SM275 · Mathematical Methods for Economics

Exam 1 – 23 September 2019

Instructions

- You have until the end of the class period to complete this exam.
- You may use your calculator.
- You may consult the SM275 Formula Table given to you with this exam.
- You may not consult any other outside materials (e.g. notes, textbooks, homework, computer).
- Show all your work. To receive full credit, your solution must be completely correct, sufficiently justified, and easy to follow.
- Keep this booklet intact.

Problem	Weight	Score
1	1	
2	1	
3	2	
4	1	
5	2	
6	2	
7	2	
8	1	
9	2	
10	2	
11	2	
12	2	
13	2	
14	2	
Total		/ 240

For Problems 1-4, consider the following setting.

Suppose we win the lottery. We are given 30 annual payments of \$100 each, with the first payment given now. Assume that whenever we get a payment, we put it in a savings account earning interest at an annual rate of 0.02, compounded annually.

Let A_n be the amount in the savings account after n years.

Problem 1. Write the DS for this setting.

- Many of you struggled with this problem.
- Remember that the DS is "the setup": an equation that relates the value of A_n with the values of A_{n-1}, A_{n-2}, \ldots
- See Examples 1 and 2 from Lesson 4 for similar examples.

Problem 2. Write the IC for this setting.

- Most of you answered this problem correctly.
- Again, see Examples 1 and 2 from Lesson 4 for relevant examples.

Problem 3. Find the particular solution that satisfies the IC.

- You did <u>not</u> need to memorize the formula for the particular solution to a first-order linear DS to do this problem.
- Remember the universal method for finding a particular solution that we discussed during our concept review:
 - 1. Find the general solution of the DS.
 - 2. Plug the IC into the general solution, solve for the free constants.
 - 3. Plug the free constants back into the general solution to get the particular solution.

Problem 4. Use the particular solution you found in Problem 3 to find the amount in the account after 30 payments.

• Be careful: if the first payment occurs at time n = 0, when does the 30th payment occur?

$$A_{n+1} = 2A_n + 1$$
 $n = 0, 1, 2, ...$

Problem 5. Draw the cobwebs with $A_0 = -3$ and $A_0 = 1$. Don't forget to indicate the direction of the cobwebs.

Problem 6. Explain why the fixed point of the DS is -1.

- Almost all of you answered this problem correctly.
- Be careful with your algebra and arithmetic!

Problem 7. Is the fixed point –1 attracting, repelling, or neither? Briefly explain.

• Almost all of you answered this problem correctly.

For Problems 8 and 9, consider the discrete market model

$$D_t = S_t \tag{1}$$

$$D_t = 18 - P_t \tag{2}$$

$$S_t = -2 + 3P_{t-1} \tag{3}$$

where at time t, D_t is the demand, S_t is the supply, and P_t is the price. In addition, suppose $P_0 = 8$.

Problem 8. In words, briefly explain why equation (2) makes sense from an economic perspective.

- Most of you answered this problem correctly.
- Some of you simply stated that equation (2) shows that demand is related to price. Be more specific: how is demand related to price?

Problem 9. Using the equations above, find a first order linear DS that describes how the price evolves over time. Your answer should look like: " $P_{t+1} = \dots$ " Do not solve the DS.

- Many of you struggled with this problem.
- Take a look at Section 2 of Lesson 5. Apply the same ideas here, except use the specific numbers given in equations (1)-(3) above. (Do not simply take the DS we obtained in Lesson 5 and plug in numbers. Show how to derive the DS.)

For Problems 10 and 11, consider the DS

$$A_{n+2} = A_{n+1} + 2A_n + 6$$
 $n = 0, 1, 2, ...$

Problem 10. Find the general solution.

- Most of you had the right idea here.
- This type of problem requires you to be precise over the course of many steps. Take care when identifying *a*, *b* and *c*, finding the roots of *r* and *s*, and selecting the appropriate general solution.

Problem 11. Find the particular solution satisfying the IC $A_0 = 1$, $A_1 = 2$.

• Be careful when plugging in the IC into the general solution. In particular, make sure you're using the correct values of *n*.

Problem 12. Consider following the national income model, with marginal propensity to consume $m = \frac{3}{4}$ and accelerator $\ell = \frac{1}{3}$:

$$T_n = C_n + I_n + G_n$$
 $C_{n+1} = \frac{3}{4}T_n$
 $I_{n+1} = \frac{1}{3}(C_{n+1} - C_n)$
 $G_n = 1$

where at time n, T_n is the total national income, C_n is the amount of consumer expenditures, I_n is the amount of private investment, and G_n is the amount of government expenditures. We showed that we can rewrite this model as the following DS:

$$T_{n+2} = T_{n+1} - \frac{1}{4}T_n + 1$$
 $n = 0, 1, 2, ...$

Suppose $C_0 = 2$ and $I_0 = 1$. Find the IC for the DS.

- See Example 1c in Lesson 7 for a similar example.
- Remember the definition of the IC for a second-order DS (Lesson 6).

For Problems 13 and 14, consider the following DS:

$$A_{n+2} = -\frac{2}{3}A_{n+1} + \frac{1}{3}A_n + 8$$
 $n = 0, 1, 2, ...$

The general solution to this DS is

$$A_n = c_1(-1)^n + c_2\left(\frac{1}{3}\right)^n + 6.$$

Problem 13. Find the fixed point of this DS.

- Almost all of you answered this problem correctly.
- Be careful with your algebra and arithmetic!

Problem 14. Is the system stable, unstable, or neither? Briefly explain.

- Most of you correctly noted that $(-1)^n$ oscillates between -1 and 1 as $n \to \infty$. So, under what conditions does A_n oscillate?
- Some of you said that the system is stable when $c_1 = 0$ because in this case, A_n converges to a finite value as $n \to \infty$. This is incorrect! For a system to be stable, A_n must converge to a finite value as $n \to \infty$ for all initial conditions, or equivalently, all values of c_1 and c_2 .

Additional page for scratchwork or solutions