

2024-09-24

14장 통합리스크 관리

Keywoong Bae

AIRM Research Group,
Department of Industrial and Management Engineering,
POSTECH

1. 서론

RBC (Risk Based Capital)

- 우리나라의 RBC 제도
 - RBC제도는 보험사에 내재된 다양한 리스크를 종합적으로 측정하고, 이에 상응한 최소자본량을 재무건정성 기준으로 활용하는 리스크 기반의 자기자본 규제제도임.
 - 개별 위험액 간의 분산효과를 반영하여 총위험을 산출함.
 - 단순 합산을 하게 되면 총 요구자본을 과대 계상하게 되기 때문임.
- RBC 통합 리스크는 개별 리스크 간의 상관관계를 완전상관($\rho = 1$) 또는 무상관 ($\rho = 0$) 이라는 단순한 가정을 통해 산출함.
 - $RBC = \sqrt{I^2 + M^2 + (i+C)^2} + o$
 - 위 과정은 계산이 용이하긴 하지만 신뢰성이 떨어짐.
- 따라서, 개별 리스크들을 어떻게 통합하는지는 매우 중요한 문제임.

Framework

• 본 Chapter는 다음과 같이 진행됨.

개별 리스크 산출 (RBC)

개별 리스크 통합

Solvency II 규제모형

분산효과를 반영할 경우($\rho = 0.5$)

 $\sqrt{20^2 + 30^2 + 2 \times 0.5 \times 20 \times 30} = 24.94$ $\stackrel{\triangle}{1}$.

RBC vs SII

ex) A=20, B=30일 때, 단순 합산할 경우 총 리스크량은 **50**이며,

- 보험리스크
- 시장리스크
- 금리리스크
- 신용리스크
 - 운영리스크

- 분산공분산 방법
- Copula 방법

2. 보험사의 RBC 요구자본 산출

개별리스크 산출

- 다섯 가지 개별 리스크를 각각 산출하여 통합함.
 - 보험리스크, 시장리스크, 금리리스크, 신용리스크, 운영리스크
- 개별리스크 = 리스크 노출정도 (exposure) x 산정된 위험계수
 - 리스크 노출정도 예: 자산, 부채, 수입 보험료 등
 - 위험계수: 자산 항목별, 보험 종목별, 금리 민감도별로 구분하여 산정함.

2. 보험사의 RBC 요구자본 산출

개별리스크 산출

• 보험사에서 RBC 요구자본 산출하는 과정은 다음과 같음.

$$RBC = \sqrt{I^2 + M^2 + (i+c)^2} + o$$

- 보험리스크(I), 시장리스크(M), 금리리스크(i), 신용리스크(c), 운영리스크(o) 각각을 산출하여 통합함.
- 개별리스크는 노출정도에 산정된 위험계수를 서로 곱하여 산출함.

개별리스크 1 - 보험리스크(1)

- 보험 계약 인수 및 보험금 지급 관련 위험. 보험가격리스크(IV)와 준비금리스크(R)로 나뉨 ($I = \sqrt{IV^2 + R^2}$).
 - 보험가격리스크(IV): 예상 위험률과 실제 위험률의 차이로 인해 손실이 발생하거나 손익이 변동될 위험.
 - IV =계약노출정도 x 위험계수
 - (생명보험 및 장기손보) 산출기준일 직전 1년간 보유위험보험료
 - (일반손보) 산출기준일 직전 1년간 보유보험료
 - 준비금리스크(R): 예상 보험금과 실제 보험금의 차이로 인해 손실이 발생할 위험.
 - R =계약노출정도 \times 위험계수 보험종목별로 1.2%~77.9%
- 산출기준일 현재 대차대조표 상의 보유지급준비금

2. 보험사의 RBC 요구자본 산출

개별리스크2 - 시장리스크(M)

- 시장가격 (주가, 금리, 환율)의 변동으로 자산의 가치가 하락하여 보험사에 손실이 발생할 위험
- $M = \Omega \Lambda + \Delta = \Lambda$

