

Virus Bioinformatics | Let the data speak |

Dr. Urmila Kulkarni-Kale

S. P. Pune University | University of Southeastern Norway | Citadel Precision Medicine

urmila.Kulkarni.kale@gmail.com

Schedule for the day

	wellcome connecting science	Viral Genomics and Bioinformatics 12 - 17 May 2024, OUCRU, Ho Chi Minh City, Vietnam					
	Sunday May 12	Monday May 13	Tuesday May 14	Wednesday May 15	Thursday May 16	Friday May 17	
8:00		Bus to venue	Bus to venue	Bus to venue	Bus to venue	Bus to venue	8:00
8:30 9:00		Sequencing demonstration Tan's Team	NGS File Formats & QC Sreenu	Long Read Data Analysis	Metagenomics and Virus Discovery Richard	Build Your Own Pipeline: Reference Mapping	9:00
9:30			Reference Mapping Richard	Richard		Build Your Own Pipeline: De novo	9:30
						Assembly	
10:30		Break	Break	Break	Break	Break	10:30
11:00	Sequencing	Reference Mapping		Introduction to MSA	Build Your Own Pipeline:	11:00	
11:30		Sequencing demonstration Tan's Team	cont.	De novo Assembly Sreenu	Urmila	Metagenomics	11:30
12:00			Statistics and Visualisation Richard		Tree Building and Visualisation Urmila	Build Yor Own Pipeline: Phylogenetics	12:00
12:30							12:30
13:00				Course Photograph			13:00
13:30	Registration and Lunch Lun	Lunch	Lunch	Lunch	Lunch	Lunch	13:30
14:00	Introductions - WCS,	Seminar + short break	Seminar + short break	Seminar + short break	Seminar + short break		14:00
	Training Team, Participants					Group Presentations	
15:00		Intro to Linux	Consensus and	De novo Assembly	Recombination		15:00
15:30	Break	Srikeerthana	Variant Calling Richard	Validation & Statistics Sreenu	Analysis Urmila		15:30
16:00		Break	Break	Break	Break	Wrap Up	
16:30	Advanced Learning Skills	BASH Scripting Sreenu	Consensu and Variant Calling cont.	Scaffolding & Gap filling Sreenu	Recombination Analysis cont.	Bus to hotel	16:30
17:00			Group Practical Reference Mapping	Group Practical De novo Assembly	Group Practical Phylogenetics		17:00
17:30							17:30
18:00		A&Q	Q&A	Q&A	Q&A		18:00
18:30	Networking and Dinner	Bus to hotel	Bus to hotel	Bus to hotel	Bus to hotel		18:30
19:00							19:00
15.00		Monday May 13	Tuesday May 14	Wednesday May 15	Thursday May 16	Friday May 17	15.00

Sequenced a virus/virome? Assembled a genome/Metagenome?

What next?

Concept of Health -> One Health

The Multiverse / Parallel Universe

Virus Bioinformatics

The unknown of known

How do viruses –

- infect hosts?
- cause disease?
- jump species?
- spread & evolve?
- escape the immune system?
- develop drug resistance?

How to combat/control?

- Virus evolution & population diversity
 - Map emerging lineages
- Virus typing algorithms & servers
 - HRV, DENV, ENV, MUV & many others
- IRESPred: Internal Ribosomal Entry sites
 - Viral & Celluar
- Japanese encephalitis virus
 Peptide vaccine
- Mumps vaccine
 Serum Institute of India
- Measles & Rubella viruses
 Vaccine efficacy monitoring for Gol
- Therapeutic Vaccine designHuman papilloma virus 16

Bioinformatics: Bridges many disciplines Data-driven approach for knowledge discovery in Biology

Using known (data) to explore unknown

Genome sequences

Big data:

Protein sequences

Volume. Velocity. Variety. Veracity. Value.

• 3D structures

FAIR principles:

Omics data

Findable. Accessible. Interoperable. Reusable.

