LANGAGA DE MANIPULATION D'UN SCHEMA RELATIONNEL

ALGEBRE RELATIONNELLE

Opérateurs de manipulation d'une base de données relationnelle

Relation 1

Relation 2

- Opérateurs unaires
 - Opérateurs de base
 - Restriction ou sélection
 - Projection
 - Renommage
- Opérateurs binaires
 - Opérateurs de base
 - produit cartésien
 - union
 - différence
 - Autres opérateurs dérivés
 - Jointures
 - Division
 - Intersection

opérateur ·

Relation 3

L'opérateur restriction

Définition

- Élimine un ou + ieurs tuples de la relation
- Sélectionne dans la relation des tuples dont les valeurs d'attributs vérifient le critère de sélection énoncé dans la restriction

R

A1 | A2 | ...

L'opérateur restriction

Notation

σ_{critère de sélection} (R)

Lecture

- Restreindre R aux tuples vérifiant le critère de sélection
- Sélectionner dans R tous les tuples vérifiant le critère de sélection.

Critère de sélection

Critère simple : Attribut comparé à une valeur Utilisation des opérateurs de comparaison (>, <, =, <>, etc..)

Composition de critères simples

Utilisation des opérateurs logiques (\neg , \land , \lor)

- critère simple ∧ critère simple
- critère simple v critère simple
- - critère simple.

A	В	C
a1	b2	c3
a5	b2	c2
аб	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

A	В	C
a1	b2	c3
a1	b9	c3

A	В	C
a1	b2	c3
a5	b2	c2
аб	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

$$R2 = \sigma_{A = 'a1' \vee B = 'b1'}$$
, (R)

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c 1
a1	b9	c3
a2	b2	c5
a8	b5	c3

$$\mathbf{R3} = \sigma_{\mathbf{A} = \mathbf{a1'} \wedge \mathbf{B} = \mathbf{b1'}}, \ (\mathbf{R})$$

A	В	C

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

$$\mathbf{R4} = \sigma_{\mathbf{A} = \mathbf{a1'} \wedge \mathbf{B} = \mathbf{b2'}} (\mathbf{R})$$

A	В	C
a1	b2	c3

Exemple de schéma de base de données d'un organisme de voyage

- STATION (NomStation, Capacité, Lieu, Région, Tarif)
- ACTIVITE (<u>NomStation, Libellé</u>, Prix)
- CLIENT (IdClient, Nom, Prénom, Ville, Région, Solde)
- SEJOUR (IdClient, NomStation, DateSéjour, NbPLaces)

Exemple d'instance de base de données d'un organisme de voyage

STATION

NomStation	Capacité	Lieu	Région	Tarif
Venusa	350	Guadeloupe	Antilles	1200
Farniente	200	Seychelles	Océan Indien	1500
Santalba	150	Martinique	Antilles	2000
Passac	400	Alpes	Europe	1000

ACTIVITE

NomStation	Libellé	Prix
Venusa	Voile	150
Venusa	Plongée	120
Farniente	Plongée	130
Passac	Ski	200
Passac	Piscine	20
Santalba	Kayac	50

Exemple d'instance de base de données d'un organisme de voyage

CLIENT

IdClient	Nom	Prénom	Ville	Région	Solde
10	Fogg	Phileas	Londres	Europe	12465
20	Pascal	Blaise	Paris	Europe	6763
30	Kerouac	Jack	NewYork	Amérique	9812

SEJOUR

IdClient	NomStation	DateSéjour	NbPlaces
10	Passac	1998-07-01	2
30	Santalba	1996-08-14	5
20	Santalba	1998-08-03	4
30	Passac	1998-08-15	3
30	Venusa	1998-08-03	3
20	Venusa	1998-08-03	6
30	Farniente	1999-06-24	5
10	Farniente	1998-09-05	3

Un exemple de requête algébrique

Question : Donnez toutes les stations des Antilles

- **Réponse** : $\sigma_{\text{région = 'Antilles '}}$ (Station)
 - Sélection dans STATION de tous les tuples vérifiant région = « Antilles »

NomStation	Capacité	Lieu	Région	Tarif
Venusa	350	Guadeloupe	Antilles	1200
Santalba	150	Martinique	Antilles	2000

