Concours blanc (type Ecricome)

le mercredi 4 décembre 2016

Exercice 1 (CB)

Soit f la fonction définie pour $x \in \mathbb{R}$ par : $f(x) = 2 - 2x e^{-x}$.

- 1. Calculer l'intégrale $I = \int_0^1 f(x) dx$.
- 2. Étude de la fonction f
 - a) Montrer que la fonction f est de classe C^2 sur \mathbb{R} .
 - b) Faire le tableau de variations de f sur \mathbb{R} . On fera apparaître les limites en $\pm \infty$.
 - c) Étudier le signe de la fonction f''. En déduire que la fonction f admet un unique point d'inflexion, que l'on précisera.
- 3. Tracé de la fonction f sur [0;3]

On donne $e^{-1} \simeq 0.37$ et $e^{-2} \simeq 0.14$.

On utilisera • la même échelle en abscisse et en ordonnée.

- ▶ une échelle d'au moins 4cm (= 5 grands carreaux) par unité.
- a) Tracer l'asymptote représentant la limite de f en $+\infty$.
- b) Donner la valeur de f(0), f(1) et f(2), et le cas échéant une valeur approchée. Placer les points sur le graphique.
- c) Donner la valeur de f'(0), f'(1) et f'(2), et le cas échéant une valeur approchée. Tracer les tangentes sur le graphique.
- d) Tracer la courbe de la fonction f sur le segment [0;3].
- **4. L'équation** f(x) = x. On définit la fonction $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) x \end{cases}$
 - a) Montrer que pour $x \ge 0$, on a $0 \le f'(x) \le 2 e^{-2}$. (on pourra utiliser la question 2.c))
 - **b)** En déduire que la fonction g est strictement décroissante sur $[0; +\infty[$.
 - c) Montrer que l'équation g(x) = 0 admet une unique solution ℓ sur $[0; +\infty[$.
 - **d)** Montrer que $\ell \in [1; 2]$.
 - e) Étudier le signe de g(x) pour $x \ge 0$.
- 5. Étude de la suite (u_n) définie par $u_0 = 2$, et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - a) Montrer que $\forall n \geq 0$, on a $u_n \geq \ell$.
 - **b)** Étudier le sens de variation de la suite (u_n) .
 - c) Montrer que la suite (u_n) converge, et préciser sa limite.
 - **d)** Montrer grâce à la question **4.a)** que $\forall n \in \mathbb{N}$, on a $0 \leq u_{n+1} \ell \leq 2 e^{-2} (u_n \ell)$.
 - e) En déduire que $\forall n \in \mathbb{N}$, on a : $u_n \ell \leqslant 2^n e^{-2n}$.
 - f) Combien de termes de (u_n) calculer pour approcher ℓ avec une précision $\leq 10^{-3}$?

 (on rappelle $\ln(2) \simeq 0.69$ et $\ln(10) \simeq 2.3$)

Exercice 2

(inspiré d'Hec Bl 2012)

On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in]0;1[$, et pour tout $n\in\mathbb{N}, x_{n+1}=x_n-x_n^2$. On l'a programmée grâce à Scilab:

- 1. Le graphique de gauche
 - a) À quoi correspond le paramètre N?
 - b) Quelle valeur de x_0 a été choisie?
 - c) Donner un ordre de grandeur de x_{100} .
 - d) Conjecturer le comportement (x_n) .
- 2. Le graphique de droite
 - a) Quelle est la suite représentée?
 - b) Conjecturer son comportement.
 - c) Qu'en déduire alors sur (x_n) ?
- **3.** Dresser le tableau de variations de la fonction $f:[0;1]\to\mathbb{R}$ définie par $f(x)=x-x^2$.
- **4.** a) Montrer que la suite (x_n) est monotone.
 - **b)** En déduire que la suite (x_n) converge.
 - c) Déterminer la limite de la suite (x_n) .
- **5.** a) Établir pour tout $n \in \mathbb{N}$, l'encadrement $0 < x_n \leqslant \frac{1}{n+1}$.
 - **b)** Retrouver ainsi la limite de la suite (x_n) .
 - c) En déduire que la série de terme général (x_n^2) est convergente.
- **6.** Soit (v_n) la suite définie par : $\forall n \in \mathbb{N}, \ v_n = nx_n$.
 - a) Montrer que la suite (v_n) est croissante.
 - b) En déduire que la suite (v_n) converge vers un réel ℓ (on ne demande pas ici de calculer ℓ).
 - c) Montrer que $0 < \ell \le 1$.
- 7. a) Soit (a_n) une suite telle que $a_n \sim \frac{\alpha}{n}$, avec $\alpha \neq 0$. La série $\sum_{n \geq 1} a_n$ est-elle convergente?
 - b) Soit (b_n) une suite telle que $nb_n \to \beta$. On suppose que la série $\sum_{n\geqslant 1} b_n$ est convergente. Combien vaut alors β ?
- **8.** Soit (z_n) la suite définie par $\forall n \in \mathbb{N}, \ z_n = v_{n+1} v_n + x_n^2$.
 - a) Montrer que la série de terme général (z_n) est convergente.
 - **b)** Montrer que $\forall n \in \mathbb{N}$, on a : $nz_n = (1 v_n)v_n$.
 - c) En déduire que $\lim(nz_n) = (1 \ell)\ell$.
- 9. a) En appliquant le résultat de la question 7.b), déduire que $\ell = 1$.
 - b) En déduire un équivalent de la suite (x_n) .
 - c) Conclure sur la conjecture de la question 2...