개별리스크3 - 금리리스크(i)

- 미래 시장금리변동 및 자산과 부채의 만기구조 차이로 인해 발생하는 경제적 손실 위험
- i = | (N + 1) + (N + 1

개별리스크4 - 신용리스크(c)

- 채무자의 부도, 거래 상대방의 계약 불이행 등 채무 불이행으로 인하여 발생할 수 있는 잠재적인 경제적 손실 위험
- 신 BIS 협약 표준 방법의 자산분류 및 측정방식을 참고하여 요구자본을 산출함.
- 개별자산 요구자본을 합산하여 산출되며, 개별자산 요구자본은 노출정도와 위험계수를 곱하여 산출함.

개별리스크5 - 운영리스크(o)

- 보험사의 부적절한 내부절차, 인력, 시스템 상의 문제 및 사고 발생으로 인한 손실 가능성.
- $o = \Omega$ = Ω = Ω + Ω + Ω = Ω = Ω + Ω + Ω = Ω + Ω + Ω = Ω + Ω = Ω + Ω + Ω = Ω + Ω + Ω = Ω + Ω +
- IAIS(International Association of Insurance Supervisors)에서는 보험사 운영리스크의 구성내용이 다양하고, 보험사의 내부통제와 시스템의 차이가 있어 요구자본 측정이 어렵다는 것을 인정하여, 국가별로 간편한 방법을 통한 요구자본 측정을 인정하고 있음.

접근방법

- 상관관계를 이용하여 개별 리스크들을 통합 -> 상관계수를 활용한 전통적인 방법(분산공분산 방법) / Copula 기반의 통합
- 리스크 시나리오를 생성하여 각 보험사별 총손실분포와 개별손실분포를 산출하여 측정

POSTECH

분산공분산 방법

- 개별 리스크 간의 상관계수로 구성된 상관행렬을 기반으로 리스크를 통합함.
- $CaR_X(a) = \sqrt{\Sigma_i \Sigma_j \rho_{ij} CaR_{X_i}(a) CaR_{X_j}(a)}$ 방식으로 개별리스크들을 통합함 (CaR = Capital at Risk, VaR를 통하여 설정된 위험기초자본으로, 주어진 허용 수준 하에서 금융기관의 잠재적 손실을 흡수하기 위해 요구되는 자본 수준).
- 분산공분산 방법은 5가지의 가정을 기반으로 진행함.
 - ① i번째 리스크 확률변수 X_i 는 평균 μ_i 와 분산 σ_i^2 , 누적분포함수 $F_{X_i}(x)$ 를 가짐.
 - ② 총 리스크에 대한 확률변수 X는 평균 μ_X 와 분산 σ_X^2 , 누적분포함수 $F_X(x)$ 를 가짐.
 - ③ 총 리스크에 대한 확률변수 X는 확률변수 X_i 가 통합되어 산출됨.
 - ④ 확률변수 X_i 와 확률변수 X의 분포가 동일한 경우, $F_X^{-1}(a) = F_{X_i}^{-1}(a)$ 를 만족함.
 - ⑤ 리스크 자본은 VaR로 측정함 ($VaR = \mu + \sigma \times Z$).

$$\mathit{CaR}_X(a) = \sqrt{\Sigma_i \Sigma_j
ho_{ij} \mathit{CaR}_{X_i}(a) \mathit{CaR}_{X_j}(a)}$$
 증명

$$CaR_X(a) = \mu_X + \sigma_X F_X^{-1}(a)$$

$$= \mu_X + F_X^{-1}(a) \sqrt{\Sigma_i \Sigma_j \rho_{ij} \sigma_i \sigma_j} \left(: \sigma_X^2 = \Sigma_i \Sigma_j \rho_{ij} \sigma_i \sigma_j \right)$$

$$= \mu_X + \sqrt{[F_X^{-1}(a)][F_X^{-1}(a)]\Sigma_i\Sigma_j\rho_{ij}\sigma_i\sigma_j}$$

