

Exam I

Statistics:

Mean: 86.56

Median: 88.5

Highest: 99

Agenda

- Overview of Unsupervised Learning
- Clustering

Unsupervised Learning

Goals

- To discover interesting things from the data:
 - Is there an informative way to visualize the data?
 - Can we discover subgroups among the variables?

- Models:
 - Clustering
 - K-means
 - DBSCAN
 - Hierarchical Clustering

Clustering

What is Clustering?

What is Clustering?

What is Clustering?

Clustering

- Partition data into groups (clusters)
- Points within a cluster should be "similar"

Points in different clusters should be "different"

The Clustering Problem

• We are given a set of data points X_1, X_2, \dots, X_m that we would like to cluster

- Each data point has n-dimensional features: $X = (x_1, x_2, ... x_n)$
- We do not make any statistical assumption on the given data

K-Means

Overview

- K-means (MacQueen, 1967) is a partitional clustering algorithm
- Each cluster has a cluster center, called centroid
- K is specified by the user

K-means Algorithm

Given k:

- Choose k (random) data points (seeds) to be the initial centroids, cluster centers
- Assign each data point to the closest centroid
- Re-compute the centroids using the current cluster memberships
- If a convergence criterion is not met, repeat steps 2 and 3

Measure the Distance

- Similarity measure (distance measure)
 - Euclidean distance $d(x,y) = \sqrt{(x-y)^2} = \sqrt{\sum_{i=1}^d (x_i y_i)^2}$
 - Manhattan distance $d(x, y) = |x y| = \sum_{i=1}^{d} |x_i y_i|$

Stopping Criterion

- no (or minimum) re-assignments of data points to different clusters, or
- no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error(SSE),

$$SSE = \sum_{j=1}^{k} \sum_{x \in C_j} d(x, m_j)^2$$

- C_i is the jth cluster,
- m_i is the centroid of cluster C_i (the mean vector of all the data points in C_i)
- $d(x, m_i)$ is the distance between data point x and centroid m_i

Given a set of data points

Select initial centers at random (k=3)

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

How to choose k?

Elbow method:

run k-means clustering on the dataset for a range of values of k for each value of k calculate the sum of squared errors (SSE) If the line chart looks like an arm, then the "elbow" on the arm is the value of k that is the best

Pros and Cons

- Strengths:
 - Simple: each to understand and to implement
 - Efficient
- Weakness:
 - The algorithm is sensitive to outliers
 - it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity
 - Might be sensitive to initial seeds
 - Only simple cluster shapes

DBSCAN

Density-Based Spatial Clustering of Applications with Noise

Density-based Clustering

- Basic Idea:
 - Clusters are dense regions in the data space, separated by regions of lower object density
 - A cluster is defined as a maximal set of density-connected points

Density Definition

- ε -Neighborhood Objects within a radius of ε from an object $N_{\varepsilon}(p)$: $\{q | d(p,d) \le \varepsilon\}$
- "High density" -- ε -Neighborhood of an object contains at least MinPts of objects

Density of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 3)

Core, Border, Outlier

- Given ε and MinPts, categorize the objects into three exclusive groups:
 - Core point: has more than MinPts points within ε (these are points that are at the interior of a cluster)
 - Border point: has fewer than MinPts within ε , but is the neighborhood of a core point
 - Noise point: any point that is neither a core nor a border point

Density-reachability

• An object q is directly density-reachable from object p if p is a core object and q is in p's ε -neighborhood.

q is directly density-reachable from q p is not directly density-reachable from q Density-reachability is asymmetric

Density-reachability

A point p is directly density-reachable from p_2 p_2 is directly density-reachable from p_1 p_1 is directly density-reachable from q $p \leftarrow p_2 \leftarrow p_1 \leftarrow q$ form a chain

DBSCAN Algorithm

```
for each o \in D do

if o is not yet classified then

if |o's| \varepsilon-neighborhood|< MinPts

assign o to NOISE

else

collect all objects density-reachable from o

and assign them to a new cluster
```


Pros and Cons

- Can learn arbitrary cluster shapes (resistant to noise)
- Can detect outliers
- Needs two parameters to adjust

Hierarchical Clustering

Types

- Divisive (top-down) clustering
 - All objects in one cluster
 - Select a cluster and split it into two sub clusters
 - Until each leaf cluster contains only one object

Types

- Agglomerative (bottom-up) clustering
 - Each object is a cluster
 - Merge two clusters which are most similar to each other
 - Until all objects are merged into a single cluster

Dendrogram

- A tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster

Inter-Cluster Distance

MIN (Single Link)

- The distance between two clusters is represented by the distance of the closest pair of data objects belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph

Limitation: sensitive to noise/outliers

MAX (Complete link)

 The distance between two clusters is represented by the distance of the farthest pair of data objects belonging to different clusters

MAX (Complete link)

• Strength: less sensitive to noise/outliers

• Limitations: tends to break large clusters

Group average

- The distance between two clusters is represented by the average distance of all pairs of data objects belonging to different clusters
- Determined by all pairs of points in the two clusters

Centroid Distance

- The distance between two clusters is represented by the distance between the centers of the clusters
- Determined by cluster centroids

Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
- Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers

Python Practice

Questions?

For Next Week...

Principal component analysis

