第二章 命题逻辑

上次内容

- 集合, 集合之间的关系, 集合运算
- 关系, 函数及其分类
- 结构: 偏序, 布尔代数, 布尔代数基本定理
- 基数: Cantor定理, 对角线方法
- 数学归纳法

今天内容

- 计算机科学中的逻辑
- 命题
- 命题逻辑的语言, 语法: 表达式, 公式, 辖域
- 命题逻辑的语义: 模型, 可满足公式

数理逻辑

计算机科学中的逻辑

经典逻辑

命题逻辑 谓词逻辑 模态逻辑

非经典逻辑

时态逻辑 动态逻辑 非单调逻辑 描述逻辑

. . .

计算机科学中的逻辑

描述性质的逻辑:

命题逻辑, 谓词逻辑, 模态逻辑

描述对象的逻辑:

描述逻辑, O-逻辑, F-逻辑

描述元性质的逻辑:

非单调逻辑,模糊逻辑

计算机科学中的逻辑: 程序设计理论

- Hoare 逻辑, 一种模态逻辑
- 动态逻辑,
- 命题μ-演算,一种高阶模态逻辑

计算机科学中的逻辑: 数据库

• Armstrong公理, 可靠的并且完备的, 关于函数依赖关系的推理

计算机科学中的逻辑: 信息安全

• BAN 逻辑, 一种多种多模态逻辑

计算机科学中的逻辑: 人工智能

- BDI逻辑
- 动作action逻辑
- 事件event逻辑
- · ·
- 情景演算situation calculus

计算机科学中的逻辑

经典逻辑

命题逻辑 谓词逻辑 模态逻辑

第二章: 命题逻辑

第二章: 命题逻辑

什么是命题(proposition)?

现实世界

现实世界的所有东西可以分为3类:

- 一类是对象(objects);
- 一类是事件(events);

对象

像桌子,人,树这样的具体的,可以接触到的物理对象;像1,2,思想,规律这样不可接触到的抽象的对象. 所有的对象根据他们所具有的性质不同归为若干范畴. 每个范畴(category)是某个概念(concept)的外延(extent);该范畴中的每个对象具有的性质的集合构成了这个概念的内涵. 我们可以判定的是某个对象是否具有某个性质.

对象

对象的特点是可以具有空间部分,但不具有时间部分.

事件(过程)

事件是事实上发生的, 例如太阳正在升起, 等等.

这些事件, 事情, 事实既没有真也没有假:

它们或者出现, 或者不出现; 换言之, 或者是事实, 或者不是事实;

或者发生,或者不发生.

我们唯一可以判定的是他们是否事实上正在发生, 或者已经发生, 或者将要发生...

事件

事件(过程)的特点是既具有空间部分,又具有时间部分.

现实世界

现实世界的所有东西可以分为3类:

- 一类是对象(objects);
- 一类是事件(events);
- 一类是性质(properties).

句子

这是一张桌子. 天是蓝的.

命题

简单地讲, 命题就是一个句子所表示的意思. 不同的句子可以表示相同的命题.

定义. 命题是一个有意义的句子所表达的意思, 它对实在有某种断定或断言, 并且具有或者真或者假的性质.

这是一张桌子.

This is a desk.

如何确定一个命题的真假值

这个问题在哲学上有着多种理论:

- (1) 真理论;
- (2) 真理融贯论;
- (3) 真理实用论;
- (4) 真理描述论;
- (5) 真理符合论.

真理符合论/真理描述论

一个命题如果对应(correspond)一个事实, 那么它就是真的, 否则就是假的;

或者真理描述论,一个真命题描述(不是对应)一个曾经是,或者现在是,或者将会是实际存在的事态;一个假命题描述一个不曾是,或者现在不是,或者将来不会实际存在的事态;或者说,一个过去不曾发生,或者现在没有发生,或者将来不会发生的事态.这些是哲学中的问题

逻辑原则

- 1.同一原则: A是A.
- 2. 不矛盾原则: 任何事物不可能既是A又是非A.
- 3. 排中原则: 任何事物或者是A, 或者是非A.

