

Contents

- 1.1 Introduction to Computer Vision
 - Classification
 - Regression
 - Detection Sample
- 1.2 Deep Learning
 - Handwritten Digits Classification

How to Make an Image Classifier - Intro to Deep Learning #6

MIT Deep Learning Basics: Introduction and Overview

- OUTLINE:
- 0:00 Introduction
- 0:53 Deep learning in one slide
- 4:55 History of ideas and tools
- 9:43 Simple example in TensorFlow
- 11:36 TensorFlow in one slide
- 13:32 Deep learning is representation learning
- 16:02 Why deep learning (and why not)
- 22:00 Challenges for supervised learning
- 38:27 Key low-level concepts
- 46:15 Higher-level methods
- 1:06:00 Toward artificial general intelligence

MIT Deep Learning Basics: Introduction and Overview

https://youtu.be/O5xeyoRL95U [1:08:05]

Deep Learning: Practice and Trends (NIPS 2017 Tutorial, parts I & II)

Supervised and Unsupervised Learning

Supervised vs Unsupervised Learning

Classification Models

- Collection of training data
- Model built upon features (or more precisely, on the feature space)
 - ➤ Happy face = f (f refers to the features extracted from a face)
- Model-based prediction when new data is given

Binary Classification

Binary classification is the task of classifying the elements of a set into two groups on the basis of a

classification rule.

Common Binary Classification Task: dogs and cats

Prob. (Dog)	Prob. (Cat)	Label (G.T)	
0.2311	0.7689	1	
0.7842	0.2158	0	
0.8913	0.1087	0	
0.0182	0.9818	1	

Multiclass Classification

"Multinomial classification is the problem of <u>classifying</u> instances into one of three or more classes. (classifying instances into one of two classes is called <u>binary classification</u>)"

Multiclass Classification: more than two labels

			. <\ \3	
Prob. (Dog)	Prob. (Cat)	Prob. (Bird)	 Pred.	Label
0.2311	0.3271	0.4312	 Fish	**************************************
0.7842	0.2158	0.2277	 Dog	0
0.1913	0.4487	0.3752	 Cat	3
0.2182	0.9818	0.4312	 Bird	6

Regression Models

- Collection of training data;
- Regression model built upon feature space
 - Stock value = **G** (previous closing, financial indices, profits, revenues,)
- Make a prediction given the known features.

Linear Regression

The simplest form of a linear regression problem can be defined by the following sample equation:

$$\hat{Y} = aX + b + e$$

where,

 \hat{Y} = Predicted value of Y

X = Independent variable

a = Slope coefficient basedon best-fitting line

b = Y-axis intercept

e = Noise

Precision and recall

- **Precision** is the fraction of retrieved instances that are relevant, while **Recall** is the fraction of relevant instances that are retrieved.
 - True positive (TP) = correctly identified
 - False positive (FP) = incorrectly identified
 - True negative (TN) = correctly rejected
 - False negative (FN) = incorrectly rejected

Samples of Face Detection

TP = 5 FP = 1 FN = 3

Nine faces in a single image.

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Precision =
$$\frac{5}{5+1}$$
 = 0.833
Recall= $\frac{5}{5+3}$ = 0.625

Training and Testing Sets

Training Set

- A set in which data are known to a system for building classification/regression model.
- For example, in a face recognition neural network, the face images used to train the network.

Testing Set

- A set in which data are unknown to a system for recognition.
- For example, the face images to be recognized by the trained face recognition network.

But what is a Neural Network? | Deep learning, chapter 1

Gradient descent, how neural networks learn I Deep learning, chapter 2

Example 1: Training LeNet on Mnist

- Mnist database is dataset for handwritten digits.
- The dataset consists of pair, "handwritten digit image" and "label".
 - handwritten digit image: This is gray scale image with size 28 x 28 pixel.
 - label: This is actual digit number this handwritten digit image represents. It is either 0 to 9.

Le Net

- Yann LeCun and his collaborators developed a really good recognizer for handwritten digits by using back-propagation in a feed-forward net with:
 - Many hidden layers
 - Many maps of replicated units in each layer.
 - > Pooling of the outputs of nearby replicated units.
 - > A wide net that can cope with several characters at once even if they overlap.
 - > A clever way of training a complete system, not just a recognizer.
- This net was used for reading ~10% of the checks in North America.
- Look the impressive demos of LENET at http://yann.lecun.com