Analízis 4

Dr. Simon Péter jegyzetéből

Tartalom

1	Lips	Lipschitz-feltétel. A Picard-Lindelöf-féle egzisztencia-tétel.															
	A k.é.p. megoldásának az egyértelműsége, unicitási tétel.															2	
	1.1	Lipschitz-feltétel															2
	1.2	Egzisztenciatétel															3

1 Lipschitz-feltétel. A Picard-Lindelöf-féle egzisztenciatétel. A k.é.p. megoldásának az egyértelműsége, unicitási tétel.

1.1 Lipschitz-feltétel

Az előzőekben definiáltuk a $k.\acute{e}.p.$ fogalmát: határozzunk meg olyan $\varphi \in I \to \Omega$ függvényt, amelyre (a korábban bevezetett jelölésekkel) igazak a következő állítások:

- 1. \mathcal{D}_{φ} nyílt intervallum;
- $2. \varphi \in D;$
- 3. $\varphi'(x) = f(x, \varphi(x)) \quad (x \in \mathcal{D}_{\varphi});$
- 4. adott $\tau \in I$, $\xi \in \Omega$ mellett $\tau \in \mathcal{D}_{\varphi}$ és $\varphi(\tau) = \xi$.

Értelmeztünk a megoldást, az egyértelműen való megoldhatóságot, a teljes megoldást. Speciális esetekben meg is oldottuk a gyakorlat számára is fontos kezdetiérték-problémákat. A továbbiakban megmutatjuk, hogy bizonyos feltételek mellett egy $k.\acute{e}.p.$ mindig megoldható (egzisztenciatétel).

Legyenek tehát $0 < n \in \mathbb{N}$ mellett az $I \subset \mathbb{R}$, $\Omega \subset \mathbb{R}^n$ nyílt intervallumok, az

$$f: I \times \Omega \to \mathbb{R}^n$$

függvény pedig legyen folytonos. A $\tau \in I$, $\xi \in \Omega$ esetén keressük a fenti differenciálható $\varphi \in I \to \Omega$ függvényt. Az f függvényről feltesszük, hogy minden kompakt $\emptyset \neq Q \subset \Omega$ halmazhoz létezik olyan $L_Q \geq 0$ konstans, amellyel

$$||f(t, y) - f(t, z)||_{\infty} \le L_Q \cdot ||y - z||_{\infty} \quad (t \in I, y, z \in Q).$$

Ekkor azt mondjuk, hogy az f (a d.e. jobb oldala) eleget tesz a Lipschitz-feltételnek.

1.2 Egzisztenciatétel

Tétel (Picard-Lindelöf). Tegyük fel, hogy egy differenciálegyenlet jobb oldala eleget tesz a Lipschitz-feltételnek. Ekkor a szóban forgó differenciálegyenletre vonatkozó tetszőleges kezdetiérték-probléma megoldható.

Bizonyítás (vázlat). Legyenek a δ_1 , $\delta_2 > 0$ olyan számok, hogy

$$I_* := [\tau - \delta_1, \tau + \delta_2] \subset I$$
,

és tekintsük az alábbi függvényhalmazt:

$$\mathcal{F} := \{ \psi : I_* \to \Omega : \psi \in C \}.$$

 $Az \mathcal{F} halmaz a$

$$\rho(\phi, \psi) := \max\{\|\phi(x) - \psi(x)\|_{\infty} : x \in I_*\} \quad (\phi, \psi \in \mathcal{F})$$

távolságfüggvénnyel teljes metrikus tér. Ha ${\mathcal X}$ jelöli a

$$q:I_*\to\mathbb{R}^n$$

függvények összességét, akkor definiáljuk a

$$T: \mathcal{F} \to \mathcal{X}$$

leképezést a következőképpen:

$$T\psi(x) := \xi + \int_{\tau}^{x} f(t, \psi(t)) dt \in \mathbb{R}^{n} \quad (\psi \in \mathcal{F}, x \in I_{*}).$$

Tehát az f függvény koordinátafüggvényeit a "szokásos" f_1, \ldots, f_n szimbólumokkal jelölve, a ψ , f függvények (és egyúttal az f_i -k) folytonossága miatt

$$I_* \ni t \mapsto f_i(t, \psi(t)) \in \mathbb{R} \quad (i = 1, \dots, n)$$

függvények folytonosak. következőképpen (minden $x \in I_*$ esetén) van értelme

$$d_i := \int_{\tau}^{x} f_i(t, \psi(t)) dt \quad (i = 1, ..., n)$$

integráloknak, és így a

$$\xi + \int_{\tau}^{x} f(t, \psi(t)) dt := (\xi_1 + d_1, \dots, \xi_n + d_n) \in \mathbb{R}^n$$

"integrálvektoroknak". Továbbá az integrálfüggvények tulajdonságai miatt a $T\psi$ függvény folytonos, minden $x \in (\tau - \delta_1, \tau + \delta_2)$ helyen differenciálható, és

$$(T\psi)'(x) = f(x, \, \psi(x)).$$

Belátjuk, hogy az I_* alkalmas megválasztásával minden $\psi \in \mathcal{F}$ függvényre $T\psi \in \mathcal{F}$, azaz ekkor

$$T: \mathcal{F} \to \mathcal{F}$$
.

