10.0 - Week 10 - Workshop (MA)

Learning Objectives

- Dictionary ADT and Hash Tables
- Collision Resolution

Week 10 Padlet Discussion Board link: https://monashmalaysia.padlet.org/fermi/2022week10

Once you've read the dictionary, every other book you read is just a remix.

What is Dictionary?

Question Submitted Oct 3rd 2022 at 10:24:06 am
What is referred to as <i>Dictionary ADT</i> in computer science?
Not sure but it must be <i>that thing</i> from the previous lesson
It is a listing of words in one or more specific languages, often arranged <i>alphabetically</i> .

It is a *collection* of (key, value) pairs, such that each possible key appears at most once in the collection, with efficient *insertion*, *deletion*, *modification* and *lookup* operations for the keys.

Dictionary ADT

Integer keys - arrays suffice!

What if keys aren't integers? Hash tables:

Hash Functions

Let K be the set of *possible keys* and $\mathcal T$ be the *table*. A hash function h is a *mapping*:

$$h: K \rightarrow \{0,\ldots,|\mathcal{T}|-1\}$$

Some properties:

- efficiency
- type-dependency
- uniformity
- The final goal is to get rid of *collisions*.

But the world is not perfect:

Trying out Hash Functions

Now, we're going to try implementing two hash functions for strings, and see how they distribute the hashes of different keys.

- simple_hash(): Takes the numeric value of the first character of the string.
- better_hash(): A hash function taking into account all characters of the string.

When we're done, we'll consider a table of size 17 and will compute hash values for 1700 randomly selected words

Ideally, a hash function should $\mathit{map} \approx 100 = \frac{1700}{17}$ words into every hash value.

Collisions happen...

A

Even if we are careful with the choice of our hash function and the (**large enough**) size of the table, *collisions may happen*!

How do we deal with them?

Question Submitted Oct 3rd 2022 at 10:24:26 am
What should we do when a collision happens?
Nothing! In the end, it will still be fine, right?
My hash functions are perfect !
• We need to apply one of the <i>collision resolution</i> mechanisms.
Simple! Just increase the table size and rehash!

Linear Probing: Adding Things

The idea is simple: if a slot for a given hash value is *occupied*, find the *next free* slot.

Assume we have the following collisions:

 $\begin{tabular}{ll} Let's implement & __setitem__() & \textit{for inserting} & keys in the hash table. Also, try to analyze its complexity. \\ \end{tabular}$

Linear Probing: Finding Things

To **find** something, we just have to start at the computed hash, and look forward until we find the key, or reach an empty slot.

Assume we have the following collisions:

Now let's implement __getitem__() for **searching for** keys in the hash table. Also, try to analyze its complexity.

Dealing with Clustering

×

Linear Probing is susceptible to *clustering* - see the previous slides.

Solutions are:

- 1. *increase* table size + rehash() + hope for the best!
- 2. consider alternative forms of hashing, e.g. separate chaining:

array of buckets

linked list of elements in each bucket

i

Separate chaining is out of scope of this unit but you can read about it if interested.

Feedback Form

Weekly Workshop Feedback Form

