Dharavath Ramdas

Code Github link: https://github.com/dharavathramdas101
linkedin link: https://www.linkedin.com/in/dharavath-ramdas-a283aa213/

Black Friday Dataset EDA and Feature engineering

Cleaning and preparing the data for model training

Importing required libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Problem Statement

Perform Black Friday Dataset EDA and Feature engineering

importing the train dataset

In [2]:

```
df_train = pd.read_csv(r"C:\Users\DHARAVATH RAMDAS\Downloads\archive (3)\train.csv")
df_train.head()
```

Out[2]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Ρı
0	1000001	P00069042	F	0- 17	10	А	2	0	3	NaN	
1	1000001	P00248942	F	0- 17	10	А	2	0	1	6.0	
2	1000001	P00087842	F	0- 17	10	А	2	0	12	NaN	
3	1000001	P00085442	F	0- 17	10	А	2	0	12	14.0	
4	1000002	P00285442	М	55+	16	С	4+	0	8	NaN	
4										l	•

import the test data

```
In [3]:
```

df_test = pd.read_csv(r"C:\Users\DHARAVATH RAMDAS\Downloads\archive (3)\test.csv")
df_test

Out[3]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_
0	1000004	P00128942	М	46- 50	7	В	2	1	1	11
1	1000009	P00113442	М	26- 35	17	С	0	0	3	5
2	1000010	P00288442	F	36- 45	1	В	4+	1	5	14
3	1000010	P00145342	F	36- 45	1	В	4+	1	4	9
4	1000011	P00053842	F	26- 35	1	С	1	0	4	5
233594	1006036	P00118942	F	26- 35	15	В	4+	1	8	Na
233595	1006036	P00254642	F	26- 35	15	В	4+	1	5	8
233596	1006036	P00031842	F	26- 35	15	В	4+	1	1	5
233597	1006037	P00124742	F	46- 50	1	С	4+	0	10	16
233598	1006039	P00316642	F	46- 50	0	В	4+	1	4	5
233599	rows × 11	columns								
4										>

Merge the both train and test data

In [4]:

df=df_train.append(df_test)
df.head()

Out[4]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Pı
0	1000001	P00069042	F	0- 17	10	А	2	0	3	NaN	
1	1000001	P00248942	F	0- 17	10	А	2	0	1	6.0	
2	1000001	P00087842	F	0- 17	10	А	2	0	12	NaN	
3	1000001	P00085442	F	0- 17	10	А	2	0	12	14.0	
4	1000002	P00285442	М	55+	16	С	4+	0	8	NaN	
4											•

see information

```
In [5]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 783667 entries, 0 to 233598
Data columns (total 12 columns):
                                Non-Null Count
                                                Dtype
    Column
    User_ID
0
                                783667 non-null int64
    Product_ID
1
                                783667 non-null object
    Gender
                                783667 non-null object
                                783667 non-null object
    Occupation
                                783667 non-null int64
    City_Category
                                783667 non-null object
    Stay_In_Current_City_Years 783667 non-null
    Marital_Status
                                783667 non-null
8
    Product_Category_1
                                783667 non-null
                                                 int64
    Product_Category_2
                                537685 non-null
                                                 float64
 10 Product_Category_3
                                237858 non-null
                                                 float64
11 Purchase
                                550068 non-null float64
dtypes: float64(3), int64(4), object(5)
memory usage: 77.7+ MB
```

user_id column is of no use so i will remove it

```
In [6]:
```

```
df.drop('User_ID',axis=1,inplace=True)
```

Describe for stats analysis

In [7]:

df.describe()

Out[7]:

	Occupation	Marital_Status	Product_Category_1	Product_Category_2	Product_Category_3	Purchase
count	783667.000000	783667.000000	783667.000000	537685.000000	237858.000000	550068.000000
mean	8.079300	0.409777	5.366196	9.844506	12.668605	9263.968713
std	6.522206	0.491793	3.878160	5.089093	4.125510	5023.065394
min	0.000000	0.000000	1.000000	2.000000	3.000000	12.000000
25%	2.000000	0.000000	1.000000	5.000000	9.000000	5823.000000
50%	7.000000	0.000000	5.000000	9.000000	14.000000	8047.000000
75%	14.000000	1.000000	8.000000	15.000000	16.000000	12054.000000
max	20.000000	1.000000	20.000000	18.000000	18.000000	23961.000000

In [8]:

df.head()

Out[8]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_Cat
0	P00069042	F	0- 17	10	А	2	0	3	NaN	
1	P00248942	F	0- 17	10	А	2	0	1	6.0	
2	P00087842	F	0- 17	10	А	2	0	12	NaN	
3	P00085442	F	0- 17	10	А	2	0	12	14.0	
4	P00285442	М	55+	16	С	4+	0	8	NaN	
4										+

