Отчет по лабораторной работе 5

Построение графиков

Шалыгин Георгий Эдуардович

Содержание

1	Цель работы	6
2	Выполнение лабораторной работы 2.1 Задания для самостоятельного выполнения	7 22
3	Выводы	32
Сп	исок литературы	33

Список иллюстраций

2.1	Кривая	7
2.2	Кривая с плотли	8
2.3	Синус	8
2.4	Два графика на одном	9
2.5	Задание параметров графика	9
2.6	Сохранение	9
2.7	Точечный график	10
2.8		10
2.9	Пространственный график	11
2.10		11
2.11	QR-факторизация	11
2.12	Регрессия данных	12
		12
2.14	Вторые оси добавить не получилось	13
2.15	Полярные координаты	13
2.16		14
2.17		14
2.18		15
		15
		16
		16
	Анимация	17
		17
2.24		18
2.25		18
2.26	Ошибки по осям	19
	Гистограмма	19
		20
		20
2.30		21
2.31		21
	Несколько графиков с макросом	22
		22
2.34		23
		24
		24
		25

2.38	Разные оси	•	•	•	26
2.39	График ошибок				27
2.40	Случайные точки трех кластеров				27
2.41	Трехмерный случайный график				28
2.42	Анимация синуса				28
2.43	Целое значение				29
2.44	Нецелое значение				29
2.45	Целое значение				30
2.46	Целое значение	•	•		30
2.47	Нецелое значение	•	•		31

Список таблиц

1 Цель работы

Основная цель работы — освоить синтаксис языка Julia для построения графиков.

2 Выполнение лабораторной работы

1. Повторим примеры.

```
: using Plots
f(x) = (3x.^2 + 6x .- 9).*exp.(-0.3x)
x = collect(range(-5,10,length=151))
y = f(x)
gr()
plot(x,y,
    title="A simple curve",
    xlabel="Variable x",
    ylabel="Variable y",
    color="blue")
```


Рис. 2.1: Кривая

Рис. 2.2: Кривая с плотли

Рис. 2.3: Синус

```
sin_taylor(x) = [(-1)^i*x^(2*i+1)/factorial(2*i+1) for i in 0:4] |> sum

# построение εραφωκα φγηκιμια sin_taylor(x):
plot(sin_taylor)

# ποσπροεние δθγχ φγηκιμια на одном εραφωκε:
plot(sin_theor)
plot!(sin_taylor)

1.0

-0.5

-1.0

-4

-2

0

2

4
```

Рис. 2.4: Два графика на одном

Рис. 2.5: Задание параметров графика

```
: savefig("taylor.pdf")
savefig("taylor.png")
```

: "C:\\Users\\гиоргий\\RUDN\\statan\\taylor.png"

Рис. 2.6: Сохранение

```
: x = range(1,10,length=10)
y = rand(10)
plot(x, y,
seriestype = :scatter,
title = "Точечный график")

: Точечный график

0.7
0.6
0.5
0.4
0.3
0.2
0.1
2
4
6
8
10
```

Рис. 2.7: Точечный график

Рис. 2.8: Изменение размера вершин

```
n = 50
x = rand(n)
y = rand(n)
z = rand(so) * 30
# параметры построения графика:
scatter(x, y, z, markersize=ms)

y1

1.00
0.75
0.50
0.25
0.00
```

Рис. 2.9: Пространственный график

Рис. 2.10: Зашумленные данные

```
# определение массиба для нахождения коэффициентов полинома:

A = [ones(1000) x x.^2 x.^3 x.^4 x.^5]
# решение матричного ураднения:

c = A\y
# лостроение полиноми:

f_ = c[1]*ones(1000) + c[2]*x + c[3]*x.^2 + c[4]*x.^3 + c[5]*x.^4 + c[6]*x.^5
```

Рис. 2.11: QR-факторизация

Рис. 2.12: Регрессия данных

Рис. 2.13: Случайный график

```
plot!(twinx(), randn(100)*10,
    c=:red,
    ylabel="y2",
    leg=:bottomright,
    grid =: off,
    box =: on,
    # size=(600, 400)
)

KeyError: key "join" not found

Stacktrace:
[1] __getproperty
    @ D:\julia\depot\packages\PyCall\gaz9g\src\PyCall.jl:313 [inlined]
[2] getproperty(o::PyCall.PyObject, s::String)
    @ PyCall D:\julia\depot\packages\PyCall\gaz9g\src\PyCall.jl:317
[3] __before_layout_calcs(plt::Plots.Plot(Plots.PyPlotBackend))
    @ Plots D:\julia\depot\packages\Plots\sxUvK\src\backends\deprecated\pyplot.jl:1331
```

