MODÉLISATION DU COUPLAGE ENTRE L'ÉCOULEMENT, LA CHIMIE ET LA GÉO-MÉCANIQUE DANS GEOXIM

Rencontres Arcane 17 avril 2023

MOTIVATION

Etude des interactions fluide-roche dans le sous sol Stockage de gaz, réinjection d'eau déséquilibrée, ...

Etude des processus couplés au laboratoire Calage des cinétiques et lois de comportement

SCHÉMA DE COUPLAGE DES MODÈLES

MODÈLE D'ÉCOULEMENT MULTIPHASIQUE

Equations

• Bilan matière composants : $\frac{\partial n_k}{\partial t} + \sum_{\alpha} \text{div} (U_{\alpha} c_k^{\alpha}) + Q_k = 0$

lacksquare Equilibre thermodynamique $: \mu_k^{lpha} = \mu_k^{eta}$

Formulation de Coats

- Inconnues variables d'état naturelles : P, ϕ , $S\alpha$, Xj
- Inconnues activées par maille selon le contexte
- Pré-élimination des équations locales

Variables secondaires (lois physiques)

• Thermodynamique : $M\alpha$, $\rho\alpha$, $\mu\alpha$, $H\alpha$

Potentiel chimique : Kj, γj

• Pétrophysique : *Kf, Kr\alpha, Pc\alpha*

Volume et compaction : V

Discrétisation FVM (Finite Volume Method) Inconnues aux mailles, discrétisation des flux

 $X = \{ Uk[i] \}$, k maille, i variable $(P, \phi, Xj, S\alpha, ...)$

Système non-linéaire (Newton)
Taille du système linéaire = nb_cell * nb_compo

MODÈLE DE TRANSPORT RÉACTIF MONOPHASIQUE

Equations

Bilan matière éléments :
$$A_{ele,aqu} \left(\frac{\partial n_{jaqu}}{\partial t} + \text{div} \left(U_w c_{jaqu}^w \right) + Q_{jaqu} + R_{jaqu} \right) = 0$$

- Bilan matière minéraux : $\frac{\partial n_{jmin}}{\partial t} + R_{jmin} = 0$
- Equilibre spéciation aqueuse : $S_{eq} \mu_i = 0$

Formulation en variable extensive :

- Inconnues : nj = (njaqu, njmin)
- P, T, Uw, Qw donnés (écoulement)

Variables secondaires (lois physiques)

- Potentiel chimique : Kjaqu, Yjaqu, Kjmin
- Cinétique eau-minéraux : Tmin

Schéma FastUpwind Graphe de mailles ordonnées Flux décentrés amont

Xk = { Uk[i] } , k maille, i variable (nj)

Pas de temps local adaptatif par maille Système non-linéaire (Newton) par maille Taille du système linéaire = nb_species

MODÈLE DE GÉO-MÉCANIQUE

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix} , \epsilon(u) = \frac{1}{2} (\nabla u + (\nabla u)^T)$$

Equations

- Equilibre mécanique : $\operatorname{div}(\sigma) + \rho_{\rm b}g = 0$
- Poro-élasticité : $\sigma = C$: $\epsilon(u) b P_f Id$

Formulation en déplacement, incrémentale

- lacktriangle Inconnue incrément de déplacement : Δu
- lacksquare Contrainte initiale équilibrée : σ_0
- Incrément de contrainte : $\Delta \sigma = C$: $\epsilon(\Delta u) b \Delta P_{\rm f} Id$

Variables secondaires (lois physiques)

- Propriétés du milieu poreux : Pf, ρb
- lacktriangle Modules d'élasticité : λ , μ

Discrétisation VEM (Virtual Element Method) Inconnues aux nœuds, forme bilinéaire discrète

$$X = \{ [u1,u2,u3]n \}, n noeud$$

Taille du système linéaire = nb_node * 3

COUPLAGE SÉQUENTIEL ÉCOULEMENT - TRANSPORT RÉACTIF

COUPLAGE ÉCOULEMENT RÉACTIF – GÉO-MÉCANIQUE

Ecoulement Multiphasique Transport Réactif

Géomécanique

TEST SYNTHÉTIQUE PLUGFLOW REACTIF

Géométrie

- Cylindre vertical
- \bullet H = 5 cm, D = 2.5 cm

Système physique

- Water = {H2O,H+,CO2(aq),Ca++,SiO2(aq),}
- Rock = {Calcite,Quartz}

Etat initial

- O Porosité uniforme : $\phi = 0.2$
- Perméabilité hétérogène
 - Kmin = 4.8e-14 m2 ~ 48 mD
 - Kmax = 2.5e-12 m2 ~ 2500 mD
- Minéralogie : 50 % Calcite, 50 % Quartz
- Eau équilibrée, pH 7

Scénario

- T = 0 à 0.01 jours, chargement, application des contraintes
- T = 0.01 à 100 jours, injection d'eau acide (sous contraintes)

Eau acide, pH 4 Log(Q/K) Calcite = -5

SIMULATION GEOXIM: RÉSULTATS ECOULEMENT RÉACTIF

SIMULATION GEOXIM: RÉSULTATS GEO-MÉCANIQUE

QUELQUES INFOS SUR LES TEMPS DE CALCUL OBSERVÉS (À ANALYSER)

Ecoulement Réactif (N=1)

 \bigcirc n=1 : 35454 s

 \circ n=36, parallel-tol = 0 : 54110 s

• n=36, parallel-tol = 1.e-8 : 20747 s

 \bullet n=36, parallel-tol = 1.e-2 : 5763 s

n=36, parallel-iter = 2 : 2706 s

 \bullet n=36, parallel-iter = 1 : 1803 s

■ Ecoulement Réactif + Géoméca (N=1, n=36)

TotalReel : 7918 s

Ecoulement (IFPSolver CprAMG) : 419 s

■ Transport Réactif (GraphSolver + parallel-iter =2) : 2207 s

● Géo-mécanique (BiCGStab – ILU0) : 4358 s

PERSPECTIVES

Transport Réactif

- Amélioration : robustesse et performance du calcul de chimie
- Parallélisme : décomposition de domaine, splitting, autres idées ?

Géo-mécanique

Solveur linéaire multi-grille adapté

Couplage écoulement - transport réactif

Comparaison avec les méthodes fully-implicit

○ Couplage écoulement réactif – géo-mécanique

Formulation « two-way coupling » compatible avec la dissolution/précipitation

OCas tests:

Etude de minéralogies et textures plus complexes (basaltes, grès, ciments, ...)

Innover les énergies

Retrouvez-nous sur:

- www.ifpenergiesnouvelles.fr
- @IFPENinnovation

