Whitehead's problem

Hidetaka Noro

November 6, 2024

Abstract

In this thesis we study the relation between free module and projective module. It is a folklore that every free module is projective (see. Theorem III.11), but in generally the converse does not hold. The Whitehead's problem is the question that whether $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z})$ implies A is free. In this thesis, we demonstrate models where Whitehead's problem holds true and where it does not.

To produce the not free Whitehead group we use the model MA $+\neg$ CH and construct the model that Whitehead group is free we use the Godël's constructive universe. I discusses references to the works of [Jec03] and [Kun11] in the section "Diamond Principle and Martin Axiom", [DF04], [Mac71], [Kaw76] and [Kaw77] in the sections "Derived Functor" and "Module" and [Ekl76] in the last section "Whitehead Problem".

Contents

I Diamond Principle and Martin Axiom	1
II Derived Functor	4
IIIModule	13
IV Whitehead Problem	17

I Diamond Principle and Martin Axiom

Definition I.1. For regular cardinal κ and stationary set $E \subset \kappa$. \Diamond_E is the statement that there is a \Diamond_E -sequence $\langle D_\alpha \subset \kappa \, ; \alpha \in E \rangle$ such that $\{\alpha \in E \, ; E \cap \alpha = D_\alpha\}$ is a stationary subset. \Diamond is the statement \Diamond_{ω_1} .

Theorem I.2. $\Diamond_E \Longrightarrow \mathfrak{c} \leq \cup E$. In particular $\Diamond \Longrightarrow \mathfrak{c} = \omega_1$

Proof. Let $\langle D_{\alpha} ; \alpha \in E \rangle$ be a \Diamond_E -sequence. We shall show that $\mathcal{P}(\omega) \subset \{D_{\alpha} ; \alpha \in E\}$. Fix $A \in \mathcal{P}(\omega)$. Since $\{\gamma \in \cup E ; \cup A \in \gamma\}$ is club, there is an $\alpha \in E$ such that $\cup A \in \alpha$ and $A \cap \alpha = D_{\alpha}$. Moreover, we have $A = D_{\alpha}$, now we complete the proof.

This result assert that $\neg \lozenge_E$ hold in the model ZFC $+2^{\aleph_0} > \kappa$ (where $\kappa = \cup E$). Thus, by using the Cohen forcing, it is easy (for example, use a forcing poset $\mathbb{P} = \operatorname{Fn}(\omega \times \aleph_{\kappa+1}, 2)^{\mathbf{i}}$) to construct the model for $\neg \lozenge_E$.

Theorem I.3 ([Jec03]).
$$V = L \implies \Diamond_E$$

Proof. Fix a regular cardinal $\kappa = \cup E$. At the beginning of the proof,

we shall define a pair $\langle S_{\alpha}, C_{\alpha} \rangle$, $\alpha \in \kappa$, recursively in a uniform way, such that $S_{\alpha} \subset \kappa$ and C_{α} is club in κ :

- 1. $S_0 = C_0 = \emptyset$,
- 2. $S_{\alpha+1} = C_{\alpha+1} = \alpha + 1$,
- 3. For limit stages:

Case-I. (S_{α}, C_{α}) be a least $<_L$ least pair such that

- a. $S_{\alpha} \subset \kappa$,
- b. C_{α} is club in κ , and
- c. $S_{\alpha} \cap \xi \neq S_{\xi}$ for any $\xi \in C_{\alpha}$.

Case-II. $S_{\alpha} = C_{\alpha}$ otherwise.

We shall show that the sequence $\langle S_{\alpha}; \alpha \in E \rangle$ is a \Diamond_E sequence. Assume not, suppose that there is a subset $X \subset \kappa$ and a club C in κ which pair witnesses that

$$X \cap \alpha \neq C_{\alpha}$$
 for any $\alpha \in C$

, we may assume that the pair (X, C) is a $<_L$ -least pair.

Note that since $S_{\alpha}, X_{\alpha}, \kappa, X, C \subset \kappa$, we have $\langle (S_{\alpha}, C_{\alpha}); \alpha \in E \rangle$, (X, C) contain in the model $(L(\kappa^{+}), \in)$ and moreover for a countable elementary submodel N with $E \in N$, since both sets are definable in the model $(L(\kappa^{+}), \in)$, we obtain that both contained in the model N and let $\delta = \kappa^{+} \cap N$. For a transitive collapsing function $\pi \colon N \to L_{\delta}$, we have the following properties:

- $\pi(\gamma) = \kappa$,
- $\pi(X) = X \cap \delta$,
- $\pi(C) = C \cap \delta$, and
- $\pi(\langle (S_{\alpha}, C_{\alpha}); \alpha \in E \rangle) = \langle (S_{\alpha}, C_{\alpha}); \alpha \in \delta \cap E \rangle.$

Therefore, in $(L(\delta), \in)$, we have:

 $(X \cap \delta, C \cap \delta)$ is the $<_L$ -least pair (Z, D) such that $Z \subset \delta$ and D is club in δ , and $Z \cap \xi \neq S_{\xi}$ for any $\xi \in D$.

ⁱSee Theorem IV.7.17 in [Kun11]

Moreover, we have the property (*) in L, so by the construction in Case I, we have that $(S_{\delta}, C_{\delta}) = (X \cap \delta, C \cap \delta)$. On the other hand since $C \cap \delta$ is unbounded in δ and C is closed in κ , we have $\delta \in C$. Therefore, $\delta \in C$ witnesses that $C \cap \delta = S_{\delta}$, a contradiction.

Theorem I.4. Let E be a stationary subset of regular cardinal κ and $\langle D_{\alpha} ; \alpha \in E \rangle$ be a \Diamond_E -sequence. Let X, B be sets of size κ , $g \colon X \to C$ function, $\langle X_{\alpha} ; \alpha \in \kappa \rangle$ be a strictly increasing sequence among \subset of size $\langle \kappa \rangle$, such as $X = \cup \{X_{\alpha} ; \alpha \in \kappa \}$. For a bijection $\nu \colon \kappa \to X \times C$, there is an $\alpha \in E$ such as D_{α} code $g|_{X_{\alpha}}$, i.e., $g|_{X_{\alpha}} = \nu[D_{\alpha}]$.

Proof. Let

$$X = \{ \nu^{-1}(\langle a, c \rangle) ; \langle a, c \rangle \in g \}$$
$$F = \{ \alpha \in \kappa ; g |_{X_{\alpha}} \subset \nu[\alpha] \subset X_{\alpha} \times C \}$$

First, we shall show that F is club. It is obvious that F is closed. To see that F is unbounded. Let $\xi_0 \in \kappa$. Define ξ_{α} , $\alpha \in \kappa$, recursively:

1. Successor stage:

$$(1-{\bf a}) \ \xi_{\alpha+2n+1} = \cup \{ \eta \in \kappa \, ; \nu(\eta) \in g|_{X_{\xi_{\alpha+2n}}} \} + 1,$$

(1-b)
$$\nu[\xi_{\alpha+2n+1}] \subset X_{\xi_{\alpha+2n+2}} \times C$$
,

2. Limit stage:

(2–a)
$$\xi_{\gamma} = \bigcup \{\xi_{\alpha} ; \alpha \in \gamma\}$$
 for any limit $\gamma \in \kappa$.

Then we have that $\xi = \bigcup \{\xi_{\alpha} : \alpha \in \kappa\} \in F$.

Since \Diamond_E asserts that the set $\{\alpha \in E : X \cap \alpha = D_\alpha\}$ is stationary, there is an $\alpha \in F$ such that $X \cap \alpha = D_\alpha$. It is routine to obtain that $\nu[D_\alpha] = \nu[X \cap \alpha] = g|_{X_\alpha}$.

Definition I.5. MA is the statement that for any family \mathcal{F} of dense subsets of ccc poset P of with $|\mathcal{F}| < \mathfrak{c}$ there is a generic filter G.

Fact I.6 ([Kun11]).
$$Con(ZF) \implies Con(ZF + MA + \neg CH)$$
.

Corollary I.7. Assume MA+ \neg CH. Let A, B be sets of size $< 2^{\omega}$ and $P \subset \operatorname{Fn}_{\mathfrak{c}}(A, B)$ be a non-empty family. If P satisfies the conditions

- 1. $\forall a \in A \forall f \in P \exists g \in P \ (f \subset g \land a \in \text{dom } g)$, and
- 2. $\forall A \in [P]^{\omega_1} \exists \{f_0, f_1\} \in [A]^2 \exists f_2 \in P \ (f_0 \cup f_1 \subset f_3)$

then there is $g \in {}^A B$ such that for any finite set $F \in [A]^{<\omega}$ there is a $f \in P$ such that

$$g|_F = f|_F$$
 and $F \subset \text{dom } f$.

Proof. Since P is a ccc-forcing poset, with relation $\leq_P = \supset$, for a family $\mathcal{F} = \{D_F; F \in [A]^{\leq \omega}\}$ of size $<\mathfrak{c}$, where $D_F = \{f \in P; F \subset \text{dom } f\}$, by applying MA there is the desired generic real $\cup G \in {}^AB$.

