Quiz

You are given a procedure transformation(A) with the following spec:

▶ input: Mat A output: Mat M such that M * A is a Mat in echelon form

following procedures:

Your job is to write each of the

The input to these is a list of Vecs: rank(L)

▶ is_independent(L) basis(L) returns a list of Vecs

forming a basis for Span L

null_space_basis(A) where A is a Mat

form and solves $A\mathbf{x} = \mathbf{h}$

one one

For solve, you can also assume a procedure

echelon_solve(A,b) that requires A to be in echelon

>>> print(M*A)

>>> M=transformation(A)

 $A = Mat((\{'a', 'b'\}, \{'A', 'B'\}), \{('a', 'A'): one, \})$

('b', 'B'):one,('a', 'B'):one, ('b', 'A'):one})

solve(A, b) where A is a Mat and b is a Vec

Properties of orthogonality

To solve the Fire Engine Problem, we will use the Pythagorean Theorem in conjunction with the following simple observations:

Orthogonality Properties:

Property O1: If \mathbf{u} is orthogonal to \mathbf{v} then \mathbf{u} is orthogonal to $\alpha \mathbf{v}$ for every scalar α . Property O2: If \mathbf{u} and \mathbf{v} are both orthogonal to \mathbf{w} then $\mathbf{u} + \mathbf{v}$ is orthogonal to \mathbf{w} .

Proof:

1.
$$\langle \mathbf{u}, \alpha \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle = \alpha \, 0 = 0$$

2.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle = 0 + 0$$

Example: $[1, 2] \cdot [2, -1] = 0$ so $[1, 2] \cdot [20, -10] = 0$

Example:

$$\begin{array}{cccc} [1,2,1]\cdot[1,-1,1] & = & 0 \\ [0,1,1]\cdot[1,-1,1] & = & 0 \\ \hline ([1,2,1]+[0,1,1])\cdot[1,-1,1] & = & 0 \end{array}$$

Decomposition of **b** into parallel and perpendicular components

Definition: For any vector **b** and any vector **a**, define vectors $\mathbf{b}^{\parallel \mathbf{a}}$ and $\mathbf{b}^{\perp \mathbf{a}}$ to be the projection of **b** onto Span $\{\mathbf{a}\}$ and the projection of **b** orthogonal to **a** if

$$\mathbf{b} = \mathbf{b}^{||\mathbf{a}} + \mathbf{b}^{\perp \mathbf{a}}$$

and there is a scalar $\sigma \in R$ such that

$$\mathbf{b}^{\mathbf{p}} = \sigma \mathbf{a}$$

and

 $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a}

Decomposition of **b** into $\mathbf{b}^{\parallel \mathbf{a}}$ and $\mathbf{b}^{\perp \mathbf{a}}$

$${f b}={f b}^{||{f a}}+{f b}^{\perp{f a}}$$
 and there is a scalar $\sigma\in R$ such that ${f b}^{||{f a}}=\sigma\,{f a}$ and ${f b}^{\perp{f a}}$ is orthogonal to ${f a}$

 $\mathbf{b}^{\perp \mathbf{a}} = \mathbf{b} - \mathbf{b}^{\parallel \mathbf{a}} = [b_1, b_2] - [b_1, 0] = [0, b_2]$

Example: $\mathbf{b} = [b_1, b_2], \mathbf{a} = [1, 0].$

Then
$$\mathbf{b}^{||\mathbf{a}|} = [b_1, 0]$$
 Note that $[b_1, 0] = \mathbf{b}_1$ [1, 0].

Example: $\mathbf{b} = [10, 20, 30]$ and $\mathbf{a} = [-1, 2, 1]$. I claim $\mathbf{b}^{\parallel \mathbf{a}} = [-10, 20, 10]$ and therefore $\mathbf{b}^{\perp \mathbf{a}} = [10, 20, 30] - [-10, 20, 10] = [20, 0, 20]$.

Are these correct?

- ▶ Check if $\mathbf{b}^{\parallel \mathbf{a}} = \sigma \mathbf{a}$ for some σ ... Yes, $\sigma = 10$
 - ▶ Check if $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a} ... $[20,0,20] \cdot [-1,2,1] = 0$, so yes

Orthogonality helps solve the *fire engine* problem Fire Engine Lemma:

- ▶ Let **b** be a vector.
- ► Let **a** be a nonzero vector
- Then $\mathbf{b}^{\parallel \mathbf{a}}$ is the point on the line $\{\alpha \mathbf{a} : \alpha \in \mathbb{R}\}$ that is closest to \mathbf{b} , and the distance is $\|\mathbf{b}^{\perp \mathbf{a}}\|$.
- **Example:** Line is the x-axis, i.e. the set $\{(x, y): y = 0\}$, and point is (b_1, b_2) .
- Lemma states: closest point on the line is $\mathbf{p}=(b_1,0)$.
- For any other point **q**, the points $\mathbf{b} = (b_1, b_2)$, $\mathbf{b}^{||\mathbf{a}|}$, and **q** form a right triangle.
 - ▶ Since \mathbf{q} is different from $\mathbf{b}^{\parallel \mathbf{a}}$, the base is nonzero.
 - By the Pythagorean Theorem, the hypotenuse's length is greater than the height.

