Shortest Paths: Applications, Variations and Optimization

Natashia Boland Irina Dumitrescu

Mathematics and Statistics University of Melbourne

&

HEC Montreal, Canada Research Chair in Distribution Management

Outline

- Applications of shortest paths
 - Minefield path planning
 - Approximating piecewise linear functions
 - Systems of difference constraints
 - DNA sequence alignment
- Optimization: linear programming formulation
- Variations of shortest paths
 - Resource constraints
 - Elementary paths

Minefield Path Planning

- Find safe path through naval minefield
 - Given starting point and end point
 - Location of mines is known accurately
- Each mine is considered a potential threat
- Risk from a mine decreases with distance from it
- Risk at each point in space is total risk from all mines
- Total risk for a path is accumulated along the path
- Minimize risk

100 Random Mines

A Risk Model

• The risk (probability of damage) from the ith threat (mine) $r_i(x)$ at any point x in space is proportional to the inverse square of the distance from it:

The total risk is the sum of the risks:

$$r(x) = \sum_{i} r_{i}(x)$$

The Risk Model

 Loosely speaking, the probability of successfully completing the path P, defined as a set of points in space, is

$$\prod_{x \in P} (1 - r(x))$$

where r(x) is the risk at point x.

Maximizing this is equivalent to minimizing

$$\int_{x \in P} c(x)dx = \int_{x \in P} (-\log(1-r(x))) dx$$

where c(x) is the "additive" risk at point x.

Optimal control path

Corridor of Mines

A Local Optimum

Alternative

Local vs Global

- Continuous approaches can only yield locally optimal solutions
- These may be far from globally optimal

 Space discretization gives an approximate problem – but means we can find a globally optimal solution

Network Model

- Discrete points in space form vertex set V
- Arcs A connect selected pairs of vertices
- Directed graph space discretization G=(V,A)

Regular Grid Discretization

- "Optimal Risk Path Algorithms"
 - Zabarankin, Uryasev and Pardalos

Hexagonal Grid Discretization

- "Path Planning For Unmanned Aerial Vehicles in Uncertain and Adversarial Environments"
 - Jun and D'Andrea

Network Models

- Each arc has risk value given by the integral of c along the line segment joining the two vertices that form the endpoints of the arc
- Shortest path algorithms find minimum risk paths in graph G(V, A)
- These ideas can be applied to many similar situations
 - Submarine sonar avoidance path planning
 - Military aircraft radar avoidance path planning
 - Commercial aircraft flight planning
 - Highway or railway construction

Function Approximation

• f(x) a piecewise linear function defined by n points $(x_1,y_1), (x_2,y_2),...,(x_n,y_n)$, where $x_1 \le x_2 \le ... \le x_n$

Function Approximation

- n is very large: approximate f(x) by g(x)
- Restrict attention to g(x) also piecewise linear defined by $(x_1,y_1), (x_n,y_n)$ and a subset of $(x_2,y_2),...,(x_{n-1},y_{n-1})$

How Good Is It?

- Quality of approximation: measure by $[f(x_i)-g(x_i)]^2$
- Find g(x) to minimize $\sum_{i=1}^{n} [f(x_i)-g(x_i)]^2 \times \alpha$
- Trade off vs number of points used to define $g(x) \times \beta$

Network Model

- Node i for each point i=1,...,n
- Arc (i,j) defined for all i,j=1,...,n with i < j
- Arc (i,j) indicates possibility that g(x) uses point (x_i,y_i) and then point (x_i,y_i) , i.e. skips points

$$(x_{i+1},y_{i+1}),...,(x_{j-1},y_{j-1})$$

• Arc (i,j) has cost (length) $\alpha \sum_{j=1}^{j-1} [f(x_k)-g(x_k)]^2 + \beta$ (only if $j\neq n$)

Find shortest path from node 1 to node n

 $f(x) \mid \text{ Path length} = \alpha \left(\Delta_2^2 + \Delta_3^2 \right) + \beta + \alpha \Delta_5^2 + \beta + \alpha \Delta_7^2 = \alpha \left(\Delta_2^2 + \Delta_3^2 + \Delta_5^2 + \Delta_7^2 \right) + 2\beta$

Systems of Difference Constraints

- Variables x₁, x₂,..., x_n
- Constraints $x_{j_k} x_{i_k} \le b_k$, k=1,...,m
- Does this system of constraints have a feasible solution, or not?

Applications

- Workforce scheduling
 - Fluctuating hourly or daily demands
 - Cyclical demands
 - Consistent shift structure or work patterns,
 e.g. 5 days on, 2 days off per week
 - Minimize number of workers needed to meet demands
- Other similar, e.g. trucks, maintenance

Example

- Variables x₁, x₂, x₃, x₄
- Constraints

$$x_3 - x_4 \le 5$$

 $x_4 - x_1 \le -10$
 $x_1 - x_3 \le 8$
 $x_2 - x_1 \le -11$
 $x_3 - x_2 \le 4$

 Does this system of constraints have a feasible solution, or not?

