PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-010237

(43) Date of publication of application: 14.01.1992

(51)Int.CI.

G11B 7/125 G11B 7/00

(21)Application number: 02-108755

(71)Applicant: SONY CORP

(22)Date of filing:

26.04.1990

(72)Inventor: IIMURA SHINICHIRO

(54) CONTROL METHOD FOR RECORDING LASER BEAM

(57)Abstract:

PURPOSE: To form an optimum recording pit by detecting strength corresponding to the pit formation of a returning beam for a recording laser beam, with which an optical recording medium is irradiated, and controlling the output of the recording laser beam based on the ratio of the strength.

CONSTITUTION: The returning beam from an optical recording medium 1 in the recording laser beam is inputted to sample/hold circuits 31 and 32 while separating it until the start of the pit formation and the time range really forming the pit, and the strength is calculated. The detection outputs of the circuits 31 and 32 are sent to a division circuit 33 to calculate the ratio of strength and the modulation factor is calculated. Next, the component of error subtracting the modulation factor from a reference value by a subtracter 35 is sent to a laser driving circuit 43 as the control signal of the recording laser beam. Thus, even when optimum recording power is changed by the condition of the

recoding medium, the dimensional shape of the pit is controlled to be optimum and optimum recording is enabled.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

① 特許出願公開

母 公 開 特 許 公 報(A) 平4-10237

®Int.Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)1月14日

G 11 B 7/125 7/00 C M 8947-5D 9195-5D

審査請求 未請求 請求項の数 1 (全7頁)

公発明の名称

記録レーザビームの制御方法

②特 頤 平2-108755

20出 願 平2(1990)4月26日

@発明者 飯村 紳一郎

東京都品川区北品川6丁目7番35号 ソニー株式会社内

の出 願 人 ソニー株式会社

東京都品川区北品川6丁目7番35号

四代 理 人 弁理士 小池 晃 外2名

明期音

1. 発明の名称

紀録レーザビームの制御方法

2. 特許請求の範囲

記録モード時に光記録媒体に情報記録用ピット を形成するための記録レーザビームを照射し、

上記記録レーザビームの上記光記録媒体による 戻りレーザビームの強度を検出し、

上記記録レーザビームにより上記光記録媒体にピットが実際に形成されるまでに要する所定時間範囲内の戻りレーザビームの強度の検出出力と、ピットが実際に形成されている間の範囲内の戻りレーザビームの強度の検出出力との比に基づいて上記記録レーザビームのパワーを制御することを特徴とする記録レーザビームの制御方法。

3. 発明の詳細な説明

A. 産業上の利用分野

本発明は、光記録媒体に情報を記録するための

記録レーザビームの創御方法に関する。

B. 発明の概要

C. 従来の技術

近年において、光学的あるいは磁気光学的な信 号記録再生方法を利用した光ディスクや光磁気デ ィスク等のディスク状記録媒体が開発され、市場に供給されつつある。これらのディスク状記録媒体には、所謂コンパクト・ディスク(CO: compact disc) 等のようなリード・オンリ・メモリ(ROK: read only memory) タイプの記録媒体や、ユーザ例で1回のデータ書き込みが可能な所謂ライト・ワンス・タイプ(追記型)の記録媒体や、光磁気ディスク等のようにデータの書き換え(所謂オーバーライト)が可能な記録媒体等が知られている。

上記ライト・ワンス・タイプやオーバーライト
が可能な光ディスクに対してデータの書き込み、ス
読み出しを行う光ディスク記録再生装置では、ス
には緑速度一定で回転駆動させながら、レーザ駆動
回路により駆動されて情報の記録再生用のレーザ
光を出力するレーザ
光の反射
光を検出するフォトディ
ィテクタ等を内蔵した光へッドに上記フォトディ
テクタによる検出出力に基づいてフォーカスサー

