

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Page No: 01/26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(IDS/IDS 27001 2005 Set Miss)

SUMMER – 2016 EXAMINATION MODEL ANSWER

Subject: APPLIED MATHEMATICS (AMS)

Subject Code: 17301

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject Code: 17301 Page No: 02/26 Summer-2016

Que.	Sub.	Madal Amazara	Maulas	Total
No.	Que.	Model Answers	Marks	Marks
1.		Attempt any <u>TEN</u> of the following:		20
	a)	Find the radius of curvature of the curve $y = x^3$ at $(2,8)$		
	Ans	$y = x^3$		
		$\frac{dy}{dx} = 3x^2$	1/2	
		$\frac{d^2 y}{dx^2} = 6 x$		
		\therefore at $(2,8)$		
		$\frac{dy}{dx} = 12$		
		$\frac{d^2 y}{dx^2} = 12$	1/2	
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$		
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[\frac{1}{2} \right]^2 y}{d^2 y}$		
		dx^2		
		$\therefore \rho = \frac{\left[1 + \left(12\right)^2\right]^{\frac{3}{2}}}{12}$	1/	
		$\therefore \rho = \frac{\Box}{12}$	1/2	02
		$\therefore \rho = 145.50$	1/2	02
	b)	At which point on the curve $y = 3x - x^2$, the slope of tangent is -5 ?		
	Ans	$y = 3x - x^{2}$		
		$\frac{dy}{dx} = 3 - 2x$	1/2	
		dx		
		$\therefore m = 3 - 2x$ $-5 = 3 - 2x$		
		$\begin{vmatrix} 3-3 & 2x \\ 2x = 8 \end{vmatrix}$	1/2	
		x = 4		
		$\therefore y = -4$	1/2	02
		\therefore point is $(4,-4)$	1/2	

Subject Code: 17301 Page No: 03/26 Summer-2016

Que.	Sub.	M. 1.1.A	M 1	Total
No.	Que.	Model Answers	Marks	Marks
1.	c)	Evaluate: $\int \frac{2x^3 + 5x^2 + 4}{\sqrt{x}} dx$		
	Ans	$\int \frac{2x^3 + 5x^2 + 4}{\sqrt{x}} dx$		
		$= \int \left(2x^3 + 5x^2 + 4\right)x^{-\frac{1}{2}} dx$	1/2	
		$= \int \left(2x^{\frac{5}{2}} + 5x^{\frac{3}{2}} + 4x^{-\frac{1}{2}}\right) dx$	1/2	
		$= \frac{4}{7}x^{\frac{7}{2}} + 2x^{\frac{5}{2}} + 8x^{\frac{1}{2}} + c$	1	02
	d)	Evaluate: $\int \sin^2 2x \ dx$		
		$\int \sin^2 2x \ dx$		
	Ans			
		$=\frac{1}{2}\int \left(1-\cos 4x\right) dx$	1	
		$=\frac{1}{2}\left(x-\frac{\sin 4x}{4}\right)+c$	1	02
	e)	Evaluate: $\int \frac{1}{x \log x} dx$		
	Ans	$\int \frac{1}{x \log x} dx$		
		Put $\log x = t$	17	
		$\therefore \frac{1}{x} dx = dt$	1/2	
		$=\int_{-\tau}^{1} dt$	1/2	
		$= \log t + c$	1/2	
		$= \log (\log x) + c$	1/2	02

Subject Code: 17301 Page No: 04/26 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1.	f)	Evaluate: $\int x^2 e^x dx$		
	Ans	$\int x^2 e^x dx$		
		$= x^{2} \int e^{x} dx - \int \left(\int e^{x} dx \frac{d}{dx} x^{2} \right) dx$	1/2	
			1/2	
		$= x^2 e^x - \int e^x 2x \ dx$	/2	
		$= x^2 e^x - 2 \int e^x x \ dx$		
		$= x^2 e^x - 2 \left[x e^x - \int e^x dx \right]$	1/2	02
		$= x^2 e^x - 2 [xe^x - e^x] + c$	1/2	02
			,2	
	g)	Evaluate: $\int_{2}^{4} \frac{1}{2x+3} dx$		
	Ans	2 X + 3		
	7 1113	$\int_{2}^{4} \frac{1}{2x+3} dx$		
		$= \left[\frac{\log\left(2x+3\right)}{2}\right]_{2}^{4}$	1	
		$= \frac{1}{2} [\log 11 - \log 7]$	1/2	
		$=\frac{1}{2}\log\left(\frac{11}{7}\right)$		02
		$2^{-3}\left(\begin{array}{c}7\end{array}\right)$	1/2	
	h)	Find the area under the curve $y = e^x$ from the ordinate $x = 0$ to $x = 1$		
	Ans	$A = \int_{a}^{b} y dx$		
	71115			
		$= \int_{0}^{\infty} e^{x} dx$	1/2	
		$= \left[e^x \right]_0^1$	1	
		= e - 1	1/2	
				02
		5		
	i)	Find the order and degree of the equation $\left[1 + \left(\frac{dy}{dx}\right)^3\right]^{\frac{5}{3}} = 2\frac{d^2y}{dx^2}$		