L'opérateur projection

Définition

- Élimine une ou plusieurs colonnes de la relation
- Les doublons ne sont pas conservés

L'opérateur projection

Notation

 $\prod_{\text{liste des attributs à projeter}} (\mathbf{R})$

Lecture

Projeter R sur la « liste des attributs à projeter »

R

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

$$\mathbf{R}\mathbf{1} = \prod_{\mathbf{A}} (\mathbf{R})$$

A

a1

a5

a6

a2

as

a1 apparaît 2 fois dans R mais qu'une seule fois dans R1

R

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

 $\mathbf{R}\mathbf{1} = \prod_{\mathbf{B},\mathbf{C}} (\mathbf{R})$

В	C
b2	c3
b2	c2
b1	c1
b9	c3
b2	c5
b5	c3

$\mathbf{R}\mathbf{1} = \prod_{\mathbf{B},\mathbf{C}} (\mathbf{R})$

В	C
b2	c2
b1	c1
b9	c3
b2	c5
b5	c3

Question : Donnez le nom des stations et leur région.

■ Réponse : ∏ _{NomStation, Region} (Station)

Projeter STATION sur NomStation et Région

NomStation	Région
Venusa	Antilles
Farniente	Océan Indien
Santalba	Antilles
Passac	Europe

- Question : Donnez toutes les région où il y a des stations
- Réponse : Π_{Region} (Station)
 - Projeter STATION sur Région

Région

Antilles

Océan Indien

Europe

Antilles n'est gardée qu'une seule fois dans la relation résultat

L'opérateur de renommage

Définition

Renomme une ou plusieurs colonnes de la relation.

Notation

$$\rho_{A_i \to B_k}, \dots, A_j \to B_l (R)$$

- Lecture
- Renommer dans R, la colonne A, en B,, la colonne A, en B

Exemple de renommage

R

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

$\mathbf{R}\mathbf{1} = \rho_{\mathbf{A} \to \mathbf{X}} \ (\mathbf{R})$

X	В	C
a1	b2	c3
a5	b2	c2
аб	b1	c 1
a1	b9	c3
a2	b2	c5
a8	b5	c3

L'opérateur produit cartésien

Définition

- C'est une relation R dont l'extension est le produit cartésien des extensions de deux relations R1 et R2
- R représente toutes les combinaisons de tuples possibles construites à partir de R1 et R2

Notation

$$R = (R1) \times (R2)$$

Exemple de produit cartésien

R1

A	В	C
a1	b2	c3
a5	b2	c2

R2

D	L
d1	e2
d5	e2
d8	e1

 $R3 = (R1) \times (R2)$

A	В	C	D	E
a1	b2	c3	d1	e2
a1	b2	c3	d5	e2
a1	b2	c3	d8	e1
a5	b2	c2	d1	e2
a5	b2	c2	d5	e2
a5	b2	c2	d8	e1

Exemple de produit cartésien

R1

A	В	D
a1	b2	c3
a5	b2	c2

R2

e2
e2
e1

$R3 = (R1) \times (R2)$

A	В	R1.D	R2.D	E
a1	b2	c3	d1	e2
a1	b2	c3	d5	e2
a1	b2	c3	d8	e1
a5	b2	c2	d1	e2
a5	b2	c2	d5	e2
a5	b2	c2	d8	e1

L'opérateur union

Définition

R1 et R2 de même schéma

Notation

$$\mathbf{R} = (\mathbf{R1}) \cup (\mathbf{R2})$$

Exemple d'union algébrique

$\mathbf{R} = (\mathbf{R}1) \cup (\mathbf{R}2)$

A	В	C
al	b2	c3
a5	b2	c2
a6	b1	c1
a1	b9	c3
a2	b2	c5
a8	b5	c3

Exemple d'union algébrique

Question : Donnez les stations qui sont aux Antilles ou en Europe

Réponse : $\sigma_{\text{Région = 'Antilles'}}$ (Station) $\cup \sigma_{\text{Région = 'Europe'}}$ (Station)

Stations qui sont aux Antilles

Stations qui sont en Europe

σ Région = 'Antilles' ∨ Région = 'Europe' (Station)

