

Chapter III: The Z Transform

Preliminaries: complex numbers

- real and imaginary part
- modulus and phase
- graphical interpretation
- ► Euler formula
- modulus and phase of e^{jx}

Definition of Z transform

▶ The Z Transform of a signal x[n], called X(z), is defined as:

$$X(z) = \sum_{-\infty}^{\infty} x[n]z^{-n}$$

- ▶ It is defined only for the values of z where the sum is finite (called region of convergence)
- Notation:

$$\mathcal{Z}(x[n]) = X(Z)$$
$$x[n] \stackrel{Z}{\longleftrightarrow} X(Z)$$

- ▶ Similar to the Laplace transform for analog signals
- ► The Z transform associates **a polynomial** to a signal (think Decision and Estimation class)
- ► Why?
 - ► Convolution of two signals = multiplication of polynomials
 - ▶ Short descriptions of complicated signals (i.e. exponential signals)

Examples

```
x[n]=1,2,5,7,0, (with time origin in 1 or in 5) \delta[n], \delta[n-k], \delta[n+k] \left(\frac{1}{2}\right)^n x[n]=a^nu[n] x[n]=-a^nu[-n-1]
```

Region of convergence

- \blacktriangleright For finite-support signals, the CR is the whole Z plane, possibly except 0 or ∞
- ▶ For causal signals, the CR is the outside of a circle:

$$|z| > r_1$$

► For anti-causal signals, the CR is the inside of a circle:

$$|z| < r_2$$

► For bilateral signals, both the causal and the anti-causal terms of the sum must converges —> the CR is the area between two circles:

$$r_1 < |z| < r_2$$

- \blacktriangleright For finite-support signals, the two "circles" are 0 and ∞
- ▶ Two different signals can have the same expression of X(z), but with different RC!
 - RC is an essential part in specifying a Z transform
 - should never be omitted

The Inverse Z Transform

- From a purely mathematical point of view, X(z) is a complex function
- Proper definition of inverse transform is based on the theory of complex functions

$$X(z) = \sum_{-\infty}^{\infty} x[k]z^{-k}$$

▶ Multiply with z^{n-1} and integrate along a contour C inside the Convergence Region:

$$\oint_C X(z)z^{n-1}dz = \oint_C \sum_{-\infty}^{\infty} x[k]z^{n-k-1}dz = \sum_{-\infty}^{\infty} x[k] \oint_C z^{n-k-1}dz$$

The Inverse Z Transform

▶ The Cauchy integral theorem says that:

$$\frac{1}{2\pi j} \oint_C z^{n-k-1} dz = \begin{cases} 1, & \text{if } k = n \\ 0, & \text{if } k \neq n \end{cases}$$

And therefore:

$$x[n] = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

We will not use this relation in practice, but instead will rely on partial fraction decomposition

1. Linearity

If $x_1[n] \overset{\mathbb{Z}}{\longleftrightarrow} X_1(z)$ with CR1, and $x_2[n] \overset{\mathbb{Z}}{\longleftrightarrow} X_2(z)$ with CR2, then:

$$ax_1[n] + bx_2[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} aX_1(z) + bX_2(z)$$

and CR is at least the intersection of CR1 and CR2.

Proof: use definition

2. Shifting in time

If $x[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z)$ with CR, then:

$$x[n-k] \stackrel{\mathrm{Z}}{\longleftrightarrow} z^{-k}X(z)$$

with same RC, possibly except 0 and ∞ .

Proof: by definition

- ▶ valid for all k, also for k < 0
- delay of 1 sample = z^{-1}

3. Modulation in time

If $x[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z)$ with CR, then:

$$e^{j\omega_0 n}x[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X\left(e^{-j\omega_0}z\right)$$

with same CR Proof: by definition

4. Reflected signal

If $x[n] \overset{\mathrm{Z}}{\longleftrightarrow} X(z)$ with CR $r_1 < |z| < r_2$, then:

$$x[-n] \stackrel{\mathrm{Z}}{\longleftrightarrow} X(z^{-1})$$

with CR $\frac{1}{r_2} < |z| \frac{1}{r_1}$ Proof: by definition

5. Derivative of Z transform

If $x[n] \stackrel{\mathrm{Z}}{\longleftrightarrow} X(z)$ with CR, then:

$$nx[n] \stackrel{\mathrm{Z}}{\longleftrightarrow} \frac{dX(z)}{dz}$$

with same CR

Proof: by derivating the difference

6. Transform of difference

If $x[n] \stackrel{\mathrm{Z}}{\longleftrightarrow} X(z)$ with CR, then:

$$x[n] - x[n-1] \stackrel{\mathbb{Z}}{\longleftrightarrow} (1-z^{-1})X(z)$$

with same CR except z = 0.

Proof: using linearity and time-shift property

7. Accumulation in time

If $x[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z)$ with CR, then:

$$y[n] = \sum_{k=-\infty}^{n} x[k] \stackrel{Z}{\longleftrightarrow} \frac{X(z)}{(1-z^{-1})}$$

with same CR except z = 1.

Proof: x[n] = y[n] - y[n-1], apply previous property

8. Complex conjugation

If $x[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z)$ with CR, and x[n] is a complex signal, then:

$$x^*[n] \stackrel{\mathrm{Z}}{\longleftrightarrow} X^*(z^*)$$

with same CR except z = 0.

Proof: apply definition

9. Convolution in time

If $x_1[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X_1(z)$ with CR1, and $x_2[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X_2(z)$ with CR2, then:

$$x[n] = x_1[n] * x_2[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X(z) = X_1(z) \cdot X_2(z)$$

and CR the intersection of CR1 and CR2.

Proof: use definition

- Very important property!
- Can compute the convolution of two signals via the Z transform

10. Correlation in time

If $x_1[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X_1(z)$ with CR1, and $x_2[n] \stackrel{\mathbb{Z}}{\longleftrightarrow} X_2(z)$ with CR2, then:

$$r_{x_1x_2}[I] = \sum_{n=-\infty}^{\infty} x_1[n]x_2[n-I] \stackrel{Z}{\longleftrightarrow} R_{x_1x_2}(z) = X_1(z) \cdot X_2(z^{-1})$$

and CR the intersection of CR1 and with the CR of $X_2(z^{-1})$ (see reflection property)

Proof: correlation = convolution with second signal reflected, use convolution and reflection properties

11. Initial value theorem

If x[n] is a causal signal, then

$$x[0] = \lim_{z \to \infty} X(z)$$

Proof:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots$$

When $z \to \infty$, all terms z^{-k} vanish.

Common Z transform pairs

► Easily found all over the Internet

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r

Rational functions

- Many Z transforms are in the form of a rational function, i.e. a fraction where
 - ▶ numerator = polynomial in z^{-1} or z
 - denominator = polynomial in z^{-1} or z

$$X(z) = \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$$

Example:

$$X(z) = \frac{3 + 2z^{-1} + 4z^{-2}}{1 - 5z^{-2} + 7z^{-4}}$$

Poles and zeros

- A polynomial is completely determined by its roots and a scaling factor
- **Definition**: the **zeros** of X(z) are the roots of the numerator B(z)
- **Definition**: the **poles** of X(z) are the roots of the denominator A(z)
- ▶ The zeros are usually named $z_1, z_2, ...z_M$, and the poles $p_1, p_2, ...p_N$.

The transform X(z) can be rewritten as:

$$X(z) = \frac{b_0}{a_0} \cdot z^{N-M} \cdot \frac{(z-z_1)...(z-z_M)}{(z-p_1)...(z-z_N)} = \frac{b_0}{a_0} \cdot \frac{(1-z_1z^{-1})...(1-z_Mz^{-1})}{(1-p_1z^{-1})...(1-z_Nz^{-1})}$$

It has:

- M zeros with finite values
- N poles with finite values
- \blacktriangleright and either N-M zeros in 0, if N > M, or N-M poles in 0, if N < M (trivial poles/zeros)

Graphical representation

- ➤ The graphical representation of poles and zeros in the complex place is called the pole-zero plot
- ► Graphical: poles = "x", zeros = "0"
- CR cannot contain poles
- Example: at whiteboard