简单命题/复合命题

复合命题是由简单命题通过联接词: **非, 与, 或, 蕴涵, 等值**, 联接起来的句子. 复合命题的真假值是由构成复合命题的简单命题和联接词所唯一决定的.

非命题

非A的真假值与A的真假值的关系为:

$$\begin{array}{c|c} \mathcal{A} & \# \mathcal{A} \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

与命题

A与B的真假值定义为

\mathcal{A}	\mathcal{B}	A 与 \mathcal{B}
0	0	0
0	1	0
1	0	0
1	1	1

或命题

或命题分为兼容或命题和非兼容或命题.

兼容或命题

\mathcal{A}	\mathcal{B}	\mathcal{A} 或 $^i\mathcal{B}$
0	0	0
0	1	1
1	0	1
1	1	1

比如,"他今天或者看书或者看报纸"为真意味着"他"今天看书, **或者**看报纸, **或者**既看书也看报纸.

非兼容或命题

\mathcal{A}	\mathcal{B}	\mathcal{A} 或 $^{e}\mathcal{B}$
0	0	0
0	1	1
1	0	1
1	1	0

比如,"他今晚或者在家或者去电影院看电影"为真意味着"他"今晚或者在家,或者去电影院看电影,但不会既在家又去电影院看电影.

蕴涵命题

\mathcal{A}	\mathcal{B}	\mathcal{A} 蕴涵 \mathcal{B}
0	0	1
0	1	1
1	0	0
1	1	1

注意:逻辑上的蕴涵不同于因果关系,和条件(conditional)命题.

条件命题

如果明天下雨,则会放假.

如何确定真假值?

命题没有关于如果明天不下雨的断言.

原则: 排除法(法律中的清白原则).

一个条件命题假定是真的,除非可以证明它是假的.

思路

人工(形式)语言表示 形式命题 → 形式化的世界. 分析问题; 形式表示问题; 形式分析问题

命题逻辑的组成

一个(形式)逻辑是由逻辑语言,语法和语义等3个部分组成.

被形式化的对象

命题逻辑的语言

设语言L是由

- 逻辑连接词¬, ∨, ∧, →, 和↔
- 辅助符号(,).所组成的.

命题逻辑的语言

设语言L是由

- 一个可数的(原子)命题(命题变元, propositional variable)集 合 $\{p_1, p_2, ...\}$,
- 逻辑连接词¬,→
- 辅助符号(,).

所组成的.

下面我们将只用逻辑连接词 \neg , \rightarrow , 逻辑连接词 \lor , \land , \leftrightarrow 将给出定义.

语言的表达式(expressions)

语言上的符号串.

$$p_1 \vee q_2(p_1 \neg) \rightarrow)($$

串的段(segment), 初始段(initial segment), 结尾段(final segment).

良定公式(well-defined formulas)

语言L上的一个串A是一个公式, 如果要么A是一个原子命题, 要么对某个公式B 和C, $A = (\neg B)$ 或者 $(B \to C)$.

良定公式的定义

语言L上的公式集合是最小的集合C满足下列条件:

- (1) 对每个原子命题 $p, p \in C$;
- (2) 如果 $A \in \mathcal{C}$ 则($\neg A$) $\in \mathcal{C}$; 并且
- (3) 如果 $A, B \in \mathcal{C}$ 则 $(A \rightarrow B) \in \mathcal{C}$.

数学上的约定

约定. 良定公式的两个定义是等价的. 即设D是定义1中定义的公式的集合, 则C = D.

良定公式的生成过程

设

$$\mathcal{E}_0 = \{p: p$$
是原子公式};
 $\mathcal{E}_1 = \{\neg p, p \rightarrow q: p, q \in \mathcal{E}_0\};$
 \cdots
 $\mathcal{E}_n = \{\neg A, A \rightarrow B: A, B \in \mathcal{E}_{n-1}\};$
 \cdots

定义

$$\mathcal{E} = \bigcup_{n \in \omega} \mathcal{E}_n.$$

定理. $\mathcal{E} = \mathcal{C}$.

$$(((\neg p) \leftrightarrow (q \lor r)) \to (r \land p))$$

元变元和对象变元

设语言L是由

- 一个可数的(原子)命题(命题变元, propositional variable)集合{*p*₁, *p*₂, ...},
- 逻辑连接词¬, ∨, ∧, →, 和↔
- 辅助符号(,).所组成的.

