EduAerospace

AE 663 : Software Development Techniques for Engineering and Scientists

Outline

- Outline
- 2 CFD-1D
 - Advection
 - Burger
 - ShockTube
 - Special Feartures

- Outline
- 2 CFD-1D
 - Advection
 - Burger
 - ShockTube
 - Special Feartures
- 3 Potential Flows

Implemented Advection Scheme

$$u_t + cu_x = 0 (1)$$

- Incorporated Schemes: FTFS,FTBS,FTCS,Upwind Scheme,LaxWendroff Scheme
- FTBS

$$u_i^{n+1} = u_i^n - (c\frac{\Delta t}{\Delta x}) * (u_i^n - u_{i-1}^n);$$

• LaxWendroff Scheme $\lambda = c \frac{\Delta t}{\Delta x}$

$$u_i^{n+1} = u_i^n - ((\lambda/2.0)(u_{i+1}^n - u_{i-1}^n)) + ((\lambda^2/2.0)(u_{i+1}^n - 2.0u_i^n + u_{i-1}^n))$$

- Boundary Condition Incorporated
 - Free: Ghost Cell values equal to neighbour cell
 - Reflect: Ghost Cell velocity is opposite to neighbouring cell
 - Complement: Ghost Cell value equals to neighbour cell of other Ghost Cell

• Implemented Burger Scheme

$$u_t + cu_x = 0 (2)$$

- Initial Conditions
 - backward step: For shock propagation and smearing
 - forward step: For expansion evolution and smearing
 - backward ramp: For shock formation from just a smooth slope
 - forward ramp: For expansion evolution from constant slope
- Scheme
 - Lax Method $u_i^{n+1} = \frac{(u_{i+1}^n + u_{i-1}^n)}{2.0} (\frac{\Delta t}{\Delta x}) \frac{(u_{i+1}^{n-2} u_{i-1}^{n-2})}{4.0}$

- Implemented 1D Shock Tube Problem
 - Implemented HLL,HLLC,Vanleer, Steger Warming, AUSM, AUSM⁺,AUSM⁺up
 - Incorported the various parameters for $AUSM^+, AUSM^+up$
 - Incorported the various other parameters in Sod Shock Tube
 - Incorporated the Iteration Time step
 - Incorporated the option for various output paramters

- Implemented tests.py, to check the user defined scheme.
- Incorporated runtime messages in Status Bar
- Incorporated user defined iterating time step
- Plot parameters can be changed while simulating
- Incorporated short keys for special buttons
- Incorporated value range for different parameters including decimal points.
- Incorporated mouse increment with parameter type

Basic Elements

Basic input features in GUI

- Add desired potential elements
- Interactive plot : Add -> will be shown in the figure, message in status bar
- Auto resizing of plotwindow Not using auto_rescale(on)

Basic input features in GUI

- Add desired potential elements
- Interactive plot : Add -> will be shown in the figure, message in status bar
- Auto resizing of plotwindow Not using auto_rescale(on)
- Can remove the elements added!... Also all at once!!!

Basic input features in GUI

- Add desired potential elements
- Interactive plot : Add -> will be shown in the figure, message in status bar
- Auto resizing of plotwindow Not using auto_rescale(on)
- Can remove the elements added!... Also all at once!!!
- TODO: Edit the elements added

- Can plot stream lines a bit slow
 - For axis whose length is 10 units, 200×300 values are being considered

- Can plot stream lines a bit slow
 - For axis whose length is 10 units, 200×300 values are being considered
- Tracking evolution of particles real time

- Can plot stream lines a bit slow
 - For axis whose length is 10 units, 200×300 values are being considered
- Tracking evolution of particles real time
 - Add particles at any desired locations

- Can plot stream lines a bit slow
 - For axis whose length is 10 units, 200×300 values are being considered
- Tracking evolution of particles real time
 - Add particles at any desired locations
 - Add patches
 - At any X or Y location
 - 2 Square
 - Circular

- Can plot stream lines a bit slow
 - For axis whose length is 10 units, 200×300 values are being considered
- Tracking evolution of particles real time
 - Add particles at any desired locations
 - Add patches
 - At any X or Y location
 - 2 Square
 - Circular
- TODO: Release particles in rectangular, elliptical, parabolic, hyperbolic patches

• Can play or pause the simulation

- Can play or pause the simulation
- Add/Remove elements. Can add new particle during simulation
- Delete all the particles added for evolution.

- Can play or pause the simulation
- Add/Remove elements. Can add new particle during simulation
- Delete all the particles added for evolution.
- Clear plot without changing the current axis range

- Can play or pause the simulation
- Add/Remove elements. Can add new particle during simulation
- Delete all the particles added for evolution.
- Clear plot without changing the current axis range
- Can set desired axis limits for simulation!!!

User option to select blob to treat the simulation - Currently using Chorin blob

- User option to select blob to treat the simulation Currently using Chorin blob
- Velocity, Velocity potential(ϕ) contours

- User option to select blob to treat the simulation Currently using Chorin blob
- Velocity, Velocity potential(ϕ) contours
- Keyboard shortcuts in plot window: + for zoom in..etc

- User option to select blob to treat the simulation Currently using Chorin blob
- Velocity, Velocity potential(ϕ) contours
- Keyboard shortcuts in plot window: + for zoom in..etc
- Continuous potential elements implementation

Thank you