The Storage Hierarchy

Storage Technology and Trends

Module Outline

- Storage Technologies and Trends
 - RAM
 - Nonvolatile Memories
 - Hard Disk Drives
 - Solid State Drives
- Module Summary

IBM 350 Storage Unit

Storage Technologies and Trends

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip.
- Basic storage unit is normally a cell (one bit per cell).
- Multiple RAM chips form a memory.

Static RAM (SRAM)

- Each cell stores a bit with a four or six-transistor circuit.
- Retains value indefinitely, as long as it is kept powered.
- Relatively insensitive to electrical noise (EMI), radiation, etc.
- Faster and more expensive than DRAM.

Dynamic RAM (DRAM)

- Each cell stores bit with a capacitor. One transistor is used for access
- Value must be refreshed every 10-100 ms.
- More sensitive to disturbances (EMI, radiation,...) than SRAM.
- Slower and cheaper than SRAM.

SRAM vs DRAM Comparison

	Transistors per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

Conventional DRAM Organization

- d x w DRAM:
 - dw total bits organized as d supercells of size w bits

Reading DRAM Supercell (2,1)

- Step 1(a): Row access strobe (RAS) selects row 2.
- Step 1(b): Row 2 copied from DRAM array to row buffer.

Reading DRAM Supercell (2,1)

- Step 2(a): Column access strobe (CAS) selects column 1.
- Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to the CPU.

Memory Modules

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966.
 - Commercialized by Intel in 1970.
- DRAM cores with better interface logic and faster I/O :
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per bus cycle and pin
 - Different types distinguished by internal speed multiplier:
 DDR (2-fold), DDR2 (4-fold), DDR3/4 (8-fold), DDR5 (16-fold)
 - By 2010, standard for most server and desktop systems
 - Intel Core i7 supports only DDR3 SDRAM

64000

DDR

DDR 2

DDR 3

DDR 4

DDRX-Y?

DDRX-Y

- X: generation, Y: transfer rate (MT/s)
- LP-DDR: Low Power DDR (<u>separate standard</u>)

		1 2 9 4 5 6 7 6 9 10 11 12 19					
Gen	Year	Standards	Chip clock rate (MHz)	Data rate (MT/s)	Voltage (V)	Peak transfer rate (MB/s)	Module name
DDR1	2000	DDR-200 DDR-266 DDR-333 DDR-400	100 133 167 200	200 267 333 400	2.5	1600 2133 2667 3200	PC-1600 PC-2100 PC-2700 PC-3200
DDR2	2003	DDR2-400 DDR2-667 DDR2-800 DDR2-1066	100 167 200 267	400 667 800 1067	1.8	3200 5333 6400 8533	PC2-3200 PC2-5300 PC2-6400 PC2-8500
DDR3	2007	DDR3-800 DDR3-1600 DDR3-1886 DDR3-2133	100 200 233 266	800 1600 1867 2133	1.35	6400 12800 14933 17067	PC3-6400 PC3-12800 PC3-14900 PC3-17000
DDR4	2014	DDR4-1600 DDR4-2666 DDR4-3000 DDR4-3200	200 333 375 400	1600 2667 3000 3200	1.2	12800 20800 24000 25600	PC4-12800 PC4-20800 PC4-24000 PC4-25600
DDR5	2020	DDR5-3200	200	3200	1.1	25600	PC5-25600

DDR5-8000

500

PC5-64000

8000

DDR4 memory on danawa.com

Nonvolatile Memories

- DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically erasable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs with partial (sector) erase capability
 - Wears out after about 100,000 erase operations.
- Uses for Nonvolatile Memories
 - Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
 - Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
 - Disk caches

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Memory Read Transaction (1)

CPU computes and places memory address A on the memory bus.

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

CPU read word x from the bus and copies it into register x4.

Memory Write Transaction (1)

CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

CPU places data word z on the bus.

Memory Write Transaction (3)

 \blacksquare CPU Main memory reads data word z from the bus and stores it at address A.

Hard Disk Drives

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

What's Inside A Disk Drive?

Read/Write Heads

Platters

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.
- Each sector contains an equal number of data bits (typically 512 bytes)

Disk Geometry (Muliple-Platter View)

Aligned tracks form a cylinder.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB), where
 1 GB = 10⁹ Bytes

- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.

Disk Capacity

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track

Computing Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)

Example:

- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk
- Capacity = 512 x 300 x 20000 x 2 x 5= 30,720,000,000= 30.72 GB

Disk Operation (Single-Platter View)

The disk surface The read/write head spins at a fixed is attached to the end rotational rate of the arm and flies over the disk surface on a thin cushion of air. spindle By moving radially, the arm can position the read/write head over any track (seek).