A, B, C, p, q, r

元变元和对象变元

我们用A, B, C表示公式, p, q, r表示原子命题, Σ 表示公式集合. 元语言和对象语言; 元变元和对象变元.

性质1. 每个公式是一个不空的表达式; 性质2. 每个公式中的左括号和右括号出现的个数相同;

性质3. 每个公式的任何不空的真初始段中, 左括号的个数大于右 括号的个数.

公式的结构归纳法

定理: 假定P是公式集合上的一个谓词. 则

(1) 如果对每个原子命题 $p, p \in P$;

并且

(2) 对任何公式A,B, 假定 $A,B\in P$ 我们能证明¬ $A,A\to B\in P,$

则对所有的公式 $A, A \in P$.

公式的结构归纳法

定理: 假定P是关于公式的一个性质. 则

- (1) 如果对每个原子命题p, P(p), 即p具有性质P;
- (2) 对任何公式A, 假定P(A)我们能证明 $P(\neg A)$,

并且

(3) 对任何公式A, B, 假定P(A), P(B) 我们能证明 $P(A \rightarrow B)$,

则对所有的公式A, P(A).

性质1. 每个公式是一个不空的表达式; 性质2. 每个公式中的左括号和右括号出现的个数相同;

性质3. 每个公式的任何不空的真初始段中, 左括号的个数大于右 括号的个数.

定理. 每个公式A是下列3种形式之一:

- 1. A是原子公式;
- 2. 存在某个公式B使得 $A = (\neg B)$; 或
- 3. 存在某个公式B, C使得 $A = (B \rightarrow C)$. 并且一个具有的形式是唯一的.

定理. 每个公式A是下列3种形式之一:

- 1. A是原子公式;
- 2. 存在某个公式B使得 $A = (\neg B)$; 或
- 3. 存在某个公式B, C使得 $A = (B \rightarrow C)$. 并且一个具有的形式是唯一的.

需要证明:

- (1) 每个公式具有3种形式之一;
- (2) 3种形式两两不同;
- (3) 每个公式的表示唯一.

(3) 每个公式的表示唯一. 即 如果A = p并且A = q则p = q; 如果 $A = (\neg B_1) = (\neg B_2)$ 则 $B_1 = B_2$; 如果 $A = (B_1 \to C_1) = (B_2 \to C_2)$ 则 $B_1 = B_2$ 并且 $C_1 = C_2$. 注意: 以上是关于串相等的性质.

名称

```
(\neg A)称为A的否定式(negation); (A \land B)称为A, B的合取式(conjunction); (A \lor B)称为A, B的析取式(disjunction); (A \to B)称为A, B的蕴涵式(条件式, implication, conditional); A称为蕴涵式的前件(premise), B为蕴涵式的后件(consequence); (A \leftrightarrow B)称为A, B的等值式.
```

辖域(scope)

在公式

$$(1) A \vee B \wedge C$$

中, 如果 \lor 的左右辖域为A和 $B \land C$, (1)表示

$$(2); (A) \vee (B \wedge C)$$

如果\的左右辖域为A和B, (1)表示

$$(3). (A \lor B) \land C$$

在公式

 $(1) A \vee B \wedge C$

中, 如果 \land 的左右辖域为 $A \lor B$ 和C, (1)表示

 $(2) (A \lor B) \land C;$

如果 \land 的左右辖域为B和C, (1)表示

 $(3) A \vee (B \wedge C).$

A是¬在否定式(¬A)中的辖域.

A是¬在否定式(¬A)中的辖域. 在自然语言中否定辖域的变化: 张三杀了人; 张三没有杀人; 不是张三杀得人.

He is happy; He is not happy; He is unhappy; Not he is happy; No he is happy.