II Derived Functor

Definition II.1. Let $f: A \to B$ be a morphism. We define the followings:

- 1. The kernel for f is the morphism ker $f: \text{Ker } f \to A \text{ such that}$
 - $f \circ \ker f = 0$, and
 - For any $\varphi \colon C \to A$ with $f \circ \varphi = 0$ there is the unique $\psi \colon C \to \operatorname{Ker} f$ such that $\varphi = \ker f \circ \psi$, i.e.,

- 2. The cokernel for f is the morphism coker $f: B \to \operatorname{Coker} f$ such that
 - $\operatorname{coker} f \circ f = 0$, and
 - For any $\varphi \colon B \to C$ with $\varphi \circ f = 0$ there is the unique $\psi \colon \operatorname{Coker} f \to C$ such that $\varphi = \psi \circ \operatorname{coker} f$, i.e.,

$$A \xrightarrow{f} B \xrightarrow{\operatorname{coker} f} \operatorname{Coker} f$$

$$\downarrow \psi$$

$$\downarrow C$$

- 3. The *image* of f is the kernel of the cokernel of f, im $f = \ker \operatorname{coker} f$,
- 4. The *coimage* of f is the cokernel of the kernel of f, coim $f = \operatorname{coker} \ker f$.

Definition II.2. An *Abelian category*, A, is a category with following properties:

- 1. For any arrows $\cdot \xrightarrow{f_0, f_1} \cdot \xrightarrow{g_0, g_1} \cdot$ in \mathcal{A} , we have the additive operation + such as
 - (a) f_0, f_1 is an arrow in \mathcal{A} with same domain and codomain,
 - (b) $f_0 + f_1 = f_1 + f_0$,
 - (c) The composition $(g_0 + g_1) \circ (f_0 + f_1) = g_0 f_0 \circ + g_0 f_1 \circ + g_1 \circ f_0 + g_1 \circ f_1$,
- 2. \mathcal{A} possesses the null object, we denote 0,
- 3. Every arrow has the kernel and cokernel,
- 4. \mathcal{A} has the binary biproduct, (we define at the following)
- 5. Every monic is the kernel for some arrow,
- 6. Every epi is the cokernel for some arrow.

Theorem II.3 (Snake lemma,[Mac71]). For two exact sequences with morphism f, g, h as following diagram commutes. Then there is a long red exact sequence as in the diagram. Moreover, if we have the two blue we can extend the red sequence.

Definition II.4. For two objects a, b the binary product object $a \oplus b$ is the object with four morphisms and universal property such as:

- There are two inclusions, i, and two projections, p, such that
 - 1. $p_A \circ i_A = \mathrm{id}_A$,
 - 2. $p_B \circ i_B = \mathrm{id}_B$,
 - 3. $i_A \circ p_A + i_B \circ p_B = \mathrm{id}_{A \oplus B}$

$$A \stackrel{i_A}{\underset{p_A}{\longleftarrow}} A \oplus B \stackrel{p_B}{\underset{i_B}{\longleftarrow}} B$$

In generally, since we have $p_A \circ i_B = p_A \circ (i_A \circ p_A + i_B \circ p_B) \circ i_B = p_A \circ i_B + p_A \circ i_B$, we obtain that $p_B \circ i_A = 0$ and $p_A \circ i_B = 0$. Hereafter, we use only for an Abelian category.

Definition II.5. Let f, g be composable pair. The sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is exact at B provided that any of following equivalent statements holds:

- $\operatorname{im} f = \ker g$,
- $\operatorname{coker} = f = \operatorname{coim} g$,
- $g \circ f = 0$ and for any $\varphi \in_m B$ if $g \circ \varphi \equiv 0$ then there is a morphism $\varphi' \in_m A$ such that $\varphi' \circ f \equiv \varphi$.

A sequence $A_0 \to A_1 \to \cdots \to A_n$ is exact provided that it is exact at any object.

A short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ splits provided that we have the one of the following equivalent statement:

1. there is a morphism $h: C \to B$ such that $g \circ h = \mathrm{id}_C$,

- 2. there is a morphism $h: A \to B$ such that $h \circ f = id_A$,
- 3. $B = A \oplus C$.

Lemma II.6 (Splitting lemma). For a short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the following are equivalent.

- 1. f is right-cancellable, i.e., there is a morphism $f' \in \text{Hom}(A, B)$ such that $f' \circ f = \text{id}_A$,
- 2. g is left-cancellable, i.e., there is a morphism $g' \in \text{Hom}(A, B)$ such that $g \circ g' = \text{id}_C$,
- 3. There is $f' \in \text{Hom}(A, B)$ and $g' \in \text{Hom}(C, B)$ such that
 - $f' \circ f = \mathrm{id}_A$,
 - $g \circ g' = \mathrm{id}_C$, and
 - $f \circ f' + g' \circ g = \mathrm{id}_B$.

Proof. We shall show (1) \Longrightarrow (3) (the other cases are immediate by mimic this case or manifestly). Let $f' \colon B \to A$ be a morphism such that $f' \circ f = \mathrm{id}_B$. Since the short sequence exact at, we obtain that B, coker $f = \mathrm{coim}\,g = g$ and $(1 - ff') \circ f = 0$, we have the canonical morphism $g' \colon C \to B$:

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$id_B -ff' \xrightarrow{g'} B$$

Moreover, since we have $g \circ g' \circ g = g \circ (\mathrm{id}_B - ff')$, $g \circ g' = \mathrm{id}_C$ holds (note that g is epi).

Therefore, we obtain

$$A \stackrel{f}{\underset{f'}{\longleftarrow}} B \stackrel{g}{\underset{q'}{\longleftarrow}} C$$

with

- 1. $f' \circ f = \mathrm{id}_A$,
- 2. $g' \circ g = \mathrm{id}_C$, and
- 3. $f \circ f' + g \circ g' = id_B$.

Definition II.7. For two Abelian categories \mathcal{A} and \mathcal{B} and a functor $T \colon \mathcal{A} \to \mathcal{B}$, we define the following:

1. A functor T is *additive* provided that for any parallel arrows f and g in \mathcal{A} , we have T(f+g)=T(f)+T(g),

- 2. A covariant functor T is *left-exact* provided that for any short exact sequence $0 \to A \to B \to C$, a sequence $0 \to T(A) \to T(B)$ is exact.
- 3. A covariant functor T is right-exact provided that for any short exact sequence $A \to B \to C \to 0$, a sequence $T(A) \to T(B) \to 0$ is exact.
- 4. A covariant functor T is exact provided that it is right and left-exact,
- 5. A contravariant functor T is *left-exact* provided that for any short exact sequence $A \to B \to C \to 0$, a sequence $0 \to T(A) \to T(B)$ is exact.
- 6. A contravariant functor T is right-exact provided that for any short exact sequence $0 \to A \to B \to C$, a sequence $T(A) \to T(B) \to 0$ is exact.
- 7. A contravariant functor T is exact provided that it is right and left-exact.

Theorem II.8. Every additive functor preserves the binary product objects.

Theorem II.9. Every splits exact sequence $0 \to A \to B \to C \to 0$ preserved by any additive functor.

Definition II.10.

- 1. An object P is *projective* provided that for any φ and epi f whose codomain are the same, then there is ψ such that $\varphi = f \circ \psi$,
- 2. An object Q is *injective* provided that for any φ and monic f whose domain are the same, then there is ψ such that $\psi = \psi \circ f$.

Theorem II.11. For two projective objects P,Q, then the direct product object $P \oplus Q$ is projective.

Definition II.12. Let C be a countable sequence of pair of object and arrow, $C = \langle (C_n, \delta_n); n \in \omega \rangle$

1. A sequence C is a *chain* provided that $dom \delta_n = C_n = cod \delta_{n+1}$ for any $n \in \omega$,

$$\cdots \to C_{n+1} \xrightarrow{\delta_{n+1}} C_n \xrightarrow{\delta_n} C_{n-1} \to \cdots \xrightarrow{\delta_1} C_0 \xrightarrow{\delta_0} \operatorname{cod} \delta_0$$

- 2. A sequence C is a *chain complex* provided that C is chain and $\delta_n \circ \delta_{n+1} = 0$ for any $n \in \omega$,
- 3. A sequence is a projective resolution for an object A provided that it is a chain complex such that every C_n is projective, $\operatorname{cod} \delta_0$ and the following sequence exact:

$$\cdots \to C_{n+1} \xrightarrow{\delta_{n+1}} C_n \xrightarrow{\delta_n} C_{n-1} \to \cdots \xrightarrow{\delta_1} C_0 \xrightarrow{\delta_0} A \to 0$$

In particular for an object A, a chain C with $\operatorname{cod} \delta_0 = A$ is called a chain for A. Duality,

1. A sequence C is a *cochain* provided that dom $\delta_{n+1} = C_n = \operatorname{cod} \delta_n$ for any $n \in \omega$,

$$\operatorname{dom} \delta_0 \xrightarrow{\delta_0} C_0 \xrightarrow{\delta_1} \cdots \to C_{n-1} \xrightarrow{\delta_n} C_n \xrightarrow{\delta_{n+1}} C_{n+1} \to \cdots,$$

- 2. A sequence C is a *cochain complex* provided that C is cochain and $\delta_{n+1} + \delta_n = 0$ for any $n \in \omega$,
- 3. A sequence is a *injective resolution* for an object A provided that it is a cochain complex such that every C_n is injective, dom $\delta_0 = A$ and the following sequence exact:

$$0 \to A \xrightarrow{\delta_0} C_0 \xrightarrow{\delta_1} \cdots \to C_{n-1} \xrightarrow{\delta_n} C_n \xrightarrow{\delta_{n+1}} C_{n+1} \to \cdots,$$

In particular for an object A, a chain C with dom $\delta_0 = A$ is called a cochain for A.