Subject Code: 17301 Page No: 05/26 Summer-2016

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodel answers	Warks	Marks
2.		$\left[1 + \left(\frac{dy}{dx}\right)^{3}\right]^{\frac{5}{3}} = 2\frac{d^{2}y}{dx^{2}}$ $\therefore \left[1 + \left(\frac{dy}{dx}\right)^{3}\right]^{5} = 8\left(\frac{d^{2}y}{dx^{2}}\right)^{3}$ $\therefore Order = 2$ $Degree = 3$	1	02
	j)	Find the differential equation from the relation $y = Ae^{mx}$ $y = Ae^{mx}$		
	Ans	$\therefore \frac{dy}{dx} = mA e^{mx}$	1	
		$\therefore \frac{dy}{dx} = my$	1	
		$or \frac{dy}{dx} - my = 0$		02
	k)	Three fair coins are tossed. Find the probability that atleast two heads appear.		
	Ans	$S = \left\{HHH, HTT, THT, TTH, HTH, HHT, THH, TTT\right\}$		
		$\therefore n(S) = 8$ at least two heads $A = \{HHH, HTH, HHT, THH\}$	1/2	
		n(A) = 4 $n(A) = 4$	1/2	
		$\therefore p(A) = \frac{n(A)}{n(S)} = \frac{4}{8}$	1/2	
		$\therefore p(A) = \frac{1}{2} \text{ or } 0.5$	1/2	02
	1)	Five men in a company of 20 are graduate. If 3 men are picked up out of 20 at random, what is probability that they all are graduates?		
	Ans	$n(S) = {}^{20}C_3 = 1140$	1/2	
		$n(S) = {}^{20}C_3 = 1140$ $n(A) = {}^{5}C_3 = 10$	1/2	

Subject Code: 17301 Page No: 06/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
1.		$\therefore p(A) = \frac{n(A)}{n(S)}$ $= \frac{10}{1140} \text{ or } 0.00877$	1	02
2.		Attempt any <u>FOUR</u> of the following:		16
		Evaluate: $\int \frac{\left(\tan^{-1} x\right)^3}{1+x^2} dx$		
	Ans	$\int \frac{\left(\tan^{-1} x\right)^3}{1+x^2} dx$		
		$put tan^{-1}x = t$ $\therefore \frac{1}{1+x^2} dx = dt$	1	
		$=\int t^3 dt$	1	
		$=\frac{t^4}{4}+c$	1	
		$=\frac{\left(\tan^{-1}x\right)^4}{4}+c$	1	04
	b)	Evaluate: $\int \frac{x}{\sqrt{9+8x-x^2}} dx$		
	Ans	$\int \frac{x}{\sqrt{9+8x-x^2}} dx$		
		$= -\frac{1}{2} \int \frac{8 - 2x - 8}{\sqrt{9 + 8x - x^2}} dx$	1	
		$= -\frac{1}{2} \left[\int \frac{8 - 2x}{\sqrt{9 + 8x - x^2}} dx - 8 \int \frac{1}{\sqrt{9 + 8x - x^2}} dx \right]$	1/2	
		$= -\frac{1}{2} \left[2\sqrt{9 + 8x - x^2} - 8\int \frac{1}{\sqrt{9 + 16 - 16 + 8x - x^2}} dx \right]$	1	
		$= -\left[\sqrt{9 + 8x - x^{2}} - 4\int \frac{1}{\sqrt{25 - \left(16 - 8x + x^{2}\right)}} dx\right]$		

Subject Code: 17301 Page No: 07/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
2.		$= -\left[\sqrt{9 + 8x - x^{2}} - 4\int \frac{1}{\sqrt{(5)^{2} - (x - 4)^{2}}} dx\right]$ $= -\left[\sqrt{9 + 8x - x^{2}} - 4\sin^{-1}\left(\frac{x - 4}{5}\right)\right] + c$	1/2	04
	c)	Evaluate $\int x \tan^{-1} x dx$		
	Ans	$\int x \tan^{-1} x dx$		
		$= \tan^{-1} x \int x dx - \int \left(\int x dx \frac{d}{dx} \left(\tan^{-1} x \right) \right) dx$	1	
		$= \tan^{-1} x \frac{x^2}{2} - \int \frac{1}{1+x^2} \frac{x^2}{2} dx$	1	
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{1+x^2-1}{1+x^2} dx$	1/2	
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1 + x^2}\right) dx$	1/2	
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) + c$	1	04
	d)	Find the maximum and minimum value of $y = x^3 - 9x^2 + 24x$		
	Ans	Let $y = x^3 - 9x^2 + 24x$		
		$\therefore \frac{dy}{dx} = 3x^2 - 18x + 24$	1/2	
		$\frac{dx}{dx^2} = 6x - 18$	1/2	
		Consider $\frac{dy}{dx} = 0$	1/2	
		$3x^2 - 18x + 24 = 0$ $\therefore x = 2 \text{ or } x = 4$	1/2	
		at $x = 2$		