Orthogonality helps solve the fire engine problem

Fire Engine Lemma:

- ▶ Let **b** be a vector.
- ▶ Let **a** be a nonzero vector

Then $\mathbf{b}^{\parallel \mathbf{a}}$ is the point on the line $\{\alpha \mathbf{a} : \alpha \in \mathbb{R}\}$ that is closest to \mathbf{b} , and the distance is $\|\mathbf{b}^{\perp \mathbf{a}}\|$.

Proof: Let L be the line. Let $\mathbf{p} = \mathbf{b}^{||\mathbf{a}||}$. Let \mathbf{q} be any point on L. The three points \mathbf{q} , \mathbf{p} , and \mathbf{b} form a triangle.

- Since **p** and **q** are both on *L*, they are both multiples of **a**, so their difference **p** − **q** is also a multiple of **a**.
- ► Hence, since $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a} , it is also orthogonal to $\mathbf{p} \mathbf{q}$. Note $\mathbf{b}^{\perp \mathbf{a}} = \mathbf{b} \mathbf{p}$.
- ► Hence by the Pythagorean Theorem,

$$||\mathbf{b} - \mathbf{q}||^2 = ||\mathbf{p} - \mathbf{q}||^2 + ||\mathbf{b} - \mathbf{p}||^2.$$

Orthogonality helps solve the *fire engine* problem Fire Engine Lemma:

- ▶ Let **b** be a vector.
- Let a be a nonzero vector

Then $\mathbf{b}^{\parallel \mathbf{a}}$ is the point on the line $\{\alpha \mathbf{a} : \alpha \in \mathbb{R}\}$ that is closest to \mathbf{b} , and the distance is $\|\mathbf{b}^{\perp \mathbf{a}}\|$.

- **Proof:** Let L be the line. Let $\mathbf{p} = \mathbf{b}^{\parallel \mathbf{a}}$. Let **q** be any point on L. The three points **q**, **p**, and **b** form a triangle. \triangleright Since **p** and **q** are both on L, they are both multiples of **a**, so their
- difference $\mathbf{p} \mathbf{q}$ is also a multiple of \mathbf{a} . ▶ Hence, since $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a} , it is also orthogonal to $\mathbf{p} - \mathbf{q}$.
- Note $\mathbf{b}^{\perp \mathbf{a}} = \mathbf{b} \mathbf{p}$. ▶ Hence by the Pythagorean Theorem.

 $||\mathbf{b} - \mathbf{q}||^2 = ||\mathbf{p} - \mathbf{q}||^2 + ||\mathbf{b} - \mathbf{p}||^2.$

Decomposition of **b** into parallel and perpendicular components: example

For any vector \mathbf{b} and any vector \mathbf{a} , define vectors $\mathbf{b}^{\parallel \mathbf{a}}$ and $\mathbf{b}^{\perp \mathbf{a}}$

- $\mathbf{b} = \mathbf{b}^{||\mathbf{a}|} + \mathbf{b}^{\perp \mathbf{a}}$, and
- ▶ there is a scalar $\sigma \in R$ such that $\mathbf{h}^{\parallel \mathbf{a}} = \sigma \mathbf{a}$ and
- $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a}

Example: What if **a** is the zero vector?

In this case, the only vector $\mathbf{b}^{\parallel \mathbf{a}}$ satisfying the second equation is the zero vector.

According to first equation, $\mathbf{b}^{\perp \mathbf{a}}$ must equal \mathbf{b} .

Fortunately, this choice of $\mathbf{b}^{\perp \mathbf{a}}$ does satisfy third equation: $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a} .

Indeed, every vector is orthogonal to a when a is the zero vector.

What is the point in Span $\{0\}$ closest to **b**?

The only point in Span $\{ {\bf 0} \}$ is the zero vector...

so that must be the closest point to \boldsymbol{b} , and the distance to \boldsymbol{b} is $||\boldsymbol{b}||.$

Computing the projections $\mathbf{h} = \mathbf{h}^{\parallel \mathbf{a}} + \mathbf{h}^{\perp \mathbf{a}}$

If $\mathbf{a} = \mathbf{0}$ then $\mathbf{b}^{\parallel \mathbf{a}} - \mathbf{0}$

 $h^{\parallel a} - \sigma a$

 $\mathbf{h}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a}

What if $\mathbf{a} \neq \mathbf{0}$? Need to compute σ

▶ $\langle \mathbf{b}^{\perp \mathbf{a}}, \mathbf{a} \rangle = 0$. Substitute for $\mathbf{b}^{\perp \mathbf{a}}$: $\langle \mathbf{b} - \mathbf{b}^{|| \mathbf{a}}, \mathbf{a} \rangle = 0$. ▶ Substitute for $\mathbf{b}^{||}$: $\langle \mathbf{b} - \sigma \mathbf{a}, \mathbf{a} \rangle = 0$.

