CS323 Assignment4

Name: Mingqian Liao

SID: 12012919

Exercise 1(Simple LR)

Q1

Augmented Grammar

$$S'
ightarrow S \ (1)$$
 $S
ightarrow aB \ (2)$
 $B
ightarrow S * B \ (3)$
 $B
ightarrow \epsilon \ (4)$ (1)

Calculations of closures and GOTO targets

For I_0 :

$$S' \to \cdot S \\ S \to \cdot aB$$
 (2)

Let $I_1 = GOTO(I_0, S)$:

$$S' \to S$$
 (3)

Let $I_2 = GOTO(I_0, a)$:

$$S
ightarrow a \cdot B$$
 $B
ightarrow \cdot S * B$
 $B
ightarrow \cdot \epsilon$
 $S
ightarrow \cdot aB$

$$(4)$$

Let $I_3 = GOTO(I_2, B)$:

$$S o aB \cdot$$
 (5)

Let $I_4 = GOTO(I_2, S)$:

$$B \to S \cdot *B$$
 (6)

 $GOTO(I_2,a)$ will still be I_2

Let $I_5 = GOTO(I_4, *)$:

$$B \rightarrow S * \cdot B$$
 $B \rightarrow \cdot S * B$
 $S \rightarrow \cdot aB$
 $B \rightarrow \cdot \epsilon$

$$(7)$$

 $GOTO(I_5,S)$ will go to I_4

 $GOTO(I_5,a)$ will go to I_2

Let $I_6 = GOTO(I_5, B)$:

$$B \to S * B$$
 (8)

Calculation of FIRST/FOLLOW

$$FIRST(B) = \{\epsilon, a\}$$

$$FIRST(S) = \{a\}$$

$$FIRST(S') = \{a\}$$

$$FOLLOW(S') = \{\$, *\}$$

$$FOLLOW(S) = \{\$, *\}$$

$$FOLLOW(B) = \{\$, *\}$$

SLR(1) Table

STATE	ACTION			GOTO	
	a	*	\$	S	В
0	s2			1	
1			acc		
2	s2	r4	r4	4	3
3		r2	r2		
4		s5			
5	s2	r4	r4	4	6
6		r3	r3		

Q2

Yes, since there is no conflict, it is an SLR(1) grammar.

Q3

Yes.

STACK	SYMBOL	INPUT	ACTION
0	\$	aaaa***\$	shift to 2
0 2	\$a	aaa***\$	shift to 2
0 2 2	\$aa	aa***\$	shift to 2
0 2 2 2	\$aaa	a***\$	shift to 2
0 2 2 2 2	\$aaaa	***\$	reduce by $B o \epsilon$
0 2 2 2 2	\$aaaaB	***\$	GOTO 3
0 2 2 2 2 3	\$aaaaB	***\$	reduce by $S o aB$
0 2 2 2 4	\$aaaS	***\$	shift to 5
0 2 2 2 4 5	\$aaaS*	**\$	reduce by $B o \epsilon$
0 2 2 2 4 5	\$aaaS*B	**\$	GOTO 6
0 2 2 2 4 5 6	\$aaaS*B	**\$	reduce by $B o S * B$
0 2 2 2 3	\$aaaB	**\$	reduce by $S o aB$
0 2 2 4	\$aaS	**\$	shift to 5
0 2 2 4 5	\$aaS*	*\$	reduce by $B o \epsilon$
0 2 2 4 5	\$aaS*B	*\$	GOTO 6
0 2 2 4 5 6	\$aaS*B	*\$	reduce by $B o S * B$
0 2 2 3	\$aaB	*\$	reduce by $S o aB$
0 2 4	\$aS	*\$	shift to 5
0 2 4 5	\$aS*	\$	reduce by $B o \epsilon$
0 2 4 5	\$aS*B	\$	GOTO 6
0 2 4 5 6	\$aS*B	\$	reduce by $B o S*B$
0 2 3	\$aB	\$	reduce by $S o aB$
0 1	\$S	\$	acc

Exercise 2(Canonical LR)

Q1

Augmented Grammar

$$S'
ightarrow S \ (1)$$
 $S
ightarrow aB \ (2)$
 $B
ightarrow S * B \ (3)$
 $B
ightarrow \epsilon \ (4)$ (10)

