Modelo de Ising

Red de spines $s=\pm 1$ en un arreglo $L\times L.$

$$\mathcal{H} = -J^* \sum_{\langle i,j \rangle} s_i \, s_j - B^* \sum_i s_i \tag{1}$$

donde $J^* = J/KT$ y $B^* = B/KT$.

El caso $J \neq 0$

Cada spin $s_i=\pm 1$ tiene cuatro vecinos $s_j=\pm 1$. Cada inversión de spin varía la energía en

$$\mathcal{H}_{k+1} - \mathcal{H}_k = -J^* \sum_{j=1}^4 [s_i^{k+1} - s_i^k] s_j - B^* [s_i^{k+1} - s_i^k]$$
 (2)

donde $s_i^{k+1} - s_i^k$ puede tomar únicamente los valores -2,0,+2.

Posibles valores de energía $(J \neq 0)$

$$\mathcal{H}_{k+1} - \mathcal{H}_k = \left[s_i^{k+1} - s_i^k \right] \left[-J^* \left(s_1 + s_2 + s_3 + s_4 \right) - B^* \right] \tag{3}$$

$$s_i^{k+1} - s_i^k = \begin{cases} -2 \\ 0 \\ +2 \end{cases}, \quad s_1 + s_2 + s_3 + s_4 = \begin{cases} -4 \\ -2 \\ 0 \\ +2 \\ +4 \end{cases}$$
 (4)

La diferencia $s_i^{k+1} - s_i^k = 0$ no interesa y la eliminamos. La cantidad total de combinaciones es (en principio) $2 \times 5 = 10$

Tabla de energías

Armo una tabla de los posibles $\Delta \mathcal{H}$.

$s_i^{k+1} - s_i^k$	$s_1 + s_2 + s_3 + s_4$	$\Delta \mathcal{H}$
-2	+4	$-2(-4*J^*-B^*)$
-2	+2	$-2(-2*J^*-B^*)$
-2	0	$-2(+0*J^*-B^*)$
-2	-2	$-2(+2*J^*-B^*)$
-2	-4	$-2(+4*J^*-B^*)$
+2	+4	$+2(-4*J^*-B^*)$
+2	+2	$+2(-2*J^*-B^*)$
+2	0	$+2(+0*J^*-B^*)$
+2	-2	$+2(+2*J^*-B^*)$
+2	-4	$+2(+4*J^*-B^*)$

Tabla de energías reducida

$(s_i^{k+1} - s_i^k) \cdot (s_1 + s_2 + s_3 + s_4)$	$\omega = \exp(-\Delta \mathcal{H})$
$(-2) \times (+4) = -8$	$\exp(-8*J^*-2B^*)$
$(-2)\times(+2)=-4$	$\exp(-4*J^*-2B^*)$
$(-2) \times (+0) = +0$	$\exp(-0*J^*-2B^*)$
$(-2)\times(-2)=+4$	$\exp(+4*J^*-2B^*)$
$(-2)\times(-4)=+8$	$\exp(+8*J^*-2B^*)$
$(+2) \times (+4) = +8$	$\exp(+8*J^*+2B^*)$
$(+2) \times (+2) = +4$	$\exp(+4*J^*+2B^*)$
$(+2) \times (+0) = +0$	$\exp(-0*J^*+2B^*)$
$(+2) \times (-2) = -4$	$\exp(-4*J^*+2B^*)$
$(+2) \times (-4) = -8$	$\exp(-8*J^*+2B^*)$

Tabla de energías reducida

Una forma fácil de indexar esto en un vector es hacer

$$h = i + j + 2 \tag{5}$$

donde

$$\begin{cases}
i = (s_i^{k+1} - s_i^k) + 2 \\
j = (s_i^{k+1} - s_i^k) \cdot (s_1 + s_2 + s_3 + s_4)/4
\end{cases}$$
(6)