Chapter 10 Sequence Modelling: Recurrent and Recursive Nets

Introduction

- Sequential data
- Scalable
- Infinitely deep

Introduction

- Parameter sharing through many layers
- Shared weights across time steps
- Cycles affect future values of variables
- Typical output; probability distribution

Structure

Prediction based on sequence of inputs

Unfolding

1.
$$s^{(t)} = f(s^{(t-1)};\theta)$$

2.
$$t = 3$$

3.
$$s^{(3)} = f(s^{(2)};\theta)$$

4.
$$s^{(3)} = f(f(s^{(1)};\theta);\theta)$$

Advantages

- No fixed input length
- Same transition function and parameters

Design patterns

 Recurrent connections between hidden nodes

Output at each time step

Powerful

Design patterns

 Recurrent connections from output to hidden

Output at each time step

 Less powerful, but easier to train

Design patterns

 Recurrent connections between hidden noden

Single output

o Reads entire sequence

Training

Teacher forcing

(But in a good way.)

- Ideal value > actual output
- Isolates each time step
- Parallel training
- Can cause undesirable effects during testing

Sampling

- Need to stop generation
- Two main methods
 - Reserved character
 - Train another output to decide

"I think in thy time
Thou hideless time, thought a"

 Badly sampled RNN on Shakespeare

Bidirectional RNN

- Forward and backwards in time
- Degrading sensitivity from time t
- Handwriting recognition
- Speech recognition
- Extensions to other dimensions

Encoder-Decoder

Variable input length

○ Encoder→Context→Decoder

Translation

Deep Recurrent Networks

We have to go deeper

- Hierarchically
- Deep recursion (MLP)
- Skip connections

- + Greater potential
- Harder to learn

Recursive Neural Networks

- Process data structures for neural networks
- Natural language processing
- Computer vision

- + Reduced depth
- Hard to structure the tree

Chapter 10.7

Vanishing gradient problem

Exploding gradient problem

Gradient

- = Rate at which the cost changes with respect to weights and biases
- Cost is lowered by making small adjustments to w and b

 RNN involve composition of the same function multiple times → extremely nonlinear

Vanishing gradient problem

The gradient get smaller as we move backward through the hidden layers

 Neurons in earlier layers learn much slower than neurons in later layers

Exploding gradient problem

The gradient gets much larger in earlier layers, will lead to big changes of weights

- Will cause the network to forget almost everything it has learned
- Rare

Too long to train

Inaccurate

Echo State Network

Chapter 10.8

Echo State Network

- Difficult parameters to learn:
 - □ Recurrent weight mapping from h^(t-1) to h^(t)
 - \Box Input weights mapping from $x^{(t)}$ to $h^{(t)}$
- Solution: Only learn the output weights

Echo State Network

- Only learn the output weights
- Reservoir computing:
 hidden units form a reservoir
 of temporal features
- Strategy: Fix weights such that information is carried forward through time but does not explode

Leaky Units and Other Strategies for Multiple Time Scales

Chapter 10.9

- Design a model that operates at multiple time scales
 - ☐ Fine grained time scales
 - □ Coarse time scales

Adding Skip Connections through Time

- \Box Time-delay of *d*
- \Box Gradients now diminish exponentially as a function of T/d rather than T
- Ensuring that a unit always can learn to be
 influenced by a value from d time steps earlier

Leaky units

- ☐ Each hidden state u(t) is now a "summary of history"
 - History up to state u(t-1)
 - Present time v(t)

$$\mu^{(t)} \leftarrow \alpha \mu^{(t-1)} + (1-\alpha)v^{(t)}$$

Leaky units

- Strategies for setting the time constants used by leaky units:
 - Constant
 - Free parameters and learn them

Gated RNNs

Gated RNNs

- Most efficient sequence models
 - □ Gated RNNs
 - o LSTM
 - o GRU

Gated RNNs

- Same idea as leaky units
 - Connection weights that were either manually chosen constants or were parameters
 - □ Connection weights that *may change at each time*
- Forget old state by learning

LSTM

- Handwritten recognition
- Speech recognition
- Machine translation
- Image captioning
- Parsing

GRU

- Less gates
 - Update gate
 - □ Reset gate
- Simpler and easier to train
- Performs slightly worse than LSTM

Optimization

- Exploding gradients
- Vanishing gradients

Exploding gradients

Clipping gradients

Vanishing gradients

- LSTMs and other self-loops
- Regularization
 - □ Not as good as LSTM

Explicit memory

- Memory networks
- Neural Turing machine

DEMO

https://github.com/sherjilozair/char-rnn-tensorflow

250 epochs Works of Shakespeare

POLIXENES:

Thou art your father: let's have as help?

QUEEN ELIZABETH:

Here a poison grass, you come; and so? stamp, and not so villains up'st thoe you suffer's kindles Hastingness in't in his friends, the loving break not the rest as they away.

HENRY BOLINGBROKE:

What as he signing of your bed!

50 epochs of Don Quijote

(In spanish)

"Que podrá responder que gambiera mi pequeña iguarna donde tambores a mayor tener pequeña modo que hija y muy animal, se puso y le corona caber matando, les sabe iba la menteca las lenguas magns Anselmo, y aderezada, para Resol fertiguoso ha de ser"

"Con éstos iba ensartando otros disparates, todos al modo de los que sus

libros le habían enseñado, imitando en cuanto podía su lenguaje. Con esto,

caminaba tan despacio, y el sol entraba tan apriesa y con tanto ardor"

25 epochs Excerpt of The Holy Bible

Galatians 4:5 But thy words again, and thou break chosen: but now will I porters to me, breught in the sea, Gives, even unto his own eye is upon Isreating, and to another, and the ark of God from the ass down.