Definition II.13. Let $\mathcal{A} = \langle (A_n, \delta_n) ; n \in \omega \rangle$ be a chain complex. Define the *n*-th homology object as the quotient object, $H_n(\mathcal{A}) = H_n(\delta_n) = \text{Ker}(\delta_n) / \text{Im}(\delta_{n+1})$, i.e., the unique module as following universal property.

$$Im(\delta_{n+1}) \xrightarrow{u_n} Ker(\delta_n) \xrightarrow{\operatorname{coker} u_n} Coker u_n = Ker(\delta_n) / Im(\delta_{n+1})$$

$$A_{n+1} \xrightarrow{\underset{\operatorname{coker} \delta_{n+1}}{\delta_{n+1}}} A_n \xrightarrow{\delta_n} A_{n-1}$$

$$Coker \delta_n$$

Definition II.14. Let $\mathcal{A} = \langle (A_n, \delta_n); n \in \omega \rangle$ be a cochain complex. Define the *n*-th cohomology object as the quotient object, $H_n^*(\mathcal{A}) = H_n^*(\delta_n) = \text{Ker}(\delta_n)/\text{Im}(\delta_{n+1})$, i.e., the unique module as following universal property.

$$\operatorname{Im}(\delta_{n}) \xrightarrow{u_{n}^{*}} \operatorname{Ker}(\delta_{n+1}) \xrightarrow{\operatorname{coker} u_{n}^{*}} \operatorname{Coker} u_{n}^{*} = \operatorname{Ker}(\delta_{n+1}) / \operatorname{Im}(\delta_{n})$$

$$A_{n-1} \xrightarrow{\delta_{n}} A_{n} \xrightarrow{\delta_{n+1}} A_{n+1}$$

$$\xrightarrow{\operatorname{coker} \delta_{n}} u$$

$$Coker \delta_{n}$$

Theorem II.15. For an object A and let $A = \langle (A_n, \delta_n); n \in \omega \rangle$ and $B = \langle (B_n, \lambda_n); n \in \omega \rangle$ cochains for A. If there is morphisms $\langle f_n : A_n \to B_n; n \in \omega \rangle$: $A \to B$ and $A \to B$ and

Proof.

Theorem II.16. For a cochain $\langle (X_n, \delta_n) ; n \in \omega \rangle$, the *n*-th cohomology has the different form as in the following diagram:

$$\begin{array}{c} \text{Coker } u_{n-1} \xleftarrow{\operatorname{coker } u_{n-1}} & \text{Ker } \delta_n \xleftarrow{u_{n-1}} & \text{Im } \delta_{n-1} & \text{Im } \delta_n \xrightarrow{u_n} & \text{Ker } \delta_{n+1} \xrightarrow{\operatorname{coker } u_n} & \text{Coker } u_n \\ & \parallel & \ker \delta_n & \text{Im } \delta_{n-1} & \text{Im } \delta_n & \text{Im } \delta_n & \text{Ker } \delta_{n+1} & \text{Im } \delta_n \\ & \parallel & & \ker \delta_n & \text{Im } \delta_n & \text{Im } \delta_n & \text{Ker } \delta_{n+1} & \text{Im } \delta_n & \text{Im } \delta$$

Proof. To prove that $\operatorname{Coker} u_{n-1} = \operatorname{Ker} \widetilde{\delta_n}$, it is enough to show the following two equalities:

- 1. $\operatorname{coker} u_n = \operatorname{coim}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n),$ equivalently, $\operatorname{im} u_{n-1} = \ker(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n),$
- 2. $\ker \widetilde{\delta_n} = \operatorname{im}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n)$.

$$\operatorname{Im} \delta_{n-1} \qquad X_{n-2} \qquad X_n \xrightarrow{\delta_{n+1}} X_{n+1}$$

$$\operatorname{Im} u_{n-1} \xrightarrow{\operatorname{im} u_{n-1}} \operatorname{Ker} \delta_n \xrightarrow{\operatorname{ker} \delta_n} X_{n-1} \xrightarrow{\operatorname{coker} \delta_{n-1}} \operatorname{Coker} \delta_{n-1} \xrightarrow{\widetilde{\delta_n}} \operatorname{Ker} \delta_n \xrightarrow{\operatorname{Ker} \widetilde{\delta_n}} \operatorname{Ker} \delta_{n+1}$$

$$\operatorname{coker} u_{n-1} \qquad \operatorname{Im} (\operatorname{coker} \delta_{n-1} \circ \operatorname{ker} \delta_n) \xrightarrow{\operatorname{Ker} \widetilde{\delta_n}} \operatorname{Ker} \widetilde{\delta_n}$$

For 1, we shall verify

- $\operatorname{coker} \delta_{n-1} \circ \ker \delta_n \circ \operatorname{im} u_{n-1} = 0$,
- $\operatorname{coker} \delta_{n-1} \circ \ker \delta_n \circ \varphi = 0 \Longrightarrow \exists^! \psi \ \varphi = \operatorname{im} u_{n-1} \circ \psi \text{ for any composable } \varphi.$

The former is immediate by the facts that $u_{n-1} = \operatorname{im} u_{n-1} \circ \operatorname{coim} u_{n-1}$ and $\operatorname{coim} u_{n-1}$ is epi. To see the later, assume that for φ we have $\operatorname{coker} \delta_{n-1} \circ \operatorname{ker} \delta_n \circ \varphi = 0$. By the universal property for $\operatorname{im} \delta_{n-1}$ according to $\operatorname{ker} \delta_n \circ \varphi = 0$,

there is ψ such that $\ker \delta_n \circ \varphi = \operatorname{im} \delta_{n-1} \circ \psi$. Thus, since $\ker \delta_n$ is monic, we obtain that $\varphi = u_{n-1} \circ \psi$. Moreover, by the universal property for $\operatorname{im} u_{n-1}$ according to $\operatorname{coker} u_{n-1} \circ \varphi = 0$, there is ψ' such that $\varphi = \operatorname{im} u_n \circ \psi'$. We complete the proof.

For 2, we shall verify

- $\operatorname{coker}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n) \circ \ker \widetilde{\delta_n} = 0.$
- $\operatorname{coker}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n) \circ \varphi = 0 \implies \exists^! \psi \ \varphi = \ker \widetilde{\delta_n} \circ \psi \text{ for any composable } \varphi.$

The former is immediate by the facts $\ker \delta_{n+1}$ is monic and in generally for composable f,g $g \circ f = 0$ implies $\operatorname{coker} f \circ \ker g = 0$. To see the later, assume for φ we have $\operatorname{coker}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n) \circ \varphi = 0$. The universal property for $\operatorname{coker}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n)$ according to $\widetilde{\delta_n} \circ \operatorname{coker} \delta_{n-1} \circ \ker \delta_n = 0$, there is ψ such that $\widetilde{\delta_n} = \psi \circ \operatorname{coker}(\operatorname{coker} \delta_{n-1} \circ \ker \delta_n)$, moreover by the universal property for $\ker \widetilde{\delta_n}$ according to $\ker \widetilde{\delta_n} \circ \psi = 0$, there is ψ' such as $\varphi = \ker \widetilde{\delta_n} \circ \varphi$. We complete the proof.

To prove that Coker $u_{n+1}=\operatorname{Coker}\widetilde{\delta_n},$ we shall show the following two equalities:

At the beginning of the proof, by the universal property for coker δ_{n-1} according to $coim \delta_n \circ \delta_{n-1}$ there is φ such that $coim \delta_n = \varphi \circ coker \delta_{n-1}$. Moreover, the uniqueness property for $\widetilde{\delta_n}$ asserts that $\widetilde{\delta_n} = u_{n+1} \circ \varphi$.

To see that $\operatorname{coker} u_{n+1} = \operatorname{coker} \widetilde{\delta_n}$, we shall show that:

- $\operatorname{coker} u_{n+1} \circ \widetilde{\delta_n} = 0,$
- $\eta \circ \widetilde{\delta_n} = 0 \implies \exists^! \psi \ \eta = \psi \circ \operatorname{coker} u_{n+1}$ for any composable η .

Since former is immediate, we shall verify the later. Assume that $\eta \circ \widetilde{\delta_n} = 0$, we have $\eta \circ u_{n+1} \circ \operatorname{coim} \delta_n = 0$. Thus, by the universal property for Coker u_{n+1} according to $\eta \circ u_{n+1} = 0$, there is ψ such that $\eta = \psi \circ \operatorname{coker} u_{n+1}$.

Theorem II.17. For chains $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and morphisms $\langle (f_n, g_n); n \in \omega \rangle$ such that the sequence $0 \to A_n \xrightarrow{f_n} B_n \xrightarrow{g_n} C_n \to 0$ exact and $f_{n+1} \circ \delta_n = \lambda_n \circ f_n$ and

 $g_{n+1} \circ \lambda_n = \eta_n \circ g_n$ for each $n \in \omega$. Then we have two short exact sequences as in the following diagram draw by red and blue:

Proof. Immediate by Snake Lemma.

Theorem II.18. Let $\mathcal{A} = \langle (A_n, \delta_n); n \in \omega \rangle$ and $\mathcal{C} = \langle (C_n, \eta_n); n \in \omega \rangle$ be projective resolutions. Then there is a projective resolutions $\mathcal{B} = \langle (B_n, \lambda_n); n \in \omega \rangle$ such that $0 \to A_n \to B_n \to C_n \to 0$ splits exact for each $n \in \omega \setminus 1$.

Proof. Manifestly by letting $B_n = A_n \oplus C_n$ and f_n and g_n be canonical inclusion and projection.

Definition II.19. A category \mathcal{A} is enough projectives provided that for each object A there is an epimorphism $f \colon P \to A$ where P is projective. Duality, \mathcal{A} is enough injectives provided that for each object A there is a monic $g \colon A \to Q$ where Q is injective.

Theorem II.20.

- 1. If \mathcal{A} is enough projectives, every object has projective resolution,
- 2. If \mathcal{A} is enough injectives, every object has injective resolution.

