4.38 Theorem. Let p be a prime and let a and b be integers such that 1 < a, b < p-1 and $ab \equiv 1 \pmod{p}$. Then $a \neq b$.

Proof. Suppose not. That is suppose a = b. Since a = b, $ab \equiv 1 \pmod{p}$ is equivalent to $a^2 \equiv 1 \pmod{p}$. By definition,

$$p|a^2 - 1$$

 $|(a-1)(a+1).$

By Theorem 2.27, p|a-1 or p|a+1. Notice 0 < a-1 < p-2 and 2 < a+1 < p. This is a contradiction of p being smaller than any natural number it divides. Thus, if p is prime and $a, b \in \mathbb{Z}$ such that 1 < a, b < p-1 and $ab \equiv 1 \pmod{p}$, then $a \neq b$.