Semi-linear operators on q-le Rham cohomology Zhiyou Wu

4-de Rham (Scholze, 2017).

Thm (Blass-Scholze, Wagner)

 $q \Omega_{R/Z}$ is intep of the choice of \square up to q-isom. So we can glue to $q \Omega_{x/Z} \in \widehat{\mathbb{D}}(\mathbb{Z}\mathbb{E}q_{-1}\mathbb{I})$.

9 Warning: Still lack a conceptual understanding of 9.0×1.2 .

Note 9 Dx/2 / (9-1) = Dx/2

q-de Rhan gives a way to glue different p-adic Hodge Coh together (for varying p).

Conj (Scholze 17. 86)

(1) p prime. \exists operator $P_{qdR} \subseteq (q \Omega_{plx})_p^n$. which on frames $q\Omega_{plx}^{\Omega}$ are induced by $x_i \mapsto x_i^p$ $q_i \mapsto q^p$ (3) Moreover, IT := Ip G (q. 2 p/2)p

Semilinear with T G Ip Iq-11.

Note
$$d \in \mathbb{Z}_p^{\times}$$
, $\delta_{\alpha} : \mathbb{Z}_p \mathbb{I}_q - i \mathbb{I}$ $\longrightarrow q^{d_i - 1} = \sum_{n=1}^{\infty} \binom{n}{n} (q_{-1})^n$
$$\binom{n}{n} = \frac{q(\alpha - 1) \cdots (q_{-n+1})}{n!}.$$

(3) For any $n \in \mathbb{Z}$, $\exists \ \delta_n \subseteq q \ \Omega_{R_n^{\perp}} / \mathbb{Z}_n^{\perp}$ Semilinear w.r.t. $\delta_n : \mathbb{Z}[n] \mathbb{I}q^{-1} \xrightarrow{\sim} \mathbb{Z}[n] \mathbb{I}q^{-1}$ $q \longmapsto q^n$.

Moreover, if
$$n = p$$
 prime,

 $\varphi_{q \downarrow R} \hookrightarrow \left(\left(\frac{q \Omega_{R/Z}}{p}\right)^{n} \left[\frac{1}{p}\right]^{n}\right)^{n} \simeq \left(\frac{\Omega_{R_{p}}}{p} \left[\frac{1}{p}\right] \left[$

Local q-de Rham

X/IIp 9-completely sm p-adic formal Sch.

$$(2p \mathbb{I}_{q-1}, p_{q}) \in \Delta$$
, $2p \mathbb{I}_{q-1} / p_{q} \cong 2p \mathbb{I}_{p}$.

The I are action $\Gamma = \mathbb{Z}_p^{\times}$ on $\mathbb{P}^{-1}\mathbb{Z}_p$ Semilinear N.r.t. $\Gamma \subseteq \mathbb{Z}_p\mathbb{Z}_q - 1\mathbb{Z}_p$. S.f. (1) Γ commutes with Φ

(2) T is Conti w.r.t. profinite top on T

and (p, []]q) - adic top on
$$q \Omega_{X/\mathbb{Z}_p}$$
.

 $D(Spf(\mathbb{Z}_p \mathbb{I}_q - 1 \mathbb{I}) / Spf(\mathfrak{C}(T, \mathbb{Z}_p \mathbb{I}_q - 1 \mathbb{I})))$

quot Stack

(3) Tacks trivially on q Six/Zp / (q-1) ~ Dix/Zp

(4) If X proper Sm / \mathbb{Z}_{g} , & we assume that $H^{i}(q \Omega \times_{\mathbb{Z}_{g}})$ finite free, then $H^{i}(q \Omega \times_{\mathbb{Z}_{g}})$ is the Wach module of the God rep $H^{i}(X_{\overline{g}}, \mathbb{Z}_{p})$.

Recall {Wach modules}:=

fin free Ip Iq-1I-mods M

+ \$ G M \$ T

8.1. \$ is trivial on M/(q-1)

| Fact

| Crystalline reps of Galogs, \

on fin free Ip-mods

.

Shetch RT (Wart Xx Ip Ip Isp]/Ip Iq -1 I, 6)

\(\times \text{RT}_{\text{\sigma}} \left(\text{\ti}}\text{\t

Global q-de Rhan

 (Sullivan arithmetic fracture).

$$M \in D(\mathbb{Z}), \qquad M \xrightarrow{\Gamma} \xrightarrow{\Gamma} M_{\mathcal{F}}^{\Gamma} \otimes_{\mathbb{Z}} \mathbb{Q}$$

$$M \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow T M_{\mathcal{F}}^{\Gamma} \otimes_{\mathbb{Z}} \mathbb{Q}$$

$$\Rightarrow q \Omega_{x/Z}/(q-1) \cong \Omega_{x/Z}$$

$$(q \Omega_{x/Z})^{\wedge} \cong q \Omega_{x^{\wedge}/Z}$$

Let ne I, You Co Ox[]/I[]

Check: dp. fcis = fqda = fcris . dp.

Remaining questions