Assignment 6

MA08 Applied Algebra

Deadline 05:00 PM, Wednesday, 20190710

- 1. Determine whether the given map f is a homomorphism.
 - (a) Let $f: \mathbb{Z} \to \mathbb{R}$ by given by f(x) = x for $x \in \mathbb{Z}$, where both \mathbb{Z} and \mathbb{R} are additive.
 - (b) Let $f: \mathbb{R}^* \to \mathbb{R}^*$ by given by f(x) = |x| for $x \in \mathbb{R}^*$, where \mathbb{R}^* is multiplicative. (Here \mathbb{R}^* denotes the set with nonzero elements of \mathbb{R} , i.e. $\mathbb{R}\setminus\{0\}$.)
 - (c) Let $f: \mathbb{R} \to \mathbb{R}^*$ by given by $f(x) = 2^x$ for $x \in \mathbb{Z}$, where \mathbb{R} is additive and \mathbb{R}^* is multiplicative.
- 2. (a) Let G be a group and let $g \in G$. Let $f_g : G \to G$ be defined by $f_g(x) = gx$ for $x \in G$. G is multiplicative. For which $g \in G$ we can say that f_g is a homomorphism?
 - (b) Let G be a group and let $g \in G$. Let $f_g : G \to G$ be defined by $f_g(x) = gxg^{-1}$ for $x \in G$. G is multiplicative. For which $g \in G$ we can say that f_g is a homomorphism?

Notice: Please write Your Name and Student ID when you submit.