Adaptive Pareto Smoothed Importance Sampling

William Ruth

Joint work with Payman Nickchi

Introduction

- Importance sampling
- Measuring performance
- Improving performance
 - Modifications
 - Optimization

Importance Sampling

- Need to compute an expected value
 - $\mathbb{E}_F \varphi(X)$
- Can't do the sum/integral
- Monte Carlo approximation
 - Simulating from F might be hard

Importance Sampling

• Introduce "proposal distribution", G:

$$\mathbb{E}_{F}\varphi(X) = \mathbb{E}_{G}\left[\varphi(X)\cdot\frac{f(X)}{g(X)}
ight] = \mathbb{E}_{G}\left[\varphi(X)\cdot w(X)
ight]$$

- G can be nearly anything*
 - *Some choices will be better than others

- f unknown, but can be evaluated
- $\varphi(X) = X^2$
- Try some proposals:
 - $G_1 \sim N(0.1, 1)$
 - $G_2 \sim N(1.5, 1)$
- Use M = 1000 samples from proposal
 - $\hat{\mathbb{E}}_1 = 1.07$, SD = 0.05
 - $\hat{\mathbb{E}}_2 = 1.04$, SD = 0.19

Importance Sampling

- We can make this difference precise
- "Effective Sample Size":

$$ESS = \frac{\left[\sum_{i} w(X_{i})\right]^{2}}{\sum_{i} w(X_{i})^{2}}$$

Importance Sampling

- ullet Problem: Low ESS o hard to estimate means
- But ESS is based on means
 - (Chatterjee and Diaconis, 2018)

Improving IS

- Choose a good proposal
- Modify large weights
 - Truncated IS
 - Pareto Smoothed IS

Improving IS

- Truncated Importance Sampling:
 - (Ionides, 2008)
- 1. Choose a threshold
- 2. Set any weights above threshold equal to threshold

Improving IS

- Pareto Smoothed Importance Sampling:
 - (Vehtari et al., 2024)
- 1. Choose a threshold
 - Weights above threshold represent tail of their dist.
- 2. Approximate tail with Generalized Pareto Dist.
 - Fit GPD to weights above threshold
 - (Zhang and Stephens, 2009)
- 3. Replace large weights with quantiles of fitted GPD

$$ESS_1 \approx 989$$

 $ESS_1^{(\mathrm{trunc})} \approx 989$
 $ESS_1^{(\mathrm{PS})} \approx 989$

$$ESS_2 \approx 131$$

 $ESS_2^{(\mathrm{trunc})} \approx 144$
 $ESS_2^{(\mathrm{PS})} \approx 135$

Adaptive IS

- Alternative approach: directly optimize ESS
- Adaptive Importance Sampling:
 - (Akyildiz and Míguez, 2021)
- 1. Choose a (parametric) family of proposals
- 2. Iteratively update the proposal to maximize ESS

Stochastic Approximation

- Actually, we want to maximize a population-level analog: ESS*
- If we had ESS*, we would do gradient ascent
 - $\theta_{k+1} = \theta_k + \alpha \nabla ESS^*(\theta_k)$
- Instead, do gradient ascent on *ESS*
 - $\hat{\theta}_{k+1} = \hat{\theta}_k + \alpha_k \nabla ESS(\hat{\theta}_k)$

Stochastic Approximation

- Stochastic approximation
 - (Robbins and Monro, 1951)
- Finite difference approximation to ∇ESS
 - (Kiefer and Wolfowitz, 1952)

$$\hat{\theta}_{\rm end}^{(ESS)} \approx -8 \times 10^{-4}$$

$$\textit{ESS}_{\mathrm{end}} pprox 1000 - (7 imes 10^{-4})$$

4□▶ 4□▶ 4□▶ 4□▶ □ 990

Our Method

- Recall: Be careful using IS means to diagnose IS
- Vehtari et al. give an alternative
 - Shape parameter of fitted tail distribution, \hat{k}

Our Method

- Use diagnostic as objective function
- Apply stochastic approximation to minimize \hat{k}
 - More precisely, $k(\theta)$

$$\hat{ heta}_{\mathrm{end}}^{(PS)} pprox 4 imes 10^{-3}$$

- Performance tends to be better if we average all the estimates
- ullet Call this $ar{ heta}$

$$\bar{\theta}_{\rm end}^{(ESS)} \approx -1 \times 10^{-4}$$

$$ar{ heta}_{
m end}^{(PS)}pprox 2 imes 10^{-5}$$

Another Example

•

Recap

- Importance sampling and extensions
 - Truncation
 - Pareto Smoothing
- Diagnostics for importance sampling
 - Effective sample size
 - Pareto tail index
- Adaptive importance sampling
 - Stochastic approximation

30

Thank You

Some References

- Akyildiz, Ö. D. and Míguez, J. (2021). Convergence rates for optimized adaptive importance samplers. *Statistics and Computing*, 31(12).
- Chatterjee, S. and Diaconis, P. (2018). The sample size required in importance sampling. *The Annals of Applied Probability*, 28(2).
- Ionides, E. L. (2008). Truncated importance sampling. *Journal of Computational and Graphical Statistics*, 17(2).
- Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3).
- Robbins, H. and Monro, S. (1951). A stochastic approximation method. *The Annals of Mathematical Statistics*, 22(3).
- Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2022). Pareto smoothed importance sampling. *ArXiv*.
- Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. *Journal of Machine Learning Research*, 25(72).
- Zhang, J. and Stephens, M. A. (2009). A new and efficient estimation method for the generalized Pareto distribution. *Technometrics*, 51(3).

4□ > 4個 > 4 種 > 4 種 > ■ 990