Proof. We prove the first statement. (Note that the second statement can being handled in an obvious dual manner.) Let X be an object in A. There is projective P_0 and epimorphism $p_0: P_0 \to X$. Then we have the following sequence exact at P_0 and X,

$$\operatorname{Ker} p_0 \xrightarrow{\ker p_0} P_0 \xrightarrow{p_0} X \longrightarrow 0.$$

Continuing this processes, we have the projective objects P_n , $n \in \omega$,

$$P_{n+1} \xrightarrow{\ker p_n \circ p_{n+1}} P_n \xrightarrow{\ker p_{n-1} \circ p_n} \cdots \xrightarrow{\ker p_0 \circ p_1} P_0 \xrightarrow{p_0} X \longrightarrow 0$$

and the uniqueness for epi-monic factorization asserts that the sequence exact at any were. $\hfill\Box$

Definition II.21. Let \mathcal{A} be enough projectives Abelian category. For an additive contravariant functor T, define a *right-derived functor*. For an object $A \in \mathcal{A}$, choose a projective resolution $\langle (A_n, \delta_n); n \in \omega \rangle$ (we shall show that the definition is not depend on the choice of this resolution), we have the chain $\langle (T(A_n), T(\delta_n)); n \in \omega \rangle$. The right-derived functor given by following data:

- 1. $(R^nT)(A) = H_n(T(A))$ or $(R^0T)(A) = \text{Ker } \delta_0$ for any object A,
- 2. $(R^nT)(f):(R^nT)(A)\to (R^nT)(B)$ be the canonical morphism for any arrow $f\colon A\to B$.

Theorem II.22. For an object A and contravariant additive functor T, the derived functor does not depend on the choice of projective resolution.

Proof. Let \mathcal{A} and \mathcal{B} be projective resolutions. The sequence $\mathcal{A} \oplus \mathcal{B} = \langle A_n \oplus B_n ; n \in \omega \rangle$ is a projective resolution. It suffice to show that $(R^nT)(\mathcal{A}) = (R^nT)(\mathcal{A} \oplus \mathcal{B})$. There are morphism between two projective resolutions \mathcal{A} and $f = \mathcal{A} \oplus \mathcal{B}$, $\langle i_1^n \colon A_n \to A_n \oplus B_n ; n \in \omega \rangle$ and $\langle p_1^n \colon A_n \oplus B_n \to A_n ; n \in \omega \rangle$ this morphism witness that two chains $T(\mathcal{A})$ and $T(\mathcal{A} \oplus \mathcal{B})$ are isomorphism. Thus by Theorem II.15 we have $(R^nT)(\mathcal{A}) = (R^nT)(\mathcal{A} \oplus \mathcal{B})$ for each $n \in \omega$.

Theorem II.23. Let \mathcal{A} be an enough projectives Abelian category and $T: \mathcal{A} \to \mathcal{B}$ be additive contravariant functor and let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence. Then we have the following long long red exact sequence.

Lemma II.24. Let T be an additive contravariant functor and let R^nT be right-derived functor for T. If T is left-exact, $(R^0T) = T$. Moreover, for a projective object A, we have $(R^nT) = 0$ for any $n \in \omega \setminus 1$.

Proof. Immediate by that the sequence $0 \to T(A) \to T(P_0) \to T(P_1)$ exact for a projective resolution $\langle (P_0, \delta_0); n \in \omega \rangle$. To see the moreover part, note that

$$\cdots \to 0 \to 0 \to A \to A \oplus A \to A \to 0$$

is a projective resolution for A, we obtain that $(R^nT) = 0$ for $n \in \omega \setminus 1$.

III Module

Definition III.1. Let R be a ring. M is a (*left*) R- module provided that M is an Abelian group and there is an action $\cdot: R \times M \to M$ such that:

- $\cdot (r +_R r', m) = \cdot (r, m) +_M \cdot (r', m)$, for any $r, r \in R$ and $m \in M$,
- $\cdot (r, \cdot (r', m)) = \cdot (rr', m)$, for any $r, r \in R$ and $m \in M$,
- $\cdot (r, m +_M m') = \cdot (r, m) +_M \cdot (r', m)$, for any $r \in R$ and $m, m' \in M$,
- If R processes identity id_R , $\cdot (1_R, m) = m$ for any $m \in M$

We simply write $r \cdot m$ for $\cdot (r, m)$, or more simply rm when there is no danger of confusing.

For an Abelian group A, we can regard A as the \mathbb{Z} -module with following natural action:

$$(n+1)a = na + a$$

for any $n \in \mathbb{Z}$ and any $a \in A$.

Definition III.2. An R-module homomorphism φ form R-module (M, +M) into R-module $(N, +_N)$ is a function such that

- $\varphi(x +_M y) = \varphi(x) +_N \varphi(y)$ for all $x, y \in M$ and
- $\varphi(rm) = r\varphi(m)$ for all $r \in R$ and $m \in M$.

Notice that, for fixed ring R, the collection of R-modules and the collection of R-module homomorphisms be an (enough projectives) Abelian category.

The finite dimensional vector space (linear space) over a field F is a (free-) F module and the F-module homomorphism is the linear transformation or the associated matrix.

Definition III.3. For a set A, the *free* R-module on the set A, F(A) is an R-module with following universal property:

For set morphism $f : A \to B$ there is a unique R-module morphism F(f) such that TFDC:

$$A \longleftrightarrow F(A)$$

$$\downarrow f \qquad \qquad \downarrow F(f)$$

$$B \longleftrightarrow F(B)$$

In this sense, we can define the free functor $F \colon \mathbb{S}et \to R$ - Mod and note that F is an additive functor.

An R-module M is free, provided that there is a set A such that M = F(A). In particular, we said that the free \mathbb{Z} -module as free Abelian group.

Theorem III.4 ([DF04]). Every free module is projective.

Definition III.5. For an ordinal α , a sequence $\langle A_{\xi}; \xi \in \alpha \rangle$ is a *smooth chain* provided that

- 1. $A_{\xi} \subset A_{\xi+1}$ for any $\xi \in \alpha$,
- 2. $A_{\xi} = \bigcup \{A_{\eta}; \eta \in \xi\}$ for any limit $\xi \in \alpha$

We said that a smooth chain is *smooth chain of modules* if A_{ξ} is module and A_{ξ} is a submodules of $A_{\xi+1}$ for any $\xi \in \alpha$.

Theorem III.6. For a smooth chain of R-modules $\langle M_{\xi}; \xi \in \alpha \rangle$. If M_0 and $M_{\eta+1}/M_{\eta}$ are free, for any $\eta \in \alpha$, the R-module $M = \bigcup \{M_{\xi}; \xi \in \alpha\}$ is free. Moreover, M/M_{ξ} is free for any $\xi \in \alpha$.

Proof. We shall show by induction on α . For the leading stage is immediate.

To see the successor stages. Let A and B be sets such that $F(A) = M_{\xi}$ and $F(B) = M_{\xi}/M_{\xi}$. Note that since the free functor $F \colon \mathbb{S}et \to \mathbb{Z}$ - Mod is additive, we have $F(A \oplus B) = F(A) \oplus F(B)$. Since we may assume that A and B are disjoint, we obtain that $F(A \cup B) = F(A) \oplus F(B) = M_{\xi} \oplus M_{\xi+1}/M_{\xi} = M_{\xi+1}$. We complete the proof.

We prove the limit stages. Induction hypothesis asserts that there are sets X_{ξ} , $\xi \in \alpha$, such that $X_{\xi} \subset X_{\xi+1}$ and $F(X_{\xi}) = M_{\xi}$ for any $\xi \in \alpha$. To complete the proof, it is routine to see that $F(\cup \{X_{\xi}; \xi \in \alpha\}) = \cup \{M_{\xi}; \xi \in \alpha\}$ by check the universal property.

To see the moreover part, let X and Y be basis for M_{ξ} and M respectively such as $X \subset Y$ we note there is a unique φ by the universal property for cokernel and ψ by the universal property for free module:

Here, p and i is the canonical inclusion and projection since $M = M_{\xi} \oplus F(Y \setminus X)$. The equality $\varphi \circ \psi = \text{id}$ is immediate by the fact that φ is epi and $\varphi = \varphi \circ \psi \circ \psi$. The equality $\psi \circ \varphi = \text{id}$ is immediate by following steps:

$$\begin{split} \varphi &= \varphi \circ \operatorname{coker} f \circ i \circ \varphi \\ \operatorname{id} &= \operatorname{coker} f \circ i \circ \varphi \\ \psi \circ \varphi &= \operatorname{coker} f \circ i \circ \varphi \circ \psi \circ \varphi = \operatorname{id} \end{split}$$

Definition III.7. An *R*-module is *projective* provided that it is projective in the sense in an Abelian category *R*-Mod.

Theorem III.8. *R*-Mod is enough projectives.

Lemma III.9. For any R-Mod M, there is an projective resolution.

Definition III.10. Let A,B,C be R-modules. An exact sequence $0 \to A \to B \xrightarrow{f} C \to 0$ splits provided that there is a R-module homomorphism $g\colon C \to B$ such that $g\circ f=\mathrm{id}_C$.

Theorem III.11 ([DF04]). Let R be a ring with identity and P an R- module. TFAE.

- 1. $\operatorname{Hom}_R(-,P)$ is exact,
- 2. $\operatorname{Ext}^1_{\mathbb{Z}}(-,P) := (R^1T) = 0$, here T is an additive right-exact contravariant hom-functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},P)$ from \mathbb{Z} Mod ,

- 3. If P is a quotient of the R-module M then P is isomorphic to a direct summand of M, i.e., every short exact sequence $0 \to L \to M \to P \to 0$ splits,
- 4. P is a direct summand of a free R-module.

