MATH 8090: Spectral Analysis of Time Series II

Whitney Huang, Clemson University

11/14-16/2023

Contents

Spetral ANOVA example
SOI example
Plot the time series and ACF
Raw periodogram
Averaged periodogram
Smoothed periodogram
SOI tapering
Parametric Spectral Estimation
Simulated examples
SOI Example
Lagged regression
SOI and Recruitment time series
Transfer function modeling
Estimating cross-spectrum
Lagged Regression in frequency domain

Spetral ANOVA example

```
x \leftarrow c(1, 2, 3, 2, 1)

x \leftarrow x - mean(x)

c1 \leftarrow cos(2 * pi * (1:5) * (1 / 5)); s1 \leftarrow sin(2 * pi * (1:5) * (1 / 5))

c2 \leftarrow cos(2 * pi * (1:5) * (2 / 5)); s2 \leftarrow sin(2 * pi * (1:5) * (2 / 5))

omega1 \leftarrow cbind(c1, s1); omega2 \leftarrow cbind(c2, s2)

anova(lm(x \sim omega1 + omega2))
```

```
## Warning in anova.lm(lm(x ~ omega1 + omega2)): ANOVA F-tests on an essentially ## perfect fit are unreliable
```

SOI example

Plot the time series and ACF

```
library(astsa)
par(mgp = c(2.2, 1, 0), mar = c(3.5, 4, 0.8, 0.6), las = 1, mfrow = c(2, 1))
tsplot(soi)
acf(soi, main = "")
```


Raw periodogram

An approximate $100(1-\alpha)\%$ confidence interval for $f(\omega)$

$$\frac{2I(\omega_j)}{\chi_2^2(1-\alpha/2)} \le f(\omega) \le \frac{2I(\omega_j)}{\chi_2^2(\alpha/2)}$$

```
par(mgp = c(2.2, 1, 0), mar = c(3.5, 4, 1.4, 0.6), las = 1)
soi.per <- mvspec(soi)
abline(v = c(1 / 4, 1), lty = 2, col = "blue")
axis(1, at = 0.25)</pre>
```

Series: soi | Raw Periodogram | taper = 0


```
U = qchisq(.025, 2)
L = qchisq(.975, 2)
# 4-year period
soi.per$details[10,]
## frequency
                period spectrum
##
      0.2500
                4.0000
                         0.0537
c(2 * soi.per$spec[10] / L, 2 * soi.per$spec[10] / U)
## [1] 0.0145653 2.1222066
# 1-year period
soi.per$details[40,]
## frequency
               period spectrum
     1.0000
                1.0000
                         0.9722
```

```
c(2 * soi.per$spec[40] / L, 2 * soi.per$spec[40] / U)
```

[1] 0.2635573 38.4010800

Averaged periodogram

An approximate $100(1-\alpha)\%$ confidence interval for $f(\omega)$

$$\frac{2L\bar{f}(\omega)}{\chi^2_{2L}(1-\alpha/2)} \leq f(\omega) \leq \frac{2L\bar{f}(\omega)}{\chi^2_{2L}(\alpha/2)}$$

plot(kernel("daniell", 4))

Daniell(4)


```
par(mgp = c(3, 2, 0), mar = c(3.5, 4, 1.4, 0.6), las = 1)
soi.ave <- mvspec(soi, kernel('daniell', 4), ylab = "")
abline(v = c(.25, 1, 2, 3), lty = 2)
axis(1, at = 0.25)</pre>
```


soi.ave\$bandwidth

[1] 0.225

(df <- soi.ave\$df)</pre>

[1] 16.9875

(U <- qchisq(.025, df))

[1] 7.555916

(L <- qchisq(.975, df))

[1] 30.17425

soi.ave\$spec[10]

[1] 0.04952026

soi.ave\$spec[40]

[1] 0.11908

```
# intervals
c(df * soi.ave$spec[10] / L, df * soi.ave$spec[10] / U)

## [1] 0.02787891 0.11133335

c(df * soi.ave$spec[40] / L, df * soi.ave$spec[40] / U)

## [1] 0.06703963 0.26772011
```

Smoothed periodogram

```
plot(kernel("modified.daniell", c(3, 3)))
```

mDaniell(3,3)


```
k <- kernel("modified.daniell", c(3, 3))

par(mgp = c(3, 2, 0), mar = c(3.5, 4, 1.4, 0.6), las = 1)
soi.smo <- mvspec(soi, kernel = k, taper = .1, ylab = "")
abline(v = c(.25, 1), lty = 2)
axis(1, at = 0.25)</pre>
```


soi.smo\$bandwidth

[1] 0.2308103

(df <- soi.smo\$df)