Subject Code: 17301 Page No: 08/26 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2.		$\frac{d^2 y}{dx^2} = 6(2) - 18 = -6 < 0$ $\therefore y \text{ is maximum at } x = 2$	1/2	
		$y_{\text{max}} = 2^{3} - 9(2)^{2} + 24(2)$ $= 20$ $at x = 4$	1/2	
		$\frac{d^2 y}{dx^2} = 6(4) - 18 = 6 > 0$ $\therefore y \text{ is minimum at } x = 4$	1/2	
		$y_{\min} = 4^{3} - 9(4)^{2} + 24(4)$ $= 16$	1/2	04
	e) Ans	Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$		
	Alls	$\sqrt{x} + \sqrt{y} = 1$ $\therefore \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0$	1/2	
		$\therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$	1/2	
		$\frac{d^2 y}{dx^2} = \frac{-\left[\sqrt{x} \frac{1}{2\sqrt{y}} \frac{dy}{dx} - \sqrt{y} \frac{1}{2\sqrt{x}}\right]}{\left(\sqrt{x}\right)^2}$		
		$\frac{d^2 y}{dx^2} = \frac{-\left[\sqrt{x} \frac{1}{2\sqrt{y}} \left(-\frac{\sqrt{y}}{\sqrt{x}}\right) - \sqrt{y} \frac{1}{2\sqrt{x}}\right]}{x}$		
		$\frac{d^2 y}{dx^2} = \frac{-\left[-\frac{1}{2} - \frac{\sqrt{y}}{2\sqrt{x}}\right]}{x}$	1/2	
		$\therefore \text{ at } \left(\frac{1}{4}, \frac{1}{4}\right)$ $\boxed{\frac{1}{4}}$		
		$\frac{dy}{dx} = -\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}} = -1$	1/2	

Subject Code: 17301 Page No: 09/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
2.		$\frac{d^2 y}{dx^2} = \frac{-\left[-\frac{1}{2} - \frac{1}{2}\right]}{\frac{1}{4}} = 4$ $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$	1/2	
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$		
		$\therefore \rho = \frac{\left[1 + \left(-1\right)^2\right]^{\frac{3}{2}}}{4}$	1	
		$\therefore \rho = 0.707$	1/2	04
	f)	Show that equation of tangent to $\left(\frac{x}{a}\right)^m + \left(\frac{y}{b}\right)^m = 2$ at the point (a,b)		
		is $\frac{x}{a} + \frac{y}{b} = 2$		
	Ans	$\left(\frac{x}{a}\right)^m + \left(\frac{y}{b}\right)^m = 2$		
		$\therefore m \left(\frac{x}{a}\right)^{m-1} \frac{1}{a} + m \left(\frac{y}{b}\right)^{m-1} \frac{1}{b} \frac{dy}{dx} = 0$	1/2	
		$\therefore b\left(\frac{x}{a}\right)^{m-1} + a\left(\frac{y}{b}\right)^{m-1} \frac{dy}{dx} = 0$	1/2	
		at(a,b)		
		$\therefore b\left(\frac{a}{a}\right)^{m-1} + a\left(\frac{b}{b}\right)^{m-1} \frac{dy}{dx} = 0$		
		$b + a \frac{dy}{dx} = 0$		
		$\therefore \frac{dy}{dx} = -\frac{b}{a}$	1	
		$\therefore \text{ slope is } m_1 = -\frac{b}{a}$	1	
		equation of tangent at (a,b) is		
		$y - y_1 = m_1 \left(x - x_1 \right)$		
		$y - b = -\frac{b}{a}(x - a)$	1	

Subject Code: 17301 Page No: 10/26 Summer-2016

Que.	Sub. Que.	Model Answers	Marks	Total Marks
		$ay - ab = -bx + ab$ $bx + ay = 2ab$ $\therefore \frac{x}{a} + \frac{y}{b} = 2$	1	04
3.		Attempt any <u>FOUR</u> of the following:		16
	a)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 4\cos x}$		
	Ans	$\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 4\cos x}$		
		$Put \tan \frac{x}{2} = t$		
		$\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2 dt}{1+t^2}$	1/2	
		when $x \to 0$ to $\frac{\pi}{2}$ $t \to 0 \text{ to } 1$	1/2	
		$\therefore \int_{0}^{1} \frac{1}{5+4\left(\frac{1-t^{2}}{1+t^{2}}\right)} \frac{2dt}{1+t^{2}}$	1/2	
		$=2\int_{0}^{1}\frac{1}{5(1+t^{2})+4(1-t^{2})}dt$		
		$=2\int_{0}^{1}\frac{1}{5+5t^{2}+4-4t^{2}}dt$		
		$=2\int_{0}^{1}\frac{1}{9+t^{2}}\ dt$	1/2	
		$=2\int_{0}^{1}\frac{1}{(3)^{2}+t^{2}}dt$		
		$= \frac{2}{3} \left[\tan^{-1} \left(\frac{t}{3} \right) \right]_0^1$	1	
		$=\frac{2}{3}\tan^{-1}\left(\frac{1}{3}\right)$	1	04

Subject Code: 17301 Page No: 11/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
3.	b)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx$		
	Ans	$\int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx$		
		$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx $		
		$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - x\right)} dx$	1	
		$I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \cos x \sin x} dx (2)$	1	
		add (1)and (2)		
		$I + I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \cos x \sin x} dx$	1/2	
		$2I = \int_{0}^{\frac{\pi}{2}} \left(\frac{\sin x - \cos x}{1 + \sin x \cos x} + \frac{\cos x - \sin x}{1 + \cos x \sin x} \right) dx$	1/2	
		$2I = \int_{0}^{\frac{\pi}{2}} \left(\frac{\sin x - \cos x + \cos x - \sin x}{1 + \sin x \cos x} \right) dx$	1/2	
		$2I = 0$ $\therefore I = 0$	1/2	04
	c)	Find by integration the area of the ellipse $4x^2 + 9y^2 = 36$		
	Ans	$4x^2 + 9y^2 = 36$		
		$\therefore \frac{x^2}{9} + \frac{y^2}{4} = 1$		
		$\therefore y^2 = \frac{4}{9} \left(9 - x^2 \right)$		
		$\therefore y = \frac{2}{3}\sqrt{9-x^2}$	1	
		area, $A = 4 \int_{a}^{b} y dx$		