Total number of categorical attributes

```
In [9]:
cat_col = df.select_dtypes(exclude=['int64','float64']).columns.size
print("total number of categorical attributes are :", cat_col)
total number of categorical attributes are : 5
Total number of numerical attributes
In [10]:
num_col = df.select_dtypes(exclude=['object']).columns.size
print("total number of numerical attributes are :", num_col)
total number of numerical attributes are : 6
In [11]:
pd.get_dummies(df['Gender'])
Out[11]:
                        F M
                         1
                                  0
                2 1 0
                                0
                4 0
  233594
                         1
  233595 1 0
                      1 0
  233596
  233597
  233598 1 0
783667 rows × 2 columns
In [12]:
## feature
In [13]:
df['Gender'] = df['Gender'].map({'F':0,'M':1})
df.head()
Out[13]:
          Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_2 Product_Category_2 Product_Category_3 Product_Category_3 Product_Category_3 Product_Category_4 Product_Category_5 Product_Category_6 Product_Category_6 Product_Category_6 Product_Category_7 
                                                                     0-
17
 0 P00069042
                                                         0
                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                        3
                                                                                                      10
                                                                                                                                                                                                                                                                                                                                                                        NaN
  1 P00248942
                                                         0
                                                                                                      10
                                                                                                                                                Α
                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                          6.0
 2 P00087842
                                                         0
                                                                                                      10
                                                                                                                                                Α
                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                      12
                                                                                                                                                                                                                                                                                                                                                                        NaN
  3 P00085442
                                                         0
                                                                                                      10
                                                                                                                                                Α
                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                      12
                                                                                                                                                                                                                                                                                                                                                                        14.0
```

Handiling categorical feature age

1 55+

16

С

P00285442

4+

0

8

NaN

```
In [15]:
df['Age'] = df['Age'].map({'0-17':1,'18-25':2,'26-35':3,'36-45':4,'46:50':5,'51-55':6,'55+':7})
In [16]:
#pd.get_dummies(df['Age'],drop_first=True)
In [17]:
## Second technique
In [18]:
\textbf{from} \ \textbf{sklearn} \ \textbf{import} \ \textbf{preprocessing}
In [19]:
df.head()
Out[19]:
         Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_2 Product_Category_2 Product_Category_3 Product_Category_3 Product_Category_3 Product_Category_4 Product_Category_5 Product_Category_6 Product_Category_6 Product_Category_7 
 0 P00069042
                                                   0
                                                              1.0
                                                                                             10
                                                                                                                                  Α
                                                                                                                                                                                                    2
                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                         3
                                                                                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                    2
  1 P00248942
                                                                                                                                  Α
                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                                                       6.0
                                                   0
                                                            1.0
                                                                                             10
                                                                                                                                                                                                                                                                                         1
  2 P00087842
                                                             1.0
                                                                                             10
                                                                                                                                                                                                    2
                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                       12
                                                                                                                                                                                                                                                                                                                                    NaN
  3 P00085442
                                                   0
                                                           1.0
                                                                                             10
                                                                                                                                  Α
                                                                                                                                                                                                    2
                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                       12
                                                                                                                                                                                                                                                                                                                                     14.0
  4 P00285442
                                                                                                                                  С
                                                                                                                                                                                                  4+
                                                                                                                                                                                                                                        0
                                                   1 7.0
                                                                                             16
                                                                                                                                                                                                                                                                                         8
                                                                                                                                                                                                                                                                                                                                    NaN
In [20]:
df.isnull().sum()
Out[20]:
                                                                                                      0
Product_ID
Gender
                                                                                                      0
                                                                                           65278
Age
Occupation
                                                                                                      0
City_Category
                                                                                                      0
Stay_In_Current_City_Years
                                                                                                      0
Marital_Status
                                                                                                      0
Product_Category_1
                                                                                                      0
Product_Category_2
                                                                                        245982
Product_Category_3
                                                                                        545809
Purchase
                                                                                        233599
dtype: int64
fill na
In [21]:
df.bfill(inplace=True)
In [22]:
df.ffill(inplace=True)
In [23]:
df.isnull().sum()
Out[23]:
Product_ID
                                                                                       0
Gender
                                                                                       0
Age
Occupation
City_Category
Stay_In_Current_City_Years
                                                                                       0
Marital_Status
                                                                                       0
                                                                                       0
Product_Category_1
Product_Category_2
                                                                                       0
                                                                                       0
Product_Category_3
Purchase
dtype: int64
```

```
In [24]:

df.head()
```