L'opérateur différence

Définition

R1 et R2 de même schéma

Notation

$$R = (R1) - (R2)$$

Exemple de différence

R1

 A
 B
 C

 a1
 b2
 c3

 a6
 b1
 c1

 a1
 b9
 c3

 a8
 b5
 c3

R2

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c1
a2	b2	c5

 $\mathbf{R} = (\mathbf{R1}) - (\mathbf{R2})$

A	В	C
a1	b9	c3
a8	b5	c3

Ces tuples ne sont pas pris car ils existent dans R2

Exemple de différence

R1

 A
 B
 C

 a1
 b2
 c3

 a6
 b1
 c1

 a1
 b9
 c3

 a8
 b5
 c3

R2

A	В	C
a1	b2	c3
a5	b2	c2
a6	b1	c1
a2	b2	c5

R = (R2) - (R1)

A	В	C
a5	b2	c2
a2	b2	c5

Ces tuples ne sont pas pris car ils existent dans R1

Exemple de différence

Question : Donnez les stations dont la capacité est supérieure à

200 mais qui ne sont pas aux Antilles

Réponse : $\sigma_{\text{capacité} > 200}$ (Station) — $\sigma_{\text{Région} = \text{`Antilles'}}$ (Station)

Stations dont la capacité >200

Stations qui sont aux Antilles

σ Région <> 'Antilles' ∧ capacité > 200 (Station)

L'opérateur intersection

Définition

R1 et R2 de même schéma

Notation

$$\mathbf{R} = (\mathbf{R}\mathbf{1}) \cap (\mathbf{R}\mathbf{2})$$

Exemple d'intersection

Ces tuples ne sont pas pris car ils n'existent pas à la fois dans R1 et dans R2

Exemple d'intersection

 Question : stations qui sont aux Antilles et dont la capacité est supérieure à 200.

Réponse : $\sigma_{\text{Région = 'Antilles'}}$ (Station) $\cap \sigma_{\text{capacité > 200}}$ (Station)

Stations dont la capacité >200

$$\sigma_{\text{Région = 'Antilles'}} \land \text{capacité} > 200 \text{ (Station)}$$

$$\sigma_{\text{Région = 'Antilles'}}$$
 ($\sigma_{\text{capacité} > 200}$ (Station))

L'opérateur jointure

Définition

 Restriction du produit cartésien de deux relations selon un critère de sélection

Types

θ-jointure — Forme la plus générale

Jointure naturelle

Cas particuliers

Auto-jointure

Semi-jointure — Forme dérivée

L'opérateur θ-jointure

Définition

- Restriction du produit cartésien de deux relations R1 et R2 selon un critère de sélection CS : σ_{cs} (R1 × R2)
- Le critère de sélection CS est de la forme :
 - Prédicat₁ [OpérateurLogique prédicat₂]..... [Opérateur logique prédicat_n]
 - OpérateurLogique ∈ {∨, ∧}
 - Prédicat_i = un attribut de la relation R1comparé à un attribut de la relation
 R2. L'opérateur de comparaison ∈ {=, <, >, <> }

Notation

$$R = R1 \propto R2$$

Exemple de θ -jointure

R :	= R	1	∞	F	R2
		B =	В∧	C =	: D

A	В	C	D
a1	b2	c3	c3
а6	b1	c1	c 1

L'opérateur jointure naturelle

Définition

- C 'est θ-jointure où le critère de sélection est une égalité des attributs communs aux deux relations
- La relation résultat contient une seule fois les attributs identiques

$$R = R1 \infty R2$$

$$R = R1 \longrightarrow R2$$

$$A_i = A_i \wedge ... \wedge A_k = A_k$$

Exemple de jointure naturelle

R1			R	2
A	В	C	В	D
a1	b2	c3	b2	d3
a6	b1	c1	b2	d2
a1	b9	c3	b1	d1
a8	b5	c 3	b2	d5

R = R1	∞	R2
--------	----------	-----------

A	В	C	D
a1	b2	c3	d3
a1	b2	c3	d2
a1	b2	c3	d5
a6	b1	c1	d1

Exemple de jointure naturelle

- Question : Donnez les stations avec pour chacune ses activités.
- Réponse :

