Лабораторная работа №2 Численное решение нелинейных уравнений и систем

<u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

№ варианта определяется как номер в списке группы согласно ИСУ.

Лабораторная работа состоит из двух частей: вычислительной и программной.

1 Вычислительная реализация задачи:

Состоит из двух частей и отражается ТОЛЬКО в отчете.

1 часть. Решение нелинейного уравнения

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
 - 2. Определить интервалы изоляции корней.
 - 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью $\varepsilon = 10^{-2}$.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
 - 5.1 Для метода половинного деления заполнить таблицу 1.
 - 5.2 Для метода хорд заполнить таблицу 2.
 - 5.3 Для метода Ньютона заполнить таблицу 3.
 - 5.4 Для метода секущих заполнить таблицу 4.
 - 5.5 Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.
 - 6. Заполненные таблицы отобразить в отчете.

Таблица 1

Уточнение корня уравнения методом половинного деления

№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
1							
2							
3							

Таблица 2

Уточнение корня уравнения методом хорд

				1 /1			
№ шага	a	b	X	f(a)	f(b)	f(x)	$ x_{k+1}-x_k $
1							
2							
3							

Таблица 3 Уточнение корня уравнения методом Ньютона

				- ' '	
№ итера- ции	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_{k+1}-x_k $
1					
2					
3					

Таблица 4 Уточнение корня уравнения методом секущих

		1 /1			, ,
№ итера- ции	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1					
2					
3					

Таблица 5 Уточнение корня уравнения методом простой итерации

2 10 mem	у то топпо кории уравнения методом простои итерадии					
№ итера- ции	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $		
ции						
1						
2						
3						

Таблица 6 **Вид нелинейного уравнения для вычислительной реализации**

№ вари- анта	Функция	№ вари- анта	Функция
1	$2,74x^3 - 1,93x^2 - 15,28x - 3,72$	14	$2,3x^3 + 5,75x^2 - 7,41x - 10,6$
2	$-1,38x^3 - 5,42x^2 + 2,57x + 10,95$	15	$-2,4x^3 + 1,27x^2 + 8,63x + 2,31$
3	$x^3 + 2,84x^2 - 5,606x - 14,766$	16	$5,74x^3 - 2,95x^2 - 10,28x - 3,23$
4	$x^3 - 1,89x^2 - 2x + 1,76$	17	$-0.38x^3 - 3.42x^2 + 2.51x + 8.75$
5	$-2.7x^3 - 1.48x^2 + 19.23x + 6.35$	18	$x^3 + 2,64x^2 - 5,41x - 11,76$
6	$2x^3 + 3,41x^2 - 23,74x + 2,95$	19	$2x^3 - 1,89x^2 - 5x + 2,34$
7	$x^3 + 2,28x^2 - 1,934x - 3,907$	20	$-2,8x^3 - 3,48x^2 + 10,23x + 9,35$
8	$3x^3 + 1,7x^2 - 15,42x + 6,89$	21	$1,8x^3 - 2,47x^2 - 5,53x + 1,539$
9	$-1,8x^3 - 2,94x^2 + 10,37x + 5,38$	22	$x^3 - 3,78x^2 + 1,25x + 3,49$
10	$x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$	23	$-x^3 + 5,67x^2 - 7,12x + 1,34$
11	$4,45x^3 + 7,81x^2 - 9,62x - 8,17$	24	$x^3 - 2,92x^2 + 1,435x + 0,791$
12	$x^3 - 4,5x^2 - 9,21x - 0,383$	25	$x^3 - 2,56x^2 - 1,325x + 4,395$
13	$x^3 + 4,81x^2 - 17,37x + 5,38$	26	$x^3 - 2,18x^2 - 3,27x + 1,43$

Выбор метода для вычислительной реализации задачи (табл. 1-5)

- 1 Метод половинного деления
- 2 Метод хорд
- 3 Метод Ньютона
- 4 Метод секущих
- 5 Метод простой итерации

Таблица 7 **Методы для вычислительной реализации**

№ вариан- та	Крайний правый корень	Крайний левый корень	Цен- траль- ный корень	№ вариан- та	Крайний правый корень	Крайний левый корень	Цен- траль- ный корень
1	1	4	5	14	3	5	1
2	5	2	4	15	5	1	4
3	1	5	3	16	2	5	3
4	5	1	4	17	1	4	5
5	2	5	4	18	3	5	2
6	3	2	5	19	5	1	4
7	1	5	3	20	1	3	5
8	5	2	4	21	2	3	5
9	1	5	4	22	5	3	1
10	3	1	5	23	4	5	1
11	1	4	5	24	2	3	5
12	4	5	2	25	5	1	4
13	5	2	3	26	2	5	3

2 часть. Решение системы нелинейных уравнений <u>Задание</u>:

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
 - 3. Для метода простой итерации проверить условие сходимости метода.
 - 4. Подробные вычисления привести в отчете.