$$=\mu_X+\sqrt{\Sigma_i\Sigma_j\rho_{ij}\sigma_i\sigma_j\big[F_{X_i}^{-1}(a)\big][F_{X_i}^{-1}(a)]}\ (\because\ \textcircled{4})=\mu_X+\sqrt{\Sigma_i\Sigma_j\rho_{ij}\not q_i\not q_j^{\prime}\frac{[CaR_{X_i}(a)-\mu_i]}{\not q_i}\frac{[CaR_{X_j}(a)-\mu_j]}{\not q_j}}\ (\because\ \textcircled{5})$$

$$=\sqrt{\Sigma_i\Sigma_j
ho_{ij}CaR_{X_i}(a)CaR_{X_j}(a)}$$
 (요구자본의 정의 기반?)

- ① i번째 리스크 확률변수 X_i 는 평균 μ_i 와 분산 σ_i^2 , 누적분포함수 $F_{X_i}(x)$ 를 가짐.
- ② 총 리스크에 대한 확률변수 X는 평균 μ_X 와 분산 σ_X^2 , 누적분포함수 $F_X(x)$ 를 가짐.
- ③ 총 리스크에 대한 확률변수 X는 확률변수 X_i가 통합되어 산출됨.
- ④ 확률변수 X_i 와 확률변수 X의 분포가 동일한 경우, $F_X^{-1}(a) = F_{X_i}^{-1}(a)$ 를 만족함.
- ⑤ $\angle A$ 스크 자본은 VaR로 측정함 ($VaR = \mu + \sigma \times Z$).

리스크 통합과 분산효과

- 통합리스크 $CaR_X(a)$ 는 $\sqrt{\Sigma_i\Sigma_j\rho_{ij}CaR_{X_i}(a)\ CaR_{X_j}(a)}$ 로 표현됨.
- 이때, ρ_{ij} 인 리스크 간의 상관성이 높으면 분산효과(diversification effect)가 적어 $CaR_X(a)$ 가 크게 산출됨.

상관계수 (ρ) 와 상관행렬 (R)

- 일반적으로 피어슨 직선상관계수(단순상관계수)를 사용함.
- 변수 X와 Y간의 상관계수 ρ_{XY} 는 다음과 같이 계산함.

•
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

• 3개 이상의 리스크 통합 시, 상관계수로 구성된 상관행렬 R을 사용함.

- χ 가 각 유형별 리스크 양으로 구성된 $n \times 1$ 형태의 벡터일 때, 통합리스크 $CaR_X(a)$ 는 다음과 같이 표현함.
 - 통합리스크 = $\sqrt{\chi' R \chi}$.

상관계수에 따른 통합 리스크량 변화

- A = 1 , B = 1
- $\rho = -1$ 일 때, 통합리스크는 $\sqrt{1^2 + 1^2 + 2(-1)} = 0$
- $\rho = 1$ 일 때, 통합리스크는 $\sqrt{1^2 + 1^2 + 2(1)} = 2$

상관계수 사용의 문제점

- 선형관계만 설명이 가능하며, 비선형관계를 설명할 수 없음.
 - $\rho = 1$ 인 경우 완전 양의 상관관계, $\rho = -1$ 인 경우 완전 음의 상관관계를 가지며 , $\rho = 0$ 인 경우 무상관을 가짐.
 - 하지만 $\rho = 0$ 인 경우여도 두 변수가 관련성을 가질 수 있음.

- 대규모 손실발생 사례를 과소평가함.
 - 직선상관계수는 확률변수 간의 분포가 타원형일 때 유용함.

코퓰라의 개요

- 기존 피어슨 상관계수의 한계점을 보완함.
 - 분산공분산 방법을 사용하기 위해서는 개별 리스크의 분포와 통합 리스크의 분포가 무조건 같아야 한다는 가정이 필요하였으나, 실무에서는 성립하지 않을 수 있음.
 - 따라서, 일반적으로 독립이라는 가정을 기반으로 결합확률분포를 산출함.
- 위 방법은 계산이 용이하고 간단하지만, 실제 분포와의 차이가 존재함 (상관계수가 선형에 대한 영향을 반영하므로).