• $x_1=11$. $x_2=0$. $x_3=4$. $x_4=1$

Network Model

Node i for each variable x_i

í

Arc for each constraint

$$x_j - x_i \le b_{ij}$$

- Nodes $N=\{1,...,n\}$ $Arcs A=\{(i_k,j_k): k=1,...,m\}$ Length of arc (i_k,j_k) is b_k
- This is called the constraint graph

Example: Constraint Graph

- Variables x₁, x₂, x₃, x₄
- Constraints

$$x_3 - x_4 \le 5$$

 $x_4 - x_1 \le -10$
 $x_1 - x_3 \le 8$
 $x_2 - x_1 \le -11$
 $x_3 - x_2 \le 4$

Feasibility Condition

System of difference constraints is feasible

Constraint graph has no negative length cycles

Modified example

$$x_3 - x_4 \le 5$$
 $\begin{cases} x_2 - x_1 \le -11 \\ x_4 - x_1 \le -10 \end{cases}$ $\begin{cases} x_2 - x_1 \le -11 \\ x_3 - x_2 \le 4 \end{cases}$ $\begin{cases} x_1 - x_3 \le 5 \\ x_2 - x_1 \le -11 \end{cases}$ $\begin{cases} x_2 - x_1 \le -11 \\ 0 \le -2 \end{cases}$ $\begin{cases} x_3 - x_2 \le 4 \end{cases}$ Negative

Negative cycle constraints

Feasible Example

- Augmented constraint graph:
 - Node 0
 - Arcs (0,i) for all i=1,...,n of length 0
- Find shortest path from 0 to all nodes

Solution:

$$X_1 = \mathbf{0}$$

$$X_2 = -11$$

$$X_3 = -7$$

$$X_4 = -10$$

Path Optimality

- d(j) = label on node j
- Optimality means $d(j) d(i) \le length of (i,j)$
- Solution $x_i = d(j)$
- $x_j x_i = d(j) d(i) \le length of (i,j) = b_{ij}$

$$x_3 - x_4 \le 5$$
 $x_4 - x_1 \le -10$
 $x_1 - x_3 \le 8$
 $x_2 - x_1 \le -11$
 $x_3 - x_2 \le 4$

$$X_1 = 0$$
 $X_2 = -11$
 $X_3 = -7$
 $X_4 = -10$

DNA Sequences

- Two sequences B and D
 - e.g. B = TCCG, D = CTAGC
- Convert B to D in a "minimal" way
 - Align matching elements in sequence
 - Insert new elements into B (cost a)
 - Delete elements from B (cost b)
 - Mutate elements in B (cost depends on elements, e.g. to convert C to G costs g (C,G))

Example

$$Cost = 2a + b + g(C,A)$$

$$Cost = a + g(T,C) + g(C,T) + g(C,A)$$

Network Model

- Sequence B has elements $b_1, ..., b_N$, sequence D has elements $d_1, ..., d_M$
- Node for each pair (*i*,*j*), *i*=0,1,...,*N*, *j*=0,1,...,*M*
 - represents decision about matching element b_i with d_j
 - (0,0) is the start node, with nothing matched
 - "j=0" indicates deleting element at start of B up to b_{i+1}
 - "i=0" indicates adding new elements at start of B to match up to d_{j+1} ((j-1,j-1))

(i,j-1)

- Arc for each option:
 - Match (diagonal arc)
 - Insert new element (horizontal arc)
 - Doloto alamont (vartical arc)

Example Network

Shortest path model

- Each path from (0,0) to (N,M)
 represents a different way to convert sequence B to sequence D
- Least cost path corresponds to best match

Other Applications

- There are numerous applications of shortest path problems
- Shortest paths are often solved as subproblems in other procedures
- See "Network Flows" by R. Ahuja et al., Chapter 4, and references therein

Linear Programming

 The shortest path problem can be formulated as a network flow

Digraph G=(V,A)

Arc costs or lengths c_{ii} , for all $(i,j) \in A$

Path start node $s \in V$, end node $t \in V$, $s \neq t$

- Variables $x_{ii} = 1$ if (i,j) in path, 0 otherwise
- Net flow into node $i = \sum_{j:(j,i) \in X_{ij}} \sum_{j:(i,j) \in X_{ij}}$

LP Formulation

$$\min \sum_{(i,j) \in A} c_{ij} X_{ij}$$

s.t.

s.t.
$$\sum_{j:(j,i)\in A} x_{ji} - \sum_{j:(i,j)\in A} x_{ij} = \begin{cases} -1, & i=s\\ 0, & i\neq s,t\\ 1, & i=t \end{cases} \forall i\in V$$

$$x \ge 0$$

Duality Results

- LP dual has variables u_i for each node i ∈ V
- u_i can be interpreted as the length of path from node s to node i
- LP dual constraints are difference constraints!
- LP is bounded below if and only if there is no negative length cycle
- LP optimality conditions correspond to the usual path optimality conditions
- Can deduce that the LP formulation has the integrality property, i.e. 0-1 solutions naturally