Definition III.12. For an integral domain R and R-module M, we define a torsion submodule of M and an annihilator of module M.

- 1. $Tor(M) = \{x \in M ; \exists r \in R \setminus \{0\} \ rx = 0\},\$
- 2. $Ann(M) = \{r \in R ; \forall m \in M \ rm = 0\}.$

We said that M is torsion free provided that Tor(M) = 0.

Theorem III.13 (Fundamental Theorem (invariant factor form), [DF04]). Let R be an P.I.D., and M a finitely generated R-module. Then we have:

- 1. There is a finite sequence of R, $\langle a_i ; i \in n \rangle$, and $r \in \omega$ such as
 - $(a_0) \subset (a_1) \subset \cdots \subset (a_{n-1}),$
 - $M \cong R^r \oplus R/(a_0) \oplus R/(a_1) \oplus \dots R/(a_{n-1})$.
- 2. M is torsion free if and only if M is free,
- 3. In the decomposition in (1),

$$\operatorname{Tor}(M) \cong R/(a_0) \oplus R/(a_1) \oplus \dots R/(a_{n-1})$$

Moreover, M is torsion module if and only if r = 0 and in this case the annihilator of M is the ideal (a_0) .

Definition III.14. Let A be a torsion free group and let B be a normal subgroup of A. B is a *pure subgroup of* A provided the quotient A/B is torsion free. For a subset B the *pure closure for* B is the subset such that $B' = \{a \in A : \exists n \in \mathbb{Z} \setminus \{0\} \ n \cdot a \in B\}.$

Note that the pure closure B' is a pure subgroup for torsion free group A.

Theorem III.15 (Pontryagin's Criterion). Let A be a countable torsion free group such as every finitely generated subgroup of A is contained in some pure finitely generated subgroup. A is free.

Proof. Enumerate $A = \{a_n \in n \in \omega\}$. Thanks to the assumption we can easy to define an increasing sequence, among \subset , of finitely generated pure subgroup of $A \{B_n \in n \in \omega\}$ such that

- $a_n \in B_n$, and
- B_{n+1}/B_n is free. (See Theorem III.13)

The proof of the theorem is completed by an application of Theorem III.6. \Box

IV Whitehead Problem

In this section, since we treat a Z-module, we simply say Abelian group.

Definition IV.1. An Abelian group A is a Whitehead group provided that $\operatorname{Ext}^1_{\mathbb{Z}}(A) = 0$

Definition IV.2. Let A be an Abelian group. C is an (A, \mathbb{Z}) -group provided that it is an Abelian group whose underlying set is $B \times \mathbb{Z}$ (i.e., for the forgetful functor $U : \mathbb{Z}$ - Mod $\to \mathbb{S}et$, $U(C) = A \times \mathbb{Z}$), $(0,n) +_C (0,m) = (0,n+m)$ for each n, m, and a map $\pi : C \to A$ given by $(a, n) \mapsto a$ is a group morphism.

Note that since the kernel for π is \mathbb{Z} , if π is left cancellable by splitting lemma we have $C = \mathbb{Z} \oplus A$.

Theorem IV.3. Let B_1 be a Whitehead group and B_0 be a subgroup of B_1 such that the quotient B_0/B_1 is not Whitehead. Then there is $\varphi \in \text{Hom}(B_0, \mathbb{Z})$ such that there are no $\psi \in \text{Hom}(B_1, \mathbb{Z})$ such as TFDC:

Proof. For a short exact sequence

$$0 \to B_0 \xrightarrow{\iota} B_1 \xrightarrow{\operatorname{coker} \iota} B_1/B_0 \to 0,$$

we have an exact sequence

$$\operatorname{Hom}(B_1,\mathbb{Z}) \xrightarrow{\iota^*} \operatorname{Hom}(B_0,\mathbb{Z}) \xrightarrow{\varphi} \operatorname{Ext}(B_1/B_0,\mathbb{Z}) \to \operatorname{Ext}(B_1,\mathbb{Z}) = 0.$$

To conclude the proof, we remain to see that the ι^* is not epi. Suppose not, we have $\operatorname{Hom}(B_0,\mathbb{Z}) = \operatorname{Im} \iota^* = \operatorname{Ker} \varphi$. This asserts that $\varphi = 0$ and moreover, since φ is monic, we obtain that $\operatorname{Ext}(B_1/B_0,\mathbb{Z}) = 0$, a contradiction.

Lemma IV.4.

- 1. Every free Abelian group is a Whitehead group,
- 2. Every subgroup of a Whitehead group is also a Whitehead group,
- 3. Every Whitehead group is torsion free,
- 4. For a Whitehead group A and a subgroup B such that A/B is not a Whitehead group. Let C_0 be a (B_0, \mathbb{Z}) -group with the left cancellable canonical morphism $\pi_0 \colon C_0 \to B_0$. There is a (B_1, \mathbb{Z}) -group C_1 such which is an extension for C_0 and there are no left inverse for π_1 which is an extension for a left inverse for π_0 .

5. Every countable Whitehead group is free,

Proof. The statement (1) is manifestly.

To prove (2). Let A be an Abelian group and B a subgroup of A. Let $i\colon B\to A$ be the natural inclusion. Let $f\colon C\to B$ be a module homomorphism such that

$$0 \to \mathbb{Z} \to C \xrightarrow{f} B \xrightarrow{\operatorname{coker} f} 0$$
 is exact.

We shall find a right-inverse $g: B \to C$ for f. Define a function $\varphi: A \to B$ which assigns x to x if $x \in B$ and 0 if $A \setminus B$. Then we obtain an exact sequence such that

$$0 \to \mathbb{Z} \to C \xrightarrow{i \circ f} A \xrightarrow{\operatorname{coker} f \circ \varphi} 0$$

Since A is Whitehead, there is a module morphism $g': A \to C$ such that $i \circ f \circ g' = \mathrm{id}_A$. Moreover, since $\varphi \circ i = \mathrm{id}_B$, we have that $f \circ (g \circ i) = \mathrm{id}_B$.

To prove (3). Let A be a Whitehead group and assume that there is $a \in \text{Tor}(A) \setminus \{0\}$ and let $n \in \mathbb{Z}$ with $n \cdot a = 0$. Let $\pi \colon A \to A/\langle a \rangle$ be the canonical projection. Then the kernel is $\ker \pi \colon A \to A$ with canonical assignments. Then since previous fact asserts that the finite subgroup $\langle a \rangle$ is a Whitehead group, we obtain that $A = A \oplus A/\langle a \rangle$, a contradiction.

To prove (4). Note that $C_0 = \mathbb{Z} \oplus B_0$. Fix a morphism $\psi \in \text{Hom}(B_0, \mathbb{Z})$ as in Theorem IV.3 and define $\gamma \in \text{Hom}(C_0, C_1)$ which assigns (b, n) the $(b, n + \varphi(b))$. Assume that there is a left inverse for π_1 and assume that $\gamma \circ \rho_0 = \rho_1 \circ \iota_B$, i.e., the right square in the following diagram commutes.

$$\varphi$$

$$\mathbb{Z} \xrightarrow{p_0} C_0 \xrightarrow{\pi_0} B_0$$

$$\downarrow^{\mathrm{id}_{\mathbb{Z}}} \qquad \downarrow^{\gamma} \qquad \downarrow^{\iota_B}$$

$$\mathbb{Z} \xrightarrow{p_1} C_1 \xrightarrow{\pi_1} B_1$$

$$\psi = p_1 \circ \rho_1$$

Now, for arbitrary $b \in B_0$ we obtain that

$$id_{\mathbb{Z}} \circ \varphi(b) = (p_1 \circ \gamma)(b, 0)$$

$$= (p_1 \circ \gamma \circ \rho_0)(b)$$

$$= \psi \circ \iota_B(b)$$

This contradicts that the choice for φ .

To prove (5). Thanks to the results (3), if for every finitely generated subgroup there is a finitely generated pure subgroup which contains it, Pontryagin's Criterion, we obtain the result. We remain to see the case of that there is a finitely generated subgroup B_0 such that there are no finitely generated pure subgroup which contains B_0 . Fix a finite set S which generates B_0 and pure closure B of B_0 . First we note that for any morphism $\rho: B \to C$ (C is any Abelian group), since

- $\rho|_{B_0}$ can be recovered from ρ_S , and
- ρ can be recovered from ρ_B , this is because that B is torsion free,

 ρ can be recovered from ρ_S . For a canonical projection $\pi_S \colon S \times \mathbb{Z} \to S$, enumerate all the right-inverse of π , $\{g_n \colon S \to S \times \mathbb{Z} \colon n \in \omega\}$. Now we construct a (B_n, \mathbb{Z}) -group C_n and a right-inverse $\rho_n \colon B_n \to C_n$ for a canonical morphism $\pi_n \colon C_n \to B_n$, as following steps, by using the result (4):

1. Leading stage:

1-a
$$C_0 = B_0 \oplus \mathbb{Z}$$
.

1-b If there is a right-inverse ρ_0 for π_0 such that $g_0 \subset \rho_0$, choose such a morphism and if otherwise choose arbitrary right-inverse.

2. Successor stages:

- 2-a Choose a (B_{n+1}, \mathbb{Z}) -group C_{n+1} which is an extension for C_n , such that there are no right-inverse of $\pi_{n+1}: B_{n+1} \to C_{n+1}$ which is an extension for ρ_n .
- 2-b If there is a right-inverse ρ_{n+1} for π_{n+1} such that $g_{n+1} \subset \rho_{n+1}$, choose such a morphism and if otherwise choose arbitrary right-inverse.

