MATH 18.01 - FINAL EXAM REVIEW: SUMMARY OF SOME KEY CONCEPTS

18.01 Calculus, Fall 2014 Professor: Jared Speck

- a. Parametric curves
 - (a) Are curves in the (x, y) plane expressed as

$$x = F(t),$$

$$y = G(t),$$

 $a \leq t \leq b$, where t is called the parameter.

- **b**. Arc length of a curve
 - (a) Arc length is equal to $\int_a^b ds$.
 - (b) a is the parameter starting point, b is the parameter end point.
 - (c) For curves in parametric form, $ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \sqrt{(F'(t))^2 + (G'(t))^2} dt$ (Pythagorean theorem).
 - (d) For curves y = f(x), the formula reduces to $ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \sqrt{1 + (f'(x))^2} dx$ (and x is the parameter).
- c. Surface area of a solid formed by revolving a curve around the x-axis (for revolution around the y-axis, interchange the roles of x and y in everything that follows)
 - (a) Divide the surface into small strips that are portions of cones (the cone strip radii are parallel to the y-axis, and the cone strip axes of symmetry are parallel to the x-axis).
 - (b) Surface area is given by

 \int conical strip circumference \times slant edge length

 $=\int 2\pi$ conical strip radius $\times ds$

$$= \int_{t=a}^{t=b} 2\pi \overbrace{G(t)}^{y} \overbrace{\sqrt{(F'(t))^2 + (G'(t))^2}}^{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}} dt.$$

- (c) a is the parameter starting point, b is the parameter end point.
- (d) For curves y = f(x), the formula reduces to $\int_{x=a}^{x=b} 2\pi \underbrace{f(x)}^{y} \underbrace{\sqrt{1+\left(\frac{dy}{dx}\right)^{2}}}_{\sqrt{1+\left(f'(x)\right)^{2}}} dx$.
- d. Polar coordinates
 - (a) $x = r \cos \theta, y = r \sin \theta$
 - (b) In the standard formulation, $r = \sqrt{x^2 + y^2}$, θ is the polar angle, and $0 \le \theta < 2\pi$

- (c) Area in polar coordinates: Area under the curve $r = f(\theta)$ in between the angles θ_1 and θ_2 is given by Area $=\frac{1}{2}\int_{\theta_1}^{\theta_2}r^2\,d\theta=\frac{1}{2}\int_{\theta_1}^{\theta_2}[f(\theta)]^2\,d\theta$
- e. L'Hôpital's rule

 - (a) Sometimes allows one to evaluate limits of the form $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 \times \infty$, 0^0 , 1^∞ (b) Many of the above limits can be massaged into the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, where L'Hôpital's rule can sometimes directly be applied. For example, the 0^0 case can be massaged into the $\frac{0}{0}$ case with the help of ln.
 - (c) In the $\binom{0}{0}$ case: If f, g are differentiable functions, g is a finite number, f(g) = g(g) = 0, and $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)} = L$. Furthermore, it is sometimes true that $L = \frac{f'(a)}{g'(a)}$ (for example, when f'(x) and g'(x) are continuous at x = a and $g'(a) \neq 0$).
 - (d) In the " $\frac{\infty}{\infty}$ " case: If f, g are differentiable functions, a is a finite number, $\lim_{x\to a} f(x) = \int_{-\infty}^{\infty} f(x) \, dx$ $\lim_{x\to a} g(x) = \infty$, and $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.
 - (e) Analogous statements hold if we replace $\lim_{x\to a}$ with $\lim_{x\to\infty}$ or $\lim_{x\to -\infty}$.
- **f**. Improper integrals
 - (a) If f(x) is continuous for $0 \le x < \infty$, then by definition, $\int_0^\infty f(x) dx = \lim_{M \to \infty} \int_0^M f(x) dx$
 - (i) If the limit exists, we say the improper integral converges. Otherwise, we say it diverges.
 - (b) If f(x) is continuous for $a < x \le b$ but is not continuous at x = a, then by definition, $\int_{a}^{b} f(x) \, dx = \lim_{x_0 \to a^{+}} \int_{x_0}^{b} f(x) \, dx$
 - (i) If the limit exists, we say the improper integral converges. Otherwise, we say it diverges.

g. Infinite series

- (a) Are series of the form $\sum_{k=0}^{\infty} a_k = a_0 + a_1 + a_2 + a_3 + \cdots$ (b) By definition, $\sum_{k=0}^{\infty} a_k = \lim_{M \to \infty} S_M$, where $S_M = \sum_{k=0}^{M} a_k = a_0 + a_1 + a_2 + \cdots + a_M$ is the M^{th} partial sum.
- (i) If $\lim_{M\to\infty} S_M$ exists, we say the series *converges*. Otherwise, we say it *diverges*. (c) Geometric series: $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ if |x| < 1. $\sum_{k=0}^{\infty} x^k$ diverges if $|x| \ge 1$.
- (d) Comparison: If $0 \le a_k \le b_k$ for all large k, and if $\sum_{k=0}^{\infty} a_k$ diverges, then $\sum_{k=0}^{\infty} b_k$ diverges too (divergence of smaller \Longrightarrow divergence of bigger). If $0 \le a_k \le b_k$ for all large k, and if $\sum_{k=0}^{\infty} b_k$ converges, then $\sum_{k=0}^{\infty} a_k$ converges too (convergence of bigger). \implies convergence of smaller).
- (e) Limit comparison test: If $a_k \geq 0, b_k \geq 0$ for all large k and $a_k \sim b_k$, then $\sum_{k=0}^{\infty} a_k$ converges if and only if $\sum_{k=0}^{\infty} \overline{b_k}$ converges. Here, $a_k \sim b_k$ means that there exists a non-zero number L such that $\lim_{k\to\infty} \frac{a_k}{b_k} = L$.
- (f) Integral comparison: If f(x) is continuous, $f(x) \ge 0$ for all x, and f(x) is decreasing for all large x, then $\sum_{k=0}^{\infty} f(k)$ converges if and only if the improper integral $\int_{x=0}^{\infty} f(x) dx$ converges.
- **h**. Taylor's series with base point b=0

(a) For
$$x$$
 near $0: f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$

(b)
$$a_n = \frac{f^{(n)}(0)}{n!}$$
, where $f^{(n)}$ is the n^{th} derivative of f

(c)
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

(a) For
$$x$$
 near $0: f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$
(b) $a_n = \frac{f^{(n)}(0)}{n!}$, where $f^{(n)}$ is the n^{th} derivative of f
(c) $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$
(d) $\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \pm \cdots$
(e) $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \mp \cdots$
(f) $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \cdots$
i. Taylor's series with base point b

(e)
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \mp \cdots$$

(f)
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \cdots$$

(a) For
$$x$$
 near $b: f(x) = a_0 + a_1(x-b) + a_2(x-b)^2 + a_3(x-b)^3 + \cdots$

(b)
$$a_n = \frac{f^{(n)}(b)}{n!}$$

(b)
$$a_n = \frac{f^{(n)}(b)}{n!}$$

(c) $x^A = b^A + Ab^{A-1}(x-b) + \frac{A(A-1)b^{A-2}}{2!}(x-b)^2 + \frac{A(A-1)(A-2)b^{A-3}}{3!}(x-b)^3 + \cdots$