Subject Code: 17301 Page No: 12/26 Summer-2016

Que.	Sub.	Model Angrees	Montro	Total
No.	Que.	Model Answers	Marks	Marks
3.		$A = 4 \left[\frac{2}{3} \int_{0}^{3} \sqrt{(3)^{2} - x^{2}} dx \right]$	1	
		$A = \frac{8}{3} \left[\frac{x}{2} \sqrt{(3)^2 - x^2} + \frac{(3)^2}{2} \sin^{-1} \left(\frac{x}{3} \right) \right]_0^3$	1	
		$A = \frac{8}{3} \left[\frac{9}{2} \sin^{-1} (1) - 0 \right]$	1/2	
		$A = 12 \frac{\pi}{2}$		
		$A = 6\pi$	1/2	04
	d)	Find the perticular solution of D.E. $y\sqrt{1-x^2}dy + x\sqrt{1-y^2}dx = 0$		
		when $x = \frac{3}{4}$, $y = \frac{4}{5}$		
	Ans	$y\sqrt{1-x^{2}}dy + x\sqrt{1-y^{2}}dx = 0$ $y\sqrt{1-x^{2}}dy = -x\sqrt{1-y^{2}}dx$		
		$\therefore \frac{y}{\sqrt{1-y^2}} dy = -\frac{x}{\sqrt{1-x^2}} dx$		
		$\therefore \int \frac{y}{\sqrt{1-y^2}} dy = -\int \frac{x}{\sqrt{1-x^2}} dx$	1	
		$\therefore \frac{-1}{2} 2 \sqrt{1 - y^2} = \frac{1}{2} 2 \sqrt{1 - x^2} + c$	1	
		$\therefore -\sqrt{1-y^2} = \sqrt{1-x^2} + c$	1/2	
		when $x = \frac{3}{4}$, $y = \frac{4}{5}$		
		$\therefore -\sqrt{1-\left(\frac{4}{5}\right)^2} = \sqrt{1-\left(\frac{3}{4}\right)^2} + c$	1/2	
		$\therefore \frac{-3}{5} = \frac{\sqrt{7}}{4} + c$		
		$\therefore c = -\left(\frac{3}{5} + \frac{\sqrt{7}}{4}\right)$	1/2	
		$-\sqrt{1-y^2} = \sqrt{1-x^2} - \left(\frac{3}{5} + \frac{\sqrt{7}}{4}\right)$	1/2	
		(3 4)		04

Subject Code: 17301 Page No: 13/26 Summer-2016

Que.	Sub.	26.114	26.1	Total
No.	Que.	Model Answers	Marks	Marks
3.	e)	Solve the D.E. $\frac{dy}{dx} = \frac{(x+y)^2}{xy}$		
	Ans	$\frac{dy}{dx} = \frac{\left(x+y\right)^2}{xy}$		
		Put y = vx		
		$\frac{dy}{dx} = v + x \frac{dv}{dx}$	1/2	
		$\therefore v + x \frac{dv}{dx} = \frac{\left(x + vx\right)^2}{x\left(vx\right)}$	1/2	
		$v + x \frac{dv}{dx} = \frac{x^2 \left(1 + v\right)^2}{vx^2}$		
		$v + x \frac{dv}{dx} = \frac{\left(1 + v\right)^2}{v}$		
		$x\frac{dv}{dx} = \frac{1+2v+v^2}{v} - v$		
		$x \frac{dv}{dx} = \frac{1 + 2v + v^2 - v^2}{v}$		
		$x\frac{dv}{dx} = \frac{1+2v}{v}$		
		$\frac{v}{1+2v}dv = \frac{1}{x}dx$	1/2	
		$\int \frac{v}{1+2v} dv = \int \frac{1}{x} dx$	1/2	
		$\frac{1}{2} \int \frac{1+2v-1}{1+2v} dv = \log x + c$	1/2	
		$\frac{1}{2} \int \left(\frac{1+2v}{1+2v} - \frac{1}{1+2v} \right) dv = \log x + c$	1/2	
		$\frac{1}{2}\int \left(1 - \frac{1}{1+2\nu}\right)d\nu = \log x + c$	1/2	
		$\frac{1}{2}\left(v - \frac{1}{2}\log\left(1 + 2v\right)\right) = \log x + c$		
		$\left \frac{1}{2} \left(\frac{y}{x} - \frac{1}{2} \log \left(1 + \frac{2y}{x} \right) \right) \right = \log x + c$	1/2	04
		$\frac{y}{x} - \log\left(\frac{x+2y}{x}\right) = 2\log x + 2c$		