코퓰라의 정의

- 각각의 변수의 주변분포함수를 이용하여 다변수의 결합확률분포를 만드는 함수
- 2차원 코퓰라([0,1]² → [0,1])는 다음의 특성을 가짐.
 - (grounded) [0,1]에 있는 모든 u값에 대하여 C(0,u) = C(u,0) = 0임.
 - [0,1]에 있는 모든 u_1, u_2 값에 대하여 $C(u_1,1) = u_1, C(1,u_2) = u_2$ 임.
 - (2-increasing) [0,1]에 있는 $u_1 \le v_1, u_2 \le v_2$ 인 모든 u_1, u_2, v_1, v_2 에 대해서 $C(u_1, u_2) \le C(v_1, v_2)$ 를 만족함.

코퓰라가 기반으로 하는 Sklar 정리

- 어떤 확률변수 $X_1, ..., X_n$ 에 대해 각각 누적확률분포 $F_1, ..., F_n$ 가 존재하고 모두 연속인 경우, 이를 결합할 수 있는 유일한 코퓰라 함수 C가 존재함.
 - $F(x_1, ..., x_n) = C(F_1(x_1), F_2(x_2), ..., F_n(x_n)) = Pr(U_1 \le F_1(x_1), ..., U_n \le F_n(x_n))$
 - $C(u_1, ..., u_n) = F(F_1^{-1}(u_1), ..., F_n^{-1}(u_n)) = \Pr(U_1 \le u_1, ..., U_n \le u_n)$
- 코퓰라 함수는 단변량 주변분포함수 F_i 와 다변량 분포함수 F_j 를 연결하는 함수임.

코퓰라의 유용성

- 코퓰라에 기초한 상관관계 계수(켄달의 타우 등)는 정보가 분리되어도 값이 불변함.
- 코퓰라에 기초한 변수간 관계분석은 변수간 상관성을 선형 상관관계보다 더 넓게 정의할 수 있음.
- 극치부분에서의 변수간 관계를 설정할 수 있음.

코퓰라의 종류

	모수 코퓰라	비모수 코퓰라
특징	 모수를 포함한 특정 코퓰라를 가정함. 데이터를 이용하여 코퓰라의 모수를 추정함. 	• 특정 모형을 가정하지 않고, 주어진 데이터를 그대로 반영 하는 코퓰라임.
종류	 Elliptical copulas Gaussian copula Student's t copula 	Deheuvel's Empirical copulaBerstein copulaKernel copula
	 Archimedean copulas Clayton copula Gumbel copula Frank copula 	

- 정규분포를 따르는 종속성 구조를 가진 변수들을 생성 (이때, 각 변수의 주변분포는 자유롭게 설정 가능)
 - 정규분포의 상관행렬 (R)을 기반으로 종속성을 설명함.
 - $C_R^{Gauss}(u_1, ..., u_n) = \Phi_R(\Phi^{-1}(u_1), ..., \Phi^{-1}(u_n)).$
- Φ_R : n차원 표준정규분포함수

- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산함 $(\forall i, 0 \le u_i \le 1)$
 - ⑤ $F_i(X_i) = u_i$ 또는 $F_i^{-1}(u_i) = X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 산출

- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산함 $(\forall i, 0 \le u_i \le 1)$
 - ⑤ $F_i(X_i) = u_i$ 또는 $F_i^{-1}(u_i) = X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 산출

```
set.seed(123)
n <- 1000 # 각 변수별로 1000개의 난수를 생성
m <- 3 # 3개의 변수 사용
Z <- matrix(rnorm(n * m), nrow = n, ncol = m)
```


Gaussian Copula (가우시안 코퓰라)

- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산함 $(\forall i, 0 \le u_i \le 1)$
 - ⑤ $F_i(X_i) = u_i$ 또는 $F_i^{-1}(u_i) = X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 산출

```
R <- matrix(c(1, 0.8, 0.5, 0.8, 1, 0.6, 0.5, 0.6, 1), nrow = 3) # 3x3 상관행렬R
L <- chol(R) # 상관행렬 R에 대해서 Cholesky 분해
L
```

Choleksy 분해란?