Out[24]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_Cat
0	P00069042	0	1.0	10	Α	2	0	3	6.0	
1	P00248942	0	1.0	10	Α	2	0	1	6.0	
2	P00087842	0	1.0	10	Α	2	0	12	14.0	
3	P00085442	0	1.0	10	Α	2	0	12	14.0	
4	P00285442	1	7.0	16	С	4+	0	8	2.0	
4										>

In []:

EDA

```
In [25]:

df.columns

Out[25]:
```

Gender vs Purchase

In [26]:

```
sns.scatterplot(x=df["Gender"],y=df["Purchase"],data=df)
```

Out[26]:

<AxesSubplot:xlabel='Gender', ylabel='Purchase'>

Gender counting male and female

```
In [27]:
```

```
df['Gender'].value_counts()
```

Out[27]:

1 590031 0 193636

Name: Gender, dtype: int64

```
In [28]:
```

```
df['Gender'].value_counts().plot.bar()
```

Out[28]:

<AxesSubplot:>

Histogram of feature in dataset

In [29]:

```
sns.set_style('whitegrid')
df.hist(figsize=(12,9),color="r")
plt.tight_layout()
plt.show()
```


In []:

Distribution of amount purchase

In [30]:

```
plt.figure(figsize=(10,6))
sns.set_style('whitegrid')
sns.distplot(df['Purchase'],kde=True,bins=30)
plt.show()
```


Countplot

Countplot on Occupation

In [31]:

```
sns.countplot(x='Occupation',data=df)
```

Out[31]:

<AxesSubplot:xlabel='Occupation', ylabel='count'>

In [32]:

df['City_Category'].value_counts()

Out[32]:

B 329739 C 243684 A 210244

Name: City_Category, dtype: int64

In [33]:

```
sns.countplot(x='Occupation',hue='City_Category',data=df)
```

Out[33]:

<AxesSubplot:xlabel='Occupation', ylabel='count'>

In [34]:

df['Age'].value_counts()

Out[34]:

3.0 337590 4.0 172297 2.0 155085 6.0 60682 7.0 34854 1.0 23159

Name: Age, dtype: int64

we have seven different groups

In [36]:

sns.countplot(x='Age',data=df)

Out[36]:

<AxesSubplot:xlabel='Age', ylabel='count'>

lets see the distribution of gender in agegroup

```
In [38]:
```

```
sns.countplot(x='Age',hue='Gender',data=df)
```

Out[38]:

<AxesSubplot:xlabel='Age', ylabel='count'>

purchase vs city category

In [39]:

```
sns.barplot(x='City_Category',y='Purchase',data=df)
```

Out[39]:

<AxesSubplot:xlabel='City_Category', ylabel='Purchase'>

age vs purchase

In [40]:

sns.barplot(x='Age',y='Purchase',data=df)

Out[40]:

<AxesSubplot:xlabel='Age', ylabel='Purchase'>

gender vs purchase

```
In [41]:
sns.barplot(x='Gender',y='Purchase',data=df)
Out[41]:
```


purchse vs marital status

Marital_Status

we are plotting relationship between purchase and various other attribute

Marital_status vs gender

In [43]:

df.groupby('Marital_Status').agg({'Purchase':['max','min','mean']})
Out[43]:

 Purchase max
 min
 mean

 Marital_Status
 0
 23961.0
 12.0
 6651.243524

 1
 23961.0
 12.0
 6644.754522

```
In [44]:
```

```
sns.boxplot(x='Marital_Status',y='Purchase',data=df,width=0.5)
```

Out[44]:

<AxesSubplot:xlabel='Marital_Status', ylabel='Purchase'>

Gender vs Purchse

In [45]:

sns.boxplot(x='Gender',y='Purchase',data=df,width= 0.4)
plt.show()

In [46]:

df.groupby('Gender').agg({'Purchase':['max','min','mean','median']})

Out[46]:

Purchase

	max	min	mean	median
Gender				
0	23959.0	12.0	6272.428020	5953.0
1	23961.0	12.0	6772.031266	6101.0

Age vs Purchase

In [47]:

df.groupby('Age').agg({'Purchase':['max','min','mean','median']})

Out[47]:

Purchase

	max	min	mean	median
Age				
1.0	23960.0	12.0	6542.634829	5963.0
2.0	23958.0	12.0	6597.732282	5988.0
3.0	23961.0	12.0	6615.568681	6027.0
4.0	23960.0	12.0	6674.355822	6084.0
6.0	23960.0	12.0	6881.840875	6878.0
7.0	23960.0	12.0	6731.533741	6883.0