D. 発明が解決しようとする課題

ところで、上述したような従来のレーザピームのパワー制御においては、予め定さめられた一定のレーザ出力が得られるような問題が生ずることが行われるといったのはなったのの最適レーザ出力が、① 集体中間の特性のはらつきにより、②な体のスキュー(領を)の空間的な位による、異なってくるため、単にレーザはのをしたより、異なっては必ずしも最適な寸法形成が行えなくなる。

そこで本発明は、上述の如き従来の実情に膨み、 媒体の特性ばらつきや、スキュー、温度変化等に より記録レーザ出力の最適値が変化することに対 応し得るような記録レーザビームの制御方法を提 供するものである。 ボやトラッキングサーボをかけて、上配光ディスクの記録トラックをレーザピームで走査して情報の記録再生を行うようになっている。

また、このように記録トラックをレーザビーム で走査して情報の記録再生を行う光ディスク記録 再生装置では、記録モード時に記録トラックを走 査するレーザピームのピームパワーが小さ過ぎる と情報を確実に記録することができず、また、再 生モード時に記録トラックを定査するレーザビー ムのピームパワーが大き選ぎると記録トラックに 記録されていた情報に破壊等の重大な影響を及ぼ す更れがあるので、例えば特別昭53-4663 3号公報に開示されているもののように、情報の 記録再生用のレーザピームの強度すなわち光量を 検出して、上記レーザビームを出力するレーザダ イオードの駆動回路の帰還制御を行い、上記レー ザピームのピームパワーを一定に保持する所謂A PCサーボループを各種動作モードに応じて切り 換えて、上記ビームパワーを適切に切り換えるよ うにしている。

E、課題を解決するための手段

本発明に係る記録レーザビームの制御方法は、 上述の如き問題点を解決するために、記録モード時に光記録媒体にピットを形成して情報を記録がして情報を記録がレーザビームを照射し、上記記録はレーザビームの強度を検出し、上記記録とーザビームの強度を検出し、上記記録をできれるまでに要する所定時間範囲内における実際に形成のでしている間の範囲内の戻りレーザビームの強度のも出力との上に基づいて上記記録レーザビームのパワーを制御するようにしている。

具体的には、ピットが実際に形成されるまでの時間内での検出出力をVa、ピットが実際に形成されている間の検出出力をVaとするとき、いわゆる変調度に相当する(Va-Va)/Vaの値を一定にするような記録レーザパワー制御を行わせることが好ましい。

 $(V_A - V_B) \nearrow V_A \cdots \Phi$

で表すことができ、最適記録された場合の変調度 は、ある一定の値を示す。なお、第2図Bの仮想 線(2点額線)は、ピットが形成されなかった場 合の変調度1の曲線と示している。

このような点に着目し、上配変調度を一定の値 とするようにレーザパワー制御を行えば、媒体の

の間の完全にピットが形成されて戻り光強度が安定する時点の再生RP出力をサンプルしている。サンプルホールド国路31からの出力(光量 V x)は、割り算国路33に送られ、またサンプルホールド国路31からの出力(光量 V x)は、が算量をある。割り算回路33に送られる。割り算回路33に送られる。割り算回路33に送られる。可以度出力に減算され、要調度出力に減算され、要調度出力に減算され、要調度出力に減算され、必要では、次算され、必要を分がしPF87を介して記録レーザパワーの額を分がしPF87を介して記録レーザパワーの額を分がして取り出され、レーザ駆動回路43に送られるようになっている。

次に第3図は、記録媒体である光ディスク1の記録特性として、記録レーザビームのパワー (機動) に対する上記①式の変調度(縦動)を示しており、変調度の設置値 a となるように記録レーザパワーを削削することにより、上述したような最適の記録が行える。この第3図の例では、変調度

