

Trabajo práctico 1: Especificacíon y WP

Elecciones Nacionales

14 de septiembre de 2023

Algoritmos y Estructuras de Datos

$sudo_rm-rf_-/*$

Integrante	LU	Correo electrónico	
Rocca, Santiago	152/23	santiagrocca17@gmail.com	
Fisz, Maximiliano	586/19	maximilianofisz@gmail.com	
Gomez, Abril	574/20	goskema@gmail.com	
López, Gonzalo	1017/22	gonzalo.esloga.uba@gmail.com	

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

1. Especificación

1.1. hayBallotage

```
1.1.1. Main
```

```
proc hayBallotage (in escrutinio : seq\langle\mathbb{Z}\rangle) : Bool requiere \{eleccionValida(escrutinio))\} asegura \{res = \neg((cond1HayBallotage(escrutinio))) \lor_L (cond2HayBallotage(escrutinio)))\}

1.1.2. Predicados Especificos pred cond1HayBallotage (in escrutinio : seq\langle\mathbb{Z}\rangle) \{(\exists n: \mathbb{Z})(0 \le n < |escrutinio| \land_L (porcentajeDeVotos(escrutinio, escrutinio|x)) > 45)
```

 $(\exists n : \mathbb{Z})(0 \le n < |escrutinio| \land_L (porcentajeDeVotos(escrutinio, escrutinio[x]) > 40) \land_L$ $\neg (\exists x : \mathbb{Z})(0 \le x < |escrutinio| \land_L (\neg (n = x) \land_L ((escrutinio[n] - escrutinio[x]) > 10))$

hayFraude

1.2.1. Main

1.2.

```
\label{eq:proc_hayFraude} $$\operatorname{proc} \ \operatorname{hayFraude} ((in \ \operatorname{escrutinio\_Presidencial}: \ \operatorname{seq}\langle \mathbb{Z}\rangle), \ in \ \operatorname{escrutinio\_senadores}: \ \operatorname{seq}\langle \mathbb{Z}\rangle), \ in \ \operatorname{escrutinio\_diputados}: \ \operatorname{seq}\langle \mathbb{Z}\rangle): \ \operatorname{Bool} \ \operatorname{requiere} \ \{\operatorname{umbralElectoral}(\operatorname{escrutinio\_senadores}) \ \wedge_L \ \operatorname{eleccionValida}(\operatorname{escrutinio\_Presidencial}) \ \wedge_L \ \operatorname{eleccionValida}(\operatorname{escrutinio\_diputados})\} \\ \operatorname{asegura} \ \{\operatorname{res} = \neg(((|\operatorname{sumaDeVotos}(\operatorname{escrutinio\_Presidencial}) = \operatorname{sumaDeVotos}(\operatorname{escrutinio\_Senadores})) \ \wedge_L \ (\operatorname{sumaDeVotos}(\operatorname{escrutinio\_Presidencial}) = \operatorname{sumaDeVotos}(\operatorname{escrutinio\_Diputados})))\} \\
```

1.3. obtenerSenadoresEnProvincia

pred cond2HayBallotage (in escrutinio : $seq\langle \mathbb{Z}\rangle$) {

1.3.1. Main

```
proc obtenerSenadoresEnProvincia (in escrutinio : seq\langle\mathbb{Z}\rangle) : \mathbb{Z}\times\mathbb{Z} requiere \{eleccionValida(escrutinio) \land minimoDePartidos(escrutinio)\} asegura \{(\exists!x:\mathbb{Z})(0\leq x<|escrutinio|-1)\land_L((\exists!y:\mathbb{Z})(0\leq y<|escrutinio|-1)\land_L((\forall i:\mathbb{Z})(0\leq i<|escrutinio|\land\neg(i=x)\land\neg(i=y))\longrightarrow_L escrutinio[i]<escrutinio[res_y]<escrutinio[res_x]))\}
```

1.3.2. Predicados Especificos

```
pred minimoDePartidos (in escrutinio: seq\langle \mathbb{Z}\rangle) { |escrutinio| \geq 3 }
```

1.4. calcular DH ondt En Provincia

1.4.1. Main

```
proc calcularDHondtEnProvincia (in cant_bancas: \mathbb{Z}, in escrutinio: seq\langle\mathbb{Z}\rangle): seq\langle seq\langle\mathbb{Z}\rangle\rangle requiere \{eleccionValida(escrutinio) \land umbralElectoral(escrutinio) \land cant\_bancas > 0)\} asegura \{((\forall x: \mathbb{Z})(0 \leq n < cant\_bancas) \land_L (\forall x: \mathbb{Z})(0 \leq n < lescrutinio|)) \longrightarrow_L (res[x][n] = \frac{escrutinio[x]}{n+1})\}
```