- 대칭행렬에 대하여 하삼각행렬과 상삼각행렬로 분해하는 과정
- 행렬 L의 요소를 결정해주는 식은 다음과 같음.
 - k번째 행: $L_{ki}=rac{a_{ki}-\Sigma_{j=1}^{i-1}L_{ij}L_{kj}}{L_{ii}}$
 - 대각성분: $L_{kk}=\sqrt{a_{kk}-\Sigma_{j=1}^{k-1}L_{kj}^2}$

Gaussian Copula (가우시안 코퓰라)

- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산함 $(\forall i, 0 \le u_i \le 1)$
 - ⑤ $F_i(X_i) = u_i$ 또는 $F_i^{-1}(u_i) = X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 산출

```
w <- Z %*% L # 상관계수가 반영된 난수 w를 생성
R
cor(w)
```

```
> R

[,1] [,2] [,3]

[1,] 1.0 0.8 0.5

[2,] 0.8 1.0 0.6

[3,] 0.5 0.6 1.0

> cor(w)

[,1] [,2] [,3]

[1,] 1.0000000 0.8139924 0.5102213

[2,] 0.8139924 1.0000000 0.6230853

[3,] 0.5102213 0.6230853 1.0000000
```

가우시안 분포의 종속성이 $W_1, ..., W_n$ 에 반영되었음을 확인.

- 변수들이 독립적인 정규분포를 따르면서, 주어진 상관행렬을 만족하도록 샘플을 생성.
- 맨 처음에 생성한 난수 $Z_1, ..., Z_n$ 는 R을 만족하지 않지만 $L^TZ_1, ..., L^TZ_n$ 는 R을 만족함.

- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산하여 표준정규분포의 누적분포함수에 적용함. $(\forall i, 0 \le u_i \le 1)$
 - ⑤ $F_i(X_i) = u_i$ 또는 $F_i^{-1}(u_i) = X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 산출

```
u <- pnorm(w)

df <- data.frame(U1 = u[,1], U2 = u[,2], U3 = u[,3])</pre>
```


- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산함 $(\forall i, 0 \le u_i \le 1)$
 - ③ $F_i(X_i)=u_i$ 또는 $F_i^{-1}(u_i)=X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 $X_1,...,X_n$ 산출

```
# 첫 번째 변수는 감마분포를 따른다고 가정
shape_X1 <- 2
scale_X1 <- 2
X1 <- qgamma(u[,1], shape = shape_X1, scale = scale_X1)

# 두 번째 분포는 로그노말 분포를 따른다고 가정
meanlog_X2 <- 1
sdlog_X2 <- 0.5
X2 <- qlnorm(u[,2], meanlog = meanlog_X2, sdlog = sdlog_X2)

# 세 번째 분포는 표준정규분포를 따른다고 가정
X3 <- qnorm(u[,3])
```


정규분포의 종속성을 반영한 확률변수

- 정규분포의 종속성을 가지는 확률변수 $X_1, ..., X_n$ 의 난수 생성 과정은 다음과 같음.
 - ① 임의의 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 생성
 - ② Cholesky 분해를 통해 $R = LL^T$ 인 L행렬 계산
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 을 통해 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 생성
 - ④ $u_i = \Phi(W_i)$ 를 계산함 $(\forall i, 0 \le u_i \le 1)$
 - ③ $F_i(X_i)=u_i$ 또는 $F_i^{-1}(u_i)=X_i$ 를 이용하여 정규분포의 종속성을 가지는 확률변수 X_1,\ldots,X_n 산출