子公式(subformulas)

- 一个公式A的子公式集合C(A):
- (1) 如果A = p是原子公式,则 $C(A) = \{p\};$
- (2) 如果对某个 $B, A = (\neg B), \, \mathcal{Q}(A) = \{A\} \cup \mathcal{C}(B);$
- (3) 如果对某个B和C, $A = (B \rightarrow C)$,
- 则 $\mathcal{C}(A) = \{A\} \cup \mathcal{C}(B) \cup \mathcal{C}(C).$
- 一个公式D是公式A的一个子公式,如果 $D \in C(A)$.

一个公式的子公式

形式语义

设A是所有原子公式的集合.

定义. 真假赋值(valuation)v是A到 $\{0,1\}$ 上的函数.

形式语义

一个公式A在赋值v下的真假值,记为 A^v ,基于公式结构归纳定义如下:

如果 $A = p \in A$,则 $A^{v} = v(p)$; 如果对某个B, $A = \neg B$,则 $A^{v} = 1 - B^{v}$; 如果对某个B, C, $A = B \rightarrow C$,则 $A^{v} = 1 - B^{v} + C^{v}$.

$$(B \to C)^{\nu} = \begin{cases} 0 & \text{如果} B^{\nu} = 1 \\ 1 & \text{否则}. \end{cases}$$

注意: 1+1=1.

逻辑连接词的定义

定义.

$$B \lor C = (\neg B) \to C;$$

$$B \land C = \neg (B \to (\neg C));$$

$$B \leftrightarrow C = (B \to C) \land (C \to B)$$

$$= \neg ((B \to C) \to \neg (C \to B).$$

逻辑连接词的定义

定义.

$$B \lor C = (\neg B) \to C;$$

$$B \land C = \neg (B \to (\neg C));$$

$$B \leftrightarrow C = (B \to C) \land (C \to B)$$

$$= \neg ((B \to C) \to \neg (C \to B).$$

可以验证: 对任何赋值v,

$$(B \lor C)^{v} = ((\neg B) \to C)^{v};$$

$$(B \land C)^{v} = (\neg (B \to (\neg C)))^{v};$$

$$(B \leftrightarrow C)^{v} = ((B \to C) \land (C \to B))^{v} = (\neg ((B \to C) \to \neg (C \to B))^{v})$$

括号的省略

```
\neg p \land q;

p \land q \lor r;

(p \land q) \lor r;

p \land (q \lor r).
```

△的形式语义

$$(B \wedge C)^{\nu} =$$

$$\begin{cases} 1 & \text{如果} B^{\nu} = 1 \\ 0 & \text{否则}. \end{cases}$$

\mathcal{B}	\mathcal{C}	\mathcal{B} 与 \mathcal{C}	B^{v}	C^{v}	$(B \wedge C)^{v}$
0	0	0	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

△的形式语义

B^{v}	C^{v}	$B^{v} \wedge C^{v}$
0	0	0
0	1	0
1	0	0
1	1	1

形式语义

一个公式A在赋值v下为真, 记为 $v \models A$, 如果 $A^v = 1$. 给定一个公式集合 Σ , Σ 在赋值v下为真, 记为 $v \models \Sigma$, 如果对每个 $A \in \Sigma$, $v \models A$.

公式集合的语义

给定一个公式集合 Σ 和赋值v, Σ^v 定义为

$$\Sigma^{\nu} = \left\{ \begin{array}{ll} 1 & \text{如果}\nu \models \Sigma \\ 0 & \text{否则}. \end{array} \right.$$

命题. 如果 $\Sigma = \{B_1, ..., B_n\}$ 则

$$\Sigma^{\nu} = (B_1 \wedge B_2 \wedge \cdots \wedge B_n)^{\nu}.$$

证明.

可满足性

公式集合 Σ 是可满足的(satisfiable), 如果存在一个赋值v使 得 $\Sigma^{v}=1$.

v称为Σ的一个模型(model).

任何一个赋值v也称为一个模型.

重言式,矛盾式

公式A是一个重言式(永真的, tautology), 如果对任何赋值v, $A^v = 1$;

公式A是一个矛盾式(contradictory), 如果对任何赋值v, $A^v = 0$.