To complete the proof, we shall show that that for (B, \mathbb{Z}) -group C the canonical morphism $\pi \colon C \to B$ does not possess a right-inverse, if we done we have a contradiction that B is a Whitehead group. Suppose that there is a right-inverse $\rho \colon B \to C$. Then there is an $n \in \omega$ such that $g_n \subset \rho|_{S}$, and moreover since $\rho|_{B_n}$ is a right-inverse of π_n , we obtain that $\rho_n = \rho|_{B_n}$. However $\rho|_{B_{n+1}}$ is a right-inverse of π_{n+1} and is an extension of a right-inverse $\rho|_{B_n}$ of π_n , a contradiction.

Definition IV.5. Let A be an Abelian group. A is \aleph_1 -free provided that every countable subgroup is free. A subgroup B is \aleph_1 -pure provided that the quotient A/B is \aleph_1 -free. An \aleph_1 -free group A has a Chase's condition provided that

(Chase) every countable subgroup of A is contained in a countable \aleph_1 -pure subgroup of A.

Note that the previous lemma shows that every Whitehead group is \aleph_1 -free.

Lemma IV.6. A group of size \aleph_1 has the chase's condition if and only if A is a union of a smooth chain $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ such that $A_0 = 0$ and A_{α} is free and $A_{\alpha+1}$ is an \aleph_1 -pure subgroup of A.

Proof. First, we show the sufficiently condition. Assume that A satisfies the chase's condition. Enumerate $\{a_{\alpha} : \alpha \in \omega_1\}$ and define a A_{α} , $\alpha \in \omega_1$, recursively:

1. Leading stage.

$$A_0 = 0,$$

2. Successor stages.

 $A_{\alpha+1}$ be an \aleph_1 -pure subgroup which containing A_{α} and a_{α} ,

3. limit stages.

$$A_{\gamma} = \bigcup \{ A_{\alpha} \, ; \alpha \in \gamma \}.$$

Note that the existence of an \aleph_1 -pure subgroup is by the chase's condition.

Second, we show the enough condition but this is immediate that since for any countable subset B of A there is $\alpha \in \omega_1$ such that $B \subset \{a_\beta; \beta \in \alpha\}$.

From now on, we will demonstrate that the statement "every Whitehead group of size \aleph_1 is free" is independent from ZF. First, we will establish the existence of a model such that every Whitehead group of size \aleph_1 is free. Specifically, the truth of the statement that the Whitehead group of size \aleph_1 is free holds in a model that satisfies the \lozenge_E axiom.

Lemma IV.7. Let $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ be a smooth chain for countable Abelian groups. Define $A = \bigcup \{A_{\alpha}; \alpha \in \omega_1\}$ and $E = \{\alpha \in \omega_1; A_{\alpha+1}/A_{\alpha} \text{ is not free}\}$. Then if E is stationary and \Diamond_E holds, A is not a Whitehead group.

Proof. Fix a \Diamond_E -sequence $\langle D_\alpha ; \alpha \in E \rangle$ and bijection $\nu \colon \omega_1 \to \mathbb{Z} \times A$. Define a (\mathbb{Z}, A_α) -group C_α and the canonical epimorphism $f_\alpha \colon C_\alpha \to A_\alpha$ with $\mathbb{Z} = \operatorname{Ker} f_\alpha$, $\alpha \leq \omega_1$, recursively:

1. Leading stage, 0,

(1-a)
$$C_0 = \mathbb{Z} \times A_0$$
 and $f_{\alpha} = p_0$: projection.

- 2. Successor stages, $\alpha + 1$,
- (2–a) If $\alpha \in E$ and $g_{\alpha} = \nu[D_{\alpha}]$ is a function with $\mathrm{dom}(g_{\alpha}) = A_{\alpha}$ such that $f_{\alpha} \circ g_{\alpha} = \mathrm{id}_{A_{\alpha}}$. $f_{\alpha+1} \colon C_{\alpha+1} \to A_{\alpha+1}$ is an epimorphism such that $\mathrm{Ker}(f_{\alpha+1}) = \mathbb{Z}$, (\mathbb{Z}, A_{α}) - group C_{α} and there are no $g \colon A_{\alpha+1} \to C_{\alpha+1}$ such as $g|_{A_{\alpha}} = g_{\alpha}$ and $f_{\alpha+1} \circ g = \mathrm{id}_{A_{\alpha+1}}$.
- (2-b) Otherwise.

Choose an epimorphism $f_{\alpha+1} \colon C_{\alpha+1} \to A_{\alpha+1}$ such with TFDC and exact:

$$0 \longrightarrow \mathbb{Z} \longrightarrow C_{\alpha} \xrightarrow{f_{\alpha}} A_{\alpha} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow C_{\alpha+1} \xrightarrow{f_{\alpha+1}} A_{\alpha+1} \longrightarrow 0$$

3. Limit stages, α ,

(3-a)
$$f_{\alpha} = \bigcup \{ f_{\beta} ; \beta \in \alpha \}, C_{\alpha} = \bigcup \{ C_{\beta} ; \beta \in \alpha \}.$$

For (2–a) we note that since $\alpha \in E$ shows that $\operatorname{Ext}_{\mathbb{Z}}^1(A_{\alpha+1}/A_{\alpha},\mathbb{Z}) \neq 0$, so we can apply 4 in Lemma IV.4.

Now we show that $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) \neq 0$. If there is an epimorphism $g \colon A \to C_{\omega_1}$ such that $f_{\omega_1} \circ g = \operatorname{id}_A$. Since \Diamond_E asserts that there is an $\alpha \in E$ such that $g_{\alpha} = g|_{A_{\alpha}}$. Then we obtain that $f_{\alpha} \circ g_{\alpha} = \operatorname{id}_{A_{\alpha}}$, $(g|_{A_{\alpha+1}})|_{A_{\alpha}} = g|_{A_{\alpha}}$ and $f_{\alpha+1} \circ g|_{A_{\alpha+1}} = \operatorname{id}_{A_{\alpha+1}}$. This contrary to that the construction in (2-a) step. \square

Theorem IV.8 (Shelah). Assume that \Diamond_E for any stationary subsets $E \subset \omega_1$. Every Whitehead group of size \aleph_1 is free.

Proof. Let A be a Whitehead group of size \aleph_1 . At the beginning of the proof, we shall show that A satisfies the chase condition. Suppose not, since A is an \aleph_1 -free, there is a countable $A_0 \leq A$ such that for any B' if $A_0 \leq B$ there is $A_1 \leq A$ such that A_1/A_0 is not free. By continuing this processes we can define a \subset -increasing sequence $\langle A_\alpha ; \alpha \in \omega_1 \rangle$ such that $A_{\alpha+1}/A_\alpha$ is not free and $A = \cup \{A_\alpha ; \alpha \in \omega_1\}$. Since \lozenge_{ω_1} shows that A is not a Whitehead group, a contradiction.

Fix a smooth chain sequence of countable subgroups $\langle B_{\alpha} \subset A ; \alpha \in \omega_1 \rangle$ such that $B_{\alpha+1}$ is α_1 -pure subgroup of B_{α} for any $\alpha \in \omega_1$ and $A = \cup \{B_{\alpha} ; \alpha \in \omega_1\}$. Define $E = \{\alpha \in \omega_1 ; B_{\alpha+1}/B_{\alpha} \text{ is not free}\}$. Note that the previous lemma shows E is not stationary set. We shall show the equality:

$$E = \{ \alpha \in \omega_1 ; B_\alpha \text{ is not an } \aleph_1\text{-pure subgroup of } A \}$$

To prove (\subset). If B_{α} is an α_1 -pure subgroup of A, A/B_{α} is α_1 -free. So $B_{\alpha+1}/B_{\alpha}$ is free. To prove (\supset). If $B_{\alpha+1}/B_{\alpha}$ is free. For any $\beta \ni \alpha$, since we have

$$B_{\beta}/B_{\alpha+1} \approx (B_{\beta}/B_{\alpha})/(B_{\alpha+1}/B_{\alpha})$$

and $A/B_{\alpha+1}$ is \aleph_1 -free asserts that $B_{\beta}/B_{\alpha+1}$ is free, so does B_{β}/B_{α} is free. Furthermore, B_{α} is not α_1 -pure subgroup of A. Thus, we obtain the equality.

Since, E is not a stationary set, there is a club set $C \subset \omega_1 \backslash E$. We asserts that for $\alpha, \beta \in C$ with $\alpha \in \beta$, B_{β}/B_{α} is free. We distinguish two cases, according to whether $\beta = \alpha + 1$. If $\beta = \alpha + 1$. The statement that B_{β}/B_{α} is free is manifestly. If $\beta \ni \alpha + 1$. As we have seen in before, B_{β}/B_{α} is free. Therefore, $A = \cup \{B_{\alpha} : \alpha \in \omega_1\}$ is free.

Second, we shall produce the model that there is a model such that there is a Whitehead group of size \aleph_1 but free. To establish a Whitehead group of size \aleph_1 but free, we shall prove the two statement as following:

IV.9 There is an Abelian group of size \aleph_1 with Chase's condition but free,

IV.10 Every Abelian group with Chase's condition is Whitehead.

Theorem IV.9. There is an Abelian group of size \aleph_1 with Chase's condition but free,

Proof. We shall construct the desired A as the union for a chain $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ with following properties:

- 1. $A_{\alpha} \subseteq A_{\alpha+1}$, for each $\alpha \in \omega_1$,
- 2. A_{α} is free, for each $\alpha \in \omega_1$,
- 3. $A_{\beta}/A_{\alpha+1}$ is free, for each $\alpha \in \beta \in \omega_1$, and
- 4. $A_{\gamma+1}/A_{\gamma}$ is non-free, for each limit $\gamma \in \omega_1$.

