita will move to Oregon or Washington.

and the second of the second

Problem #2

Find a compound proposition involving the propositional variables p, q, and r that is true when p and q are true and r is false, but is false otherwise. [Hint: Use a conjunction of each propositional variable or its negation.]

Problem #1

Logic gates

Logic gates. Is a big part of computer hardware design

DO NOT share 19

- Tautologies and contradictions
- Logical equivalences
- De Morgan's Law
- Satisfiability
- Direct proofs

C. Propositional Equivalence

1.1 - 1.2

@2020 A.D. Gunawardena

DO NOT share