问题: 重言式和矛盾式是两个矛盾的概念吗?

重言式,矛盾式

公式A是一个重言式(永真的, tautology), 如果对任何赋值v, $A^v = 1$; 公式A是一个矛盾式(contradictory), 如果对任何赋值v, $A^v = 0$. 与矛盾式矛盾的概念是可满足式; 与重言式矛盾的概念是 $\neg A$ 的可满足式.

重言式

$$A \rightarrow (B \rightarrow A)$$
.

A^{ν}	B^{v}	$(B \rightarrow A)^{v}$	$(A \rightarrow (B \rightarrow A))^{v}$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

$$[A \to (B \to C)] \to [(A \to B) \to (A \to C)].$$

A^{ι}	$'$ B^{v}	C^{v}	$ (B \rightarrow C)^{v} $	$(A \rightarrow (B \rightarrow C))^{v}$	$\big \; ((A \to B) \to (A \to C))^{\vee} \big $
0	0	0	1		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	0		
1	1	1	1		

$$[A \to (B \to C)] \to [(A \to B) \to (A \to C)].$$

A^{v}	B^{v}	C^{v}	$(B o C)^{v}$	$(A \rightarrow (B \rightarrow C))^{v}$	$\big \; ((A \to B) \to (A \to C))^{\nu} \;$
0	0	0	1	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	1	1	1	
1	0	0	1	1	
1	0	1	1	1	
1	1	0	0	0	
1	1	1	1	1	

$$[A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)].$$

A^{ν}	B^{v}	C^{v}	$(B \rightarrow C)^{v}$	$(A \rightarrow (B \rightarrow C))^{v}$	$((A \to B) \to (A \to C))^{\vee}$
0	0	0	1	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	1	1	1	
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	
1	1	1	1	1	

$$[A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)].$$

0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 <th>A^{ν}</th> <th>B^{v}</th> <th>C^{v}</th> <th>$(B \rightarrow C)^{v}$</th> <th>$(A \rightarrow (B \rightarrow C))^{v}$</th> <th>$((A \rightarrow B) \rightarrow (A \rightarrow C))^{v}$</th>	A^{ν}	B^{v}	C^{v}	$(B \rightarrow C)^{v}$	$(A \rightarrow (B \rightarrow C))^{v}$	$((A \rightarrow B) \rightarrow (A \rightarrow C))^{v}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	1	1	1
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0	0	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	0	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	1	1	1
1 1 1 1 1 1 1	1	1	0	0	0	0
	1	1	1	1	1	1

$$[A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)].$$

0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 <th>A^{ν}</th> <th>B^{v}</th> <th>C^{v}</th> <th>$(B \rightarrow C)^{v}$</th> <th>$(A \rightarrow (B \rightarrow C))^{v}$</th> <th>$((A \rightarrow B) \rightarrow (A \rightarrow C))^{v}$</th>	A^{ν}	B^{v}	C^{v}	$(B \rightarrow C)^{v}$	$(A \rightarrow (B \rightarrow C))^{v}$	$((A \rightarrow B) \rightarrow (A \rightarrow C))^{v}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	1	1	1
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0	0	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	0	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	1	1	1
1 1 1 1 1 1 1	1	1	0	0	0	0
	1	1	1	1	1	1

$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A).$$

A^{v}	B^{v}	$(\neg A)^{v}$	$(\neg B)^{v}$	$(\neg A \rightarrow \neg B)^{v}$	$(B \rightarrow A)^{v}$	$(\varphi)^{v}$
0	0	1	1			
0	1	1	0			
1	0	0	1			
1	1	0	0			

$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A).$$

A^{v}	B^{v}	$(\neg A)^{v}$	$(\neg B)^{v}$	$(\neg A ightarrow \neg B)^v$	$(B \rightarrow A)^{v}$	$(\varphi)^{v}$
0	0	1	1	1		
0	1	1	0	0		
1	0	0	1	1		
1	1	0	0	1		