Before to verify that the sooth chain exists, we shall show that the union A has a chase's condition but free. To see the chase's condition, for $\xi \in \omega_1$ and countable subset B of $A/A_{\xi+1}$ there is an A_{ν} such that $B \leq A_{\mu}/A_{\xi}$ thus, $A_{\xi+1}$ is free. Therefore, Lemma IV.6 $A = \{A_{\xi+1} : \xi \in \omega_1\}$ has a chase's condition. To see that A is not free, since set $\omega_1 \cap \text{Lim}$ is not stationary so by Lemma IV.11 A is not free.

From now on, we shall establish the smooth chain. Fix $A_0 = 0$

Successor stages, $\beta = \alpha + 1$. We distinguish two cases, according to whether α is a limit ordinal. (Case A.) If α is not a limit ordinal. Let $A_{\beta} = A_{\alpha} \oplus \mathbb{Z}$. Then it is clearly the chain $\langle A_{\xi}; \xi \in \beta + 1 \rangle$ satisfies the all of these conditions.

(Case B.) If α is a limit ordinal. Fix a strictly increasing sequence $\langle \xi_n ; n \in \omega \rangle \nearrow \alpha$ and let X_n be a base for A_{ξ_n} such as $X_n \subset X_{n+1}$. Choose $x_n \in X_{n+1} \setminus X_n$ for every $n \in \omega$ and let $Y_k = X_k \setminus \{x_m ; m \in k\}$ and $B = F(\cup \{Y_k ; k \in \omega\})$ be a subgroup of A_{α} and let $P = \Pi\{\langle x_n \rangle n \in \omega\}$ be a product group.

For set morphism $\varphi \colon \{x_n : n \in \omega\} \to P$,

$$x_n \mapsto \left(m \mapsto \begin{cases} \frac{(m+1)!}{(n+1)!} x_m & \text{if } m+1 \ni n \\ 0 & \text{if } m \in n \end{cases}\right)$$

we have the following morphism:

$$\{x_n : n \in \omega\} \xrightarrow{\varphi} A_\alpha \setminus B$$

$$\downarrow^{\psi}$$

$$P$$

Define $P' := \psi(A_{\alpha} \setminus B) = F(\{\psi(x_n); n \in \omega\})$ and note that the set $\{\psi(x_n); n \in \omega\}$ is linearly independent in P and define $A_{\alpha+1} = B \oplus P'$.

To check the four conditions, 2 is clear and 1 is immediate by the fact, we can identify x_n with $(n+1)! \cdot \varphi(x_{n+1}) - n! \cdot \varphi(x_n)$. To see the condition 3, let $\gamma \in \alpha$. Fix an $n \in \omega$ such as $\gamma + 1 \in \xi_n$. Then since we have

$$A/A_{\xi_n} \cong F(\cup \{Y_k \, ; k+1\ni n\}) \oplus F(\{\varphi(x_k \, ; k+1\ni n\})$$

and induction hypothesis assets that $A_{\xi_n}/A_{\gamma+1}$ is free, so is $A/A_{\gamma+1}$.

To see the condition 4. First we assert that for any $n \in \omega$ we have $(n+1)! \cdot \varphi(x_n) - \varphi(x_0)$ is a function which assigns only finitely many non-zero value, i.e., it can embeds into the direct sum, free module, A_{α} , i.e., $(n+1)! \cdot \varphi(x_n) - \varphi(x_0) = 0 + A_{\alpha}$ in $A_{\alpha+1}/A_{\alpha}$ for every $n \in \omega$. Note that $\varphi(x_0) \notin A_{\alpha}$ and we shall there are no finitely many pair of $\varphi(x_m) + A_{\alpha}$'s (without $\varphi(x_0) + A_{\alpha}$) which can presents $\varphi(x_0) + A_{\alpha}$.

Suppose there are finitely many pair $z_i = \varphi(x_-), i \in n$ and $\eta_n \in \mathbb{Z}$, such that:

$$(\eta_n \cdot z_0 + A_\alpha) + \dots + (\eta_{n-1} \cdot z_{n-1} + A_\alpha) = \varphi(x_0) + A_\alpha$$

by multiplying $(\eta_0)! \cdot (\eta_1)! \cdots (\eta_{n-1})!$, we have

$$m \cdot \varphi(x_0) + A_\alpha = \varphi(x_0) + A_\alpha$$

for some integer m, a contradiction.

Limit stages, γ . Let $A_{\gamma} = \{A_{\alpha}; \alpha \in \gamma\}$. Then the conditions (1) and (4) are immediate. Fix a sequence $\langle \xi_n; n \in \omega \rangle \nearrow \gamma$. Then we obtain $A_{\gamma} = \bigcup \{A_{\xi_n+1}; n \in \omega\}$ and $A_{\xi(n+1)+1}/A_{\xi(n)+1}$ is free for any $n \in \omega$, then by Theorem III.6, so is A_{γ} ((2) hold!) and note that $A_{\gamma}/A_{\xi(n)+1}$ is free for each $n \in \omega$. To see the remaining condition (3). It suffice to see that for any $\alpha \in \gamma$, $A_{\gamma}/A_{\alpha+1}$ is free. Fix an $n \in \omega$ such that $\alpha \in \xi(n)+1$, since we have

$$A_{\gamma}/A_{\xi(n)+1} \cong (A_{\gamma}/A_{\alpha+1})/(A_{\xi(n)+1}/A_{\alpha+1})$$

we obtain that $A_{\gamma}/A_{\alpha+1}$ is free.

After completing the mathematical proof, it is essential to recognize that the crux of this proof is the case B of the successor step. In this step, to collapse the property free for the quotient A_{β}/A_{α} , we use the fact that the direct sum can embeds to the direct product. Since we can identify x_n with $(n+1)! \cdot \varphi(x_{n+1}) - n! \cdot \varphi(x_n)$, the direct sum, free module, $F(\{x_n : n \in \omega\})$ can embeds into P but every $\varphi(x_n)$ can be.

Theorem IV.10. Assume MA $+\neg$ CH. Every Abelian group with Chase's condition is Whitehead.

Proof. Let A be an Abelian group with Chase's condition. For any B and epimorphism $f \in \text{Hom}(B,A)$ with Ker $f = \mathbb{Z}$. We shall find a right-inverse g for f.

Define a set

 $P = \{ \varphi \in \text{Hom}(S, B) ; \exists S : \text{ finitely generated pure subgroup of } A \ f \circ \varphi = \text{id}_S \}$

If P satisfies the conditions in Theorem I.7, there is $g \in {}^A B$ such that for any finite set $F \subset A$ there is a map $\varphi \in P$ such that $F \subset \text{dom } \varphi$ and $g|_F = \varphi|_F$, this shows that

- $(f \circ g)(a) = a$ for all $a \in A$, and
- for any $a \in A$ and $n, m \in \mathbb{Z}$ there is $\varphi \in P$ which witnesses

$$g((n+m)\cdot(a+a')) = \varphi((n+m)\cdot(a+a')) = (n+m)\cdot(g(a)+g(a'))$$

Thus, g is a module morphism and clearly that g is a right-inverse for f.

To prove the former condition. Let $\varphi \in P$ with dom(P) = S and $F \in [A]^{<\omega}$. Since A is \aleph_1 -free and by the third isomorphism theorem, there is a finitely

generated pure subgroup $S' = \langle S \cup F \rangle$ of A such that $S \cup F \subset S'$. Moreover since S'/S is finitely generated torsion free, so is free. Let X be a set such that and F(X) = S/S'. Fix a right inverse set morphism $f^{-1}: A \to B$ for f and note that every free group is Whitehead, we obtain a canonical morphism $\psi: S' \to B$ as following diagram:

$$0 \longrightarrow S \overset{i=f \circ \varphi}{\longleftrightarrow} S' \overset{\operatorname{coker} i}{\longleftrightarrow} S'/S \longrightarrow 0$$

$$B \overset{\psi}{\longleftrightarrow} \varphi' \overset{\downarrow}{\to} \chi$$

We remain to check that $f \circ \psi = \mathrm{id}_{S'}$.

Note that the uniqueness property for free group, we have $\pi = f \circ \psi$:

$$S' \leftarrow B_{f^{-1}|_{S'} \circ \pi \circ \iota}^{\pi} X$$

Therefore, we have

$$f \circ \varphi = f(\varphi \circ \pi' + \varphi' \circ \operatorname{coker} i)$$

$$= i \circ \pi' + \pi \circ \operatorname{coker} i$$

$$= \operatorname{id}_{S'}$$

To prove the latter condition, we shall verify it through the following two steps:

Step–I. For any uncountable $P' \subset P$, if there is a pure subgroup A' which is free and dom $\varphi \subset A$ for any $\varphi \in P'$ then

$$\exists \{\varphi_0, \varphi_1\} \in [P']^2 \exists \psi \in P' \ (\varphi_0 \cup \psi_1 \subset \psi).$$

Step–II. For any uncountable $P' \subset P$ there is uncountable $P'' \subset P'$ and a free pure subgroup A' such that

$$dom(\varphi) \subset A'$$
 for any $\varphi \in P''$.