Student's t Copula (스튜던트 t 코퓰라)

- t-Copula는 Gaussian copula와 유사하지만, 꼬리부분이 두터운 특성을 가지고 있음.
 - t-Copula는 상관관계 행렬과 함께 자유도(degrees of freedom)을 이용하여 변수들 간의 종속성을 설명함.
 - 자유도가 작을수록 꼬리에서의 종속성이 강해지며, 자유도가 낮을수록 t-분포는 가우시안 분포보다 꼬리가 두꺼워져 변수들 간의 극단적인 상황에서 더 높은 상관관계를 나타낼 수 있음.

•
$$C_{\nu,R}^{t}(\boldsymbol{u}) = \int_{-\infty}^{t_{\nu}^{-1}(u_{1})} \dots \int_{-\infty}^{t_{\nu}^{-1}(u_{n})} \frac{\Gamma(\frac{\nu+n}{2})}{(\pi\nu)^{\frac{n}{2}}\Gamma(\frac{\nu}{2})|R|^{1/2}} \left(1 + \frac{1}{\nu}x^{T}R^{-1}x\right)^{-(\nu+n)/2} dx.$$

- t-Copula를 이용해서 **상관성이 있는 확률변수** $X_1, ..., X_n$ 의 **난수**를 생성하는 방법은 다음과 같음.
 - ① 독립인 표준정규분포 난수 $Z_1, ..., Z_n$ 와 $Y_1, ..., Y_{\nu}$ 를 생성한 후, $\omega = Y_1^2 + \cdots + Y_{\nu}^2$
 - ② Cholesky 분해를 통해 상관행렬 $R = LL^T$ 인 L행렬을 계산함.
 - ③ $(W_1,...,W_n) = L^T(Z_1,...,Z_n)$ 를 통하여 상관계수가 반영된 표준정규분포의 난수 $W_1,...,W_n$ 를 생성함.
 - ④ 상관계수가 반영된 t분포 난수인 $T_i = W_i \sqrt{\nu/\omega}$ 를 생성함.
 - ⑤ 모든 i=1,2,...,n에 대하여 $u_i = \begin{cases} 1-Tdist(T_i,\nu,1), \ T_i \geq 0 \\ Tdist(-T_i,\nu,1), \ T_i < 0 \end{cases}$ 를 계산함.
 - ⑥ $F_i(X_i) = u_i$ 또는 $F_i^{-1}(u_i) = X_i$ 를 이용하여 상관성이 있는 $X_1, ..., X_n$ 를 산출함.

Archimedean copula (아르키메데안 코퓰라)

- Elliptical copula는 타원형분포(정규분포, t-분포)에서 파생되며, 상관행렬(+자유도)을 이용하여 종속성을 모델링함 -> 꼬리 종속성 모델링에는 한계 존재.
- Archimedean copula는 비선형적이고 다양한 형태의 종속성을 모델링을 할 수 있어 꼬리 종속성을 보다 유연하게 설명할 수 있음.
- Archimedean copula는 다음과 같음.
 - $C_{\theta}(u,v) = \Phi^{-1}(\Phi(u),\Phi(v)).$
 - Φ 는 생성함수(generator)임: Φ : $[0,1] \to [0,+\infty]$ 이며, 연속/감소/ 볼록함수이고 Φ (1) = 0임.
 - 의사역재생함수 (Φ^{-1}) 는 다음과 같음: $\Phi = \begin{cases} \Phi^{-1}(v), & 0 \le v \le \Phi(0) \\ 0, \Phi(0) \le v \le +\infty \end{cases}$.
- Archimedean copula의 종류 및 코퓰라함수와 생성함수는 다음과 같음.

