Республиканская олимпиада по математике, 2002 год, 11 класс

- **1.** Пусть O центр вневписанной окружности треугольника ABC, касающейся стороны BC. Пусть M середина AC, и P точка пересечения MO и BC. Докажите, что AB = BP, если $\angle BAC = 2\angle ACB$.
- **2.** Докажите, что для любых действительных чисел $x_1, x_2, ..., x_n$ справедливо неравенство:

$$\frac{x_1}{1+{x_1}^2}+\frac{x_2}{1+{x_1}^2+{x_2}^2}+\cdots+\frac{x_n}{1+{x_1}^2+\cdots+{x_n}^2}<\sqrt{n}.$$

- **3.** Дана последовательность целых чисел $A = (a_1, a_2, ..., a_{2001})$ (возможно с равными членами). Обозначим через m количество троек (a_i, a_j, a_k) , где $1 \le i < j < k \le 2001$, таких что $a_j = a_i + 1$ и $a_k = a_j + 1$. Найдите максимально возможное значение m.
- **4.** Докажите, что существует множество A состоящее из 2002 различных натуральных чисел, удовлетворяющее условию: для каждого $a \in A$ произведение всех чисел из A, кроме a, при делении на a дает остаток 1.
- **5.** На плоскости дан остроугольный треугольник ABC. Пусть A_1 и B_1 основания высот опущенных из вершин A и B соответственно. Касательные в точках A_1 и B_1 , проведенные к окружности описанной около треугольника CA_1B_1 пересекаются в точке M. Докажите, что окружности, описанные около треугольников AMB_1 , BMA_1 и CA_1B_1 имеют общую точку.
- **6.** Найдите все многочлены P(x) с вещественными коэффициентами, удовлетворяющие тождеству $P(x^2) = P(x)P(x+1)$.
- 7. Докажите, что при любых целых n>m>0 число 2^n-1 имеет простой делитель, не делящий 2^m-1 .
- **8.** В ряд выстроены n кузнечиков. В любой момент разрешается одному кузнечику перепрыгнуть ровно через двух кузнечиков стоящих справа или слева от него. При каких n кузнечики могут перестроиться в обратном порядке? (А. Кунгожин)