

What's new in ML.NET? (Machine Learning for .NET) Microsoft* Most Valuable Professional

Miguel Arturo Valle Pelaez Microsoft MVP IA @mavpelaez

About: Miguel Aturo Valle Pelaez

Microsoft MVP IA

Director EEQIS SAC

Director SQL PASS Chimbote

Director de Capitulo I-S-C CAD Chimbote

Director General Instituto BITEC

Maestría Gerencia de Operaciones y Logística UPC

Maestrando MBA Centrum Catolica y Master Internacional EADA

Maestría UPAO Sistemas de Información

Master Liderazgo Gerencial

Machine learning, Business Intelligence Oberta Cataluña

Diplomado en Gerencia de Proyectos UPC

Diplomado en Investigación Científica

Diplomado en Soluciones Informáticas

Ingeniero Informático y de sistemas

Catedrático universitario a tiempo completo con 12 años de experiencia dictando

Microsoft 16 años de experiencia en la Arquitectura de TI

Experiencia previa lenguaje y ML

Matematica fisica en ML

SOLUCIÓN:

Pendiente de L_1 :

$$m_1 = \frac{y_2 - y_1}{x_2 - x_1}, \quad m_1 \in L_1$$

Recta perpendicular a L₁

$$egin{aligned} & \pmb{L_1} \perp \pmb{L_2} \\ & m_2 = -1 \cdot (m_1)^{-1} \\ & m_2 = \frac{x_1 - x_2}{y_2 - y_1}, \qquad m_2 \in L_2 \end{aligned}$$

Ecuación de las rectas L_1 y L_2

$$L_1$$
: $y - y_1 = m_1(x - x_1)$...(1)

$$L_2$$
: $y - y_3 = m_2(x - x_3)$...(2)

Lenguaje ML

```
// Efecto magnético:
// Algoritmo aplicando ecuación de la recta para que el puntero se mueva conforme la linea:
double x1, x2, x;
double y1, y2, y;
double delta;
x1 = linea[index].X1;
x2 = linea[index].X2;
y1 = _linea[index].Y1;
y2 = _linea[index].Y2;
double m1, m2;
if (Math.Abs(x1 - x2) > 0 && Math.Abs(y1 - y2) > 0) // Diagonal
    m1 = (y2 - y1) / (x2 - x1); // Pendiente normal
    m2 = (x1 - x2) / (y2 - y1); // Pendiente perpendicular
   x = (m1 * x1 - m2 * px - y1 + py) / (m1 - m2);
   x = (x - 8) * 1.1; // Ajuste maximizar 'x'
   y = m1 * (x - x1) + y1;
   delta = ((py - y) / 5);
   if (delta < -30 || delta > 15) { this.SoltarImagen(); return; }
   y = y + delta; // Ajuste delta en 'y'
    Canvas.SetLeft(mypointer, x - mypointer.ActualWidth / 2);
    Canvas.SetTop(mypointer, y - mypointer.ActualHeight / 2);
    this.SoltarImagen(x, y);
    if (_scopeCount > 2) this.NuevaRonda();
else if (Math.Abs(y1 - y2) <= 0) // Horizontal
   x = (px - 8) * 1.1; // Ajuste maximizar 'x'
   delta = ((py - y1) / 5);
   if (delta < -30 || delta > 15) { this.SoltarImagen(); return; }
   y = y1 + delta; // Ajuste delta en 'y'
    Canvas.SetLeft(mypointer, x - mypointer.ActualWidth / 2);
    Canvas.SetTop(mypointer, y - mypointer.ActualHeight / 2);
    this.SoltarImagen(x, y);
   if (_scopeCount > 2) this.NuevaRonda();
else if (Math.Abs(x1 - x2) <= 0) // Vertical
   X = X1 + ((pX - X1) / 5);
   y = (py - 8) * 1.1;
    Canvas.SetLeft(mypointer, x - mypointer.ActualWidth / 2);
    Canvas.SetTop(mypointer, y - mypointer.ActualHeight / 2);
3
```

Proceso efecto magnetico

Lenguaje F#

Como resultado nos dice que en la foto se observa una persona hombre sonriendo y una pequeña niña con una pelota

Introduccion rapida en ML.NET

ML.NET

Un marco de aprendizaje automático de código abierto y multiplataforma

Creado para desarrolladores de .NET

ML personalizado hecho fácil con herramientas

Extendido con TensorFlow y más

De confianza y probado a escala

ML.NET corre en cualquier lugar

Sorporta Frameworks:

.NET Core (Natively)

.NET Framework (Natively)

Python with NimbusML (Python bindings)

Sorporta arquitectura procesador.

x64

x86

Algunas cosas que puedes hacer con ML.NET ...

