

ЭТИКЕТКА

СЛКН.431295.005 ЭТ

Микросхема интегральная 564 ИП6ТЭП Функциональное назначение – 9 – разрядный контроллер четности

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	D0	Вход информационный	8	INH	Вход «запрет»
2	D1	Вход информационный	9	&0	Выход четности
3	D2	Вход информационный	10	D5	Вход информационный
4	D3	Вход информационный	11	D6	Вход информационный
5	D4	Вход информационный	12	D7	Вход информационный
6	&1	Выход нечетности	13	D8	Вход информационный
7	0V	Общий	14	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Цанионородина повомотво, отнично намования, волити намования	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, 10 B; $U_{IL} = 0$ B; $U_{IH} = U_{CC}$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, В, при: $U_{CC} = 5$ В, $U_{IL} = 0$ В; $U_{IH} = U_{CC}$ $U_{CC} = 10$ В; $U_{IL} = 0$ В; $U_{IH} = U_{CC}$	U _{OH}	4,99 9,99	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B $U_{CC}=15$ B, $U_{IL}=4,0$ B, $U_{IH}=11,0$ B	U _{OL max}	- - -	0,5 1,0 1,5
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B $U_{CC}=15$ B, $U_{IL}=4,0$ B, $U_{IH}=11,0$ B	U _{OH min}	4,5 9,0 13,5	- - -
5. Входной ток низкого уровня, мк A , при: $U_{CC} = 15~B,U_{IL} = 0B;U_{IH} = U_{CC}$	$I_{ m IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B, \; U_{IL} = 0B; \; U_{IH} = U_{CC}$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \text{ B, } U_O = 0,4 \text{ B, } U_{IL} = 0 \text{ B; } U_{IH} = U_{CC} \\ U_{CC} = 10 \text{ B, } U_O = 0,5 \text{ B, } U_{IL} = 0 \text{ B; } U_{IH} = U_{CC} \\ U_{CC} = 15 \text{ B, } U_O = 1,5 \text{ B, } U_{IL} = 0 \text{ B; } U_{IH} = U_{CC}$	I_{OL}	0,51 1,3 3,4	- - -

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при:			
$U_{CC} = 5 \text{ B}, U_0 = 4.6 \text{ B}, U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$		/-1,6/	-
$U_{CC} = 5 \text{ B}, U_0 = 2.5 \text{ B}, U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$	I_{OH}	/-0,51/	-
$U_{CC} = 10 \text{ B}, U_0 = 9.5 \text{ B}, U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$		/-1,30/	-
$U_{CC} = 15 \text{ B}, U_{O} = 13,5 \text{ B}, U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$		/-3,40/	•
9. Ток потребления, мкА, при:			
$U_{CC} = 5 \text{ B}, U_{IH} = U_{CC}; U_{IL} = 0 \text{B}$	I_{CC}	-	5,0
$U_{CC} = 10 \text{ B}, U_{IH} = U_{CC}; U_{IL} = 0 \text{B}$	ICC	-	10,0
$U_{CC} = 15 \text{ B}, U_{IH} = U_{CC}; U_{IL} = 0 \text{B}$		-	20,0
10. Время задержки распространения при выключении и включении от информационных			
входов к выходам, нс, при:	$t_{\rm PLH}$		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi; U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$	$t_{ m PHL}$	-	700
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ n}\Phi; U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$		-	300
$U_{CC} = 15 \text{ B}, C_L = 50 \text{ n}\Phi; U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$		-	200
11. Время задержки распространения при выключении и выключении от входа «запрет»			
к выходам, нс, при:	t_{PLH}		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi; U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$	$t_{ m PHL}$	-	280
$U_{CC} = 10 \text{ B}, \ C_L = 50 \text{ n}\Phi; \ U_{IL} = 0 \text{ B}; \ U_{IH} = U_{CC}$		-	140
$U_{CC} = 15 \text{ B}, \ C_L = 50 \text{ n}\Phi; \ U_{IL} = 0 \text{ B}; \ U_{IH} = U_{CC}$		-	100
12. Время перехода при выключении и выключении, нс, при:	t		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi; U_{IL} = 0 \text{ B}; U_{IH} = U_{CC}$	t _{TLH}	-	200
$U_{CC} = 10 \text{ B}, \ C_L = 50 \text{ n}\Phi; \ U_{IL} = 0 \text{ B}; \ U_{IH} = U_{CC}$	$t_{ m THL}$	-	100
$U_{CC} = 15 \text{ B}, \ C_L = 50 \text{ n}\Phi; \ U_{IL} = 0 \text{ B}; \ U_{IH} = U_{CC}$		-	80
13. Входная емкость, пФ, при:	$C_{\rm I}$		7,5
$U_{CC} = 10 \text{ B}, ; U_I = 0 \text{ B}$	CI	-	1,5

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото серебро Γ, золото Γ/MM на 14 выводах, длиной

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

в том числе:

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более $(65+5)^{\circ}$ С не менее 100000 ч, а в облегченном режиме ($U_{\rm CC}$ от 5 до 10B)- не менее 120000 ч.

MM.

2.2 Гамма – процентный срок сохраняемости (Тсү) при ү = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИЙ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-35ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Цена договорная

Микросхемы 564 ИП6ТЭП соответствуют техническим условиям АЕЯР.431200.610-35ТУ и признаны годными для эксплуатации.

Приняты по(извещение, акт и др.)	от	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка п	произведена		
Приняты по (извещение, акт и др.)	от	(дата)	
Место для штампа ОТК			Место для штампа ВП

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход общая точка, выход – общая точка, вход –выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