Таблица 8 Система нелинейных уравнений для вычислительной реализации

№ варианта	Система нелинейных уравнений	Метод
1	$\begin{cases} sin(x+1) - y = 1,2 \\ 2x + cosy = 2 \end{cases}$	Метод простой итерации
2	$\begin{cases} tg(xy + 0.1) = x^2 \\ x^2 + 2y^2 = 1 \end{cases}$	Метод Ньютона
3	$\begin{cases} cos(x-1) + y = 0.5 \\ x - cosy = 3 \end{cases}$	Метод простой итерации
4	$\begin{cases} \sin(x+y) - 1,2x = 0,2\\ x^2 + 2y^2 = 1 \end{cases}$	Метод Ньютона
5	$\begin{cases} tg(xy + 0.3) = x^2 \\ 0.9x^2 + 2y^2 = 1 \end{cases}$	Метод Ньютона
6	$ \begin{cases} sin x + 2y = 2 \\ x + cos(y - 1) = 0.7 \end{cases} $	Метод простой итерации
7	$\begin{cases} 2x - \sin(y - 0.5) = 1 \\ y + \cos x = 1.5 \end{cases}$	Метод простой итерации
8	$\begin{cases} tgxy = x^2 \\ 0.8x^2 + 2y^2 = 1 \end{cases}$	Метод Ньютона
9	$\begin{cases} sin(x+y) = 1,5x - 0,1 \\ x^2 + 2y^2 = 1 \end{cases}$	Метод Ньютона

1.0	$(\sin(x+0.5) - y = 1)$	Метод простой итерации
10	, , , , ,	· · · · · · · · · · · · · · · · · · ·
1.1	$\begin{cases} \cos(y-2) + x = 0 \\ (tg(xy+0,2) = x^2 \end{cases}$	Метод Ньютона
11	$\begin{cases} x^2 + 2y^2 = 1\\ (x + \sin y = -0.4 \end{cases}$	
12	1	Метод простой итерации
12	$\begin{cases} 2y - \cos(x+1) = 0\\ \sin y + 2x = 2 \end{cases}$	
13	$\begin{cases} siny + 2x = 2 \end{cases}$	Метод простой итерации
	$\begin{cases} y + \cos(x - 1) = 0.7\\ (\sin(x + y) - 1.4x = 0 \end{cases}$	N. II
14		Метод Ньютона
	$\begin{cases} x^2 + y^2 = 1\\ (\sin(x-1) + y = 1,5 \end{cases}$	
15	, , , , , , , , , , , , , , , , , , , ,	Метод простой итерации
	$\begin{cases} x - \sin(y+1) = 1 \\ y - \cos x = 2 \end{cases}$	Метод простой итерации
16		Метод простои итерации
	$\begin{cases} (x + \cos(y - 1) = 0.8 \\ tgxy = x^2 \end{cases}$	Метод Ньютона
17		
1.0	$\begin{cases} 0.5x^2 + 2y^2 = 1\\ (sin(y+2) - x = 1.5 \end{cases}$	Метод простой итерации
18		1
19	$\begin{cases} y + \cos(x - 2) = 0.5\\ (\sin(y - 1) + x = 1.3 \end{cases}$	Метод простой итерации
19	$\begin{cases} y - \sin(x+1) = 0.8\\ (\sin(x+y) - 1.1x = 0.1 \end{cases}$	
20		Метод Ньютона
20	$\begin{cases} x^2 + y^2 = 1\\ \cos y + x = 1.5 \end{cases}$	
21		Метод простой итерации
	$\begin{cases} (2y - \sin(x - 0.5) = 1 \\ (tg(xy + 0.3) = x^2 \end{cases}$	N. II
22		Метод Ньютона
	$0.5x^2 + 2y^2 = 1$ $(sin(y + 0.5) - x = 1$	
23		Метод простой итерации
	$\begin{cases} y + \cos(x - 2) = 0\\ (\sin(x - y) - xy = -1 \end{cases}$	Метод Ньютона
24		МСТОД ПЪЮТОНА
	$\begin{cases} 0.3x^2 + y^2 = 2\\ (\cos(x+0.5) + y = 1 \end{cases}$	Метод простой итерации
25	$\begin{cases} siny - 2x = 2 \end{cases}$	потод простои итерации
2.5	$(\cos(x+0.5) + y = 0.7)$	Метод простой итерации
26	$\begin{cases} siny - 0.5x = 2 \end{cases}$, , <u>r</u> r r
L	· · · · · ·	

2 Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы (см. табл. 9) должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения x_0 (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.