Calculation of FIRST/FOLLOW

$$FIRST(B) = \{\epsilon, a\}$$

$$FIRST(S) = \{a\}$$

$$FIRST(S') = \{a\}$$

$$FOLLOW(S') = \{\$, *\}$$

$$FOLLOW(S) = \{\$, *\}$$

$$FOLLOW(B) = \{\$, *\}$$

Calculations of closures and GOTO targets

For I_0 :

Since
$$FIRST(\$) = \{\$\}, FIRST(S\$) = \{a\}$$

$$I_0 = CLOSURE([S'
ightarrow \cdot S, \$]) =$$

$$[S'
ightarrow \cdot S, \$] \ [S
ightarrow \cdot aB, \$]$$
 (12)

$$I_1 = GOTO(I_0, S) = CLOSURE(\{[S'
ightarrow S \cdot, \$]\}) = \{[S'
ightarrow S \cdot, \$]\}$$

Since
$$FIRST(B) = \{\epsilon, a\}, FIRST(*B\$) = \{*\},$$

 $I_2 = GOTO(I_0, a) = CLOSURE(\{[S \rightarrow a \cdot B, \$]\}) =$

$$egin{align} [S
ightarrow a \cdot B,\$] \ [B
ightarrow \cdot S * B,\$] \ [B
ightarrow \cdot \epsilon,\$] \ [S
ightarrow \cdot aB,*] \ \end{split}$$

$$I_3 = GOTO(I_2, B) = CLOSURE(\{[S
ightarrow aB \cdot, \$]\}) = \{[S
ightarrow aB \cdot, \$]\}$$

$$I_4 = GOTO(I_2, S) = CLOSURE(\{[B
ightarrow S \cdot *B, \$]\}) = \{[B
ightarrow S \cdot *B, \$]\}$$

$$I_5 = GOTO(I_2, a) = CLOSURE(\{[S
ightarrow a \cdot B, *]\}) =$$

$$egin{align} [S
ightarrow a \cdot B, st] \ [B
ightarrow \cdot S st B, st] \ [B
ightarrow \cdot \epsilon, st] \ [S
ightarrow \cdot a B, st] \ \end{split}$$

$$I_6 = GOTO(I_4, *) = CLOSURE(\{B
ightarrow S * \cdot B, \$\}) =$$

$$egin{align} [B
ightarrow S*\cdot B,\$] \ [B
ightarrow \cdot S*B,\$] \ [B
ightarrow \cdot \epsilon,\$] \ [S
ightarrow \cdot aB,*] \ \end{split}$$

$$I_7 = GOTO(I_5, B) = CLOSURE(\{[S
ightarrow aB \cdot, *]\}) = \{[S
ightarrow aB \cdot, *]\}$$

$$I_8 = GOTO(I_5, S) = CLOSURE(\{[B \to S \cdot *B, *]\}) = \{[B \to S \cdot *B, *]\}$$

Since
$$FIRST(*) = \{*\}, GOTO(I_5, a) = CLOSURE(\{[S \rightarrow a \cdot B, *]\}) = I_5$$

$$GOTO(I_6,S) = CLOSURE(\{[B
ightarrow S \cdot *B,\$]\}) = I_4$$

$$GOTO(I_6,a) = CLOSURE(\{[S
ightarrow a \cdot B, *]\}) = I_5$$

$$I_9 = GOTO(I_6, B) = CLOSURE(\{[B
ightarrow S * B \cdot, \$]\}) = \{[B
ightarrow S * B \cdot, \$]\}$$

$$I_{10} = GOTO(I_8, *) = CLOSURE(\{[B
ightarrow S * \cdot B, *]\}) =$$

$$[B \to S * \cdot B, *]$$

$$[B \to \cdot S * B, *]$$

$$[B \to \cdot \epsilon, *]$$

$$[S \to \cdot aB, *]$$

$$(16)$$

$$GOTO(I_{10},B) = CLOSURE(\{[B \rightarrow S*B\cdot,*]\}) = \{[B \rightarrow S*B\cdot,*]\} = I_{11}$$

$$GOTO(I_{10},S) = CLOSURE(\{[B
ightarrow S \cdot *B,*]\}) = I_8$$

$$GOTO(I_{10},a) = CLOSURE(\{[B
ightarrow a \cdot B, *]\}) = I_5$$

CLR Table

STATE	ACTION			GOTO	
	a	*	\$	S	В
0	s2			1	
1			acc		
2	s5		r4	4	3
3			r2		
4		s6			
5	s5	r4		8	7
6	s5		r4	4	9
7		r2			
8		s10			
9			r3		
10	s5	r4		8	11
11		r3			

Yes. Since there is no conflict in the table, it is an LR(1) grammar.