$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A).$$

A^{ν}	B^{v}	$(\neg A)^{v}$	$(\neg B)^{v}$	$(\neg A ightarrow \neg B)^v$	$(B \rightarrow A)^{v}$	$(\varphi)^{v}$
0	0	1	1	1	1	
0	1	1	0	0	0	
1	0	0	1	1	1	
1	1	0	0	1	1	

$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A).$$

A^{v}	B^{v}	$(\neg A)^{v}$	$(\neg B)^{v}$	$(\neg A \rightarrow \neg B)^{v}$	$(B \rightarrow A)^{v}$	$(\varphi)^{v}$
0	0	1	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	1	1	1
1	1	0	0	1	1	1

逻辑推论

在自然语言中, 我们可以从一个或几个命题中推出新命题.

张三打人;

张三骂人;

张三打人并且骂人.

张三打人并且骂人;

张三打人.

逻辑推论

如果天下雨则道路会是湿的; 天下雨;

道路是湿的.

逻辑推论

给定一个公式集合 Σ 和一个公式A, A称为是 Σ 的逻辑推论(logical consequence), 记为

$$\Sigma \models A$$
,

如果对任何赋值 ν , $\Sigma^{\nu} = 1$ 蕴涵 $A^{\nu} = 1$.

当 $\Sigma = \emptyset$ 时, $\emptyset \models A$ 当且仅当对任何赋值v, 如果 $\emptyset^v = 1$ 则 $A^v = 1$. 由于 $\emptyset^v = 1$ 总是**假**的, 因此, 对任何赋值v, $A^v = 1$. 即A是重言式.

逻辑推论与重言式

命题. 给定任何公式A, A是重言式当且仅当A是逻辑结论, 即

 $\models A$.

逻辑推论的证明

- (1) 证明 $\Sigma \models A$ 时, 可以采用矛盾法;
- (2) 证明 Σ \nvDash A时, 可以采用构造法.

证明的例子

证明 $A \to B, B \to C \models A \to C$. 证. 反证法. 假设 $A \to B, B \to C \not\models A \to C$. 则存在一个赋值v使得 $(A \to B)^v = 1; \\ (B \to C)^v = 1;$

 $(A \rightarrow C)^{\nu} = 0.$

$$(A \to B)^{v} = 1; (B \to C)^{v} = 1; (A \to C)^{v} = 0$$

$$A^{v} = 1;$$

 $C^{v} = 0.$

所以,
$$B^{v} = 1$$
,且

$$(B \rightarrow C)^{v} = 0.$$

证明的例子

证明 $A, A \rightarrow B \models B$.

证明的例子

证明 $A \rightarrow B, B \not\models A$. 证. 定义一个赋值v使得

$$A^{v} = 0;$$

 $B^{v} = 1.$

则

$$(A \to B)^{v} = 1;$$

 $B^{v} = 1;$
 $A^{v} = 0.$

主要的逻辑推论

合取符号和析取符号的交换律:

$$A \lor B \models |B \lor A;$$

 $A \land B \models |B \land A.$

合取符号和析取符号的结合律:

$$(A \lor B) \lor C \models |A \lor (B \lor C);$$

 $(A \land B) \land C \models |A \land (B \land C).$

其中 $A \models |B$ 如果 $A \models B$ 并且 $B \models A$.

主要的逻辑推论

合取符号和析取符号的分配律:

$$(A \lor B) \land C \models |(A \land C) \lor (B \land C);$$

 $(A \land B) \lor C \models |(A \lor C) \land (B \lor C).$

合取符号和析取符号的De Morgan律:

$$\neg (A \lor B) \models | \neg A \land \neg B;$$

 $\neg (A \land B) \models | \neg A \lor \neg B.$

命题公式的语义

一个命题公式A的语义,记为||A||,是所有使得A为真的模型(赋值)的集合.

$$||A|| = \{v : A^v = 1\}.$$

因此, 两个命题公式A与B具有相同的语义当且仅当 $\models A \leftrightarrow B$, 等价地, $A \models |B$.

可能世界

模型或赋值也称为可能世界(possible worlds). 因此, 命题公式A的语义是A在其中为真的可能世界的集合. 作业1可以做了.注意:只能用命题逻辑的语言中的符号.