1.5. obtenerDiputadosEnProvincia

1.5.1. Main

```
proc obtenerDiputadosEnProvincia (in cant_bancas: \mathbb{Z}, in escrutinio: seq\langle\mathbb{Z}\rangle, in dHondt: seq\langle seq\langle\mathbb{Z}\rangle\rangle): seq\langle\mathbb{Z}\rangle requiere \{eleccionValida(escrutinio) \land umbralElectoral(escrutinio)\} asegura \{(\forall r: \mathbb{Z})(0 \leq r < |escrutinio| - 1 \longrightarrow_L res[r] = bancasDe(r, cant\_bancas, dHondt))\}
```

1.5.2. Predicados Especificos

```
pred cocienteGanador (in indicePartido: \mathbb{Z}, in bancaEnDisputa: \mathbb{Z}, in dHont: seq\langle seq\langle \mathbb{Z}\rangle\rangle) { res = True \longleftrightarrow (\forall i : \mathbb{Z})(0 \le i < |dHont| - 1 \land \neg(i = indicePartido) \longrightarrow_L dHont[bancaEnDisputa][indicePartido] > dHont[bancaEnDisputa][i])}} dHont[bancaEnDisputa][i])}
```

1.6. validarListasDiputadosEnProvincia

1.6.1. Main

```
proc (in cant_bancas: \mathbb{Z}, in listas: seq\langle seq\langle dni: \mathbb{Z} \times genero: \mathbb{Z} \rangle \rangle (Bool): requiere \{(cant\_bancas>0) \land (dni>0) \land (1 \leq genero \geq 2)\} asegura \{(\forall x: \mathbb{Z})(0 \leq x < |listas|) \longrightarrow_L (cantCandidatosCorrecta(cant\_bancas, listas[x]) \land_L altGenero(listas[x])\}
```

1.6.2. Predicados Especificos

1.7. Auxiliares

```
aux sumaDeVotos (in escrutinio : seq\langle\mathbb{Z}\rangle) : \mathbb{Z}=\sum_{i=0}^{|escrutinio|-1} escrutinio[i]; aux porcentajeDeVotos (in escrutinio: seq\langle\mathbb{Z}\rangle, in partido: seq\langle\mathbb{Z}\rangle) : \mathbb{R}=sumaDeVotos(escrutinio)^{-1}*escrutinio[partido]*10^2); aux bancasDe (in indicePartido: \mathbb{Z}, in bancas, in dHont seq\langle seq\langle\mathbb{Z}\rangle\rangle) : \mathbb{Z}=\sum_{p=0}^{bancas-1} if\ cocienteGanador(indicePartido,p,dHont)\ then\ 1\ else\ 0;
```

1.8. Predicados Universales

```
 \begin{array}{l} \operatorname{pred \ noHayRepetidos \ (in \ escrutinio : \ seq\langle \mathbb{Z}\rangle) \ \{} \\ (\forall x: \mathbb{Z})(0 \leq x < | escrutinio | \longrightarrow_L ((\forall y: \mathbb{Z})(0 \leq y < | escrutinio | \wedge \neg (x = y) \longrightarrow_L \neg (escrutinio[x] = escrutinio[y]))) \ \} \\ \operatorname{pred \ cantVotosValidos \ (in \ escrutinio : \ seq\langle \mathbb{Z}\rangle) \ \{} \\ ((\forall x: \mathbb{Z})(0 \leq x < | escrutinio |) \longrightarrow_L (escrutinio[x] \geq 0)) \ \} \\ \operatorname{pred \ escrutinioValidio \ (in \ escrutinio : \ seq\langle \mathbb{Z}\rangle) \ \{} \\ | escrutinio| \geq 2 \ \} \\ \operatorname{pred \ EleccionValida \ (in \ escrutinio : \ seq\langle \mathbb{Z}\rangle) \ \{} \\ nohayRepetidos(escrutinio) \wedge cantVotosValidos(escrutinio) \wedge escrutinioValido(escrutinio) \ \} \\ \operatorname{pred \ umbralElectoral \ (in \ escrutinioSen : \ seq\langle \mathbb{Z}\rangle) \ \{} \\ ((\forall x: \mathbb{Z})(0 \leq x < | escrutinio|) \longrightarrow_L (escrutinioSen[x] > 3)) \ \} \\ \end{array}
```

2. Implementaciones y demostraciones de correctitud

2.1. Implementaciones

2.1.1. hayBallotage

```
res := true
1
                        tans := 0
                        primero := 0
3
                        segundo := 0
                        i := 0
                        suma := 0
                        while (escrutinio.size() > i) do
                            suma:= suma + escrutinio[i]
8
                            i := i + 1
9
                        endwhile
10
                        i := 0
11
                        while (escrutinio.size() > i) do
12
                            escrutinio[i] := (escrutinio[i] * 100)/suma
13
                            i := i + 1
14
                        endwhile
15
                        i := 0
16
                        while (escrutinio.size() > i) do
                            if (segundo < escrutinio[i]) then</pre>
18
                                 segundo := escrutinio[i]
19
                            else:
20
                                 skip
21
                            endif
22
                            if (primero < segundo) then
23
                                 trans := primero
24
                                 primero := segundo
25
                                 segundo := trans
26
                            else:
27
                                 skip
28
                            endif
                            i := i + 1
30
                        endwhile
31
                        if (primero > 45) then
                            res := false
33
34
                            if ((primero > 40) & (primero - segundo >= 10)) then
35
                                 res := false
                            else
                                 skip
38
                            endif
39
                        endif
40
```