	$C_{\theta}(u,v)$	$\Phi_{\theta}(x)$
Clayton copula	$\max([u^{-\theta} + v^{-\theta} - 1]^{-\frac{1}{\theta}}, 0)$	$\frac{1}{\theta} (x^{-\theta} - 1)$
Gumbel copula	$\exp\left\{-\left[(-\ln u)^{\theta}+(-\ln v)^{\theta}\right]^{-1/\theta}\right\}$	$(-\ln x)^{\theta}$
Frank copula	$-\frac{1}{\theta}\ln(1+\frac{(e^{-\theta u}-1)(e^{-\theta v}-1)}{e^{-\theta}-1})$	$-\ln(\frac{e^{-\theta x}-1}{e^{-\theta}-1})$

연관성 측도

• 피어슨의 직선상관계수, Kendall's tau, Spearman's rho등을 통해 변수 간의 연관성을 확인함.

Kendall's tau

- 두 변수들 간의 순위를 비교하여 연관성을 제시함.
 - 피어슨 상관계수는 변수 값의 평균과 분산을 사용하기 때문에, 변수가 정규분포를 따르지 않으면 오류 발생함.
 - Kendall's tau는 이러한 단점을 보완함.
- Concordant pair(C)와 Disconcordant pair(D)를 이용하여 kendall's tau값을 계산함.
 - $\tau = \frac{C-D}{C+D}$
 - C: 각 변수의 비교 대상의 상하관계가 같은 경우
 - D: 각 변수의 비교 대상의 상하관계가 다른 경우

Spearman's rho

- 값에 순위를 매겨 그 순위에 대해 상관계수를 구하는 것 (순서 상관계수).
- 코퓰라 함수 C로부터 독립 상등인 세 확률벡터 $(X_1,Y_1),(X_2,Y_2),(X_3,Y_3)$ 에 대한 Spearman's rho (ρ_S) 는 다음과 같음.

$$\bullet \qquad \rho_S = 1 - \frac{6 \,\Sigma d^2}{n(n^2 - 1)}$$

Kendall's tau 예제

• $\tau = 1/-1$ 인 경우

τ = 1인 경우					
사람 A 사람 B 사람 C 사람 D					
국어	50	60	70	80	
수학	60	70	80	90	

τ = −1인 경우					
	사람 A	사람 B	사람 C	사람 D	
국어	50	60	70	80	
수학	70	60	50	40	

τ 계산 예제

	사람 A	사람 B	사람 C	사람 D
국어	50	70	90	80
수학	60	80	70	90

Pair	국어	수학	C/D
A, B	50<70	60<80	O
A, C	50<90	60<70	С
A, D	50<80	60<90	С
B, C	70<90	80>70	D
B, D	70<80	80<90	С
C, D	90>80	70<80	D

$$C=4, D=2$$

$$\therefore \tau = \frac{4-2}{4+2} = \frac{1}{3}$$

> x = c(50,70,90,80)
> y = c(60,80,70,90)
> KendallTauA(x,y)
[1] 0.3333333

Spearman's rho 예제

① 두 변수 X와 Y의 값이 다음과 같이 구성되어 있음.

X	Υ
30	8
10	4
40	7
20	6
50	9

② 각 변수의 값을 순위로 변환한 후, 각 쌍의 순위차이를 계산함.

Х	Υ	X순위	Y순위	차이(d)	d^2
30	8	3	4	-1	1
10	4	1	1	0	0
40	7	5	3	1	1
20	6	2	2	0	0
50	9	5	5	0	0

③ Spearman's rho를 계산함.

•
$$\rho = 1 - \frac{6 \Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 2}{5 \times (5^2 - 1)} = 1 - 0.1 = 0.9$$

4. Solvency II

Solvency II란?

- 보험사에 예상치 못한 손실이 발생해도 보험금 지급의무를 이행할 수 있도록 준비금을 쌓게 하는 자기자본 규제제도임.
- 리스크 중심의 경제적 요구 자본 개념을 도입함.
- 보험사별 리스크 특성을 반영하여 지급능력 요구자본(SCR), 최소요구자본(MCR), 책임준비금을 결정함.
- 3개의 축을 가짐: 지급능력(pillar 1), 리스크 관리(pillar 2), 공시(pillar 3)

지급능력 요구자본(SCR; Solvency Capital Requirements)

- 보험사업자의 파산확률을 0.5% 이내로 하기 위해 보유하여야 하는 요구자본임.
- 모든 잠재손실을 표준공식 또는 내부모형을 이용하여 신뢰도 99.5%의 VaR로 측정한 값.