In [48]:

```
sns.boxplot(x='Age',y='Purchase',data=df,width=0.8)
plt.show()
```


Occupation vs Purchase

In [49]:

df.groupby('Occupation').agg({'Purchase':['max','min']})

Out[49]:

Purchase

max	min

Occupation

- **0** 23961.0 12.0
- **1** 23960.0 12.0
- **2** 23955.0 12.0
- **3** 23914.0 12.0
- **4** 23961.0 12.0
- **5** 23924.0 12.0
- **6** 23951.0 12.0
- **7** 23948.0 12.0
- **8** 23869.0 14.0
- **9** 23943.0 13.0
- 10 23955.0 12.011 23946.0 12.0
- **12** 23960.0 12.0
- **13** 23959.0 12.0
- **14** 23941.0 12.0
- **15** 23949.0 12.0
- **16** 23947.0 12.0
- **17** 23961.0 12.0
- **18** 23894.0 12.0
- **19** 23939.0 12.0
- **20** 23960.0 12.0

In [50]:

```
plt.figure(figsize=(12,6))
sns.boxplot(x='Occupation',y='Purchase',data=df)
plt.show()
```


Purchase vs City_Category

In [51]:

```
df.groupby('City_Category').agg({'Purchase':['max','min']})
```

Out[51]:

Purchase

max mir

City_Category

- **A** 23961.0 12.0
- **B** 23960.0 12.0
- **C** 23961.0 12.0

In [52]:

```
plt.figure(figsize=(12,6))
sns.boxplot(y='Purchase',x='City_Category',data=df)
plt.show()
```


Purchase vs Marital status

```
In [53]:
df.groupby('Marital_Status').agg({'Purchase':['max','min']})
Out[53]:
              Purchase
                     min
 Marital_Status
           0 23961.0 12.0
           1 23961.0 12.0
In [54]:
plt.figure(figsize=(12,6))
sns.boxplot(x='Marital_Status',y='Purchase',data=df,width=0.6)
plt.show()
  25000
   10000
    5000
                                                  Marital_Status
```

Purchase vs Stay_in_current city year

```
In [55]:
```

```
df.groupby('Stay_In_Current_City_Years').agg({'Purchase':['max','min']})
```

Out[55]:

	Purchase		
	max	min	
Stay_In_Current_City_Years			
0	23960.0	12.0	
1	23961.0	12.0	
2	23961.0	12.0	
3	23961.0	12.0	
4+	23958.0	12.0	

In [56]:

```
sns.boxplot(x='Stay_In_Current_City_Years',y='Purchase',data=df,width=0.6)
plt.show()
```



```
In [ ]:
```

Correlation

```
In [57]:
```

corr = df.corr()
sns.heatmap(corr,annot=True)

Out[57]:

<AxesSubplot:>

In []:

In [58]:

Label Encoding

In [59]:

df.head()

Out[59]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_Cat
0	P00069042	0	1.0	10	Α	2	0	3	6.0	
1	P00248942	0	1.0	10	Α	2	0	1	6.0	
2	P00087842	0	1.0	10	Α	2	0	12	14.0	
3	P00085442	0	1.0	10	Α	2	0	12	14.0	
4	P00285442	1	7.0	16	С	4+	0	8	2.0	
4										>

```
In [60]:

df.drop('Product_ID',axis=1)

Out[60]:
```

	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_Category_:	
0	0	1.0	10	А	2	0	3	6.0	14.0	
1	0	1.0	10	Α	2	0	1	6.0	14.0	
2	0	1.0	10	Α	2	0	12	14.0	17.0	
3	0	1.0	10	Α	2	0	12	14.0	17.0	
4	1	7.0	16	С	4+	0	8	2.0	17.0	
233594	0	3.0	15	В	4+	1	8	8.0	12.0	
233595	0	3.0	15	В	4+	1	5	8.0	12.0	
233596	0	3.0	15	В	4+	1	1	5.0	12.0	
233597	0	3.0	1	С	4+	0	10	16.0	12.0	
233598	0	3.0	0	В	4+	1	4	5.0	12.0	
783667 rows × 10 columns										
4										

Checking shape of data

```
In [61]:

df.shape

Out[61]:

(783667, 11)

In [62]:

df_gender = pd.get_dummies(df['Gender'])
    df_age = pd.get_dummies(df['Age'])
    df_city_category = pd.get_dummies(df['City_Category'])
    df_stay_in_current_city_years = pd.get_dummies(df['Stay_In_Current_City_Years'])

df_final = pd.concat([df,df_gender,df_age ,df_city_category,df_stay_in_current_city_years],axis=1)

df_final.head()
```

