				1			
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$	$-\frac{2 i \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+2 k^2)^2}$	0	$\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0k^2}$	0	$\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$
$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2ik}{\alpha_0(1+k^2)^2}$	$-\frac{2k^2}{\alpha_0 (1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+k^2)^2}$	$\frac{2ik}{\alpha_0 (1+k^2)^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	0	0	0	0
	$\begin{vmatrix} *_1 + \alpha \beta \end{vmatrix}$	$_{L}^{\#2} + \alpha \beta$	$\begin{bmatrix} ^{*1} + \alpha \beta \end{bmatrix}$	$r_{1}^{\#1} +^{\alpha}$	$r_1^{\#2} + \alpha$	$[t_1^{\#1} + \alpha]$	$[t_1^{\#2} + \alpha]$

Lagrangian density

$$-\frac{1}{2}\alpha_{0}\omega_{\alpha\zeta\beta}\omega^{\alpha\beta\zeta} - \frac{1}{2}\alpha_{0}\omega^{\alpha\beta}_{\alpha}\omega_{\beta}^{\zeta} - \alpha_{0}f^{\alpha\beta}\partial_{\beta}\omega_{\alpha}^{\zeta} +$$

$$\alpha_{0}\partial_{\beta}\omega^{\alpha\beta}_{\alpha} + \alpha_{0}f^{\alpha\beta}\partial_{\zeta}\omega_{\alpha}^{\zeta} - \alpha_{0}f^{\alpha}_{\alpha}\partial_{\zeta}\omega^{\beta\zeta}_{\beta}$$
Added source term:
$$f^{\alpha\beta}\tau_{\alpha\beta} + \omega^{\alpha\beta\chi}\sigma_{\alpha\beta\chi}$$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	0	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{4}{\alpha_0}$

				34			
$f_{1^-}^{\#2} \alpha$	0	0	0	$-rac{1}{2}$ i $lpha_0$ k	0	0	0
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\alpha_0}{2\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	<u>α</u> 0 4	$-\frac{\alpha_0}{2\sqrt{2}}$	0	$\frac{i}{a_0}\frac{\alpha_0}{k}$
$f_{1}^{\#1}\alpha\beta$	$\frac{i\alpha_0 k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} f$	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+$ $_{lphaeta}$	$\frac{\alpha_0}{4}$	$\frac{\alpha_0}{2\sqrt{2}}$	$\frac{i \alpha_0 k}{2 \sqrt{2}}$	0	0	0	0
3			_				
3	$-\alpha\beta$	$-\alpha\beta$	$-\alpha\beta$	$+^{\alpha}$	$+_{\alpha}$	\perp^{α}	$+^{\alpha}$
3	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha \beta$		$\omega_{1^{\text{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	0	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}$	$\frac{i \alpha_0 k}{2 \sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{i\alpha_0 k}{2\sqrt{2}}$	0	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4}$

Source constraints

SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3
Total #:	10

$\omega_{0}^{\#1}$	0	0	0	$\frac{\alpha_0}{2}$
$f_{0}^{#2}$	0	0	0	0
$f_{0}^{\#1}$	$-\frac{\bar{l}\alpha_0k}{\sqrt{2}}$	0	0	0
$\omega_{0}^{\#1}$	$\frac{\alpha_0}{2}$	$\frac{i \alpha_0 k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1}$ \dagger

(No massive particles)

Unitarity conditions $\alpha_0 > 0$