Adjusting for response misclassification with the sslogit link

Accounting for imperfect sensitivity and specificity in the response

To use the sslogit link in INLA this needs to be enabled as follows:

```
library(INLA)
inla.models <- INLA:::inla.get.inlaEnv()$inla.models
inla.models$link$sslogit$status <- NULL
assign("inla.models", inla.models, env = INLA:::inla.get.inlaEnv())
rm(inla.models)</pre>
```

Be aware that the reason this link is not available by default is that it struggles numerically if the sensitivity and specificity is large. SO USE WITH CAUTION.

```
set.seed(1)
```

We simulate a misclassified response. p_y is the success probability for the correct version of the response, y. s is the misclassified response, and p s is the success probability for s.

```
n <- 1000

p_y <- 0.1 # Success probability for y
sens <- 0.95 # P(y = 1 | s = 1)
spec <- 0.90 # P(y = 0 | s = 0)
p_s <- p_y*sens + (1-p_y)*(1-spec) # Success probability for s

df <- data.frame(s = rbinom(n = n, size = 1, prob = p_s))</pre>
```

Given this data, we can fit the naive model r0, which uses s without adjusting for misclassification, and the adjusted model r1, which adjusts for the misclassification by using and adjusted link function, as described in Section 4.1.

```
spec = list(
                   prior = "logitbeta",
                   initial = inla.link.logit(spec),
                   fixed = TRUE)
            )
           )
         )
r0$summary.fixed
##
                               sd 0.025quant 0.5quant 0.975quant
## (Intercept) -1.50499 0.0819573 -1.665623 -1.50499 -1.344356 -1.50499
r1$summary.fixed
##
                               sd 0.025quant 0.5quant 0.975quant
                                                                      mode kld
## (Intercept) -2.24994 0.1225932 -2.490218 -2.24994 -2.009661 -2.24994
```

Alternative approach when sensitivity and specificity are not known exactly

For a third approach, we fit the model for a grid of different sensitivities and specificities, as described in the end of Section 4.1.

```
IC.sens = c(0.925, 0.975)
IC.spec = c(0.85, 0.95)
# Latin square grid
n.latin <- 50
sens.values <- seq(from = IC.sens[1],</pre>
                   to = IC.sens[2],
                   length.out = n.latin)
spec.values <- seq(from = IC.spec[1], to = IC.spec[2],</pre>
                   length.out = n.latin)
# For the Latin-square
reord = sample(1:n.latin)
SSgrid = data.frame(sens = sens.values,
                    spec = spec.values[reord])
# Weights
# Using independent normals
sd.sens = (IC.sens[1] - sens) / qnorm(0.025)
sd.spec = (IC.spec[1] - spec) / qnorm(0.025)
SS.weights = dnorm(SSgrid$sens, sens, sd.sens) * dnorm(SSgrid$spec, spec, sd.spec)
SS.weights = SS.weights / sum(SS.weights)
```

We run INLA for each pair of sensitivity and specificity of the Latin square, and keep the results in a list:

```
control.link = list(
                    model = "sslogit",
                    hyper = list(
                      sens = list(
                        prior = "logitbeta",
                        initial = inla.link.logit(SS$sens),
                        fixed = TRUE),
                      spec = list(
                        prior = "logitbeta",
                        initial = inla.link.logit(SS$spec),
                        fixed = TRUE)
                      )
                    )
                )
  )
  r.temp
}
r.list <- lapply(X = 1:nrow(SSgrid),
                 FUN = function(x){
                   inla.SSlogit.grid(SSgrid[x,],
                                      formula = formula,
                                      data = df
                   }
# Merging all INLA outputs
r2 <- inla.merge(loo = r.list, prob = SS.weights)
```

Comparing all approaches

The model that does no adjustment:

```
r0$summary.fixed[,c(1,3,5)]
                    mean 0.025quant 0.975quant
## (Intercept) -1.50499 -1.665623 -1.344356
The model that adjusts for misclassification using fixed values for sensitivity and specificity:
r1\$summary.fixed[,c(1,3,5)]
##
                    mean 0.025quant 0.975quant
## (Intercept) -2.24994 -2.490218 -2.009661
The model that uses a grid of sensitivity and specificity:
# Approximate 95% interval
c(r2\$summary.fixed\$mean, r2\$summary.fixed\$mean + c(-2, 2)*r2\$summary.fixed\$sd)
## [1] -2.308922 -2.931946 -1.685898
# Using inla.qmarginal
c(r2\summary.fixed\man,
  inla.qmarginal(p = c(0.025, 0.975),
                  marginal = r2$marginals.fixed$`(Intercept)`))
```

```
## [1] -2.308922 -3.027396 -1.790307
```

```
marginals.df <- dplyr::bind_rows(</pre>
  'MO - ignoring misclassification' = data.frame(r0$marginals.fixed$`(Intercept)`),
  'M1 - fixed sens. and spec.' = data.frame(r1$marginals.fixed$`(Intercept)`),
  'M2 - propagated uncertainty' = data.frame(r2$marginals.fixed$`(Intercept)`),
  .id = "Models")
library(ggplot2)
ggplot(marginals.df, aes(x = x, y = y, color = Models, fill = Models)) +
  #geom_line() +
  geom_area(alpha = 0.5, position = "identity") +
  geom_vline(xintercept = inla.link.logit(p_y), show.legend = F,
             linetype = "dashed") +
  annotate("text", x = inla.link.logit(p_y) - 0.08, y = 3.8, label="True value",
           hjust = 0, angle = 90) +
  scale_color_viridis_d() + scale_fill_viridis_d() +
  coord_cartesian(xlim = c(-3.3, -1)) +
  theme_bw() +
  xlab(bquote(p[y])) +
  theme(legend.position.inside = c(0.2, 0.8),
        axis.title.y = element_blank())
```


ggsave("figures/response_mc.pdf", height = 4, width = 7)