Subject Code: 17301 Page No: 14/26 Summer-2016

Que.	Sub.		3.5.1	Total
No.	Que.	Model Answers	Marks	Marks
3.	f)	Solve the D.E. $x \frac{dy}{dx} - y = x^2 \cos^2 x$		
	Ans	$\frac{dy}{dx} - \frac{y}{x} = x \cos^2 x$		
		$\therefore P = -\frac{1}{x} \text{ and } Q = x \cos^2 x$	1/2	
		$IF = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$	1/2	
		$\therefore yIF = \int QIF dx + c$		
		$y\frac{1}{x} = \int x \cos^2 x \frac{1}{x} dx + c$	1	
		$\frac{y}{x} = \int \cos^2 x dx + c$		
		$\frac{y}{x} = \frac{1}{2} \int \left(1 - \cos 2x\right) dx + c$	1	
		$\frac{y}{x} = \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) + c$	1	04
4.		Attempt any <u>FOUR</u> of the following:		16
	a)	Evaluate: $\int \frac{x}{(x^2-1)(x^2+2)} dx$		
	Ans	$\int \frac{x}{\left(x^2-1\right)\left(x^2+2\right)} dx$		
		$Put x^2 = t$		
		$2xdx = dt$ $xdx = \frac{dt}{2}$		
		$=\frac{1}{2}\int \frac{dt}{(t-1)(t+2)}$	1	
		Let $\frac{1}{(t-1)(t+2)} = \frac{A}{t-1} + \frac{B}{t+2}$		
		(t-1)(t+2) t-1 t+2 $1 = A(t+2) + B(t-1)$		
		Put $t = -2$		
		1 = B(-3)	1/2	
		$B = -\frac{1}{3}$		
			<u> </u>	<u></u>

Subject Code: 17301 Page No: 15/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
4.		Put $t = 1$ $1 = A(3)$ $A = \frac{1}{3}$ $\therefore \frac{1}{(t-1)(t+2)} = \frac{\frac{1}{3}}{t-1} + \frac{-\frac{1}{3}}{t+2}$	1/2	
		$\therefore \frac{1}{2} \int \frac{dt}{(t-1)(t+2)} = \frac{1}{2} \int \left(\frac{\frac{1}{3}}{t-1} + \frac{-\frac{1}{3}}{t+2} \right) dt$	1/2	
		$= \frac{1}{6}\log(t-1) - \frac{1}{6}\log(t+2) + c$	1	
		$= \frac{1}{6} \log (x^{2} - 1) - \frac{1}{6} \log (x^{2} + 2) + c$ $\operatorname{or} = \frac{1}{6} \log \left(\frac{x^{2} - 1}{x^{2} + 2} \right) + c$	1/2	
	b) Ans	$E \text{ valuate: } \int_{0}^{7} \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} dx$ $I = \int_{0}^{7} \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} dx \qquad (1)$		04
		$I = \int_{0}^{7} \frac{\sqrt[3]{7 - x}}{\sqrt[3]{7 - x} + \sqrt[3]{7 - (7 - x)}} dx$ $I = \int_{0}^{7} \frac{\sqrt[3]{x}}{\sqrt[3]{7 - x} + \sqrt[3]{x}} dx - \dots (2)$	1	
		add (1) and (2) $I + I = \int_{0}^{7} \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} dx + \int_{0}^{7} \frac{\sqrt[3]{7 - x}}{\sqrt[3]{7 - x} + \sqrt[3]{x}} dx$ $2I = \int_{0}^{7} \frac{\sqrt[3]{x} + \sqrt[3]{7 - x}}{\sqrt[3]{x} + \sqrt[3]{7 - x}} dx$	1	
		$2I = \int_{0}^{1} dx$ $2I = \left[x\right]_{0}^{7}$	1	

Subject Code: 17301 Page No: 16/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel / Illiswers	William	Marks
4.		2I = 7 - 0	1/2	
		$I = \frac{7}{2} = 3.5$	1/2	04
	c)	Find the area enclosed between the parabola $y = x^2$ and the line $y = 4$		
	Ans	$A = \int_{0}^{\infty} y \ dx$		
		2 2	1	
		$A = \int_{-2}^{2} x^2 dx$		
		$= \left[\frac{x^3}{3}\right]_{-2}^2$	1	
		$= \left\lceil \frac{\left(2\right)^3}{3} \right\rceil - \left\lceil \frac{\left(-2\right)^3}{3} \right\rceil$	1	
		16		
		$=\frac{10}{3}$ or 5.33	1	04
	d)	A problem is given to the three students Sumit, Amit and Akbar, whose		
		chances of solving it are $\frac{1}{2}, \frac{1}{4}$, respectively. If they attempt to solve		
		a problem independently, find the probability that the problem is solved		
		by atleast one of them.		
	Ans	Given Probability of Sumit $P(A) = \frac{1}{2}$ $\therefore P(A') = 1 - \frac{1}{2} = \frac{1}{2}$		
		Probability of Sumit $P(B) = \frac{1}{3}$ $\therefore P(B') = 1 - \frac{1}{3} = \frac{2}{3}$		
		Probability of Sumit $P(C) = \frac{1}{4}$ $\therefore P(C') = 1 - \frac{1}{4} = \frac{3}{4}$		
		·	11/2	
		$= P (A \cup B \cup C)$ $= 1 - P (A \cup B \cup C)'$	1/2	
		$= 1 - P(A' \cap B' \cap C')$	1/2	
		$=1-\left(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\right)$		
		$\begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$	1/2	