Sentiment analysis

Analyze the sentiment of customer reviews using a binary classification algorithm.

Sentiment analysis sample >

Product recommendation

Recommend products based on purchase history using a matrix factorization algorithm.

Product recommendation sample >

Price prediction

Predict taxi fares based on distance traveled etc. using a regression algorithm.

Price prediction sample >

Customer segmentation

Identify groups of customers with similar profiles using a clustering algorithm.

Customer segmentation sample >

GitHub labeler

Suggest the GitHub label for new issues using a multi-class classification algorithm.

GitHub labeler sample >

Fraud detection

Detect fraudulent credit card transactions using a binary classification algorithm.

Fraud detection sample >

Spam detection

Flag text messages as spam using a binary classification algorithm.

Spam detection sample >

Image classification

Classify images (e.g. broccoli vs pizza) using a TensorFlow deep learning algorithm.

Image classification sample >

Sales forecasting

Forecast future sales for products using a regression algorithm.

Sales forecasting sample >

https://github.com/dotnet/machinelearning-samples

Flujo de trabajo Machine Learning

Crear modelos

Modelo de consumidores

Tres formas de usar ML.NET...

ML.NET

Model Builder

(Visual Studio UI)

ML.NET

CLI
(Command-Line
Interface)

ML.NET esta probado para la batalla y listo para la empresa

Productos Microsoft

(Usando ML.NET internamente hace > 8 años)

Bing - Ad Predictions

Excel - Chart Recommendations

Power Point - Design Ideas

Microsoft Defender – **Antivirus Threat Protection**

Azure ML Studio – Multiple components
Azure Stream Analytics - Anomaly Detection

Clientes

(ML.NET v1 desde mayo 2019)

Evolution Software - Hazelnut drying time prediction

Williams Mullen – Law document classification

Sig Parser – **E-mail spam detection**

Brenmor – Medical patient survey classification

endjin – Newsletter article classification

+ more

La forma más fácil de crear un modelo ML.NET : Construir modelos en Visual Studio

ML.NET Construir Modelo Accesible machine learning in Visual Studio

- Una interfaz de usuario simple para construir fácilmente modelos ML personalizados con ML automatizado
- Cargar desde archivos y bases de datos
- Generar código para capacitación y consumo.
- Ejecuta todo local

Download VS vsix: http://aka.ms/mlnetmodelbuilder

Model Builder en Visual Studio

Demo 1:

ML.NET CLI

- Construir fácilmente modelos ML personalizados con ML automatizado
- Multiplataforma (Windows, Linux, MacOS)
- Generar código para capacitación y consumo.
- Accesible

macOS / Linux (Bash)

Windows (PowerShell and CMD)

Qué hay de nuevo para la lectura de datos lectura de Base de datos

Lectura de Base de datos

Escenarios habilitados

- Entrenamiento directamente contra bases de datos relacionales.
- Código simple y listo para usar
- Admite cualquier RDBMS compatible con System.Data
- Actualmente en versión preliminar (versión 1.4preview)

Demo 2: Cargando Base de datos

Que hay de nuevo para

Deep Learning in ML.NET

Deep Learning modelos con ML.NET

- Agregue inteligencia basada en modelos basados en DNN a sus aplicaciones
 .NET
- Permite la visión por computadora y muchos más dominios de Deep Learning

Bibliotecas líderes en aprendizaje profundo e interoperabilidad

La estrategia de Microsoft es integrar esas bibliotecas de bajo nivel y tiempos de ejecución en ML.NET:

Actualmente compatible con ML.NET:

- TensorFlow
- ONNX

En la hoja de ruta a largo plazo de ML.NET:

- pyTorch

Liderando el aprendizaje profundo "modelos preentrenados" (arquitecturas DNN)

Computer Vision

Clasificacion Imagenes

- Google InceptionV3
- Microsoft ResNet
- NASNet
- Oxford VGG Model
- MobileNetV2
- etc.

Deteccion de Objetos

- Yolo (You Only Look Once)
- R-CNN
- SPP-net
- Fast R-CNN
- Faster R-CNN
- etc.

Audio y habla

- Wavenet
- espnet
- waveblow
- deepspeech2
- loop
- tacotron
- etc.

