1. What is a unique characteristic of zeros in the one's complement representation?
a. Zero is represented by the largest positive value.
b. There are none; zero is implied by the absence of data.
c. Zero is represented by the largest negative value.
d. There are two of them, one positive and one negative.
2is a protocol for mail services.
a. FTP b. SMTP c. TELNET d. HTTP
3. Every computer today is based on the model.
a. Intel b. von Neumann c. input/output d. Microsoft
4. How do you represent the number -7 in 8 bits using two's complement?
a. 00000111 b. 11111001 c. 11100000 d. 10011111
5. A program is comprised of a finite number of
a. hard drives b. instructions c. memory cells d. i/o devices
6. A 17 th-century computing machine that could perform addition and
subtraction was the
a. Pascaline b. Jacquard loom
c. Analytical Engine d. Babbage machine
7 is the highest speed memory.
a. CPU register b. main memory c. cache memory d. magnetic disk
8. An 8-bit pattern can represent up to symbols.
a. 8 b. 128 c. 256 d. 16
9. If the ASCII code for E is 1000101, then the ASCII code for e is
a. 1000110 b. 1000111 c. 0000110 d. 1100101
10. One company occupies two adjacent rooms in the Zhongxing Building. The
network, consisting of four workstations and a printer, is probably a
a. LAN b.MAN c. WAN d. none of the above
a. LAN D.MAN C. WAN G. HONE OF the above
11. Which number representation method is most widely used today for
storing integers in a computer?
a. sign-and-magnitude b. one 's complement

I. Multiple-Choice Questions (1.5*20=30 points)

c. two 's complement d. unsigned integers
12. For an 8-bit allocation, the largest decimal number that can be represented in two 's complement form is a8 b127 c128 d256
13. You use a bit pattern called a to modify another bit pattern.a. mask b. carry c. float d. byte
14 is a memorytype with capacitors that need to be refreshed periodically. a. SRAM b. DRAM c. ROM d. all of above
15. The controller is a serial device that connects slow devices such as the keyboard and mouse to the computer. a. SCSI b. FireWire c. USB d. IDE
16. Defining the users, needs, requirements, and methods is part of the phase. a. analysis b. design c. implementation d. testing
17. The IP address is currently bits in length. a. 4 b. 8 c. 32 d. any of the above
18. A process in the ready state goes to the running state when a. it enters memory b. it requests I/O c. it gets access to the CPU d. it finishes running
19 is a step-by-step method for solving a problem or doing a task.a. A construct b. A recursion c. An iteration d. An algorithm
20. C, C++, and Java can be classified as languages. a. machine b. symbolic c. high-level d. natural
II . Fill in the blanks(1.5*16=24 points) 1. Data and programs are stored in 2. A is the smallest unit of data that can be stored in a computer. 3. All data types are transformed into a uniform representation called a for processing by computer.

				memory location	using	two 's	complement
representat 5. Store				memory location	using	one's	complement
representat				,	3		•
6. Store	- 40			memory location	using	sign-and-	-magnitude
representat				-			
7. Represe	nt –	25 in	Excess_1	127 using an 8-bit a	llocation.	<u> </u>	
8. To unset (clear) a bit in a target bit pattern, set the corresponding							
mask bit to	0 and	use th	ne _	operator.			
9. The	per	<u>form</u> s	arithmet	ic and logical opera	tions.		
10. The two	desig	ns for	CPU arc	chitecture are	and	•	
	_			ware development:			
and				·			
·				are testing: an	d		
				on of a large pro	'		narts that
can commu		_		•	grammo	omanor	parto triat
	moato	VVICII		, i			
III Ouga	etions (16 no	into)				
III . Ques	`	•	,	a Naumann aamnut	or model	.2	(6 points)
i. what is t	ne sui	DSySie	ems or me	e Neumann comput	ei models	S !	(6 points)
2. Name fiv	e type	s of da	ata that a	computer can proc	ess.	(6	Spoints)
3. Add two	numhe	are in t	two '	s complement repr	acantation	٠.	
			IVVO			1.	
(-35) + (+2	0) = (-	-13)		(7 points)		
4. Define th	ie term) (overflow	. (6 po	ints)		
5. What is t	he US	B con	troller?	(6 points)		
6. What are	the fc	our ph	ases in so	oftware developmer	nt?	(8p	oints)
		•		1		\ 1	,
7. Name the	e layer	s of th	ne TCP/IF	P protocol suite.		(7 points)
	-					-	