•

▶ Using linearity and homogeneity of inner product, $\langle \mathbf{b}, \mathbf{a} \rangle - \sigma \langle \mathbf{a}, \mathbf{a} \rangle = 0$

▶ Solving for σ , we obtain

 $\sigma = \frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\langle \mathbf{a}, \mathbf{a} \rangle}$

In the special case in which $\|{\bf a}\|=1$, the denominator $\langle {\bf a},{\bf a}\rangle=1$ so $\sigma=\langle {\bf b},{\bf a}\rangle$

Quiz: Write project_along(b, a) to return the vector $\mathbf{b}^{\parallel a}$

Answer: def project_along(b, a): return ((b*a)/(a*a))*a Almost.

Best: def project_along(b, a): return ((b*a)/(a*a) if a*a != 0 else 0)*a

Computing the projections

$$\mathbf{b} = \mathbf{b}^{||\mathbf{a}} + \mathbf{b}^{\perp \mathbf{a}}$$

$$\mathbf{b}^{\parallel \mathbf{a}} = \sigma \mathbf{a}$$

 $\mathbf{b}^{\perp \mathbf{a}}$ is orthogonal to \mathbf{a}

- ▶ However, if $\mathbf{a} = \mathbf{0}$ then $\sigma = 0$.
- b def project_along(b, a):
 sigma = (b*a)/(a*a) if a*a != 0 else 0
 return sigma * a

Quiz: Use project_along(b, a) to write the procedure $project_orthogonal_1(b, a) \\ that returns \ b^{\perp a}$

def project_orthogonal_1(b, a): return b - project_along(b, a)

Projecting along "nearly zero" vectors

Mathematically, this procedure is correct:

```
def project_along(b, a):
   sigma = (b*a)/(a*a) if a*a != 0 else 0
  return sigma * a
However, because of floating-point roundoff error, we need to make a slight change.
```

Often the vector a will be not a truly zero vector but practically it will be zero.

assigned zero.

If the entries of a are tiny, the procedure should treat a as a zero vector: sigma should be

We will consider a to be a zero vector if its squared norm is no more than, say, 10^{-20} .

Revised version:

```
def project_along(b, a):
 sigma = (b*a)/(a*a) if a*a > 1e-20 else 0
return sigma * a
```

Solution to the *fire engine* problem

Example:

$$\mathbf{a} = [6, 2] \text{ and } \mathbf{b} = [2, 4].$$

The closest point on the line $\{\alpha \mathbf{a} : \alpha \in \mathbb{R}\}$ is the point $\mathbf{b}^{\parallel \mathbf{a}} = \sigma \mathbf{a}$ where

$$\sigma = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$$

$$= \frac{6 \cdot 2 + 2 \cdot 4}{6 \cdot 6 + 2 \cdot 2}$$

$$= \frac{20}{40}$$

$$= \frac{1}{2}$$

Thus the point closest to **b** is $\frac{1}{2}$ [6, 2] = [3, 1].

The distance to **b** is
$$\frac{1}{2}[0,2] = [3,1]$$
.

 $\|\mathbf{b}^{\perp \mathbf{a}}\| = \|[2, 4] - [3, 1]\| = \|[-1, 3]\| = \sqrt{10}$ which is just under 3.5, the length of the firehose.

Best approximation

The *fire engine* problem can be restated as finding the vector on the line that "best approximates" the given vector \mathbf{b} .

By "best approximation", we just mean closest.

This notion of "best approximates" comes up again and again:

- ▶ in least-squares, a fundamental data analysis technique,
- image compression,
- ▶ in principal component analysis, another data analysis technique, and
- ▶ in latent semantic analysis, an information retrieval technique.

Towards solving the higher-dimensional version of best approximation

The fire engine problem can be stated thus:

Computational Problem: Closest point in the span of a single vector Given a vector \mathbf{b} and a vector \mathbf{a} over the reals, find the vector in Span $\{\mathbf{a}\}$ closest to \mathbf{b} .

A natural generalization of the *fire engine* problem is this:

Computational Problem: Closest point in the span of several vectors Given a vector \mathbf{b} and vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ over the reals, find the vector in Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ closest to \mathbf{b} .

We will study this problem next.