NLP (Natural language processing)

Modelos generativo

... otros dominios...

- Gran inversión / costo en investigación de arquitectura DNN más capacitación costosa en grandes conjuntos de datos realizados por organizaciones como Google, Microsoft, Facebook, universidades e investigadores.
- Puede aprovecharlo simplemente consumiendo modelos pre-entrenados

Consumir modelos de entrenado deep learning con ML.NET

Escenario: clasificacion imagen (Consumiendo el modelo)

Ejemplo de entrenamiento de modelo (Clasificacion de Imagen):

- Google Inception v3, NASNet
- Microsoft ResNet
- Oxford **VGG** Model, etc.

Consumiendo entrenado deep learning modelo con ML.NET

Escenario: **Deteccion de objectos** (Consumiendo el modelo)

Entrenando Modelo Deep learning (i.e. Deteccion de Objecto)

Ejemplo de entrenamiento Modelo para deteccion objeto:

- YOLO (Solo miras una vez)
- Faster R-CNN
- SSD, etc.

Que sucede si deseo clasificar based on my own custom domain?

Escenario: Clasficacion Imagenes (entrenamiento)

Then you train your own custom deep learning model with ML.NET

- Al entrenar, ML.NET se basa en TensorFlow debajo (Transfer Learning).
- Actualmente, ML.NET admite la "capacitación de ImageClassifier" (Vista previa)
 El entrenamiento de detección de objetos llegará pronto

Clasificación de imágenes en ML.NET Model Builder (extensión VS)

- Una interfaz de usuario simple para construir fácilmente modelos ML personalizados con ML automatizado
- Cargar directamente carpetas de imágenes
- Generar código para capacitación y consumo.
- Ejecuta todo local

(*) La función del clasificador de imágenes en Model Builder será una vista previa pública en los próximos lanzamientos.

A partir del 23 de septiembre de 2019, esta característica aún no se ha lanzado públicamente en Model Builder. Sin embargo, ya puedes usar la API en la vista previa pública.

Presentación del problema

Necesidad de que los agricultores de diferentes zonas agrícolas del Perú cuenten con información para prevenir la enfermedad del hielo.

Región	Superficie cosechada (ha)			Producción (t)		Rendimiento (t/ha)			Precio al productor (S//t)				
Region	Oct	Nov	Dic	Oct	Nov	Dic	Oct	Nov	Dic	Oct	Nov	Dic	
NACIONAL	10 955	14 617	15 745	221 569	283 320	270 708	20,2	19,4	17,2	538	507	612	
Amazonas	317	133	94	5 015	2 056	1 495	15,8	15,5	15,9	659	808	681	
Ancash	108	215	395	1 249	2 333	4 188	11,6	10,8	10,6	809	750	697	
Apurimac	59	44	353	1 222	759	5 823	20,7	17,3	16,5	471	436	428	
Arequipa	1 475	1 707	886	53 057	58 414	30 443	36,0	34,2	34,4	593	388	359	
Ayacucho	23	75	223	401	1 192	4 121	17,4	15,9	18,5	590	601	404	
Cajamarca	2 039	2 526	3 3 1 9	23 713	28 935	35 296	11,6	11,5	10,6	869	679	726	
Cusco	6	33	232	90	525	3 004	15,0	15,9	12,9	800	700	727	
Huancavelica	612	660	678	6 911	8 520	6 780	11,3	12,9	10,0	480	306	431	
Huánuco	3 972	4 947	4 323	75 967	93 240	84 400	19,1	18,8	19,5	406	352	433	
Ica	585	158	0	19 460	5 104	0	33,3	32,3	-	463	532	-	
Junin	72	601	1 059	1 229	10 012	18 796	17,1	16,7	17,7	435	384	316	
La Libertad	946	1 795	1 404	19 141	35 792	28 972	20,2	19,9	20,6	592	695	752	
Lambayeque	0	0	150	0	0	1 200	-	-	8,0	-	-	500	
Lima (excluye LM)	444	858	680	10 854	23 451	17 081	24,4	27,3	25,1	415	285	241	
Lima Metropolitana	22	9	0	631	222	0	28,7	24,7	-	320	557	-	
Moquegua	3	0	4	83	0	52	27,7		13,0	750		630	
Pasco	2	58	197	42	1 163	3 921	21,0	20,1	19,9	500	307	303	
Piura	262	29	233	2 358	191	2 223	9,0	6,6	9,5	857	837	647	
Puno	0	760	1 509	0	11 227	22 792	-	14,8	15,1	-	1 974	1 937	
Tacna	8	10	7	147	183	121	18,4	18,3	17,3	900	900	831	