Рис. 2.14: Вторые оси добавить не получилось

Рис. 2.15: Полярные координаты

```
# параметрическое уравнение:
x_(t) = sin(t)
y_(t) = sin(2t)
# построение графика:
plot(x_, y_, 0, 2π, leg=false, fill=(0,:orange))

1.0
0.5
-0.5
-1.0
-1.0
-0.5
0.0
0.5
1.0
```

Рис. 2.16: Параметрический график

Рис. 2.17: Параметрический график в 3д

```
# построение графика поверхности:

f(x,y) = x^2 + y^2
x = -10:10
y = x
surface(x, y, f)

200
150
100
50
0
100
50
```

Рис. 2.18: Поверхность

Рис. 2.19: Поверхность

Рис. 2.20: Линии уровня

```
# определение переменных:
X = range(-2, stop=2, length=100)
Y = range(-2, stop=2, length=100)
# определение функции:
h(x, y) = x^3 - 3x + y^2
# построение поверхности:
plot(X,Y,h,
linetype = :surface
)

6
4
2
0
0
0
```

Рис. 2.21: Поверхность

```
: pyplot()
i = 0
X = Y = range(-5,stop=5,length=40)
surface(X, Y, (x,y) -> sin(x+10sin(i))+cos(y))

# анимация:
X = Y = range(-5,stop=5,length=40)
@gif for i in range(0,stop=2\pi,length=100)
surface(X, Y, (x,y) -> sin(x+10sin(i))+cos(y))
end

[ Info: Saved animation to C:\Users\ruopru\vec{w}\RUDN\statan\tmp.gif
```

Рис. 2.22: Анимация

```
yc = r*(k-1)*sin(t[end]) .+ r*sin.(θ)
plot!(xc,yc,c=:black)
# радиус малой окружности:
xl = transpose([r*(k-1)*cos(t[end]) x[end]])
yl = transpose([r*(k-1)*sin(t[end]) y[end]])
plot!(xl,yl,markershape=:circle,markersize=4,c=:black)
scatter!([x[end]],[y[end]],c=:red, markerstrokecolor=:red)
end
gif(anim,"hypocycloid.gif")

[ Info: Saved animation to C:\Users\гиоргий\RUDN\statan\hypocycloid.gif
```


Рис. 2.23: Гипоциклоида

```
ylims = (-1,1),
err = errs
)

Updating registry at `D:\julia\depot\registries\General.toml`
Resolving package versions...
No Changes to `D:\julia\depot\environments\v1.8\Project.toml`
No Changes to `D:\julia\depot\environments\v1.8\Manifest.toml`

1.0

-0.5

-1.0
```

Рис. 2.24: График ошибок

Рис. 2.25: График ошибок 2 вид

```
x = map(mean, x)
y = map(mean, y)
plot(x, y,|
xerr = xerr,
yerr = yerr,
marker = stroke(2, :orange)
)
```

Рис. 2.26: Ошибки по осям

Рис. 2.27: Гистограмма

Рис. 2.28: Множественная гистограмма

Рис. 2.29: Несколько графиков

Рис. 2.30: Несколько графиков 2 вид

Рис. 2.31: Несколько графиков 3 вид

Рис. 2.32: Несколько графиков с макросом

2.1 Задания для самостоятельного выполнения

1. Постройте все возможные типы графиков (простые, точечные, гистограммы и т.д.) функции $sin(X), x \in (0..2\pi)$. Отобразите все графики в одном графическом окне.