Station ∞ Activité

ou encore

Station ∞ Activité

NomStation=NomStation

Exemple de jointure naturelle

S.NomStation	Capacité	Lieu	Région	Tarif	A.NomStation	Libellé	Prix
V enusa	350	Guadeloupe	Antilles	1200	Venusa	Voile	150
Venusa	350	Guadeloupe	Antilles	1200	Venusa	Plongée	120
Farniente	200	Seychelles	Océan	1500	Farniente	Plongée	130
			Indien		X		
Santalba	150	Martinique	Antilles	2000	Santalba	Kayac	50
Passac	400	Alpes	Europe	1000	Passac	Ski	200
Passac	400	Alpes	Europe	1000	Passac	Piscine	20

Station ∞ **Activité**

NomStation	Capacité	Lieu	Région	Tarif	Libellé	Prix
Venusa	350	Guadeloupe	Antilles	1200	Voile	150
Venusa	350	Guadeloupe	Antilles	1200	Plongée	120
Farniente	200	Seychelles	Océan	1500	Plongée	130
			Indien			
Santalba	150	Martinique	Antilles	2000	Kayac	50
Passac	400	Alpes	Europe	1000	Ski	200
Passac	400	Alpes	Europe	1000	Piscine	20

L'opérateur auto-jointure

Définition

C 'est une θ-jointure d'une relation avec elle même

$$R = R1 \propto R1$$

Exemple d'auto-jointure

Question : Les couples de stations pratiquant la même activité

Réponse :

R1 =
$$\rho_{Nomstation \rightarrow NomStation1}$$
 (Activité)

R2 =
$$\rho_{Nomstation \rightarrow NomStation2}$$
 (Activité)

Nomstation1 > NomStation2 \(\Libell\ell\ell\) Libell\ell\(= \Libell\ell\)

$$R = \prod_{NomStation1, NomStation 2} (R3)$$

Exemple d'auto-jointure

ACTIVITE

NomStation	Libellé	Prix
Venusa	Voile	150
Venusa	Plongée	120
Farniente	Plongée	130
Passac	Ski	200
Passac	Piscine	20
Santalba	Kayac	50

ACTIVITE

	NomStation	Libellé	Prix
	Venusa	Voile	150
•	Venusa	Plongée	120
•	Farniente	Plongée	130
	Passac	Ski	200
	Passac	Piscine	20
	Santalba	Kayac	50

L'un des deux liens suffit car le couple (Farniente, Venusa) et le couple (Venusa, Farniente) représentent le même couple

L'opérateur semi-jointure

Définition

- C 'est une θ-jointure dont on garde que les attributs de l'une des deux relations
- \blacksquare C'est donc une θ -jointure suivie d'une projection
- C'est un opérateur non commutatif

$$R = R1 \underset{CS}{\text{CS}} R1$$

Exemple de semi-jointure

R	R1	0	0	R2
	В	= B	∧ C	= D

A	В	C
a1	b2	c3
аб	b1	c1

L'opérateur Division

Définition

C'est une opération binaire dont le résultat est la plus grande table R3 telle que R2 x R3 ⊆ R1

 C'est aussi chercher les tuples de R3 qui soient en combinaison avec tous les tuples de R2 dans R1

L'opérateur division

Soit: R1(A1, A2, ...An, B1, B2,Bm) et R2 (B1, B2,Bm)

Définition de R1 ÷ R2

- Le schéma de R1 ÷ R2 est R (A1, A2, ..., An)
- L'extension de R1 ÷ R2 est :

```
\{(a1, a2, ...an) \in \prod_{A1, A2, ..., An} (R1) \ / \forall le tuple (b1, b2, ...., bm) \in R2
on a (a1, a2, ...an, b1, b2, ...., bm) \in R1
```

Exemple de division

Exemple de division

 Question : Donnez les idclient des clients qui sont allés dans toutes les stations

■ Réponse :

 $\Pi_{\text{IdClient, NomStation}}$ (Sejour) ÷ $\Pi_{\text{NomStation}}$ (Station)

Exemple de division

IdClient	NomStation
10	Passac
30	Santalba
20	Santalba
30	Passac
30	Venusa
20	Venusa
30	Farniente
10	Farniente

NomStation	
Venusa	
Farniente	
Santalba	
Passac	

IdClient 30