Código 1: ()

hayFraude 2.1.2.

```
res := \mathbf{true}
                            sumaPres := 0
2
                            sumaDip := 0
3
                            sumaSen := 0
4
                             while (escrutinio_Presidencial.size() > i) do
5
                                 sumaPres:= sumaPres + escrutinio_Presidencial[i]
6
                                 i := i + 1
7
                             endwhile
8
                             i := 0
9
                             while (escrutinio_Diputados.size() > i) do
10
                                 sumaDip:= sumaDip + escrutinio_Diputados[i]
11
                                 i := i + 1
12
                             endwhile
13
                             i := 0
14
                             while (escrutinio_Senadores.size() > i) do
15
                                 sumaSen := sumaSen + escrutinio_Senadores[i]
16
                                 i := i + 1
17
                             endwhile
18
                             if (sumaPres = sumaDip && sumaPres = sumaSen) then
19
                                 res := false
20
                             else:
21
                                 skip
22
                             endif
23
```

Código 2: ()

obeten er Senadores En Provincia2.1.3.

```
trans := 0
1
                             primero := 0
2
                             segundo := 0
3
                             i := 0
                             while (escrutinio.size() > i) do
                                  if (escrutinio[segundo] < escrutinio[i]) then</pre>
                                     segundo := i
7
                                 else:
8
                                      skip
9
                                 endif
10
                                  if (escrutinio [primero] < escrutinio [segundo]) do
11
                                      trans := primero
12
                                     primero := segundo
13
                                     segundo := trans
14
                                  else:
15
                                      skip
16
                                 endif
17
                                 i := i + 1
18
                             endwhile
19
                             res := (primero, segundo)
20
                                                        Código 3: ()
```

2.1.4. validarListasDiputadosEnProvincia

```
res := true
 2
                         i := 0
                         while (listas.size() > i) do
3
                             if (listas[i].size() != cant_bancas) then
 4
                                 res:= false
 5
                             else:
6
                                 skip
7
                             endif
                             i := i + 1
9
                        endwhile
10
                        i := 0
11
                        i := 1
12
                         while (listas.size() > i) do
13
                             genero := listas[i][0][1]
14
                             while (listas[i].size() > j) do
15
                                 if (listas[i][j][1] = genero) then
16
                                     res := false
17
                                 else:
18
                                     genero := listas[i][j][1]
19
                                     j := j + 1
20
                                 endif
21
                             endwhile
22
                             i := i + 1
23
                        endwhile
24
```

Código 4: ()

Lo principal: las fórmulas. Se puede poner en una linea, como $x_i = x_{i-1} + x_{i-2}$, o ponerse más grande:

$$\sum_{i=0}^{n} i \tag{1}$$

Y se pueden citar ecuaciones con \eqref{nombreDeEq}: (1) Ejemplo de itemizado:

- Item 1
- Item 2
- Item 3

Ejemplo de enumerado con menor distancia entre items:

- 1. Item 1
- 2. Item 2
- 3. Item 3

Podemos escribir mucho texto. Mucho texto.

Otro párrafo. Otro párrafo.

Le agregamos una separación entre párrafos. Le agregamos una separación entre párrafos. Le agregamos una separación entre párrafos. Le agregamos una separación entre párrafos.

La tabla 1 es un ejemplo de cómo se hace una tabla.

La figura 2 es un ejemplo de cómo se agrega una imagen.

Código 5: Ejemplo de código (usando los estilos de la cátedra, ver las macros para más detalles)

Col1	Col2	Col2	Col3
1	6	87837	787
$\parallel 2$	7	78	5415
3	545	778	7507
4	545	18744	7560
5	88	788	6344

Tabla 1: Ejemplo de tabla

Figura 1: Ejemplo de figura

Figura 2: Ejemplo para poner dos figuras juntas. Y citarlas por separado a (a) y (b).

Si se pone un label al 1stlisting, se puede referenciar: Código 5.

2.2. Macros de la cátedra para especificar

```
proc nombre (in paramIn : \mathbb{N}, inout paramInout : seq\langle\mathbb{Z}\rangle) : tipoRes requiere {expresionBooleana1} asegura {expresionBooleana2} aux auxiliar1 (parametros) : tipoRes = expresion; pred pred1 (parametros) { expresion } aux auxiliarSuelto (parametros) : tipoRes = expresion; pred predSuelto (parametros) { (\forall variable: tipo) \ (algo \longrightarrow_L expresion) } pred predSuelto (parametros) { (\exists variable: tipo) \ (algo \land_L expresion) }
```