[1] 17.42618

```
soi.smo <- mvspec(soi, spans = c(7, 7), taper = .1, nxm = 4)
rect(1/7, -1e5, 1/3, 1e5, density = NA, col = gray(.5, .2))
mtext("1/4", side = 1, line = 0, at = .25, cex = .75)</pre>
```



```
(U <- qchisq(.025, df))
```

[1] 7.847084

```
(L <- qchisq(.975, df))
```

[1] 30.76132

```
soi.smo$spec[10]
```

[1] 0.05019866

```
soi.smo$spec[40]
```

[1] 0.1675368

```
# intervals
c(df * soi.smo$spec[10] / L, df * soi.smo$spec[10] / U)
```

[1] 0.02843736 0.11147718

```
c(df * soi.smo$spec[40] / L, df * soi.smo$spec[40] / U)
```

[1] 0.09490899 0.37205231

SOI tapering

```
par(mgp = c(3, 2, 0), mar = c(3.5, 4, 1.4, 0.6), las = 1)
s0 <- mvspec(soi, spans = c(7, 7), plot = FALSE)
s50 \leftarrow mvspec(soi, spans = c(7, 7), taper = .5, plot = FALSE)
tsplot(s50$freq, s50$spec, log = "y", type = "l",
       ylab = "", xlab = "Frequency (year)")
lines(s0$freq, s0$spec, lty = 2, col = "red")
abline(v = .25, lty = 2, col = 8)
mtext('1/4', side = 1, line = 0, at = .25, cex = .9)
legend(5, .04, legend = c('full taper', 'no taper'), lty = 1:2, col = c("black", "red"))
text(1.42, 0.04, 'leakage', cex = .8)
arrows(1.4, .035, .75, .009, length = 0.05, angle = 30)
arrows(1.4, .035, 1.21, .0075, length = 0.05, angle = 30)
par(fig = c(.65, 1, .65, 1), new = TRUE, cex = .5,
   mgp = c(0, -.1, 0), tcl = -.2)
taper <- function(x) \{.5 * (1 + \cos(2 * pi * x))\}
x \leftarrow seq(from = -.5, to = .5, by = 0.001)
plot(x, taper(x), type = "l", lty = 1, yaxt = 'n', ann = FALSE)
```


Parametric Spectral Estimation

Simulated examples

```
library(TSA)
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
##
       acf, arima
## The following object is masked from 'package:utils':
##
##
       tar
set.seed(12345)
n = 200; phi = 0.8; theta = 0.5
phi1 = 1.5; phi2 = -.95
y <- arima.sim(model = list(ar = phi), n = n)
y1 <- arima.sim(model = list(ar = phi, ma = theta), n = n)
y2 <- arima.sim(model = list(ar = c(phi1, phi2)), n = n)
##AR(1)
par(las = 1, mar = c(4, 4, 2, 0.6), mgp = c(3, 1, 0), mfrow = c(1, 2))
spec <- spec.ic(y, detrend = F, col = "blue", lwd = 1, nxm = 4,</pre>
                ylim = c(0, 25), lty = 2)
freq <- spec[[2]][, 1]</pre>
lines(freq, ARMAspec(model = list(ar = phi), freq = freq,
plot = F)$spec, col = "blue")
acf(y, lag = 20)
acf_true <- ARMAacf(ar = phi, lag.max = 20)</pre>
points(1:20, acf_true[2:21], col = "blue", pch = 16)
```



```
##ARMA(1,1)
par(las = 1, mar = c(4, 4, 2, 0.6), mgp = c(3, 1, 0), mfrow = c(1, 2))
spec <- spec.ic(y1, detrend = F, col = "blue", lwd = 1, nxm = 4, ylim = c(0, 65), lty = 2)
freq <- spec[[2]][, 1]
lines(freq, ARMAspec(model = list(ar = phi, ma = theta), freq = freq,
plot = F)$spec, col = "blue")
acf(y, lag = 20)
acf_true <- ARMAacf(ar = phi, ma = theta, lag.max = 20)
points(1:20, acf_true[2:21], col = "blue", pch = 16)</pre>
```



```
##AR(2)
par(las = 1, mar = c(4, 4, 2, 0.6), mgp = c(3, 1, 0))
spec <- spec.ic(y2, detrend = F, col = "blue", lwd = 1, nxm = 4, ylim = c(0, 1000), lty = 2)
freq <- spec[[2]][, 1]
lines(freq, ARMAspec(model = list(ar = c(phi1, phi2)), freq = freq,
plot = F)$spec)

AR2_nonpar <- mvspec(y2, kernel('daniell', 3), plot = F)
lines(AR2_nonpar$freq, AR2_nonpar$spec, col = "red", lty = 2)</pre>
```


