ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA EC

Exercícios - Transformações Lineares

2020/2021

1. Diga quais das seguintes funções são aplicações lineares entre espaços vetoriais reais:

(a)
$$f_1: \mathbb{R}^3 \to \mathbb{R}^4$$

 $(x, y, z) \mapsto (2x, y + z, 0, z)$

(b)
$$f_2: \mathbb{R}^3 \rightarrow \mathbb{R}^4$$

 $(x, y, z) \mapsto (2x, y + z, 1, z)$;

(c)
$$f_3: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (-x, y + z, z + 2)$

(d)
$$f_4: \mathbb{R}^2 \to \mathbb{R}^3 ;$$

 $(x,y) \mapsto (\frac{1}{x^2+1},0,y)$

(e)
$$f_5: \mathbb{R}^4 \to \mathbb{R}^2$$
 em que $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix};$

2. Sendo \mathcal{B}_3 a base canónica de \mathbb{R}^3 e \mathcal{B}_2 a base canónica de \mathbb{R}^2 , considere $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ a transformação linear definida por

$$\mathcal{M}(f;\mathcal{B}_3,\mathcal{B}_2) = \left[egin{array}{ccc} 1 & 0 & -1 \ 2 & -1 & 0 \end{array}
ight]$$

- (a) Calcule f(-1, 0, 1).
- (b) Calcule a expressão geral de um vetor da imagem de f.
- 3. Considere a aplicação $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ definida por

$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_2, x_3 + x_4)$$

- (a) Verifique que f é uma aplicação linear de \mathbb{R}^4 em \mathbb{R}^3 .
- (b) Calcule a matriz de f relativamente às bases canónicas de \mathbb{R}^4 e de \mathbb{R}^3 .
- (c) Calcule $f(\mathbb{R}^4)$.
- (d) Seja $\mathcal{W} = \{(a, b, c, d) \in \mathbb{R}^4 \mid a b = d 2b = 0\}$. Calcule $f(\mathcal{W})$.
- (e) Calcule $f^{-1}(\{(0,0,0)\})$.

- 4. Em \mathbb{R}^3 , considere a transformação linear reflexão em relação ao plano x=0.
 - (a) Calcule o resultado da reflexão dos vetores (1,0,0), (0,1,0) e (0,0,1).
 - (b) Escreva a matriz da reflexão relativamente à base canónica.
 - (c) Calcule a expressão da imagem de um vetor (x, y, z).
- 5. Em \mathbb{R}^3 , considere a a transformação linear rotação de $\pi/2$ no sentido direto em torno do eixo x.
 - (a) Calcule o resultado da rotação dos vetores (1,0,0), (0,1,0) e (0,0,1).
 - (b) Escreva a matriz da rotação relativamente à base canónica.
 - (c) Calcule a imagem de (3, -5, 0) e de (-2, 0, 5).
- 6. Considere as bases

$$\mathcal{B} = ((1,0,1),(0,1,0),(-1,1,1)) \text{ de } \mathbb{R}^3,$$

$$\mathcal{B}' = ((1,0,1,0),(0,1,0,1),(-1,0,1,0),(0,1,0,2)) \text{ de } \mathbb{R}^4.$$

Seja $f: \mathbb{R}^3 \to \mathbb{R}^4$ a aplicação linear definida por f(x,y,z) = (2x, x+z, y+z, -z).

- (a) Calcule $\mathcal{M}(f; \mathcal{B}, \mathcal{B}_4)$, onde \mathcal{B}_4 é a base canónica de \mathbb{R}^4 .
- (b) Calcule $\mathcal{M}(f; \mathcal{B}_3, \mathcal{B}')$, onde \mathcal{B}_3 é a base canónica de \mathbb{R}^3 .
- (c) Calcule $\mathcal{M}(f; \mathcal{B}, \mathcal{B}')$.
- (d) Calcule a imagem do vetor (2, 3, -2) por f usando a matriz que calculou na alínea: (i) (a); (ii) (b); (iii) (c).
- 7. Seja $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ uma aplicação tal que

$$\varphi(1,0,0) = (1,2), \ \varphi(0,-1,1) = (0,2), \ \varphi(2,-2,2) = (2,8).$$

- (a) Verifique se existem aplicações lineares nas condições acima. Em caso afirmativo identifique uma.
- (b) Calcule a imagem de (2, -3, 3) pela aplicação determinada na alínea anterior.
- 8. Seja $\varphi: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ uma transformação linear tal que

$$\varphi(1,0,1,0) = (1,1,1), \ \varphi(0,-1,0,1) = (1,0,2), \ \varphi(1,-3,1,0) = (2,1,3).$$

- (a) Com base na informação fornecida é possível determinar a imagem de (2, 1, -3, 3)?
- (b) Dê um exemplo de uma aplicação linear nas condições acima.