各種条件によらず、最適の記録が行える。

再び第1図に戻って、各サンブルホールド回路 31、32においては、タイミング発生回路42 からの各サンプリングパルスに応じて、上記各時 間領域(しょ~しょ間としょ~しょ間)での戻り レーザビーム強度を検出するために、時刻ti~ t。間の所定時刻taと、時刻t。~te間の所 定時刻t。とでサンプリングを行っている。この タイミング発生回路42は、入力された第2図A に示すような記録信号に応じて、第2図C及びD に示すようなタイミングのパルスをそれぞれ出力 する。すなわち、第2図のCは、サンブルホール ド間路31に送られて時刻し、のタイミングでサ ソアルするためのサンプリングパルスであり、上 配ピットが形成されていない時刻t;~t。の間 の戻り光強度が最大となる時点の再生RF出力を サンプルしている。また第2図のDは、サンプル ホールド回路32に送られて時期し,のタイミン グセサンプルするためのサンプリングパルスであ り、上記ピットが形成されている時刻は:~しょ

が最適値(基準値) a となるときの記録レーザパワーが b となっているが、媒体の各種条件、例えば媒体間のばらつき、媒体のスキュー(傾き)、媒体温度等によって、上記記録特性曲線自体がのでは、単に記録レーザパワーを b に安定化制御するのみでは最適の記録が行えないわけであるが、変調度が最適の基準値 a となる ピット自体の寸法形状が最適のものになり、最適の記録が行える。

ところで、現実のディスク記録装置においては、いわゆるCPUを用いたソフトウェア的な方法により、上記パワー制御を実現しており、その一例の警部構成を第4図に示す。

この第4図においては、上記第1図のサンプルホールド回路31、32からの各出力信号を、それぞれA/D変換器51、52に供給してディジタルデータに変換し、CPUシステム53により、上記割り算回路33での割り算処理や減算器34及び35での減算処理をそれぞれ行い、LPF3

F. 作 用

*

光記録媒体に照射した記録レーザピームの上記 光記録媒体による戻りレーザピームの強度を検はし し、上記記録レーザピームにより上記光記録媒体による戻りレーザピームにより上記光記録解析に にピットが実際に形成されるまでの時間観断内に における戻りレーザピームの独皮及びレーザピーなの なである。 に形成されたは出力の比にことができる。 の独皮の各様出間の特性のはならつきないの のなば媒体間の特性のはならい。 なないのにはないのよば媒体ののよば媒体のの にはないないない。 を受けなることにより、 なの値となっため、 にの記録といいる。 になるにより、 なの値となるにいる。 での記録といいる。 でいる。 でい

G. 實施例

以下、本発明の一実施例について図面を参照しながら詳細に説明する。

第1図のブロック図は、追記型の光記録媒体に て形成された光ディスク1をスピンドルモータで

御されるようになっている。

フォトディテクタ16は、例えば受光部が4分 割された構造を有し、これらの各受光部からの光 検出信号がアンプ21を介してマトリクス回路2 2に供給されることにより、これらの信号の和や 差がとられて、いわゆる再生RF信号や、フォー カスエラー信号、トラッキングエラー信号等とし て取り出される。フォーカスエラー信号及びトラ ッキングエラー信号は、位相補償国路23を介し サーボ駆動回路24を介して、上記2輪駆動装置 の各駆動コイル18及び19にそれぞれ送られる ことにより、フォーカスサーポ及びトラッキング サーボが行われる。上記再生RF信号は各受光郎 からの出力信号の和信号であり、この再生RF信 号は、後述するような耳いに異なる 2 つのタイミ ングでサンプルする2つのサンプルホールド回路 31、32に送られている。

記録信号入力端子41には、記録すべき情報の例えばEFM(8-14変調)信号が供給されている。この記録信号は、2値データの第2回Aに

回転駆動して、上記光ディスク1の記録トラックを光へッド光学系10によりレーザ光で走査することにより、所定データフォーマットのディジタルデータを光学的に記録再生を行う光ディスク記録再生装置に本発明を適用した場合の記録再生系の構成を示している。