8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал.

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x_1 , x_2 .
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$ 8. Проверить правильность решения системы нелинейных уравнений.

Выбор метода для программной реализации задачи

Решение нелинейных уравнений:

- 1 Метод половинного деления
- 2 Метод хорд
- 3 Метод Ньютона
- 4 Метод секущих
- 5 Метод простой итерации

Решение систем нелинейных уравнений:

- 6 Метод Ньютона
- 7 Метод простой итерации

Таблица 9 Методы, реализуемые в программе

№ варианта	Методы в программе	№ варианта	Методы в программе
1	2, 3, 5, 6	14	2, 4, 5, 7
2	1, 3, 5, 7	15	2, 3, 5, 6
3	2, 4, 5, 6	16	1, 4, 5, 6
4	2, 3, 5, 7	17	2, 3, 5, 7
5	1, 3, 5, 7	18	1, 4, 5, 6
6	1, 4, 5, 6	19	2, 3, 5, 6
7	2, 4, 5, 6	20	2, 4, 5, 7
8	1, 3, 5, 7	21	1, 4, 5, 6
9	2, 3, 5, 7	22	2, 4, 5, 7
10	2, 4, 5, 6	23	2, 3, 5, 6
11	2, 3, 5, 7	24	1, 4, 5, 7
12	1, 3, 5, 6	25	2, 3, 5, 6
13	1, 4, 5, 6	26	1, 4, 5, 6

3 Оформить отчет, который должен содержать:

- 1. Титульный лист.
- 2. Цель лабораторной работы.
- 3. Порядок выполнения работы.
- 4. Рабочие формулы используемых методов.
- 5. Графики функций на исследуемом интервале.
- 6. Заполненные таблицы вычислительной части 1 лабораторной работы (в зависимости от варианта: табл. 1-5).
- 7. Подробное решение системы нелинейных уравнений (вычислительная часть 2).
- 8. Листинг программы, по крайней мере, коды используемых методов.
- 9. Результаты выполнения программы при различных исходных данных.
- 10. Выводы

Контрольные вопросы к защите лабораторной работы:

- 1. Понятие точного и приближенного решений нелинейного уравнения.
- 2. Основная идея метода половинного деления?
- 3. Может ли метод половинного деления найти точное значение корня уравнения?
- 4. В чем суть метода Ньютона?
- 5. Как выбирается начальное приближение для метода Ньютона?
- 6. Идея метода хорд?
- 7. Как выбирается начальное приближение для метода хорд с фиксированным концом интервала изоляции корня?
- 8. По каким причинам методы хорд и касательных предпочтительнее метода простой итерации?
- 9. Какой из методов является двухшаговым методом? Как запустить этот метод?
- 10. В чем суть метода простой итерации?
- 11. Каковы условия применяемости метода простой итерации?
- 12. Как правильно преобразовать исходное нелинейное уравнение y = f(x) к виду $x = \varphi(x)$?
- 13. Каковы основные критерии окончания итерационного процесса?
- 14. Как оценить необходимое количество итераций в методе биссекции при заданной точности?
- 15. Алгоритм решения системы нелинейных уравнений методом Ньютона?
- 16. Каковы преимущества и недостатки графического метода отделения решения для системы двух нелинейных уравнений?
- 17. В каких случаях можно применить метод простой итерации для решения системы нелинейных уравнений?
- 18. Когда можно считать итерационный процесс законченным при использовании метода простой итерации для решения системы нелинейных уравнений?
- 19. Что такое сходимость и скорость сходимости численных методов?
- 20. Дайте определение устойчивости итерационного метода?
- 21. Какой метод решения нелинейных уравнений наиболее чувствителен к выбору начального приближения (с точки зрения скорости сходимости)?
- 22. Возможно ли применение метода Ньютона для решения уравнения $x^3 x^2 25x + 2 = 0$ на интервале [5, 6]?
- 23. Пусть применен один шаг метода хорд для решения нелинейного уравнения $x^3 x^2 25x + 2 = 0$ на интервале [5, 6]. Какой интервал будет получен для дальнейшего вычисления корня?
- 24. За какое количество итераций возможно решение нелинейных уравнений методом бисекций на отрезке [0; 2] с точностью $\varepsilon = 10^{-3}$?
- 25. Сколько итераций необходимо для решения уравнения x+2=0 методом бисекций с точностью $\varepsilon=10^{-6}$ на отрезке [-3; -1]?