Ehhez azt kell biztosítani, hogy

$$\xi + \int_{\tau}^{x} f(t, \psi(t)) dt \in \Omega \quad (x \in I_*)$$

teljesüljön. Válasszuk ehhez először is a $\mu > 0$ számot úgy, hogy a

$$K_{\mu} := \{ y \in \mathbb{R}^n : ||y - \xi||_{\infty} \le \mu \} \subset \Omega$$

tartalmazás fennáljon (ilyen μ az Ω nyíltsága miatt létezik), és legyen

$$M := \max\{\|f(x, y)\|_{\infty} : x \in I_*, y \in K_{\mu}\}\$$

(ami meg az f folytonossága és a Weierstrass-tétel miatt létezik, ti. az $I_* \times K_\mu$ halmaz kompakt). A jelzett $T\psi \in \mathcal{F}$ tartalmazás nyilván teljesül, ha

$$\max\left\{\left|\int_{\tau}^{x} f_i(t, \, \psi(t)) \, dt\right| : i = 1, \, \dots, \, n\right\} \le \mu \quad (x \in I_*).$$

Módosítsuk most már az \mathcal{F} definícióját úgy, hogy

$$\mathcal{F} := \{ \psi : I_* \to K_\mu : \psi \in C \}.$$

Ekkor az előbbi maximum becsülhető $M \cdot \delta$ -val, ahol

$$\delta := \max\{\delta_1, \, \delta_2\}.$$

Így $M \cdot \delta \leq \mu$ esetén a fenti $T\psi$ is \mathcal{F} -beli. (Ha a kiindulásul választott δ_1 , δ_2 -re $M \cdot \delta > \mu$, akkor írjunk a δ_1 , δ_2 helyébe olyan "új" $0 < \tilde{\delta_1}$, $\tilde{\delta_2}$ -t, hogy

$$[\tau - \tilde{\delta_1}, \, \tau + \tilde{\delta_2}] \subset [\tau - \delta_1, \, \tau + \delta_2]$$

és

$$M \cdot \max{\{\tilde{\delta_1}, \, \tilde{\delta_2}\}} \le \mu$$

legyen. Az I_* helyett az $\tilde{I}_*:=[\tau-\tilde{\delta_1},\,\tau+\tilde{\delta_2}]$ intervallummal az "új" M az előzőnél legfeljebb kisebb lesz, így az

$$M \cdot \max{\{\tilde{\delta_1}, \, \tilde{\delta_2}\}} \le \mu$$

becslés nem "romlik" el.) Ezzel értelmeztünk egy $T:\mathcal{F}\to\mathcal{F}$ leképezést, amelyre tetszőleges $\phi,\,\psi\in\mathcal{F}$ mellett

$$\rho(T\psi, T\phi) = \max\{\|T\psi(x) - T\phi(x)\|_{\infty} : x \in I_*\} = \max\left\{ \max\left\{ \left| \int_{\tau}^{x} (f_i(t, \psi(t)) - f_i(t, \phi(t)) dt) \right| : i = 1, \dots, n \right\} : x \in I_* \right\} \le \max\left\{ \left| \int_{\tau}^{x} \max\{|f_i(t, \psi(t)) - f_i(t, \phi(t))| : i = 1, \dots, n \} dt \right| : x \in I_* \right\} = \max\left\{ \left| \int_{\tau}^{x} \|f(t, \psi(t)) - f(t, \phi(t))\|_{\infty} dt \right| : x \in I_* \right\}.$$

A Lipschitz-feltétel miatt a $Q:=K_{\mu}$ (nyilván kompakt) halmazhoz van olyan $L_Q\geq 0$ konstans, amellyel

$$||f(t, y) - f(t, z)||_{\infty} \le L_Q \cdot ||y - z||_{\infty} \quad (t \in I, y, z \in Q),$$

speciálisan

$$||f(t, \psi(t)) - f(t, \phi(t))||_{\infty} \le L_Q \cdot ||\psi(t) - \phi(t)||_{\infty} \le L_Q \cdot \rho(\psi, \phi) \quad (t \in I_*).$$

Ezért

$$\rho(T\psi, T\phi) \le L_Q \cdot \delta \cdot \rho(\psi, \phi).$$

Tehát a T leképezés

$$L_Q \cdot \max\{\delta_1, \, \delta_2\} < 1$$

esetén kontrakció. Válasszuk így a δ_1 , δ_2 -t, (ezt - az "eddigi" I_* -ot legfeljebb újra leszűkítve - megtehetjük), és alkalmazzuk a fixpont-tételt, miszerint van olyan $\psi \in \mathcal{F}$, amelyre

$$T\phi = \phi$$
.

Legyen

$$\varphi(x) := \psi(x) \quad (x \in (\tau - \delta_1, \tau + \delta_2)).$$

A T definíciója szerint

$$\varphi(x) = \xi + \int_{\tau}^{x} f(t, \, \varphi(t)) \, dt \quad \left(x \in (\tau - \delta_1, \, \tau + \delta_2) \right).$$

Ez azt jelenti, hogy a φ függvény egy folytonos függvény integrálfüggvénye, ezért $\varphi \in D$ és

$$\varphi'(x) = f(x, \varphi(x)) \quad (x \in (\tau - \delta_1, \tau + \delta_2)).$$

Világos, hogy a $\varphi(\tau)=\xi$, más szóval a φ megoldása a szóban forgó kezdetiértékproblémának. \blacksquare

$$\psi: I_* \to \Omega, \ \psi \in C$$

$$F(t) := (t, \psi(t)) \quad (t \in I_*)$$