Virome data

Databases Algorithms Workflows Data analytics

Virus bioinformatics: data led discovery framework

Reimagined using illustrations & philosophy of gapingvoid, a culture design group

Viral Bioinformatics: Scope & Methods

Data: compilation & curation: HPV16 story


```
Human papillomavirus type 16 (HPV16), complete genome
GenBank K02718.1
Go to: 🔽
LOCUS
           PPH16
                                                  circular VRL 18-MAR-1994
          Human papillomavirus type 16 (HPV16), complete genome
DEFINITION
ACCESSION
           K02718
           K02718.1
VERSION
KEYWORDS
           circular; complete genome.
SOURCE
           Human papillomavirus type 16
 ORGANISM Human papillomavirus type 16
```

Prototype entry: issues

- Deletion of CAT6903 and Insertion of GAT6952 in L1 gene of prototype.
- First 14 missing nucleotides in E5 gene of prototype led to frame shift during translation

Refseq entry: solution

- Insertion & deletion in prototype led to wrong reporting of mutations
- Proper demarcation of E5 gene boundaries in Refseq led to fixing Frameshift errors (stop codons)

Parton A. Nucleotide sequence of the HPV16 L1 open reading frame. Nucleic Acids Res. 1990 Jun 25;18(12):3631. doi: 10.1093/nar/18.12.3631.

Mane A, Patil L, Limaye S, Nirmalkar A, Kulkarni-Kale U. 2020. J Med Virol. 2020:1-6

Data compilation & curation: BHV1 story


```
Bovine herpesvirus 1, complete genome
NCBI Reference Sequence: NC 001847.1
FASTA
       Graphics
Go to: 🔽
LOCUS
                                                             VRL 13-AUG-2018
                                                    linear
           Bovine herpesvirus 1, complete genome.
DEFINITION
ACCESSION
VERSION
           NC 001847.1
DBLINK
           BioProject: PRJNA485481
KEYWORDS
           RefSeq.
           Bovine alphaherpesvirus 1 (Infectious bovine rhinotracheitis virus)
SOURCE
 ORGANISM Bovine alphaherpesvirus 1
```

Refseq entry: issues

- Refseq entry derived from cooper strain (BHV-1.1: a composite of 5 strains - BHV-1.1 and BHV-1.2)
- Spontaneous deletion of US1.67/US2 in genomic region of cooper strain (Campos et, 2016)

Prototype entry: solution

- Pure BHV-1.1 strain that could be used as reference for proper clustering of sequences into BHV-1.1 and BHV-1.2 sub-types
- No deletion of genomic region

Ongoing project in collaboration with Dr. Suresh Kuchipudi, University of Pittsburgh, USA

Data to Information Perspectives from similarity (JEV story)

Species & Strain specific variations
Loop1 in TBEV: TLAEEHQGG
Loop1 in JEVN: HNEKRADSS
Loop1 in JEVS: HNKKRADSS

How similar is similar?
How different is different?

Biodiversity & Biocomplexity:

Isolates, strains, genotypes, serotypes, species & clades

Genus, subfamilies, families

Information to Knowledge Connecting dots with evolutionary perspective

Kolekar P, Kale M, Kulkarni-Kale U. Alignment-free distance measure based on return time distribution for sequence analysis: Applications to clustering, molecular phylogeny and subtyping. Molecular Phylogenetics Evolution 2012; 65(2):510-22.

Information Knowledge: Using Data To Discover Algorithms | Servers | Products developed

Area: Phyloinformatics, Alignment-free, RTD-based Viral & bacterial typing (Gene/Genome/MLST) Accuracy, Sensitivity & Specificity: 100% | Collaborator: Dr. Mohan Kale, Dept. of Statistics Students: Dr. Pandurang Kolekar, Dr. Vaishali Waman, Sanket Limaye, Mr. Nilesh Hake, Mr. Anant Shelke

Knowledge to Insight Population diversification perspectives (Denv-3 story)

Population structure of DENV-3, obtained by STRUCTURE, at K=5

Genetic structure of DENV-3

- Known genotypes: 5 (GI, GII, GIII, GIV, GV)
- Input data: 860 complete genomes
- Emerging lineages: GIII subdivided into **3 major subpopulations** (GI, GII, GIII-a, GIII-b & GIII-c).
- Admixed strains in GIII & GV (a reservoir for emerging subpopulations).
- Major factors shaping diversity are Inter-genotype recombination, migration and adaptive evolution

Waman VP, Kale MM, Kulkarni-Kale U. Infection Genetics & Evolution 2017; 49:234-240.

Knowledge to Insight Population diversification perspectives (DENV-1 story)

Insight to Wisdom Tracing emergence of drug resistance in Rhinoviruses

Waman et al., Unpublished

Wisdom to Impact Societal benefit through translation (Mumps virus story)

Expanding network Making room for <u>new named strains</u> (Measles story)

- Indian MeV genomes: 43
- Lineages: D4 & D8 (reported for the first time)
- Only 1 of 8 (Bagalkot.IND/07.09) isolates belongs to WHO named strain of D4 (Enfield lineage in circulation across Europe since 2007)
- Need for more named strain inclusion for understanding lineage diversity across globe.