Disk Operation (Multi-Platter View)

Read/Write Head

human hair 75 micron

smoke particle 2.5 micron

disk surface

dust particle 4 micron

surface - disk head 0.1 micron 80km/h

30

PM₁₀

<= 10 micron

Disk Structure - top view of single platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

Disk Access - Read

About to read blue sector

Disk Access - Read

After **BLUE** read

After reading blue sector

Disk Access - Read

After **BLUE** read

Red request scheduled next

Disk Access – Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Disk Access - Read

Complete **read** of red

Disk Access – Service Time Components

Disk Access Time

- Average time to access some target sector approximated by :
 - $T_{access} = T_{avg seek} + T_{avg rotation} + T_{avg transfer}$
- Seek time (T_{avg seek})
 - Time to position heads over cylinder containing target sector.
 - Typical T_{avg seek} is 3—9 ms
- Rotational latency (T_{avg rotation})
 - Time waiting for first bit of target sector to pass under r/w head.
 - $T_{avg\ rotation} = 1/2 \times 1/RPMs \times 60 \sec/1 \min$
 - Typical T_{avg rotation} = 7200 RPMs
- Transfer time (T_{avg transfer})
 - Time to read the bits in the target sector.
 - T_{avg transfer} = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms
- Avg # sectors/track = 400

Derived:

- $T_{avg\ rotation} = 1/2\ x\ (60\ secs/7200\ RPM)\ x\ 1000\ ms/sec = 4\ ms.$
- $T_{avg\ transfer} = 60/7200\ RPM\ x\ 1/400\ secs/track\ x\ 1000\ ms/sec = 0.02\ ms$
- $T_{access} = 9 \text{ ms} + 4 \text{ ms} + 0.02 \text{ ms}$

Important points:

- Access time dominated by seek time and rotational latency.
- First bit in a sector is the most expensive, the rest are free.
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - 2,500 times slower than DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid State Disks (SSDs)

- Pages: 512KB to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after ~100,000 writes.

SSD Performance Characteristics

Why are random writes so slow?

Sequential read throughput	250 MB/s	Sequential write throughput	170 MB/s
Random read throughput	140 MB/s	Random write throughput	14 MB/s
Rand read access	30 us	Random write access 300 us	

- Erasing a block is slow (around 1 ms)
- Write to a page triggers a copy of all useful pages in the block
 - Find an used block (new block) and erase it
 - Write the page into the new block
 - Copy other pages from old block to the new block

SSD Storage Technology: Multi-Level Cells

PLC (five bits per cell) currently under development

SSD Tradeoffs vs Rotating Disks

- **Advantages**
 - No moving parts → faster, less power, more rugged
- Disadvantages
 - Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - e.g. Intel X25 guarantees 1 petabyte (10¹⁵ bytes) of random writes before they wear out
 - More expensive
 - Used to be 100x more expensive
 - ▶ Today (2023/05/10) on danawa.co.kr:

16'800won 66 KRW/GB

135'980won 17 KRW/GB Seagate 8TB HDD:

Applications

MP3 players, smart phones, laptops

Hancast 256GB SDD:

Today also the standard desktops and servers

Only factor 4 now!

SSD: Price Development

내장형 / SATA2(3Gb/s) / 64GB / 읽기 250MB/s / 쓰기 170MB/s / 2.5형(6.4cm) / 삼성 / MLC / 32nm / TRIM 지원

April 2012

Department of Computer Science & Engineering

묶음상품 🔻

가격비교 관심상품

두께10mm / 무상 3년 / MTBF 1,500,000 시간 / 32nm 공정 판매몰 : 2 등록월 : 2011.01 상품의견 : 1259

◆ 과려기사 '사서 SSD 변해 소이이 정품처럼 피에' 피체 요리

→ 사용기 구인하지 1년 후 가다테스트

☐ 64GB, MZ-5PA064/KR, 정품

☐ 64GB, MZ-5PA064, 병행수입

C(* 상품비교

Storage Trends

SRAM

Metric	1980	1985	1990	1995	2000	2005	2010	2020	2023	2010:1980
\$/MB	19,200	2,900	320	256	100	75	60			320x
access (ns)	300	150	35	15	3	2	1.5			200x

DRAM

Metric	1980	1985	1990	1995	2000	2005	2010	2020	2023	2020:1980
\$/MB	8,000	880	100	30	1	0.1	0.06	0.004	0.0026	2,000,000x
access (ns)	375	200	100	70	60	50	40	20	20	18x
typical size (MB)	0.064	0.256	4	16	64	2,000	8,000	16,000	32,000	500,000x

Disk

Metric	1980	1985	1990	1995	2000	2005	2010	2020	2023	2020:1980
\$/MB	500	100	8	0.3	0.01	0.005	0.0003	0.00002	0.000013	40,000,000x
access (ms)	87	75	28	10	8	4	3	3	3	29x
typical size (MB)	1	10	160	1,000	20,000	160,000	1,500,000	4,000,000	8,000,000	8,000,000x

→ it is easier to increase density than to decrease access time

Module Summary

Module Summary

- Volatile vs nonvolatile storage
 - SRAM and DRAM
 - magnetic disk drives, solid state drives
- It is easier to increase capacity than to reduce latency
- Extreme developments over the past 40 years