Q3

Yes.

STACK	SYMBOL	INPUT	ACTION
0	\$	aaaa***\$	shift to 2
0 2	\$a	aaa***\$	shift to 5
0 2 5	\$aa	aa***\$	shift to 5
0 2 5 5	\$aaa	a***\$	shift to 5
0 2 5 5 5	\$aaaa	***\$	reduce by $B o \epsilon$
0 2 5 5 5 7	\$aaaaB	***\$	reduce by $S o aB$
0 2 5 5 8	\$aaaS	***\$	shift to 10
0 2 5 5 8 10	\$aaaS*	**\$	reduce by $B o \epsilon$
0 2 5 5 8 10 11	\$aaaS*B	**\$	reduce by $B o S*B$
0 2 5 5 7	\$aaaB	**\$	reduce by $S o aB$
0 2 5 8	\$aaS	**\$	shift to 10
0 2 5 8 10	\$aaS*	*\$	reduce by $B o \epsilon$
0 2 5 8 10 11	\$aaS*B	*\$	reduce by $B o S*B$
0 2 5 7	\$aaB	*\$	reduce by $S o aB$
0 2 4	\$aS	*\$	shift to 6
0 2 4 6	\$aS*	\$	reduce by $B o \epsilon$
0 2 4 6 9	\$aS*B	\$	reduce by $B o S * B$
0 2 3	\$aB	\$	reduce by $S o aB$
0 1	\$S	\$	acc

Exercise 3(LALR)

Q1

Augmented Grammar

$$S' o S$$
 (1)
 $S o aB$ (2)
 $B o S * B$ (3)
 $B o \epsilon$ (4)

There are five pairs that can be merged in the augmented grammar.

We can replace the I_2, I_5 with the union of them:

 $I_{25} =$

$$[S \rightarrow a \cdot B, \$/*]$$

$$[B \rightarrow \cdot S * B, \$/*]$$

$$[B \rightarrow \cdot \epsilon, \$/*]$$

$$[S \rightarrow \cdot aB, *]$$

$$(18)$$

We can replace the $I_6,\,I_{10}$ with the union of them, too:

 $I_{610} =$

$$[B \to S * \cdot B, \$/*]$$

$$[B \to \cdot S * B, \$/*]$$

$$[B \to \cdot \epsilon, \$/*]$$

$$[S \to \cdot aB, *]$$

$$(19)$$

$$I_{37}=\{[S
ightarrow aB\cdot,\$/*]\}$$

$$I_{48} = \{[B o S \cdot *B, \$/*]\}$$

$$I_{911} = \{[B o S * B \cdot, \$/*]\}$$

LALR Table

STATE	ACTION			GOTO	
	a	*	\$	S	В
0	s25			1	
1			acc		
25	s25	r4	r4	I_{48}	I_{37}
37		r2	r2		
48		s610			
610	s25	r4	r4	I_{48}	I_{911}
911		r3	r3		

Q2

Yes, since there is no conflict in the table.

Q3

Yes

STACK	SYMBOL	INPUT	ACTION
0	\$	aaaa***\$	shift to 25
0 25	\$a	aaa***\$	shift to 25
0 25 25	\$aa	aa***\$	shift to 25
0 25 25 25	\$aaa	a***\$	shift to 25
0 25 25 25 25	\$aaaa	***\$	reduce by $B o \epsilon$
0 25 25 25 25 37	\$aaaaB	***\$	reduce by $S o aB$
0 25 25 25 48	\$aaaS	***\$	shift to 610
0 25 25 25 48 610	\$aaaS*	**\$	reduce by $B o \epsilon$
0 25 25 25 48 610 911	\$aaaS*B	**\$	reduce by $B o S*B$
0 25 25 25 37	\$aaaB	**\$	reduce by $S o aB$
0 25 25 48	\$aaS	**\$	shift to 610
0 25 25 48 610	\$aaS*	*\$	reduce by $B o \epsilon$
0 25 25 48 610 911	\$aaS*B	*\$	reduce by $B o S * B$
0 25 25 37	\$aaB	*\$	reduce by $S o aB$
0 25 48	\$aS	*\$	shift to 610
0 25 48 610	\$aS*	\$	reduce by $B o \epsilon$
0 25 48 610 911	\$aS*B	\$	reduce by $B o S * B$
0 25 37	\$aB	\$	reduce by $S o aB$
0 1	\$S	\$	acc