Time Windows

- A path in a network G=(V,A) may represent a route for a delivery vehicle
- In this case, the time that the vehicle makes each delivery may be constrained
- T_{ij} = time needed for vehicle to drive from node i to node j (may includes unloading at i)
- [a_i,b_i] = time interval must arrive at node i in
- t_i = time arrive at node i
- If (i,j) in path, then $t_j = \max\{t_i + T_{ij}, a_i\}$
- Require t_i ≤ b_i for all i ∈ V

Integer LP Formulation

$$\min_{x \in \{0,1\}^{|A|}, t} \sum_{(i,j) \in A} C_{ij} x_{ij}$$
s.t.
$$\sum_{j : (j,i) \in A} X_{ji} - \sum_{j : (i,j) \in A} X_{ij} = \begin{cases} -1, & i = s \\ 0, & i \neq s, t \\ 1, & i = t \end{cases} \forall i \in V$$

$$t_{i} \ge t_{i} + T_{ij} - (b_{i} + T_{ij} - a_{i})(1 - x_{ij}), \ \forall (i,j) \in A$$

$$a < t < h \forall i \in V$$

Additive Arc Resources

- A path in a network G=(V,A) may represent a route for a delivery vehicle
- The petrol consumed by the vehicle may be constrained by its tank capacity, Q
- D_{ij} = petrol consumed on arc (i,j)
- d_i = total petrol consumed visiting all customers on the route up to and including i
- If (i,j) in path, then $d_i = d_i + D_{ij}$
- Require $d_i \le Q$ for all $i \in V$ (or just $d_i \le Q$)
- Special case of time windows [0,Q]

ILP Formulation

$$\min_{x \in \{0,1\}^{|A|}} \sum_{(i,j) \in A} c_{ij} x_{ij}$$
s.t.
$$\sum_{j : (j,i) \in A} x_{ji} - \sum_{j : (i,j) \in A} x_{ij} = \begin{cases} -1, & i = s \\ 0, & i \neq s,t \\ 1, & i = t \end{cases} \forall i \in V$$

 $\sum_{(i,j)\in A} D_{ii} X_{ii} \leq Q$

Additive Node Resources

- A path in a network G=(V,A) may represent a route for a delivery vehicle
- The quantity that can be carried on the vehicle may be constrained by its capacity, Q
- D_i = demand quantity for node i
- d_i = total demand for all customers preceding on the route, including i
- If (i,j) in path, then d_i = d_i + D_i
- Require $d_i \le Q$ for all $i \in V$ (or just $d_t \le Q$)
- Special case of additive arc resource

ILP Formulation

$$\min_{x \in \{0,1\}^{|A|}} \sum_{(i,j) \in A} c_{ij} x_{ij}$$
s.t.
$$\sum_{j : (j,i) \in A} x_{ji} - \sum_{j : (i,j) \in A} x_{ij} = \begin{cases} -1, & i = s \\ 0, & i \neq s,t \\ 1, & i = t \end{cases} \forall i \in V$$

 $\sum_{(i,j)\in A} D_i X_{ii} \leq Q - D_t$

Vector Resources

- Arc (i,j) may use r^k_{ij} units of resource k
- Resource limits R^k for each resource k
- q^k_i = cumulative units of resource k used on path nodes from s to i
- If (i,j) in path, then $q_j^k = q_i^k + r_{ij}^k$
- Require $q_t^k \le R^k$ for all k
- (Alternatively, some resources may be time window type, not just additive)

ILP Formulation

$$\sum_{(i,j) \in A} r^k_{ij} x_{ij} \leq R^k, \ \forall resources \ k$$

Renewable Resources

- A path may represent a sequence of work for a crew in a "job network", perhaps including several duty periods with rests in between
- The resource can be replenished at some special nodes, R ⊆ V
- If (i,j) in path and j ∉ R, then d_j = d_i + D_j
- So if $j \in R$ then free to re-set $d_j = 0$
- Require d_i ≤ Q for all i ∈ V

Elementary Paths

- Shortest path problems often arise as sub-problems in column generation
- In these cases there may be negative length cycles – a shortest elementary path (no repeated nodes) is sought
- This can be modelled by using a vector of additive resources, one for each node i
- Resource $r_i^k=1$ if k=i, 0 otherwise $\forall i,k \in V$
- Resource limit R^k=1 for each k ∈ V

Other Variations

- Multi-criteria optimization
- Dynamic shortest paths e.g. with timedependent travel times, such as due to peak-hour congestion
- Subset disjoint paths
- Many others.....