4. Solvency II

SCR 산출 표준모형

- 분류된 각 리스크 별로 산출한 SCR을 결합하는 방식인 모듈 방식을 사용
- SCR 계산 시, 리스크 간 상관계수를 이용.
- 오른쪽 그림과 같이 QIS-5에서 제시한 SCR모듈구조를 기반으로 산출함.
 - 기본요구자본(BSCR)과 운영리스크 요구자본(SCR_{op})로 나눔 (운영리스크의 불확실성 때문).
- BSCR은 6개의 모듈로 구성됨.
 - 시장리스크, 건강보험리스크, 거래상대방파산리스크, 생명보험리스크, 손해보험리스크, 무형자산리스크.

CAT* Mortality* Reserve Premium Reserve Longevity* Lapse Disability Morbidity* Property* Disability Morbidity* Spread* Lapse* Currency* Lapse* Expenses* * = included in the adjustmen Revision* Expenses* for the loss absorbing capacity of technical provisions under Revision* CAT* the modular approach

Solvency II의 보험부채평가 원칙

- SII에서는 자체적인 재무제표를 작성 (총 재무제표 방식; Total Balance Sheet)
- 자산, 부채, 순자산 및 적정요구자본 상호 간의 상관관계를 인식하여 자산 및 부채의 공정가치를 평가함.
- SII에서 부채인 기술적 준비금 (TP)은 최선추정치(BE)와 리스크마진(RM)의 합으로 정의됨.
 - BE: 보험 사업자가 보험계약에 대한 권리와 의무를 다른 보험사업자에게 이전할 경우 지급해야 하는 금액
 - RM: 보험계약에 내재된 불확실성에 대비한 버퍼 (buffer)

4. Solvency II

Solvency II와 RBC 비교

	Risk Based Capital	Solvency II
재무제표	• 공시용 재무제표 (원가+시가평가)	총 재무제표 방식 (자산, 부채, 순자산 및 적정요구자본 상호 간의 상관관계 인식)
요구자본 산출단위	 생명보험, 장기손해보험, 일반손해보험으로 구분됨 일반손해보험은 일반보험, 자동차보험 및 보증보험으로 구분하고 있음. 	LoBs별로 기술적 준비금 평가 및 SCR 계산 생명보험과 일반보험으로 구분됨.
리스크의 분산효과	• 상관계수가 0또는 1임.	 하부리스크 모듈별로 통합할 때마다 0, 0.25, 0.5, 0.75, 1 및 음수의 상관관계를 사용.
리스크 계산방식	• Factor방식 • 익스포저 x 리스크 계수의 공식 사용	주로 시나리오 방식을 이용. 금리, 사망률, 해약률 등 리스크 요인에 shock을 주고, 그에 따른 순 자산가치의 변화분을 SCR로 계산함.
통계 신뢰수준	• VaR(95%)	• VaR(99.5%)
요구자본의 구분	요구 자본에 대한 구분이 없음. 지급여력비율로 표현	• MCR(최소요구자본)과 SCR(지급여력 요구자본)으로 구분
가용 자본의 계층화	• 자본 계층화 되어 있지 않음.	• Tier 1, 2, 3로 자본 계층화
내부모형 적용	• 내부 모형을 적용하지 않고, 표준 방법만 허용.	• 내부 모형 적용 가능
리스크 분류 체계	• 보험(생/손보), 금리, 시장, 신용 및 운영리스크로 분류	• 시장(금리리스크 포함), 신용(거래상대방 부도 리스크), 보험(생/손보, 건강보험), 무형자산 리스크 및 운영리스크로 구분됨.

Appendix