Out[62]:

	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_Cat
0	P00069042	0	1.0	10	Α	2	0	3	6.0	
1	P00248942	0	1.0	10	Α	2	0	1	6.0	
2	P00087842	0	1.0	10	Α	2	0	12	14.0	
3	P00085442	0	1.0	10	Α	2	0	12	14.0	
4	P00285442	1	7.0	16	С	4+	0	8	2.0	

5 rows × 27 columns

```
In [63]:
df_final = df_final.drop(['Gender','Age','City_Category','Stay_In_Current_City_Years'],axis=1)
df final
Out[63]:
        Product_ID Occupation Marital_Status Product_Category_1 Product_Category_2 Product_Category_3 Purchase
                                                                                                           0 1 1.0 ... 6.0 7.0
     0 P00069042
                          10
                                         0
                                                           3
                                                                            6.0
                                                                                              14.0
                                                                                                               0
                                                                                                                          0
                                                                                                                              0
                                                                                                                                     0
                                                                                                                              0
                                                                                                                                  1
                                                                                                                                     0
     1 P00248942
                           10
                                         0
                                                           1
                                                                            6.0
                                                                                              14.0
                                                                                                    15200.0
                                                                                                               0
                                                                                                                    1
                                                                                                                           0
     2 P00087842
                                         0
                                                          12
                                                                                              17.0
                                                                                                     1422.0
                                                                                                               0
                                                                                                                          0
                                                                                                                              0
                                                                                                                                     0
                           10
                                                                           14.0
                                                                                                                    1
     3
       P00085442
                           10
                                         0
                                                          12
                                                                           14.0
                                                                                              17.0
                                                                                                     1057.0
                                                                                                               0
                                                                                                                           0
                                                                                                                               0
        P00285442
                           16
                                         0
                                                           8
                                                                            2.0
                                                                                              17.0
                                                                                                     7969.0
                                                                                                            0
                                                                                                                   0
                                                                                                                           0
 233594 P00118942
                           15
                                                           8
                                                                            8.0
                                                                                              12.0
                                                                                                      490.0
                                                                                                               0
                                                                                                                   0
                                                                                                                           0
                                                                                                                              0
                                                                                                                                  0
 233595 P00254642
                           15
                                                           5
                                                                                                               0
                                                                                                                   0 ...
                                                                                                                           0
                                                                                                                              0
                                                                                                                                  0
                                                                            8.0
                                                                                              12.0
                                                                                                      490.0
                                                                                              12.0
                                                                                                                   0
                                                                                                                           0
 233597 P00124742
                                         0
                                                          10
                                                                           16.0
                                                                                              12.0
                                                                                                      490.0
                                                                                                               0
                                                                                                                   0
                                                                                                                          0
                                                                                                                              0
                                                                                                                                  0
                                                                                                                                    0
233598 P00316642
                                                                                              12.0
                                                                                                      490.0
                                                                                                           1 0
                                                                                                                   0 ...
                                                                                                                          0
                                                                                                                              0 0
                           0
                                                                            5.0
783667 rows × 23 columns
In [64]:
df_final.drop('Product_ID',axis=1,inplace=True)
In [65]:
df_final.dtypes
Out[65]:
Occupation
                          int64
                          int64
Marital_Status
Product_Category_1
                          int64
Product_Category_2
                        float64
Product_Category_3
                        float64
Purchase
                        float64
                          uint8
                          uint8
1
1.0
                          uint8
2.0
                          uint8
3.0
                          uint8
4.0
                          uint8
6.0
                          uint8
7.0
                          uint8
                          uint8
В
                          uint8
C
                          uint8
0
                          uint8
1
                          uint8
                          uint8
3
                          uint8
                          uint8
dtype: object
In [ ]:
In [ ]:
In [ ]:
```

dividing dataset into test and train

```
In [67]:

X = df_final.drop('Purchase',axis=1)
y = df_final['Purchase']
```

```
In [68]:
from sklearn.model_selection import train_test_split
In [69]:
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.2,random_state= 0)
In [70]:
print(X_train.shape,y_train.shape)
(626933, 21) (626933,)
In [71]:
print(X_test.shape,y_test.shape)
(156734, 21) (156734,)
Feature Scaling
In [73]:
\textbf{from} \  \, \textbf{sklearn.preprocessing} \  \, \textbf{import} \  \, \textbf{StandardScaler}
In [74]:
scaler = StandardScaler()
In [75]:
X_train = scaler.fit_transform(X_train)
In [76]:
X_test = scaler.transform(X_test)
In [ ]:
In [ ]:
In [ ]:
```