Subject Code: 17301 Page No: 17/26 Summer-2016

Que.	Sub.	Madalanassa	M1	Total
No.	Que.	Model answers	Marks	Marks
4.		$= 1 - \frac{1}{4}$ $= \frac{3}{4} or 0.75$	1/2	04
	e)	In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain atleast 3 defective parts.		
	Ans	Given $n = 1000$ m = 2 r = at least three = 3, 4, 5 $\therefore p(r) = \frac{e^{-m}m^r}{r!}$ $p(r) = 1 - \left[p(0) + p(1) + p(2)\right]$ $= 1 - \left[\frac{e^{-2}(2)^0}{0!} + \frac{e^{-2}(2)^1}{1!} + \frac{e^{-2}(2)^2}{2!}\right]$ $= 1 - \left[0.1353 + 0.2706 + 0.2706\right]$ $= 1 - 0.6765$ $= 0.3235$	1 2	04
	f) Ans	In a certain examination 500 students appered. Mean score is 68 with S.D. 8. Find the number of students scoring i) Less than 50 ii) More than 60 (Given that area between $z = 0$ to $z = 2.25$ is 0.4878 and area between $z = 0$ to $z = 1$ is 0.3413) Given $x = 68$, $\sigma = 8$ Standard normal variate, $z = \frac{x - x}{\sigma}$		
		i) For $x = 50$, $Z = \frac{50 - 68}{8} = -2.25$	1/2	
		p = (area less than -2.25) = 0.5 - A(-2.25) $= 0.5 - 0.4878$	1/2	
		$= 0.0122$ $\therefore \text{ number of students} = 500 \times 0.0122 = 6.1 \approx 6$	1/2	

Subject Code: 17301 Page No: 18/26 Summer-2016

Que.	Sub.	Model Angreens	Modra	Total
No.	Que.	Model Answers	Marks	Marks
4.		ii) For $x = 60$, $Z = \frac{60 - 68}{8} = -1$	1/2	
		p = (area more than -1) = 0.5 + A(-1)	1/2	
		= 0.5 + 0.3413		
		= 0.8413	1/2	
		∴ number of students = $500 \times 0.8413 = 420.65 \approx 421$	1/2	04
5.		Attempt any <u>FOUR</u> of the following:		16
	a)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx$		
	Ans	<u>π</u>		
		$\int_{0}^{2} \frac{\sin x \cos x}{\cos^{2} x + 3 \cos x + 2} dx$		
		$Put \cos x = t$	1/2	
		$-\sin x dx = dt$, 2	
		$\sin x dx = -dt$ $\text{when } x \to 0 \text{ to } \frac{\pi}{2}$ $t \to 1 \text{ to } 0$	1/2	
		$\therefore I = -\int_{1}^{0} \frac{t}{t^2 + 3t + 2} dt$	1/2	
		$\therefore I = -\int_{1}^{0} \frac{t}{\left(t+1\right)\left(t+2\right)} dt$		
		Let $\frac{t}{(t+1)(t+2)} = \frac{A}{t+1} + \frac{B}{t+2}$		
		t = A(t+2) + B(t+1)		
		Put t = -1		
		-1 = A(1)	1/2	
		A = -1		
		Put t = -2 $-2 = B(-1)$		
		$\therefore B = 2$	1/2	
		$\frac{t}{(t+1)(t+2)} = \frac{-1}{t-1} + \frac{2}{t+1}$		
		$\therefore -\int_{1}^{0} \frac{t}{(t+1)(t+2)} dt = -\int_{1}^{0} \left(\frac{-1}{t+1} + \frac{2}{t+2} \right) dt$		
		$= \left[\log(t+1) - 2\log(t+2)\right]_{1}^{0}$	1	

Subject Code: 17301 Page No: 19/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel / Miswels	Marks	Marks
5.		$= [(\log 1 - 2 \log 2) - (\log 2 - 2 \log 3)]$ $= -3 \log 2 + 2 \log 3$ $= 2 \log 3 - 3 \log 2$	1/2	04
	b)	Evaluate: $\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$		
	Ans	$\int_{0}^{\frac{\pi}{4}} \log \left(1 + \tan x\right) dx$		
		$= \int_{0}^{\frac{\pi}{4}} \log \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) dx$	1/2	
		$= \int_{0}^{\frac{\pi}{4}} \log \left[1 + \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x} \right] dx$	1/2	
		$= \int_{0}^{\frac{\pi}{4}} \log \left(1 + \frac{1 - \tan x}{1 + \tan x} \right) dx$	1/2	
		$= \int_{0}^{\frac{\pi}{4}} \log \left(\frac{1 + \tan x + 1 - \tan x}{1 + \tan x} \right) dx$		
		$= \int_{0}^{4} \log \left(\frac{2}{1 + \tan x} \right) dx$	1/2	
		$= \int_{0}^{\frac{\pi}{4}} \left[\log 2 - \log \left(1 + \tan x \right) \right] dx$	1/2	
		$= \log 2 \int_{0}^{\frac{\pi}{4}} dx - \int_{0}^{\pi} \log (1 + \tan x) dx$		
		$\therefore I = \log 2 \left[x \right]_0^{\frac{\pi}{4}} - I$	1/2	
		$2I = \log 2 \left[\frac{\pi}{4} - 0 \right]$	1/2	
		$I = \frac{\pi}{8} \log 2$	1/2	04