SOI Example

```
par(las = 1, mar = c(4, 4, 2, 0.6), mgp = c(3, 1, 0))
u <- spec.ic(soi, detrend = TRUE, col = "blue", lwd = 1.5, nxm = 4)</pre>
```

Series: soi | AIC order = 15

Lagged regression

SOI and Recruitment time series

```
par(mfrow = c(2, 1), las = 1)
tsplot(soi, col = 4, ylab = "", main = "Southern Oscillation Index")
tsplot(rec, col = 4, ylab = "", main = "Recruitment")
```


Recruitment

acf1(soi, main = "Southern Oscillation Index")

```
[1]
              0.37  0.21  0.05 -0.11 -0.19 -0.18 -0.10  0.05
                                                               0.22
                                                                     0.36
                                                                           0.41
  [13]
         0.31
              0.10 -0.06 -0.17 -0.29 -0.37 -0.32 -0.19 -0.04
                                                               0.15
                                                                     0.31
                                                                           0.35
  [25]
              0.10 -0.03 -0.16 -0.28 -0.37 -0.32 -0.16 -0.02
                                                                     0.33
                                                                           0.39
                                                               0.17
## [37]
         0.30
              0.16  0.00 -0.13 -0.24 -0.27 -0.25 -0.13
                                                         0.06
                                                               0.21
                                                                     0.38
                                                                           0.40
```

acf1(rec, main = "Recruitment")

Recruitment


```
## [1] 0.92 0.78 0.63 0.48 0.36 0.26 0.18 0.13 0.09 0.07 0.06 0.02 ## [13] -0.04 -0.12 -0.19 -0.24 -0.27 -0.27 -0.24 -0.19 -0.11 -0.03 0.03 0.06 ## [25] 0.06 0.02 -0.02 -0.06 -0.09 -0.12 -0.13 -0.11 -0.05 0.02 0.08 0.12 ## [37] 0.10 0.06 0.01 -0.02 -0.03 -0.03 -0.02 0.01 0.06 0.12 0.17 0.20
```

ccf2(soi, rec, main = "SOI vs Recruitment", las = 1)

SOI vs Recruitment

Transfer function modeling

```
soi.d <- resid(lm(soi ~ time(soi), na.action = NULL))
acf2(soi.d)</pre>
```

Series: soi.d


```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.59 0.35 0.18 0.01 -0.15 -0.23 -0.22 -0.14 0.01 0.19 0.33 0.38 0.28 ## PACF 0.59 0.00 -0.03 -0.12 -0.16 -0.08 0.01 0.07 0.15 0.18 0.16 0.06 -0.11 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] ## ACF 0.07 -0.10 -0.22 -0.35 -0.43 -0.38 -0.24 -0.08 0.11 0.28 0.32 0.22 ## PACF -0.25 -0.15 -0.06 -0.06 -0.07 0.01 0.02 0.01 0.06 0.10 0.04 -0.05 ## [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] ## ACF 0.06 -0.07 -0.20 -0.32 -0.42 -0.36 -0.20 -0.05 0.15 0.32 0.38 0.29 ## PACF -0.11 -0.04 -0.04 -0.05 -0.11 -0.01 0.04 -0.03 0.07 0.10 0.08 -0.01 ## [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] ## ACF 0.15 -0.02 -0.16 -0.27 -0.30 -0.28 -0.16 0.04 0.20 0.37 0.40 ## PACF -0.05 -0.10 -0.04 0.00 0.07 -0.01 -0.02 0.02 -0.02 0.09 0.01
```

```
fit <- arima(soi.d, order = c(1, 0, 0))
ar1 <- as.numeric(coef(fit)[1])
soi.pw <- resid(fit)
rec.fil <- filter(rec, filter = c(1, -ar1), sides = 1)
ccf2(soi.pw, rec.fil)</pre>
```



```
fish <- ts.intersect(rec, RL1 = lag(rec, -1), SL5 = lag(soi.d, -5))
(u \leftarrow lm(fish[, 1] \sim fish[, 2:3], na.action = NULL))
```

acf2(resid(u))

Series: resid(u)