Vaidya SR, Kasibhatla SM, Bhattad DR, et al. of measles viruses in India: Genomic sequencing and comparative genomic Characterization of diversity s studies. *J Infect*. 2020;80(3):301-309. doi:10.1016/j.jinf.2019.11.025

Data to Theory via DIKIW pipeline Demystifying emergence of COVID-19 (SARS-CoV-2 story)

Graphic inspired by gapingvoid Culture Design Group Source internet

- A: Populations at K=3 wherein the labels 1, 2, and 3 represent SARS-CoV-2, SARS-CoV, and Bat-CoV.
- B: Populations at K=7 | labels 1(Pangolin-CoV), 2(SARS-CoV-2), 3(Bat-CoV-Cluster_1), 4(SARS-CoV), 5(Bat-CoV-Cluster_2), 6(Bat-CoV-Cluster_3), 7(Bat-CoV-Cluster_4)

Kasibhatla SM, Kinikar M, Limaye S, Kale MM, **Kulkarni-Kale U**. 2020. Understanding evolution of SARS-CoV-2: A perspective from analysis of genetic diversity of RdRp gene **J Med Virol**. 2020:1-6.

Step-by-step recipe (that works!) Use curated data & right tool set(s)

Recombination analysis

- Detection of recombination events
- Identify major & minor parent
- RDP4 package (RDP, ENCONV, BOOTSCAN, MAXICHI, CHIMAERA, SiScan & 3SEQ)
- Input: MSA of genes/genomes

Population structure

- Identify genetically distinct lineages
- Map emerging lineages
- Identify admixed individuals
- Bayesian-based clustering approach
- STRUCTURE software
- Input: Gene/Complete genomes; PI sites
- LD (LIAN & DNASP)

Phylogenetic analysis

Nucleotide Substitution Rate

Divergence Time Estimation

analysis Gene based

Evolutionary

- Genome based
- Alignment-based (NJ, ML)
- Alignment-free (RTD: Return Time Distribution: developed in house)
- Geno- and Sero-Typing (RTD based)
- Input: MSA/Sequences

Selection pressure

positive Across selection (SLAC, FEL, IFEL methods) lineages

all

of

Subset

lineages

Pervasive

- Episodic positive selection (MEME method)
- Codon-based alignment
- Input: CDS of gene/genome
- Antigenic variation (experimental & predicted B- and T-cell epitopes

Take home lessons Science is creativity & continuum of ideas!

- Data curation
- Refrain from over-interpretation
 - New lineages?
 - Virulent strain?
- Look for negative data
- Include data from hosts
 - Another dimension
- Collaboration is the key
- Enjoy what you do

Acknowledgements

Funding

- CoE: Dept. of Biotechnology (DBT), Govt. of India (GoI)
- CoE: Dept. of Electronics & Information Technology (DeitY), MCIT, GoI
- INCP: Indo Norwegian Collaboration Program
- UGC UPE Phase II
- DST PURSE program
- DBT-BINC & DBT-BET fellowship programs
- Serum Institute of India, Pune

International Collaborators

- Dr. Suresh Kuchipudi,
 Penn State University,
 USA
- Dr. Andrew Davison, University of Glasgow, UK
- Dr. Venugopal Nair,
 PirBright Institute, UK
- Dr. Elin Kure, Radium Hospital, Oslo, Norway
- Dr. Mona Sabo, USN, Norway
- Dr. Ashild Andreassen, NIPH, Norway

National Collaborators

- Dr. Sunil Vaidya, NIV
- Dr. Arati Mane, NARI
- Dr. Madhuri Thakar,
 NARI
- Dr. Mohan Kale,
 Statistics Dept., SPPU
- Dr. Sangeeta Sawant
- Dr. Abhijeet Kulkarni
- Prof. J. K. Pal
- Ms. Smita Saxena
- Mr. Dattatraya Desai

Ph.D. Students/ Masters' students

- Dr. Pandurang Kolekar
- Dr. Vaishali Waman
- Dr.. Sunitha Manjari
- Dr. Kiran Kadam
- Dr. Rajiv Karbhal
- Dr. Vandana Sandhu
- Nilesh Hake
- Dr. Abhijeet Pataskar
- Sanket Limaye
- Anant Shelke
- Meenal Kinikar
- Madhura Tathode
- Hemant Pawar
- 100+ Masters' project students