Subject Code: 17301 Page No: 20/26 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
5.	c)	Find the area enclosed between the parabolas $y^2 = 4x$ and $x^2 = 4y$		
	Ans	Given $y^2 = 4x$		
		$x^2 = 4 y$		
		$\therefore y = \frac{x^2}{4}$		
		$\therefore \left(\frac{x^2}{4}\right)^2 = 4x$		
		$\therefore x^4 - 64x = 0$		
		$\therefore x = 0, 4$	1	
		$A = \int_{a}^{b} (y_1 - y_2) dx$		
		$\therefore A = \int_0^4 \left(2x^{\frac{1}{2}} - \frac{x^2}{4}\right) dx$	1	
		$\therefore A = \left(\frac{4}{3}x^{\frac{3}{2}} - \frac{x^3}{12}\right)_0^4$	1	
		$\therefore A = \frac{32}{3} - \frac{16}{3}$		
		$\therefore A = \frac{16}{3} \text{or} 5.33$	1	04
	d)	Solve $\frac{dy}{dx} = \cos(x + y)$		
	Ans	Put x + y = v	1/2	
		$1 + \frac{dy}{dx} = \frac{dv}{dx}$	1/2	
		$\frac{dy}{dx} = \frac{dv}{dx} - 1$		
		$\therefore \frac{dv}{dx} - 1 = \cos v$		
		$\therefore \frac{dv}{dx} = 1 + \cos v$		
		$\therefore \frac{1}{1+\cos v}dv=dx$		
		$\therefore \int \frac{1}{1 + \cos v} dv = \int dx$	1/2	

Subject Code: 17301 Page No: 21/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Thiswels	IVICIKS	Marks
5.		$\therefore \int \frac{1}{2\cos^2\left(\frac{v}{2}\right)} dv = x + c$	1/2	
		$\therefore \frac{1}{\sqrt{ sec ^2}} \left(\frac{v}{-} \right) dv = x + c$	1/2	
		$\therefore \frac{1}{2} \frac{\tan\left(\frac{v}{2}\right)}{\frac{1}{2}} = x + c$ $\therefore \tan\left(\frac{v}{2}\right) = x + c$	1/2	
		$\therefore \tan\left(\frac{v}{2}\right) = x + c$	1/2	
		$\therefore \tan\left(\frac{x+y}{2}\right) = x+c$	1/2	04
		OR		
		Put x + y = v	1/2	
		$1 + \frac{dy}{dx} = \frac{dv}{dx}$	1/2	
		$\frac{dy}{dx} = \frac{dv}{dx} - 1$		
		$\therefore \frac{dv}{dx} - 1 = \cos v$		
		$\therefore \frac{dv}{dx} = 1 + \cos v$		
		$\therefore \frac{1}{1+\cos v}dv=dx$		
		$\therefore \int \frac{1}{1 + \cos v} dv = \int dx$	1/2	
		$Put \tan \frac{v}{2} = t$		
		$dv = \frac{2 dt}{1 + t^2}$		
		$\cos v = \frac{1-t^2}{1+t^2}$	1/2	
		$\therefore \int \frac{1}{1 + \frac{1 - t^2}{1 + t^2}} \frac{2 dt}{1 + t^2} = x + c$	72	
		$\therefore 2 \int \frac{1}{1+t^2+1-t^2} dt = x+c$		

Subject Code: 17301 Page No: 22/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Miswers	Iviaiks	Marks
5.		$\therefore 2 \int \frac{1}{2} dt = x + c$ $\therefore t = x + c$	1/2	
		$\therefore \tan\left(\frac{v}{2}\right) = x + c$	1/2	04
		$\therefore \tan\left(\frac{x+y}{2}\right) = x+c$	1/2	
		OR		
		$Put x + y = v$ $1 + \frac{dy}{dx} = \frac{dv}{dx}$	1/2	
		dx = dx	1/2	
		$\frac{dy}{dx} = \frac{dv}{dx} - 1$		
		$\therefore \frac{dv}{dx} - 1 = \cos v$		
		$\therefore \frac{dv}{dx} = 1 + \cos v$		
		$\therefore \frac{1}{1 + \cos v} dv = dx$		
		$\therefore \int \frac{1}{1 + \cos v} dv = \int dx$	1/2	
		$\therefore \int \frac{1 - \cos v}{1 - \cos^2 v} dv = \int dx$	1/2	
		$\therefore \int \frac{1 - \cos v}{\sin^2 v} dv = x + c$	1/2	
		$\therefore \int \left(\frac{1}{\sin^2 v} - \frac{\cos v}{\sin^2 v} \right) dv = x + c$	1/	
		$\therefore \int (\cos ec^2 v - \cot v \cos ecv) dv = x + c$	1/2	
		$\therefore -\cot v + \cos ecv = x + c$	1/2	
		$\therefore -\cot(x+y) + \cos ec(x+y) = x+c$	1/2	04

Subject Code: 17301 Page No: 23/26 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
5.		$C_{2} = D_{1} = \left(2 + \frac{1}{2}\right) dx + \left(\frac{1}{2} + \frac{1}{2}\right) dx + \frac{1}{2} = 0$		11202210
	e)	Solve D.E. $(2xy + y^2)dx + (x^2 + 2xy + \sin y)dy = 0$		
	Ans	$M = 2xy + y^{2}, N = x^{2} + 2xy + \sin y$ $\partial M = \partial N$		
		$\frac{\partial M}{\partial y} = 2x + 2y , \frac{\partial N}{\partial x} = 2x + 2y$	1	
		$\therefore \frac{\partial M}{\partial m} = \frac{\partial N}{\partial m}$		
		$\begin{array}{ccc} \cdot \cdot & - \\ & \partial y & \partial x \end{array}$		
		∴ equation is an exact D.E.	1	
		Solution is		
		$\int_{\substack{y-cons \tan t \\ from \ x}} M dx + \int_{\substack{terms \ free \\ from \ x}} N dy = c$		
		$\int_{y-cons \tan t} (2x + 2y) dx + \int \sin y dy = c$	1	04
		$x^2 + 2xy - \cos y = c$	1	04
	f)	Solve D.E. $x \frac{dy}{dx} - y = x^2$		
	Ans	$\frac{dy}{x^2} - y = x^2$		
		$x\frac{dy}{dx} - y = x^2$	1/2	
		$\therefore \frac{dy}{dx} - \frac{1}{x}y = x$	1/2	
		$\therefore P = -\frac{1}{x} \text{ and } Q = x$		
		$IF = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$	1	
		$\therefore yIF = \int QIF dx + c$		
		$y\frac{1}{x} = \int x\frac{1}{x}dx + c$	1	
		$\frac{y}{x} = \int dx + c$		
		$\frac{y}{x} = x + c$	1	04
		$ or y = x^2 + cx $		
6.		Attempt any <u>FOUR</u> of the following:		16
	a)	Divide 80 into two parts such that their product is maximum.		
	Ans	consider x and y be the two parts.		