この光ディスク記録再生装置の上記光へッド光 学系10において、レーザ光源であるレーザダイ オード11からのレーザビームが、コリメートレ ンズ12で平行光ビームとされ、ピームスブリッタ 13を介し対物レンズ14を介して、上記光ディスク1上の信号記録面に築光される投射 される。光ディスク1の信号記録面に投射されて 反射されたレーザビームの反射光ビーム(戻りレーザピーム)は、ビームスブリッタ13で反射を れ、シリンドリカルレンズ15を介して受光素に れ、シリンドディテクタ16に導かれる、駆動する で、対物レンズ14は、駆動する で、対物レンズ14は、駆動する では、19を有して成るいわゆる2軸駆動装置 により光軸方向及び光軸に直交する方向に移動射

示すようなパルス信号であり、タイミング発生回路 4 2 を介してレーザ駆動回路 4 3 に送られることにより、例えば類 2 図 A の "H"(ハイレベル) の期間だけレーザダイオード 1 1 が発光駆動され、記録レーザビームがディスク 1 の信号記録面に向かって照射される。

ここで第2図は、上記レーザダイオード11かりの記録レーザピーム(第2図A)に対する戻りレーザピーム(第2図B)の強度変化を示に録りいる。この第2図の時刻に、~し。の間、記録を加めるが、ディスク記録を加める。このには、300~400ns 程度の時間である。このため、関いとしているがピームの間がピット形成開始時間である。このため、戻りレーザピームの独定を放ける。このため、戻りレーザピームの独定を放け、 では、ない時間と、~し。の間は、ないの間は、~し。の間は、ないの間に、~し。の間は、かが成されている時刻に、~し。の間は、かが成されている時刻に、~し。の間は、

44

7による処理もディジタル的に行って出力している。このCPUシステム 5 3 からのディジタル出力は、D/A 変換器 5 4 でアナログ 信号に変換されて上記記録レーザビームのパワー 制御信号となってレーザ駆動回路 4 3 に送られている。他の構成及び動作は、上述した第 1 図の例と同様であるため、図示せず説明を省略する。

このような本発明の実施例によれば、記録媒体である光ディスク 1 の間で最適記録レーザ出力がばらついても、常に最適記録が行える。また、光ディスク 1 のスキュー(傾き)等による最適記録レーザ出力の変化に遠従でき、さらに光ディスク 1 の温度変化による最適記録レーザ出力の変化に遠徙できる。

H. 発明の効果

本発明に係る記録レーザピームの制御方法によれば、光記録媒件に照射した記録レーザピームの 更りレーザピームの強度を検出し、上記記録レー ザピームにより上記光記録媒体にピットが実際に 形成されるまでに要する時間範囲内における戻り レーザピームの強度の検出出力と、ピットが実際 に形成されている間の範囲内の戻りレーザピーム の強度の検出出力との比に基づいて上記記録レー ザピームのパワーを制御しているため、記録は体 の各種条件、例えば媒体間の記録特性のばらつき や、媒体のスキュー(傾き)や、媒体温度等によ り最過記録レーザパワーが変化しても、形成され るピット自体の寸法形状が最適なものとなれまう にパワー制御されるため、上記条件の変化によら ず最近の記録が行える。

4. 関節の簡単な説明

第1図は本発明を週用した光ディスク記録再生装置の記録再生系の侵略構成を示すブロック図、 第2図は光ディスクに記録レーザピームにてピットを形成する場合の動作を説明するためのタイム チャート、第3図は光ディスクの記録特性を示す グラフ、第4図は本発明を適用した光ディスク記録再生装置の他の具体例の要部構成を示すブロッ

ク図である。

1・・・・・・光ディスク

10・・・・光ヘッド光学系

11....レーザダイオード

16....フォトディテクタ

31、32・・・・サンプルホールド回路

33・・・・割り算回路

3 4 、 3 5 · · · · 被算長

3 6 · · · · 基準値入力端子

4 [.... 記錄信号入力端子

42...タイミング発生回路

43....レーザ駆動回路

特許 出版 人 ソニー株式会社 代理人 弁理士 小 胞 契 同 田 村 祭 ー 同 佐 廢 静

ー実施例の概略構成 第 **1** 図

動作説明タイムチャート
第2図

他の奥施例の最部構成 第 4 図