Рис. 2.33: Sinus

2. Постройте графики функции $sin(X), x \in (0..2\pi)$ со всеми возможными (сколько сможете вспомнить) типами оформления линий графика. Отобразите все графики в одном графическом окне.

```
x = collect(range(0,2*π,length=100))
 y = map(sin, x)
 p1 = plot(x,y, line=(:blue, 0.3, 6, :solid))
 p2 = plot(x,y, line=(:black, 0.3, 3, :dash))
 p3 = plot(x,y, line=(:green, 1, 6, :dot))
 p4 = plot(x,y, line=(:blue, 3, 1, :dashdot))
 plot(
 p1,p2,p3,p4,
  layout=(2,2),
  legend=false,
  size=(400,300),
  background_color = :ivory
     1.0H
    0.5
    -0.5
    1.0
                               1.0
    0.5
                                0.5
    -0.5
                               -0.5
```

Рис. 2.34: Кастом графика синуса

3. Постройте график функции $y=\pi x^2\ln(x)$ назовите оси соответственно. Пусть цвет рамки будет зелёным, а цвет самого графика — красным. Задайте расстояние между надписями и осями так, чтобы надписи полностью умещались в графическом окне. Задайте шрифт надписей. Задайте частоту отметок на осях координат.

Рис. 2.35: График функции

Рис. 2.36: График функции

4. Задайте вектор $\mathbf{x}=(-2,-1,0,1,2)$. В одном графическом окне (в 4-х подокнах) изобразите графически по точкам \blacksquare значения функции x^3-3x в виде: – точек, – линий, – линий и точек, – кривой. Сохраните полученные изображения в файле figure_familiya.png, где вместо familiya укажите вашу фамилию..

```
x = collect((-2, -1, 0, 1, 2))
f(x) = x*3-3x
y = map(f, x)
pl = plot(x,y, seriestype = :scatter)
p2 = plot(x,y, 1 inee:[rene, 1, 6, :dot])
p4 = plot(x,y, 1 inee:[rene, 1, 6, :dot])
p1ct(
p1,p2,p3,p4,
layoute(2,2),
legend-false,
size=(a00,300),
background_color = :ivory)
```

Рис. 2.37: 4 вида графика

5. Задайте вектор x = (3, 3.1, 3.2, ..., 6). Постройте графики функций $y_1 = \pi x$ и $y_2 = exp(x)cos(x)$ в указанном диапазоне значений аргумента испедующим образом: – постройте оба графика разного цвета на одном рисунке, добавьте легенду и сетку для каждого графика; укажите недостатки у данного построения; – постройте аналогичный график с двумя осями


```
: x = collect(3:0.1:6)
y1 = map(x -> pi*x, x)
y2 = map(x -> exp(x)*cos(x), x)
plot(x, y1, lineline=(:black, 1, 1, :solid), size=(400,300))
plot!(twinx(), x, y2, c=:red,
ylabel="y2",
leg=:bottomright,
grid = :off,
box = :on)
:
```


Рис. 2.38: Разные оси

Здесь, очевидно, удобнее две оси из-за разных масштабов. В первом случае график просто становится линией.

6. Постройте график некоторых экспериментальных данных (придумайте сами), учитывая ошибку измерения.

Рис. 2.39: График ошибок

7. Постройте точечный график случайных данных. Подпишите оси, легенду, название графика.

Рис. 2.40: Случайные точки трех кластеров

8. . Постройте 3-мерный точечный график случайных данных. Подпишите оси, легенду, название графика.

Рис. 2.41: Трехмерный случайный график

9. Создайте анимацию с построением синусоиды. То есть вы строите последовательность графиков синусоиды, постепенно увеличивая значение аргумента. После соедините их в анимацию.

```
pyplot()
x = collect(0:0.1:1.5*pi)
plot(x, x -> sin(x))

@gif for i in range(0,stop=2π,length=100)
    plot(x, x -> sin(x*i))
end

[ Info: Saved animation to C:\Users\гиоргий\RUDN\statan\tmp.gif
```

Рис. 2.42: Анимация синуса

10. Постройте анимированную гипоциклоиду для 2 целых значений модуля к и 2 рациональных значений модуля к.

Рис. 2.43: Целое значение

Рис. 2.44: Нецелое значение

В итоге для всех нецелых значений циклоида расходилась, а для целых возвращалась в исходную точку.

11. Постройте анимированную эпициклоиду для 2 целых значений модуля к и 2 рациональных значений модуля к.

Рис. 2.45: Целое значение

Рис. 2.46: Целое значение

Рис. 2.47: Нецелое значение

Аналогично, циклоида замыкалась для целых значений.

3 Выводы

В ходе работы был освоен синтаксис языка Julia для построения графиков

Список литературы