Subject Code: 17301 Page No: 24/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
6.		$\therefore x + y = 80$		
		y = 80 - x		
		product is, $P = xy$		
		P = x(80 - x)	1	
		$P = 80x - x^2$	1	
		$\frac{dP}{dx} = 80 - 2x$	1	
		$Let \frac{dP}{dx} = 0$		
		$\therefore 80 - 2x = 0$	1/	
		x = 40	1/2	
		$\frac{d^2P}{dx^2} = -2$	1	
		$\therefore P \text{ is maximum at } x = 40$		
		$\therefore x = 40, y = 40$	1/2	04
	b)	Find the equation of tangent and normal to the curve $4x^2 + 9y^2 = 40$		
		at point (1,2)		
	Ans	$4x^2 + 9y^2 = 40$		
		$\therefore 8x + 18y \frac{dy}{dx} = 0$		
		$\frac{dy}{dx} = \frac{-8x}{-8x} = \frac{-4x}{-4x}$	1	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		at point (1,2)		
		$\frac{dy}{dx} = \text{slope of tangent} = \frac{-4}{18} = \frac{-2}{9}$	1/2	
			1/2	
		slope of normal = $\frac{9}{2}$		
		Equation of tangent at $(1,2)$ is		
		$y - 2 = \frac{-2}{9}(x - 1)$	1	
		$\therefore 2x + 9y - 20 = 0$		
		Equation of normal at (1,2) is		
		$y-2=\frac{9}{2}(x-1)$		04
		$\therefore 9x - 2y - 5 = 0$	1	

Subject Code: 17301 Page No: 25/26 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
6.	c)	Solve the D.E. $\frac{dy}{dx} = e^{x-y} + xe^{-y}$		
	Ans	$\frac{dy}{dx} = \left(e^x + x\right)e^{-y}$	1	
		$e^{y}dy = (e^{x} + x)dx$	1	
		$e^{y} dy = (e^{x} + x) dx$ $\int e^{y} dy = \int (e^{x} + x) dx$	1	
		$e^y = e^x + \frac{x^2}{2} + c$	1	04
	d)	A box contain 7 red, 5 white and 8 green balls identical in all respect except colour. One ball is drawn at ramdom. Find the probility that it is not white.		
	Ans	Total number of balls $n = 20$		
		$n\left(S\right) = {}^{20}C_1 = 20$	1	
		$n(A) = {}^{15}C_1 = 15$	1	
		$P(A) = \frac{n(A)}{n(S)} = \frac{15}{20} = 0.75$	2	04
	e)	Two unbaised dice are thrown in the air. Find the probability that the sum of the score is greater than nine or an even number.		
	Ans	S = ((1,1), (1,2), (1,3), (1,4), (1,5), (1,6)		
		(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)		
		(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)		
		(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)		
		(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)		
		(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)	1	
		n(S) = 36 $A = ((1,1), (1,3), (1,5), (2,2), (2,4), (2,6),$		
		A = ((1,1), (1,3), (1,3), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6),		
		(5,1), (5,3), (5,5), (5,6), (6,2), (6,4),		
		(6,5),(6,6)	1	
		n(A) = 20		
		$p(A) = \frac{n(A)}{n(S)} = \frac{20}{36}$	2	04

Subject Code: 17301 Page No: 26/26 Summer-2016

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Nadel This wels	1.141110	Marks
6.		$\therefore p(A) = 0.556$		
	f)	In a test on 2000 electric bulbs, it was found that the life of particular make was normally distributed with average life of 2040 hours and standard deviation of 60 hours. Estimate the no.of bulbs likely to burn for:		
		i) between 1920 hours and 2160 hours ii) more than 2150 hours (Given that: $A(2) = 0.4772$, $A(1.83) = 0.4664$)		
	Ans	Given $x = 2040$, $\sigma = 60$ Standard normal variate, $Z = \frac{x - x}{\sigma}$ i) For $x = 1920$, $Z = \frac{1920 - 2040}{\sigma} = -2$		
		For $x = 2160$, $Z = \frac{2160 - 2040}{60} = 2$	1/2	
		p = (area between -2 and 2) = A(-2) + A(2)	1/2	
		= 0.4772 + 0.4772	1/2	
		= 0.9544	1/2	
		\therefore number of bulbs = 2000 × 0.9554 = 1908.8 \approx 1909		
		ii) For $x = 2150$, $Z = \frac{2150 - 2040}{60} = 1.83$	1/2	
		p = (area more than 1.83) = 0.5 - A(1.83)	1/2	
		= 0.5 - 0.4664	1/	
		= 0.0336	1/2	
		∴ number of bulbs = 2000 × 0.0336 = 67.2 ≈ 67	1/2	04
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		