(arx <- sarima(fish[, 1], 1, 0, 0, xreg = fish[, 2:3]))

```
## initial value 2.050589
          2 value 1.963560
## iter
          3 value 1.962035
## iter
## iter
          4 value 1.956727
          5 value 1.956486
## iter
## iter
          6 value 1.956230
          7 value 1.956056
## iter
## iter
          8 value 1.956027
          9 value 1.956024
## iter
## iter
        10 value 1.956024
        10 value 1.956024
## iter
```

```
## final value 1.956024
## converged
## initial
           value 1.955587
          2 value 1.955586
##
  iter
          3 value 1.955585
          4 value 1.955584
## iter
## iter
          5 value 1.955584
          6 value 1.955584
## iter
## iter
          7 value 1.955584
          8 value 1.955584
## iter
## iter
          8 value 1.955584
          8 value 1.955584
## iter
## final value 1.955584
## converged
```

s.e. 0.0503


```
## $fit
##
## Call:
   stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, d, q))
       Q), period = S), xreg = xreg, transform.pars = trans, fixed = fixed, optim.control = list(trace
##
       REPORT = 1, reltol = tol))
##
##
## Coefficients:
##
            ar1
                 intercept
                                RL1
                                           SL5
         0.4487
                    12.3323
                             0.8005
                                     -21.0307
```

1.0915

1.5746 0.0234

```
##
## sigma^2 estimated as 49.93: log likelihood = -1511.79, aic = 3033.57
##
## $degrees_of_freedom
## [1] 444
##
## $ttable
##
                          SE t.value p.value
             Estimate
## ar1
               0.4487 0.0503
                               8.9183
## intercept 12.3323 1.5746
                               7.8321
                                            0
               0.8005 0.0234 34.2778
## SL5
             -21.0307 1.0915 -19.2674
                                            0
##
## $AIC
## [1] 6.771366
##
## $AICc
## [1] 6.771567
##
## $BIC
## [1] 6.817178
```

```
pred <- rec + resid(arx$fit)
tsplot(pred, col = astsa.col(8, .3), lwd = 7, ylab = 'rec & prediction')
lines(rec)</pre>
```


Estimating cross-spectrum

```
par(las = 1)
s = spectrum(cbind(soi, rec), kernel("daniell", 9), taper = 0, fast = FALSE)
```

Series: x Smoothed Periodogram


```
par(las = 1, mar = c(4, 4, 2, 0.6), mgp = c(2.2, 1, 0))
plot(s, plot.type = "coh", ci.lty = 2, main = "")
f = qf(.95, 2, s$df - 2);
abline(h = f / ((s$df - 2) / 2 + f), col = "red", lty = 2)
```



```
sr <- mvspec(cbind(soi, rec), kernel("daniell", 9), plot.type = "coh")
sr$df</pre>
```

[1] 35.8625

```
f = qf(.999, 2, sr$df - 2)
C = f / (18 + f)
abline(h = C, col = "red")
```

Series: cbind(soi, rec) | Smoothed Periodogram | taper = 0

Lagged Regression in frequency domain

```
LagReg_SOI2REC <- LagReg(soi, rec, L = 15, M = 32, threshold = 6)</pre>
## INPUT: soi OUTPUT: rec
                            L = 15
##
## The coefficients beta(0), beta(1), beta(2) ... beta(M/2-1) are
##
## 4.03743 2.103372 3.31812 0.01247538 0.005194443 -18.90914 -12.60978 -8.746491
  -6.670373 -4.404543 -3.748336 -3.760936 -2.991477 -1.355261 1.375379 3.955252
##
##
##
## The coefficients beta(0), beta(-1), beta(-2) ... beta(-M/2+1) are
## 4.03743 2.987159 1.409949 2.788212 1.017324 -0.5528797 0.402843 1.389537
## 4.426287 5.563582 6.315986 4.540402 3.703423 2.840445 3.798354 2.974338
## The positive lags, at which the coefficients are large
## in absolute value, and the coefficients themselves, are:
##
        lag s
                 beta(s)
## [1,]
            5 -18.909140
            6 -12.609781
## [2,]
## [3,]
            7
               -8.746491
## [4,]
              -6.670373
```



```
##
## The prediction equation is
## rec(t) = alpha + sum_s[ beta(s)*soi(t-s) ], where alpha = 66.01941
## MSE = 411.5948
```

The fitted model is

$$y_t = 66.02 - 18.91x_{t-5} - 12.61x_{t-6} - 8.75x_{t-7} - 6.67x_{t-8} + w_t.$$