G.6 Perú: Producción y precio al productor de papa

Prod. 2016 Prod. 2017 Precio 2016 Precio 2017

Modelo Analítico Predictivo:

Mapa de Estrategia y Tecnología

	Estrategia	Tomar decisiones acertadas gracias al uso del big data, IOT y aplicación de IA para poder tratar las plantas de la papa en el proceso de crecimiento, basado											
		en ciertos parámetros permitiendo enviar mensajes de alerta a los agricultores											
	Objetivo	demuestre la viabilidad económica del proyecto para predios agrícolas,	Diseñar un sistema que permita la interacción entre un dispositivos electrónicos instalados en una áreas agrícolas para monitorear y controlar diferentes parámetros climáticos.	Desarrollar un módulo de análisis predictivo de comportamientos climático, que permita el análisis de la información de parámetros climáticos recolectados	Desarrollar un módulo de toma de decisiones y alertas a traves de comunicaciones web y moviles, para la prevención de enfermedades agrícolas.			:					
	Caso de Uso l	Entender la geolocalización de zonas de cultivo	Muestreo y datos requeridos	Análisis predictivo	Pruebas e Implementación con sensores IOT	Entrenamiento/Aprendizaje	:	:					
	Necesidadi	Extraer datos GIS, almacenarlos, analizarlos, visualizarlos	Extraer datos transaccionales, de los sensores y fuentes de datos del tiempo NASA, SENAMI	Aplica metodologia y algoritmos de Mineria de datos como serie de tiempo	Desarolla las interfaces del software y la comunicación los sensores	Desarolla pruebas para calibrar el modelo							
	Machine Learning e IA		X	X	х	Х							
	GIS	X	X										
	Big Data & Analítica	X	X	X	х	X			Ш				
	IoT	X	X	X	x	X			Ш				
OGIA	ChatBot								\square				
ECNOLO	IVR								\square	\Box			
	cloud Computing		X	x	х	х			Ш				
TE	App Movil	X				X			Ш				
	Robótica												

Fuente: Elaboración propia

Sensor agrícola USP

Sensores

Seguridad

Variables climáticas

Variables

Categoría de variable

Unidad de medida

Tipo unidad de medida

Vegetales

Plagas

Monitoreo

Variables climáticas

ID	Abreviatura	Nombre de la variable	Categoría	UM	Tipo UM	Editar
031	UVDOSE	Dosis UV	radiación solar	índice UV	indicador	Editar
029	EMC	Equilibrio de contenido de humedad	humedad	índice EMC	indicador	Editar
028	ET	Evotranspiración	vapor	milímetro cúbico (mm³)	volumen	Editar
027	RAINRATE	Intensidad de Iluvia	lluvia	milimetros cúbicos por hora (mm³/h)	velocidad	Editar
026	RAIN	Lluvia	lluvia	milímetro cúbico (mm³)	volumen	Editar
025	RADSOLMAX	Radiación solar máxima	radiación solar	watts por metro cuadrado (W/m²)	irradiancia	Editar
024	RADSOL	Radiación solar	radiación solar	watts por metro cuadrado (W/m²)	irradiancia	Editar
023	UVMAX	Índice UV máxima	radiación solar	índice UV	indicador	Editar
022	UV	Índice UV	radiación solar	índice UV	indicador	Editar
021	ENERGSOL	Energía solar	radiación solar	langley (Ly)	insolación	Editar
020	PRESBAR	Presión barométrica	presión atmosférica	milibars (mb)	presión	Editar
019	AIRDENS	Densidad del aire	presión atmosférica	kilogramo por metro cúbico (kg/m³)	densidad	Editar
018	WINDCHILL	Sensación térmica	calor	grados centigrados (°C)	temperatura	Editar
017	THSW	Índice THSW	calor	grados centigrados (°C)	temperatura	Editar

ML.NET recursos

Get started at http://dot.net/ml

Try the samples at http://aka.ms/mlnetsamples

Read the docs at http://aka.ms/mlnetdocs

Watch ML.NET videos at https://aka.ms/mlnetyoutube

Request features or contribute at http://aka.ms/mlnet

Thank you!

Miguel Arturo Valle Pelaez Microsoft MVP IA @mavpelaez

