3.2.1

Mapping Theory

A map is mandatory for navigation

A map is mandatory for navigation

How to get a map?

1. Use a pre-existing map

Amsterdam metro map

Amsterdam metro map

Topological representation

The map consists of 'stations'

Lines represent a direct connection

Geometric scale is not accurate

Topological representation

The graph consists of 'stations'

Lines represent a direct connection

Geometric scale is not accurate

Topological representation

The graph consists of 'stations'

Lines represent a direct connection

Geometric scale is not accurate

Lightweight

Useful for path planning

Topological representation

The graph consists of 'stations'

Lines represent a direct connection

Geometric scale is not accurate

Lightweight

Useful for path planning

Optimal path

Metric representation

Metric representation

Represented with precise coordinates

Sensitive to noise

Very useful for path planning

A map is mandatory for navigation

How to get a map?

1. Use a pre-existing map

A map is mandatory for navigation

How to get a map?

- 1. Use a pre-existing map
- 2. Built by the robot itself during a mapping process

A map is mandatory for navigation

How to get a map?

- 1. Use a pre-existing map
- 2. Built by the robot itself during a mapping process
 - This process is called **SLAM**:
 - Simultaneous Localization and Mapping