Step-I. Let $P' \in [P]^{\omega_1}$ and assume that there is a pure subgroup A' of A such that A' is free and $\mathrm{dom}(f) \subset A'$ for any $f \in P'$. Enumerate $X = \{x_\alpha : \alpha \in \omega_1\}$ be a base of A'. Since for every $\varphi \in P'$ there is $m \in \omega$ such that there is a function $\xi \in {}^m\omega_1$ such that $\mathrm{dom}(\varphi) = F(x_{\xi(n)} : n \in m\}$, Pigeonhole Principle asserts that there is $P'' \in [P']^{\omega_1}$ such that

$$\forall \in P'' \exists \xi \in {}^{m}\omega_1 \operatorname{dom}(\varphi) = F(\{x_{\xi(n)}; n \in m\})$$

Enumerate $P'' = \{\varphi_{\alpha} : \alpha \in \omega_1\}$ and let Y_{α} be a base of $\operatorname{dom}(\varphi)$ for each $\alpha \in \omega_1$. Fix a maximal subset $T \subset X$, among the subset relation, respect to the property

$$\exists \mathcal{A} \in [\omega_1]^{\omega_1} \forall \alpha \in \mathcal{A} \ (T \subset Y_\alpha)$$

Note that there are at most countable many morphisms from F(T) to Ker $f = \mathbb{Z}$, (recall that the morphism $\varphi \colon F(T) \to \mathbb{Z}$ can be recovered from $\varphi \circ \iota$), so there are at most countable many morphisms from F(T) to A. Thus, there is $A \in [\omega_1]^{\omega_1}$ such that

- $T \subset Y_{\alpha}$ for all $\alpha \in \mathcal{A}$, and
- $\varphi_{\alpha}|_{F(T)} = \varphi_{\beta}|_{F(T)}$ for all $\alpha, \beta \in \mathcal{A}$.

Fix $\alpha \in \mathcal{A}$ and let $y \in Y_{\alpha} \setminus T$ (assume not empty). The maximality assert that there are only countably many $\beta \in \mathcal{A}$ such that $y \in Y_{\beta}$. Hence for $\{y_0, \dots, y_{n-1}\} = Y_{\alpha} \setminus T$, there are $\mathcal{A} \supset \mathcal{A}_0 \supset \dots \supset \mathcal{A}_{n-1}$ such as each of them are uncountable and $y_m \notin A_m$ for $m \in n$.

Therefore, there is $\beta \in \mathcal{A}$ such that $\alpha \neq \beta$ and $Y_{\alpha} \cap Y_{\beta} = T$ and $\psi \colon F(Y_{\alpha} \cup Y_{\beta}) \to B$ be the canonical extension. Furthermore, since we have

$$(A/F(Y_{\alpha} \cup Y_{\beta}))/(A'/F(Y_{\alpha} \cup Y_{\beta})) = A/A'$$

and $A'/F(Y_{\alpha} \cup Y_{\beta})$ and A/A' are torsion free, $A/F(Y_{\alpha} \cup Y_{\beta})$ is torsion free, i.e., $F(Y_{\alpha} \cup Y_{\beta})$ is a pure subgroup of A. Thus, $\psi \in P$ is an extension for φ_{α} and φ_{β} .

Step–II. As we have seen in step–I, let P'' be uncountable subset such that |S|=|S'| for any $S,S'\in P''$, and moreover by the Delta system lemma, there is uncountable $P'''\subset P''$ and a root T such that

$$S \cap S' = T$$
 for any distinct $S, S' \in P'''$

and we may assume that T be a \subset -maximal among a root and T be a pure subgroup of A. (if necessary take the pure closure.)

Enumerate $P''' = \{S_{\alpha}; \alpha \in \omega_1\}$ and define and Y_{α} be a base for $S_{\alpha} \setminus T$ for any $\alpha \in \omega_1$. To conclude the proof, we shall construct the desired A' as the union for a smooth chain $\langle A_{\alpha} \in \omega_1 \rangle$ such as

- A_{α} is a countable pure subgroup of A,
- $A_{\alpha+1}/A_{\alpha}$ is free.

and it is easy to see that A' is free (see Theorem III.6) and A' is a pure subgroup of A.

Let $A_0 = T$ and for limit stages $A_{\gamma} = \bigcup \{A_{\alpha} \, ; \, \alpha \in \gamma \}$. We shall see the successor stages, $\beta = \alpha + 1$. Thanks to the chase's condition fix a countable \aleph_1 -pure subgroup C_{α} of A such that $A_{\alpha} \subset C_{\alpha}$. We assert that there is $\xi_{\alpha} \in \omega_1$ such that $\langle Y_{\xi_{\alpha}} \rangle \cap C_{\alpha} = 0$. If otherwise, there is a single element $t \in C_{\alpha}$ which meets uncountably many $\langle Y_{\xi} \rangle$ with ξ . Then the pure closure for $\langle T \cup \{t\} \rangle$ witness a contradiction and note that we can choose such as $\xi_{\alpha} \ni \eta$ for any fixed $\eta \in \omega_1$. Let $A_{\beta} \supset S_{\xi_{\alpha}}$ be the pure closure of $\langle A_{\alpha} \cup \{Y_{\xi_{\alpha}}\} \rangle$. Since $\langle Y_{\xi_{\alpha}} \rangle \cap C_{\alpha} = 0$ follows that $A_{\beta} \cap C_{\alpha} = A_{\alpha}$, so by second isomorphism theorem, we obtain:

$$A_{\beta}/A_{\alpha} \cong (A_{\alpha} \cdot C_{\alpha})/C_{\alpha} \leq A/C_{\alpha}$$

and sine C_{α} is an \aleph_1 -pure subgroup, A_{β}/A_{α} is free.

Therefore, we obtain a free pure subgroup A and uncountable many $\{\varphi_{\xi_{\alpha}} : \alpha \in \omega_1\}$ such that dom $\varphi_{\xi_{\alpha}} \subset A$.

Lemma IV.11. Let $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ be a smooth chain of countable Abelian groups and $A = \bigcup \{A_{\alpha}; \alpha \in \omega_1\}$. For a set $E = \{\gamma \in \omega_1 \cap \text{Lim}; \text{``} A_{\gamma} \text{ is not an } \aleph_1\text{-pure subgroup...''}\}$. The following are equivalent:

1. A is free,

 $\alpha \in \omega_1$, such as:

2. E is not a stationary subset of ω_1 .

Proof. At the beginning of the proof, we note that we may assume that $A_0 = 0$. (1) \Longrightarrow (2). Let X be a base for A. We shall define a $X_{\alpha} \subset X$ and $\xi_{\alpha} \in \omega_1$,

- $X_{\alpha} \subseteq X_{\beta}$ for any $\alpha \in \beta \in \omega_1$,
- $\xi_{\alpha} \in \xi_{\beta}$ for any $\alpha \in \beta \in \omega$, and
- $F(X_{\alpha}) = A_{\mathcal{E}_{\alpha}}$ for any $\alpha \in \omega_1$.

If we are done, we have a club set $\{\xi_{\alpha}; \alpha \in \omega_1\}$ such that every $A_{\xi_{\alpha}}$ is an \aleph_1 pure subgroup (note that $A/A_{\xi_{\alpha}} = F(X \setminus X_{\alpha})$ holds). Therefore, to conclude
the proof, we shall define X_{α} and ξ_{α} , $\alpha \in \omega_1$, recursively.

- 1. Leading Stage:
 - $X_0 = 0$,
 - $\xi_0 = 0$.
- 2. Successor Stages:

We shall define X_{α}^{n} and ξ_{α}^{n} , $n \in \omega$, iteratively:

- (a) Leading Stage:
 - a–i. X^0_{α} be a countable set with $X_{\alpha} \subsetneq X^0_{\alpha}$, and a–ii. ξ^0_{α} be an ordinal such that $F(X^0_{\alpha}) \subset A_{\xi^0_{\alpha}}$.
- (b) Successor Stages:

b-i.
$$A_{\xi_{\alpha}^n} \subset F(X_{\alpha}^{n+1})$$
, and b-ii. $F(X_{\alpha}^{n+1}) \subsetneq A_{\xi^{n+1}}$.

Let $X_{\alpha+1} = \bigcup \{X_{\alpha}^n ; n \in \omega\}$ and $A_{\alpha+1} = \bigcup \{A_{\xi_{\alpha}^n} ; n \in \omega\}.$

- 3. Limit Stages:
 - $X_{\gamma} = \bigcup \{X_{\alpha} ; \alpha \in \gamma\},$
 - $\xi_{\gamma} = \bigcup \{ \xi_{\alpha} ; \alpha \in \gamma \}.$
- (2) \Longrightarrow (1). Let $\langle \xi_{\alpha} ; \alpha \in \omega_1 \rangle \nearrow \omega_1$ be a sequence such that $\xi_{\gamma} = \bigcup \{ \xi_{\alpha} ; \alpha \in \gamma \}$ for any limit γ and who does not meet E. For every $\alpha \in \omega$, since $A_{\xi_{\alpha}}$ is \aleph_1 -pure, we have $A_{\xi_{\alpha+1}}/A_{\xi_{\alpha}}$ is free. Therefore, $A = \bigcup \{ A_{\xi_{\alpha}} ; \alpha \in \omega_1 \}$ is free by Theorem III.6.

References

- [DF04] David S. Dummit and Richard M. Foote. *Abstract algebra*. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2004.
- [Ekl76] Paul C. Eklof. Whitehead's problem is undecidable. *Amer. Math. Monthly*, Vol. 83, No. 10, pp. 775–788, 1976.
- [Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, millennium edition, 2003.
- [Kaw76] 敬義 川村. 代数学 iii ホモロジー代数 I. 岩波書店, 1976.
- [Kaw77] 敬義川村. 代数学 iii ホモロジー代数 II. 岩波書店, 1977.
- [Kun11] Kenneth Kunen. Set theory, Vol. 34 of Studies in Logic (London). College Publications, London, 2011.
- [Mac71] Saunders MacLane. Categories for the working mathematician, Vol. Vol. 5 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1971.