Exercice 3

(adapté d'Esc Ece 2005)

Une urne contient initialement trois boules indiscernables au toucher : ▶ une boule blanche et deux boules rouges.

On effectue dans cette urne une succession de tirages d'une boule selon le protocole suivant :

- ▶ si la boule tirée est blanche, elle est remise dans l'urne.
- ▶ si la boule tirée est rouge : ▶ elle n'est pas remise dans l'urne,
 - ▶ mais, à la place, on y remet une boule blanche.

Pour tout entier $n \ge 1$, on considère les événements suivants :

- ▶ B_n = « on obtient une boule **blanche** lors du $n^{\hat{e}me}$ tirage »,
- $R_n = \emptyset$ on obtient une boule **rouge** lors du $n^{\hat{e}me}$ tirage »,

et X_n le nombre de boules rouges contenues dans l'urne à l'issue du $n^{\grave{e}me}$ tirage. Par convention, on pose $X_0 = 2$.

- 1. Donner la loi de probabilité de la variable X_1 .
- **2.** Étude de $\mathbb{P}(X_n=2)$
 - a) Quelle est la probabilité conditionnelle $\mathbb{P}_{[X_{n-1}=2]}(B_n)$?
 - b) Justifier l'égalité d'événements : $\forall n \ge 1, [X_n = 2] = [X_{n-1} = 2] \cap B_n$.
 - c) En déduire que la suite $(\mathbb{P}(X_n=2))_{n\in\mathbb{N}}$ est géométrique. Donner l'expression de la probabilité $\mathbb{P}(X_n=2)$, pour $n \geq 1$.
- 3. Étude de $\mathbb{P}(X_n=1)$
 - a) Pour $n \in \mathbb{N}^*$, écrire l'événement $[X_n = 1]$ en terme de $[X_{n-1} = 1]$, $[X_{n-1} = 2]$, B_n , R_n .
 - b) En appliquant soigneusement la formule des probabilités totales, déduire pour $n \ge 1$:

$$\mathbb{P}(X_n = 1) = \frac{2}{3} \cdot \mathbb{P}(X_{n-1} = 1) + \frac{1}{3} \cdot \mathbb{P}(X_{n-1} = 2)$$

Pour $n \in \mathbb{N}$, on note $u_n = \mathbb{P}(X_n = 1)$.

- c) Montrer la relation de récurrence $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{2}{3}u_n + \frac{1}{3^{n+1}}$, et préciser u_0 .
- d) Montrer que la suite (v_n) définie par : $\forall n \in \mathbb{N}, \ v_n = u_n + \frac{2}{3^n}$, est géométrique.
- e) En déduire $\forall n \in \mathbb{N}$, l'expression $\mathbb{P}(X_n = 1) = 2\left(\frac{2}{3}\right)^n \frac{2}{3^n}$.
- 4. Conclusion de l'étude de X_n
 - a) Déduire des résultats précédents $\mathbb{P}(X_n=0)$ pour tout $n \in \mathbb{N}$.
 - b) Calculer l'espérance de X_n .
- 5. On note T le rang du tirage où l'on tire la dernière boule rouge de l'urne.
 - a) Donner $T(\Omega)$.
 - b) Montrer que pour $n \in \mathbb{N}$, on a : $[T = n] = [X_{n-1} = 1] \cap [X_n = 0]$.
 - c) En déduire que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(T=n) = \left(\frac{2}{3}\right)^n \frac{2}{3^n}$.
 - d) Vérifier que $\sum\limits_{n=1}^{\infty}\mathbb{P}(T=n)=1.$ En déduire que T est une variable aléatoire bien définie.

- e) Établir : $\mathbb{E}[T] = \frac{9}{2}$
- f) Montrer que $\mathbb{E}[T(T-1)] = \frac{45}{2}$. En déduire la variance Var(T).